
Spectral Theory 
and Quantum 
Mechanics

Valter Moretti

Mathematical Foundations 
of Quantum Theories, 
Symmetries and Introduction 
to the Algebraic Formulation

Second Edition

UNITEXT 110



UNITEXT - La Matematica per il 3+2

Volume 110

Editor-in-chief

A. Quarteroni

Series editors

L. Ambrosio
P. Biscari
C. Ciliberto
C. De Lellis
M. Ledoux
V. Panaretos
W.J. Runggaldier



More information about this series at http://www.springer.com/series/5418

http://www.springer.com/series/5418


Valter Moretti

Spectral Theory
and Quantum Mechanics
Mathematical Foundations of Quantum
Theories, Symmetries and Introduction
to the Algebraic Formulation

Second Edition

123



Valter Moretti
Department of Mathematics
University of Trento
Povo, Trento
Italy

ISSN 2038-5714 ISSN 2532-3318 (electronic)
UNITEXT - La Matematica per il 3+2
ISSN 2038-5722 ISSN 2038-5757 (electronic)
ISBN 978-3-319-70705-1 ISBN 978-3-319-70706-8 (eBook)
https://doi.org/10.1007/978-3-319-70706-8

Library of Congress Control Number: 2017958726

Translated and extended version of the original Italian edition: V. Moretti, Teoria Spettrale e Meccanica
Quantistica, © Springer-Verlag Italia 2010
1st edition: © Springer-Verlag Italia 2013
2nd edition: © Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Translated by: Simon G. Chiossi, Departamento de Matemática Aplicada (GMA-IME),
Universidade Federal Fluminense



To Bianca



Preface to the Second Edition

In this second English edition (third, if one includes the first Italian one), a large
number of typos and errors of various kinds have been amended.

I have added more than 100 pages of fresh material, both mathematical and
physical, in particular regarding the notion of superselection rules—addressed from
several different angles—the machinery of von Neumann algebras and the abstract
algebraic formulation. I have considerably expanded the lattice approach to
Quantum Mechanics in Chap. 7, which now contains precise statements leading up
to Solèr’s theorem on the characterization of quantum lattices, as well as gener-
alised versions of Gleason’s theorem. As a matter of fact, Chap. 7 and the related
Chap. 11 have been completely reorganised. I have incorporated a variety of results
on the theory of von Neumann algebras and a broader discussion on the mathe-
matical formulation of superselection rules, also in relation to the von Neumann
algebra of observables. The corresponding preparatory material has been fitted into
Chap. 3. Chapter 12 has been developed further, in order to include technical facts
concerning groups of quantum symmetries and their strongly continuous unitary
representations. I have examined in detail the relationship between Nelson domains
and Gårding domains. Each chapter has been enriched by many new exercises,
remarks, examples and references. I would like once again to thank my colleague
Simon Chiossi for revising and improving my writing.

For having pointed out typos and other errors and for useful discussions, I am
grateful to Gabriele Anzellotti, Alejandro Ascárate, Nicolò Cangiotti, Simon G.
Chiossi, Claudio Dappiaggi, Nicolò Drago, Alan Garbarz, Riccardo Ghiloni, Igor
Khavkine, Bruno Hideki F. Kimura, Sonia Mazzucchi, Simone Murro, Giuseppe
Nardelli, Marco Oppio, Alessandro Perotti and Nicola Pinamonti.

Povo, Trento, Italy Valter Moretti
September 2017
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Preface to the First Edition

I must have been 8 or 9 when my father, a man of letters but well-read in every discipline
and with a curious mind, told me this story: “A great scientist named Albert Einstein
discovered that any object with a mass can't travel faster than the speed of light”. To my
bewilderment I replied, boldly: “This can't be true, if I run almost at that speed and then
accelerate a little, surely I will run faster than light, right?” My father was adamant: “No,
it's impossible to do what you say, it's a known physics fact”. After a while I added: “That
bloke, Einstein, must've checked this thing many times … how do you say, he did many
experiments?” The answer I got was utterly unexpected: “Not even one I believe. He used
maths!”
What did numbers and geometrical figures have to do with the existence of an upper limit to
speed? How could one stand by such an apparently nonsensical statement as the existence
of a maximum speed, although certainly true (I trusted my father), just based on maths?
How could mathematics have such big a control on the real world? And Physics ? What on
earth was it, and what did it have to do with maths? This was one of the most beguiling and
irresistible things I had ever heard till that moment… I had to find out more about it.

This is an extended and enhanced version of an existing textbook written in Italian
(and published by Springer-Verlag). That edition and this one are based on a
common part that originated, in preliminary form, when I was a Physics under-
graduate at the University of Genova. The third-year compulsory lecture course
called Theoretical Physics was the second exam that had us pupils seriously
climbing the walls (the first being the famous Physics II, covering thermodynamics
and classical electrodynamics).

Quantum Mechanics, taught in Institutions, elicited a novel and involved way of
thinking, a true challenge for craving students: for months we hesitantly faltered on
a hazy and uncertain terrain, not understanding what was really key among the
notions we were trying—struggling, I should say—to learn, together with a com-
pletely new formalism: linear operators on Hilbert spaces. At that time, actually, we
did not realise we were using this mathematical theory, and for many mates of
mine, the matter would have been, rightly perhaps, completely futile; Dirac's bra
vectors were what they were, and that’s it! They were certainly not elements in the
topological dual of the Hilbert space. The notions of Hilbert space and dual
topological space had no right of abode in the mathematical toolbox of the majority
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of my fellows, even if they would soon come back in through the back door, with
the course Mathematical Methods of Physics taught by Prof. G. Cassinelli.
Mathematics, and the mathematical formalisation of physics, had always been my
flagship to overcome the difficulties that studying physics presented me with, to the
point that eventually (after a Ph.D. in Theoretical Physics) I officially became a
mathematician. Armed with a maths’ background—learnt in an extracurricular
course of study that I cultivated over the years, in parallel to academic physics—and
eager to broaden my knowledge, I tried to formalise every notion I met in that new
and riveting lecture course. At the same time, I was carrying along a similar project
for the mathematical formalisation of General Relativity, unaware that the work put
into Quantum Mechanics would have been incommensurably bigger.

The formulation of the spectral theorem as it is discussed in x 8, 9 is the same I
learnt when taking the Theoretical Physics exam, which for this reason was a
dialogue of the deaf. Later my interest turned to Quantum Field Theory, a subject I
still work on today, though in the slightly more general framework of QFT in
curved spacetime. Notwithstanding, my fascination with the elementary formula-
tion of Quantum Mechanics never faded over the years, and time and again chunks
were added to the opus I begun writing as a student.

Teaching this material to master’s and doctoral students in mathematics and
physics, thereby inflicting on them the result of my efforts to simplify the matter,
has proved to be crucial for improving the text. It forced me to typeset in LaTeX the
pile of loose notes and correct several sections, incorporating many people’s
remarks.

Concerning this, I would like to thank my colleagues, the friends from the
newsgroups it.scienza.fisica, it.scienza.matematica and free.it.scienza.fisica, and the
many students—some of which are now fellows of mine—who contributed to
improve the preparatory material of the treatise, whether directly or not, in the
course of time: S. Albeverio, G. Anzellotti, P. Armani, G. Bramanti, S. Bonaccorsi,
A. Cassa, B. Cocciaro, G. Collini, M. Dalla Brida, S. Doplicher, L. Di Persio,
E. Fabri, C. Fontanari, A. Franceschetti, R. Ghiloni, A. Giacomini, V. Marini,
S. Mazzucchi, E. Pagani, E. Pelizzari, G. Tessaro, M. Toller, L. Tubaro,
D. Pastorello, A. Pugliese, F. Serra Cassano, G. Ziglio and S. Zerbini. I am
indebted, for various reasons also unrelated to the book, to my late colleague
Alberto Tognoli. My greatest appreciation goes to R. Aramini, D. Cadamuro and
C. Dappiaggi, who read various versions of the manuscript and pointed out a
number of mistakes.

I am grateful to my friends and collaborators R. Brunetti, C. Dappiaggi and N.
Pinamonti for lasting technical discussions, for suggestions on many topics covered
in the book and for pointing out primary references.

At last, I would like to thank E. Gregorio for the invaluable and on-the-spot
technical help with the LaTeX package.

In the transition from the original Italian to the expanded English version, a
massive number of (uncountably many!) typos and errors of various kinds have
been corrected. I owe to E. Annigoni, M. Caffini, G. Collini, R. Ghiloni,
A. Iacopetti, M. Oppio and D. Pastorello in this respect. Fresh material was added,
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both mathematical and physical, including a chapter, at the end, on the so-called
algebraic formulation.

In particular, Chap. 4 contains the proof of Mercer’s theorem for positive
Hilbert–Schmidt operators. The analysis of the first two axioms of Quantum
Mechanics in Chap. 7 has been deepened and now comprises the algebraic char-
acterisation of quantum states in terms of positive functionals with unit norm on the
C�-algebra of compact operators. General properties of C�-algebras and �-morph-
isms are introduced in Chap. 8. As a consequence, the statements of the spectral
theorem and several results on functional calculus underwent a minor but necessary
reshaping in Chaps. 8 and 9. I incorporated in Chap. 10 (Chap. 9 in the first edition)
a brief discussion on abstract differential equations in Hilbert spaces. An important
example concerning Bargmann’s theorem was added in Chap. 12 (formerly
Chap. 11). In the same chapter, after introducing the Haar measure, the Peter–Weyl
theorem on unitary representations of compact groups is stated and partially proved.
This is then applied to the theory of the angular momentum. I also thoroughly
examined the superselection rule for the angular momentum. The discussion on
POVMs in Chap.13 (ex Chap. 12) is enriched with further material, and I included a
primer on the fundamental ideas of non-relativistic scattering theory. Bell’s
inequalities (Wigner’s version) are given considerably more space. At the end
of the first chapter, basic point-set topology is recalled together with abstract
measure theory. The overall effort has been to create a text as self-contained as
possible. I am aware that the material presented has clear limitations and gaps.
Ironically—my own research activity is devoted to relativistic theories—the entire
treatise unfolds at a non-relativistic level, and the quantum approach to Poincaré’s
symmetry is left behind.

I thank my colleagues F. Serra Cassano, R. Ghiloni, G. Greco, S. Mazzucchi,
A. Perotti and L. Vanzo for useful technical conversations on this second version.
For the same reason, and also for translating this elaborate opus into English,
I would like to thank my colleague S. G. Chiossi.

Trento, Italy Valter Moretti
October 2012
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Chapter 1
Introduction and Mathematical Backgrounds

“O frati”, dissi “che per cento milia perigli siete giunti a
l’occidente, a questa tanto picciola vigilia d’i nostri sensi ch’è
del rimanente non vogliate negar l’esperienza, di retro al sol,
del mondo sanza gente”.

Dante Alighieri, the Divine Comedy, Inferno, canto XXVI1

1.1 On the Book

1.1.1 Scope and Structure

One of the aims of the present book is to explain the mathematical foundations of
Quantum Mechanics (QM), and Quantum Theories in general, in a mathematically
rigorousway. This is a treatise onMathematics (orMathematical Physics) rather than
a text on Quantum Mechanics. Except for a few cases, the physical phenomenology
is left in the background in order to privilege the theory’s formal and logical aspects.
At any rate, several examples of the physical formalism are presented, lest one lose
touch with the world of physics.

In alternative to, and irrespective of, the physical content, the book should be
considered as an introductory text, albeit touching upon rather advanced topics, on
functional analysis on Hilbert spaces, including a few elementary yet fundamental
results on C∗-algebras. Special attention is given to a series of results in spectral
theory, such as the various formulations of the spectral theorem for bounded normal
operators and not necessarily bounded, self-adjoint ones. This is, as a matter of fact,
one further scope of the text. The mathematical formulation of Quantum Theories
is “confined” to Chaps. 6, 7, 11–13 and partly Chap. 14. The remaining chapters are

1(“Brothers” I said, “who through a hundred thousand dangers have reached the channel to the
west, to the short evening watch which your own senses still must keep, do not choose to deny
the experience of what lies past the Sun and of the world yet uninhabited.” Dante Alighieri, The
Divine Comedy, translated by J. Finn Cotter, edited by C. Franco, Forum Italicum Publishing,
New York, 2006.)
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2 1 Introduction and Mathematical Backgrounds

logically independent of those, although the motivations for certain mathematical
definitions are to be found in Chaps. 7, 10–14.

A third purpose is to collect in one place a number of rigorous and useful results on
the mathematical structure of QM and Quantum Theories. These are more advanced
than what is normally encountered in quantum physics’ manuals. Many of these
aspects have been known for a long time but are scattered in the specialistic literature.
We should mention Solèr’s theorem, Gleason’s theorem, the theorem of Kochen and
Specker, the theorems of Stone–von Neumann and Mackey, Stone’s theorem and von
Neumann’s theorem about one-parameter unitary groups,Kadison’s theorem, besides
the better known Wigner, Bargmann and GNS theorems; or, more abstract results in
operator theory such as Fuglede’s theorem, or the polar decomposition for closed
unbounded operators (which is relevant in the Tomita–Takesaki theory and statistical
QuantumMechanics in relationship to the KMS condition); furthermore, self-adjoint
properties for symmetric operators, due to Nelson, that descend from the existence
of dense sets of analytical vectors, and finally, Kato’s work (but not only his) on
the essential self-adjointness of certain kinds of operators and their limits from the
bottom of the spectrum (mostly based on the Kato–Rellich theorem).

Some chapters suffice to cover a good part of the material suitable for advanced
courses onMathematical Methods in Physics; this is common for master’s degrees in
Physics or doctoral degrees, if we assume a certain familiarity with notions, results
and elementary techniques of measure theory. The text may also be used for a higher-
level course in Mathematical Physics that includes foundational material on QM. In
the attempt to reach out to master or Ph.D. students, both in physics with an interest
in mathematical methods or in mathematics with an inclination towards physical
applications, the author has tried to prepare a self-contained text, as far as possi-
ble: hence a primer was included on general topology and abstract measure theory,
together with an appendix on differential geometry. Most chapters are accompanied
by exercises, many of which are solved explicitly.

The book could, finally, be useful to scholars to organise and present accurately
the profusion of advanced material disseminated in the literature.

Results from topology and measure theory, much needed throughout the whole
treatise, are recalled at the end of this introductory chapter. The rest of the book is
ideally divided into three parts. The first part, up to Chap.5, regards the general the-
ory of operators on Hilbert spaces, and introduces several fairly general notions, like
Banach spaces. Core results are proved, such as the theorems of Baire, Hahn–Banach
and Banach–Steinhaus, as well as the fixed-point theorem of Banach–Caccioppoli,
the Arzelà-Ascoli theorem and Fredholm’s alternative, plus some elementary con-
sequences. This part contains a summary of basic topological notions, in the belief
that it might benefit physics’ students. The latter’s training on point-set topology is at
times disparate and often presents gaps, because this subject is, alas, usually taught
sporadically in physics’ curricula, and not learnt in an organic way like students in
mathematics do.

Part two endswith Chap.10. Beside laying out the quantum formalism, it develops
spectral theory, in terms of projector-valued measures, up to the spectral decomposi-
tion theorems for unbounded self-adjoint operators on Hilbert spaces. This includes

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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the features of maps of operators (functional analysis) for measurable maps that are
not necessarily bounded. General spectral aspects and the properties of their domains
are investigated.Agreat emphasis is placed onC∗-algebras and the relative functional
calculus, including an elementary study of the Gelfand transform and the commuta-
tive Gelfand–Najmark theorem. The technical results leading to the spectral theorem
are stated and proven in a completely abstract manner in Chap. 8, forgetting that the
algebras in question are actually operator algebras, and thus showing their broader
validity. In Chap.10 spectral theory is applied to several practical and completely
abstract contexts, both quantum and not.

Chapter6 treats, from a physical perspective, themotivation underlying the theory.
The general mathematical formulation of QM concerns Chap.7. The mathematical
starting point is the idea, goingback to vonNeumann, that the propositions of physical
quantum systems are described by the lattice of orthogonal projectors on a complex
Hilbert space. Maximal sets of physically compatible propositions (in the quantum
sense) are described by distributive, orthocomplemented, bounded, σ -complete lat-
tices. From this standpoint the quantum definition of an observable in terms of a
self-adjoint operator is extremely natural, as is, on the other hand, the formulation of
the spectral decomposition theorem. Quantum states are defined as measures on the
lattice of all orthogonal projectors, which is no longer distributive (due to the pres-
ence, in the quantum world, of incompatible propositions and observables). States
are characterised as positive operators of trace class with unit trace under Gleason’s
theorem. Pure states (rays in theHilbert space of the physical system) arise as extreme
elements of the convex body of states. Generalisations ofGleason’s statement are also
discussed in a more advanced section of Chap. 7. The same chapter also discusses
how to recover the Hilbert space starting from the lattice of elementary proposi-
tions, following the theorems of Piron and Solèr. The notion of superselection rule
is also introduced here, and the discussion is expanded in Chap. 11 in terms of direct
decomposition of von Neumann factors of observables. In that chapter the notion of
von Neumann algebra of observables is exploited to present the mathematical for-
mulation of quantum theories in more general situations, where not all self-adjoint
operators represent observables.

The third part of the book is devoted to the mathematical axioms of QM, andmore
advanced topics like quantum symmetries and the algebraic formulation of quantum
theories. Quantum symmetries and symmetry groups (both according to Wigner and
to Kadison) are studied in depth. Dynamical symmetries and the quantum version of
Noether’s theorem are covered as well. The Galilean group, together with its sub-
groups and central extensions, is employed repeatedly as reference symmetry group,
to explain the theory of projective unitary representations. Bargmann’s theorem on
the existence of unitary representations of simply connected Lie groups whose Lie
algebra obeys a certain cohomology constraint is proved, and Bargmann’s rule of
superselection of the mass is discussed in detail. Then the useful theorems of Gårding
and Nelson for projective unitary representations of Lie groups of symmetries are
considered. Important topics are examined that are often neglected in manuals, like
the uniqueness of unitary representations of the canonical commutation relations
(theorems of Stone–von Neumann and Mackey), or the theoretical difficulties in

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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defining time as the conjugate operator to energy (the Hamiltonian). The mathemati-
cal hurdles one must overcome in order to make the statement of Ehrenfest’s theorem
precise are briefly treated. Chapter14 offers an introduction to the ideas and methods
of the abstract formulation of observables and algebraic states via C∗-algebras. Here
one finds the proof of the GNS theorem and some consequences of purely mathemat-
ical flavour, like the general theorem of Gelfand–Najmark. This closing chapter also
contains material on quantum symmetries in an algebraic setting. As an example the
Weyl C∗-algebra associated to a symplectic space (usually infinite-dimensional) is
presented.

The appendices at the end of the book recap facts on partially ordered sets, groups
and differential geometry.

The author has chosen not to include topics, albeit important, such as the theory
of rigged Hilbert spaces (the famous Gelfand triples) [GeVi64], and the powerful
formulation of QM based on the path integral approach [AH-KM08, Maz09]. Doing
so would have meant adding further preparatory material, in particular regarding
the theory of distributions, and extending measure theory to the infinite-dimensional
case.

There are very valuable and recent textbooks similar to this one, at least in the
mathematical approach. One of the most interesting and useful is the far-reaching
[BEH07].

1.1.2 Prerequisites

Apart from a firm background on linear algebra, plus some group theory and repre-
sentation theory, essential requisites are the basics of calculus in one and several real
variables, measure theory on σ -algebras [Coh80, Rud86] (summarised at the end of
this chapter), and a few notions on complex functions.

Imperative, on the physics’ side, is the acquaintance with undergraduate physics.
More precisely, analytical mechanics (the groundwork of Hamilton’s formulation of
dynamics) and electromagnetism (the key features of electromagnetic waves and the
crucial wavelike phenomena like interference, diffraction, scattering).

Lesser elementary, yet useful, facts will be recalled where needed (including
examples) to enable a robust understanding. One section of Chap.12 will need ele-
mentary Lie group theory. For this we refer to the book’s epilogue: the last appendix
summarises tidbits of differential geometry rather thoroughly. Further details should
be looked up in [War75, NaSt82].

1.1.3 General Conventions

1. The symbol := means “equal, by definition, to”.
2. The inclusion symbols ⊂,⊃ allow for equality =.

http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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3. The symbol
⊔

denotes the disjoint union.
4. N is the set of natural numbers including zero, and R+ := [0,+∞).
5. Unless otherwise stated, the field of scalars of a normed, Banach or Hilbert

vector space is the field of complex numbersC, and inner product always means
Hermitian inner product.

6. The complex conjugate of a number c is denoted by c. As the same symbol is
used for the closure of a set of operators, should there be confusion we will
comment on the meaning.

7. The inner product of two vectorsψ, φ in a Hilbert spaceH is written as (ψ |φ) to
distinguish it from the ordered pair (ψ, φ). The product’s left entry is antilinear:
(αψ |φ) = α(ψ |φ).
If ψ, φ ∈ H, the symbols ψ(φ| ) and (φ| )ψ denote the same linear operator
H � χ �→ (φ|χ)ψ .

8. Complete orthonormal systems in Hilbert spaces are called Hilbert bases. When
no confusion arises, a Hilbert basis is simply referred to as a basis.

9. The word operator tacitly implies it is linear.
10. An operator U : H → H′ between Hilbert spaces H and H′ that is isometric and

surjective is called unitary, even if elsewhere in the literature the name is reserved
for the case H = H′.

11. By vector subspace we mean a subspace for the linear operations, even in pres-
ence of additional structures on the ambient space (e.g. Hilbert, Banach etc.).

12. For the Hermitian conjugation we always use the symbol ∗. Note that Hermitian
operator, symmetric operator, and self-adjoint operator are not considered syn-
onyms.

13. When referring to maps, one-to-one, 1–1 and injective mean the same, just
like onto and surjective. Bijective means simultaneously one-to-one and onto,
and invertible is a synonym of bijective. One should beware that a one-to-one
correspondence is a bijective mapping. An isomorphism, irrespective of the
algebraic structures at stake, is a 1–1 map onto its image, hence a bijective
homomorphism.

14. Boldface typeset (within a definition or elsewhere) is typically used when defin-
ing a term for the first time.

15. Corollaries, definitions, examples, lemmas, notations, remarks, propositions and
theorems are labelled sequentially to simplify lookup.

16. At times we use the shorthand ‘iff’, instead of ‘if and only if’, to say that two
statements imply one another, i.e. they are logically equivalent.

Finally, if h denotes Planck’s constant, we adopt the notation, widely used by physi-
cists,

� := h

2π
= 1.054571800(13) × 10−34 Js .
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1.2 On Quantum Theories

1.2.1 Quantum Mechanics as a Mathematical Theory

From a mathematical point of view Quantum Mechanics represents a rare blend of
mathematical elegance and descriptive insight into the physical world. The theory
essentially makes use of techniques of functional analysis mixed with incursions and
overlaps with measure theory, probability and mathematical logic.

There are (at least) two possible ways to formulate precisely (i.e. mathemati-
cally) elementary QM. The eldest one, historically speaking, is due to von Neumann
([Neu32]) in essence, and is formulated using the language of Hilbert spaces and the
spectral theory of unbounded operators. A more recent and mature formulation was
developed by several authors in the attempt to solve quantum field theory problems in
mathematical physics. It relies on the theory of abstract algebras (∗-algebras and C∗-
algebras) that are built mimicking the operator algebras defined and studied, again,
by von Neumann (nowadays known as W ∗-algebras or von Neumann algebras), but
freed from the Hilbert-space structure (for instance, [BrRo02] is a classic on operator
algebras). The core result is the celebrated GNS theorem (after Gelfand, Najmark
and Segal) [Haa96, BrRo02], that we will prove in Chap. 14. The newer formulation
can be considered an extension of the former one, in a very precise sense that we
shall not go into here, also by virtue of the novel physical context it introduces and by
the possibility of treating physical systems with infinitely many degrees of freedom,
i.e. quantum fields. In particular, this second formulation makes precise sense of the
demand for locality and covariance of relativistic quantum field theories [Haa96],
and allows to extend quantum field theories to a curved spacetime.

The algebraic formulation of elementary QM, even though it can be achieved
and despite its utmost finesse, is not a strict necessity (see for example [Str05a]
and parts of [DA10]). Given the relatively basic nature of our book we shall treat
almost exclusively the first formulation, which displays an impressive mathematical
complexity together with amanifest formal elegance.Wewill introduce the algebraic
formulation in the last chapter only, and stay within the general framework rather
than consider QM as a physical object.

A crucial mathematical tool to develop a Hilbert-space formulation for QM is the
spectral theorem for self-adjoint operators (unbounded, usually) defined on dense
subspaces of a Hilbert space. This theorem, which can be extended to normal oper-
ators, was first proved by von Neumann in [Neu32] apropos the mathematical struc-
ture of QM: this fundamental work ought to be considered a XX century milestone
of mathematical physics and pure mathematics. The definition of abstract Hilbert
spaces and much of the corresponding theory, as we know it today, are also due to
von Neumann and his formalisation of QM. Von Neumann built the modern,
axiomatic notion of an abstract Hilbert space [Neu32, Sect. 1] by considering the
two approaches to QM known at that time: the one relying on Heisenberg matrices,
and the one using Schrödinger’s wavefunctions.

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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The relationship between QM and spectral theory depends upon the following
fact. The standard way of interpreting QM dictates that physical quantities that are
measurable over quantum systems can be associated to unbounded self-adjoint oper-
ators on a suitable Hilbert space. The spectrum of each operator coincides with the
collection of values the associated physical quantity can attain. The construction of
a physical quantity from easy properties and propositions of the type “the value of
the quantity falls in the interval (a, b]”, which correspond to orthogonal projectors
in the mathematical scheme one adopts, is nothing else but an integration proce-
dure with respect to an appropriate projector-valued spectral measure. In practice,
then, the spectral theorem is just a means to construct complicated operators starting
from projectors or, conversely, decompose operators in terms of projector-valued
measures.

The contemporary formulation of spectral theory is certainly different from that
of von Neumann, although the latter already contained all basic constituents. Von
Neumann’s treatise (dating back to 1932) discloses an impressive depth still today,
especially in the most difficult parts of the physical interpretation of the QM formal-
ism. If we read that book it becomes clear that von Neumann was well aware of these
issues, as opposed to many colleagues of his. It would be interesting to juxtapose his
opus to the much more renowned book by Dirac [Dir30] on QM’s fundamentals, a
comparison that we leave to the interested reader. At any rate, the great interpretative
strength von Neumann gave to QM begins to be recognised by experimental physi-
cists as well, in particular those concerned with quantum measurements [BrKh95].

The so-called quantum logics arise from the attempt to formalise QM from the
most radical stand: endowing the same logic used to treat quantum systems with
properties different from those of ordinary logic, and modifying the semantic theory.
For example, more than two truth values are allowed, and the Boolean lattice of
propositions is replaced by a more complicated non-distributive structure. In the first
formulation of quantum logic, known as standard quantum logic and introduced by
Von Neumann and Birkhoff in 1936, the role of the Boolean algebra of propositions
is taken by an orthomodular lattice: this is modelled, as a matter of fact, on the set of
orthogonal projectors on a Hilbert space, or the collection of closed projection spaces
[Bon97], plus some composition rules.Despite its sophistication, thatmodel is known
to contain many flaws when one tries to translate it in concrete (operational) physical
terms. Beside the various formulations of quantum logic [Bon97, DCGi02, EGL09],
there are also other foundational formulations based on alternative viewpoints (e.g.,
topos theory).

1.2.2 QM in the Panorama of Contemporary Physics

Quantum Mechanics and General and Special Relativity (GSR) represent the two
paradigms by which the physics of the XX and XXI centuries developed. QM is,
roughly speaking, the physical theory of the atomic and sub-atomicworld,whileGSR
is the physical theory of gravity, the macroscopic world and cosmology (as recently
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as 2016, GSR received thunderous experimental confirmation with the detection of
gravitational waves). These two paradigms coalesced, in several contexts, to give
rise to relativistic quantum theories. Relativistic Quantum Field Theory [StWi00,
Wei99], in particular, haswitnessed a striking growth and a spectacular predictive and
explanatory success relative to the theory of elementary particles and fundamental
interactions. Two examples for all. In the so-called standard model of elementary
particles, that theory predicted the unification of theweak and electromagnetic forces
which was confirmed experimentally at the end of the 1980s during a memorable
experiment at C.E.R.N., in Geneva, where the particles Z0 and W ±, expected by
electro-weak unification, were first observed. More recently, another prediction was
confirmed: the existence of theHiggs boson, suspected since the 1960s and eventually
detected 50 years after. On March 14, 2013, referring to the newly observed particle,
C.E.R.N. confirmed that: ‘CMS and ATLAS have compared a number of options for
the spin-parity of this particle, and these all prefer no spin and even parity. This,
coupled with the measurements of the interactions with other particles, strongly
indicates that the new particle is a Higgs boson.’

The best-ever accuracy in the measurement of a physical quantity in the whole
history of physics was predicted by quantum electrodynamics. The quantity is the
so-called gyro-magnetic ratio g of the electron, a dimensionless number. The value
expected by quantum electrodynamics for a := g/2 − 1 was

0.001159652359 ± 0.000000000282 ,

and the experimental result turned out to be

0.001159652209 ± 0.000000000031 .

Many physicists believe QM to be the fundamental theory of the universe (more than
relativistic theories), also owing to the impressive range of linear scales at which it
holds: from 1m (Bose–Einstein condensates) to at least 10−16 m (inside nucleons, at
quark level). QM has had an enormous success, both theoretical and experimental,
in materials’ science, optics, electronics, with several key repercussions: every tech-
nological object of common use that is complex enough to contain a semiconductor
(childrens’ toys, mobile phones, remote controls…) exploits the quantum properties
of matter.

Going back to the twomajor approaches of the past century –QMandGSR – there
remain a number of obscure pointswhere these paradigms seem to clash. In particular,
the so-called “quantisation of gravity” and the structure of spacetime atPlanck scales
(∼10−35 m, ∼10−43 s, the length and time scales obtained from the fundamental
constants of the two theories: the speed of light, the universal constant of gravity and
Planck’s constant). The necessity of a discontinuous spacetime at ultra-microscopic
scales is also reinforced by certainmathematical (and conceptual) hurdles that the so-
called theory of quantumRenormalisation has yet to overcome, as consequence of the
infinite values arising in computing processes due to the interaction of elementary
particles. From a purely mathematical perspective the existence of infinite values
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is actually related to the problem, already intrinsically ambiguous, of defining the
product of two distributions: infinites are not the root of the problem, but a mere
manifestation of it.

These issues, whether unsolved or partially solved, have underpinned important
theoretical advancements of late, which in turn influenced the developments of pure
mathematics itself. Examples include (super-)String theory, the various Noncommu-
tative Geometries, first of all Alain Connes’ version, and Loop Quantum Gravity.
The difficulty in deciding which of these theories makes any physical sense and is
apt to describe the universe at very small scales is also practical: today’s technology
is not capable of preparing experiments that enable to distinguish among all avail-
able theories. However, it is relevant to note that recent experimental observations
of the so-called γ -bursts, conducted with the telescope “Fermi Gamma-ray”, have
lowered the threshold for detecting quantum-gravity phenomena (e.g. the violation
of Lorentz’s symmetry) well below Planck’s length [Abd09]. Other discrepancies
between QM and GSR, about which the debate is more relaxed today than it was
in the past, have to do with QM verses the notions of locality of relativistic nature
(Einstein–Podolsky–Rosen paradox [Bon97]) in relationship to QM’s entanglement
phenomena.This is due in particular toBell’swork in the late 1960s, and to the famous
experiments of Aspect. Both disproved Einstein’s expectations, and secondly they
confirmed the Copenhagen interpretation, eventually proving that nonlocality is a
characteristic of Nature, independent of whether one accepts the standard interpre-
tation of QM or not. The vast majority of physicists seems to agree that the existence
of nonlocal physical processes, as QM forecasts, does not imply any concrete viola-
tion of the core of Relativity (quantum entanglement does not involve superluminal
transmission of information, nor the violation of causality [Bon97]).

In the standard interpretation of QM that is called the Copenhagen interpretation
there are parts that remain physically and mathematically unintelligible, yet still
very interesting conceptually. In particular, and despite several appealing attempts,
it still not clear how standard mechanics may be seen as a limit subcase of QM,
nor how to demarcate (even roughly, or temporarily) the two worlds. Further, the
question remains about the physical and mathematical description of the so-called
process of quantum measurement, of which more later, which is strictly related to
the classical limit of QM. From this fact, as well, other interpretations of the QM
formalisms were born that differ deeply from the Copenhagen interpretation. Among
these more recent interpretations, once considered heresies, Bohm’s interpretation
relies on hidden variables [Bon97, Des99] and is particularly intriguing.

Doubts are sometimes raised about the formulation of QM and about it being not
truly clear, but just a list of procedures that “actually work”, whereas its true nature is
something inaccessible, sort of “noetic”. In the author’s opinion a dangerous episte-
mological mistake hides behind this point of view. Themisconception is based on the
belief that “explaining” a phenomenon means reducing it to the categories of daily
life, as if everyday experience reached farther than reality itself. Quite the contrary:
those categorieswere built upon conventionalwisdom, and hencewithout any alleged
metaphysical insight. There could be a deep philosophical landscape unfolding on
the other side of that simple “actually works”, and it may draw us closer to reality
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rather than pushing us away from it. Quantum Mechanics has taught us to think in
a different fashion, and for this reason it has been (is, actually) an incredible oppor-
tunity for humanity. To turn our backs on QM and declare we do not understand it
because it refuses to befit our familiar mental categories means locking the door that
separates us from something huge. This is the author’s stance, who does indeed con-
sider Heisenberg’s uncertainty principle (a theorem in today’s formulation, despite
the name) one of the highest achievements of the human enterprise.

Mathematics is the most accurate of languages invented by man. It allows to
create formal structures corresponding to worlds that may or may not exist. The
plausibility of these hypothetical realities is found solely in the logical or syntac-
tical coherence of the corresponding mathematical structure. In this way semantic
“chimeras”might arise, that turn out to be syntactically coherent nevertheless. Some-
times these creatures are consistent with worlds or states that do exist, although they
have not been discovered yet. A feature that is attributable to an existing entity can
only either be present or not, according to the classical ontological view. Quantum
Mechanics, in particular, leads to say that any such property may not simply obey
the true/false pattern, but also be “uncertain”, despite being inherent to the object
itself. This tremendous philosophical leap can be entirely managed within the math-
ematical foundations of QM, and represents the most profound philosophical legacy
of Heisenberg’s principle.

At least two general issues remain unanswered, both of gnoseological nature,
essentially, and common to the entire formulation of modern science. The first is
the relationship between theoretical entities and the objects we have experience of.
The problem is particularly delicate in QM, where the notion of what a measuring
instrument is has not yet been fully clarified. Generally speaking, the relationship of
a theoretical entity with an experimental object is not direct, and still based on often
understated theoretical assumptions. But this is also the case in classical theories,
when one, for example, wants to tackle problems such as the geometry of the phys-
ical space. There, it is necessary to identify, inside the physical reality, objects that
correspond to the idea of a point, a segment, and so on, and to do that we use other
assumptions, like the fact that the geometry of the straightedge is the same as when
inspecting space with light beams. The second issue is the hopelessness of trying to
prove the syntactic coherence of a mathematical construction. We may attempt to
reduce the latter to the coherence of set theory, or category theory. That this reduc-
tion should prove the construction’s solidity has more to do with psychology than
with it being a real fact, due to the profusion of well-known paradoxes disseminated
along the history of the formalisation of mathematics, and eventually due to Gödel’s
famous theorem.

In spite of all, QM (but also other scientific theories) has been – and is – capable
of predicting new facts and not yet observed phenomena that have been confirmed
experimentally.

In this sense Quantum Mechanics must contain elements of reality.
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1.3 Backgrounds on General Topology

For the reader’s sake we collect here notions of point-set topology that will be used
by and large in the book. All statements are elementary and classical, and can be
found easily in any university treatise, so for brevity we will prove almost nothing.
The practiced reader may skip this section completely and return to it at subsequent
stages for reference.

1.3.1 Open/Closed Sets and Basic Point-Set Topology

Open and closed sets are defined as follows [Ser94II], in the greatest generality.

Definition 1.1 The pair (X,T ), where X is a set and T a collection of subsets of
X, is called a topological space if:

(i) ∅,X ∈ T ,
(ii) the union of (arbitrarily many) elements of T is an element of T ,
(iii) the intersection of a finite number of elements of T belongs to T .

T is called a topology on X and the elements of T are the open sets of X.

Definition 1.2 On a topological space (X,T ):
(a) a basis for the topology of (X,T ) is a subsetB ⊂ T such that each element in
T is the union of elements of B;
(b) an open neighbourhood of p ∈ X is an element A ∈ T such that p ∈ A;
(c) x ∈ S ⊂ X is an interior point of S if there exists an open neighbourhood A of
x contained in S.
The interior of a set S ⊂ X is the set:

I nt (S) := {x ∈ X | x is an interior point o f S} .

The exterior of a set S ⊂ X is the set:

Ext (S) := {x ∈ X | x is an interior point o f X \ S} .

The frontier of a set S ⊂ X is the difference set:

∂S := X \ (I nt (S) ∪ Ext (S)) .

(d) C ⊂ X is called closed if X \ C is open.

A subset S ⊂ X in a topological space (X,T ) inherits the structure of a topological
space from (X,T ) by defining a topology on S as TS := {S ∩ A | A ∈ T }. This
topology (the definition is easily satisfied) is called the induced topology on S by
(X,T ).
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Most of the topological spaces we will see in this text are Hausdorff spaces, in which
open sets “separate” points.

Definition 1.3 A topological space (X,T ) and its topology are called Hausdorff
if they satisfy the Hausdorff property: for every x, x ′ ∈ X there exist A, A′ ∈ T ,
with x ∈ A, x ′ ∈ A′, such that A ∩ A′ = ∅.
Remark 1.4 (1) Both X and ∅ are open and closed sets.
(2) Closed sets satisfy properties that are “dual” to open sets, as follows straightfor-
wardly from their definition. Hence:

(i) ∅,X are closed,
(ii) the intersection of (arbitrarily many) closed sets is closed,
(iii) the finite union of closed sets is a closed set.

(3) The simplest example of a Hausdorff topology is the collection of subsets of R

containing the empty set and arbitrary unions of open intervals. This is a basis for
the topology in the sense of Definition1.1. It is called the Euclidean topology or
standard topology of R.
(4) A slightly more complicated example of Hausdorff topology is the Euclidean
topology, or standard topology, of R

n and C
n . It is the usual topology one refers to

in elementary calculus, and is built as follows. If K := R or C, the standard norm
of (c1, . . . , cn) ∈ K

n is, by definition:

||(c1, . . . , cn)|| :=
√
√
√
√

n∑

k=1

|ck |2 , (c1, . . . , cn) ∈ K
n . (1.1)

The set:
Bδ(x0) := {x ∈ K

n | ||x − x0|| < δ} (1.2)

is, hence, the usual open ball of K
n of radius δ > 0 and centre x0 ∈ K

n . The open
sets in the standard topology of K

n are, empty set aside, the unions of open balls of
any given radius and centre. These balls constitute a basis for the standard topology
of R

n and C
n . �

Here are notions that will come up often in the sequel.

Definition 1.5 If (X,T ) is a topological space, the closure of S ⊂ X is the set:

S := ∩{C ⊃ S , C ⊂ X | C is closed} . (1.3)

The subset S is called dense in X if S = X.
The space (X,T ) is said to be separable if there exists a dense and countable subset
S ⊂ X.

From the definition these properties follow.
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Proposition 1.6 If (X,T ) is a topological space and S ⊂ X:
(a) S is closed.

(b) S = S.
(c) If T ⊂ X, then S ⊂ T implies S ⊂ T .
(d) S is closed if and only if S = S.

Definition 1.7 A topological space (X,T ) has a countable basis, or is second-
countable, if there is a countable subset T0 ⊂ T (the “countable basis”) such that
every open set is the union of elements of T0.

If (X,T ) has a countable basis then Lindelöf’s lemma holds:

Theorem 1.8 (Lindelöf’s lemma) Let (X,T ) be a second-countable topological
space. Then any open covering of a given subset in X admits a countable sub-
covering: if B ⊂ X and {Ai }i∈I ⊂ T with ∪i∈I Ai ⊃ B, then ∪i∈J Ai ⊃ B for some
countable subset J ⊂ I .

Remark 1.9 R
n andC

n , equipped with the standard topology, are second-countable:
for R

n , T0 can be taken to be the collection of open balls with rational radii and
centred at rational points. The generalisation to C

n is obvious. �

In conclusion, we recall the definition of product topology.

Definition 1.10 If {(Xi ,Ti )}i∈F is a collection of topological spaces indexed by a
finite set F , the product topology on ×i∈FXi is the topology whose open sets are ∅
and the unions of Cartesian products ×i∈F Ai , with Ai ∈ Ti for any i ∈ F .

If F has arbitrary cardinality, the previous definition cannot be generalised directly.
If we did so in the obvious way we would not maintain important properties, such
as Tychonoff’s theorem, that we will discuss later. Nevertheless, a natural topol-
ogy on ×i∈FXi can be defined, still called product topology because is extends
Definition1.10.

Definition 1.11 If {(Xi ,Ti )}i∈F is a collection of topological spaces with F of arbi-
trary cardinality, the product topology on ×i∈FXi has as open sets ∅ and the unions
of Cartesian products×i∈F Ai , with Ai ∈ Ti for any i ∈ F , such that on each×i∈F Ai

we have Ai = Xi but for a finite number of indices i .

Remark 1.12 (1) The standard topology of R
n is the product topology obtained by

endowing the single factors R with the standard topology. The same happens for C
n .

(2) Either in case of finitely many factors, or infinitely many, the canonical projec-
tions:

πi : × j∈FX j � {x j } �→ xi ∈ Xi

are clearly continuous if we put the product topology on the domain. It can be proved
that the product topology is the coarsest among all topologies making the canonical
projections continuous (coarsest means it is contained in any such topology). �
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1.3.2 Convergence and Continuity

Let us pass to convergence and continuity. First of all we need to recall the notions
of convergence of a sequence and limit point.

Definition 1.13 Let (X,T ) be a topological space.
(a) A sequence {xn}n∈N ⊂ X converges to a point x ∈ X, called the limit of the
sequence:

x = lim
n→+∞ xn and also wri t ten xn → x as n → +∞

if, for any open neighbourhood A of x there exists NA ∈ R such that xn ∈ Awhenever
n > NA.
(b) x ∈ X is a limit point of a subset S ⊂ X if any open neighbourhood A of x
contains a point of S \ {x}.
Remark 1.14 It should be patent from the definitions that in a Hausdorff space the
limit of a sequence is unique, if it exists. �

The relationship between limit points and closure of a set is sanctioned by the fol-
lowing classical and elementary result:

Proposition 1.15 Let (X,T ) be a topological space and S ⊂ X.
S coincides with the union of S and the set of its limit points.

The definition of continuity and continuity at a point is recalled below.

Definition 1.16 Let f : X → X′ be a function between topological spaces (X,T ),
(X′,T ′).
(a) f is called continuous if f −1(A′) ∈ T for any A′ ∈ T ′.
(b) f is said continuous at p ∈ X if, for any open neighbourhood A′

f (p) of f (p),
there is an open neighbourhood Ap of p such that f (Ap) ⊂ A′

f (p).
(c) f is called a homeomorphism if:

(i) f is continuous,
(ii) f is bijective,
(iii) f −1 : X′ → X is continuous.

In this case X and X′ are said to be homeomorphic (under f ).
(d) f is called open (respectively closed) if f (A) ∈ T ′ for A ∈ T (resp. X′ \
f (C) ∈ T ′ for X \ C ∈ T ).

Remark 1.17 (1) It is easy to check that f : X → X′ is continuous if and only if it
is continuous at every point p ∈ X.
(2)The notion of continuity at p as of (b) reduces to themore familiar “ε-δ” definition
when the spaces X and X′ are R

n (or C
n) with the standard topology. To see this bear

in mind that: (a) open neighbourhoods can always be chosen to be open balls of radii
δ and ε, centred at p and f (p) respectively; (b) every open neighbourhood of a point
contains an open ball centred at that point. �
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Let us mention a useful result concerning the standard real line R. One defines the
limit supremum (also superior limit, or simply limsup) and the limit infimum
(inferior limit or just liminf) of a sequence {sn}n∈N ⊂ R as follows:

lim sup
n∈N

sn := inf
k∈N

sup
n≥k

sn

(

= lim
k→+∞ sup

n≥k
sn

)

, lim inf
n∈N

sn := sup
k∈N

inf
n≥k

sn

(

= lim
k→+∞ inf

n≥k
sn

)

.

Note how these numbers exist for any given sequence {sn}n∈N ⊂ R, possibly being
infinite, as they arise as limits of monotone sequences, whereas the limit of {sn}n∈N
might not exist (neither finite nor infinite). However, it is not hard to prove the
following elementary fact.

Proposition 1.18 If {sn}n∈N ⊂ R, then limn→+∞ sn exists, possibly infinite, if and
only if

lim sup
n∈N

sn = lim inf
n∈N

sn .

In such a case:
lim

n→+∞ sn = lim sup
n∈N

sn = lim inf
n∈N

sn .

1.3.3 Compactness

Let us briefly recall some easy facts about compact sets.

Definition 1.19 Let (X,T ) be a topological space and K ⊂ X a subset.
(a) K is called compact if any open covering of it admits a finite sub-covering: if
{Ai }i∈I ⊂ T with ∪i∈I Ai ⊃ K then ∪i∈J Ai ⊃ K for some finite subset J ⊂ I .
(b) K is said relatively compact if K is compact.
(c) X is locally compact if any point in X has a relatively compact open neighbour-
hood.

Compact sets satisfy a host of properties [Ser94II] and we will not be concerned
with them much more (though we shall return to them in Chap. 4). Let us recall a
few results, at any rate.
We begin with the relationship to calculus on R

n . If X is R
n (or C

n identified with
R

2n), the celebrated Heine–Borel theorem holds [Ser94II].

Theorem 1.20 (Heine–Borel) If R
n is equipped with the standard topology, K ⊂

R
n is compact if and only if K is simultaneously closed and bounded (meaning

K ⊂ Bδ(x) for some x ∈ R
n, δ > 0).

In calculus, the Weierstrass theorem, which deals with continuous maps defined
on compact subsets of R

n (or C
n), can be proved directly without the definition

of compactness. Actually one can prove a more general statement on R
n-valued

(Cn-valued) continuous maps defined on compact subsets.

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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Proposition 1.21 If K = C or R, let || || denote the standard norm of K
n as in (1.1),

and endow K
n with the standard topology.

If f : K → K
n is continuous on the compact subset K of a topological space, then

it is bounded, i.e. there exists M ∈ R such that || f (x)|| ≤ M for any x ∈ K .

Proof Since f is continuous at any point p ∈ K , we have || f (x)|| ≤ Mp ∈ R for
all x in an open neighbourhood Ap of p. As K is compact, we may extract a
finite sub-covering {Apk }k=1,...,N from {Ap}p∈K that covers K . The number M :=
maxk=1,...,N Mk satisfies the request. �
Remark 1.22 (1) It is easily proved that if X is a Hausdorff space and K ⊂ X is
compact then K is closed.
(2) Similarly, if K is compact in X, then every closed subset K ′ ⊂ K is compact.
(3) Continuous functions map compact sets to compact sets.
(4)By definition of compactness and of induced topology it is clear that a set K ⊂ Y ,
with the induced topology on Y ⊂ X, is compact in Y if and only if it is compact in
X. �
The properties of being compact and Hausdorff bear an interesting relationship. One
such property is expressed by the following useful statement.

Proposition 1.23 Let f : M → N be a continuous map from the compact space M
to the Hausdorff space N. If f is bijective then it is a homeomorphism.

On locally compact Hausdorff spaces an important technical result, known as Ury-
sohn’s lemma, holds. To state it, we first need to define the support of a map
f : X → C:

supp( f ) := {x ∈ X | f (x) �= 0} ,

where the bar is the topological closure in the space X.

Theorem 1.24 (Urysohn’s lemma) If (X,T ) is a Hausdorff, locally compact space,
for any compact K ⊂ X and any open set U ⊃ K there exists a continuous map
f : X → [0, 1] such that:

(i) supp( f ) ⊂ U,
(ii) supp( f ) is compact,
(iii) f (x) = 1 if x ∈ K .

Eventually, the following key theorem relates the product topology to compactness.

Theorem 1.25 (Tychonoff) The Cartesian product of (arbitrarily many) compact
spaces is compact in the product topology.

1.3.4 Connectedness

Definition 1.26 A topological spaceX is said to be connected if it cannot be written
as the union of two disjoint open sets different from ∅ and X.
A subset A ⊂ X is connected if it is connected in the induced topology.
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By defining the equivalence relation:
x ∼ x ′ ⇔ x, x ′ ∈ C , where C is a connected set in X,

the resulting equivalence classes are maximal connected subsets in X called the
connected components of X. Consequently, connected components are disjoint,
cover X and are clearly closed.

Definition 1.27 A subset A in a topological space X is path-connected if for any
pair of points p, q ∈ A there is a continuous map (a path) γ : [0, 1] → A such that
γ (0) = p, γ (1) = q .

Definition 1.28 A subset A in a topological space X is called simply connected
if, for any p, q ∈ A and any (continuous) paths γi : [0, 1] → A, i = 0, 1, such that
γi (0) = p, γi (1) = q , there exists a continuousmap γ : [0, 1] × [0, 1] → A, called a
homotopy, satisfying γ (s, 0) = p, γ (s, 1) = q for all s ∈ [0, 1] and γ (0, t) = γ0(t),
γ (1, t) = γ1(t) for all t ∈ [0, 1].
Remark 1.29 (1)Directly from the definition we have that continuous functionsmap
connected spaces to connected spaces and path-connected spaces to path-connected
spaces.
(2)Apath-connected space is connected, but not conversely in general. A non-empty,
open connected subset ofR

n is always path-connected. This is a general property that
holds in locally path-connected spaces, in which each point has a path-connected
open neighbourhood.
(3) It can be proved that the product of two simply connected spaces, if equipped
with the product topology, is simply connected. �

1.4 Round-Up on Measure Theory

This section contains, for the reader’s sake, basic notions and elementary results on
abstract measure theory, plus fundamental facts from real analysis on Lebesgue’s
measure on the real line. To keep the treatise short we will not prove any statements,
for these can be found in the classics [Hal69, Coh80, Rud86]. Well-read users might
want to skip this part entirely, and refer to it for explanations on the conventions and
notations used throughout.

1.4.1 Measure Spaces

The modern theory of integration is rooted in the notion of a σ -algebra of sets: this
is a collection �(X) of subsets of a given ‘universe’ set X that can be “measured”
by an arbitrary “measuring” function μ that we will fix later. The definition of a
σ -algebra specifies which are the good properties that subsets should possess in
relationship to the operations of union and intersection. The “σ” in the name points
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to the closure property (Definition1.30(c)) of �(X) under countable unions. The
integral of a function defined on X with respect to a measure μ on the σ -algebra will
be built step by step.

We begin by defining σ -algebras, and a weaker version (algebras of sets) where
unions are allowed only finite cardinality, which has an interest of its own.

Definition 1.30 A σ -algebra over the set X is a collection �(X) of subsets of X
such that:

(a) X ∈ �(X),
(b) E ∈ �(X) implies X \ E ∈ �(X),
(c) if {Ek}k∈N ⊂ �(X) then

⋃
k∈N Ek ∈ �(X).

Ameasurable space is a pair (X, �(X)), where X is a set and �(X) a σ -algebra on
X.
A collection �0(X) of subsets of X is called an algebra (of sets) on X in case (a),
(b) hold (replacing �(X) by �0(X)), and (c) is weakened to:

(c)’ if {Ek}k∈F ⊂ �0(X), with F finite, then
⋃

k∈F Ek ∈ �0(X).

Remark 1.31 (1) From (a) and (b) it follows that ∅ ∈ �(X). Item (c) includes finite
unions in �(X): a σ -algebra is an algebra of sets. This is a consequence of (c) if one
takes finitely many distinct Ek . Parts (b) and (c) imply �(X) is also closed under
intersections (at most countable).
(2) By definition of σ -algebra it follows that the intersection of σ -algebras on X is a
σ -algebra on X. Moreover, the collection of all subsets of X is a σ -algebra on X. �
Remark (2) prompts us to introduce a relevant technical notion. If A is a collection
of subsets in X, there always is at least one σ -algebra containing all elements ofA .
Since the intersection of all σ -algebras on X containing A is still a σ -algebra, the
latter is well defined and called the σ -algebra generated byA .-algebra generated by
A Now let us define a notion, crucial for our purposes, where topology and measure
theory merge.

Definition 1.32 If X is a topological space with topology T , the σ -algebra on X
generated by T , denoted B(X), is called Borel σ -algebra on X.

Remark 1.33 (1) The notationB(X) is slightly ambiguous sinceT does not appear.
We shall use that symbol anyway, unless confusion arises.
(2) If X coincides with R or C we shall assume in the sequel that �(X) is the Borel
σ -algebra B(X) determined by the standard topology on X (that of R

2 if we are
talking of C).
(3)By definition of σ -algebra it follows immediately thatB(X) contains in particular
open and closed subsets, intersections of (at most countably many) open sets and
unions of (at most countably many) closed sets. �
The mathematical concept we are about to present is that of a measurable function.
In a manner of speaking, this notion corresponds to that of a continuous function
in topology.
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Definition 1.34 Let (X, �(X)), (Y, �(Y)) be measurable spaces. A function f :
X → Y is said to be measurable (with respect to the two σ -algebras) whenever
f −1(E) ∈ �(X) for any E ∈ �(Y).
In particular, if X is a topological space and we take �(X) = B(X), and Y = R

or C, measurable functions from X to Y are called (Borel) measurable functions,
respectively real or complex.

Remark 1.35 Let X and Y be topological spaces with topologies T (X) and T (Y).
It is easily proved that f : X → Y is measurable with respect to the Borel σ -algebras
B(X), B(Y) if and only if f −1(E) ∈ B(X) for any E ∈ T (Y).
Immediately, then, every continuous map f : X → C or f : X → R is Borel mea-
surable.

Let us summarise the main features of measurable maps from X to Y = R, C.

Proposition 1.36 Let (X, �(X)) be a measurable space and MR(X), M(X) the sets
of measurable maps from X to R, C respectively. The following results hold.

(a) MR(X) and M(X) are vector spaces, respectively real and complex, with
respect to pointwise linear combinations

(α f + βg)(x) := α f (x) + βg(x), x ∈ X,

for any measurable maps f, g from X to R, C and any real or complex numbers α, β.
(b) If f, g ∈ MR(X), M(X) then f · g ∈ MR(X), M(X), with ( f · g)(x) :=

f (x)g(x) for all x ∈ X.
(c) The following facts are equivalent:
(i) f ∈ M(X),
(ii) f ∈ M(X),
(iii) Re f, I m f ∈ MR(X),

where f (x) := f (x), (Re f )(x) := Re( f (x)), and (I m f )(x) := I m( f (x)), for all
x ∈ X.

(d) If f ∈ MR(X) or f ∈ M(X) then | f | ∈ MR(X), where | f |(x) := | f (x)|, x ∈
X.

(e) If fn ∈ M(X), or fn ∈ MR(X), for any n ∈ N and fn(x) → f (x) for all x ∈ X
as n → +∞, then f ∈ M(X), or f ∈ MR(X).

(f) If fn ∈ MR(X) and supn∈N fn(x) is finite for any x ∈ X, then the function
X � x �→ supn∈N fn(x) belongs to MR(X).

(g) If fn ∈ MR(X) and lim supn∈N fn(x) is finite for all x ∈ X, the function X �
x �→ lim supn∈N fn(x) is an element of MR(X).

(h) If f, g ∈ MR(X) the map X � x �→ sup{ f (x), g(x)} is in MR(X).
(i) If f ∈ MR(X) and f ≥ 0, then the map X � x �→ √

f (x) is in MR(X).

From now on, as is customary in measure theory, we will work with the extended
real line:

[−∞,∞] := R := R ∪ {−∞,+∞} ,
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whereR is enlarged by adding two symbols±∞. The ordering of the reals is extended
by declaring −∞ < r < +∞ for any r ∈ R and defining on R the topology whose
basis consists of real open intervals and the sets [−∞, a), (a,+∞] for any a ∈ R

(the notation should be obvious). Moreover one defines: | − ∞| := | + ∞| := +∞.

Now a standard result.

Proposition 1.37 If (X, �(X)) is a measurable space, then f : X → R is measur-
able if and only if f −1((a,+∞]) ∈ �(X) for any a ∈ R.
Furthermore, statements (d), (e), (f), (g), (h) of Proposition1.36 still hold when fn

and f are R-valued, with the proviso that one drops finiteness in (f) and (g).

Remark 1.38 (1) In (f), (g) and (h) of Proposition1.36 we may substitute sup with
inf and obtain valid statements.
(2) As far as the first statement of Proposition1.37, the analogous statements with
(a,+∞] replaced by [a,+∞], [−∞, a), or [−∞, a] hold. �

1.4.2 Positive σ -Additive Measures

We pass to define σ -additive, positive measures.

Definition 1.39 (Positive measure) If (X, �(X)) is a measurable space, a (σ -
additive) positive measure on X (with respect to �(X)) is a function μ : �(X) →
[0,+∞] satisfying:

(a) μ(∅) = 0
(b)μ

(⋃
n∈N En

) = ∑
n∈N μ(En) if {En}n∈N ⊂ �(X), and En ∩ Em = ∅ if n �= m

(σ -additivity).
The triple (X, �(X), μ) is called ameasure space.

Remark 1.40 (1) The series in (b), having non-negative terms, is well defined and
can be rearranged at will.
(2) Easy consequences of the definition are the following properties.

Monotonicity: if E ⊂ F with E, F ∈ �(X),

μ(E) ≤ μ(F)

Sub-additivity: if {En}n∈N ⊂ �(X):

μ (∪n∈NEn) ≤
∑

n∈N
μ(En)

Inner continuity: if E1 ⊂ E2 ⊂ E3 ⊂ · · · for En ∈ �(X), n = 1, 2, . . ., then:

μ
(∪+∞

n=1En
) = lim

n→+∞ μ(En)
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Outer continuity: if E1 ⊃ E2 ⊃ E3 ⊃ · · · for En ∈ �(X), n = 1, 2, . . ., and
μ(Em) < +∞ for some m, then:

μ
(∩+∞

n=1En
) = lim

n→+∞ μ(En)

�

Measures on σ -algebras can be constructed using extension techniques, by starting
withmeasures on algebras (hencenot closedunder countable unions).Wewill employ
such recipes later in the text. An important extension theorem for measures [Hal69]
goes like this.

Theorem 1.41 Let �0(X) be an algebra of sets on X and suppose μ0 : �0(X) →
[0,+∞] is a map satisfying:

(i) Definition1.39(a),
(ii) Definition1.39(b) whenever ∪n∈NEn ∈ �0(X) for Ek ∈ �0(X), k ∈ N.

If �(X) denotes the σ -algebra generated by �0(X), then we have
(i)

�(X) � R �→ μ(R) := inf

{
∑

n∈N
μ0(Sn)

∣
∣
∣
∣
∣

{Sn}n∈N ⊂ �0(X) ,∪n∈NSn ⊃ R

}

(1.4)
is a σ -additive positive measure on X with respect to �(X) that restricts to μ0 on
�0(X).
(ii) If X = ∪n∈NXn, with Xn ∈ �0(X) and μ0(Xn) < +∞ for any n ∈ N, then μ is
the unique σ -additive positive measure on X, with respect to �(X), restricting to μ0

on �0(X).

As we shall use several kinds of positive measures and measure spaces henceforth,
we need to gather some special instances in one place.

Definition 1.42 (Kinds of positive measures) A measure space (X, �(X), μ) and its
(positive, σ -additive) measure μ are called:

(i) finite, if μ(X) < +∞;
(ii) σ -finite, if X = ∪n∈NEn , En ∈ �(X) and μ(En) < +∞ for any n ∈ N;
(iii) a probability space and probability measure, if μ(X) = 1;
(iv) a Borel space and Borel measure, if �(X) = B(X) with X locally compact,

Hausdorff.
In case μ is a Borel measure, and more generally if �(X) ⊃ B(X), with X locally
compact and Hausdorff, μ is called:

(v) inner regular, if :

μ(E) = sup{μ(K ) | K ⊂ E , K is compact}

for any E ∈ �(X);
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(vi) outer regular, if:

μ(E) = inf{μ(V ) | V ⊃ E , V is open}

for any E ∈ �(X);
(vii) regular, when simultaneously inner and outer regular.

In the general case the measure μ is concentrated on E ∈ �(X) when:

μ(S) = μ(E ∩ S) f or any S ∈ �(X).

Remark 1.43 Inner regularity requires that compact sets belong to the σ -algebra of
sets on which the measure acts. In case of measures on σ -algebras including Borel’s,
this fact is true on locally compact Hausdorff spaces because compact sets are closed
in Hausdorff spaces (Remark 1.22(1)) and hence they belong in the Borel σ -algebra.

A key notion, very often used in the sequel, is that of support of a measure on a Borel
σ -algebra.

Definition 1.44 Let (X,T (X)) be a topological space and�(X) ⊃ B(X). The sup-
port of a (positive, σ -additive) measure μ on �(X) is the closed subset of X:

supp(μ) := X \
⋃

O∈T (X), μ(O)=0

O .

Note how the open set X \ supp(μ) does not necessarily have zero measure. Still,
the following is useful.

Proposition 1.45 If μ : �(X) → [0,+∞] is a σ -additive positive measure on X
and �(X) ⊃ B(X), then μ is concentrated on supp(μ) if at least one of the following
conditions holds:

(i) X has a countable basis for its topology,
(ii) X is Hausdorff, locally compact and μ is inner regular.

Proof Let A := X \ supp(μ) be the union (usually not countable) of all open sets in
X with zero measure. Decompose S ∈ �(X) into the disjoint union S = (A ∩ S) ∪
(supp(μ) ∩ S). The additivity of μ implies μ(S) = μ(A ∩ S) + μ(supp(μ) ∩ S).
By positivity and monotonicity 0 ≤ μ(A ∩ S) ≤ μ(A), so the result holds provided
μ(A) = 0. Let us then prove μ(A) = 0. Under (i), Lindelöf’s lemma guarantees we
can write A as a countable union of open sets of zero measure A = ∪i∈N Ai , and posi-
tivity plus sub-additivity force 0 ≤ μ(A) ≤ ∑

i∈N μ(Ai ) = 0. Therefore μ(A) = 0.
In case (ii), by inner regularity we have μ(A) = 0 if μ(K ) = 0, for any compact

set K ⊂ A. Since A is a union of zero-measure sets by construction, K will be
covered by open sets of zero measure. By compactness we may then extract a finite
covering A1, . . . , An . Again by positivity and sub-additivity, 0 ≤ μ(K ) ≤ μ(A1) +
· · · + μ(An) = 0, whence μ(K ) = 0, as required. �

In conclusion we briefly survey zero-measure sets [Coh80, Rud86].
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Definition 1.46 If (X, �(X), μ) is a measure space, a set E ∈ �(X) has zero mea-
sure if μ(E) = 0. Then E is called a zero-measure set, (more rarely, a null or
negligible set).
The measure space (X, �(X), μ) and μ are called complete if, given any E ∈ �(X)

of zero measure, every subset in E belongs to �(X) (so it has zero measure, by
monotonicity).

A property P is said to hold almost everywhere (with respect to μ), shortened
to a.e., if P is true everywhere on X minus a set E of zero measure.

Remark 1.47 (1) Every measure space (X, �(X), μ) can be made complete in the
following manner.

Proposition 1.48 If (X, �(X), μ) is a (σ -additive, positive) measure space, there is
a measure space (X, �′(X), μ′), called the completion of (X, �(X), μ), such that :

(i) �′(X) ⊃ �(X),
(ii) μ′��(X)= μ,
(iii) (X, �′(X), μ′) is complete.

The completion can be constructed in the two ensuing ways (yielding the same
measure space).

(a) Take the collection �′(X) of E ⊂ X for which there exist AE , BE ∈ �(X) with
BE ⊂ E ⊂ AE and μ(AE \ BE ) = 0. Then μ′(E) := μ(AE ).

(b) Let �′(X) be the collection of subsets ofX of the form E ∪ Z, where E ∈ �(X)

and Z ⊂ NZ for some NZ ∈ �(X) with μ(NZ ) = 0. Then μ′(E ∪ Z) := μ(E).
It is quite evident from (b) that if (X, �1(X), μ1) is a complete measure space such
that, once again, �1(X) ⊃ �(X), μ1��(X)= μ, then necessarily �1(X) ⊃ �′(X) and
μ1��′(X)= μ′. In this sense the completion of a measure space is the smallest complete
extension. When the initial measure space is already complete, the completion is the
space itself.

Notice that the completion depends heavily on μ: in general, distinct measures
on the same σ -algebra give rise to different completions.

Moreover, measurable functions for the completed σ -algebra are, generally
speaking, no longer measurable for the initial one, whereas the converse is true:
by completing the measurable space we enlarge the class of measurable functions.
(2) If (X, �,μ) is a measure space and E ∈ �, we may restrict � and μ to E
like this: define ��E := {S ∩ E | S ∈ �} and μ�E (S) := μ(S) for any S ∈ ��E . It
should be clear that (E, ��E , μ�E ) is a measure space corresponding to the natural
restriction of the initial measure on E.

If g : X → C (respectively R, [−∞,+∞], [0,+∞]) is a measurable function
with respect to �, then by construction the restriction g�E of g to E is measurable
with respect to ��E .

Conversely, if f : E → C (R, [−∞,+∞], [0,+∞]) is measurable with respect
to ��E , it is simple to show that its extension f̃ : X → C (R, [−∞,+∞], [0,+∞]),
with f̃ (x) = f (x) if x ∈ E and f̃ (x) = 0 otherwise, is measurable with respect
to �.
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(3) One can prove [Rud86] that if every fn : X → R, or C, is measurable for n ∈ N,
if f (x) = limn→+∞ fn(x) a.e. with respect to μ on X and we set f (x) = c for some
constant c ∈ R, or C, on the set N where the limit does not exist, then f is measurable.

If μ is complete, f turns out to be measurable irrespective of how we define it
on N. �

1.4.3 Integration of Measurable Functions

We are now ready to define the integral of a measurable function with respect to a
σ -additive positivemeasureμ defined on ameasurable space (X, �(X)).We proceed
in steps, defining the integral on a special class of functions first, and then extending
it to the measurable case.

The starting point are functions with values in [0,+∞] := [0,+∞) ∪ {+∞}.
For technical reasons it is convenient to extend the notion of sum and product of
non-negative real numbers so that +∞ · 0 := 0, +∞ · r := +∞ if r ∈ (0,+∞],
and +∞ ± r := +∞ if r ∈ [0,+∞).

A (non-negative) map s : X → [0,+∞] is called simple if it is measurable and its
range is finite in [0,+∞]. Such a function can be written, for certain s1, . . . , sn ∈
[0,+∞) ∪ {+∞}, as:

s =
∑

i=1,...,n

siχEi

where E1, E2, . . . , En are pairwise-disjoint elements of �(X) and χEi are the corre-
sponding characteristic functions. The decomposition is not unique. Every function
that can be written like this is simple. The integral of the simple map s with respect
to μ is defined as the number in [0,+∞]:

∫

X
s(x)dμ(x) :=

∑

i=1,2,...,n

siμ(Ei ) .

It is not difficult to show that the definition does not depend on the choice of decom-
position of s = ∑

i=1,...,n siχEi .
This notion can then be generalised to non-negative measurable functions in the

obvious way: if f : X → [0,+∞] is measurable, let the integral of f with respect
to μ be:

∫

X
f (x)dμ(x) := sup

{∫

X
s(x)dμ(x)

∣
∣
∣
∣ s ≥ 0 is simple and s ≤ f

}

.

Note the integral may equal +∞.
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To justify the definition, we must remark that simple functions approximate with
arbitrary accuracy non-negative measurable functions, as implied by the ensuing
classical technical result [Rud86] (which we will state for complex functions and
prove in Proposition 7.49).

Proposition 1.49 If f : X → [0,+∞] is measurable, there exists a sequence of
simple maps 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ f with sn → f pointwise. The convergence
is uniform if there exists C ∈ [0,+∞) such that f (x) ≤ C for all x ∈ X.

Note that the definition implies an elementary, yet important property of the integral.

Proposition 1.50 If f, g : X → [0,+∞] are measurable and f (x) ≤ g(x) a.e. on
X with respect to μ, then the integrals (in [0,+∞]) satisfy:

∫

X
f (x)dμ(x) ≤

∫

X
g(x)dμ(x) .

To finish the construction we define the integral of a complex-valued measurable
function in the most natural way: we write it as sum of its real and imaginary parts
and then decompose the latter two real functions into their respective positive and
negative parts. To overcome having to deal with awkward differences of infinite
quantities we must restrict the class of functions, which we do now by introducing
μ-integrable functions.

Definition 1.51 (Integral) If (X, �(X), μ) is a (σ -additive, positive) measure space,
a measurable map f : X → C is integrable with respect to μ (or in μ), or μ-
integrable, if: ∫

X
| f (x)|dμ(x) < +∞ .

Then the integral of f on X with respect to μ is the complex number:
∫

X
f (x)dμ(x) =

∫

X
Re( f )+dμ(x) −

∫

X
Re( f )−dμ(x) + i

(∫

X
I m( f )+dμ(x) −

∫

X
I m( f )−dμ(x)

)

,

where, if g : X → R, we defined non-negative maps:

g+(x) := sup{g(x), 0} and g−(x) := − inf{g(x), 0} f or any x ∈ R.

The set of μ-integrable functions on X will be indicated by L 1(X, μ).
If f ∈ L 1(X, μ) and E ⊂ X is in the σ -algebra of X, we set:

∫

E
f (x)dμ(x) :=

∫

X
f (x)χE (x) dμ(x) , (1.5)

where χE is the characteristic function of E .

It is no problem to check that the integral of f : X → C on X with respect to μ

generalises the integral of a measurable function X → [0,+∞). Also not hard is

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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the following proposition, that clarifies the elementary features of the integral with
respect to the measure μ.

Proposition 1.52 If (X, �(X), μ) is a (σ -additive, positive) measure space, then
the measurable maps f, g : X → C satisfy:

(a) if | f (x)| ≤ |g(x)| a.e. on X, then g ∈ L 1(X, μ) implies f ∈ L 1(X, μ).
(b) If f = g a.e. on X then f and g are either both μ-integrable or neither is. In

the former case ∫

X
f (x)dμ(x) =

∫

X
g(x)dμ(x) .

(c) If f, g are μ-integrable, then a f + bg is μ-integrable for any chosen a, b ∈ C;
moreover,

∫

X
a f (x) + bg(x)dμ(x) = a

∫

X
f (x)dμ(x) + b

∫

X
g(x)dμ(x) .

(d) If f ≥ 0 a.e. and f is μ-integrable, then:

∫

X
f (x)dμ(x) ≥ 0

and the integral is null only if f = 0 a.e.
(e) If f is μ-integrable, then:

∣
∣
∣
∣

∫

X
f (x)dμ(x)

∣
∣
∣
∣ ≤

∫

X
| f (x)|dμ(x) .

Remark 1.53 Consider the restriction (E, ��E , μ�E )of themeasure space (X, �,μ)

to the subset E ∈ � as explained inRemark1.47(2). The extension of f ∈L (E, μ�E )

toX, say f̃ , defined as the zeromap outside E , satisfies f̃ ∈ L 1(X, μ). Additionally,

∫

E
f (x)dμ�E (x) =

∫

X
f̃ (x)dμ(x) =

∫

E
f̃ (x)dμ(x) .

�
The three central theorems of measure theory are listed below [Rud86].

Theorem 1.54 (Beppo Levi’s monotone convergence) Let (X, �(X), μ) be a (posi-
tive and σ -additive) measure space and { fn}n∈N a sequence of measurable functions
X → [0,+∞] such that, a.e. at x ∈ X, 0 ≤ fn(x) ≤ fn+1(x) for all n ∈ N.

Then: ∫

X
lim

n→+∞ fn(x)dμ(x) = lim
n→+∞

∫

X
fn(x)dμ(x) ≤ +∞ ,

where the map limn→+∞ fn(x) is zero where the limit does not exist, and the integral
is the one defined for functions with values in [0,+∞].
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Theorem 1.55 (Fatou’s lemma) Let (X, �(X), μ) be a (σ -additive, positive) mea-
sure space and { fn}n∈N a sequence of measurable maps fn : X → [0,+∞].

Then:
∫

X
lim inf

n→+∞ fn(x)dμ(x) ≤ lim inf
n→+∞

∫

X
fn(x)dμ(x) ≤ +∞ ,

the integral being the one defined for functions with values in [0,+∞].
Theorem 1.56 (Lebesgue’s dominated convergence) Let (X, �(X), μ) be a (posi-
tive, σ -additive) measure space, { fn}n∈N a sequence of measurable maps fn : X →
C, with fn(x) → f (x) a.e. at x ∈ X as n → +∞.

If there is a μ-integrable map g : X → C such that | fn(x)| ≤ |g(x)| a.e. at x ∈
X for any n ∈ N, then f (set to zero where fn(x) �→ f (x)) is μ-integrable, and
furthermore:

∫

X
f (x)dμ(x) = lim

n→+∞

∫

X
fn(x)dμ(x) and lim

n→+∞

∫

X
| f (x) − fn(x)| dμ(x) = 0 .

The next proposition (cf. Remark 1.47(1)) shows that the completion does not really
affect integration, as we expect.

Proposition 1.57 Let (X, �,μ) be a measure space and (X, �′, μ′) its completion.
If f : X → C is measurable with respect to�′ there exists a measurable map g : X →
C with respect to � with f = g almost everywhere with respect to μ. If, moreover,
f ∈ L 1(X, μ′), then g ∈ L 1(X, μ) and

∫

X
f (x)dμ′(x) =

∫

X
g(x)dμ(x) .

Proof Splitting f into real and imaginary parts and these into their positive and
negative parts with the aid of Proposition1.49, we can construct a sequence s ′

n :=
∑Mn

i=1 c(n)
i χ

E
′(n)
i

where E
′(n)
i ∈ �′, E

′(n)
i ∩ E

′(n)
j = ∅ if i �= j , |s ′

n(x)| ≤ |s ′
n+1(x)| ≤

| f (x)| and s ′
n(x) → f (x) everywhere onX asn → +∞. Because ofRemark1.47(1),

we can write E
′(n)
i = E (n)

i ∪ Z (n)
i where E (n)

i ∈ �, while Z (n)
i ⊂ N (n)

i ∈ � with
μ(N (n)

i ) = 0. Define the maps, measurable with respect to �, sn := ∑Mn
i=1 c(n)

i

χE (n)
i \N (n)

i
. By construction N := ∪n,i N (n)

i has zero μ-measure, being a countable
union of zero-measure sets. Then set g(x) = limn→+∞ sn(x), measurable with
respect to� as limit of measurable functions. The limit exists for any x , for it equals,
by construction, 0 on N and f (x) on X \ N . Therefore we proved g is�-measurable
and g(x) = f (x) a.e. with respect to μ, as required.

Now to the last statement. By construction |sn(x)| ≤ |sn+1(x)| ≤ |g(x)|, |s ′
n(x)| ≤

|s ′
n+1(x)| ≤ | f (x)|, |sn(x)| → |g(x)|, |s ′

n(x)| → | f (x)| and∫ |sn|dμ = ∫ |sn|dμ′ =∫ |s ′
n|dμ′. Therefore the monotone convergence theorem applied to the sequence
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|sn|, with respect to both measures μ and μ′, warrants that g ∈ L 1(X, μ) if
f ∈ L 1(X, μ′). By dominated convergence we finally have

∫
X f dμ′ = ∫

X gdμ. �

1.4.4 Riesz’s Theorem for Positive Borel Measures

Moving on to Borel measures, we mention two important theorems. The first is
the well-known Riesz theorem for positive Borel measures [Coh80], which we shall
often use in the sequel: it tells that every linear and positive functional on the space
of continuous maps with compact support on a locally compact, Hausdorff space
is actually an integral. From now on, given a topological space X, Cc(X) will be
the complex vector space of continuous maps f : X → C with compact support.
The vector-space structure of Cc(X) comes from pointwise linear combinations of
f, g ∈ Cc(X), with α, β ∈ C:

(α f + βg)(x) := α f (x) + βg(x) for all x ∈ X.

Theorem 1.58 (Riesz’s theorem for positive Borel measures) Take a locally com-
pact Hausdorff space X and consider a linear functional � : Cc(X) → C such that
� f ≥ 0whenever f ∈ Cc(X) satisfies f ≥ 0. Then there exists a σ -additive, positive
measure μ� on the Borel σ -algebra B(X) such that:

� f =
∫

X
f dμ� i f f ∈ Cc(X) and μ�(K ) < +∞ when K ⊂ X is compact.

The measure μ� can be chosen to be regular, in which case it is uniquely determined.

This result can be strengthened to produce a complete measure representing �, by
extending (X,B(X), μ�) to its completion, and in particular enlarging the Borel
σ -algebra in a way that depends on μ� (regular, we may assume). In this way it is
far from evident that the extended measure is still regular. But this is precisely what
happens, because of the following, useful, fact [Coh80].

Proposition 1.59 Let (X, �(X), μ) be a measure space, where X is locally com-
pact and Hausdorff and �(X) ⊃ B(X). If μ is regular, the measure obtained by
completing (X, �(X), μ) is regular.

A second valuable comment is that under certain assumptions on X, μ� becomes
automatically regular and hence uniquely determined by �. This is a consequence
of a technical fact [Rud86, Theorem 2.18], which we recall here.

Proposition 1.60 If ν is a positive Borel measure on a locally compact Hausdorff
space X, and each open set is a countable union of compact sets of finite measure,
then ν is regular.
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The second pivotal result is Luzin’s theorem [Rud86], according to which on locally
compact Hausdorff spaces, the functions of Cc(X) approximate, so to speak, measur-
able functions when we work with measures on σ -algebras large enough to contain
B(X) and satisfy further conditions (this happens in spaces with Lebesgue measure,
that we shall meet very soon).

Theorem 1.61 (Luzin) Let X be a locally compact Hausdorff space, μ a measure
on a σ -algebra �(X) such that:

(i) �(X) ⊃ B(X),
(ii) μ(K ) < +∞ if K ⊂ X is compact,

(iii) μ is regular,
(iv) μ is complete.

Suppose f : X → C is measurable and such that f (x) = 0 if x ∈ X \ A, for some
A ∈ �(X) with μ(A) < +∞. Then for any ε > 0 there is a map g ∈ Cc(X) such
that:

μ ({x ∈ X | f (x) �= g(x)}) < ε .

Moreover, g can be chosen so that

sup
x∈X

|g(x)| ≤ sup
x∈X

| f (x)|.

Corollary 1.62 Under the same assumptions of Theorem 1.61, if | f | ≤ 1 there exists
a sequence {gn}n∈N ⊂ Cc(X) with |gn| ≤ 1 for any n ∈ N and such that:

f (x) = lim
n→+∞ gn(x) almost everywhere on X.

Remark 1.63 Generally speaking, it is not possible to replace “almost everywhere”
with “everywhere” in the statement above. There are Borel measurable functions
that are not the pointwise limit of a sequence of continuous functions. The simplest
example is the Dirichlet function, χ : [0, 1] → R, defined as χ(x) = 1 if x ∈ Q and
χ(x) = 1 otherwise. However, χ is the pointwise limit of a sequence of functions
which are pointwise limits of sequences of continuous functions.

As a matter of fact, given a Borel σ -algebra, and regardless of the choice of a
measure thereon, there exist Borel-measurable functions which are not the pointwise
limit of any sequence of continuous functions. These issues are properly treated by
the theory of Baire functions: technically, χ is a Baire function of class 2 on the
interval [0, 1] that is not of class 1.
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1.4.5 Differentiating Measures

Definition 1.64 If μ, ν are positive σ -additive measures defined on the same σ -
algebra �:

(a) ν is called absolutely continuous with respect to μ (or dominated by μ),
written ν ≺ μ, whenever ν(E) = 0 if μ(E) = 0 with E ∈ �.

(b) ν is singular with respect to μ when there exist A, B ∈ �, A ∩ B = ∅, such
that μ is concentrated on A and ν concentrated on B.

Note μ is singular with respect to ν if and only if ν is singular with respect to μ.
TheparamountRadon-Nikodym theoremholds [Coh80, Rud86].Recall that given

a subset A of B, χA : B → R is the characteristic function of A if χA(x) = 1 for
x ∈ A and χA(x) = 0 otherwise.

Theorem 1.65 (Radon–Nikodym) Suppose μ and ν are positive, σ -additive and σ -
finite measures on the same σ -algebra � over X. If ν ≺ μ there exists a measurable
function dν

dμ
: X → [0,+∞] such that:

ν(E) =
∫

X
χE

dν

dμ
dμ f or any E ∈ �.

This map dν
dμ

is called the Radon–Nikodym derivative of ν in μ, and is determined
by μ and ν up to sets of zero μ-measure.

Furthermore, f ∈ L 1(X, ν) ⇔ f · dν
dμ

∈ L 1(X, μ), in which case:

∫

X
f dν =

∫

X
f

dν

dμ
dμ .

1.4.6 Lebesgue’s Measure on R
n

Lebesgue’s measure on R
n is the prototype of all abstract positive measures. We

define it, a posteriori, remembering what we proved in the previous sections. The
starting point is the following proposition, itself a corollary of [Rud86, Theorem
2.20].

Proposition 1.66 Fix n = 1, 2, . . .. There exists a unique σ -additive, positive Borel
measure μn on R

n satisfying:

(i) μn
(×n

k=1[ak, bk]
) = (b1 − a1)(b2 − a2) · · · (bn − an) if ak ≤ bk, ak, bk ∈ R,

(ii) μn is invariant under translations: μn(E + t) = μn(E) for E ∈ B(Rn), t ∈ R
n.

It is possible to extend (Rn,B(Rn), μn) to a measure space (Rn,M (Rn), mn), so
that the measure mn:
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(i) maps compact sets to finite values,
(ii) is complete,

(iii) is regular,
(iv) is translation-invariant.

The extension is characterised as follows. If A ⊂ R
n then A ∈ M (Rn) if and only if

F ⊂ A ⊂ G with μn(G \ F) = 0, where F, G ∈ B(Rn) are a countable (at most)
union and intersection of closed and open sets respectively. In such a case mn(A) :=
μn(G).

Remark 1.67 As a consequence, M (Rn) is contained in the completion of B(Rn)

with respect toμn (cf. Remark 1.47(1)). SinceM (Rn) is complete and the completion
is the smallest complete extension, we conclude that (Rn,M (Rn), mn) is nothing
but the completion of (Rn,B(Rn), μn). �

Definition 1.68 (Lebesgue measure) The measure mn and the σ -algebra M (Rn)

determined by Proposition1.66 are called Lebesgue measure on R
n and Lebesgue

σ -algebra on R
n .

A function f : R
n → C (or R) that is measurable with respect toM (Rn) is said

Lebesgue measurable.

Notation 1.69 From now on we shall often denote Lebesgue’s measure by dx and
not only mn . For example,

mn(E) =
∫

Rn

χE (x)dx if E ∈ M (Rn) .

Sometimes we shall speak of Lebesgue measure on a measurable subset, like in
Lebesgue measure on [a, b]. This will mean the restriction of Lebesgue’s measure
on R to [a, b] in the sense of Remark 1.47(2). In such cases we shall tacitly follow
Remark 1.53. In the restricted Lebesgue measure we will drop the symbol�E . For
example, L 1([a, b], dx) will denote L 1([a, b], dx�[a,b]). �

Remark 1.70 (1) The Lebesgue measure mn is invariant under the whole isometry
group of R

n , not just under translations: therefore it is also invariant under rotations,
reflections and any composition of these, translations included.
(2) Borel measurable maps f : R

n → C are thus Lebesgue measurable, but the con-
verse is generally false. Continuous maps f : R

n → C trivially belong to both cat-
egories.
(3) The restriction of mn toB(Rn) is just the measure μn of Proposition1.66, hence
a regular Borel measure.
(4) Condition (i) in Proposition1.66 implies, on one hand, that already the Borel
measure μn assigns finite values to compact sets, these being bounded in R

n . On
the other hand it immediately implies, by monotonicity, that both μn and mn assign
non-zero measure to non-empty open sets. This fact has an important consequence,
expressed by the next useful, albeit simple, proposition.
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Proposition 1.71 Let μ : B(X) → [0,+∞] be a σ -additive positive measure on X
such that μ(B) > 0 if B �= ∅ is open. (In particular μ can be the Lebesgue measure
on R

n restricted to an open set X ⊂ R
n.) If f : X → C is continuous and f (x) = 0

a.e. with respect to μ, then f (x) = 0 for any x ∈ X.

Proof As f is continuous and C \ {0} is open, then B := f −1(C \ {0}) is open. If
we had μ(B) > 0, then f would not be zero almost everywhere. Hence μ(B) = 0
and we must have B = ∅, i.e. f (x) = 0 for all x ∈ X.

(5) Invariance under translations in Proposition1.66 is extremely strong a require-
ment. One can prove [Rud86] that if ν : B(Rn) → [0,+∞] maps compact sets
to finite values and is translation-invariant, there exists a constant c ≥ 0 such that
ν(E) = cmn(E) for every E ∈ B(Rn). �
An established result, crucial in computations, is the following.

Proposition 1.72 Given K = [a1, b1] × · · · × [an, bn] ⊂ R
n, with −∞ < ai <

bi < +∞ for i = 1, . . . , n, consider f : R
n → R bounded on K with f (x) = 0

if x ∈ R
n \ K .

(a) If n = 1, f is Riemann integrable on K if and only if it is continuous on K
almost everywhere with respect to Lebesgue’s measure on R.

(b) If n ≥ 1 and f is Riemann integrable on K , then it is Lebesgue measurable
and Lebesgue integrable with respect to Lebesgue’s measure on R

n. Moreover,

∫

Rn

f (x)dx =
∫

K
f (x)dxR(x) ,

where on the left is the Lebesgue integral, on the right the Riemann integral.

The two pivotal theorems of calculus, initially formulated for the Riemann integral,
generalise to the Lebesgue integral on the real line as follows. Before that, we need
some definitions.

Definition 1.73 If a, b ∈ R, a map f : [a, b] → C has bounded variation on [a, b]
if, however we choose a finite number of points a = x0 < x1 < · · · < xn = b in the
interval, we have:

n∑

k=1

| f (xk) − f (xk−1)| ≤ C

where C ∈ R does not depend on the choice of points xk , nor their number.

A subclass of functions of bounded variation is that of absolutely continuous maps.

Definition 1.74 If a, b ∈ R, f : [a, b] → C is absolutely continuous on [a, b] if
for any ε > 0 there exists δ > 0 such that, for any finite family of pairwise-disjoint,
open subintervals (ak, bk), k = 1, 2, . . . , n,

n∑

k=1

(bk − ak) < δ implies
n∑

k=1

| f (bk) − f (ak)| < ε .
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Remark 1.75 (1) Absolutely continuous functions on [a, b] have bounded variation
and are uniformly continuous (not conversely).
(2)Maps with bounded variation on [a, b], and absolutely continuous ones on [a, b],
form vector spaces. The product of absolutely continuous maps on the compact inter-
val [a, b] is absolutely continuous.
(3) It is not hard to see that a differentiable map f : [a, b] → C (admitting, in partic-
ular, left and right derivatives at the endpoints) with bounded derivative is absolutely
continuous, hence it also has bounded variation on [a, b]. A weaker version is this:
f : [a, b] → C is absolutely continuous if it is Lipschitz, i.e. if there exists L > 0
such that | f (x) − f (y)| ≤ L|x − y|, x, y ∈ [a, b]. �

Now we are in the position to state [KoFo99] two classical results in real analysis
due to Lebesgue, that generalise the fundamental theorems of Riemann integration
to the Lebesgue integral. Below, dx and dt are Lebesgue measures.

Theorem 1.76 Fix a, b ∈ R, a < b.
(a) If f : [a, b] → C is absolutely continuous then it admits derivative f ′(x)

for almost every x ∈ [a, b] with respect to Lebesgue’s measure. By defining, say,
f ′(x) := 0 where the derivative does not exist, f ′ becomes Lebesgue measurable,
f ′ ∈ L 1([a, b], dx) and

∫ x

a
f ′(t)dt = f (x) − f (a) f or all x ∈ [a, b].

(b) If f ∈ L 1([a, b], dx), the map [a, b] � x �→ ∫ x
a f (t)dt is absolutely continuous,

and

d

dx

∫ x

a
f (t)dt = f (x) a.e.on [a, b] wi th respect to Lebesgue′s measure.

To end the section, we mention a famous decomposition theorem for Borel measures
on R that plays a role in spectral theory [ReSi80].

Let μ be a (σ -additive, positive) regular Borel measure on R with μ(K ) < +∞
for any compact set K ⊂ R.

(i) The set Pμ := {x ∈ R | μ({x}) �= 0} is called the set of atoms of μ (note Pμ

is either finite or countable);
(ii) μ is said continuous if Pμ = ∅;
(iii) μ is a purely atomic measure if μ(S) = ∑

p∈S μ({p}), S ∈ B(R).
A (σ -additive, positive) regular Borel measure μ on R with μ(K ) < +∞ for any
compact set K ⊂ R can be decomposed uniquely into a sum:

μ = μpa + μc ,

where μpa is purely atomic and μc continuous, by setting:

μpa(S) := μ(Pμ ∩ S) ∀S ∈ B(R) and soμc := μ − μpa .
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More precisely, a key decomposition theorem due to Lebesgue holds. Here is one of
the most elementary versions [ReSi80].

Theorem 1.77 (Lebesgue) Let μ be a σ -finite regular Borel (σ -additive, positive)
measure on R with μ(K ) < +∞ for any compact set K ⊂ R. Then μ decomposes
in a unique way as the sum of three (σ -additive, positive) measures on B(R)

μ = μac + μpa + μsing .

For the Lebesgue measure (restricted to B(R)), μac is an absolutely continuous
measure, μpa a purely atomic singular measure and μsing is a continuous singular
measure.

1.4.7 The Product Measure

If (X, �(X), μ) and (Y, �(Y), ν) are measure spaces, we indicate with �(X) ⊗
�(Y) the σ -algebra on X × Y generated by the family of rectangles E × F with
E ∈ �(X) and F ∈ �(Y).

If μ, ν are σ -finite, one can define uniquely a σ -finite measure on �(X) ⊗ �(Y),
written μ ⊗ ν, by imposing

μ ⊗ ν(E × F) = μ(E)ν(F) if E ∈ �(X) and F ∈ �(Y).

This measure μ ⊗ ν is called the product measure of μ, ν.

Remark 1.78 (1) We have the following fact [Rud86].

Proposition 1.79 If f is measurable with respect to �(X) ⊗ �(Y), then Y � y �→
f (x, y)andX � x �→ f (x, y)are measurable for any x ∈ X and y ∈ Y, respectively.
(2) The completion of the product of the Lebesgue measures on R

n and R
m coincides

with the Lebesgue measure on R
n+m [Rud86]. �

The theorems of Fubini and Tonelli, which we state as one, hold.

Theorem 1.80 (Fubini and Tonelli) Let (X, �(X), μ), (Y, �(Y), ν) be spaces with
σ -finite measures, and consider a map f : X × Y → C.
(a) If f is μ ⊗ ν-integrable:

(i) Y � y �→ f (x, y) is ν-integrable for almost every x ∈ X, and X � x �→
f (x, y) is μ-integrable for almost every y ∈ Y,

(ii) X � x �→ ∫
Y f (x, y)dν(y) and Y � y �→ ∫

X f (x, y)dμ(x) (set to zero where
the integrals do not exist) are integrable on X and on Y respectively. Moreover:

∫

X×Y
f (x, y)dμ ⊗ dν(x, y) =

∫

X

(∫

Y
f (x, y)dν(y)

)

dμ(x) =
∫

Y

(∫

X
f (x, y)dμ(x)

)

dν(y) .

(b) Suppose f is measurable with respect to �(X) ⊗ �(Y). Then:
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(i) if Y � y �→ f (x, y) is ν-integrable for almost every x ∈ X, or X � x �→
f (x, y) is μ-integrable for almost every y ∈ Y, then the corresponding maps
X � x �→ ∫

Y | f (x, y)|dν(y) and Y � y �→ ∫
X | f (x, y)|dμ(x) (null where the inte-

grals are not defined) are measurable;
(ii) if, additionally:
∫

X

(∫

Y
| f (x, y)|dν(y)

)

dμ(x) < +∞ or
∫

Y

(∫

X
| f (x, y)|dμ(x)

)

dν(y) < +∞

respectively, then f is μ ⊗ ν-integrable.

1.4.8 Complex (and Signed) Measures

We recall a few definitions and elementary results from the theory of complex func-
tions [Rud86].

Definition 1.81 (Complex measure) A complexmeasure onX is a mapμ : � → C

associating a complex number to every element in a σ -algebra � on X so that:

(i) μ(∅) = 0 and
(ii) μ(∪n∈NEn) = ∑+∞

n=0 μ(En), independently of the summing order, for any col-
lection {En}n∈N ⊂ � with En ∩ Em = ∅ if n �= m.

Under (i)–(ii), if μ(�) ⊂ R, then μ is called a signed measure or charge on X.

Remark 1.82 (1) Requirement (ii) is equivalent to asking absolute convergence of
the series

∑+∞
n=0 μ(En) to μ(∪n∈NEn), by virtue of a generalisation of a classical

result of Riemann on rearranging real series that do not converge absolutely. It easy
to prove that if a series of complex numbers converges absolutely, then it can be
rearranged arbitrarily, to give always the same sum. When, instead, the convergence
is not absolute, the Lévy-Steinitz rearrangement theorem says the sum depends on
the rearrangement, so there are several possible sums. So we conclude that [Rud64]:

Theorem 1.83 If {zn}n∈N ⊂ C, the series
∑+∞

n=0 zn converges absolutely
(
∑+∞

n=0 |zn| < +∞) if and only if there exists S ∈ C such that
∑+∞

n=0 zP(n) = S for
any bijection P : N → N.

(2) There is a way to generate a finite positive measure starting from any complex
(or signed) measure, that goes as follows. If E ∈ �, we shall say {Ei }i∈I ⊂ � is a
partition of E if I is finite or countable, ∪i∈I Ei = E and Ei ∩ E j = ∅ for i �= j .
The σ -additive positive measure |μ| on �, called the total variation of μ, is by
definition:

|μ|(E) := sup

{
∑

i∈I

|μ(Ei )|
∣
∣
∣
∣
∣

{Ei }i∈I partition ofE

}

for any E ∈ �.
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It clearly satisfies |μ|(E) ≥ |μ(E)| if E ∈ �. Moreover, |μ|(X) < +∞ [Rud86].
Therefore |μ| is a (σ -additive, positive) finite measure on � for any given complex
measure μ. �
In analogy to the real case, the support of a complex (or signed) measure on a Borel
σ -algebra is defined below.

Definition 1.84 If (X,T (X)) is a topological space and�(X) ⊃ B(X), the support
of a complex (or signed) measure μ on �(X) is the closed subset of X:

supp(μ) := X \
⋃

O∈T (X), |μ|(O)=0

O .

The definition of absolutely continuous measure with respect to a given measure
generalises straightforwardly to complex measures.

Definition 1.85 A complex (or signed) measure ν is absolutely continuous with
respect to a given σ -additive, positive measure μ, or is dominated by μ, ν ≺ μ,
whenever both are defined over one σ -algebra� onX andμ(E) = 0 implies ν(E) =
0 for E ∈ �.

The theorem of Radon–Nikodym (Theorem 1.65) can be generalised to the case of
complex/signed measures [Rud86]:

Theorem 1.86 (Radon–Nikodym theorem for complex and signed measures) Let ν

be a complex (or signed) measure, μ a σ -additive, positive and σ -finite measure,
both defined on the σ -algebra � over X. If ν ≺ μ there exists a map dν

dμ
∈ L 1(X, μ)

such that:

ν(E) =
∫

X
χE

dν

dμ
dμ f or any E ∈ �

where χE is the characteristic function of E ⊂ X.
Such map dν

dμ
is unique up to sets of zero μ-measure, and is called the Radon–

Nikodym derivative of ν in μ.

The following important result is a corollary of the above [Coh80, Rud86].

Theorem 1.87 (Characterisation of complex measures) For any complex measure
μ on a σ -algebra � onX, there exists a measurable function h : X → C with |h| = 1
on X, unique up to redefinition on zero-measure sets, that belongs in L 1(X, |μ|) and
such that μ(E) = ∫

E h d|μ| for all E ∈ �.

The same result holds, with the obvious changes, for signed measures.

According to it, if f ∈ L 1(X, |μ|) we define the integral of f with respect to
the complex measure μ by:
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∫

X
f dμ :=

∫

X
f h d|μ| .

InChap. 2 (Example 2.48(1))we shall state a general versionofRiesz’s representation
theorem for complex measures.

1.4.9 Exchanging Derivatives and Integrals

In this final section we state the pivotal theorem that allows to differentiate inside
an integral for a general positive measure. The proof is an easy consequence of the
dominated convergence theorem plus Lagrange’s mean value theorem.

Theorem 1.88 (Differentiation inside an integral) In relation to the (σ -additive, pos-
itive) measure space (X, �(X), μ), consider the family of maps {ht }t∈A ⊂ L 1(X, μ)

where A ⊂ R
m is open and t = (t1, . . . , tm). Assume that

(i) for some k ∈ {1, 2, . . . , m} the derivative

∂ht(x)

∂tk

exists for any x ∈ X and t ∈ A;
(ii) there is a map g ∈ L 1(X, μ) such that:

∣
∣
∣
∣
∂ht(x)

∂tk

∣
∣
∣
∣ ≤ |g(x)| f or any t ∈ A, a.e.on X .

Then:
(a) X � x �→ ∂ht

∂tk
∈ L 1(X, μ),

(b) for any t ∈ A, integral and derivative can be swapped:

∂

∂tk

∫

X
ht (x)dμ(x) =

∫

X

∂ht(x)

∂tk
dμ(x) . (1.6)

Furthermore:
(iii) if, for a given g, condition (ii) holds simultaneously for all k = 1, 2, . . . , m,

almost everywhere at x ∈ X, and every function (for any fixed t ∈ A)

A � t �→ ∂ht(x)

∂tk

is continuous, then

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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(c) the function:

A � t �→
∫

X
ht (x)dμ(x)

belongs to C1(A).

Remark 1.89 Theorem 1.88 is true also whenwe take a complex (or signed)measure
μ and replace L 1(X, μ) by L 1(X, |μ|) in the statement. The proof is direct, and
relies on Theorem 1.87. �



Chapter 2
Normed and Banach Spaces, Examples
and Applications

I’m convinced mathematics is the most important investigating
tool of the legacy of the human enterprise, it being the source of
everything.

René Descartes

In the book’s first proper chapter, we will discuss the fundamental notions and theo-
rems about normed andBanach spaces.Wewill introduce certain algebraic structures
modelled on natural algebras of operators on Banach spaces. Banach operator alge-
bras play a relevant role in modern formulations of Quantum Mechanics.

The chapter will, in essence, introduce the working language and the elemen-
tary topological instruments of the theory of linear operators. Even if mostly
self-contained, the chapter is by no means exhaustive if compared to the immense
literature on the basic properties of normed and Banach spaces. The texts [Rud86,
Rud91] should be consulted in this respect. In due course we shall specialise to oper-
ators on complex Hilbert spaces, with a short detour in Chap. 4 into the more general
features of compact operators.

The most important notions of the present chapter are without any doubt bounded
operators and the various topologies (induced by norms or seminorms) on spaces
of operators. The relevance of these mathematical tools descends from the fact that
the language of linear operators on linear spaces is the language used to formulate
QM. Here the class of bounded operators plays a central technical part, even though
in QM one is forced, on physical grounds, to introduce and work with unbounded
operators too, as we shall see in the second part of the book.

The chapter’s first section is devoted to the elementary concepts of normed space,
Banach space and their basic topological properties. We shall discuss examples, like
the space of continuous maps C(K) over a compact space K, and prove the crucial
theorem ofArzelà–Ascoli in this setup. In the examples wewill also prove key results
such as the completeness of L p spaces (Fischer–Riesz theorem).

© Springer International Publishing AG 2017
V. Moretti, Spectral Theory and Quantum Mechanics, UNITEXT - La Matematica
per il 3+2 110, https://doi.org/10.1007/978-3-319-70706-8_2

39

http://dx.doi.org/10.1007/978-3-319-70706-8_4


40 2 Normed and Banach Spaces, Examples and Applications

The norm of an operator is defined in the second section, and we will establish its
main features.

Section three presents the fundamental results of Banach spaces, in their sim-
plest versions. These are the theorems of Hahn–Banach, Banach–Steinhaus, plus
the corollary to Baire’s category theorem known as the open mapping theorem. We
will prove a few useful technical consequences (the inverse operator theorem and
the closed graph theorem). Then we will introduce the various operator topologies
that come into play, prove the theorem of Banach–Alaoglu and recall briefly the
Krein–Milman theorem and Fréchet spaces.

Section four is devoted to projection operators in normed spaces. This notion will
be specialised in the subsequent chapter to that of an orthogonal projector, which
will be more useful for our purposes.

In the final two sections we will treat two elementary but important topics: equiv-
alent norms (including the proof that n-dimensional normed spaces are Banach and
homeomorphic to the standardCn) and the theory of contractions in complete normed
spaces (including, in the examples, the proof of the local existence and uniqueness
of solutions to first-order ODEs on Rn or Cn). The latter will be the only instance of
nonlinear functional analysis present in the book.

From now onwards we shall assume that the reader is familiar with vector spaces
and linear mappings (a standard reference text for which is [Ser94I]).

2.1 Normed and Banach Spaces and Algebras

After we have adapted the notions of the previous chapter to normed spaces we shall
introduce Banach spaces. Then, by augmenting the algebraic structure with an inner
product, we will study normed and Banach algebras.

2.1.1 Normed Spaces and Essential Topological Properties

The first definitions we present are those of norm, normed space and continuous map
between normed spaces.

Examples of normed spaces, very common in functional analysis and its physical
applications, will be provided later, especially in the next section.

Definition 2.1 (Normed space) Let X be a vector space over the field K = C or R.
A map N : X → R is called a norm on X, and (X, N ) is a normed space, if:
N0. N (u) ≥ 0 for any u ∈ X,
N1. N (λu) = |λ|N (u) for any λ ∈ K and u ∈ X,
N2. N (u + v) ≤ N (u) + N (v), for any u, v ∈ X,
N3. N (u) = 0 ⇒ u = 0, for any u ∈ X.
WhenN0,N1,N2 are valid butN3 does not necessarily hold, N is called a seminorm.
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Remarks 2.2 (1)Clearly, fromN1 descends N (0) = 0,whileN2 implies the inequal-
ity:

|N (u) − N (v)| ≤ N (u − v) se u, v ∈ X. (2.1)

(2) N1 is called homogeneity property, N2 is known as triangle inequality or sub-
additivity. Together, N0 and N3 are referred to as positive definiteness, whereas N0
alone is sometimes called semi-definiteness. �

Notation 2.3 Henceforth the symbols || || and p( ), with subscripts if necessary,
will denote a norm and a seminorm respectively. Other symbols might be used as
well.

An elementary yet fundamental notion is that of open ball.

Definition 2.4 Let (X, || ||) be a normed space.
The open ball of centre x0 ∈ X and radius r > 0 is the set:

Br (x0) := {x ∈ X | ||x − x0|| < r} .

A set A ⊂ X is bounded if there exists an open ball Br (x0) (of finite radius!) such
that Br (x0) ⊃ A.

Later on we shall define the same object using a seminorm p instead of a norm || ||.
Two useful properties of open balls (valid if using seminorms too), that follow imme-
diately from N2 and the definition, are:

Bδ(y) ⊂ Br (x) if y ∈ Br (x) and 0 < δ + ||y − x || < r , (2.2)

Br (x) ∩ Br ′(x ′) = ∅ if 0 < r + r ′ < ||x − x ′||. (2.3)

Let us introduce the natural topology of a normed space.

Definition 2.5 Consider a normed space (X, || ||).
(a) A subset A ⊂ X is open if A = ∅ or A is the union of open balls.
(b) The norm topology of X is the family of open sets in X.

Remarks 2.6 (1) By (2.2) we have:

A ⊂ X is open ⇔ ∀x ∈ A, ∃rx > 0 such that Brx (x) ⊂ A. (2.4)

(2) By definition of open set and formulas (2.2), (2.4), it follows that open sets
as defined in Definition 2.5 are also open according to Definition 1.1. Hence the
collection of open sets in a normed space is indeed an honest topology. The normed
space X equipped with the above family of open sets is a true topological space.
The collection of open balls with arbitrary centres and radii is a basis for the norm
topology of the normed space (X, || ||).

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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(3) Each normed space (X, || ||) satisfies the Hausdorff property, cf. Definition 1.3
(and as such is a Hausdorff space). The proof follows from (2.3) by choosing
A = Br (x), A′ = Br ′(x ′) with r + r ′ < ||x − x ′||; the latter is non-zero if x �= x ′,
by propertyN3. Had we defined the topology using a seminorm (rather than a norm),
the Hausdorff property would not have been guaranteed. �

Consider the following statements, valid in any normed space: (a) open neighbour-
hoods can be chosen to be open balls (of radii ε and δ); (b) each open neighbourhood
of a point contains an open ball centred at that point (this follows from the definition
of open set in a normed space and (2.2)). A straightforward consequence of (a) and
(b) is that continuity, see (1.16), can be equivalently expressed as follows in normed
spaces.

Definition 2.7 A map f : (X, || ||X) → (Y, || ||Y) between normed spaces is con-
tinuous at x0 ∈ X if for any ε > 0 there exists δ > 0 such that || f (x) − f (x0)||Y < ε

whenever ||x − x0||X < δ.
A map f : X → Y is continuous if it is continuous at each point of X.

Analogously, in normed spaces, convergent sequences (Definition 1.13) become:

Definition 2.8 If (X, || ||) is a normed space, the sequence {xn}n∈N ⊂ X converges
to x ∈ X:

xn → x as n → +∞ or lim
n→+∞ xn = x

if and only if for any ε > 0 there is Nε ∈ R such that ||xn − x || < εwhenevern > Nε.
Equivalently

lim
n→+∞ ||xn − x || = 0 .

The point x is the limit of the sequence.

Remark 2.9 If (X, || ||) is a normed space and A ⊂ X a subset, a point x ∈ X is a
limit point of A if and only if there is a sequence {xn}n∈N ⊂ A \ {x} converging to x .
In fact if x is a limit point for A, every open ball B1/n(x), n = 1, 2, . . ., contains at
least one point xn ∈ A \ {x}, and by construction xn → x as n → +∞. Conversely,
let {xn}n∈N ⊂ A \ {x} tend to x . Since every open neighbourhood B of x contains a
ball Bε(x) centred at x by (2.4), the definition of convergence implies Bε(x), and so
B, contains every point xn with n > Nε for some Nε ∈ R. Thus x is a limit point. �

A nice class of continuous linear functions is that of isometries.

Definition 2.10 If (X, || ||X), (Y, || ||Y) are normed spaces over the same fieldC or
R, a linear map L : X → Y is called isometric, or an isometry, if ||L(x)||Y = ||x ||X
for all x ∈ X.

If the isometry L : X → Y is onto, it is an isomorphism of normed spaces.
Given an isomorphism L of normed spaces, the domain and codomain are called

isomorphic (under L).

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Remarks 2.11 (1) It is obvious that an isometry L : X → Y is injective, byN3, but it
maynotbeonto. IfX = Y and L is not surjective, thenXmust be infinite-dimensional.
(2) Since the pre-image of an open ball under an isometry is an open ball, each isom-
etry f : X → Y between normed spaces X,Y is continuous in the two topologies.
(3) If an isometry f : X → Y is onto (an isomorphism), its inverse f −1 : Y → X is
still linear and isometric, hence an isomorphism. An isomorphism of normed spaces
is clearly a (linear) homeomorphisms of the two topological spaces.
(4) Other textbooks may provide a different definition, not equivalent to ours, of
isomorphism of normed spaces. They typically require an isomorphism be only
a linear continuous map with continuous inverse (i.e. a linear homeomorphism).
An isomorphism according to Definition 2.10 is also such in this second meaning,
but not conversely. Having f, f −1 both continuous is much weaker a condition
than preserving norms. For instance f : X � x �→ ax ∈ X, with a �= 0 fixed, is an
isomorphism from X to itself for the second definition, but not in our sense. �

A further technical result that we wish to present is the direct analogue of something
that happens in the space R normed by the absolute value.

Proposition 2.12 A function f : X → Y between normed spacesX,Y is continuous
at x ∈ X if and only if it is sequentially continuous at x, i.e. f (xn) → f (x) as
n → +∞, for any sequence {xn}n∈N ⊂ X such that xn → x as n → +∞.

Proof If f is continuous at x , let {xn}n∈N ⊂ X tend to x . By continuity, for any
ε > 0 there is δ > 0 such that || f (xn) − f (x)||Y < ε when ||xn − x ||X < δ. Since
||xn − x || → 0, then for any ε > 0 there is Nε ∈ R such that || f (xn) − f (x)||Y < ε

whenever n > Nε. Thus f is sequentially continuous at x . Now assume f is not
continuous at x0, and let us show it cannot be sequentially continuous at x . With
these assumptions there must be ε > 0 such that for any n = 1, 2, . . ., there exists
xn ∈ Xwith ||xn − x ||X < 1/n but || f (x) − f (xn)||Y > ε. The sequence {xn}n=1,2,...

tends to x , but the corresponding images { f (xn)}n=1,2,... do not converge to f (x) in
Y. Therefore f is not sequentially continuous at x . ��
At last we want to discuss continuity properties of the vector-space operations with
respect to the norm topologies on normed spaces.

If (X, || ||X), (Y, || ||Y) are normed spaces over the same field K = C or R, we
can form the Cartesian product Y × X and its product topology, induced by the
topologies of the factors X, Y (cf. 1.10). This topology has as open sets the empty
set and the unions of Cartesian products of open balls in X and Y. In case Y = X,
we can study the continuity of the sum of two vectors in X × X:

+ : X × X � (u, v) �→ u + v ∈ X ,

where X × X has the product topology. From N2

||u + v|| ≤ ||u|| + ||v||,

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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making the operation + jointly continuous in its two arguments with respect to the
norm topologies. Said otherwise, the addition is continuous in the product topology
of the domain and the standard topology of the range.

In fact, the triangle inequality implies that given (u0, v0) ∈ X × X and ε > 0, then
u + v ∈ Bε(u0 + v0) provided (u, v) ∈ Bδ(u0) × Bδ(v0) with 0 < δ < ε/2.
If Y is the field K = R or C, thought of as normed by the modulus, we can consider
the continuity of the product between a scalar and a vector in K × X:

K × X � (α, u) �→ αu ∈ X ,

where the left-hand side has the product topology. From N2 and N1,

||αu|| = |α| ||u||

implies that the multiplication by scalars is a jointly continuous operation in its
arguments in the two norm topologies; that is to say, it is continuous with respect to
the product topology on the domain and the standard one on the range. Here too the
proof is easy: from the above identity andN2, given (α0, u0) ∈ K × X and ε > 0, then
αu ∈ Bε(α0u0) if we take (α, u) ∈ B(K)

δ′ (α) × Bδ(u0) with 0 < δ = ε/(2|α0| + 1)
and 0 < δ′ < ε/(2(||u0|| + δ)). (B(K)

δ′ (α) denotes an open ball in the normed space
K.)

2.1.2 Banach Spaces

Some of the above material can be adapted to completely general topological spaces.
At the same time there are properties, like completeness (which we treat below), that
befit the theory of normed spaces (and more generally metrisable spaces, which we
will only mention elsewhere, in passing).

Awell-known fact from the elementary theory onRn is that convergent sequences
{xn}n∈N in a normed space (X, || ||) satisfy the Cauchy property:

Definition 2.13 (Cauchy property) A sequence {xn}n∈N in a normed space (X, || ||)
satisfies theCauchy property if, for any ε > 0, there exists Nε ∈ R such that ||xn −
xm || < ε whenever n, m > Nε.

Such a sequence is called a Cauchy sequence.

In fact, suppose {xn}n∈N converges. This means ||xn − x || → 0 as n → +∞. Then
||xk − x || < ε for k > Nε, so ||xn − xm || ≤ ||xn − x || + ||xm − x || < ε for n, m >

Nε/2.
The idea of the above argument is that if a sequence converges to some point, its

terms get closer to one another. It is interesting to see whether the converse holds as
well: does a sequence of vectors that become closer always admit a limit?

As is well known from elementary calculus, the answer is yes on X = R with the
absolute value norm. Therefore it is true also onC and on any vector space built over
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Cartesian products of standard copies of Rn , Cn . This is guaranteed by the fact that
R satisfies the completeness axiom.

Normed spaces in which Cauchy sequences are convergent are called complete
normed spaces.Ageneral normed space is not complete, and complete normed spaces
are scarce, hence interesting by default. They have relevant and useful features,
especially for the physical applications that will be the object of the book.

Definition 2.14 (Banach space) A normed space is called a Banach space if it is
complete, i.e. if any Cauchy sequence inside the space converges to a point of the
space.

Remarks 2.15 (1)Theproperty of being complete is invariant under isomorphisms of
normed spaces, but not under homeomorphisms (continuous maps with continuous
inverses, not necessarily linear). A counterexample is provided by the pair R and
(0, 1), both normed by the absolute value. Although they are homeomorphic, the
line is complete, the interval is not.
(2) It is easy to prove that any closed subspace M in a Banach space B is itself a
Banach space for the restricted norm: each Cauchy sequence in M is Cauchy for B
too, so it must converge to a point in B. But this point must belong to M because M
is closed and contains its limit points. �
The spaces Cn and R

n with standard norm:

||(c1, . . . , cn)|| =
√
√
√
√

n
∑

k=1

|ck |2

are the simplest instances of finite-dimensional Banach spaces, respectively complex
and real. As a matter of fact we shall prove in Sect. 2.5 that every finite-dimensional
complex Banach space is homeomorphic to a standard Cn , and show explicit exam-
ples of Banach spaces starting from the next section. At any rate, any normed space
satisfies a nice property: it can be completed to a Banach space determined by it, in
which it is moreover dense.

Theorem 2.16 (Completion of Banach spaces) Let (X, || ||) be a normed vector
space over K = C or R.
(a) There exists a Banach space (Y, N ) over K, called completion of X, such that
X is isometrically identified with a dense subspace of Y under a linear injective
mapping J : X → Y.

Put otherwise, there is a linear 1-1 map J : X → Y with

J (X) = Y and N (J (x)) = ||x || for any x ∈ X.

(b) If the triple (J1,Y1, N1), with J1 : X → Y1 a linear isometry and (Y1, N1) a
Banach space on K, is such that (X, || ||) is isometric to a dense subspace of Y1

under J1, then there is a unique isomorphism of normed spaces φ : Y → Y1 such
that J1 = φ ◦ J .
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Sketch of the proof. The idea is similar to the procedure that generates the real numbers
by completing the rationals.
(a) Let C denote the space of Cauchy sequences in X and define the equivalence
relation on C :

xn ∼ x ′
n ⇔ lim

n→∞ ||xn − x ′
n|| = 0 .

Clearly we can think that X ⊂ C/∼ by identifying each x of X with the equivalence
class of the constant sequence xn = x . Let J be the identification map. Then C/∼ is
easily a K-vector space with norm induced by the structure of X. Now one should
prove that C/∼ is complete, that J is linear and isometric (hence 1-1) and that J (X)

is dense in Y := C/∼.
(b) J1 ◦ J−1 : J (X) → Y1 is a linear and continuous isometry from a dense set
J (X) ⊂ Y to a Banach space Y1, so it extends uniquely to a linear, continuous
isometry φ on Y (see Proposition 2.47). As φ is isometric, it is injective. The
same is true about the extension φ′ of J ◦ J−1

1 : J1(X) → Y, and by construc-
tion (J ◦ J−1

1 ) ◦ (J1 ◦ J−1) = idJ (X). Extending to J (X) = Y by continuity, we see
φ′ ◦ φ = idY, and similarly φ ◦ φ′ = idY1 . In conclusion φ and φ′ are onto, so in
particular φ is an isomorphism of normed spaces and by construction J1 = φ ◦ J .
The uniqueness of an isomorphism φ : Y → Y′ satisfying J1 = φ ◦ J is easy, once
one notices that each such map ψ : Y → Y1 fulfils J − J = (φ − ψ) ◦ J by lin-
earity, hence (φ − ψ) �J (X)= 0. The uniqueness of the extension of (φ − ψ) �J (X),
continuous and with dense domain J (X), to J (X) = Y, eventually warrants that
φ = ψ . ��
The next proposition is a useful criterion to check if a normed space is Banach.

Proposition 2.17 Let (X, || ||) be a normed space, and assume every absolutely
convergent series

∑+∞
n=0 xn of elements of X (i.e.

∑+∞
n=0 ||xn|| < +∞) converges in

X. Then (X, || ||) is a Banach space.

Proof Take aCauchy sequence {vn}n∈N ⊂ X and let us show that if the above property
holds, the sequence converges in X. Since the sequence is Cauchy, for any k =
0, 1, 2, . . . there is Nk such that ||vn − vm || < 2−k whenever n, m ≥ Nk . Choose Nk

so that Nk+1 > Nk and extract the subsequence {vNk }k∈N. Now define vectors z0 :=
vN1 , zk := vNk+1 − vNk and consider the series

∑+∞
k=0 zk . Notice vNk = ∑k

k ′=0 zk ′ . By
construction ||zk || < 2−k , so the series converges absolutely. Under the assumptions
made, there will exist v ∈ X such that:

lim
k→+∞ vNk = lim

k→+∞

k
∑

k ′=0

zk ′ = v .

Hence the subsequence {vNk }k∈N of the Cauchy sequence {vn}n∈N converges to v ∈ X.
To finish it suffices to show that the whole {vn}n∈N converges to v. As

||vn − v|| ≤ ||vn − vNk || + ||vNk − v|| ,
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for a given ε > 0 we can find Nε such that ||vn − vNk || < ε/2 whenever n, Nk > Nε,
because {vn}n∈N is a Cauchy sequence. On the other hand we can also find Mε such
that ||vNk − v|| < ε/2 whenever k > Mε, since vNk → v. Therefore taking k > Mε

large enough, so that Nk > Nε, we have ||vn − v|| < ε for n > Nε. As ε > 0 was
arbitrary, we have vn → v as n → +∞. ��

2.1.3 Example: The Banach Space C(K;Kn), The Theorems
of Dini and Arzelà–Ascoli

One of the simplest examples of a non-trivial (and generically, infinite-dimensional)
Banach space is C(K;Kn), the space of continuous maps from a compact space
K to K

n , with K = C or R. The chosen norm is the supremum norm || f ||∞ :=
supx∈K || f (x)||. This is always finite for f ∈ C(K;Kn) (Proposition 1.21).

Proposition 2.18 Let K = C (or R) and consider the normed space (Kn, || ||) with
norm (1.1). If K is compact, the vector space C(K;Kn) of continuous maps from K
to K

n, equipped with the norm:

|| f ||∞ := sup
x∈K

|| f (x)|| ,

is a complex (or real) Banach space.

Proof Let { fn}n∈N ⊂ C(K;K) be a Cauchy sequence. We want to show there is
f ∈ C(K;K) such that || fn − f ||∞ → 0 as n → +∞. Since { fn}n∈N is Cauchy, for
any given x ∈ K, also n-tuples fn(x) ∈ K

n are a Cauchy sequence. Thus, since Kn

is complete, we have a pointwise-defined map:

f (x) := lim
n→+∞ fn(x) .

The claim is that f ∈ C(K;K) and || fn − f ||∞ → 0 as n → +∞. Since { fn}n∈N is
Cauchy, for any ε > 0 there is Nε such that, if n, m > Nε,

|| fn(x) − fm(x)|| < ε , for ever y x ∈ K.

By definition of f , on the other hand, for a given x ∈ K and any ε′
x > 0, there is

Nx,ε′
x
such that || fm(x) − f (x)|| < ε′

x whenever m > Nx,ε′
x
. Using these two facts

we have

|| fn(x) − f (x)|| ≤ || fn(x) − fm(x)|| + || fm(x) − f (x)|| < ε + ε′
x

provided n > Nε and choosing m > max(Nε, Nx,ε′
x
). Overall, if n > Nε, then

|| fn(x) − f (x)|| < ε + ε′
x , for any ε′

x > 0.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Since ε′
x > 0 is arbitrary, the inequality holds when ε′

x = 0, possibly becoming an
equality. Thus the dependency on x disappears, and in conclusion, for any ε > 0 we
have found Nε ∈ N such that

|| fn(x) − f (x)|| ≤ ε , for all x ∈ K (2.5)

when n > Nε. Hence { fn} converges to f uniformly. Since (2.5) holds for any
x ∈ K, it holds for the supremum on K: for any ε > 0 there is Nε ∈ N such that
supx∈K || fn(x) − f (x)|| < ε, whenever n > Nε. Put differently,

|| fn − f ||∞ → 0 , as n → +∞.

To finish wemust prove f is continuous. Given x ∈ K, for any ε > 0 wewill find δ >

0 such that || f (x ′) − f (x)|| < ε when ||x ′ − x || < δ. For that, we exploit uniform
convergence and choose n such that || f (z) − fn(z)|| < ε/3 for the given ε and
any z ∈ K. Furthermore, as fn is continuous, there is δ > 0 such that || fn(x ′) −
fn(x)|| < ε/3 whenever ||x ′ − x || < δ. Putting everything together and using the
triangle inequality allows to conclude the following: if ||x ′ − x || < δ,

|| f (x ′) − f (x)|| ≤ || f (x ′) − fn(x ′)|| + || fn(x ′) − fn(x)|| + || fn(x) − f (x)||

< ε/3 + ε/3 + ε/3 = ε

as claimed, so f ∈ C(K;K). ��
Notation 2.19 From now on we will write C(K) := C(K;C). �

A useful analytical result about the uniform convergence of monotone sequences
of real functions on compact sets is a classical result of Dini.

Theorem 2.20 (Dini’s theorem on uniform convergence) Let K be a compact space
and take { fn}n∈N ⊂ C(K;R) such that:

(i) each fn is continuous,
(ii) fn(x) ≤ fn+1(x) for n = 1, 2, . . . and x ∈ K,
(iii) fn → f pointwise as n → +∞.
Then, if f is continuous, || f − fn||∞ → 0 as n → +∞.

The same is true if (ii) is replaced with: fn(x) ≥ fn+1(x).

Proof Fix ε > 0 and define gn := f − fn for any n ∈ N. Denote by Bn the set of x ∈
K for which gn(x) < ε. As gn is continuous, the set Bn is open, and Bn+1 ⊃ Bn since
gn+1(x) ≤ gn(x), by construction. Since gn(x) → 0, then necessarily ∪n∈NBn =
K. But K is compact, so we can choose sets Bn1 , Bn2 , . . . BnN so that Bnk+1 ⊃ Bnk

and Bn1 ∪ Bn2 ∪ · · · ∪ BnN ⊃ K. As K ⊃ Bnk+1 ⊃ Bnk , we have BnN = K. Hence for
the given ε > 0, there exists nN such that | f (x) − fn(x)| < ε for n > nN , x ∈ K.
Therefore || f − fn||∞ < ε, as claimed. The case fn(x) ≥ fn+1(x) is completely
analogous. ��
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In the special case K is a compact set containing a dense and countable subset, the
Banach space C(K) has an interesting property by the theorem of Arzelà–Ascoli. We
state below the simplest version of this result: even if it is not strictly related to the
contents of this book, its importance (especially in the more general form) and the
stereotypical strategy of proof make it worthy of attention.

Definition 2.21 A sequence { fn}n∈N of functions fn : X → C on a normed space1

(X, || ||) is equicontinuous if for any ε > 0 there exists δ > 0 such that | fn(x) −
fn(x ′)| < ε whenever ||x − x ′|| < δ for every n ∈ N and every x, x ′ ∈ X.

Theorem 2.22 (Arzelà–Ascoli) Let K be a compact and separable (cf. Definition
1.5) space. Suppose a sequence of functions { fn}n∈N ⊂ C(K) is:

(a) equicontinuous
and

(b) bounded by some C ∈ R, i.e. || fn||∞ < C for any n ∈ N.
Then there exists a subsequence { fnk }k∈N converging to some map f ∈ C(K) in the
topology induced by the norm || ||∞.

Proof Consider the points q of a dense and countable set Q ⊂ K and label them
by N. If q1 denotes the first point, consider the values | fn(q1)| as n varies. They
lie in a compact set [0, C], so either there are finitely many, and fn(q1) = x1 ∈ C

for a single x1 and infinitely many n, or the fn(q1) accumulate at x1 ∈ C. In either
case there is a subsequence { fnk }k∈N such that fnk (q1) → x1 ∈ C for some x1 ∈ C.
Call the elements of { fnk }k∈N by f1n , where n ∈ N. Now repeat the procedure and
consider | f1n(q2)|, where q2 is the second point of Q, and extract a subsequence
{ f2n}n∈N from { f1n}n∈N. By construction, f2n(q1) → x1 and f2n(q2) → x2 ∈ C, as
n → +∞. Continuing in this way for every k ∈ Nwe end up building a subsequence
{ fkn}n∈N of { fn}n∈N that converges to x1, x2, . . . , xk ∈ Cwhen evaluated at the points
q1, q2, . . . , qk ∈ Q. Take the subsequence of { fn}n∈N formed by all diagonal terms in
the various subsequences, { fnn}n∈N. We claim this is a Cauchy sequence for || ||∞.
So let us fix ε > 0 and find the δ > 0 corresponding to ε/3 by equicontinuity, then
cover K with balls of radius δ centred at every point of K. Using the compactness of
K we extract a finite covering of balls with radius δ, say B(1)

δ , B(2)
δ , . . . , B(N )

δ , and
choose q( j) ∈ B( j)

δ ∩ Q, for any j = 1, . . . , N . For any x ∈ B( j)
δ we have:

| fnn(s) − fmm(s)|

≤ | fnn(s) − fnn(q
( j))| + | fnn(q

( j)) − fmm(q( j))| + | fmm(q( j)) − fmm(s)| .

The first and third terms are smaller than ε/3 by construction. Since fnn(q( j)) con-
verges in C as n → +∞, the second term is less than ε/3 provided n, m > M ( j)

ε for
some M ( j)

ε ≥ 0. Hence if Mε = max j=1,...,N M ( j)
ε :

| fnn(s) − fmm(s)| < ε for n, m > Mε, and any s ∈ K.

1The definition generalises to metric spaces in the obvious way.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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In other words
|| fnn − fmm ||∞ < ε if n, m > Mε

as claimed. ��
Remarks 2.23 (1) The theorem applies in particular when K is the closure of a non-
empty open and bounded set A ⊂ R

n , because points with rational coordinates form
a countable dense subset inK. Moreover, the same proof holds (trivial changes apart)
if we replace C(K) with C(K;Kn).
(2)Wewill prove inChap. 4, Proposition 4.3, that in a normed space (X, || ||) a subset
A ⊂ X is relatively compact (its closure is compact) if we can extract a convergent
subsequence from any sequence of A. By virtue of this fact, the theorem of Arzelà–
Ascoli actually says the following:
if K is a compact separable space, every equicontinuous subset of C(K) that is
bounded for || ||∞ is relatively compact in (C(K), || ||∞).
(3) An important result in functional analysis [Mrr01], which we will not prove, is
the Banach–Mazur theorem: any complex separable Banach space is isometrically
isomorphic to a closed subspace of (C([0, 1]), || ||∞). �

Several examples of Banach spaces will be given at the end of the next section, after
we have talked about normed and Banach algebras.

2.1.4 Normed Algebras, Banach Algebras and Examples

Aswe shall see in amoment, inmany applications there is a tight connection between
algebras and normed spaces, which goes through linear operators on a normed space.
The most important normed algebras in physics are, as a matter of fact, operator
algebras.

But the notions of algebra and normed algebra are completely independent of
operators. An algebra arises by enriching a vector space with a product that is asso-
ciative, distributes over the sum and behaves associatively for the multiplication by
scalars. A normed algebra is an algebra equipped with a norm that renders the vector
space normed and behaves “properly” with respect to the product. Here are the main
definitions.

Definition 2.24 (Algebra) An (associative) algebra A over the fieldK = C or R is
aK-vector space with an operation ◦ : A × A → A, called product, that is associa-
tive:

(a ◦ b) ◦ c = a ◦ (b ◦ c) for each triple a, b, c ∈ A (2.6)

and distributes over the vector space operations:
A1. a ◦ (b + c) = a ◦ b + a ◦ c ∀ a, b, c ∈ A,
A2. (b + c) ◦ a = b ◦ a + c ◦ a ∀ a, b, c ∈ A,

http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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A3. α(a ◦ b) = (αa) ◦ b = a ◦ (αb) ∀α ∈ K and ∀ a, b ∈ A.
The algebra (A, ◦) is called:

commutative, or Abelian, if
A4. a ◦ b = b ◦ a for any pair a, b ∈ A;

unital (or with unit) if it contains an element I, called unit of the algebra, such
that:
A5. I ◦ u = u ◦ I = u for any a ∈ A;

a normed algebra or normed unital algebra if it is a normed vector space with
norm || || satisfying
A6. ||a ◦ b|| ≤ ||a||||b|| for a, b ∈ A,
and in presence of a unit I also:
A7. ||I|| = 1;

a Banach algebra or Banach algebra with unit if A is a Banach space plus a
normed algebra, or normed unital algebra, for the same norm.

A homomorphism φ : A1 → A2 between algebras, whether unital, normed or
Banach, is a linear map preserving products, and units if present (but not necessarily
the norms if present):

φ(a ◦1 b) = φ(a) ◦2 φ(b) if a, b ∈ A1, φ(I1) = I2 ,

using the obvious notations. A bijective algebra homomorphism φ : A → A′
(between normed or Banach algebras, with or without unit) is an algebra isomor-
phism, and an algebra automorphism if A = A′.

If there is an isomorphism φ : A → A′, the algebras A, A′ (normed/Banach/with
unit) are said to be isomorphic, and isometrically isomorphic if the isomorphism
also preserves the norms.

A (normed/Banach/unital) subalgebra is a subsetA1 ⊂ A in a (normed/Banach/
unital) algebra A that inherits the algebra structure by restricting the algebra opera-
tions (if present: the same unit of A, the restricted norm of A, and completeness if A
is Banach).

Remarks 2.25 (1) The norm does not show up in the definition of homomorphism
and isomorphism between the various kinds of algebra.
(2) If a unit exists it must be unique: if both I and I′ satisfy A5, then I′ = I

′ ◦ I = I.
�

For normed algebras, the above axioms easily imply that all operations are continuous
in the norm topologies involved. We showed in Sect. 2.1.1 that this is true for the
sum and the multiplication by scalars. The product ◦, too, is jointly continuous in its
arguments (i.e. in the product topology ofA × A) and hence also continuous in each
argument alone.
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Proposition 2.26 If A is a normed algebra (with product ◦), the map

A × A � (a, b) �→ a ◦ b ∈ A

is continuous using the product topology in the domain.

Proof Dropping the symbol ◦, we have

||ab − a0b0|| = ||ab − a0b + a0b − a0b0|| ≤ ||a − a0|| ||b|| + ||a0|| ||b − b0|| .

Fixing ε > 0, since the norm is continuous in its own-induced topology, there is
δ0 > 0 such that ||b − b0|| < δ0 implies −1 < ||b|| − ||b0|| < 1. Therefore:

||ab − a0b0|| = ||ab − a0b + a0b − a0b0|| ≤ ||b − b0||(1 + ||b0|| + ||a0||) .

Choosingnow δ ≤ min(δ0, ε/(1 + ||b0|| + ||a0||)) and considering elements (a, b) ∈
Bδ(a0) × Bδ(b0):

||ab − a0b0|| < ε .

This proves the continuity of ◦ in the product topology of A × A. ��
Wenowpass to show that, in a unital Banach algebra, themap a �→ a−1 is continuous
if its domain is suitably defined.

Proposition 2.27 Let A be a unital Banach algebra (with unit I and product ◦). The
group

GA := {a ∈ A | ∃a−1 ∈ A such that a ◦ a−1 = a−1 ◦ a = I}

is open in A and the map GA � a �→ a−1 ∈ A is continuous.

Proof First we shall show that if A is a Banach algebra, then GA is open so that it
makes sense to invert elements in a neighbourhood of any a0 ∈ GA. Next we will
prove that the map GA � a �→ a−1 is continuous. With a ∈ A, the series

+∞
∑

n=0

(−1)nan

converges in the norm topology when ||a|| < 1, because its partial sums are Cauchy
sequences and the space is complete by hypothesis. The proof now is the same as for
the convergence of the geometric series. Moreover, since the product is continuous:

(I + a)

+∞
∑

n=0

(−1)nan =
+∞
∑

n=0

(−1)n(I + a)an = I + lim
n→+∞(−1)n+1an = I .
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Similarly:
(+∞
∑

n=0

(−1)nan

)

(I + a) = I .

Hence if ||a|| < 1 we have I + a ∈ GA and:

(I + a)−1 =
+∞
∑

n=0

(−1)nan .

At this point, if b ∈ GAwe canwrite c = b + c − b = b(I + b−1(c − b)). Therefore
||b−1(c − b)|| < 1 implies c has an inverse:

c−1 =
+∞
∑

n=0

(−1)n((c − b)b−1)nb−1 .

In particular, if b ∈ GA and we fix 0 < δ < 1/||b−1||, then c ∈ Bδ(b) gives c ∈ GA,
because ||b−1(c − b)|| ≤ ||b−1|| ||(c − b)|| < 1. Thus we have proved GA open.

Now to the continuity of GA � a �→ a−1. Fix a0 ∈ GA and δ with 0 < δ <

||a−1
0 ||−1, and note that ||a − a0|| < δ forces

||a−1 − a−1
0 || ≤ ||a−1(a0 − a)a−1

0 || ≤ ||a−1|| ||a − a0|| ||a−1
0 ||

≤ (||a−1 − a−1
0 || + ||a−1

0 ||)δ||a−1
0 || .

Therefore (the first factor is positive by construction)

(1 − δ||a−1
0 ||) ||a−1 − a−1

0 || ≤ δ||a−1
0 ||2 .

We conclude that if ||a − a0|| < δ,

||a−1 − a−1
0 || ≤ δ

1 − δ||a−1
0 || ||a

−1
0 ||2 .

Defining ε := δ

1−δ||a−1
0 || ||a−1

0 ||2 wehave δ = ε

ε||a−1
0 ||+||a−1

0 ||2 . The conclusion, as claimed,

is that for any ε > 0 (satisfying the starting constraint) ||a−1 − a−1
0 || < ε with a ∈

Bδ(a0) and δ > 0 above, so a �→ a−1 is continuous. ��
Notation 2.28 In the sequel we will conventionally denote the product of two ele-
ments of an algebra by juxtaposition, as in ab, rather than by a ◦ b. In other contexts
a dot might be used: f · g, especially when working with functions. �
Examples 2.29 Let us see examples of Banach spaces and Banach algebras, a few
of which will require some abstract measure theory.
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(1) The number fieldsC andR are commutative Banach algebras with unit. For both
the norm is the modulus/absolute value.

(2)Given any set X, andK = C orR, let L(X) be the set of boundedmaps f : X →
K, i.e. supx∈X | f (x)| < ∞. Then L(X) is naturally a K-vector space for the usual
linear combinations: if α, β ∈ C and f, g ∈ L(X),

(α f + βg)(x) := α f (x) + βg(x) for all x ∈ X.

We can define a product making L(X) an algebra: for f, g ∈ L(X),

( f · g)(x) := f (x)g(x) for any x ∈ X.

The algebra is commutative and has a unit (the constant map 1). A norm that renders
L(X) Banach is the sup norm: || f ||∞ := supx∈X | f (x)|. The proof is simple (it uses
the completeness of C, and goes pointwise on X) and can be found in the exercises
at the end of the chapter.

(3)Define on the aboveX a σ -algebraΣ . The subalgebra ofΣ-measurable functions
Mb(X) ⊂ L(X) is closed in L(X) in the topology of the sup norm. Thus Mb(X) is a
commutative Banach algebra. This is immediate from the previous example, because
the pointwise limit of measurable maps is measurable.

(4) The vector space of continuous maps from a topological space X to C is written
C(X); the symbol already appeared for X compact in Sect. 2.1.3.

We indicate by Cb(X) ⊂ C(X) the subspace of bounded continuous maps and by
Cc(X) ⊂ Cb(X) the space of continuous maps with compact support.

These all coincide if X compact, and are clearly commutative algebras for the
operations of example (2). The algebras C(X) and Cb(X) have the constant map 1
as unit, whereas Cc(X) has no unit when X is not compact. Here is a list of general
properties:

(a) Cb(X) is a Banach algebra for the sup norm || ||∞.
(b) If X = K is compact, Cc(K) = C(K) is a Banach algebra with unit for the sup

norm || ||∞, as we saw in Sect. 2.1.3. An important result in the theory of Banach
algebras [Rud91] states that any commutative Banach algebra with unit over C is
isomorphic to an algebra C(K) for some compact space K.

(c) If the space X is

1. Hausdorff and
2. locally compact,

then the completion of the normed space Cc(X) is a commutative Banach algebra
C0(X) (without unit), called algebra of continuous maps f : X → C that vanish
at infinity [Rud86]: this means that for any ε > 0 there is a compact set Kε ⊂ X
(depending on f in general) such that | f (x)| < ε for any x ∈ X \ Kε.
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(d) Irrespective of compactness, C(X), Cc(X), C0(X) are in general not dense
in Mb(X) (using || ||∞ and the Borel σ -algebra on X). If we take X = [0, 1] for
instance, the bounded map f : [0, 1] → C equal to 0 except for f (1/2) = 2 is Borel
measurable (with the standard topologies onC and the induced one on [0, 1]), hence
f ∈ Mb([0, 1]). However, there cannot exist any sequence of continuous maps fn :
[0, 1] → C converging to f uniformly. The same can be said if X ⊂ R

n is a compact
set with non-empty interior and we take f : X → C to be f (q) = 0 for q ∈ X \ {p},
p ∈ I nt (X), and f (p) = 1.

(5) If X is Hausdorff and compact, consider a subalgebra A in C(X) that contains the
unit (the function 1) and is closed under complex conjugation: f ∈ A ⇒ f ∗ ∈ A,
where f ∗(x) := f (x) for any x ∈ X and the bar denotes complex conjugation. Then
A is said to separate points in X if, given any x, y ∈ X with x �= y, there is a map
f ∈ A satisfying f (x) �= f (y). The Stone-Weierstrass theorem [Rud91] says the
following.

Theorem 2.30 (Stone-Weierstrass) Let X be a compact Hausdorff space and con-
sider the Banach algebra with unit (C(X), || ||∞). Then any subalgebra A ⊂ C(X)

containing the unit, closed under complex conjugation and that separates points has
C(X) as closure with respect to || ||∞.

A typical example is the algebra A of complex polynomials in n variables (the stan-
dard coordinates of Rn) restricted to a compact subset X in Rn . The theorem asserts
that these polynomials approximate uniformly any continuous complex function on
X. This is useful to construct bases in Hilbert spaces, as we shall explain later.

(6) Let (X,Σ,μ) be a positive, σ -additive measure space. Recall this means a set
X, a σ -algebra Σ of subsets in X and a positive and σ -additive measure μ : Σ →
[0,+∞].

Then we have Hölder’s inequality and Minkowski’s inequality, respectively:

∫

X
| f (x)g(x)|dμ(x) ≤

(∫

X
| f (x)|pdμ(x)

)1/p(∫

X
|g(x)|qdμ(x)

)1/q

(2.7)
(∫

X
| f (x) + g(x)|pdμ(x)

)1/p

≤
(∫

X
| f (x)|pdμ(x)

)1/p

+
(∫

X
|g(x)|pdμ(x)

)1/p

(2.8)

for any f, g : X → Cmeasurable, p, q > 0 subject to 1/p + 1/q = 1 in the former,
p ≥ 1 in the latter [Rud86]. These inequalities are proved in two exercises at the end
of the chapter.

Let L p(X,Σ,μ), or henceforth L p(X, μ) by dropping the σ -algebra, be the
set of Σ-measurable maps f : X → C such that

∫

X | f (x)|pdμ(x) < ∞. Using
Minkowski’s inequality one sees easily L p(X, μ) is a vector space under linear
composition of functions, and
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Pp( f ) :=
(∫

X
| f (x)|pdμ(x)

)1/p

(2.9)

is a seminorm. Since Pp( f ) = 0 if and only if f = 0 a.e. for μ, in order to obtain a
norm (i.e., to have N3) we must identify the zero map and any function that differs
from it by a zero-measure set. To this end we define an equivalence relation on
L p(X, μ): f ∼ g ⇔ f − g is zero a.e. for μ. The quotient space L p(X, μ)/∼,
written L p(X, μ), inherits a vector-space structure overC fromL p(X, μ) by setting:

[ f ] + [g] := [ f + g] and α[ f ] := [α f ] for any α ∈ C, f, g ∈ L p(X, μ).

It is not hard to show both left-hand sides are independent of the representatives
chosen in the equivalence classes on the right.

It can also be proved that L p(X, μ) is a Banach space for the norm:

||[ f ]||p :=
(∫

X
| f (x)|pdμ(x)

)1/p

, (2.10)

where f is any representative of [ f ] ∈ L p(X, μ).We shall slightly abuse the notation
in the sequel, and write || f ||p instead of Pp( f ) when dealing with functions and not
equivalence classes.

If (X,Σ ′, μ′) is the completion of (X,Σ,μ) (cf. Remark 1.47(1)), in general
L p(X, μ′) is larger thanL p(X, μ). But if we pass to the quotient then L p(X, μ′) =
L p(X, μ) by way of Proposition 1.57.

Theorem 2.31 (Fischer–Riesz) If (X,Σ,μ) is a positive, σ -additive measure space,
the associated normed space L p(X, μ) is, for any 1 ≤ p < +∞, a Banach space.

Proof Throughout this proof we shall omit the square brackets for the elements of
L p(X, μ), and identify cosets with functions (up to null sets). To prove the claim,
thanks to Proposition 2.17 it is sufficient to verify that if the series

∑+∞
n=0 fn in

L p(X, μ) converges absolutely,
∑+∞

n=0 || fn||p ≤ K < +∞, then
∑+∞

n=0 fn = f a.e.
for some f ∈ L p(X, μ) in the topology of || ||p.Wewill need the auxiliary sequence
gN (x) := ∑N

n=1 | fn(x)|, N = 1, 2, . . .. By construction ||gN ||p ≤ ∑N
n=1 || fn||p ≤

K for any N = 1, 2, . . .. We claim the limit limN→+∞ gN (x) is finite for almost all
x ∈ X. The sequence of integrable functions g p

N is non-negative and non-decreasing
by construction, and

∫

X gN (x)pdμ(x) < K p for any N . By monotone convergence
the limit g p of g p

N exists, as a map in [0,+∞], because the sequence of the given
g p

N ≥ 0 is non-decreasing, and must have finite integral. Thus g p ≥ 0 is finite up to
possible zero-measure sets. As p ≥ 0, at points x ∈ X where g(x)p < +∞ we have
limN→+∞ gN (x) = g(x) < +∞. By construction, where g(x) is finite the series
∑+∞

n=0 fn(x) converges absolutely. Therefore it converges to certain values f (x) ∈ C.
Defining f (x) = 0 where the series of fn does not converge, we obtain a series
∑+∞

n=0 fn that converges a.e. to a map f : X → C (measurable since limit, a.e., of
measurable functions, and, say, null on the zero-measure set where the series does not
converge). The map f belongs to L p(X, μ): if fN (x) := ∑N

n fn(x), the sequence

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1


2.1 Normed and Banach Spaces and Algebras 57

| fN |p is non-negative and
∫

X | fN (x)|pdμ(x) < K p for any N . By Fatou’s lemma
f ∈ L p(X, μ). Now we prove

∫

X | fN (x) − f (x)|pdμ(x) → 0 as n → +∞. Eas-
ily (see the footnote in Exercise 2.14) | fN (x) − f (x)|p ≤ 2p(| fN (x)|p + | f (x)|p).
Since, by construction, | fN |p + | f |p ≤ |g|p + | f |p ∈ L 1(X, μ), we can invoke the
dominated convergence theorem for the sequence | fN − f |p, known to converge a.e.
to 0, and obtain

∫

X | fN (x) − f (x)|pdμ(x) → 0 as n → +∞. We have thus proved
that the initial series

∑+∞
n=0 fn , assumed absolutely convergent inL p(X, μ), satisfies

∑+∞
n=0 fn = f a.e. for the above f ∈ L p(X, μ) in norm || ||p. This ends the proof.

��
This argument implies a technical fact, extremely useful in the applications, that
deserves separate mentioning.

Proposition 2.32 Take 1 ≤ p < +∞ and let (X,Σ,μ) be a σ -additive, positive
measure space. If { fn}n∈N ⊂ L p(X, μ) converges to f in || ||p as n → +∞, there
exists a subsequence { fnk }k∈N such that fnk → f a.e. for μ.

Proof The sequence { fn}n∈N is convergent henceCauchy, andwe can extract a subse-
quence { fnk }k∈N such that || fnk+1 − fnk || ≤ 2−k . Define the telescopic sequence sk :=
fnk+1 − fnk . The series fn0 + ∑+∞

k=1 sk is absolutely convergent, for
∑+∞

k=1 ||sk ||p <
∑+∞

k=1 2
−k < +∞. As in the proof of Theorem 2.31, we conclude: (a) the sum s ∈

L p(X, μ) of the series exists, in the sense of || ||p convergence; (b) the series con-
verges pointwise to s almost everywhere, that is fn0(x) + ∑

k∈N sk(x) = s(x). Since
fn0(x) + ∑+∞

k=0 sk(x) = fnk (x), what we have found is that fnk → s ∈ L p(X, μ)

both pointwise μ-almost everywhere, and with respect to || ||p as well. But by
assumption fnk → f ∈ L p(X, μ)with respect to || ||p, so || f − s||p = 0 and hence
f (x) = s(x) a.e. for μ. Eventually, then, fnk (x) → f (x) a.e. for μ. ��
To wrap up the example notice that the Banach space L p(X, μ) is not, in general, an
algebra (for the usual pointwise product of functions), because the pointwise product
inL p(X, μ) does not normally belong to the space.

(7)With reference to example (6), consider the special case whereX is not countable,
Σ is the power set of X and μ the counting measure:

μ(S) = number of elements of S ⊂ X, with μ(S) = ∞ if S is infinite.

Given a measurable space Y, any map f : X → Y is measurable, and L p(X, μ) is
simply denoted by �p(X). Its elements are “sequences” {zx }x∈X of complex numbers,
labelled by X, such that:

∑

x∈X
|zx |p < ∞ ,

where the sum is given by:

sup

⎧

⎨

⎩

∑

x∈X0

|zx |p

∣
∣
∣
∣
∣
∣

X0 ⊂ X, X0 finite

⎫

⎬

⎭
.
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If X is countable, X = N or Z in particular, the above definition of sum of positive
numbers indexed by X is the usual sum of a series. For example, �p(N) is the space
of sequences {cn}n∈N ⊂ C with:

+∞
∑

n=0

|cn|p < +∞ .

(8) Take a measure space (X,Σ,μ) and consider the class L ∞(X, μ) of complex
measurable maps f : X → C such that | f (x)| < M f a.e. for μ, for some M f ∈ R

(depending on f ). Then L ∞(X, μ) has a natural structure of a vector space and of
a commutative algebra with unit (the function 1) if we use the ordinary product and
linear combinations as in example (2). We can equipL ∞(X, μ) with the seminorm:

P∞( f ) := ess sup| f |

defined by the essential supremum of f ∈ L ∞(X, μ):

ess sup| f | := inf {r ∈ R | μ ({x ∈ X | | f (x)| ≥ r}) = 0 } . (2.11)

Naïvely speaking, the latter is the “smallest” upper bound of | f | when we ignore
what happens on zero-measure sets.

In particular (exercise):

P∞( f · g) ≤ P∞( f )P∞(g) if f, g ∈ L ∞(X, μ) .

As we did forL p, if we identify maps that differ only on zero-measure sets, we can
form the quotient space L∞(X, μ), with well-defined product:

[ f ] · [g] := [ f · g] for f, g ∈ L ∞(X, μ) .

Exactly as for the L p spaces, the seminorm P∞ is (clearly) a norm on L∞(X, μ):

||[ f ]||∞ := ess sup| f | .

In analogy to the spaces L p, also L∞(X, μ) is a Banach space. Moreover, being
closed under products means it is a Banach algebra as well.

Theorem 2.33 (Fischer–Riesz, L∞ case) If (X,Σ,μ) is a σ -additive, positive mea-
sure space, the associated normed space L∞(X, μ) is a Banach space.

Proof As customary, we indicate with f (no brackets) the generic element of
L∞(X, μ), and identify it with a function (up to null sets) when necessary. Let
{ fn}n∈N ⊂ L∞(X, μ) be a Cauchy sequence for || ||∞. Define, for k, m, n ∈ N,
sets Ak := {x ∈ X | | fk(x)| > || fk ||∞} and Bn,m := {x ∈ X | | fn(x) − fm(x)| >

|| fn − fm ||∞}. By construction E := ∪k∈N ∪n,m∈N Ak ∪ Bn,m must have zero
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measure, and the sequence of the fn converges uniformly in X \ E to some f , which
is therefore bounded. Extend f to the entire X by setting it to zero on X \ E . Thus
f ∈ L∞(X, μ) and || fn − f ||∞ → 0 as n → +∞. ��
(9) Going back to example (8), in case Σ is the power set of X and μ the counting
measure, the space L∞(X, μ) is written simply �∞(X). Its points are “sequences”
{zx }x∈X of complex numbers indexed by X such that supx∈X |zx | < +∞.

With the notation of example (2), �∞(X) = L(X). �

Notation 2.34 The literature prefers to use the bare letter f to indicate the equiva-
lence class [ f ] ∈ L p(X, μ), 1 ≤ p ≤ ∞. We shall stick to this convention when no
confusion arises. �

2.2 Operators, Spaces of Operators, Operator Norms

With the next definition we introduce linear operators and linear functionals, whose
importance is paramount in thewhole book.We shall assume fromnowon familiarity
with linear operators (matrices) on finite-dimensional vector spaces, and we shall
freely use results from that theory without explicit mention.

Definition 2.35 (Operator and functional) Let X, Y be vector spaces over the same
field K := R, C.
(a) T : X → Y is a linear operator (simply, an operator) from X to Y if it is linear:

T (α f + βg) = αT ( f ) + βT (g) for any α, β ∈ K, f, g ∈ X.

The set of linear operators from X to Y is indicated by L(X,Y).
If S ⊂ X is a subspace such that T (S) ⊂ S for some linear operator T : X → X,

we say that S is an invariant subspace for/under T (or shorter, T -invariant).
If X and Y are normed,B(X,Y) ⊂ L(X,Y) is the subset of continuous operators.

In particular L(X) := L(X,X) and B(X) := B(X,X).
(b) T : X → K is a linear functional (a functional) on X if it is linear.
(c) We call the space X∗ := L(X,K) the algebraic dual of X, whereas X′ :=
B(X,K) is the topological dual (the dual) of X, with K normed by the absolute
value.

Notation 2.36 Linear algebra textbooks usuallywrite T u for T (u)when T : X → Y
is a linear operator and u ∈ X, and we shall adhere to this convention. �

If T, S ∈ L(X,Y) and α, β ∈ K, the linear combination αT + βS is the expected
map: (αT + βS)(u) := α(T u) + β(Su) for any u ∈ X.

Thus αT + βS is still in L(X,Y). As linear combinations preserve continuity, we
have the following.
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Proposition 2.37 Let X, Y be vector spaces over the same field K := R, or C.
Then L(X,Y), L(X), X∗, B(X,Y), B(X) and X′ are K-vector spaces.

Another fundamental notion we introduce is that of a bounded operator (or func-
tional). We begin with an elementary, yet important, fact.

Theorem 2.38 Let (X, || ||X), (Y, || ||Y) be normed spaces over the same field K =
C or R and take T ∈ L(X,Y).
(a) The following conditions are equivalent:

(i) there exists K ∈ R such that ||T u||Y ≤ K ||u||X for all u ∈ X;
(ii) supu∈X\{0}

||T u||Y
||u||X < +∞.

(b) If either of (i), (ii) hold:

sup

{ ||T u||Y
||u||X

∣
∣
∣
∣

u ∈ X \ {0}
}

= inf
{

K ∈ R | ||T u||Y ≤ K ||u||X for any u ∈ X
}

.

Proof (a) Under (i), supu∈X\{0}
||T u||Y
||u||X ≤ K < +∞ by construction. If (ii) holds, set

A := supu∈X\{0}
||T u||Y
||u||X , and then K := A satisfies (i).

(b) Call I the greatest lower bound of the numbers K fulfilling (i). Since

sup
u∈X\{0}

||T u||Y
||u||X ≤ K

we have supu∈X\{0}
||T u||Y
||u||X ≤ I . If the two sides of the equality to be proven are dif-

ferent, there exists K0 with supu∈X\{0}
||T u||Y
||u||X < K0 < I , whence ||T u||Y < K0||u||X

for any u �= 0, so ||T u||Y ≤ K0||u||X for all u ∈ X. Therefore K0 satisfies (i), and
I ≤ K0 by definition of I , in contradiction to K0 < I . ��
Notation 2.39 We will start omitting subscripts in norms when the corresponding
spaces are clear from the context. �

Definition 2.40 (Operator norm) Let X,Y be normed spaces over C or R. The
operator T ∈ L(X,Y) is bounded if any one condition in Theorem 2.38(a) holds.
The number

||T || := sup
||u||�=0

||T u||
||u|| . (2.12)

is called (operator) norm of T .

Remarks 2.41 (1) From the definition of ||T ||, if T : X → Y is bounded then:

||T u|| ≤ ||T || ||u|| , for any u ∈ X . (2.13)

(2) The notion of bounded linear operator cannot clearly correspond to that of a
bounded function. That is because the image of a linear map, in a vector space,
cannot be bounded precisely because of linearity. Proposition 2.42 shows, though,
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that it still makes sense to view “boundedness” in terms of the bounded image of an
operator, provided one restricts the domain to a bounded set. �

The operator norm can be computed in alternative ways, which at times are useful
in proofs. In this respect,

Proposition 2.42 Let X,Y be normed spaces over C or R.
The operator T ∈ L(X,Y) is bounded if and only if the right-hand side of any of

the identities below exists and is finite, in which case:

||T || = sup
||u||=1

||T u|| , (2.14)

||T || = sup
||u||≤1

||T u|| , (2.15)

||T || = inf {K ∈ R | ||T u|| ≤ K ||u|| for any u ∈ X} . (2.16)

Proof That T is bounded if and only if the right-hand side of (2.14) is finite, and the
validity of (2.14) too, follow from the linearity of T and N1.

As for the second line (2.15), the set of vectors u with ||u|| ≤ 1 contains those for
which ||u|| = 1, so sup||u||≤1 ||T u|| ≥ sup||u||=1 ||T u||. On the other hand, ||u|| ≤ 1
implies ||T u|| ≤ ||T v|| for some vwith ||v|| = 1 (any such v if u = 0, and v = u/||u||
otherwise). Hence sup||u||≤1 ||T u|| ≤ sup||u||=1 ||T u||, fromwhich sup||u||≤1 ||T u|| =
sup||u||=1 ||T u||, as claimed.

That T is bounded iff the right-hand side of (2.16) is finite, and (2.16) itself, are
consequences of Theorem 2.38(b). ��
There is a relationship between continuity and boundedness of linear operators and
functionals, which makes boundedness very important. The following simple theo-
rem shows, amongst other things, that bounded operators are precisely the continuous
ones.

Theorem 2.43 Consider T ∈ L(X,Y) with X,Y normed over the same field R or
C.
The following are equivalent facts:
(i) T is continuous at 0;
(ii) T is continuous;
(iii) T is bounded.

Proof (i) ⇔ (ii). Since continuity trivially implies continuity at 0, we will show (i)
⇒ (ii). As (T u) − (T v) = T (u − v) we have (limu→v T u) − T v = limu→v(T u −
T v) = lim(u−v)→0 T (u − v) = 0 by continuity at 0.
(i)⇒ (iii). By the continuity at 0 there is δ > 0 such that ||u|| < δ implies ||T u|| < 1.
Fixing δ′ > 0 with δ′ < δ, if v ∈ X \ {0}, then u = δ′v/||v|| has norm smaller than
δ, so ||T u|| < 1, i.e. ||T v|| < (1/δ′)||v||. Therefore Theorem 2.38(a) holds with
K = 1/δ′, and by Definition 2.40 T is bounded.
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(iii) ⇒ (i). This is obvious: if T is bounded then ||T u|| ≤ ||T ||||u||, hence the con-
tinuity at 0 follows. ��
The name “norm” for ||T || is not accidental: the operator norm renders B(X,Y),
hence also B(X) and X′, normed spaces, as we shall shortly see. More precisely,
B(X,Y) is a Banach space if Y is Banach, so in particular X′ is always a Banach
space.

The next result is about the algebraic structure. Let us start by saying that the vector
spaces L(X) and B(X) are closed under composition of maps (since this preserves
continuity). Furthermore, it is immediate thatL(X),B(X) satisfy the algebra axioms
A1,A2,A3whenever the product of two operators is the composite. Therefore L(X)

and B(X) possess a natural structure of algebras with unit, where the unit is the
identity map I : X → X, and B(X) is a subalgebra in L(X).

The final part of the theorem is a stronger statement, for it saysB(X) is a normed
unital algebra for the operator norm, and a Banach algebra if X is Banach.

Theorem 2.44 Let X,Y be normed spaces over C, or R.
(a) The map || || : T �→ ||T ||, where ||T || is as in (2.12), is a norm on B(X,Y).
(b) On the unital algebra B(X) the following properties hold, which turn it into a
normed algebra with unit:

(i) ||T S|| ≤ ||T ||||S||, T, S ∈ B(X),
(ii) ||I || = 1.

(c) If Y is complete, B(X,Y) is a Banach space.
In particular:

(i) if X is a Banach space, B(X) is a Banach algebra with unit (the identity
operator);

(ii) X′ is always a Banach space with the functionals’ norm, even if X is not
complete.

Proof (a) is a direct consequence of the definition of operator norm: properties N0,
N1, N2, N3 can be checked for the operator norm by using them on the norm of Y,
together with formula (2.14) and the definition of supremum.
(b) Part (i) is immediate from (2.13) and (2.14), and (ii) is straightforward if we use
(2.14).

Let us see to (c). We claim that Y complete ⇒ B(X,Y) Banach. Take a Cauchy
sequence {Tn} ⊂ B(X,Y) for the operator norm. By (2.13) we have

||Tnu − Tmu|| ≤ ||Tn − Tm ||||u|| ,

As {Tn} is Cauchy, {Tnu} is too. Since Y is complete, for any given u ∈ X there is a
vector in Y:

T u := lim
n→∞ Tnu .

Because every Tn is a linear operator, so is X � u �→ T u. There remains to show
T ∈ B(X,Y) and ||T − Tn|| → 0 as n → ∞.
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As {Tn} is a Cauchy sequence, if ε > 0 then ||Tn − Tm || ≤ ε for n, m sufficiently
large, hence ||Tnu − Tmu|| ≤ ||Tn − Tm ||||u|| ≤ ε||u||. Therefore, since the norm is
continuous (it defines the topology of Y),

||T u − Tmu|| = || lim
n→+∞ Tnu − Tmu|| = lim

n→+∞ ||Tnu − Tmu|| ≤ ε||u||

if m is big enough. From this estimate, since ||T u|| ≤ ||T u − Tmu|| + ||Tmu|| and
by (2.13), we have

||T u|| ≤ (ε + ||Tm ||)||u|| .

This proves T is bounded, so T ∈ B(X,Y) by Theorem 2.43. Now, since ||T u −
Tmu|| ≤ ε||u|| we also have ||T − Tm || ≤ ε where ε can be arbitrarily small so long
as m is large enough. That is to say, ||T − Tn|| → 0 as n → ∞.

The proof of subcases (i), (ii) is quick: (i) follows fromB(X) = B(X,X), while
(ii) holds because X′ := B(X,K) and the field K is a complete normed space. ��
One last notion we need to define is conjugate or adjoint operators in normed spaces.
Beware that there is a different notion of conjugate operator specific toHilbert spaces,
which we will address in the next chapter.

Take T ∈ B(X,Y), with X, Y normed. We can build an operator T ′ ∈ L(Y′,X′)
between the dual spaces (swapped), by imposing:

(T ′ f )(x) = f (T (x)) for any x ∈ X, f ∈ Y′.

This is well defined, and for every f ∈ Y′ it produces a function T ′ f : X → C that
is linear by construction, because it coincides with the composite of linear maps f
and T . Furthermore, T ′ : Y′ � f → T ′ f ∈ X′ is linear:

(T ′(a f + b f ))(x) = (a f + bg)(T (x)) = a f (T (x)) + bg(T (x))

= a(T ′ f )(x) + b(T ′g)(x) for any x ∈ X .

Eventually, T ′ is bounded, in the obvious sense:

|(T ′ f )(x)| = | f (T (x))| ≤ || f ||||T ||||x || ,

and so:
||T ′ f || = sup

||x ||=1
|T ′ f (x)| ≤ || f ||||T || .

Taking, on the left, the supremum over the collection of f ∈ Y′ with || f || = 1 gives:

||T ′|| ≤ ||T || . (2.17)
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After proving the Hahn–Banach theorem, we will show that ||T ′|| = ||T || if X, Y
are Banach spaces.

Definition 2.45 Let X,Y be normed spaces over the same field C, or R, and T ∈
B(X,Y). The conjugate, or adjoint operator to T , in the sense of normed spaces,
is the operator T ′ ∈ B(Y′,X′) defined by:

(T ′ f )(x) = f (T (x)) for any x ∈ X, f ∈ Y′. (2.18)

Remark 2.46 The map B(X,Y) � T �→ T ′ ∈ B(Y′,X′) is linear:

(aT + bS)′ = aT ′ + bS′ for any a, b ∈ C, T, S ∈ B(X,Y).

�

Before we move on to the examples, we shall state an elementary result, very impor-
tant in the applications, about the uniqueness of extensions of bounded operators and
functionals defined on dense subsets.

Proposition 2.47 (Extension of bounded operators) LetX,Y be normed spaces over
C, or R, with Y Banach. Suppose S ⊂ X is a dense subspace of X and T : S → Y is
a bounded linear operator on S. Then
(a) there is a unique bounded linear operator T̃ : X → Y such that T̃�S= T ;
(b) ||T̃ || = ||T ||.
Proof (a) Given x ∈ X, there is a sequence {xn} in S converging to x . By hypothesis
||T xn − T xm || ≤ K ||xn − xm || for K < +∞. Since xn → x , the sequence of the xn

is Cauchy, and so is T xn . But Y is complete so there exists T̃ x := limn→∞ T xn ∈ Y.
The limit depends only on x and not upon the sequence in S used to approximate: if
S � zn → x then by the norms’ continuity

|| lim
n→+∞ T xn − lim

n→+∞ T zn || = lim
n→+∞ ||T xn − T zn || ≤ lim

n→+∞ K ||xn − zn || = K ||x − x || = 0 .

Clearly T̃�S= T , i.e. T̃ extends T , by choosing for any x ∈ S the constant sequence
xn := x , that tends to x trivially. The linearity of T̃ is straightforward from the
definition. Eventually, taking the limit as n → +∞ of ||T xn|| ≤ K ||xn|| gives
||T̃ x || ≤ K ||x ||, so T̃ is bounded. About uniqueness: if U is another bounded exten-
sion of T on X, then for any x ∈ X, T̃ x − U x = limn→+∞(T̃ xn − U xn) by continu-
ity, where the xn belong to S (dense in X). As T̃�S= T = U�S , the limit is trivial and
gives T̃ x = U x for all x ∈ X, i.e. T̃ = U .
(b) Let x ∈ X and suppose {xn} ⊂ S converges to x : then

||T̃ x || = lim
n→+∞ ||T xn|| ≤ lim

n→+∞ ||T ||||xn|| = ||T ||||x || ,
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so ||T̃ || ≤ ||T ||. But since S ⊂ X and T̃ �S= T ,

||T̃ || = sup

{

||T̃ x ||
||x ||

∣
∣
∣
∣
∣
0 �= x ∈ X

}

≥ sup

{

||T̃ x ||
||x ||

∣
∣
∣
∣
∣
0 �= x ∈ S

}

= ||T || .

Hence ||T̃ || ≥ ||T ||, and so ||T̃ || = ||T ||. ��
Examples 2.48 (1) Complex measures (see Sect. 1.4.8) allow to construct every
bounded linear functional on C0(X), where X is locally compact and Hausdorff.

To see this, consider a locally compactHausdorff spaceX equippedwith a complex
measure μ defined on the Borel σ -algebra of X. We know that the normed algebra
(Cc(X), || ||∞) completes to the Banach algebra (C0(X), || ||∞) of maps that vanish
at infinity (Example 2.29(4)). Under the assumptions made, then, ||μ|| := |μ|(X),
where the positive, σ -additive and finite measure |μ| is the total variation of μ (cf.
Sect. 1.4.8). Easily then, || || is a norm on the space of complex Borel measures on
X. Moreover, if f ∈ C0(X),

|Λμ f | ≤ ||μ|||| f ||∞ where Λμ f :=
∫

X
f dμ ,

and, as usual, || f ||∞ = supx∈X | f (x)|.
Consequently, every complexBorelmeasureμ defines an elementΛμ in the (topo-

logical) dual of C0(X). Riesz’s theorem for complex measures [Rud86] guarantees
that this is a general fact, and even more.

In order to state it, recall that

Definition 2.49 (Regular complex Borel measure) A complex Borel measure μ is
called regular if the finite positive Borel measure given by the total variation |μ| is
regular (Definition 1.81).

Theorem 2.50 (Riesz’s theorem for complex measures) Let X be a locally compact
Hausdorff space, and Λ : C0(X) → C a continuous linear functional. Then there
exists a unique regular complex Borel measure μΛ such that, for every f ∈ C0(X):

Λ( f ) =
∫

X
f dμΛ .

Moreover, ||Λ|| = ||μΛ||.
Since every regular complex Borel measure determines a bounded functional on
C0(X) by integration, Riesz’s theorem has the following consequence.

Corollary 2.51 If X is locally compact and Hausdorff, the topological dual C0(X)′
of the Banach space (C0(X), || ||∞) is identified with the real vector space of regular
complex Borel measures μ on X, endowed with norm ||μ|| := |μ|(X). The function
mapping μ to the functional Λμ : C0(X) → R, with Λμ f := ∫

X f dμ, is an isomor-
phism of normed spaces.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Also note, Cc(X) being dense in C0(X), that a continuous functional on the former
determines a unique functional on the latter, so Riesz’s theorem characterises as well
continuous functionals on Cc(X) for the sup norm.

Furthermore, suppose every open set in X is the countable union of compact
sets (as in R

n , where each open set is the union of countably many closed balls of
finite radius). Then the word regular can be dropped in Theorem 2.50, by way of
Proposition 1.60, because compact sets have finite measure with respect to the finite
|μ|. In particular we have:
Theorem 2.52 (Riesz’s theorem for complex measures on R

n) Let K ⊂ R
n be a

compact set and Λ : C(K ) → C a continuous linear functional. Then there is a
unique complex Borel measure μΛ on K such that

Λ( f ) =
∫

K
f dμΛ

for any f ∈ C(K ). Additionally, μΛ is regular.

(2) Another nice class of dual Banach spaces is that of L p spaces, cf. Example
2.29(6). In this respect [Rud86],

Proposition 2.53 Let (X,Σ,μ) be a positive measure space. If 1 ≤ p < +∞ the
dual to the Banach space L p(X, μ) is Lq(X, μ), where 1/p + 1/q = 1, in the sense
that the linear map:

Lq(X, μ) � [g] �→ Λg where Λg( f ) :=
∫

X
f g dμ , f ∈ L p(X, μ)

is an isomorphism Lq(X, μ) → (L p(X, μ))′ of normed spaces.
In the same way the dual to L1(X, μ) is identified with L∞(X, μ), because the

linear map

L∞(X, μ) � [g] �→ Λ′
g where Λ′

g( f ) :=
∫

X
f g dμ , f ∈ L1(X, μ)

is an isomorphism L∞(X, μ) → (L1(X, μ))′ of normed spaces. �

2.3 The Fundamental Theorems of Banach Spaces

This section is devoted to the most prominent theorems on normed and Banach
spaces, in their simplest versions, and we will study their main consequences. These
are the theoremsofHahn–Banach,Banach–Steinhaus and theopenmapping theorem.
The applications of the theorem of Banach–Steinhaus call forth several kinds of
topologies, which play amajor role inQMwhen the domain space is theHilbert space

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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of the theory, bounded operators are (certain) observables, and the basic features of
the quantumsystemassociated tomeasurement processes are a subclass of orthogonal
projectors. In order to pass with continuity from the algebra of observables to that
of projectors we need topologies that are weaker than the standard one. This sort of
issues, that we shall address later, lead to the notion of von Neumann algebra (of
operators).

2.3.1 The Hahn–Banach Theorem and Its Immediate
Consequences

The first result we present is the celebrated Hahn–Banach theorem, which deals with
extending a continuous linear functional from a subspace to the ambient space in a
continuous and norm-preserving way. More elaborated and stronger versions can be
found in [Rud91]. We shall restrict to the simplest situation possible.

First of all, we remark that if X is normed and M ⊂ X is a subspace, the norm of
X restricted to M defines a normed space. In this sense we can talk of continuous
operators and functionals onM, meaning they are bounded for the induced norm.

Theorem 2.54 (Hahn–Banach theorem for normed spaces) Let M be a subspace
(not necessarily closed) in a normed space X over K = C or R.

If g : M → K is a continuous linear functional, there exists a continuous linear
functional f : X → K such that f �M= g and || f ||X = ||g||M.

Proof We shall follow the proof of [Rud86]. Start withK = R. If g = 0, an extension
as required is f = 0. So let us suppose g �= 0 and without loss of generality set
||g|| = 1. To build the extension f we take x0 ∈ X \ M and call

M1 := {x + λx0 | x ∈ M , λ ∈ R} .

If we set g1 : M1 → R to be

g1(x + λx0) = g(x) + λν

for any given ν ∈ R, we obtain an extension of g toM1. We claim ν can be taken so
that ||g1|| = 1. For this it suffices to have ν such that:

|g(x) + λν| ≤ ||x + λx0|| , for any x ∈ M and λ ∈ R \ {0}. (2.19)

Substitute −λx to x and divide (2.19) by |λ|, obtaining the equivalent relation:

|g(x) − ν| ≤ ||x − x0|| , for any x ∈ M. (2.20)
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Set
ax := g(x) − ||x − x0|| and bx := g(x) + ||x − x0||. (2.21)

Inequality (2.20), hence ||g1|| = 1, holds if ν satisfies ax ≤ ν ≤ bx for all x ∈ M.
So it is enough to prove that the intervals [ax , bx ], x ∈ M, have a common point; in
other words, that for all x, y ∈ M:

ax ≤ by . (2.22)

But:
g(x) − g(y) = g(x − y) ≤ ||x − y|| ≤ ||x − x0|| + ||y − x0||

and (2.22) follows from (2.21). Hence, we managed to fix ν so that ||g1|| = 1.
Now consider the family P of pairs (M′, g′) where M′ ⊃ M is a subspace in X

and g′ : M′ → R is a linear extension of g with ||g′|| = 1. The family is not empty
since (M1, g1) belongs in it. We can define a partial order on P (see Appendix A,
also for the sequel) by setting (M′, g′) ≤ (M′′, g′′) if M′′ ⊃ M′, g′′ extends g′ and
||g′|| = ||g′′|| = 1. It is easy to show that any totally ordered subset of P admits
an upper bound in P . Then Zorn’s lemma provides a maximal element in P , say
(M1, f 1). Now we must haveM1 = X, for otherwise there would exist x0 ∈ X \ M1,
and using the initial argument we could construct a non-trivial, norm-preserving
extension f 1 to the subspace generated by x0 and M1, contradicting maximality.
Therefore f := f 1 is the required extension.

Before passing to the case K = C we need a lemma.

Lemma 2.55 On a complex vector space Y
(a) if u(x) = Re g(x) for all x ∈ Y for some complex linear functional g : Y → C,
the map u : Y → R is a real linear functional on Y, and:

g(x) := u(x) − iu(i x) for any x ∈ Y; (2.23)

(b) if u : Y → R is a real linear functional on Y and g is defined by (2.23), then g
is a complex linear functional on Y;
(c) if Y is normed and g, u are related by (2.23), then ||g|| = ||u||.
Proof (a) are (b) are proved simultaneously by direct computation. As for (c), under
the assumptions made: |u(x)| ≤ |g(x)| = √|u(x)|2 + |u(i x)|2, so ||u|| ≤ ||g||. On
the other hand taking x ∈ Y, there is α ∈ C with |α| = 1 such that αg(x) = |g(x)|.
Consequently |g(x)| = g(αx) = u(αx) ≤ ||u|| ||αx || = ||u|| ||x || and ||g|| ≤ ||u||.

��
Now back to the main proof. If u : M → R is the real part of g, then g(x) = u(x) −
iu(i x) and ||g|| = ||u|| by the lemma. From the real case seen earlier we know there
exists a linear extension U : X → R of u with ||U || = ||u|| = ||g||. Therefore if we
put
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f (x) := U (x) − iU (i x) , for any x ∈ X,

f : X → C extends g to X, and || f || = ||U || = ||g||. ��
Here is one of the most useful corollaries to Hahn–Banach. We remind that the
topological dual B(X,C) of a normed space is indicated by X′.

Corollary 2.56 (to the Hahn–Banach theorem) Let X be a normed space over K =
C, orR, and fix x0 ∈ X, x0 �= 0. Then there exists f ∈ X′, || f || = 1, such that f (x0) =
||x0||.
Proof Choose M := {λx0 | λ ∈ K} and g : λx0 → λ||x0||. Let f ∈ X′ denote the
bounded functional extending g according toHahn–Banach.Byconstruction f (x0) =
g(x0) = ||x0|| and || f ||X = ||g||M = 1. ��
An immediate consequence of this is a statement about the norm of the conjugate
operator T ′ ∈ B(Y′,X′) to T ∈ B(X,Y) (cf. Definition 2.45).

Proposition 2.57 If T ∈ B(X,Y), with X, Y normed over C or R, then:

||T ′|| = ||T || .

Proof In general we have (cf. (2.17)) ||T || ≥ ||T ′||, so we need only prove ||T || ≤
||T ′||. Take x ∈ X and T x �= 0, define y0 := T x

||T x || ∈ Y. Clearly ||y0|| = 1, and by
Corollary 2.56 there is g ∈ Y′ such that ||g|| = 1, g(y0) = 1 hence g(T x) = ||T x ||.
But:

||T x || = g(T x) = |(T ′g)(x))| ≤ ||T ′g|| ||x || ≤ ||T ′|| ||g|| ||x || = ||T ′|| ||x || ,

so eventually ||T || ≤ ||T ′|| as required. ��
Next comes another fact, with important consequences for Banach algebras.

Corollary 2.58 (to the Hahn–Banach theorem) LetX �= {0} be a normed space over
C or R.

Then the elements of X′ separate X, i.e. for any x1 �= x2 in X there exists f ∈ X′
for which f (x1) �= f (x2).

Proof It suffices to have x0 := x1 − x2 in Corollary 2.56, for then f (x1) − f (x2) =
f (x1 − x2) = ||x1 − x2|| �= 0. ��
Take x ∈ X and f ∈ X′, || f || = 1; then | f (x)| ≤ 1||x || and

sup{| f (x)| | f ∈ X′ , || f || = 1} ≤ ||x || .

Corollary 2.56 allows to strengthen this fact by showing

sup{| f (x)| | f ∈ X′ , || f || = 1} = max{| f (x)| | f ∈ X′ , || f || = 1} = ||x ||
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directly. This may not seem so striking at first, but has a certain weight when com-
paring infinite-dimensional to finite-dimensional normed spaces.

From the elementary theory of finite-dimensional vector spaces X, the algebraic
dual of the algebraic dual (X∗)∗ has the nice property of being naturally isomorphic
to X. The isomorphism is the linear function mapping x ∈ X to the linear functional
I(x) on X∗ defined by (I(x))( f ) := f (x) for all f ∈ X∗.

In infinite dimensions I identifies X only to a subspace of (X∗)∗, not the whole
(X∗)∗ in general. Is there a similar general statement about topological duals of
infinite-dimensional normed spaces?

Note (X′)′ is the dual to a normed space (X′ with the operator norm). Consequently
(X′)′ is a normed space, under the operator norm.

Let us go back to the natural linear transformation I : X → (X′)∗ mapping x ∈ X
to I(x) ∈ (X′)∗, where the linear function I(x) : X′ → K is given by

(I(x))( f ) := f (x) for any f ∈ X′ and x ∈ X .

This is well defined, since I(x) is a linear functional onX′ so that I(x) ∈ (X′)∗. Now

sup{| f (x)| | f ∈ X′ , || f || = 1} = ||x ||

implies: (1) I(x) is a bounded functional, so it belongs to (X′)′, and (2) ||I(x)|| =
||x ||. Therefore the linear mapping I : X → (X′)′ is an isometry, in particular injec-
tive. This gives an isometric inclusionX ⊂ (X′)′ under the linear map I : X → (X′)′.
Overall we have proved:

Corollary 2.59 (to the Hahn–Banach theorem) Let X be a normed space over C or
R. The linear map I : X → (X′)′:

(I(x))( f ) := f (x) for any x ∈ X and f ∈ X′, (2.24)

is an isometry, and X is thus identified isometrically with a subspace of (X′)′.

There are infinite-dimensional examples whereX does not fill (X′)′, and these justify
the next notion.

Definition 2.60 A normed space X over C or R is reflexive if the isometry (2.24) is
onto (an isomorphism of normed spaces).

Otherwise said, X is reflexive when X and (X′)′ are isometrically isomorphic under
the natural map I. In Chap.3 we will show that Hilbert spaces are reflexive.

Example 2.61 The Banach spaces L p(X, μ) of Examples 2.29 are reflexive for
1 < p < ∞. The proof is straightforward: L p(X, μ)′ = Lq(X, μ) for 1/p + 1/q =
1, and swapping q with p gives Lq(X, μ)′ = L p(X, μ). Hence: (L p(X, μ)′)′ =
L p(X, μ). �

http://dx.doi.org/10.1007/978-3-319-70706-8_3


2.3 The Fundamental Theorems of Banach Spaces 71

2.3.2 The Banach–Steinhaus Theorem or Uniform
Boundedness Principle

Let us get to the second core result, the theorem of Banach–Steinhaus, and present
the simplest formulation and consequences. It is also known as uniform boundedness
principle, because it essentially – and remarkably – declares that pointwise equi-
boundedness implies uniform boundedness for families of operators on a Banach
space.

Theorem 2.62 (Banach–Steinhaus) Let X be a Banach space, Y a normed space
defined over the same field, C or R. If {Tα}α∈A ⊂ B(X,Y) is a family of operators
such that:

sup
α∈A

||Tαx || < +∞ for any x ∈ X ,

then there exists K ≥ 0 that bounds the family uniformly:

||Tα|| ≤ K for any α ∈ A .

Proof The proof relies on finding an open ball Bρ(z) ⊂ X for which there is M ≥ 0
with ||Tα(x)|| ≤ M for all α ∈ A and any x ∈ Bρ(z). In fact, since x = (x + z) − z,
we would then have:

||Tα(x)|| ≤ ||Tα(x + z)|| + ||Tα(z)|| ≤ 2M , for any α ∈ A, x ∈ Bρ(0) ,

so ||Tα|| ≤ 2M/ρ for all α ∈ A, and the claim would follow.
We shall prove that Bρ(z) and M exist by contradiction. If such a ball did not exist,

for some arbitrary open Br0(x0), there would be x1 ∈ Br0(x0) for which ||Tα1(x1)|| >

1, with α1 ∈ A. As Tα1 is continuous, we could find a second open ball Br1(x1) with
Br1(x1) ⊂ Br0(x0) and 0 < r1 < r0 such that ||Tα1(x)|| ≥ 1, provided x ∈ Bα1(x1).
This recipe can be iterated to give rise to a sequence of open balls in X, {Brk (xk)}k∈N,
satisfying:

(i) Brk (xk) ⊃ Brk+1(xk+1),
(ii) rk → 0 as k → +∞,
(iii) for every k ∈ N there is αk ∈ A such that ||Tαk (x)|| ≥ k if x ∈ Brk (xk).

Now, (i) and (ii) imply the sequence {xk}k∈N is Cauchy, so it converges to some y ∈ X
by completeness, and by construction y ∈ ∩k∈NBrk (xk). But (iii) tells ||Tαk (y)|| ≥ k
for all k ∈ N, contradicting the assumption that supn∈N ||Tαx || < +∞ for any x ∈ X.

��
Here is a straightforward and useful corollary.

Corollary 2.63 (to the Banach–Steinhaus theorem) Under the assumptions of the
Banach–Steinhaus theorem the family of operators {Tα}α∈A is equicontinuous: given
any ε > 0 there exists δ > 0 such that if ||x − x ′|| < δ for x, x ′ ∈ X, then ||Tαx −
Tαx ′|| < ε for any α ∈ A.
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Proof Set Cγ := {x ∈ X | ||x || ≤ γ }, for any γ > 0. Fix ε > 0, so we must find the
δ > 0 of the conclusion. By Banach–Steinhaus and Proposition 2.42, ||Tαx || ≤ K <

+∞ for any α ∈ A and x ∈ C1. If K = 0 there is nothing to prove, so assume K > 0.
Choose δ > 0 for which Cδ ⊂ Cε/K . Then if ||x − x ′|| < δ, we have K (x − x ′)/ε ∈
CK δ/ε ⊂ C1 and so:

||Tαx − Tαx ′|| = ||Tα(x − x ′)|| = ε

K

∣
∣
∣
∣

∣
∣
∣
∣
Tα

K (x − x ′)
ε

∣
∣
∣
∣

∣
∣
∣
∣
<

ε

K
K = ε for any α ∈ A.

��
And here is another consequence about topological duals.

Corollary 2.64 (to the Banach–Steinhaus theorem) Let X be a normed space over
C or R. If S ⊂ X is weakly bounded, i.e.

for any f ∈ X′ there exists c f ≥ 0 such that | f (x)| ≤ c f for all x ∈ S,

then S is bounded in the norm of X.

Proof Consider the elements x ∈ S ⊂ X as functionals in the dual (X′)′ to X′ (using
the isometry I : X → (X′)′ of Corollary 2.59). The family S ⊂ (X′)′ of functionals
onX′ is bounded on every f ∈ X′, since by assumption |x( f )| = | f (x)| ≤ c f (where
we have written x for I(x)). Since X′ is complete the theorem of Banach–Steinhaus
guarantees sup{|x( f )| | || f || = 1} ≤ K < +∞ for all x ∈ S. But I is an isometry,
so ||x || ≤ K < +∞ for all x ∈ S. ��

2.3.3 Weak Topologies. ∗-Weak Completeness of X ′

To state the last corollary to Banach–Steinhaus we need to introduce a new section
on general topology and apply it to the operator spaces encountered so far. This will
allow to see different types of convergence for sequences of operators, useful for
the applications. They will help us prove a simple and useful result known as the
Banach–Alaoglu theorem.

We begin with basic facts concerning convexity.

Definition 2.65 A subset ∅ �= K ⊂ X in a vector space is convex when:

λx + (1 − λ)y ∈ K for any λ ∈ [0, 1] and x, y ∈ K .

A point e ∈ K is extremal if it cannot be written as:

e = λx + (1 − λ)y for some λ ∈ (0, 1) and x, y ∈ K \ {e}.
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It should be clear that the intersection of convex sets is convex, because the segment
joining two points lying in the intersection belongs to each set. So we are lead to the
notion of convex hull.

Definition 2.66 The convex hull of a subset E in a vector space X is the convex set

co(E) :=
⋂

{K ⊃ E | K ⊂ X , K convex}.

Let us go back open balls defined through seminorms.

Notation 2.67 Take δ > 0, a seminorm p on the vector space X over K = C or R,
and a point x ∈ X. We denote by Bp,δ(x) the open ball associated to the seminorm
p, centred at x and of radius δ:

Bp,δ(x) := {z ∈ X | p(z − x) < δ} .

If x = 0 we will just write Bp,δ instead of Bp,δ(0).
If A ⊂ X, B ⊂ X, x ∈ X and α, β ∈ K, we will also abbreviate:

x + β A := {x + βu | u ∈ A} and αA + βB := {αu + βv | u ∈ A , v ∈ B} .

�

Immediately, then, for δ > 0 the balls Bp,δ are:
(i) convex, since x, y ∈ Bp,δ implies trivially (1 − λ)x + λy ∈ Bp,δ with λ ∈

[0, 1],
(ii) balanced, i.e. λx ∈ Bp,δ if x ∈ Bp,δ and 0 ≤ λ ≤ 1,
(iii) absorbing, i.e. x ∈ X implies λ−1x ∈ Bp,δ for some λ > 0.

All these properties are patently invariant under intersections. Hence also intersec-
tions of balls centred at the origin but defined by different seminorms enjoy the
property.

Definition 2.68 Let P := {pi }i∈I be a family of seminorms on the vector space X
over K = C or R. The topology T (P) on X generated, or induced, byP , is the
unique topology admitting as basis (Definition 1.1) the collection:

x + (

Bpi1 ,δ1
∩ · · · ∩ Bpin ,δn

)

(2.25)

for any choice of: centres x ∈ X, numbers n = 1, 2, . . ., indices i1, . . . , in ∈ I and
radii δ1 > 0, . . . δn > 0.

The pair (X,P), whereX is simultaneously a vector space with topology induced
by the seminorms P and a topological space, is called a locally convex space.

Let us put it differently: T (P) has as open sets ∅ and all possible unions of sets
of type (2.25), with any centre x ∈ X, for any n = 1, 2, . . ., any index i1, . . . , in ∈ I
and any δ1 > 0, . . . δn > 0.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Remark 2.69 If P reduces to a single norm, the corresponding topology is the
topology induced by a norm discussed at the beginning of the chapter. If this sole
element is a seminorm, we still have a topology, with the crucial difference that the
Hausdorff property might be no longer valid. �

Since adding vectors and multiplying vectors by scalars are continuous operations in
any seminorm (the proof is the same as what we gave for a norm), they are continuous
in the topology generated by a familyP of seminorms as well. This means the vector
space structure is compatiblewith the topology generated byP . A vector spacewith
a compatible topology as above is a topological vector space. A locally convex space
is therefore a topological vector space.

Keeping Definition 1.13 in mind we can prove the next fact without effort.

Proposition 2.70 A sequence {xn}n∈N ⊂ X converges to x0 ∈ X in the topology
T (P) if and only if pi (xn − x0) → 0, for all pi ∈ P , as n → +∞.

Our first example of topology induced by seminorms arises from the dual X′ of a
normed space.

Definition 2.71 If X is a normed space, the weak topology on X is the topology
induced by the collection of seminorms p f on X:

p f (x) := | f (x)| with x ∈ X

for f ∈ X′.

Consider pairs of normed spaces and the corresponding sets of operators between
them. Using the topology induced by seminorms we can define certain “standard”
topologies on the vector spaces L(X,Y),B(X,Y) and the dualX′, thus making them
locally convex topological vector spaces. One such topology (and the corresponding
dual one) is already known to us, namely the topology induced by the operator norm.

Definition 2.72 Let X,Y be normed spaces over K = C or R.
(a) Define on L(X,Y) (respectively B(X,Y)) the following operator topologies.

(i) The topology induced by the family of seminorms px, f :

px, f (T ) := | f (T (x))| with T ∈ L(X,Y)(B(X,Y)),

for given x ∈ X and f ∈ Y′, is called weak topology on L(X,Y) (B(X,Y));
(ii) The topology induced by the seminorms px :

px (T ) := ||T (x)||Y with T ∈ L(X,Y)(B(X,Y)),

for given x ∈ X, is the strong topology on L(X,Y) (B(X,Y));
(iii) The topology induced onB(X,Y) by the operator norm (2.12) is the uniform

topology on B(X,Y).

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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(b) In case Y = K (we are talking about X′) the uniform topology of (iii) goes under
the name of (dual) strong topology of X′, and the topologies of (i) and (ii), now
coinciding, are called ∗-weak topology of X′. The ∗-weak topology on X ′ is thus
induced by the seminorms p∗

x :

p∗
x ( f ) := | f (x)| with f ∈ X′

for a given x ∈ X.

Remarks 2.73 (1) It is not hard to see that the open sets, in a normed space, of the
weak topology are also open for the standard topology, not vice versa. Likewise, in
L(X,Y), open sets in the weak topology are open for the strong topology but not
conversely.We can rephrase this better by saying that the standard topology onX and
the strong topology on L(X,Y) are finer than the corresponding weak topologies.

In the same way, when talking of operator spaces it is not hard to show that the
uniform topology is finer than the strong topology.

For dual spaces an analogous property obviously holds: the strong topology is
finer than the ∗-weak topology.
(2) Proposition 2.70 has a number of immediate consequences:

Proposition 2.74 Take {xn}n∈N ⊂ X with X normed. Then xn → x ∈ X, n → +∞,
in the weak topology if and only if:

f (xn) → f (x) , as n → +∞, for any f ∈ X′.

Proposition 2.75 If {Tn}n∈N ⊂ L(X,Y) (o B(X,Y)) and T ∈ L(X,Y) (resp.
B(X,Y)), then Tn → T , n → +∞, in weak topology if and only if:

f (Tn(x)) → f (T (x)) , as n → +∞, for any x ∈ X, f ∈ Y′.

Proposition 2.76 Tn → T , n → +∞, in the strong topology if and only if:

||Tn(x) − T (x)||Y → 0 , as n → +∞, for any x ∈ X.

Now it is clear that:
(a) Convergence of a sequence in a normed space X in the standard sense (for the

norm topology) implies weak convergence (convergence in the weak topology).
(b) Uniform convergence of a sequence of operators in B(X,Y) (in the uniform

topology) implies strong convergence (for the strong topology).
(c) Strong convergence of a sequence of operators inL(X, ,Y) orB(X,Y) implies

weak convergence.
(3) Proposition 2.70 also gives:

Proposition 2.77 Let { fn}n∈N ⊂ X′ be a sequence, and take a functional f ∈ X′.
Then fn → f , n → +∞, in the ∗-weak topology if and only if:
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fn(x) → f (x) , as n → +∞ for any chosen x ∈ X.

Now we also know that the strong convergence of a sequence of functionals of X′
(for the dual strong topology) implies ∗-weak convergence.
(4) We can put on X′ yet a further weak topology, by viewing X′ as acted upon by
(X′)′. The seminorms inducing the topology are

ps( f ) := |s( f )|

for any s ∈ (X′)′. If X is not reflexive, this weak topology does not coincide, in
general, with the ∗-weak topology seen above, because X is identified with a proper
subspace in (X′)′, and so the seminorms of the ∗-weak topology are fewer than the
weak topology ones. The weak topology is finer than the ∗-weak one: a weakly open
set is ∗-weakly open, but the converse may not hold. Analogously, weak convergence
of sequences in X ′ implies ∗-weak convergence, not the other way around. �

Notation 2.78 To distinguish strong limits from weak limits in operator spaces, it
is customary to use these special symbols:

T = s- lim Tn

means T is the limit of the sequence of operators {Tn}n∈N in the strong topology;
the same notation goes if the operators are functionals and the topology is the dual
strong one. Similarly,

T = w- lim Tn

denotes the limit in the weak topology of the sequence of operators {Tn}n∈N, and one
writes

f = w∗- lim fn

if f is the limit of the sequence { fn}n∈N in the ∗-weak topology. �

All the theory learnt so far eventually enables us to prove the last corollary toBanach–
Steinhaus. IfX is normedwe knowX′ is complete in the strong topology, see Theorem
2.44(c)(ii). We can also prove completeness, as explained below, for the ∗-weak
topology too, as long as X is a Banach space.

Corollary 2.79 (to the Banach–Steinhaus theorem) If X is a Banach space over
K = C, or R, then X′ is ∗-weak complete: if { fn}n∈N ⊂ X′ is such that { fn(x)}n∈N is
a Cauchy sequence for any x ∈ X, then there exists f = w∗-lim fn ∈ X′.

Proof The field over which X is defined is complete by assumption, so for any x ∈
X there is f (x) ∈ K with fn(x) → f (x). Immediately f : X � x �→ f (x) defines
a linear functional. To end the proof we have to prove f is continuous. For any
x ∈ X the sequence fn(x) is bounded (as Cauchy), so Banach–Steinhaus implies
| fn(x)| ≤ K < +∞ for all x ∈ Xwith ||x || ≤ 1. Taking the limit as n → +∞ gives
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| f (x)| ≤ K if ||x || = 1, hence || f || ≤ K < +∞. Therefore, by Theorem 2.43 f is
continuous. ��
As last topic of this section, related to the topological facts just seen, we state and
prove a useful technical tool, the theorem of Banach–Alaoglu: according to it, the
unit ball in X ′, defined via the natural norm of X ′, is compact (Definition 1.19) in
the ∗-weak topology of X ′.

Theorem 2.80 (Banach–Alaoglu) Let X be a normed space over C. The closed unit
ball B := { f ∈ X ′ | || f || ≤ 1} in the dual X ′ is compact in the ∗-weak topology.

Proof For any x ∈ X define Bx := {c ∈ C | |c| ≤ ||x ||} ⊂ C. As Bx is obviously
compact, Tychonoff’s Theorem 1.25 forces P := ×x∈X Bx to be compact in the prod-
uct topology. A point p in P is, for each x ∈ X , just a complex number p(x) with
|p(x)| ≤ ||x ||. Elements in P are therefore functions p : X → C (not necessarily
linear!) such that |p(x)| ≤ ||x || for any x ∈ X . By construction B ⊂ P , and the
topology induced by P on B is precisely the ∗-weak topology, as the definitions
confirm. To finish the proof we need to prove B is closed, because closed subsets in
a compact space are compact. Suppose, then, B � pn → p ∈ P as n → +∞, in the
topology of P . Since |p(x)| ≤ ||x ||, to prove that p ∈ B it suffices to show that p is
linear. This is evident by arguing pointwise: if a, b ∈ C and x, y ∈ X , then

p(ax + by) = lim
n→+∞ pn(ax + by) = a lim

n→+∞ pn(x) + b lim
n→+∞ pn(y) = ap(x) + bp(y) ,

and the proof is concluded. ��
Wewill see inChap.4 that B is never compact for the natural normof X ′ if the space X ′
is infinite-dimensional. The same holds for any infinite-dimensional normed space.

2.3.4 Excursus: The Theorem of Krein–Milman, Locally
Convex Metrisable Spaces and Fréchet Spaces

With this part we take a short break to digress on important properties of locally
convex spaces in relationship to the issue of metrisability.

Let X be a locally convex space. In general, the topology induced by a seminorm
or a family of seminorms P = {pi }i∈I on X will not be Hausdorff. It is easy to see
the Hausdorff property holds if and only if ∩i∈I p−1

i (0) is the null vector in X. This
happens in particular if at least one pi is a norm.

Locally convexHausdorff spaces have this very relevant feature: not only extremal
elements always exist in convex and compact subsets, but a convex subset is actually
characterised by its extremal points. This is the content of the known Krein–Milman
theorem, which we only state.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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Theorem 2.81 (Krein–Milman) Let X be a locally convex Hausdorff space and
K ⊂ X a compact convex set. Then
(a) the set EK of extremal elements of K is not empty.
(b) K = co(EK ), where the bar denotes the closure in the ambient topology of X.

And now to metrisable spaces. Let us recall a notion that should be familiar from
basic courses.

Definition 2.82 Ametric space is a setM equipped with a function d : M × M →
R, called distance or metric, such that, for every x, y, z ∈ M:

D1. d(x, y) = d(y, x),
D2. d(x, y) ≥ 0, and d(x, y) = 0 ⇔ x = y,
D3. d(x, z) ≤ d(x, y) + d(y, x).

Remarks 2.83 (1) Property D1 is known as symmetry of the metric, D2 is called
positive definiteness and D3 is the triangle inequality.
(2) Any normed space (X, || ||) (hence also R

n and C
n) admits a natural metric

structure (X, d) by setting d(x, x ′) := ||x − x ′||, x, x ′ ∈ X. Then clearly

d(x + z, y + z) = d(x, y) for any x, y, z ∈ X ,

and the distance d is translation-invariant. �

Generally speaking the structure of a metric space is much simpler than that of
a normed space, because the former lacks the vector space operations. We have,
nevertheless, the following notion, in complete analogy to normed spaces.

Definition 2.84 Given a metric space (M, d), an open (metric) ball centred at x of
radius r > 0 is the set:

Bδ(x) := {y ∈ M | d(x, y) < δ} . (2.26)

Like normed spaces, metric spaces have a natural topology whose open sets are the
empty set ∅ and the unions of open metric balls with arbitrary centres and radii.

Definition 2.85 Let (M, d) be a metric space.
(a) A ⊂ M is open if A = ∅ or A is the union of open balls.
(b) The metric topology of M is the norm topology of the open sets of (a).

Remarks 2.86 (1) Exactly as for normed spaces, by checking the axioms we see that
the metric topology is an honest topology, with basis given by open metric balls. The
metric topology is trivially Hausdorff, as in normed spaces.
(2) If the metric space (X, d) is separable, i.e. it has a dense countable subset S ⊂ X,
then it is second countable: it has a countable basisB for the topology. The latter is
the family of open balls centred on S with rational radii. One can prove the converse
holds too [KoFo99]:
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Proposition 2.87 A metric space is second countable if and only if it is separable.

(3) In a normed space (X, || ||) the open balls defined by || || coincide with the
open balls of the norm distance d(x, x ′) := ||x − x ′||. Thus the two topologies of X,
viewed either as a normed space or as metric space, coincide.
(4) The previous remark applies in particular to R

n and C
n , which are both metric

spaces if we use the Euclidean or standard distance:

d((x1, . . . , xn), (y1, . . . , yn)) :=
√
√
√
√

n
∑

k=1

|xk − yk |2 .

As observed above, the balls defined by the standard distance on Rn and Cn are pre-
cisely those associated to the standard norm (1.2) generating the standard topology.
Therefore the topology defined by the Euclidean distance on R

n and C
n is just the

standard topology.
(5) The metric spaces Rn and C

n are complete, for they are complete as normed
spaces and the metric is the norm distance. �
Like normed spaces, metric spaces too admit a characterisation of continuity equiv-
alent to 1.16.

Definition 2.88 Given metric spaces (M, dM), (N, dN), a map f : M → N is con-
tinuous at x0 ∈ M if for any ε > 0 there is δ > 0 such that dN( f (x), f (x0)) < ε

whenever dM(x, x0) < δ.
A function f : M → N is continuous if it is continuous at every point inM.

The concept of a convergent sequence (Definition 1.13) specialises in a metric space,
as it did in a normed space.

Definition 2.89 In a metric space (M, d) a sequence {xn}n∈N ⊂ M converges to a
point x ∈ M, the limit of the sequence:

xn → x as n → +∞ or lim
n→+∞ xn = x ,

if, for any ε > 0 there is Nε ∈ R such that d(xn, x) < ε for n > Nε, i.e.

lim
n→+∞ d(xn, x) = 0 .

It turns out, here aswell, that convergent sequences in themetric topology are Cauchy
sequences (see below), but not conversely.

Definition 2.90 Let (M, d) be a metric space.
(a) A sequence {xn}n∈N ⊂ M is a Cauchy sequence if for any ε > 0 there is Nε ∈ R

such that d(xn, xm) < ε when n, m > Nε.
(a) (M, d) is complete if every Cauchy sequence converges somewhere in the space.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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A technically relevant problem is to tell whether a topological space, especially a
locally convex space, admits a distance function whose metric topology coincides
with the pre-existing one (note that in general distances do not exist if the topology
is induced by seminorms). When that happens the space is calledmetrisable.

Going back to topological vector spaces, one can prove that any locally convex
space (X,P) satisfying:

(a) P = {pn}n=1,2,..., i.e.P is countable,
(b) ∩n=1,2,... p−1

n (0) = {0}
is not just Hausdorff but even metrisable: the seminorm topology coincides with the
metric topology of (X, d), provided we pick d : X × X → R+ suitably. One such
choice is:

d(x, y) :=
+∞
∑

n=1

1

2n

pn(x − y)

1 + pn(x − y)

(which is invariant under translations). This is not the only possible distance that
recovers the seminorm topology of X. Multiplying d by a given positive constant,
for instance, will give a distance yielding the same topology as d.

AFréchet space is a locally convex spaceXwhose topology isHausdorff, induced
by a finite or countable number of seminorms, and complete as a metric space (X, d).
A sequence {xn}n∈N ⊂ X is Cauchy for a distance d in a locally convex metrisable
space X if and only if it is Cauchy for every seminorm p generating the topology:
for every ε > 0 there is N (p)

ε ∈ R such that p(xn − xm) < ε whenever n, m > N (p)
ε .

Consequently, completeness does not actually dependon thedistanceused to generate
the locally convex topology.

Fréchet spaces, which we will not treat in this book, are of the highest interest in
theoretical and mathematical physics as far as quantum field theories are concerned.
Banach spaces are simple instances of Fréchet spaces, of course.

Example 2.91 A good example of a Fréchet space is the Schwartz space. To define
it we need some notation, which will come in handy at the end of Chap.3 as well.
Points in R

n will be denoted by letters and their components by subscripts, as in
x = (x1, . . . , xn).

A multi-index is an n-tuple α = (α1, . . . , αn), αi = 0, 1, 2, . . ., and |α| is con-
ventionally the sum |α| := ∑n

i=1 αi . Moreover,

∂α
x := ∂ |α|

∂xα1
1 · · · ∂xαn

n
.

Let C∞(Rn) denote the complex vector space of smooth complex functions on R
n

(differentiable with continuity infinitely many times). The Schwartz spaceS (Rn),
seen as complex vector space, is the subspace in C∞(Rn) of functions f that vanish
at infinity, together with every derivative, faster than any inverse power of |x | :=
√
∑n

i=1 x2
i . Define

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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pN ( f ) := sup
|α|≤N

sup
x∈Rn

(1 + |x |2)N |(∂α
x f )(x)| < +∞ N = 0, 1, 2, . . .

The maps pN : S (Rn) → R+ are seminorms, and clearly satisfy ∩N∈N p−1
N (0) =

{0} because p0 = || ||∞ is a norm. Therefore S (Rn), with the topology induced
by the seminorms {pN }N∈N, becomes a locally convex space. It is easy to show
that S (Rn) is a Fréchet space [Rud91]. The points in the dual S (R)′, i.e. the
linear functionals S (Rn) → C that are continuous for the topology generated by
the seminorms {pN }N∈N, are the famous Schwartz distributions. �

2.3.5 Baire’s Category Theorem and Its Consequences:
The Open Mapping Theorem and the Inverse Operator
Theorem

We wish to discuss a general theorem about Banach spaces, the open mapping the-
orem, which counts among its consequences the continuity of inverse operators.

To prove these facts we shall introduce as little as possible on Baire spaces.

Definition 2.92 Let (X,T ) be a topological space and S ⊂ X a subset.
(a) The interior I nt (S) of S is the set:

I nt (S) := {x ∈ X | ∃A ⊂ X , A open and x ∈ A ⊂ S} .

(b) S is nowhere dense if I nt (S) = ∅.
(c) S is a set of the first category, or a meagre set, if it is the countable union of
nowhere dense sets.
(d) S is a set of the second category, or non-meagre, if it is not of the first category.

The following are immediate to prove.
(1) Countable unions of sets of the first category are of the first category.
(2) If h : X → X′ is a homeomorphism, S ⊂ X is of the first/second category if and
only if h(S) is of the first/second category respectively.
(3) If A ⊂ B ⊂ X and B is of the first category in X, then A is of the first category.
(4) If B ⊂ X is closed and I nt (B) = ∅, then B is of the first category in X.
We have the following important result.

Theorem 2.93 (Baire’s category theorem) Let (X, d) be a complete metric space.
(a) If {Un}n∈N is a countable family of open dense subsets in X, then ∩n∈NUn is dense
in X.
(b) X is of the second category.

Proof (a) Let A ⊂ X be open. If U0 ∩ A = ∅, then z ∈ A admits an open neigh-
bourhood disjoint from U0, and hence not dense in X. Therefore U0 ∩ A is open
(intersection of open sets) and non-empty. Then there is an open metric ball Br0(x0)
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of radius r0 > 0 and centre x0 ∈ X (2.26) such that Br0(x0) ⊂ U0 ∩ A. We may
repeat the procedure with Br0(x0) replacing A, U1 replacing U0, to find an open
ball Br1(x1)with Br1(x1) ⊂ U1 ∩ Br0(x0). Iterating, we construct a countable collec-
tion of open balls Brn (xn)with 0 < rn < 1/n, such that Brn (xn) ⊂ Un ∩ Brn+1(xn−1).
Since xn ∈ Brm (xm) for n ≥ m, the sequence {xn}n∈N is Cauchy. And since X is
complete, xn → x ∈ X as n → +∞. By construction x ∈ Brn−1(xn−1) ⊂ Brn (xn) ⊂
· · · ⊂ U0 ∩ A ⊂ A for any n ∈ N. Hence x ∈ A ∩ Un for every n ∈ N, and so
(∩n∈NUn) ∩ A �= ∅ for every open subset A ⊂ X. This implies ∩n∈NUn is dense
in X, for it meets every open neighbourhood of any point in X.

(b) Assume {Ek}k∈N is a collection of nowhere dense sets Ek ⊂ X. If Vk is the
complement of Ek , it is open (its complement is closed) and dense in X (it is open
and the complement’s interior is empty). Part (a) then tells ∩k∈NVn �= ∅, so X �=
∪k∈NEk by taking complements. A fortiori then X �= ∪k∈NEk , so X is not of the first
category. ��
Remarks 2.94 (1) Baire’s category theorem states, among other things, that any
collection, finite or countable, of dense open sets in a complete metric space always
has non-empty (dense) intersection. In the finite case it suffices to adapt the statement
to Un = Um for some N ≤ n, m.
(2) Baire’s theorem holds when X is a locally compact Hausdorff space. The first
part is proved in analogy to the previous situation [Rud91], the second is identical.
(3) Baire’s theorem applies, obviously, to Banach spaces, using the norm
distance. �

Wecan pass to the open mapping theorem. Remember that amap f : X → Y between
normed spaces (or topological spaces) is open if f (A) is open in Y whenever A ⊂ X
is open. As usual, B(Z)

r (z) denotes the open ball of radius r and centre z in the normed
space (Z, || ||Z).
Theorem 2.95 (Banach–Schauder’s openmapping theorem)LetX andY be Banach
spaces over C or R. If the operator T ∈ B(X,Y) is surjective, then

T (B(X)
1 (0)) ⊃ B(Y)

δ (0) for δ > 0 small enough . (2.27)

As a consequence, T is an open map.

Proof Define in X the open ball Bn := B(X)

2−n (0) at the origin, of radius 2−n . We will
show there is an open neighbourhood W0 of the origin 0 ∈ Y with:

W0 ⊂ T (B1) ⊂ T (B0) , (2.28)

which will imply (2.27).
To prove (2.28), note B1 ⊃ B2 − B2 (from now on we use Notations 2.67), so

T (B1) ⊃ T (B2) − T (B2)
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and T (B1) ⊃ T (B2) − T (B2). On the other hand, since A + B ⊃ A + B, A, B ⊂ Y
with Y normed (prove it as exercise), we have:

T (B1) ⊃ T (B2) − T (B2) ⊃ T (B2) − T (B2) . (2.29)

The first inclusion of (2.28) is therefore true if T (B2) has non-empty interior: if
z ∈ I nt (T (B2)) then z ∈ A ⊂ T (B2)) with A open, so that 0 ∈ W0 := A − A ⊂
T (B2) − T (B2) ⊂ T (B1) with W0 open.

To show I nt (T (B2)) �= ∅, notice that the assumptions imply

Y = T (X) =
+∞
⋃

k=1

kT (B2) , (2.30)

because B2 is an open neighbourhood of 0. ButY is of the second category, so at least
one kT (B2) is of the second category (otherwise Y would be of the first category,
which is impossible by the second statement in Baire’s category Theorem 2.93, for
Y is complete). Since y �→ ky is a homeomorphism of Y, T (B2) is of the second
category in Y. Hence the closure of T (B2) has non-empty interior, proving one
inclusion of (2.28).

For the other inclusion (the second from the left), we build a sequence of elements
yn ∈ Y inductively. Fix y1 ∈ T (B1), suppose that yn is in T (Bn) for n ≥ 1 and let
us define yn+1 as follows. What was proved for T (B1) holds for T (Bn+1) too, so
T (Bn+1) contains an open neighbourhood of the origin. Now:

(

yn − T (Bn+1)
)

∩ T (Bn) �= ∅ , (2.31)

implying there exists xn ∈ Bn such that:

T (xn) ∈ yn − T (Bn+1) . (2.32)

Define: yn+1 := yn − T xn and note it belongs to T (Bn+1). This is the inductive step.
Since ||xn|| < 2−n , n = 1, 2, . . ., the sum x1 + · · · + xn gives a Cauchy sequence
converging to some x ∈ X by completeness, and ||x || < 1. Hence x ∈ B0. Since:

m
∑

n=1

T xn =
m
∑

n=1

(yn − yn+1) = y1 − ym+1 , (2.33)

and because ym+1 → 0 as m → +∞ (by continuity of T ), we conclude y1 = T x ∈
T (B0). Now as y1 was generic in T (B1), that proves the second inclusion of (2.28)
and ends the first part.

As for the second statement, (2.27) and the linearity of T imply that the image
under T of any open ball B(X)

ε (x) = x + εB1(0), centred at any x ∈ X, contains
the open ball in Y centred at T x : B(Y)

δε
(0) := T x + εB(Y)

δ (0) (δ > 0 sufficiently
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small). Therefore the image under T of an open set A = ∪x∈A B(X)
εx

(x) is open in Y:

T (A) = ∪x∈A B(Y)
δεx

(T x). This means T is open. ��
The most important elementary corollary of this theorem is without doubt Banach’s
inverse operator theorem for Banach spaces (there is a version for complete metric
vector spaces as well).

Theorem 2.96 (Banach’s inverse operator theorem) Let X and Y be Banach spaces
over C or R, and suppose T ∈ B(X,Y) is injective and surjective. Then
(a) T −1 : Y → X is bounded, i.e. T −1 ∈ B(Y,X);
(b) there exists c > 0 such that:

||T x || ≥ c||x || , for any x ∈ X. (2.34)

Proof (a) That T −1 is linear is straightforward, for we need only prove it is continu-
ous. As T is open, the pre-image under T −1 of an open set in X is open, making T −1

continuous. (b) Since T −1 is bounded, there is K ≥ 0with ||T −1y|| ≤ K ||y||, for any
y ∈ Y. Notice that K > 0, for otherwise T −1 = 0 would not be invertible. For any
x ∈ X we set y = T x . Substituting in ||T −1y|| ≤ K ||y|| gives back, for c = 1/K ,
relation (2.34). ��

2.3.6 The Closed Graph Theorem

Nowwe discuss a very useful theorem in operator theory, known as the closed graph
theorem.

Notation 2.97 (1) If X is a vector space and ∅ �= X1, . . . , Xn ⊂ X, then:

< X1, . . . , Xn >

will denote the linear span of the sets Xi , i.e. the vector subspace of X containing
all finite linear combinations of elements of any Xi .
(2) Take ∅ �= X1, . . . ,Xn subspaces of a vector space X. Then

Y = X1 ⊕ · · · ⊕ Xn

denotes the direct sum Y ⊂ X of the Xi , i.e.:
(i) Y =< X1, · · · ,Xn > (so Y is a subspace in X) and
(ii) Xi ∩ X j = {0} for any pair i, j = 1, . . . , n, i �= j .

As is well known, (i) and (ii) are equivalent to demanding

x ∈ Y ⇒ x = x1 + · · · + xn with xk ∈ Yk determined uniquely by x, k = 1, . . . , n.
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(3) If X1, . . . ,Xn are vector spaces over the same fieldK = C or R, we may furnish
X1 × · · · × Xn with the structure of a K-vector space by:

α(x1, . . . , xn) := (αx1, . . . , αxn) and (x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn)

for any α ∈ K, (x1, . . . , xn), (y1, . . . , yn) ∈ X1 × · · · × Xn . Calling

ΠXk : (x1, . . . , xk−1, xk, xk+1, . . . , xn) �→ (0, . . . , 0, xk, 0, . . . , 0)

the kth canonical projection, the vector space built on X1 × · · · × Xn coincides
with Ran(ΠX1) ⊕ · · · ⊕ Ran(ΠXn ). As each Xk is naturally identified with the cor-
responding Ran(ΠXk ), we will write X1 ⊕ · · · ⊕ Xn to denote the natural vector
space X1 × · · · × Xn above, even when the Xk are not all contained in one common
space. �

To prove the closed graph theoremwe need some preliminaries. First of all, if (X, NX)

and (Y, NY) are normed spaces over K = C, or R, we can consider X ⊕ Y, in the
Notation 2.97(3). The space X ⊕ Y has the product topology of X and Y, seen in
Definition 1.10. The operations of the vector space X ⊕ Y are continuous in the
product topology, as one proves with ease (the proof is the same as the one used for
the operations on a normed space). And the canonical projectionsΠX : X ⊕ Y → X,
ΠY : X ⊕ Y → Y are continuous in the product topology on the domain and the
topologies of X and Y on the codomains, another easy fact.

The product topology of X ⊕ Y admits compatible norms: there exist norms on
X ⊕ Y inducing the product topology. One possibility is:

||(x, y)|| := max{NX(x), NY(y)} for any (x, y) ∈ X ⊕ Y . (2.35)

That this norm generates the product topology, i.e. open sets are unions of products
of open balls in X and Y, is proved as follows. Take the open neighbourhood of
(x0, y0) product of two open balls B(X)

δ (x0) × B(Y)
μ (y0) in X and Y respectively. The

open ball in X ⊕ Y

{(x, y) ∈ X × Y | ||(x, y) − (x0, y0)|| < min{δ, μ}/2}

centred at (x0, y0) is contained in B(X)
δ (x0) × B(Y)

μ (y0). Vice versa, the product

B(X)
δ (x0) × B(Y)

δ (y0), to which (x0, y0) belongs, is contained in the open ball

{(x, y) ∈ X × Y | ||(x, y) − (x0, y0)|| < ε}

centred at (x0, y0), if ε > δ. This implies that unions of products of metric balls in X
and Y are unions of metric balls for norm (2.35), and conversely too. Hence the two
topologies coincide and the proof ends.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Immediately we can prove (X ⊕ Y, || ||) is a Banach space if both (X, NX) and
(Y, NY) are Banach. (By Proposition 2.105, proved later, this fact will guarantee that
any norm generating the product topology makes X ⊕ Y a Banach space.) In fact let
{(xn, yn)} be a Cauchy sequence in X ⊕ Y. Then {xn} and {yn} are both Cauchy in X
and Y respectively, by the above definition of norm on X ⊕ Y. Call x ∈ X and y ∈ Y
the limits of those sequences, which exist for X and Y are Banach spaces. If ε > 0,
there are positive integers Nx and Ny satisfying

||(x, y) − (xn, yn)|| < ε

if n > max{Nx , Ny}. Therefore (xn, yn) → (x, y) as n → +∞ in the norm topology
of X ⊕ Y, and the latter is a Banach space.

Definition 2.98 Let X,Y be normed spaces on C or R. One says T ∈ L(X,Y) is
closed if the graph of the operator T ,

G(T ) := {(x, T x) ∈ X ⊕ Y | x ∈ X} , ,

is a closed subspace in the product topology.
Equivalently, T is closed iff for any converging sequence {xn}n∈N ⊂ X such that

{T xn}n∈N converges in Y, we have:

lim
n→∞ T (xn) = T ( lim

n→∞ xn) .

The last equivalence relies on a general fact: a set (G(T ) in our case) is closed if and
only if it coincides with its closure, if and only if it contains its limit points. Spelling
out this fact in terms of the product topology gives our proof. We are ready for the
closed graph theorem.

Theorem 2.99 (Closed graph theorem) Let (X, || ||X) and (Y, || ||Y) be Banach
spaces over K = C.

Then T ∈ L(X,Y) is bounded if and only if it is closed.

Proof Suppose T is bounded. Then it is banally closed by the definition of closed
operator. Assume conversely that T is closed. Consider the linear bijective map M :
G(T ) � (x, T x) �→ x ∈ X. By hypothesis G(T ) is a closed subspace in the Banach
space X ⊕ Y, hence it becomes Banach for the restricted norm || || of (2.35). The
latter’s definition implies ||M(x, T x)||X = ||x ||X ≤ ||(x, T x)||, so M is bounded.
Banach’s bounded-inverse theorem tells M−1 : X → G(T ) ⊂ X ⊕ Y is bounded.
As the canonical projection ΠY : X ⊕ Y → Y is continuous, we infer that the linear
map ΠY ◦ M−1 : x �→ T x is continuous, hence bounded. ��
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2.4 Projectors

Using the closed graph theorem we define a class of continuous operators, called
projectors. This notion plays the leading role in formulating QM when the normed
space is a Hilbert space.

Definition 2.100 (Projector) Let (X, || ||) be a normed space over C or R. The
operator P ∈ B(X) is a projector if it is idempotent, i.e.

P P = P . (2.36)

The target M := P(X) is called projection space of P , and we say P projects
onto M.

Projectors are naturally associated to a direct sum decomposition of X into a pair of
closed subspaces.

Proposition 2.101 Let P ∈ B(X) be a projector onto the normed space (X, || ||).
(a) If Q : X → X is the linear map such that

Q + P = I , (2.37)

then Q is a projector and:
P Q = Q P = 0 , (2.38)

where 0 is the null operator (transforming any vector into the null vector 0 ∈ X).
(b) The projection spaces M := P(X) and N := Q(X) are closed subspaces satisfy-
ing:

X = M ⊕ N . (2.39)

Proof (a) Q is continuous as sum of continuous operators. Moreover Q Q = (I −
P)(I − P) = I − 2P + P P = I − 2P + P = I − P = Q, P Q = P(I − P) =
P − P P = P − P = 0 and (I − P)P = P − P P = P − P = 0.
(b) If P(xn) → y as n → +∞, by continuity of P we have P P(xn) → P(y). Using
Eq. (2.36) we rephrase this as P(xn) → P(y), whence y = P(y) by uniqueness of
the limit (X is Hausdorff). So, y ∈ M implies y ∈ M(⊂ M), and M = M is closed.
The same argument proves N is closed. ThatM, N are subspaces is immediate from
the linearity of P and Q. If we take x ∈ X, then

x = P(x) + Q(x) ,

and X = < M,N >. To finish we need to haveM ∩ N = {0}. Pick x ∈ M ∩ N. Then
x = P(x), so x = Q(x) by (2.36) (x ∈ M implies x = Pz for some z ∈ X, but then
Px = P Pz = Pz = x). Using Q on x = Px , and recalling x = Qx , gives x =
Q(x) = Q P(x) = 0 by (2.38), i.e. x = 0. ��
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The closed graph theorem explains that Proposition 2.101 can be reversed, provided
we further suppose the ambient space is Banach.

Proposition 2.102 Let (X, || ||) be a Banach space, M,N ⊂ X closed subspaces
such that X = M ⊕ N. Consider the functions P : X → M and Q : X → N that map
x ∈ X to the respective elements in M and N according to X = M ⊕ N. Then
(a) P and Q are projectors onto M and N respectively.
(b) Properties (2.37) and (2.38) hold.

Proof By assumption x ∈ X decomposes as x = uM + uN for certain uM ∈ M, uN ∈
N, and the sum is unique once the subspaces are fixed. Uniqueness, and the fact
that M and N are closed under linear combinations, imply that P : x �→ uM and
Q : x �→ uN are linear, P P = P and Q Q = Q. Note that P(X) = M and Q(X) = N
by construction. Moreover (2.37) holds since X = < M,N >, while (2.38) is true by
M ∩ N = {0}. To finish we need to show P and Q are continuous. Let us prove P is
closed, and the closed graph theorem will then force continuity. The strategy for Q
is analogous. So let {xn} ⊂ X be a sequence converging to x ∈ X, and such that also
{Pxn} converges in X. We claim that

Px = lim
n→+∞ Pxn .

As N is closed,

N � Qxn = xn − Pxn → x − lim
n→+∞ Pxn = z ∈ N .

So we have
x = lim

n→+∞ Pxn + z ,

with z ∈ N, but limn→+∞ Pxn ∈ M as well, because M is closed and Pxn ∈ M for
all n. On the other hand we know that

x = Px + Qx .

Since the decomposition is unique, necessarily

Px = lim
n→+∞ Pxn

and z = Qx . Therefore P is closed and so continuous. ��
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2.5 Equivalent Norms

One interesting consequence of Banach’s inverse operator theorem is a criterion to
establish when two norms on a complete vector space (for both) induce the same
topology. Before stating the criterion (Proposition 2.105), let us prepare the ground.
The sectionwill endwith the proof that all norms on a vector space of finite dimension
are equivalent, and make the space Banach.

Definition 2.103 Two norms N1, N2 defined on one vector space X (over C or R)
are equivalent if there are constants c, c′ > 0 such that:

cN2(x) ≤ N1(x) ≤ c′N2(x) , for any x ∈ X. (2.40)

Remarks 2.104 (1) Note how (2.40) is equivalent to the similar inequality obtained
by swapping N1, N2, and writing 1/c′, 1/c in place of c, c′ respectively.
(2)By this observation, it is straightforward that if a given normed space is complete,
then it is complete for any equivalent norm.
(3) Two equivalent norms on a vector space generate the same topology, as is easy
to prove. The next proposition discusses the converse.
(4) Equivalent norms define an equivalence relation on the space of norms on a given
vector space. The proof is immediate from the definitions. �

Proposition 2.105 Let X be a vector space over C or R. The norms N1 and N2 on
X are equivalent if and only if the identity map I : (X, N2) � x �→ x ∈ (X, N1) is a
homeomorphism (which is to say, the metric topologies generated by the norms are
the same).

Proof It suffices to prove the ‘if’ part, for the sufficient condition is trivial by defini-
tion of equivalent norms. If I is a homeomorphism it is continuous at the origin, and in
particular the unit open ball (for N1) centred at 0must contain an entire open ball (for
N2) at0 of small enough radius δ > 0.That is to say, N2(x) ≤ δ ⇒ N1(x) < 1. In par-
ticular, for x �= 0, N2(δx/N2(x)) ≤ δ, so N1(δx/N2(x)) < 1, i.e. δN1(x) ≤ N2(x).
For x = 0 the equality is trivial. Hence we have proved that there is c′ = 1/δ > 0
for which N1(x) ≤ c′N2(x), for any x ∈ X. The other half of (2.40) is similar if we
swap spaces. ��
Proposition 2.106 Let X be a vector space over C or R and suppose the norms N1,
N2 both make X Banach. If there is a constant c > 0 such that:

cN2(x) ≤ N1(x)

for any x ∈ X, the norms are equivalent.

Proof Consider the identity I : x �→ x , a linear and continuousmapwhen thought of
as I : (X, N1) → (X, N2), since N2(x) ≤ (1/c)N1(x) for all x ∈ X. Banach’s inverse
function theorem, part (b), guarantees the existence of c′ > 0 such that N1(x) ≤
c′N2(x) for all x ∈ X. Then N1 and N2 satisfy (2.40). ��



90 2 Normed and Banach Spaces, Examples and Applications

The important, and final, proposition in this section holds also on real vector spaces
(writing R instead of C in the proof).

Proposition 2.107 Let X be a C-vector space of finite dimension. Then all norms
are equivalent, and any one defines a Banach structure on X.

Proof We can simply studyCn , given that any complex vector space of finite dimen-
sion n is isomorphic to C

n . Owing to remarks (2) and (4) above, it is sufficient to
prove that any norm on C

n is equivalent to the standard norm. Keep in mind the
fact, known from elementary analysis, that the standardCn is complete, so any other
equivalent norm makes it a Banach space, by Remark 2.104(2).
Let N be a norm on C

n and e1, · · · , en the canonical basis. If x = ∑

i xi ei and y =
∑

i yi ei are generic points in Cn , from properties N0, N2 and N1 (see the definition
of norm) we have

0 ≤ N (x − y) ≤
n
∑

i=1

|xi − yi |N (ei ) ≤ Q
n
∑

i=1

|xi − yi | ,

where Q := ∑

i N (ei ). At the same time, trivially, if || · || is the standard norm then

|x j − y j | ≤ max{|xi − yi | | i = 1, 2, · · · , n} ≤
√
√
√
√

n
∑

i=1

|xi − yi |2 = ||x − y|| ,

whence
0 ≤ N (x − y) ≤ nQ||x − y|| .

This shows N is continuous in the standard topology. If S := {x ∈ C
n | ||x || = 1},

and N ′ is a second norm on Cn that is continuous in the standard topology, then the
map

S � x �→ f (x) := N (x)

N ′(x)

is continuous, being a quotient of continuous maps with non-zero denominator. But
S is compact in the standard topology, so f has a minimum m and a maximum M .
In particular, M ≥ m > 0 because N , N ′ are strictly positive on S and m, M are
attained at suitable points xm, xM in S. By construction

m N ′(x) ≤ N (x) ≤ M N ′(x) , for any x ∈ S .

We claim that this inequality actually holds for any x ∈ C
n . Write x = λx0 with

x0 ∈ S and λ ≥ 0. Multiplying by λ ≥ 0 the inequality, evaluating it at x0 and using
property N1 gives precisely:

m N ′(x) ≤ N (x) ≤ M N ′(x) for any x ∈ C
n.
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Now by choosing N ′ := || · || we conclude that any norm on Cn is equivalent to the
standard one. ��

2.6 The Fixed-Point Theorem and Applications

In this last section of the chapter, we present an elementary theorem with crucial
consequences in analysis, especially in the theory of differential equations: the fixed-
point theorem. We will state it for complete metric spaces and then examine it on
Banach spaces.

2.6.1 The Fixed-Point Theorem of Banach–Caccioppoli

Let us start with a definition about metric spaces, cf. Definition 2.82.

Definition 2.108 Let (M, d) be a metric space. Amap G : M → M is a contraction
(map) in case there exists a real number λ ∈ [0, 1) for which:

d(G(x), G(y)) ≤ λd(x, y) for any x, y ∈ M . (2.41)

Remember that normed spaces (X, || ||) are metric spaces once we specify the norm
distance d(x, y) := ||x − y|| (and the metric topology induced by d coincides with
the topology induced by || ||, as we saw in Sect. 2.3.4). Hence we can specialise the
definition to normed spaces.

Definition 2.109 Let (Y, || ||) be a normed space and X ⊂ Y a subset (possibly
the whole Y). A function G : X → X is a contraction if there exists a real number
λ ∈ [0, 1) for which:

||G(x) − G(y)|| ≤ λ||x − y|| for x, y ∈ X . (2.42)

Remarks 2.110 (1) Note that the value λ = 1 is explicitly excluded.
(2) The demand of (2.41) implies immediately that any contraction is continuous in
the metric topology of (M, d).

Similarly, (2.42) tells that any contraction on the setX is continuous in the induced
norm topology of (Y, || ||).
(3)We stress that, in Definition 2.109, (a) the function G is not requested to be linear,
and (b) X is not necessarily a subspace of Y, but only a subset. Linear structures play
no interesting role. �

Let us state and prove the fixed-point theorem (of Banach and Caccioppoli) for metric
spaces.
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Theorem 2.111 (Fixed-point theorem for metric spaces) Let G : M → M be a con-
traction on the complete metric space (M, d). Then there exists a unique element
z ∈ M, called fixed point, such that

G(z) = z . (2.43)

If G : M → M is not a contraction, but the n-fold composite Gn = G ◦ · · · ◦ G is a
contraction for a given n = 1, 2, . . ., then G admits a unique fixed point.

Proof Let us begin by proving the existence of z. Consider, for x0 ∈ M arbitrary, the
sequence defined recursively by xn+1 = G(xn). We claim this is a Cauchy sequence,
and that its limit is a fixed point of G. Without loss of generality we may suppose
m ≥ n.

If m = n, trivially d(xm, xn) = 0. If m > n we employ the triangle inequality
repeatedly to get:

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · · + d(xn+1, xn) . (2.44)

The generic summand on the right equals

d(x p+1, x p) = d(G(x p), G(x p−1)) ≤ λd(x p, x p−1) = λd(G(x p−1), G(x p−2))

≤ λ2d(x p−1, x p−2)

≤ · · · ≤ λpd(x1, x0) .

Hence, for p = 1, 2, . . . we have d(x p+1, x p) ≤ λpd(x1, x0). Inserting the latter
inequality in the right-hand side of (2.44) produces the estimate:

d(xm, xn) ≤ d(x1, x0)
m−1
∑

p=n

λp = d(x1, x0)λ
n
m−n−1
∑

p=0

λp

≤ λnd(x1, x0)
+∞
∑

p=0

λp ≤ d(x1, x0)
λn

1 − λ

where we used the fact that
∑+∞

p=0 λp = (1 − λ)−1 if 0 ≤ λ < 1. In conclusion:

d(xm, xn) ≤ d(x1, x0)
λn

1 − λ
. (2.45)

For us |λ| < 1, so d(x1, x0)λn/(1 − λ) → 0 as n → +∞. Hence d(xm, xn) can
be rendered as small as we like by picking the minimum between m and n to be
arbitrarily large. Therefore the sequence {xn}n∈N is Cauchy. But M is complete, so
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limn→+∞ xn = x ∈ M for a certain x . Moreover, G is a contraction, so continuous,
and

G(x) = G

(

lim
n→+∞ xn

)

= lim
n→+∞ G(xn) = lim

n→+∞ xn+1 = x ,

as claimed.
Let us see to uniqueness. For that, assume x and x ′ satisfy G(x) = x and G(x ′) =

x ′. Then
d(x, x ′) = d(G(x), G(x ′)) ≤ λd(x, x ′) .

If d(x, x ′) �= 0, dividing by d(x, x ′)would give 1 ≤ λ, absurd by assumption. Hence
d(x, x ′) = 0, so x = x ′, because d is positive definite.

Now let us prove the theorem in case B := Gn is a contraction. By the previous
part B has a unique fixed point z. Clearly, if G admits a fixed point, this must be z.
There remains to show that z is fixed under G as well. As B is a contraction, the
sequence B(z0), B2(z0), B3(z0), . . . converges to z, irrespective of z0 ∈ M, as we
saw earlier in the proof. Therefore

G(z) = G(Bk(z)) = Bk(G(z)) = Bk(z0) → z as k → +∞,

and G(z) = z. ��
Moving to normed spaces, the theorem has as corollary the next fact, obtained using
the norm distance d(x, y) := ||x − y||.
Theorem 2.112 (Fixed-point theorem for normed spaces) Let G : X → X be a con-
traction on the closed set X ⊂ B, with B a Banach space over R or C. Then there
exists a unique element z ∈ X, called fixed point:

G(z) = z . (2.46)

If G : X → X is not a contraction, but the n-fold composite Gn = G ◦ · · · ◦ G is a
contraction for some n = 1, 2, . . ., then G admits a unique fixed point.

Proof Define M := X and d(x, y) := ||x − y||, x, y ∈ X. Thus X is a metric space.
Actually (X, d) is complete. In fact, a Cauchy sequence {xn}n∈N ⊂ X for d is Cauchy
for || || too, as is easy to verify. As (B, || ||) is complete, the limit x ∈ B of {xn}n∈N
exists. And since X is closed inside B, the point x belongs to X. Hence any Cauchy
sequence of (X, d) converges in X, making (X, d) complete. At this point we invoke
the previous theorem for the metric space (X, d) and conclude. ��
The significance of the fixed-point theorem, by theway, depends on its role in proving
existence and uniqueness theorems for equations of all sorts, especially integral and
differential equations. The gist is to show that the equation towhichwe seek a solution
z can be written as a fixed-point relation G(z) = z in a suitable Banach space (or
complete metric space). Example (1) below is a relatively simple case (G is linear),
while the ensuing (2) typically pertains nonlinear contractions.
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Example 2.113 Let us present two elementary instances of how the fixed-point the-
ory is used. A more important situation will be treated in the following section.

(1)ThehomogeneousVolterra equationonC([a, b]) in the unknown f ∈ C([a, b])
reads:

f (x) =
∫ x

a
K (x, y) f (y)dy , (2.47)

where K is a continuous function bounded by M ≥ 0. We equip the Banach space
C([a, b])with the sup norm || ||∞. The equationmay bewritten in the form f = A f ,
where A : C([a, b]) → C([a, b]) is the integral operator determined by the integral
kernel K :

(A f )(x) :=
∫ x

a
K (x, y) f (y)dy , f ∈ C([a, b]). (2.48)

If a solution exists, then clearly it is the fixed point of A. Not only this: the solution
is also fixed under every operator An whichever power n = 1, 2, . . . we take. Let us
show that we can fix n so to make An a contraction. By virtue of Theorem 2.112 this
would guarantee that the homogeneous Volterra equation admits one, and one only,
solution: this is necessarily the trivial one, because A is linear. A direct computation
shows:

|(A f )(x)| =
∣
∣
∣
∣

∫ x

a
K (x, y) f (y)dy

∣
∣
∣
∣
≤ M(x − a)|| f ||∞ .

The first iteration gives

|(A2 f )(x)| ≤ M2 (x − a)2

2
|| f ||∞ ,

and, after n − 1 steps,

|(An f )(x)| ≤ Mn (x − a)n

n! || f ||∞ .

Hence:

||An f ||∞ ≤ Mn (b − a)n

n! || f ||∞ ,

and so:

||An|| ≤ Mn (b − a)n

n! .

For n large enough then, whatever a, b, M , are, we have:

Mn (b − a)n

n! < 1 .
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Therefore for some positive λ < 1:

||An f − An f ′||∞ ≤ λ|| f − f ′||∞ ,

and, by the fixed-point theorem, the homogeneous Volterra equation on C([a, b])
only admits the trivial solution.

Consequently the operator A of (2.48) cannot admit eigenvalues different from
zero.
In fact the characteristic equation for A,

Aψ = λψ for some λ ∈ C and some ψ �= 0, (2.49)

is equivalent to:
1

λ
Aψ = ψ λ ∈ C \ {0}, ψ �= 0

ifλ �= 0.Andλ−1 A is aVolterra operator associated to the integral kernelλ−1K (x, y).
Therefore the theorem may be used on A to give ψ = 0. Since the eigenvalue was
not allowed to vanish, (2.49) has no solution.

This resultwill be generalised inChap.4 toHilbert spaces. Itwill bear an important
consequence in the study ofVolterra’s inhomogeneous equation, oncewe have proved
Fredholm’s theorem on integral equations.
(2) Consider the existence and uniqueness problem for a continuous map y = f (x)

when we only know an implicit relation of the type F(x, y(x)) = 0, for some given
and sufficiently regular function F . We discuss a simplified version of a result that is
conventionally known as either Dini’s theorem, implicit function theorem or inverse
function theorem [CoFr98II, Ser94II]. The point is to see the Banach–Caccioppoli
theorem in action. Suppose we are given a function F : [a, b] × R → R, a < b, that
is continuous and admits partial y-derivative such that 0 < m ≤ | ∂ F

∂y | ≤ M < +∞,
(x, y) ∈ [a, b] × R.

We want to show that there exists a unique continuous map f : [a, b] → R such
that:

F(x, f (x)) = 0 for any x ∈ [a, b].

The idea is to define a contractionG : C([a, b]) → C([a, b]) having f as fixed point.
To this end set:

(G(ψ))(x) := ψ(x) − 1

M
F(x, ψ(x)) for anyψ ∈ C([a, b]), x ∈ [a, b].

This is well defined on C([a, b]), and if it contracts then its unique fixed point f
satisfies:

f (x) = f (x) − 1

M
F(x, f (x)) for any x ∈ [a, b].

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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In other words:
F(x, f (x)) = 0 for any x ∈ [a, b],

so G is what we are after. But G is easily a contraction by the mean value theorem:

(G(ψ))(x) − (G(ψ ′))(x) = ψ(x) − ψ ′(x) − 1

M

(

F(x, ψ(x)) − F(x, ψ ′(x))
)

,

so for some number z between ψ(x) and ψ ′(x):

(G(ψ))(x) − (G(ψ ′))(x) = ψ(x) − ψ ′(x) − 1

M
(ψ(x) − ψ ′(x))

∂ F

∂y
|(x,z) ,

and therefore:

|(G(ψ))(x) − (G(ψ ′))(x)| ≤ |ψ(x) − ψ ′(x)|
∣
∣
∣
∣
1 − 1

M

∂ F

∂y
|(x,z)

∣
∣
∣
∣

.

Because the derivative’s range lies inside the positive interval [m, M], we have:

||G(ψ) − G(ψ ′)||∞ ≤ ||ψ − ψ ′||∞(1 − m

M
) .

Now, by assumption (1 − m
M ) < 1, so G is indeed a contraction. �

2.6.2 Application of the Fixed-Point Theorem: Local
Existence and Uniqueness for Systems of Differential
Equations

The most important application, by far, of the fixed-point theorem is certainly the
theorem of local existence and uniqueness for first-order systems of differential
equations in normal form (where the highest derivative, here the first, is isolated on
one side of the equation, as in (2.51) below). This result extends easily to global
solutions and higher-order systems [CoFr98I, CoFr98II].

For this we need a preliminary notion. From now on K will be the complete field
R, or possibly C, and || ||Kp the standard norm on K

p.

Definition 2.114 Let r ≥ 0 and n, m > 0 be given natural numbers, Ω ⊂ K
r × K

n

a non-empty open set. A function F : Ω → K
m is locally Lipschitz (in the variable

x ∈ K
n for r > 0), if for any p ∈ Ω there exists a constant L p ≥ 0 such that:

||F(z, x) − F(z, x ′)||Km ≤ L p||x − x ′||Kn , for any pair (z, x), (z, x ′) ∈ Op,

(2.50)
Op � p being an open set.
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Any C1 map F : Ω → K
m is locally Lipschitz in the variable x , as we shall shortly

see, but first the theorem.

Theorem 2.115 (Local existence and uniqueness for systems of ODEs of order one)
Let f : Ω → K

n be a continuous and locally Lipschitz map in x ∈ K
n on the open

set Ω ⊂ R × K
n. Given the first-order initial value problem (in normal form):

{ dx

dt
= f (t, x(t)) ,

x(t0) = x0
(2.51)

with (t0, x0) ∈ Ω , there exists an open interval I � t0 on which (2.51) has a unique
solution, necessarily belonging in C1(I ).

Proof Notice, to being with, that any solution x = x(t) to (2.51) is of class C1.
Namely, it is continuous as the derivative exists, and directly from dx

dt = f (t, x(t))
we infer dx

dt must be continuous, because the equation’s right-hand side is a composite
of continuous maps in t .

Now, suppose x : I → K
n is differentiable and that (2.51) holds. By the funda-

mental theoremof calculus, by integrating (2.51) (the derivative of x(t) is continuous)
x : I → K

n must satisfy

x(t) = x0 +
∫ t

t0

f (τ, x(τ )) dτ , for anyt ∈ I. (2.52)

Conversely, if x : I → K
n is continuous and satisfies (2.52), again the fundamental

theorem of calculus ( f is continuous) tells x = x(t) is differentiable and implies
(2.51). Therefore the continuous maps x = x(t) defined on an open interval I � t0
that solve the integral equation (2.52) are precisely the solutions to (2.51) defined
over I . So instead of solving (2.51) we can solve the equivalent integral problem
(2.52).

To prove existence, fix once and for all a relatively compact open set Q � (t0, x0)
with Q ⊂ Ω . Take Q small enough to have f locally Lipschitz in x . The standard
norm on K

n will be written || ||, and we shall use:
(i) 0 ≤ M := max{|| f (t, x)|| | (t, x) ∈ Q};
(ii) the constant L ≥ 0 such that || f (t, x) − f (t, x ′)|| ≤ L||x − x ′||, (t, x),

(t, x ′) ∈ Q;
(iii) Bε(x0) := {x ∈ K

n | ||x − x0|| ≤ ε} for ε > 0.
Consider the closed interval Jδ = [t0 − δ, t0 + δ], δ > 0 and the Banach space
(C(Jδ;Kn), || ||∞) of continuous maps X : Jδ → K

n (Proposition 2.18). On this
space define the map G that assigns to any function X a function G(X) by

G(X)(t) := x0 +
∫ t

t0

f (τ, X (τ )) dτ , for any t ∈ Jδ .
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Note G(X) ∈ C(Jδ;Kn) for X ∈ C(Jδ;Kn) by the continuity of the integral in the
upper limit, when the integrand is continuous. We claim G is a contraction map on
a closed subset of C(Jδ;Kn): 2

M(δ)
ε := {X ∈ C(Jδ;Kn) | ||X (t) − x0|| ≤ ε ,∀t ∈ Jδ}

if 0 < δ < min{ε/M, 1/L}, and δ, ε > 0 are chosen small enough in order to have
Jδ × Bε(x0) ⊂ Q. (Henceforth ε > 0 and δ > 0 will be assumed to satisfy Jδ ×
Bε(x0) ⊂ Q.) With X ∈ M(δ)

ε we have:

||G(X)(t) − x0|| ≤
∣
∣
∣
∣

∣
∣
∣
∣

∫ t

t0
f (τ, X (τ )) dτ

∣
∣
∣
∣

∣
∣
∣
∣
≤
∫ t

t0
|| f (τ, X (τ ))|| dτ ≤

∫ t

t0
Mdτ ≤ δM .

Therefore G(M(δ)
ε ) ⊂ M(δ)

ε for 0 < δ < ε/M . If X, X ′ ∈ M(δ)
ε then for all t ∈ Jδ:

G(X)(t) − G(X ′)(t) =
∫ t

t0

[

f (τ, X (τ )) − f
(

τ, X ′(τ )
)]

dτ ,

∣
∣
∣
∣G(X)(t) − G(X ′)(t)

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∣
∣
∣
∣

∫ t

t0

[

f (τ, X (τ )) − f
(

τ, X ′(τ )
)]

dτ

∣
∣
∣
∣

∣
∣
∣
∣

≤
∫ t

t0

∣
∣
∣
∣ f (τ, X (τ )) − f

(

τ, X ′(τ )
)∣
∣
∣
∣ dτ .

But we have the Lipschitz bound

|| f (t, x) − f (t, x ′)|| < L||x − x ′|| ,

so:

∣
∣
∣
∣G(X)(t) − G(X ′)(t)

∣
∣
∣
∣ ≤ L

∫ t

t0

∣
∣
∣
∣X (τ ) − X ′(τ )

∣
∣
∣
∣ dτ ≤ δL||X − X ′||∞ .

Taking the supremum on the left:

∣
∣
∣
∣G(X) − G(X ′)

∣
∣
∣
∣∞ ≤ δL||X − X ′||∞ .

If, additionally, δ < 1/L , it follows that G : M(δ)
ε → M(δ)

ε is a contraction on the
closed set M(δ)

ε . By Theorem 2.112 G has a fixed point, which is a continuous map
x = x(t) ∈ K

n , t ∈ Jδ , that solves (2.52) by definition of G. Restricting x to the open
interval I := (t0 − δ, t0 + δ) gives a solution to the initial value problem (2.51).

2M(δ)
ε = {X ∈ C(Jδ;Kn) | ||X − X0||∞ ≤ ε}, where X0 is here the constant map equal to x0 on

Jδ . Thus M
(δ)
ε is the closure of the open ball of radius ε centred at X0 inside C(Jδ;Kn).
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As for uniqueness, take another solution x ′ = x ′(t) to (2.52) on I := (t0 − δ, t0 +
δ), a priori distinct from x = x(t). For any closed interval Jδ′ := [t0 − δ′, t0 + δ′],
0 < δ′ < δ, G : M(Jδ′ )

ε → M(Jδ′ )
ε is by construction still a contracting map, and x ′ =

x ′(t) a fixed point of it. Therefore x ′ coincides with x = x(t) restricted to Jδ′ , by
uniqueness. (In particular, the restriction of x′ to Jδ′ belongs to the complete metric
space M(Jδ′ )

ε because we saw ||G(x′) − x0||∞ ≤ δ′M < ε, since G(x′) = x′.) But
since δ′ is arbitrary in (0, δ), the two solutions coincide on I = (t0 − δ, t0 + δ). ��
Just for the sake of completeness we remark that the previous theorem holds when
f is C1, because of the following elementary fact.
We adopt the usual notation

x = (x1, . . . , xn) , z = (z1, . . . , zl) and F(z, x) = (F1(z, x), . . . , Fm(z, x))

for an arbitrarymap F : Ω → R
m withΩ = A × B, A ⊂ R

l and B ⊂ R
n non-empty

open sets.

Proposition 2.116 Consider Ω = A × B, A ⊂ R
l and B ⊂ R

n non-empty open
sets. The map F : Ω → R

m is locally Lipschitz in x if, for every z ∈ A, the functions
B � x �→ Fk(z, x) admit first derivative, and if the partial derivatives, as (z, x)

varies, are continuous on Ω .

Proof Take q = (z0, x0) ∈ Ω and let B ′ ⊂ R
l , B ⊂ R

n be open balls centred at z0,
x0, with B ′ × B ⊂ Ω . Then x(t) = p + t (r − p) ∈ B, for t ∈ [0, 1] and p, r ∈ B.
Fix z ∈ B ′. The mean value theorem applied to [0, 1] � t �→ Fk(z, x(t)) results in

Fk(z, r) − Fk(z, p) = Fk(z, x(1)) − Fk(z, x(0)) =
n
∑

j=1

(r j − p j )
∂ Fk

∂x j

∣
∣
∣
∣
(z,x(ξ))

,

where (z, x(ξ)) ∈ B ′ × B. Schwarz’s inequality then gives:

|Fk(z, r) − Fk(z, p)| ≤
√
√
√
√

n
∑

j=1

|r j − p j |2
√
√
√
√

n
∑

i=1

∣
∣
∣
∣
∣

∂ Fk

∂xi

∣
∣
∣
∣
(z,x(ξ))

∣
∣
∣
∣
∣

2

≤ ||r − p||
√
√
√
√

n
∑

i=1

∣
∣
∣
∣
∣

∂ Fk

∂xi

∣
∣
∣
∣
(z,x(ξ))

∣
∣
∣
∣
∣

2

≤ Mk ||r − p|| for (z, r), (z, p) ∈ B ′ × B ,

and such Mk < +∞ exists since the radicand is continuous on the compact set
B ′ × B. Since B ′ × B is an open neighbourhood of the generic point (z0, x0) ∈ Ω ,
the map F is locally Lipschitz in x :
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||F(z, x1) − F(z, x2)|| ≤
√
√
√
√

m
∑

k=1

M2
k ||x1 − x2|| for (z, x1), (z, x2) ∈ B ′ × B .

��
Remark 2.117 This particular proof of the theorem requires the local Lipschitz con-
dition for f in (2.51) in order to use the fixed-point theorem.As amatter of fact, this is
not necessary to grant existence. Amore general existence result, due to Peano, can be
proved (using theArzelà–Ascoli Theorem 2.22) if one only assumes the continuity of
f [KoFo99]. In general, though, the absence of the Lipschitz condition undermines
the solution’s uniqueness, as the following classical counterexample makes clear:
consider

dx

dt
= f (x(t)) , x(0) = 0

where f : R → R, defined as f (x) = 0 on x ≤ 0 and f (x) = √
x for x > 0, is

continuous but not locally Lipschitz at x = 0. The Cauchy problem admits at least
two solutions (both maximal):

(1) x1(t) = 0, for any t ∈ R

(2) x2(t) = 0 for t ≤ 0 and x2(t) = t2/4 on t > 0. �

Exercises

2.1 Prove that any seminorm p satisfies p(x) = p(−x).

2.2 Let K be a compact set, X a normed space and f : K → X a continuous map.
Show f is bounded, i.e. there exists M ≥ 0 such that || f (k)|| ≤ M for any k ∈ K .

Hint. Adapt the proof of Proposition 1.21.

2.3 Prove that if S denotes a vector space of bounded maps from X to C (or to R),
then

S � f �→ || f ||∞ := sup
x∈X

| f (x)|

defines a norm on S.

2.4 LetX be a topological space. Prove that the spaces of bounded complex functions
L(X), and ofmeasurable and bounded complex functions Mb(X) (cf. Examples 2.29),
are Banach spaces for the norm || ||∞.

Solution. We shall prove the claim for Mb(X), the other one being exactly the
same. The claim is that an arbitrary Cauchy sequence { fn}n∈N ⊂ Mb(X) converges
uniformly to some f ∈ Mb(X). By assumption the numerical sequence { fn(x)}n∈N is
Cauchy, for any x ∈ X. Therefore there exists f : X → C such that fn(x) → f (x), as

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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n → +∞, for any x ∈ X. This function will be measurable because it arises as limit
of measurable maps. We are left to prove that f is bounded and fn → f uniformly.
Start from the latter. Since

| f (x) − fm(x)| = lim
n→+∞ | fn(x) − fm(x)| ≤ lim

n→+∞ || fn − fm ||∞ ,

and using the fact that the initial sequence is Cauchy for || ||∞, we have that for any
ε > 0 there is Nε such that:

lim
n→+∞ || fn − fm ||∞ < ε form > Nε.

Hence:
| f (x) − fm(x)| < ε form > Nε and any x ∈ X.

In other words || f − fm ||∞ → 0 as m → +∞, as required. Now the boundedness
is obvious:

sup
x∈X

| f (x)| ≤ sup
x∈X

| f (x) − fm(x)| + sup
x∈X

| fm(x)| < ε + || fm ||∞ < +∞ .

2.5 Show that the Banach spaces (L(X), || ||∞) and (Mb(X), || ||∞) (cf. Examples
2.29) are Banach algebras with unit.

Sketch. The unit is clearly the constant map 1. The property || f · g||∞ ≤
|| f ||∞||g||∞ follows from the definition of || ||∞, and the remaining conditions
are easy.

2.6 Prove that the space C0(X) of continuous, complex functions on X that vanish
at infinity (cf. Examples 2.29) is a Banach algebra for || ||∞. Explain in which
circumstances the algebra has a unit.

Solution. We take a Cauchy sequence { fn}n∈N ⊂ C0(X) and prove it converges
uniformly to f ∈ C0(X). Byhypothesis the numerical sequence { fn(x)}n∈N isCauchy
for any x ∈ X. Therefore there exists a function f : X → C such that fn(x) → f (x)

for any x ∈ X, asn → +∞. Theproof that || f − fn||∞ → 0,n → +∞, goes exactly
as in Exercise 2.4. Since continuity is preserved by uniform limits, there remains to
show f ∈ C0(X). Given ε > 0, pick n such that || f − fn|| < ε/2, and choose a
compact set Kε ⊂ X so that | fn(x)| < ε/2 for x ∈ X \ Kε. By construction

| f (x)| ≤ | f (x) − fn(x)| + | fn(x)| < ε, x ∈ X \ Kε.

The Banach space thus found is a Banach algebra for the familiar operations, as one
proves without difficulty.

If the unit is present, it must be the constant map 1. If X is compact, the function
1 belongs to the space. But if X is not compact, then 1 cannot be in X, because the
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elements ofC0(X) can be shrunk arbitrarily outside compact subsets, and no constant
map does that.

2.7 Prove the space Cb(X) of continuous and bounded complex functions on X (see
Examples 2.29) is a Banach space for || ||∞ and a Banach algebra with unit.

2.8 Prove that in Proposition 2.17 the converse implication holds as well. In other
words, the proposition may be rephrased like this:

Proposition. Let (X, || ||) be a normed space. Every absolutely convergent series
∑+∞

n=0 xn (i.e.
∑+∞

n=0 ||xn|| < +∞) converges in X iff (X, || ||) is a Banach space.

Solution. Take an absolutely convergent series
∑+∞

n=0 xn in X. The partial sums
of the norms have to be a Cauchy sequence, i.e. for any ε > 0 there is Mε > 0 with

∣
∣
∣
∣
∣
∣

n
∑

j=0

||x j || −
m
∑

j=0

||x j ||
∣
∣
∣
∣
∣
∣

< ε , for n, m > Mε.

Supposing n ≥ m:
∣
∣
∣
∣
∣
∣

n
∑

j=m+1

||x j ||
∣
∣
∣
∣
∣
∣

< ε , n, m > Mε.

Therefore:
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n
∑

j=0

x j −
m
∑

j=0

x j

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n
∑

j=m+1

x j

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤
n
∑

j=m+1

||x j || < ε, n, m > Mε.

Weproved the sequence of partial sums
∑n

j=0 xn isCauchy.But the space is complete,
so the series converges to a point in X.

2.9 Show that the space Cc(X) of complex functions with compact support on X
(cf. Examples 2.29) is not, in general, a Banach space for || ||∞, nor is it dense in
Cb(X) if X is not compact.

Outline of proof. For the first statement we need to exhibit a counterexample
for X = R. Consider for instance the continuous maps fn : R → C, n = 1, 2, . . . ,:
fn(x) := sin x

x for 0 < |x | < 2nπ , fn(0) = 1 and fn(x) = 0 at other points ofR. The
sequence evidently converges pointwise to the continuous map defined as sin x

x on
R \ {0} and set to 1 at the origin. It is easy to convince ourselves that the convergence
is uniform. But the limit function does not have compact support. As for the second
part, note that any constant map c �= 0 belongs in Cc(X). But if X is not compact,
then || f − c||∞ ≥ |c| > 0 for any function f ∈ Cc(X) because of the values attained
outside the support of f .
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2.10 Given a compact space K and a Banach space B, let C(K ;B) be the space
of continuous maps f : K → B in the norm topologies of domain and codomain.
Define

|| f ||∞ := sup
x∈K

|| f (x)|| f ∈ C(K ;B) ,

where the norm on the right is the one on B. Show this norm is well defined, and that
it turns C(K ;B) into a Banach space.

Hint. Keep in mind Exercise 2.2 and adjust the proof of Proposition 2.18.

2.11 Let (A, ◦) be a Banach algebra without unit. Consider the direct sum A ⊕ C

and define the product:

(x, c) · (y, c′) := (x ◦ y + cy + c′x, cc′), (x ′, c′), (x, c) ∈ A ⊕ C

and the norm:
||(x, c)|| := ||x || + |c|, (x, c) ∈ A ⊕ C.

Show that the vector space A ⊕ C with this product and norm becomes a Banach
algebra with unit.

2.12 Take a Banach algebra A with unit I and an element a ∈ A with ||a|| < 1.
Prove that the series

∑+∞
n=0(−1)na2n , a0 := I, converges in the topology of A. What

is the sum?

Hint. Show the series of partial sums is a Cauchy series. The sum is (I + a2)−1.

2.13 (Hard.) Prove Hölder’s inequality:

∫

X
| f (x)g(x)|dμ(x) ≤

(∫

X
| f (x)|pdμ(x)

)1/p (∫

X
|g(x)|qdμ(x)

)1/q

where p, q > 0 satisfy 1 = 1
p + 1

q , f and g are measurable and μ is a positive
measure on X.

Solution. Define I := ∫

X | f (x)| |g(x)|dμ(x), A := (∫

X | f (x)|pdμ(x)
)1/p

and

B := (∫

X |g(x)|qdμ(x)
)1/q

. If either A or B is zero or infinite (conventionally, ∞ ·
0 = 0 · ∞ = 0), the inequality is trivial. So let us assume 0 < A, B < +∞ and
define F(x) := | f (x)|/A, G(x) := |g(x)|/B. Thus

ln(F(x)G(x)) = 1

p
ln(F(x)p) + 1

q
ln(G(x)q) ≤ ln

(
1

p
F(x)p + 1

q
G(x)q

)

,

because the logarithm is a convex function. Exponentiating gives

F(x)G(x) ≤ 1

p
F(x)p + 1

q
G(x)q .
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Integrating the above, and noting that the right-hand-side integral is 1/p + 1/q = 1
we recover Hölder’s inequality in the form:

∫

X | f (x)g(x)|dμ(x)
(∫

X | f (x)|pdμ(x)
)1/p (∫

X |g(x)|qdμ(x)
)1/q ≤ 1 .

2.14 (Hard.) Making use of Hölder’s inequality, prove Minkowski’s inequality:

(∫

X
| f (x) + g(x)|pdμ(x)

)1/p
≤
(∫

X
| f (x)|pdμ(x)

)1/p
+
(∫

X
|g(x)|pdμ(x)

)1/p

where p ≥ 1, f and g are measurable and μ a positive measure on X.

Solution. Define I := ∫

X | f (x) + g(x)|pdμ(x), A := (∫

X | f (x)|pdμ(x)
)1/p

and

B := (∫

X |g(x)|pdμ(x)
)1/p

. The inequality is trivial in case p = 1 or if one of A, B
is infinite. So we assume p > 1, A, B < +∞. Then I must be finite too, because
(a + b)p ≤ 2p(a p + bp) for any a, b ≥ 0 and p ≥ 1.3 Minkowski’s inequality is
trivial also when I = 0, so we consider only p > 1, A, B < +∞, 0 < I < +∞.
Note | f + g|p = | f | | f + g|p−1 + |g| | f + g|p−1. Using Hölder’s inequality on
each summand on the right we have:

∫

X
| f (x) + g(x)|pdμ(x) ≤

(
(| f (x) + g(x)|(p−1)qdμ(x)

)1/q
)

×
(
(∫

X
| f (x)|pdμ(x)

)1/p

+
(∫

X
|g(x)|pdμ(x)

)1/p
)

,

where 1 = 1
p + 1

q . This last inequality can be written as I ≤ I 1/q(A + B), dividing

which by I 1/q produces I 1/p ≤ A + B, i.e. Minkowski’s inequality.

2.15 Take two finite-dimensional normed spacesX,Y and consider T ∈ L(X,Y) =
B(X,Y). Fix bases in X and Y and represent T by the matrix M(T ). Show that one
can choose bases for the dual spaces X′, Y′ so that the operator T ′ is determined by
the transpose matrix M(T )t .

2.16 Prove Proposition 2.70.

2.17 Consider the spaceB(X) for some normed space X. Prove the strong topology
is finer than the weak topology (put loosely: weakly open sets are strongly open),
and the uniform topology is finer than the strong one.

2.18 Prove Propositions 2.74–2.77.

3This inequality descends from (a + b) ≤ 2max{a, b}, whose pth power reads (a + b)p ≤
2p max{a p, bp} ≤ 2p(a p + bp).
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2.19 In a normed space X prove that if {xn}n∈N ⊂ X tends to x ∈ X weakly (cf.
Proposition 2.74), the set {xn}n∈N is bounded.

Hint. Use Corollary 2.64.

2.20 If B is a Banach space and T, S ∈ B(B), show:
(i) (T S)′ = S′T ′,
(ii) (T ′)−1 = (T −1)′, provided T is bijective.

2.21 Prove that if X and Y are reflexive Banach spaces, and T ∈ B(X,Y), then
(T ′)′ = T .

2.22 If X is normed, the function that maps (T, S) ∈ B(X) × B(X) to T S ∈ B(X)

is continuous in the uniform topology. What can be said regarding the strong and
weak topologies?

Solution. For both topologies themap is separately continuous in either argument,
but not continuous as a function of two variables, in general.

2.23 If we define an isomorphism of normed spaces as a continuous linear map with
continuous inverse, does an isomorphism preserve completeness?

Hint. Extend Proposition 2.105 to the case of a continuous linear map between
normed spaces with continuous inverse.

2.24 Using weak equi-boundedness, prove this variant of the Banach–Steinhaus
Theorem 2.62.

Proposition. Let X be a Banach space and Y a normed space over the same field C,
or R. Suppose the family of operators {Tα}α∈A ⊂ B(X,Y) satisfies:

sup
α∈A

| f (Tαx)| < +∞ for any x ∈ X, f ∈ Y′ .

Then there exists a uniform bound K ≥ 0:

||Tα|| ≤ K for anyα ∈ A .

Solution. Referring to Corollary 2.59, for any given x ∈ X define Fα,x :=
I(Tαx) ∈ (Y′)′. Then

sup
α∈A

|Fα,x ( f )| < +∞ for any f ∈ Y′ .

As Y′ is complete, we can use Theorem 2.62 to infer the existence, for any x ∈ X,
of Kx ≥ 0 that bounds uniformly the family Fα,x : Y′ → C:

||Fα,x || ≤ Kx for anyα ∈ A .
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But I is isometric, so:
||Tα(x)|| ≤ Kx for anyα ∈ A

and hence
sup
α∈A

||Tαx || < +∞ for any x ∈ X .

The Banach–Steinhaus Theorem 2.62 ends the proof.

2.25 Let K be compact,X aBanach space, and equipB(X)with the strong topology.
Prove that any continuous map f : K → B(X) belongs to C(K ;B(X)). (The latter
is a Banach space, defined in Exercise 2.10, if we view B(X) as a Banach space.)

Solution. We must prove

sup
k∈K

|| f (k)|| < +∞

where on the left we used the operator norm of B(X). As f is continuous in the
strong topology, for any given x ∈ X the map K � k �→ f (k)x ∈ X is continuous.
If we fix x ∈ X, by Exercise 2.2 there exists Mx ≥ 0 such that:

sup
k∈K

|| f (k)x ||X < Mx .

The Banach–Steinhaus Theorem 2.62 ends the proof.



Chapter 3
Hilbert Spaces and Bounded Operators

There’s no such thing as a deep theorem, but only theorems we
haven’t understood very well.

Nicholas P. Goodman

With this chapterwe introduce thefirstmathematical notions relative toHilbert spaces
that we will use to build the mathematical foundations of Quantum Mechanics. A
good part is devoted to Hilbert bases (complete orthonormal systems), which we
treat in full generality without assuming the Hilbert space be separable. Before that,
we discuss a paramount result in the theory of Hilbert spaces: Riesz’s representation
theorem, according to which there is a natural anti-isomorphism between a Hilbert
space and its dual.

The third section studies adjoint operators (to bounded operators), introduced
by means of Riesz’s theorem, and their place at the heart of the theory of bounded
operators. In particular, we introduce ∗-algebras, C∗-algebras (and operator C∗-
algebras) and their representations. Here we define self-adjoint, unitary and normal
operators, and examine their basic properties.

Section four is entirely dedicated to orthogonal projectors and their main features.
We also introduce the useful notion of partial isometry.

The fifth section is concerned with the important polar decomposition theorem
for bounded operators defined on the whole Hilbert space. The positive square root
of a bounded operator is used as technical tool.

Section six introduces von Neumann algebras, with attention to the famous double
commutant theorem.

The elementary theory of the Fourier and Fourier–Plancherel transforms, object
of the last section, is introduced very rapidly andwith, alas, nomention to Schwartz’s
distributions (for this see [Rud91, ReSi80, Vla02]).
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3.1 Elementary Notions, Riesz’s Theorem and Reflexivity

The present section deals with the basics of Hilbert spaces, starting from the elemen-
tary definitions of Hermitian inner product and Hermitian inner product space.

3.1.1 Inner Product Spaces and Hilbert Spaces

Definition 3.1 If X is a complex vector space, a map S : X × X → C is called a
Hermitian inner product, and (X, S) an inner product space, when:

H0. S(u, u) ≥ 0 for any u ∈ X;
H1. S(u, αv + βw) = αS(u, v) + βS(u, w) for any α, β ∈ C and u, v, w ∈ X;
H2. S(u, v) = S(v, u) for any u, v ∈ X;
H3. S(u, u) = 0 ⇒ u = 0, for any u ∈ X.

If H0, H1, H2 hold and H3 does not, S is a Hermitian semi-inner product.
Two vectors u, v ∈ X are orthogonal, written u ⊥ v, if S(u, v) = 0. In this case

u and v are called orthogonal (or normal) to one another.
The orthogonal space to a non-empty subspace K ⊂ X is:

K ⊥ := {u ∈ X | u ⊥ v for any v ∈ K } .

Remarks 3.2 (1) H1 and H2 imply that S is antilinear in the first argument:

S(αv + βw, u) = αS(v, u) + βS(w, u) for anyα, β ∈ C, u, v, w ∈ X.

(2) It is immediate that K ⊥ is a vector subspace in X by H1, so the name orthogonal
space is not accidental.
(3) In an inner product space (X, S), the definition of orthogonality implies a useful
property we will use often:

K ⊂ K1 ⇒ K ⊥
1 ⊂ K ⊥ for K , K1 ⊂ X.

(4) From now, lest we misunderstand, “(semi-)inner product” will always stand for
“Hermitian (semi-)inner product”. �

Proposition 3.3 Let X be a C-vector space with semi-inner product S.
(a) The Cauchy–Schwarz inequality holds:

|S(x, y)|2 ≤ S(x, x)S(y, y), x, y ∈ X ; (3.1)

moreover
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(i) there is equality in (3.1) if x, y are linearly dependent;
(ii) there is equality in (3.1) if and only if x, y are linearly dependent, provided S

is an inner product.
(b) As x ∈ X varies,

p(x) := √
S(x, x) (3.2)

defines the seminorm induced by S (a norm if S is an inner product).
(c) the seminorm p satisfies the parallelogram rule:

p(x + y)2 + p(x − y)2 = 2(p(x)2 + p(y)2), x, y ∈ X . (3.3)

(d) the polarisation formula holds:

S(x, y) = 1

4

(
p(x + y)2 − p(x − y)2 − i p(x + iy)2 + i p(x − iy)2

)
, x, y ∈ X

(3.4)

Proof (a) If α ∈ C, using the properties of the semi-inner product,

0 ≤ S(x − αy, x − αy) = S(x, x) − αS(x, y) − αS(y, x) + |α|2S(y, y) . (3.5)

Suppose S(y, y) 
= 0. Then setting α := S(x, y)/S(y, y), (3.5) implies:

0 ≤ S(x, x) − |S(x, y)|2/S(y, y) ,

as claimed. If S(y, y) = 0, from (3.5) we find, for any α ∈ C:

0 ≤ S(x, x) − αS(x, y) − αS(y, x) . (3.6)

By choosing α ∈ R large enough in absolute value we see that inequality (3.6) is
not satisfied unless S(x, y) + S(y, x) = 0. Choosing now α = iλ with λ ∈ R large
enough in absolute value, we find that (3.5) can hold only if S(x, y) − S(y, x) = 0.
With the previous S(x, y) = −S(y, x) it gives S(x, y) = 0. Summing up, S(y, y) =
0 implies (3.1) because S(x, y) = 0. If x , y are linearly dependent then x = αy or
y = αx for some α ∈ C. If so, the two sides of (3.1) are equal. Now assume S is an
inner product and |S(x, y)|2 = S(x, x)S(y, y), and let us prove there are α, β ∈ C,
not both zero, so that αx + βy = 0. If at least one of x, y is null, the claim is true.
So suppose neither vanishes, so S(x, x) > 0 < S(y, y) by H3. Then redefining
u = x/

√
S(x, x), v = y/

√
S(y, y), we have |S(u, v)| = 1 and so S(u, v) = eiη for

some η ∈ R. By H3, α′u + β ′v = 0 is equivalent to S(α′u + β ′v, α′u + β ′v) = 0,
i.e.

|α′|2 + |β ′|2 + α′β ′eiη + β ′α′e−iη = 0 ,

as S(u, v) = eiη. Choose α′ = eiμ, β ′ = eiν , so that−μ+ν+η = π . Then the above
identity holds, and setting α := eiμ√

S(y, y), β := eiν
√

S(x, x) we have α, β 
= 0
and αx + βy = 0.
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(b) Verifying that p is a seminorm is easy knowing S is a (semi-)inner product,
except perhaps the triangle inequality N2 which we prove now. By the properties of
the inner product

p(x + y)2 = p(x)2 + 2ReS(x, y) + p(y)2 ,

with Re denoting the real part of a complex number. As ReS(x, y) ≤ |S(x, y)|, by
(3.1), we also have ReS(x, y) ≤ p(x)p(y). Substituting above gives:

p(x + y)2 ≤ p(x)2 + 2p(x)p(x) + p(y)2 ,

i.e.
p(x, y)2 ≤ (p(x) + p(y))2 ,

which in turn implies N2. Property N3 is immediate from H3, in case S is an inner
product.

Statements (c) and (d) are straightforward from the definition of p and the prop-
erties of inner product. �
Remarks 3.4 (1) The Cauchy–Schwarz inequality immediately implies that an inner
product S : X×X → C is a continuous map on X×X in the product topology, when
X has the topology of the norm induced by the inner product, i.e. (3.2). In particular
the inner product is continuous in its arguments separately.
(2) If the ground field is R instead of C, we have analogous Definition 3.1, by
declaring a real inner product S : X × X → R to fulfil H0, H1, H3 and replacing
H2 with the symmetry property:

H2’. S(u, v) = S(v, u) for any u, v ∈ X.
A real semi-inner product is a real inner product without H3, so to speak.
(3) Proposition 3.3 is still true for real (semi-)inner products, with the proviso that
the new polarisation formula reads:

S(x, y) = 1

4

(
p(x + y)2 − p(x − y)2

)
(3.7)

over the field R.
(4) The polarisation identity (3.4) and the corresponding Eq. (3.7) for real vector
spaces are valid even if S is not an inner product, provided it is re-written into a
suitable form. In the complex case linearity in the left entry and antilinearity in the
right entry are sufficient. In the real case bilinearity and symmetry are enough. This
matter is sorted out in Exercises 3.1 and 3.2. �
A known result – rarely proved explicitly – is the following, due to Fréchet, von
Neumann and Jordan. The proof is carried out in Exercises 3.3–3.5.

Theorem 3.5 Let X be a complex vector space and p : X → R a norm (or semi-
norm). Then p satisfies the parallelogram rule (3.3) if and only if there exists a unique
inner product (or semi-inner product) S inducing p by way of (3.2).
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Proof If the norm (seminorm) is induced by a Hermitian inner product, the paral-
lelogram rule (3.3) is valid by Proposition 3.3(c). The proof that (3.3) implies the
existence of an inner product (semi-inner product) S inducing p via (3.2) can be
found in Exercises 3.3–3.5. �

Let us pass to isomorphisms of inner product spaces.

Definition 3.6 Let (X, SX), (Y, SY) be inner product spaces. A linear map L : X →
Y is called an isometry if:

SY(L(x), L(y)) = SX(x, y) for any x, y ∈ X.

If the isometry L : X → Y is onto we call it an isomorphism of inner product
spaces.

If one such L exists, the spaces X and Y are said to be isomorphic (under L).

Remark 3.7 Every isometry L : X → Y is clearly 1-1 by H3, but may not be
onto, even when X = Y, if the dimension of X is not finite. Every isometry is
moreover continuous in the norm topologies induced by inner products. If surjective
(an isomorphism), its inverse is an isometry (isomorphism). �

Since an inner product space is also normed, we have two notions of isometry for
a linear transformation L : X → Y. The first refers to the preservation of inner
products (as above), the second was given in Definition 2.10, and corresponds to the
requirement: ||Lx ||Y = ||x ||X for any x ∈ X, with reference to the norms induced
by the inner products. The former type also satisfies the second definition. Using
the polarisation formula (3.4) it can actually be proved that the two notions are
equivalent.

Proposition 3.8 A linear operator L : X → Y between inner product spaces is an
isometry in the sense of Definition 3.6 if and only if:

||Lx ||Y = ||x ||X for any x ∈ X,

where the norms are induced by the corresponding inner products.

Notation 3.9 Unless we say otherwise, from now on ( | ) will indicate an inner
product and || || the induced norm, as in Proposition 3.3. �

Now to the truly central notion of the entire book, that of Hilbert space.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Definition 3.10 (Hilbert space) A complex vector space equipped with a Hermitian
inner product is called a Hilbert space if the norm induced by the inner product
makes it a Banach space.

An isomorphism of inner product spaces between Hilbert spaces is called:
(i) isomorphism of Hilbert spaces, or
(ii) unitary transformation, or
(iii) unitary operator.

It must be clear that under an isomorphism of inner product spaces U : H → H1, H1

is a Hilbert space if and only if H is. Then U is a unitary transformation.
There is a result about completions similar to the one seen for Banach spaces.

Theorem 3.11 (Completion of Hilbert spaces) Let X be a C-vector space with inner
product S.
(a) There exists a Hilbert space (H, ( | )), called completion of X, such that X is
identified with a dense subspace of H (for the norm induced by ( | )) under a 1-1
linear map J : X → H that extends S to ( | ):

J (X) = H and (J (x)|J (y)) = S(x, y) for any x, y ∈ X.

(b) If the triple (J1,H1, ( | )1), with J1 : X → H1 a linear isometry and (H1, ( | )1) a
Hilbert space, is such that J1 identifies X with a dense subspace in H1 by extending
S to ( | )1, then there is a unique unitary transformation φ : H → H1 such that
J1 = φ ◦ J .

Sketch of proof. (a) It is convenient to use the completion theorem for Banach
spaces and then construct the Banach completion of the normed space (X, N ), where
N (x) := √

S(x, x). Since S is continuous and X is dense in the completion under
the linear map J , S induces a semi-inner product ( | ) on the Banach completion H.
Actually, ( | ) is an inner product on H because, still by continuity, it induces the
same norm of the Banach space. Thus H is a Hilbert space and the map J sending X
to a dense subspace in H satisfies all the requirements. (b) The proof is essentially
the same as in the Banach case. �

Examples 3.12 (1) C
n with inner product (u|v) := ∑n

i=1 ui vi ,whereu = (u1, . . . , un),
v = (v1, . . . , vn), is a Hilbert space.
(2) A crucial Hilbert space in physics was defined in Example 2.29(6), namely
L2(X, μ). Recall that if X is a measure space with positive, σ -additive measure
μ on a σ -algebra Σ of subsets in X, then L2(X, μ) is a Banach space with norm
|| ||2:

||[ f ]||22 :=
∫

X
f (x) f (x)dμ(x) ,

f being any representative in the equivalence class [ f ] ∈ L2(X, μ) (as usual, we
shall write f instead of [ f ]).

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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If f, g ∈ L2(X, μ) then f (x)g(x) ∈ L1(X, μ), for (| f (x)|−|g(x)|)2 ≥ 0 implies

2| f (x)||g(x)| ≤ | f (x)|2 + |g(x)|2 .

Hence:

( f |g) :=
∫

X
f (x)g(x)dμ(x), f, g ∈ L2(X, μ) (3.8)

is well defined (which follows also from Hölder’s inequality, cf. Example 2.29(6)).
Elementary features of integrals guarantee the right-hand side of (3.8) is a Hermitian
inner product on L2(X, μ), which clearly induces || ||2. Therefore L2(X, μ) is a
Hilbert space with inner product (3.8).
(3) If one takes X = N and the counting measure μ (Example 2.29(7)), as a subcase
of the previous situation we obtain the Hilbert space �2(N) of square-integrable
complex sequences, where

( {xn}n∈N| {yn}n∈N) :=
+∞∑

n=0

xn yn . �

3.1.2 Riesz’s Theorem and Its Consequences

Our next aim is to prove that Hilbert spaces are reflexive. In order to do so we need
to develop a few tools related to the notion of orthogonal spaces, and prove the
celebrated Riesz theorem.

Let us recall the definition of convex set (Definition 2.65).
Definition A set ∅ 
= K in a vector space X is convex if:

λu + (1 − λ)v ∈ K , f or any λ ∈ [0, 1] and u, v ∈ K .

Clearly any subspace in X is convex, but not all convex subsets of X are subspaces
in X: open balls (with finite radius) in normed spaces are convex as sets but not
subspaces. For the next theorem we remind that < K > denotes the subspace in X
generated by K ⊂ X, and K is the closure of K .

Theorem 3.13 Let (H, ( | )) be a Hilbert space and K ⊂ H a non-empty subset.
Then
(a) K ⊥ is a closed subspace of H.

(b) K ⊥ =< K >⊥= < K >⊥ = < K >
⊥

.
(c) If K is closed and convex, for any x ∈ H there is a unique PK (x) ∈ K such that
||x − PK (x)|| = min{||x − y|| | y ∈ K }, where || || is the norm induced by ( | ).
(d) If K is a closed subspace, any vector x ∈ H decomposes in a unique fashion as
zx + yx with zx ∈ K and yx ∈ K ⊥, so that:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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H = K ⊕ K ⊥ . (3.9)

Moreover, zx := PK (x).
(e) (K ⊥)⊥ = < K >.

Remark 3.14 Actually, (a) and (b) hold also on more general spaces than Hilbert
spaces; it is enough to have an inner product space with the associated topology. �

Proof of Theorem 3.13. (a) K ⊥ is a subspace by the linearity of the inner product.
By its continuity it follows that if {xn} ⊂ K ⊥ converges to x ∈ H then (x |y) = 0 for
any y ∈ K , hence x ∈ K ⊥. So K ⊥, containing all its limit points, is closed.
(b) The first identity is trivial by definition of orthogonality and by linearity of the
inner product. The second relation follows immediately from (a). As for the third

one, since< K >⊂ < K >we have< K >⊥⊃ < K >
⊥
. But< K >⊥⊂ < K >

⊥

by continuity, so < K >⊥= < K >
⊥
, ending the chain of equalities, because we

know < K >⊥= < K >⊥.
(c) Let 0 ≤ d = inf y∈K ||x − y|| (this exists since the set of distances ||x − y|| with
y ∈ K is bounded below and non-empty). Define a sequence {yn} ⊂ K such that
||x − yn|| → d. We will show it is a Cauchy sequence. From the parallelogram rule
(3.3), where x , y are replaced by x − yn and x − ym , we have

||yn − ym ||2 = 2||x − yn||2 + 2||x − ym ||2 − ||2x − yn − yn||2 .

As yn/2 + ym/2 ∈ K under the convexity assumption, and since d is the infimum
of the numbers ||x − y|| when y ∈ K , it follows ||2x − yn − yn||2 = 4||x −
(yn + ym)/2||2 ≥ 4d2. Given ε > 0, and taking n, m large enough, we have:
||x − yn||2 ≤ d2 + ε, ||x − ym ||2 ≤ d2 + ε, whence

||yn − ym ||2 ≤ 4(d2 + ε) − 4d2 = 4ε .

So the sequence is Cauchy. AsH is complete, {yn} converges to some y ∈ K because
K is closed. The norm is continuous, so d = ||x − y||. We claim y ∈ K is the unique
point satisfying d = ||x − y||. For any other y′ ∈ K with the same property:

||y − y′||2 = 2||x − y||2 + 2||x − y′||2 − ||2x − y − y′||2 ≤ 2d2 + 2d2 − 4d2 = 0 ,

by the parallelogram rule; we have used, above, the fact that ||2x − y − y′||2 =
4||x − (y + y′)/2||2 ≥ 4d2 (K is convex, d is the infimum of ||x − z|| when z ∈ K ,
so y/2 + y′/2 ∈ K ). As ||y − y′|| = 0 we have y = y′. Thus PK (x) := y fulfils all
requirements.
(d) Take x ∈ H, and x1 ∈ K with smallest distance from x . Set x2 := x − x1, and
we will show x2 ∈ K ⊥. Pick y ∈ K , so the map R � t �→ f (t) := ||x − x1 + t y||2
has a minimum at t = 0. This is true if K is a subspace, so that −x1 + t y ∈ K for
any t ∈ R if x1, y ∈ K . Hence its derivative vanishes at t = 0:
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f ′(0) = lim
t→0

||x2 + t y||2 − ||x2||2
t

= (x2|y) + (y|x2) = 2Re(x2|y) .

Therefore Re(x2|y) = 0. Replacing y by iy tells that the imaginary part of (x2|y)

is zero too, so (x2|y) = 0 and x2 ∈ K ⊥. We have proved < K , K ⊥ >= H. There
remains to show K ∩ K ⊥ = {0}. But this is obvious because if x ∈ K ∩ K ⊥, x must
be orthogonal to itself, so ||x ||2 = (x |x) = 0 and x = 0.
(e) Any y ∈ K is orthogonal to every element of K ⊥; by linearity and continuity of
the inner product this is true also when y ∈ < K >. In other words,

< K > ⊂ (K ⊥)⊥ . (3.10)

Using (d) and replacing K with the closed subspace< K >we obtainH = < K >⊕
< K >

⊥
. By (b) that decomposition is equivalent to

H = < K > ⊕ K ⊥ . (3.11)

If u ∈ (K ⊥)⊥, by (3.11) there is a splitting into orthogonal ((u0|v) = 0) vectors
u = u0 + v, with u0 ∈ < K > and v ∈ K ⊥, and hence (u|v) = (v|v). But (u|v) = 0
(u ∈ (K ⊥)⊥ and v ∈ K ⊥) so (v|v) = 0 and therefore (K ⊥)⊥ � u = u0 ∈ < K >.
We conclude < K > ⊃ (K ⊥)⊥, and hence the claim, by (3.10). �
From (b) and (d) descends an immediate corollary.

Corollary 3.15 (to Theorem 3.13) If S is a subset in a Hilbert space H, < S > is
dense in H if and only if S⊥ = {0}.
We are ready to state and prove a theorem due to F. Riesz, by far the most important
theorem in the theory of Hilbert spaces.

Theorem 3.16 (Riesz) Let (H, ( | )) be a Hilbert space. For any continuous linear
functional f : H → C there exists a unique element y f ∈ H such that:

f (x) = (y f |x) for any x ∈ H .

The map H′ � f �→ y f ∈ H is a bijection.

Proof Let us prove that for any f ∈ H′ such a vector y f ∈ H exists. The null space
of f , K er f := {x ∈ H | f (x) = 0}, is a closed subspace since f is continuous.
As H is a Hilbert space, H = K er f ⊕ (K er f )⊥ by Theorem 3.13. If K er f = H
we define y f = 0 and the proof ends. If K er f 
= H we shall show (K er f )⊥
has dimension 1. Let 0 
= y ∈ (K er f )⊥. Then f (y) 
= 0 (y /∈ K er f !). For any
z ∈ (K er f )⊥, the vector z− f (z)

f (y)
y belongs to (K er f )⊥, being a linear combination of

elements in (K er f )⊥. But z− f (z)
f (y)

y ∈ K er f as well, by the linearity of f . Therefore

z − f (z)
f (y)

y ∈ K er f ∩ (K er f )⊥, and z − f (z)
f (y)

y = 0. So any other vector z ∈ (K er f )⊥

is a linear combination z = f (z)
f (y)

y of y, meaning y is a basis for (K er f )⊥. If y is as
above, define:
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y f := f (y)

(y|y)
y

and we now show y f represents f in the sense required. If x ∈ H, we decompose
x = n + x⊥ along K er f ⊕ (K er f )⊥, where

x⊥ = f (x⊥)

f (y)
y = f (x)

f (y)
y,

because f (x⊥) = f (x) (by linearity, since f (n) = 0). So

(y f |x) =
(

f (y)

(y|y)
y

∣
∣
∣
∣
∣
n + f (x)

f (y)
y

)

= 0 + f (y)

f (y)

(y|y)

(y|y)
f (x) = f (x) .

The function H′ � f �→ y f ∈ H is well defined, i.e. f determines y f uniquely: if
(y|x) = (y′|x) for any x ∈ K then (y − y′|x) = 0 for any x ∈ K ; and choosing
x = y − y′ gives ||y − y′||2 = (y − y′|y − y′) = 0, so y = y′. Injectivity is an easy
consequence of having f (x) = (y f |x). The map H′ � f �→ y f ∈ H is further onto,
because, for any y ∈ H, H � x �→ (y|x) is a point in H′ by linearity and continuity
of the inner product. �

Corollary 3.17 (to Riesz’s theorem) Every Hilbert space is reflexive.

Proof First of all we can endow H′ with an inner product ( f |g)′ := (yg|y f ), where
f, g ∈ H′ with f (x) = (y f |x) and g(x) = (yg|x), x ∈ H. The norm induced by
( | )′ on H′ coincides with the norm of H′

|| f || := sup
||x ||=1

| f (x)| ,

for which H′ is complete (Theorem 2.44). By Theorem 3.16 we may write, in fact,

|| f || = sup
||x ||=1

|(y f |x)| ,

and the Cauchy–Schwarz inequality implies || f || ≤ ||y f ||. We also have |(y f |x)| =
||y f || for x = y f /||y f ||, hence || f || = ||y f ||, which is precisely the norm induced
by ( | )′.

Therefore (H′, ( | )′) is a Hilbert space and (H′)′ its dual. Theorem 3.16 guarantees
that for any element in (H′)′, say F , there exists gF ∈ H′ such that F( f ) = (gF | f )′
for any f ∈ H′. But (gF | f )′ = (y f |ygF ) = f (ygF ). We have thus shown, for any
F ∈ (H′)′, the existence (and uniqueness, by Corollary 2.59 to Hahn–Banach) of a
vector ygF ∈ H such that:

F( f ) = f (ygF )

for any f ∈ H′. This is the reflexivity of H. �

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Remark 3.18 From this proofwe see that the topological dualH′, equippedwith inner
product ( | )′, ( f |g)′ := (yg|y f ), is a Hilbert space. The map H′ � f �→ y f ∈ H is
antilinear, 1-1, onto and it preserves the inner product by construction. In this sense
H and H′ are anti-isomorphic. �

3.2 Hilbert Bases

Now we can introduce the mathematical arsenal attached to the notion of a Hilbert
basis. This is a well-known generalisation, to infinite dimensions, of an orthonor-
mal basis. We shall work in the most general setting, where Hilbert spaces are not
necessarily separable and a basis can have any cardinality, even uncountable.

First we have to explain the meaning of an infinite sum of non-negative numbers,
often over an uncountable set. An indexed set {αi }i∈I is a function I � i �→ αi . The
set I is the set of indices and αi is the ith element of the indexed set. Note that it
can happen that αi = α j for i 
= j .

Definition 3.19 If A = {αi }i∈I is a non-empty set of non-negative reals indexed
by a set I of arbitrary cardinality, the sum of the indexed set A is the number, in
[0,+∞) ∪ {+∞}, defined by :

∑

i∈I

αi := sup

⎧
⎨

⎩

∑

j∈F

α j

∣
∣
∣
∣
∣
∣

F ⊂ I , Ffinite

⎫
⎬

⎭
. (3.12)

Remark 3.20 From now on a set will be called countable when it can be mapped
bijectively to the natural numbers N. Thus, here, a finite set is not countable. �

Proposition 3.21 In relation to Definition 3.19 we have:
(a) the sum of the set A coincides with the sum

∑
i∈I αi if I is finite, and with the sum

of the series
∑+∞

n=0 αin if I is countable, irrespective of the ordering, i.e. independently
of the bijection N � n �→ in ∈ I . (The series always converges, possibly to +∞,
because its terms are non-negative.)
(b) If the sum of the set A is finite, the subset of I for which αi 
= 0 is finite or
countable. By restricting to this subset, the sum of A equals either the sum of finitely
many terms or the sum of the series, as in (a).
(c) If μ is the counting measure on I , defined by the σ -algebra of the power set of I
(if J ⊂ I then μ(J ) ≤ +∞ is the cardinality of J by definition):

∑

i∈I

αi =
∫

A
αi dμ(i) . (3.13)
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Proof (a) The case when I is finite is obvious, so we look at I countable and suppose
to have chosen a particular ordering on I , so that we can write A = {αin }n∈N. We
will show that the sum

∑+∞
n=0 αin of {αin }n∈N coincides with the sum of (3.12), which

by definition does not depend on the chosen ordering. Because of (3.12) we have:

N∑

n=0

αin ≤
∑

i∈I

αi .

The limit as N → +∞ exists and equals the supremum of the set of partial sums,
since the latter are non-decreasing. Therefore:

+∞∑

n=0

αin ≤
∑

i∈I

αi . (3.14)

On the other hand, if F ⊂ I is finite, we may fix NF large enough so that {αi }i∈F ⊂
{αi0 , αi1 , αi2 , . . . , αiNF

}. Thus

∑

i∈F

αi ≤
NF∑

n=0

αin ,

Taking now the supremum over finite sets F ⊂ I , and remembering that the supre-
mum of the partial sums is the sum of the series, gives

∑

i∈I

αi ≤
+∞∑

n=0

αin . (3.15)

Then (3.14) and (3.15) produce the claim.
(b) Suppose S < +∞, S ≥ 0, is the sum of the set A. If S = 0 all elements of
A are zero and the proof ends, so assume S > 0. Any αi is contained in [0, S],
for otherwise the sum would be larger than S, and in particular αi 
= 0 implies
αi ∈ (0, S]. Define Sn := S/n, n = 1, 2, . . .. If Nk denotes the number of indices
i ∈ I for which αi belongs in (Sk+1, Sk], then surely S ≥ Sk+1Nk , hence Nk is finite
for any k. But ∪+∞

k=1(Sk+1, Sk] = (0, S], so all αi 
= 0 are accounted for. There can be
at most countably many of these values, since: (i) there are countably many intervals
(Sk+1, Sk] and (ii) each interval contains a finite number of αi 
= 0.
(c) Since any function is measurable with respect to the givenmeasure (the σ -algebra
is the power set), identity (3.13) is an immediate consequence of the definition of
integral of a positive function (cf. Sect. 1.4.3). �
Now we can define, step by step, complete orthonormal systems, also known as
Hilbert bases.

Definition 3.22 (Hilbert basis) Let (X, ( | )) be an inner product space and ∅ 
=
N ⊂ X a subset.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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(a) N is an orthogonal system (of vectors) if (i) N 
� 0 and (ii) x ⊥ y for any
x, y ∈ N , x 
= y.
(b) N is an orthonormal system if its elements are mutually orthogonal unit vectors,
(x |x) = 1 for any x ∈ N .
If (H, ( | )) is a Hilbert space, N ⊂ H is a complete orthonormal system, or a
Hilbert basis, if it is orthonormal and:

N⊥ = {0} . (3.16)

When no confusion arises, a Hilbert basis will be simply referred to as a basis.

Remark 3.23 Any orthogonal system N is made of linearly independent vectors: if
F ⊂ N is finite and 0 = ∑

x∈F αx x , then

0 =
⎛

⎝
∑

x∈F

αx x

∣
∣
∣
∣
∣
∣

∑

y∈F

αy y

⎞

⎠ =
∑

x∈F

∑

y∈F

αxαy(x |y) =
∑

x∈F

|αx |2||x ||2 .

As ||x || > 0 and |αx |2 ≥ 0, necessarily |αx | = 0, so αx = 0, for any x ∈ F . �

Theorem 3.24 (Bessel’s inequality) For any orthonormal system N ⊂ X in an
inner product space (X, ( | )),

∑

z∈N

|(x |z)|2 ≤ ||x ||2 for any x ∈ X . (3.17)

In particular, only a countable number of products (x |z) are non-zero, at most.

Proof ByDefinition 3.19 and Proposition 3.21(b) the claim holds if inequality (3.17)
is true for all finite F ⊂ N . So let F = {z1, . . . , zn}, x ∈ X and take α1, . . . , αn ∈ C.
Expanding ||x − ∑n

k=1 αk zk ||2 in terms of the inner product of X and because of the
orthonormality of z p and zq , plus the inner product’s linearity, we obtain:

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x −

n∑

k=1

αk zk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||x ||2 +
n∑

k=1

|αk |2 −
n∑

k=1

αk(x |zk) −
n∑

k=1

αk(x |zk) .

The right-hand side equals:

||x ||2 −
n∑

k=1

|(x |zk)|2 +
n∑

k=1

(
|(x |zk)|2 − αk(x |zk) − αk(x |zk) + |αk |2

)
.

So, ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x −

n∑

k=1

αk zk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||x ||2 −
n∑

k=1

|(x |zk)|2 +
n∑

k=1

| (zk |x) − αk |2 .
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On the right there is only one absolute minimum point αk = (zk |x), k = 1, . . . , n.
Therefore

0 ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x −

n∑

k=1

(zk |x)zk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||x ||2 −
n∑

k=1

|(x |zk)|2 ,

and finally:
n∑

k=1

|(x |zk)|2 ≤ ||x ||2 .

�

Lemma 3.25 Let {xn}n∈N be a countable orthogonal system indexed by N in the
Hilbert space (H, ( | )), and let || || be the norm induced by ( | ). If

+∞∑

n=0

||xn||2 < +∞ , (3.18)

then:
(a) there exists a unique vector x ∈ H such that

+∞∑

n=0

xn = x , (3.19)

where convergence is understood as convergence of partial sums in the topology
induced by || ||;
(b) the series (3.19) can be rearranged, i.e.

+∞∑

n=0

x f (n) = x (3.20)

for any bijection f : N → N.

Proof (a) Take An := ∑n
k=0 xk . By the orthonormality of the xk and the definition

of norm via the inner product we have, for n > m:

||An − Am ||2 =
n∑

k=m+1

||xk ||2 .

Since the series converges,

||An − Am ||2 =
n∑

k=m+1

||xk ||2 ≤
+∞∑

k=m+1

||xk ||2 → 0 as m → +∞,
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which in turn implies that the partial sums {An} are a Cauchy sequence. Since H is
complete, the sequence has a limit point x ∈ H, and so does the series. But H is
normed, and the Hausdorff property tells that limits, x included, are unique.
(b) Fix a bijective map f : N → N. Set, as above, An := ∑n

k=0 xk and σn :=∑n
k=0 x f (k). The positive-term series

∑+∞
k=0 ||x f (k)||2 converges because its partial

sums are smaller than the converging series
∑+∞

k=0 ||xk ||2. From part (a) the limit in
H of σn exists, and the rearranged series will converge in H, too. We claim this limit
is precisely x .

Define rn := max{ f (0), f (1), . . . , f (n)}, so

||Arn − σn||2 ≤
∑

k∈Jn

||xk ||2

where Jn arises from

{0, 1, 2, . . . ,max{ f (0), f (1), . . . , f (n)}}

by erasing f (0), f (1), . . . , f (n). By bijectivity the remaining elements correspond
to certain points of the infinite set

{ f (n + 1), f (n + 2), . . .} .

Therefore

||Arn − σn||2 ≤
∑

k∈Jn

||xk ||2 ≤
+∞∑

k=n+1

||x f (k)||2 . (3.21)

As
∑+∞

k=0 ||x f (k)||2 < +∞, relation (3.21) implies:

lim
n→+∞(Arn − σn) = 0 .

On the other hand rn ≥ n ( f is injective, and if we had

max{ f (0), f (1), . . . , f (n)} < n ,

the various f (n) should be n + 1 non-negative integers smaller than n, a contradic-
tion). Therefore limn→+∞ rn = +∞, so:

x = lim
n→+∞ An = lim

n→+∞ Arn = lim
n→+∞ σn . �

We can now state, and prove, the fundamental theorem about Hilbert bases, accord-
ing to which Hilbert bases generalise orthonormal bases in inner product spaces of
finite dimension. The novelty is that, at present, also infinite linear combinations are
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allowed, using the topology of H: any element of a Hilbert space can be written in a
unique fashion as an infinite linear combination of basis elements.

Irrespective of the existence of bases, by Zorn’s lemma (or equivalently, the axiom
of choice) there are also ‘algebraic’ bases that require no topology. The difference
between a Hilbert basis and an algebraic basis is that the latter concerns finite combi-
nations only: despite the basis has infinite cardinality, any vector in the (Hilbert) space
can be decomposed, uniquely, as a finite linear combination of the basis’ elements.

Theorem 3.26 Let (H, ( | )) be a Hilbert space and N ⊂ H an orthonormal system.
The following facts are equivalent:
(a) N is a Hilbert basis (an orthonormal system with N⊥ = {0}).
(b) Given x ∈ H, (at most) countably many products (z|x) are non-zero for all z ∈ N,
and:

x =
∑

z∈N

(z|x)z , (3.22)

where the series converges in the sense that partial sums converge in the inner product
topology.
(c) Given x, y ∈ H, (at most) countably many products (z|x), (y|z) are non-zero for
all z ∈ N, and

(x |y) =
∑

z∈N

(x |z)(z|y) . (3.23)

(d) If x ∈ H:
||x ||2 =

∑

z∈N

|(z|x)|2 . (3.24)

in the sense of Definition 3.19.
(e) < N > = H, i.e. the span of N is dense in H.
Under any of the above properties, in (3.22) and (3.23) the indexing order of non-null
coefficients of (x |z), (z|x) = (x |z) and (z|y) is irrelevant.

Proof (a) ⇒ (b). By Theorem 3.24 only countably many coefficients (z|x) are non-
null, at most. Indicate by (zn|x), n ∈ N, these numbers and fix SN := ∑N

n=0(zn|x)zn .
The system {(zn|x)zn}n∈N is by construction orthogonal, and because ||zn|| = 1
Bessel’s inequality implies

∑+∞
n=0 ||(zn|x)zn||2 < +∞. By Lemma 3.25(a) the series

(3.22) converges to a unique x ′ ∈ H, x ′ = ∑+∞
n=0(zn|x)zn . Moreover, the series can

be rearranged, with the same limit x ′ by Lemma 3.25(b). We claim x ′ = x . The
linearity and continuity of the inner product force, for z′ ∈ N :

(x − x ′|z′) = (x |z′) −
∑

z∈N

(x |z)(z|z′) = (x |z′) − (x |z′) = 0

where we have used the fact that the set of coefficients z is an orthonormal system.
Since z′ ∈ N is arbitrary, x−x ′ ∈ N⊥ and so x−x ′ = 0, as N⊥ = {0} by assumption.
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This proves that (3.22) holds independently from thewaywe index the coefficients
(z|x) 
= 0.
(b) ⇒ (c). If (b) holds, (c) is an obvious consequence, due to continuity and linearity
of the inner product, plus the fact N is orthonormal.
(c) ⇒ (d). When y = x , (d) is a special case of (c).
(d)⇒ (a). If (d) is true and x ∈ H is such that (x |z) = 0 for any z ∈ N , then ||x || = 0,
i.e. x = 0. In other words N⊥ = {0}, that is to say (a) holds.
So, we have proved (a), (b), (c) and (d) are equivalent. To finish notice that (b) implies
immediately (e), while (e) implies (a): if x ∈ N⊥, the inner product’s linearity gives
x ∈ < N >⊥ ⊂ < N >⊥. But Theorem 3.13(b) says < N >⊥ = < N >

⊥
. Since

< N > = H by hypothesis, x ∈ H⊥ = {0}. But this is (a), given that N⊥ = {0}.
The fact that the complex series in (3.23) can be rearranged to have the same sum

relies on the following argument. Consider the set

A := {z | (x |z) 
= 0 or (y|z) 
= 0} ,

which is countable. The Cauchy–Schwarz inequality in �2(A) produces:

∑

z∈A

|(x |z)||(z|y)| ≤
(
∑

z∈A

|(x |z)|2
)1/2 (∑

z∈A

|(y|z)|2
)1/2

< +∞

by (d). Hence the series
∑

z∈N (x |z)(z|y) = ∑
z∈A(x |z)(z|y) can be rearranged as

one likes, because it converges absolutely. �

Zorn’s lemma now guarantees each Hilbert space admits a complete orthonormal
system.

Theorem 3.27 Every Hilbert space H 
= {0} admits a Hilbert basis.

Proof Let H 
= {0} be a Hilbert space and consider the collectionA of orthonormal
systems inH. Define onA the partial order relation given by set-theoretical inclusion.
By construction any ordered subset E ⊂ A is bounded above by the union of all
elements of E . Zorn’s lemma tells us that A has maximal element N . Therefore
there are in H no vectors that are normal to every element in N , non-zero and not
belonging to N itself. This means N is a complete orthonormal system. �

Before moving on to separable Hilbert spaces, let us give another important result
from the general theory.

Theorem 3.28 Let H be a Hilbert space with Hilbert basis N . Then
(a) H is isomorphic, as Hilbert space, to L2(N , μ), where μ is the positive counting
measure of N (see Examples 2.29(6, 7) and 3.12(2)); the unitary transformation that
identifies the two spaces is

H � x �→ {(z|x)}z∈N ∈ L2(N , μ) ; (3.25)

http://dx.doi.org/10.1007/978-3-319-70706-8_2


124 3 Hilbert Spaces and Bounded Operators

(b) all Hilbert bases ofH have the same cardinality (that of N), called the dimension
of the Hilbert space. (If H = {0} the dimension of H is assumed to be 0.)
(c) If H1 is a Hilbert space with the same dimension as H, the two spaces are
isomorphic as Hilbert spaces.

Proof (a) The map U : H � x �→ {(z|x)}z∈N ∈ L2(N , μ) is well defined because
if x ∈ H and N is a basis, then property (d) of Theorem 3.26 holds, according to
which {(z|x)}z∈N ∈ L2(N , μ). This function is definitely 1-1: if x, x ′ ∈ H give equal
coefficients (z|x) = (z|x ′) for any z ∈ N , then x = x ′ by Theorem 3.26(b). The map
is onto as well: if {αz}z∈N ∈ L2(N , μ), so

∑
z∈N |αz|2 < +∞, by Lemma 3.25 there

is x := ∑
z∈N αz z and (z|x) = αz by inner product continuity and orthonormality of

N . Now Theorem 3.26(c) implies U is isometric. Therefore U : H → L2(N , μ) is
a unitary operator, making H and L2(N , μ) isomorphic Hilbert spaces.
(b) If one Hilbert basis has finite cardinality c, it must be an algebraic basis for H.
Elementary geometric techniques allow to prove that if a basis of finite cardinality
c exists, then any other set of linearly independent vectors M has cardinality ≤ c,
and the maximum is reached if and only if M spans the whole space. Since a basis,
being an orthogonal system, is made of linearly independent vectors, we conclude
that any basis of H has cardinality ≤ c, hence = c because it spans H finitely. This
forbids the situation where one basis is finite and another infinite. So let N and M be
bases di H of infinite cardinality. If x ∈ M , define Nx := {z ∈ N | (x |z) 
= 0}. As
1 = (z|z) = ∑

x∈M |(z|x)|2, we must have, for any z ∈ N , an element x ∈ M such
that z ∈ Nx . Therefore N ⊂ ∪x∈M Nx and then the cardinality of N will be less than
or equal to that of ∪x∈M Nx . But the latter is the cardinality of M because any Nx is
at most countable by Theorem 3.26(b). So the cardinality of N does not exceed the
cardinality of M . Swapping the roles of N and M we obtain that the cardinality of
M is not larger than that of N , and the theorem of Schröder–Bernstein ensures the
two cardinalities are equal.
(c) Let N and N1 be bases of H and H1 respectively, and suppose they have the
same cardinality. Then there is a bijective map taking points in N to points in N1

that induces a natural isomorphism V of inner product spaces between the L2 space
on N and the L2 space on N1 with respect to the counting measure. Therefore V
is an isomorphism of Hilbert spaces. If U1 : H1 → L2(N1, μ) is the isomorphism
analogous to the aforementioned U : H → L2(N , μ), then UVU−1

1 : H1 → H is a
unitary transformation, by construction, making H and H1 isomorphic spaces. �

So-called separable Hilbert spaces are particularly interesting in physics.

Definition 3.29 A Hilbert space is separable if it admits a countable dense subset.

There is a well-known characterisation of separability.
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Theorem 3.30 Let H 
= {0} be a Hilbert space.
(a) H is separable if and only if either dimH < ∞ or it has a countable Hilbert
basis.
(b) If H is separable, then every basis is either finite, with cardinality equal to dimH,
or countable.
(c) If H is separable then it is isomorphic either to �2(N), or to the standard C

n,
where n = dimH.

Proof (a) If theHilbert space has a finite or countable basis, Theorem 3.26(b) ensures
that a countable dense set exists, because rational numbers are dense in the reals.
This set consists clearly of finite linear combinations of basis elements with complex
coefficients having rational real and imaginary parts. The proof is easy and left to
the reader. Conversely, suppose a Hilbert space is separable. By Theorem 3.27 we
know bases exist, and we want to show that any basis must be countable at most.

Suppose, by contradiction, that N is an uncountable basis for the separable Hilbert
space H. For any chosen z, z′ ∈ N , z 
= z′, any point x ∈ H satisfies ||z − z′|| ≤
||x − z′|| + ||z − x ||, by the triangle inequality induced by the inner product. At
the same time {z, z′} is an orthonormal system, so ||z − z′||2 = (z − z′|z − z′) =
||z||2 + ||z′||2 + 0 = 1+ 1 = 2. Hence ||x − z|| + ||x − z′|| ≥ √

2. This implies that
two open balls of radius ε <

√
2/2 centred at z and z′ are disjoint, irrespective of how

we pick z, z′ ∈ N with z 
= z′. Call {B(z)}z∈N a family of such balls parametrised by
their centres z ∈ N . If D ⊂ H is a countable dense set (the space is separable), then
for any z ∈ N there exists x ∈ D with x ∈ B(z). The balls are pairwise disjoint, so
there will be one x for each ball, all different from one another. But the cardinality
of {B(z)}z∈N is not countable, hence neither D can be countable, a contradiction.

Although (b) and (c) are straightforward consequences of Theorem 3.28, for the
sake of the argument let us outline a proof.
(b) From the basic theory, if a (Hilbert or algebraic) basis is finite, the cardinality of
any other basis equals the dimension of the space.Moreover, any linearly independent
set (viewed as basis) cannot contain a number of vectors exceeding the dimension.
From this, if aHilbert space is separable and one of its bases is finite, then all bases are
finite and have cardinality dimH. Under the same hypotheses, if a basis is countable
then any other is countable by (a).
(c) Fix a basis N . Using Theorem 3.26 one verifies quickly that the map sending
H � x = ∑

u∈N αuu to the (finite or infinite) family {αu}u∈N is an isomorphism
sending H to C

n (if dimH is finite) or to �2(N) (if dimH is infinite). �

Here is another useful proposition about separable Hilbert spaces.

Proposition 3.31 Let (H, ( | )) be a Hilbert space with H 
= {0}.
(a) If Y := {yn}n∈N is a set of linearly independent vectors and Y ⊥ = {0}, or
equivalently < Y > = H, then H is separable and there exists a basis X := {xn}n∈N
in H such that, for any p ∈ N, the span of y0, y1, . . . , yp coincides with the span of
x0, x1, . . . , x p.
(b) If H is separable and S ⊂ H is a (non-closed) dense subspace of H, then S
contains a basis of H.
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Proof (a) We shall only sketch the proof, since the argument essentially duplicates
the Gram–Schmidt orthonormalisation process known from basic geometry courses
[Ser94I].

Since y0 
= 0, we set x0 := y0/||y0||. Consider the non-null vector z1 := y1 −
(x0|y1)x0 (recall y0, y1 are linearly independent). Clearly x0, z1 are not zero, they are
orthogonal (so linearly independent) and span the same subspace as y0, y1. Setting
x1 := z1/||z1|| produces an orthonormal set {x0, x1} spanning the same space as
y0, y1. The procedure can be iterated inductively, by defining:

zn := yn −
n−1∑

k=0

(xk |yn)xk ,

and considering the set of xn := zn/||zn||. By induction it is easy to see z0, . . . , zk are
non-null, orthogonal (hence linearly independent) and span the same space generated
by the linearly independent y0, . . . , yk . If u ⊥ yn for any n ∈ N, then u ⊥ xn for
any n ∈ N (it is enough to express xn as a linear combination of y0, . . . , yn), and
conversely (writing yn as combination of x0, . . . , xn). Therefore X⊥ = Y ⊥ = {0}
and X is a basis for H.
(b) We claim Smust contain a subset S0 that is countable and dense in H. In fact, let
{yn}n∈N be countable and dense in H. For any yn there is a sequence {xnm}m∈N ⊂ S
such that xnm → yn as m → +∞. It is straightforward that the countable subset
S0 := {xnm}(n,m)∈N×N of S is dense in H. Relabelling the elements of S0 over the
naturals so that x1 
= 0 we have S0 = {xq}q∈N. Now we can decompose S0 in
two subsets S1 and S2 as follows. The set S1 contains x1. Further, if x2 is linearly
independent from x1 we put x2 in S1, otherwise in S2. If x3 is linearly independent
from x1, x2 ∈ S1 we put it in S1, otherwise in S2, and we continue like this until we
exhaust S0. Then by construction S1 contains a set of linearly independent generators
of S0. Thus < S1 > ⊃ S0 = H. This process builds a complete orthonormal system
by finite linear combinations of Y := S1, as explained in (a), and so it gives a basis
made of elements of S since S ⊃ S1 is a subspace. �

Examples 3.32 (1) Consider the Hilbert space L2([−L/2, L/2], dx) (cf. Examples
3.12(2)) where dx is the usual Lebesgue measure on R and L > 0. Take measurable
functions (they are continuous)

fn(x) := ei 2πn
L x

√
L

(3.26)

for n ∈ Z and x ∈ [−L/2, L/2]. It is immediate to see that the fn belong to the
space and form an orthonormal system for the inner product:

( f |g) :=
∫ L/2

−L/2
f (x)g(x)dx (3.27)
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of L2([−L/2, L/2], dx). Consider the Banach algebra C([−L/2, L/2]) (a vector
subspace of L2([−L/2, L/2], dx)) of continuousmapswith supremumnorm (Exam-
ples 2.29(4, 5)). The subspace S ⊂ C([−L/2, L/2]) spanned by all fn , n ∈ Z, is a
subalgebra of C([−L/2, L/2]). Now, S contains 1, it is closed under complex con-
jugation and it is not hard to see that it separates points in [−L/2, L/2] (the maps
fn already separate points), so the Stone–Weierstrass Theorem 2.30 guarantees S
is dense in C([−L/2, L/2]). On the other hand it is well known that continuous
maps on [−L/2, L/2] form a dense space in L2([−L/2, L/2], dx) in the latter’s
topology [Rud86, p. 85]. At last, the topology of C([−L/2, L/2]) is finer than the
topology of L2([−L/2, L/2], dx), because ( f | f ) ≤ L sup | f |2 = L(sup | f |)2 if
f ∈ C([−L/2, L/2]). Therefore S is dense in L2([−L/2, L/2], dx). By Theorem
3.26(e), the vectors fn form a basis in L2([−L/2, L/2], dx), making the latter sep-
arable.
(2) Consider the Hilbert space L2([−1, 1], dx), dx being the Lebesgue measure. As
in the previous example the Banach algebra C([−1, 1]) is dense in L2([−1, 1], dx)

in the latter’s topology. In contrast to what we had previously, let

gn(x) := xn , (3.28)

for n = 0, 1, 2, . . ., x ∈ [−1, 1]. It can be proved that these vectors are linearly
independent. Their span S in C([−1, 1]) is a subalgebra in C([−1, 1]) that contains
1, is closed under conjugation and separates points. Hence the Stone–Weierstrass
Theorem 2.30 implies it is dense in C([−1, 1]). By arguing as in the above exam-
ple S is also dense in L2([−1, 1], dx). The novelty is that now the functions gn

do not constitute an orthonormal system. However, using Proposition 3.31 we can
immediately build a complete orthonormal system on L2([−1, 1], dx). These basis
elements, up to a normalisation, are called Legendre polynomials:

Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n, n = 0, 1, 2, . . . .

By definition they obey orthogonality relations:

∫

[−1,1]
Pn(x)Pm(x)dx = 2δnm

2n + 1
.

(3) In the previous examples we exhibited two separable L2 spaces. It can be proved
that L p(X, μ) (1 ≤ p < +∞) is separable if and only if the measureμ is separable,
in the following sense. Take the subset of the σ -algebra Σ of μ made of all finite-
measure sets and mod out zero-measure sets. The quotient is a metric space (cf.
Definition 2.82) with distance:

d(A, B) := μ((A \ B) ∪ (B \ A)) .

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2


128 3 Hilbert Spaces and Bounded Operators

Themeasureμ is said to be separable if thismetric space admits a dense and countable
subset. Concerning separable measures we have the following result [Hal69].

Proposition 3.33 (On separable L p measures and spaces) A σ -additive positive
measure μ, and hence also L p(X, μ), is separable if the following conditions hold:
(i) μ is σ -finite (X is the union of at most countably many sets of finite measure) and
(ii) the σ -algebra of the measure space of μ is generated by a countable collection
of measurable sets at most.

As consequence we have

Proposition 3.34 (On separable Borel measures and L p spaces) Every σ -finite
Borel measure on a second-countable topological space produces a separable L p

space.

Remark 3.35 This is the case, in particular, of the L p space relative to the Lebesgue
measure on R

n restricted to Borel sets in R
n . Note, though, that this L p space is

the same we find by using the entire Lebesgue σ -algebra, since the latter is the
completion of the Borel σ -algebra for the Lebesgue measure restricted to Borel
subsets, by Proposition 1.57 (see the remark following Proposition 1.66). �

Positive and σ -additive Borel measures on locally compact Hausdorff spaces are
called Radon measures if they are regular and if compact sets have finite measure.
A Radon measure is σ -finite if the space on which it is defined is σ -compact, i.e. the
union of (at most) countably many compact sets.
(4) Consider the space L2((a, b), dx), with −∞ ≤ a < b ≤ +∞ and dx being
the usual Lebesgue measure on R. From the definitions of the Fourier and Fourier–
Plancherel transforms (Proposition 3.115) we infer an extremely useful result:

Let f : (a, b) → C be measurable and such that: (1) the set {x ∈ (a, b) | f (x) =
0} has zero measure, and (2) there exist constants C, δ > 0 such that | f (x)| <

Ce−δ|x | for any x ∈ (a, b).
Then the finite span of the maps x �→ xn f (x), n = 0, 1, 2, . . ., is dense in

L2((a, b), dx).
The importance of this fact lies in that it allows to construct with ease bases in

L2((a, b), dx) even when a or b are infinite (a case in which we cannot apply the
Stone–Weierstrass Theorem 2.30). In fact, the Gram–Schmidt process applied to
fn(x) := xn f (x) yields a basis as explained in Proposition 3.31.
For instance, applying Gram–Schmidt to f (x) := e−x2/2 gives, normalisation

apart, the basis of L2(R, dx) of so-called (normalised) Hermite functions:

ψ0(x) = π−1/4e−x2/2

and, recursively,

ψn+1 = (2(n + 1))−1/2(x − d

dx
)ψn n = 0, 1, 2, . . .

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_2


3.2 Hilbert Bases 129

A computation, still relying on Gram–Schmidt essentially, shows that ψn can be
obtained alternatively as:

ψn(x) := (2nn!√π)−1/2Hn(x)e−x2/2 n = 0, 1, 2, . . .

where Hn is a polynomial of degree n = 0, 1, 2, . . . called nth Hermite polynomial:

Hn(x) = (−1)nex2 dn

dxn
e−x2

n = 0, 1, 2, . . .

There are orthogonality relations:

∫

R

e−x2
Hn(x)Hm(x)dx = δnm2

nn!√π .

In QM this particular basis is important when one studies the physical system known
as the one-dimensional harmonic oscillator.

Applying the same procedure to f (x) := e−x/2 produces a basis of L2((0,+∞),

dx) given, up to normalisation, by Laguerre’s functions e−x Ln(x), n = 0, 1, . . ..
The polynomial Ln has degree n and goes under the name of nth Laguerre polyno-
mial. Laguerre polynomials are obtained from the formula:

Ln(x) = ex dn

dxn
(xne−x ) n = 0, 1, 2, . . .

Again, we have normalising relations:

∫

[0,+∞)

e−x Ln(x)Lm(x)dx = δnm(n!)2 .

In QM the basis of Laguerre functions is important when working with physical
systems having a spherical symmetry, like the hydrogen atom, for instance.
(5) Consider the separable Hilbert space L2(Rn, dx) (dx being the usual Lebesgue
measure on R

n). It is a renowned fact [Vla02] that real-valued smooth functions on
R

n with compact support (or complex-valued functions that decrease at infinity faster
than any negative power of |x |) are dense in L p(Rn, dx), 1 ≤ p < ∞. It falls out of
Proposition 3.31(b) that such subspaces contain bases of L2(Rn, dx).
(6) We will now construct the so-called Bargmann–Hilbert space, also known as
Bargmann–Fock space. This is a Hilbert space with a host of applications in QM and
Quantum Field Theory. Consider the following positive σ -additive measure defined
on Borel sets E ⊂ C, where χE is the characteristic function of E (χE (z) = 1 if
z ∈ E , χE (z) = 0 if z /∈ E):

μ(E) := 1

π

∫

C

χE (z)e−|z|2dzdz .
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Here, as is customary in this formalism, we denoted by dzdz the Lebesgue measure
of R

2 identified with C. A function f : C → C is entire if it is holomorphic
everywhere on C. Let H(C) be the space of entire functions. Take the subspace of
L2(C, μ) given by the intersection L2(C, μ) ∩ H(C) – where the elements of H(C)

represent equivalence classes of maps (as for L p spaces). It is far from obvious that
L2(C, μ) ∩ H(C) is a closed subspace of L2(C, μ), because it is not evident that a
sequence of entire functions converges, in L2(C, μ) sense, to an entire function (i.e.
the limit will be entire up to zero-measure sets). Bargmann, however, managed to
prove [Bar61] that

if f ∈ H(C), then
∫

C

| f (z)|2dμ(z) =
+∞∑

n=0

| fn|2 ≤ +∞ (3.29)

where:

fn = √
n!an with f (z) =

+∞∑

n=0

anzn . (3.30)

The power series in (3.30) is just the Taylor expansion of f : it converges absolutely
for any z ∈ C and uniformly on any compact set in C, and it exists by the mere
fact that f is entire. Notice that (3.29) establishes in particular that the positive-term
series on the right converges iff the integral of the left-hand-side function converges.
Hence f, g ∈ L2(C, μ)∩H(C) if and only if { fn}n∈N, {gn}n=1,2... ∈ �2(N) (Example
2.29(7)), in which case the polarisation formula (3.4) and (3.29) give:

∫

C

f (z)g(z)dμ(z) =
+∞∑

n=0

fngn . (3.31)

In the notation of (3.30), let us consider the map:

J : L2(C, μ) ∩ H(C) � f �→ { fn}n∈N ∈ �2(N) .

This linear, isometric (hence 1-1) transformation is actually surjective aswell. In fact,
since the series

∑
n∈N

|z|2n

(n!)2 converges for any z ∈ C, the Cauchy–Schwarz inequality
implies that the series:

∑

n∈N

cn√
n!

zn

√
n! =: f (z)

converges absolutely for any z ∈ C, provided {cn}n∈N ∈ �2(N) and if we define an
entire map f and J ( f ) = {cn}n∈N. Since �2(N) is complete we conclude that:

(a) the complex vector space B1 := L2(C, μ) ∩ H(C) is a Hilbert space, i.e. a
closed subspace of L2(C, μ),

(b) B1 is isomorphic to �2(N) under J (hence in particular separable),
(c) the system of entire maps {un}n∈N:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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un(z) = zn

√
n! for any z ∈ C, n ∈ N (3.32)

is a basis for B1.
B1 is called the Bargmann–Hilbert or Bargmann–Fock space.
To conclude we observe that all constructions have a straightforward gener-

alisation to n copies of C, giving the n-dimensional Bargmann space Bn :=
L2(Cn, dμn) ∩ H(Cn) where, for any Borel set E ∈ C

n:

μn(E) := 1

πn

∫

Cn

χE (z)e−∑n
k=1 |zk |2dz1dz1 ⊗ · · · ⊗ dzndzn ,

H(Cn) is the space of holomorphic maps in n variables on C
n and the integral is

computed in the product of the measures μ on each copy of C. �

3.3 Hermitian Adjoints and Applications

We examine here one of the most important notions of the theory of operators on a
Hilbert space that derives fromRiesz’s Theorem 3.16: (Hermitian) adjoint operators.
We have to stress that this concept can be extended to unbounded operators, but in this
section we consider only the bounded case. The general situation will be dealt with
extensively in a subsequent chapter. It is also worth recalling that a (related) notion
of adjoint operator (or conjugate operator) was given in Definition 2.45, without the
need of Hilbert structures. In the sequel we will not use the latter, exception made
for the occasional remark.

From amore abstract viewpoint, the Hermitian conjugation will give us the oppor-
tunity for introducing relevant mathematical notions in advanced formulations of
QM: we are talking about ∗-algebras, C∗-algebras and their representations.

3.3.1 Hermitian Conjugation, or Adjunction

Let (H1, ( | )1), (H2, ( | )2) be Hilbert spaces and T ∈ B(H1,H2) an operator. For
a given u ∈ H2, consider:

H1 � v �→ (u|T v)2 ∈ C . (3.33)

This map is certainly linear and bounded:

|(u|T v)2| ≤ ||u||2 ||T v||2 ≤ ||u||2 ||T || ||v||1 .

Hence it belongs to H′
1. By Riesz’s Theorem 3.16 there exists wT,u ∈ H1 such that

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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(u|T v)2 = (wT,u |v)1 , for any v ∈ H1 . (3.34)

Moreover, the map H2 � u �→ wT,u ∈ H1 is linear. In fact:

(wT,αu+βu′ |v)1 = (αu +βu′|T v)2 = α(u|T v)2 +β(u′|T v)2 = (αwT,u +βwT,u′ |v)1 ,

so, for any v ∈ H1,

0 = (wT,αu+βu′ − αwT,u − βwT,u′ |v)1 .

Choosing v := wT,αu+βu′ −αwT,u −βwT,u′ , we havewT,αu+βu′ −αwT,u −βwT,u′ = 0
hence

wT,αu+βu′ = αwT,u + βwT,u′

for any α, β ∈ C, u, u′ ∈ H2. Therefore there exists a linear operator:

T ∗ : H2 � u �→ wT,u ∈ H1 .

By construction T ∗ satisfies (u|T v)2 = (T ∗u|v)1 for any pair u ∈ H2, v ∈ H1, and
actually it is the unique linear operator with such property. If there were another
such B ∈ L(H2,H1), then (T ∗u|v)1 = (Bu|v)1 for any v ∈ H1. Consequently
((T ∗ − B)u|v)1 = 0 for any v ∈ H1. Choosing v := (T ∗ − B)u would give ||(T ∗ −
B)u||21 = 0, so T ∗u − Bu = 0. Since u ∈ H2 is arbitrary, T ∗ = B. Overall, we have
proved the following fact.

Proposition 3.36 Let (H1, ( | )1), (H2, ( | )2) be Hilbert spaces, and T ∈ B(H1,H2).
There exists a unique linear operator T ∗ : H2 → H1 such that:

(u|T v)2 = (T ∗u|v)1 , for any pair u ∈ H2, v ∈ H1. (3.35)

We are ready to define adjoint Hermitian operators. From now on we will drop the
adjective “Hermitian”, given that this textbook will never use non-Hermitian adjoint
operators as we said at the beginning.

Definition 3.37 Let (H1, ( | )1), (H2, ( | )2) be Hilbert spaces and T ∈ B(H1,H2).
The unique linear operator T ∗ ∈ L(H2,H1) fulfilling (3.35) is called the (Hermitian)
adjoint, or Hermitian conjugate to the operator T .

Recall that given a linear operator T : X → Y between vector spaces, Ran(T ) :=
{T (x) | x ∈ X} and K er(T ) := {x ∈ X | T (x) = 0} denote the subspaces of Y and
X called range (or image) and kernel (or null space) of T .

The operation of Hermitian conjugation enjoys the following elementary
properties.

Proposition 3.38 Let (H1, ( | )1), (H2, ( | )2) be Hilbert spaces and T ∈ B(H1,H2).
Then
(a) T ∗ ∈ B(H2,H1), and more precisely:
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||T ∗|| = ||T || , (3.36)

||T ∗T || = ||T ||2 = ||T T ∗|| . (3.37)

(b) The Hermitian conjugation is involutive:

(T ∗)∗ = T .

(c) If S ∈ B(H1,H2) and α, β ∈ C:

(αT + βS)∗ = αT ∗ + βS∗ , (3.38)

and if S ∈ B(H,H1), with H a Hilbert space:

(T S)∗ = S∗T ∗ . (3.39)

(d) We have:

K er(T ) = [Ran(T ∗)]⊥ , K er(T ∗) = [Ran(T )]⊥ . (3.40)

(e) T is bijective if and only if T ∗ is bijective, in which case (T ∗)−1 = (T −1)∗.

Proof From now on we will write || || to denote both || ||1 and || ||2, and similarly
for inner products. It will be clear from the context which is which.
(a) For any pair u ∈ H2, x ∈ H1 we have |(T ∗u|x)| = |(u|T x)| ≤ ||u|| ||T || ||x ||. By
choosing x := T ∗u we have in particular ||T ∗u||2 ≤ ||T || ||u|| ||T ∗u||, so ||T ∗u|| ≤
||T || ||u||. Hence T ∗ is bounded and ||T ∗|| ≤ ||T ||. Therefore it makes sense to
define (T ∗)∗, so ||(T ∗)∗|| ≤ ||T ∗||. This inequality becomes ||T || ≤ ||T ∗|| by (b)
(whose proof only uses the boundedness of T ∗). As ||T ∗|| ≤ ||T || and ||T || ≤ ||T ∗||,
equation (3.36) follows. Let us pass to (3.37). It suffices to prove the first identity,
since the second descends from the first one and (3.36), by (b) (which does not depend
on (a)). By Theorem 2.44(b), case (i), whose conclusion holds for S ∈ B(Y,X),
T ∈ B(Z,Y) with X,Y,Z normed, we have ||T ∗T || ≤ ||T ∗|| ||T || = ||T ||2. At the
same time:

||T ||2 = ( sup
||x ||≤1

||T x ||)2 = sup
||x ||≤1

||T x ||2 = sup
||x ||≤1

(T x |T x) .

By definition of adjoint and by Cauchy–Schwarz (on the last term) we obtain:

||T ||2 = sup
||x ||≤1

(T x |T x) = sup
||x ||≤1

|(T ∗T x |x)| ≤ sup
||x ||≤1

||T ∗T x || = ||T ∗T || .

Therefore ||T ∗T || ≤ ||T ||2 and ||T ||2 ≤ ||T ∗T ||, so ||T ∗T || = ||T ||2.
(b) This follows immediately from the uniqueness of the adjoint operator. By known
properties of the inner product and the definition of adjoint to T , in fact, we have:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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(v|T ∗u) = (T ∗u|v) = (u|T v) = (T v|u) .

(c) If u ∈ H2, v ∈ H1 then

(u|(αT + βS)v) = α(u|T v) + β(u|Sv) = α(T ∗u|v) + β(S∗u|v) = ((αT ∗ + βS∗)u|v) .

The adjoint’s uniqueness gives (3.38). If v ∈ H, u ∈ H2,

(u|(T S)v) = (T ∗u|Sv) = ((S∗T ∗)u|v) .

By uniqueness (3.39) holds.
(d) It is enough to prove the first identity, as the second one is a consequence of it and
of part (b). Since (T ∗u|v) = (u|T v), if v ∈ K er(T ) then (T ∗u|v) = 0 for any u ∈ H2,
so v ∈ [Ran(T ∗)]⊥. Conversely, still by (T ∗u|v) = (u|T v), if v ∈ [Ran(T ∗)]⊥ then
(u|T v) = 0 for any u ∈ H2. If we choose u := T v then T v = 0 and so v ∈ K er(T ).
(e) If T is bijective then T −1 is bounded by Banach’s inverse operator theorem.
Therefore (T −1)∗ exists. We have: T −1T = T T −1 = I . Using the second property
of (c) and remembering I ∗ = I , let us compute the adjoint of both sides: T ∗(T −1)∗ =
(T −1)∗T ∗ = I . These are equivalent to saying T ∗ is bijective and (T ∗)−1 = (T −1)∗.
Eventually, if T ∗ is bijective, then also (T ∗)∗ = T is bijective, by what we have just
seen and by (b). �

Remark 3.39 The relationship between Hermitian adjoints and conjugate operators
seen in Definition 2.45 goes as follows. Start with T ∈ B(H1,H2) and compute the
conjugate T ′ ∈ B(H′

2,H
′
1) and the adjoint T ∗ ∈ B(H2,H1). Then:

(T ∗y f |x)1 = (y f |T x)2 = (T ′ f )(x) for any f ∈ H′
2, x ∈ H1,

where f ∈ H′
2, while y f ∈ H2 is the element in H2 representing f under Riesz’s

Theorem 3.16. As x ∈ H1 is arbitrary, we may write:

T ′ f = (T ∗y f | )1 for any f ∈ H′
2. (3.41)

Given that the Riesz map H′
2 � f �→ y f ∈ H2 is bijective, the above equation

determines T ′ completely whenever T ∗ is given, and conversely. �

3.3.2 ∗-Algebras, C∗-Algebras, and ∗-Representations

Hermitian conjugation gives us an excuse for introducing one of the most useful
mathematical concepts in advanced formulations of QM, namely C∗-algebras (also
known as B∗-algebras). We shall return to this notion in Chap.8 to discuss the

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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spectral decomposition theorem, and in Chap.14, when we will deal with the so-
called algebraic formulation of quantum theories.

Definition 3.40 (C∗-algebra) LetA be a (commutative, Banach and unital) algebra
(normed by || ||) over the field C. A map ∗ : A → A such that:

I1. (antilinearity) (αx + βy)∗ = αx∗ + βy∗ for any x, y ∈ A, α, β ∈ C,
I2. (involutivity) (x∗)∗ = x for any x ∈ A,
I3. (xy)∗ = y∗x∗ for any x, y ∈ A,

is called an involution, and the structure (A,∗ ) is a ∗-algebra (respectively commu-
tative, Banach, unital, normed).

A Banach ∗-algebra (with unit) is a C∗-algebra (with unit) if, further:

||x∗x || = ||x ||2 . (3.42)

Given (unital) ∗-algebras A1 and A2, an algebra homomorphism f : A1 → A2 is a
∗-homomorphism if it preserves the involution: f (x∗1) = f (x)∗2 for any x ∈ A1 (∗1
is the involution of A1 and ∗2 the involution in A2) and also the units, if present. We
call f a ∗-isomorphism if it is additionally bijective. A ∗-isomorphism f : A1 → A2

is called ∗-automorphism when A1 = A2.
An element x in a ∗-algebra A (with unit I in cases (iii), (iv) below) is called:
(i) normal if xx∗ = x∗x ,
(ii) Hermitian or self-adjoint if x∗ = x ,
(iii) isometric if x∗x = I,
(iv) unitary if x∗x = xx∗ = I.

A ∗-subalgebra (C∗-subalgebra) of a ∗-algebra (C∗-algebra)A is the natural object:
a subalgebra that is a ∗-algebra (C∗-algebra) for the restricted involution (and for the
restricted Banach structure in case of a C∗-subalgebra). If the ∗-algebra (C∗-algebra)
has a unit, any ∗-subalgebra (C∗-subalgebra) with unit is required to have the same
unit of the ∗-algebra.

Remarks 3.41 (1) If A is a ∗-algebra (with unit), and {Ai }i∈I is a collection of ∗-
subalgebras (with unit), it is easy to see

⋂
i∈i Ai is a ∗-subalgebra (with unit) of

A. If we add the topological structure and {Ai }i∈I are C∗-subalgebras (with unit)
of the C∗-algebra (with unit) A, then

⋂
i∈i Ai is a C∗-subalgebra (with unit) of A.

Everything is completely obvious except possibly for the completeness of
⋂

i∈i Ai .
This follows directly from the fact it is closed, hence complete, being an intersection
of closed (complete) sets Ai .
(2) If S ⊂ A is a subset in a (unital) ∗-algebra A, the (unital) ∗-algebra generated
by S is the intersection of all (unital) ∗-subalgebras in A that contain S. The same
holds for (unital) C∗-algebras, mutatis mutandis.
(3) It is easy to prove that the inverse map of a ∗-isomorphism is a ∗-isomorphism as
well.

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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(4) The definition of involution ∗ andC∗-algebra can be stated, almost identically, for
(associative) algebras overR instead ofC. The only difference is that the involution is
R-linear and satisfies I2 and I3. This bookwill only dealwith the complex versions.�

Sometimes a ∗-homomorphism is defined as a linear map preserving products and
involutions, but not necessarily units (when present), contrarily to our assumption.
However the following elementary result holds.

Proposition 3.42 Let A1,A2 be unital ∗-algebras and consider a linear map φ :
A1 → A2 that preserves the products and the involutions. If φ is surjective, then it
is a ∗-homomorphism.

Proof It is sufficient to establish that φ preserves unit elements. With the obvious
notation, φ(a) = φ(I1a) = φ(I1)φ(a) for every a ∈ A1. Since φ : A1 → A2 is
surjective, there exists a1 ∈ A1 such that φ(a1) = I2, so I2 = φ(a1) = φ(I1)φ(a1) =
φ(I1)I2 = φ(I1). �

Remark 3.43 Note that the proof remains valid irrespective of the involutions: a
product-preserving surjective linear map between unital algebras must also preserve
the units. �

Before we return to B(H), let us see a few general features of ∗-algebras (and C∗-
algebras) that descend from the definition.

Proposition 3.44 Let A be a ∗-algebra with involution ∗.
(a) If (A, || ||) is a C∗-algebra and x ∈ A is normal, then for any m = 1, 2, . . .:

||xm || = ||x ||m .

(b) If (A, || ||) is a C∗-algebra and x ∈ A,

||x∗|| = ||x || .

(c) If A has unit I, then I
∗ = I. Moreover, x ∈ A has an inverse if and only if x∗ has

an inverse, in which case (x−1)∗ = (x∗)−1.

Proof (a) If ||x || = 0 the claim is trivial, so assume x 
= 0. A repeated use of (3.42),
I2, I3 and the fact that xx∗ = x∗x gives:

||x2||2 = ||(x2)∗x2|| = ||(x∗)2x2|| = ||(x∗x)∗(x∗x)|| = ||x∗x ||2 = (||x ||2)2

whence ||x2|| = ||x ||2 by norm positivity. Iterating we obtain ||x2k || = ||x ||2k
for

any natural number k. If m = 3, 4, . . . there exist two natural numbers n, k with
m + n = 2k , so:

||x ||m ||x ||n = ||x ||n+m = ||xn+m || ≤ ||xm || ||xn|| ≤ ||xm || ||x ||n ≤ ||x ||m ||x ||n .
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But then all inequalities are equalities, so in particular:

||xm || ||x ||n = ||x ||m ||x ||n,

dividing which by ||x ||n (non-zero since x 
= 0 and || · || is a norm) proves the claim.
(b) Equation (3.42) implies ||x ||2 = ||xx∗|| ≤ ||x || ||x∗|| so ||x || ≤ ||x∗||. Similarly
||x∗|| ≤ ||(x∗)∗||, and then (x∗)∗ = x concludes this part.
(c) II

∗ = I
∗ by definition of unit; on the other hand II

∗ = (I∗)∗I∗ = (I∗
I)∗. From

these two descends I
∗ = (I∗

I)∗ = (I∗)∗ = I. The other statement follows from this,
I2 and the uniqueness of the inverse. �

It is easy to construct a C∗-algebra out of a family of C∗-algebras with the following
procedure.

Proposition 3.45 Let {A j } j∈J be a family of C∗-algebras, not necessarily unital,
where J has arbitrary cardinality. Consider the set

⊕
j∈J A j ⊂ × j∈JA j of families

{a j } j∈J , such that ∣
∣
∣
∣{a j } j∈J

∣
∣
∣
∣ := sup

j∈J
||a j || j < +∞ . (3.43)

Equip
⊕

j∈J A j with a ∗-algebra structure by declaring (with obvious notation)
(i) α{a j } j∈J + β{a′

j } j∈J := {αa j + βa′
j } j∈J with α, β ∈ C,

(ii) {a j } j∈J ◦ {a′
j } j∈J := {a j ◦ j a′

j } j∈J ,

(iii) {a j }∗j∈J := {a∗ j

j } j∈J ,
Under these assumptions, (3.43) defines a norm making

⊕
j∈J A j a C∗-algebra. If

every A j is unital, I := {I j } j∈J is the unit of this C∗-algebra.

Proof The argument is straightforward. The completeness of
⊕

j∈J A j as a Banach
space is essentially the same as the completeness of C(K, K

n) (Proposition 2.18) or
any other space of C-valued, bounded functions. The C∗ relation

∣
∣
∣
∣{ak}∗k∈J ◦ {a j } j∈J

∣
∣
∣
∣ = ∣

∣
∣
∣{a j } j∈J

∣
∣
∣
∣2

descends immediately from the C∗ property of each C∗-algebra A j and the given
definitions. �

Definition 3.46 The C∗-algebra
⊕

j∈J A j constructed in Proposition 3.45 is called
direct sum of the family ofC∗-algebras {A j } j∈J . An element of

⊕
j∈J A j is denoted

by ⊕ j a j := {a j } j∈J .

Remark 3.47 The structure of a C∗-algebra is remarkable in that its topological and
algebraic properties are deeply intertwined. We will prove later (Corollary 8.18)
that a ∗-homomorphism φ : A → B between unital C∗-algebras is automatically
continuous, because ||φ(a)||B ≤ ||a||A for any a ∈ A. Moreover, φ is isometric, i.e.
||φ(a)||B = ||a||A for any a ∈ A, if and only if it is injective (Theorem 8.22). �
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Examples 3.48 (1)TheBanach algebras of complex-valued functions seen in Exam-
ples 2.29(2), (3), (4), (8) and (9) are all instances of commutative C∗-algebras whose
involution is the complex conjugation of functions.
(2) By virtue of (a), (b), (c) in Proposition 3.38 we have this result.

Theorem 3.49 IfH is Hilbert space,B(H) is a C∗-algebra with unit if the involution
is defined as the Hermitian conjugation.

(3) The algebra H of quaternions is a 4-dimensional real vector space with a priv-
ileged basis {1, i, j, k}. It is equipped with a product that turns it into an R-algebra
with unit, given by the basis element 1. The product is determined, keeping in mind
Definition 2.24, by the relations i i = j j = kk = −1, i j = − j i = k, jk = −k j = i ,
ki = −ik = j .

As R identifies naturally with the Abelian subalgebra of elements the form a1,
a ∈ R, the algebra H can be viewed as a real normed algebra with unit: it is enough
to think real numbers as quaternions, and define the product of a real scalar by a
quaternion using the product in H. The norm is the usual Euclidean norm for the
standard basis of H, namely ||a1+bi + cj +dk|| := √

a2 + b2 + c2 + d2. It is easy
to check that H becomes thus a real Banach algebra with unit. Although the ground
field is R, it is possible to define an involution on H via quaternionic conjugation:
(a1+bi+cj+dk)∗ = a1−bi−cj−dk, witha, b, c, d ∈ R. Then the usual properties
of involutions hold (the field is real, so the involution is R-linear), in relation to the
norm too, and also the property typical of C∗-algebras: ||a∗a|| = ||a||2. Product and
norm are linked by the rule ||ab|| = ||a|| ||b||, a, b ∈ H, reminiscent of the modulus
on C and the absolute value on R. A further property, shared by R and C as well,
is that the quaternion algebra is a real associative division algebra: an associative
algebra with multiplicative unit different from the additive neutral element where
any non-zero element is invertible.

A concrete representation of H is given by the real subalgebra of M(2, C)

(2 × 2 complex matrices) spanned over R by the identity I and the three Pauli
matrices −iσ1,−iσ2,−iσ3: these correspond to the quaternionic units 1 and i, j, k
(see Remark 7.28(3)).

HenceH is also a (non-commutative)division ring, that is a non-trivial ringwhere
every non-zero element admits a multiplicative inverse. A commutative division ring
is obviously a field, just like R and C.

In 1887 Frobenius proved what has become a classical result.

Theorem 3.50 (Frobenius) A finite-dimensional associative division algebra over
R is necessarily isomorphic to R, C or H.

Amuchmore recent result [UrWr60], extending aprevious classical result byHurwitz
(where also a finite dimension was assumed), replaces finite-dimensionality for a
demand on the norm.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Theorem 3.51 An associative, unital normed division algebra A over R such that
||ab|| = ||a|| ||b||, a, b ∈ A, is necessarily isometrically isomorphic to R, C or H.

Such A is therefore finite-dimensional, Banach and can be turned into a real C∗-
algebra using the isomorphism. If one demands ||ab|| = ||a|| ||b|| in the finite-
dimensional case, as established by Hurwitz (and published posthumously in 1923),
dropping associativity adds to the list only one other instance, the Cayley numbers,
also known as octonions. The infinite-dimensional non-associative case ismore com-
plicated [UrWr60]. �
To conclude the section let us see a very relevant definition in advanced formalisations
of, for example, quantum field theories. We will come back to these notions later,
especially in Chap.14.

Definition 3.52 LetA be a ∗-algebra (not necessarily unital, nor C∗) andH a Hilbert
space. A ∗-homomorphism π : A → B(H) is called a representation of A on H.
(Note π preserves units if present.) Furthermore, one says that
(a) π is faithful if it is one-to-one;
(b) a subspace M ⊂ H is invariant under π (or π -invariant) if π(a)(M) ⊂ M for
any a ∈ A.
(c) π is irreducible if there are no π -invariant closed subspaces other than {0} and
H itself.
(d) If π ′ : A → B(H′) is another representation of A on H′, π and π ′ are said to be
unitarily equivalent:

π � π ′

if there exists a surjective isometry U : H → H′ such that:

Uπ(a)U−1 = π ′(a) for any a ∈ A.

(e) A vector ψ ∈ H is called cyclic for π if {π(a)ψ | a ∈ A} = H.

Remarks 3.53 (1) One can also consider representations of ∗-algebras in terms of
unbounded operators and operators defined on a common invariant domain of the
Hilbert space.
(2) In case A is a C∗-algebra with unit, every representation is automatically con-
tinuous with respect to the norm of A on the domain and the operator norm on
the codomain, as ||π(a)|| ≤ ||a|| for any a ∈ A. Then π is faithful iff isometric:
||π(a)|| = ||a|| for any a ∈ A. All this will be proved in Theorem 8.22.
(3) With our definition of representation, the map A � a �→ 0 is a representation
called the zero representation (also known as the trivial representation) in two
cases only: either the ∗-algebra A has no unit, or H = {0}. This is because our def-
inition requires π(I) = I , but I 
= 0 when H 
= {0}. If one drops the requirement
π(I) = I in the definition of a representation, the zero representation makes sense
also for unital ∗-algebras and H 
= {0}. �

Here is an elementary yet important fact.

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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Proposition 3.54 If π : A → B(H) is an irreducible representation of a ∗-algebra
A with unit on H 
= {0}, then every non-zero vector in H is cyclic for π .

Proof If ψ 
= 0, define Mψ := {π(a)ψ | a ∈ A}. Since every π(b) is bounded,
necessarily π(b)(Mψ) ⊂ Mψ for every b ∈ A, and therefore either Mψ = H or
Mψ = {0} because π is irreducible. The second case is excluded, as it would imply
π(a) = 0 for every a ∈ A and in particular π(I) = 0 
= I (because H 
= {0}) which
is impossible by definition of representation of unital ∗-algebra. �

Definition 3.52 explicitly requires that a representation map the unit of the algebra
to the identity operator: π(I) = I . The reader should pay attention to this fact, since
some books do not imposeπ(I) = I when defining representations of ∗-algebraswith
unit (see Proposition 3.42 for the analogous issue regarding ∗-homomorphisms). The
two inequivalent definitions are related by the following elementary result, whose
proof requires the mathematical technology presented in Sect. 3.4 and which appears
in the solution of Exercise 3.32.

Proposition 3.55 Let A be a ∗-algebra with unit, H a Hilbert space, and consider a
linear map φ : A → B(H) which preserves the products and the involutions. Then
(a) Hφ := Ran(φ(I)) and H⊥

φ are closed subspaces of H satisfying H = Hφ ⊕ H⊥
φ ,

and each one is invariant under φ(a) for every a ∈ A.
(b) φ(a)�H⊥

φ
= 0 for every a ∈ A.

(c) The restriction to the complement

πφ : A � a �→ φ(a)�Hφ
∈ B(Hφ)

is a representation of A over Hφ according to Definition 3.52. It also satisfies

(i) πφ is faithful ⇔ φ is injective;
(ii) πφ is the zero representation ⇔ φ(I) = 0 (in this case Hφ = {0});

(iii) πφ = φ if φ is surjective;
(iv) πφ = φ if φ is not the zero map and is irreducible (i.e. there are no closed

subspaces {0} � M � H such that φ(a)(M) ⊂ M for every a ∈ A).

Proof See the solution of Exercise 3.32. �

3.3.3 Normal, Self-Adjoint, Isometric, Unitary and Positive
Operators

Returning to the C∗-algebra B(H) (or more generally to B(H,H1)), we recall the
most important types of operators we will encounter in subsequent chapters.

Definition 3.56 Let (H, (|)), (H1, (|)1) beHilbert spaces and IH, IH1 their respective
identity operators.
(a) T ∈ B(H) is said to be normal if TT∗ = T ∗T .
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(b) T ∈ B(H) is self-adjoint if T = T ∗.
(c) T ∈ L(H,H1) is isometric if bounded and T ∗T = IH; equivalently, T ∈
L(H,H1) is isometric if (T x |T y)1 = (x |y) for any pair x, y ∈ H.
(d) T ∈ L(H,H1) is unitary if bounded, T ∗T = IH and T T ∗ = IH1 ; equivalently,
T ∈ L(H,H1) is unitary if it is isometric and onto, i.e. an isomorphism of Hilbert
spaces.
(e) T ∈ L(H) is positive, written T ≥ 0, if (u|T u) ≥ 0 for any u ∈ H.
(f) If U ∈ L(H), we write T ≥ U in case T − U ≥ 0.

Remarks 3.57 (1) Let us comment on the equivalence in (c): if T ∈ B(H,H1)

and T ∗T = IH, then (T x |T y)1 = (x |y) for any pair x, y ∈ H, since (x |y) =
(x |T ∗T y) = (T x |T y)1. On the other hand, if T ∈ L(H,H1) and (T x |T y)1 = (x |y)

for any x, y ∈ H, then T is bounded (set y = x), so T ∗ is well defined. At last
T ∗T = IH, because (x |T ∗T y) = (T x |T y)1 = (x |y) for any pair x, y ∈ H, so in
particular (x |(T ∗T − I )y) = 0 with x = (T ∗T − I )y.

As for the equivalence in (d), notice that any isometric operator T is obviously
injective, for T u = 0 implies ||u|| = 0 and hence u = 0. Thus surjectivity is
equivalent to the existence of a right inverse that coincides with the left inverse (the
latter exists by injectivity, and equals T ∗). From this it follows immediately that
T ∗T = IH and T T ∗ = IH1 are together equivalent to saying that T ∈ L(H,H1) is
isometric (hence bounded) and surjective. Our definition of a unitary operator agrees
with Definition 3.10.
(2) There exist isometric operators inB(H) that are not unitary (this cannot happen
if H has finite dimension). For instance, the operator on �2(N):

A : (z0, z1, z2, . . .) �→ (0, z0, z1, , . . .) ,

for any (z0, z1, z2, . . .) ∈ �2(N).
(3) Unitary and self-adjoint operators in B(H) are normal, but not conversely in
general. �

To close the section we consider properties of normal, self-adjoint, unitary and pos-
itive operators on one Hilbert space. First, though, a definition that should be known
from elementary courses.

Definition 3.58 Let X be a vector space over K = C, or R, and take T ∈ L(X). The
number λ ∈ K is an eigenvalue of T if:

T u = λu (3.44)

for some u ∈ X \ {0} called an eigenvector of T relative (or associated) to λ.
The subspace of X made of the null vector and all eigenvectors relative to a given
eigenvalue λ is called the eigenspace of T with eigenvalue λ (of, associated to,
relative to λ).
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Notation 3.59 Only to avoid cumbersome and long sentences we shall also adopt
the terms λ-eigenvector and λ-eigenspace for eigenvectors and eigenspaces relative
to a given eigenvalue λ. �

Now here is the proposition summarising the aforementioned properties.

Proposition 3.60 Let (H, ( | )) be a Hilbert space.
(a) If T ∈ B(H) is self-adjoint:

||T || = sup {|(x |T x)| | x ∈ H , ||x || = 1} . (3.45)

More generally, if T ∈ L(H) satisfies (x |T x) = (T x |x) for any x ∈ H and the
right-hand side of (3.45) is finite, then T is bounded.
(b) If T ∈ B(H) is normal (in particular self-adjoint or unitary):

(i) λ ∈ C is an eigenvalue of T with eigenvector u ⇔ λ is an eigenvalue for T ∗
with the same eigenvector u;

(ii) eigenspaces of T relative to distinct eigenvalues are orthogonal;
(iii) the relation:

||T x || = ||T ∗x || for any x ∈ H (3.46)

holds, so K er(T ) = K er(T ∗) and Ran(T ) = Ran(T ∗).
(c) Let T ∈ L(H):

(i) if T is positive, its possible eigenvalues are real and non-negative;
(ii) if T is bounded and self-adjoint, its possible eigenvalues are real;
(iii) if T is isometric (in particular unitary), its possible eigenvalues are unit

complex numbers.
(d) If T ∈ L(H) satisfies (y|T x) = (T y|x) for any pair x, y ∈ H, then T is bounded
and self-adjoint.
(e) If T ∈ B(H) satisfies (x |T x) = (T x |x) for any x ∈ H, T is self-adjoint.
(f) If T ∈ B(H) is positive, it is self-adjoint.
(g) The relation ≥ is a partial order on L(H) (hence on B(H)).

Proof (a) Set Q := sup {|(x |T x)| | x ∈ H , ||x || = 1}. Since we take ||x || = 1

|(x |T x)| ≤ ||T x ||||x || ≤ ||T x || ≤ ||T || ,

hence Q ≤ ||T ||. To conclude it suffices to show ||T || ≤ Q. The immediate identity

4(x |T y) = (x + y|T (x + y))−(x − y|T (x − y))− i(x + iy|T (x + iy))+ i(x − iy|T (x − iy)) ,

together with the fact that (z|T z) = (T z|z) = (z|T z), allow to rephrase 4Re(x |T y)

= 2(x |T y) + 2(x |T y) as:

4Re(x |T y) = (x + y|T (x + y)) − (x − y|T (x − y)) ≤ Q||x + y||2 + Q||x − y||2

= 2Q||x ||2 + 2Q||y||2 .
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Thus we proved:
4Re(x |T y) ≤ 2Q||x ||2 + 2Q||y||2 .

Let y ∈ H, ||y|| = 1. If T y = 0, it is clear that ||T y|| ≤ Q; otherwise, define
x := T y/||T y|| and we obtain the above inequality:

4||T y|| = 4Re(x |T y) ≤ 2Q(||x ||2 + ||y||2) = 2Q(1 + 1) = 4Q,

from which ||T y|| ≤ Q once again. Overall, ||T y|| ≤ Q if ||y|| = 1, so

||T || = sup{||T y|| | y ∈ H , ||y|| = 1} ≤ Q .

The more general statement follows from the second part of the above proof (||T || ≤
Q).
(b)(iii). The claim follows from the observation that T T ∗ = T ∗T implies ||T x ||2 =
(T x |T x) = (x |T ∗T x) = (x |T T ∗x) = ||T ∗x ||2. The remaining identities are now
obvious, in the light of Proposition 3.38(d). Let us prove (i). As T − λI is normal
with adjoint T ∗ − λI , (iii) gives

||T u − λu|| = ||T ∗u − λu||

and the claim is proved. (ii) Let u be a λ-eigenvector of T , v a μ-eigenvector of T .
By (i), λ(v|u) = (v|T u) = (T ∗v|u) = (μv|u) = μ(v|u), so (λ − μ)(v|u) = 0. But
λ 
= μ, so (v|u) = 0.
(c) If T ≥ 0 and T u = λu with u 
= 0, then 0 ≤ (u|T u) = λ(u|u), and since
(u|u) > 0, λ ≥ 0. Let now T = T ∗ and T u = λu with u 
= 0. Then λ(u|u) =
(u|T u) = (T u|u) = λ(u|u). From (u|u) 
= 0 we have λ = λ, i.e. λ ∈ R. If, instead,
T is isometric, (u|u) = (T u|T u) = |λ|2(u|u), so |λ| = 1 as u 
= 0.
(d) It is enough to prove T is bounded. The adjoint’s uniqueness implies that T = T ∗
because (y|T x) = (T y|x) for any pair x, y ∈ H. By the closed graph Theorem 2.99,
to prove T boundedwe can just show it is closed. Let then {xn}n∈N ⊂ H be a sequence
converging to x and suppose the vectors T xn form a converging sequence: the claim
is T xn → T x . Given y ∈ H, our assumptions imply

(y|T xn) = (T y|xn) → (T y|x) = (y|T x) .

The inner product is continuous, and by hypothesis limn→+∞ T xn exists, so

(
y

∣
∣
∣
∣ lim
n→+∞ (T x − T xn)

)
= 0 .

Given that y is arbitrary, by choosing precisely y := limn→+∞ (T x − T xn)weobtain
limn→+∞ (T x − T xn) = 0.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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(e)–(f) We have ((T ∗ − T )x |x) = 0 for any x ∈ H. By Exercise 3.21 T ∗ − T = 0 i.e.
T = T ∗. If T ∈ B(H) is positive, then (x |T x) is real and coincides with its complex
conjugate (T x |x) (by the properties of the inner product), so we fall back into the
previous case.
(g) We have to prove three things. (i) T ≥ T : this is obvious because it means
((T − T )x |x) ≥ 0 for any x ∈ H. (ii) if T ≥ U and U ≥ S then T ≥ S:
this is immediate by noting T − S = (T − U ) + (U − S), so ((T − S)x |x) =
((T − U )x |x) + ((U − S)x |x) ≥ 0 for any x ∈ H, since T ≥ U and U ≥ S. (iii) if
T ≥ U and U ≥ T then T = U . For this last one notice (x |(T − U )x) = 0 for any
x ∈ H. Exercise 3.21 forces T − U = 0, so T = U . �

Remark 3.61 On real Hilbert spaces the relation ≥ is not a partial order, because
A ≥ 0 and 0 ≥ A do not imply A = 0. For example consider a skew-symmetric
matrix A acting on R

n (seen as real vector space with the ordinary inner product).
Then A ≥ 0 and also 0 ≥ A, since (x |Ax) = 0 for any x ∈ R

n , but A can be very
different from the null matrix. �

3.4 Orthogonal Structures and Partial Isometries

In this section we introduce further mathematical structures related to the notions of
isometry and orthogonality in a Hilbert space.

3.4.1 Orthogonal Projectors

The elementary notion we wish to introduce is that of orthogonal projectors, which
will play a role to construct the formalism of QM.

Definition 3.62 (Orthogonal projector) If (H, ( | )) is a Hilbert space, a projector
P ∈ B(H) (Definition 2.100) is called an orthogonal projector if P∗ = P .

Remark 3.63 With this in place, orthogonal projectors are precisely the bounded
operators H → H defined by P = PP (P is idempotent) and P = P∗ (P is self-
adjoint). An immediate consequence is their positivity: for any x ∈ H

(u|Pu) = (u|P Pu) = (P∗u|Pu) = (Pu|Pu) = ||Pu||2 ≥ 0 . �

The next couple of propositions characterise orthogonal projectors.

Proposition 3.64 Let H be a Hilbert space and P ∈ B(H) an orthogonal projector
onto a subspace M (necessarily closed by Proposition 2.101(b)). Then
(a) Q := I − P is an orthogonal projector.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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(b) Q(H) = M⊥, so the direct sum decomposition associated to P and Q, as of
Proposition 2.101(b), is given by M and its orthogonal M⊥:

H = M ⊕ M⊥ .

(c) For any x ∈ H, ||x − P(x)|| = min{||x − y|| | y ∈ M}.
(d) If N is a basis on M, then:

Px =
∑

u∈N

(u|x)u , x ∈ H .

(e) I ≥ P; moreover, ||P|| = 1 if P is not the null operator (the projector onto {0}).
Proof (a) We know already that Q := I − P is a projector (Proposition 2.4). By
Proposition 3.38(c), since I ∗ = I , we have Q∗ = Q, so Q is an orthogonal projector.
(b) By Proposition 2.101(b) it is enough to show Q(H) = M⊥. For that notice that
if x ∈ Q(H) and y ∈ M, then (x |y) = (Qx |y) = (x |Qy) = (x |y − Py) =
(x |y − y) = 0, so Q(H) ⊂ M⊥. We claim M⊥ ⊂ Q(H), hence M⊥ = Q(H). By
Proposition 2.101, we have a direct sum:

H = M ⊕ Q(H)

At the same time Theorem 3.13(d) gives the (orthogonal) decomposition:

H = M ⊕ M⊥ .

If y ∈ M⊥, the first decomposition induces y = yM + z with yM ∈ M and z ∈ Q(H).
As we saw, Q(H) ⊂ M⊥, so the uniqueness of the above splitting implies that
y = yM + z must also be the decomposition of y induced by H = M ⊕ M⊥. Thus
yM ∈ M and z ∈ M⊥. Then by assumption yM = 0, and y = z ∈ Q(H). Since
y ∈ M⊥ is arbitrary, we have proved M⊥ ⊂ Q(H).
(c) The statement is a straightforward consequence of Theorem 3.13(d) when K :=
M, because the decomposition is unique.
(d) We may extend N to a basis of H by adding a basis N ′ ofM⊥ (in fact N ∪ N ′ is
an orthonormal system by construction; moreover, part (b) gives H = M ⊕ M⊥, so
any x ∈ H orthogonal to both N and N ′ must be null. Then, by definition, N ∪ N ′
is basis for H.) We can immediately verify that, varying x ∈ H,

Rx =
∑

u∈N

(u|x)u

and
R′x =

∑

u∈N ′
(u|x)u

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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define bounded operators (at most countably many products (u|x) are non-zero for
every fixed x ∈ H), and they satisfy R R = R, R(H) = M, R′ R′ = R′, R′(H) = M⊥
and also R′ R = R R′ = 0 and R + R′ = I . By Proposition 2.101 R and R′ are
projectors associated toM⊕M⊥. By uniqueness of the decomposition of any vector
we must have R = P (and R′ = Q).
(e) Q = I − P is an orthogonal projector such that:

0 ≤ (Qx |Qx) = (x |Q Qx) = (x |Qx) = (x |I x) − (x |Px) ,

for any x ∈ H. This means I ≥ P . What we have just seen also implies

||Px ||2 = (Px |Px) = (x |P Px) = (x |Px) ≤ (x |x) = ||x ||2 .

Therefore taking the supremum over all x with ||x || = 1 yields ||P|| ≤ 1. If P 
= 0,
there will be a unit vector x ∈ H so that Px = x , hence ||Px || = 1. If so, ||P|| = 1.
�

Proposition 3.65 Let H be a Hilbert space and M ⊂ H a closed subspace. The
projectors P and Q that decompose H = M ⊕ M⊥ as in Proposition 2.102 (with
N := M⊥), and project onto M and M⊥ respectively, are orthogonal.

Proof It is enough to prove P = P∗. That Q = Q∗ follows from Q = I − P .
If x ∈ H we have a unique decomposition x = y + z, y = P(x) ∈ M and

z = Q(x) ∈ M⊥. Let x ′ = y′ + z′ be the analogous splitting of x ′ ∈ H. Then
(x ′|Px) = (y′ + z′|y) = (y′|y). We also have (Px ′|x) = (y′|y + z) = (y′|y),
hence (x ′|Px) = (Px ′|x) i.e. ((P∗ − P)x ′|x) = 0 for any x, x ′ ∈ H. By choosing
x = (P∗ − P)x ′ we obtain Px ′ = P∗x ′ for any x ′, so P = P∗. �

Our last result characterises commuting orthogonal projections.

Proposition 3.66 Two orthogonal projectors P 
= 0 and P ′ 
= 0 on a Hilbert space
H commute,

P P ′ = P ′ P,

if and only if there exists a Hilbert basis N of H such that, for every fixed x ∈ H:

Px =
∑

u∈NP

(u|x)u and, simultaneously, P ′x =
∑

u∈NP′

(u|x)u,

for some pair of subsets NP , NP ′ ⊂ N.

Proof If Px = ∑
u∈NP

(u|x)u and P ′ = ∑
u∈NP′ (u|x)u for subsets NP , NP ′ ⊂ N ,

where N is a basis inH, then trivially P P ′ = P ′ P , as a direct computation, involving
the orthogonality relations of u ∈ N , shows. Conversely, assume P P ′ = P ′ P . If
M := P(H), it is not hard to see P ′(M) ⊂ M and P ′(M⊥) ⊂ M⊥. Moreover, P ′�M

and P ′�M⊥ are orthogonal projectors on Hilbert spaces M and M⊥ respectively, and

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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in addition P ′ = P ′�M ⊕P ′�M⊥ , corresponding to H = M ⊕ M⊥. By Proposition
3.64(d) (as any orthonormal system can be completed to a basis) we can fix bases
NM of M and NM⊥ of M⊥ such that, for suitable subsets N ′

M ⊂ NM , N ′
M⊥ ⊂ NM⊥ ,

with obvious notation,

P ′�M=
∑

u∈N ′
M

u(u| ) , P ′�M⊥=
∑

v∈N ′
M⊥

v(v| ) .

Therefore
P ′ = P ′�M ⊕P ′�M⊥=

∑

w∈N ′
M ∪N ′

M⊥

w(w| ) .

By construction, from H = M ⊕ M⊥ we have that NM ∪ NM⊥ is a basis of H, and

Px =
∑

w∈NM

(w|x)w , x ∈ H

again from Proposition 3.64(d). The basis N := NM ∪ NM⊥ ofH satisfies the require-
ments once we set NP := NM and NP ′ := N ′

M ∪ N ′
M⊥ . �

3.4.2 Hilbert Sum of Hilbert Spaces

The notion of direct Hilbert sum of a family of Hilbert spaces plays a relevant role
in many technical constructions. We discuss here the most general case where the
family’s cardinality may be arbitrary.

Definition 3.67 (Hilbert sum of Hilbert spaces) Let {(H j , (·|·) j } j∈J be a family of
arbitrary cardinality of Hilbert spaces H j 
= {0} for every j ∈ J .

The (direct orthogonal) Hilbert sum of the Hilbert spaces H j is the Hilbert
space

⊕
j∈J H j formed by families of vectors {ψ j } j∈J ∈ × j∈JH j such that

∑

j∈J

||ψ j ||2j < +∞ (3.47)

(in the sense of Definition 3.19). The linear structure is defined by

α{ψ j } j∈J + β{φ j } j∈J := {αψ j + βφ j } j∈J α, β ∈ C ,

and the inner product:

({ψ j } j∈J

∣
∣{φ j } j∈J

) :=
∑

j∈J

(ψa |φa ) j . (3.48)
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An element {ψ j } j∈J ∈ ⊕ j∈JH j is denoted by ⊕ j∈J ψ j .

Remark 3.68 (1) We shall typically use the same symbol
⊕

α∈A Hα for both the
ordinary direct sum and the Hilbert sum, since the nature of the structure in question
will be clear from the context.
(2) In the finite case J = {1, . . . , n}, the simpler notation

H1 ⊕ · · · ⊕ Hn :=
⊕

j∈J

H j

and
ψ1 ⊕ · · · ⊕ ψn := ⊕ j∈J ψ j

are more common.
(3)When J is finite, condition (3.47) is automatically true, soH1⊕· · ·⊕Hn coincides
with the product H1 × · · · × Hn equipped with the natural component-wise linear
structure and the standard inner product

(v1 ⊕ · · · ⊕ vn|u1 ⊕ · · · ⊕ un) :=
n∑

i=1

(vi |ui )i

which makes it a Hilbert space. It is easy to show that the topology of Hilbert space
on H1 × · · · × Hn coincides with the product topology of the factors Hi . �

Irrespective of the cardinality of J in Definition 3.67, we have

Proposition 3.69 The Hilbert space
⊕

j∈J H j is well defined.

Proof First of all, if vectors⊕ j∈J ψ j ,⊕ j∈J φ j satisfy (3.47), their inner product (3.48)
is well defined (it complies with Definition 3.1). This is because there are at most
countably many non-vanishing pairs (ψ jn , ψ jn ), so the Cauchy–Schwarz inequality
can be exploited to achieve

∑

j∈J

|(ψ j |φ j ) j | =
∑

n∈N
|(ψ jn |φ jn ) jn | ≤

∑

n

||ψ jn || jn ||φ jn || jn ≤
√∑

j∈J

||ψ j ||2j
∑

i∈J

||φi ||2i < +∞ .

In particular, the sum (3.48), which is actually a series (or a finite sum), converges
absolutely and can be rearranged.

The only nontrivial fact to check is the completeness of
⊕

j∈J H j , so let us prove it.
Consider a Cauchy sequence {⊕ j∈J ψ jn}n∈N. Since

∑
j∈J ||ψ jn||2j < +∞ for every

n, there is only a finite or countable set of indices j with ψ jn 
= 0 for every fixed n.
Hence the full set of j ∈ J such that ψ jn 
= 0 for some n ∈ N is at most countable,
and we call them jk with k ∈ N (the finite case being a trivial subcase). Thus we
reduce to dealing with a countable family {ψ jk n}n,k∈N. The remaining vectors ψ jn

necessarily vanish. For every ε > 0 there exists Nε with
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|| ⊕ j∈J ψ jn − ⊕ j∈J ψ jm ||2 =
∑

k∈N
||ψ jk n − ψ jk m ||2 < ε2 (3.49)

for n, m > Nε. In particular, for a fixed k, we have ||ψ jk n−ψ jk m ||2 < ε2 if n, m > Nε.
Since H jk is complete, ψ jk n → ψ jk ∈ H jk as n → +∞ and, from (3.49),

N∑

k=0

||ψ jk n − ψ jk m ||2 < ε2 (3.50)

Taking first the limit as m → ∞ and then as N → +∞ in (3.50) we find

|| ⊕ j∈J ψ jn − ⊕ j∈J ψ j ||2 =
∑

k∈N
||ψ jk n − ψ jk ||2 < ε2 (3.51)

for n > Nε, where we defined ⊕ j∈J ψ j to have components ψ jk , or ψ j = 0 when
j /∈ { jk}k∈N. Condition (3.51) proves that ⊕ j∈J ψ jn → ⊕ j∈J ψ j as n → +∞
provided ⊕ j∈J ψ j ∈ ⊕

j∈J H j . This is the case because:

∑

j∈J

||ψ j ||2 =
∑

k∈N
||ψ jk ||2 ≤

∑

k∈N
(||ψ jk n|| + ||ψ jk n − ψ jk ||)2

≤
∑

k∈N
||ψ jk n||2 +

∑

k∈N
||ψ jk n − ψ jk ||2 + 2

∑

k∈N
||ψ jk n|| ||ψ jk n − ψ jk ||

≤ || ⊕ j∈J ψ jn||2 + ε2 + 2|| ⊕ j∈J ψ jn||
√∑

k∈N
||ψ jk n − ψ jk ||2

= (|| ⊕ j∈J ψ jn|| + ε)2 < +∞ ,

if n > Nε. �

The summands H j in a Hilbert sum are naturally identified with (non-trivial) closed
subspaces of

⊕
j∈J H j itself, and H j ⊥ Hi if i 
= j . The converse is true too, for we

have the following proposition.

Proposition 3.70 Let H be a Hilbert space and {Hα}α∈A a collection of arbitrary
cardinality of closed subspaces such that

(i) Hα 
= {0} for every α ∈ A,
(ii) Hα ⊥ Hβ if α, β ∈ A with α 
= β.
Then ⊕

α∈A

Hα is isomorphic to < {Hα}α∈A > (3.52)

under the map
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L : < {Hα}α∈A > � ψ �→ ⊕α∈A Pαψ ∈
⊕

α∈A

Hα , (3.53)

where Pα : H → H is the orthogonal projector onto Hα , for every α ∈ A.

Proof Take a Hilbert basis Nα ⊂ Hα , for every α ∈ A. The orthonormal set N :=
∪α∈A Nα is a Hilbert basis of the closed subspace < {Hα}α∈A > because the span of
N is dense therein. If we take ψ ∈ < {Hα}α∈A >, then

||ψ ||2 =
∑

z∈N

|(z|ψ)|2

where, as usual, only a finite, or countable, set of summands are strictly positive.
Thus, interpreting the sum as an integral for the counting measure on N, we may use
the dominated convergence theorem and safely rearrange the sum as

||ψ ||2 =
∑

α∈A

∑

z∈Na

|(z|ψ)|2 ,

In other words,
||ψ ||2 =

∑

α∈A

||Pαψ ||2 .

This identity proves at once that the linear map L in (3.53) is both well defined and
isometric. To prove that L is a Hilbert space isomorphism it is enough to show it is
surjective. If {φα}α∈A ∈ ⊕α∈AHα , we have

∑
α∈A ||φα||2 < ∞ by hypothesis, so that

φ := ∑
α∈A φα exists in H in view of Lemma 3.25 (again, only a finite or countable

number of φα do not vanish, and φα ⊥ φβ for α 
= β). Moreover φ ∈ < {Hα}α∈A >,
since φ is a limit of elements in the span of {Hα}α∈A. Evidently Lφ = {φα}α∈A. �

Notation 3.71 In the rest of the book, under the assumptions of Proposition 3.70, we
shall often write

⊕
α∈A Hα in place of< {Hα}α∈A >, since the isomorphism between

the two spaces is canonical. �

From the proof of Proposition 3.70 we can extract the identity

||Pψ ||2 =
∑

α∈A

||Pαψ ||2 for every ψ ∈ H , (3.54)

where P is the orthogonal projector onto ⊕α∈AHα viewed as a subspace of H in
accordance with Proposition 3.70. All norms refer toH, and Pα 
= 0 is the orthogonal
projector onto Hα for any α ∈ A. Note that Pα ⊥ Pβ if α 
= β, forcing the map
A � α �→ Pα to be injective, as Pα 
= 0. Furthermore, we also found the other useful
relation

Pψ =
∑

α∈A

Pαψ for every ψ ∈ H , (3.55)



3.4 Orthogonal Structures and Partial Isometries 151

where the series may be rearranged arbitrarily. The sum is a standard (infinite) series
or a finite sum, since at most countably many terms Pαψ do not vanish (Proposition
3.21(b)). If A is countable, as when H is separable and infinite-dimensional, (3.55)
can be interpreted as a series in the strong operator topology

P = s-
∑

a∈A

Pa . (3.56)

3.4.3 Partial Isometries

We can pass to the useful notion of a partial isometry, a weaker version of the
isometries seen earlier.

Definition 3.72 A bounded operator U : H → H, with H a Hilbert space, is a
partial isometry when:

||U x || = ||x || , for x ∈ [K er(U )]⊥.

If so, [K er(U )]⊥ is called the initial space of U and Ran(U ) the final space.

Any unitary operator U : H → H is a special partial isometry whose initial and final
spaces coincide with the entire Hilbert space H. Observe also that if U : H → H
is a partially isometric operator then H decomposes orthogonally into K er(U ) ⊕
[K er(U )]⊥, and U restricts to an honest isometry on the second summand (with
values in Ran(U )), while it is null on the first summand. This self-evident fact can
be made stronger by proving that Ran(U ) is closed, hence showing U �[K er(U )]⊥ :
[K er(U )]⊥ → Ran(U ) is indeed a unitary operator between Hilbert spaces (closed
subspaces in H). The second statement in the ensuing proposition shows U ∗ is a
partial isometry if U is, and its initial and final spaces are those of U , but swapped.

Proposition 3.73 Let U : H → H be a partial isometry on the Hilbert space. Then
(a) Ran(U ) is closed.
(b) U ∗ : H → H is a partial isometry with initial space Ran(U ) and final space
[K er(U )]⊥.

Proof (a) Let y ∈ Ran(U ) \ {0} (if H = {0} the proof of the whole proposition
is trivial). There is a sequence of vectors xn ∈ [K er(U )]⊥ such that U xn → y as
n → +∞. Since ||U (xn − xm)|| = ||xn − xm || by definition of partial isometry, the
sequence xn is Cauchy and converges to some x ∈ H. By continuity y = U x , so
y ∈ Ran(U ). But y = 0 clearly belongs to Ran(U ), so we have proved Ran(U )
contains all its limits points, and as such it is closed.
(b) Begin by observing K er(U ∗) = Ran(U ) and Ran(U ∗) = [K er(U )]⊥ by Propo-
sition 3.38, so if we use part (a) there remains only to prove U ∗ is an isometry when
restricted to Ran(U ). Notice preliminarily that if z, z′ ∈ [K er(U )]⊥, U being a
partial isometry implies:
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(U z|U z′) = 1

4

[
||U (z + z′)||2 − ||U (z − z′)||2 − i ||U (z + i z′)||2 + i ||U (z − i z′)||2)

]

= 1

4

[||z + z′||2 − ||z − z′||2 − i ||z + i z′||2 + i ||z − i z′||2)] = (z|z′) .

From what we have seen, suppose y = U x with x ∈ [K er(U )]⊥. Then

||U ∗y||2 = (U ∗U x |U ∗U x) = (U x |U (U ∗U x)) = (x |U ∗U x) = (U x |U x) = ||y||2 .

In other terms U ∗ is isometric on Ran(U ), and it remains isometric also on the
closure by continuity. This proves (b). �

At last, we present a relationship between partial isometries and orthogonal
projectors.

Proposition 3.74 Let U : H → H be a bounded linear operator on the Hilbert
space H.
(a) U is a partial isometry if and only if U ∗U is an orthogonal projector. In such a
case UU ∗ is an orthogonal projector as well.
(b) If U is a partial isometry, U ∗U projects onto the initial space of U, and UU ∗
projects onto the final space of U.

Proof Suppose U is partially isometric, and let us show U ∗U is an orthogonal pro-
jector. Since the latter is patently self-adjoint, it suffices to show it is idempotent.
Decompose H � x = x1 + x2 by x1 ∈ K er(U ) and x2 ∈ [K er(U )]⊥. Then

(x |(U ∗U )2x) = (U x |U ∗UU x) = (U x2|U (U ∗U x2)) = (x2|U ∗U x2) = (U x2|U x2)

= (U x |U x) .

That is to say, (x |((U ∗U )2 − U ∗U )x) = 0 whichever x ∈ H is taken. Choose
x = y ± i z and x = y ± y, and then (y|((U ∗U )2 − U ∗U )z) = 0 for any y, z ∈ H.
Therefore U ∗U is idempotent, so an orthogonal projector. Conversely if U ∗U is
an orthogonal projector, let N be the closed subspace onto which it projects. If
U ∗U x = 0 thenU x ∈ K er(U ∗) = [Ran(U )]⊥. ButU x ∈ Ran(U ), henceU x = 0.
Therefore U ∗U x = 0 if and only if x ∈ K er(U ), so N⊥ = K er(U ∗U ) = K er(U )

and N = [K er(U )]⊥. If additionally x ∈ [K er(U )]⊥ = N, then U ∗U x = x and
||U x ||2 = (U ∗U x |x) = ||x ||2, proving U is a partial isometry. Throughout we also
proved U ∗U projects onto the initial space N = [K er(U )]⊥. The remaining part
follows easily from Proposition 3.73(b). In fact, if U is a partial isometry, U ∗ is
partially isometric and so UU ∗ = (U ∗)∗U ∗ is an orthogonal projector. From the
previous part it projects onto the closed subspace [K er(U ∗)]⊥ = Ran(U ). �
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3.5 Polar Decomposition

This section is rather technical and contains useful notions in the theory of bounded
operators on a Hilbert space. The central result is the so-called polar decomposition
theorem for bounded operators, that generalises the polar form of a complex number
whereby z = |z|ei arg z splits as product of the modulus times an exponential with
purely imaginary logarithm. In the analogy z corresponds to a bounded operator, |z|
plays the role of a certain positive operator called modulus, and ei arg z is represented
by a unitary operator when restricted to a subspace. The modulus of an operator is
useful to generalise the “absolute convergence” of numerical series, and is built using
operators and bases. We shall use these series to define Hilbert–Schmidt operators
and operators of trace class, some of which represent states in QM. Part of the
ensuing proofs are taken from [Mar82, KaAk82].

3.5.1 Square Roots of Bounded Positive Operators

Definition 3.75 Given a Hilbert space H and A ∈ B(H), one says that B ∈ B(H)

is a square root of A if B2 = A. If additionally B ≥ 0, we call B a positive square
root.

We will show in a moment that any bounded positive operator has one, and one only,
positive square root. For this we need the preliminary result below, about sequences
and series of orthogonal projectors in the strong topology, which is on its own a
useful fact in spectral theory.

Proposition 3.76 Let H be a Hilbert space and {An}n∈N ⊂ B(H) a non-decreasing
(or non-increasing) sequence of self-adjoint operators. If {An} is bounded from above
(resp. below) by K ∈ B(H), there exists a self-adjoint operator A ∈ B(H) such that
A ≤ K (A ≥ K ) and:

A = s- lim
n→+∞ An . (3.57)

Proof We prove it in the non-decreasing case, for the other case falls back to this
situation if one considers K − An .

Set Bn := An + ||A0||I . Then we can prove the following facts.
(i) The Bn form a non-decreasing sequence of positive operators. If ||x || = 1,

in fact, (x |An x) + ||A0|| ≥ (x |A0x) + ||A0||, but −||A0|| ≤ (x |A0x) ≤ ||A0|| by
Proposition 3.60(a). Therefore (x |An x) + ||A0|| ≥ 0 for any unit vector x . That is
to say (y|An y) + ||A0||(y|y) ≥ 0 for any y ∈ H, i.e. Bn = An + ||A0||I ≥ 0.

(ii) Bn ≤ K + ||A0||I =: K1, and K1 is positive (K cannot be).
(iii) (x |K1x) ≥ (x |Bn x) − (x |Bm x) ≥ 0 for any x ∈ H if n ≥ m. In fact,

(x |K1x) ≥ (x |Bn x), and also −(x |Bm x) ≤ 0 and (x |Bn x) − (x |Bm x) ≥ 0.
Since any positive operator T defines a semi-inner product that satisfies Schwarz’s

inequality:
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|(x |T y)|2 ≤ (x |T x)(y|T y) , (3.58)

we have, if n ≥ m:

|(x |(Bn − Bm)y)|2 ≤ (x |(Bn − Bm)x)(y|(Bn − Bm)y) ≤ (x |K1x)(y|K1y)

≤ ||K1||2||x ||2||y||2 .

Hence
|(x |(Bn − Bm)y)|2 ≤ ||K1||2||x ||2||y||2 .

If we set x = (Bn − Bm)y and take the supremum over unit vectors y ∈ H, we find:

||Bn − Bm || ≤ ||K1|| . (3.59)

From (3.58), putting y = (Bn − Bm)x and T = Bn − Bm , we obtain

||(Bn − Bm)x ||4 = ((Bn − Bm)x |(Bn − Bm)x)2 ≤ (x |(Bn − Bm)x)((Bn − Bm)x |(Bn − Bm)2x)

for x ∈ H, n ≥ m. By (3.59), the last term is bounded by

(x |(Bn − Bm)x)||Bn − Bm ||3||x ||2 ≤ ||K1||3||x ||2[(x |Bn x) − (x |Bm x)] ,

and so
||(Bn − Bm)x ||4 ≤ ||K1||3||x ||2[(x |Bn x) − (x |Bm x)] .

The non-decreasing, bounded sequence of positive numbers (x |Bk x) has to converge,
so it is Cauchy. Therefore also the Bk x must form a Cauchy sequence, and as k →
+∞ the limit exists. Define

B : H � x �→ lim
n→+∞ Bn x .

By construction B is linear, and it satisfies

0 ≤ (Bx |x) = (x |Bx) ≤ (x |K1x)

since 0 ≤ (Bk x |x) = (x |Bk x) ≤ (x |K1x) for any k ∈ N.
Now, K1 is bounded and self-adjoint (it is positive), so Proposition 3.60(a) forces

B to be bounded, since:

sup{|(x |Bx)| | x ∈ H , ||x || = 1} ≤ sup{|(x |K1x)| | x ∈ H , ||x || = 1} = ||K1|| .

But B is also self-adjoint because of Proposition 3.60(e). Therefore A := B−||A0||I
is a bounded, self-adjoint operator and
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Ax = lim
n→+∞(Bn − ||A0||I )x = lim

n→+∞ An x .

Eventually, A ≤ K because for any x ∈ H we have (x |An x) ≤ (x |K x) by assump-
tion, and this is still true when taking the limit as n → +∞. �

The above result allows us to prove that bounded positive operators admit square
roots.

Theorem 3.77 Let H be a Hilbert space and A ∈ B(H) a positive operator. Then
there exists a unique positive square root, indicated by

√
A. Furthermore:

(a)
√

A commutes with any B ∈ B(H) that commutes with A:

if AB = B A with B ∈ B(H), then
√

AB = B
√

A.

(b) if A is bijective,
√

A is bijective.

Proof We may as well suppose ||A|| ≤ 1 without any loss of generality, so let us set
A0 := I − A. We shall show A0 ≥ 0 and ||A0|| ≤ 1.

First of all A0 ≥ 0 because (x |A0x) = (x |x)−(x |Ax) ≥ ||x ||2−||A||||x ||2,where
we have used A = A∗, so (Proposition 3.60(a)) ||A|| = sup{|(z|Az)| | ||z|| = 1}, and
|(z|Az)| = (z|Az) by positivity. Since (x, y) �→ (x |A0y) is a semi-inner product,
from A0 ≥ 0, the Cauchy–Schwarz inequality:

|(x |A0y)|2 ≤ (x |A0x)(y|A0y) ≤ ||x ||2||y||2

holds, having used the positivity of A = I − A0 and A0 in the final step. Since
A = A∗, using y = A0x in the inequality gives

|(A0x |A0x)|2 ≤ ||x ||2||A0x ||2 ,

hence ||A0x || ≤ ||x ||, and so:
||A0|| ≤ 1 . (3.60)

Define a sequence of bounded operators Bn : H → H, n = 1, 2, . . .:

B1 := 0 , Bn+1 := 1

2
(A0 + B2

n ) . (3.61)

From (3.60), using the norm’s properties,

||Bn|| ≤ 1 for any n ∈ N . (3.62)

By induction, the operators Bn are polynomials in A0 with non-negative coefficients.
Recall, here and in the sequel, that all operators Bk commute with one another and
with A0, by construction. Equation (3.61) implies
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Bn+1 − Bn = 1

2
(A0 + B2

n ) − 1

2
(A0 + B2

n−1) = 1

2
(B2

n − B2
n−1)

i.e.

Bn+1 − Bn = 1

2
(Bn + Bn−1)(Bn − Bn−1) .

This identity implies, via induction, that Bn+1 − Bn are polynomials in A0 with non-
negative coefficients: every Bn + Bn−1 is a sum of polynomials with non-negative
coefficients, and is itself a polynomial with non-negative coefficients; moreover, the
product of two such is still of the same kind.

Since A0 ≥ 0, any polynomial in A0 with non-negative coefficients is a positive
operator: the polynomial is a sum of terms a2n A2n

0 (all positive, as a2n ≥ 0 and
A2n
0 = An

0 An
0 with An

0 self-adjoint, so a2n(x |A2n
0 x) = a2n(An

0x |An
0x) ≥ 0), and of

terms a2n+1 A2n+1
0 (also positive, for a2n+1 ≥ 0 and (x |A2n+1

0 x) = (x |An
0 AAn

0x) =
(An

0x |A An
0x) ≥ 0).

Weconclude the boundedoperators Bn and Bn+1−Bn are positive. So the sequence
of positive, bounded (and self-adjoint) operators Bn is non-decreasing. The sequence
is also bounded from above by I . In fact, B∗

n = Bn ≥ 0 implies, due to Proposition
3.60(a), that (x |Bn x) = |(x |Bn x)| ≤ ||Bn||||x ||2. From (3.62) follows Bn ≤ I . So,
we may apply Proposition 3.76 to obtain a positive bounded operator B0 ≤ I such
that

B0 = s- lim
n→+∞ Bn .

By definition of strong topology, and because the continuous operators Bk commute,

B0Bm x = ( lim
n→+∞ Bn)Bm x = lim

n→+∞ Bn Bm x = lim
n→+∞ Bm Bn x = Bm lim

n→+∞ Bn x = Bm B0x .

Thus B0 commutes with every Bm ,

B2
0 − B2

n = (B0 + Bn)(B0 − Bn)

and so, as n → +∞:

||B2
0 x−B2

n x || ≤ ||B0+Bn ||||B0x−Bn x || ≤ (||B0||+||Bn ||)||B0x−Bn x || ≤ 2||B0x−Bn x || → 0.

Rephrasing,
B2
0 x = lim

n→+∞ B2
n x .

Taking the limit in

Bn+1x = 1

2
(A0x + B2

n x) ,

obtained from (3.61), we find
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B0x = 1

2
(A0x + B2

0 x) ,

for any x ∈ H, i.e.
2B0 = A0 + B2

0 .

To conclude, let us write the above identity in terms of B := I − B0:

B2 = I − A0 ,

i.e.
B2 = A .

Therefore B is a square root of A. Note that B ≥ 0 because B0 ≤ I and B = I − B0,
so B is a positive root of A. Moreover, if C is bounded and commutes with A, it
commutes with A0 and hence with any Bn . Therefore C commutes also with B0 and
B = I − B0.

Let us now show the uniqueness of a positive square root V of A. The above
positive root B commutes with all operators that commute with A. Since

AV = V 3 = V A ,

V and A commute, forcing B to commute with V . Fix an arbitrary x ∈ H and set
y := Bx − V x . Then:

||Bx−V x ||2 = ([B−V ]x |[B−V ]x) = ([B−V ]x |y) = (x |[B∗−V ∗]y) = (x |[B−V ]y) (3.63)

We will show that By = 0 and V y = 0 independently. This will end the proof,
because then ||Bx − V x || = 0 will imply B = V .

Now,

(y|By)+ (y|V y) = (y|[B + V ][B − V ]x) = (y|[B2 − V 2]x) = (y|[A − A]x) = 0 .

Since (y|V y) ≥ 0 and (y|By) ≥ 0,

(y|V y) = (y|By) = 0 .

This means V y = By = 0, for if W is a positive root of V , from

||W y||2 = (W y|W y) = (y|W 2y) = (y|V y) = 0

it follows that W y = 0 and a fortiori V y = W (W y) = 0. Analogously, By = 0.
There remains to prove

√
A is bijective if A is. If A is bijective, it commutes with

A−1, so
√

A too commutes with A−1. Then, immediately, A−1
√

A = √
AA−1 is the

left and right inverse of
√

A, which becomes bijective. �
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Corollary 3.78 LetH be a Hilbert space. If A, B ∈ B(H) are positive and commute,
their product is a positive element of B(H).

Proof
√

B commutes with A, hence

(x |ABx) = (x |A√
B
2
x) = (x |√B A

√
Bx) = (

√
Bx |A√

Bx) ≥ 0 .

�

Remark 3.79 That the square root of 0 ≤ A ∈ B(H) commutes with every operator
ofB(H) that commuteswith A can be expressed, equivalently, by saying

√
A belongs

to the von Neumann algebra generated by I and A inB(H). �

3.5.2 Polar Decomposition of Bounded Operators

To conclude the section we will show that any bounded operator A in a Hilbert space
admits a decomposition A = U P as a product of a uniquely-determined positive
operator P with an isometric operator U , defined and unique on the image of P . The
splitting is called polar decomposition and has a host of applications in mathematical
physics. A preparatory definition is needed first.

Definition 3.80 LetH be a Hilbert space and A ∈ B(H). The bounded, positive and
hence self-adjoint operator

|A| := √
A∗ A (3.64)

is called modulus of A.

Remark 3.81 For any x ∈ H: || |A| x ||2 = (x | |A|2x) = (x |A∗ Ax) = ||Ax ||2, so:

|| |A| x || = ||Ax || , (3.65)

whence:
K er(|A|) = K er(A) (3.66)

and so |A| is injective if and only if A is. Another useful property is

Ran(|A|) = (K er(A))⊥ , (3.67)

consequence of

Ran(|A|) = ((Ran(|A|))⊥)⊥ = (K er(|A|∗))⊥ = (K er(|A|))⊥ = (K er(A))⊥ .

�
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Now to the polar decomposition theorem. We present the version for bounded oper-
ators. Theorem 10.39 will give us a more general statement about a special class of
unbounded operators.

Theorem 3.82 (Polar decomposition of bounded operators) Let H be a Hilbert
space and A ∈ B(H).
(a) There exist unique operators P, U ∈ B(H) such that:

(1) the decomposition
A = U P (3.68)

holds,
(2) P is positive,
(3) U is isometric on Ran(P),
(4) U is null on K er(P).

(b) P = |A|, so K er(U ) = K er(A) = K er(P) = [Ran(P)]⊥.
(c) If A is bijective, U coincides with the unitary operator A|A|−1.

Proof (a)We startwith the uniqueness. Supposewehave (3.68), A = UPwith P ≥ 0
(beside bounded) andU bounded. Then A∗ = PU ∗, since P is self-adjoint as positive
(Theorem 3.77(c)), and hence

A∗ A = PU ∗U P . (3.69)

That U is isometric on Ran(P) is expressed as (U Px |U Py) = (Px |Py) for
any x, y ∈ H, or (x |[PU ∗U P − P2]y) = 0 for any x, y ∈ H. Therefore
PU ∗U P = P2. Substituting in (3.69) we have P2 = A∗ A. As P is positive and
extracting the only positive root (Theorem 3.77) of both sides we get P = |A|.
So if a decomposition as claimed exists, necessarily P = |A|. Let us prove U is
unique as well. FromH = K er(P)⊕ (K er(P))⊥, Proposition 3.38(d) and Theorem
3.13(e) imply (K er(P))⊥ = Ran(P∗) = Ran(P) because P is self-adjoint. Hence
H = K er(P) ⊕ Ran(P). To define an operator on H it suffices to have it on both
summands: U = 0 on K er(P), while U Px = Ax for any x ∈ H determines U on
Ran(P) uniquely. By assumption, on the other hand, U is bounded, and it remains
bounded if restricted to Ran(P). A bounded operator over a dense domain can be
extended to a unique bounded operator on the closed domain (cf. Proposition 2.47).
Therefore U is completely determined on Ran(P), hence on H. This concludes the
proof of the uniqueness, so let us deal with the existence.

We must show thatU P = A, P = |A|, or better:U : |A|x �→ Ax , for any x ∈ H,
actually defines an operator, say U0, on Ran(|A|). To make it well defined, it is
necessary and sufficient that |A|x = |A|y ⇒ Ax = Ay, otherwise it would not be a
function. By (3.65), if |A|x = |A|y, then Ax = Ay, soU0 : Ran(|A|) � |A|x �→ Ax
is well defined (not multi-valued). That U0 is linear is obvious by construction, as
is the fact that it is an isometry, for U0 preserves norms by (3.65) (cf. Exercise
3.8). Being an isometry on Ran(|A|) implies, by continuity, that we can extend it
uniquely to an isometry, still called U0, on the closure of Ran(|A|). Now define

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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U : H → H by setting U �K er(|A|):= 0 and U �Ran(|A|):= U0, relative to the splitting

H = K er(|A|) ⊕ Ran(|A|). It is immediate to see that U ∈ B(H) and U satisfies
(3.68). Furthermore, by construction K er(U ) ⊃ K er(|A|). We claim the latter two
are equal. Any u with Uu = 0 splits into u0 + x , with u0 ∈ K er(|A|) annihilated
by U , and x ∈ Ran(|A|) such that U0x = 0. Since on Ran(|A|) U0 is isometric,
then x = 0 and so u = u0 ∈ K er(|A|). Therefore K er(U ) ⊂ K er(|A|), so overall
K er(U ) = K er(|A|) = K er(A) by (3.66).
(b) was proved within part (a).
(c) If A is injective, using (b) we see K er(A) = K er(U ) is trivial and so U is
injective. Directly from A = U P , though, we have Ran(U ) ⊃ Ran(A), so if A is
onto also U is. Hence, if A is bijective then U must be as well. If so, U is a surjective
isometry on Ran(P) = (K er(P))⊥ = {0}⊥ = H by (b), hence unitary. At last, from
A = U |A| follows that |A| is bijective because A and U are, whence we can write
U = A|A|−1. �

Remarks 3.83 (1) The operator U showing up in (3.69) is a partial isometry (Defi-
nition 3.72) with initial space

[K er(U )]⊥ = Ran(|A|) = [K er(A)]⊥ = Ran(A∗) .

Bearing in mind Proposition 3.73(a) we see easily that the final space of U is

Ran(U ) = Ran(A) .

(2) Theorem 10.39 gives a polar decomposition under much weaker assumptions on
A. We will also prove that the partial isometryU has the same initial and final spaces
above, and is unitary precisely when A is injective and, simultaneously, Ran(A) is
dense in H. �

Definition 3.84 Let H be a Hilbert space and A ∈ B(H). The splitting

A = U P , (3.70)

with P ∈ B(H) positive, U ∈ B(H) isometric on Ran(P) and null on K er(P), is
called polar decomposition of the operator A.

A corollary of the polar decomposition, useful in several applications, is this.

Corollary 3.85 (to Theorem 3.82) Under the assumptions of Theorem 3.82, if
U |A| = A is the polar decomposition of A, then:

|A∗| = U |A|U ∗ . (3.71)

Proof From A = U |A| follows A∗ = |A|U ∗ = U ∗ U |A|U ∗, where we used
U ∗U |A| = |A|, since U is isometric on Ran(|A|). Thus the self-adjoint operator
AA∗ satisfies

http://dx.doi.org/10.1007/978-3-319-70706-8_10
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AA∗ = U |A|U ∗ U |A|U ∗ .

As U |A|U ∗ is clearly positive, by uniqueness of the root we have

|A∗| = √
(A∗)∗ A∗ = √

AA∗ = U |A|U ∗ ,

proving the claim. �

We cite, in the form of the next theorem, yet another consequence of the polar
decomposition theorem valid when A ∈ B(H) is normal, i.e. commuting with A∗.

Theorem 3.86 (Polar decomposition of normal operators) Let A ∈ B(H) be a
normal operator on the Hilbert space H, and W0 : K er(A) → K er(A) a given
unitary operator.

There exists a unique pair W, P ∈ B(H) such that P ≥ 0, W is unitary and:

A = W P with W�K er(A)= W0 .

Moreover, P = |A|, W �K er(A)⊥ does not depend on W0, and W commutes with A,
A∗ and |A|.
Proof Under the assumptions made, A = W P implies A∗ A = PW ∗W P = P2, so
P = |P|. Then consider the polar decomposition A = U |A|. As we know (Remark
3.83(1))U is partially isometric, with initial space K er(A)⊥ and final space Ran(A).
We haveH = K er(A)⊕K er(A)⊥ = K er(A)⊕ Ran(A∗), and since A is normal, by
(iii) in Proposition 3.60(b)we canwriteH = K er(A)⊕Ran(A). SoU is unitary from
Ran(A) to Ran(A), and is null from K er(A) to itself. Notice K er(|A|) = K er(A),
as seen earlier, so Ran(|A|) = Ran(A). Now if there exists W unitary with A =
W |A|, it must be isometric on K er(A)⊥ = Ran(A), so it must coincide withU there
by the polar decomposition theorem. Therefore the restriction of W to Ran(A) gives
a unitary operator from Ran(A) to Ran(A). The condition W �K er(A)= W0 fixes
W completely on the whole Hilbert space as a unitary operator, ending the proof
of uniqueness. As far as existence is concerned, it is enough to verify that W :=
W0 ⊕ U , corresponding to H = K er(A) ⊕ Ran(A), is an operator that commutes
with A, A∗, and that |A| fulfils A = W |A|. The latter request is true by the polar
decomposition theorem, for K er(|A|) = K er(A). Since A∗(K er(A∗)) ⊂ K er(A∗),
we have A(K er(A∗)⊥) ⊂ K er(A∗)⊥, i.e. A(Ran(A)) ⊂ Ran(A). With respect to
the usual orthogonal splitting of the Hilbert space, A = 0⊕ A�Ran(A). Since we have
W = W0 ⊕ U �Ran(U ) and A = 0 ⊕ A�Ran(A), the condition AW = W A holds if
AU = U A. So let us prove the latter. By polar decomposition, A = U |A|. Normality
(AA∗ = A∗ A) can be rephrased as U |A|2U ∗ = |A|U ∗U |A| = |A|2, since U is
isometric on Ran(|A|). Therefore U ∗U |A|2U ∗ = U ∗|A|2 i.e. |A|2U ∗ = U ∗|A|2.
Taking adjoints gives U |A|2 = |A|2U . Theorem 3.77(a) says the root of an operator
commutes with anything that commutes with the given operator, so U |A| = |A|U .
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Still by polar decomposition we infer U A = AU , so W A = AW , as required.
Eventually, taking adjoints: A∗W ∗ = W ∗ A∗, and using W on both sides produces
W A∗ = A∗W . Consequently W commutes with A∗ A = |A|2, and hence also with
its square root |A|. �

3.6 Introduction to von Neumann Algebras

Prominent examples of C∗-algebras, which are absolutely fundamental for the appli-
cations in Quantum Field Theory (but not only), are von Neumann algebras. Before
we introduce them, let us first define the commutant of an operator algebra, and state
an important theorem.

3.6.1 The Notion of Commutant

If M ⊂ B(H) is a subset of bounded operators on a complex Hilbert space, the
commutant of M is:

M′ := {T ∈ B(H) | T A − AT = 0 for any A ∈ M} .

Remark 3.87 If M is closed under the Hermitian conjugation (i.e. A∗ ∈ M if A ∈
M) the commutant M′ is surely a ∗-algebra with unit. In general, M2 ⊂ M1 ⇒
M′

1 ⊂ M′
2, and M ⊂ (M′)′, which imply M′ = ((M′)′)′. Hence we cannot reach

beyond the second commutant by iterating the construction. �

The continuity of the product of operators says that the commutant M′ is closed in
the uniform topology, so ifM is closed under Hermitian conjugation, its commutant
M′ is a C∗-subalgebra inB(H).

M′ has other pivotal topological properties in this general setup. It is easy to prove
M′ is both strongly and weakly closed. This holds, despite the product of operators
is not continuous, because separate continuity in each variable is sufficient.

In the sequel we shall adopt the standard convention used for von Neumann
algebras and write M′′ instead of (M′)′ etc.. The next crucial result is due to von
Neumann [BrRo02].

Theorem 3.88 (Double commutant theorem) If H is a complex Hilbert space and
A a unital ∗-subalgebra of B(H), the following facts are equivalent.
(a) A = A′′.
(b) A is weakly closed.
(c) A is strongly closed.
Furthermore, if B is a unital ∗-subalgebra of B(H), then
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B′′ = B
w = B

s
,

where the bars denote the closure in the weak (·w) or strong (·s ) topology.

Proof (a) implies (b) because the commutant S′ of a set S ⊂ B(H) is closed in
the weak topology, as we can also show directly: if An ∈ S′ for any n ∈ N and
An → A ∈ B(H) weakly, then A∗

n → A∗ weakly (this is immediate), so for B ∈ S:

0 = (ψ |(An B − B An)φ) = (Bφ|A∗
nψ) − (B∗ψ |Anφ) → (Aψ |Bφ) − (B∗ψ |Aφ)

= (ψ |(AB − B A)φ) ,

hence (ψ |(AB − B A)φ) = 0. Being ψ , φ arbitrary in H, A commutes with B, and
A ∈ S′ because B ∈ S is generic.
(b) implies (c) because strong convergence implies weak convergence, and therefore
a limit point in the strong topology remains a limit point in the weak one.

To finish the proof of the first part we have to show that (c) implies (a). Since
S ⊂ S′′ for any set, so that A ⊂ A′′, we only need to prove that A′′ ⊂ A

s
since

A
s = A by (c).

Lemma 3.89 If A is a unital ∗-subalgebra of B(H), then A′′ ⊂ A
s
.

Proof of Lemma 3.89. For ψ ∈ H define the closed subspace: Hψ := {Aψ | A ∈ A},
and call P the orthogonal projector onto Hψ . By construction, if φ ∈ Hψ then
Bφ ∈ Hψ for any B ∈ A and so P Bφ = Bφ. That is to say P B P = B P for B ∈ A.
Taking adjoints gives P B∗ = B∗ P , since P = P∗ by definition of orthogonal
projector. Since B∗ = A for some A ∈ A, and since B varies in the whole A as
A ∈ A, we conclude P ∈ A′. Therefore for any X ∈ A′′ we have P X = X P . But
I ∈ A, so ψ ∈ Hψ and Xψ ∈ Hψ (since P Xψ = X Pψ = Xψ). By definition of
Hψ , Xψ ∈ Hψ implies that for any ε > 0 there exists A ∈ A with ||Aψ − Xψ || <

ε. Consider then a finite collection of vectors ψ1, ψ2, . . . , ψn and the direct sum
Hn := H ⊕ · · · ⊕ H (n copies) with inner product ((x1, . . . , xn)|(y1, . . . , yn)) :=∑n

k=1(xk |yk) (see Sect. 3.4.2 for a precise description of this structure, called the
n-fold Hilbert sum of H). On this Hilbert space, take the algebra An ⊂ B(Hn) of
operators of the form A⊕· · ·⊕ A : (v1, . . . , vn) �→ (Av1, . . . , Avn), with νk ∈ H for
k = 1, . . . , n, A ∈ A. It is immediate that An is a ∗-subalgebra (with unit) inB(Hn).
If X ∈ A′′, then X ⊕· · ·⊕ X ∈ A′′

n . With the same argument as before, for any ε > 0
there exists A ∈ A such that ||Aψk − Xψk || < ε, for k = 1, . . . , n. By definition of
strong topology, this implies that if X ∈ A′′ then X ∈ A

s
. In other words A′′ ⊂ A

s
,

as wanted. �
Let us come to the last statement of Theorem 3.88 and end its proof. First observe
that B

w
is a unital ∗-subalgebra of B(H) (this is direct). Then (1) B

w ⊂ B′′, since
B′′ = (B′′)′′ and soB′′ is a weakly closed set containing B (by (b) with A = B′′).
On the other handB ⊂ B

w
trivially, so that (2)B′′ ⊂ B

w ′′ = B
w
where, in the last

passage, we have used (a) because B
w
is a weakly closed unital ∗-subalgebra. So

now (1) and (2) imply B
w = B′′. To conclude observe that B ⊂ B

s ⊂ B
w = B′′,
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where the second inclusion is just due to the definitions of strong and weak operator
topologies. The only thing left is showingB′′ ⊂ B

s
. But this is true by Lemma 3.89.

�

3.6.2 Von Neumann Algebras, Also Known as W∗-Algebras

At this juncture we are ready to define von Neumann algebras.

Definition 3.90 (von Neumann algebra a.k.a. W ∗-algebra) IfH 
= {0} is a complex
Hilbert space, a von Neumann algebra over H, also known as W ∗-algebra over H,
is a unital ∗-subalgebra of B(H) that satisfies one of the three equivalent properties
(a), (b), (c) in von Neumann’s double commutant Theorem 3.88.

The centre of a von Neumann algebra R is the subset R ∩ R′.
A factor is a von Neumann algebraR whose centre is trivial:R∩R′ = {cI }c∈C.

Remarks 3.91 (1) Von Neumann algebras are also known as W ∗-algebras, even if
the latter were originally introduced to describe a certain abstract category of C∗-
algebras: a W ∗-algebra, officially, is a C∗-algebra arising as topological dual of a
Banach space. In 1970 Sakai proved [Tak00] that abstract W ∗-algebras are in one-
to-one correspondence (up to isomorphism) to concrete von Neumann algebras of
operators on Hilbert spaces. For this reason in the rest of the book we shall use the
two terms as synonyms.
(2) A von Neumann algebra A in B(H) is a C∗-algebra with unit, or better, a C∗-
subalgebra of B(H) with unit. This is because if A is closed in the strong operator
topology then it is also closed in the uniform topology.
(3) The commutant M′ is a von Neumann algebra provided M is a ∗-closed subset
of B(H), because (M′)′′ = M′ as we saw above.
(4) A von Neumann algebra R on a Hilbert space H is not just closed in the weak
and strong operator topologies: it is also complete with respect to both. In other
words, if {An}n∈N ⊂ R is such that {Anψ}n∈N is Cauchy in H for every ψ ∈ H (or
{(φ|Anψ)}n∈N is Cauchy in C for every φ,ψ ∈ H), then An → A for some A ∈ R
in the strong (or weak, respectively) operator topology. See Exercises 3.34 and 3.35.
(5) If {Rα}α∈A is a family of von Neumann algebras on the Hilbert spaceH, it is easy
to prove that ∧

α∈A

Rα :=
⋂

α∈A

Rα

is a von Neumann algebra on H. It is the largest von Neumann algebra contained in
each Rα .
(6) The classification of factors (see Sect. 7.6.2), initiated by von Neumann and
Murray, is one of the key chapters in the theory of operator algebras, andhas enormous
consequences in the algebraic theory of quantum fields. �
If M ⊂ B(H) (with H 
= {0}) is closed under Hermitian conjugation, M′′ turns
out to be the smallest (set-theoretically) von Neumann algebra containing M as a

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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subset. Indeed, if A is a von Neumann algebra and M ⊂ A, then M′ ⊃ A′ and
M′′ ⊂ A′′ = A. This fact leads to the following definition.

Definition 3.92 Let H 
= {0} be a complex Hilbert space and M ⊂ B(H) a closed
set under Hermitian conjugation. The von Neumann algebra M′′ is called the von
Neumann algebra generated byM.

IfM is a unital ∗-subalgebra ofB(H), the von Neumann algebraM′′ is nothing but
the weak, and strong, closure of M, due to the double commutant theorem.

If {Rα}α∈A is a family of von Neumann algebras on the Hilbert space H, the
following notation is used for the smallest von Neumann algebra containing every
Rα:

∨

α∈A

Rα :=
(
⋃

α∈A

Rα

)′′
.

An elementary fact regarding the simplest case R = B(H) is the following.

Proposition 3.93 Let H 
= {0} be a complex Hilbert space. Then
(a) B(H)′ = {cI }c∈H, so that B(H)′′ = B(H);
(b) if P ∈ B(H)′ is a projector, then either P = I or P = 0;
(c) there are no non-trivial closed subspaces that are invariant under the action of
every element of B(H).

Proof IfH has dimension 1 all statements are true, trivially, so let us consider higher
dimensions. (a) Suppose that A ∈ B(H)′. If x ∈ H, the orthogonal projector onto the
linear space generated by x commutes with A and so Ax = λx x for some λx ∈ C.
If y 
= x , similarly Ay = λy y and A(x + y) = λx+y(x + y). Linearity yields

λx x + λy y = λx+y(x + y)

so that
(λx − λx+y)x = −(λy − λx+y)y .

This immediately implies that both (λx − λx+y) = 0 and (λy − λx+y) = 0 must be
valid whenever x and y are linearly independent (such y exists if dim(H) ≥ 2). In
particular λx = λy . To conclude the proof, consider a Hilbert basis B for H, so that
z and z′ are linearly independent if z, z′ ∈ B and z 
= z′. What we established above
immediately implies that Az = cz for some fixed c ∈ C and every z ∈ B. In view of
the continuity of A,

Ax = A
∑

z∈B

(z|x)z =
∑

z∈B

(z|x)Az = c
∑

z∈B

(z|x)z = cx ,

for every x ∈ H. We have found that any A ∈ B(H)′ has the form A = cI for
some c ∈ C. And then obviously B(H)′′ = {cI }′c∈H = B(H). The first part of
(b) immediately follows from PP = P since P = cI for some c ∈ C. Let us
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finally prove (c). If M ⊂ H is a closed subspace and A ∈ B(H), the inclusion
A(M) ⊂ M easily implies P AP = AP , where P is the orthogonal projector ontoM.
By assuming A = A∗ and taking the adjoint of both sides we also get P AP = P A,
so P A = AP for every self-adjoint A ∈ B(H). Decomposing B ∈ B(H) as
B = 1

2 (B + B∗)+ 1
2i i(B − B∗), and observing that both (B + B∗) and i(B − B∗) are

self-adjoint, then P B = B P holds for every element B ∈ B(H). Therefore either
P = 0 or P = I by (b) and, correspondingly, M = {0} orM = H. �

3.6.3 Further Relevant Operator Topologies

In addition to the uniform, strong and weak topologies, there are at least two further
operator topologies that are relevantwhen dealingwith vonNeumann algebras.Given
a Hilbert space H, consider a sequence X := {xn}n∈N ⊂ H such that

∑
n∈N ||xn||2 <

+∞. Define the seminorm onB(H)

σX (A) :=
√∑

n∈N
||Axn||2 , for every A ∈ B(H). (3.72)

Similarly, if Y := {yn}n∈N ⊂ H is another sequence such that
∑

n∈N ||yn||2 < +∞,
define the seminorm onB(H)

σXY (A) :=
∣
∣
∣
∣
∣

∑

n∈N
(xn|Ayn)

∣
∣
∣
∣
∣

, for every A ∈ B(H). (3.73)

It easy to prove that the family of seminorms σX separates points, i.e., σX (A−B) = 0
for all X as above ⇒ A = B. The same property is true for the family of seminorms
σXY with X, Y as above.

Definition 3.94 Given a Hilbert spaceH consider the families of seminorms defined
by (3.72) and (3.73) for all sequences X := {xn}n∈N ⊂ H and Y := {yn}n∈N ⊂ H
such that

∑
n∈N ||xn||2 < +∞ and

∑
n∈N ||yn||2 < +∞.

The topologies on B(H) induced by these two families of seminorms, in accor-
dance with Definition 2.68, are respectively called σ -strong topology (or ultra-
strong topology) and σ -weak topology (or ultraweak topology).

It is easy to prove that, onB(H),
(a) the uniform topology is finer than the σ -strong topology;
(b) the σ -strong topology is finer than the σ -weak topology;
(c) the σ -strong topology is finer than the strong topology;
(d) the σ -weak topology is finer than the weak topology.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Remark 3.95 (1) A von Neumann algebra inB(H) is closed in the uniform topology
(being a C∗-subalgebra of B(H)), in the weak topology and in the strong topology
(Theorem 3.88). Hence it is also closed for both the σ -weak and the σ -strong topolo-
gies, as a consequence of (c) and (d) above.
(2) A surjective ∗-homomorphism α between two von Neumann algebras is necessar-
ily continuous with respect to the σ -strong and σ -weak topologies [BrRo02, Vol.1,
Theorem 2.4.23].
(3) A special class of ∗-isomorphisms between von Neumann algebrasR1 ⊂ B(H1)

and R2 ⊂ B(H2) are the so-called spatial isomorphisms. These are maps of the
form

α : R1 � A �→ Vα AV ∗
α ∈ R2 ,

where Vα : H1 → H2 is some fixed unitary operator (Definition 3.56(d)). Spatial
isomorphisms always extend to thewholeB(Hi ), and to the commutants in particular:

α(R′
1) = α(R′

2) .

�

In the simplest case where R1 = R2 = B(H), it is possible to prove that a ∗-
isomorphism (to be precise, a ∗-automorphism) α : B(H) → B(H) is always spatial.

Theorem 3.96 If H 
= {0} is a complex Hilbert space and α : B(H) → B(H) a
∗-automorphism, then α is spatial: there exists a unitary operator Uα : H → H such
that

α(A) = Uα AU ∗
α for every A ∈ B(H).

Every unitary operator defines a ∗-automorphism by the formula above, and a unitary
operator U1 satisfies the formula (in place of U) for the given α if and only if U1 = χU
for some χ ∈ U (1).

Proof If dim(H) = 1, the only ∗-automorphism is the identity and so the thesis
is obvious. Let us pass to dim(H) > 1. The last statement is trivial, in particular
U1 = χU follows from Proposition 3.93 because U1U ∗ ∈ B(H)′, so we shall prove
the first claim only. Let N be a Hilbert basis ofH and define the orthogonal projector
Px := (x |·)x for every x ∈ N . Every operator P ′

x := α(Px ) is an orthogonal projector
as well, because α(Px )α(Px ) = α(Px Px ) = α(Px ) and α(Px )

∗ = α(P∗
x ) = α(Px ).

We intend to construct a second Hilbert basis N ′ using α. The projection space of P ′
x

is one-dimensional as is the projection space of Px . Indeed, if there existed a pair of
orthonormal vectors z1, z2 in P ′

x (H) andwe set Qzi := (zi |·)zi for i = 1, 2, wewould
have P ′

x 
= Qzi P ′
x = Qzi 
= 0. Then applying α−1 would give Px 
= α−1(Qzi )Px =

α−1(Qzi ) 
= 0. However, since Px projects onto a one-dimensional subspace, no
such orthogonal projector α−1(Qzi ) can exist. Next, observe that ⊕x∈N Px (H) = H
because N is a Hilbert basis, but also ⊕x∈N P ′

x(H) = H. In fact, first of all P ′
x P ′

y =
α−1(Px Py) = 0 if x 
= y, so that P ′

x(H) ⊥ P ′
y(H) when x 
= y. Furthermore, if

there were z ⊥ ⊕x∈N P ′
x (H) with unit norm, by defining Qz := (z|·)z we would
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have Qz P ′
x = 0 for every x ∈ N and hence α−1(Qz)α

−1(P ′
x ) = 0. That would

mean α−1(Qz)Px = 0 for every x ∈ N and, in turn, α−1(Qz) = 0 so that Qz = 0,
against the hypothesis. If x, y ∈ N , the maps Txy := (y|·)x restrict to Hilbert space
isomorphisms between the one-dimensional, mutually orthogonal subspaces Py(H)

and Px (H). If we define T ′
xy := α ((y|·)x), we have P ′

z T ′
xy = α(Pz Txy) = 0 for z 
= x

or α(Pz Txy) = T ′
xy if z = x . Since ⊕x∈N P ′

x (H) = H and T ′
xy 
= 0, we conclude that

the range of T ′
xy is one-dimensional and coincides with P ′

x (H) itself. Using a similar
argument and T ′∗

xy T ′
xy = α(T ∗

xy Txy) = α(Px ) = P ′
x , we finally conclude that themaps

T ′
xy restrict to Hilbert space isomorphisms between the one-dimensional, mutually

orthogonal subspaces P ′
y(H) and P ′

x(H). To construct the new Hilbert basis N ′, fix a
unit vector y′ ∈ P ′

y(H) and define the other unit vectors x ′ := T ′
xy y′ for every x ∈ N .

Evidently N ′ := {x ′}x∈N is a Hilbert basis since each P ′
x(H) is one-dimensional and

⊕x∈N P ′
x (H) = H, as previously established. One can check the fundamental identity

α(Txy) = UαTxyU ∗
α for every x, y ∈ N , (3.74)

directly, where Uα : H → H is the unique linear and bounded operator such that
Uαx := x ′ for every x ∈ N . This operator is unitary because the vectors x form
a Hilbert basis, as do the x ′. To conclude the proof, consider A ∈ B(H) and the
operators Txx ATyy for x, y ∈ N . As Txy := (y|·)x , it is clear that Tyy ATxx = aTxy

where a = (x |Ay), so that (3.74) produces

α(Tyy ATxx ) = (x |Ay)UαTyxU ∗
α

because α is linear. Since α preserves the products, the above reads

α(Tyy)α(A)α(Txx ) = (x |Ay)UαTyxU ∗
α .

Exploiting (3.74) again,

UαTyyU ∗
αα(A)UαTxxU ∗

α = (x |Ay)UαTyxU ∗
α ,

that is
TyyU ∗

αα(A)UαTxx = (x |Ay)Tyx ,

so that, applying both sides to x and taking the inner product with y,

(y|U ∗
αα(A)Uαx) = (x |Ay) .

Since x, y are generic elements of a Hilbert basis and A, U ∗
αα(A)Uα are bounded,

we have found that
U ∗

αα(A)Uα = A ,

which is equivalent to α(A) = Uα AU ∗
α , concluding the proof. �
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3.6.4 Hilbert Sum of von Neumann Algebras

There exists a nice interplay between Hilbert sums of Hilbert spaces and direct sums
of C∗-algebras, which specialises to the case of von Neumann algebras.

Proposition 3.97 Consider a family of non-trivial Hilbert spaces {H j } j∈J and a
family of C∗-algebras of operators {A j } j∈J , with A j ⊂ B(H j ) for every j ∈ J .
(a) If ⊕ j∈J A j ∈ ⊕

j∈J A j (Proposition 3.45), the operator

⊕̂ j∈J A j :
⊕

j∈J

H j →
⊕

j∈J

H j

given by
⊕̂ j∈J A j : ⊕ j x j �→ ⊕ j A j x j (3.75)

is a well-defined element of B(
⊕

j∈J H j ). Moreover

||⊕̂ j∈J A j || = || ⊕ j∈J A j || ,

where the norm on the left is the uniform norm of B(
⊕

j∈J H j ), whereas the one on
the right is the C∗-norm of

⊕
j∈J A j . Therefore the map

⊕

j∈J

A j � ⊕ j∈J A j �→ ⊕̂ j∈J A j ∈ B

⎛

⎝
⊕

j∈J

H j

⎞

⎠

is an isometric ∗-homomorphism, making the set
⊕̂

j∈JA j of operators ⊕̂ j∈J A j a
C∗-subalgebra (not necessarily unital) of B(

⊕
j∈J H j ).

(b) We have (⊕̂

j∈J
A j

)′
=

⊕̂

j∈J
A′

j .

(c)
⊕̂

j∈JA j is a von Neumann algebra if each summand A j is a von Neumann
algebra.

Proof (a) First of all we must prove that ⊕̂ j A j ∈ B(
⊕

j A j ). For every ⊕ j x j ∈⊕
j H j we have:

||⊕̂ j A j (⊕ j x j )||2 ≤ sup
j

||A j ||2
∑

j

||x j ||2 = || ⊕ j A j ||2 || ⊕ j x j ||2 .

The result implies at once that ⊕̂ j A j ∈ B(
⊕

j A j ) and ||⊕̂ j A j || ≤ || ⊕ j A j ||. To
prove that ||⊕̂ j A j || = ||⊕ j A j || it suffices to find a sequence {⊕ j y j,n}n∈N ⊂ ⊕

j H j

such that || ⊕ j y j,n|| = 1 and ||⊕̂ j A j (⊕ j y j,n)|| → || ⊕ j A j || as n → +∞.
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If we look at || ⊕ j A j || := sup j ||A j || there are two possibilities. Either
(1) || ⊕ j A j || = ||A j0 || for some j0

or
(2) there is a sequence j1, j2, . . . with ||A jn || → || ⊕ j A j || as n → +∞.
In case (1), as we know that ||B|| = sup||x ||=1 ||Bx ||, there must be a sequence

xn ∈ H j0 with ||xn|| = 1 and ||A j0 xn|| → ||A j0 || as n → +∞. In this situation, the
required sequence {⊕ j y j,n}n∈N is defined by y j,n = 0 for j 
= j0 and y j0,n := xn .

In case (2), by exploiting again the general identity ||B|| = sup||x ||=1 ||Bx || on
each operator A jn we conclude that there must exist a sequence of vectors x jn ∈ H jn
with ||x jn || = 1 and | ||A jn x jn || − ||A jn || | < 1/n. The sequence {⊕ j y j,n}n∈N we
need is therefore defined by y j,n = 0 for j 
= jn and y jn ,n := x jn .

The fact that the map ⊕ j A j �→ ⊕̂ j A j is linear, preserves the product and unit
elements is straightforward. Regarding Hermitian conjugation, observe that

(⊕ j x j |⊕̂ j A j (⊕ j y j )
) =

∑

j

(x j |A j y j ) j =
∑

j

(A∗
j x j |y j ) j = (⊕̂ j A∗

j (⊕ j x j )| ⊕ j y j
)

= (⊕ j x j |(⊕̂ j A∗
j )

∗(⊕ j y j )
)

.

Since ⊕ j x j ,⊕ j y j ∈ ⊕
j H j are arbitrary, we have ⊕̂ j A j = (⊕̂ j A∗

j )
∗ and hence

(⊕̂ j A j )
∗ = ⊕̂ j A∗

j . We have obtained that ⊕ j∈J A j �→ ⊕̂ j∈J A j is an isometric ∗-
homomorphism from the C∗-algebra

⊕
j A j into the C∗-algebraB(

⊕
j H j ), so the

image
⊕̂

j∈JA j is a C∗-subalgebra ofB(
⊕

j H j ).
(b) Establishing that (⊕̂

j∈J
A j

)′
⊃

⊕̂

j∈J
A′

j

is rather elementary, so let us prove the opposite inclusion. First of all notice that⊕
j A j contains elements ⊕ jδi j I j , where i ∈ J and I j : H j → H j is the identity

operator. It is easy to prove that Pi := ⊕̂ jδi j I j is the orthogonal projector onto Hi ,

viewed as a closed subspace of
⊕

j H j . If B ∈
(⊕̂

j∈JA j

)′
then Pi B = B Pi for all

i ∈ J in particular. Obviously, if Ψ ∈ ⊕
i∈J ψ , we have Ψ = ⊕iψi with ψi = PiΨ .

Therefore Ψ = ∑
i∈I PiΨ is a finite or countable sum, for at most countably many

vectors ψik , k ∈ N, do not vanish. Consequently, Pi B = B Pi and Pi Pi = Pi imply

B(⊕iψi ) = B
∑

k∈N
Pik Ψ =

∑

k∈N
Pik B Pik Ψ = ⊕i (Pi B Pi )ψi .

Set Bi := Pi B Pi ∈ B(Hi ). Then ⊕i Bi ∈ ⊕
i B(Hi ) is well defined because

supi ||Bi || = supi ||Pi B|| ≤ supi ||Pi || ||B|| ≤ ||B|| < +∞. By construction

B(⊕iψi ) = ⊕i Biψi = ⊕̂i Bi (⊕iψi ) .
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Therefore imposing (B A − AB)Ψ = 0 for every A = ⊕̂i Ai ∈ ⊕̂
iAi and every

Ψ ∈ ⊕
i ψi implies (Bi Ai − Ai Bi )ψi = 0 for every i ∈ J and ψi ∈ Hi . In other

words Bi ∈ A′
i . In summary, B ∈ [⊕ j A j ]′ implies B = ⊕̂ j B j where B j ∈ A′

j , so

(⊕̂

j∈J
A j

)′
⊂

⊕̂

j∈J
A′

j ,

as we wanted.
(c) Suppose each Ai is a von Neumann algebra. Then A′′

i = Ai and

(⊕̂

j∈J
A j

)′′
=

(⊕̂

j∈J
A′

j

)′
=

⊕̂

j∈J
A′′

j =
⊕̂

j∈J
A j ,

and
⊕̂

j∈JA j contains the identity operator (the sum of the identity operators of each

H j ). We conclude that
⊕̂

j∈JA j is a von Neumann algebra. �

Definition 3.98 Consider a family of non-trivial Hilbert spaces {H j } j∈J and a family
of von Neumann algebras {R j } j∈J with R j ⊂ B(H j ) for every j ∈ J .

The von Neumann algebra
⊕̂

j∈JR j on
⊕

j∈J H j defined in Proposition 3.97 is
called the direct sum of the family of von Neumann algebras {R j } j∈J .

Notation 3.99 In the rest of the book, a direct sum of von Neumann algebras
⊕̂

j∈JR j will be denoted by
⊕

j∈J R j , despite the latter should – to be precise
– indicate the isometric C∗-algebra associated to it.

Similarly, the operator ⊕̂ j∈J A j of (3.75) will be indicated by the corresponding
abstract element ⊕ j∈J A j . �

3.7 The Fourier–Plancherel Transform

In the last section of the chapter we introduce, rather concisely, the basics on Fourier
and Fourier–Plancherel transforms, without any mention to Schwartz distributions
[Rud91, ReSi80, Vla02].

Notation 3.100 From now on we will use the notations of Example 2.91, origi-
nally introduced for differential operators: in particular xk ∈ R will denote the kth
component of x ∈ R

n , dx the ordinary Lebesgue measure on R
n , and

Mα(x) := xα1
1 · · · xαn

n for any multi-indexα = (α1, . . . , αn) .

By D(Rn) we shall denote the space of smooth, complex-valued functions with
compact support (in the literature this is also called C∞

c (Rn) or C∞
0 (Rn)), while

S (Rn)will indicate theSchwartz space onR
n (cf. Example 2.91). In these notations

S (Rn) is theC-vector space of complex-valued maps inC∞(Rn)with this property:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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for any f ∈ S (Rn) and any multi-indices α, β, there exists K < +∞ (depending
on f , α, β) such that

|Mα(x)∂β
x f (x)| ≤ K , for any x ∈ R

n . (3.76)

The norms || ||1, || ||2 and || ||∞ will denote, throughout the section, the norms
of L1(Rn, dx), L2(Rn, dx), L∞(Rn, dx) and the corresponding seminorms of
L 1(Rn, dx), L 2(Rn, dx), L ∞(Rn, dx) (see Examples 2.29(6) and (8)). �

Below we recall a number of known properties.
(1) The spacesD(Rn) andS (Rn) are invariant under Mα(x) (seen as multiplica-

tive operator) and ∂α
x . Put otherwise, functions stay in their respective spaces when

acted upon by Mα(x) and ∂α
x .

(2) Clearly D(Rn) ⊂ L p(R, dx) as a subspace, for any 1 ≤ p ≤ ∞, since
compact sets in R

n have finite Lebesgue measure and any f ∈ D(Rn) is continuous,
hence bounded on compact sets.

(3) For any 1 ≤ p ≤ ∞ we have S (Rn) ⊂ L p(R, dx) as a subspace. In fact, if
C ⊂ R

n is a compact set containing the origin, f ∈ S (Rn) is bounded on C because
continuous, while outside C we have | f (x)| ≤ Cm |x |−m for any n = 0, 1, 2, 3, . . .
as long as we choose Cn ≥ 0 big enough. In summary, | f | is bounded on R

n , so it
belongs to L ∞. But it is also bounded by some map in L p, for any p ∈ [1,+∞):
the bounding function is constant on C , and equals Cm/|x |m , m > n/p, outside C .

(4) Beside the obvious inclusion D(Rn) ⊂ S (Rn), recall a notorious fact (inde-
pendent of this section) that we will use shortly [KiGv82]:

Proposition 3.101 The spaces D(Rn) and S (Rn) are dense in L p(R, dx), for any
1 ≤ p < ∞.

(5) The next important lemma, whose proof can be found in [Bre10, Corollary
IV.24], is independent of this section’s results.

Lemma 3.102 Suppose f ∈ L 1(Rn, dx) satisfies

∫

Rn

f (x)g(x) dx = 0 for any g ∈ D(Rn) .

Then f (x) = 0 almost everywhere for the Lebesgue measure dx on R
n.

Let us introduce the first elementary definitions concerning the Fourier transform.

Definition 3.103 The linear maps L 1(Rn, dx) → L ∞(Rn, dx) given by

(F f )(k) :=
∫

Rn

e−ik·x

(2π)n/2
f (x) dx , f ∈ L 1(Rn, dx), k ∈ R

n , (3.77)

(F−g)(x) :=
∫

Rn

eik·x

(2π)n/2
g(k) dk , g ∈ L 1(Rn, dk), x ∈ R

n (3.78)

are respectively called Fourier transform and inverse Fourier transform.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Remarks 3.104 (1)Above, dk always denotes the Lebesguemeasure onR
n .We have

used a different name for the variable on R
n (k, not x) in the inverse Fourier formula,

only to respect the traditional notation, and to simplify subsequent calculations.
(2) By the integral’s properties it is obvious that

|(F f )(k)| ≤
∣
∣
∣
∣

∫

Rn
e−ik·x f (x)

dx

(2π)n/2

∣
∣
∣
∣ ≤

∫

Rn
|e−ik·x | | f (x)| dxn

(2π)n/2 =
∫

Rn
| f (x)| dx

(2π)n/2

= || f ||1
(2π)n/2

,

and similarly |(F−g)(x)| ≤ ||g||1/(2πn/2) for any x, k ∈ R
n . Therefore it makes

sense to define the Fourier and inverse Fourier transforms as operators with values
inL ∞(Rn, dx). �

In the sequel we will discuss features of the Fourier transform that most immediately
relate to the Fourier–Plancherel transform.We shall inevitably overlookmany results,
like the continuity in the seminorm topology in the Schwartz space, for which we
refer to any text on functional analysis or distributions [Rud91, ReSi80, Vla02] (see
also Sect. 2.3.4).

Proposition 3.105 The Fourier and inverse Fourier transforms enjoy the following
properties.
(a) They are continuous in the natural norms of domain and codomain:

||F f ||∞ ≤ || f ||1
(2π)n/2

and ||F−g||∞ ≤ ||g||1
(2π)n/2

.

(b) The Schwartz space is invariant under F and F−: F (S (Rn)) ⊂ S (Rn) and
F−(S (Rn)) ⊂ S (Rn).
(c) When restricted to the invariant space S (Rn) they are one the inverse of the
other: if f ∈ S (Rn), then

g(k) =
∫

Rn

e−ik·x

(2π)n/2
f (x) dx

if and only if

f (x) =
∫

Rn

eik·x

(2π)n/2
g(k) dk.

(d) When restricted to the invariant space S (Rn) they are isometric for the semi-
inner product of L 2(Rn, dxn): if f1, f2, g1, g2 ∈ S (Rn), then

∫

Rn

(F f1)(k)(F f2)(k)dk =
∫

Rn

f1(x) f2(x)dx

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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and ∫

Rn

(F−g1)(x)(F−g2)(x)dx =
∫

Rn

g1(k)g2(k)dk .

(e) They determine bounded maps from L1(Rn, dx) to C0(R
n) (continuous maps

that vanish at infinity, cf. Example 2.29(4)), and so the Riemann–Lebesgue lemma
holds: for any f ∈ L1(Rn, dx)

(F f ) (k) → 0 as |k| → +∞

and analogously for F−.
(f) They are injective if defined on L1(Rn, dx).

Remark 3.106 Concerning statement (f), more can be proved [Rud91], namely: if
f ∈ L1(Rn, dx) is such that F f ∈ L1(Rn, dk), then F−(F f ) = f . The same
holds if we swapF and F−. �

Proof of Proposition 3.105. Part (a) was proved in Remark 3.104(2). As for (b), let
us prove the claim about F , the one about F− being similar. Set

g(k) :=
∫

Rn

e−ik·x

(2π)n/2
f (x) dx .

The right-hand side can be differentiated in k by passing the operator ∂α
k inside the

integral. In fact,

∣
∣∂α

k e−ik·x f (x)
∣
∣ = ∣

∣i |α|Mα(x)e−ik·x f (x)
∣
∣ ≤ |Mα(x) f (x)| .

The function x �→ |Mα(x) f (x)| is in L 1 because f ∈ S (Rn). Since the absolute
value of the derivative of the integrand is uniformly bounded by an integrable, positive
map, known theorems on exchanging derivatives and integrals allow to say:

∂α
k g(k) = (−i)|α|

∫

Rn

e−ik·x

(2π)n/2
Mα(x) f (x) dx . (3.79)

But f vanishes faster than any negative power of |x |, as |x | → +∞, so:

Mβ(k)g(k) =
∫

Rn

i |β|∂β
x

(
e−ik·x

(2π)n/2

)
f (x) dx

and, integrating by parts,

Mβ(k)g(k) = (−i)|β|
∫

Rn

e−ik·x

(2π)n/2
∂β

x f (x) dx . (3.80)

Writing ∂α
k g instead of g in (3.80), and by (a), we have:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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|Mβ(k)∂α
k g(k)| ≤ ∣

∣
∣
∣∂β (Mα f )

∣
∣
∣
∣
1 ,

for any k ∈ R
n . The right-hand-side term is finite, since f ∈ S (Rn); and because α

and β are arbitrary, we conclude g ∈ S (Rn).
(c) Identities (3.79) and (3.80) read:

∂α F = (−i)|α| F Mα , (3.81)

Mβ F = (−i)|β| F∂β , (3.82)

where F is the restriction of the Fourier transform toS (Rn). Observing that

Fh = F−h

for any h ∈ S (Rn), it is easy to obtain

∂α F− = i |α| F−Mα , (3.83)

Mβ F− = i |β| F−∂β . (3.84)

Then (3.81), (3.82), (3.83) and (3.84) imply in particular that:

FF− Mα = MαFF− , (3.85)

F−F Mα = MαF−F , (3.86)

where Mα is thought of as multiplicative operator (Mα f )(x) := Mα(x) f (x), and

FF− ∂α = ∂αFF− , (3.87)

F−F ∂α = ∂αF−F . (3.88)

By virtue of those commuting relations, we claim J := FF− and J− := F−F are
the identity ofS (Rn). To begin with, we show, given x0 ∈ R

n and f ∈ S (Rn), that
the value (J f )(x0) depends only on f (x0). If f ∈ S (Rn) we can write:

f (x) = f (x0) +
∫ 1

0

d f (x0 + t (x − x0))

dt
dt = f (x0) +

n∑

i=1

(xi − x0i )gi (x) ,

where the gi (in C∞(Rn), as is easy to see) are:

gi (x) := ∂

∂xi

∫ 1

0
f (x0 + t (x − x0))dt.

Hence if f1, f2 ∈ S (Rn) and f1(x0) = f2(x0):
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f1(x) = f2(x) +
n∑

i=1

(xi − x0i )hi (x) , (3.89)

where, subtracting, the map x �→ ∑n
i=1(xi − x0i )hi (x) and also the hi belong to

S (Rn). Using J on both sides of (3.89) and recalling J commutes with polynomials
in x by (3.85), we have:

(J f1)(x) = (J f2)(x) +
n∑

i=1

(xi − x0i )(J hi )(x) .

Taking x = x0 shows (J f1)(x0) = (J f2)(x0) under the initial assumption f1(x0) =
f2(x0). Hence, as claimed, (J f )(x0) is a map of f (x0) only. This map must be linear,
as J is linear by construction. Consequently (J f )(x0) = j (x0) f (x0) for some map
j : R

n → C. Given that x0 was arbitrary, J acts asmultiplication by a function j . The
latter must be C∞. To justify this, choose f ∈ S (Rn) equal to 1 on a neighbourhood
I (x0) of x0. If x ∈ I (x0), then (J f )(x) = j (x). The left-hand side isC∞ on I (x0), so
also the right term is. That being valid around any point inR

n , we have j ∈ C∞(Rn).
Equation (3.87) implies

j (x)
∂

∂xi
f (x) = ∂

∂xi
j (x) f (x)

for any f ∈ S (Rn), x ∈ R
n . Choose as before f equal 1 on an open set, so the

above identity forces all derivatives of j to vanish there. This holds around any point,
and R

n is connected, so the continuous map j is constant on R
n . The constant value

clearly does not depend on the argument of J , and may be computed by evaluating
J on an arbitrary function S (Rn). Computing J on x �→ e−x2

is a useful exercise,
and reveals the constant value is exactly 1. The argument for J− is similar.
(d) Using (c) the claim is immediate. Let us carry out the proof for F ; the one for
F− is the same, essentially. Let f1, f2 ∈ S (Rn) and set, i = 1, 2:

gi (k) :=
∫

Rn

e−ik·x

(2π)n/2
fi (x) dx .

With the assumptions made, the theorem of Fubini–Tonelli gives:

∫

Rn

g1(k)g2(k)dk =
∫

Rn

g1(k)

∫

Rn

e−ik·x

(2π)n/2
f2(x)dxdk

=
∫

Rn×Rn

e−ik·x

(2π)n/2
g1(k) f2(x)dx ⊗ dk .

Now we rephrase the last integral and apply Fubini–Tonelli again:
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∫

Rn

g1(k)g2(k)dk

=
∫

Rn×Rn

eik·x

(2π)n/2
g1(k) f2(x)dx ⊗ dk =

∫

Rn

f2(x)

∫

Rn

eik·x

(2π)n/2
g1(k)dkdx

=
∫

Rn

f1(x) f2(x)dx ,

where part (c) was used. This was what we wanted.
(e) We prove the statement for F , and leave the similar assertion about F− to the
reader. Notice that both transformations are well defined on L1(Rn, dx) since the
integral does not change by altering the maps by sets of zero Lebesgue measure. The
estimate ||F f ||∞ ≤ || f ||1

(2π)n/2 guarantees the linear map F : S (Rn) → S (Rn) ⊂
C0(R

n) is continuous when the domain has the L1 norm and the codomain has
|| · ||∞. Now recall S (Rn) is dense in L1 in the given norm, and the codomain
is complete in the second norm. Hence the Fourier transform, initially defined on
S (Rn), can be extended by continuity – in a unique way – to a bounded linear
map L1(Rn, dx) → C0(R

n) that preserves the same norm by Proposition 2.47 (and
coincides with the aforementioned linear transformation on L1(Rn, dx)). If f ∈ L1,
F f ∈ C0(R

n), then for any ε > 0 there is a compact set Kε ⊂ R
n such that

|(F f )(k)| < ε if k /∈ Kε. Choose, for any ε > 0, a ball at the origin of radius rε

large enough to contain Kε. Then there exists, for any ε > 0, a real number rε > 0
such that |(F f )(k)| < ε if |k| > rε.
(f) We prove the claim for F , as the one for F− is analogous. Since F is a lin-
ear operator, it suffices to show that if F f is the zero map then f is null almost
everywhere. Therefore assume:

∫

Rn

e−ik·x

(2π)n/2
f (x) dx = 0 , for any k ∈ R

n.

If g ∈ S (Rn), the Fubini–Tonelli theorem gives

0 =
∫

Rn

g(k)

∫

Rn

e−ik·x

(2π)n/2
f (x) dx dk =

∫

Rn

(∫

Rn

e−ik·x

(2π)n/2
g(k) dk

)
f (x) dx .

Since F is bijective onS (Rn), what we have proved is equivalent to:

∫

Rn

ψ(x) f (x) dx = 0 for any ψ ∈ S (Rn)

(note ψ f ∈ L 1(Rn, dx) for any ψ ∈ S (Rn), as ψ is bounded). As D(Rn) ⊂
S (Rn), Lemma 3.102 forces f to vanish almost everywhere. �
We move on to the Fourier–Plancherel transform. As S (Rn) is dense in L 2(Rn),
by considering equivalence classes we can say S (Rn) determines a dense subset,

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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still called S (Rn), in the Hilbert space L2(Rn). The operators F and F− can be
seen as defined on that dense subspace of L2(R, dx). Proposition 3.105(d) says in
particular that these operators are bounded with norm 1, since they are isometric.
Then Proposition 2.47 tells usF andF− determine unique bounded linear operators
on L2(Rn, dx). For instance, the operator extending F to L2(Rn, dx) is defined as

F̂ f := lim
n→+∞F fn ,

for f ∈ L2(Rn, dx). Above, { fn}n∈N ⊂ S (Rn) is an arbitrary sequence converging
to f in the topology of L2(Rn, dx). By the inner product’s continuity, the extended
operator F̂ will preserve the inner product of L2(R2, dx), and as such F̂ will be 1-1
on L2(Rn, dx). The following elementary argument explains why F̂ is surjective,
too. Beside F̂ , we can construct the operator F̂− that extends to L2(Rn, dx) the
inverse Fourier transform. On S (Rn, dx)

FF− = IS (Rn).

Now pass to the L2 extensions, by linearity and continuity, and recall that the unique
linear extension of the identity fromS (Rn, dx) to L2(Rn, dx) is the latter’s identity
operator I (constructed in the general way explained above). Then

F̂ F̂− = I ,

This condition implies F̂ is onto.

Definition 3.107 The unique operator F̂ : L2(Rn, dx) → L2(Rn, dx) that extends
linearly and continuously the Fourier transform on S (Rn) is called Fourier–
Plancherel transform.

Theorem 3.108 (Plancherel) The Fourier–Plancherel transform:

F̂ : L2(Rn, dx) → L2(Rn, dx)

is a bijective and isometric linear operator.

Proof The proof was given immediately before Definition 3.107. �

Remark 3.109 Define the bilinear map L2(Rn, dx) × L2(Rn, dx) → C that asso-
ciates ( f, g) ∈ L2(Rn, dx) × L2(Rn, dx) to

〈 f, g〉 :=
∫

Rn

f gdx .

Exploiting Theorem 3.108, it is simple to prove that

〈F̂ f, g〉 = 〈 f, F̂ g〉 .

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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This result is the starting point to define Fourier transforms of distributions. �

There is still one issue we have to deal with. If f ∈ L1(Rn, dx) ∩ L2(Rn, dx) (but
f /∈ S (Rn)), a priori F f and F̂ f may be different, because to define F̂ we did
not extend F from L1(Rn, dx), but rather from the subspace S (Rn). This was the
only possible choice because L1(Rn, dx) 
⊂ L2(Rn, dx).

The next proposition sheds light on the matter, and provides a practical method to
compute the Fourier–Plancherel transform by means of limits of Fourier transforms.

Remark 3.110 Recall that if K ⊂ R
n is a finite-measure set, in particular compact,

(compact sets have finite Lebesgue measure):
(1) L2(K , dx) ⊂ L1(K , dx);
(2) if { fn}n∈N ⊂ L2(K , dx) converges in norm || ||2 to f ∈ L2(K , dx), it con-

verges in norm || ||1 to f ;
(3) L∞(K , dx) ⊂ L p(K , dx), 1 ≤ p < ∞;
(4) if { fn}n∈N ⊂ L∞(K , dx) converges in norm || ||∞ to f ∈ L∞(K , dx), it

converges to f in norm || ||p as well.
These four statements are proved as follows: concerning the first two, recall the

constant map 1 on a compact (of finite measure) set is integrable. Since

2| f (x)| ≤ | f (x)|2 + 1 ,

the integral of the left is bounded by the integral of the right, so we have statement
(1). As for the second claim, the Cauchy–Schwarz inequality

(∫

K
|g(x)| 1 dx

)2

≤
(∫

K
|g(x)|2dx

)(∫

K
1dx

)

with f (x) − fn(x) replacing g(x) proves (2). To settle the other two, note that by
definition of Lebesgue integral:

∫

K
|g|pdx ≤ ess sup

K
|g|p

∫

K
dx = (||g||∞)p

∫

K
dx

for any measurable map g on K . �

Proposition 3.111 The Fourier–Plancherel and Fourier transforms satisfy the fol-
lowing properties.
(a) If f ∈ L2(Rn, dx) ∩ L1(Rn, dx), the Fourier–Plancherel transform reduces to
the Fourier transform F f computed by integral formula (3.77).
(b) If f ∈ L2(Rn, dx), the Fourier–Plancherel transform can be computed as the
limit (understood in L2(Rn, dk))

F̂ f = lim
n→+∞ gn

of
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gn(k) :=
∫

Kn

e−ik·x

(2π)n/2
f (x)dx , (3.90)

where Kn ⊂ R
n are compact, Km+1 ⊃ Km, m = 1, 2, . . ., and ∪∞

m=1Km = R
n.

Proof (a) Begin with proving the claim for f ∈ L2(Rn, dx) different from 0 on a
zero-measure set outside a compact set K0. Such an f belongs to L1(Rn, dx). Let
then {sn}n∈N ⊂ S (Rn) be a sequence converging to f in L2(Rn, dx). If B, B ′ are
open balls of finite radius with B ⊃ B ′ ⊃ B ′ ⊃ K0, we can construct a function
h ∈ D(Rn) equal to 1 on B ′ and null outside B. Obviously, letting fn := h · sn , the
sequence { fn} is in D(Rn) and hence inS (Rn). The supports lie in the compact set
K := B. Therefore every fn belongs to L1(Rn, dx) and the sequence { fn} tends to
f in L2(Rn, dx) and L1(Rn, dx).
By definition, as fn → f in norm || ||2,

||F fn − F̂ f ||2 → 0 (3.91)

as n → +∞. At the same time, since fn → f in norm || ||1, by Proposition 3.105(a)
we have ||F fn −F f ||∞ → 0 as n → +∞. But on finite-measure sets, convergence
for || ||∞ implies convergence for || ||2, so

||F fn − F f ||2 → 0 (3.92)

and hence F̂ f = F f by (3.91) and by uniqueness of the limit.
Suppose now f ∈ L2(Rn, dx) ∩ L1(Rn, dx), and nothing more. Consider an

exhaustion of R
n by compact sets {Kn}. Define maps fn := χKn · f , where χE is the

characteristic function of E (χE (x) = 0 if x /∈ E and χE (x) = 1 if x ∈ E). It is clear
that fn → f pointwise, as n → +∞. Moreover | f (x) − fn(x)|p ≤ | f (x)|p, p =
1, 2, . . .. By Lebesgue’s dominated convergence theorem, fn → f as n → +∞,
both for || ||1 and || ||2. On the other hand what we have proved just above tells:

F fn = F̂ fn .

Proposition 3.105(a) gives ||F f − F fn||∞ → 0 and at the same time ||F̂ f −
F fn||2 → 0. These facts hold also when restricting F̂ f ,F f ,F fn to any compact
set K . For maps that are zero outside a compact set uniform convergence implies
L2 convergence, so if x belongs to a compact set, (F f )(x) = (F̂ f )(x) almost
everywhere. But every point x ∈ R

n belongs to some compact set, so F f = F̂ f
as elements in L2(Rn, dx).
(b) This was proved in the final part of (a). �

Examples 3.112 (1) There is an important property distinguishing D(Rn) from
S (Rn): only the former is not invariant under the Fourier transform (and inverse
Fourier transform). Since D(Rn) ⊂ S (Rn), in fact, it is clear that F (D(Rn)) ⊂
F (S (Rn)) ⊂ S (Rn). This cannot be sharpened:
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Proposition 3.113 Take f ∈ D(Rn). If F f ∈ D(Rn) then f = 0. The same holds
for the inverse Fourier transform.

Proof The proof is easy, and we show it only forF , because the caseF− is similar.
If

g(k) =
∫

Rn

e−ik·x

(2π)n/2
f (x) dx ,

where f has compact support, the integral converges also for k ∈ C
n . Using

Lebesgue’s dominated convergence, moreover, we can differentiate the components
ki of k inside the integral, and their real and imaginary parts. Since k �→ e−ik·x is
analytic (in each variable ki separately), it solves the Cauchy–Riemann equations in
each ki . Consequently also g will solve those equations in each ki , becoming analytic
onC

n . The restriction of g toR
n defines, via its real and imaginary parts, real analytic

maps on R
n . If g has compact support, there will be an open, non-empty set in R

n

where Re g and I m g vanish. A known property of real-analytic maps (of one real
variable) on open connected sets (here R

n) is that they vanish everywhere if they
vanish on an open non-empty set of the domain. Therefore if g has compact support
it must be the zero map. Then also f is zero, since F is invertible onS (Rn). �

(2) Related to (1) is the known Paley-Wiener theorem (see for instance [KiGv82]):

Theorem 3.114 (Paley-Wiener) Take a > 0 and consider L2([−a, a], dx) as sub-
space of L2(R, dx). The space F̂ (L2([−a, a], dx)) consists of maps g = g(k) that
can be extended uniquely to analytic maps on the complex plane (k ∈ C) such that

|g(k)| ≤ Ce2πa|I mk| , k ∈ C

for some constant C ≥ 0 depending on g.

Since F̂ (L2([−a, a], dx)) ⊂ L2(R, dk) by Plancherel’s theorem, the result of
Paley-Wiener implies that analytic maps g bounded as above determine elements
of L2(R, dk) when k is real. �
To conclude, consider the space L2((a, b), dx), where −∞ ≤ a < b ≤ +∞ and dx
is the usual Lebesgue measure on R. The following extremely practical fact, used in
Example 3.32(4) to build bases, descends from the Fourier–Plancherel theory.

Proposition 3.115 Let f : (a, b) → C be a measurable map such that:
(1) the set {x ∈ (a, b) | f (x) = 0} has zero measure,
(2) there exist C, δ > 0 for which | f (x)| < Ce−δ|x | for any x ∈ (a, b).
Then the finite linear span of the maps x �→ xn f (x) =: fn(x), n = 0, 1, 2, . . .,

is dense in L2((a, b), dx).

Proof Let S := { fn}n∈N. It is enough to prove S⊥ = {0}, because S⊥ ⊕ < S > =
L2((a, b), dx) by Theorem 3.13. So take h ∈ L2((a, b), dx) such that

∫ b

a
xn f (x)h(x)dx = 0
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for any n = 0, 1, 2, . . .. Extend h to the whole real line by setting it to zero outside
(a, b), so now: ∫

R

xn f (x)h(x)dx = 0 , (3.93)

for any n = 0, 1, 2, . . .. Moreover, the following three facts hold:
(i) f · h ∈ L1(R, dx): both maps are in L2(R, dx), so their product is in L1(R, dx);
(ii) f · h ∈ L2(R, dx), because | f (x)|2 < C2e−2δ|x | < C2 < +∞ and |h|2 is
integrable by assumption;
(iii) the map sending x ∈ R to eδ′|x | f (x)h(x) is in L1(R, dx) for any δ′ < δ. In fact,
since x �→ |eδ′|x | f (x)| ≤ Ce−(δ−δ′)|x |, the function x �→ eδ′ |x | f (x) is in L2(R, dx),
and h ∈ L2(R, dx) by hypothesis, so the product belongs to L1(R, dx).
Using (i) we compute the Fourier transform:

g(k) =
∫

R

e−ik·x
√
2π

f (x)h(x) dx .

This coincides with the Fourier–Plancherel transform of f · h by (i), (ii) and Propo-
sition 3.111(a). Using (iii), if k is complex and |I mk| < δ, then g = g(k) is well
defined and analytic on the open strip B ⊂ C given by Rek ∈ R, |I mk| < δ; this is
proved similarly to what we did in example (1). Lebesgue’s dominated convergence
and exchanging derivatives and integrals allow to see that

dng

dkn
|k=0 = (−i)n

√
2π

∫

R

xn f (x)h(x)dx

for any n = 0, 1, . . .. All derivatives vanish by (3.93), and so the Taylor expansion
of g at the origin is zero. This annihilates g on an open disc contained in B, so
analyticity guarantees g is zero on the open connected set B, and in particular on the
real line parametrised by k. Therefore the Fourier–Plancherel transform of f · h is
the null vector of L2(R, dk). Since the transform is unitary we conclude f · h = 0
almost everywhere on R: in particular on (a, b), where by assumption f 
= 0 almost
everywhere. But then h = 0 almost everywhere on (a, b), which is to say each
h ∈ S⊥ coincides with the null element in L2((a, b), dx), ending the proof. �

Exercises

3.1 Let X be a real vector space and 〈·, ·〉 : X × X → R a bilinear map. Prove that
the polarisation identity

〈x, y〉 = 1

4
(〈x + y, x + y〉 − 〈x − y, x − y〉)
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holds for all x, y ∈ X if and only if 〈x, y〉 = 〈y, x〉 for all x, y ∈ X.

3.2 Let X be a complex vector space and 〈·, ·〉 : X × X → C a map which is linear
in the right entry and antilinear in the left entry. Prove the polarisation identity

〈x, y〉 = 1

4
(〈x + y, x + y〉 − 〈x − y, x − y〉 − i〈x + iy, x + iy〉 + i〈x − iy, x − iy〉)

for every x, y ∈ X. Next show that 〈y, x〉 = 〈x, y〉 for all x, y ∈ X if and only if
〈z, z〉 ∈ R for every z ∈ X.

3.3 Definition 3.1 of a (semi-)inner product makes sense on real vector spaces as
well, simply by replacing H2 with S(u, v) = S(v, u), and using real linear combi-
nations in H1.

Show that with this definition Proposition 3.3 still holds, provided the polarisation
formula is written as in (3.7).

3.4 (Hard.) Consider a real vector space and prove that if a (semi)norm p satisfies
the parallelogram rule (3.3):

p(x + y)2 + p(x − y)2 = 2(p(x)2 + p(y)2) , (3.94)

then there exists a unique (semi-)inner product S, defined in Exercise 3.3, inducing
p via (3.2).

Solution. If S is a (semi-)inner product on the real vector space X, we have the
polarisation formula (3.7):

S(x, y) = 1

4
(S(x + y, x + y) − S(x − y, x − y)) .

This implies S is unique, for S(z, z) = p(z)2. For the existence from a given norm
p set:

S(x, y) := 1

4

(
p(x + y)2 − p(x − y)2

)
.

We shall prove S is a semi-inner product or an inner product according to whether
p is a norm or a seminorm. If this is true and p is a norm, then substituting S to p
above, on the right, gives S(x, x) = 0 and x = 0, making S an inner product.

To finish we need to prove, for any x, y, z ∈ X:
(a) S(αx, y) = αS(x, y) if α ∈ R,
(b) S(x + y, z) = S(x, z) + S(y, z),
(c) S(x, y) = S(y, x),
(d) S(x, x) = p(x)2.

Properties (c) and (d) are straightforward from the definition of S. Let us prove (a)
and (b). By (3.3) and the definition of S:

S(x, z) + S(y, z) = 4−1 (p(x + z)2 − p(x − z)2 + p(y + z)2 − p(y − z)2
)
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= 2−1

(

p

(
x + y

2
+ z

)2

− p

(
x + y

2
− z

)2
)

= 2S

(
x + y

2
, z

)
.

Hence

S(x, z) + S(y, z) = 2S

(
x + y

2
, z

)
. (3.95)

Then (a) clearly implies (b), and we have to prove (a) only. Take y = 0 in (3.95) and
recall S(0, z) = 0 by definition of S. Then

S(x, z) = 2S(x/2, z) .

Iterating this formula gives (a) for α = m/2n , m, n = 0, 1, 2, . . .. These numbers are
dense in [0,+∞). At the same time R � α �→ p(αx + z) and R � α �→ p(αx − z)
are both continuous (in the topology induced by p), so

S(x, y) := 1

4
(p(x + y, x + y) − p(x − y, x − y))

allows to conclude R � α �→ S(αx, y) is continuous in α. That is to say, (a) holds
for any α ∈ [0,+∞). Again by definition of S we have S(−x, y) = −S(x, y), so
the previous result is valid for any α ∈ R, ending the proof.

3.5 (Hard.) Suppose a (semi)norm p satisfies the parallelogram rule (3.3):

p(x + y)2 + p(x − y)2 = 2(p(x)2 + p(y)2) (3.96)

on a C-vector space. Show that there is a unique (semi-)inner product S inducing p
by means of (3.2).

Solution. If S is a (semi-)inner product on the complex vector space X we have
the polarisation formula (3.4):

4S(x, y) = S(x +y, x +y)−S(x −y, x −y)−i S(x +iy, x +iy)+i S(x −iy, x −iy).

Since S(z, z) = p(z)2, as in the real case, that implies uniqueness of S for a given
norm p on X. Existence: define, for a given (semi)norm p and x, y ∈ X:

S1(x, y) := 4−1(p(x + y)2 − p(x − y)2) , S(x, y) := S1(x, y) − i S1(x, iy) .

Notice S(x, x) = p(x)2, and if p is a norm, by construction S(x, x) = 0 implies
x = 0. There remains to show that the above S is a Hermitian (semi-)inner product.
By Definition 3.1 we have to check:

(a) S(αx, y) = αS(x, y) if α ∈ C,
(b) S(x + y, z) = S(x, z) + S(y, z),
(c) S(x, y) = S(y, x),
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(d) S(x, x) = p(x)2.
The last one is true by construction. Proceeding as in the previous exercise, using
S1 instead of S, we can prove (b) for S1, (a) for S1 with α ∈ R, and also S1(x, y) =
S1(y, x). These, using the definition of S in terms of S1, imply (a), (b) and (c).

3.6 Let X be a real vector space equipped with a real inner product 〈·, ·〉 and asso-
ciated norm || · ||. Prove that

||x1 + · · · + xn|| ≤ ||x1|| + · · · + ||xn|| ,

where
||x1 + · · · + xn|| = ||x1|| + · · · + ||xn||

if and only if xk = λk x for some x ∈ X and λk ∈ [0,+∞) for all k = 1, . . . , n.

Hint. First show that ||x1 + · · · + x p|| ≤ ||x1|| + · · · + ||x p||. Then prove the
second part of the thesis for n = 2, using the fact that |〈x, y〉| = ||x || ||y|| ⇔ x
and y are linearly independent, then extend the result using induction. Observe that
||x1 +· · ·+ x p + x p+1|| = ||x1||+ · · ·+ ||x p||+ ||x p+1|| implies ||x1 +· · ·+ x p|| =
||x1|| + · · · + ||x p|| since ||x1 + · · · + x p + x p+1|| ≤ ||x1 + · · · + x p|| + ||x p+1||.
3.7 Prove the claim in Remark 3.4(1) on a (semi-)inner product space (X, S): the
(semi-)inner product S : X×X → C is continuous in the product topology of X×X,
having on X the topology induced by the (semi-)inner product itself. Consequently
S is continuous in both arguments separately.

Hint. Suppose X × X � (xn, yn) → (x, y) ∈ X × X as n → +∞. Use the
Cauchy–Schwarz inequality to show that if S is the (semi-)inner product associated
to p, then:

|S(x, y) − S(xn, yn)| ≤ p(xn)p(yn − y) + p(xn − x)p(y) .

Recall that p(xn) → p(x) and that the canonical projections are continuous in the
product topology.

3.8 Prove Proposition 3.8: a linear operator L : X → Y between inner product
spaces is an isometry, in the sense of Definition 3.6, if and only if

||Lx ||Y = ||x ||X for any x ∈ X,

where norms are associated to the respective inner products.

Hint. Polarise.

3.9 Consider the Banach space �p(N), p ≥ 1. Show that for p 
= 2 one cannot
define any Hermitian inner product inducing the usual norm || ||p. Conclude that
�p(N) cannot be rendered a Hilbert space for p 
= 2.
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Hint. Show there are pairs of vectors f, g violating the parallelogram rule. E.g.
f = (1, 1, 0, 0, . . .) and g = (1,−1, 0, 0, . . .).

3.10 Prove that the Banach space (C([0, π/2]), || ||∞) does not admit a Hermitian
inner product inducing || ||∞, i.e.: (C([0, π/2]), || ||∞) cannot be made into a Hilbert
space.

Hint. Show there are pairs of vectors f, g violating the parallelogram rule. Con-
sider for example f (x) = cos x and g(x) = sin x .

3.11 In the Hilbert space H consider a sequence {xn}n∈N ⊂ H converging to x ∈ H
weakly: f (xn) → f (x), n → +∞, for any f ∈ H′. Show that, in general, xn 
→ x
in the topology of H. However, if we additionally assume ||xn|| → ||x ||, n → +∞,
then xn → x , n → +∞, also in the topology of H.

Hint. Riesz’s theorem implies that {xn}n∈N ⊂ H weakly converges to x ∈ H iff
(z|xn) → (z|x), n → +∞, for any z ∈ H. Let {xn}n∈N be a basis of H, thought of as
separable. Then xn → 0 weakly but not in the topology of H. For the second claim,
note ||x − xn||2 = ||x ||2 + ||xn||2 − 2Re(x |xn).

3.12 Consider the basis of L2([−L/2, L/2], dx) formed by the functions (up to
zero-measure sets):

en(x) := ei2πnx/L

√
L

n ∈ Z .

Suppose, for f ∈ L2([−L/2, L/2], dx), that the series

∑

n∈Z
(en| f )en(x)

converges to some g in norm || ||∞. Prove f (x) = g(x) a.e.

Hint. Compute the components (en|g) using the fact that the integral of an
absolutely convergent series on [a, b] is the series of the integrated summands. Check
that (en|g) = (en| f ) for any n ∈ Z.

3.13 Consider the basis of L2([−L/2, L/2], dx) made by the functions en of Exer-
cise 3.12. Suppose f : [−L/2, L/2] → C is continuous, f (−L/2) = f (L/2),
and f is piecewise C1 on [−L/2, L/2] (i.e. [−L/2, L/2] = [a1, a2] ∪ [a2, a3] ∪
· · ·∪[an−2, an−1]∪[an−1, an] and f �[ai ,ai+1]∈ C1([ai , ai+1]) for any i , understanding
boundary derivatives as left and right derivatives). Show:

f (x) =
∑

n∈Z
(en| f )en(x) for any x ∈ [−L/2, L/2]

where

en(x) := ei2πnx/L

√
L

n ∈ Z .
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Prove the series converges uniformly.

Hint. Compute the components (en|d f/dx) by integration by parts: |n(en| f )| =
2c|(en|d f/dx)|, where c = L/(4π). Then

|(en| f )| = c2|(en|d f/dx)||1/n| ≤ c(|(en|d f/dx)|2 + 1/n2), n 
= 0 .

Now, d f/dx gives an L2 map, the series with generic term 1/n2 converges, and
|en(x)| = 1 for any x . Therefore the series

∑

n∈Z
(en| f )en(x)

converges uniformly, i.e. in norm || ||∞. Apply Exercise 3.12.

3.14 Rephrase and prove Exercise 3.13, replacing the requirement that f be con-
tinuous and piecewise C1 with the demand that f be absolutely continuous on
[−L/2, L/2] and either with essentially bounded derivative, or with derivative in
L 2([−L/2, L/2], dx).

Hint. Remember Theorem 1.76(a).

3.15 Consider the basis {en} of L2([−L/2, L/2], dx) of Exercise 3.12. Let f :
[−L/2, L/2] → C be of class C N , suppose dk f/dxk |−L/2 = dk f/dxk |L/2, k =
0, 1, . . . , N and that f is piecewise C N+1 on [−L/2, L/2]. Prove

dk f (x)

dxk
=

∑

n∈Z
(en| f )

dk

dxk
en(x) for any x ∈ [−L/2, L/2]

where

en(x) := ei2πnx/L

√
L

n ∈ Z ,

and the series’ convergence is uniform, k = 0, 1, 2, . . . , N

Hint. Iterate the procedure of Exercise 3.13, bearing in mind that we can swap
derivatives and sum in a convergent series of C1 maps whose series of derivatives
converges uniformly.

3.16 Prove that the functions [0, L] � x �→ sn(x) :=
√

2
L sin

(
πnx

L

)
, n = 1, 2, 3, . . .,

form an orthonormal system in L2([0, L], dx).

Sketch. A direct computation tells ||sn|| = 1. Then observe that Δsn = (
πnx

L

)2
sn

where Δ := − d2

dx2 . Therefore if ( | ) is the inner product in L2([0, L], dx):

(sn|sm) = 1

n
(Δsn|sm) = 1

n
(sn|Δsm) = m

n
(sn|sm)

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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where, in the middle, we integrated twice by parts in order to shift Δ from left to
right, and we used sk(0) = sk(L) = 0 to annihilate the boundary terms.

Therefore (
1 − m

n

)
(sn|sm) = 0,

implying (sn|sm) = 0 if n 
= m.

3.17 Prove that the maps [0, L] � x �→ cn(x) :=
√

2
L cos

(
πnx

L

)
, n = 0, 1, 2, . . .,

form an orthonormal system in L2([0, L], dx).

Hint. Proceed exactly as in Exercise 3.16. If Δ := − d2

dx2 we still have Δcn =
(

πnx
L

)2
cn , but now it is the derivatives of cn that vanish on the boundary of [0, L].

3.18 Recall that the spaceD((0, L)) of smoothmaps with compact support in (0, L)

is dense in L2([0, L], dx) in the latter’s topology. Using Exercise 3.13 prove that

the functions [0, L] � x �→ sn(x) :=
√

2
L sin

(
πnx

L

)
, n = 1, 2, 3, . . ., are a basis of

L2([0, L], dx).

Outline. It suffices to prove that the space < sn >n=1,2,... of finite linear com-
binations of the sn is dense in D((0, L)) for || ||∞, because this would imply, by
elementary integral properties, that they are dense in the topology of L2([0, L], dx).
Since D((0, L)) is dense in L2([0, L], dx), we would have < sn >n=1,2,... dense in
L2([0, L], dx). Because {sn}n=1,2,... is an orthonormal system (Exercise 3.16), this
would in turn imply the claim, by Theorem 3.26. To show that< sn >n=1,2,... is dense
inD((0, L)) with respect to || ||∞, fix f ∈ D((0, L)) and extend it to F on [−L , L]
by imposing F be an odd map. By construction F is in D((−L , L)) and satisfies
F(−L) = F(L), because it and its derivatives vanish around x = 0 and x = ±L . A
fortiori F is continuous and piecewise C1 on [−L , L]. Applying Exercise 3.13 we
conclude:

F(x) =
∑

n∈N
(F |en)

eiπnx/L

√
2L

where now

en(x) := eiπnx/L

√
2L

,

and the series’ convergence is in norm || ||∞. Since F is odd:

F(x) = −F(−x) = −
∑

n∈N
(F |en)

e−iπnx/L

√
2L

adding which to the previous expression of F(x) gives:

2F(x) =
∑

n∈N

2i(F |en)√
2L

sin
(πnx

L

)
.
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Restricting to x ∈ [0, L]:

f (x) =
∑

n∈N

i(F |en)√
2L

sin
(πnx

L

)
.

Since the convergence is in norm || ||∞, we have the claim.

3.19 Recall that the spaceD((0, L)) of smoothmaps with compact support in (0, L)

is dense in L2([0, L], dx) in the latter’s topology. Using Exercise 3.13 prove that the

functions [0, L] � x �→ cn(x) :=
√

2
L cos

(
πnx

L

)
are a basis of L2([0, L], dx).

Hint. Proceed as in Exercise 3.18, extending f to an even function on [−L , L].
3.20 Let C ⊂ H be a closed subspace in the Hilbert space H. Prove C is weakly
closed. Put otherwise, show that if {xn}n∈N ⊂ C converges weakly (cf. Exercise 3.11)
to x ∈ H, then x ∈ C .

Hint. If PC : H → C is the orthogonal projector onto C , show PC xn → PC x
weakly.

3.21 LetHbe aHilbert space andT : D(T ) → H a linear operator,where D(T ) ⊂ H
is a dense subspace in H (D(T ) = H, possibly). Prove that if (u|T u) = 0 for any
u ∈ D(T ) then T = 0, i.e. T is the null operator (sending everything to 0).

Solution. We have

0 = (u + v|T (u + v)) = (u|T u) + (v|T v) + (u|T v) + (v|T u) = (u|T v) + (v|T u)

and similarly

0 = i(u + iv|T (u + iv)) = i(u|T u) + i(v|T v) − (u|T v) + (v|T u) = −(u|T v) + (v|T u) .

Adding these two gives (v|T u) = 0 for any u, v ∈ D(T ). Choose {vn}n∈N ⊂ D(T )

such that vn → T u, n → +∞. Then ||T u||2 = (T u|T u) = limn→+∞(vn|T u) = 0
for any u ∈ D(T ), i.e. T u = 0 for any u ∈ D(T ), hence T = 0.

3.22 Consider L2([0, 1], m) where m is the Lebesgue measure, and take f ∈
L 2([0, 1], m). Let T f : L2([0, 1], m) � g �→ f ·g, where · is the standard pointwise
product of functions. Prove T f is well defined, bounded with norm ||T f || ≤ || f || and
normal. Moreover, show T f is self-adjoint iff f is real-valued up to a zero-measure
set in [0, 1].
3.23 Let T ∈ B(H) be self-adjoint. Given λ ∈ R, consider the series of operators

U (λ) :=
∞∑

n=0

(iλ)n T n

n! ,
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where T 0 := I , T 1 := T , T 2 := T T and so on, and the convergence is uniform.
Prove the series converges to a unitary operator.

Hint. Proceed as when proving the properties of the exponential map using its
definition as a series.

3.24 Referring to the previous exercise, show that λ,μ ∈ R imply U (λ)U (μ) =
U (λ + μ).

3.25 Show that the series of Exercise 3.23 converges for any λ ∈ C to a bounded
operator, and that U (λ) is always normal.

3.26 Show that the operator U (λ) of Exercise 3.23 is positive if λ ∈ iR. Are there
values λ ∈ C for which U (λ) is a projector (not necessarily orthogonal)?

3.27 Compute explicitly U (λ) in Exercise 3.23 if T is the operator T f of Exercise
3.22 and f = f .

3.28 In �2(N) consider the operator T : {xn} �→ {xn+1/n}. Prove T is bounded and
compute T ∗.

3.29 Consider the Volterra operator T : L2([0, 1], dx) → L2([0, 1], dx):

(T f )(x) =
∫ x

0
f (t)dt .

Prove it is well defined, bounded and its adjoint satisfies:

(T ∗ f )(x) =
∫ 1

x
f (t)dt for any f ∈ L2([0, 1], dx).

Hint. Since [0, 1] has finite Lebesgue measure, L2([0, 1], dx) ⊂ L1([0, 1], dx).
Then use Theorem 1.76.

3.30 Let U : H → H be a bounded operator over a Hilbert space H. Prove that if
(x |y) = 0 implies (U x |U y) = 0 for x, y ∈ H and U 
= 0, then there is a > 0 such
that V := aU is isometric.

Solution. The first part of the hypothesis can be rephrased as y ⊥ x implies
y ⊥ U ∗U x . As a consequence U ∗U x ∈ {{x}⊥}⊥ which is the linear span of x .
In other words, if x ∈ H then U ∗U x = λx x for some λx ∈ C. Let us prove
that λx does not depend on x . To this end, consider a couple of vectors x ⊥ y
with x, y 
= 0. Using the argument above we have U ∗U x = λx x , U ∗U y =
λy y, U ∗U (x+y) = λx+y(x+y).Linearity ofU ∗U applied to the last identity leads
toU ∗U x +U ∗U y = λx+y x +λx+y y , namelyU ∗U x −λx+y x = −(U ∗U y−λx+y y).
Exploiting U ∗U x = λx x and U ∗U y = λy y we get (λx −λx+y)x = −(λy −λx+y)y.
Since x ⊥ y and x, y 
= {0}, the only possibility is that λx = λx+y = λy . In summary,

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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a couple of orthogonal non-vanishing vectors x, y satisfies λx = λy . Next consider
a Hilbert basis {xn}n∈J ⊂ H so that, if z ∈ H, z = ∑

n∈J cn xn . for complex numbers
cn . Since U ∗U is bounded,

U ∗U z = U ∗U
∑

n∈J

cn xn =
∑

n∈J

cnU ∗U xn =
∑

n

cnλxn xn

From the previous argument that λxn = λxm so that, indicating with c the common
value of the λxn , we have

U ∗U z =
∑

n∈J

cncxn = c
∑

n∈J

cn xn = cz .

Since z ∈ H is arbitrary, we have found that

U ∗U = cI .

Finally, if x ∈ H, it must hold 0 ≤ (U x |U x) = (x |U ∗U x) = c(x |x) so that c ≥ 0
and c 
= 0 because U 
= 0. V := c−1/2U satisfies V ∗V = I and therefore is
isometric.

3.31 Let A be a C∗-algebra without unit. Consider the direct sum A⊕ C and define
the product:

(x, c) · (y, c′) := (x ◦ y + cy + c′x, cc′), (x ′, c′), (x, c) ∈ A ⊕ C ,

where ◦ is the product on A. Define the norm:

||(x, c)|| := sup{||cy + xy|| | y ∈ A, ||y|| = 1}

and the involution: (x, c)∗ = (x∗, c), where c is the complex conjugate of c and the
involution on the right is the one of A. Prove that the vector space A ⊕ C with the
above structure is a C∗-algebra with unit (0, 1).

Hint. The triangle inequality is easy. The proof that ||(x, c)|| = 0 implies c = 0
and x = 0 goes as follows. If c = 0, ||(x, 0)|| = 0 means ||x || = 0, so x = 0.
If c 
= 0, we can simply look at c = 1. In that case ||y + xy|| ≤ ||y|| ||(x, 1)||,
so ||(x, 1)|| = 0 implies y = xy for any y ∈ A. Using the involution we have
y = yx∗ for any y ∈ B. In particular x∗ = xx∗ = x , and then y = xy = yx
for any y ∈ A. Therefore x is the unit of A, a contradiction. Hence c = 0 is the
only possibility, and we fall back to the previous case. Let us see to the C∗ prop-
erties of the norm. By definition of norm: ||(c, x)||2 = sup{||cy + xy||2 | y ∈
A, ||y|| = 1} = sup{||y∗(ccy + cxy + cx∗y + x∗xy)|| | y ∈ A, ||y|| = 1}.
Hence ||(c, x)||2 ≤ ||(c, x)∗(c, x)|| ≤ ||(c, x)∗|| ||(c, x)||. In particular ||(c, x)|| ≤
||(c, x)∗||, and replacing (c, x) with (c, x)∗ gives ||(c, x)∗|| = ||(c, x)||. The
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inequality ||(c, x)||2 ≤ ||(c, x)∗(c, x)|| ≤ ||(c, x)∗|| ||(c, x)|| implies ||(c, x)||2 ≤
||(c, x)∗(c, x)|| ≤ ||(c, x)||2, and so ||(c, x)||2 = ||(c, x)∗(c, x)||.
3.32 Prove Proposition 3.55:
Proposition. Let A be a ∗-algebra with unit,H a Hilbert space, and consider a linear
map φ : A → B(H) which preserves the products and the involutions. The following
facts hold.
(a) Hφ := Ran(φ(I)) and H⊥

φ are closed subspaces of H satisfying H = Hφ ⊕ H⊥
φ ,

and each subspace is invariant under φ(a), for every a ∈ A.
(b) φ(a)�H⊥

φ
= 0 for every a ∈ A.

(c) The restriction to the complement

πφ : A � a �→ φ(a)�Hφ
∈ B(Hφ)

is a representation of A over Hφ according to Definition 3.52. It also satisfies
(i) πφ is faithful ⇔ φ is injective;
(ii) πφ(a) is the zero representation ⇔ φ(I) = 0 (in this case Hφ = {0});
(iii) πφ = φ if φ is surjective;
(iv) πφ = φ if φ is not the zero map and irreducible (i.e. there are no closed subspaces
M of H with {0} � M � H and such that φ(a)(M) ⊂ M for every a ∈ A).

Solution. (a) First of all we notice that P := φ(I) is an orthogonal projector
because P P = φ(I)φ(I) = φ(II) = φ(I) = P and P∗ = φ(I)∗ = φ(I∗) =
φ(I) = φ, where we have used Proposition 3.44(c). Therefore Hφ := P(H) is a
closed subspace by Proposition 2.101(b). Moreover I − P projects orthogonally
onto H⊥

φ , and H = Hφ ⊕ H⊥
φ by Proposition 3.64(a, b). Now observe that Pφ(a) =

φ(I)φ(a) = φ(Ia) = φ(a) = φ(aI) = φ(a)P , which entails that Hφ is invariant
under every φ(a). The same fact holds for H⊥

φ when we replace P by I − P in the
previous argument. (b) If x ∈ H⊥

φ , φ(a)x = φ(a)(I − P)x = φ(a)x − φ(aI)x =
φ(a)x − φ(a)x = 0. (c) Since P restricts to the identity map I on Hφ , we have
φ(a)�Hφ

(I) = I . Then the restrictionA � a �→ π(a) := φ(a)�Hφ
is a representation

on the Hilbert space Hφ in the sense of Definition 3.52, because it is linear and it
preserves the product and the involution, as the reader immediately proves using
the same properties of φ. (i) It is obvious that πφ(a) = 0 ⇔ φ(a) = 0, since
φ(a)�H⊥

φ
= 0 and this is the same as saying that πφ is injective (faithful) if and only

if φ is injective. (ii) If πφ is the zero representation then πφ(I) = 0 in particular,
and hence φ(I) = 0 as well, by construction. If φ(I) = 0 then πφ(I) = 0 and so
πφ(a) = πφ(Ia) = πφ(I)πφ(a) = 0πφ(a) = 0 for every a ∈ A. (If φ(I) = 0, we
also have Hφ = P(H) = {0} since P = φ(I).) (iii) If φ is surjective, there exists
a1 ∈ Awith φ(a1) = I so I = φ(a1) = φ(Ia1) = φ(I)φ(a1) = φ(I)I = φ(I) = P .
Therefore Hφ = H, which implies φ = πφ . (iv) M := P(H) satisfies φ(a)(M) ⊂ M
for every a ∈ A, so either M = H, and thus φ = πφ as we wanted, or M = {0}. The
latter is forbidden by hypothesis, because it would imply φ(a) = 0 for every a ∈ A.

3.33 If {Rα}α∈A is a family of von Neumann algebras on a Hilbert space H, prove
that

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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(
∨

α∈A

Rα

)′
=

∧

α∈A

R′
α and

(
∧

α∈A

Rα

)′
=

∨

α∈A

R′
α .

3.34 Prove that a von Neumann algebra R on a Hilbert space H is complete in the
strong operator topology. In other words, given {An}n∈N ⊂ R such that {An x}n∈N is
Cauchy in H for every fixed x ∈ H, there exists A ∈ R such that An → A strongly
(the converse being trivially true).

Solution. As R is strongly closed in B(H), it is enough to prove that B(H)

is strongly complete. Fix x ∈ H. As {An x}n∈N is Cauchy, Ax := limn→+∞ An x
does exist. Linearity of each An implies linearity of A : H � x �→ Ax . There
remains to prove that A is bounded. As An x admits limit, we have ||An x || < +∞
for every x ∈ H and every n ∈ N. The Banach–Steinhaus Theorem 2.62 implies that
||An|| < S < +∞ for every n ∈ N. Moreover, if x ∈ H, for every εx > 0 there is
nεx ∈ N such that ||(A − An)x || < εx if n > nεx . Summing up,

||Ax || ≤ ||Ax − An x || + ||An x || < εx + S||x || for n > nεx .

Since εx > 0 is arbitrary,

||Ax || ≤ S||x || ∀x ∈ H ,

which entails ||A|| ≤ S < +∞ and therefore A ∈ B(H).

3.35 Prove that a von Neumann algebra R on a Hilbert space H is complete in the
weak operator topology. In other words, if {An}n∈N ⊂ R is such that {(y|An x)}n∈N
is Cauchy in C for every fixed x, y ∈ H, then there exists A ∈ R such that An → A
weakly (the converse being trivially true).

Solution. AsR is weakly closed inB(H), it suffices to prove thatB(H) is weakly
complete. Fix x, y ∈ H. As {(y|An x)}n∈N is Cauchy, Ayx := limn→+∞(y|An x) ∈ C

exists. Each An is linear and the inner product is Hermitian, soH � x �→ Ayx is linear
andH � y �→ Ayx antilinear. We claim there exist a linear operator A : H → H such
that Ayx = (y|Ax) for every x, y ∈ H. For x, y ∈ H fixed, |(y|An x)| < +∞ for
every n ∈ N. Therefore, for fixed x , applying the Banach–Steinhaus Theorem 2.62
to the family of linear functionals H � y �→ (y|An x), we conclude that there is a
positive number Sx < +∞ satisfying ||(·|An x)|| < Sx uniformly in n. Moreover, if
y ∈ H, for every εy > 0 there is nεy ∈ N such that |Ayx − (y|An x)| < εy if n > nεy .
Summing up,

|Ayx | ≤ |Ayx − (y|An x)| + |(y|An x)| < εy + Sx ||y|| for n > nεy .

Since εy > 0 is arbitrary,

|Ayx | ≤ Sx ||y|| ∀y ∈ H ,

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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which entails ||A·x || ≤ Sx < +∞. Therefore Riesz’s lemma proves that there exists
Ax ∈ H with

Ayx = (y|Ax ) ∀y ∈ H .

It easy to prove that H � x �→ Ax =: Ax is linear. So now we have a linear
operator A : H → H such that (y|An x) → (y|Ax) for every x, y ∈ H. To finish it
suffices to prove that A is bounded. Since (A∗

n y|x) = (y|An x)we know the sequence
{(A∗

n y|x)}n∈N is Cauchy for every choice of x, y ∈ H. Repeating the procedure
above, there exists an operator B : H → H such that (A∗

n y|x) → (By|x) for every
x, y ∈ H, so that (y|Ax) = (By|x) for every x, y ∈ H. This identity easily implies
that B is closed (Definition 2.98). Applying the closed graph Theorem 2.99, we
conclude that B ∈ B(H). The identity (y|Ax) = (By|x), x, y ∈ H, rewritten as
(Ax |y) = (x |By) = (B∗x |y), implies A = B∗ ∈ B(H).

3.36 Let H,K be complex Hilbert spaces, A ⊂ B(H) and B ⊂ B(K) unital C∗-
algebras of operators, and φ : A → B a continuous linear map relatively to the
strong operator topology (or weak operator topology) of both A andB. Prove that φ
extends uniquely to a continuous linear map Φ : A′′ → B′′ relatively to the strong
operator topology (resp. weak operator topology) both on A′′ and B′′.

Solution. Let us treat the case of strong topologies. Since A is strongly dense
in A′′, any strongly continuous extension Φ must be unique. Let us prove that Φ

exists by using Exercise 3.34. Since A is dense in A′′, if A ∈ A′′ there is a sequence
{An}n∈N ∈ A converging to A strongly. Define Φ(A) := s-limn→+∞ φ(An). First of
all we prove that {φ(An)}n∈N ⊂ B′′ is Cauchy (with respect to the strong operator
topology) and hence its limit belongs to B′′, which is complete in that topology as
established in Exercise 3.34. Fix a seminorm py(·) := || · y|| inB(K) associated to
the vector y ∈ K. Since φ is strongly continuous, for every ε > 0 there is an open set
Oy,ε containing 0 ∈ B(H), given by intersecting a finite number of balls defined by
seminorms px (y)

1
, . . . px (y)

ny
. The vectors x (y)

k and the number ny also depend on ε, with

py(φ(A)) < ε if A ∈ Oy,ε ∩A. In other words ||φ(A)y|| < ε if
∑ny

k=1 ||Ax (y)

k || < δ

for some δ > 0 depending on y and ε. If A does not satisfy the last condition,
A′ := δA∑ny

k=1 ||Ax (y)

k || certainly will. Therefore, for every y ∈ K there is a constant

Cy ≥ 0 (= ε/δ) and there are vectors x (y)

1 , . . . , x (y)
ny ∈ H, such that

||φ(A)y|| ≤ Cy

ny∑

k=1

||Ax (y)

k || ∀A ∈ A .

This inequality implies that the sequence {φ(An)}n∈N is Cauchy in the strong operator
topology if {An}n∈N is.We conclude thatΦ(A) := s-limn→+∞ φ(An) is well defined.
Notice that a different sequence {A′

n}n∈N tending to A (strongly) would produce the
same limit, because

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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||φ(An)y − φ(A′
n)y|| ≤ Cy

ny∑

k=1

||(An − A′
n)x (y)

k ||

and ||(An − A′
n)x (y)

k || → 0 (both sequences converge to A strongly). It is there-
fore clear that Φ extends φ, because for any A ∈ A we may define Φ(A) :=
s-limn→+∞ φ(An), using a constant sequence An = A. The limiting process used
to define Φ immediately proves that Φ is linear as well, since φ is. Regarding the
strong continuity of Φ, observe that, by construction

||Φ(A)y|| =
∣
∣
∣
∣

∣
∣
∣
∣ lim
n→+∞ φ(An)y

∣
∣
∣
∣

∣
∣
∣
∣ = lim

n→+∞ ||φ(An)y|| .

Since An x (y)

k → Ax (y)

k and

||φ(An)y|| ≤ Cy

ny∑

k=1

||An x (y)

k || ,

the limit above produces

||Φ(A)y|| ≤ Cy

ny∑

k=1

||Ax (y)

k || , if A ∈ A′′,

valid for every y ∈ K, for the corresponding Cy ≥ 0 and for x (y)

1 , . . . , x (y)
ny ∈ H. This

inequality is equivalent to the continuity of Φ in the strong topology of the two von
Neumann algebras A′′ and B′′.

The case of weak topologies is completely analogous if we replace the seminorms
px (·) = || · x || with the seminorms px,y(·) = |(x | · y)|. Then Φ is the unique
map satisfying (x |Φ(A)y) = limn→+∞(x |φ(An)y) for x, y ∈ K, A ∈ A′′ and
A � An → A weakly.

3.37 Let H,K be complex Hilbert spaces, A ⊂ B(H) and B ⊂ B(K) unital C∗-
algebras of operators. Prove that a continuous ∗-homomorphism φ : A → B (rel-
atively to the weak operator topology of A and B) extends to a unique continuous
∗-homomorphism of von Neumann algebras Φ : A′′ → B′′ (in the weak topology).

Solution. As φ is linear it defines a unique weakly continuous linear extension
Φ : A′′ → B′′, as established in Exercise 3.36. We shall exploit the fact that A is
weakly dense inA′′, by the double commutant theorem.The claim is thatΦ(IH) = IK,
Φ(A∗H) = Φ(A)∗K andΦ(A◦H B) = Φ(A)◦KΦ(B) for A, B ∈ A′′. (We henceforth
omit the subscripts H,K for simplicity.) The first requirement automatically holds
because it is valid for φ. Let us prove Φ(A∗) = Φ(A)∗. If A � An → A weakly,
then A � A∗

n → A∗ weakly. From now on all limits will be meant in the weak sense.
We have
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Φ(A∗) = lim
n→+∞ φ(A∗

n) = lim
n→+∞ φ(An)

∗ = Φ(A)∗

because Φ is weakly continuous and extends the ∗-homomorphism φ. To conclude,
we need to establish Φ(AB) = Φ(A)Φ(B) for A, B ∈ A′′. Let us start by assuming
A ∈ A′′ but B ∈ A. Then A � An → A weakly implies A � An B → AB weakly.
Therefore, by the very definition of Φ:

Φ(AB) = lim
n→+∞ Φ(An B) = lim

n→+∞ φ(An B) = lim
n→+∞ φ(An)φ(B)

= lim
n→+∞ φ(An)Φ(B) = Φ(A)Φ(B) ,

where we have used the fact that φ(An) → Φ(A) weakly implies φ(An)Φ(B) →
Φ(A)Φ(B) weakly. (With a similar proof, Φ(AB) = Φ(A)Φ(B) holds true also if
A ∈ A but B ∈ A′′.) Let us finally focus on the general case A, B ∈ A′′. Since Φ is
weakly continuous, and A � Bn → B ∈ A′′ weakly implies ABn → AB, we have:

Φ(AB) = lim
n→+∞ Φ(ABn) = lim

n→+∞ Φ(A)Φ(Bn) = Φ(A)Φ(B) .

3.38 Let H be a complex Hilbert space and suppose h : B(H) → B(H) is an
antilinear map preserving the product, the operation ∗, and fixing the identity: h(I ) =
I . Prove that if h is bijective, then there exists an isometric and surjective antilinear
map U : H → H (called an anti-unitary operator) such that h(A) = U AU−1.

Hint. If N ⊂ H is a Hilbert basis, define the map C : H → H by

C :
∑

x∈N

(x |z)x �→
∑

x∈N

(x |z)x

for every z ∈ H. Next, set α(A) := Ch(A)C−1 for every A ∈ B(H), so that the map
α becomes a ∗-automorphism ofB(H). Finally, exploit Theorem 3.96.



Chapter 4
Families of Compact Operators on Hilbert
Spaces and Fundamental Properties

Measure what can be measured, and make measurable what
can’t be.

Galilei

The aim of this chapter, from the point of view of quantum mechanical applications,
is to introduce certain types of operators used to define quantum states in the standard
formulation of the theory. These operators, known in the literature as operators of
trace class, or nuclear operators, are bounded operators on a Hilbert space that admit
a trace. In order to introduce them it is necessary to define first compact operators,
also known as completely continuous operators, which play an important role in
several branches of mathematics and physical applications irrespective of quantum
theories.

The first section introduces compact operators on normed spaces, then briefly
discusses general properties in normed andBanach spaces.Wewill prove the classical
result on the non-compactness of the infinite-dimensional unit ball.

In section twowe specialise toHilbert spaces,with an eye to L2 spaceswhere com-
pact operators (such as Hilbert–Schmidt operators) admit an integral representation.
We will show that compact operators determine a closed ∗-ideal in the C∗-algebra
of bounded operators on a Hilbert space, hence, a fortiori, a C∗-subalgebra. We will
prove Hilbert’s celebrated theorem on the spectral expansion of compact operators,
to be considered as a precursor of all spectral decomposition results of subsequent
chapters.

The ∗-ideal of Hilbert–Schmidt operators and their elementary properties are the
subject of section four. We will show that Hilbert–Schmidt operators form a Hilbert
space.

The penultimate section is concerned with the ∗-ideal of operators of trace class,
and the basic (and most useful in physics) properties. In particular we shall prove
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that the trace of a product of operators is invariant under cyclic permutations of the
factors.

The final section is devoted to a short introduction to Fredholm’s alternative
theorem for Fredholm’s integral equations of the second kind.

4.1 Compact Operators on Normed and Banach Spaces

This section deals with compact operators on normed spaces. We start by recall-
ing general results about compact subsets in normed spaces, especially infinite-
dimensional ones. In the next section we shall discuss the theory in Hilbert spaces.

4.1.1 Compact Sets in (Infinite-Dimensional) Normed Spaces

Compactness in a completely general topological spaceXwas addressed inDefinition
1.19, which we recall below.

Definition Let (X,T ) be a topological space and K ⊂ X a subset. One says that
(a) K is compact if any open covering of it admits a finite sub-covering: if
{Ai }i∈I ⊂ T , ∪i∈I Ai ⊃ K , em then ∪i∈J Ai ⊃ K for some finite subset J ⊂ I ;
(b) K is relatively compact if K is compact;
(c) X is locally compact if every point admits a relatively compact open neighbour-
hood.

Related to this is the notion of sequential compactness.

Definition 4.1 A subset K in a topological space is sequentially compact if any
sequence {xn}n∈N ⊂ K has a subsequence {xn p }p∈N that converges in K .

Remark 4.2 Let us list below a few general features of compact sets that should be
known from basic topology courses (Ser94II). We shall make use of them later.
(1) Compactness is hereditary, in the sense that it is passed on to induced topologies
(cf. Remark 1.22(2)).
(2)Closed subsets in compact sets are compact, and inHausdorff spaces (like normed
vector spaces or Hilbert spaces), compact sets are closed.
(3) In metrisable spaces (in particular normed vector spaces, Hilbert spaces), com-
pactness is equivalent to sequential compactness. �

The next, useful, property is also valid in metric spaces.

Proposition 4.3 Let (X, || ||) be a normed space and A ⊂ X. If any sequence in A
admits a converging subsequence (not in A necessarily), then A is relatively compact.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Proof The only thing to prove is that {yk}k∈N ⊂ A admits a subsequence that
converges (in A, A being closed). Given {yk}k∈N ⊂ A, there will be sequences
{x (k)

n }n∈N ⊂ A, one for each k, with x (k)
n → yk as n → +∞. Fix k and pick a number

nk large enough to construct, term by term, a new sequence {zk := x (k)
nk

}k∈N ⊂ A such
that ||yk − zk || < 1/k. Under the assumptionsmade on A therewill be a subsequence
{zkp }p∈N of {zk}k∈N converging to some y ∈ A. Then

||ykp − y|| ≤ ||ykp − zkp || + ||zkp − y|| .

Since 1/kp → 0 when p → +∞, for any given ε > 0 there will be P such that, if
p > P , ||zkp − y|| < ε/2 and 1/kp < ε/2, so ||ykp − y|| < ε. In other words ykp →
y as p → +∞. 
�
Remark 4.4 This proposition holds on metric spaces too, and the proof is the same
with minor modifications. �

Examples of compact sets in an infinite-dimensional normed space (X, || ||) are
easily obtained from finite-dimensional subspaces. As we know from Sect. 2.5, any
finite-dimensional space S is homeomorphic to C

n (or R
n for real vector spaces).

Therefore any closed and bounded set K ⊂ S (e.g., the closure of an open ball of
finite radius) is compact in S by the Heine–Borel theorem. Since compactness is
a hereditary property (cf. Remark 1.22(2)) K is compact also in the topology of
(X, || ||).
The following is an important result, that discriminates between finite- and infinite-
dimensional normed spaces. We leave to the reader the proof of the fact that the
closure of an open ball in a normed space is nothing but the corresponding closed
ball with the same centre and radius:

{x ∈ X | ||x − x0|| < r} = {x ∈ X | ||x − x0|| ≤ r} .

Proposition 4.5 Let (X, || ||)be a normed space of infinite dimension. The closure of
the open unit ball {x ∈ X | ||x || < 1} (that is, the closed unit ball {x ∈ X | ||x || ≤ 1})
cannot be compact.
The same is true for any ball, with arbitrary centre and positive, finite radius.

Proof Let us indicate by B the open unit ball centred at the origin, and suppose by
contradiction that B is compact. Then we can cover B, hence B, with N > 0 open
balls Bk of radius 1/2 centred at certain points xk , k = 1, . . . , N . Consider a subspace
Xn in X, of finite dimension n, containing the vectors xk . Since dimX is infinite, we
may choose n > N as large as wewant. Define further “balls” P := B ∩ Xn of radius
1 and Pk := Bk ∩ Xn , k = 1, . . . , N , all of radius 1/2. Let us identifyXn withR

2n (or
R

n if the base field isR) by choosing a basis of Xn , say {zk}k=1,...,n . Notice that a “ball”
Pk does not necessarily have the round shape of a Euclidean ball. If we normalise the
Lebesguemeasurem onR

2n bydividing by the volumeof P (non-zero since P is open
and non-empty by Proposition 2.107), then m(P) = 1. We claim m(Pk) = (1/2)n .
The Lebesgue measure is translation-invariant, so we may only consider balls B(r)

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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centred at the origin of radius r . Since every norm is a homogeneous function,
B(λr) = {λu | u ∈ B(r)} =: λB(r) for any λ > 0. The Lebesgue measure on R

2n

satisfies m(λE) = λ2nm(E), hence m(Pk) = m((1/2)P) = (1/2)nm(P) = (1/2)n .
Eventually, as B ⊂ ∪N

k=1Bk and P ⊂ ∪N
k=1Pk , we havem(P) ≤ ∑N

k=1 m(Pk) by sub-
additivity, i.e. 1 ≤ N (1/2)2n . But this is impossible if n is large enough (N is fixed).
The argument is completely analogous for open balls of finite radius centred at any
other point in the space. 
�
The next result explains, once more, how compact sets acquire ‘counter-intuitive’
properties when passing to infinitely many dimensions. In the standard spaces C

n or
R

n there exist compact sets with non-empty interior: it is enough to close a bounded
open set, for the Heine–Borel theorem warrants that the closure (still bounded) is
compact and clearly has points in its interior.

The complete space C can be viewed as the countable union of compact subsets:
take all open discs with rational centres and rational radii. In the infinite-dimensional
case, instead, the picture changes dramatically.

Corollary 4.6 Let X be a normed space of infinite dimension.
(a) If K ⊂ X is compact, the interior of K is empty.
(b) If X is also complete (i.e. a Banach space), X cannot be obtained as a countable
union of compact subsets.

Proof (a) If the interior of K were not empty, it would contain an open ball B,
since open balls form a basis for the topology. Compact subsets are closed because
normed spaces are Hausdorff, so B ⊂ K = K , and closed subsets in compact sets
are compact, hence B would be compact, contradicting the previous proposition.
(b) The claim follows from (a) and the last statement in Baire’s Theorem 2.93, where
X is our complete normed space. 
�

4.1.2 Compact Operators on Normed Spaces

We are ready to introduce compact operators.
Recall that a subset M in a normed space (X, || ||) is bounded (relative to || ||) if

there is an open ball Bδ(x0), of finite radius δ > 0 and centred at some x0 ∈ X, such
that M ⊂ Bδ(x0).

Clearly, M is bounded if and only if there is a metric ball of finite radius δ > 0
and centred at the origin of X, containing M (just choose δ + ||x0|| as radius).
Definition 4.7 LetX,Y be normed spaces overR orC. The operator T ∈ L(X,Y) is
called compact (or completely continuous) when either of the following equivalent
conditions holds:

(a) for any bounded subset M ⊂ X, T (M) is relatively compact in Y;
(b) if {xn}n∈N ⊂ X is bounded, there is a subsequence {xnk }k∈N such that {T xnk }k∈N

converges in Y.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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The set of compact operators from X to Y is indicated by B∞(X,Y), and
B∞(X) := B∞(X,X) is the set of compact operators on X.

Remark 4.8 (1) Clearly (a) ⇒ (b). The opposite implication (b) ⇒ (a) is an imme-
diate consequence of Proposition 4.3.
(2) Any compact operator is certainly bounded, for it maps the unit closed ball cen-
tred at the origin to a set (containing the origin) with compact closure K . The latter
can be covered by N open balls of radius r > 0, say Br (yi ). Then K ⊂ ∪N

i=1Br (yi ) ⊂
BR+r (0), where R is the largest distance between the centres yi and the origin. In
particular ||T (x)|| ≤ (R + r) for ||x || = 1, so ||T || ≤ r + R < +∞. �

The sets B∞(X,Y) and B∞(X) are actually vector spaces under the usual linear
combinations of operators, hence subspaces ofB(X,Y) andB(X) respectively. But
there is more:

Proposition 4.9 If X, Y are normed spaces, then
(a) B∞(X,Y) is a vector subspace of B(X,Y).
(b) if Z is a normed space and A ∈ B∞(X,Y):

(i) B ∈ B(Z,X) implies AB ∈ B∞(Z,Y),
(ii) B ∈ B(Y,Z) implies B A ∈ B∞(X,Z);

(c) If, additionally, Y is a Banach space and {An}n∈N ⊂ B∞(X,Y) converges uni-
formly to A ∈ B(X,Y), then A ∈ B∞(X,Y). In other words B∞(X,Y) is a closed
subspace in the Banach space (B(X,Y), || ||), where || || is the operator norm.

Proof (a) Consider the operator αA + βB, α, β ∈ C, A, B ∈ B∞(X,Y). Let us
prove it is compact by showing that any bounded sequence {xn}n∈N ⊂ X has a sub-
sequence {xnr }r∈N ⊂ X whose image {(αA + βB)(xnr )}r∈N ⊂ Y converges.

Let {xn}n∈N ⊂ X be a bounded sequence. There is a subsequence {xnk }k∈N for
which Axnk ⊂ Y converges, as A is compact. The subsequence {xnk }k∈N is also
bounded by assumption, so there is a sub-subsequence {xnkm

}m∈N such that Bxnkm
∈ Y

converges. Now, by construction, {xnkm
}m∈N is a subsequence of {xnk }k∈N for which

αAxnkm
+ βBxnkm

⊂ Y converges.
(b) In case (i), if {zk}k∈N ⊂ Z is bounded by M > 0, the set {Bzk}k∈N is bounded
by ||B||M , as B is bounded. But A is compact, so there is a subsequence {znk }k∈N
for which ABznk converges. Thus AB is compact. In case (ii), as A is compact, if
{xk}k∈N ⊂ X is bounded there is a subsequence {xnk }k∈N such that the Axnk converge.
Since B is continuous, also the B Axnk converge, and so B A is compact.
(c)LetB(X,Y) � A = limi→+∞ Ai with Ai ∈ B∞(X,Y). Take a bounded sequence
{xn}n∈N in X: ||xn|| ≤ C for any n. We want to prove the existence of a convergent
subsequence of {Axn}. Using a hopefully-clear notation, we build recursively a fam-
ily of subsequences:

{xn} ⊃ {x (1)
n } ⊃ {x (2)

n } ⊃ · · · (4.1)

such that, for any i = 1, 2, . . ., {x (i+1)
n } is a subsequence of {x (i)

n } with {Ai+1x (i+1)
n }

convergent. This is always possible, because any {x (i)
n } is bounded by C , being a
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subsequence of {xn}, and Ai+1 is compact by assumption. We claim that {Ax (i)
i } is

the subsequence of {Axn} that will converge. From the triangle inequality

||Ax (i)
i − Ax (k)

k || ≤ ||Ax (i)
i − An x (i)

i || + ||An x (i)
i − An x (k)

k || + ||An x (k)
k − Ax (k)

k || .

With this estimate,

||Ax (i)
i − Ax (k)

k || ≤ ||A − An||(||x (i)
i || + ||x (k)

k ||) + ||An x (i)
i − An x (k)

k ||

≤ 2C ||A − An|| + ||An x (i)
i − An x (k)

k || .

Given ε > 0, if n is large enough then 2C ||A − An|| ≤ ε/2, since An → A. Fix
n and take r ≥ n. Then {An(x (r)

p )}p is a subsequence of the converging sequence

{An(x (n)
p )}p. Consider the sequence {An(x (p)

p )}p, for p ≥ n: it picks up the “diag-
onal” terms of all those subsequences, each of which is a subsequence of the pre-
ceding one by (4.1); moreover, it is still a subsequence of the convergent sequence
{An(x (n)

p )}p, so it, too, converges (to the same limit). We conclude that if i, k ≥ n

are large enough, then ||An x (i)
i − An x (k)

k || ≤ ε/2. Hence if i, k are large enough then
||Ax (i)

i − Ax (k)
k || ≤ ε/2 + ε/2 = ε. This finishes the proof, for we have produced a

Cauchy subsequence in the Banach space Y, which must converge in the space. 
�
Keeping in mind Proposition 2.74, a remarkable property of compact operators

is spelt out by the next fact.

Proposition 4.10 Let X, Y be normed spaces. If X � xn → x ∈ X weakly and T ∈
B∞(X,Y), then ||T (xn) − T (x)||Y → 0 as n → +∞. In words, compact operators
map weakly convergent sequences to sequences that converge in norm.

Proof See Exercise 4.5. 
�
The last general property of compact operators on normed spaces concerns eigenval-
ues. We will give a proof before moving on to compact operators on Hilbert spaces.

Theorem 4.11 (On the eigenvalues of compact operators on normed spaces) Let X
be a normed space and T ∈ B∞(X).
(a) For any δ > 0 there exist finitely many λ-eigenspaces of T such that |λ| > δ.
(b) If λ �= 0 is an eigenvalue of T , the λ-eigenspace has finite dimension.
(c) The eigenvalues of T , in general complex numbers, form a bounded, at most
countable, set; they can be ordered by decreasing modulus:

|λ1| ≥ |λ2| ≥ · · · 0,

with 0 as unique possible limit point.

Proof We shall need a lemma in order to prove parts (a) and (b).

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Lemma 4.12 (Banach) Let x1, x2, . . . be a (finite or infinite) sequence of linearly
independent vectors in a normed space X, and set Xn :=< {x1, x2, . . . , xn} >. Then
there exists a corresponding sequence y1, y2, . . . ⊂ X such that:

(i) ||yn|| = 1,
(ii) yn ∈ Xn,
(iii) d(yn,Xn−1) > 1/2,

for any n = 1, 2, . . ., where

d(yn,Xn−1) = inf
x∈Xn−1

||x − yn||

is the distance of yn to Xn−1.

Proof of lemma 4.12. Observe d(yn,Xn−1) exists and is finite, since it is the infimum
of a non-empty set of real numbers bounded from below by 0. Choose y1 := x1/||x1||
and build the sequence {yn} inductively, as follows. The vectors x1, x2, . . . are linearly
independent, so xn /∈ Xn−1 and d(xn,Xn−1) = α > 0. So let x ′ ∈ Xn−1 be such that
α < ||xn − x ′|| < 2α. As α = d(xn,Xn−1) = d(xn − x ′,Xn−1), the vector

yn := xn − x ′

||xn − x ′||
satisfies (i), (ii), (iii). 
�

Let us resume the proof of (a) and (b). If X is finite-dimensional the claims hold
because eigenvectors with distinct eigenvalues are linearly independent. So con-
sider X infinite-dimensional, where there can be infinitely many eigenvalues and
eigenvectors. The proof of both (a) and (b) follows simultaneously from the exis-
tence, for any δ > 0, of a finite number of linearly independent λ-eigenvectors with
|λ| > δ. Let us prove that, then. Let λ1, λ2, . . . be a sequence of eigenvalues of T ,
possibly repeated, such that |λn| > δ. Assume, by contradiction, there is an infinite
sequence x1, x2, . . ., of corresponding linearly independent eigenvectors. We are
claiming, by refuting the theorem, that there are infinitely many linearly independent
λ-eigenvectors such that |λ| > δ. Using Banach’s lemma, construct the sequence
y1, y2, . . . fulfilling (i), (ii) and (iii), where Xn is spanned by x1, x2, . . . , xn . Since
|λn| > δ, the sequence { yn

λn
}n=1,2,... is bounded. We will show that we cannot extract

a convergent subsequence from the images {T yn

λn
}n=1,2,.... By construction, in fact,

yn :=
n∑

k=1

βk xk ,

so

T
yn

λn
=

n−1∑

k=1

βkλk

λn
xk + βn xn = yn + zn ,
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where

zn :=
n−1∑

k=1

βk

(
λk

λn
− 1

)

xk ∈ Xn−1 .

For any i > j , then:

∣
∣
∣
∣

∣
∣
∣
∣T

(
yi

λi

)

− T

(
y j

λ j

)∣
∣
∣
∣

∣
∣
∣
∣ = ||yi + zi − (y j + z j )||

= ||yi − (y j + z j − zi )|| > 1/2

as y j + z j − zi ∈ Xi−1. This is clearly incompatible with the compactness of T .
Therefore we have to conclude that an infinite sequence of linearly independent
eigenvectors x1, x2, . . . cannot exist. This ends the proof of (a) and (b).
(c) This part follows from (a) by picking a sequence of numbers δ > 0 of the form
δn = 1/n, n = 1, 2, 3, . . .. 
�
Remark 4.13 (1)One final property, that we shall not prove, states that in the Banach
setting the adjoint operator (cf. Definition 2.45) to a compact operator is compact.
We will prove it for Hermitian adjoints to compact operators on Hilbert spaces.
(2) From Lemma 4.12 descends an alternative proof that the closed unit ball in an
infinite-dimensional normed space is not compact (see Exercise 4.2). �

4.2 Compact Operators on Hilbert Spaces

From now on we will consider compact operators on Hilbert spaces, even if certain
properties are valid in less structured spaces, like normed or Banach spaces.

4.2.1 General Properties and Examples

In the first theorem about compact operators, the space’s completeness is necessary
only for the last statement.
Before, though, we need a preparatory proposition.

Proposition 4.14 Let H be a Hilbert space. Then A ∈ B(H) is compact if and only
if |A| is compact (see Definition 3.80).

Proof Assume A is compact. Let {xk}k∈N be a bounded sequence inH and {Axkn }n∈N
a subsequence of {Axk}k∈N that converges, by virtue of compactness. Since the latter
is a Cauchy subsequence by (3.65), the subsequence {|A|xkn }n∈N of {|A|xk}k∈N is a
Cauchy sequence and converges. Hence |A| is compact. For the reverse implication
just swap A and |A| and repeat the argument. 
�

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Theorem 4.15 Let H be a Hilbert space. The set of compact operators B∞(H) ⊂
B(H) is
(a) a linear subspace;
(b) a two-sided ∗-ideal: T K , K T, T ∗ ∈ B∞(H) for any T ∈ B∞(H), K ∈ B(H);
(c) a C∗-subalgebra (without unit if dimH = ∞), as closed in the uniform topology.

Proof (a) We proved this, for general normed spaces, in Proposition 4.9(a).
(b) Proposition 4.9(b) shows that, in normed spaces, the left and right multiplica-
tions by a bounded operator preserve B∞(H). To show closure under Hermitian
conjugation, observe that |T | is compact iff T is compact, by Proposition 4.14. From
the polar decomposition T = U |T | of Theorem 3.82, we have T ∗ = |T |U ∗, where
we used |T | ≥ 0, so |T | is self-adjoint. The boundedness of U ∗ together with the
compactness of |T | force the product T ∗ = |T |U ∗ to be compact.
(c) This part follows directly from Proposition 4.9(c) and the definition ofC∗-algebra
(recall H has infinite dimension, so the identity I is not compact, for otherwise the
closed ball would be compact, and we know this cannot be). 
�
Remark 4.16 The statement of the previous theoremcanbe reversed ifH is separable,
as we have the following result due to Calkin (Cal41).

Theorem 4.17 If the Hilbert space H is separable, B∞(H) is the unique non-trivial
two-sided ∗-ideal of B(H) which is closed with respect to the uniform topology.

�

Examples 4.18 (1) IfX,Y are normed spaces andT ∈ B(X,Y)hasfinite-dimensional
final space Ran(T ), then T must be compact. Let us prove it. IfV ⊂ X is bounded, i.e.
V ⊂ Br (0) for some number r > 0, then ||T (V )|| ≤ r ||T || < +∞, whence T (V )

is bounded. Therefore T (V ) is closed and bounded in a finite-dimensional normed
space homeomorphic to C

n (Proposition 2.107). By the Heine–Borel theorem T (V )

is compact in the topology induced on the range of T . Hence T is compact, because
compactness in the induced topology is the same as compactness in the ambient
space.

In particular, suppose H is a Hilbert space and consider the operator Tx ∈ L(H):

Tx : u �→ (x |u)y ,

where x, y ∈ H are given vectors (possibly equal). As it has finite-dimensional range,
Tx is compact.
(2) If {xn}n∈N and {yn}n∈N are orthogonal sets in H, and if T = ∑

n∈N(xn| )yn is a
bounded operator (interpreting the series in the uniform topology), then T is compact
by Theorem 4.15(a, c).
(3) Consider the operator A : {xn} �→ {xn+1/n} on �2(N). It is compact because is
arises as uniform limit of:

Am : {xn} �→ {x2/1, x3/2, . . . , xm+1/m, 0, 0, . . .}

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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for n = 1, 2 . . . In fact, it is easy to prove (exercise)

||A − An|| ≤ 1/(n + 1) .

(4) Consider a measure μ on the σ -algebra Σ of X, and suppose μ is σ -finite, so
to define the product measure μ ⊗ μ. We will use the simpler notation L2(μ) :=
L2(X, μ) and L2(μ ⊗ μ) := L2(X × X, μ ⊗ μ). Given K ∈ L2(μ ⊗ μ), we shall
prove that

TK : L2(μ) � f �→
∫

X
K (x, y) f (y)dμ(y)

defines a compact operator TK ∈ B(L2(μ)) in case μ is separable (cf. Examples
3.32(3)). First of all, irrespective of separability, if f ∈ L2(μ):

∫

X
K (·, y) f (y)dμ(y) ∈ L2(μ)

and ∣
∣
∣
∣

∣
∣
∣
∣

∫

X
K (·, y) f (y)dμ(y)

∣
∣
∣
∣

∣
∣
∣
∣

L2(μ)

≤ ||K ||L2(μ⊗μ)|| f ||L2(μ) ,

which is to say:
||TK || ≤ ||K ||L2(μ⊗μ) . (4.2)

The proof of this is entirely based on the Fubini–Tonelli theorem: if K ∈ L2(μ ⊗ μ),
by Fubini–Tonelli we have:

(1) |K (x, ·)|2 ∈ L1(μ), a.e. in μ,
(2)

∫
X |K (·, y)|2dμ(y) ∈ L1(μ) .

From (1) K (x, ·) ∈ L2(μ) a.e., so K (x, ·) f ∈ L1(μ) a.e. By the Cauchy–Schwarz
inequality:

(3)
∫
X |K (x, y)|| f (y)|dμ(y) ≤ ||K (x, ·)||L2 || f ||L2 .

Setting F(x) := ∫
X K (x, y) f (y)dμ(y), F is measurable, and by (3):

(4) |F(x)|2 ≤ || f ||2L2

∫
X |K (x, y)|2dμ(y).

From (2) we have |F |2 ∈ L2(μ), so it is true that

∫

X
K (·, y) f (y)dμ(y) ∈ L2(μ) .

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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By (4) and Fubini–Tonelli, finally, we obtain

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
K (·, y) f (y)dμ(y)

∣
∣
∣
∣

∣
∣
∣
∣

L2(μ)

≤ ||K ||L2(μ⊗μ)|| f ||L2(μ) ,

hence (4.2).
In order to show TK is compact, let us further assume μ is separable, so to make

L2(X, μ) separable (see Proposition 3.33). For instance, X could be an interval in R

(or a Borel set) and μ the Lebesgue measure on R. If {un}n∈N is a Hilbert basis of
L2(μ), {un · um}n,m∈N is a Hilbert basis of L2(μ ⊗ μ) (· is the ordinary pointwise
product of functions). Then, in the topology of L2(μ ⊗ μ), we have

K =
∑

n,m

knmun · um ,

where the numbers knm ∈ C depend on K . So, setting

K p :=
∑

n,m≤p

knmun · um

we have K p → K as p → +∞ in L2(μ ⊗ μ). Applying (4.2) to TK p−K = TK p −
TK , where TK p is induced by the integral kernel K p, we have

||TK − TK p || =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

n,m>p

knmun · um

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

L2(μ⊗μ)

→ 0 ,

as p → +∞. Then TK is compact, because the operators TK p are compact, being
finite sums of operators with finite-dimensional ranges, like those of example (1)
above.

Even without assumingμ separable, and demanding instead K ∈ L2(μ ⊗ μ) and
μ σ -finite, it is easy to see that

TK = T ∗
K , (4.3)

where K (x, y) := K (x, y) for any x, y ∈ X, and the bar is complex conjugation.
The proof follows from Proposition 3.36 and Fubini–Tonelli. �

4.2.2 Spectral Decomposition of Compact Operators on
Hilbert Spaces

Compact operators onHilbert spaces enjoy remarkable properties: concerning eigen-
vectors, eigenvalues and eigenspaces, in particular, the features of compact and self-

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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adjoint operators generalise to infinite dimensions the properties of Hermitian matri-
ces. The first two results clarify this matter.

Theorem 4.19 (Hilbert) Let H be a Hilbert space, T ∈ B∞(H) an operator satis-
fying T = T ∗.
(a) Every λ-eigenspace of T , for λ �= 0, has finite dimension.
(b) The set σp(T ) of eigenvalues of T is:

(1) non-empty,
(2) real,
(3) at most countable;
(4) it has one limit point at most, and this is 0;
(5) it satisfies:

sup{|λ| | λ ∈ σp(T )} = ||T || .

More precisely, the least upper bound is Λ ∈ σp(T ), where

Λ = ||T || if sup||x ||=1(x |T x) = ||T || , (4.4)

or
Λ = −||T || if inf ||x ||=1(x |T x) = −||T || . (4.5)

(6) T coincides with the null operator if and only if 0 is the only eigenvalue.

Partial proof.
(a) Let Hλ be the λ-eigenspace of T , with λ �= 0. If B ⊂ Hλ is the open unit ball at
the origin, we can write B = T (λ−1B), and λ−1B is bounded by construction. Since
T is compact, B is compact too. Hence in the Hilbert space Hλ the closure of the
open unit ball is compact, and so dimHλ < +∞ by Proposition 4.5. An alternate
proof immediately arises from Theorem 4.11(b).
(b) We will prove all items but (3) and (4), which will be part of the next theorem. If
σp(T ) is not empty it must consist of real numbers by (ii) in Proposition 3.60(c), T
being self-adjoint. Proposition 3.60(a) says that−||T || ≤ (x |T x) ≤ ||T || for any unit
vector x , so only one of two possibilities can occur: either sup||x ||=1(x |T x) = ||T || or
inf ||x ||=1(x |T x) = −||T ||. Suppose the former is true, the other case being analogous
by flipping the sign of T . Assume ||T || > 0, otherwise the theorem is trivial. For
any eigenvalue λ choose a unit λ-eigenvector x , so ||T || ≥ |(x |T x)| = |λ|(x |x) =
|λ|, and then sup |σp(T )| ≤ ||T ||. To prove (5) it suffices to exhibit an eigenvector
with eigenvalue Λ = ||T ||. This also proves σp(T ) �= ∅ by the way. By assumption
there is a sequence of unit vectors xn such that (xn|T xn) → ||T || =: Λ > 0. Using
||T xn|| ≤ ||T ||||xn|| = ||T ||, we have

||T xn − Λxn||2 = ||T xn||2 − 2Λ(xn|T xn) + Λ2 ≤ ||T ||2 + Λ2 − 2Λ(xn|T xn) .

As ||T || = Λ, taking the limit as n → +∞ in the inequality gives

T xn − Λxn → 0 . (4.6)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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To conclude it would be enough to show either that {xn}n∈N converges, or that a
subsequence does. As ||xn|| = 1, the sequence {xn}n∈N is bounded. But T is compact,
so we may extract from {T xn}n∈N a convergent subsequence {T xnk }k∈N.
Then (4.6) implies that

xnk = 1

Λ
[T xnk − (T xnk − Λxnk )]

converges to some x ∈ H, as k → +∞, for it is a linear combination of converging
sequences. Since T is continuous and xnk → x , formula (4.6) forces

T x = Λx .

Observe that x �= 0 because ||x || = limk→+∞ ||xnk || = 1. So we have shown x is a
Λ-eigenvector.
(6) is an immediate consequence of (5). 
�

Let us move on to the celebrated theorem of Hilbert on the expansion of self-
adjoint compact operators in terms of eigenvector bases.

Theorem 4.20 (Hilbert decomposition of compact operators) Let (H, ( | )) be a
Hilbert space and assume T ∈ B∞(X), with eigenvalue set σp(T ), satisfies T = T ∗.
(a) If Pλ is the orthogonal projector onto the λ-eigenspace, then

T =
∑

λ∈σp(T )

λPλ . (4.7)

If σp(T ) is infinite, series (4.7) is understood in uniform topology, and the eigenval-
ues: λ0, λ1, . . . (λi �= λ j , i �= j ) are ordered so that |λ0| ≥ |λ1| ≥ |λ2| ≥ . . ..
(b) If Bλ is a Hilbert basis of the λ-eigenspace, then ∪λ∈σp(T ) Bλ is a Hilbert basis of
H. Equivalently, H admits a basis made of eigenvectors of T .

Remark 4.21 Notice that there can only be at most two distinct non-trivial eigenval-
ues with equal absolute value (the eigenvalues are real). As

|λ0| ≥ |λ1| ≥ |λ2| ≥ . . . ,

the ambiguity in arranging the terms of the series regards pairs λ, λ′ with |λ| = |λ′|.
As we shall see after the proof, the sum of the series does not depend on this choice.�
Proof (including parts (3), (4) of Theorem 4.19). (a) Let λ be an eigenvalue with
eigenspace Hλ. Call Pλ the orthogonal projector onto Hλ and Qλ := I − Pλ the
orthogonal projector onto H⊥

λ . Then

T Pλ = PλT = λPλ . (4.8)

In fact, if x ∈ H, Pλx ∈ Hλ then T Pλx = λPλx , so T Pλ = λPλ. Recalling that λ ∈
R, T = T ∗, Pλ = P∗

λ , by taking adjoints we find PλT = λPλ = T Pλ. A further



210 4 Families of Compact Operators on Hilbert Spaces and Fundamental Properties

consequence is, directly by definition of Qλ and the above, that

QλT = T Qλ . (4.9)

Observe that from I = Pλ + Qλ we infer T = PλT + QλT , i.e.

T = λPλ + QλT . (4.10)

The operator QλT :
(i) is self-adjoint, for (QλT )∗ = T ∗ Q∗

λ = T Qλ = QλT ,
(ii) is compact by Theorem 4.15(b),
(iii) satisfies, by construction, Pλ(QλT ) = (QλT )Pλ = 0 since Pλ Qλ = Qλ Pλ = 0.

In the rest of the proof these identities will be used without further mention, and
we shall write Pn , Qn , Hn instead of Pλn , Qλn , Hλn .

Let us begin by choosing an eigenvalue λ = λ0 with largest absolute value: there
are, at most, two such eigenvalues differing by a sign, and we pick either one. If
T1 := Q0T then

T = λ0P0 + T1

where T1 satisfies the above (i), (ii) and (iii). If T1 = 0 the proof ends; if not, we know
T1 is self-adjoint and compact, so we can iterate the procedure using T1 in place of
T and find

T = λ0P0 + λ1P1 + T2

where T2 := Q1T1. Now λ1 is a non-null eigenvalue of T1 of largest absolute value
(if the largest eigenvalue were zero, then T1 = 0 by (6) in Theorem 4.19(b)). Fur-
thermore, P1 is the orthogonal projector onto the λ1-eigenspace of T1.
Observe that any eigenvalue λ1 of T1 is also an eigenvalue of T , because, if
T1u1 = λ1u1,

T u1 = (λ0P0 + T1)u1 = λ0P0T1
1

λ1
u1 + T1u1 = λ0P0Q0T

1

λ1
u1 + T1u1

= λ0 · 0 · T
1

λ1
u1 + λ1u1 = λ1u1 .

What is more, λ1 �= λ0 since u1 ∈ RanT1 = Ran(Q0T ) ⊂ H⊥
0 . At last, every λ1-

eigenvector of T is a λ1-eigenvector of T1. In fact, using T1 = Q0T = (I − P0)T
we have, with T u = λ1u,

T1u = λ1u − λ1P0u = λ1u + 0 = λ1u ,

also using P0u = 0 (because eigenspaces with distinct eigenvalues are orthogonal
for self-adjoint operators, like T ). Overall, the λ1-eigenspaceH

(T1)
1 coincides with the
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λ1-eigenspace H1 of T . Therefore P1 is the orthogonal projector onto this common
eigenspace.

Since |λ0| is the maximum,
|λ1| ≤ |λ0|.

There is an important consequence to this. Since ||T || = |λ0| and ||T1|| = λ1 by the
previous theorem,

||T1|| ≤ ||T || .

If T2 = 0 the proof ends, otherwise we proceed as before, finding

T −
n∑

k=0

λk Pk = Tn , (4.11)

where
|λ0| ≥ |λ1| ≥ · · · ≥ |λk | ≥ . . .

and
||Tk || = |λk | (4.12)

If none of the Tk is null, the process never stops. In such a case we claim that
the decreasing sequence of positive numbers |λk | must tend to 0 (there cannot be a
positive limit point). Suppose |λ0| ≥ |λ1| ≥ · · · ≥ |λk | ≥ . . . ≥ ε > 0 and pick a unit
vector xn ∈ Hn for any n. The sequence of the xn is bounded, so the sequence of T xn ,
or a subsequence of it, must converge as T is compact. But this is impossible: xn and
xm are perpendicular (their eigenvalues are distinct and the operator is self-adjoint,
cf. Proposition 3.60(b), part (ii)), so

||T xn − T xm ||2 = ||λn xn − λm xm ||2 = |λn|2 + |λm |2 ≥ 2ε ,

for any n, m. Therefore neither the T xn , nor any subsequence, can converge, for they
are not Cauchy sequences. This is a contradiction, so the sequence of the λn (if there
really are infinitely many thereof) converges to 0. By (4.11) and (4.12), what we have
proved implies

T =
+∞∑

k=0

λk Pk (4.13)

in the uniform topology. By construction, this result does not depend on how we
decide to order pairs of eigenvalues with equal absolute value. Now we claim that
(4.13) coincides with (4.7), because the sequence of eigenvalues {λk} exhausts σp(T )

except, possibly, for 0 (which at any rate interferes neither with (4.13) nor with (4.7)).

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Let λ �= λn for any n be an eigenvalue of T , and Pλ its orthogonal projector. Given
that Pn Pλ = 0 for any n (again, by (ii) in Proposition 3.60(b)), (4.13) implies

TPλ =
+∞∑

k=0

λk Pk Pλ = 0 ,

whence, if u ∈ Hλ,
T u = T Pλu = 0 .

This means λ = 0.
The proof of part (a) ends here, and in due course we have also justified the

leftovers of Theorem 4.19.
(b) The bases Bλ always exist by Theorem 3.27, eigenspaces being closed (exer-

cise) inH and hence Hilbert spaces themselves. Call B := ∪λ∈σp(T ) Bλ the union. We
assert that if u ∈ B⊥ then u = 0; since B is orthonormal, by Definition 3.22 the proof
would end. Take then u ∈ B⊥, so u ⊥ Bλ for any λ ∈ σp(T ), and hence Pλu = 0 for
any λ ∈ σp(T ). Using decomposition (4.7) for T we find T u = 0. Hence u belongs
to the 0-eigenspaceH0. But u is orthogonal to every eigenspace of T by construction,
so u ∈ H⊥

0 . This forces u = 0, as claimed. 
�

Hilbert’s theorem, together with the polar decomposition Theorem 3.82, allows to
generalise formula (4.7) to compact operators that are not self-adjoint. First, let us
see a definition useful for the sequel.

Definition 4.22 Let H be a Hilbert space and A ∈ B∞(H). Non-zero eigenvalues λ

of |A| are called singular values of A, and their set is denoted by sing(A).
The (finite) dimension mλ of the eigenspace of λ ∈ sing(A) is called multiplicity
of λ.

Theorem 4.23 Let (H, ( | )) be a Hilbert space and A ∈ B∞(H), A �= 0. Suppose
sing(A) is non-empty and ordered as λ0 > λ1 > λ2 > . . . > 0. Then

A =
∑

λ∈sing(A)

mλ∑

i=1

λ (uλ,i | ) vλ,i , (4.14)

A∗ =
∑

λ∈sing(A)

mλ∑

i=1

λ (vλ,i | ) uλ,i . (4.15)

The sums, if infinite, are meant in the uniform topology, and for any λ ∈ sing(A) the
set of uλ,1, . . . , uλ,mλ

is an orthonormal basis for the λ-eigenspace of |A|. Moreover,
for any λ ∈ sing(A), i = 1, 2, . . . , mλ, the vectors

vλ,i := 1

λ
Auλ,i (4.16)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3


4.2 Compact Operators on Hilbert Spaces 213

form an orthonormal system, and

vλ,i = Uuλ,i , (4.17)

where U is defined by the polar decomposition A = U |A|.
Proof The operator |A| is self-adjoint, positive and compact. Its eigenvalues are real,
positive and satisfy conditions (a) and (b) in Theorem 4.19. We examine the case
where the eigenvalue set is infinite (countable), leaving the finite case to the reader.
Theorem 4.20 allows to expand |A|:

|A| =
∑

λ∈σp(|A|)
λPλ ,

where the convergence is uniform. It is clear we can reduce to non-zero eigenvalues
since 0 does contribute to the series, so

|A| =
∑

λ∈sing(A)

λPλ .

If U is bounded and B(H) � Tn → T ∈ B(H) uniformly, then U Tn → U T in the
uniform topology. Since U (from A = U |A|) is bounded, in the uniform topology
we have:

A = U |A| =
∑

λ∈sing(A)

λU Pλ . (4.18)

Theorem 4.19(a) says the closed projection space of each Pλ (λ > 0) has finite
dimension mλ, so we may find an orthonormal basis {uλ,i }i=1,...,mλ

for it. Note
(uλ,i |uλ′, j ) = δλλ′δi j by construction, as eigenvectors with distinct eigenvalues are
orthogonal (|A| is normal because positive) by virtue of (ii) in Proposition 3.60(b).
From uλ,i = |A|(uλ,i/λ)we have uλ,i ∈ Ran(|A|). Therefore U acts on uλ,i isomet-
rically, and the vectors on the right in (4.17) are still orthonormal. Equation (4.17)
is equivalent to (4.16) by polar decomposition:

Auλ,i = U |A|uλ,i = Uλuλ,i = λvλ,i .

It is an easy exercise to show that the orthogonal projector Pλ (λ > 0) can be written
as

Pλ =
mλ∑

i=1

(uλ,i | ) uλ,i .

Consequently,

U Pλ =
mλ∑

i=1

(uλ,i | ) Uuλ,i =
mλ∑

i=1

(uλ,i | ) vλ,i .

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Substituting in (4.18) gives (4.14). Equation (4.15) arises from (4.14) if we consider
the following two facts: (i) the conjugation A �→ A∗ is antilinear (it transforms linear
combinations of operators into linear combinations of the adjoints with conjugated
coefficients); (ii) conjugation is continuous in the uniform topology ofB(H) because
Proposition 3.38(a) implies ||A∗|| = ||A||.

From these two facts, (4.14) gives (recall λ ∈ R):

A∗ =
∑

λ∈sing(A)

mλ∑

i=1

λ [(uλ,i | ) vλ,i ]∗ ,

where the series converges in the uniform topology. An easy exercise shows that

[(uλ,i | ) vλ,i ]∗ = (vλ,i | ) uλ,i ,

from which (4.15) is immediate. 
�
The theorem just proved allows us to introduce Hilbert–Schmidt operators and

operators of trace class, which we will describe in the ensuing sections.

4.3 Hilbert–Schmidt Operators

A particular class of compact operators is that of Hilbert–Schmidt operators. They
have several applications in wide-ranging areas of mathematical physics, besides
QM. This section is devoted to their study.

4.3.1 Main Properties and Examples

Warning. In this section, and sometimes also elsewhere, the operator norm || ||2 will
denote the Hilbert–Schmidt norm (see later) and not the usual L2 norm. This should
not be cause of ambiguity, for the correct meaning will be clear from the context. �

Definition 4.24 Let (H, ( | )) be a Hilbert space and || || the inner product norm.
An operator A ∈ B(H) is a Hilbert–Schmidt operator (HS) if there exists a basis
U such that

∑
u∈U ||Au||2 < +∞ in the sense of Definition 3.19.

The class of Hilbert–Schmidt operators on H will be indicated with B2(H). If A ∈
B2(H),

||A||2 :=
√∑

u∈U

||Au||2 , (4.19)

where U is the chosen Hilbert basis.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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As first thing let us prove that the choice of a particular Hilbert basis is not important,
and that ||A||2 does not depend on it.

Proposition 4.25 Let (H, ( | )) be a Hilbert space with norm || || induced by the
inner product, U and V bases (possibly coinciding) and A ∈ B(H). Then:
(a) {||Au||2}u∈U has finite sum ⇔ {||Av||2}v∈V has finite sum. In this case:

∑

u∈U

||Au||2 =
∑

v∈V

||Av||2 . (4.20)

(b) {||Au||2}u∈U has finite sum ⇔ {||A∗v||2}v∈V has finite sum. If so:

∑

u∈U

||Au||2 =
∑

v∈V

||A∗v||2 . (4.21)

Proof In the light of Theorem 3.26(d),

||Au||2 =
∑

v∈V

|(v|Au)|2 < +∞ ,

so, given u, only a countable number of coefficients |(v|Au)|, at most, is non-zero
by Proposition 3.21(b). This gives at most a countable set V (u) ⊂ V such that

∑

u∈U

||Au||2 =
∑

u∈U

∑

v∈V (u)

|(v|Au)|2 < +∞ . (4.22)

In particular, using Proposition 3.21(b) again, it means that a countable (at most) set
of u ∈ U gives non-zero sum

∑
v∈V (u) |(v|Au)|2. Therefore the coefficients (v|Au)

do not vanish only for a countable (at most) set Z of pairs (u, v) ∈ U × V . Define
sets (at most countable):

U0 := {u ∈ U | there exists v ∈ V with (v|Au) �= 0} ,

V0 := {v ∈ V | there exists u ∈ U with (v|Au) �= 0} .

Thus Z ⊂ U0 × V0. EndowU0 and V0 with counting measuresμ and ν, and write the
above series using integrals and these measures (Proposition 3.21(c)). In particular
(4.22) becomes:

∑

u∈U

||Au||2 =
∑

u∈U

∑

v∈V (u)

|(v|Au)|2 =
∫

U0

dμ(u)

∫

V0

dν(v)|(v|Au)|2 < +∞ .

(4.23)
AsU0 and V0 are at most countable,μ and ν are σ -finite, so we can define the product
μ ⊗ ν and use the Fubini–Tonelli theorem. Concerning the last part of (4.23), this

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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theorem ensures that (v, u) �→ |(v|Au)|2 is integrable in the product measure and we
can swap integrals:

∑

u∈U

||Au||2 =
∫

U0×V0

|(v|Au)|2dμ(u) ⊗ dν(v) =
∫

V0

dν(v)
∫

U0

dμ(u)|(v|Au)|2 < +∞ .

Note (v|Au) = (A∗v|u), so just countably many, at most, products (A∗v|u) (with
(u, v) ∈ U × V ) will be different from zero, and in particular:

∑

v∈V

∑

u∈U

|(A∗v|u)|2 =
∫

V0

dν(v)
∫

U0

dμ(u)|(A∗v|u)|2 =
∑

u∈U

||Au||2 < +∞ .

But the left-hand side is precisely
∑

v∈V ||A∗v||2. Therefore we have proved the
following part of assertion (b): if {||Au||2}u∈U has finite sum, so does{||A∗v||2}v∈V ,
and the sums coincide. Recalling that (A∗)∗ = A for bounded operators, we can now
use the same proof, just exchanging the bases and starting from A∗, to prove the
remaining part of (b): if {||A∗v||2}v∈V has finite sum, then also {||Au||2}u∈U does,
and then (4.21) holds.

The proof of (a) is straightforward from (b) because the bases used are arbitrary.

�

With that settled we can discuss some of the many and interesting mathematical
properties of HS operators. The most fascinating from a mathematical viewpoint
is stated as (b) in the next theorem: HS operators A form a Hilbert space whose
inner product induces precisely the norm we called ||A||2. Another important fact
is that HS operators are compact, and their space is a ∗-closed ideal inside bounded
operators.

Theorem 4.26 Hilbert–Schmidt operators on a Hilbert space H enjoy the following
properties.
(a)B2(H) is a subspace in B(H) and, actually, a two-sided ∗-ideal in B(H); more-
over:

(i) ||A||2 = ||A∗||2 for any A ∈ B2(H);
(ii) ||AB||2 ≤ ||B|| ||A||2 and ||B A||2 ≤ ||B|| ||A||2 for any A ∈ B2(H), B ∈

B(H);
(iii) ||A|| ≤ ||A||2 for any A ∈ B2(H).

(b) If A, B ∈ B2(H) and if N is a basis in H, define:

(A|B)2 :=
∑

x∈N

(Ax |Bx) . (4.24)

The map
( | )2 : B2(H) × B2(H) → C
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is well defined (the sum always reduces to an absolutely convergent series and does
not depend on the basis) and determines an inner product on B2(H) such that:

(A|A)2 = ||A||22 (4.25)

for any A ∈ B2(H).
(c) (B2(H), ( | )2) is a Hilbert space.
(d) B2(H) ⊂ B∞(H). More precisely, A ∈ B2(H) if and only if A is compact and
the set of positive numbers {mλλ

2}λ∈sing(A) (mλ is the multiplicity of λ) has finite
sum. In this case:

||A||2 =
√ ∑

λ∈sing(A)

mλλ2 . (4.26)

Proof (a) Obviously B2(H) is closed under multiplication by a scalar. Let us show
it is closed under sums. If A, B ∈ B2(H) and N is any Hilbert basis:

∑

u∈N

||(A + B)u||2 ≤
∑

u∈N

(||Au|| + ||Bu||)2 ≤ 2

[
∑

u∈N

||Au||2 +
∑

u∈N

||Bu||2
]

.

Thus B2(H) is a subspace in B(H). A consequence of Proposition 4.25(b) is the
closure under Hermitian conjugation, which proves (i). We prove (ii) and at the same
time thatB2(H) is closed under left and right composition with bounded operators.
If A ∈ B2(H) and B ∈ B(H):

∑

u∈N

||B Au||2 ≤
∑

u∈N

||B||2||Au||2 = ||B||2
∑

u∈N

||Au||2 .

This shows B2(H) is closed under composition on the left, and also the second
inequality in (ii). Closure under right composition follows from closure under
Hermitian conjugation and left composites: B∗ A∗ ∈ B2(H) if A ∈ B2(H) and
B ∈ B(H), so (B∗ A∗)∗ ∈ B2(H), i.e. AB ∈ B2(H). From (i) we find that if A ∈
B2(H) and B ∈ B(H), then ||AB||2 = ||(AB)∗||2 = ||B∗ A∗||2 ≤ ||B∗|| ||A∗||2 =
||B|| ||A||2, finishing part (ii). As for (iii) observe:

||A|| = sup
||x ||=1

||Ax || = sup
||x ||=1

(||Ax ||2)1/2 = sup
||x ||=1

(
∑

u∈N

|(u|Ax)|2
)1/2

= sup
||x ||=1

(
∑

u∈N

|(A∗u|x)|2
)1/2

,

where Theorem 3.26(d) was used for the Hilbert basis N . Using Cauchy–Schwarz
on the last term above gives:

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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||A|| ≤ sup
||x ||=1

(
∑

u∈N

||A∗u||2||x ||2
)1/2

=
(

∑

u∈N

||A∗u||2
)1/2

= ||A∗||2 = ||A||2 .

(b) If A, B ∈ B2(H) and N is a Hilbert basis, the number of non-zero terms Au
and Bu, for u ∈ N , is at most countable by Definition 4.24 and Proposition 3.21(b).
Since

|(Au|Bu)| ≤ ||Au|| ||Bu|| ≤ 1

2
(||Au||2 + ||Bu||2) ,

the number of non-vanishing products (Au|Bu), u ∈ N , is also countable atmost, and
the series of non-null terms (Au|Bu) is absolutely convergent, so the term ordering
in (4.24) is irrelevant. In a moment we will show that the choice of Hilbert basis is
not important. First, though, notice that (4.25) holds trivially and ( | )2 satisfies the
axioms of a semi-inner product, as is easy to check. Positive definiteness (axiomH3)
follows directly from (iii), so ( | )2 is an inner product inducing || ||2. Therefore we
have polarisation, for this formula holds for any inner product:

4(A|B)2 = ||A + B||22 + ||A − B||22 − i ||A + i B||22 + i ||A − i B||22 .

Since, by Proposition 4.25, the number on the right does not depend on any Hilbert
basis, neither will the left-hand side.
(c)Weneed only prove the space is complete. Take aHilbert basis N ofH and {An}n∈N
a Cauchy sequence of HS operators with respect to || ||2. From part (iii) in (a), that
is a Cauchy sequence also in the uniform topology, and since B(H) is complete by
Theorem 2.44, there will be A ∈ B(H)with ||A − An|| → 0 as n → +∞. Cauchy’s
property asserts that however we take ε > 0 there is Nε such that ||An − Am ||22 ≤ ε2

if n, m > Nε. By definition of || ||2, for the same ε we will also have that for any
finite subset I ⊂ N :

∑

u∈I

||(An − Am)u||2 ≤ ||An − Am ||22 ≤ ε2

whenever n, m > Nε. Passing to the limit as m → +∞, we find

∑

u∈I

||(An − A)u||2 ≤ ε2 ,

for any finite I ⊂ N if n > Nε. Overall, given that I is arbitrary,

||A − An||2 ≤ ε if n > Nε . (4.27)

In particular, then, A − An ∈ B2(H), and so:

A = An + (A − An) ∈ B2(H) .

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Furthermore, also ε > 0 was arbitrary in (4.27), so An tends to A in norm || ||2.
Therefore every Cauchy sequence for || ||2 converges inside B2(H), making the
latter complete.
(d) Let A ∈ B2(H): we claim it is compact and fulfils (4.26). Take a Hilbert basis
N . Then

∑
u∈N ||Au||2 < +∞, where at most countably many summands do not

vanish, and the sum can be written as series, or finite sum, by taking only the un for
which ||Aun||2 > 0. Therefore, for any ε > 0 there exists Nε such that

+∞∑

n=Nε

||Aun||2 ≤ ε2 .

The same property can be expressed in terms of N : for any ε > 0 there is a finite
subset Iε ⊂ N such that ∑

u∈N\Iε

||Au||2 ≤ ε2 .

Let then AIε be the operator defined by AIε u := Au if u ∈ Iε and AIε u := 0 if u ∈
N \ Iε. The range of AIε is spanned by the Au with u ∈ Iε, because these are finite
in number, and AIε is bounded and compact (Example 4.18(1)). By construction
||A − AIε ||2 exists, and:

||A − AIε ||22 =
∑

u∈N

||(A − AIε )u||2 =
∑

u∈N\Iε

||Au||2 .

By part (iii) in (a), therefore,

||A − AIε || ≤ ||A − AIε ||2 =
⎛

⎝
∑

u∈N\Iε

||Au||2
⎞

⎠

1/2

≤ ε .

Hence A is a limit point in the space of compact operators in the uniform topology. As
the ideal of compact operators is uniformly closed (Theorem 4.15(c)), A is compact.
Now let us prove (4.26). Consider the positive compact operator |A| = √

A∗ A and
let {uλ,i }λ∈sing(A),i={1,2,...,mλ} be a Hilbert basis of K er(|A|)⊥, built as in Theorem
4.23. We may complete it to a basis of the Hilbert space by adding a basis for
K er(|A|), and K er(|A|) = K er(A) by Remark 3.81. (Using the orthogonal splitting
H = K er(|A|) ⊕ K er(|A|)⊥, if {ui } is a basis for the closed subspace K er(|A|) and
{v j } a basis for the closed K er(|A|)⊥, the orthonormal system N := {ui } ∪ {v j } is
a basis of H, since x ∈ H orthogonal to N implies x = 0.) Using that basis to write
||A||2:

||A||22 =
∑

λ∈sing(A)

mλ∑

i=1

(Auλ,i |Auλ,i ) =
∑

λ∈sing(A)

mλ∑

i=1

(A∗ Auλ,i |uλ,i ) =
∑

λ∈sing(A)

mλλ
2 ,

(4.28)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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where the basis of K er(A), by construction, does not contribute, |A|uλ,i =√
A∗ Auλ,i = λuλ,i and (uλ,i |uλ′, j ) = δλλ′δi j .
If, conversely, A is compact and {mλλ

2}λ∈sing(A) has finite sum, then (4.28) implies
||A||2 < +∞, so A ∈ B2(H). 
�
Examples 4.27 (1) Let us go back to example (4) in (4.18). Consider the operators:

TK : L2(X, μ) → L2(X, μ)

induced by integral kernels K ∈ L2(X × X, μ ⊗ μ)

(TK f )(x) :=
∫

X
K (x, y) f (y)dμ(y) for any f ∈ L2(X, μ)

(μ is a σ -finite separable measure). We did prove earlier that these operators are
compact. Now we show they are Hilbert–Schmidt operators.

Using the same definition of the example mentioned above, if f ∈ L2(X, μ) we
saw (cf. part (3) in Example 4.18(4)) that for any x ∈ X

F(x) =
∫

X
|K (x, y)| | f (y)|dμ(y) < +∞ .

Since F ∈ L2(X, μ), for any g ∈ L2(X, μ) the map x �→ g(x)F(x) is integrable (so
we can define the inner product of g and F). The Fubini–Tonelli theorem guarantees
the map (x, y) �→ g(x)K (x, y) f (y) is in L2(X × X, μ ⊗ μ) and that
∫

X×X
g(x)K (x, y) f (y) dμ(x) ⊗ dμ(y) =

∫

X
dμ(x) g(x)

∫

X
K (x, y) f (y)dμ(y) = (g|Tk f ) .

(4.29)

So let us consider a basis of L2(X × X, μ ⊗ μ) of type {ui · u j }i, j , where {uk}k is a
basis for L2(X, μ) (and so is {uk}k , as is easy to prove). As K ∈ L2(X × X, μ ⊗ μ),
we have an expansion:

K =
∑

i, j

αi j ui · u j , (4.30)

and then
||K ||2L2 =

∑

i, j

|αi j |2 < +∞ . (4.31)

On the other hand, (4.29) and (4.30) imply

(ui |TK u j ) =
∫

X×X
ui (x)u j (y)K (x, y) dμ(x) ⊗ dμ(y) = (ui · u j |K ) = αi j ,
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hence (4.31) rephrases as:

||K ||2L2 =
∑

i, j

|(ui |TK u j )|2 < +∞ .

By definition TK is therefore a Hilbert–Schmidt operator, and

||TK ||2 = ||K ||L2 (4.32)

(2) It is not so hard to prove that ifH = L2(X, μ)withμ separable andσ -finite,B2(H)

consists precisely of the operators TK with K ∈ L2(X × X, μ ⊗ μ), so that the map
identifying K with TK is a Hilbert space isomorphism between L2(X × X, μ ⊗ μ)

andB2(H). To see this,we take T ∈ B2(H) and shall exhibit K ∈ L2(X × X, μ ⊗ μ)

for which T = TK . Given any basis {un}n∈N of L2(X, μ) we have
∑

n∈N ||T un||2 <

+∞. Consequently, by expanding T un in {un}n∈N we obtain:

+∞ >
∑

n∈N
||T un||2 =

∑

m∈N

∑

n∈N
|(um |T un)|2 .

Interpreting the series as integrals on {un}n∈N, and applying Fubini–Tonelli, we con-
clude

∑
(n,m)∈N2 |(um |T un)|2 < +∞, so the HS operator TK with integral kernel:

K :=
∑

(n,m)∈N2

(um |T un)um · un ∈ L2(X × X, μ ⊗ μ)

is well defined. At the same time, the results of the previous example tell that, by
construction:

(um |TK un) =
∫

X
dμ(x)um(x)

∫

X
dμ(y)K (x, y)un(y) = (um |T un)

and so TK un = T un for any n ∈ N. By continuity TK = T follows immediately.

(3) Consider the Volterra equation in the unknown function f ∈ L2([0, 1], dx):

f (x) = ρ

∫ x

0
f (y)dy + g(x) , with given g ∈ L2([0, 1], dx) and ρ ∈ C \ {0}.

(4.33)
Above, dx is the Lebesguemeasure, and the integral exists because, for any given x ∈
[0, 1], we can view it as the inner product of f and the map [0, 1] � y �→ θ(x − y):

∫ x

0
f (y)dy =

∫ 1

0
θ(x − y) f (y)dy ,
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where θ(u) = 1 if u ≥ 0 and θ(u) = 0 if u < 0. Clearly (x, y) �→ θ(x − y) is also
in L2([0, 1]2, dx ⊗ dy), so the equation can be rephrased using a Hilbert–Schmidt
operator T :

f = ρT f + g , with given g ∈ L2([0, 1], dx) and ρ ∈ C \ {0} (4.34)

where we defined the Volterra operator:

(T g)(x) :=
∫ x

0
g(y)dy g ∈ L2([0, 1], dx) . (4.35)

Volterra operators, and the associated equations, are more generally defined as:

(TV f )(x) :=
∫ x

0
V (x, y)g(y)dy ,

for some suitably regular V : [0, 1]2 → R.Wewill study the simplest situation, given
by (4.35). If the operator (I − ρT ) is invertible, the solution to (4.34) reads:

f = (I − ρT )−1g . (4.36)

Formally, using the geometric series we see that the (left and right) inverse to I − ρT
is:

(I − ρT )−1 = I +
+∞∑

n=0

ρn+1T n+1 , (4.37)

where the convergence is in the uniform topology. A sufficient condition for con-
vergence is ||ρT || < 1, proved in analogy to the geometric series. Yet we will look
for a finer estimate. Use the norm of B2(L2([0, 1], dx)) and recall part (iii) in The-
orem 4.26(a). Moreover, if ||An|| ≤ an ≥ 0 for any An ∈ B(L2([0, 1], dx)) where∑+∞

n=0 an converges, then also
∑+∞

n=0 An converges in B(L2([0, 1], dx)). The proof
of the latter fact is similar to that of Weierstrass’s ‘M-test’ in elementary calculus. A
direct computation with (4.35) shows that if n ≥ 1:

(T n+1g)(x) =
∫ x

0

(x − y)n

n! g(y)dy ,

so T n ∈ B2(L2([0, 1], dx)) and:

||T n|| ≤ ||T n||2 =
√

∫

[0,1]2
|θ(x − y)|2

∣
∣
∣
∣
(x − y)n−1

(n − 1)!
∣
∣
∣
∣

2

dx ⊗ dy ≤ 2n−1

(n − 1)! .
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Since the series with general term ρn2n

n! converges, for any ρ �= 0 the operator (I −
ρT )−1 exists inB(L2([0, 1], dx)) and is given by sum (4.37). Therefore (4.36) solves
the initial Volterra equation. It is possible to make (I − ρT )−1 explicit

(
(I − ρT )−1g

)
(x) = g(x) +

+∞∑

n=0

ρn+1 (
T n+1g

)
(x) = g(x) + ρ

+∞∑

n=0

∫ x

0

(ρ(x − y))n

n! g(y)dy .

The theorem of dominated convergence warrants we may swap sum and integral, so
that Volterra’s solution reads:

f (x) = (
(I − ρT )−1g

)
(x) = g(x) + ρ

∫ x

0
eρ(x−y)g(y)dy .

For these operations we used a notion of pointwise convergence that is different
from the uniform operator convergence. That the above expression is indeed the
explicit inverse to I − ρT can be checked by a direct computation, using (4.35) and
integrating by parts with g ∈ C([0, 1]). The result extends to L2([0, 1], dx) because
the operator with integral kernel θ(x − y)eρ(x−y) is bounded (HS), and C([0, 1]) is
dense in L2([0, 1], dx). The inverse’s uniqueness concludes the proof.

(4)Take L2(X, μ)withμ separable.An integral operator TK : L2(X, μ) → L2(X, μ)

given by the kernel:

K (x, y) =
N∑

k=1

pk(x)qk(y) ,

where pk, qk ∈ L2(X, μ), k = 1, 2, 3, . . . , N , are arbitrary maps and N ∈ N is cho-
sen at random, is calleddegenerate operator. Degenerate operators forma two-sided
∗-idealBD(L2(X, μ)) inB(L2(X, μ)) that is a subspace of bothB∞(L2(X, μ)) and
B2(L2(X, μ)). It is easy to show that BD(L2(X, μ)) is dense in B2(L2(X, μ)) in
the latter’s norm topology. �

4.3.2 Integral Kernels and Mercer’s Theorem

The content of Examples 4.27(1) and (2) can be subsumed in a theorem. The final
assertion is easy and left as exercise.

Theorem 4.28 If μ is a positive, σ -additive and separable measure on X, the space
B2(L2(X, μ)) consists of the operators TK :

(TK f )(x) :=
∫

X
K (x, y) f (y)dy , for any f ∈ L2(X, μ), (4.38)
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where K ∈ L2(X × X, μ ⊗ μ). Moreover:

||TK ||2 = ||K ||L2(X×X,μ⊗μ) .

In particular, if T ∈ B2(L2(X, μ)) and U is a Hilbert basis of L2(X, μ), then T = TK

for the kernel
K =

∑

u,v∈U×U

(u|T v)u · v (4.39)

and the convergence is in L2(X × X, μ ⊗ μ).
The map L2(X × X, μ ⊗ μ) � K �→ TK ∈ B2(L2(X, μ)) is an isomorphism of

Hilbert spaces.

Mercer’s theorem (RiNa53) can be usefulwhenwedealwith a compact spaceX ⊂ R
n

with Lebesgue’s measure μ. In such a case, if K is continuous and TK is positive,
the convergence of (4.39) is in || ||∞, provided one uses a basis of eigenvectors for
TK . We state and prove the theorem in a slightly more general setup, so to cover
Lebesgue measures on compact sets in R

n .

Theorem 4.29 (Mercer) Let μ be a positive, separable Borel measure on a compact
Hausdorff space X such that μ(X) < +∞ and μ(A) > 0 for any open set A �= ∅.
Assume K : X × X → C is a continuous function.
If TK in (4.38) is positive, i.e. ( f |TK f ) ≥ 0 for f ∈ L2(X, μ), then

K (x, y) =
∑

λ∈σ(TK )

mλ∑

i=1

λuλ,i (x)uλ,i (y) , (4.40)

where the series converges on X × X in norm || ||∞. The number mλ indicates the
dimension (finite if λ �= 0) of the λ-eigenspace of TK , and {uλ,i }λ∈σp(Tk ),i=1,...,mλ

is a
Hilbert basis of eigenvectors (continuous if λ �= 0) of TK .

Proof For simplicity let us relabel eigenvectors as u j with j ∈ N, and call λ j the cor-
responding eigenvalues (it may happen that λ j = λk if j �= k). To begin with, notice
the eigenvectors with λ �= 0 are continuous, by the Cauchy–Schwarz inequality:

|u j (x) − u j (x ′)|2 ≤
∫

X
|K (x, y) − K (x ′, y)|2dμ(y)

∫

X
|u j (y)|2dμ(y) → 0 as x → x ′.

Weuseddominated convergence for thefirst integral on the right, since K is integrable
on X, as μ(X) is finite, and also continuous on the compact set X × X and hence
|K (x, ·) − K (x ′, ·)|2 is bounded, uniformly in x, x ′, by some constant map C ≥ 0.
So take the continuous maps

Kn(x, y) := K (x, y) −
n∑

j=0

λ j u j (x)u j (y) =
+∞∑

j=n+1

λ j u j (x)u j (y) ,
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where the last series converges in L2(X × X, μ(x) ⊗ μ(y)) by Theorem 4.28. Note
λ j ≥ 0, because 0 ≤ (u j |TK u j ) = λ j . In the topology of L2(X × X, μ(x) ⊗ μ(y))

we have:

Kn(x, y) =
+∞∑

j=n+1

λ j u j (x)u j (y) ,

so if f ∈ L2(X, μ)

∫

X

∫

X
Kn(x, y) f (y) f (x)μ(x)μ(y) =

+∞∑

j=n+1

λ j (u j | f )( f |u j ) ≥ 0

We claim that this fact implies Kn(x, x) ≥ 0. If there were x0 ∈ Xwith Kn(x0, x0) <

0, as Kn is continuouswewould be able to find an open neighbourhood (x0, x0)where
Kn(x, y) ≤ Kn(x0, x0) + ε < 0. Since X × X has the product topology, we could
choose the neighbourhood to be Bx0 × Bx0 where Bx0 is an open neighbourhood of
x0. By Urysohn’s lemma (Theorem 1.24) we could find a continuous map f with
support in Bx0 such that 0 ≤ f ≤ 1 and f (x0) = 1 ({x0} is compact because closed
inside a compact space). Then a contradiction would ensue, since μ(Bx0) > 0 by
assumption:

( f |TK f ) =
∫

X

∫

X
Kn(x, y) f (y) f (x)dμ(x)dμ(y) =

∫

Bx0

∫

Bx0

Kn(x, y) f (y) f (x)dμ(x)dμ(y)

≤
(∫

Bx0

f (x)dμ(x)

)2

(Kn(x0, x0) + ε) ≤
(∫

Bx0

1dμ(x)

)2

(Kn(x0, x0) + ε)

= μ(Bx0)(Kn(x0, x0) + ε) < 0 .

Therefore if n = 0, 1, 2, . . .

0 ≤ Kn(x, x) = K (x, y) −
n∑

j=0

λ j u j (x)u j (x) ,

and the positive-term series
∑+∞

j=0 λ j u j (x)u j (x) converges, with sum bounded by

K (x, x). Hence the series
∑+∞

j=0 λ j u j (x)u j (y) converges for any x , uniformly in y.
In fact if M = maxx∈X K (x, x), from Cauchy–Schwarz:

∣
∣
∣
∣
∣
∣

n∑

j=m

λ j u j (x)u j (y)

∣
∣
∣
∣
∣
∣

2

≤
n∑

j=m

λ j |u j (x)|2
n∑

j=m

λ j |u j (y)|2 ≤ M
n∑

j=m

λ j |u j (x)|2 .

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Therefore B(x, y) := ∑+∞
j=0 λ j u j (x)u j (y) is continuous in y for any given x . By

dominated convergence, for any continuous f : X → C and any given x

∫

X
B(x, y) f (y)dμ(y) =

+∞∑

j=0

λ j u j (x)

∫

X
u j (y) f (y)dμ(y) (4.41)

by virtue of the above series’ uniform convergence on X (of finite measure). But we
also know the series on the right converges to TK f in L2(X, dμ(x)): we claim it
converges to (TK f )(x) also pointwise at x . Since K is continuous on X (compact
and of finite measure), an obvious consequence of dominated convergence shows
X � x �→ ∫

X |K (x, y)|2dμ(y) is continuous, so a constant C exists such that:

∫

X
|K (x, y)|2dμ(y) < C2 for any x ∈ X .

Hence if fn → f in L2(X, μ), then TK fn → TK f in norm || ||∞:

|(T f )(x) − (T fn)(x)|2 =
∣
∣
∣
∣

∫

X
K (x, y)( f (y) − fn(y))dμ(y)

∣
∣
∣
∣

2

≤
∫

X
|K (x, y)|2dμ(y)

∫

X
| f (y) − fn(y)|2dμ(y) ≤ C2μ(X)|| f − fn||2∞ .

Now if we decompose f in (4.41) using the eigenvector basis of TK ,

f (x) =
+∞∑

j=0

u j (x)

∫

X
u j (y) f (y)dμ(y),

we obtain a convergent expansion in L2(X, dμ(x)). Applying TK must give a uni-
formly converging series at x ∈ X. Therefore the last series in (4.41) converges
pointwise (and uniformly) to (TK f )(x) for any x ∈ X. Comparing with the left-hand
side of (4.41) and recalling that (TK f )(x) = ∫

K (x, y) f (y)dμ(y) we finally get

∫

X
(B(x, y) − K (x, y)) f (y)dμ(y) = 0 .

Choosing f (y) := B(x, y) − K (x, y), for any given x ∈ X, allows to conclude
B(x, y) = K (x, y) by using Proposition 1.71 suitably. So

K (x, x) = B(x, x) =
+∞∑

j=0

λ j |u j (x)|2 .

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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The terms are continuous, non-negative and the sum is a continuous map, so Dini’s
Theorem 2.20 forces uniform convergence. From Cauchy–Schwarz we deduce that∑+∞

j=0 λ j u j (x)u j (y) converges uniformly, jointly in x , y, to some K ′(x, y). But
X × X has finite measure, so the convergence is in L2(X × X, μ ⊗ μ). Since we
know the series converges to K (x, y) in that topology, then it converges uniformly
to K (x, y) and the proof ends. 
�
Remark 4.30 The theorem is still valid if TK has a finite number of negative eigen-
values, as is easy to prove. �

4.4 Trace-Class (or Nuclear) Operators

In this part we introduce operators of trace class, also known as nuclear operators.
We shall follow the approach of (Mar82) essentially (a different perspective is found
in (Pru81)).

4.4.1 General Properties

Proposition 4.31 LetH be a Hilbert space and A ∈ B(H). The following three facts
are equivalent.
(a) There exists a Hilbert basis N of H such that {(u||A|u)}u∈N has finite sum:

∑

u∈N

(u||A|u) < +∞ .

(a)’
√|A| is a Hilbert–Schmidt operator.

(b) A is compact and the indexed set {mλλ}λ∈sing(A), where mλ is the multiplicity of
λ, has finite sum.

Proof Statement (a)’ is a mere translation of (a), for
√|A|√|A| = |A|, so (a) and

(a)’ are equivalent.
Wewill show (a)⇒ (b). Recall that anyHSoperator, in particular

√|A|, is compact
(Theorem 4.26(d)); secondly, the product of compact operators, e.g. |A| = (

√|A|)2,
is compact (Theorem 4.15(b)); at last, |A| = (

√|A|)2 is compact iff A is compact
(Proposition 4.14). As a consequence of all this, A is compact. Let us take a basis
of Hmade of eigenvectors of |A|: uλ,i , i = 1, . . . , mλ (mλ = +∞ possibly, only for
λ = 0) and |A|uλ,i = λuλ,i . In such basis:

∣
∣
∣
∣
∣
∣
√|A|

∣
∣
∣
∣
∣
∣
2

2
=

∑

λ,i

(√|A|uλ,i

∣
∣
∣
√|A|uλ,i

)
=

∑

λ,i

(
uλ,i

∣
∣
∣(

√|A|)2uλ,i

)
=

∑

λ,i

(uλ,i ||A|uλ,i )

=
∑

λ

mλλ .

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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So {mλλ}λ∈sing(A) has finite sum because
∣
∣
∣
∣√|A|∣∣∣∣22 < +∞ by assumption. Con-

versely, it is obvious that (b) ⇒ (a)’ by proceeding backwards in the argument and
computing

∣
∣
∣
∣√|A|∣∣∣∣22 in a basis of eigenvectors of |A|. 
�

Definition 4.32 Let H be a Hilbert space. The operator A ∈ B(H) is said to be of
trace class, or a nuclear operator, if it satisfies either of (a), (a)’ or (b) in Proposition
4.31. The set of trace-class operators onHwill be denoted byB1(H). In the notation
of Proposition 4.31, if A ∈ B1(H),

||A||1 :=
∣
∣
∣
∣
∣
∣
√|A|

∣
∣
∣
∣
∣
∣
2

2
=

∑

λ∈sing(A)

mλλ . (4.42)

Remark 4.33 (1) The name “trace class” has its origin in the following observation.
For an operator A of trace class, the real number ||A||1 generalises to infinite dimen-
sions the notion of trace of the matrix corresponding to |A| (not A). As a matter of
fact, the analogies do not end here, as we shall soon see.
(2) The following inclusions hold:

B1(H) ⊂ B2(H) ⊂ B∞(H) ⊂ B(H) .

The only relation we have not yet proved is the first one. To this end, if A ∈ B1(H),
by definition

√|A| ∈ B2(H), so |A| = √|A|√|A| is HS by Theorem 4.26(a). From
the polar decomposition A = U |A|, U ∈ B(H), we have A ∈ B2(H) by Theorem
4.26(a).
(3) Each of the above sets is a subspace in the vector space of bounded operators,
and also a two-sided ∗-ideal (for trace-class operators we will prove it in a moment).
Furthermore, each has a natural Hilbert or Banach structure: compact operators are
closed inB(H) in the uniform topology, so they form a Banach space for the operator
norm; HS operators form a Hilbert space with the Hilbert–Schmidt inner product;
trace-class operators form a Banach space with norm || ||1, as we will explain later.

�

Before we extend the notion of trace to the infinite-dimensional case, let us review
the key features of nuclear operators.

Theorem 4.34 Let H be a Hilbert space. Nuclear operators on H enjoy the follow-
ing properties.
(a) If A ∈ B1(H) there exist two operators B, C ∈ B2(H) such that A = BC. Con-
versely, if B, C ∈ B2(H) then BC ∈ B1(H) and:

||BC ||1 ≤ ||B||2 ||C ||2 . (4.43)
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(b) B1(H) is a subspace of B(H), and actually a two-sided ∗-ideal. Moreover:
(i) ||AB||1 ≤ ||B|| ||A||1 and ||B A||1 ≤ ||B|| ||A||1 for any A ∈ B1(H) and B ∈

B(H);
(ii) ||A||1 = ||A∗||1 for any A ∈ B1(H);

(c) || ||1 is a norm on B1(H).

Remark 4.35 It can be proved (B1(H), || ||1) is a Banach space (Sch60, BiSo87).�
Proof of Theorem4.34 (part (b)(ii) is deferred to Proposition4.38). (a) If A is of
trace class, the polar decomposition A = U |A| tells B and C can be taken to be
B := U

√|A| andC := √|A|. By definition of trace-class operator√|A| is aHilbert–
Schmidt operator, soC is, too. Also B is HS, forU ∈ B(H) andB2(H) is a two-sided
ideal in B(H), by Theorem 4.26. Let now B, C be HS operators, and let us show
A := BC is of trace class. By Theorems 4.26(d) and 4.15(b) A is compact. Hence we
need only show

∑
λ∈sing(A) mλλ < +∞. If BC = 0, the claim is obvious. Assume

BC �= 0 and expand the compact operator BC after Theorem 4.23:

A = BC =
∑

λ∈sing(A)

mλ∑

i=1

λ(uλ,i | )vλ,i .

Lest the notation become too heavy, set

Γ := {(λ, i)|λ ∈ sing(A), i = 1, 2, . . . , mλ}

and suppose λ j is the first element in the pair j = (λ, i). Then, clearly,

∑

j∈Γ

λ j =
∑

λ∈sing A

mλλ .

From the polar decomposition theorem A = U |A|, with U ∗U = I on the range of
|A|. Since v j = Uu j implies U ∗v j = u j , we have:

(v j |BCu j ) = (v j |Au j ) = (v j |U |A|u j ) = λ j (v j |Uu j ) = λ j (U
∗v j |u j ) = λ j (u j |u j ) = λ j .

If S ⊂ Γ is finite:

∑

j∈S

λ j =
∑

j∈S

(v j |BCu j ) =
∑

j∈S

(B∗v j |Cu j )

≤
∑

j∈S

||B∗v j || ||Cu j || ≤
√∑

j∈S

||B∗v j ||2
√∑

j∈S

||Cu j ||2 .

As the orthonormal systems u j = uλ,i and v j = vλ,i can be both completed to give
bases of H, the final term in the chain of inequalities above is smaller than
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||B∗||2 ||C ||2 = ||B||2 ||C ||2 .

Taking the supremum over all finite sets S we conclude

||BC ||1 =
∑

λ∈sing(A)

mλλ ≤ ||B||2 ||C ||2

and in particular A = BC ∈ B1(H).
(b)–(c). The closure ofB1(H)under inner product is immediate from the definition

itself. Let us showB1(H) is closed under sums. Take A, B ∈ B1(H). If A + B = 0,
A + B is clearly nuclear. So assume A + B �= 0 (compact anyway) and write polar
decompositions: A = U |A|, B = V |B|, A + B = W |A + B|. Use the familiar sum
over singular values, like we did in (a), to find:

A + B =
∑

β∈sing(A+B)

mβ∑

i=1

β(uβ,i | )vβ,i .

SetΓ := {(β, i)|β ∈ sing(A + B), i = 1, 2, . . . , mβ}, take S ⊂ Γ finite and let β j

be the first element in the pair j ∈ Γ . Then:

∑

j∈S

β j =
∑

j∈S

(v j |(A + B)u j ) =
∑

j∈S

(v j |Au j ) +
∑

j∈S

(v j |Bu j ) .

We can rewrite this as follows:

∑

j∈S

β j =
∑

j∈S

(
√|A|U ∗v j |

√|A|u j ) +
∑

j∈S

(
√|B|V ∗v j |

√|B|u j ) .

Proceeding as in (a) gives:

∑

j∈S

β j ≤ ||√|A|U ∗||2 ||√|A|||2 + ||√|B|V ∗||2 ||√|B|||2 ≤ ||√|A|||22 + ||√|B|||22

(in the final passage we use the inequality ||√|A|U ∗||2 ≤ ||√|A|||2 ||U ∗|| (part (ii)
in Theorem 4.26(a)), since

√|A| is Hilbert–Schmidt. Furthermore, it is easy to see
||U ∗|| ≤ 1, because U ∗ is isometric on K er(|A|)⊥ and vanishes on K er(|A|)).

Eventually note:

||√|A|||22 + ||√|B|||22 = ||A||1 + ||B||1 .

So we have proved A + B ∈ B1(H) and that the triangle inequality

||A + B||1 ≤ ||A||1 + ||B||1
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holds onB1(H). This turns || ||1 into a seminorm. It is indeed a norm, for ||A||1 = 0
implies the eigenvalues of |A| are all zero. By compactness |A| = 0, from (b) in
Theorem 4.19(6). The polar decomposition of A = U |A| forces A = 0. At this stage
we have proved B1(H) is a subspace of B(H) and || ||1 is a norm. Let us show
that B1(H) is closed under composition with bounded operators on either side.
Take A ∈ B1(H), B ∈ B(H) and write A = U |A|. Then B A = (BU

√|A|) √|A|,
where the two factors are HS operators, so B A ∈ B1(H) by part (a). Using Theorem
4.26(a)(ii), Eq. (4.42) and part (a):

||B A||1 ≤ ||BU
√|A|||2 ||√|A|||2 ≤ ||BU || ||√A||2 ||√A||2 ≤ ||B|| ||√A||22 = ||B|| ||A||1 .

Moreover AB = (U
√|A|) √|A|B ∈ B1(H) because both factors are HS and (a)

holds. In a manner similar to part (a) one proves ||AB||1 ≤ ||B|| ||A||1. Statement
(ii) in part (b) will be justified in the proof of Proposition 4.38. 
�

4.4.2 The Notion of Trace

To conclude we introduce the notion of trace of a nuclear operator, and we show how
it has the same formal properties of the trace of a matrix.

Proposition 4.36 If (H, ( | )) is a Hilbert space, A ∈ B1(H) and N is a basis of H,
then

tr A :=
∑

u∈N

(u|Au) (4.44)

is well defined, since the series on the right is finite or absolutely convergent. More-
over:
(a) tr A does not depend on the chosen Hilbert basis;
(b) for any pair (B, C) of Hilbert–Schmidt operators such that A = BC:

tr A = (B∗|C)2 ; (4.45)

(c) |A| ∈ B1(H) and:
||A||1 = tr |A| ; (4.46)

(d) |tr A| ≤ tr |A|, so that tr : B1(H) → C is continuous with respect to || ||1.
Proof (a)–(b). Any trace-class operator can be decomposed in the product of two
HS operators as we saw in Theorem 4.34(a). We begin by noticing that if A = BC ,
with B, C Hilbert–Schmidt, then

(B∗|C)2 =
∑

u∈N

(B∗u|Cu) =
∑

u∈N

(u|BCu) =
∑

u∈N

(u|Au) = tr A .
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This justifies (4.45) but also explains that tr A is well defined, being a Hilbert–
Schmidt inner product.Moreover, it says that in the infinite sum (4.44) only countably
many summands, at most, are non-zero, and that the sum reduces to a finite sum or to
an absolutely convergent series, since

∑
u∈N |(B∗u|Cu)| < +∞ by definition of HS

inner product. (It also shows (B∗|C)2 = (B ′∗|C ′)2 if BC = B ′C ′, for B, B ′, C, C ′
are HS operators.) The result eventually proves the invariance of tr A under changes
of basis, because ( | )2 does not depend on the chosen Hilbert basis.
(c) Firstly, by uniqueness of the square root, | (|A|) | = |A|. In fact | (|A|) | is the
only positive bounded operator whose square is |A|∗|A| = |A|2, and |A| is bounded,
positive and squaring to |A|2. As A is of trace class:

+∞ >
∑

u∈N

(u||A|u) =
∑

u∈N

(u|| (|A|) |u) ,

so Definition 4.32 implies |A| itself is of trace class. Choosing a basis {uλ,i } of
eigenvectors for |A| we have:

tr |A| =
∑

λ∈sing(A)

mλ∑

i=1

(uλ,i | |A|uλ,i ) =
∑

λ∈sing(A)

mλ∑

i=1

λ =
∑

λ∈sing(A)

mλλ = ||A||1 .

Eventually, (d) is easy: to compute tr A we use again a basis N of eigenvectors u of
|A| and exploit the polar decomposition of A = U |A|.

|tr A| ≤
∑

λ∈sing(A)

mλ∑

i=1

|(uλ,i | U |A|uλ,i )| =
∑

λ∈sing(A)

mλ∑

i=1

λ|(uλ,i |Uuλ,i )| ≤
∑

λ∈sing(A)

mλ∑

i=1

λ = tr |A| .

Hence the proof ends. 
�
Definition 4.37 Let H be a Hilbert space and A ∈ B1(H). The number tr A ∈ C is
called the trace of the operator A.

The next proposition summarises other useful properties of nuclear operators on
Hilbert spaces: in particular – and precisely as in the finite-dimensional case – the
trace is invariant under cyclic permutations. We remark that the operators of the
statements below need not necessarily be all of trace class (an important fact in
physical applications).

Proposition 4.38 Let H be a Hilbert space. The trace enjoys the following proper-
ties.
(a) If A, B ∈ B1(H) and α, β ∈ C, then:

tr A∗ = tr A , (4.47)

tr(αA + βB) = α tr A + β tr B . (4.48)
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(b) If A is of trace class and B ∈ B(H), or A and B are both HS operators, then

tr AB = tr B A . (4.49)

(c) Let A1, A2, . . . An be in B(H). If one is of trace class, or two are HS operators,
then the trace is invariant under cyclic permutations:

tr (A1A2 · · · An) = tr (Aσ(1) Aσ(2) · · · Aσ(n)) , (4.50)

where (σ (1), σ (2), . . . , σ (n)) is a cyclic permutation of (1, 2, . . . , n).

(d) If A ∈ B1(H) then:

||A|| ≤ ||A||2 =
√

tr(|A|2) ≤ tr |A| = ||A||1 .

Proof of proposition 4.38 and of part (ii) in Theorem 4.34(b).
(a) Immediate by definition of trace.
(b) Let us begin by proving the statement if A and B are both HS operators. By
Theorem 4.26(b), Eq. (4.49) is equivalent to

(A∗|B)2 = (B∗|A)2 . (4.51)

The proof of (4.51) is straightforward using the polarisation formula (valid for any
inner product and the induced norm)

4(X |Y ) = ||X + Y ||2 + ||X − Y ||2 − i ||X + iY ||2 + i ||X − iY ||2 ,

and recalling that, for HS norms, ||Z ||2 = ||Z∗||2 ((i) in Theorem 4.26(a)).
Now suppose A is of trace class and B ∈ B(H). Then A = C D, with C and D

Hilbert–Schmidt operators byTheorem4.34(a). In addition, DB and BC areHilbert–
Schmidt, forB2(H) is a two-sided ideal inB(H). By swapping two HS operators at
a time:

tr AB = tr((C D)B) = tr(C(DB)) = tr((DB)C) = tr(D(BC)) = tr((BC)D)

= tr(B(C D)) = tr B A .

(c) Since B1(H) is a two-sided ideal in B(H), one operator of trace class among
A1, . . . , An is enough to render their product of trace class. In particular, using
Theorem 4.34(a) and the fact thatB2(H) is a two-sided ideal ofB(H)we see clearly
that if two among A1, . . . , An are HS, their product is of trace class. Then (4.50) is
equivalent to:

tr (A1A2 · · · An) = tr (A2 A3 · · · An A1) . (4.52)
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In fact, one transposition at a time, we obtain any cyclic permutation. Let us prove
(4.52). Consider first the case of two HS operators Ai , A j , i < j . If i = 1, the claim
follows from (b) with A = A1 and B = A2 · · · An . If i > 1, the four operators (i)
A1 · · · Ai , (ii) Ai+1 · · · An , (iii) Ai+1 · · · An A1, (iv) A2 · · · Ai are necessarily HS, for
they involve either Ai or A j as factor (never both). Hence:

tr(A1 · · · An) = tr(A1 · · · Ai Ai+1 · · · An) = tr(Ai+1 · · · An A1A2 · · · Ai )

= tr(A2 · · · Ai Ai+1 · · · An A1) ,

which is what we wanted.
Let us prove invariance under permutations, assuming Ai is of trace class. If i = 1

the claim follows from part (b) by taking A = A1 and B = A2 · · · An . So suppose
i > 1. Then A1 · · · Ai and A2 · · · Ai are of trace class because both contain Ai , and
then:

tr(A1 · · · An) = tr(A1 · · · Ai Ai+1 · · · An) = tr(Ai+1 · · · An A1A2 · · · Ai )

= tr(A2 · · · Ai Ai+1 · · · An A1) ,

recalling part (b). Invariance under permutations allows to prove part (ii) in Theorem
4.34(b). Using (4.46) we have to prove tr |A| = tr |A∗|. By the corollary to the polar
decomposition theorem (Theorem 3.82) we deduce |A∗| = U |A|U ∗, where U |A| =
A is the polar decomposition of A. Hence

||A∗||1 = tr |A∗| = tr(U |A|U ∗) = tr(U ∗U |A|) = tr |A| = ||A||1 ,

where we used U ∗U |A| = |A|, for U is isometric on Ran(|A|) (Theorem 3.82).
(d) Taking (iii) in Theorem 4.26(a) into account, observing that |A|2 = A∗ A, and

applying the various definitions, the only thing to be proved is
√

tr(|A|2) ≤ tr(|A|),
that is tr(|A|2) ≤ (tr(|A|))2. This inequality is trivially true if we write traces using
a basis of eigenvectors of |A|. 
�
Remark 4.39 (1) If A ∈ B1(H) and A = A∗, computing the trace of A through a
basis of eigenvectors of A itself (this exists by Theorem 4.20), we conclude tr(A) =∑

λ∈σp(A) mλλ, where σp(A) is, as always, the set of eigenvalues of A and mλ the
dimension of the λ-eigenspace. As for finite dimensions, the trace of a self-adjoint
operator of trace class coincides with the sum of the eigenvalues. This is true even if
A is not self-adjoint, provided we clarify the meaning of eigenvalue multiplicity.

Theorem 4.40 (Lidskii) If H is a complex Hilbert space and T ∈ B1(H), then
tr(T ) = ∑

λ∈σp(T ) μλλ, where σp(T ) is the eigenvalue set of T , μλ is the algebraic
multiplicity of the eigenvalue λ, and the series converges absolutely.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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The result is far from obvious, and a proof can be found in (GGK00, BiSo87).
The algebraic multiplicity is discussed in (BiSo87, p.77), so we just mention that
0 < mλ ≤ μλ.
(2)Taking the inclusionsB1(H) ⊂ B2(H) ⊂ B(H) into account, Proposition4.38(d)
now has the following consequence. If {xn}n∈N ⊂ B1(H) converges to x ∈ B1(H) in
the topology of || ||1, then it converges in the topology of || · ||2. The same result holds
replacing (B1(H), || ||1) by (B2(H), || ||2) and (B2(H), || ||2) by (B(H), || ||). In
other words the topology of B1(H) is finer than the topology of B2(H), and this is
in turn finer than the topology of B(H). �
To conclude we present alternative definitions of trace-class operators (stated in the
form of propositions), which can be found in textbooks.
We will be able to justify the first one only after the spectral theorem for self-adjoint
operators:

Proposition 4.41 If H is a complex Hilbert space, T ∈ B(H) is of trace class if and
only if

∑
u∈N |(u|T u)| < +∞ for every Hilbert basis N ⊂ H.

Proof See the solution to Exercise 8.20. 
�
If the Hilbert spaces is infinite-dimensional and separable, there is a third character-
isation:

Proposition 4.42 If H is an infinite-dimensional, separable complex Hilbert space,
T ∈ B(H) is of trace class if and only if its trace is well defined, i.e.

∑+∞
n=0(un|T un)

converges to a unique s ∈ C for every Hilbert basis {un}n∈N.

Proof If T is of trace class,
∑+∞

n=0(un|T un) converges for any basis {un}n∈N, and
the sum does not depend on the basis because it is nothing but trT . If, conversely,∑+∞

n=0(un|T un) = s ∈ C for every basis {un}n∈N, then
∑+∞

n=0(u
′
n|T u′

n) = s where
u′

n := u f (n) for any bijection f : N → N. In other words the sum does not depend
of the summation order and may be rearranged. In view of Theorem 1.83, the series
of complex numbers

∑+∞
n=0(un|T un) converges absolutely, i.e.,

∑+∞
n=0 |(un|T un)| <

+∞. Since this result is valid for every basis {un}n∈N of H, Proposition 4.41 proves
that T is of trace class. 
�
Example 4.43 Here some familiarity with Riemannian geometry is required.
A important trace-class operator in physics arises (see, e.g. (Mor99)) when studying
the Laplace-Beltrami operator (or Laplacian) on a Riemannian manifold (M, g). In
local coordinates x1, . . . , xn on the n-manifold M , the Laplacian is the differential
operator:

Δ =
n∑

i=1

1√
g

∂

∂xi
gi j (x)

√
g

∂

∂x j
,

where g is the determinant of the matrix (gi j )i, j=1,...,n that describes the metric ten-
sor in the given coordinates, and gi j are the coefficients of the inverse matrix. If
V : M → (K ,+∞), for a certain K > 0, is an arbitrary smooth map, we consider

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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the operator A = −Δ + V defined on the space D(M) of smooth complex-valued
maps on M . We may viewD(M) as a (dense) subspace in L2(M, μg), whereμg , the
natural Borel measure associated to the metric, reads

√
gdx1 · · · dxn in local coor-

dinates. The operator A is positive, not bounded, and admits a unique inverse (also
positive): A−1 : L2(M, μg) → D(M). Thinking of A−1 as an L2(M, μg)-valued
operator, it turns out that A−1 ∈ B(L2(M, μg)). The first interesting fact is that
A−1 ∈ B∞(L2(M, μg)) actually. But there is more to the story. According to a the-
orem of Weyl the eigenvalues λ j ∈ σp(A) of A (where j labels eigenvectors φ j and
not eigenvalues, so that φi �= φk if k �= i but 0 < K ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · ) satisfy
the asymptotic formula:

lim
j→+∞ j−1λ

n/2
j = kn

vol(M)
, (4.53)

where vol(M) is the manifold’s volume (finite by compactness) and kn a universal
constant that depends only on the dimensionn. Furthermore, the eigenvectors {φ j } j∈N
form a basis of L2(M, μg), which implies that the eigenvalue set of A−k isσp(A−k) =
{λ−k

j } j∈N. Computing the norms || ||1 and || ||2 of A−k = |A|−k , and using the basis
of eigenvectors of A, we have:

||A−k ||1 =
+∞∑

j=0

λ−k
j and ||A−k ||22 =

+∞∑

j=0

λ−2k
j .

Weyl’s law (4.53) implies that A−k ∈ B1(L2(M, μg)) if k > n/2, and A−k ∈
B2(L2(M, μg)) if k > n/4. �

4.5 Introduction to the Fredholm Theory of Integral
Equations

Integral equations are a central branch of functional analysis, especially with regard
to applications in physics (for instance in the theory of quantum scattering (Pru81)
and the study of inverse problems) and other sciences. In the sequel we shall present
general results, due to Fredholm for the most part, and we will regularly take an
abstract viewpoint, whereby integral operators are seen as particular compact opera-
tors onHilbert spaces (even though several results can be extended toBanach spaces).
We shall essentially follow (KoFo99).

To fix ideas, let us consider a measure space (X,Σ,μ), whereμ : Σ → [0,+∞]
is a positive (σ -additive) measure that is σ -finite and separable, and take a map
K ∈ L2(X × X, μ ⊗ μ) with no further properties. Define TK ∈ B2(H) to be the
usual integral operator (cf. Examples 4.18(3), (4) and 4.27(1), (2)) onH = L2(X, μ):

(TK ψ)(x) :=
∫

X
K (x, y)ψ(y)dμ(y) . (4.54)
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We wish to study, in broad terms, the following integral equation in the unknown
ϕ ∈ H:

TK ϕ − λϕ = f (4.55)

where f ∈ H is given and λ ∈ C is a constant.
To begin with, consider the case λ = 0. This is the so-called Fredholm equation

of the first kind on the Hilbert space H.
From the abstract point of view we have to solve for ϕ ∈ H the equation:

Aϕ = f ,

where A : H → H is a compact operator (in the concrete case A is TK , a Hilbert–
Schmidt operator) and f ∈ H a given element.

An important general result, valid also with an infinite-dimensional Banach space
B replacing H, which assumes A compact, is that the equation has no solution for
certain f ∈ H, irrespective of A ∈ B∞(H). This follows from the next proposition.

Proposition 4.44 If B is a Banach space of infinite dimension and A ∈ B∞(B),
then Ran(A) �= B.

Proof We can write B = ∪n∈NBn , where Bn is the open ball of radius n at the origin,
so:

Ran(A) = ∪n∈N A(Bn) .

If Ran(A) were equal to B we could write:

B = ∪n∈N A(Bn) ⊂ ∪n∈N A(Bn) ⊂ B,

hence
B = ∪n∈N A(Bn) ,

where any A(Bn) is compact because A is compact and Bn bounded. Therefore B
would become a countable union of compact sets, which is impossible by Corollary
4.6. 
�
The next proposition raises a second issue concerning Fredholm equations of the
first kind.

Proposition 4.45 Let X be a normed space. Every left inverse to a compact injective
operator A ∈ B∞(X) cannot be bounded if X is infinite-dimensional.

Proof The proof is in Exercise 4.1. 
�
Because of this result, the solutions to Aϕ = f1 and Aϕ = f2 may be very dif-

ferent, even if f1 and f2 are close in norm. Fredholm equations of the first kind,
in other terms, are ill posed problems à la Hadamard. This does not entail, obvi-
ously, that Fredholm equations of the 1st kind are mathematically uninteresting, nor
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that they are useless in applied sciences. What it means is that their study is hard
and requires advanced and specialised topics, that reach well beyond the present
elementary treatise.

Equation (4.55), when λ �= 0, is called Fredholm equation of the second kind.
For a short moment we assume that TK admits a Hermitian kernel. In other terms we
consider:

TK ϕ − λϕ = f , (4.56)

where TK has the form (4.54) with λ �= 0 fixed, and K (x, y) = K (y, x), so that, by
(4.3), TK = T ∗

K . In such a case we can state a more general theorem.

Theorem 4.46 (Fredholm equations of the 2nd kind with Hermitian kernels) Let
H = L2(X, μ) be a Hilbert space with σ -finite and separable, positive, σ -additive
measure μ. Given f ∈ H and λ ∈ C \ {0}, consider Eq. (4.56) in ϕ ∈ H with

(TK ϕ)(x) =
∫

X
K (x, y)ϕ(y)dμ(y) ,

where K ∈ L2(X × X, μ ⊗ μ) and K (x, y) = K (y, x). Then the following hold.
(a) If λ is not an eigenvalue of TK , Eq. (4.56) has always a unique solution, whichever
f ∈ H.
(b) If λ is an eigenvalue of TK , (4.56) has solutions if and only if f is orthogonal to
the λ-eigenspace. In such case there exist infinitely many solutions.

Proof Multiplying (4.56) by λ−1 allows to study only λ = 1 (redefining λ−1K as
K and λ−1 f as f ). Hence we prove it in this case only. We know TK is compact
by Example 4.18(4) and self-adjoint up to a possible and inessential factor 1/λ. So
we shall refer to Theorems 4.19 and 4.20. Let {ψn}n∈N be a basis of K er(TK )⊥ of
eigenvectors of TK . We can decompose, uniquely, any ϕ ∈ H as

ϕ =
+∞∑

n=1

anψn + ϕ′ , (4.57)

where ϕ′ ∈ K er(TK ) and the an ∈ C are uniquely determined by ϕ. In particular

f =
+∞∑

n=1

bnψn + f ′ .

Let us seek a solution to (4.56):

ϕ = TK ϕ − f

in the form (4.57). We must find the numbers an and the map ϕ′ once TK and f are
given. Substituting (4.57) and the expression of f in (4.56), we easily find
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∑

n

anψn + ϕ′ =
∑

n

anλnψn −
∑

n

bnψn − f ′ ,

where λn are the non-null eigenvalues of TK corresponding to eigenvectors ψn (in
general it may happen that λn = λn′ , for we have labelled eigenvectors and not
eigenvalues). That is to say:

∑

n

an(1 − λn + bn)ψn = − f ′ − ϕ′
n .

The two sides are orthogonal by construction, and so are the vectors ψn , pairwise.
Therefore the identity is equivalent to:

ϕ′ = − f ′,
an(1 − λn) = −bn , n = 1, 2, . . ..

In any case ϕ′ is always determined, for it coincides with f ′. The existence of
solutions to (4.56) amounts to:

ϕ′ = − f ′,
an = bn

λn−1 for λn �= 1
b0 = 0 for λm = 1.

If λn �= 1 for every n, the coefficients an are uniquely determined by the bn . If λm = 1
for some m and bm �= 0, the last condition is false, and Eq. (4.56) has no solution.
Instead, if bm = 0 for any m such that λm = 1 (i.e. if f is normal to the 1-eigenspace
of TK ), the coefficients am can be chosen at will, whereas the remaining an are
determined. In this case there exist infinitely many solutions to (4.56). 
�

To conclude we move to the general case and drop the assumption on Hermitian
kernels. In order to stay general we shall study the abstract Fredholm equation of the
2nd kind in the Hilbert space H:

Aϕ − λϕ = f , (4.58)

where f ∈ H,λ ∈ C \ {0} and A ∈ B∞(H) are given onH andϕ ∈ H is the problem’s
unknown. Nothing more is assumed on A, apart from compactness. In particular, we
do not suppose A is a Hilbert–Schmidt operator. Let us prove the following general
theorem, due to Fredholm, which can be stated also for A ∈ B∞(B) on a Banach
space B.

Theorem 4.47 (Fredholm) On the Hilbert space H consider the abstract Fredholm
equation of the second kind

Aϕ − λϕ = f (4.59)
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in the unknown ϕ ∈ H, with f ∈ H, λ ∈ C \ {0} and A ∈ B∞(H) given. Consider
as well the corresponding homogeneous equation, the adjoint equation and the
homogeneous adjoint equation:

Aϕ0 −λϕ0 = 0 , (4.60)

A∗ψ −λψ = g , (4.61)

A∗ψ0 −λψ0 = 0 , (4.62)

respectively, with g ∈ H given and ϕ0, ψ,ψ0 ∈ H unknown. Then
(a) Equation (4.59) admits solutions ⇔ f is orthogonal to each solution ψ0

to (4.62);
(b) either (4.59) admits exactly one solution for any f ∈ H, or (4.60) has a non-

zero solution;
(c) Equation (4.60), (4.62) admit the same, finite, number of linearly independent

solutions.

Remark 4.48 (1) Statement (b) is the acclaimed Fredholm alternative.
(2) The above theorem holds in particular when A is self-adjoint, and becomes
Theorem 4.46. �
Proof of theorem 4.47. Here, too, dividing the initial equation by λ �= 0 permits to

reduce to λ = 1 (after redefining λ−1A as A, λ−1 f as f and λ
−1

g as g). Henceforth,
then, λ = 1. Observe T := A − I is bounded but not compact, for I is not compact.
The theorem relies on three lemmas. Let us first notice that K er(T ) is always closed
inH if T is continuous, as in the present situation, whereas Ran(T )may not. The first
lemma shows that Ran(T ) is closed aswell, provided T := A − I with A ∈ B∞(H).

Lemma 4.49 Under the assumptions made on T , Ran(T ) is closed.

Proof Let yn ∈ Ran(T ), n ∈ N, and suppose yn → y as n → +∞.We need to prove
y ∈ Ran(T ). By assumption:

yn = T xn = Axn − xn (4.63)

for some sequence {xn}n∈N ∈ H. With no loss of generality we may assume xn ∈
K er(T )⊥, possibly eliminating from the sequence what projects onto K er(T ). The
claim is proven ifwe can show the sequence {xn} is bounded: in fact, A being compact,
there will exist a subsequence xnk such that Axnk → y′ ∈ H as k → ∞. Substituting
in (4.63) we conclude xnk → x for some x ∈ H as k → +∞. By the continuity of
A, T x = Ax − x = y, so y ∈ Ran(T ).

We will proceed by contradiction, and assume {xn}n∈N ⊂ K er(T )⊥ is bounded. If
not, there would be a subsequence xnm with 0 < ||xnm || → +∞ as m → +∞. Since
the yn form a convergent, hence bounded, sequence, dividing by ||xnm || in (4.63)
gives:

T
xnm

||xnm || = A
xnm

||xnm || − xnm

||xnm || = ynm

||xnm || → 0 . (4.64)

But A is compact and the xnm
||xnm || are bounded, so we can extract a further subsequence

xnmk
/||xnmk

|| such that:
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xnmk

||xnmk
|| → x ′ ∈ H and T

xnmk

||xnmk
|| → T x ′ as k → +∞.

By (4.64) we infer x ′ ∈ K er(T ). By assumption
xnmk

||xnmk
|| ∈ K er(T )⊥, and K er(T )⊥

is closed, so x ′ ∈ K er(T )⊥. Consequently x ′ ∈ K er(T ) ∩ K er(T )⊥ = {0}, in con-
tradiction to

||x ′|| = lim
k→+∞

||xnmk
||

||xnmk
|| = 1 .

This ends the proof. 
�
The second lemma claims the following.

Lemma 4.50 Under the same assumptions on T we have orthogonal decomposi-
tions:

H = K er(T ) ⊕ Ran(T ∗) = K er(T ∗) ⊕ Ran(T ) . (4.65)

Proof Since T, T ∗ ∈ B(H), Theorem 3.13(e, d) and Proposition 3.38(d) imply
K er(T ) = (Ran(T ∗)⊥)⊥ = Ran(T ∗), K er(T ∗) = (Ran(T )⊥)⊥ = Ran(T ), and:

H = K er(T ) ⊕ Ran(T ∗) = K er(T ∗) ⊕ Ran(T ) .

Lemma 4.49 also holds if we replace T with T ∗, for (A − I )∗ = A∗ − I where A∗
is compact if A is. 
�

Theorem 4.47(a) now follows from Lemma 4.50 (we still had to finish the proof
for λ = 1). In fact the lemma implies f ⊥ K er(T ∗) ⇔ f ∈ Ran(T ) ⇔ T ϕ = f
for some ϕ ∈ H.

To continue with the proof of part (b) in the main theoremwe define the subspaces
Hk := Ran(T k), k = 1, 2, . . . (all closed by Lemma 4.49), so that:

H ⊃ H1 ⊃ H2 ⊃ H3 ⊃ · · ·

By construction T (Hk) = Hk+1. And now we have the third lemma.

Lemma 4.51 With T as above and Hk = Ran(T k), k = 1, 2, . . ., there exists j ∈ N

such that:
Hk+1 = Hk if k ≥ j.

Proof Assume, by contradiction, that such an index j does not exist. Then Hk �= Hh

if k �= h, and we can manufacture a sequence of orthonormal vectors xk ∈ Hk such
that xk ⊥ H k+1, k = 1, 2, . . .. If l > k

Axl − Axk = −xk + (xl + T xl − T xk),

so ||Axl − Axk ||2 ≥ 1 because xl + T xl − T xk ∈ Hk+1. But now we cannot extract
any convergent subsequence from {Axk}, contradicting the compactness of A. 
�

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Next we prove two lemmas that, combined, will eventually yield the proof of
Theorem 4.47(b) (for λ = 1).

Lemma 4.52 Under the previous assumptions on T , K er(T ) = {0} ⇒ Ran(T ) =
H.

Proof Assume K er(T ) = {0}, making T one-to-one, but by contradiction suppose
Ran(T ) �= H. Then the Hk , k = 1, 2, 3, . . ., would be all distinct, violating lemma
4.51. 
�
Lemma 4.53 Under the assumptions made on T , Ran(T ) = H ⇒ K er(T ) = {0}.
Proof If Ran(T ) = H, by Lemma 4.50 we have K er(T ∗) = {0}. Then the previous
lemma (with T ∗ instead of T ) guarantees Ran(T ∗) = H. Now Lemma 4.50 again
forces K er(T ) = {0}. 
�

Now it is patent that Lemmas 4.52 and 4.53 together prove statement (b) in
Theorem 4.47.

We finish by proving part (c) (always for λ = 1).
Suppose dim K er(T ) = +∞, rebutting (c). Then there is an infinite orthonor-

mal system {xn}n∈N ⊂ K er(T ). By construction Axn = xn and so ||Axk − Axh ||2 =
2. But this cannot be, for it would run up against the existence of a subse-
quence in the bounded set {xn}n∈N such that {Axnk }k∈N converges, which is granted
by compactness. Hence dim K er(T ) = m < +∞. Similarly dim K er(T ∗) = n <

+∞. Assume, contradicting the statement, that m �= n. In particular we may sup-
pose m < n. Let {ϕ j } j=1,...,n and {ψ j } j=1,...,m be orthonormal bases for K er(T ) and
K er(T ∗) respectively. Define S ∈ B(H) by:

Sx := T x +
m∑

j=1

(ϕ j |x)ψ j .

As S = A′ − I , with A′ compact (obtained from the compact operator A by adding
a compact operator, since the range is finite-dimensional), the results found above
for T = A − I hold for S, too.

We claim Sx = 0 ⇒ x = 0. Write, explicitly,

T x +
m∑

j=1

(ϕ j |x)ψ j = 0 . (4.66)

By virtue of Lemma 4.50, all vectors ψ j are orthogonal to any one of the form T x ,
so (4.66) implies T x = 0. Moreover, (ϕ j |x) = 0 if 1 ≤ j ≤ m, because x is a linear
combination of the ϕ j and it must simultaneously be orthogonal to them, so x = 0.
Hence Sx = 0 implies x = 0. From part (b), then, there exists y ∈ H such that

T y +
m∑

j=1

(ϕ j |y)ψ j = ψm+1 .
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Taking the inner product with ψm+1 gives a contradiction: 1 on the right equals 0
on the left, because T y ∈ Ran(T ) and Ran(T ) ⊥ K er(T ∗). This shows we cannot
assume m < n. Had we instead supposed n < m earlier on, we would have run into a
similar contradiction by arguing exactly as abovewith the roles of T and T ∗ swapped.
This eventually ends the proof of (c). 
�
Examples 4.54 An interesting instance of a Fredholm equation of the 2nd kind is
Volterra’s equation of the second kind:

ϕ(x) =
∫ x

a
K (x, t)ϕ(t)dt + f (x) , (4.67)

where ϕ ∈ L2([a, b], dx) is the unknown function, f ∈ L2([a, b], dx) is given and
the integral kernel satisfies |K (x, t)| < M < +∞ for any x, t ∈ [a, b], t ≤ x . (Any
multiplicative factor ρ ∈ C \ {0} is absorbed in K .)

This equation befits the theory of Fredholm’s theorem if we rewrite the integral as
an integral over all [a, b] and assume K (x, t) = 0 if t ≥ x . For this type of equation,
though, there is a better result based on contraction maps (cf. Sect. 2.6). It turns
out, namely, that a certain high power of TK : L2([a, b], dx) → L2([a, b], dx) is a
contraction, where TK is the integral operator in (4.67)

(TK ϕ)(x) =
∫ x

a
K (x, t)ϕ(t)dt .

Consequently the homogeneous equation TK ϕ = 0 has one, and one only, solution
by Theorem 2.112, and the solutionmust be ϕ = 0. The proof that T n

K is a contraction
if n is large enough is similar to what we saw in Example 2.113(1), where the Banach
space (C([a, b]), || ||∞) is replaced by (L2([a, b], dx), || ||2) (cf. Exercise 4.19).
That said, parts (a) and (b) in Fredholm’s theorem imply that Eq. (4.67) has exactly
one solution, for any choice of the source term f ∈ L2([a, b], dx). �

Exercises

4.1 Prove that if X is a normed space and T : X → X is compact and injective, then
any linear operator S : Ran(T ) → X that inverts T on the left cannot be bounded if
dimX = ∞.

Solution. If S were bounded, Proposition 2.47 would allow to extend it to a
bounded operator S̃ : Y → X, where Y := Ran(T ), so that S̃T = I . Precisely as in
the proof of Proposition 4.9(b), we can prove that S̃T is compact if T ∈ B(X,Y)

is compact and S̃ ∈ B(Y,X). Then I : X → X would be compact, and thus the unit
ball in X would have compact closure, breaching Proposition 4.5.

4.2 UsingBanach’s Lemma 4.12 prove that in an infinite-dimensional normed space
the closed unit ball is not compact.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Outline. Let x1, x2, . . . be an infinite sequence of linearly independent vectors
with ||xn|| = 1 (hence all belonging to the closure of the unit ball). Banach’s lemma
constructs a sequence of vectors y1, y2, . . . such that ||yn|| = 1 and ||yn−1 − yn|| >

1/2. This sequence cannot contain converging subsequences.

4.3 Prove that if A∗ = A ∈ B∞(H) on a Hilbert space H, then

σp(|A|) = {|λ| |λ ∈ σp(A)} .

Conclude that if A∗ = A ∈ B∞(H),

sing(A) = {|λ| |λ ∈ σp(A) \ {0}} .

Solution. Expand the compact, self-adjoint operators A and |A| according to
Theorem 4.20:

A =
∑

λ∈σp(A)

λPλ and |A| =
∑

μ∈σp(|A|)
μP ′

μ ,

with the obvious notation. By squaring A and |A| and using their continuity (this
allows to consider all series as finite sums), using the idempotency and orthogonality
of projectors relative to distinct eigenvectors, and recalling |A|2 = A∗ A = A2, we
have ∑

λ∈σp(A)

λ2Pλ =
∑

μ∈σp(|A|)
μ2P ′

μ . (4.68)

Now keep in mind Pλ Pλ0 = 0 if λ �= λ0 and Pλ Pλ0 = Pλ0 otherwise, and the same
holds for the projectors in the decomposition of |A|. Composing with Pλ0 on the
right in (4.68), taking adjoints and eventually right-composing with P ′

μ0
produces

λ2
0Pλ0 P ′

μ0
= μ2

0Pλ0 P ′
μ0
, i.e.

(λ2
0 − μ2

0)Pλ0 P ′
μ0

= 0 , (4.69)

for any λ0 ∈ σ(A) and μ0 ∈ σp(|A|). The fact that A admits a basis of eigenvectors
(Theorem 4.20) is known to be equivalent to

I = s-
∑

λ0∈σ(A)

Pλ0 .

Fix μ0 ∈ σp(|A|). If Pλ0 P ′
μ0

= 0 for any λ0 ∈ σ(A), from the above identity we
would have P ′

μ0
= 0, absurd by definition of eigenspace. Therefore, (4.69) with-

standing, theremust existλ0 ∈ σ(A) such thatλ2
0 = μ2

0, i.e.μ0 = |λ0|. Ifλ0 ∈ σp(A),
swapping A and |A| and using a similar argument would produce μ0 ∈ σp(|A|) such
that λ2

0 = μ2
0, i.e. μ0 = |λ0|. The first assertion is thus proved. The second one is

evident by the definition of singular value.
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4.4 Consider a separable Hilbert space H with basis { fn}n∈N ⊂ H and the sequence
{sn}n∈N ⊂ Cwhere |sn| ≥ |sn+1| and |sn| → 0 as n → +∞. Using the uniform topol-
ogy prove that

T :=
+∞∑

n=0

sn fn( fn| )

is well defined and T ∈ B∞(H). Show that if every sn is real, T is further self-adjoint
and every sn is an eigenvalue of T .

Hint. Under the assumptionsmade, the operator TN := ∑N
n=0 sn fn( fn| ) satisfies:

||TN x − TM x ||2 ≤ |sM |2
N−1∑

n=M

|( fn|x)|2 ≤ |sM |2||x ||2

for N ≥ M . Taking the least upper bound over unit vectors x ∈ H gives:

||TN − TM || ≤ |sM |2 → 0 as N , M → +∞,

whence the first part. The rest follows by direct inspection.

4.5 Prove that if T ∈ B∞(H) and if H � xn → x ∈ H weakly, i.e.

(g|xn) → (g|x) as n → +∞, for any given g ∈ H,

then ||T (xn) − T (x)|| → 0 as n → +∞. Put otherwise, compact operators map
weakly convergent sequences to sequences converging in norm. Extend the result to
the case T ∈ B∞(X,Y), X and Y normed.

Solution. Suppose xn → x weakly. If we bear in mind Riesz’s theorem, the set
{xn}n∈N is immediately weakly bounded in the sense of Corollary 2.64. According to
this corollary, ||xn|| ≤ K for any n ∈ N and for some K > 0. So define yn := T xn ,
y := T x and note that for any h ∈ H,

(h|yn) − (h|y) = (T ∗h|xn) − (T ∗h|x) → 0 as n → +∞,

hence also the yn converge weakly to y. Suppose, by contradiction, ||yn − y|| �→ 0
as n → +∞. Then there exist ε > 0 and a subsequence {ynk }k∈N with ||y − ynk || ≥ ε

for any k ∈ N. Since {xnk }k∈N is bounded by K , and T is compact, there must be a
subsequence {ynkr

}r∈N converging to some y′ �= y. This subsequence {ynkr
}r∈N has

to converge to y′ also weakly. But this cannot be, for {yn}n∈N converges weakly to
y �= y′. Therefore yn → y in the norm ofH. The argument works in the more general
casewhere T ∈ B∞(X,Y),X andY normed spaces, by interpretingX � xn → x ∈ X
in weak sense:

g(xn) → g(x) as n → +∞, for any given g ∈ X′,

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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because Corollary 2.64 still holds. In the proof one uses the fact that h ∈ Y′ ⇒
h ◦ T ∈ X′ (h ◦ T is a composite of continuous linear mappings).

4.6 Referring to Example 4.27, take TK , TK ′ ∈ B2(L2(X, μ)) (μ is assumed sepa-
rable) with integral kernels K , K ′. Prove that the HS operator aTK + bTK ′ , a, b ∈ C,
has kernel aK + bK ′.

4.7 Given TK ∈ B2(L2(X, μ)) with integral kernel K , prove the Hilbert–Schmidt
operator T ∗

K has integral kernel K ∗(x, y) = K (y, x).

4.8 With the same hypotheses as Exercise 4.6, show that the integral kernel of TK TK ′

is

K ′′(x, z) :=
∫

X
K (x, y)K ′(y, z) dμ(y) .

4.9 Let L2(X, μ) be separable. Prove that the mapping L2(X × X, μ ⊗ μ) � K �→
TK ∈ B2(L2(X, μ)) is an isomorphism of Hilbert spaces. Discuss whether one can
view this map as an isometry of normed spaces, taking B(L2(X, μ)) as codomain.
Discuss whether it is continuous if viewed as a homeomorphisms only.

4.10 With reference to Exercise 4.27(3), prove that if g ∈ C0([0, 1]) then
(
(I − ρT )−1g

)
(x) = g(x) + ρ

∫ x

0
eρ(x−y)g(y)dy .

Hint. Use the operator I − ρT , recalling the integral expression of T and noticing
ρeρ(x−y) = ∂

∂x eρ(x−y).

4.11 LetBD(L2(X, μ)) be the set of degenerate operators on L2(X, μ) (cf. Exam-
ple4.27(4)), with μ separable. Prove the following are equivalent statements.

(a) T ∈ BD(L2(X, μ)).
(b) Ran(T ) has finite dimension.
(c) T ∈ B2(L2(X, μ)) (hence T is an integral operator) with kernel K (x, y) =∑N
k=1 pk(x)qk(y), where p1, . . . , pN ∈ L2(X, μ), q1, . . . , qN ∈ L2(X, μ) are lin-

early independent.

4.12 Take the set BD(L2(X, μ)) of degenerate operators (cf. Example 4.27(4))
on L2(X, μ), with μ separable. Show BD(L2(X, μ)) is a two-sided ∗-ideal in
B(L2(X, μ)) and a subspace inB2(L2(X, μ)). In otherwords, prove thatBD(L2(X, μ) ⊂
B2(L2(X, μ)), that it is a closed subspace under Hermitian conjugation, and that
AD, D A ∈ BD(L2(X, μ) if A ∈ B(L2(X, μ)) and D ∈ BD(L2(X, μ)).

4.13 Consider BD(L2(X, μ)) (cf. Example4.27(4)) with μ separable. Does the
closure of BD(L2(X, μ)) in B2(L2(X, μ)) in the norm topology of B(L2(X, μ))

coincide withB2(L2(X, μ))?

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Hint. Consider the operator

T :=
+∞∑

n=0

1√
n

TKn ,

where Kn(x, y) = φn(x)φn(y), {φn}n∈N is a basis of L2(X, μ) and the convergence
is uniform. Prove T ∈ B(L2(X, μ)) is well defined, but T /∈ B2(L2(X, μ)) since
||T φn||2 = 1/n.

4.14 Under the assumptions of Mercer’s Theorem 4.29, prove that if TK ∈ B1

(L2(X, dμ)) then tr(TK ) = ∫
X K (x, x)dμ(x).

Hint. Expand the trace in the basis of eigenvectors given by the continuous maps
in Mercer’s statement. Since the series that defines K converges uniformly on the
compact set X of finite measure, a clever use of dominated convergence allows to
show
∫

X
K (x, x)dμ(x) =

∫

X

∑

λ,i

λuλ,i (x)uλ,i (x)dμ(x) =
∑

λ,i

λ

∫

X
uλ,i (x)uλ,i (x)dμ(x)

=
∑

λ,i

λ = tr(TK ) .

4.15 Consider an integral operator TK on L2([0, 2π ], dx) with integral kernel:

K (x, y) = 1

2π

∑

n∈Z\{0}

1

n2
ein(x−y) .

Prove TK is a compact Hilbert–Schmidt operator of trace class.

4.16 Consider the operator TK of Exercise 4.15 and the differential operator

A := − d2

dx2
,

defined on smooth maps over [0, 2π ] that satisfy periodicity conditions (together
with all derivatives). What is TK A?

Hint. Let 1 be the constant map 1 on [0, 2π ], and P0 : f �→ ( 1
2π

∫ 2π
0 f (x)dx)1

the orthogonal projector onto the space of constant maps in L2([0, 2π ], dx). Then
TK A = I − P0.

4.17 Consider an integral operator Ts on L2([0, 2π ], dx) with kernel:

Ks(x, y) = 1

2π

∑

n∈N\{0}

1

n2s
ein(x−y) .
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Prove that if Re s is sufficiently large (how large?) the following identity makes
sense:

tr(Ts) = ζR(2s) ,

where ζR = ζR(s) is Riemann’s zeta function.

4.18 Take B ∈ B(H) on a Hilbert space H, and a basis N such that
∑

u∈N ||Bu|| <

+∞. Prove B ∈ B1(H).

Hint. Observe |||B|ψ || = ||Bψ || and |(ψ ||B|ψ)| ≤ ||ψ || |||B|ψ ||.
4.19 Consider the integral operator TK : L2([a, b], dx) → L2([a, b], dx)

(TK ϕ)(x) =
∫ x

a
K (x, t)ϕ(t)dt

where K is a measurable map such that |K (x, t)| ≤ M for some M ∈ R, for all
x, t ∈ [a, b], t ≤ x . Prove

||T n
K || ≤ Mn(b − a)n

√
(n + 1)!

and conclude that there exists a positive integer n rendering T n
K a contraction.

Solution. In the ensuing computations ϕ ∈ L2([a, b], dx) implies ϕ ∈ L1

([a, b], dx) by the Cauchy–Schwarz inequality, because the constant map 1 is in
L2([a, b], dx). Define θ(z) = 1 for z ≥ 0 and θ(z) = 0 otherwise. By construction,

|(T n
K ϕ)(x)| =

∫ b

a
dx1

∫ b

a
dx2 · · ·

∫ b

a
dxnθ(x − x1)θ(x1 − x2) · · · θ(xn−1 − xn)

×K (x, x1)K (x1 − x2) · · · K (xn−1, xn)ϕ(xn) .

Hence

|(T n
K ϕ)(x)| ≤ Mn

∫

[a,b]n

dx1 · · · dxn|θ(x − x1) · · · θ(xn−1 − xn)| |ϕ(xn)| .
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Using Cauchy–Schwarz on L2([a, b]n, dx1 · · · dxn), and θ(z)2 = θ(z) = |θ(z)|, we
have:

|(T n
K ϕ)(x)| ≤ Mn

√∫

[a,b]n
dx1 · · · dxnθ(x − x1) · · · θ(xn−1 − xn) [b − a](n−1)/2||ϕ||2 ,

i.e.

|(T n
K ϕ)(x)| ≤ Mn (x − a)n/2

√
n! [b − a](n−1)/2||ϕ||2 .

Consequently

||T n
K ϕ||2 ≤ Mn(b − a)n

√
(n + 1)! ||ϕ||2 ,

and so

||T n
K || ≤ Mn(b − a)n

√
(n + 1)! .

But since:

lim
n→+∞

Mn(b − a)n

√
(n + 1)! → 0 as n → +∞,

for n large enough there must exist 0 < λ < 1 such that

||T n
K ϕ − T n

K ϕ′||2 ≤ λ||ϕ − ϕ′||2 ,

making T n
K a contraction operator.

4.20 Denote by BD(H) the family of degenerate operators on a general Hilbert
space H. This is the collection of operators A ∈ B(H) such that Ran(A) is finite-
dimensional. Prove that:

BD(H) ⊂ B1(H) ⊂ B2(H) ⊂ B∞(H) ⊂ B(H) ,

where BD(H) is dense inBi (H) with respect to || ||i , for i = 1, 2,∞.



Chapter 5
Densely-Defined Unbounded Operators
on Hilbert Spaces

Von Neumann had just about ended his lecture when a student
stood up and in a vaguely abashed tone said he hadn’t under-
stood the final argument. Von Neumann answered:
“Young man, in mathematics you don’t understand things. You
just get used to them.”

David Wells

This chapter will extend the theory seen so far to unbounded operators that are not
necessarily defined on the entire space.

In section one we will define, in particular, the standard domain of an operator
built by composing operators with non-maximal domains. We will introduce closed
and closable operators. Then we shall study adjoint operators to unbounded and
densely-defined operators, thus generalising the similar notion for bounded operators
defined on the whole Hilbert space.

The second section deals with generalisations of self-adjoint operators to the
unbounded case. For this we will introduce Hermitian, symmetric, essentially self-
adjoint and self-adjoint operators, and discuss their main properties. In particular we
will define the core of an operator and the deficiency index.

Section three is entirely devoted to two examples of self-adjoint operators of
the foremost importance in Quantum Mechanics, namely the operators position and
momentum on the Hilbert space L2(Rn, dx). We will study their mathematical prop-
erties and present several equivalent definitions.

In the final section we shall discuss more advanced criteria to establish whether a
symmetric operator admits self-adjoint extensions. We will present von Neumann’s
criterion and Nelson’s criterion. The technical instruments needed for this study are
the Cayley transform and analytic vectors: the latter, defined by Nelson, turned out
to be crucial in the applications of operator theory to QM.
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5.1 Unbounded Operators with Non-maximal Domains

Let us introduce the theory of unbounded operators with non-maximal domains. The
domains under exam will always be vector subspaces of some ambient space, and
we will often consider dense subspaces. Despite the operators of concern will not be
bounded, all definitions will reduce in the bounded case to the ones seen in earlier
chapters.

5.1.1 Unbounded Operators with Non-maximal Domains
in Normed Spaces

The first definitions are completely general and do not require any Hilbert structure.
A notion of graph was already given in Definition 2.98 for operators with maximal
domain. The following definition extends Definition2.98 slightly.

Definition 5.1 Let X be a vector space. We shall call a linear mapping

T : D(T) → X ,

an operator on X, where D(T) ⊂ X is a subspace called the domain of T . The
graph of the operator T is the subspace of X ⊕ X (see Definition2.97(3))

G(T) := {(x, Tx) ∈ X ⊕ X | x ∈ D(T)} .

If α ∈ C, and A, B are operators on X with domains D(A), D(B), we define the
following operators on H:

(a) AB, given by ABf := A(Bf ) on the standard domain:

D(AB) := {f ∈ D(B) | Bf ∈ D(A)}

(b) A + B, given by (A + B)f := Af + Bf on the standard domain:

D(A + B) := D(A) ∩ D(B)

(c) αA, given by αAf := α(Af ) on the standard domain: D(αA) = D(A) if
α �= 0, and D(0A) := X.

Remark 5.2 By taking standard domains the usual associative properties of the sum
and product of operators hold. If A, B, C are operators on X:

A + (B + C) = (A + B) + C , (AB)C = A(BC) .

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Distributive properties are weaker than expected (see Definition 5.3 below for the
meaning of ⊃):

(A + B)C = AC + BC , A(B + C) ⊃ AB + AC ,

for it may happen that (B +C)x ∈ D(A) even if Bx or Cx do not belong in D(A). �

The above notion of graph evidently coincides with the familiar graph of T ∈
L(X), where the latter is nothing else than an operator on X with D(T) = X.

Extensions of closed operators play a central role in the sequel. The first notion
is straightforward.

Definition 5.3 If A is an operator on the vector space X, an operator B on X is called
an extension of A, written A ⊂ B, or B ⊃ A, if G(A) ⊂ G(B).

Remark 5.4 With the above definitions of standard domains, it is easy to prove that
for any operators A, B, C on X,

(i) A ⊂ B and B ⊂ C ⇒ A ⊂ C;

(ii) A ⊂ B and B ⊂ A ⇔ A = B;

(iii) A ⊂ B ⇒ AC ⊂ BC and CA ⊂ CB;

(iv) if D(A) = X, then AB ⊂ BA ⇒ A(D(B)) ⊂ D(B);

(v) if D(A) = X, then AB = BA ⇒ A(D(B)) ⊂ D(B) and D(B) = A−1(D(B)) (so
that A(D(B)) = D(B) if A is surjective).

�

5.1.2 Closed and Closable Operators

We shall extend the reach of Definition 2.98, allowing for domains smaller than the
whole space. This will accommodate new concepts, such as closed operators.

We remind that ifX is normed, the product topology on theCartesian productX×X
is the one whose open sets are∅ and unions of products of open balls Bδ(x)×Bδ1(x1)
centred at x, x1 ∈ X with any radii δ, δ1 > 0.

Definition 5.5 Let A be an operator on the normed space X.
(a) A is called closed if its graph is closed in the product topology of X × X.
Consequently A is closed if and only if for any sequence {xn}n∈N ⊂ D(A) such that:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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(i) xn → x ∈ X as n → +∞ and
(ii) Axn → y ∈ X as n → +∞,

it follows x ∈ D(A) and y = Ax.
(b) A is closable if the closure G(A) of its graph is the graph of a (necessarily closed)
operator. The latter is denoted A and is called the closure of A.

The next proposition characterises closable operators.

Proposition 5.6 Let A be an operator on the normed space X. The following facts
are equivalent:

(i) A is closable,
(ii) G(A) does not contain elements of type (0, z), z �= 0,

(iii) A admits closed extensions.

Proof (i) ⇔ (ii). A is not closable iff there exist sequences in D(A), say {xn}n∈N and
{x′

n}n∈N, such that xn → x ← x′
n, and Axn → y �= y′ ← Ax′

n. By linearity this is the
same as saying there is a sequence x′′

n = xn−x′
n → 0 such thatAx′′

n → y−y′ = z �= 0.
In turn, this amounts to G(A) containing points (0, z) �= (0, 0).
(i)⇔ (iii). IfA is closable,A is a closed extension ofA. Conversely, if there is a closed
extension B of A, there cannot be in G(A) elements of the kind (0, z) �= (0, 0), for
otherwise G(B) = G(B) ⊃ G(A) � (0, z), since A ⊂ B and B is closed. Therefore
B would not be linear as B(0) �= 0. ��
Here is a useful general property of closable operators on Banach (hence Hilbert)
spaces.

Proposition 5.7 Let X, Y be Banach spaces, T ∈ B(X,Y) and A : D(A) → Y an
operator on Y (in general unbounded, and with D(A) properly contained in Y). If

(i) A is closable,
(ii) Ran(T) ⊂ D(A),

then AT ∈ B(X,Y).

Proof As the closure of A extends A, AT = AT is well defined. Now it suffices to
show AT : X → Y is closed and invoke the closed graph theorem (Theorem 2.99) to
conclude. To prove AT is closed, assumeX � xn → x ∈ X and (AT)(xn) → y ∈ Y as
n → +∞. Then Txn → z ∈ Y, for T is continuous. As A is closed and A(Txn) → y,
then z ∈ D(A) and Az = y. That is to say, (AT)(x) = y. Therefore AT is closed by
definition. ��

5.1.3 The Case of Hilbert Spaces: The Structure of H ⊕ H
and the Operator τ

Let us look at the situation in which X = H is a Hilbert space with inner product
( | ). We know that there is a convenient way to define a Hilbert space structure on

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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the direct sum H ⊕ H, yielding the Hilbert sum of H with itself. This structure was
presented in Definition 3.67, referring to a much more general situation. Here we
wish tomake further comments on the elementary case at hand. FromDefinition3.67,
we know that the inner product:

((x, x′)|(y, y′))H⊕H := (x|y) + (x′|y′) if (x, x′), (y, y′) ∈ H ⊕ H (5.1)

makes the two summands ofH⊕Hmutually orthogonal, so the sum is not only direct,
but orthogonal. Furthermore, it turnsH⊕H into a Hilbert space, for the induced norm
|| ||H⊕H satisfies:

||(z, z′)||2H⊕H = ||z||2 + ||z′||2 for any (z, z′) ∈ H ⊕ H. (5.2)

Let us see how. Any Cauchy sequence {(xn, x′
n)}n∈N ⊂ H ⊕ H for the norm || ||H⊕H

determines Cauchy sequences inH: {xn}n∈N and {x′
n}n∈N. The latter converge to x and

x′ in H respectively. It is therefore immediate to see (xn, x′
n) → (x, x′) as n → +∞

in norm || ||H⊕H, by (5.2). Therefore (H ⊕ H, || ||H⊕H) is complete. Topologically
speaking, H ⊕ H can be endowed with the product topology of H × H, the same
used to define the closure of an operator. But this is exactly the topology induced by
the inner product. To see this directly, in analogy to the discussion of Sect. 2.3.6, it
suffices to recall the inclusions of open balls

Bδ/2(x) × Bδ/2(y) ⊂ B(H⊕H)
δ ((x, y)) ⊂ Bδ(x) × Bδ(y),

where B(H⊕H)
δ ((x, y)) ⊂ H ⊕ H has centre (x, y) ∈ H ⊕ H and radius δ > 0, while

Bε(z) ⊂ H has centre z and radius ε > 0.
A useful tool to prove results quickly is the bounded operator

τ : H ⊕ H � (x, y) �→ (−y, x) ∈ H ⊕ H . (5.3)

If we refer ∗ and ⊥ to the Hilbert space H ⊕ H, then:

τ ∗ = τ−1 = −τ , (5.4)

so, in particular, τ is unitary on H⊕H. Moreover, a direct computation shows τ and
⊥ commute:

τ(F⊥) = (τ (F))⊥ (5.5)

for any F ⊂ H ⊕ H.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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5.1.4 General Properties of the Hermitian Adjoint Operator

We now pass to define the Hermitian adjoint of an (unbounded) operator T whose
domain D(T) is dense in a Hilbert space H.

We cannot rely on Riesz’s theorem and must proceed differently. First of all let us
define the domain D(T∗) of the adjoint, bearing in mind we are aiming at obtaining
(T∗x|y) = (x|Ty) with x ∈ D(T∗) and y ∈ D(T). To this end we put

D(T∗) := {
x ∈ H | there exists zT ,x ∈ H with (x|Ty) = (zT ,x|y) for any y ∈ D(T)

}
,

(5.6)

and later we will set T∗x := zT ,x, x ∈ D(T∗).
At any rate, let us show definition (5.6) is well posed, first, and that it determines:

(a) a subspace D(T∗) ⊂ H, and (b) an operator T∗ : D(T∗) � x �→ zT ,x.
(a) D(T∗) �= ∅ for 0 ∈ D(T∗) if we define zT ,0 := 0. Moreover, by linearity of

the inner product and of T , if x, x′ ∈ D(T∗) and α, β ∈ C then αx + βx′ ∈ D(T∗).
That happens because (αx + βx′|Ty) = (zT ,αx+βx′ |y) if zT ,αx+βx′ := αzT ,x + βzT ,x′ .
Hence D(T∗) is a subspace.

(b) The assignment D(T∗) � x �→ zT ,x =: T∗x will define a function, linear by
construction as we saw above, only if any x ∈ D(T∗) determines a unique element
zT ,x. We claim that this is the case when D(T∗) is dense, as we have assumed.
If (z′

T ,x|y) = (x|Ty) = (zT ,x|y) for any y ∈ D(T), then 0 = (x|Ty) − (x|Ty) =
(zT ,x − z′

T ,x|y). Since D(T) = H, there exists {yn}n∈N ⊂ D(T) with yn → zT ,x − z′
T ,x.

The inner product is continuous, so (zT ,x − z′
T ,x|y) = 0 implies ||zT ,x − z′

T ,x||2 = 0
and then zT ,x = z′

T ,x.

Definition 5.8 (Adjoint operator) If T is an operator on the Hilbert space H with
D(T) = H, the (Hermitian) adjoint operator to T , denoted T∗, is the operator on
H with domain

D(T∗) := {
x ∈ H | there exists zT ,x ∈ Hwith (x|Ty) = (zT ,x|y) for any y ∈ D(T

}

defined by T∗ : x �→ zT ,x.

Remark 5.9 (1) It is clear that by construction

(T∗x|y) = (x|Ty) , for any pair (x, y) ∈ D(T∗) × D(T)

as we wanted.

(2) If T ∈ B(H), Definition 5.8 implies immediately D(T∗) = H by Riesz’s
Theorem3.16. Hence:

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Definitions 5.8 and 3.37 coincide for adjoints to operators in B(H).

(3) If T is a densely-defined operator on the Hilbert space H, D(T∗) is not automat-
ically dense in H. Therefore (T∗)∗ will not exist, in general.

(4) If A, B are densely-defined operators on the Hilbert space H:

A ⊂ B ⇒ A∗ ⊃ B∗. (5.7)

The proof is straightforward from Definition 5.8.

(5) If A, B are operators on the Hilbert space H with dense domains, and D(AB) is
dense, then

B∗A∗ ⊂ (AB)∗ .

Furthermore
B∗A∗ = (AB)∗

if A ∈ B(H).

Similarly, if D(A + B) is dense,

A∗ + B∗ ⊂ (A + B)∗ .

Furthermore
A∗ + B∗ = (A + B)∗

if A ∈ B(H).
The proofs are deferred to the exercise section at the end of this chapter. �

Theorem 5.10 Let A be an operator on the Hilbert space H with D(A) = H. Then

(a) A∗ is closed and
G(A∗) = τ(G(A))⊥ . (5.8)

(b) A is closable ⇔ D(A∗) is dense, in which case

A ⊂ A = (A∗)∗ .

(c) Ker(A∗) = [Ran(A)]⊥ and Ker(A) ⊂ [Ran(A∗)]⊥, with equality if D(A∗) is dense
in H and A is closed.

(d) If A is closed then H ⊕ H splits orthogonally:

H ⊕ H = τ(G(A)) ⊕ G(A∗) . (5.9)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Proof (a) Write τ(G(A))⊥ explicitly, using (5.5):

τ(G(A))⊥ = {(x, y) ∈ H ⊕ H | − (x|Az) + (y|z) = 0 for any z ∈ D(A)} .

That is to say, τ(G(A))⊥ is the graph of A∗ (so long as the operator is defined!) and
(5.8) holds. By construction τ(G(A))⊥ is closed, being an orthogonal complement
(Theorem 3.13(a)), so A∗ is closed.
(b) Consider the closure of the graph of A. Then we have G(A) = (G(A)⊥)⊥ by
Theorem 3.13. Since ττ = −I , S⊥ = −S⊥ for any set S, and because (5.5), (5.8)
hold, we have:

G(A) = −τ( τ (G(A))⊥ )⊥ = −τ(G(A∗))⊥ = τ(G(A∗))⊥ . (5.10)

By Proposition 5.6, G(A) is the graph of an operator (the closure of A) iff G(A) does
not contain elements (0, z), z �= 0. I.e., G(A) is not the graph of an operator iff there
exists z �= 0 such that (0, z) ∈ τ(G(A∗))⊥. More explicitly

there exists z �= 0 such that 0 = ((0, z)|(−A∗x, x)) , for any x ∈ D(A∗) .

Put equivalently, G(A) is not the graph of an operator iff D(A∗)⊥ �= {0}, which
happens precisely when D(A∗) is not dense in H. To sum up: G(A) is a graph ⇔
D(A∗) = H.
If D(A∗) is dense in H, then (A∗)∗ exists, and by (5.10), (5.8) we have

G(A) = τ(G(A∗))⊥ = G((A∗)∗) .

Eventually, by definition of closure, G(A) = G(A). Substituting above:

G(A) = G((A∗)∗) ,

so A = (A∗)∗.
(c) The claims descend directly from

(A∗x|y) = (x|Ay) , for any pair(x, y) ∈ D(A∗) × D(A)

by the density of D(A), and from (b) when A is closed.
(d) Since A is closed, G(A) is closed and so τ(G(A)) is closed, because τ :

H⊕H → H⊕H is unitary. From (5.8) and Theorem 3.13 (b, d) we have immediately
(5.9). This ends the proof. ��
Remark 5.11 The density of D(A) implies (A − λI)∗ = A∗ − λI for λ ∈ C, so the
first equation in (c) has the immediate consequence:

Ker(A∗ − λI) = [Ran(A − λI)]⊥ ,

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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while the second equation yields:

Ker(A − λI) ⊂ [Ran(A∗ − λI)]⊥ .

In the rest of the book these relations will be used repeatedly. �

5.2 Hermitian, Symmetric, Self-adjoint and Essentially
Self-adjoint Operators

We are now in a position to define in full generality self-adjoint operators and related
objects.

Definition 5.12 Let (H, ( | )) be a Hilbert space. An operator A : D(A) → H on H
is called

(a) Hermitian if (Ax||y) = (x|Ay) for any x, y ∈ D(A);
(b) symmetric if:

(i) A is Hermitian and
(ii) D(A) is dense;

therefore A is symmetric if and only if:

(i)’ D(A) = H and
(ii)’ A ⊂ A∗;

(c) self-adjoint if:

(i) D(A) is dense and
(ii) A = A∗;

(d) essentially self-adjoint if:

(i) D(A) is dense,
(ii) D(A∗) is dense and
(iii) A∗ = (A∗)∗ (the adjoint is self-adjoint).

Equivalently (by Theorem 5.10(b)), A is essentially self-adjoint if:

(i)’ D(A) is dense,
(ii)’ A is closable and
(iii)’ A∗ = A;

(e) normal if A∗A = AA∗, where either side is defined on its standard domain.
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Remark 5.13 (1) A comment on (c) in Definition 5.12: by Theorem 5.10(a), every
self-adjoint operator is automatically closed.

(2) It is worth noting that:

(i) the definitions of Hermitian, symmetric, self-adjoint and essentially self-adjoint
operator coincide when the operator’s domain is the whole Hilbert space;

(ii) the following important result holds.

Theorem 5.14 (Hellinger-Toeplitz) A Hermitian operator with the entire Hilbert
space as domain is necessarily bounded (and self-adjoint in the sense of definition
3.56).

Proof Boundedness follows from Proposition 3.60(d). The operator is therefore self-
adjoint, according to Definition 3.9. ��
(iii) Bounded self-adjoint operators for Definition 3.56 are precisely the self-adjoint
operators of Definition 5.12 with domain the whole space.
(3) Essential self-adjointness is by far the most important property of the four for
applications to QM, on the following grounds. As we will explain soon, an essen-
tially self-adjoint operator admits a unique self-adjoint extension, so it retains the
information of a self-adjoint operator, essentially. For reasons we shall see later in
the book, paramount operators in QM are self-adjoint. At the same time it is a fact
that differential operators are the easiest to handle in QM. It often turns out that
QM’s differential operators become essentially self-adjoint if defined on suitable
domains. Thus self-adjoint differential operators are on one hand easy to employ,
on the other they carry, in essence, the information of self-adjoint operators useful
in QM. Because of this we will indulge on certain features related to essential self-
adjointness.
(4) Given an operator A : D(A) → H on the Hilbert space H, B ∈ B(H) commutes
with A when:

BA ⊂ AB .

If the domain of A is dense and so A∗ exists, it is easy to check that if B ∈ B(H)

commutes with A then B∗ commutes with A∗ (prove it as an exercise). Denote by
{A}′ the commutant of A : D(A) → H:

{A}′ := {B ∈ B(H) | BA ⊂ AB}

If A = A∗ then {A}′ is a unital ∗-subalgebra ofB(H) that is closed in the strong topol-
ogy (prove it as an exercise). Therefore it is a von Neumann algebra (see Sect. 3.3.2).
The double commutant {A}′′ := {{A}′}′ is still a von Neumann algebra, called the
von Neumann algebra generated by A.

�
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The following important, yet elementary, proposition will be frequently used without
explicit mention. Its easy proof is left to the reader.

Proposition 5.15 LetH1,H2 be Hilbert spaces andU : H1 → H2 a unitary operator.
If A : D(A) → H1 is an operator on H1, consider the operator on H2

A2 : D(A2) → H2 with A2 := UA1U
−1and D(A2) := UD(A1).

Then A2 is closable, or closed, Hermitian, symmetric, essentially self-adjoint, self-
adjoint, or normal if and only if A1 is alike.

Notation 5.16 From now on we shall also write A∗∗···∗ instead of (((A∗)∗) · · · )∗. �
Proposition 5.17 Let (H, ( | )) be a Hilbert space and A an operator on H.

(a) If D(A) and D(A∗), are dense,

A∗ = A
∗ = A∗ = A∗∗∗ . (5.11)

In particular the identities are true when A is symmetric.

(b) A is essentially self-adjoint ⇔ A is self-adjoint.

(c) If A is self-adjoint, it is maximal symmetric, i.e. it has no proper symmetric
extensions.

(d) If A is essentially self-adjoint, A admits only one self-adjoint extension: A (coin-
ciding with A∗).

Proof (a) If D(A) and D(A∗) are dense, the operators A∗, A∗∗ and A∗∗∗ exist (in
particular D(A∗∗) ⊃ D(A) is dense). Moreover

A
∗ = (A∗∗)∗ = A∗∗∗ = (A∗)∗∗ = A∗

by Theorem 5.10(b). Since A∗ is closed (by Theorem 5.10(a)) we have A∗ = A∗. If
A is symmetric, it has dense domain, so that A∗ ⊃ A has dense domain as well.

(b) If A is essentially self-adjoint, A = A∗, and in particular D(A) = D(A∗) is
dense. Compute the adjoint of A and recall Theorem 5.10(b): A

∗ = (A∗)∗ = A, i.e.
A is self-adjoint.

Vice versa, if A is self-adjoint, i.e. there exists A
∗ = A, then D(A), D(A∗), D(A∗∗)

are dense and by part (a): A∗ = A∗ = A
∗
. Hence A∗ = A, and A is essentially

self-adjoint.
(c) Let A be self-adjoint and A ⊂ B, B symmetric. Taking adjoints gives A∗ ⊃ B∗.

But B∗ ⊃ B by symmetry, so

A ⊂ B ⊂ B∗ ⊂ A∗ = A ,

and then A = B = B∗.
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(d) Let A∗ = A∗∗, A ⊂ B with B = B∗. Taking the adjoint of A ⊂ B we see that
B = B∗ ⊂ A∗. Taking the adjoint twice yields A∗∗ ⊂ B, but then

B = B∗ ⊂ A∗ = A∗∗ ⊂ B ,

hence B = A∗∗. The latter coincides with A by Theorem 5.10(b). ��
Now we discuss two crucial features that characterise self-adjoint and essentially
self-adjoint operators.

Theorem 5.18 Let A be a symmetric operator on the Hilbert spaceH. The following
are equivalent:

(a) A is self-adjoint;

(b) A is closed and Ker(A∗ ± iI) = {0};
(c) Ran(A ± iI) = H.

Proof (a) ⇒ (b). If A = A∗, A is closed because A∗ is. If x ∈ Ker(A∗ + iI), then
Ax = −ix, so

i(x|x) = (Ax|x) = (x|Ax) = (x| − ix) = −i(x|x) ,

whence (x|x) = 0 and x = 0.
The proof that Ker(A∗ − iI) = {0} is analogous.
(b) ⇒ (c). By definition of adjoint we have (see Remark 5.11) [Ran(A − iI)]⊥ =

Ker(A∗ + iI). Hence part (b) implies Ran(A − iI) is dense in H. Now we shall use
the closure of A to show that Ran(A − iI) = H. Fix y ∈ H arbitrarily and choose
{xn}n∈N ⊂ D(A) so that (A − iI)xn → y ∈ H. For z ∈ D(A),

||(A − iI)z||2 = ||Az||2 + ||z||2 ≥ ||z||2 ,

whence {xn}n∈N is a Cauchy sequence and x = limn→+∞ xn exists. The closure of A
forcesA−iI to be closed, so (A−iI)x = y and thenRan(A−iI) = Ran(A − iI) = H.
The proof of Ker(A∗ − iI) = {0} is similar.

(c) ⇒ (a). Since A ⊂ A∗ by symmetry, it is enough to show D(A∗) ⊂ D(A). Take
y ∈ D(A∗). Given that Ran(A − iI) = H, there is a vector x− ∈ D(A) such that

(A − iI)x− = (A∗ − iI)y .

On D(A) the operator A∗ coincides with A and therefore, by the previous identity,

(A∗ − iI)(y − x−) = 0 .

But Ker(A∗ − iI) = Ran(A + iI)⊥ = {0}, so y = x− and y ∈ D(A). The argument
for Ran(A + iI) is completely analogous. ��
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Theorem 5.19 Let A be a symmetric operator on the Hilbert spaceH. The following
are equivalent:

(a) A is essentially self-adjoint;

(b) Ker(A∗ ± iI) = {0};
(c) Ran(A ± iI) = H.

Proof (a) ⇒ (b). If A is essentially self-adjoint, then A∗ = A∗∗ and A∗ is self-adjoint
(and closed). Applying Theorem 5.18 gives Ker(A∗∗ ± iI) = {0} and so (b) holds,
for A∗∗ = A∗.
(b) ⇒ (a). A ⊂ A∗ by assumption, and because D(A) is dense so is D(A∗). Con-
sequently, Theorem 5.10(b) implies A is closable and A ⊂ A = A∗∗ (in particular
D(A∗∗) = D(A) ⊃ D(A) is dense). Therefore A ⊂ A∗ implies A ⊂ A∗, and Proposi-
tion 5.17(a) tells A∗ = A

∗
. Overall, A ⊂ A

∗
, i.e. A is symmetric. Then we may apply

Theorem 5.18 to A, for this operator satisfies (b) in the theorem. We conclude A is
self-adjoint. From Proposition 5.17(b) it follows A is essentially self-adjoint.
(b)⇔ (c). Since Ran(A± iI)⊥ = Ker(A∗ ∓ iI) and Ran(A ± iI)⊕Ran(A± iI)⊥ = H,
(b) and (c) are equivalent. ��
To finish we present a useful notion for the applications: the core of an operator.

Definition 5.20 Let A be a closed, densely-defined operator on the Hilbert space H.
A dense subspace S ⊂ D(A) is a core of A if

A �S = A .

The next proposition is obvious, yet important.

Proposition 5.21 If A is a self-adjoint operator on the Hilbert space H, a subspace
S ⊂ D(A) is a core for A if and only if A �S is essentially self-adjoint.

Proof If A �S is essentially self-adjoint, it admits a unique self-adjoint extension,
which coincides with its closure by Proposition 5.17(d). In our case the extension
necessarily coincides with A, which is self-adjoint. Hence A �S is a core.
Conversely, if A �S is a core, the closure of A �S is self-adjoint because it coincides
with the self-adjoint A. By Proposition 5.17(b) A �S is essentially self-adjoint. ��

5.3 Two Major Applications: The Position Operator
and the Momentum Operator

To exemplify the formalism described so far we study the features of two self-adjoint
operators of the foremost relevance in QM, called position operator and momentum
operator. Their physical meaning will be clarified in the second part of the book.

In the sequel we shall adopt the conventions and notations of Sect. 3.7, and x =
(x1, . . . , xn) will be a generic point in R

n.

http://dx.doi.org/10.1007/978-3-319-70706-8_3


264 5 Densely-Defined Unbounded Operators on Hilbert Spaces

5.3.1 The Position Operator

Definition 5.22 (Position operator) Consider H := L2(Rn, dx), where dx is the
Lebesgue measure on R

n. If i ∈ {1, 2, . . . , n} is given, the operator on H:

(Xif )(x) = xif (x) , (5.12)

with domain:

D(Xi) :=
{

f ∈ L2(Rn, dx)

∣
∣
∣
∣

∫

Rn

|xif (x)|2 dx < +∞
}

, (5.13)

is called ith position operator.

Proposition 5.23 The operator Xi of Definition 5.22 satisfies these properties.

(a) Xi is self-adjoint.

(b) D(Rn) and S (Rn) are cores: Xi = Xi �D(Rn) = Xi �S (Rn).

Proof (a) The domain of Xi is certainly dense inH for it contains the spaceD(Rn) of
smoothmaps with compact support, and also the space of Schwartz functionsS (Rn)

(see Notation 3.100), both of which are dense in L2(Rn, dx). Therefore Xi admits an
adjoint. By definition we have (g|Xif ) = (Xig|f ) if f , g ∈ D(Xi). Consequently Xi is
Hermitian and symmetric. We claim it is self-adjoint, too. By symmetry Xi ⊂ X∗

i , so
it suffices to show D(X∗

i ) ⊂ D(Xi). Let us define the adjoint to Xi directly: f ∈ D(X∗
i )

if and only if there exists h ∈ L2(Rn, dx) (h = X∗
i f by definition) such that

∫

Rn

f (x)xig(x)dx =
∫

Rn

h(x)g(x)dx for anyg ∈ D(Xi).

Since D(Xi) is dense and

∫

Rn

[xif (x) − h(x)]g(x)dx = 0 for any g ∈ D(Xi),

we can also say f ∈ L2(Rn, dx) belongs to D(X∗
i ) ⇔ xif (x) = h(x) almost

everywhere, with h ∈ L2(Rn, dx).
Hence D(X∗

i ) consists precisely of maps f ∈ L2(Rn, dx) for which

∫

Rn

|xif (x)|2 dx < +∞ ,

and so D(X∗
i ) = D(Xi) and Xi is self-adjoint.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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(b) If we defineXi as above, apart from restricting the domain toD(Rn) orS (Rn),
the operator thus obtained is no longer self-adjoint, but stays symmetric. The adjoints
to Xi �D(Rn) and Xi �S (Rn) both coincide with the above X∗

i , for in the construction
we only used that Xi is the operator that multiplies by xi on a dense domain: whether
this is the D(Xi) of (5.13), or a dense subspace, does not alter the result. If we define
Xi through (5.12) and (5.13), the adjoint X∗

i must satisfy Ker(X∗
i ± iI) = {0} by

Theorem 5.18(b). But as X∗
i is the same as we get by restricting the domain of Xi

toD(Rn) orS (Rn) by Theorem 5.19(b), the restricted Xi is essentially self-adjoint.
Part (b) is now an immediate consequence of Proposition 5.21. ��

5.3.2 The Momentum Operator

Let us introduce the momentum operator. Henceforth we adopt the definitions and
conventions taken from Example 2.91, and retain Notation 3.100. First, though, we
need a few definitions.

We say f : R
n → C is a locally integrable function on R

n if f · g ∈ L1(Rn, dx)
for any map g ∈ D(Rn).

Definition 5.24 Let f be locally integrable and α a multi-index. A map h : R
n → C

is the αth weak derivative of f , written w-∂αf = h, if h is locally integrable and:

∫

Rn

h(x)g(x) dx = (−1)|α|
∫

Rn

f (x)∂α
x g(x) dx (5.14)

for any map g ∈ D(Rn).

Remark 5.25 (1) If it exists, a weak derivative is uniquely determined up to sets of
zero measure: if h and h′ are locally integrable (the following is trivial if they are in
L2(Rn, dx)) and satisfy (5.14), then:

∫

Rn

(h(x) − h′(x))g(x) dx = 0 for anyg ∈ D(Rn). (5.15)

This implies h(x) − h′(x) = 0 almost everywhere by the Du Bois–Reymond lemma
[Vla02]:

Lemma 5.26 (Du Bois–Reymond) Suppose φ is a locally integrable map on R
n.

Then: φ is zero almost everywhere ⇔ ∫
Rn φ(x)f (x) dx = 0 for any f ∈ D(Rn).

(2) In case f ∈ C|α|(Rn), the αth weak derivative of f exists and coincides with the
usual derivative (up to a zero-measure set). However, there are situations in which
the ordinary derivative does not exist, whereas the weak derivative is defined.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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(3)Maps in L2(Rn, dx) are locally integrable, forD(Rn) ⊂ L2(Rn, dx) and f ·g ∈ L1

if f , g ∈ L2.
�

In order to define the momentum operator let us construct the operator Aj on H :=
L2(Rn, dx):

(Ajf )(x) = −i�
∂

∂xj
f (x) with D(Aj) := D(Rn), (5.16)

where � is a positive constant (Planck’s constant), whose precise value is irrelevant
at present. By definition we have (g|Ajf ) = (Ajg|f ) if f , g ∈ D(Aj). Thus Aj is
symmetric because D(Aj) = H. Let us find the adjoint to Aj, denoted Pj := A∗

j ,
directly from the definition. Given f ∈ D(A∗

j ) = D(Pj) there must be φ ∈ L2(Rn, dx)
(coinciding with Pjf by definition) such that:

∫

Rn

φ(x)g(x)dx = −i�
∫

Rn

f (x)
∂

∂xj
g(x)dx , for any g ∈ D(Rn) . (5.17)

Conjugating the equation wemay rephrase (5.17) as follows: f ∈ L2(Rn, dx) belongs
in D(Pj) if and only if it admits weak derivative φ ∈ L2(Rn, dx).

Definition 5.27 (Momentum operator) LetH := L2(Rn, dx), dx being the Lebesgue
measure on R

n. Given j ∈ {1, 2, . . . , n}, the operator on H:

(Pjf )(x) = −i�w-
∂

∂xj
f (x) , (5.18)

with domain:

D(Pj) :=
{

f ∈ L2(Rn, dx)

∣
∣
∣
∣ there exists w-

∂

∂xj
f ∈ L2(Rn, dx)

}
, (5.19)

is called the jthmomentum operator.

Remark 5.28 If n = 1, D(Pj) is identified with the Sobolev space H1(R, dx). �

Proposition 5.29 Let Pj be the momentum operator of Definition 5.27. Then
(a) Pj is self-adjoint;
(b) D(Rn) and S (Rn) are cores of Pj. Therefore:

(Ajf )(x) = −i�
∂

∂xj
f (x) with f ∈ D(Aj) := D(Rn) , (5.20)

(A′
jf )(x) = −i�

∂

∂xj
f (x) with f ∈ D(A′

j) := S (Rn) , (5.21)

are essentially self-adjoint and Aj = A′
j = Pj.
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Proof To simplify notations, in the sequel we will set � = 1 (absorbing the constant
�

−1 in the unit of measure of the coordinate xj), and denote by ∂j the jth derivative and
by w-∂j the weak derivative.Wewant to proveKer(A∗

j ± iI) = {0}. This would imply,
owing to Theorem 5.19, that Aj is essentially self-adjoint, i.e. Pj = A∗

j is self-adjoint.
The space Ker(A∗

j ± iI) consists of maps f ∈ L2(Rn, dx) admitting weak derivative
and such that i(w-∂jf ± f ) = 0. Let us consider the equation:

w-∂jf ± f = 0 , (5.22)

with f ∈ L2(Rn, dx). Multiplying by an exponential gives:

w-∂j
(
e±xj f

) = 0 , (5.23)

So we can reduce to proving the following.

Lemma 5.30 If h : R
n → C is locally integrable and

w-∂jh = 0 , (5.24)

h coincides almost everywhere with a constant function in xj.

Proof of lemma 5.30. Without loss of generality we can suppose j = 1. We indicate
by (x, y) the coordinates of R

n, where x is x1 and y subsumes the remaining n − 1
components. Take h locally integrable satisfying (5.24). Explicitly:

∫

Rn

h(x, y)
∂

∂x
g(x, y)dx ⊗ dy = 0 , for any g ∈ D(Rn) . (5.25)

Pick f ∈ D(Rn), and choose a > 0 large, so to have supp(f ) ⊂ [−a, a]×[−a, a]n−1.
Define a map χ ∈ D(R) with supp(χ) = [−a, a] and ∫

R
χ(x)dx = 1. Then there is

a map g ∈ D(Rn) such that

∂

∂x
g(x, y) = f (x, y) − χ(x)

∫

R

f (u, y)du .

In fact, it is enough to consider

g(x, y) :=
∫ x

−∞
f (u, y)du −

∫ x

−∞
χ(v)dv

∫

R

f (u, y)du . (5.26)

This map is smooth by construction, and its x-derivative coincides with:

f (x, y) − χ(x)
∫

R

f (u, y)du .
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Moreover the support of g is bounded: if some coordinate satisfies |yk| > a, then
f (u, y) = 0 whichever u we have, so g(x, y) = 0 for any x. If x < −a the first
integral in (5.26) vanishes, and also the second one, for χ is supported in [−a, a].
Conversely, if x > a

g(x, y) :=
∫ +∞

−∞
f (u, y)du − 1

∫

R

f (u, y)du = 0 ,

where we used suppχ = [−a, a] and ∫
R

χ(x)dx = 1. Altogether g vanishes outside
[−a, a] × [−a, a]n−1. Inserting g in (5.25) and using the theorem of Fubini–Tonelli
gives

∫

Rn

h(x, y)f (x, y) dx ⊗ dy −
∫

Rn

(∫

R

h(x, y)χ(x)dx

)
f (u, y) du ⊗ dy = 0 .

Relabelling variables:

∫

Rn

{
h(x, y) −

(∫

R

h(u, y)χ(u)du

)}
f (x, y) dx ⊗ dy = 0 , (5.27)

f being arbitrary in D(Rn). Notice that

(x, y) �→ k(y) :=
∫

R

h(u, y)χ(u)du

is locally integrable on R
n, because

(x, y, u) �→ f (x, y)h(u, y)χ(u)

is integrabile on R
n+1 for any f ∈ D(Rn) (it is enough to observe |f (x, y)| ≤

|f1(x)||f2(y)| for suitable f1 in D(R) and f2 in D(Rn−1)). Equation (5.27), valid for
any f ∈ D(Rn), implies immediately

h(x, y) −
∫

R

h(u, y)χ(u)du = 0

almost everywhere on R
n by the Du Bois–Reymond Lemma 5.26. That is to say

h(x, y) = k(y)

almost everywhere on R
n. �

In the case under scrutiny the result implies that every solution to (5.22) must have
the form f (x) = e±xj h(x), where h does not depend on xj. The theorem of Fubini–
Tonelli then tells

∫
Rn |f (x)|2dx = ||h||2L2(Rn−1)

∫
R

e±2xj dxj. Hence hmust be null almost
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everywhere if, as required, f ∈ L2(Rn, dx). Therefore Ker(A∗
j ± iI) = {0} and so

Pj = A∗
j is self-adjoint (Aj is essentially self-adjoint).

Because S (Rn) ⊃ D(Rn) it is easy to see that A′
j is symmetric, that f admits

generalised derivative if f ∈ D(A′∗
j ), and that

A′∗
j f = −iw-

∂

∂xj
f .

Using the same procedure, if f ∈ Ker(A′∗
j ± I) then f = 0, so A′

j is essentially

self-adjoint, too. Since Aj ⊂ A′
j and Aj is essentially self-adjoint, then A′

j
∗∗ = A′

j =
Aj

∗∗ = Aj = Pj by Proposition 5.17(d). ��
There is another way to introduce the operator Pj, using the Fourier–Plancherel

transform F̂ : L2(Rn, dx) → L2(Rn, dk) seen in Sect. 3.7.

We define on L2(Rn, dk) the analogue to Xj, which we call Kj (conventionally, the
target space R

n of the Fourier–Plancherel transform has coordinates (k1, . . . , kn)).
Since F̂ is unitary, the operator F̂−1KjF̂ is self-adjoint if defined on the domain
F̂−1D(Kj).

Proposition 5.31 Let Kj be the jth position operator on the target space of the

Fourier–Plancherel transform F̂ : L2(Rn, dx) → L2(Rn, dk). Then

Pj = � F̂−1KjF̂ .

Proof It suffices to show the operators coincide on a domain where they are both
essentially self-adjoint. To this end consider S (Rn). From Sect. 3.7 we know the
Fourier–Plancherel transform is the Fourier transform on this space, and
F̂ (S (Rn)) = S (Rn). Moreover, the properties of the Fourier transform imply

−i�
∂

∂xj
f (x) = 1

(2π)n/2

∫

Rn

eik·x
�kjg(k) dk

provided g ∈ S (Rn) and

f (x) = 1

(2π)n/2

∫

Rn

eik·x g(k) dk.

Therefore
Pj �S (Rn)= � F̂−1Kj �S (Rn) F̂ .

Notice Kj is essentially self-adjoint onS (Rn) by Proposition 5.23, so also the oper-
ator � F̂−1Kj �S (Rn) F̂ is essentially self-adjoint onS (Rn), because F̂ is unitary.
As Pj �S (Rn)= A′

j is essentially self-adjoint as well (Proposition 5.29), and since
self-adjoint extensions of essentially self-adjoint operators are unique and coincide

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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with the closure (Proposition 5.17(d)), we conclude

Pj = � F̂−1Kj �S (Rn) F̂ = � F̂−1Kj �S (Rn)F̂ = � F̂−1KjF̂ .

��

5.4 Existence and Uniqueness Criteria for Self-adjoint
Extensions

In this remaining part of the chapter we examine a few criteria to determine whether
an operator admits self-adjoint extensions, and how many. A deeper analysis on
these topics can be found in [ReSi80, vol. II], also in terms of quadratic forms, or in
[Wie80, Rud91, Tes09, Schm12].

5.4.1 The Cayley Transform and Deficiency Indices

One crucial technical tool is the Cayley transform, introduced below. Before that,
we generalise the notion of isometry (Definition 3.6) to operators with non-maximal
domain.

Definition 5.32 An operatorU : D(U ) → H, on the Hilbert spaceH, is an isometry
if

(Ux|Uy) = (x|y) for any x, y ∈ D(U ).

Remark 5.33 (1) Clearly, if D(U ) = H the above definition pins down isometric
operators in the sense of Definition 3.56.

(2) By Proposition 3.8, the above condition is the same as demanding ||Ux|| = ||x||,
for any x ∈ D(U ). �

The transformation R � t �→ (t − i)(t + i)−1 ∈ C is a well-known bijection
between the real line R and the unit circle in C minus the point 1. There is a similar
correspondence that maps isometric operators to symmetric operators, called the
Cayley transform.

Theorem 5.34 Let H be a Hilbert space.
(a) If A is a symmetric operator on H:

(i) A + iI is injective,

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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(ii) the Cayley transform of A:

V := (A − iI)(A + iI)−1 : Ran(A + iI) → H , (5.28)

is a well-defined operator,
(iii) V is an isometry with Ran(V ) = Ran(A − iI).

(b) If (5.28) holds for some operator A : D(A) → H with (A + iI) injective, then:

(i) I − V is injective,
(ii) Ran(I − V ) = D(A) and

A := i(I + V )(I − V )−1 . (5.29)

(c) If A is symmetric on H, the following facts are equivalent:

(i) A is self-adjoint,
(ii) its Cayley transform V is unitary on H.

(d) If V : H → H is unitary and I − V injective, then V is the Cayley transform of
some self-adjoint operator on H.

Proof (a) A direct computation using the symmetry of A and the linearity of inner
products proves that

||(A ± iI)f ||2 = ||Af ||2 + ||f ||2 (5.30)

if f ∈ D(A). Therefore if (A + iI)f = 0 or (A − iI)f = 0 then f = 0. The
operators A± iI are therefore injective on D(A), turning V into an operator D(V ) :=
Ran(A + iI) → H. From (5.30)

||(A − iI)g|| = ||(A + iI)g||

for any g ∈ D(A). Set g = (A + iI)−1h, with h ∈ Ran(A + iI). Then

||V h|| = ||(A − iI)(A + iI)−1h|| = ||h|| ,

so V is an isometry with domainD(V ) = Ran(A+ iI) and range Ran(V ) = Ran(A−
iI).
(b) The domain D(V ) consists of vectors g = (A + iI)f with f ∈ D(A). Applying V
to g gives V g = (A − iI)f . Adding and subtracting g = (A + iI)f produces

(I + V )g = 2Af , (5.31)

(I − V )g = 2if . (5.32)

Now, (5.32) tells (I − V ) is injective, for if (I − V )g = 0 then f = 0 and so
g = (A + iI)f = 0. Therefore if f ∈ D(A) we can write
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g = 2i(I − V )−1f . (5.33)

Furthermore,Ran(I−V ) = D(A) follows immediately from (5.32).Applying (I+V )

to Eq. (5.33) and using (5.31):

Af = i(I + V )(I − V )−1f for any f ∈ D(A).

(c) Suppose A = A∗. By Theorem 5.18 Ran(A + iI) = Ran(A − iI) = H. Then part
(a) implies V is an isometry from Ran(A + iI) = H onto H = Ran(A − iI). Hence
V is a surjective isometry, i.e. a unitary operator.

Suppose now V : H → H is the unitary Cayley transform of a symmetric operator
A onH. By part (a) Ran(A+ iI) = Ran(A− iI) = H. This means A = A∗ by Theorem
5.18.

(d) It is enough to prove V is the Cayley transform of a symmetric operator. By
part (c) this symmetric operator is self-adjoint. By assumption there is a bijective
map z �→ x, from D(V ) = H to Ran(I − V ), given by x := z − V z. Define
A : Ran(I − V ) → H as

Ax := i(z + V z) , ifx = z − V z. (5.34)

By taking x, y ∈ D(A) = Ran(I − V ) we have x = z − V z and y = u − V u for some
z, u ∈ D(V ). But V is an isometry, so

(Ax|y) = i(z + V z|u − V u) = i(V z|u) − i(z|V u) = (z − V z|iu − iV u) = (x|Ay) ,

and A is Hermitian. To show it is symmetric, note D(A) = Ran(I − V ) is dense. In
fact [Ran(I − V )]⊥ = Ker(I − V ∗). If Ker(I − V ∗) were not {0}, there would exist a
non-zero vector u ∈ H such that V ∗u = u, and then applying V would give u = V u.
But that is not possible, for I − V is injective by assumption.

To finish, we prove V is the Cayley transform of A. Equation (5.34) reads:

2iV z = Ax − ix , 2iz = Ax + ix , if z ∈ H. (5.35)

Hence V (Ax + ix) = Ax − ix for x ∈ D(A) and H = D(V ) = Ran(A + iI). But then
V is the Cayley transform of A because V (A + iI) = A − iI , and so

V = (A − iI)(A + iI)−1 .

This ends the proof. ��
Remark 5.35 From the statement and proof we infer that Ker(A ± iI) = {0} if A is
symmetric. The further condition Ker(A∗ ± iI) = {0} is very restrictive, equivalent
to the essential self-adjointness of A (if A is symmetric) by Theorem 5.19. �

Before we pass to the consequences of Theorem 5.34 concerning the existence
of self-adjoint extensions of a symmetric operator, let us make a general remark.
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Other textbooks that discuss these issues suppose the symmetric operator A be also
closed. We shall not make that hypothesis, because the (differential) operators typi-
cally handled in practical computations ofQMare symmetric but not closed. Besides,
imposing closure from the start is not that essential, in view of the following elemen-
tary result.

Proposition 5.36 If A is symmetric, then A is symmetric, and B is a self-adjoint
extension of A if and only if it is a self-adjoint extension of A.

Proof By direct inspection, one sees that A symmetric ⇒ A symmetric (see the
solutions of Exercises 5.7 and 5.8). A self-adjoint operator is closed because an
adjoint operator is always closed. If B = B∗ extends A, then B is a closed extension
of A so that A ⊂ B, since A is the smallest closed extension of A. The converse is
trivial: if B is self-adjoint and B ⊃ A then B ⊃ A ⊃ A. ��

The first result we introduce is about deficiency indices. If A is a symmetric
operator on the Hilbert space H, we call

d±(A) := dim Ker(A∗ ± iI)

the deficiency indices of A. They can be defined equivalently as:

d±(A) := dim [Ran(A ∓ iI)]⊥ ,

because Ker(A∗ ± iI) = [Ran(A ∓ iI)]⊥. Furthermore, the deficiency indices of the
symmetric operator A and those of A coincide, and more strongly we have

Ker(A∗ ± iI) = Ker(A
∗ ± iI) .

In fact, since A = A∗∗ and A∗ = A∗∗∗ due to Proposition 5.17(a), and because
(B + aI)∗ = B∗ + aI and B + aI = B + aI for densely-defined, closable operators
B (as one immediately proves), then A and A have the same adjoint.

Theorem 5.37 If A is a symmetric operator on the Hilbert space H, the following
facts hold.
(a) A admits self-adjoint extensions ⇔ d+(A) = d−(A).
(b) If d+(A) = d−(A), there is a 1-1 correspondence

U0 : Ker(A∗ − iI) → Ker(A∗ + iI)

between self-adjoint extensions of A and surjective isometries.
In particular, A admits more than one self-adjoint extension whenever d+(A) =

d−(A) > 0.
As a matter of fact, the domain of the self-adjoint extension AU0 is

D(AU0) = D(A) + (I − U0)(Ker(A∗ − iI)) , (5.36)
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where the sum is direct (but not orthogonal in general). Furthermore, AU0 acts by

AU0z = Ax + i(I + U0)y , (5.37)

for z = x + (I + U0)y with x ∈ D(A) and y ∈ Ker(A∗ − iI),

Proof (a) Consider the Cayley transform V of A. Suppose A has a self-adjoint exten-
sion B and let U : H → H be the Cayley transform of B. It is straightforward to
see U is an extension of V using (5.28), recalling (B + iI)−1 extends (A + iI)−1 and
B − iI extends A − iI . Hence U maps Ran(A + iI) to Ran(A − iI). As U is unitary,
y ⊥ Ran(A + iI) ⇔ Uy ⊥ U (Ran(A + iI)), that is to say U ([Ran(A + iI)]⊥) =
[Ran(A − iI)]⊥. By Theorem 5.10(c) this means U (Ker(A∗ + iI)) = Ker(A∗ − iI).
Since U is an isometry, dim Ker(A∗ + iI) = dim Ker(A∗ − iI), i.e. d+(A) = d−(A).

(b) Let us show, conversely, that if d+(A) = d−(A) then A has a self-adjoint
extension, not unique in case d+(A) = d−(A) > 0. The Cayley transform V of
A is bounded, so Proposition 2.47 says we can extend it, uniquely, to an isometric
operator U : Ran(A + iI) → Ran(A − iI). The same we can do for V −1, extending
it to a unique isometry Ran(A − iI) → Ran(A + iI). By continuity this operator is

U−1 : Ran(A − iI) → Ran(A + iI). Now recall Ran(A ± iI)
⊥ = [Ran(A ± iI)]⊥ =

Ker(A∗ ∓ iI). Having assumed d+(A) = d−(A), we can define a unitary operator

U0 : Ker(A∗ − iI) → Ker(A∗ + iI) .

Since

H = Ran(A + iI) ⊕ Ker(A∗ − iI) = Ran(A − iI) ⊕ Ker(A∗ + iI)

is an orthogonal decomposition by closed spaces,

W := U ⊕ U0 : (x, y) �→ (Ux, U0y) , with x ∈ Ran(A + iI) and y ∈ Ker(A∗ − iI) ,

is a unitary operator on H. Moreover I − W is injective. In fact, Ker(I − W ) consists
of pairs (x, y) �= (0, 0) with Ux = x and U0y = y: the first condition has only
the solution x = 0 because U is an isometry, and the second one implies y ∈
Ker(A∗ + iI) ∩ Ker(A∗ − iI), giving y = 0. Therefore Theorem 5.34(d) applies,
and W is the Cayley transform of a self-adjoint operator B. As W extends U , B is a
self-adjoint extension of A.

We now claim that the correspondence between self-adjoint extensions of A
and surjective isometries U0 is bijective. First of all we must prove that every
self-adjoint extension is constructed out of a surjective isometry U0. If, as above,
U : Ran(A + iI) → Ran(A − iI) denotes the unique unitary extension of the Cayley
transform V of A, each self-adjoint extension B of A has a unitary Cayley transform
W extending U to a unitary operator on the whole Hilbert space H. Since

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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H = Ran(A + iI) ⊕ Ker(A∗ − iI) = Ran(A − iI) ⊕ Ker(A∗ + iI) ,

and W extends U , the only possibility is that W determines a surjective isometry
U0 : Ker(A∗ − iI) → Ker(A∗ + iI). Therefore B is determined by U0. Let us prove
that the correspondence B �→ U0 is one-to-one. Two distinct self-adjoint extensions
B, B′ give distinct operators U0, U ′

0, otherwise the Cayley transforms W, W ′ would
coincide. But Theorem 5.34(a, b) tells that two symmetric operators are distinct iff
their Cayley transforms differ. The map is also onto by what we said above, because
the choice of U0 determines a self-adjoint extension of A, i.e., the one with Cayley
transform W := U ⊕ U0.

There are many choices for U0 if d+(A) = d−(A) > 0, and each one produces a
different self-adjoint extension of A.

We conclude the proof by showing (5.36) and (5.37). First assume that A is
symmetric and closed. In this case Ran(A ± iI) = Ran(A ± iI) (since A ± iI is
also closed, (A ± iI)−1 is bounded and by the definition of closed operator in
terms of sequences), so V = U . Denote by AU0 the self-adjoint extension con-
structed out of U0, and by WU0 = V ⊕ U0 its Cayley transform. Using the splitting
H = Ran(A + iI) ⊕ Ker(A∗ − iI), from (ii) in Theorem 5.34(b) we have

D(AU0) = Ran(I − WU0) = Ran(I + V ) + (I − U0)Ker(A∗ − iI) ,

that is
D(AU0) = D(A) + (I − U0)(Ker(A∗ − iI)) .

We claim that this is a direct sum. Suppose x + (I − U0)y = 0 with x ∈ D(A) and
y ∈ Ker(A∗−iI), so thatU0y ∈ Ker(A∗+iI).Wewant to prove that x = (I−U0)y = 0.
Indeed, applying A∗ to x + y − U0y = 0 and noticing that A∗ ⊃ A, we have

0 = A∗x + A∗y − A∗U0y = Ax + (A∗ − iI)y + (A∗ + iI)U0y + iy − iU0 = Ax + iy − iU0y .

Comparing the result with x + y − U0y = 0 we find (A − iI)x = 0 which, in turn,
implies x = 0 because A − iI is injective since A is symmetric. As a consequence
(I − U0)y = 0, as required.

Let us prove (5.37) to conclude the proof for A symmetric and closed. In accor-
dance with (5.36), take D(AU0) � z = x + (I − U0)y with x ∈ D(A) and
y ∈ Ker(A∗ − iI). Then

AU0z = i(I + WU0 )(I − WU0 )
−1z = i(I + V )(I − V )−1x + i(I + U0)(I − U0)

−1(I − U0)y ,

that is
AU0z = Ax + i(I + U0)y ,

which is (5.37).
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Eventually, observe that (5.36), (5.37) are also valid for A symmetric with A � A,
since the self-adjoint extensions of A and A coincide and Ker(A∗ ± iI) = Ker
(A

∗ ± iI). ��
Next comes the first important corollary to Theorem 5.37.

Theorem 5.38 A symmetric operator A on the Hilbert space H is essentially self-
adjoint if and only if it admits a unique self-adjoint extension.

Proof If A is essentially self-adjoint it has a unique self-adjoint extension by Propo-
sition 5.17(d). Theorem 5.37 implies that a symmetric operator A has self-adjoint
extensions only if d+ = d−. In particular, if the extension is unique d+ = d− = 0.
But then Theorem 5.19(b) forces A to be essentially self-adjoint. ��

5.4.2 Von Neumann’s Criterion

Another consequence of Theorem 5.34, proved by von Neumann, establishes suffi-
cient conditions for a symmetric operator to admit self-adjoint extensions. First we
need two definitions.

Definition 5.39 Let X and X′ be C-vector spaces with Hermitian inner products
( | )X and ( | )X′ respectively. A surjective map V : X → X′ is an anti-unitary
operator if:

(a) V is antilinear: V (αx + βy) = αV x + βV y for any x, y ∈ X, α, β ∈ C;

(b) V is anti-isometric: (V x|V y)X′ = (x|y)X for any x, y ∈ X.

Remark 5.40 Despite the complex conjugation in (b), note that ||V z||X′ = ||z||X for
any z ∈ X. Moreover, V is bijective. �

Definition 5.41 If (H, ( | )) is a Hilbert space, an anti-unitary operator C : H → H
is called a conjugation operator, or just conjugation, if it is involutive, i.e. CC = I .

Remark 5.42 Conjugations are definedonHermitian inner product spaces. In general
they differ from involutions in the sense of Definition 3.40, as the latter are defined
on algebras. �

Theorem 5.43 (Von Neumann’s criterion) Let A be a symmetric operator on the
Hilbert space H. If there exists a conjugation C : H → H such that

CA ⊂ AC ,

then A admits self-adjoint extensions.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Proof To begin with, let us show C(D(A∗)) ⊂ D(A∗) and CA∗ ⊂ A∗C. By definition
of adjoint (A∗f |Cg) = (f |ACg) for any f ∈ D(A∗) and g ∈ D(A). As C is anti-
unitary, (CCg|CA∗f ) = (CACg|Cf ). As C commutes with A and CC = I , we have
(g|CA∗f ) = (Ag|Cf )), i.e. (CA∗f |g) = (Cf |Ag) for any f ∈ D(A∗) and g ∈ D(A).
By definition of adjoint, this means Cf ∈ D(A∗) if f ∈ D(A∗) and CA∗f = A∗Cf .

Let us pass to the existence, using Theorem 5.37. According to what we have just
proved, if A∗f = if , applying C and using that C is antilinear and commutes with
A∗, we obtain A∗Cf = −iCf . Thus C is a map (injective because it preserves norms)
from Ker(A∗ − iI) to Ker(A∗ + iI). It is also onto, for if A∗g = −ig, picking f := Cg
we have A∗f = +if . Applying C to f again (recall CC = I) gives Cf = g. Therefore
C is a bijection Ker(A∗ − iI) → Ker(A∗ + iI). That it is also anti-isometric, i.e. it
preserves orthonormal vectors, implies it must map bases to bases. In particular it
preserves their cardinality, so d+(A) = d−(A). The claim now follows from Theorem
5.37. ��

5.4.3 Nelson’s Criterion

We present, in conclusion, Nelson’s criterion, which provides sufficient conditions
for a symmetric operator to be essentially self-adjoint. Although we will be able to
appreciate the theorem in full only after delving into spectral theory (Chaps. 8 and
9), we believe it is better to present the result at this juncture. The reader might want
to postpone the proof until he becomes familiar with the material of those chapters.
First, though, a few preliminaries are in order.

Definition 5.44 Let A be an operator on the Hilbert space H.

(a) A vector ψ ∈ D(A) such that Anψ ∈ D(A) for any n ∈ N (A0 := I) is called a
C∞ vector for A, and we denote by C∞(A) the subspace of C∞ vectors for A.

(b) A vector ψ ∈ C∞(A) is an analytic vector for A if:

+∞∑

n=0

||Anψ ||
n! tn < +∞ for some t > 0.

(d) A vector ψ ∈ C∞(A) is a vector of uniqueness for A if A �Dψ
is an essentially

self-adjoint operator on the Hilbert space Hψ := Dψ , where Dψ ⊂ H is the span of
Anψ , n = 0, 1, 2 . . .

We shall come back to analytic vectors more extensively in Sect. 9.2. Here we will
just introduce some results towards Nelson’s criterion. If ψ is an analytic vector for
A, the series:

+∞∑

n=0

||Anψ ||
n! tn

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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converges for some t > 0. Known results on convergence of power series guarantee
the complex series

+∞∑

n=0

||Anψ ||
n! zn

converges absolutely for any z ∈ C, |z| < t and uniformly on {z ∈ C | |z| < r} for
every positive r < t. Furthermore, for |z| < t, also the series of derivatives of any
order +∞∑

n=0

||An+pψ ||
n! zn

converges, for any given p = 1, 2, 3, . . .. The last fact has an important consequence,
easily proved, that comes from using the triangle inequality and the norm’s homo-
geneity repeatedly (the details will appear in the proof of Proposition 9.25(f)).

Proposition 5.45 If ψ is an analytic vector for an operator A on the Hilbert space
H, every vector in Dψ is analytic for A. More precisely, if the series

+∞∑

n=0

||Anψ ||
n! tn ,

converges for t > 0 and φ ∈ Dψ , then

+∞∑

n=0

||Anφ||
n! sn ,

converges for any s ∈ C with |s| < t.

We have a proposition, called Nussbaum lemma.

Proposition 5.46 (“Nussbaum lemma”) Let A be a symmetric operator on the
Hilbert space H. If D(A) contains a set of vectors of uniqueness whose linear span
is dense in H, A is essentially self-adjoint.

Proof By Theorem 5.19 it is enough to prove the spaces Ran(A ± iI) are dense.
With our assumptions, given φ ∈ H and ε > 0, there is a finite linear combination
of vectors of uniqueness ψi with ||φ − ∑N

i=1 αiψi|| < ε/2. Since ψi ∈ Hψ and
A �Dψ

is essentially self-adjoint on this Hilbert space, Theorem 5.19(c) implies there

exist vectors ηi ∈ Hψ with ||(A �Dψ
+iI)ηi − ψi|| ≤ ε/2

(∑N
j=1 |αj|

)−1
. Setting

η := ∑N
i=1 αiηi and ψ := ∑N

i=1 αiψi, we have η ∈ D(A) and

||(A + iI)η − φ|| ≤ ||(A �Dψ
+iI)η − ψ || + ||φ − ψ || < ε .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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But ε > 0 is arbitrary, so Ran(A + iI) is dense. The claim about Ran(A − iI) is
similar. So, A is essentially self-adjoint by Theorem 5.19(c). ��

The above result prepares the ground for the proof of Nelson’s ‘analytic-vector
theorem’. As we mentioned, the proof needs the spectral theory of unbounded self-
adjoint operators (which is logically independent from the criterion, albeit presented
in Chaps. 8 and 9).

Theorem 5.47 (Nelson’s criterion) Let A be a symmetric operator on the Hilbert
space H. If D(A) contains a set of analytic vectors for A whose span is dense in H,
A is essentially self-adjoint.

Proof By Proposition 5.46 it suffices to show that an analytic vector ψ0 for A is a
vector of uniqueness forA.NoteA �Dψ0

is surely a symmetric operator onHψ0 := Dψ0 ,
because it is Hermitian and its domain is dense in Hψ0 . Suppose A �Dψ0

has a self-
adjoint extension B in Hψ0 . (NB: we are talking about self-adjoint extensions of
A �Dψ0

on the Hilbert space Hψ0 , and not on H!) Let μψ be the spectral measure of
ψ ∈ Dψ0 for the PVM of the spectral expansion of B (cf. Theorems 8.52 (c) and
9.13), defined by μψ(E) := (ψ |P(B)

E ψ) for any Borel set E ⊂ σ(B) ⊂ R, where P(B)
E

is the PVM associated to the self-adjoint operator B. As ψ0 is analytic

+∞∑

n=0

||Anψ0||
n! tn

0 < +∞ for some t0 > 0.

If z ∈ C and 0 < |z| < t0,

+∞∑

n=0

∫

σ(B)

∣
∣
∣
∣
zn

n! xn

∣
∣
∣
∣ dμψ(x) =

+∞∑

n=0

∣
∣
∣
∣
zn

n!
∣
∣
∣
∣

∫

σ(B)

1 · |xn|dμψ(x)

≤
+∞∑

n=0

tn
0

n!
(∫

σ(B)

dμψ(x)

)1/2 (∫

σ(B)

x2ndμψ(x)

)1/2

=
+∞∑

n=0

tn
0

n! ||ψ || ||Bnψ || = ||ψ ||
+∞∑

n=0

tn
0

n! ||A
nψ || < +∞ ,

where we used Theorem 9.4(c) for the spectral measure P(B) of the expansion of B
(spectral Theorem 9.13). The theorem of Fubini–Tonelli implies, for 0 < |z| < t0,
that we can swap series and integral

+∞∑

n=0

∫

σ(B)

zn

n! xndμψ(x) =
∫

σ(B)

+∞∑

n=0

zn

n! xndμψ(x) .
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Hence if 0 ≤ |z| < t0 and ifψ ∈ Dψ0 also belongs to the domain of ezB (cf. Definition
9.14),

(ψ |ezBψ) =
∫

σ(B)

ezxdμψ(x) =
∫

σ(B)

+∞∑

n=0

zn

n! xndμψ(x) =
+∞∑

n=0

zn

n!
∫

σ(B)

xndμψ(x)

=
+∞∑

n=0

zn

n! (ψ |Anψ) .

In particular, if ψ ∈ Dψ0 , this happens if z = it (with |t| < t0) because the domain
of eitB is the entire Hilbert space, by Corollary 9.5

(ψ |eitBψ) =
+∞∑

n=0

(it)n

n! (ψ |Anψ) . (5.38)

(Note the power series on the right converges on an open disc of radius t0, i.e. it
defines an analytic extension of the function on the left when it is replaced by z in
the disc, even if ψ does not belong to the domain of ezB.) Now consider another
self-adjoint extension of ADψ0

, say B′. Arguing as before, for |t| < t0 we have

(ψ |eitB′
ψ) =

+∞∑

n=0

(it)n

n! (ψ |Anψ) . (5.39)

Then (5.38) and (5.39) imply, for any |t| < t0 and any ψ ∈ Dψ0 ,

(ψ |(eitB − eitB′
)ψ) = 0 .

But Dψ0 is dense in Hψ0 , so (cf. Exercise 3.21) for any |t| < t0:

eitB = eitB′
.

Compute the strong derivatives at t = 0 and invoke Stone’s theorem (Theorem 9.33),
to the effect that

B = B′ .

Therefore all possible self-adjoint extensions of A �Dψ
are the same. We claim there

exists at least one. Define C : Dψ0 → Hψ0 by

C :
N∑

n=0

anAnψ0 �→
N∑

n=0

anAnψ0 .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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Easily C extends to a unique conjugation operator on Hψ0 , which we still call C (see
Exercise 5.17). What is more, by construction CA �Dψ0

= A �Dψ0
C, so A �Dψ0

admits
self-adjoint extensions by Theorem 5.43.

Altogether, for any analytic vector ψ0, A �Dψ0
must be essentially self-adjoint on

Hψ0 by Theorem 5.38, because it is symmetric and it admits precisely one self-adjoint
extension. We have thus proved that any analytic vectorψ0 is a vector of uniqueness,
ending the proof. ��
Examples 5.48 (1) A standard example to which von Neumann’s criterion applies
is an operator of chief importance in QM, namely H := −Δ + V , where Δ is the
usual Laplacian on R

n

Δ :=
n∑

i=1

∂2

∂x2i
,

and V is a locally integrable real-valued function.
By setting the domain of H to beD(Rn), H becomes immediately a symmetric oper-
ator on L2(Rn, dx). Define C as the anti-unitary operator mapping f ∈ L2(Rn, dx) to
its pointwise-conjugate function. Clearly CH = HC, so H admits self-adjoint exten-
sions. By choosing a specific V it is possible to prove H is essentially self-adjoint,
as we will see at the end of Chap. 10.

(2)We know the operator Ai := −i ∂
∂xi

onD(Rn) (see Proposition 5.29) is essentially
self-adjoint, and as such it admits self-adjoint extensions. Is there a conjugation C
that commutes with Ai? (The issue is moot, as such a C it might not exist). The con-
jugation operator of (1) does not commute with Ai despite its invariant subspace is
the domain. Another possibility is C : L2(Rn, dx) → L2(Rn, dx), (Cf )(x) := f (−x)
(almost everywhere) for any f ∈ L2(Rn, dx). It is not hard to seeC(D(Rn)) ⊂ D(Rn)

and CAi = AiC.

(3) Consider the Hilbert space H := L2([0, 1], dx) with Lebesgue measure dx. Take
the operator A := i d

dx acting on functions in C1([0, 1]) (i.e. maps f ∈ C1((0, 1)) that
are continuous on [0, 1] and whose first derivative has finite limit at 0, 1) that further
vanish at 0 and 1. The operator is Hermitian, as can be seen integrating by parts
and because the maps annihilate boundary terms, so they vanish at the endpoints of
the integral. One can also verify the domain of A is dense, making A symmetric.
Let us show A is not essentially self-adjoint. The condition that g ∈ D(A∗) satisfies
A∗g = ig (resp. A∗g = −ig) reads:

∫ 1

0
g(x)

[
f ′(x) + f (x)

]
dx = 0

(resp.
∫ 1
0 g(x)

[
f ′(x) − f (x)

]
dx = 0) for any f ∈ D(A). Integrating by parts shows

that the L2 map g(x) = ex (g(x) = e−x) solves the above equation for any f in
C1([0, 1]) that vanishes at 0, 1. This latter fact is crucial when integrating by parts,

http://dx.doi.org/10.1007/978-3-319-70706-8_10
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because the exponential does not vanish at 0 and 1. Theorem 5.19 says A cannot be
essentially self-adjoint.

Theorem 5.43 warrants, nonetheless, the existence of self-adjoint extensions. The
antilinear transformation C : L2([0, 1], dx) → L2([0, 1], dx), (Cf )(x) := f (1 − x)
maps the space of C1 functions on [0, 1] vanishing at the endpoints to itself. In
addition

(
Ci

d

dx
f

)
(x) = −i

d

d(1 − x)
f (1 − x) = i

d

dx
f (1 − x) = i

d

dx
(Cf )(x) ,

whence CA = AC. There must be more than one such extension, otherwise A would
be essentially self-adjoint by Theorem 5.37, a contradiction.

The argument does not change if one takes domains akin to the above, in particular
the space of C∞ maps on [0, 1] that vanish at 0 and 1, or smooth maps on [0, 1] with
compact support in (0, 1).

(4) Take H := L2([0, 1], dx) with the usual Lebesgue measure dx, and consider
A := −i d

dx defined on smooth periodic maps on [0, 1] with periodic derivatives
of any order (of period 1). Integration by parts reveals that A is Hermitian. The
exponential maps en(x) := ei2πnx , x ∈ [0, 1], n ∈ Z, form a basis of H, as shown in
Exercise 3.32(1). They are all defined on D(A), and their span is dense inH, so D(A)

is dense in H and A is symmetric.
Any f ∈ H corresponds 1-1 to the sequence of Fourier coefficients {fn}n∈Z ⊂ �2(Z)

of the expansion
f =

∑

n∈Z
fnen .

This defines a unitary operator U : H → �2(Z), f �→ {fn}n∈Z (see Theorem 3.28).
The elementary theory of Fourier series tells that UD(A)U−1 =: D(A′) is the space
of sequences {fn} in �2(Z) such that nN |fn| → 0, n → +∞, for anyN ∈ N.Moreover,
if A′ := UAU−1 and {fn}n∈Z ∈ D(A′), then

A′ : {fn}n∈Z �→ {2πnfn}n∈Z .

Replicating the argument used for Xi in the proof of Proposition 5.23 allows to arrive
at

D(A′∗) =
{

{gn}n∈Z ⊂ �2(Z)

∣
∣
∣
∣
∣

∑

n∈Z
|2πngn|2 < +∞

}

.

On this domain
A′∗ : {fn} �→ {2πnfn} .

As in Proposition 5.23, we can verify without problems that the adjoint to A′∗ is
A′∗ itself. Hence A′∗ is self-adjoint and A′ essentially self-adjoint. As U is unitary,

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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5.4 Existence and Uniqueness Criteria for Self-adjoint Extensions 283

also A is essentially self-adjoint and the unique self-adjoint extension A satisfies
A = UA′U−1. (Fill in all details as exercise.)

(5) Example (4) can be settled in a much quicker way using Nelson’s criterion. The
domain of A contains the functions en, whose span is dense in H := L2([0, 1], dx).
Moreover Aen = 2πnen. Then

+∞∑

k=0

||Aken||
k! tk =

+∞∑

k=0

(2π |n|)k

k! (t)k = e2π |n|t < +∞ ,

for any t > 0. As a consequence, A is essentially self-adjoint.

(6) Let us go back again to example (4), this time using Theorem 5.37 (for more
details see [ReSi80, vol. II] and [Tes09]). For the sake of computational simplicity
we replace [0, 1] by [0, 2π ]. Referring to the Hilbert space L2([0, 2π ], dx), consider
the operator A := −i d

dx with domain

D(A) = {
ψ : [0, 2π ] → C

∣
∣ψ ∈ C1([0, 2π ]) , ψ(0) = ψ(1) = 0

}

where ψ ∈ C1([0, 2π ]) means that both ψ and dψ

dx (with the derivatives at the
boundary of [0, 2π ] defined by limits) are continuous. Observe that D(A) is dense in
L2([0, 2π ], dx) (because it contains the dense space of smooth, compactly supported
functions) and, by direct inspection, A is symmetric. Then D(A∗) turns out to be the
subspace of L2([0, 2π ], dx)

D(A∗) =
{
ψ ∈ C([0, 2π ])

∣
∣
∣
∣ ∃w-

dψ

dx
∈ L2([0, 2π ], dx)

}
.

Equivalently, ψ ∈ D(A∗) if and only if ψ is absolutely continuous (Definition 1.74
and Theorem 1.76) and its derivative (defined a.e.) belongs to L2([0, 2π ], dx) (see
[Tes09]). The derivative coincides with the weak derivative w- dψ

dx and, obviously,

A∗ψ = −iw- dψ

dx . The analysis of Ker(A∗ ± iI) proves that, as expected, these spaces
are one-dimensional and Ker(A∗ ± iI) is the span of e±x. So on the one hand A is not
essentially self-adjoint, and hence it does not determine (precisely) one self-adjoint
operator. On the other hand it admits an infinite family of self-adjoint extensions
because d+(A) = d−(A) = 1.

The unitary operators Ker(A∗ − iI) → Ker(A∗ + iI) are completely and faithfully
labelled by the parameter θ ∈ [0, 2π) and act in this way

Uθ : e2π e−x �→ eiθ ex

(the factor e2π makes both sides have the same L2-norm
√
2−1(e4π − 1), as due).

Denoting by Aθ the self-adjoint extension of A associated with Uθ , according to
(5.36), fθ ∈ D(Aθ ) iff

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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fθ (x) = f (x) + α(e2π−x − eiθ ex) (5.40)

for some α ∈ C and f ∈ D(A), where it is possible to prove that

D(A) =
{
ψ ∈ C([0, 2π ])

∣
∣
∣
∣ψ(2π) = ψ(0) = 0 , w-

dψ

dx
∈ L2([0, 2π ], dx)

}
.

Equivalently, ψ ∈ D(A) ⇔ ψ is absolutely continuous, its derivative (defined a.e.)
belongs to L2([0, 2π ], dx) and ψ vanishes at the boundary of [0, 2π ]. Since f in
(5.40) vanishes at 0 and 2π , the value attained by the generic fθ ∈ D(Aθ ) at 0, 2π is
determined by the second summand in (5.40):

fθ (2π) = eiθ ′
fθ (0) , eiθ ′ = 1 − eiθ e2π

e2π − eiθ
. (5.41)

It easy to see that θ ′ ranges over the whole [0, 2π)when θ ∈ [0, 2π). In other words,
the choice of a self-adjoint extension of A relaxes the boundary conditions of the
functions on which it acts, as a glance at

D(Aθ ) =
{
ψ ∈ C([0, 2π ])

∣
∣
∣
∣ψ(2π) = eiθ ′

ψ(0) , w-
dψ

dx
∈ L2([0, 2π ], dx)

}

and D(A) (or D(A)) confirms. We may also phrase the condition ψ ∈ D(Aθ ) by
demanding that ψ is absolutely continuous, its derivative (defined a.e.) belongs
to L2([0, 2π ], dx) and it satisfies the almost-periodic boundary conditions written
above. A nice physical analysis of the self-adjoint extensions of −i d

dx on the interval
[a, b] appears in [ReSi80, vol. II]. �

Exercises

5.1 Let B be a closable operator on the Hilbert space H with dense domain D(B).

Prove that Ran(B) = Ran(B) and therefore Ker(B∗) = Ker(B
∗
).

Solution. If y ∈ Ran(B), there is a sequence of elements xn ∈ D(B) such that
xn → x ∈ H and Bxn → y, so y ∈ Ran(B). Hence Ran(B) ⊂ Ran(B). Since B ⊂ B
we finally conclude that: Ran(B) ⊂ Ran(B) ⊂ Ran(B). Taking again the closure:

Ran(B) ⊂ Ran(B) ⊂ Ran(B), so that Ran(B) = Ran(B). Eventually: Ker(B∗) =
[Ran(B)]⊥ = [Ran(B)]⊥ = [Ran(B)]⊥ = [Ran(B)]⊥ = Ker(B

∗
).

5.2 Let A be an operator on the Hilbert space H with dense domain D(A). Take
α, β ∈ C and consider the standard domain D(αA + βI) := D(A). Prove that
(i) αA + βI : D(αA + βI) → H admits an adjoint and
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(αA + βI)∗ = αA∗ + βI ;

(ii) assuming α, β ∈ R, αA+βI is (respectively) Hermitian, symmetric, self-adjoint,
or essentially self-adjoint ⇔ A is Hermitian, symmetric, self-adjoint, or essentially
self-adjoint;
(iii) αA + βI is closable ⇔ A is closable; in that case

αA + βI = αA + βI .

Hint. Apply directly the definitions.

5.3 Let A and B be densely-defined operators on the Hilbert space H. If A + B :
D(A) ∩ D(B) → H is densely defined, prove

A∗ + B∗ ⊂ (A + B)∗ .

5.4 Let A and B be densely-defined operators on the Hilbert spaceH. If the standard
domain D(AB) is densely defined, show AB : D(AB) → H admits an adjoint and

B∗A∗ ⊂ (AB)∗ .

5.5 Let A be a densely-defined operator on the Hilbert space H and L : H → H a
bounded operator. Using the definition of adjoint prove that

(LA)∗ = A∗L∗ .

Then show
(L + A)∗ = L∗ + A∗ .

5.6 Let A : D(A) → H be a symmetric operator on the Hilbert space H. Prove that
A bijective ⇒ A self-adjoint. (Bear in mind that the inverse to a self-adjoint operator,
if it exists, is self-adjoint. This falls out of the spectral theorem for unbounded self-
adjoint operators, that we shall see later.)

Solution. If A is symmetric so is A−1 : H → D(A). The latter is defined on the
whole Hilbert space, so it is self-adjoint. Its inverse will, in turn, be self-adjoint.

5.7 Let A : D(A) → H be a symmetric operator on the Hilbert space H. Prove that
the closure A is symmetric, using the properties of ∗ in Theorem 5.18.

Solution. A ⊂ A∗ by hypothesis, then A∗ ⊃ A∗∗ = A, and finally A∗∗ ⊂ A
∗
, that

is A ⊂ A
∗
.

5.8 Let A : D(A) → H be a symmetric operator on the Hilbert space H. Prove
that the closure A is symmetric, using the continuity of the inner product and the
definition of closure of an operator in terms of sequences.
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Solution. If f , g ∈ D(A), we have D(A) � fn → f for some sequence such that
Afn → Af and D(A) � gn → g for some sequence such that Agn → Ag. Then

(f |Ag) = lim
m→+∞(f |Agm) = lim

m→+∞ lim
n→+∞(fn|Agm) = lim

n→+∞ lim
m→+∞(fn|Agm)

lim
n→+∞ lim

m→+∞(Afn|gm) = lim
n→+∞(Afn|g) = (Af |g) .

(The two limits can be swapped, because the inner product is jointly continuous.)

5.9 In the sequel the commutant {A}′ of an operator A on H indicates the set of
operators B in B(H) such that BA ⊂ AB. Let A : D(A) → H be an operator on the
Hilbert space H. If D(A) is dense and A closed, prove that {A}′ ∩ {A∗}′ is a strongly
closed ∗-subalgebra inB(H) with unit.

5.10 Prove Proposition 5.15.

5.11 Discuss whether and where the operator −d2/dx2 is Hermitian, symmetric,
or essentially self-adjoint on the Hilbert space H = L2([0, 1], dx). Take as domain:
(i) periodic maps in C∞([0, 1]), and then (ii) maps in C∞([0, 1]) that vanish at the
endpoints.

5.12 Prove that

H := − d2

dx2
+ x2

is essentially self-adjoint on L2(R, dx) if D(H) := S (R).

Hint. Seek a basis of L2(R, dx) made of eigenvectors of H.

5.13 Consider the Laplace operator on R
n seen in Example 5.48(1):

Δ :=
n∑

i=1

∂2

∂x2i
.

Prove explicitly Δ is essentially self-adjoint on the Schwartz space S (Rn) inside
L2(Rn, dx), and as such it admits one self-adjoint extension Δ.
Then show that if F̂ : L2(Rn, dx) → L2(Rn, dk) is the Fourier–Plancherel transform
(Sect. 3.7), (

F̂ΔF̂−1f
)
(k) := −k2f (k) ,

where k2 = k21 + k22 + . . . + k2n , on the standard domain:

{
f ∈ L2(Rn, dk)

∣
∣
∣
∣

∫

Rn

k4|f (k)|2dk < +∞
}

.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Hint. The operator Δ is symmetric on S (Rn), so we can use Theorem 5.19,
verifying condition (b). Since the Schwartz space is invariant under the action of the
unitary operator F̂ given by the Fourier–Plancherel transform, as seen in Sect. 3.7,
we may consider Theorem 5.19(b) for Δ̂ := F̂ΔF̂−1. This operator is essentially
self-adjoint on S (R3) iff Δ is defined on S (R3). Now, Δ̂ acts on S (Rn) by mul-
tiplication by −k2 = −(k21 + k22 + . . . + k2n), giving a self-adjoint operator on the
aforementioned standard domain. Condition (b) can then be verified easily for Δ̂∗,
by using the definition of adjoint plus the fact thatS (Rn) ⊃ D(Rn). The uniqueness
of self-adjoint extensions for essentially self-adjoint operators proves the last part,
because F̂ is unitary.

5.14 Recall D(Rn) denotes the space of smooth complex-valued functions with
compact support in R

n. Referring to the previous exercise let Δ be the unique self-
adjoint extension of Δ : S (Rn) → L2(Rn, dx). Prove D(Rn) is a core for Δ. In
other words show Δ�D(Rn) is essentially self-adjoint and Δ�D(Rn) = Δ.

Hint. It suffices to show (Δ �D(Rn))
∗ = Δ (because that implies, by taking

adjoints, Δ�D(Rn) = ((Δ �D(Rn))
∗)∗ = Δ

∗ = Δ). For this identity note that
if ψ ∈ D((Δ �D(Rn))

∗) then (Δϕ|ψ) = (ϕ|ψ ′), with ψ ′ = (Δ �D(Rn))
∗ψ ∈

L2(Rn, dx), for any ϕ ∈ D(Rn). Applying the Fourier–Plancherel transform imme-
diately gives F̂ψ ′ = −k2F̂ψ , since F̂ (D(Rn)) is dense in L2(Rn, dk). There-
fore we obtained ψ ∈ D(Δ) and ψ ′ = Δψ , and so (Δ �D(Rn))

∗ ⊂ Δ. Now
suppose, conversely, ψ ∈ D(Δ). Using the Fourier–Plancherel transform gives
−k2F̂ψ ∈ L2(Rn, dk), and for any ϕ ∈ D(Rn) we may write (Δϕ|ψ) =
− ∫

dkk2(F̂ϕ)F̂ψ = − ∫
dk(F̂ϕ)k2F̂ψ = (ϕ|Δψ). By definition of adjoint we

found ψ ∈ D((Δ �D(Rn))
∗) and (Δ �D(Rn))

∗ψ = Δψ . Hence we have the other
inclusion, (Δ�D(Rn))

∗ ⊃ Δ.

5.15 Let A : D(A) → H be self-adjoint and T its Cayley transform. Prove that
the von Neumann algebra ({A}′)′ generated by A coincides with the von Neumann
algebra ({T}′)′ generated by {T} (cf. Sect. 3.3.2).
5.16 Prove Proposition 5.45.

5.17 Take a symmetric operator A : D(A) → H on the Hilbert space H and suppose
ψ ∈ C∞(A) is such that the finite linear span of Anψ , n ∈ N, is dense in H. Prove
that for any chosen N = 0, 1, 2, . . . and an ∈ C,

C :
N∑

n=0

anAnψ �→
N∑

n=0

anAnψ

determines a conjugation operator C : H → H (Definition 5.39).

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Outline. Thefirst thing to prove isC iswell defined as amap, i.e. if
∑N

n=0 anAnψ =∑N1
n=0 a′

nAnψ then
∑N

n=0 anAnψ = ∑N1
n=0 a′

nAnψ . For that it is enough to observe that
if � = ∑M

m=0 bmAmψ , then

⎛

⎝ψ

∣
∣
∣
∣
∣
∣

N∑

n=0

anAn�

⎞

⎠ =
⎛

⎝ψ

∣
∣
∣
∣
∣
∣

N1∑

n=0

a′
nAn�

⎞

⎠ so that

⎛

⎝
N∑

n=0

anAnψ

∣
∣
∣
∣
∣
∣
�

⎞

⎠ =
⎛

⎝
N1∑

n=0

a′
nAnψ

∣
∣
∣
∣
∣
∣
�

⎞

⎠ .

Since the vectors � are dense,
∑N

n=0 anAnψ = ∑N1
n=0 a′

nAnψ , as required. By con-
struction one verifies that if � and � ′ are as above then (C�|C� ′) = (�|� ′).
Since the � are dense in H and ||C�|| = ||�||, it is straightforward to see C
extends to H by continuity and antilinearity. The antilinear extension C satisfies
(C�|C� ′) = (�|� ′) on H and is onto, as one obtains by extending the relation
CC� = I� by continuity.



Chapter 6
Phenomenology of Quantum Systems and
Wave Mechanics: An Overview

Two are the possible outcomes: if the result confirms the
hypotheses, you only took a measurement. But if the result
contradicts the assumptions, then you made a discovery.

Enrico Fermi

In this chapter we shall present a circle of ideas aiming at understanding the mean-
ing of quantum systems and quantum phenomenology. The more mathematically-
oriented reader, perhaps not so interested in the genesis of QM notions in physics,
may skip the sections following the first. Starting from sections two, in fact, we
address a number of experimental facts, and briefly review the theoretical “proto-
quantum” methods that led to the formulation of Wave Mechanics first, and then
to proper QM. Many of the physics details can be found in [Mes99, CCP82]. We
shall eschew discussing important steps in this historical development, e.g. atomic
spectroscopy, themodels of the atom (Rutherford’s,Bohr’s,Bohr–Sommerfeld’s), the
Franck–Hertz experiment, for which we recommend physics textbooks (e.g. [Mes99,
CCP82]). This overview is meant to shed light on the basic theoretical model behind
QM, which will be fully developed in ensuing chapters.

Notation 6.1 As is customary in physics texts, in this chapter, and possibly others
too, we will denote vectors in three-space (identified with R

3 once Cartesian coor-
dinates have been fixed in a frame system), by boldface letters, e.g. x. In the same
way, Lebesgue’s measure on R

3 will be written d3x. �
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290 6 Phenomenology of Quantum Systems and Wave Mechanics: An Overview

6.1 General Principles of Quantum Systems

We use the term physical system loosely, as a manner of speaking. It is quite hard
to define, from a physical point of view, what a quantum system actually is. We can
start by saying that rather than talking of a physical quantum state it may be more
suitable to discuss a physical system with quantum behaviour, thus distinguishing
these systems more by their phenomenological/experimental aspects than by theo-
retical ones. Within the theoretical formulation of QM there is no clear borderline
separating classical systems from quantum systems. The divide is forced artificially;
demarcation issues are very debated, today more than in the past, and the object of
intense theoretical and experimental research work.

Generically speaking we can talk of quantum nature for microphysical systems,
i.e. molecules, atoms, nuclei and subatomic particles when taken singularly or in
small numbers. Physical systems made of several copies of those subsystems (like
crystals) can display a quantum behaviour. Certain macroscopic systems behave in
a typical quantum fashion only under specific circumstances that are hard to achieve
(e.g. Bose-Einstein condensates, or L.A.S.E.R.). There is a way to refine slightly the
roughdistinction between the abovemicro- andmacrosystems.Wemay say thatwhen
any physical system behaves in a quantummanner, the system’s characteristic action,
i.e. the number of physical dimensions of energy × time (equivalently, momentum
× length or angular momentum), obtained by combining suitably the characteristic
physical dimensions (mass, speed, length,…) in the processes examined, is of order
smaller than Planck’s constant:

h = 6.6262 · 10−34 Js.

Planck’s constant, and the word quantum stamped on Quantum Mechanics, were
first introduced by Planck in a 1900 work on the black-body theory: this dealt with
the issue of the theoretically-infinite total energy of a physical system consisting of
the electromagnetic radiation in thermodynamical equilibrium with the walls of an
enclosure at fixed temperature. Planck’s theoretical prediction, later proved to be
correct, was that the radiation could exchange with the walls quantities of energy
proportional to the frequencies of the atomic oscillators inside the walls, whose
universal factor is the Planck constant. These packets of energy were called by the
Latin name quanta. But let us return to the criterion for distinguishing quantum from
classical systems using h, and look for instance at an electron orbiting around a
hydrogen nucleus. A characteristic action of the electron is, for example, the product
of its mass (∼9 · 10−31 Kg), the estimated orbiting speed (∼106m/s) and the value
of Bohr’s radius for the hydrogen atom (∼5 · 10−11 m). This gives 4.5 · 10−35 Js,
smaller than Planck’s constant. One would therefore expect the hydrogen electron
behaved in a quantummanner, and this is indeed the case. A similar computation can
be carried out for macroscopic systems like a pendulum, of mass a few grams and
length one centimetre, swinging under gravity’s pull. A characteristic action for this
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can be the maximum kinetic energy times the period of oscillation, which is several
orders of magnitude bigger than h.

Remark 6.2 The set of values taken by physical quantities, like energy, that char-
acterise a quantum systems’s state is called the spectrum, in the jargon. One of the
peculiarities of quantum systems is that their spectrum is usually quite dissimilar to
the spectrum measured on comparable macroscopic systems. Sometimes the differ-
ence is astonishing, for one passes from a continuous spectrum of possible values
in the classical case, to a discrete spectrum in quantum situations. It is important
to point out that in QM it is not essential for a given physical quantity to have a
discrete spectrum: there are quantum quantities in QM with a continuous spectrum.
This misunderstanding is the cause – or the consequence, at times – of a recurrent
oversimplified interpretation of the word quantum in QM. �

6.2 Particle Aspects of Electromagnetic Waves

Under special experimental circumstances electromagnetic waves, hence light as
well, reveal a behaviour that is typical of collections of particles. The mathematical
description of these anomalies (from a classical viewpoint) involves Planck’s con-
stant. In this respect we can cite two examples of classically deviant behaviour: the
photoelectric effect and Compton’s effect. In the infant stages of the development of
QM these played a fundamental role in the construction of the proto-quantummodels
meant to explain them.

6.2.1 The Photoelectric Effect

The photoelectric effect is the emission of electrons (a current) by a metal irradiated
with an electromagnetic wave, a phenomenon known since the first half of the XIX
century. Some of its features remainedwith no explanationwithin the classical theory
of interactions between matter and electromagnetic waves for a long time [Mes99,
CCP82]. One conundrum, in particular, was to make sense of a threshold beaming
frequencybelowwhichno emission couldbemeasured.Thisminimumvaluedepends
on the metal employed. At the time it did not seem possible to explain why the
emission started instantaneously once that particular frequency was exceeded.

According to the classical theory, an electronic emission should be detected inde-
pendently of the frequency used, as long as enough time lapses for the metal’s elec-
trons to absorb sufficient energy to bond with atoms.

In 1905 A. Einstein proposed a very daring model to account for the strange prop-
erties of the photoelectric effect.1 Compared to the experimental data, the precision

1Einstein was awarded the Nobel Prize in Physics for this work.
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of his predictions was outstanding. Following Planck, Einstein’s point was that a
monochromatic electromagnetic wave, i.e. one with fixed frequency ν, was in reality
made of particles of matter, called light quanta, each having energy prescribed by
Planck’s radiation formula:

E = hν . (6.1)

The total energy of the electromagnetic wave in this model would then be the sum
of the energies of the single quanta of light “associated” to the wave.

All this was, and still is, in contrast with classical electromagnetism, according to
which an electromagnetic wave is a continuous system whose energy is proportional
to the wave’s amplitude rather than its frequency. What happened in the photoelectric
effect, Einstein said, was that by irradiating the metal with a monochromatic wave
each energy packet associated to the wave was absorbed by an electron in the metal,
and transformed into kinetic energy. To justify the experimental evidence Einstein
postulated, more precisely, that the packet could be absorbed either completely or not
at all, without intermediate possibilities. If, and only if, the energy of the quantum
was equal to, or bigger than, the electron’s bonding energy E0 to the metal (which
depends on the metal, and can be measured irrespective of the photoelectric effect),
would the electron be instantaneously emitted, transforming the energetic excess of
the absorbed quantum into kinetic energy. The frequency ν0 := E0/h would thus
detect the threshold observed experimentally. This conjecture turned out to match
the experimental data perfectly.

6.2.2 The Compton Effect

The first observation and study of the Compton effect dates back 1923. It concerns
the scattering of monochromatic electromagnetic waves of extremely high frequency
– x-rays (> 1017 Hz) and γ rays (> 1018 Hz) – caused by matter (gases, fluids and
solids). It is useful to remind that monochromatic electromagnetic waves have both
a fixed frequency ν and a fixed wavelength λ, whose product is constant and equal
to the speed of light, νλ = c, irrespective of the kind of wave. Hence in the sequel
we will talk about the wavelength of monochromatic waves. Simplifying as much
as possible, the Compton effect consists in the following phenomenon. Suppose we
irradiate a substance (the obstacle) with a plane monochromatic electromagnetic
wave that moves along the direction z with given wavelength λ. Then we observe a
wave scattered by the obstacle and decomposed into several components (i.e. several
wavelengths or frequencies). One component is scattered in every direction and has
the samewavelength of the incomingwave. Every other component has a wavelength
λ(θ), depending on the angle θ of observation, that is slightly bigger than λ. If we
define θ to be the angle between the wave’s incoming direction z and the outgoing
direction (after hitting the obstacle, wavelength λ(θ)), we have the equation
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λ(θ) = λ + f (1 − cos θ) , (6.2)

where the constant f has the dimension of a length and comes from the experimental
data. Its value2 is f = 0.024(±0.001) Å. The region around the z-axis is isotropic.

Classical electromagnetic theory was, and still is, inadequate to explain this phe-
nomenon. However, as Compton proved, the effect could be clarified by making
three assumptions, all incompatible with the classical theory but in agreement with
Planck and Einstein’s speculations about light quanta.

(a) The electromagnetic wave is made of particles that carry energy according to
Planck’s equation (6.1), exactly as Einstein predicted.

(b) Each quantum of light possesses a momentum

p := �k , (6.3)

where k is the wavevector of the wave associated to the quantum (see below). Here
and henceforth, following the standard notation of physicists:

� := h

2π
.

(c) Quanta interact, through collisions (in relativistic regime, in general), with the
outer-most atoms and electrons of the obstacle, obeying the conservation laws of
momentum and energy.

Remark 6.3 Concerning assumption (c), let us stress that the wavevector k asso-
ciated to a plane monochromatic wave has, by definition, the same direction and
orientation of the travelling wave, and its modulus is 2π/λ, where λ is the wave-
length. Equivalently, if ν denotes the frequency,

|k| = 2π/λ = 2πν/c , (6.4)

where we have used the well-known relationship

νλ = c (6.5)

for monochromatic electromagnetic waves and c = 2.99792 · 108 m/s is the speed
of light in vacuum. �

The interested reader will find below a few more details. Under the assumptions
made above, the energy and momentum conservation laws to be used in a relativistic
regime, i.e. when (certain) speeds approach c, read as follow:

2Recall 1 Å= 10−10m.



294 6 Phenomenology of Quantum Systems and Wave Mechanics: An Overview

mec
2 + hν = mec2√

1 − v2/c2
+ hν(θ) , (6.6)

�k = mev√
1 − v2/c2

+ �k(θ) . (6.7)

On the left we have the quantities before the collision, on the right those after the
interaction. The constant me = 9.1096 · 10−31 Kg is the mass of the electron. The
electron is thought of as at rest prior to the collision with the quantum of light. After
the collision the quantum is scattered at an angle θ , while the electron travels at
velocity v. The wavevector before the collision, k, is parallel to z (this direction is
arbitrary, but fixed), while the wavevector of the quantum after the collision, k(θ),
forms an angle θ with z.

By (6.7) and by definition of wavevector,

m2
ec

2

1 − v2/c2
= h2ν2

c2
+ h2ν(θ)2

c2
− 2

hν

c

hν(θ)

c
cos θ .

Eliminating ν from this and (6.6) gives

ν(θ) = ν − hνν(θ)

mec2
(1 − cos θ) . (6.8)

Because of (6.1) and ν = c/λ, we easily find Eq. (6.2) written in the form

λ(θ) = λ + h

mec
(1 − cos θ), (6.9)

so that f = h/(mec). The actual numerical value coincides with the experimental
one when one substitutes the values for h, me, c. By taking the formal limit as
me → +∞, Eq. (6.9) gives λ(θ) → λ. This explains the isotropic component of the
scattered wave with identical wavelength (to the incoming one), as if this component
were due to quanta of light interacting with particles of much bigger mass than the
electron’s (an atom of the substance, or the entire obstacle).

Remark 6.4 The models of Einstein and Compton explain the photoelectric effect
and formula (6.2) perfectly, both in quantitative and qualitative terms. Yet they must
be considered ad hoc models, unrelated and actually conflicting with the physics
knowledge of their times. The idea that electromagnetic waves, hence also light,
have a particle structure cannot account for the wavelike phenomena – such as inter-
ference and diffraction – known since Newton and Huygens. Somehow, the wave
and corpuscular nature of light (or an electromagnetic wave) must co-exist in the
real world. This is forbidden in the paradigm of classical physics, but possible in
the totally-relativistic formulation of QM by the introduction of photons, massless
particles which we shall not examine thoroughly. �
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6.3 An Overview of Wave Mechanics

In this text we will not discuss the quantum properties of light, which would require
a deeper study of the formalism of Quantum Mechanics. In a reversal of viewpoint,
the ideas about the early attempts to describe light from a quantum perspective,
introduced previously, proved very practical to formulate Wave Mechanics, which
has rights to be considered the first step towards a formulation of QM.

WaveMechanics is among the first rudimentary versions3 of QM for particles with
mass. We will spend only a little time on spelling out the foundational ideas of Wave
Mechanics that shed light on the cornerstones of the QM formalism. In particular,
we will forego result that are historically related to Schrödinger’s stationary equation
and the ensuing description of the energy spectrum of the hydrogen atom. We will
return to these issues after the formalism has been set up.

6.3.1 De Broglie Waves

Aquantum of light, according to Einstein and Compton, is associated to amonochro-
matic plane electromagnetic wavewith wavenumber k = p/� and angular frequency
ω = E/�, which is just the 2π -multiple of the frequency ν. Each component of the
plane wave (one along each of the three orthonormal directions of the electric or
magnetic field vibrating perpendicularly to k) has the form of a scalar wave:

ψ(t, x) = Aei(k·x−tω) . (6.10)

Actually only the real part of the above has any physical meaning, but it is much
more convenient to use complex-valuedwaves, for a number of reasons. For instance,
complexwaves appear in Fourier’s decomposition (see Sect. 3.7) of a general solution
to the electromagnetic field equations (Maxwell’s equations) or, more generally,
d’Alembert’s equation. In terms of momentum and energy of the quantum of light,
the same wave may be written as

ψ(t, x) = Ae
i
�

(p·x−t E) . (6.11)

Note how only the momentum and the energy of the quantum of light appear in the
expression. In 1924 de Broglie put forward a truly revolutionary conjecture: just like
particles (photons) are associated to electromagnetic waves in certain experimental
contexts, so one should be able to relate some sort of wave to a particle of matter.
According to de Broglie, this ‘wave of matter’ should be of the form (6.11), where
now p and E are understood as the momentum and (kinetic) energy of a particle.
The wavelength associated to a particle of momentum p,

3Another version, developed in parallel by Heisenberg, consists in so-called Matrix Mechanics,
which we will not treat.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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λ = h/|p| , (6.12)

is called de Broglie wavelength of the particle.
It was not at all clear what the nature of these alleged waves could be until 1927,

when experimental evidencewas gained of waves associated to electronic behaviour,
through twoexperiments carried out byDavisson andGermer, and independentlyG.P.
Thompson.Without going into details, let us just say the following. It is a known fact
that when a (sound, electromagnetic,…) wave hits an obstacle with an inner structure
of dimensions comparable to, or larger than the wavelength, the scattered wave
undergoes so-called diffraction. The various internal parts of the obstacle interact
with the wave creating constructive and destructive interference. The resulting wave
creates a pattern made of areas of alternating intensity on a screen placed behind
the obstacle (darker and brighter areas in the case of light beams). These figures are
called diffraction patterns. If the obstacle is a crystal, the analysis of the diffraction
pattern allows to determine the inner structure of the crystal itself. Davisson, Germer
and G.P. Thompson shot beams of electrons through a crystalline structure of mesh
1 Å, thus generating patterns made of clusters of pinhead dots: the traces left by the
electrons that had hit the screen. The incredible fact, endorsing de Broglie’s thesis,
was that the diffraction patterns would appear only if de Broglie’s wavelength was
comparable to or smaller than the mesh, exactly as in electromagnetic diffraction.

Remark 6.5 It is important to underline that the diffraction phenomenon strictly
depends on the wavelike nature of waves (it is due to something that oscillates and
to the superposition principle). Diffraction patterns cannot be generated by particles
that obey the usual laws of classical mechanics, whatever the obstacle. �

6.3.2 Schrödinger’s Wavefunction and Born’s Probabilistic
Interpretation

In 1926 Schrödinger took de Broglie’s ideas seriously and in two famous and extra-
ordinary papers made a more detailed hypothesis: he associated to a particle not a
single plane wave like (6.11), but rather a wave packetmade by the superposition of
de Broglie waves (in the sense of the Fourier transform). For free particles, whose
energy is purely kinetic, Schrödinger’s wave reads:

ψ(t, x) =
∫

R3

e
i
�

(p·x−t E(p))

(2π�2)3/2
ψ̂(p) d3p , (6.13)

where E(p) := p2/(2m), and m is the particle’s mass. Schrödinger observed that
ray optics relies on a relation, called eikonal equation [GPS01, CCP82], that bears
a strong formal resemblance to the Hamilton-Jacobi equation [FaMa06, GPS01,
CCP82] of classicalmechanics.Hewas looking for a fundamental equation formatter
in a wave mechanics of sorts, hoping it would stand to Hamilton-Jacobi’s equation
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in a similar way d’Alembert’s equation approximates the eikonal equation [GPS01,
CCP82]. In a nutshell, wave mechanics should stand to classical mechanics as wave
optics stands to ray optics. The celebrated Schrödinger equationwas born. Only after
we have constructed the formalism will we recover Schrödinger’s equation. For a
particle subject to a force with potential U , say f(t, x) = −∇U (t, x), the equation
reads:

i�
∂ψ(t, x)

∂t
=

[
− �

2

2m
Δ +U (t, x)

]
ψ(t, x) (6.14)

where Δ = ∑3
j=1

∂2

∂x2j
is the Laplacian on R

3.

The de Broglie-Schrödinger waveψ is a complex-valued function, and was called
the wavefunction of the particle to which it is attached. The physical interpreta-
tion of the wavefunction ψ – at least in the standard interpretation (“Copenhagen’s
interpretation”) of the QM formalism – came from Born in 1926:

ρ(t, x) := |ψ(t, x)|2
∫
R3 |ψ(t, y)|2d3y

is the probability density of detecting the particle at the point x and at time t measured
during an experiment meant to determine the particle’s position.

Born’s interpretation turned out to agree with later experience, but essentially
was already in line with the experimental evidence found by Davisson, Germer and
G.P. Thompson, by which the traces left by particles on the screen clustered in
regions where ρ(t, x) > 0 and were absent where ρ(t, x) = 0, thus giving rise to the
diffraction pattern.

Remark 6.6
(1) From a mathematical point of view Born’s hypothesis only requires square-
integrablewavefunctions that are not almost everywhere zero. Put equivalently, non-
zero elements in L2(R3, d3x) make physical sense, and a Hilbert space makes its
appearance for the very first time in the construction ofQM. (It is physically irrelevant
that de Broglie’s plane waves have no straightforward meaning in the light of Born’s
interpretation, for they do not belong in L2(R3, d3x). Plane monochromatic waves,
used to understand experimental results à la de Broglie, can be approximated arbi-
trarily well by elements of L2(R3, d3x) by using distributions ψ̂(p) close to a value
p0, which in turn determines with the desired accuracy the wavelength λ0 = |p0|/h
of de Broglie.)

(2) Assuming Born’s interpretation, and in absence of experiments to determine
its position, the particle with wavefunction ψ cannot evolve in time by the laws of
classical mechanics. For if it followed a regular trajectory, as classically prescribed,
the function |ψ |2 would have to vanish almost everywhere away from the trajectory.
But any regular curve in R

3 has zero measure, so |ψ |2 would be null almost every-
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where in R
3, a contradiction. In other terms when no experiment is made to detect

a particle’s position, the particle cannot be thought of as a classical object, for its
time evolution is governed by the evolution of the waveψ (solution to Schrödinger’s
equation).

(3) If we accept, as in the Copenhagen interpretation, that the wavefunction ψ

describes in full the physical state of the particle, then the particle’s position must be
physically indefinite before an experiment is conducted to pin it down. Furthermore,
it must be attached indissolubly to the experiment in a probabilistic way. It is wrong
to think that the probabilistic description is meant to cover for our ignorance about
the system’s state (“the position is well determined, but we do not know it”). In the
Copenhagen interpretation the position does not exist until wemake an experiment to
determine it and until the particle’s state (the maximum amount of information about
its physical properties in time) is described by ψ . In wave mechanics a quantum
has, thus, a dual wave-particle essence, but the two never clash because they never
manifest themselves simultaneously. �

6.4 Heisenberg’s Uncertainty Principle

When one tries to evaluate experimentally an arbitrary quantity in a physical system,
the state of the system may be altered by interacting with it. In principle, the clas-
sical description would allow to make this perturbation negligible. In 1927 Heisen-
berg realised that the combined hypotheses of Planck, Einstein, Compton and de
Broglie had a momentous (and epistemologically relevant) consequence. In quanti-
tative terms Heisenberg’s principle asserts that if we consider quantum systems and
particular quantities to be measured, it is not always possible to disregard (as infin-
itesimal) the variation in the state of the system generated by a measurement: that
is because Planck’s constant bounds from below the product of certain quantities.
Having made thought experiments involving some of the hypotheses in the Planck,
Einstein, Compton and de Broglie models, Heisenberg concluded that:

in trying to determine the position or the momentum of a particle moving along
a given axis x, we alter the momentum or the position, respectively, along the same
axis, in such a way that the product of the two smallest variations Δx, Δp (of the
final values of position and momentum) obeys

ΔxΔp � h . (6.15)

Instead, if position and momentum are measured along orthogonal axes the above
product can be made arbitrarily small.
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Equation (6.15) isHeisenberg’s uncertainty principle for position andmomentum.
An analogous relationship holds for the uncertainty ΔE of a particle’s energy E and
the uncertainty Δt of the instant t of measurement of the energy4:

ΔEΔt � h . (6.16)

To illustrate the matter let us consider the thought experiment whereby one seeks to determine
the position X of an electron, with known initial momentum P , by hitting it with a monochromatic
beam of light of wavelength λ that propagates in the direction x . Let us imagine we can read the
position off a screen parallel to the axis x using a lens placed between the axis and the screen. A
quantum of light that has interacted with the electron will go through the lens and hit the screen,
thus producing an image X ′. Since the lens’ aperture is finite, the outgoing direction of the quantum
of light generating X ′ cannot be pinned down with absolute precision. Wave optics predicts at X ′
a diffraction pattern by which we may measure the coordinate X with a bounded precision

ΔX � λ

sin α
,

where α is half the angle under which we see the lens from X . To the quantum of light there
corresponds a momentum h/λ, so the uncertainty in the component Px of the outgoing quantum
will approximately be h(sin α)/λ. The total momentum of the system ‘particle + quantum of light
+ microscope’ will remain constant, hence the uncertainty in the x-component of the particle’s exit
momentum must equal the corresponding uncertainty in the quantum itself:

ΔPx � h

λ
sin α .

The product of the variations along the axis x is then at least

ΔXΔPx � h .

Remark 6.7 Heisenberg’s principle, at this level, bears the same logical (in)consi-
stency of the proto-quantum models of Planck, Einstein, Compton et al. It should be
viewed more like aworking assumption towards a novel notion of particle, for which
the classical terms position and momentum make sense only within the boundaries
fixed by the principle itself: a quantum particle is allowed only in physical states in
which momentum and position are neither defined, nor definable, simultaneously.

It is worth stressing, as we will see, that Heisenberg’s principle is a theorem in
the final formulation of QM. �

4This second uncertainty relationship has a controversial status and its interpretation is a much
thornier issue than the former’s. We will not enter this territory, and refer to classical textbooks as
[Mes99] in this respect.
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6.5 Compatible and Incompatible Quantities

Quantum phenomenology, irrespective of the uncertainty principle, shows that there
are pairs of quantities A and B that are incompatible. This means that, in princi-
ple, arbitrarily accurate and simultaneous measurements of A, B cannot be carried
out. More explicitly, suppose we first measure quantity A, obtaining a as result, and
immediately after we measure B obtaining b. Any further reading of A, infinitesi-
mally close to B (so not to blame the time lapse), will give a value a1 that is typically
different from a, even by far. The same happens if we swap the roles of A and B.

For instance, position and momentum along a fixed direction are incompati-
ble pairs, and comply with Heisenberg’s principle. The allegiance to Heisenberg
and incompatibility have to do with each other, but the precise relationship can be
explained properly only after the formalism has been set up completely. In general,
incompatible quantities do not satisfy the uncertainty principle.

It turns out that incompatible quantum quantities never depend on one another,
nor do there exist devices capable of measuring them simultaneously.

There is a point to call the attention to: quantum phenomenology shows that
compatible quantities A′ and B ′ do exist. This entails that if we measure first A′
on the system and read a′, and immediately afterwards measure B ′ reading b′, the
next measurement of A′ – as close to B ′ as we want (so that time evolution does not
interfere with measurements) – gives the same result a′. The same happens swapping
A′ and B ′. In particular, any physical quantity A is compatible with itself and with
any function depending on A (like the position of a particle along a line and its
position squared.)

An example of an incompatible pair on which Heisenberg’s principle does not
pronounce itself is that of two distinct components of a particle’s spin. The spin of the
electron (and of all nuclear and subnuclear particles) was introduced by Goudsmit
and Uhlenbeck in 1925 [Mes99, CCP82] in order to make sense of some “bizarre”
properties, the so-called anomalous Zeeman effect, of atomic energy spectra (spectral
lines) in alkali metals. In a semi-classical sense the spin represents the intrinsic
angular momentum of the electron, which may be considered, from a certain point
of view, a consequence of the nonstop rotation of the electron around its centre of
mass. This explanation, however, is misleading and cannot be taken verbatim. The
deeper meaning of the spin emerges in Wigner’s framework, whereby an elementary
quantum particle is defined as an elementary system that is invariant under the action
of the Poincaré group.

Associated to the spin is an intrinsic magnetic momentum responsible for the
anomalous Zeeman effect. At any rate, the spin is a vector-valued quantity with char-
acteristic quantum features, which distinguish it from a classical angular momentum
andhencemake it a quantumangularmomentum.Thefirst difference is in the range of
the spin’s modulus. In the unit � these values are always of the type

√
s(s + 1), where

s is an integer fixed by the kind of particle; for instance, s = 1/2 for the electron.
Each of the three components of the spin, in a positive orthonormal frame system,
can take any of the 2s + 1 discrete values−s,−s + 1, . . . , s − 1, s. The spin’s three
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components are pairwise incompatible quantities, for measuring in rapid sequence
two of them gives distinct readings, as explained above. It is important to say that
the components of a particle’s orbital momentum and total angular momentum are
incompatible exactly in the same way.

Compatible quantities for a quantum particle are, for instance, the x-component
of the momentum and the y-component of the position vector.



Chapter 7
The First 4 Axioms of QM: Propositions,
Quantum States and Observables

Some historians claim that it is very difficult, nowadays, to find
the line separating – and at the same time joining – the
experimental level from the so-called theoretical one. But their
view already includes several arbitrary elements, the so-called
approximations.

Paul K. Feyerabend

In this chapter we will describe the overall mathematical structure of Quantum
Mechanics. The strategy essentially goes back to von Neumann, but we shall present
a more contemporary account based on Gleason’s theorem. It will entail extending
classical (Hamiltonian) mechanics and keeping track of the experimental evidence
about the nature of quantum systems seen in the previous chapter.

The first section summarises the results of Chap. 6, emphasising aspects that will
be fundamental later.

In section two we will re-examine a few facets of Hamilton’s formulation of
mechanics from a set-theoretical and formal/logical perspective. We shall present
the interpretation of the theory’s foundations, whereby elementary propositions on
the physical system are described by a σ -algebra, while states can be described by
Borel probability measures (possibly, Dirac measures) on the σ -algebra.

Section three will show how the classical structure may be modified to comprise
quantum phenomenology. Now the σ -algebra is replaced by the lattice of projectors
on a suitable Hilbert space, and a generalised σ -additive measure on the projectors’
lattice takes the place of states. Similar approaches have been explored in depth by
[Mac63, Jau73, Pir76, Var07].

We shall enter the heart of the matter in sections four. With the aid of Gleason’s
theorem we shall explain that the aforementioned generalised measures are nothing
but positive trace-class operators with trace one. This will allow us to introduce the
convex space of quantum states, in which pure states (or rays) are identified with
extreme points.
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Section five is devoted to the heuristic definition of observables as collections
of elementary propositions giving projector-valued measures (PVM) on the Hilbert
space of the system. The construction will also motivate the spectral theorem, proved
later in the book. We will also describe formally the notion of compatible proposi-
tions.

A number of advanced issues, both foundational and technical, will be addressed
in the penultimate section. One example for all is the famous Solèr theorem, that
tells how to recover the Hilbert space form the lattice of elementary propositions
of a quantum system. This part also includes a survey of the features of von Neu-
mann algebras relevant in quantum theories. A general critical discussion appears in
[BeCa81], while more recent results can be found in [EGL09].

The last section introduces superselection rule at the level of the lattice of ele-
mentary propositions.

7.1 The Pillars of the Standard Interpretation of Quantum
Phenomenology

Let us begin by summarising a few cardinal features of the behaviour of quantum
systems, which were briefly described in Chap.6.

QM1. (i) On a quantum system whose state has been fixed, measurements have a
probabilistic outcome. Hence it not possible to foresee the measurement’s outcome,
but only its probability.

(ii) However, if a quantity has been measured and gives a certain reading, repeat-
ing the measurement immediately after (so that the system does not evolve in the
meantime) will give the same result.

QM2. (i) There exist incompatible physical quantities, in the following sense. Call
A, B two such quantities. If we first measure A on the system (in a given state) and
read a as outcome, and immediately after we measure B obtaining b, a subsequent
measuring of A – as close as we want to the measurement of B to avoid ascribing
the result to the evolution of the state – produces a reading a1 �= a, in general. The
same happens swapping A and B.
Consequently: (a) incompatible quantum quantities never depend on one another,
and (b) there are no instruments capable of simultaneous measurements.

(ii) There exist compatible physical quantities in the following sense. Call A′,
B ′ two such quantities. If we first measure A′ on the system (in a given state) and
obtain a as result, and immediately after we measure B obtaining b, a subsequent
measuring of A – as close as wewant to themeasurement of B to avoid attributing the
result to the evolution of the state – produces the same reading a. The same happens
swapping A and B.
Consequently: (a) every physical quantity is compatible with itself, and (b) if two
quantities are functionally dependent (e.g. the energy and its square), then they are
compatible.

http://dx.doi.org/10.1007/978-3-319-70706-8_6
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Remark 7.1 (1) QM1 and QM2 refer to physical quantities that do not characterise
a physical system. By this we intend quantities whose range does not depend on the
state and therefore allow to distinguish a system from another. On the contrary, the
remaining quantities mentioned by QM1 and QM2 take values that depend on the
state of the system.

The physical quantities that QM1 and QM2 refer to, in relation to whether the
outcome of successive experiments can or not be reproduced, are of course quantities
that attain discrete values. As far as continuous quantities are concerned the matter is
much more delicate, and we will not examine it [BGL95]. Irrespective of the type of
quantities (continuous vs. discrete) what we can say, in general, is: two quantities are
compatible if and only if there exists a device capable of simultaneous measurements.

Furthermore, QM1 and QM2 refer to extremely idealised measuring processes,
in particular those during which the microscopic physical system is not destroyed
by the measurement itself. The measuring procedures employed in the experimental
practice are rather diversified.
(2) It is clearwe cannot be absolutely certain that quantum systems satisfy (i) inQM1.
We could be tempted to think that the stochastic outcome of measurements is really
due to the lack of full knowledge scientists have of the system’s state, and that by
knowing it in toto they would be able to predict the outcome of measurements. In this
sense quantum probability would merely have an epistemic nature. In the standard
interpretation of QM, the so-called Copenhagen interpretation, the stochastic out-
come of a measurement is assumed as a primitive feature of quantum systems. There
are nonetheless interesting attempts to interpret quantum phenomenology based on
alternative formalisms (the so-called formulations by hidden variables) [Bon97].
There, the stochastic feature is explained as it were due to partial human knowledge
about the system’s true state, which is described by more variables (and in differ-
ent fashion) than those needed in the standard formulation. None of these attempts
is considered nowadays completely satisfactory, and does not threaten the standard
interpretation and formulation of QM when one also considers relativistic quantum
theories, and relativisticQFT in particular (despite some are indeed deep, likeBohm’s
theory).

But we must stress that one cannot build a completely classical physical theory
(that counts non-quantum relativistic theories among classical ones) that is capable
of explaining the experimental phenomenology of a quantum system in its entirety.
Hidden variables, in order to agree with known evidence, must at any rate satisfy a
rather unusual contextuality property for classical theories. Furthermore, any theory
that wishes to explain the quantum phenomenology, QM included, must be nonlocal
[Bon97]. As we shall see in Sect. 13.4.3, actually, subsequent to the work of Einstein,
Podolsky and Rosen first, and then Bell, experiments have proved the existence of
correlations among measurements made in different regions of space and at lapses
so short that transmission of information between events is out of the question, by
whichever physical mean moving slower than the speed of light in vacuum.

http://dx.doi.org/10.1007/978-3-319-70706-8_13
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(3) It is implicit inQM1 andQM2 that the physical systems of interest, both in quan-
tum theory and quantum phenomenology, are divided in two large categories: mea-
suring instruments and quantum systems. The Copenhagen formulation assumes that
measuring devices are systems obeying the laws of classical physics. These hypothe-
sesmatch the data coming from experiments, and although quite crude, theoretically-
speaking, they lie at the heart of the interpretation’s formalism. Therefore not much
can be said about themwithin the standard formulation. At the moment, for instance,
it is not clear where to draw the line between classical and quantum systems, nor
how this boundary may be described inside the formalism, and not even whether the
compound system ‘instrument + quantum system’ can be itself considered a larger
quantum system, and as such treated by the formalism. In closing, the interaction
between an instrument and a quantum system, which produces the actual measure-
ment, is not described from within the standard quantum formalism as a dynamical
process. For a deeper discussion on these stimulating and involved issues we refer
to [Bon97, Des99], and also to the superb section dedicated to foundational aspects
of quantum theories in the Stanford Encyclopedia of Philosophy.1 �

7.2 Classical Systems: Elementary Propositions and States

Let us see how (Borel) probabilitymeasures canbe employed to represent the physical
states of classical systems. A generalisation will be used later to describe the states
of a quantum system mathematically.

7.2.1 States as Probability Measures

The modern formal treatment of probability theory, due to Kolmogorov, translates
into the study of probability measures. We recap below a few definitions taken from
Sect. 1.4.

Definition A positive, σ -additive measure μ on the measure space (X,Σ) is called
a probability measure if μ(X) = 1.

The simplest case of a probability measure on (X,Σ) is certainly theDiracmeasure
δx concentrated at x ∈ X:

δx (E) = 0 if x /∈ E, δx (E) = 1 if x ∈ E, for any E ∈ Σ.

We shall workwithBorel measures, so we recall the following notions fromSect. 1.4,
which we have already used and will be useful in the rest of the book.

1http://plato.stanford.edu/.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://plato.stanford.edu/
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Definition Let X be a topological space.
(a) The Borel σ -algebra of X, B(X), is the smallest (under intersections) σ -

algebra containing the open sets of X.
(b) The elements ofB(X) are called Borel sets of X.
(c) A map f : X → C is (Borel) measurable if it is measurable with respect to

B(X) and B(C), i.e. f −1(E) ∈ B(X) for any E ∈ B(C).

Obviously, in (c),B(C) refers to the standard topology of C, and the definition can
be stated to comprise R-valued maps and B(R).

Definition If X is a locally compact Hausdorff space, a Borel measure on X is a
positive, σ -additive measure onB(X).

Consider a classical physical system with n spatial freedom degrees, so 2n degrees
overall, including kinetic degrees (“velocities”). The Hamiltonian formulation
[GPS01, FaMa06] of the system’s dynamics, very briefly, goes as follows.

(i) The ambient space is the phase spacetimeHn+1. This is a smooth manifold of
real dimension 2n + 1 formed by the disjoint union2 of 2n-dimensional submanifolds
Ft , all diffeomorphic and smoothly depending on t ∈ R:

Hn+1 =
⊔

t∈R

Ft .

(ii) The coordinate t ∈ R is time, every Ft is the phase space at time t and any
point inFt represents a state of the system at time t .

(iii)Hn+1 admits an atlaswith local coordinates: t, q1, . . . , qn, p1, . . . , pn (where
q1, . . . , qn, p1, . . . , pn are symplectic coordinates on Ft ) in which the system’s
evolution is governed by Hamilton’s equations:

dqk

dt
= ∂H(t, q(t), p(t))

∂pk
k = 1, 2, . . . , n , (7.1)

dpk
dt

= −∂H(t, q(t), p(t))

∂qk
k = 1, 2, . . . , n , (7.2)

where H , the Hamiltonian (function) of the system in local coordinates, is known
once the system is known.

With this representation the system’s evolution in time is described by the integral
curves of Hamilton’s differential equations. If s(t) ∈ Ft is the state of the system at
time t , each integral curve determines, at any given time t ∈ R, a point (t, s(t)) ∈
Hn+1 where the curve meets Ft .

We remark that (in absence of constraints) the choice of a frame systemI allows
to decompose locally Hn+1 as a the Cartesian product R × F , where R is the

2Hn+1 is the total space of a fibre bundle with base R (the time axis) and fibres Ft given by 2n-
dimensional symplectic manifolds. There is an atlas on Hn+1 whose local charts have coordinates
t, q1, . . . , qn, p1, . . . , pn , where t is the natural parameter on the base R while the remaining 2n
coordinates define a local symplectic frame on each Ft .
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time axis (once the origin has been fixed) and F is identified with phase space
at time t = 0. Other choices of the framing give different identifications. Similarly,
the Hamiltonian H , identified in certain circumstances with the total mechanical
energy of the system, depends on the frame system. However, Hamilton’s equations
of motion are independent of any frame: their solutions do not depend on choices,
but are the same on Hn+1 irrespective of the coordinates.

In certain, fundamental, contexts, like Statistical Mechanics or Thermodynamical
Statistics, the system’s state is not known with absolute precision, so neither is
the evolution of the system. In these cases one uses statistical ensembles [Hua87,
FaMa06]: rather than considering a single system, one takes a statistical ensemble
of identical and independent copies of the system, whose states are distributed in
the various Ft with a certain probability density given locally by a C1 map ρ =
ρ(t, q, p). The density evolves in time in accordance to Liouville’s equation:

∂ρ

∂t
+

n∑

i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂H

∂qi

∂ρ

∂pi

)
= 0 . (7.3)

The function ρ(t, s), with s ∈ Ft , represents the probability density that the system
is in the state s at time t . The interpretation of ρ requires, for any t :

ρ(t, s) ≥ 0 and
∫

Ft

ρ dμt = 1 . (7.4)

The measureμt onB(Ft ) is the Lebesgue measure dq1 · · · dqndp1 · · · dpn on every
local symplectic chart of Ft (and extended to Ft using a partition of unity). The
known Liouville theorem states that with this choice μt on every phase space, the
integral in (7.4) does not depend on t ∈ R provided ρ solves (7.3) [Hua87, FaMa06,
CCP82].

In case one works with statistical ensembles, the density ρt is still thought of as
the system’s state at time t , even if this notion of state is more general. We shall abide
by this convention, and distinguish sharp states, given by points r(t) ∈ Ft , from
probabilistic states, determined by a Liouville density ρt on Ft . In either case the
state at time t can be viewed as a Borel probability measure {νt }t∈R defined on Ft .
More precisely:

(i) for a probabilistic state3 νt (E) := ∫
E ρ(t, s)dμt if E ∈ B(Ft );

(ii) for a sharp state νt := δr(t).

Remark 7.2 In order to represent the system’s states at time t in a completely gen-
eral way, thereby foregoing the evolution problem and also abandoning the standard
Hamiltonian formulation, one could use topologicalmanifoldsFt rather than smooth
ones. States (at time t) could be represented in terms of probability measures for the
Borel σ -algebra. The existence of a topology on Ft is intrinsically tied to the exis-

3Ft is a smooth manifold hence a locally compact Hausdorff space (since locally homeomorphic
to R

n). As μt is defined on B(Ft ) and ρt is continuous, νt is well defined on B(Ft ).
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tence of “neighbourhoods” for its points, arising from experimental errors that may
be infinitesimal but not negligible. More precisely, the possibility of distinguishing
points inFt , despite themeasuring errors, is expressedmathematically by requesting
a Hausdorff topology onFt (as happens on a smooth manifold). �

7.2.2 Propositions as Sets, States as Measures on Them

If we assume that the Hamiltonian description of our system retains all physical
properties, then it must be possible to describe, in phase space Ft at time t , all
statements about the system that at time t are true, false, or true with a certain
probability, in some way or another. Moreover, it should be possible to recover the
truth value of those propositions, i.e. the probability they are true, from the state νt
of the system. Here is a natural way to do this.

Observe first that every proposition P determines a subset inFt that contains the
points (thought of as sharp states) that render P true (at time t). We indicate this set
by the same symbol P ⊂ Ft . Next, suppose we work with a sharp state, so that νt
is a Dirac measure. Then proposition P is true at time t if and only if the point r(t)
describing the system at time t belongs to the set P . Now assign the conventional
value 0 to a false proposition at time t , and 1 to a true one at t , in relation to state
νt = δr(t). The crucial observation is that the truth value of P is νt (P), when the state
is νt , thought of as the measure of P ⊂ Ft with respect to the (Dirac) measure νt .

This fact clarifies the concretemeaning of theDiracmeasure νt viewed as system’s
state at time t . Furthermore, the same interpretation can be employed when the state
is probabilistic: νt (P) represents the probability that proposition P ⊂ Ft is true at
time t when the state νt is probabilistic.

Remark 7.3 (1)Everythingwe saidmakes sense if the set P belongs to the σ -algebra
on which the measures νt are defined. This is the Borel σ -algebra, and hence it is
reasonably large.
(2) One proposition may be formulated in different yet equivalent ways. When we
identify propositions with sets inFt we are explicitly assuming that if two proposi-
tions determine the same subset inFt , they must be considered identical. �

7.2.3 Set-Theoretical Interpretation of the Logical
Connectives

Given two propositions P , Q, we can compose them using logical connectives to
obtain other propositions. In particular,we can form the propositions POQ and PE Q
using the binary connectives called disjunction (‘inclusive or’), and conjunction
(‘and’). Negifying one proposition produces its negation �P .

We can interpret these propositions in terms of sets in the Borel σ -algebra onFt :
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(i) P O Q corresponds to P ∪ Q;
(ii) P E Q corresponds to P ∩ Q;
(iii) �P corresponds toFt \ P .

There is a partial order relation on subsets of Ft given by the inclusion: P ≤ Q if
and only if P ⊂ Q.

At the level of propositions, the most natural interpretation of P ⊂ Q is to say
that P implies Q, i.e. P ⇒ Q. Equivalently: each time the system is in a sharp state
satisfying P , the state satisfies Q as well. For non-sharp states, the probability that
Q is true is not smaller than the probability that P is true.

Remark 7.4 (1) The truth probability of composite propositions can be computed
from the starting propositions using the measure νt , because a σ -algebra is closed
under the set-theoretical operations corresponding to O , E , �.
(2) It is easy to see that if νt is aDiracmeasure, the truth probability (in this case either
0 or 1) assigned to each expression (i), (ii), (iii), coincides with the value found on the
truth tables of the connective used. For instance, POQ is true (νt (P ∪ Q) = 1) if and
only if at least one of its constituent propositions is true (νt (P) = 1 or νt (Q) = 1);
in fact the point x at which the Dirac measure δx = νt concentrates lies in P ∪ Q iff
x lies in P or in Q. �

7.2.4 “Infinite” Propositions and Physical Quantities

Propositional calculus normally disregards propositions made by infinitely many
propositions and connectives like P1O P2 O . . . Interpreting propositions and con-
nectives in terms of points and operations on a σ -algebra, though, allows to “handle”
infinitely-long propositions.

We can relate (at least) some of these propositions to measurable physical quan-
tities on the system. Generally speaking, we may consider the physical quantities
defined on our Hamiltonian system as a collection of functions, regular to some
degree, defined on phase spacetime and real-valued: f : Hn+1 → R. A fairly broad
choice for regularity is to take the class of maps that restrict to Borel measurable
maps on each fibre Ft . Less radical options are continuous maps, C1 maps, or
even C∞ maps. From the point of view of physics it may seem natural to require
physical quantities be described by functions that are at least continuous, because
measurements are always affected by experimental errors when finding the point in
Ft representing the state at time t : if the maps were not continuous, small errors
would cause enormous variations in a quantity’s values. Nevertheless we must also
remember there might be quantities with discrete range, for which the above issue is
meaningless (discrete values can be distinguished using instruments with sufficient
– finite – precision). As we are interested in the passage to the quantum case rather
than in analysing the classical case, we shall not go deep into this kind of problem.
We shall limit ourselves to working at instants t for which the quantities of con-
cern will be measurable functions f : Ft → R. If f : Ft → R is a quantity that can
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bemeasured on the system (at time t), using it we can construct statements of this kin:

P ( f )
E =

“The value that f assumes on the system’s state belongs to the Borel subset E ⊂ R” ,

Considering Borel sets E , and not just open intervals or singlets for example, allows
to treat quantities with both continuous and discrete ranges in the same way, and also
keep track of the fact that the measurement made by an instrument is a set, not just
a point, owing to the finite precision of the instrument. As a matter of fact B(R)

contains closed sets, finite sets, countable sets and so on. In set-theoretical terms
P ( f )
E is associated to the Borel set

P ( f )
E = f −1(E) ⊂ Ft ,

that we continue to denote by the same symbol. (As explained above, by this con-
vention the probability that P ( f )

E is true for the system at time t is νt (P
( f )
E ), once the

state νt is known.)
Consider an interval [a, b), b ≤ +∞. Decompose it in the disjoint union of

infinitely many subintervals: [a, b) = ∪∞
i=1[ai , ai+1), where a1 := a, ai < ai+1 and

ai → b as i → ∞. Then the proposition

P ( f )
[a,b) =

“The value of f on the state of the system falls in the Borel set [a, b)”

can be clearly written as an infinite disjunction

P ( f )
[a,b) = O+∞

i=1 P
( f )
[ai ,ai+1)

of statements of the form:
P ( f )

[ai ,ai+1)
=

“The value of f on the state of the system falls in the Borel set [ai , ai+1)” .

This corresponds to writing the set P ( f )
[a,b) as the disjoint union:

P ( f )
[a,b) = ∪+∞

i=1 P
( f )
[ai ,ai+1)

.

Therefore it makes physical sense to assume the existence of statements built by
infinitely many connectives and propositions.

Since negating O gives E , if we assume the set of admissible propositions is
closed under �, then we must also accept propositions involving infinitely many E s
as physically meaningful.

The possibility of representing propositions as sets in a σ -algebra, and thus com-
pute the probability they are true on a state using the correspondingmeasure, suggests
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to allow for propositions with countably many connectives O or E , because the cor-
responding sets still belong in the σ -algebra, which is closed under countable unions
and intersections.

To obtain a structure “isomorphic” to the σ -algebra built from atomic formulas
andO , E ,�, we need to add twomore propositions, playing the role of the sets∅ and
Ft . These are the contradiction (whose truth probability is 0, whichever the state),
denoted 0, and the tautology 1 (of truth probability equal to 1, whichever the state).

Once propositions and sets are identified, the σ -algebra structure enables us to
declare that the set of elementary propositions P relative to the physical system of
concern, equipped with the logical connectives O , E , �, is “isomorphic” to a σ -
algebra. The truth value of a proposition P, for sharp states, or its truth probability,
for probabilistic states, on a given state at time t equals νt (P), where now P ⊂ Ft

is the set corresponding to the proposition.

Remark 7.5 (1)Wemay ask whether the σ -algebra of all propositions on the system
corresponds to the full Borel σ -algebra ofFt , or if it is smaller. If we assume every
bounded measurable real map onFt is a physical quantity, then the answer is clearly
yes, because among thosemaps are the characteristic functions ofmeasurable subsets
of Ft .
(2) As earlier remarked, once we fix a frame systemI (in absence of constraints, as
in the cases at hand) the phase spacetimeHn+1 of the system is locally diffeomorphic
to the Cartesian product R × F , where F is the phase space at time 0 and R the
time line (with given origin). Thus we may regard propositions at any given instant
t as Borel subsets of F , and any state at time t as a probability measure on F .
Henceforth, especially when generalising to the quantum case, we will harness this
simplification of the formalism that results from a choice of frame. �

7.2.5 Basics on Lattice Theory

In physical systems we can identify propositions and sets, and think of states as mea-
sures on sets. In order to pass to quantum systems, where there is no notion of phase
space, it is important to raise the following question. Do there exist mathematical
structures that are not σ -algebras of sets but sort of isomorphic to one? The answer
is yes and comes from the theory of lattices.

In the sequel we will use some basic notions about posets. We shall assume they
are known to the reader; if not they can be found in Sect.A.1.

Definition 7.6 A partially ordered set (X,≥) is a lattice when, for any a, b ∈ X,
(a) sup{a, b} exists, denoted a ∨ b (sometimes called ‘join’ of a, b);
(b) inf{a, b} exists, written a ∧ b (sometimes ‘meet’ of a, b).
(The poset is not required to be totally ordered.)

Remark 7.7 (1) If (X,≥) is partially ordered, as usual a ≤ b means b ≥ a, for any
a, b ∈ X. The following equivalences are easy: a ∧ b = a ⇔ a ∨ b = b ⇔ a ≤
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b.
(2) On any lattice X, by definition of inf, sup we have the following properties, for
any a, b, c ∈ X:

associativity: (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c = a ∨ (b ∨ c);
commutativity: a ∨ b = b ∨ a and a ∧ b = b ∧ a.
absorption: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.
idempotency: a ∨ a = a and a ∧ a = a.

By the associative property we can write a ∨ b ∨ c ∨ d and a ∧ b ∧ c ∧ d without
ambiguity.
(3)The above properties characterise lattices: a setX equippedwith binary operations
∧ : X × X → X,∨ : X × X → X that satisfy the properties of (2) is partially ordered
by the relation a ≥ b ⇔ b = b ∧ a. In that case sup{a, b} = a ∨ b and inf{a, b} =
a ∧ b. �

Various types of lattices exist, and the next definition describes some of them.

Definition 7.8 (Lattice) A lattice (X,≥) is called:
(a) distributive if ∨ and ∧ distribute over one another: for any a, b, c ∈ X,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) , a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ; (7.5)

(b) bounded if it admits a minimum 0 and a maximum 1 (sometimes called ‘bottom’
and ‘top’);
(c) orthocomplemented if it is bounded and admits a mapping X � a �→ ¬a, where
¬a is the orthogonal complement of a, such that:

(i) a ∨ ¬a = 1 for any a ∈ X,
(ii) a ∧ ¬a = 0 for any a ∈ X,
(iii) ¬(¬a) = a for any a ∈ X,
(iv) a ≥ b implies ¬b ≥ ¬a for any a, b ∈ X;

two elements a, b are
orthogonal, written a ⊥ b, if ¬a ≥ b (or equivalently ¬b ≥ a);
commuting, if a = c1 ∨ c3 and b = c2 ∨ c3 with ci ⊥ c j if i �= j ;

the centre of the lattice is the set of elements commuting with every element of the
lattice and the lattice is irreducible if its centre is {0, 1};
(d) modular, if q ≥ p implies (p ∨ r) ∧ q = p ∨ (r ∧ q), ∀p, q, r ∈ X;
(e) orthomodular, if orthocomplemented and q ≥ p implies q = p ∨ ((¬p) ∧ q),
∀p, q ∈ X;
(f) σ -complete, if every countable set {an}n∈N ⊂ X admits least upper bound (indi-
cated by ∨n∈Nan) and greatest lower bound (indicated by ∧n∈Nan).
(f)’ complete, if every set A ⊂ X admits both least upper bound and greatest lower
bound;
(g) Boolean algebra, if has properties (a), (b) and (c) (hence (d) and (e));
(g)’ Boolean σ -algebra if is a Boolean algebra satisfying (f).
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A (distributive, bounded, orthocomplemented, σ -complete, complete) sublat-
tice is a subset in X admitting a lattice structure (distributive, bounded, orthocom-
plemented, σ -complete, complete, respectively) for the restrictions of ≥ and ¬.

Remark 7.9 (1) It is immediate to prove that arbitrary intersections of orthocom-
plemented sublattices are orthocomplemented sublattices (with the same minimum,
maximum and orthogonal complement of X).
(2) IfX is an orthocomplemented lattice and p, q ∈ X belong to aBoolean subalgebra
of X, then p and q commute (remark (6) below). The converse also holds [BeCa81].

Proposition 7.10 Let X be an orthocomplemented lattice. Then p, q ∈ X commute
if and only if the orthocomplemented sublattice generated by {p, q} (the intersection
of all bounded orthocomplemented sublattices containing {p, q}) is Boolean.
Proof See Exercise7.7. �

(3) In a general orthocomplemented lattice:

if a ⊥ b then a ∧ b = 0.

(4) It is easy to see that orthocomplemented lattices X satisfy De Morgan’s laws:
for any a, b ∈ X,

¬(a ∨ b) = ¬a ∧ ¬b , ¬(a ∧ b) = ¬a ∨ ¬b . (7.6)

These relations can be generalized. The proof of the following statement is immedi-
ate, simply by using the definition of inf and sup (§A.1).

Proposition 7.11 Let X be an orthocomplemented lattice. Then for any subset A ⊂
X
(a) if A is finite, then

¬ sup
a∈A

a = inf
a∈A

¬a , ¬ inf
a∈A

a = sup
a∈A

¬a ; (7.7)

(b) if A is infinite, then supa∈A a exists ⇔ infa∈A ¬a exists, and similarly, infa∈A a
exists⇔ supa∈A ¬a exists. In either case, the corresponding relation in (7.7) is valid.
(c) (7.7) holds for every (countable) subset A ⊂ X if X is complete (σ -complete).

(5) We have the following implications:

distributivity ⇒ modularity ⇒ orthomodularity

Therefore the orthomodular condition (the only one satisfied by quantum lattices, as
we shall see shortly) is a weaker form of distributivity and modularity.

(6) A Boolean algebra X is distributive, modular, orthomodular and every pair
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a, b ∈ X commutes: using the distributive law, in particular, a = (a ∧ ¬b) ∨ (a ∧ b)
and b = (b ∧ ¬a) ∨ (a ∧ b). �

We leave the following elementary proposition as an exercise for the reader.

Proposition 7.12 The centre of an orthomodular latticeL is a Boolean subalgebra
of L .

Definition 7.13 IfX,Y are lattices, a map h : X → Y is a (lattice) homomorphism
when

h(a ∨X b) = h(a) ∨Y h(b) , h(a ∧X b) = h(a) ∧Y h(b) , a, b ∈ X

(with the obvious notations.) We further require that a homomorphism h satisfies:
if X,Y are bounded

h(0X) = 0Y , h(1X) = 1Y ;

if X,Y are orthocomplemented

h(¬Xa) = ¬Yh(x) ;

if X, Y are σ -complete

h(∨n∈Nan) = ∨n∈Nh(an) and h(∧n∈Nan) = ∧n∈Nh(an) if {an}n∈N ⊂ X ;

and if X, Y are complete

h(sup A) = sup h(A) and h(inf A) = inf h(A) if A ⊂ X .

In every case (bounded, orthocomplemented, (σ -)complete lattices, Boolean
(σ -)algebras) if h is bijective it is called isomorphism of the corresponding structure;
in particular, it is called automorphism if X = Y.

Remark 7.14 (1)Since b ≥ a ⇔ b ∧ a = a, the following facts hold. If h : X → Y
is a homomorphism then for any a, b ∈ X, a ≥X b implies h(a) ≥Y h(b), with the
obvious notation.
(2) It is immediate to see that the inverse h−1 : Y → X of an isomorphism h : X → Y
(of lattices or Boolean (σ -)algebras) is an isomorphism.

Concerning isomorphisms of lattices:

Proposition 7.15 Let h : X → Y be an orthocomplemented lattice isomorphism. If
both X and Y are (σ -)complete, then h is a (σ -)complete lattice isomorphism.

Proof See Exercise7.4. �

(3) Given an abstract Boolean σ -algebra X, does there exist a concrete σ -algebra
of sets that is isomorphic to X? The answer is contained a general result known as
Loomis–Sikorski theorem [Sik48]. This guarantees that every Boolean σ -algebra
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is isomorphic to a quotient Boolean σ -algebra Σ/N , where Σ is a concrete σ -
algebra of sets over a measurable space and N ⊂ Σ is closed under countable
unions; moreover, ∅ ∈ N and for any A ∈ Σ with A ⊂ N ∈ N , then A ∈ N . The
equivalence relation is A ∼ B ⇔ A ∪ B \ (A ∩ B) ∈ N , for any A, B ∈ Σ . It is
easy to see the coset space Σ/N inherits the structure of Boolean σ -algebra from
Σ with respect to the (well-defined) partial order [A] ≥ [B] if A ⊃ B, A, B ∈ Σ .

This is the sharpest result in the general case. Consider, for instance, the σ -algebra
B([0, 1]) of Borel sets in [0, 1]. Take the quotient B∗([0, 1]) := B([0, 1])/N ,
whereN consists of subsets in [0, 1] of zero (Lebesgue) measure. It can be proved
that B∗([0, 1]) is isomorphic to no σ -algebra of subsets on any measurable space.

But if one restricts to Boolean algebras only, the known Stone representation
theorem [Sto36] asserts that an abstract Boolean algebra is always isomorphic to
some concrete algebra of sets, without the need of a quotient. �

Notation 7.16 In case {a j }J is a collection of elements of a lattice X, and J has any
cardinality, we shall also use the natural notation

∨ j∈J a j := sup
j∈J

a j , ∧ j∈J a j := inf
j∈J

a j (7.8)

henceforth. �

7.2.6 The Boolean Lattice of Elementary Propositions for
Classical Systems

Wecan revert to σ -algebras of sets, andwith the definitions given above the following
assertions are trivial, so their proof is left as exercise.

Proposition 7.17 Every σ -algebra on X is a Boolean σ -algebra where:
(i) the partial order is the inclusion (hence ∨ corresponds to ∪ and ∧ to ∩),
(ii) the maximum and minimum in the Boolean algebra are X and ∅,
(iii) orthocomplements correspond to set-theoretical complements with respect to

X.

Proposition 7.18 Let Σ,Σ ′ be σ -algebras on X and X′ respectively, and f : X →
X′ a measurable function.
(a) The sets P ( f )

E := f −1(E), E ∈ Σ ′, define a Boolean σ -subalgebra of the Boolean
σ -algebra of Proposition7.17.
(b) The mapping Σ ′ � E �→ P ( f )

E is a homomorphism of Boolean σ -algebras.
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The same assertions hold for the set of propositions relative to a physical system.

Proposition 7.19 Propositions relative to a classical physical system form a dis-
tributive, bounded, orthocomplemented and σ -complete lattice, i.e. a Boolean σ -
algebra, where:

(i) the order relation is the logical implication, the conjunction is the intersection
and the disjunction is the union;

(ii) the maximum and minimum are the tautology 1 and the contradiction 0;
(iii) orthocomplementation corresponds to negation.

If a measurable function f : F → R represents a physical quantity, then:
(a) as E varies in the Borel σ -algebra of R, the propositions

P ( f )
E =

“The value that f takes on the state of the system belongs in the Borel set E ⊂ R”,

define a Boolean σ -algebra;
(b) the map that sends a Borel set E ⊂ R to the proposition P ( f )

E is a homomorphism
of Boolean σ -algebras.

7.3 Quantum Systems: Elementary Propositions

We can nowmove on to quantum systems.We shall begin by examining the structure
of elementary propositions, and later we shall discuss the notion of quantum state.

7.3.1 Quantum Lattices and Related Structures in Hilbert
Spaces

In trying to follow an approach that is closest to the classical case, we first aim at
finding a mathematical model for the class of elementary propositions relative to a
quantum system. Then we will evaluate at time t by conducting experiments with
the aid of suitable instruments, whose results will be merely 0 (= the proposition
is false) or 1 (= the proposition is true). At this stage we still do not know how to
describe the system, but we do know that the quantum quantities that are measurable
have to satisfy QM1 and QM2.

For themoment let us concentrate onQM2. As there exist incompatible quantities,
necessarily there must be incompatible propositions. If A and B are incompatible,
then

P (A)
J =
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“The value of A on the state of the system belongs to the Borel set J ⊂ R” ,

P (B)
K =

“The value of B on the state of the system belongs to the Borel set K ⊂ R” ,

are, in general, incompatible propositions. Their truth values interfere with each
other when we measure them within infinitesimally short lapses (so that the system’s
state is not responsible for the time evolution). We also know no instrument exists
that is capable of evaluating simultaneously two incompatible quantities. Hence it is
physically meaningless, in this context, to say that the above propositions, which are
associated to incompatible quantities, can assume on the system a given truth value
simultaneously. The propositions P (A)

J and P (B)
K , in this sense, are called incompat-

ible.

Important remark. The propositions we are considering must be understood as
statements about physical systems to which we assign a truth value, 0 or 1, as a
consequence of a corresponding experimental measuring process. In this light the
incompatibility of two propositions does not prevent them from being both false, so
that their conjunction is always false, for example. The meaning is much deeper:
‘incompatible’ points to the fact that it makes no (physical) sense to give them,
simultaneously, any truth value whatsoever. Nor should we try to make sense of
propositions like P (A)

J O P (B)
K or P (A)

J E P (B)
K in this case, because there is no exper-

iment that can evaluate the truth of such propositions.
By this remark we cannot take, as model for the set of elementary propositions to

be tested on our quantum system, a σ -algebra of sets where ∩ and ∪ are interpreted
as E and O respectively. If we were to do so, we would then have to impose con-
straints on the model, for instance veto symbolic combinations built by incompatible
propositions. An alternative idea of von Neumann turns out to be successful: ele-
mentary propositions are modelled using orthogonal projectors of a complex Hilbert
space. As we will see, the set of projectors is a lattice. Although the structure is not
that of a Boolean σ -algebra, it will allow us to distinguish among compatible and
incompatible propositions, and to interpret E andO as the standard∧ and∨ provided
the former are used on compatible propositions.

7.3.2 The Non-Boolean (Non-Distributive) Lattice of
Projectors on a Hilbert Space

The set of orthogonal projectors on a Hilbert space enjoys properties that closely
resemble those of Boolean lattices. There are, however, important differences that
will enable us to model the incompatible propositions of a quantum system. First of
all we shall deal with a number of technical features of commuting projectors.
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Proposition 7.20 Let (H, ( | )) be a Hilbert space and L (H) the set of orthogonal
projectors on H.

The following properties hold for any P, Q ∈ L (H).
(a) The following facts are equivalent:

(i) P ≤ Q;
(ii) P(H) is a subspace of Q(H);
(iii) PQ = P
(iv) QP = P.

(b) The following facts are equivalent:
(i) PQ = 0;
(ii) QP = 0;
(iii) P(H) and Q(H) are orthogonal;
(iv) Q ≤ I − P;
(v) P ≤ I − Q.

If (i)–(v) hold, P + Q is an orthogonal projector and projects onto P(H) ⊕ Q(H).
(c) If PQ = QP then PQ is an orthogonal projector and projects onto P(H) ∩
Q(H).
(d) If PQ = QP then P + Q − PQ is an orthogonal projector and projects onto
the closed space < P(H), Q(H) >.
(e) PQ = QP if and only if there exist R1, R2, R3 ∈ L (H) such that:

P = R1 + R3 , Q = R1 + R2 with Ri (H) ⊥ R j (H) for i �= j .

Proof (a) First, notice that if P is a projector onto M, then Pu = 0 ⇔ u ∈ M⊥,
by the orthogonal decomposition H = M ⊕ M⊥ (Theorem3.13(d)) and because the
component of u onM is precisely Pu.
(i) ⇒ (ii). If P ≤ Q then (u|Qu) ≥ (u|Pu). Since projectors are idempotent and
self-adjoint, the latter is equivalent to (Qu|Qu) ≥ (Pu|Pu), i.e. ||Qu|| ≥ ||Pu||.
In particular Qu = 0 implies Pu = 0, so Q(H)⊥ ⊂ P(H)⊥. Using Theorem3.13(e)
and noting that Q(H) and P(H) are closed, we find P(H) ⊂ Q(H).
(ii) ⇒ (iii). If S is a basis for P(H), complete it to a basis of Q(H) by adding
the orthogonal set S′ to S. By Proposition3.64(d), P = s-

∑
u∈S u(u| ) and Q = s-∑

u∈S∪S′ u(u| ). Since S and S′ are orthogonal and orthonormal systems, and because
the inner product is continuous, the claim follows.
(iii) ⇔ (iv). The statements are implied by one another by taking adjoints.
(iii) + (iv) ⇒ (i). If u ∈ H, (u|Qu) = ((P + P⊥)u|Q(P + P⊥)u) where P⊥ = I −
P . Notice P and P⊥ commute with Q by (iii) and (iv), and moreover PP⊥ =
P⊥P = 0. Expanding the right side of (u|Qu) = (u|(P + P⊥)Q(P + P⊥)u), and
neglecting terms that are null by the above considerations, gives

(u|Qu) = (u|PQPu) + (u|P⊥QP⊥u) .

On the other hand by (iii) and (iv): (u|PQPu) = (u|PPu) = (u|Pu). Therefore

(u|Qu) = (u|Pu) + (u|P⊥QP⊥u) ,

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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so (u|Qu) ≥ (u|Pu).
(b) Assuming PQ = 0 and taking adjoints gives QP = 0, hence P(H) and Q(H)

are orthogonal, for PQ = QP = 0. If P(H) and Q(H) are orthogonal we fix
on each a basis, say N and N ′ respectively. By writing P and Q as prescribed
by Proposition3.64(d): P = ∑

u∈N (u| )u, Q = ∑
u∈N ′(u| )u we have immediately

PQ = QP = 0. At last, Q ≤ I − P (P ≤ I − Q) iff Q (resp. P) projects on a sub-
space in the orthogonal space to P(H) (resp. Q(H)) by part (a), i.e. P(H) ⊥ Q(H).
Using the above expressions for P , Q, recalling N ∪ N ′ is a basis of P(H) ⊕ Q(H)

and using again Proposition3.64(d) implies P + Q is the orthogonal projector onto
P(H) ⊕ Q(H).
(c) That PQ is an orthogonal projector (self-adjoint and idempotent) if PQ = QP ,
with P , Q orthogonal projectors, is straightforward. If u ∈ H, then PQu ∈ P(H) but
also PQu = QPu ∈ Q(H), so PQu ∈ P(H) ∩ Q(H). We have shown PQ(H) ⊂
P(H) ∩ Q(H), so to conclude it suffices to show P(H) ∩ Q(H) ⊂ PQ(H). If
u ∈ P(H) ∩ Q(H) then Pu = u, Qu = u, so also Pu = PQu = u, i.e. u ∈ PQ(H).
This means P(H) ∩ Q(H) ⊂ PQ(H).
(d) That R := P + Q − PQ is an orthogonal projector is straightforward. Consider
the space < P(H), Q(H) >. We can build a basis as follows. Begin with a basis
N for the closed subspace P(H) ∩ Q(H). Then add a basis N ′ for the rest, i.e. the
closed orthogonal complement P(H) ∩ (P(H) ∩ Q(H))⊥. With the same criterion
build a third basis N ′′ for Q(H) ∩ (P(H) ∩ Q(H))⊥. The three bases thus obtained
are pairwise orthogonal and together give a basis of< P(H), Q(H) >. All this shows
that

< P(H), Q(H) > =

(P(H) ∩ Q(H)) ⊕ (P(H) ∩ (P(H) ∩ Q(H))⊥) ⊕ (Q(H) ∩ (P(H) ∩ Q(H))⊥)

is an orthogonal sum. With our assumptions the projector onto the first summand
is PQ by (c). Hence the projector onto (P(H) ∩ Q(H))⊥ is I − PQ. Again by (c)
the orthogonal projector onto the second summand is P(I − PQ) = P − PQ, and
similarly the third projector is

Q(I − PQ) = Q − PQ .

By part (b) the projector onto the whole sum < P(H), Q(H) > is

PQ + (P − PQ) + (Q − PQ) = P + Q − PQ .

Statement (e) is another way to phrase Proposition3.66. �

Based on what we have proved, consider orthogonal projectors P, Q ∈ L (H) that
commute, and suppose they are associated to statements about the physical system
(i.e. propositions, denoted by the same letters). Under the correspondence

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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P E Q ←→ PQ ,

P O Q ←→ P + Q − PQ ,

� P ←→ I − P ,

the right-hand sides are orthogonal projectors. The latter, moreover, satisfy prop-
erties that are formally identical to those of propositional calculus. For example,
� (P E Q) =�P O �Q. In fact,

�P O �Q ←→ (I − P) + (I − Q) − (I − P)(I − Q) = 2I − P − Q − I + PQ + P + Q

= I − PQ ←→� (P E Q) .

and in the same way one may check every relation written previously, provided the
projectors commute. Note, further, that if P , Q commute and P ≤ Q then PQ =
QP = P and P + Q − PQ = Q. If we interpret the latter by their truth value,
the above correspondence will tell that P ≤ Q corresponds to Q being a logical
consequence of P .

The real difference between orthogonal projectors and the propositions of a clas-
sical system is the following. If the projectors P , Q do not commute, PQ and
P + Q − PQ are not even projectors in general, so the above correspondence breaks
down.

All this seems very interesting in order to find a model for the propositions of
quantum system, under axiom QM2. The idea is that
the propositions of quantum systems are in 1–1 correspondence with the orthogonal
projectors of a Hilbert space. The correspondence is such that:

(i) the logical implication P ⇒ Q between propositions P and Q corresponds to
the relation P ≤ Q of the corresponding projectors;

(ii) two propositions are compatible if and only if the respective projectors com-
mute.

Remark 7.21 Before going any further let us shed some light on the nature of com-
muting orthogonal projectors. One might be led to suspect that P and Q com-
mute only when: (a) projection spaces are one contained in the other, or (b) pro-
jection spaces are orthogonal. With the following explicit example we show that
there are other possibilities. Consider L2(R2, dx ⊗ dy), dx , dy being Lebesgue
measures on the real line, and take the sets A = {(x, y) ∈ R

2 | a ≤ x ≤ b} and
B = {(x, y) ∈ R

2 | c ≤ y ≤ d} in the plane, with a < b, c < d given. If G ⊂ R
2 is

a measurable set, define the linear operator

PG : L2(R2, dx ⊗ dy) → L2(R2, dx ⊗ dy)

by PG f = χG · f for any f ∈ L2(R2, dx ⊗ dy), where χG is, as always, the char-
acteristic function of G and · is the pointwise product of two maps. The operator PG
is an orthogonal projector, and moreover
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PG(L2(R2, dx ⊗ dy)) = { f ∈ L2(R2, dx ⊗ dy) | ess supp f ⊂ G} .

Then it is immediate to prove PAPB = PB PA = PA∩B , whilst:
(a) none of PA(L2(R2, dx ⊗ dy)), PB(L2(R2, dx ⊗ dy)) is included in the other,
(b) nor are they orthogonal. �

If the speculative correspondence between propositions about quantum systems and
orthogonal projectors on a suitable Hilbert space is to be meaningful, the structural
analogies of orthogonal projectors and the σ -complete Boolean algebra of proposi-
tions must reach farther than the case of two propositions. We expect, in particular,
to be able to determine the structure of a Boolean (σ -)algebra on some set of projec-
tors representing pairwise-compatible properties. The following fact asserts that the
space of all orthogonal projectors is a non-distributive lattice, and establishes some
of its peculiarities. We shall see later that the lack of distributivity is salvaged by a
weaker form of it, the orthomodularity property.

Referring to part (c) let us remark that if A ⊂ L (H) is a set of commuting
orthogonal projectors, by Zorn’s lemma there exists a maximal commutative subset
L0(H) ⊂ L (H) with A ⊂ L0(H): every projector in L (H) commuting with any
element inL0(H) belongs toL0(H).

Theorem 7.22 Let H be a (complex) Hilbert space.
(a) The collection L (H) of orthogonal projectors on H is an orthocomplemented,
complete (in particular σ -complete) lattice, typically non-distributive. More pre-
cisely:

(i) ≥ is the order relation between projectors. If {Pi }i∈I is family of orthogonal
projectors of arbitrary cardinality:
(a) ∨i∈I Pi := supi∈I Pi is the projector onto < {Pi (H)}i∈I >,
(b) ∧i∈I Pi := inf i∈I Pi is the projector onto ∩i∈I Pi (H);

(ii) the maximum and minimum elements inL (H) are: I (identity operator) and
0 (null operator) respectively;

(iii) the orthocomplement to the projector P corresponds to

¬P = I − P (7.9)

and furthermore

¬ (∧α∈APα) = ∨α∈A¬Pα , ¬ (∨α∈APα) = ∧α∈A¬Pα (7.10)

for every family {Pα}α∈A ⊂ L (H);
(iv) the projection spaces of P, Q ∈ L (H) are orthogonal iff P, Q are orthogonal

elements inL (H);
(v) the projectors P, Q ∈ L (H) commute iff they commute as lattice elements;
(vi)L (H) is not distributive if dim H ≥ 2.
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(b) InL (H) the following hold:
(i) if P, Q ∈ L (H) commute:

P ∧ Q = PQ , (7.11)

P ∨ Q = P + Q − PQ , (7.12)

(ii) if {Qn}n∈N ⊂ L (H) consists of commuting elements:

∨n∈N Qn = s- lim
n→+∞ Q0 ∨ · · · ∨ Qn , (7.13)

∧n∈NQn = s- lim
n→+∞ Q0 ∧ · · · ∧ Qn , (7.14)

independently of the labelling of the Qn.

(c) If L0(H) ⊂ L (H) is a maximal commutative set of orthogonal projectors, then
L0(H) is a Boolean σ -subalgebra. In particular 0, I ∈ L0(H), L0(H) is closed
under orthocomplementation, the inf and sup of a countable subset in L0(H) exist
inL0(H) and coincide with the inf and sup onL (H).

Proof (a) Recall ≥ is a partial order on L0(H) by Proposition3.60(f). By Proposi-
tion7.20(a):

P ≤ Q ⇔ P(H) ⊂ Q(H) . (7.15)

This partial ordering of orthogonal projectors corresponds one-to-one to the par-
tial order of projection spaces. The class of closed subspaces in H is a lattice: we
claim that ifM,N are closed, their least upper bound isM ∨ N = < M,N > and the
greatest lower boundM ∧ N = M ∩ N. Now,< M,N > is closed and containsM,N;
moreover, any closed space L containing M, N must contain < M,N > as well, so
M ∨ N = < M,N >. By constructionM ∩ N closed inM and N, and if L is another
such space, it must be contained inM ∩ N, whenceM ∧ N = M ∩ N. Passing to pro-
jectors and using (7.15), we have that for P, Q ∈ L (H), P ∨ Q is the orthogonal
projector onto < P(H), Q(H) >, while P ∧ Q the projector onto P(H) ∩ Q(H).
The same argument applies to a family of orthogonal projectors {Pi }i∈I of arbitrary
cardinality. In that case ∨i∈I Pi := supi∈I {Pi } is the projector onto < {Pi (H)}i∈I >

and ∧i∈I Pi := inf i∈I {Pi } the projector onto ∩i∈I Pi (H), so the lattices of orthogonal
projectors and closed subspaces are both complete (and in particular σ -complete).
In the lattice of closed subspaces the min and max are clearly {0} and H. Passing to
orthogonal projectors via (7.15), the minimum andmaximum are the orthogonal pro-
jectors onto {0} and H, i.e. the null operator and the identity. Orthocomplementation
of projectors, ¬P := I − P , corresponds to complementation of closed subspaces
¬P(M) := P(M)⊥, by Proposition3.64(b). Identities (7.10) immediately descend
from Proposition7.11 by exploiting the completeness of the lattice. Part (iv) in (a)
follows directly from Proposition7.20(b), whilst (v) in (a) descends from Proposi-
tion7.20(e). To prove (vi), we shall exhibit a counterexample to distributivity.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Take a two-dimensional subspace S in a (complex) Hilbert space H of dimension
≥ 2, and identify S with C

2 by fixing an orthonormal basis {e1, e2}. Now consider
the subspaces: H1 :=< e1 >, H2 :=< e2 > and H3 :=< e1 + e2 >.

From H1 ∧ (H2 ∨ H3) = H1 ∧ S = H1 and (H1 ∧ H2) ∨ (H1 ∧ H3) = {0} ∨
{0} = {0} follows

H1 ∧ (H2 ∨ H3) �= (H1 ∧ H2) ∨ (H1 ∧ H3) .

Let us prove (b) and (c) together. If the projectors P and Q commute, or if the Qn

pairwise commute, by Zorn’s lemma there is a maximal commuting chain L0(H)

containing P and Q, or {Qn}n∈N respectively. Let us first prove that L0(H) is a
Boolean subalgebra and (i) holds. Clearly 0 and I belong to L0(H) because they
commute with everything in L0(H). The same happens for ¬P = I − P if P ∈
L0(H). We have to prove, for any P, Q ∈ L0(H), the existence of the sup and the
inf of {P, Q} insideL0(H), that they are computed as prescribed in part (b), and that
these projectors actually coincide with the sup and inf of {P, Q} inside L (H). The
distributive laws of∨ and∧ follow easily from (7.12) and (7.11), from the projectors’
commutation and from the idempotency of any projector, PP = P .

By Proposition7.20(c), the projector onto M ∩ N , corresponding to P ∧ Q in
L (H), is exactly PQ, and this belongs to L0(H) because by construction it com-
mutes with any element of the maximal spaceL0(H). Therefore

P ∧ Q := inf
L0(H)

{P, Q} = inf
L (H)

{P, Q} = PQ .

As P , Q commute, the projector onto< M,N >, corresponding to P ∨ Q inL (H),
is P + Q − PQ by Proposition7.18(d). The latter lives in L0(H) for it commutes
withL0(H). As before,

P ∨ Q := sup
L0(H)

{P, Q} = sup
L (H)

{P, Q} = P + Q − PQ .

This makes L0(H) a Boolean subalgebra and proves (b)(i).
To conclude we need to showL0(H) is σ -complete by proving (b)(ii). Consider a

countable family of projectors {Qn}n∈N and associate to each the projector Pn defined
recursively by: P0 := Q0, and for n = 1, 2, . . .:

Pn := Qn(I − P1 − . . . − Pn−1) .

By induction we can prove with ease:
(i) Pn Pm = 0 if n �= m;
(ii) Q1 ∨ · · · ∨ Qn = P1 ∨ · · · ∨ Pn = P1 + · · · + Pn , n = 0, 1, . . ..
If we introduce bounded operators

An := P1 + · · · + Pn,
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then:
(iii) An = A∗

n and An An = An for any n = 0, 1, . . ., i.e. the An are orthogonal pro-
jectors, so An ≤ I , for any n = 0, 1, . . . by Proposition3.64(e).
(iv) An ≤ An+1 for any n = 0, 1, . . .
By virtue of Proposition3.76 there exists a bounded self-adjoint operator A defined
by the strong limit:

A = s- lim
n→+∞ Pn = s- lim

n→+∞ Q0 ∨ · · · ∨ Qn .

Immediately, then, AA = A, making A an orthogonal projector in L0(H) because
(strong) limit of operators commutingwithL0(H). Still by Proposition3.76, An ≤ A
and in particular Qn ≤ Q1 ∨ · · · ∨ Qn ≤ A for any n ∈ N. We claim A is the least
upper bound of the Qn , inL (H) and inL0(H). Suppose an orthogonal projector K ∈
L (H) satisfies K ≥ Qn for any n ∈ N. Then K Qn = Qn by Proposition7.20(a). By
definition of the Pn , K Pn = Pn and hence K An = An , so also K ≥ An for any natural
number n, by Proposition7.20(a). Hence Proposition3.76 warrants K ≥ A. In other
words A ∈ L0(H) bounds the Qn from above, and any other upper bound K ∈ L (H)

is bigger than A. By definition of supremum, A = supL (H){Qn}n∈N =: ∨n∈NQn . As
A ∈ L0(H), A is also the sup inL0(H). In the above identity

∨n∈NQn = s- lim
n→+∞ Q0 ∨ · · · ∨ Qn

the indexing order of the Qn is not relevant, given that the left-hand side, i.e. the
supremum of {Qn}n∈N, does not depend on arrangements. Formula (7.14) is easy
using ¬ and (7.13). �

7.4 Propositions and States on Quantum Systems

In this section we set out to discuss the first two axioms of the general formulation
of QM, and describe propositions and states of quantum systems by using a suitable
Hilbert space. An important theorem due to Gleason characterises those states. We
will also show that quantum states form a convex set, and can be obtained as linear
combinations of extreme states. The latter, called pure states, are in one-to-one cor-
respondence with elements (rays) of the projective space associated to the physical
system’s Hilbert space.

7.4.1 Axioms A1 and A2: Propositions, States of a Quantum
System and Gleason’s Theorem

Based on what we saw in the previous section, we shall assume the following QM
axiom. Propositions and projectors are denoted by the same symbol, as customary.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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A1. Let S be a quantum system described in a frame system I . Then the set of
testable propositions on S at any given time corresponds one-to-one to a subset of
the lattice L (HS) of orthogonal projectors of S on the separable complex Hilbert
space HS �= {0}. The space L (HS) is called the logic of elementary propositions
of the system, and HS is the Hilbert space associated to S.

Moreover:
(1) compatible propositions correspond to commuting orthogonal projectors;
(2) the logical implication of compatible propositions P ⇒ Q corresponds to the
relation P ≤ Q of the associated projectors;
(3) I (identity operator) and 0 (null operator) correspond to the tautology and the
contradiction;
(4) the negation ¬P of a proposition P corresponds to the projector ¬P = I − P;
(5) only when the propositions P, Q are compatible, the propositions P O Q, P E Q
make physical sense and correspond to the projectors P ∨ Q, P ∧ Q;
(6) if {Qn}n∈N is a countable set of pairwise-compatible propositions, the propositions
corresponding to ∨n∈NQn, ∧n∈NQn make sense.

Remark 7.23 (1)A proper explanation of whyHS should be separablewill be given
later, when we will consider concrete quantum system and give an explicit repre-
sentation of HS . The hypothesis is also necessary in some theoretical results in this
book.
(2) From now on we shall assume that the subset of L (HS) is the entire logic of
elementary propositions L (HS), leaving out for the moment superselection rules.
As wewill see in Sect. 7.6.2 thematter is quite subtle. Aweaker assumptionwould be
to have elementary propositions described by the sublattice of orthogonal projectors
of a von Neumann algebra RS ⊂ B(HS). Self-adjoint elements RS identify with
bounded observables on S, as we will have time to explain, especially in Chap.11.
(3) As we shall discuss better in Sect. 7.6, the set L (HS) contains the subset of
so-called atomic propositions. These correspond (see Theorem7.56) to the atoms
of the lattice. Atomic propositions are defined as follows: P �= 0 is atomic if there
is no P ′ ∈ L (HS) such that P ′ ⇒ P apart from P ′ = 0, P ′ = P . It turns out that
atomic propositions P , Q commute (PQ = QP) if and only if they are either mutu-
ally exclusive PQ = 0 or they coincide P = Q. In L (HS) atomic propositions
are the orthogonal projectors onto one-dimensional subspaces, which implies that
R, S ∈ L (HS) are compatible if and only if they can be written, separately, as dis-
junctions (atmost countable) of sets NR , NS of atomic propositions, so that the atomic
propositions of the union NR ∪ NS are pairwise compatible. The proof, by the above
argument, follows immediately by Proposition3.66. That atomic propositions exist
in classical systems, by the way, is not at all obvious (see [Jau73]).

The existence of a subset of atoms is physically remarkable. If we restrict the
family of physically admissible elementary propositions to some proper sublattice
of L (H), atoms may still exist but they might not necessarily be one-dimensional
projectors.
(4) Apart from S, also the Hilbert space HS depends on the frame system of choice.
Picking a different (inertial) frame system boils down to having a new, yet isomorphic
Hilbert space, as we will see in Chaps. 12 and 13.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_13
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Another formulation, alternative to ours, to build the quantum formalism is the
following. Given a quantum system S, one assigns to any instant t ∈ R a Hilbert
space HS(t) that does not depend on any frame system. This reminds of absolute
space at time t in classical physics, a notion that is independent of frames. The way
the various HS(t) are related depends on the frame system and the time evolution,
the latter described by isomorphisms between spaces at different times t ; it does
not depend upon the chosen frame, in contrast to what we will obtain in Chap.13
(albeit the formalism will be equivalent). If we chose to use frame-independent (but
time-dependent) Hilbert spaces {HS(t)}t∈R, we would not be able to describe the
evolution by a one-parameter group of unitary operators on the same Hilbert space.
This is precisely what happens after having fixed a frame and the Hilbert space once
and for all, as we will see in Chap.13.4 �

Let us pass to the second axiom about quantum states. The crux of the matter is that
a quantum state at time t gives the “probability” that every proposition of the system
is true. Hence the idea is to generalise the notion of σ -additive probability measure.
Instead of defining the measure on a σ -algebra, we must think of it as living on the
set of associated projectors. We know every maximal set of compatible propositions
defines a σ -finite Boolean algebra, itself an extension of a σ -algebra where measures
are defined. So here is the natural principle.

A2 (measure-theory version). A state μ at time t on a quantum system S is a
σ -additive probability measure on L (HS), i.e., a map μ : L (HS) → [0, 1] such
that:
(1) μ(I ) = 1;
(2) if {Pi }i∈N ⊂ L (HS) satisfy Pi Pj = 0, i �= j , then

μ

(
s-

+∞∑

i=0

Pi

)
=

+∞∑

i=0

μ(Pi ) .

Remark 7.24 (1) Demand (1) just says the tautology is true on every state.
(2)Demand (2) clearly holds for finitely many propositions: it is enough that Pi = 0
from a certain index i onwards.
(3) We may rephrase (2) as:

μ (∨i∈NPi ) =
+∞∑

i=1

μ(Pi ) ,

for any collection {Pi }i∈N ⊂ L (HS) of compatible,mutually-exclusive propositions,
so that

∑+∞
i=0 Pi = ∨i∈NPi exists by Theorem7.22.

4Althoughwewill not do so, one could also use two-parameter groupoids of unitary transformations
between different Hilbert spaces.

http://dx.doi.org/10.1007/978-3-319-70706-8_13
http://dx.doi.org/10.1007/978-3-319-70706-8_13
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The proof of the existence of
∑+∞

i=0 Pi is spelt out next, at any rate. Under the
assumptions, partial sums give self-adjoint idempotent operators, hence orthogonal
projectors. Therefore

∑N
i=0 Pi ≤ I by Proposition3.64(e). Moreover

∑N+1
i=0 Pi ≥∑N

i=0 Pi , as is easy to see. So by Proposition3.76 the sequence admits a strong limit.
Immediately, this limit is idempotent and self-adjoint, hence a projector.
(4)Every stateμ clearly determines the equivalent of a positiveσ -additive probability
measure on any maximal commutative set of projectors L0(Hs), which, as seen
before, generalises a σ -algebra. Thus we have extended the notion of probability
measure, as suggested by the term σ -additive probability measure itself.
(5) The reader should however be careful when identifying the probability measure
μ on the non-Boolean lattice L (HS) with an honest probability measure on a σ -
algebra: the fact that we now consider quantum incompatible propositions alters
drastically the rules of conditional probability. The probability that “P is true when
Q holds” abides by a different set of rules from the classical theory if P and Q are
incompatible in quantum sense.
(6) IfHS is separable, aσ -additive probabilitymeasureμonL (HS) in the sense ofA2
is completely determined by its range over atomic propositions (see Remark7.23(3)),
i.e. over orthogonal projectors onto subspaces of dimension 1 inH. The proof follows
directly property (2) in A2, to which μ is subjected. �

Important remark. When we assign a state there will be propositions with prob-
ability 1 of being true, and propositions with probability less than 1, if the system
undergoes a measurement. We may view the first class as properties that the system
really possesses in the state considered.

Under the standard interpretation of QM, where probability has no epistemic
meaning, we are forced to conclude that the properties relative to the second class of
propositions are not defined for the state examined.

An important example for physics is this. Consider a system formed by a quantum
particle on the real line and take propositions PE of the form: “the particle’s position
is in the Borel set E ∈ B(R)”. If the state μ assigns to each PE , E bounded, a
probability less than 1 (such states come by easily, as we shall see with Heisenberg’s
uncertainty principle/theorem) then we must conclude that the particle’s position, in
state μ, is not defined.

From this point of view, the spatial description of particles as points in a manifold
– here R, representing the “physical space at rest” of a frame system – does not play
a central role anymore, unlike in classical physics. In some sense all the properties
of a system (which may vary with the state) are put on an equal footing, and the
“space” in which system and states are described is a Hilbert space. �
From the mathematical perspective the first question to raise is whether maps such
as μ in A2 exist at all.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Given a Hilbert space H we will show they do exist. Recall that B1(H) denotes
trace-class operators on H (Chap. 4).

Proposition 7.25 Let H be a Hilbert space and T ∈ B1(H) a positive (hence self-
adjoint) operator with trace 1. Define μT : L (H) → R by μT (P) := tr(T P) for
any P ∈ L (H). Then:
(a) μT (P) ∈ [0, 1] for any P ∈ L (H),
(b) μT (I ) = 1,
(c) if {Pi }i∈N ⊂ L (H) satisfies Pi Pj = 0, i �= j , then

μT

(
s-

+∞∑

i=0

Pi

)
=

+∞∑

i=1

μT (Pi ) .

Proof (a) The operator T P is of trace class for any P ∈ L (H) by Theorem4.34(b),
for P is bounded, hence we can compute tr(T P). The positivity of T ensures the
eigenvalues of T are non-negative (Proposition3.60(c)). We claim they all belong to
[0, 1]. First, T is compact and self-adjoint (as positive). Using the decomposition of
Theorem4.23, since |A| = A (A ≥ 0) and so in A = U |A| we have U = I ,

T =
∑

λ∈σp(A)

mλ∑

i=1

λ (uλ,i | ) uλ,i . (7.16)

The finite (or countable) set σp(A) consists of the eigenvalues of A, and if λ > 0,
{uλ,i }i=1,...,mλ

is a basis of the λ-eigenspace. The convergence is in the uniform
topology. Let us write the above expansion as

T =
∑

j

λ j (u j | )u j . (7.17)

We labelled over N (or a finite subset thereof, if dim(H) < +∞) the set of eigen-
vectors u j = uλ j ,i , λ j > 0, where λ j is the eigenvalue of u j . Moreover, the set of
eigenvectors was completed to a basis ofH by adding a, generally uncountable, basis
for the kernel of T .

Computing the trace of T with respect to the u j gives

1 = tr(T ) =
∑

j

λ j ,

so λ j ∈ [0, 1]. Note that the above equation proves part (b) as well, for T I = I . Take
now P ∈ L (H) and compute the trace of T P in said basis:

tr(T P) =
∑

j

λ j (u j |Pu j ) .

http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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As (u j |Pu j ) = (Pu j |Pu j ), we have 0 ≤ (u j |Pu j ) ≤ ||P||2||u j ||2 ≤ 1, where we
used ||u j || = 1 and ||P|| ≤ 1 (Proposition3.64(e)). Therefore

0 ≤
∑

j

λ j (u j |Pu j ) ≤
∑

j

λ j = 1

and (a) holds.
(b) is trivially true as seen above. Let us prove (c). Referring to the previous eigen-
vector basis, we have:

μT (P) =
∑

j

λ j

(
u j

∣∣∣∣∣s-
∑

i

Pi u j

)
=

∑

j

λ j

∑

i

(u j |Piu j ) . (7.18)

Both i and j range over a finite or countable set (only the eigenvalues λ j > 0 and the
corresponding finite or countable set of eigenvectors appear in (7.18)). We assume
that the set of indices isN in either case, and the remaining possibilities can be treated
similarly. We may interpret the above double sum as an iterated integral with respect
to the counting measure μ on N:

μT (P) =
∫

N

(∫

N

λ j (u j |Piu j )dμ(i)

)
dμ( j) .

Since N is σ -finite we can define the product measure μ ⊗ μ and we are allowed
to swap the integrals, provided the function N × N � (i, j) �→ |λ j (u j |Piu j )| is inte-
grable with respect to the product measure, in view of the Fubini–Tonelli theorem.
The function is, again by Fubini–Tonelli, μ ⊗ μ-integrable if

∫

N

(∫

N

|λ j (u j |Piu j )|dμ(i)

)
dμ( j) < +∞ .

However, λ j (u j |Piu j ) = λ j (Pju j |Piu j ) ≥ 0 because T ≥ 0, so we can replace
|λ j (u j |Piu j )| by λ j (u j |Piu j ) above. The required condition is, indeed, fulfilled
since:
∫

N

∫

N

λ j (u j |Piu j )dμ(i)dμ( j) =
∑

j

λ j
∑

i

(u j |Piu j ) ≤
∑

j

λ j (u j |u j ) =
∑

j

λ j = 1 ,

where once again we have exploited the bound

∑

i

(u j |Piu j ) =
(
u j

∣∣∣∣∣s-
∑

i

Pi u j

)
≤

∣∣∣∣∣

∣∣∣∣∣s-
∑

i

Pi

∣∣∣∣∣

∣∣∣∣∣

2

||u j ||2 ≤ ||u j ||2 = 1 .

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Swapping the two summation signs in (7.18), we have

μT (P) =
∑

i

∑

j

λ j (u j |Piu j ) =
∑

i

tr(T Pi ) =
∑

i

μT (Pi ) ,

i.e. statement (c). �

The next result, due toGleason [Gle57, Dvu93], is truly paramount, in that it provides
a complete characterisation of the functions that satisfy axiom A2.

Theorem 7.26 (Gleason) Let H be a Hilbert space of finite dimension �= 2, or
infinite-dimensional and separable.

For any map μ : L (H) → [0,+∞] with μ(I ) < +∞ satisfying statement (2) in
A2, there exists a positive operator T ∈ B1(H) such that

μ(P) = tr(T P) for any P ∈ L (H).

Sketch of proof. Take a Hilbert spaceH, either separable and infinite-dimensional, or
just finite-dimensional. If dimH = 1 the thesis is obvious as H is isomorphic to C.
The convex set of positive trace-class operators is made by multiplicative operators
Sm : C � z → mz ∈ C where tr(Sm) = m ≥ 0. On the other hand L (C) = {0, 1},
viewed as multiplicative operators. There is only one map μ : L (C) → [0,+∞]
for every fixed value 0 ≤ m < +∞ satisfying statement (2) in A2, viz. the map
μ(0) := 0, μ(1) = m. For each such μ, T := Sμ satisfies Gleason’s thesis.

Let us consider the case dimH > 2. Define a non-negative frame function onH to
be a mapping f : SH → [0,+∞), SH := {x ∈ H | ||x || = 1}, for which there exists
W ∈ [0,+∞) such that ∑

i∈K
f (xi ) = W

for any Hilbert basis {xi }i∈K ⊂ H. A lengthy argument relying on results of von
Neumann (cf. Gleason, op. cit.) proves the following lemma.

Lemma 7.27 On any Hilbert space, either separable or of finite dimension > 2, for
any non-negative frame function f there exists a bounded, self-adjoint operator T
such that f (x) = (x |T x), for every x ∈ SH.

Consider the projectors Px := (x | ) x , x ∈ SH. With the assumption made on μ it is
straightforward that f (x) := μ(Px ) is a non-negative frame function, since μ ≥ 0
and

∑

i∈K
f (xi ) =

∑

i∈K
μ(Pxi ) = μ

(
∑

i∈K
Pxi

)
= μ (I ) < +∞ .

By the lemma there is a self-adjoint operator T such that μ(Px ) = (x |T x) for
any x ∈ SH. Since (x |T x) ≥ 0 for any x , then T is positive, so T = |T | (in fact:
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|T |2 = T ∗T by polar decomposition, but T ∗T = T 2 because positive roots are
unique (Theorem3.77)). If {xi }i∈K ⊂ H is a Hilbert basis,

+∞ > μ(I ) =
∑

i∈K
f (xi ) =

∑

i∈K
(xi |T xi ) =

∑

i∈K
(xi | |T |xi ) .

ByDefinition4.32 then T = |T | is of trace class. Take now P ∈ L (H), pick aHilbert
basis {xi }i∈J of P(H) and complete it by adding a Hilbert basis {xi }i∈J ′ of P(H)⊥.
Then J is countable (or finite) by Theorem3.30, plus:

P = s-
∑

i∈J

Pxi

by Proposition3.64(d). Eventually,

Pxi Px j = 0

if i �= j are in J . Since Pxi = xi if i ∈ J , and Pxi = 0 if i ∈ J ′, we have

μ(P) =
∑

i∈J

μ(Pxi ) =
∑

i∈J

(xi |T xi ) =
∑

i∈J∪J ′
(xi |T Pxi ) = tr(T P) .

The sketch of the proof ends here. �

Remark 7.28 (1) Gleason’s proof works for separable real and quaternionic Hilbert
spaces, too [Var07].
(2) The operator T has trace 1 if μ(I ) = 1, as in the case of A2.
(3) If the Hilbert space is complex, as in A2 and always in this text, the operator
T associated to μ is unique: any other T ′ of trace class such that μ(P) = tr(T ′P)

for any P ∈ L (H) must also satisfy (x |(T − T ′)x) = 0 for any x ∈ H. If x = 0
this is clear, while if x �= 0 we may complete the vector x/||x || to a basis, in which
tr((T − T ′)Px ) = 0 reads ||x ||−2(x |(T − T ′)x) = 0, where Px is the projector onto
< x >. By Exercise3.21 we obtain T − T ′ = 0.
(4) Imposing dimH �= 2 is mandatory, as the next example shows. OnC

2 the orthog-
onal projectors are 0, I and any matrix of the form

Pn := 1

2

(
I +

3∑

i=1

niσi

)
, with n = (n1, n2, n3) ∈ R

3 such that |n| = 1,

where σ1, σ2, σ3 are the Pauli matrices:

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (7.19)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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There is a one-to-one correspondence between projectors Pn and points n ∈ S
2 on

the unit two-sphere. The functions μ of Gleason’s theorem can be thought of as
maps on S

2 ∪ {0, I }. Gleason’s assumptions boil down to μ(0) = 0, μ(I ) = 1 and
μ(n) = 1 − μ(−n). Positive trace-class operators with unit trace are precisely those
of the form:

ρu = 1

2

(
I +

3∑

i=1

uiσi

)
with u ∈ R

3 such that |u| ≤ 1 . (7.20)

If · is the standard dot product onR
3, a direct computation using Pauli matrices gives

tr(ρu Pn) = 1

2
(1 + u · n) .

The function μ defined by μ(0) = 0, μ(I ) = 1 and

μ(Pn) = 1

2

(
1 + (v · n)3

)
,

for any n ∈ S
2 and a fixed v ∈ S

2, satisfies the hypotheses of Gleason’s theorem.
It is easy to prove, however, that there are no operators ρu like (7.20) such that
μ(Pn) := tr(ρu Pn) for any projector Pu ; that is to say, there are no u ∈ R

3, |u| ≤ 1,
such that

(1 + u · n) = (
1 + (v · n)3

)
for any n ∈ S

2.

�
Gleason’s theorem, the fact that the trace-class operator representing a state is unique
as discussed Remark7.28(3), plus the fact that, in absence of superselection rules,
every known quantum system has a Hilbert space satisfying Gleason’s assumptions,5

lead to a reformulation of axiom A2 involving a technically more useful notion of
state.

A2. A state ρ at time t, on a quantum system S with associated Hilbert space HS, is
a positive trace-class operator on HS with unit trace.

The probability that the proposition P ∈ L (HS) is true on state ρ equals tr(ρP).
In conclusion, and more generally, we can say the following.

Definition 7.29 (State) LetH be aHilbert space (not necessarily separable nor finite-
dimensional). A positive trace-class operator with trace 1 is called a state on H. The
set of states on H is denoted by S(H).

5Particleswith spin 1/2 admit aHilbert space – inwhich the observable spin is defined–of dimension
2. The same occurs to the Hilbert space in which the polarisation of light is described (cf. helicity
of photons). When these systems are described in full, however, for instance by including freedom
degrees relative to position or momentum, they are representable on a separable Hilbert space of
infinite dimension.
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We have the following almost obvious result (valid also for H non-separable or
dim H = 2) which proves that there is no redundancy in our definition of states and
elementary propositions.

Proposition 7.30 If H is a Hilbert space, the following facts hold.
(a) S(H) separates L (H): if P, P ′ ∈ L (H) satisfy tr(ρP) = tr(ρP ′) for all ρ ∈
S(H), then P = P ′.
(b) L (H) separates S(H): if ρ, ρ ′ ∈ L (H) satisfy tr(ρP) = tr(ρ ′P) for all P ∈
L (H), then ρ = ρ ′.

Proof Both statements immediately arise form the property that if A, A′ ∈ B(H)

satisfy (ψ |(A − A′)ψ) = 0 for every ψ ∈ H, then A = A′ (Exercise3.21). To prove
(a) it suffices to use states ρ = ψ(ψ |·). For (b) it is enough to exploit projectors
P = ψ(ψ |·) with ψ ∈ H and ||ψ || = 1.

Remark 7.31 For H separable, the statement of the theorem is still valid when we
replace S(H) with the space of σ -additive probability measures over L (H): part
(b) is nothing but the definition of measure; part (a) is a consequence of Propo-
sition7.30(a), because positive trace-class operators with trace 1 are σ -additive
probability measures even when dimH = 2 (a case not covered by Gleason’s
theorem). �

7.4.2 The Kochen–Specker Theorem

Gleason’s theoremhas amomentous consequence in physics, which distinguishes the
states of classical systems from quantum ones. Classical systems admit completely
deterministic states, described by what we have called sharp states: Dirac measures
with support at a point in phase space at the time considered. Each such measure
maps sets either to 0 or to 1. These are states on which every statement is either
true or false, and there is no intermediate option. States of this kind do not occur in
quantum systems because of the following important fact [KoSp67].

Theorem 7.32 (Kochen–Specker) If H is a Hilbert space, separable or of finite
dimension> 2, there is no functionμ : L (H) → [0, 1] fulfilling (1) and (2) in axiom
A2 (measure-theory version) and taking values in {0, 1}.
Proof If x belongs to SH (unit length) and Px is the orthogonal projector (x |·)x , any
suchμ gives byGleason’s theorem (the dimension is> 2) amapSH � x �→ μ(Px ) =
(x |T x), whereμ determines a unique T ∈ B1(H)with T ≥ 0, trT = 1. This map is
patently continuous for the topology of SH induced by the ambient H. We claim SH

is path-connected, i.e., for any x, y ∈ SH there is a continuous path γ : [a, b] → SH

starting at γ (a) = x and ending at γ (b) = y. If so, sinceSH � x �→ μ(Px ) = (x |T x)
is continuous, its image is clearly path-connected (as composite of paths in SH withμ

itself). As this image belongs in {0, 1}, the possibilities are that it is {0, 1}, or {0}, or

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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{1}. But there is no path joining 0 and 1 contained in {0, 1}, so necessarilyμ(Px ) = 0
for any x ∈ SH, or μ(Px ) = 1 for any x ∈ SH. In the former case (x |T x) = 0 for any
x , hence tr(T ) = 0, violating tr(T ) = 1. In the latter case (x |T x) = 1 for any x ,
again contradicting tr(T ) = 1 by dimensional reasons.

To conclude we must then show SH is indeed path-connected. Taking x, y ∈ SH

we have two options. The first is that x = eiα0 y for some α0 > 0, so x is joined to y
by the curve [0, α0] � α �→ eiα y. The curve is continuous in theHilbert topology and
totally contained in S. The second option is that x is a linear combination of y and
some y′ ∈ SH orthogonal to y, obtained fromcompleting y to an orthonormal basis for
the span of y, x . Since ||x || = ||y|| = ||y′|| = 1 and y ⊥ y′, then x = eiα(cosβ)y +
eiδ(sin β)y′ for three real numbers α, β, δ. But then x is joined to y by the continuous
curve, all contained in SH, defined by varying each of the three parameters on suitable
adjacent intervals. �

In particular, if H is separable or of finite dimension > 2, it is impossible to define
a state such that in each maximal set of compatible elementary propositionsL0(H),
every proposition P ∈ L0(H) is certainly either true or false. This is because every
P ∈ L (H) belongs to amaximal setL0(H) and the theorem above holds. This no-go
result is relevant when one tries to construct classical models of QM by introducing
“hidden variables” of classical type, essentially, because these severely restrict the
models. The result by Kochen and Specker (obtained independently from Gleason’s
theorem,with amuchmore complicated and involved proof) implies that it is possible
to embed the set of quantum-mechanical observables in a set of classical quantities
only in presence of constraints on the simultaneous values attained by the variables.
Hidden variables must satisfy a constraint known as contextuality and thus cannot
be completely classic. For a general discussion on the use of hidden variables and
the obstruction due to the lack of dispersion-free states, i.e. sharp states (also in
more general contexts than the formulation of QM in Hilbert spaces) we recommend
[Jau73, Chap. 7] and [BeCa81, Chap. 25].

7.4.3 Pure States, Mixed States, Transition Amplitudes

Let us now study the set of statesS(HS) when HS is the Hilbert space associated to
the quantum system S. A few reminders will be useful.

Given a vector space X, a finite linear combination
∑

i∈F αi xi is called convex if
αi ∈ [0, 1], i ∈ F , and

∑
i∈F αi = 1.

Moreover (Definition2.65)C ⊂ X is called convex if for any pair x, y ∈ C , λx +
(1 − λ)y ∈ C for all λ ∈ [0, 1] (and thus every convex combination of elements in
C belongs to C).

If C is convex, e ∈ C is called extreme if it cannot be written as e = λx + (1 −
λ)y, with λ ∈ (0, 1), x, y ∈ C \ {e}.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Definition 7.33 (Ray of a projective space) Let X be a vector space over K = C or
R. Consider the equivalence relation:

u ∼ v ⇔ v = αu for some α ∈ K \ {0}.

The quotient space X/∼ is the projective space over X. We call elements of X/∼
other than [{0}] (the equivalence class of the null vector) rays of X.
Proposition 7.34 Let (H, ( | )) be a Hilbert space.
(a) S(H) is a convex closed subset inB1(H).
(b) The extreme points in S(H) are those of the form:

ρψ := (ψ | )ψ , for every vector ψ ∈ H with ||ψ || = 1.

This sets up a bijection between extreme states and rays ofH, which maps the extreme
state (ψ | )ψ to the ray [ψ].
(c) Any state ρ ∈ S(H) satisfies

ρ ≥ ρρ,

and is extreme if and only if
ρρ = ρ .

(d) Any state ρ ∈ S(H) is a linear combination of extreme states, including infinite
combinations in the strong operator topology (or the uniform one if we rearrange
the sum in accordance with the decomposition of Theorem4.23). In particular there
is always a decomposition

ρ =
∑

φ∈N
pφ(φ| )φ,

where N is an orthonormal eigenvector basis for ρ, pφ ∈ [0, 1] is the eigenvalue of
φ ∈ N, every pφ-eigenspace (pφ �= 0) is finite-dimensional, and

∑

φ∈N
pφ = 1 .

Proof (a) Take two states ρ, ρ ′. It is clear λρ + (1 − λ)ρ ′ is of trace class because
trace-class operators form a subspace in B(H) (Theorem4.34). By the trace’s lin-
earity (Proposition4.36):

tr [λρ + (1 − λ)ρ ′] = λtrρ + (1 − λ)trρ ′ = λ1 + (1 − λ)1 = 1 .

If f ∈ H and λ ∈ [0, 1], since ρ and ρ ′ are positive:

( f |(λρ + (1 − λ)ρ ′) f ) = λ( f |ρ f ) + (1 − λ)( f |ρ ′ f ) ≥ 0 .

http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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Hence λρ + (1 − λ)ρ ′ is a state if ρ, ρ ′ are states and λ ∈ [0, 1]. To conclude, we
prove that S(H) is closed in the natural topology of B1(H). Let ρ be an oper-
ator in B1(H) such that ρn → ρ as n → +∞ for some sequence of elements
ρn ∈ S(H). Consequently ρn → ρ also holds in the natural topology of B(H)

((Proposition4.38(d)) and hence in the weak topology. Therefore, as ρn ≥ 0 for
every n ∈ N, we finally have that ρ ≥ 0. The fact that tr(ρ) = 1 immediately fol-
lows from tr(ρn) = 1 for every n, since the trace is continuous with respect to || · ||1.
We conclude that ρ ∈ S(H). But ρ was an arbitrary limit point ofS(H), soS(H) is
closed inB1(H).
(b)–(d) Consider ρ ∈ S(H). The operator ρ is compact and self-adjoint (as positive).
Using the decomposition of Theorem4.23, and since |ρ| = ρ (ρ ≥ 0), so U = I in
the polar decomposition of ρ = U |ρ|, we find:

ρ =
∑

λ∈σp(ρ)

mλ∑

i=1

λ (uλ,i | ) uλ,i . (7.21)

Above, σp(ρ) is the set of eigenvectors of ρ, and if λ > 0, {uλ,i }i=1,...,mλ
is a basis of

the λ-eigenspace. At last, convergence is understood in the uniform topology if the
eigenspaces are ordered in accordance with Theorem4.23. If not, convergence is in
the strong operator topology (we shall see in Example8.60(1) that this is customary
for spectral expansions). We have proved (d).

Completing ∪λ>0{uλ,i }i=1,...,mλ
by adding a basis for Kerρ, by Proposition4.36

we obtain:
1 = tr(ρ) =

∑

λ∈σp(ρ)

mλλ . (7.22)

Suppose nowρψ := (ψ | )ψ , ||ψ || = 1. Immediately,ρψ ∈ S(H).Wewant to prove
ρψ is extreme in S(H). So assume there are ρ, ρ ′ ∈ S(H) and λ ∈ (0, 1) such that

ρψ = λρ + (1 − λ)ρ ′ .

We claim ρ = ρ ′ = ρψ .
Consider the orthogonal projector Pψ = (ψ | )ψ . It is clear (completing ψ to a

basis) that tr(ρψ Pψ) = 1, so

1 = λtr(ρPψ) + (1 − λ)tr(ρ ′Pψ) .

As λ ∈ (0, 1) and 0 ≤ tr(ρPψ) ≤ 1, we have 0 ≤ tr(ρ ′Pψ) ≤ 1, which is possible
only if tr(ρPψ) = tr(ρ ′Pψ) = 1. So let us prove that tr(ρPψ) = 1 and tr(ρ ′Pψ) = 1
imply ρ = ρ ′ = ρψ .

Decomposing ρ as in (7.21), tr(ρPψ) = 1 becomes

∑

j

λ j |(u j |ψ)|2 = 1 , (7.23)

http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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where: the eigenvectors u j = uλ,i , λ > 0, were labelled by N or a finite subset, λ j is
the eigenvalue of u j andwe added to these eigenvectors a basis for the null space of ρ.
The overall basis may be uncountable, but the values j for which λ j �= 0 form a finite
or countable set, because ρ is compact. Also the indices j such that |(u j |ψ)| �= 0
are countable at most. For the rest of the proof only the union of these two subsets
of indices is relevant, so we shall assume that j ∈ N (the finite case being trivial, by
the way). By assumption we have

∑

j

λ j = 1 , (7.24)

∑

j

|(u j |ψ)|2 = 1 . (7.25)

Since λ j ∈ [0, 1] and |(u j |ψ)|2 ∈ [0, 1] for any j ∈ N, we obtain

∑

j

λ2
j ≤ 1 , (7.26)

∑

j

|(u j |ψ)|4 ≤ 1 . (7.27)

Therefore the sequences of the λ j and |(u j |ψ)|2 belong to �2(N). Identity (7.23),
plus (7.26), (7.27) and the Cauchy–Schwarz inequality in �2(N), give

∑

j

λ2
j = 1 , (7.28)

∑

j

|(u j |ψ)|4 = 1 . (7.29)

Since λ j ∈ [0, 1] for any j ∈ N, (7.24) and (7.28) are consistent only if all λi vanish
except one, say λp = 1. Likewise, since |(u j |ψ)|2 ∈ [0, 1] for any j ∈ N, (7.25) and
(7.29) are consistent only if all |(u j |ψ)| are zero except for |(uk |ψ)| = 1. As the ui
are a basis and ||ψ || = 1, necessarily ψ = αuk , with |α| = 1. Clearly, then, k = p,
for otherwise tr(ρPψ) = 0. But

ρ =
∑

j

λ j (u j | )u j ,

so eventually

ρ = λk(uk | )uk = 1 · (uk | )uk = α−1α−1(ψ | )ψ = |α|−1(ψ | )ψ = (ψ | )ψ = ρψ .

In the same way we can prove ρ ′ = ρψ .
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If a state ρ is not of the type (ψ | )ψ , we can still decompose it orthogonally as

ρ =
∑

j

λ j (u j | )u j ,

where at least two vectors u p, uq do not vanish and are perpendicular. Hence in
particular λp, 1 − λp ∈ (0, 1). Then we can write ρ as

ρ = λp(u p| )u p + (1 − λp)
∑

j �=p

λ j

(1 − λp)
(u j | )u j .

As already said (u p| )u p is a state, and easily, we also have

ρ ′ :=
∑

j �=p

λ j

(1 − λp)
(u j | )u j

is a state of S(H) (obviously ρ ′ �= (u p| )u p by construction, as uq � u p). So we
have proved ρ is not extreme.

The function f mapping the extreme state (ψ | )ψ to the ray [ψ] is well defined.
In fact, let us first notice that ||ψ || = 1 by definition of extreme state, so ψ �= 0
and [ψ] is a ray. Extremes states may be expressed in different ways: namely (as is
immediate to see from ||φ|| = 1) (ψ | )ψ = (φ| )φ iff ψ = eiαφ for some α ∈ R.
But then by definition of ray [ψ] = [φ]. We claim f is one-to-one: if φ, ψ are unit
vectors and [ψ] = [φ], then ψ = eiαφ for some α ∈ R, so (ψ | )ψ = (φ| )φ. The
function is also onto, because if [φ] is a ray, ||φ|| �= 0 so there exists ψ ∈ [φ] with
||ψ || = 1. Then f ((ψ | )ψ) = [φ] since ψ = αφ for some non-zero α ∈ C.
(c) Begin with the second claim. If ρ is extreme, ρρ = ρ using the form in part (b)
for extreme points. Decomposing a state ρ as:

ρ =
∑

j

λ j (u j | )u j

(see the meaning above) gives

ρρ =
∑

j

λ2
j (u j | )u j .

If ρρ = ρ, passing to traces gives

∑

j

λ2
j =

∑

j

λ j = 1
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with λ j ∈ [0, 1]. This is possible only if all λ j are zero but one, λk = 1. Then

ρ =
∑

j

λ j (u j | )u j = 1 · (uk | )uk ,

which is an extreme state by (b).
Now to the first claim. Let x = ∑

j α j u j be a point in H (the u j are a basis of H).
Since λ j ∈ [0, 1],
(x |ρρx) =

∑

j

λ2j (x |u j )(u j |x) =
∑

j

λ2j |α j |2 ≤
∑

j

λ j |α j |2 =
∑

j

λ j (x |u j )(u j |x) = (x |ρx) .

Therefore ρρ ≤ ρ. �

Remark 7.35 Let || ||i refer to the spaces of compact operatorsBi (H), for i = 1, 2.
The following four facts are equivalent:

(i) ρ ∈ S(H) is extreme,
(ii) ||ρ|| = ||ρ||1,
(iii) ||ρ||2 = ||ρ||1,
(iv) ||ρ|| = ||ρ||2,
(v) ||ρ||2 = 1.

The elementary proof is left to the reader. �

Now we have a definition.

Definition 7.36 Let (H, ( | )) be a Hilbert space.
(a) Extreme elements in S(H) are called pure states, and their set is indicated by
Sp(H). Non-extreme states aremixed states, mixtures or nonpure states.
(b) Suppose:

ψ =
∑

i∈I
αiφi ,

where I is finite, or countable (and the series converges), the vectors φi ∈ H are non-
null and 0 �= αi ∈ C for any i ∈ I . One says the state (ψ | )ψ/||ψ ||2 is a coherent
superposition of the states (φi | )φi/||φi ||2.
(c) If ρ ∈ S(H) satisfies:

ρ =
∑

i∈I
piρi

with I finite, ρi ∈ S(H), 0 �= pi ∈ [0, 1] for any i ∈ I , and
∑

i pi = 1, the state ρ

is called incoherent superposition of the ρi (possibly pure).
(d) If ψ, φ ∈ H satisfy ||ψ || = ||φ|| = 1:

(i) the complex number (ψ |φ) is the transition amplitude or probability ampli-
tude of state (φ| )φ on state (ψ | )ψ ;

(ii) the non-negative real number |(ψ |φ)|2 is the transition probability of state
(φ| )φ on state (ψ | )ψ .
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Remark 7.37 (1) The vectors of the Hilbert space of a quantum system associated
to pure states are often referred to, in physics, as wavefunctions. The reason for
the name is due to the earliest formulation of QM in terms of Wave Mechanics (see
Chap.6). Similarly, operators inS(H) are very often called statistical operators or
density matrices in physics’ literature. We will use this language sometimes.
(2) The possibility of creating pure states by non-trivial combinations of vectors
associated to other pure states is called, in the jargon ofQM, superposition principle
of (pure) states.
(3) In (c), in case ρi = ψi (ψi | ), we do not require (ψi |ψ j ) = 0 if i �= j . However
it is immediate to see that if I is finite, if ρi is a mixed or pure state and if pi ∈ [0, 1]
for any i ∈ I ,

∑
i pi = 1, then:

ρ =
∑

i∈I
piρi

is of trace class (obvious: trace-class operators are a vector space and every ρi is of
trace class), positive (as positive linear combination of positive operators), and it has
unit trace: this because by the trace’s linearity (Proposition4.36) we have

trρ = tr

(
∑

i∈I
piρi

)
=

∑

i∈I
pi trρi =

∑

i∈I
pi · 1 = 1 .

The decomposition of ρ over an eigenvector basis can be considered a limiting case
of the above: when I is countable, in fact, ρi = ψi (ψi | ) and (ψi |ψ j ) = δi j .

It is important to remark that in general, a given mixed state admits several
incoherent decompositions by pure and nonpure states.
(4) Consider a pure state ρψ ∈ Sp(H), written ρψ = (ψ | )ψ for some ψ ∈ H with
||ψ || = 1. What we want to emphasise is that this pure state is also an orthogonal
projector Pψ := (ψ | )ψ , so it must correspond to a proposition about the system.
The naïve and natural interpretation6 of the proposition is: “the system’s state is the
pure state given by the vector ψ”.

This interpretation is due, if ρ ∈ S(H), to the fact that tr(ρPψ) = 1 ⇔ ρ =
(ψ | )ψ . In fact, if ρ = (ψ | )ψ , by completing ψ to a basis and taking the trace,
we have tr(ρPψ) = 1. Conversely, suppose tr(ρPψ) = 1 for the state ρ. Then ρ =
(ψ | )ψ from the proof of Proposition7.34.
(5) Part (4) allows to interpret the squaredmodulus of the transition amplitude (φ|ψ).
If ||φ|| = ||ψ || = 1, as the definition of transition amplitude imposes, tr(ρψ Pφ) =
|(φ|ψ)|2, where ρψ := (ψ | )ψ and Pφ = (φ| )φ. Using (4) we conclude:
|(φ|ψ)|2 is the probability that the state, given (at time t) by the vector ψ , following
a measurement (at time t) on the system becomes determined by φ.

6We cannot but notice how this interpretation muddles the semantic and syntactic levels. Although
this could be problematic in a formulation within formal logic, the use physicists make of the
interpretation eschews the issue.

http://dx.doi.org/10.1007/978-3-319-70706-8_6
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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Notice |(φ|ψ)|2 = |(ψ |φ)|2, so the probability transition of the state determined
by ψ on the state determined by φ coincides with the analogous probability where
the vectors are swapped. This fact is, a priori, highly non-evident in physics. �

To conclude we state and prove an elementary but useful technical result concerning
states.

Proposition 7.38 LetHbe aHilbert space, takeρ ∈ S(H), P ∈ L (H)and consider
the eigenvectors decomposition

ρ =
∑

φ∈N
pφ(φ| )φ

of Proposition7.34(d). The following facts are equivalent.
(a) tr(Pρ) = 1.
(b) φ ∈ P(H) for every eigenvector φ of ρ in the basis N .
(c) PρP = ρ.

Proof Evidently (b) implies (a). Indeed, if (b) holds true, we have

tr(Pρ) =
∑

φ∈N
pφ||Pφ||2 =

∑

φ∈N
pφ||φ||2 =

∑

φ∈N
pφ = 1 .

Let us prove the converse implication. First of all, observe that, for P ∈ L (H)

and ψ ∈ H, we immediately have ||Pψ − ψ ||2 = ||Pψ ||2 + ||ψ ||2 − (Pψ |ψ) −
(ψ |Pψ) = ||Pψ ||2 + ||ψ ||2 − (Pψ |Pψ) − (Pψ |Pψ) = ||Pψ ||2 + ||ψ ||2 − 2
||Pψ ||2. We have found that ||Pψ − ψ ||2 = ||ψ ||2 − ||Pψ ||2. We conclude that
ψ ∈ P(H) is equivalent to ||Pψ || = ||ψ ||. Now assume that (a) is valid. It can be
rephrased as

1 = tr(Pρ) =
∑

φ∈N
pφ||Pφ||2 .

Since ||Pφ||2 ≤ ||φ||2 = 1 and pφ ≥ 0with
∑

φ∈N pφ = 1, the identity above can be
fulfilled only if ||Pφ||2 = 1 for every φ ∈ N . In other words ||Pφ|| = ||φ|| and thus
Pφ ∈ P(H) for every φ ∈ N . To conclude, notice that (b) implies (c) immediately by
the eigenvector decomposition of ρ. Moreover, if (c) is valid, tr(Pρ) = tr(PPρ) =
tr(PρP) = trρ = 1, so that (a) is also true. �

7.4.4 Axiom A3: Post-Measurement States and Preparation
of States

The standard formulation of QM assumes a third axiom, introduced by vonNeumann
and generalised by Lüders [BeCa81], about what occurs to a system S, in state
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ρ ∈ S(HS) at time t , when we measure a proposition P ∈ L (HS) that is true (so in
particular tr(ρP) > 0, prior to the measurement).
A3. If the quantum system S is in state ρ ∈ S(HS) at time t and a proposition
P ∈ L (HS) is true after a measurement at time t, the system’s state immediately
afterwards is:

ρP := PρP

tr(ρP)
. (7.30)

In particular, if ρ is pure and determined by the unit vector ψ , immediately after
measurement the state is still pure, and determined by:

ψP = Pψ

||Pψ || .

Obviously, in either case ρP andψP define states. In the former, in fact, ρP is positive
of trace class, with unit trace, while in the latter ||ψP || = 1.

Remark 7.39 (1) As already highlighted, measuring a property of a physical quan-
tity goes through the interaction between the system and an instrument (supposed
macroscopic and obeying the laws of classical physics). Quantum Mechanics, in its
standard formulation, does not establish what a measuring instrument is; it only says
they exist. Nor is it capable of describing the interaction of instrument and quantum
system beyond the framework set inA3. Several viewpoints and conjectures exist on
how to complete the physical description of the measuring process. These are called,
in the slang of QM, collapse, or reduction, of the state or of the wavefunction. For
various reasons, though, none of the current proposals is entirely satisfactory [Des99,
Bon97, Ghi07, Alb94]. A very interesting proposal was put forward in 1985 by G.C.
Girardi, T. Rimini and A.Weber (Physical ReviewD34, 1985 p. 470), who described
in a dynamically nonlinear way the measuring process and assumed it is due to a
self-localisation process, rather than to an instrument. This idea, alas, still has sev-
eral weak points: in particular it does not allow – at least not in an obvious manner
– for a relativistic description.
(2) Axiom A3 refers to non-destructive testing, also known as indirect measurement
ormeasurement of the first kind [BrKh95], where the physical system examined (typ-
ically a particle) is not absorbed/annihilated by the instrument. They are idealised
versions of the actual processes used in labs, and only in part can they be modelled
in such a way.
(3) Measuring instruments are commonly employed to prepare a system in a cer-
tain pure state. Theoretically-speaking the preparation of a pure state is carried out
like this: a finite collection of compatible propositions P1, . . . , Pn is chosen so that
the projection subspace of P1 ∧ · · · ∧ Pn = P1 · · · Pn is one-dimensional. In other
words P1 · · · Pn = (ψ | )ψ for some vector with ||ψ || = 1. The existence of such
propositions is seen in practically all quantum systems used in experiments. (From a
theoretical point of view these are atomic propositions in the sense ofRemark7.23(3),
and must exist because of the Hilbert space.) The propositions Pi are then simul-
taneously measured on several identical copies of the physical system of concern
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(e.g., electrons), whose initial states, though, are unknown. If the measurements of
all propositions are successful for one system, the post-measurement state is deter-
mined by the vector ψ , and the system was prepared in that particular pure state.

Normally each projector Pi is associated to a measurable quantity Ai on the
system, and Pi defines the proposition “the quantity Ai belongs to the set Ei”. So in
practice, in order to prepare a system (available in arbitrarilymany identical copies) in
the pure stateψ , one measures a number of compatible quantities Ai simultaneously,
and selects the systems for which the readings of the Ai belong to the given sets Ei .
(4) Let us explain how to obtain nonpure states from pure ones. Consider q1 identical
copies of system S prepared in the pure state associated toψ1, q2 copies of S prepared
in a different pure state associated to ψ2 and so on, up to ψn . If we mix these states
each system will be in the necessarily nonpure state (see Exercise7.18):

ρ =
n∑

i=1

pi (ψi | )ψi ,

where pi := qi/
∑n

i=1 qi . In general, (ψi |ψ j ) is not zero if i �= j , so the above
expression forρ is not the decomposition in an eigenvector basis forρ. This procedure
hints at the existence of two different types of probability: one intrinsic and due to
the quantum nature of state ψi ; the other epistemic, and encoded in the probability
pi . But this is not true: once a nonpure state has been created, as above, there is
no way, within QM, to distinguish the states forming the mixture. For example, the
same ρ could have been obtained mixing other pure states than those determined by
the ψi . In particular, one could have used those in the eigenvector decomposition.
For physics, no kind of measurement (under the axioms of QM available thus far)
would distinguish the two mixtures.
(5)AxiomA3 permits us to give an interesting and natural interpretation to quantities
like ||PQψ ||2 = tr(ρψ PQ) where P, Q are incompatible propositions and ψ a
normalised vector representing a pure state. If P and Q were compatible ||PQψ ||2
would simply be the probability that P ∧ Q is true in the pure state defined by ψ .
This interpretation is now untenable. Taking the second case in A3 into account, we
can easily interpret the right-hand side of

||PQψ ||2 =
∣∣∣∣

∣∣∣∣
PQψ

||Qψ ||
∣∣∣∣

∣∣∣∣
2

||Qψ ||2 .

It has the natural meaning of the probability of measuring first Q true and next P true
in a consecutive measurement of Q and P . The asymmetry ||PQψ ||2 �= ||QPψ ||2 is
in agreement with this interpretation. It is worth noticing that the same interpretation
can be given if P and Q are compatible. In that case, however, we will find the same
result as by a simultaneous measurement of P and Q. �

Axiom A3 can equivalently be stated using σ -additive probability measures on
L (HS) as, for dim HS �= 2, these are in one-to-one correspondence with the ele-



7.4 Propositions and States on Quantum Systems 345

ments of S(HS) by Gleason’s theorem. This equivalent formulation provides a nat-
ural interpretation of the axiom itself in terms of conditional probability:
A3 (measure-theory version). If μ : L (HS) → [0, 1] is the σ -additive probability
measure representing the state of the system, andproposition P ∈ L (HS) is true after
a measurement at time t, the system’s state immediately afterwards is represented
by the σ -additive probability measure μP given by

μP(Q) := μ(PQP)

μ(P)
for every Q ∈ L (HS) . (7.31)

This formula is nothing but the translation ofA3 in terms of associatedmeasures. The
formulation of the post-measurement postulate in terms of measures, in principle, is
valid also for dimHS = 2.

The measure μP actually enjoys a natural conditional-probability property which
completely fixes it, and therefore it can be used as a justification of axiomA3. The idea
is that as soon as a proposition P has been proved to be true for a state (probability
measure) μ, another proposition Q ≤ P must have probability μ(Q)/μ(P) to be
true in the post-measurement state μP . This constraint is completely natural when
the probabilitymeasures are defined onBoolean lattices (σ -algebras), and is the basic
idea of conditional probability. In those Boolean cases, the requirement completely
fixes the new probability measure μP over the whole lattice and not only over the
sublattice of the events P ≤ Q. The reader can prove this easily, by observing that
a probability measure μP satisfying μP(Q) = μ(Q)/μ(P) for Q ≤ P must have
support contained in P since μP(P) = μ(P)/μ(P) = 1. Actually, the result is true
even if L (HS) is not Boolean.

Proposition 7.40 Suppose dim(HS) �= 2 in axiomA3. The post-measurement prob-
ability measure μP (relative to the probability measure μ with value 1 on P ∈
L (HS)) is the unique probability measure on L (HS) such that

μP(Q) = μ(Q)

μ(P)
for every Q ∈ L (HS) with Q ≤ P .

Proof If Q ≤ P then PQP = Q so that μP(Q) = μ(PQP)

μ(P)
= μ(Q)

μ(P)
. Conversely, let

ν be a σ -additive probability measure on the whole spaceL (HS) such that ν(Q) =
μ(Q)

μ(P)
if Q ≤ P , and indicate by Tν the trace-class operator associated with ν and by

TμP the one associated with μP . For Q = P we find tr(TνP) = μ(P)/μ(P) = 1 =
tr(TμP P). Now, Proposition7.38 implies Tν = PTνP and TμP = PTμP P . Hence
both Tν and TμP keepM = P(HS) invariant and vanish onM⊥. As a consequence it
is enough to prove that TμP�M= Tν�M to conclude that TμP = Tν , i.e., ν = μP . As a
matter of fact we already know that tr(Tν�M Q) = ν(Q) = μP(Q) = tr(TμP�M Q)
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for Q ≤ P . If we choose Q = (ψ |·)ψ with ψ ∈ M of unit norm then the above
identity reads (ψ |(Tν�M −TμP�M)ψ) = 0, which implies Tν�M −TμP�M= 0, as we
wanted. �

7.4.5 Quantum Logics

The discussion in Sect. 7.3.2 explains that it makes sense to describe propositions
about quantum system in terms of the (non-Boolean) projector lattice of a Hilbert
space, and incompatible propositions in terms of non-commuting projectors. More-
over, it makes sense to assign the usualmeaning to∧,∨ in terms of the connectives E ,
O , provided the former are employed with projectors describing compatible propo-
sitions.

In the general case R := P ∧ Q denotes simply the projector onto the intersection
of the targets of P , Q. This R may be a meaningful statement about the system, but
as we noted earlier it does not correspond to the proposition P E Q when P, Q
relate to incompatible propositions. Conversely, the approach of Birkhoff and von
Neumann, that befits the so-called Standard Quantum Logic, uses ∨ and ∧ as proper
connectives (yielding an algebra different from the usual one), even if they operate
between projectors of incompatible propositions (i.e. for which no instrument can
evaluate the truth of P , Q simultaneously). This is the reason why the point of
view of Quantum Logic has been criticised by physicists (cf. [Bon97, Chap. 5] for
a thorough discussion). In the past years, alongside the modern development of
Birkhoff’s and von Neumann’s approach [EGL09], many authors have introduced
new formal strategies that differ from Quantum Logic à la Birkhoff–von Neumann,
in particular by means of topos theory [DoIs08, HLS09].

A difficult issue is the operational meaning of P ∧ Q and P ∨ Q when P and
Q are incompatible. We know that P ∧ Q and P ∨ Q are orthogonal projectors
and correspond to some elementary proposition in their own right, which can be
experimentally tested by some procedure. However, just because P and Q cannot be
simultaneously tested, this procedure does not have an evident meaning in terms of
the outcome of the measurements of P and Q. Even if we will shall not enter into
the details of this ongoing debate (see also Sect. 7.6.1), let us observe that as soon
as one assumes that elementary propositions are described by orthogonal projectors
on the Hilbert space HS , a proposition P ∈ L (HS) is completely determined by
the class of states ρ ∈ S(HS) for which P is always true: tr(ρP) = 1. This is an
immediate consequence of Proposition7.38.We therefore may identify a proposition
with the class of states for which the proposition is always true. This approach
permits us to partially grasp the operational meaning of P ∧ Q even when P and
Q are incompatible. A state ρ makes P ∧ Q always true (tr(ρP ∧ Q) = 1) if and
only if the outcome of separate measurements of P, Q on that state (either on the
same system or on different copies, all prepared in the same state ρ) is always 1:
tr(ρP) = tr(ρQ) = 1. The proof of this fact is trivial: a measurement of P or Q
does not change the stateψ , in agreement withA3, because tr(ρP ∧ Q) = 1 implies
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that each eigenvector in the decomposition of ρ belongs to the intersection of the
projection spaces of P and Q, by Proposition7.38. Irrespective of whether P and
Q are compatible, therefore, P ∧ Q is the elementary proposition which is always
true on ρ if and only if P and Q are always true on ρ when measured separately
(independently from the order, when the measurements are performed on a single
system). This interpretation of the Boolean operation ‘meet’ can be taken to the level
of the abstract elementary propositions L [BeCa81, Sect. 16.5], see Sect. 7.6.1. A
similar proposal for P ∨ Q would use the identity P ∨ Q = ¬(¬P ∧ ¬Q), valid in
orthocomplemented lattices. But the ensuing interpretation is much more difficult to
accept, for it involves a counterfactual conditional statement.

The observation above on the practical meaning of P ∧ Q in case of incompatible
propositions also leads to a suggestive operational interpretation of P ∧ Q due to
Jauch [Jau73], based on a result of von Neumann (Theorem13.7 in [Neu50]).

Theorem 7.41 (von Neumann’s theorem on iterated projectors) LetH be a complex
Hilbert space and P, Q : H → H orthogonal projectors, in general not commuting.
Calling, as usual, P ∧ Q the orthogonal projector onto P(H) ∩ Q(H), we have:

(P ∧ Q)x = lim
n→+∞(PQ)nx for any x ∈ H. (7.32)

Proof First, Q(PQ)n = (QPQ)n = (QP)nQ. The sequence An = (QPQ)n ∈
B(H) satisfies An ≥ An+1 ≥ 0: ||√QPQ||2 = ||QPQ|| ≤ ||Q||2||P|| ≤ 1 and 0 ≤
(x |An+1x) = ||√QPQ(QPQ)n/2x ||2 ≤ ||√QPQ||2||(QPQ)n/2x ||2 = ||√QPQ||2
(x |Anx). By Proposition3.76, s- limn→+∞(QPQ)n = R ∈ B(H). Immediately,
RR = R and (Rx |y) = limn(x |(Q(PQ)n)∗y) = limn(x |(QP)nQy) = (x |Ry), so
R = R∗. By construction PR = s- limn PQ(PQ)n = R. Therefore (PQ)n → R ∈
L (H) in the strong topology. Analogously (QP)n → R′ ∈ L (H) in the same topol-
ogy. However, (x |(PQ)n y) → (x |Ry) is equivalent to ((QP)nx |y) → (x |Ry), i.e.
(R′x |y) = (x |Ry). Since R′ = R′∗ we have R′ = R. Clearly RP = R = RQ, so
R(H) ⊃ P(H) ∩ Q(H). The orthogonal to the latter space is generated (by De Mor-
gan’s laws) by (¬P)(H) and (¬Q)(H). As R(¬P) = R(¬Q) = 0, we conclude
R(H) = P(H) ∩ Q(H). �

There is an interesting physical point of view that interprets the right-hand side of
(7.32) as the consecutive and alternated measurement of an infinite sequence of
propositions P , Q. From this perspective the proposition P ∧ Q is always true for a
pure state represented by the unit vector ψ of a quantum system (||P ∧ Qψ ||2 = 1)
only if all propositions in the sequence turn out to be true (see (5) in Remark7.39)
when performed on the system in the initial pure state ψ .7

The extension to mixed states is easy.

7If ||P ∧ Qψ ||2 = 1, the state does not change after each single measurement of P or Q, in
accordance with A3, because of Proposition7.38, as already observed for a general ρ.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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7.5 Observables as Projector-Valued Measures on R

At this point we want to introduce observables by means of projector-valued mea-
sures (PVM). This notion lies at the heart of themathematical formulation of standard
QM. In ensuing chapters this notion will be generalised and made more precise, but
it will be only in the spectral decomposition of unbounded self-adjoint operators that
PVMs will reveal their full potential.

7.5.1 Axiom A4: The Notion of Observable

In QuantumMechanics, a physical quantity that is testable on a physical system and
whose behaviour is described by QM1 and QM2 is called an observable.

As seen in Sect. 7.2.4, it is reasonable to label measurement readings by Borel
subsets ofR. From the physical point of view it is natural to assume that if the orthog-
onal projectors P (A)

E associated to the observable A commute with each other then
E ∈ B(R) (the Borel σ -algebra of R), since we expect, for E ∈ B(R), propositions
like

P (A)
E :=

“The value of A on the state of the system belongs to the Borel set E ⊂ R”

to be all compatible. If it were not so, we would not have an observable, but distinct
incompatible quantities. Since the outcome belongs to both E and E ′ if and only if it
belongs to E ∩ E ′, we take P (A)

E ∧ P (A)
E ′ = P (A)

E∩E ′ . Assume also P (A)

R
= I , because

the result certainly belongs to R, so P (A)

R
is a tautology, independent of the state on

which the measurement is done. Eventually, for physically self-evident reasons and
because of the logical meaning of ∨, it is reasonable to suppose

∨n∈NP
(A)
En

= P (A)
∪n∈NEn

for any finite or countable collection {En}n∈N of Borel sets of R. Although one could
also take sets of arbitrary cardinality, we will stop at countable, as we did in the
classical case.

Definition 7.42 If H is a Hilbert space, a function A mapping E ∈ B(R) to an
orthogonal projector P (A)

E ∈ L (H) is called an observable if:
(a) P (A)

E P (A)
E ′ = P (A)

E ′ P (A)
E for any E, E ′ ∈ B(R);

(b) P (A)
E ∧ P (A)

E ′ = P (A)
E∩E ′ for any E, E ′ ∈ B(R);

(c) P (A)

R
= I ;

(d) for any family {En}n∈N ⊂ B(R):

∨n∈NP
(A)
En

= P (A)
∪n∈NEn

.
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Remark 7.43 (1) It is straightforward to see that {P (A)
E }E∈B(R) is aBooleanσ -algebra

for the usual partial order relation ≤ of projectors. In general {P (A)
E }E∈B(R) is not

maximal commutative.
(2)Bearing inmindDefinition7.13 it is easy to prove that an observable is nothing but
a homomorphism of Boolean σ -algebras, mapping the Borel σ -algebraB(R) to the
Boolean σ -algebra of projectors {P (A)

E }E⊂B(R). It can be proved ([Jau73, Chaps. 5–
6]) that if H is a separable Hilbert space, any subset of projectors in L (H) forming
a Boolean σ -algebra is automatically an observable, i.e. of the form {P (A)

E }E∈B(R),
and satisfies Definition7.42. �

Observables may be redefined in an equivalent way, but mathematically simpler, as
the next proposition shows.

Proposition 7.44 LetH be aHilbert space. Amap P : B(R) → B(H) is an observ-
able if and only if the following hold.
(a) P(B) ≥ 0 for any B ∈ B(R);
(b) P(B)P(B ′) = P(B ∩ B ′) for any B, B ′ ∈ B(R);
(c) P(R) = I ;
(d) for any family {Bn}n∈N ⊂ B(R) with Bn ∩ Bm = ∅ if n �= m:

s-
+∞∑

n=0

P(Bn) = P(∪n∈NBn) .

Proof If P : B(R) → B(H) is an observable properties (a), (b), (c), (d) are trivially
true. So we have to prove that any P : B(R) → B(H) satisfying them is an observ-
able.
Let us collect all operators P(B) with B ∈ B(R) in one maximal set of commuting
projectors L0(H) (which exists by Zorn’s lemma), and from now on we shall work
in it without loss of generality.
(a) says that every operator P(B) is self-adjoint by Proposition3.60(f), so (b) implies
P(B)P(B) = P(B ∩ B) = P(B), whence every P(B) is an orthogonal projector.
Moreover (b) implies, if P(B)P(B ′) = P(B ∩ B ′) = P(B ′ ∩ B) = P(B ′)P(B),
that all projectors commute with one another. Using the first identity in (i) of
Theorem7.22(b), condition (b) above reads P(B) ∧ P(B ′) = P(B ∩ B ′). To fin-
ish we need to show property (d) of Definition7.42. Consider countably many sets
{En}n∈N ⊂ B(R), in general not disjoint. Wewant to find∨n∈NP(En) and prove that

∨n∈NP(En) = P(∪n∈NEn) .

To do so define a collection {Bn}n∈N of pairwise disjoint Borel sets: B0 := E0 and

Bn = En \ (E1 ∪ · · · ∪ En−1)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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for n > 0. Then

∪p
n=0En = ∪p

n=0Bn for any p ∈ N ∪ {+∞}.

From this, using I − P(B) = P(R \ B) and the second identity in (i) of Theo-
rem7.22(b) recursively, we find

∨p
n=0P(En) = ∨p

n=0P(Bn) for any n ∈ N.

As part (d) of the present proposition implies

∨p
n=0P(Bn) =

p∑

n=0

P(Bn)

for finitely many disjoint Bn (this collection may be made countable by adding
infinitely many empty sets), we have

∨p
n=0 P(En) =

p∑

n=0

P(Bn) . (7.33)

To conclude we take the strong limit as p → +∞ in (7.33). This exists by Theo-
rem7.22(b), and we also have

∨n∈NP(En) = s- lim
p→+∞

p∑

n=0

P(Bn) = P(∪n∈NBn) = P(∪n∈NEn) .

�

Remark 7.45 (1) Notice that (c) and (d) alone imply I = P(I ∪ ∅) = I + P(∅),
so

P(∅) = 0 .

(2) If B ∈ B(R) then R \ B ∈ B(R) and R = B ∪ (R \ B). By (d), taking B0 = B,
B1 = R \ B and all remaining Bk = ∅, we obtain I = P(B) + P(R \ B). Therefore

¬P(B) = P(R \ B) .

�

The above proposition sets up a 1-1 correspondence between observables and well-
known objects in mathematics, namely projector-valued measures on R. The latter
will be generalised in the next chapter.
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Definition 7.46 A map P : B(R) → B(H), H a Hilbert space, satisfying (a), (b),
(c) and (d) in Proposition7.44 is called a projector-valued measure (PVM) on R

or spectral measure on R.

We are finally in the position to disclose the fourth axiom of the general mathematical
formulation of Quantum Mechanics.
A4. Every observable A on a quantum system S is described by a projector-valued
measure P (A) on R in the Hilbert spaceHS of the system. If E is a Borel set in R, the
projector P (A)(E) corresponds to the proposition “the reading of a measurement of
A falls in the Borel set E”.

Remark 7.47 (1) Let us suppose, owing to a superselection rule (see Sect. 7.7), that
the Hilbert space splits into coherent sectorsHS = ⊕k∈KHSk . Call Pk the orthogonal
projector onto HSk . From Sect. 7.7.1, every projector P (A)

E of an observable A satis-
fies Pk P

(A)
E = P (A)

E Pk for any k ∈ K and any Borel set E ⊂ R.
(2) We say that the observable B is a function of the observable A, written
B = f (A), when there is a measurable map f : R → R such that P (B)(E) =
P (A)( f −1(E)) for any Borel set E ⊂ R. This is totally natural: if “B = f (A)” then
to measure B we can measure A and use f on the reading. In this sense the outcome
of measuring B belongs to E iff the outcome of A belongs in f −1(E). In particular,
the elementary propositions (orthogonal projectors) P (B)

E and P (A)
F are always com-

patible, and {P (B)
E }E∈B(R) ⊂ {P (A)

F }F∈B(R). It is possible to prove [Jau73] that for
given observables A, B in a separable Hilbert space, the previous inclusion is equiv-
alent to the existence of a measurable map f such that B = f (A). More important is
a result of von Neumann and Varadarajan [Jau73, Chaps. 6–7] (valid for any ortho-
complemented, σ -complete, separable lattice, not necessarily the projector lattice of
a Hilbert space):

Theorem 7.48 If {A j } j∈J is a family of pairwise-compatible observables (that is,
P ( j)(E)P (i)(F) = P (i)(F)P ( j)(E) if P ( j)(E) ∈ A j , P (i)(F) ∈ Ai ) on a separable
Hilbert space, there exists an observable A and a corresponding family ofmeasurable
maps f j : R → R, j ∈ J such that A j = f j (A) for any j ∈ J .

�

7.5.2 Self-adjoint Operators Associated to Observables:
Physical Motivation and Basic Examples

This section contains the idea underpinning the correspondence between self-adjoint
operators and observables. We will, in other words, provide the physical motivation
for the spectral theorems of Chaps. 8 and 9.

For classical systems, at time t on phase space F , we know that observables
correspond to what have been called physical quantities, i.e. measurable maps

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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f : F → R. To any physical quantity f we can associate the collection of all propo-
sitions/Borel sets of the form:

P ( f )
E :=

“The value of f on the system’s state belongs to the Borel set E ⊂ R” ,

or, set-theoretically,
P ( f )
E := f −1(E) ∈ B(F ) .

Propositions7.18 and 7.19 told us that {P ( f )
E }E∈B(R) is a (Boolean) σ -algebra and the

mapB(R) � E �→ P ( f )
E ∈ B(F ) aBooleanσ -algebra homomorphism. The picture

is the same in the quantum case when we look at the class {P (A)
E }E∈B(R) of proposi-

tions/projectors associated to an observable A: they form a Boolean σ -algebra and
B(R) � E �→ P (A)

E ∈ L (H) is a homomorphism of Boolean σ -algebras. If we com-
pare {P ( f )

E }E∈B(R) and {P (A)
E }E∈B(R) the situation is analogous. In the classical case,

though, there exists a function f consenting to build the collection {P ( f )
E }E∈B(R):

this map retains, alone, all possible information about the propositions P ( f )
E . This is

no surprise since we defined propositions/sets starting from f ! In the quantum case,
when an observable {P (A)

E }E∈B(R) is given, we have nothing, at least at present, that
may correspond to a function f “generating” the PVM {P (A)

E }E∈B(R). So is there a
quantum analogue to f ?

In order to answer the question we must dig deeper into the relationship between
f and the associated family {P ( f )

E }E∈B(R). We know how to get the latter out of the
former, but now we are interested in recovering the map from the family, because in
the quantum formulation one starts from the analogue of {P ( f )

E }E∈B(R). As a matter
of fact the σ -algebra {P ( f )

E }E∈B(R) allows to reconstruct f by means of a certain
limiting process reminiscent of integration.

To explain this point we need a technical result. Recall that if (X,Σ) is a measure
space, a Σ-measurable map s : X → C is simple if its range is finite.

Proposition 7.49 Let (X,Σ) be ameasure space, S(X) the space of complex-valued
simple functions with respect to Σ , M(X) the space of C-valued, Σ-measurable
maps, and Mb(X) ⊂ M(X) the subspace of bounded maps. Then
(a) S(X) is dense in M(X) pointwise.
(b) S(X) is dense in Mb(X) in norm || ||∞.
(c) If f ∈ M(X) ranges over non-negative reals, there is a sequence {sn}n∈N ⊂ S(X)

with:

0 ≤ s0 ≤ s1 ≤ · · · ≤ sn(x) → f (x) as n → +∞, for any x ∈ X.

Furthermore, the convergence is in norm || ||∞ as well, provided f ∈ Mb(X).

Proof It is enough to prove the claim for real-valued maps, for the complex case
is a consequence of decomposing complex functions into real and imaginary parts.
Define f+(x) := sup{0, f (x)} and f−(x) := inf{0, f (x)}, x ∈ X; then f = f+ +



7.5 Observables as Projector-Valued Measures on R 353

f−, where f+ ≥ 0, f− ≤ 0 are known to be measurable since f is. Nowwe construct
a sequence of simple maps converging to f+ (whence part (c) is proven, as f = f+
if f ≥ 0). For given 0 < n ∈ N let us partition the real semi-axis [0,+∞) into Borel
sets:

En,i :=
[
i − 1

2n
,
i

2n

)
, En := [n,+∞) ,

1 ≤ i ≤ n2n . For each n let

P ( f )
n,i := f −1

(
En,i

)
, P ( f )

n := f −1(En)

be subsets in Σ . Then define s0(x) := 0 if x ∈ X, and

sn :=
n2n∑

i=1

i − 1

2n
χP ( f )

n,i
+ nχP ( f )

n
. (7.34)

for any n ∈ N \ {0}. By construction 0 ≤ sn ≤ sn+1 ≤ f , n = 1, 2, . . .. Furthermore,
for any given x we have | f+(x) − sn(x)| ≤ 1/2n definitely. Evidently, then, sn →
f+ pointwise if n → +∞. The estimate | f+(x) − sn(x)| ≤ 1/2n is uniform in x
if f+ is bounded (take n > sup f+), and then sn → f+ uniformly, too. Similarly,
by partitioning the negative semi-axis we may construct another simple sequence
{s(−)

n ≤ 0} tending to f− pointwise. Overall, the simple sequence s(−)
n + sn converges

to f pointwise, and uniformly if f is additionally bounded. �

Remark 7.50 If f is non-negative, part (a) still holds even when f : X → [0,+∞],
by taking simple maps that attain the value +∞. �

It is clear thus that a given classical quantity f : F → R (measurable) can be recov-
ered using a sequence ofmaps that are constant non-zero only on sets in {P ( f )

E }E∈B(R).
Without loss of generality we focus on the situation f : F → R+ and further sup-
pose f bounded. This entitles us to forget, in (7.34) and for n large enough: (i)
all intervals En and (ii) the En,i with left endpoint ((i − 1)2−n) larger, say, than
(sup f ) + 1/2n , for the pre-image of these sets under f is empty. If we do so the
sum in (7.34) can be truncated:

f = lim
n→+∞

2+2n sup f∑

i=1

i − 1

2n
χP ( f )

n,i
. (7.35)

This limit may be understood as an integration of sorts with respect to a “measure
with values on characteristic functions”:

ν( f ) : B(R) � E �→ χ f −1(E) ∈ S(X),

associating to aBorel subset E ⊂ R (in the range of themap) a characteristic function
χ f −1(E) : X → C. Observe, in fact, that i−1

2n is approximately the value f assumes at
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P ( f )
n,i – the estimate becomes more accurate as n increases – and the right-hand side

in (7.35) is just a “Cauchy sum”. Equation (7.35) might be formally written as:

f =
∫

R

λdν( f )(λ) . (7.36)

But as we are concerned with the quantum setting, we will not push the analogy
further, even though doing that would give a rigorous meaning to the above integral.
In such case the similar formula to (7.36) is:

A =
∫

R

λdP (A)(λ)

where the characteristic functions χ f −1(E) have been replaced by the orthogonal
projectors P (A)

E of the observable A. This relation defines a self-adjoint operator A
associated to an observable, that was called A and that corresponds to the classical
quantity f . From such an operator the observable {P (A)

E }E∈B(R) can be recovered, a
posteriori, in a similar manner to what we do to get {P ( f )

E }E∈B(R) out of f . We will
see all this in full generality, and rigorously, in the sequel (Chaps. 8 and 9). At this
juncture we shall describe an elementary example of observable and show how to
associate to it a self-adjoint operator.

Examples 7.51 (1) Consider a quantum system described on a Hilbert space H, and
take a quantity ranging, from the point of view of physics, over a discrete and finite
set of distinct values {an}n=1,··· ,N ⊂ R. We first show how to find an observable A
given by a family of orthogonal projectors P (A)

E , E ∈ B(R). We posit that there are
non-null orthogonal projectors labelled by an , {Pan }n=1,··· ,N , such that Pan Pam = 0 if
n �= m (i.e., taking adjoints, Pam Pan = 0 if n �= m), and moreover:

N∑

n=1

Pan = I . (7.37)

The meaning of Pan , clearly, is:
“the value of A, read by a measurement on the system, is precisely an”.
Obviously the equations Pan Pam = Pam Pan = 0, i.e. Pan ∧ Pam = 0 for n �= m corre-
spond to two physical requirements: (a) the propositions Pan , Pam are physically com-
patible, but (b) the observable’s measurement cannot produce distinct values an and
am simultaneously (the proposition associated to the null projector is contradictory).
Demanding

∑N
n=1 Pan = I , i.e. Pa1 ∨ · · · ∨ Pan = I , amounts to asking that at least

one proposition Pan is true when measuring A. The observable A : B(R) → L (H)

is built as follows: for any Borel set E ⊂ R

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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P (A)
E :=

∑

an∈E
Pan , with P (A)

∅
:= 0 . (7.38)

Properties (a), (b), (c) and (d) in Proposition7.44 are immediate.
(2) Referring to example (1), to the observable A we can associate an operator still
called A:

A :=
N∑

n=0

an Pan . (7.39)

This A is bounded and self-adjoint by construction, being a real linear combination
of self-adjoint operators. It has another interesting property: the eigenvalue set σp(A)

of A coincides with the values the observable A can assume.
The proof is direct: if 0 �= u ∈ Pan (H) then Pamu = Pam Panu = u if n = m or 0 if

n �= m. Inserting this in (7.39) gives Au = anu, so an ∈ σp(A). Conversely, if u �= 0
is a λ-eigenvector of A (λ real since A = A∗), then (7.39) implies

λu =
N∑

n=0

an Panu .

On the other hand, since
∑

an
Pan = I we obtain

N∑

n=0

λPanu =
N∑

n=0

an Panu ,

hence
N∑

n=0

(λ − an)Panu = 0 . (7.40)

Now apply Pm and recall Pm Pn = δm,n Pn , resulting in N identities:

(λ − am)Pamu = 0 .

If all of them were solved by Pmu = 0 for any m, we would obtain a contradiction,
because

0 �= u = I u =
N∑

n=0

Panu .

Therefore there must be some n in (7.40) for which λ = an . This can happen for one
value n only, since by assumption the an are distinct. Overall the eigenvalue λ of A
must be one particular an . So we proved that the eigenvalue set of A coincides with
the values A can assume. The self-adjoint operator A here plays a role similar to that
of f for the classical quantity {P ( f )

E }E∈T (R).
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(3) Suppose A is the operator of an observable in the sense of (7.39), and g : R → R

is a map. We can define a new observable, as if it were a function of the previous
one, determined entirely by the self-adjoint operator

C := g(A) :=
N∑

n=0

g(an)Pan . (7.41)

By construction the possible values of the new observable are the images g(an), that
in turn determine the eigenvalues of C . �

In the next chapters we will develop a procedure for associating to each observable
A (i.e. a PVM on R) a unique self-adjoint operator (typically unbounded) denoted
by the same letter A, thereby generalising the previous examples. The values the
observable can take will be elements in the spectrum σ(A), which is normally larger
than the set σp(A) of eigenvalues. The major tool will be the integration with respect
to a projector-valued measure, corresponding to a generalisation of

∑

λ∈σp(A)

h(λ)Pλ =:
∫

σ(A)

h(λ) dP (A)(λ)

to the case when the λ can be infinite. In particular

A =
∫

σ(A)

λ dP (A)(λ) , I =
∫

σ(A)

1 dP (A)(λ),

whose interpretation befits the theory of spectral measures.

7.5.3 Probability Measures Associated to Couples
State/Observable

Here is yet another remarkable property about PVMs on R, with important conse-
quences in physics.

Proposition 7.52 LetH be a Hilbert space and A = {PE }E∈B(R) a projector-valued
measure on R. If ρ ∈ S(H) is a state, the map μ(A)

ρ : E �→ tr(ρPE ) is a Borel
probability measure on R.

Proof The proof is elementary. It suffices to show μ(A)
ρ is positive, σ -additive and

μ(A)
ρ (R) = 1. AsR is Hausdorff and locally compact, every positive σ -additive mea-

sure on the Borel algebra is a Borel measure. Decompose ρ in the usual way with an
eigenvector basis:

ρ =
∑

j∈N

p j (ψ j | )ψ j ,
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where the p j are non-negative and their sum is 1. Then μ(A)
ρ (E) = tr(ρPE ) ≥ 0

because orthogonal projectors are positive, Pj ≥ 0 and tr(ρPE ) = ∑
j∈N

p j (ψ j |
PEψ j ). Moreover μ(A)

ρ (R) = 1, since PR = I implies

∑

j∈N

p j (ψ j |Iψ j ) = trρ = 1 .

Let us show σ -additivity. If {En}n∈N are pairwise-disjoint Borel sets and E :=
∪n∈NEn , by Proposition7.44(d):

+∞ > tr(ρPE ) =
+∞∑

j=0

p j

(
ψ j

∣∣∣∣∣

+∞∑

i=0

PEi ψ j

)
=

+∞∑

j=0

+∞∑

i=0

p j (ψ j |PEi ψ j ) .

Since p j ≥ 0 and (ψ j |PEi ψ j ) ≥ 0, Fubini’s theorem allows to swap the series:

tr(ρPE ) =
+∞∑

i=0

+∞∑

j=0

p j (ψ j |PEi ψ j ) =
+∞∑

i=0

tr(ρPEi ) .

That is to say, if {En}n∈N are pairwise-disjoint Borel sets then

μ(A)
ρ (∪n∈NEn) =

+∞∑

n=0

μ(A)
ρ (En) ,

ending the proof. �

Examples 7.53 (1) The observable A of (1) and (2) in Example7.51 assumes a finite
number N of discrete values an . Let A (cf. 7.39) also denote the self-adjoint operator
of the observable. Fix a state ρ ∈ S(H) and consider its probability measure relative
to the observable {P (A)

E }E∈B(R). By construction, if E ∈ B(R):

μ(A)
ρ (E) := tr(ρP (A)

E ) =
∑

an∈E
tr(ρPan ) =

∑

an

pnδan (E)

with
pn := tr(ρPan ) .

Hence
μ(A)

ρ =
∑

an

pnδan , (7.42)

where δan are Dirac measures centred at an: δa(E) = 1 if a ∈ E , δa(E) = 0 if a /∈ E .
Note 0 ≤ pn ≤ 1 and

∑
n pn = 1 by construction. Thus the probability measure

associated to the state ρ and relative to A is a convex combination of Dirac measures.
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(2) The mean value 〈A〉ρ , of A and its standard deviation ΔA2
ρ , on state ρ, can be

written succinctly using the associated operator A of (7.39). By definition of mean
value

〈A〉ρ =
∫

R

a dμ(A)
ρ (a) .

On the other hand, by (7.42) we have

∫

R

a dμ(A)
ρ (a) =

∑

n

pnan =
∑

n

antr(ρPan ) .

Using (7.39) and the linearity of the trace, we conclude

〈A〉ρ = tr(Aρ) . (7.43)

In case ρ is pure, i.e. ρ = ψ(ψ |·), ||ψ || = 1, (7.43) implies

〈A〉ψ = (ψ |Aψ) , (7.44)

where 〈A〉ψ indicates the mean value of A on the state of the vector ψ . By definition
the deviation equals

ΔA2
ρ =

∫

R

a2 dμ(A)
ρ (a) − 〈A〉2ρ .

Proceeding as before,

∫

R

a2 dμ(A)
ρ (a) =

∑

n

pna
2
n =

∑

n

a2n tr(ρPan ) = tr

(
ρ

∑

n

a2n Pan

)
.

Now observe

A2 =
∑

n

an Pan
∑

m

am Pam =
∑

n,m

anam Pan Pam =
∑

n

a2n Pan ,

where we used Pan Pam = δn,m Pn . Therefore

ΔA2
ρ = tr

(
ρA2) − (tr (ρA))2 . (7.45)

If ρ is a pure state, i.e. ρ = ψ(ψ |·), ||ψ || = 1, we have, from (7.45),

ΔA2
ψ = (

ψ |A2ψ
) − (ψ |Aψ)2 = (

ψ | (A2 − 〈A〉2ψ
)
ψ

)
, (7.46)

where ΔA2
ψ is the standard deviation of A on the state determined by the

vector ψ . �
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The formulas above are actually valid, under suitable technical assumptions, in a
broader context. This will be proved in Proposition11.27, after we show in full
generality the procedure for associating self-adjoint operators to observables.

7.6 More Advanced, Foundational and Technical Issues

In this section we shall mainly focus on a number of foundational issues concerning
the nature of the quantum lattice of elementary propositions and on historically
related technical result, such as the direct decomposition into von Neumann algebra
of definite type. The last subsection will characterise the space of states S(H) and
will have a purely mathematical flavour.

Foundational studies on the role of the projector lattice, in relationship to the
logical formulation of QM, are found in [Mac63, Jau73, Pir76, BeCa81, Red98,
DCGi02, Var07, EGL09] besides [Bon97]. The reader can read about a different
approach in [Emc72]: this book is based on Jordan algebras and prepares for the
algebraic formulation following ideas of Segal.

7.6.1 Recovering the Hilbert Space from the Lattice: The
Theorems of Piron and Solèr

A reasonable question to ask is whether there are more cogent reasons for choosing
to describe quantum systems via a projector lattice, other than the kill-all argument
“it works”. To tackle the problem we shall need certain special properties of the
lattice of projectors. We start with some abstract definitions.

Definition 7.54 In a lattice (X,≥), we say that a ∈ X covers b ∈ X if a ≥ b, a �= b,
and a ≥ c ≥ b implies either c = a or c = b.

In a bounded lattice (X,≥), an element a ∈ X \ {0} is called an atom if 0 ≤ r ≤
a ⇒ r = 0 or r = a.

An orthocomplemented lattice (X,≥) is said:
(a) separable if any collection {r j } j∈A ⊂ X of orthogonal elements, ri ⊥ r j , i �= j ,
is countable at most;
(b) atomic if for any r ∈ X \ {0} there exists an atom a ≤ r ;
(b)’ atomistic if it is atomic and every r ∈ X \ {0} is the join of the atoms a ≤ r ;
(c) to satisfy the covering property if, for any p ∈ X and any atom a, then a ∧ p =
0 ⇒ a ∨ p covers p;
(d) irreducible if the centre of X only contains 0 and 1.

Remark 7.55 It is easy to prove two atoms a, b in an orthocomplemented lattice
commute if and only if either a ⊥ b or a = b. �

The following result holds for the projection latticeL (H).

http://dx.doi.org/10.1007/978-3-319-70706-8_11


360 7 The First 4 Axioms of QM: Propositions …

Theorem 7.56 The orthocomplemented, complete latticeL (H) of Theorem7.22 is
(i) separable ⇔ H is separable,
(ii) atomic and atomistic,
(iii) orthomodular;
(iv) it satisfies the covering property, and is
(v) irreducible.

The atoms inL (H) are the orthogonal projectors onto one-dimensional subspaces.

Proof (i) IfH is separable, every set of orthogonal projectors {Pj } j∈J with Pj ⊥ Ph ,
i.e. Pj Ph = 0, if h �= j must be finite or countable. Having an uncountable set of
pairwise-orthogonal vectors (one could choose one in each Pj (H)) is forbidden by
Theorem3.30, for maximal sets of orthonormal vectors in a separable Hilbert space
are finite or countable. If L (H) is separable, the set N of orthogonal projectors Pu
associated to the elements of a Hilbert basis U � u of H satisfy Pu ⊥ Pv if u �= v,
and so N must be finite or countable. Then H is separable by Theorem3.30.
(ii) It is easy to prove that the atoms are the orthogonal projectors onto one-
dimensional subspaces just by applying the definition. Hence L (H) is atomic. Let
us prove that it is atomistic. If P ∈ L (H) projects ontoM andU is a (Hilbert) basis
ofM, evidently supu∈U Pu = P , where Pu is the orthogonal projector onto the space
generated by u. If AM is the set of atoms Q ≤ P , then supQ∈AM

Q ≥ supu∈U Pu , just
because Pu ∈ AM. On the other hand, (a) in Theorem7.22(i) implies that supQ∈AM

Q

projects onto < {Q(H)}Q∈AM >, which is contained in M because closure of finite
combinations of elements in M, and M is closed. Hence supQ∈AM

Q ≤ supu∈U Pu .
Summing up, supQ∈AM

Q = supu∈U Pu = P , which means L (H) is atomistic.
(iii)Wemust prove that P ≤ Q ⇒ Q = P ∨ ((I − P) ∧ Q) for any orthogonal pro-
jectors P, Q. To this end, by Proposition7.20 P ≤ Q ⇒ PQ = QP = P . There-
fore, again by Proposition7.20 the identity to prove is Q = P + (I − P)Q − P(I −
P)Q. But that is trivial, by direct inspection.
(iv) If A, P ∈ B(H) and A is an atom, asking A ∧ P = 0 is equivalent to say-
ing that A(H) is a one-dimensional subspace not contained in the closed subspace
M := P(H). Hence A ∨ P projects onto a subspace of dimension one more than
P(H). We can write A ∨ P(H) = M ⊕ < n > for some unit vector n ⊥ M. The cov-
ering property is then equivalent to the obvious fact that if 0 �= n ⊥ M, there are no
closed subspaces N withM � N � M ⊕ < n >.
(v) Irreducibility can be proved using the same proof of Proposition3.93(a): A ∈
B(H)′ can be replaced by A ∈ L (H)′ to give the same final result, namely that
A = cI for some c ∈ C. Since at present A ∈ L (H), so that A = A∗ and AA = A,
we must have either A = 0 or A = I . In other words, the centre of L (H) is {0, I }
and L (H) is irreducible. �

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Remark 7.57 (1) Atomicity and atomisticity necessarily coalesce under orthomodu-
larity:

Proposition 7.58 An orthomodular lattice is atomic if and only if it is atomistic.

Proof See Exercise7.6 �

(2)An orthocomplemented, atomistic lattice with the covering property is sometimes
called an AC lattice. In an atomic orthomodular lattice X, the covering property is
equivalent to each of the following statements [BeCa81].
(i) For every a ∈ X and for every pair of atoms p, q ∈ X with p � a and q � a, the
relation p ≤ a ∨ q implies q ≤ a ∨ p.
(ii) For every a ∈ X and every atom p ∈ X with p � a⊥, the element (called Sasaki
projection of p onto a) a ∧ (p ∨ a⊥) is an atom. �
All the properties of Theorem7.56 admit an operational interpretation (e.g. see
[BeCa81]). Based on the experimental evidence of quantum systems, therefore, we
might try to prove, in absence of an Hilbert space, that the elementary propositions
about a quantum system with experimental outcome in {0, 1} form a poset. For that
we would first need a bounded, orthocomplemented, complete lattice that verifies
conditions (i)–(v) above. Then we should prove that this lattice is described by the
orthogonal projectors of a Hilbert space. The second step is an entire, and challeng-
ing, programme, known as the coordinatisation problem [BeCa81]: it was initiated
by several researchers in the 1960s and completed by M.P. Solèr in 1995, as we shall
see below.

Although the partial order of elementary propositions can be defined in various
ways, it will always correspond to the logical implication, in some way or another.
Starting from [Mac63] a number of approaches (either of physical nature, essentially,
or formal) have been developed toward this end: among them are those making use
of the notion of (quantum) state. The objects are now [Mac63] pairs (O,S ), where
O is the class of observables and S are the states. Elementary propositions form
a subclass L of O equipped with a natural poset structure (L ,≤) (and satisfying
weakened versions of conditions (i)–(v)). A state s ∈ S , in particular, defines the
probability ms(P) that P is true for every P ∈ L [Mac63]. As a matter of fact,
if P, Q ∈ L , P ≤ Q is defined to mean ms(P) ≤ ms(Q) for every state s ∈ S .
A different, and apparently weaker, interpretation due to Jauch appears in [Jau68]:
there P ≤ Q means that if P is true in a state s, also Q is true in s. More difficult
is to justify that the poset thus obtained is a lattice, i.e. that it admits greatest lower
bound P ∨ Q and least upper bound P ∧ Q for any P, Q. Nowadays there exist
several proposals, very different in character, to justify the lattice structure. See
Aerts in [EGL09] for a recent operational viewpoint, and [BeCa81, Sect. 21.1] for a
summary on several possible ways to introduce the lattice structure on the poset of
abstract elementary propositionsL . If we accept the lattice structure on elementary
propositions of a quantum system, then we may define orthocomplementation by
the familiar logical/physical negation. Compatible propositions can then be defined
in terms of commuting propositions as of Definition7.8 (by (v) in Theorem7.22(a)
this notion of compatibility is the usual one when propositions are interpreted via
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projectors). Now fully-fledged with an orthocomplemented lattice of elementary
propositions and the notion of compatible propositions, we can attach a physical
meaning (an interpretation backed by experimental evidence) to the requests that
the lattice be orthocomplemented, complete, atomic, irreducible, and to the covering
property [BeCa81]. Under these hypotheses, and supposing there exist at least 4
pairwise-orthogonal atoms, Piron ([Pir64, JaPi69, Pir76], [BeCa81, Chap.21], Aerts
in [EGL09]) used projective geometry techniques to show that the lattice of quantum
propositions can be identified canonically with a certain class of subspaces in a
generalised vector space of sorts. We shall merge Piron’s theorem with a result by
Maeda–Maeda [MaMa70] (part (b) below). There are other versions of this result
where the lattice is atomic, rather than atomistic (this is only apparently weaker, for
the lattice is orthomodular).

Theorem 7.59 (Piron–Maeda–Maeda) LetL be an orthocomplemented, complete,
irreducible and atomistic lattice satisfying the covering property. Suppose L con-
tains at least 4 pairwise orthogonal atoms.8 Then, there exist

(i) a (generally noncommutative) division ring B with unit 1 and zero 0,
(ii) an involutive anti-automorphism (i.e., a map B � λ �→ λ ∈ B such that

μ + ν = μ + ν, μν = ν μ, and μ = μ),
(iii) a ‘generalised’ vector space E over B,
(iv) a Hermitian form 〈·|·〉 : E × E → B (i.e. linear in the second slot and

conjugate-symmetric) which is non-singular (〈x |x〉 = 0 implies x = 0),
satisfying the following properties.

(a) L is isomorphic to the orthocomplemented lattice of subspaces M ⊂ E sat-
isfying (M⊥)⊥ = M (⊥ in reference to the Hermitian product), ordered by inclusion.

(b) L is orthomodular if and only if M + M⊥ = E for any M ⊂ E with M =
(M⊥)⊥.

And this is not the whole story.Many people conjecture (see [BeCa81]) that if the lat-
tice is also orthomodular, the division ring B becomes a real division algebra and can
only be picked among R, C or H (quaternion algebra). More recently Solèr [Sol95],
Holland [Hol95] andAerts-van Steirteghem have found sufficient hypotheses for this
to happen. We state below, in a joint proposition, the results of Solèr and Holland.
The notation is the same as in Theorem7.59.

Theorem 7.60 (Solèr–Holland) Consider a lattice L that is orthocomplemented,
complete, irreducible and atomistic, satisfies the covering property and contains at
least four pairwise-orthogonal atoms. AssumeL is orthomodular. Suppose that one
of the following (equivalent) conditions holds:

(a) (Solèr)E contains an infinite orthonormal sequence {en}n∈N ⊂ E, i.e. 〈en|en〉 =
1 for every n ∈ N (1 is the unit of the division ring B).

(b) (Holland) E contains an infinite orthogonal sequence {en}n∈N ⊂ E with
〈en|en〉 = a for every n ∈ N and some fixed a ∈ B \ {0}.

8With our hypotheses, this is equivalent to supposing L contains 4 distinct elements 0 �= p1 <

p2 < p3 < p4, as in other formulations of this result.
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(c) (Holland) E does not have finite (algebraic) dimension and, for every orthog-
onal atoms p, q ∈ L there exists a linear bijective map U : E → E such that
〈x |y〉 = 〈Ux |Uy〉 for all x, y ∈ E and U (p) = q.
Then the following hold:

(i) B is either R, C or H with the respective conjugation as anti-automorphism,9

(ii) either 〈·|·〉 or −〈·|·〉 is positive,
(iii) E is complete for the norm induced by 〈·|·〉, hence a real or complex Hilbert

space or a generalised structure (e.g., see [GMP13]) if B = H.
The Hilbert space E is separable if and only if L is separable.

Irreducibility is not really essential. If we remove it the lattice can be split into
irreducible sublattices [Jau73, BeCa81] and the argument goes through on each
summand. Physically speaking this situation is natural in presence of superselection
rules, of which more soon.

It is worth stressing that the covering property, on the contrary, is a crucial hypoth-
esis for Theorem7.60. Indeed there are other relevant lattices in physics that verify
all remaining properties. Remarkably, the family of so-called causally closed sub-
sets in some physically meaningful spacetime satisfies all properties but the covering
law [Cas02, CFJ17]. This obstruction prevents one to endow a spacetime with the
structure of a (generalised) Hilbert space. Having said that, it might suggest a way
towards a formulation of quantum gravity.

Recently, M. Oppio and the author of this book [MoOp17, MoOp18] have
explained why one can rule out real and quaternionic Hilbert spaces as possible tools
to describe elementary physical systems acted upon by the Poincaré group (elemen-
tary particles), when some hypotheses in the Solèr–Piron theorem are relaxed (such
as the covering property).

7.6.2 The Projector Lattice of von Neumann Algebras and the
Classification of von Neumann Algebras and Factors

A historically important point for developing von Neumann’s theory was that the
lattice of elementary propositions on a quantum system should satisfy themodularity
condition (Definition7.8(d)). We will not go into explaining the manifold reasons
for this (see Rédei in [EGL09]). It will be enough to remark, as von Neumann
himself proved, that L (H) is not modular if H does not have finite dimension.
The way out proposed by von Neumann and Murray is to reduce the number of
elementary observables on the quantum system, so to guarantee modularity also in
the infinite-dimensional case. The ensuing theoretical results have become of the
utmost importance in quantum theories, independently from the initial problem of
von Neumann, so we shall spend a few words about them. Later in the book these
facts we be needed, especially when we deal with superselection rules.

9In R this is the identity map, in C the standard conjugation, and in H it is a + bi + cj + dk :=
a − bi − cj − dk for every a, b, c, d ∈ R.
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The point is to start from a von Neumann algebra R (also called W ∗-algebra,
Definition3.90) on a (not necessarily separable) Hilbert space H �= {0}, as opposed
to the complete latticeL (H). Then consider the logic of the von Neumann algebra
R:

LR(H) := R ∩ L (H) ,

i.e., the set of orthogonal projectors belonging to R. Here LR(H) represents the
actual set of elementary propositions associated to the physical system, and self-
adjoint elements in R are interpreted as bounded observables (this will be clearer
in Chap.11). There is a intimate relationship between R and LR(H) as the latter
generates the former as a von Neumann algebra. Moreover the poset structure of
LR(H) is very similar to the one on the whole L (H), and allows for analogous
physical interpretations. Everything is stated in the following proposition.

Proposition 7.61 Let R be a von Neumann algebra on the complex Hilbert space
H �= {0} and LR(H) the set of orthogonal projectors P ∈ R. The following facts
hold.
(a) LR(H) is an orthomodular (hence bounded and orthocomplemented) complete
lattice, with structure inherited fromL (H).
(b) The von Neumann algebra generated byLR(H) is R itself:

R = LR(H)′′ .

(c) The centre of the lattice generates the centre of the algebra,

(
LR(H) ∩ LR(H)′

)′′ = R ∩ R′ .

(d) R is a factor (Definition3.90) if and only if LR(H) is irreducible.
(e) R = B(H) if and only if LR′(H) = {0, I }.
Proof (a) LR(H) trivially inherits a poset structure from L (H), including a mini-
mumand amaximumbecause 0, I ∈ LR(H). It also inherits the orthocomplemented
structure from L (H). In fact, if P, Q ∈ LR(H), P ∧ Q in L (H) can be com-
puted by (7.32). SinceR is closed in the strong operator topology, P ∧ Q ∈ LR(H)

and, in particular, the ∧ (inf) of L (H) must coincide with the meet of LR(H)

since LR(H) ⊂ L (H). Next observe that ¬P = I − P ∈ R if P ∈ LR(H), since
R is an algebra. Thus ¬P ∈ LR(H) if P ∈ LR(H). Consequently, P ∨ Q =
¬(¬P ∧ ¬Q) ∈ LR(H) if P, Q ∈ LR(H), and the ∨ (sup) of L (H) must coin-
cide with the join of LR(H) since LR(H) ⊂ L (H). Very easily, orthomodularity
passes from L (H) to LR(H). At this stage LR(H) is just an orthocomplemented,
orthomodular lattice with the induced operations. More difficult is to establish com-
pleteness. From (iii) in Theorem7.22(a)

∧α∈APα = ¬ (∨α∈A¬Pα) ,

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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if {Pα}α∈A ⊂ L (H). Therefore, since the logic LR(H) is closed under ¬, its com-
pleteness is equivalent to

∨α∈A Pα ∈ R if {Pα}α∈A ⊂ LR(H) , (7.47)

where ∨ is the join of L (H). Let us prove (7.47). Define P := ∨α∈APα (which
does exist in L (H)). Take X ∈ R′ and an element Pα in {Pα}α∈A ⊂ LR(H). Since
LR(H) ⊂ R, we have PαX − X Pα = 0. On the other hand PPα = Pα (since P ≥
Pα) so that

(PX − X P)Pα = PX Pα − X PPα = PPαX − X PPα = PαX − X Pα = 0 .

In other words Pα(H) ⊂ Ker(PX − X P). If K denotes the orthogonal projec-
tor onto Ker(PX − X P), we therefore have K ≥ Pα . That inequality is valid for
every Pα , so it must also hold for the supremum of the Pα . Hence K ≥ P , so that
(PX − X P)P = 0, i.e., PX P = X P . Since X ∈ R′ is arbitrary and R′ is closed
under Hermitian conjugation, starting with X∗ in place of X gives PX∗P = X∗P
and the adjoint relation PX P = PX . This and the earlier, analogous condition prove
X P = PX . We have established that P ∈ (R′)′ = R, and therefore (7.47) holds.
(b) Here we need a few (independent) results fromChap. 8. AsLR(H) ⊂ R, we have
R′ ⊂ LR(H)′ and finally LR(H)′′ ⊂ R′′ = R. Let us prove that LR(H)′′ ⊃ R to
conclude. Since the von Neumann algebra LR(H)′′ is closed in the strong oper-
ator topology (Theorem3.88), it is sufficient to prove that if A ∈ R, there is a
sequence of elements An ∈ LR(H)′′ such that An → A strongly. As A = 1

2 (A +
A∗) + i 1

2i (A − A∗) and both 1
2 (A + A∗) and 1

2i (A − A∗) are self-adjoint elements
of R, we may prove our claim for self-adjoint elements A ∈ R. Since self-adjoint
operators of B(H) are normal, we can apply the spectral theorem for bounded nor-
mal operators Theorem8.56, and write A = ∫

K xdP (A)(x) where {P (A)(E)}E∈B(R)

is the PVM associated to A, and K ⊂ R is a sufficiently large compact set con-
taining the spectrum of A. By Theorem8.56(c) P (A)(E) = ∫

K χE (x)dP (A)(x) com-
mutes with every bounded operator commuting with A (and A∗ = A) where χE

is the characteristic function of the Borel set E ⊂ R. As A ∈ R = (R′)′, P (A)(E)

commutes with every element of R′ and thus P (A)(E) ∈ R′′ = R. In particular,
P (A)(E) ∈ LR(H) because it is an orthogonal projector. Finally, consider a bounded
sequence of simple functions sn tending pointwise to id : K � x �→ x ∈ R (such a
sequence exists as a consequence of Proposition1.49). Then Theorem8.54(c) yields∫
K sn(x)dP (A)(x) → A strongly as n → +∞. On the other hand

An =
∫

K
sn(x)dP

(A)(x) =
Nn∑

k=1

skn P
(A)(Ekn)

commuteswith every operatorwhich commuteswith the elements ofLR(H) because
we saw P (A)(Ekn) ∈ LR(H). We conclude that An ∈ LR(H)′′. Summarising, we
have found that LR(H)′′ � An → A strongly, as we wanted.
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(c) From (b), LR(H)′ = LR(H)′′′ = R′ so that LR(H) ∩ LR(H)′ ⊂ R ∩ R′. As
the right-hand side is a von Neumann algebra, it contains the smallest von Neumann
algebra containing the left-hand side: (LR(H) ∩ LR(H)′)′′ ⊂ R ∩ R′. Let us estab-
lish the converse inclusion. We will prove that if A ∈ R ∩ R′, there is a sequence
< LR(H) ∩ LR(H)′ >=< LR(H) ∩ R′ >� An → A strongly, where < A > is
the space of finite, complex linear combinations of elements of A ⊂ B(H). As
(LR(H) ∩ LR(H)′)′′ ⊃< LR(H) ∩ LR(H)′ > and (LR(H) ∩ LR(H)′)′′ is
strongly closed, this concludes the proof. It suffices to restrict to self-adjoint oper-
ators A in view of the same argument used to prove (b). If A∗ = A ∈ R ∩ R′, the
spectral measure P (A) of A belongs to R and commutes with the same operators
of B(H) commuting with A (Theorem8.56). Therefore P (A)(E) ∈ LR(H) ∩ R′ =
LR(H) ∩ LR(H)′ for every Borel set E ⊂ R. In analogy to part (b) we can construct
An ∈< LR(H) ∩ LR(H)′ > with

An =
Nn∑

k=1

skn P
(A)(Ekn) → A strongly as n → +∞,

for some real numbers skn and Borel sets Ekn ⊂ R. This concludes the proof of (c).
(d) From (c), ifLR(H) is irreducible,LR(H) ∩ LR(H)′ = {0, I } so that (LR(H) ∩
LR(H)′)′ = B(H) and thus R is a factor because

R ∩ R′ = (
LR(H) ∩ LR(H)′

)′′ = {cI }c∈C .

Conversely, if LR(H) is not irreducible, there is a non-trivial orthogonal projector
P in LR(H)′ ∩ R. In particular P commutes with every spectral measure of every
self-adjoint operator A ∈ R, hence it commutes with A itself by the spectral decom-
position of A (Theorem8.56). Since every element of R is a linear combination of
two self-adjoint elements of R, P ∈ R′ ∩ R and hence R cannot be a factor.
(e)R = B(H) is equivalent toR′ = {cI }c∈C (Proposition3.93). IfR′ = {cI }c∈C then
LR′(H) = {0, I }. On the other hand, if LR′(H) = {0, I }, then R′ = LR′(H)′′ =
{0, I }′′ = B(H)′ = {cI }c∈C. �

Ultimately it is possible to choose R so that LR(H) becomes modular. This hap-
pens for certain factors (Definition3.90), i.e. von Neumann algebras R with trivial
centre,R′ ∩ R = {cI }c∈C. The classification of factors of Murray and von Neumann
proves, among other things, that only the logic LR(H) of so-called factors of type
I I1 is modular if H is not finite-dimensional. Although modularity is nowadays no
longer deemed fundamental, and some of von Neumann motivations have proved
indefensible,10 von Neumann algebras, factors, and the classification and study of
factors have been decisive for the development of the mathematical formulation of
quantum theories, including algebraic Quantum Field Theories [Haa96].

10See Rédei in [EGL09] and it was established by Piron that modularity is incompatible with
localisability of elementary particles [Pir64, p. 452].
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Whereas in algebraic Quantum Field Theory all types of factors are relevant,
the factors that play a role in standard QM are the so-called factors of type I (spe-
cial ∗-algebras isomorphic to some B(K), see below). This fact easily implies that
the bounded, orthomodular, complete, irreducible lattices of projectors onto type-I
factors are also atomic, hence atomistic (Remark7.57(1)), and satisfy the covering
property. The projector lattice of factors of other types, though bounded, orthomod-
ular, complete and irreducible, does not contain atoms.

Following Murray and von Neumann (for a complete account, see [Tau61]), fac-
tors are classified in the following way (see [Red98, Pan93] for a quick report, and
[Tak00, vol. I], [KaRi97, vol. II] for a complete and detailed discussion on the sub-
ject). If R is a von Neumann algebra in the complex (non-separable, in general)
Hilbert space H we define an equivalence relation on LR(H),

P ∼ Q for P, Q ∈ LR(H) means that there is a partial isometry U ∈ R such that
P = U ∗U and Q = UU ∗.

(Refer to Definition3.72 and Proposition3.74.) In other words, P is equivalent to Q
if and only if there is a Hilbert-space isomorphism P(H) → Q(H), and the map U
that extends it on P(H)⊥, where U = 0, belongs to R.

This equivalence relation has the property that, if Pi ∼ Qi for i = 1, 2 and P1 ⊥
P2 and Q1 ⊥ Q2, we also have P1 + P2 ∼ Q1 + Q2.

We next introduce an order relation on LR(H) by saying that P � Q when
P ∼ P ′ ≤ Q for some P ′ ∈ LR(H).

Definition 7.62 If R is a von Neumann algebra over the complex Hilbert space
H �= {0}, an element P ∈ LR(H) is said to be

(a) finite if P ∼ Q ≤ P for some Q ∈ R ⇒ P = Q (P is not equivalent to any
proper subprojector);

(b) infinite if it is not finite;
(c) properly infinite if P �= 0 is infinite and QP is either 0 or infinite for every

Q ∈ LR(H) that is central (in the centre of R).

It is possible to prove thatLR(H)/∼, with the order relation induced by �, is totally
ordered ifR is a factor. Moreover, the following crucial result holds (see for instance
[Red98] for a short exposition).

Proposition 7.63 IfR is a factor for the complex Hilbert spaceH �= {0}, there exists
a map (unique up to a positive multiplicative constant) d : LR(H) → [0,+∞] such
that

(i) d(P) = 0 ⇔ P = 0,
(ii) d(P) = d(Q) ⇔ P ∼ Q,
(iii) d(P) ≤ d(Q) ⇔ P � Q,
(iv) d(P) < +∞ ⇔ P is a finite projection,
(v) d(P) + d(Q) = d(P ∧ Q) + d(P ∨ Q),
(vi) d(P + Q) = d(P) + d(Q) if P ⊥ Q,

for any P, Q ∈ LR(H).

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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The map d, called the dimension function on LR(H), has necessarily one of the
following ranges – after suitable normalisation, depending on the nature of the factor
R:
1. Type In: d(LR(H)) = {0, 1, . . . , n} where n = 1, 2, . . . ,∞.
2. Type I I1: d(LR(H)) = [0, 1].
3. Type I I∞: d(LR(H)) = [0,∞) ∪ {∞}.
4. Type I I I : d(LR(H)) = {0,∞}, where d(P) = 0 only if P = 0.
The factor R is called of type In , I I1, I I∞, I I I in accordance with the above table
for d. Factors of type I∞ can be further subdivided inmore refined types, still denoted
by In , where now n indicates an infinite cardinal number, whose meaning will be
discussed shortly. With this refinement the classification is exhaustive: a factor is
necessarily of one, and only one, type among In, I I1, I I∞ and I I I , where n can be
any non-zero cardinal (finite or infinite).

Henceforth, by a type-I factor we shall mean a factor of type In with n > 0 a
finite or infinite cardinal, while type-I∞ will indicate a factor for type In with n
infinite. Similarly, a type-I I factor may be of type I I1 or I I∞. The next result can
be found as a subcase of Theorem9.1.3 and Example9.1.5 in [KaRi97, vol. II]. It
is technically important for it relates a factor R with R′ (the commutant is a factor
since R and R′ have the same centre).

Proposition 7.64 A factor R on a complex Hilbert space H �= {0} is of type In, I I
or I I I if and only if its commutant R′ is of type Im, I I or I I I respectively, where
n,m are arbitrary cardinals.

Type-I factors enjoy very nice properties [KaRi97, vol. II]:
(a) among the factors of type In , with n > 0 finite or infinite, are the minimal

projectors, i.e. the atoms of the projector lattice;
(b) type-In factors are ∗-isomorphic to B(Hn), where dim(Hn) = n may be infi-

nite. As a matter of fact, there exist Hilbert spaces Hn,Hm of dimensions n,m
and a unitary operator U : H → Hn ⊗ Hm such that URU−1 = B(Hn) ⊗ CIm , and
UR′U−1 = CIn ⊗ B(Hm), where Il is the identity onHl (the notion of tensor product
will be introduced in Sect. 10.2). This property can actually be taken as a definition
of type-In factors;

(c) only factors of type In may be irreducible (R is irreducible iff R′ = {cI }c∈C.
Since {cI }c∈C is of type I1, R = {cI }′c∈C

must be of type I by Proposition7.64.)
Other general features of the lattices of orthogonal projectors for the various factors
are listed below (see [Tak00, KaRi97] and [Red98] for a summary).

The projector lattice of type-In factors, with finite n, is non-distributive for n ≥ 2,
modular and, as already said atomic (thus atomistic because orthomodular); more-
over, d(P) = dim P(Hn).

The projector lattice of type-I∞ factors is orthomodular, non-modular, atomic
(thus atomistic because orthomodular).

The projector lattice of type-I I1 factors is modular but non-atomic.
The projector lattice of type-I I∞ and type-I I I factors is neither modular nor

atomic.

http://dx.doi.org/10.1007/978-3-319-70706-8_10
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Von Neumann algebras R that are not factors can be classified, similarly, in
disjoint types: In , I I1, I I∞, I I I . In contrast to the previous sorting, however, this
classification does not exhaust all instances, for there are W ∗-algebras that do not
belong to any one class above. But every von Neumann algebra is a direct sum of the
above types. This classification of von Neumann algebras of definite type requires a
pair of definitions.

Definition 7.65 Let R be a von Neumann algebra over the complex Hilbert space
H �= {0}.
(a) A finite projector P ∈ LR(H) is called Abelian if PRP := {PAP | A ∈ R} is
an Abelian W ∗-algebra.
(b) If A ∈ R, its central carrier is the orthogonal projector CA := I − PA where
PA := ∨{P ∈ LR(H) ∩ R′ | PA = 0}.
We are in a position to state the involved classification of von Neumann algebras of
definite type (see [Tak00, vol. I], [KaRi97, vol. II] and the discussion in [BEH07,
Chap.6]).

Definition 7.66 A von Neumann algebra R over the Hilbert space H �= {0} is said
to be

(a) of type I ifLR(H) contains an Abelian projector with central carrier I ; it is,
further, of type In if I is the orthogonal sum of n equivalent Abelian projectors (n
can be any finite or infinite cardinal);

(b) of type I I if LR(H) does not contain any non-zero Abelian projectors, but
contains a central projector with central carrier I ; it is of type I I1 if I is finite, and
of type I I∞ when I is properly infinite;

(c) of type I I I ifLR(H) has no non-zero finite projectors.

All these types are pairwise distinct, so in particular In and Im are different if n �= m.
The fundamental link between the classification of factors and the classification of
von Neumann algebras of definite type is the following: A factor is of type In, I I1,
I I∞ or I I I if and only if it is of type In, I I1, I I∞ or I I I respectively, as a von
Neumann algebra.

Conversely, in a separable Hilbert space, (see the paragraph below Remark7.69)
a von Neumann algebra is of type In , I I1, I I∞, I I I if and only if it is a direct integral
of factors of type, respectively, In , I I1, I I∞, I I I .

Remark 7.67 The von Neumann algebras of quantum field operators associated to
bounded regions in Minkowski spacetime are usually of type I I I , while the whole
algebra may be a factor of type I or I I I depending on the state used to construct
the representation: type I is typical for ground states and type I I I for extended
thermodynamical (KMS) states. These types also appear in the theory when one
describes extended thermodynamical systems. After the breakthrough brought by the
Tomita–Takesaki modular theory [Haa96], and its implications in thermodynamical
Quantum Field Theory, at the end of the 1960s, it became possible for Connes
to further refine the classification of type-I I I algebras in an uncountable family
of algebras of type I I Iλ, λ ∈ [0, 1] [KaRi97]. Type I I I1 is of particular interest in
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physics. A nice and rapid discussion on the occurrence of these types of vonNeumann
algebras and factors for describing quantum physical systems, with all the relevant
references, can be found in [ReSu07]. �

7.6.3 Direct Decomposition into Factors and Definite-Type
von Neumann Algebras and Factors

A number of theoretical results later mentioned in the book will require that we
know a crucial result concerning the decomposition of a von Neumann algebra into
definite-type algebras (a reformulation of Theorem6.5.2 in [KaRi97]).

Theorem 7.68 (Type decomposition) Let R be a von Neumann algebra on the
Hilbert space H �= {0}. There is a unique family {Q j } j∈J ⊂ LR(H) ∩ LR(H)′ with

(i) Q j �= 0,
(ii) Q j ⊥ Qi if i �= j ,
(iii) ∨ j∈J Q j = I ,

such that
H =

⊕

j∈J

H( j) and R =
⊕

j∈J

R( j) , (7.48)

whereH( j) := Q j (H),R( j) := Q jR�H( j)⊂ B(H( j)) and the direct sums refer to Def-
inition3.98. Moreover, each von Neumann algebraR( j) is of definite type In (for any
possible finite or infinite cardinal 0 < n ≤ dim(H)), I I1, I I∞, and I I I , and each
such type appears at most once in the sums.

Remark 7.69 (1) A von Neumann algebra is said to be of type I∞ if it is a sum (as
in (7.48)) of von Neumann algebras of type In where every n is infinite.
(2) It follows from the theorem ([KaRi97, vol. II], p. 422) that, if P ∈ LR(H) \ {0}
is central and the von Neumann algebra R is of type In , I I1, I I∞ or I I I , then the
von Neumann algebra PR := {PA | A ∈ R} has the same definite type.
(3) Proposition7.64 is valid for general von Neumann algebras R [KaRi97, vol. II,
Theorem9.1.3], if one replaces In and Im by I . �

Von Neumann proved a related result, that in a sense [BrRo02] is finer than Theo-
rem7.68: if a Hilbert space H is separable, von Neumann algebras on H can always
be written as direct integrals of factors which, as we know, are of defined type. Let us
show how this decomposition arises and how it is related to Theorem7.68. We shall
consider a simplified situation where the centre of the associated projector lattice is
atomic and the direct integral becomes a Hilbert sum. This is the only case that is
truly relevant for this book. Besides, H does not even need to be separable.

Given a von Neumann algebra R on a Hilbert space H, by Zorn’s lemma the
centre R ∩ R′ (i.e. the centre LR(H) ∩ LR(H)′) contains a maximal set of non-
vanishing orthogonal projectors {Pk}k∈K such that Pk ⊥ Ph if k �= h. At this point we

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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make the non-trivial assumption that there exists a maximal set of central pairwise-
orthogonal projectors such that, for every fixed k ∈ K , there is no projector Q ∈
R ∩ R′ satisfying 0 ≤ Q ≤ Pk and Q �= 0, Pk . In other words the central projectors
Pk are atoms ofLR∩R′(H). This condition determines uniquely this maximal family,
and the following result holds.

Proposition 7.70 Let R be a von Neumann algebra on the complex Hilbert space
H �= {0} and {Pk}k∈K ⊂ LR(H) a family of orthogonal projectors such that:

(i) every Pk is non-zero and central: 0 �= Pk ∈ R ∩ R′,
(ii) Pk ⊥ Ph if k �= h,
(iii) the family is maximal (among all families satisfying (i)-(ii)),
(iv) each Pk is an atom of R ∩ R′.

Then the following facts hold.
(a) Irrespective of (iv), the set of conditions (i), (ii), (iii) is equivalent to the set

(i), (ii), (iii)’ where
(iii)’ ∨k∈K Pk = I .

(b) The family {Pk}h∈K ⊂ LR(H) satisfying (i)-(iv) is unique up to term relabelling.
(c) Every closed subspace Hk := Pk(H) is invariant under R, i.e.,

A(Hk) ⊂ Hk if A ∈ R .

(d) Each map
R � A �→ πk(A) := A�Hk : Hk → Hk

is a ∗-algebra representation of R.
(e) Each Rk := πk(R) is a factor on the Hilbert space Hk .
(f)We have splittings

H =
⊕

k∈K
Hk , R =

⊕

k∈K
Rk , (7.49)

called direct decompositions into factors.
(g) There is a partition K = � j∈J K j such that

H( j) =
⊕

k∈K j

Hk and R( j) =
⊕

k∈K j

Rk , (7.50)

where H( j) and R( j) are the closed subspaces and definite-type W ∗-algebras of
Theorem7.68. In particular, each factor Rk with k ∈ K j has the same type as the
corresponding R( j).

Proof (a) Assume that (i)–(iii) are valid. The element
∑

k∈K Pk = ∨k∈K Pk (the
sum is in the strong operator topology, and we use this notation everywhere in
the proof, considering families of pairwise-orthogonal projectors), exists in R ∩ R′
(a von Neumann algebra, hence strongly closed). Therefore (iii)’ follows, for oth-
erwise I − ∑

k∈K Pk �= 0 would be central and orthogonal to every Pk , contra-
dicting maximality. If, conversely, (i),(ii),(iii)’ hold, take a central projector Q
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satisfying Q ⊥ Pk for all k ∈ K . We therefore have PkQ = QPk = 0 and thus
Qx = Q

∑
k∈K Pkx = ∑

k∈K QPx = 0 for every x ∈ H so that Q = 0 and (i) is
false. This means {Pk}k∈K is maximal ((iii) holds) if we require (i),(ii), (iii)’.
(b) Let us pass to the uniqueness property. If {Qh}h∈H is another maximal set of non-
vanishing, pairwise-orthogonal, atomic and central orthogonal projectors, we have
PkQh = Qh Pk and so PkQh is an orthogonal projector with PkQh ≤ Pk . Under our
hypotheses either PkQh = Pk or PkQh = 0. Since Qh = ∑

k∈K PkQh we also have
Qh = ∑

k∈Kh
Pk for some subset Kh ⊂ K . If Kh is contained more than one index,

Qh would not be an atom. We conclude that Qh = Pkh for a unique kh depending on
h. The condition

∑
h Qh = I implies that kh ranges over the whole K when h ∈ H ,

since
∑

k∈K ′ Pk < I if K ′ is properly included in K . Therefore {Qh}h∈H and {Pk}h∈K
denote the same set.
(c)–(d).We observe that any element ofR commutes with every central projector Pk ,
and therefore the closed subspace Hk := Pk(H) is invariant under the whole algebra
R. Moreover

R � A �→ πk(A) := A�Hk : Hk → Hk

is a ∗-algebra representation of R, the proof being straightforward.
(e) The space Rk := πk(R) ⊂ B(Hk) contains I and is ∗-closed. We claim that
Rk is strongly closed, and hence a von Neumann algebra (Theorem3.88). Suppose
Rk � Bn → B ∈ B(Hk) strongly. We know that Bn = An�Hk for some An ∈ R, so
that An Pkφ → B ′φ for everyφ ∈ Hwhere B ′ extends B as 0 onH⊥

k . Then B
′ ∈ R, for

it is the strong limit of An Pk ∈ R andR is a von Neumann algebra. By construction,
if ψ ∈ Hk , B ′ψ = B ′�Hk ψ and so Bnψ = An Pkψ → B ′ψ = B ′�Hk ψ = πk(B ′)ψ .
Consequently Rk is strongly closed, as required. Now, R′

k is a factor because, if Q
is an orthogonal projector in the centre ofR′

k , by extending it to the zero operator on
H⊥

k we obtain an orthogonal projector Q′ in the centre ofRwhich satisfies Q′ ≤ Pk .
Under our hypotheses either Q′ = 0 or Q′ = Pk , viz. Q = 0 or Q = Ik (the identity
in Rk) and hence Rk is a factor due to Proposition7.61(d).
(f) In terms of subspaces, I = ∨k∈K Pk means H = < Hk >k∈K . Since Pk �= 0 and
Pk ⊥ Ph if k �= h, just by definition of Hilbert sum we find H = ⊕k∈KHk . With
this decomposition ofH, applying Definition3.98 immediately givesR = ⊕

k∈K Rk

where Rk = πk(R).
(g) To prove the last statement, let Pk be a central orthogonal projector onto Hk and
Q j a central projector in the type-decomposition of Theorem7.68. The following
facts hold: (1) if Pk ≤ Q j then Q j is uniquely determined by Pk . (Since Q j ⊥ Qi

for i �= j , if Pk ≤ Qi , i.e., Pk = PkQi , we also have Pk = PkQ j = PkQi Q j = 0,
a contradiction). (2) For every Pk there exists Q jk such that Pk ≤ Q jk . (PkQ j ≤ Pk
and, as Pk is an atom of the centre, either PkQ j = 0 or PkQ j = Pk . If PkQ j = 0 for
every j ∈ J , since

∑
j∈J Q j = I , we would have Pk = ∑

j∈J PkQ j = 0, impossi-
ble.) (3) Every Q j satisfies Pk j ≤ Q j for some k j ∈ K . (Since Q j = ∑

k∈K Q j Pk
and Q j Pk ≤ Pk we have either Q j Pk = 0 or Q j Pk = Pk because Pk is an atom of
the centre. Hence Q j = ∑

k∈K j
Pk and Pk j ≤ Q j if k j ∈ K j .) Summing up, K can

be decomposed in non-empty, pairwise-disjoint subsets K j = {k ∈ K | Pk ≤ Q j }
where j ∈ J . Furthermore, rephrasing (1), (2) and (3) in terms of Rk = PkR and
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R( j) = Q jR, we find that each factor Rk is contained in a unique von Neumann
algebra R( jk ), so that Rk has the same type of R( jk ) (Remark7.69(2)). Moreover,
every von Neumann algebraR( j) contains a factorRk , necessarily of the same type.
Finally, since Q j = ∑

k∈K j
Pk (where Pk ⊥ Ph if k �= h), (7.50) holds true. �

It is mathematically relevant that the four requirements (i), (ii), (iii), (iv) (or (i), (ii),
(iii)’, (iv)) are together equivalent to a unique demand on the centre ofLR(H).

Proposition 7.71 Let R be a von Neumann algebra on the complex Hilbert space
H �= {0}. Then R contains a (unique) family {Pk}k∈K ⊂ LR(H) satisfying (i)-(iv)
of Proposition7.70 if and only if the centre of the lattice LR(H) is atomic (Defini-
tion7.54).

Proof If the centre ofLR(H) is an atomic lattice, there are sets of pairwise orthog-
onal atoms. Zorn’s lemma immediately proves that there are maximal such sets.
A maximal set of pairwise orthogonal atoms {Pk}k∈K satisfies (i)-(iv) evidently.
Suppose, conversely, that the family of central projectors {Pk}k∈K satisfies (i)–(iv)
and therefore (iii)’ of Proposition7.70 in particular. Let Q ∈ LR(H) ∩ LR(H)′. We
have Q = ∨k∈K QPk where the projectors QPk and QPh are orthogonal if h �= k. If
Q �= 0, theremust be l ∈ K with QPl �= 0. As QPl ≤ Pl , and since Pl is an atom, we
also have Pl = QPl ≤ Q. The arbitrariness of Q implies that the centre of LR(H)

is atomic. �

We have seen that R can be decomposed into a direct sum of factors. However, to
achieve this nice result, we made the overall quite strong assumption that the centre
of the lattice LR(H) is atomic or, equivalently, that it contains a maximal set of
pairwise orthogonal atoms {Pk}k∈K . Similar central maximal sets always exist by
Zorn’s lemma, but there is no guarantee that they are made of atoms of the centre.
In the general case, if H is separable, a finer but analogous decomposition of a von
Neumann algebra can be constructed in terms of a direct integral of factors, taking
the place of the Hilbert sum. This generalised decomposition reduces to (7.49) as
soon as the centre is atomic. In the general case, the direct integral decomposition
into factors is essentially unique.

7.6.4 Gleason’s Theorem for Lattices of von Neumann
Algebras

There is a version of Gleason’s theorem that holds for measures on lattices of von
Neumann algebras. It necessitates certain conditions [Mae89] on the definite-type
decomposition of the von Neumann algebra.

Theorem 7.72 (General Gleason theorem) Consider a von Neumann algebraR on
a complex Hilbert spaceH �= {0} whose definite-type decomposition (Theorem7.68)
does not include a type-I2 algebra. Denote, as before, byLR(H) the (orthomodular,
complete) lattice of orthogonal projectors in R.
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Suppose μ : LR(H) → [0,+∞] satisfies 0 < μ(I ) < +∞ and is σ -additive:

μ

(
s-

+∞∑

i=0

Pi

)
=

+∞∑

i=0

μ(Pi ) for {Pi }i∈N ⊂ LR(HS) with Pi ⊥ Pj if i �= j .

(7.51)
Each of the following three conditions is equivalent to the existence of a positive,
trace-class operator T ∈ B1(H) such that μ(P) = tr(T P) for every P ∈ LR(H).

(i) μ is completely additive:

μ
(∨ j∈J Pj

) =
∑

j∈J

μ(Pj ) , (7.52)

for every family {Pj } j∈J ⊂ LR(H) of pairwise orthogonal elements. (The projector
∨ j∈J Pj exists sinceLR(HS) is a complete lattice (Proposition7.61), and the right-
hand side of (7.52) is well-defined because its terms are non-negative).

(ii) μ admits a support, namely an element P ∈ LR(H) such that μ(Q) = 0 for
Q ∈ LR(H) if and only if Q ⊥ P.

(iii) 1
μ(I )μ is the restriction of a normal algebraic state on the C∗-algebra R

(Definition14.10).

Remark 7.73 (1) If H is separable the theorem immediately implies that μ is auto-
matically represented by an operator of trace class. This is because every family of
pairwise orthogonal projectors is at most countable if H is separable, so μ is auto-
matically completely additive since σ -additive. In contrast to the case R = B(H),
the trace-class operator representing μ is not unique in general.
(2) A probability measure μT over a von Neumann algebra R on H (possibly with
type-I2 summands) that is induced by a positive trace-class operator T of trace one is
called a normal state ofR. Such a measure is nothing but the restriction toLR(H)

of the measure defined by Proposition7.25 onL (H). A normal state as understood
in (iii) is more appropriately the functional ωT := R � A �→ tr(T A). However, it is
obvious that ωT �LR(H)= μT . The general notion of normal (algebraic) state will be
introduced and discussed in Chap.14. �

7.6.5 Algebraic Characterisation of a State as a
Noncommutative Riesz Theorem

This section is purely mathematical, and focuses on a characterisation of the space
of statesS(H). The description has a certain interest for the algebraic formulation of
QM [Str05a] and quantum theories in general, which wewill briefly see in Sect. 14.1.
Its mathematical relevance resides in that it implies a noncommutative version of
Riesz’s Theorem1.58 on (finite) positive Borel measures. The word noncommutative
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http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_1


7.6 More Advanced, Foundational and Technical Issues 375

refers to measures on the projector latticeL (H) in the sense of axiomA2 (measure-
theory version), rather than on a σ -algebra.

First of all observe that a positive trace-class operator T determines a linear
functional of theC∗-algebra of compact operatorsB∞(H), given byωT : B∞(H) →
C, ωT (A) = tr(T A). This is positive:

ωT (A∗A) ≥ 0 for any A ∈ B∞(H). (7.53)

In fact, tr(A∗T A) = tr(A∗T 1/2T 1/2A) = tr((T 1/2A)∗T 1/2A) ≥ 0.The last inequal-
ity comes from expanding the trace in some basis ofH. ViewingωT as linear operator
on the Banach space B∞(H) (with the norm of B(H)), we have

||ωT || = trT . (7.54)

In fact, if A ∈ B∞(H) and ||A|| ≤ 1, taking the trace in a basis {ψ j } j∈J of eigen-
vectors of T = T ∗ gives

|ωT (A)| ≤
∑

j∈J

|p j (ψ j |Aψ j )| ≤
∑

j∈J

p j ||Aψ j || ≤
∑

j∈J

p j = trT .

Eventually ωT (AN ) → trT , as N → +∞, if AN := ∑
0≤p j<N ψ j (ψ j | ), where

||AN || ≤ 1 and AN ∈ B∞(H) because the latter’s range is finite-dimensional (see
Example4.18(1)).

Definition 7.74 Let H be a complex Hilbert space. Positive and linear functionals
ω : B∞(H) → C of unit norm are called algebraic states on theC∗-algebraB∞(H).
Their set will be denoted C(B∞(H)).

Therefore every state T ∈ S(H) determines an algebraic state ωT ∈ C(B∞(H)).
This can be accompanied by the following characterisation.

Theorem 7.75 If H is a complex Hilbert space, the mapping S(H) � T �→ ωT ∈
C(B∞(H)), with ωT (A) = tr(T A), A ∈ B∞(H), is well defined and bijective.
Equivalently: states inS(H) are in one-to-one correspondence with algebraic states
in C(B∞(H)).

Proof The map T �→ ωT is well defined by the above argument, and also one-to-
one: if ωT = ωT ′ in fact, then tr((T − T ′)A) = 0 for any compact operator A. By
decomposing the self-adjoint, trace-class operator T − T ′ over an eigenvector basis
{φi }i∈I and choosing A = φi (φi | ) for any i ∈ I , we conclude the eigenvalues of
T − T ′ must all vanish, so T − T ′ = 0 by (6) in Theorem4.19(b).

Let us prove the surjectivity of T �→ ωT . Considering ω ∈ C(B∞(H)) we try to
find T ∈ S(H) such that ω = ωT . If ψ, φ ∈ H, define Aψ,φ := ψ(φ| ) ∈ B∞(H).
By definition of norm ||Aψ,φ|| = ||ψ || ||φ||. The coefficients ω(φ,ψ) := ω(Aψ,φ)

define a function H × H → C, linear in the right argument and antilinear in the
left one. Further, |ω(φ,ψ)| = |ω(Aψ,φ)| ≤ 1||Aψ,φ|| = ||ψ || ||φ||. Then Riesz’s

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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representation Theorem3.16 implies there is a linear map T ′ : H → H such that
ω(Aψ,φ) = (T ′ψ |φ), for any ψ, φ ∈ H. As ||T ′ψ ||2 = |(T ′ψ |T ′ψ)| = |ω(Aψ,T ′ψ)|
≤ ||ψ || ||T ′ψ ||, we conclude ||T ′|| ≤ 1. Setting T := T ′∗, we have an operator
T ∈ B(H) with ||T || ≤ 1 and ω(Aψ,φ) = (ψ |Tφ) for any ψ, φ ∈ H. As ω is posi-
tive, taking ψ = φ implies T ≥ 0, so in particular T = T ∗ and |T | = T . Now take a
Hilbert basis N of H. If F ⊂ N is finite define LF := ∑

z∈F z(z| ). By construction
LF ∈ B∞(H) and ||LF || ≤ 1 (orthogonal projector). Therefore

0 ≤
∑

z∈F
(z||T |z) =

∑

z∈F
(z|T z) =

∑

z∈F
ω(Az,z) = ω (LF ) = |ω (LF ) | ≤ ||ω|| .

But F is arbitrary, so
∑

z∈N (z||T |z) ≤ 1 < +∞, and by definition of trace class, T ∈
B1(H). Splitting T over an eigenvector basis, T = ∑

i∈I piψi (ψi | ) (by construction
pi ≥ 0, trT = ∑

i pi ≤ ||ω||), and taking the trace, by linearity we have

|ω(A)| = |tr(T A)| ≤
∑

i∈I
pi |(ψi |Aψi )| ≤ (trT )||A||

if A ∈ B∞(H) is a finite combination of the Aψ,φ . Since the above operators A
are dense in B∞(H) in the uniform topology (Theorem4.23), by continuity and
linearity ω(A) = tr(T A) and |ω(A)| ≤ trT ||A|| for any A ∈ B∞(H). The latter
tells ||ω|| ≤ tr(T ); but since we know trT ≤ ||ω||, then trT = ||ω||. In particular
trT = 1, for ||ω|| = 1 by assumption. Hence we have ω = ωT for some T ∈ S(H),
rendering the map onto. �

Remark 7.76 One fact becomes evident from the proof: we may drop the hypothesis
that ω has unit norm, and demand, more weakly, that the norm be finite. Then the
positive operator Tω ∈ B1(H) corresponding to ω will satisfy tr(Tω) = ||ω||. �

We wish to interpret the result in the light of the theory of the probability measure
ρ on the lattice L (H), in the sense of axiom A2 (measure-theory version). To this
end recall Riesz’s theorem on positive Borel measures Theorem1.58 on the locally
compact Hausdorff space X. Consider, slightly modifying the theorem’s hypotheses,
positive linear functionals Λ : C0(X) → C, where C0(X) is the space of continuous
complex functions on X that vanish at infinity with norm || ||∞ (Example2.29(4)).

Proposition 7.77 If X is locally compact, Hausdorff and Λ : C0(X) → C is a
bounded positive linear functional (with norm || ||∞ on the domain), there exists
a unique positive and σ -additive regular measure μΛ on B(X), such that Λ( f ) =∫
X f dμΛ for any f ∈ C0(X). Moreover μΛ is finite and ||Λ|| = μΛ(X).

Proof The restrictionΛ�Cc(X) gives a positive functional as in Riesz’s Theorem1.58.
Applying the theorem produces a measure μΛ : B(X) → [0,+∞] mapping com-
pact sets to a finite measure, uniquely determined by Λ( f ) = ∫

X f dμΛ, f ∈ Cc(X),
if we impose μΛ is regular. So we assume regularity from now on. If Λ is
bounded, easily μΛ(X) = ||Λ||, so μΛ(X) is finite. (For any f ∈ C0(X) we have

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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|Λ( f )| ≤ ∫
X | f |dμλ ≤ || f ||∞μΛ(X), hence ||Λ|| ≤ ||μΛ(X)||. For any compact

set K ⊂ X, by local compactness and Hausdorff’s property, Urysohn’s lemma
(Theorem1.24) gives fK ∈ Cc(X) such that f : X → [0, 1] with fK (K ) = {1},
so μΛ(K ) ≤ ∫

X fK dμΛ ≤ ||Λ|||| fK ||∞ = ||Λ|| and then μΛ(X) ≤ ||Λ||, because
μΛ(X) = sup{μΛ(K ) | K ⊂ X , compact} by inner regularity of μΛ.) That μΛ is
finite implies that any map of C0(X) can be integrated. Then the above con-
straint on the integral in dμΛ, fixing the regular measure μΛ on B(X), becomes
Λ( f ) = ∫

X f dμΛ for any f ∈ C0(X). �

We know that any positive operator T ∈ B1(H) gives a generalised measure on
L (H) (a probability measure if trT = 1) in the sense of Proposition7.25. Then
Theorem7.75 implies a noncommutative version of Riesz’s representation theorem
for finite measures, stated in Proposition7.77. This comes about as follows: think
of the projector latticeL (H) as the noncommutative variant of the Borel σ -algebra
B(X), and the C∗-algebra of compact operators B∞(H) as the noncommutative
correspondent to the commutative C∗-algebra C0(X). (Both algebras are without
unit if H is infinite-dimensional and X non-compact, respectively.) In that case the
bounded positive functional Λ on C0(X) becomes the bounded positive functional
ω on B∞(H). In either case the existence of positive functionals ω, Λ implies the
existence of corresponding finite measures on L (H), B(X) respectively. The latter
is what we denoted μΛ above, whilst the former is simply defined as ρω(P) :=
tr(TωP) for any P ∈ L (H), where Tω ∈ B1(H) and ω correspond to one another
as in Theorem7.75 (there Tω was called T and ω was ωT ). The requests fixing μΛ

(assumed regular) and ρω are

Λ( f ) =
∫

X
f (x) dμ(x) ∀ f ∈ C0(X) and ω(A) = tr(TωA) ∀A ∈ B∞(H)

respectively. The identity ||Λ|| = μΛ(X) now is ||ω|| = trTω.

Remark 7.78 This discussion serves to explain that the generalisation of the integral
of maps in C0(X) with respect to μΛ should be viewed, in the noncommutative
setting, as the trace tr(Tω·) acting on B∞(H). Hence if Tρ ∈ B1(H) is the operator
associated (by Remark7.28(3) only) to a probability measure ρ : L (H) → [0, 1]
(fulfilling (1) and (2) of axiom A2 (measure-theory version)) by Gleason’s theorem,
we will use the writing ∫

L (H)

Adρ := tr(Tρ A) . (7.55)

�

Now we can prove the noncommutative version of Proposition7.77.

Theorem 7.79 If H is a complex Hilbert space, separable or of finite dimension
�= 2, and ω : B∞(H) → C is a bounded positive linear functional with unit norm,
there exists a unique probability measure ρω : L (H) → [0, 1] (satisfying (1), (2) in
axiom A2 (measure-theory version)), such that:

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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ω(A) =
∫

L (H)

Adρω ∀A ∈ B∞(H) .

Suppose further ||ω|| is finite, but not necessarily one. Then ρ : L (H) → [0, ||ω||]
and ρω(I ) = ||ω|| instead of ρ(I ) = 1.

Proof Define ρω(P) := tr(TωP) for any P ∈ L (H), where ω and Tω ∈ B1(H) cor-
respond bijectively as in Theorem7.75. Then ω(A) = tr(TωA) =: ∫

L (H)
Adρω for

any A ∈ B∞(H), because of (7.55) and Tω is by construction associated to the
measure ρω by Gleason’s theorem. (Proposition7.25 ensures ρω fulfils (1), (2) in
axiom A2 (measure-theory version)). Let us prove uniqueness. By Gleason’s Theo-
rem7.26 andRemark7.28(3), every probabilitymeasureρ onL (H) satisfiesρ(P) =
tr(TρP) for a unique positive operator Tρ of trace class with unit trace and any
P ∈ L (H). Ifω(A) = ∫

L (H)
Adρ := tr(Tρ A) for any compact operator A, sincewe

sawω(A) = tr(TωA), choosing A = ψ(ψ | )will give (ψ |(Tω − Tρ)ψ) = 0 for any
ψ ∈ H. Hence Tρ = Tω, and consequently ρ(P) = tr(TρP) = tr(TωP) = ρω(P)

for any P ∈ L (H). All this extends to the case 0 < ||ω|| �= 1, by using the functional
ω′ := ||ω||−1ω. If ||ω|| = 0 then ω = 0. Therefore a possible measure ρ compatible
with 0 = ω(A) = Tr(Tρ A) for any A ∈ B∞(H) is the null measure. It is unique by
the same argument. �

7.7 Introduction to Superselection Rules

For known quantum systems, not all normalised ψ determine states that are phys-
ically admissible for describing the quantum system. There are various theoretical
reasons (which we shall return to in the sequel) that force the existence of so-called
superselection rules. This section is an introduction to this notion. A more advanced
presentation, relying on spectral theory technicalities that we will discuss in ensuing
chapters, appears in Sect. 11.2.

7.7.1 Coherent Sectors, Admissible States and Admissible
Elementary Propositions

For some quantum systems affected by so-called superselection rules, the system’s
(separable) Hilbert space H is a Hilbert sum of preferred closed subspaces called
coherent sectors:

H =
⊕

k∈K
Hk , (7.56)

where Hk �= {0} and Hk ⊥ Hh for every k �= h. (We wrote H instead of HS for the
sake of notational simplicity. This will be the convention in this section.) The rel-
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evance of these subspaces comes from the fact that physically admissible states in
Sp(H) are only those represented by vectors in one of the Hk . States given by linear
combinations over distinct coherent sectors are not physically permitted. Coherent
sectors are associated to collections of mutually exclusive propositions – i.e. orthog-
onal projectors Pk onto the corresponding coherent sectors, with

∑
k∈K Pk = I . The

sum, if infinite, is meant in strong sense since K is at most countable (otherwise∑
k∈K Pk := ∨k∈K Pk when H is not separable, but this is not our situation). The

proposition associated to Pk corresponds to the assertion that the quantity determin-
ing the superselection rule has a certain value. More generally, the quantity will not
be required to take a specific value on each subspace, but only to range over a certain
set specified by the proposition. Let us explain this with two examples. A further
example will be given in Sect. 11.2.2 and a fourth one, regarding Bargmann’s super-
selection rule, in Sect. 12.3.4.

Example 7.80 (1)The first instance is the superselection rule of the electric charge
for a charged quantum system. It prescribes that each vector ψ , determining a sys-
tem’s state, satisfy a proposition PQ of the type: “the system’s charge equals Q”
for some value Q. Mathematically, then, tr(PQ(ψ | )ψ) = 1 for some Q, which
amounts to saying PQψ = ψ for some Q (Proposition7.38). In other words: states
that are determined by single vectors and whose charge is not a definite value are
not admissible. This demand is obvious in classical physics, but not in QM, where
an electrically charged system could, a priori, admit states with indefinite charge.
Asking the Hilbert space to be separable requires that the number of values Q of the
charge, i.e. the coherent sectors with given charge, be at most countable, so that the
electric charge cannot vary with continuity.11

(2) Another superselection rule concerns the angular momentum of any physical
system. From QMwe know that the squared modulus J 2 of the angular momentum,
when in a definite state, can only take values j ( j + 1) with j integer or semi-integer
(in � = h

2π units, where h is the usual Planck constant). The Hilbert space of the
system decomposes in two closed orthogonal subspaces, one associated to integer-
valued j , the other associated to semi-integer j . The superselection rule of the
angular momentum dictates that vectors representing states are not linear combi-
nations over both subspaces. It is important to remark that a pure state can have
an undefined angular momentum, since the state/associated vector is a linear com-
bination of pure states/vectors with distinct angular momenta; by superselection,
however, these values must be either all integer or all semi-integer. We will return to
this point in Sect. 12.3.2. �

11Here we are using notions that will be introduced in Chaps. 8 and 9. If the charge is taken to
be continuous and Hq is the subspace where it takes the value q ∈ R, i.e. the q-eigenspace of a
self-adjoint operator Q, then the Hilbert space (non-separable) is still a sum ⊕q∈RHq , and R is the
point spectrum of Q. Some authors, instead, prefer to think of the Hilbert space as a direct integral,
thereby preserving its separability, and in this case R = σc(Q).
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In presence of superselection rules associated to the coherent decomposition (7.56)
we can define spaces of states S(Hk) and pure states Sp(Hk) of each sector. These
can be identified with subsets in S(H) and Sp(H) respectively, by the following
obvious argument: if M is a closed subspace in H, A ∈ B(M) is identified with
an operator of B(H) simply by extending it as the null operator on M⊥. If A is
positive and of trace class, the extension is positive, of trace class, and the trace is
preserved. If A is of the form (ψ | )ψ , ψ ∈ M, ||ψ || = 1, the extension is alike. In
the case considered we identify everyS(Hk) andSp(Hk) with a subset inS(H) and
Sp(H) respectively, extending each state ρ, nonpure or pure, to the zero operator on
H⊥

k . Hence S(Hk) ∩ S(H j ) = ∅ and Sp(Hk) ∩ Sp(H j ) = ∅ if k �= j . Physically
admissible pure states for the system described on H are precisely those in:

Sp(H)adm :=
⊔

k∈K
Sp(Hk) . (7.57)

Wecall the family above the set ofadmissible pure states in presence of superselection
rules. Physically-admissible nonpure states for the system described on H are then
those that can be built as mixtures of admissible pure states. Hence physically-
admissible mixed states will be convex combinations of elements of

⊔

k∈K
S(Hk) . (7.58)

Certain physically-admissible mixed states will be finite sums

ρ =
n∑

i=1

qiρi

where qi ∈ (0, 1], ∑i qi = 1 and ρi ∈ Hki for some ki ∈ K . The subtle point is that
one should also comprise infinite convex combinations. For the moment we shall
stick to the finite case. Each state ρi decomposes along a basis of eigenvectors, which
belong to the corresponding coherent sector Hki , in accordance with Theorem4.20:

ρi =
+∞∑

j=1

pi jφi j (φi j |·)

where pi j ∈ [0, 1] with ∑
j pi j = 1, and these numbers are arranged to guarantee

the convergence of the series in the uniform topology. Collecting the decompositions
of all states we obtain the overall expression for ρ:

ρ =
+∞∑

j=1

ni∑

i=1

qi pi jφi j (φi j |·) .
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By using the strong operator topology, which does not care about the order we follow
to sum terms, we may rearrange:

ρ = s-
∑

h∈H
phψh(ψh |·) with ψh ∈ Hkh for kh ∈ K (7.59)

where ph ∈ [0, 1] and ∑
h ph = 1. States ρ ∈ S(H) of form (7.59) are supposed to

be all admitted by the superselection rule (the elements of Sp(H)adm are obviously
among them). We stress that, here, we can assume the indexing set H is countable.
It is clear that a statistical operator of the form (7.59) satisfies

ρPk = Pkρ for any k ∈ K , (7.60)

where Pk is the orthogonal projector onto the coherent sector Hk . Using the spectral
theory developed in Chap.8, it is easy to establish that if ρ ∈ S(H) satisfies (7.60)
then it is of the form (7.59). Hence equation (7.60) characterises the set of physically
admissible states completely.

Based on the discussion above we can state the first axiom for quantum systems
with superselection rules. This, and the second axiom below, are to be understood
as constraints on A1, A2, A3.

Ss1. In presence of superselection rules in a physical system described on a separable
Hilbert space H �= {0}, there is a preferred, at most countable family of orthogonal
projectors {Pk}k∈K that is assumed to describe elementary propositions and satisfies

(i) Pk �= 0,
(ii) Pk ⊥ Ph if h �= k,
(iii) s-

∑
k Pk = I .

The pairwise-orthogonal, closed subspaces Hk := Pk(H) are called coherent sec-
tors or superselection sectors.

The only possible states of the system, called admissible states, are the elements
in:

S(H)adm := {ρ ∈ S(H) | ρPk = Pkρ for any k ∈ K } . (7.61)

The admissible pure states are therefore those in the subset Sp(H)adm of (7.57).

As one might expect,

Proposition 7.81 The subsetS(H)adm is convex inS(H), andSp(H)adm is the set
of extreme elements of S(H)adm.

Proof Evidently S(H)adm is convex, due to (7.61). The extreme elements of S(H)

are those in Sp(H) (Proposition7.34), so Sp(H) ∩ S(H)adm = Sp(H)adm is made
of extreme elements of S(H)adm . If ρ ∈ S(H)adm does not belong to Sp(H)adm , it
is an incoherent superposition of elements of Sp(H)adm and therefore it cannot be
extreme. �

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Let us now look at the lattice of elementary propositions in presence of superselection
rules. Axiom A3 about post-measurement states has some remarkable implications
as soon as states are bound by Ss1. Suppose P ∈ L (H) satisfies PPk = Pk P for
every k ∈ K , and that a measurement says it is true when the state is ρ ∈ S(H)adm .
Then the post-measurement state ρP := PρP

tr(Pρ)
still satisfies PkρP = ρP Pk , hence it

is admissible. As it turns out, only these propositions can be admitted, as established
by the following proposition.

Proposition 7.82 Assume that Ss1 holds. In view of axiomA3 on post-measurement
states, only certain orthogonal projectors of L (H) can be admitted as elementary
propositions on the physical system. These are the projectors P satisfying Pk P =
PPk for every k labelling a coherent sector Hk .

Proof If ψ ∈ Hk \ {0} is a pure state and we measure the pair of mutually exclusive,
compatible elementary observables P, P ′ := I − P , one of them must be true. The
post-measurement state, up to renormalisation, is given by vectors Pψ or P ′ψ . The
corresponding states must still belong toSp(H)adm in view of Ss1. This requirement
implies that Pψ ∈ Hr and Pψ ∈ Hs for some r, s. If Pψ = 0, we automatically
think Pψ in Hk . But Hk � ψ = Pψ + P ′ψ ∈ Hr ⊕ Hs . As Hk,Hr ,Hs are pairwise
orthogonal if k, r, s are distinct, k = r cannot be if Pψ �= 0. In conclusion Pψ ∈ Hk

if ψ ∈ Hk (when ψ = 0 this is trivial). If φ ∈ H, we can say PPkφ ∈ Hk , and so
Ph PPkφ = δhk P Pkφ = Pk PPhφ. Using I = s-

∑
h Ph and the continuity of Pk P ,

then Ph PPkφ = Pk PPhφ implies PPk = Pk P . �

Example 7.83 Referring to Example7.80(1), all elementary propositions of a phys-
ical system carrying an electric charge must commute with every projector PQ cor-
responding to the statement: “the system’s charge equals Q” for some value Q. �

By direct inspection one easily proves that the subsetL (H)adm ⊂ L (H) of elements
P commuting with the projectors Pk (pairwise orthogonal and satisfying s-

∑
k Pk =

I ) is a complete orthomodular sublattice of L (H). The Pk are clearly central in
L (H)adm , soL (H)adm cannot coincide withL (H), whose centre is just {0, I }.

If the family of projectors Pk describes all superselection rules of the system, in
eachHk all possible coherent combinations of vectors must be physically admissible.
Therefore Hk cannot admit finer coherent decompositions: there is no element P in
the centre of L (H)adm such that 0 < P < Pk , making Pk an atom of the centre of
L (H)adm . The second axiom incorporates everything we have just seen.

Ss2. The setL (H)adm of elementary propositions permitted by superselection rules,
called the logic of admissible elementary propositions of the system, is a complete,
orthomodular sublattice of L (H) satisfying the following properties.

(i) The centre of L (H)adm contains the family {Pk}k∈K .
(ii) Each Pk is an atom of the centre of L (H)adm (when {Pk}k∈K describes all

superselection rules of the physical system, as we assumed).
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Remark 7.84 (1) The meaning of the propositions Pk is provided by physics. Some
example have been illustrated previously. A broader physical discussion on the rela-
tionship between the Pk and relevant observables defining superselection rules is
undertaken in Sects. 11.2.2 and 14.1.7 specifically in comparison with the so-called
algebraic approach.
(2) The description above is appropriate for the so-called discrete superselection
rules. There is another type, called continuous superselection rules, to which we will
come back in Chap.11. �
Here is an elementary but important point. The states inS(H)adm , even if fewer than
those inS(H), are however sufficient to separate admissible elementary propositions.

Proposition 7.85 Under Ss1 and Ss2, the space of admissible states separates the
lattice of admissible elementary propositions: if P, P ′ ∈ L (H)adm and tr(ρP) =
tr(ρP ′) for every ρ ∈ S(H)adm, then P = P ′.

Proof If P(H) ⊂ Hk and P ′(H) ⊂ Hh with h �= k, then tr(ρP) = tr(ρP ′) for every
ρ ∈ S(H)adm is impossible, because ρ = ψ(ψ |·) with ψ ∈ P(H) and ||ψ || = 1 sat-
isfies ρ ∈ S(H)adm and gives tr(ρP) = 1 but tr(ρP ′) = 0. If P, P ′ project onto the
same sector Hk , the claim is true in view of Proposition7.30(a). �

7.7.2 An Alternate Formulation of the Theory of
Superselection Rules

At thebeginningof the descriptionof superselection rulesweassumed that admissible
states are the ones in S(H)adm , which is strictly contained in S(H). Irrespective of
our previous choices of description, it is theoretically reasonable to think of the states
of the system as σ -additive probability measures on the lattice L (H)adm . Without
superselection rules, and if dimH �= 2, these measures correspond one-to-one, by
Gleason’s theorem, to positive trace-class operators with unit trace, namely elements
of S(H). In that case the description in terms of states (trace-class operators) is
equivalent to the description in terms of measures.

Now that the focus is on situations where superselection rules are present, wewish
to propose an analogous alternative descriptionof the spaceof states. It is basedon two
axioms, understood as constraints on A1, A2 (measure-theory formulation) and
A3 (measure-theory version). The Hilbert space H is implicitly always separable
and non-trivial. Since we start by looking at observables instead of states, as opposed
towhat we did in Ss1 and Ss2, now the first axiom regards observables and the second
one states.

Ss1 (measure-theory formulation). The set L (H)adm of elementary propositions
permitted by superselection rules, called logic of admissible elementary propo-
sitions, is a complete, orthomodular sublattice of L (H) satisfying the following
properties.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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(i) The centre of L (H)adm contains the countable (at most) family {Pk}k∈K of
orthogonal projectors satisfying Pk �= 0, Pk ⊥ Ph if h �= k, and s-

∑
k Pk = I .

(ii) Each Pk is an atom of the centre of L (H)adm (since {Pk}k∈K is assumed to
describe all superselection rules of the physical system).
By the same argument that gave Proposition7.70(b) we have that the family {Pk}k∈K ,
if it exists, is uniquely determined by those properties.

Ss2 (measure-theory formulation). In the presence of superselection rules, the
quantum states of the system are described by σ -additive probability measures on
L (H)adm. These are maps

μ : L (H)adm → [0, 1] with μ(I ) = 1 (7.62)

such that

μ

(
s-

+∞∑

i=0

Qi

)
=

+∞∑

i=0

μ(Qi ) for {Qi }i∈N ⊂ LR(H)adm with Qi ⊥ Q j if i �= j.

(7.63)
As we saw about admissible states, it is easy to see (but important to note) that
the σ -additive probability measures onL (H)adm are sufficient to separate admissi-
ble elementary propositions. By contrast to states, however, measures representing
quantum states also satisfy the reciprocal statement.

Proposition 7.86 Under Ss1 (measure-theory formulation) and Ss2 (measure-
theory formulation):
(a) σ -additive probability measures on L (H)adm separate admissible elementary
propositions: if P, P ′ ∈ L (H)adm and μ(P) = μ(P ′) for every σ -additive proba-
bility measure, then P = P ′;
(b) the lattice L (H)adm of admissible elementary propositions separates the set
of σ -additive probability measures on L (H)adm: if μ′(P) = μ(P) for every P ∈
L (H)adm, then μ = μ′.

Proof The proof of (a) descends immediately from Proposition7.85 and the fact that
states define σ -additive probability measures onL (H) (Proposition7.25) and hence
onL (H)adm by restriction. Part (b) is true just by definition of measure. �

Theoretically speaking, the formulation relying on the notion of state in terms of
a measure is preferable to the one where states are trace-class operators. That is
because the physical objects we can really handle are just the probabilities that an
elementary proposition P is found true after measurement. The class of all those
probabilitiesμ(P), P ∈ L (H)adm , univocally fixes a (generalised) probability mea-
sureμ : L (H)adm → [0, 1]. Conversely, there could, in principle, be different states
ρ �= ρ ′ ∈ S(H)adm with tr(ρP) = tr(ρ ′P) for every P ∈ L (H)adm , so our defini-
tion of state may be affected by redundancies. Obviously this surplus is impossible
in the absence of superselection rules, sinceL (H) contains all orthogonal projectors
onto one-dimensional subspaces and these are enough to separate the elements of
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S(H) (Proposition7.30). The next result (which uses Proposition7.70) proves that,
apart from this possible excess, the use of measures or states is essentially equivalent
when the von Neumann algebra L (H)′′adm has certain properties.

Proposition 7.87 Let H �= {0} be a separable Hilbert space. Suppose that
(i)S(H)adm ⊂ S(H) is defined by a family, at most countable, {Pk}k∈K ⊂ L (H),

with Pk �= 0, Ph ⊥ Pk if h �= k and s-
∑

k∈K Pk = I , as in (7.61);
(ii)L (H)adm ⊂ L (H) is a complete orthomodular sublattice whose centre con-

tains {Pk}k∈K as atoms.
Then the following hold.

(a) If ρ ∈ S(H)adm, there exists a unique σ -additive probability measure μ :
L (H)adm → [0, 1] such that tr(ρP) = μ(P) for every P ∈ L (H)adm.

(b) If μ : L (H)adm → [0, 1] is a σ -additive probability measure, andL (H)′′adm
does not contain algebras of type I2 as summands (Theorem7.68), then there exists
ρ ∈ S(H)adm such that tr(ρP) = μ(P) for every P ∈ L (H)adm.

(c) Suppose that either (a) or (b) hold, and fix P ∈ L (H)adm. Then the associ-
ated post-measurement state and measure, in accordance with A3, (7.30) and A3
(measure-theory version), (7.31), satisfy

tr(ρP Q) = μP(Q)

for every Q ∈ L (H)adm.

Proof (a) Proposition7.25 establishes thatμ′ : L (H) � P �→ tr(Pρ) is aσ -additive
probability measure on L (H). The map μ := μ′�L (H)adm is therefore a σ -additive
probability measure on L (H)adm , the latter being a complete sublattice of L (H).
By construction, tr(ρP) = μ(P) for every P ∈ L (H)adm .
(b) Theorem7.72 and Remark7.73 entail that there is a state ρ0 ∈ S(H) with
tr(ρ0P) = μ(P) for every P ∈ L (H)adm . We claim that there also exists ρ ∈
S(H)adm with the same property. If ψ ∈ H, define ρψ := ∑

k∈K Pkρ0Pkψ . The
series converges as {Pkρ0Pkψ}k∈K is a system of orthogonal vectors and
(Lemma3.25)
∑

k∈K
||Pkρ0Pkψ ||2 ≤

∑

k∈K
||Pk ||2 ||ρ0||2 ||Pkψ ||2 ≤ ||ρ0||2

∑

k∈K
||Pkψ ||2 ≤ ||ρ0||2 ||ψ ||2 .

This argument implies furthermore that ρ ∈ B(H) with ||ρ|| ≤ ||ρ0||. It is clear that
ρ ≥ 0 because ρ0 ≥ 0 and

(ψ |ρψ) =
(

ψ

∣∣∣∣∣
∑

k∈K
Pkρ0Pkψ

)
=

∑

k∈K
(ψ |Pkρ0Pkψ) =

∑

k∈
(Pkψ |ρ0Pkψ) ≥ 0 ,

so that ρ = |ρ|. Moreover Pkρ = ρPk for every k ∈ K just by construction. Let us
prove that ρ ∈ B1(H) and that its trace is 1. If {ψ(k)

jk
} jk∈Jk is a basis of Hk := Pk(H),

then {ψ(k)
jk

} jk∈Jk ,k∈K is a basis ofH, becauseH = ⊕k∈KHk implies that it is amaximal

http://dx.doi.org/10.1007/978-3-319-70706-8_3


386 7 The First 4 Axioms of QM: Propositions …

orthonormal system. By construction, ρψ
(k)
jk

= Pkρ0Pkψ
(k)
jk

= Pkρ0ψ
(k)
jk

and so

∑

jk∈Jk ,k∈K
(ψ

(k)
jk

||ρ|ψ(k)
jk

) =
∑

jk∈Jk ,k∈K
(ψ

(k)
jk

|ρψ
(k)
jk

) =
∑

jk∈Jk ,k∈K
(ψ

(k)
jk

|Pkρ0ψ
(k)
jk

)

=
∑

jk∈Jk ,k∈K
(Pkψ

(k)
jk

|ρ0ψ
(k)
jk

) =
∑

jk∈Jk ,k∈K
(ψ

(k)
jk

|ρ0ψ
(k)
jk

) = trρ0 = 1 .

Thus far we have established ρ ∈ S(H)adm . To conclude, observe that, if P ∈
L (H)adm then Pρψ

(k)
jk

= PPkρ0Pkψ
(k)
jk

= Pk Pρ0ψ
(k)
jk
, and consequently

tr(Pρ) =
∑

jk∈Jk ,k∈K
(ψ

(k)
jk

|Pρψ
(k)
jk

) =
∑

jk∈Jk ,k∈K
(ψ

(k)
jk

|Pk Pρ0ψ
(k)
jk

)

=
∑

jk∈Jk ,k∈K
(Pkψ

(k)
jk

|Pρ0ψ
(k)
jk

) =
∑

jk∈Jk ,k∈K
(ψ

(k)
jk

|Pρ0ψ
(k)
jk

) = tr(Pρ0) = μ(P) ,

as wanted.
(c) This claim immediately follows from the definitions ofμP and ρP , using PQP ∈
L (H)adm . �
There remains the issue about whether there exist pairs of distinct elements ρ, ρ ′ ∈
S(H)adm determining the same σ -additive probability measure μ : L (H)adm →
[0, 1], in the sense that tr(ρP) = tr(ρ ′P) =: μ(P) for every P ∈ L (H)adm . Equiv-
alently, whether or notL (H)adm separates S(H)adm .

The following statement provides sufficient conditions.

Proposition 7.88 Assume the hypotheses (i) and (ii) of Proposition7.87. Suppose,
further, that

L (H)adm ⊃ L (Hk) with Hk := Pk(H) for every k ∈ K, (7.64)

where elements inL (Hk) are viewed as elements inL (H) by extending them trivially
(as zero) on H⊥

k . The following facts hold.
(a) L (H)adm separates the elements of S(H)adm: if ρ, ρ ′ ∈ S(H)adm satisfy

tr(Pρ) = tr(Pρ ′) for every P ∈ L (H)adm

then ρ = ρ ′.
(b) Under the hypotheses of Proposition7.87(b), for every σ -additive probability
measureμ : L (H)adm → [0, 1] there is exactly one ρ ∈ S(H)adm such thatμ(P) =
tr(ρP) for all P ∈ L (H)adm.

Proof Obviously (a) implies (b), so it is sufficient to prove (a). Suppose ρ, ρ ′ ∈
S(H)adm satisfy tr(ρQ) = tr(ρ ′Q) for everyQ ∈ L (H)adm . SinceQ canbedecom-
posed as Q = ∑

k Qk in the strong sense, where Qk := QPk , using bases inHk gives
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0 = tr((ρ − ρ ′)Q) =
∑

k∈K
tr((ρk − ρ ′

k)Qk) ,

whereρk := ρ�Hk : Hk → Hk . IfL (H)adm ⊃ L (Hk) for every h ∈ K , we can choose
Qh = ψh(ψh |·) for any unit vector ψh ∈ Hh so that

0 =
∑

k∈K
tr((ρk − ρ ′

k)Qk) = tr((ρh − ρ ′
h)Qh) = (ψh |(ρh − ρ ′

h)ψh) = 0 .

The arbitrariness of ψh implies (ρh − ρ ′
h) = 0. As the latter is valid for any h ∈ K ,

then ρ − ρ ′ = ⊕hρh − ρ ′
h = 0. �

Remark 7.89 (1)Concerning vonNeumannalgebras of observables (Proposition7.71),
in
Sect. 11.2.2 we shall discuss sufficient conditions to guarantee the validity of (7.64).
However, in general (7.64) fails and there existmany statesρ ∈ S(H)adm correspond-
ing to a given measure μ : L (H)adm → [0, 1]. The logic of admissible elementary
propositions is not able to separate states, as opposed to probability measures. This
fact suggests that the notion of quantum state, in the presence of superselection rules,
is better described by σ -additive measures on the lattice of admissible elementary
propositions rather than trace-class operators and vectors. Besides, we have already
hinted at operators being in excess to describe the quantum features of a quantum
system.
(2)Sometimes, in presence of superselection rules, no constraint the states is assumed
and every ρ ∈ S(H) is supposed admissible, though the lattice of elementary propo-
sitions is restricted toL (H)adm .With this third formulation the redundancy becomes
huge, due to the profusion of states that determine the same probability measure on
L (H)adm , and hence carry exactly the same physical information. The following
instructive example elucidates that the difference between coherent and incoherent
superposition becomes unsustainable within this picture. Take

ρ :=
∑

k∈K
pkψk(ψk |·) ∈ S(H)adm ,

where we selected one vector ψk ∈ Hk for every k ∈ K , and fixed the pk ∈ (0, 1]
with

∑
k∈K pk = 1. Next consider a unit vector of the form

Ψ :=
∑

k∈K
eick

√
pkψk

for any choice of ck ∈ R. We claim ρ and Ψ give rise to the same σ -additive proba-
bility measure onL (H)adm . Indeed, if Q ∈ L (H)adm , we define ρ ′ := Ψ (Ψ |·) and
complete both Ψ and {ψk}k∈K to separate Hilbert bases of H. Then

tr(ρ ′Q) = (Ψ |QΨ ) =
∑

k∈K

∑

h∈K

√
pk ph(ψk |Qψh) =

∑

k∈K

∑

h∈K

√
pk phδhk(ψk |Qψh)

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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=
∑

k∈K
pk(ψk |Qψk) = tr(ρQ) ,

where, since PkQ = QPk , we have used the identity

(ψk |Qψh) = (ψk |QPhψh) = (ψk |PhQψh) = (Phψk |Qψh) = δhk(ψk |Qψh) .

In generalΨ (Ψ |·)will not belong inS(H)adm , because it is a coherent superposition
of pure states of different sectors as soon as pk > 0 for at least two values of k.
The picture can be made even more general by allowing for more than one vector
in each coherent sector Hk . This is yet another bit of suggesting evidence that – in
the presence of superselection rules – the notion of quantum state is better portrayed
by σ -additive measures on admissible elementary propositions than by trace-class
operators and vectors. �

Exercises

7.1 Prove that in a Boolean algebra X, for any a ∈ X there exists a unique element,
written ¬a, that satisfies properties (i), (ii) in Definition7.8(c).

7.2 Prove that every orthocomplemented lattice X satisfies De Morgan’s laws (7.6).
Then prove Proposition7.11:

Proposition. Let X be an orthocomplemented lattice. The following facts hold for
any subset A ⊂ X.
(a) If A is finite, then ¬ supa∈A a = infa∈A ¬a , ¬ infa∈A a = supa∈A ¬a.
(b) If A is infinite, then supa∈A a (infa∈A a) exists if and only if infa∈A ¬a (supa∈A ¬a)
exists. If so, the former (latter) relation in (7.7) holds.
(c) IfX is complete (σ -complete), then (7.7) holds for every (countable) subset A ⊂ X.

Hint. Just use the definition of sup, inf and requirement (iv) (a ≥ b ⇔ ¬b ≥ ¬a)
in the definition of orthocomplemented lattice.

7.3 Show that an orthocomplemented lattice is complete (σ -complete) iff every set
(resp. countable set) A ⊂ X admits greatest lower bound.

Hint. Exploit Exercise7.2.

7.4 Prove Proposition7.15:

Proposition. Let h : X → Y be an isomorphism of orthocomplemented lattices. If
both X and Y are (σ -)complete, then h is an isomorphism of (σ -)complete lattices.

Solution. We only consider complete lattices, for the other case is similar. We
have to prove that if A ⊂ X then h(sup A) = sup h(A) and h(inf A) = inf h(A).
Remark7.9(4) permits us to prove the former relation only. Since a ≤ sup A for
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every a ∈ A and h preserves the ordering (Remark7.14(1)), then h(a) ≤ h(sup A)

so that (i) sup h(A) ≤ h(sup A). Since h(a) ≤ sup h(A) for a ∈ A, applying the
isomorphism of orthocomplemented lattices h−1 (it preserves the order), we get
a ≤ h−1(sup h(A)) so that sup A ≤ h−1(sup h(A)). Applying h, we conclude (ii)
h(sup A) ≤ sup h(A). Now (i) and (ii) together imply h(sup A) = sup h(A).

7.5 Let (X,≥) be atomic and orthomodular. Prove that if p ∈ X is not an atom, then
Ap := {a ≤ p | ais an atom} contains more than one atom.

Solution. Since (X,≥) is atomic, there exists a ∈ Ap. Then observe that ortho-
modularity implies p = a ∨ (¬a ∧ p) and hence either ¬a ∧ p = 0 (and p = a)
or ¬a ∧ p �= 0. The second case is only possible when p �= a. Next, atomicity
implies that ¬a ∧ p ≥ a′ for some atom a′. Moreover, a′ �= a because otherwise
a′ ≤ ¬a and a′ ≤ ¬a′ would imply a′ = 0, and atoms cannot be zero. Since then
a′ ≤ (¬a ∧ p ≤) p, we conclude that Ap � a′ �= a.

7.6 Prove that an orthomodular lattice (X,≥) is atomistic iff atomic.

Solution. The only thing that needs to be proved is that ‘atomicity⇒ atomisticity’.
Consider p ∈ X and Ap := {a ≤ p | ais an atom}. Suppose that there exists q �= p
such that a ≤ q ≤ p if a ∈ Ap. Orthomodularity requires p = q ∨ (¬q ∧ p), and so
¬q ∧ p �= 0 because p �= q . Since X is atomic, there is an atom a′ ≤ ¬q ∧ p, so in
particular a′ ≤ ¬q and also a′ ≤ p. Hence a′ ∈ Ap and, in turn, a′ ≤ q. Therefore
a′ ≤ q ∧ ¬q = 0, which is forbidden because a′ is an atom. In summary, the element
q cannot exist, and p is the smallest element satisfying a ≤ p if a ∈ Ap, namely
p = sup Ap. This shows X is atomistic.

7.7 Prove Proposition7.10:

Proposition. If X is an orthocomplemented lattice, then p, q ∈ X commute if and
only if the orthocomplemented lattice generated by {p, q} (the intersection of all
bounded orthocomplemented sublattices containing {p, q}) is Boolean.

Solution. Suppose the intersection of all (orthocomplemented) sublattices con-
taining {p, q} is Boolean. Then r1 := p ∨ ¬q , r2 := q ∨ ¬p, r3 := p ∧ q are con-
tained in that Boolean lattice and hence satisfy ri ⊥ r j if i �= j , p = r1 ∨ r3, and
q = r2 ∨ r3. Assume, conversely, p1 and p2 commute so that p = r1 ∨ r2 and
q = r2 ∨ r3 with ri ⊥ r j if i �= j . A sublattice X0 containing p and q is made of
the following elements: 0, r1, r2, r3, r4 := ¬(r1 ∨ r2 ∨ r3), all possible two-fold,
three-fold and four-fold joins of them (1 is one of these). It is easy to prove that X0

is Boolean. Every sublattice containing p and q necessarily contains r1, r2, r3, and
so it also contains X0. In summary, X0 is the intersection of all (orthocomplemented)
sublattices containing {p, q}.
7.8 Prove Propositions7.17 and 7.18.
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7.9 LetL be a complete lattice. A mapL � a �→ ag ∈ L is called a Galois con-
nection if a ≤ b entails bg ≤ ag and a ≤ (ag)g for every a, b ∈ L . The map

L � a �→ ac := (ag)g ∈ L

is called the closure operator associated to g.
Prove that in a complete lattice L equipped with a closure operator c, for every
a, b ∈ L ,

(i) ac ≤ a,
(ii) ac = (ac)c,
(iii) a ≤ b implies ac ≤ bc.

7.10 IfU is any set, consider the boundedBoolean lattice of the subsets ofU ordered
by inclusion, and let R ⊂ U ×U be a reflexive and symmetric relation. Prove that

Ag := {x ∈ U | (x, y) /∈ R ∀y ∈ A} , A ⊂ U

defines a Galois connection.

7.11 Referring to Exercise7.9, suppose that L is a complete bounded lattice
equipped with a Galois connection g and induced closure c.
Assume further that ag ∧ a = 0 for all a ∈ L and 0g = 1, and set

a⊥ := ag if a ∈ L c.
Prove that L c := {a ∈ L | a = ac} is a complete orthocomplemented lattice with
the same partial order as L and the same top and bottom elements.
(With obvious notation) show that

(a) a ∧L c b = a ∧L b,
(b) a ∨L c b = (a ∨L b)c

for every a, b ∈ L c.

7.12 Study the relationship between Exercise3.33 and Exercises7.9 and 7.11.

7.13 Consider two self-adjoint operators

A =
N∑

n=1

an Pan and B =
M∑

m=1

bmQbm

that represent, as in Examples7.51, observables in the d-dimensional Hilbert spaceH
(d finite). Show that A, B commute iff the orthogonal projectors Pan , Qbm commute,
irrespective of how we choose the eigenvalues an , bm .

Hint. IdentifyHwithC
d anddiagonalise simultaneously thematrices representing

A and B.

7.14 Consider two self-adjoint operators A, B representing, as in the previous exer-
cise, observables in aHilbert spaceHof finite dimensiond. Prove that if A and B com-
mute, there exists a third observable (self-adjoint operator) C such that: A = f (C)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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and B = g(C) in the sense of (7.41), for some real-valued maps on R. Show that C ,
f and g can be chosen in infinitely many ways.

Hint. If {ψn}n=1,...,d is an orthonormal basis ofH of eigenvectors for both A and B,
define C := ∑d

k=1 kψk(ψk |·). We must find f , g such that A = ∑d
k=1 f (k)ψk(ψk |·)

and B = ∑d
k=1 g(k)ψk(ψk |·). At this point the choice for f , g should be patent.

7.15 Prove that two mixed states ρ1, ρ2 on the Hilbert space H satisfy Ran(ρ1) ⊥
Ran(ρ2) iff there exists an orthogonal projector P ∈ L (H) with tr(ρ1P) = 1,
tr(ρ2P) = 0.

Solution. If Ran(ρ1) ⊥ Ran(ρ2), the orthogonal projector onto Ran(ρ1) solves
the problem. Conversely, if tr(ρ1P) = 1 and tr(ρ2P) = 0 for some P ∈ L (H), let
P ′ := I−P . Then 1=tr(ρ1)=tr(Pρ1P) + tr(P ′ρ1P ′) + tr(P ′ρ1P) + tr(Pρ1P ′).
But tr(Pρ1P) = tr(ρ1P) = 1, tr(P ′ρ1P) = tr(ρ1PP ′) = 0, tr(Pρ1P ′) =
tr(ρ1P ′P) = 0, and therefore tr(P ′ρ1P ′) = 0. Since P ′ρ1P ′ is positive, self-adjoint
and of trace class, and the trace equals the sum of the eigenvalues, the latter all van-
ish. By the spectral decomposition Theorem4.20 we have P ′ρ1P ′ = 0, so ρ1 =
Pρ1P + P ′ρ1P + Pρ1P ′. From this identity we easily see that Pρ1P ′ �= 0 implies
(x + ay|ρ1(x + ay)) < 0 for some x ∈ P(H), y ∈ P ′(H), with a ∈ R or a ∈ iR of
sufficiently large modulus. Hence Pρ1P ′ = P ′ρ1P = 0 and ρ1 = Pρ1(P + P ′) =
Pρ1, and then Ran(ρ1) ⊂ P(H). A similar reasoning gives P ′ρ2P = Pρ2P ′ = 0,
whence ρ2 = P ′ρ2(P + P ′) = P ′ρ2. This implies Ran(ρ2) ⊂ P ′(H), and therefore
Ran(ρ1) ⊥ Ran(ρ2).

7.16 Prove that a state ρ ∈ S(H) is pure if and only if tr(ρ2) = (tr(ρ))2.

Hint. Decompose ρ over a basis of eigenvectors and exploit the fact that the
eigenvalues are non-negative.

7.17 Prove the statement in Remark7.35.

Hint. Use the result in Exercise7.16 and the fact that ρ ≥ 0 and ||ρ|| = sup{|λ|
| λ ∈ σp(ρ)}.
7.18 Consider N ≥ 1 vectors φ1, . . . , φN ∈ H, with H a complex Hilbert space,
and suppose that ||φi || = 1 for i = 1, . . . , N (notice that we do not require that
(φi |φ j ) = 0 for i �= j). Define

ρ :=
N∑

i=1

piφi (φi |·)

where pi ∈ (0, 1) for every i = 1, . . . , N and
∑N

i=1 pi = 1. Prove that ρ defines a
pure state if and only if N = 1 or N > 1 but φi (φi |·) = φ j (φ j |·) for every i, j =
1, . . . , N .
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Hint. If ρ := ∑N
i=1 piφi (φi |·) is a pure state, then ||ρ||2 = 1, namely

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

piφi (φi |·)
∣∣∣∣∣

∣∣∣∣∣
2

= 1 =
N∑

i=1

pi1 =
N∑

i=1

pi ||φi (φi |·)||2 =
N∑

i=1

||piφi (φi |·)||2 .

Hence ∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

piφi (φi |·)
∣∣∣∣∣

∣∣∣∣∣
2

=
N∑

i=1

||piφi (φi |·)||2 .

This is the limiting case of the triangle inequality for a norm of the real inner prod-
uct space of self-adjoint elements of B2(H). In a real vector space with real inner
product, ||x1 + · · · + xN || = ||x1|| + · · · + ||xN || only if there exist a vector x and
non-negative scalars ai with x = ai xi for i = 1, . . . , N (see Exercise3.6). Therefore
there must exist T = T ∗ ∈ B2(H) such that piφi (φi |·) = ai T for real coefficients
ai , i = 1, . . . , N .

http://dx.doi.org/10.1007/978-3-319-70706-8_3


Chapter 8
Spectral Theory I: Generalities, Abstract
C∗-Algebras and Operators inB(H)

A mathematician plays a game and invents the rules. A physicist
plays a game whose rules are dictated by Nature. As time goes
by it is more and more evident that the rules the mathematician
finds appealing are precisely the ones Nature has chosen.

P.A.M. Dirac

In this purely mathematically-flavoured chapter we introduce the basic spectral the-
ory on normed spaces, leading up to spectralmeasures and the spectral decomposition
theorem for normal operators in B(H), with H a Hilbert space. (The spectral the-
orem for unbounded self-adjoint operators will be discussed in the next chapter.)
Here we present a number of general results about abstract C∗-algebras and ∗-
homomorphisms.

The first part is devoted to the resolvent set and spectrum of an operator, or an
element in a Banach algebra with unit. Given a normal element in a unital C∗-
algebra, possibly a normal operator in a concrete algebra of bounded operators on a
Hilbert space, we shall prove there exists a ∗-homomorphism mapping continuous
functions defined on a compact subset in C (the spectrum of the element) to algebra
elements, i.e. operators. In case we are dealing with operators we will show that
this ∗-homomorphism extends to the C∗-algebra of bounded measurable functions
defined on the compact set.

The spectrum of an operator is a collection of complex numbers that generalise
eigenvalues. The spectral theorem, proved afterwards, decomposes any operator – in
this chapter always bounded and normal – by integrating the spectrum with respect
to a suitable “projector-valued” measure. Altogether, the spectral theorem may be
viewed as a generalisation to Hilbert spaces of the diagonalisation of complex-valued
normal matrices. The tools necessary to establish the spectral theorem are useful
also for other reasons. Through them, namely, we will be able to define “operators
depending on operators”, a notion with several applications in mathematical physics.

© Springer International Publishing AG 2017
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The relationship between spectral theory and QuantumMechanics lies in the fact
that projector-valuedmeasures are nothing but the observables defined in the previous
chapter. Via the spectral theorem, observables are in one-to-one correspondence with
self-adjoint operators (typically unbounded), and the latter’s spectra are the sets of
possible measurements of observables. The correspondence observables/self-adjoint
operators will allow us to formulate Quantum Theory in tight connection to Classical
Mechanics, where the observables are the physical quantities represented by real
functions. Let us present the contents in detail.

In section one we will define the spectrum, the resolvent set and the resolvent
operator, establish their main properties and discuss the formula for the spectral
radius. All this will be generalised to abstract Banach algebras or C∗-algebras, and
include the proof of the Gelfand–Mazur theorem and a brief overview of the major
features ofC∗-algebra representations.We shall state the importantGelfand-Najmark
theorem, whereby any unital C∗-algebra is a concrete C∗-algebra of operators on a
Hilbert space. The proof will be given in Chap.14, after the GNS theorem.

In section two we shall construct continuous ∗-homomorphisms of C∗-algebras
of functions, induced either by normal elements in an abstract C∗-algebra or by
bounded self-adjoint operators on Hilbert spaces. These homomorphisms represent
the primary tool towards the spectral theorem.We will discuss the general properties
of ∗-homomorphisms of unital C∗-algebras and positive elements of C∗-algebras.
Then we will introduce the Gelfand transform to study commutative C∗-algebras
with unit, and prove the commutative Gelfand-Najmark theorem.

In the third section we shall introduce spectral measures, also known as projector-
valued measures (PVMs), and define the integral of a bounded function with respect
to a PVM.

The spectral theorem for normal bounded operators (in particular self-adjoint or
unitary) and further technical facts will be dealt with in Sect. 8.4.

The final section is devoted to Fuglede’s theorem and some consequences.

8.1 Spectrum, Resolvent Set and Resolvent Operator

In this section we study the structural concepts and results of spectral theory in
normed, Banach and Hilbert spaces, but also in the more general context of Banach
and C∗-algebras.

We shall make use of analytic functions defined on domains in C with values in
a complex Banach space [Rud86], rather than in C.

Definition 8.1 Let (X, || ||) be a Banach space over C and Ω ⊂ C a non-empty
open set. A function f : Ω → X is called analytic if for any z0 ∈ Ω there exists
δ > 0 such that

f (z) =
+∞∑

n=0
(z − z0)

nan for any z ∈ Bδ(z0),

where Bδ(z0) ⊂ Ω , an ∈ X for any n ∈ N and the series converges in norm || ||.

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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The theory of analytic functions in Banach spaces is essentially the same as that of
complex-valued analytic functions, which we take for granted; the only difference is
that on the range the Banach norm replaces the modulus of complex numbers. With
this proviso, all definitions, theorems and proofs are the same as in the holomorphic
case.

8.1.1 Basic Notions in Normed Spaces

We begin with operators on normed spaces, and recall that if X is a vector space, the
sentence “A is a operator on X” (Definition 5.1) means A : D(A) → X, where the
domain D(A) ⊂ X is a subspace, usually not closed, in X.

Definition 8.2 Let A be an operator on the complex normed space X.
(a) One calls resolvent set of A the set ρ(A) of numbers λ ∈ C such that:

(i) Ran(A − λI ) = X;
(ii) (A − λI ) : D(A)→ X is injective;
(iii) (A − λI )−1 : Ran(A − λI )→ X is bounded.

(b) If λ ∈ ρ(A), the resolvent of A is the operator

Rλ(A) := (A − λI )−1 : Ran(A − λI )→ D(A) .

(c) The spectrum of A is the set σ(A) := C \ ρ(A).
The spectrum of A is the disjoint union of the three subsets below:

(i) the point spectrum σp(A), made by the λ ∈ C for which A − λI is not
injective;

(ii) the continuous spectrum σc(A), made by the λ ∈ C such that A − λI is
injective and Ran(A − λI ) = X, but (A − λI )−1 is not bounded;

(iii) the residual spectrum σr (A), made by the λ ∈ C for which A − λI is
injective, but Ran(A − λI ) �= X.

Remarks 8.3 (1) It is clear that σp(A) consists precisely of the eigenvalues of A (see
Definition 3.58). In case X = H is a Hilbert space and the eigenvectors of A form
a basis in H one says A has purely point spectrum. This does not mean, gener-
ally speaking, that σp(T ) = σ(T ). For example compact self-adjoint operators have
purely point spectrum, but 0 may belong to the continuous spectrum.
(2) There exist other decompositions of the spectrum in the case that X = H is a
Hilbert space and A is normal inB(H), or self-adjoint onH. We shall consider alter-
native splittings in the following chapter, after the spectral theorem for unbounded
self-adjoint operators. An in-depth analysis of these classifications, with reference
to important operators in QM, can be found in [ReSi80, BiSo87, AbCi97, BEH07,
Schm12]. �

We start making a few precise assumptions, like taking X Banach and working with
closed operators. In particular, the next result holds if T ∈ B(X) or, on a Hilbert

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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space X = H, if T : D(T ) → H is self-adjoint or an adjoint operator on H, since
both are automatically closed.

Theorem 8.4 Let T be a closed operator on a Banach space X �= {0}. Then
(a) λ ∈ ρ(T ) ⇔ T − λI : D(T )→ X is a bijection.
(b) (i) ρ(T ) is open,

(ii) σ(T ) is closed,
(iii) if ρ(T ) �= ∅, the map ρ(T ) 
 λ �→ Rλ(T ) ∈ B(X) is analytic.

(c) If D(T ) = X (hence T ∈ B(X)):
(i) ρ(T ) �= ∅,
(ii) σ(T ) is non-empty and compact,
(iii) |λ| ≤ ||T || for any λ ∈ σ(T ).

(d) For any λ,μ ∈ ρ(T ) the resolvent identity holds:

Rλ(T )− Rμ(T ) = (λ− μ)Rλ(T )Rμ(T ) .

Remarks 8.5 (1) A comment on (c): if X is a Banach space and D(T ) = X, then
T : D(T )→ X is closed iff T ∈ B(X), by the closed graph Theorem2.99.
(2) Part (a) is rather useful for deciding whether λ belongs in ρ(T ). It is not necessary
to consider the topology, i.e. the density of Ran(T − λI ) and the boundedness of
(T − λI )−1. As a matter of fact, it is enough to check T − λI : D(T ) → X is
bijective, a set-theoretical property. �

Proof of Theorem 8.4. (a) If λ ∈ ρ(T ), it suffices to show Ran(T − λI ) = X. Since
(T − λI )−1 is continuous, there exists K ≥ 0 such that ||(T − λI )−1x || ≤ K ||x ||
for any x = (T − λI )y ∈ Ran(T − λI ). Consequently, for any y ∈ D(T ):

||y|| ≤ K ||(T − λI )y|| . (8.1)

Because Ran(T − λI ) = X, if x ∈ X there is a sequence {yn}n∈N ⊂ D(T ) for
which (T − λI )yn → x , as n →+∞. From (8.1) we conclude {yn}n∈N is a Cauchy
sequence and so it admits a limit y ∈ X. As T is a closed operator, y ∈ D(T ) and
(T −λI )y = x , hence x ∈ Ran(T −λI ). Therefore Ran(T −λI ) = X, as claimed.

Suppose now T − λI is a bijection from D(T ) to X; to prove the claim we need
to show (T − λI )−1 is continuous. Since T is closed, then also T − λI is closed, i.e.
its graph is closed. But T − λI is a bijection, so (T − λI )−1 has a closed graph and
is therefore closed. Being (T − λI )−1 defined on X by assumption, Theorem2.99
implies (T − λI )−1 is bounded.
(b) If μ ∈ ρ(T ), the series

S(λ) :=
+∞∑

n=0
(λ− μ)n Rμ(T )n+1

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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converges absolutely in operator norm (hence in the uniform topology) provided

|λ− μ| < 1/||Rμ(T )|| . (8.2)

In fact,

+∞∑

n=0
|λ− μ|n ||Rμ(T )n+1|| ≤

+∞∑

n=0
|λ− μ|n ||Rμ(T )||n+1 = ||Rμ(T )||

+∞∑

n=0
| (λ− μ) ||Rμ(T )|| |n .

The last series is geometric, of reason | (λ− μ) ||Rμ(T )|| |, and converges because
| (λ− μ) ||Rμ(T )|| | < 1 by (8.2).

If λ satisfies the above condition, applying T − λI = (T −μI )+ (μ− λ)I first
to the left, and then to right of S(λ) gives (again using the definition Rμ(T )0 := I ):

(T − λI )S(λ) = IX

while:
S(λ)(T − λI ) = ID(T ) .

Hence if μ ∈ ρ(T ) there exists an open neighbourhood of μ such that, for any λ in
that neighbourhood, the left and right inverses of T −λI , from X to D(T ), exist and
are finite. By (a) then, the neighbourhood is contained in ρ(T ), and so ρ(T ) is open
and σ(T ) = C \ ρ(T ) closed. Moreover Rλ(T ) has a Taylor series around any point
of ρ(T ) in the uniform topology, so by definition ρ(T ) 
 λ �→ Rλ(T ) is analytic
and maps ρ(T ) to the Banach spaceB(X).
(c) In case D(T ) = X, since T is closed and X Banach, the closed graph theorem
makes T bounded. If λ ∈ C satisfies |λ| > ||T ||, the series

S(λ) =
+∞∑

n=0
(−λ)−(n+1)T n

(T 0 := I ), converges absolutely in operator norm. A direct computation, as before,
gives the identities

(T − λI )S(λ) = I

and
S(λ)(T − λI ) = I ,

hence S(λ) = Rλ(T ) by (a). Again (a) implies that every λ ∈ C with |λ| > ||T ||
belongs to ρ(T ), which is thus non-empty. Furthermore, if λ ∈ σ(T ), |λ| ≤ ||T ||,
and σ(T ) will be compact if it is non-empty, being closed and bounded. Let us show
σ(T ) �= ∅. Assume the contrary and argue by contradiction. Then λ �→ Rλ(T ) is
defined on C. Fix f ∈ X′ (dual to X) and x ∈ X, and consider the complex-valued
function ρ(T ) 
 λ �→ g(λ) := f (Rλ(T )x). It is certainly analytic on C, because if
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μ ∈ ρ(T ), on a neighbourhood of μ contained in ρ(T ) we have a Taylor expansion

f (Rλ(T )x) :=
+∞∑

n=0
(λ− μ)n f (Rμ(T )n+1x) .

We have used the continuity of the linear functional f , and the fact the series con-
verges uniformly (and so weakly). Hence assuming σ(T ) = ∅, g is analytic on C.
We notice that for |λ| > ||T || we have

g(λ) := f (Rλ(T )x) =
+∞∑

n=0
(−λ)−(n+1) f (T nx) .

This series converges absolutely (by Abel’s theorem on power series), so we can
write, for |λ| ≥ 1+ ||T ||:

|g(λ)| ≤ 1

|λ|
+∞∑

n=0

| f (T nx)|
|λ|n ≤ || f ||||x |||λ|

+∞∑

n=0

( ||T ||
|λ|

)n
= || f ||||x ||

|λ|
|λ|

|λ| − ||T || ≤
K

|λ|

with K > 0. Thus |g|, everywhere continuous and bounded from above by K |λ−1|,
when |λ| ≥ � for some constant �, must be bounded on the entire complex plane.
Being analytic on C, g is constant by Liouville’s theorem. As |g(λ)| vanishes at
infinity, g is the null map. Then f (Rλ(T )x) = 0. But the result holds for any f ∈ X′,
so Corollary2.56 to Hahn–Banach (where X �= {0}), implies ||Rλ(T )x || = 0. As
x ∈ X �= {0} was arbitrary, we have to conclude Rλ(T ) = 0 for any λ ∈ ρ(T ).
Therefore Rλ(T ) cannot invertT−λI , and the contradictiondisproves the assumption
σ(T ) = ∅.
(d) The resolvent identity is proved as follows. First, we have

(T − λI )Rλ(T ) = I and (T − μI )Rμ(T ) = I .

Consider T Rλ(T )− λRλ(T ) = IX and T Rμ(T )− μRμ(T ) = IX, multiply the first
by Rμ(T ) on the left and the second by Rλ(T ) on the right, and then subtract them.
Recalling Rμ(T )Rλ(T ) = Rλ(T )Rμ(T ) and Rμ(T )T Rλ(T ) = Rλ(T )T Rμ(T ), we
obtain the resolvent equation. The first commutation relation used above follows
from the evident fact

(T − μI )(T − λI ) = (T − λI )(T − μI ),

which also gives a similar equation for inverses. The other relation is explained as
follows:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Rμ(T )T Rλ(T ) = Rμ(T )(T − λI )Rλ(T )+ Rμ(T )λI Rλ(T ) = Rμ(T )I + λRμ(T )Rλ(T )

= Rμ(T )+ λRλ(T )Rμ(T ) = (I + λRλ(T ))Rμ(T ) = (Rλ(T )(T − λI )+ λRλ(T ))Rμ(T )

= Rλ(T )T Rμ(T ) .

This ends the proof. �

A useful corollary is worth citing that descends immediately from the resolvent
identity and (a), (b) in Proposition 4.9.

Corollary 8.6 Let T : D(T ) → X be a closed operator on the Banach space X. If
for one μ ∈ ρ(T ) the resolvent Rμ(T ) is compact, then Rλ(T ) is compact for any
λ ∈ ρ(T ).

8.1.2 The Spectrum of Special Classes of Normal Operators
on Hilbert Spaces

Let us focus on unitary operators and self-adjoint operators on Hilbert spaces, and
discuss the structure of their spectrum. Using Definition 8.2 we shall work in full
generality and consider unbounded operators with non-maximal domains.

Proposition 8.7 Let H be a Hilbert space.
(a) If A is self-adjoint on H (but not necessarily bounded, nor defined on the whole
H in general):

(i) σ(A) ⊂ R,
(ii) σr (A) = ∅,
(iii) the eigenspaces of A with distinct eigenvalues (points in σp(A)) are orthog-

onal.1

(b) If U ∈ B(H) is unitary:
(i) σ(U ) is a non-empty compact subset of {λ ∈ C | |λ| = 1},
(ii) σr (U ) = ∅.

(c) If T ∈ B(H) is normal:
(i) σr (T ) = σr (T ∗) = ∅,
(ii) σp(T ∗) = σp(T ),
(iii) σc(T ∗) = σc(T ), where the bar denotes complex conjugation.

Proof (a) Let us begin with (i). Suppose λ = μ + iν, ν �= 0 and let us prove
λ ∈ ρ(A). If x ∈ D(A),

((A−λI )x |(A−λI )x) = ((A−μI )x |(A−μI )x)+ν2(x |x)+iν[(Ax |x)−(x |Ax)].

1The analogous property for normal operators (hence unitary or self-adjoint too) in B(H) is con-
tained in Proposition 3.60(b).

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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The last summand vanishes for A is self-adjoint. Hence

||(A − λI )x || ≥ |ν| ||x || .

With a similar argument we obtain

||(A − λI )x || ≥ |ν| ||x || .

The operators A− λI and A− λI are then one-to-one, and ||(A− λI )−1|| ≤ |ν|−1,
where (A − λI )−1 : Ran(A − λI )→ D(A). Notice

Ran(A − λI )
⊥ = [Ran(A − λI )]⊥ = Ker(A∗ − λI ) = Ker(A − λI ) = {0} ,

where the last equality makes use of the injectivity of A−λI . Summarising: A−λI

in injective, (A − λI )−1 bounded and Ran(A − λI )
⊥ = {0}, i.e. Ran(A − λI ) is

dense in H. Therefore λ ∈ ρ(A), by definition of resolvent set.
Now to (ii). Suppose λ ∈ σ(A), but λ /∈ σp(A). Then A− λI must be one-to-one

and Ker(A − λI ) = {0}. Since A = A∗ and λ ∈ R by (i), we have Ker(A∗ −
λI ) = {0}, so [Ran(A − λI )]⊥ = Ker(A∗ − λI ) = {0} and Ran(A − λI ) = H.
Consequently λ ∈ σc(A).

Proving (iii) is easy: if λ �= μ and Au = λu, Av = μv, then

(λ− μ)(u|v) = (Au|v)− (u|Av) = (u|Av)− (u|Av) = 0 ;

from λ,μ ∈ R and A = A∗. But λ− μ �= 0, so (u|v) = 0.
(b) (i) The closure of σ(U ) is a consequence of Theorem8.4(b), because any unitary
operator is defined on H, bounded and so closed. As ||U || = 1, part (c) of that
theorem implies σ(U ) is a compact non-empty subset in {λ ∈ C | |λ| ≤ 1}. To
finish, consider the series

S(λ) =
+∞∑

n=0
λn(U ∗)n+1

with |λ| < 1. Since ||U || = ||U ∗|| = 1, the series converges absolutely in operator
norm, so it defines an operator inB(H). Because U ∗U = UU ∗ = I ,

(U − λI )S(λ) = S(λ)(U − λI ) = I .

By Theorem8.4(a) λ ∈ ρ(U ). To sum up: σ(U ) is compact and non-empty inside
{λ ∈ C | |λ| = 1}.
(ii) This follows from part (i) of (c), because every unitary operator is normal.
(c) Recall that T ∈ B(H) normal implies λ ∈ C is an eigenvalue iff λ is an eigenvalue
of T ∗ ((i) in Proposition 3.60(b)). This is enough to give (ii). The three parts of the
spectrum are disjoint, and σ(T ) = σ(T ∗) (by Proposition 8.14(b), whose proof is
independent from this theorem), so to prove (iii) it is enough to show (i). Assume
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8.1 Spectrum, Resolvent Set and Resolvent Operator 401

λ ∈ σ(T ), butλ /∈ σp(T ). Sinceσ(T ) = σ(T ∗) andσp(T ) = σp(T ∗), the hypothesis
is equivalent to λ ∈ σ(T ∗), but λ /∈ σp(T ∗). Then T ∗ − λI must be one-to-one and
Ker(T ∗ −λI ) = {0}. Now Proposition 3.38(d) tells [Ran(T −λI )]⊥ = Ker(T ∗ −
λI ) = {0}, hence Ran(T − λI ) = H (here the bar denotes the closure). Therefore
λ ∈ σc(T ), i.e. σr (T ) = ∅. The proof for T ∗ is the same, because (T ∗)∗ = T
(Proposition 3.38(b)). ��

8.1.3 Abstract C∗-Algebras: Gelfand–Mazur Theorem,
Spectral Radius, Gelfand’s Formula, Gelfand–Najmark
Theorem

Now we consider, more abstractly, unital Banach algebras and unital C∗-algebras
(Definitions 2.24 and 3.40). Recall that B(X) is a unital Banach algebra if X is
normed, by (i) in Theorem2.44(c). If H is a Hilbert space, B(H) is a unital C∗-
algebra whose involution is the Hermitian conjugation, by Theorem3.49.

First of all we generalise the notions of resolvent set and spectrum to an abstract
setting.We shall useB(X) as model, withXBanach, so to have Theorem8.4 at work.
Recall that in an algebraAwith unit I the inverse a−1 to a ∈ A is the unique element,
if present, such that a−1a = aa−1 = I.

Definition 8.8 Let A be a Banach algebra with unit I and take a ∈ A.
(a) The resolvent set of a is the set:

ρ(a) := {λ ∈ C | ∃(a − λI)−1 ∈ A} .

(b) The spectrum of a is the complement σ(a) := C \ ρ(a).

The following fact generalises the assertion in Theorem8.4 about operators ofB(X).

Theorem 8.9 Let A �= {0} be a Banach algebra with unit I, a ∈ A an arbitrary
element.
(a) ρ(a) �= ∅ is open, σ(a) �= ∅ is compact and:

|λ| ≤ ||a|| , for any λ ∈ σ(a).

(b) The map ρ(a) 
 λ �→ Rλ(a) := (a − λI)−1 ∈ A is analytic.
(c) If λ,μ ∈ ρ(a) the resolvent identity holds:

Rλ(a)− Rμ(a) = (λ− μ)Rλ(a)Rμ(a) .

Proof The argument is the same as for properties (b), (c), (d) of Theorem8.4, because
of Remark8.5(1): just replace, in the proof of (c), f (Rλ(T )x) by f (Rλ(a)), where
f ∈ A′ (Banach dual to A). ��

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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A straightforward, yet important corollary is the Gelfand–Mazur theorem, whereby
every complex, normed division algebra is isomorphic to C, so in particular is com-
mutative.

Theorem 8.10 (Gelfand–Mazur) A complex Banach algebra B �= {0} with unit, in
which every non-zero element is invertible, is naturally isomorphic to C. (In partic-
ular B is commutative.)

Proof Take x ∈ B, so σ(x) �= ∅ by part (a) in the previous theorem. Then x − cI
is not invertible for some c ∈ C by definition of spectrum. In our case x − cI = 0,
so x = cI. But c is completely determined by x , for cI �= c′I if c �= c′. The map
B 
 x �→ c ∈ C is a Banach algebra isomorphism, as is easy to see. ��
Remark 8.11 The assumption that the field is C is crucial. There exist Banach divi-
sion algebras that are not commutative, like the algebraH of quaternions introduced
in Example3.48(3). The latter, though, is a real algebra. �

According to Theorem8.9(a), the spectrum of a ∈ A is contained in the disc of
radius ||a|| centred at the origin of C. Yet there might be a disc of smaller radius at
the origin enclosing σ(a). In this respect we have the next definition.

Definition 8.12 LetA be a Banach algebra with unit. The spectral radius of a ∈ A
is the non-negative real number

r(a) := sup{|λ| | λ ∈ σ(a)} .

This applies in particular when A = B(X), X a Banach space.

Remark 8.13 Any element a in a unital Banach algebra A satisfies the elementary
(yet fundamental) property:

0 ≤ r(a) ≤ ||a|| , (8.3)

immediately ensuing from Theorem8.9(a). �

There exists an explicit expression for the spectral radius, due to the mathematician
I.Gelfand. We shall recover Gelfand’s formula using a property of the spectrum of
polynomials over A.

Proposition 8.14 Let A be a Banach algebra with unit I, a ∈ A and p = p(z) a
complex-valued polynomial in the variable z ∈ C.
(a) Let p(a) be the element in A obtained by formally substituting the element a to
z in p(z) and interpreting powers an in the obvious way (a0 := I); then

σ(p(a)) = p(σ (a)) := {p(λ) | λ ∈ σ(a)} . (8.4)

(This holds in particular for A = B(X), X Banach.)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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(b) If A is additionally a ∗-algebra, the spectrum of a∗ satisfies

σ(a∗) = σ(a) := {λ | λ ∈ σ(a)} . (8.5)

(This holds in particular for A = B(H) with H a Hilbert space.)

Proof (a) If α1, . . . , αn denote the roots of a polynomial q (not necessarily distinct),
q(z) = c

∏n
i=1(z−αi ) for some complex number c. Hence q(a) = c

∏n
i=1(a−αi I).

Let λ ∈ σ(a), so (a − λI) is not invertible by definition. Set μ := p(λ). Consider
now the polynomial q := p−μ. As q(λ) = 0, one factor in the above decomposition
of q will be (z − λ), and so choosing the root order appropriately, and recalling that
the a − αi I commute, we have:

p(a)− μI = c

[
n−1∏

i=1
(a − αi I)

]
(a − λI) = c(a − λI)

n−1∏

i=1
(a − αi I) .

Thus p(a)−μI cannot be invertible, for a−λI is not. (If p(a)−μIwere invertible,
we would have

I = (a − λI)

[(
n−1∏

i=1
c(a − αi I)

)
(p(a)− μI)−1

]
,

I =
(

(p(a)− μI)−1
n−1∏

i=1
c(a − αi I)

)
(a − λI) ,

implying (a − λI) invertible. Applying the big bracket to the first equation would
say that the right and left inverses of (a − λI) coincide:

(p(a)− μI)−1
n−1∏

i=1
c(a − αi I) =

(
n−1∏

i=1
c(a − αi I)

)
(p(a)− μI)−1 ,

as it should be.) By definition we must have μ ∈ σ(p(a)), hence we proved
p(σ (a)) ⊂ σ(p(a)). Now we go for the other inclusion. Let μ ∈ σ(p(a)), set
q = p − μ and factor q(z) = c

∏n
i=1(z − αi ). Therefore

p(a)− μI = c
n∏

i=1
(a − αi I)

as before. If all roots αi belonged to ρ(a), every (a − αi I) : X → X would be
invertible, so p(a)−μIwould become invertible, which is excluded by assumption.
Therefore there is a root αk such that (a − αkI) is not invertible, so αk ∈ σ(a). But
then p(αk)− μ = 0, so μ ∈ p(σ (a)), and hence p(σ (a)) ⊃ σ(p(a)).
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(b) (a − λI) is invertible if and only if (a − λI)∗ = a∗ − λI by Proposition 3.44(c),
hence the claim. ��
Theorem 8.15 Let A be a Banach algebra with unit and a ∈ A.
(a) The spectral radius of a can be computed by Gelfand’s formula:

r(a) = lim
n→+∞ ||a

n||1/n ,

where the limit always exists. (This holds in particular when A = B(X) with X
Banach.)
(b) If A is a C∗-algebra with unit and a is normal (a∗a = aa∗), then

r(a) = ||a|| , (8.6)

and consequently:
||a|| = r(a∗a)1/2 for any a ∈ A. (8.7)

(Valid in particular for A = B(H), H Hilbert.)

Proof (a) By Proposition 8.14(a) (σ (a))n = σ(an), so r(a)n = r(an) ≤ ||an||, and
then

r(a) ≤ lim inf
n
||an||1/n . (8.8)

(In contrast to the limit infimum, which always exists, the limit might not.) If |λ| >
r(a),

Rλ(a) =
+∞∑

n=0
(−λ)−(n+1)an , (8.9)

because a theorem of Hadamard guarantees that the convergence disc of the Laurent
series of an analytic function touches the singularity closest to the point at infinity.
In our case all singularities belong to the spectrum σ(a), so the boundary consists of
points λ ∈ C with |λ| > r(a). Therefore the above series converges for any λ ∈ C

such that |λ| > r(a), hence it converges absolutely on any disc, centred at infinity,
passing through such λ. In particular

|λ|−(n+1)||an|| → 0 ,

as n →+∞, for any λ ∈ C with |λ| > r(a). Hence for any ε > 0

||an||1/n < ε1/n|λ|(n+1)/n = (ε|λ|)1/n|λ|

definitely. Since (ε|λ|)1/n → 1 for n → +∞, we have lim supn ||an||1/n ≤ |λ| for
every λ ∈ C with |λ| > r(a). We can get as close as we want to r(a) with |λ|, so
lim supn ||an||1/n ≤ r(a). Finally, by (8.8),

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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r(a) ≤ lim inf
n
||an||1/n ≤ lim sup

n
||an||1/n ≤ r(a) .

This shows the limit of ||an||1/n exists as n →+∞, and it coincides with r(a).
(b) By Proposition 3.44(a) we have ||an|| = ||a||n if a is normal. Gelfand’s formula
gives

r(a) = lim
n→+∞ ||a

n||1/n = lim
n→+∞(||a||n)1/n = ||a|| .

Equation (8.7) follows from a property of C∗-algebras, i.e. ||a∗a|| = ||a||2 for any
a, because a∗a is self-adjoint hence normal. ��
Identity (8.7) explains that the norm of a C∗-algebra is uniquely determined by
algebraic properties, because the spectral radius is obtainable from the spectrum,
and this in turn is built by algebraic means entirely.

Corollary 8.16 A unital ∗-algebraA admits one norm at most that makes it a unital
C∗-algebra.

Notation 8.17 LetA andA1 beC∗-algebras with unit and take a ∈ A1∩A. A priori,
the element a could have two different spectra if thought of as element of A1 or of
A. That is why here, and in other similar situations where confusion might arise, we
will label spectra: σA(a) or σA1(a). �

There is another important consequence of (8.7) concerning algebra homomor-
phisms, to which we will return later with a general theorem. Remarkably enough,
∗-homomorphisms mapping unital Banach ∗-algebras to unital C∗-algebras are con-
tinuous. Later we will see something stronger when domain and target are unital
C∗-algebras: if injective, namely, ∗-homomorphisms are automatically isometric.

Corollary 8.18 Let φ : A → B be a ∗-homomorphism between a unital Banach
∗-algebra A and a unital C∗-algebra B. Then
(a) φ is continuous, for ||φ(a)||B ≤ ||a||A for any a ∈ A;
(b) for every a ∈ A, σB(φ(a)) ⊂ σA(a);
(c) if A is a unital C∗-algebra and φ is additionally a ∗-isomorphism, it is also
isometric: ||φ(a)||B = ||a||A for any a ∈ A, and σB(φ(a)) = σA(a) for any a ∈ A.

Proof We start with the proof of (b). If a′ exists such that (a − λIA)a′ = a′(a −
λIA) = IA, applying the ∗-homomorphism φ we conclude (φ(a) − λIB)φ(a′) =
φ(a′)(φ(a)− λIB) = IB, so ρ(φ(a)) ⊃ ρ(a) and the claim follows.
Let us pass to (a). By part (b), σ(φ(a)) ⊂ σ(a), and r(φ(a)) ≤ r(a). Equation (8.7)
implies ||φ(a)||2B = rB(φ(a)∗φ(a)) = rB(φ(a∗a)) ≤ rA(a∗a) ≤ ||a||2A, where we
have also used (8.3).
(c) is obvious from (a) and (b), replicating the argument for φ−1. ��
To end the abstract considerations we are making, let us present the next result on
C∗-algebras in relationship to the classification (i)-(iv) of Definition 3.40.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Proposition 8.19 Let A be a unital C∗-algebra (in particular B(H), H Hilbert
space).
(a) If a ∈ A admits a left inverse, then σ(a−1) = σ(a)−1 := {λ−1 | λ ∈ σ(A)}.
(b) If a ∈ A is isometric, i.e. a∗a = I, then r(a) = 1.
(c) If a ∈ A is unitary, i.e. a∗a = aa∗ = I, then σ(a) ⊂ S

1 ⊂ C.
(d) If a ∈ A is self-adjoint, i.e. a = a∗, then σ(a) ⊂ R. More precisely, σ(a) ⊂
[−||a||, ||a||], and σ(a2) ⊂ [0, ||a||2].
(e) If a, b ∈ A then σ(ab) \ {0} = σ(ba) \ {0}.
Proof (a) If a is left-invertible, 0 /∈ σ(a) ∪ σ(a−1). For λ �= 0, then,

λI− a = λa(a−1 − λ−1I) and λ−1I− a−1 = λ−1a−1(a − λI) .

Thus a − λI is invertible iff a−1 − λ−1I is.
(b) If a∗a = I then ||an||2 = ||(an)∗an|| = ||(a∗)nan|| = ||I|| = 1. Gelfand’s
formula implies r(a) = 1.
(c) By (b) and the definition of spectral radius we infer σ(a) ⊂ {λ ∈ C | |λ| ≤ 1}.
On the other hand we know from Proposition 8.14 that σ(a) = σ(a∗). As a∗ = a−1

and using part (a) we have σ(a) = σ(a)
−1
. Hence any element λ ∈ σ(a) satisfies

|λ| ≤ 1 and can be written as λ = μ−1, |μ| ≤ 1. This implies |λ| = 1.
(d) First of all we prove σ(a) ⊂ R. Fix λ ∈ R, λ−1 > ||a||, so that | − iλ−1| =
λ−1 > r(a) and consequently I + iλa = iλ(−iλ−1I + a) is invertible. Define
b := (I− iλa)(I+ iλa)−1. Then b∗ = (I− iλa)−1(I+ iλa), and since the terms in
brackets trivially commute,

b∗b = (I− iλa)−1(I+ iλa)(I− iλa)(I+ iλa)−1 = I .

A similar computation gives bb∗ = I, making b unitary. We may then invoke part
(c), so that σ(b) ⊂ S

1. Directly, |(1− iλμ)(1+ iλμ)−1| = 1 iff μ ∈ R. Therefore

z := (1− iλμ)(1+ iλμ)−1I− b

is invertible when μ ∈ C \ R. Solving the expression of b for a gives

z = 2iλ(I+ iλμ)−1(a − μI)(I+ iλa)−1,

hence a−μI is invertible for any μ ∈ C \R. It follows σ(a) ⊂ R. But r(a) = ||a||,
so σ(a) ⊂ [−||a||, ||a||] is immediate by definition of spectral radius.
(d) follows from Proposition 8.14(a, b).
(e) If c is the inverse of I− ab, then (I+ bca)(I− ba) = I− ba+ bc(I− ab)a = I

and (I− ba)(I+ bca) = I− ba + b(I− ab)ca = I. Hence I+ bca inverts I− ba,
implying (e). ��
We might ask ourselves whether there exist C∗-algebras that cannot be realised as
algebras of operators on Hilbert spaces. The answer is no, even if the identification
between the C∗-algebra and a C∗-algebra of operators is not fixed uniquely. In fact,
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the following truly paramount result holds, which we shall prove as Theorem14.29
after the GNS theorem (Chap. 14).

Theorem (Gelfand–Najmark). If A is a C∗-algebra with unit, there exist a Hilbert
space H and an isometric ∗-isomorphism φ : A → B, where B ⊂ B(H) is a
unital C∗-subalgebra of B(H).

8.2 Functional Calculus: Representations of Commutative
C∗-Algebras of Bounded Maps

This section aims to show how to represent an algebra of bounded measurable func-
tions f by an algebra of functions f (T, T ∗) of a bounded normal operator T . We
shall construct a continuous map

Φ̂T : Mb(K ) 
 f �→ f (T, T ∗) ∈ B(H) ,

preserving the structure of unital, commutative C∗-algebra, from bounded measur-
able functions defined on a compact set K , to bounded operators on a Hilbert space
H (see Examples2.29(4) and 3.48(1)). This will be a representation (Definition 3.52)
of the unital, commutative C∗-algebraMb(K ) on H. It will be “generated” by a nor-
mal operator T ∈ B(H), and K = σ(T ). The idea of viewing Φ̂T ( f ) as f (T ),
when T = T ∗, arises also from the physical interpretation related to the notion of
observable, as we shall see. This theory goes under the name of functional calculus.
In a subsequent section we will show how the operator f (T, T ∗) can be understood
as an integral of f with respect to an operator-valued measure. For the time being
we shall construct f (T, T ∗) with no mention to spectral measures.

The first part of the construction involves only continuousmaps f , and one speaks
about continuous functional calculus. Continuous functional calculus overlooks the
concrete C∗-algebra of bounded operators, and is valid more abstractly if we replace
T by a normal element a in a given C∗-algebra. Therefore we shall work first in an
abstract setting, and build a continuous functional calculus for self-adjoint elements.
Afterwardswewill consider normal elements in a generalC∗-algebrawith unit, using
theGelfand transform. Eventually, when dealing with measurable functions, we will
return to operator algebras. By the way, continuous functional calculus touches upon
∗-homomorphisms of C∗-algebras, and allows to characterise positive elements of a
C∗-algebra, as we will explain in a moment.

8.2.1 Abstract C∗-Algebras: Functional Calculus for
Continuous Maps and Self-adjoint Elements

Let us put ourselves in a general case where A is a C∗-algebra with unit I. We
may think rather concretely that A = B(H) for some Hilbert space H, although the
following considerations transcend this case.

http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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The first step to build the aforementioned ∗-homomorphisms is to study polyno-
mial functions of a self-adjoint element a∗ = a ∈ A.

Define the function φa that maps a polynomial with complex coefficients p =
p(x), x ∈ R, to the normal element p(a) of A, in the obvious way: i.e., evaluating
at a and interpreting the product in the algebra. Set also a0 := I.
This map φa has interesting features, of immediate proof:

(a) it is linear: φa(αp + βp′) = αφa(p)+ βφa(p′) for any α, β ∈ C;
(b) it transforms a product of polynomials into a composite in the algebra: φa(p ·

p′) = φa(p)φa(p′);
(c) it maps the constant polynomial 1 to the neutral element: φa(1) = I.

By Definition 2.24 these properties make φa a homomorphism of algebras with unit,
from the unital commutative ∗-algebra of complex polynomials to the unital C∗-
algebra A.

Here are other properties:
(d) φa maps the polynomial R 
 x �→ x (denoted x , inappropriately) to a, i.e.

φa(x) = a;
(e) if p is the conjugate polynomial to p (p(x) = p(x), x ∈ R), then φa(p)∗ =

φa(p);
(f) if ba = ab for some b ∈ A, then bφa(p) = φa(p)b for any polynomial p.

Property (e) establishes that φa is a ∗-homomorphism (Definition 3.40) from the
unital ∗-algebra of polynomials to the unital C∗-algebra A.

There is a further property if we deal with self-adjoint elements. Since a = a∗,
φa(p) = p(a) is normal. By virtue of Theorem8.15(b)

||p(a)|| = r(p(a)) = sup{|μ| | μ ∈ σ(p(a))} .

The fact that σ(p(a)) = p(σ (a)) (Proposition 8.14(a)) implies

||φa(p)|| = sup{|p(x)| | x ∈ σ(a)} . (8.10)

That is to say: if the algebra of polynomials on σ(a) is endowed with norm || ||∞,
φa is an isometry. As we shall see, this fact can be generalised beyond polynomials.

Remark 8.20 Assuming σ(a) is not a finite set, with a minor reinterpretation of the
symbols we denote, henceforth, byφa themap sending a function p�σ(a) to p(a) ∈ A,
where p is a polynomial. Thus ||p||∞ will for instance indicate the least upper bound
of the absolute value of p over the compact set σ(a). Properties (a)-(f) still hold,
because a polynomial’s restriction to an infinite set determines the polynomial: the
difference of two polynomials (inR orC, with complex coefficients) is a polynomial,
and if it has infinitely many zeroes it must be the null polynomial.

In the case σ(a) is finite, the matter is more delicate, because the restriction q�σ(a)

of a polynomial q does not determine the polynomial completely. However,

||q(a)|| = sup{|q(x)| | x ∈ σ(a)}

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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implies immediately that if q�σ(a)= q ′�σ(a) then q(a) = q ′(a). Therefore everything
we say will work for σ(a) finite as well, even though we will not distinguish much
the two situations. �

Recall that the space C(X) of complex-valued, continuous maps on a compact
space X (cf. Example2.29(4), 3.48(1) in §2, 3), is a commutative C∗-algebra with
unit: the norm is || ||∞, sum and product are the standard pointwise operations, the
involution is the complex conjugation and the unit is the constant map 1.

Theorem 8.21 (Functional calculus for continuous maps and self-adjoint elements)
Let A be a C∗-algebra with unit I and a ∈ A a self-adjoint element.
(a) There exists a unique ∗-homomorphism defined on the unital, commutative C∗-
algebra C(σ (a)):

Φa : C(σ (a)) 
 f �→ f (a) ∈ A

such that
Φa(x) = a, (8.11)

x being the map σ(a) 
 x �→ x.
(b) The following properties hold:

(i) Φa is isometric: for any f ∈ C(σ (a)), ||Φa( f )|| = || f ||∞;
(ii) if ba = ab with b ∈ A, then b f (a) = f (a)b for any f ∈ C(σ (a));
(iii) Φa preserves involutions: Φa( f ) = Φa( f )∗ for any f ∈ C(σ (a)).

(c) σ( f (a)) = f (σ (a)) for any f ∈ C(σ (a)).
(d) IfB is a C∗-algebra with unit and π : A→ B a ∗-homomorphism:

π( f (a)) = f (π(a)) for any f ∈ C(σ (a)).

Proof In the sequel we assume the spectrum of a is infinite; the finite case must be
treated separately by keeping in account the previous remark. We leave this easy task
to the reader.
(a) Let us show existence. The spectrum σ(a) ⊂ C is compact by Theorem8.4(c),
and C(σ (a)) is Hausdorff because C is, so we can use Stone-Weierstrass (Theo-
rem2.30). The space P(σ (a)) of polynomials p = p(x) restricted to x ∈ σ(a) and
with complex coefficients is a subalgebra inC(σ (a)) that contains the unit (the func-
tion 1), separates points in σ(a) and is closed under complex conjugation. Hence
Theorem2.30 guarantees it is dense in C(σ (a)). Consider the map

φa : P(σ (a)) 
 p �→ p(a) ∈ A ,

to properties (a)–(f). We know φa is linear and ||φa(p)|| = ||p||∞ by (8.10), which
implies continuity. By Proposition 2.47 there is a unique bounded linear operator
Φa : C(σ (a)) → A extending φa to C(σ (a)) and preserving the norm. This must
be a homomorphism of unital algebras because: (a) it is linear, (b) Φa( f · g) =
Φa( f )Φa(g) by continuity (it is true on the subalgebra of polynomials, by definition

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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of φa), (c) it maps the constant function 1 ∈ P(σ (a)) to the identity I ∈ A, by
definition of φa . Equation (8.11) holds trivially by property (d). That Φa is a ∗-
homomorphism is due to this argument: if {pn} are polynomials converginguniformly
onσ(a) to the continuousmap f , {pn} tends uniformly onσ(a) to the continuousmap
f ; as seen above, though (cf. property (e)),Φa(pn) = φa(pn) = φa(pn)∗ = Φa(pn)∗
and Hermitian conjugation is continuous in the uniform topology. By continuity of
Φa , Φa( f ) = Φa( f )∗.

Now to uniqueness. Any ∗-homomorphism χa of C∗-algebras with unit, fulfilling
(8.11), must agree with Φa on integer powers of x , hence on any polynomial by def-
inition of ∗-homomorphism. Moreover χa must be continuous by Corollary8.18(a).
Since χa and Φa are linear, by Proposition 2.47 χa coincides with Φa .
(b) Property (iii) was proved above. (i) and (ii) are immediate for polynomials, so
they extend by continuity to C(σ (a)).
(c) Observe first that the set of non-invertible elements inA is closed under the norm
because its complement is open (Proposition 2.27). Consider a polynomial sequence
{pn} converging to some f ∈ C(σ (a)) uniformly on σ(a). Then pn(λ) ∈ σ(pn(a))

by Proposition 8.14(a), i.e. pn(a)− pn(λ)I is not invertible. The set of non-invertible
elements is closed in A, so we can take the limit and obtain that f (a) − f (λ)I is
not invertible. Hence f (λ) ∈ σ( f (a)) and then f (σ (a)) ⊂ σ( f (a)). Conversely, if
μ /∈ f (σ (a)), then g : σ(a) 
 λ �→ ( f (λ) − μ)−1 is in C(σ (a)). That is because
f is continuous and f (σ (a)) closed (continuous image in C of a compact set). By
construction g(a)( f (a)− μI) = ( f (a)− μI)g(a) = I, so f (a)− μI is invertible,
hence μ /∈ σ( f (a)).
(d) The statement is true if f is a polynomial. By the continuity of π (Corol-
lary8.18(a)) it stays true when passing to continuous maps. ��
What we would like to do now is generalise the above theorem to normal elements,
not necessarily self-adjoint, in a unital C∗-algebra A. We want to define an element
f (a, a∗) ∈ A for an arbitrary continuous map f defined on the spectrum σ(a) ⊂ C

of a, so that its norm is || f ||∞.
One possibility is to do as follows:
(1) start from polynomials p(z, z) (dense in C(σ (a)) by the Stone-Weierstrass

theorem) defined on the spectrum of a;
(2) associate to each p(z, z) the polynomial operator p(a, a∗) ∈ A;
(3) show the above correspondence is a continuous ∗-homomorphism of unital

∗-algebras.
Yet there is a problem when we pass from polynomials to continuous maps by
a limiting procedure. We should prove ||p(a, a∗)|| ≤ ||p||∞. In case a is self-
adjoint the equality was proved using ‘spectral invariance’ (Proposition 8.14(a),
i.e. σ(p(a)) = p(σ (a))) and Theorem8.15(b), for which ||p(a)|| = r(p(a)) =
sup{|μ| ∈ C | μ ∈ σ(p(a))}. In the case at stake there is nothing guaranteeing
σ(p(a, a∗)) = p(σ (a, a∗)). The failure of the fundamental theorem of algebra for
complex polynomials in the variables z and z is the main cause of the lack of a direct
proof of the above fact, and the reason why we have to look for an alternative, albeit
very interesting, way.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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8.2.2 Key Properties of ∗-Homomorphisms of C∗-Algebras,
Spectra and Positive Elements

This section is devoted to a series of technical corollaries to Theorem8.21, essential
to extend continuous functional calculus to normal, not self-adjoint, elements. A
number of results are nonetheless interesting on their own.

Corollary 8.18(c) tells that a ∗-homomorphism φ : A→ B between C∗-algebras
with unit is isometric if one-to-one and onto. But surjectivity is not necessary, for
a consequence of the previous theorem is that injectivity is equivalent to the norm
being preserved. We encapsulate in the next statement also Corollary8.18(a), which
we proved earlier.

Theorem 8.22 (On ∗-homomorphisms of unital C∗-algebras) A ∗-homomorphism
π : A→ B of unital C∗-algebras is continuous, for

||π(a)||B ≤ ||a||A for any a ∈ A.

Furthermore
(a) π is one-to-one iff isometric, i.e. ||π(a)|| = ||a|| for any a ∈ A.
(b) π(A) is a unital C∗-subalgebra insideB.

Proof As said, the first statement is Corollary8.18(a).
(a) If π is isometric it is obviously injective, so we prove the converse. We have
||π(a)|| ≤ ||a|| by Corollary8.18, so it suffices to prove that injectivity forces
||π(a)|| ≥ ||a||. If that is true for self-adjoint elements in a C∗-algebra with unit, it
holds for any element:

||π(a)||2 = ||π(a)∗π(a)||2 = ||π(a∗a)|| ≥ ||a∗a|| = ||a||2 .

So assume there is a self-adjoint element a ∈ A with ||π(a)|| < ||a||. Then Propo-
sition 8.19 says σA(a) ⊂ [−||a||, ||a||] and r(a) = ||a||, so ||a|| ∈ σA(a) or
−||a|| ∈ σA(a). Similarly σB(π(a)) ⊂ [−||π(a)||, ||π(a)||]. Choose a continuous
map f : [−||a||, ||a||] → R that vanishes on [−||π(a)||, ||π(a)||] and such that
f (−||a||) = f (||a||) = 1. Theorem8.21(d) implies π( f (a)) = f (π(a)) = 0, for
f �σB(π(a))= 0 and || f (a)|| = || f ||∞,C(σA(a)) ≥ 1. Then f (a) �= 0, contradicting
the injectivity of π .
(b) Consider the set K := Ker(π) := {a ∈ A |π(a) = 0}. One easily proves that K
is a closed two-sided ∗-ideal of A. The closure arises from ||π(a)|| ≤ ||a||. In view
of the fact that K is a two-sided ∗-ideal of A, the quotient vector space A1 := A/K
has a natural ∗-algebra structure induced from that of A. Moreover, it is known that
||[a]|| := inf{||a+ b|| | b ∈ K } is a C∗-norm onA1 (see Theorem 3.1.4 in [Mur90]).
By construction π1 : A1 → B, π1([a]) := π(a) for a ∈ A, is a well-defined ∗-
homomorphism. However π1 is injective – and therefore it is isometric by (a) – and,
by construction π1(A1) = π(A). Now claim (b) is immediate because π1 is isometric
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and by definition of unital C∗-subalgebra. In particular, π1 isometric guarantees that
π(A) = π1(A1) is closed inB, hence complete as a normed space. ��
A second result shows that the spectrum does not change by restricting to C∗-
subalgebras or taking ∗-isomorphic images.

Theorem 8.23 (Invariance of spectrum) Let A and B be C∗-algebras with unit.
(a) If A is a unital C∗-subalgebra in B,

σA(a) = σB(a) for any a ∈ A.

(b) If π : A→ B is a ∗-homomorphism,

σB(π(a)) = σπ(A)(π(a)) ⊂ σA(a) for any a ∈ A.

The last inclusion is an equality if π is one-to-one.

Proof (a) Let us observe, preliminarily, that the unit I is the same in A and B. If
a ∈ A moreover, also a∗ is the same in A and B. It is clear that ρA(a) ⊂ ρB(a),
or equivalently σB(a) ⊂ σA(a). Therefore it is enough to prove, for any a ∈ A,
that (a − λI) has inverse (a − λI)−1 ∈ B belonging to A. This is the same as
demanding that the possible inverse a−1 ∈ B to a ∈ A is in A. Let us consider
the subcase where a = a∗ is invertible in B. Then σB(a) ⊂ R, and since ρB(a)

is open and 0 ∈ ρB(a) there is a disc D ⊂ C of radius r > 0 at the origin that
does not intersect σB(a). Hence f : x �→ 1/x is continuous and bounded on
σB(a), and we can define f (a) = Φa( f ) using Theorem8.21 on a = a∗ ∈ B.
By construction a f (a) = f (a)a = I, i.e. f (a) = a−1 in B. If f (a) ∈ A the
proof ends here. By construction of the one-to-one ∗-homomorphism Φa , we have
f (a) = limn→+∞ pn(a), where the pn are polynomials and the limit is understood in
B. But pn(a) ∈ A by definition, for A is closed under algebraic operations. Since A
has the induced topology ofB and is closed, f (a) ∈ A as required, hence a−1 ∈ A.

Now consider the case a ∈ A not self-adjoint, such that a−1 ∈ B. Then also
(a∗)−1 = (a−1)∗ ∈ B and we can write a−1 = (a∗a)−1a∗. Notice a∗a ∈ A is
self-adjoint, so (a∗a)−1 ∈ A by the previous argument. Trivially a∗ ∈ A, so a−1 =
(a∗a)−1a∗ ∈ A, thus ending part (a).
(b)The inclusionσπ(A)(π(a)) ⊂ σA(a)wasproved inCorollary8.18(b). The equality
σB(π(a)) = σπ(A)(π(a)) follows from part (a) and the fact π(A) is a unital C∗-
subalgebra in B by Theorem8.22(b). If π is one-to-one, σπ(A)(π(a)) = σA(a)

follows from (a) and the fact that π : A → π(A) is a ∗-isomorphism of unital
C∗-algebras by Theorem8.22(a). ��
Theorem 8.21 also permits to give a reasonable meaning to positive elements in a
C∗-algebra with unit. The definition and characterisation that follow will play an
important role in advanced formulations of quantum fields.

Definition 8.24 An element a in a unital C∗-algebra A is positive if a = a∗ and
σ(a) ⊂ [0,+∞). The set of positive elements of A is denoted by A+.
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We have arrived at the characterisation of positive elements, together with other
properties, given in the next result.

Theorem 8.25 (On positive elements in a C∗-algebra with unit) Let A be a C∗-
algebra with unit.
(a) If α1, . . . αn ∈ [0,+∞) and a1, . . . , an ∈ A are positive, then

∑n
j=1 α j a j is

positive, so A+ is a closed convex cone in A.
(b) The following assertions, for any a ∈ A, are equivalent.

(i) a is positive.
(ii) a = a∗ and a = c∗c for some c ∈ A.
(iii) a = a∗ and a = b2 for some self-adjoint b ∈ A.

(c) If A0 ⊂ A is a unital C∗-subalgebra, then A+0 = A0 ∩ A+, and A0 =< A+0 >.
(d) If π : A→ B is a ∗-homomorphism of unital C∗-algebras, and a ∈ A is positive,
then π(a) is positive.

Proof (a) The claim is clearly true if n = 1, for σ(α1a1) = α1σ(a1), and α1a is
self-adjoint iff a1 is and α1 ≥ 0. So we will just prove the claim for n = 2 with α1

and α2 both non-zero. We will use the fact that d is positive iff self-adjoint, plus

∣∣∣∣I− ||d||−1d∣∣∣∣ ≤ 1 .

The above condition implies σ
(
I− ||d||−1d) ⊂ [−1, 1] i.e. 1 − ||d||−1σ(d) ⊂

[−1, 1], by the properties of the spectral radius. This implies σ(d) ⊂ [0, 2||d||],
so d is positive. Conversely, if d is positive then σ(d) ⊂ [0, ||d||], so as before
||I− ||d||−1d|| ≤ 1. If d = d∗ and

||I− d|| ≤ 1

then d is positive with ||d|| ≤ 2. The proof is the same as the previous one. All these
facts in turn imply, if a1 and a2 are self-adjoint, positive, with ||a1|| = ||a2|| = 1 and
α1, α2 ∈ (0, 1), α1 + α2 = 1, that the self-adjoint element α1a1 + α2a2 is positive.
In fact,

||I− α1a1 + α2a2|| ≤ α1||I− a1|| + α2||I− a2|| ≤ α1 + α2 = 1

so α1a1 + α2a2 is positive. Multiply by λ > 0, so (renaming constants) λμa1 +
λ(1 − μ)a2 is positive whichever μ ∈ (0, 1) and λ ∈ (0,+∞) are chosen. If we
now take α1, α2 > 0 without further conditions, λ = α1 + α2 ∈ (0,+∞) and
μ = α1/(α1 + α2) ∈ (0, 1) immediately, and

λμa1 + λ(1− μ)a2 = α1a1 + α2a2 .

But now α1a1+α2a2 is positive for arbitrary α1, α2 > 0, so the claim is proved (note
that the constraint ||a1|| = ||a2|| = 1 has disappeared). Let us show A+ is closed. If
A+ 
 an → a ∈ A then ||an − a|| → 0, so ||an|| − ||a|| → 0. That an ∈ A+, by the
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properties of spectrum and spectral radius, implies || ||an||I − an|| ≤ ||an||. In the
limit n →+∞ we find || ||an||I− a|| ≤ ||a||, hence a ∈ A+.
(b) If (iii) holds, Proposition 8.19(d) gives σ(a) = σ(b2) = {λ2 | λ ∈ σ(a)} ⊂
[0,+∞), so (iii) implies (i). Now the converse. Using continuous functional calculus,
and recalling a = a∗, the real continuous map

√· : σ(a) 
 x �→ √
x allows to

define
√
a := Φa(

√·). Set b := √
a, so b = b∗ and b2 = a, because Φa is a ∗-

homomorphism. Hence (i) and (iii) are equivalent. That (iii) implies (ii) is obvious.
So there remains to show (ii) ⇒ (i). Let a = a∗, a = c∗c, and we claim σ(a) ⊂
[0,+∞). By contradiction assume σ(−a) ⊂ (0,+∞). Then Proposition 8.19(e)
tells σ(−cc∗) \ {0} = σ(−c∗c) \ {0} ⊂ (0,+∞). By decomposing c := c1 + ic2,
with c1, c2 self-adjoint, we have

c∗c + cc∗ = 2c21 + 2c22 .

But c21 and c22 are positive by (iii), and −cc∗ is positive by assumption. Hence the
linear combination with positive coefficients 2c21 + 2c22 − cc∗ = c∗c is a positive
operator by (a). Therefore σ(c∗c) ⊂ [0,+∞), but since σ(−c∗c) \ {0} ⊂ (0,+∞)

as well, we have σ(c∗c) = {0} i.e. σ(a) = σ(−a) = {0}, a contradiction. Hence
σ(−a) ⊂ (−∞, 0], i.e. σ(a) ⊂ [0,+∞), so (ii) implies (i).
(c) If a ∈ A0 is positive in A, it is positive in A0 and conversely, for σA(a) = σA0(a)

by Theorem8.23(a), and also a = a∗ is invariant. Hence A+0 = A0 ∩A+. If a ∈ A0,
write a = a1 + ia2, with a1 := (a + a∗)/2 and a2 := (a − a∗)/(2i) self-adjoint.
If b is self-adjoint, we can define b+ := (|b| + b)/2 and b− := (|b| − b)/2, where
|b| = Φb(|·|) and |·| : C→ [0,+∞) is themodulus. SinceΦb is a ∗-homomorphism
and |·| is real-valued, b+ and b− are self-adjoint because b is (in particular σ(b) ⊂ R).
Property (c) in Theorem8.21 says b+ and b− are positive, as |x | ± x ≥ 0 for any
x ∈ σ(b) ⊂ R. In conclusion, every a ∈ A0 is the complex linear combination of 4
positive elements in A0, so A0 =< A+0 >.
(d) This follows immediately from (b) bearing in mind π is a ∗-homomorphism. ��

8.2.3 Commutative Banach Algebras and the Gelfand
Transform

In order to generalise the isometric ∗-homomorphism Φa : C(σ (a)) → A (defined
for a∗ = a ∈ A in Sect. 8.2.1) to subsume a normal, not self-adjoint, we shall
introduce some technical results in the theory of commutative Banach (C∗-)algebras,
due to Gelfand and interesting by their own means. We will prove a characterisation
called commutativeGelfand–Najmark theorem, according towhich any commutative
C∗-algebra with unit is canonically a C∗-algebra C(X) of functions with norm || ||∞
over the compact Hausdorff space X given by the algebra itself.
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We need a technical result that explains the relationship between maximal ideals
in Banach algebras and multiplicative linear functionals, after the mandatory defin-
itions. In the sequel every Banach algebra will be complex.

Definition 8.26 If A is a Banach algebra with unit, a subset I ⊂ A is a
maximal ideal if
(i) I is a linear subspace in A,
(ii) ba, ab ∈ I for any a ∈ I , b ∈ A,
(iii) I �= A;
(iv) if I ⊂ J , with J as in (i), (ii), then either J = I or J = A.

Remark 8.27 Conditions (i) and (ii) say I is an ideal, whereas (iii) prescribes the
ideal must be proper. Maximality is expressed by (iv). �

Definition 8.28 IfA is a Banach algebra with unit, a multiplicative linear functional
φ : A → C is called a character of A (where multiplicative means φ(ab) =
φ(a)φ(b)).
If A is also commutative, the set of non-trivial characters is denoted by σ(A) and
called the spectrum of the algebra.

Now we can state and prove the advertised proposition.

Proposition 8.29 Let A be a Banach algebra with unit I.
(a) A character χ of A is non-zero iff χ(I) = 1.
(b) A maximal ideal I ⊂ A is closed.
(c) If A is commutative, the mapI : σ(A) 
 χ �→ Ker(χ) ⊂ A is a bijection onto
the set of maximal ideals.
(d) If A is commutative, then characters are continuous.

Proof Observe preliminarily that the existence of the unit I in A, with ||I|| = 1,
implies A �= {0}.
(a) If χ is a character χ(a) = χ(Ia) = χ(I)χ(a). If χ �= 0 then χ(a) �= 0 for some
a ∈ A. Then χ(I) = 1. If χ(I) �= 0, clearly χ �= 0.
(b) By assumption I �= A, so I /∈ I (otherwise a = aI ∈ I for any a ∈ A). Hence
I /∈ I . In fact, if I ∈ I , since the set of invertible elements is open (Proposition 2.27),
there would be an open neighbourhood B of I of invertible elements intersecting I .
For any a ∈ B ∩ I , then, I = a−1a ∈ I , which cannot be. Therefore I �= A, I being
excluded. Since I ⊃ I and I satisfies (i), (ii), (iii) in Definition 8.26, we have I = I
by Definition 8.26(iv).
(c) If χ ∈ σ(A), Ker(χ) is a maximal ideal: (i),(ii) in Definition 8.26 are true as
χ is linear and multiplicative, and (iii) holds for χ �= 0. Notice A = Ker(χ)⊕ V ,
where dim(V ) = 1, for this must be the dimension of the target spaceC of χ . Hence
any subspace J ⊂ A containing Ker(χ) properly must be A itself, so Ker(χ)

is a maximal ideal. Therefore the map I sends characters to maximal ideals. Let
us show it is one-to-one. If χ, χ ′ ∈ σ(A) and Ker(χ) = Ker(χ ′) = N , from
A = N ⊕ V we have χ(a) = χ(va) and χ ′(a) = χ ′(va), where na ∈ N and va ∈ V
are the projections of a on N and V . If e is a basis of V (1-dimensional), va = cae

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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for some complex number ca determined by a. Hence Ker(χ) = Ker(χ ′) implies
χ(a) = avχ(e) and χ ′(a) = avχ

′(e). By (a) χ(I) = χ ′(I) = 1, so χ(e) = χ ′(e) and
χ = χ ′, proving injectivity. Now surjectivity. If I is a maximal ideal, it is closed by
(b). It is easy to show that the quotient spaceA/I of cosets [a] (a ∼ a′ ⇔ a−a′ ∈ I )
inherits a natural Banach space structure and a commutative Banach algebra structure
with unit [I] from A. By construction A/I does not contain ideals other than A/I
itself. So any non-null element [a] ∈ A/I is invertible, otherwise [a]A/I would be
a proper ideal in A/I . The Gelfand–Mazur Theorem(8.10) guarantees the existence
of a Banach space isomorphism ψ : A/I → C. If π : A 
 a → [a] ∈ A/I denotes
the canonical projection (continuous by construction), χ := ψ ◦ π : A → C is an
element of σ(A) with trivial null space Ker(χ) = I .
(d) As χ �→ Ker(χ) is a bijection, the last argument also tells that any character χ

must look like ψ ◦ π , for Ker(χ) = I . Hence χ is continuous, because ψ and π

are. ��
Now it is time for the first theorem of Gelfand on commutative Banach algebras
with unit. We shall refer to the ∗-weak topology on the dual A′ of A (seen as Banach
space) introduced by Definition 2.72. More precisely, viewing σ(A) as subset of A′
with the induced topology, we consider the unital algebra C(σ (A)) of continuous
maps σ(A)→ Cwith norm || ||∞. One part of the theorem establishes that σ(A) is a
compact Hausdorff space. As we saw in Chaps. 2 and 3 (Examples2.29(4), 3.48(1)),
in fact, C(σ (A)) is a Banach algebra with unit (and also a C∗-algebra).

Theorem 8.30 Take a commutative Banach algebra A with unit I and let

G : A 
 x �→ x̂ : σ(A)→ C (8.12)

denote the Gelfand transform

x̂(χ) := χ(x) , x ∈ A, χ ∈ σ(A), (8.13)

Then
(a) σ(A) is a ∗-weakly compact Hausdorff space, and ||χ || ≤ 1 if χ ∈ σ(A) (||.|| is
the strong norm on A′).
(b) If x ∈ A:

σ(x) = {̂x(χ) | χ ∈ σ(A)} .

(c) Â ⊂ C(σ (A)), and G : A → C(σ (A)) is a homomorphism of unital Banach
algebras.
(d) G : A→ C(σ (A)) is continuous, ||̂x ||∞ ≤ ||x || for any x ∈ A.

Proof (a) Consider χ ∈ σ(A) and the maximal ideal I = Ker(χ) associated to
it under Proposition 8.29(c). If x ∈ A, χ(x − χ(x)I) = 0, so x − χ(x)I ∈ I
cannot be invertible (cf. Proposition 8.29(b)). Then χ(x) ∈ σ(x), so |χ(x)| ≤ ||x ||
by elementary properties of the spectral radius. Consequently ||χ || ≤ 1, where the
norm defines the strong topology. Therefore σ(A) is contained in the unit ball of the

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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dual A′. We know this set is ∗-weakly compact by Theorem2.80 (Banach–Alaoglu).
Since the ∗-weak topology is Hausdorff, to finish it suffices to show σ(A) is ∗-weakly
closed. Saying σ(A) 
 χn → χ ∈ A′ in that topology means χn(x) → χ for any
x ∈ A. By continuity χ is a character if all χn are. Thus σ(A) is closed in the ∗-weak
topology.
(b) Above we proved χ(x) ∈ σ(x), so {̂x(χ) | χ ∈ σ(A)} ⊂ σ(x). Let us prove the
converse inclusion. If λ ∈ σ(x) then x−λI is not invertible, so xA := {(x−λI)y |y ∈
A} is a proper ideal. Zorn’s lemma gives us amaximal ideal I containing xA. LetχI ∈
σ(A) be the associated character by Proposition 8.29(c). Then x̂(χI ) = χI (x) = λ

and so {̂x(χ) | χ ∈ σ(A)} ⊃ σ(x), as required.
(c)–(d). That G is a homomorphism of algebras with unit is straightforward, because
x̂ acts on characters χ (linear and multiplicative, plus Î(χ) := χ(I) = 1). Moreover,
from (b) and the definition of spectral radius we have ||̂x ||∞ = r(x). On the other
hand r(x) ≤ ||x || by elementary properties of the spectral radius. ��
Example 8.31 Let �1(Z) be the Banach space of maps f : Z→ C such that

|| f ||1 :=
∑

n∈Z
| f (n)| < +∞ .

Equip �1(Z) with the structure of a unital Banach algebra by defining the product
using the convolution:

( f ∗ g)(m) :=
∑

n∈Z
f (m − n)g(n), f, g ∈ �1(Z).

This product is well defined and satisfies || f ∗ g||1 ≤ || f ||1||g||1, because:
∑

n∈Z
|( f ∗ g)(n)| =

∑

n∈Z

∣∣∣∣∣
∑

m∈Z
f (n − m)g(m)

∣∣∣∣∣ ≤
∑

n∈Z

∑

m∈Z
| f (n − m)| |g(m)|

=
∑

m∈Z

∑

n∈Z
| f (n − m)| |g(m)| ≤

∑

m∈Z

(
|g(m)|

∑

n∈Z
| f (n − m)|

)
=

∑

m∈Z
|g(m)| || f ||1

= || f ||1 ||g||1 .

There is a unit I, namely the map I(n) = 1 if n = 0 and I(n) = 0 if n �= 0. Since
f ∗ g = g ∗ f , as is easy to see, �1(Z) becomes a commutative Banach algebra with
unit, and we can apply Gelfand’s theory.

Set S1 := {z ∈ C | |z| = 1} and define characters χz associated to z ∈ S
1:

χz( f ) :=
∑

n∈Z
f (n)zn .

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Trivially, these are well-defined characters. Hence we have a function � : S1 

z �→ χz ∈ σ(�1(Z)) easily seen to be invertible. Actually, it is a homeomorphism,
for we shall prove it is a continuous bijection between compact Hausdorff spaces
(Proposition 1.23). Continuity, using the ∗-weak topology on σ(�1(Z)), amounts to
continuity of S1 
 z �→ χz( f ) ∈ C with f ∈ �1(Z) fixed, because z �→ χz( f ) is the
uniform limit of the continuous map gm(z) :=∑

|n|<m f (n)zn , for
∑

n∈Z | f (n)zn| =
|| f ||1 < +∞ with |z| = 1.

Therefore we may identify the spectrum σ(�1(Z)) with S1 under the homeomor-
phism �. The Gelfand transform f̂ of f ∈ �1(Z) is therefore continuous on S

1, and
defined by

f̂ (z) :=
∑

n∈Z
f (n)zn .

�

The elementary theory of Fourier series forces f (n) to be the Fourier coefficient

f (n) = 1

2π

∫ 2π

0
f̂ (eiθ )e−inθdθ .

Therefore G (�1(Z)) is the subset, in the unital Banach algebra (C(S1), || ||∞), of
maps with absolutely convergent Fourier series. Gelfand observed that there is an
interesting consequence to this fact, which corresponds to a classical statement due
to Wiener (but proved by different means):

Proposition 8.32 If h ∈ C(S1) has absolutely convergent Fourier series and no
zeroes, the map S

1 
 z �→ 1/h(z) (belonging in C(S1)) has absolutely convergent
Fourier series.

Proof First, h = f̂ for some f ∈ �1(Z). Since f̂ (z) �= 0, then 0 /∈ σ( f ) by
Theorem8.30(b). Hence f has inverse g ∈ �1(Z) and ĝ = 1/h. We conclude that
the Fourier series of 1/h must converge absolutely. ��
To conclude we consider the more rigid case in which A is a commutative C∗-
algebra with unit. Then the Gelfand transform defines an honest ∗-isomorphism of
C∗-algebras with unit, and must be isometric by Theorem8.22(a). In fact we have
the following commutative version of the Gelfand–Najmark theorem.

Theorem 8.33 (Commutative Gelfand–Najmark theorem) Let A be a commutative
C∗-algebra with unit. Then every character of A is a ∗-homomorphism. Moreover,
if we think of C(σ (A)) as a commutative C∗-algebra with unit (for the norm || ||∞),
the Gelfand transform

G : A 
 x �→ x̂ ∈ C(σ (A)) where x̂(χ) := χ(x) , x ∈ A, χ ∈ σ(A),

is an isometric ∗-isomorphism.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Proof The only thing to prove is that the Gelfand transform defines a ∗-isomorphism,
because the rest follows from Theorem8.22(a). Knowing the Gelfand transform is
an algebra homomorphism, though, requires only that we prove surjectivity and the
involution property. The first lemma is that x̂ is real if x∗ = x ∈ A. If so, with t ∈ R

we define

ut := eitx :=
+∞∑

n=0

(i t)n

n! xn

with respect to the norm of A. Since A is commutative, and working as we were in
C, we have u∗t = ut and u∗t ut = u0 = I. Taking norms gives ||ut || = ||u−t || = 1. If
now χ is a character (continuous, linear and multiplicative), we see χ(ut ) = eitχ(x)

and χ(u−t ) = e−i tχ(x). So by Theorem8.30(d):

|χ(u±t )| = |û±t (χ)| ≤ ||û±t ||∞ ≤ ||u±t || ≤ 1 .

That is to say |e±i tχ(x)| ≤ 1, implying χ(x) ∈ R. Now if x ∈ A we can decompose
x = a + ib, a = a∗, b = b∗ so that χ(x) = χ(a) − iχ(b) = χ(x∗). This
proves that characters of commutative C∗-algebras are ∗-homomorphisms and not
only homomorphisms. Hence, coming back to the Gelfand transform,

x̂∗(χ) = χ(x∗) = χ(a − ib) = χ(a)− iχ(b) = χ(a)+ iχ(b) = χ(x) = x̂(χ) .

Therefore the Gelfand transform preserves the involution.
To conclude we settle surjectivity, showing {̂x | x ∈ A} = C(σ (A)). The set on

the left is closed as compact (continuous image of a compact set, Theorem8.30) in
a Hausdorff space. By construction, this set is a closed ∗-subalgebra of C(σ (A))

containing the identity (̂I = 1, identity map). The elements of that algebra separate
points of σ(A): if χ1 �= χ1 then χ1(x) �= χ2(x) for some x ∈ A, so x̂(χ1) �= x̂(χ2).
The Stone-Weierstrass theorem implies {̂x | x ∈ A} = C(σ (A)). ��
Remarks 8.34 (1) The commutative Gelfand–Najmark theorem proves that every
commutative C∗-algebra A with unit is canonically a C∗-algebra C(X) of functions
with norm || ||∞ on a compact set X = σ(A). The “points” of X are the characters of
theC∗-algebra. Put equivalently, commutativeC∗-algebras with unit areC∗-algebras
of functions built in a canonical manner via the algebra’s spectrum σ(A).
(2) If we start from a concreteC∗-algebraC(X) of functions on a compact Hausdorff
space X, Gelfand’s procedure recovers exactly this algebraic construction, because
characters, in the present case, are nothing but points in X. In fact, any x ∈ X can be
mapped one-to-one to the corresponding character χx : C(X)→ C, χx ( f ) := f (x)
for any f ∈ C(X). It can be proved that every character has this form by showing it
is positive (by multiplicativity), and that it must be a positive Borel measure by the
theorem of Riesz. Since the only multiplicative Borel measures are Dirac measures
δx , we have χ( f ) = ∫

X f dδx = f (x) for some x ∈ X determined by χ . Observe that
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the topology on X coincides with the ∗-weak topology if we interpret points x ∈ X
as characters χx , as is immediate to verify.

Naïvely speaking, a compact Hausdorff space can be fully described by the com-
mutative C∗-algebra of its continuous complex functions. This remark can be taken,
and indeed was by A. Connes, as a starting point to develop noncommutative geome-
try: instead of using a commutativeC∗-algebra with unit one takes a noncommutative
algebra, and the associated “space” is defined in terms of continuous linear function-
als on the algebra. �

8.2.4 Abstract C∗-Algebras: Functional Calculus for
Continuous Maps and Normal Elements

Wewish to extend Sect. 8.2.1 to normal elements a ∈ A (a∗a = aa∗) in aC∗-algebra
A with unit I. We want to make sense of the function f (a, a∗) ∈ A of a, a∗ when f
is a continuous complex-valued map defined on the spectrum of a.

A few preliminary remarks and notational issues must be seen to, before we
proceed to define f (a, a∗).

We can always decompose a and a∗ into linear combinations of two commuting
self-adjoint elements x, y:

a = xa + iya , a∗ = xa − iya , (8.14)

where by definition

xa := a + a∗

2
, ya := a − a∗

2i
. (8.15)

xa and ya are clearly self-adjoint. That they commute is also obvious, for a and a∗
commute.

Decomposition (8.14) reminds of the analogue splitting of a complex number into
real and imaginary parts

z = x + iy , z = x − iy , (8.16)

where

x := z + z

2
, y := z − z

2i
. (8.17)

Remark 8.35 The maps f : σ(a) → C we shall deal with are to be thought of as
functions in x and y, imagining σ(a) as subset ofR2 rather thanC. Equivalently, the
variables may be taken to be z and z, considered independent. They are bijectively
determined by x, y, so maps in x , y are in one-to-one correspondence to maps in z,
z: to f = f (z, z) we may associate
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g = g(x, y) := f (x + iy, x − iy)

and conversely, to g = g(x, y) is associated

f1 = f1(z, z) := g((z + z)/2, (z − z)/2i) .

Clearly, f1 = f . This fact will be used often without further notice. �

Now we are ready for the continuous functional calculus for normal elements. The
proof will be substantially different from Theorem8.21, in that it will involve the
Gelfand transform of the previous section. We shall still use the name Φa for the
∗-isomorphism, because it generalises the morphism of Theorem8.21.

Theorem 8.36 (Functional calculus for continuous maps and normal elements) Let
A be a C∗-algebra with unit I and a ∈ A a normal element. View f as a function of
the independent variables z and z.
(a) There exists a unique ∗-homomorphism on the unital commutative C∗-algebra
C(σ (a)):

Φa : C(σ (a)) 
 f �→ f (a, a∗) ∈ A ,

such that
Φa(z) = a (8.18)

with z being the polynomial σ(a) 
 (z, z) �→ z.
(b) The following properties hold:

(i) Φa is isometric: for any f ∈ C(σ (a)), ||Φa( f )|| = || f ||∞;
(ii) if ba = ab and ba∗ = a∗b for some b ∈ A, then b f (a, a∗) = f (a, a∗)b for

any f ∈ C(σ (a));
(iii) Φa preserves involutions: Φa( f ) = Φa( f )∗ for any f ∈ C(σ (a)).

(c) σ( f (a, a∗)) = f (σ (a), σ (a)) for any f ∈ C(σ (a)).
(d) IfB is a C∗-algebra with unit and π : A→ B a ∗-homomorphism,

π( f (a, a∗)) = f (π(a), π(a∗)) for any f ∈ C(σA(a)).

(e) If a = a∗ the ∗-homomorphism Φa coincides with its analogue of Theorem8.21.

Proof (a)–(b)–(e). Uniqueness is evident because if two ∗-homomorphisms Φa :
C(σ (a)) → A and Φ ′

a : C(σ (a)) → A satisfy Φa(z) = Φ ′
a(z) = a, by definition

they coincide on the polynomial algebra in z and z, which is dense inC(σ (a)) in norm
|| ||∞ by Stone-Weierstrass (σ(a) is compact and Hausdorff). As ∗-homomorphisms
are continuous (Theorem8.22), Φa( f ) = Φ ′

a( f ) for any f ∈ C(σ (a)). The same
argument proves, in the case a = a∗, that the ∗-homomorphism Φa coincides with
its cousin in Theorem8.21. Likewise, if Φa is defined, then (ii) in (b) holds, because
if b commutes with a and a∗ it commutes with every polynomial in a, a∗, and by
continuity with any Φa( f ).
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Let us showΦa exists and satisfies the remaining requests in (a) and (b). Consider
the unital commutative C∗-(sub)algebra Aa ⊂ A spanned by I, a and a∗. It is the
closure, for the norm of A, of the set of polynomials p(a, a∗) with complex coeffi-
cients. The idea is to defineΦa(a) byG −1( f ), because the inverse Gelfand transform
G −1 : C(σ (A )) → Aa is an isometric ∗-isomorphism by Theorem8.33. The prob-
lem is that now f is defined on σ(Aa), not on σ(a). So let us prove σ(Aa) and
σ(a) are homeomorphic under F : σ(Aa) 
 χ �→ χ(a) ∈ σ(a). That χ(a) ∈ σ(a)

follows from Theorem8.30(b). The function is continuous because characters are
continuous, by Proposition 8.29(d), and it acts between compact Hausdorff spaces.
Hence it is enough to show it is bijective to have a homeomorphism (Proposition
1.23). If F(χ) = F(χ ′) then χ(a) = χ ′(a), χ(a) = χ ′(a) (see the proof of Theo-
rem8.33) and χ(a∗) = χ ′(a∗). On the other hand χ(I) = χ ′(I) = 1 by Proposition
8.29(a). Since χ preserves sums and products, by continuity χ(b) = χ ′(b) if b ∈ Aa ,
and F is injective. F is onto by Theorem8.30(b). Define

Φa( f ) := G −1( f ◦ F)

for f ∈ C(σ (a)). By construction Φa is an isometric ∗-isomorphism from C(σ (a))

to Aa such that Φ−1
a (a) = z, where z is σ(a) 
 (z, z) �→ z. In fact, Φ−1

a (a) = z
means G (a) = z ◦ F i.e. χ(a) = z(χ) for any character χ ∈ σ(Aa). But the latter
is true by definition of F . Hence (a), (b) are valid by redefining Φa as valued in the
larger algebra A.
(c) By Theorem8.23, first of all, σA( f (a, a∗)) = σAa ( f (a, a∗)), so we look at
the spectrum of f (a, a∗) in Aa . Then Φa : C(σ (a)) → Aa defines an isomet-
ric ∗-isomorphism. The abstract function f (a, a∗) − λI corresponds to the con-
crete map σ(s) 
 (z, z) �→ f (z, z) − λ. Therefore f (a, a∗) − λI is invertible iff
σ(s) 
 (z, z) �→ ( f (z, z)−λ)−1 is inC(σ (a)). Since the range of f is compact (con-
tinuous image of a compact set), the assertion is equivalent to λ /∈ f (σ (a), σ (a)).
Now (c) is immediate.
(d) We prove the equivalent fact π(Φa( f )) = Φπ(a)( f ). By construction C(σ (a)) 

f → π(Φa( f )) ∈ π(A) and C(σ (a)) 
 f → Φπ(a)( f ) ∈ π(A) are continuous
∗-homomorphisms. Trivially, π(Φa(z)) = π(a) = Φπ(a)(z), π(Φa(z)) = π(a)∗ =
Φπ(a)(z) and π(Φa(1)) = I = Φπ(a)(1). Therefore π(Φa(p)) = Φπ(a)(p) on poly-
nomials p = p(z, z), and by continuity they coincide on any f ∈ σ(a). ��

8.2.5 C∗-Algebras of Operators in B(H): Functional
Calculus for Bounded Measurable Functions

Let us return to functional calculus for operators and specialise Sect. 8.2.4 to A =
B(H), H a Hilbert space. Instead of a normal element a ∈ A consider a normal
operator T ∈ B(H). Then the ∗-homomorphism ΦT is a representation of C(σ (T ))

onH (definition 3.52). Here as well it is convenient to decompose T into self-adjoint

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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operators X, Y ∈ B(H):

T = X + iY , T ∗ = X − iY , (8.19)

where

X := T + T ∗

2
, Y := T − T ∗

2i
. (8.20)

The operators X and Y are patently self-adjoint by construction, and commute since
T is normal and commutes with T ∗.

As previously remarked, decomposition (8.19) is akin to the real/imaginary
decomposition of a complex number

z = x + iy , z = x − iy , (8.21)

where

x := z + z

2
, y := z − z

2i
. (8.22)

As before, we may view f (z, z) as a complex function in x and y. Theorem8.36
specialises, with identical proof, as follows.We refer to Definition 3.52 for the notion
of representation of a C∗-algebra.

Proposition 8.37 Let H be a Hilbert space and T ∈ B(H) a normal operator.
(a) There exists a unique representation of the unital commutative C∗-algebra
C(σ (T )) on H:

ΦT : C(σ (T )) 
 f �→ f (T, T ∗) ∈ B(H) ,

such that
ΦT (z) = T (8.23)

if z is the polynomial σ(T ) 
 (z, z) �→ z.
(b) Moreover:

(i) ΦT is faithful, as isometric: for any f ∈ C(σ (T )), ||ΦT ( f )|| = || f ||∞;
(ii) if, for A ∈ B(H), AT = T A and AT ∗ = T ∗A, then AΦT ( f ) = ΦT ( f )A for

any f ∈ C(σ (T ));
(iii) ΦT preserves involutions: ΦT ( f ) = ΦT ( f )∗ for any f ∈ C(σ (T )).

(c) σ(ΦT ( f )) = f (σ (T ), σ (T )), for any f ∈ C(σ (T )).

One consequence is worth making explicit.

Corollary 8.38 Let H be a Hilbert space and T ∈ B(H) a normal operator. Con-
sider the isometric ∗-homomorphism ΦT : C(σ (T )) → B(H) defined in Proposi-
tion 8.37. Then the set ΦT (C(σ (T ))) of continuous functions in the variables T ,
T ∗ (defined on σ(T )) is the smallest C∗-subalgebra with unit in B(H) containing
I and T .

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Proof Every unital C∗-subalgebra A of B(H) containing I and T must contain
polynomials in T , T ∗ (restricted to σ(T )). The construction that led to ΦT shows
A contains all continuous maps in T and T ∗, i.e. ΦT (C(σ (T ))). The latter, being
the image of a C∗-algebra with unit under an injective ∗-homomorphism, is a C∗-
subalgebra with unit ofB(H) (Theorem8.22(b)). ��
The fact that we are now working with a concrete C∗-algebra of operators allows to
make one step forward in functional calculus.We can generalise the above theoremby
defining f (T, T ∗)when f is a bounded and measurable, not necessarily continuous,
map. In order to do so, in the absence of a Stone-Weierstrass-type theorem for
boundedmeasurable functions (C(X) is not dense inMb(X) ifX is compact with non-
empty interior inRn , cf. Remark2.29(4)), we shall use heavily Riesz’s representation
results (for Hilbert spaces and Borel measures).

Recall that on a topological space X, B(X) is the Borel σ -algebra on X. The
C∗-algebra of bounded measurable maps f : X→ C is indicated by Mb(X) (Exam-
ples2.29(3) and 3.48(1)).

Proposition 8.37 can be generalised to prove the existence and uniqueness of a
∗-homomorphism of unital C∗-algebras Mb(σ (T ))→ B(H) (the topology on σ(T )

is induced by C ⊃ σ(T )). The consequences of the next theorem are legion. It will,
in particular, be a crucial ingredient to prove the existence of spectral measures, in
Theorem8.56. Statement (iii) in (b) will be completed by Theorem9.11.

Theorem 8.39 (Functional calculus for bounded measurable functions of normal
operators) Let H be a Hilbert space and T ∈ B(H) a normal operator.
(a)There is a unique representation of the unital commutativeC∗-algebra Mb(σ (T ))

(with respect to || ||∞) on H:

Φ̂T : Mb(σ (T )) 
 f �→ f (T, T ∗) ∈ B(H)

such that:
(i) if z is the polynomial σ(a) 
 (z, z) �→ z,

Φ̂T (z) = T ; (8.24)

(ii) if { fn}n∈N ⊂ Mb(σ (T )) is bounded and converges pointwise to f : σ(T ) →
C, then

Φ̂T ( f ) = w- lim
n→+∞ Φ̂T ( fn) .

(b) The mapping Φ̂T enjoys these properties:
(i) the restriction of Φ̂T to C(σ (T )) is the ∗-homomorphism ΦT of Proposition

8.37;
(ii) for any f ∈ Mb(σ (T )), ||Φ̂T ( f )|| ≤ || f ||∞;
(iii) with A ∈ B(H), if AT = T A and AT ∗ = T ∗A then AΦ̂T ( f ) = Φ̂T ( f )A

for any f ∈ Mb(σ (T ));
(iv) Φ̂T preserves involutions: Φ̂T ( f ) = Φ̂T ( f )∗ for any f ∈ Mb(σ (T ));

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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(v) if { fn}n∈N ⊂ Mb(σ (T )) is boundedand converges pointwise to f : σ(T )→ C,
then

Φ̂T ( f ) = s- lim
n→+∞ Φ̂T ( fn) ;

(vi) if f ∈ Mb(σ (T )) takes only real values and f ≥ 0, then Φ̂T ( f ) ≥ 0.

Proof (a). Fix x, y ∈ H. The map

Lx,y : C(σ (T )) 
 f �→ (x |ΦT ( f )y) ∈ C

is linear and ||Lx,y || is given by:

sup{|Lx,y( f )| | f ∈ C(σ (T )) , || f ||∞ = 1}

≤ ||x || ||y|| sup{||ΦT ( f )|| | f ∈ C(σ (T )) , || f ||∞ = 1}

(Cauchy–Schwarz was used). Since ΦT is isometric we find

||Lx,y|| ≤ ||x || ||y|| ,

so Lx,y is bounded.
By Theorem2.52 (Riesz’s representation theorem for complex measures) there

exists a unique complexmeasureμx,y (Definition1.81) on the compact setσ(T ) ⊂ C,
such that for any f ∈ C(σ (T )):

Lx,y( f ) = (x |ΦT ( f )y) =
∫

σ(T )

f (λ) dμx,y(λ) . (8.25)

Moreover, |μx,y |(σ (T )) = ||Lx,y || ≤ ||x || ||y||. Aside, note that x = y forces
μx,x to be a real, positive, finite measure: in fact, if f ∈ C(σ (T )) is real-valued
ΦT ( f ) = ΦT ( f )∗ by part (iii) of Proposition 8.37(b), so

∫

σ(T )
f (λ) h(λ)d|μx,x (λ)| =

∫

σ(T )
f (λ) h(λ)d|μx,x (λ)| = (x |ΦT ( f )x) = (ΦT ( f )x |x)

= (x |ΦT ( f )x) =
∫

σ(T )

f (λ) h(λ)d|μx,x (λ)| ,

where we have written dμx,x as hd|μx,x |, h being a measurable map of unit norm
determined, almost everywhere, by μx,x (Theorem1.87), and |μx,x | being the total
variation of μx,x (Remark 1.82(2)). By linearity

∫

σ(T )

f (λ) h(λ)d|μx,x (λ)| =
∫

σ(T )

f (λ) h(λ)d|μx,x (λ)|

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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must hold when f ∈ C(σ (T )) is complex-valued. Riesz’s Theorem2.52 on complex
measures guarantees hd|μx,x | = hd|μx,x |, so h(λ) = h(λ) almost everywhere; but
|h(λ)| = 1, so h(λ) = 1 almost everywhere, and hence μx,x is a real, positive and
finite measure (so is |μx,x |).

Use (8.25) to generalise Lx,y( f ) to the case f ∈ Mb(σ (T )), since the right-hand
side is well defined anyway: if g ∈ Mb(σ (T )),

Lx,y(g) :=
∫

σ(T )

g(λ) dμx,y(λ) . (8.26)

By general properties of complex measures (cf. Example2.48(1)):

|Lx,y(g)| ≤ ||g||∞|μx,y |(σ (T )) ≤ ||g||∞||x || ||y|| . (8.27)

By construction, given g ∈ C(σ (T )), (x, y) �→ Lx,y(g) is antilinear in x and linear
in y. One can prove this is still valid for g ∈ Mb(σ (T )). Let us for instance show
linearity in y, the other part being similar. Given x, y, z ∈ H and g ∈ Mb(σ (T )), if
α, β ∈ C then

α

∫

σ(T )

g(λ) dμx,y(λ)+ β

∫

σ(T )

g(λ) dμx,z(λ) =
∫

σ(T )

g(λ) dν(λ) , (8.28)

where ν is the complex measure ν(E) := αμx,y(E) + βμx,z(E) for any Borel set
E ⊂ σ(T ). Remembering how we defined the μx,y (cf. (8.25)) and using the inner
product’s linearity on the right, we immediately see that for any f ∈ C(σ (T ))

replacing g in (8.28):

∫

σ(T )

f (λ) dμx,αy+βz(λ) =
∫

σ(T )

f (λ) dν(λ) .

Riesz’s theorem now tells μx,αy+βz = ν. Therefore (8.28) reads, for any g ∈
Mb(σ (T )):

α

∫

σ(T )

g(λ) dμx,y(λ)+ β

∫

σ(T )

g(λ) dμx,z(λ) =
∫

σ(T )

g(λ) μx,αy+βz(λ) .

We proved Lx,y(g) is linear in y for any given x ∈ H and any g ∈ Mb(σ (T )).
Equation (8.27) implies the linear operator y �→ Lx,y(g) is bounded, so by The-

orem3.16 (Riesz once again), given g ∈ Mb(σ (T )) and x ∈ H, there exists a unique
vx ∈ H such that Lx,y(g) = (vx |y) for any y ∈ H. Since vx is linear in x (Lx,y(g)
is antilinear in x and the inner product (vx |y) is antilinear in vx ), there is also a
unique operator g(T, T ∗)′ ∈ L(H) such that vx = g(T, T ∗)′x for any x ∈ H. Hence
Lx,y(g) = (g(T, T ∗)′x |y). Condition (8.27) implies g(T, T ∗)′ is bounded, for:

||g(T, T ∗)′x ||2 = |(g(T, T ∗)′x |g(T, T ∗)′x)| = |Lx,g(T,T ∗)′x (g)| ≤ ||g||∞ ||x || ||g(T, T ∗)′x || ,

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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hence ||g(T, T ∗)′x ||
||x || ≤ ||g||∞

and then ||g(T, T ∗)′|| ≤ ||g||∞.
Setting g(T, T ∗) := g(T, T ∗)′∗, we proved that for g ∈ Mb(σ (T )) there is a

unique operator g(T, T ∗) ∈ B(H) such that

Lx,y(g) = (x |g(T, T ∗)y)

for any x, y ∈ H. The linear mapping

Φ̂T : Mb(σ (T )) 
 f �→ f (T, T ∗) ∈ B(H) ,

where, for any x, y ∈ H,

Lx,y( f ) = (x | f (T, T ∗)y) :=
∫

σ(T )

f (λ) dμx,y(λ) ,

is, by construction, an extension of ΦT : in particular (8.24) holds and Φ̂T (1) =
ΦT (1) = I . The extension is continuous because ||Φ̂T ( f )|| ≤ || f ||∞ for any f ∈
Mb(σ (T )), in fact:

||Φ̂T ( f )|| = || f (T, T ∗)|| = || f (T, T ∗)′∗|| = || f (T, T ∗)′|| ≤ || f ||∞ .

As Φ̂T extends the algebra homomorphismΦT , to prove Φ̂T is an algebra homomor-
phism it suffices to show Φ̂T ( f · g) = Φ̂T ( f )Φ̂T (g) when f, g ∈ Mb(σ (T )). If the
two maps belong in C(σ (T )), the claim is true by Proposition 8.37 above. Suppose
f, g ∈ C(σ (T )). Then

∫

σ(T )

f · g dμx,y = (x |Φ̂T ( f · g)y) = (x |Φ̂T ( f )Φ̂T (g)y) =
∫

σ(T )

f dμx,Φ̂T (g)y .

The aforementioned theorem of Riesz on complex measures implies that dμx,Φ̂T (g)y

coincides with g dμx,y . Hence, if f ∈ Mb(σ (T )),

∫

σ(T )

f · g dμx,y =
∫

σ(T )

f dμx,Φ̂T (g)y .

From this follows, for any x, y ∈ H, f ∈ Mb(σ (T )) and g ∈ C(σ (T )):

∫

σ(T )

f ·g dμx,y =
∫

σ(T )

f dμx,Φ̂T (g)y = (x |Φ̂T ( f )Φ̂T (g)y) = (Φ̂T ( f )∗x |Φ̂T (g)y)

=
∫

σ(T )

g dμΦ̂T ( f )∗x,y .
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Arguing as before, and by Riesz’s theorem, the equality

∫

σ(T )

f · g dμx,y =
∫

σ(T )

g dμΦ̂T ( f )∗x,y , (8.29)

valid for any g ∈ C(σ (T )), forces f dμx,y = dμΦ̂T ( f )∗x,y , so (8.29) must hold for
any x, y ∈ H, and any f, g ∈ Mb(σ (T )). Therefore

(x |Φ̂T ( f · g)y) =
∫

σ(T )

f · g dμx,y =
∫

σ(T )

g dμΦ̂T ( f )∗x,y

= (Φ̂T ( f )∗x |Φ̂T (g)y) = (x |Φ̂T ( f )Φ̂T (g)y) ,

and consequently

(
x
∣∣(Φ̂T ( f · g)− Φ̂T ( f )Φ̂T (g))y

) = 0 .

Choosing x as the second argument in the inner product gives

Φ̂T ( f · g)y = Φ̂T ( f )Φ̂T (g)y

for any y ∈ H, f, g ∈ Mb(σ (T )), whence

Φ̂T ( f · g) = Φ̂T ( f )Φ̂T (g) .

To showwehave indeed a ∗-homomorphismweneed to proveproperty (iv). Let x ∈ H
and g ∈ Mb(σ (T )). Since μx,x is real, we have (beware that complex conjugation
does not act on σ(T ), here thought of as subset in R2):

(x |Φ̂T (g)x) =
∫

σ(T )

g dμx,x =
∫

σ(T )

g dμx,x = (Φ̂T (g)x |x) = (x |Φ̂T (g)∗x) .

Hence (x |(Φ̂T (g) − Φ̂T (g)∗)x) = 0 for any x ∈ H. From Exercise3.21 we have
Φ̂T (g) = Φ̂T (g)∗.

Property (ii) of (a) follows from (v) in (b), which we will prove below indepen-
dently.

To finish (a), we show Φ̂T is unique under (a). LetΨ : Mb(σ (T ))→ B(H) satisfy
(a). It must coincide with Φ̂T on polynomials, so by continuity (it is continuous being
a ∗-homomorphism of C∗-algebras with unit, and Theorem8.22 holds) it coincides
with Φ̂T on C(σ (T )). Given x, y ∈ H, the map

νx,y : E �→ (x |Ψ (χE )y) ,

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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where E is an arbitrary Borel set in σ(T ) and χE its characteristic function, is a
complex measure on σ(T ). In fact νx,y(∅) = (x |Ψ (0)y) = 0; moreover, if {Sk}k∈N
is a family of pairwise disjoint Borel sets,

νx,y(∪k Sk) = (x |Ψ (χ∪k Sk )y) =
⎛

⎝x

∣∣∣∣∣∣
lim

n→+∞Ψ

⎛

⎝
n∑

k=0
χSk

⎞

⎠ y

⎞

⎠ = lim
n→+∞

n∑

k=0
(x |Ψ (χSk )y)

=
+∞∑

k=0
νx,y(Sk) ,

where the left-hand side is always finite, we used (ii) in (a) and also that, pointwise:

χ∪k Sk =
+∞∑

k=0
χSk . (8.30)

Observe that (8.30) does not depend on the order of the Sk , for the series has positive
terms. Consequently

νx,y(∪k Sk) =
+∞∑

k=0
νx,y(Sk)

holds irrespective of the arrangement of the terms, and the series converges absolutely
(Theorem1.83). This means νx,y is a complex measure.

Bearing in mind the linearity of both Ψ and the inner product, plus the definition
of integral of a simple map, we easily see

∫

σ(T )

s dνx,y = (x |Ψ (s)y)

for any simple map s ∈ S(σ (T )). If f ∈ Mb(σ (T )) and {sn} ⊂ S(σ (T )) converges
uniformly to f (the sequence exists by Proposition 7.49(b)), then the continuity of
Ψ in norm || ||∞ and dominated convergence relative to |νx,y S| imply

(x |Ψ ( f )y) =
∫

σ(T )

f dνx,y (8.31)

for any f ∈ Mb(σ (T )). In particular, this must hold for f ∈ C(σ (T )), on which Ψ

coincides with Φ̂T . Therefore, Riesz’s Theorem2.52 implies that νx,y coincides with
the complex measure μx,y of the beginning, using which we defined Φ̂T by

(x |Φ̂T ( f )y) =
∫

σ(T )

f dμx,y ,

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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for x, y ∈ H and f ∈ Mb(σ (T )). But then (8.31) implies Ψ ( f ) = Φ̂T ( f ) for any
f ∈ Mb(σ (T )), for νx,y = μx,y .
(b). We only need to prove (iii), (v) and (vi), because the rest were shown in part (a).
Property (iii) holds when f ∈ C(σ (T )), as we know from Proposition 8.37(b). If
AT = T A and AT ∗ = T ∗A,
∫

σ(T )
f dμx,Ay = (x |Φ̂T ( f )Ay) = (x |AΦ̂T ( f )y) = (A∗x |Φ̂T ( f )y) =

∫

σ(T )
f dμA∗x,y ,

for any vectors x, y ∈ H and any f ∈ C(σ (T )). Riesz’s Theorem2.52 on the
representation of complex measures on Borel sets ensures μA∗x,y = μx,Ay , hence

(x |Φ̂T ( f )Ay) =
∫

σ(T )
f dμx,Ay =

∫

σ(T )
f dμA∗x,y = (A∗x |Φ̂T ( f )y) = (x |AΦ̂T ( f )y)

for any x, y ∈ H, f ∈ Mb(σ (T )). As the vectors x, y are arbitrary, Φ̂T ( f )A =
AΦ̂T ( f ) if f ∈ Mb(σ (T )).

Let us prove (v). Take a sequence { fn}n∈N ⊂ Mb(σ (T )) that is bounded (in
absolute value) by K > 0 and that converges to f : σ(T )→ C. Therefore || f ||∞ ≤
K and f is measurable, forcing f ∈ Mb(σ (T )). Given x, y ∈ H and using (iv) in
(b),

||(Φ̂T ( fn)− Φ̂T ( f ))x ||2 = ((Φ̂T ( fn)− Φ̂T ( f ))x |(Φ̂T ( fn)− Φ̂T ( f ))x)

= (x |(Φ̂T ( fn − f )∗Φ̂T ( fn − f )x) = (x |Φ̂T (| f − fn|2)x) .

The last terms can be written as
∫

σ(T )

| f − fn|2 dμx,x =
∫

σ(T )

| f − fn|2 hd|μx,x | ,

where |μx,x | is the positivemeasure (the total variation of Remark1.82(2)) associated
the real (signed) measure μx,x , and h is a measurable function of constant modulus
1 (Theorem1.87). (Actually, we saw in part (a) that μx,x is a positive real measure,
so |μx,x | = μx,x and h = 1.) Because

|μx,x |(σ (T )) < +∞ ,

the dominated convergence theorem implies |h|| f − fn|2 converges to 0 in L1(σ (T ),

|μx,x |). Hence as n →+∞, ||(Φ̂T ( fn)− Φ̂T ( f ))x ||2 → 0 for any x ∈ H.
Eventually, let us prove (vi). The proof is easy and follows fromTheorem8.25(iii),

but here is an alternative argument. If Mb(σ (T )) 
 f ≥ 0, then f = g2 where
0 ≤ g ∈ Mb(σ (T )). By (a), Φ̂T ( f ) = Φ̂T (g · g) = Φ̂T (g)Φ̂T (g). Moreover,
Φ̂T (g)∗ = Φ̂T (g) = Φ̂T (g) (by (iv)), so Φ̂T (g · g) = Φ̂T (g)∗Φ̂T (g). The right-hand
side is patently positive. ��

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Remark 8.40 The spectral decomposition theorem, proved later, is in some sense
a way to interpret the operator f (T, T ∗) in terms of an integral of f with respect
to an operator-valued measure: integrating bounded measurable functions produces,
instead of numbers, operators. The version of the spectral decomposition theorem
presented in this chapter states that there is always such a measure, for any bounded
normal operator. �

8.3 Projector-Valued Measures (PVMs)

In this section we introduce projector-valued measures (PVMs), also called spec-
tral measures. They are the central tool to state spectral theorems, and represent a
generalisation of the notion of measure on a measurable space (X,Σ(X)). Now the
measure’s range is no longer contained in R. Rather, it is a subset of orthogonal
projectors L (H) in a Hilbert space H:

Σ(X) 
 E �→ P(E) ∈ L (H) ,

using which we will be able to integrate functions to obtain operators. We will see,
in particular, that the homomorphism Φ̂T associated to a bounded normal operator
T , studied in the previous section, is nothing but an integral with respect to a PVM
generated by T :

Φ̂T ( f ) =
∫

σ(T )

f (x)dP (T )(x) ,

where X := σ(T ) ⊂ C is viewed as a second-countable topological space equipped
with the topology induced from R

2, and Σ(X) is the associated Borel σ -algebra
B(σ (T )).

Projector-valued measures made their appearance already in Chap.7 (Definition
7.46), in the special situation where the σ -algebra of the PVM was the Borel σ -
algebra B(R). A quantum observable, in the sense of the previous chapter, is a
special spectral measure, by virtue of Proposition 7.44. In that case the operator to
which such a PVM is attached is not just normal, but self-adjoint as well.

8.3.1 Spectral Measures, or PVMs

We remind that for T,U ∈ B(H) on a Hilbert space H, the writing T ≥ U means
(x |T x) ≥ (x |Ux) for any x ∈ H (see Definition 3.56(f) and the ensuing comments).

Definition 8.41 (Spectral measure) Let H be a Hilbert space and (X,Σ(X)) a mea-
surable space. One calls P : Σ(X)→ B(H) a spectral measure onX, or projector-
valued measure on X (PVM), if the following requisites are satisfied.

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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(a) P(B) ≥ 0 for any B ∈ Σ(X);
(b) P(B)P(B ′) = P(B ∩ B ′) for any B, B ′ ∈ Σ(X);
(c) P(X) = I ;
(d) if {Bn}n∈N ⊂ Σ(X), with Bn ∩ Bm = ∅, n �= m:

s-
+∞∑

n=0
P(Bn) = P(∪n∈NBn) .

Remark 8.42 Notice that (c) and (d) imply P(∅) = 0. �

A relevant definition is that of support of a PVM in the special case where X is a
topological space and Σ(X) is the Borel σ -algebra B(X).

Definition 8.43 Specialising Definition 8.41 to the case of a PVM P : B(X) →
B(H) defined on the Borel σ -algebra B(X) of a topological space (X,T ), the
support of P is the closed set

supp(P) := X \
⋃

A∈T ,P(A)=0
A .

When X = R
n or Cn with the standard topology, such P is called bounded if

supp(P) is bounded.

The next proposition treats the basic properties of PVMs. In particular, as the name
PVM itself suggests, every P(E) is an orthogonal projector onto the Hilbert spaceH.

Proposition 8.44 Retaining Definition 8.41, the following facts hold.
(a) P(B) is an orthogonal projector for any B ∈ Σ(X).
Keeping (c) and (d), condition (a) and (b) in Definition 8.41 may be replaced by the
equivalent requirement that P(B) is an orthogonal projector if B ∈ Σ(X).
(b) P is monotone: C ⊂ B ⇒ P(C) ≤ P(B), for all B,C ∈ Σ(X).
(c) P is sub-additive: if Bn ∈ Σ(X), n ∈ N, then

(x |P (∪n∈NBn) x) ≤
∑

n∈N
(x |P(Bn)x) for any x ∈ H.

(d) Assume Σ(X) := B(X) for some topological space (X,T ), and that at least
one of the following conditions is true:

1. (X,T ) is second-countable;
2. (X,T ) is Hausdorff, locally compact, and the positive Borel measure B(X) 


E �→ (x |P(E)x) is inner regular for every x ∈ H;

then P is concentrated on supp(P), i.e.

P(B) = P(B ∩ supp(P)) for B ∈ B(X).

In particular P(supp(P)) = I .
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Proof (a) The operators P(B) are idempotent, P(B)P(B) = P(B ∩ B) = P(B),
by Definition 8.41(b), and self-adjoint because bounded and positive (by Definition
8.41(a)), so they are orthogonal projectors. We claim that if (c) and (d) in definition
8.41 hold, and every P(B) is an orthogonal projector, then also (a) and (b) hold in
Definition 8.41. Part (a) is trivial, for any P(E) is an orthogonal projector, hence
positive. By part (d), if E1, E2 ∈ Σ(X) and E1 ∩ E2 = ∅ then P(E1 ∪ E2) =
P(E1) + P(E2). Multiplying by P(E1 ∪ E2) = P(E1) + P(E2), and recalling
we are using (idempotent) projectors, gives P(E1)P(E2) + P(E2)P(E1) = 0
and so P(E1)P(E2) = −P(E2)P(E1). Applying now P(E1) and recalling that
P(E1)P(E2) = −P(E2)P(E1), we also find P(E1)P(E2) = P(E2)P(E1). There-
fore P(E1)P(E2) = 0 if E1∩E2 = ∅. Now setC = B∩B ′, E1 = B\C , E2 = B ′ \C
for B, B ′ ∈ Σ(X). Remember E1 ∩ E2 = E1 ∩ C = E2 ∩ C = ∅. Then

P(B)P(B′) = (P(E1)+ P(C))(P(E2)+ P(C)) = P(C)P(C) = P(C) = P(B ∩ B′)

i.e. property (b) in 8.41.
(b) B = C ∪ (B \ C) and C ∩ (B \ C) = ∅ so by Definition 8.41(d) it follows that
P(B) = P(C)+ P(B \ C). But P(B \ C) ≥ 0, so P(C) ≤ P(B).
(c) Define B := ∪n∈NBn and the sequence {Cn}n∈N, with C0 := B0, C1 := B1 \
B0, C2 := B2 \ (B0 ∪ B1) and so on. Clearly Ck ∩ Ch = ∅ if h �= k and B =
∪n∈NCn . By Definition 8.41(d), then, P(B)x =∑+∞

n=0 P(Ck)x and so (x |P(B)x) =∑+∞
n=0(x |P(Ck)x). Since Ck ⊂ Bk for any k ∈ N, by monotonicity (x |P(Ck)x) ≤

(x |P(Bk)x), i.e.

(x |P(B)x) ≤
+∞∑

n=0
(x |P(Bk)x) .

(d) P(supp(P)) = I is obviously equivalent to P(A) = 0,where A := X\supp(P).
To prove P(A) = 0 under hypothesis (1), notice that by definition A is the union of
open sets with null spectral measure. As X is second-countable, Lindelöf’s lemma
(Theorem1.8) says we can extract a countable subcovering A = ∪n∈NAn , with
P(An) = 0 for any n ∈ N. Using sub-additivity, for any x ∈ H,

0 ≤ ||P(A)x ||2 = (P(A)x |P(A)x) = (x |P(A)x) ≤
∑

n∈N
(x |P(An)x) = 0 ,

hence P(A) = 0. If, instead, hypothesis (2) holds, consider the inner-regular Borel
measure B(X) 
 E �→ μx (E) := (x |P(E)x). If O ⊂ X is open and P(O) = 0,
then (x |P(O)x) = ||P(O)x ||2 = 0 for every x ∈ H. Hence the union A :=
X\supp(P) of all such O satisfies ||P(A)x ||2 = μx (A) = 0 by Proposition 1.45(ii),
so P (X \ supp(P)) = 0 since x is arbitrary.

With A defined as above, decomposing B = (B∩supp(P))∪(B∩ A), Definition
8.41(d) in fact gives P(B) = P(B ∩ supp(P)) + P(B ∩ A), and monotonicity
0 ≤ (x |P(B ∩ A)x) ≤ (x |P(A)x) = 0. In summary, since x is arbitrary, P(B) =
P(B ∩ supp(P)), as required. ��

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Another related and useful definition is the following.

Definition 8.45 If P : Σ(X)→ B(H) is a PVM, ameasurable function f : X→ C

is called essentially bounded for P when

P({x ∈ X | | f (x)| ≥ M}) = 0 for some M < +∞. (8.32)

If f is essentially bounded, the greatest lower bound || f ||(P)∞ on the set of numbers
M ≥ 0 satisfying (8.32) is called essential (semi)norm of f in P .

Remarks 8.46 (1) Let f : X→ C be measurable. If Proposition 8.44(d) holds, then
P is concentrated on supp(P). Hence the first inequality below is easy to prove:

|| f ||(P)
∞ ≤ || f �supp(P) ||∞ ≤ || f ||∞ . (8.33)

(the second one is obvious). Equation (8.33) holds trivially when one among || f ||(P)∞ ,
|| f �supp(P) ||∞, || f ||∞ is +∞.
(2) The set of measurable functions that are essentially bounded for P is a vector
space, and || ||(P)∞ is a seminorm on it. �

8.3.2 Integrating Bounded Measurable Functions in a PVM

We pass now to define a procedure to integrate bounded measurable functions with
respect to a PVM.

Recall that given a space Xwith a σ -algebraΣ , a (complex-valued) map s : X→
C, measurable for Σ , is called simple when its range is finite.

Notation 8.47 IfX is ameasurable space, S(X) denotes the vector space of complex-
valued simple functions on X, relative to the σ -algebra Σ(X). �

Let a PVM be given on X, with values inB(H) for some Hilbert space H. Consider
a map s ∈ S(X). We can always write it, for suitable ci ∈ C and I finite, as follows:

s =
∑

i∈I
ciχEi . (8.34)

As, by definition, the range of a simple function consists of finitely many distinct
values, the expression above is uniquely determined by s once we require the mea-
surable sets Ei to be pairwise disjoint, and that the complex numbers ci are distinct.
We define the integral of s with respect to P (or in P) as the operator inB(H):

∫

X
s(x) dP(x) :=

∑

i∈I
ci P(Ei ) . (8.35)



8.3 Projector-Valued Measures (PVMs) 435

Remark 8.48 If we do not insist the above ci be distinct, there are several ways to
write s as a linear combination of characteristic functions of disjoint measurable sets.
Using the same argument as for an ordinary measure it is easy to prove, however,
that the integral of s does not depend on the particular representation of s chosen. �

The mapping

I : S(X) 
 s �→
∫

X
s(x) dP(x) ∈ B(X) , (8.36)

is linear, i.e. I ∈ L(S(X),B(H)), as the previous remark easily implies. Since
S(X) and B(H) are normed spaces, L(S(X),B(H)) is equipped with the operator
norm. Then I turns out to be a bounded operator for this norm. Let us prove this
fact, and consider s ∈ S(X) of the form (8.34). As the Ek are pairwise disjoint,
P(E j )P(Ei ) = P(E j ∩ Ei ) = 0 if i �= j or P(E j )P(Ei ) = P(Ei ) if i = j . If
x ∈ H

||I(s)x ||2 = (I(s)x |I(s)x) =
⎛

⎝
∑

i∈I
ci P(Ei )x

∣∣∣∣∣∣

∑

j∈I
c j P(E j )x

⎞

⎠ =
∑

i, j∈I

(
ci P(E j )

∗P(Ei )x
∣∣ c j x

)

=
∑

i, j∈I

(
ci P(E j )P(Ei )x

∣∣ c j x
) =

∑

i∈I
|ci |2(x |P(Ei )x) ≤ sup

i∈I ′
|ci |2

∑

i∈I ′
(x |P(Ei )x) ,

where I ′ ⊂ I is made by indices for which P(Ei ) �= 0. By additivity andmonotonic-
ity ∑

i∈I ′
(x |P(Ei )x) ≤ (x |P(∪i∈I ′Ei )x) ≤ (x |P(X)x) = (x |x) = ||x ||2 .

But I ′ is finite, so trivially ||s||P∞ = supi∈I ′ |ci |, andhence ||I(s)x ||2 ≤ ||x ||2(||s||P∞)2.
Taking the least upper bound over unit vectors x ∈ H:

||I(s)|| ≤ ||s||(P)
∞ .

But ||s||(P)∞ coincideswith one of the values of |s|, say |ck | ifwe choose x ∈ P(Ek)(H)

(�= {0} by construction). Hence x = P(Ek)x implies

I(s)x =
∑

i∈I ′
ci P(Ei )x =

∑

i∈I ′
ci P(Ei )P(Ek)x = ck P(Ek)x = ckx .

So choosing x with ||x || = 1 we obtain ||I(s)x || = ||s||(P)∞ . Therefore I is certainly
continuous on S(X) ⊂ Mb(X) in norm || ||∞, by what we have just proved and by
(8.33):

||I(s)|| = ||s||(P)
∞ ≤ ||s||∞ (8.37)

This settled, we can define integrals of bounded measurable functions, by prolong-
ing I by linearity and continuity to the whole Banach space Mb(X) of bounded
measurable maps f : X → C. The space Mb(X) contains S(X) as dense subspace
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for the norm || ||∞, by Proposition 7.49(b). The operator I : S(X) → B(H) is
continuous. By Proposition 2.47 there exists one, and only one, bounded operator
Mb(X)→ B(H) extending I.

Definition 8.49 Let (X,Σ(X)) a measurable space, H a Hilbert space and P :
Σ(X)→ B(H) a PVM.
(a) The unique bounded extension Î : Mb(X) → B(H) of the operator I : S(X) →
B(H) (cf. (8.35)–(8.36)) is called integral operator in P .
(b) For any f ∈ Mb(X): ∫

X
f (x) dP(x) := Î( f )

is the integral of f with respect to the projector-valued measure P .
(c) Let f : X → C be measurable, not necessarily bounded. If f �E∈ Mb(E) with
E ⊂ Σ(X), we define:

∫

E
f (x) dP(x) :=

∫

X
χE (x) f (x) dP(x) .

If g ∈ Mb(E), with E ⊂ Σ(X), we set:

∫

E
g(x) dP(x) :=

∫

X
g0(x) dP(x) ,

where g0(x) := g(x) if x ∈ E , or g0(x) := 0 if x /∈ E .

Remark 8.50 Let us concentrate on the topological case: take X a topological space,
Σ(X) = B(X) and suppose hypotheses (1) or (2) in Proposition 8.44(d) are valid.
If P is a spectral measure on X and supp(P) �= X, we can restrict P to a spectral
measure P �supp(P) on supp(P) (with induced topology), by defining P �supp(P)

(E) := P(E) for any measurable set E ⊂ B(supp(P)). The fact that P�supp(P) is
a PVM is immediate using Proposition 8.44, especially part (d). From (d) we have,
for any s ∈ S(X),

∫

X
sd P =

∫

supp(P)

sd P =
∫

supp(P)

s�supp(P) dP�supp(P) ,

where the second integral is understood in the sense of Definition 8.49(c). If S(X) 

sn → f in norm || ||∞, then S(X) 
 sn �supp(P)→ f �supp(P) in the same norm.
Therefore the definition of integral of f ∈ Mb(X) with respect to P tells that

∫

X
f d P =

∫

supp(P)

f d P =
∫

supp(P)

f �supp(P) dP�supp(P) for any f ∈ Mb(X). (8.38)

�

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Examples 8.51
(1) Let us see a concrete example lest the procedure seem too abstract. The (gener-
alisation of this) example actually covers all possibilities, as we shall explain.

Consider the Hilbert space H = L2(X, μ), where X is a topological space and μ

a positive σ -additive measure on the Borel σ -algebra of X. For any ψ ∈ L2(X, μ)

and E ∈ B(X), set

(P(E)ψ)(x) := χE (x)ψ(x) , for almost every x ∈ X . (8.39)

The map B(X) 
 E �→ P(E) easily defines a spectral measure on L2(X, μ). We
want to understand what the operators

∫
X f (x) dP(x) look like, for any map of

Mb(X).
Ifψ ∈ L2(X, μ) and f ∈ Mb(X), then f ·ψ ∈ L2(X, μ), where · is the pointwise

product of maps, for:

∫

X
| f (x)ψ(x)|2 dμ(x) ≤ || f ||2∞

∫

X
|ψ(x)|2 dμ(x) < +∞ .

In particular, we proved
|| f · ψ || ≤ || f ||∞||ψ ||

if f ∈ Mb(X) and ψ ∈ L2(X, μ). Consequently:
if { fn}n∈N ⊂ Mb(X) and fn → f ∈ Mb(X) in norm || ||∞, as n → +∞, then
also fn · ψ → f · ψ in L2(X, μ).

Moreover, if s ∈ S(X), the operator
∫
X s(x) dP(x) can be made explicit using

(8.39) and (8.35): for any ψ ∈ L2(X), in fact,

(∫

X
s(y) dP(y)ψ

)
(x) = s(x)ψ(x) .

Hence if {sn} ⊂ S(X) converges uniformly to f ∈ Mb(X) (by Proposition 7.49(b)
such a sequence exists for any f ∈ Mb(X)), we have

sn · ψ =
∫

X
sn(x) dP(x)ψ →

∫

X
f (x) dP(x)ψ

as n →+∞, by the definition of integral via the continuous prolongation Î of I. On
the other hand we saw at the beginning that under our assumptions (with fn := sn)
we have sn · ψ → f · ψ in L2(X), as n →+∞, so

(∫

X
f (y) dP(y)ψ

)
(x) = f (x)ψ(x) for almost every x ∈ X, (8.40)

for any f ∈ Mb(X), ψ ∈ L2(X, μ). Equation (8.40) gives the explicit form of the
integral operator of f with respect to the PVM of (8.39).

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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Regarding the supports, we have supp(P) = supp(μ) (P(E) = 0 is equivalent
to

∫
E |ψ |2dμ = 0 for every ψ ∈ L2(X, μ) so that, taking ψ = χE , P(E) = 0 iff

μ(E) = 0). If X is second countable then P is concentrated on supp(P), because
hypothesis (1) in Proposition 8.44(d) holds. Even if X is not second countable, but
Hausdorff and locally compact, and μ is inner continuous, then both P and μ are
concentrated on their respective supports, as follows from Proposition 1.45(ii).

(2) In the secondexampleweconsider aHilbert basis N of a (generally non-separable)
Hilbert space H, and define Σ(N ) to be the power set of N . Actually this σ -algebra
can be viewed as a Borel σ -algebra if we endow N with the discrete topology
of the power set of N , for which singlets are open and the associated Borel σ -
algebra is the topology itself. This topology is Hausdorff and locally compact, and
furthermore second countable if H is separable. If E ⊂ N , consider the closed
subspace HE := < {z}z∈E >. The orthogonal projector onto it is (cf. Proposition
3.64(d))

P(E)x :=
∑

z∈E
(z|x)z , x ∈ H

E being a basis of HE . It is easy to check P : B(N ) 
 E �→ P(E) is a PVM. One
can also prove, for any f : N → C bounded and x ∈ H

∫

N
f (z) dP(z)x =

∑

z∈N
f (z) (z|x) z . (8.41)

The proof can be obtained using example (1), because (Theorem3.28) H and
L2(N , μ) are isomorphic Hilbert spaces under the surjective isometry U : H →
L2(N , μ) sending x ∈ H to the map z �→ ψx (z) := (z|x), where μ is the count-
ing measure of N . Indeed, Q(E) := U P(E)U−1 is the operator in L2(N , μ) that
multiplies by the characteristic function of E : we obtain thus a spectral measure
Q : B(N ) 
 E �→ Q(E) of the kind of example (1). Using the integral of a map
f ∈ Mb(X) defined by simple integrals, for which

∫

N
s(z) dQ(z) =

∑

i

ci Q(Ei ) = U
∑

i

ci P(Ei )U
−1 = U

∫

N
s(z) dP(z)U−1 ,

we obtain ∫

N
f (z) dQ(z) = U

∫

N
f (z) dP(z)U−1 , (8.42)

by continuity of the composite inB(H). Equation (8.40) implies

∫

N
f (z) dQ(z)ψ = f · ψ . (8.43)

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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From (8.42) and (8.43), then

∫

N
f (z) dP(z)φ = U−1 f ·Uφ =

∑

z∈N
f (z) (z|φ) z ,

where we used the definition of U (cf. Theorem3.28):

U : H 
 φ �→ {(z|φ)}z∈N ∈ L2(N , μ)

and the inverse:

U−1 : L2(N , μ) 
 {αz}z∈N �→
∑

z∈N
αz z ∈ H .

Altogether, we proved that

∫

N
f (z) dP(z)x =

∑

z∈N
f (z) (z|x) z

for x ∈ H as required.
Concerning supp(P), it is clear that it coincides with N itself, since every subset

E ⊂ N satisfies P(E) �= 0, unless E = ∅.

(3) The third example generalises the previous one. Consider a set X equipped with
a σ -algebra Σ in which every singlet {x}, x ∈ X, belongs to Σ(X). Let us define a
family of orthogonal projectors 0 �= Pλ : H → H on the Hilbert space H, for any
λ ∈ X. In order to have a PVM onB(X) we impose three conditions:

(a) PλPμ = 0, for λ,μ ∈ X, λ �= μ;
(b)

∑
λ∈X ||Pλψ ||2 < +∞ , for any ψ ∈ H;

(c)
∑

λ∈X Pλψ = ψ , for any ψ ∈ H.
Condition (b) implies that only countably many (at most, see Proposition 3.21) ele-
ments Pλψ are non-zero, even if X is not countable; by (a), the vectors Pλψ and
Pμψ are orthogonal if λ �= μ, so Lemma 3.25 guarantees that the sum of (c) is well
defined and may be rearranged at will.

That (a), (b), (c) hold is proved by exhibiting a family that satisfies them. The
simplest case is given by the projectors P({z}), z ∈ N , of example (2) when X = N
is a Hilbert basis. An instance where X is not a basis is the following. Take a self-
adjoint compact operator T , set X = σp(T ) ⊂ R (with induced topology and the
associated Borel σ -algebra) and define Pλ, λ ∈ σp(T ), to be the orthogonal projector
onto the λ-eigenspace. By Theorems 4.19 and 4.20 conditions (a), (b) and (c) follow.
With these assumptions, P : Σ(X)→ B(H), where

P(E)ψ =
∑

λ∈E
Pλψ , (8.44)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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for any E ⊂ Σ(X) and any ψ ∈ H, is a PVM on H. The sum
∑

λ∈E Pλψ always
exists in H, for any ψ ∈ H, and does not depend on the ordering: this fact is a
consequence of condition (b), because of lemma 3.25. Now we wish to prove

∫

X
f (x) dP(x)ψ =

∑

x∈X
f (x)Pxψ (8.45)

for any f ∈ Mb(X) and ψ ∈ H. The right-hand side is well defined and can be
rearranged by Lemma 3.25, because for any ψ ∈ H:

∑

x∈X
|| f (x)Pxψ ||2 ≤ || f ||2∞

∑

x∈X
||Pxψ ||2 = || f ||2∞

∑

x∈X
(Pxψ |Pxψ) = || f ||2∞

∑

x∈X
(ψ |P2

x ψ)

= || f ||2∞
∑

x∈X
(ψ |Pxψ) = || f ||2∞

(
ψ

∣∣∣∣∣
∑

x∈X
Pxψ

)
= || f ||2∞(ψ |ψ) = || f ||2∞||ψ ||2 ,

the last equality coming from (c). If s ∈ S(X) is simple, using (8.44) and the definition
of integral, we have

∫

X
s(x) dP(x)ψ =

∑

i

ci P(Ei )ψ =
∑

i

∑

x∈Ei

s(x)Pxψ =
∑

x∈X
s(x)Pxψ , (8.46)

for any ψ ∈ H. Note that in the second equality we used that s(x) = ∑
i ciχEi

implies ci = s(x) for all x ∈ Ei .
If {sn} ⊂ S(X) and sn → f ∈ Mb(X) uniformly, then for any ψ ∈ H:

∫

X
f (x) dP(x)ψ −

∫

X
sn(x) dP(x)ψ → 0 , (8.47)

as n → +∞, by definition of integral of bounded measurable maps. At the same
time, (8.46) and condition (a) give

∣∣∣∣∣

∣∣∣∣∣
∑

x∈X
f (x) Pxψ −

∫

X
sn(x) dP(x)ψ

∣∣∣∣∣

∣∣∣∣∣

2

=
∑

x∈X
| f (x)− sn(x)|2||Pxψ ||2 ≤ || f − sn ||2∞||ψ ||2 .

The last term goes to zero as n →+∞. By (8.47) and uniqueness of limits in H,

∑

x∈X
f (x) Pxψ =

∫

X
f (x) dP(x)ψ ,

for any ψ ∈ H, so (8.45) holds. �

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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8.3.3 Properties of Operators Obtained Integrating Bounded
Maps with Respect to PVMs

In this section we examine the properties of the integral operator, separating them in
two groups. The first theorem establishes basic features.

Theorem 8.52 Let (X,Σ(X)) a measurable space, (H, ( | )) a Hilbert space and
P : Σ(X)→ B(H) a PVM.
(a) For any f ∈ Mb(X),

∣∣∣∣

∣∣∣∣
∫

X
f (x) dP(x)

∣∣∣∣

∣∣∣∣ = || f ||(P)
∞ . (8.48)

(b) The integral operator with respect to P is positive:

∫

X
f (x) dP(x) ≥ 0 if 0 ≤ f ∈ Mb(X) .

(c) For any ψ, φ ∈ H, the map

μψ,φ : B(X) 
 E �→
(

ψ

∣∣∣∣
∫

X
χE d P(x)φ

)

satisfies the following properties:
(i)μψ,φ is a complex measure onX, called complex spectral measure associated

to ψ and φ,
(ii) if ψ = φ, then μψ := μψ,ψ is a finite positive measure on X, called (positive)

spectral measure associated to ψ ,
(iii) μψ,φ(X) = (ψ |φ), and in particular μψ(X) = ||ψ ||2,
(iv) for any f ∈ Mb(X):

(
ψ

∣∣∣∣
∫

X
f (x) dP(x)φ

)
=

∫

X
f (x) dμψ,φ(x) , (8.49)

(v) if X is a topological space, Σ(X) = B(X) and condition (1) or (2) of Propo-
sition 8.44(d) is valid, then

supp(μψ,φ) ⊂ supp(P) and supp(μψ) ⊂ supp(P) ,

and furthermore

supp(P) =
⋃

ψ∈H
supp(μψ) . (8.50)

(d) If f ∈ Mb(X),
∫
X f (x)dP(x) commutes with every operator B ∈ B(H) such

that P(E)B = BP(E) for any E ∈ Σ(X).
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Proof (a) Consider a sequence of simple functions sn converging to f in norm || ||∞.
Then ||sn− f ||(P)∞ ≤ ||sn− f ||∞ → 0, so | ||sn||(P)∞ −|| f ||(P)∞ | ≤ ||sn− f ||(P)∞ implies
||sn||(P)∞ → || f ||(P)∞ . We also know || ∫X snd P|| = ||sn||(P)∞ by (8.37). From the

definition of integral of boundedmaps || ∫X snd P|| → || ∫X f d P||, hence ||sn||(P)∞ →
|| f ||(P)∞ = || ∫X f d P||, proving (8.48).
(b) Using Proposition 7.49(c) if 0 ≤ f ∈ Mb(X) there is a sequence of simple
functions {sn}n∈N, 0 ≤ sn ≤ sn+1 ≤ f for any n, that converges uniformly to f .
Keeping inmind the definition of integral in P , and that uniform convergence implies
weak convergence, we have (ψ | ∫X snd Pψ) → (ψ | ∫X f d Pψ), as n → +∞, for
any ψ ∈ H. For the positivity of

∫
X f d P it suffices to show (ψ | ∫X snd Pψ) ≥ 0 for

any n. Directly from (8.35) we find

(
ψ

∣∣∣∣
∫

X
snd P ψ

)
=

∑

i∈In
c(n)
i

(
ψ

∣∣∣P(E (n)
i ) ψ

)
≥ 0 ,

because every orthogonal projector is positive and the numbers c(n)
i are non-negative

for sn ≥ 0.
(c) By (8.35),

μψ,φ(E) =
(

ψ

∣∣∣∣
∫

X
χE (x) dP(x)φ

)
= (ψ |1 · P(E)φ) = (ψ |P(E)φ) , (8.51)

and (ψ |P(E)ψ) ≥ 0. Then Definition 8.41(d) and the inner product’s continuity
imply μψ,φ is a complex measure on Σ(X). Moreover, parts (d) and (a) in Definition
8.41 say that if ψ = φ, μψ is a positive, σ -additive, finite measure on Σ(X). At last
Definition 8.41(c) forces μψ,φ(X) = (ψ |φ), in particular μψ(X) = (ψ |ψ) = ||ψ ||2.
As μψ and |μψ,φ| are finite measures, their integral is continuous in norm || ||∞ on
Mb(X). (In fact, for any f ∈ Mb(X),

∣∣∣∣
∫

X
f (x) dμψ,φ(x)

∣∣∣∣ ≤
∫

X
| f (x)| d|μψ,φ(x)| ≤ || f ||∞|μψ,φ|(X) ,

whence the integral’s continuity in sup norm.)
If sn ∈ S(X), using (8.51) and (8.35) we immediately see

(
ψ

∣∣∣∣
∫

X
sn(x) dP(x)φ

)
=

∫

X
sn(x) dμψ,φ(x) .

If now f ∈ Mb(X) and {sn}n∈N ⊂ S(X) converges to f uniformly, as n → +∞
(cf. Proposition 7.49(b)), we can use the continuity of the inner product and of the
integral associated to μψ,φ (uniform convergence) to obtain

(
ψ

∣∣∣∣
∫

X
f (x) dP(x)φ

)
=

(
ψ

∣∣∣∣ lim
n→+∞

∫

X
sn(x) dP(x)φ

)

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
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= lim
n→+∞

(
ψ

∣∣∣∣
∫

X
sn(x) dP(x)φ

)
= lim

n→+∞

∫

X
sn(x)dμψ,φ(x) =

∫

X
f (x)dμψ,φ(x) .

Let us prove (v), or equivalently, X \ supp(μψ,φ) ⊃ X \ supp(P). Take x ∈ X \
supp(P), so that there is an open set A ⊂ X with x ∈ A and P(A) = 0. By
monotonicity P(B) = 0 ifB(X) 
 B ⊂ A, and therefore

μψ,φ(B) =
∫

X
χB(x) dμψ,φ(x) =

(
ψ

∣∣∣∣
∫

X
χB(x) dP(x)φ

)
= (ψ |P(B)φ) = 0 .

By the definition of total variation (Remark 1.82(2)) |μψ,φ|(A) = 0, so x ∈ X \
supp(μψ,φ). The case μψ is analogous.

Let us prove (8.50). If x ∈ X \ supp(P), there exists an open set O 
 x with
P(O) = 0 and therefore μψ(O) = ||P(O)ψ ||2 = 0 for every ψ ∈ H. As a conse-
quence X \ supp(P) ⊂ ∩ψ∈HX \ supp(μψ), namely supp(P) ⊃ ∪ψ∈Hsupp(μψ)

and also, since supp(P) is closed, supp(P) ⊃ ∪ψ∈Hsupp(μψ). Let us prove
the converse inclusion. If x ∈ supp(P) and O 
 x is open, then P(O) �= 0
(otherwise x ∈ X \ supp(P)). Therefore, there must exist ψO ∈ H such that
μψO (O) = ||P(O)ψO ||2 �= 0. Consequently O ∩ supp(μψO ) �= ∅ due to Proposi-
tion 1.45. Taking xO ∈ O ∩ supp(μψO ) we also have xO ∈ O ∩ ∪ψ∈Hsupp(μψ).
In summary, if x ∈ supp(P), for every open set O 
 x there is xO ∈ O such that
xO ∈ ∪ψ∈Hsupp(μψ). This is equivalent to saying x ∈ ∪ψ∈Hsupp(μψ), proving
supp(P) ⊂ ∪ψ∈Hsupp(μψ), as we wanted.
(d) The claim is obvious when f is simple, and extends by continuity to any f . ��
Remarks 8.53 (1) It must be said that if we want the positive measures μψ , defined
on Σ(X) := B(X) when X is a topological space, to be proper Borel measures, then
we should also demand X be Hausdorff and locally compact (Definition 1.42(iv)).
In concrete situations, like when we use PVMs for the spectral expansion of an
operator, X is always (a subset of) R or R2, so the extra assumptions hold. In such
case the measures μψ are also regular, see Remark8.46(3), so that P is concentrated
on supp(P) by Proposition 8.44(d)(2). The same result follows from Proposition
8.44(d)(1), since the standard topology of Rn is second countable.
(2)A useful remark is that the complex measureμψ,φ decomposes as complex linear
combination of 4 positive finite measures μχ . Since μψ,φ(E) = (ψ |P(E)φ) =
(P(E)ψ |P(E)φ), by the polarisation formula (3.4) we obtain:

μψ,φ(E) = μψ+φ(E)− μψ−φ(E)− iμψ+iφ(E)+ iμψ−iφ(E) for any E ∈ Σ(X).

�

The next theorem establishes the primary feature of a PVM: it gives rise to an
isometric ∗-homomorphismofC∗-algebrasMb(X)→ B(H). In the topological case,
whenX = R

2 andΣ(X) = B(R2), this ∗-homomorphism extends the representation
Φ̂T of Theorem8.39, provided we define the normal operator T suitably.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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This will be a crucial point in the spectral theorem, proved immediately after.

Theorem 8.54 Let H be a Hilbert space, (X,Σ(X)) a measurable space and P :
Σ(X)→ B(H) a projector-valued measure.
(a) The integral operator:

Î : Mb(X) 
 f �→
∫

X
f (x)dP(x) ∈ B(H)

is a (continuous) representation onH of the unital C∗-algebra Mb(X). Equivalently:
beside (8.48) the following hold:

(i) if 1 is the constant map on X,

∫

X
1 dP(x) = I ,

(ii) for any f, g ∈ Mb(X), α, β ∈ C,

∫

X
(α f (x)+ βg(x)) dP(x) = α

∫

X
f (x)dP(x)+ β

∫

X
g(x)dP(x) ,

(iii) for any f, g ∈ Mb(X),

∫

X
f (x) dP(x)

∫

X
g(x) dP(x) =

∫

X
f (x)g(x) dP(x) ,

(iv) for any f ∈ Mb(X),

∫

X
f (x) dP(x) =

(∫

X
f (x)dP(x)

)∗
.

(b) If ψ ∈ H and f ∈ Mb(X) then

∣∣∣∣

∣∣∣∣
∫

X
f (x) dP(x)ψ

∣∣∣∣

∣∣∣∣
2

=
∫

X
| f (x)|2 dμψ(x) .

(c) If { fn}n∈N ⊂ Mb(X) is bounded and converges to f : X → C pointwise, the
integral of f in the spectral measure P exists and equals:

∫

X
f (x) dP(x) = s- lim

n→+∞

∫

X
fn(x) dP(x) .

(d) If X = R
2 with the Euclidean topology, Σ(X) := B(R2), and supp(P) is

bounded, then
supp(P) = σ(T ) ,
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where σ(T ) is viewed as subset in R2, and we defined the normal operator:

T :=
∫

supp(P)

z d P(x, y) ,

with z denoting the map R
2 
 (x, y) �→ z := x + iy.

In this case let us identify Mb(σ (T )) with the closed subspace of Mb(R
2) of maps

vanishing outside the compact set σ(T ). Then the restriction

Î�Mb(σ (T )): Mb(σ (T ))→ B(H)

coincides with the representation Φ̂T of the normal operator T of Theorem8.39, and
we may write

f (T, T ∗) =
∫

σ(T )

f (x, y)dP(x, y) , f ∈ Mb(σ (T )),

where f (T, T ∗) := Φ̂T ( f ).

Proof of Theorem 8.54. (a) The only facts that are not entirely trivial are (iii) and (iv),
so let us begin with the former. Choose two sequences of simple functions {sn} and
{tm} that converge uniformly to f and g respectively. A direct computations shows

∫

X
sn(x) dP(x)

∫

X
tm(x) dP(x) =

∫

X
sn(x)tm(x) dP(x) .

Given m, sn · tm tends to f · tm uniformly, as n → +∞, because tm is bounded. By
continuity (in the sense of Theorem8.52(a)) and linearity of the integral, the limit as
n →+∞ gives

∫

X
f (x) dP(x)

∫

X
tm(x) dP(x) =

∫

X
f (x)tm(x) dP(x) ,

where we used the fact that the composite of bounded operators is continuous in
its arguments. Similarly, since f · tm tends to f · g uniformly as m → +∞, we
obtain (iii). Property (iv) is proven by choosing a sequence of simple functions {sn}
converging to f uniformly. Take ψ, φ ∈ H. Directly by definition of integral of a
simple function (orthogonal projectors are self-adjoint), we have

(∫

X
sn(x) dP(x)ψ

∣∣∣∣φ
)
=

(
ψ

∣∣∣∣
∫

X
sn(x) dP(x)φ

)
.

Notice sn → f uniformly, as n → +∞. Hence by continuity and linearity of the
integral (in the sense of Theorem8.52(a)), plus the continuity of the inner product,
when we take the limit as n →+∞, the above identity gives
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(∫

X
f (x) dP(x)ψ

∣∣∣∣φ
)
=

(
ψ

∣∣∣∣
∫

X
f (x) dP(x)φ

)
,

so: ([∫

X
f (x) dP(x)−

(∫

X
f (x) dP(x)

)∗]
ψ

∣∣∣∣φ
)
= 0 .

As ψ, φ ∈ H are arbitrary, (iv) holds.
(b) If ψ ∈ H, using (iii) and (iv) of (a), we find

∣∣∣∣

∣∣∣∣
∫

X
f (x) dP(x)ψ

∣∣∣∣

∣∣∣∣
2

=
(

ψ

∣∣∣∣
∫

X
| f (x)|2 dP(x)ψ

)
=

∫

X
| f (x)|2dμψ(x) ,

where the last equality uses Theorem8.52(c).
(c) As first thing let us observe f ∈ Mb(X), because f is measurable, as limit of
measurable functions, and bounded by the constant that bounds the sequence fn . If
ψ ∈ H the integral’s linearity and (b) imply

∣∣∣∣

∣∣∣∣

(∫

X
f (x) dP(x)−

∫

X
fn(x) dP(x)

)
ψ

∣∣∣∣

∣∣∣∣
2

=
∫

X
| f (x)− fn(x)|2 dμψ(x) .

The measure μψ is finite, so constant maps are integrable. By assumption | fn| <

K < +∞ for any n ∈ N, so | f | ≤ K and then | fn − f |2 ≤ (| fn| + | f |)2 < 4K 2.
Since | fn − f |2 → 0 pointwise, we can invoke the dominated convergence theorem
to obtain, as n →+∞,

∣∣∣∣

∣∣∣∣
∫

X
f (x) dP(x)ψ −

∫

X
fn(x) dP(x)ψ

∣∣∣∣

∣∣∣∣ =
√∫

X
| f (x)− fn(x)|2 dμψ(x)→ 0 .

Given the freedom in choosing ψ ∈ H, (c) is proved.
(d) If supp(P) is bounded, it is compact (as closed by definition) and every con-
tinuous map on it is bounded. The mapping R

2 
 (x, y) �→ zχsupp(P)(x, y) ∈ C is
thus bounded, so T := ∫

supp(P)
z d P(x, y) := ∫

R2 zχsupp(P)(x, y) dP(x, y) is well
defined and a normal operator ((ii) and (iv) in (a)) inB(H). Its residual spectrum is
in particular empty, by Proposition 8.7(c).

By definition of resolvent set, the claim is the same as asking:
C 
 λ /∈ supp(P)⇔ λ ∈ ρ(T ).

Let us prove λ /∈ supp(P) ⇒ λ ∈ ρ(T ). Since R2 
 (x, y) �→ z = x + iy is
bounded on supp(P), suppose λ /∈ supp(P). If so, there is an open subset in R

2,
A 
 (x0, y0) with x0 + iy0 = λ, such that P(A) = 0. It follows that (x, y) �→
(z − λ)−1 is bounded on the closed set supp(P). Then we have the operator

∫

supp(P)

1

z − λ
dP(x, y)
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of B(H). By virtue of (iii) and (i) in (a),

∫

supp(P)

1

z − λ
dP(x, y)

∫

supp(P)

(z − λ) dP(x, y)

=
∫

supp(P)

(z − λ) dP(x, y)
∫

supp(P)

1

z − λ
dP(x, y)

=
∫

supp(P)

1 dP(x, y) =
∫

R2
1 dP(x, y) = I ,

which we may write, by (i) and (ii) of (a),

∫

supp(P)

1

z − λ
dP(x, y)(T − λI ) = (T − λI )

∫

supp(P)

1

z − λ
dP(x, y) = I .

Put differently, T − λI is a bijection of H so that λ ∈ ρ(T ). By Theorem8.4(a)
λ ∈ ρ(T ).

Now we show λ ∈ ρ(T ) ⇒ λ /∈ supp(P), and actually we shall prove the
equivalent statement: λ ∈ supp(P)⇒ λ ∈ σ(T ) = σp(T ) ∪ σc(T ).
If λ ∈ supp(P), is may happen that T − λI : H → H is not one-to-one, in which
case λ ∈ σp(T ) and the proof ends. If, on the contrary, T − λI : H→ H is injective
we can prove the inverse (T − λI )−1 : Ran(T − λI ) → H cannot be bounded, so
λ ∈ σc(T ). For that it is enough to show, for λ ∈ supp(P), n = 1, 2, . . ., that there
exists ψn ∈ H, ψn �= 0, such that

||(T − λI )ψn||/||ψn|| ≤ 1/n .

(under our assumptions ψn = (T − λI )−1φn , for any n = 1, 2, . . ., with φn �= 0 so
that ψn �= 0. Then

1/n ≥ ||(T − λI )ψn||/||ψn|| = ||(T − λI )(T − λI )−1φn||/||(T − λI )−1φn|| .

In other terms, for n = 1, 2, . . ., there is φn ∈ H, φn �= 0, such that

||(T − λI )−1φn||
||φn|| ≥ n .

Then (T − λI )−1 cannot be bounded, and hence λ ∈ σc(T ).)
If λ ∈ supp(P), any open set A 
 λ must satisfy P(A) �= 0. Set x0 + iy0 := λ

and consider the family of open discs Dn ⊂ R
2, centred at (x0, y0) and of radii

1/n, n = 1, 2, . . .. As P(Dn) �= 0, there exists ψn �= 0 with ψn ∈ P(Dn)(H). In
such a case
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(T − λI )ψn =
∫

supp(P)

(z − λ) dP(x, y)ψn

=
∫

supp(P)

(z − λ) dP(x, y)
∫

supp(P)

χDn (z) dP(x, y)ψn ,

where we used P(Dn) =
∫
R2 χDn (z) dP(x, y) and P(Dn)ψn = ψn . By part (iii) in

(a) we find

(T − λI )ψn =
∫

R2
χDn (z)(z − λ)dP(x, y) .

Hence property (b) yields

||(T − λI )ψn||2 =
∫

R2
|χDn (z)|2|z − λ|2dμψn (x, y) ≤

∫

R2
1 · n−2 dμψn (x, y)

= n−2
∫

R2
1 dμψn (x, y) = n−2||ψn||2 ,

where the last equality made use of μψn (R
2) = ||ψn||2, by (iii) in Theorem8.52(c).

Taking the square root of both sides produces

||(T − λI )ψn||
||ψn|| ≤ 1/n ,

and concludes the proof.
The final statement is an easy consequence of the uniqueness of Φ̂T , because Î

restricted to Mb(σ (T )) = Mb(supp(P)) trivially satisfies all the conditions (see
Theorem8.39). �

It is worth to state explicitly an important elementary consequence of the theorem (a
consequence that was actually used in the proof already).

Corollary 8.55 With reference to Theorem8.54(a), the commutation relationship

∫

X
f (x) dP(x)

∫

X
g(x) dP(x) =

∫

X
g(x) dP(x)

∫

X
f (x) dP(x)

holds for f, g ∈ Mb(X). In particular, the operator
∫
X f (x) dP(x) is normal, for

any f ∈ Mb(X).

Proof Commutativity comes from (a)(iii), since f · g = g · f , and (iv) implies
normality. ��
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8.4 Spectral Theorem for Normal Operators inB(H)

At this juncture enoughmaterial has been gathered to allow to state the first important
spectral decomposition theorem for normal operators inB(H). Later in this section
we will prove another version of the theorem that concerns a useful spectral repre-
sentation for bounded normal operators T , in terms of multiplicative operators on
certain L2 spaces built on the spectrum of T .

8.4.1 Spectral Decomposition of Normal Operators inB(H)

The spectral decomposition theorem, reversing (d) in Theorem8.54, explains how
any normal operator in B(H) can be constructed by integrating a certain PVM,
whose support is the operator’s spectrum and which is completely determined by
the operator. In view of the applications it is important to point out that the theorem
holds in particular for self-adjoint operators in B(H) and unitary operators, since
both are subclasses of normal operators.

Theorem 8.56 (Spectral decomposition of normal operators in B(H)) Let H be a
Hilbert space and T ∈ B(H) a normal operator.
(a) There exists a unique bounded projector-valued measure P (T ) : B(R2)→ B(H)

(R2 has the standard topology) such that:

T =
∫

supp(P (T ))

z d P (T )(x, y) , (8.52)

where z is the map R
2 
 (x, y) �→ z := x + iy ∈ C.

(a)’ If T is self-adjoint, or unitary, statement (a) can be refined by replacingR2 with:

R or S
1 := {(x, y) ∈ R

2 | x2 + y2 = 1}, respectively.

(b) P (T ) is concentrated on its support and

supp(P (T )) = σ(T ) .

In particular, for λ = x + iy ∈ C (λ = x ∈ R, or λ = x + iy ∈ S
1 respectively):

(i) λ ∈ σp(T ) ⇔ P (T )({λ}) �= 0. In this case P (T )({λ}) is the orthogonal
projector onto the λ-eigenspace of T ;

(ii) λ ∈ σc(T ) ⇔ P (T )({λ}) = 0, and P (T )(Aλ) �= 0 for any open set Aλ ⊂ R
2

(R or S1 respectively), Aλ 
 λ;
(iii) if λ ∈ σ(T ) is isolated, then λ ∈ σp(T );
(iv) if λ ∈ σc(T ), then for any ε > 0 there exists φε ∈ H with ||φε|| = 1 and

0 < ||Tφε − λφε|| ≤ ε .
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(c) If f ∈ Mb(σ (T )), the operator
∫
σ(T )

f (x, y) dP (T )(x, y) commutes with every
operator inB(H) that commutes with T and T ∗.

Remarks 8.57 (1) In practice, property (iv) of (b) says that when λ ∈ σc(T ), despite
T has no λ-eigenvectors (the continuous and discrete spectra are disjoint), we can
still construct non-zero vectors of constant norm that solve the characteristic equation
with arbitrary approximation.
(2) We may rephrase part (c) as follows: the ∗-subalgebra of B(H) of operators
f (T, T ∗), for f ∈ Mb(σ (T )), is contained in the von Neumann algebra generated
by T , T ∗ in B(H). In Theorem9.11 we will prove that this inclusion is actually an
equality, provided H is separable. �

Proof of Theorem 8.56
(a)–(a)’–(c). Uniqueness. We begin with the spectral measure’s uniqueness. First,
observe that if P (T ) exists it must be concentrated on its support, since the standard
topology of R2 is second countable and hence (1) in Proposition 8.44(d) applies.
Next, note that if a spectral measure P satisfies (8.52) it must have bounded support,
since the map z is not bounded on unbounded sets and the right-hand side in (8.52) is
understood as in Definition 8.49(c). So let P , P ′ be PVMs overB(R2)with bounded
support (so compact, for supp(P) is closed in R2 by definition) and such that:

T =
∫

supp(P)

z d P(x, y) =
∫

supp(P ′)
z d P ′(x, y) . (8.53)

Using (i)–(iv) in Theorem8.54(a), this gives, for any polynomial p = p(z, z),

p(T, T ∗) =
∫

supp(P)
p(x + iy, x − iy) dP(x, y) =

∫

supp(P ′)
p(x + iy, x − iy) dP ′(x, y) ,

where the polynomial p(T, T ∗) is defined in themost obviousmanner, i.e. reading
multiplication as composition of operators and setting T 0 := I , (T ∗)0 := I . If
u, v ∈ H are arbitrary, for any complex polynomial p = p(z, z) on R

2,
∫

supp(μu,v )

p(z, z) dμu,v(x, y) =
(
u

∣∣∣∣
∫

supp(P)

p(z, z) dP(x, y)v

)

=
(
u

∣∣∣∣
∫

supp(P ′)
p(z, z) dP ′(x, y)v

)
=

∫

supp(μ′u,v )

p(z, z) dμ′u,v(x, y) .

The two complex measures μu,v and μ′u,v are those of Theorem8.52(c) (where u, v
were called ψ , φ). Moreover supp(μu,v), supp(μ′u,v) are compact subsets ofR2 (by
(v) Theorem8.52(c)), so there exists a compact set K ⊂ R

2 containing both. Let us
extend in the obvious way the measures to K , maintaining the supports intact, by
defining the measure of a Borel set E in K by μu,v(E ∩ supp(μu,v)), and similarly
for μ′u,v .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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Since polynomials in z, z with complex coefficients correspond bijectively to
complex polynomials q(x, y) in the real variables x, y (under the usual identification
z := x + iy and z := x − iy, so p(x + iy, x − iy) = q(x, y)), we can rewrite the
above identities in terms of polynomials with complex coefficients in (x, y) ∈ K :

∫

K
p(x + iy, x − iy) dμu,v(x, y) =

∫

K
p(x + iy, x − iy) dμ′u,v(x, y) .

By the Stone–Weierstrass Theorem(2.30), the algebra of complex polynomials
q(x, y) is dense inside C(K ) for the sup norm. Therefore the algebra of complex
polynomials p(x + iy, x − iy) restricted to K is dense in C(K ) for the sup norm.
Since integrals of complex measures are continuous functionals in sup norm,

∫

K
f (x, y) dμu,v(x, y) =

∫

K
f (x, y) dμ′u,v(x, y) for any f ∈ C(K ) .

Riesz’s Theorem2.52 for complexmeasures ensures the two extendedmeasuresmust
coincide. Consequently the yet-to-be-extendedmeasures must have the same support
and coincide. Now by (iv) in Theorem8.52(c), for any pair of vectors u, v ∈ H and
any bounded measurable g on R

2 we have

(
u

∣∣∣∣
∫

supp(P)

g(x, y) dP(x, y)v

)
=

(
u

∣∣∣∣
∫

supp(P ′)
g(x, y) dP ′(x, y)v

)
,

i.e. (
u

∣∣∣∣
∫

R2
g(x, y) dP(x, y)v

)
=

(
u

∣∣∣∣
∫

R2
g(x, y) dP ′(x, y)v

)
.

Therefore ∫

R2
g(x, y) dP(x, y) =

∫

R2
g(x, y) dP ′(x, y)

because u and v are arbitrary. If E is an arbitrary Borel set ofR2 and we pick g = χE ,
the above equation implies

P(E) =
∫

R2
χE (x, y) dP(x, y) =

∫

R2
χE (x, y) dP ′(x, y) = P ′(E) ,

proving P = P ′.
Observe, furthermore, that (8.53) and Theorem8.54(d) give supp(P (T )) = σ(T ).

Uniqueness for the cases of (a)’ follows by what we have just proved, because
supp(P (T )) = σ(T ) and by (i) in Proposition 8.7(a, b).
Existence. Let us see to the existence of the spectral measure P (T ).

Consider the ∗-homomorphism Φ̂T associated to the normal operator T ∈ B(H),
as of Theorem8.39. If E is a Borel set in R

2, define E ′ := E ∩ σ(T ) whence
P (T )(E) := Φ̂T (χE ′). The operator P (T )(E) is patently idempotent, for Φ̂T is

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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a homomorphism and χE ′ · χE ′ = χE ′ . By property (vi) of Theorem8.39(b)
and the positivity of characteristic functions, P (T )(E) ≥ 0, so P (T )(E) is self-
adjoint. Therefore every P (T )(E) is an orthogonal projector. It is easy to check
B(R) 
 E �→ P (T )(E) is a PVM: P (T )(E) ≥ 0 we saw above. Concerning Defini-
tion 8.41: (b) follows from χE ′ · χF ′ = χE ′∩F ′ and because Φ̂T is a homomorphism;
(c) descends from Φ̂T (χσ(T )) = I , which holds by definition of algebra homo-
morphism; eventually, (d) follows from (v) in Theorem8.41(b), because, pointwise,
limN→+∞

∑N
n=0 χE ′n = χ∪n∈NE ′n when the E ′n are pairwise disjoint. By construction,

supp(P (T )) is bounded because supp(P (T )) ⊂ σ(T ), the latter being compact by
Theorem8.4(c).

To continue with the proof, let us remark the following fact. By the above argu-
ment, and because the integral operator of P (T ) and Φ̂T are both linear,

Φ̂T (s �σ(T )) =
∫

supp(P (T ))

s(x, y) dP (T )(x, y) ,

for any simple function s : R2 → C. Either functional is continuous in the sup topol-
ogy ((ii) in Theorem8.39(b) and (a)), so Proposition 7.49 gives

Φ̂T ( f �σ(T )) =
∫

supp(P (T ))

f (x, y) dP (T )(x, y) , (8.54)

for any f : R2 → C measurable and bounded. In particular, by (i) Theorem8.39(a)

T =
∫

supp(P (T ))

z d P (T )(x, y) .

As far as the proof of (c) is concerned, notice that (8.54) implies that A ∈ B(H)

commutes with
∫
supp(P (T ))

f (x, y)dP (T )(x, y), when A commutes with T , T ∗; that is
because A commutes with Φ̂T ( f �σ(T )) in consequence of (iii) in Theorem8.39(b).
(b) Let us prove the claim for the general case where T is not necessarily self-adjoint
nor unitary; these special cases are easily proved with this argument. As already said
above, P (T ) must be concentrated on its support. The fact that supp(P (T )) = σ(T )

is a straightforward consequence of Theorem8.54(d). Let us prove the equivalence
λ ∈ σc(T ) ⇔ P (T )({λ}) = 0 in (i). We shall write P instead of P (T ) to simplify
the notation. Let λ := x0 + iy0 be a complex number. By (iii) of Theorem8.54(a),

T P({(x0, y0)}) =
∫

σ(T )

(x + iy)χ{(x0,y0)}(x, y) dP(x, y)

=
∫

σ(T )

(x0 + iy0)χ{(x0,y0)}(x, y) dP(x, y) = λ

∫

σ(T )

χ{(x0,y0)}(x, y) dP(x, y) .

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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Hence T P({(x0, y0)}) = λP({(x0, y0)}). We conclude that P({(x0, y0)}) �= 0
implies λ := x0 + iy0 is an eigenvalue of T and hence λ ∈ σp(T ), because any
vector u �= 0 in the target subspace of P({(x0, y0)}) is a λ-eigenvector.

Suppose conversely λ ∈ σp(T ) so that Tu = λu, u �= 0 and λ := x0 + iy0. Then
(cf. (b) of (i) in Proposition 3.60) T ∗u = λu, T n(T ∗)mu = λnλ

m
u, and by linearity

p(T, T ∗)u =
∫

supp(P)

p(x + iy, x − iy) dP(x, y)u = p(λ, λ)u (8.55)

for any polynomial p = p(x+iy, x−iy), because the integral defines a ∗-homomor-
phism. Every polynomial p = p(x + iy, x − iy) is also a complex polynomial q =
q(x, y) in the real variables x , y by setting q(x, y) := p(x+iy, x−iy) pointwise; the
correspondence is bijective. Since the q(x, y) approximate continuous maps f (x, y)
in sup norm, the second equality of (8.55) holds when p(x + iy, x − iy) = q(x, y)
is replaced by the continuous map f = f (x, y). If λ = x0+ iy0, it is not hard to see
χ{(x0,y0)} is the pointwise limit of a bounded sequence of continuous maps fn . Using
Theorem8.52(c) and dominated convergence (μu is finite), we have:

(u|P{(x0,y0)}u) =
(
u

∣∣∣∣
∫

supp(P)
χ{(x0,y0)}(x, y)dP(x, y) u

)
=

∫

supp(P)
χ{(x0,y0)}(x, y)dμu(x, y)

= lim
n→+∞

∫

supp(P)

fn(x, y)dμu(x, y) = lim
n→+∞

(
u

∣∣∣∣
∫

supp(P)

fn(x, y)dP(x, y) u

)

= lim
n→+∞(u| fn(x0, y0)u) = χ{(x0,y0)}(x0, y0)(u|u) .

Since orthogonal projectors are idempotent and self-adjoint, and since χ{(x0,y0)}
(x0, y0) = 1 by definition,

(P{(x0,y0)}u|P{(x0,y0)}u) = (u|u) �= 0 .

Hence P{(x0,y0)} �= 0.
We conclude the proof of (i) by proving that P{λ} is the orthogonal projector onto

the λ-eigenspace Hλ of T , if λ ∈ σp(T ). We proved above that

T P({λ}) = λP({λ})

for λ ∈ σp(T ), so that P({λ})(H) ⊂ Hλ. Let us show the opposite inclusion. Suppose
that u ∈ Hλ, so that (T − λI )u = 0. We therefore have

0 = ||(T − λI )u||2 =
∫

R2
|z − λ|2dμu(z)

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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in view of (b) in Theorem8.54. Define a partition of R2 made of sets

Dn :=
{
z ∈ R

2

∣∣∣∣
1

n + 1
< |z − λ| ≤ 1

n

}
, n = 1, 2, . . . ,

D0 :=
{
z ∈ R

2
∣∣ 1 < |z − λ|} ,

and
D∞ = {λ}

With this partition we can decompose the above integral, for instance using the
dominated convergence theorem, into:

0 = ||(T − λI )u||2 =
∫

D∞
|z − λ|2dμu(z)+

+∞∑

n=0

∫

Dn

|z − λ|2dμu(z)

= 0+
+∞∑

n=0

∫

Dn

|z − λ|2dμPDn u(z) . (8.56)

In the last passage we have exploited the fact that |z − λ|2 = 0 on D∞ and
∫

Dn

f (z)dμu(z) =
∫

R2
χDn (z) f (z)dμu(z) =

(
u

∣∣∣∣
∫

R2
χDn (z) f (z)dP(z)u

)

=
(
u

∣∣∣∣
∫

R2
χDn (z)χDn (z)χDn (z) f (z)dP(z)u

)
=

(
u

∣∣∣∣PDn

∫

R2
χDn (z) f (z)dP(z)PDn u

)

(
PDn u

∣∣∣∣
∫

R2
χDn (z) f (z)dP(z)PDn u

)
=

∫

Dn

χDn (z) f (z)dμPDn u(z) .

Finally (8.56) yields:

0 ≥
+∞∑

n=0

1

(n + 1)2

∫

Dn

1dμPDn u(z) =
+∞∑

n=0

1

(n + 1)2
||PDn x ||2 .

We conclude that PDnu = 0 for n = 0, 1, . . .. On the other hand, exploiting an
argument similar to the one leading to (8.56), using here the operator I in place of
T − λI , we obtain

||u||2 = ||P{λ}u||2 +
+∞∑

n=0
||PDnu||2 .

That, by elementary properties of Hilbert spaces, is equivalent to

u = P{λ}u +
+∞∑

n=0
PDnu ,
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because the vectors in the right-hand side are pairwise orthogonal as the Dn are
pairwise disjoint. Since PDnu = 0, we conclude that u = P{λ}u, that isHλ ⊂ P{λ}(H)

as wanted.
Let us pass to (ii). As σc(T ) ∪ σp(T ) = σ(T ) (by (i) Proposition 8.7(c)) and

σc(T ) ∩ σp(T ) = ∅ by definition, we must have λ ∈ σc(T ) if and only if λ ∈ σ(T )

and λ /∈ σp(T ). But supp(P (T )) = σ(T ), so λ ∈ σ(T ) is the same as saying, for
any open set A in R2 containing (x0, y0), x0+ iy0 = λ, that P(A) �= 0. On the other
hand, by (i), λ /∈ σp(T ) means P (T )({(x0, y0)}) = 0.

Now (iii). If λ = x0 + iy0 ∈ C is an isolated point in σ(T ), by definition there is
an open set A 
 {(x0, y0)} disjoint from the remaining part of σ(T ). If P({(x0, y0)})
were 0, then λ would belong to supp(P (T )), for in that case P(A) = 0. Necessarily,
then, P (T )({(x0, y0)}) �= 0. By (i) we have λ ∈ σp(T ).

The proof of (iv) is contained in Theorem8.54(d), where we proved, among other
things, that if λ ∈ σc(T ), for any natural number n > 0 there exists ψn ∈ H with
||ψn|| �= 0 and 0 < ||Tψn − λψn||/||ψn|| ≤ 1/n. To have (iv) it suffices to define
φn := ψn/||ψn|| with n such that 1 ≤ εn for the given ε. �

8.4.2 Spectral Representation of Normal Operators in B(H)

The next important result provides a spectral representation for any normal operator
T ∈ B(H): it is shown that every bounded normal operator can be viewed as a
multiplicative operator, on a suitable L2 space, basically built on the spectrum of T .

Theorem 8.58 (Spectral representation of normal operators in B(H)) Let H be a
Hilbert space, T ∈ B(H) a normal operator, P (T ) the spectral measure of T over
the Borel sets of σ(T ), as of Theorem8.56(a).
(a) H splits as a Hilbert sum H = ⊕α∈AHα (A at most countable if H is separable),
where the subspaces Hα are closed and mutually orthogonal, such that:

(i) for any α ∈ A, THα ⊂ Hα and T ∗Hα ⊂ Hα;
(ii) for any α ∈ A there exist a positive, finite Borel measure μα on the spectrum

σ(T ) ⊂ R
2, and a surjective isometry Uα : Hα → L2(σ (T ), μα), such that

Uα

(∫

σ(T )

f (x, y)dP (T )(x, y)

)
�Hα

U−1
α = f · ,

for f ∈ Mb(σ (T )). In particular:

UαT �Hα
U−1

α = (x + iy)· , UαT
∗ �Hα

U−1
α = (x − iy)·

where f · is the multiplication by f in L2(σ (T ), μα):

( f · g)(x, y) = f (x, y)g(x, y) almost everywhere on σ(T ) if g ∈ L2(σ (T ), μα) ;
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(ii)’ if T is self-adjoint or unitary, there exist, for any α ∈ A, a positive finite Borel
measure, on Borel sets of σ(T ) ⊂ R or σ(T ) ⊂ S

1 (respectively), and a surjective
isometry Uα : Hα → L2(σ (T ), μα), such that

Uα

(∫

σ(T )

f (x)dP (T )(x)

)
�Hα

U−1
α = f · ,

for f ∈ Mb(σ (T )). In particular,

UαT �Hα
U−1

α = x · ,

where f · is the multiplication by f on L2(σ (T ), μα):

( f · g)(x) = f (x)g(x) almost everywhere on σ(T )

for any g ∈ L2(σ (T ), μα).
(b) We have

σ(T ) =
⋃

α∈A
supp(μα) .

(c) If H is separable, there exist a measure space (MT ,ΣT , μT ), with μT (MT ) <

+∞, a bounded map FT : MT → C (MT → R if T is self-adjoint, or MT → S
1 if

T is unitary), and a unitary operator UT : H→ L2(MT , μT ), satisfying

(
UT TU

−1
T f

)
(m) = FT (m) f (m) ,

(
UT T

∗U−1T f
)

(m) = FT (m) f (m) for any f ∈ H.

(8.57)

Proof (a) We prove (i), (ii) and (iii). The proof of (ii)’ is similar to (ii).
To begin with, assume there is a vector ψ ∈ H whose subspace Hψ , containing

vectors of type
∫
σ(T )

g(x, y) dP (T )(x, y)ψ , g ∈ Mb(σ (T )), is dense in H. If μψ is
the spectral measure associated to ψ (finite since

∫

supp(P (T ))

1 dμψ = ||ψ ||2 )

we have supp(μψ) ⊂ supp(P (T )) by (iv) in Theorem8.52(c). Consider the Hilbert
space L2(σ (T ), μψ) and the linear surjective operator

Vψ : Mb(σ (T )) 
 g �→
∫

σ(T )

g(x, y) dP (T )(x, y)ψ ∈ Hψ .

As μψ is finite, Mb(σ (T )) ⊂ L2(σ (T ), μψ) as subspace. Hence for any g1, g2 ∈
Mb(σ (T )),
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∫

σ(T )

g1(x, y)g2(x, y) dμψ(x, y)

=
(∫

σ(T )

g1(x, y) dP
(T )(x, y)ψ

∣∣∣∣
∫

σ(T )

g2(x, y) dP
(T )(x, y)ψ

)
, (8.58)

or equivalently,

∫

σ(T )

g1(x, y)g2(x, y) dμψ(x, y) = (
Vψg1|Vψg2

)
. (8.59)

The proof of (8.58) descends by the following observation. If E, E ′ ⊂ σ(T ) are
Borel sets, using (iv) in Theorem8.52(c), (iii) in Theorem8.54(a) and (iv) in Theo-
rem8.54(a),

∫

σ(T )

χEχE ′ dμψ =
∫

σ(T )

χE∩E ′ dμψ =
(

ψ

∣∣∣∣
∫

σ(T )

χE∩E ′ dP (T ) ψ

)
=

(
ψ

∣∣∣∣
∫

σ(T )

χEχE ′ dP
(T ) ψ

)
=

(
ψ

∣∣∣∣
∫

σ(T )

χE d P (T )

∫

σ(T )

χE ′ dP
(T ) ψ

)

=
(∫

σ(T )

χE d P (T )ψ

∣∣∣∣
∫

σ(T )

χE ′ dP
(T ) ψ

)
.

By linearity of the inner product, if s and t are simple,

∫

σ(T )

st dμψ =
(∫

σ(T )

s d P (T )ψ

∣∣∣∣
∫

σ(T )

t d P (T ) ψ

)
.

By Proposition 7.49, using the definition of integral of ameasurable boundedmap for
a spectral measure, by dominated convergence with respect to the finite measure μψ

and by the inner product’s continuity, the above identity implies (8.58). Thus we have
proved Vψ is a surjective isometry mapping Mb(σ (T )) to Hψ . Notice that Mb(σ (T ))

is dense in L2(σ (T ), μψ), because if g ∈ L2(σ (T ), μψ), the maps gn := χEn · g,

En := {(x, y) ∈ σ(T ) | |g(x, y)| < n} ,

belong in Mb(σ (T )), and gn → g in L2(σ (T ), μψ) by dominated convergence
(pointwise |gn − g|2 → 0, as n → +∞, and |gn − g|2 ≤ 2|g|2 ∈ L1(σ (T ), μψ)).
So we can extend Vψ to a unique surjective isometry V̂ψ : L2(σ (T ), μψ) → Hψ ,
whose inverse will be denoted by Uψ . Then Hψ = H.

If f ∈ Mb(σ (T )), from (8.58) and using (iii) in Theorem8.54(a) we see that
∫

σ(T )

g1(x, y) f (x, y)g2(x, y) dμψ(x, y)

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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=
(∫

σ(T )

g1(x, y) dP
(T )(x, y)ψ

∣∣∣∣
∫

σ(T )

f (x, y)g2(x, y) dP
(T )(x, y)ψ

)

=
(∫

σ(T )

g1(x, y) dP
(T )(x, y)ψ

∣∣∣∣
∫

σ(T )

f (x, y) dP(T )(x, y)
∫

σ(T )

g2(x, y) dP
(T )(x, y)ψ

)

=
(
Vψg1

∣∣∣∣
∫

σ(T )

f (x, y) dP (T )(x, y)Vψg2

)
.

We have proved that for any triple g1, g2, f ∈ Mb(σ (T ))

∫

σ(T )

g1(x, y) f (x, y)g2(x, y) dμψ(x, y) =
(
Vψg1

∣∣∣∣
∫

σ(T )

f (x, y) dP(T )(x, y)Vψ g2

)
.

The operator f · : L2(σ (T ), μψ) → L2(σ (T ), μψ), i.e. the multiplication by
f ∈ Mb(σ (T )), is easily bounded. Since Mb(σ (T )) is dense in L2(σ (T ), μψ),
by definition of Uψ , because

∫

σ(T )

f (x, y) dP (T )(x, y)

is bounded and, eventually, by continuity of the inner product, we have

∫

σ(T )

g1(x, y) f (x, y)g2(x, y) dμψ(x, y) =
(
U−1ψ g1

∣∣∣∣
∫

σ(T )

f (x, y) dP(T )(x, y)U−1ψ g2

)
,

for any g1, g2 ∈ L2(σ (T ), μψ). That is to say

Uψ

∫

σ(T )

f (x, y) dP (T )(x, y)U−1
ψ = f · . (8.60)

Now we pass to the case in which there is no ψ with Hψ = H.
If so, let ψ be an arbitrary vector in H, and indicate by Hψ the space of vectors∫

σ(T )
f (x, y)dP (T )(x, y)ψ , f ∈ Mb(σ (T )). We have T (Hψ) ⊂ Hψ and T ∗(Hψ) ⊂

Hψ , because for any f ∈ Mb(σ (T ))

T
∫

σ(T )

f (x, y) dP (T )ψ =
∫

σ(T )

(x + iy) dP (T )

∫

σ(T )

f (x, y) dP (T )ψ

=
∫

σ(T )

(x + iy) f (x, y) dP (T )ψ ,

(Theorem8.56(a) and (iii) in Theorem8.54(a)). Hence T
∫
σ(T )

f (x, y) dP (T )ψ ∈
Hψ , for (x, y) �→ (x + iy) f (x, y) is an element of Mb(σ (T ))). The proof for T ∗ is
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analogous, using

T ∗ =
∫

σ(T )

(x − iy) dP (T ) .

By continuity T (Hψ) ⊂ Hψ and T ∗(Hψ) ⊂ Hψ . Defining Uψ as before we have
(8.60).

Now let us show how to build another closed subspace Hψ ′ , orthogonal to Hψ ,
invariant under T , T ∗ and satisfying (8.60) for a corresponding surjective isometry
Uψ ′ : Hψ ′ → L2(σ (T ), μψ ′). If 0 �= ψ ′ ⊥ Hψ then

(
ψ ′

∣∣∣∣
∫

σ(T )

f (x, y) dP (T )(x, y)ψ

)
= 0 ,

for any f ∈ Mb(σ (T )). But then the properties of the integral with respect to spectral
measures ((iii)-(iv) in Theorem8.54(a)) imply, for any g, f ∈ Mb(σ (T )):

(∫

σ(T )

g dP (T )ψ ′
∣∣∣∣
∫

σ(T )

f d P (T )ψ

)
=

(
ψ ′

∣∣∣∣
∫

σ(T )

g dP (T )

∫

σ(T )

f d P (T )ψ

)

=
(
ψ ′

∣∣∣g(x, y) f (x, y) dP (T )(x, y)ψ
)
= 0 ,

where we used g · f ∈ Mb(σ (T )). Overall, ifψ ′ ⊥ Hψ then Hψ ′ is orthogonal to Hψ ,
so the same holds for the closures by continuity of the inner product. The space Hψ ′

is invariant under T and T ∗ (the proof is the same as forHψ ), and (8.60) holds for the
surjective isometry Uψ ′ : Hψ ′ → L2(σ (T ), μψ ′) (see the proof at the beginning).
Thus, choosing {ψα} suitably, we can construct closed subspaces Hα = Hψα

, each
with a surjective isometry Uα : Hα → L2(σ (T ), μψ ′), so that: (a) the spaces are
pairwise orthogonal; (b) each one is T -invariant and T ∗-invariant; (c) they satisfy

Uα

∫

σ(T )

f (x, y) dP (T )(x, y) �Hα
U−1

α = f · . (8.61)

for any f ∈ Mb(σ (T )). Call C the collection of these subspaces. We can order
C (partially) by inclusion. Then every ordered subset in C is upper bounded, and
Zorn’s lemma gives us a maximal element {Hα}α∈A in C. We claim H = ⊕α∈AHα .
It suffices to show that if ψ belongs to the orthogonal complement of every Ha ,
then ψ = 0. If there existed ψ ∈ H with ψ ⊥ Hα for any α ∈ A and ψ �= 0, we
would be able to construct Hψ , distinct from every Hα but satisfying (a), (b), (c).
Consequently {Hα}α∈A∪{Hψ }would contain {Hα}α∈A, producing a contradiction.We
conclude that if ψ is orthogonal to everyHα , it must vanish ψ = 0. Put equivalently,
< {Hα}α∈A > = H, so H = ⊕α∈AHα for the spaces are mutually orthogonal.

Now we prove (b) when T is normal (T self-adjoint or unitary is obtained spe-
cialising the same proof). We shall prove that λ /∈ ∪αsupp(μα) ⇔ λ ∈ ρ(T ),
which is equivalent to the claim. In turn, λ /∈ ∪αsupp(μα) is equivalent to
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λ ∈ C \ ∪αsupp(μα), that is λ ∈ I nt (C \ ∪αsupp(μα)). The latter means
λ ∈ I nt (∩α(C \ supp(μα)).
(⇒) If λ ∈ I nt (∩α(C \ supp(μα)), take an open disc DR of radius R > 0 centred at
λ, with μα(DR) = 0 for any α ∈ A; such a disc exists by the assumptions. On every
space L2(σ (T ), μα) the multiplication by (x, y) �→ (x + iy − λ)−1 is bounded,
with norm not exceeding 1/R (independent from α), and inverts (on the left and the
right) the multiplication by (x + iy − λ). Let Rλ(α) : Hα → Hα be the operator
U−1

α (x + iy− λ)−1 ·Uα . It has the same norm of the operator (x + iy− λ)−1·, since
Ua is a surjective isometry, so ||Rλ(α)|| ≤ 1/R. Define Rλ : H→ H so that

Rλ :
∑

α∈A
Pαψ �→

∑

α∈A
Rλ(α)Pαψ ,

for any ψ ∈ H. Remembering the Hα are invariant under T and Rλ (i.e. Rλ(α) on
each Hα), we easily see that ||Rλ|| ≤ 1/R and Rλ(T − λI ) = (T − λI )Rλ = I . In
fact, RanRλ(α) = Hα implies

||Rλψ ||2 = ||
∑

α∈A
Rλ(α)Pαψ ||2 = ||

∑

α∈A
Pa Rλ(α)Pαψ ||2 =

∑

α∈A
||Pa Rλ(α)Pαψ ||2

=
∑

α∈A
||Rλ(α)Pαψ ||2 ≤ R−2

∑

α∈A
||Pαψ ||2 = R−2||ψ ||2 .

Moreover
(T − λI )Rλψ = (T − λI )Rλ

∑

α∈A
Pαψ

∑

α∈A
(T − λI )RλPαψ =

∑

α∈A
(T − λI ) �Hα

Rλ(a)Pαψ =
∑

α∈A
I Pαψ = ψ ,

hence (T − λI )Rλ = I . Similarly

Rλ(T − λI )ψ = Rλ(T − λI )
∑

α∈A
Pαψ

∑

α∈A
Rλ(T − λI )Pαψ =

∑

α∈A
Rλ(a)(T − λI ) �Hα

Pαψ =
∑

α∈A
I Pαψ = ψ ,

so Rλ(T − λI ) = I . By Theorem8.4(a) λ ∈ ρ(T ).
(⇐) Suppose now λ ∈ ρ(T ), so (T −λI )−1 : H→ H is the closed inverse to T −λI .
Pick ε > 0 so that ||(T − λI )−1|| =: 1/ε. We claim μα(Dε) = 0 for any α ∈ A, Dε

being the open disc of radius ε centred at λ, so that λ ∈ I nt (∩α(C \ supp(μα)). We
proceed by contradiction. Suppose the last assertion is false, so there exists β ∈ A
such that μβ(Dε) > 0. Consider an element ψ ∈ H \ {0} defined by Pαψ = 0 if
α �= βsps andUβψ = f , such that f = 0 outside Dε and

∫
Dε
| f |2dμβ > 0. We can

always redefine ψ so that ||ψ || = 1. Then,
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||(T − λI )ψ ||2 =
∫

Dε

|(x + iy)− λ|2| f (x, y)|2 dμβ(x, y) < ε2
∫

Dε

| f (x, y)|2 dμβ(x, y) = ε2 .

Therefore
||(T − λI )ψ || < ε .

On the other hand, by definition of norm,

||(T − λI )−1|| ≥ ||(T − λI )−1φ||
||φ||

for any φ ∈ H \ {0}. Setting (T − λI )−1φ = ψ , we have

1/ε = ||(T − λI )−1|| ≥ ||ψ ||
||(T − λI )ψ || ,

so, as ||ψ || = 1,

1/ε ≥ 1

||(T − λI )ψ || > 1/ε .

But that is a contradiction.
We finish the proof by showing (c). If H is separable, consider the collection of

orthogonal non-zero vectors {ψn}n∈N built as the {ψα}α∈A above,where now the index
α is calledn ∈ N (if there are finitelymanyvectorsψα the argument is similar).We are
free to choose themso that ||ψn||2 = 2−n .DefineMT :=⊔+∞

n=1 σ(T ) to be the disjoint
union of infinitely many copies of σ(T ). Now callμT the measure that restricts toμn

on the nth factor σ(T ). It is clear that, in this way, μT (MT ) =∑+∞
n=0 ||ψn||2 < +∞.

The map FT clearly restricts to (x + iy)· on each component σ(T ). Hence FT is
bounded, because every copy of σ(T ) is bounded. The operator UT is built in the
obvious manner using the Un . ��
One can rearrange canonically the decomposition ofH into spaces isomorphic to L2.
In particular [DuSc88, vol.I] the following fact holds. In the statement we use the
symbol A�B := (A ∪ B) \ (A ∩ B) for the symmetric difference of two sets.

Theorem 8.59 Let T ∈ B(H) be a normal operator on the separable Hilbert space
H.
(a)There exists a pair (μT , {ETn}n∈N), whereμT is a positive, finite Borelmeasure on
C and {ETn}n∈N ⊂ B(C) satisfies C = ET 1 ⊃ ET 2 ⊃ · · · , so that Theorem8.58(a)
holds (replacing σ(T ) by C everywhere) with A = N, μα(F) := μT (F ∩ ETα) for
any α ∈ N, F ∈ B(C).
(b) If (μ′T , {E ′Tn}n∈N) satisfies part (a) then μT ≺ μ′T ≺ μT and μT (ETn�E ′Tn) =
μ′(ETn�E ′Tn) = 0 for any n ∈ N.
(c) Let S ∈ B(H) be a normal operator and suppose (μS, {ESn}n∈N) satisfies (a)
together with S. Then there exists a unitary operator U : H→ H with U SU−1 = T
if and only if μT ≺ μS ≺ μT and μT (ETn�ESn) = μS(ETn�ESn) = 0 for any
n ∈ N.
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Evidently σ(T ) = supp(μT ). In case μT (ETn) �= 0 but μT (ETn+1) = 0, one says
T has spectral multiplicity n (including n = +∞ if μT (ETn) �= 0 for any n). The
definition is clearly independent of the pair (μT , {ETn}n∈N) of (a). If μT (ETk) = 0
for some k then μ′T (ETk) = 0, for μT ≺ μ′T ≺ μT . Since μ′T (ETk�E ′Tk) = 0
we have μ′T (E ′Tk) = 0. By symmetry μ′T (E ′T k) = 0 implies μT (ETk) = 0. The
unabridged theory of the spectral multiplicity can be found in [Hal51].

Examples 8.60
(1) Consider a compact self-adjoint operator T ∈ B(H) on the Hilbert space H. By
Theorem4.19, σp(T ) is discrete in R, with possible unique limit point 0. Conse-
quently σ(T ) = σp(T ), except in case σp(T ) accumulates at 0, but 0 /∈ σp(T ). In
that case (σ(T ) is closed by Theorem8.4) σ(T ) = σp(T ) ∪ {0} and 0 is the only
point in σc(T ) (for σr (T ) = ∅ by Proposition 8.7). Following Example8.51(3), we
can define a PVM on R that vanishes outside σ(T ):

PEx :=
∑

λ∈E
Pλx x ∈ H

where E ⊂ σ(T ), while Pλ is either the null projector Pλ = 0, or an orthogonal
projector onto the λ-eigenspace. The former case can occur only when λ = 0 is not
an eigenvalue. Mimicking Example8.51(3), we see

∫

σ(T )

λP(λ)ψ =
∑

λ∈σ(T )

λPλψ ,

for any ψ ∈ H. On the other hand Theorem4.20 gives
∑

λ∈σ(T )

λPλ = T ,

where P0 = 0 if 0 ∈ σc(T ).
The statement of Theorem4.20 explains that the decomposition is valid in the

uniform topology provided we label eigenvalues properly. Using such an ordering,
for any ψ ∈ H

∑

λ∈σ(T )

λPλψ = Tψ .

Wemay interpret the sum as an integral in the PVMon σ(T ) defined above. This also
proves that the series on the left can be rearranged (when projectors are applied to
someψ ∈ H). By construction, supp(P) = σ(T ). In conclusion: the above measure
on σ(T ) is the spectral measure of T , uniquely associated to T by the spectral
theorem. Moreover, the spectral decomposition of T is precisely the eigenspace
decomposition with respect to the strong topology:

T = s-
∑

λ∈σp(T )

λPλ .

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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The point 0 ∈ σc(T ), if present, brings no contribution to the integral.

(2) Consider the operator T on H := L2([0, 1] × [0, 1], dx ⊗ dy) defined by

(T f )(x, y) = x f (x, y)

almost everywhere on X := [0, 1] × [0, 1], for any f ∈ H. It is not hard to show T
is bounded, self-adjoint and its spectrum is σ(T ) = σc(T ) = [0, 1].

A spectral measure on R, with bounded support, that reproduces T as integral
operator is given by orthogonal projectors P (T )

E that multiply by characteristic func-
tions χE ′ , E ′ := (E ∩ [0, 1]) × [0, 1], for any Borel set E ⊂ R. Proceeding as in
Example8.51(1), and choosing appropriate domains, allows to see that

(∫

[0,1]
g(λ) dP(λ) f

)
(x, y) = g(x) f (x, y) , almost everywhere on X

for any g ∈ Mb(X). In particular

(∫

[0,1]
λ dP(λ) f

)
(x, y) = x f (x, y) , almost everywhere on X ,

so

T =
∫

[0,1]
λ dP(λ) ,

as required. This spectral measure is therefore the unique measure on R satisfying
condition (a) in the spectral representation theorem.

Let us concentrate on part (c) in the spectral representation theorem. A decompo-
sition of H of the kind prescribed in (c) can be obtained as follows. Let {un}n∈N be a
Hilbert basis of L2([0, 1], dy). Consider subspaces of H := L2([0, 1]× [0, 1], dx ⊗
dy) given, for any n ∈ N, by

Hn := { f · un | f ∈ L2([0, 1], dx)} .

It is easy to see that these subspaces, with respect to T , fulfil every request of item (c).
In particular, Hn is by construction isomorphic to L2([0, 1], dx) under the surjective
isometry f · un �→ f , so μn = dx . �

8.5 Fuglede’s Theorem and Consequences

In the final section we state and prove a well-known result. Fuglede’s theorem estab-
lishes that an operator B ∈ B(H) commutes with A∗, for A ∈ B(H) normal,
provided it commutes with A. The result is far from obvious, and has immediate
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consequences in the light of the previous section. Due to the spectral decompo-
sition Theorem8.56(c), for example, one corollary is that if B commutes with A
then it commutes with every operator

∫
σ(T )

f (x, y)dP (A)(x, y), for any measurable
bounded map f : σ(T )→ C.

8.5.1 Fuglede’s Theorem

Theorem 8.61 (Fuglede) Let H be a Hilbert space. If A ∈ B(H) is normal and
B ∈ B(H) commutes with A, then B commutes with A∗ as well.

Proof For s ∈ C consider the function Z(s) = e−s A∗BesA∗ , where the exponentials
are defined spectrally by integrals of C 
 x + iy �→ e∓s(x−iy) with respect to the
spectral measure P (A) of A. As usual z = x + iy and z = x − iy. Now observe
e∓s(x−iy) = ∑+∞

n=0
(∓s(x−iy))n

n! , and for given s, the convergence is uniform in (x, y)
on every compact set, like σ(A). In particular this means the sequence of partial
sums is bounded in norm || ||∞. Using again the PVM associated spectrally to A, by
Theorem8.54(c) we have

e∓s A
∗ = s-

+∞∑

n=0

(∓s A∗)n
n! . (8.62)

Expanding Z(s)Aψ and AZ(s)ψ as above, and recalling A∗ and B commute with
A, we see An Z(s)ψ = Z(s)Anψ for any ψ ∈ H. Hence the exponential expansion
gives

e∓s A Z(s)ψ = Z(s)e∓s Aψ for any ψ ∈ H.

Therefore

Z(s) = Z(s)e+s Ae−s A = e+s A Z(s)e−s A = e−s A∗e+s A BesA∗e−s A = e−s A∗+s A BesA∗−s A .

To obtain thiswe need the identities e−s A∗e+s A = e−s A∗+s A and e+s Ae−s A = I , which
are proved exactly as inC, i.e. using (8.62) and the commutation of A and A∗.With the
same technique one provesUs := e−s A∗+s A = (

esA
∗−s A)∗ andU ∗

s = U−1
s . Therefore

Us is unitary and ||Z(s)|| = ||Us BU ∗
s || ≤ ||Us || ||B|| ||U ∗

s || = 1||B||1 = ||B||.
The map C 
 s �→ (ψ |Z(s)φ) is then bounded on the entire complex plane. If this
function were entire (i.e. analytic on C), Liouville’s theorem would force it to be
constant. So let us assume the map is entire, hence constant. Consequently, since
ψ, φ are arbitrary, Z(s) = Z(0) for any s ∈ C. This identity reads e−s A∗BesA∗ = B,
i.e. BesA

∗ = esA
∗
B. Therefore (ψ |BesA∗φ) = (ψ |esA∗Bφ) for any ψ, φ ∈ H. This

equation can be written (B∗ψ |esA∗φ) = (ψ |esA∗Bφ), and by the properties of PVMs
and the spectral theorem:
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∫

K
eszdμB∗ψ,φ =

∫

K
eszdμψ,Bφ ,

where K ⊂ R
2 ≡ C is a compact set large enough to contain the supports of the

measures of the integrals. Let us differentiate in s, and evaluate at s = 0, by swapping
derivative and integral (the derivatives of the integrands are continuous in (s, (x, y)),
hence bounded on the compact setC×K , whereC is some compact subset containing
s = 0; hence Theorem1.88 applies). The outcome is

∫

K
zdμB∗ψ,φ =

∫

K
zdμψ,Bφ ,

which we can write (ψ |BA∗φ) = (ψ |A∗Bφ). Varying ψ and φ, we obtain that B
commutes with A∗: BA∗ = A∗B. There remains to prove C 
 s �→ (ψ |Z(s)φ) is
an analytic function. Expansion (8.62) and the inner product’s continuity imply

(ψ |Z(s)φ) =
+∞∑

n=0

+∞∑

m=0

(−s)n+m
n!m! (ψ |(A∗)n B(A∗)mφ) . (8.63)

We may interpret the double series as an iterated integral for the counting measure
of N; we shall denote the latter by dμ(n). By the Schwarz inequality and known
norm properties:

∣∣∣∣
(−s)n+m
n!m! (ψ |(A∗)n B(A∗)mφ)

∣∣∣∣ ≤
(|s| ||A||)n

n!
(|s| ||A||)m

m! ||B|| ||ψ || ||φ|| .

The positive function on N × N of the right-hand side is integrable in the product
measure by Fubini-Tonelli (the integral is clearly e|s| ||A||e|s| ||A||||B|| ||ψ || ||φ||), so
(n,m) �→ (−s)n+m

n!m! (ψ |(A∗)n B(A∗)mφ) =: fs(n,m) is L1 for the product measure,
and (8.63) reads:

(ψ |Z(s)φ) =
∫

N×N
fs(n,m)dμ(n)⊗ dμ(m) . (8.64)

By dominated convergence we have

∫

N×N

fs(n,m)dμ(n)⊗ dμ(m) = lim
N→+∞

∫

N×N

χ{(n,m)∈N×N | n+m≤N } fs(n,m)dμ(n)⊗ dμ(m) .

Writing the right side using sums:

(ψ |Z(s)φ) = lim
N→+∞

N∑

M=0

∑

n+m=M

(−s)n+m
n!m! (ψ |(A∗)n B(A∗)mφ) ,

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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i.e.

(ψ |Z(s)φ) =
+∞∑

N=0
CNs

N ∀s ∈ C , (8.65)

where

CN = (−1)N
∑

n+m=N

(ψ |(A∗)n B(A∗)mφ)

n!m! .

Now, (8.65) says we may express (ψ |Z(s)φ) as a power series in s, with s roaming
the whole complex plane. Hence C 
 s �→ (ψ |Z(s)φ) is an entire function, as
claimed. ��
The theorem generalises, if we drop the boundedness of A (but keeping that of B).
This was Fuglede’s original statement [Fug50], whose proof requires the spectral
theory of unbounded normal operators that we will not develop.

8.5.2 Consequences to Fuglede’s Theorem

Corollary 8.62 Let H be a Hilbert space. If M, N ∈ B(H) are normal and satisfy
NM = MN, then NM is normal.

Proof First, MN (MN )∗ = MNM∗N ∗. By Fuglede’s theorem the right-hand side
is MM∗NN ∗ = M∗MN ∗N = M∗N ∗MN = (NM)∗MN . But N , M commute, so
(NM)∗MN = (MN )∗MN . Hence we have proved MN (MN )∗ = (MN )∗MN , i.e.
the claim. ��
Corollary 8.63 (Fuglede–Putnam–Rosenblum) Let H be a Hilbert space and
T, M, N ∈ B(H). If M, N are normal and MT = T N then M∗T = T N ∗.

Proof Consider the Hilbert space H ⊕ H with standard inner product ((u, v)|
(u′, v′)) := (u|u′)(v|v′), and the operators ofB(H⊕ H):

T ′ : (u, v) �→ (0, Tu) , N ′ : (u, v) �→ (Nu, Mv) .

By direct computation N ′N ′∗ = N ′∗N ′, i.e. N ′ is normal, and N ′T ′ = T ′N ′ by the
fact that MT = T N . We can apply Fuglede’s theorem to get N ′∗T ′ = T ′N ′∗. Since
N ′∗ : (u, v) �→ (N ∗u, M∗v), taking the components of the identity N ′∗T ′(u, v) =
T ′N ′∗(u, v) gives M∗Tu = T N ∗u for any u ∈ H, i.e. M∗T = T N ∗. ��
Corollary 8.64 Let M, N ∈ B(H) be normal operators on the Hilbert space H. If
there is a bijection S ∈ B(H) such that

MS = SN ,
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then there is also a unitary operator U ∈ B(H) such that

UMU−1 = N .

Proof Observe preliminarily S−1 ∈ B(H) byTheorem2.96. By polar decomposition
S = U |S|, with U unitary, and therefore MU |S| = U |S|N . In our case |S|−1 exists
and equals |S−1|, as is easy to see. The proof finishes if we can show that |S|N =
N |S|, for then we can left-apply |S|−1 on MU |S| = UN |S|. Let us prove that. By
by Fuglede–Putnam–Rosenblum theorem MS = SN implies M∗S = SN ∗. Taking
adjoints, S∗M = NS∗. Using MS = SN again, we get S∗MS = S∗SN = NS∗S,
i.e. |S|2N = N |S|2. By Theorem3.77(a), |S|N = N |S|. ��

Exercises

8.1 Take H = �2(N) and consider the operator

T : (x0, x1, x2, . . .) �→ (0, x0, x1, . . .) .

Determine the spectrum of T .

8.2 LetHbe aHilbert space and T = T ∗ ∈ B(H) compact. Show that if dim(RanT )

is not finite, then σc(T ) �= ∅ and consists of one point.

Hint. Decompose T as in Theorem4.20, use Theorem4.19 and the fact that σ(T )

is closed by Theorem8.4.

8.3 If T is self-adjoint on the Hilbert space H and λ ∈ ρ(T ), show Rλ(T ) is a
normal operator ofB(H) such that

Rλ(T )∗ = Rλ(T ) .

8.4 Prove that the residual spectrum of a unitary operator is empty, without using
the fact that ‘unitary⇒ normal’.

Solution. If λ ∈ σr (U ), Ran(U − λI ) is not dense, so there exists f �= 0
orthogonal to Ran(U − λI ). For any g ∈ H, ( f |λg) = ( f |Ug), so (λ f |g) =
(U ∗ f |g) for any g ∈ H. Hence U ∗ f = λ f . Letting U act on this relation gives
f = λU f , and then U f = λ f , because 1/λ = λ by |λ| = 1. Consequently
λ ∈ σp(U ). But this is absurd, for the point and residual spectra are disjoint, and
hence σr (U ) = ∅.
8.5 Assume U : H→ H is an isometry on a Hilbert space H that is not surjective.
Prove σr (U ) �= ∅.

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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Solution. 0 ∈ σr (U ) and U − 0I is one-to-one, but Ran(U − 0I ) = RanU is
not dense. Let us prove that by contradiction. If it were dense, for any f ∈ H there
would exist { fn}n∈N ⊂ H with U fn → f . Since || fn − fm || = U fn − U fm , then
{ fn}would be a Cauchy sequence, and fn → g ∈ H. HenceUg = f for any f ∈ H,
which cannot be, for U is not surjective.

8.6 Build a self-adjoint operator with point spectrum dense in, but not coinciding
with, [0, 1].

Hint. Take the Hilbert space H = �2(N), and label rationals in [0, 1] arbitrarily:
r0, r1, . . . Define

T : (x0, x1, x2, . . .) �→ (r0x0, r1x1, r2x2, . . .)

with domain D(T ) given by sequences (x0, x1, x2, . . .) ∈ �2(N) such that

+∞∑

n=0
|rnxn|2 < +∞ .

8.7 Define a bounded normal operator T : H→ H, for some Hilbert space H, such
that σ(T ) = σp(T ) = {λ ∈ C | |λ| ≤ 1}. Can H be separable?

Hint. Define H := L2(D, μ), where μ is the counting measure and D := {λ ∈
C | |λ| ≤ 1}. Then set (T f )(z) := z f (z), f ∈ H.

8.8 If P : X → B(H) is a PVM, prove: (1) the set of P-essentially bounded,
measurable maps f : X→ C is a vector space, and (2) || ||(P)∞ is a seminorm on that
space.

8.9 Let A be an operator on theHilbert spaceHwith domain D(A), and letU : H′ →
H be an isometry onto H. If A′ := U−1AU : D(A′) → H′, D(A′) = U−1D(A),
prove σc(A) = σc(A′), σp(A) = σp(A′), σr (A) = σr (A′).

Hint. Just apply the definition of the various parts of the spectrum and use the
fact that the isomorphisms U is bijective and norm-preserving.

8.10 Consider the position operator Xi introduced in definition 5.22. Show σ(Xi ) =
σc(Xi ) = R.

8.11 Consider the momentum operator Pi introduced in definition 5.27. Show
σ(Pi ) = σc(Pi ) = R.

Hint. Use Proposition 5.31.

8.12 Find two operators A and B on a Hilbert space such that σ(A) = σ(B), but
σp(A) �= σp(B).

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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Hint. Consider the operator of Exercise8.6 and the operator that multiplies by the
coordinate x in L2([0, 1], dx), where dx is the Lebesgue measure on R.

8.13 Take Volterra’s operator A : L2([0, 1], dx) → L2([0, 1], dx):

(A f )(x) =
∫ x

0
f (t)dt .

Study its spectrumandproveσ(A) = σc(A) = {0}. Conclude,without computations,
that A cannot be normal.

Solution. Since [0, 1] has finite Lebesgue measure, then L2([0, 1], dx) ⊂
L1([0, 1], dx), and we can view Lebesgue’s integral as a function of the upper limit
of integration (in particular, Theorem1.76 holds). Notice the spectrum of A cannot
be empty by Theorem8.4, since A is bounded and hence closed. If λ �= 0, then
(λ−1A)n is a contraction operator for n large enough, as we saw in Exercise4.19. By
the fixed-point theorem λ �= 0 cannot be an eigenvalue, since the unique solution ψ

to the characteristic equation λ−1Aψ = ψ is ψ = 0, which is not an eigenvector.
As A is compact, Lemma 4.52 guarantees that if 0 �= λ (hence λ /∈ σp(A)), then
Ran(A − λI ) = H (i.e. the Hilbert space L2([0, 1], dx)). Moreover, since A − λI
is bijective, (A − λI )−1 : H → H is bounded by the inverse-operator theorem.
Therefore λ /∈ σ(A) if λ �= 0. So the unique point in the spectrum is λ = 0.
By Theorem1.76(b) there are no non-zero solutions to Aψ = 0, and we conclude
0 ∈ σr (A)∪σc(A). If 0 were in σr (A), Ran(A)would not be dense in L2([0, 1], dx),
i.e. Ker(A∗) �= {0} because H = Ran(A)⊕ Ker(A∗). This is not possible, because
(A∗ f )(x) = ∫ 1

x f (t)dt (see Exercise3.29), so applying Theorem1.76(b) would give
a contradiction.

If A were normal, its boundedness would imply ||A|| = r(A). But r(A) = 0, for
σ(A) = {0}. Therefore A would be forced to be null.

8.14 Consider the bounded, self-adjoint operator T on H := L2([0, 1], dx) that
multiplies functions by x2:

(T f )(x) := x2 f (x) .

Find its spectral measure.

Hint. Find a unitary transformation H → L2([0, 1], dy) that maps the multipli-
cation by x2 to the multiplication by y.

8.15 Consider the bounded, self-adjoint operator T on H := L2([−1, 1], dx) that
multiplies by x2:

(T f )(x) := x2 f (x) .

Determine its spectral measure.

Hint. Argue as in Exercise8.14, after decomposing

L2([−1, 1], dx) = L2([−1, 0], dx)⊕ L2([0, 1], dx) .

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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8.16 Let T ∈ B(H) be a normal operator on a Hilbert space H. Prove, for any
α ∈ C, that

eαT =
∫

σ(T )

eα(x+iy) dP (T )(x, y) ,

where the term on the left is defined, in the uniform topology, as

eαT :=
+∞∑

n=0

αnT n

n! .

Hint. The series
∑+∞

n=0
αn zn

n! converges absolutely and uniformly on any closed
disc of finite radius and centred at the origin of C. Moreover, for any polynomial
p(z) (z = x + iy),

p(T ) =
∫

σ(T )

p(x + iy) dP (T )(x, y) .

Now use the first part of Theorem8.52.

8.17 For any given Hilbert space H, build a compact self-adjoint operator T : H→
H such that T /∈ B1(H), T /∈ B2(H).

Hint. It suffices to show
∑

λ∈σp(T ) |λ| = +∞ and
∑

λ∈σp(T ) |λ|2 = +∞, see
Exercise4.4.

8.18 Take T ∈ B(H) with T ≥ 0 and H a Hilbert space. Prove that if T is compact
then

T α :=
∫

σ(T )

λαdP (T )(λ)

is compact for any real α > 0.

Outline of solution. If σ(T ) is finite the claim is obvious by the spectral theorem
and because operators with finite-dimensional range are compact. Consider the other
case. Expand T spectrally: T = ∑

j λ j (ψ j | )ψ j , where ||T || ≥ λ j ≥ λ j+1 → 0+
by compactness, and for any given j , λ j+k = λ j only for a finite number of k (if
the eigenvalue is non-null). Recall that for compact operators the expansion con-
verges in the uniform topology, too. If α ≥ 1 and m, n are large enough, then∑m

j=n λα
j (ψ j | )ψ j ≤ ∑m

j=n λ j (ψ j | )ψ j , hence (positive operators are self-adjoint)
||∑m

j=n λα
j (ψ j |)ψ j || ≤ ||∑m

j=n λ j (ψ j |)ψ j ||. Bearing inmind the spectral decompo-
sition theorem for the self-adjoint operator T α , conclude that T α , α > 1, is compact
as uniform limit of compact operators (ranges are finite-dimensional). When α < 1,
observe ||T 1/2x − T 1/2y||2 = ((x − y)|T (x − y)) ≤ ||x − y||||T x − T y||, then
conclude that T 1/2 is compact if T is compact, by using the definition of compact
operator. When α ∈ [1/2, 1), T α = (T 1/2)β for some β ∈ [1, 2). Relying on the
previous proof recover that T α is compact if T is when α ∈ [1/2, 1). Iterating the

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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procedure obtain that T 1/4 and T α , α ∈ [1/4, 1/2), are compact if T is, and so on;
hence reach any T α , with α ∈ (0, 1), because in that case α ∈ [1/2k+1, 1/2k) for
some k = 0, 1, 2, . . ..

8.19 Prove that T = T ∗ ∈ B(H) is positive if and only if σ(T ) ⊂ [0,+∞)

Hint. Use (x |T x) = ∫
σ(T )

λdμx (λ). If σ(T ) 
 λ0 < 0 then either λ0 ∈ σp(T ) so

P (T )({λ0}) �= 0, or λ0 ∈ σc(T ) and then P (T )((λ0 − δ, λ0 + δ)) �= 0. In both cases
find x ∈ H such that

∫
σ(T )

λdμx (λ) < 0.

8.20 If H is a Hilbert space, prove T ∈ B(H) is of trace class (T ∈ B1(H)) ⇔∑
u∈N |(u|Tu)| < +∞ for every Hilbert basis N ⊂ H.

Solution. Suppose
∑

u∈N |(u|Tu)| < +∞ for every Hilbert basis N . Assume,
first, T = T ∗. By the spectral theorem T = ∫

R
λdP (T )(λ). Define T− :=∫

(−∞,0) λdP (T )(λ) and T+ :=
∫
[0,+∞)

λdP (T )(λ). Clearly T± ∈ B(H) (|λχ(−∞,0)| ≤
|λ|, |λχ[0,+∞)| ≤ |λ| and λ is bounded on the support of P (T ) by the spectral theorem
for self-adjoint bounded operators). Moreover ±T± ≥ 0 by exercise 8.19. Further-
more, H = H− ⊕ H+ is a closed orthogonal sum where H− := P (T )((−∞, 0))H,
H+ := P (T )([0,+∞))H. Let N− ⊂ H−, N+ ⊂ H+ be Hilbert bases, so N :=
N− ∪ N+ is a Hilbert basis of H. As −T−, T+ ≥ 0 and T±u = 0 if u ∈ H∓, we have

+∞ >
∑

u∈N
|(u|Tu)| =

∑

u∈N−
|(u|T−u)| +

∑

u∈N+
|(u|T+u)| =

∑

u∈N−
−(u|T−u)+

∑

u∈N−
(u|T+u)

=
∑

u∈N−
(u||T−|u)+

∑

u∈N−
(u||T+|u) =

∑

u∈N
(u||T−|u)+

∑

u∈N
(u||T+|u) .

Therefore T± ∈ B1(H) by Definition 4.32, so T = T+ + T− ∈ B1(H) by Theo-
rem4.34(b). In case T is not self-adjoint, we can decompose T = A + i B, with
A := 1

2 (T + T ∗), B := 1
2i (T − T ∗), A, B self-adjoint. For any given basis N ⊂ H,

|(u|Tu)| = |(u|Au) + i(u|Bu)| = √|(u|Au)|2 + |(u|Bu)|2 ≥ |(u|Au)| , |(u|Bu)|,
with u ∈ N . Applying the result proved above for self-adjoint operators gives A, B ∈
B1(H), so T ∈ B1(H). If, instead, T ∈ B1(H), for any basis

∑
u∈N |(u|Tu)| < +∞

by Proposition 4.36.
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Chapter 9
Spectral Theory II: Unbounded Operators
on Hilbert Spaces

The language of mathematics turns out to be unreasonably
effective in natural sciences, a wonderful gift that we don’t
understand nor deserve.

Eugene Paul Wigner

In this second chapter on spectral theory we shall examine a number of mathematical
issues concerning typically unbounded self-adjoint operators.

The first section is devoted to extending the spectral decomposition theorem of
the previous chapter to unbounded self-adjoint operators. The proof relies on a gener-
alisation of the integration procedure for spectral measures to unbounded functions,
and on the Cayley transform. The resulting technique will also enable us to prove,
in passing, an important characterisation of the von Neumann algebra generated by
a bounded normal operator and its adjoint. Then we will describe two physically-
relevant examples of unbounded self-adjoint operators and their spectral decompo-
sition: the Hamiltonian of the harmonic oscillator, and the position and momentum
operators. Finally we will state a spectral representation theorem for unbounded
self-adjoint operators and introduce joint spectral measures.

The second, very short, section is dedicated to exponentiating unbounded opera-
tors, in relationship to earlier-defined analytic vectors.

In section three we will focus on the theory of strongly continuous one-parameter
groups of unitary operators. First we will establish that the various notions of conti-
nuity are equivalent. Next we will show von Neumann’s theorem on the continuity
of measurable one-parameter groups of unitary operators, and then go on to prove
Stone’s theorem and a few important corollaries. In particular, wewill discuss a useful
criterion, based on one-parameter unitary groups generated by self-adjoint operators,
to establish when the spectral measures of two self-adjoint operators commute. We
recommend [Schm12] for a recent and quite complete treatise on the whole subject.

© Springer International Publishing AG 2017
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474 9 Spectral Theory II: Unbounded Operators on Hilbert Spaces

9.1 Spectral Theorem for Unbounded Self-adjoint
Operators

We now set out to generalise some of the material of Chap.8. In particular we want
to prove the spectral decomposition theorem in the case of unbounded self-adjoint
operators. The physical relevance lies in that most self-adjoint operators representing
interesting observables in Quantum Mechanics are unbounded. The paradigmatic
case is the position operator of Chap.5.

9.1.1 Integrating Unbounded Functions with Respect
to Spectral Measures

We will often use the following natural definition.

Definition 9.1 Let X be a complex vector space, T an operator on X with domain
D(T ) and p(x) = ∑m

k=0 ak xk a polynomial of degree m with complex coefficients.
(a) The operator p(T ) on X is defined by writing T in place of the variable x , with
T 0 := I , T 1 := T , T 2 := T T , and so on.
(b) The domain of p(T ) is

D(p(T )) :=
m⋂

k=0

D(ak T k) , (9.1)

with D(ak T · · · T ) given in Definition5.1.

Extending the previous chapter’s results to unbounded operators requires first a def-
inition for the integral of unbounded functions with respect to a PVM. If P is a
spectral measure on the measurable space (X,Σ(X)), in the sense of Definition8.41,
and if f : X → C is a measurable function (for the σ -algebra Σ(X)), but not neces-
sarily bounded, based on what we know

∫
X f (x)d P(x) is meaningless. The point is

to make sense of this integral.
Consider a vectorψ , in a Hilbert spaceH, of the projector-valued measure P such

that ∫

X
| f (x)|2 dμψ(x) < +∞ , (9.2)

where the spectral measure μψ for ψ was defined in Theorem8.52(c). We can find
a sequence of bounded measurable maps fn such that, for every fixed ψ ∈ H, we
have fn → f as n → +∞ in L2(X, μψ). For example, using Lebesgue’s dominated
convergence it suffices to consider fn := χFn · f , where {Fn}n∈N is any family of
Borel subsets of X such that

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8


9.1 Spectral Theorem for Unbounded Self-adjoint Operators 475

∪m∈N Fm = X , Fn+1 ⊃ Fn , | f (x)| < Cn ∀x ∈ Fn, for someCn ∈ R,∀n ∈ N.

(9.3)
A simple choice is

Fn := {x ∈ X | | f (x)| < n} . (9.4)

Using (ii) in (a) and (b) of Theorem8.54 we immediately find

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
fn(x)d P(x)ψ −

∫

X
fm(x)d P(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| fn(x) − fm(x)|2dμψ(x) . (9.5)

Therefore the sequence of vectors
∫
X fn(x)d P(x)ψ converges to some∫

X f (x)d P(x)ψ :

∫

X
f (x)d P(x)ψ := lim

n→+∞

∫

X
fn(x)d P(x)ψ . (9.6)

Wemay use (9.6) as definition of the integral in P of the unboundedmeasurable func-
tion f . This is well defined since

∫
X f (x)d P(x)ψ does not depend on the sequence

{ fn}n∈N. In fact if {gn}n∈N is another sequence of bounded measurable maps con-
verging to f in L2(X, μψ), proceeding as before we obtain

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
fn(x)d P(x)ψ −

∫

X
gn(x)d P(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| fn(x) − gn(x)|2dμψ(x) ,

so

lim
n→+∞

∫

X
fn(x)d P(x)ψ = lim

n→+∞

∫

X
gn(x)d P(x)ψ .

If we use (9.6) to define the integral of an unbounded functionwemust remember that
this operator is not defined on the whole Hilbert space, but only on vectors satisfying
(9.2). Consequently we have to check that these vectors form a subspace in H. To
show this, and much more, we need to a lemma that relates the spectral measure μψ

to μφ,ψ via (9.2), for ψ ∈ H.

Lemma 9.2 Let (X,Σ(X)) be a measurable space,H a Hilbert space, P : Σ(X) →
B(H) a PVM, and f : X → C a measurable function.

Given φ,ψ ∈ H, if the measures μψ and μφ,ψ are defined as in Theorem8.52(c)
and ∫

X
| f (x)|2dμψ(x) < +∞ ,

then f ∈ L1(X, |μφ,ψ |) and

∫

X
| f (x)|d|μφ,ψ(x)| ≤ ||φ||

√∫

X
| f (x)|2dμψ(x) . (9.7)

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Proof If f is bounded, by (iv) in Theorem8.52(c):

(

φ

∣
∣
∣
∣

∫

X
| f (x)|d P(x)ψ

)

=
∫

X
| f (x)|dμφ,ψ(x)

By Theorem1.87 there exists a map h : X → C, |h(x)| = 1, such that dμφ,ψ =
hd|μφ,ψ |, and so

∫

X
| f (x)|d|μφ,ψ(x)| =

∫

X
| f (x)|h−1(x)dμφ,ψ(x) =

(

φ

∣
∣
∣
∣

∫

X
| f (x)|h−1(x)d P(x)ψ

)

.

Using Theorem8.54(b) and noting || f (x)|h−1(x)|2 = | f (x)|2, we have
∫

X
| f (x)|d|μφ,ψ(x)| ≤ ||φ||

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
| f (x)|h−1(x)d P(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣ = ||φ||

√∫

X
| f (x)|2dμψ(x) .

Let now f be unbounded. Define bounded maps fn := χFn · f as above, so that
0 ≤ | fn(x)| ≤ | fn+1(x)| → | f (x)| as n → +∞. By monotone convergence, since
f ∈ L2(X, dμψ), we obtain

∫

X
| f (x)|d|μφ,ψ(x)| = lim

n→+∞

∫

X
| fn(x)|d|μφ,ψ(x)| ≤ ||φ|| lim

n→+∞

√∫

X
| fn(x)|2dμψ(x)

= ||φ||
√∫

X
| f (x)|2dμψ(x) < +∞ .

This proves the general case. �

The next theorem gathers several technical facts seen above, and establishes the first
general properties of integrals of unboundedmaps with respect to a spectral measure.

Theorem 9.3 Let (X,Σ(X)) be a measurable space, H a Hilbert space and P :
Σ(X) → B(H) a PVM.

For any measurable f : X → C define

Δ f :=
{

ψ ∈ H

∣
∣
∣
∣

∫

X
| f (x)|2 dμψ(x) < +∞

}

. (9.8)

(a) Δ f is a dense subspace in H.
(b) If f ∈ L2(X, μψ), the mapping

∫

X
f (x)d P(x) : Δ f 	 ψ 
→

∫

X
f (x)d P(x)ψ (9.9)

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_1
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(with right-hand-side term as in (9.6), and using any sequence of bounded measurable
maps { fn}n∈N converging to f in L2(X, μψ)):

(i) is a linear operator;
(ii) extends the integral operator of measurable bounded functions f ∈ Mb(X)

of Definition8.49(b).
(c) Assume that X is a topological space, Σ(X) = B(X) and at least one of the
hypotheses (1) and (2) in Proposition8.44(d) is valid, so that P is concentrated on
supp(P). If f �supp(P) is bounded, then:

Δ f = H and
∫

X
f (x)d P(x) =

∫

supp(P)

f (x)d P(x) ∈ B(H) ,

where the right side is the operator of Definition8.49(c).

Proof (a)–(b). As first thing we have to prove, for any given measurable f : X → C,
that φ + ψ ∈ Δ f and cφ ∈ Δ f for any c ∈ C if φ,ψ ∈ Δ f . Note Δ f contains the
null vector of H, so it is non-empty.

If φ,ψ ∈ Δ f , E ∈ Σ(X):

||PE (φ + ψ)||2 ≤ (||PEφ|| + ||PEψ ||)2 ≤ 2||PEφ||2 + 2||PEψ ||2 ;

since μχ(E) = (χ |PEχ) = (χ |PE PEχ) = (PEχ |PEχ) = ||PEχ ||2:

μφ+ψ(E) ≤ 2(μφ(E) + μψ(E)) .

This implies, for L2(X, μφ) 	 f and L2(X, μψ) 	 f , that L2(X, μφ+ψ) 	 f . That
is to say, φ,ψ ∈ Δ f ⇒ φ + ψ ∈ Δ f . On the other hand μcφ(E) = |c|2(PEφ|φ) =
|c|2μφ(E), so f ∈ L2(X, μcφ) for f ∈ L2(X, μφ) and c ∈ C. That is to say,
φ ∈ Δ f ⇒ cφ ∈ Δ f , so Δ f is a subspace. That

∫
X f (x)d P(x) : Δ f 	 ψ 
→∫

X f (x)d P(x)ψ is linear is a consequence of the definition of
∫
X f (x)d P(x)ψ and

of the linearity of the integral of a bounded map in a PVM.
Now we show Δ f is dense in H. Given f as in the statement, let:

En := {x ∈ X | n − 1 ≤ | f (x)| < n} , for any n ∈ N, n ≥ 1.

Note En ∩ Em = ∅ if n �= m and∪n En = X. ByDefinition8.41 the closed subspaces
Hn := P(En)H are mutually orthogonal, and by propriety (d) of the same definition
finite combinations over the Hn form a dense space inside H. We claim Δ f contains
this subspace. By monotone convergence, if ψ ∈ H:

∫

X
| f (x)|2dμψ(x) = lim

k→+∞

k∑

n=1

∫

X
|χEn (x) f (x)|2dμψ(x) ≤ +∞ . (9.10)

The integral inside the sum can be written as follows, using Theorem8.54(b):

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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(∫

X
χEn (x) f (x)d P(x)ψ

∣
∣
∣
∣

∫

X
χEn (x) f (x)d P(x)ψ

)

.

But since x 
→ χEn (x) f (x) is bounded and χEn = χEn · χEn , using (iii) in Theo-
rem8.54(a) gives

∫

X
χEn (x) f (x)d P(x)ψ =

∫

X
χEn (x) f (x)d P(x)

∫

X
χEn (x)d P(x)ψ

=
∫

X
χEn (x) f (x)d P(x) ◦ P(En)ψ .

If ψ ∈ Hn , then, as projectors P(Em) are orthogonal,

∫

X
χEk (x) f (x)d P(x)ψ = 0, for k �= n .

Under the assumptions on ψ , therefore, the series of (9.10) becomes

∫

X
| f (x)|2dμψ(x) =

∫

X
|χEn (x) f (x)|2dμψ(x) ≤

∫

X
n2dμψ(x) = n2||ψ ||2 < +∞ .

We conclude Hn ⊂ Δ f , for any n = 1, 2, . . .. But Δ f is a subspace so it contains
also the dense space of finite combinations of the Hn . Hence Δ f itself is dense.

The new definition of integral extends the old one for functions in Mb(X) of
Definition8.49(b). For if the sequence Mb(X) 	 fn → f ∈ Mb(X) in (9.6) is
chosen as fn = χFn · f with Fn defined in (9.4), then this sequence is bounded
and converges pointwise to f . Hence, Theorem8.54(c) implies that the limit (9.6)
defining the new notion of integral coincides with that of Definition8.49(b).
(c) Given f : X → C, let Fn be defined as in (9.4). Suppose f �supp(P) is bounded.
Define boundedmeasurablemaps fn := χsupp(P) · f +gn where gn = χFn ·χX\supp(P) ·
f . Since supp(μψ) ⊂ supp(P) by Theorem8.52(v), for any ψ ∈ H we have
f ∈ L2(X, μψ), hence Δ f = H because μ f is finite, and:

∫

X
| fn(x) − f (x)|2dμψ(x) =

∫

supp(P)

| f (x) − f (x)|2dμψ(x) = 0 .

Consequently fn → f in L2(X, μψ) for any ψ ∈ H, so:

∫

X
f (x)d P(x)ψ := lim

n→+∞

∫

X
fn(x)d P(x)ψ = lim

n→+∞

∫

X
χsupp(P) fn(x)d P(x)ψ

= lim
n→+∞

∫

X
χsupp(P) f (x)d P(x)ψ =

∫

X
χsupp(P) f (x)d P(x)ψ =:

∫

supp(P)

f (x)d P(x)ψ ,

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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where the last integral is meant as in Definition8.49(c) (first case), so the operator∫
supp(P)

f (x)d P(x) belongs inB(H). �

Now a result that deals, in particular, with composites of integrals of spectral mea-
sures, and characterises in a very precise way the corresponding domains.

Theorem 9.4 Let (X,Σ(X)) be a measurable space, H a Hilbert space and P :
Σ(X) → B(H) a PVM. For any measurable f : X → C, in the same notation of
Theorem9.3:
(a)

∫
X f (x)d P(x) : Δ f → H is a closed operator;

(b)
∫
X f (x)d P(x) is self-adjoint if f is real, and more generally:

(∫

X
f (x)d P(x)

)∗
=
∫

X
f (x)d P(x) and Δ f = Δ f . (9.11)

(c) Suppose f : X → C, g : X → C are measurable, D is the standard domain
(Definition5.1) and f · g denotes the pointwise product. Then

∫

X
f (x)d P(x) +

∫

X
g(x)d P(x) ⊂

∫

X
( f + g)(x)d P(x) (9.12)

D

(∫

X
f (x)d P(x) +

∫

X
g(x)d P(x)

)

= Δ f ∩ Δg (9.13)

with equality in (9.12) ⇔ Δ f +g = Δ f ∩ Δg;

∫

X
f (x)d P(x)

∫

X
g(x)d P(x) ⊂

∫

X
( f · g)(x)d P(x) (9.14)

D

(∫

X
f (x)d P(x)

∫

X
g(x)d P(x)

)

= Δ f ·g ∩ Δg (9.15)

with equality in (9.14) ⇔ Δ f ·g ⊂ Δg. In particular:

∫

X
f (x)d P(x)

∫

X
f (x)d P(x) =

∫

X
| f (x)|2d P(x) (9.16)

D

(∫

X
f (x)d P(x)

∫

X
f (x)d P(x)

)

= Δ| f |2 . (9.17)

Moreover
(∫

X
f (x)d P(x)

∫

X
g(x)d P(x)

)

�Δ f ∩Δg∩Δ f ·g =
(∫

X
g(x)d P(x)

∫

X
f (x)d P(x)

)

�Δ f ∩Δg∩Δ f ·g .

(9.18)

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Eventually, if f is bounded on E ∈ Σ(X), then ΔχE · f = H and

∫

X
χE(x)d P(x)

∫

X
f (x)d P(x) ⊂

∫

X
f (x)d P(x)

∫

X
χE(x)d P(x) =

∫

X
(χE · f )(x)d P(x) ∈ B(H).

(9.19)
(d) If X = R, Σ(R) := B(R), p : R → C is a polynomial of degree m ∈ N, and
T := ∫

R
xd P(x), then

p(T ) =
∫

R

p(x)d P(x) and D(p(T )) = D(T m) = Δp . (9.20)

(e) Defining μφ,ψ as in Theorem8.52(c),
∫
X f (x)d P(x) is the unique operator on H

with domain Δ f such that, for any ψ ∈ Δ f , φ ∈ H:

(

φ

∣
∣
∣
∣

∫

X
f (x)d P(x)ψ

)

=
∫

X
f (x)dμφ,ψ(x) . (9.21)

(f) For any ψ ∈ Δ f :

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f (x)d P(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| f (x)|2dμψ(x) . (9.22)

(g) Every operator
∫
X f (x)d P(x) is positive when f is positive:

(

ψ

∣
∣
∣
∣

∫

X
f (x)d P(x)ψ

)

≥ 0 for any ψ ∈ Δ f , if f (x) ≥ 0, x ∈ X. (9.23)

(h) If (X′,Σ ′(X′)) is a measurable space and φ : X → X′ is measurable (i.e.
φ−1(E ′) ∈ Σ(X) for E ′ ∈ Σ ′(X′)), then

Σ ′(X′) 	 E ′ 
→ P ′(E ′) := P(φ−1(E ′))

is a PVM on X′, and for any measurable map f : X′ → C:

∫

X′
f (x ′)d P ′(x ′) =

∫

X
( f ◦ φ)(x)d P(x) and Δ′

f = Δ f ◦φ , (9.24)

where Δ′
f is the domain of the operator on the left.

Proof (a) As a preliminary result, we observe that, defining the sets Fk as in (9.3),
we have

P(Fn)ψ → ψ as n → +∞, for everyψ ∈ H. (9.25)

To prove it, define E0 = F0 and En := Fn \ Fn−1 so that: (i) Ek ∩ Eh = ∅ for h �= k,
(ii) Fn = ∪n

j=0E j , and (iii) ∪∞
j=0En = X. Then, the general properties of a PVM

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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yield:

P(Fn)ψ =
n∑

j=0

P(E j )ψ → P
(∪ j∈NE j

)
ψ = ψ as n → +∞, for everyψ ∈ H.

(9.26)
We claim T := ∫

X f (x)d P(x), defined on Δ f , is closed. Notice, first, that the
bounded operators

Tk :=
∫

X
χFk (x) f (x)d P(x) , (9.27)

for ψ ∈ Δ f , are such that: (1) T PFk ψ = PFk T ψ = Tkψ and (2) Tkψ → T ψ ,
k → +∞. The proof of (1) is similar to Theorem9.3(c), whilst (2) follows from the
argument preceding Lemma9.2. So let {ψn}n∈N ⊂ Δ f be such that ψn → ψ ∈ H
and T ψn → φ, n → +∞. We claim ψ ∈ Δ f and T ψ = φ, implying the closure of
T . By (1) and because PFk → I strongly as k → +∞ for (9.25):

Tkψ = lim
n→+∞ Tkψn = lim

n→+∞ PFk T ψn = PFk φ → φ inH as k → +∞.

Define φk := Tkψ ; then

∫

X
χFk (x) f (x)d P(x)ψ = φk → φ inH as k → +∞. (9.28)

By Theorem8.54(b):

∫

X
χFk (x)| f (x)|2dμψ(x) = ||φk ||2 → ||φ||2 < +∞ as n → +∞.

Monotone convergence ensures f ∈ L2(X, μψ), i.e. ψ ∈ Δ f . Rewriting (9.28) as
Tkψ = φk , and taking the limit as k → +∞ using (2), gives T ψ = φ, as required.
(b) Δ f = Δ f is an obvious consequence of the definition of Δ f and | f | = | f |. We

will show
∫
X f (x)d P(x) ⊂ (∫

X f (x)d P(x)
)∗
. If ψ ∈ Δ f , φ ∈ Δ f and fn → f in

L2(X, μφ) so fn → f in L2(X, μψ), where fn are bounded, we have:

(

ψ

∣
∣
∣
∣

∫

X
f (x)d P(x)φ

)

= lim
n→+∞

(

ψ

∣
∣
∣
∣

∫

X
fn(x)d P(x)φ

)

= lim
n→+∞

(∫

X
fn(x)d P(x)ψ

∣
∣
∣
∣φ

)

=
(∫

X
f (x)d P(x)ψ

∣
∣
∣
∣φ

)

where we used the definition of integral of f and f in P , plus property (iv) in
Theorem8.54(a). This means

∫
X f (x)d P(x) ⊂ (∫

X f (x)d P(x)
)∗
. We will prove

∫
X f (x)d P(x) ⊃ (∫

X f (x)d P(x)
)∗

by showing D
((∫

X f (x)d P(x)
)∗) ⊂ Δ f . Let

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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T := ∫
X f (x)d P(x) and take the bounded operators Tk of (9.27). Fix ψ ∈ D(T ∗).

Then there exists h ∈ H such that, for any φ ∈ Δ f , (ψ |T φ) = (h|φ). Choosing
φ = T ∗

k ψ we obtain (ψ |Tk T ∗
k ψ) = (h|T ∗

k ψ), where we used T T ∗
k = Tk T ∗

k because
T ∗

k = PFk T ∗
k from T PFk = Tk . Therefore ||T ∗

k ψ ||2 = (h|T ∗
k ψ), so ||T ∗

k ψ ||2 ≤
||T ∗

k ψ || ||h||, i.e. ||T ∗
k ψ || ≤ ||h||. Consequently, by Theorem8.54(b):

∫

X
χFk (x)| f (x)|2dμψ(x) ≤ ||h||2 for any k ∈ N,

which implies ψ ∈ Δ f by monotone convergence. So we have D(T ∗) ⊂ Δ f .
(c) Formulas (9.12), (9.13) and the ensuing remark are trivial consequences of the
given definitions and of standard domains. Let us prove (9.14), (9.15). Assume f
is bounded so that Δ f ·g ⊂ Δg , and ψ ∈ Δg . Take a sequence {gn}n∈N of bounded
measurable maps converging to g in L2(X, dμg). Then f ·gn → f ·g in L2(X, dμg),
and because the integrals of f , gn , f · gn are as in Definition8.49, plus (iii) in
Theorem8.54(a), we immediately have, for n → +∞:

∫

X
f (x)d P(x)

∫

X
gn(x)d P(x)ψ =

∫

X
( f ·gn)(x)d P(x)ψ →

∫

X
( f ·g)(x)d P(x)ψ.

As
∫
X f d P is continuous, we will prove that f bounded and ψ ∈ Δg imply

∫

X
f (x)d P(x)

∫

X
g(x)d P(x)ψ =

∫

X
( f · g)(x)d P(x)ψ . (9.29)

Let now φ := ∫
X gd Pψ . By (f) the identity shows

∫

X
| f (x)|2dμφ(x) =

∫

X
|( f ·g)(x)|2dμψ(x) if f is bounded andψ ∈ Δg. (9.30)

Take now f just measurable, possibly unbounded. As (9.30) holds for boundedmaps,
it holds for unbounded ones too. Since

D

(∫

X
f (x)d P(x)

∫

X
g(x)d P(x)

)

contains all ψ ∈ Δg such that φ ∈ Δ f , which happens by (9.30) precisely when
ψ ∈ Δ f ·g , we conclude:

D

(∫

X
f (x)d P(x)

∫

X
gd P(x)

)

= Δg ∩ Δ f ·g .

Suppose φ ∈ Δg ∩ Δ f ·g . When ψ = ∫
X g(x)d P(x)φ and fn := χFn · f (Fn as

previously), then fn → f in L2(X, μψ), fn · g → f · g in L2(X, μφ) and (9.29) and
part (f) ( fn replacing f ) imply:

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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http://dx.doi.org/10.1007/978-3-319-70706-8_8


9.1 Spectral Theorem for Unbounded Self-adjoint Operators 483

∫

X
f (x) d P(x)

∫

X
g(x) d P(x)φ =

∫

X
f (x) d P(x)ψ = lim

n→+∞

∫

X
fn(x) d P(x)ψ =

= lim
n→+∞

∫

X
( fn · g)(x) d P(x)φ =

∫

X
( f · g)(x) d P(x)φ .

This ends the proof of (9.14) and (9.15).
Inclusion (9.14) plus the equality in case Δg ⊃ Δ f ·g easily imply (9.18) and

(9.19). Concerning (9.18), we have Δ f ⊃ Δ f · f = Δ| f |2 for the following reason: as
μψ is finite, if ψ ∈ Δ| f (x)|2

∫

X
| f (x)|2dμψ(x) =

∫

X
| f (x)|2·1dμψ(x) ≤

√∫

X
| f (x)|4dμψ(x)

√∫

X
12dμψ(x) < +∞.

(d) By (9.14) and (9.12) we have

p(T ) ⊂
∫

X
p(x) d P(x) .

Hence the claim is true when D(p(T )) = Δp. To prove this we shall start from
showing by induction

D(T n) = Δxn for n ∈ N. (9.31)

When n = 0, 1, the identity is true: D(T 0) = Δ1 = H, D(T ) = Δx . Assume it
true for a given n and let us prove it for n + 1: D(T n+1) = Δxn+1 . We have to show
D(T T n) = Δx◦xn . Using the special property stated after (9.15), we know the claim
is equivalent to Δx◦xn ⊂ Δxn . The latter holds because μψ is positive and finite, and
|xn+1| > |xn| outside a compact set J ⊂ R, so ψ ∈ Δxn+1 implies

∫

R

|x |2ndμψ(x) =
∫

R\J
|x |2ndμψ(x) +

∫

J
|x |2ndμψ(x)

≤
∫

R\J
|x |2n+2dμψ(x) + sup

J
|x |2n

∫

J
1dμψ(x)

≤
∫

R

|x |2n+2dμψ(x) + sup
J

|x |2n
∫

R

1dμψ(x) < +∞ .

We remark, for later, that we have also obtained

D(T n+1) = Δxn+1 ⊂ Δxn = D(T n) .

To finish the proof of D(p(T )) = Δp we compute separately the two sides. Take the
leading coefficient am �= 0 in p. As D(T n+1) ⊂ D(T n), and in general D(A + B) =
D(A) ∩ D(B), we have
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D(p(T )) = D(T m) . (9.32)

Let us computeΔp. SinceΔxn+1 ⊂ Δxn , we findΔxm ⊂ Δp. Let us prove the opposite
inclusion. From |p(x)|/|x |m → |am |, |x | → +∞, follows |p(x)|/|x |m ≤ |am |+ε >

0 for any ε > 0, provided x does not belong in too large a compact set Jε ⊂ R.
Hence if ψ ∈ Δp: ∫

R

|x |2mdμψ

≤
∫

R\Jε

|x |2mdμψ +
∫

Jε

|x |2mdμψ ≤
∫

R\Jε

|p(x)|2
(|am | + ε)2

dμψ + sup
Jε

|x |2m
∫

R

dμψ

≤ 1

(|am | + ε)2

∫

R

|p(x)|2dμψ + sup
Jε

|x |2m
∫

R

dμψ < +∞ ,

and so ψ ∈ Δxm . Therefore Δp ⊂ Δxm and Δp = Δxm . From (9.31) and (9.32) we
have Δp = Δxm = D(T m) = D(p(T )), ending this part.
(e) Define the usual bounded maps fn := χFn · f tending to f in L2(X, μψ). By
definition of integral, and by (iv) in Theorem8.52(c):
(

φ

∣
∣
∣
∣

∫

X
f (x)d P(x) ψ

)

= lim
n→+∞

(

φ

∣
∣
∣
∣

∫

X
fn(x)d P(x) ψ

)

= lim
n→+∞

∫

X
fn(x)dμφ,ψ(x) .

Now we show

lim
n→+∞

∫

X
( fn(x) − f (x))dμφ,ψ(x) = 0 .

By Lemma9.2 (same notations):

∣
∣
∣
∣

∫

X
( fn(x) − f (x))dμφ,ψ(x)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X
( fn(x) − f (x))h(x)d|μφ,ψ(x)|

∣
∣
∣
∣

≤
∫

X
| fn(x) − f (x)|d|μφ,ψ(x)| ≤ ||φ||

√∫

X
| fn(x) − f (x)|2dμψ(x) → 0

as n → +∞, by definition of
∫
X f (x)d P(x)ψ . Uniqueness now follows. If

T : Δ f → H satisfies the same property of
∫

X f (x)d P(x), then T ′ := T −∫
X f (x)d P(x) solves (φ|T ′ψ) = 0 for any φ ∈ H, irrespective of ψ ∈ Δ f . Choos-

ing φ = T ′ψ gives ||T ′ψ || = 0 and so T = ∫
X f (x)d P(x).

(f) This statement follows, by continuity, from the similar property of bounded maps,
seen in Theorem8.54(b), when we use our definition of integral of unbounded maps.
(g) Likewise, Theorem8.52(b) implies (g). In fact if f ≥ 0, ψ ∈ Δ f , the sequence
of maps χFn · fn ≥ 0 (Fn as in (9.3)) tends to f in L2(X, μψ), so

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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0 ≤
(

ψ

∣
∣
∣
∣

∫

X
(χFn · f (x))d P(x)ψ

)

→
(

ψ

∣
∣
∣
∣

∫

X
f (x)d P(x)ψ

)

, as n → +∞,

and
(
ψ
∣
∣
∫
X f (x)d P(x)ψ

) ≥ 0.
(h) We shall outline the proof as it is elementary, if tedious. By direct inspection
P ′ is a PVM. If f is simple, assertion (9.24) is trivial. Using Definition8.49 one
generalises (9.24) to bounded measurable maps, so (9.24) extends by virtue of the
definition of integral for unbounded f . �

Corollary 9.5 Under the assumptions of Theorem9.3, if f : X → C is measurable
the following facts are equivalent.
(a) Δ f = H.
(b) f is essentially bounded with respect to the projector-valued measure P (Defin-
ition8.45).
(c)
∫
X f (x)d P(x) is bounded.

(d)
∫
X f (x)d P(x) ∈ B(H).

Under either of (a), (b), (c), (d), the estimate

|| f ||(P)
∞ ≤

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f d P

∣
∣
∣
∣

∣
∣
∣
∣ . (9.33)

holds.
SupposeX is a topological space,Σ(X) = B(X)and at least one of the hypotheses

(1) and (2) in Proposition8.44(d) is valid, so that P is concentrated on supp(P).
Then we can redefine f on a zero-measure set for P obtaining || f ||∞ < +∞, and
without altering

∫
X f d P: that latter can be computed with Definition8.49 and yields

the same result.

Proof Let us prove (a) ⇔ (b) ⇔ (c) ⇒ (9.33). Regarding (d), we will show (a) + (c)
⇒ (d), while (d) ⇒ (c) is trivial.
(a)⇒ (c) by the closed graph theorem (2.99), for

∫
X f d P is closed byTheorem9.4(a).

On the other hand, (c) ⇒ (a) because
∫
X f d P is closed with dense domain by

Theorem9.3(a). Indeed, if x ∈ H, there is a sequence D(
∫
X f d P) 	 xn → x and∫

X f d Pxn converges to some point in H because the operator is bounded assuming
(c). Next, closure implies that x ∈ D(

∫
X f d P) = Δ f , so that (a) holds.

(b)⇒ (c). Define Fn as in (9.4). If fn := χFn · f , then fn → f pointwise as n → +∞.
If f is essentially bounded, for n large enough f − fn is not 0 on a set Gn ∈ Σ(X)

with P(Gn) = 0. Hence

∫

X
f + (− fn)d P =

∫

X
χGn ( f − fn)d P =

∫

X
f − fnd P

∫

X
χGn d P

=
(∫

X
f − fnd P

)

P(Gn) = 0 .

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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By Theorem9.4(c),
∫
X f (x)d P(x) = − ∫X(− fn(x))d P(x) belongs to B(H) (− fn

being bounded by Theorem9.3(c)).
(c) ⇒ (b) + (9.33). Consider f : X → C measurable, with no boundedness assump-
tion, and assume (c) (i.e. (a)). Take the usual sequence fn ∈ Mb(X). By (8.48):

|| fn||(P)
∞ =

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f χnd P

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f d P

∫

X
χFn d P

∣
∣
∣
∣

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f d P

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
χFn d P

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f d P

∣
∣
∣
∣

∣
∣
∣
∣ =: M < +∞ .

By construction {x ∈ X | | f (x)| ≥ M} ⊂ ∪n∈N{x ∈ X | | fn(x)| ≥ M}. Monotonicity
and sub-additivity imply

(ψ |P({x ∈ X | | f (x)| ≥ M}ψ) ≤
∑

n∈N
(ψ |P({x ∈ X | | fn(x)| ≥ M})ψ) = 0 ,

which means || f ||(P)∞ ≤ M < +∞, as required. The final assertion is clear if
we redefine f null on the zero-measure set | f (x)| > N for some finite N >

|| f ||(P)∞ . �
***** Inclusions (9.12) and (9.14) can be turned into equalities by taking the clo-

sures of the left-hand sides, as shown in the next proposition. We need a preliminary
technical lemma, whose proof was essentially contained in Theorem9.4(a), but is
interesting in its own right.

Lemma 9.6 Under the assumptions of Theorem9.3, take a measurable f : X → C

and a family {Fn}n∈N ⊂ Σ(X) as in (9.3).
The subspace < PFn (H) >n∈N containing finite linear combinations of the PFn (H)

satisfies:
(a) < PFn (H) >n∈N⊂ Δ f , and it is dense in H,
(b)

∫
X f d P(< P(Fn)(H) >n∈N) ⊂< P(Fn)(H) >n∈N,

(c) < PFn (H) >n∈N is a core for
∫
X f d P.

Proof (a) Define E0 = F0 and En := Fn \ Fn−1 as in the proof of Theorem9.4(a),
so that: (i) Ek ∩ Eh = ∅ for h �= k, (ii) Fn = ∪n

j=0E j , (iii) ∪∞
j=0En = X, and (9.26)

holds true. Next (i), (ii) and the basic properties of a PVM imply

D0 :=< P(Fn)(H) >n∈N=< P(En)(H) >n∈N

and (9.26) entails that D0 is dense in H. Furthermore D0 ⊂ Δ f . Indeed, we know
that ψ ∈ D0 ⇔ ψ = ∑m

j=0 P(E j )ψ for some finite m. Hence (i) and elementary
properties of a PVM imply

μψ(L) =
⎛

⎝
m∑

j=1

P(E j )ψ

∣
∣
∣
∣
∣
P(L)

m∑

k=1

P(Ek)ψ

⎞

⎠ =
m∑

j=0

μψ(L ∩ E j )

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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for every L ∈ Σ(X), which yields

∫

X
| f (x)|2dμψ(x) =

m∑

j=0

∫

E j

| f (x)|2dμψ(x) < +∞ ,

since f is bounded on each E j ⊂ Fj by definition of Fj .
(b) If ψ ∈ D0, from (9.19) we have

∫

X
f d Pψ =

m∑

j=0

∫

X
f d P P(E j )ψ =

m∑

j=0

P(E j )

∫

X
f d Pψ

which means that
∫
X f d P(D0) ⊂ D0.

(c) We start by observing that
∫
X f d P is closed by Theorem9.4(a), so

∫
X f d P �D0

is closable and
∫
X f d P �D0 ⊂ ∫

X f d P . To obtain the converse inclusion, fix a point
(ψ,

∫
X f d Pψ) in the graph of

∫
X f d P and consider the sequence of points of the

graph of
∫
X f (x)d P(x) �D0 :

(

P(Fn)ψ,

∫

X
f d P �D0 P(Fn)ψ

)

n ∈ N ,

where the second entry is well defined as P(Fn)ψ ∈ D0. We have:

(

P(Fn)ψ,

∫

X
f d P �D0 P(Fn)ψ

)

=
(

P(Fn)ψ,

∫

X
f d P P(Fn)ψ

)

=
(

P(Fn)ψ,

∫

X
fnd Pψ

)

where fn := χFn · f , and we have exploited (9.19) with E = Fn . Just in view of
(9.25) and the very definition (9.9) of

∫
X f (x)d P(x) we have that, as n → +∞, in

the topology of the graph

(

P(Fn)ψ,

∫

X
fnd Pψ

)

→
(

ψ,

∫

X
f d Pψ

)

.

This result can be rephrased as
∫
X f d P(x) �D0 ⊃ ∫

X f d P , concluding the proof.
�

Proposition 9.7 Under the assumptions of Theorem9.3, if f, g : X → C are mea-
surable functions,

∫

X
f (x)d P(x) +

∫

X
g(x)d P(x) =

∫

X
( f + g)(x)d P(x) , (9.34)

and ∫

X
f (x)d P(x)

∫

X
g(x)d P(x) =

∫

X
( f · g)(x)d P(x) . (9.35)
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Proof Define Borel sets Fn := {x ∈ X | | f (x)| + |g(x)| + | f (x)g(x)| < n}, when
n ∈ N. This family satisfies (9.3) for f , g, f + g and f · g simultaneously, so in
particular < P(Fk) >k∈N is contained in Δ f , Δg , Δ f +g , Δ f ·g by Lemma9.6(a), and
it is a core for the corresponding integral operators by Lemma9.6(c).

Let us first focus on (9.34). From (9.12) we have

(∫

X
f d P +

∫

X
gd P

)

�<P(Fk )>k∈N⊂
∫

X
f d P +

∫

X
gd P ⊂

∫

X
f + g d P

so that, observing that the last integral is a closed operator,

(∫

X
f d P +

∫

X
gd P

)

�<P(Fk )>k∈N ⊂
∫

X
f d P +

∫

X
gd P ⊂

∫

X
f + g d P .

To conclude the proof it suffices to establish

(∫

X
f d P +

∫

X
gd P

)

�<P(Fk )>k∈N =
∫

X
f + g d P . (9.36)

To prove (9.36), define the pairwise disjoint sets Ek associated to the Fk as in the
proof of Lemma9.6, so that ψ ∈< P(Fk) >k∈N ⇔ ψ = ∑n

k=0 P(Ek)ψ for some
finite n. Moreover

(∫

X
f d P +

∫

X
gd P

)

ψ =
n∑

k=0

∫

X
f d P P(Ek)ψ +

∫

X
gd P P(Ek)ψ

=
n∑

k=0

∫

X
fnd Pψ +

∫

X
gnd Pψ

where we made use of (9.19) and where fn := χEn · f and gn := χEn · g. Since these
functions are bounded, from (ii) in Theorem8.54(a), we have

n∑

k=0

∫

X
fnd Pψ +

∫

X
gnd Pψ =

n∑

k=0

∫

X
fn + gnd Pψ =

n∑

k=0

∫

X
f + g d P P(Ek)ψ

=
∫

X
f + g d Pψ .

Summing up:

(∫

X
f d P +

∫

X
gd P

)

ψ =
∫

X
f + g d Pψ ∀ψ ∈< P(Fk) >k∈N .
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In other words
(∫

X
f d P +

∫

X
gd P

)

�<P(Fk )>k∈N=
∫

X
f + g d P �<P(Fk )>k∈N .

Since < P(Fk) >k∈N is a core of
∫
X f + g d P (Lemma9.6(c)), taking closures we

obtain (9.36), proving (9.34).
Let us pass to (9.35). As in the previous case, from (9.14) we have

(∫

X
f d P

∫

X
gd P

)

�<P(Fk )>k∈N ⊂
∫

X
f d P

∫

X
gd P ⊂

∫

X
f · g d P ,

where the first integral is well defined because of Lemma9.6(b). The proofs ends as
soon as one proves that

(∫

X
f d P

∫

X
gd P

)

�<P(Fk )>k∈N =
∫

X
f · g d P . (9.37)

With a reasoning similar to the previous case, taking Lemma9.6(b) into account, one
sees that

(∫

X
f d P

∫

X
gd P

)

�<P(Fk )>k∈N=
∫

X
f · g d P �<P(Fk )>k∈N .

Since < P(Fk) >k∈N is a core for
∫
X f · g d P , taking closures yields (9.37), con-

cluding the proof. �

The next definition is based on (9.9). We can also make use of Theorem9.4(e) to
obtain a more elegant, equivalent definition.

Definition 9.8 Let (X,Σ(X)) be a measurable space, H a Hilbert space and P :
Σ(X) → B(H) a PVM.
(a) If f : X → C is measurable with Δ f as in (9.8), the operator

∫

X
f (x)d P(x) : Δ f → H

of (9.9) is called integral of f with respect to the projector-valued measure P .
Equivalently,

∫
X f (x)d P(x) is the unique operator S : Δ f → H such that

(φ |Sψ ) =
∫

X
f (x)dμφ,ψ(x) , for anyφ ∈ H, ψ ∈ Δ f ,

where the complex spectral measure μφ,ψ is defined in Theorem8.52(c).
(b) For every E ∈ Σ(X), f : X → C and g : E → C measurable, the integrals

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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∫

E
f (x) d P(x) :=

∫

X
χE(x) f (x) d P(x) and

∫

E
g(x) d P(x) :=

∫

X
g0(x) d P(x) ,

with g0(x) := g(x) if x ∈ E and g0(x) := 0 if x /∈ E , are respectively called
integral of f on E and integral of g on E (in the projector-valued measure P).

Remarks 9.9
(1) By Theorem9.3(c), the above extends Definition8.49 for bounded maps.
(2) Assume that X is a topological space, Σ(X) = B(X) and at least one of the
hypotheses (1) and (2) in Proposition8.44(d) is valid, so that P is concentrated on
supp(P). For any f : X → C measurable,

∫

X
f (x)d P(x) =

∫

supp(P)

f (x)d P(x) and so
∫

X\supp(P)

f (x)d P(x) = 0 .

(9.38)
The proof is straightforward:χsupp(P) is bounded, by definition its integral is (χsupp(P)

is simple): ∫

supp(P)

1d P :=
∫

X
χsupp(P)d P = P(supp(P)) = I ,

where Proposition8.44(d) was used in the last equality. Now the second identity in
(9.19) gives
∫

X
f (x)d P(x) =

∫

X
f (x)d P(x)

∫

X
χsupp(P)(x)d P(x) =

∫

supp(P)

χsupp(P)(x) f (x)d P(x)

=:
∫

supp(P)

f (x)d P(x) .

The rest of (9.38) follows, similarly, by using P(X \ supp(P)) = 0. �
Example 9.10 (1) Consider the spectral measure:

P : B(N ) 	 E 
→ PE =
∑

z∈E

z(z| )

of Example8.51(2) on a basis N of a separable Hilbert space H, and equip N with
the second-countable topology of power sets. We are interested in writing an explicit
formula for the integral of an unboundedmap f : N → C relying on definition (9.6).
In the case under exam

∫
N | f (z)|2dμψ(z) < +∞ becomes

∑
z∈N | f (z)|2|(z|ψ)|2 <

+∞. We aim to show
∫

N
f (z)d P(z) = s-

∑

z∈N

f (z)z(z| )

for f unbounded. This formula was proved in Example8.51(2) for f bounded. Sup-
pose {Nn}n∈N are finite subsets in N , Nn+1 ⊃ Nn and ∪n∈NNn = N . The sequence

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8


9.1 Spectral Theorem for Unbounded Self-adjoint Operators 491

of bounded maps fn := χNn · f converges in L2(N , μψ), for any ψ ∈ H such
that

∑
z | f (z)|2|(z|ψ)|2 < +∞, simply by Lebesgue’s dominated convergence. By

definition (9.6) we have, if
∑

z∈N | f (z)|2|(z|ψ)|2 < +∞:

∫

N
f (z)d P(z)ψ := lim

n→+∞

∫

N
fn(z)d P(z)ψ (9.39)

But fn is bounded, so Example8.51(2) guarantees

∫

N
fn(z)d P(z)ψ = s-

∑

z∈N

fn(z)(z|ψ) =
∑

z∈Nn

f (z)z(z|ψ) ,

where the sum is finite for Nn contains a finite number of points. Definition (9.39)
reduces to ∫

N
f (z)d P(z)ψ = lim

n→+∞
∑

z∈Nn

f (z)z(z|ψ) ,

i.e. ∫

N
f (z)d P(z) = s-

∑

z∈N

f (z)z(z| ) . (9.40)

Later we will see a concrete example of an unbounded self-adjoint operator built
with this type of spectral measure.

(2) Consider the spectral measure of Example8.51. Take the Hilbert space H =
L2(X, μ), withX second countable andμ positive, σ -additive on the Borel σ -algebra
of X. The spectral measure on H we wish to consider is the following. For any
ψ ∈ L2(X, μ), E ∈ B(X), let

(P(E)ψ)(x) := χE(x)ψ(x) , for almost every x ∈ X . (9.41)

With ψ ∈ H, the measure μψ is

μψ(E) = (ψ |P(E)ψ) =
∫

E
|ψ(x)|2dμ(x) , for any E ∈ B(X) .

Consequently if g : X → C is measurable:

∫

X
g(x)dμψ(x) =

∫

X
g(x)|ψ(x)|2dμ(x) .

In Example8.51(1) we saw that if f : X → C is measurable and bounded:

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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(∫

X
f (y) d P(y)ψ

)

(x) = f (x)ψ(x) for everyψ ∈ L2(X, μ) and almost every x ∈ X.

(9.42)
This is valid for unbounded measurable maps, too, as long asψ ∈ Δ f . If f : X → C

is unbounded and measurable take a sequence of bounded measurable maps fn such
that fn → f , n → +∞, in L2(X, μψ), with ψ ∈ Δ f . In other words, by the above
expression for μψ we take

∫

X
| fn(x) − f (x)|2|ψ(x)|2dμ(x) → 0 as n → +∞.

By (9.42):

|| f · ψ − fn · ψ ||2H =
∫

X
| f (x) − fn(x)|2|ψ(x)|2dμ(x) → 0 as n → +∞.

Therefore the definition of integral in P implies that for anyψ ∈ Δ f ,with f : X → C

measurable and possibly unbounded:

(∫

X
f (x)d P(x)ψ

)

(y) = f (y)ψ(y) for almost every y ∈ X. (9.43)

�

9.1.2 Von Neumann Algebra of a Bounded Normal Operator

Corollary9.5 has an important consequence for the von Neumann algebra generated
by a bounded normal operator and the adjoint.

Theorem 9.11 (Von Neumann algebra generated by a bounded normal operator and
its adjoint) Take a normal operator T ∈ B(H) with H separable. The von Neumann
algebra generated by T and T ∗ (the subspace in B(H) that commutes with every
operator commuting with T and T ∗) consists precisely of the operators f (T, T ∗) of
Theorem8.39, for f ∈ Mb(σ (T )).

Proof Indicate by M the von Neumann algebra generated by T , T ∗. We know
that any f (T, T ∗), with f : σ(T ) → C measurable and bounded, belongs to M
by (iii) in Theorem8.39(b) (in the sequel we will need Theorem8.54, the spec-
tral Theorems8.56 and 8.58). Let us show the converse. Clearly M coincides with
the von Neumann algebra generated by the unital ∗-algebra of complex polyno-
mials in T , T ∗ (restricted to σ(T ), from now on always assumed). By the dou-
ble commutant theorem (3.88) M is the strong closure of complex polynomials
in T , T ∗. That is to say, if B ∈ M there is a sequence of bounded measurable
fn (better: restrictions of polynomials to σ(T )) such that fn(T, T ∗)x → Bx ,

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_3


9.1 Spectral Theorem for Unbounded Self-adjoint Operators 493

n → +∞, for any x ∈ H. We claim B = f (T, T ∗) for some bounded measur-
able map f defined on σ(T ). As g(T, T ∗) = ∫

σ(T )
gd P (T ) by Theorem8.54(d) for

g bounded and measurable, let {ψα}α∈N ⊂ H be an orthonormal system (count-
able since H is separable – the finite case is alike) as the one of the proof of
Theorem8.58. As in the mentioned proof, build corresponding orthogonal spaces
Hψα

⊂ H whose orthogonal sum is H. Each Hψα
is invariant under any g(T, T ∗),

and isomorphic to L2(σ (T ), μα), where μα(E) := (ψα|P (T )(E)ψα) are the usual
positive probability measures, P (T ) is the PVM of T and E ⊂ σ(T ) a Borel set.
The vector ψα is described in L2(σ (T ), μα) by the constant map 1. The operator
fn(T, T ∗) is described in each L2(σ (T ), μα) by themultiplication by fn . Now look at
x := ⊕α∈N2−α/2ψα ∈ H. The sequence fn(T, T ∗)x is aCauchy sequence by assump-
tion. Expanding H = ⊕α∈NHψα

, the inequality || fn(T, T ∗)x − fm(T, T ∗)x ||2 < ε,
n, m > Nε, is equivalent to

∑
α∈N

∫
σ(T )

| fn − fm |22−αdμα < ε, n, m > Nε, by
Theorem8.58(a). Let μ(E) := ∑

α∈N 2−αμα(E) be a bounded positive Borel mea-
sure. Then the previous condition says { fn}n∈N is Cauchy in L2(σ (T ), μ) (and in
every L2(σ (T ), μα)), so there is a subsequence (of the same name, for simplicity)
converging μ-almost everywhere to a measurable map f ∈ L2(σ (T ), μ), possibly
unbounded. Since zero-measure sets forμ are so also for eachμα , convergence holds
almost everywhere for P (T ) as well, by Theorem8.58. (In fact for any z = ⊕αφα ∈ H
with φα ∈ L2(σα(T ), μα), we have (z|P (T )(E)z) = ∑

α∈N
∫
σ(T )

χE |φα|2dμα = 0
if μα(E) = 0 for any α ∈ N.) So, according to Definition9.8, we may define
a generally unbounded, closed operator A := ∫

σ(T )
f d P (T ), with dense domain

Δ f . Call D ⊂ Δ f the linear space, dense in H, of elements ⊕α∈Fφα where
φα ∈ Mb(σ (T )) ⊂ L2(σ (T ), μα) and F is finite but arbitrary. By linearity
A �D= B �D as ||Aφα − Bφα|| ≤ ||(A − fn(T, T ∗))φα|| + || fn(T, T ∗)φα − Bφα||,
where the last term is infinitesimal as n → +∞ by construction, whereas the penulti-
mate termsquared is smaller than ||φα||2∞

∫ | f − fn|2dμα , and
∫ | f − fn|2dμα → 0 as

n → +∞, as we know. Since B is bounded andD dense, closing A �D= B �D gives
A �D = B. But A = A ⊃ A �D , and B is defined on H, whence A = B. Recalling
A = ∫

σ(T )
f d P (T ), by Corollary9.5 || f ||(P)∞ < +∞. We may redefine f on a zero-

measure set for P (T ) without changing A = ∫
σ(T )

f d P (T ). Since f is now bounded,

we can define f (T, T ∗) as in Theorem8.39. Thus f (T, T ∗) = ∫
σ(T )

f d P (T ) = B.
�
Remark 9.12 Theabove resultmaybe somehowgeneralisedby looking at unbounded
PVMs, as proven in Exercises9.5 and 9.6. �

9.1.3 Spectral Decomposition of Unbounded Self-adjoint
Operators

The time is right to prove the spectral decomposition theorem for unbounded self-
adjoint operators, exploiting the properties of the Cayley transform. A similar state-
ment is valid also for unbounded (closed) normal operators. The classical proof of

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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this general proposition can be found in [Rud91], which uses the self-adjoint case,
and thus relies again on the Cayley transform as a crucial tool. A general proof for
(closed) normal unbounded operators, which does not rely on the Cayley transform,
appears in [Schm12]. Extensions of the spectral decomposition theorem of (gener-
ally unbounded) normal operators to quaternionic Hilbert spaces appear in [GMP13]
and [GMP17].

Theorem 9.13 (Spectral decomposition of unbounded self-adjoint operators) Let T
be a self-adjoint (possibly unbounded) operator on the Hilbert space H.
(a) There exists a unique projector-valued measure P (T ) : B(R) → B(H) (R
equipped with the standard topology) such that

T =
∫

R

λ d P (T )(λ) . (9.44)

(b) P (T ) is concentrated on its support and

supp(P (T )) = σ(T ) . (9.45)

In particular:
(i) λ ∈ σp(T ) ⇔ P (T )({λ}) �= 0. In this case P (T )({λ}) is the orthogonal

projector onto the λ-eigenspace of T ;
(ii) λ ∈ σc(T ) ⇔ P (T )({λ}) = 0, and any open set Aλ ⊂ R containing λ satisfies

P (T )(Aλ) �= 0;
(iii) if λ ∈ σ(T ) is isolated, then λ ∈ σp(T );
(iv) if λ ∈ σc(T ), then for any ε > 0 there exists φε ∈ D(T ), ||φε|| = 1 with

0 < ||T φε − λφε|| ≤ ε .

Proof (a) Let V be the Cayley transform of T , a unitary operator by Theorem5.34
because T is self-adjoint. Setting S

1 := {(x, y) ∈ R
2 | x2 + y2 = 1}, define

X := S
1 \ {(1, 0)} and write z = x + iy. Put on X the topology induced by R

2 (or
S
1, which is the same) and consider its Borel σ -algebra B(X) ⊂ B(S1). Let also

P (V )
0 be the spectral measure of V on S

1, stemming from the spectral decomposition
Theorem8.56(a)’. Then

V =
∫

S1
zd P (V )

0 (x, y) . (9.46)

The operator I − V is one-to-one by (i) in Theorem5.34(b), so 1 = 1 + i0 /∈
σp(V ). This in turn implies P (V )

0 ({(1, 0)}) = 0 by (i) in Theorem8.56(b). Consider
orthogonal projectors

P (V ) : B(X) 	 E 
→ P (V )
0 (E) ∈ L (H) ,

where B(X) ⊂ B(S1). By construction P (V ) is a PVM on X (cf. Definition8.41);
note that P (V )(X) = I because P (V )

0 ({(1, 0)}) = 0:
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P (V )(X) := P (V )
0 (X) = P (V )

0 (S1\{(1, 0)}) = P (V )
0 (S1)−P (V )

0 ({(1, 0)}) = I−0 = I .

For the same reason the integral of a simple map s on S
1 in P (V )

0 coincides trivially
with the integral of s �X in P (V ). From the construction of the integral of bounded
maps, taking f ∈ Mb(S

1), hence f �X∈ Mb(X), it follows that
∫
X f �X d P (V ) =

∫
X f d P (V )

0 . However we choose φ,ψ ∈ H, E ⊂ B(S1):

μ
(P (V ))
φ,ψ (E \ {(1, 0)}) = (φ|P (V )(E \ {(1, 0)})ψ) = (φ|P (V )

0 (E \ {(1, 0)})ψ)

= (φ|P (V )
0 (E)ψ) = μ

(P (V )
0 )

φ,ψ (E) ,

(in the obvious notation). Then using the definition of integral of measurable maps
we find

∫
X f �X d P (V ) = ∫

X f d P (V )
0 for any f : S

1 → C measurable. In particular,
from (9.46) and dropping �X, we obtain:

V =
∫

X
zd P (V )(x, y) . (9.47)

Now define the real-valued, measurable unbounded map on X:

f (z) := i
1 + z

1 − z
z ∈ X , (9.48)

and integrate it in P (V ) on X, to get the operator (unbounded, in general):

T ′ :=
∫

X
f (z)d P (V )(x, y) . (9.49)

As f ranges in the reals ((x, y) ∈ X), T ′ must be self-adjoint by Theorem9.4(b).
The equation f (z)(1 − z) = i(1 + z), by virtue of Theorem9.4(c), implies:

T ′(I − V ) = i(I + V ) (9.50)

(it is easy to see that there is ‘=’ in (9.14)). In particular (9.50) implies Ran(I −V ) ⊂
Δ f =: D(T ′). From Theorem5.34 we know

T (I − V ) = i(I + V ) and D(T ) = Ran(I − V ) ⊂ Δ f .

Comparing with (9.50) allows to conclude T ′ is a self-adjoint extension of T . As
T = T ∗ has no proper self-adjoint extension (Proposition5.17(c)), then T = T ′.
Hence

T =
∫

X
f (z)d P (V )(x, y) . (9.51)

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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The function f : X → R is actually bijective and so its range is R. From Theo-
rem9.4(h) B(R) 	 E 
→ P (T )(E) := P (V )( f −1(E)) is a PVM on R and (9.51)
may be written as in (9.44):

T =
∫

R

λd P (T )(λ) .

But this is exactly the spectral expansion we wanted. So let us pass to the uniqueness
of the measure solving (9.44). Let P ′ be a PVM on R with

T =
∫

R

λd P ′(λ) .

The Cayley transform, by Theorem9.4(c), reads

V = (T − i I )(T + i I )−1 =
∫

R

λ − i

λ + i
d P ′(λ) .

Using statement (h) in the same theorem, with the same measurable f : X → R

with measurable inverse (9.48), we find

V =
∫

X
zd P ′( f (x, y)) ,

where B(X) 	 F 
→ Q(F) := P ′( f (F)) is a PVM on X which we can extend to a
PVM on S

1 by Q0(F) := Q(F \ {(1, 0)}), F ∈ B(S1). Thus

V =
∫

S1
zd Q0(x, y) .

By (9.46), then, as the spectral measure associated to a bounded normal operator
is unique by Theorem8.56, necessarily Q0(F) = P (V )

0 (F) for any Borel set in S
1.

Hence Q(F) = P (V )(F) for any Borel set of X. Therefore, for any E ∈ B(R),
Q( f −1(E)) = P (V )( f −1(E)), i.e. P ′(E) = P (T )(E), as required.
(b) First, observe that P (T ) is concentrated on its support since the standard topology
of R is second countable and so (1) in Proposition8.44(d) applies. Now let us show
σ(T ) = supp(P (T )), or equivalently, λ0 ∈ ρ(T ) ⇔ λ0 /∈ supp(P (T )). First of all
we shall prove λ0 /∈ supp(P (T )) ⇒ λ0 ∈ ρ(T ). In fact, there exists an open interval
(a, b) ⊂ R \ supp(P (T )), λ0 ∈ (a, b). Hence I = ∫

R
χR\(a,b)d P , and from the last

result in Theorem9.4(c)

∫

R

1

λ − λ0
d P (T )(λ) =

∫

R

1

λ − λ0
d P (T )(λ)

∫

R

χR\(a,b)d P =
∫

R

χR\(a,b)(λ)
1

λ − λ0
d P (T )(λ) .
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By Theorem9.4(c), as the last integrand is bounded,

Rλ0(T ) :=
∫

R

1

λ − λ0
d P (T )(λ) ∈ B(H) .

Always by Theorem9.4(c) (and keeping an eye on the domains of the products):

Rλ0(T )(T − λ0 I ) = I �D(T ) , (T − λ0 I )Rλ0(T ) = I .

The second is true everywhere on H, so Ran(T −λ0 I ) = H. The operator Rλ0(T ) is
therefore the resolvent of T associated to λ0 by Theorem8.4(a), as the name suggests.
By definition, then, λ0 ∈ ρ(T ).

Conversely, let us prove λ0 ∈ ρ(T ) ⇒ λ0 /∈ supp(P (T )). Under the assumptions
on λ0, P (T )({λ0}) = 0, otherwise there would exist ψ ∈ P (T )

{λ0}(H) \ {0} such that (by
Theorem9.4(c)):

T ψ =
∫

R

λd P (T )(λ)P (T )
{λ0}ψ =

∫

R

λd P (T )(λ)

∫

R

χ{λ0}(λ)d P (T )(λ)ψ

=
∫

R

λχ{λ0}(λ)d P (T )(λ)ψ =
∫

R

λ0χ{λ0}(λ)d P (T )(λ)ψ = λ0P (T )
{λ0}ψ = λ0ψ

and then ψ ∈ σp(T ), contradicting λ0 ∈ ρ(T ). Furthermore, the resolvent exists
(as T is closed and by Theorem8.4(a, b)). This is the operator Rλ0(T ) ∈ B(H) that
satisfies

(T − λ0 I )Rλ0(T ) = I and Rλ0(T )(T − λ0 I ) = I �D(T ) .

On the other hand Theorem9.4(c) and P (T )({λ0}) = 0 imply

(∫

R

1

λ − λ0
d P (T )(λ)

)

(T −λ0 I ) = I �D(T ) , (T −λ0 I )
∫

R

1

λ − λ0
d P (T )(λ) = I

(again, beware of domains). From the first we also see that the domain of∫
R

1
λ−λ0

d P (T )(λ) is D(T − λ0 I ), i.e. H. It does not really matter how one defines

λ 
→ 1
λ−λ0

at λ = λ0, because P (T )({λ0}) = 0. By uniqueness of the inverse, then,

∫

R

1

λ − λ0
d P (T )(λ) = Rλ0(T ) ,

and the operator on the left is bounded. Now suppose by contradiction that λ0 ∈
supp(P (T )). Then any open set containing λ0, in particular any interval In := (λ0 −
1/n, λ0 + 1/n), must satisfy P (T )(In) �= 0. Take ψn ∈ P (T )

In
(H) \ {0} for any

n = 1, 2, . . .. Without loss of generality assume ||ψn|| = 1. Using Theorem9.4(f)
we obtain

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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||Rλ0(T )ψn||2 =
∣
∣
∣
∣

∣
∣
∣
∣

∫

R

1

λ − λ0
d P (T )(λ)ψn

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

In

1

|λ − λ0|2 dμψn (λ)

≥ inf
In

1

|λ − λ0|2
∫

In

dμψn (λ) ≥ inf
In

1

|λ − λ0|2 = n2 → +∞ as n → +∞.

We have reached the absurd that Rλ0(T ) cannot be bounded. Therefore λ0 /∈
supp(P (T )).

Let us prove the first part of (i); the second part can be proved as we did for the
corresponding part of (i) inTheorem8.56(b), using (9.22).As above, if P (T )({x}) �= 0
then x ∈ σp(T ). Suppose x ∈ σp(T ). By definition ofCayley transform, ((x−i)/(x+
i)) ∈ σp(V ). We may apply (i) in Theorem8.56(b) to the normal (unitary) operator
V replacing T . Then P (V )({ x−i

x+i }) �= 0. Looking at the way the PVM associated to
T was obtained from the PVM of V , we see P (T )(x) = P (V )({ x−i

x+i }) �= 0.
Now to (ii). By Proposition8.7(a), x ∈ σc(T ) means: (1) x ∈ σ(T ) but (2)

x /∈ σp(T ). Assertion (1) implies x ∈ supp(P (T )), so any open set Ax containing x
must satisfy P (T )(Ax ) �= 0. Number (2) is equivalent to P (T )({x}) = 0 (otherwise
(i) would give a contradiction).

The proof of (iii) is immediate: if x ∈ supp(P (T )) is an isolated point, then
P (T )({x}) �= 0, otherwise x could not belong to supp(P (T )), and using (i) the claim
follows.

At last, let us prove (iv). If x ∈ σc(T ), using (ii) on the intervals In := (x −
1/n, x + 1/n), n = 1, 2, . . ., we have P (T )(In) �= 0. So choose ψn ∈ P (T )

In
(H) with

||ψn|| = 1 for any n. Then

||T ψn − xψn||2 =
(∫

R

(λ − x)d P (T )(λ)ψn

∣
∣
∣
∣

∫

R

(λ − x)d P (T )(λ)ψn

)

=
(∫

R

(λ − x)d P (T )(λ)P (T )
In

ψn

∣
∣
∣
∣

∫

R

(λ − x)d P (T )(λ)ψn

)

Using Theorem9.4(c) the last inner product is

∫

R

χIn (x)(λ − x)2dμψn (λ) ≤
∫

In

sup
In

(λ − x)2dμψn (λ) =

= n−2
∫

In

dμψn (λ) = n−2
∫

R

dμψn (λ) = n−2||ψn||2 .

So for any n = 1, 2, . . . there exists a unit vector ψn with ||T ψn − xψn|| ≤ 1/n.
The claim follows, since x /∈ σp(T ) by assumption, and 0 < ||T ψn − xψn||. �

Having eventually settled the spectral theorem we can pass to a definition useful for
the applications to QM.

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Definition 9.14 Consider a self-adjoint operator T on the Hilbert space H and a
Borel-measurable map f : σ(T ) → C. The operator:

f (T ) :=
∫

σ(T )

f (x)d P (T )(x) , (9.52)

with domain

D( f (T )) = Δ f :=
{

ψ ∈ H

∣
∣
∣
∣

∫

σ(T )

| f (x)|2dμ
(T )
ψ (x) < +∞

}

,

where μ
(T )
ψ (E) := (ψ |P (T )(E)ψ) for any E ∈ B(σ (T )), is called function of the

operator T .

Since supp(P (T )) = σ(T ), the PVM P (T ) associated to T can be thought of as being
defined either on σ(T ) or on R. Even when defined on σ(T ) only (precisely, on the
Borel σ -algebra B(σ (T ))) we still have supp(P (T )) = σ(T ) by the definition of
support in the subspace σ(T ) of R with induced topology. Therefore we can view
the right integral in (9.52) as living on R, by extending f trivially (as zero) outside
σ(T ) or directly taking a measurable f : R → C:

f (T ) :=
∫

R

f (x)d P (T )(x) ,

with

D( f (T )) = Δ f :=
{

ψ ∈ H

∣
∣
∣
∣

∫

R

| f (x)|2dμ
(T )
ψ (x) < +∞

}

.

In the sequelwe shall use themost convenient viewpointwithout further explanations.
We leave to the reader the obvious check that the definition of f (T ) coincides with
the known one when T ∈ B(H), f ∈ Mb(σ (T )) (relying on the functional calculus
for bounded measurable functions, cf. Chap.8).

Remarks 9.15
(1) The spectral theorem allows for a second decomposition of the spectrum of a
self-adjoint operator T : D(T ) → H. Its constituents are the discrete spectrum

σd(T ) :=
{
λ ∈ σ(T )

∣
∣
∣dim

(
P (T )

(λ−ε,λ+ε)(H)
)

is finite for some ε > 0
}

,

and the essential spectrum σess(T ) := σ(T ) \ σd(T ).
It is not hard to see that λ ∈ σd(T ) ⇔ λ is an isolated point in σ(T ), and as
such, λ is an eigenvalue for T with finite-dimensional eigenspace. By Theorem9.13
σd(T ) ⊂ σp(T ). In general, though, the opposite inclusion fails, for instance because
there may be non-isolated points in σp(T ).
(2) A third spectral decomposition for a self-adjoint operator T : D(T ) → H arises
by splitting the Hilbert space into the closed span Hp of the eigenvectors and its

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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orthogonal complement: H = Hp ⊕H⊥
p . BothHp ∩ D(T ) andH⊥

p ∩ D(T ) are easily
T -invariant. With the obvious symbols:

T = T �Hp ⊕T �H⊥
p

.

One calls purely continuous spectrum the set σpc(T ) := σ(T �H⊥
p
), where for

simplicity T �H⊥
p
stands for T �D(T )∩H⊥

p
here and in the sequel. Then σ(T ) = σp(T )∪

σpc(T ). The latter is not necessarily a disjoint union, and in general σpc(T ) �= σc(T ).
(3) A fourth spectral decomposition of T : D(T ) → H on the Hilbert space H (and
even on a normed space), is that into approximate point spectrum

σap(T )

:=
{
λ ∈ σ(T ) | (T − λI )−1 : Ran(T − λI ) → D(T ) does not exist or is not bounded

}

and purely residual spectrum σpr (T ) := σ(T ) \ σap(T ). The unboundedness of
(T − λI )−1 is equivalent to the existence of δ > 0 with ||(T − λI )ψ || ≥ δ||ψ || for
any ψ ∈ D(T ), so we immediately see how the next result comes about, thereby
justifying the names: λ ∈ σap(T ) ⇔ there exists a unit vector ψε ∈ D(T ) such that

||T ψ − λψ || ≤ ε

for any ε > 0. For self-adjoint operators the above holds for any λ ∈ σc(T ) due
to Theorem8.56(b), but clearly also for λ ∈ σp(T ); since σ(T ) = σp(T ) ∪ σc(T )

in this case, we conclude σap(T ) = σ(T ) and σpr (T ) = ∅ for every self-adjoint
operator.
(4) The last partial spectral classification for self-adjoint operators (cf. [ReSi80, vol.
I] and [Gra04]) descends from Lebesgue’s Theorem1.77 on the decomposition of
Borel measures onR. If T is self-adjoint on the Hilbert spaceH andμψ is the spectral
measure of the vector ψ (Theorem8.52(c)), we define the sets (all closed spaces):
Hac := {ψ ∈ H | μψ is absolutely continuous for the Lebesgue measure},
Hsing := {ψ ∈ H | μψ is continuous and singular for the Lebesgue measure},
Hpa := {ψ ∈ H | μψ is purely atomic (hence singular for the Lebesgue measure)}.
Then set σac(T ) := σ(T �Hac), σsing(T ) := σ(T �Hsing ), respectively called
absolutely continuous spectrum of T and singular spectrum of T . It turns out
that σac(T ) ∪ σsing(T ) = σpc(T ) and σp(T ) = σ(T �Hpa ).
(5) As supp(P (T )) = σ(T ), definition (9.52) reads:

f (T ) :=
∫

σ(T )

f (x)d P (T )(x) . (9.53)

Likewise, the domain of f (T ) is

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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D( f (T )) =
{

ψ ∈ H

∣
∣
∣
∣

∫

σ(T )

| f (x)|2dμ
(T )
ψ (x) < +∞

}

,

as supp(μφ,ψ) ⊂ supp(P (T )). Eventually, if f : R → R is measurable, decompos-
ing f (T ) (self-adjoint by Theorem9.4(b)) under the spectral Theorem9.13 produces

∫

σ( f (T ))

λd P ( f (T ))(λ) =
∫

σ(T )

f (λ)d P (T )(λ) =
∫

σ( f (T ))

λd P (T )( f −1(λ)) . (9.54)

The last identity follows from Theorem9.4(h). By uniqueness of the PVM associated
to f (T ) we have

P f (T )(E) = P (T )( f −1(E)) for any E ∈ B(σ ( f (T ))). (9.55)

(6) Theorem9.3(d) implies that for any self-adjoint T , the standard domain of a
polynomial p(T ) coincides with the domain of p(T ) thought of as function of T
according to Definition9.14. By definition of standard domain we also have, for any
self-adjoint T :

D(T m) ⊂ D(T n) , for any 0 ≤ n ≤ minN. (9.56)

�

Functions of an operator enjoy properties that descend directly from Theorems9.3
and 9.4. The next proposition specifies more features of the spectrum of f (T ). In
order to stay general, we shall state the first result for spectral measures that do not
necessarily come from self-adjoint operators. But first a definition.

Definition 9.16 If P : B(X) → B(H) is a PVM on the topological space X and
f : X → C is Borel measurable, the essential rank of f with respect to P

ess ran P( f ) ⊂ C

is the closed complement of the union of all open sets A ⊂ C such that P( f −1(A)) =
0. I.e., z ∈ ess ranP( f ) ⇔ P( f −1(A)) �= 0 if A ⊂ C open and z ∈ A.

(Note that f −1(A) ∈ B(X) since f is Borel measurable and A is open.) If V is the
union of said sets A then P( f −1(V )) = 0, because V is the union of countably many
sets A by Lindelöf’s lemma, and PVMs are sub-additive.

Proposition 9.17 Let P : B(X) → B(H) be a PVM on the topological space X
and f : X → C a Borel measurable map. If Ez := f −1({z}), z ∈ C then:
(a)

σ

(∫

X
f d P

)

= ess ranP( f ) ,

and in particular, for z ∈ ess ranP( f ):
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(i) P(Ez) �= 0 ⇒ z ∈ σp
(∫

X f d P
)
,

(ii) P(Ez) = 0 ⇒ z ∈ σc
(∫

X f d P
)
,

(hence σr
(∫

X f d P
) = ∅ even if f is not essentially bounded).

Specialising to the PVM P (T ) : σ(T ) → B(H) of a normal or self-adjoint operator
T , the following results hold for f : σ(T ) → C (Borel measurable).
(b) If f : σ(T ) → C is continuous and T self-adjoint, σ( f (T )) = f (σ (T )), with
bar denoting closure.
(c) If f : σ(T ) → C is continuous and T ∈ B(H) normal, σ( f (T )) = f (σ (T )).
(d) If f : σ(T ) → C is measurable and T as in (b) or (c), then σp( f (T )) ⊃
f (σp(T )) (not an equality, in general).

Proof (a) In the sequel Ψ ( f ) := ∫
X f d P and we assume z = 0 without loss of

generality. Let us prove (i). If P(E0) �= 0, there exists x ∈ P(E0)(H) with ||x || = 1.
Call χ := χE0 , so f χ = 0 and Ψ ( f )Ψ (χ) = 0 by Theorem9.4(c). As Ψ (χ) =
P(E0), Ψ ( f )x = Ψ ( f )P(E0)x = Ψ ( f )Ψ (χ)x = 0, proving (i).

Now to (ii). By assumption P(E0) = 0, but P(Fn) �= 0 if Fn := {s ∈
X | | f (s)| < 1/n}, n = 1, 2, . . ., because z ∈ ess ranP( f ). Choose xn ∈ P(Fn)(H),
||xn|| = 1 and letχn := χFn . As before ||Ψ ( f )xn|| = ||Ψ ( f χn)xn|| ≤ ||Ψ ( f χn)|| =
|| f χn||∞ ≤ 1/n. Therefore Ψ ( f )xn → 0, notwithstanding ||xn|| = 1. This shows
that Ψ ( f )−1 (and, similarly, (Ψ ( f )− z I )−1) cannot be bounded if it exists. To show
0 (z in general) is in the continuous spectrum we need prove K er(Ψ ( f )) = {0} and
Ran(Ψ ( f )) = H. Suppose Ψ ( f )x = 0 for some x ∈ Δ f . Then

∫

X
| f |dμx = ||Ψ ( f )x ||2 = 0 . (9.57)

As P( f −1(0)) = 0 and hence (x |P( f −1(0))x) = 0, we have | f | > 0 almost every-
where for μx , so that (9.57) entails 0 = μx (X) = ||x ||2. That is, K er(Ψ ( f )) = {0}.
To finish part (ii) we prove Ran(Ψ ( f )) = H. Since Ψ ( f )∗ = Ψ ( f ), the same argu-
ment used above tells K er(Ψ ( f )∗) = {0} and Ran(Ψ ( f )) = (K er(Ψ ( f )∗)⊥)⊥ =
{0}⊥ = H.

There remains the first assertion in (a). By (i)–(ii) we have ess ranP( f ) ⊂
σ(Ψ ( f )). For the opposite inclusion assume z = 0 /∈ ess ran P( f ) (z �= 0 is
analogous). Then f ′ := 1/ f is bounded and f f ′ = 1, so ψ( f )Ψ ( f ′) = I and
Ran(Ψ ( f )) = H. Since | f | > 0, Ψ ( f ) is one-to-one as in case (ii). Therefore
Ψ ( f )−1 ∈ B(H) by the closed graph theorem. This ends the proof because Theo-
rem8.4(a) implies 0 /∈ σ(Ψ ( f )).
(b) Recall supp(P (T )) = σ(T ) (viewing P (T ) on C, or only on σ(T ) if we
use the induced topology). Certainly f (supp(P (T ))) ⊂ ran essP( f ) (if z ∈
f (supp(P (T ))), for any open set A ⊂ C, A 	 z, the open set f −1(A) includes x ∈
supp(P (T )) with f (x) = z and so P (T )( f −1(A)) �= 0 otherwise x /∈ supp(P (T ))).
Because ran essP (T ) ( f ) is closed, we have f (supp(P (T ))) ⊂ ran essP (T ) ( f ). If
z ∈ ran essP (T ) ( f ) but z /∈ f (supp(P (T ))), there would be an open set A 	 z
not intersecting f (supp(P (T ))). Thus P (T )( f −1(A)) = P (T )(∅) = 0, which cannot
be by definition of ran essP (T ) ( f ).

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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(c) The statement is straightforward from (b): if T ∈ B(H), then the spectrum
σ(T ) is compact and its continuous image in C under f is compact, so closed and
f (σ (T )) = f (σ (T )).
(d) If λ ∈ σp(T ) then P (T )({λ}) �= 0. If x ∈ P (T )({λ})(H)\{0}, using Theorem9.4(c)
we get f (T )x = f (T )χ{λ}(T )x = f (λ)x , hence f (λ) ∈ σp( f (T )).
Here is an example where σp( f (T )) � f (σp(T )) for T = T ∗. Take (a, b) ⊂ σc(T )

so that P (T )((a, b)) �= 0. If f is measurable, it equals a constant c > 0 on (a, b)

and f (λ) = 0 outside the interval, so c ∈ σp( f (T )) by (i) in (a). But c /∈ f (σp(T ))

(which at most includes 0 < c) and hence σp( f (T )) � f (σp(T )). �

9.1.4 Example of Operator with Point Spectrum: The
Hamiltonian of the Harmonic Oscillator

On the complexHilbert space L2(R, dx) (dx is the Lebesguemeasure onR) consider
the operator

H0 := 1

2m

(
P �S (R)

)2 + mω2

2

(
X �S (R)

)2
,

where X , P are the position and momentum operators for a particle moving on the
real line, seen in Chap.5. In other terms

H0 := − �
2

2m

d2

dx2
+ mω2

2
x2 ,

where x2 stands for the multiplication by R 	 x 
→ x2 and �, ω, m are positive
constants. Define D(H0) := S (R), where S (R) is the Schwartz space of R, i.e.
the space of smooth complex functions that vanish at infinity, together with any
derivative, faster than any negative power of x (see Example2.91).

The numbers �, ω, m have no mathematical relevance (and could be set to 1 in the
sequel), yet it is their physical meaning that is important. The operator H0 is called
the Hamiltonian of the one-dimensional harmonic oscillator with characteristic
frequency ω/(2π) for a particle of mass m, and h := 2π� is Planck’s constant. Note
that H0 is not an observable as it is not self-adjoint. However, its closure H0 is self-
adjoint: it is the energy observable of the system under exam. In this section we shall
not be concerned with the physical background, and just study the operator from
a mathematical perspective, leaving any comment about the physics to Chaps. 12
and 13.

Evidently H0 is symmetric, asHermitian andbecauseS (R) is dense in L2(R, dx).
Moreover, it admits self-adjoint extensions by von Neumann’s criterion (Theo-
rem5.43), for it commuteswith the (anti-unitary) complex conjugation of L2(R, dx).
We will show H0 is essentially self-adjoint, provide an explicit expression for it in
terms of the spectral expansion of its unique self-adjoint extension H0, and also
describe the spectrum.

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_13
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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Let us introduce three operators, called creation operator, annihilation operator
and number operator:

A� :=
√

mω

2�

(

x − �

mω

d

dx

)

, A :=
√

mω

2�

(

x + �

mω

d

dx

)

, N := A� A .

(9.58)
In this case, as well, we assume the operators are densely defined on D(A) =
D(A�) = D(N ) := S (R). It should be clear that A� ⊂ A∗, justifying the notation,
and N is further symmetric. Notice S (R) is dense and invariant under H0, A, A�.
Using A, A� wewill build eigenvectors forN and H0 that form a basis in L2(R, dx).
As eigenvectors are obviously analytic vectors, by Nelson’s criterion (Theorem5.47)
H0 and N are essentially self-adjoint on their domain S (R).

We start by observing that, by definition, the commutation relation

[A, A�] = I , (9.59)

holds, where either side acts on the dense invariant space S (R).1 The proof is
immediate. What is more, still by definition,

H0 = �ω

(

A� A + 1

2
I

)

= �ω

(

N + 1

2
I

)

. (9.60)

Consider the equation in S (R):
Aψ0 = 0 , (9.61)

A solution is, easily,

ψ0(x) = 1

π1/4
√

s
e− x2

2s2 , s :=
√

�

mω
,

where the factor was chosen so to normalise ||ψ0|| = 1. The function ψ0 is the
first Hermite function introduced in Example3.32(4), provided we use the variable
x ′ = x/s and consider the factor 1/

√
s not to destroy the normalisation. Now define

vectors:

ψn := (A�)n

√
n! ψ0 (9.62)

for n = 1, 2, . . .. Only using (9.61), (9.59) it is easy to prove by induction that

Aψn = √
nψn−1 , A�ψn = √

n + 1ψn+1 , (ψn|ψm) = δnm , (9.63)

n, m ∈ N. The second identity actually follows from the definition of the ψn , whilst
the first is proved like this:

1More appropriately, identity (9.59) should be written [A, A�] ⊂ I .

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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Aψn = 1√
n! A(A�)nψ0 = 1√

n! [A, (A�)n]ψ0 + 1√
n! (A�)n Aψ0 = 1√

n! [A, (A�)n]ψ0 + 0 ;

but (9.59) implies [A, (A�)n] = n(A�)n−1, substituting which above gives what
needed. Here is the proof of the third identity (for n ≥ m, the other case is similar):

(ψm |ψn) = 1√
n!m (ψm−1|A(A�)nψ0) = 1√

n!m (ψm−1|[A, (A�)n]ψ0)

= n√
n!m (ψm−1|(A�)n−1ψ0) =

√
n

m
(ψm−1|ψn−1) = · · · =

√
n!

m!(n − m)! (ψ0|ψn−m) .

If n = m the result is 1, otherwise 0, for

(ψ0|ψn−m) = (n − m)−1/2(ψ0|A�ψn−m−1) = (n − m)−1/2(Aψ0|ψn−m−1) = 0 .

The second equation in (9.63) (the normalisation is preserved when using x ′ = x/s
because of 1/

√
s) is the recurrence relationship of Hermite functions mentioned in

Example3.32(4). Hence the ψn are (up to a multiplicative constant and a change of
variable) Hermite functions, and so they are a basis of L2(R, dx). The last equation
in (9.63) implies {ψn}n∈N is, as it should, an orthonormal system in L2(R, dx); the
first two tell

N ψn = nψn , (9.64)

so by (9.60) the ψn are a Hilbert basis of eigenvectors of H0, as:

H0ψn = �ω

(

n + 1

2

)

ψn . (9.65)

By the way this proves H0 (but alsoN ) is unbounded, since the set {||H0ψ || | ψ ∈
D(H0) , ||ψ || = 1} contains all numbers �ω(n + 1/2), n ∈ N. By Nelson’s criterion
(Theorem5.47) the symmetric operators N , H0 are both essentially self-adjoint,
since their domains contain a set {ψn}n∈N of analytic vectors spanning a dense subset
in L2(R, dx).

To obtain the spectral decomposition of H0, construct a spectral measure on R

with support on the naturals n ∈ N:

PF := s-
∑

n∈F∩N
ψn(ψn| ) for F ∈ B(R).

The PVMwe have found can be reinterpreted as a PVM defined onN, identified with
N := {ψn}n∈N. Following in the footsteps of Example9.10(1), for any measurable
map f : R → C we have

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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∫

R

f (x)d P(x) =
∫

N

f (φ(z))d P(z) = s-
∑

n∈N
f

(

�ω

(

n + 1

2

))

ψn(ψn| ) ,

where the last equality is (9.40). Taking f to beR 	 x 
→ x , we obtain the self-adjoint
operator (for Theorem9.4(b))

H :=
∫

R

xd P(x) = s-
∑

n∈N
�ω

(

n + 1

2

)

ψn(ψn| ) . (9.66)

We claim H = H0. Let < N > be the dense space spanned by finite combinations
of the ψn . By Nelson’s criterion H0 �<N> is still essentially self-adjoint. Therefore
H0 = H0 �<N>, i.e. H0 and H0 �<N> have the same (unique) self-adjoint extension
(their closure). On the other hand H is certainly a self-adjoint extension of H0 �<N>,
because (9.66) implies

Hψn = ω

(

n + 1

2

)

ψn = H0ψn

for any n, and so H �<N>= H0 �<N>. Therefore H must be the unique self-adjoint
extension of H0 �<N>, hence of H0. This means H = H0, as was claimed. Under
the spectral decomposition Theorem9.13 the spectral measure associated to H0 is
B(R) 	 F 
→ PF , and we also have the spectral decomposition of H0 into

H0 = s-
∑

n∈N
�ω

(

n + 1

2

)

ψn(ψn| ) .

Eventually, using Theorem9.13(b), from the latter we obtain

σ(H0) = σp(H0) =
{

�ω

(

n + 1

2

) ∣
∣
∣
∣ n ∈ N

}

.

We must remark that the spectrum of H0 is a point spectrum and eigenspaces are all
finite-dimensional, even though the operator itself is not compact (it is unbounded).
Yet the first and second inverse powers of H0 are compact, for they are a Hilbert–
Schmidt operator and a trace-class operator respectively (exercise).

The numbers in σp(H0) are, physically, the levels of total mechanical energy that
a quantum oscillator may assume for given ω, m, in contrast to the classical case
where the energy varies with continuity.
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9.1.5 Examples with Continuous Spectrum: The Operators
Position and Momentum

We return to the operators position (5.12)–(5.13) and momentum (5.18)–(5.19) on
the Hilbert space H = L2(R3, dx) with Lebesgue measure. In the sequel we shall
set x = (x1, x2, x3). We saw that Xi and Pi , i = 1, 2, 3, are self-adjoint, and we set
out to determine their spectra and spectral expansion.

Start by the position operator X1. The findings will work for X2 and X3 by
swapping names. A PVM on R with values inB(H) = B(L2(R3, dx)) is

(P(E)ψ)(x1, x2, x3) = χE (x1)ψ(x1, x2, x3) for any E ∈ B(R), ψ ∈ L2(R3, dx).

(9.67)
If ψ ∈ L2(R3, dx), it is easy to see the measure μψ on B(R) is defined by:

μψ(E) =
∫

E×R2
|ψ(x1, x2, x3)|2dx , E ∈ B(R),

so ∫

R

g(y)dμψ(y) =
∫

E×R2
f (x1)ψ(x1, x2, x3)dx (9.68)

for g : R → C Borel measurable. In analogy to Example9.10(2) it is easy to check,
for f : R → C Borel measurable and ψ ∈ Δ f (i.e.

∫
R

| f (x1)ψ(x1, x2, x3)|2dx <

+∞), that

(∫

R

f (y)d P(y)ψ

)

(x1, x2, x3) = f (x1)ψ(x1, x2, x3) a.e. for (x1, x2, x3) ∈ R
3.

(9.69)
We can then introduce the operator X ′

1 associated, in (9.69), to the map f := f1 :
R 	 y 
→ y. It is self-adjoint by Theorem9.4(b), as the map is real. By comparison
with (5.13) we infer Δ f1 = D(X1), and from (9.69) we get

X ′
1ψ = X1ψ for anyψ ∈ D(X1).

The spectral decomposition Theorem9.13 warrants uniqueness of the spectral mea-
sure, whence (9.67) is the spectral measure associated to X1. The spectral expansion
of Xi , i = 1, 2, 3, must therefore be

(∫

R

yd P (Xi )(y)ψ

)

(x1, x2, x3) = (Xiψ)(x1, x2, x3) a.e. for (x1, x2, x3) ∈ R
3,

(9.70)
where

(P (Xi )(E)ψ)(x1, x2, x3) = χE (xi )ψ(x1, x2, x3) ∀E ∈ B(R), ψ ∈ L2(R3, dx).

(9.71)

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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This spectral measure allows to find the spectrum of Xi , i = 1, 2, 3. Applying (ii) in
Theorem9.13(b) immediately gives

σ(Xi ) = σc(Xi ) = R . (9.72)

Now tomomenta.The argument is rather straightforwardbecause ofProposition5.31,
since the Fourier-Plancherel transform is unitary. As such, it preserves spectra (Exer-
cise8.9), so if Ki are the position operators (as in Proposition5.31):

σ(Pi ) = σ(�F̂−1KiF̂ ) = �R = R ,

i.e.
σ(Pi ) = σc(Pi ) = R . (9.73)

The spectral measure of Pi must be supported on the whole R. The reader may prove
easily, using Proposition5.31 and Exercises9.1–9.4, that the PVM associated to the
momentum Pi is just

P (Pi )(E) = F̂−1P (Ki )F̂ , E ∈ B(R). (9.74)

where P (Ki ) is the spectral measure of Ki .

9.1.6 Spectral Representation of Unbounded Self-adjoint
Operators

The next spectral representation generalises Theorem8.58 to self-adjoint unbounded
operators. The details are left as exercise, as they essentially replicate the proof of
Theorem8.58.

Theorem 9.18 (Spectral representation of unbounded self-adjoint operators) Let H
be a Hilbert space, T : D(T ) → H a self-adjoint operator on H, P (T ) the PVM of
T over Borel sets of σ(T ) according to Theorem9.13.
(a) H may be decomposed as a Hilbert sum H = ⊕α∈A Hα (A countable, at most, if
H is separable), whose summands Hα are closed and orthogonal. Moreover:

(i) for any α ∈ A and any measurable map f : σ(T ) → C,

f (T )(Hα ∩ D( f (T ))) ⊂ Hα ,

in particular
T (Hα ∩ D(T )) ⊂ Hα ,

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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(ii) for any α ∈ A there exist a unique finite positive Borel measure μα on
σ(T ) ⊂ R, and a surjective isometric operator Uα : Hα → L2(σ (T ), μα), such
that:

Uα

(∫

σ(T )

f (x)d P (T )(x)

)

�Hα∩D( f (T )) U−1
α = f ·

for any measurable f : σ(T ) → C. In particular

UαT �Hα∩D(T ) U−1
α = x · ,

where f · is the multiplication by f on L2(σ (T ), μα):

( f · g)(x) = f (x)g(x) a.e. on σ(T )if g ∈ D( f ·),

and
D( f ·) := {g ∈ L2(σ (T ), μα) | f · g ∈ L2(σ (T ), μα)} .

(b) We have

σ(T ) =
⋃

α∈A

supp(μα) .

(c) If H is separable, there exist a measure space (MT ,ΣT , μT ), μT (MT ) < +∞, a
map FT : MT → R and a unitary operator UT : H → L2(MT , μT ) such that:

(
UT T U−1

T f
)
(m) = FT (m) f (m) , f ∈ L2(MT , μT ), U−1

T f ∈ D(T ). (9.75)

Proof The proof mimics Theorem8.58 for T self-adjoint and any Hψ . Apart from
the obvious adaptations, it suffices to replace bounded measurable maps Mb(σ (T ))

with the space L2(σ (T ), μψ), paying attention to domains. �

9.1.7 Joint Spectral Measures

The final notion of this section is the joint spectral measure of self-adjoint operators
with commuting spectral measures.

Theorem 9.19 (Joint spectral measure) Let A := {A1, A2, . . . , An} be a set of self-
adjoint operators (even unbounded) on the separable Hilbert space H, and suppose
the associated spectral measures P (Ak ) commute:

P (Ak )(E)P (Ah)(E ′) = P (Ah)(E ′)P (Ak )(E) , E, E ′ ∈ B(R), h, k ∈ {1, 2, . . . , n}.

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Then there exists a unique PVM P (A) : B(Rn) → B(H) such that

P (A)(E (1)×· · ·×E (n)) = P (A1)(E (1)) · · · P (An)(E (n)), E (k) ∈ B(R), k = 1, . . . , n.

(9.76)
This PVM P (A) is called the joint spectral measure of A1, A2, . . . , An and
supp(P (A)) is the joint spectrum of A.

For any measurable f : R → C:

∫

Rn

f (xk(x))d P (A)(x) =
∫

R

f (xk)d P (Ak )(xk) = f (Ak) , k = 1, 2, . . . , n,

(9.77)
where xk(x) is the kth component of x = (x1, x2, . . . , xk . . . , xn) ∈ R

n.

Proof We need a couple of technical lemmas.

Lemma 9.20 Let H be a Hilbert space, {Pα}α∈A ⊂ L (H) an infinite family of
orthogonal projectors such that Pα Pα′ = Pα′ Pα = Pβ for any α, α′ ∈ A and some
β ∈ A depending on α, α′. Define Ma := Pα(H), M := ∩α∈AMα and let PM be the
orthogonal projector onto M.
(a) If H is separable, there exists a countable subfamily {Mαm }m∈N such that
∩m∈NMαm = M.
(b) (ψ |PMψ) = infα∈A(ψ |Pαψ) for any ψ ∈ H.

Proof (a) We haveH\M = ∪α∈A(H\Mα), where theH\Mα form an open covering
of H \ M. As H is separable, it is second countable (see Remark2.86(2) because
the topology of H is induced by the norm distance). By Theorem1.8 we can take a
countable subcovering H \ M = ∪m∈N(H \ Mαm ). Now we take complements in H,
and obtain (a).
(b) Noting that P1 ≥ P2 for orthogonal projectors means (x |P1x) ≥ (x |P2x) for all
x ∈ H, the claim is nothing but item (i) in Theorem7.22(a). �

Lemma 9.21 Let A be an algebra (Definition1.30) or a σ -algebra of subsets in X.
If P : A → L (H), with H a Hilbert space, satisfies (c) and (d) in definition 8.41
(the latter if ∪n En ∈ A ), then it also satisfies (a) and (b) of that definition.

Proof The proof is the same as for Proposition8.44(a). �

It is easy to see that finite unions of products E (1) × · · · × E (n), with E (k) ∈ B(R),
form an algebra of sets, denotedB0(R

n); the same can be obtained by taking disjoint
finite unions of products (just decompose further in case of non-empty intersections).
The σ -algebra generated by B0(R

n) contains countable unions of products of open
balls in R: as R

n is second countable, the σ -algebra includes all open sets in R
n , so

a fortiori the Borel σ -algebra B(Rn), and then it must coincide with the latter.
If S = ∪N

j=1E (1)
j ×· · ·×E (n)

j ∈ B0(R
n)with (E (1)

j ×· · ·×E (n)
i )∩(E (1)

i ×· · ·×E (n)
j ) =

∅, i �= j , define:

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Q(S) :=
N∑

j=1

P (A1)(E (1)
j ) · · · P (An)(E (n)

j ) .

Since P (Ak )(E (k)
j ) are commuting orthogonal projectors, every Q(S) is an orthogonal

projector that commutes with every other Q(S′). It is not hard to prove B0(R
n) 	

S 
→ Q(S) satisfies Q(∅) = 0, Q(Rn) = I , and s-
∑

n∈S Q(Sn) ∈ P(H) exists when
Sk ∩ Sh = ∅, h �= k. Moreover the ‘strong’ sum equals Q(∪k∈NSk) if ∪k∈NSk ∈
B0(R

n).ApplyingLemma9.21gives Q(S1)Q(S2) = Q(S1∩S2) if S1, S2 ∈ B0(R
n).

If R ∈ B(Rn) let P (A)(R) be the projector onto the intersection of all projection
spaces of

∑
k Q(Sk), for any family {Sk}k∈N ⊂ B0(R

n) such that Sk ∩ Sh = ∅

for h �= k, ∪n∈NSk ⊃ R. By construction P (A)(Rn) = I : if ∪k∈NSk = R
n , for

R ∈ B0(R
n), σ -additivity implies

∑
k Q(Sk) = Q(Rn) = I . The latter projects

onto H, so P(Rn) = I . Using Lemma9.20, with ψ ∈ H:

(ψ |P (A)(R)ψ)

= inf

⎧
⎨

⎩

⎛

⎝ψ

∣
∣
∣
∣
∣
∣

∑

k∈N
Q(Sk)ψ

⎞

⎠

∣
∣
∣
∣
∣
∣

⋃

k∈N
Sk ⊃ R , {Sk}k∈N ⊂ B0(R

n) , Sk ∩ Sh = ∅ for k �= h

⎫
⎬

⎭
.

As consequence of Theorem1.41, for ψ ∈ H, B(Rn) 	 E 
→ (ψ |P (A)(R)ψ)

defines a positive σ -additive finite measure onB(Rn), namely the unique extension
of B0(R

n) 	 S 
→ (ψ |Q(S)ψ). In other words, it is the only positive σ -additive
measure νψ on B(Rn) such that νψ(E (1)

j × · · · × E (n)
j ) = (ψ |P (A1)(E (1)

j ) · · · P (An)

(E (n)
j )ψ), for any E (k) ∈ B(R). Using the polarisation formula, B(Rn) 	 E 
→

(ψ |P(R)φ) is, for ψ, φ ∈ H, a complex measure on B(Rn). Therefore B(Rn) 	
E 
→ P(R) satisfies (a), (b), (c), (d) in Definition8.41: (a) holds because P (A)(R)

is a projector, (c) by construction and (d) by σ -additivity of B(Rn) 	 E 
→
(ψ |P (A)(R)φ). Eventually, (b) follows from Lemma9.21. The identity P (A)(E (1) ×
· · · × E (n)) = P (A1)(E (1)) · · · P (An)(E (n)) implies P (A)(Π−1

k (E (k))) = P (Ak )(E (k))

for any E (k) ∈ B(R), where Πk : R
n → R is the kth canonical projection

of R
n = R × · · · × R. Using Theorem9.4(h) with φ := Πk and the spectral

Theorem9.13 for Ak gives

∫

Rn

f (Πk(x))d P (A)(x) =
∫

R

f (xk)d P (Ak )(xk) = f (Ak) , k = 1, 2, . . . , n.

Now, every PVM P ′ : B(R) → L (H) satisfying

P ′(E (1) × · · · × E (n)) = P (A1)(E (1)) · · · P (An)(E (n))

for any E (k) ∈ B(R) must also satisfy

(ψ |P ′(E (1) × · · · × E (n))ψ) = (ψ |P (A1)(E (1)) · · · P (An)(E (n))ψ) .

http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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As positive measures doing just that are unique, we have (ψ |P ′(R)ψ) = (ψ |P (A)

(R)ψ) for any R ∈ B(Rn) and any ψ ∈ H. Therefore P (A) = P ′, since the previous
relation, by polarisation, implies (ψ |P ′(R)φ) = (ψ |P (A)(R)φ) for ψ, φ ∈ H. �

An exhaustive discussion on joint spectral measures, their integrals, and themean-
ing in QM can be found in [Pru81] and [BeCa81]. In analogy to Theorem9.11 we
could prove what follows (see [BeCa81], and Exercise9.6 for n = 1). An introduc-
tory definition is necessary.

Definition 9.22 Let A = {A1, . . . , An} be a collection of self-adjoint operators on
the Hilbert space H. The commutant of A, denoted by A′, is the von Neumann
algebra made of all elements of B(H) that commute with the spectral measures of
each Ak ∈ A.

We leave to the reader to prove that this definition reduces to the standard one if
A ⊂ B(H), and to the definition in Remark5.13(4) when n = 1.

Proposition 9.23 Let A = {A1, . . . , An} be a collection of self-adjoint opera-
tors on the separable Hilbert space H whose spectral measures commute. The
von Neumann algebra A′′ (the set of operators in B(H) commuting with operators in
B(H) that commute with all spectral measures) coincides with the collection of oper-
ators f (A1, . . . , An) := ∫

supp(P (A))
f (x1, . . . , xn)d P (A) with f : supp(P (A)) → C

measurable and bounded.

If f is real-valued, f (A1, . . . , An) is self-adjoint: interpreted as an observable, it is
a function of the observables A1, . . . , An of the quantum system. This corresponds
to the notion of Remark7.47(2).

9.2 Exponential of Unbounded Operators: Analytic Vectors

This section is short and technical. We go back to analytic vectors, introduced at
the end of Chap. 5, and uncover other properties in the light of the theory developed
since. The results will be used at various places in the rest of the book.

Here is an interesting general problem. If A is a self-adjoint operator on theHilbert
space H , the exponential ez A can be defined as a function of A (Definition9.14). We
expect, in some cases, to be able to employ the Taylor expansion:

ez A =
+∞∑

n=0

zn

n! An ,

using Definition9.14 for the left-hand side. If A ∈ B(H) the above identity does
hold, provided we understand the expansion in the uniform topology, as is easy to
see (Exercise8.16). If A is not bounded, the issue is subtler and the above equation
makes no sense in the uniform topology. As Nelson clarified, it has a meaning in

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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the strong topology and over a dense subspace in the Hilbert space, which is a core
for A: we shall prove in Proposition9.25 that this dense core is the space of analytic
vectors for A.

Let A be an operator with domain D(A) on the Hilbert space H. Recall (Defini-
tion5.44) that a vector ψ ∈ D(A) such that Anψ ∈ D(A) for any n ∈ N (A0 := I )
is called a C∞ vector for A. The subspace of C∞ vectors for A is written C∞(A).
Furthermore, ψ ∈ C∞(A) is an analytic vector for A if

+∞∑

n=0

||Anψ ||
n! tn < +∞ , for some t > 0. (9.78)

Recall also Nelson’s Theorem5.47, for which a symmetric operator on a Hilbert
space is essentially self-adjoint if its domain contains analytic vectors whose finite
combinations are dense.

Notation 9.24 If A is an operator on H with domain D(A), we shall indicate by
A (A) the subset in C∞(A) of elements satisfying (9.78). �
The next proposition discusses useful properties of analytic vectors, in particular the
exponential of (self-adjoint) unbounded operators.

Proposition 9.25 Let A be an operator on the Hilbert space H.
(a) A (A) is a vector space.
(b) If A is closable:

A (A) ⊂ A (A) .

(c) (i) For any c ∈ C, defining A + cI on its standard domain:

A (A + cI ) = A (A) .

(ii) For any c ∈ C \ {0}, defining cA on its standard domain:

A (cA) = A (A) .

(iii) If A is Hermitian, defining A2 on its standard domain:

A (A2) ⊂ A (A) .

(d) If A is self-adjoint and ψ ∈ A (A) ∩ D(ez A), viewing ez A as in Definition9.14:

ez Aψ =
+∞∑

n=0

zn

n! Anψ for any z ∈ C, |z| ≤ t, and t satisfying (9.78) for ψ . (9.79)

If Rez = 0, equation (9.79) holds for ψ ∈ A (A), provided |z| ≤ t and t solves
(9.78) for the given ψ .

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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(e) If A is self-adjoint, viewing ez A as in Definition9.14:

eis A(A (A)) ⊂ A (A) , s ∈ R.

(f) If A is self-adjoint, D(A) contains a dense subset made of analytic vectors for
p(A) for any t > 0 in (9.78) (where A is replaced by p(A)) and for any complex
polynomial p(A) of A.

Proof (a) The claim follows from the estimate

||An(aψ + bφ)|| ≤ |a| ||Anψ || + |b| ||Anφ|| ,

ψ, φ ∈ A (A), by choosing t > 0 small enough to satisfy (9.78) for ψ and φ.
(b) This is a direct consequence of the definitions, for A is an extension of A and so
A

n
extends An .

(c) To prove (i), note that if t > 0 satisfies (9.78) for ψ , then:

+∞ > M ≥ e|tc|
+∞∑

k=0

t k
∣
∣
∣
∣Akψ

∣
∣
∣
∣

k! =
+∞∑

p=0

+∞∑

k=0

|tc|p

p!

∣
∣
∣
∣t k Akψ

∣
∣
∣
∣

k! .

The Fubini–Tonelli theorem on the counting product measure of N allows us to
compute the product of the series (integral in the product measure) as a double
integral in:

M ≥
+∞∑

n=0

n∑

k=0

|tc|n−k

(n − k)!

∣
∣
∣
∣
∣
∣tk Akψ

∣
∣
∣
∣
∣
∣

k! ≥
+∞∑

n=0

tn

n!

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n∑

k=0

n!cn−k Akψ

k!(n − k)!

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
=

+∞∑

n=0

tn

n! ||(A + cI )nψ ||

Therefore A (A + cI ) ⊃ A (A). Now define A′ := A + cI , so A = A′ + c′ I and
c′ = −c. It follows that A (A′ + c′ I ) ⊃ A (A′), which is equivalent to A (A) ⊃
A (A + cI ), so A (A) = A (A + cI ). Property (ii) is obvious by definition, so
let us see to (iii). By construction C∞(A) = C∞(A2). Since A is Hermitian and√

x ≤ 1 + x for x ≥ 0, in C∞(A) we have:

||Anψ || =
√

(ψ |A2nψ) ≤ √||ψ ||
√

||A2nψ || ≤ √||ψ ||(1 + ||(A2)nψ ||) .

The claim is therefore true, since for t > 0:

+∞∑

n=0

tn

n! ||A
nψ || ≤ √||ψ ||

+∞∑

n=0

tn

n! ||(A2)nψ || +√||ψ ||
+∞∑

n=0

tn

n!

= √||ψ ||
(+∞∑

n=0

tn

n! ||(A2)nψ || + et

)

.
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(d) For some φ ∈ H, μφ,ψ is the complex measure μφ,ψ(E) := (
φ
∣
∣P (A)(E) ψ

)
,

and for any χ ∈ H, μχ(E) := (
χ
∣
∣P (A)(E) χ

)
is the usual positive finite spectral

measure. If z ∈ C and |z| ≤ t then, using Lemma9.2:

+∞∑

n=0

∫

σ(A)

∣
∣
∣
∣
zn

n! xn
∣
∣
∣
∣ d|μφ,ψ (x)| ≤

+∞∑

n=0

∫

σ(A)

∣
∣
∣
∣
zn

n! xn
∣
∣
∣
∣ d|μφ,ψ (x)| =

+∞∑

n=0

∣
∣
∣
∣
zn

n!
∣
∣
∣
∣

∫

σ(A)

|xn |d|μφ,ψ (x)|

≤
+∞∑

n=0

tn

n! ||φ||
(∫

σ(A)

x2ndμψ(x)

)1/2

=
+∞∑

n=0

||φ|| tn

n! ||Anψ || < +∞ ,

where (9.78) is needed in the last passage. Then Theorem1.87 (for that |h| = 1 a.e.)
and Fubini–Tonelli imply, for |z| ≤ t , that we may swap sum and integral:

+∞∑

n=0

zn

n!
∫

σ(A)

xndμφ,ψ(x) =
+∞∑

n=0

zn

n!
∫

σ(A)

xnhd|μφ,ψ(x)|

=
∫

σ(A)

+∞∑

n=0

zn

n! xnhd|μφ,ψ(x)| =
∫

σ(A)

+∞∑

n=0

zn

n! xndμφ,ψ(x) .

Hence for |z| ≤ t , if ψ belongs to the domain of ez A (cf. Definition9.14) and by
virtue of Theorem9.4(e):

(φ|ez Aψ) =
∫

σ(A)

ezx dμφ,ψ =
∫

σ(A)

+∞∑

n=0

zn

n! xndμφ,ψ =
+∞∑

n=0

zn

n!
∫

σ(A)

xndμφ,ψ =
+∞∑

n=0

zn

n! (φ|Anψ).

By (9.78) the series
+∞∑

n=0

zn

n! Anψ

converges in H, and the inner product is continuous, so the above identity reads

(φ|ez Aψ) =
(

φ

∣
∣
∣
∣
∣

+∞∑

n=0

zn

n! Anψ

)

.

As φ is arbitrary, we have (9.79). In case Rez = 0, i.e. z = is, s ∈ R, the map
R 	 x 
→ eisx is clearly bounded, so eis A ∈ B(H) (the domain isH) byCorollary9.5.
(e) If A is self-adjoint, by Theorem9.4(c) eis A(eis A)∗ = (eis A)∗eis A = I , so eis A is
unitary. Using Theorem9.4(c) with ψ ∈ A (A) ⊂ C∞(A) produces Aneis Aψ =
eis A Anψ , but eis A is unitary and ||eis A Anψ || = ||Anψ ||, whence the claim follows.
(f) Consider the spectral decomposition A = ∫

R
xd P (A)(x), partition the real line

R = ∪n∈Z(n, n+1] and take its closed, pairwise-orthogonal subspacesHn = Pn(H),
where we define projectors Pn := ∫

(n,n+1] 1d P (A)(x). Choosing a basis {ψ(n)
k }k∈Kn ⊂

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Hn for any n, the union of all bases is a basis ofH. Notice supp(μ
ψ

(n)
k

) ⊂ (n, n+1] by
definition of μφ (Theorem8.52). From Theorem9.4(e) every ψ

(n)
k belongs in D(A),

since
∫
R

|x |2dμ
ψ

(n)
k

(x) = ∫
(n,n+1] |x |2dμ

ψ
(n)
k

(x) ≤ |n + 1|2, Moreover (9.78) holds

for any t > 0, as ||Amψ
(n)
k ||2 = ∫

(n,n+1] |x |2mdμ
ψ

(n)
k

(x) ≤ |n + 1|2m ||ψ(n)
k ||2. Finite

linear combinations are, by construction, a dense subspace in H, and analytic for A
(for any t > 0) by (a).

Now take a complex polynomial pN (x) = ∑N
k=0 xn of degree N , and define

pN (A) on the domain D(pN (A)) = D(AN ) (Theorem9.4(d)). We will check every
ψ

(n)
k is analytic for the closed (self-adjoint if pN is real) pN (A) by Theorem9.4.

Choose one of them of unit norm, say ψ , and suppose its spectral measure μψ has
support in some interval (−L , L]. Then ||Akψ || ≤ Lk ||ψ || = Lk . Therefore

||pN (A)ψ || =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N∑

k=0

ak Akψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤

N∑

k=0

|ak |||Akψ || =
N∑

k=0

|ak |Lk .

In a similar manner:

||pN (A)nψ || =
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

N∑

k1,...,kn=0

ak1 · · · akn Ak1+···+kn ψ

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
≤

N∑

k1,...,kn=0

|ak1 | · · · |akn |||Ak1+···+kn ψ ||

≤
N∑

k1,...,kn=0

|ak1 | · · · |akn |Lk1+···+kn .

We conclude that if ML := ∑N
k=0 |ak |Lk , then

||pN (A)nψ || ≤ Mn
L and

+∞∑

n=0

tn

n! ||pN (A)nψ || ≤ et ML

and so ψ (by (a), any combination of such vectors) is analytic for pN (A), for any
t > 0. �

9.3 Strongly Continuous One-Parameter Unitary Groups

The goal of this section is to prove Stone’s theorem, one of the most important results
in view of the applications to QM (and not only that). To state it we will present some
preliminary results about one-parameter groups of unitary operators, and in particular
an important theorem due to von Neumann.

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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9.3.1 Strongly Continuous One-Parameter Unitary Groups,
von Neumann’s Theorem

Definition 9.26 (One-parameter group of operators) Let H be a Hilbert space. A
collection {Ut }t∈R ⊂ B(H) is called a one-parameter group (of operators) onH if

U0 = I and UtUs = Ut+sfor any t, s ∈ R (9.80)

A one-parameter group {Ut }t∈R ⊂ B(H) is said:
(a) one-parameter unitary group if Ut is unitary for any t ∈ R,
(b) weakly continuous at t0 ∈ R, or strongly continuous at t0 ∈ R, if the mapping
t 
→ Ut is continuous at t0 in the weak, resp. strong, topology (and R is standard);
(c)weakly continuous or strongly continuous if it is weakly, or strongly, continuous
at each point of R.

By (9.80), if the Ut are unitary:

(Ut )
∗ = U−1

t = U−t , for any t ∈ R . (9.81)

Proposition 9.27 Let {Ut }t∈R be a one-parameter unitary group on the Hilbert space
(H, (·|·)). The following assertions are equivalent.
(a) (ψ |Utψ) → (ψ |ψ) as t → 0 for any ψ ∈ H.
(b) {Ut }t∈R is weakly continuous at t = 0.
(c) {Ut }t∈R is weakly continuous.
(d) {Ut }t∈R is strongly continuous at t = 0.
(e) {Ut }t∈R is strongly continuous.

Proof First, let us number the properties.
(1) {Ut }t∈R is weakly continuous at t = 0.
(2) (ψ |Utψ) → (ψ |ψ) as t → 0 for any ψ ∈ H.
(3) {Ut }t∈R is strongly continuous at t = 0.
(4) {Ut }t∈R is strongly continuous.
(5) {Ut }t∈R is weakly continuous.

We will show (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1).
(1) ⇒ (2). Weak continuity at t = 0 implies, when t → 0, that (ψ |Utψ) →

(ψ |U0ψ) = (ψ |ψ) and (Utψ |ψ) → (U0ψ |ψ) = (ψ |ψ) by conjugation.
(2) ⇒ (3). Strong continuity at t = 0 amounts to saying, for any ψ ∈ H,

||Utψ − U0ψ || → 0

as t → 0. Since U0 = I , squaring and writing norms via inner products transforms
the above into

(Utψ |Utψ) − (ψ |Utψ) − (Utψ |ψ) + (ψ |ψ) → 0 .
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But Ut unitary implies (Utψ |Utψ) = (ψ,ψ), so the identity reads

(ψ |ψ) − (ψ |Utψ) − (Utψ |ψ) + (ψ,ψ) → 0 , as t → 0 .

As we said at the beginning, the latter holds if (2) does.
(3) ⇒ (4). If ψ ∈ H:

Utψ − Ut0ψ = Ut (ψ − U−1
t Ut0ψ) = Ut (ψ − Ut0−tψ) ,

where (9.81) was used. As Ut is unitary, for any ψ ∈ H:

||Usψ − Ut0ψ || = ||Us(ψ − Ut0−sψ)|| = ||ψ − Ut0−sψ || .

Under strong continuity at t = 0, since t0 − s → 0 for s → t0, we find ||Usψ −
Ut0ψ || → 0. Hence strong continuity at t = 0 forces strong continuity at any t0 ∈ R.

(4) ⇒ (5). Obvious because strong convergence implies weak convergence.
(5) ⇒ (1). True by definition. �

Here is another property of unitary groups.

Proposition 9.28 Let {Ut }t∈R be a one-parameter unitary group on the Hilbert space
(H, (·|·)), and H ⊂ H a subset such that:
(a) the finitely-generated span < H > is dense in H,
(b) (ψ |Utψ) → (ψ |ψ), as t → 0, for any ψ ∈ H .
Then {Ut }t∈R is a strongly continuous one-parameter unitary group.

Proof The same argument used in Proposition9.27 gives that (φ0|Utφ0) → (φ0|φ0),
as t → 0, for φ0 ∈ H implies ||Utφ0 − φ0|| → 0, t → 0. If, more generally,
φ ∈< H > then φ = ∑

i∈I ciφ0i where I is finite and φ0i ∈ H . Hence as t → 0

||Utφ − φ|| =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Ut

(
∑

i

ciφ0i

)

−
∑

i

ciφ0i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

i

ci (Utφ0i − φ0i )

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
∑

i

|ci |||Utφ0i − φ0i || → 0 .

ByProposition9.27 it now suffices to extend this toH. That is to say, ||Utφ−φ|| → 0,
as t → 0, for any φ ∈< H > implies ||Utψ − ψ || → 0, t → 0, for any ψ ∈ H.
As < H > is dense, for any given ψ ∈ H there is a sequence {ψn}n∈N ⊂< H >

with ψn → φ, n → +∞. If {tm}m∈N is a real infinitesimal sequence, by the triangle
inequality

||Utm ψ − ψ || ≤ ||Utm ψ − Utm φn|| + ||Utm φn − φn|| + ||φn − ψ ||

for any given n ∈ N. Since theUtm are unitary and the norm non-negative, that means
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0 ≤ ||Utm ψ − ψ || ≤ ||Utm φn − φn|| + 2||φn − ψ || . (9.82)

For fixed n, ||Utm φn − φn|| → 0, m → +∞, by assumption, so:

lim sup
m

||Utm φn − φn|| = lim inf
m

||Utm φn − φn|| = lim
m→+∞ ||Utm φn − φn|| = 0 .

By (9.82), for any n ∈ N:

0 ≤ lim sup
m

||Utm ψ −ψ || ≤ 2||φn −ψ || , 0 ≤ lim inf
m

||Utm ψ −ψ || ≤ 2||φn −ψ || .

On the other hand for n large enough we can make ||φn − ψ || infinitesimal, so:

lim sup
m

||Utm ψ − ψ || = lim inf
m

||Utm ψ − ψ || = 0 .

Therefore
lim

m→+∞ ||Utm ψ − ψ || = 0 .

As ψ ∈ H and the {tm}m∈N are arbitrary, for any ψ ∈ H we have:

lim
t→0

||Utψ − ψ || = 0 ,

ending the proof. �

The theory developed thus far puts us in the position to prove an important result due
to von Neumann, which shows how the strong continuity of one-parameter unitary
groups is, actually, not such restrictive a fact in separable Hilbert spaces.

Theorem 9.29 (Von Neumann) Let {Ut }t∈R be a one-parameter unitary group on
the Hilbert space (H, (·|·)). If H is separable, {Ut }t∈R is strongly continuous if and
only if the map R 	 t 
→ (Utψ |φ) is Borel measurable for any ψ, φ ∈ H.

Proof Obviously if the group is strongly continuous then any R 	 t 
→ (Utψ |φ)

is Borel measurable, being continuous. We show the converse. Suppose every such
map is Borel measurable, hence Lebesgue measurable. Schwarz’s inequality and
||Ut || = 1 imply that these maps are bounded. Given a ∈ R, ψ ∈ H,

H 	 φ 
→
∫ a

0
(Utψ |φ)dt

is a bounded linear functional with norm not exceeding |a| ||ψ || by Schwarz and
||Ut || = 1. Riesz’s Theorem3.16 provides ψa ∈ H such that

(ψa|φ) =
∫ a

0
(Utψ |φ)dt , for anyφ ∈ H.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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So

(Ubψa |φ) = (ψa |U−bφ) =
∫ a

0
(Utψ |U−bφ)dt =

∫ a

0
(Ut+bψ |φ)dt =

∫ a+b

b
(Utψ |φ)dt .

Splitting the integral in the obvious manner:

|(Ubψa|φ) − (ψa|φ)| =
∣
∣
∣
∣

∫ a+b

b
(Utψ |φ)dt −

∫ a

0
(Utψ |φ)dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ 0

b
(Utψ |φ)dt

∣
∣
∣
∣+

∣
∣
∣
∣

∫ a+b

a
(Utψ |φ)dt

∣
∣
∣
∣ ≤ 2b||φ|| ||ψ ||.

Then (Ubψa|φ) → (ψa|φ), as b → 0, and so by conjugation:

lim
t→0

(φ | Ubψa) → (φ | ψa) .

We are done if we can prove that the set {ψa | ψ ∈ H, a ∈ R} finitely generates
a dense space in H, by the previous proposition and choosing φ = ψa . Take φ ∈
{ψa | ψ ∈ H, a ∈ R}⊥ and let {ψ(n)}n∈N be a countable Hilbert basis for H, which
we have by separability (the finite-dimensional case is the same). For any n ∈ N:

0 = (ψ(n)
a |φ) =

∫ a

0
(Utψ

(n)|φ)dt , a ∈ R ,

implying (Theorem1.76(b)) R 	 t 
→ (Utψ
(n)|φ) is null almost everywhere. Call

Sn ⊂ R the set where the map does not vanish, and fix t0 ∈ R \ ⋃n∈N Sn . The
latter exists for

⋃
n∈N Sn cannot coincide R: the former, in fact, has zero measure as

countable union of zero-measure sets. (This is the point where we need the basis to be
countable, i.e. separability.) Then (Ut0ψ

(n)|φ) = 0 for any n, forcing φ = 0 because
Ut0 is unitary and {Ut0ψ

(n)}n∈N is a basis. Since {ψa | ψ ∈ H, a ∈ R}⊥ = {0}, the
span of {ψa | ψ ∈ H, a ∈ R} is dense, as required, and the theorem is proved. �

Remark 9.30 In the statement we may substitute Borel measurability with measura-
bility for the Lebesgue σ -algebra. If Lebesgue measurability holds, in fact, the proof
does not change and so the group is strongly continuous. Under strong continuity
Borel measurability is granted, so also Lebesgue measurability. �

9.3.2 One-Parameter Unitary Groups Generated by
Self-adjoint Operators and Stone’s Theorem

This section contains the celebrated Stone’s theorem, that describes strongly continu-
ous one-parameter unitary groups obtained by exponentiating self-adjoint operators.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Later we will use these groups to provide a necessary and sufficient condition for the
spectral measures of self-adjoint operators to commute.

Before all this we need a technical result, which we state separately given its
usefulness in many contexts. As usual, dx is the Lebesgue measure on R

n and χ[a,b]
the characteristic function of [a, b].

Proposition 9.31 Let H be a complex Hilbert space and {Vt }t∈Rn ⊂ B(H) a family
of operators satisfying the two following conditions:

(i) s-limt→t0 Vt = Vt0 , for any t0 ∈ R
n,

(ii) there exists C ≥ 0 such that ||Vt || ≤ C for any t ∈ R
n.

Then for any f ∈ L1(Rn, dx) there is a unique operator on B(H), denoted∫
Rn f (t)Vt dt, such that:

(

φ

∣
∣
∣
∣

∫

Rn

f (t)Vt dt ψ

)

=
∫

Rn

f (t) (φ|Vtψ) dt , φ, ψ ∈ H. (9.83)

If f ∈ L1(Rn, dx) has compact (essential) support, condition (i) is enough to guar-
antee the existence of

∫
Rn f (t)Vt dt.

The latter satisfies:
(a) for any ψ ∈ H:

∣
∣
∣
∣

∣
∣
∣
∣

∫

Rn

f (t)Vt dtψ

∣
∣
∣
∣

∣
∣
∣
∣ ≤

∫

Rn

| f (t)| ||Vtψ || dt . (9.84)

(b) If A ∈ B(H):

A
∫

Rn

f (t)Vt dt =
∫

Rn

f (t)AVt dt and
∫

Rn

f (t)Vt dt A =
∫

Rn

f (t)Vt Adt .

(9.85)
(c) Let, for n = 1,

∫ s
t f (τ )Vτ dτ := ∫

R
g(τ ) f (τ )Vτ dτ where g = χ[t,s] if s ≥ t and

g = −χ[s,t] if s ≤ t . Then

(i) R
2 	 (s, t) 
→

∫ t

s
f (τ )Vτ dτ is continuous in the uniform topology;

(i i) f continuous implies s − d

dt

∫ t

s
f (τ )Vτ dτ = f (t)Vt ∀s, t ∈ R . (9.86)

Proof Take ψ, φ ∈ H and let f : R
n → C be a map in L1(Rn, dx). Consider the

integral

I (φ, ψ) :=
∫

Rn

f (t) (φ|Vtψ) dt .
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It is well defined as R
n 	 t 
→ (φ|Vtψ) is continuous, since {Vt }t∈Rn is weakly

continuous, and bounded by (ii) from Schwarz’s inequality. Hence

|I (φ, ψ)| ≤ || f ||1C ||ψ ||||φ|| .

SinceH 	 ψ 
→ I (φ, ψ) is linear and we have the above inequality, Riesz’s theorem
gives, for any φ ∈ H, a unique Φφ ∈ H such that

I (φ, ψ) = (Φφ|ψ) , for anyψ ∈ H.

The map H 	 φ 
→ T φ := Φφ is linear, and by construction

|(ψ |T φ)| = |(T φ|ψ)| = |(Φφ |ψ)| = |I (φ, ψ)| ≤ || f ||1C ||ψ ||||φ|| , withφ,ψ ∈ H.

Choosing ψ = T φ shows that T , and hence its adjoint
∫
Rn f (t)Vt dt , are bounded.

By construction (9.83) holds, and the argument ensures uniqueness. From (9.83)
follows
∣
∣
∣
∣

(

φ

∣
∣
∣
∣

∫

Rn

f (t)Vt dt ψ

)∣
∣
∣
∣ ≤

∫

Rn

| f (t)| |(φ|Vtψ)| dt ≤
∫

Rn

| f (t)| ||Vtψ || dt ||φ||,

and taking φ = ∫
Rn f (t)Vt dtψ leads to (9.84). Identity (9.85) follows from (9.83).

In case the essential support of f is in a compact set K we can equivalently define
I (ψ, φ) by integrating on it and then proceeding as before. In such a case the constant
C of (ii) (t ∈ K ) automatically exists. By continuity, in fact, whichever ψ ∈ H we
take there is Cψ ≥ 0 such that ||Vtψ || ≤ Cψ if t ∈ K . By Banach–Steinhaus this
implies that C ≥ 0 exists with ||Vt || ≤ C if t ∈ K . So let us prove (c). Choose [a, b]
so that [a, b] × [a, b] contains an open neighbourhood of (t, s), to which (t ′, s ′)
belongs. From (a) we have
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ s

t
f (τ )V (τ )dτψ −

∫ s′

t ′
f (τ )V (τ )dτψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ (|t − t ′| + |s − s′|) sup

τ∈[a,b]
| f (τ )| sup

τ∈[a,b]
||Vτ ψ || ,

where we used
∫ s

t − ∫ s ′
t ′ = ∫ t ′

t + ∫ s
t ′ − ∫ s ′

t ′ = ∫ t ′
t + ∫ s ′

s . Since ||Vτ || ≤ C < +∞ for
τ ∈ [a, b], taking the least upper bound over ||ψ || = 1 produces

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ s

t
f (τ )V (τ )dτ −

∫ s ′

t ′
f (τ )V (τ )dτ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ (|t − t ′| + |s − s ′|) sup

τ∈[a,b]
| f (τ )|C ,

whence continuity in uniform topology. As for the second property, by strong con-
tinuity of t 
→ f (t)Vt , as h → 0, we have
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∣
∣
∣
∣

∣
∣
∣
∣
1

h

∫ τ+h

τ

f (t)Vt dt ψ − f (τ )Vτ ψ

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣
1

h

[∫ τ+h

τ

( f (t)Vt − f (τ )Vτ )dt

]

ψ

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∫ τ+h
τ

dt
∣
∣
∣

|h| sup
|t ′−τ |≤h

|| f (t ′)Vt ′ψ − f (τ )Vτ ψ || = sup
|t ′−τ |≤h

|| f (t ′)Vt ′ψ − f (τ )Vτ ψ || → 0 .

�
Remark 9.32 As exercise the reader might prove Stone’s formula, valid for b > a
and a self-adjoint operator T : D(T ) → H with spectral measure P (T ):

1

2
(P(T )({a})+P(T )({b}))+P(T )((a, b)) = s− lim

ε→0+
1

2π i

∫ b

a

1

T − λ − iε
− 1

T − λ + iε
dλ.

The integral is understood in the sense of Proposition9.31 and

1

T − λ ± iε
:= (T − λ ± iε)−1 = Rλ∓iε(T )

is the resolvent of T . �
It is time to pass to Stone’s theorem. This name actually refers to assertion (b), the
only non-elementary statement.

Theorem 9.33 (Stone) Let H be a Hilbert space.
(a) If A : D(A) → H, with D(A) dense in H, is a self-adjoint operator and P (A) is
its spectral measure, then the operators

Ut = eit A :=
∫

σ(A)

eiλt d P (A)(λ) , t ∈ R ,

form a strongly continuous one-parameter unitary group. Moreover:
(i) the limit

s-
dUt

dt

∣
∣
∣
∣
t=0

ψ := lim
t→0

Utψ − ψ

t
(9.87)

exists in H if and only if ψ ∈ D(A);
(ii) if ψ ∈ D(A):

s-
dUt

dt

∣
∣
∣
∣
t=0

ψ = i Aψ . (9.88)

(b) If {Ut }t∈R is a strongly continuous one-parameter unitary group onH, there exists
a unique self-adjoint operator A : D(A) → H (with D(A) dense in H) such that

eit A = Ut , for any t ∈ R. (9.89)

Proof (a) If t ∈ R, R 	 λ 
→ eitλ is trivially bounded, so eit A ∈ B(H) by Corol-
lary9.5. Theorem9.4(c) implies (t ∈ R) eit A(eit A)∗ = (eit A)∗eit A = I , making eit A
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unitary. To prove strong continuity it is enough to check (ψ |Utψ) → (ψ |ψ) for any
ψ ∈ H as t → 0, by Proposition9.27. This is true, by Theorem9.4(f) and since the
domain of eit A is all of H, because:

(ψ |Utψ) =
∫

σ(A)

eitλdμψ(λ) →
∫

σ(A)

1dμψ(λ) = (ψ |ψ) as t → 0 .

We used that eitλ → 1 and so Lebesgue’s dominated convergence applies, as |eitλ| =
1 for any t and the constant 1 is integrable as μψ is finite.

Let us prove (i)–(ii). If ψ ∈ D(A), from Theorem9.4(c) we compute

∣
∣
∣
∣

∣
∣
∣
∣
Ut − I

t
ψ − i Aψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

σ(A)

∣
∣
∣
∣
eiλt − 1

t
− iλ

∣
∣
∣
∣

2

dμψ(λ) . (9.90)

On the other hand |eiλt − 1| = 2| sin(λt/2)| ≤ |λt |, so
∣
∣
∣
∣
eiλt − 1

t
− iλ

∣
∣
∣
∣

2

≤ 4|λ|2 .

The map R 	 λ 
→ |λ|2 is integrable in μψ by definition of D(A) 	 ψ . At last,

∣
∣
∣
∣
eiλt − 1

t
− iλ

∣
∣
∣
∣

2

→ 0 as t → 0, for any λ ∈ R.

The dominated convergence theorem on the right side of (9.90) gives

∣
∣
∣
∣

∣
∣
∣
∣
Ut − I

t
ψ − i Aψ

∣
∣
∣
∣

∣
∣
∣
∣ → 0 as t → 0, for anyψ ∈ D(A).

To finish we show that Ut ψ−ψ

t → φψ ∈ H, t → 0, implies ψ ∈ D(A). The set of
ψ ∈ H for which the limit exists is a subspace D(B) in H containing D(A), and
as such is dense. The mapping ψ 
→ i Bψ := φψ defines an operator with dense
domain D(B). If ψ,ψ ′ ∈ D(B), using U ∗

t = U−t :

(
ψ |Bψ ′) =

(

ψ

∣
∣
∣
∣−i lim

t→0

Utψ
′ − ψ ′

t

)

= −i lim
t→0

(

ψ

∣
∣
∣
∣
Utψ

′ − ψ ′

t

)

= −i lim
t→0

(
U−tψ − ψ

t

∣
∣
∣
∣ψ

′
)

=
(

−i lim
t→0

U−tψ − ψ

−t

∣
∣
∣
∣ψ

′
)

= (
Bψ |ψ ′) .

Hence B is a symmetric extension of A. But A is self-adjoint, so B = A by Propo-
sition5.17(c). Thus any vector ψ for which the limit of Ut ψ−ψ

t exists as t → 0 lives
in D(A). This concludes part (a).

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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(b) The uniqueness of A is immediate. If there were two self-adjoint operators A,
A′ with eit A = Ut = eit A′

for any t ∈ R, (i)–(ii) in (a) would force A = A′. Let
us manufacture a self-adjoint operator A satisfying Ut = eit A for a given strongly
continuous one-parameter unitary group. Specialise Proposition9.31 to a strongly
continuous one-parameter unitary group Vt = Ut . CallD the space of vectors of the
form

∫
R

f (t)Ut dtφ, φ ∈ H, with arbitrary f ∈ D(R) (smooth complex functions
on R with compact support). This vector spaceD is calledGårding space. Equation
(9.83) easily implies its invariance: UsD ⊂ D for any s ∈ R, i.e.

Us

∫

R

f (t)Ut dtψ =
∫

R

f (t)Ut+s dtψ =
∫

R

f (t − s)Ut dtψ for anyψ ∈ H.

(9.91)
Let us show, if ψ ∈ D , that Ut ψ−ψ

t → ψ0 ∈ H as t → 0. Suppose ψ =∫
R

f (s)Us dsφ. A few computations involving (9.91) and the definition of∫
R

f (s)Us dsφ, yield

∣
∣
∣
∣

∣
∣
∣
∣
Utψ − ψ

t
−
∫

R

f ′(s)Us dsφ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
(∫

R

(
f (s − t) − f (s)

t
− f ′(s)

)

Us dsφ

∣
∣
∣
∣

∫

R

(
f (r − t) − f (r)

t
− f ′(r)

)

Ur drφ

)

=
∫

R

ds
∫

R

drht (s)ht (r) (φ|Ur−sφ) ,

where

ht (s) := f (s − t) − f (s)

t
− f ′(s) .

For any t ∈ R, the function s 
→ ht (s) has support contained in a compact set and
is C∞ (hence bounded). As (r, s) 
→ (φ|Ur−sφ) is also bounded, we may interpret
the integral using the product Lebesgue measure:

∣
∣
∣
∣

∣
∣
∣
∣
Utψ − ψ

t
−
∫

R

f ′(t)Ut dtφ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

R×R

dsdrht (s)ht (r) (φ|Ur−sφ) . (9.92)

Now: the integrand is pointwise infinitesimal as t → 0, the maps

(s, r) 
→ ht (s)ht (r) (φ|Ur−sφ)

all have support in one large-enough compact set if t varies in a bounded interval
around 0, and they are, there, uniformly bounded by some constant not depending
on t (as (t, s, r) 
→ ht (s)ht (r) (φ|Ur−sφ) is jointly continuous in its variables).
Because of all this, we apply dominated convergence and obtain that both sides in
(9.92) vanish as t → 0. Therefore, for ψ ∈ D we have proven Ut ψ−ψ

t → ψ0 ∈ H
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as t → 0. The map ψ 
→ i Sψ := ψ0 is clearly linear. Continuing as in part (a) one
can see S is Hermitian. As a matter of fact S is symmetric sinceD is dense, which is
what we prove next. Given φ ∈ H consider the sequence of

∫
R

fn(t)Ut dtφ, where
fn ∈ D(R) satisfy fn ≥ 0, supp fn ⊂ [−1/n, 1/n] and ∫

R
fn(s)ds = 1. Then

∣
∣
∣
∣

∣
∣
∣
∣

∫

R

fnUt dtψ − ψ

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∫

R

fnUt dtψ −
∫

R

fndtψ

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∫

R

fn(Ut − I )dtψ

∣
∣
∣
∣

∣
∣
∣
∣

≤
∫

R

| fn(t)| ||(Ut − I )ψ || dt

where we used (9.84) on Vt = Ut − I . Since

∫

R

| fn(t)| ||(Ut − I )ψ || dt ≤
∫ 1/n

−1/n
| fn(t)| dt sup

t∈[−1/n,1/n]
||(Ut − I )ψ ||

= sup
t∈[−1/n,1/n]

||(Ut − I )ψ ||

and supt∈[−1/n,1/n] ||(Ut − I )ψ || → 0 as n → ∞, the Ut being strongly continuous,
we conclude

D 	
∫

R

fn(t)Ut dtφ → φ ∈ H , n → ∞.

HenceD is dense inH and S is symmetric. Nowwe prove it is essentially self-adjoint
on D . If ψ± ∈ Ran(S ± i I )⊥, then for any χ ∈ D (recall UtD ⊂ D):

d

dt
(ψ±|Utχ) = lim

h→0

(

ψ±
∣
∣
∣
∣
UhUtχ − Utχ

h

)

= (ψ±|i SUtχ)

= i (ψ±|(S ± i I )Utχ) ± (ψ±|Utχ) = ± (ψ±|Utχ)

and F±(t) := (ψ±|Utχ) is of the form F±(0)e±t . Ifwewant it bounded (||Ut || = 1 for
any t ∈ R), necessarily F±(0) = 0 andψ± = 0, in turn implying Ran(S ± i I ) = H.
By Theorem5.19 that means S : D → H is essentially self-adjoint. Now let S be the
self-adjoint extension of S. To finish observe that if Vt := eit S , for any ψ, φ ∈ D :

d

dt

(
ψ
∣
∣(Vt )

∗Ut φ
) = d

dt
(Vtψ |Utφ) = (i SVtψ |Utφ) + (Vtψ |i SUtφ)

= − (Vtψ |i SUtφ) + (Vtψ |i SUtφ) = 0 .

Thus (ψ |(Vt )
∗Utφ) = (ψ |Iφ). As D is dense, (Vt )

∗Ut = I , i.e. Ut = eit S for any
t ∈ R. �

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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Corollary 9.34 If A is self-adjoint on the Hilbert space H and D0 ⊂ D(A) is dense
and such that eit AD0 ⊂ D0 for any t ∈ R, then A �D0 is essentially self-adjoint, i.e.
D0 is a core of A.

Proof Take ψ ∈ D0 ⊂ D(A). Then Utψ = eit Aψ is differentiable and its derivative
is i AUtψ . Going through the final part of Stone’s proof and replacing the Gårding
space D with D0 proves the claim. �

Now comes a related technical, and useful, elementary result.

Proposition 9.35 Let A be self-adjoint on the Hilbert spaceH, and define Ut := eit A,
t ∈ R. For any measurable f : σ(A) → C:

Ut f (A) = f (A)Ut , ∀t ∈ R, (9.93)

and, consequently
Ut (D( f (A))) = D( f (A)) , ∀t ∈ R. (9.94)

Proof On one hand ψ ∈ D( f (A)) ⇔ ∫
σ(A)

| f (λ)|2dμψ(λ) < +∞. On the other,
the measures μψ and μUt ψ are the same, since

(Utψ |P (A)(E)Utψ) = (ψ |U ∗
t P (A)(E)Utψ) ,

but U ∗
t P (A)(E)Ut = P (A)(E) from (9.14)–(9.15) in Theorem9.4(c) (recall all inte-

grals refer to bounded maps so the operators are defined on the entire space). In
conclusion ψ ∈ D( f (A)) ⇔ Utψ ∈ D( f (A)). Conversely, f (A)ψ ∈ D(Ut ) = H
holds trivially, since Ut is unitary. With this, using (9.14)–(9.15) in Theorem9.4(c),
we get Ut f (A)ψ = f (A)Utψ for any ψ ∈ D( f (A)), i.e. (9.93). Summing up, we
have proved thatUt f (A) ⊂ f (A)Ut . ApplyingU−t to both sides (seeRemark5.4)we
also have f (A)U−t ⊂ U−t f (A). Since t ∈ R is arbitrary,we can recast this identity as
f (A)Ut ⊂ Ut f (A). SinceUt f (A) ⊂ f (A)Ut we finally obtainUt f (A) = f (A)Ut .
Remark5.4(v) eventually proves Ut (D( f (A))) = D( f (A)). �

The next definition will be fundamental for physical applications, as we will see in
Chaps. 12 and 13.

Definition 9.36 (Self-adjoint generator) Let H be a Hilbert space, {Ut }t∈R ⊂ B(H)

a strongly continuous one-parameter unitary group. The unique self-adjoint operator
A on H fulfilling (9.89) is called (self-adjoint) generator of {Ut }t∈R ⊂ B(H).

The self-adjoint generator A is typically unbounded. It is bounded – and so defined
on all H – precisely when {Ut }t∈R is continuous at t = 0 (and hence everywhere) in
the uniform topology. See Exercise9.7.

Stone’s theorem has a host of useful corollaries, and here is one.

Corollary 9.37 If A : D(A) → H has dense domain in the Hilbert space H and is
self-adjoint (in general unbounded), and U : H → H1 is an isomorphism (surjective
isometry), then

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_13
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Ueis AU−1 = eisU AU−1
, s ∈ R .

The same holds, in particular, when H = H1 and U is unitary.

Proof The operator U AU−1 is clearly self-adjoint on U D(A) by definition. Hence
the strongly continuous one-parameter unitary group {eisU AU−1}s∈R is well defined.
AsU is an isomorphism, {Ueis AU−1}s∈R too is a strongly continuous one-parameter
unitary group on H1. Furthermore, if ψ = U−1φ ∈ U−1D(A) then

lim
s→0

Ueis AU−1ψ − ψ

s
= lim

s→0

Ueis Aφ − Uφ

s
= U lim

s→0

eis Aφ − φ

s
= iU Aφ = U AU−1ψ .

By Stone’s theorem the generator of {Ueis AU−1}s∈R is a self-adjoint extension of
U AU−1; but the latter is already self-adjoint, so the generator of {Ueis AU−1}s∈R is
U AU−1 itself, and

Ueis AU−1 = eisU AU−1
, s ∈ R .

�

Remarks 9.38
(1) In a sense Stone’s theorem is a special case in the larger picture created by the
Hille–Yosida theorem [Rud91]. This has had a momentous impact in mathematical
physics, esp. concerning the applications of the theory of semigroups. Let us remind
that, in a Banach space (X, || ||), a strongly continuous semigroup of operators
{Qt }t∈[0,+∞) is a collection of operators Qt ∈ B(X) such that: (a) Q(0) = I , (b)
Qt+s = Qt Qs for s, t ∈ [0,+∞), and (c) ||Qtψ − ψ || → 0 as t → 0 for any
ψ ∈ X. A generator is an operator A on X such that

d

dt
Qtψ = −AQtψ = −Qt Aψ , ψ ∈ D(A).

This condition determines A completely. The derivative is computed in the norm of
X.

If we look at the subcase of normal (bounded) operators {Qt }t∈[0,+∞) on a Hilbert
space X = H, then [Rud91]: (1) every semigroup has a densely defined generator A,
(2) A is normal (unbounded, in general), and (3)

Qt = e−t A ,

where the right-hand side is defined by the integral of

σ(A) 	 λ 
→ e−tλ

in thePVMof the spectral decompositionof A (extendingTheorem9.13 tounbounded
normal operators [Rud91]). At last: (4) the real part of the spectrum of A is lower
bounded, i.e. there exists γ ∈ R such that γ < Re(λ) for any λ ∈ σ(A).
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The following fundamental general result is however valid in Banach spaces
[Rud91].

Theorem 9.39 (Hille–Yosida) Let A be a closed linear operator defined on a linear
subspace D(A) of a Banach space X, and fix r, M ∈ R with M > 0.

Then A is the generator of a strongly-continuous semigroup {Qt }t∈[0,+∞) ⊂ B(X)

that satisfies
||Qt || ≤ Mert t ∈ [0,+∞)

if and only if D(A) is dense in X, every λ > r belongs to ρ(A) and for such λ and
every positive n ∈ N the bound

||(A − λI )−n|| ≤ M

(λ − r)n

holds.

(2)A useful and important result in operator theory is the Trotter formula, which has
a big impact in the rigorous theory of path integrals [AH-KM08]. We present the
statement in the unitary case [Che74].

Theorem 9.40 Let A, B be self-adjoint operators on the Hilbert space H and sup-
pose that A + B, defined on D(A) ∩ D(B), is essentially self-adjoint. Then the
corresponding strongly continuous unitary groups satisfy the Trotter formula

eit A+B = s- lim
n→+∞

(
e

it A
n e

it B
n

)n
, t ∈ R . (9.95)

9.3.3 Commuting Operators and Spectral Measures

To finish the chapter we prove a bunch of technical results about commuting spectral
measures of self-adjoint operators, which rely on the one-parameter groups they gen-
erate. For bounded self-adjoint operators the spectral measures commute if and only
if the operators themselves commute, an easy consequence of the spectral theorem
(see also Corollary9.42). For unbounded operators, instead, there are domain-related
issues and the criterion cannot be used. Using unitary groups is a simple way to over-
come this problem. The next result is widely applied in QM.

Theorem 9.41 Let A, B be (in general unbounded) operators on the Hilbert space
H, with A further self-adjoint.
(i) Suppose B is self-adjoint and call P (A), P (B) the respective spectral measures.
Then the following statements are equivalent.

(a) For any Borel sets E, E ′ ⊂ R:

P (A)(E)P (B)(E ′) = P (B)(E ′)P (A)(E) .
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(b) For any Borel set E ⊂ R and any s ∈ R:

P (A)(E)eis B = eis B P (A)(E) .

(c) For any t, s ∈ R:
eit Aeis B = eis Beit A .

(d) For any t ∈ R:
eit A B ⊂ Beit A ,

(d)’ For any t ∈ R:
eit A B = Beit A ,

If these conditions hold, then

eit A(D(B)) = D(B) for all t ∈ R.

(ii) Under either of the above five conditions:

ABψ = B Aψ if ψ ∈ D(AB) ∩ D(B A)

(Aϕ|Bψ) − (Bϕ|Aψ) = 0 if ψ, ϕ ∈ D(A) ∩ D(B).

(iii) If B ∈ B(H) (not necessarily self-adjoint) and P (A) is the PVM of A, the
following are equivalent.

(e) B A ⊂ AB.
(f) B f (A) ⊂ f (A)B for any measurable f : σ(A) → R.
(g) B P (A)(E) = P (A)(E)B for any Borel set E ⊂ R.
(h) Beit A = eit A B for every t ∈ R.

Proof (i) First of all we notice that (d)’ is equivalent to (d): the former implies
the latter, and the latter entails, applying e−i t A, Be−i t A ⊂ e−i t A B. Since t ∈ R

is arbitrary, we have Beit A ⊂ eit A B which, in turn, implies (d)’. (d’) immediately
implies the last statement of (i).

Let us pass to the remaining part of (i). Using Definition9.14 the identity in (b)
reads

∫

R

eitλd P (A)
λ

∫

R

eisμd P (B)
μ =

∫

R

eisμd P (B)
μ

∫

R

eitλd P (A)
λ , t, s ∈ R, (9.96)

where the standard definition of integral of a bounded measurable map in a spectral
measure was employed, by Theorem9.4(a). That (a) implies (c) is immediate by
definition of integral of a bounded map in a spectral measure (Chap.8) working in
the strong topology. Let us prove (c) ⇒ (b) ⇒ (a). For the first implication, from

(9.96), given Us := eis B , ψ, φ ∈ H and s ∈ R, we have
(
ψ

∣
∣
∣
∫
R

eitλd P (A)
λ Usφ

)
=

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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(
U ∗

s ψ

∣
∣
∣
∫
R

eitλd P (A)
λ φ

)
for any t ∈ R, i.e.

∫

R

eitλdμ
(A)
ψ,Usφ

(λ) =
∫

R

eitλdμ
(A)
U ∗

s ψ,φ(λ) , (9.97)

where we introduced complex measures as in Theorem8.52(c). The above integrals
can be transformed in integrals for finite positive measures by Theorem1.87. Next,
using Fubini–Tonelli in (9.97) we can say that if f is (up to the sign of t) the Fourier
transform of a map in the Schwartz space S(R) (see Chap.3):

∫

R

(∫

R

f (t) eitλdt

)

dμ
(A)
ψ,Usφ

(λ) =
∫

R

(∫

R

f (t) eitλdt

)

dμ
(A)
U ∗

s ψ,φ(λ) .

As the Fourier transform maps S(R) to itself bijectively, the identity becomes

∫

R

g(λ) dμ
(A)
ψ,Usφ

(λ) =
∫

R

g(λ) dμ
(A)
U ∗

s ψ,φ(λ) , g ∈ S(R). (9.98)

If h ∈ Cc(R) (continuous with compact support), the sequence

gn(x) :=
√

n

4π

∫

R

e−n(x−y)2/4h(y)dy

satisfies gn ∈ D(R) and converges uniformly to h as n → +∞. As gn ∈ D(R) ⊂
S(R) and gn → h ∈ Cc(R) in sup norm, and measures are finite, (9.98) implies

∫

R

h(λ) dμ
(A)
ψ,Usφ

(λ) =
∫

R

h(λ) dμ
(A)
U ∗

s ψ,φ(λ) , h ∈ Cc(R). (9.99)

Riesz’s Theorem2.52 for complex measures ensures the measures involved in the
integrals above coincide. By their explicit expression (Theorem8.52(c)):

(
ψ
∣
∣P (A)(E)Usφ

) = (
U ∗

s ψ
∣
∣P (A)(E)φ

)
for any Borel set E ⊂ Rand any s ∈ R.

(9.100)
As ψ , φ are arbitrary, obvious manipulations give (b):

P (A)(E)eis B = eis B P (A)(E) for any Borel set E ⊂ R, any s ∈ R. (9.101)

Now we can prove (b) ⇒ (a). Iterating the procedure that leads to (b) knowing (c),
where now eis B replaces eit A and the unitaryUs is replaced by the projector P (A)(E),
we obtain that (9.101) implies (a): P (A)

E P (B)
E ′ = P (B)

E ′ P (A)
E for any pair of Borel sets

E, E ′ ⊂ R.
To finish (i) there remains to show that (d) is equivalent to one of the preceding

statements. If (c) holds, by Stone’s theorem and the continuity of eit A, (d) follows
immediately. On the other hand (d) ⇒ (c), let us see why. First of all (d) amounts

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_1
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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to eit A Be−i t A = B, so exponentiating gives eis(eit A Be−i t A) = eis B . For any given
s ∈ R the strongly continuous one-parameter unitary groups t 
→ eis(eit A Be−i t A) and
t 
→ eit Aeis Be−i t A have the same generator, so they coincide by Stone’s theorem.
Hence eit Aeis Be−i t A = eis B , i.e. (c).

Let us prove (ii). For the first assertion, take ψ ∈ D(AB) ∩ D(B A) and look at
(c) in (i): eit Aeis Bψ = eis Beit Aψ . Differentiating in t at the origin, Stone’s theorem
gives Aeis Bψ = eis B Aψ . Now we differentiate in s at the origin. The right side
gives i B Aψ by Stone. On the left we can move the derivative past A, as A = A∗
is closed and because the limit exists. Hence i ABψ = i B Aψ , as we wanted. Now
we prove the second assertion, assuming again (c). If ψ ∈ D(A) and ϕ ∈ D(B),
(eit Aψ |eis Bϕ) = (e−is Bψ |e−i t Aϕ). Differentiating in t and s at t = s = 0 proves the
claim by Stone’s theorem.

Assertion (iii) goes like this. It is obvious that (f) implies (e) and (g) (choose
f = χE for (g)). So we show (e) ⇒ (h) ⇒ (f). First we prove that (e) forces B to
commute with eit A for any t ∈ R, that is, (h). For this we shall use Proposition9.25(d,
f). Letψ be analytic for A and for every power in the dense set of Proposition9.25(f).
As B is bounded, using Proposition9.25(d):

Beit Aψ =
+∞∑

n=0

(i t)n

n! B Anψ =
+∞∑

n=0

(i t)n

n! An Bψ = e−i t A Bψ .

In the last two equalities we used B Aψ = ABψ repeatedly, plus ||An Bψ || =
||B Anψ || ≤ ||B||||Anψ ||, so Bψ is analytic for A. But ψ moves in a dense set
and the operators B, eit A are continuous, so Beit A = eit A B. If B is bounded and
commutes with every eit A, B commutes with the spectral measure of A, and this
incidentally proves that (h) ⇒ (g). The proof is similar to the proof that, in (i), (c)
implies (b): we just have to replace Us by B. Hence by definition of g(A), if g is
bounded (and so is g(A)) then Bg(A) = g(A)B. At this point notice

μ
(A)
Bψ(E) = (Bψ |P (A)(E)Bψ) = (P (A) Bψ |P (A)(E)Bψ)

= (B P (A)ψ |B P (A)(E)ψ) ≤ ||B||2μ(A)
ψ (E) (9.102)

so ψ ∈ D( f (A)) implies Bψ ∈ D( f (A)). Applying the definition of f (A) for
f measurable unbounded, and taking a sequence of bounded measurable maps fn

converging to f in L2(σ (A), μψ), we obtain (f), by taking the limit as n → +∞
of B fn(A)ψ = fn(A)Bψ , for any n ∈ N, since B is continuous (the equality holds
for fn is bounded). At last, (g) implies (9.102), and (e) follows from the previous
argument with f (x) = x . �

Corollary 9.42 Consider two self-adjoint operators A : D(A) → H, B ∈ B(H)

on the Hilbert space H. They commute, i.e.

B A ⊂ AB
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if and only if their spectral measures commute.

Proof If the operators commute, (g) holds in (iii) above. Apply (iii) giving B the role
of A and P (A)(E) the role of B. Then P (B)(F)P (A)(E) = P (A)(E)P (B)(F) for any
Borel sets E, F ⊂ R. Conversely, if the spectral measures commute, by definition
of integral of a bounded PVM it follows that B P (A)(E) = P (A)(E)B for any Borel
set E ⊂ R. Now (iii) implies ABψ = B Aψ for any ψ ∈ D(A), which is another
way to write B A ⊂ AB. �

Here is another useful technical consequence.

Corollary 9.43 Let A be self-adjoint on the Hilbert space H and B0 : D(B0) → H
essentially self-adjoint. If

eit A B0 ⊂ B0eit A , ∀t ∈ R ,

then A and B := B0 satisfy (a), (b), (c), (d) in Theorem9.41(i).

Proof It suffices to note that by definition of closure, using the continuity of eit A,
the self-adjoint operator B : D(B) → H satisfies

eit A D(B) ⊂ D(B) , eit A Bφ = Beit Aφ , ∀t ∈ R ,∀φ ∈ D(B) .

Then part (i) in Theorem9.41 produces the claim. �

Exercises

9.1 Consider a spectral measure P : Σ(X) 	 E 
→ P(E) ∈ B(H) and a unitary
operator (isometric and onto) V : H → H′, where H is a complex Hilbert space.
Prove

P ′ : Σ(X) 	 E 
→ P ′(E) := V P(E)V −1 ∈ B(H′)

is a PVM.

9.2 In relationship to Exercise9.1, prove the following facts.
(i) If f : X → C is measurable then ψ ∈ Δ f ⇔ V ψ ∈ Δ′

f , where Δ′
f is the

domain of the integral of f in P ′.
(ii) V

∫
X f (x)d P(x)V −1 = ∫

X f (x)d P ′(x).

9.3 Prove that (iv) in Theorem9.13(b) can be strengthened as follows: let T :
D(T ) → H be self-adjoint on the Hilbert space H. Then λ ∈ σc(T ) is equiva-
lent to asking that 0 < ||T φ − λφ||, ∀φ ∈ D(T ) with ||φ|| = 1, and that for any
ε > 0 there exists φε ∈ D(T ), ||φε|| = 1, such that

||T φε − λφε|| ≤ ε .
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Hint. The second condition amounts to saying λ does not belong to σp(T ), so
(T −λI )−1 : Ran(T −λI ) → D(T ) exists. Then λ ∈ σ(T ) = σp(T )∪σc(T ). Can
(T − λI )−1 be bounded?

9.4 Consider the space L2(X, μ) with μ positive and finite on the Borel σ -algebra
of a space X. Let f : X → R be an arbitrary real, measurable, and locally L2 map
(i.e. f · g ∈ L2(X, μ) for any g ∈ Cc(X)). Consider the operator on L2(X, μ):

T f : h 
→ f · h

where D(T f ) := {h ∈ L2(X, μ)| f ·h ∈ L2(X, μ)}. Prove T f is self-adjoint.Without
using Proposition9.17 explicitly, show

σ(T f ) = ess ran( f ) .

For f : X → R, ess ran( f ) is the essential rank of the measurable map f , defined
by R 	 v ∈ ran ess( f ) ⇔ μ

(
f −1(v − ε, v + ε)

)
> 0 for any ε > 0.

Hint. The domain of T f is dense because f is locally L2, and the self-adjointness
comes from computing T ∗

f = T f . The second part goes along these lines. Observe
that λ ∈ ρ(T f ) ⇔ the resolvent Rλ(T f ) exists on L2(X, μ) and is bounded, i.e.
there is M > 0 such that ||Rλ(T f )h|| ≤ M for any unit map h ∈ L2(X, μ). That is
to say, λ ∈ ρ(T f ) if and only if:

∫

X

|h(x)|2
| f (x) − λ|2 dμ(x) < M for any unit h ∈ L2(X, μ) .

If λ /∈ ess ran( f ), by definition of essential rank and μ(X) < +∞ we see that
the condition holds, so λ /∈ ess ran( f ) ⇒ λ /∈ σ(T f ). If λ ∈ ess ran( f ), still
by definition of essential rank we may build a sequence of unit vectors hn such
that

∫
X

|h(x)|2
| f (x)−λ|2 dμ(x) > 1/n2 for any n = 1, 2, . . .. Hence λ ∈ ess ran( f ) ⇒

λ ∈ σ(T f ).

9.5 Consider a PVM P : B(C) → H with H separable. Prove A ∈ B(H) has the
form A = ∫

C
f d P for some f ∈ Mb(C) if and only if it commutes with every

B ∈ B(H) satisfying B P(E) = P(E)B for any E ∈ B(C).

Solution. The sufficient implication is known, so we just prove the necessary part
of the equivalence. Divide supp(P) in a disjoint collection, at most countable, of
bounded sets En , and H in the corresponding orthogonal sum H = ⊕nHn , Hn :=
P(En)(H). Every Hn is A-invariant, since AP(En) = P(En)A by assumption. If
An := A �Hn : Hn → Hn , then Aψ = ∑

n Anψ for any ψ ∈ H. Moreover (see
Corollary9.42) An commutes with any operator in B(Hn) that commutes with the
bounded normal operator Tn := ∫

En
zd P(z) and its adjoint. By Theorem9.11, An =

∫
En

fnd P for some fn ∈ Mb(En). Define f (z) := fn(z) on z ∈ En , for any z ∈ C.
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Then fn → f (the fn are null outside En) in L2(C, μψ) by dominated convergence
if ψ ∈ Δ f . Therefore Aψ = ∫

C
f d Pψ for ψ ∈ Δ f , by definition of

∫
C

f d P . As A
is bounded, Corollary9.5 implies f must be bounded, Δ f = H and A = ∫

C
f d P .

9.6 Let H be separable and T : D(T ) → H self-adjoint on H (not necessarily
bounded). Prove that A ∈ B(H) has the form A = f (T ), for some f : R → C

measurable and bounded, if and only if A commutes with every B ∈ B(H) such that
BT ψ = T Bψ for any ψ ∈ D(T ).

Solution. If P (T ) is the PVM of T , B P (T )(E) = P (T )(E)B ⇔ BT ψ = T Bψ

for any ψ ∈ D(T ). The claim boils down to proving A = ∫
f d P (T ), f bounded, iff

A commutes with any B ∈ B(H) commuting with P (T ). Exercise9.5 does exactly
that.

9.7 If A is the self-adjoint generator of a strongly continuous one-parameter unitary
group Ut = eit A, prove that A is bounded (and hence it is defined on the whole
Hilbert space) if and only if ||Ut − I || → 0, as t → 0.

Hint. Passing to the spectral representation of A, we have ||Ut − I || = || ft ||∞
where ft (λ) = |eitλ − 1|. Since (a, b) 	 λ 
→ ft (λ) tends to 0 uniformly in λ, as
t → 0, if and only if a, b are finite, the claim follows.

9.8 Consider the operators A, A� of Sect. 9.1.4. Prove they are closable, and

σp(A) = C

so that σ(A) = C while σc(A) = σr (A) = ∅.

Outline of solution. The operators are closable because they admit closed exten-
sions, for A ⊂ (A�)∗ and A� ⊂ A∗. Using the Hilbert basis {ψn}n∈N of Sect. 9.1.4,
construct explicitly an eigenvector ψ ∈ H \ {0} of A (i.e. Aψ = λψ) for every
λ ∈ C \ {0}. Supposing ψ = ∑

n∈N cnψn we may heuristically assume that
Aψ = λ

∑
n∈N cn

√
nψn−1, so that

cn+1 = cn

λ
√

n + 1
.

and thus the candidate eigenvector reads

ψ =
∑

n∈N

c0λ−n

√
(n + 1)!ψn .

It is easy to prove that, for c0 �= 0, the series converges to a non-zero element of H
which belongs to D(A) and satisfies Aψ = λψ . We already know that ψ0 satisfies
Aψ0 = Aψ0 = 0, so 0 ∈ σp(A).
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9.9 Consider the operators A, A� and the Hilbert basis {ψn}n∈N of Sect. 9.1.4. Prove
that A∗ = A

∗ = A�, that

A

(+∞∑

n=0

cnψn

)

=
+∞∑

n=0

√
n + 1cn+1ψn

and that

A∗
(+∞∑

n=0

cnψn

)

=
+∞∑

n=1

√
ncn−1ψn ,

where

D(A) =
{

ψ ∈ H

∣
∣
∣
∣
∣

+∞∑

n=0

(n + 1)|(ψ |ψn+1)|2 < +∞
}

and

D(A∗) =
{

ψ ∈ H

∣
∣
∣
∣
∣

+∞∑

n=1

n|(ψ |ψn−1)|2 < +∞
}

.

Conclude that D(A) = D(A∗).

Outline of solution. The solution mostly relies on Proposition5.17 and on the
very definition of adjoint. Apply the definition of adjoint of A and prove that D(A∗)
and A∗ take the form written above. Next observe that A = (A∗)∗. Then, applying
the definition of adjoint, prove that D(A) and A have the form claimed. Finally,
again exploiting the definition of adjoint, demonstrate that (A�)∗ = A and conclude
that A� = ((A�)∗)∗ = A

∗ = A∗. The last statement is quite evident if one simply
rearranges the expressions of D(A) and D(A∗) and uses ψ ∈ H .

9.10 Consider the operators A, A� of Sect. 9.1.4. Prove that

N := A∗ A = A� A

is the unique self-adjoint extension of the symmetric operator N defined on the span
of the vectors ψn satisfying Nψn = nψn for n ∈ N. The Hilbert basis {ψn}n∈N is the
one in Sect. 9.1.4.

9.11 Consider the operators A, A� of Sect. 9.1.4, prove that A + A� and i(A − A�)

are essentially self-adjoint onS (R). Next, study the relation of the closures of those
operators and the self-adjoint position and momentum operators.

9.12 Consider the operators A and A� of Sect. 9.1.4.Compute eαA+α A�

ψn withα ∈ C

given.

9.13 Prove Stone’s formula, valid for a self-adjoint operator T : D(T ) → H with
spectral measure P (T ) and b > a. Use the weak operator topology:

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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1

2
(P(T )({a})+P(T )({b}))+P(T )((a, b)) = w− lim

ε→0+
1

2π i

∫ b

a

1

T − λ − iε
− 1

T − λ + iε
dλ.

The integral is understood in the sense of Proposition9.31. Is the identity still valid
for a = b?

Outline of solution. Define S(ε) := 1
2π i

∫ b
a

1
T −λ−iε − 1

T −λ+iε dλ. Next takeψ, φ ∈ H
and prove that

(ψ |S(ε)φ) = 1

2π i

∫

R

[∫ b

a

2iε

(� − λ)2 + ε2
dλ

]

dμψ,φ(�)

= 1

π

∫

R

[
tan−1((b − �)/ε) − tan−1((a − �)/ε)

]
dμψ,φ(�) .

Prove that, taking the limit when ε → 0+ one obtains

lim
ε→0+

(ψ |S(ε)φ) =
∫

R

[

χ(a,b)(�) + 1

2
(χ{b}(�) + χ{a}(�))

]

dμψ,φ(�)

and conclude. The identity is generally not valid for a = b: the right-hand side
always vanishes while the left-hand side may not.

9.14 Prove that the result of Exercise9.13 is valid if we use the strong operator
topology:

1

2
(P(T )({a})+P(T )({b}))+P(T )((a, b)) = s− lim

ε→0+
1

2π i

∫ b

a

1

T − λ − iε
− 1

T − λ + iε
dλ.

The integral is understood in the sense of Proposition9.31.

Outline of solution. Since we already know that the convergence is weak, it
suffices to show that, if φ ∈ H,

lim
ε→0+

||S(ε)φ||2 =
∣
∣
∣
∣

∣
∣
∣
∣
1

2
(P (T )({a})φ + P (T )({b}))φ + P (T )((a, b))φ

∣
∣
∣
∣

∣
∣
∣
∣

2

.

The left-hand side can be written as

lim
ε→0+

1

π

∫

R

∣
∣tan−1((b − �)/ε) − tan−1((a − �)/ε)

∣
∣2 dμφ(�) ,

and the limit produces the result we want.

9.15 Consider the operator H in formula (9.66), example Sect. 9.1.4. Show that
ρβ = e−β H is a well-defined trace-class operator for every β ∈ C, Re(β) > 0.
Compute trρβ for these values of β. For A ∈ B(H), define



538 9 Spectral Theory II: Unbounded Operators on Hilbert Spaces

αz(A) := eizH Ae−i zH , z ∈ C

〈A〉β := tr(e−β H A) .

and finally
F (β)

AB (z) := 〈Bαz(A)〉β , G(β)

AB(z) := 〈αz(A)B〉β .

Prove that (i) F (β)

AB (z) is an analytic function on the strip 0 < I m(z) < β and G(β)

AB(z)
is analytic on the strip−β < I m(z) < 0; (ii) F (β)

AB and G(β)

AB are bounded, continuous
functions, and they can be extended continuously to the boundaries of their strips;
(iii) along the boundaries the KMS condition

G(β)

AB(t) = F (β)

AB (t + iβ)

holds.



Chapter 10
Spectral Theory III: Applications

Particles are solutions to differential equations.

Werner Karl Heisenberg

In this chapter we examine applications of the theory of unbounded operators in
Hilbert spaces, where spectral theory, as developed in Chaps. 8 and 9, plays a para-
mount technical role during the proofs. The final part of the chapter presents a series
of classical results about certain operators of interest in QuantumMechanics, in par-
ticular regarding self-adjointness and spectral lower bounds.We recommend [Tes09]
for a quite complete, recent treatise on spectral theory applied toQMandSchrödinger
operators, in addition to the classical book [ReSi80].

Section one is devoted to the study of abstract differential equations in Hilbert
spaces.

The second section pertains the notion of Hilbert tensor product of Hilbert spaces
and of operators (typically unbounded), plus their spectral properties. We apply this
to one example, the orbital angular momentum of a quantum particle.

Weextend the polar decomposition theorem to closed, densely-definedunbounded
operators in the third section. The properties of operators of the form A∗ A, with A
densely defined and closed, are examined, together with square roots of unbounded
positive self-adjoint operators.

Section four contains the statement, the proof and a few direct applications of the
Kato–Rellich theorem, which gives criteria for a self-adjoint operator, perturbed by
a symmetric operator, to remain self-adjoint, and establishes lower bounds for the
perturbed spectrum.
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10.1 Abstract Differential Equations in Hilbert Spaces

Looking at spectral theory from the right angle allows to tackle the issue of existence
and uniqueness of solutions to certain PDEs that are important in physics. Recall
[Sal08] that a second-order linear differential equation in u ∈ C2(Ω; R), for given
open set Ω ⊂ R

n and continuous real maps ai j , bi , c, has the form:

n∑

i, j=1

ai j (x)
∂2u

∂xi∂x j
+

n∑

i=1

bi (x)
∂u

∂xi
+ c(x)u = 0 .

Equations of this kin are classified, pointwise at each x ∈ Ω , into (a) elliptic, (b)
parabolic or (c) hyperbolic type according to the spectrum of the symmetric matrix
ai j (x). He have type (a) when the eigenvalues have the same sign ±, (b) when there
is a null eigenvalue, (c) when there are eigenvalues with opposite sign but none
vanishes. An equation is called elliptic, parabolic or hyperbolic if it is such at each
point x ∈ Ω .

By a smart coordinate choice around each point in Ω , the equation can be written
as:

a(t, y)
∂2

∂t2
u(t, y) +

n−1∑

i, j=1

a′
i j (t, y)

∂2u

∂yi∂y j
+ b(t, y)

∂u

∂t

+
n−1∑

i=1

b′
i (t, y)

∂u

∂yi
+ c(t, y)u(t, y) = 0 .

For elliptic equations (e.g. Poisson’s equation) a(t, y) is never zero and has the same
sign of the eigenvalues (all non-zero) of the symmetric matrix a′

i j (t, y). Parabolic
equations (e.g. the heat equationwhere b(t, y) �= 0) have a(t, y) = 0. For hyperbolic
equations (e.g. d’Alembert’s equation) a(t, y) has opposite sign to some eigenvalues
(none zero) of the symmetric matrix a′

i j (t, y).
We shall suppose all functions we consider are complex-valued, and study the

theory of these PDEs from a different point of view. The above will be considered
“abstract differential equations” in Hilbert spaces equipped with suitable topologies.
The variable t will be regarded as a parameter upon which the solutions depends:
this will give a curve in the Hilbert space. The differential operators determined by
the matrix a′

i j and the vector b′
i will become operators acting on a subspace in the

Hilbert space L2(Ω, dy) containing the support of the solution curve. One can even
use a completely abstract Hilbert space H, without mentioning coordinates, whence
solutions become H-valued functions t �→ ut ∈ H. This generalisation will allow
us to treat equations that do not befit the classical trichotomy (like the Schrödinger
equation), equations of degree higher than the second, and equations that cannot be
classified within the above scheme, like those where the differential operator given
by the matrix a′

i j is formally replaced by a square root. For instance
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a
∂u

∂t
+ b

√
− ∂2

∂x2
u = 0 .

Notation 10.1 If J ⊂ R is an interval, H a Hilbert space, S ⊂ H a subspace (closed
or not) and k = 0, 1, 2, . . . is fixed, we let

Ck(J ; S) :=
{

J 	 t �→ u(t) ∈ S

∣∣∣∣ J 	 t �→ d j u

dt j
exists and is continuous for j = 0, 1 . . . , k

}
,

where derivative and continuity refer to the topology of H.
We shall also write C(J ; S) := C0(J ; S).

Remark 10.2

(1) Of course C(J ; S) is a complex vector space.
(2) It is easy to prove, by inner product/norm continuity and Schwarz’s inequality,

that:
d

dt
(u(t)|v(t)) =

(
du

dt

∣∣∣∣ v(t)
)

+
(

u(t)

∣∣∣∣
dv

dt

)
(10.1)

for every t ∈ J , when u, v : J → H are differentiable everywhere on J (in
particular continuous on J ).

(3) If H = L2(Ω, dx), with Ω ⊂ R
n open, and we take a family of maps ut ∈

L 2(Ω, dx), (t, x) ∈ J ×Ω for a given open interval J ⊂ R, the existence of the
derivative at t forces the existence in L2(Ω, dx), under rather weak hypotheses.
For example

Proposition 10.3 Let Ω ⊂ R
n be bounded and open, J ⊂ R an open interval and

{ut }t∈J ⊂ L 2(Ω, dx) a family defined on Ω .
If the maps u = ut (x) are differentiable in t for every x ∈ Ω and | ∂ut

∂t | ≤ M
in Ω for some M ∈ R and any t ∈ J , then (viewing {ut }t∈J ⊂ L2(Ω, dx) for the
derivative):

∃ dut

dt
for every t ∈ J and

dut

dt
= ∂ut

∂t
a.e. at x for any t ∈ J,

where the derivative is computed as usual.

(This generalises to higher derivatives in the obvious way.)

Proof Note Ω 	 x �→ ∂ut
∂t is measurable for any t ∈ J as pointwise limit of

measurable functions. For any given t ∈ J , the mean value theorem says that for
every x ∈ Ω and some x ′(x, t, h) ∈ [t − h, t + h]:
∫

Ω

∣∣∣∣
ut+h(x) − ut (x)

h
− ∂ut

∂t
(x)

∣∣∣∣
2

dx =
∫

Ω

∣∣∣∣
∂ut

∂t
(x ′(x, t, h)) − ∂ut

∂t
(x)

∣∣∣∣
2

dx .
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The right integrand is smaller, uniformly with respect to h, than the constant M
in L2(Ω, dx), since Ω has finite Lebesgue measure. As the integrand is pointwise
infinitesimal when h → 0, dominated convergence proves the claim. �

Having Ω bounded can be dropped in favour of a uniform estimate in t , of the sort
| ∂ut

∂t (x)| ≤ |gt0(x)| with gt0 ∈ L 2(Ω, dx), holding around every given t0 ∈ J . �

10.1.1 The Abstract Schrödinger Equation (With Source)

The first equation we study is Schrödinger’s equation, for which we allow a source
term to be present. The equation will be considered abstractly, in a Hilbert space, and
without referring to physics. We shall return to it in chapter 13, when the physical
meaning of the sourceless case will be discussed. For the standard theory of PDEs
the Schrödinger equation has the following structure (numerical coefficients apart,
whose great relevance is neglected for the time being):

− i
∂

∂t
ut (x) + (A0ut )(x) = S(t, x) (10.2)

where J ⊂ R is a fixed open interval, Ω ⊂ R
n a given open set,

A0 := −Δx + V (x) : D(A0) → L2(Ω, dx) (10.3)

is defined on some domain D(A0) ⊂ C2(Ω), V : Ω → R and S : J × Ω → C are
given maps, say continuous, and finally Δx is the usual Laplacian on R

n .
A function u = u(t, x) is called classical solution to (10.2) if it is defined for

(t, x) ∈ J ×Ω , of class C1 in t and C2 in x1, . . . , xn , and of course if it solves (10.2)
on its domain.

If the functions in D(A0) decay quickly outside compact sets in Ω and the first
derivatives are bounded, the operator A0 is certainly Hermitian, as is clear by inte-
grating by parts. At least for Ω := R

n , we expect that choosing D(A0) properly will
make A0 essentially self-adjoint in L2(Ω, dx). We already know that for Ω := R

n

and V := 0, the operator A0 of (10.3) is essentially self-adjoint on the domain
D(A0) := S (Rn) (Exercises 5.13 and 5.14); as we shall see, the same holds on
D(A0) := D(Rn). We will discuss more general cases, with V �= 0, in Sect. 10.4.

Assuming A := A0 is self-adjoint leads to a different interpretation of Eq. (10.2),
where A0 is replaced by any self-adjoint operator and differentiation in t is defined
with reference to the topology of the Hilbert space.

Let us fix an open interval J ⊂ R, J 	 0. If A : D(A) → H is a self-adjoint
operator on the Hilbert space H and J 	 t �→ St ∈ H a given map in C(J ;H), the
abstract Schrödinger equation with source is:

− i
d

dt
ut + Aut = St (10.4)

http://dx.doi.org/10.1007/978-3-319-70706-8_13
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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where u ∈ C1(J ; D(A)) is the unknown. As we said, the derivative is computed
in the topology of H. The source is the function S = St . If St = 0 for any t ∈ J ,
Eq. (10.4) is as usual called homogeneous.

The Cauchy problem for the Schrödinger equation, whether with source or
homogeneous, is the problem of finding a function u ∈ C1(J ;H) solving (10.4),
with or without source, together with the initial condition:

u0 = v ∈ D(A). (10.5)

Remark 10.4 If A0 is of the form (10.3) and essentially self-adjoint, we can consider
a classical solution u = u(t, x) to (10.2), for which u(t, ·) ∈ D(A0) for any t ∈ J .
Under assumptions of the kind of Proposition 10.3, u also solves the abstract equation
(10.4), as D(A) = D(A0) ⊃ D(A0). Therefore classical solutions are abstract
solutions, under mild assumptions. �

The first result establishes the uniqueness of the solution to the abstract Schrödinger
equation with any initial condition.

Proposition 10.5 If u = ut solves the homogeneous equation (10.4):

||ut || = ||u0|| for any t ∈ J. (10.6)

Hence if a solution to the Cauchy problem (10.4)–(10.5) exists, with St �= 0 in
general, it is unique.

Proof From (10.1) and (10.4), for St = 0:

d

dt
||ut ||2 = d

dt
(ut |ut ) = i(Aut |ut ) − i(ut |Aut ) = 0

because A is self-adjoint. So ||ut || = ||u0||. Uniqueness follows immediately because
if u, u′ both solve the Cauchy problem (St is the same), then J 	 t �→ ut − u′

t solves
(10.4) with St = 0 and initial condition u0 = 0, so ut − u′

t = 0 for every t ∈ J . �

We are interested in existence now. Actually, we already have everything we need,
because Stone’s theorem (Theorem 9.33) implies existence in the homogeneous case:

Proposition 10.6 A solution to the homogeneous Cauchy problem (10.4)–(10.5) has
the form:

ut = e−i t Av , t ∈ J ,

where the exponential is understood in spectral sense.

Proof Immediate consequence of Theorem 9.33. �

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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Remark 10.7 If v /∈ D(A) we can still define ut := e−i t Av, because the domain of
the unitary operator e−i t A isH. Themap J 	 t �→ ut does not solve the homogeneous
Schrödinger equation. But trivially

d

dt
(z|ut) + i(Az|ut ) = 0 for any z ∈ D(A), t ∈ J, (10.7)

by Stone’s theorem, because the inner product is continuous and e−i t A is unitary,
implying (z|e−i t Av) = (eit Az|v). Due to (10.7) the map J 	 t �→ ut is called a weak
solution to the homogeneous Schrödinger equation. �

It should be clear that the solution set to the Schrödinger equation with source (10.4)
– if non-empty – consists of functions

J 	 t �→ u(0)
t + st ,

where: s is an arbitrary, but fixed, solution to the non-homogeneous equation (10.4),
and u(0) is free in the vector space of homogeneous solutions. A solution to the
equation with source satisfying the zero initial condition can be written as:

st = e−ti A
∫ t

0
eτ i A Sτ dτ ,

assuming something on S ∈ C(J ;H). We can prove the next theorem.

Theorem 10.8 Let A : D(A) → H be a self-adjoint operator on the Hilbert space
H, J ⊂ R an open interval with 0 ∈ J . If:

(i) v ∈ D(A),
(ii) J 	 t �→ St is continuous in the topology of H,

(iii) St ∈ D(A) for any t ∈ J ,
(iv) J 	 t �→ ASt is continuous in the topology of H,

there exists a unique solution J 	 t �→ ut ∈ C1(J ; D(A)) to the Cauchy problem

{ dut

dt
+ Aut = St ,

u0 = v .
(10.8)

The solution has the form:

ut = e−i t Av + e−ti A
∫ t

0
eτ i A Sτ dτ , t ∈ J . (10.9)

The integral above has to be interpreted as follows. If J 	 t �→ Lt ∈ B(H) is
continuous in the strong topology and J 	 t �→ ψt ∈ H is continuous, the vector∫ b

a Lτψτ dτ ∈ D(A), a, b ∈ J , is by definition the unique element in H satisfying:
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(
u

∣∣∣∣
∫ b

a
Lτψτ dτ

)
=
∫ b

a
(u |Lτψτ ) dτ . (10.10)

Proof By continuity of t �→ ψt , of the inner product and Schwarz’s inequality on
the right-hand side of (10.10):

∣∣∣∣

∣∣∣∣

(
u

∣∣∣∣
∫ b

a
Lτψτ dτ

)∣∣∣∣

∣∣∣∣ ≤ Ka,b||u|| for any u ∈ H

for some constant Ka,b ≥ 0. By Riesz’s representation Theorem 3.16 the vector∫ b
a Lτψτ dτ ∈ H is well defined. Schwarz’s inequality implies

∣∣∣∣

∣∣∣∣
∫ b

a
Lτψτ dτ

∣∣∣∣

∣∣∣∣ ≤
∫ b

a
||Lτψτ ||dτ , (10.11)

for:

∣∣∣∣∣

∣∣∣∣∣

∫ b

a
Lτ ψτ dτ

∣∣∣∣∣

∣∣∣∣∣

2

=
∫ b

a

∫ b

a
(Lτ ψτ |Lsψs ) dsdτ =

∣∣∣∣∣

∫ b

a

∫ b

a
(Lτ ψτ |Lsψs ) dsdτ

∣∣∣∣∣

≤
∫ b

a

∫ b

a
|(Lτ ψτ |Lsψs )| dsdτ ≤

∫ b

a

∫ b

a
||Lτ ψτ ||||Lsψs ||dsdτ =

(∫ b

a
||Lτψτ ||dτ

)2
.

Proposition 10.5 grants uniqueness, so we just need existence. We will show the
right side of (10.8) solves the Cauchy problem (10.9). By definition

∫ t
0 eτ i A Sτ dτ is

the null vector if t = 0, so the right-hand side of (10.9) satisfies u0 = v. We claim
ut ∈ D(A). We know eit Av ∈ D(A) by Proposition 10.6. In reality ut belongs in
D(A) = D(A∗), since

(
Ax

∣∣∣∣
∫ t

0
eτ i A Sτ dτ

)
=
∫ t

0

(
Ax
∣∣∣eτ i A Sτ

)
=
∫ t

0

(
x
∣∣∣eτ i A ASτ

)
=
(

x

∣∣∣∣
∫ t

0
eτ i A ASτ dτ

)
,

by definition of adjoint, A = A∗, St ∈ D(A) and with x ∈ D(A). We have also
proved that if Sτ ∈ D(A):

A
∫ t

0
eτ i A Sτ dτ =

∫ t

0
eτ i A ASτ dτ . (10.12)

Summing up we have ut ∈ D(A) since eit Av ∈ D(A),
∫ t
0 eτ i A Sτ dτ ∈ D(A) and so

e−i t A
∫ t
0 eτ i A Sτ dτ ∈ D(A) since e−i t A(D(A)) ⊂ D(A) for one-parameter unitary

groups generated by self-adjoint operators.
Nowwe show ut is a solution. The first term on the right in (10.9) admits derivative

−i Ae−i t Av by Stone’s theorem. We want to prove the derivative of the second term

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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equals −i Ae−t i A
∫ t
0 eτ i A Sτ dτ + St . If so, ut solves the problem. Define t ′ := t + h

and:

Φt :=
∫ t

0
eτ i A Sτ dτ.

The derivative of the second term on the right in (10.9) is the limit, as h → 0, of:

h−1
(

eit ′ AΦt ′ − eit AΦt

)
= h−1eit ′ A (Φt ′ − Φt ) + h−1

(
eit A − eit ′ A

)
Φt .

The last term converges to −i Ae−ti AΦt by Stone’s theorem, since Φt ∈ D(A). As
for the first term:

h−1eit ′ A (Φt ′ − Φt ) = h−1eit A (Φt ′ − Φt ) + h−1
(

eit ′ A − eit A
)

(Φt ′ − Φt ) .

By the continuity of eit A the first terms converges to

eit A

(
lim
h→0

1

h

∫ t ′

t
e−iτ A Sτ dτ

)
= eit Ae−i t A St = St ,

where, by (10.11), we used:

h−1

∣∣∣∣∣

∣∣∣∣∣

∫ t ′

t
e−iτ A Sτ dτ − e−i t A St

∣∣∣∣∣

∣∣∣∣∣ = h−1

∣∣∣∣∣

∣∣∣∣∣

∫ t ′

t

(
e−iτ A Sτ − e−i t A St

)
dτ

∣∣∣∣∣

∣∣∣∣∣

≤ h−1
∫ t ′

t

∣∣∣∣e−iτ A Sτ − e−i t A St

∣∣∣∣ dτ ≤ sup
τ∈[t,t ′]

∣∣∣∣e−iτ A Sτ − e−i t A St

∣∣∣∣→ 0

as h → 0, since τ �→ e−iτ A Sτ is continuous from

∣∣∣∣e−iτ A Sτ − e−i t A St

∣∣∣∣2 = ||Sτ ||2 + ||St ||2 − 2Re
(
Sτ

∣∣eiτ Ae−i t A St
)

.

The last thing to prove is

Rh := h−1
(

eit ′ A − eit A
)

(Φt ′ − Φt ) → 0 , h → 0 .

Set Ψt ′ := Φt ′ − Φt :

||Rh || =
∣∣∣∣

∣∣∣∣
e−ih A − I

h
Ψt ′

∣∣∣∣

∣∣∣∣ ≤
∣∣∣∣

∣∣∣∣
e−ih A − I

h
Ψt ′ + i AΨt ′

∣∣∣∣

∣∣∣∣+ ||i AΨt ′ || . (10.13)
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The last term tends to zero as h → 0 (t ′ → t), since τ �→ ||ASτ || is continuous:

||AΨt ′ || =
∣∣∣∣∣

∣∣∣∣∣A
∫ t ′

t
eτ i A Sτ dτ

∣∣∣∣∣

∣∣∣∣∣ ≤
∫ t ′

t
||eτ i A ASτ ||dτ =

∫ t ′

t
||ASτ ||dτ → 0 as t ′ → t.

The first term on the right in (10.13), using the spectral measure of Ψt , reads:

√∫

R

λ2

∣∣∣∣
e−ihλ − 1

hλ
+ i

∣∣∣∣
2

dμΨt ′ (λ).

Since: ∣∣∣∣
e−ihλ − 1

hλ
+ i

∣∣∣∣
2

=
(
1 + 2

1 − cos hλ

hλ
− 2

sin hλ

hλ

)
< 5 ,

we have

∣∣∣∣

∣∣∣∣
e−ih A − I

h
Ψt ′ + i AΨt ′

∣∣∣∣

∣∣∣∣ ≤
√
5

√∫

R

λ2dμΨt ′ (λ) = √
5||AΨt ′ || → 0 , t ′ → t

as seen above.
So we proved ut is a solution. Eventually we need to show it belongs to

C1(J ; D(A)). By the equation and the assumptions on St , that means t �→ Aut is
continuous. By definition of ut , known properties of integrals in a PVM and (10.12)
it follows:

Aut = e−i t A Av + e−i t A
∫ t

0
eiτ A ASτ dτ .

The map t �→ e−i t A(Av) is clearly continuous, while

∣∣∣∣∣

∣∣∣∣∣e
−i t ′ A

∫ t ′

0
eiτ A ASτ dτ − e−i t A

∫ t

0
eiτ A ASτ dτ

∣∣∣∣∣

∣∣∣∣∣

≤
∣∣∣∣∣

∣∣∣∣∣

∫ t ′

t
eiτ A ASτ dτ

∣∣∣∣∣

∣∣∣∣∣+
∣∣∣∣

∣∣∣∣
(

e−i t ′ A − e−i t A
) ∫ t

0
eiτ A ASτ dτ

∣∣∣∣

∣∣∣∣

≤
∫ t ′

t
||ASτ ||dτ +

∣∣∣∣

∣∣∣∣
(

e−i t ′ A − e−i t A
) ∫ t

0
eiτ A ASτ dτ

∣∣∣∣

∣∣∣∣→ 0

as t ′ → t , since t �→ ||ASt || is continuous by assumption and s �→ eis A is strongly
continuous. �

Example 10.9 Under the hypotheses of the previous theorem, take St := eαtψ , with
ψ ∈ D(A) and α ∈ R \ {0} a given constant. The Cauchy problem (10.8) is solved
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by:
ut = e−i t Av + i(A − iα I )−1(e−i t A − eαt I )ψ.

The resolvent (A − iα I )−1 is a well-defined operator in B(H) because σ(A) ⊂ R.
To arrive at ∫ t

0
eiτ Aeατψdτ = i(i A − iα I )−1(I − eit A+α I )ψ ,

implying the formula, notice that by definition

(
φ

∣∣∣∣
∫ t

0
eiτ Aeατψdτ

)
=
∫ t

0

(
φ
∣∣eiτ Aeατψ

)
dτ =

∫ t

0

∫

R

eiτ(λ+α)eατ dμφ,ψdτ .

As the complex measure μφ,ψ is finite, [0, t] has finite measure and [0, t] × R 	
(τ, λ) �→ eiτ(λ+α) is bounded, we can swap the two integrals by the Fubini–Tonelli
theorem (after decomposing μφ,ψ = h|μφ,ψ |, |h| = 1). Therefore by Theorem 9.4:

(
φ

∣∣∣∣
∫ t

0
eiτ Aeατψdτ

)
=
∫ t

0

(
φ
∣∣eiτ Aeατψ

)
dτ =

∫

R

∫ t

0
eiτ(λ−iα)dτdμφ,ψ

=
∫

R

i(λ − iα)−1(1 − eiτ(λ−iα))dμφ,ψ = (φ ∣∣i(A − iα I )−1(I − eit A+α I ) ψ
)

,

whence the claim, as φ is arbitrary. �

10.1.2 The Abstract Klein–Gordon/d’Alembert Equation
(With Source and Dissipative Term)

The second equation we shall analyse is the Klein–Gordon equation. Once a again
we will assume there is a source term, and now also a dissipative term proportional to
the time derivative by a positive coefficient. We shall not return to it at a later stage,
so the study begins and ends here. Yet it has to be remembered that the equation
has great importance in Quantum Field Theory. Assuming a certain parameter (the
mass, in physics) vanishes and in absence of dissipation, the equation goes under
the name of D’Alembert equation and describes small deformations of (any kind of)
waves in linear media. Under the lens of standard PDE theory, the Klein–Gordon
equation (with dissipative term and source as well) is hyperbolic in nature. Its struc-
ture (ignoring the important physical meaning of the coefficients) is the following:
given an open interval J ⊂ R and an open set Ω ⊂ R

n the equation reads

∂2

∂t2
ut (x) + 2γ

∂

∂t
ut (x) + (A0ut )(x) = S(t, x) (10.14)

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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where, on some domain D(A0) ⊂ C2(Ω),

A0 = −Δx + m2 : D(A0) → L2(Ω, dx) , (10.15)

m > 0, γ ≥ 0 are constants, V : Ω → R and S : J × Ω → C are given functions,
for instance continuous, and Δx is the Laplace operator on R

n . The D’Alembert
equation arises from setting m = 0, γ = 0 in (10.14)–(10.15). One can consider
equations where m and γ are functions, too.

A map u = u(t, x) is a classical solution to (10.14) if it is defined on (t, x) ∈
J × Ω , it is twice differentiable with continuity in every variable, and it solves the
equation on its domain.

We can make the same comments of the previous section about A0. Supposing
A := A0 is self-adjoint, we can reinterpret Eq. (10.14), where now A0 is replaced by
any self-adjoint operator, here positive definite, and the t-derivative is in the topology
of the Hilbert space.

Fix an open interval J ⊂ R with J 	 0. Let A : D(A) → H be self-adjoint on
the Hilbert space H, J 	 t �→ St ∈ H a given map in C(J ;H), γ > 0 a constant.
The abstract Klein–Gordon equation with source and dissipative term reads:

d2

dt2
ut + 2γ

d

dt
ut + Aut = St (10.16)

where u ∈ C2(J ; D(A)) is the unknown function. Derivatives are defined with
respect to H. The source is the function S = St and the dissipative term is the one
multiplied by γ ≥ 0. If St = 0 for any t ∈ J , Eq. (10.16) is homogeneous.

The Cauchy problem for the Klein–Gordon equation with dissipative term,
whether with source or homogeneous, is the problem that seeks a solution u ∈
C2(J ; D(A)) to (10.16), respectively with source or homogeneous, subject to the
initial conditions:

u0 = v ∈ D(A) ,
dut

dt
|t=0 = v′ ∈ H . (10.17)

Remark 10.10

(1) If A0 is of type (10.15) and essentially self-adjoint, we may take a classical
solution u = u(t, x) to (10.14), for which u(t, ·) ∈ D(A0) for any t ∈ J . Under
assumptions of the kind of Proposition 10.3 for the first and second time-derivatives,
the solution also satisfies the abstract equation (10.16), as D(A) = D(A0) ⊃ D(A0).
Therefore, under not so strong assumptions, classical solutions are solutions in the
abstract sense.

(2)The abstract approach presented allows for operators A different from self-adjoint
extensions of Laplacians. The abstract equation befits important situations in physics,
like waves created by small deformations of elastic media with inner tensions at rest



550 10 Spectral Theory III: Applications

(a violin’s sound board): A is a self-adjoint extension of the squared Laplacian
Δ2, which is a fourth-order differential operator. Allowing for dissipative term and
source, the classical equation governing the deformation u = u(t, x) is:

a
∂2u

∂t2
+ bΔ2

x u + c
∂u

∂t
= S(t, x)

for a, b > 0, c ≥ 0. �

Our first result establishes uniqueness for the abstract Klein–Gordon with any given
initial condition, provided A, apart from being positive, does not have zero as an
eigenvalue. These assumptions are automatic for operators like (10.15), and if one
works on reasonable domains such as D(Rn). Note that closing the operator might
cause 0 to appear as an eigenvalue.

Proposition 10.11 Suppose u = ut solves the homogeneous equation (10.16), with
γ ≥ 0, and A is self-adjoint, A ≥ 0 and K er(A) = {0}. Then the energy estimate

d E[ut ]
dt

≤ −4γ

∣∣∣∣

∣∣∣∣
dut

dt

∣∣∣∣

∣∣∣∣
2

(10.18)

holds, where the “energy of the solution at time t” is:

E[ut ] :=
∣∣∣∣

∣∣∣∣
dut

dt

∣∣∣∣

∣∣∣∣
2

+ (ut |Aut ) . (10.19)

Hence, if a solution J 	 t �→ ut to (10.16) exists (St �= 0 in general), it is uniquely
determined, for t ∈ [0,+∞) ∩ J, by u0 and dut/dt |t=0. If γ = 0 the solution is
unique everywhere on J .

Proof By continuity of the inner product:

d

dt
Et [ut ] =

(
d2ut

dt2

∣∣∣∣
dut

dt

)
+
(

dut

dt

∣∣∣∣
d2ut

dt2

)
+ d

dt
(ut |Aut ) .

The last derivative is the limit, as h → 0, of

1

h
((ut+h |Aut+h ) − (ut |Aut ))

= 1

h
((ut+h |Aut+h ) − (ut+h |Aut )) − 1

h
((ut+h |Aut ) − (ut |Aut )) .

The last term, by inner product continuity, tends to

(
dut

dt

∣∣∣∣ Aut

)
.
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Furthermore, by (10.16):

1

h
((ut+h |Aut+h ) − (ut+h |Aut )) = 1

h
((Aut+h |ut+h ) − (Aut+h |ut ))

=
(

Aut+h

∣∣∣∣
ut+h − ut

h

)
= −

((
d2

dt2
+ 2γ

d

dt

)
ut+h

∣∣∣∣
ut+h − ut

h

)
.

As t �→ ut is in C2(J ; D(A)) and the inner product is continuous,

1

h
((ut+h |Aut+h ) − (ut+h |Aut )) → −

((
d2

dt2
+ 2γ

d

dt

)
ut

∣∣∣∣
dut

dt

)

as h → 0. Therefore we obtain (10.18):

d

dt
E[ut ] =

(
d2ut

dt2

∣∣∣∣
dut

dt

)
+
(

dut

dt

∣∣∣∣
d2ut

dt2

)
−
((

d2

dt2
+ 2γ

d

dt

)
ut

∣∣∣∣
dut

dt

)

−
(

dut

dt

∣∣∣∣

(
d2

dt2
+ 2γ

d

dt

)
ut

)
= −4γ

(
dut

dt

∣∣∣∣
dut

dt

)
≤ 0 .

Consider now two solutions to Eq. (10.16) with source, and suppose they have the
same initial data. The difference of the solutions, u = ut , solves the homogeneous
equation, hence also (10.18). By construction u0 = 0, dut/dt |t=0 = 0, and the
function on the right in (10.18) is continuous. Therefore, for any t ≥ 0:

E[ut ] ≤ E[u0] = 0 ,

where we used u0 = 0 and dut/dt |t=0 = 0. As E[ut ] ≥ 0 by definition (10.19), we
conclude that

E[ut ] = 0 if t ≥ 0 .

Definition (10.19) implies (ut |Aut ) = 0, so by Theorem (9.4) (
√

Aut |
√

Aut ) = 0,
i.e. ut ∈ K er(

√
A), if t ≥ 0 (recall D(A) ⊂ D(

√
A) for any self-adjoint operator

A ≥ 0, by definition of D( f (A))). If we had
√

Aut = 0, then
√

A
√

Aut = 0 i.e.
Aut = 0, which is impossible unless ut = 0. So ut = 0 when t ≥ 0, and the two
solutions coincide for t ≥ 0. If γ = 0 the argument works for t < 0 as well, by
flipping the sign of t to −t . �

We are interested in having global existence on J . We will establish a result in
the homogeneous case with “small” dissipative term, when σ(A) is bounded from
below by a positive constant and restricting the initial condition v′.

Proposition 10.12 Let γ ≥ 0 be given, and assume A − γ 2 I ≥ ε I for some ε > 0.
Given initial conditions (10.17) with v ∈ D(A), v′ ∈ D(

√
A), the homogeneous

Cauchy problem (10.16)–(10.17) admits a solution, for t ∈ J :

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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ut = e−γ t

2

(
eit

√
A−γ 2 I + e−i t

√
A−γ 2 I

)
v

− i
e−γ t

2

(
eit

√
A−γ 2 I − e−i t

√
A−γ 2 I

)
(A − γ 2 I )−

1
2 (v′ + γ v) (10.20)

where the exponential and the root are meant in spectral sense.

Proof A direct computation shows the right-hand side of (10.20) solves (10.16): for
this we need Theorem 9.33, the fact that (A − γ 2 I )− 1

2 is bounded and defined on
the whole Hilbert space, and D(A) = D(A − γ 2 I ) ⊂ D(

√
A − γ 2 I ) = D(

√
A) by

the assumptions made. By Proposition 10.11 the solution found is unique, because
A ≥ 0 and K er(A) = {0} from the lower bound γ 2 + ε > 0 of σ(A).

That ut is C1 (as it should) descends from a computation of the derivative, which
needs Stone’s theorem, and the boundedness of (A − γ 2 I )−1/2 (it has bounded
spectrum). Therefore

dut

dt
= −γ ut + i

e−γ t

2

(
eit

√
A−γ 2 I − e−i t

√
A−γ 2 I

)√
A − γ 2 I v

i
e−γ t

2

(
eit

√
A−γ 2 I + e−i t

√
A−γ 2 I

)
(v′ + γ v) ,

is continuous since: ut is continuous as differentiable, and the remaining part of
dut/dt is the action of strongly continuous one-parameter groups on given vectors
(plus an extra continuous factor e−γ t ).

That ut is in C2(J ;H) goes as follows: write d2ut/dt2 as combination of ut ,
dut/dt , Aut and St using the differential equation, and recall ut , dut/dt and St are
continuous together with:

Aut = e−γ t

2

(
eit

√
A−γ 2 I + e−i t

√
A−γ 2 I

)
Av

−i
e−γ t

2

(
eit

√
A−γ 2 I − e−i t

√
A−γ 2 I

)
A(A − γ 2 I )−

1
2 (v′ + γ v) .

As before, in fact, the above is the action of strongly continuous one-parameter
groups on fixed vectors. Eventually, from the expression of ut and dut/dt we see the
initial conditions are satisfied. �

Remark 10.13 Here is a more suggestive way to write (10.20), which is legitimate
if we recall the notion of a function of an operator A:

ut = e−γ t cos
(

t
√

A − γ 2 I
)

v + e−γ t sin
(

t
√

A − γ 2 I
)

(A − γ 2 I )−1/2(v′ + γ v) .

(10.21)
�

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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Example 10.14 A frequent situation in classical applications is that in which the
self-adjoint operator A satisfies A ≥ ε I for some ε > 0 and has compact resolvent
(by Corollary 8.6 it suffices for this to happen at one point of the resolvent set).
The resolvent’s spectrum computed at ε/2 (so that to have a self-adjoint operator) is
made by eigenvalues only, possibly with 0 as point of the continuous spectrum, and
every eigenspace is finite-dimensional by Theorem 4.19. Proposition 9.17 implies
σ(A) = σp(A), since σ(A) = {μ−1 + ε/2 | μ ∈ σ(Rε/2(A))} and every eigenvector
of the resolvent Rε/2(A) is an eigenvector for A. Each eigenspace of A has finite
dimension, as it corresponds to an eigenspace (with non-zero eigenvalue) of the
compact resolvent Rε/2(A).

For example, this is the case when −A is the closure of the Laplacian on the
relatively compact open set Ω ⊂ R

n , with D(Δ) containing maps ψ ∈ C2(Ω)

vanishing at the boundary and whose derivatives up to order two are finite on ∂Ω .
Then the Laplacian is essentially self-adjoint and the closure’s resolvent is compact.
If c > 0 is constant (the travelling speed of waves in the medium), the equation

d2ut

dt2
− c2Δut = 0

presides over the evolution of the vertical deformation ut (x) of a flat horizontal elastic
membrane represented by the region Ω ⊂ R

2, assumed to be fixed at the rim.
Let A := −c2Δ, and call {φn}n∈N an eigenvector basis for A with corresponding

eigenvalues 0 < ε ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · . Decompose the initial conditions v, v′:

v =
∑

n∈N

cnφn , v′ =
∑

n∈N

c′
nφn .

Using (10.21), with γ = 0, produces the explicit solution:

ut =
∑

n∈N

(
cn cos

(√
λnt
)

+ c′
n

sin
(√

λnt
)

√
λn

)
φn (10.22)

The solution clearly oscillates by the system’s natural frequencies (eigenfrequen-
cies), i.e. the numbers

√
λn , for λn ∈ σp(A). �

It should be clear that the solution set to the Klein–Gordon equation with source and
dissipative term (10.16) – if not empty – consists of maps

J 	 t �→ u(0)
t + st ,

where s is an arbitrary, but fixed, solution to (10.4), while u(0) varies in the vector
space of solutions to the homogeneous equation (possibly with dissipative term).
This solution exists if the source is regular enough. In fact the following analogue to
Theorem 10.8 holds.

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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Theorem 10.15 Let A : D(A) → H be a self-adjoint operator on H, γ ≥ 0 a fixed
number, J ⊂ R an open interval with 0 ∈ J . If

(i) A − γ 2 I ≥ ε I for some ε > 0,
(ii) v ∈ D(A), v′ ∈ D(

√
A),

(iii) J 	 t �→ St is continuous in H,
(iv) St ∈ D(A) for any t ∈ J ,
(v) J 	 t �→ ASt is continuous in H,

then there exists a solution J 	 t �→ ut ∈ C2(J ; D(A)) to the Cauchy problem

⎧
⎪⎨

⎪⎩

d2ut

dt2
+ 2γ

dut

dt
+ Aut = St ,

u0 = v ,
dut

dt
|t=0 = v′ ,

(10.23)

of the form:

ut = e−γ t cos
(

t
√

A − γ 2 I
)

v + e−γ t sin
(

t
√

A − γ 2 I
)

(A − γ 2 I )−1/2(v′ + γ v)

+ e−γ t−i t
√

A−γ 2 I
∫ t

0
dτe2iτ

√
A−γ 2 I

∫ τ

0
dxeγ x−i x

√
A−γ 2 I Sx . (10.24)

The latter is unique on [0,+∞) ∩ J , and even on J if γ = 0.
Integrals in (10.24) are defined using (10.10) repeatedly.

Sketch of proof. Uniqueness was proven earlier, so we have to show

u′
t := e−γ t−i t

√
A−γ 2 I

∫ t

0
dτe2iτ

√
A−γ 2 I

∫ τ

0
dxeγ x−i x

√
A−γ 2 I Sx

is in C2(J ; D(A)) and solves the differential equation with zero initial data. The
initial conditions are satisfied by direct computation. The rest is proved applying
Theorem10.8 twice and bearing inmind the following. Since D(A) = D(A−γ 2 I ) ⊂
D(
√

A − γ 2 I ) = D(
√

A), by Theorem 9.4

d2ut

dt2
+2γ

dut

dt
+Aut =

[
d

dt
−
(

−γ I + i
√

A − γ 2 I

)][
d

dt
−
(

−γ I − i
√

A − γ 2 I

)]
ut

if u ∈ C2(J ; D(A)). Then the PDE reads:

[
d

dt
−
(
−γ I + i

√
A − γ 2 I

)] [ d

dt
−
(
−γ I − i

√
A − γ 2 I

)]
ut = St .

Theorem 10.8 generalises easily to an operator A + ia I with a ∈ R, A self-adjoint.
The equation thus becomes

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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[
d

dt
−
(

−γ I − i
√

A − γ 2 I

)]
ut = e−tγ I+i t

√
A−γ 2 I

∫ t

0
eτγ I−iτ

√
A−γ 2 I Sτ dτ + u(0)

t ,

(10.25)
where u(0) denotes the generic homogeneous solution to:

[
d

dt
−
(
−γ I + i

√
A − γ 2 I

)]
u(0)

t = 0 .

Fixing u(0) = 0 and iterating for the remaining term on the left in (10.25)

[
d

dt
−
(
−γ I − i

√
A − γ 2 I

)]
,

produces the solution in the needed form.What is still missing is to check the assump-
tions granting we can invoke Theorem 10.8: this is left as exercise. �

Example 10.16

(1) In the hypotheses of Theorem 10.15 let us consider a physical system described
by the Klein–Gordon equation with dissipative term, and periodic source

St = eiωtψ

whereω ∈ R is a given constant andψ ∈ D(A). Under Theorem 10.15, but explicitly
with γ > 0, we want to study the solution u = ut of the Cauchy problem with initial
conditions v, v′ in the “far future”, meaning t >> 1. Provided γ > 0, a direct
computation (see Exercise 10.1) following from (10.24) yields:

ut = e−γ t
[
cos
(

t
√

A − γ 2 I
)

v + sin
(

t
√

A − γ 2 I
)

(A − γ 2 I )−1/2(v′ + γ v)
]

+e−γ t Cω,tψ + eiωt (A − ω2 I + 2iγωI )−1ψ .

for Cω,t ∈ B(H), ||Cω,t || ≤ Kω, some constant Kω ≥ 0 and any t ≥ 0. Assuming
γ > 0, the resolvent of A at ω2 −2iγ , i.e. (A−ω2 I +2iγ Iω)−1, is well defined and
inB(H), as σ(A) ⊂ (0,+∞) by assumption. For large t > 0 only the last summand
in ut above survives. The term e−γ t Cω,tψ tends to zero in the norm ofH and the part
of solution depending on the initial conditions also goes to zero, because:

∣∣∣
∣∣∣cos

(
t
√

A − γ 2 I
)∣∣∣
∣∣∣ ≤ 1 and

∣∣∣
∣∣∣sin

(
t
√

A − γ 2 I
)

(A − γ 2 I )−1/2
∣∣∣
∣∣∣ ≤ K ,

for some constant K ≥ 0. Therefore at large times the solution oscillates at the same
frequency of the source, and the information provided by the initial data gets lost:

||ut − u(∞,ψ,ω)
t || → 0 as t → +∞,
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where we call
u(∞,ψ,ω)

t := eiωt (A − ω2 I + 2iγωI )−1ψ

the long-time solution.

(2) Referring to example (1), we shall explain the phenomenon called resonance.If
the source oscillates at a frequency ω that is (up to sign) in the spectrum of A, then
the smaller the damping term γ is, the larger the long-time solution u(∞,ψ,ω)

t can
be rendered by choosing a suitable ψ . In fact let P (A) be the PVM of A and set
I δ
ω := [ω2 − δ, ω2 + δ], for δ > 0 finite. If the source is given by the unit vector

ψ ∈ P (A)

I δ
ω

(H), with δ > 0 small enough we have:

∣∣∣
∣∣∣eiω(A − ω2 I + 2iγ Iω)−1ψ

∣∣∣
∣∣∣
2 =

∫

I δ
ω

dμψ(λ)

|λ − ω2|2 + 4γ 2ω2 ≥ inf
λ∈I δ

ω

1

|λ − ω2|2 + 4γ 2ω2

and so:
∣∣∣
∣∣∣u(∞,ψ,ω)

t

∣∣∣
∣∣∣ ≥ 1√

δ2 + 4γ 2ω2
.

This is all the more evident if the resolvent of A is compact (see Example 10.14),
in which case σ(A) = σp(A). If so, picking ω ∈ σp(A) and a corresponding unit
eigenvector ψ , the previous estimate strengthens to:

∣∣∣
∣∣∣u(∞,ψ,ω)

t

∣∣∣
∣∣∣ ≥ 1

2γ |ω| .

Continuing with a compact resolvent for A (self-adjoint with strictly positive spec-
trum), so σ(A) = σp(A), let us take:

St =
∑

j∈J

eiω j tψ j ,

ω j ∈ R and ψ j �= 0, J finite. By linearity the long-time solution will be the super-
position:

u(∞)
t =

∑

j∈J

eiω j t (A − ω2 I + 2iγ Iω)−1ψ j .

We can decompose every ψ j using an eigenvector basis {φn}n∈N for A:

ψ j =
∑

n∈N

cn, jφn .
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As (A − ω2 I + 2iγ Iω)−1 is continuous and J finite:

u(∞)
t =

∑

j∈J

∑

n∈N

cn, j eiω j t

λn − ω2
j + 2iγω j

φn (10.26)

In contrast to solution (10.22), which arises in absence of source and dissipation,
the long-time solution, besides having lost track of the initial conditions, no longer
oscillates by the natural frequencies

√
λn of the system described by A as in (10.22);

rather, the oscillations are forced by the frequencies of the source ω j . However, the
system’s eigenfrequencies leave traces in the denominator on the right of (10.26),
thus generating resonance. That is why the sound of a violin essentially depends on
the harmonic1 frequencies of the strings ω j despite being produced by the sound
board, whose non-harmonic resonance frequencies are λ j �= ω j . �

10.1.3 The Abstract Heat Equation

In the standard theory of PDEs the heat equation is parabolic. Coefficients apart,
whose meaning – albeit relevant – we shall ignore, the heat equation over a given
open set Ω ⊂ R

n reads:

∂

∂t
ut (x) + (A0ut )(x) = S(t, x) . (10.27)

Above
A0 := −Δx : D(A0) → L2(Ω, dx) (10.28)

for some domain D(A0) ⊂ C2(Ω), with Δx being the Laplace operator on R
n .

A map u = u(t, x) is a classical solution to (10.27) if it is defined for (t, x) ∈
[0, b) × Ω with b ∈ (0,+∞] given, continuous on [0, b) × Ω , differentiable with
continuity in t and twice in x1, . . . , xn on (0, b) × Ω , and clearly if it solves (10.27)
on (0, b) × Ω .

Assuming, as before, that A := A0 is self-adjoint leads to a generalised interpreta-
tion of (10.27), where A0 is replaced by any self-adjoint operator and t-differentiation
is meant in the Hilbert space.

Fix b ∈ (0,+∞]. If A : D(A) → H is self-adjoint on the Hilbert space H and
[0, b) 	 t �→ St ∈ H is continuous and fixed in C((0, b);H), the abstract heat
equation with source is

d

dt
ut + Aut = St . (10.29)

1Harmonic here means that these frequencies are integer multiples of a fundamental frequency. The
presence of a fundamental frequency makes the distinction between sound and noise.
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The unknown is the continuous map u : [0, b) → D(A) with u ∈ C1((0, b); D(A)).
Continuity and derivative are meant in H. The source is the map S = St . As usual,
if St = 0 for any t ∈ [0, b) the Eq. (10.29) is homogeneous.

The Cauchy problem for the heat equation, with source or homogeneous, seeks
a C1 map u : [0, b) → D(A) solving (10.29), respectively with source or homoge-
neous, together with the initial condition:

u0 = v ∈ D(A). (10.30)

Remark 10.17 If A0 is of the form (10.28) and essentially self-adjoint, we may
consider a classical solution u = u(t, x) to (10.27), for which u(t, ·) ∈ D0(A0) for
any t ∈ [0, b). Under assumptions of the kind of Proposition 10.3, this solution will
solve the abstract equation (10.29) too, since D(A) = D(A0) ⊃ D(A0). Therefore
under relatively mild hypotheses classical solutions are abstract solutions. �

The next result guarantees the abstract heat equation has a unique solution for any
initial condition, provided the operator A is positive.

Proposition 10.18 If A is self-adjoint and A ≥ 0, and u = ut solves the homoge-
neous equation (10.29), then

||ut || ≤ ||u0|| for any t ∈ [0, b). (10.31)

Hence, for A ≥ 0, the Cauchy problem (10.29)–(10.30), with St �= 0 in general, has
at most one solution.

Proof By (10.1) and (10.29), for St = 0:

d

dt
||ut ||2 = d

dt
(ut |ut ) = −(Aut |ut ) − (ut |Aut ) ≤ 0

as A is self-adjoint. Hence ||ut || ≤ ||ut0 || if t ≥ t0 ∈ (0, b). By continuity the
estimate holds at t0 = 0. Uniqueness is proved as follows. If u, u′ solve the Cauchy
problem (with the same St ), then J 	 t �→ ut − u′

t solves the Cauchy problem
(10.29) with St = 0 and initial condition u0 = 0. Then 0 ≤ ||ut − u′

t || ≤ ||0|| = 0
for any t ∈ J and hence ut = u′

t for any t ≥ 0. �

Now we go for an existence result.

Proposition 10.19 If A is self-adjoint and A ≥ 0, a (hence, the) solution to the
Cauchy problem (10.29)–(10.30) reads:

ut = e−t Av , t ∈ [0, b) ,

where the exponential is meant in spectral sense.
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Proof Take ψ ∈ H and t, t ′ ∈ [0, b). Observe, as σ(A) ⊂ [0,+∞), that Theorem
9.4 implies e−t A ∈ B(H) if t ≥ 0, e−0A = I and also:

||e−t Aψ−e−t ′ Aψ ||2 =
∫

σ(A)

|e−λt −e−λt ′ |2dμψ(λ) =
∫

[0,+∞)

|e−λt −e−λt ′ |2dμψ(λ).

Since μψ is finite, if we bound the integrand uniformly in t, t ′ in a given neighbour-
hood by some constant, dominated convergence forces ||e−t Aψ − e−t ′ Aψ ||2 → 0
as t → t ′. Consequently ut := e−t Av is continuous on [0,+∞), and in particular
u0 = v.

Suppose v ∈ D(A), so

∫

[0,+∞)

|λ|2dμv(λ) < +∞.

Assume as well ∫

[0,+∞)

λ2e−2λt dμv(λ) < +∞ ,

justified by λ ≥ 0 and t ≥ 0, so 0 ≤ e−λt ≤ 1. Then for t ∈ (0, b):

∫

[0,+∞)

∣∣∣∣
e−λ(t+h) − e−λt

h
− λ

∣∣∣∣
2

dμv(λ) → 0 as h → 0,

because the integrand tends pointwise to 0 as h → 0 and is bounded, uniformly
around h = 0, by the map [0,+∞)λ �→ Cλ2e−2λt (integrable if ν ∈ D(A)). Thus
we proved ∣∣∣∣

∣∣∣∣
1

h
(e−(t+h)A − e−t A)ν − Aν

∣∣∣∣

∣∣∣∣
2

→ 0 as h → 0,

if t ∈ (0,+∞). That means ut := e−t Av solves (10.29) for t ∈ (0, b). Recalling
Theorem 9.4(f):

∣∣∣∣

∣∣∣∣
dut

dt
(t) − dut

dt
(t ′)
∣∣∣∣

∣∣∣∣
2

=
∫

[0,+∞)

|λ|2|e−tλ − e−t ′λ|2dμv(λ) .

So with a similar argument involving Lebesgue’s dominated convergence and using
λe−tλ ≤ 1/t , we immediately find dut

dt (t) is continuous in (0,+∞). Consequently
u ∈ C1((0, b); D(A)), as needed. �

Remark 10.20

(1) If v /∈ D(A), we may still define ut := e−t Av, since the domain of the operator
e−t A is H. The map [0, b) 	 t �→ ut does not solve the homogeneous heat equation.
Since (e−t A)∗ = e−t A, though:

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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d

dt
(z|ut ) + (Az|ut ) = 0 for any z ∈ D(A), t ∈ (0, b). (10.32)

The map [0, b) 	 t �→ ut is called a weak solution to the homogeneous heat
equation.

(2) For A ≥ 0 self-adjoint, the set of operators Tt := e−t A, t ≥ 0, is a strongly
continuous semigroup of operators (see Remark 9.38) generated by the self-adjoint
operator A. Put otherwise the functions [0,+∞) 	 t �→ Tt , beside being strongly
continuous (cf. above), satisfy T0 = I and Tt Ts = Tt+s , t, s ∈ [0,+∞).

From λne−λt ≤ Cnt−n , with Cn := nne−n , n ≥ 0, t, λ > 0, we obtain, for a
self-adjoint operator A ≥ 0 on H:

||AnTtψ ||2 =
∫

[0,+∞)

|λne−λt |2dμψ(λ) ≤ C2
n t−2n

for any unit vector ψ ∈ H (bearing in mind Theorem 9.4(c)). Therefore:

||AnTt || ≤ Cnt−n .

In particular:

Ran(Ttψ) ⊂ D(An) for any n = 0, 1, 2, . . . , ψ ∈ H and t > 0.

When A is, say, the closure of −Δ on S (Rn), then

ψt := e−tΔψ ∈ D(Δ
n
) for any n = 0, 1, 2, . . . , ψ ∈ L2(Rn, dx) and t > 0.

Using the Fourier–Plancherel transform (see Sect. 3.7), we obtain easily that ψt

admits weak derivatives (Definition 5.24) of any order, and the latter belong to
L2(Rn, dx). Well-known results of Sobolev (cf. [Rud91], always with t > 0) imply
ψt is in C∞(Rn) up to a zero-measure set; on the other hand ψt → ψ as t → 0+
in L2(Rn, dx). In this sense semigroups generated by elliptic operators like −Δ are
employed to regularise functions.
(3) It should be clear, once again, that the solutions to the heat equation with source
(10.29) – if they exist – have the form

J 	 t �→ u(0)
t + st

where s is any fixed solution to (10.29) and u(0) roams the vector space of homoge-
neous solutions. �

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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10.2 Hilbert Tensor Products

We shall see in Chap.13 that composite quantum systems in elementary QM are
described on tensor products of the Hilbert spaces of the component subsystems. We
will explain in the sequel what exactly a tensor product in the category of Hilbert
spaces is, and assume the reader has a familiarity with (standard) tensor products of
finite-dimensional vector spaces [Lan10] for general motivations and the notations
used. For the infinite-dimensional case we shall follow the approach of [ReSi80].

10.2.1 Tensor Product of Hilbert Spaces and Spectral
Properties

Consider n (complex) Hilbert spaces (Hi , (·|·)i ), i = 1, 2, . . . , n, and choose a vector
vi in each Hi . Mimicking the finite-dimensional situation one can define the tensor
product v1 ⊗ · · · ⊗ vn of the vi as the multilinear functional:

v1 ⊗ · · · ⊗ vn : H′
1 × · · · × H′

n 	 ( f1, . . . , fn) �→ f1(v1) · · · fn(vn) ∈ C ,

whereH′
i is the topological dual toHi and the dots ·, on the far right, denote the product

of complex numbers. Equivalently, by Riesz’s theorem, we may define the action of
v1 ⊗ · · · ⊗ vn on n-tuples in H1 × · · · ×Hn rather than on H′

1 × · · · ×H′
n . This keeps

trackof the anti-isomorphism (built from the inner product) that identifies dualHilbert
spaces. In this manner v1 ⊗ · · · ⊗ vn acts on n-tuples (u1, . . . , un) ∈ H1 × · · · × Hn

via the inner products, and induces an antilinear functional in each variable. This
latter, more viable, definition will be our choice.

Definition 10.21 Consider n (complex) Hilbert spaces (Hi , (·|·)i ), i = 1, 2, . . . , n,
and pick one vector vi in each Hi . The tensor product v1 ⊗ · · · ⊗ vn of v1, . . . , vn is
the mapping:

v1 ⊗ · · · ⊗ vn : H1 × · · · × Hn 	 (u1, . . . , un) �→ (u1|v1)1 · · · (un|vn)n ∈ C .

(10.33)

With T n
i=1Hi wedenote the collection ofmaps {v1⊗· · ·⊗vn |vi ∈ Hi , i = 1, 2, . . . , n}

while
⊗̃n

i=1Hi is the C-vector space of finite linear combinations of tensor products
v1 ⊗ · · · ⊗ vn ∈ T n

i=1Hi .

Remark 10.22 From this definition it is evident that the mapping v1 ⊗ · · · ⊗ vn :
H1 × · · · × Hn → C is conjugate-multilinear, that is antilinear in each variable
ui ∈ Hi separately, as we see from (10.33), since the inner product is conjugate-
linear on the left. This notwithstanding, (v1, . . . vn) �→ v1 ⊗ · · · ⊗ vn is multilinear,
as one proves immediately. �

http://dx.doi.org/10.1007/978-3-319-70706-8_13
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Let us show how we may define an inner product (·|·) on ⊗̃n
i=1Hi . Consider the map

S : T n
i=1Hi × T n

i=1Hi → C,

S(v1 ⊗ · · · ⊗ vn, v′
1 ⊗ · · · ⊗ v′

n) := (v1|v′
1) · · · (vn|v′

n). (10.34)

The following result holds.

Proposition 10.23 The mapping S : T n
i=1Hi × T n

i=1Hi → C extends, by linearity in
the right slot and antilinearity in the left, to a unique Hermitian inner product on the

complex space
⊗̃n

i=1Hi :

(Ψ |Φ) :=
∑

i

∑

j

αiβ j S(v1i ⊗ · · · ⊗ vni , u1 j ⊗ · · · ⊗ unj )

for Ψ = ∑
i αi v1i ⊗ · · · ⊗ vni and Φ = ∑

j β j u1 j ⊗ · · · ⊗ unj (both sums being
finite).

Proof Just to preserve readability let us reduce to the case n = 2. If n > 2 the proof
is conceptually identical, only more tedious to write. Take Ψ,Φ ∈ H1⊗̃H2. First we
have to show that distinct decompositions of the same vectors

Ψ =
∑

j

α j v j ⊗ v′
j =

∑

h

βhuh ⊗ u′
h , Φ =

∑

k

γkwk ⊗ w′
k =

∑

s

δs zs ⊗ z′
s ,

force

∑

j

∑

k

α jγk S(v j ⊗ v′
j , wk ⊗ w′

k) =
∑

j

∑

s

α jδs S(v j ⊗ v′
j , zs ⊗ z′

s) (10.35)

and:

∑

h

∑

k

βhγk S(uh ⊗ u′
h, wk ⊗ w′

k) =
∑

h

∑

s

βhδs S(uh ⊗ u′
h, zs ⊗ z′

s) . (10.36)

This would prove that the extension of S to H1⊗̃H2 is well defined, for it does not
depend on the particular representatives S acts on. So let us prove this fact just for
the right variable (10.35), because for (10.36) the argument is similar. The left-hand
side in (10.35) may be written:

∑

j

∑

k

α j γk S(v j ⊗ v′
j , wk ⊗ w′

k) =
∑

j

⎛

⎝
∑

k

γkwk ⊗ w′
k

⎞

⎠ (α j v j , v′
j ) =

∑

j

Φ(α j v j , v′
j )
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and, analogously, the right side of (10.35) reads

∑

j

∑

s
α j δs S(v j ⊗ v′

j , zs ⊗ z′
s) =

∑

j

(
∑

s
δs zs ⊗ z′

s

)
(α j v j , v′

j ) =
∑

j

Φ(α j v j , v′
j ) ,

where we usedΦ =∑k γkwk ⊗w′
k =∑s δs zs ⊗ z′

s . Therefore S extends uniquely to
a map, linear in the second argument and antilinear in the first, (·|·) : H1⊗̃H2 → C.
By definition of S:

(Ψ |Φ) = (Φ|Ψ ) .

To prove that (·|·) is indeed a Hermitian inner product we just have to show positive
definiteness. That is easy. If Ψ =∑n

j=1 α j v j ⊗ v′
j , where n < +∞ by assumption,

consider the (finite!) orthonormal basis u1, . . . , um (m ≤ n) in the span of v1, . . . , vn ,
and a similar basis u′

1, . . . , u′
l , (l ≤ n) in the span of v′

1, . . . , v′
n . Using the bilinearity

of ⊗, we can write Ψ = ∑m
j=1

∑l
k=1 b jku j ⊗ u′

k , for suitable coefficients b jk . By
definition of S and since the bases are orthonormal, we obtain

(Ψ |Ψ ) =
⎛

⎝
m∑

j=1

l∑

k=1

b jku j ⊗ u′
k

∣∣∣∣∣

m∑

i=1

l∑

s=1

bisui ⊗ u′
s

⎞

⎠ =
n∑

j=1

l∑

k=1

|b jk |2 .

Now it is patent that (·|·) is positive definite. �

Definition 10.24 Consider n (complex) Hilbert spaces (Hi , (·|·)i ), i = 1, 2, . . . , n.
The (Hilbert) tensor product of the Hi , written

⊗n
i=1 Hi or H1 ⊗ · · · ⊗ Hn , is the

completion of
⊗̃n

i=1Hi with respect to the inner product (·|·) of Proposition 10.23.

It is immediate to verify that the definition reduces to the elementary (algebraic) one
if the spaces Hi are finite-dimensional. Moreover, the next results hold.

Proposition 10.25 Take n (complex) Hilbert spaces (Hi , (·|·)i ) with Hilbert bases
Ni ⊂ Hi , i = 1, 2, . . . , n. Then

N := {z1 ⊗ · · · ⊗ zn | zi ∈ Ni , i = 1, 2, . . . , n}

is a Hilbert basis for H1 ⊗ · · · ⊗ Hn. In particular, H1 ⊗ · · · ⊗ Hn is separable if
every Hi is.

Proof By construction N is an orthonormal system (by definition of inner product
on the tensor product). We have to prove 〈N 〉 is dense in H1 ⊗ · · · ⊗ Hn . As linear
combinations of the v1⊗· · ·⊗vn are dense inH1⊗· · ·⊗Hn , it is enough to show any
v1 ⊗ · · · ⊗ vn can be approximated arbitrarily well by combinations of z1 ⊗ · · · ⊗ zn

in N . To simplify the notation we will reduce again to n = 2, since the general
case n > 2 goes in the same way. For suitable coefficients γz and βz′ , we have
v1 =∑z∈N1

γz z and v2 =∑z′∈N2
βz′ z′, so (Theorem 3.26 and Definition 3.19):

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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||v1||2 = sup

{
∑

z∈F1

|γz|2
∣∣∣∣∣ F1 finite subset of N1

}
(10.37)

and

||v2||2 = sup

{
∑

z′∈F2

|βz′ |2
∣∣∣∣∣ F2 finite subset of N2

}
. (10.38)

If F ⊂ N1 × N2 is finite, a direct computation using the orthonormality of z ⊗ z′ and
the definition of inner product on H1 ⊗ H2 gives

∣∣∣∣∣∣

∣∣∣∣∣∣
v1 ⊗ v2 −

∑

(z,z′)∈F

γzβz′ z ⊗ z′

∣∣∣∣∣∣

∣∣∣∣∣∣

2

= ||v1||2||v2||2 −
∑

(z,z′)∈F

|γz|2|βz′ |2 .

Having (10.37) and (10.38) we can make the right-hand side as small as we like by
increasing F . This ends the proof. �
Proposition 10.26 Let (Hi , (·|·)i ) be (complex) Hilbert spaces, Di ⊂ Hi dense
subspaces, i = 1, 2, . . . , n. The subspace D1 ⊗· · ·⊗ Dn ⊂ H1 ⊗· · ·⊗Hn, spanned
by tensor products v1 ⊗ · · · ⊗ vn, vi ∈ Di , i = 1, . . . , n, is dense in H1 ⊗ · · · ⊗ Hn.

Proof As is by now customary, we prove the claim for n = 2. Finite combinations
of tensor products u ⊗ v are dense inH1 ⊗H2, so it is enough to prove the following:
if ψ := u ⊗ v ∈ H1 ⊗ H2, there exists a sequence in D1 ⊗ D2 converging to ψ .
By construction there exist sequences {un}n∈N ⊂ D1 and {vn}n∈N ⊂ D2 respectively
tending to u and v. Then

||un ⊗ vn − u ⊗ v|| ≤ ||un ⊗ vn − un ⊗ v|| + ||un ⊗ v − u ⊗ v|| .

But ||un ⊗ vn −un ⊗ v||2 = ||un ⊗ (vn − v)||2 = ||un||21||vn − v||22 → 0 as n → +∞,
because if the un converge then {||un||1}n∈N is bounded. Similarly ||un⊗v−u⊗v||2 =
||(un − u) ⊗ v||2 = ||un − u||21||v||22 → 0 as n → +∞. �
Example 10.27
(1)Wewill exemplifyHilbert tensor products by showing that for separable L2 spaces
(the spaces of wavefunctions in QM), the Hilbert tensor product may be understood
alternatively using product measures.

Consider a pair of separable Hilbert spaces L2(Xi , μi ), i = 1, 2, and assume both
measures are σ-finite, so that the product μ1 ⊗ μ2 is well defined on X1 × X2.

Proposition 10.28 Let L2(Xi , μi ) be separable Hilbert spaces, i = 1, 2, with σ -
finite measures. Then

L2(X1 × X2, μ1 ⊗ μ2) and L2(X1, μ1) ⊗ L2(X2, μ2)

are canonically isomorphic as Hilbert spaces.

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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The unitary identification is the unique linear bounded extension of:

U0 : L2(X1, μ1) ⊗ L2(X2, μ2) 	 ψ ⊗ φ �→ ψ · φ ∈ L2(X1 × X2, μ1 ⊗ μ2)

where (ψ · φ)(x, y) := ψ(x)φ(y), x ∈ X1, y ∈ X2.

Proof First, if N1 := {ψn}n∈N and N2 := {φn}n∈N are bases of L2(X1, μ1) and
L2(X2, μ2) respectively, then N := {ψn ·φm}(n,m)∈N×N is a basis in L2(X1×X2, μ1⊗
μ2). It is clearly an orthonormal system by elementary properties of the product
measure, and if f ∈ L2(X1 × X2, μ1 ⊗ μ2) is such that

∫

X×X2

f (x, y)ψn(x)φm(y)dμ1(x) ⊗ dμ2(y) = 0

for any ψn · φm , by Fubini–Tonelli we have:

∫

X2

(∫

X1

f (x, y)ψn(x)dμ1(x)

)
φm(y)dμ2(y) = 0 .

As the φm form a basis

∫

X1

f (x, y)ψn(x)dμ1(x) = 0 ,

except for a set Sm ⊂ X2 of zero μ2-measure. Then for y /∈ S := ∪m∈NSm (of zero
measure as countable union of zero-measure sets):

∫

X1

f (x, y)ψn(x)dμ1(x) = 0

for any ψn ∈ N1, which implies f (x, y) = 0 except for x ∈ B, B having zero
μ1-measure. Overall f (x, y) = 0, with the exception of the points in S × B, of zero
measure for μ1 ⊗ μ2 by elementary properties of product measure. Viewing f as in
L2(X1 × X2, μ1 ⊗ μ2), we then have f = 0. Consequently N is a basis, being an
orthonormal system with trivial orthogonal complement.

Consider the unique bounded linear functionU mapping the basis elementψn⊗φm

of L2(X1, μ1)⊗ L2(X2, μ2) to the basis elementψn ·φm of L2(X1×X2, μ1⊗μ2). By
construction U is unitary. Moreover, U sends ψ ⊗ φ ∈ L2(X1, μ1) ⊗ L2(X2, μ2) to
the corresponding ψ ·φ ∈ L2(X1 ×X2, μ1 ⊗μ2) (just note ψ ⊗φ and ψ ·φ have the
same components in the respective bases), so U is a linear unitary extension of U0.
Any other linear bounded extension U ′ of U0 must reduce to U on bases ψn ⊗ φm ,
ψn · φm , and as such it coincides with U by linearity and continuity. �

The result clearly generalises to n-fold products of L2 spaces with separable σ -finite
measures.
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(2) Here is another important result about Hilbert tensor products, that deals with the
case where all summands Hk of a Hilbert sum (Definition 3.67) coincide.

Proposition 10.29 If H is a Hilbert space and 0 < n ∈ N is fixed, the Hilbert space
H ⊗ C

n is naturally isomorphic to
⊕n

k=1 H.
The unitary identification is the unique linear bounded extension of

V0 : H ⊗ C
n 	 ψ ⊗ (v1, . . . , vn) �→ (v1ψ, . . . , vnψ) ∈

n⊕

k=1

H .

Proof The proof is similar to the one in example (1). Fix a Hilbert basis N ⊂ H, so
by construction the vectors

(ψ, 0, . . . , 0), (0, ψ, 0, . . . , 0), . . . , (0, . . . , 0, ψ)

form a basis of
⊕n

k=1 H as ψ varies in N . Take the unique linear bounded transfor-
mation mapping ψ ⊗ ei to (0, . . . , ψ, . . . , 0), where: ψ ∈ N , ei is the i th canonical
vector in C

n , and the only non-zero entry in the n-tuple, ψ , is in the i th place. This
is easily unitary, and restricts to V0 on ψ ⊗ (v1, . . . , vn). Uniqueness is proved in
analogy to example (1). �

(3) The Fock space F (H) generated by H is the infinite Hilbert sum

F (H) :=
+∞⊕

n=0

Hn⊗

where H0⊗ := C, Hn⊗ := H ⊗ · · · ⊗ H︸ ︷︷ ︸
n times

. Notice F (H) is separable if H is. �

Remark 10.30 This discussion begs the question whether it makes sense to define
a tensor product of infinitely many Hilbert spaces. The answer is yes (see [BrRo02,
vol.1]). The definition, however, depends on certain choices. Consider a collection
{Hα}α∈Λ of Hilbert spaces (over C) of any cardinality. Fix unit vectors ψα ∈ Hα and
U := {ψα}α∈Λ. We can construct the Hilbert tensor product

⊗(U )
α∈Λ Hα of as many

Hilbert spaces as we like in the following way.
(1) Take the subspace in ×α∈ΛHα of elements (xα)α∈Λ for which only finitely

many xα are distinct from the corresponding ψα . Define conjugate-linear maps in
each argument ⊗αφα : ×α∈ΛHα → C by ⊗βφβ((xα)α) := Πα∈Λ(xα|φα)α , where,
again, only finitely many φα (depending on ⊗αφα) do not belong in U . Consider the

finite span ⊗̃(U )
α∈ΛHα of the functionals ⊗α∈Λφα .

(2) Now define⊗(U )
α∈ΛHα to be the completion of ⊗̃(U )

α∈ΛHα in the norm generated
by the only inner product such that (⊗αφα| ⊗α φ′

α) := Πα(φα|φ′
α)α .

If Λ is finite it is not hard to see that the definition reduces to the previous one,
and does not depend on the choice of U . This fact ceases to hold, in general, if Λ is
infinite. �

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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10.2.2 Tensor Product of Operators

As final mathematical topic we discuss the Hilbert tensor product of operators. If A
and B are operators with domains D(A) and D(B) in the respective Hilbert spaces
H1 and H2, we will denote by D(A) ⊗ D(B) ⊂ H1 ⊗ H2 the subspace of finite
combinations of elements ψ ⊗ φ, with ψ ∈ D(A), φ ∈ D(B). Let us try to define
an operator:

A⊗B : D(A) ⊗ D(B) → H1 ⊗ H2

by extending linearly ψ ⊗ φ �→ (Aψ) ⊗ (Bφ). The question is whether it is well
defined. So suppose, for Ψ ∈ D(A) ⊗ D(B), to have two (finite!) decompositions

Ψ =
∑

k

ckψk ⊗ φk =
∑

j

c′
kψ

′
j ⊗ φ′

j .

We have to check that

∑

k

ck(Aψk) ⊗ (Bφk) =
∑

j

c′
j (Aψ ′

j ) ⊗ (Bφ′
j ) .

Take a basis (finite!) of vectors fr for the joint span of the ψk and the ψ ′
j , and a

similar basis gs for the span of φk and φ′
j . In particular,

ψi ⊗ φi =
∑

r,s

α(i)
rs fr ⊗ gs , ψ ′

j ⊗ φ′
j =

∑

r,s

β( j)
rs fr ⊗ gs .

Having started with a single Ψ decomposed in different ways, necessarily

∑

i

ciα
(i)
rs =

∑

j

c′
jβ

( j)
rs .

From these identities we obtain

A⊗B

(
∑

i

ciψi ⊗ φi

)
=
∑

rs

(
∑

i

ciα
(i)
rs )((A fr ) ⊗ (Bgs))

=
∑

rs

(
∑

j

c′
jβ

( j)
rs )((A fr ) ⊗ (Bgs)) = A ⊗ B

⎛

⎝
∑

j

c′
jψ

′
j ⊗ φ′

j

⎞

⎠ ,

making A ⊗ B well defined indeed. The procedure extends trivially to N operators
Ak : D(Ak) → Hk , with domains D(Ak) contained in the Hk .
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Definition 10.31 If Hk , k = 1, 2, . . . , N , are Hilbert spaces and Ak : D(Ak) → Hk

operators with domains D(Ak) ⊂ Hk , the (Hilbert) tensor product of the Ak is the
unique operator

A1 ⊗ · · · ⊗ AN : D(Ak) ⊗ · · · ⊗ D(AN ) → H1 ⊗ · · · ⊗ HN

extending

A1 ⊗ · · · ⊗ AN (v1 ⊗ · · · ⊗ vN ) = (A1v1) ⊗ · · · ⊗ (AN vN ) for vk ∈ D(Ak), k = 1, . . . , N .

In view of the applications the next elementary result is useful.

Proposition 10.32 Let Ak : D(Ak) → Hk , k = 1, . . . , N, be operators on Hilbert
spaces Hk .

(a) If D(Ak) = Hk and Ak is closable for any k, then all operators of the form

B1 ⊗ · · · ⊗ Bn with Bk ∈ {Ik, Ak} for k = 1, . . . , N

(Ik is the identity operator on Hk) or Ak and their finite combinations, defined
on

D(A1) ⊗ · · · ⊗ D(AN ) ,

are closable;
(b) if D(Ak) = Hk and Ak ∈ B(Hk) for k = 1, 2, . . . , N, then:

(i) A1 ⊗ · · · ⊗ AN ∈ B(H1 ⊗ · · · ⊗ HN ) and
(ii) ||A1 ⊗ · · · ⊗ AN || = ||A1|| · · · ||AN ||.

Proof (a) Let us study n = 2, the rest being completely analogous. Note D(A1) ⊗
D(A2) is dense by construction (use Proposition 10.26), so the operators in (a)
have adjoints. The generic element Ψ ∈ D(A∗

1) ⊗ D(A∗
2), by definition, satisfies

(Ψ |A1 ⊗ A2Φ) = (A∗
1 ⊗ A∗

2Ψ |Φ) for any Φ ∈ D(A1) ⊗ D(A2). By definition of
adjoint

D(A∗
1) ⊗ D(A∗

2) ⊂ D((A1 ⊗ A2)
∗) .

Apply Theorem 5.10(b), for A1, A2 densely defined and closable, to the effect that
the adjoints are densely defined and so D((A1 ⊗ A2)

∗) is, too. Therefore A1 ⊗ A2

is closable, by Theorem 5.10(b) again. For linear combinations the argument is the
same. Claim (b) is proved in the exercise section. �

At this pointwewish to considerpolynomials of operators A1⊗· · ·⊗AN , when Ak are
self-adjoint [ReSi80]. In the ensuing statement, the argument Ak of the polynomial
Q should be understood as I ⊗ · · · ⊗ I ⊗ Ak ⊗ I ⊗ · · · ⊗ I , but we will simplify the
otherwise cumbersome notation.

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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Theorem 10.33 Let Ak : D(Ak) → Hk , D(Ak) ⊂ Hk , k = 1, 2, . . . , N, be self-
adjoint operators and Q(a1, . . . , an) a real polynomial of degree nk in the kth
variable. Let Dk ⊂ D(Ak) be a domain on which Ank

k is essentially self-adjoint
(Dk := D(Ak), in particular). The following statements are true.

(a) Q (A1, . . . , A1) is essentially self-adjoint on
⊗N

k=1 Dk;
(b) If every Hk is separable, the spectrum of Q (A1, . . . , AN ) is:

σ
(
Q (A1, . . . AN )

) = Q (σ (A1), . . . , σ (AN )) .

Proof (a) The operator Q(A1, . . . , An) is well defined on D := ⊗N
k=1D(Ank

k ) (in
particular by Theorem 9.4(d)) and symmetric, by a direct computation involv-
ing the definition of tensor product and the fact that Q has real coefficients and
every Am

k , m ≤ nk is symmetric on D(Ank
k ). More can be said: Q(A1, . . . , An)

is essentially self-adjoint on D, by Nelson’s Theorem 5.47, for we can exhibit
a set of analytic vectors for Q(A1, . . . , An) whose span is dense in the overall
Hilbert space. Keeping in mind Example 10.27(1) and the proof of Proposition
9.25(f), a set of analytic vectors is given by tensor products ψ(L ,1)

αL
⊗ · · · ⊗ ψ(L ,N )

αL
,

L = 1, 2, . . ., where {ψ(L ,k)
αL

}αL ∈GL ⊂ D(Ak) is a Hilbert basis for the closed sub-
space P (Ak )([−L , L)∩σ(Ak)), and P (Ak ) is the spectral measure of Ak . Each time L
increases by 1, and [−L , L) gets replaced by [−L−1,−L)∪[−L , L)∪[L , L+1), we
must care to keep the same basis for the subspace associated to [−L , L). That those
vectors are analytic for Q(A1, . . . , An) is easy, just replicating the proof of Proposi-
tion 9.25(f). To prove Q(A1, . . . , An) is essentially self-adjoint on D(e) := ⊗N

k=1Dk

it suffices to prove the inclusion Q(A1, . . . , An)�D(e) ⊃ Q(A1, . . . , An)�D (by con-
struction, in fact, Q(A1, . . . , An)�D(e)⊂ Q(A1, . . . , An)�D so Q(A1, . . . , An)�D(e) ⊂
Q(A1, . . . , An)�D; if, further, Q(A1, . . . , An)�D(e) ⊃ Q(A1, . . . , An)�D , then

Q(A1, . . . , An)�D(e) = Q(A1, . . . , An)�D

and the right side is self-adjoint, whence Q(A1, . . . , An) �D(e) is essentially self-
adjoint being symmetric with self-adjoint closure.)

To prove Q(A1, . . . , An)�D(e) ⊃ Q(A1, . . . , An)�D assume ⊗N
k=1φk ∈ D. Then

φk ∈ D(Ank
k ), and Dk being the domain of essential self-adjointness of Ank

k , there
exists a sequence {φl

k}l∈N with φl
k → φk and Ank

k φl
k → Ank

k φk , as l → +∞. A simple
estimate involving the spectral decomposition of Ak tells Am

k φl
k → Am

k φk , l → +∞,
when 1 ≤ m ≤ nk . Therefore ⊗N

k=1φ
l
k → ⊗N

k=1φk and Q(A1, . . . , AN )(⊗N
k=1φ

l
k) →

Q(A1, . . . , AN )(⊗N
k=1φk) as l → +∞. The results generalises to finite combinations

of ⊗N
k=1φk , which implies Q(A1, . . . , An)�D(e) ⊃ Q(A1, . . . , An)�D .

(b) Using Theorem 9.18(c) and remembering the separability of each Hk , we rep-
resent every Ak via a multiplication operator by Fk on the Hilbert space L2(Mk, μk)

identifiedwithHk .We remind⊗N
k L2(Mk, μk) is isomorphic to L2(×N

k=1Mk, μ),μ =
⊗N

k=1μk , aswe saw inExample 10.27(1). Under that correspondence Q(A1, . . . , AN )

on D is mapped to the multiplication by Q(F1, . . . , FN ), and D corresponds to

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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the span, inside L2(×N
k=1Mk, μ), of finite products φ1(m1) · · · φN (m N ) such that

Fnk
k · φk ∈ L2(Mk, μk).
Suppose λ ∈ Q(σ (A1), . . . , σ (AN )). If I 	 λ is an open interval, Q−1(I ) ⊃

×N
k=1 Ik for some open interval Ik ⊂ R, so that Ik ∩ σ(Ak) �= ∅ for any k =

1, 2, . . . , N . Notice σ(Ak) = ess ran(Fk), by Exercise 9.4. Thereforeμk(F−1
k (Ik)) �=

0, and so μ[Q(F1, . . . , FN )−1(I )] �= 0. This means λ ∈ ess ranQ(F1, . . . , FN ) =
σ(Q(A1, . . . , PN )) by Exercise 9.4. Conversely, if λ /∈ Q(σ (A1), . . . , σ (AN )) the
function

(λ − Q(F1, . . . , FN )) : ×N
k=1Mk → R

is bounded, hence λ ∈ ρ(Q(A1, . . . , AN )), i.e. λ /∈ σ(Q(A1, . . . , AN )). �

To conclude, consider two von Neumann algebrasR1,R2 on complex Hilbert spaces
H1,H2. There is a corresponding tensor product of von Neumann algebras R1 ⊗R2.

Definition 10.34 IfR1 andR2 are vonNeumann algebras on complexHilbert spaces
H1 and H2 respectively, their tensor product R1 ⊗R2 is the von Neumann algebra
on H1 ⊗ H2 given by the strong completion in B(H1 ⊗ H2) of the unital ∗-algebra
of finite combinations of products A1 ⊗ A2, with A1 ∈ R1, A2 ∈ R2.

The generalisation to finite products is straightforward, while the tensor product of
infinitely many von Neumann algebras is more complicated to define.

The important theorem on the commutant of tensor products of von Neumann
algebras [KaRi97, vol. II, p. 821] asserts what follows.

Theorem 10.35 If Rk , k = 1, . . . , N, are von Neumann algebras on complex
Hilbert spaces Hk respectively, then

(R1 ⊗ · · · ⊗ Rk)
′ = R′

1 ⊗ · · · ⊗ R′
k . (10.39)

An elementary but important consequence is the following. Referring to the largest
von Neumann algebras on H1 and H2 we then have

(B(H1) ⊗ B(H2))
′ = {c1 I1}c1∈C ⊗ {c2 I2}c2∈C = {cI }c∈C ,

and hence
(B(H1) ⊗ B(H2))

′′ = {cI }′c∈C
= B(H1 ⊗ H2) .

On the other hand, using (10.39) twice, we also get:

(B(H1) ⊗ B(H2))
′′ = B(H1)

′′ ⊗ B(H2)
′′ = B(H1) ⊗ B(H2) .

Summing up, we recover the known fact

B(H1) ⊗ B(H2) = B(H1 ⊗ H2) .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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10.2.3 An Example: The Orbital Angular Momentum

The observables corresponding to the three Cartesian components of the orbital
angular momentum of a particle, in QM, are the unique self-adjoint extensions of
the operators:

L1 := X2�S (R3) P3�S (R3) −X3�S (R3) P2�S (R3) ,

L2 := X3�S (R3) P1�S (R3) −X1�S (R3) P3�S (R3)

L3 := X1�S (R3) P2�S (R3) −X2�S (R3) P1�S (R3) , (10.40)

on the Hilbert space L2(R3, dx) (dx being the Lebesgue measure on R
3). Notation-

wise, recall Xi and Pi are the operators position and momentum of Sect. 5.3, while
S (R3) is the Schwartz space of smooth complex functions that vanish at infinity

faster than any inverse power of r :=
√

x2
1 + x2

2 + x2
3 together with all their deriva-

tives (cf. Sect. 3.7). In the sequel wewill take D(L1) = D(L2) = D(L3) = S (R3)

as domain, sinceS (R3) is invariant under Xi and Pi (hence underLi ).Wewill show
that the orbital angular momentum operators Li are essentially self-adjoint on
the aforementioned domain, and we will find the spectrum and a spectral expression
for them. In this section we shall concentrate on the mathematical features, reserving
any physical consideration for Chaps. 11 and 12.

We focus on L3, because the results will apply to the other two by rotating
coordinates. Explicitly:

L3 = −i�

(
x1

∂

∂x2
− x2

∂

∂x1

)
,

where x1, x2 are viewed as multiplicative operators by the corresponding functions.
A fourth operator used in the sequel is the total angular momentum (squared):

L 2 := L 2
1 + L 2

2 + L 2
3 ,

defined onS (R3). This, too, is essentially self-adjoint onS (R3). We will compute
its spectrum and make the spectral expansion of L2 := L 2 explicit.

It is convenient to write the operators in spherical coordinates r, θ, φ, where
x1 = r sin θ cosφ, x2 = r sin θ sin φ, x3 = r cos θ , so r ∈ (0 + ∞), θ ∈ (0, π),
φ ∈ (−π, π). In this manner a simple computation produces

L3 = −i�
∂

∂φ
, L 2 = −�

2

[
1

sin2 θ

∂2

∂φ2
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
, (10.41)

where operators act on functions in S (R3) whose argument has undergone coor-
dinate change. From (10.41) it is evident that the operators do not depend on the

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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radial coordinate r , a fact of the utmost importance. Keeping that in mind, note that
R

3 = S
2×[0,+∞), where (up to zero-measure sets) the unit sphere S

2 is the domain
of θ, φ, whilst [0,+∞) is where r varies. Furthermore, the Lebesgue measure on
R

3 can be seen as the product

dx = dω(θ, φ) ⊗ r2dr ,

where
dω(θ, φ) = sin θdθdφ

is the standard measure on S
2 identified with the rectangle (0, π) × (−π, π) by the

spherical angles (θ, φ) (the complement to (0, π) × (−π, π) in S
2 has null dω-

measure, so it does not interfere). Thus we obtain the decomposition:

L2(R3, dx) = L2(S2 × [0,+∞), dω(θ, φ) ⊗ r2dr) .

By Example 10.27(1):

L2(R, dx) = L2(S2, dω) ⊗ L2((0,+∞), r2dr) . (10.42)

At this point we introduce two operators on the Hilbert space L2(S2, dω):

S2L3 = −i�
∂

∂φ
, S2L 2 = −�

2

[
1

sin2 θ

∂2

∂φ2
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
, (10.43)

with domain C∞(S2). As the sphere is a C∞ manifold,2 the space C∞(S2) of smooth
maps on S

2 is dense in L2(S2, dω) (exercise). These operators are Hermitian, hence
symmetric, as a simple computation reveals. Long before the formulation of QM,
it was known from the study of the Laplace equation (and classical electrodynam-
ics) that there exists a distinguished basis of L2(S2, dω) whose elements are called
spherical harmonics [NiOu82]:

Y m
l (θ, φ) := (−1)l

2l l!

√
(2l + 1)

4π

(l + m)!
(l − m)!eimφ 1

sinm φ

dl−m

d(cos θ)l−m
(1 − cos2 θ)l ,

(10.44)
where:

l = 0, 1, 2, . . . m ∈ N , |m| ≤ l . (10.45)

2See Appendix B: the idea is to cover S
2 with local charts in θ ,φ, by rotating the Cartesian axes.

Three local charts suffice to cover S
2. The functions of C∞(S2), by definition, have domain in S

2

and codomain C, and are C∞ when restricted to any local chart of the sphere.
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The maps Y l
m ∈ C∞(S2) are notoriously eigenfunctions of the differential operators

S2L3 and S2L 2 given in (10.43):

S2L3Y l
m = � mY l

m , S2L 2Y l
m = �

2 l(l + 1)Y l
m . (10.46)

Note how the first is obvious by definition of Y l
m . In particular the vectors Y l

m are
analytic for the symmetric operators S2L 2, S2L3 defined on C∞(S2). As Y l

m form a
basis of L2(S2, dω), byNelson’s criterion (Theorem5.47) theywarrant essential self-
adjointness to S2L 2, S2L3 onC∞(S2). Following the recipe of Sect. 9.1.4 concerning
the Hamiltonian operator of the one-dimensional harmonic oscillator, we obtain
analogue spectral decompositions (in the strong operator topology):

S2L 2 =
∑

l∈N, m∈Z ,|m|≤l

�
2 l(l +1)Y l

m(Y l
m | ) and S2 L3 =

∑

l∈N, m∈Z ,|m|≤l

�mY l
m(Y l

m | ). (10.47)

In this context the spectra read

σ(S2L 2) = σp(S2L 2) = {�
2 l(l + 1)

∣∣ l = 0, 1, 2 . . .
}

, (10.48)

and

σ(S2L3) = σp(S2L3) = {� m | |m| ≤ l , m ∈ Z, l = 0, 1, 2 . . . } . (10.49)

Now let us go back to L2(R3, dx). As the spaceD(0,+∞) of smoothmapswith com-
pact support in (0,+∞) is dense in the separable Hilbert space L2((0+ ∞), r2dr),
by Proposition 3.31(b), there will be a basis {ψn}n∈N of maps inD(0,+∞). Passing
to Cartesian coordinates it is easy to see that

fl,m,n(x) = Y l
m(θ, φ)ψn(r) (10.50)

belong in C∞(R3) (the only singularity could be at x = 0, but around that point the
maps vanish by construction). By definition fl,m,n have compact support, so they live
inS (R3). By the definitions and domains given,

S2L3 ⊗ I�D(0,+∞)⊂ L3 and S2L 2 ⊗ I�D(0,+∞)⊂ L 2 ,

so {Y l
m ⊗ ψn | n, l ∈ N, |m| ≤ l , m ∈ Z} ⊂ S (R3) is a basis of L2(R3, dx) =

L2(S2, dω) ⊗ L2((0,+∞), r2dr) by Example 10.27(1). Thinking L3 and L 2 as
acting on S (R3),

L3Y l
m ⊗ ψn = � mY l

m ⊗ ψn , L 2Y l
m ⊗ ψn = �

2 l(l + 1)Y l
m ⊗ ψn . (10.51)

Again, L 2, L3 are essentially self-adjoint on that domain, and their unique self-
adjoint extensions L2 := L 2, L3 := L3 decompose spectrally (in the strong operator
topology) as

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_3


574 10 Spectral Theory III: Applications

L2 =
∑

l,n∈N, m∈Z ,|m|≤l

�
2 l(l + 1)Y l

m ⊗ ψn(Y
l
m ⊗ ψn|) (10.52)

and
L3 =

∑

l,n∈N, m∈Z ,|m|≤l

� mY l
m ⊗ ψn(Y

l
m ⊗ ψn|) . (10.53)

The spectra of L2, L3 remain those of (10.48), (10.49). Note how the spectral mea-
sures of L2, L3 commute.

The same conclusions can be reached using Theorem 10.33 appropriately.

10.3 Polar Decomposition Theorem for Unbounded
Operators

Consider a densely-defined closed operator A : D(A) → H on the Hilbert space
H. Using the fact that A∗ A is self-adjoint and positive (as we will see) and by the
spectral theorem for unbounded operators, it is possible to define the positive self-
adjoint operator |A| := √

A∗ A. Setting U = A|A|−1 at least on Ran(|A|), and then
extending trivially (as zero) to the complement of Ran(|A|), we immediately find
the decomposition

A = U |A| .

Formally, and without caring too much about domains, U �Ran(|A|) is an isometry.
Heuristically, this is a generalisation of Theorem 3.82, which we proved for bounded
operators defined on the entire Hilbert space. Our hands-on approach is nevertheless
flawed, in that is does not say where the polar decomposition should be valid (the
domains of A and |A| could be different, a priori) and any attempt to formalise the
argument soon becomes punishing. That is why we will follow an indirect route
based on a more general theorem.

The generalised polar decomposition we will eventually prove plays a crucial part
in rigorous Quantum Field Theory, especially in relationship to the modular theory
of Tomita and Takesaki, and in defining KMS thermal states [BrRo02].

10.3.1 Properties of Operators A∗ A, Square Roots
of Unbounded Positive Self-adjoint Operators

We proceed in steps, proving first that if A is closed and densely defined, A∗ A is self-
adjoint and D(A∗ A) is a core for A. Then we will show a result that in some sense
generalises the polar decomposition, thus specifying properly the domains involved.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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At last we will prove the existence and uniqueness of positive self-adjoint square
roots of unbounded self-adjoint operators.

Theorem 10.36 (von Neumann) Consider a closed, densely-defined operator A :
D(A) → H on the Hilbert space H. Then:

(a) A∗ A, defined on the standard domain D(A∗ A), is self-adjoint;
(b) the dense subspace D(A∗ A) is a core for A:

A�D(A∗ A) = A . (10.54)

Proof For (a), call I : H → H the identity and introduce I + A∗ A on its standard
domain (coinciding with D(A∗ A), by Definition 5.1). We claim there is a positive
operator P ∈ B(H) such that

(I + A∗ A)P = I , P(I + A∗ A) = I�D(I+A∗ A) . (10.55)

By Proposition 3.60(f) P ∈ B(H) is self-adjoint as positive. By uniqueness of the
inverse the operator I + A∗ A coincides with the inverse of P , obtained by spectral
decomposition:

P−1 =
∫

σ(P)

λ−1d P (P)(λ) .

This is self-adjoint by Theorem 9.4. Therefore A∗ A = (I + A∗ A)− I is self-adjoint
on D(I + A∗ A) = D(A∗ A), which is consequently dense.

Nowwe have to exhibit the aforementioned positive P ∈ B(H) satisfying (10.55).
If f ∈ D(I + A∗ A) = D(A∗ A) then A f ∈ D(A∗) by definition of D(A∗ A). Hence

( f | f ) + (A f |A f ) = ( f | f ) + ( f |A∗ A f ) = ( f |(I + A∗ A) f ) .

We proved (I + A∗ A) ≥ 0, and by Cauchy–Schwarz also || f ||2 ≤ || f || ||(I +
A∗ A) f ||, so I + A∗ A : D(A∗ A) → H is injective. Consider the operator A, closed
and densely defined. The identity of Theorem 5.10(d) says that for any h ∈ H there
are unique Ph ∈ D(A) and Qh ∈ D(A∗) such that

(0, h) = (−APh, Ph) + (Qh, A∗ Qh) (10.56)

in H ⊕ H. By construction P, Q are defined on all of H, and the two vectors on the
right, seen in H ⊕ H, are orthogonal. By definition of norm on H ⊕ H, the identity
also tells:

||h||2 ≥ ||Ph||2 + ||Qh||2 ,

for any h ∈ H, so P, Q ∈ B(H) because ||P||, ||Q|| ≤ 1. Considering the single
components in (10.56), we have

Q = AP and h = Ph + A∗ Qh = Ph + A∗ APh = (I + A∗ A)Ph ,

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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for all h ∈ H. Hence (I + A∗ A)P = I and P : H → D(I + A∗ A) must be one-to-
one, but also onto since we saw (I + A∗ A) is injective. The inverse of a bijection is
unique, so

P(I + A∗ A) = I�D(I+A∗ A) .

Up to now we have proved P ∈ B(H) has range covering D(I + A∗ A), and that
(10.55) holds. Let us show that P ≥ 0. If h ∈ H, then h = (I + A∗ A) f for some
f ∈ D(A∗ A), so:

(Ph|h) = (P(I + A∗ A) f |(I + A∗ A) f ) = ( f |(I + A∗ A) f ) ≥ 0 .

To finish we prove (b). As A is closed, its graph is closed in H ⊕ H, so a Hilbert
space itself. Suppose ( f, A f ) ∈ G(A) is orthogonal to G(A�D(A∗ A)). Then for any
x ∈ D(A∗ A):

0 = (( f, A f )|(x, Ax)) = ( f |x) + (A f |Ax) = ( f |x) + ( f |A∗ Ax) = ( f |(I + A∗ A)x) .

But Ran(I + A∗ A) = H, so f = 0 and the orthogonal complement to G(A�D(A∗ A))

in the Hilbert space G(A) is trivial. Therefore G(A�D(A∗ A)) = G(A). �

Together with the uniqueness for positive roots of (unbounded) positive self-adjoint
operators, the next theorem contains, as subcase, the polar decomposition theorem
for closed and densely-defined operators. Recall that for a pair P, Q with the same
domain D, P ≤ Q means ( f |P f ) ≤ ( f |Q f ) for any f ∈ D.

Theorem 10.37 Let A : D(A) → H, B : D(B) → H be closed and densely defined
on the Hilbert space H.

(a) If
D(A∗ A) ⊃ D(B∗ B) and A∗ A�D(B∗ B)≤ B∗ B , (10.57)

then D(A) ⊃ D(B) and there exists C ∈ B(H) uniquely determined by:

A ⊃ C B , Ker(C) ⊃ Ker(B∗) . (10.58)

Furthermore, ||C || ≤ 1 and C�(Ran(B))⊥= 0.
(b) If

A∗ A ⊃ B∗ B (10.59)

then C�Ran(B) is an isometry and K er(C) = Ker(B∗).
(c) If

A∗ A = B∗ B , (10.60)

then D(A) = D(B).
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Proof (a) Begin by the uniqueness of C . If C, C ′ ∈ B(H) and Ax = C Bx ,
Ax = C ′ Bx for x ∈ D(B), then C − C ′ is the null operator on Ran(B). By conti-
nuity C�Ran(B)= C ′�Ran(B). From the splitting H = Ran(B) ⊕ (Ran(B))⊥, where
(Ran(B))⊥ = Ker(B∗), having K erC ⊃ Ker(B∗), K erC ′ ⊃ Ker(B∗) implies
C�(Ran(B))⊥= C ′�(Ran(B))⊥= 0. Hence C = C ′.

Let us prove there exists C ∈ B(H) such that A ⊃ C B (hence D(B) ⊂ D(A)),
K er(C) ⊃ Ker(B∗), ||C || ≤ 1 and C�(Ran(B))⊥= 0.

Call A′, B ′ the restrictions of A, B to D(A∗ A), D(B∗ B) respectively. By the
previous theorem these are cores for A, B, so Ran(A′) = Ran(A) and Ran(B ′) =
Ran(B) in particular. Note K er(A) = Ker(A′), K er(B) = Ker(B ′) for the very
definition of D(A∗ A) and D(B∗ B).

Let us define an operator such that A′ ⊃ C B ′, to begin with. DefineC on Ran(B ′)
such that:

A′ f = C B ′ f , for every f ∈ D(B∗ B) ⊂ D(A∗ A) .

For it to be well defined, we need B ′ f = B ′g to imply A′ f = A′g, i.e. B ′h = 0 ⇒
A′h = 0 for any h ∈ D(B∗ B) ⊂ D(A∗ A). But the latter is true, for: B ′h = 0 implies
(B ′h|B ′h) = 0, so 0 = (B ′h|B ′h) = (h|B∗ Bh) ≥ (h|A∗ Ah) = (A′h|A′h) =
||A′h||2 ≥ 0. Hence A′h = 0. The claim is that C is bounded on Ran(B ′) with
||C || ≤ 1. Since A∗ A ≤ B∗ B, using D(A∗ A) ⊂ D(A) and D(B∗ B) ⊂ D(B), we
have

||C(B ′ f )||2 = (C B ′ f |C B ′ f ) = (A′ f |A′ f ) = ( f |A∗ A f ) ≤ ( f |B∗ B f )

= (B ′ f |B ′ f ) = ||B ′ f ||2 , (10.61)

if f ∈ D(B∗ B) ⊂ D(A∗ A). Therefore C extends uniquely to Ran(B ′) = Ran(B),
preserving ||C || ≤ 1. To fully define C : H → H it suffices to know it on the
complement (Ran(B))⊥ = Ker(B∗). Let C be null there. Then C : H → H is
bounded, ||C || ≤ 1 and K er(C) ⊃ Ker(B∗). By construction:

A f = C B f for any f ∈ D(B∗ B) ⊂ D(A∗ A) .

Since D(B∗ B) is a core for B, if g ∈ D(B) there is a sequence { fn}n∈N ⊂ D(B∗ B) ⊂
D(A∗ A) such that fn → g and B fn → Bg. By continuity of C ,

lim
n→+∞ A fn = lim

n→+∞ C B fn = C lim
n→+∞ B fn = C Bg .

But A is closed, so g ∈ D(A) and limn→+∞ A fn = Ag. Hence A′ = C B ′ actually
extends to A = C B on D(B) ⊂ D(A).

(b) Assuming A∗ A ⊃ B∗ B, Eq. (10.61) is replaced by:

||C(B′ f )||2 = (C B′ f |C B′ f ) = (A′ f |A′ f ) = ( f |A∗ A f ) = ( f |B∗B f ) = (B′ f |B′ f )

= ||B′ f ||2



578 10 Spectral Theory III: Applications

if f ∈ D(B∗ B) ⊂ D(A∗ A). Therefore C is an isometry on Ran(B) and by conti-
nuity on Ran(B) as well. There remains to prove Ker(C) ⊂ Ker(B∗), for the other
inclusion is valid in the general case (a). If s ∈ Ker(C), fromH = Ran(B)⊕Ker(B∗)
we have s = r +n, r ∈ Ran(B), n ∈ Ker(B∗). Since K er(B∗) ⊂ Ker(C), we obtain
0 = Cs = C(r + n) = Cr + Cn = Cr + 0 = Cr . On the other hand C is iso-
metric on Ran(B), so 0 = ||Cr || = ||r || and r = 0. Therefore s ∈ Ker(C) implies
s = n ∈ Ker(B∗), ending the proof of K er(C) ⊂ Ker(B∗).

(c) We show that D(A) = D(B) if A∗ A = B∗ B. From the proof of the more
general case (a), D(B) ⊂ D(A). In the present case A and B can be swapped, so
D(A) = D(B). �

And now the last ingredient, generalising part of Theorem 3.77.

Theorem 10.38 Let A : D(A) → H be self-adjoint on the Hilbert space H. Then
(a) A ≥ 0 ⇔ σ(A) ⊂ [0 + ∞);
(b) if A ≥ 0, there exists a unique self-adjoint operator B ≥ 0 such that B2 = A,

where the left-hand side is defined on its standard domain D(B2), coinciding with
D(A).

By using the integral in the spectral measure of A it turns out that B = √
A.

Proof (a) If σ(A) ⊂ [0 + ∞), Theorem 9.4(g), with reference to the PVM P (A)

of A, implies A ≥ 0. Vice versa, suppose A ≥ 0 and, by contradiction, that there
exists λ with 0 > λ ∈ σ(A). If λ were in σp(A) there would be a λ-eigenvector
ψ ∈ H \ {0}, and 0 ≤ (ψ |Aψ) = ||ψ ||2λ < 0, impossible. Instead, if λ ∈ σc(A),
by Theorem 9.13 P (A)

(a,b) �= 0 for any open interval (a, b) 	 λ. So we could choose

(a, b) = (2λ, λ/2), getting, for 0 �= ψ ∈ P (A)

(a,b)(H),

0 ≤ (ψ |Aψ) =
∫

R

xdμψ(x) =
∫

(2λ,λ/2)
xdμψ(x) ≤

∫

(2λ,λ/2)

λ

2
dμψ(x) = λ

2
||ψ ||2 < 0 ,

using Theorem 9.4 and that μψ vanishes outside (a, b). This is absurd.
(b) A positive self-adjoint root of A is just

B = √
A :=

∫

σ(A)

√
xd P (A)(x) .

The operator is well defined, since σ(A) ⊂ [0,+∞), it is self-adjoint by Theorem
9.4(b) and B2 = A, where B2 is defined on its standard domain D(B2) = D(A)

by Theorem 9.4(c, d). At last B ≥ 0 by Theorem 9.4(g). Let us pass to uniqueness.
Assume B ≥ 0 is self-adjoint and B = ∫

[0,+∞)
xd P (B)(x). If B2 = A with A ≥ 0,

by (9.54) we obtain

∫

[0,+∞)

xd P (A)(x) =
∫

[0,+∞)

x2d P (B)(x) =
∫

[0,+∞)

xd P (B)( f −1(x)) ,
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where f (x) = x2, x ≥ 0, so f −1 : [0,+∞) → [0 + ∞) is a well-defined map.
The spectral measure of A is unique, so in particular P (B)( f −1(E ′)) = P (A)(E ′) for
any Borel set E ′ ⊂ [0,+∞). If E ⊂ [0,+∞) is a Borel set, f (E) ⊂ [0,+∞).
Setting E ′ = f (E) gives P (B)(E) = P (A)( f (E)) for any Borel set E ⊂ [0,+∞)

(and P (B)(E) = 0 if E ⊂ (−∞, 0)). Therefore A determines B completely, for it
determines its unique PVM. �

10.3.2 Polar Decomposition Theorem for Closed
and Densely-Defined Operators

We can finally prove the polar decomposition for closed, densely-defined operators.
The idea of the proof is to start, rather than from A, from A∗ A. If the polar decompo-
sition is to hold, one expects A∗ A = |A| |A|, with |A| := √

A∗ A defined spectrally,
remembering A∗ A is self-adjoint. Now Theorem 10.37(c) yields the required polar
decomposition of A. The powerfulness of this approach becomes apparent when
considering the properties of the domains involved: usually hard to study by a more
direct method, they are now automatic, by Theorem 10.37.

Theorem 10.39 Let A : D(A) → H be closed and defined densely on the Hilbert
space H.

(a) There exists a unique pair P, U on H such that:

(1) the polar decomposition
A = U P (10.62)

holds,
(2) P is positive, self-adjoint and D(P) = D(A),
(3) U ∈ B(H) is isometric on Ran(P),
(4) K er(U ) ⊃ Ker(P).

(b) Moreover:

(i) P = |A| := √
A∗ A,

(ii) K er(U ) = Ker(P) = Ker(A) = (Ran(P))⊥ and Ran(P) = Ran(A∗),
(iii) Ran(U ) = Ran(A).

Remark 10.40 The operatorU of (10.62) is a partial isometry (Definition 3.72) with
initial space

[K er(U )]⊥ = Ran(P) = [K er(A)]⊥ = Ran(A∗)

and final space
Ran(U ) = Ran(A) .

�

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Proof (a) We prove uniqueness by finding P and U explicitly, assuming (10.62)
plus (2), (3), (4). First we show D(A∗ A) = D(P P). By definition of adjoint, as
U ∈ B(H), (10.62) implies A∗ = P∗U ∗ = PU ∗. Hence f ∈ D(A∗ A) if and only
if f ∈ D(PU ∗U P). Splitting H into Ran(P) ⊕ Ker(P∗) = Ran(P) ⊕ Ker(P),
and since U is assumed to be isometric on Ran(P) and zero on K er(P), we get
(U ∗U )�Ran(P)= I �Ran(P). Hence the claim f ∈ D(A∗ A) ⇔ f ∈ D(PU ∗U P) is
equivalent to f ∈ D(A∗ A) ⇔ f ∈ D(P P). So we have proved D(A∗ A) = D(P P).
Let us use it towards uniqueness. If g ∈ D(A∗ A) ⊂ D(A) (i.e. g ∈ D(P P) ⊂
D(P)), recalling U is isometric on Ran(P), then

( f |A∗ Ag) = (A f |Ag) = (U P f |U Pg) = (P f |Pg) = ( f |P Pg) for f ∈ D(A) = D(P).

Being D(A) = D(P) dense, we conclude A∗ A = P P . Therefore P is a positive
self-adjoint root of A∗ A, hence unique by Theorem 10.38, and P = √

A∗ A =: |A|.
Now we can apply Theorem 10.37 with B = P (closed and densely defined, being
self-adjoint) to find thatU is uniquely determined and coincides withC satisfying (3)
and (4). We have proved that, if they exist, P and U are uniquely determined by (1)–
(4). Reversing our reasoning, let A be as in the hypothesis, and define P := |A| and
U := C (see Theorem 10.37, with B = |A| so that A∗ A = B∗ B). Then requirements
(1), (2) are valid.

(b) We already know that P = |A|. That K er(U ) = Ker(P) = (Ran(P))⊥
follows from Theorem 10.37(b), because B = P = P∗ = B∗ in our case and
(Ran(P∗))⊥ = Ker(P). The claim K er(A) = Ker(P) goes as follows:

0 = ||A f ||2 = (A f |A f ) = ( f |A∗ A f ) = ( f |P P f ) = (P f |P f ) = ||P f ||2 ,

where we used the fact that A f = 0 implies f ∈ D(A∗ A) by definition of the
latter. Now Ran(P) = Ran(A∗) follows immediately from the previous prop-
erties: Ran(P) = Ker(P)⊥ = Ker(A)⊥ = Ran(A∗). In the final equality we
used Theorem 5.10(c), as A is closed and the domain of A∗ is dense by Theorem
5.10(b). Let us prove Ran(U ) = Ran(A). By the decomposition U P = A, taking
K er(U ) = [Ran(P)]⊥ into account, we have Ran(U ) = U (Ran(P)) = Ran(A),
so Ran(U ) = U (Ran(P)) = Ran(A). Then it suffices to show Ran(U ) is closed.
Let y ∈ Ran(U ) \ {0}. There exists {xn}n∈N ⊂ (K erU )⊥ with U xn → y,
n → +∞. Since ||U (xn − xm)|| = ||xn − xm ||, {xn}n∈N is a Cauchy sequence.
Define x = limn→+∞ xn , so U x = y, y ∈ Ran(U ) and then Ran(U ) contains its
limit points, i.e. it is closed. �

Corollary 10.41 In the hypotheses of Theorem 10.39 the operator U : H → H is
unitary precisely when A is injective and Ran(A) is dense in H.

In particular U is unitary and U = A|A|−1 in case A is bijective.

Proof If U is unitary, in particular it is one-to-one and onto, so (ii) and (iii) in
(b) imply A is injective and Ran(A) dense in H. Conversely, if A is injective, by
(a) and (b) in the theorem above and by continuity of U , we have U isometric on

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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Ran(|A|) = Ker(|A|)⊥ = Ker(A)⊥ = H. As Ran(U ) = Ran(A) in case Ran(A)

is dense, we conclude U : H → H is isometric and onto, hence unitary as claimed.
If A is further bijective, it is injective and Ran(A) is trivially dense, so U is unitary
as seen before. From A = U |A|, then, A and U being bijective, we obtain |A| is
bijective, so U = A|A|−1, ending the proof. �

10.4 The Theorems of Kato–Rellich and Kato

The last results we will state and prove are those of Kato–Rellich and Kato. They are
extremely useful to study self-adjointness and lower boundedness for QM operators
(especially the so-called Hamiltonian operators), in the framework of perturbation
theory. The Kato–Rellich theorem provides sufficient conditions for an operator of
the form T + V , called a perturbation of T , to be self-adjoint, and have lower-
bounded spectrum when T has. Kato’s theorem considers specific situations, where
T is the Laplacian on R

3 or R
n . A general treatise, with applications to quantum

physics, is [ReSi80], from which several proofs of this section are taken.

10.4.1 The Kato–Rellich Theorem

A preliminary definition is in order.

Definition 10.42 Let T : D(T ) → H and V : D(V ) → H be densely-defined
operators on the Hilbert space H, with D(T ) ⊂ D(V ). If there are a, b ∈ [0,+∞)

such that
||V ϕ|| ≤ a||T ϕ|| + b||ϕ|| for any ϕ ∈ D(T ) , (10.63)

V is called T-bounded. The greatest lower bound of the numbers a satisfying (10.63)
for some b is called the relative bound of V with respect to T . If the relative bound
is zero, V is called infinitesimally small with respect to T .

Remark 10.43

(1) If T and V are closable, by Definition 5.20 it suffices to verify (10.63) over a
core of T .

(2) Equation (10.63) is equivalent to:

||V ϕ||2 ≤ a2
1 ||T ϕ||2 + b2

1||ϕ||2 for any ϕ ∈ D(T ) , (10.64)

In fact, (10.64) implies (10.63) by putting a = a1, b = b1. For the converse, take
a2
1 = (1 + δ)a2, b2

1 = (1 + 1/δ)b2 for any δ > 0: then (10.63) implies (10.64).
(The greatest lower bound of the numbers a1 satisfying (10.64) for some b1 is also

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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called the relative bound of V with respect to T . Due to the arbitrariness of δ > 0,
it coincides with the relative bound computed using (10.63).) �

Let us pass to the Kato–Rellich theorem. For a self-adjoint operator A : D(A) → H,
we knowσ(A) ⊂ [M,+∞)⇔ (ψ |Aψ) ≥ M(ψ |ψ) for anyψ ∈ D(A), byTheorem
10.38(a). Therefore statement (c) below may be equivalently expressed in terms of
lower-bounded quadratic forms.

Theorem 10.44 (Kato–Rellich) Let T : D(T ) → H and V : D(V ) → H be
densely-defined operators on the Hilbert space H such that:

(i) T is self-adjoint,
(ii) V is symmetric,

(iii) V is T -bounded with relative bound a < 1.

Then

(a) T + V is self-adjoint on D(T ).
(b) T + V is essentially self-adjoint on every core of T .
(c) If σ(T ) ⊂ [M,+∞) then σ(T + V ) ⊂ [M ′,+∞) where:

M ′ = M − max

{
b

(1 − a)
, a|M | + b

}
, with a, b satisfying (10.63).

Proof For (a) we try to apply Theorem 5.18, showing that if we choose D(T ) as
domain for the symmetric operator T +V , we obtain Ran(T +V ±i I ) = H. Actually
we will prove there exists ν > 0 such that

Ran(T + V ± iν I ) = H ,

giving the previous relationby linearity. Ifϕ ∈ D(T ),T self-adjoint implies Ran(T +
iμI ) = H and

||(T + iμI )ϕ||2 = ||T ϕ||2 + μ2||ϕ||2 .

Setting ϕ = (T + iμI )−1ψ , gives

||T (T + iμI )−1|| ≤ 1 and ||(T + iμI )−1|| ≤ μ−1 .

Applying (10.63) with ϕ = (T + iμI )−1ψ produces

||V (T +iμI )−1ψ || ≤ a||T (T +iμI )−1ψ ||+b||(T +iμI )−1ψ || ≤
(

a + b

μ

)
||ψ ||.

If μ = ν is large enough, the bounded operator

U := V (T + iν I )−1 ,

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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defined on H, satisfies ||U || < 1, as a < 1. This implies −1 /∈ σ(U ) by (iii) in
Theorem8.4(c). ByTheorem8.4(a) (U is closed as bounded),we have Ran(I +U ) =
H. At the same time, since T is self-adjoint, Ran(T + iν I ) = H by Theorem 5.18.
Hence

(I + U )(T + iν I )ϕ = (T + V + iν I )ϕ , ϕ ∈ D(T )

implies, as claimed, Ran(T + V + iν I ) = H. The proof of Ran(T + V − iν I ) = H
is completely similar, so (a) is proved.

Let us pass to (b). Equation (10.63) implies, if D ⊂ D(T ) is a core for T :

D(T ) = D
(

T �D
)

⊂ D
(
(T + V )�D

)
.

On the other hand, by construction and because T + V is self-adjoint on D(T ) hence
closed:

D
(
(T + V )�D

)
⊂ D

(
(T + V )

)
= D (T + V ) = D(T ) .

Putting all inclusions together produces D
(
(T + V )�D

)
= D (T + V ) so

(T + V )�D = T + V , as T + V is closed. Then (T + V ) �D is essentially self-
adjoint by Proposition 5.21.

Now (c). By assumption, the spectral theorem implies σ(T ) ≥ M (with obvious
notation). Choosing s > −M (with s ∈ R) gives σ(T + s I ) > 0, so 0 /∈ σ(T + s I ).
But T + s I is self-adjoint, so it is closed, and by Theorem 8.4(a) Ran(T + s I ) = H.
The same estimates used before prove ||V (T + s I )−1|| < 1 if

−s < M ′ := M − max

{
b

(1 − a)
, a|M | + b

}
.

Consequently, for these s:

Ran(T + V + s I ) = H and (T + V + s I )−1 = (T + s I )−1(I + U )−1 ,

implying −s ∈ ρ(T + V ), and then −s /∈ σ(T + V ). But T + V self-adjoint has
real spectrum, whence σ(T + V ) ≥ M ′. �

10.4.2 An Example: The Operator −Δ + V and Kato’s
Theorem

Condition (10.63) arises naturally in certain contexts, and is of great use, in physical
applications, to study the Schrödinger equation, where the Laplace operator Δ is
perturbed by a potential V . To discuss this application of the Kato–Rellich theorem
we begin with a proposition and a lemma.

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Proposition 10.45 Let

Δ :=
n∑

i=1

∂2

∂x2
i

(10.65)

be the Laplace operator on R
n thought of as operator on (suitable domains of)

L2(Rn, dx).

(a) If F̂ : L2(Rn, dx) → L2(Rn, dk) is the unitary Fourier–Plancherel operator
(cf. Sect. 3.7), then Δ is essentially self-adjoint on S (Rn), on D(Rn) and on
F̂ (D(Rn)) with the same (unique) self-adjoint extension Δ.

(b) If k2 = k2
1 + k2

2 + · · · + k2
n then

(
F̂ΔF̂−1 f

)
(k) = −k2 f (k) (10.66)

on the standard domain

D(F̂ΔF̂−1) =
{

f ∈ L2(Rn, dk)

∣∣∣∣
∫

Rn

k4| f (k)|2dk < +∞
}

.

(c) The operator −Δ = −Δ is bounded from below:

σ(−Δ) ⊂ [0,+∞) , or equivalently (ψ |−Δψ) ≥ 0 for any ψ ∈ D(−Δ).

(10.67)

Proof Most of (a) and (b) were proven in Exercises 5.13, 5.14. What we still do not
have is thatΔ is essentially self-adjoint on F̂ (D(Rn)) and has a common self-adjoint
extension over both D(Rn) and S (Rn). To this end notice F̂ (D(Rn)),D(Rn) ⊂
S (Rn), so the three extensions coincide because there is one self-adjoint extension to
any essentially self-adjoint operator. ThatΔ is essentially self-adjoint on F̂ (D(Rn)),
given F̂ is unitary and (10.66), is equivalent to the essential self-adjointness of the
symmetric multiplication by −k2 on D(Rn). In turn the latter, in view of Nelson’s
Theorem 5.47, follows from the observation that every ϕ = ϕ(k) inD(Rn) is analytic
for themultiplication by−k2, since ||−(k2)nϕ|| ≤ ||ϕ||(supk∈suppϕ |k|2)n . Statement
(c) descends from (b) and from Theorem 10.38(a). �

Now a fundamental, classical result.

Lemma 10.46 Fix n = 1, 2, 3 and consider f ∈ D(Δ). Then f coincides almost
everywhere with a continuous bounded map, and for any a > 0 there exists b > 0
independent from f such that:

|| f ||∞ ≤ a||Δ f || + b|| f || . (10.68)

Proof Let us prove (10.68) for n = 3, the other cases being similar. Call f̂ := F̂ f .
By Proposition 3.105(a) and Plancherel’s theorem (Theorem 3.108), the claim is true

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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if we manage to prove f̂ ∈ L1(R3, dk), and for any given a > 0 there is b ∈ R such
that:

|| f̂ ||1 ≤ a||k2 f̂ ||2 + b|| f̂ ||2 . (10.69)

If f ∈ D(Δ), by Proposition 10.45, f̂ ∈ D(F̂ΔF̂−1), so also (1 + k2) f̂ ∈
L2(R3, dk). Since (k1, k2, k3) �→ 1/(1 + k2) belongs to that same space, f̂ ∈
L1(R3, dk) by the Hölder inequality. Moreover:

|| f̂ ||1 ≤ c||(1 + k2) f̂ ||2 ≤ c(||k2 f̂ ||2 + || f̂ ||2) (10.70)

where c :=
√∫

(1 + k2)−1dk. If r > 0 define f̂r (k) := r3 f̂ (rk). Then || f̂r ||1 =
|| f̂ ||1, || f̂r ||2 = r3/2|| f̂ ||2 and ||k2 f̂r ||2 = r−1/2||k2 f̂ ||2. Using (10.70) for f̂r the
three previous identities give

|| f̂ ||1 ≤ cr−1/2||k2 f̂ ||2 + cr3/2|| f̂ ||2 for any r > 0.

Then (10.69) holds for a = cr−1/2. �

Remark 10.47 The lemmacan be generalised (see [ReSi80, vol. II]) by this statement
based on Young’s inequality: Consider f ∈ L2(Rn, dx) with f ∈ D(Δ). If n ≥ 4
and 2 ≤ q < 2n/(n −4) then f ∈ Lq(Rn, dk), and for any a > 0 there exists b ∈ R

not depending on f (but on q, n, a) such that || f ||q ≤ a||Δ f || + b|| f ||. �

We can eventually apply the Kato–Rellich theorem to a very interesting case for
Quantum Mechanics, and prove a result due to Kato. Later we will see a more
general statement, known in the literature as Kato’s theorem.

Theorem 10.48 (Essential self-adjointness of −Δ + V ) Fix n = 1, 2, 3 and take
V = V2 + V∞, with V2 ∈ L2(Rn, dx), V∞ ∈ L∞(Rn, dx) real functions.

(a) −Δ + V is essentially self-adjoint on D(Rn) and on S (Rn).
(b) The only self-adjoint extension −Δ + V of the operators of (a) coincides with

the (self-adjoint) operator −Δ + V defined on D(Δ).
(c) σ(−Δ + V ) is bounded from below.

Proof As V is real it gives a multiplicative operator on the domain

D(V ) := {ϕ ∈ L2(Rn, dx) | V ϕ ∈ L2(Rn, dx)} .

Using the definition it is easy to see the operator is self-adjoint. By construction,
moreover,

||V ϕ||2 ≤ ||V2||2||ϕ||∞ + ||V∞||∞||ϕ||2 < +∞ (10.71)

for ϕ ∈ D(Rn) or ϕ ∈ S (Rn). Hence D(Rn) ⊂ S (Rn) ⊂ D(V ). What is more,
sinceS (Rn) ⊂ D(Δ) (by Proposition 10.45), using (10.68) in Lemma10.46 (n ≤ 3)
we find, for any a > 0, a number b > 0 such that:
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||V ϕ||2 ≤ a||V2||2 || − Δϕ||2 + (b + ||V∞||∞)||ϕ||2 for any ϕ ∈ S (Rn) .

That is to say: given a′ > 0 there is b′ > 0 with

||V ϕ||2 ≤ a′|| − Δϕ||2 + b′||ϕ||2 for any ϕ ∈ S (Rn) (10.72)

so in particular for any ϕ ∈ D(Rn). Consequently

||V ϕ − V ϕ′||2 ≤ a′ ||(−Δϕ) − (−Δϕ′)||2 + b′||ϕ − ϕ′||2
with ϕ, ϕ′ in S (Rn). Now, V is closed, as self-adjoint, and S (Rn) is a core for
the self-adjoint (hence closed) operator−Δ (by Proposition 10.45), so the inequality
proves D(V ) ⊃ D(−Δ). Exploiting the closure of operatorswe conclude that (10.72)
holds on the entire domain of −Δ:

||V ϕ||2 ≤ a′||−Δϕ||2 + b′||ϕ||2 for any ϕ ∈ D(−Δ).

If we choose a′ < 1, T := −Δ satisfies the assumptions of Theorem 10.44, with V
as we have it now. By Kato–Rellich, using thatS (Rn) andD(Rn) are cores for −Δ

by Proposition 10.45, we conclude. �

Remark 10.49 Remembering Remark 10.47, this theorem generalises to n > 3 with
these modifications: V = Vp + V∞ with Vp ∈ L p(Rn, dx), V∞ ∈ L∞(Rn, dx),
where p > 2 for n = 4, p = n/2 for n ≥ 5. The proof is analogous. �

For the classical result knownasKato’s theorem,we shall interpret f ∈ L p(Rn, dx)+
Lq(Rn, dx) to mean f is the sum of a function in L p(Rn, dx) and one in Lq(Rn, dx).

Theorem 10.50 (Kato) Fix n = 1, 2, 3 and denote by (y1, . . . , yN ) the elements in
R

nN , where yk ∈ R
n for any k = 1, . . . , N. If Δ is the Laplacian (10.65) on R

nN ,
consider the differential operator −Δ + V , V being the multiplicative operator
given by:

V (y1, . . . , yN ) :=
N∑

k=1

Vk(yk) +
N∑

i, j=1 i< j

Vi j (yi − y j ) , (10.73)

where

{Vk}k=1,...,N ⊂ L2(Rn, dx) + L∞(Rn, dx) , {Vi j }i< j i, j=1,...,N ⊂ L2(Rn, dx) + L∞(Rn, dx)

are real functions. Then
(a) −Δ + V is essentially self-adjoint on D(RnN ) and S (RnN ).
(b) The only self-adjoint extension −Δ + V of the operators in (a) coincides with

the (self-adjoint) operator −Δ + V defined on D(−Δ).
(c) σ(−Δ + V ) is lower bounded.
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Proof We prove for n = 3, for the other cases are identical. Consider the potential
V12(y1 − y2) and call Δ1 the Laplacian corresponding to the coordinates of y1.
Take ϕ ∈ S (R3N ). Fix y2, . . . yN ∈ R

3(N−1) and define R
3 	 y1 �→ ϕ′(y1) :=

ϕ(y1, y2, . . . , yN ). Then ϕ′ belongs in D(R3N ) or S (R3N ), according to whether
ϕ ∈ D(R3N ) or ϕ ∈ S (R3N ) respectively. Similarly, let R

3 	 y1 �→ V ′
12(y1) :=

V12(y1 − y2). As in the previous proof, by decomposing V12 = (V12)2 + (V12)∞ we
arrive at the estimate, for any a > 0 and any y2, . . . , yN :

||V ′
12ϕ

′||L2(R3) ≤ a||(V12)2||L2(R3) || − Δ1ϕ
′||L2(R3) + (b + ||(V12)∞||L∞(R3))||ϕ′||2

where b > 0 depends on a, not on y2, . . . yN ∈ R
3(N−1). Norms are in the spaces

over the first copy of R
3 in R

3N . It is important to note, due to the invariance of
(y1, y2) �→ V12(y1 − y2) under translations, that the norms ||(V12)k ||Lk (R3) do not
depend on the variable y2. From Remark 10.43 this inequality is the same as

||V ′
12ϕ

′||2L2(R3) ≤ a′ || − Δ1ϕ
′||2L2(R3) + b′||ϕ′||2L2(R3)

for certain a′, b′ > 0 with a′ arbitrarily small because of a||V12||2. Integrating the
inequality in the variables y2, . . . yN ∈ R

3(N−1) produces, for any a′ > 0, a corre-
sponding b′ > 0 such that

||V12ϕ||2L2(R3N ) ≤ a′ || − Δ1ϕ||2L2(R3N ) + b′||ϕ||2L2(R3N ) . (10.74)

Transforming with Fourier–Plancherel on R
3N , we now have

|| − Δ1ϕ||2L2(R3N ) =
∫

R3N

∣∣∣∣∣

3∑

r=1

k2
r

∣∣∣∣∣

2

|(F̂ϕ)(k1, . . . , k3N )|2dk1 · · · dk3N

≤
∫

R3N

∣∣∣∣∣

3N∑

r=1

k2
r

∣∣∣∣∣

2

|(F̂ϕ)(k1, . . . , k3N )|2dk1 · · · dk3N = || − Δϕ||2L2(R3N ) .

Substituting in (10.74) we conclude that if ϕ ∈ D(R3N ) or S (R3N ), then for any
a > 0 there exists b12 > 0 satisfying

||V12ϕ||2L2(R3N ) ≤ a || − Δϕ||2L2(R3N ) + b12||ϕ||2L2(R3N ) .

The same result holds for the other potentials Vi j , Vk : the proof goes along the same
lines, and is even simpler. If ϕ ∈ D(R3N ) or S (R3N ), for any a > 0 there are
corresponding bi > 0 and bi j > 0 (i, j = 1, . . . , N , j > i) such that:

||Viϕ||2L2(R3N )
≤ a || − Δϕ||2L2(R3N ) + bi ||ϕ||2L2(R3N ) , (10.75)

||Vi jϕ||2L2(R3N )
≤ a || − Δϕ||2L2(R3N ) + bi j ||ϕ||2L2(R3N ) . (10.76)
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On any Hermitian inner product space the Cauchy–Schwartz inequality implies∣∣∣
∣∣∣
∑M

r=1 ψr

∣∣∣
∣∣∣
2 ≤

(∑M
r=1 ||ψr ||

)2
. There are N + N (N − 1)/2 = N (N + 1)/2

potentials Vk and Vi j , so Cauchy–Schwartz and (10.75)–(10.76) force

∣∣∣∣∣∣

∣∣∣∣∣∣

⎛

⎝
N∑

k=1

Vk +
N∑

i, j=1 i< j

Vi j

⎞

⎠ϕ

∣∣∣∣∣∣

∣∣∣∣∣∣

2

L2(R3N )

≤
(

N (N + 1)

2

)2

a || − Δϕ||2L2(R3N ) +
(

N (N + 1)

2

)2

b||ϕ||2L2(R3N )

whereb is themaximumof thebk ,bi j . FromRemark 10.43 the result has an equivalent
formulation. For every a′ > 0 there exists a b′ > 0 such that

||V ϕ|| ≤ a′|| − Δϕ|| + b′||ϕ|| for any ϕ ∈ S (R3N ).

From this point onwards the proof picks up from Eq. (10.72) in the proof of Theorem
10.48, replacing R

n with R
3N . �

In conclusion we mention, without full proof, another important result of Kato. The
demands on V to have −Δ + V essentially self-adjoint on D(Rn) are different (and
weaker than Theorem 10.48 if n = 3). Recall that f : R

n → C is called locally
square-integrable if f · g is in L2(Rn, dx) for every g ∈ D(Rn).

Theorem 10.51 The operator −Δ + VΔ + VC defined on L2(Rn, dx) is essen-
tially self-adjoint on D(Rn), and its unique self-adjoint extension −Δ + VΔ + VC

is bounded from below, provided the following conditions hold.

(i) VΔ : R
n → R is measurable and induces a (−Δ)-bounded multiplicative oper-

ator with relative bound a < 1 (cf. Definition 10.42).
(ii) VC : R

n → R is locally square-integrable with VC ≥ C almost everywhere, for
some C ∈ R.

Part (i) holds if
VΔ ∈ L p(Rn, dx) + L∞(Rn, dx) ,

with p = 2 when n ≤ 3, p > 2 when n = 4 and p = n/2 when n ≥ 5.

Sketch of proof. The final statement was proved with Theorem 10.48 if n ≤ 3. The
argument is the same for n > 4 by the remark ensuing Lemma 10.46. If (i) holds
−Δ+VΔ is essentially self-adjoint onD(Rn) and−Δ + VΔ is lower bounded by the
Kato–Rellich theorem. If (ii) holds as well, −Δ+ VΔ + (VC − C) is essentially self-
adjoint on D(Rn) by [ReSi80, vol.II, Theorem X.29], for Vc − C ≥ 0. Therefore
−Δ + VΔ + VC = (−Δ + VΔ + (VC − C)) + C I is essentially self-adjoint on
D(Rn). Since −Δ + VΔ and VC are both bounded from below on that domain, so
are −Δ + VΔ + VC and −Δ + VΔ + VC . �
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Example 10.52

(1) A case in R
3 that is interesting to physics is one where the Laplacian perturbation

V is the attractive Coulomb potential:

V (x) = eQ

|x | ,

with e < 0, Q > 0 constants, |x | :=
√

x2
1 + x2

2 + x2
3 . The hypotheses of Kato’s

Theorem 10.50 (or 10.48) are valid for the operator:

H0 := − �
2

2m
Δ + V (x)

(the constantsm, � > 0 are irrelevant to the previous theorem, sincewemaymultiply
the operator by 2m/�

2 and then apply it, without losing in generality). So H0 is
essentially self-adjoint if defined on D(R3) or S (R3). The self-adjoint extension
H0, if Q = −e, corresponds to the Hamiltonian operator of an electron in the
electric field of a proton (neglecting spin effects and viewing the proton as a classical
object). This gives the simplest quantum description of the Hamiltonian operator of
the hydrogen atom. Here −e is the common absolute value of the charge of electron
and proton, m is the electronic mass, � > 0 is Planck’s constant divided by 2π .
The spectrum of the unique self-adjoint extension of this operator determines, in
physics, the admissible values of the energy of the system. Despite V is not bounded
from below, it is important that the spectrum of the operator considered is always
bounded, and therefore also the energy values that are physically admissible have
a lower bound. In Chaps. 11, 12 and 13 we will examine better the meaning of the
operators here briefly described.

(2)A second case of physical interest, always inR
3, is given by the Yukawa potential:

V (x) = −e−μ|x |

|x | ,

whereμ > 0 is another positive number. Here, too, the operator H0 = − �
2

2m Δ+V (x)

is essentially self-adjoint if defined onD(R3) or onS (R3), as we know fromKato’s
Theorem 10.50 (or 10.48). The Yukawa potential describes, roughly, interactions
between a pion and a source of the strong force, the latter thought of, in this manner
of speaking, as being caused by a macroscopic source.

(3) The third physically-relevant case is the Hamiltonian of a system of N particles
that interact under an external Coulomb potential and the Coulomb potentials of
all pairs (not necessarily attractive). Call xi ∈ R

3 the position vectors, mi > 0 the
masses and ei ∈ R \ {0} the charges (i = 1, . . . , N ). The full operator is

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_13
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H0 :=
N∑

i=1

− �
2

2mi
Δi +

N∑

i=1

Qi ei

|xi | +
N∑

i< j

ei e j

|xi − x j | ,

where Δi is the Laplacian in the three coordinates of xi . In order to apply Kato’s
theorem we must eliminate all factors �

2

2mi
multiplying the Δi . For this we can just

change coordinates to yi :=
√
2mi

�
xi . Thus the first sum above gives the Laplacian on

R
3N in the collective 3N components of theyi . It is not hard to see that the perturbation

V (y1, . . . , yN ) satisfies Kato’s Theorem 10.50, so H0 is essentially self-adjoint on
D(R3N ) and its unique self-adjoint extension is bounded from below.

(4) Theorem 10.51 allows to say the following. Adding any real function V ′, locally
integrable and bounded from below, to the Hamiltonian operators H0 seen in the
previous examples gives an essentially self-adjoint operator on the corresponding
D(Rn). An important instance is the harmonic potential (non-isotropic, in general)
V ′(x) = kx2

1 + k2x2 + k3x2
3 with k1, k2, k3 ≥ 0. �

Exercises

10.1 Referring to Example 10.16(1), assume γ > 0. Prove the solution to the Klein–
Gordon equation with source eiωψ and dissipative term has the form:

ut = e−γ t
[
cos
(

t
√

A − γ I
)

v + sin
(

t
√

A − γ I
)

(A − γ I )−1/2(v′ + γ v)
]

+e−γ t Ctψ + eiωt (A2 − ω2 I + 2iγωI )−1ψ ,

where ||Ct || ≤ 1.

Hint.Apply the definition of
∫ b

a Lτψτ dτ given in (10.10). Thenpass to the spectral
measures of A and use the Fubini–Tonelli theorem, carefully verifying the assump-
tions.

10.2 If Ak ∈ B(Hk), k = 1, . . . , N , prove

A1 ⊗ · · · ⊗ Ak ∈ B(H1 ⊗ · · · ⊗ HN ) .

Solution. Consider N = 2, the general case being similar. If ψ = { fi }i∈I and
{g j } j∈J are bases of H1 and H2, take the finite sum ψ := ∑

i j ci j fi ⊗ g j . Then
||(A1 ⊗ I )ψ ||2 = ∑

j ||∑i ci j A1 fi ||2 ≤ ∑
j ||A1||2∑i |ci j |2 = ||A1||2||ψ ||2. A

density argument allows to conclude ||A1 ⊗ I || ≤ A, and therefore ||A1 ⊗ A2|| ≤
||A1 ⊗ I || ||I ⊗ A2|| ≤ ||A1|| ||A2||.
10.3 If Ak ∈ B(Hk), k = 1, . . . , N , prove that
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||A1 ⊗ · · · ⊗ Ak || = ||A1|| · · · ||AN || .

Solution.We already know that A1⊗· · ·⊗ Ak ∈ B(H1⊗· · ·⊗HN ) fromExercise
10.2. Take n = 2, the generalisation being similar. If A1 = 0 or A2 = 0 the claim
is obvious, so assume ||A1||, ||A2|| > 0. When solving (2) we found ||A1 ⊗ A2|| ≤
||A1|| ||A2||, so it is enough to obtain the opposite inequality. By definition of ||A1||
and ||A2||, for any ε > 0 there are ψ

(ε)
1 ∈ H1 and ψ

(ε)
2 ∈ H2, ||ψ(ε)

1 ||, ||ψ(ε)
2 || = 1,

such that | ||Aiψ
(ε)
i || − ||Ai || | < ε. In particular, ||ψ(ε)

i || ≥ ||Ai || − ε. With these
choices

||(A1⊗ A2)(ψ
(ε)
1 ⊗ψ

(ε)
2 )|| = ||A1ψ

(ε)
1 || ||A2ψ

(ε)
2 || ≥ ||A1|| ||A2||−ε(||A1||+||A2||)+ε2 .

Since ||ψ(ε)
1 ⊗ ψ

(ε)
2 || = 1, and from

||A1 ⊗ A2|| = sup
||ψ ||=1

||A1 ⊗ A2ψ || ≥ ||(A1 ⊗ A2)(ψ
(ε)
1 ⊗ ψ

(ε)
2 )|| ,

for any ε > 0 we have ||A1 ⊗ A2|| ≥ ||A1|| ||A2|| − ε(||A1|| + ||A2||) + ε2,
where −ε(||A1|| + ||A2||) + ε2 < 0. That value tends to 0 as ε → 0+. Eventually,
||A1 ⊗ A2|| ≥ ||A1|| ||A2|| as required.
10.4 If Ak ∈ B(Hk), k = 1, . . . , N prove

(A1 ⊗ · · · ⊗ Ak)
∗ = A∗

1 ⊗ · · · ⊗ A∗
N .

Hint. Check A∗
1 ⊗ · · · ⊗ A∗

N satisfies the properties of the adjoint to a bounded
operator (Proposition 3.36).

10.5 If Pk ∈ B(Hk), k = 1, . . . , N are orthogonal projectors, show that P1⊗· · ·⊗Pk

is an orthogonal projector.

10.6 Suppose that A : D(A) → H is a closed, densely defined, normal operator
(A∗ A = AA∗). Prove that D(A) = D(A∗).

Solution. Since A∗ A = AA∗ can be written A∗ A = (A∗)∗ A∗, Theorem 10.37(c)
implies D(A) = D(A∗).

10.7 Suppose that A : D(A) → H is a closed, densely defined, normal operator
(A∗ A = AA∗). Referring to the polar decompositions A = U P and A∗ = V S, show
the following facts hold

(i) V = U ∗ and S = P ,
(ii) U is normal,
(iii) U A ⊂ AU , U ∗ A ⊂ AU ∗, U P ⊂ PU , U ∗ P ⊂ PU ∗, AP ⊂ P A, A∗ P ⊂

P A∗.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Solution. Start from U P PU ∗ = AA∗ = A∗ A = PU ∗U P . Since U ∗U |Ran(P) =
I |Ran(P), we have U P2U ∗ = P2 and so P2U ∗ = U ∗ P2. Therefore U ∗ commutes
with the PVM of P2, and hence with every function of it, in particular P = √

P2:
U ∗ P ⊂ PU ∗. Taking the adjoint we also have U P ⊂ PU . Taking the adjoint
of both sides of A = U P we get A∗ = PU ∗, and then A∗x = U ∗ Px provided
x ∈ D(P). However D(P) = D(A∗) because D(P) = D(A) = D(A∗) (Theorem
10.37), so that A∗ = U ∗ P . Now, notice that U ∗ is an isometry on Ran(P) because
U is an isometry on Ran(U ) and (U ∗ Px |U ∗ Px) = (x |PUU ∗ Px) = (x |AA∗x) =
(x |A∗ Ax) = (x |PU ∗U Px) = (x |P Px) = (Px |Px). A similar argument proves
that (Px |(U ∗U − UU ∗)Px) = 0. Actually, since K er(P) ⊥ Ran(P), K er(P) ⊕
Ran(P) = H and finally U (K er(P)) ⊂ Ker(P) and U ∗(K er(P)) ⊂ Ker(P) (for
U and U ∗ commute with P), then (Px |(U ∗U − UU ∗)Px) = 0 can be extended
to (y|(U ∗U − UU ∗)y) = 0 for every y ∈ H. We conclude that UU ∗ = U ∗U as
requested, but also K er(U ∗) = Ker(U ). The latter contains K er(P) by hypothesis,
so K er(U ) ⊃ Ker(P). In summary, A∗ = U ∗ P satisfies all requirements defining
the polar decomposition of A∗. Uniqueness concludes the proof of the fact that A∗ =
U ∗ P is the polar decomposition of A∗. Finally observe that, since U commutes with
P , we have U A = UU P ⊂ U PU = AU . A similar argument proves U A∗ ⊂ A∗U .
Regarding the last inclusions: AP = U P P ⊂ PU P = P A and A∗ P = U ∗ P P ⊂
PU ∗ P = P A∗.

10.8 Suppose that A : D(A) → H is a closed, densely defined, self-adjoint (or
anti-self-adjoint) operator and assume that K er(A) = {0}. Referring to the polar
decomposition A = U P prove that U = U ∗ = U−1 (respectively, U = −U ∗ =
U−1).

Hint. Use the spectral decomposition theorem.

10.9 Study the polar decomposition A = U P for the operator A of Sect. 9.1.4. Prove
that U satisfies

Uψn = ψn−1

if n ≥ 1 and {ψn}n∈N is the basis of L2(R, dx) defined in Sect. 9.1.4.

10.10 Study the polar decomposition A
∗ = V P1 for the operator A of Sect. 9.1.4.

Prove that V satisfies
V ψn = ψn+1

if n ≥ 0 and {ψn}n∈N is the basis of L2(R, dx) defined in Sect. 9.1.4.

10.11 Referring to Exercises (10.9) and (10.10), prove that

P = √
N and P1 = √

N + I

where N is the unique self-adjoint extension of the symmetric operator defined
on the finite span of the Hilbert basis {ψn}n∈N, introduced in Sect. 9.1.4, such that
Nψn = nψ for n ∈ N.

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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10.12 Consider the operator A of Sect. 9.1.4 and prove that σp(A∗) = σc(A∗) = ∅
and σr (A∗) = C.

Solution. We already know from Exercise 9.8 that σp(A) = C, while Exercises
10.10 and 10.11 tell us that A∗ = V

√
N + 1. Consider ψ ∈ H such that A∗ψ = λψ

for some λ ∈ C. Since
√

N + 1 is invertible, this equation is equivalent to V φ =
λ
√

N + 1
−1

φ where both V and
√

N + 1
−1

are bounded and everywhere defined.
Expanding φ =∑n∈N

cnψn , with reference to the Hilbert basis {ψn}n∈N introduced
in Sect. 9.1.4, we find the identity

∑

n

cnψn+1 = λ
∑

n

cn√
n + 1

ψn

and hence
λcn = √

n + 1cn−1 n = 1, 2, . . . .

If λ = 0 the only solution is cn = 0 for every n, and so ψ = √
N + 1

−1
0 = 0.

If λ �= 0, we have cn =
√

(n+1)!
λn c0. Unless c0 = 0, giving ψ = 0 again, we have∑

n |cn|2 = +∞, and we concludeψ cannot exist. We have proved that σp(A∗) = ∅.
Next observe that, as A is closed and the domain of A∗ = A

∗
is dense, Theorem

5.10(c) implies Ran(A∗ −λI )⊥ = Ker(A−λI )�={0} (the last inequality was proved
in Exercise 9.8). Hence Ran(A∗−λI ) cannot be dense for every λ ∈ C, and therefore
σr (A∗) = C because A∗ − λI is injective for every λ ∈ C, as we proved above.

10.13 Prove the statement in Remark 10.43(2).

10.14 Suppose V : R
3 → R makes the symmetric operator H1, given by the

differential operator −Δx + V (x), essentially self-adjoint onS (R3), where Δx :=∑3
k=1

∂2

∂x2
i
is the Laplacian. Prove that the symmetric operator H on L2(R3×R

3, dx⊗
dy) defined by the differential operator −Δx + V (x) − Δy + V (y) is essentially
self-adjoint on the span of finite products of a map in x inS (R3) and a map in y in
S (R3). Then show

σ(H) = σ(H1) + σ(H1) .

10.15 Prove that the attractive Coulomb potential in R
3:

V (x) = eQ

|x | ,

with e < 0, Q > 0 constants, |x | :=
√

x2
1 + x2

2 + x2
3 , satisfies Kato’s Theorem

10.50. What happens if we increase or decrease the dimension of R
3?

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_9


Chapter 11
Mathematical Formulation
of Non-relativistic Quantum Mechanics

Every science would be redundant if the essence of things and
their phenomenic appearance coincided.

Karl Marx

In this chapter we shallmainly enucleate the axioms ofQM for the elementary system
made by a non-relativistic spinless particle, and discuss a series of important results
related to the canonical commutation relations (CCRs).

In section one we will revisit, especially in the light of spectral theory, the four
axioms of Chap.7. We will introduce the von Neumann algebra of observables and
complete sets of commuting observables.

Section two further develops the notion of superselection rules, and presents a
few new technical results in relation with von Neumann algebras.

Section three deals with several technical facts, of physical relevance, about the
notion of observable viewed as a self-adjoint operator.

Then, in section four, we will add an axiom for the formalisation of the quantum
theory of the spin-zero particle.We shall introduce theCCRs and prove they cannot be
satisfied by bounded operators.Wewill showhowHeisenberg’s uncertainty principle
is actually a theorem in the formulation.

The penultimate section is dedicated to the famous theorem of Stone–von Neu-
mann, later refined by Mackey, which characterises continuous unitary representa-
tions of the CCRs. To prove the theorem we will introduce Weyl ∗-algebras and
discuss their main properties. After proving the theorems of Stone–von Neumann
andMackey, we will use the formalism to extend Heisenberg’s relations under rather
weak hypotheses on the states involved, and then generalise them to mixtures. We
shall reformulate the results of Stone–von Neumann and Mackey in terms of the
Heisenberg group. A short description of Dirac’s correspondence principle and its
relationship to the procedure called deformation quantisation closes the chapter.
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11.1 Round-up and Further Discussion on Axioms A1, A2,
A3, A4

In Chap.7 we saw the general axioms of QM. Let us summarise part of that chapter
in the light of the spectral theory developed subsequently. We focus in particular on
axiom A4, the notion of observable and superselection rules, to which we can add
further theoretical material.

11.1.1 Axioms A1, A2, A3

A1. Given a quantum system S described in an (inertial) frame system I , exper-
imentally testable propositions on S at any given time correspond bijectively to
(a sublattice, at least in presence of superselection rules, of) the lattice L (HS) of
orthogonal projectors of a complex separable Hilbert space HS �= {0}, respectively
called the logic of elementary propositions of S and the Hilbert space associated
to S.Moreover (using the same letter for propositions and corresponding projectors):

(1) the compatibility of two propositions (from measuring processes attributing simul-
taneous truth values to both) corresponds to the commutation of the orthogonal pro-
jectors;
(2) the logical implication of two compatible propositions P ⇒ Q corresponds to
the projectors’ relation P ≤ Q;
(3) I (identity operator) and 0 (null operator) correspond to the tautology and the
contradiction;
(4) the negation �P of P corresponds to the orthogonal projector ¬P = I − P;
(5) the propositions P O Q and P E Q have a physical meaning only when P , Q are
compatible, and correspond to the orthogonal projectors P ∨ Q and P ∧ Q (respec-
tively projecting onto the closure of the union and the intersection of the projection
spaces of P , Q);
(6) if {Qn}n∈N is a countable collection of pairwise-compatible propositions, the
propositions corresponding to ∨n∈NQn and ∧n∈NQn are physically meaningful.

In the sequel we shall assume, loosely speaking, that all the elements in the logic
L (HS) describe elementary propositions on S. Different choices, especially in pres-
ence of superselection rules but not only, will be discussed separately.

Remarks 11.1 (1) The Hilbert space HS actually depends on the frame system I
as well, as explained in Remark7.23(4). Another system will give an isomorphic
Hilbert space. We will return to this in Chap.13.
(2) The fact that HS is separable turns out to be useful in several technical construc-
tions. For elementary non-relativistic systems HS is automatically separable, as we
shall see in this chapter. We will also explain that the Hilbert space of a system made
of a finite number of elementary systems is, in turn, separable as it is described as

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_13


11.1 Round-up and Further Discussion on Axioms A1, A2, A3, A4 597

a finite tensor product of separable spaces. As for quantum fields, their the Hilbert
space is the Fock space, again separable. However, if we stick to the Hilbert space
description of quantum systems where states are trace-class operators, there is at
least one physical reason to assume that the Hilbert space of a physical system is
separable, and the argument is purely thermodynamical. Thermodynamical states
of a system in equilibrium with a thermostat, or in equilibrium with other thermo-
dynamical systems, are represented quantistically by mixed states (see axiom A2
below) of the form Zβe−β H where Zβ := tr(e−β H ). Here H is the Hamiltonian of
the system, β := 1/(kB T ) where T is the absolute temperature, and kB is Boltz-
mann’s constant (the case of an open system can be studied similarly by introducing
chemical potentials). In this situation e−β H must obviously be of trace-class so, in
particular, e−β H , and hence H itself, must have purely point spectrum (up to perhaps
the value 0 ∈ σc(e−β H )). It should be clear that if HS were not separable, the trace-
class operator e−β H would not exist, because it would have an uncountable set of
orthonormal eigenvectors with strictly positive eigenvalue, giving rise to a divergent
trace.

When the setup seems to lead inevitably to a non-separable scenario or, more
generally, if the description of trace-class states generates insurmountable problems,
a more interesting possibility is to abandon Hilbert spaces completely. One radically
different line of action describes the system by the so-called algebraic approach,
which we will introduce in the last chapter. With this approach it does not matter
whether the Hilbert space representations are separable or not. When one deals with
extended thermodynamical systems, where the notion of state in terms of trace-class
operator cannot be used, it is much better to rely on algebraic states (which we
shall address in Chap. 14) and the celebrated KMS condition in order to characterise
algebraic thermodynamical states [Haa96]. �

A2. A state ρ at time t on a quantum system S, with associated Hilbert space HS , is
a positive, trace-class operator on HS with trace one.

The probability that the proposition P ∈ L (HS) on ρ is true equals tr(ρ P).
If, as we said, we suppose elementary propositions are described by the whole

logicL (HS), states ρ are convex combinations (also infinite, if we consider spectral
decompositions of states) of extreme states in the convex setS(HS) of states. Extreme
states are calledpure and have the formρ = ψ(ψ |) for someunit vectorψ ∈ HS . The
space of pure states is denoted bySp(HS) and is in one-to-one correspondence with
the (projective) space of rays of HS , i.e. the quotient of HS \ {0} by the equivalence
relation φ ∼ φ′ ⇔ φ = aφ′ for some a ∈ C \ {0}. States that are not pure are
called mixed states or mixtures, and the corresponding trace-class operators are
often called statistical operators or density matrices in the literature. The convex
decomposition of a mixed state in terms of pure states, arising for instance from
the spectral theorem, is called incoherent superposition of pure states. There are,
typically, several convex decompositions into pure states for a single mixed state.

An important notion in physics, also historically speaking, is the transition (or
probability) amplitude (ψ |φ) of the pure state determined by the unit vector φ on
the pure state determined by the unit vector ψ . The square modulus of the transition

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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amplitude represents the probability that the system in state φ passes to state ψ after
a measurement. Note that we may swap states, by the symmetry of Hermitian inner
products, without changing the transition probability.
A3. If the quantum system S is in state ρ ∈ S(HS) at time t and proposition P ∈
L (HS) is validated by a measurement taken at the same t , the system’s immediate
post-measurement state is

ρP := Pρ P

tr(ρ P)
,

in accordance with the Lüders-von Neumann collapse postulate. In particular if ρ

is pure and given by ψ ∈ HS , ||ψ || = 1, the post-measurement state is still pure,
and given by the vector

ψP = Pψ

||Pψ || .

We emphasise that this axiom refers to ideal first-kind measurements, or non-
destructive or indirect, as they are known; a lab’s practice adopts several types of
testing, that in general do not obey the axiom.

Remark 11.2 States can alternatively be described in terms of σ -additive prob-
ability measures on L (HS). However only for dimHS �= 2 is the correspon-
dence between states and measures one-to-one, in view of the celebrated Gleason
Theorem7.26. We have two alternative formulations of A2 and A3, respectively
denoted by A2 (measure-theory version) and A3 (measure-theory version) and
stated in Sects. 7.4.1 and7.4.4. With the reformulation axiom A3 turns out to have
a very natural interpretation in terms of conditional probability, as established in
Proposition7.40: if the state before the measurement of P is represented by the
probability measure μ over L (HS) and P turns out to be true, the probability mea-
sureμP after themeasurement is the only probabilitymeasure overL (HS) satisfying
μP(Q) = μ(Q)/μ(P) ifL (HS)  Q ≤ P . �

11.1.2 A4 Revisited: von Neumann Algebra of Observables

The subsequent axiom, introduced in Chap.7, is concerned with the observables of
a quantum system.
A4. Every observable A of the quantum system S is described by a projector-valued
measure P (A) on R, on the system’s Hilbert space HS , so that the projector P (A)(E)

corresponds to the proposition “the outcome of measuring A falls in E”, for any
Borel set E in R.
The spectral theorem for unbounded self-adjoint operators, proved in its maximal
generality in Chap.9 (Theorem9.13), allows to associate to any observable a unique
self-adjoint operator on the Hilbert space of the physical system. With this, if HS

is the Hilbert space of some system, the spectrum σ(A) ⊂ R of an observable A,
i.e. of a self-adjoint operator A : D(A) → HS , contains all possible outcomes of
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a measurement of the observable A, theoretically viewed as Borel subsets of σ(A),
especially intervals (a0−δ, a0+δ). Mathematically, σ(A) coincides with the support
of the PVM P (A) associated to the observable. From the spectral theorem we also
easily have that

||A|| = sup{|a| | a ∈ σ(A)} .

This subsumes also the case A unbounded, or equivalently D(A) � HS , correspond-
ing to the (formally incorrect) value ||A|| = +∞. As a consequence, observables
may be unbounded self-adjoint operators A, simply because the possible (experi-
mental) values of A belong to an unbounded set σ(A) of real numbers.

Remark 11.3 If ameasurement process regards an observable Awith σ(A) = σp(A)

and the elements of the spectrum are isolated points, it is always possible to assume
the existence of a measuring instrument whose sensitivity δ > 0 is smaller than the
distance between (finitely many) consecutive values of A. In this way, even if the
measurement is affected by an experimental error represented by δ > 0, we can
distinguish between couples of eigenvalues, and the Lüders-von Neumann axiom
A3 takes the more familiar and standard form presented in elementary formulations,
i.e. when the associated eigenspaces have dimension 1: after a measurement with
outcome a0 the state is represented by the a0-eigenvector. More generally, the same
result is achieved by measuring simultaneously a finite set of mutually-compatible
observables whose common eigenspaces have dimension 1 (see the discussion after
Definition11.11 below). The case of a continuous spectrum, and in particular the
precise form of the post-measurement state, is much more problematic, and it was
analysed by several authors. Ozawa [Oza84, Oza85], using a natural theoretical
description of the measurement procedure, established that the measurements of
continuous-spectrum observables are not repeatable. Also for this reason, the postu-
late by Lüders and von Neumann is viewed with suspicion in presence of continuous
spectrum, and a more accurate description of the quantum measurement process
might be given in terms of quantum operations, POVMs and the related measuring
operators, see Sect. 13.2.2. �

Sticking for the moment to bounded observables, a theoretical tool of great relevance
is the so-called von Neumann algebra of observables of S, henceforth denoted by
RS . It is the von Neumann algebra generated (in the sense of Definition3.92) by
the set all of bounded observables. Thus the self-adjoint elements of RS represent
all possible bounded observables of the physical system S. A fundamental physical
issue is to determine RS for a given physical system S. The problem can be traced
back to the analogous issue of selecting the lattice of elementary propositions of the
system. The assumption that the elementary propositions on S are described by all the
projectors in L (HS) is questionable, and anyway incompatible with superselection
rules (see below). Generally speaking, one could ask less, like having elementary
propositions described by the sublattice LRS (HS) of orthogonal projectors of the
von Neumann algebra RS (still called the logic of elementary propositions of S).
By Proposition7.61

RS = LRS (HS)
′′ ,

http://dx.doi.org/10.1007/978-3-319-70706-8_13
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_7


600 11 Mathematical Formulation of Non-relativistic Quantum Mechanics

so that, in turn, the elementary propositions of the system completely fix the von
Neumann algebra of observables of the system. Rather relevantly, the centre of the
logic generates the centre of the algebra of observables LRS (HS) ∩LRS (HS)

′,

(LRS (HS) ∩LRS (HS)
′)′′ = RS ∩R′

S

as established in Theorem7.61.
In absence of superselection rules it is usually assumed, and we are indeed doing

this in discussing axioms A1–A4, thatLRS (HS) = L (HS). Then

RS = B(HS) ,

so thatR′
S = {cI }c∈C andLRS (HS)∩LRS (HS)

′ = {0, I } (the lattice is irreducible).
This, though, is not the general case.

Just like the latticeL (HS)of all orthogonal projectors ontoHS , the logicLRS (HS)

is an orthomodular (hence bounded and orthocomplemented), complete lattice which
is separable if, as we assume, HS is separable (Proposition7.61). The remaining
properties ofL (HS) listed in Theorem7.56 (atomicity and atomisticity, the covering
property, irreducibility) are not valid in general. We will come back to these issues
when we address superselection rules.

Remark 11.4 If RS is a proper subalgebra of B(HS) the notion of state defined
as a trace-class operator becomes redundant, since different states of S(HS) can
determine the same probability measure onLRS (HS). In this case the notion of state
as a probability measure LR(HS) is a more faithful representation of the physical
realm. However, even in this case, the elements ofS(HS) exhaust the convex body of
σ -additive probabilitymeasures onLR(HS). This is because every suchmeasure can
be described by a positive trace-class operator with trace one, provided the splitting
ofRS into algebras of definite type does not include type-I2 terms (Remark7.73). �

How can the information of unbounded observables be included in RS?
We have the following useful technical result regarding unbounded observ-

ables A.

Proposition 11.5 Let A : D(A) → H be a (typically unbounded) self-adjoint oper-
ator on the Hilbert space H and define the collection of operators

An =
∫
[−n,n]

λd P (A)(λ) for n ∈ N. (11.1)

Set id : R  λ �→ λ ∈ R, in part (b) below. The following facts hold:

(a) A∗n = An ∈ B(H);
(b) P (An)(E) = P (A)((χ[−n,n] · id)−1(E)) for every Borel set E ⊂ R, so that

P (A)(E)ψ = lim
n→+∞ P (An)(E)ψ for every E ∈ B(R) and ψ ∈ H; (11.2)
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(c) ∪n∈Nσ(An) coincides with σ(A), possibly up to the value 0. More precisely,
(i) σp(A) ⊂ ∪n∈Nσp(An) ⊂ σp(A) ∪ {0},
(ii) σc(A) \ {0} ⊂ ∪n∈Nσc(An) ⊂ σc(A);

(d) If ψ ∈ D(A), then Aψ = limn+∞ Anψ .

Proof (a) The statement is an immediate consequence of Theorem9.4(b, f).
(b) The first identity is a trivial application of Theorem9.4(h). The second identity
arises from the former, because either

(χ[−n,n] · id)−1(E) = E ∩ [−n, n] if 0 /∈ E

or
(χ[−n,n] · id)−1(E) = (E ∩ [−n, n]) ∪ (R \ [−n, n]) if 0 ∈ E .

Consequently
P (An)(E) = P (A)(E ∩ [−n, n]) if 0 /∈ E

or, respectively,

P (An)(E) = P (A)(E ∩ [−n, n])+ P (A)(R \ [−n, n]) if 0 ∈ E,

which can be rephrased as

P (An)(E)ψ =
∫
R

χEχ[−n,+n]d P (A)ψ if 0 /∈ E

or

P (An)(E)ψ =
∫
R

χEχ[−n,+n]d P (A)ψ +
∫
R

χR\[−n,n]d P (A)ψ if 0 ∈ E .

Eventually, Theorem9.4(f) together with the monotone convergence theorem (used
for the measure μψ ) implies (11.2).
(c) Let us prove (c)(i). If λ ∈ σp(An), where λ ∈ [−n, n] since σ(An) ⊂ [−n, n],
then P (An)({λ}) �= 0 from Theorem9.13(b)(i). Assuming λ �= 0, from the proof
of (b) we have that P (A)({λ}) = P (An)({λ}) �= 0. Therefore λ ∈ σp(A) again by
Theorem9.13(b)(i). We have established that ∪nσp(An) ⊂ σ(A) ∪ {0}. With the
same argument, we see that if λ ∈ σp(A) and λ ∈ (−n, n), then either P (An)({λ}) =
P (A)({λ}) �= 0 or (if λ = 0) P (An)({λ}) = P (A)({λ})+ P (A)(R \ [−n, n]) �= 0 again.
In both cases λ ∈ σp(An) from Theorem9.13(b)(i). Therefore σp(A) ⊂ ∪nσp(An)

concluding the proof of (i).
Let us prove (ii). Suppose that λ ∈ σc(A). From Theorem9.13(b)(ii), P (A)({λ}) =

0 and every open set J  λ satisfies P (A)(J ) �= 0. Fix n and an open set J ′ such
that λ ∈ J ′ ⊂ (−n, n). As before P (An)({λ}) = P (A)({λ})+ P (A)(R \ [−n, n]), the
second term on the right-hand side appearing only if λ = 0. If λ �= 0, P (A)({λ}) = 0
implies P (An)({λ}) = 0. With the same reasoning we have P (An)(J ′) = P (A)(J ′)+
P (A)(R \ [−n, n]), the second term on the right-hand side appearing only if 0 ∈ J ′.
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Since P (A)(J ′) �= 0 we conclude that P (An)(J ′) �= 0. If J ⊃ J ′ is any other open set
containing λ, we similarly have P (An)(J ) ≥ P (An)(J ′) �= 0. Hence P (An)({λ}) = 0
and P (An)(J ) �= 0, Theorem9.13(b)(ii) yields λ ∈ σc(An) and so σc(A) \ {0} ⊂
∪nσc(An). To establish the other inclusion, assumeλ ∈ σc(An) for somen. Therefore,
usingTheorem9.13(b)(ii) and part (b) above, 0 = P (An)({λ}) = P (A)({λ})+P (A)(R\
[−n, n]), the second summandpresent only ifλ = 0.Weconclude that both P (A)({λ})
and P (A)(R\[−n, n]) vanish. If J  λ is any open set containingλwith J ⊂ (−n, n),
again from Theorem 9.13(b)(ii) and (b) above, 0 �= P (An)(J ) = P (A)(J )+ P (A)(R \
[−n, n]), where the last term may be there only if 0 ∈ J . However we know that
P (A)(R \ [−n, n]) = 0 and so P (A)(J ) �= 0. By enlarging J , what we have found
remains valid exactly as before. Theorem9.13(b)(ii) implies that λ ∈ σc(A) since
P (A)({λ}) = 0 and P (A)(J ) �= 0 for every open set J  λ. Summing up, we have
established the remaining inclusion ∪nσc(An) ⊂ σc(A).

There is no way to fix the problem with 0, since 0 may belong to ∪nσp(An)

even if 0 /∈ σp(A), and in particular also when 0 ∈ σc(A). In fact, 0 ∈ σp(An) if
σ(A) �⊂ [−n, n] for some n. In that case, defining E := σ(A) \ [−n, n] we have
P (A)

E �= 0 (otherwise σ(A) ⊂ [−n, n]) and everyψ ∈ P (A)
E (H)withψ �= 0 therefore

satisfies Anψ = 0, proving that 0 ∈ σp(An). And this happens also when 0 /∈ σp(A).
(As an example consider the operator X on L2(R, dx) such that Xψ(x) = xψ(x)

for x ∈ R, with domain D(X) := {ψ ∈ L2(R, dx) | ∫ |xψ(x)|2dx < +∞}. Here
σ(X) = σc(X) = R, but σp(Xn) = {0} for every n = 1, 2, . . . .).

(d) The proof descends again from Theorem9.4(f) together with the monotone
convergence theorem. �

The physical meaning of An is not completely obvious. Roughly speaking, we
can say that this observable is A itself, but it is measured by an instrument capable
of producing outcomes inside [−n, n].1 Every concrete instrument is of this type,
for n sufficiently large. It is therefore natural to assume, if the observable A is not
bounded, that every bounded observable An as above belongs to RS nevertheless.
This is equivalent to saying that the PVMs of the bounded self-adjoint operators An

belong toLRS (HS), because the elements of the PVM of a bounded normal operator
B commute with every bounded operator commuting with B (Theorem8.56(c), with
a characteristic function in place of f ). Since the PVMof A can be constructed out of
the PVMs of the An by exploiting the strong operator topology (Proposition11.5(b)),
we have that RS and therefore LRS (HS) contains the PVM of A as well. If, con-
versely, the PVM of A belongs inLRS (HS), every bounded operator An is contained
in RS as it is the strong limit of linear combinations of the elements of the PVM of
A, by (11.1).

In summary, we may say that although it contains only bounded observables,RS

retains however the full information of all observables of the system, including the
unbounded ones. This is because (we shall assume that henceforth) LRS (HS) also

1This characterisation is not 100% consistent with the features of An , since An more properly
describes an observable with value 0 if the outcome of the measurement of A belongs toR\[−n, n].
A real instrument with finite range would not perform any measurement outside its range.
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contains the elements of the PVMs of every unbounded observable A. Equivalently,
RS contains the physically relevant bounded approximations An of A.

Technically speaking the mathematical notion relevant in this context is the fol-
lowing.

Definition 11.6 Given a von Neumann algebraR over the Hilbert spaceH, an oper-
ator A : D(A) → H, with D(A) ⊂ H, is said to be affiliated to R if

U A ⊂ AU for every unitary operator U ∈ R′.

In this case we write AηR.

The condition displayed above is equivalent to an apparently stronger requirement.

Proposition 11.7 Given a von Neumann algebra R over the Hilbert space H, an
operator A : D(A) → H with D(A) ⊂ H is affiliated to R if and only if

U A = AU for every unitary operator U ∈ R′

(which is equivalent to

U AU ∗ = A for every unitary operator U ∈ R′).

In particular, it turns out that U (D(A)) = D(A) if U ∈ R′ is unitary.

Proof IfU A = AU for every unitary operatorU ∈ R′ then A is trivially affiliated to
R. Conversely, if AηR, left-applyingU ∗ givesU ∗U A ⊂ U ∗AU , that is A ⊂ U ∗AU .
Right-applying U ∗ produces AU ∗ ⊂ U ∗A. To conclude, observe that U ∈ R′ ⇔
U ∗ ∈ R′, so we may swap U ∗ and U to obtain AU ⊂ U A. Since also U A ⊂ AU is
true, we conclude thatU A = AU forU ∈ R′. As a consequenceU (D(A)) ⊂ D(A),
but sinceU ∗A = AU ∗ holds too, we also haveU ∗(D(A)) ⊂ D(A). Finally, applying
U gives D(A) ⊂ U (D(A)), so that U (D(A)) = D(A). �

The following useful result – especially condition (c) – holds.

Proposition 11.8 Let R be a von Neumann algebra over the complex Hilbert space
H and A : D(A) → H a closed operator with D(A) ⊂ H dense. The following facts
are equivalent.

(a) AηR.
(b) If A = V P is the polar decomposition of A, then

(i) V ∈ R,
(ii) PηR.
If A is self-adjoint, (a) and (b) are equivalent to

(c) the PVM of A satisfies P (A)
E ∈ R for every Borel set E ⊂ R.

If A ∈ B(H), then (a) and (b) are equivalent to
(d) A ∈ R.
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Proof See Exercise 11.3. �

The conclusion is that given a quantum system described by a certain von
Neumann algebra of observables RS , the observables, bounded and unbounded,
are represented by self-adjoint operators affiliated to RS . Bounded observables are
also elements of RS .

11.1.3 Compatible Observables and Complete Sets of
Commuting Observables

The notion of compatible observables is important in physics:

Definition 11.9 Let S be a quantum system described on the Hilbert spaceHS . Two
observables A, B of S are compatible if the spectral measures P (A), P (B) of the
corresponding self-adjoint operators commute, i.e.

P (A)(E)P (B)(E) = P (B)(E)P (A)(E) , for any Borel set E ⊂ R.

Two observables that are not compatible are called incompatible.

In physics, compatibility means the observables can bemeasured at the same time (in
agreement with axiomA1 andwith themeaning of the associated spectral measures).
If we have a finite set of compatible observables A = {A1, A2, . . . , An}, a joint
spectral measure P (A) on R

n can be constructed using the spectral measures of
the self-adjoint operators representing the observables, by Theorem9.19. Retaining
those notations, if f : R

n → C is measurable, the self-adjoint operator

f (A1, . . . , An) :=
∫
Rn

f (x1, . . . , xn)d P (A)(x1, . . . , xn) (11.3)

– with domain given by vectors ψ ∈ H for which f ∈ L2(Rn;μψ), where μψ(E) =
(ψ |P (A)(E)ψ), E ∈ B(Rn), as usual – has the customary meaning of an observable
that is function of the observables A1, . . . , An .

From the physical point of view, if f is real-valued and the observables Ak are
pairwise compatible, the meaning of the observable f (A1, . . . , An) should be clear:
f (A1, . . . , An) is measured by simultaneouslymeasuring A1, . . . , An , and then eval-
uating f on the values of the observables found. Obviously, this interpretation also
holds for n = 1, that is for f (A).

Remark 11.10 A necessary condition to have compatible observables is that the
corresponding operators commute, paying attention to domains as prescribed by
Theorem9.41. For unbounded self-adjoint operators this condition is not sufficient,
despite what certain physics books might say: Nelson [Nel59] proved that there
are pairs of operators that commute on a dense subspace, invariant for both and on
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which both are essentially self-adjoint, yet the spectral measures of the self-adjoint
extensions do not commute. A useful necessary and sufficient condition for A and B
to be compatible is Theorem9.41(c):

eit Aeis B = eis Beit A for anys, t ∈ R .

Another necessary and sufficient condition is (d) in the same theorem. �

The following notion, relying on Definition9.22 and due to Jauch [Jau60] (see also
[BeCa81]), plays a relevant role in the theory.

Definition 11.11 Consider a quantum system S described on the Hilbert space HS

and a family A = {A1, . . . , An} of observables with pairwise-commuting spectral
measures. Suppose

A′ = A′′ .

In other words, every operator B ∈ B(HS) that commutes with the spectral measures
of the Ak necessarily belongs to A′′, which is equivalent to saying (Proposition9.23)
B = f (A1, . . . , An) for some f : supp(P (A)) → C bounded and measurable.
Then A = {A1, . . . , An} is called a complete set of commuting observables.

The condition A′ = A′′ is equivalent to the apparently weaker one A′ ⊂ A′′, as
the inclusion A′ ⊃ A′′ follows from the fact that the bounded measurable functions
f (A1, . . . , An) commute with the spectral measure of each Ak by construction. The
requirementA′ = A′′ can be proved to be the same as asking the Hilbert space be iso-
morphic to an L2 space on the joint spectrumof the Ak [BeCa81], or to the existence of
a cyclic vector for the joint spectral measure. Dirac speculated that the set of observ-
ables of a quantum system always admits a complete set of commuting observables.
Jauch [Jau60] gave the general version of Dirac’s postulate in terms of von Neumann
algebras, positing the existence of a set of pairwise-commuting observables A such
that A′ = A′′. Dirac’s original conjecture referred only to observables with point
spectrum. Some simple examples of complete sets of commuting observables will
be given below.

If RS = B(HS), we can use any complete set of compatible observables A =
{A1, . . . , An} to prepare the system in a pure state, in the sense of Remark7.39(3),
when each Ak admits a point spectrum part. Indeed, if λk ∈ σp(Ak) for k = 1, . . . , n,
then the orthogonal projector

P(λ1,...,λn) := P (A1)
{λ1} · · · P (An)

{λn}

projects onto a subspace H(λ1,...,λn) ⊂ HS which must be one-dimensional. (If that
were not the case, it would be easy to construct an observable commuting with the
spectralmeasures of all of the Ak ,which is not a functionof them: ifH(λ1,...,λn) contains
two normalised orthogonal vectors ψ1, ψ2, the orthogonal projector B = (ψ1| )ψ1

is such an observable.) Therefore, whenever the outcome of the simultaneous (non-
destructive, ideal) measurements of A1, . . . , An is the set of values (λ1, . . . , λn), the

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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state after the measurement procedure must be the pure state represented by the unit
vector (unique, up to phase) ψ ∈ H(λ1,...,λn), as follows immediately from A3.

In the general casewhereRS does not necessarily coincidewith thewholeB(HS),
the existence of a complete set of commuting observables implies that the commutant
R′

S is contained inRS , and therefore it coincides with the centre ofRS . In particular,
a self-adjoint operator or an orthogonal projector that commutes with the observables
is an observable itself. We have, in fact, the following elementary, though important,
result by Jauch [Jau60].

Proposition 11.12 If RS contains a complete set of commuting observables then
R′

S is Abelian and coincides with the centre RS ∩R′
S.

Proof LetA ⊂ RS be a complete set of commuting observables. AsA′ = A′′ we also
haveA′′ = A′′′. On the other handRS ⊃ A′′ ⇒A′′′ ⊃ R′

S ⇒RS ⊃ A′′ = A′′′ ⊃ R′
S .

We conclude RS ⊃ R′
S , and therefore R′

S coincides with the centre of RS . In
particular R′

S is Abelian. �

Example 11.13
(1)Consider a quantum particle without spin, with reference to the rest spaceR

3 of an
inertial frame system (see below, axiomA5). In this caseHS = L2(R3, dx). The three
position operators A = {X1, X2, X3} or the momentum operators B = {P1, P2, P3}
give complete sets of commuting observables. A further property of these complete
sets of commuting observables is thatRS is the von Neumann algebra generated by
A ∪ B. It is in fact possible to prove that the commutant (which coincides with the
centre) of this von Neumann algebra is trivial (for it contains an irreducible unitary
representation of the Weyl–Heisenberg group), so (A ∪ B)′′ = B(H) = RS . (See
also Remark11.46.)
(2) If we add to the picture the spin space (for instance when we consider an electron
“without charge”), then HS = L2(R3, dx) ⊗ C

2. A complete set of commuting
observables isA = {X1⊗ I, X2⊗ I, X3⊗ I, I ⊗ S3}, where S3 is the spin observable
(see Sect. 12.3.1) along the z-axis. Another is B = {P1⊗ I, P2⊗ I, P3⊗ I, I ⊗ S1}.
As before (A ∪ B)′′ is the von Neumann algebra of observables of the system (note
the crucial change of spin component in A and B). In this case, too, the commutant
of the von Neumann algebra of observables is trivial, yielding RS = B(HS). �

The von Neumann algebra A generated by a complete set of observables is a
maximal Abelian von Neumann subalgebra ofRS , namely it satisfiesA = A′. Spelt
out: (a) it is Abelian, A′ ⊂ A, and (b) it satisfies the maximality requirement that A
already contains all the elements ofB(HS) commuting with each element of A. The
existence of a maximal Abelian von Neumann subalgebra ofRS is equivalent to the
commutativity of R′

S:

Proposition 11.14 Let R be a von Neumann algebra. The following three facts are
equivalent.

(a) R admits a maximal Abelian von Neumann subalgebra A ⊂ R with A = A′.
(b) R′ coincides with the centre of R: R′ = R ∩R′.
(c) R′ is Abelian: R′ ⊂ R′′.

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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Proof The implications (a) ⇒ (b) ⇒ (c) have already been established in Propo-
sition11.12: A ⊂ R entails R′ ⊂ A′, but A′ = A ⊂ R by (a), so R′ ⊂ R and
hence (b) holds. If (b) holds,R′ ⊂ R = R′′ so (c) holds. It is evident that (c)⇒ (b):
R′ ⊂ R(= R′′), so that R′ ∩R′ ⊂ R′ ∩R ⊂ R′ and soR′ = R′ ∩R.

Let us finally prove (b)⇒ (a). From Zorn’s lemma one easily obtains that every
vonNeumann algebraR always contains anAbelian vonNeumann subalgebraA that
is maximal with respect to R: there is no larger Abelian von Neumann subalgebra
of R. In particular, if A ∈ R commutes with every element of A, A (and hence
A∗) must belongs to A, for otherwise the algebra generated by A, A∗ and A would
be Abelian and larger than A. Our algebra A therefore satisfies A′ ∩ R ⊂ A. As
A ⊂ A′ and A ⊂ R we also have A ⊂ A′ ∩R. Summarising, every von Neumann
algebra R always contains a von Neumann subalgebra A such that A = A′ ∩ R.
Let us resume the proof of (b) ⇒ (a). Take A ⊂ R such that A = A′ ∩ R. Part
(b) implies R′ = R ∩ R′, but R ∩ R′ ⊂ R ∩ A′, because A′ ⊃ R′ as A ⊂ R.
FinallyR∩A′ = A in view of our initial choice for A. To sum up, we have obtained
R′ ⊂ A, and consequently R(= R′′) ⊃ A′. The hypothesis A = A′ ∩ R entails
A = A′, concluding the proof. �

Remark 11.15 A further result established by Jauch in [Jau60] is that a maximal
Abelian von Neumann subalgebra A ⊂ R can always be written as A = {A}′ for
a suitable self-adjoint operator A ∈ A. Assuming that R = RS is the algebra of
observables of a quantum system, since {A}′ = A = A′ = {A}′′, Propositions11.14
and 11.12 prove that the existence of a complete set of commuting observables in
RS (in particular {A}) is equivalent to the fact that R′

S is Abelian. �

11.2 Superselection Rules

This section is devoted to the extension of the concept of superselection rules that
were introduced in Sects. 7.71 and 7.7.2.

11.2.1 Superselection Rules and von Neumann Algebra of
Observables

Let us summarise the elementary theory of superselection rules of Sects. 7.7.1, 7.7.2
and add further material and remarks. The focus will be on the interplay between
the algebra of observables RS and the associated logic of elementary propositions
LRS (HS).We shall mainly discuss themathematical structures, since physical exam-
ples were presented in 7.7.1 (see also Sect. 12.3.2). A further instance regarding the
Bargmann superselection rule will be presented in Sect. 12.3.4. The discussion will
continue in Sect. 14.1.7. As a general reference on the subject we suggest [Ear08].
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In presence of superselection rules, axioms Ss1 and Ss2 (Sect. 7.7.1) are con-
straints onA1–A3.2 We will analyse first the von Neumann algebraRS , and next the
space of states in presence of superselection rules.

Speaking about the von Neumann algebra of observables RS over the separable
Hilbert space HS , axiom Ss2 is mathematically equivalent to the identification

L (HS)adm := LRS (HS) (11.4)

togetherwith the demandof a non-trivial centre forRS , because the centre of the asso-
ciated latticeLRS (HS) is supposed non-trivial and atomic.More precisely (according
to Proposition7.71) the centre ofLRS (HS) contains a family of orthogonal projectors
{Pk}k∈K with the following properties:

(i) Pk �= 0,
(ii) Pk ⊥ Ph if h �= k,
(iii) s-

∑
k∈K Pk = I ,

(iv) there is no orthogonal projector Q ∈ RSk ∩R′
Sk with 0 < Q < Pk for any

k ∈ K .

(Proposition7.70 permits to replace (iii) with
(iii)’ the central family {Pk}k∈K is maximal with respect to (i) and (ii).)

The structure of RS and HS according to Ss2 (taking Proposition7.70 into account)
can now be described as follows. Setting HSk := Pk(HS):

(a) the family {Pk}h∈K is unique up to relabelling.
(b) Each HSk is invariant under RS: A(HSk) ⊂ HSk if A ∈ RS .
(c)RS  A �→ πk(A) := A�HSk : HSk → HSk is a ∗-algebra representation ofRS .
(d) Each RSk := πk(RS) is a factor in the Hilbert space HSk .
(e) RS has a direct decomposition into factors RSk :

H =
⊕
k∈K

HSk , RS =
⊕
k∈K

RSk (11.5)

(f) There is a partition K = � j∈J K j such that

H( j)
S =

⊕
k∈K j

HSk and R
( j)
S =

⊕
k∈K j

RSk , (11.6)

whereH( j)
S andR( j)

S are the closed subspaces anddefinite-type vonNeumann algebras
of Theorem7.68. In particular every factor RSk , for k ∈ K j , is of the same type as
the corresponding R

( j)
S .

2Alternatively, if wewish to describe states in terms of σ -additivemeasures, superselection rules are
encapsulated in axiomsSs1 (measure-theory formulation) andSs2 (measure theory formulation)
(Sect. 7.7.2). These, too, should be understood as limitations to A1, A2 (measure-theory version),
A3 (measure-theory version).
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The pairwise orthogonal spaces HSk are the well-known coherent sectors or
superselection sectors. The representations πk defined in these sectors enjoy a
couple of relevant properties.

Proposition 11.16 In presence of superselection rules on the separable Hilbert
space HS �= {0} with coherent sectors HSk , k ∈ K , the above ∗-algebra repre-
sentations πk of the von Neumann algebra of observables RS are

(i) not faithful, i.e. not injective,
(ii) pairwiseunitarily non-equivalent: there is no unitary operatorU : HSk → HSh

such that Uπk(A)U−1 = πh(A) for every A ∈ RS when h �= k.

Proof As πk(Pk) = πk(I ) for I �= Pk , πk cannot be injective. A unitary operator U
intertwining πk and πh with k �= h cannot exist because it would satisfy

0h = πh(Pk) = Uπk(Pk)U
−1 = U IkU−1 = Ih ,

where 0h is the zero operator and Ih the identity onHh (Hh �= {0} since Ph �= 0). �

Remark 11.17 When superselection rules are presentR′
S ∩RS is not trivial, since it

contains the orthogonal projectors onto coherent sectors. A more difficult question is
the converse one: to decide whether superselection rules are present in caseR′

S ∩RS

is non-trivial. The point is to understand whether the centre ofLRS (HS) is atomic. If
not, the desired decomposition

∑
k Pk = I in terms of central atoms is not achievable.

However, in that case the Hilbert space HS can be written as a direct integral, and
one can talk about continuous superselection rules [Jau60, Giu00]. These have a
different nature, and will not be of our concern. (See also Remark 11.22 below.) �

Let us address states in presence of superselection rules.
To complete the description of superselection rules, Ss1 requires that the admis-

sible states in presence of superselection rules are those in the convex subset (7.61):

S(HS)adm := {ρ ∈ S(HS) | ρ Pk = Pkρ for any k ∈ K }.

The extreme elements of S(HS)adm identify naturally with elements of the sets
Sp(HSk), and hence define admissible pure states (7.57) in presence of superselec-
tion rules

Sp(HS)adm :=
⊔
k∈K

Sp(HSk) .

An alternative description employs σ -additive probability measures over
L (HS)adm = LRS (HS) (see (7.63)). These are maps

μ : L (H)adm → [0, 1] with μ(I ) = 1

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
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such that

μ

(
s-
+∞∑
i=0

Qi

)
=

+∞∑
i=0

μ(Qi ) for {Qi }i∈N ⊂ LRS (HS) with Qi ⊥ Q j if i �= j.

It turns out that both the space of admissible states S(HS)adm and the space of σ -
additive probability measures overL (H)adm are big enough to separate the elements
of L (H)adm (Propositions7.85 and 7.86). The space of measures is, vice versa,
separated by admissible propositions L (HS)adm (Proposition7.86).

Proposition7.87 establishes that the two descriptions of quantum states, via trace-
class operators or measures, are essentially equivalent also in the presence of super-
selection rules. Every state ρ ∈ S(HS)adm defines a unique associated σ -additive
probability measure: μ(P) := tr(ρ P) for every P ∈ LRS (HS). Conversely, if none
of theRSk is a type-I2 factor, for every σ -additive probabilitymeasure overLRS (HS)

there is at least one state ρ ∈ S(HS)adm satisfying the condition above.
There remains the problem that two statesρ, ρ ′ ∈ S(HS)adm may result physically

equivalent, as they determine the same probability measure on LRS (HS), that is
μ(P) = tr(Pρ) = tr(Pρ ′) for every P ∈ LRS (HS). In this respect the next
result is interesting: it relies on Proposition7.88 and has an important interplay with
Proposition11.12. It is a refinement of an analogous result established in [Jau60]
when the centre ofLRS (HS) is atomic.

Proposition 11.18 In presence of superselection rules, assume that R′
S is Abelian

(which happens, in particular, if RS contains a complete set of commuting observ-
ables). The following two facts hold.

(a) The subalgebra RSk associated to the superselection sector HSk , as in (11.5),
is a maximal factor: RSk = B(HSk) and the representation πk is irreducible. In
particular, RS is of type I .

(b) If two states ρ, ρ ′ ∈ S(HS)adm satisfy tr(Pρ) = tr(Pρ ′) for every P ∈
LRS (HS)adm, they must coincide: ρ = ρ ′.
If, conversely, R′

S is not Abelian, both (a) and (b) are false (but RS may still be of
type I ).

Proof (a) Consider an orthogonal projector P ∈ LRSk (HSk)
′ for some k ∈ K . Since

LRSk (HSk)
′′ = Rk we furthermore have P ∈ R′

k . Extending it to the null operator
on H⊥Sk we find an orthogonal projector inR

′
S , still denoted by P . In our hypotheses

R′
S ⊂ R′′

S = RS so thatR′
S = RS∩RS (this is the case in presence of a complete set

of commuting observables, by Proposition11.12). Therefore P ∈ R′
S ∩RS and, in

particular, P belongs to the centre of the latticeLRS (HS). More precisely, it belongs
to the centre of LRSk (HSk), which is trivial simply due to the superselection rule.
So, either P = 0 or P = Pk . We have obtained that LRSk (HSk)

′ = {0, Ik} where
Ik is the identity operator in HSk viewed as Hilbert space. Hence RSk = B(HSk)

(Proposition7.61(e)) and so LRSk (HSk) = L (HSk). Since Rs is the direct sum of
type-I factors, it has type I as well. Evidently πk is irreducible, because its image
coincides with the whole B(HSk) and by Proposition3.93.
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(b) Immediately descends from Proposition7.88.
Let us prove the last statement. Suppose that R′

S is not Abelian. By decomposing
every operator B ∈ R′

S as B = C + i D with C, D ∈ R′
S self-adjoint, we conclude

that there must exist an operator A ∈ R′
S that is self-adjoint but not of the form λI

(otherwise R′
S would be Abelian). Therefore U = eit A ∈ R′

S is not a pure phase
but it commutes with every observable, and in particular with every superselection
projector Pk . For some k ∈ K there must exist ψ ∈ HSk with unit norm such
that ψ ′ = Uψ �= eiaψ for every a ∈ R (otherwise U would be a pure phase).
Since U commutes with every observable, we have tr(Pρψ) = tr(Pρψ ′) for every
P ∈ B(HS)adm , and therefore (b) is violated. Notice that U restricted to HSk defines
a non-trivial unitary operator inR′

Sk , soRSk is strictly contained inB(HSk) and (a)
is false. �

Definition 11.19 If a given physical system S with algebra of observables RS is
subjected to superselection rules and R′

S Abelian, then the superselection rules are
said to be Abelian.

If a quantum system admits Abelian superselection rules, then the simplest versions
of axioms A1–A4 hold as soon as we restrict to a coherent sector HSk and the factor
RSk (not of type I2): all orthogonal projectors represent elementary observables, all
self-adjoint operators represent observables and states are correspond one-to-one to
probability measures on the lattice of elementary propositions.

11.2.2 Abelian Superselection Rules Induced by Central
Observables

In the exhaustive survey [Wigh95], Wightman conjectured that superselection rules
are associated to a set of pairwise compatible, physically meaningful observables
Q1, . . . , Qn , sometimes called superselection charges, whose spectral measures (as
well as any bounded Q j , if any) belong to the centre ofRS . It is also supposed that

σ(Q j ) = σp(Q j ) .

(What follows is however valid also in case σc(Q j ) �= ∅ for some j , provided

P
(Q j )

σc(Q j )
= 0, where P (Q j ) is the PVM of Q j .) As every Q j refers to a different

superselection rule, it is implicit that the different superselection rules are compatible
with one another, in the obvious sense. This comes from experimental evidence.

From this point of view the Hilbert space splits in an orthogonal sum of closed
subspaces HSk , k ∈ K , and every k is fixed by the values that all charges Q j simul-

taneously assume on HSk . In other words, if P
(Q j )
q j is the orthogonal projector of

Q j onto the q j -eigenspace, the family of central projectors {Pk}k∈K is the family of
spectral projectors

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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{
Pk(q1,...,qn) := P (Q1)

q1 · · · P (Qn)
qn

}
(q1,...,qn)∈σ(Q1)×···×σ(Qn)

,

where k ∈ K (⊂ N) labels bijectively n-tuples of values (q1, . . . , qn) ∈ σ(Q1) ×
· · · × σ(Qn). To obtain a fully fledged superselection rule, in view of Ss2, we have
to impose that the orthogonal projectors Pk are atoms of the centre ofLRS (HS) and
that Ss1 holds: the admissible states are those commuting with the Pk .

Example 11.20 The proton and the neutron can be viewed as two different pure
states of the so-called isotopic spin τ3, described by the self-adjoint operator

τ3 =
[
1 0
0 −1

]
(11.7)

on the Hilbert space C
2. This quantity is related to the electric charge observable Q

(here assumed normalised to ±1) under Q = 1
2 (τ3 + I ). Neutron states correspond

to eigenvalue −1 whereas proton states correspond to eigenvalue 1. In view of the
superselection rule of the electric charge, no coherent superposition of a proton state
and a neutron state is possible. In other words, in every admissible state the charge
must have a definite value. On the other hand, if we treat these particles as non-
relativistic particles, the superselection rule of the mass is present (see Sect. 12.3.4):
the mass observable M must have a definite value in every pure state. The Hilbert
space of the proton/neutron system must split into coherent sectors where the mass
and the charge of the system are defined simultaneously in every possible vector
state.

The full isotopic spin consists of further components τ1 and τ2 together with τ3.
These bounded, self-adjoint operators are described by the other Pauli matrices σ1

and σ2 (which are also used for the spin components of a particle with spin 1/2, see
later). The operators τi are defined on an internal Hilbert space isomorphic to C

2 but
different from the spin space. Within the isospin model of strong interactions, the
physical demand is that strong interactions (i.e. the part of the Hamiltonian operator
associatedwith the strong force) are invariant under the unitary group SU (2) spanned

by the τi : U (β1, β2, β3) = ei
∑3

j=1 β j τ j . However, as Q, that is τ3, is associated to
a superselection rule (τ3 belongs to the centre of RS), the remaining self-adjoint
operators τ1 and τ2 cannot live inRS nor inR′

S , since they do not commute with τ3 ∈
RS ∩R′

S . Of the three, in other words, only the self-adjoint operator τ3 corresponds
mathematically to an observable. �

The requirement that the orthogonal projectors P (Q1)
q1 · · · P (Qn)

qn
generating the joint

spectral measure of the Q j are atoms of the centre of LRS (HS) is equivalent to the
demand that every bounded, central observable must be a function of Q1, . . . , Qn in
the sense of Eq. (11.3):

{Q1, . . . , Qn}′′ = RS ∩R′
S .

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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(As usual {Q1, . . . , Qn}′ is defined as the commutant of the spectral measures of
all the Q j if one of them is not bounded, cf. Definition9.22.) We have indeed the
following result.

Proposition 11.21 Let RS be the von Neumann algebra of a quantum system S
described on the separable Hilbert space HS. Consider n observables Q1, . . . , Qn

such that, for j = 1, . . . , n,
(i) the spectral measure P (Q j ) belongs to the centre of RS,
(ii) σ(Q j ) = σp(Q j ).

If P
(Q j )
q j is the orthogonal projector onto the q j -eigenspace of Q j , the following facts

are equivalent.
(a) The orthogonal projectors P (Q1)

q1 · · · P (Qn)
qn

with (q1, . . . , qn) ∈ σ(Q1) × · · · ×
σ(Qn) are atoms of the centre of LRS (HS).
(b) Every observable A ∈ RS ∩R′

S is a function of Q1, . . . , Qn as in (11.3).
If the above facts hold and A is a (typically unbounded) observable with spectral
measure P (A) in ∈ RS ∩R′

S, then

P (A)

σc(A) = 0 .

In particular, the interior of σc(A) must be empty.

Proof (a)⇒ (b). Assume that (a) is valid. If A is a self-adjoint operator in RS we
must have AP (Q1)

q1 · · · P (Qn)
qn

= P (Q1)
q1 · · · P (Qn)

qn
A because P (Q1)

q1 · · · P (Qn)
qn

belongs to
the centre of RS . Consequently:

A(q1,...,qn):=A�H(q1 ,...,qn )
: H(q1,...,qn) → H(q1,...,qn)

is a bounded self-adjoint operator on the common eigenspaceH(q1,...,qn) of Q1, . . . Qn

with eigenvalues (q1, . . . , qn), viewed as Hilbert space. Suppose by contradiction

A(q1,...,qn) �= r I(q1,...,qn)

for every r ∈ R (I(q1,...,qn) is the identity operator on H(q1,...,qn)). Then the spectral
measure of A(q1,...,qn) would contain some non-trivial projector P �= 0, I(q1,...,qn).
Extending P to the null operator over H⊥(q1,...,qn) would generate a central orthogonal
projector P such that 0 < P < P (Q1)

q1 · · · P (Qn)
qn

, because P commutes with every
operator commuting with A and A is in the centre of RS . This is incompatible with
the hypothesis that P (Q1)

q1 · · · P (Qn)
qn

is a central atom ofLRS (HS). Therefore

A(q1,...,qn) = r(q1, . . . , qn)I(q1,...,qn) for some real number r(q1, . . . , qn).

In other words (in strong sense)

A =
∑

(q1,...,qn)∈σ(Q1)×···×σ(Qn)

r(q1, . . . , qn)P (Q1)
q1 · · · P (Qn)

qn

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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which is (11.3) specialised to our case.Hence (b) holds. (Sinceσp(Q1)×· · ·×σp(Qn)

is a countable subset of R
n , as HS is separable, it easy to prove that every map

r : σp(Q1) × · · · × σp(Qn) → R extended as zero on the rest of R
n is Borel-

measurable.)
Next, we claim that if (a) fails, then (b) fails. For that we notice preliminarily that

any observable in RS ∩R′
S that is function of Q1, . . . , Qn has the form (in strong

sense)

f (Q1, . . . , Qn) =
∑

(q1,...,qn)∈σ(Q1)×···×σ(Qn)

f (q1, . . . , qn)P (Q1)
q1 · · · P (Qn)

qn
, (11.8)

for some bounded function f : σ(Q1) × · · · × σ(Qn) → R. As a consequence,
the operator f (Q1, . . . , Qn) is the identity up to a constant factor (the eigenvalue
f (q1, . . . , qn)) over eachH(q1,...,qn). If P (Q1)

q1 · · · P (Qn)
qn

were not an atom of the centre
ofLRS (HS), for fixed (q1, . . . , qn), there would be a central orthogonal projector Q
with 0 < Q < P (Q1)

q1 · · · P (Qn)
qn

. This would be a central observable different from a
constant multiple of the identity on H(q1,...,qn), so it could not possibly be a function
of Q1, . . . , Qn . This proves that (a) false⇒ (b) false.

The last statement is easy. Since (Proposition11.5) A is the strong limit on D(A)

of An := AP (A)

(−n,n] and each observable An is bounded, belongs to RS ∩ R′
S , and

σc(A) = ∪n∈Nσc(An) up to the zero value, it is enough to prove the claim for
A ∈ RS∩R′

S . From (11.8) every such A (whichweknow is a function of Q1, . . . , Qn)
admits every common eigenvector of Q1, . . . , Qn as eigenvector. Fixing a Hilbert
basis (of common eigenvectors) in everyH(q1,...,qn) we have an overall Hilbert basis of
HK made of eigenvectors of A. This is equivalent to saying that I = s-

∑
a∈σp(A) P (A)

{a} ,
where P (A)

{a} is the orthogonal projector onto the a-eigenspace. From (i) in the spectral

Theorem8.56(b) we know that P (A)
{a} is also the projector of the PVM of A associated

with the Borel set {a}. Since these sets are pairwise disjoint when a ∈ σp(A), we
have:

P (A)

σp(A) = s-
∑

a∈σp(A)

P (A)
{a} = I . (11.9)

But σc(A) ∩ σp(A) = ∅ ⇒ 0 = P (A)

σc(A) P (A)

σp(A), so (11.9) forces 0 = P (A)

σc(A).

If (a, b) ⊂ σc(A), by (ii) in the spectral Theorem8.56(b), P (A)

(a,b) �= 0. But that is

impossible since P (A)

(a,b) ≤ P (A)

σc(A) = 0. �

The superselection rules induced by the central observables Q1, . . . , Qn give rise
to the usual factor decomposition (11.5). Each sector HSk carries a corresponding
representation πk of the algebra RS of observables of the system. The fact that
different representations πk are unitarily inequivalent can now be proved by looking
at the superselection charges. For k �= h, there is no Hilbert space isomorphism (i.e.,
unitary operator) U : HSk → HSh with

Uπk(A)U−1 = πh(A) ∀A ∈ RS .

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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This is because πk(Q j ) = q jk Ik and the sets (q1k, . . . , q jk) are different for different
k by hypothesis, so that every such U would produce the contradiction:

Uπk(Q j )U
−1 = q jkU IkU−1 = q jk Ih �= q jh Ih = πh(Q j ) for some j = 1, 2, . . . , n.

As we already know in the general case, the representations πk cannot be faithful
because πk(Q j − q jk I ) = 0, albeit Q j − q jk I �= 0 for some j , otherwise the centre
RS ∩R′

S would be trivial and no superselection rule would occur. If, finally, R′
S is

Abelian, the representations πk are also irreducible, as proved in Proposition11.18,
since their images are the whole spaces B(HSk).

In summary: if the superselection rules are Abelian, the πk are non-faithful, irre-
ducible and unitarily inequivalent representations of the type-I vonNeumann algebra
of observables RS , labelled by the set of eigenvalues of the superselection charges
Q j . Notice that the charges Q j generate the fullR′

S , for this coincides with the centre
RS ∩R′

S in the case at hand.
We shall return to these issues in Sect. 14.1.7, when we compare this description

of the superselection rules with the one arising from the algebraic formulation of
quantum theories.

Remarks 11.22 (1) It is worth stressing that Wightman’s hypothesis on Abelian
superselection rules cannot be the general way to select admissible states and admis-
sible observables. In non-Abelian gauge theories, like quantum chromodynamics,
the commutant of the algebra of observables is not Abelian. This is evident from the
fact that every admissible observablemust be invariant under a non-Abelian (unitary)
gauge (Lie) group. It is not possible to define simultaneously the self-adjoint gener-
ators of the corresponding Lie algebra because these do not commute by hypothesis.
Hence these self-adjoint operators do not represent central observables (it is even dis-
putable whether they all represent observables, if truth be told), nor is the selection
of admissible states and observables a consequence of Wightman’s superselection
rule in this setting. We remark that, in agreement with Proposition11.12, quantum
chromodynamics and other non-Abelian gauge theories cannot admit any complete
set of commuting observables, nor is it possible, in these theories, to prepare a state
represented by a vector (up to phases) by a sequence of measurements.
(2) It has been conjecturedmore than once that quantities with classical behaviour are
actually quantumobservableswhose spectral projectors describe superselection rules
[BGJKS00], i.e. superselection charges. From this perspective certain superselection
rules are dynamical and arise from the interaction between the physical system and
the ambient, thereby producing the phenomenon called decoherence [BGJKS00].
(3) Theoretically speaking, the picture in which superselection rules are associated
to central observables with only point spectrum is completely general, and applies
to all quantum systems affected by superselection rules. Indeed, if a physical system
admits superselection rules defined by the central family {Pk}k∈K satisfying the usual
properties (i)–(iv) on the separable Hilbert space HS , it is always possible to define
a central observable Q inducing the family {Pk}k∈K . It suffices to relabel the family
by N ⊂ N (the whole N if K is infinite) and define

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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Q := s-
∑
n∈N

n Pn .

Obviously σ(Q) = σp(Q) = N .
(4) In view of (3) and the last statement in Proposition11.21, if the centre of
the von Neumann algebra of observables RS contains at least one observable
A with P (A)

σc(A) �= 0 (in particular σc(A) contains an interval), no superselection
rules are allowed. However, it would still be possible to understand the structure
of RS (and the convex set of states) in terms of continuous superselection rules
(Remark11.17). �

11.2.3 Non-Abelian Superselection Rules and the Gauge
Group

Given a physical system S described on the (separable) Hilbert space HS with von
Neumann algebra of observables RS , either in presence of superselection rules or
not, R′

S may or not be Abelian. It is non-Abelian if and only if R′
S is larger that the

centre of RS . In this case, and if we restrict to one superselection sector HSk , not
every orthogonal projector represents an elementary proposition, and not each self-
adjoint operator corresponds mathematically to an observable. Therefore we are led
to conclude that there exist further constraints on the nature of physical observables,
besides the commutation with the central projectors Pk describing superselection
rules, since the elements of RS are supposed to commute with all elements in R′

S
and not only the central elements. It may happen that the centre of RS is trivial, so
that no superselection (described by central projectors) takes place, yet R′

S is non-
trivial. In the remaining part of the section we shall consider the generic case, where
RS has a non-trivial centre and R′

S is not Abelian.
In relation to the noncommutativity ofR′

S , Jauch and Misra [JaMi61] studied the
interplay between superselection rules and gauge symmetries.3

Definition 11.23 Given a physical system S described on theHilbert spaceHS �= {0}
with von Neumann algebra of observables RS , a gauge symmetry (also known as
a gauge transformation) is a unitary operator on HS that commutes with every
element ofRS . These unitary operators form a unitary group called the gauge group
which is a subset of R′

S called, in turn, gauge algebra.

Evidently, the interesting case is that in which the gauge group and the gauge algebra
are not Abelian.

Remark 11.24 (1) It should be clear that a densely-defined closed operator A :
D(A) → HS commutes with every element of the gauge group if and only if it is
affiliated to RS . In particular, A ∈ B(HS) commutes with every gauge symmetry if
and only if A ∈ RS .

3called supersymmetries in their paper.
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(2)Westress thatwe canhave a non-Abelian gaugegroup in absence of superselection
rules. �

If U belongs to the gauge group of RS , U is unitary and so it admits a spectral
decomposition and an associated PVM P (U ) in fulfilment of Theorem8.56. Every
orthogonal projector P (U )

E must commute with every bounded operator commuting
with U , therefore P (U )

E ∈ R′
S and the closed subspaces H(U )

E := P (U )
E (HS) are

invariant under every element of RS . In case U does not belong to the centre of
RS we therefore have further RS-invariant subspaces, in addition to the possible
coherent sectors. If the spectrum of U is a point spectrum, we have a direct Hilbert
decomposition of HS into eigenspaces of U : this decomposition is invariant under
RS , exactly as the decomposition into coherent sectors, but it does not coincide with
it. Finally, if there is another gauge transformation U ′ that does not commute with
U , it gives rise to its own decomposition of HS , different from that of U . So some
of the features of superselection rules linger in the presence of a non-Abelian gauge
group, even if the centre of RS is trivial. For this reason one sometimes says that
non-Abelian superselection rules are present if the gauge group is non-Abelian.
Referring to Non-Abelian Gauge Field Theories, this is the case for the so-called
global gauge transformations acting on the physical Hilbert space (after all non-
physical states with “non-positive norm"have been removed by the gauge-fixing
procedures) [BNS91].

Due to Proposition11.12, however, the existence of a complete set of commuting
observables implies that the gauge group is Abelian. Said otherwise, a non-Abelian
gauge group prevents the existence of complete sets of commuting observables.
This happens for instance in quantum chromodynamics, where the gauge group of
quarks, called internal colour gauge symmetry, is isomorphic to SU (3). Remark
13.45 will address another example of an algebra of observables admitting a non-
Abelian gauge group, in relation to quantum systems made of identical subsystems
(see also Remark13.47 and the end of Sect. 13.4.8).

What is the general structure of RS? First of all we have to focus on the centre
RS ∩R′

S of RS , and check whether it is trivial or not. In view of Proposition11.18
there are two instances of the utmost physical interest.

(A) RS ∩ R′
S is non-trivial (with atomic associated lattice) and R′

S is Abelian.
Then superselection rules occur and RS splits in a direct sum of factors RSk . As
R′

S is Abelian this is the end of the story, since RSk = B(HSk) and RS is of type
I . Consequently, the representations πk of RS on each sector HSk are not faithful,
irreducible and unitarily inequivalent (Remark 11.22(3)). Bounded observables cor-
respond exactly to self-adjoint operators in

∨
k∈K B(HSk). This is the same as saying

that observables (even unbounded ones) exhaust the self-adjoint operators affiliated
to that von Neumann algebra.

In this situation, describing quantum states in terms of trace-class operators in
S(HS)adm is physically sound, because elementary propositions separate these oper-
ators. An equivalent description (up to the issues with type-I2 factors) is the one in
terms of probability measures onBRS (HS).

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_13
http://dx.doi.org/10.1007/978-3-319-70706-8_13
http://dx.doi.org/10.1007/978-3-319-70706-8_13
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(B) RS ∩ R′
S is non-trivial (with atomic and central associated lattice) and R′

S
is non-Abelian. Additional constraints on the observables are present, so RSk �=
B(HSk ) for some k ∈ K . Since RS ∩ R′

S = R′′
S ∩ R′

S , the centre of RS coincides
with the centre of R′

S . Having assumed the lattice is atomic, also R′
S is a direct

sum of factors (R′)Sk ⊂ B(HSk). It is easy to see that (R′)Sk = (RSk)
′ =: R′

Sk
for every k ∈ K . Hence the observables pertinent to each sector are constrained to
commute with every element of R′

Sk . Each sector HSk is therefore associated with
a pair of, generally non-trivial, factors RSk,R

′
Sk (which satisfy, in particular: (a)

(R′
Sk)

′ = RSk , (b) RSk ∧ R′
Sk = {cI }c∈C and (c) RSk ∨ R′

Sk = B(HSk)). Each
sector HSk has its own gauge group and at least one of them is not Abelian. The
representations πk ofRS on each sector HSk are not faithful nor unitarily equivalent,
and some representations are reducible. When its centre is not trivial, the factorRSk

may or not be of type I , and there is no complete set of commuting observables.
The overall von Neumann algebra of observables is

∨
k∈K RSk , with commutant∨

k∈K R′
Sk .

In this situation, a description of quantum states in terms of trace-class operators
on S(HS)adm turns out to be redundant, because elementary propositions do not
separate operators of this kind. Probability measures on BRS (HS) work better. In
particular, pure states cannot be faithfully described by unit vectors (up to phase),
and furthermore it is not possible to prepare the state of the system in a vector state
by measuring a family of compatible observables with pure point spectrum.

There are threemainways, at least, to describe the physical properties of a quantum
system in terms of the non-Abelian commutant of the von Neumann algebra of
observables.

1. Elementary systems (particles) with non-Abelian internal gauge symmetry. This
is the case of quarks and other hadrons. The Hilbert space representing a single
sector of the Abelian superselection rules affecting the system (e.g., the electric
charge) is a product H ⊗ HG . While HG is isomorphic to C

n for some n ≥ 3
and carries an irreducible representation of SU (3) (the colour group SU (3)),
H supports an irreducible representation of the (universal covering of the proper
orthochronous) Poincaré groupwith positive energy andmass, and definite spin s.
The bounded observables are the elements in the von Neumann algebra generated
by the representation of the Poincaré group, hence they are of the form A⊗ I for
every self-adjoint operator A ∈ B(H). AsH is isomorphic to L2(R3, dk)⊗C

2s+1,
the algebra of observables R is a type-I∞ factor. Instead R′, which is made of
operators I ⊗ B with B ∈ B(Cn), is a factor of type In .

2. Infinitely extended thermodynamical systems at finite (non-zero) temperature.
These systems may be studied as thermodynamical limits of localised systems
(e.g. systems defined on increasingly large lattices), or as genuinely infinitely
extended systems like quantum fields in Minkowski or curved spacetime (for
instance represented by a Weyl C∗-algebra via the GNS construction associ-
ated to a KMS state, see Chap.14). The von Neumann algebra of observables is
reducible (as required by the very KMS condition), but under suitable hypotheses

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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– corresponding to a pure phase state – it is a type-III factor [Emc72, Haa96,
ReSu07].

3. A von Neumann algebra of observables R(O) localised on a bounded causally-
complete region O in spacetime for a quantum field in Minkowski space-
time within the so-called Haag–Kastler formulation [Emc72, Haa96, Rob04,
ReSu07]. Here R(O)′ is made of the observables localised on the causal com-
pletion of O and is a highly non-trivial von Neumann algebra. In general R(O)′
is not a factor, but a type-I I I von Neumann algebra.

11.3 Miscellanea on the Notion of Observable

This section focuses on some features of either practical or theoretical nature regard-
ing observables.

11.3.1 Mean Value and Standard Deviation

Proposition7.52 enables us to associate to any pair “observable–state”, A, ρ, a prob-
ability measure on R, μ(A)

ρ : E �→ tr(ρ P (A)(E)) with E ∈ B(R) (coinciding with

μ
(A)
ψ = (ψ |P (A)(E)ψ), cf. Theorem8.52(c), if ρ is pure and determined by the unit

vector ψ ∈ H). By construction supp(μ(A)
ρ ) ⊂ σ(A). Since by definition μ(A)

ρ (E)

is the probability that the measurement of A belongs to E , in the state ρ, it makes
sense to define the mean value and the standard deviation of A in the state ρ.

Definition 11.25 Let A be an observable of the physical system S described on the
Hilbert spaceHS , ρ ∈ S(HS) a state of S andμ(A)

ρ the probabilitymeasure associated
to ρ and A as above. Themean value of An , n = 1, 2, . . . , is

〈An〉ρ :=
∫
R

λn dμ(A)
ρ (λ) , when R  λ �→ λnis in L1(R, μ(A)

ρ ). (11.10)

The standard deviation of A in state ρ is

Aρ :=
√∫

R

(
λ− 〈A〉ρ

)2
dμ

(A)
ρ (λ), when R  λ �→ λ2is in L1(R, μ(A)

ρ ),

(11.11)
The mean value of An (or the standard deviation) does not exists for ρ in case
expression (11.10) (or (11.11)) cannot be made sense of.

Remark 11.26 If the map λn belongs to L1(R, μ(A)
ρ ) then also λk does, for any

k = 1, 2, . . . , n − 1, because μ(A)
ρ is finite. Therefore if 〈An〉ρ exists, so does 〈Ak〉ρ

(and Aρ if n ≥ 2) for any k = 1, 2, . . . , n − 1. �

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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The properties of Example 7.53 generalise as follows.

Proposition 11.27 Let A be an observable for a system described on the separable
Hilbert space HS, and take ρψ := ψ(ψ |·) ∈ Sp(HS) associated to ψ ∈ HS with
||ψ || = 1 and ρ ∈ S(HS).
(a) (i) 〈A〉ρψ

exists ⇔ ψ ∈ D(|A|1/2), and Aρψ
exists ⇔ ψ ∈ D(A).

(ii) If ψ ∈ D(A) then 〈A〉ρψ
exists, and:

〈A〉ρψ
= (ψ |Aψ) , (11.12)

(iii) If ψ ∈ D(A2) then 〈A〉ρψ
and Aρψ

exist, Eq. (11.12) holds, and:

A2
ρψ
= (ψ ∣∣(A − 〈A〉ψ I )2 ψ

) = (ψ |A2ψ)− (ψ |Aψ)2 . (11.13)

(b) (i) 〈A〉ρ exists ⇔ Ran(ρ1/2) ⊂ D(|A|1/2) and |A|1/2ρ1/2 ∈ B2(H).
(ii) Aρ exists (equivalently 〈A2〉ρ exists) ⇔ Ran(ρ1/2) ⊂ D(A) and Aρ1/2 ∈

B2(H).
(iii) If 〈A2〉ρ exists, then Aρ ∈ B1(HS) and:

〈A〉ρ = tr(Aρ) . (11.14)

(iv) If 〈A4〉ρ exists, then Aρ ∈ B1(HS), Eq. (11.14) holds, (A − 〈A〉ρ I )2ρ ∈
B1(HS) and:

A2
ρ = tr

(
(A − 〈A〉ρ I )2ρ

) = tr(A2ρ)− tr(Aρ)2 . (11.15)

Proof (a) We have tr(ρψ P (A)(E)) = (ψ |P (A)(E)ψ) = μ
(A)
ψ (E). Therefore asking

that R  λ �→ λ and R  λ �→ λ2 belong in L1(R, μ(A)
ρψ

) is respectively equivalent

to ψ ∈ D(|A|1/2) and ψ ∈ D(A), by Definition9.14. By definition, and using
Theorem9.4(e, f) for the standard deviation:

〈A〉ρψ
=
∫
R

λdμ
(A)
ψ (λ), (11.16)

A2
ρψ
=
(

Aψ −
(∫

R

λdμ
(A)
ψ (λ)

)
ψ

∣∣∣∣Aψ −
(∫

R

λdμ
(A)
ψ (λ)

)
ψ

)
.(11.17)

Using Theorem9.4(e) these imply (11.12) and (11.13) if ψ ∈ D(A)(⊂ D(|A|1/2))
and ψ ∈ D(A2)(⊂ D(A)), respectively.
(b) Let {ψn}n∈N be a basis of HS (separable). Then μ(A)

ρ (E) = tr(ρ P (A)(E)) =
tr(ρ1/2P (A)(E)ρ1/2) =∑+∞

n=0(ρ1/2ψn|P (A)(E)ρ1/2ψn) =∑+∞
n=0 μ

(A)

ρ1/2ψ
(E), for any

Borel set E ∈ B(R), where we used ρ1/2 ∈ B2(HS) (as B1(H)  ρ ≥ 0) and
Proposition4.38(c). If f : R → C is measurable, then,

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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∫
R

| f (λ)|dμ(A)
ρ (λ) =

+∞∑
n=0

∫
R

| f (λ)|dμ
(A)

ρ1/2ψn
(λ) ≤ +∞ . (11.18)

Moreover, if the right-hand side in (11.18) (so also the left side) is finite, then:

∫
R

f (λ)dμ(A)
ρ (λ) =

+∞∑
n=0

∫
R

f (λ)dμ
(A)

ρ1/2ψn
(λ) ∈ C . (11.19)

In fact, μ(A)
ρ (E) = ∑+∞

n=0 μ
(A)

ρ1/2ψ
(E) implies that (11.18) is trivially true if | f | = s

is a simple non-negative map. For any Borel-measurable function g ≥ 0 there is a
simple sequence 0 ≤ s0 ≤ s1 ≤ · · · ≤ sn → g (Proposition7.49). By monotone
convergence on the single integrals and on the counting measure of N we obtain
(11.18), with | f | replaced by an arbitrary g ≥ 0. If f is real-valued, and in (11.18)
we have < +∞, decomposing f in its positive and negative parts f = f+ − f−,
0 ≤ f+, f− ≤ | f |, gives (11.19) by linearity. If f is complex-valued the argument is
similar, we just work with real and imaginary parts separately. Now, 〈 f (A)〉ρ exists
precisely when the left-hand side in (11.18) is finite. In turn, this is the same as saying
every summand on the right is finite and the sum is finite. The generic term is finite if
and only if ρ1/2ψn ∈ D(| f (A)|1/2) by definition of D(g(A)) (Definition9.14). Since
ψn is an arbitrary unit vector inH, Ran(ρ1/2) ⊂ D(| f (A)|1/2). Every integral on the
right in (11.18) can be written as (see Theorem9.4(f)) ||| f (A)|1/2ρ1/2ψn||2, where
| f (A)|1/2ρ1/2 ∈ B(HS) by Proposition5.7. By Definition4.2.4 we conclude that the
left-hand side (11.18) is finite iff | f (A)|1/2ρ1/2 ∈ B2(HS). Choose f (λ) = λ, so (i)
in (b) holds, then choose f (λ) = λ2 to obtain (ii) in (b), because λ2 integrable in
μ(A)

ρ implies λ integrable, plus D(A) = D(|A|). To prove (iii) assume 〈A2〉ρ exists
(so also 〈A〉ρ exists), and notice that Ran(ρ) ⊂ D(A) from Ran(ρ1/2) ⊂ D(A),
since ρ = ρ1/2ρ1/2 ⇒ Ran(ρ1/2) ⊃ ran(ρ). Applying (11.19) to f (λ) = λ and
recalling Theorem9.4(e) we find:

〈A〉ρ =
∑
n∈N

(ρ1/2ψn|Aρ1/2ψn) =
∑
n∈N

(ψn|ρ1/2 Aρ1/2ψn) = tr(ρ1/2 Aρ1/2) ,

where we used ρ1/2, Aρ1/2 ∈ B2(H2), so their product (in any order) is of trace
class. Since the trace is invariant under cyclic permutations (Proposition4.38(c))
we have 〈A〉ρ = tr(Aρ1/2ρ1/2) = tr(Aρ), concluding (iii). The proof of (iv) is
similar: replace A with A2 and observe that if 〈A4〉ρ exists, so does 〈A2〉ρ , and (iii)
holds. The second identity in (11.15) now follows from the first by obvious algebraic
manipulations. �

Remark 11.28 The right-hand sides of (11.14) and (11.15) ((11.12) and (11.13) for
pure states) are not the definitions of mean value and standard deviation. These are
given, in general, by (11.10) and (11.11), independently from Proposition11.27. �
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11.3.2 An Open Problem: What is the Meaning of
f (A1, . . . , An) if A1, . . . , An are Not Pairwise
Compatible?

The interpretation, both mathematical and physical, of certain formal objects that
appear in textbooks has been deliberately swept under the carpet, until now.We have
in mind particular expressions of the sort f (A1, . . . , An), for a real-valued function
f and a set of observables A1, . . . , An that are not pairwise compatible. Expressions
of this kind have great relevance in physics: think of the Hamiltonian operator of
the electron in the hydrogen atom. i.e. P2

2m + V (x). Here the two summands are
incompatible observables. Even von Neumann tackled the issue in his celebrated
book on theoretical foundations of QM without reaching a conclusive answer. Here
we shall just introduce the physical side of the problem, without finding a solution
to it. The mathematics will be discussed briefly in one case of physical relevance in
Sect. 11.5.8.

Even the physical meaning of f (A1, . . . , An) is dubious, since the observables
A1, . . . , An cannot be measured simultaneously. If we were able to measure a bunch
of observables simultaneously, f (A1, . . . , An) would clearly be the observable that
is measured by evaluating f on the simultaneous readings of the Ak . This physical
interpretation for compatible observables agrees with the mathematical definition of
f (A1, . . . , An) given by (11.3). Not all is lost though, for in certain cases something
can be said for incompatible observables, too. Consider:

S := f (A1, . . . , An) = a1A1 + · · · + an An

for some real coefficients ak . Suppose that S is (essentially) self-adjoint on some
dense domain D common to all operators Ak . Recalling the definition of mean
value, we can think of the observable S as the only observable that satisfies:

〈S〉ρψ
= a1〈A1〉ρψ

+ · · · + an〈An〉ρψ
for every unit vector ψ ∈ D .

(The interpretation can be extended to include mixed states.) The point is that to
check the relation above it is not necessary to measure A1, . . . , An simultaneously.
It is enough to measure them separately on a corresponding statistical ensemble
of identical physical systems, when the physical systems of the various statistical
ensembles are all prepared in the pure state ρψ . The advantage of this proposal is
that it holds also when A1, . . . , An are pairwise incompatible. Its drawback is that it
will not work for more complicated functions f , though it sometimes suggests other
remarkable interpretations. First of all, even if A1, . . . , An are pairwise incompatible,
the observable (a1A1+· · ·+an An)

k is well defined and has a clear physical meaning
whenever a1A1 + · · · + an An is defined as above. But more interestingly, we take
inspiration from the real function
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f (a, b) = ab = 1

2

(
(a + b)2 − a2 − b2

)

where a, b ∈ R, and define:

f (A, B) := 1

2

(
(A + B)2 − A2 − B2) , (11.20)

when A and B are incompatible. In principle, the right-hand side has a clear physical
interpretation relying upon the iteration of the mean-value interpretation presented
above. Life, however, is not that easy. Indeed, if we forget that meaning for the
moment, the right-hand side in (11.20) can equivalently be rewritten as:

1

2
(AB + B A) .

Unfortunately, this operator is only Hermitian and not (essentially) self-adjoint in
general, when A and B are self-adjoint but not bounded (more or less the standard in
QuantumMechanics). Therefore the initial, simplistic physical interpretation cannot
always be supported by the mathematics we have developed. Every case has to be
investigated separately, for instance by choosing some essential self-adjoint exten-
sion of the Hermitian operator at hand, constructed as a function of incompatible
observables.

11.3.3 The Notion of Jordan Algebra

From a completely theoretical point of view, it is worth noticing that (11.20) can
be understood as a Jordan product, when A and B are elements of the algebra of
bounded operators B(H):

A ◦ B := 1

2
(AB + B A) . (11.21)

Domains cause no trouble, and A ◦ B is self-adjoint if A and B are self-adjoint. The
Jordan product is commutative:

A ◦ B = B ◦ A for all A, B ∈ B(H) (11.22)

but not associative. On the contrary it satisfies:

(A ◦ B) ◦ (A ◦ A) = A ◦ (B ◦ (A ◦ B)) for all A, B ∈ B(H). (11.23)

As a consequence of latter two, it can be proved that a weak form of associativity
holds, for powers of a fixed element. Hence A ◦ A ◦ · · · ◦ A is well defined.
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Definition 11.29 A vector space A (over C or R) equipped with an operation ◦ :
A× A → A that is bilinear, distributive with respect to the product by scalars, and
satisfies (11.22) and (11.23), is called a (complex or real) Jordan algebra.

A Jordan algebra is said to be special if it is constructed out of an associative algebra
by defining the Jordan product as in (11.21), making use of the product in the algebra
itself. So, in particular,B(H) is a complex special Jordan algebra. Similarly, the real
algebra of bounded self-adjoint operators in B(H) generates a corresponding real
special Jordan algebra. More generally, ifRS ⊂ B(HS) is the von Neumann algebra
of observables of a physical system, the class of self-adjoint operators of RS form
a real special Jordan algebra when equipped with the natural structure induced by
B(HS). Sometimes it is convenient to develop the quantum theory on S by referring
directly to this Jordan algebra instead of the whole RS .

The notion of real special Jordan algebra plays an important role in the attempts
of several authors, especially I. Segal and G.G. Emch [Emc72, Str05a], to justify
physically the algebraic formulation of quantum theories that we will introduce in
the last chapter.

11.4 Axiom A5: Non-relativistic Elementary Systems

In order to move farther into the mathematical formulation of QM we need to set
axioms about special elementary systems. These correspond to the particles of the
non-relativistic theory. In other terms, the group of transformations under which the
theory is invariant is the Galilean group, not the Poincaré group.Wewill return to this
point later. In physics this description is adequate until speeds do not reach the order
of the speed of light (about 300.000km/s). However certain mathematical concepts,
like the Weyl ∗-algebra introduced in the forthcoming non-relativistic description,
are significant in a wider context. They are employed in relativistic regimes as well,
in formulations of Quantum Field Theory that we will not discuss.

In elementary formulations of quantum theories, complex systems are built by
composing elementary systems via the Hilbert tensor product, as we shall see when
we study compound systems.

The simplest elementary system in non-relativistic QM consists in a quantum
particle of mass m > 0 and spin 0. The next axiom holds in this system.
A5. Consider an inertial frame system I with orthonormal Cartesian coordinates
x1, x2, x3 on the rest space of the frame. A non-relativistic particle of mass m > 0
and spin 0 is described as follows.
(a) The system’s Hilbert space is H = L2(R3, dx), where R

3 is identified with the
rest space of I under the coordinates x1, x2, x3, and dx is the ordinary Lebesgue
measure on R

3.
(b) The three observables associated to x1, x2, x3 are self-adjoint operators, called
position operators:
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(Xiψ)(x1, x2, x3) = xiψ(x1, x2, x3) , (11.24)

i = 1, 2, 3, with domains:

D(Xi ) :=
{
ψ ∈ L2(R3, dx)

∣∣∣∣
∫
R3

|xiψ(x1, x2, x3)|2 dx < +∞
}

.

(c) The three observables associated to the momentum components p1, p2, p3 inI
are self-adjoint operators, called momentum operators:

Pk = −i�
∂

∂xk
, (11.25)

k = 1, 2, 3,where the operator on the right is the closure of the essentially self-adjoint
differential operator:

−i�
∂

∂xk
: S (R3) → L2(R3, dx)

and S (R3) is the Schwartz space on R
3 (see Sect. 3.7).

Vectors (normalised to 1) of L2(R3, dx) associated to a particle are called its
wavefunctions in physics’ literature. Wavefunctions determine (not uniquely, owing
to arbitrary numerical factors) the particle’s pure states.

Remarks 11.30 (1) The discussion of Sect. 5.3 explains that the same notions can
be given if we define D(Xi ) using ψ ∈ D(R3) or ψ ∈ S (R3), instead of ψ ∈
L2(R3, dx). In either case one has to take the unique self-adjoint extension of the
operator on D(R3) or S (R3).
(2) Pi may be defined equivalently by (see Definition 5.27, Proposition5.29 and the
ensuing discussion):

(Pi f )(x) = −i�w-
∂

∂xi
f (x), (11.26)

D(Pi ) :=
{

f ∈ L2(R3, dx)

∣∣∣∣ w-
∂

∂xi
f ∈ L2(R3, dx)exists

}
.

As usual w- ∂
∂xi

denotes the weak derivative. The study of Sect. 5.3 also shows that Pi

(see Proposition5.29) can be defined, equivalently, substituting the Schwartz space
with D(R3) and taking the unique self-adjoint extension of the operator obtained,
which is still essentially self-adjoint.
(3)Let Ki denote the i th position operator on the codomain of the Fourier–Plancherel
transform F̂ : L2(R3, dx) → L2(R3, dk), see Sect. 3.7. Then Proposition5.31 gives

Pi = � F̂−1KiF̂ ,

an alternative definition of momentum.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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(4) From Sect. 9.1.5 we know

σ(Xi ) = σc(Xi ) = R , σ (Pi ) = σc(Pi ) = R i = 1, 2, 3. (11.27)

�

11.4.1 The Canonical Commutation Relations (CCRs)

The definition of position and momentum is such that there exist invariant spaces
H0 ⊂ L2(R3, dx) for all six observables, despite the latter’s domains are different:
Xi (H0) ⊂ H0 and Pi (H0) ⊂ H0, i = 1, 2, 3. One instance is the Schwartz space
H0 = S (R3), whose invariance is immediate, by definition. OnS (R3) a direct com-
putation that uses (11.24) and (11.25) yields Heisenberg’s canonical commutation
relations (CCRs) :

[Xi , Pj ] = i�δi j I ,

where δi j = 0 for i �= j and δi j = 1 for i = j . More precisely

Lemma 11.31 The operators position Xi and momentum Pj , i, j = 1, 2, 3, defined
in A5, obey Heisenberg’s commutation relations:

[Xi , Pj ]ψ = i�δi jψ for every ψ ∈ D(Xi Pj ) ∩ D(Pj Xi ), i, j = 1, 2, 3 . (11.28)

Equations (11.28) do not change when we replace Xi with X ′
i := Xi + ai I and Pj

with P ′
j := Pj + b j I , for any constants ai , b j ∈ R.

Proof A straightforward computation shows D(X ′
i P ′

j ) ∩ D(P ′
j X ′

i ) = D(Xi Pj ) ∩
D(Pj Xi ). On ϕ ∈ D(R3), the operator P ′

j acts as −i�∂/∂x j + b j I by construction.
Since X ′

i multiplies by the shifted coordinate xi +ai , we obtain P ′
j X ′

iϕ = −i�δi jϕ+
X ′

i P ′
jϕ. Therefore

(
P ′

j X ′
iϕ − X ′

i P ′
jϕ + i�δi jϕ

∣∣ψ) = 0 , ϕ ∈ D(R3), ψ ∈ L2(R3, dx).

In turn, if ψ ∈ D(X ′
i P ′

j ) ∩ D(P ′
j X ′

i ) = D(Xi Pj ) ∩ D(Pj Xi ), since Pj and Xi are
self-adjoint, the identity reads

(
ϕ
∣∣X ′

i P ′
jψ − P ′

j X ′
iψ − i�δi jψ

) = 0 .

As D(R3) is dense in L2(R3, dx), (11.28) holds with X ′
i , P ′

j replacing Xi , Pj .
Consequently (11.28) holds by taking a j = b j = 0, j = 1, 2, 3. �

Pairs of observables solvingHeisenberg’s relations (11.28), on some invariant domain
such as S (R3), are often called conjugate observables. The relations are the sim-
plest manifestation of general CCRs for bosonic quantum fields, where position and

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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momentum are defined suitably to befit the theory. From the physical viewpoint it
has been noticed over and over, during the history of QM and its evolution, that the
canonical commutation relations are much more important than the operators Xi and
Pi themselves.

As the definitions make obvious, position and momentum are unbounded opera-
tors, and are not defined on the entire Hilbert space. Technically speaking this is a
thorn in the side, for it forces to bring into the picture the spectral theory of unbounded
operators, which is more involved than the bounded theory. This begs the question
whether a substitute definition of Xi , Pi might exists, that preserves Heisenberg’s
relations and makes the operators bounded. The answer is no, and the reason is
dictated by Heisenberg’s CCRs.

Proposition 11.32 There are no self-adjoint operators X and P such that, on a
common invariant subspace, [X, P] = i�I and at the same time X, P are bounded.

Proof Suppose, by contradiction, [X, P] = i�I on a common invariant space D
where X, P are bounded. Restrict to D (or its closure D, by extending X, P to self-
adjoint operators defined on D), and consider it as the Hilbert space. The restrictions
will now be self-adjoint and bounded. From [X, P] = i�I :

P Xn − Xn P = −inXn−1 .

If n is odd, using Proposition3.38(a) repeatedly (as X p = (X p)∗ for any natural
number p) and the norm’s properties:

n||X ||n−1 = n||Xn−1|| ≤ 2||P||||Xn|| ≤ 2||P||||X ||||Xn−1|| = 2||P||||X ||||X ||n−1 .

As ||X || �= 0 (because of (11.28)), we obtain the absurd: n ≤ 2||P||||X || < +∞ for
any n = 1, 3, 5, . . . . �

11.4.2 Heisenberg’s Uncertainty Principle as a Theorem

A comforting immediate consequence of the CCRs and of the formalism is to turn
Heisenberg’s Uncertainty Principle for the variables position and momentum (cf.
Sect. 6.4) into a theorem. We shall prove the principle in its classical form on pure
states, only to reformulate it later under weaker assumptions on vectors and then
extend it to mixed states.

Theorem 11.33 (“Heisenberg’s Uncertainty Principle”) Let ψ be a unit vector,
describing a pure state of a classical spinless particle, such that:

ψ ∈ D(Xi Pi ) ∩ D(Pi Xi ) ∩ D(X2
i ) ∩ D(P2

i )

(in particular ψ ∈ S (R3)). Then

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_6
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(Xi )ψ(Pi )ψ ≥ �

2
i = 1, 2, 3 (11.29)

(where we wrote ψ instead of ρψ
for simplicity):

Proof The hypotheses imply, in particular, ψ ∈ D(X2
i ) ∩ D(P2

i ), so standard devi-
ations are defined and can be found using formula (11.13).

By definition (11.11) we see (Xi )ψ = (X ′
i )ψ and (Pi )ψ = (P ′

i )ψ for
X ′

i := Xi + ai I , P ′
i := Pi + bi I with ai , bi real constants. Hence replacing Xi , Pi

by X ′
i , P ′

i produces an equivalent formula to (11.29). Let us choose ai = −〈Xi 〉ψ ,
bi = −〈Pi 〉ψ and prove (11.29) for the operators X ′

i . P ′
i . From (11.13) the choices

force (X ′
i )ψ = ||X ′

iψ || and (P ′
i )ψ = ||P ′

i ψ ||. So we need to prove

||X ′
iψ ||||P ′

i ψ || ≥ �/2 . (11.30)

As X ′
i , P ′

i satisfy (11.28), Schwarz’s inequality, the operators’ self-adjointness and
the properties of the inner product give

||X ′i ψ ||||P ′i ψ || ≥ |(X ′i ψ |P ′i ψ)| ≥ |I m(X ′i ψ |P ′i ψ)| = 1

2

∣∣∣(ψ |X ′i P ′i ψ)− (ψ |X ′i P ′i ψ)

∣∣∣

= 1

2

∣∣(ψ |(X ′
i P ′

i − P ′
i X ′

i )ψ)
∣∣ = �

2
(ψ |ψ) = �

2
,

i.e., (11.30). Lemma11.31 was used in the penultimate equality. �

Remark 11.34 This proof shows more generally that AψBψ ≥ 1
2 |(ψ |[A, B]ψ)|

for every vectorψ ∈ D(AB)∩D(B A)∩D(A2)∩D(B2) and anyHermitian operators
A, B on H. �

11.5 Weyl’s Relations, the Theorems of Stone–von
Neumann and Mackey

The CCRs satisfy a remarkable property: in the statement of axiom A5 it is some-
how superfluous that the Hilbert space be L2(R3, dx), as is to ask that the position
and momentum operators have the given form. This information is by some means
contained in Heisenberg’s relations so long as, loosely put, the representation of
position and momentum is irreducible. This fact is the heart of the famous theorem
of Stone–von Neumann, that we will prove in this section. By dropping irreducibility
Mackey proved (as a consequence of more general facts in the theory of imprimitivity
systems) that the Hilbert space is an orthogonal sum of irreducible representations
(countably many if the space is separable). We will prove Mackey’s theorem after
Stone–von Neumann’s.
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11.5.1 Families of Operators Acting Irreducibly and Schur’s
Lemma

Before we get going, a few generalities on families of operators acting irreducibly
are necessary. Tightly linked to this notion is Schur’s lemma, a very useful result
from abstract representation theory of unitary groups that we will encounter in the
next chapter. We remind the reader that a subspace M in a vector space X is said to
be invariant under the operator A : X→ X when A(M) ⊂ M (Definition2.35).

Definition 11.35 Let H be a Hilbert space and A := {Ai }i∈J a family of operators
Ai : H→ H. The space H is called irreducible under A , and A is an irreducible
family of operators on H, if there is no closed subspace in H different from H and
{0} that is invariant under every element in A simultaneously.

Remark 11.36 Every so often it is necessary to distinguish between irreducibility
and topological irreducibility under a given family of operators. Irreducibility refers
to the absence of non-trivial invariant subspaces, whereas topological irreducibility
concerns the absence of closed non-trivial invariant subspaces. In this book we shall
notmake that distinction: for us irreducibilitywill refer to closed subspaces implicitly,
and we shall omit the term “topological” everywhere. �

Here is Schur’s lemma.

Proposition 11.37 (Schur’s lemma) Let A := {Ai }i∈J ⊂ B(H) be a family of
operators on a complex Hilbert space, closed under Hermitian conjugation (A∗i ∈ A
if Ai ∈ A ). Then
(a) A is irreducible ⇔ every operator V ∈ B(H) satisfying

V Ai = Ai V for every i ∈ J,

has the form V = χ I for some complex number χ ∈ C.
(b) Let A ′ := {A′i }i∈J ⊂ B(H′) be a family on another Hilbert space H′, indexed
by the same set J and closed under the Hermitian conjugation. Suppose

A∗i = A ji ⇒ A′∗i = A′ji for every i ∈ Jand some ji ∈ J. (11.31)

If H and H′ are irreducible, then every bounded linear operator S : H → H′ such
that

S Ai = A′i S for every i ∈ J,

has the form S = rU where U : H→ H′ is unitary and r ∈ R.

Proof Let us begin with the more involved part (b), which we will employ for (a).
(b) Taking adjoints of S Ai = A′i S gives A∗i S∗ = S∗A′∗i for any i ∈ J . That is to
say A ji S

∗ = S∗A′ji , i ∈ J . Note how ji covers J as i varies in J , since for every
Ai ∈ A , (A∗i )∗ = Ai , so we may rephrase the identity as Ai S∗ = S∗A′i for every

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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i ∈ J . Comparing with S Ai = A′i S gives Ai S∗S = S∗S Ai and A′i SS∗ = SS∗A′i .
From the former the bounded self-adjoint operator V := S∗S commutes with every
Ai , so by Theorem8.56(c) the spectral measure P (V ) on R commutes with each Ai .
But then, for every E ∈ B(R), the closed space P (V )

E (H) is invariant under each Ai .
As the space is irreducible, either P (V )

E (H) = H i.e. P (V )
E = I , or P (V )

E (H) = {0}
i.e. P (V )

E = 0, for any Borel set E ⊂ R. Suppose the spectrum of V contains at least
two values α �= α′ and let us use Theorem9.13(b). Consider two open disjoint real
intervals E  α, E ′  α′. Then P (V )

E �= 0, P (V )
E ′ �= 0 since the intervals intersect

the spectrum, and therefore the only possibility is P (V )
E = P (V )

E ′ = I . On the other
hand P (V )

E P (V )
E ′ = 0 since E ∩ E ′ = ∅. This is absurd because standard properties

of PVM imply P (V )
E ′ + P (V )

E ≤ I . So the spectrum of V (never empty) contains a
single isolated point, which is in the point spectrum. Hence S∗S = V = λI for some
λ ∈ [0,+∞), V being clearly positive. In a similar manner we obtain SS∗ = λ′ I for
some λ′ ∈ [0,+∞). But then

λS∗ = S∗SS∗ = λ′S∗ .

Consequently either λ = λ′ or S∗ = 0 and so S = (S∗)∗ = 0. In the second case the
proof ends. In the first instance, let U := λ−1/2S, so that UU ∗ = I ′ and U ∗U = I
where I , I ′ are the identity operators of H, H′. Therefore U is unitary. The claim is
proved by taking r = λ1/2.

Let us pass to (a) and assume H is irreducible under A . If V Ai = Ai V , then
A∗i V ∗ = V ∗A∗i , meaning Ai V ∗ = V ∗Ai for any i ∈ J , as A is ∗-closed. Then the
bounded self-adjoint operators V+ := 1

2 (V + V ∗) and V− := 1
2i (V − V ∗) commute

with A , implying that their spectral measures commute with A . Arguing as in part
(b) we conclude V± = λ± I for some real constants λ±. Then V = V+ + iV− =
(λ+ + iλ−)I = χ I , χ ∈ C. Conversely, suppose that the only operators commuting
withA aremultiplesχ I . IfH0 is invariant underA and P is the orthogonal projector
onto H0, then PAiP = AiP for any i ∈ J . Take adjoints: PA∗i P = P A∗i . As A is
∗-closed and i ∈ J arbitrary, the identity reads P Ai P = P Ai . Comparing with the
initial relation gives P Ai = Ai P , i ∈ J . Therefore P = χ I for some χ ∈ C. But
P∗ = P ⇒ χ ∈ R, and P P = P ⇒ χ2 = χ . So there are two possibilities: P = 0,
and then H0 = {0}, or P = I so H0 = H. This means H is irreducible underA . �

Remark 11.38 Schur’s lemma, in cases (a) and (b), will be particularly useful in
these situations:

(i) A , A ′ are images of two representations π : A → B(H), π ′ : A → B(H′)
of the same ∗-algebra (or C∗-algebra) A.

(ii)A ,A ′ are images of two unitary representationsG  g �→ Ug ,G  g �→ U ′
g

of a single group G.
In either case, closure under Hermitian conjugation in case (a), and (11.31) in case
(b), are automatic if one takes respectively G and A as the indexing set I . �

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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11.5.2 Weyl’s Relations from the CCRs

In order to illustrate the Stone–von Neumann theorem we proceed step by step. A
relevant technical point is that Heisenberg’s commutation relations are too hard to
use rigorously, for they involve subtleties about domains. To by-pass these issues
we can abandon Xi and Pi for the one-parameter unitary groups they generate.
Even better, we may take, for n = 3, the operators

∑n
i=k tk Xk + uk Pk , tk, uk ∈ R.

These are essentially self-adjoint on S (R3), so we can look at the exponentials of
their self-adjoint extensions

∑n
i=k tk Xk + uk Pk . A brute-force computation based on

Heisenberg’s relations (11.28) and the formal Taylor expansion of the exponential
(not yet justified) yields the following identity4:

exp

⎧⎨
⎩i

n∑
k=1

tk Xk + uk Pk

⎫⎬
⎭ exp

⎧⎨
⎩i

n∑
k=1

t ′k Xk + u′k Pk

⎫⎬
⎭

= exp

{
− i�

2

(
n∑

k=1
tku′k − t ′kuk

)}
exp

⎧⎨
⎩i

n∑
k=1

(tk + t ′k)Xk + (uk + u′k)Pk

⎫⎬
⎭ .

The above are called Weyl relations, and follow formally from Heisenberg’s com-
mutation relations.
The announced proposition proves, completely independently from previous results
that involve different techniques, that the operators Xi , Pi are essentially self-adjoint
if restricted to S (R3), even in dimension higher than 3. For convenience, we will
assume � = 1 in the sequel.

Proposition 11.39 Consider L2(Rn, dx), with given n = 1, 2, · · · and Lebesgue
measure dx on R

n. For k = 1, 2, · · · , n define symmetric operators:

Xk : S (Rn) → L2(Rn, dx) and Pk : S (Rn) → L2(Rn, dx)

(Xkψ) (x) = xkψ(x) , (11.32)

(Pkψ) (x) = −i
∂ψ

∂xk
(x) . (11.33)

Then:
(a) the symmetric operators

∑n
k=1 tkXk + ukPk , defined on S (Rn), map S (Rn)

to itself and are essentially self-adjoint for any (t,u) ∈ R
2n.

(b) L2(Rn, dx) is irreducible under the family of bounded operators:

4If the exponentiated operators were n × n complex matrices the result would follow from the cel-
ebrated Baker-Campbell-Hausdorff formula: eAeB = e[A,B]/2eA+B , valid when the matrix [A, B]
commutes with both A and B.



632 11 Mathematical Formulation of Non-relativistic Quantum Mechanics

W ((t,u)) := exp

⎧⎨
⎩i

n∑
k=1

tkXk + ukPk

⎫⎬
⎭ , (t,u) ∈ R

2n . (11.34)

(c) The operators W satisfy Weyl’s relations:

W ((t,u))W ((t′,u′)) = e−
i
2 (t·u′−t′ ·u)W ((t+t′,u+u′)), W ((t,u))∗ = W (−(t,u)).

(11.35)
(d) For given (t,u) ∈ R

2n, every mapping R  s �→ W (s(t,u)) satisfies:

s- lim
s→0

W (s(t,u)) = W (0) . (11.36)

Proof Let us begin with L2(Rm, dx) where m = 1, for the generalisation to finite
m > 1 is obvious. We will use tools from Sect. 9.1.4. At present we just have the
operators X and P . Both are well defined when restricted to the Schwartz space
S (R), and admit each a self-adjoint extension that coincideswith X , P , as previously
discussed.

We want to construct a dense subspace of analytic vectors for the symmetric
operators aX + bP : S (R) → L2(R, dx), for any a, b ∈ R. Define, on the
dense domain S (R), the annihilation operator, creation operator and number
operator:

A := 1√
2

(
X + d

dx

)
, A� := 1√

2

(
X − d

dx

)
, N := A� A . (11.37)

By construction A∗ ⊃ A�, (A�)∗ ⊃ A, andN is symmetric. By direct computation
the CCRs (or the above definition) force certain commutation relations on S (R),
namely:

[A, A�]�S (R)= I�S (R) . (11.38)

It is a well-known fact in the theory of orthogonal polynomials that the complete
orthonormal system in L2(Rn, dx) of Hermite functions {ψn}n=0,1,... ⊂ S (R) (cf.
Example3.32(4)) satisfies ψ0 = π−1/4e−x2/2 and the recursive formula:

ψn+1 = (2(n + 1))−1/2
(

x − d

dx

)
ψn .

By definition of A�, that is the same as saying Hermite functions arise, once ψ0 is
given, from

ψn =
√

1

n! (A�)nψ0 . (11.39)

At the same time a straightforward computation produces

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Aψ0 = 0. (11.40)

Equations (11.39), (11.40) and (11.38) justify, by induction, the middle relation in
the triple (details in Sect. 9.1.4):

A�ψn =
√

n + 1ψn+1 , Aψn = √
nψn−1 , N ψn = nψn , (11.41)

The right side in the second one is assumed null if n = 0, and as one sees easily the
first identity is just the recursive relation introduced a few lines above; the third one
follows from the other two.

As the ψn are normalised to 1, the first two in (11.41) give the inequality:

||A1A2 · · · Akψn|| ≤
√

n + 1
√

n + 2 · · ·√n + k ≤ √(n + k)! , (11.42)

where every Ai is either A or A�. Consider a symmetric operator onS (R) given by
an arbitrary real combination T := aX + bP , a, b ∈ R. By (11.37), if z := a+ ib
we have

T = z A + z A�

√
2

. (11.43)

This and (11.42) imply, for any Hermite function ψn:

||T kψn|| = 2−k/2||(z A + z A�)kψn|| ≤ 2−k/22k |z|k√(n + k)! = |z|k
√
2k(n + k)! .

Hence, for t ≥ 0:

+∞∑
k=0

t k

k! ||T
kψn|| ≤

+∞∑
k=0

(
√
2|z|t)k

√
(n + k)!

k! ≤
+∞∑
k=0

(
√
2|z|t)k

√
(n + k)n

√
k! < +∞ .

The last series has finite sum by computing the convergence radius r via

1/r = lim
k→+∞

(√
(n + k)n

k!

)1/k

= lim
k→+∞ e

n ln(k+n)

2k − ln k!
2k = lim

k→+∞ e−
ln k!
2k = 0

(in the end we used Stirling’s formula). Therefore any finite combination of Hermite
functions is analytic for every T := aX +bP onS (R). As the latter are symmetric,
they must be essentially self-adjoint onS (R) by Nelson’s theorem (Theorem5.47).
This ends the proof of case (a) for m = 1. If m > 1 the argument is similar, keeping
in mind that Hermite functions in n variables:

ψk1,...,km (x1, . . . , xm) := ψk1(x1) · · ·ψkm (xm)

are a complete orthonormal system in L2(Rm, dx) (see Example10.27(1)). What we
have seen proves (a), but also (d) and the second identity in (c): in fact

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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W (s(t,u)) = exp

⎧⎨
⎩is

n∑
k=1

tkXk + ukPk

⎫⎬
⎭ = exp

⎧⎨
⎩is

⎛
⎝ n∑

k=1
tkXk + ukPk

⎞
⎠
⎫⎬
⎭

by construction, because by definition of closable operator A we have s A = s A for
every s ∈ C. Now, as

∑n
i=1 tkXk + ukPk is self-adjoint, Theorem9.33(a) ensures

the strong continuity of the one-parameter unitary group R  s �→ W (s(t,u)), since

W (0) = exp
{

i0
∑n

i=1 tkXk + ukPk

}
= I . The second identity in (c) is obvious

since R  s �→ W (s(t,u)) is a one-parameter unitary group.
To prove (b) we shall invoke Lemma11.40, which we will prove after the present

theorem but relies only on part (a). Suppose there is a non-null closed space H0 ⊆
L2(Rn) invariant under W ((t,u)), and let ψ �= 0 be an element of H0. Taking
φ ∈ H⊥0 , we will prove φ = 0 and so H0 = L2(Rn). By assumption, H0 and the
orthogonal complement are invariant:

(φ|W ((t, 0)W ((0,u))ψ) = 0 , for any (t,u) ∈ R
2n.

I.e. (
φ

∣∣∣ei
∑

k tkXk ei
∑

k ukPk ψ
)
= 0 , for any (t,u) ∈ R

2n.

The left side can be computed with (11.50), (11.51) in Lemma11.40:

∫
Rn

eit·xφ(x)ψ(x + u) dx = 0 , for any t,u ∈ R
n.

Since the map x �→ hu(x) := φ(x)ψ(x + u) is in L1(Rn, dx), as product of
L2(Rn, dx) maps, and given that t ∈ R

n is arbitrary, the identity simply tells that
the Fourier transform of hu ∈ L1(Rn, dx) is zero. By Proposition3.105(f)hu is null
almost everywhere. In other terms:

φ(x)ψ(x + u) = 0 almost everywhere for any given u ∈ R
n. (11.44)

Call E ⊂ R
n the set on which ψ is not null, and F the set where φ never vanishes.

(Both are measurable as pre-images of the open set C \ {0} under measurable maps.)
Denote by m the Lebesgue measure of R

n , so m(E) > 0 by assumption. To satisfy
(11.44) we must have:

m(F∩(E−u)) = 0 for anyu ∈ R
n, i.e.

∫
R

χF (x)χE (x+u)dx = 0 for anyu ∈ R
n.

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Integrating in u gives

∫
R

du
∫
R

χF (x)χE (x + u)dx = 0 .

As integrands are non-negative and the double integral is finite, we swap integrals
by Fubini–Tonelli and use Lebesgue’s invariance under translations to obtain:

0 =
∫
R

dxχF (x)
∫
R

χE (x + u)du =
∫
R

dxχF (x)
∫

E−x
1du

=
∫
R

dxχF (x)
∫
R

χE (u)dy = m(F)m(E) .

As m(E) > 0, we have m(F) = 0 and so F = ∅. Therefore φ is null almost
everywhere, hence the null vector of L2(Rn, dx). So H0 = L2(Rn, dx), proving
irreducibility in (b).

There remains to show

W ((t,u))W ((t′,u′)) = e−
i
2 (t·u′−t′ ·u)W ((t + t′,u+ u′)) . (11.45)

For this we need two steps. Introduce

U ((t,u)) := e
i
2 (t·u)W ((t, 0))W ((0,u)) .

Step one will prove that

U ((t,u))U ((t′,u′)) = e−
i
2 (t·u′−t′ ·u)U ((t + t′,u+ u′)) . (11.46)

Step two consists in showing

U ((t,u)) = W ((t,u)) , (11.47)

which will conclude the overall proof.
Exactly as in part (b), Lemma11.40 implies:

(U ((t,u))ψ) (x) = e
i
2 t·ueit·xψ(x + u) . (11.48)

Hence, for given ψ ∈ L2(Rn, dx),

U ((t,u))U ((t′,u′))ψ = e−
i
2 (t·u′−t′ ·u)U ((t + t′,u+ u′))ψ .

This is the same as (11.46), which is eventually justified. Let us pass to (11.47).
Consider, for t,u fixed, the unitary family Us := U (s(t,u)), s ∈ R. Directly from
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(11.48) we verify Us+s ′ = UsUs ′ and U0 = I . Therefore {Us}s∈R is a one-parameter
unitary group. The strategy is now to prove that the group is strongly continuous, find
its generator and show it coincides with the generator of {W (s(t,u))}s∈R. By Stone’s
theorem (Theorem9.33) the two groups will be the same, hence giving (11.47). As
for strong continuity, note that for any ψ, φ ∈ L2(R2, dx):

(φ|Usψ) = e
is2

2 t·u
(
φ

∣∣∣eis
∑

k tkXk eis
∑

k ukPk ψ
)

= e
is2

2 t·u
(

eis
∑

k tkXk φ

∣∣∣eis
∑

k ukPk ψ
)
→ (φ|ψ) as s → 0 ,

because the inner product is continuous, and one-parameter groups generated by
the self-adjoint operators

∑
k ukPk and

∑
k tkXk are strongly continuous. Proposi-

tion9.27 guarantees {Us}s∈R is strongly continuous. Consider ψ ∈ S (Rn), and let
us check

lim
s→0

∣∣∣∣∣
∣∣∣∣∣
Usψ − ψ

s
− i

(∑
k

tkXk + ukPk

)
ψ

∣∣∣∣∣
∣∣∣∣∣
2

= 0 . (11.49)

A few passages give

∣∣∣∣∣
∣∣∣∣∣
Usψ − ψ

s
− i

(∑
k

tkXk + ukPk

)
ψ

∣∣∣∣∣
∣∣∣∣∣
2

=
∫
Rn

∣∣∣∣∣
eis2t·u/2eistxψ(x + su)− ψ(x)

s
− it · xψ(x)− u · ∇xψ

∣∣∣∣∣
2

dx .

Hence ∣∣∣∣∣
∣∣∣∣∣
Usψ − ψ

s
− i

(∑
k

tkXk + ukPk

)
ψ

∣∣∣∣∣
∣∣∣∣∣
2

≤
∫
Rn

∣∣∣∣eis2t·u/2eistx ψ(x + su)− ψ(x)
s

− u · ∇xψ

∣∣∣∣
2

dx

+ 2
∫
Rn

∣∣∣∣eis2t·u/2eistx ψ(x + su)− ψ(x)
s

− u · ∇xψ
∣∣∣∣
∣∣∣∣∣
eis2t·u/2eistx − 1

st · x − i

∣∣∣∣∣ |t · xψ(x)|dx

+
∫
Rn

∣∣∣∣∣
eis2t·u/2eist·x − 1

st · x − i

∣∣∣∣∣
2

|t · xψ(x)|2dx .

Consider the integrals on the right. The middle one, by Schwarz’s inequality, tends
to zero when the other two do, because its square is less than the product of the

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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other two. By dominated convergence the last integral is infinitesimal as s → 0,
because the integrand tends to 0 pointwise and is uniformly bounded by the L1

map C |t · xψ(x)|2, for some constant C > 0. The first integrand also tends to 0
pointwise, as s → 0. We want to use Lebesgue’s theorem, so we need an L1 upper
bound, uniform in s around 0 (hence independent of s). Decomposing the integral
and recalling ψ ∈ S (Rn), it suffices to find a uniform L1 bound in s ∈ [−ε, ε] for
the expressions

∣∣∣∣ψ(x + su)− ψ(x)
s

∣∣∣∣ and

∣∣∣∣ψ(x + su)− ψ(x)
s

∣∣∣∣
2

in order to obtain a bound of the whole integrand. Assume ψ real (if not, decompose
ψ in real and imaginary parts) and invoke the mean value theorem:

∣∣∣∣ψ(x + su)− ψ(x)
s

∣∣∣∣ =
∣∣u · ∇ψ |x+s0u

∣∣ ,

where s0 ∈ [−ε, ε]. Since ψ ∈ S (Rn), for any p = 1, 2, . . . there is K p ≥ 0 with

|u · ∇ψ |x| ≤ K p

1+ ||x||p .

If we fix ε > 0, u ∈ R
n and p = 2, 3, . . . , there is C p,ε > 0 such that

1

1+ ||x + s0u||p ≤
C p,ε

1+ ||x||p−1 for any x ∈ R
n, s0 ∈ [−ε, ε].

Therefore, for a certain constant C ≥ 0:

∣∣∣∣ψ(x + su)− ψ(x)
s

∣∣∣∣ ≤ C

1+ ||x||n+1 , x ∈ R
n, s ∈ [−ε, ε].

The map on the right and its square are in L1(Rn, dx), and this is what we wanted
in order to apply Lebesgue’s theorem. Hence (11.49) is proved.

Summing up, the self-adjoint generator of the strongly continuous unitary group
{U (s(t,u))}s∈R coincides with the generator of {W (s(t,u))}s∈R on S (Rn). Since
the second generator is essentially self-adjoint on that space, and as such it admits
a unique self-adjoint extension, the generators coincide everywhere. Consequently
the groups coincide, for both arise by exponentiating the same self-adjoint generator.
�

The proof of parts (b), (c) rely on the following lemma, itself a consequence of (a).
We state it aside given its technical usefulness.

Lemma 11.40 Retaining the assumptions of Proposition11.39, if ψ ∈ L2(Rn, dx)

and t,u ∈ R
n:
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(
ei
∑

k tkXk ψ
)

(x) = eit·xψ(x) , (11.50)

and (
ei
∑

k ukPk ψ
)

(x) = ψ(x + u) . (11.51)

Proof By direct calculation the group {Us}s∈R,

(Usψ) (x) := eist·xψ(x) , ∀ψ ∈ L2(Rn, dx)

is strongly continuous and satisfies

−i lim
s→0

1

s
(Usψ − ψ) =

(∑
k

tkXk

)
ψ

onS (Rn). In fact:

∣∣∣∣∣
∣∣∣∣∣
1

s
(Usψ − ψ)− i

(∑
k

tkXk

)
ψ

∣∣∣∣∣
∣∣∣∣∣
2

=
∫
R3

∣∣∣∣e
ist·x − 1

s
− it · x

∣∣∣∣
2

|ψ(x)|2dx

=
∫
R3

∣∣∣∣e
ist·x − 1

st · x − i

∣∣∣∣
2

|t · x|2|ψ(x)|2dx → 0 as s → 0,

where we used three ingredients: x �→ |t · x|2|ψ(x)|2 is L1 as ψ ∈ S (Rn); the map

R× R
3  (s, x) �→

∣∣∣∣e
ist·x − 1

st · x − i

∣∣∣∣
2

is bounded and pointwise (in x) tends to 0, s → 0; Lebesgue dominated convergence.
By Stone’s theorem the generator of {Us}s∈R is a self-adjoint extension of

∑
k tkXk .

At the same time,
∑

k tkXk is essentially self-adjoint by (a) in the theorem above,
so the unique extension is its closure. Therefore {Us}s∈R is generated by

∑
k tkXk ,

proving (11.50).
Now the second identity. By (3.81)–(3.84), because the Fourier–Plancherel trans-

form F̂ is a Fourier transformF on the F -invariant space S (Rn):

∑
k

ukPk = F̂−1∑
k

ukKk F̂ , (11.52)

whereKk isXk (the newname just reflects the fact that the variable of the transformed
map is k not x). The Fourier transform is an isomorphism, so

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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∑
k

ukPk = F̂−1∑
k

ukKk F̂ . (11.53)

By Corollary9.37

ei
∑

k ukPk = F̂−1 ei
∑

k ukKk F̂ . (11.54)

Reducing to ψ ∈ S (Rn), where F̂ and its inverse are computed by the Fourier
integral and reduce toF and its inverse (cf. Definition3.103), Eq. (11.54) implies

(
ei
∑

k ukPk ψ
)

(x) =
(
F−1ei

∑
k ukKk ψ̂

)
(x) = ψ(x + u) , for any ψ ∈ S (Rn).

(11.55)
Recall S (Rn) is dense in L2(Rn, dx), and S (Rn)  ψn → ψ is in L2. Then
ψn( · +u) → ψ( · +u) is in L2, because Lebesgue’s measure is translation-invariant
and the continuity of ei

∑
k ukPk implies (11.51) by (11.55). �

11.5.3 The Theorems of Stone–von Neumann and Mackey

Weyl’s relations are valid for bounded operators W ((t,u)), (t,u) ∈ R
2n , that form

an irreducible set on a complex Hilbert space H, and imply that s �→ W (s(t,u))

are strongly continuous at s = 0. We intend to show how they force H to become
isomorphic to L2(Rn, dx)under the identification sendingW ((t,u)) to ei

∑
k tk Xk+uk Pk .

In particular, the Hilbert space H turns out to be separable.
The theorem will be stated in a slightly more general form, for which we shall

need symplectic geometry.
Let us recall some facts about symplectic vector spaces.

Definition 11.41 A pair (X, σ ) is called a (real) symplectic vector space if X is
a real vector space and the symplectic form σ : X × X → R is a bilinear, skew-
symmetric and weakly non-degenerate map: σ(u, v) = 0 ∀ u ∈ X ⇒ v = 0.

If (Y, τ ) is another symplectic vector space, we call a linear map f : X → Y
a symplectic linear map if it preserves the symplectic forms: τ( f (x), f (y)) =
σ(x, y), x, y ∈ X.

A symplectomorphism is a bijective symplectic linear map.

Note that any symplectic linear map f : X → Y is one-to-one (see Exercise 11.6),
so the image ( f (X), τ ) is a symplectic subspace of (Y, τ ) isomorphic to (X, σ ). If
X is a normed space (infinite-dimensional), there exists a stronger concept of non-
degeneracy: it requires (a) σ(·, v) ∈ X′ for any v ∈ X, and (b) X  v �→ σ(·, v) ∈ X′
is bijective (where X′ denotes the topological dual of X). In finite dimension weak
non-degeneracy is the same as this strong non-degeneracy.

The next result is due to Darboux (and is related to a more famous theorem on
symplectic manifolds, which we shall not be concerned about [FaMa06]).

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_3


640 11 Mathematical Formulation of Non-relativistic Quantum Mechanics

Theorem 11.42 (Darboux) If (X, σ ) is a (real) symplectic vector space withdimX =
2n finite, there exists a basis (infinitely many, actually), called standard symplectic
basis, {e1, · · · , en, f1, · · · , fn} ⊂ X, in which σ assumes the following canonical
form:

σ(z, z′) :=
(

n∑
i=1

ti u
′
i − t ′i ui

)
for any z, z′ ∈ X , (11.56)

where z =∑n
i=1 tiei +∑n

i=1 ui fi , z′ =∑n
i=1 t ′i ei +∑n

i=1 u′i fi .

It is not hard to prove that an automorphism of a symplectic vector space is a sym-
plectomorphism if and only if it preserves Darboux bases.

Now we can state the Stone–von Neumann theorem, whose proof is postponed to
after we have introduced Weyl ∗-algebras. In a dedicated section ensuing the proof
we will comment on the mathematics and the physics of the theorem.

Theorem 11.43 (Stone–vonNeumann)LetHbe a complex non-trivial Hilbert space
and (X, σ ) a real 2n-dimensional symplectic vector space. SupposeH admits a family
of operators {W (z)}z∈X ⊂ B(H) with the following properties:
(a) H is irreducible under {W (z)}z∈X;
(b) the Weyl relations

W (z)W (z′) = e−
i
2 σ(z,z′)W ((z+ z′)) , W (z)∗ = W (−z) , z, z′ ∈ X (11.57)

hold;
(c) for given z ∈ X, every mapping R  s �→ W (sz) satisfies

s- lim
s→0

W (sz) = W (0) . (11.58)

Then, in a given standard symplectic basis of X for which z ∈ X is determined by
(t(z),u(z)) ∈ R

n×R
n, there exists a Hilbert space isomorphism S : H→ L2(Rn, dx)

such that:

S W (z) S−1 := exp

⎧⎨
⎩i

n∑
k=1

t (z)
k Xk + u(z)

k Pk

⎫⎬
⎭ , for any z ∈ X. (11.59)

where the symmetric operators Xi , Pi are as of Proposition11.39.
Consequently H must be necessarily separable, as L2(Rn, dx) is.

To complement the Stone–von Neumann theorem we state immediately another
result, proved byMackey, that treats reducible representations of theWeyl ∗-algebra.
The notion of Hilbert sum used below is the one found in Definition3.67.

Theorem 11.44 (Mackey)Assume the hypotheses of Theorem11.43, with (a) replaced
by one of the following equivalent facts.
(a1) Every generator W (z), z ∈ X, has trivial kernel.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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(a2) Every generator W (z) is unitary.
(a3) W (0) is the identity operator on H.
Then the Hilbert space H is the Hilbert sum of a family (at most countable if H is
separable) of closed, irreducible and W (z)-invariant subspaces. On each such com-
ponent the Stone–von Neumann theorem holds with respect to the restricted operators
W (z).

With the Darboux theorem in mind, an alternative way to formulate the Stone–
von Neumann theorem, more often encountered in the literature, goes as follows.
Mackey’s theorem has a similar reformulation as well, which we omit but the reader
can easily reconstruct.

Theorem 11.45 (Alternative version of the Stone–von Neumann theorem) Let H be
a complex non-trivial Hilbert space and suppose {U (t)}t∈Rn , {V (u)}u∈Rn ⊂ B(H)

satisfy the following properties.
(a) H is irreducible under {U (t)}t∈Rn ∪ {V (u)}u∈Rn .
(b) The relations (also called Weyl relations):

U (t)V (u) = V (u)U (t)eit·u , t,u ∈ R
n,

U (t)U (t′) = U (t + t′), V (u)V (u) = V (u+ u′), U (t)∗ = U (−t), V (u)∗ = V (−u)

hold for all t,u, t′u′ ∈ R
n.

(c) For any pair t ∈ R
n, u ∈ R

n:

s- lim
s→0

U (st) = U (0) and s- lim
s→0

V (su) = V (0) . (11.60)

Then there there exists an isomorphism S1 : H→ L2(Rn, dx) such that:

S1 U (t) S−11 := exp

⎧⎨
⎩i

n∑
k=1

tkXk

⎫⎬
⎭ and S1 V (u) S−11 := exp

⎧⎨
⎩i

n∑
k=1

ukPk

⎫⎬
⎭ .

where the symmetric operators Xi , Pi are defined as in Proposition11.39.

Let us explain how the two versions are equivalent. Assume the Hilbert spaces H
of the statements are the same. We begin by proving that Theorems11.43 implies
11.45. From the hypotheses of Theorem11.45 and its Weyl relations it is immediate
to see that theW ((t,u)) := eit·u/2U (t)V (u) fulfil Theorem11.43 over the symplectic
vector space (Rn × R

n, σc), where σc is the symplectic form already in canonical
form:

σc((t,u), (t′,u′)) =
(

n∑
i=1

ti u
′
i − t ′i ui

)

in the standard basis of R
n×R

n . If we choose the symplectic basis to be the standard
one on R

n × R
n , then Theorem11.43 implies Theorem11.45 by taking S1 = S.
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So let us prove Theorems 11.45 implies 11.43. Choose a standard symplectic basis
on X and identify elements in X with pairs (t,u) in R

n ×R
n . If the W ((t,u)) satisfy

Theorem11.43, then the new operators V (t) := W ((t, 0)) and U (u) := W ((0,u))

fulfil Theorem11.45. A direct computation shows 11.45 implies Theorem11.43 for
S = S1.

Remarks 11.46 Referring to Definition11.11, we can give here an elementary exam-
ple of complete set of commuting observables and von Neumann algebra of observ-
ables RS for a quantum particle without spin. As we know HS = L2(R3, d3x). A
complete set of commuting observables is the set of the three position operators
A1 = {X1, X2, X3} or the set of the three momenta A2 = {P1, P2, P3}. We leave
the elementary proof to the reader. The algebra RS must contain at least the von
Neumann algebra generated by A1 ∪ A2. We conclude that all self-adjoint opera-
tors Xk and Pk are affiliated to RS (Proposition11.8) and therefore RS contains all
bounded functions of these operators and linear combinations of these functions. In
particular it must contain the operators U (t) and V (u) and so the whole Weyl alge-
bra generated. The commutant ofRS is consequently trivial, as it contains a unitary
irreducible representation of the Weyl algebra, in view of the first part of Stone–von
Neumann theorem. We conclude that RS = B(HS). �

11.5.4 The Weyl ∗-Algebra

The statement of the Stone–von Neumann theorem contains an extremely important
notion, both for the proof but also in view of developing QM towards Quantum Field
Theory. We are talking about Weyl ∗-algebras. Let us spend some time on this.

Definition 11.47 Let X be a real non-trivial vector space of arbitrary dimension
(possibly infinite) and σ : X× X→ R a symplectic form on it.

A ∗-algebra W (X, σ ) is called Weyl ∗-algebra of (X, σ ) if there exists a family
{W (u)}u∈X of non-zero elements, called generators , such that:
(i) Weyl’s (commutation) relations:

W (u)W (v) = e−
i
2 σ(u,v)W (u + v) , W (u)∗ = W (−u) , u, v ∈ X (11.61)

hold;
(ii) W (X, σ ) is generated by {W (u)}u∈X, i.e. W (X, σ ) is the linear span of finite
combinations of finite products of {W (u)}u∈X.
What we show now, amongst other things, is that a symplectic vector space (X, σ )

determines a unique Weyl ∗-algebra up to ∗-isomorphisms.

Theorem 11.48 Let X be a non-trivial real vector space of arbitrary dimension
(possibly infinite) and σ : X× X→ R a symplectic form.
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(a) There exists, always, a Weyl ∗-algebra W (X, σ ) associated to (X, σ ).
(b) Any Weyl ∗-algebra W (X, σ ) has a unit I, and:

W (0) = I , W (u)∗ = W (−u) = W (u)−1 , u ∈ X. (11.62)

The generators {W (u)}u∈X are linearly independent, so in particular W (u) �= W (v)
if u �= v.
(c) If W (X, σ ), generated by {W (u)}u∈X, and W ′(X, σ ), generated by {W ′(u)}u∈X,
are Weyl ∗-algebras of (X, σ ), there is a unique ∗-isomorphism α : W (X, σ ) →
W ′(X, σ ), which is determined by imposing:

α(W (u)) = W ′(u) , for any u ∈ X.

(d) Every representation of W (X, σ ) on a Hilbert space H �= {0}

π : W (X, σ ) → B(H)

is faithful.
(e) Let W (X′, σ ′) be a Weyl ∗-algebra of the symplectic vector space (X′, σ ′).
If f : X → X′ is a symplectic linear map, there exists a ∗-homomorphism
(∗-isomorphism if f is a symplectomorphism) α f : W (X, σ ) → W (X′, σ ′) that
is completely determined by:

α f (W (u)) = W ′( f (u)) , u ∈ X (11.63)

(with obvious notation). Furthermore, α f is injective.

Proof (a) Consider the Hilbert space H := L2(X, μ) where μ is the counting
measure of the set X. With u ∈ X consider W (u) ∈ B(L2(X, μ)) defined by
(W (u)ψ)(v) := eiσ(u,v)/2ψ(u + v) for any ψ ∈ L2(X, μ), v ∈ X. It is immediate
that such operators are non-null and satisfy Weyl’s commutation relations (11.62),
by using Hermitian conjugation as involution. Finite combinations of finite products
form a Weyl ∗-algebra of (X, σ ).
(b) From the first equation in (11.61) we have W (u)W (0) = W (0) = W (0)W (u)

and W (u)W (−u) = W (0) = W (−u)W (u), because the W (u) do not vanish and
generate the whole ∗-algebra. Hence W (0) = I and W (−u) = W (u)−1. The latter,
bearing in mind the second equation in (11.61), implies W (u)∗ = W (u)−1. Now
let us prove the generators’ linear independence. Consider a subset of n generators
{W (u j )} j=1,...,n , with u1, . . . , un all distinct, and let us show the W (u j ) are indepen-
dent. Over arbitrary subsets (and finite combinations) the claim is proved. Consider
the null combination

∑n
j=1 a j W (u j ) = 0 and let us prove, by induction, a j = 0

for j = 1, . . . , n. If n = 1 this is true as every W (u) is non-null by definition.
Suppose the claim holds for n − 1 generators, however chosen, and let us prove the
assertion for n. Without loss of generality (relabelling if necessary) we may assume,
by contradiction, an �= 0. Then

∑n
j=1 a j W (u j ) = 0 implies
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W (un) =
n−1∑
j=1

−a j

an
W (u j ) .

Consequently

I = W (un)
∗W (un) =

n−1∑
j=1

−a j

an
W (un)

∗W (u j ) =
n−1∑
j=1

−a j

an
e−iσ(−un ,u j )/2W (u j − un)

=
n−1∑
j=1

b j W (u j − un) ,

where b j := −a j

an
e−iσ(−un ,u j )/2. To prove the claim it suffices to show b j = 0 for

every j = 1, 2, . . . , n − 1. To do so, let us fix a u ∈ X, so by the above identity

I = W (u)IW (−u) =
n−1∑
j=1

b j W (u)W (u j −un)W (−u) =
n−1∑
j=1

b j e−iσ(u,u j−un)W (u j −un) .

Comparing the expressions obtained for I we have

n−1∑
j=1

b j W (u j − un) =
n−1∑
j=1

b j e
−iσ(u,u j−un)W (u j − un) .

Multiply by W (un) and simplify:

n−1∑
j=1

b j W (u j ) =
n−1∑
j=1

b j e
−iσ(u,u j−un)W (u j ) .

As the generators W (u j ), j = 1, 2, . . . , n − 1, are linearly independent, we have
b j (1−e−iσ(u,u j−un)) = 0. If b j �= 0 for some j thenwewould have 1 = e−iσ(u,u j−un),

and so σ(u,u j−un)

2π = k(u) ∈ Z. But the left-hand side is linear in u ∈ X, so the map-
ping X  u �→ k(u) must be linear. Being Z-valued it is the zero map. Therefore
σ(u, u j − un) = 0 for any u ∈ X. The non-degeneracy of σ implies u j = un for
j < n, an absurd.
(c) The Weyl generators are linearly independent, and the product of two is a
complex multiple of a generator (by the first Weyl identity), whence genera-
tors form a vector basis for the Weyl ∗-algebra. Consider the unique linear map
α : W (X, σ ) → W ′(X, σ ) defined by α(W (u)) = W ′(u) for any u ∈ X. As
{W (u)}u∈X and {W ′(u)}u∈X are bases of the corresponding ∗-algebras, α is a vector-
space isomorphism. But products of elements of the two ∗-algebras are combinations
of the generators, by the first set of Weyl relations (the same for both ∗-algebras), so
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α must preserve products. Moreover, α(W (0)) = W ′(0) implies that α preserves the
multiplicative unit. Eventually α(W (−u)) = W ′(−u) and the secondWeyl set imply
α commutes with involutions as well. The procedure also shows that α is uniquely
determined by fixing α(W (u)) = W ′(u) for every u ∈ X.
(d) Consider a representation π : W (X, σ ) → B(H). By construction the operators
{π(W (u))}u∈X satisfy Weyl’s relations. If every π(W (u)) is non-null, they define
a Weyl ∗-algebra of (X, σ ). By part (c) the representation π , when the codomain
restricts to π(W (X, σ )), is a ∗-isomorphism, making π injective. If, on the contrary,
π(W (u)) = 0 for some u ∈ X, then π is the zero representation. That is because
if z ∈ X, setting z − u =: v implies π(W (z)) = e

i
2 σ(u,v)π(W (u))π(W (v)) =

e
i
2 σ(u,v)0π(W (v)) = 0 by Weyl’s relations. Hence π is null as the W (v) form a basis

for W (X, σ ). Since the Weyl algebra is a unital ∗-algebra and H �= {0}, the zero
representation is not admitted Remarks3.35(3)).
(e) As the generators of the Weyl ∗-algebra form a basis, as we said in (c), there is
one and only one linear map α f : W (X, σ ) → W (X′, σ ′), completely determined
by (11.63). Using theWeyl relations, and recalling f preserves symplectic forms, we
obtain α f is a ∗-homomorphism. Its uniqueness is clear, since any ∗-homomorphism
is linear, and (11.63) determine α f for they fix its values on given bases. Injectivity
goes like this: if α(

∑
i ai W (ui )) = 0 (summing over an arbitrary, finite, set) then∑

i aiα(W (ui )) = 0, i.e.
∑

i ai W ′( f (ui )) = 0, where f (ui ) �= f (u j ) for i �= j as
f is one-to-one (σ ′ is weakly non-degenerate). Since the W ′(u′) are linearly inde-
pendent, ai = 0 for every i and α(

∑
i ai W (ui )) = 0 implies

∑
i ai W (ui ), as we

wanted. �

Remarks 11.49 (1) In the sense of (a), (c) above, the pair (X, σ ) and Eq. (11.61)
determine theWeyl ∗-algebraW (X, σ ) of (X, σ ) universally (up to ∗-isomorphisms).
Any concrete Weyl ∗-algebra of (X, σ ) made of operators in B(H), for a complex
Hilbert space H �= {0} and where the involution is the Hermitian conjugation, is
sometimes called a realisation of the Weyl ∗-algebra of (X, σ ). In other words, in
view of Theorem11.48(c), a realisation of the Weyl ∗-algebra of (X, σ ) over H is
an injective linear map φ : W (X, σ ) → B(H) which preserves the product and the
involution, and maps W (0) to an operator φ(W (0)) that defines the identity element
on the image of φ. In formulas,φ(W (u))φ(W (0)) = φ(W (0))φ(W (u)) = φ(W (u))

for every u ∈ X. We henceforth use the notation WH(u) := φ(W (u)).
(2) If φ : W (X, σ ) → B(H) is a realisation ofW (X, σ ) overH, it is in general false
that the identity operator I : H → H coincides with the neutral element WH(0) of
the ∗-algebra WH(X, σ ) := φ(W (X, σ )), though this unital ∗-algebra is isomorphic
to W (X, σ ).

Let us show a simple counterexample. Start from a realisation of W (X, σ ) on a
Hilbert space (H, (·|·)) such that WH(0) = I and consider the Hilbert space H′ :=
H ⊕ C with product 〈(ψ, z)|(ψ ′, z′)〉 = (ψ |ψ ′) + zz. A realisation of W (X, σ ) is
the unique ∗-isomorphism φ from W (X, σ ) to the ∗-algebra WH′(X, σ ) ⊂ B(H′)
generated by the operators WH′(u) := WH(u)⊕0, and such that φ(W (u)) = WH′(u)

for every u ∈ X. In this case WH′(0) is not the identity on H′, but just the orthogonal
projector onto H viewed as closed subspace of H′.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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As established in Proposition3.55, this annoying possibility is just due to the fact
that φ is not a representation of unital ∗-algebras. If, conversely, φ is a representation,
then WH(0) is the identity onH just because this is a requirement in the very definition
of ∗-algebra representation (Definition3.52).An important case are the so-calledGNS
representations, that we will encounter later. They are fundamental in formulations
of Quantum Field Theories.

We finally observe that for a Hilbert space realisation, WH(0) = I (the realisation
is a faithful representation) is equivalent to saying that all operators WH(u) are
unitary, because WH(u)WH(u)∗ = WH(u)∗WH(u) = WH(0).
(3) If φ : W (V, σ ) → B(H) is a realisation on the Hilbert space H �= {0} of the
Weyl ∗-algebra of (V, σ ) and H is irreducible under the generating set {WH(u)}u∈V,
then WH(0) = I and hence the WH(u) are unitary.

Here is the proof. Note WH(u) �= 0, for some u ∈ V, for otherwise the set of
operators W (u)would act reducibly. Since WH(u)WH(0) = WH(u) = WH(0)WH(u),
WH(0) is an orthogonal projector that commutes with every WH(u), so irreducibility
forces WH(0) = I or WH(0) = 0. The latter is impossible because it would imply
WH(u) = WH(u + 0) = WH(u)WH(0) = 0 for every u ∈ V.
(4) If φ : W (V, σ ) → B(H) is a realisation on the Hilbert space H �= {0} of the
Weyl ∗-algebra of (V, σ ), then WH(0) = I and the WH(u) are unitary precisely when
each generator WH(u) has trivial kernel {0}.

The proof is straightforward. If every WH(u) has trivial null space, the orthogonal
projector WH(0) has trivial kernel andmust coincide with the projector I . Conversely
if WH(0) = I then the WH(u) are unitary, hence their null spaces are trivial.
(5) The Weyl ∗-algebraW (V, σ ) of a symplectic vector space (V, σ ) admits a norm
rendering its Banach completion a unital C∗-algebra: this is theWeyl C∗-algebra of
(V, σ ). Take, for example, the closure of the realisation of (V, σ ) on B(L2(X, μ))

described in the proof of Theorem11.48(a). The important fact, proved in Chap. 14,
is that this C∗-algebra is determined by (V, σ ), for one can prove there is a unique
norm on a Weyl ∗-algebra satisfying the C∗-identity ||a∗a|| = ||a||2. Moreover, the
∗-isomorphism of Theorem11.48(c) extends to an (isometric) ∗-isomorphism of the
C∗-algebras.WeylC∗-algebras are but one starting point to build the quantum theory
of bosonic fields [BrRo02]. See [Str05a] for examples of (Weyl) C∗-algebras used
in QM. �

11.5.5 Proof of the Theorems of Stone–von Neumann and
Mackey

In this section we prove the Stone–von Neumann theorem as given by 11.43, and
then Mackey’s Theorem11.44. Part of the arguments are a mere reworking of what
is found in [Str05a].

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_14


11.5 Weyl’s Relations, the Theorems of Stone–von Neumann and Mackey 647

Proof of theorem 11.43 (Stone–von Neumann)Begin by observing that every operator
W (z) ∈ B(H) is non-zero: for if W (z0) = 0, for every z ∈ X with z − z0 =: v,
we would have W (z) = e

i
2 σ(z0,v)W (z0)W (v) = e

i
2 σ(z0,v)0W (v) = 0. Then H would

not be irreducible under the entire family W (z) ∈ B(H). By Definition11.47, the
set of W (z) ∈ B(H) is a generating system for the realisation of the Weyl ∗-algebra
W (X, σ ) of the symplectic vector space (X, σ ). This is given by finite combinations
of finite products of the W (z), and realised as the image of an irreducible faithful
representation π : W (X, σ ) → B(H) of (X, σ ) (notice that irreducibility forces
W (0) = I by Remark11.49(3)).

Fix a basis in X, so to associate bijectively every z ∈ X to its components
(t(z),u(z)) ∈ R

n × R
n . Consider the Hilbert space L2(Rn, dx). The family of non-

null (unitary) operators
{
exp
{

i
∑n

k=1 t (z)
k Xk + u(z)

k Pk

}}
z∈X

defines, by Proposi-

tion11.39, another realisation (irreducible faithful representation) ofW (X, σ ) and a
corresponding faithful representation Π : W (X, σ ) → B(L2(Rn, dx)). We denote
by az ∈ W (X, σ ) the generators of W (X, σ ), so that π(az) = W (z) and also

Π(az) = exp

⎧⎨
⎩i

n∑
k=1

t (z)
k Xk + u(z)

k Pk

⎫⎬
⎭ for any z ∈ X.

Suppose now there are two non-zero vectors Φ0 ∈ H, Ψ0 ∈ L2(Rn, dx) such that:
(i) D := π(W (X, σ ))Φ0 is dense in H, (ii) D1 := Π(W (X, σ ))Ψ0 is dense in
L2(Rn, dx), and (iii):

(Φ0 |π(a)Φ0 ) = (Ψ0 |Π(a)Ψ0 ) , a ∈ W (X, σ ). (11.64)

Let us show that, consequently, there is a linear map S̃ : D → D1

S̃π(a)Φ0 = Π(a)Ψ0 , a ∈ W (X, σ ), (11.65)

extending by continuity to a Hilbert isomorphism H → L2(Rn, dx) satisfying
(11.59), and hence proving the theorem.

The mapping is well defined: suppose π(a)Φ0 = π(b)Φ0. For (11.65) to be well
defined we must have Π(a)Ψ0 = Π(b)Ψ0. From π(a)Φ0 = π(b)Φ0 follows, for
any c ∈ W (X, σ ):

(π(c)Φ0|π(a)Φ0) = (π(c)Φ0|π(b)Φ0) .

Sinceπ is a representation of ∗-algebras, soπ(c∗) = π(c)∗ andπ( f )π(d) = π( f d),
the displayed equation is equivalent to

(
Φ0|π(c∗a)Φ0

) = (Φ0|π(c∗b)Φ0
)
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and by (11.64) we have (Ψ0|Π(c∗a)Ψ0) = (Ψ0|Π(c∗b)Ψ0). Proceeding backwards,
for any c ∈ W (X, σ ):

(Π(c)Ψ0|Π(a)Ψ0) = (Π(c)Ψ0|Π(b)Ψ0) .

As Π(c)Ψ0 roams the dense space D1, necessarily Π(a)Ψ0 = Π(b)Ψ0, as required.
Therefore S̃ in (11.65) is well defined. It is immediate to see that S̃ is linear, for
π , Π are representations. By construction S̃ preserves the inner product, and so is
isometric:

(
S̃π(a)Φ0|S̃π(b)Φ0

) = (Π(a)Ψ0|Π(b)Ψ0) =
(
Ψ0|Π(a)∗Π(b)Ψ0

)

= (Ψ0|Π(a∗)Π(b)Ψ0
) = (Ψ0|Π(a∗b)Ψ0

) = (Φ0|π(a∗b)Φ0
)

= (Φ0|π(a∗)π(b)Φ0
) = (Φ0|π(a)∗π(b)Φ0

) = (π(a)Φ0|π(b)Φ0) .

By Proposition2.47 we can extend, by linearity and continuity, the transformation
S̃ from the dense domain D to the Hilbert space, obtaining a linear map S : H →
L2(Rn, dx). The extension S stays isometric by inner product’s continuity. Similarly,
we can construct, first on the dense space D1, then on L2(Rn, dx), a linear isometry
S′ : L2(Rn, dx) → H by extending

S̃′Π(a)Ψ0 = π(a)Φ0 for any a ∈ W (X, σ ). (11.66)

Since S̃ S̃′ = ID1 , S̃′ S̃ = ID on the dense spacesD1,D , these are valid by continuity
on the extended domains: SS′ = IL2(Rn ,dx), S′S = IH. Overall, S : H→ L2(Rn, dx)

is a Hilbert isomorphism satisfying

Sπ(a)Φ0 = Π(a)Ψ0 for any a ∈ W (X, σ ). (11.67)

Invert the identity for b ∈ W (X, σ ) to obtain π(b)Φ0 = S−1Π(b)Ψ0. Substituting
in (11.67), and replacing π(a) by π(ab) = π(a)π(b) on the left and Π(a) by
Π(ab) = Π(a)Π(b) on the right, finally produces:

Sπ(a)S−1 Π(b)Ψ0 = Π(a) Π(b)Ψ0 .

The vectors Π(b)Ψ0 define a dense space in L2(Rn, dx), so

Sπ(a)S−1 = Π(a) for any a ∈ W (X, σ ) .

Picking as a ∈ W (X, σ ) a generic Weyl generator transforms the identity into
(11.59).

To end the proof we have to exhibit vectors Φ0, Ψ0 satisfying (11.64) and gen-
erating, under the respective representations, dense subspaces. Let Φ0 ∈ H be any
non-zero vector. The closed space π(W (X, σ ))Φ0 is invariant under any π(a), and

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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in particular under any π(W (z)), by construction. Since H is irreducible under these
vectors, then π(W (X, σ ))Φ0 = H, i.e. D := π(W (X, σ ))Φ0 is dense in H. A simi-
lar argument saysD1 := Π(W (X, σ ))Ψ0 is dense in L2(Rn, dx) for every non-zero
Ψ0 ∈ L2(Rn, dx). There remains to determine Φ0, Ψ0 fulfilling (11.64). Consider in
L2(Rn, dx) the vector

Ψ0(x) = ψ0(x1) · · ·ψ0(xn) = π−n/4e−|x|
2/2

where ψ0 is the first Hermite function. A straightforward calculation based on
Lemma11.31 gives

⎛
⎝Ψ0

∣∣∣∣∣∣exp
⎧⎨
⎩i

n∑
k=1

tkXk + ukPk

⎫⎬
⎭ Ψ0

⎞
⎠ = π−n/2

∫
Rn

eit·xe−|x+u|
2/2dx = e−|t|

2/4−|u|2/4

and so
⎛
⎝Ψ0

∣∣∣∣∣∣exp
⎧⎨
⎩i

n∑
k=1

tkXk + ukPk

⎫⎬
⎭ Ψ0

⎞
⎠ = e−(|t|2+|u|2)/4 , for any (t,u) ∈ R

n ×R
n.

(11.68)
If we manage to find a vector Φ0 ∈ H such that

(Φ0 |W (z) Φ0) = e−(|t(z)|2+|u(z)|2)/4 , for any z ∈ X, (11.69)

then (11.64) holds by linearity, as any Π(a) is a combination of elements Π(az) and
the corresponding π(a) is a combination (same coefficients) of elements π(az). At
this point the existence of Φ0 is warranted by the next proposition.

Proposition 11.50 Under the assumptions of Theorem11.43, if a (standard sym-
plectic) basis on X has been fixed so to map every z ∈ X to its components
(t(z),u(z)) ∈ R

n × R
n, there exists Φ0 ∈ H satisfying (11.69).

Proof First, the operators W (z) are unitary with W (0) = I , by Remark11.49(3) and
because H is W (z)-irreducible. We claim X  z �→ W (z) is continuous in the strong
topology (the regularity assumption s-lims→0 W (sz) = W (0) = I is only appar-
ently weaker than strong continuity at z = 0, since the limit might not be uniform
along directions tending to the origin). Set W ((t(z),u(z))) := W (z) in the sequel. Let
us begin by proving R

n  t �→ W ((t, 0)) and R
n  u �→ W ((0, t)) are strongly

continuous. We will prove it for R
n  t �→ W ((t, 0)) only, as the other case is

identical. Weyl’s relations imply additivity: W ((t, 0))W ((t′, 0)) = W ((t+ t′, 0)). If
e1, . . . , en are the basis vectors expressing t =∑n

k=1 tkek we can write W ((t, 0)) =
W ((t1e1, 0)) · · ·W ((tnen, 0)). Each map R  tk �→ W ((tkek, 0)) is strongly contin-
uous by regularity, i.e. s-lims→0 W (sz) = W (0) = I in Theorem11.43. Take ψ ∈ H
and let us show ||W ((t, 0))ψ − ψ || → 0 as t → 0. We have
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||W ((t, 0))ψ − ψ || =
∣∣∣∣∣
∣∣∣∣∣

n∏
k=1

W ((tkek, 0))ψ − ψ

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣
∣∣∣∣∣

n∏
k=1

W ((tkek, 0))ψ −
n−1∏
k=1

W ((tkek, 0))ψ

∣∣∣∣∣
∣∣∣∣∣

+
∣∣∣∣∣
∣∣∣∣∣
n−1∏
k=1

W ((tkek, 0))ψ −
n−2∏
k=1

W ((tkek, 0))ψ

∣∣∣∣∣
∣∣∣∣∣+ · · · + ||W ((t1e1, 0))ψ − ψ ||

= ||W ((tnen, 0))ψ − ψ || + ∣∣∣∣W ((tn−1en−1, 0))ψ − ψ
∣∣∣∣+ · · · + ||W ((t1e1, 0))ψ − ψ || .

In the last passage we used that W ((tkek, 0)) is unitary, so it preserves the norm; in
particular

∣∣∣∣∣∣

∣∣∣∣∣∣
n∏

k=1
W ((tkek , 0))ψ −

n−1∏
k=1

W ((tkek , 0))ψ

∣∣∣∣∣∣

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∣∣∣∣∣∣
n−1∏
k=1

W ((tkek , 0)) (W ((tnen, 0))ψ − ψ)

∣∣∣∣∣∣

∣∣∣∣∣∣

= ||W ((tnen, 0))ψ − ψ || .

The inequality

||W ((t, 0))ψ − ψ || ≤
n∑

k=1
||W ((tkek, 0))ψ − ψ ||

and the continuity of W ((tkek, 0))ψ for tk → 0 imply

W ((t, 0))ψ → ψ as t → 0,

working on products of intervals along the Cartesian axes as neighbourhoods of
z = 0. Therefore the function X  z �→ (φ1 |W (z) φ2) =

(
W ((t(z), 0))∗φ1 |

W ((0,u(z))) φ2
)
is continuous at z = 0 for any φ1, φ2. Hence X  z �→ W (z)

is strongly continuous everywhere, in fact

||W (z)φ − W (z0)φ||2 = ||eiσ(z0,z)/2W (z− z0)φ − φ||2

= 2||φ||2− e−iσ(z0,z)/2(φ|W (z− z0)φ)− eiσ(z0,z)/2(φ|W (z− z0)φ) → 0 as z→ z0,

for any φ ∈ H, by the Weyl relations because W (z) are unitary. We can then apply
Proposition9.31 and define

P := (2π)−n
∫
R2n

dze−|z|
2/4W (z). (11.70)

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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By construction P ∈ B(H), and Proposition9.31 implies P∗ = P:

(
φ1

∣∣P∗φ2
) = (φ2|Pφ1) = (2π)−n

∫
R2n

e−|z|
2/4(φ2 |W (z) φ1) dz

= (2π)−n
∫
R2n

e−|z|
2/4 (φ1 |W (z) φ2) dz = (φ1|Pφ2) ,

where we used

(φ2 |W (z) φ1) = (W (z)φ1 | φ2) =
(
φ1 | W (z)∗φ2

) = (φ1 | W (−z)φ2) ,

and that the measure dz and exp−|z2/4| are unchanged by the reflection z → −z.
Notice P �= 0, for otherwise

0 = (φ1|W (z′)PW (z′)φ2
) = (2π)−n

∫
R2n

e−|z|
2/4
(
φ1

∣∣W (z′)W (z)W (z′) φ2
)

dz

i.e., by Weyl’s relations:

0 = (2π)−n
∫
R2n

e−|z|
2/4eit(z

′)·t(z)−iu(z′)·u(z)
(φ1 |W (z) φ2) dz ∀z′ ∈ R

2n ,

In other terms the Fourier transform of the L1 function

z �→ e−|z|
2/4 (φ1 |W (z) φ2)

is null. Then by Proposition3.105(f) z �→ (φ1 |W (z) φ2) = 0 almost everywhere.
Since the map is continuous it must vanish everywhere, so W (z) = 0. As earlier said
this cannot be. To finish the proof we need to justify:

PW (z)P = e−|z|
2/4P . (11.71)

Indeed, choosing z = 0 in (11.71) gives PP = P , making P a non-null orthogonal
projector. If Φ0 ∈ P(H) \ {0} with ||Φ0|| = 1, as PΦ0 = Φ0, Eq. (11.71) implies,
for any z ∈ X

(Φ0|W (z)Φ0) = e−|z|
2/4 = e−(|t(z)|2+|u(z)|2)/4 .

Hence our Φ0 satisfies (11.69), as requested.
Let us conclude the proof by establishing (11.71). By definition of P , Proposi-

tion9.31(b) and Weyl’s relations give

(2π)n PW (z)P =
∫
Rn

dz′e−z
′2/4PW (z)W (z′) =

∫
R2n

dz′e−z
′2/4e−iσ(z,z′)/2PW (z+ z′) .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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Recalling (11.70) we can solve for P the integrand. By Proposition9.31:

(φ1|PW (z)Pφ2)

= 1

(2π)2n

∫
dz′dz′′e−(z′2+z′′2)/4e−iσ(z,z′)/2e−iσ(z′′,z+z′)/2 (φ1|W (z+ z′ + z′′)φ2

)
(11.72)

for any φ1, φ2 ∈ H. We have passed from an iterated integral to an integral in
the product measure using Fubini–Tonelli. This is possible because the integrand
vanishes absolutely: it decays exponentially as the product measure’s variables go
to infinity, due to the exponentials and the estimate | (φ1|W (z+ z′ + z′′)φ2

) | ≤
||φ1|| ||φ2||. Set z = (α, β), z′ = (γ ′, δ′) and z′′ = (γ, δ). The right side of (11.72)
reads:

∫
R4n

dγ dδdγ ′dδ′

(2π)2n
e−(|γ |2−|δ|2−|γ ′|2−|δ′|2)/4e−

i
2 (α·δ′−β·γ ′+γ ·β+γ ·δ′−δ·α−δ·γ ′)

× (φ1

∣∣W ((α + γ + γ ′, β + δ + δ′)) φ2
)

Changing variables to κ, ν, μ, λ ∈ R
n , where γ = (κ+μ−α)/2, γ ′ = (κ−μ−α)/2,

δ = (ν + λ − β)/2, δ′ = (ν − λ − β)/2, the integral can be computed explicitly,
because the integrals in μ, λ decouple to produce Gaussian integrals. The right-hand
side of (11.72) equals, eventually:

e−(|α|2+|β|2)/4

(2π)n

∫
R2n

dκdνe−(|κ|2+|ν|2)/4 (φ1 |W ((κ, ν)) φ2) = e−|z|
2/4(φ1|Pφ2)

which produces (11.71) since φ1, φ2 ∈ H are free. �
This concludes the proof of Theorem11.43 (Stone–von Neumann). �

Proof of theorem 11.44 (Mackey). The hypotheses (a1), (a2), (a3) are equivalent
because of Remark11.49(3), (4). With those assumptions the W (z) are unitary, with
W (0) = I . Then we can go through the proof of Proposition11.50 – which only used
that the W (z) were unitary with W (0) = I , and did not rely on the representation’s
irreducibility – and build the orthogonal projector P �= 0:

P = (2π)−n
∫
R2n

dze−|z|
2/4W (z) , for any z ∈ R

2n ,

so that every Φ0 ∈ P(H) satisfies

(Φ0|W (z)Φ0) = e−|z|
2/4 = e−(|t(z)|2+|u(z)|2)/4 ,

as we have seen. First consider the closed spaceH0 := < {W (z)P(H)}z∈X > proving
thatH0 = H. By constructionH0 is invariant underW (z). ThenH⊥0 is also invariant. If

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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H⊥0 �= {0}, working in H⊥0 as ambient Hilbert space, using the restrictions W (z)�H⊥0
(note W (0) �H⊥0 = I �H⊥0 �= 0 if H⊥0 �= {0}), we construct the unique orthogonal
projector P ′ �= 0 such that

(φ′1|P ′φ′2) = (2π)−n
∫
R2n

e−|z|
2/4
(
φ′1 |W (z) φ′2

)
dz, for any z ∈ R

2n, φ1, φ2 ∈ H⊥0 .

We know the integral on the right equals (φ′1|Pφ′2), i.e. zero, because φ′2 ∈ H⊥0 =
(P(H))⊥. Hence P ′ = 0, but this contradicts P ′ �= 0. Hence H⊥0 = {0}, and so
H0 = H.

To conclude, take a Hilbert basis {Φk}k∈I of P(H) and consider the closed spaces
Hk := < {W (z)Φk}z∈X > invariant under W (z). Notice Φk ∈ Hk , since W (0) = I ,
so Hk �= {0} for any k ∈ I . By (11.71):

(Φ j |W (z)Φk) = (Φ j |PW (z)PΦk) = e−|z|
2/4(Φ j |PΦk) = 0 if j �= k .

Wehave found closed subspacesH j �= {0} that aremutually orthogonal (in particular
j varies in a countable set if H is separable). By construction, as

< {W (z)P(H)}z∈X > = H

and {Φk}k∈I is a basis in P(H), the space of finite combinations of vectors in the
mutually orthogonal Hk is dense in H. Therefore H is the Hilbert sum⊕k∈IHk of the
closed spaces Hk , k ∈ I (Definition3.67). To finish, on every Hk we can replicate
the proof of Stone–von Neumann withH replaced byHk and π : W (X, σ ) → B(H)

replaced by πk : W (X, σ ) → B(Hk), restriction of the image of each operator
in π(W (X, σ )) to Hk . The only difference is that now πk(W (X, σ ))Φk is dense
in Hk by assumption, whereas in the theorem it descends from the irreducibility
of πk(W (X, σ )). Therefore the restriction πk(W (X, σ )) of π(W (X, σ )) to Hk is
isomorphic – under a suitable Hilbert space isomorphism Sk : Hk → L2(Rn, dx) –
to the standard representation Π of the Weyl algebra on L2(Rn, dx) such that

Skπk(a)S−1k = Π(a) , ∀a ∈ W (X, σ ) .

As Π is irreducible, so must be every πk . This ends the proof. �

11.5.6 More on “Heisenberg’s Principle”: Weakening the
Assumptions and the Extension to Mixed States

The formalism developed to prove the Stone–von Neumann theorem allows to gen-
eralise Theorem11.33, i.e. Heisenberg’s principle, by taking weaker assumptions

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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on the set to which ψ belongs (the existence of (Xi )ψ , (Pj )ψ suffices). It also
enables to extend it to cover mixed states. Let us begin with a technical lemma.

Lemma 11.51 Let Xi , Pj be the position and momentum operators of axiomA5, and
define X ′

i := Xi + ai I , P ′
j := Pj + b j I , with ai , b j ∈ R. If ψ, φ ∈ D(Xi ) ∩ D(Pj )

then the CCRs
(X ′

iψ |P ′
jϕ)− (P ′

jψ |X ′
iϕ) = i�δi j (ψ |ϕ) (11.73)

hold, here written using quadratic forms.

Proof Notice D(Xi ) = D(X ′
i ), D(Pj ) = D(P ′

j ). In case ai , b j = 0, consider
(11.35), so

(W ((−t, 0))ψ |W ((0,u))ϕ )− (W ((0,−u))ψ |W ((t, 0))ϕ )

= (1− e−i(t·u)/2) (W ((−t, 0))ψ |W ((0,u))ϕ ) .

Using Stone’s theorem (X ′
iψ |P ′

jϕ)− (P ′
jψ |X ′

iϕ) = i�δi j (ψ |ϕ). Add ai I and b j I to
the operators inside the inner products on the left. Since the Xi , Pj are Hermitian,
the terms on the right cancel out, yielding (11.73) in the general case. �

Theorem 11.52 Let Xi and Pj be the position and momentum operators of axiom
A5. If the unit vector ψ ∈ HS is such that (Xi )ψ and (Pi )ψ exist, then Heisen-
berg’s principle holds:

(Xi )ψ(Pi )ψ ≥ �/2 .

Proof By part (i) in Proposition11.27(a) if (Xi )ψ and (Pi )ψ are defined then
ψ ∈ D(Xi ) ∩ D(Pi ). Referring to Lemma11.51 we choose ai = −(ψ |Xiψ), b j =
−(ψ |Piψ). By definition of standard deviation (11.11) and Theorem9.4(f) we have
(Xi )

2
ψ =

∫
(λ − ai )

2dμ
(A)
ψ (λ) = ||X ′

iψ ||2. Similarly, ||P ′
i ψ ||2 = (Pi )

2
ψ . On the

other hand (for any ai , bi ) from (11.73) we infer:

||X ′
iψ ||||P ′

i ψ || ≥ |(X ′
iψ |P ′

i ψ)| ≥ |I m(X ′
iψ |P ′

i ψ)| = �

2
. (11.74)

Since (Xi )ψ(Pi )ψ = ||X ′
iψ ||||P ′

i ψ ||, the claim is proved. �

So now we can extend “Heisenberg’s principle” to mixed states as well.

Theorem 11.53 Let Xi and Pj be the position and momentum operators of axiom
A5. If ρ is a mixed state for the spinless particle such that (Xi )ρ and (Pi )ρ exist,
then:

(Xi )ρ(Pi )ρ ≥ �

2
.

Proof Let us notice, preliminarily, that if (Xi )ρ and (Pi )ρ can be defined, then
also 〈(Xi )

k〉ρ and 〈(Pi )
k〉ρ , k = 0, 1, 2, are defined, as is easy to see using Defin-

ition11.25, because measures are finite. Furthermore, Ran(ρ) ⊂ D(Xi ) ∩ D(Pi )

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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by (ii) in Proposition11.27(b), as Ran(ρ1/2) ⊃ Ran(ρ). Set X ′
i := Xi + ai I ,

P ′
i := Pi + bi I , and choose ai := −〈Xi 〉ρ , bi := −〈Pi 〉ρ . A direct computation

relying on Definition11.25 tells that (Xi )
2
ρ = 〈(X ′

i )
2〉ρ and (Pi )

2
ρ = 〈(P ′

i )
2〉ρ .

Write ρ = ∑n pnψn(ψn| ) in a basis of unit eigenvectors. We argue as in Propo-
sition11.27 when we proved (11.19). As A = X ′

i , P ′
i and f (λ) = λ, and since

μ(A)
ρ (E) = tr(P (A)(E)ρ) =∑n pnμψn (E), using that pn ≥ 0 we can prove:

∫
| f (λ)|2dμ

(A)
ρ (λ) =

+∞∑
n=0

pn

∫
| f (λ)|2dμ

(A)
ψn

(λ) =
+∞∑
n=0

pn( f (A)ψn | f (A)ψn) ≤ +∞ ,

where ψn ∈ D(X ′
i ) ∩ D(P ′

i ) = D(Xi ) ∩ D(Pi ), because ψn ∈ Ran(ρ) ⊂ D(Xi ) ∩
D(Pi ). Therefore:

(Xi )
2
ρ = 〈(X ′i )2〉ρ =

∑
n

pn(X ′i ψn |X ′i ψn) and (Pi )
2
ρ = 〈(P ′i )2〉ρ =

∑
m

pm(P ′i ψm |P ′i ψm) .

Schwarz’s inequality plus (11.74) imply the claim, because

〈(X ′i )2〉1/2ρ 〈(P ′i )2〉1/2ρ ≥
∑

n
p1/2n p1/2n (X ′i ψn |X ′i ψn)1/2(P ′i ψn |P ′i ψn)1/2 ≥

∑
n

pn
�

2
= �

2

(note pn ≥ 0 and
∑

n pn = 1). �

11.5.7 The Stone–von Neumann Theorem Revisited:
Weyl–Heisenberg Group

Our approach to the proof of Stone–von Neumann relies on the structure of (Weyl)
∗-algebra. There is, however, another point of view, due toWeyl, in which theWeyl–
Heisenberg group plays the algebra’s role. The Weyl–Heisenberg group in R

2n+1,
which we shall indicate by H(n), is the simply connected Lie group diffeomorphic
to R

2n+1 with product law

(η, t,u) ◦ (η′, t′,u′) =
(

η + η′ + 1

2

n∑
i=1

ui t
′
i − u′i ti , t + t′ , u+ u′

)

(as usual t ∈ R
n , u ∈ R

n whilst η ∈ R). A direct computation of its Lie algebra
shows there is a basis of 2n + 1 generators xi , pi , e, i = 1, 2, . . . , n that satisfy:

[xi ,p j ] = δi je , [xi , e] = [pi , e] = 0 , i, j = 1, 2, . . . , n .

The linear mapping determined by e �→ −i I , xk �→ −i Xk , pk �→ −i Pk is an
isomorphism from the Heisenberg Lie algebra to the Lie algebra of finite real com-
binations of the conjugate self-adjoint operators −i I,−i Xk,−i Pk , restricted to the
common, dense and invariant domainS (Rn), with commutator [·, ·] as Lie bracket.
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This map induces a Lie group isomorphism. By direct inspection, in fact, if the
operators W ((t,u)) are defined by Proposition11.39, the map

R
2n+1  (η, t,u) �→ eiηW ((t,u)) =: H((η, t,u)) (11.75)

is an irreducible unitary representation of the (2n+1)-dimensionalWeyl–Heisenberg
group on L2(Rn, dx) (not faithful since H(η, t,u) = H(η + 2kπ, t,u) if k ∈ Z).
Moreover,

s- lim
s→0

H(s(η, t,u)) = I for any given (η, t,u) ∈ R
2n+1 . (11.76)

Conversely,

Proposition 11.54 An irreducible unitary representation of the Weyl–Heisenberg
group H(n)  (η, t,u) �→ H((η, t,u)) on the non-trivial complex Hilbert space H,
satisfying (11.76), has the form (11.75):

H((η, t,u)) = eicηW ((t,u)) ,

where the W ((t,u)) satisfy the Stone–von Neumann Theorem11.43 with σ replaced
by cσ and the constant c ∈ R \ {0} is determined by H((1, 0, 0)) = eic I .

Representations H, H ′ over respective Hilbert spaces H,H′ with different values
of c are unitarily inequivalent: there is no unitary operator U : H → H′ such that
U H((η, t,u))U−1 = H ′((η, t,u)) for every (η, t,u) ∈ H(n).

Proof The centre R of the Weyl–Heisenberg group is represented by a unitary
Abelian subgroup. As the elements of R commute with the Weyl–Heisenberg group,
every element H((η, 0, 0)) commutes with the whole representation. But the lat-
ter is irreducible, so Schur’s lemma forces H((η, 0, 0)) = χ(η)I , with χ(η) ∈ C,
and |χ(η)| = 1 as H((η, 0, 0)) is unitary. Eventually, since η → H((η, 0, 0)) is
strongly continuous, Stone’s theorem implies χ(η) = eicη for every η ∈ R and
some constant c so that H((1, 0, 0)) = eic I in particular. The group’s commuta-
tion rules require c �= 0, but also ensure that the W ((t,u)) := e−icη H((η, t,u)) =
H((η, 0, 0))−1H((η, t,u)) = H((1, 0, 0))−1H((0, t,u)) obey Weyl’s relations as
in Theorem11.43 with σ replaced by cσ , the proof being elementary.

If H and H ′ are representations associated to constants c �= c′, there is no unitary
operator U such that U H(u)U−1 = H ′(u) for every u, because choosing u =
(η, 0, 0) we would find eicη = eic′η for every η ∈ R, which is impossible. �

The absolute value of the constant c equals Planck’s constant �, as will become
evident in the next theorem. The fact that the sign of c can be reversed and we
still have a representation of the Weyl–Heisenberg group is related to the fact that
the operation of time reversal (xi → xi , pi → −pi ) produces a representation of
the Weyl–Heisenberg group. In this framework we have an alternative statement of
Stone–von Neumann, first proved by Weyl.
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Theorem 11.55 Every irreducible unitary representation of the Weyl–Heisenberg
group H(n) satisfying (11.76) is unitarily equivalent to the representation:

R
2n+1  (η, t,u) �→ eicηW ((t,u))

on L2(Rn, dx), where the W ((t,u)) are the operators of Proposition11.39 but the
Pk now are:

(Pkψ) (x) = −ic
∂ψ

∂xk
(x)

for some constant c �= 0.

Proof It is an immediate consequence of Proposition11.54 and the first identity in
(11.35). �

Remarks 11.56 (1)TheStone–vonNeumann theoremproves that the non-relativistic
elementary particle with spin 0 is described by an irreducible representation of a cer-
tain Lie group. The same happens for particles with spin, charge, etc., provided one
picks the right group. Elementary systems are therefore described by irreducible rep-
resentations of a group, which is typically related to the symmetries of the physical
system. This point of view has proved – thanks to Wigner in particular – incredibly
rewarding for the development of relativistic quantum theories, where irreducible
representations of the Poincaré group are employed to define elementary particles,
and irreducibility is a characteristic feature of elementary systems.
(2) There exist more or less rigorous formulations of the Stone–von Neumann theo-
rem that rely only on Heisenberg’s relations (11.28) and do not need exponentials.
To set up these formulations, though, the technical assumptions on domains (spaces
of analytic vectors) and on the existence of self-adjoint extensions are neither obvi-
ous, nor is their physical meaning straightforward. Beside the foundational work of
E. Nelson [Nel59], an important and thorough result is that of J. Dixmier [Dix56],
which we shall return to in the next chapter. In a nutshell, the theorem, generalised to
an arbitrary finite dimension, states that if P , Q are symmetric on a dense invariant
space on which Heisenberg’s relations hold, and on that same space P2 + Q2 is
essentially self-adjoint, then P , Q give a strongly continuous representation of the
Weyl algebra on the Hilbert space; hence, up to isomorphisms, P , Q have the usual
form on a (Hilbert sum of spaces) L2(R, dx). �

11.5.8 Dirac’s Correspondence Principle, Weyl’s Calculus
and Deformation Quantisation

The formulation ofQMwehave presented leaves open the question of how to pick out
operators on H that correspond to observables of physical interest, other than posi-
tion and momentum. Several respected authors have written much about procedures
allowing to pass from relevant classical observables to major quantum observables.
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But that is somewhat like fighting a losing battle: from a physical perspective Quan-
tumMechanics is ‘more central’ than Classical Mechanics, whence the latter should
be seen as a limiting case of the former. Even this fact is by no means easy to prove,
apart in a few general cases: one such is Ehrenfest’s theorem, whose precise mathe-
matical formulation was found only recently [FrKo09]. Therefore one expects there
should be quantum entities, observables in particular, without classical counterparts
(for instance the “parity” of elementary particles, and in many respects also the spin).

That said, certain quantum observables for the spinless particle will, in principle,
be “functions” of the observables Xi , Pi . The common belief is that the quantum
quantity corresponding to the classical F(x, p) should look something like F(X, P).
But going down this road is a real challenge, more than what mathematics prospects,
as already partially discussed (see Sect. 11.3.2). In fact: (1) is it not at all obvious
what meaning one should assign to a function of X and P when these operators have
non-commuting spectral measures (in the commuting case there are ways out that
use joint measures, like (11.3)); (2) naïve recipes in this direction do not produce
self-adjoint, not even symmetric, operators when the operators do not commute.

For the sake of clarity, let us consider the classical quantity x · p.Which observable
– i.e. self-adjoint operator – should it correspond to? Passing to the spectral measures
is ill-advised, because they do not commute. So let us try to use the operators them-
selves, restricted to an invariant and dense subspace where they are both defined.
The hope is to produce an essentially self-adjoint operator, or at least symmetric, and
then in some way or another choose among its self-adjoint extensions (if any at all,
in case the operator is symmetric). The tentative answer:

“x · p corresponds to X · P(=∑n
i=1 Xi Pi )”

is totally inadequate, even if we view the operators on the invariant dense space
S (R3). That is because X · P is not symmetric on S (R3), for Xi and Pi do not
commute (exercise). Nor would it make sense to seek self-adjoint extensions of X ·P .

Another possibility is to associate to x · p the symmetric operator (X ·P+P ·X)/2
defined on S (R3), and study its self-adjoint extensions. When examining more
complicated situations, like x2

k pk , this recipe reveals itself very ambiguous, because
a priori there are several possibilities: (X2

k Pk + Pk X2
k )/2 is symmetric on the domain

S (R3), but also Xk(Xk Pk+ Pk Xk)/4+(Xk Pk+ Pk Xk)Xk/4 is, and there are others.
These choices correspond to “symmetrised” products, of sorts, of (non-commuting)
operators, that should produce an operator that is at least symmetric.

A criterion, helpful but not decisive to solve the issues raised, was found by
Dirac, and goes under the accepted name of “Dirac’s correspondence principle”. A
short but clear technical analysis of Dirac’s correspondence principle can be found
in [Str12]. Here we shall only consider some elementary issues. To present Dirac’s
correspondence principle, let us recall that a Lie algebra (V, [·, ·]) is a vector space
(here, over R) equipped with a skew-symmetric bilinear map [·, ·] : V × V → V,
called a Lie bracket, that satisfies the Jacobi identity:

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 , for any u, v, w ∈ V.
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In studying the phase space F of the classical particle (although the setup is fully
general), Dirac considered the real vector space G (F ) of sufficiently regular maps
F → R with Poisson bracket:

{ f, g} :=
∑

i

∂ f

∂xi

∂g

∂pi
− ∂g

∂xi

∂ f

∂pi
, f, g ∈ G (F ) .

He observed that (G (F ), {·, ·}) is a Lie algebra. In particular the CCRs:

{xi , p j } = δi j

hold. These equations are Heisenberg’s relations once we substitute xi → Xi , pi →
Pi and {·, ·} → −i�−1[·, ·]. The idea behind “Dirac’s correspondence principle” is
the following.

Let f̂ denote the quantum analogue (an operator at least symmetric, and defined
on a dense invariant domain, irrespective of the specific quantity) of the generic
classical quantity f ∈ G (F ). Under Dirac’s correspondence, if

h = { f, g}

for classical f, g, h ∈ G (F ), the corresponding f̂ , ĝ, ĥ in the quantum realm satisfy

ĥ = −i�−1[ f̂ , ĝ] .

Even though it is not very often declared explicitly, it is also assumed that the map
f �→ f̂ is linear and that the constant function 1 is mapped to the identity operator.
Just as an example, consider the usual classical particle. The components of the
classical angular momentum

li =
3∑

j,k=1
εi jk x j pk

correspond to

Li =
3∑

j,k=1
εi jk X j Pk ,

which are essentially self-adjoint operators on S (R3). The classical commutation
relations

{li , l j } =
3∑

k=1
εi jklk
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have quantum counterparts onS (R3):

[Li , L j ] = i�
3∑

k=1
εi jk Lk .

Dirac’s principle could be explained for observables corresponding to the generators
of unitary transformations in a symmetry group of the system; these, though, do not
exhaust all possible observables (all this might be more enlightening after reading
the book’s final three chapters). In that case it is only natural to request that (a) the
Lie algebra of the symmetry group, (b) the Lie algebra of the unitary representation
of transformations on the quantum system, and (c) the Lie algebra of generators of
the group of classical canonical transformations that correspond to symmetries of
the classical system, be all isomorphic.

Although we will not push the study any further, we have to mention that serious
technical hurdles crop up if one pursues Dirac’s idea literally. Suppose, in particular,
of working with polynomial functions of arbitrarily large degree in the canonical
variables xi , p j . Then [Stre07] it is not possible to define a “symmetrised prod-
uct” of self-adjoint operators corresponding to canonical variables (so to produce
operators that are at least symmetric) that does not depend on the degree and that
yields the isomorphism f �→ f̂ . More generally, the Groenewold—van Hove
theorem establishes that the Lie algebra P of real polynomials in the variables
(x1, . . . , xn, p1, . . . , pn) ∈ R

2n equipped with the canonical Poisson bracket {·, ·}
has no quantisation map: this would be a linear map Q : h �→ ĥ from P to a vec-
tor space of symmetric operators defined on a common invariant and dense domain
in some Hilbert space H, satisfying some natural requirements (for a survey see
[Got99]). In particular Q(1) = I and, obviously,

[Q( f ), Q(g)] = i�Q({ f, g}) (11.77)

as assumed by Dirac’s correspondence principle.
In spite of the inherent difficulties of Dirac’s original principle, some of the under-

lying ideas have found a rigorous treatment within quantisation procedures called
Weyl quantisation or Weyl calculus (in particular see [Jef04], [ZFC05], [Gra04] and
[DA10]). The following formula, proved byWeyl and based on the Fourier transform,
tells how to associate to a function f = f (x1, . . . , xn, p1, . . . , pn) the operator

f (X1, . . . , Xn, P1, . . . , Pn)

:= 1

(2π)2n

∫
R2n

exp

⎧⎨
⎩−i

n∑
k=1

tkXk + ukPk

⎫⎬
⎭ f̃ (t1, . . . , tn, u1, . . . , un)dtdu .

This expression is a function of the operators X1, . . . , Xn, P1, . . . , Pn , f̃ is the
Fourier transform of f , and the integral is meant in the sense of Proposition9.31,

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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assuming f is suitable, e.g. a Schwartz function on R
2n . By using duality theorems

the definition extends to Schwartz distributions f , for which also polynomial func-
tions can be considered (see Sect. 2 in [Jef04] for a brief and precise technical account
of Weyl calculus, and Chap.1 for other, related procedures). Weyl’s procedure does
provide operators that can be viewed as functions of the non-commuting Xk , Pk ,
but still has problems. First of all, it maps real functions to self-adjoint operators,
but it does not preserve positivity (positive functions are not mapped, in general, to
positive operators). Furthermore, it maps the Poisson bracket of two polynomials to
the commutator of the corresponding functions of operators only if the polynomials
are at most quadratic.

Deformation quantisation [BFFL78] provides another interesting way out, and
of different nature. It keeps the space of classical observables P, but deforms the
classical commutative product · to a quantum noncommutative product ∗ by means
of a (formal) power series in � of the form

f ∗ g = f · g + �i{ f, g} + �
2G2( f, g)+ · · · . (11.78)

Within this picture Q( f ) = f , but condition (11.77) is weakened into

[Q( f ), Q(g)] = f ∗ g − g ∗ f = i�Q({ f, g})+ O(�2) , (11.79)

and the Groenewold–van Hove obstruction is avoided.

Remark 11.57 Expression (11.78) suggests that in the classical limit � → 0 the
quantum noncommutativity of observables disappears, but a relic of the noncommu-
tative structure survives in the classical Poisson structure. �
In conclusion, despite interesting and remarkable technical attempts, the broad valid-
ity of Dirac’s correspondence principle is shaky. Its many snags are critical, appar-
ently inescapable and borne by the attempt to provide a serious framework to Dirac’s
original idea, even in its most rigorous versions such as Weyl’s calculus. That said,
the extension of Dirac’s idea to deformation quantisation seems to be very fruitful
also in Quantum Field Theory [BrFr09].

Exercises

11.1 Prove that if A : D(A) → H is closable and affiliated to the von Neumann
algebra R, then A is affiliated to R.

Hint. It is sufficient to prove that U Ax = AU x for every x ∈ D(A) and every
U ∈ R′. To this end, consider x ∈ D(A) and a sequence D(A)  xn → x such that
Axn = Axn → Ax , then use the fact that A is closed and U continuous.

11.2 Prove that, if A : D(A) → H is densely defined and affiliated to the von
Neumann algebra R, then A∗ is affiliated to R.

http://dx.doi.org/10.1007/978-3-319-70706-8_1
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Solution. As U A ⊂ AU , taking adjoints gives A∗U ∗ ⊃ U ∗A∗, since U ∗ is a
generic unitary element of R′, and the thesis is proved.

11.3 Prove Proposition11.8.
Proposition. Let R be a von Neumann algebra over the complex Hilbert space H
and A : D(A) → H a closed operator with D(A) ⊂ H dense. The following facts
are equivalent.
(a) AηR.
(b) If A = V P is the polar decomposition of A, then

(i) V ∈ R,
(ii) PηR.

If A is self-adjoint, (a) and (b) are equivalent to
(c) the PVM of A satisfies P (A)

E ∈ R for every Borel set E ⊂ R.
If A ∈ B(H), then (a) and (b) are equivalent to
(d) A ∈ R.

Solution. (a)⇔ (b). If (a) holds, that is A = V P is affiliated toR, thenU A = AU
for every U ∈ R′ unitary. Taking adjoints gives A∗U ∗ = U ∗A∗ which, as R′ is ∗-
closed, means U A∗ = A∗U for every U ∈ R′ unitary. Consequently U A∗A =
U A∗U ∗U A = A∗AU . In other words U ∈ R′ commutes with the operator A∗A
which is self-adjoint (Theorem10.36). Due to Theorem9.41(iii), U commutes with
the PVM of A∗A and with every function f (A∗A). In particular U commutes with
P = √

A∗A, which is therefore affiliated to R. Notice that U P = PU implies in
particular that U (Ran(P)) ⊂ Ran(P) and U (K er(P)) ⊂ K er(P). From the polar
decomposition A = V P and from U A = AU we also have U V P = V PU , so
that U V P = V U P . This means U V x − V U x = 0 if x ∈ Ran(P) and also x ∈
Ran(P) by continuity. However H = K er(P)⊕ Ran(P) and K er(P) = K er(V )

(Theorem10.39(b) where V is called U ). We conclude that U V − V U = 0 for
every U ∈ R′. Let Q ∈ R′ be an orthogonal projector. Then U := i Q − i(I − Q)

is unitary and belongs to R′. The condition U V = V U immediately produces
QV = V Q, so we conclude that V commutes with every orthogonal projector
of R′. Therefore, exploiting Proposition7.61 and the fact that S′′′ = S′′ we find
V ∈ (LR′(H))′ = (LR′(H))′′′ = (R′)′ = R. We have established (a) ⇒ (b). If,
conversely, (b) is true and U ∈ R′, then U A = U V P = V U P = V PU = AU , so
(b)⇒ (a).
(a)⇔ (c). Suppose that A = A∗. The operator A is affiliated toR iff U A = AU for
every U ∈ R′. Theorem9.41(iii) guarantees that this is equivalent to the fact that the
PVMs of A and U commute. This concludes the proof that (a)⇔ (c).
(d)⇔ (a). If A ∈ B(H), then A ∈ R⇒ A is affiliated toR immediately. If A ∈ B(H)

is affiliated toR, by decomposing A = B + iC with B, C ∈ B(H) self-adjoint, and
using the fact that A∗ is also affiliated to R, both B and C turn out to be affiliated
to R. Now (c) proves that the spectral measures of B, C belong to R. Since R is
closed in the strong operator topology, this entails that B, C (which are strong limits
of linear combinations of orthogonal projectors inR) stay inR. Hence A = B+ iC
stays in R as well.

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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11.4 Prove that, if dim(H) = n < +∞, there are no operators A, B : H→ H such
that [A, B] = cI for any c ∈ C \ {0}. (Do not use Proposition11.32.)

Solution. If such operators A, B existed, onewould have 0 = tr(AB)−tr(AB) =
tr(AB)− tr(B A) = tr([A, B]) = tr(cI ) = nc.

11.5 Consider a particle moving on the real line, and suppose the pure state rep-
resented by the differentiable function ψ ∈ D(X2) ∩ D(P2) ∩ D(X P) ∩ D(P X),
with ||ψ || = 1, satisfies (X)ψ(P)ψ = �/2. Prove

ψ(x) = (π�γ )−1/4ei
〈P〉ψ x

� e−
(x−〈X〉ψ )2

2�γ

for some γ > 0.

Hint. We refer to the proof of Theorem11.33, and note that we can have
(X)ψ(P)ψ = �/2 only if ||X ′ψ ||||P ′ψ || = |(X ′ψ |P ′ψ)|, plus Re(X ′ψ |P ′ψ) =
0. The first condition implies, by Proposition3.3(i), that X ′ψ = cP ′ψ for some
c ∈ C. Since σp(X) = ∅ and ψ �= 0, the second condition implies Re(c) = 0.
Solving the differential equation X ′ψ = i I m(c)P ′ψ , and using ||ψ || = 1, leads to
the required expression for ψ .

11.6 Prove that a symplectic linear map f : (X, σ ) → (X′, σ ′) is one-to-one.

Solution. Remember that symplectic forms are weakly non-degenerate, and
f (x) = 0⇒ σ(y, x) = σ ′( f (y), 0) = 0 for any y ∈ X so that x = 0.

11.7 Consider the Hilbert space H := L2([a, b], dx) and the self-adjoint operator
X on H defined by (Xψ)(x) := xψ(x), for any ψ ∈ H such that Xψ ∈ H. Prove
there is no self-adjoint extension P of the symmetric operator −i d

dx , defined on
the subspace of C1 maps either vanishing, or periodic, at the boundary of [a, b], so
that the one-parameter unitary groups U (u) := eiu X , V (v) := eivP satisfy Weyl’s
relations: U (u)V (v) = V (v)U (u)eiuv for any u, v ∈ R.

Hint. First note that, trivially, V (sv), U (su) → I in strong sense, as s →
0, because one-parameter unitary groups generated by self-adjoint operators are
strongly continuous. There are various ways to solve the exercise. For example
we can prove σ(X) = [a, b]. This is impossible if P as above exists, because by
Theorem11.45 there should be a unitary operator S mapping X and P to the opera-
tors on L2(R, dx) of axiomA5 (passing from R

3 to R
1 in the obvious way). Another

possibility is to split L2([a, b], dx) in a Hilbert sum of closed, X - and P-invariant
spaces, on each of which there is the aforementioned unitary operator S. In either
case we can prove σ(X) = σ(SX S−1) = R �= [a, b].
11.8 Refer to the proof of Proposition11.39 and adapt the definitions of A, A� by
considering L2(R, dx)with Hermite functions {ψn}n∈N as basis, and the Bargmann–
Hilbert space B1 (see Example3.32(6)) with entire functions {un}n∈N as basis:

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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un(z) := zn

√
n! for any z ∈ C.

Call Segal–Bargmann transformation the unitary operator

U : L2(R, dx) → B1

determined by Uψn := un , n = 0, 1, 2, . . .. Prove

U A�U ∗ = z and U AU ∗ = d

dz
(11.80)

over the dense spans of finite combinations of elements of the two bases.

11.9 On the Bargmann–Hilbert space B1 (see Example 3.32(6)), consider

K0 := z
d

dz
,

defined on D(H0) = { f ∈ B1 | zd f/dz ∈ B1}. Prove that it is essentially self-adjoint
and find its spectrum. Does 2K0 + I have any physical meaning?

Hint. Prove it is symmetric, and show {un}n∈N is an eigenvector basis of H0 (hence
of analytic vectors). Up to a factor, 2K0 + I is the Hamiltonian of the harmonic
oscillator.

http://dx.doi.org/10.1007/978-3-319-70706-8_3


Chapter 12
Introduction to Quantum Symmetries

Mathematical sciences, in particular, display order, symmetry
and clear limits: and these are the uppermost instances of
beauty.

Aristotle

This chapter continues in the description of the mathematical structure of Quantum
Mechanics, by introducing fundamental notions and tools of great relevance.

Section one is devoted to defining and characterising quantum symmetries. We
will present examples, discuss what happens in presence of superselection rules,
and define Kadison symmetries and Wigner symmetries. We shall then prove the
theorems of Wigner and Kadison, which show that the two notions of symmetry
actually coincide, and manifest themselves via unitary or anti-unitary operators.

In section two we will address the problem of representing symmetry groups, by
introducing projective representations, projective unitary representations and cen-
tral U (1)-extensions of a (symmetry) group. A part of the section will be in particular
dedicated to topological groups and the study of strongly continuous projective uni-
tary representations. We will examine the special case of the Abelian group R, that
has important applications in QM. Next, after recalling the basics on Lie groups and
Lie algebras, we will discuss key results due to Bargmann, Gårding and Nelson (and
a few generalisations thereof) about projective unitary and unitary representations of
Lie groups. We will consider the Peter–Weyl theorem on strongly continuous uni-
tary representations of compact Lie groups (or better, compact Hausdorff topological
groups).

Section three will present and discuss several physically important examples. As
an instance of primary importance in physics, we will study unitary representations
of the symmetry group SO(3) in relationship to the spin. Eventually we will apply
the machinery to the Galilean group, and prove Bargmann’s superselection rule of
the mass.

© Springer International Publishing AG 2017
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12.1 Definition and Characterisation of Quantum
Symmetries

A truly crucial notion in QM, also in view of the subsequent developments in Quan-
tum Field Theories, is that of symmetry of a quantum system. There are two ideas
of symmetry in quantum physics: one is dynamic and concerns conserved quantities
under temporal evolution, while the other, more elementary, one does not involve
temporal evolution. In this first section we will deal with the second kind only, and
tackle the dynamic type in the next chapter.

Consider a physical system S described on the Hilbert space HS (not necessarily
separable in this context), and denote byS(HS) the space of states and bySp(HS) the
space of pure states. When we act by a transformation g on S we alter its quantum
state. To the physical transformation g there corresponds a map γg : S(HS) →
S(HS) of states, or γg : Sp(HS) → Sp(HS) if we restrict to pure states. The
relationship between g and γg is not relevant at present, and we will take it for
granted; at any rate, it will depend upon the description of S. We shall call γg a
symmetry of the system if it obeys certain conditions. Abusing the terminology we
will often say g is a symmetry of S. Two are the requisites for γg to be a symmetry:
Sym1. γg must be bijective,
Sym2. γg should preserve some mathematical structure of S(HS) or Sp(HS). For
the moment we will not specify which structure exactly, although this will have a
precise physical interpretation.
In physics, requisite Sym1 can actually be forced upon the transformation g acting
on the system, and corresponds to asking that g be reversible, in other words (i) there
must exist an inverse transformation g−1, associated to γ −1

g : S(HS) → S(HS), that
takes back to the original state, and (ii) any quantum state should be reachable via
γg , by choosing the initial state suitably.

The differences between the several symmetry notions known depend on the
interpretation of condition Sym2, i.e. on the γg-invariant structure. There are at
least two possible choices. The simplest structure that the map can preserve is the
convexity of the space of states, physically corresponding to the fact that a state arises
from mixing states with certain statistical weights. Symmetry operations modify the
constituent states, but do not change the weights. Quantum symmetries of this sort
were studied by Kadison [Kad51], and are nowadays called “Kadison symmetries”.
Another type, due to Wigner [Wig59], refers to functions onSp(HS). For these one
requires that the metric structure of the projective space of rays be preserved. We
will call them “Wigner symmetries”. In the language of physics Wigner symmetries
modify pure states but do not change the transition probabilities of pure pairs.

As we shall see later, the symmetries of Kadison and Wigner have a dual action
on the observables of the theory. In this sense, symmetries can be viewed as bijec-
tive transformations of the observables of the theory (preserving some algebraic
structures) instead of states. This approach can be adopted right from the start, in
particular by defining symmetries as automorphisms of the lattice of the elemen-
tary propositions of a quantum system. A more elaborated version of this idea of
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quantum symmetry, introduced by Segal, enlarges the lattice to a Jordan algebra of
observables (see Sect. 11.3.3) and defines symmetries as its automorphisms.

In the sequel we will mainly study the first two types of symmetries defined
as transformations of states. We will prove that mathematically they reduce to the
same concept, and that they are described by unitary or anti-unitary operators (hence
Wigner symmetries may be extended to Kadison symmetries defined on the entire
space of states). The characterisation in terms of (anti-)unitary operators is hugely
important in physics, and is formulated in two results known as Kadison’s theorem
and Wigner’s theorem. The latter is muchmore renowned in the physical community,
despite the former is equally important. Some results on symmetries as transforma-
tions of observables, and Segal’s symmetries in particular, appear in Sect. 12.1.7;
there we shall state a theorem establishing a bijection between Segal symmetries and
Kadison (or Wigner) symmetries, at least in absence of superselection rules. In that
section we shall also prove that Kadison symmetries are in one-to-one correspon-
dence with automorphisms of the lattice of elementary propositions (provided the
Hilbert space is separable and has dimension �= 2).

Remark 12.1 In quantum theory there is another physically relevant notion of trans-
formation, similar to – and sometimes confused with – a symmetry acting on observ-
ables. We are referring to gauge transformations (rather regrettably, also known as
gauge symmetries). A gauge symmetry is a unitary transformation of the Hilbert
space of the theory which leaves invariant every (typically unbounded) self-adjoint
operator representing an observable. This is equivalent to saying that it fixes every
element of the von Neumann algebra of observables (in agreement with Definition
11.23, Exercise 11.3 and Remark 11.24). This is very different from a symmetry:
there is always at least one observable that is changed by any non-trivial symmetry,
whereas no observable is changed under gauge symmetries. �

12.1.1 Examples

Before going into mathematical subtleties, let us describe a few examples of physical
operations that are (both Wigner and Kadison) symmetries for quantum systems.

Suppose we take an isolated physical system S in a certain inertial frame system
I . Transformations known to generate symmetries of S are the rigid translations of S
along a given vector, or the rotations about a fixed real axis. Any continuous isometry
of the rest space of inertial frames produces a quantum symmetry. Another instance
is the transformation of inertial frame system (in relativistic theories as well): the
isolated system S in the inertial frame I is transformed so that the final system
appears, in a different inertial systemI ′ �= I , as it appeared at the beginning inI .
A third transformation giving symmetries, for isolated systems in inertial frames, is
time translation (not to be confused with time evolution), which we will see later.

All these transformations are active, meaning that they change the system S, or
better, its quantum state.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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It must be crystal clear that the transformations we are talking about do not occur
because the system’s state evolves in time: they are idealised transformations, pure
mathematical notions. Some of them, by the way, could never occur in reality in a
system that evolves under its own dynamics, and others could hardly exist. A classical
example is the inversion of parity. This physical transformation, loosely speaking,
substitutes a system S with its mirror image. Sometimes the only way to invert the
parity, ideally, is to destroy the system and rebuild its symmetric image from scratch.
And sometimes even this abstract operation is physically hollow, owing to the very
nature of physical laws. Particles that interact under the weak force, surprisingly,
constitute systems whose states do not admit parity transformation as a symmetry,
in a rather radical sense: the space of states has no transformation γ representing the
ideal physical transformation of parity inversion. This simply means that the alleged
symmetry is not a true symmetry of the system.

Another type of transformation that shares some features with parity inversion,
and that is at times associated to symmetries, is time reversal. The examples seen so
far have to do with spacetime isometries. Albeit active on states, they are related to
passive transformations of frame systems (or just of coordinates) bymeans of passive
isometries of spacetime. In this case one expects (not always true, as we saw) active
transformations on states to be symmetries, precisely because the various frames or
coordinate systems – relative to passive (Galilean or Poincaré) transformations used
to describe reality, at least macroscopically – are equivalent. In other words: if we
act on the physical system S by an active transformation, we can always revoke the
outcome by changing frame system (or just coordinates), knowing the new framing
is physically equivalent to the original one.

In contrast to all this, there exist transformations related to symmetries which
are neither associated to spacetime isometries, nor reversed by changing frame. A
standard example is charge conjugation,which flips the sign of all charges (of the type
considered) present in S, and thus changes the superselection sector of the charge.
There exist even more abstract transformations relative to internal symmetries and
gauge symmetries, on which we will not spend any time.

In conclusion we wish to underline an important physical fact. The lesson that
weak interactions teach us is this: deciding whether a transformation acting ideally
on a system is indeed a quantum symmetry, is ultimately to be established – after
Sym2 has been specified – experimentally.

After the theorems of Kadison and Wigner we will describe symmetries in terms
of (anti-)unitary operators, for the case in which the physical transformations form
an abstract, topological or Lie group [War75, NaSt82].

In the next chapter we shall treat dynamical symmetries, which emerge when one
defines the time evolution of the quantum state of a system S. In that context we will
recover the tight link between dynamical symmetries and associated conservation
laws. It is well known, in the classical setup, that this relationship is encoded into
the various formulations of the celebrated Noether’s theorem.



12.1 Definition and Characterisation of Quantum Symmetries 669

12.1.2 Symmetries in Presence of Abelian Superselection
Rules

As was observed already in Chap.7, ifM is a closed subspace in the Hilbert space H
we can identifyS(M) (orSp(M)) with a subset ofS(H) (resp.Sp(H)) in a natural
manner, i.e. by viewingS(M) (Sp(M)) as the collection of states ρ ∈ S(H) (Sp(H))
such that Ran(ρ) ⊂ M. This is the same as extending each ρ ∈ S(M) to an operator
on H by declaring it equals zero onM⊥. In the remaining part of the chapter we will
implicitly make this identification, which is useful in the next situation.

In certain circumstances the possible state of a physical system is not an element
inS(HS) (Sp(HS) if pure), because certain convex combinations are forbidden. This
is the case when we have superselection rules (see Sects. 7.7.1, 7.7.2 and 11.2.1).
Without repeating everything, let us only recall that in presence of superselection
rulesHS splits into aHilbert sumof closed, pairwise orthogonal, non-trivial subspaces
called coherent sectors:

HS =
⊕

k∈K

HSk .

Remark 12.2 Toguarantee themaximumgeneralitywedonot assume, unless explic-
itly stated, that the spaces HS and HSk are separable nor that K is countable, even
though in concrete physical cases these are physical requirements. �

Then we can define the spaces of states S(HSk) and pure states Sp(HSk) of each
sector. Note S(HSk) ∩ S(HSj ) = ∅ and Sp(HSk) ∩ Sp(HSj ) = ∅ if k �= j .
Concerning physically-admissible pure states for the superselection rule, these will
be precisely the constituents of the disjoint union

⊔

k∈K

Sp(HSk) .

Admissible mixtures by the superselection rule for the system S on H, instead, will
be all possible convex combinations (also infinite, in the strong operator topology)
in ⊔

k∈K

S(HSk) .

The previous is equivalent to imposing that admissible states are the ρ inS(HS) (or
Sp(HS)) under which every HSk is invariant, namely Pkρ = ρ Pk for every k ∈ K
where Pk is the orthogonal projector onto HSk (see Sect. 7.7.1).

It isworth noting that this picture is not themost general possible, because different
elements ρ, ρ ′ ∈ S(HSk) can be physically indistinguishable if a gauge group is
present, as discussed in Sect. 11.2.1. When the gauge group is trivial, one speaks of
Abelian superselection rules, the only type we shall consider henceforth. We will
come back on this issue at the end of Sect. 12.1.4.

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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In case of Abelian superselection rules the symmetries must respect the coherent
decomposition of H, and one allows symmetries that jump sector, i.e. functions
γkk ′ : S(HSk) → S(HSk ′), k, k ′ ∈ K , possibly with k ′ �= k. Every mapping γkk ′ :
S(HSk) → S(HSk ′)must be invertible and satisfyWigner’s or Kadison’s invariance.

12.1.3 Kadison Symmetries

Consider a quantum system S described on the Hilbert spaceHS , with space of states
S(HS). There is a (physically weak) demand to have a symmetry that refers to the
mixing procedure of quantum states. An operation on S defines a symmetry if the
mixing procedure is invariant under it, or more precisely:

if a state is obtainable as mixture of certain states with given statistical weights,
then by transforming the system under an operation that generates a symmetry, the
same state must be obtainable as mixture of the transformed constituent states with
the same statistical weights.

Put equivalently, a bijectionγ : S(HS) → S(HS) is a symmetrywhen it preserves
the convex structure of S(HS): if ρi ∈ S(HS), 0 ≤ pi ≤ 1 and

∑
i∈J pi = 1, then

γ

(
∑

i∈J

piρi

)
=

∑

i∈J

piγ (ρi ) .

Henceforth J will be finite. It is obvious that we may take J made of two points,
without loss of generality. Now we can present the formal definition in the general
case, when coherent superselection sectors are present.

Definition 12.3 (Kadison symmetry). Consider a quantum physical system S
described on the Hilbert space HS = ⊕k∈KHSk split in coherent sectors due to
Abelian superselection rules.

A symmetry of S according toKadison from sectorHSk to sectorHSk ′ , k, k ′ ∈ K ,
is a map γ : S(HSk) → S(HSk ′) such that:
(a) γ is bijective;
(b) γ preserves the convex structures of S(HSk) and S(HSk ′). Equivalently:

γ (p1ρ1 + p2ρ2) = p1γ (ρ1) + p2γ (ρ2) for ρ1, ρ2 ∈ S(HSk) , p1 + p2 = 1, p1, p2 ∈ [0, 1] .

(12.1)

If the Hilbert space H does not have coherent sectors, every bijection γ : S(H) →
S(H) preserving convexity is called a Kadison automorphism on H.

A symmetry according to Definition 12.3 is induced by an operator U : HSk → HSk ′

that is either unitary or anti-unitary (Definition 5.39):

γ (U )(ρ) := UρU−1 , ρ ∈ S(HSk). (12.2)

To prove this we need an elementary lemma.

http://dx.doi.org/10.1007/978-3-319-70706-8_5
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Lemma 12.4 Let U : H → H′ be an anti-unitary operator fromH toH′, and N ⊂ H
a Hilbert basis. Then U = V C, where V : H → H′ is unitary and C : H → H is
the natural conjugation (Definition 5.41) associated to N:

Cψ :=
∑

z∈N

(z|ψ)z .

Proof Define V ψ := ∑
z∈N (z|ψ)U z. The proof is immediate, because an anti-

unitary operator is anti-isometric and continuous and by elementary properties of
bases. Note that {U z}z∈N is basis of H′. ��
Proposition 12.5 Let U : HSk → HSk ′ be unitary (isometric and onto), or anti-
unitary, where HSk and HSk ′ are coherent sectors of the Hilbert space HS associated
to the quantum system S with space of states S(H). Then γ (U ) : S(HSk) → B(H)

as defined in (12.2) is a symmetry HSk → HSk ′ according to Kadison.

Proof Property (12.1) is trivial under either assumption on U (not so, though, if we
allowed complex coefficients pi ). Let us prove γ (U )(ρ) ∈ S(HSk ′) for ρ ∈ S(HSk).
Begin by assuming U unitary. If ρ is of trace class on HS so must be UρU−1 as
well, since trace-class operators form an ideal in B(HS) by Theorem 4.34(b) if we
view UρU−1 as composite in B(HS). For this it suffices to think of ρ in S(HS)

as vanishing on the complement to HSk , and ρ(HSk) ⊂ HSk , then extend U and
U−1 trivially on the orthogonal to HSk and HSk ′ respectively, hence viewing them
as in B(HS). If ρ ≥ 0 then (ψ |UρU−1ψ) = (U ∗ψ |ρU ∗ψ) ≥ 0, so γ (U )(ρ) ≥ 0.
Using the basis formed by merging a basis on HSk and a basis on (HSk)

⊥ we obtain
tr

(
γ (U )(ρ)

) = tr
(
UρU−1

) = tr(U−1Uρ) = tr(ρ) = 1. In the last passage we
used U−1U�HSk = I�HSk in computing the trace, and that ρ = 0 on (HSk)

⊥. Therefore
γ (U )(ρ) ∈ S(HSk ′) for ρ ∈ S(HSk). Now assume U anti-unitary. Decompose U as
in Lemma 12.4: U = V C with respect to some basis N ⊂ HS , specified later. We
claim UρU−1 is positive, of trace class and with trace one. As V is unitary (in which
case the claim holds by what we have just seen) and UρU−1 = V (CρC−1)V −1, it is
enough to prove the claim for U = C . Choose N to be made of eigenvectors ψ for
ρ (Theorem 4.20 ensures its existence). Hence

ρφ =
∑

ψ∈N

pψ(ψ |φ)ψ ,

φ ∈ H. Now recall C is continuous and antilinear, CC = I , ( f |g) = (C f |Cg) by
definition of conjugation, every eigenvector pψ of ρ is real (positive), and Cψ = ψ .
Consequently

CρC−1φ =
∑

ψ∈N

pψ(ψ |Cφ)Cψ =
∑

ψ∈N

pψ(CCψ |Cφ)Cψ =

=
∑

ψ∈N

pψ(Cψ |φ)Cψ =
∑

ψ∈N

pψ(ψ |Cφ)ψ = ρφ .

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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We proved CρC−1 = ρ, so CρC−1 is of trace class, positive and has trace 1 for
ρ ∈ S(HSk). ��
Example 12.6 If the superselection rule regards the electrical charge of a system,
there will be (infinitely many, in general) sectors Hq , one for each value q of the
charge. Charge conjugation can be constructed as a collection of symmetries of type
γ (Uq ), where Uq : Hq → H−q for any q . �

12.1.4 Wigner Symmetries

Now let us pass to quantum symmetries according to Wigner. Consider the usual
quantum system S, described on theHilbert spaceHS andwith space of statesS(HS).
We focus on pure states Sp(HS) (the rays of HS). Let us restrict to transformations

δ : Sp(HS) → Sp(HS) .

From the experimental viewpoint we can control the transition probability

|(ψ |ψ ′)|2 = tr(ρρ ′)

of two pure states ρ = ψ(ψ | ), ρ ′ = ψ ′(ψ ′| ). Wigner’s condition for a bijection
δ : Sp(HS) → Sp(HS) to be a symmetry is that it preserves transition probabilities:
if two pure states have a certain transition probability, when transforming the system
by a physical operation that determines a symmetry the transformed states must
maintain the same transition probability.

The next definition takes into account coherent sectors.

Definition 12.7 (Wigner symmetry). Consider a quantum system S described on
the Hilbert space HS with space of states S(HS). Assume HS splits coherently as
HS = ⊕k∈KHSk due to Abelian superselection rules.

A symmetry of S according toWigner fromHSk toHSk ′ , k, k ′ ∈ K , is a mapping
δ : Sp(HSk) → Sp(HSk ′) with the following properties:
(a) δ is bijective;
(b) δ preserves transition probabilities:

tr (ρ1ρ2) = tr (δ(ρ1)δ(ρ2)) , ρ1, ρ2 ∈ Sp(HSk) . (12.3)

If H has no coherent sectors every bijection δ : Sp(H) → Sp(H) that preserves
transition probabilities is aWigner automorphism on H.

An example according to Definition 11.25 is, as with Kadison symmetries, the sym-
metry induced by the (anti-)unitary operator U : HSk → HSk ′ (Definition 5.32),
where:

δ(U )(ρ) := UρU−1 , ρ ∈ Sp(HSk). (12.4)

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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In contrast to Kadison’s symmetries, here the proof is really straightforward.

Remarks 12.8 (1) Since pure states have the form ψ(ψ | ), ||ψ || = 1, the action of
δ(U ) on pure states can be described, equivalently though sloppily, by saying δ(U )

sends the pure state ψ to the pure state Uψ . This is the way in which QM books
often describe symmetries induced by (anti-)unitary operators.
(2) Every Kadison symmetry transforms pure states to pure states, so it defines a
bijective map on the space of pure states. However, we do not know a priori that this
will define a Wigner symmetry, because it is far from evident that it will preserve
transition probabilities. On the other hand, a Wigner symmetry does not extend
naturally from pure to mixed states. Therefore it is not obvious that the two notions
coincide. Yet every unitary or anti-unitary operator determines at the same time a
Wigner symmetry and a Kadison symmetry by means of ρ �→ UρU−1. �

To finish, here is a general notion of Wigner symmetry.

Definition 12.9 (General Wigner symmetry). Suppose the Hilbert space HS of sys-
tem S decomposes in coherent sectors due to Abelian superselection rules, so that
admissible pure states are the elements of

Sp(HS)adm :=
⊔

k∈K

Sp(HSk) .

A symmetry according toWigner (no mention of sectors) is a bijective map δ from
Sp(HS)adm to itself that preserves transition probabilities.

We can recover the above definition using Wigner symmetries between pairs of
sectors, as follows.

Proposition 12.10 Let δ be a Wigner symmetry of S, and suppose the Hilbert space
HS of S splits coherently in such a way that admissible pure states are only those in:

Sp(HS)adm =
⊔

k∈K

Sp(HSk) .

There exists a bijection f : K → K and a family of Wigner symmetries

δ f, f (k) : Sp(HSk) → Sp(HS f (k)) , k ∈ K ,

with fixed sectors, such that δ�Sp(HSk )= δ f, f (k) for every k. In this sense δ is just a
collection of Wigner symmetries exchanging sectors and not overlapping.

Proof Define on Sp(HS) the distance

d(ρ, ρ ′) := ||ρ − ρ ′||1 := tr(|ρ − ρ ′|) ,
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where || ||1 is the canonical norm of trace-class operators. Then the setsSp(HSk) are
the connected components ofSp(HS)adm (Exercise 12.6). Themap δ : Sp(HS)adm →
Sp(HS)adm is a surjective isometry for d as follows fromProposition 12.41 (the latter
is independent of the present result). In particular δ is a homeomorphism. As such,
it preserves maximal connected subsets, and so it must split as a sum of isometric
bijections between distinct sectors, i.e. Wigner symmetries between distinct sectors.
��

Before we examine the mathematical structure of symmetries we wish to put
the spotlight one more time on the remaining physical limitation of the picture
we are drawing. As already stressed in Sect. 7.7.2 (especially the comment below
Proposition 7.86 and Remark 7.89(2)) and Sect. 11.2.1, distinct density matrices
ρ �= ρ ′ ∈ S(HSk) represent different physical situations only when observables
separate states. This is equivalent to the demand that the von Neumann algebra
of observables pertinent to the sector HSk is the whole B(HSk) (see Proposition
11.18), and this is the case when Abelian superselection rules occur, the only type
we have so far considered. But this is not true in the general situation, in which
the commutant R′

S of the algebra of observables is larger than the centre RS ∩ R′
S:

think of quarks and other hadrons for instance. When observables do not separate
trace-class operators of trace one, the physical meaning of the facts we are about
to prove becomes dubious (although the statements are valid), because the require-
ments Sym1 and Sym2, which we have assumed define symmetries, are no longer
physically justified when interpreted in terms of density matrices. For instance there
is no need for a symmetry to be bijective as a map S(HSk) → S(HSk ′), since
copies of distinct operators ρ, ρ ′ ∈ S(HSk) can still represent exactly the same
measure onLRSk (HSk) and such measures are better suited to retain, without redun-
dancies, the experimental information of a physical state. To encompass the most
general situation of non-Abelian superselection rules, the definition of symmetry
should be reformulated by relying upon axioms A1 (measure-theory version) and
A2 (measure-theory version) regarding states and observables and by adopting the
description Ss1 (measure-theory formulation) and Ss2 (measure-theory formula-
tion) of superselection rules. A very small step towards this more general description
will appear in Sect. 12.1.7. Alternatively, if we stick to the description of states in
terms of operators inS(HSk), symmetries should be defined as maps between spaces
S(HSk) that are bijective up to transformations of the gauge group of the theory (see
Sect. 11.2.3). Then requisite Sym2 should also be relaxed accordingly.

12.1.5 The Theorems of Wigner and Kadison

We begin by Wigner’s theorem. Using that, we will prove Kadison’s result along the
lines of [Sim76]. The proof of Wigner’s theorem is quite direct. Although there are
more elegant, but indirect arguments, our approach has the advantage of showing
explicitly how to manufacture U with a basis. Let us remark, in passing, that several

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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authors (including Emch, Piron, Bargmann and Varadarajan) proved that a slightly
modified version of Wigner’s theorem holds within QM formulations based on real
and quaternionic Hilbert spaces.

Theorem 12.11 (Wigner). Consider a quantum system S described on the (not nec-
essarily separable) complex Hilbert space HS. Suppose HS coherently splits1 as
HS = ⊕k∈KHSk and dimHSk > 1 for every k ∈ K . Assume

δ : Sp(HSk) → Sp(HSk ′)

is a symmetry of S according to Wigner from HSk to HSk ′ , k, k ′ ∈ K . Then
(a) there exists an operator U : HSk → HSk ′ , unitary or anti-unitary depending on
δ, such that:

δ(ρ) = UρU−1 for any pure state ρ ∈ Sp(HSk); (12.5)

(b) U is determined up to a phase factor, i.e., U1 satisfies (12.5) (replacing U) if and
only if U1 = χU for some χ ∈ C, |χ | = 1.
In case dimHSk = 1(= dimHSk ′) for some k, (a) is still valid with the difference
that δ (which is unique) can be represented by a unitary or an anti-unitary operator
indifferently.

Proof (a) Let us build an operator U representing δ. Take a Hilbert basis {ψn}n∈N

in HSk where N is any finite or infinite set of indices, with ψn �= ψm when n �=
m, and the space is not necessarily separable but has dimension ≥ 2. To each ψn

associate the pure state ρψn := ψn(ψn| ). Let δ act on these states, obtaining pure
states δ(ρψn ) = ψ ′

n(ψ
′
n| ) ∈ Sp(HSk ′), where the unit vectors ψ ′

n ∈ HSk ′ are
determined up to a phase factor. Fix once and for all this phase, arbitrarily. Note
{ψ ′

n}n∈N is a Hilbert basis of HSk ′ : the vectors are in fact orthonormal, because
|(ψ ′

n|ψ ′
m)|2 = tr(δ(ρn)δ(ρm)) = tr(ρψn ρψm ) = |(ψn|ψm)|2 = δnm . We claim that

ψ ′ ⊥ ψ ′
n ⇒ ψ ′ = 0. Let ψ ′ ⊥ ψ ′

n for every n ∈ N . If ψ ′ �= 0, without loss of
generality we assume ||ψ ′|| = 1 and define ρ ′ := ψ ′(ψ ′| ) ∈ Sp(HSk ′). Since δ is
onto, then ρ ′ = δ(ρ) with ρ = ψ(ψ | ) for some ψ ∈ HSk , ||ψ || = 1. Therefore:

|(ψ ′|ψ ′
n)|2 = tr(δ(ρ)δ(ρψn )) = tr(ρρψn ) = |(ψ |ψn)|2 = 0

and then ψ = 0, for {ψn}n∈N is a basis. But this is impossible as ||ψ || = 1. Conse-
quently ψ ′ = 0, and {ψ ′

n}n∈N is a basis.
Using the bases {ψn}n∈N and {ψ ′

n}n∈N we will define the operator U in stages.
Select a preferred index o ∈ N and define unit vectors

Ψk := 2−1/2 (ψo + ψk) , k ∈ N \ {o}
and corresponding pure states: (Ψk | ) Ψk , k ∈ N \ {o}. The transformed state
δ(Ψk(Ψk | )) = Ψ ′

k(Ψ
′
k | ) satisfies, in particular:

1If K = {1} one should replace HSk , HSk′ by H in the statement.
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|(Ψ ′
k |ψ ′

n)|2 = tr
(
Ψ ′

k(Ψ ′
k | )δ(ρn)

) = tr (δ(Ψk(Ψk | ))δ(ρn)) = |(Ψk |ψn)|2 = δon + δon

2
,

plus ||Ψ ′
k || = 1. Decomposing Ψ ′

k = ∑
n anψ

′
n , the only possibility is

Ψ ′
k = χ ′

k2
−1/2(ψ ′

o + χkψ
′
k)

with |χ ′
k | = |χk | = 1. The χk are given by δ, while the χ ′

k can be chosen as we want.
The χk carry the information of δ, and we shall employ them soon.

Let us define the action of a map U (for the moment not necessarily linear or
antilinear) on all vectors ψn and on (ψo + ψk)/

√
2 by declaring:

U (ψo) := ψ ′
o , U (ψk) := χkψ

′
k , U (2−1/2(ψ0 + ψk)) := 2−1/2(ψ ′

o + χkψ
′
k) ,

(12.6)
k ∈ N \ {o}. With this we are sure that if φ is one of the above arguments of U and
ρφ its pure state, then δ(ρφ) is associated to ρUφ as requested by the thesis.

Now we extend U to any normalised vector ψ = ∑
n∈N anψn ∈ HSk in a way

that U continues to represent δ. Assume ||ψ || = 1 and let ψ ′ ∈ HSk ′ with ||ψ ′|| = 1
be such that ψ ′(ψ ′| ) = δ(ρψ). Then

ψ ′ =
∑

n∈N

a′
nψ

′
n . (12.7)

The coefficients a′
k are given, up to a global phase factor, by the coefficients an and

by δ. With our assumptions on δ we have

|(ψ ′|ψ ′
n)|2 = tr(δ(ρψ)δ(ρψn )) = tr(ρψρψn ) = |(ψ |ψn)|2 .

In other words, |a′
n| = |an|. Using this, together with the first two of (12.6), identity

(12.7) can be rephrased as

ψ ′ = χ

⎛

⎝aoU (ψo) +
∑

n∈N\{o}
χ−1

n a′
nU (ψn)

⎞

⎠ ,

where χ , |χ | = 1, is arbitrary. Now define

U (ψ) := aoU (ψo) +
∑

n∈N\{o}
χ−1

n a′
nU (ψn) . (12.8)

This ensures, by construction, ρU (ψ) = δ(ρψ), and one verifies that the definition
extends (12.6). However, U (ψ) is not yet fixed, because we still do not know the
coefficients a′

n in terms of the components an of ψ . Let us find this relation. By
construction of U and under the hypotheses on δ, |(Ψk |ψ)| = |(U (Ψk)|U (ψ))|. By
(12.8) this means
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|ao + ak |2 = |ao + χ−1
k a′

k |2 .

Since |ak | = |a′
k |, the latter implies

Re(aoak) = Re(aoχ
−1
k a′

k) .

If we assume ao ∈ R \ {0}, recalling that |ak | = |a′
k |, the previous equations occur

only in one of these cases

a′
k = χkak or a′

k = χkak ,

where we henceforth assume χo := 1 according to the first identity in (12.6), Hence,
for any ψ = ∑

n anψn with ao ∈ R \ {0} we have

U (ψ) =
∑

n∈Aψ

anχnψ
′
n +

∑

n∈Bψ

anχnψ
′
n .

For the given ψ we can always choose one of Aψ , Bψ empty.2 Suppose the contrary.
The components of ψ ′ satisfy a′

p = χpap and a′
q = χqaq , for some pair p �= q,

where I map, I maq �= 0. If φ = 2−1/2(ψp + ψq), then by construction:

|(φ′|ψ ′)|2 = |(φ|ψ)|2 ,

where φ′ := U (φ) = 2−1/2(χpψ
′
p + χqψ

′
q). The displayed equation reads

∣∣ap + aq

∣∣2 = ∣∣ap + aq

∣∣2 ,

i.e.
Re(apaq) = Re(apaq).

This would imply I maq = −I maq , an absurd.
In summary, if ψ = ∑

n anψn ∈ HSk , ||ψ || = 1 and ao ∈ R \ {0}, there are two
possible definitions for Uψ :

Uψ =
∑

n∈N

anχnψ
′
n or Uψ =

∑

n∈N

anχnψ
′
n . (12.9)

With both choices we are sure that Uψ represents δ(ρψ) when ||ψ || = 1 and ao ∈
R \ {0}. We claim the choice of one definition does not depend on ψ . Consider a
generic unit vector ψ = ∑

n anψn ∈ HSk and ao ∈ R \ {0}. Define ψ(nc) associated
to c ∈ C, I mc �= 0, for every n = 1, 2, . . .:

2There is a certain ambiguity in defining Aψ and Bψ , because the subscripts n of the possible real
coefficients an can be chosen either in An or in Bn indifferently.
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ψ(nc) := 1√
1 + |c|2 (ψo + cψn) .

Since |(ψ |ψ(nc))| = |(Uψ |Uψ(nc))| has to hold, necessarily ψ(nc) and ψ are of the
same type with respect to the option of (12.9). Therefore all ψ = ∑

n anψn ∈ HSk ,
||ψ || = 1, and ao ∈ R \ {0} are of the same type.

We can finally pass to thewholeHilbert space, dropping the requirement ||ψ || = 1
and define the operators U : HSk → HSk ′ by:

U : ψ =
∑

n∈N

anψn �→
∑

n∈N

anχnψ
′
n in the linear case,

U : ψ =
∑

n∈N

anψn �→
∑

n∈N

anχnψ
′
n in the antilinear case.

By construction, since both {ψn}n∈N and {χnψ
′
n}n∈N are Hilbert bases, the former

are isometric and onto (unitary), the latter anti-isometric and onto (anti-unitary).
Moreover, restricting to unit vectors ψ = ∑

n anψn with a0 ∈ R \ {0}, we have

ρUψ = δ(ρψ) (12.10)

in either case, as required. There remains to prove that (12.10) holds for pure states
associated to ψ = ∑

n∈N anψn with ao /∈ R \ {0}. First observe that only the case
ao = 0 has to be investigated, since ao /∈ R can be reduced to ao ∈ R \ {0} by
multiplying ψ by a phase χ , because this change does not affect ρψ and ρUψ . The
remaining case ao = 0 can be treated with a continuity argument. From Proposition
12.41 (whose proof is independent from the present result), if ρψ, ρψ ′ ∈ Sp(H) then

||ρψ − ρψ ′ ||1 = 2
√
1 − |(ψ |ψ ′)|2 .

It is therefore obvious that both maps δ : Sp(HSk) � ρψ �→ δ(ρψ) ∈ Sp(HSk ′)

and u : Sp(HSk) � ρψ �→ ρUψ ∈ Sp(HSk ′), with U : HSk → HSk ′ unitary or
anti-unitary from earlier, are continuous with respect to these distances because they
are isometric. A pure state in Sp(HSk) described by a unit vector with a0 = 0 is
a limit point of pure states described by unit vectors with ao �= 0, as is evident if
we look at the components. For these states δ(ρ) = u(ρ) as established in (12.10),
hence continuity implies that this identity holds also for pure states associated to unit
vectors with ao = 0: (12.10) is valid everywhere on Sp(HSk).

Let us finally prove that the unitary and anti-unitary character of U is decided by
δ. The above construction of U is affected by a choice of phases at several places.
On the contrary, the next argument is independent from the construction. Here only
the requirement dim(HSk) > 1 is crucial. Suppose that there exist U unitary and V
anti-unitary such that both implement the same δ. As a consequence, if ρψ = ψ(ψ |·)
for ||ψ || = 1, we immediately have UρψU−1 = δ(ρψ) = Vρψ V −1. Defining the
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anti-unitary operator C := V −1U we therefore have Cρψ = ρψC for every unit
vector ψ . Hence Cψ = λψψ for some λψ ∈ U (1) (this restriction arises from
C2ψ = |λψ |2ψ where C2 is unitary so that |λψ |2 ∈ U (1), i.e. |λψ | = 1). If φ is
another unit vector normal to ψ , which exists for dim(H) > 1, then

λφφ + λψψ = Cφ + Cψ = C(φ + ψ) = λ2−1/2(φ+ψ)(φ + ψ)

and so
(λφ − λ2−1/2(φ+ψ))φ = −(λφ − λ2−1/2(φ+ψ))ψ .

Since φ and ψ are linearly independent, the identity found implies

λφ = λψ = λ2−1/2(φ+ψ) .

Repeating the argument for each pair of vectors of a Hilbert basis B := {ψn}n∈N

(recall that dim(HSk) > 1), we get Cψn = λBψn for every n ∈ N and some common
λB ∈ U (1). As a consequence, for every vector ψ = ∑

n∈N anψn ∈ HSk ,

Cψ = λB

∑

n∈N

anψn . (12.11)

Next, consider another basis B1 := {φn := eiβn ψn}n∈N, where the constants βn ∈ R

are fixed arbitrarily, so that ψ = ∑
n∈N e−iβn anφn . The previous argument applied

to B1 yields, for some other constant λB1 ∈ U (1),

Cψ = λB1

∑

n∈N

e−iβn anφn = λB1

∑

n∈N

aneiβn φn . (12.12)

On the other hand, (12.11) and φn = eiβn ψn furnish

Cψ = λB

∑

n∈N

ane−iβn φn .

Comparing with (12.12) and using the fact that {φn}n∈N is a basis, we conclude that,
in particular, for a pair of indices n1 �= n2,

λBλ−1
B1

= e2iβn1 = e2iβn1 .

Since we are free to define B1 by fixing βn1 �= βn2 + kπ (k ∈ Z), the identity above
is impossible and therefore U and V cannot exist simultaneously.

(b) Let us prove that if U exists, it is unique up to a phase factor. Clearly if U
satisfies the thesis for δ, then U1 := χU will do the same for any χ ∈ C, |χ | = 1.
We claim this is the only possibility. Suppose there is another U1 for δ. From the
proof of (a) U and U1 must be both unitary or both anti-unitary. If ρ = ψ(ψ | ) then,



680 12 Introduction to Quantum Symmetries

setting L := U−1U1 we have Lψ(ψ |L−1φ) = ψ(ψ |φ) for any unit vectors ψ, φ.
Hence Lψ(Lψ |φ) = ψ(ψ |φ), as L is unitary. Since Lψ(Lψ | ) = ψ(ψ | ), Lψ

and ψ determine the same pure state, so Lψ = χψψ for every unit vector ψ ∈ HSk

and for some unit number χψ ∈ C. Choose ψ,ψ ′ orthogonal (they exist because
dimHSk > 1). The linearity of L implies

χ2−1/2(ψ+ψ ′)(ψ + ψ ′) = L(ψ + ψ ′) = Lψ + Lψ ′ = χψψ + χψ ′ψ ′ .

Therefore
(χ2−1/2(ψ+ψ ′) − χψ)ψ = (χψ ′ − χ2−1/2(ψ+ψ ′))ψ

′ .

As ψ,ψ ′ are linearly independent, we have (χ2−1/2(ψ+ψ ′) − χψ) = 0 and (χψ ′ −
χ2−1/2(ψ+ψ ′)) = 0, so χψ = χψ ′ . Hence, decomposing L along a Hilbert basis, for
some unit χ ∈ C we have

Lψ = χψ for everyψ ∈ HSk ,

and so either U1 = χU or U1 = χU according to the unitary or anti-unitary nature
of U and U1.

The last statement is obvious: if HSk and HSk ′ have dimension 1, for every choice
of unit vectors ψ ∈ HSk and ψ ′ ∈ HSk ′ , necessarily δ(ψ(ψ | )) = ψ ′(ψ ′| ), so both
U : aψ �→ aψ ′ and U1 : aψ �→ aψ ′ for every a ∈ C implement δ. ��
Remark 12.12 It is worth stressing that, in spite of the multiple descriptions of δ|HSk

in terms of unitary and anti-unitary operators if dimHSk = 1, the map δ|HSk is
uniquely fixed, because HSk (and HSk ′ ) contains only one equivalence class of unit
vectors. �

Let us move on to Kadison’s theorem, which we will reduce to Wigner’s theorem
following an idea of Roberts and Roepstorff [RoRo69], see [Sim76]. We start by
proving the theorem in dimension two.

Proposition 12.13 LetH be a two-dimensional Hilbert space. If γ : S(H) → S(H)

is a Kadison automorphism, there exists U : H → H unitary, or anti-unitary, such
that:

γ (ρ) = UρU−1 , ρ ∈ S(H).

Proof Let us characterise states and pure states on H by means of the Poincaré
sphere. A state ρ ∈ S(H) is, in the present situation, a positive-definite Hermitian
matrix with unit trace. The real space of Hermitian matrices has a basis made by I
and the Pauli matrices:

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (12.13)

So for some a, bn ∈ R
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ρ = aI +
3∑

n=1

bnσn .

The condition tr(ρ) = 1 fixes a = 1/2, since the σn are traceless. Positive def-
initeness, i.e. the demand the two eigenvalues of ρ are positive, is equivalent to√

b1
1 + b2

2 + b2
3 ≤ 1/2, by direct computation. Overall, the elements ρ of S(H) are

in one-to-one correspondence to vectors n ∈ R
3, |n| ≤ 1:

ρ = 1

2
(I + n · σ) . (12.14)

Having ρ pure, i.e. having a unique eigenvalue 1, is equivalent to |n| = 1, as a direct
check shows. AltogetherS(H) is in one-to-one correspondence with the closed unit
ball B in R

3 centred at the origin; the subset of pure statesSp(H) corresponds one-
to-one to the surface ∂ B. We call B, viewed in this way, the Poincaré sphere. The
correspondence just defined:

B � n �→ ρn ∈ S(H)

is a true isomorphism: by (12.14), in fact,

ρpn+qm = pρn + qρm for any n,m ∈ B if p, q ≥ 0, p + q = 1 .

Hence the convex geometry of the spaces is preserved. An important property, for
later, is the formula

tr (ρmρn) = 1

2
(1 + m · n) (12.15)

that descends directly from tr(σ j ) = 0, tr(σiσ j ) = 2δi j (easy to prove). Now we are
ready to characterise Kadison automorphisms. Assigning a Kadison automorphism
γ : S(H) → S(H) is patently the same as defining a bijection γ ′ : B → B such
that

γ ′(pn + qm) = pγ ′(n) + qγ ′(m) for any n,m ∈ B if p, q ≥ 0, p + q = 1 .

If the Kadison automorphism γ : S(H) → S(H) fixes γ ′ : B → B, the map
Γ : R

3 → R
3:

Γ (0) := 0 , Γ (v) := |v|γ ′
(

v
|v|

)
, v ∈ R

3 \ {0}

extends γ ′, is linear and invertible. The proof is straightforward. Kadison auto-
morphisms, being isomorphisms, map extreme elements to extreme elements, so
Γ (n) = γ ′(n) = 1 if |n| = 1, and by linearity:
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|Γ (v)| = |v| , v ∈ R
3 .

In conclusion the linear map Γ : R
3 → R

3 associated to the Kadison automor-
phism γ is an isometry of R

3 with the origin as fixed point, so Γ ∈ O(3), the
three-dimensional orthogonal group. Conversely, Γ ∈ O(3) implies γ �Sp(H) is an
automorphism according to Wigner. In fact if ρn and ρm are pure, their transition
probability equals tr (ρnρm), which we can express via (12.15). Since Γ is orthog-
onal:

tr (γ (ρn)γ (ρm)) = 1

2
(1 + Γ (n) · Γ (m)) = 1

2
(1 + n · m) = tr (ρnρm) .

Recalling γ ′ �∂ B= Γ �∂ B : ∂ B → ∂ B is trivially a bijection (this is true for every
orthogonal matrix), then γ �Sp(H): Sp(H) → Sp(H) is bijective, and hence aWigner
automorphism. Wigner’s theorem implies the existence of a unitary or anti-unitary
operator U : H → H such that γ (ρ) = UρU−1 for any ρ ∈ Sp(H). If ρ ∈ S(H)

we can decompose it as convex combinations of two pure states associated to the
eigenvectors of ρ. If ρ1, ρ2 ∈ Sp(H) are the states in question for some p ∈ [0, 1],
then ρ = pρ1 + (1 − p)ρ2, and so

γ (ρ) = pγ (ρ1) + (1 − p)γ (ρ2) = pUρ1U
−1 + (1 − p)Uρ2U

−1

= U (pρ1 + (1 − p)ρ2) U−1 = UρU−1 .

Therefore the unitary (or anti-unitary) operator U satisfies the theorem’s claim. ��
Let us state and prove Kadison’s theorem in general. (Kadison originally proved

the non-trivial statements (a) and (b)).

Theorem 12.14 (Kadison). Consider a quantum system S described on the (not
necessarily separable) complex Hilbert space HS. Suppose HS coherently splits3 as
HS = ⊕k∈KHSk and dimHSk > 1 for every k ∈ K . Suppose the map

γ : S(HSk) → S(HSk ′)

is a symmetry of S according to Kadison from HSk to HSk ′ , k, k ′ ∈ K . Then
(a) there exists an operator U : HSk → HSk ′ , unitary or anti-unitary depending on
γ , such that:

γ (ρ) = UρU−1 for every state ρ ∈ S(HSk). (12.16)

(b) U is determined up to phase, i.e. U1 satisfies (12.16) (replacing U) if and only if
U1 = χU with χ ∈ C, |χ | = 1.
(c) The restriction of γ to pure states is a Wigner symmetry.
(d) Every Wigner symmetry δ : Sp(HSk) → Sp(HSk ′) extends, uniquely, to a Kadi-
son symmetry γ (δ) : S(HSk) → S(HSk ′).

3If K = {1} one should replace HSk , HSk′ by H in the statement.
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In case dimHSk = 1(= dimHSk ′) for some k, then (a), (c), (d) are still valid, with
the difference that γ (which is unique) can be represented indifferently by a unitary
or an anti-unitary operator.

Proof (b) and (c). Suppose U in (a) exists. Since γ is bijective and preserves con-
vexity, it preserves extreme and non-extreme sets, and maps pure states to pure states
and mixed ones to mixed ones. It is therefore clear that δ := γ �Sp(HSk ) defines a
Wigner symmetry associated to the same U and thus the common character (unitary
or anti-unitary) of U and any other operator satisfying (12.16) is fixed by δ. By the
same argument it is clear thatU is determined up to a phase by δ, in view ofWigner’s
theorem. Part (d) will show that δ completely defines γ and so the character of U is
determined by γ , and U itself is determined up to a phase by γ .

(d) If δ is a Wigner symmetry, by Wigner’s theorem there is a unitary or anti-
unitary operator U such that δ(ρ) = UρU−1 for any pure state, which defines the
Kadison symmetry γ (δ)(ρ) = UρU−1 extending δ to the whole space of states.
Let us prove the uniqueness of γ (δ). If two Kadison symmetries γ, γ ′, associated to
U , U ′ (unitary or anti-unitary), coincide on Sp(HSk), then the Wigner symmetries
δ(U ) = U · U−1, δ(U ′) = U ′ · U ′−1 are the same. By Wigner’s theorem U and U ′ are
both unitary or both anti-unitary, and U = χU ′ with |χ | = 1. Therefore

γ (ρ) = UρU−1 = χU ′ρU ′−1χ−1 = χχ−1U ′ρU ′−1 = U ′ρU ′−1 = γ ′(ρ)

for every ρ ∈ S(HSk), so γ = γ ′.
Let us pass to (a) and divide the proof in steps. As already remarked γ maps

pure states to pure states and mixed ones to mixed ones, bijectively. We claim that if
M ⊂ HSk is a two-dimensional subspace there is a two-dimensional spaceM′ ⊂ HSk ′

such that γ (S(M)) = S(M′). If ψ1, ψ2 are unit vectors forming a (non-orthogonal,
in general) basis ofM, the generic element inS(M) is ρ = pψ1(ψ1| ) + qψ2(ψ2| ),
p + q = 1 and p, q ≥ 0. Hence:

γ (ρ) = pγ (ψ1(ψ1| )) + qγ (ψ2(ψ2| )) = pψ ′
1(ψ

′
1| ) + qψ ′

2(ψ
′
2| ) ,

where the unit vectors ψ ′
1, ψ

′
2 arise (up to phase) from the corresponding pure states

γ (ψ1(ψ1| )), γ (ψ1(ψ1| )). The latter must be distinct, otherwise the bijection γ −1 :
S(HSk ′) → S(HSk), that preserves convexity, would map pure to mixed. So ψ ′

1 and
ψ ′

2, both unit, satisfy ψ ′
1 �= aψ ′

2 for any a ∈ C, and hence are linearly independent.
The space M′ is then generated by ψ ′

1, ψ
′
2.

Now we need two lemmas.

Lemma 12.15 Under our assumptions on γ , there exists a Wigner symmetry δ :
Sp(HSk) → Sp(HSk ′) such that γ (ρ) = δ(ρ) for every ρ ∈ Sp(HSk).

Proof of Lemma 12.15. Since γ and γ −1 preserve extreme and non-extreme sets,
γ �Sp(HSk ): Sp(HSk) → Sp(HSk ′) is invertible, because the left and right inverse is
just γ −1�Sp(HSk′ ): Sp(HSk ′) → Sp(HSk). The proof ends once we show γ �Sp(HSk )

preserves transition probabilities. Given φ,ψ ∈ HSk unit and distinct, letM be their
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span and M′ ⊂ HSk ′ the two-dimensional space such that γ (S(M)) ⊂ S(M′), as
above. Call U : M′ → M an arbitrary unitary operator. Define

γ ′(ρ) := Uγ (ρ)U−1 , ρ ∈ S(M).

Immediately, γ ′ is a Kadison symmetry if we restrict to the 2-dimensional Hilbert
spaceH = M. As shown in Proposition 12.13, Kadison’s theorem holds and there is a
unitary, or anti-unitary, map V : M → M such that γ ′(ρ) = Uγ (ρ)U−1 = VρV −1.
Otherwise said:

γ (ρ) = U Vρ(U V )−1 , ρ ∈ S(M).

We stress that even thoughU and V depend onM andM′, their existence is enough to
conclude the proof. Consider any two linearly independent unit vectors ψ, φ ∈ HSk ,
define M as their span and M′ as the span of the associated ψ ′, φ′ ∈ HSk ′ , obtained
(up to phase) by applying γ as we said above. Using the result we have found,

tr (γ (ψ(ψ | ))γ (φ(φ| ))) = tr
(
U V ψ(ψ | )(U V )−1U V φ(φ| )(U V )−1

) =

= tr
(
U V ψ(ψ | )φ(φ| )(U V )−1

) = tr (ψ(ψ | )φ(φ| )) .

In other words γ �Sp(HSk ) preserves transition probabilities between different pure
states. If instead ψ(ψ | ) = φ(φ| ), we have

tr (γ (ψ(ψ | ))γ (ψ(ψ | ))) = 1 = tr (ψ(ψ | )ψ(ψ | )) ,

trivially. So we have proved that γ �Sp(HSk ) preserves transition probabilities, and
hence is a Wigner symmetry. �

By the previous lemma, and invoking Wigner’s Theorem 12.11, there exists a
unitary, or anti-unitary, operator U : HSk → HSk ′ such that

γ (ρ) = UρU−1 , ρ ∈ Sp(HSk). (12.17)

The proof now ends if we prove that the above identity holds also for ρ ∈ S(HSk),
and not only for Sp(HSk). For that, note (12.17) is equivalent to:

U−1γ (ρ)U = ρ , ρ ∈ Sp(HSk). (12.18)

ThereforeΓ := U−1γ (·)U : S(HSk) → S(HSk) is a Kadison symmetry (a Kadison
automorphism, actually) that reduces to the identity on pure states.Kadison’s theorem
is eventually proved after we establish the following lemma.

Lemma 12.16 Let H �= {0} be a Hilbert space. If a Kadison automorphism Γ :
S(H) → S(H) restricts to the identity on pure states, it is the identity.

Proof of Lemma 12.16. Let ρ = ∑N
k=0 pkψk(ψk | ) be a finite convex combination

of pure states. Then
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Γ (ρ) = Γ

(
N∑

k=0

pkψk(ψk | )

)
=

N∑

k=0

pkΓ (ψk(ψk | )) =
(

N∑

k=0

pk

)
I = I .

Therefore the claim holds for every ρ ∈ S(H) provided finite (convex) combinations
of pure states are dense in S(H) in some topology for which Γ is continuous. Let
us show this works if we take the topology of trace-class operators induced by the
norm ||T ||1 := tr(|T |) (see Chap.4).

If ρ ∈ S(H) we can decompose the operator spectrally:

ρ =
∑

k∈N

pkψk(ψk | ) ,

where pk > 0,
∑

k∈N
pk = 1. Convergence is understood in the strong topology, and

also in uniform topology (if pk ≥ pk−1), as we know from Chap.4. Let us prove,
further, that we may approximate ρ by finite (convex) combinations of pure states
ρN ∈ S(H), so that ||ρN − ρ||1 → 0 as N → +∞. To this end set:

ρN :=
N∑

k=0

q(N )
k ψk(ψk | ) , q(N )

k := pk∑N
j=0 p j

, N=0,1,2, . . . .

Evidently ρN ∈ S(H) for any N ∈ N. Since q(N )
k > pk and the unit vectors ψk

(adding a basis of ker(ρ) ⊃ ker(ρN )) give a basis of H of eigenvectors of ρ, ρN and
hence of ρ − ρN . The trace of |ρ − ρN | in that basis satisfies

||ρ − ρN ||1 = tr (|ρ − ρN |) =
N∑

k=0

|pk − q(N )
k | +

+∞∑

k=N+1

|pk |

= 1 − ∑N
j=0 p j

∑N
j=0 p j

N∑

k=0

pk +
+∞∑

k=N+1

pk → 0 as N → +∞ .

The limit exists and vanishes because pn > 0 and
∑+∞

n=1 pn = 1.
We will show Γ is continuous for || ||1, and conclude. First of all extend Γ from

S(H) to positive trace-class operators on H, by defining:

Γ1(A) := tr(A)Γ

(
1

tr A
A

)
, Γ1(0) := 0

where A ∈ B1(H), A ≥ 0 (so tr(A) > 0 if A �= 0). It follows that Γ1(A) ∈ B1(H),
Γ1(A) ≥ 0, and:

Γ1(αA) = αΓ1(A) ifα ≥ 0, and tr (Γ1 (A)) = tr(A) .

http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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Since Γ preserves convexity, it is not hard to see

Γ1 (A + B) = Γ1(A) + Γ1(B) .

To conclude extend Γ1 to self-adjoint trace-class operators:

Γ2(A) := Γ1(A+) − Γ1(A−) ,

where A− := − ∫
(−∞,0) xd P (A)(x) and A+ := ∫

[0,+∞)
xd P (A)(x). Observe A+ −

A− = A and |A| = A+ + A− by definition, since P (A) is the PVM of A.
If A ∈ B1(H) is self-adjoint, then Γ2(A) belongs to B1(H) and is self-adjoint.

Moreover:

||Γ2(A)||1 ≤ ||Γ1(A+)||1 + ||Γ1(A−)||1 = tr (A+) + tr (A−) = ||A||1 .

Therefore Γ2 is continuous for || ||1, and so also its restriction Γ : S(H) → S(H)

is. �
Altogether we have proved the existence of U unitary, or anti-unitary, satisfying

γ (ρ) = UρU−1 for any ρ ∈ S(HSk). This ends part (a), and the proof of Kadison’s
theorem is concluded since the proof of the last statement in the thesis is trivial. ��

Form the last part of the proof of part (a) we can extract yet another fact, interesting
by its own means.

Proposition 12.17 Let γ be a Wigner (or Kadison) automorphism of the complex
Hilbert space H, and denote by B1(H)R ⊂ B1(H) the real space of trace-class
self-adjoint operators with norm || ||1.

There exist a unique continuous linear operator γ2 : B1(H)R → B1(H)R that
restricts to γ on Sp(H) (or on S(H), respectively). More precisely

||γ2(A)||1 ≤ ||A||1 for every A ∈ B1(H)R.

Finally, γ2(A) ≥ 0 if A ≥ 0.

Proof If γ is a Kadison automorphisms, the proof is contained in Lemma 12.16,
where we proved the existence of Γ2 given Γ (above called γ2 and γ ). Uniqueness
holds because linearity implies

γ2(A) = tr(A+)γ2

(
A+

tr(A+)

)
− tr(A−)γ2

(
A−

tr(A−)

)
, A ∈ B1(H)R ,

where the right-hand side depends on γ only (and a summand is omitted if the relevant
trace vanishes). ForWigner automorphisms the proof follows from the Kadison case,
by statement (d) in Kadison’s theorem. ��
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12.1.6 Dual Action and Inverse Dual Action of Symmetries
on Observables

The theorems ofWigner andKadison enable us to define in a very elementarymanner
the (dual) action of a symmetry on the observables of the physical system.

Consider a physical system S described on the Hilbert space HS . For simplicity
we shall consider the case of one sector only, as the generalisation to several coherent
sectors is immediate. We know the set L (HS) of elementary propositions on S is
described by orthogonal projectors on H. Observables on S are PVMs built with
these projectors, i.e. self-adjoint (in general unbounded) operators associated to the
PVMs.

Suppose γ : S(HS) → S(HS) is a symmetry associated with the (anti-)unitary
operator U , up to a phase. We define its dual action γ ∗ : L (HS) → L (HS) on the
lattice of projectors by:

γ ∗(P) := U−1PU , P ∈ L (HS) (12.19)

(the arbitrary phase affecting U being irrelevant). A duality identity holds:

tr
(
ργ ∗(P)

) = tr (γ (ρ)P) . (12.20)

This follows γ (ρ) = UρU−1 by Kadison’s theorem and the fact that (when comput-
ing traces if U is anti-unitary) anti-unitary operators preserve bases.

The mapping γ ∗ : L (HS) → L (HS) not only transforms orthogonal projec-
tors into orthogonal projectors, but also preserves orthocomplemented, σ -complete
bounded lattices. It is a (bounded, orthocomplemented, σ -complete) lattice auto-
morphism according to Definition 7.13. For example, the orthogonal projectors P ,
Q of L (HS) commute if and only if γ ∗(P) commutes with γ ∗(Q). Moreover
γ ∗ (P ∨ Q) = γ ∗(P) ∨ γ ∗(Q), and so on.

If A : D(A) → H is self-adjoint on H with spectral measure P (A) ⊂ L (HS),
thenU−1AU : U−1D(A) → HS is self-adjoint with spectral measure γ ∗ (P (A)

)
(see

Exercise 9.1 if unitary, Exercise 12.8 if anti-unitary). This fact allows to extend the
action of γ ∗ to every observable in agreement with the spectral decomposition: just
define, for a self-adjoint operator A : D(A) → HS representing an observable of S:

γ ∗(A) := U−1AU . (12.21)

The physical meaning of γ ∗(A) is the following. When we define a Kadison sym-
metry γ , we are prescribing an experimental procedure under which the system S
should be transformed. Mathematically speaking the action on states is described
precisely by γ : S(HS) → S(HS). The action γ ∗ on observables, instead, repre-
sents operative procedures on measuring instruments which, intuitively, correspond
and generalise passive transformations of the coordinates. Better said, the procedure
is such that if we act by γ act on the system, or by γ ∗ on the instrument, we obtain the

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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same result (expectation values, variances, outcome frequencies) as when we take
the measurements.

For instance, 〈γ ∗(A)〉ρ and 〈A〉γ (ρ) are equal expectation values:

〈γ ∗(A)〉ρ = tr
(
γ ∗(A)ρ

) = tr
(

U−1AUρ
)

= tr
(

AUρU−1
)

= tr(Aγ (ρ)) = 〈A〉γ (ρ) .

This is, in practice, the content of the duality Eq. (12.20). The result is equivalent to
saying that the action of γ on the system can be neutralised, concerning measurement
readings on the system, by the simultaneous action of (γ ∗)−1 on the instruments.

Another action of symmetries on observables of great relevance in physical appli-
cation is the aforementioned inverse dual action on the self-adjoint operator A (in
particular an orthogonal projector P = A)

γ ∗−1(A) := U AU−1 . (12.22)

It plays a crucial role in Quantum Field Theory when transforming field operators.
The meaning of γ ∗−1 is just the action of γ on instruments that neutralises the action
of γ on the system.

We shall return to these actions in Sect. 12.2.2 when we deal with groups of sym-
metries, and in Sect. 14.3.2 when discussing symmetries by the algebraic approach.

In the rest of the book γ ∗ and γ ∗−1 will be often interpreted as maps B(HS) →
B(HS), as a matter of fact automorphisms (or anti-automorphisms if U is anti-
unitary) of B(HS), defined by (12.21) and (12.22) respectively when U is given
(up to phase). The extension to many superselection sectors is trivial.

Remark 12.18 From the experimental point of view it is not obvious that a trans-
formation acting on the system can be cancelled by a simultaneous action on the
measuring instrument. Symmetries, à la Kadison or Wigner, have this property. �

Example 12.19
(1) Consider a spinless quantum particle described on R

3, thought of as rest space
of an inertial frame system with given positively-oriented orthonormal coordinates.
FromChap.11weknow theparticle’sHilbert space is L2(R3, dx). Pure states are thus
determined, up to arbitrary phases, bywavefunctions, i.e. by vectorsψ ∈ L2(R3, dx)

such that
∫

R3 |ψ(x)|2dx = 1.
Wewant to explain how the isometries ofR3 determineWigner symmetries (hence

Kadison symmetries) by the invariance of the Lebesgue measure.
The notions of group theory used in the sequel will be summarised at a later stage

(elementary facts are present in the book’s appendix). Denote by IO(3) the isometry
group of R

3, which is the semidirect product (see the appendix) of O(3) with the
Abelian group of translations R

3. In practice, every element Γ ∈ IO(3) is a pair
Γ = (R, t) acting on R

3 as follows: Γ (x) := t+ Rx. The composition law of IO(3)
is:

(t′, R′) ◦ (t, R) = (t′ + R′t, R′ R) hence (t, R)−1 = (−R−1t, R−1) .

http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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Let Γ : R
3 → R

3 belong to IO(3), so Γ could in particular be: a translation
Γ : R

3 � x �→ x+t along an axis t, a rotation of O(3) about the originR
3 � x �→ Rx

(including rotations with negative determinant), or a combinations of the two. We
can define a transformation of square-integrable maps:

(UΓ ψ) (x) := ψ
(
Γ −1x

)
, ψ ∈ L2(R3, dx). (12.23)

The operator U is clearly linear, surjective (every isometry Γ of R
3 is bijective) and

isometric, as the Jacobian matrix J of an isometry has determinant ±1:

||UΓ ψ ||2 =
∫

R3

∣∣∣ψ
(
Γ −1x

)∣∣∣
2

dx =
∫

R3

∣∣ψ
(
x′)∣∣2 | det J |dx ′ =

∫

R3

∣∣ψ
(
x′)∣∣2 dx ′ = ||ψ ||2 .

The transformation γΓ induced by the unitary operator UΓ on states (pure or mixed)
is a symmetry (Wigner or Kadison, respectively), which naturally represents the
action of the isometry Γ on S given by the particle examined.

The map IO(3) � Γ �→ UΓ satisfies

Uid = I , UΓ UΓ ′ = UΓ ◦Γ ′ , Γ, Γ ′ ∈ IO(3)

where id is the identity of IO(3), because of (12.23). Hence IO(3) � Γ �→ UΓ

preserves the group structure (in particularUΓ −1 = (UΓ )−1); as such it is a represen-
tation of the group IO(3) by unitary operators. We will discuss these representations
in the next section.

Take now a PVM on R
3, denoted P (X), that coincides with the joint spectral

measure (see Theorem 9.19) of the three position operators:

(P (X)
E ψ)(x) = χE (x)ψ(x) , ψ ∈ L2(R3, dx).

It is easy to prove the position operators arise by integrating the corresponding
functions in this PVM:

Xi =
∫

R3
xi d P (X)(x) i = 1, 2, 3.

Directly from Definition (12.23) the so-called imprimitivity condition holds:

UΓ P (X)
E U−1

Γ = P (X)

Γ (E) . (12.24)

In fact for a generic map ψ ∈ L2(R3, dx):

(
UΓ P (X)

E U−1
Γ ψ

)
(x) = χE

(
Γ −1(x)

)
ψ

((
Γ

(
Γ −1(x)

))) = χΓ (E)(x)ψ(x)

=
(

P (X)

Γ (E)ψ
)

(x) .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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Equation (12.24) follows sinceψ is arbitrary.Note that the imprimitivity equation can
be written equivalently in terms of the inverse dual action of the Kadison symmetry:

γ ∗−1
Γ

(
P (X)

E

)
= P (X)

Γ (E) .

In general a system of imprimitivity on X according to Mackey is given by: (i) a
PVM P on the separable complex Hilbert space H for the Borel σ -algebra of the
metrisable space X (that admits a metric making it complete and separable), (ii) a
second-countable, locally compact groupG acting on X so that the action4 G× X �
(g, x) �→ gx ∈ X is measurable, (iii) a unitary representationG � g �→ Vg ∈ B(H)

that is strongly continuous and satisfies the imprimitivity condition (which is better
written using the inverse dual action of the symmetry induced by Vg):

Vg PE V −1
g = Pg(E) for any E ∈ B(X), g ∈ G .

The imprimitivity system is said to be transitive when the action of G on X is tran-
sitive, i.e. such that any two points x1, x2 ∈ X can be transformed into one another,
x2 = gx1, by some g ∈ G. The unitary representations of G for any imprimitiv-
ity system, up to unitary equivalence, are determined by the famous Imprimitivity
theorem of Mackey, which we shall not be concerned with (see for instance [Jau73,
Var07]).

We have verified that P (X), IO(3), U form a transitive imprimitivity system on R
3

(we did not check the topological requests, which hold if we embed IO(3) in the Lie
group GL(4)). Transitivity is obvious from elementary geometry.

The action of γ ∗
Γ on the position operators can be obtained by direct computation,

in analogy to the imprimitivity condition, or using the latter to integrate the spectral
measure. Let X = (X1, X2, X3) be the column vector of the X1, X2, X3 restricted to
the common invariant Schwartz domainS (R3), where the operators are essentially
self-adjoint. Then

γ ∗
Γ (X) = U−1

Γ XUΓ = RX + t I , (12.25)

and in particular, considering pure translations:

γ ∗
(t,I ) (X) = U−1

(t,I )XU(t,I ) = X + t I , (12.26)

and pure rotations:
γ ∗

(0,R) (X) = U−1
(0,R)XU(0,R) = RX . (12.27)

The element (0,−I ) ∈ IO(3) defines the reflection about the origin. The unitary
representation P := U(0,−I ), and the associated Wigner (Kadison) symmetry γP ,
are called parity inversion. Not so precisely, one often calls (0,−I ) parity inversion.
Easily, P∗ = P (so PP = I as P−1 = P∗). Therefore the inversion of parity

4The map (g, x) �→ gx is customarily taken so that g′(gx) = (g′g)x and ex = x for every
g, g′ ∈ G, x ∈ X , where e ∈ G is the neutral element.



12.1 Definition and Characterisation of Quantum Symmetries 691

admits an associated observable, calledparity, with two possible eigenvalues±1.We
must emphasise that the unitary operator representing (0,−I ) is actually defined, as
usual, up to phase, so the observableP associated to the parity symmetry corresponds
to a specific choice of phase. There remain two possibilities for the phase, namely the
sign of the observableP , since also−P is an observable representing the inversion
of parity.
(2)Consider the system of the previous example, and let us study it via themomentum
representation. Using the Fourier–Plancherel transform, in other terms, we identify
H and L2(R3, dk), so that the three momentum observables (the components of
the momentum in the orthonormal Cartesian coordinates of the inertial frame) are
represented by the multiplication operators:

(
Pi ψ̃

)
(k) = �ki ψ̃(k) ,

as we saw in Chap. 11. We indicate by ψ̃ = F̂ (ψ) the Fourier–Plancherel transform
ofψ ∈ L2(R3, dx). An extremely interesting symmetry in physics is the time rever-
sal γT , described by anti-unitary operators (later we will see why). This symmetry
corresponds to flipping the sign of time, but also changing sign to particles’ velocities
and hence to their momentum. The anti-unitary operator T̃ describing time reversal
can be chosen (uniquely, up to phase) thus:

(
T̃ ψ̃

)
(k) := ψ̃(−k) , ψ̃ ∈ L2(R3, dk). (12.28)

In contrast toP in the previous example, any chosen phase for T̃ maintains T̃ T̃ =
I because T̃ is anti-unitary. Nonetheless, T̃ is not an observable since the operator
is not linear. Reverting to the position representation with the chosen phase, it can
be proved that the symmetry γT is associated to an anti-unitary operator

T := F̂−1T̃ F̂

(F̂ is the Fourier–Plancherel transform as in Chap.11), such that

(T ψ) (x) := ψ(x) , ψ ∈ L2(R3, dx). (12.29)

We will come back to the time-reversal symmetry in Example13.22 and determine
completely its form.
(3) Consider a particle having electric charge represented by the observable Q with
discrete spectrummadeby eigenvalues±1. Fix an inertial frameI , with orthonormal
Cartesian coordinates for which the rest space is R

3. Then the system’s Hilbert space
is

H = C
2 ⊗ L2(R3, dx) ≡ L2(R3, dx) ⊕ (R3, dx) ,

where ⊕ denotes orthogonal sum. The canonical isomorphism between the above
spaces (cf. Example 10.27(2) as well) descends from the fact that any Ψ ∈ C

2 ⊗

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_13
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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L2(R3, dx) can be written:

Ψ = |+〉 ⊗ ψ+ + |−〉 ⊗ ψ− ,

where {|+〉, |−〉} is the canonical basis ofC2 made by eigenvectors of the Paulimatrix
σ3 (cf. (12.13)) with eigenvalues +1 and −1 respectively. Hence the isomorphism
reads:

L2(R3, dx)⊕ (R3, dx) � (ψ+, ψ−) �→ |+〉⊗ψ+ + |−〉⊗ψ− ∈ C
2 ⊗ L2(R3, dx) .

It preserves theHilbert structure (the inner product) ifwe view L2(R3, dx)⊕(R3, dx)

as an orthogonal sum. The charge observable can be thought of as the Pauli matrix
σ3 in C

2, so on the complete space

Q = σ3 ⊗ I ,

where I is the identity on L2(R3, dx). The superselection rule of the charge, in this
simple situation, requires that the space split in two coherent sectors H = H+ ⊕H−,
whereH± are the±1-eigenspaces of Q. By construction, the coherent decomposition
coincides exactly with the natural:

H = L2(R3, dx) ⊕ L2(R3, dx) .

Referring to the latter, admissible pure states are only those determined by vectors
(ψ, 0) or (0, ψ), with ψ ∈ L2(R3, dx). Therefore the symmetry γC+ , called con-
jugation of the charge from the sector H+ to the sector H− is represented by the
unitary operator C : H+ → H−:

C+ : (ψ, 0) �→ (0, ψ) , ψ ∈ L2(R3, dx). (12.30)

The symmetry γC− , called conjugation of the charge from the sector H− to the
sector H+ is similar:

C− : (0, φ) �→ (φ, 0) , φ ∈ L2(R3, dx). (12.31)

Notice that C− is the inverse of C+. Eventually, we define the Wigner symmetry
called conjugation of the charge, that acts on the entire Hilbert space (respecting
sectors) and restricts to the two above on the relative coherent spaces:

C := C+ ⊕ C− .

By construction CC = I , so C = C ∗ is self-adjoint. Moreover

C ∗ QC = −Q . (12.32)

�
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12.1.7 Symmetries as Transformations of Observables:
Symmetries as Ortho-Automorphisms and Segal
Symmetries

In this section we briefly discuss the opposite approach, where quantum symmetries
are defined from the start as bijective transformations of observables, as opposed to
states which preserve some relevant algebraic structures. For the sake of simplicity
we shall only consider physical systems which are not affected by superselection
rules.

Since a quantum system is mainly defined by the lattice of its elementary proposi-
tionsL (H), it is natural to define a symmetry of that quantum system as an automor-
phism of an orthocomplemented σ -complete lattice, according to Definition 7.13.

Remark 12.20 Proposition 7.15 establishes that an automorphism of an orthocom-
plemented lattice h : X → X is automatically an automorphism of orthocomple-
mented (σ -)complete lattices if X is (σ -)complete. Therefore a symmetry of a quan-
tum system can be defined as an automorphism of the orthocomplemented lattice
L (H). In the following we shall call ortho-automorphisms the automorphisms of
an orthomodular lattice. �

Remarkably, if the Hilbert space of the system is separable and has dimension �=
2, this definition is completely equivalent to the notion of Kadison and Wigner
symmetry, as we go to illustrate.

First of all observe that, if H is separable with dimension �= 2, every ortho-
automorphism α : L (H) → L (H) induces a Kadison automorphism. In fact, the
property α(∨ j∈J Pj ) = ∨ j∈J α(Pj ) (Proposition 7.15) and (ii) in Theorem 7.22(b)
imply

α

(
s −

+∞∑

i=1

Pi

)
= s −

+∞∑

i=1

αg(Pi ) for {Pi }i∈N ⊂ L (H)with Pi Pj = 0 if i �= j ,

whereα(Pi )α(Pj ) = 0 if i �= j . By the above identities, on quantumsystemsobeying
Gleason’s Theorem 7.26 (systems associated to separable complex Hilbert spaces of
dimension �= 2) each ortho-automorphism α induces a corresponding Kadison sym-
metry acting on states by a duality process. In fact, ifμ : L (H) → [0, 1] is a quantum
state in the sense of axiomA2 (measure-formulation form) and α : L (H) → L (H)

satisfies the previous identity, μ ◦ α : L (H) → [0, 1] is still a state for axiom
A2 (measure-formulation form). If the Hilbert space has dimension �= 2, for every
mixed state (positive trace-class operator of trace one) ρ ∈ S(HS) whose associ-
ated measure is μ, there exists a unique mixed state γα(ρ) associated to μ ◦ α due
to Gleason’s theorem. Therefore γα(ρ) is completely determined by the require-
ment tr (γα(ρ)P) = tr(ρα(P)) for any P ∈ L (H). Then γα : S(H) → S(H)

is immediately bijective (α is) and maps convex combinations of states to convex
combinations, preserving statistical weights, and the mapping α �→ γα is injective.

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
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Put differently, every ortho-automorphism α of the lattice of elementary proposi-
tions faithfully corresponds to a Kadison symmetry γα . An immediate consequence
of Kadison’s Theorem 12.14 is that α �→ γα , viewed from the set of symmetries
of observables to the set of Kadison symmetries, is surjective as well. In fact, if
γ is a Kadison symmetry on H, then there exists a unitary or anti-unitary operator
U : H → H such that γ (ρ) = UρU−1 for every ρ ∈ S(H) due to the afore-
mentioned theorem. On the other hand, α : L (H) � P �→ U−1PU ∈ L (H) is a
ortho-automorphism and γα = γ evidently. Finally observe that the dual action on
observables of the Kadison symmetry γα associated to the lattice automorphism α

coincides with the action of α itself:

γ ∗
α (P) = α(P) for every P ∈ L (H). (12.33)

In summary we have achieved the following result.

Proposition 12.21 For a quantum system associated to a separable Hilbert space
with dimension > 2, in absence of superselection rules, ortho-automorphisms of the
lattice of elementary propositions α and Kadison symmetries γα are in one-to-one
correspondence, and they are physically equivalent under (12.33).

Remark 12.22 The mathematical byproduct of the discussion above is the most
elementary version of Dye’s theorem.

Theorem 12.23 (Dye) If H �= {0} is a complex Hilbert space, separable and with
dimension �= 2, an ortho-automorphism of L (H) is of the form

L (H) � P �→ V PV −1 ∈ L (H)

for some (unitary or anti-unitary) V : H → H. For dimH > 1, V is determined
up to a phase by the automorphism itself.

See the solution of Exercise 12.1 for the detailed proof. �
Asmentioned in the introduction to this chapter, there is a another notion of quan-

tumsymmetry introducedbySegal, that relies on the Jordan algebra (seeSect. 11.3.3)
of operators instead of the lattice of elementary propositions. If a quantum system
is described on the complex separable Hilbert space H, in absence of superselection
rules the associated (real) Jordan algebra of observables J(HS) is the real vector
space of bounded self-adjoint operators in B(HS) equipped with the commutative,
non-associative Jordan product (11.21)

A ◦ B := 1

2
(AB + B A) for all A, B ∈ B(HS) .

In absence of superselection rules, J(HS) contains all bounded observables of the
system S, in particular the elementary propositions of L (HS). The product ◦ is the
most natural product of bounded observables, as it produces self-adjoint operators

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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when the factors are self-adjoint (see Sect. 11.3.3). It is natural to define a notion
of symmetry which involves operators representing (bounded) observables, hence
enlargingL (HS) to the whole J(HS) and preserving the relevant algebraic structure.
We state the corresponding definition by focusing only on quantum systems not
affected by superselection rules, for the sake of simplicity.

Definition 12.24 (Segal symmetry).Consider a quantumphysical system S described
on the complex separable Hilbert space HS in absence of superselection rules. A
weak symmetry of S according to Segal (or weak Segal automorphism) is a map
σ : J(HS) → J(HS) such that:
(a) σ is bijective;
(b) σ(A ◦ B) = σ(A) ◦ σ(B) for A, B ∈ J(HS) with AB = B A.

A weak symmetry according to Segal is said to be strong (a strong Segal auto-
morphism) if (b) is valid regardless of AB = B A.

Evidently, if U : H → H is unitary or anti-unitary, the map

J(H) � A �→ U AU−1 ∈ B(H)

is a strong Segal automorphism. A natural question is whether or not this sort of
Segal automorphism exhausts all possible Segal automorphisms. The answer is once
again yes: weak and strong symmetries coincide, and also coincide with Kadison
and Wigner symmetries. The following remarkable result rephrases a statement in
[Sim76], and will not be proved.

Theorem 12.25 Every weak Segal automorphism σ : J(H) → J(H), on a complex
separable Hilbert space of dim(H) ≥ 2, is a strong Segal automorphism, and there
exists an either unitary or anti-unitary map U : H → H, depending on σ and defined
up to phase, such that

σ(A) = U AU−1 for every A ∈ J(H).

Therefore, every weak Segal automorphism σ defines a unique Wigner and Kadison
automorphism γ , the only one satisfying

γ ∗−1(A) = σ(A) for every A ∈ J(H).

This means that Segal, Kadison and Wigner symmetries are physically equivalent.

12.2 Introduction to Symmetry Groups

This section is devoted to elementary topics from the theory of projective represen-
tations, applied to quantum symmetry groups.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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12.2.1 Projective and Projective Unitary Representations

Suppose we look at a group G (with product · and neutral element e) as a group
of transformations acting on a physical system S, described on the Hilbert space
HS . For simplicity we assume HS is the only coherent sector. Suppose, further, each
transformation g ∈ G is associated to a symmetry γg , which we can then view as
a Kadison (or Wigner) automorphism. We have already met this setup in Example
12.6(1), where G was the isometry group of the three-dimensional rest space of an
inertial frame and S was the particlewith no charge nor spin. Kadison automorphisms
in S(HS) clearly form a group under composition. Hence the idea is taking shape
that there is a representation of G in terms of Kadison automorphisms: these should
describe the action of G on the quantum states of S. In other words we can suppose
the map G � g �→ γg is a group homomorphism from G to the group of invertible
maps on S(HS):

γg·g′ = γg ◦ γg′ , γe = id , γg−1 = γ −1
g , g, g′ ∈ G,

where id is the identity automorphism. Actually, the last condition is unnecessary
because it follows from the former two by uniqueness of the inverses. We also
expect, as it happens in the majority of concrete physical cases, the representation
G � g �→ γg to be faithful, which means the homomorphism G � g �→ γg is
injective. This is very often the case in physics.

Definition 12.26 (Projective representation). Consider a quantum system S
described on the non-trivial Hilbert space HS . Let G be a group with an injective
homomorphism (a faithful representation) G � g �→ γg defined by Wigner auto-
morphisms γg : Sp(HS) → Sp(HS). ThenG is called a symmetry group of S, and
G � g �→ γg is its projective representation on Sp(HS).

Remarks 12.27 (1) Referring only to Wigner symmetries is not restrictive since
Kadison’s theorem (in our formulation) warrants every Wigner automorphism γg

extends, uniquely, to a Kadison automorphism γ ′
g : S(HS) → S(HS). It is straight-

forward that G � g �→ γ ′
g is an injective homomorphism, i.e. a faithful representa-

tion of G byKadison automorphisms. Conversely, every faithfulG-representation by
Kadison automorphisms determines a unique faithful G-representation by Wigner
automorphisms, by restriction toSp(HS). In the sequel, despite mentioning Wigner
symmetries most of the times, we will think the representationG � g �→ γg as given
by Wigner or Kadison automorphisms, according to what will suit us best.
(2) The name projective representation is appropriate becauseSp(Hs) is a projective
space, as we saw in Chap.7, and the map γg : Sp(HS) → Sp(HS) is well defined.
(3) Since the homomorphism G � g �→ γg is explicitly required to be injective, we
can equivalently take, as group of symmetries, the set of automorphisms γg , with
g ∈ G, equipped with the natural group structure coming from composition of maps.
Indeed, this group is isomorphic to G by construction. �

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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Now here is an interesting issue. Suppose we have a symmetry group and a projective
representationG � g �→ γg . ThemapG �→ γg is certainly a representation, but not a
linear representation, because the γg : Sp(HS) → Sp(HS) are not linear maps. Yet
since to every automorphism γg there corresponds a unitary or anti-unitary operator
Ug : HS → HS that satisfies γg(ρ) = UgρU−1

g for any ρ ∈ Sp(HS), a natural
question arises: can G � g �→ Ug be an (anti)linear representation of G? Can it
be given, in other terms, by (anti)linear (unitary and/or anti-unitary) operators in
B(H)?We are equivalently asking whetherG � g �→ Ug is a group homomorphism,
i.e. if it preserves the group structure:

Ug·g′ = UgUg′ , Ue = I , Ug−1 = U−1
g for any g, g′ ∈ G, (12.34)

where I : HS → HS is the identity operator. The matter is relevant from a technical
point to view, too: the profusion of results available on linear representations over
(Hilbert) spaces can be used to study symmetry groups of quantum systems. The
answer to the preceding questions is typically negative, because the conditionUg·g′ =
UgUg′ in general fails. Namely, as γg ◦ γg′ = γgg′ , we have

UgUg′ρ(UgUg′)−1 = Ug·g′ρU−1
g·g′ for any ρ ∈ S(HS).

Consequently:

(Ug·g′)−1UgUg′ρ(UgUg′)−1Ug·g′ = ρ , ρ ∈ Sp(HS).

This means that (Ug·g′)−1UgUg′ defines the trivial symmetry given by the identity
operator I . Consequently, for dim(H) > 1: (a) (Ug·g′)−1Ug is linear (that is, Ug·g′

andUgUg′ are both unitary or anti-unitary) and (b) (Ug·g′)−1UgUg′ amounts to a pure
phase ω(g, g′)I depending on g, g′. This result is sharp – the best possible – because
the Ug themselves are defined up to phase. Overall, if the (unitary or anti-unitary)
Ug are associated to a projective representation of a certain symmetry group, the
condition Ug·g′ = UgUg′ weakens, in the general case, to

UgUg′ = ω(g, g′)Ug·g′ , g, g′ ∈ G,

where ω(g, g′) ∈ C, |ω(g, g′)| = 1, are complex numbers depending on how the
Ug are associated to the automorphisms γg , but in any case respecting the theorems
of Wigner and Kadison.5 Therefore if, as usual, U (1) denotes the group of unit
complex numbers, ω(g, g′) ∈ U (1). In particular, setting g = g′ = e, the above
implicit definition of ω(g, g′) tells

Ue = ω(e, e)I , (12.35)

5For dim(H) = 1, every γg coincides with the identity map and we are free to choose, for instance,
Ug = I so that ω(g, g′) = 1 for every g, g′ ∈ G.
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(e being the neutral element of G) hence UeρU−1
e = ρ as it should be.

It is not at all obvious that one can redefine phases so to obtain ω(g, g′) = 1 for
every g, g′ ∈ G.

Remark 12.28 Henceforth we will work with unitary operators, and drop the anti-
unitary case, since this is the most common case when dealing with groups of sym-
metries. The explanation, and a further discussion, is put off until the end of the
section. �

The functionsG×G � (g, g′) �→ ω(g, g′) ∈ U (1) are not totally arbitrary, because
associativity holds:

(UgUg′)Ug′′ = Ug(Ug′Ug′′) .

A computation shows that the above is equivalent to:

ω(g, g′)ω(g · g′, g′′) = ω(g, g′ · g′′)ω(g′, g′′) (12.36)

In turn, the latter implies:

ω(g, e) = ω(e, g) , ω(g, e) = ω(g1, e) , ω(g, g−1) = ω(g−1, g) , g, g1 ∈ G ,

(12.37)
The next definition transcends the physical meaning of the objects involved.

Definition 12.29 (Projective unitary representation). Let G be a group and H a
(complex) Hilbert space.
(a) A projective unitary representation of G on H is a map

G � g �→ Ug ∈ B(H) (12.38)

such that: Ug are unitary operators, and themultiplier of the representation

Ω(g, g′) := U−1
g·g′UgUg′ , g, g′ ∈ G, (12.39)

has the form

Ω(g, g′) = ω(g, g′)I withω(g, g′) ∈ U (1) for any g, g′ ∈ G (12.40)

(hence (12.36) holds).
The projective representation on Sp(H) given by (with obvious notation)

G � g �→ Ug · U−1
g

is induced by the projective unitary representation (12.38).
The projective unitary representation (12.38) is called irreducible if the family

of operators {Ug}g∈G is irreducible on H.
GivenHilbert spacesH,H′ (possibly equal), two projective unitary representations
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G � g �→ Ug ∈ B(H) and G � g �→ U ′
g ∈ B(H′)

are said to be (unitarily) equivalent if there exist a unitary operator S : H → H′
and a map χ : G � g �→ χ(g) ∈ U (1) satisfying:

χ(g)SUg S−1 = U ′
g , g ∈ G. (12.41)

(b) A group homomorphism

G � g �→ Ug ∈ B(H) (12.42)

mapping elements of G to unitary operators on H is a (proper) unitary represen-
tation of G on H. (That is to say, a unitary representation is a projective unitary
representation whose multipliers equal 1.)

The unitary representation (12.42) is irreducible if the family of operators
{Ug}g∈G is irreducible on H.

Given Hilbert spaces H, H′ (possibly equal), two unitary representations

G � g �→ Ug ∈ B(H) and G � g �→ U ′
g ∈ B(H′)

are (unitarily) equivalent if there is a unitary operator S : H → H′ such that

SUg S−1 = U ′
g for every g ∈ G. (12.43)

Important remark. The reader should now be able to see the difference between
projective representations, projective unitary representations and unitary represen-
tations. The first type act on Sp(HS) or S(HS) representing symmetry groups, and
do not involve choices without physical meaning. The other two kinds act on HS ,
induce projective representations, but are affected by physically arbitrary choices of
the phases of the unitary operators by which they act. �

Remarks 12.30 (1) The notion of unitary equivalence of two projective unitary rep-
resentations is transitive, symmetric and reflexive, so it is an honest equivalence
relation on the space of projective unitary representations of a given group on a
given Hilbert space. If G is a symmetry group for the physical system S, described
on the Hilbert space HS , projective representations of G on Sp(HS) are patently in
one-to-one correspondence with equivalence classes of projective unitary represen-
tations of G.
(2) The property that a projective unitary representationG � g �→ Ug be equivalent
to a unitary representation is actually a property of the coset of the projective unitary
representation: it means that the equivalence class contains a unitary representative.
When talking about symmetry groups of a quantum system, that is a feature of the
projective representation on S(HS) corresponding to the class.
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(3) The property that a projective unitary representationG � g �→ Ug be irreducible
is a property of the coset of the projective unitary representation: if one representa-
tive in the equivalence class is irreducible, all other elements are irreducible, as is
clear from the definitions. Irreducible representations are important because every
representation can be constructed as a direct sum, or direct integral, of irreducible
representations [Var07]. �

Here is a more concrete way of asking whether a projective representationG � g �→
γg of a symmetry group G can be described, on HS , by a unitary representation of
G. Inside the equivalence class of projective unitary representations associated to
G � g �→ γg we fix an arbitrary representative (the ensuing discussion does not
depend on this element, by remark (2) above) and consider its multipliers.

Thus we reduce to decide whether there might be a map χ : G � g �→ χ(g) ∈
U (1) such that:

ω(g, g′) = χ(g · g′)
χ(g)χ(g′)

for any g, g′ ∈ G . (12.44)

Proof: if said χ exists, inserting it on the left in (12.41) renders the multipliers of
G � g �→ U ′

g trivial by (12.44). Conversely, if the multipliers of G � g �→ U ′
g are

trivial for some choice of the function χ in (12.41), that particular χ solves (12.44).
There are many strategies to tackle and solve the existence problem of χ [Var07],

and one can see there exist groups, e.g. the Lorentz group and the Poincaré group,
whose projective representations are described by unitary representations on the
Hilbert space of the system. At the same time there exist other groups, like the
Galilean group, whose (non-trivial) projective representations cannot be given by
unitary representations, but only by projective unitary representations: themultipliers
cannot be suppressed by smart choices of the phases.

There is a colossal literature on the topic. Irreducible projective unitary represen-
tations of the groups of interest in physics, especially Lie groups, have been studied
and classified (e.g., see [BaRa86] for a broad, though not completely rigorous nor
mathematically complete, treatise on the subject).

12.2.2 Representations of Actions on Observables: Left and
Right Representations

Given a symmetry group G with projective representation G � g �→ γg , two func-
tions are automatically defined that represent group actions on observables, namely
G � g �→ γ ∗

g and G � g �→ γ ∗−1
g , the dual action (12.19) and the the inverse dual

action (12.22) respectively, discussed in Sect. 12.1.6. The definitions hold beyond the
particular choice of projective unitary representation of the theory on the system’s
Hilbert space: the phases that we have to fix to pass from γg to theUg cancel out when
we transfer the action to observables: γ ∗

g (A) = U−1
g AUg and γ ∗−1

g (A) = Ug AU−1
g .
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Note that G � g �→ γ ∗
g does not define a left G-representation; it is easy to see,

from the definition of γ ∗
g , that:

γ ∗
g ◦ γ ∗

g′ = γ ∗
g′·g , g, g′ ∈ G

by construction, and not γ ∗
g γ ∗

g′ = γ ∗
g·g′ . Furthermore, γ ∗

e = id and γ ∗
g−1 = (γ ∗

g )−1.
The function G � g �→ γ ∗

g is a right representation of G, provided we endow
observables with the structure of a vector space at least – for instance restricting to
(self-adjoint) operators inB(HS).

Definition 12.31 Let G have neutral element e. A (linear) right representation of
G on a (real or complex) vector space V is a map G � g �→ αg ∈ GL(V ) such that

αa ◦ αb = αb·a , αe = id , (αc)
−1 = αc−1

for any a, b, c ∈ G.

The inverse dual action γ ∗−1
g (A) = Ug AU−1

g defines a standard (left) representation
of G as the reader immediately proves:

γ ∗−1
g ◦ γ ∗−1

g′ = γ ∗−1
g·g′ , g, g′ ∈ G .

12.2.3 Projective Representations and Anti-unitary Operators

Let us return to the ‘unitary vs. anti-unitary’ issue of the operatorsUg . Suppose to have
a symmetry group with projective representationG � g �→ γg . To an automorphism
γg there corresponds either a unitary operator or an anti-unitary operator Ug : HS →
HS satisfying γg(ρ) = UgρU−1

g for every ρ ∈ Sp(HS), by Wigner’s theorem. Are
there criteria to decide whether the Ug are all unitary, all anti-unitary, or maybe
both depending on g ∈ G? If Ug and Ug′ were anti-unitary, the constraint UgUg′ =
χ(g, g′)Ug·g′ would force Ug·g′ to be unitary. Therefore representations of groups
withmore than two elements, allmade by anti-unitary operators (identity apart,which
is always unitary) cannot exist. The hybrid casewhen a certain number of anti-unitary
operators (more than one) are present is anyway non-trivial, due to constraints such
as the aforementioned one. In this respect the next proposition shows that the group
G might impose the operators be all unitary.

Proposition 12.32 LetH be a complex Hilbert space with dimH > 1 andG a group.
Suppose each g ∈ G is the product of elements g1, g2, . . . , gn ∈ G (dependent on
g, with n dependent on g) that admit a square root (there exist rk ∈ G such that
gk = rk · rk for every k = 1, . . . , n). Then for every projective representation
G � g �→ γg, the elements γg can only be associated to unitary operators under
Wigner’s theorem (or Kadison’s).
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Proof The proof is obvious, for Urk Urk is linear even when Urk is antilinear. As
Ugk and Urk Urk represent the same Wigner symmetry associated to gk = rk · rk ,
they are both unitary or anti-unitary and hence they differ by a phase. From Ugk =
χ(rk, rk)Urk Urk follows Ugk is linear, so also Ug must be linear. ��
Remark 12.33 The case dimH = 1 has no direct physical interest as each symmetry
γg must be the identity. In particular,G � g �→ γg can always be unitarily represented
by the trivial representation Ug = I for all g ∈ G. Nevertheless, the case dimH = 1
may result mathematically interesting, and in the following we will also consider the
case of (non-trivial) unitary representations on one-dimensional spaces. �

The following result is important in the applications, especially the case n = 1.

Proposition 12.34 In relationship to Proposition 12.32, the projective representa-
tions of the additive group G = R

n are associated to unitary operators only.

Proof If t ∈ R
n then t = t/2+ t/2, and the rest is a corollary of Proposition 12.32.

��
We shall see later that Proposition 12.32 is automatic when we assume G is a con-
nected Lie group, so anti-unitary operators appear only with discrete groups or when
we change connected component. For this reason in the sequel we will deal with the
case where the Ug are all unitary.

12.2.4 Central Extensions and Quantum Group Associated to
a Symmetry Group

The approachwe are about to illustrate allows to study all projective unitary represen-
tations of a certain group, by looking at them as restrictions of unitary representations
of a larger group, a central extension of the starting one. The recipe, albeit apparently
overcomplicated, is technically useful (also to detect possible unitary representations
of G) in that it lets us use the specific toolbox of the much developed theory of uni-
tary representations (of the extension). Let us briefly explain the basic idea of the
procedure, postponing the fundamental example where G is the Galilean group; the
reader might skip this section at first and return to it when needed.

Take any group G and a projective unitary representation G � g �→ Ug on a
Hilbert space H with multipliers ω. Define another group Ĝω consisting of pairs
(χ, g) ∈ U (1) × G with product:

(χ, g) ◦ (χ ′, g′) = (
χχ ′ω(g, g′) , g · g′) , (χ, g), (χ ′, g′) ∈ U (1) × G.

The reader can check the definition is well posed, owing to the factω satisfies (12.36),
and that it produces a group with neutral element (ω(e, e)−1, e), e being the neutral
element of G (remember (12.37)), and inverse
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(χ, g)−1 = (χ−1ω(e, e)−1ω(g, g−1)−1, g−1) .

The following definition disregards the origin of the function ω, and only requires
Eq. (12.36) to be valid.

Definition 12.35 (Central extension). Let G be a group and ω : G × G → U (1)
any function satisfying (12.36). The group Ĝω = U (1) × G with product

(χ, g) ◦ (χ ′, g) = (
χχ ′ω(g, g′) , g · g′) , (χ, g), (χ ′, g′) ∈ U (1) × G,

is a central extension of G by U (1) withmultiplier function ω. The injective map
U (1) � χ �→ (χ, e) ∈ Ĝω and the surjective homomorphism Ĝω � (χ, g) �→ g ∈ G
are respectively called canonical injection and canonical projection of the central
extension.

The names (see the appendix at the end of the book for a minimal dictionary of group
theory) come about as follows: the canonical projection Ĝω � (χ, g) �→ g ∈ G is
a surjective homomorphism, whose null space is the normal subgroupN (range of
the canonical injection and isomorphic to U (1)) of pairs (χ, e) with χ ∈ U (1). The
kernelN is contained in the centre of Ĝω, as its elements commute with the whole
Ĝω (in fact ω(e, g) = ω(g, e)). In practice the group G has been extended, to Ĝω,
by adding the kernel of the surjection Ĝω � (χ, g) �→ g ∈ G), which is central.
Notice that G is naturally identified with the quotient group Ĝω/N .

The procedure for obtaining all projective unitary representations G � g �→ Ug

of G relies on three important points.
(1) If G � g �→ Ug has multiplier function ω, the map

Ĝω � (χ, g) �→ V(χ,g) := χUg ,

is a unitary Ĝω-representation onH. In fact the operators V(χ,g) : H → H are unitary,
so V(ω(e,e)−1,e) = I and

V(χ,g)V(χ ′,g′) = χUgχ
′Ug′ = χχ ′ω(g, g′)Ug·g′ = V(χ,g)◦(χ ′,g′) .

(2)The initial representation arises from theunitary representation Ĝω � (χ, g) �→
V(χ,g) by restriction: i.e., restricting the domain of V to elements (1, g), g ∈ G. We
will say that the unitary representation V restricts to G in this case.

(3) Given any unitary representation

Ĝω � (χ, g) �→ V(χ,g)

of a central extension, the restriction to {1} × G, say Ug := V(1,g), is a projective
unitary representation if and only if:

V(χ,e) = χω(e, e)I for everyχ ∈ U (1). (12.45)
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In fact, V(χ,g) = χUg implies V(χ,e) = χUe = χω(e, e)I (for any projective unitary
representation ω(e, e) := U−1

ee UeUe = Ue). From (χ, g) = (χω(e, e)−1, e)(1, g),
conversely, if (12.45) holds we can write

V (χ, g) = V (χω(e, e)−1, e)V (1, g) = χV (1, g) =: χUg .

So we have this proposition.

Proposition 12.36 Every projective unitary representation of a group G is the
restriction of a unitary representation of a suitable central extension Ĝω whose
multiplier function satisfies (12.45).

The extension procedure, especially whenG is a Lie group, is extremely powerful.
Cohomology techniques enable to catalogue all projective unitary representations
that are continuous in some topology (and all unitary representations of a simply
connected Lie group) starting from the Lie algebra of G. We will return here at a
later stage.

As amatter of fact we need not know all central extensions ofG to classify projec-
tive unitary representations. It suffices to know central extensions whose multipliers
are non-equivalent. Twomultiplier functions on the same group,G×G � (g, g′) �→
ω(g, g′) ∈ U (1) and G×G � (g, g′) �→ ω′(g, g′) ∈ U (1), are called equivalent if
there is a map χ : G → U (1) such that

ω(g, g′) = χ(g · g′)
χ(g)χ(g′)

ω′(g, g′) , g, g′ ∈ G.

If two projective unitary representations U , U ′ of G are equivalent, they are restric-
tions of unitary representations of central extensions Ĝω, Ĝω′ with equivalent multi-
plier functions ω, ω′. Hence, by knowing central extensions of G whose multipliers
are not equivalent and their unitary representations, we actually know the equiva-
lence classes of projective unitary representations ofG, and so all projective unitary
representations of G.

Further, if ω(e, e) �= 1 for a certain ω, using an equivalence transformation by
a constant function χ we can reduce to the case ω(e, e) = 1. Multipliers such that
ω(e, e) = 1 (whence ω(e, g) = ω(g, e) = ω(e, e) = 1) are normalised. In this
case the canonical injection turns out to be a group homomorphism. The central
extension has neutral element (1, e), and (12.45) reads

V(χ,e) = χ I , χ ∈ U (1) . (12.46)

Projective unitary representations arising thus satisfy Ue = I .
To finish, we make a few physical considerations on the meaning of Ĝω, when there
are no unitary representations ofG, only projective unitary representations. Suppose
we have a symmetry groupG � g �→ γg for the physical system S, hence a projective
representation onS(HS), that is not describable bymeans of a unitary representation.
We can anyway choose phases arbitrarily and extend G to Ĝω using the multipliers
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found, and then take Ĝω as the true symmetry group of S. The latter admits in this
way two representations. One from G itself:

Ĝω � (χ, g) �→ g ∈ G ,

that captures the classical action of the group. But there is also a quantum and unitary
representation:

Ĝω � (χ, g) �→ χUg ,

describing the group action on the states of the system (actually on the system’s
Hilbert space, and so on states, too).

In this light the group Ĝω is sometimes called the quantum group associated to
G. Note, however, that a specific central extension Ĝω cannot be selected using the
construction seen above, for which only projective representations given by Wigner
or Kadison automorphisms have a physical meaning. In order to choose among the
various central extensions it is necessary to give a physical meaning to the single pro-
jective unitary representations of G, or to the unitary representations of the possible
extensions Ĝω. This can be done, by enriching G and turning it into a Lie group, as
we will see. For the projective unitary representations of the Galilean group, multi-
pliers have a straightforward meaning, for they are related to the mass of the physical
system. This will be all the more clear after discussing Lie groups of symmetries.

12.2.5 Topological Symmetry Groups

We turn to topological symmetry groups and Lie groups of symmetries. Lie groups
are a subclass of topological groups. Themajority of quantum symmetry groups, with
the notable exclusion of discrete symmetries (parity inversion and time reversal) in
particular, are Lie groups. We will study in depth the additive Lie group R, whose
importance should not go amiss, both physically and technically.

Definition 12.37 A topological group is a group G and a topological space at the
same time, whose operations of productG×G � ( f, g) �→ f · g ∈ G, and inversion
G � g �→ g−1, are continuous in the product topology of G × G and the topology
of G, respectively.

The theory of topological groups and their representations occupies a huge chapter
of mathematics [NaSt82], and we shall be just concerned with a few very elemen-
tary results that befit our physical models. We present below some examples and
properties of topological groups, with an eye to the Haar measure.

Example 12.38
(1) The real general linear group GL(n, R) and the complex general linear group
GL(n, C) of non-singular n ×n real and complex matrices, are (evident) topological
groups, if we equip them with the topology induced by R

n2
and C

n2
.
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(2)Using the standard topology any subgroup of the above two is a topological group.
For instance:

• the unitary group
U (n) = {U ∈ GL(n, C) | UU ∗ = I },

• the special unitary group
SU (n) := {U ∈ U (n) | detU = 1},6

• the orthogonal group
O(n) := {R ∈ GL(n, R) | R Rt = I }

• the special orthogonal group
SO(n) := {R ∈ O(n) | det R = 1},

• the special linear group
SL(n, R) := {A ∈ GL(n) | det A = 1},

• the Lorentz group (η := diag(−1, 1, 1, 1))
O(1, 3) := {Λ ∈ GL(4) | ΛηΛt = η}

• the orthochronous Lorentz group
O(1, 3)↑:= {Λ ∈ O(1, 3) | Λ11 > 0},

• the special orthochronous Lorentz group
SO(1, 3)↑:= {Λ ∈ O(1, 3)↑ | detΛ > 0}.

The list (including GL(n, R) and GL(n, C)) is made of closed subsets in R
n2
, or

C
n2

if matrices are complex. This comes from the definitions: just notice that by
continuity every sequence in one of those groups converges in R

n2
, or C

n2
, to an

element of the group.
The groups O(n), SO(n), U (n), SU (n) (not the others listed above) are bounded,

and therefore compact groups. Boundedness follows from the definition and the
Cauchy–Schwarz inequality. For example, for U ∈ U (n) we have

∑n
k=1 UikU jk =

δi j by definition of U (n). Hence
∑n

i,k=1 UikUik = n, so
∑n

i,k=1 |Uik |2 = n and U (n)

is contained in the closed ball of radius
√

n in C
n2
.

(3) Some groups do not look like matrix groups, like the additive groupR. But it, too,
just like the isometry group of R

n , I O(n), built as in Example 12.19(1) replacing
O(3) with O(n), can be realised by matrices. For I O(n), one representation is by
real (n + 1) × (n + 1) matrices

M((R, t)) :=
[
1 0t

t R

]
, t ∈ R

n, R ∈ O(n) (12.47)

(a subgroup of the topological group GL(n + 1, R) with induced topology). The
map I O(n) � (R, t) �→ M((R, t)) is an isomorphism. The additive group R

n arises
by restriction, via the homeomorphism R

n � t �→ M((I, t)) (Rn with standard
structure).

The Galilean group (Sect. 12.3.3) and the Poincaré group are topological groups,
built analogously via matrices.

6The word special, for matrix groups, indicates determinant equal to 1, and is alwaysdenoted by
an S before the group’s name.
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(4) Yet there exist topological groups (even Lie groups) that cannot be viewed
as matrix groups, an example being the universal covering (Definition 12.54) of
SL(2, R).
(5) Locally compact Hausdorff groups, like R

n (an Abelian group with the sum
as composition law), GL(n, R), GL(n, C) and subgroups thereof, admit a special
regular Borel measure, called the Haar measure. The Haar measure is defined up to
a factor and is translation-invariant by group elements.

Its definition is contained in the following classical theorem, proved by Weil in
full generality [Hal69], of which we provide no proof. Recall that if G has product
◦, the left and right orbits of B ⊂ G under g ∈ G are:

gB := {g ◦ b | b ∈ B} and Bg := {b ◦ g | b ∈ B}

respectively. A positive σ -additive measure μ on the Borel σ -algebra B(G) of the
locally compact Hausdorff group G is called left-invariant if

μ(gB) = μ(B) for any B ∈ B(G), g ∈ G,

and right-invariant if

μ(Bg) = μ(B) for any B ∈ B(G), g ∈ G.

Note that μ(gB), μ(Bg) are well defined. Since the multiplication by h ∈ G on the
left,G � b �→ fh(b) := h ◦ b, is an homeomorphism, and since gB = ( fg−1)−1(B),
we have gB ∈ B(G) if B ∈ G. Similarly Bg ∈ B(G) if B ∈ G.

Theorem 12.39 Let G be a locally compact Hausdorff group. Up to a positive
factor, there exists a unique positive σ -additive measure μG on the Borel σ -algebra
B(G) such that it is regular (μG(B) = inf{μG(U ) | B ⊂ U, Uopen} and μG(B) =
sup{μG(K ) | K ⊂ B, K compact}) and:

(i) μG is left-invariant,
(ii) μG(B) > 0 if B �= ∅ is open and μG(K ) < +∞ if K is compact.7

Furthermore, ifG is compact,μG is also right-invariant becauseμG(E) = μG(E−1),
where E−1 := {g−1 | g ∈ E} for any E ∈ B(G).
μG is called left-invariant Haar measure of G.

Asimilar result for right-invariantmeasures defines, up to the usual positive factor, the
right-invariant Haar measure νG. This in general is different (factor apart) from
the (left-invariant) Haar measure μG: they coincide in case G is compact, by the
theorem, because ν(E) := μ(E−1) is right-invariant on B(G) if μ is left-invariant
onB(G). If so, one speaks of the bi-invariant Haar measure.

The Abelian group (R,+) has the Lebesgue measure as Haar measure: the left-
and right-invariant Haar measures coincide. The group GL(n, R) (and its subgroups
of (2)) has Haar measure:

7Some authors require the condition on compact sets in the definition of regular Borel measure.



708 12 Introduction to Quantum Symmetries

μGL(n,R)(B) :=
∫

B
| det g(x11, . . . , xnn)|−ndx;

where g ∈ GL(n, R) has entries xi j seen as coordinates of R
n2
, and dx is the

Lebesgue measure on R
n2
. �

At this point we want to specialise the notion of symmetry group to topological
groups, which entails imposing topological constraints on the associated projective
representation.

Suppose we have a symmetry group G � g �→ γg for the quantum system
S described on the Hilbert space HS . If G is a topological group, we expect the
homomorphism g �→ γg to be continuous in some sense. This means choosing
a topology on the space of maps γg , which we may think of as either Kadison
automorphisms or Wigner automorphisms. In the sequel we adopt Wigner’s point of
view. We give first the definition and then explain it mathematically and physically.

Definition 12.40 Consider a quantum system S described on the Hilbert space HS .
Let G be a topological group with a projective representation G � g �→ γg on H,
such that

lim
g→g0

tr
(
ρ1γg(ρ2)

) = tr
(
ρ1γg0(ρ2)

)
, g0 ∈ G, ρ1, ρ2 ∈ Sp(HS).

ThenG is a topological group of symmetries for S, andG � g �→ γg is a continuous
projective representation on Sp(HS).

Physically this is reasonable, for it says the transition probability between two pure
states, one of which is the image of the action of the symmetry group, is a continuous
map for the action. In Wigner’s quantum-symmetry setup, this is more than sound.

But the definition is also natural in mathematical terms, as we explain now. Let
B1(HS)R be the real vector space of self-adjoint, trace-class operators with norm
|| ||1. By Proposition 12.17 every Wigner automorphism γg is the restriction to
Sp(HS) of a linear operator (γ2)g : B1(HS)R → B1(HS)R, determined by γg and
continuous for || ||1. Consider then the mapping Γ : G � g �→ (γ2)g . Putting the
strong topology on B1(HS)R and the standard one on the domain, we will say Γ is
continuous if for any ρ ∈ B1(HS), g0 ∈ G:

lim
g→g0

||(γ2)g(ρ) − (γ2)g0(ρ)||1 = 0 .

Nowrestrict toSp(HS)with the induced topology, thus reverting to the representation
G � g �→ γg in terms of Wigner automorphisms. Then G � g �→ γg is continuous
if, for any ρ ∈ Sp(HS), g0 ∈ G:

lim
g→g0

||γg(ρ) − γg0(ρ)||1 = 0 .

This notion of continuity is, apparently, different from that of Definition 12.40. The
next proposition tells they are indeed the same.
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Proposition 12.41 Let H be a complex Hilbert space and ||ρ||1 = tr(|ρ|) the norm
on trace-class operators S(HS). Then restricting to pure states:

||ρ − ρ ′||1 = 2
√
1 − (tr(ρρ ′))2 , ρ, ρ ′ ∈ Sp(H). (12.48)

Equivalently:

||ψ(ψ | ) − ψ ′(ψ ′| )||1 = 2
√
1 − |(ψ |ψ ′)|2 , ψ,ψ ′ ∈ H, ||ψ || = ||ψ ′|| = 1.

(12.49)
Therefore Sp(H) is a metric space with distance function:

d(ρ, ρ ′) := 2
√
1 − (tr(ρρ ′))2 , ρ, ρ ′ ∈ Sp(H).

Proof The first assertion is a trivial transcription of the second one, and the third is
obvious once the first two are proven, by general properties of norms. To prove the
second statement in the non-trivial caseψ(ψ | ) �= ψ ′(ψ ′| ), it suffices to observe that
ρ = ψ(ψ | ) − ψ ′(ψ ′| ), viewed as an operator in the span of ψ,ψ ′, is self-adjoint
with zero trace, so its eigenvalues are ±λ for some λ > 0. Hence

2λ2 = tr(ρ2) = 2 − 2|(ψ |ψ ′)|2 ,

where we have expanded the trace of ρ2 in a Hilbert basis to obtain the second
identity. We conclude that λ = √

1 − |(ψ |ψ ′)|2, so

||ψ(ψ | ) − ψ ′(ψ ′| )||1 = λ + | − λ| = 2
√
1 − |(ψ |ψ ′)|2 .

��
Remarks 12.42 (1) The last claim of the proposition is quite interesting, forSp(H)

is not a normed space, not even being a vector space. Nonetheless, it is a metric
space (Definition 2.82) and the distance has a meaning: it is related to the probability
amplitude.
(2) By direct inspection one also sees that, referring to the Hilbert–Schmidt norm
|| · ||2 (Definition 4.24),

||ψ(ψ | ) − ψ ′(ψ ′| )||2 = √
2
√
1 − |(ψ |ψ ′)|2 = ||ψ(ψ | ) − ψ ′(ψ ′| )||1/

√
2 ,

for any pair of vectors ψ,ψ ′ with ||ψ || = ||ψ ′|| = 1. So, up to a multiplicative
constant, the distance on Sp(HS) constructed out of the Hilbert–Schmidt norm is
the same as the distance constructed out of || · ||1. �

Mathematics and physics eventually meet in the next result.

Proposition 12.43 Consider a quantum system S described on the Hilbert space
HS. Let G be a topological group. A projective representation G � g �→ γg on H is

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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continuous according to Definition 12.40, so G is a topological symmetry group for
S, if and only if it is continuous with respect to:

(i) the topology of G on the domain,
(ii) the strong topology on the codomain, restricted to Sp(HS):

lim
g→g0

||γg(ρ) − γg0(ρ)||1 = 0 , ρ ∈ Sp(HS), g0 ∈ G. (12.50)

Proof Equation (12.48) implies

||γg(ρ) − γg0(ρ)||1 = 2
√
1 − tr

(
γg(ρ)γg0(ρ)

)
.

If G � g �→ γg is continuous for Definition 12.40 then limg→g0 tr
(
γg(ρ)γg0(ρ)

) =
tr

(
γg0(ρ)γg0(ρ)

) = 1. Substituting above yields (12.50). Conversely, from (12.48),
the trace’s invariance under cyclic permutations gives

tr
(
γg0(ρ)γg(ρ)

) = 1 − 1

4
||γg(ρ) − γg0(ρ)||21 .

Namely:

tr
(
ργg−1

0 g(ρ)
)

= 1 − 1

4
||γg(ρ) − γg0(ρ)||21 .

Changing the names of the elements of the group:

tr
(
ργg(ρ)

) = 1 − 1

4
||γg0g(ρ) − γg0(ρ)||21 .

All that implies that the map g �→ tr
(
ρ1γg(ρ2)

)
is continuous at e if ρ1 = ρ2.

The general case arises immediately from the Cauchy–Schwarz inequality for the
Hilbert–Schmidt inner product:

∣∣tr
(
ρ1

(
γgρ2 − γg0ρ2

))∣∣2 ≤ tr(ρ1ρ1)tr
((

γgρ2 − γg0ρ2
) (

γgρ2 − γg0ρ2
))

.

The second factor in the right-hand side is nothing but:

2tr (ρ2ρ2) − tr
(
ρ2γg−1g0ρ2

) − tr
(
ρ2γg−1

0 gρ2

)

and it tends to 0 as g → g0. Hence (12.50) implies continuity for Definition 12.40.
��
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12.2.6 Strongly Continuous Projective Unitary
Representations

Consider a physical system S described on the Hilbert space HS , a topological sym-
metry group G and a projective representation G � g �→ γg . Let us associate to G
a projective unitary representation G � g �→ Vg , in the sense γg(ρ) = VgρV −1

g ,
for every pure state ρ ∈ Sp(HS) of the system and every element g ∈ G. Clearly if
G � g �→ Vg is strongly continuous, then G � g �→ γg is a continuous projective
representation: Definition 12.40 holds, in fact, since if ρi = ψi (ψi | ), i = 1, 2:

tr
(
ρ1Vgρ2V ∗

g

) = |(ψ1|Vgψ2)| → |(ψ1|Vg0ψ2)| = tr
(
ρ1Vg0ρ2V ∗

g0

)
as g → g0 .

Here is an interesting problem: knowing G � g �→ γg is continuous, establish if the
phases χg of the unitary operators Ug = χgVg can be fixed so to obtain a projective
unitary representation G � g �→ Ug (yet associated to the initial G � g �→ γg) that
is strongly continuous. We would like, in other words,

Ugψ → Ug0ψ as g → g0 for anyψ ∈ H.

In its general form the question is very hard, although Wigner gave a local answer.
Wewill show that given a topological symmetry groupG and a continuous projective
representation G � g �→ γg , it is possible to fix the multipliers ω so to make the
projective unitary representation G � g �→ Ug become strongly continuous on a
neighbourhood of the neutral element of G. Moreover, also the multipliers will be
continuous on that neighbourhood. This local result is not usually global. We will
prove that for G = R the result holds everywhere on the group and multipliers
can be fixed to 1, so that the representation is simultaneously unitary and strongly
continuous. The consequences in physics reach far: we will be able to justify the
postulate of time evolution, and explain the relationship between the existence of
symmetries and the presence of preserved quantities as the system S evolves in time:
a quantum formulation, in other words, of Noether’s theorem. All this later though,
because now we shall focus on mathematical aspects.

Proposition 12.44 Consider a quantum system S described on the Hilbert space
HS, and let G be a topological group with continuous projective representation
γ : G � g �→ γg.

There exist an open neighbourhood A ⊂ G of e ∈ G and a projective unitary
representation associated to γ , G � g �→ Ug, that is strongly continuous on A.

The multipliers

ω(g, g′)I = (
Ug·g′

)−1
UgUg′ , g, g′ ∈ G

define a continuous map on an open neighbourhood A′ of e with A′ · A′ ⊂ A.
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Proof Fix φ ∈ H, ||φ|| = 1. As G � g �→ tr(φ(φ| )γg(φ(φ| ))) is continuous and
equals 1 for g = e, there is an open neighbourhood A0 of e where

tr(φ(φ| )γg(φ(φ| ))) �= 0 .

Represent γ by a projective unitary representation V , arbitrarily chosen, which we
have by Wigner’s theorem. Around A0, then:

0 �= tr(φ(φ| )γg(φ(φ| ))) = |(φ|Vgφ)|2 .

Define ((φ|Vgφ) �= 0 guarantees it is possible):

χg := (φ|Vgφ)

|(φ|Vgφ)|
and pass to a new projective unitary representation U :

Ug := χgVg , if g ∈ A0 and Ug := Vg , if g /∈ A0 .

Then on A0:

0 <
|(φ|Vgφ)|2
|(φ|Vgφ)| = (φ|Ugφ)

so
0 < (φ|Ugφ) . (12.51)

Equation (12.51) has two consequences on some open neighbourhood A of e, A ⊂
A0:

Ue = 1 , and Ug−1 = U−1
g , g ∈ A. (12.52)

In fact, Ue = χ I for some χ ∈ U (1), so (φ|Ueφ) = χ(φ|φ) = χ . As (φ|Ueφ) > 0,
we can only have χ = 1. As for the second property, Ug−1 = χ ′

gU−1
g for some χ ′

g ∈
U (1). Since g �→ g−1 is continuous and e−1 = e, there is an open neighbourhood
of e, A ⊂ A0, for which g−1 ∈ A0 if g ∈ A. Working on A,

0 < (φ|Ug−1φ) = χ ′
g(φ|U−1

g φ) = χ ′
g(φ|U ∗

g φ) = χ ′
g(Ugφ|φ) = χ ′

g(φ|Ugφ)

because (φ|Ugφ) is real so (φ|Ugφ) = (Ugφ|φ). Since (φ|Ugφ) > 0, necessarily
χ ′

g = 1. This proves (12.52).
Fix a unit vector ψ ∈ H, possibly distinct from the above φ. By continuity of γ ,

as in Definition 12.40 with ρ1 = Usψ(Usψ | ) and ρ2 = ψ(ψ | ), we find

lim
r→s

|(Urψ |Usψ)| = |(Usψ |Usψ)| = 1 . (12.53)
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Choosing ρ1 = φ(φ| ), ρ2 = ψ(ψ | ) gives

lim
r→s

|(φ|Urψ)| = |(φ|Usψ)| . (12.54)

Substituting in the general identities produces

||Usψ − (Urψ |Usψ)Urψ ||2 = 1 − |(Urψ |Usψ)|2 , (12.55)

so
lim
r→s

(Urψ |Usψ)Urψ = Usψ (12.56)

and in particular, for ψ = φ,

lim
r→s

(Urφ|Usφ)(φ|Urφ) = (φ|Usφ) . (12.57)

On the other hand, our choice of φ and of the phase in U implies

lim
r→s

(φ|Urφ) = lim
r→s

|(φ|Urφ)| = |(φ|Usφ)| = (φ|Usφ) , (12.58)

and so using (12.58) in (12.57), tells

lim
r→s

(Urφ|Usφ) = 1 . (12.59)

Now, Ut is unitary, and for any ψ ∈ H (any ψ = φ) we have

||Urψ − Usψ ||2 = 2 − 2Re(Urψ |Usψ) , (12.60)

so (12.59) and (12.60) imply, for r ∈ A, that the map r �→ Urφ is continuous, with
the chosen φ. Therefore r �→ (Ur )

−1φ is continuous, since (12.57) holds when r
is replaced by r−1 and s by s−1 (g �→ g−1 is continuous, and (Ur )

−1 = Ur−1 by
(12.52)). From (12.56) follows

lim
r→s

(Urψ |Usψ)((Ur )
−1φ|ψ) = (φ|Usψ) .

In other words,
lim
r→s

(Urψ |Usψ)(φ|Urψ) = (φ|Usψ) . (12.61)

If ψ is a unit vector with (φ|Usψ) �= 0, (12.61) entails

lim
r→s

(Urψ |Usψ) = 1 . (12.62)

Using this result in (12.60) we establish
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lim
r→s

||Urψ − Usψ || = 0 (12.63)

for the vectors ψ . Notice that (12.63) trivially extends to every ψ ∈ H with
(φ|Usψ) �= 0 even if its norm is not 1 and, obviously, it is also valid for ψ = 0.

In case (φ|Usψ) = 0, (12.63) holds howeverwithψ replaced byψ ′ := ψ+U−1
s φ,

since it satisfies (φ|Usψ
′) �= 0 by direct inspection. With this choice we have by

construction

Urψ − Usψ = (Urψ
′ − Usψ

′) + (UrU−1
s φ − φ) .

The first difference in the right-hand side vanishes when r → s since (12.63) is valid
for ψ ′, the second difference vanishes as well because

||UrU−1
s φ − φ|| = ||U−1

s φ − U−1
r φ|| → 0 as r → s,

as established at the beginning of this proof.We conclude that (12.63) holds for every
ψ ∈ H and A � g �→ Ug is strongly continuous.

Now the second claim. From U (e) = 1 and Ug−1 = U−1
g , on A we have

ω(g, e) = ω(e, g) = 1 , (12.64)

From
(U−1

r φ|Usφ) = ω(r, s)−1(φ|Ur ·sφ) (12.65)

and (φ|Ur ·sφ) > 0 if r · s ∈ A, we infer (r, s) �→ ω(r, s)−1 is continuous for
r, s, r ·s ∈ A. Since the product ofG is continuous if e·e = e, there is a neighbourhood
A′ ⊂ A of e where r, s ∈ A′ implies r · s ∈ A. Taking A′ small enough renders
A′ × A′ � (r, s) �→ ω(r, s) = ω(r, s)−1 continuous. ��

12.2.7 A Special Case: The Topological Group R

We prove in this section a very important theorem about continuous representations
of the additive group R equipped with the standard topology. The result is crucial in
physics, as we will have time to explain.

Theorem 12.45 Let R � r �→ γr be a continuous projective representation of R on
the Hilbert space H.
(a) There exists a strongly continuous one-parameter unitary group (Definition 9.26)
R � r �→ Wr such that

γr (ρ) = WrρW −1
r for any r ∈ R, ρ ∈ Sp(H). (12.66)

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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(b)A second strongly continuous one-parameter unitary group R � r �→ Ur satisfies
(12.66) (with Ur replacing Wr ) if and only if there exists c ∈ R such that

Ur = eicr Wr for any r ∈ R.

(c) There exists a self-adjoint operator A : D(A) → H on H, unique up to additive
constants, such that:

γr (ρ) = eir Aρe−ir A for any r ∈ R, ρ ∈ Sp(H).

Proof (a) Let [−b, b] ⊂ A, b > 0, be an interval in the open neighbourhood of 0,
say A ⊂ R, satisfying Proposition 12.44 for G = R. Decompose R into the disjoint
union of intervals (na, (n + 1)a], n ∈ Z, with a = b/2. Any r ∈ R belongs to one
interval only, so r = nr a + tr for unique tr ∈ (0, a] and nr ∈ Z. Since γxγy = γx+y :

γr = γnr a+tr = (γa)
nr γtr .

Hence if R � r �→ Ur is the projective unitary representation of Proposition 12.44:

γr (ρ) = (
(Ua)

nr Utr

)
ρ
(
(Ua)

nr Utr

)−1
,

for every ρ ∈ Sp(HS). For every t ∈ (−a − ε, a + ε) and some ε > 0 the map
t �→ Ut is strongly continuous, so

R � r �→ Vr with Vr := (Ua)
nr Utr , nr ∈ Z and tr ∈ (0, a] as above (12.67)

is strongly continuous almost everywhere. The only discontinuities can occur at the
endpoints of the intervals (na, (n + 1)a]. Consider then r ∈ (na, (n + 1)a] and let
us verify Vr is continuous at na. With r− < na, r+ > na we have

Vr−ψ = (Ua)
(n−1)Utr− ψ and Vr+ψ = (Ua)

nUtr+ ψ .

As (−a, a] � t �→ Utψ is continuous, by definition of V :

lim
r−→na−

Vr−ψ = Vnaψ .

Toprove that themapR � r → Vr defined in (12.67) is continuous at na we also need
to check that the right and left limits coincide, i.e. that the limit of (Ua)

(n−1)Utr− ψ ,
as tr− → a− (computed above), coincides with the limit of (Ua)

nUtr+ ψ as tr+ → 0+.
We have

lim
t→a−

(Ua)
n−1Utψ = lim

t−a→0−
(Ua)

n−1ω(a, t − a)−1UaUt−aψ
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= lim
t−a→0−

ω(a, t − a)−1(Ua)
nUt−aψ = lim

τ→0−
ω(a, τ )−1(Ua)

nUτψ .

By the previous proof (0, a] � τ �→ ω(a, τ )−1 is continuous, sincea, τ, a+τ ∈ A by
construction. Moreover, χ(a, 0) = 1 from (12.64). We also know (0, a] � t �→ Utψ

is continuous, so:

lim
t→a−

(Ua)
n−1Utψ = lim

τ→0−
ω(a, τ )−1(Ua)

nUτψ = lim
τ→0+

ω(a, τ )−1(Ua)
nUτψ

= lim
t→0+

(Ua)
nUtψ .

We have proved

Vnaψ = lim
r−→na− Vr−ψ = lim

tr− →a−(Ua)(n−1)Utr− ψ = lim
tr+ →0+(Ua)nUtr+ ψ = lim

r+→na+ Vr+ψ ,

as required. Note (Vr )
−1 = (Utr )

−1(Ua)
−nr = U−tr (Ua)

−nr , where the second iden-
tity in (12.52) was used. In analogy to the proof for Vr , also R � r �→ (Vr )

−1 is
continuous in the strong topology.

We claim the multipliers of V can be set to 1. For this, first we will show they
give a continuous map R

2 � (r, s) �→ ω(r, s) ∈ U (1), using that R � t �→ Vtψ

and R � t �→ (Vt )
−1ψ are continuous. Then we will prove the latter function is

equivalent to the constant map 1. By definition

ω(r, s)Vr+s = Vr Vs .

Fix (r0, s0) ∈ R
2. Theremust existψ, φ ∈ H\{0} so that (ψ |Vr0+s0φ) �= 0, otherwise

Vr0+s0 = 0, which is impossible by hypothesis as Vt is unitary. By continuity there
is a neighbourhood B of (r0, s0) such that (r, s) ∈ B implies (ψ |Vr+sφ) �= 0. Then

ω(r, s) = ((Vr )
−1ψ |Vsφ)

(ψ |Vr+sφ)
.

Hence R
2 � (r, s) �→ ω(r, s) ∈ U (1) is continuous around (r0, s0), and so contin-

uous on R
2. We may write ω(r, s) = e−i f (r,s) for some function f : R

2 → R. The
continuous map ω can be thought of as valued in the unit circle S

1, homeomorphic
to U (1). The map f can be chosen to be continuous (the fundamental group of R

2 is
trivial, so the lifting property of covering spaces holds, cf. [Ser94II, Theorem 18.2]).
Equation (12.36) now reads

f (s, t) − f (r + s, t) + f (r, s + t) − f (r, s) = 2πkr,s,t forkr,s,t ∈ Z .

Continuous functions map connected sets (R3) to connected sets (a subset of 2πZ

with induced standard topology), so the right-hand side is constant. But the left-hand
side is zero for r = s = t = 0 as a consequence of (12.64), so:
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f (s, t) − f (r + s, t) + f (r, s + t) − f (r, s) = 0 for every r, s, t ∈ R . (12.68)

Fix a C1 map g : R → R with compact support such that:

∫

R

g(x)dx = 1 and obviously
∫

R

dg

dx
dx = 0 . (12.69)

Define the continuous function:

χ(r) := e−ih(r) where h(r) := −
∫ r

0
du

∫

R

f (u, t)
dg

dt
dt −

∫

R

f (r, t)g(t)dt .

The new representation Wr := χ(r)Vr has multiplier ω′(r, s) = ω(r, s) χ(r)χ(s)
χ(r+s) , so

ω(r, s)′ = e−i f ′(r,s) where f ′(r, s) = f (r, s) − h(r + s) + h(r) + h(s) .

A moderately involved computation on the right side, using h, (12.68), (12.69), and
the easy relation

∫ r+s

0
du F(u) −

∫ r

0
du F(u) −

∫ s

0
du F(u) =

∫ s

0
du (F(u + r) − F(u))

eventually gives f ′(r, s) = 0 , i.e.χ ′(r, s) = 1 for any (r, s) ∈ R
2. This makes the

projective unitary representationR � r �→ Wr actually unitary. SinceR � x �→ χ(x)

is continuous by construction andR � r �→ Vr is strongly continuous, also W = χV
is strongly continuous. That is to say, R � r �→ Wr is a strongly continuous one-
parameter unitary group satisfying (12.66), thus ending (a).

(b) Suppose there is another strongly continuous one-parameter unitary group U
representing γ :

U−r Wrψ = χ(r)ψ , ψ ∈ H. (12.70)

(We have already proved χ(r) and ψ are independent in similar situations.) Conse-
quently Wr = χ(r)Ur . Multiply by Ws = χ(s)Us , and use the additivity of W and
U in the parameter:

Wr+s = χ(r)χ(s)Ur+s so U−(r+s)Wr+s = χ(r)χ(s)I.

Comparing with U−(r+s)Wr+s = χ(r + s)I , produces

χ(r + s) = χ(r)χ(s) . (12.71)

Equation (12.70) has another corollary:

(Urφ|Wrψ) = χ(r)(φ|ψ) .
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By Stone’s theorem (Theorem 9.33) we can write Ut = eit B , Wt = eit A for self-
adjoint operators defined on dense domains D(A), D(B). Choose φ ∈ D(B), ψ ∈
D(A) so that (φ|ψ) �= 0 (always possible by density). By Stone the first derivative
of R � t �→ χ(r) has to satisfy

d

dt
(Urφ|Wrψ) =

(
d

dt
Urφ

∣∣∣∣ Wrψ

)
+

(
Urφ

∣∣∣∣
d

dt
Wrψ

)
,

hence it exists and equals

(i BUrφ|Wrψ) + (Urφ|i AWrψ) .

Since the derivative of χ exists, and (12.71) holds:

d

dx
χ(x) = lim

h→0

1

h
(χ(x + h) − χ(x)) = χ(x) lim

h→0

1

h
(χ(h) − χ(0)) = −χ(x)c .

Hence χ(x) = e−icx for some c ∈ R and then

Wx = e−icxUx .

Conversely letW be as in (a) andfix c ∈ R.Adirect computation showsUx := eicx Wx

is a strongly continuous one-parameter unitary group that represents γ .
(c) The strongly continuous one-parameter unitary group R � r �→ Wr , built in

(a), represents γ and has a self-adjoint generator A, by Stone’s theorem. Therefore
Wr = eir A. If B : D(B) → H is another self-adjoint operator representing γ , its one-
parameter group Ut = eit B fulfils (b). Then there is c ∈ R such that eitA = eitceitB.
By Stone’s theorem the left-hand side admits strong derivative at t = 0 on D(A),
and the derivative is i A. Similarly, the right-hand side admits strong derivative at
t = 0, at least on D(B), which equals icI + i B. Consequently D(A) ⊂ D(B)

and A = (cI + B) �D(A). Note cI + B is self-adjoint on D(B). Since A is self-
adjoint it does not have proper self-adjoint extensions, and then D(A) = D(B) and
A = B + cI . ��
Example 12.46
(1) Consider Example 12.19(1). The physical system is a quantum particle with no
spin, described on the Hilbert space L2(R3, dx) if we fix an inertial frame system
and identify R

3 with the rest space via orthonormal Cartesian coordinates.
The subgroup ISO(3) of isometries of R

3 consists of functions:

(t, R) : R
3 � x �→ t + Rx , (12.72)

with t ∈ R
3, R ∈ SO(3). Taking R ∈ SO(3), as opposed to R ∈ O(3) explains the

‘S’ in ISO(3). As said in Example 12.38(3) (about I O(n) there, but the argument is
the same), ISO(3) is a matrix group. Consider 4 × 4 real matrices:

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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g(t,R) :=
[
1 0t

t R

]
, t ∈ R

n, R ∈ SO(3). (12.73)

The topology is inherited from GL(4, R) i.e. R
16. The matrices g(t,R) correspond

one-to-one to elements of ISO(3), and ISO(3) � (t, R) �→ g(t,R) is an isomorphism,
beside a linear representation of ISO(3). In order tomake the action of ISO(3) explicit
on points in R

3, let us write points as column vectors (1, x1, x2, x3)t of R
4, where

x1, x2, x3 are the Cartesian coordinates of x ∈ R
3. In this way we recover the action

of g(t,R) on R
3 described by (12.72). We can indifferently see ISO(3) as the group of

maps (12.72) or the matrix group (12.73). In either case it will be a topological group
from now on. Similarly we may imagine IO(3) as a matrix group, simply allowing R
to vary in the whole O(3). With the given topologies, the construction makes ISO(3)
a topological subgroup of IO(3) and its connected component at the identity (0, I ).

The linear unitary ISO(3)-representation on L2(R3, dx) seen in Example
12.19(1):

(UΓ ψ) (x) := ψ(Γ −1x) , Γ ∈ ISO(3), ψ ∈ L2(R3, dx)

is strongly continuous, since

||UΓ ψ − UΓ0ψ || = ||UΓ −1
0 ◦Γ ψ − ψ || → 0 asΓ → Γ0. (12.74)

Now look at UΓ acting on pure states of H = L2(R3, dx):

γΓ (ψ(ψ | )) := UΓ ψ (ψ | ) U−1
Γ .

The strongly continuous unitary representation ISO(3) � Γ �→ UΓ renders ISO(3)
a topological group of symmetries for the spinless quantum particle.
(2) Let Pi be the self-adjoint operator of the momentum observable along the axis
xi , and P the column vector (P1, P2, P3)

t . With an eye on the previous example, let
us focus on the subgroup of translations along an axis t ∈ R

3. Such subgroup is the
strongly continuous one-parameter unitary group R � r �→ U (t)

r , with

(
U (t)

r ψ
)
(x) := ψ(x − r t) , t ∈ R, ψ ∈ L2(R3, dx) .

It is easy to prove the symmetric operator t · P�S (R3) is essentially self-adjoint, so
(cf. Lemma 11.40)

(
e−i r

�
t·P�S (R3)ψ

)
(x) = ψ(x − r t) , ψ ∈ L2(R3, dx). (12.75)

Therefore
the self-adjoint operator, which exists by Theorem 12.45(c), generating the strongly
continuous one-parameter unitary group of translations along t is the momentum

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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operator along −t, i.e. the only self-adjoint extension of − 1
�
t · P�S (R3) (up to the

constant �
−1).

Observe that the generator can be modified by adding constants. �

12.2.8 Round-Up on Lie Groups and Algebras

In this last section we assume the reader is familiar with differentiable manifolds,
including real-analytic ones (the basic notions are summarised in the appendix with
some detail). We recall fundamental results in the theory of Lie groups and provide
a few examples, all without proofs [Kir76, NaSt82, Var84].

Definition 12.47 (Lie group). A real Lie group of dimension n is a real-analytic
n-manifold G equipped with two analytic maps:

G � g �→ g−1 ∈ G and G × G � (g, h) �→ g · h ∈ G

(where G×G has the analytic product structure), that make G a group with neutral
element e.

The dimension of the Lie group G is the dimension n the manifold G.

Definition 12.48 (Lie group morphism). Consider Lie groupsG,G′, with respective
neutral elements e, e′ and operations ·, ◦.

A Lie group homomorphism is an analytic map f : G → G′ that is also a group
homomorphism.

If the homomorphism f : G → G′ is invertible and f −1 is a homomorphism, f
is called Lie group isomorphism, and G, G′ are isomorphic (under f ).

A local homomorphism of Lie groups is an analytic map h : Oe → G′, where
Oe ⊂ G is an open neighbourhood of e and h(g1 · g2) = h(g1) ◦ h(g2) provided
g1 · g2 ∈ Oe. (This forces h(e) = e′8 and h(g−1) = h(g)−1 for g, g−1 ∈ Oe.)

If the local homomorphism h is an analytic diffeomorphism on its range (given
by an open neighbourhood Oe′ of e′), and the inverse f −1 : Oe′ → G is a local
homomorphism, then h is a local isomorphism of Lie groups. The Lie groups G,
G′ are locally isomorphic (under h).

Remark 12.49 Analyticity in Definition 12.47 can be watered down to havingG just
a topological manifold with continuous operations in the manifold topology (i.e. a
topological group that is Hausdorff, paracompact, and locally homeomorphic toR

n).
In fact, a famous theorem proved in 1952 by Gleason, Montgomery and Zippin –
solving part of Hilbert’s fifth problem – proves the following.

Theorem 12.50 (Gleason, Montgomery, Zippin) Every topological group with the
structure of a C0 manifold is isomorphic (as a topological group) to a Lie group,
and the real-analytic structure is unique up to Lie group isomorphisms.

8In fact h(e) = h(e · e) = h(e) ◦ h(e), so applying h(e)−1 we get e′ = h(e).
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Notice that the theorem implies that the initial (maximal) C0 atlasA0 of the topolog-
ical group whose operations are continuous contains at least one sub-atlas consisting
of a (maximal) real-analytic atlas Aω rendering the group operations analytic, and
producing a Lie group structure. Any other analytic structure on the initial topolog-
ical group compatible with the group operations must be analytically isomorphic to
Aω and produces an isomorphic Lie group structure. �

In the same spirit of the previous remark we may weaken the assumptions of
differentiability when defining local (and global) homomorphisms [NaSt82].

Proposition 12.51 Let G, G′ be Lie groups, Oe ⊂ G an open neighbourhood of the
identity e ∈ G.

If h : Oe → G′ is continuous and h(g1 ·g2) = h(g1)◦h(g2) provided g1 ·g2 ∈ Oe,
then h is analytic on its domain and hence a local homomorphism of Lie groups.

In particular, a continuous group homomorphism between Lie groups is a Lie
group homomorphism.

Remark 12.52 ALie group can be defined by requiring that the group operations are
C∞, rather than analytic, with respect to some smooth differentiable structure. This
approach [War75, HiNe13] preserves all aforementioned results as well as all the
results we will state in the rest of the section, simply by replacing the word analytic
with smooth everywhere. Further, an analytic Lie group structure is contained in a
unique (maximal) C∞ Lie group structure. Conversely a C∞ Lie group structure
defines an analytic Lie group by direct application of the GMZ theorem. The larger
C∞ structure associated to that analytic Lie group is isomorphic to the initial C∞
Lie group. This is due to Proposition 12.51 stated for C∞ groups and where h is the
global identity map. �

Two important concepts for our purposes are one-parameter subgroups and Lie
algebras, which we now recall.

Let G be a Lie group with neutral element e and product ·. The tangent space
at a point g ∈ G is denoted TgG. Every g ∈ G defines an (analytic) map Lg :
G � h �→ g · h, and let us write d Lg : ThG → Tg·hG for its differential. Given
A ∈ TeG, we consider the first-order Cauchy problem on G: find a differentiable
map f : (−α, β) → G, α, β > 0 such that

d f

dt
= d L f (t) A with f (0) = e.

The maximal solution is always complete, i.e. with largest-possible domain
(−α, β) = R. We will indicate the maximal solution by

R � t �→ exp(t A)

and we will call it the one-parameter subgroup generated by A. If T ∈ TeG it can
be proved that

exp(tT ) exp(t ′T ) = exp((t + t ′)T ) , (exp(tT ))−1 = exp(−tT ) , ∀ t, t ′ ∈ R.
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Consider now a given T ∈ TeG and the collection of maps:

Ft,T : G � g �→ exp(tT ) g exp(−tT )

parametrised by t ∈ R. As Ft,T (e) = e, the differential d Ft,T |e maps TeG to itself,
and is called the adjoint of Ft,T

Ad Ft,T : TeG → TeG .

The commutator [War75] is the map TeG × TeG → TeG:

[T, Z ] := d

dt
|t=0(Ad Ft,T ) Z , T, Z ∈ TeG .

The commutator has three properties:

linearity: [a A + bB, C] = a[A, C] + b[B, C] ,

skew-symmetry: [A, B] = −[B, A] ,

Jacobiidentity: [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0

holding for any a, b ∈ R and A, B, C ∈ TeG. The first two actually imply bilinearity.
The third property is a consequence of the associativity of the group law.

Let us fix a local coordinate system x1, . . . , xn compatible with the (analytic)
structure of G over an open neighbourhood U of e, so that the neutral element
becomes the origin. In these coordinates we can expand the group law on U × U in
Taylor series up to the second order

ψ(X, X ′) = X + X ′ + B(X, X ′) + O
((|X |2 + |X ′2|)3/2

)
, (12.76)

where X, X ′ ∈ R
n are the column vectors of the coordinates of elements g, g′ ∈ U

whose product g · g′ belongs to U . The mapping B : R
n × R

n → R
n is bilinear, and

it is easy to see that the commutator, in the coordinate basis of TeG, becomes:

[T, T ′] = B(T, T ′) − B(T ′, T ) , (12.77)

where T , T ′ are (column) vectors in TeG.

Definition 12.53 (Lie algebra). A vector space V (with field K = R or C) endowed
with a bilinear, skew-symmetric map { , } : V × V → V that satisfies the Jacobi
identity is called a Lie algebra, and { , } is the Lie bracket.

Given Lie algebras (V, { , }), (V′, { , }′), a linear mapping φ : V → V′ is a Lie
algebra homomorphism if {φ(A), φ(B)}′ = φ({A, B}) for any A, B ∈ V. If φ is
also bijective one calls it a Lie algebra isomorphism.
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If V′ is a K-linear space of linear operators on a given vector space X and { , }′
is the standard commutator of operators on X, the Lie algebra homomorphism φ is
called representation of the Lie algebra (V, { , }) on X.

Given a Lie group G, the tangent space TeG with the Lie bracket [ , ] given by
the commutator is the Lie algebra of the Lie group G.

A Lie subalgebra V′ in a Lie algebra (V, [ , ]) is a closed subspace under the Lie
bracket, [A, B] ∈ V′ for A, B ∈ V′. An ideal J in a Lie algebra (V, [ , ]) is a Lie
subalgebra such that

[A, B] ∈ J for any A ∈ J, B ∈ V.

A Lie algebra V is said to be simple if it is not Abelian and it contains no non-trivial
proper (i.e. different from {0} and V itself) ideals, and semisimple if it is a direct
sum of simple Lie algebras.

A Lie group whose Lie algebra is semisimple is called a semisimple Lie group.

A crucial feature of Lie groups for physics is that the Lie algebra of a Lie group
determines the group almost entirely, as the classical, and famous, next results shows
[NaSt82]. First, though, a topological reminder.

Definition 12.54 (Covering space). Let X be a topological space. Another topo-
logical space R is a covering space of X if there exists a continuous, onto map
π : R → X, called covering map, as follows:
(i) for any x ∈ X there exists an open set U � x such that π−1(U ) = ∪ j∈J A j , with
A j ⊂ R open, A j ∩ Ai = ∅ if i �= j , i, j ∈ J ,
(ii) π�A j : A j → U is a homeomorphism for every j ∈ J .

A covering R of X is a universal covering if it is simply connected (Definition
1.28).

Two universal coverings R, R′ of X are homeomorphic under a map f : R → R′
such that Π = f ◦ Π ′, where Π : R → X, Π ′ : R′ → X are the covering maps.
Similarly, if X has a universal covering R and a covering R′, with covering maps
Π : R → X, π : R′ → X, then there is a covering map p : R → R′ with π ◦ p = Π

[Ser94II].
The first result, customarily called Lie’s third theorem in the literature, is stated

below [NaSt82]. A discrete subgroup of a topological group G is a subgroup G′
such that, for every element of G′ there is an open set in G containing only that
element of the subgroup. In other words G′ is discrete iff every singlet {g} ⊂ G′ is
open in the induced topology.

Theorem 12.55 (Lie’s third theorem) Let V be a finite-dimensional (real) Lie alge-
bra.
(a) There exists a connected and simply connected (real) Lie group GV with Lie
algebra V.
(b) GV is, up to isomorphisms, the universal covering of any Lie group G having V
as Lie algebra, and the covering map π : GV → G is a Lie group homomorphism.

http://dx.doi.org/10.1007/978-3-319-70706-8_1


724 12 Introduction to Quantum Symmetries

(c) If a connected Lie group G has V as Lie algebra, it is isomorphic to a quotient
GV/HG, where HG ⊂ GV is a discrete normal subgroup, contained in the centre of
GV,9 that coincides with the kernel of π .

Another important result the following one.

Theorem 12.56 (Lie, Pontrjagin) Let G, G′ be (real) Lie groups with Lie algebras
V, V′.
(a) f : V → V′ is a Lie algebra homomorphism if and only if there is a local Lie
group homomorphism h : G → G′ such that dh|e = f , where e is the neutral
element of G. Moreover:

(i) h is determined completely by f ,
(ii) f is an isomorphism ⇔ h is a local Lie group isomorphism.

(b) If h : G → G′ is a Lie group homomorphism then:
(i) dh|e : V → V′ is surjective ⇔ the connected component of G containing e

is surjectively mapped onto the connected component of G′ containing the neutral
element of G′.

(ii) dh|e : V → V′ is injective ⇔ the kernel of h is a discrete subgroup of G.
(c) If G, G′ are connected and G also simply connected, then f : V → V′ is a
homomorphism if and only if there is a homomorphism h : G → G′ such that
dh|e = f . Moreover:

(i) h is determined completely by f ,
(ii) f isomorphism ⇒ h onto,
(iii) f isomorphism and G′ simply connected ⇒ h isomorphism.

Definition 12.57 (Lie subgroup – simple Lie group). An embedded (analytic) sub-
manifoldG′ ⊂ G in a Lie group that is also a subgroup inherits a Lie group structure
from G. In such case G′ is a Lie subgroup of G.

The Lie subgroup G′ is said to be discrete when the set {e} (e being the neutral
element of both) is open in the induced topology on G′.

A Lie group G is said to be simple if it does not admit non-trivial proper (i.e.
different from {e} andG) connected Lie subgroupsG′ that are normal ({g ·h ·g−1 |h ∈
G′} ⊂ G′ for every g ∈ G).

Remark 12.58
(1) The definition of discrete Lie subgroup we gave is equivalent to the aforemen-
tioned standard definition, valid for topological groups (G′ is discrete iff every singlet
{g} ⊂ G′ is open in the induced topology) because the translationG′ → G′ : h �→ gh
is a homeomorphism. Evidently a discrete Lie group is a 0-dimensional submanifold,
made of a finite or countable set of points, and its Lie algebra is the trivial vector
space.
(2) A connected Lie group is simple iff its Lie algebra is simple.
(3) According to Sect.A.2, a simple Lie group may be not simple as an abstract
group. In particular, a simple Lie group (e.g., SL(2, C)) can contain a non-trivial
discrete normal subgroup. �

9It is also possible to prove that HG is isomorphic to the fundamental group (the first homotopy
group) of G which, for Lie groups, is known to be Abelian.
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We have a pair of relevant results [NaSt82].

Theorem 12.59 (Cartan) If G′ ⊂ G is a closed subgroup of the Lie group G, then
G′ is a Lie subgroup of G (including the case of a discrete Lie group).

It is possible to prove the converse fact (see, e.g., [Lee06, Proposition 8.30]).

Proposition 12.60 An embedded submanifold of a Lie group which is a Lie group
with respect to the induced structure is necessarily closed.

Summing up, closure completely characterises Lie subgroups.

Theorem 12.61 Let G be a Lie group with Lie algebra V .
(a) The Lie algebra of a Lie subgroup G′ is a Lie subalgebra of V .
(b) If L ⊂ TeG is a Lie subalgebra of V , there exists a unique connected Lie subgroup
G′ ⊂ G whose Lie algebra is L.

Remarks 12.62 (1) In principle an abstract Lie algebra can have infinite dimension
as vector space. The dimension of the Lie algebra of a Lie groupG, instead, is always
finite for it coincides with the dimension of the manifold G.
(2) Theorem 12.59 clearly subsumes discrete subgroups as special cases. Then the
manifold underlying the Lie subgroup has dimension zero.
(3) Let G be a Lie group of dimension n and {T1, . . . Tn} a basis of the Lie algebra
TeG. As the Lie bracket is bilinear it can be written in components

[Ti , Tj ] =
dim TeG∑

k=1

Ci jk Tk .

The coefficients Ci jk are the structure constants of the Lie group.10 The Jacobi
identity is equivalent to the following equation (of obvious proof):

n∑

s=1

(
Ci jsCskr + C jksCsir + CkisCs jr

) = 0 , r = 1, . . . , n. (12.78)

If two Lie groups have the same structure constants with respect to some bases
of their Lie algebras, they are locally isomorphic in the sense of Theorems 12.55,
12.56. (If the structure constants are equal, the linear map identifying bases is an
isomorphism.) Conversely, the structure constants of locally isomorphic Lie groups
are the same in two bases related by the pullback of the local isomorphism. �

Given a Lie group G, the exponential mapping is the analytic function

exp : TeG � T �→ exp(tT )|t=1 . (12.79)

10The structure constants, sometimes denoted by Ck
i j , are the components of a tensor, called the

structure tensor of the Lie group.
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The exponential mapping has an important property, sanctioned by the next result
[NaSt82].

Theorem 12.63 Let G be a Lie group with neutral element e and exponential map
exp.
(a) There exist open neighbourhoods U of 0 ∈ TeG and V of e ∈ G such that

exp�U : U → V

is an analytic diffeomorphism (bijective, analytic, with analytic inverse).
(b) If G is compact then exp(TeG) = G.
(c) If G′ is a Lie group with exponential map exp′ and h : G → G′ a Lie group
homomorphism:

h ◦ exp = exp′ ◦ dh|e .

Property (a) has a useful corollary. Fix a basis T1, . . . , Tn on the Lie algebra of G,
Then the inverse to

F : (x1, . . . , xn) �→ exp

(
n∑

k=1

xnTn

)

defines a local chart, compatible with the analytic structure, around the neutral ele-
ment. This is called a normal coordinate system or system of coordinates of first
type. Normal coordinates, in general, do not coverG. In normal coordinates a vector
T ∈ TeG ≡ R

n determines a point of G only around e. Hence the group multipli-
cation in G becomes a map ψ : R

n × R
n → R

n . Expanding the latter with Taylor
around the origin of R

n × R
n gives

ψ(T, T ′) = T + T ′ + 1

2
[T, T ′] + O

((|T |2 + |T ′2|)3/2
)

, (12.80)

where [T, T ′] : R
n × R

n → R
n is the commutator in the basis of TeG × TeG

associated to normal coordinates. The proof is left to the reader. Property (a) has also
another consequence (whose proof is an exercise).

Proposition 12.64 Let G be a Lie group with neutral element e and product ·.
(a) There exists an open set A � e in TeG such that any g ∈ A can be written as
g = exp(tT ) for some t ∈ R and some T ∈ TeG.
(b) If G is connected and g /∈ A, there are finitely many elements g1, g2, . . . , gn ∈ A
such that g = g1 · · · · · gn.

Another useful local chart around the neutral element, called system of coordinates
of second type is obtained as the inverse of

G : (x1, . . . , xn) �→ exp (x1T1) · · · exp (xnTn)

where · is the group multiplication and (x1, . . . , xn) varies in a sufficiently small
open neighbourhood of (0, . . . , 0) in R

n .
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The fundamental Baker–Campbell–Hausdorff formula [NaSt82]:

exp(X) exp(Y ) = exp(Z(X, Y )) (12.81)

holds on any connected and simply connected Lie group G, with X , Y in the open
neighbourhood U of the origin where exp is a local diffeomorphism onto the open
neighbourhood exp(U ) ⊂ G of the neutral element. In (12.81) the term Z(X, Y ) is
defined by the series:

Z(X, Y ) =
∑

N�n>0

(−1)n−1

n

∑

ri +si >0 ,1≤i≤n

(∑n
i=1(ri + si )

)−1

r1!s1! . . . rn !sn !
[
Xr1Y s1 Xr2Y s2 . . . Xrn Y sn

]

(12.82)

[
Xr1Y s1 . . . Xrn Y sn

] := [X, [X, . . . [X︸ ︷︷ ︸
r1times

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1times

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn times

, [Y, [Y, . . . Y︸ ︷︷ ︸
sn times

]] · · · ]]

(12.83)
and the right-hand side is taken to be zero if sn > 1 or sn = 0 and rn > 1.

Example 12.65
(1) M(n, R) will denote from now on the set of real n × n matrices, and M(n, C)

complex n × n matrices.
The group GL(n, R) of invertible real n × n matrices is a n2-dimensional Lie

group with analytic structure induced by R
n2
. Its Lie algebra is the set of real n × n

matrices M(n, R) and the Lie bracket is the usual commutator [A, B] := AB − B A,
A, B ∈ M(n, R).

An important feature of GL(n, R) is that its one-parameter subgroups have this
form:

R � t �→ et A :=
+∞∑

k=0

t k

k! Ak ,

for any A ∈ M(n, R), and the convergence is meant in any of the equivalent norms
of the Banach space R

n2
(Sect. 2.5).

(2) Any closed subgroup of GL(n, R) we have met as topological group, like O(n),
SO(n), I O(n), I SO(n), SL(n, R), the Galilean, Lorentz and Poincaré groups, are
therefore Lie groups. As GL(n, C) can be seen as a subgroup in GL(2n, R) (decom-
posing every matrix element in real and imaginary part), complex matrix groups like
U (n) and SU (n), too, are real Lie groups. We must emphasise that working with
matrix Lie groups is not a major restriction, since every compact Lie group is isomor-
phic to a matrix group [War75]. For non-compact Lie groups the story is completely
different, a counterexample being the universal covering of SL(2, R).
(3) The exponential of matrices A, B ∈ M(n, C) has interesting characteristics.
First, eA+B = eAeB = eBeA if AB = B A. The proof is similar to the case of
numbers, for which one uses Taylor’s expansion. There is, though, another useful
fact: A ∈ M(n, C) satisfies, for any t ∈ C,

http://dx.doi.org/10.1007/978-3-319-70706-8_2
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det et A = ettr A , in particular det eA = etr A .

Let us prove this identity. We want to differentiate C � t �→ det et A , i.e. find

lim
h→0

det e(t+h)A − det et A

h
= lim

h→0

det (et Aeh A) − det et A

h
= det et A lim

h→0

det eh A − 1

h

as long as the last limit exists. Since eh A = I + h A + ho(h) , with o(h) → 0 as
h → 0 in the standard topology of C

n2
, it follows

lim
h→0

det e(t+h)A − det et A

h
= det et A lim

h→0

det (I + h A + ho(h)) − 1

h
.

There are many ways to see that det(I + h A + ho(h)) = 1 + h
∑n

i=1 Aii + ho(h),
and substituting above we find

d det et A

dt
= det et AtrA .

That also proves the function is smooth. Hence f A : C � t �→ det et A solves the
differential equation:

d f A(t)

dt
= (tr A) f A(t) .

Also gA : C � t �→ ettr A solves the equation. And both functions satisfy the initial
condition f A(0) = gA(0) = 1, by uniqueness of maximal solutions of first-order
equations we obtain det et A = ettr A, any t ∈ R.
(4) The group of rotations O(n) := {R ∈ M(n, R) | R Rt = I } of R

n is an important
Lie group in physics. That it is a subgroup of GL(n, R) is evident because {R ∈
M(n, R) | R Rt = I } is closed in the Euclidean topology. (Clearly O(n) contains
its limit points: Ak ∈ O(n) and Ak → A ∈ R

n2
as k → ∞ imply At

k → At and
I = Ak At

k → AAt .) The Lie algebra of O(n), denoted o(n), is the vector space of
real, skew-symmetric n × n matrices, and has dimension n(n − 1)/2 = dim O(n).
The proof is that Lie algebra vectors are tangent vectors Ṙ(0) at the identity of the
group (the identity matrix) to curves R = R(u) such that R(u)R(u)t = I , R(0) = I .
By definition, then, they satisfy Ṙ(0)R(0)t + R(0)Ṙ(0)t = 0, i.e. Ṙ(0)+ Ṙ(0)t = 0.
But this defines real skew-symmetric n×n matrices, a space of dimension n(n−1)/2.
On the other hand, if A is a real skew-symmetric n ×n matrix, R(t) = et A ∈ O(n) as
follows from the elementary properties of the exponential function, and Ṙ(0) = A.
We conclude that the Lie algebra of O(n) is nothing but the whole collection of real
skew-symmetric n × n matrices.

Eventually note that O(n) is compact since closed and bounded, as we saw earlier.
Boundedness is explained in analogy to U (n):
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||R||2 =
n∑

i=1

⎛

⎝
n∑

j=1

Ri j Ri j

⎞

⎠ =
n∑

i=1

δi i = n , for any R ∈ O(n) .

The three-dimensional Lie group O(3) has two connected components: the compact
(connected) group SO(3) := {R ∈ O(3) | det R = 1} and the compact set (not a
subgroup) PSO(3) := {PR ∈ O(3) | R ∈ SO(3)}, where P := −I is the parity
transformation.
(5)We will explain how the exponential map is a covering map for the whole group
SO(3). Define a special basis of so(3) given by matrices (Ti ) jk = −εi jk where
εi jk = 1 if i, j, k is a cyclic permutation of 1, 2, 3, εi jk = −1 if i, j, k is a non-cyclic
permutation, εi jk = 0 otherwise. More explicitly

T1 :=
⎡

⎣
0 0 0
0 0 −1
0 1 0

⎤

⎦ , T2 :=
⎡

⎣
0 0 1
0 0 0

−1 0 0

⎤

⎦ , T3 :=
⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ , (12.84)

All are skew-symmetric so they belong in so(3), and they are clearly linearly inde-
pendent, hence a basis of so(3). Structure constants are simple in this basis:

[Ti , Tj ] =
3∑

k=1

εi jk Tk , (12.85)

The exponential representation of SO(3) is as follows: R ∈ SO(3) if and only if
there exist a unit vector n ∈ R

3 and a number θ ∈ R such that

R = eθn·T , where n · T :=
3∑

i=1

ni Ti .

(6) The Lie algebra of the compact group SU (2), seen as a real Lie group, is the
real vector space of traceless skew-Hermitian matrices (because the determinant in
the group equals 1). Consequently it has a basis formed by − i

2σ j , j = 1, 2, 3,
where σk are the Pauli matrices of (12.13). The factor 1/2 is present so to satisfy the
commutation relations:

[
− iσi

2
, − iσ j

2

]
=

3∑

k=1

εi jk

(
− iσk

2

)
. (12.86)

By the remark ensuing Theorem 12.59 the Lie algebras of SU (2) and SO(3) are
isomorphic. Hence by Theorems 12.55, 12.56 the Lie groups are locally isomorphic.
As SU (2) is connected and simply connected (it is homeomorphic to the boundary
S
3 of the unit ball in R

4), whereas SO(3) is not simply connected, SU (2) must be
the universal covering of SO(3). The Lie algebra isomorphism should arise from
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differentiating a surjective homomorphism SU (2) → SO(3). The latter is actually
well known (Exercise 12.18), so let us recall it briefly. The exponential map of SU (2)
covers the entire group by compactness. In practice every matrix U ∈ SU (2) can be
written

U = e−iθn· σ
2

where θ ∈ R and n is a unit vector in R
3. The aforementioned surjective morphism

is the onto map
R : SU (2) � e−iθn· σ

2 �→ eθn·T ∈ SO(3) .

Clearly this is not invertible, because the right-hand side is invariant under translations
θ → θ + 2π , while the left-hand side changes sign (take the unit vector n = e3
along the axis x3). In fact it is easy to see that the kernel of h consists of two points
±I ∈ SU (2). �

12.2.9 Continuous Unitary Finite-Dimensional
Representations of Connected Non-compact Lie
Groups

We discuss here a technical result that is mentioned very often, and used to prove that
there are no non-trivial unitary continuous finite-dimensional representations of the
special orthochronous Lorentz group SO(1, 3)↑. The result extends to its universal
covering SL(2, C), as we shall explain after the proof. Unfortunately the proof of
many books, and often the statement itself, of this remarkable proposition contains
mistakes.

Observe that the theorem does not refer to strong or weak continuity, just because,
in ann-dimensionalHilbert space, these notions of continuity are evidently equivalent
to the continuity in the standard C

n .

Theorem 12.66 Let G be a connected non-compact Lie group and

U : G � g �→ Ug ∈ B(H)

a continuous unitary representation on a finite-dimensional Hilbert space H. Then
(a) U cannot be faithful;
(b) If G is a simple group or, more generally, if it does not contain non-trivial proper
normal closed subgroups, then U is the trivial representation U : G � g �→ I .

Proof Let us identify H with C
n by means of an orthonormal basis. In this way, the

representation U can be viewed as an injective continuous group homomorphism
f : G → U (n).
(a) Our final goals is proving that f (G) is a compact embedded submanifold of

U (n) and that the injective homomorphism f : G → f (G) is actually a homeomor-
phism. This will not be possible, because G is not compact by hypothesis.
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Due to Theorem 12.56, f is differentiable (analytic) and d f |e is a Lie algebra
homomorphism which is injective if f is faithful (because the kernel of f is the
discrete subgroup {e}). Assuming that f is injective (i.e., U is faithful), consider
the Lie subalgebra u0 := d f |eTeG ⊂ u(n) where u(n) is the Lie algebra of U (n).
Since d f |e is injective, u0 is isomorphic to TeG. There is exactly one connected Lie
subgroupU0 ⊂ U (n)whoseLie algebra isu0 in viewofTheorem12.61.Bydefinition
of Lie subgroup, U0 is an embedded submanifold of U (n). It must be clear that
f (G)∩U0 contains all one-parameter subgroups of U (n) generated by the elements
of u0, because these subgroups are simultaneously in U0 and in f (G), as the reader
can prove immediately using Theorem 12.63(c). On the other hand, every element
h ∈ U0 is a finite product of elements belonging to the one-parameter subgroups of
U0 as a consequence of Proposition 12.64, and hence h is also a finite product of
elements of f (G). Since f is a group homomorphism, every element h ∈ U0 satisfies
h ∈ f (G). We have so far established that U0 = f (G). The map f : G → U0 is
a bijective differentiable map from the manifold G to the embedded submanifold
U0 of U (n). Since d f |g = d Lg−1 ◦ d f |e ◦ d Rg where Rg : G � h �→ hg ∈ G and
Lk : U (n) � r �→ kr ∈ U (n) are diffeomorphisms and therefore both d Lg−1 and d Rg

are a bijections, we conclude that d f |g is everywhere injective. As a consequence
[Wes78, Proposition 4.2(2)], if p = dimG and q = dimU (n) ≥ p, then for any
chart (Sg, φ) around any g ∈ G there is some chart (Vg, ψ) in U (n) around f (g)

with
ψ ◦ f ◦ φ−1(x1, . . . , x p) = (x1, . . . , x p, 0, . . . , 0)

where (x1, . . . , x p) belongs to the open set φ(Vg) ⊂ R
q . Since f (G) = U0 is an

embedded submanifold ofU (n), we have thatVg∩ f (G) = f (Sg)possibly restricting
Vg around f (g). In other words f (Sg) is open in the induced topology of f (G) ⊂
U (n). Since g ∈ G is arbitrary and the property is valid by replacing Sg with any
smaller open set containing g, the injectivity of f proves that f : G → U0 = f (G)

is open: every open set A ⊂ G is the union of open sets A = ∪g∈GA ∩ Sg; since
f is bijective onto U0 we also have that f (A) = ∪g∈G f (A ∩ Sg), which is open
because union of open sets. The inverse f −1 : U0 → G exists (because f is bijective
onto U0), and is therefore continuous. By Proposition 12.60 U0 is closed and hence
compact (U (n) is compact). This is absurd, because f −1(U0) = G is not compact
by hypothesis and f −1 is continuous. We conclude that f : G → U (n) cannot be
injective, that is, U : G → B(H) cannot be faithful.

(b) If G does not contain non-trivial proper closed normal subgroups, the normal
closed subgroup U−1(I ) of G must equal either G or {e}. In the second case U
would be faithful, which is not permitted by (a). Summing up, U−1(I ) = G so that
U (G) = {I }. ��
Remarks 12.67 (1) The theorem applies to SO(1, 3)↑ since this is non-compact,
connected and it has no non-trivial closed normal subgroups: its strongly continuous
unitary representations are infinite-dimensional or trivial. The same result is valid
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for SL(2, C), which is non-compact and connected but not simple11: SL(2, C) does
not admit non-trivial proper finite-dimensional continuous unitary representations.
Indeed, {±I } is the unique non-trivial proper normal closed subgroup of SL(2, C). A
finite-dimensional continuous unitary representation U : SL(2, C) → B(H) cannot
be faithful by (a). Therefore the closed normal subgroup U−1(I ) cannot be trivial
and therefore coincides with either SL(2, C), making U trivial, or with {±I }. Let
us examine this second possibility, and prove that U has to be trivial also in this
case. As is well known, the Lie group SL(2, C) is the universal covering of the Lie
group SO(1, 3)↑ in accordance with Theorem 12.55, and {±I } is just the kernel of
the covering homomorphism, so SO(1, 3)↑ is diffeomorphic to SL(2, C)/{±I }. It is
easy to prove that, consequently,U : SL(2, C) → B(H) defines a finite-dimensional
continuous unitary representation

U ′ : SO(1, 3)↑� ±A �→ UA ∈ B(H) .

The representationU ′ must be trivial by (b). In turn,U must be trivial as well because
U ′(SO(1, 3)↑) = U (SL(2, C)).
(2) Since O(n) is compact, like U (n), the same argument exploited for the theorem
above can be used to prove that a connected non-compact Lie group cannot admit
faithful continuous representations on orthogonalmatrices and, in particular, all these
representations are trivial if the hypotheses in (b) are true. �

12.2.10 Bargmann’s Theorem

We proceed in the study of symmetry groups and deal with connected Lie groupsG.
Any projective G-representation is representable by unitary operators.

Proposition 12.68 Let G be a connected Lie group. For any projective represen-
tation G � g �→ γg on a Hilbert space H of dimH > 1, the images γg can be
associated to unitary operators only, according to Wigner’s theorem (or Kadison’s).
If dimH = 1 a unitary representation is always possible.

Proof If dimH > 1, by Proposition 12.64, every g ∈ G is the product of a
finite number of elements h = exp(tT ). Then h = r · r with r = exp(tT/2).
Using Proposition 12.32 the claim follows. If dimH = 1 every γg is the iden-
tity and therefore it can be represented unitarily by the trivial representation
G � g �→ I . ��
At this point we shall present a number of general results on strongly continuous
unitary representations of Lie groups.

It will be useful, in the sequel, to observe that any projective representation of a
topological groupGmay be seen as projective representation of its universal covering

11Though it is a simple Lie group because it has no non-trivial proper connected normal Lie sub-
groups.



12.2 Introduction to Symmetry Groups 733

group G̃. In fact if π : G̃ → G is the covering map (a continuous homomorphism of
topological groups [NaSt82], also guaranteed by Theorem 12.55 for Lie groups), and
γ : G � g �→ γg is a continuous projective G-representation on the Hilbert space
H, then γ ◦ π : G̃ � h �→ γπ(h) is a continuous projective G̃-representation; note
that it does not distinguish elements h, h′ ∈ G̃ if π(h) = π(h′). Put equivalently,
if h · h′−1 ∈ K er(π) then γ ◦ π(h) = γ ◦ π(h′) i.e. (γ ◦ π)(K er(π)) = id , or
K er(π) ⊂ K er(γ ◦ π). This proves the following.

Proposition 12.69 Let G be a topological group and π : G̃ → G its universal
covering. Every continuous projective representation γ : G � g �→ γg of G on the
Hilbert space H arises from the continuous projective representation γ ′ : G̃ � g �→
γ ′

g of G ≡ G̃/K er(π) on H such that K er(π) ⊂ K er(γ ′).

Remark 12.70 When needed, henceforth, we will use projective unitary representa-
tions of G̃ instead of G, because the latter are determined by the former and, in case
of Lie groups, G̃ is determined by its Lie algebra. �

We will prepare the ground for an important theorem due to Bargmann [Bar54], that
provides sufficient conditions for a continuous projective representation to be given
by a unitary representation when the groups in questions are Lie groups. An exhaus-
tive discussion on the mathematical technology necessary to prove the theorem of
Bargmann appears in [Var07, Chap.VII] together with several physical examples.
The preliminary idea, presented in Sect. 12.2.5, is that a projective unitary represen-
tation

G � g �→ Ug

of a group G is the restriction Ug := U(1,g) of a unitary representation

Ĝω � (χ, g) �→ U(χ,g) = χUg

of a suitable central extension Ĝω ofG. This is always possible by virtue of Proposi-
tion 12.36.AssumeG is a topological group, and the projective unitary representation
G � g �→ Ug induces a continuous projective representation. We can choose the
phases of the Ug so that the representation G � g �→ Ug is continuous around
the identity of G by Proposition 12.44. This cannot be extended to the entire G, in
general. The next technical result extends the result to when G is a Lie group.

Theorem 12.71 Let G be a connected Lie group and γ : G � g �→ γg a continuous
projective representation on the Hilbert space H. There exist a central extension Ĝω

and a unitary representation

Ĝω � (χ, g) �→ U(χ,g) ∈ B(H)
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with12 ω(e, e) = ω(g, e) = ω(e, g) = 1 and U(χ,e) = χ I for any χ ∈ U (1), such
that:

(a) Ĝω is a connected Lie group, the canonical injection U (1) → Ĝω and canon-
ical projection Ĝω → G are Lie group homomorphisms;

(b) as topological space Ĝω is the product U (1) × Ag around every element
(χ, g), where Ag ⊂ G is an open neighbourhood of g ∈ G (but Ĝω is not U (1) ×G
globally in general);

(c) as C∞ manifold Ĝω is the product U (1) × A around the unit element (1, e),
where A ⊂ G is an open neighbourhood of e ∈ G;

(d) the map G � g �→ U(1,g) =: Ug is a projective unitary representation that
induces γ :

γg(ρ) = UgρU−1
g for any g ∈ G, ρ ∈ Sp(H) (12.87)

and is strongly continuous on an open neighbourhood of the unit e ∈ G;
(e) the unitary representation Ĝω � (χ, g) �→ U(χ,g) is strongly continuous.

Outline of the proof. Given γ , consider an initial projective unitary representation
G � g �→ Vg inducing γ with multiplier ω0 and the associated unitary representa-
tion of the corresponding central extension Ĝω0 . Using Proposition 12.44, pass to a
different but equivalent projective unitary representationG � g �→ Ug such that in a
neighbourhood A of e ∈ G the map A � g �→ Ug is strongly continuous. According
toLemma7.20 in [Var07], it is possible to replace themultiplier of that extensionwith
an equivalent multiplier that isC∞ on a neighbourhood of e and that we shall indicate
by ω again. Notice that this change preserves the strong continuity of A � g �→ Ug .
Finally, define the unitary representation Ĝω � (χ, g) �→ U(χ,g) := χUg inducing
γ so that γ (ρ) = U(χ,g)ρU−1

(χ,g) = UgρU−1
g . According to [Kir76, Exercises 1 and

2, Sect. 14.3], exploiting again the argument of the proof of Proposition 12.44, every
g ∈ G admits a neighbourhood Ag and a corresponding local homeomorphisms
Ĝω → U (1) × G:

Ĝω ⊃ U (1) × Ag � (χ, h) �→ (χ
(g)

h χ, h) ∈ U (1) × Ag ⊂ U (1) × G ,

where the maps Ag � h �→ χ
(g)

h are such that Ag � h �→ χ
(g)

h Uh is strongly
continuous. By construction χ(e)

g = 1 for g ∈ Ae =: A. This class of local home-

omorphisms defines a C0 atlas on Ĝω (made of charts with domain U (1) × Ag)
compatible with the group operations of Ĝω. Hence the Gleason–Montgomery–
Zippin theorem implies that the C0 structure of Ĝω contains an analytic Lie sub-
structure. (a) and (b) hold because the canonical maps U (1) → Ĝω and Ĝω → G
are topological group homomorphisms (the proof is immediate) and therefore they
are Lie group homomorphisms in view of Proposition 12.51. To prove (c) con-
sider the topological group structure of Ĝω on a neighbourhood U (1) × A of the

12As we know, we can always reduce to this case via an equivalence transformation by a constant
map.
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unit element. The group operations of Ĝω constructed out of the smooth func-
tion ω are smooth with respect to the product of C∞ structures of U (1) and
A. Applying Theorem 9.4.4 in [HiNe13] to U (1) × A, one sees that there is a
unique C∞ Lie group structure on the topological group Ĝω such that the inclusion
U (1) × A → Ĝω is a C∞ diffeomorphism onto its image. From Corollary 2.17
in [HiNe13], the said global C∞ structure must coincide with the C∞ Lie group
structure obtained by enlarging the analytic GMZ structure. In summary, the C∞
structure around the identity of Ĝω coincides with that of U (1) × G. To prove (d),
observe that A � g �→ Ug coincides with the unitary projective representation found
in Proposition 12.44, that is strongly continuous in A. Therefore A � g �→ Ug

is strongly continuous. Statement (e) is easy. Since (χ, g) �→ U(χ,g) = χUg is
a unitary representation, it is strongly continuous iff it is strongly continuous at
the unit element (1, e). The latter is true because g �→ Ug is continuous on a
neighbourhood A of e and Ĝω is homeomorphic to U (1) × A around (1, e), so
that (χ, g) → (1, e) in the topology of Ĝω means (χ, g) → (1, e) in the product
topology and ||U(χ,g)ψ − U(1,e)ψ || = ||χUgψ − 1Ueψ || = ||χUgψ − ψ || → 0 if
(χ, g) → (1, e) in the product topology. �

So let us assume, by the above theorem, that any continuous projective repre-
sentation of a Lie group G is obtainable as strongly continuous projective unitary
representation of a central extension ofG, itself a Lie group. This allows to introduce
Bargmann’s theorem.

Let us go through the proof’s idea, heuristically. Take a Lie group G (connected
and simply connected in the theorem) and its centralU (1)-extensions Ĝω. Projective
unitary representations of G are honest continuous unitary representations of U (1)-
extensions of G. The question is when are continuous unitary representations of Ĝω

reducible to continuous unitary representations of G. Since the C∞ structure of Ĝω

is isomorphic to that of U (1) × G around the identity, this is enough to guarantee
that the Lie algebra of Ĝω is the vector space R ⊕ TeG with bracket

[
r ⊕ T, r ′ ⊕ T ′] = α(T, T ′) ⊕ [T, T ′] ,

where r ⊕ T is the generic element in R ⊕ TeG and α : TeG × TeG → TeG a
bilinear skew-symmetric map. A common alternative way to write this is to fix a
basis {Tk}k=1,...,n of TeG and set

[I, I ] = [I, Tk] = 0 , [Ti , Tj ] = αi j I +
n∑

k=1

Ci jk Tk , (12.88)

where I := 1 ⊕ 0, Tk actually indicates 0 ⊕ Tk and 0 means 0 ⊕ 0.
The coefficients αi j := α(Ti , Tj ) are by construction skew-symmetric, and, in

consequence of Jacobi’s identity (and corresponding to (12.94) under Bargmann’s
Theorem) (12.90) holds:
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αi j = −α j i , (12.89)

0 =
n∑

s=1

(
Ci jsαsk + C jksαsi + Ckisαs j

)
. (12.90)

The numbers αi j are often called central charges. The key idea behind Bargmann’s
theorem is to change basis in the Lie algebra of Ĝω, passing to the new generators

I ′ := I , T ′
k := βk I + Tk

so that

[I, I ] = [I, T ′
k ] = 0 , [T ′

i , T ′
j ] = αi j I +

n∑

k=1

Ci jk(T ′
k − βk I ) , (12.91)

and therefore

[T ′
i , T ′

j ] =
(

αi j −
n∑

k=1

Ci jkβk

)
I +

n∑

k=1

Ci jk T ′
k , (12.92)

In case we find constants βk that absorb the central charges, i.e.

αi j =
n∑

k=1

Ci jkβk , (12.93)

(note Ci jk and αi j are given, once Ĝω is known) we can write the bracket relations
of the Lie algebra of Ĝω as:

[I, I ] = [I, T ′
k ] = 0 , [T ′

i , T ′
j ] =

n∑

k=1

Ci jk T ′
k .

These are the very commutation relations of the Lie algebra of the direct product
of U (1) and G, where ω(g, g′) = 1 always. If this is possible, we expect to view a
unitary Ĝω-representation as an honest unitaryG-representation times U (1), getting
rid of the phases.

The hypothesis of Bargmann’s Theorem [Bar54], formulated by (12.95), is just
condition (12.93), as the proof will explain. The linear function β of the statement,
in fact, is completely determined by the coefficients βk if we set β(Tk) := βk .

Theorem 12.72 (Bargmann) Let G be a connected, simply connected Lie group.
Every continuous projective G-representation on the Hilbert space H is induced by
a strongly continuous unitary representation on H provided the following condition
holds. For any skew-symmetric bilinear map α : TeG × TeG → R satisfying
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α
([T, T ′], T ′′) + α

([T ′, T ′′], T
) + α

([T ′′, T ], T ′) = 0 , T, T ′, T ′′ ∈ TeG,

(12.94)
there exists a linear map β : TeG → R with

α(T, T ′) = β
([T, T ′]) , T, T ′ ∈ TeG. (12.95)

Proof Consider a continuous projective representation γ : G � g �→ γg on the
Hilbert space H. By Theorem 12.71, there is a central U (1)-extension Ĝω ofG with
the structure of Lie group, and a projective unitary representation U : G � g �→ Ug

that is strongly continuous around e ∈ G and induces γ . The canonical inclusion and
projection are Lie homomorphisms. Moreover, around the origin the C∞ structure
of Ĝω is the product U (1) × A for some neighbourhood A of e ∈ G. The multiplier
function is normalised so that ω(e, e) = ω(e, g) = ω(g, e) = 1, hence the neutral
element of Ĝω is (1, e). The real vector space underlying the Lie algebra of Ĝω is
R ⊕ TeG, where ⊕ is the direct sum. We will denote by r ⊕ T the elements, where
r ∈ R and T ∈ TeG. As already said, by the definition of Lie bracket [ , ] of TeG,
a few computations involving (12.77) say that the bracket [ , ]ω of T1⊕eĜω has the
form: [

r ⊕ T, r ′ ⊕ T ′]
ω

= α(T, T ′) ⊕ [T, T ′] (12.96)

where α : TeG × TeG → R is a bilinear skew-symmetric map satisfying (12.94),
owing to the Jacobi identity of [ , ]ω. Now we show that, retaining the hypotheses
of the theorem, the universal covering of Ĝω is the Lie group R ⊗ G, where ⊗ is
the direct product (R is an additive Lie group). The topological space underlying
R⊗G is the product R×G, simply connected as the factors are. By Theorem 12.55
R ⊗ G is the unique simply connected Lie group, up to isomorphisms, having that
Lie algebra, and hence is the universal covering of all Lie groups with the Lie algebra
of R ⊗ G. We will show Ĝω is one of those. The Lie algebra of R ⊗ G is R ⊕ TeG
with bracket: [

r ⊕ T, r ′ ⊕ T ′]
⊗ = 0 ⊕ [T, T ′] (12.97)

To prove the claim it suffices to exhibit an isomorphism mapping the Lie algebra of
R ⊗G to the Lie algebra of Ĝω, when there is β : TeG → R satisfying (12.95). Let
us construct the isomorphism. Fix a basis T1, . . . , Tn in the Lie algebra of G, and a
corresponding basis

1 ⊕ 0, 0 ⊕ T1, . . . , 0 ⊕ Tn ∈ T(0,e)R ⊗ G

in the Lie algebra of R ⊗ G. Consider the new basis in the Lie algebra of Ĝω:

1 ⊕ 0, β(T1) ⊕ T1, . . . , β(Tn) ⊕ Tn ∈ T(1,e)Ĝω .

This is clearly a basis because the vectors are linearly independent if T1, . . . , Tn form
a basis. Consider the unique linear bijection f : T(0,e)R ⊗ G → T(1,e)Ĝω such that:
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f (1 ⊕ 0) := 1 ⊕ 0 , f (0 ⊕ Tk) := β(Tk) ⊕ Tk for k = 1, 2, . . . , n.

We claim it preserves brackets:

[ f (r ⊕ T ) , f (r ′ ⊕ T ′)]ω = f ([r ⊕ T , r ′ ⊕ T ]⊗) ,

and hence is an isomorphism. As f is linear and brackets are bilinear and skew, it
is enough to prove the claim on pairs of distinct basis elements. Evidently [ f (1 ⊕
0) , f (0 ⊕ Tk)]ω = 0 = f ([1 ⊕ 0 , 0 ⊕ Tk]⊗). As for the remaining non-trivial
commutators,

[ f (0 ⊕ Th) , f (0 ⊕ Tk)]ω = [β(Th) ⊕ Th , β(Tk) ⊕ Tk]ω = α(Th, Tk)[Th, Tk]

= β([Th, Tk]) ⊕ [Th, Tk] = β

(
n∑

s=1

Chks Ts

)
⊕

n∑

s=1

Chks Ts =
n∑

s=1

Chks (β(Ts) ⊕ Ts)

=
n∑

s=1

Chks f (0 ⊕ Ts) = f

(
n∑

s=1

Chks0 ⊕ Ts

)
= f ([0,⊕Th , 0 ⊕ Ts]⊗) .

where Chks are the structure constants of G in the basis T1, . . . , Tn . Therefore the
universal covering of Ĝω is R ⊗ G, and there is a surjective Lie homomorphism

Π : R ⊗ G � (r, g) �→ (χ(r, g), h(r, g)) ∈ Ĝω ,

such that
dΠ |(0,g) = f (12.98)

(the latter determines the map uniquely, by Theorem 12.56). Now let us study Π ,
exploiting the fact that Ĝω is a central U (1)-extension of G. Easily h(r, e) = e for
any r ∈ R. Consider in fact the one-parameter group of R ⊗ G

R � r �→ (r, e) = exp{r(1 ⊕ 0)} ;

Π maps it, by Theorem 12.55(c), to the one-parameter subgroup of Ĝω:

R � r �→ exp{r f (1 ⊕ 0)} = (χ(r, e), h(r, e)) = exp{r(1 ⊕ 0)} = exp{(r ⊕ 0)} .

The Baker–Campbell–Hausdorff formula (12.81) and the relations (12.96) give, for
any r ∈ R around 0:

(χ(r, e), h(r, e)) = exp{(r ⊕ 0)} = (χ(r, e), e) .
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As h(r, e)h(s, e) = h(r + s, e) by the properties of one-parameter subgroups, the
identity found extends to any r ∈ R, so h(r, e) = e for every r ∈ R. Define
χ(r) := χ(r, e). Then

Π : (r, e) �→ (χ(r), e) and χ(r)χ(r ′) = χ(r + r ′) for any r, r ′ ∈ R.

The second equation follows because r �→ exp{r f (1 ⊕ 0)} = (χ(r, e), h(r, e)) is
a one-parameter subgroup. Setting h(g) := h(0, g) and φ(g) := χ(0, g), we can
write

Π : R ⊗ G � (r, g) �→ (χ(r)φ(g), h(g)) ∈ Ĝω . (12.99)

Let us study the map h : (0, g) �→ g and prove it is an isomorphism. AsΠ is a group
homomorphism it maps the product (r, g) · (r ′, g′) to the images’ product, so

(χ(r), h(g)) · (χ(r), h(g′)) = (χ(r + r ′)φ(g)φ(g′)ω(h(g), h(g′)) , h(gg′)) .

This implies h : G � g ≡ (0, g) �→ h(g) ∈ G is a group homomorphism, the
domain G being a Lie subgroup in R ⊗ G. But Π is onto, so h is onto, too. The
map Ĝω(χ, s) �→ s ∈ G is a surjective Lie homomorphism by definition of central
extension, soweconcludeh : G � g �→ h(g) ∈ G is a surjectiveLie homomorphism.
By (12.98), it is easy to see dh : 0 ⊕ Tk → Tk . Consequently, by (iii) of Theorem
12.56(c) dh is the differential at the identity of a unique Lie isomorphism from G
(subgroup of R ⊕ G) to G. By construction it must coincide with h.

To finish take the multiplier function ω and φ : G → U (1). Then φ(e) = 1,
because Π : (0, e) �→ (1, e). Since Φ : (0, g) �→ (φ(g), h(g)) is a Lie homo-
morphism and the C∞ structure of Ĝω is the product around the identity, there φ is
differentiable. The projection Π maps (0, g) · (0, g′) to the product of the images.
Therefore

(φ(g)φ(g′)ω(h(g), h(g′)) , h(gg′)) = (φ(gg′), h(gg′)) ,

so
φ(g)φ(g′)ω(h(g), h(g′)) = φ(gg′) , g, g′ ∈ G. (12.100)

There remains to find a continuous unitary representation

W : G � g �→ Wg

inducing the projective representation γ . Since h : G → G is an isomorphism,
define

Wg := φ(h−1(g))Ug , g ∈ G.

By construction this projective unitary representation induces γ , since φ(h−1(g)) ∈
U (1). At the same time, by (12.100):
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WgW ′
g = φ(h−1(g))φ(h−1(g′))UgUg′

= ω(g, g′)φ(h−1(g))φ(h−1(g′))Ugg′ = φ(gg′)Ugg′ = Wgg′ .

Hence W is a proper unitary representation. To finish we show W is continuous. As
U is continuous around e, h−1 is continuous, h−1(e) = e and φ is continuous around
e, then g �→ Wg = φ(h−1(g))Ug is certainly continuous on a neighbourhood A of e.
That W is a representation of unitary operators implies its continuity (in the strong
topology) at every point. In fact, if ψ ∈ H:

||Wgψ − Wg0ψ || = ||Wg−1
0

(Wgψ − Wg0ψ)|| = ||Wg−1
0 gψ − ψ || → 0 as g → g0.

We used the fact that g−1
0 g ∈ A if g is sufficiently close to g0, as G is a topological

group. ��
Remarks 12.73 (1) By a previous remark, Bargmann’s theorem provides informa-
tions also in case the connected Lie group is not simply connected, by looking at
its projective representations as representations of the (simply connected) universal
covering.
(2) An alternative, and more sophisticated, way to state Bargmann’s theorem relies
on the cohomology theory of Lie groups.

Definition 12.74 If (V, { , }) is a real Lie algebra, let Z 2(V, R) indicate the real
vector space of real bilinear skew-symmetric maps α : V × V → R that have the
property

α(R, {S, T }) + α(S, {T, R}) + α(T, {R, S}) = 0 for any S, R, T ∈ V ,

and let B2(V, R) be the subspace of Z2(V, R) consisting of maps of the form

V × V � (S, T ) �→ β({S, T }) for every linearβ : V → R.

The quotient H 2(V, R) := Z2(V, R)/B2(V, R) (viewed as an additive group) is the
real second cohomology group of V.

It is now obvious that the existence of a linear map β for every bilinear skew map α

satisfying (12.94) is equivalent to imposing that the real second cohomology group
H 2(TeG, R) of the Lie algebra of G is trivial: namely, that it is made of the zero
element 0 only.
(3) It is worth stressing that Bargmann’s theorem gives sufficient conditions for
every continuous projectiveG-representation to be induced by a strongly continuous
unitary representation. These conditions may still fail, but a certain continuous pro-
jectiveG-representation (induced by a unitary representation of some Ĝω according
to Theorem 12.71, and therefore associated to some particular α ∈ H 2(TeG, R)) is
nevertheless induced by a strongly continuous unitary representation. The argument
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of Bargmann’s proof actually also shows that this happens exactly for the continuous
projective G-representation whose α equals zero as an element in H 2(TeG, R).

Proposition 12.75 Let G � g �→ γ be a continuous projective representation of a
connected simply connected Lie group G on the Hilbert space H.

Suppose that γ is induced by a strongly continuous unitary representation of a
central extension Ĝω as in Theorem 12.71. If ω is represented on TeG by the map α

such that [α] = [0] ∈ H 2(TeG, R), then there exists a strongly continuous unitary
representation G � g �→ Ug ∈ H such that

γg(ρ) = UgρU−1
g if g ∈ G for any ρ ∈ S(H).

Proof We established this during the proof of Bargmann’s theorem. ��
(4)Thediscussionbefore the statementBargmann’s theorem implies that H 2(TeG, R)

retains relevant information about the class of smoothly inequivalent (Lie) central
extensions of a connected Lie groupG. This is because every such central extension
Ĝω defines a corresponding element α ∈ Z2(TeG, R). Furthermore, suppose that
α, α′ are associated to central extensions Ĝω and Ĝ′

ω and these extensions are equiv-
alent under an assignment of phases, smooth on a neighbourhood of the identity of
G,

K : G � g �→ χg ∈ U (1) whereχe = 1, (12.101)

(i.e. ω(g, g′) = χgχg′χ−1
gg′ ω′(g, g) for any g, g′ ∈ G). Then

φK : Ĝω � (χ, g) �→ (χgχ, g) ∈ Ĝω′ (12.102)

is a local Lie group isomorphism, as one proves without effort. It is easy to see that

dφK : TeĜω � r ⊕ T → (r + β(T )) ⊕ T ∈ Ĝω′ ,

for some linear map β : TeG → TeG. Since dφK is a Lie algebra isomorphism and
the Lie bracket has the form (12.96), then

α′(T, S) = α(T, S) + β([T, S]) for any T, S ∈ TeG.

In other words, central extensions Ĝω and Ĝ′
ω that are equivalent under a locally

smooth change of phase define maps α and α′ in the same class in H 2(TeG, R).
(5) An important result is that Bargmann’s theorem holds for connected simply
connected Lie groups G whose Lie algebra is simple or semisimple [Bar54].

Proposition 12.76 If the real Lie algebra (V, {·, ·}) is simple or semisimple, then
H 2(V, R) = {0}.
The result extends to Lie algebras of affine groups, like the Poincaré group [Bar54].
�
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Physically important cases where Bargmann’s theorem applies are [Bar54]
SL(2, C) (the universal covering of the proper orthochronous Lorentz group) and
the universal covering of the connected component at the identity of the Poincaré
group. In particular the Lie algebra of the former is semisimple. Therefore, within
relativistic quantum theories one can always take advantage of Bargmann’s theorem
to deal with spacetime symmetries. Conversely, the treatment of spacetime sym-
metries in Galilean quantum mechanics is much more complicated, as we shall see
soon, just because H 2(TeG, R) is non-trivial when G is (the universal covering of
the connected component of the) Galilean group. Non-trivial elements of the group
H 2(TeG, R) classify the possible inequivalent central extensions ofG: the latter are
parametrised by a number corresponding to the mass of the physical system.

Example 12.77
(1) The Abelian Lie group R is the simplest instance, yet far from trivial, to which
Bargmann’s theorem applies. The assumptions are automatic, for the Lie algebra is
R with zero bracket, and the only skew functional α : R × R → R is the null map.
However, the result is not obvious, as confirmed by the fact that we proved it with a
certain effort using Theorem 12.45 (only the topological group structure, actually).

The same arguments applies to the Abelian group U (1).
(2)Consider the simply connected Lie group SU (2), and indirectly SO(3), which has
SU (2) as universal covering (Examples 12.65(5, 6)).Wewant to prove all continuous
projective unitary SU (2)-representations (hence of SO(3) by Proposition 12.69)
are induced by corresponding strongly continuous unitary SU (2)-representations,
because the latter’s Lie algebra befits Bargmann’s theorem. Actually this follows
from the fact that the Lie algebra of SU (2) is semisimple and from Proposition
12.76, but we intend to present an explicit proof.

The Lie algebra su(2) of SU (2) (Example 12.65(6)) has a basis made of −iσk/2,
where σ1, σ2, σ3 are the Pauli matrices seen several times. Identify su(2) with R

3

by the vector space isomorphism that sends the basis of su(2) to the canonical basis
e1, e2, e3 of R

3. Every linear skew functional α : su(2)× su(2) → R is a real skew-
symmetric matrix A, in the sense there is a unique real skew-symmetric 3×3 matrix
A such that α(u, v) = ∑3

i, j=1 ui Ai j vk , u, v ∈ R
3 (the proof is left to the reader). By

(12.86), condition (12.95) reads, in terms of the A associated to the functional α,

3∑

i, j=1

ui Ai j vk = β

(
3∑

r,s,k=1

εrskur vsek

)
,

for any u, v ∈ R
3 (i.e. su(2)) and a given linear functional β : R

3 → R (to be
determined). By the latter’s linearity, we can rephrase:

3∑

i, j=1

ui Ai j vk =
3∑

r,s,k=1

εrskur vsbk ,
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for any u, v ∈ R
3 and some b ∈ R

3 whose components bk = β(ek) determine
β. Observe that the vector b, i.e. the functional β satisfying (12.95), exists, since
every real skew matrix A acting on R

3 corresponds one-to-one to some b ∈ R
3:

Ai j = ∑3
k=1 εi jkbk (inverting bk = 1

2

∑3
i, j=1 εi jk Ai j ), as is well known and as one

proves with ease.
Therefore condition (12.95) holds for any linear skew functional, and so

Bargmann’s theorem applies. Note that we did not have to assume (12.94) for
α : su(2) × su(2) → R, for it is granted: using α(u, v) = ∑3

i, j,k=1 εi jkui v j bk ,
where b ∈ R

3 determines α, a direct computation shows (12.94) is valid, because of
the known formula

3∑

k=1

εi jkεpqk = δi pδ jq − δiqδ j p .

�

12.2.11 Theorems of Gårding, Nelson, FS3

Now we will discuss the converse problem: construct continuous projective repre-
sentations that give a Lie group of symmetries. We already know it suffices to build
continuous unitary representations of the group’s central extensions, so we concen-
trate on the problem of manufacturing strongly continuous unitary representations of
a given Lie group (see [Schm90, Chap. 10] for a quick rigorous review). The idea is to
start from a Lie algebra representation in terms of self-adjoint operators, reminiscent
of the exponentiation of the generators of a Lie group. Physically, the procedure is
appealing because generators have a precise meaning. In the next chapter we will
see that the generators (self-adjoint operators) represent preserved quantities during
motion, if the time evolution is a subgroup of the symmetry group.

As first step we construct an operator representation for the Lie algebra, in pres-
ence of a strongly continuous unitary representation of the Lie group. Consider a
strongly continuous unitary representation of the Lie group G

G � g �→ Ug

on the Hilbert space H. Fix a one-parameter subgroup R � t �→ exp(tT ) ∈ G
associated to the element T ∈ TeG. Stone’s Theorem 9.33 ensures

Uexp(tT ) = e−i t AU (T ) , for any t ∈ R, (12.103)

where AU (T ) is a self-adjoint operator on H, in general unbounded (the sign − is
conventional, and we fix it for future convenience) with domain D(AU (T )), and
completely determined by T ∈ TeG. We will call the self-adjoint operators AU (T ),
T ∈ TeG, the generators of the representation U . From Stone’s theorem they are

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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defined as

AU (T )ψ := i
d

dt
|t=0Uexp(tT )ψ iffψ ∈ D(AU (T )). (12.104)

Regarding the fact the TeG � T �→ −i AU (T ) define a representation of the real Lie
algebra of G, we can only hope they satisfy:

[−i AU (T ),−i AU (T ′)]ψ = −i AU ([T, T ′])ψ , (12.105)

ψ ∈ D , where D ⊂ D(AU (T )) is an invariant subspace for all the AU (T ), and that
the map TeG � T �→ −i AU (T )�D is obviously (R-)linear.

As a matter of fact it is well known that such a D exists and is dense in H. A
candidate is the Gårding space DG .

Definition 12.78 (Gårding space). Let G be a (finite-dimensional real) Lie group
and consider a strongly continuous unitary representation G � g �→ Ug on the
complex Hilbert space H. If f ∈ C∞

0 (G) and x ∈ H, in analogy to Proposition 9.31,
define

x[ f ] :=
∫

G
f (g)Ugx dg , (12.106)

where dg denotes the left-invariant Haar measure on G (the normalisation does not
matter) and the integral is defined in a weak sense exploiting Riesz’ lemma: since
the map H � x �→ ∫

G f (g)(y|Ugx)dg is continuous (the proof being elementary),
x[ f ] is the unique vector in H such that

(y|x[ f ]) =
∫

G
f (g)(y|Ugx)dg , ∀y ∈ H .

The complex span of vectors x[ f ] ∈ H with f ∈ C∞
0 (G; C) and x ∈ H is called the

Gårding space of the representation and is denoted by DG .

The subspace DG enjoys very remarkable properties stated in the next theorem. In
the following Lg : C∞

0 (G) → C∞
0 (G) denotes the standard left action of g ∈ G on

complex-valued, smooth, compactly supported functions defined on G:

(Lg f )(h) := f (g−1h) ∀h ∈ G , (12.107)

and, if T ∈ TeG, XT : C∞
0 (G) → C∞

0 (G) is the smooth vector field onG (a smooth
differential operator) defined by:

(XT ( f )) (g) := lim
t→0

f (exp(−tT )g) − f (g)

t
∀g ∈ G . (12.108)

Then the map
TeG � T �→ XT (12.109)

http://dx.doi.org/10.1007/978-3-319-70706-8_9


12.2 Introduction to Symmetry Groups 745

defines a representation of the Lie algebra TeG in terms of vector fields (differential
operators) on C∞

0 (G). In particular,

XT ◦ XT ′ − XT ′ ◦ XT = X [T,T ′] . (12.110)

We have the following theorem, establishing that the Gårding space has all the
expected properties.

Theorem 12.79 (Gårding) Let G be a Lie group and consider a strongly continuous
unitary representation G � g �→ Ug on the complex Hilbert space H. The Gårding
space DG satisfies the following properties.

(a) DG is dense in H.
(b) If g ∈ G, then Ug(DG) ⊂ DG. In other words the Gårding space is invariant

under the action of the unitary representation U. More precisely, if f ∈ C∞
0 (G),

x ∈ H, g ∈ G, then
Ugx[ f ] = x[Lg f ] . (12.111)

(c) If T ∈ TeG, then DG ⊂ D(AU (T )) and furthermore AU (T )(DG) ⊂ DG.
More precisely

− i AU (T )x[ f ] = x[XT ( f )] . (12.112)

(d) The map
TeG � T �→ −i AU (T )�DG (12.113)

is a representation by anti-symmetric operators on DG. In other words, the map
(12.113) is R-linear and (12.105) is valid if ψ ∈ DG.

(e) AU (T ) with T ∈ TeG is essentially self-adjoint on DG, namely

AU (T ) = AU (T )�DG , ∀T ∈ TeG . (12.114)

Remark 12.80 Item (e) can be strengthened: DG is a core for every operator
p(AU (T )) where p is a real polynomial of arbitrary degree (see, e.g., Corollaries
10.11.15 and 10.11.16 in [Schm90]). �
Proof (a) Let f ∈ C∞

0 (G) have support K f and satisfy f ≥ 0 and
∫

K f
f dg = 1.

From the very definition (12.106),

x[ f ] − x =
∫

G
f (g)(Ug − I )xdg .

Hence ||x[ f ]−x || ≤ maxg∈K f ||Ugx −x ||. Consequently, if we choose a sequence of
fn such that K fn shrinks to e ∈ G, we have x[ fn] → x by continuity ofG � g �→ Ug .
As x ∈ H is arbitrary, DG is dense in H.

(b) This is easy because Ugx[ f ] can be written as

∫

G
f (h)UgUh xdh =

∫

G
f (h)Ugh xdh =

∫

G
f (g−1z)Uz xdz =

∫

G
(Lg f )(z)Uz xdz = x[Lg f ] .
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Notice that Lg f ∈ C∞
0 (G) if f ∈ C∞

0 (G), so that Ugx[ f ] ∈ DG .
(c) Due to the invariance of the Haar measure if h(t) := exp(tT ) for T ∈ TeG,

we obtain
∫

G
f (h−1g)Ugxdg =

∫

G
f (g)Uh(t)gxdg = Uh(t)

∫

G
f (g)Ugxdg .

Hence

t−1(Uh(t) − I )x[ f ] =
∫

G
t−1[ f (h(t)−1g) − f (g)]Ugxdg .

The function g �→ t−1[ f (h(t)−1g)− f (g)] is integrable onG and the limit as t → 0
is XT ( f ) ∈ C∞

0 (G). Moreover, the mean value theorem implies that

t−1[ f (h(t)−1g) − f (g)] = (XT ( f )) (h−1(τ (t, g))g)

for some point τ(t, g) ∈ [−|t |, |t |]. As a consequence, it is not so difficult to prove
that there is a function f0 ∈ C∞

0 (G) with

∣∣t−1[ f (h(t)−1g) − f (g)] − (XT ( f ))(g)
∣∣ ≤ f0(g)

when t varies in a neighbourhoodof 0with compact closure I . (If the compact set K ⊂
G is the support of G � g �→ (XT ( f )) (g), the set (h−1(I ))(K ) = K ′ ⊂ G is com-
pact since it is the continuous imageof the compact set I×K , and contains all supports
of the functions G � g �→ (XT ( f )) (h−1(τ )g) for τ ∈ I . If M < +∞ is greater
than all values of the continuous compactly-supported function I × K � (τ, g) �→
| (XT ( f )) (h−1(τ )g)|, we have

∣∣t−1[ f (h(t)−1g) − f (g)] − (XT ( f ))(g)
∣∣ ≤ 2M if

t ∈ I and g ∈ G. The function f0 can be defined as a non-negative smooth compactly-
supported function on G that equals the value 2M on K ′.) Lebesgue’s dominated
convergence therefore implies that

∫

G

∣∣t−1[ f (h(t)−1g) − f (g)] − (XT ( f ))(g)
∣∣ dg → 0 if t → 0. (12.115)

On the other hand, a direct use of the Definition 12.78, the fact that |(Ug′ x |Ugx)| ≤
||x ||2 and Fubini–Tonelli produce

∣∣∣
∣∣∣t−1(Uh(t) − I )x[ f ] − x[Xt ( f )]

∣∣∣
∣∣∣ ≤ ||x ||

∫

G

∣∣∣t−1[ f (h(t)−1g) − f (g)] − (XT ( f ))(g)

∣∣∣ dg .

Therefore (12.115) yields −i AU (T )x[ f ] = x[XT ( f )] as wanted, including x[ f ] ∈
D(AU (T )) in view of Stone theorem.

(d) The fact that TeG � T �→ −i AU (T )�DG is linear is obvious form (12.112)
because TeG � T �→ XT is linear, as can be proved directly. Making use of (12.112)
and (12.110), we have
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[−i AU (T ),−i AU (T ′)]x[ f ] = x[(XT ◦ XT ′ − XT ′ ◦ XT )( f )] = x[X [T,T ′]( f )]

= −i AU ([T, T ′])x[ f ] .

The fact that AU (T ) is self-adjoint andDG is dense and invariant, immediately imply
that AU (T )�DG is symmetric, so that −i AU (T )�DG is anti-symmetric.

(e) The proof descends from Corollary 9.34, noting that DG ⊂ D(AU (T )) is
dense and invariant under the unitary one-parameter group generated by AU (T ),
because it is invariant under the whole representation U . ��
From (b) and (c) it follows easily that, if ψ ∈ DG , then G � g �→ Ugψ is a smooth
map (differentiating in the Hilbert topology and with respect to any local coordinate
system onG). In other words ψ ∈ DG is a smooth vector of the representation U .
However an important result proves that also the converse is true (Theorem 3.3 in
[DiMa78]; the result remains valid if H is replaced by a Fréchet space).

Theorem 12.81 (Dixmier–Malliavin) LetG be a Lie group,G � g �→ Ug a strongly
continuous unitary representation on the Hilbert space H. Then ψ ∈ DG if and only
if the map G � g �→ Ugψ is C∞.

There is another relevant subspace of H introduced by Nelson [Nel59], which turns
out to be more useful than the Gårding space to recover the representation U by
exponentiating the Lie algebra representation.

Definition 12.82 LetG be a Lie group,G � g �→ Ug a strongly continuous unitary
representation on the Hilbert space H. We denote byDN the space of vectors ψ ∈ H
such thatG � g �→ Ugψ is analytic in g, i.e. developable in power series in analytic
coordinates around every point of G.

The elements ofDN are called analytic vectors of the representation U andDN

is the space of analytic vectors of the representation U .

Since the composition of elements in G is analytic with respect to the analytic atlas
of G, the Dixmier–Malliavin Theorem 12.81 has the following consequence.

Proposition 12.83 Let G be a Lie group, G � g �→ Ug a strongly continuous
unitary representation on the Hilbert space H. The subspace DN ⊂ H satisfies the
following properties.

(a) Ug(DN ) ⊂ DN for every g ∈ G.
(b) DN ⊂ DG.

An important relationship exists between analytic vectors inDN and analytic vectors
of the self-adjoint operators AU (T ) according to Chap.9.

Proposition 12.84 Let G be a Lie group, G � g �→ Ug a strongly continuous
unitary representation on the Hilbert space H. Fix a basis T1, . . . , Tn of TeG. Then

ψ ∈ DN if and only if ψ is an analytic vector for every skew-symmetric operator

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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−i
n∑

j=1

c j AU (Tj )

defined on its natural domain for c1, . . . , cn ∈ R.

Proof The proof immediately follows from Lemma 7.1 and the comment at the top
of p. 575 in [Nel59]). ��
Nelson [Nel59] proved an important result ((b) in the theorem below), which implies
that DN is not trivial, and is even dense in H. It involves an operator, called Nelson
operator, that sometimes is related to theCasimir operators of the group represented.

Proposition 12.85 Let G be a Lie group and G � g �→ Ug a strongly continuous
unitary representation on the Hilbert space H. Take T1, . . . , Tn ∈ TeG a basis and
define Nelson’s operator as the non-negative symmetric operator

Δ :=
n∑

k=1

AU (Tk)�2DG
. (12.116)

Then
(a) Δ is essentially self-adjoint.
(b) Every analytic vector of Δ belongs to DN , so that DN is dense.

Proof It is useful to remember that the analytic vectors of a self-adjoint operator
(Δ) are dense by Proposition 9.25(f). (b) is proved in in [Nel59, Theorem 3]. The
comment after that proof proves (a). ��
Remark 12.86 Nelson’s operator was originally introduced [Nel59] as the elliptic
second-order differential operator

∑n
k=1 Tk Tk , where each Tk is interpreted as left-

invariant vector field on the Lie group G. Our −Δ is a representation of that dif-
ferential operator through the unique extension of the representation TeG � T �→
−i AU (T )|DG to a representation of the universal enveloping algebra generated by
TeG [Nel59]. �

Corollary 12.87 Referring to Proposition 12.85, the following statements hold for
every fixed basis T1, . . . , Tn ∈ TeG.

(a) If c1, . . . , cn ∈ R,

− i
n∑

j=1

c j AU (Tj ) ⊂ −i AU

⎛

⎝
n∑

j=1

c j Tj

⎞

⎠ (12.117)

and

−i
n∑

j=1

c j AU (Tj )�DN = −i
n∑

j=1

c j AU (Tj )�DG = −i
n∑

j=1

c j AU (Tj ) = −i AU

⎛

⎝
n∑

j=1

c j Tj

⎞

⎠ .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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(b) If T ∈ TeG, DN is a core for AU (T ).
(c) If ψ ∈ DN ,

Uexp(tT )ψ =
+∞∑

n=0

(−i t)n

n! AU (T )nψ , for sufficiently small |t |. (12.118)

Proof Let us prove (a). The symmetric operator in the left-hand side is essentially
self-adjoint from Propositions 12.84, 12.85(b) and Nelson’s criterion Theorem 5.47,
so it admits a unique self-adjoint extension. On the other hand, since TeG � T �→
AU (T )�DN is linear by Theorem 12.79(d), the restriction toDG of the same operator
satisfies

−i
n∑

j=1

c j AU (Tj )�DG = −i AU

⎛

⎝
n∑

j=1

c j Tj

⎞

⎠�DG ,

which is essentially self-adjoint by Theorem 12.79, and its unique self-adjoint exten-

sion is −i AU

(∑n
j=1 c j Tj

)
. Summing up, (12.117) holds. The second equation in

(a) summarises the above argument to prove (12.117). Parts (b) and (c) are easy. If
T ∈ TeG, we can complete T1 = T to a basis by adding n − 1 suitable vectors.
Clearly DN is a core for the trivial linear combination AU (T ) = AU (T1) since it is
essentially self-adjoint on DN as we have just seen. Proposition 9.25(d) yields now
the final expansion (12.118). ��
The validity of expansion (12.118) shows a feature ofDN whichDG does not possess:
DN permits us to reconstruct part of the action of the (representation of) the group
from the actionof the representatives of theLie algebra on theHilbert space.However,
it is not evident that the restriction of AU (T ) to DN defines a proper representation
of TeG as T varies. This would be true if we replaced DN by DG , but with this
change (12.118) generally fails. The next theorem collects various results due to R.
Goodman [Goo69]13 and sorts out all problems.

Theorem 12.88 Let G be a connected Lie group and G � g �→ Ug a strongly
continuous unitary representation on the Hilbert space H. The subspace DN ⊂ H
has the following properties.

(a) ψ ∈ DN if and only if ψ is an analytic vector of
√

I + Δ, where Δ is defined
by (12.116) with respect to any fixed basis of TeG.

(b) DN is invariant under AU (T ) if T ∈ TeG.
(c) TeG � T �→ −i AU (T ) �DN is a representation of TeG by skew-symmetric

operators (with AU (T ) = AU (T )�DN ∀T ∈ TeG and verifying (12.118)).

13Here the opposite convention on the sign of Δ is adopted, and the representation of the Lie
algebra is constructed on the whole space of smooth vectors, which coincides with DG by the
Dixmier–Malliavin Theorem 12.81.

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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We can finally state the famous theorem of Nelson [Nel59] that enables to associate
representations of the only simply connected Lie group with a given Lie algebra to
representations of that Lie algebra.

Theorem 12.89 (Nelson) Consider an n-dimensional real Lie algebra V of oper-
ators −i S (with each S symmetric on the Hilbert space H, defined on a common
subspace D , dense in H and V -invariant) with the usual commutator of operators
as Lie bracket.

Let −i S1, . . . ,−i Sn ∈ V be a basis of V and define Nelson’s operator:

Δ :=
n∑

k=1

S2
k

with domain D . If Δ is essentially self-adjoint, there exists a strongly continuous
unitary representation

GV � g �→ Ug

on H of the unique connected simply connected Lie group GV with Lie algebra V,
that is completely determined by

S = AU (−i S) for every − i S ∈ V.

In particular, the symmetric operators S are essentially self-adjoint on D , their
closures being self-adjoint.

The above assumptions were weakened by Flato, Simon, Snellman and Sternheimer
[FSSS72]:

Theorem 12.90 (FS3 (Flato, Simon, Snellman, Sternheimer)) Consider a real
n-dimensional Lie algebraV of operators −i S (with each S symmetric on the Hilbert
space H, defined on a common subspace D , dense in H and V -invariant) with the
usual commutator of operators as Lie bracket.

Let −i S1, . . . ,−i Sn ∈ V be a basis. If the elements of D are analytic vectors for
every Sk, k = 1, . . . , n, then there is a strongly continuous unitary representation

GV � g �→ Ug

on H, of the unique simply connected Lie group GV with Lie algebra V, that is
completely determined by:

S = AU (−i S) for every − i S ∈ V

In particular, the symmetric operators S are essentially self-adjoint on D , their
closures being self-adjoint.
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Example 12.91
(1)Consider two families of operatorsPk ,Xk , k = 1, 2, . . . , n, on a dense subspace
D ⊂ H in a Hilbert space, and suppose they are symmetric. Assume they satisfy,
on the domain, Heisenberg’s commutation relations, seen in Chap.11 (where we set
� = 1):

[−iXh,−iPk] = −iδhk I k, h = 1, . . . , n. (12.119)

Wemay add−i I to the generators. Then−i I,−iX1, . . . ,−iXn,−iP1, . . . ,−iPn

forma basis for theLie algebra of theHeisenberg group H(n) onR
2n+1 (see the end of

Chap. 11). The Heisenberg group is simply connected. Nelson’s theorem guarantees
that if, on D , the operator:

Δ − I :=
n∑

k=1

X 2
k +

n∑

k=1

P2
k

is essentially self-adjoint (we should consider Δ, but it is clear that Δ is essentially
self-adjoint if and only if Δ − I is), then there is a unique unitary and strongly con-
tinuous representation H(n) � (η, t,u) �→ H((η, t,u)) on H with I , Xh =: Xh

andPh =: Ph , h = 1, . . . , n as (self-adjoint) generators. Therefore if this represen-
tation of the Heisenberg group is irreducible, by the Stone-von Neumann theorem
(Theorem 11.55) there is a unitary transformation H → L2(Rn, dx) mapping Xh

and Ph to the usual position and momentum operators of axiom A.5, Chap. 11 (for
n = 3 and with the obvious generalisation for n > 3).

An elementary example is to take n = 1,H = L2(R, dx), the operatorX seen as
multiplication by the coordinate x , P := −i ∂

∂x , and defining D to be the Schwartz
space S (R). In this case Δ − I coincides with the Hamiltonian of the harmonic
oscillator of Chap.9. The operator Δ − I has an eigenvector basis made by Hermite
functions (belonging inS (R)), which are a basis of L2(R, dx) as well. HenceΔ− I
(and so Δ, by Proposition 9.25) admits a set of analytic vectors (Hermite functions)
whose finite combinations are dense in the Hilbert space. ByNelson’s criterionΔ− I
is essentially self-adjoint, and we may apply the above result.
(2) We have a result about commuting spectral measures.

Theorem 12.92 Let A : D(A) → H, B : D(B) → H be symmetric operators. If
there is a dense space D ⊂ D(A2 + B2) ∩ D(AB) ∩ D(B A) on which A and B
commute, and where A2+ B2 is essentially self-adjoint, then A and B are essentially
self-adjoint on D and the spectral measures of A and B commute.

The proof is an easy consequence of Nelson’s Theorem 12.89. �

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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12.2.12 A Few Words About Representations of Abelian
Groups and the SNAG Theorem

We summarise here the most important theorem concerning continuous unitary rep-
resentations of Abelian topological groups. Some preliminary notions are necessary.

Definition 12.93 Let G be a commutative, Hausdorff, locally compact group with
product · and neutral element e.

A character of the group G is a continuous map χ : G → U (1) such that

χ(g)χ(g1) = χ(g · g1) for all g, g1 ∈ G.

The set Ĝ of characters of G is called the dual space of G.

Remarks 12.94 (1) It is clear that a character satisfies χ(e) = 1 and χ(g−1) =
χ(g)−1, and that Ĝ is an Abelian group with respect to the pointwise product of
functions, with unit element given by the constant function 1.
(2) A classical result by Weil [Wei40, Sect. 2g] says that Ĝ is a locally compact
Hausdorff group when equipped with the compact-open topology. The compact-
open topology on the space C(X,Y) of continuous functions between topological
spaces X,Y has a basis formed by C(X,Y) itself and all finite intersections of sets
{ f ∈ C(X,Y) | f (K ) ⊂ A}, for all open sets A ⊂ Y and compact sets K ⊂ X.14 �

An elementary but important result is the following one.

Theorem 12.95 According to Definition 12.93, every χ ∈ Ĝ is an irreducible,
continuous, unitary representation of G on C. Up to unitary equivalence, Ĝ is in 1-1
correspondence with strongly continuous irreducible unitary representations of G.

Proof If χ ∈ Ĝ, the map χ : G → U (1) is evidently a strongly continuous irre-
ducible unitary representation ofG onC. Now consider a strongly continuous unitary
representation U : G → H. SinceG is commutative, every Ug commutes with every
other element Ug1 . However, since U is irreducible, Schur’s lemma requires that
Ug = χ(g)I for a complex number χ(g) with |χ(g)| = 1. As UgUg1 = Ug·g1 ,
necessarily χ(g) · χ(g1) = χ(g · g1). Furthermore, the map G � g �→ χ(g) is
continuous by construction, so χ ∈ Ĝ. Finally notice that, since Ug = χ(g)I ,
every subspace of H must be invariant. This is not possible when U is irreducible,
unless H is one-dimensional. Therefore, there exists an isometric surjective operator
V : H → C. In particular, V UgV −1 = V χ(g)I V −1 = χ(g). In other words U is
unitarily equivalent to a character. This correspondence between classes of strongly
continuous irreducible representations and characters is evidently one-to-one. ��

14The compact-open topology is Hausdorff if Y is Hausdorff. When Y is a metric space (as U (1),
in our case), the compact-open topology on C(X, Y ) coincides with the topology of uniform con-
vergence on compact sets of X .
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The result characterises continuous irreducible unitary representations of an Abelian
topological group in terms of its characters completely. The natural issue is to find
how strongly continuous reducible unitary representations are built. The answer is
contained in famous theorem by Stone, Najmark, Ambrose and Godement. Tradi-
tionally referred to as the SNAG theorem, we shall state it without proof because
the argument is based on Bochner’s integration technique [Fol95]. The SNAG theo-
rem establishes that unitary representations are constructed out of irreducible unitary
representations by means of a suitable PVM defined on Ĝ.

Theorem 12.96 (SNAG theorem) Let U : G → H be a strongly continuous unitary
representation of the Abelian, locally compact Hausdorff group G on the complex
Hilbert space H. Then there exist a PVM P, on the Borel sets of Ĝ equipped with the
compact-open topology, such that

Ug =
∫

Ĝ
χ(g)d P(χ) .

The measure P is uniquely determined by requiring that for every x ∈ H, varying
E ∈ B(Ĝ), μx (E) := (x |P(E)x) is the unique finite regular Borel positive measure
on Ĝ such that

(x |Ugx) =
∫

Ĝ
χ(g)dμx (χ) for everyx ∈ H and g ∈ G.

Example 12.97
(1) Consider the additive groupG = R

n equipped with the standard topology. Every
character χ : R → U (1) has the form

χy(x) = ei(y1x1+···+yn xn) for all x = (x1, . . . , xn) ∈ R
n ,

where y = (y1, . . . , yn) ∈ R
n is arbitrary and uniquely fixes χy . It is not difficult to

prove that the compact-open topology on R̂n coincides with the standard topology.
Consequently R

n and R̂n are isomorphic topological groups under the map

R
n � y �→ χy ∈ R̂n ,

which is both a group isomorphism and a homeomorphism.
A strongly continuous unitary representation U : R

n � x �→ Ux on a Hilbert
space H can always be decomposed as

Ux =
∫

Rn

ei(y1x1+···+yn xn)d P(y) x ∈ R
n ,

by the SNAG theorem. It is not difficult to prove that, if H is separable, P is nothing
but the joint measure defined in Theorem 9.19 for the n self-adjoint operators Ak

that generate the one-parameter groups R � t �→ U(0,...,0,t,0,...0), where t is in the kth
slot. If H is not separable P is a generalisation of a joint measure.

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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(2) If G = U (1) then Û (1) is made of maps

χn(x) = einx for all x ∈ R ,

where n ∈ Z is arbitrary and uniquely fixes χn . Hence Û (1) is isomorphic to the
additive group Z. The compact-open topology on Û (1) ≡ Z coincides with the
natural discrete topology on Z. The SNAG decomposition of a strongly continuous
unitary representation of U (1) on a Hilbert space H becomes a Hilbert sum of one-
dimensional representations. The same result can be obtained as an elementary case
of the next section’s Peter–Weyl theorem (since U (1) is compact). �

12.2.13 Continuous Unitary Representations of Compact
Hausdorff Groups: The Peter–Weyl Theorem

This section contains a general theorem about strongly continuous unitary represen-
tations of compact Hausdorff groups: the celebrated Peter–Weyl theorem. Compact
Lie groups are covered, of course, due to their structure of differentiable mani-
folds. The theorem by Peter and Weyl states, in particular, two remarkable facts that
we will prove: strongly continuous unitary representations of compact Hausdorff
groups can be split in orthogonal sums (even with uncountably many summands) of
(topologically) irreducible representations, and strongly continuous irreducible uni-
tary representations are necessarily finite-dimensional. Both are far from obvious.
In particular, Theorem 12.66 proves that compactness is crucial, for Lie groups at
least. In general, a strongly continuous unitary representation of a topological group
might be a direct integral of strongly continuous irreducible unitary representations
(e.g., unitary representations of the Abelian Lie group R); moreover, there could be
infinite-dimensional irreducible representations (like for the Lorentz group).

Let us start with a lemma taking care of the finite-dimensional case.

Lemma 12.98 Let π : G � g �→ Ug be a unitary representation (not necessarily
continuous) of the group G (even if not topological) on the finite-dimensional Hilbert
space H. Then H decomposes in an orthogonal sum H = ⊕n

k=1 Hk where for each
k = 1, 2, . . . , n:

(i) Ug(Hk) ⊂ Hk for every g ∈ G,
(ii) πk : G � g �→ Ug�Hk is an irreducible unitary G-representation on Hk .
If G is a topological group and G � g �→ Ug is strongly continuous, so are all

maps πk .

Proof If π is not irreducible it will have a non-trivial invariant subspace Ĥ1 ⊂ H,
with 0 < dim(Ĥ1) ≤ dim(H) − 1. Consider the new unitary representation of
π̂1 : G � g �→ Ug�Ĥ1

. If this is not irreducible, as above we can find a non-trivial π -

invariant space Ĥ2 ⊂ Ĥ1 with 0 < dim(Ĥ2) ≤ dim(H) − 2. The iteration stops after
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a finite number of steps, since dim(H) < +∞, and produces an invariant subspace
H1 �= {0} for which π1 : G � g �→ Ug�H1 is irreducible.

Consider H′
2 := H⊥

1 . By construction Ug(H⊥
1 ) ⊂ H⊥

1 , since z ∈ H⊥
1 and x ∈ H1

imply (Ugz|x) = (z|U ∗
g x) = (z|Ug−1 x) = 0 (Ug−1 x ∈ H1 by assumption). Hence

H = H1 ⊕ H′
2 and π ′

2 : G � g �→ Ug �H′
2
is a unitary G-representation on H′

2.
If π ′

2 is irreducible we finish, otherwise we iterate to obtain H′
2 = H2 ⊕ H′

3, where
π2 : G � g �→ Ug�H2 is irreducible,H2,H′

3 are orthogonal toH1,π(H′
3) = π2(H′

3) ⊂
H′

3 and π ′
3 : G � g �→ Ug �H′

3
is a unitary G-representation on H′

3. By induction
the algorithm is finite, and yields H′

k = {0} if k = n + 1 for n large enough,
because every Hk has dimension at least 1, so

∑n
k=1 dim(Hk) ≥ n, but we also have∑n

k=1 dim(Hk) ≤ dim(H) < +∞.
The last claim is immediate, because everything is finite-dimensional. ��

Now let us generalise the lemma to infinitelymanydimensions for compactHausdorff
groups. The result, part of the more general statement of Peter and Weyl, makes use
of the Haar measure of Example 12.38(5) in Theorem 12.39.

Remark 12.99 In the rest of the section we refer to Definition 11.35 and Remark
11.36. Therefore irreducibility is now understood in topological sense: there is no
non-trivial closed subspace invariant under the representation considered. �

Theorem 12.100 (Peter–Weyl, part I) Let G be a compact Hausdorff group and
π : G � g �→ Ug ∈ B(H) a strongly continuous unitary representation on H �= {0}.
(a) If π is irreducible, then H is finite-dimensional: dim(H) < +∞.
(b) If π is reducible, it can be decomposed in a sum of strongly continuous, finite-
dimensional irreducible unitary representations of G. That is, H is the Hilbert sum
of mutually orthogonal closed subspaces H = ⊕

k∈K Hk , where for each k ∈ K :
(i) Hk ⊂ H is finite-dimensional,
(ii) Ug(Hk) ⊂ Hk for every g ∈ G,
(iii) πk : G � g �→ Ug �Hk is a strongly continuous and irreducible unitary

G-representation on Hk .

Remark 12.101 Every representation πk constructed out the initial representation π

as explained in the theorem will be called a subrepresentation of π henceforth. �

Proof From now on μG will be the Haar measure of G, which by Theorem 12.39 is
bi-invariant and may be normalised so that μG(G) = 1 (since G is compact). The
final statement in Theorem 12.39 implies that if f ∈ L1(G, μG) and G is compact,
then ∫

G
f (g)dμG(g) =

∫

G
f (g−1)dμG(g) , (12.120)

to be used later.
(a) For x ∈ H define the operator Kx : H → H by asking, for any z, y ∈ H:

(z |Kx y ) =
∫

G

(
z
∣∣Ugx

)
(Ugx |y) dμG(g) . (12.121)

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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As in the proof of Proposition 9.31, using Riesz’s representation and the definition
of adjoint to bounded operators, Kx is well defined and Kx ∈ B(H). In particular,
since Ug is isometric:

||Kx y||2 ≤
∫

G
|(Kx y|Ugx)| |(Ugx |y)|dμG(g) ≤

∫

G
||Kx y|| ||Ugx |||(Ugx |y)|dμG(g)

so

||Kx y|| ≤
∫

G
||Ug x |||(Ug x |y)|dμG(g) ≤

∫

G
||Ug x ||||Ug x ||||y||dμG(g) = ||x ||2||y||

∫

G
dμG(g)

= ||x ||2||y|| ,

and then ||Kx || ≤ ||x ||2. Moreover

Ug Kx = KxUg for any x ∈ H, g ∈ G . (12.122)

In fact, Ug is unitary and UgUg′ = Ugg′ , so

(
z|Ug Kx y

) = (
U ∗

g z|Kx y
) =

∫

G

(
U ∗

g z|Ug′ x
)
(Ug′ x |y) dμG(g′)

=
∫

G

(
z|Ugg′ x

)
(Ug′ x |y) dμG(g′) =

∫

G

(
z|Ugg′ x

)
(UgUg′ x |Ug y) dμG(g′) .

Now as μG(g A) = μG(A) (it is the Haar measure), the last integral becomes

∫

G

(
z|Ugg′ x

)
(Ugg′ x |Ug y) dμG(g′) =

∫

G

(
z|Ugg′ x

)
(Ugg′ x |Ug y) dμG(gg′)

=
∫

G
(z|Us x) (Us x |Ug y) dμG(s) = (

z|KxUg y
)

.

But z ∈ H is arbitrary, so (12.122) holds. With this settled, let us begin to prove
(a). If the representation G � g �→ Ug ∈ B(H) is irreducible, by Proposition 11.37
(Schur’s lemma) Eq. (12.122), valid for every g ∈ G, is valid only if Kx = χ(x)I
for some χ(x) ∈ C. Hence

∫

G

(
y|Ugx

)
(Ugx |y) dμG(g) = (y|Kx y) = χ(x)||y||2 ,

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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x, y ∈ H, and so ∫

G
| (y|Ugx

) |2 dμG(g) = χ(x)||y||2 . (12.123)

As U ∗
g = Ug−1 , the latter reads

∫

G

∣∣(Ug−1 y
∣∣ x

)∣∣2 dμG(g) = χ(x)||y||2

or ∫

G

∣∣(x
∣∣Ug−1 y

)∣∣2 dμG(g) = χ(x)||y||2

and even, by (12.120),

∫

G

∣∣(x |Ug′ y
)∣∣2 dμG(g′) = χ(x)||y||2 .

Using (12.123) with x , y swapped allows to conclude the left-hand side equals
χ(y)||x ||2, so that χ(x)||y||2 = χ(y)||x ||2 irrespective of x, y ∈ H. This means
χ(x) = c||x ||2 for any x ∈ H and some constant c ≥ 0. Set x = y, ||x || = 1, so
(12.123) gives:

∫

G
| (x |Ugx

) |2 dμG(g) = χ(x)||x ||2 = c||x ||4 = c ;

hence c > 0 because the continuous, non-negative mapG � g �→ |(x |Ugx)| reaches
||x || = 1 at g = e, and non-empty open sets have non-zero Haar measure (Theorem
12.39(ii)). To finishwith (a), consider n orthonormal vectors {zk}k=1,...,n ⊂ H. Setting
x = ek and y = e1 in (12.123) gives:

∫

G
| (e1|Ugek

) |2 dμG(g) = χ(ek)||e1||2 = c > 0 , k = 1, 2, . . .

By the orthonormality of the Ugek and Bessel’s inequality (3.17):

nc =
n∑

k=1

∫

G
|(e1|Ugek)|2dμG(g) =

∫

G

n∑

k=1

|(e1|Ugek)|2dμG(g)

≤
∫

G
||e1||2dμG(g) = 1 .

Whichever c > 0, the number n cannot be arbitrarily large: itmust be finite. Therefore
the dimension of H is finite and not bigger than 1/c. This concludes (a).

(b). For this we need a lemma.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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Lemma 12.102 Suppose that for every non-trivial closed subspace H1 ⊆ H such
that Ug(H1) ⊂ H1, g ∈ G, there exists a non-trivial finite-dimensional space H0 ⊂
H1 such that, for any g ∈ G, Ug(H0) ⊂ H0 and G � g �→ π�H0 is irreducible on H0.
Then H is the Hilbert sum of mutually orthogonal, closed subspaces H = ⊕

k∈K Hk ,
where for each k ∈ K :

(i) Hk ⊂ H is finite-dimensional,
(ii) Ug(Hk) ⊂ Hk for every g ∈ G,
(iii) πk : G � g �→ Ug �Hk is a strongly continuous and irreducible unitary

G-representation on Hk .

Proof of Lemma 12.102. Consider the family Z = {H j } j∈J , where J has arbi-
trary cardinality and the sets H j ⊂ H are finite-dimensional, non-null and such that
π(H j ) ⊂ H j , H j ⊥ H j ′ for j �= j ′. Furthermore, we require π j : G � g �→ Ug�H j

be an irreducibleG-representation on H j . (Note thatZ is not empty because, defin-
ing H1 := H, our hypotheses guarantee the existence of a non-trivial irreducible
finite-dimensional subspace H0. The argument applies replacing H with H⊥

0 and so
on.) The π j are certainly strongly continuous since π is. Endow Z with the order
relation given by inclusion. Clearly any ordered subset E ⊂ Z is upper bounded
by the union of elements in E . Zorn’s lemma tells we have a maximal element in
Z . By construction this is a chain {H′

m}m∈M ∈ Z not properly contained in any
{H j } j∈J ∈ Z . Now consider the closed Hilbert sum H′ := ⊕

m∈M H′
m . By construc-

tion Ug(H′) ⊂ H′, because every Ug is continuous. The orthogonal complement H′⊥
is π -invariant, because x ∈ H′⊥ and y ∈ H′ imply (Ugx |y) = (x |Ug−1 y) = 0 since
Ug−1 y ∈ H′, y ∈ H′. Suppose H′⊥ �= {0}. Then H′⊥ contains a finite-dimensional
subspace H0 �= {0}. By construction {H′

m}m∈M ∪ {H0} is in Z and contains the
maximal {H′

m}m∈M , a contradiction. Therefore H′⊥ = {0}, i.e. H = ⊕
m∈M H′

m . �
To finish the proof of part (b) it suffices to prove the next result.

Lemma 12.103 Let H1 ⊆ H be a closed non-trivial subspace such that Ug(H1) ⊂
H1, g ∈ G. There exists a finite-dimensional non-trivial space H0 ⊂ H1 such that,
for any g ∈ G, Ug(H0) ⊂ H0 and G � g �→ π�H0 is irreducible on H0.

Proof of Lemma 12.103. From (12.121) and the inner product’s elementary properties
(Kx z|y) = (z|Kx y) for any x, y, z ∈ H. Since Kx ∈ B(H), we have K ∗

x = Kx , i.e.
Kx is self-adjoint. By (12.121):

(x |Kx x ) =
∫

G
|(Ugx |x)|2 dμG(g) ≥ 0 .

At the same time |(Ugx |x)|2 = 1 if g = e, and by continuity (x |Kx x ) > 0 since
non-empty open sets have finite measure. Hence Kx �= 0 for any x ∈ H. Now we
claim Kx ∈ B2(H) (Kx is a Hilbert–Schmidt operator). For this it suffices to show
Definition 4.24 applies. If {ek}k∈S indicates a Hilbert basis inH, a few manipulations
give

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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∑

k∈F

||Kx ek ||2 =
∑

k∈F

∫

G

(∫

G
(ek |Uh x)(Uh x |Ugx)(Ugx |ek)dμG(h)

)
dμG(g) .

for every finite F ⊂ S. For a given k, the iterated integral coincides with the integral
in the product measure, by Fubini–Tonelli: in fact we are integrating a continuous
map on a compact set (G × G), so a bounded map, and the integration domain has
finite measure (= 1). Swapping the integral and the (finite) sum:

∑

k∈F

||Kx ek ||2 =
∫

G×G
(Uh x |Ugx)

∑

k∈F

(Ugx |ek)(ek |Uh x) dμG(h) ⊗ dμG(g) .

Using the obvious upper bounds, from |(Uh x |Ugx)| ≤ ||x ||2 and Schwarz’s
inequality:

∑

k∈F

||Kx ek ||2 ≤
∫

G×G
|(Uh x |Ugx)|

∑

k∈F

|(Ugx |ek)| |(ek |Uh x)| dμG(h) ⊗ dμG(g)

≤ ||x ||2
∫

G×G

√∑

k∈F

|(ek |Uh x)|2
√∑

k∈F

|(Ugx |ek)|2 dμG(h) ⊗ dμG(g)

≤ ||x ||2
∫

G×G

√∑

k∈S

|(ek |Uh x)|2
√∑

k∈S

|(Ugx |ek)|2 dμG(h) ⊗ dμG(g)

≤ ||x ||2
∫

G×G
||Ugx || ||Uh x || dμG(h) ⊗ dμG(g) ≤ ||x ||4

∫

G×G
1 dμG(h) ⊗ dμG(g)

= ||x ||4 < +∞ .

But F ⊂ S was finite but arbitrary, so

∑

k∈S

||Kx ek ||2 ≤ ||x ||4 < +∞

and Kx ∈ B2(H). Since any Hilbert–Schmidt operator, like Kx , is compact, and at
present Kx = K ∗

x , we invoke Hilbert’s Theorems 4.19 and 4.20 to decompose H in
a Hilbert sum of eigenspaces H(x)

λ of Kx :

H =
⊕

λ∈σp(Kx )

H(x)
λ .

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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Each summand, with the possible exclusion of H(x)
0 , has finite dimension. Since

Kx �= 0, by Theorem 4.20(a) there is an eigenvalue λ1 �= 0. By (12.122) every
eigenspace H(x)

λ is π -invariant. Therefore H0 := H(x)
λ1

satisfies the requests. ��
Remark 12.104
Theorem 12.100, actually, applies to a wider class of strongly continuous represen-
tations of compact Hausdorff groups. Let π : G � g �→ Ag ∈ B(H) be a strongly
continuous representation of the compact Hausdorff group G, given by bounded
(perhaps non-unitary) operators on the Hilbert space H. Using the Haar measure of
G, we define the inner product

〈u|v〉G :=
∫

G
(Agu|Agv)dμG(g) , u, v ∈ H

on H. This inner product: (1) is well defined, (2) renders (H, 〈 | 〉G) a Hilbert space,
(3) makes its associated norm || ||G equivalent (Definition 2.103) to the norm || ||
of ( | ). In addition, π : G � g �→ Ag ∈ B(H) is a strongly continuous unitary
representation on the Hilbert space (H, 〈 | 〉G). �

We want to study further general features of strongly continuous unitary represen-
tations of compact Hausdorff groups. Some of them are encompassed in the second
part of the Peter–Weyl theorem, which we shall discuss later.

Notation 12.105 In the rest of this section, given a compact Hausdorff group G,
we will denote by {T s}s∈S a family of strongly continuous irreducible unitary rep-
resentations T s : G � g �→ T s

g ∈ B(Hs). Later on we will assume the family also
exhausts, up to unitary equivalence, the class of strongly continuous irreducible uni-
tary representations ofG.We adopt this notation also in Proposition 12.114 although,
there, irreducibility will be relaxed. �
As a first result we have the following proposition.

Proposition 12.106 Under the assumptions of Theorem 12.100, if T s and T s ′
are a

pair of strongly continuous unitary irreducible representations of G, then the matrix
elements Ds(g)i j = (φi |T s(g)φ j ) and Ds ′

(g)i j = (ψi |T s ′
(g)ψ j ), in orthonormal

bases for the respective (finite-dimensional) Hilbert spaces, satisfy the following
relations:

∫

G
Ds ′

(g)mn Ds(g)i j dμG(g) = 0 if T s and T s ′
are not equivalent; (12.124)

if T s and T s ′
are unitarily equivalent, i.e. U T (s)(g)U−1 = T s ′

(g) for a unitary map
U : Hs → Hs ′

and every g ∈ G, then

∫

G
Ds ′

(g)mn Ds(g)i j dμG(g) = 1

ds
δimδ jn . (12.125)

where ψk = Uφk and ds = dimHs .

http://dx.doi.org/10.1007/978-3-319-70706-8_4
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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Proof Define operators Ei j : Hs ′ → Hs by

Ei jψ :=
∫

G
T s(g)φi (ψ j |T s ′

(g−1)ψ)dμG(g)

for ψ ∈ Hs ′
. As the Hilbert spaces are finite-dimensional, the above integral is a

standard integral of C
k-valued functions. We claim Ei j T s ′

(h) = T s(h)Ei j for every
h ∈ G. Indeed,

T s(h)

∫

G
T s(g)φi (ψ j |T s ′

(g−1)ψ)dμG(g) =
∫

G
T s(hg)φi (ψ j |T s ′

(g−1)ψ)dμG(g)

=
∫

G
T s(g)φi (ψ j |T s′

(g−1h)ψ)dμG(g) =
∫

G
T s(g)φi (ψ j |T s′

(g−1)ψ)dμG(g)T s′
(h) .

If the two representations are not unitarily equivalent, since Ei j T s ′
(h) = T s(h)Ei j ,

part (b) of Schur’s lemma (Proposition 11.37) entails Ei j = 0. Hence in particular

∫

G
(φk |T s(g)φi )(ψ j |T s ′

(g−1)ψl)dμG(g) = 0 ,

which can be rephrased as

∫

G
Ds

ki (g)Ds ′
l j (g)dμG(g) = 0 .

We have found (12.124). If, instead, the representations are unitarily equivalent,
representing everything in Hs with respect to the same Hilbert basis, part (a) of
Schur’s lemma (Proposition 11.37) implies Ei j = λi j I , namely

∫

G
Ds

ki (g)Ds
l j (g)dμG(g) = λi jδkl .

Since the matrices of coefficients Ds
ki (g) are unitary, we have that

∑
k Ds

ki (g)

Ds
k j (g) = δi j so that, assuming l = k and summing over k in the identity above, we

find δi j = λi j ds . In other words, for some λ ∈ C,

∫

G
Ds

ki (g)Ds
l j (g)dμG(g) = λδi jδkl .

Finally, setting i = l and k = j and summing over i and j ,

∫

G

∑

i j

Ds
ji (g)Ds

i j (g)dμG(g) = λ
∑

i j

δi jδ j i ,

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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that is ∫

G

∑

i

δi i dμG(g) = λ
∑

i

δi i ,

and ∫

G
dsdμG(g) = λ1 ,

which means λ = ds , eventually proving (12.125). ��
To state the second part of the famous Peter–Weyl theoremweneed to use the right

regular representation of G, i.e., the strongly continuous unitary representation
R : G � g �→ Rg acting on L2(G, μG) by

(Rg f )(h) := f (hg) , g, h ∈ G, f ∈ L2(G, μG).

That Rg is unitary is a consequence of the fact that the Haar measure is bi-invariant,
if G is compact. The right regular representation turns out to play a crucial role
in the theory of unitary representations of a compact group G. A first important
result, arising from Proposition 12.106, is that R subsumes all strongly continuous
irreducible unitary representations of G.

Proposition 12.107 Every strongly continuous unitary representation of a compact
Hausdorff group G is unitarily equivalent to a subrepresentation of the right regular
representation R : G � g �→ Rg in accordance with Theorem 12.100.

Proof Let T : G � g �→ Tg ∈ B(H) be a strongly continuous unitary representation
of G. Call Di j (g), i, j = 1, . . . , dimH =: d the coefficients of a matrix of T in a
Hilbert basis of H. For i arbitrarily fixed, consider the functions e j (g) := √

d Di j (g)

for g ∈ G. These functions are continuous and bounded on the compact setG. Hence
they are in L2(G, μG). Furthermore

(Rge j )(h) = e j (hg) = √
d Di j (hg) = √

d
d∑

k=1

Dik(h)Dk j (g) =
d∑

k=1

Dk j (g)ek(h) .

In other words, the (closed, because finite-dimensional) space HT spanned by the d
vectors e j is invariant under the action of R, and the subrepresentation of R in this
invariant subspace has a matrix with elements

Δr j (g) =
∫

G
er (h)(Rge j )(h)dμG(h) =

d∑

k=1

d
∫

G
Dir (h)Dik(h)Dk j (g)dμG(h)

=
d∑

k=1

d Dk j (g)

∫

G
Dir (h)Dik(h)dμG(h) =

d∑

k=1

Dk j (g)δrk = Dr j (g) ,
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where we have exploited Proposition 12.106. This result proves that the restriction
of R to HT is unitarily equivalent to T , since these representations have the same
matrix. ��
We focus again on the family of strongly continuous irreducible unitary represen-
tations of G and consider unitary equivalence classes. In every equivalence class
[T s] of irreducible unitary representations, we select a representative T s acting on
the ds-dimensional Hilbert space Hs common to the entire class [T s], thus obtain-
ing a family {T s}s∈Ĝ where T s is unitarily inequivalent to T s ′

if s �= s ′. The family,
moreover, exhausts thewhole set of strongly continuous unitary irreducible represen-
tations of G up to unitary equivalence. A bit improperly, we call {T s}s∈Ĝ the family
of strongly continuous irreducible representations of G. The set of indices Ĝ is
actually in one-to-one correspondence to equivalence classes of strongly continuous
irreducible representations of G under unitary equivalence.

We are now in a position to state and prove the second part of the Peter–Weyl
theorem, which concerns the nice interplay between irreducible representations of
G and the right regular representation R.

Theorem 12.108 (Peter–Weyl, part II) Let G be a compact Hausdorff group.
(c) Let {T s}s∈Ĝ be the family of strongly continuous irreducible representations of
G. For every s, consider an orthonormal basis {φs

k}k=1,...,ds of the Hilbert space Hs

of T s , and the corresponding matrix elements Ds(g)i j = (φs
i |T s(g)φs

j ). Then the
functions

G � g �→ √
ds Ds(g)i j ∈ C , s ∈ S, i, j ∈ {1, 2, . . . , ds}

form a basis of L2(G, μG).
(d) L2(G, μG) decomposes in a Hilbert sum

L2(G, μG) =
⊕

s∈Ĝ

ds⊕

k=1

Hs
k

of finite-dimensional subspaces Hs
k that are invariant and irreducible under the right

regular representation R of G:

(Rgψ)(h) := ψ(hg) if ψ ∈ L2(G, μG) and g, h ∈ G.

The subrepresentation of R given by the restriction to Hs
k , for each k = 1, . . . , ds

is unitarily equivalent to T s. Up to unitary equivalence, every element of {T s}s∈Ĝ
appears with multiplicity ds in the decomposition of R.

Proof (c) Let H ⊂ L2(G, μG) be the closed subspace generated by the functions
Ds

i j , for all s and i, j = 1, . . . , ds . (These functions are continuous and belong to
L2(G, μG), as they are bounded on the compact group G with finite measure.) Our
goal is to show H⊥ = {0}. The space H is R-invariant, because R is continuous and
the finite span of the functions Ds

i j is R-invariant, as immediately follows from the
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proof of Proposition 12.107. As a consequence H⊥ is R-invariant as well, because
each Rg is unitary.

Assume that there is v ∈ H⊥ \ {0} and define the function over G

u(g) :=
∫

G
v(hg)v(h)dμG(h) . (12.126)

It is continuous because, from (12.126) and the strong continuity of R,

|u(g) − u(g0)| ≤ ||Rgv − Rg0v|| ||v|| → 0 for g → g0.

Therefore, as G is compact, u is bounded and therefore it stays in L2(G, μG) for
the measure of G is finite. Furthermore u ∈ H⊥ \ {0} because, again by (12.126),
u(e) = ||v||2 �= 0 and

∫

G
u(g)Ds

jk(g)dμG(g) =
∑

l

∫

G
v(z)Ds

lk(z)dμG(z)
∫

G
v(h)Ds

l j (h)dμG(h) = 0 ,

where we have exploited dμG(g) = μG(hg), we defined z = hg and used

Ds
jk(h

−1z) =
∑

l

Ds
jl(h

−1)Ds
lk(z) =

∑

l

Ds
l j (h)Ds

lk(z) .

Next we define w(g) := u(g) + u(g−1), which is again a continuous element of
H⊥: the proof is direct, just take μG(E−1) = μG(E) into account (Theorem 12.39)).
Consider the operator

(Aψ)(g) :=
∫

G
w(gh−1)ψ(h)dμG(h) ψ ∈ L2(G, μG) . (12.127)

Since K (g, h) := w(gh−1) is continuous and G × G is compact with finite product
Haar measure, A is compact (Examples 4.18(4)). As the kernel w is real, A = A∗.
Sincew �= 0, we have A �= 0 and therefore it admits an eigenvalue λ ∈ R\{0}whose
eigenspace Hλ has finite dimension due to the compactness of A. If ψ ∈ Hλ \ {0} we
have ψ ∈ H⊥ \ {0} because, applying the definition of A,

∫

G
ψ(g)Ds(g)i j dμG(g) = 1

λ

∫

G
(Aψ)(g)Ds(g)i j dμG(g)

= 1

λ

∑

k

∫

G
w(h)Ds(h)ikdμG(h)

∫

G
ψ(g)Ds(g)k j dμG(g) = 0 .

The operator A commutes with R as the reader can immediately prove just by apply-
ing the definition of A and R. Therefore Hλ is invariant under R and can be decom-

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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posed in a Hilbert sum of (strongly continuous) unitary irreducible representations
ofG. The Hilbert spaces of these representations are finite-dimensional by Theorem
12.100.We end up with at least one finite-dimensional subspaceKλ ⊂ Hλ ⊂ Hmade
of eigenvectors of A, and supporting a unitary strongly continuous representation of
G. If e1, . . . , en is a Hilbert basis of Kλ, we must have

(Rgek)(h) = ek(hg) =
n∑

l=1

D(g)klel(h) .

In particular, setting h = e

ek(g) =
n∑

l=1

D(g)klel(e) , ∀g ∈ G ,

which is impossible since it would imply ek ∈ H, whereas 0 �= ek ∈ H⊥. We
conclude that H⊥ = {0} as we wanted. Observe that ek(e) ∈ C is well defined since
the function G � g �→ ek(g) is continuous because it is an eigenfunction of A. The
continuity of the eigenfunctions of A follows easily from (12.127), by noting that w
is continuous and then arguing as for the continuity of u (12.126).

(d) The proof is easy. Consider the Hilbert basis made by the Ds
i j , where i, j =

1, . . . , ds and s labels inequivalent irreducible representations, and let Hs be the
closed subspace spanned by the Ds

i j with fixed i . This space supports exactly ds

irreducible, strongly continuous representations ofG acting on orthogonal subspaces
whose sum is Hs itself. In fact, for k fixed in {1, . . . , ds}, the subspace Hs

k ⊂ Hs ,
spanned by the orthonormal functions e(sk)

j := √
ds Ds

k j , j = 1, . . . , ds is R-invariant
and R-irreducible because

Rge(sk)
j =

ds∑

l=1

Ds
jl(g)e(sk)

l ,

as established in the proof of Proposition 12.107. For s �= s ′ we have Hs ⊥ Hs ′

and, for k �= k ′, Hs
k ⊥ Hs

k ′ . Finally, from Proposition 12.107, every strongly con-
tinuous unitary irreducible representation of G is unitarily equivalent to one of the
representations acting on some Hs

k . ��
The last, remarkable, result by Peter and Weyl regards the dense span of the√

ds Ds
i j . We already know that these functions span a dense set in L2(G, μG). And

we know they are continuous. As a matter of fact, the Hilbert basis of the
√

ds Ds
i j

can be used to approximate every continuous function of G in the natural topology
of the space of continuous maps over compact sets. We need a pair of lemmas that
are interesting in their own right.

Lemma 12.109 Referring to the statement of Theorem 12.108, we take the Banach
space C(G) with norm || · ||∞, and an element φ ∈ C(G). Define the operator
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Lφ : L2(G, dμG) → L2(G, dμG)

(Lφ f )(h) :=
∫

G
φ(g) f (g−1h)dμG(g) ∀ f ∈ L2(G, dμG) .

The following facts hold.
(a) Lφ(L2(G, dμG)) ⊂ C(G), and Lφ : L2(G, dμG) → C(G) is continuous in the
natural norms.
(b) If N ⊂ Ĝ is finite and HN ⊂ C(G) is the span of the functions

√
ds Ds

i j , with
s ∈ N, i, j = 1, . . . , ds, then Lφ(HN ) ⊂ HN .

Proof (a) From the Cauchy–Schwarz inequality,

|(Lφ f )(x)|2 =
∣∣∣∣
∫

G
φ(y) f (y−1x)dμG(y)

∣∣∣∣
2

≤
∫

G
|φ(y)|2dμG(y)

∫

G
| f (y−1x)|2dμG(y) .

(12.128)
Similarly

|(Lφ f )(x)−(Lφ f )(x0)|2 ≤
∫

G
|φ(y)|2dμG(y)

∫

G
| f (y−1x)− f (y−1x0)|2dμG(y),

so that Lebesgue’s dominated convergence theorem proves thatG � x �→ (Lφ f )(x)

is continuous, using the fact that G × G is compact and hence the continuous map
G×G � (x, y) �→ | f (y−1x)− f (y−1x0)| is bounded andμG(G) is finite. This proves
in particular that Lφ is well defined, for Lφ f ∈ C(G) ⊂ L2(G, μG). Inequality
(12.128) and dμG(y) = dμG(y−1) = dμG(y−1x) imply that

||Lφ f ||∞ ≤ ||φ||L2 || f ||L2 ,

establishing the continuity of Lφ : L2(G, dμG) → C(G).
(b) If f ∈ HN , we can write f = ∑

s∈N

∑ds
j, j=1 ci j

s Ds
i j . Therefore

(Lφ f )(x) =
∑

s∈N

ds∑

j,k=1

ci j
s

∫

G
φ(y)Ds

i j (y−1x)dμG(y)

=
∑

s∈N

ds∑

i, j,k=1

ci j
s

∫

G
φ(y)Ds

ik(y−1)dμG(y)Ds
k j (x) =

∑

s∈N

ds∑

k,i=1

aki
s Ds

k j (x)

where

aki
s :=

ds∑

j=1

ci j
s

∫

G
φ(y)Ds

ik(y−1)dμG(y) ,

so that Lφ f ∈ HN . ��
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Lemma 12.110 Let G be a compact group and f : G → C a continuous function.
For every ε > 0 there exists an open neighbourhood Vε of e ∈ G such that | f (x) −
f (y)| < ε when xy−1 ∈ Vε.

Proof Fix y ∈ G. Since f is continuous, for every ε > 0 there is an open neigh-
bourhood Uε of y such that | f (x) − f (y)| < ε/2 if x ∈ Uε. Defining the open
neighbourhood of e (this is well defined as the right translation is a homeomor-
phism) V y

ε := Uε y−1, we have that | f (x) − f (y)| < ε/2 for xy−1 ∈ V y
ε . Let W y

ε be
another open neighbourhood of e such that W y

ε ◦W y
ε ⊂ V y

ε . For ε > 0, the collection
of the analogous open sets W y

ε y, with y varying in G, define an open covering of
G. Since G is compact, we can extract a finite subcovering {W yk

ε yk}k=1,...,n using a
finite number of elements y1, . . . , yn . Define the open neighbourhood of e

Vε := ∩n
k=1W yn

ε .

Since ∪n
k=1W yk

ε yk = G, if x, y ∈ G and xy−1 ∈ Vε, for some k ∈ {1, 2, . . . , n}, then
y ∈ W yk

ε yk , so that | f (y) − f (yk)| < ε/2. Next,

xy−1
k = xy−1yy−1

k ⊂ Vε ◦ W yk
ε ⊂ W yk

ε ◦ W yk
ε ⊂ V yk

ε

and hence | f (x) − f (yk)| < ε/2. Summing up,

| f (x) − f (y)| ≤ | f (x) − f (yk)| + | f (y) − f (yk)| < ε

as required. ��
Theorem 12.111 (Peter–Weyl, part III) Let G be a compact Hausdorff group.
(e) The finite span of the continuous functions G � g �→ √

ds Ds
i j (g), where s ∈ Ĝ

and i, j = 1, . . . , ds, (see Theorem 12.108) is dense in C(G) in the uniform norm
|| · ||∞.

Proof Take f ∈ C(G). As G is compact and f : G → C is continuous, Lemma
12.110 says that for every ε > 0, there is an open neighbourhood Vε ⊂ G of e ∈ G
such that

| f (x1) − f (x2)| < ε if x1x−1
2 ∈ Vε. (12.129)

Next take φε ∈ C(G), with φε(x) ≥ 0 for x ∈ G, with support contained in Vε and
such that

∫
G φεdμG = 1. Defining Lφε

as in Lemma 12.109, we have

||Lφε
f − f ||∞ ≤ sup

x∈G

∫

G
φε(y)| f (y−1x) − f (x)|dμG(y) < ε

since theonly relevant values of x, y in the integrand are those satisfying x(y−1x)−1 =
y ∈ Vε, otherwise φε(y) = 0, and for these values | f (y−1x) − f (x)| < ε. On the
other hand, Theorem 12.100 says that every element f ∈ L2(G, μG) can be arbi-
trarily approximated in L2-norm by elements fN in HN . In particular,
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|| f − fNε
||L2 ≤ ε

||φε||L2

for a suitable finite set Nε ⊂ Ĝ. (Notice that ||φε||L2=||φε||L2 ||1||L2 ≥ ||φε||L1 = 1.)
The inequality, together with the earlier relation ||Lφε

f − f ||∞ < ε, gives to

| f (x) − (Lφε
fNε

)(x)| ≤ | f (x) − (Lφε
f )(x)| + |Lφε

( f − fNε
)(x)|

< ε + || f − fNε
||L2 ||φε||L2 < 2ε .

Since ε > 0 is arbitrary and Lφε
fNε

∈ C(G) from Lemma 12.109, we have proved
the theorem. ��

12.2.14 Characters of Finite-Dimensional Group
Representations

A technically useful notion is that of character of a finite-dimensional representation
of a group.

Definition 12.112 The character of a finite-dimensional unitary group representa-
tion G � g �→ Tg ∈ B(H) is the map

G � g �→ χ(g) := tr(Tg) ∈ C .

Remark 12.113 This notion is evidently related to the one of Definition 12.93. If G
is Abelian and χ : G → U (1) is a character for Definition 12.93, χ is a character for
Definition 12.112: in fact, tr(χ(g)) = χ(g) when we think of χ(g) as an operator
on the one-dimensional Hilbert space C. �

Proposition 12.106 and the definition of character of a representation entail the fol-
lowing elementary but very useful proposition.

Proposition 12.114 The characters χ of a finite-dimensional unitary representation
T of a group G satisfy the following properties.
(a) χ(h−1gh) = χ(g) if h, g ∈ G.
(b) χ(g−1) = χ(g) if g ∈ G.

Assume that G is Hausdorff and compact, and T is strongly continuous.
(c) If the representations T and T ′ are irreducible, the associated characters χ and
χ ′ satisfy

(i) χ = χ ′ if T and T ′ are unitarily equivalent.
(ii)

∫
G χ(g)χ ′(g)dμG(g) = 1 if T and T ′ are unitarily equivalent.

(iii)
∫
G χ(g)χ ′(g)dμG(g) = 0 if T and T ′ are unitarily inequivalent.

(d) According to Lemma 12.98, assume that the finite-dimensional unitary repre-
sentation T , with character χ , is decomposed in a direct sum of irreducible unitary
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representations T 1, T 2, . . . , T n, where unitarily equivalent representations are iden-
tified and T k is unitarily inequivalent to T h for h �= k. Let us indicate the respective
characters by χ1, χ2, . . . , χn, with multiplicities m1, m2, . . . , mn. Then

(i) χ = ∑
i miχi ,

(ii) m2
i = ∫

G χ(g)χi (g)dμG(g),
(iii)

∑
i m2

i = ∫
G χ(g)χ(g)dμG(g).

(e) A finite-dimensional strongly continuous unitary representation T of G is irre-
ducible if and only if its character χ satisfies

∫
G χ(g)χ(g)dμG(g) = 1.

Proof (a) and (b) are immediate by definition of character. (c)(i) follows straightfor-
wardly from the invariance of the trace under change of orthonormal basis. (ii) and
(iii) are easy consequences of Proposition 12.106, by computing the traces of the
matrices in the integrals of the statement.

(d) According to Lemma 12.98, we choose as Hilbert basis of the Hilbert space
H of the representation T a union of Hilbert basis for each invariant irreducible
subspace. Then (i) follows from (c)(i) and the definition of trace. Eventually, (c)(i),
(c)(ii) and (c)(iii) immediately yield (d)(ii), (d)(iii) and (e). ��
Remark 12.115 Items (a) and (b) are valid for finite-dimensional unitary representa-
tions of any groupG. The remaining items (c), (d), (e) hold also for finite-dimensional
unitary representations of a finite group G, with NG elements. This can be proved,
disregarding any topological issue, by equipping G with the measure that counts
the number of elements, normalised by 1/NG. This measure is evidently invariant
under left and right translations. This is equivalent to replacing

∫
G f (g)dμG(g) by

N−1
G

∑
g∈G f (g). �

12.3 Examples

In this section we discuss a few important quantum-mechanical examples of the
theory we have developed, with particular regard to the Peter–Weyl theorem applied
to SU (2) and the Galilean group.

12.3.1 The Symmetry Group SO(3) and the Spin

Wenow concentrate on unitary representations of the compact Lie group SU (2), seen
as the universal covering of SO(3) (Example 12.38(2)). With the aid of Bargmann’s
theorem and Proposition 12.69 (see Example 12.77(2) as well), unitary SU (2)-
representations will be used to define an SO(3)-action – by a continuous projective
representation – on the physical system made by a particle of spin s.

By Theorem 12.100 unitary SU (2)-representations are direct sums of irreducible,
finite-dimensional unitary representations. In the sequel we shall describe them.
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Until now we discussed the quantum system of a particle on the Hilbert space
L2(R3, dx) (fixing an inertial frame I that identifies R

3 with the rest space, with a
right-handed triple of Cartesian axes). Experience shows that this description is not
physically adequate: L2(R3, dx) is not always good enough to account for the phys-
ical structure of real particles. The latter possess a feature, called spin, determined
by an associated constant s, just like the mass is attached to the particle; this constant
can only be integer or semi-integer s = 0, 1/2, 1, 3/2, . . ..

Having a spin means, physically, that the particle possesses an intrinsic angular
momentum [Mes99, CCP82], and there are observables, not representable by the
fundamental position and momentum, that describe the intrinsic angular momen-
tum. Let us overview the mathematics involved, referring to [Mes99, CCP82] for a
sweeping physics’ debate on this crucial topic.

If a particle has spin s = 0 the description is the usual one for spinless particles.
If s = 1/2, the particle’s Hilbert space is larger, and in fact is the tensor product
L2(R3, dx)⊗C

2, where C
2 (seen as Hilbert space) is the spin space. The three spin

operators are the Hermitian matrices (for the moment we introduce the constant
value �, only to set it to 1 subsequently for simplicity) Sk := �

2 σk , k = 1, 2, 3 and
the σk are the Pauli matrices seen earlier. The commutation relations:

[−i Si ,−i S j ] = �

3∑

k=1

εi jk(−i Sk) (12.130)

hold. The associated observables are the components of the particle’s intrinsic angular
momentum in the given inertial frame system. For s = 1/2 the possible values of
each component are −�/2 and �/2, since the eigenvalues of a Pauli matrix are ±1.

For generic spin s the description is similar, but the spin space is nowC
2s+1. There

the matrices Sk of the spin operators, replacing �

2 σk , are Hermitian, satisfy (12.130)
and have 2s +1 eigenvalues −�s,−�(s −1), . . . , �(s − 1), �s of multiplicity 1. For
m, m ′ = s, s − 1, . . . ,−s + 1,−s, here is what they look like, explicitly:

(S1)m ′m = �

2

(√
(s − m)(s + m + 1)δm ′,m+1 + √

(s + m)(s − m + 1)δm ′,m−1

)
,

(S2)m ′m = �

2i

(√
(s − m)(s + m + 1)δm ′,m+1 − √

(s + m)(s − m + 1)δm ′,m−1

)
,

(S3)m ′m = m�δm ′,m .

For the recipe to construct the Sk and a deeper analysis of the spin we suggest
consulting [Mes99, CCP82]. Here we just make three comments.

(a) The operator S2 := ∑3
k=1 S2

k satisfies

S2 = �
2s(s + 1)I

where I : C
2s+1 → C

2s+1 is the identity matrix.
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(b) The spaceC
2s+1 is irreducible under the SU (2)-representation given by expo-

nentiating −i Sk :
V s : SU (2) � e−iθ �

2 n·σ �→ e−iθn·S . (12.131)

For s = 0, 1/2, 1, 3/2, . . . and up to unitary equivalence, the V s produce every
irreducible finite-dimensional unitary SU (2)-representation.

(c) The matrix S3 is chosen so to coincide with
� diag(s, s − 1, . . . ,−s + 1,−s).
Typically the eigenvector basis of S3, i.e. the canonical basis of C

2s+1, is denoted
{|s, s3〉}|s3|≤s . Pure states Ψ (Ψ | ) are thus determined by a collection of 2s + 1
wavefunctions ψs3 in L2(R3, dx) with unit norm, and therefore a pure state is given
by a unit vector

Ψ =
∑

|s3|≤s

ψs3 ⊗ |s, s3〉 .

Because of this L2(R3, dx)⊗C
2s+1 becomes naturally isomorphic to the orthogonal

sum of 2s + 1 copies of L2(R3, dx), so Ψ is identified with a column vector

Ψ ≡ (ψs, ψs−1, · · · , ψ−s+1, ψ−s)
t

of wavefunctions. In QM jargon these are called spinors of dimension s.
If s is an integer, the representation SU (2) � e−iθ 1

2 n·σ �→ e−i θn·S
� on C

2s+1,
associated to the spin matrices, is a faithful SO(3)-representation, since the kernel
of the covering map SU (2) → SO(3) consists of the identity I and of −I . If s is
half an integer, instead, the above is a faithful SU (2)-representation.

One last important remark on the construction of the observables Sk and the
relative irreducible SU (2)-representations, found in all QM manuals and based on
the commutation relations of the Sk only, is the following. The purely algebraic
construction works because we assume the observables Sk are defined on the whole
Hilbert space, and have discrete spectrum. This is theoretically not obvious, and is
merely due to the finite-dimensional ambient one works in, so the operators Sk are
Hermitian matrices. This is guaranteed by the Peter–Weyl theorem, provided one
uses irreducible unitary representations of a compact group like SU (2). The same
procedure would not work as well with non-compact groups such as the Lorentz
group.
This is the point where we start setting � = 1 to simplify notations. We wish to
discuss the relationship between the total angular momentum and SU (2), or the
rotation group SO(3). For a particle of spin s let

Jk = Lk ⊗ I + I ⊗ Sk (12.132)

be the (total) angular momentum operators on H = L2(R3, dx) ⊗ C
2s+1. The

orbital angular momentum operators Lk , defined in (10.40) and discussed in
Chap.10, have as closure the observables associated to the components of the orbital

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10


772 12 Introduction to Quantum Symmetries

angular momentum. Above, the first I denotes the identity operator on C
2s+1 and

the second the identity on L2(R3, dx). The domain is the invariant linear space
D := S (R3) ⊗ C

2s+1. By construction these operators satisfy the bracket relations
defining the Lie algebra so(3):

[−iJi ,−iJ j ] =
3∑

k=1

εi jk(−iJk) . (12.133)

Wewish to applyNelson’s Theorem12.89 to the Lie algebra spanned by the operators
Jk . Consider the symmetric operator

J 2 =
3∑

k=1

(Lk ⊗ I + I ⊗ Sk)
2

defined on D . It admits an eigenvector basis

|l, m, sz, n〉 := Y l
mψn ⊗ |s, sz〉 ∈ D ⊂ L2(R3, dx) ⊗ C

2s+1

obtained from the basis of H, with l = 0, 1, 2 . . . ,, m = −l,−l + 1, . . . , l − 1, l,
n = 0, 1, 2, . . ., sz = −s,−s + 1, . . . , s − 1, s, and where the |s, sz〉 ∈ C

2s+1 are
unit eigenvectors of S3 relative to sz . As S3 is Hermitian, the 2s +1 vectors |s, sz〉 are
an orthonormal basis in C

2s+1. The space L2(R3, dx) has a basis made by the Y l
mψn

of (10.50), Chap. 10. Proposition 10.25 ensures the Y l
mψn ⊗ |s, sz〉 form a basis for

the product space. The |l, m, sz, n〉 are not eigenvectors ofJ 2. The purely algebraic
Clebsch–Gordan procedure15 [Mes99, CCP82] shows how to build, out of finite
combinations of vectors |l, m, sz, n〉, an eigenvector basis

| j, j3, l, n〉

for J 2, Jz , L 2, where |l + s| ≥ j ≥ |l − s|, l = 0, 1, 2, . . . j3 = − j,− j +
1, . . . , j + 1, j , n = 0, 1, 2, . . . (the j implicitly differ by integers). Then

J 2| j, j3, l, n〉 = j ( j + 1)| j, j3, n〉 , J3| j, j3, n〉 = jz| j, j3, n〉 ,

L 2| j, j3, n〉 = l(l + 1)| j, j3, n〉 .

The | j, j3, l, n〉 belong inD being finite combinations of |l, m, s, sz, n〉. As eigenvec-
tors, they are analytic vectors forJ 2. Nelson’s criterion tellsJ 2 is essentially self-
adjoint on D . Then there exists a strongly continuous unitary SU (2)-representation
on H, by Nelson’s theorem, the generators of which are the self-adjoint operators

15Back when the author was an undergraduate, the procedure was impertinently known among
students by the cheeky name of computation of “Flash Gordon coefficients”.

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10


12.3 Examples 773

Jk := Jk = Lk ⊗ I + I ⊗ Sk . (Notice Lk ⊗ I = Lk ⊗ I since I is in that case
defined on a finite-dimensional space.)

In the exercises we will show that the strongly continuous unitary representation
obtained when exponentiating the Jk , if s = 0, is an SO(3)-representation, and
coincides with the known one from Example 12.19(1), where Γ ∈ IO(3) specialises
to Γ = R ∈ SO(3). (The representation is strongly continuous owing to Example
12.46(1).) This fact easily implies (see the exercises), when s �= 0, that the SU (2)-
representation arising by exponentiating the generators Jk as in Nelson’s theorem
has the form:

SU (2) � e−iθ 1
2 n·σ �→ e−iθn·J = e−iθn·L ⊗ V s

(
e−i θ

2 n·σ
)

(12.134)

where Lk := Lk is the self-adjoint operator associated to the kth component of the
orbital angular momentum, as in Chap. 9. Furthermore

(
e−iθn·Lψ

)
(x) = ψ

(
e−θn·Tx

)
, (12.135)

where
SU (2) � e−iθ 1

2 n·σ �→ eθn·T ∈ SO(3)

is the covering map SU (2) → SO(3) discussed in Example 12.65(6).

Remark 12.116 Because of Proposition 12.69, the physical assumption is that
the projective SO(3)-representation induced by the unitary SU (2)-representation
(12.134) corresponds to the action of SO(3) on the spin-s particle, when we view
SO(3) as symmetry group of the system. �

12.3.2 The Superselection Rule of the Angular Momentum

We consider a generic quantum system admitting a continuous projective representa-
tion of the rotation group SO(3) illustrating the physical effect of rotating states. We
may view the representation as a strongly continuous unitary SU (2)-representation
by Bargmann’s theorem and Proposition 12.69. Using Peter–Weyl we conclude the
system’s Hilbert space decomposes in a sum H = ⊕

s∈A Hs of closed orthogonal
spaces Hs , on which irreducible, hence finite-dimensional, unitary representations
of SU (2) act. Each such is unitarily equivalent to one V s of the previous section,
where now s(s + 1) will not correspond to the spin squared of a particle, but rather
to the squared eigenvalue of the total angular momentum J 2 on V s , including orbital
and spin components. From the previous section the parameter s can only be integer
or semi-integer, s = 0, 1/2, 1, 3/2, 2, . . ., so the index set A cannot be larger than
the set of those values. Suppose the set A of our physical system contains either type
of values. Let J3 be the self-adjoint generator of rotations about the z-axis, however
fixed, corresponding to the component of the total angular momentum along z by

http://dx.doi.org/10.1007/978-3-319-70706-8_9
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definition. Consider a pure state given by Ψ = ψs + ψs ′ ∈ Hs + Hs ′ , with s integer
and s ′ semi-integer. Irrespective of the axis x3, and remembering the expression for
S3 of the previous section:

e−i2π J3Ψ = e−i2π S(s)
3 ψs + e−i2π S(s′)

3 ψs ′ = ψs − ψs ′ �= Ψ .

This is physically nonsense, for it says that a complete revolution (by 2π ) about
an axis alters the pure state Ψ (Ψ | ). Therefore, when A contains both integers and
semi-integers, we need to assume a superselection rule for the angularmomentum
that forbids coherent superpositions of pure states with total angular momentum
(the s giving the irreducible SU (2)-representations) partly integer and partly semi-
integer. As remarked in Sect. 7.7, a pure state can have undefined angular momentum,
when the state’s vector is a combination of vectors corresponding to pure states with
different angular momenta. The superselection rule, however, forces the values to
be all either integer or semi-integer. Another approach leading to the same result is
based on the time reversal symmetry and will be briefly discussed in Example 13.22.

12.3.3 The Galilean Group and Its Projective Unitary
Representations

This subsection analyses the elementary structure of continuous projective unitary
representations of the Galilean group, viewed as a Lie group. We shall construct
the action of the group on wavefunctions adopting a physical viewpoint, that is,
supposing we know the physical meaning of (some of) the self-adjoint generators
of the one-parameter subgroups of the Galilean group. We shall find that this action
is intrinsically projective unitary. This fact leads to a superselection rule of the
mass. However, another more mathematically minded and powerful approach is
available [CDLL04], whereby the irreducible projective unitary representations are
constructed from scratch as consequence of the structure of the second cohomology
group of Galilean group, and using the imprimitivity technology of Mackey. This
second approach is more general and the physical interpretation of the generators is
given a posteriori. Nevertheless, the physically meaningful representations arising
thus take exactly the form we shall find by our way, and the superselection rule of
the mass shows up again.

In classical physics the transformations between the orthonormal Cartesian coor-
dinates of two inertial frames I , I ′ are elements of the Galilean group G . In
this sense Galilean transformations are passive transformations. With the obvious
notation we can write them as:

⎧
⎪⎨

⎪⎩

t ′ = t + c ,

x ′
i = ci + tvi +

3∑

j=1

Ri j x j , i=1,2,3, (12.136)

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_13
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where c ∈ R (not the speed of light!), ci ∈ R and vi ∈ R are any constants, and the
numbers Ri j define a matrix R ∈ O(3). Every element of G is then given by four
quantities (c, c, v, R) ∈ R × R

3 × R
3 × O(3). Composing Galilean transformations

rephrases as

(c2, c2, v2, R2)·(c1, c1, v1, R1) = (c1 + c2, R2c1 + c1v2 + c2, R2v1 + v2, R2R1) .

(12.137)
This composition law turns R × R

3 × R
3 × O(3) into a group, the Galilean group.

In particular, the neutral element is (0, 0, 0, I ) and the inverse:

(c, c, v, R)−1 = (−c, R−1(cv − c),−R−1v, R−1) . (12.138)

We may interpret Galilean transformations as active transformations, that actively
move spacetime events seen as columnvectors (x, t)t ofCartesian coordinates (ortho-
normal, right-handed) in an inertial frame system fixed once and for all.

The group G acts by matrix multiplication if we identify the generic element
(c, c, v, R) ∈ G with the real 5 × 5 matrix:

⎡

⎣
R v c
0 1 c
0 0 1

⎤

⎦ (12.139)

and the columns (x, t)t ∈ R
4 with (x, t, 1)t ∈ R

5. In this way G becomes a Lie
subgroup of GL(5, R) (the analytic structure coincides with the one inherited from
R × R

3 × R
3 × O(3)).

In the sequel we shall reduce to the restricted Galilean group SG , the connected
Lie subgroupwhere R has positive determinant, i.e. R ∈ SO(3).Wewill not consider
the inversion of parity, which is known to not always be a symmetry and must be
treated separately, at least at a quantum level.

The universal covering S̃G , arises by replacing SO(3) with SU (2) (real Lie
group of dimension 3 inside GL(4, R)). As a matter of fact S̃G is diffeomorphic to
R × R

3 × R
3 × SU (2) with product

(c2, c2, v2, U2) · (c1, c1, v1, U1) = (c1 + c2, R(U2)c1 + c1v2 + c2, R(U2)v1 + v2, U2U1) ,

(12.140)
where SU (2) � U �→ R(U ) ∈ SO(3) is the covering homomorphism of Example
12.65(6) (see also the exercises). This Lie group is the universal covering of SG ,
being simply connected (as product of simply connected spaces) and having the
same Lie algebra as SG .

An interesting basis, in physics, of the Lie algebra of S̃G is given by the 10 vectors

− h ,pi , ji ,ki i=1,2,3, (12.141)

(note the conventional − sign in the first one), where:
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(i) −h generates the one-parameter subgroup R � c �→ (c, 0, 0, I ) of time transla-
tions, called time displacement symmetry,
(ii) the three pi span the Abelian subgroup R

3 � c �→ (0, c, 0, I ) of space transla-
tions,
(iii) the three ji span the subgroup SU (2) � U �→ (0, 0, 0, U ) of space rotations16,
(iv) the three ki generate the Abelian subgroup R

3 � v �→ (0, 0, v, I ) of pure
Galilean transformations.

The generators obey commutation relations that detect the structure constants:

[pi ,p j ] = 0 , [pi ,−h] = 0 , [ji ,−h] = 0 , [ki ,k j ] = 0 , (12.142)

[ji ,p j ] =
3∑

k=1

εi jkpk , [ji , j j ] =
3∑

k=1

εi jkjk , [ji ,k j ] =
3∑

k=1

εi jkkk , (12.143)

[ki ,−h] = pi , [ki ,p j ] = 0 . (12.144)

The Galilean group is in all likelihood the most important group in all of classical
physics, given that classical laws are invariant under the active action of this group.
Galilean invariance is a way to express the equivalence of all inertial frame systems,
interpreting passively the group transformations. We expect the restricted Galilean
group, seen as group of active transformations from now on, to be a symmetry group
for any quantum system in low-speed regimes (compared to the speed of light), when
relativistic effects are petty.

Projective unitary SG -representations describing the action of the symmetry
group SG on a physical system are well understood (see [Mes99, CCP82], for exam-
ple). To start discussing them, take a physical system given by a particle of spin s (cf.
previous section) and mass m > 0, not subject to any forces. Fix an inertial frame
systemI with right-handed orthonormal Cartesian coordinates that identify the rest
space with R

3. The system’s Hilbert space H is L2(R3, dx) ⊗ C
2s+1. Pure states are

wavefunctions with spin: ∑

|s3|≤s

ψs3 ⊗ |s, s3〉

The wavefunctions ψ̃ ∈ L2(R3, dk) are given in momentum representation, and are
images under the unitary Fourier–Plancherel transform (cf. Chap. 3)

F̂ : L2(R3, dx) → L2(R3, dk)

of wavefunctions ψ in position representation: ψ̃ = F̂ψ . In particular (Proposition
5.31), the momentum observable Pj is given on L2(R3, dk) by the operator P̃j =
F̂ PjF̂−1, i.e. by the multiplication by �k j on L2(R3, dk). From now on we set
� = 1 for simplicity. Assume s = 0 for a moment. In this representation of H, the

16Properly speaking, the rotations are the associated elements R(U ).

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_5
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action of each element of SG is induced by a unitary operator Z̃ (m)
(c,c,v,U ):

(
Z̃ (m)

(c,c,v,U )ψ̃
)

(k) := ei(cv−c)·(k−mv)ei c
2m (k−mv)2ψ̃

(
R(U )−1(k − mv)

)
(12.145)

When s �= 0, the unitary transformations Z̃ (m)
(c,c,v,U ) are replaced by

Z̃ (m)
(c,c,v,U ) ⊗ V s(U ) , (12.146)

where V s was introduced in (12.131).
Back in position representation, i.e. viewingpure states of a spinless particle as unit

vectors in L2(R3, dx), the unitary operators Z̃ (m)
g correspond to unitary operators

Z (m)
g := F̂−1 Z̃ (m)

gF̂ under the Fourier–Plancherel transform. In the sequel we will
use the two representations without distinction, even though the explicit action of
Z (m)

g in position representation will have to wait until the next chapter.

Remarks 12.117 (1) Let us evaluate the action on (c, c, v, U )−1 rather than
(c, c, v, U ), for this is more illuminating

(
Z̃ (m)

(c,c,v,U )−1ψ̃
)

(k) := eic·(R(U )k+mv)e−i c
2m (R(U )k+mv)2ψ̃ (R(U )k + mv) .

(12.147)
To give a meaning to this, decompose (c, c, v, U )−1 into

(c, c, v, U )−1 = (0, 0, 0, U )−1 · (0, 0, v, I )−1 · (0, c, 0, I )−1 · (c, 0, 0, I )−1 ,

and let us examine the single actions one by one. From the right

(
Z̃ (m)

(c,0,0,I )−1ψ̃
)

(k) = e−i c
2m k2

ψ̃ (k) .

In the next chapter we will see that multiplying by the phase e−i c
2m k2

corresponds to
rewinding by a time lapse c (this is the time evolution17 by the same lapse). Taking
in also the second one,

(
Z̃ (m)

(0,c,0,I )−1·(c,0,0,I )−1ψ̃
)

(k) = eic·ke−i c
2m k2

ψ̃ (k) .

Themultiplication by eic·k corresponds (under Fourier–Plancherel) to an active trans-
lation by −c of the wavefunction. Subsuming the third one, we obtain

(
Z̃ (m)

(0,0,v,I )−1·(0,c,0,I )−1·(c,0,0,I )−1ψ̃
)

(k) = eic·(k+mv)e−i c
2m (k+mv)2ψ̃ (k + mv) .

17The inverse transformation of time displacement.
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If k is understood as momentum vector, k → k+mv is precisely the transformation
of the momentum under a Galilean transformation that changes the velocity of the
frame of reference, but does not contain space or time translations, nor rotations. The
transformation corresponds to an active transformation of the wavefunction under a
pure Galilean transformation associated to−v. Eventually, incorporating the rotation
R(U ), i.e. actively transforming the wavefunction by R(U )−1, gives:

(
Z̃ (m)

(0,0,0,U )−1·(0,0,v,I )−1·(0,c,0,I )−1·(c,0,0,I )−1ψ̃
)
(k) =

eic·(R(U )k+mv)e−i c
2m (R(U )k+mv)2ψ̃ (R(U )k + mv) .

Overall the right-hand side of (12.147) corresponds to the combined action (in agree-
mentwith theGalilean product) of the subgroups of transformations. Bearing inmind
(12.138) our discussion now justifies (12.145).

(2) The operators Z̃ (m)
g (i.e. the Z (m)

g , in the position representation) are associated
to the universal covering S̃G rather than the group SG itself. We made this choice
in order to apply the theory of previous sections. We know, in fact, that projective
representations of a group are obtained from the universal covering’s projective rep-
resentations, and this is particularly convenient because the Galilean group contains
a subgroup isomorphic to SO(3). We saw in the previous section that if the spin s is
a semi-integer, the projective unitary SO(3)-representations of physical interest are
unitary SU (2)-representations. �

Using Definition (12.145), the representation S̃G � g �→ Z (m)
g (equivalently, S̃G �

g �→ Z̃ (m)
g working in the momentum representation) is projective unitary, due to

the presence of a multiplier function

ω(m)(g′, g) = e
im

(
− 1

2 c′v2−c′(R(U ′)v)·v′+(R(U ′)v)·c′
)

, g = (c, c, v, U ), g′ = (c′, c′, v′, U ′)
(12.148)

after a boring computation. The result (clearly) remains valid in case the spin s is

non-zero, and the unitary operators˜Z (m)
g generalise to the unitary operators (12.146),

because the representation U �→ V s(U ) on the spin space C
2s+1 is unitary and does

not affect the multiplier function.

It is easy to prove the projective unitary representation S̃G � g �→ Z̃ (m)
g (equiv-

alently S̃G � g �→ Z (m)
g in the position representation) is strongly continuous. To

that end, as operators are unitary, ω(m) is continuous and ω(m)(e, e) = 1, it suffices

to prove Z̃ (m)
gψ̃ → ψ̃ as g → e, for any ψ ∈ H. This is an easy consequence of the

explicit form of Z̃ (m)
g .

We do not knowwhether the projective unitary representation S̃G � g �→ Z (m)
g is

equivalent to a unitary representation, by multiplying Z (m)
g by suitable phases χ(g).

The Galilean Lie algebra shows that Bargmann’s Theorem 12.72 does not hold.
But the aforementioned theorem gives sufficient conditions, not necessary ones, so
we are not in a position to answer the question. What we will see now is that the
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representations found are intrinsically projective: they cannot be made unitary by a
clever choice of phase.

In order to keep general, we consider every possible projective unitary represen-
tation S̃G � g �→ Z (m)

g , on any Hilbert space, with multipliers as in (12.148), but
irrespective of the fact the Z (m)

g are as in (12.145) or (12.146) on L2(R3, dk)⊗C
2s+1.

Proposition 12.118 Let S̃G � g �→ Z (m)
g be projective unitary representations with

multipliers (12.148) and m ∈ R.
(a) Given m �= 0, it is not possible to define the phases of Z (m)

g to obtain a unitary

S̃G -representation (nor strongly continuous).
(b) Representations with distinct numbers m cannot belong to the same unitary
equivalence class.

Proof We prove (a) and (b) simultaneously. If two representations with m1 > m2

belong to the same equivalence class, there exists a map χ = χ(g) such that

ω(m1)(g′, g)
(
ω(m2)(g′, g)

)−1 = χ(g′ · g)

χ(g′)χ(g)
, g, g′ ∈ S̃G . (12.149)

Writing m := m1 − m2, this is the same as

ω(m)(g′, g) = χ(g′ · g)

χ(g′)χ(g)
, g, g′ ∈ S̃G . (12.150)

We claim that for any givenm �= 0 there is no function χ satisfying (12.150), proving
the theorem.

By contradiction if such a χ existed, letting Vg := χ(g)Z (m)
g would force the

multipliers of S̃G � g �→ Vg to be 1, hence the representation would be unitary.
Consider the elements in S̃G of the form f := (0, c, 0, I ) and g := (0, 0, v, I ). By
(12.137) they commute, so f −1 · g−1 · f · g = e. The corresponding computation for
Z (m), keeping (12.145) in account, gives Z (m)

f −1 Z (m)

g−1 Z (m)
f Z (m)

g = e−i2mc·vZ (m)
e . This

becomes, with our assumptions:

(
χ( f −1)χ(g−1)χ( f )χ(g)

)−1
V f −1 Vg−1 V f Vg = e−i2mc·vχ(e)−1 I ;

as the multipliers of V are trivial because V is unitary by assumption, we have
f · g = g · f , and permuting the order of the coefficients χh :

(
χ( f −1)χ( f )χ(g−1)χ(g)

)−1
V f −1· f ·g−1·g = (

χ( f −1)χ( f )χ(g−1)χ(g)
)−1

Ve

= e−i2mc·vχ(e)−1 I .

Therefore
χ( f −1 · f )

χ( f −1)χ( f )

χ(g−1 · g)

χ(g−1)χ(g)
= χ(e)e−i2mc·v .
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Using (12.150) this identity becomesω( f, f −1)ω(g, g−1) = χ(e)e−i2mc·v. Comput-
ing the left-hand side explicitly, with the help of (12.148), yields

1 = χ(e)e−i2mc·v.

This has to be true for any c, v ∈ R
3, hence m = 0 and χ(e) = 1. But m = 0 was

excluded right from the start. The contradiction invalidates the initial assumption, so
χ does not exist. ��
Byvirtue of this proposition, and since the quantitym labelling equivalence classes of
projective unitary representations has a very explicit physical meaning (for m > 0),
we might think that the symmetry group of a non-relativistic quantum system of

mass m, instead of being the Galilean group, is the central extension ̂̃SG m given by
the multiplier function of the value m of the mass. From the general theory the rep-

resentation S̃G � g �→ Z (m)
g arises thus: (a) build the central U (1)-extension ̂̃SG m ,

with multiplier function (12.148) (̂̃SG m is a product manifold since ω(m) is analytic
on S̃G × S̃G ); (b) restrict to S̃G the strongly continuous unitary representation

̂̃SG m � (χ, g) �→ χ Z (m)
g .

On that account, (intrinsically) projective unitary S̃G -representations are substituted

by unitary ̂̃SG m-representations. There is a price to pay: the symmetry group changes
when the mass varies. Consider the strongly continuous unitary representation

̂̃SG m � (χ, g) �→ χ Z (m)
g .

Restrict to the spaceD ⊂ L2(R3, dk) of smooth complex functions ψ̃ = ψ̃(k) with
compact support. By (12.145) every map

̂̃SG m � (χ, g) �→ χ Z̃ (m)
gψ̃

is smooth whenever ψ̃ ∈ D . Hence D is contained in the Gårding space of ̂̃SG m .
With a minor notational misuse we indicate by D the inverse Fourier–Plancherel
image of D inside L2(R3, dx). Consider the 11 one-parameter Lie subgroups of
̂̃SG m generated by the Lie algebra basis:

1 ⊕ 0, −0 ⊕ h, 0 ⊕ pi , 0 ⊕ ji , 0 ⊕ ki , i = 1, 2, 3 .

Composing each one with ̂̃SG m � (χ, g) �→ χ Z (m)
g produces eleven strongly con-

tinuous one-parameter unitary groups. Let us find their self-adjoint generators. If we
restrict to D when differentiating in the strong topology, the generators are (note the
− sign of H ):
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I, −H�D , Pi�D , Li�D , Ki�D , i = 1, 2, 3.

Above, Pk and Lk are the self-adjoint operators representing momentum and orbital
angular momentum about the kth axis, which we met already. The self-adjoint oper-
ators H := F̂−1 H̃F̂ , calledHamiltonian operator, and Ki , called boost along the
i th axis, are defined as:

(H̃ ψ̃)(k) := k2

2m
ψ̃(k) where D(H̃) :=

{
ψ̃ ∈ L2(R3, dk)

∣∣∣∣
∫

R3
|k|4|ψ̃(k)|2dk < +∞

}

(12.151)
and

K j := m X j . (12.152)

Since D is a core for all of the above, the self-adjoint generators of one-parameter

group representations of ̂̃SG m associated to:

1 ⊕ 0, −0 ⊕ h, 0 ⊕ pi , 0 ⊕ ji , 0 ⊕ ki , i = 1, 2, 3 (12.153)

must coincide with the corresponding:

I, −H, Pi , Li , Ki , i = 1, 2, 3.

Each one, as an observable, has a physical meaning.Wewill talk about the observable
H in the next chapter. By considering Lie algebra relations, for instance on D ,
we realise we are actually working with a central extension of the Galilean group,
because one bracket (the last one below) is new: the fault is of a central charge that
is represented by the mass:

[−i Pi ,−i Pj ] = 0 , [−i Pi , i H ] = 0 , [−i Li , i H ] = 0 , [−i Ki ,−i K j ] = 0 ,

[−i Li ,−i Pj ] =
3∑

k=1

εi jk(−i Pk) , [−i Li ,−i L j ] =
3∑

k=1

εi jk(−i Lk) ,

[−i Li ,−i K j ] =
3∑

k=1

εi jk(−i Kk), [−i Ki , i H ] = −i Pi , [−i Ki , −i Pj ] = −mδi j (−i I ).

Referring to (12.88), the central extension we have found is therefore determined by

α(ki ,p j ) = −α(p j ,ki ) = −mδi j ,

and α(a,b) = 0 in all remaining cases with a,b ranging in the basis (12.141). It
is possible to prove that this α (with m �= 0) does not comply with Bargmann’s
Theorem 12.72.
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Remarks 12.119 (1)We started from a precise central extension of G̃ based on phys-
ical requirements. Our results, however, are general and Proposition 12.118 holds
for every projective unitary representation of G̃ . By Remark 12.73(2)–(5), in fact,
the direct inspection of H 2(TeG , R) proves [Bar54] that (a) every equivalence class
in H 2(TeG , R) contains a representative whose function α has the above form for
a precise value of m ∈ R; (b) representatives with different m are inequivalent, i.e.
define different classes of H 2(TeG , R). In other words, m ∈ R labels the elements
of H 2(TeG , R) bijectively, and consequently also the different (inequivalent) contin-
uous projective unitary representations of G̃ . Having said that, physically speaking
the values m ≤ 0 have no meaning. Only m = 0 (as of yet, still ‘unphysical’) gives
rise to proper unitary representations.

(2)Since K j = m X j , the unitary representation (χ, g) �→ χ Z̃ (m)
g incorporates oper-

ators that obey Weyl’s relations on L2(R3, dk). By Proposition 11.39(b) L2(R3, dk)

is irreducible for these operators, hence for the representation ̂̃SG m � (χ, g) �→
χ Z̃ (m)

g . In this sense the non-relativistic spinless quantum particle is an elementary
object for the Galilean group.
(3) If we take into account the portion of Hilbert space due to the spin, the difference
from above is that to have ̂̃SG m act on states we must replace Lk by Jk = Lk + Sk

in every formula. That is to say, the unitary representation reads

̂̃SG m � (χ, g) �→ χ Z̃ (m)
g ⊗ V s(U ) ,

where g = (c, c, v, U ). The irreducibility seen for the case s = 0 extends, so for the
particle with spin s the above representation is irreducible on L2(R3, dk) ⊗ C

2s+1.
�

12.3.4 Bargmann’s Rule of Superselection of the Mass

Now we shall consider systems more complicated than a free particle. We refer to
the next chapter for the general matter, and recall here that when we study an isolated
system of N interacting particles of masses m1, . . . , m N , the theory’s Hilbert space
splits:

L2(R3, dx) ⊗ Hint ⊗ C
2s1+1 ⊗ · · · ⊗ C

2sN +1 .

The Hilbert space Hint is relative to the system’s internal orbital degrees of freedom
(the particles mutual positions, for example in terms of Jacobi coordinates, e.g.
see [AnMo12] for a more explicit construction). L2(R3, dx) is the Hilbert space of
the centre of mass. The centre of mass of the system is the unique particle of mass
M := ∑N

n=1 mn determined by the observables Xk (the position of the centre ofmass)
and Pk (total momenta of the system), k = 1, 2, 3, of the usual form on L2(R3, dx).

http://dx.doi.org/10.1007/978-3-319-70706-8_11


12.3 Examples 783

Each factorC
2sn+1 is the spin space of one particle. Via Fourier transform L2(R3, dx)

can be seen as L2(R2, dk), which we will assume from now on.
In this context – exactly as in classical mechanics – the symmetry group SG acts

by

S̃G � (c, c, v, U ) �→ Z (M)

(c,c,v,U ) ⊗ V (int)
R(U )W

(int)
c ⊗ V S1(U ) ⊗ · · · ⊗ V SN (U ) .

Above,
SO(3) � R �→ V (int)

R and R � c �→ W (int)
c

are representations – both unitary and strongly continuous – of the rotation subgroup
of SG (of elements (0, 0, 0, R)), and of time translations (of type (c, 0, 0, I )) respec-
tively. In addition, V (int)

R W (int)
c = W (int)

c V (int)
R for every R ∈ SO(3), c ∈ R. These

two representations depend on how we define orbital coordinates and on the kind
of inner interactions among the particles. The transformation Z (M)

(c,c,v,U ) acts only on
the freedom degrees of the centre of mass. Since every representation involved is
unitary except Z (M), the multiplier function ω(M) of the overall representation on
L2(R3, dk)⊗Hint ⊗C

2s1+1 ⊗· · ·⊗C
2sN +1 is the same we had before, using the total

mass M as parameter m. Therefore the previous proposition reaches to this much
more general instance of quantum system.

Let us look at a physical system S obtained by putting together a finite number,
though not fixed, of the previous systems. Or even more generally, we may assume
that the value of the mass of S, for some reason, is not fixed. The mass of S may
then range over several values mi , with i ∈ I at most countable. It is only natural
to associate to the mass a quantum observable, i.e. a self-adjoint operator M whose
spectrum is the values of mass (even if all that follows is completely general, explicit
models have been constructed in [Giu96, AnMo12]). Likewise, we define a Hilbert
space for the system:

HS =
⊕

m∈σ(M)

H(m)
S ,

where the H(m)
S are the eigenspaces of the mass operator with distinct eigenvalues

m > 0. What happens if the Galilean group acts on S? A different projective unitary
representation Z (m), depending on m, will act on each H (m)

S . The representation of
the restricted Galilean group will thus look like:

SG � g �→ Zg :=
⊕

m∈σ(M)

χ(m)(g)Z (m)
g . (12.154)

We claim this structure leads to a superselection rule. Since the representation is
projective unitary, the multiplier

Ω(g, g′) := Z(gg′)−1Z(g)Z(g′) ,



784 12 Introduction to Quantum Symmetries

computed using (12.154), produces

Ω(g, g′)I =
⊕

m∈σ(M)

ω(m)(g, g′)Im ,

where the ω(m) account for possible new phases χ(m) and the Im on the right are the
identities on each H(m)

S . Since

I =
⊕

m∈σ(M)

Im ,

so
Ω(g, g′)I =

⊕

m∈σ(M)

Ω(g, g′)Im ,

necessarily we have:

ω(m1)(g, g′) = ω(m2)(g, g′) = Ω(g, g′) for everym1, m2 ∈ σ(M) .

Bu this is not possible, because it implies, solving forχ(m), the false relation (12.149).
The net result is this: if the Galilean group is to be a symmetry group for our

physical system, we are compelled to ban pure states arising from combinations of
different subspacesH(m)

S . Therefore we have found a superselection rule related to the
mass, known asBargmann’s superselection rule for themass. The coherent sectors
of this rule are the summands H(m)

S with given mass. The result is deeply rooted in
the fact that physically-interesting projective representations of the Galilean group
do not come from unitary representations, and the mass appears in the multiplier
function.

A physically more appropriate situation is that in which one replaces the restricted
Galilean group with the (proper orthochronous) Poincaré group: then the superselec-
tion rule ceases to hold, because irreducible projective representations of the Poincaré
group always arise from irreducible unitary representations [Var07], and states with
indefinite (relativistic) mass are allowed.

Remark 12.120 Since m multiplies the exponent in (12.148), we may introduce a
central extension G1 of the Galilean group (of the universal covering to be precise)
that does not depend on m. It is enough to redefine the multiplier by setting m =
1 in the right-hand side of (12.148). The value of the mass is subsequently fixed
by a particular unitary representation (raising the multiplier and the variables χ ∈
U (1) to the mth power) when a physical system is chosen to have that mass and
to be invariant by the Galilean group. This extension G1 should be considered as
the quantum version of the Galilean group. This approach, adopted in [Giu96], lets
the superselection rule of the mass arise dynamically, by enlarging the system with
more degrees of freedom, already at the classical level. The mass becomes, a priori,
a (classical) variable and defines a self-adjoint operator (the mass operator of the
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physical system) after quantisation. The approach was improved in [AnMo12], in
particular by presenting a physical procedure giving rise to the superselection rule
once the mass spectrum is supposed discrete. �

Exercises

12.1 Prove Theorem 12.23.
Proposition. If H �= {0} is a separable complex Hilbert space of dimension �= 2, an
ortho-automorphisms of L (H) is of the form

L (H) � P �→ V PV −1 ∈ L (H)

for a given unitary or anti-unitary V : H → H. For dimH > 1, V is determined by
the automorphism, up to phase.

Solution.We first assume dimH > 1. If h : L (H) → L (H) is an automorphism,
the map h∗ : S(H) � ρ �→ h∗(ρ) ∈ B(H), h∗(ρ)(P) = ρ(h(P)) for P ∈ L (H),
is a Kadison symmetry. In fact, h∗(ρ) ∈ S(H) easily follows from the fact that h
is an ortho-automorphism of L (H). Moreover, if ρ, ρ ′ ∈ S(H) and p + q = 1
for p, q ∈ [0, 1], one has h∗(pρ + qρ ′)(P) = (pρ + qρ ′)(h(P)) = pρ(h(P)) +
qρ′(h(P)) = ph∗(ρ)(P) + qh∗(ρ ′)(P), so that h∗ is a Kadison automorphism. By
Kadison’s theorem, there exists U : H → H unitary or anti-unitary depending on
h∗, such that h∗(ρ) = UρU−1 (viewing ρ as a trace-class positive operator with unit
trace). Consequently tr(ρ(h(P)−U−1PU )) = 0 for every P ∈ L (H) and every ρ.
In particular, (ψ |ρ(h(P)−U−1PU )ψ) = 0 for everyψ ∈ H. Consequently, h(P) =
U−1PU , for every P ∈ L (H), which is what we wanted (just rename V := U−1).
Finally, suppose that V and V ′ (both unitary or anti-unitary) are associated to the
same h. Then V ′V −1 commutes with every one-dimensional orthogonal projector.
The standard argument used in the proof of Wigner’s theorem shows that V ′ = eia V
for some a ∈ R. Vice versa, it is obvious that V ′ = eia V and V , either unitary
or anti-unitary, define the same ortho-automorphism hV ′ given by L (H) � P �→
V PV −1 =: hV (P).

If dimH = 1 the identity is the only automorphism. It will be unitary or anti-
unitary depending on whether we extend ψ �→ ψ linearly or antilinearly.

12.2 Referring to Example 12.19(1), with IO(3) � Γ = (t, R), prove

γ ∗
Γ (P) = U−1

Γ PUΓ = RP , (12.155)

where P is the triple of operators corresponding to the components of momentum,
and the relation holds on the Schwartz spaceS (R), taken as domain of themomenta.

12.3 Referring to Examples 12.19(1) and (2) and retaining the convention of Exer-
cise 12.2, prove:
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γ ∗
P (X) = P−1XP = −X , γ ∗

P (P) = P−1PP = −P (12.156)

while

γ ∗
T (X) = T −1XT = X , γ ∗

T (P) = T −1PT = −P . (12.157)

The triple P corresponds to the momentum’s components, and the identities hold on
the Schwartz space S (R), domain of the position and momentum operators.

12.4 Prove that P and T are only defined up to a phase. In other words, a unitary
operator UP satisfying

U−1
P XUP = −X , U−1

P PUP = −P , (12.158)

will also satisfy UP = eiaP for a real constant a ∈ R (a = ±1 if, additionally,
U ∗

P = UP ). Similarly, an anti-unitary operator UT satisfying

U−1
T XUT = X , U−1

T PUT = −P (12.159)

will also satisfy UT = eibT for some real constant b ∈ R.

Hint. Prove thatPUP andT UT are unitary operators commuting with the Weyl
operators W ((t,u)) of theWeyl algebra associated with the position and momentum
operators of our particle, as in Proposition 11.39. Then observe that the family of the
W ((t,u)) is irreducible (Proposition 11.39) and use Proposition 11.37.

12.5 Consider the self-adjoint operators L1, L2, L3 representing the components of
the orbital angular momentum (Chap. 10). If L indicates their column vector, then

L�S (R3)= X�S (R3) ∧P�S (R3) .

Restrict domains to S (R3) and prove the following facts. Referring to Example
12.19(1), with SO(3) � Γ = (0, R):

γ ∗
Γ (L) = U−1

Γ LUΓ = RL , (12.160)

γ ∗
P (L) = P−1LP = L , (12.161)

γ ∗
T (L) = T −1LT = −L . (12.162)

Recall SO(3) is the subgroup in O(3) with determinant +1, and the wedge product
∧ is defined by the above formal determinant in a right-handed basis.

12.6 Decompose the Hilbert space HS of a system S in coherent sectors, so that the
space of admissible pure states reads:

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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Sp(HS)adm =
⊔

k∈K

Sp(HSk) .

EquipSp(HS) with distance d(ρ, ρ ′) := ||ρ − ρ ′||1 := tr(|ρ − ρ ′|), where || ||1 is
the natural trace-class norm. Prove the sets Sp(HSk) are the connected components
ofSp(HS)adm . (It might be useful to recall ρ = ψ(ψ | ), ρ ′ = ψ ′(ψ ′| ) inSp(HSk)

imply ||ρ − ρ ′||1 = 2
√
1 − |(ψ |ψ ′)|2, as was proved in the chapter).

Sketch of the solution. Consider pure states ρ, ρ ′ ∈ Sp(HSk) with ρ = ψ(ψ | )

and ρ ′ = ψ ′(ψ ′| ), and ψ not parallel to ψ ′ (otherwise they give the same state).
Define ψt = tψ + (1 − t)ψ ′ and prove the curve [0, 1] � t �→ ψt

||ψt ||2 (ψt | ) is
continuous and entirely contained inSp(HSk). This makesSp(HSk) path-connected,
hence connected. To prove theSp(HSk) are disjoint, it is sufficient to find ||ρ −ρ ′||1
for ρ ∈ Sp(HSk), ρ ′ ∈ Sp(HSk ′) with k �= k ′. In that case the vectors of ρ, ρ ′ are
orthogonal, so ρ − ρ ′ is actually the sum of the positive and negative parts of the
element ρ − ρ ′ itself. Hence |ρ − ρ ′| = ρ + ρ ′, i.e. ||ρ − ρ ′||1 = 2. Consider an
open set Ak ⊃ Sp(HSk) union of open balls of radius 1/2 centred in Sp(HSk), and
another open set Ak ′ ⊃ Sp(HSk ′) union of similar balls centred in Sp(HSk ′). These
two sets cannot intersect by the triangle inequality, so Sp(HSk) and Sp(HSk ′) are
disjoint.

12.7 Prove the distance d(ρ, ρ ′) of pure states (Exercise 12.6) satisfies:

d
(
ψ(ψ | ), ψ ′(ψ | )

) = ∣∣∣∣ψ(ψ | ) − ψ ′(ψ ′| )
∣∣∣∣
B(H)

for any unit vectors ψ,ψ ′ ∈ H, where || ||B(H) is the standard operator norm.

12.8 Let U : H → H be an anti-unitary operator on the Hilbert space H and
A : D(A) → H a self-adjoint operator on H. Prove:

(a) U−1AU : U−1(D(A)) → H is self-adjoint,
(b) σ(U−1AU ) = σ(A),
(c) B(R) � E �→ U−1P (A)

E U is the spectral measure associated to U−1AU by
the spectral theorem:

U−1
∫

R

λd P (A)(λ)U =
∫

R

λd(U−1P (A)U )(λ) ,

(d) U−1eit AU = e−i tU−1 AU .

Hint. (a) and (b) descend from the definitions of self-adjointness and spectrum.
(c) follows from proving that U−1

∫
R

f (x)d P (A)(x)U = ∫
R

f (x)d(U−1P (A)U )(x)

for bounded maps f : R → C. This comes directly from the definition of integral of
a bounded map in a PVM (Chap.8). Observing that any self-adjoint operator satisfies
T = s-limn→+∞

∫
R

χ[−n,n](x)d P (T )(x), Stone’s theorem and (a) imply (d).

12.9 Prove formula (12.74).

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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Outline of the solution. The first equality in (12.74) descends from UΓ unitary,
U−1

Γ0
= UΓ −1

0
and UΓ ′UΓ = UΓ ′◦Γ . Hence it is enough to show, for any ψ ∈

L2(R3, dx):
||UΓ ψ − ψ || → 0 asΓ → (0, I ).

Let us prove this for compactly-supported continuous maps φ. As ISO(3) × R
3 �

(Γ, x) �→ φ(Γ −1x) is continuous, if Γ restricts to a relatively compact neighbour-
hood J of the identity, there is K ≥ 0 such that |φ(Γ −1x)| ≤ K if (Γ, x) ∈ J × R

3.
Because of Γ there is a compact set S ⊂ R

3 containing every support of φ(Γ −1·). So
there is φ0 ∈ L2(R3, dx) such that |(UΓ φ)(x)−φ(x)| ≤ |φ0(x)| if (Γ, x) ∈ J ×R

3:
it suffices to choose a continuous map φ0 with absolute value larger than 2K at each
point of S, and vanishing fast outside S. Since (UΓ φ)(x) → φ(x) pointwise, by
dominated convergence ||UΓ ψ − ψ || → 0 as Γ → (0, I ), in L2 norm. Let us pass
to ψ generic in L2(R3, dx). If ε > 0, take φ continuous with compact support and
such that ||ψ − φ|| < ε/3. Then

||UΓ ψ−ψ || ≤ ||UΓ ψ−UΓ φ||+||UΓ φ−φ||+||φ−ψ || = ||UΓ φ−φ||+2||φ−ψ ||,

since UΓ is isometric so ||UΓ ψ − UΓ φ|| = ||ψ − φ||. Choose Γ close enough to
(0, I ). By the above argument, ||UΓ φ − φ|| ≤ ε/3. Hence for any ε > 0, if Γ is
close enough to (0, I ) we have ||UΓ ψ − ψ || ≤ ε.

12.10 Using Exercise 12.2, prove t · P�S (R3) is essentially self-adjoint.

Hint. If t = 0 the claim is trivial. Otherwise we know P1 �S (R3) is essentially
self-adjoint. Consider the unitary operatorUR representing an active rotationmoving
the axis t/|t| onto e3. Show URt · P�S (R3) U−1

R = |t|P3�S (R3) and conclude.

12.11 Using Exercise 12.2, prove formula (12.75).

Hint. Prove the statement for P3, passing from wavefunctions in x to wavefunc-
tions in k via the Fourier transform. Extend to the general case as in the previous
exercise. Note that U unitary and A : D(A) → H closable imply that U AU−1

(defined on U (D(A))) is closable and

U AU−1 = U AU−1 .

12.12 Starting from (12.36), show formula (12.37).

Hint. First, substitute the neutral element e appropriately for one among g, g′, g′′,
then write g−1 in place of g′ and/or g′′.

12.13 LetG be a connected topological group andG � g �→ γg a strongly continu-
ous projective representation (Proposition 12.43) on the Hilbert spaceHS , associated
to a physical system. Suppose HS decomposes in coherent sectors HSk . Can there be
a function γg mapping a certain sector to a different sector?
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Hint. Decompose Sp(H) in a disjoint union of pure states of each sector, and
equip sectors with || ||1. Remember that continuous maps preserve connected sets.

12.14 Prove that the Lie algebra of SU (2) is the real vector space of skew-Hermitian
matrices. Then show SU (2) is simply connected.

Hint. SU (2) is closed in GL(4, R), hence a Lie group. Therefore one-parameter
groups are of typeR � t �→ et A, with A in the Lie algebra su(2). Impose et A(et A)∗ =
I and tr(et A) = 1 for every t , and infer how A has to look like. Vice versa, suppose
A is skew-Hermitian and check that the above two conditions hold. As for simple
connectedness, parametrise the group by 4 real variables so that SU (2) is in one-
to-one correspondence with the unit sphere in R

4. Show the parametrisation is a
homeomorphism.

12.15 Prove that U ∈ SU (2) iff there exist a unit vector n ∈ R
3 and a real number

θ such that:
U = e−iθn· σ

2 .

Hint. Use the spectral theorem for the unitary operator U ∈ SU (2), keeping in
account that the Pauli matrices and I form a real basis of 2 × 2 Hermitian matrices.
Conversely, if U = e−iθn· σ

2 , what are U ∗U and detU?

12.16 Prove the matrices T in (12.84) satisfy:

RTk Rt =
3∑

i=1

(Rt )ki Ti for any R ∈ SO(3).

Hint. Use (Ti ) jk = −εi jk and write the above equations component-wise. Recall
εi jk are the coefficients of a pseudo-tensor that is invariant under proper rotations.

12.17 Show that R ∈ SO(3) iff there exist a unit vector n ∈ R
3 and a real angle θ

such that:
R = eθn·T .

Hint. Prove the claim for n = e3 by taking, for R ∈ SO(3), a rotation about e3.
Show every R ∈ SO(3) admits an eigenvector n. Rotate the axes so to move n onto
e3, and recall the previous exercise. If, conversely, R = e−iθn·T, what are Rt R and
det R?

12.18 Demonstrate that for every U ∈ SU (2) there exists a unique RU ∈ SO(3)
such that:

U t · σU ∗ = (RU t) · σ for any t ∈ R
3.

Then verify
SU (2) � U �→ RU ∈ SO(3)
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is a surjective homomorphism that coincides with:

R : SU (2) � e−iθn· σ
2 �→ eθn·T ∈ SO(3) .

Eventually prove the kernel is {±I } ⊂ SU (2).

Sketch of the solution. Note |t|2 = det (t · σ), and conclude every U ∈ SU (2)
determines a unique transformation of R

3 mapping t to some t′, with |t| = |t′|,
defined by U t · σU ∗ = U t′ · σU ∗. The transformation t → t′ is then an orthogonal
matrix R(U ) ∈ O(3). That R : SU (2) � U �→ R(U ) ∈ O(3) is a homomorphism is
immediate by construction. In the caseUθ = e−iθ σ3

2 one checks in various ways (e.g.
directly, expanding the exponentials) that R(Uθ ) = eθT3 . The general case relies on
Exercise (12.16), rotating e3 onto an arbitrary unit vector n. Clearly, R(Uθ ) = eθn·T
implies R(U ) ∈ SO(3). Surjectivity is a consequence of the fact that every SO(3)
matrix can be written as eθn·T. The kernel is computed by reducing to the one-
parameter subgroup generated by σ3, by rotation of n. The result becomes thus
obvious by direct computation.

12.19 Referring to Sect. 12.3.1, prove the strongly continuous unitary SU (2)-repre-
sentation obtained by exponentiating theL k is the representation SO(3) � R �→ UR

of Example 12.19 (where Γ ∈ IO(3) is now restricted to Γ = R ∈ SO(3)), which
is strongly continuous (cf. Example 12.46(1)).

Hint. By Nelson’s theorem 12.89 it suffices to check the one-parameter groups
θ �→ Ueθn·Tx, with n = e1, e2, e3, are generated by the self-adjoint elements L1, L2,
L3. It is convenient to work with polar coordinates, using the core of L1, L2, L3

given by spherical harmonics multiplied by a basis of L2(R+, r2dr).

12.20 Show that the SU (2)-representation obtained by exponentiating the genera-
tors Jk , by Nelson’s theorem, has the form:

SU (2) � e−iθ 1
2 n·σ �→ e−iθn·J = e−iθn·L ⊗ V s

(
e−i θ

2 n·σ
)

.

Hint. Employ the properties of the tensor product of operators to show

e−iθn·J = e−iθn·L ⊗ V s
(

e−i θ
2 n·σ

)
.

Hence we have to prove the representation SO(3) � R �→ UR of the previous
exercise can be written as Ueθn·T = e−iθn·L. This is certainly true, for instance, for
n = e3. As for the general case: on one hand we have

U ∗
Re−iθn·LUR = e−iθn·U∗

RLUR ,

and Exercise 12.5; on the other Exercise 12.16 holds.
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12.21 Consider a strongly continuous unitary representation G � g �→ Ug of a
connected Lie group G on the Hilbert space H. Suppose E : D(E) → H is a
closable operator for which DN is invariant and a core18.

Prove the following facts.
(1) If E commutes with AU (T ) onDN for some T ∈ TeG, then E commutes with

Uexp(tT ) for every t ∈ R.
(2) If furthermore E is essentially self-adjoint on DN , then the spectral measures

of E and AU (T ) commute.

Solution. Fix ψ ∈ DN . Using the fact that DN is E-invariant, and E commutes
with AU (T ) on it, we have

E
N∑

n=0

(−i t)

n! AU (T )nψ =
N∑

n=0

(−i t)

n! AU (T )n Eψ .

Since E is closed, and both ψ, Eψ belong toDN and hence are analytic for AU (T ),
taking the limit for N → +∞, we have

E
+∞∑

n=0

(−i t)

n! AU (T )nψ =
+∞∑

n=0

(−i t)

n! AU (T )n Eψ ,

if |t | < rE,ψ . In other words

Ee−i t AU (T )ψ = e−i t AU (T )Eψ .

Suppose that sE,ψ is the supremum of the real numbers t for which the above rela-
tion holds. If sE,ψ < +∞, the fact that E is closed and that t �→ e−i t AU (T )Eψ is
continuous at t = sE,ψ immediately implies that

Ee−isE,ψ AU (T )ψ = e−isE,ψ AU (T )Eψ . (12.163)

Defining φ := e−isE,ψ AU (T )ψ and using again the same argument, we have that, for
some τ > 0,

e−iτ AU (T )Ee−isE,ψ AU (T )ψ = Ee−iτ AU (T )e−isE,ψ AU (T )ψ = Ee−i(sE,ψ+τ)AU (T )ψ

so that, from (12.163),

Ee−i(sE,ψ+τ)AU (T )ψ = e−i(sE,ψ+τ)AU (T )Eψ .

This is impossible by definition of sE,ψ unless sE,ψ = +∞. An analogous procedure
can be carried out for the infimum of the numbers t such that

18The first condition is valid for instance if E = p(AU (T1), . . . , AU (Tn)), where p is a polynomial
of finite degree and T1, . . . , Tn form a basis of the Lie algebra TeG.
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Ee−i t AU (T )ψ = e−i t AU (T )Eψ .

Eventually the inf will be −∞. We have found that

EUexp(tT )ψ = Uexp(tT )Eψ ∀t ∈ R .

Since Ug(DN ) ⊂ DN , that means

U ∗
exp(tT )E�DN Uexp(tT )ψ = E�DN .

But DN is a core for E , so taking the closure gives

EUexp(tT ) = Uexp(tT )E ∀t ∈ R .

If E is essentially self-adjoint onDN , the last point follows easily fromTheorem9.41.

http://dx.doi.org/10.1007/978-3-319-70706-8_9


Chapter 13
Selected Advanced Topics in Quantum
Mechanics

Give up telling God what to do with his dice.
Niels Bohr, to Einstein

With this chapter we complete the list of axioms for non-relativistic Quantum
Mechanics, by defining time evolution and compound systems. Certain notions, here
defined formally, have already been introduced in the final part of the previous chapter
whenwewere talking about symmetry groups.More advanced reference texts, which
we have followed here and there, are [Pru81] and [DA10].

In the first sectionwewill state the axiom of time evolution, described by a strongly
continuous one-parameter unitary group that is generated by the Hamiltonian oper-
ator of the system. We will define dynamical symmetries as a special kind of the
symmetries seen earlier. Then we shall discuss the nature of Schrödinger’s equation
and introduce the important concept of stationary state. As a classical example of this
formalism we will analyse in depth the action of the Galilean group in the position
representation (we saw it in the momentum representation in the previous chapter).
We will also explain how wavefunctions transform under changes of inertial frame
systems. Then we will pass to the basic theory of non-relativistic scattering. We will
make a few remarks on the existence of the unitary time-evolution operator in absence
of time homogeneity (we will examine the convergence inB(H) of the Dyson series
for a Hamiltonian), and discuss the anti-unitary nature of the time-reversal symmetry.

In the following section we will present a version of Pauli’s theorem, whose
concern is the possibility of defining the “time operator” as self-adjoint conjugate
to the Hamiltonian. In this respect we will briefly discuss POVMs, which may be
employed to give a weaker meaning to the time observable.

Heisenberg’s picture of observables will be introduced in section three, where we
shall address the relationship between constants of motion and dynamical symme-
tries, present the quantum version of Noether’s theorem and study the case of con-
stants of motion associated to generators of a Lie group, including the one-parameter

© Springer International Publishing AG 2017
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subgroup of time evolution. A digression will give us the chance to present the math-
ematical problems raised by the Ehrenfest theorem. The section will close with the
constants of motion associated to the Galilean group.

Section four is devoted to the theory of compound quantum systems: systems
with an inner structure and multi-particle systems. We will consider, in particular,
entangled states and discuss some problems related to the EPR paradox and the
notion of decoherence. Eventually, we will pass to the general theory of systems of
identical particles, and finish with the spin-statistic correlation.

13.1 Quantum Dynamics and Its Symmetries

As we quickly recalled in Sect. 7.2.1, physical systems evolve in time according to
their dynamics. In the classical Hamiltonian formulation of mechanics the evolution
in time of a system’s state is described in phase spacetime by the solutions to Hamil-
ton’s equations. Let us consider the situation in which the Hamiltonian function H
does not depend explicitly on time in the coordinates of a given inertial frame I .
We will talk in this case of time being homogeneous with respect to the considered
physical system. Hamilton’s equations are autonomous PDEs, i.e. the time variable
does not show up explicitly if the equations are written in those canonical coordinates
and the phase spacetime splits naturally in a product R × F , whereF is the phase
space. The solutions to Hamilton’s equations determine a one-parameter group of
diffeomorphisms φτ : F → F mapping the initial state r ∈ F , at time 0 (taken to
be sharp for simplicity) to the state φτ (r) ∈ F , at time τ . The basic mathematical
tool to construct the time-evolution operator – the one-parameter group {φτ }τ∈R –
is the Hamiltonian H of the system, which is identified with the total mechanical
energy of the frame system I [GPS01, FaMa06]. In the sequel we will present the
quantum analogues of the Hamiltonian function and the evolution operator.

13.1.1 Axiom A6: Time Evolution

The quantum setting is not dissimilar to the classical case. The following axiom com-
prises time evolution in a quantum system S, described on the Hilbert space HS for
given inertial frameI , with homogeneous time. The axiom defines the Hamiltonian
(operator) of the quantum system as the generator of the one-parameter unitary group
capturing the evolution, hence the dynamics, of the quantum state. (We will return
to this in Sect. 13.1.6 when looking at a more general situation.) Using the notion of
time evolution makes it possible to treat dynamical symmetries and, as we will see
later, state the quantum Noether theorem.

A6. Let S be a quantum system described on the Hilbert space HS associated to the
inertial frame I . There exists a self-adjoint operator H , called the Hamiltonian

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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of the system S in the frame I and corresponding to the observable of the total
mechanical energy of S in the frame I , such that

(i) σ(H) is lower bounded,
(ii) setting Uτ := e− iτ

�
H , if the system’s state at time t is ρt ∈ S(HS), then the

state at time t + τ is:
ρt+τ = γ (H)

τ (ρt ) := Uτ ρtU
−1
τ . (13.1)

The strongly continuous one-parameter unitary group R � τ �→ Uτ is called time-
evolution operator of S in the frame I , and the continuous projective representa-
tion R � τ �→ γ (H)

τ ofR induced by U is called dynamical flow of S in the frameI .

Remarks 13.1 (1) From now on, unless strictly necessary for better physical clarity,
we will omit to write � explicitly in formulas, and set � = 1.
(2)The evolution of states is therefore given by a continuous projective representation
of the Abelian groupR. This fact enables us to phrase differently axiomA6, using the
results of the preceding chapter. With the intent to weaken the axiom’s assumptions
as much as possible, and think of the evolution as a function ρ �→ γτ (ρ) mapping
states to states for any τ ∈ R, we may require γτ to satisfy the following conditions,
all rather reasonable from the physical viewpoint:

(i) γτ preserves the convexity of the space of states (Kadison symmetry), or equiv-
alently, it preserves transition probabilities (Wigner symmetry);

(ii) γτ is additive: γτ ◦ γτ ′ = γτ+τ ′ , for τ, τ ′ ∈ R,
(iii) (viewing symmetries γτ à la Wigner) γτ is continuous for Definition12.40 or

equivalently, continuous in the topology of Sp(HS) induced by || ||1, as in (12.50).
Then Theorem12.45 proves that the projective representation R � τ �→ γτ has the
form predicted by axiomA6. One of the possible self-adjoint generators –which exist
and differ by an additive constant, by Theorem12.45 – is the system’s Hamiltonian,
by definition. But we still need to impose the spectrum be bounded from below. In
defining the Hamiltonian, the ambiguity coming from the additive constant is actu-
ally present in physics, because the energy of a classical system (non-relativistic) is
given up to constant. (As classical physics arises as an approximation of relativistic
physics [AnMo12], however, the picture is not so obvious because one must account
for the superselection of the mass, or the like.)
(3) That the Hamiltonian spectrum of a real physical systems is bounded stems from
thermodynamical stability. Unless we consider an ideal system – perfectly isolated
from the environment, which in reality does not exist (also by deep theoretical moti-
vations that demand Quantum Field Theory to be explained properly) – the lower
limit constraining the spectrum of H (the mechanical energy) is unavoidable. In
absence of a threshold there could be transitions to states with decreasingly lower
energy. This (infinite!) energy loss towards the outside, in some form or other (parti-
cles, electromagnetic waves), would in practice make the system collapse. The lower
limit of σ(H) has other important theoretical repercussions we will see later.
(4) The inverse symmetry to time evolution is called time displacement. We met
this symmetry when we were studying the Galilean group. Physically it is an

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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active transformation of S. In other words, for given τ , it is a Kadison symme-
try γ (−H)

τ : S(HS) → S(HS) that transforms the state ρ at a generic given time
t0 into the state ττ (ρ) at the same time t0, so that γ (H)

τ

(
γ (−H)

τ (ρ)
)
coincides with

ρ. By construction γ (−H)
τ = (

γ (H)
τ

)−1
. Evidently the unitary generator of γ (−H)

τ is
−H , as the name already suggests. This explains the “−” sign used for the self-
adjoint generator of the time displacement symmetry when we were discussing the
subgroups of the Galilean group in Sect. 12.3.3 interpreted as active transformations
of the physical system.
(5) The use of an inertial reference frame is not strictly necessary, and a reference
frame with temporal homogeneity is in fact sufficient for the physical validity of
all statements up to Sect. 13.1.6. In that section we shall address what happens in
absence of time homogeneity. �

Now let us suppose HS is decomposed in coherent sectors HSk , k ∈ K , because
Abelian superselection rules occur. Then the space of admissible pure states splits
in the disjoint union of sets Sp(HSk), and mixed states are convex combinations
of elements in the various S(HSk). The next result shows that the dynamical flow
preserves this splitting, as expected.

Proposition 13.2 Let S be a quantum system described on the Hilbert space HS

associated to the inertial frame I , with dynamical flow γ (H). Suppose HS splits
in coherent sectors HSk , k ∈ K . Then the dynamical flow preserves both pure and
mixed states. More precisely:
(a) if ρ ∈ S(HSk) for some k ∈ K , then γ

(H)
t (ρ) ∈ S(HSk) for every t ∈ R;

(b) if ρ ∈ Sp(HSk) for some k ∈ K , then γ
(H)
t (ρ) ∈ Sp(HSk) for every t ∈ R.

Proof Since
γ

(H)
t (ψ(ψ | )) = e−i t H ψ

(
e−i t H ψ

∣∣ )
,

clearly the representation γ (H) maps pure states to pure states, so mixed to mixed
ones. Restrict γ (H) to pure states. Fix ρ ∈ Sp(HSk) and consider the path R � t �→
γ

(H)
t (ρ). By Proposition12.43 it is continuous for || · ||1. We knowSp(HSk) are the

connected components of Sp(HS)adm for the topology induced by the aforemen-
tioned norm (Exercise12.6), so the curve is confined to live in one component only.
The latter is Sp(HSk), since the path passes through there at t = 0. If Ut = e−i t H ,
then, for any unit vector ψ ∈ HSk we have Utψ ∈ HSk for all t . Consider now
ρ ∈ S(HSk) and its spectral decomposition ρ = ∑

j∈J p jψ j (ψ j | ). The series con-
verges strongly and by construction ψ j ∈ HSk , j ∈ J , is a unit vector. Therefore for
any t ∈ R:

γ
(H)
t (ρ) = Ut

∑

j∈J

p j ψ j (ψ j | )U−1
t =

∑

j∈J

p j Utψ j (ψ j |U∗
t ) =

∑

j∈J

p j Utψ j (Utψ j | ) ∈ S(HSk) ,

ending the proof. �

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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Remark 13.3 From now on the system’s Hilbert space HS will not contain coherent
sectors, apart from a few cases we will comment upon. We leave it to the reader to
generalise the ensuing definitions and results to the multi-sector case. �

13.1.2 Dynamical Symmetries

Time evolution allows to refine the notion of symmetry seen in the previous chapter,
and define dynamical symmetries.

Consider a quantum system S with dynamical flow γ (H). Let us assume, as we
said, the Hilbert space consists of a single coherent sector. Take a symmetry σ

(Kadison or Wigner) acting on states, paying attention that now states evolve in time
following the dynamics of the flow γ (H). If we apply σ to the evolved state γ

(H)
t (ρ)

and obtain ρ ′
t := σ(γ

(H)
t (ρ)), nothing guarantees that the function R � t �→ ρ ′

t
will describe the possible evolution under γ (H) of a certain state (necessarily ρ ′

0 =
σ(γ

(H)
0 (ρ)) = σ(ρ)). But if this does happen (for any choice of initial state ρ), σ

is called a dynamical symmetry, because its action is compatible with the system’s
dynamics.

A variant to having R � t �→ σ(γ
(H)
t (ρ)) describing the evolution of a state in S,

is to take a whole family of symmetries σ (t) parametrised by time t ∈ R. To have a
time-dependent dynamical symmetry we require R � t �→ σ (t)(γ

(H)
t (ρ)) still be an

evolution under γ (H) for some state of S.
More formally:

Definition 13.4 Let S be a quantum system described on theHilbert spaceHS (made
of one sector) and associated to the inertial frame I , with Hamiltonian H and
dynamical flow γ (H). A symmetry σ : S(HS) → S(HS) is called a dynamical
symmetry of S if

γ
(H)
t ◦ σ = σ ◦ γ

(H)
t for every t ∈ R. (13.2)

A family of symmetries parametrised by time {σ (t)}t∈R is a time-dependent dynam-
ical symmetry when:

γ
(H)
t ◦ σ (0) = σ (t) ◦ γ

(H)
t for every t ∈ R. (13.3)

The first result we prove characterises dynamical symmetries. Part (c) is a conse-
quence of the spectral lower bound of H and characterises dynamical symmetries
when σ(H) is unbounded, as for the majority of concrete physical systems.
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Theorem 13.5 Let S be a quantum system described on the Hilbert space HS asso-
ciated to the inertial frame I with Hamiltonian H (hence, with lower-bounded
spectrum) and dynamical flow γ (H).

(a) Consider a family of symmetries labelled by time {σ (t)}t∈R and induced by
unitary (or anti-unitary) operators V (σ (t)) : HS → HS. Then {σ (t)}t∈R is a time-
dependent dynamical symmetry of S if and only if

χt V
(σ (t))e−i t H = e−i t H V (σ (0)) f or every t ∈ R and some unit number χt ∈ C

(b) Consider a symmetry σ induced by a unitary (or anti-unitary) V (σ ) : HS →
HS. Then σ is a dynamical symmetry of S if and only if

e−iat V (σ )e−i t H = e−i t H V (σ ) for every t ∈ R and some a ∈ R

where a = 0 in the unitary case.
(c) Consider a symmetry σ induced by a unitary (or anti-unitary) operator V (σ ) :

HS → HS and suppose σ(H) is not bounded above (but is bounded below). Then σ

is a dynamical symmetry of S if and only if

V (σ )e−i t H = e−i t H V (σ ) for every t ∈ R,

or equivalently, if and only if the following hold:
(i) V (σ ) is unitary and
(ii) V (σ ) H = H V (σ ).

Proof (a) and (b). For S : HS → HS unitary (or anti-unitary), Sψ(ψ |S−1·) =
Sψ(Sψ |·). Set Ut := e−i t H , V (t) := V (σ (t)) and use the identity with the unitary
operator S := (V (t)Ut )

−1Ut V (0). Then (13.3) implies, for any pure ρ = ψ(ψ | ):

(V (t)Ut )
−1Ut V

(0)ψ
(
(V (t)Ut )

−1Ut V
(0)ψ

∣∣ ) = ψ(ψ | ) ,

hence for some unit number χt ∈ C:

(V (t)Ut )
−1Ut V

(0)ψ = χtψ for all ψ ∈ H.

The same proof of the analogous fact in Theorem12.11 says that χt does not depend
on ψ . Therefore if σ (t) is a time-dependent dynamical symmetry:

χt V
(σ (t))Ut = Ut V

(σ (0)) for all t ∈ R and someχt ∈ C, |χt | = 1.

Conversely, if the condition holds, trivially σ (t) is a time-dependent dynamical sym-
metry. Statement (b) is a subcase, except for the proof that χt = eict for some c ∈ R,
which we will settle at the end.
(c) We claim that if σ is a dynamical symmetry then (i), (ii) hold. By (a), if σ is
a dynamical symmetry:

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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χt V
(σ )Ut = Ut V

(σ ) for some unit χt ∈ C (13.4)

Hence χt I = (V (σ )Ut )
−1Ut V (σ ) and χt (φ|ψ) = (

V (σ )Utφ
∣∣Ut V (σ )ψ

)
if V (σ ) is

unitary, or χt (ψ |φ) = (
V (σ )Utφ

∣∣Ut V (σ )ψ
)
if V (σ ) is anti-unitary. Choose φ ∈

D(H) not orthogonal to ψ ∈ V (σ )−1(D(H)) (since D(H) is dense), apply Stone’s
theorem and conclude t �→ χt is smooth everywhere. We rewrite (13.4) as:

χtUt = e±i tV (σ )−1H V σ

, (13.5)

with ‘−’ sign if V (σ ) is unitary, ‘+’ if anti-unitary (in the latter case the final χt coin-
cideswith the initialχt ). Using Stone’s theorem in (13.5)we obtain D(V (σ )−1H V (σ ))

⊂ D(H) = D(cI + H) and

∓ V (σ )−1H V (σ )�D(H)= cI + H where c:= i
dχt

dt
|t=0. (13.6)

Note c must be real since ∓V (σ )−1H V (σ ) − H is symmetric on D(H). Actually
(13.6) holds on the entire domain of V (σ )−1H V (σ ) because the latter is self-adjoint
and does not have self-adjoint extensions (cI + H ) other than ∓V (σ )−1H V (σ ) itself.
Therefore

V (σ )−1H V (σ ) = ∓cI ∓ H . (13.7)

In particular (cf. Exercise12.8 in the anti-unitary case):

σ(H) = σ(V (σ )−1H V (σ )) = σ (∓cI ∓ H) = ∓c ∓ σ(H) .

If σ(H) is bounded below but not above, the identity cannot be valid if on the
right side we have the minus sign, irrespective of the constant c. Hence V (σ ) must
be unitary. Therefore infσ(H) = inf(c + σ(H)) = c + infσ(H) and c = 0, for
infσ(H) is finite by hypothesis (σ(H) �= ∅ is bounded below). We obtained that a
dynamical symmetry σ fulfils (i) and (ii): V (σ ) is unitary and V (σ ) H = H V (σ ). If
so, H = V (σ )−1H V (σ ). Exponentiating,

V (σ )e−i t H = e−i t H V (σ ) for every t ∈ R,

eventually showing that σ is a dynamical symmetry, and ending part (c).
We still have to finish part (b). If σ is a symmetry, using the proof of (c) we

arrive at (13.7). Yet we cannot say c = 0, unless V (σ ) is unitary, for in that case
σ(H) = c + σ(H) and the reasoning still works. Exponentiating (13.7) gives:

e−ictUt = V (σ )−1Ut V
(σ ) ,

whence
e−iat V (σ )e−i t H = e−i t H V (σ )

where a = −c if V (σ ) anti-unitary. This ends part (b) and the proof. �

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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13.1.3 Schrödinger’s Equation and Stationary States

Consider a pure initial state ρ ∈ Sp(HS). As already noticed, the evolution is such
that any evolved state ρt is pure. Theoretical physicists refer to this property1 by
saying that the evolution of quantum states is unitary. If t �→ ρt ∈ Sp(HS) denotes
the evolution of a pure state, we can determine any ρt , up to phase, by a vector
ψt normalised to 1. Choosing the simplest phases for the pure states involved,
the equation governing the evolution of pure states becomes (reintroducing the
constant �):

ψt ′ = e− i(t ′−t)
�

Hψt . (13.8)

We can manipulate this relation to obtain an equation of great historical relevance.
For this we observe thatψt ∈ D(H) impliesψt ′ ∈ D(H) for any other time t ′ ∈ R. In
fact, ψt ∈ D(H) means

∫
R

λ2dμ
(H)
ψt

< +∞, where μ
(H)
ψt

(E) = (ψt |P (H)(E)ψt ) =
(ψt ′ |e+ iτ

�
H P (H)(E)e− iτ

�
Hψt ′), for t − t ′ = τ . On the other hand, trivially,

e+ iτ
�

H P (H)(E)e− iτ
�

H = P (H)(E) ,

since P (H)(E) is a projector of the PVM of H . Hence
∫

R
λ2dμ

(H)
ψt

< +∞ is equiv-

alent to
∫

R
λ2dμ

(H)
ψt ′ < +∞, i.e. ψt ′ ∈ D(H). Let us suppose ψt ∈ D(H) for some

t , from which ψt ′ ∈ D(H) for every t ′. Applying Stone’s theorem to (13.8) and
interpreting the resulting derivative in strong sense, we obtain

i�
d

dt
ψt = Hψt . (13.9)

This is the fundamental time-dependent Schrödinger equation. We have to notice
that (13.9) only holds if ψt ∈ D(H), whereas the evolution Eq. (13.1) has a general
reach.

Let us make a few comments on Schrödinger’s equation and then pass to more
general matters.

Consider a system formed by one particle of mass m (without spin for simplic-
ity) subjected to a force with sufficiently regular potential energy V = V (x), in the
inertial frame I with right-handed orthonormal coordinates. Following the discus-
sion about Dirac’s correspondence principle, at the end of Chap.11, one expects the
Hamiltonian of this system to correspond, quantum-wise, to a certain self-adjoint
extension H of the symmetric operator

H0:= 1

2m

3∑

i=1

P2
i + V (X) ,

1Especially in relationship to the evolution of states of quantum fields in spacetimes comprising
dynamical black holes, where the unitary evolution is rather problematic.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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initially defined on some invariant dense subspace where Pi and Xi are well defined.
This choice formally fulfils Dirac’s correspondence, at least with reference to the
commutation relations of H0 and Xk , Pk on domainswhere everything iswell defined.
This expectation turns out to be correct, and the Hamiltonian observables do have
the mentioned form in the physical world. Systems formed by atoms and molecules,
for instance, behave like that [Mes99, CCP82].

We shall identify the particle’s Hilbert space with L2(R3, dx) so that position
operators are multiplicative. If we work with functions that are regular enough, the
starting expression for H is

H0 = − �
2

2m
Δ + V (X) , (13.10)

whereΔ is the familiar Laplacian onR
3 and V (X) is themultiplication by the original

function V = V (x). Schrödinger’s equation then reads:

[
− �

2

2m
Δ + V (X)

]
ψt (x) = i�

∂

∂t
ψt (x) ,

which is precisely how Schrödinger wrote it in his astounding 1926 papers. Beware,
however, that the equation should not be taken literally, as a usual PDE, because:
(1) the t-derivative is not meant pointwise, but in Hilbert sense2; (2) the equation is
valid up to zero-measure sets for x , since wavefunctions belong to L2(R3, dx). If we
were to find “naïve” solutions (functions f (t, x) in t and x), we would then have to
prove they solve (13.9) in the unknown ψt = f (t, ·) ∈ L2(R3, dx).

Let us return to how to define the Hamiltonian operator from the symmetric
differential operator (13.10) defined on a dense domain. We have to verify, case
by case, if the operator admits self-adjoint extensions or if it is essentially self-
adjoint. In this respect the symmetric operator H0 commutes with the operator C :
L2(R3, dx) → L2(R3, dx) representing the complex conjugation of L2 functions.
By von Neumann’s theorem5.43, then, there are self-adjoint extensions. The general
theory of self-adjoint extensions of operators like H0 was developed and harvested
by T. Kato [Kat66]. For several potentials of interest, like the attractive Coulomb
potential and the harmonic oscillator, one can prove H0 is essentially self-adjoint.We
saw these results in Examples10.52, Sect. 10.4, as consequences of general theorems.
There is a whole branch of functional analysis in Hilbert spaces devoted to this sort
of problems. We mention just one easy corollary of Theorem10.50.

Theorem 13.6 (Kato) Consider the differential operator on R
3:

H0:= − �
2

2m
Δ + V (x) , (13.11)

2Observe, nevertheless, that if the derivative exists both in the ordinary and in the L2 sense, the two
coincide by Proposition2.32 for p = 2.

http://dx.doi.org/10.1007/978-3-319-70706-8_5
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_2
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defined on some dense domain D(H0) ⊃ S (R3). Suppose

V (x) =
N∑

j=1

g j

|x − x j | + U (x) , (13.12)

where g j are constants, x j ∈ R
3 are given points and U : R

3 → R is measurable
and (essentially) bounded. Then
(a) H0 is essentially self-adjoint on D(H0), D(R3) and S (R3).
(b) The common self-adjoint extension H0 of the operators in (a) coincides with the
self-adjoint operator −Δ + V defined on D(−Δ).
(c) σ(H0) is bounded from below.

In general, if the Hamiltonian H of a certain system has point spectrum σp(H), every
eigenvector ψE of H , for E ∈ σp(H), has a trivial evolution:

UtψE = e−i t E
� ψE .

This says the pure state ρE := ψE (ψE | ) associated to ψE (||ψE || = 1) does not
evolve in time. These very special states are called stationary states of the system.
When one studies the macroscopic system of an atom or a molecule, the starting
point is describe the heavier parts – nuclei – as classical systems, that act by electric
Coulomb forces on peripheral electrons viewed as quantum particles. The electrons’
quantum states are stationary for their Hamiltonian.More on this in Example13.8(3).

Remarks 13.7 (1)Referring to Theorem13.6 it can be proved (cf. [CCP82, Sect.VI]
and especially [Hel64, Sect. 11]) that if some g j vanish and the remaining are strictly
negative then σp(H0) �= ∅.
(2)By virtue of Theorem10.51, H0 continues to be essentially self-adjoint onD(R3)

and the only self-adjoint extension is bounded frombelowprovidedU is non-negative
and lower bounded. In that case [CCP82, Hel64], if g j = 0 for every j and U is
regular enough and tends to infinity as |x| → +∞, then σ(H0) = σp(H0) �= ∅.
(3) One of the highest mountain tops the inexperienced student has to conquer when
taking on QM is to understand the motivations behind the regularity constraints
imposed on the eigenvalues of the theory’s Hamiltonian. The characteristic equation

H0ψE = EψE , with E ∈ R , ψE ∈ L2(R3, dx) ,

should give, roughly speaking, the stationary states of the systemwhose Hamiltonian
is determined by H0. Consider, as often in physics, an operator of the form (13.11)
where the function U : R

3 → R of (13.12) has finite discontinuities on some
regular surfaces σk , k = 1, 2, . . . , N (disjoint from one another and from other
isolated singularities of V ) and is continuous everywhere else. We also want U to
be bounded (by remark (2) we could just require lower boundedness). QM manuals
typically require the functions ψE further satisfy the following conditions:

(1) away from the singularities of V the ψE are C2 (actually C∞),

http://dx.doi.org/10.1007/978-3-319-70706-8_10
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(2) the ψE solve H0ψE = EψE for some E ∈ R, i.e. interpreting the operator as
if it were a differential operator, away from the singularities of V ,

(3) on singular surfaces σk themapsψE and the normal derivatives are continuous,
(4) at isolated singularities ψE admits finite limits.

The constraints are sometimes justified in a sort-of-whimsical way in textbooks (this
happens in particular for the analogous statements for R

1).
What we can say is, first, that H0 is not the operator representing the Hamiltonian

observable, because H0 is not self-adjoint! The operator in question is a self-adjoint
extension of H0. Theorem13.6 warrants, under the assumptions made, H0 is essen-
tially self-adjoint onD(R3), so there is one self-adjoint extension that coincides with
the closure of H0 and with its adjoint as well: H0 = H∗

0 . Stationary states are given
by the spectrum of H∗

0 , i.e. by solutions to

H ∗
0 ψE = EψE , E ∈ R , ψE ∈ D(H∗

0 ) .

This equation, since D(R3) is dense in L2(R3, dx), may be written:

(ϕ|H∗
0 ψE ) = E(ϕ|ψE ), E ∈ R, for every ϕ ∈ D(R3) and a given ψE ∈ D(H∗

0 ).

Using the definition of adjoint, the equation reads

(H0ϕ|ψE ) = E(ϕ|ψE ) , E ∈ R , for any ϕ ∈ D(R3) and a given ψE ∈ D(H∗
0 ).

Put differently, we seek functions ψE ∈ L2(R3, dx) such that, for any ϕ ∈ D(R3):

∫

R3

(
− �

2

2m
Δϕ(x) + V (x)ϕ(x) − Eϕ(x)

)
ψE (x) dx = 0 . (13.13)

Hence the ψE do not necessarily solve H∗
0 ψE = EψE , for it is enough they solve it

weakly: they must satisfy (13.13) for any ϕ ∈ D(R3). Issues of this kind [ReSi80]
are dealt with by the general theory of elliptic regularity, which proves [CCP82,
Hel64] ψE ∈ L2(R3, dx) satisfies (13.13), with the aforementioned assumptions on
the potential V , if and only if ψE satisfies conditions (1)–(4). �

Examples 13.8
(1) The simplest example is the free spinless particle of mass m > 0, described on
the Hilbert space L2(R3, dx) associated to the axes of an inertial system I . Pure
states are represented by wavefunctions, i.e. unit elements ψ ∈ L2(R3, dx). The
Hamiltonian is simply:

H := 1

2m

3∑

k=1

Pk�2S (R3)
= − �

2

2m
Δ�S (R3) . (13.14)
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Let us briefly discuss its self-adjointness. Although everything should be clear from
Proposition10.45, we think it might be interesting to go over a few facts. The left-
hand side of (13.14) is self-adjoint since

H0 := 1

2m

3∑

k=1

Pk�2S (R3)= − �
2

2m
Δ�S (R3)

is essentially self-adjoint. The proof is direct via the unitary Fourier-Plancherel oper-
ator F̂ , noting that in the space L2(R3, dk) of transformed maps ψ̃ := F̂ (ψ), the
above operator multiplies by:

k �→ �
2

2m
k2 ,

and has dense domain D(F̂−1H0F̂ ) := S (R3). By construction F̂−1H0F̂ is
symmetric, and it is easy to prove its essential self-adjointness by showing

K er((F̂−1H0F̂ )∗ ± i I ) = {0} ,

or by proving that each vector of D(R3) ⊂ S (R3) is analytic for F̂−1H0F̂ . The
same holds for H0, since F̂ is unitary.

By construction if H := H0, then H̃ := F̂−1HF̂ acts as multiplicative operator:

(
H̃ ψ̃

)
(k) = �

2

2m
k2ψ̃(k) ,

where

D(H̃) =
{
ψ̃ ∈ L2(R3, dk)

∣∣∣∣

∫

R3
|k|4|ψ̃(k)|2dk < +∞

}
.

An alternative definition for H comes from taking the unique self-adjoint extension
of H0 defined on D(R3) instead of S (R3):

H0 := 1

2m

3∑

k=1

Pk�2D(R3)= − �
2

2m
Δ�D(R3) .

However, H0 is still essentially self-adjoint and its self-adjoint extension is the pre-
vious H . Or, we could define H0 on F̂ (D(R3)), and find the same result. All this
descends from Proposition10.45.

(2)An interesting case inR
3 iswhere the freeHamiltonian ismodified by the potential

energy of the attractive Coulomb potential:

V (x) = eQ

|x| ,

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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where e < 0, Q > 0 are constants expressing the electric charges of the particle
and the centre of attraction respectively. The assumptions of Kato’s theorem10.50
(or 10.48) hold (m, � > 0 are constants that play no role, since we can multiply the
operator by 2m/�

2 without loss of generality). Therefore:

H0 := − �
2

2m
Δ + V (x)

is essentially self-adjoint, whether defined on D(R3) or S (R3). If −Q = e is the
charge of the electron (−1.60 · 10−19 C), and m = me its mass (9.11 · 10−31 Kg), the
only self-adjoint extension H0 corresponds to the Hamiltonian of an electron inside
the electric field of a proton (neglecting spin effects and envisaging the proton as
a classical object of infinite mass). This gives the simplest quantum description of
the Hamiltonian operator of the hydrogen atom. Although V is not bounded from
below, it is important to note the spectrum of the operator is always bounded, so also
the admissible values of energy are constrained. This implies the hydrogen atom
is an energetically stable system: it cannot collapse under an infinite energy loss
caused by the interaction with the electromagnetic field (i.e. losing the energy of
photons emitted by the atom: this way will not be treated in this physically-very-
elementary book). The analogous classical model, for which the electron and the
attractive centre are dimensionless points, would not have total energy bounded from
below.3 Studying the spectrum of H0 [Mes99, CCP82] shows σc(H0) = [0,+∞),
while σp(H0) = {En}n=1,2,..., where

En = −2π R�c

n2
n = 1, 2, 3, . . . (13.15)

R = me4/(4πc�
3) is theRydberg constant and c the speed of light. Eigenvectors have

a complicated expression [Mes99, CCP82]. For each of the values En , n = 1, 2, 3,
the corresponding eigenspace has a finite basis in spherical coordinates:

ψnlm(r, θ, φ) = −
√(

2

na0

)2
(n − l − 1)!
2n[(n + l)!]3 e− r

na0

(
2r

na0

)l

L2l+1
n+l

(
2r

na0

)
Y m

l (θ, φ) ,

(13.16)
where l = 0, 1, . . . , n − 1 and m = −l,−l + 1, . . . , l − 1, l. The maps Y m

l are the
spherical harmonics (10.44), a0 = �

2/e2me = 0, 529 Å is the radius of Bohr’s first
orbit and Lα

n (x), for x ≥ 0, is the Laguerre polynomial:

Lα
n (x) := dα

dxα

[
ex dn

dxn
(xne−x )

]
, n ∈ N, α = 0, 1, . . . , n.

3Such a classical model would not, anyway, be consistent because of the Bremsstrahlung of the
accelerated electron; as is well known, this fact produces mathematical inconsistencies when the
electronic radius tends to zero.

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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By examining the interaction between photons and the hydrogen atom [Mes99,
CCP82] we know that the electron, initially in a stationary state determined by an
eigenvector of H0 with eigenvalue En , can change state and pass to a new stationary
state of energy Em < En transferring the excess of energy to a photon. The reverse
process may occur, whereby the electron acquires energy from a photon and passes
from a state of energy Em to a state of energy En . Due to the interactions with
photons, it can be proved that only the state of minimum energy E1 = 2π R�c,
the so-called ground state, is stable, while the others are all unstable. The electron
decays to the ground state after a certain mean lifetime to be determined. (Therefore
the name stationary state is not completely appropriate for the system formed by
an atom and the electromagnetic field described by photons. One should rather just
speak of eigenvalues of the Hamiltonian for the hydrogen atom.) The collection
of energy differences En − Em determine all possible photonic frequencies (light
frequencies) that a gas of hydrogen atoms can emit or absorb, by Einstein’s formula
En−Em = hνn,m . The latter relates the frequency νn,m of photons emitted by the atom
to the energy needed by photons that switch from energy En to Em (see Chap.6). XIX
century spectroscopists, though puzzled by the values νn,m , knew them long before
QM was formulated [Mes99, CCP82]. Finding the same values and being able to
explain them in a completely theoretical manner is certainly one of the pinnacles of
physics in the past century.
(3) A second interesting situation, in R

3, is that in which to the Hamiltonian of the
free particle of example (1) we add the Yukawa potential:

V (x) = −e−μ|x|

|x| ,

whereμ > 0 is a positive constant. Here, too, H0 = − �
2

2m Δ+V (x) is essentially self-
adjoint if either defined onD(R3) or onS (R3), because of Kato’s theorem10.50 (or
10.48). The Yukawa potential describes, roughly speaking, the interaction processes
between a pion and the strong force originating from a macroscopic source.

(4) Still referring to example (1), the action of the evolution operator is evident using
the Fourier representation:

(Ũt ψ̃)(k) =
(

e− i t
�

H̃ ψ̃
)

(k) = e− i t�
2m k2

ψ̃(k) . (13.17)

The proof is immediate from the spectral decompositions of H̃ and the commutation
of the spectral measures of P1, P2, P3:

e− i t
�

H̃ = e− i t
2�m P̃2

1 e− i t
2�m P̃2

2 e− i t
2�m P̃2

3 ,

where each P̃j = F̂−1PjF̂ multiplies by

(
P̃j ψ̃

)
(k) = �k j ψ̃(k) .

http://dx.doi.org/10.1007/978-3-319-70706-8_6
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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Back in position representation we look at the evolution of a wavefunction determin-
ing the state UtρU ∗

t when ρ = ψ(ψ | ). This is

ψ(t, x) :=
(

e−i t
�

Hψ
)

(x) =
∫

R3

eik·x

(2π)3/2
ψ̃(k)e−i �t

2m k2
dk (13.18)

where

ψ(x) = ψ(0, x) :=
∫

R3

eik·x

(2π)3/2
ψ̃(k) dk , (13.19)

for ψ ∈ S (R3). In general the integrals should be understood in the sense of the
Fourier-Plancherel transform.

(5) In the previous example Eq. (13.18) can be written without Fourier-transforming
the initial datum ψ , as this proposition establishes.

Proposition 13.9 Take ψ ∈ S (R3) and H = − �

2m Δ, �, m > 0 (the Laplacian Δ

is initially defined on S (R3) or equivalently D(R3)).

(a) For any given t ∈ R, the map ψ(t, x) :=
(

e−i t
�

Hψ
)

(x), x ∈ R
3, belongs to

S (R3).
(b) If t �= 0 and x ∈ R

3:

ψ(t, x) =
(

m�

2π i t

)3/2 ∫

R3
eim�|x−y|2/(2t)ψ(y)dy (13.20)

where the multi-valued square root is computed by branching the complex plane
along the negative real axis.

(c) Let Cψ := (
m�

2π

)3/2 ∫
R3 |ψ(x)|dx. Then

||ψ(t, ·)||∞ ≤ Cψ |t |−3/2 for every t �= 0 . (13.21)

Proof (a) The Fourier transform ψ̃ of ψ ∈ S (R3) is inS (R3). Multiplying by the
exponential e−i�k2/(2m) produces a map ofS (R3). SinceS (R3) is Fourier-invariant,
Eq. (13.18) implies ψ(t, ·) ∈ S (R3).
(b) Equation (13.18) can be rewritten using the Fourier transform and Lebesgue’s
dominated convergence:

ψ(t, x) =
∫

R3

eik·x

(2π)3/2
e−i �t

2m k2

(∫

R3

e−ik·y

(2π)3
ψ(y) dy

)
dk

= lim
ε→0+

∫

R3

eik·x

(2π)3/2
e−i �(t−iε)

2m k2

(∫

R3

e−ik·y

(2π)3
ψ(y) dy

)
dk .

If ε > 0, Fubini-Tonelli allows to write
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ψ(t, x) = lim
ε→0+

∫

R3

(∫

R3
ei(k·(x−y)−�(t−iε)k2/(2m))dk

)
ψ(y) dy .

The inner Gaussian integral can be computed explicitly (e.g., with residue tech-
niques):

ψ(t, x) = lim
ε→0+

(
m�

2π i(t − iε)

)3/2 ∫

R3
eim�|x−y|2/(2(t−iε))ψ(y)dy .

For t �= 0 and x ∈ R
3 fixed, we can take the limit inside the integral due to

dominated convergence: the integrand, in fact, is in absolute value smaller than
|ψ | ∈ L1(R3, dx), uniformly in ε > 0. This gives (13.20).
(c) Follows from (b) directly. �

Equation (13.20) holds on R
d if we replace the exponent 3/2 with d/2. (The wave-

functions ψ(t, x), x ∈ R
d , evolve under the evolution operator generated by the

self-adjoint closure of − 1
2m Δ, where Δ : S (Rd) → L2(Rd , dx) is the Laplacian in

d dimensions.)
Since the integral of |ψ(t, x)|2 over R

3 is constant in time, and |ψ(t, x)|2 at any
point x ∈ R

3 is infinitesimal by (13.21), a wavefunction that is initially non-zero on
a small region in space must increase its support as time goes by, and “spread out”
over increasingly larger regions. �

13.1.4 The Action of the Galilean Group in Position
Representation

Example13.8(4) allows to make explicit, in position representation, the Galilean
group’s action, which we saw at the end of Chap. 12 in momentum representation
for the free particle of spin s. If (τ, c, v, U ) is the generic element of the universal
covering S̃G of the restricted Galilean group, the aforementioned representation is
induced by the unitary operators Z (m)

(τ,c,v,U ) that act, in momentum representation, as
(12.145):

(
Z̃ (m)

(τ,c,v,U )ψ̃
)

(k) := ei(τv−c)·(k−mv)ei τ
2m (k−mv)2ψ̃

(
R(U )−1(k − mv)

)
.

In position representation, anti-transforming with Fourier-Plancherel ψ = F̂−1ψ̃

easily gives

(
Ut Z (m)

(τ,c,v,U )ψ
)

(x) = eim(v·x−v2t/2)ψ
(
t − τ, R(U )−1(x − c) − (t − τ)R(U )−1v)

)

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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for ψ ∈ L2(R2, dx). Put otherwise, if ψ ′(t, x) :=
(

Ut Z (m)

(τ,c,v,U )ψ
)

(x) is the wave-
function acted upon by the element (τ, c, v, U ) of the (universal covering of the)
Galilean group at t = 0, which evolves to time t , we have:

ψ ′(t, x) = eim(v·x−v2t/2)ψ
(
(τ, c, v, U )−1(t, x)

)
(13.22)

by (12.138). For particles with spin s, as we saw in the previous chapter, for fixed
inertial frame the Hilbert space is L2(R3, dx) ⊗ C

2s+1 and wavefunctions are unit
vectors

Ψ =
s∑

sz=−s

ψsz ⊗ |s, sz〉 ,

where |s, sz〉 form the canonical basis of C
2s+1 in which the spin operator Sz is

diagonal with eigenvalues sz .
By this decomposition L2(R3, dx) ⊗ C

2s+1 becomes naturally isomorphic to the
orthogonal sum of 2s + 1 copies of L2(R3, dx). Consequently, the vectors Ψ define
spinors of order s, that is, column vectors of wavefunctions for particles without
spin:

Ψ ≡ (ψs, ψs−1, · · · , ψ−s+1, ψ−s)
t .

Similarly, let Ψ ′
t :=

(
Ut Z (m)

(τ,c,v,U ) ⊗ V (s)(U )Ψ
)
, where V (s)(U ) is the action of

U ∈ SU (2) on spinors for particles of spin s (cf. Sect. 12.3.1). Then the active
Galilean action, in terms of spinors, reads:

ψ ′
s ′

z
(t, x) = eim(v·x−v2t/2)

s∑

sz=−s

V (s)(U )s ′
z sz ψsz

(
(τ, c, v, U )−1(t, x)

)
, (13.23)

where V (s)(U )i j is the matrix entry of V (s)(U ) in the canonical basis of C
2s+1.

Now think of Galilean transformations passively, hence view the Z (m)

(τ,c,v,U ) as uni-
tary operators between distinct Hilbert spaces associated to different frame systems
that describe the same physical system. We can thus describe the transformations
of quantum states between different frame systems. The basic idea is that when one
acts on a state by an active Galilean transformation, and then changes to the trans-
formed reference system by the same active map, in the new frame the transformed
state must look like the original, pre-transformation, one. Therefore the law of pas-
sive transformations of states (coordinate change) corresponds to the inverse active
transformation seen above, meaning that we replace (τ, c, v, U ) with (τ, c, v, U )−1

in (13.23). Let us see this recipe implemented. Take two inertial framesI ,I ′ with
right-handed Cartesian coordinates x1, x2, x3 and x ′

1, x ′
2, x ′

3 and time coordinate t , t ′
respectively. Suppose the coordinate change is the Galilean transformation:

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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⎧
⎪⎨

⎪⎩

t ′ = t + τ ,

x ′
i = ci + tvi +

3∑

j=1

Ri j x j , i = 1,2,3. (13.24)

where τ ∈ R, ci ∈ R, vi ∈ R, R ∈ SO(3). Consider a particle of spin s, so the theory’s
Hilbert space isH := L2(R3, dx)⊗C

2s+1 forI , andH′ := L2(R′3, dx ′)⊗C
2s+1′

for
I ′. The spaces R

3 and R
′3 are identified with the rest spaces of their frame systems

by the coordinates. The canonical bases of C
2s+1, C

2s+1′
are the eigenvector bases

of the spin operators along the third axes, S3 and S3′ . Choose a matrix U ∈ SU (2)
whose image under the covering of SO(3) is R. (Note the parameters v, U also show
up in the phase factor, and are given up to sign, as seen in the previous chapter: this
sign may change the vectors representing a pure state, but does not alter the state
itself.) Consider a pure state described in I by the unit vector Ψ and its evolution
in I . The state Ψ corresponds to a state Ψ ′ in I ′, together with its evolution. The
relationship between the spinors Ψ and Ψ ′ evolves according to

ψ ′
s ′

z
(t ′, x′) = e−im(v·R(U )x+v2t/2)

s∑

sz=−s

V (s)(U )s ′
z sz ψsz (t + τ, R(U )x + τv + c) ,

(13.25)
obtained replacing (τ, c, v, U ) by (τ, c, v, U )−1 in (13.23) (the parameters v, U also
appear in the phase, and the ones of the inverse Galilean transformation must be
used). For spin s = 0, in particular:

ψ ′(t ′, x′) = e−im(v·R(U )x+v2t ′/2)ψ (t + τ, R(U )x + τv + c) , (13.26)

where the coordinates (t, x) and (t ′, x′) are related by (13.24).

Remark 13.10 Notice how the term e−im(v·R(U )x+v2t/2) cannot be removed by taking
another representative for the projective ray, since the phase depends on the vari-
able x. The resulting equation, therefore, is not the transformation we would expect
intuitively, if we imagine that the spinless wavefunction and each component of
the wavefunction with spin s �= 0 are scalar fields on the spacetime of classical
physics. The scalar-field interpretation of wavefunctions in position representation
is a priori not automatic, and totally false (not just for one choice of phase) in rela-
tivistic theories, where wavefunctions in position representation (within the so-called
Newton-Wigner formalism [Var07]) are highly nonlocal objects.4 �

4One should not confuse a wavefunction in position representation with the field of second quanti-
sation, which is a local object instead.
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13.1.5 Basic Notions of Scattering Processes

Consider a quantum system, for instance a single quantum particle, described on the
Hilbert spaceH (after an inertial system has been fixed) and whose evolution is given
by a Hamiltonian operator H = H0 + V . The term H0 is the Hamiltonian of the
“non-interacting theory” that we may think, to fix ideas, as described by the purely
kinetic Hamiltonian of the particle, even if we could consider more involved multi-
particle quantum systems. The other term V represents therefore the interaction with
an external field or the self-interaction, and is often unknown or partially known. In
certain circumstances, in the distant past or future a state described by ψ behaves
“as if it evolved” under the non-interacting Hamiltonian H0. This happens typically
in scattering processes.

Consider for example one particle: initially free, it interacts briefly with a scat-
tering centre – a system we can treat as semi-classical – and then becomes again
free. Experimentally speaking, we can say the system is prepared at t → −∞ in an
approximatively free state, and after the interaction, as t → +∞, it manifests itself
in a state that can still be seen as free. Examining the difference between prepared
state and observed state gives informations on the structure of the scattering centre,
and more generally on the type of interaction described by V . In more complicated
situations there is no scattering centre, and one has to deal with two or more particles,
or even systems with an unknown number of particles that (self-)interact very briefly
and return swiftly to a non-interacting setup.

We will introduce the basic mathematical ideas to formalise all that, referring
the reader to advanced texts [ReSi80, Pru81, Mes99, CCP82] for details and gen-
eralisations to several particles (or relativistic processes with unknown number of
particles).

The fact that for certain state vectors in the system, generically indicated by φ, the
evolution in time is approximated by the non-interacting evolution in the far future,
is expressed by

lim
t→+∞ ||e−i t Hφ − e−i t H0ψ || = 0 . (13.27)

for some state ψ distinct from, but determined by, φ. Equivalently, since eit H is
unitary:

lim
t→+∞ ||φ − eit H e−i t H0ψ || = 0 . (13.28)

The argument can be clearly replicated for t → −∞, to describe what happens long
before the interaction takes place, when the evolution is taken to be free. For several
reasons, both theoretical and experimental, it is convenient to describe scattering
using vectors like ψ , that evolve by the Hamiltonian of the non-interacting theory,
rather than φ, which evolves under the interacting Hamiltonian. This motivates the
introduction of wave operators Ω±, also known as Møller operators:

Ω±ψ := lim
t→±∞ eit H e−i t H0ψ , ψ ∈ H, (13.29)
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assuming the limit exists.
If the operators Ω± : H → H exist they must be isometries, since they are strong

limits of unitary operators.More preciselyΩ± are partial isometries (Definition3.72)
with initial space the whole H. Consequently the final spaces

H± := Ran(Ω±) (13.30)

are closed in H by Proposition3.73. By construction if φ± ∈ H±, so φ± = Ω±ψ for
some ψ ∈ H, it follows5

||e−i t Hφ± − e−i t H0ψ || → 0 as t → ±∞. (13.31)

Hence H± determine the class of states whose long-time future evolution, or long-
time past evolution, can be approximated by the free evolution of the states obtained
by swapping the Ω±. Equation (13.31), exactly as we wanted, tells that the state of
the interacting system φ±, evolving under the full Hamiltonian H = H0 + V , has
the asymptotic behaviour (as t → ±∞, respectively) of the state ψ in the non-
interacting system, which evolves under the free Hamiltonian H0.
In detail:

Proposition 13.11 If the surjective isometry Ω± : H → H± of (13.29) is defined,
then

e−i t HΩ± = Ω±e−i t H0 . (13.32)

Consequently

e−i t HH± ⊂ H±, e−i t H�H±= Ω±e−i t H0Ω−1
± , H�H±∩D(H)= Ω± H0Ω

−1
± , (13.33)

and in particular:
σ(H�H±∩D(H)) = σ(H0) . (13.34)

Proof As for the first statement

e−i t HΩ±ψ = lim
s→±∞ ei(s−t)H e−is H0ψ = lim

z→±∞ eizH e−i zH0e−i t H0ψ = Ω±e−i t H0ψ ,

whence e−i t HH± ⊂ H± and e−i t H �H±= Ω±e−i t H0Ω−1
± . Stone’s theorem easily

implies the other relation. Eventually,Ω± : H → H± being isometric proves (13.34)
by the last identity in (13.33) (Exercise8.9). �

For the usual non-relativistic particle the non-interacting Hamiltonian H0, that
accounts for the kinetic energy only, has spectrum σ(H0) = σc(H0) = [0,+∞).
Under the above proposition’s assumptions, then, σ(H�H±∩D(H)) = σc(H�H±∩D(H)

) = [0 + ∞).

5In fact ||e−i t H Ω±ψ−e−i t H0ψ || = ||Ω±ψ−eit H e−i t H0ψ || → ||Ω±ψ−Ω±ψ || = 0 as t → ±∞.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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So let us assume the wave operators Ω± : H → H± do exist on some physical
system, and suppose the system has been prepared in a state that, as t → −∞, tends
to be described by the non-interacting evolution of e−i t H0ψin . Hence the system’s
real state will be described, at t = 0, by the state φ− := Ω−ψin . After the interaction,
as t → +∞, the state will be described approximatively by a non-interacting vector
e−i t H0ψout . The real state, at t = 0, is described by φ+ := Ω+ψout . The probability
of the process is thus:

|(φ+|φ−)|2 = |(Ω+ψout |Ω−ψin)|2 = |(ψout |Ω∗
+Ω−ψin)|2 .

Define the scattering operator, also called S matrix:

S := Ω∗
+Ω− : H → H . (13.35)

The transition amplitude froma state that behaves as a non-interacting state e−i t H0ψin ,
as t → −∞, to the state that behaves like a non-interacting state e−i t H0ψout as
t → +∞, equals:

(ψout |Sψin) . (13.36)

In this picture, the interaction V is completely “withheld” by S, whilewe can consider
the states ψin/out as being indeed free. Overall we have, as we were saying at the
beginning, a recipe to describe the scattering in terms of states in a non-interacting
system. To conclude, we have a proposition.

Proposition 13.12 If the surjective isometries Ω± : H → H± of (13.29) exist, and
H+ = H− (in particular, under asymptotic completeness, see Remark13.13(1)), the
scattering operator (13.35) is unitary.

Proof It is enough to prove S∗S = SS∗ = I . Since Ω± is a partial isometry with
initial space H and final space H±, by Proposition3.74

Ω∗
±Ω± = I , Ω±Ω∗

± = PH± .

where PH± : H → H is the orthogonal projector onto H±. Therefore

S∗S = Ω∗
−Ω+Ω∗

+Ω− = Ω∗
− PH+Ω− = Ω∗

− PH−Ω− = Ω∗
−Ω− = I .

Similarly,

SS∗ = Ω∗
+Ω−Ω∗

−Ω+ = Ω∗
+ PH−Ω+ = Ω∗

+ PH+Ω+ = Ω∗
+Ω+ = I ,

ending the proof. �

Remarks 13.13 (1) Next to H± it is useful to introduce the space of stationary
states Hp, given by the closure of the span of eigenvectors of H , which describe
stationary states (see Remark9.15(2)). Physically, one expects elements φ ∈ Hp to

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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represent precisely states whose evolution cannot be approximated, at large times,
by non-interacting states. That is because the evolution of such a state φ(φ| ) (with
||φ|| = 1) is trivial, for φ is an eigenvector of H . What we expect, said more
accurately, is to have an orthogonal sum

H = H± ⊕ Hp . (13.37)

If this happens one speaks about asymptotic completeness. Note that (13.37)
implies:

H+ = H− = H⊥
p , (13.38)

and by (13.34), also
σpc(H) = σ(H0) (13.39)

(Remark9.15(2)). At last, asymptotic completeness and (13.38) make the operator
S unitary by Proposition13.12.
(2) The next easy result relates the orthogonality of H± and Hp with the properties
of the evolution operator generated by H0.

Proposition 13.14 If the surjective isometry Ω± : H → H± of (13.29) exists, and
(ψ |e−i t H0ψ ′) → 0 as t → ±∞ for any ψ,ψ ′ ∈ H, then H± ⊥ Hp.

Proof Define φ± := Ω±ψ and suppose HφE = EφE . Then

(φ±|φE ) = lim
t→±∞(eit H e−i t H0ψ |φE ) = lim

t→±∞(e−i t H0ψ |eit HφE )

= limt→±∞ e−i Et (e−i t H0ψ |φE ) = 0. �

(3)The short and compressed description of scattering theorywe have presented does
not work in Quantum Field Theory: defining the unitary operatorsΩ± is not possible
under simple, physically plausible hypotheses on spatial homogeneity (the theory’s
invariance under the group of space translations). The obstruction is exquisitely the-
oretical and goes under the name of Haag theorem [Haa96]. In order to overcome the
problem we can turn to the LSZ formalism [Haa96], in which scattering descriptions
employ the weak topology. However, these issues assume an ivory-tower flavour, so
to speak, when compared to the much more serious problem of renormalisation. �

Example 13.15 Take a free spinless particle (in the sequel � = 1) of mass m > 0,
subject to a square-integrable potential V on R

3 in a given inertial system. Then

H = L2(R3, dx), H0 = − 1
2m Δ (the Laplacian Δ is as usual initially defined on

D(R3) or S (R3)), and V ∈ L2(R3). Theorem10.48 (redefining the coordinates of
R

3 so to comprise the factor (2m)−1) guarantees H = H0 + V is self-adjoint on
D(H0), so D(H) = D(H0).

We wish to show the wave operators Ω± are well defined, and that H± ⊥ Hp.
First, a technical lemma.

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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Lemma 13.16 If H = L2(R3, dx), H0 = − 1
2m Δ and V ∈ L2(R3), let H = H0 + V

and U0(t) := e−i t H0 , U (t) := e−i t H . Then

d

dt
U (−t)U0(t)ψ = U (−t)iV U0(t)ψ , ψ ∈ D(H0) = D(H). (13.40)

Hence, for T > t:

||(U (−T )U0(T ) − U (−t)U0(t))ψ)|| ≤
∫ T

t
||V U0(s)ψ ||ds , (13.41)

Proof Set Ωt := U (−t)U0(t). Then

d

dt
Ωtψ = lim

h→0

U (−(t + h))U0(t + h) − U (−t)U0(t)

h
ψ .

Decompose the derivative

d

dt
Ωtψ = lim

h→0

U (−(t + h))(U0(t + h) − U0(t))

h
ψ + lim

h→0

(U (−(t + h)) − U (−t))U0(t)

h
ψ .

Since U0(t)D(H0) ⊂ D(H0) = D(H), Stone’s theorem shows the second limit
equals

U (−t)i HU0(t)ψ .

As for the first limit, we compute the norm squared of the difference between
−iU (−t)H0U0(t)ψ and U (−(t+h))(U0(t+h)−U0(t))

h ψ . By Stone’s theorem and the uni-
tarity of U (−(t + h)):

lim
h→0

U (−(t + h))(U0(t + h) − U0(t))

h
ψ = −iU (−t)H0U0(t)ψ .

As H − H0 = V , we have:

d

dt
Ωtψ = U (−t)iV U0(t)ψ ,

for ψ ∈ D(H0), so for any φ ∈ H

d

dt
(φ|Ωtψ) = (φ|U (−t)iV U0(t)ψ) .

The right-hand side is continuous, so the fundamental theorem of calculus gives

(φ|ΩT ψ) − (φ|Ωtψ) =
∫ T

t
(φ|U (−s)iV U0(s)ψ)ds .
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But U (s) is unitary,

|(φ|(ΩT − Ωt )ψ)| ≤
∫ T

t
||φ||||V U0(s)ψ ||ds ,

and choosing φ = (ΩT − Ωt )ψ we recover (13.41):

||(ΩT − Ωt )ψ)|| ≤
∫ T

t
||V U0(s)ψ ||ds ,

ending the proof. �

This lemma allows to prove the existence ofwave operators on the system considered.

Proposition 13.17 TakeH = L2(R3, dx), H0 = − 1
2m Δ, V ∈ L2(R3), and consider

the self-adjoint operator H = H0 + V .
(a) The wave operators Ω± : H → H± in (13.29) are well defined.
(b) H± ⊥ Hp.

Remark 13.18 The theorem applies to the special case where V is a Yukawa
potential (Example13.8(3)). One can reach a stronger conclusion: by assuming
V ∈ L1(R3, dx)∩L2(R3, dx), as for theYukawa potential, asymptotic completeness
holds, hence the scattering operator is unitary [ReSi80]. �

Proof (a) Let us begin with the existence of Ω+, for Ω− is similar. If ψ ∈ S (R3) ⊂
D(H0) = D(H), estimate (13.41) implies immediately:

||(U (−T )U0(T ) − U (−t)U0(t))ψ)|| ≤
∫ T

t
||V ||2||U0(s)ψ ||∞ds

because if ψ ∈ S (R3) then U0(t)ψ ∈ S (R3) (cf. Example13.8(5)). Using (13.21)
we find:

||(U (−T )U0(T )ψ − U (−t)U0(t)ψ)|| ≤ 2CV,ψ

(
1√|t | − 1√|T |

)
. (13.42)

This shows every sequence of vectors ψn := U (−tn)U0(tn)ψ is a Cauchy sequence
when tn → +∞ for n → +∞, so it converges to φ ∈ H. On the other hand
Eq. (13.42) proves such limit does not depend on the sequence chosen. Hence if
ψ ∈ S (R3) there exist a (unique) φ ∈ H so that

lim
t→+∞ U (−t)U0(t)ψ = φ . (13.43)

This extends easily to ψ ∈ H, because S (R3) is dense in H. Let us prove the
latter assertion. Set Ωt := U (−t)U0(t). By the above considerations Ω ′ψ :=
limt→+∞ Ωtψ is well defined provided ψ ∈ S (R3). Since this space is dense in
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H and every Ωt is isometric, the operator Ω ′ extends to a linear isometry on H. To
conclude it suffices to prove Ωtψ → Ω ′ψ , t → +∞, for any ψ ∈ H. If ψ ∈ H
consider a sequence {ψn}n∈N ⊂ S (R3) with ψn → ψ , n → +∞ in H. Then

||Ωtψ − Ω ′ψ || ≤ ||Ωtψ − Ωtψn|| + ||Ωtψn − Ω ′ψn|| + ||Ω ′ψn − Ω ′ψ || .

Since Ωt and Ω ′ are isometric, we can rewrite it as

||Ωtψ − Ω ′ψ || ≤ ||ψ − ψn|| + ||Ωtψn − Ω ′ψn|| + ||ψn − ψ || .

Given ε > 0, choose n ∈ N large enough so that ||ψ − ψn|| < 2ε/3. For that n,
by the first part of the proof, we can pick T ∈ R so that ||Ωtψn − Ω ′ψn|| < ε/3
for t > T . Hence we can determine, for every ε > 0, T ∈ R such that t > T gives
||Ωtψ − Ω ′ψ || ≤ ε. And this holds for any ψ ∈ H, ending (a).
(b) It is enough toprove, in our hypotheses, that Proposition13.14holds.Wewill show
that this descends from (13.21). Fixψ, φ ∈ H and consider corresponding sequences
ψn, φn ∈ S (R3) with ψn → ψ , φn → φ in H as n → +∞. If δn := ψ − ψn and
δ′

n := ψ ′ − ψ ′
n , we have

|(ψ |U0(t)ψ
′)| ≤ |(δn|U0(t)δ

′
n)|+|(δn|U0(t)ψ

′
n)|+|(ψn|U0(t)δ

′
n)|+|(ψn|U0(t)ψ

′
n)|.

By using Schwarz’s inequality and the fact U0(t) is isometric we find

|(ψ |U0(t)ψ
′)| ≤ ||δn||||δ′

n|| + ||δn||||ψ ′
n|| + ||ψn||||δ′

n|| + |(ψn|U0(t)ψ
′
n)| .

But the norm is obviously continuous in H, and δn → 0 and δ′
n → 0 as n → +∞.

Hence for any given ε > 0, ||δn||||δ′
n|| , ||δn||||ψ ′

n|| and ||ψn||||δ′
n|| are all smaller

than ε/4 for some large n ∈ N. Therefore

|(ψ |U0(t)ψ
′)| ≤ 3ε/4 + |(ψn|U0(t)ψ

′
n)| .

Computing the inner product on L2(R3, dx) explicitly, and since ψn, ψ
′
n, U0(t)ψ ′

n ∈
S (R3), we obtain

|(ψn|U0(t)ψ
′
n)| ≤ ||U0(t)ψ

′
n||∞

∫

R3
|ψn(x)|dx .

By (13.21) there exists T > 0 for which the right-hand side above is bounded by
ε/4 when t > T . Altogether, for any pair ψ,ψ ′ ∈ H, if ε > 0 there is T > 0 such
that |(ψ |U0(t)ψ ′)| ≤ ε whenever t > T . �

�



818 13 Selected Advanced Topics in Quantum Mechanics

13.1.6 The Evolution Operator in Absence of Time
Homogeneity and Dyson’s Series

We return to the evolution operator to discuss a generalisation that has to do with
Schrödinger’s equation.An important remark,made in axiomA6, is that the evolution
operatorUτ is actually independent of the initial instant. If we fix the state ρ at initial
time t , Uτ ρU ∗

τ will be the state at time t + τ . Had we fixed the same state ρ at initial
time t ′ �= t , the state at time t ′ + τ would have been Uτ ρU ∗

τ again. So the system’s
laws of dynamics are unaffected in the time interval [t, t ′]. In other terms axiom A6
adopts, for the system S in the frame I , the homogeneity of time. Classically, this
situation corresponds to having the Hamiltonian not explicitly dependent on time in
the coordinates of a certain frame. This is not the case in more general dynamical
situations, like when S interacts with an evolving external world. If, on the contrary,
S is isolated (though this is not the only possibility) and we describe it in an inertial
system, then time is homogeneous, as in classical mechanics.

But if time is not homogeneous, time evolution is axiomatised as follows.

A6’. Let the quantum system S be described in an (inertial) reference frame I , with
space of states HS . There exists a family {U (t2, t1)}t2,t1∈R of unitary operators on HS ,
called evolution operators from t1 to t2, satisfying, for t, t ′, t ′′ ∈ R:

(i) U (t, t) = I ,
(ii) U (t ′′, t ′)U (t ′, t) = U (t ′′, t),
(iii) U (t ′, t) = U (t, t ′)∗ = U (t ′, t)−1

and such that the function R
2 � (t, t ′) �→ U (t, t ′) b is strongly continuous.

Furthermore, if ρ is the state at time t0, the evolved state at time t1 (which may
precede t0) is U (t1, t0)ρU (t1, t0)∗.

Themain differencewith axiomA6 is that nowwe cannot associate a self-adjoint gen-
erator to the family {U (t2, t1)}t2,t1∈R. What is more, speaking of Hamiltonian of the
system makes no longer sense, in general. We may still retain such a notion nonethe-
less (in the sense of a time-dependent Hamiltonian) by generalising Schrödinger’s
equation and defining the U (t ′, t) as its solutions. Formally, the operator Uτ of A6
satisfies Schrödinger’s equation (with � = 1):

s− d

dτ
Uτ = −i HUτ .

For the generalised evolution operatorU (t ′, t), we can assume an analogous equation

s− d

dτ
U (τ, t) = −i H(τ )U (τ, t) , (13.44)

whenever to each instant τ an observable is assigned, called Hamiltonian at time
τ , that expresses the system’s energy (in the given frame) at time τ . This energy is,
in general, not a preserved quantity. In order to treat Eq. (13.44) rigorously we must
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address a few delicate technical problems concerning the distinct domains of the
various H(τ ). Despite that, the equation remains extremely useful in a number of
practical applications. The Dyson series, pivotal in Quantum Electrodynamics and
QuantumField Theory, is a formal solution to (13.44). To this end let us prove a result
that illustrates the simplified situation where each Hamiltonian H(τ ) is bounded and
defined on the entire Hilbert space. In that case the collection of the H(τ ) determines,
via (13.44), a continuous family of evolution operators U (t ′, t) given by the Dyson
series.

Proposition 13.19 Let H be a Hilbert space and R � t �→ H(t) = H(t)∗ ∈ B(H)

strongly continuous. Consider the Dyson series of the operators U (t, s):

U (t, s) := I +
∞∑

n=1

(−i)n
∫ t

s
dt1H(t1)

∫ t1

s
dt2H(t2) · · ·

∫ tn−1

s
dtn−1H(tn) (13.45)

where iterated integrals are defined as in Proposition9.31. Then the series converges
uniformly. Moreover:
(a) the U (t, s) are unitary and satisfy (i), (ii), (iii) in A6’;
(b) the map R � (t, s) �→ U (t, s) is continuous in the uniform topology;
(c) the generalised Schrödinger equation holds:

s − d

dt
U (t, s) = −i H(t)U (t, s) for every t, s ∈ R; (13.46)

(d) expression (13.45) may be written:

U (t, s) =
+∞∑

n=0

(−i)n

n!
∫ t

s

∫ t

s
· · ·

∫ t

s
T [H(t1)H(t2) · · · H(tn)] dt1dt2 · · · dtn .

(13.47)
Above,

T [H(t1)H(t2) · · · H(tn)] := H(τn)H(τn−1) · · · H(τ1)

is the chronological reordering operator of the product: τn is the largest among
t1, . . . , tn, then comes τn−1 ≤ τn as second-largest and so on for every t1, . . . , tn,
up to the smallest value τ1.

Proof First of all every term in Dyson’s expansion

Un(t, s) = (−i)n
∫ t

s
dt1H(t1)

∫ t1

s
dt2H(t2) · · ·

∫ tn−1

s
dtn−1H(tn)

makes sense, since by Proposition9.31(c) each integral on the right, starting from the
right-most (tn−1, s) �→ ∫ tn−1

s dtn−1H(tn), is an operator-valued map ranging inB(H)

and jointly strongly continuous in the integration limits (hence in the upper limit
alone, too). The product (as pointwise operation) of two such maps is still strongly

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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continuous and valued in B(H), so it can be integrated. Using Proposition9.31,
where now the L1 map is the characteristic function of the interval [s, tk], the nth
term Un(t, s) in Dyson’s series, t, s ∈ [T, S], satisfies

||Un(t, s)|| ≤ Aa,b := |b − a|n
n!

(

sup
τ∈[a,b]

||H(τ )||
)n

, (t, s) ∈ [a, b]2 . (13.48)

As we observed in the proof of Proposition9.31, since τ �→ H(τ ) is strongly con-
tinuous, supτ∈[a,b] ||H(τ )|| < +∞ by Banach-Steinhaus. Hence 0 ≤ Aa,b < +∞.
Since the series of positive terms Aa,b converges, the Dyson series converges in the
uniform topology, uniformly in (s, t) on every compact set. Therefore if every Dyson
term is uniformly continuous (proved next) then (t, s) �→ U (t, s) is uniformly con-
tinuous. To show that the Dyson terms are uniformly continuous, we must resort to
their recurrence relation:

Un(t, s) = −i
∫ t

s
H(τ )Un−1(τ, s)dτ . (13.49)

It implies, working on the compact set [a, b] × [a, b],

||Un(t, s) − Un(t
′, s ′)|| ≤

∣∣∣
∣

∣∣∣
∣

∫ t

t ′
H(τ )Un−1(τ, s)dτ

∣∣∣
∣

∣∣∣
∣

+
∣∣∣∣
∣

∣∣∣∣
∣

∫ t ′

s
H(τ )(Un−1(τ, s) − Un−1(τ, s ′))dτ

∣∣∣∣
∣

∣∣∣∣
∣
+

∣∣∣∣
∣

∣∣∣∣
∣

∫ s ′

s
H(τ )Un−1(τ, s ′)dτ

∣∣∣∣
∣

∣∣∣∣
∣

,

so by Proposition9.31(a):

||Un(t, s) − Un(t
′, s ′)|| ≤ |t − t ′| sup

(τ,σ )∈[a,b]2
||H(τ )||||Un−1(τ, σ )||

+(b − a) sup
τ∈[a,b]

||H(τ )||||Un−1(τ, s) − Un−1(τ, s ′)||

+|s − s ′| sup
(τ,σ )∈[a,b]2

||H(τ )||||Un−1(τ, σ )|| .

Hence if (t, s) �→ Un−1(t, s) is uniformly continuous, so is (t, s) �→ Un(t, s); in
particular

sup
τ∈[a,b]

||H(τ )||||Un−1(τ, s) − Un−1(τ, s ′)|| → 0 as s → s ′

because the continuity of (t, s) �→ Un−1(t, s) on [a, b]2 implies uniform continuity
(besides, supτ∈[a,b] ||H(τ )|| < +∞ exists). The induction principle tells we can just

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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prove that

U1(t, s) := −i
∫ t

s
dt1H(t1)

is continuous. But this is true by (i) in Proposition9.31(c). With this we proved
(b) and part of (a). To finish (a) we will use (c), so let us prove that first. Applying
Proposition9.31(b, c) to the terms of the Dyson series computed onψ , differentiating
term by term and using (13.49), we arrive at

d

dt
U (t, s)ψ = −i H(t)U (t, s)ψ, i.e. s− d

dt
U (t, s) = −i H(t)U (t, s), (13.50)

provided we can exchange sum and derivative. Using (13.48) together with

sup
t∈[a,b]

||H(t)|| < +∞

tells the derivatives’ series converges uniformly on compact sets in the uniform
topology, hence uniformly in the strong topology. Hence the Dyson series can be
differentiated in t (strongly) term by term, which proves (13.50) and thus (c). Now
we can finish claim (a). With a similar procedure, in particular employing Proposi-
tion9.31(ii), we obtain

d

ds
(φ|U (t, s)ψ) = i(φ|U (t, s)H(s)ψ) .

From this and (13.50) follows

d

ds
(φ|U (t, s)U (s, t)ψ) = i(φ|U (t, s)(H(s) − H(s))U (s, t)ψ) = 0 ,

so in particular (φ|U (t, s)U (s, t)ψ) = (φ|U (t, t)U (t, t)ψ) . But U (t, t) = I , so
U (s, t) = U (t, s)−1. From (13.50) we have

d

dt
||U (t, s)ψ ||2 = d

dt
(U (t, s)ψ |U (t, s)ψ) .

The right-hand side is easy, and equals

(−i H(t)U (t, s)ψ |U (t, s)ψ) + (U (t, s)ψ | − i H(t)U (t, s)ψ) = 0

by linearity in the right entry, antilinearity in the left, and because H(t) = H(t)∗.
In other words ||U (t, s)ψ || = ||U (s, s)ψ || = ||ψ ||. Consequently every U (t, s) is
unitary, being isometric and onto. So we proved

U (t, s)∗ = U (s, t) = U (t, s)−1 .

http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
http://dx.doi.org/10.1007/978-3-319-70706-8_9
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There remains to check (iii) ofA6’. The operator V (t, s) := U (t, s)−U (t, u)U (u, s)
clearly satisfies d

dt V (t, s)ψ = −i H(t)V (t, s)ψ . Exactly as before

d

dt
||V (t, s)ψ ||2 = d

dt
(V (t, s)ψ |V (t, s)ψ) = 0 ,

by the inner product’s linearity and by H(t) = H(t)∗. Hence ||V (t, s)ψ || =
||V (s, s)ψ ||. But this is null, for U (s, s) = I and U (s, u)U (u, s) = I . Eventu-
ally, then,

U (t, s)ψ = U (t, u)U (u, s)ψ for every ψ ∈ H.

To show (13.47) it suffices, starting from the last relation, to express the iterated
integrals of each series using suitable maps θ , and change names to variables, to get
(13.45). For instance

T [H(t1)H(t2)] = θ(t1 − t2)H(t1)H(t2) + θ(t2 − t1)H(t2)H(t1) ,

where θ(t) = 1 for t ≥ 0 and θ(t) = 0 otherwise. Integrating the sum in dt1dt2 over
[t, s]2, and swapping t1, t2 in the term with θ(t2 − t1), produces the second summand
on the right in (13.45), apart from the constant (−i)2/2!. �
Remarks 13.20 (1)Dyson’s series, written as in (13.47), resembles the expansion of
the time-ordered exponential. For that reason the series is often encountered, with �

back in, in the integral form:

U (t, s) = T
[
e− i

�

∫ t
s H(τ )dτ

]
. (13.51)

If H does not depend on time, the right-hand side reduces precisely to e−i (t−s)
�

H as
expected.
(2)Wehave already noted that theDyson series is central in QuantumField Theory. It
is evenmore fundamental in perturbation theory, where the Hamiltonian decomposes
as H = H0 + V , and V is a correcting term to H0 and to the dynamics it generates.
In such cases one proceeds by the so-called Dirac’s interaction picture [Mes99,
CCP82], in which the Dyson series plays a key part. In general concrete applications
the Dyson series is used also when H is not bounded. For that reason the above
theorem does not apply and the series should be understood in a weak sense of sorts
[ReSi80]. �

13.1.7 Anti-unitary Time Reversal

Let us return to general matters in relation to the time-evolution axiomA6, i.e. under
time homogeneity, and show twomore important corollaries to the lower boundedness
of the spectrum of the Hamiltonian H .



13.1 Quantum Dynamics and Its Symmetries 823

In the previous chapter we saw that if a system admits a symmetry (whether
Kadison or Wigner is irrelevant to Theorem12.14), the latter is a unitary or anti-
unitary transformation. If a system S with Hamiltonian H possesses the time reversal
symmetry γT (cf. Example12.19(2)), the unitary or anti-unitary mapT : HS → HS

it determines (suppose the Hilbert space has one coherent sector) must satisfy

γT

(
γ

(H)
t (ρ)

)
= γ

(H)
−t (γT (ρ)) .

(We set � = 1 henceforth). Equivalently,

e−i t HT ρT −1e+i t H = T e+i t H ρe−i t HT −1 for every ρ ∈ S(HS). (13.52)

Therefore time reversal, when present, is not a dynamical symmetry in the sense of
Definition13.4, owing to the sign flip of time in the dynamical flow. The following
important result rephrases, partially, Proposition13.2.

Theorem 13.21 Consider a system S with Hamiltonian H (of lower-bounded spec-
trum) on the Hilbert space HS. If the spectrum of H is unbounded above, every
operator T : HS → HS satisfying (13.52) is anti-unitary and such that

T −1HT = H .

This applies in particular to the time-reversal symmetry (if it exists).

Proof If V : HS → HS is unitary (or anti-unitary), then V ψ(ψ |V −1·) = V ψ(V ψ |·).
Setting Ut := e−i t H and taking the unitary operator V := (T U−t )

−1UtT , for any
pure state ρ = ψ(ψ | ) we have

(T U−t )
−1UtT ψ

(
(T U−t )

−1UtT ψ
∣∣ ) = ψ(ψ | ) .

Hence for some χt ∈ C with |χt | = 1:

(T U−t )
−1UtT ψ = χtψ , ψ ∈ H.

Replicating the argument of Theorem12.11 shows χt does not depend onψ . What is
more, the map R � t �→ χt is differentiable: take φ ∈ D(H), ψ ∈ T −1D(H) with
(φ|ψ) �= 0 (D(H) is dense) and differentiate the identity (T U−tφ|T −1UtT ψ) =
χt (φ|ψ), if T is unitary, or (T U−tφ|T −1UtT ψ) = χt (φ|ψ) if T is anti-unitary.
Stone’s theorem guarantees derivatives exist. Hence there is a differentiable map
R � t �→ χt such that e−i t HT = T χt eit H , so T −1e−i t HT = χt eit H . Therefore

e∓i tT −1HT = χt e
it H

with ‘−’ ifT is unitary and ‘+’ if anti-unitary (cf. Exercise12.8 for the latter). Note
T −1HT is self-adjoint, so the left-hand side is a strongly continuous unitary group

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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parametrised by t ∈ R. Applying Stone’s theorem tells D(T −1HT ) ⊂ D(H) =
D(cI + H) and

∓ T −1HT �D(H)= cI + H where c := −i
dχt

dt
|t=0 . (13.53)

The constant c is real, for∓T −1HT − H is symmetric on D(H). As amatter of fact
(13.53) is valid everywhere on the domain of the self-adjoint operator ∓T −1HT ,
which has no self-adjoint extensions (cI + H ) other than itself. Therefore

T −1HT = ∓cI ∓ H .

In particular (cf. Exercise12.8 for the anti-unitary case):

σ(H) = σ(T −1HT ) = σ (∓cI ∓ H) = ∓c ∓ σ(H) .

Suppose σ(H) is bounded below but not above: the last identity cannot hold if on
the right there is a − sign, whichever the constant c. Then T must be anti-unitary,
and infσ(H) = inf(c + σ(H)) = c + infσ(H). Hence c = 0, as infσ(H) is finite
by assumption (σ(H) �= ∅ is bounded below). �

Example 13.22
(1) Let us consider a spinless non-relativistic particle described on L2(R3, dx), as
discussed in Sect. 11.4. Assume that T is anti-unitary, as when the Hamiltonian is
bounded from below but unbounded above. Since the time-reversal symmetry leaves
unchanged the positions of the particles but reverts their velocities, it is expected that
the action of T on the position and momentum operators will look like this

T −1XkT = Xk , T −1PkT = −Pk k = 1, 2, 3 . (13.54)

By direct inspection one sees that, if K : L2(R3, dx) → L2(R3, dx) is the standard
complex conjugation of wavefunctions ((Kψ)(x) := ψ(x) for every x ∈ R

3 and
ψ ∈ L2(R3, dx)), then

K −1Xk K = Xk , K −1Pk K = −Pk k = 1, 2, 3 , (13.55)

so that K is a candidate to represent T . Let us prove that it is essentially unique.
Suppose T is an anti-unitary operator (representing the time-reversal symmetry).
Then U := T K −1 is unitary, and (13.54) and (13.55) entail

U Xk = XkU , U Pk = PkU , k = 1, 2, 3 . (13.56)

We leave to the reader the proof of the fact that these relations imply thatU commutes
with all the operators W ((t,u)) of the Weyl algebra associated with the position and
momentum operators of our particle, as discussed in Proposition11.39. Alternatively

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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one may assume from scratch the validity of

T −1W ((t,u))T = W ((t,−u)) , for all (t,u) ∈ R
3 × R

3 , (13.57)

instead of the physically equivalent identities (13.54), (13.55). Now (13.57) imme-
diately implies that U = T K −1 commutes with all the operators W ((t,u)).

Since the family of operators W ((t,u)) is irreducible (Proposition11.39), Propo-
sition11.37 implies that U = cI for some complex number c with |c| = 1 because
U ∗U = I . Summing up, every operator representing the time-reversal symmetry of
a spin-0 particle must have the form

T0 = eia K , a ∈ R .

And every such operator satisfies (13.54), (13.55) and (13.57), so it may be used to
represent the time-reversal symmetry of a spinless particle. Note that this anti-unitary
time-reversal operator leaves fixed Hamiltonian operators of the form (13.14) and,
at least formally, also the self-adjoint extensions of

H0 = − �
2

2m
Δ + V (x) .

(2) What happens by introducing the spin? We confine ourselves to spin-1/2 par-
ticles. In this case the Hilbert space of the particle is enlarged to the tensor prod-
uct L2(R3, dx) ⊗ C

2, where the second factor is the spin-1/2 Hilbert space (cf.
Sect. 12.3.1). Here the three spin operators are represented by (� = 1)

Sk = 1

2
σk ,

using the standardPauli matrices. Let us again assume that the time-reversal operator
T : L2(R3, dx)⊗ C

2 → L2(R3, dx)⊗ C
2 is anti-unitary, as when the Hamiltonian

is bounded below but not above. In addition to (13.54) and (13.55) – obviously
interpreting the operators Xk and Pk as Xk ⊗ I and Pk ⊗ I respectively – the time-
reversal symmetry is also supposed to satisfy

T −1 I ⊗ SkT
−1 = −I ⊗ Sk k = 1, 2, 3 .

The reason is that the relations abovemust be valid for the orbital angular momentum
constructed out of the Xk and Pk , and it is natural to extend these to the spin which,
in some respects, may be considered as a sort of angular momentum. By direct
inspection one sees that an anti-unitary operator which satisfies (13.54), (13.55) and
the constraint above is

(I ⊗ iσ2)C .

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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where now C is the natural complex conjugation in L2(R3, dx) ⊗ C
2: the unique

antilinear extension of C(ψ ⊗ χ) := (Kψ) ⊗ χ for every χ ∈ C
2 and ψ ∈

L2(R3, dx). Exactly as for the spinless caseU = T C−1 commuteswith all operators
W ((t,u))⊗ I and I ⊗ σk . We leave to the reader the proof of the fact that the family
of operators W ((t,u)) ⊗ I and I ⊗ σk where (t,u) ∈ R

3 × R
3 and k = 1, 2, 3 is

irreducible. Hence,U is again a pure phase.We conclude that the operator describing
the time-reversal symmetry of a spin-1/2 particle has necessarily the form

T1/2 = eia I ⊗ iσ2C , a ∈ R .

Comparing T0 and T1/2 we discover an important difference:

T 2
0 = I whereas T 2

1/2 = −I .

This result is general: ifTs denotes the time-reversal operator for a particle with spin
s = 0, 1/2, 1, 3/2, . . ., we find

T 2
s = (−1)2s I .

This result can be used to justify the superselection rule of the angular momentum
introduced in Example7.80. �

13.2 From the Time Observable and Pauli’s Theorem to
POVMs

There is yet another consequence of the spectral lower bound of H . It addresses the
existence of a quantum observable corresponding to the classical quantity of time,
which satisfies canonical commutation relations with the Hamiltonian. The existence
of such an operator may be suggested by Heisenberg’s ‘time-energy’ uncertainty
relationship, mentioned in Chap. 6. In Chap.11we deducedHeisenberg’s uncertainty
principle for position and momentum as a theorem, following the CCR

[X, P] = i�I .

We might expect a self-adjoint operator T to correspond to the observable time (the
instant at which a phenomenon occurs, or its duration in a given quantum system);
it should moreover satisfy a similar commutation relation with the Hamiltonian, on
some domain:

[T, H ] = i�I ,

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_6
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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and therefore there should be an analogue time-energy uncertainty

(ΔH)ψ(ΔT )ψ ≥ �/2 ,

exactly as for the pair position-momentum. We saw in Chap.11 that by interpreting
in strong sense the position-momentum CCR, i.e. passing from operators to the
exponential algebra, the commutation of the exponentials determined the operators
up to unitary transformations, by virtue of the Stone-von Neumann theorem. These
alleged relations would read e−i h

�
T e−i t

�
H = ei ht

� e−i t
�

H e−i h
�

T . But in the case at
stake that is not possible. There no way to define properly the operator time, and
make sense of the time-energy relations: a no-go result that bears the name of Pauli’s
theorem. It is however possible to try to define the observable time, case by case, by
invoking generalised observables, which are useful in other contexts like the theory
of Quantum Information.

13.2.1 Pauli’s Theorem

Putting together a series of results collected from previous chapters we will prove
our version of a result known as Pauli’s theorem.

Theorem 13.23 Consider a system S with Hamiltonian H (with lower-bounded
spectrum) on the Hilbert space HS. Suppose there exist a self-adjoint operator T :
D(T ) → HS and a subspace D ⊂ D(H) ∩ D(T ) in HS on which T H and H T are
well defined and the CCR (� = 1)

[T, H ] = i I

holds. Then none of the following facts can occur.
(a) D is dense and invariant under T and H; the symmetric operator T 2 + H 2 is
essentially self-adjoint on D .
(b) D is dense, invariant under T and H, and made of analytic vectors for both T
and H.
(c) The exponential operators satisfy CCRs:

eihT eit H = eiht eit H eihT , t, h ∈ R.

Proof If (a)were true, byNelson’s theorem12.89 H�D and T �D would be essentially
self-adjoint (makingD a core for both self-adjoint operators H , T ) and there would
be a strongly continuous unitary representation of the unique simply connected Lie
group whose Lie algebra is generated by I , H , T under the CCRs and the trivial
brackets [T, I ] = [H, I ] = 0. But that defines the Heisenberg group H(2), as
seen in the previous chapter, and we would have proven (c). The same conclusion
follows from assuming (b) because of Theorem 12.90. So let us suppose (c) holds.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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Going through the argument after Theorem11.45, we could prove that the W (t, h) :=
eiht/2eit H eihT satisfyWeyl’s relations and the hypotheses ofMackey’s theorem11.44.
Then the Hilbert space HS would split in an orthogonal sum HS = ⊕kHk of closed
invariant spaces under eit H and eihT for any t , h; and for any k there would be
a unitary map Sk : Hk → L2(R, dx), so Skeit H �Hk S−1

k = eit X in particular,
with X denoting the standard position operator on R. Applying Stone’s theorem to
eit HHs ⊂ Hs we would obtain these consequences: firstly H(Hk ∩ D(H)) ⊂ Hk ,
secondly H �Hk∩D(H) is self-adjoint on Hk , and then eit H �Hk = eit H�Hk ∩D(H) . At this
point the condition satisfied by Sk would read eit H�Hk ∩D(H) = S−1

k eit X Sk . Reapplying
Stone’s theorem would produce H�Hk∩D(H)= S−1

k X Sk , hence

σ(H) ⊃ σ(H�Hk∩D(H)) = σ(S−1
k X Sk) = σ(X) = R .

(For the first inclusion it suffices to use the definition of spectrum.) But that is
impossible because σ(H) is bounded from below. �

13.2.2 Generalised Observables as POVMs

The problem raised by Pauli’s theorem about the definition of time is hard, and
not yet completely construed. One attempt, that weakens the notions of observable
and PVM, has found several other uses in QM, especially in Quantum Information
[NiCh07].

Let us look into the proof of Proposition7.52, which associates probability mea-
sures to observables seen as PVMs on R: given a state ρ ∈ S(H), we did not employ
requirement (b) in Proposition7.44; and concerning property (d), we only made use
of weak convergence (implied by strong convergence). So we may rephrase Propo-
sition7.52 like this.

Proposition 13.24 LetH be a Hilbert space and {P(E)}E∈B(R) a collection of oper-
ators in B(H) satisfying:
(a)’ P(E) ≥ 0 for every E ∈ B(R);
(b)’ P(R) = I ;
(c)’ for any countable set {En}n∈N of pairwise-disjoint Borel sets in R,

w-
+∞∑

n=0

P(En) = P (∪n∈N En) .

If ρ ∈ S(H), the mapping μρ : E �→ tr(P(E)ρ) is a probability measure on R.

The numbersμρ(E) are the probabilities the experimental readings of the observable
{P(E)}E∈B(R) fall in the Borel set E . Sometimes it is convenient to adopt generalised
observables, assuming they are given by maps E �→ P(E) satisfying conditions
(a)’, (b)’, (c)’: these are weaker than the ones for PVMs, but still guarantee μρ is a

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
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probability measure. In particular, the P(E) are no longer orthogonal projectors, but
mere bounded positive operators. All this leads to the following definition. We refer
to [Ber66] for a broadmathematical treatise and [BGL95] for an extensive discussion
on the applications to QM.

Definition 13.25 Let H be a Hilbert space and (X,Σ(X)) a measurable space. A
mapping A : Σ(X) → B(H) is called positive-operator valued measure (POVM)
on X if:
(a)’ A(E) ≥ 0 for any E ∈ Σ(X);
(b)’ A(X) = I ;
(c)’ for any countable set {En}n∈N of disjoint measurable subsets in X:

w-
+∞∑

n=0

A(En) = A(∪n∈N En) .

A generalised observable on H is a collection of operators {A(E)}E∈Σ(X) such that
Σ(X) � E �→ A(E) is a positive-operator valued measure.

If A is a POVM on H, since B(H) � A(E) ≥ 0 for every E ∈ Σ(X), we
have A(E) = A(E)∗ by Proposition3.60(f). Moreover, by Definition13.25(c, d)
0 ≤ A(E) ≤ I , so ||A(E)|| ≤ 1 from Proposition3.60(a).

On a Hilbert spaceH the convex setE(H) of elements A ∈ B(H)with 0 ≤ A ≤ I
is called the space of effects, and the effects are the operators A.

Remark 13.26 Differently from PVMs, the elements of a POVM are not assumed
to commute. This feature has the nice consequence that a convex linear combination
of a pair of POVMs over the same Σ(X) is still POVM. �

The effects onH are the operators used to build every POVMonH, and their space
is the analogue ofL (H) in defining observables via PVMs. The spaceE(H) contains
L (H) and is partially ordered by the usual relation ≥, though it is not a lattice.This
prevents a generalised interpretation of orthogonal projectors as propositions on the
system.

Extending axiom A3 from post-measurement states to generalised observables is
problematic. It is not possible to establish, in practice, in which state the system is
after a measurement whose reading is E ∈ B(R) if the observable is represented by
a POVM {A(E)}E∈B(R), and without further information. The extra data is assigned
by decomposing each A(E) = B(E)∗ B(E) in the POVM, where the operators
B(E) ∈ B(H) are called measuring operators. If so, the post-measurement state,
if E is the outcome, is supposed to look like

ρ ′ = B(E)ρB(E)∗

tr(A(E)ρ)
.

For PVMs, clearly, A(E) = B(E) are orthogonal projectors. In the general case,
since the B(E) are not required to be positive, there are an infinite number of solu-

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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tions B(E) to the equation B(E)∗ B(E) = A(E) when A(E) is given. From the
physical viewpoint, this implies that there are infinitely many different experimental
apparatuses that give the same probabilities for the outcomes.

Another remarkable difference from standard measurements is that a POVM is
not repeatable in general, even if the possible values of themeasured observable form
a discrete set. Indeed, if the state ρ ′ is subjected to the same measurement associated
with the same Borel set E , the new state turns out to be:

ρ ′′ = B(E)ρ ′ B(E)∗

tr(B(E)ρ ′ B(E)∗)
= B(E)B(E)ρB(E)∗ B(E)∗

tr(B(E)B(E)ρB(E)∗ B(E)∗)

which, in general, coincides to ρ ′ only if B(E)2 = B(E). However this identity is
false for a generic element of a POVM. See [BGL95] for further details and many
examples.

Here is an interesting application of generalised observables to the definition of
time. Suppose time is defined as the observable associated to the lapse it takes a
particle to hit a detector. By Pauli’s theorem13.23 such observable is unlikely going
to be defined via projectors ifwe impose that the observable is somehow“conjugated”
to the Hamiltonian.

The attempts to define the time observable in terms of POVMs are very promising.
Candidates for a generalised time observable T , e.g. the arrival time of a free particle,
arise from a suitable POVM T := {A(E)}E∈B(R) dependent on the system [Gia97,
BrFr02]. Introducing measures μ

(T )
ψ,φ(E) := (ψ |A(E)φ), E ⊂ B(R), and setting

μ
(T )
ψ := μ

(T )
ψ,ψ , we can define 〈T 〉ψ and (ΔT )ψ as we did for PVMs. If T is built

appropriately, on suitable domains, then (ΔT )ψ(ΔH)ψ ≥ �/2 and analogues hold
[Gia97, BrFr02], where H is the system’s Hamiltonian. In analogy to PVMs, we
may associate to the POVM T an operator, denoted by T , characterised by being the
unique operator such that:

(ψ |T φ) :=
∫

R

λdμ
(T )
ψ,φ(λ) ,

whereψ ∈ H and φ belongs to a dense and suitable domain D(T ). This T turns out to
be symmetric, but non self-adjoint. For a particle of mass m > 0, free to move along
the real axis, the operator T of [Gia97] has the obvious form T = m

2 (X P−1+ P−1X),
on a suitable dense subspace of L2(R, dx).

Remarks 13.27 (1) Gleason’s theorem7.26 has an important extension (yet much
easier to prove) to generalised observables due to Busch [Bus03].

Theorem 13.28 (Busch) Let H be a complex Hilbert space of finite dimension
≥ 2 or separable. For any map μ : E(H) → [0, 1] such that μ(I ) = 1 and
μ
(
w − ∑+∞

n=0 An
) = ∑+∞

n=0 μ(An) for every sequence {An}n∈N ⊂ E(H) satisfying
w-

∑+∞
n=0 An ≤ I , there exists ρ ∈ S(H) such that μ(A) = tr(Aρ), A ∈ E(H).

(2) An important theorem shows the tight relationship between PVMs and POVMs.

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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Theorem 13.29 (Neumark) Let (X,Σ(X)) be a measurable space and H a Hilbert
space. If A : Σ(X) → B(H) is a POVM, there exist a Hilbert space H′, an operator
U : H → H′ and a PVM P : Σ(X) → L (H′) such that A(E) = U ∗ P(E)U for
every E ∈ Σ(X).

Condition (b)’ in Definition13.25 and the analogue for PVMs imply U ∗U = IH,
so U is an isometry (not surjective, otherwise A would be a PVM). Hence H is
isomorphic to a (proper) closed subspace of H′. Yet P(E) does not, in general, have
a direct physical meaning, because H′ is not the system’s Hilbert space. �

13.3 Dynamical Symmetries and Constants of Motion

This section is devoted to extending toQM the various versions ofNoether’s theorem.
In classical theories Noether’s theorem relates dynamical symmetries to constants of
motion. In QM this relationship is as straightforward as it can get. To state the relative
theorem we need to introduce the so-called Heisenberg picture of observables.

13.3.1 Heisenberg’s Picture and Constants of Motion

Take a quantum system S described in the inertial frame I with evolution operator
R � τ �→ e−iτ H . Fix once for all the instant t = 0 for the initial conditions. Then
consider the associated continuous projective representation of R,R � t �→ γ

(H)
t :=

e−i t H ·eit H , and the dual action (cf. Sect. 12.1.6) on observables. If A is an observable
(possibly an orthogonal projector representing an elementary property of S) we call

AH (t) := γ
(H)∗
t (A) = eit H Ae−i t H

the Heisenberg picture of A at time τ . By construction σ(AH (τ )) = σ(A) and
the observables’s spectral measures satisfy P (AH (t))(E) = γ

(H)∗
t (P (A)(E)) for any

E ∈ B(R).
In Heisenberg’s picture, coherently with the symmetries’ dual action of Chap.12,

quantum states do not evolve in time and the dynamics acts on observables. In
particular, the expectation value of A on the state ρt (the evolution at time t of the
initial state ρ) can be computed either as 〈A〉ρt or equivalently as 〈AH (t)〉ρ , because

〈A〉ρt = tr
(

AUtρU−1
t

) = tr
(
U−1

τ AUtρ
) = 〈AH (τ )〉ρ

if we put ourselves in the hypotheses of Proposition11.27 (using the measure μ(A)
ρ

directly shows that the result holds generally). And the same happens for the proba-
bility that the reading of A at time τ falls within the Borel set E , if ρ was the state
at time 0:

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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tr(P (A)
E ρt ) = tr(P (AH (t))

E ρ) .

Remarks 13.30 (1)According to Sect. 12.2.2, Heisenberg’s evolution of observables
coincides with the inverse dual action (Sect. 12.22) on observables of the time dis-
placement symmetry (Remark13.1(4)). This is an immediate consequence of the fact
that time displacement is generated by −H , which entails γ

(−H)∗
t = (γ

(H)∗
t )−1. This

fact plays a crucial role in Quantum Field Theory, where the action of symmetries
on quantum-field operators is pictured in terms of inverse dual actions (so that these
actions give rise to standard left representations of the symmetry group instead of
right representations). Heisenberg’s evolution is then the natural representation of
the time displacement symmetry.
(2) To distinguish Heisenberg’s picture from the ordinary picture in which states –
not observables – evolve, the latter is often called Schrödinger picture, a convention
we will adopt.
(3) It must be noted that an observable may depend on time in Schrödinger’s picture
as well. Better said, it is convenient to use a self-adjoint family {At }t∈R parametrised
by time t , and view it as a single observable denoted At . If so, we say the observable
depends on time explicitly. In Heisenberg’s picture time dependency takes care of
both (implicit and explicit) dependencies:

AHt (t) := γ
(H)∗
t (At ) = eit H At e

−i t H . (13.58)

Now that we have seen the evolution of observables in Heisenberg’s picture, we can
introduce constants of motion by mimicking the classical definition. �

Definition 13.31 Let S be a quantum system described on the Hilbert space HS

associated to the inertial frameI withHamiltonian H . An observable A is a constant
of motion or a first integral if its Heisenberg picture is does not depend on time:

AH (t) = AH (0) for any t ∈ R. (13.59)

An explicitly time-dependent observable At is called constant of motion or first
integral provided

AHt (t) = AH0(0) for any t ∈ R. (13.60)

Remarks 13.32 (1) An observable that does not depend on time explicitly is a con-
stant of motion if and only if its Heisenberg and Schrödinger pictures coincide.
(2) The notions of Heisenberg’s picture and constants of motion extend to situations
where time is not homogeneous andwith evolution operators different fromU (t2, t1).
We will not worry about this.
(3) Identity (13.60) is oftentimes found in books written as

∂ AHt

∂t
+ i[H, AHt (t)] = 0 , (13.61)

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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where the partial derivative refers to the explicit time variable only, i.e. the subscript
Ht . In practice if we do not care about domain issues, that equation is a trivial conse-
quence of (13.60), and implies (13.60) if we also assume (13.58). The equivalence, in
general false, is however troublesome to prove. At any rate, the concept of constant
of motion is perfectly formalised, physically, by (13.60), with no need to differentiate
in time and incur in spurious technical problems. �

Notation 13.33 Lestweoverburdennotations for (explicitly) time-dependent observ-
ables, we will simply write AH (t) instead of AHt (t) from now on, if no confusion
arises. �

We are ready to exhibit the relationship between constants of motion and dynamical
symmetries. In classical physics one-parameter symmetry groups are known to cor-
respond, in the various formulations of Noether’s theorem, to constants of motion.
We wish to extend that to QM. Let us start with an easy case.

Proposition 13.34 Let σ(·) := V (σ ) · V (σ )−1 be a dynamical symmetry with V (σ )

simultaneously unitary and self-adjoint. Then the observable V (σ ) is a constant of
motion.

Proof If Ut is the evolution operator, by Theorem13.5(b) Ut V (σ )U−1
t = V (σ ). �

It is not rare that an interesting operator is together unitary and self-adjoint (and thus
represents a symmetry and an observable). An example is the parity inversion, which
we discussed in Examples12.19. The situation is completely different from that of
classical mechanics, where a system invariant under parity inversion (or any discrete
symmetry) does not gain an associated constant of motion.

Let us deal with one-parameter groups of continuous symmetries, for which the
link dynamical symmetries–constants of motion is forthright.

To begin with we consider a time-dependent observable {At }t∈R, in a certain
system S with Hamiltonian H . If At is a constant of motion, then, by the previous
definitions

eit H At e
−i t H = A0 .

If we exponentiate the self-adjoint operators in the equation we obtain

eiaeit H At e−i t H = eia A0 ,

a relation that known properties transform into

eit H eia At e−i t H = eia A0 ,

i.e.
eia At e−i t H = e−i t H eia A0 , a ∈ R, t ∈ R.

This equation’s interpretation in terms of dynamical symmetries is quite relevant. It
says that for any given a ∈ R the symmetries {σ (At )

a }t∈R, with

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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σ (At )
a (ρ) := eia At ρe−ia At where ρ ∈ S(HS)

form, by Theorem13.5, a time-dependent dynamical symmetry of S. If we restrict to
At = A time-independent, the same argument proves that

σ (A)
a (ρ) := eia Aρe−ia A where ρ ∈ S(HS),

defines a dynamical symmetry for every a ∈ R.
All this shows that constants of motion determine dynamical symmetries but also

continuous projective representations R � a �→ σ (At )
a (·) of R, since R � a �→ eia At

is strongly continuous by Definition12.40 (cf. Sect. 12.2.6).
Now we ask about the converse.
Given a family of time-dependent dynamical symmetries {σ (t)

a }t∈R where R �
a �→ σ (t)

a is a continuous projective representation of the group R for every t ∈ R,
is it possible to write each one of them as σ (At )

a (·) := eia At · e−ia At , so that the self-
adjoint operators At give an (explicitly time-dependent) observable that is a constant
of motion?

According to Theorem12.45 we can always find self-adjoint operators At such
that σ (At )

a (·) := eia At · e−ia At for every a ∈ R. But these are determined up to a real
constant At → A′

t := At − c(t)I , so the point is whether one can fix the maps c(t)
so that

eit H A′
t e

−i t H = A′
0 .

The answer of the next theorem, the quantum version of Noether’s theorem, is yes.

Theorem 13.35 (“QuantumNoether theorem”)Let S be a quantum system, described
on the Hilbert space HS associated to the inertial frame I , with Hamiltonian H
and dynamical flow γ (H). If constants of motion and dynamical symmetries refer to
γ (H), the following facts holds.
(a) If A is a constant of motion:

σ (A)
a (ρ) := eia Aρe−ia A , ∀ρ ∈ S(HS)

defines a dynamical symmetry for every a ∈ R, and R � a �→ σ (A)
a (·) is continuous.

(b) Let {At }t∈R be a time-dependent observable and a constant of motion. As t ∈ R

varies,
σ (At )

a (ρ) := eia At ρe−ia At , ∀ρ ∈ S(HS)

defines a time-dependent dynamical symmetry for every a ∈ R, and R � a �→
σ (At )

a (·) is continuous ∀t ∈ R.
(c) Let σa be a dynamical symmetry and R � a �→ σa a continuous projective
representation, ∀a ∈ R. Then there exists a constant of motion A such that

σa(·) := eia A · e−ia A , a ∈ R. (13.62)

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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A constant of motion A′ satisfies (13.62) if and only if

A′ = A + cI for some constant c ∈ R.

(d) Let {σ (t)
a }t∈R be a time-dependent dynamical symmetry ∀a ∈ R, and such that

the map R � a �→ σ (t)
a is a continuous projective representation ∀t ∈ R. Then there

exists a time-dependent observable {At }t∈R that is a constant of motion plus

σ (t)
a (·) := eia At · e−ia At , a ∈ R, t ∈ R. (13.63)

A time-dependent observable {A′
t }t∈R is a constant of motion satisfying (13.63) if

and only if

A′
t = At + cI for every t ∈ R and some constant c ∈ R.

Proof Claims (a), (b) were proved above, while (c) is evidently a subcase of (d)
if we set σ (t)

a = σa and At = A for any t ∈ R. So there remains to prove (d).
By Theorem12.45, for any t ∈ R we can write σ (t)

a (ρ) := eia A′
t ρe−ia A′

t , a ∈ R,
ρ ∈ S(HS), where the self-adjoint operators A′

t are given by the group R ��→ σ (t)
a

and can be redefined to A′
t + c(t)I = At by adding real constants c(t). We want

to show that it is possible to fix c = c(t) in order that {At }t∈R be a time-dependent
constant of motion. Let us imagine we have made a choice for those operators. By
Theorem13.5(a), for suitable unit complex numbers χ(t, a) we have

χ(t, a) = eia A′
t e−i t H e−ia A′

0eit H , (13.64)

whence χ(t, 0) = 1 for every t ∈ R. Furthermore

χ(t, a)(ψ |φ) =
(

eit H e−ia A′
t ψ

∣∣∣e−ia A′
0eit Hφ

)
.

Choosing, for given t ∈ R, ψ ∈ (D(A′
t )) and φ ∈ eit H (D(A′

0)) not orthogonal
(the domains are dense because At is self-adjoint and eit H unitary), and applying
Stone’s theorem on the right for the variable a, we obtain that the derivative in a of
the left-hand side exists for every a ∈ R. At the same time (13.64) implies, for given
t ∈ R:

χ(t, a + a′) = ei(a+a′)A′
t e−i t H e−i(a+a′)A′

0eit H

= eia A′
t

(
eia′ A′

t e−i t H e−ia′ A′
0eit H

)
e−i t H e−ia A′

0eit H

= eia A′
t χ(t, a′)e−i t H e−ia A′

0eit H = χ(t, a′)χ(t, a) .

For t ∈ R given, the map R � a �→ χ(t, a) is differentiable and satisfies χ(t, a +
a′) = χ(t, a)χ(t, a′), so ∂χ(t,a)

∂a = ∂χ(t,a)

∂a |a=0χ(t, a). Since |χ(t, a)| = 1, χ(t, 0) =

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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1 for all t ∈ R, the differential equation is solved by χ(t, a) = e−ic(t)a with c(t) =
i ∂χ(t,a)

∂a |a=0 ∈ R. So we have

e−ic(t)a = eia A′
t e−i t H e−ia A′

0eit H ,

and hence
eia(A′

t +c(t)I )e−i t H = e−i t H eia A′
0 .

By (13.64) e−ic(0)a = 1 for any a ∈ R, so necessarily c(0) = 0. Then the above
identity reads

eia(A′
t +c(t)I )e−i t H = e−i t H eia(A′

0+c(0)I ) .

As we said earlier we are free to modify the A′
t by adding constants, so with At :=

A′
t + c(t)I we obtain

eia At e−i t H = e−i t H eia A0 . (13.65)

The identity implies eit H At e−i t H = A0 so that {At }t∈R defines a time-dependent
constant of motion. To conclude observe that we are still free to modify At by adding
a real constant d(t) for every given t ∈ R. But from (13.65) we immediately have
that (A1)t := At + d(t) satisfies

eia(A1)t e−i t H = e−i t H eia(A1)0 , ∀t ∈ R ,

only if d(t) is constant: d(t) = c ∈ R for every t ∈ R. �

Remark 13.36 Suppose the system’s Hilbert space splits in coherent sectors under
a superselection rule, and assume this rule corresponds to a certain observable Q
being defined and taking a precise value in every sector, on each pure state. This is
the case of the electric charge, for example. The self-adjoint operator representing
Q is a constant of motion, since the evolution prevents the (pure) state to escape the
sector where it initially lives. This observation unveils a deep relationship, between
superselection rules and constants of motion, that proved extremely relevant in the
algebraic formulation of quantum theories [Haa96].Wewill talk about it in Chap.14.

�

13.3.2 A Short Detour on Ehrenfest’s Theorem and Related
Mathematical Issues

Before we go on to examine the constants of motion of the Galilean group, we
would like to spend some time on a topic related to the evolution of observables.
In QM manuals there is a statement of acclaimed heuristic importance, especially
for relating QM to its classical limit, known as Ehrenfest theorem. The heart of
Ehrenfest’s theorem is, formally, quite straightforward. Take a quantum system S

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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described on the Hilbert space HS and an observable or self-adjoint operator A (for
simplicity time-independent). Fix a pure state/unit vectorψ and consider its evolution
under the operator e−i t H . In formal terms (overlooking domains),

d

dt
〈A〉ψt = d

dt

(
e−i t H ψ

∣∣ Ae−i t Hψ
) = i (Hψt |Aψt ) − i (ψt |AHψt )

for ψt := e−i t Hψ . This implies the general Ehrenfest relation:

d

dt
〈A〉ψt = 〈i[H, A]〉ψt . (13.66)

Although to obtain (13.66) we ignored important mathematical details, it is easy to
prove (exercise) that the relation is implied by the following three conditions: (i)
A ∈ B(H); (ii) ψτ ∈ D(H) around t , or equivalently ψ ∈ D(H), since D(H)

is evolution-invariant; (iii) ψτ ∈ D(H A) around t . It is far from easy to make
assumptions of some help to physical applications that only concern H, A, ψ and
are valid on a neighbourhood of some t . We can nevertheless weaken (i), (ii), (iii):
beside A ∈ B(H), assume only ψ ∈ D(H), and interpret 〈i[H, A]〉ψt in (13.66) as
a quadratic form:

〈i[H, A]〉ψt := i(Hψt |Aψt ) − i(Aψt |Hψt ) .

This yields a weaker version of Ehrenfest’s theorem:

d

dt
〈A〉ψt = i(Hψt |Aψt ) − i(Aψt |Hψt ) . (13.67)

Even in this reading the statement is still too abstract, because practically every
observable A of interest in QM is not a bounded operator. In fact, the importance
of Ehrenfest’s theorem becomes evident precisely when applied to the unbounded
operators position and momentum.

Consider, to that end, a system made by a spin-zero particle of mass m, subject
to a potential V , in an inertial frame. The Hamiltonian is a self-adjoint extension
of the differential operator H0 := − �

2

2m Δ + V . Suppose we work with τ �→ ψτ ,
which around t belongs to some subdomain of D(Xi H0) ∩ D(H0Xi ) on which the
Hamiltonian H0 is differentiable. Then (reintroducing � everywhere):

[H0, Xi ]ψ = − �

2m

3∑

j=1

[
∂2

∂x2
j

, xi

]

ψ = − �

m

∂ψ

∂xi
,

whence (13.66) gives

m
d

dt
〈Xi 〉ψt = 〈Pi 〉ψt . (13.68)
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Similarly, working around t with τ �→ ψτ in some domain inside D(Pi H0) ∩
D(H0Pi ) where H0 is differentiable, we obtain

[H0, Pi ]ψ = −i

[
−V,

∂

∂xi

]
ψ = −i

∂V

∂xi
ψ ,

so from (13.66):
d

dt
〈Pi 〉ψt = −

〈
∂V

∂xi

〉

ψt

. (13.69)

The classical statement of Ehrenfest’s theorem consists of the pair of Eqs. (13.68)–
(13.69), fromwhich the mean values of position andmomentum have a classical-like
behaviour. Precisely, assume the gradient of V does not vary much on the spatial
image of thewavefunctionψt (x). Thenwe can estimate the right-hand side of (13.69)
by
〈
∂V

∂xi

〉

ψt

�
∫

R3
ψt (x)

∂V

∂xi

∣∣
∣
∣〈X〉ψt

ψt (x)dx =
(∫

R3
ψt (x)ψt (x)dx

)
∂V

∂xi

∣∣
∣
∣〈X〉ψt

= ∂V

∂xi

∣∣
∣
∣〈X〉ψt

.

Substituting in (13.69) we get the classical equation:

d

dt
〈Pi 〉ψt � − ∂V

∂xi

∣∣∣∣〈X〉ψt

. (13.70)

The punchline is that under Ehrenfest’s equations (13.68)–(13.69), the more wave
packets cluster around their mean value – under a potential whose force varies slowly
on the packet’s spatial range – the better the momentum and position mean values
obey the evolution laws of classical mechanics.

Alas, the entire discussion is rather academic, because establishing mathematical
conditions on H0 that are physically sound and can justify in full the argument leading
to (13.68)–(13.69), is a largely unsolved problem.

Remarks 13.37 (1) Recently, conditions on H and A have been found that realise
(13.67) when A is neither bounded nor self-adjoint, including the case where A is the
position or themomentum. The result we are talking about is the following [FrKo09].

Theorem 13.38 Let H : D(H) → H, A : D(A) → H be densely-defined operators
on the Hilbert space H such that:
(H1) H is self-adjoint and A Hermitian (hence symmetric);
(H2) D(A) ∩ D(H) is invariant under R � t �→ e−i t H , for every t ∈ R;
(H3) if ψ ∈ D(A) ∩ D(H) then supI ||Ae−i t Hψ || < +∞ for any bounded interval
I ⊂ R.
Let ψt := e−i t Hψ . Then for any ψ ∈ D(A) ∩ D(H) the map t �→ 〈A〉ψt is C1 and

d

dt
〈A〉ψt = i(Hψt |Aψt ) − i(Aψt |Hψt ) .
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As earlier claimed, the above hypotheses subsume the case where A is the position
or the momentum on H = L2(Rn, dx), even though proving it is highly non-trivial
(op. cit., corollary 1.2). For it to happen it is enough that H is the only self-adjoint
extension of H0 = −Δ + V onD(Rn) with V real and (−Δ)-bounded with relative
bound a < 1, in the sense of Definition10.42.
(2) From the point of view of physics it is impossible to build an experimental
device capable of measuring all possible values of an observable described by an
unbounded self-adjoint operator. For the position observable, for instance, it would
mean filling the universe with detectors! So we expect any observable represented by
the unbounded self-adjoint operator A to be – physically speaking – indistinguishable
from the observable of the self-adjoint operator AN := ∫

σ(A)∩[−N ,N ] λd P (A)(λ) ∈
B(H), with N > 0 large but finite. The general form of Ehrenfest’s theorem(13.66)
applies to such class of observables, if we assume (ii) and (iii), or only ψ ∈ D(H)

to have (13.67). In this case, though, it is not easy to use the formal commutation of
position and momentum with a Hamiltonian like − �

2

2m Δ + V , which would bring to
(13.68), (13.69). �

13.3.3 Constants of Motion Associated to Symmetry Lie
Groups and the Case of the Galilean Group

Consider a quantum system S with Hilbert space HS , Hamiltonian H and inertial
frame I . Suppose there is a Lie group G with a strongly continuous unitary repre-
sentation G � g �→ Ug on HS , and assume the evolution operator R � t �→ e−i t H

coincides with the representation of a one-parameter subgroup of G (clearly G is a
symmetry group for S, since the representation U induces a projective representa-
tion of the same group). What we want to prove is that every T ∈ TeG determines
a dynamical symmetry and a constant of motion (explicitly time-dependent, in gen-
eral). In fact,

Theorem 13.39 Let S be a quantum system on the Hilbert space HS, with Hamil-
tonian H (in some inertial frame). Let G � g �→ Ug be a strongly continuous
unitary representation on HS of the n-dimensional Lie group G, and define the evo-
lution operator R � t �→ e−i t H as the representation of a given one-parameter
subgroup generated by h ∈ TeG:

e−i t H = Uexp(th) , t ∈ R.

(a) To each b ∈ TeG there correspond a constant of motion {Bt }t∈R, in general time-
dependent, and an associated dynamical symmetry according to Theorem 13.35.

(b) The operator −i Bt (restricted to the Gårding space) for t ∈ R is the image under
the Lie-algebra isomorphism (12.113) of some element bt of the Lie algebra of G

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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such that b0 = b.

(c) If [h,b] = 0 the constant of motion {Bt }t∈R is time-independent.

Proof (a)–(b). Consider the map R → G:

R � a �→ exp(th) exp(ab) exp(−th) .

It is certainly a one-parameter subgroup for any given b ∈ TeG and every t ∈ R. So
if T1, . . . Tn is a basis of TeG, for suitable real functions c j = c j (t) we can write

exp(th) exp(ab) exp(−th) = exp(a
n∑

j=1

c j (t)Tj ) =: exp(abt ) .

Apply U and pass to the Lie algebra representation TeG � b �→ AU [b] :=
AU (b)�DG , where the Gårding space DG is invariant and a core for the self-adjoint
operators AU (b) (Chap. 12, in particular Theorem12.79 and Corollary 12.87). Then

e−i t H e−ia AU [b]eit H = e−ia
∑n

j=1 c j (t)AU [Tj ] = e−ia AU (bt ) . (13.71)

Define self-adjoint operators parametrised by time

Bt :=
n∑

j=1

c j (t)AU [Tj ] = AU (bt ) .

Then (13.71) shows Bt is a constant of motion that depends explicitly on time, for
(13.71) implies:

eit H Bt e
−i t H = AU (b) = B0 , t ∈ R .

Again (13.71) shows that the family of symmetries σ (t)
a := e−iaBt · eiaBt , for any

a ∈ R, is a time-dependent dynamical symmetry. In fact (13.71) forces

e−iaBt e−i t H = e−i t H e−iaB0 , t ∈ R,

and then Theorem13.5 proves the claim.
(c) Assuming [b,h] = 0, and using theBaker–Campbell–Hausdorff formula (12.81),
(12.82), (12.83), we obtain

exp(τh) exp(ab) = exp(ab) exp(τh) (13.72)

so long as |a|, |τ | < ε with ε > 0 small enough. Those formulas actually hold for
any value of a, τ ∈ R. To see that, it suffices to observe, irrespective of a and τ , that
we can write a = ∑N

r=1 ar and τ = ∑N
r=1 τr so that |ar |, |τr | < ε for any r . For

example,

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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exp(τh) exp(ab) = exp(τNh) · · · exp(τ2h) exp(τ1h) exp(a1b) exp(a2b) · · · exp(aNb)

= exp(τNh) · · · exp(τ2h) exp(a1b) exp(τ1h) exp(a2b) · · · exp(aNb)

· · ·

= exp(a1b) exp(τNh) · · · exp(τ2h) exp(a2b) · · · exp(aNb) exp(τ1h)

· · ·

= exp(a1b) exp(a2b) · · · exp(aNb) exp(τNh) · · · exp(τ2h) exp(τ1h) = exp(ab) exp(τh) ,

so
eτheab = eabeτh .

Consequently, defining t = −τ and using U we get

eit H e−ia AU (b)e−i t H = e−ia AU (b) ,

whence the claim. �

To exemplify the general result found above, we revert to the Galilean group and its
projective unitary representations seen at the end of the previous chapter. We will
show there are 10 first integrals for a system having the restricted Galilean group SG
as symmetry group (described by a unitary representation of a central extension of
the universal covering S̃G ). We consider in particular the spinless particle of mass

m, and refer to the unitary representation of the central extension ̂̃SG m of Chap.12.
The Lie algebra is the extension of the Lie algebra of S̃G , which has 10 generators
−h ,pi , ji ,ki , i = 1,2,3, such that:
(i) −h generates the subgroup R � c �→ (c, 0, 0, I ) of time displacements,
(ii) the pi generate the Abelian subgroup R

3 � c �→ (0, c, 0, I ) of space transla-
tions,
(iii) the ji generate the subgroup SO(3) � R �→ (0, 0, 0, R) of space rotations,
(iv) the ki generate the Abelian subgroup R

3 � v �→ (0, 0, v, I ) of pure Galilean
transformations.

Remark 13.40 We have already remarked that time displacement and time evolution
are one the inverse of the other. Hence h is the generator of time evolution in accor-
dance with the notation used in Theorem13.39, whereas −h is the generator of time
displacement. This observation should explain the conventional sign of the generator
of time translations: one considers time evolution to be physically more important
than time displacement. �

These elements obey the commutation relations (12.144). To pass from the Lie alge-

bra of S̃G to that of ̂̃SG m we add a generator commuting with the above ones, plus
central charges for the commutation relations between ki and p j equal to the mass m

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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(cf. (12.153) and ensuing discussion). The strongly continuous unitary representation

of ̂̃SG m of our concern is the following one:

̂̃SG m � (χ, g) �→ χ Z̃ (m)
g ,

induced by unitary operators Z̃ (m)
(c,c,v,U ) (12.145):

(
Z̃ (m)

(c,c,v,U )ψ̃
)

(k) := ei(cv−c)·(k−mv)ei c
2m (k−mv)2ψ̃

(
R(U )−1(k − mv)

)
.

Notice the Lie group ̂̃SG m contains the subgroup spanned by h, corresponding to
the evolution operator on the system’s Hilbert space HS . Among the commutation
relations (12.144) defining the Lie algebra of S̃G (valid on the central extension
̂̃SG m), we are interested in the ones directly involving h:

[pi ,−h] = 0 , [ji ,−h] = 0 , [ki ,−h] = pi i = 1, 2, 3. (13.73)

Adapting the proof of Theorem13.39 to the representation ̂̃SG m � (χ, g) �→ χ Z (m)
g ,

the first two brackets give

e−iτ H e−ia Pi = e−ia Pi e−iτ H (13.74)

and
e−iτ H e−iaLi = e−iaLi e−iτ H . (13.75)

Using Theorem13.5 and Definition13.31, these tell, in agreement with Theo-
rem13.39:

(a) the three momentum components and the three orbital angular momentum
components are (time-independent) constants of motion;

(b) the symmetries generated by these integrals of motion, i.e. the translations
along the axes and the rotations about the axes are (time-independent) dynamical
symmetries (see Examples12.46 and (12.135) for the explicit action on wavefunc-
tions).

Let us address the last bracket in (13.73). A direct use of the Baker–Campbell–
Hausdorff formula is not trivial, even if technically possible with a bit of work, also
in the general case. To understand what this third identity corresponds to in terms
of the associated one-parameter subgroups, let us study the matter in the Galilean
group. The subgroup generated by −h is the time displacement:

exp(τh) = (−τ, 0, 0, I ) τ ∈ R .

The subgroup generated by k j is a pure Galilean transformation along the j th axis
with unit vector e j :

exp(ak j ) = (0, 0, ae j , I ) a ∈ R : .

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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Immediately, then, the group law (12.137) gives

exp(τh) exp(ak j ) exp(−τh) = exp(a(τp j + k j )) .

Applying the unitary representation these become

e−iτ H e−aK j eiτ H = e−ia(τ Pj �DG +K j �DG ) .

Therefore, if we define self-adjoint operators

K jt := t Pj �DG +K j �DG j = 1, 2, 3,

each observable is a constant of motion explicitly dependent on time, and each one
defines a dynamical symmetry for every a ∈ R:

e−iaK jt e−i t H = e−i t H e−iaK j0

The dynamical symmetry e−iaK jt thus defines a pure Galilean transformation along
e j at time t .

Remarks 13.41 (1) It can be interesting to question about the meaning of the con-
servation law of K jt , which is not at all obvious. We remind that the boost is defined
(see (12.152)) as K j = −m X j . Choosing ψ ∈ DG and letting it evolve under the
evolution operator, ψt := e−i t Hψ , the conservation law for K jt implies:

t (ψt |Pjψt ) − m(ψt |X jψt ) = const,

i.e.

〈Pj 〉ψt = m
d

dt
〈X j 〉ψt . (13.76)

Hence the average momentum of the particle is, in some sense, the product of the
mass times the velocity, the latter indicating the average position of the particle. The
result is a priori not evident, since in QM the momentum is not the product of mass
and velocity.
(2) Suppose we work with a multi-particle system, admitting the Galilean group as
symmetry group described by a unitary representation of a central extension associ-
ated to the total mass M (see Chap.12). Identity (13.76) is proved in the same way,
and hence holds true. But now Pj is the component along e j of the total momentum,
and X j is the e j -component of the position vector of the centre of mass. A similar
relationship holds for systems invariant under the Poincaré group, and follows from
the invariance under pure Lorentz transformations. The term corresponding to the
total mass accounts for the energy contributions of the single components (like the
kinetic energies of the isolated points making the system), in conformity to equation
M = E/c2. �

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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This accounts for 9 first integrals, but we said there are 10 in total.
The attentive reader will have noticed there is still a dynamical symmetry around,

and a corresponding conservation law: yes, energy! Namely, the obvious commu-
tation relation [h,h] = 0 holds on the Lie algebra, or [H, H ] = 0 at the level of
self-adjoint generators, or [e−iτ H , e−iτ ′ H ] = 0 for the exponentials. ByTheorem13.5
and Definition13.6, the last identity, in agreement with Theorem13.39, says that

(a) the Hamiltonian is a constant of motion,
(b) the symmetry generated by −H (the time displacement) is a dynamical sym-

metry.
The result is completely general and does not depend on having the Galilean group
as symmetry group; it suffices that the Hamiltonian exists.

13.4 Compound Systems and Their Properties

We met in Chap.12 systems composed by subsystems, and we saw that the overall
Hilbert space is the tensor product of theHilbert spaces relative to the subsystems.But
this is actually an axiom of the theory. Compound systems bear a host of fascinating
non-classical features, which we will review in this section.

13.4.1 Axiom A7: Compound Systems

We are ready to state the seventh axiom of QM, the one about compound quantum
systems. For the mathematical contents we refer to the definitions and results of
Sect. 10.2.1.

A7. When a quantum system consists of a finite number N of subsystems, each
described on a Hilbert space Hi �= {0}, i = 1, 2, . . . , N , the comprehensive system
is described on the Hilbert space

⊗N
i=1 Hi .

Any observable Ai : D(Ai ) → Hi on the i th subsystem (including elementary
observables defined by orthogonal projectors) is identified in the larger system with
the observable I ⊗ · · · ⊗ I ⊗ Ai ⊗ I ⊗ · · · ⊗ I .

Two are the types of compound systems we have already met: those made of ele-
mentary particles with internal structure, and multi-particle systems (elementary
particles with or without internal structure). In the first case the Hilbert space is
L2(R3, dx) ⊗ H0, where H0 is finite-dimensional and describes the particle’s inter-
nal degrees of freedom: spin and charges of various sort (cf. Chap.11). By elementary
particle with internal structure we mean that the internal space is finite-dimensional.
The literature, when referring to systems of elementary particles with spaceH0, calls
L2(R3, dx) the orbital space or space of orbital degrees of freedom, and H0 the

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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internal space or space of internal degrees of freedom. In case the space of internal
freedom degrees describes a (certain type of) charge, we should also keep possible
superselection rules into account.

Wewould like tomake a few remarks on theHamiltonian operator ofmulti-particle
systems, when the single Hilbert spaces are L2(R3, dx) with a fixed inertial frame,
and R

3 is the rest space (using orthonormal Cartesian coordinates). The Hilbert
space of a system on N particles with masses m1, . . ., m N is the N -fold tensor
product of L2(R3, dx). From Example10.27(1) this product is naturally isomorphic
to L2(R3N , dx). Indicate by (x1, . . . , xN ) the generic point in R

3N , where xk =
((xk)1, (xk)2, (xk)3) is the triple of orthonormal Cartesian coordinates of the kth
factor of R

3N = R
3 ×· · ·×R

3. The natural isomorphism turns (prove it as exercise)
the position operator of the kth particle into the multiplication by the corresponding
xk = ((xk)1, (xk)2, (xk)3), and the momentum into the unique self-adjoint extension
of the xk-derivatives (times−i�), for instance onD(R3N ). The Hamiltonians of each
particle, assumed free, coincide with the self-adjoint extension, say on D(R3N ), of
the corresponding Laplacian −Δk = ∑3

i=1
∂2

∂(xk )
2
i
times −�

2/(2mk). Relying on

Sect. 11.5.8, if the particles undergo interactions described classically by a potential
V = V (x1, . . . , xN ), the Hamiltonian is expected to be some self-adjoint extension
of

H0 :=
N∑

k=1

− �
2

2mk
Δk + V (x1, . . . , xN ) .

For instance, particles with charges ek interacting with one another under Coulomb
forces and also with external charges Qk are expected to have as Hamiltonian a
self-adjoint extension of

H0 :=
N∑

k=1

− �
2

2mk
Δk +

N∑

k=1

Qkek

|xk | +
N∑

i< j

ei e j

|xi − x j | .

As we explained in Sect. 10.4 and Examples10.52, important results mainly due to
Kato imply, under natural assumptions on V , that not only H0 is essentially self-
adjoint on standard domains like D(R3N ) or S (R3N ), but the only self-adjoint
extension is bounded below, therefore making the system energetically stable. This
happens in particular for the operator with the Coulomb interaction presented above
(cf. Examples10.52).

If the N particles have an internal structure, with internal Hilbert space H0k , the
overall Hilbert space will be isomorphic to L2(R3N , dx) ⊗N

k=1 H0k , and the possible
Hamiltonians are more complicated, usually. We encourage the reader to consult the
specialised texts [Mes99, CCP82, Pru81, ReSi80] for examples of this kind.

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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13.4.2 Independent Subsystems: The Delicate Viewpoint of
von Neumann Algebra Theory

Apropos compounds of independent subsystems, we shall make a few superficial
observations from a more abstract point of view (see [ReSu07, ReSu10]). Suppose
that a quantum system S described by the von Neumann algebra R on the Hilbert
space H contains mutually independent subsystem Sk , k = 1, . . . , N with corre-
sponding von Neumann algebras of observables Rk on H. We expect that

Rk ⊂ R′
h if k �= h, (13.77)

because the subsystems are independent and any two observables of different sub-
systems are therefore always compatible. For the same reason

Rk ∩ Rh = {cI | c ∈ C} when k �= h (13.78)

because Rk contains non-trivial observables of Sk but not of Rh . If S is consists of
Sk only (no other independent subsystem exists) then we may assume that

R =
(

N⋃

k=1

Rk

)′′
. (13.79)

Further possible requirements for describing independent subsystems will be about
states. Consider a system made of N subsystems, so that its von Neumann algebra
R is the product R1 ⊗ · · · ⊗ RN of N von Neumann algebras on the same Hilbert
space, whose pairwise intersections are trivial. Given N normal states ρ1, . . . , ρN

(i.e. positive trace-class operators of unit trace, Remark7.73(2)) on the respective
von Neumann algebras Rk , it is reasonable to assume that there is an extension ρ

defining a (normal) state on R with the separability property

tr(ρ(A1 · · · An)) = tr(ρ1A1) · · · tr(ρN AN ) ∀Ak ∈ Rk, k = 1, . . . , N . (13.80)

(Another condition is the injectivity of the GNS representation associated to ρ when
the GNS representations of the ρk are injective. We will not pursue this now, as
it is related to Chap. 14). We can assume an even more abstract viewpoint. Sup-
pose we start from N von Neumann algebras Mk over different Hilbert spaces Hk ,
forming a compound system described on H by the von Neumann algebra R. The
previous discussion is still valid if there exist injective ∗-homomorphisms of von
Neumann algebras hk : Mk → R (in particular, hk maps the identity to the identity:
hk(Ik) = I ), so that eachMk is identified with a von Neumann subalgebraRk ⊂ R.
This identification is also topological, by Remark3.95(2). A stronger version would
require that the isomorphisms hk be implemented unitarily. Conditions (13.77)–
(13.80) are supposed to be valid for the hk-images Rk in place of the algebras Mk

http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_14
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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themselves.We leave it to the reader to discover the related picture involving elemen-
tary propositions (orthogonal projectors) ofLMk (Hk),LR(H) and isomorphisms of
(σ -)complete orthocomplemented lattices.

What is the relationship between axiomA7 and this abstract and apparently more
general approach to composite systems? Let us prove that they are in agreement
axiom A7, as a special case of the more general notion of composite system.

WhenRk ⊂ B(Hk), axiom A7 gives a natural procedure to build H andR under
(13.77)–(13.79): besideH = ⊗n

k=1Hk we also haveR = ⊗N
k=1Rk , the tensor product

of von Neumann algebras as of Definition10.34 (in particular, Theorem10.35 holds).
Each map

hk : Rk � A �→ I ⊗ · · · ⊗ I ⊗ A ⊗ I ⊗ · · · ⊗ I⊗ ∈ ⊗N
k=1Rk ,

with A in the kth entry in the right-hand side, is a ∗-isomorphism onto its image,
the von Neumann subalgebra CIH1 ⊗ · · · ⊗Rk ⊗ · · · ⊗ CIHN of ⊗N

k=1Rk . Moreover
(13.80) is also valid, simply by setting ρ := ρ1⊗· · ·⊗ρN , where each ρk is a positive
trace-class operator of trace one on Hk , defining a normal state on Rk .

Yet no one says that tensor products of Hilbert spaces and von Neumann alge-
bras is the only possibility to describe compound system in terms of the algebras
of observables of the subsystems. Indeed, there exist compound systems – in the
abstract sense of (13.77)–(13.79) – for which R ⊂ B(H) cannot be interpreted as
the tensor product of theRk ⊂ B(H) of its subsystems, if at the same time we wish
to identify eachRk with a vonNeumann algebra R̂k ⊂ B(Hk) over a suitable Hilbert
space Hk , so that H is isomorphic to ⊗N

k=1Hk .
The identifications simultaneously regard Hilbert spaces and von Neumann alge-

bras, so they should be implemented by a unitary operator. As a matter of fact, we
must look for a surjective, norm-preserving operator U : H → ⊗N

k=1Hk such that

URkU−1 = CIH1 ⊗ · · · ⊗ R̂k ⊗ · · · ⊗ CIHN for k = 1, 2, . . . , N

and
R = U−1R̂1 ⊗ · · · ⊗ R̂N U

hold.
Here is an elementary example to make the point. Suppose that R1 is a factor

on the Hilbert space H, and define R2 := R′
1. Then R1 ∩ R2 = {cI | c ∈ C}

and (R2 ∪R2)
′′ = B(H), and hence (13.77)–(13.79) are satisfied. We interpret6 the

picture as that of a bipartite systemwith total algebra of observablesR := B(H) and
subsystems’ algebras R1,R2. It will not be possible to interpret the tensor product
with axiom A7. In fact, when R1 is not of type I, we cannot find Hilbert spaces H1,
H2 with von Neumann algebras R̂1 ⊂ B(H1), R̂2 ⊂ B(H2), and a unitary operator

6According to Sect. 11.2.3, another natural interpretation would be thatR2 is the algebra generated
by the gauge group of a systemwith vonNeumann algebra of observablesR1, in absence of Abelian
superselection rules.

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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U : H → H1 ⊗ H2, satisfying UR1U−1 = R̂1 ⊗ CIH2 and UR2U−1 = CIH1 ⊗ R̂2

[KaRi97, vol. II, p. 816]. On the other hand, if R1 has type In , so R2 has type Im

(n, m = 1, 2, . . . ,+∞), then U does exist, and moreover R̂1 = B(H1), R̂2 =
B(H2). Hence we also have (13.80). In standard Quantum Mechanics, fortunately,
all operator algebras are of type I (or direct sums of such), so no problems arise.
For extended thermodynamical systems, or in Quantum Field Theory, the picture is
muchmore delicate: factors of other type appear (type-III factors, see [Haa96, Rob04,
ReSu07] for instance) and tensor products may no longer be appropriate to describe
compound systems. In Chap.14 we shall take the next step in the abstraction and
describe observables using C∗-algebras. When one plays that game, though, there is
no unique definition of tensor product [KaRi97, Sect. 11.3].

We will not address these advanced issues in this book and just stick to axiom A7
as it stands. For a detailed study of independent subsystems from the viewpoint of
von Neumann algebras (and C∗-algebras) the reader is advised to look in [Red98,
ch. 10–12]. Those three chapters also analyse the implications in Quantum Field
Theory, especially with regard to the EPR paradox. We will cover the latter in the
next section, albeit from a much more elementary point of view.

13.4.3 Entangled States and the So-Called “EPR Paradox”

A measuring device is not necessarily located at a point in space. On the contrary,
if we want to measure quantities defined in space, first and foremost the position
of a quantum particle, we must fill space with instruments: particle detectors that
measure the position. The process of reduction of the state described by axiomA3 is
“instantaneous”. This means that once a device has detected the particle at the point
p and at time t , from that instant onwards no other device, as remote in space as we
want from the first detector, will be able to detect the particle. The reduction of state
therefore seems to be a nonlocal process: apparently it implies a “simultaneous”
transmission of information between faraway places. This appears to violate the
principles of the theory of relativity. In 1935 Einstein, Podolsky and Rosen [Des99,
Bon97, Ghi07, Alb94], whilst considering systems of two particles, showed that the
question can be phrased in physically-operative terms by which the violation seems
to materialise effectively [EPR35].

AxiomA7 describes the possible states of a compound quantum system. Let S be
a system made of two subsystems A, B. The Hilbert space of S is HS = HA ⊗ HB ,
in the obvious notations. The vectors of HA ⊗ HB are not just of the factorised sort
ψA⊗ψB , with one tensor product, for there are linear combinations of these products,
too, like

Ψ = ψA ⊗ ψB − ψ ′
A ⊗ ψ ′

B√
2

. (13.81)

http://dx.doi.org/10.1007/978-3-319-70706-8_14
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Pure states corresponding to unit vectors of the above form are called entangled
pure states.7

Consider the entangled state associated to the vector Ψ of (13.81), and let us
suppose ψA and ψ ′

A are eigenstates normalised to 1 of some observable G A with
discrete spectrum on system A, respectively corresponding to distinct eigenvalues a
and a′. Assume the same for ψB , ψ ′

B : they are unit eigenstates of an observable G B

with discrete spectrum on system B, with eigenvalues b �= b′.
The discrete-spectrum observables G A, G B are, for instance, relative to internal

freedom degrees of the systems A and B. They can typically be components of the
spin or the polarisation of the particles. In that case the spaces HA, HB are also
factorised into orbital space and internal space.

Until we measure it, the quantity G A is not defined on the system, if the latter is
in the state given by Ψ ; there are two possible values a, a′ with probability 1/2 each.
The same pattern is valid for G B . The minute we measure G A, reading – say – a (a
priori unpredictable, at least in principle), the state of the total system changes, in
allegiance to axiom A3, becoming the pure state of the unit vector

ψA ⊗ ψB .

The crucial point is the following: if the initial state is the entangled state Ψ , the
measurement of G A determines a measurement of G B as well: in the pure state asso-
ciated to ψA ⊗ ψB the value of G B is well defined, and equals b in our conventions.
Any measurement of G B can only give b.

Following the famous study of Einstein, Podolsky and Rosen, consider now com-
pound systems of two particles A, B, prepared in the entangled pure state of the
vector Ψ of (13.81), that move away from each other at great speed (i.e., the state’s
orbital part is the product of two very concentrated packets that separate rapidly from
each other). In principle we can measure G A and G B on the respective particles in
distant places and at lapses so short that no physical signal, travelling below the speed
of light, can be transmitted from one experiment to the other in good time.

If axiom A3 is to be valid, there should be a correlation between the outcomes:
every time the reading of G A is a (or a′), G B will give b (respectively, b′).

How can system A communicate to system B the outcome of the measurement
of G A in time to produce the aforementioned correlations, without breaching the
cornerstones of relativity?

This is a common situation in classical systems too, and in that case the explana-
tion is very easy: there is no superluminal communication between the systems, for
the correlations pre-exist the measurements. We call local realism this viewpoint,
though, philosophically speaking, local realism is a much more articulate position.
For example, let the observed quantitiesG A,G B be some particle “charge” or the like,
and suppose the overall system S has charge 0 in the state in which it has been pre-
pared, while the particles could have charge±1 corresponding to the aforementioned

7Analogously, for mixed states: ρ ∈ S(HA ⊗ HB) is entangled if it is not a convex combination
of states of the form ρA ⊗ ρB , ρA ∈ S(HA), ρB ∈ S(HB).
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values a, a′ and b′, b. If we reason with classical particles, we have to conclude one
particle has charge 1, the other−1. If the values of charge are pre-existent, i.e. if they
exist before and independently of the fact that we take a measurement to observe
the charge, we can rest assured that if a particle has charge 1 when measured, the
second one will give −1 when observed, irrespective of where and when charges are
measured, because the values are fixed beforehand.

The picture described by QM is, however, different: even if the state associated to
Ψ has total charge G = G A +G B equal to 0, the subsystems’s charges are not defined
on the state of Ψ , and become fixed at the time of the measurement (of either state).
Therefore the situation pre-existing the measurement cannot be held responsible for
the correlations predicted by QM, if we accept the standard interpretation of QM.

The idea of Einstein, Podolsky and Rosen was that if said correlations were really
observed (as required by QM), and since defying the assumption of relativistic local-
ity was out of the question, the reason for the correlations was due to a pre-existing
state to the measurements. As this cannot be described in the framework of the stan-
dard formulation of QM, it would have proved that the standard formulation of QM
was, by nature, incomplete. (The probabilities used in QM, moreover, would reduce
to mere epistemic probabilities).

J. Bell, in a brilliant paper published in 1964 [Bel64, Bon97, Ghi07], while mea-
suring at least three types of “charges” producing correlations (in reality onemeasures
three spin components for massive particles or polarisation states of photons), proved
it is possible to distinguish experimentally between two situations, where the charges
are either:
(i) fixed before the measurements,
or
(ii) fixed at the same time of the measurements.

Bell proved that case (i) occurs only if the outcomes obey a series of inequalities:
the celebrated Bell inequalities.

It is important to remark that a potential experimental infringement of Bell’s
inequalities does not automatically validate the standard formulation of QM. Non-
local correlations, if observed experimentally, could in principle be justified without
QM. What is true is that Quantum Mechanics, in contrast to Classical Mechanics,
forecasts the presence of the correlations and at the same time the violation of Bell’s
inequalities, as we will see in short.

13.4.4 Bell’s Inequalities and Their Experimental Violation

We will discuss briefly the simplified version of Bell’s inequalities proposed by
Wigner and d’Espagnat. The Wigner-d’Espagnat inequality has never, up to now,
been used in practical experiments.We essentially follow the presentation by Sakurai
[Sak94].

Take two particles A, B of spin 1/2 produced together, in a region O , in the
“singlet state”, i.e. in the unique pure state of zero total spin. Fix an inertial system
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where the phenomenon is described. The entangled pure spin state is representable
by Ψsing in the spin space HAspin ⊗ HBspin:

Ψsing = ψ
(n)
+ ⊗ ψ

(n)
− − ψ

(n)
− ⊗ ψ

(n)
+√

2
, (13.82)

where eachHAspin ,HBspin is isomorphic to C
2, since each particle has spin s = 1/2.

Moreover,ψ(n)
+ andψ

(n)
− are unit eigenvectors with respective eigenvalues 1/2,−1/2

for the spin operator Sn := n · S along n (unit three-dimensional vector), for the sin-
gle particle (as usual, � = 1). The decomposition (13.82) holds for the singlet state
Ψsing , irrespective of where the axis n is.

We suppose the particles part from each other. In other words the state’s orbital
part will, for example, be a product of wavefunctions, one in the orbital variables of
A and one in the orbital variables of B, given by packets concentrated around their
centres. The packets move away quickly from O in the chosen frame, so that the
packets never overlap when the spin measurements are taken on A and B (we will
not discuss the case of identical particles, which is practically the same anyway).
To study the correlation of spin measurements that violate locality, actually, it is not
even necessary to assume the orbital part has the form we said. It suffices to place
the devices measuring spin in faraway regions OA, OB (and far from O), and make
sure the axis of the spin analyser of A in OA can be re-oriented during consecutive
measurements (see below) fast enough to prevent signals from propagating sublu-
minally from OA and reach OB during measurements on the spin of B. This setup
was concretely put into practice by Aspect’s experiments.

To fix ideas imagine OB is on the right of O and OA on the left. The spin mea-
surements in A and B (even two or more consecutive readings along distinct axes
for each particle) can be taken, independent of one another, along given independent
directions u, v,w, not necessarily orthogonal. Assume at last that N pairs AB in spin
singlet state are generated in O , and that each pair is then analysed by spin measure-
ments on A, B in OA, OB along three given independent unit vectorsu, v,w. Suppose
that on the N pairs the values of the spin components are fixed before measuring in
OA and OB . This is the contrary of what the standard formulation of QM predicts.
In order to have zero total spin, for each pair AB the spin triples (Su, Sv, Sw)A for A
and (Su, Sv, Sw)B for B must have opposite corresponding components. For instance,
(+,−,+)A and (−,+,−)B are admissible, whereas (+,+,+)A and (−,+,−)B are
not (from now on we shall abbreviate +1/2 by + and −1/2 by −). There are 8 pos-
sible combinations altogether, tabled below.

Among the N pairs there will be N1 pairs (+,+,+) for A and (−,−,−) for B
irrespective of whether measured or not, N2 pairs (+,+,−) for A and (−,−,+)

for B irrespective of whether measured or not, and so on. At any rate we will have
N = ∑8

n=1 Nk .
With our “classical” hypotheses, every pair among the N examined must belong,
after it has been created, in one of the sets, independently of what sort of spin
measurements is taken. So let us suppose, for a certain pair, we measure Su on A
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part. A part. B
N1 (+,+, +) (−,−, −)

N2 (+,+, −) (−,−, +)

N3 (+,−, +) (−,+, −)

N4 (+,−, −) (−,+, +)

N5 (−,+, +) (+,−, −)

N6 (−,+, −) (+,−, +)

N7 (−,−, +) (+,+, −)

N8 (−,−, −) (+,+, +)

finding +, and Sv on B finding +. Then the pair can only belong to class 3 or 4, and
there are N3 + N4 possibilities out of N that this happens. If we call p(u+, v+) the
probability of finding + measuring Su on A and + measuring Sv on B, we have

p(u+, v+) = N3 + N4

N
. (13.83)

Similarly

p(u+, w+) = N2 + N4

N
, p(w+, v+) = N3 + N7

N
. (13.84)

Since N2, N7 ≥ 0:

p(u+, v+) = N3 + N4

N
≤ N2 + N4

N
+ N3 + N7

N
= p(u+, w+) + p(w+, v+) ,

i.e. Bell’s inequalities hold:

p(u+, v+) ≤ p(u+, w+) + p(w+, v+) . (13.85)

These inequalities hold whatever basis of unit vectors (not necessarily orthogonal)
u, v,w we pick, provided the values of the spin components along them are defined
before we take the spin measurements, and the total spin of each pair is null. QM’s
prediction leads to a violation of the inequalities if we choose the axes suitably.
Compute first p(u+, v+) with the quantum recipe. Suppose the measure on A of Su

is +. Measuring Su on B will give (or has already given) −, by (13.82). Anyway,
particle B will have spin state represented by ψ

(u)
− in the eigenvector basis of Su . So

we can evaluate p(u+, v+) as:

p(u+, v+) = 1

2

∣∣∣
(
ψ

(u)
−

∣
∣∣ψ(v)

+
)∣∣
∣
2

, (13.86)

where 1/2 is the initial probability of having + on A when measuring Su in state
Ψsing . It is an easy exercise to compute the right-hand side of (13.86) in terms of the
angle θuv between u and v:
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p(u+, v+) = 1

2
sin2

(
θuv

2

)
. (13.87)

The other terms in (13.85) are similar, so Bell’s inequality (13.85) is equivalent to:

sin2
(

θuv

2

)
≤ sin2

(
θuw

2

)
+ sin2

(
θwv

2

)
. (13.88)

It is not hard to see that a smart choice of angles invalidates the inequality. For example
θuv = π/2 implies sin2

(
θuv
2

) = 1/2. Setting θuw = θwv = 2φ, the inequality becomes

1

4
≤ sin2 φ ,

clearly contradicted by independent axes u, v,w with θuv = π/2 and θuw = θwv =
2φ ∈ (π/4, π/3).

Remark 13.42 Despite the whole theory has unfolded within the non-relativistic for-
malism, one could already at this juncture raise an important question, unabatedwhen
passing to the relativistic formalism. In the quantum commutation of p(u+, v+) we
assumedwe hadmeasured first the spin of A, and then the spin of B. If measurements
are taken in causally disjoint spacetime events – events that cannot be connected by
future-directed timelike or spacelike paths – then the chronological order of the
events is conventional, and depends on the choice of (inertial) frame, as is well
known in special relativity. Thus we can find a frame where B is measured before
A. So the question is whether computing p(u+, v+) in this situation – which by the
principle of relativity is physically equivalent to the previous one – gives the same
result found earlier. Leaving behind the issue of a relativistic formalisation, the prob-
ability p(u+, v+) is easily seen not to change, since the particles’ spin observables
commute. We will return to this kind of problem later. �

Since 1972 several experiments have been conducted to test the existence of the
aforementioned correlations, and the truth or falsity of Bell’s inequalities (an impor-
tant experiment was made in 1982 by A. Aspect, J. Dalibard and G. Roger [Bon97,
Ghi07]). As a byproduct of the large number of experimental tests over the years,
various common deficiencies in the testing of Bell’s theorem have been found, in par-
ticular the detection loophole and communication loophole. The experiments have
been gradually improved to better deal with these loopholes. In 2015, for the first
time, R. Hanson and collaborators8 corroborated the violation of Bell’s inequalities
during an experimental test of Bell’s theorem. The reported results are free of any
additional assumptions or loophole. Within the acceptability range of experimen-
tal errors, we can conclude that (a) the nonlocal correlations predicted by QM do
exist, (b) Bell’s inequalities are violated. Unless we deny the validity of the above

8Hanson, R. et al. : Loophole-free Bell inequality violation using electron spins separated by 1.3
kilometres. Nature. 526: 682–686 (2015); arXiv:1508.05949.

http://arxiv.org/abs/1508.05949


854 13 Selected Advanced Topics in Quantum Mechanics

experiments, therefore, and independent of whether we accept or not the standard
formulation of Quantum Mechanics, we must agree that the correlations anticipated
by Quantum Mechanics exist, and the outcomes are fixed at the moment of the mea-
surements. Most physicists nowadays think that local realism is untenable. From a
philosophical viewpoint, however, local realism cannot be excluded completely if we
adopt extreme (unfalsifiable) assumptions such as the hypothesis of superdetermin-
ism, where everything, including all experiments and outcomes, is predetermined.

13.4.5 EPR Correlations Cannot Transfer Information

Although we developed QM in its non-relativistic version, the problems posed by the
EPR analysis do not substantially change in the relativistic framework. But one ques-
tion remains unanswered (we retain the conventions and notations of Sect. 13.4.3):
how does system A communicate to system B the outcome of the measurement of
G A, in time to produce the correlations we know of, and without destroying the cor-
nerstones of relativity?

The answer is quite intricate, and by no means conclusive. First of all, one has to
say that the question is ill posed, because it understates that the outcome ofmeasuring
G A causes the outcome of G B . In spacetime regions where the two measurements
are taken (or can be taken) the latter are, in relativistic language, causally disjoint:
there is no future-directed “spacelike” or “timelike” path in spacetime joining them.
It is well known from relativity that there exists an inertial system in which A is mea-
sured before B, and another one where the situation is opposite: the measurement
of B precedes in time the measurement of A. So it makes no sense to say that the
outcome of the experiment on A is the consequence, or the cause, of the outcome
on B. One could, notwithstanding, resort to the partial conventionality of Einstein’s
synchronisation procedure in order to dismiss that problem. But despite the con-
ventional choices underpinning special relativity, it is known that the correlations
between causally disjoint events are “dangerous” in relativistic theories, for they can
spawn causal paradoxes: using a chain of causally disjoint events we can put two
events in the history of a given system in any chronological order whatsoever. If it
were possible to use the correlations of causally disjoint events to transfer informa-
tion either way, we would be able to communicate with the past (inside the light
cone) and thereby obtain causal paradoxes.

It can be proved (see [Bon97] and references for a detailed study) that by accepting
the standard formulation of QM for systemsmadeby entangled states like (13.81) (but
also general entangledmixed states), no piece of information can be transmitted from
(event) X , where part of the system is measured, to (event) Y , where the other part
is measured, by measuring arbitrary pairs of quantities and exploiting the quantum
correlations between the readings. Not only that, but observing the outcomes on one
part of the system we cannot establish whether on the other part any measurements
have been taken, if they are being taken as we speak, nor if they will be taken in the
future.
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Let us examine two ways of transferring information from X to Y via EPR cor-
relations.

(a) Consider the single pairs of measurements on A, B of the observables G A,
G B , which we know have correlated outcome. We cannot pass information from
X to Y using the correlation, because the outcome, albeit correlated, is completely
accidental. It is like having two coins A, B with the remarkable property that each
time one shows “heads”, the other one gives “tails”, independent of the fact they
are tossed far away, rapidly, and that A is tossed before or after B in some frame.
The coins, though, have a quantum character and it is physically impossible to force
one to give a certain result: the outcome of the toss is determined in a probabilistic
way and whatever our wish is. Thus the two coins, i.e. our quantum system made by
parts A and B, cannot be used as a Morse telegraph of sorts to transmit information
between X and Y .

(b) The second possibility is to consider not the single measurements of G A and
G B , but a large number thereof, and study the statistical features of the outcome
distributions. The statistics of the measurements of G A might be different according
to whether we measure G B as well, or whether we measure a new quantity G ′

B .
In this way, by measuring or not measuring G B (and measuring G ′

B or measuring
nothing at all) in Y , we can send an elementary signal to X , of the type “yes” or
“no”, that we recover by checking experimentally the statistics of A. We claim that
neither this procedure allows to transfer information, since the statistics relative to
G A is exactly the same in case we also measure G B (or any other G ′

B) or we do
not measure G B . Consider the state ρ ∈ S(HA ⊗ HB) of the system composed by
A, B. Suppose G A = G(A) ⊗ IB , with G(A) self-adjoint on HA, has discrete and
finite spectrum {g(A)

1 , g(A)
2 , . . . , g(A)

n }, with eigenspaces Hg(A)
k

⊂ HA ⊗HB as ranges

of the orthogonal projectors P (G A)
k := PG(A)

k ⊗ IB . Similarly, G(B) is self-adjoint
on HB , G B = IA ⊗ G(B) has spectrum {g(B)

1 , g(B)
2 , . . . , g(B)

m } discrete and finite,
the eigenspaces Hg(B)

k
⊂ HA ⊗ HB are targets of orthogonal projectors P (G B )

k :=
IA ⊗ PG(B)

k . If we measure G B on state ρ reading g(B)
k , the post-measurement state is

1

tr
(

P (G B )
k ρ P (G B )

k

) P (G B )
k ρ P (G B )

k .

Considering all possible readings of B, if we measure first B and then A (in some
frame), the system we want to test on A is the mixture

ρ ′ =
m∑

k=1

pk

tr
(

P (G B )
k ρ P (G B )

k

) P (G B )
k ρ P (G B )

k

where pk = tr(P (G B )
k ρ P (G B )

k ) is the probability of reading g(B)
k for B. Altogether
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ρ ′ =
m∑

k=1

P (G B )
k ρ P (G B )

k .

Hence the probability of getting g(A)
h for A, when B has been measured (irrespective

of the latter’s outcome), is:

P(g(A)
h |B) = tr(ρ ′ P (G A)

h ) = tr

(
m∑

k=1

P (G B )
k ρ P (G B )

k P (G A)
h

)

The trace is linear and invariant under cyclic permutations, so

P(g(A)
h |B) =

m∑

k=1

tr(P (G B )
k ρ P (G B )

k P (G A)
h ) =

m∑

k=1

tr(ρ P (G B )
k P (G A)

h P (G B )
k )

=
m∑

k=1

tr(ρ P (G B )
k P (G B )

k P (G A)
h ) .

In the last passage we used P (G B )
k P (G A)

h = P (G A)
h P (G B )

k , coming from the structure
of the projectors. On the other hand P (G B )

k P (G B )
k = P (G B )

k and
∑

k P (G B )
k = I by the

spectral theorem. Therefore

P(g(A)
h |B) =

m∑

k=1

tr
(
ρ P(G B )

k P(G A)
h

)
= tr

(

ρ

m∑

k=1

P(G B )
k P(G A)

h

)

= tr
(
ρ P(G A)

h

)
= P(g(A)

h ) .

The final result is: the probability of obtaining g(A)
h from A when the quantity B

has been measured (with any possible outcome) coincides with the probability of
obtaining g(A)

h from A without measuring B.
So even by considering the statistics of outcomes of A, there is no way to transmit

information by EPR correlations: when measuring part B of the system, the presence
or the absence of the correlations is completely irrelevant if we observe only part A.

Therefore, QuantumMechanics and Special Relativity seem to coexist peacefully.
In reality the above discussion turns a blind eye on whether spacetime is classical
or relativistic. Apparently, the lesson learned is that the processes of compound
quantum systems are not describable in spacetime. Only the outcomes of measure-
ments, interpreted as states of macroscopic systems (detectors, meters, etc…) can be
described in spacetime using events. Spacetime allegedly resembles an “a posteriori”
structure in which macroscopic phenomena are recorded, sometimes in relationship
to microscopic phenomena. But this is not the only possible way to look at things.
The apparent violation of locality due to the “collapse of the state” might in fact
be a purely speculative construction, related to an all-too-simplistic model of the
measuring procedures. Furthermore, a careful analysis might reveal that spacetime
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categories carry on being fundamental at the quantum level as well. In this respect
see the recent study [Dop09].

13.4.6 The Phenomenon of Decoherence as a Manifestation
of the Macroscopic World

It must be clear that the point of view outlined in the previous section has to be con-
sidered as a starting point and not the end of the journey, at least until we understand,
experimentally, what amacroscopic/classical system is, what amicroscopic/quantum
system is, and which are the reasons for switching from one regime to the other.

An interesting perspective for recovering the classical world from the quantum
one is based on the notion of decoherence [BGJKS00]. We present the main idea
quite rapidly (see in particular [Kup00], [Zeh00]). Consider a quantum system S
interacting with another quantum system E , the latter seen as the ambient where the
evolution takes place (E may include measurement instruments and any other object
that interacts with S). The evolution is described on the Hilbert space H = HS ⊗HE

by an operator (unitary and strongly continuous) R � t �→ Ut . If ρ(0) is a state
(mixed in general) of the total system at time t = 0, measurements of observables
on S at time t are taken using an effective statistical operator ρS(t) of the form:

ρS(t) = trE
(
Utρ(0)U−1

t

)
, (13.89)

where trE (W ) denotes the partial tracewith respect to E of the self-adjoint operator
W ∈ B1(HS ⊗HE ) (we used it tacitly in the previous section as well). Then trE (W )

is the unique self-adjoint operator inB1(HS) for which

∑

n∈N

(φ ⊗ ψn|Wφ ⊗ ψn) = (φ|trE(W )φ) , φ ∈ HS

in any basis {ψn}n∈N ⊂ HE . The role of the partial trace (for the subsystem E) is to
assign, in a natural way, a state (trE(W )) to the subsystem (S) with respect to which
the trace is not taken, whenever we have a state (W ) for the total system (S + E). If
an observable A⊗ IHE is bounded on S, as expected tr(AtrE(W )) = tr(A⊗ IHE W ).

The evolution given by (13.89), in general, cannot be expressed canonically by a
unitary evolution operator acting directly on ρS(0). This approach seems to account
well for the experimental behaviour of many systems that interact intensely with
the ambient (like macromolecules). In certain cases the interaction with the ambient
determines a collection {Pk}k∈K ⊂ B(HS) of pairwise-orthogonal projectors, not
dependent on the overall state, for which almost instantaneously the state ρt satisfies:

ρS(t) =
∑

k∈K

PkρS(t)Pk .
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Any mechanism due to the interaction of S and E that produces this situation is
called a decoherence process. In practice decoherence corresponds to a dynamical
procedure that generates a superselection rule for S, whose coherent sectors are the
projection spaces of the Pk which give propositions about quantities that are typically
considered completely classical. A mechanism of this sort (see [Kup00] and the
models therein) could shed light on the reasons why large molecules, for example,
have geometric features that vary with continuity and can be described in classical
terms. What is more, it could elucidate why certain macroscopic objects behave
classically. Perhaps it could explain, alternatively, what in the common interpretation
of the formalism goes under the name of collapse of the state (which would never
occur in reality), even though it is not clear how to justify the apparent violation of
locality [BGJKS00]. An elementary physical process leading to the superselection
of the mass, once we assume that the spectrummass is a discrete set of positive reals,
was presented in [AnMo12].

It is worth remarking that the decoherence process is especially used to try to
describe quantum measurement procedures [BGJKS00], assuming that, even during
the interaction system-apparatus, an overall Schrödinger evolution holds. Actually,
in this case the actors are three: the system S, the environment E and the experimental
apparatus A. The latter is described separately from the environment, and is devoted to
measuring some observable of S. Here the decoherence phenomenon should concern
the interaction A-E . It is however disputable whether these approaches really permit
to describe the notion of collapse of the state completely, hence removing it from
quantum theories.

13.4.7 Axiom A8: Compounds of Identical Systems

In QM elementary particles are identical. The fact that they cannot be distinguished
is formalised in QM in a precise way by keeping axiom A7 in account, as we will
see in a moment.

First we need a few technical results.

Definition 13.43 The permutation group Pn on n elements is the set of bijective
mapsσ : {1, 2, . . . , n} → {1, 2, . . . , n} (calledpermutations ofn objects) equipped
with the composition product.

In particular, a permutation of two objects is a map σ ∈ Pn that restricts to the
identity on a subset of n − 2 elements of {1, 2, . . . , n}.
To any σ ∈ Pn we associate a number (−1)σ ∈ {−1,+1} called its parity. If σ

is the product of an even number of permutations of two objects then (−1)σ := 1,
while if the number of permutations is odd, (−1)σ := −1. Despite the number of
permutations of two objects appearing in σ is not uniquely determined, the parity is,
as one can show.

Consider aHilbert spaceH and its n-fold tensor productH⊗n := ⊗n
i=1 H. Anyσ ∈

Pn induces a unitary operator Uσ : H⊗n → H⊗n defined as follows. Pick a basis N
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forH. By Proposition10.25 the vectorsψ1⊗· · ·⊗ψn , withψk ∈ N , k = 1, 2, . . . , n,
form a basis ofH⊗n . If σ is an arbitrary permutation also ψσ−1(1) ⊗· · ·⊗ψσ−1(n) will
give a basis for H⊗n . This basis, actually, is precisely the same one we had before
acting by σ , up to rearrangements. Define Uσ : H⊗n → H⊗n as the unique bounded
operator satisfying

Uσ (ψ1 ⊗ · · · ⊗ ψn) := ψσ−1(1) ⊗ · · · ⊗ ψσ−1(n) , ψk ∈ N , k = 1, 2, . . . , n.

Then Uσ is unitary, for it preserves bases. Moreover if φ1, . . . φn ∈ H are arbitrary
(even not in N ), decomposing over the ψi and exploiting linearity and continuity
gives

Uσ (φ1 ⊗ · · · ⊗ φn) := φσ(1) ⊗ · · · ⊗ φσ(n) .

This proves half of the following proposition.

Proposition 13.44 Consider H⊗n := ⊗n
i=1 H, where H is a Hilbert space, and let

Pn denote the permutation group on n elements.
(a) If σ ∈ Pn there exists a unique unitary operator Uσ : H⊗n → H⊗n such that:

Uσ (φ1 ⊗ · · · ⊗ φn) := φσ−1(1) ⊗ · · · ⊗ φσ−1(n) , (13.90)

for any φ1, . . . , φn ∈ H.
(b) U : Pn � σ �→ Uσ is a faithful unitary representation of Pn.

Proof (a) The claim descends from the arguments preceding the proposition: just
define Uσ via a basis and check (13.90) holds for any φ1, . . . , φn ∈ H. Two bounded
operators satisfying (13.90) coincide on a basis, hence everywhere (being bounded).
(b) By direct inspection (using the fact that σ−1 appears in the right-hand side
of (13.90)) (Uσ Uσ ′)(φ1 ⊗ · · · ⊗ φn) = Uσ◦σ ′(φ1 ⊗ · · · ⊗ φn). Linearity and
continuity imply Uσ Uσ ′ = Uσ◦σ ′ , making σ �→ Uσ a (unitary) representation
of Pn . Faithfulness is granted by the injectivity of U , since Uσ = I implies
φσ−1(1) ⊗· · ·⊗φσ−1(n) = φ1 ⊗· · ·⊗φn for any orthonormal vectors φ1, . . . , φn ∈ H,
hence σ−1 = id = σ . �

Physically, ifΨ ∈ H⊗n is a pure state of a systemmadeofn identical subsystems, each
described on its own Hilbert space H, the pure state of UσΨ is naturally interpreted
as the state in which the n subsystems have been permuted under σ . The action ofUσ

extends to all states ρ ∈ S(H⊗n) by the transformation that maps ρ to Uσ ρU−1
σ . As

Uσ is unitary, the transformation preserves the positivity and trace of ρ (Uσ ρU−1
σ is of

trace class ifρ is, because trace-class operators forman ideal), soUσ ρU−1
σ ∈ S(H⊗n)

if ρ ∈ S(H⊗n).
The permutation group’s action on states dualises to an action on propositions

P ∈ L (H⊗n) on the system. The inverse dual action, as usual, is given by the trans-
formation mapping P to Uσ PU−1

σ . Since Uσ is unitary, Uσ PU−1
σ is an orthogonal

projector if P is.
By the properties of the trace (Proposition4.38(c))

http://dx.doi.org/10.1007/978-3-319-70706-8_10
http://dx.doi.org/10.1007/978-3-319-70706-8_4
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tr
(
Uσ PU−1

σ Uσ ρU−1
σ

) = tr (P ρ) .

Then, this action of permutations on propositions cancels the action of permutations
on states. The natural interpretation of the transformation associating P to Uσ PU−1

σ

is an active action on physical instruments of the permutation σ . The action of Uσ

on propositions induces an action on each PVM {P (A)(E)}E∈B(R) (associated to
the observable A) that maps it to a PVM {U−1

σ P (A)(E)Uσ }E∈B(R). From the spectral
theoremwe know the latter action corresponds to transforming the observable A into
Uσ AU−1

σ . The physical meaning is obvious in the light of previous considerations.
Now we are ready to state the axiom for compounds of identical systems.
A8. If a physical system S consists of n < +∞ identical subsystems, each described
on one copy of the Hilbert space H, physically-admissible propositions correspond
to the subset in L (H⊗n) of orthogonal projectors that are invariant under the per-
mutation group (cf. Proposition 13.44).

Equivalently: P ∈ L (H⊗n) makes physical sense on S only if

Uσ PU−1
σ = P , for every σ ∈ Pn.

Therefore physically-admissible observables A on S are those whose spectral mea-
sures satisfy the above condition, i.e.

Uσ AU−1
σ = A , for every σ ∈ Pn.

Just for example, if we work with a compound of two identical particles of mass
m, with coordinates x (1)

i and x (2)
i , an admissible observable is the i th component of

the average position (X (1)
i + X (1)

i )/2. Without going into details, using the spectral
measures of X (1)

i and X (2)
i we can construct an admissible proposition (an orthogonal

projector commuting with every Uσ ) corresponding to the statement: “one of the
particles has i th coordinate falling within the Borel set E”. Conversely, propositions
like “ particle 1 has i th coordinate falling in the Borel set E” are not admissible.

Remark 13.45 Referring to the notion of gauge group presented in Definition11.23,
we conclude that the von Neumann algebraR of a system of n identical systems is a
subalgebra of B(H×n) admitting a non-Abelian commutant R′ whose gauge group
contains the representation {Uσ }σ∈Pn . �

13.4.8 Bosons and Fermions

At last, we would like to show one consequence of axiom A8 that is worthy of
mention. Consider the usual system S made of n identical subsystems. Take σ ∈ Pn

and the λ-eigenspace of Uσ inside H⊗n:

(H⊗n)
(σ )
λ := {Ψ ∈ H⊗n | UσΨ = λΨ } .

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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Note Uσ is unitary, so |λ| = 1.
Every meaningful proposition must commute with Uσ , so if the system’s state

Ψ ∈ (H⊗n)
(σ )
λ is initially pure, following a measurement by the admissible (true)

proposition P the state will be described by PΨ/||PΨ ||; this is in (H⊗n)
(σ )
λ since

Uσ
PΨ

||PΨ || = Uσ PΨ
||PΨ || = PUσ Ψ

||PΨ || = λ PΨ
||PΨ || . By takingmeasurements, therefore, we cannot

“make the system leave” the space (H⊗n)
(σ )
λ if it was in a pure state described by a

vector in (H⊗n)
(σ )
λ immediately prior to the measurement. Not even time evolution,

at least under time homogeneity, “allows the system to leave” the space (H⊗n)
(σ )
λ

if it was, at the initial time, in a pure state in (H⊗n)
(σ )
λ . In fact, the Hamiltonian

observable H (being admissible) will have spectral measure that commutes withUσ .
Consequently

e−i t H Uσ =
∫

σ(H)

e−ih d P (H)(h)Uσ = Uσ

∫

σ(H)

e−ih d P (H)(h) = Uσ e−i t H .

If UσΨ = λΨ , then UσΨt = Uσ e−i t HΨ = e−i t H UσΨ = e−i t H λΨ = λΨt , so Ψt ∈
(H⊗n)

(σ )
λ , for any time t ∈ R. In case the evolution operator is not the exponential of

the Hamiltonian (lack of time homogeneity), under suitable assumptions one can still
prove the same result. This happens if, for instance, the evolution operator is given
by the Dyson series (see Proposition13.19) for a special class of time-dependent
Hamiltonian observables. We have the following result.

Proposition 13.46 Suppose a compound system S is made of n < +∞ identical
subsystems, each described on the same Hilbert space H, and at some time t0 the
system is in a pure state represented by a vector in (H⊗n)

(σ )
λ for some σ ∈ Pn. Then

the evolution (in regime of time homogeneity), or a measurement, leaves the system
in a pure state represented by a vector in (H⊗n)

(σ )
λ .

The experimental evidence not only confirms this fact, but shows that pure states
of a compound of identical particles in 4 dimensions (three for space plus time)
are determined by vectors in two subspaces only, built intersecting the (H⊗n)

(σ )
λ . To

explain that fact we need a few comments.
Consider a permutation δ ∈ Pn of two elements, so δ ◦ δ = id and UδUδ = I .

As Uδ is unitary, Uδ is self-adjoint. Hence Uδ is an observable, actually a constant
of motion (exercise). Not just that: σ(Uδ) ⊂ {−1, 1} because σ(Uδ) is contained
in R (Uδ is self-adjoint) and also in the unit circle in C (Uδ is unitary). Therefore
σ(Uδ) = σp(Uδ) because the spectrum consists of one or two isolated points. It is
easy to prove σp(Uδ) = {−1, 1}. In fact, if δ swaps the kth and j th elements, every
vector of H⊗n of the form

(ψ1 ⊗ · · · ⊗ ψk ⊗ · · · ⊗ ψ j ⊗ · · · ⊗ ψn) ± (ψ1 ⊗ · · · ⊗ ψ j ⊗ · · · ⊗ ψk ⊗ · · · ⊗ ψn)

is an eigenvector of Uδ with eigenvalue ±1. From this follows, for any σ ∈ Pn , that
Uσ admits the eigenvalues (possibly coinciding) 1 and (−1)σ . It is enough to write
Uσ = Uδ1 · · · Uδm , where the σi are permutations of two elements. The intersections
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(H⊗n)
(σ )
+ := ∩m

i=1(H
⊗n)

(δi )
+1 and (H⊗n)

(σ )
− := ∩m

i=1(H
⊗n)

(δi )
−1

are eigenspaces for Uσ with respective eigenvalues +1 and (−1)σ , since Uσ =
Uδ1 · · · Uδm .
The space H⊗n has two physically interesting and mutually-orthogonal closed sub-
spaces, obtained from the intersections of all spaces of type (H⊗n)

(σ )
+ and (H⊗n)

(σ )
− ,

respectively, as σ ∈ Pn varies. These are the totally symmetric product

(H⊗n)+ := {Ψ ∈ H⊗n | UσΨ = Ψ ,∀σ ∈ Pn}

and the totally skew-symmetric product

(H⊗n)− := {Ψ ∈ H⊗n | UσΨ = (−1)σΨ ,∀σ ∈ Pn} .

The physical relevance of these subspaces lies in that every known compound of iden-
tical particles has pure states described by vectors either in (H⊗n)+ or in (H⊗n)−.
Particles of the first type, called bosons (whose mixtures are incoherent superposi-
tions of pure states in (H⊗n)+), have integer spin; particles of the second type (whose
mixtures are incoherent superpositions of pure states in (H⊗n)−), called fermions,
have semi-integer spin. This phenomenon is often referred to as the spin statistical
correlation.

Remark 13.47 Notice that the restrictions of the representation Pn � σ �→ Uσ :
H⊗n → H⊗n to these invariant subspaces are Abelian representations. So if we
deal with systems of identical subsystems whose Hilbert space is either (H⊗n)

(σ )
+ or

(H⊗n)
(σ )
− , i.e. either bosons or fermions, the gauge group of the algebra of observables

is still Abelian. �

Within the non-relativistic formulation ofQM there is no proof for the relationship
to the value of spin. We can only show, using Proposition13.46, that if a system of
particles has a fermionic or a bosonic behaviour, at time t0, it will maintain the
behaviour so long it is described by pure states.

In the non-relativistic formulation there are states represented by vectors that,
in principle, are neither symmetric nor skew-symmetric and belong to a subspace
H′ of H⊗n = (H⊗n)+ ⊕ (H⊗n)− ⊕ H′ orthogonal to both (H⊗n)±. This subspace
is again invariant under measurement procedures and temporal evolution and, obvi-
ously, under the unitary representation of the permutation group Pn . Actually H′
can be decomposed into a direct sum of subspaces of dimension ≥ 2 which are
separately invariant under the algebra of observables, time evolution, and the action
of the permutation group. What we are discussing refers to each of these subspaces.
In the jargon, one says that elementary physical systems (particles) admitting such
vector states obey a parastatistics. Particles of this sort have never been observed. It
is however theoretically interesting to notice that a physical systemmade of identical
subsystems described on H′ cannot admit complete sets of commuting observables
(Definition11.11). (This is because the existence of a maximal observable would

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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imply that the commutant of the algebra of observables is commutative by Proposi-
tion11.12, while the commutant of the von Neumann algebra of observables relative
to the invariant carrier space H′ contains a unitary representation ofPn which can-
not be commutative. This representation is the restriction to H′ of the overall unitary
faithful representation Pn � σ �→ Uσ : H⊗n → H⊗n . The restriction to the invari-
ant subspaces (H⊗n)± is trivially commutative. If it were commutative also when
restricted to the remaining invariant subspace H′, it would be commutative on the
whole H⊗n , but we know that it is not the case since the overall representation is
faithful and Pn is not Abelian.) A consequence of the fact that the commutant of
the algebra of observables restricted to H′ is not trivial is that the one-to-one corre-
spondence between pure states and rays no longer holds. Indeed, if V is a unitary
non-trivial element of the commutant of the algebra of observables inH′, it is impos-
sible to distinguish Ψ and Ψ ′ = V Ψ by means of measurement procedures. (This
fact does not apply to (H⊗n)± because the representation of Pn there is just given
in terms of global phases.)

Passing to relativistic formulations of QM –more precisely the Relativistic Quan-
tum Field Theory on 4-dimensional Minkowski spacetime – many authors (mainly
W. Pauli) obtained a famous theorem, aptly called spin statistical correlation theorem
[StWi00]. It proves that the restriction on pure states and the spin statistical correla-
tion observed experimentally are consequences of the theory’s invariance under the
Poincaré group, rather than the Galilean group. In three-dimensional spacetimemod-
els there are compounds of identical particles that do not abide by Fermi’s statistics,
nor Bose’s.

Remark 13.48 Axiom A8 imposes constraints on the observables of a system of
identical particles. One may adopt a physically much more rigid, quite unmotivated,
but very popular, point of view by focusing on vectors instead observables. The
requirement is that
a normalized vector Ψ ∈ H⊗n represents a state if and only if the associated ray is
fixed under the action of permutations and the arbitrary phase does not depend on
the representative vector: UσΨ = λσΨ for every σ ∈ Pn and some λσ ∈ C with
|λσ | = 1.

This stronger version of A8 implies that only vectors in (H⊗n)+ and (H⊗n)+ can
be admitted to represent states, ruling out any parastatistics (Exercise13.6). �

In conclusion we mention that when we deal with compounds of infinitely many
identical subsystems described onH, the natural Hilbert spaces to develop the theory
are the subspaces of the Fock space (Example10.27(3)):

F+(H) :=
+∞⊕

n=0

(Hn⊗)+ and F−(H) :=
+∞⊕

n=0

(Hn⊗)− ,

called the bosonic Fock space and fermionic Fock space generated by H. As usual
we assumed (H0⊗)± := C, and that the unique pure state determined by (H0⊗)± is
the vacuum state of the system. This is the framework of Quantum Field Theory,

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_10
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in which fields are “replaced” by systems of infinitely many identical bosonic or
fermionic particles.

Exercises

13.1 Consider a mixed state ρ ∈ S(H) and an orthogonal sum H = ⊕k∈KHk

associated to orthogonal projectors {Pk}k∈K , with K finite or countable.
Using the strong topology define

ρ ′ := s-
∑

k

Pkρ Pk .

Prove ρ ′ is well defined and ρ ′ ∈ S(H).

Hint. Pk Ph = 0 if k �= h, s-
∑

k Pk = I , and ||ρ2|| ≤ 1. This allows to prove the
series converges strongly, using known properties of series of orthogonal vectors.

That ρ ′ is positive and ||ρ ′|| ≤ 1 follows by the construction and the similar
properties of ρ. Using the basis N ofHmade by the union of bases for each summand
Hk , with Proposition4.31 one proves ρ ′ is of trace class, plus trρ ′ = trρ = 1.

13.2 In Sect. 13.4.5 it was shown that the probability of measuring g(A)
k for G A on

part A of a quantum system is independent of the fact that G B is measured on part
B �= A. Prove that the result is valid for arbitrary observables (even with continuous
and unbounded spectrum). Assume that the device measuring G B gives as possible
readings a countable disjoint family of Borel sets E (G B )

k whose union is σ(G B).

13.3 Referring to (13.90) prove that Uσ Uσ ′ = Uσ◦σ ′ .

Solution. By linearity, and exploiting the fact that the operators are bounded and
defined everywhere, it is sufficient proving that

Uσ (Uσ ′(φ1 ⊗ . . . ⊗ φn)) = Uσ◦σ ′(φ1 ⊗ . . . ⊗ φn) .

Let us establish that identity. If σ, σ ′ ∈ Pn then:

Uσ (Uσ ′(φ1 ⊗ . . . ⊗ φn)) = Uσ (φσ ′−1(1) ⊗ . . . ⊗ φσ ′−1(n)) .

Redefining ui := φσ ′−1(i) so that uσ−1( j) := φσ ′−1(σ−1( j)), one finds

Uσ (Uσ ′(φ1 ⊗ . . . ⊗ φn)) = uσ−1(1) ⊗ . . . ⊗ uσ−1(n)

= φσ ′−1◦σ−1(1) ⊗ . . . ⊗ φσ ′−1◦σ−1(n) = φ(σ◦σ ′)−1(1) ⊗ . . . ⊗ φ(σ◦σ ′)−1(n)

= Uσ◦σ ′(φ1 ⊗ . . . ⊗ φn) as wanted.

http://dx.doi.org/10.1007/978-3-319-70706-8_4
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13.4 Consider a compound of n identical particles in H⊗n . Prove that under axiom
A8, if δ ∈ Pn is a permutation on two elements, then Uδ is a constant of motion.

13.5 Prove that (H⊗n)+ and (H⊗n)− are orthogonal, that H⊗2 = (H⊗2)+ ⊕ (H⊗2)−
if n = 2, and that the previous fact is false already for n = 3.

13.6 Prove that ifΨ ∈ H⊗n represents a pure state andUσΨ = λσΨ , with |λσ | = 1,
for every σ ∈ Pn , then either Ψ ∈ (H⊗n)− or Ψ ∈ (H⊗n)+.

Solution. Consider a permutation of two elements j, k in {1, . . . , n}, indicated by
( j, k) ∈ Pn . Hence

( j, k) = (2, k) ◦ (1, j) ◦ (1, 2) ◦ (2, k) ◦ (1, j) .

On the other hand U(p,q)Ψ = λ(p,q)Ψ with λ(p,q) = ±1, since U(p,q)U(p,q) = I
because (p, q)2 = id , for every choice of p and q . Therefore, assuming Ψ �= 0,

λ( j,k) = λ(2,k)λ(1, j)λ(1,2)λ(2,k)λ(1, j) = λ(1,2) .

We conclude that, for every permutation of two elements δ ∈ Pn ,

UδΨ = λ(1,2)Ψ .

Hence, by the definition of (−1)σ stated below Definition13.43, and setting 1σ := 1,

UσΨ = λσ
(1,2)Ψ , σ ∈ Pn .

Therefore if λ(1,2) = 1 then Ψ ∈ (H⊗n)+; if λ(1,2) = −1, then Ψ ∈ (H⊗n)−.

13.7 Assume that, for a system of n identical particles, the vectors representing
states define a closed subspace K ⊂ H⊗n and satisfy UσΨ = λΨ,σΨ , where now
λΨ,σ may also depend on Ψ . Prove that K is a subspace of either (H⊗n)− or (H⊗n)+
provided its dimension is ≥ 2.

Outline of the solution. If Ψ,� ∈ K are orthogonal and have unit norm, the
linearity of Uσ entails λ(Ψ +�)/

√
2,σ = λΨ,σ = λ�,σ =: λσ . Therefore Uσ is repre-

sented by λσ along the vectors of an orthonormal basis of K, that is: Uσ |K = λσ I .
By applying Exercise13.6 one concludes the proof.



Chapter 14
Introduction to the Algebraic Formulation
of Quantum Theories

I would like to make a confession which may seem immoral: I do
not believe absolutely in Hilbert spaces any more.
von Neumann, letter to Birkhoff about the mathematical
formulation of QM (1935)

In the last chapter of the book we offer a short presentation of the algebraic for-
mulation of quantum theories, and we will state and prove a central theorem about
the so-called GNS construction. We will discuss how to treat the notion of quantum
symmetry in this framework, by showing that an algebraic quantum symmetry can
be implemented (anti-)unitarily in GNS representations of states invariant under the
symmetry.

As general references, mostly concerned with the algebraic formulation of Quan-
tum Field Theories, we recall [Emc72, Haa96, Ara09, Rob04, BDFY15] and the
more recent [Str05a, Str12] on the algebraic formulation ofQM.On themathematical
side, detailed and critical studies on the present material are [BrRo02, KaRi97].

We will routinely resort to Definition 3.52 throughout the chapter.

14.1 Introduction to the Algebraic Formulation
of Quantum Theories

The fundamental Theorem 11.43 of Stone-von Neumann is stated in the jargon of
theoretical physics as follows:

“all irreducible representations of the CCRs with a finite, and fixed, number of
freedom degrees are unitarily equivalent,”.

The expression unitarily equivalent refers to the existence of a Hilbert-space
isomorphism S, and the finite number of degrees of freedom is the dimension of the
symplectic space X on which the Weyl algebra is built.
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What happens then in infinite dimensions? Let us keep irreducibility, and suppose
we pass from X finite-dimensional – parametrising, e.g., the coordinates of a point-
particle in phase space – to X infinite-dimensional – describing a suitable solution
space to free bosonic field equations, say. Then the Stone–von Neumann theorem no
longer holds. Theoretical physicists would say that

“there exist non-equivalent irreducible CCR representations with an infinite num-
ber of freedom degrees”.

What happens in this situation, in practice, is that one can find strongly continuous
irreducible representationsπ1,π2, on (separable)Hilbert spacesH1,H2, of theWeyl ∗-
algebraA := W (X, σ ) (here thought of asC∗-algebra, with no change in the results)
associated to the physical system under exam (a quantised bosonic field, typically),
that admit no isomorphism S : H1 → H2 satisfying:

Sπ1(a) S−1 = π2(a) , for any a ∈ A.

Pairs of this kind are called (unitarily) non-equivalent. Jumping from X finite-
dimensional to infinite-dimensional corresponds to passing from QuantumMechan-
ics to Quantum Field Theory (relativistic QFT, possibly, and on curved spacetime
[Wal94, KhMo15, FeVe15]). In these situations (but not only), the existence of non-
equivalent representations has often to do with spontaneous symmetry breaking. The
presence of non-equivalent representations of a single physical system (X, σ ) shows
that a formulation in a fixed Hilbert space is completely inadequate, and we must
free ourselves of the Hilbert structure in order to lay the foundations of quantum the-
ories in broader generality (an interesting and detailed technical analysis of several
problems with the Hilbert-space formulation, based on concrete models of quantum
fields and statistical mechanics’ systems, can be found in [Emc72, Sect. 1, Chap. 1]).

This programme has been developed by and large, starting from the pioneering
work of von Neumann himself, and is nowadays called algebraic formulation of
Quantum (Field) Theories. Within this framework it was possible to formalise, for
example, field theories on curved spacetime in relationship to the quantum phenom-
enology of black-hole thermodynamics.

14.1.1 Algebraic Formulation

The algebraic formulation prescinds, anyway, from the nature of the quantum sys-
tem, and may be stated for systems with finitely many freedom degrees as well
[Str05a]. The viewpoint falls back on two assumptions [Haa96, Ara09, Str05a, Str12,
BDFY15] (which somehow generalise the results of Sect. 7.6.5).

AA1.A physical system S is described by its observables, viewed now as self-adjoint
elements in a certain C∗-algebra ASwith unit I associated to S.

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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AA2. An algebraic state on AS is a linear functional ω : AS → C such that:

ω(a∗a) ≥ 0 ∀ a ∈ AS, ω(I) = 1 ,

that is, positive and normalised to 1.

We have to stress that AS is not seen as a concrete C∗-algebra of operators on
a given Hilbert space, but remains an abstract C∗-algebra. Physically, ω(a) is the
expectation value of the observable a ∈ A in state ω.

Remark 14.1 (1) AS is usually called the algebra of observables of S though, prop-
erly speaking, the observables are the self-adjoint elements of AS only.
(2) We can assign AS to S irrespective of any reference frame, provided we assume
that the (active) transformations of the various frames are given by automorphisms
of AS . If the algebra depends on the frame, the time evolution with respect to the
given frame is described by a one-parameter group of ∗-automorphisms {αt }t∈R,
where αt : AS → AS is a ∗-homomorphism for any t ∈ R, α0 is the identity and
αt ◦ αt ′ = αt+t ′ for t, t ′ ∈ R. It is natural to demand weak continuity in t : for every
state ω on As , the map R 	 t 
→ ω(αt (a)) is continuous for every a ∈ AS .

In case the algebra of observables is independent of the reference frame, AS is
actually thought of as a net of algebras: it will be described by a functionO 
→ AS(O)

mapping to an algebraAS(O) any regular bounded regionO in spacetime (extending
both in the space and time directions). From this point of view time evolution is
replaced by causal relations between algebras localised at spacetime regions that are
causally related, in particular when one region belongs to another’s future. The above
approach, thoroughly discussed for the first time in the crucial paper of Haag and
Kastler [HaKa64], is the modern stepping stone to develop algebraic field theory in
the local covariant formulation.
(3) It is important to emphasise that, differently form the Hilbert space formula-
tion, the algebraic approach can be adopted to describe both classical and quantum
systems. The two cases are distinguished on the base of the commutativity of the
algebra of observablesAS . A commutative algebra is assumed to describe a classical
system, whereas a noncommutative one is supposed to be associated with a quantum
system. �

14.1.2 Motivations and Relevance of Lie-Jordan Algebras

Before going on with the mathematical technology, a brief discussion about the
motivations underlying the algebraic formulation may be useful. In the rest of this
subsection, whose content is quite heuristic, we shall denote the observables with
capital letters A, B, . . . and use corresponding small letters a, b, . . . to denote the
values attained by the observables.
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The most evident, a posteriori, justification of the algebraic approach lies in its
powerfulness [Haa96]. There have been a host of attempts to account for assumptions
AA1 andAA2 and their physicalmeaning, in full generality (see the study of [Emc72,
Ara09, Str05a, Str12] and especially the work of I. E. Segal [Seg47] based on Jordan
algebras), yet none seems to be definitive [Stre07].

There are at least two interrelated basic issues to consider when attempting to
justify assumptions AA1 and AA2 physically.

(a) The identification of the notions of state and expectation value.

This identification would be natural within the Hilbert space formulation, where
the class of observables includes elementary observables, which are represented by
orthogonal projectors and correspond to “yes-no” statements. The expectation value
of one such observable coincides with the probability that the outcome of the mea-
surement is “yes”. The set of all those probabilities defines, in fact, a quantum state
of the system, as we know. The analogues of these elementary propositions, however,
generally do not belong to the C∗-algebra of observables in the algebraic formula-
tion (see Sect. 14.1.6). Even so, this obstruction is not insurmountable. Following
[Ara09], in a completely general physical system the most general notion of state ω

would be the assignment of all probabilities w(A)
ω (a) that the outcome of measuring

the observable A is a, for all observables A and all values a. On the other hand, it is
known [Str05a] that all experimental information on the measurement of A in state
ω – the probabilities w(A)

ω (a) in particular – is recorded in the expectation values
of the polynomials of A. Here, we should think of p(A) as the observable whose
values are given by the p(a), for all values a of A. This characterisation of an observ-
able is theoretically supported by the various solutions to the momentum problem
in probability theory. To adopt this paradigm, therefore, we have to assume that the
set of observables must include all real polynomials p(A) whenever it contains the
observable A. This is in agreement with the much stronger requirement AA1.

We stress that, within the algebraic formulation, it is natural to suppose that the
full set of observables and the whole set of states together encompass the maxi-
mum amount of information available on the physical system we are studying. As a
byproduct of this assumption and of the identification of the notion of state with that
of expectation value, we are committed to conclude that, in our formalism:

(i) states separate observables: two observables A, B coincide if and only the
corresponding expectation values coincide: A = B ⇔ ω(A) = ω(B) for all states
ω;

(ii) observables separate states: two statesω,ω′ coincide if and only if the corre-
sponding expectation values coincide: ω = ω′ ⇔ ω(A) = ω′(A) for all observables
A.

As a matter of fact, AA1 and AA2 theoretically support these two statements.
Indeed, (ii) follows immediately from the fact that a state is a linear functional on
the C∗-algebra AS and that every element (also not self-adjoint) of AS is a linear
combination of self-adjoint elements representing observables. Assertion (i) is a
straightforward consequence of the Gelfand-Najmark theorem, as we shall see in
Corollary 14.30.



14.1 Introduction to the Algebraic Formulation of Quantum Theories 871

(b) The incarnation of observables as a C∗-algebra.

Whilst the nature and the physical meaning of the associative product of the algebra,
in particular, is difficult to justify a priori, the assumption on the boundedness of
observables in a suitable norm does not seem so hard to clarify from an operational
point of view [Str05a]. An observable A is defined in terms of a concrete experimental
apparatus, which yields the numerical results of measurements in any state ω. Since
each concrete experimental apparatus has inevitable limitations that imply a scale
bound independent of the state on which measurements are performed, the result of
measurements of A on the various states is a bounded set of real numbers, whose
bound is related to the scale bound of the associated experimental apparatus. It is
then natural to associate to each observable A a finite bound (in perfect agreement
with the theoretical result of Corollary 14.30):

||A|| := sup
ω∈�

|ω(A)| < +∞ (14.1)

where � is the set of all possible states. As the notation suggests, this bound can be
interpreted as a norm, once we have built the algebraic structure of the observables
(see [Str05a] for details). Let us next focus on the purely algebraic features of the
space of observables, the associative algebra of product in particular. In this respect
we can observe that, actually, a weaker form of AA1 must certainly be true. As
already noticed, if p is a real polynomial and A is an observable (so that the possible
values a are real numbers), p(A) is a well-defined object and it is an observable
as well. As we said p(A) is nothing but the observable whose values are p(a), for
all values a of A. If p is complex, p(A) deserves the same operative interpretation
since its real and imaginary parts are observables. All this indicates the existence, for
every observable A, of a natural structure of a commutative ∗-algebra on complex
polynomials p(A). The involution here is the obvious one p(A)∗ := p(A). It is not
difficult to prove that (14.1) turns out to be a norm for this ∗-algebra.

Following the same route of Sect. 11.3.2, objects like real linear combinations
αA + βB of observables can be made physically meaningful even if A and B cannot
measured simultaneously: αA + βB is the observable whose expectation values ver-
ifyω(αA + βB) = αω(A) + βω(B) for every stateω. Notice that, from the physical
point of view, we are enlarging the class of observables, for we are assuming that
new observables verifying the previous constraint exist (and thus they are uniquely
determined, since their expectation values are known). The extension to complex
combinations is now straightforward. All that on the one hand justifies the appear-
ance of a complex vector space structure, equipped with an antilinear bijective and
involutive operation (extending the previous one), (αA + βB)∗ := αA + βB, and
with a norm that extends (14.1), as is not difficult to prove. This structure becomes a
fully fledged normed ∗-algebra if the construction is supplemented by an associative
product, that extends the one defined in each algebra of polynomials p(A) generated
by any fixed element A. On the other hand, the procedure gives rise to a generally
non-distributive and non-associative Jordan product (see Sect. 11.3.2 and Definition
11.29):

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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A ◦ B := 1

2

(
(A + B)2 − A2 − B2) , (14.2)

where (A + B)2, A2 and B2 are well defined as indicated above.
However, similarly to what happens in the Hilbert space formulation, if p denotes

a general polynomial with two entries, and A and B are observables that cannot be
measured simultaneously (see Sect. 11.3.2), the interpretation of p(A, B) turns out
to be very difficult. Certainly, the product of theC∗-algebra ofAA1 provides a sound
mathematicalmeaning to p(A, B), thought it does not elucidate the physicalmeaning
of p(A, B) in terms of A and B. That said, it is difficult to justify the existence
of a C∗-algebra product in the complex vector space of extended observables, even
assuming the existence of ameaningful Jordan product and norm [Str05a]. Necessary
and sufficient conditions have been found (e.g., see [AlSc03]) for the existence
of a C∗-algebra structure that completes the algebraic and topological structures
outlined above. However the physical interpretation of these conditions does not
seem transparent. (Sect. 2, Chap. 1 of [Emc72] contains a deep study on the Jordan-
algebra inducedC∗-structure, and the many steps involved are analysed thoroughly.)

Another, much stronger, possibility is to assume – without any true physical
justification – that the real linear space of observables is also equipped with a Lie-
algebra structure of pure quantum nature (the Lie bracket [A, B] is proportional to
the Planck constant), and that the two products enjoy the properties below.

Definition 14.2 A (real) Jordan algebra A) (Definition 11.29) equipped with a Lie
bracket { , } is called (real) Lie-Jordan algebra when, for a constant c ∈ R, it
satisfies:

(A ◦ B) ◦ C − A ◦ (B ◦ C) = c

4
{{A,C}, B} for all A, B,C ∈ A. (14.3)

and furthermore the Leibniz rule is valid:

{A, B ◦ C} = {A, B} ◦ C + {A,C} ◦ B for all A, B,C ∈ A. (14.4)

From the physical side, in our context it is natural to assume c = �
2. Moreover,

if we look at the Hamiltonian formulations of classical physics for instance, { , }
could be interpreted as the quantum analogue of the Poisson bracket. In other words
the Lie bracket should be understood as the standard commutator of (self-adjoint)
observablesmultiplied by i�, in accordancewith a version of Dirac’s correspondence
principle (see Sect. 11.5.8).

A posteriori, the Lie-Jordan structure arises quite naturally when one knows that
(complexified) observables form a ∗-algebra. In fact, given a complex ∗-algebra, by
defining the Lie bracket in terms of the standard commutator as:

{ , } := i

�
[ , ] (14.5)

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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and setting

A ◦ B = 1

2
(AB + BA) , (14.6)

one finds a natural real Lie-Jordan algebra when restricting to the real space of
self-adjoint elements. In particular:

AB = A ◦ B + i�

2
{A, B} for all A, B,C ∈ A. (14.7)

Taking (14.6) into account, that is the same as:

AB = A ◦ B + 1

2
[A, B] for all A, B,C ∈ A . (14.8)

Theprocedurewehaveoutlined canbe reversed ifwe assume that observables possess
a Lie-Jordan structure. Given a real Lie-Jordan algebra A with c = �

2, requiring
(14.5) produces an associative complex ∗-algebra. We can perform this on A1 :=
C ⊗ A: the involution ∗ is (a ⊗ A)∗ := a ⊗ A for every a ∈ C and A ∈ A, and the
associative product is given by extending (14.8) C-linearly.

It is important to notice that the Lie-Jordan algebra structure can be equipped
with a natural norm. After completion, this will generate an associated C∗-algebra
[AlSc03].

Coming back to physics, it is finally worth stressing that with this formulation
both the non-commutativity and non-associativity underlying the algebra of observ-
ables appear to have a quantum nature, and seem to realise quantum deformations of
classical structures, in the sense that commutativity and associativity are restored as
soon as � → 0. However, a relic of quantum non-commutativity remains in the Pois-
son bracket even at classical level. As a matter of fact, the picture we have described
can be developed further. The (algebraic) deformation quantisation procedure, intro-
duced in Sect. 11.5.8, starts by assuming that (14.7) is just the first-order expansion
in � of the quantum product. This approach has been exploited in algebraic Quan-
tum Field Theory in a modern and powerful fashion to reformulate the perturbative
interacting theory, including the renormalisation procedure [BrFr09].

14.1.3 The GNS Reconstruction Theorem

The set of algebraic states on AS is a convex subset in the dual A′
S of AS: if ω1 and

ω2 are positive and normalised linear functionals, ω = λω1 + (1 − λ)ω2 is clearly
still positive and normalised, for any λ ∈ [0, 1].

Hence, just as we saw for the standard formulation, we can define pure algebraic
states as extreme elements of the convex body.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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Definition 14.3 An algebraic state ω : A → C on the unital C∗-algebra A is called
a pure algebraic state if it is extreme in the set of algebraic states. An algebraic
state that is not pure is calledmixed.

Later we will show that the space of states is non-empty and compact in the ∗-weak
topology. Consequently, pure states exist.

Surprisingly, most of the abstract apparatus given by a C∗-algebra and a set of
states admits elementary Hilbert space representations once a reference algebraic
state has been fixed. This is by virtue of a famous procedure Gelfand, Najmark and
Segal came up with, that we present below [Haa96, Ara09, Str05a].

Theorem 14.4 (GNS theorem) Let A be a C∗-algebra with unit I and ω : A → C

a positive linear functional with ω(I) = 1. Then
(a) there exist a triple (Hω, πω,	ω), whereHω is a Hilbert space, πω : A → B(Hω)

a A-representation over Hω and 	ω ∈ Hω, such that:
(i) 	ω is cyclic for πω: the invariant subspace Dω := πω(A)	ω is dense in Hω;
(ii) (	ω|πω(a)	ω) = ω(a) for every a ∈ A.

(b) If (H, π,	) satisfies (i) and (ii), there exists a unitary operator U : Hω → H
such that 	 = U	ω and π(a) = Uπω(a)U−1 for any a ∈ A.

Proof (a) For a start we will build the Hilbert space. We will refer to the elementary
theory of Hilbert spaces of Chap. 3. Let us define the quadratic form 〈x, y〉ω :=
ω(x∗y), x, y ∈ A. This is a Hermitian semi-inner product by the requests made on
ω, so for the seminorm pω(x) := √〈x, x〉ω the Schwarz inequality

ω(x∗y) ≤ √
ω(x∗x)

√
ω(y∗y) (14.9)

holds. Consider now the set Iω := {x ∈ A | pω(x) = 0}. Since pω is a seminorm,
by (14.9)Iω is a subspace of A. As the symbol suggests,Iω is a left ideal in A, i.e.
a subspace such that yx ∈ Iω for any x ∈ Iω, y ∈ A. In fact by (14.9):

0 ≤ pω(yx)4 = ω(x∗y∗yx)2 ≤ ω(y∗yxx∗y∗y)ω(x∗x) = 0 .

Hence we may define the vector space Dω := A/Iω, quotient of A by the ideal
Iω. The elements of Dω are thus cosets [x] for the equivalence relation A: x ∼ y
⇔ x − y ∈ Iω. The vector space structure is naturally inherited by A, and makes
α[x] + β[y] := [αx + βy] meaningful,1 for any α, β ∈ C, x, y ∈ A. That Iω is a
subspace guarantees the structure is well defined. Since Iω is also the left ideal
of zeroes of the seminorm associated to the semi-inner product 〈 , 〉ω, as we just
showed,

([x] |[y] )ω := 〈x, y〉ω ∀x, y ∈ A (14.10)

1Notice that there is no identity like [ab] = [a][b] in this construction. Only the linear structure,
not the algebra, is constructed on the quotient.

http://dx.doi.org/10.1007/978-3-319-70706-8_3
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is a well-defined Hermitian inner product on Dω. Introduce the Hilbert completion
Hω of Dω for the inner product, which we continue to indicate with (14.10) on the
entireHω. The representation πω is defined in the natural way on the dense subspace
Dω = A/Iω ⊂ Hω as:

(πω(a))([b]) := [ab] . (14.11)

Then Dω is by construction invariant under every πω(a). At last, let 	ω := [I]. As
a ∈ A varies, the sets πω(a)	ω = [a] fill the dense spaceDω. Therefore	ω is cyclic,
as needed. It is easy to see that, by construction, A 	 a 
→ πω(a) is linear on the
dense domain Dω (hence it has an adjoint) and satisfies, for any a, b, c ∈ A, μ ∈ C:

(i) πω(a)πω(b) = πω(ab),
(ii) πω(a) + πω(b) = πω(a + b),
(iii) μπω(a) = πω(μa),
(iv) (πω(b)	ω |πω(a)πω(c)	ω )ω = (πω(a∗)πω(b)	ω |πω(c)	ω )ω.

The last fact, equivalent to
πω(a)∗�Dω

= πω(a∗) ,

follows by

(πω(b)	ω |πω(a)πω(c)	ω )ω = ([b] |[ac] )ω = ω(b∗ac) = ω
(
(a∗b)∗c

)

= ([a∗b] |[c] )
ω

= (πω(a∗)πω(b)	ω|πω(c)	ω)ω .

By construction, for a ∈ A:

ω(a) = ω(I∗aI) = ([I]|[a][I])ω = (	ω |πω(a)	ω )ω . (14.12)

To finish (a) it is enough to prove that every operator πω(a) : Dω → Hω is bounded,
so it extends uniquely to a bounded operator on Hω, because Dω ⊂ Hω is dense. We
will call the extended operators with the same names πω(a). Therefore properties
(i)–(iv) will still be valid, by continuity. In particular, the operators being bounded,
(iv) implies πω(a)∗ = πω(a∗). It is obvious that πω(I) = I and so the map πω : A →
B(Hω) will be a ∗-representation.

To prove the boundedness of the πω(a), we begin by showingω is continuous. We
will only assume that the linear functional ω is positive, without using ω(I) = 1. If
h ∈ A is normal, since |σ(h)| ≤ ||h|| by the features of the spectral radius, Theorem
8.36(c) gives σ(h ± ||h||I) ≥ 0. By Theorem 8.25, h ± ||h||I = c∗c, so the positivity
and linearity ofω allows to sayω(h) ± ||h||ω(I) ≥ 0,meaning |ω(h)| ≤ ω(I)||h||. In
turn this impliesω is a bounded linear functional. In fact, if y ∈ A is any element, y∗y
is self-adjoint and so normal. Using the above result gives immediately |ω(y∗y)| ≤
ω(I)||y∗y||. Finally, (14.9) with x = I says

|ω(y)|4 ≤ ω(I)2 ||y∗y||2 = (ω(I)||y||)2 ,

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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hence ||ω|| ≤ ω(I). On the other hand, from |ω(I)| = ω(I) and ||I|| = 1 we have

||ω|| = ω(I) .

In our case, as ω(I) = 1, we obtain ||ω|| = 1.
If ω(x∗x) > 0 we can repeat the argument for the linear functional

A 	 z 
→ ρ(z) := ω(x∗zx)
ω(x∗x)

,

by construction linear, positive and such that ρ(I) = 1; therefore ||ρ|| = ρ(I) = 1.
We conclude that the state ω satisfies

ω(x∗y∗yx) ≤ ||y∗y||ω(x∗x) ,

holding also when ω(x∗x) = 0 because the Cauchy-Schwarz inequality forces 0 ≤
ω(x∗y∗yx) = ω((x∗y∗y)x) ≤ √

ω((x∗y∗y)∗(x∗y∗y))
√

ω(x∗x). Consequently

||(πω(y))([x])||ω = ||[yx]||ω = √
ω(x∗y∗yx) ≤ √||y∗y||√ω(x∗x) ≤ ||y|| ||[x]||ω ,

and so ||πω(y)|| ≤ ||y||. This ends part (a).
(b) Just askingUπω(a)	ω := π(a)	 for any a ∈ A determines a densely-defined

isometric operator, which we call U . This is well defined because πω(a)	ω =
πω(a′)	ω implies π(a)	 = π(a′)	, as is evident from

||π(a − a′)	||2 = ω((a − a′)∗(a − a′)) = ||πω(a − a′)	ω||2ω .

For the same reason U is isometric:

||Uπω(a)	ω||2 = ||π(a)	||2 = ω(a∗a) = ||πω(a)	ω||2ω .

Hence we can extend U to a continuous isometric operator on H with the same
name. Similarly, let us construct an isometric operator V : H → Hω as the unique
continuous extensionofVπ(a)	 = πω(a)	ω. By continuity, andusing thedensity of
π(A)	, we haveUV� = � for every� ∈ H. ThereforeU is onto, beside isometric,
and so unitary. That 	 = U	ω and π(a) = Uπω(a)U−1, a ∈ A, are obvious by
construction. �

The GNS theorem shows that given an algebraic state, the observables of A are still
represented by (bounded) self-adjoint operators on a Hilbert space Hω, where the
expectation value of ω takes the usual form (	ω|π(a)	ω)with respect to a reference
vector 	ω. The latter vector allows to recover the whole Hilbert space by means of
the representation πω itself, as we said in the GNS theorem (a), part (i). However
the reader should notice that not all algebraic states on A are represented by positive
trace-class operators on Hω, as we shall discuss shortly.
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The representation πω need not be injective, i.e. faithful. From the proof and
(14.11) with b = I in particular, we immediately have

Proposition 14.5 The GNS representation πω : A → B(Hω) of the algebraic state
ω on the unital C∗-algebra A is faithful if the Gelfand left ideal of ω,

Iω := {a ∈ A | ω(a∗a) = 0} ,

is trivial, i.e., Iω = {0}.
Algebraic states with trivial Gelfand left ideal are called faithful. Notice that the
kernelKer(πω) of theGNS representationsπω of aC∗-algebra is a closed two-sided ∗-
ideal: it only depends onω, not on the particularGNS triple, and generally it is smaller
than Iω. In fact, form (14.11) and the construction of the GNS representation, one
easily sees that the elements ofIω are the elements a ∈ A such that πω(a)	ω = 0.
Conversely, a ∈ Ker(πω) satisfies πω(a)πω(b)	ω = 0 for all b ∈ A, which is a much
stronger requirement. Therefore, in principleω can have faithfulGNS representations
even if Iω �= {0} but just because Ker(πω) is trivial.

A technical result that was proved in passing, during the previous proof, and that
is useful in itself, is the following.

Theorem 14.6 (Continuity of positive functionals) If ω is a positive functional on
the C∗-algebra A with unit I, then ω is continuous and ||ω|| = ω(I).

There is a useful technical corollary to the GNS theorem that deserves being stated
and proved.

Corollary 14.7 Let ω be an algebraic state on the unital C∗-algebra A with asso-
ciated GNS triple (Hω, πω,	ω).
(a) If ψ : A → C is linear, positive and ψ ≤ ω (ω − ψ is positive), there exists a
unique T ∈ B(Hω) such that

ψ(b∗a) = (πω(b)	ω|Tπω(a)	ω)ω ∀a, b ∈ A .

Moreover 0 ≤ T ≤ I and T ∈ πω(A)′ (T commutes with each πω(a), a ∈ A).
(b) Conversely, if 0 ≤ T ≤ I and T ∈ πω(A)′, then ψ(a) := (	ω|Tπω(a)	ω)ω, for
every a ∈ A, is a positive functional with ψ ≤ ω.

Proof (a) Take ψ as in the assumptions. Since

|ψ(b∗a)|2 ≤ ψ(b∗b)ψ(a∗a) ≤ ω(b∗b)ω(a∗a) = ||[b]||ω ||[a]||ω ,

setting ψ ′([b], [a]) := ψ(b∗a), Riesz’s theorem warrants the existence of T ∈
B(Hω) with ψ ′([b], [a]) = ([b]|T [a])ω. In other terms ψ(b∗a) = (πω[b]	ω|
Tπω(a)	ω). Furthermore, by construction:

([b] |(Tπω(a) − πω(a)T )[c] )ω = ψ(b∗ac) − ψ((a∗b)∗c) = ψ(b∗ac) − ψ(b∗ac) = 0 .

(b) is immediate.
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Remark 14.8 (1)The cyclic vector	ω is a unit vector, by (a) (ii) in theGNS theorem,
since a = I and ω(I) = 1.
(2) Irrespective of the way one proves the GNS theorem, the ∗-representation of
unital C∗-algebras πω must be continuous, because of Theorem 8.22, and must also
satisfy ||πω(a)|| ≤ ||a|| for any a ∈ A. In addition, the same theorem implies πω is
isometric (||πω(a)|| = ||a|| for any a ∈ A) precisely when it is faithful (one-to-one).
(3) If we deal with C∗-algebras without unit, algebraic states can be defined anyway.
They are positive, bounded linear functionals, but ω(I) = 1 is replaced by ||ω|| = 1.
These two conditions are equivalent on unital C∗-algebras, by Theorem 14.6. We
saw in Sect. 7.6.5 that if we restrict to the C∗-algebra B∞(H) of compact operators
on a Hilbert space H (which has no unit, because in infinite dimensions the identity
operator is never compact), algebraic states are exactly the positive operators of trace
class with unit trace. �

If ω is an algebraic state on A, every statistical operator on the Hilbert space of
a GNS representation of ω, i.e. every positive, trace-class operator with unit trace
T ∈ B1(Hω) (a statistical operator), determines an algebraic state

A 	 a 
→ tr (Tπω(a)) ,

evidently. This is true, in particular, for � ∈ Hω with ||�||ω = 1, in which case the
above definition reduces to

A 	 a 
→ (�|πω(a)�)ω .

To this end we have

Definition 14.9 Ifω is an algebraic state on the unitalC∗-algebraA, every algebraic
state on A obtained either from a statistical operator or a unit vector, in a GNS
representation of ω, is called normal state of ω. The set Fol(ω) of normal states is
the folium of the algebraic state ω.

Note that in order to determine Fol(ω) one can use a fixed GNS representation
of ω. In fact, as the GNS representation of ω varies, normal states do not change, as
implied by part (b) of the GNS theorem.

The folium of a state ω of the algebra of observables A can be naïvely thought
of as the set of algebraic states arising from the action of observables of A on ω,
possibly through a limiting process.

By the GNS theorem, namely, every unit vector � ∈ Hω is a limit of πω(bn)	ω

as n → +∞, provided we choose bn ∈ A suitably. Hence, the GNS theorem implies
that the algebraic state associated to�, which is an element of Fol(ω), can be always
computed as

ω�(a) = (�|πω(a)�)ω = lim
n→+∞ ω(b∗

nabn) .

The other algebraic states in the folium of ω are determined by positive, trace-class
operators T ∈ B(Hω)with unit trace.Decomposing T spectrally as an infinite convex

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_7
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combination T = s-
∑

i pi (�i | )�i , we can eventuallywriteωT (a) = ∑
i piω�i (a),

and fall back into the previous case.
In case A is a von Neumann algebra of operators on H, normal states are defined

as follows (recall that there already is a natural representation of A, the one over A
itself).

Definition 14.10 Looking at a von Neumann algebra R ⊂ B(H) on the Hilbert
space H as a C∗-algebra, a normal state of R is an algebraic state ω satisfying
ω(A) = tr(ρωA) for some positive ρω ∈ B1(H) with unit trace determined by ω,
and for every A ∈ R.

An important characterisation holds [BrRo02].

Proposition 14.11 Consider an algebraic state ω : R → C on the von Neumann
algebraR ⊂ B(H) for a given Hilbert space H. The following facts are equivalent:

(a) ω is normal;
(b) ω is continuous in the σ -weak topology (cf. Definition 3.94);
(c) ω is completely additive:

ω

⎛

⎝
∑

j∈J

Pj

⎞

⎠ =
∑

j∈J

ω(Pj )

for every family {Pj } j∈J ⊂ R of pairwise-orthogonal, orthogonal projectors (nota-
tion as in Theorem 7.72).

Remark 14.12 IfR = B(C2), every state is normal, by direct inspection. Instead, if
we consider σ -additive measures onL (C2), Remark 7.28(4) proves that there exist
measures which are not normal states. This is the reason why Theorem 7.72 needs
the further hypothesis that the direct sum of R does not contain type-I2 algebras
(Sect. 7.6.3). In this regard, the notion of state on a von Neumann algebra seems
to be more rigid than the notion of measure over the projector lattice of that von
Neumann algebra. �

We will prove during Lemma 14.28 that any unital C∗-algebra always admits states
(hence a convex set of states). We can ask whether pure states exist, i.e. if the set of
states of a unital C∗-algebra contains extreme elements. The answer is yes, and one
shows that every algebraic state can be obtained as a limit of a sequence of a convex
combination of pure states, in the ∗-weak topology.

Theorem 14.13 The set S(A) of algebraic states of a C∗-algebra A with unit is a
bounded and convex compact subset of A′ in the ∗-weak topology. Moreover, S(A)

coincides with the ∗-weak closure of the convex hull of pure states (which is therefore
non-empty).

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
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Proof ByTheorem14.6 the convex set S(A) is contained in the closed unit ball inside
the dual of A. The latter is ∗-weakly compact, by Theorem 2.80 of Banach-Alaoglu.
As the set of states is closed in that topology (the proof is straightforward), it is also
compact in the dual of A and convex. The Krein-Milman theorem 2.81 guarantees
the set of extreme algebraic states is not empty, and the closure of its convex hull is
S(A). �

14.1.4 Pure States and Irreducible Representations

We devote this section to an important relationship between pure algebraic states and
irreducible representations of the algebra of observables: ω is pure if and only if the
representation πω is irreducible. To prove it we need the following lemma.

Lemma 14.14 An algebraic state φ on a unital C∗-algebra A is pure if and only
if φ = ψ1 + ψ2 for positive functionals ψi : A → C, i = 1, 2, implies ψi = λiφ for
some λ1, λ2 ∈ C.

Proof Ifφ is not pure, it is not extreme in the set of algebraic states, soφ = 1
2φ1 + 1

2φ2

for φ1 �= φ �= φ2. Defining ψi := 1
2φi , we see that φ = ψ1 + ψ2, where ψ1 �= λ1φ

irrespective of λ1. Let us assume φ is pure, conversely. First, if λ ∈ (0, 1) and φ =
λφ1 + (1 − λ)φ2 for some states φi , then φ = φ1 = φ2. So assume such φ satisfies
φ = ψ1 + ψ2, for some positive functionals ψ1, ψ2. We claim ψi = λiφ for some
numbers λi .

If ψi (I) = 0 for i = 1 or i = 2, then ψi = 0 by Theorem 14.6, and the conclu-
sion follows trivially. So supposeψi (I) �= 0, i = 1, 2.Defineφi (a) := ψi (I)

−1ψi (a).
Then φi is a state and φ = λφ1 + (1 − λ)φ2, with λ = ψ1(I) and 1 − λ = φ(I) −
ψ1(I) = ψ2(I). Since φ is extremal, φ1 = φ2 = φ, hence ψi = ψi (I)φ, i = 1, 2. �

Now the announced result can be stated.

Theorem 14.15 (Characterisation of pure algebraic states) Let ω be an algebraic
state on the unital C∗-algebraA and (Hω, πω,	ω) a correspondingGNS triple. Then
ω is pure if and only if πω is irreducible.

Proof By Schur’s lemma (see esp. Remark 11.38), πω is irreducible iff πω(A)′ =
{cI }c∈C. A direct consequence of Corollary 14.7 is that πω(A)′ = {cI }c∈C iff
0 ≤ ψ ≤ ω implies ψ = cω for some c ∈ C. But 0 ≤ ψ ≤ ω iff ω = ψ + (ω − ψ),
together withψ ≥ 0 andω − ψ ≥ 0. In summary,πω is irreducible iffω = ψ1 + ψ2,
ψi ≥ 0 imply ψi = λiω for some choice of λi . The previous lemma tells πω is irre-
ducible iff ω is pure. �

Now we have two important consequences that relate pure states to irreducible rep-
resentations of a C∗-algebra with unit.

Corollary 14.16 Let ω be a pure state on the unital C∗-algebra A and � ∈ Hω a
unit vector. Then

http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_2
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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(a) the functional
A 	 a 
→ (�|πω(a)�)ω ,

defines a pure algebraic state and (Hω, πω,�) is aGNS triple for it. In that case, GNS
representations of algebraic states given by non-zero vectors in Hω are all unitarily
equivalent.
(b) Unit vectors �,�′ ∈ Hω give the same (pure) algebraic state if and only if
� = c�′ for some c ∈ C, |c| = 1, i.e. if and only if � and �′ belong to the same ray
of Hω.

Proof (a) Consider the closed spaceM� := πω(A)�; we will show it coincides with
Hω. By construction π(a)M� ⊂ M� for a ∈ A, so M� is closed and πω-invariant.
As the representation is irreducible, necessarily M� = Hω or M� = {0}. The latter
case is impossible becauseπω(I)� = � �= 0. Now the claim is clear by construction,
because (Hω, πω,�) satisfies the GNS assumptions for a triple of an algebraic state
given by � as above, which is pure because the GNS representation is irreducible.
The last statement is obvious since all GNS representations can be constructed as
above. The unitary transformation between two such is always the identity operator.
(b) If � = c�′ the two vectors give the same pure algebraic state. If, conversely,
two unit vectors determine the same pure algebraic state, i.e. (�|πω(a)�)ω =
(�′|πω(a)�′)ω for every a ∈ A, then we decompose � = c�′ + 	 with 	 orthog-
onal to �′. In this way

(�|πω(a)�)ω = |c|2(�′|πω(a)�′)ω + c(	|πω(a)�′)ω + c(�′|πω(a)	)ω ,

whence

(1 − |c|2)(�′|πω(a)�′)ω = c(	|πω(a)�′)ω + c(�′|πω(a)	)ω .

Choose a = I, so that the right-hand side vanishes and then the left-hand side does,
too. This is possible only if |c| = 1. Back to� = c�′ + 	, we obtain	 = 0 because
1 = ||�′||2 = |c|2 + ||	||2. �
Corollary 14.17 If A is a C∗-algebra with unit, every irreducible representation
π : A → H is the GNS representation of a state pure.

Proof Let 	 ∈ H be a unit vector. As the representation is irreducible, π(A)	 is
dense in H. It is easy to see that (H, π,	) is a GNS triple for ω(·) = (	|π(·)	).
The latter state is pure because of irreducibility. �
Remark 14.18 Consider, in the standard (not algebraic) formulation, a physical sys-
tem S described on the Hilbert space HS , and a mixed state ρ ∈ S(H). The map
ωρ : B(H) 	 A 
→ tr(ρA) defines an algebraic state on the C∗-algebra B(HS).
By the GNS theorem, there exist another Hilbert space Hρ , a representation πρ :
B(HS) → B(Hρ) and a unit vector 	ρ ∈ Hρ such that

tr(ρA) = (	ρ |πρ(A)	ρ)
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for A ∈ B(HS). Therefore it seems that the initial mixed state has been transformed
into a pure state! How is this possible?

The answer follows from Theorem 14.15: 	ρ cannot correspond to any vec-
tor U−1	ρ in HS , under any unitary transformation U : HS → Hρ with U AU−1 =
πρ(A). In fact the representationB(HS) 	 A 
→ A ∈ B(HS) is irreducible, whereas
πρ cannot be irreducible because the state of ρ is not an extreme point in the space
of non-algebraic states, and so it cannot be extreme in the larger space of algebraic
states. (The precise form – up to unitary transformations – of the representation πρ

will be discussed in Example 14.19(4).)
This remark should clarify that the correspondence pure (algebraic) states vs. state

vectors, automatic in the standard formulation (in absence of superselection rules),
holds in Hilbert spaces of GNS representations of pure algebraic states, but not in
Hilbert spaces of GNS representations of mixed algebraic states. �

Example 14.19 (1) Let us focus on the standard theory described on a complex
separable Hilbert spaceH in order to discuss the simplest possible example. Assume
that the algebra of observables is the wholeB(H) and fix a Hilbert-space pure state
represented, up to phase, by a unit vector ψ . The map

ωψ : B(H) 	 A 
→ (ψ |Aψ)

defines a normal algebraic state. Let us construct a GNS representation of ωψ , and
remember that all other GNS representations will be unitarily equivalent to it, in view
of Theorem 14.4(b). If we set ı(A) := A for every A ∈ B(H), then (H, ı, ψ) is easily
a GNS triple forωψ . The only thing to check is that Aψ ranges in a dense subspace as
A varies inB(H). To this end, defineM := {Aψ | A ∈ B(H)}. Evidently,M is a non-
trivial closed subspace of H invariant under the action of B(H). As a consequence
of Proposition 3.93, M = H. We have proved that (H, ı, ψ) is a GNS triple for ωψ .

Notice that the representation ı is clearly irreducible. Using B(H) as algebra of
observables, this result implies that pure Hilbert-space states, as of Definition 7.36,
are pure states also in the algebraic sense, for Theorem 14.15. This is not an evident
result because a pure state of Definition 7.36 could be, in principle, a non-trivial
convex combination of algebraic states which are not normal.
(2) For commutative C∗-algebras with unit the following characterisation of pure
states holds.

Proposition 14.20 If A is a commutative C∗-algebra with unit, a state ω : A → C

is pure if and only if it is multiplicative: ω(ab) = ω(a)ω(b) for any a, b ∈ A.

Proof Thatω is pure implies πω is irreducible, but πω(a) commutes with every other
πω(b) since A is commutative. By Schur’s lemma πω(A) = {cI | c ∈ C}. Using the
GNS representation gives ω(ab) = ω(a)ω(b). Conversely if ω is multiplicative, by
the GNS theorem we can write

(πω(a∗)	ω|πω(b)	ω)ω = (πω(a∗)	ω|	ω)ω(	ω|πω(b)	ω)ω ,

http://dx.doi.org/10.1007/978-3-319-70706-8_3
http://dx.doi.org/10.1007/978-3-319-70706-8_7
http://dx.doi.org/10.1007/978-3-319-70706-8_7
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so 	ω, alone, is a basis of Hω, because πω(A)	ω is dense in Hω. Therefore Hω has
dimension 1, and all its operators are numbers. In particular, πω(A)′ = {cI | c ∈ C},
which means πω is irreducible by Schur’s lemma. �

(3) The next example does not originate in QM. Take a compact Hausdorff space X
and the commutative C∗-algebra with unit C(X) of C-valued continuous maps on X,
equipped with the usual pointwise algebraic operations, involution given by complex
conjugation and norm || ||∞. If μ denotes a Borel probability measure on X, then

ωμ : C(X) 	 f 
→
∫

X
f dμ

defines an algebraic state onC(X). TheGNS theorem then gives a triple (Hμ, πμ,	μ)

where: Hμ = L2(X, dμ), (πω( f )ψ)(x) := f (x)ψ(x) for every x ∈ X, ψ ∈ Hμ and
f ∈ C(X). The cyclic vector 	ω coincides with the constant map 1 on X.
It can be checked that pure states are the Dirac measures δx concentrated at points

x ∈ X. In this sense probability measures can be understood as “thick” points.
(4) Let us again return to the standard theory described on a complex separable
Hilbert space H, and suppose that the algebra of observables is the wholeB(H). Fix
a mixed state represented by positive trace-class operator T with unit trace. The map

ωT : B(H) 	 A 
→ tr(T A)

defines a normal algebraic state. Let us construct aGNS representation ofωT , remem-
bering that all other GNS representations are unitarily equivalent to this one by
Theorem 14.4(b). First of all decompose T spectrally,

T =
∑

k∈N
pk(ψk | )ψk .

Above, N may be uncountable but the non-zero pk form a finite or countable set,
1 ≥ pk ≥ pk+1 ≥ 0,

∑
k∈N pk = 1 and {ψk}k∈N is a Hilbert basis of H. The series

of T converges in the uniform topology. With these hypotheses, consider the Hilbert
space HωT defined by the Hilbert orthogonal sum

HωT := ⊕k∈N ′Hk with Hk = H for every k ∈ N ′ (14.13)

where N ′ ⊂ N contains only the indices k such that pk > 0. Next define the vector

	ωT := ⊕k∈N ′
√
pkψk . (14.14)

It is evident that 	ωT ∈ HωT and it is easy to prove that the map

πωT : B(H) 	 A 
→ ⊕k∈N ′ Ak with Ak = A for every k ∈ N ′ (14.15)
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is a representation ofB(H) on B(HωT ). By construction

(
	ωT

∣∣πωT (A)	ωT

) =
∑

k∈N ′
pk(ψk |Aψk) = ωT (A) for every A ∈ B(H).

To conclude that (HωT , πωT , 	ωT ) is a GNS triple of ωT it is sufficient to establish
that 	ωT is cyclic for πωT . Let us show it. If � = ⊕k∈N ′φk ∈ HωT , assume that(
�|πωT (A)	ωT

) = 0 for every A ∈ B(H), that is

∑

k∈N ′

√
pk(φk |Bψk) = 0 , ∀B ∈ B(H) . (14.16)

To prove our claim it is enough to obtain � = 0. Fix k ∈ N ′ and consider the sub-
set of B(H) made of elements B := APk , where A ∈ B(H) and Pk := (ψk | )ψk .
Specialising (14.16) to these elements, we have

(φk |Aψk) = 0 , ∀A ∈ B(H) .

The set of vectors Aψk is dense in H = Hk when A varies in B(H), as a trivial
consequence of Corollary 14.16(a), so that φk = 0. Since k is arbitrary, we may
conclude that � = 0 and thus 	ωT is cyclic for πωT as wanted.

We have constructed a GNS triple for ωT . It is evident from the construction that
(14.15) is reducible if N ′ contains more than one element, as every closed subspace
Hk ⊂ HωT is invariant under πωT . All this agrees with Theorem 14.15, since a mixed
Hilbert-space state T , defined in accordance with Definition 7.36, must be a non-pure
algebraic state a fortiori when viewed as an algebraic normal state ωT .

Moreover the representation we have found is evidently injective. This last result
is clearly invariant under the action of unitary operators, and hence is valid for every
GNS representation of ωT . In other words the following proposition holds.

Proposition 14.21 Let H be a separable Hilbert space. Normal states of B(H)

necessarily have faithful GNS representations. Therefore if the GNS representations
of a state ω of B(H) is not faithful, ω cannot be normal.

The kernel Kω of a non-faithful GNS representation πω of a state ω of B(H) is a
two-sided ∗-ideal of B(H), as one proves immediately. Since πω is continuous, Kω

is also closed in the uniform topology of B(H). If H is separable, there is only one
non-trivial two-sided ∗-ideal ofB(H) that is closed in the uniform topology, namely
the ideal of compact operatorsB∞(H) (Theorem 4.17). So, in particular, ω(A) = 0
for every compact operator whenever ω admits non-faithful GNS representations
and hence is not normal. This suggests that non-normal states ofB(H) may display
quite pathological features. �
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14.1.5 Further Comments on the Algebraic Approach and
the GNS Construction

In a general setup, especially when we deal with algebras arising from Quantum
Field Theories, it is sometimes reasonable to suppose that the C∗-algebra A whose
self-adjoint elements represent observables be simple.

Definition 14.22 A C∗-algebra A is simple if its only closed two-sided ideals that
are invariant under the involution are A and {0}.

The reason for finding simple algebras appealing is that every non-trivial repre-
sentation (whether GNS or not), on whichever Hilbert space, is faithful (injective)
hence isometric, as the next proposition proves.

Proposition 14.23 If A is a simple C∗-algebra with unit and π : A → B(H) a
representation on the Hilbert space H �= {0}, then π is faithful (one-to-one) and
isometric.

Proof The null space of π : A → B(H) is a two-sided ideal in A that is closed (π
is continuous by Theorem 8.22) and invariant under the involution, as is immediate
to see. But Ker(π) = A is impossible since π(I) = I �= 0. Hence our representation
must be injective because Ker(π) = {0}, and so isometric by Theorem 8.22. �

This means that every operator representation of a simple, unital C∗-algebra faith-
fully represents the algebra, quite literally. However, as we saw at the end of Example
14.19(4), there are cases of interest in physics where the relevant algebra of observ-
ables is not simple.

Sometimes the C∗-structure is too rigid, whereas a ∗-algebra with unit is better
tailored to described observables. This is the case when one studies bosonic quantum
fields without usingWeylC∗-algebras. The key part of the GNS theorem is still valid.
In fact, we have the following version of the GNS theorem, whose proof is similar
to (actually much simpler than) the previous one.

Theorem 14.24 (GNS theorem for ∗-algebras with unit) Let A be a ∗-algebra with
unit I and ω : A → C a positive linear functional with ω(I) = 1. Then
(a) there exists a quadruple (Hω,Dω, πω,	ω)madeof aHilbert spaceHω, a subspace
Dω ⊂ Hω, a linear map πω : A → L(Dω,Hω) and an element 	ω ∈ Dω, such that:

(i) Dω is πω(a)-invariant for every a ∈ A, since Dω = πω(A)	ω;
(ii) 	ω is cyclic for πω, that is, Dω is dense in Hω;
(iii) πω : A → πω(A) is an algebra homomorphism satisfying: πω(I) = I and

πω(a∗) = πω(a)∗�Dω
, a ∈ A;

(iv) (	ω|π(a)	ω) = ω(a), a ∈ A.
(b) If (H,D, π,	) fulfils (i)–(iv), there exists a unitary operator U : Hω → H such
that 	 = U	ω, D = UDω and π(a) = Uπω(a)U−1 for any a ∈ A.

Now the function πω is not continuous (there is no preferred topology on A). The
operatorsπω(a) do not belong inB(Hω), in general. Every operatorπω(a) is closable
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inDω by Theorem 5.10(b), since the domain contains the dense subspaceDω, making
πω(a)∗ densely defined, and moreover πω(a∗) ⊂ πω(a)∗.

Still referring to Theorem 14.24, it is worth remarking that elements properly
corresponding to observables – i.e. self-adjoint elements a ∈ A – are mapped to
symmetric operators πω(a) by the last requirement in (iii). In general, however, even
if a = a∗ the associated operators will not be self-adjoint: πω(a)∗ = πω(a). The
weaker version πω(a)∗∗ = πω(a)∗ (essential self-adjointness) should be valid for
self-adjoint elements a under some condition on either the algebra and/or the state.
Alas, precise technical conditions and their physical significance are poorly explored
in the literature, and deserve further investigation.

A general quantum theory, formulated algebraically, seeks to find, among the
immense collection of algebraic states on a C∗-algebra of observables in a given
physical system, those states that bear some meaning. We refer to the aforemen-
tioned suggestions for a deep study of such a wide-ranging topic. We shall return to
this point later, although usually it is the physics that suggests the choice of some
privileged state ω. For instance, the reference state of Quantum Field Theories with-
out gravity (Minkowski’s flat spacetime) and without interactions is the so-called
vacuum. The vacuum state corresponds to the absence of particles associated to the
field in question, and is invariant under the Poincaré group. The picture changes
abruptly when “gravity is turned on”, i.e. when one introduces curvature on the
spacetime: the absence of the Poincaré symmetry, in general, does not allow to select
one’s favourite (algebraic) state uniquely, but rather an entire class of states. Most
of the times these are known as Hadamard states [Wal94, KhMo15]. These enable
to make sense of renormalisation, and also define important observables such as the
energy-momentum tensor (cf. [Mor03], for example).

14.1.6 Hilbert-Space Formulation Versus Algebraic
Formulation

Withholding the point of view adopted up to Chap. 13 included, in which one starts
from a given Hilbert space HS , the C∗-algebra AS of observables associated to a
system S can, in the limit situation, be the whole space of bounded operatorsB(HS).
A choice that makes more physical sense is to define the algebra of observables as
a unital C∗-subalgebra in B(HS): this typically has the structure of a von Neumann
algebra (see Sect. 3.3.2) of type I when the possible superselection rules are Abelian
(Proposition 11.18(a)), and is generated by the PVMs of the system’s observables
in accordance with Definition 3.92. However, type I arises also in the presence of a
non-Abelian superselection rules for elementary particles, as briefly discussed at the
end of Sect. 11.2.3.

Since AS is a von Neumann algebra and hence is strongly closed, we can inte-
grate spectral measures, at least in bounded measurable functions, and still obtain
elements of the algebra. This von Neumann algebra is actually completely deter-
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mined by the associated lattice of its orthogonal projections, by Proposition 7.61(b).
Taking bounded operators is no major restriction from the point of view of physics.
Any observable A represented by an unbounded self-adjoint operator, namely, is
physically the same as the sequence of observables represented by bounded self-
adjoint operators An := ∫

(−n,n] λdP
(A)(λ), n = 1, 2, . . . as discussed in Sect. 11.1.2.

For the time beingwewill assumeAS = RS = B(HS), and later return to the general
case where superselection rules are turned on.

Clearly every state ρ ∈ S(HS) determines a (normal) algebraic state on the
C∗-algebra B(HS) by setting ωρ(A) := tr(ρA), A ∈ B(HS). From what we said,
a state in S(HS) is pure precisely when it is algebraically pure in the C∗-algebra
B(HS). The set of algebraic states onB(HS) coming from positive trace-class oper-
ators with unit trace does not exhaust all algebraic states onB(HS), but only a small
part of them.

Nevertheless, viewing the C∗-algebra of observables as a specific C∗-algebra of
operators on a Hilbert space (possibly the entire algebra of bounded operators) in
the general framework of the algebraic formulation would be like sliding back in the
theory, for it would lead to assume the theoretical existence of a privileged Hilbert
space where states are described. This would rule out, for systems with infinitely
many degrees of freedom, a host of states corresponding to non-unitarily equivalent
representations, which do exist and have a meaning.

In the general case observables are therefore taken to form an abstract C∗-algebra
A; the Hilbert space representation is fixed only after a state ω has been given, and is
the Hilbert space Hω of the GNS construction. At this point, in the Hilbert space the
C∗-algebramay be enlarged to a vonNeumann algebra (stillC∗), simply by taking the
double commutantπω(A)′′ generated byπω(A). It is here that type-I I I vonNeumann
algebras naturally arise, andmay be used to represent physical systems in the peculiar
physical states discussed in the second and third case at the end of Sect. 11.2.3.
Notice however that as πω(A)′′ is closed in the weak, strong and uniform topologies,
there are elements in πω(A)′′ that are not limits in π(A) in the uniform topology
(coinciding with the topology of A under πω). These elements do not correspond
to elements of A, and cannot be considered, in this sense, “true observables of the
system”, independent of the choice of state. In particular, elementary propositions
like: “the reading of a falls in the Borel set E” are not usually thinkable as elements
of A, i.e. observables. These should correspond to maps χE (a), where the function
of the self-adjoint element a is defined via continuous functional calculus under the
representation �a : C(σ (a)) → A of Theorem 8.36. But χE /∈ C(σ (a)) in general.
Strictly speaking, we can make sense of these observables only after having fixed a
state, working in its GNS representation.

It would, actually, be possible to narrow down this gap between the two formula-
tions in the following, a bit artificial, manner [Stre07]. From Chap.8 we know that
the integral of a bounded, measurablemap in a PVMon theHilbert spaceH is defined
using the uniform topology, which is the natural topology of the C∗-algebra B(H).
Hence one could always ask theC∗-algebraA of observables of a physical system be
generated by the p ∈ A that have the same features of orthogonal projectors inHilbert
spaces: p = pp and p∗ = p. These elements correspond to orthogonal projectors in

http://dx.doi.org/10.1007/978-3-319-70706-8_7
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the Hilbert space of any GNS representation of A. Therefore one could choose the
elements p, using GNS representations of physically meaningful states, so to obtain
the PVMs of the relevant observables, whence also the (bounded measurable) maps
of those observables.

However, regardless any a priori constraint on the algebra of observables or a
posteriori additions – a general comprehensive technical discussion on all these pos-
sibilities appears in [Emc72, Sect. 2.1.g] – something about elementary propositions
can be said in the general case, as we go to illustrate (essentially following a remark
in [Wal94]). LetBs(R) be the algebra of subsets of R including ∅ and all finite dis-
joint unions of intervals (a, b] and (c,+∞) with −∞ ≤ a ≤ b < +∞ and c ∈ R.
One can easily prove that for every E ∈ Bs(R) there is a sequence of real continu-
ous functions fn and a constant K < +∞ such that | fn(x)| ≤ K for all x ∈ R and
n ∈ N and fn(x) → χE (x) for every x ∈ R. The elements fn(a) are well-defined in
A, but the sequence { fn(a)}n∈N generally does not converge in A. However, its GNS
representation {πω( fn(a))}n∈N, referred to any fixed state ω, strongly converges to
the correct element of the PVM of πω(a):

P (πω(a))
E = s- lim

n→+∞ πω( fn(a)) ,

as one easily verify (taking (i) in Theorems 8.39(b) and 8.54(c, d) into account, for
T ∗ = T = πω(a)). Even the probability that, in the state ω, the reading of a falls in
the Borel set E ∈ Bs(R), can be computed using only that sequence of observables:

(	ω|P (πω(a))
E 	ω) = lim

n→+∞ ω( fn(a)) .

In this sense, the sequence of abstract observables { fn(a)}n∈N ⊂ A embodies the
entire information of the elementary proposition “the reading of a falls in the Borel
set E ∈ Bs(R)”, though that proposition cannot be represented in terms of an ele-
ment of A. Notice that two bounded sequences of continuous functions fn and gn ,
pointwise converging to the same characteristic function χE , for E ∈ Bs(R), give
rise to the same P (πω(a))

E for every fixed state ω. Therefore, more properly, elemen-
tary propositions are univocally represented by equivalence classes of sequences of
observables of A.

Actually, the restriction E ∈ Bs(R) is not as strong as it could seem at first
glance, since {P (πω(a))

E }E∈Bs (R) can uniquely be extended to a PVM that, in turn,
coincideswith thewhole PVM {P (πω(a))

F }F∈B(R). This follows straightforwardly from
Theorem 1.41, since the σ -algebra generated by Bs(R) is nothing but the Borel σ -
algebra B(R) itself.

At this juncture the abstract formulation appears to part rather evidently from the
elementary formulation, which is based on a pre-existing Hilbert space and on the
fundamental nature of elementary propositions about observable readings.

The process of reduction of the state, that follows the outcome of a measurement,
should be treated likewise. Take an observable a ∈ A, suppose the system is in the

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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pre-measurement state ω, and let the (ideal) reading of a fall in the Borel set E . After
the measurement the state is

ωE : A 	 b 
→ (	ω|PEπω(b)PE	ω)

(PE	ω|PE	ω)
,

where, to simplify the notation, PE is the PVM element of the self-adjoint operator
πω(a) corresponding to the Borel set E .

An interesting theoretical question concerns the possibility to introduce the notion
of coherent superposition of (algebraic) pure states without explicitly referring to
their vector-space representation via the GNS construction, but dealing with the alge-
braic framework only. The answer is that this is indeed possible, though technically
involved [Zan91].

14.1.7 Algebraic Abelian Superselection Rules

The algebraic formulation permits to handle situations – necessary on physical
grounds, as we said – in which non-unitarily equivalent representations of the same
algebraAS of observables of a given system S coexist. Such representations are asso-
ciated to pairs of distinct algebraic states giving inequivalent GNS representations.
If � denotes the unitary equivalence of GNS representations, we may decompose
the set of pure states, i.e. of irreducible representations, in equivalence classes under
the relation:

ω1 ∼ ω2 if and only if πω1 � πω2 . (14.17)

These classes have ameaning in relationship to superselection rules (see Sects. 7.7.1,
7.7.2, 11.2.1, 11.2.2), as Haag and other mathematical physicists noticed.

To get into the matter we need to take a step back. Let us return to the standard
formulation in the Hilbert space, though with algebraic focus on observables rather
than the logic of admissible propositions. Consider a quantum theory that admits
superselection rules. At least in some cases (Sect. 7.7.1) these require an observable
Q (like the electric charge) to be always defined, with arbitrary value q, on pure
normal states. We will assume for a moment that the possible values are countable
(we assume σ(Q) = σp(Q)), so to have closed, pairwise orthogonal coherent sectors
HSq in the separable Hilbert space HS . The HSq are the q-eigenspaces of Q. The
algebra of (bounded) observables is the von Neumann algebra AS := RS generated
by the orthogonal projectors inL (HS) (hence all bounded operators) that commute
with the projectors Pq onto the HSq . In other words RS := ({Pq | q ∈ σp(Q)}′)′′ =
{Pq | q ∈ σp(Q)}′. Clearly RS has a non-trivial centre that contains Pq . Therefore
each coherent sector is invariant under every physically admissible observable, and on
every sector there will be a representation ofRSq obtained by restricting observables
to the closed invariant space. This algebra evidently has the form
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RSq = {A�HSq | A ∈ RS} (14.18)

and is a von Neumann algebra on HSq as the reader can easily prove. We simultane-
ously have a Hilbert decomposition into pairwise orthogonal closed subspaces and
a corresponding direct decomposition of von Neumann algebras

HS =
⊕

q∈σp(Q)

HSq , RS =
⊕

q∈σp(Q)

RSq .

Every value q that Q can take gives a coherent sector HSq equipped with its own
algebra RSq , which by (14.18) is a representation

πq : RS 	 A 
→ A�HSq∈ RSq

of RS itself. Distinct choices of q produce unitarily inequivalent and non-faithful
representations. In fact, if q1 �= q2 on HSq1 and HSq2 , Q is represented by different
multiples of the identity q1 I and q2 I . Hence Uq1 IU−1 = q1 I �= q2 I whichever
unitary map U : HSq1 → HSq2 we take. Non-faithfulness arises form the fact that if
Q assumes the value q on HSq , then Q − q I �= 0 but πq(Q − q I ) = 0.

If more than one superselection rule is activated, Wightman [Wigh95] conjec-
tured that the rules are associated to a finite set of pairwise compatible observables
Q1, . . . , Qn in the centre of RS (we again assume σ(Q j ) = σp(Q j ) and that the
charges are boundedoperators. The latter requirement can easily be relaxedby assum-
ing that the charges are simply affiliated to RS). Supposing Wightman is right (see
however Remark 11.22 and Sect. 11.2.3), the Hilbert space splits in an orthogonal
sum of coherent sectors HSk , k ∈ K , common to all superselection rules. Every k
is completely fixed by the values that all charges Q j assume on HSk , and for every
set of these values there is a k ∈ K defining a superselection sector HSk (K is a
countable set, or even finite if the spectrum of each Q j is finite). On each sector
we have a representation πk of the algebra RS of observables of the system. These
representations are mutually inequivalent, as we have seen.

If we assume, more restrictively, that the family {Q1, . . . , Qn} completely
describes all superselection rules of the system – in this case we say that the supers-
election rules are Abelian (see Sect. 11.2.2), then we are committed to suppose that
every other central observable must be a function of them. In other words

{Q1, . . . , Qn}′′ = RS ∩ R′
S .

It is possible to prove that this hypothesis is equivalent to requiring that the orthogonal
projectors P (Q1)

q1 · · · P (Qn)
qn generating the joint spectral measure of the Q j are atoms

of the centre of the lattice LRS (HS) of projectors of RS (Proposition 11.21). As
we said before, the family of central projectors {Pk}k∈K is nothing but the family of
spectral projectors

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11


14.1 Introduction to the Algebraic Formulation of Quantum Theories 891

{
P (Q1)
q1 · · · P (Qn)

qn

}
(q1,...,qn)∈σ(Q1)×···×σ(Qn)

,

and k ∈ K (a subset of N) simply labels the values (q1, . . . , qn) ∈ σ(Q1) × · · · ×
σ(Qn). In this way we recover the description of superselection rules of Sects. 7.7.1,
7.7.2 and 11.2.1. We therefore have decompositions

HS =
⊕

k∈K
HSk , RS =

⊕

k∈K
RSk , (14.19)

where the algebras RSk are now factors, as we know from Sect. 7.7.1.
If we further assume that RS contains a complete set of commuting observables,

we eventually have that RSk = B(HSk) and RS is of type I , by Proposition 11.18.
Each representation πk : RS 	 A 
→ A�HSk∈ RSk ofRS on each superselection sec-
tor is also irreducible. The representations πk are therefore non-faithful, unitarily
inequivalent irreducible representations of RS labelled by the values of the supers-
election charges Q j .

States overRS , in the sense of the non-algebraic formulation, can be described in
terms of σ -additive probability measures overLRS (HS) as discussed in Sects. 7.7.1,
7.7.2. In turn, these measures can be identified with positive trace-class operators of
trace one using the generalisation of Gleason’s theorem, as discussed in Sect. 7.7.2.
(All that happens in accordancewith Propositions 14.11, 7.70, 7.72 andRemark 7.73,
whenwe assumeHS separable with dimHSk �= 2 for every k ∈ K ). These are normal
states of RS from the algebraic viewpoint, and form a convex set S(HS)adm whose
subset Sp(HS)adm of extreme elements still contains normal states, represented by
the unit vectors of the sectors HSk .

Let us pass to the algebraic formulation, based on a C∗-algebra of observables
and the general notion of algebraic state – thus freeing ourselves from Hilbert spaces
and von Neumann algebras as the characterising structures of a physical system. The
picture now is suddenly more straightforward, for the use of C∗-algebras eschews
convoluted arguments and technical complications. Extending Wightman’s assump-
tion, in the algebraic formalism, superselection rules are accounted for by observ-
ables Q in the centre of the C∗-algebra AS of observables, i.e. the subalgebra of
elements commuting with all of AS . Every pure algebraic state ω, corresponding to
an irreducible representation of the algebra of observables, must inevitably select a
value of Q in the GNS representation by Schur’s lemma, as πω(Q) commutes with
all elements. That is to say, πω(Q) = q I for some q ∈ R (now the values may be
uncountable, since the separable Hilbert space is not unique). Exactly as before, two
pure algebraic statesω,ω′ with distinctq �= q ′ produce inequivalentGNS representa-
tions, so there is no unitary operatorU : Hω → Hω′ such thatUπω(a)U−1 = πω′(a)

for each a ∈ AS (this identity is false for a = Q).
In general we expect that families of non-equivalent pure states (i.e. of inequiv-

alent irreducible representations) can be labelled by distinct values of a charge of
sorts, corresponding to some central observable. Eventually, at least for physically
important theories, the existence of superselection charges could be the reason for the
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existence of inequivalent irreducible representations of theC∗-algebra of observables
AS [Rob04], though no proof of this conjecture exists.

Remark 14.25 (1) The aforementioned interesting conjecture posits that irreducible
inequivalent representations of a given C∗-algebra of observables are due to supers-
election rules; these, in turn, arise from superselection charges. This is untenable for
elementary, and hence maybe un-physical, cases. In fact, the representations πω of
AS associated to different values of Q, if any, are non-faithful since πω(Q − qI) = 0
if q is the value of Q in the GNS representation of the state ω. If the algebra AS is
simple, all representations are faithful (Proposition 14.23) hence no superselection
charge Q may exist, even if unitarily inequivalent irreducible representations do
exist. This is the case for the Weyl C∗-algebra we will discuss shortly (see Lemma
14.37). However one expects that adding further elements to the algebra of observ-
ables which are natural in the von Neumann algebras of the GNS representations (as
the so-called number of particles for the Weyl C∗-algebra) will allow to restore a
description of the superselection rules in terms of superselection charges.
(2) In principle, further superselection rules can anyway show up in a specific GNS
representation of AS associated to a state ω, in case we think of the algebra, in such
representation, as the von Neumann algebra πω(AS)

′′. This is larger than πω(AS),
so in general it has a non-trivial centre even if AS does not. (See [Pri00] for this
point, in particular concerning the interpretation of central observables of πω(AS)

′′
as classical observables.) �

Even in the absence of superselection charges with clear physical meaning, it is
natural to think of theGNS representations of the algebraAS associatedwith unitarily
inequivalent pure states ω as algebraic superselection sectors. For this, let us look at
the equivalence relation (14.17), denote by � the space of equivalence classes, and
pick a representative ω in every equivalence class [ω]. Then the Hilbert sum of the
unitarily inequivalent irreducible GNS representation spaces Hω,

H� =
⊕

[ω]∈�

Hω ,

can be viewed as the Hilbert space of the system in the presence of superselection
rules, each Hω playing the role of a superselection sector. Indeed, the unit-vector
states in all sectors exhaust the set of all possible algebraic pure states on A by
construction. Moreover, coherent superpositions

α	 + β	 ′

of unit vectors 	 ∈ Hω, 	 ′ ∈ Hω′ in different sectors (with |α|2 + |β|2 = 1) and
incoherent superpositions

|α|2	(	| ·) + |β|2	 ′(	 ′| ·)
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define the same algebraic state. This is because they are indistinguishable when
acting on elements a ∈ AS (represented on H� through the GNS representation of
the case):

(
α	 + β	 ′ ∣∣πω(a) ⊕ πω′(a)(α	 + β	 ′)

) = |α|2(	|πω(a)	) + |β|2(	 ′|πω′(a)	 ′) .

The algebraic mixed states on AS can be obtained as weak limits of incoherent
superpositions of unit vectors belonging to the spaces Hω, due to Theorem 14.13.

There are, however, crucial differences in comparison with the genuine Hilbert-
space description of superselection rules previously summarised.

(1) In general, H� is not separable and � is uncountable.
(2) Not all (algebraic) mixed states are represented by trace-class operators on

H�, though they are elements of the ∗-weak closure of the convex body generated
by the vector states of the sectors H�.

(3) AS is a C∗-algebra, rather than a von Neumann algebra.
(4) In general, there are no elements inAS corresponding to orthogonal projectors

onto coherent sectorsHω. This contrasts with the standardHilbert-space formulation,
where such elements are the central atomic projectors Pk ∈ RS .

(5) A consequence of (4) is that an identity such as

AS =
⊕

[ω]∈�

πω(AS) (false)

is generally false, whereas the analogue

RS =
⊕

k∈K
πk(RS) =

⊕

k∈K
RSk ,

holds for the standard Hilbert-space formulation of superselection rules.
(6) As a second consequence of (4), the representations πω ofAS may be faithful,

again differently form the analogous representationsπk ofRS in the standardHilbert-
space formulation, which are never faithful.

Remark 14.26 (1) If the set � has the cardinality of R at most, it would be also
possible to enlarge A by adding an observable Q to its centre, which is represented
by q I in each sector, with different q for different inequivalent sectors. Such a Q
would however merely be an artificial construction of dubious physical meaning.
(2)We stress that there is no real need for reformulating all the algebraic machinery
backwards in the Hilbert space H�. Its introduction was only meant to point out
the analogies between the algebraic formulation and the Hilbert-space formulation
in relationship to the notion of coherent sectors. On the other hand, the crucial
differences listed above would definitely make a full Hilbert-space reformulation, in
particular without artificially extending AS , impossible. �
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The algebraic interpretation of superselection sectors thatwehavediscussed is appro-
priate for elementary systems, i.e., elementary particles in absence of non-Abelian
internal gauge symmetry. Here, pure states, vacuum states and ground states in par-
ticular play a crucial role. The picture is the natural algebraic extension of the case of
Abelian superselection rules, introduced in Sects. 11.2.1 and 11.2.2within theHilbert
space formulation. For other physically important systems different from elementary
particles, like finite-temperature systems in the so-called thermodynamical limit, a
more appropriate algebraic description of superselection sectors exists. It is pro-
vided by unitary equivalence classes of GNS representations of states ω (satisfying
the so-called KMS condition) where the irreducibility condition πω(A)′ = {cI }c∈C
is relaxed to the factorial condition πω(A)′ ∩ πω(A)′′ = {cI }c∈C. This is the alge-
braic analogue of non-Abelian superselection rules in the Hilbert-space formulation,
where the von Neumann algebra of observables in each sector is a factor (usually of
type I I I ) with non-trivial commutant. The aforementioned algebraic states states ω

still describe some particular physical situation, as opposed to generic mixtures. For
instance, in case of thermodynamical equilibrium, some such factorial states – with
πω(A)′ �= {cI }c∈C – describe pure phases of a quantum system in the thermodynam-
ical limit.

14.1.8 Fell’s Theorem

We suggest to consult [Haa96, Rob04, Ear08] to find lucid reviews on the algebraic
formalism and superselection sectors, especially for local theories based on nets
of observable algebras arising from Quantum Field Theory. Let us just make here
one general comment. We saw how the space of pure states decomposes in disjoint
families of states giving inequivalent representations, and the states of a same family
can be viewed as state vectors on one Hilbert space. So we would like to know if
it is possible, experimentally speaking, to say to which family a given pure state ω

belongs to. The answer is not simple, as shown by a theorem proved by Fell. For
pure states on a C∗-algebra with unit, Fell’s theorem says that pure states in a given
family are dense in the set of all pure states for the ∗-weak topology. Let us explain
why this abstract fact is relevant. In the real world we can conduct only a finite
(arbitrarily large) number of experiments. Suppose we can measure N observables
a1, a2, . . . , aN . The accuracy is finite, so the true value αi of the reading ω(ai ) of ai
is only given up to εi > 0:

|ω(ai ) − αi | < εi , i = 1, 2, . . . , N .

Now observe that the numbers αi and εi determine a neighbourhood in the space of
states with respect to the ∗-weak topology. Fell’s result implies that it is not possible
to establish to which family a given pure stateω belongs by using an arbitrarily large,
but finite, number of measurements with however small, yet finite, errors.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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One way to simplify the problem [Haa96] is to choose a priori a family of pure
states with some ad hoc criterion. Supposing, for instance, that the algebra is spatially
localisable,wemay assume that outside a certain region the physical system is absent.
Then all states of interest are those that outside a given and arbitrarily large region
resembling the vacuum state, when we measure on it observables localised outside
the region.

14.1.9 Proof of the Gelfand-Najmark Theorem, Universal
Representations and Quasi-equivalent
Representations

TheGNSconstruction has a purelymathematical consequence known as theGelfand-
Najmark theorem (stated in Chap.8). It says that every abstract C∗-algebra with unit
can be realised as a C∗-algebra of operators on a Hilbert space, albeit not uniquely.
To prove the result we need a few technical lemmas.

Lemma 14.27 Let A be a C∗-algebra with unit I. Any bounded linear functional
φ : A → C with φ(I) = ||φ|| is positive.
Proof We will make use of Theorem 8.25, and, a usual, r(c) will denote the spectral
radius of c. Without loss of generality we assume φ(I) = 1. Let a ∈ A be posi-
tive and set φ(a) = α + iβ, with α, β ∈ R. We have to show α ≥ 0 and β = 0.
For small s ≥ 0 we have σ(I − sa) = {1 − st | t ∈ σ(a)} ⊂ [0, 1], since σ(a) ⊂
[0,+∞). Hence ||I − sa|| = r(I − sa) ≤ 1. Therefore 1 − sα ≤ |1 − s(α + iβ)| =
|φ(I − sa)| ≤ 1, so α ≥ 0. Now define βn := a − αI + inβI, n = 1, 2, . . .. Then

||bn||2 = ||b∗
nbn|| = ||(a − αI)2 + n2β2

I|| ≤ ||a − αI||2 + n2β2 .

Consequently

(n2 + 2n + 1)β2 = |φ(bn)|2 ≤ ||a − αI||2 + n2β2 n = 1, 2, . . .

and then β = 0. �

Lemma 14.28 Let A be a C∗-algebra with unit and a ∈ A.
(a) If α ∈ σ(a) there exists a state φ : A → C such that φ(a) = α.
(b) If a �= 0, there exists a state φ : A → C with φ(a) �= 0.
(c) If a = a∗, there exists a state φ : A → C such that |φ(a)| = ||a||.
Proof (a) For any complex numbers β, γ we have αβ + γ ∈ σ(βa + γ I), so |αβ +
γ | ≤ ||βa + γ I||. Hence asking φ(βa + γ I) := αβ + γ defines (unambiguously) a
linear functional on the subspace {βa + γ I | β, γ ∈ C} such thatφ(a) = α,φ(I) = 1
and ||φ|| = 1. By a corollary to the Hahn-Banach theorem, we can extend φ to a

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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continuous linear functional on A satisfying ||φ|| = φ(I) = 1. The previous lemma
guarantees that the functional is a state on A with φ(a) = α.
(b) If a = a∗ and a �= 0, then σ(a) �= {0}, for otherwise the properties of the spectral
radius of self-adjoint elements would imply ||a|| = r(a) = 0. Then the stateφ of part
(a) satisfiesφ(a) �= 0 forα ∈ σ(a) \ {0}. Considerwhen a �= a∗,a �= 0. Thenwe can
decompose a = b + ic with b = b∗, c = c∗. If φ(a) = 0 for any state φ : A → C,
we would have 0 = φ(a) = φ(b) + iφ(c) for any φ. But the GNS theorem implies
φ(d) = φ(d) for d = d∗. Hence φ(b) = φ(c) = 0 for any φ. Since c and d are self-
adjoint, the proof’s initial argument forces b = c = 0 so a = 0. As this was excluded,
there must exist a state with φ(a) �= 0.
(c) Since ||a|| = sup{|λ| | λ ∈ σ(a)} and σ(a) is compact in R, there must be an
element � ∈ σ(a) with |�| = ||a||. Using part (a) with α = � proves the claim. �

Now we are ready to state and prove the Gelfand-Najmark theorem.

Theorem 14.29 (Gelfand-Najmark) For any unital C∗-algebra A there exist a
Hilbert space H and an (isometric) ∗-isomorphism φ : A → B, where B ⊂ B(H)

is a C∗-subalgebra of B(H).

Proof For every x ∈ A \ {0} let us fix a state φx : A → C with φx (x) �= 0. This
state exists by part (b) of the above lemma. Consider the collection of GNS triples
(Hx , πx , 	x ) associated to each φx , and the Hilbert sum

H :=
⊕

x∈A\{0}
Hx .

In this way the elements of H are of the form ψ = ⊕x∈A\{0}ψx := {ψx }x∈A\{0} with:

∑

x∈A\{0}
||ψx ||2x < +∞ . (14.20)

On H we have an inner product making it a Hilbert space:

(ψ |ψ ′) =
∑

x∈A\{0}
(ψx |ψ ′

x )x .

Define the map π : A → B(H) by imposing:

π(0) := 0 and (π(a)ψ)x := πx (a)ψx for ψ ∈ H, a ∈ A \ {0} .

It is not hard to see π is a ∗-homomorphism of unital C∗-algebras mapping A to
B(H). By Theorem 8.22(c) π(A) is a unital C∗-algebra subalgebra of B(H). In
particular, ||π(a)|| ≤ ||a||, as prescribed by Theorem 8.22. In fact if (14.20) holds,
since Theorem 8.22 gives ||πx (a)|| ≤ ||a||, we obtain

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_8
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||π(a)ψ ||2 =
∑

x∈A\{0}
||πx (a)ψx ||2x ≤ ||a||2

∑

x∈A\{0}
||ψx ||2x = ||a||2||ψ ||2 < +∞ .

To end the proof it suffices to show π is isometric. By Theorem 8.22(a) that is equiv-
alent to injectivity. Suppose π(a) = 0, so πx (a)ψx = 0 for any x ∈ A \ {0}, ψx ∈
Hx . In particular φx (a) = (	x |πx (a)	x ) = 0, so choosing x = a gives φa(a) = 0.
But this is not possible if a �= 0. Therefore a = 0 and π is one-to-one, hence
isometric. �

One elementary corollary of theGelfand-Najmark theorem, in particular, has physical
interest: it proves that the norm of a unital C∗-algebra is determined by the whole
collection of states.

Corollary 14.30 LetA be aC∗-algebrawith unit I and denote by S(A) the collection
of algebraic states on A. Then:

||a|| = sup
ω∈S(A)

|ω(a)| if a∗ = a ∈ A. (14.21)

Consequently:
||a||2 = sup

ω∈S(A)

|ω(a∗a)| if a ∈ A. (14.22)

Finally, if a, b ∈ A:

a = b if and only if ω(a) = ω(b) for every ω ∈ S(A).

Proof Let us start from the first couple of statements. The second is an immedi-
ate consequence of the first since ||a||2 = ||a∗a|| and (a∗a)∗ = a∗a, so we have to
prove the former only. To this end, in view of the fact that states are positive hence
continuous, and that ||ω|| = ω(I) = 1 due to Theorem 14.6, we have:

sup
ω∈S(A)

|ω(a)| ≤ sup
ω∈S(A)

||ω|| ||a|| ≤ sup
ω∈S(A)

1 ||a|| .

We conclude that:
sup

ω∈S(A)

|ω(a)| ≤ ||a|| .

To obtain the opposite inequality, we pass to theC∗-algebraB ⊂ B(H) representing
A isometrically under the action of the ∗-isomorphismφ (Gelfand-Najmark theorem).
Since φ(a) ∈ B(H) is self-adjoint, Proposition 3.60(a) yields:

||a|| = ||φ(a)|| = sup{|(ψ |φ(a)ψ)| | ψ ∈ H , ||ψ || = 1} = sup
||ψ ||=1

|ωψ(a)|

≤ sup
ω∈S(A)

|ω(a)| ,

http://dx.doi.org/10.1007/978-3-319-70706-8_8
http://dx.doi.org/10.1007/978-3-319-70706-8_3
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where we have exploited the fact that, for ||ψ || = 1, the linear map

A 	 b 
→ ωψ(b) := (ψ |φ(b)ψ)

is an algebraic state. The proof of the first (and second) statement in the thesis ends
here, since we have established that:

sup
ω∈S(A)

|ω(a)| ≤ ||a|| ≤ sup
ω∈S(A)

|ω(a)| .

Concerning the last item in the thesis the only implication to prove is that a = b if
ω(a) = ω(b) for everyω ∈ S(A). Let us prove it. Ifω(a) = ω(b) thenω(a) = ω(b),
so thatω(a∗) = ω(b∗)by theGNSconstruction. Therefore:ω(a + a∗ − (b + b∗)) =
0 and ω(i(a − a∗) − i(b − b∗)) = 0. Since the arguments of ω are self-adjoint in
both cases and ω is arbitrary, the first statement of the corollary implies a − b +
(a∗ − b∗) = 0 and a − b − (a∗ − b∗) = 0, which entail a − b = 0. �

The Gelfand-Najmark theorem enables us to introduce an extremely useful technical
tool, the universal representation of a unital C∗-algebra.

Let A be a C∗-algebra with unit and denote by S(A) ⊂ A′ the convex set of
its algebraic states. Take the GNS representation (Hω, πω,	ω) of state ω ∈ S(A)

and consider the Hilbert sum
⊕

ω∈S(A) Hω. Its elements ⊕ω∈S(A)ψω := {ψω}ω∈S(A)

satisfy ∑

ω∈S(A)

||ψω||2ω < +∞ . (14.23)

The space
⊕

ω∈S(A) Hω is a Hilbert space for the inner product

(ψ |ψ ′) =
∑

ω∈S(A)

(ψω|ψ ′
ω)ω .

The universal representation of A is the representation:

� : A → B

⎛

⎝
⊕

ω∈S(A)

Hω

⎞

⎠ given by �

⎛

⎝
⊕

ω∈S(A)

ψω

⎞

⎠ :=
⊕

ω∈S(A)

πω(a)ψω .

Definition 14.31 Let π : A → B(H) be a representation of the ∗-algebra A on the
Hilbert space H. A subrepresentation of π is a representation of the form π�H0 :
A → B(H0), where the subspace H0 ⊂ H is closed and π -invariant.

Clearly any GNS representation of a C∗-algebra with unit is a subrepresentation of
the universal representation. Then the next easy, but useful, fact holds.
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Proposition 14.32 The universal representation of any given C∗-algebra with unit
is faithful and isometric.

Proof That a representation is faithful implies, by Theorem 8.22, that it is isometric.
Faithfulness descends immediately from the fact that �, as a subrepresentation,
contains the representation π used in the proof of the Gelfand-Najmark theorem (the
latter is injective). �

Eventually we mention a result on the structure of the folium of an algebraic state.
First, a notation and an important definition.

Notation 14.33 Let π : A → B(H) be a representation of the ∗-algebra A, and n a
cardinal number. We denote by nπ the representation on

⊕n
i=1 Hi , Hi := H defined

by
nπ(a)(⊕n

i=1ψi ) := ⊕n
i=1π(a)ψi for any a ∈ A, ψi ∈ H .

�

Definition 14.34 Two representations π1 : A → B(H1), π2 : A → B(H2) of the
same ∗-algebra A are called quasi-equivalent, written

π1 ≈ π2 ,

if they are unitarily equivalent up tomultiplicities. Equivalently, there exists cardinals
n1, n2 such that n1π1 � n2π2.

For example

π : A → B(H) and π1 : A 	 a 
→ π(a) ⊕Uπ(a)U−1 ∈ B(H ⊕ H′)

are quasi-equivalent ifU : H → H′ is a unitary operator. Unitarily equivalent repre-
sentations are obviously quasi-equivalent. And quasi-equivalence is an equivalence
relation. About this (see [Haa96] and [BrRo02, vol. 1]) we have

Proposition 14.35 Let A be a C∗-algebra with unit and ω : A → C an algebraic
state with GNS representation πω.
(a) Ifπ1 andπ2 are representations ofA,π1 ≈ π2 if and only if the vonNeumannalge-
bras π1(A)′′, π2(A)′′ are isomorphic as ∗-algebras, and the ∗-isomorphism restricts
to a ∗-isomorphism π1(A) → π2(A).
(b)TheGNS representations ofA generated by states in Fol(ω) are quasi-equivalent.
In particular, if ω = λω1 + (1 − λ)ω2, with λ ∈ (0, 1) and ω1 �= ω, the GNS repre-
sentation of ω1 is unitarily equivalent to a GNS subrepresentation of ω.
(c) If π is a representation of A and π ≈ πω, then π is a GNS representation of a
state in Fol(ω).

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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14.2 Example of a C∗-Algebra of Observables: The Weyl
C∗-Algebra

This section is devoted to the simplest non-trivial C∗-algebra of observables used
in physics. We are talking about the Weyl C∗-algebra involved in the description of
several systems, amongwhich are non-interacting bosonic quantum systems. Almost
all systems that are describable using a Weyl C∗-algebra can also be described by
weakening the observables’ structure to a ∗-algebra. Yet Weyl C∗-algebras are math-
ematically attractive, which motivates our interest.

14.2.1 Further Properties of Weyl ∗-Algebras W (X, σ )

Keeping in mind Sect. 11.5.4, let (X, σ ) be a symplectic space: a pair consisting of a
real vector space X of even dimension (possibly infinite), henceforth non-trivial, and
a weakly non-degenerate symplectic form σ : X × X → R. LetW (X, σ ) denote the
Weyl ∗-algebra of (X, σ ) introduced in Definition 11.47. We know (Theorem 11.48)
W (X, σ ) is defined up to ∗-isomorphisms. We wish to explain that it is possible, and
in a unique way, to enlarge W (X, σ ) to a C∗-algebra called the Weyl C∗-algebra
associated to (X, σ ). More precisely, we will define on W (X, σ ) a unique norm
satisfying theC∗ property ||a∗a|| = ||a||2. TheWeyl C∗-algebra will be the comple-
tion of W (X, σ ) for that norm. In order to prove all this we need a few preliminary
facts that form the contents of the section. There are various procedures, and dis-
tinct (equivalent) formulations, that prove the ensuing properties (see [BrRo02] in
particular). We will essentially follow the approach of [BGP07].

Lemma 14.36 Let X be a non-trivial real vector space, σ : X × X → R a weakly
non-degenerate symplectic form, and consider aWeyl ∗-algebraW (X, σ ) associated
to the system.
(a) There exists a norm || || on W (X, σ ) satisfying the C∗ property: ||a∗a|| = ||a||2
for any a ∈ W (X, σ ).
(b) If ψ ∈ X, the generator W (ψ) is unitary, so for the above norm ||W (ψ)|| = 1.
(c) If ψ, φ ∈ X, ψ �= φ, in the above norm

||W (ψ) − W (φ)|| = 2 ,

so W (X, σ ) is not separable.
(d) If we set, for any a ∈ W (X, σ ):

||a||c := sup{p(a) | p : W (X, σ ) → [0,+∞) is a C∗norm} ,

then || ||c is a C∗ norm.

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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Proof (a) Let us focus again on the construction of W (X, σ ) of Theorem 11.48(a).
Consider the complex Hilbert space H := L2(X, μ) where μ is the counting mea-
sure on X. For u ∈ X the operatorsW (u) ∈ B(L2(X, μ)), (W (u)ψ)(v) := eiσ(u,v)/2

ψ(u + v) for ψ ∈ L2(X, μ), v ∈ X, define a Weyl ∗-algebra associated to (X, σ ):
W (X, σ ) ⊂ B(H). The norm || || ofB(H) satisfies the C∗ property. Starting from a
different representationW ′(X, σ ), || || induces a C∗ norm onW ′(X, σ ) by means of
the ∗-isomorphism α : W (X, σ ) → W ′(X, σ ) of Theorem 11.48(c).
(b) From the Weyl relations we know W (ψ)W (ψ)∗ = W ∗(ψ)W (ψ) = I, so W (ψ)

is unitary. The C∗ property implies ||W (ψ)|| = 1.
(c) Let us complete W (X, σ ) with respect to the norm || || of (a), so to obtain a C∗-
algebra.ByWeyl’s relationswehaveW (χ)W (φ − ψ)W (χ)−1 = e−iσ(χ,φ−ψ)W (φ −
ψ). SinceW (φ − ψ) is unitary, σ(W (φ − ψ)) ⊂ {z ∈ C | |z| = 1}. By definition of
spectrum

σ(W (χ)W (φ − ψ)W (χ)−1) = σ(W (φ − ψ)) = e−iσ(χ,φ−ψ)σ (W (φ − ψ)) .

Since ψ �= φ, σ(χ, φ − ψ) covers the whole R as χ varies in X. Hence σ(W (φ −
ψ)) = {z ∈ C | |z| = 1}. Therefore σ(eiσ(ψ,φ)W (φ − ψ) − I) is the unit circle in
C centred at −1, so if r is the spectral radius, then r(eiσ(ψ,φ)W (φ − ψ)) = 2. But
eiσ(ψ,φ)W (φ − ψ) is normal: 2 = r(eiσ(ψ,φ)W (φ − ψ)) = ||eiσ(ψ,φ)W (φ − ψ)− I||.
Using the norm’sC∗ property and the generators’ unitarity, theWeyl identities imply
that ||W (φ) − W (ψ)||2 equals

||(W (φ)∗ − W (ψ)∗)(W (φ) − W (ψ))|| = ||eiσ(ψ,φ)W (φ − ψ) − I|| = 4 .

There are uncountably many elementsψ ∈ X (X �= {0} by assumption), soW (X, σ )

is not separable: if S ⊂ X were dense, there would be an element of S inside the
ball of radius 1/2 centred at each W (ψ). As said balls do not intersect, S cannot be
countable.
(d) Every property of a norm, plus the C∗ property ||a∗a||c = ||a||2c , hold by direct
inspection. The only thing left is to show that the supremum defining ||a||c is finite.
To this end, on W (X, σ ) we have a norm (not C∗ in general): || ∑i aiW (ψi )||0 :=∑

i |ai |. As every W (ψ) has unit norm in any C∗ norm p, as seen in (b), we have
p(a) ≤ ||a||0 < +∞. Therefore the least upper bound in ||a||c is smaller than ||a||0,
hence is finite. �

Lemma 14.37 Let (X, σ ) be a non-trivial, weakly non-degenerate real symplectic
space,W (X, σ ) a Weyl ∗-algebra associated to (X, σ ). Denote by CW (X, σ ) the C∗
completion of W (X, σ ) in the norm || ||c of Lemma 14.36(d).

Then CW (X, σ ) is simple: it does not admit two-sided closed ideals that are
invariant under the involution, other than {0} and CW (X, σ ) itself.

Proof Write A for the C∗-algebra with unit obtained by completion of W (X, σ )

under || ||c. Suppose I ⊂ A is a closed, two-sided ideal that is ∗-invariant. Then

http://dx.doi.org/10.1007/978-3-319-70706-8_11
http://dx.doi.org/10.1007/978-3-319-70706-8_11
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I0 := I ∩ {cW (0) | c ∈ C} is a complex subspace of {cW (0) | c ∈ C} identified with
C. Hence I0 = {0} or I0 = {cW (0) | c ∈ C}. In the latter case I would then contain
I, so it would coincide with A. So assume I0 = {0} and consider the map:

P : W (X, σ ) → {cW (0) | c ∈ C} , with P

⎛

⎝
∑

φ∈F⊂X

W (φ)

⎞

⎠ = a0W (0) in case F ⊂ X is finite .

We claim P is bounded, and that it extends continuously to an operator, P , defined
onA. To do so let us realiseW (X, σ ) in theC∗-algebra of operatorsB(L2(X, μ)), as
in the proof of Lemma 14.36(a). Call δ0 ∈ L2(X, μ) the map δ0(0) = 1, δ0(φ) = 0
for φ �= 0. For a = ∑

φ∈F⊂X aφW (φ) and ψ ∈ X we have

(aδ0)(ψ) =
⎛

⎝
∑

φ∈F⊂X

aφW (φ)δ0

⎞

⎠ (ψ) =
∑

φ∈F⊂X

aφe
iσ(φ,ψ)/2δ0(φ + ψ)

= a−ψe
iσ(−ψ,ψ)/2 = a−ψ .

Consequently

(δ0|aδ0)L2(X,μ) =
∑

ψ∈X
δ0(ψ)(aδ0)(ψ) = (aδ0)(0) = a0 .

In addition, ||δ0|| = 1, so

||P(a)||c = ||a0W (0)||c = |a0| = |(δ0|aδ0)L2 | ≤ ||a||op ≤ ||a||c ,

proving P extends to a bounded operator on A.
Take now a ∈ I ⊂ A and fix ε > 0. Write

a = a0W (0) +
n∑

j=1

a jW (φ j ) + r,

where the φ j are all distinct and ||r ||c < ε. For ψ ∈ X we have

I 	 W (ψ)aW (−ψ) = a0W (0) +
n∑

j=1

a j e
−iσ(ψ,φ j )/2W (φ j ) + r(ψ) ,

since
||r(φ)||c = ||W (ψ)rW (−ψ)||c ≤ ||r ||c < ε .
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Choosing ψ1 and ψ2 so that e−iσ(ψ1,φn) = −e−iσ(ψ2,φn), then adding two elements

a0W (0) +
n∑

j=1

a j e
−iσ(ψ1,φ j )/2W (φ j ) + r(ψ1) ∈ I

and

a0W (0) +
n∑

j=1

a j e
−iσ(ψ2,φ j )/2W (φ j ) + r(ψ2) ∈ I

gives

a0W (0) +
n−1∑

j=1

a′
jW (φ j ) + r1 ∈ I ,

where ||r1||c = 1
2 ||r(ψ1) + r(ψ2)||c < (ε + ε)/2 = ε. We can repeat the argument,

and eventually obtain, for some rn with ||rn||c < ε:

a0W (0) + rn ∈ I .

As ε > 0 is arbitrary and I closed, we conclude P(a) = a0W (0) ∈ I0, so a0 = 0.
With ψ ∈ X and a = ∑

φ aφW (φ) ∈ I arbitrary, we similarly have W (ψ)a ∈ I ,
whence P(W (ψ)a) = 0. This means a−ψ = 0 for any ψ ∈ X, so a = 0. Therefore
I = {0}, ending the proof. �

Now to the key theorem on Weyl C∗-algebras of a given symplectic space.

Theorem 14.38 Let (X, σ ) be a non-trivial weakly non-degenerate real symplectic
space, and consider a Weyl ∗-algebra W (X, σ ) associated to (X, σ ).
(a) There exist a unique norm on W (X, σ ) satisfying the C∗ property:

||a∗a|| = ||a||2 for any a ∈ W (X, σ ).

(b) Let CW (X, σ ) be the C∗-algebra completion ofW (X, σ ) for the C∗ norm of (a).
IfW ′(X, σ ) is another Weyl ∗-algebra associated to the same space (X, σ ) and || ||′
the unique C∗ norm, call CW ′(X, σ ) the corresponding C∗-algebra with unit.

Then there is a unique isometric ∗-isomorphism γ : CW (X, σ ) → CW ′(X, σ )

such that:
γ (W (ψ)) = W ′(ψ) for any ψ ∈ X,

where W (ψ), W ′(ψ) are generators of the Weyl ∗-algebras W (X, σ ), W ′(X, σ ).

Proof (a) By Theorem 11.48(c) it is known that two Weyl ∗-algebras W (X, σ ),
W ′(X, σ )on the same symplectic space are ∗-isomorphic under someα : W (X, σ ) →
W ′(X, σ ) that is totally determined by α(W (ψ)) = W ′(ψ),ψ ∈ X. EquipW (X, σ ),
W ′(X, σ )withC∗ norms || ||, || ||′. Then ||a||1 = ||α(a)||′ is aC∗ normonW (X, σ ),

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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other than || || in general. By definition of || ||c we have ||α(a)||′ ≤ ||a||c, so α

extends to a ∗-homomorphism of C∗-algebras:

α̃ : W (X, σ )|| ||c → W (X′, σ ′)|| ||′ .

The kernel of α̃ is a closed ∗-invariant two-sided ideal, hence trivial by the pre-
vious lemma. In conclusion α̃ is one-to-one and an isometry by Theorem 8.22(a).
Suppose nowW (X, σ ) = W ′(X, σ ), so || || = || ||′ too. Then α has to be the iden-
tity, extending to the identity α̃, and also isometric by the above argument. So,
|| ||c = || ||′ = || || is the only C∗ norm on W (X, σ ).
(b) We have to prove that the ∗-isomorphism α : W (X, σ ) → W ′(X, σ ), deter-
mined by α(W (ψ)) = W ′(ψ), ψ ∈ X, extends to a ∗-isomorphism between the
C∗-algebras CW (X, σ ) and CW ′(X, σ ). The same argument used above (now
we do know || || = || ||c) shows that α extends to an injective ∗-homomorphism
γ : CW (X, σ ) → CW ′(X, σ ). On the other hand we can swap W (X, σ ) and
W ′(X, σ ), and extend α′ : W ′(X, σ ) → W (X, σ ), determined by α′(W ′(ψ)) =
W (ψ), ψ ∈ X, to γ ′ : CW ′(X, σ ) → CW (X, σ ). By construction α′α = idW (X,σ ),
αα′ = idW ′(X,σ ). These relations continue to hold, by continuity, when extended
to γ ′γ = idCW (X,σ ), γ γ ′ = idCW ′(X,σ ). Therefore γ is onto, as well, and thus a ∗-
isomorphism. �

14.2.2 The Weyl C∗-Algebra CW (X, σ )

By keeping Theorem 14.38 into account, we can define Weyl C∗-algebras.

Definition 14.39 Let X be a non-trivial real vector space equipped with a weakly
non-degenerate symplectic form σ : X × X → R. TheWeylC∗-algebraCW (X, σ )

associated to (X, σ ) is aC∗-algebra with unit generated by non-zero elementsW (ψ),
ψ ∈ X, satisfying the Weyl relations:

W (ψ)W (ψ ′) = e− i
2 σ(ψ,ψ ′)W (ψ + ψ ′) , W (ψ)∗ = W (−ψ) , ψ,ψ ∈ X .

This notion is well defined, and as consequence of Theorem 14.38 we obtain the
following result. It shows that the Weyl C∗-algebra is unique up to ∗-isomorphisms.

Theorem 14.40 Let (X, σ ) be a non-trivial weakly non-degenerate real symplectic
space, CW (X, σ ) a Weyl C∗-algebra associated to it.
(a) If CW ′(X, σ ) is a second Weyl C∗-algebra associated to (X, σ ), there exists a
unique (isometric) ∗-isomorphism γ : CW (X, σ ) → CW ′(X, σ ) such that

γ (W (ψ)) = W ′(ψ) for any ψ ∈ X,

http://dx.doi.org/10.1007/978-3-319-70706-8_8
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where W (ψ), W ′(ψ) generate the Weyl ∗-algebrasW (X, σ ),W ′(X, σ ) respectively.
(b)CW (X, σ ) is simple: there are no non-trivial closed, ∗-invariant two-sided ideals.
(c) If CW (X′, σ ′) is the Weyl C∗-algebra associated to the weakly non-degenerate
symplectic space (X′, σ ′) and f : X → X′ a symplectic linear map, there is a unique
injective and isometric ∗-homomorphism γ f : CW (X, σ ) → CW (X′, σ ′) such that:

γ f (W (ψ)) = W ′( f (ψ)) for any ψ ∈ X.

Furthermore, γ f (CW (X, σ )) is a unital C∗-subalgebra of CW (X′, σ ′).

Proof Items (a) and (b) were proven with Theorem 14.38. Let us see to (c). By The-
orem 11.48(f) there is one injective ∗-homomorphism α f : W (X, σ ) → W (X′, σ ′)
such that α f (W (ψ)) = W ′( f (ψ)), ψ ∈ X. The C∗ norm || ||′ on CW (X′, σ ′)
induces aC∗ norm onW (X, σ ), ||a|| = ||α f (a)||′. By uniqueness of theC∗ norm on
a Weyl ∗-algebra, the latter coincides with the original norm of CW (X, σ ). Hence
α f is isometric and continuous, and extends continuously to an isometric (so injec-
tive) ∗-homomorphism γ f : CW (X, σ ) → CW (X′, σ ′). That γ f (CW (X, σ )) is a
C∗-subalgebra with unit in CW (X′, σ ′) follows from Theorem 8.22(b). �

Remark 14.41 If μ : X × X → R is a real inner product fulfilling

1

4
|σ(ψ, φ)|2 ≤ μ(ψ,ψ)μ(φ, φ) , for any ψ, φ ∈ X,

it can be proved there exists a unique algebraic state ωμ on CW (X, σ ) such that:

ωμ(W (ψ)) = e− 1
2 μ(ψ,ψ) .

States of this type are called Gaussian or quasi-free, and play a big role in physical
theories. The GNS representations of a quasi-free state generates Hilbert spaces with
totally symmetric Fock structure (bosonic Fock spaces). �

Example 14.42 TakeMinkowski’s spacetime,with coordinates (t, x) ∈ R × R
3, and

consider on it the Klein-Gordon equation:

− 1

c2
∂2φ

∂t2
+ �xφ − m2c2

�2
φ = 0 ,

where c is the speed of light and m > 0 the mass of the particles associated to the
bosonic field φ. Indicate with X the vector space of real smooth solutions φ such
that R

3 	 x 
→ φ(t, x) have compact support for every t ∈ R. This space admits a
weakly non-degenerate symplectic form:

σ(φ, φ′) :=
∫

R3

(
φ(t, x)

∂

∂t
φ′(t, x) − φ′(t, x)

∂

∂t
φ(t, x)

)
dx .

http://dx.doi.org/10.1007/978-3-319-70706-8_11
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906 14 Introduction to the Algebraic Formulation of Quantum Theories

For given solutions X, one can prove that the symplectic form does not depend
on the choice of t ∈ R by the nature of the Klein-Gordon equation itself. The C∗-
algebra CW (X, σ ) is the algebra of observables of the Klein-Gordon quantum field
φ, and can be taken as the starting point for the procedure of “second quantisa-
tion” of bosonic fields. In this case an algebraic state of paramount importance is
the so-called Minkowski vacuum, i.e. the Gaussian state (see Remark 14.41) deter-
mined by a special μ that takes spatial Fourier transforms of solutions at time t = 0.
This particular state represents the absence of particles, and is invariant under the
Poincaré group. In the GNS representation of the state, the Weyl generators have the
form πωμ

(W (φ)) = ei�(φ). The self-adjoint operator �(φ) is called operator of the
field of second quantisation. There exists a well-known generalisation of all these
notions to Quantum Field Theory in curved spacetime (see [Wal94, KhMo15] for an
introductory review). �

14.3 Introduction to Quantum Symmetries Within the
Algebraic Formulation

In this section we briefly discuss how quantum symmetries are dealt with in the
algebraic formulation [Haa96, Str05b]. After recalling the basic notions, we will
prove two theorems about the (anti-)unitary representation of symmetries on the
GNS space of an invariant algebraic state. The strategy allows to describe precisely, in
mathematical terms, the concept known as the spontaneous breaking of the symmetry.

14.3.1 The Algebraic Formulation’s Viewpoint on Quantum
Symmetries

Consider a quantum system S described by the unital C∗-algebra AS of observables.
Said better, the observables are the self-adjoint elements ofAS . A quantum symmetry
α should be seen either as a ∗-automorphism α : AS → AS , i.e. as a bijective ∗-
homomorphism (hence isometric), or as a ∗-anti-automorphism.

Definition 14.43 If A is a C∗-algebra with unit I, a ∗-anti-automorphism is a
bijective, antilinear isometry α : A → A such that α(I) = I, α(a∗) = α(a)∗ and
α(ab) = α(a)α(b), for any a, b ∈ A.

The above definition of algebraic symmetry has a “psychological explanation” based
on the notion of quantum symmetry when the theory is formulated on a Hilbert space
(and recalling the theorems of Wigner and Kadison). Fix a GNS triple (Hω, πω,	ω),
suppose the GNS representation πω : AS → B(H) is injective (always the case if
AS is simple, as we said in Sect. 14.1.6), and represent the symmetry on Hω by the
operator U , which is unitary or anti-unitary. Then we can set
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α(a) := π−1
ω

(
γ ∗−1(πω(a))

)
, a ∈ AS,

where, mimicking the previous section’s definition, the action γ of the symmetry U
on observables is the inverse dual action (12.22)

γ ∗−1(A) := U AU−1 .

The map α is well defined, and gives a ∗-automorphism or ∗-anti-automorphism
provided U ·U−1 maps observables (seen as operators) to observables, as is only
natural to suppose. The reason for preferring the inverse dual action to the dual action
(12.21) will be clear when we pass to representations of groups of symmetries.

Here is the formal definition.

Definition 14.44 Let S be a physical system described by the unital C∗-algebra of
observables AS . An (algebraic) quantum symmetry of S is a ∗-automorphism or a
∗-anti-automorphism α : As → As .

This naturally begs a question: given a symmetry α and an algebraic state ω, under
which assumptions is α representable by a unitary, or anti-unitary, operator on the
Hilbert space Hω of the GNS representation of ω? The next theorem is a big step
forward in this direction.

Theorem 14.45 Let α be an algebraic quantum symmetry of system S, described
by the unital C∗-algebra AS of observables. Suppose ω is an α-invariant algebraic
state on AS:

ω(α(a)) = ω(a) for a ∈ AS with a = a∗. (14.24)

If (Hω, πω,	ω) is the GNS triple ofω, there exists only one operatorUα : Hω → Hω,
unitary or anti-unitary according to whether α is linear or antilinear, such that:

Uα	ω = 	ω and Uαπω(a)U−1
α = πω(α(a)) , a ∈ AS. (14.25)

Remark 14.46 Since any a ∈ AS can be written as a = a1 + ia∗
2 with a1, a2 self-

adjoint, and ω(a∗) = ω(a) for any state ω (straightforward from the GNS theo-
rem), ω being α-invariant is the same as imposing ω(α(a)) = ω(a) if α is linear, or
ω(α(a)) = ω(a), if α is antilinear, for any a ∈ AS .

Proof of theorem 14.45. The idea is to define Uα first on the dense space π(AS)	ω

by
Uπω(a)	ω := πω(α(a))	ω , (14.26)

and then extend it continuously toHω, interpreting the result asUα . The definition of
U is unambiguous if πω(a)	ω = πω(a′)	ω implies πω(α(a))	ω = πω(α(a′))	ω,
i.e. if πω(b)	ω = 0 implies πω(α(b))	ω = 0. But this is true by the GNS theorem
and the invariance of ω:

||πω(α(b))	ω||2 = (πω(α(b))	ω|πω(α(b))	ω)

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_12
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= (	ω|πω(α(b∗))πω(α(b))	ω)

= (	ω|πω(α(b∗b))	ω) = ω(α(b∗b)) = ω(b∗b) = (	ω|πω(b∗b)	ω)

= ||πω(b)	ω||2 .

By construction U , as in (14.26), is linear or antilinear depending on how α is.
Moreover, it is isometric/anti-isometric, if α is a ∗-isomorphism/anti-isomorphism
respectively. Hence it is continuous, for above computations show that

||Uπω(b)	ω||2 = ||πω(b)	ω||2 .

We extend U by continuity to Hω, since π(AS)	ω is dense in H, and obtain a
linear/antilinear operator Uα : Hω → Hω preserving the norms. Our Uα is onto, as
inverse of the analogous uniquely-defined extension of

U−1
α πω(a)	ω = πω(α−1(a))	ω . (14.27)

ThereforeUα : Hω → Hω iswell defined, unitary/anti-unitary ifα is linear/antilinear,
and (14.25) are true. The first condition is trivially true if we set b = I in (14.26). As
for the second one, put a = bc in (14.27):

Uαπω(b)πω(c)	ω = πω(α(b))πω(α(c))	ω .

Using (14.26):

Uαπω(b)U−1
α πω(α(c))	ω = πω(α(b))πω(α(c))	ω .

That is to say, if � ∈ πω(α(AS))	ω = πω(AS)	ω:

Uαπω(b)U−1
α � = πω(α(b))U−1

α � .

Since πω(AS)	ω is dense in Hω, the second identity in (14.25) holds. Uniqueness
is patent by construction, because if U ′ satisfies (14.25) (U ′ replacing Uα) it must
satisfy (14.27) as well (U ′ replacing Uα). This fact determines it completely. �

Remark 14.47 (1)A system S may admit an algebraic symmetry α that is not repre-
sentable unitarily (or anti-unitarily) on the Hilbert space of the theory (e.g., a GNS
representation of a reference algebraic state ω). If so, the symmetry α is said to
have been broken spontaneously by the representation employed. The phenom-
enon of spontaneous symmetry breaking is hugely important in particle physics
and statistical mechanics [Str05b].
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(2) An alternate definition for a ∗-anti-automorphism [BrRo02, Ara09] is a linear
mapα : A → A such thatα(ab) = α(b)α(a) for every a, b ∈ A.With this definition,
if ω is fixed under the action of α, the corresponding part of Theorem 14.45 holds
anyway, with the same hypothesis, and this change: there is an anti-unitary operator
Uα : Hω → Hω such that

Uα	ω = 	ω and Uαπω(a∗)U−1
α = πω(α(a)) , a ∈ AS, (14.28)

wherewe stress the presence ofa∗ in place ofa in the second identitywhen comparing
to (14.25). The proof is evident if we observe that α′(a) := α(a)∗, for a ranging inA,
defines a ∗-automorphism in accordance with Definition 14.43, and Theorem 14.45
is valid if α leaves ω invariant. This alternative but essentially equivalent definition
of ∗-anti-automorphism can be exploited when one deals with real ∗-algebras or other
algebraic structures defined over the field of real numbers. �

14.3.2 (Topological) Symmetry Groups in the Algebraic
Formalism

We want to show, concisely, how Theorem 14.45, proven in Sect. 14.3.1 in the alge-
braic formalism, generalises naturally to the situation where the algebraic symmetry
α is replaced by an algebraic symmetry group.

So take a quantum system S described, in the algebraic formalism, by the unital
C∗-algebra AS , whose self-adjoint elements are the system’s observables. Suppose
there is a representationα : G 	 g 
→ αg of the groupG in terms of ∗-automorphisms
αg of AS . If ω is an invariant algebraic state, Theorem 14.45 guarantees every αg

is representable by a unitary operator Uαg on the Hilbert space Hω of the GNS
representation of ω. We will show that this correspondence produces automatically
a unitary representation of G, without the need to redefine the phases of the unitary
mapsUg . This representation is also strongly continuous under a certain hypothesis.

Theorem 14.48 Let S be a quantum system described, in the algebraic formalism,
by the unital C∗-algebra AS, and let G be a group with a representation

α : G 	 g 
→ αg

by ∗-automorphisms αg of AS. Suppose ω is a G-invariant algebraic state on S
represented by α:

ω(αg(a)) = ω(a) for any g ∈ G, a ∈ AS wi th a = a∗. (14.29)

(a) If Uαg : Hω → Hω is the unitary operator associated to the ∗-automorphism αg

by Theorem 14.45 (as the unique unitary extension of the operator in (14.26) with
α = αg), for any g ∈ G the map
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G 	 g 
→ Uαg (14.30)

is a unitary representation of G on Hω.
(b) If G is a topological group, G 	 g 
→ ω(a∗αg(a)) is continuous for any given
a ∈ AS if and only if the representation (14.30) is strongly continuous.

Proof Consider the operators Uαg defined by Theorem 14.45. By assumption, since
Uαh	ω = 	ω so 	ω = U−1

αh
	ω, we have:

UαgUαhπω(a)	ω = UαgUαhπω(a)U−1
αh

	ω = Uαgπω(αh(a))	ω

= Uαgπω(αh(a))U−1
αg

	ω = πω(αg(αh(a)))	ω = πω((αg ◦ αh)(a))	ω =

= πω(αg·h(a))	ω = Uαg·hπω(a)U−1
αg·h	ω = Uαg·hπω(a)	ω .

As πω(AS)	ω is dense in HS , then UαgUαh = Uαgh . Similarly we can prove U−1
αg

=
Uαg−1 and Uαe = I . In other terms (14.30) is a unitary representation of G.

Now assume G is a topological group and G 	 g 
→ ω(a∗αg(a)) is continuous
for every a ∈ AS . By the GNS theorem, and the fact that Uαg	ω = 	ω, this implies
G 	 g 
→ ω(a∗αg(a)) = (πω(a)	ω|Uαgπω(a)	ω) is a continuous function. But a ∈
AS is generic, so we have proved that for every � in the dense space πω(AS)	ω,
G 	 g 
→ (�|Uαg�) is continuous. Using that Uαg is unitary, it is easy to see that,
consequently:

||Uαg� −Uαg′ �||2 = ||Uα
g·g′−1

� − �||2 → 0

as g → g′, for any � in the dense subspace πω(AS)	ω. Therefore G 	 g 
→ Uαg is
strongly continuous on the dense space πω(AS)	ω. This generalises to the generic
vector	 ∈ HS as follows. For every ε > 0 we can find� ∈ πω(AS)	ω so that ||	 −
�|| < 2ε/3. For such �, there is a neighbourhood Ig′ of g′ in G such that ||Uαg� −
Uαg′ �|| < ε/3 if g ∈ Ig′ . Hence for g′ ∈ G and any ε > 0 there is a neighbourhood
Ig′ of g′ such that:

||Uαg	 −Uαg′ 	|| ≤ ||Uαg	 −Uαg�|| + ||Uαg� −Uαg′ �|| + ||Uαg′ � −Uαg′ 	||

= ||	 − �|| + ||Uαg� −Uαg′ �|| + ||� − 	|| < ε

for g ∈ Ig′ . To conclude, observe that if G 	 g 
→ Uαg is strongly continuous, then
G 	 g 
→ ω(a∗αg(a)) = (πω(a)	ω|Uαgπω(a)	ω) is continuous for every a ∈ AS .
This ends the proof. �

Remark 14.49 (1) We could also decide to make the algebraic symmetry α in The-
orem 14.45 act in the GNS representation by means of the dual action (12.21) of
Uα:

πω(α(a)) = U−1
α πω(a)Uα ,

http://dx.doi.org/10.1007/978-3-319-70706-8_12
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simply redefining asU−1
α the previousUα . With this choice, Theorem 14.48 remains

valid provided we assume that the representation G 	 g 
→ αg of ∗-automorphisms
of A is a right representation (Sect. 12.2.2) instead of a standard left representation:
αe = id , αg−1 = α−1

g , but

αg ◦ αh = αh·g g, h ∈ G .

In the algebraic formulation, where the focus is more on observables than on states,
one normally adopts the viewpoint based on inverse dual actions to deal with stan-
dard representations in terms of automorphisms instead of the more exotic right
representations.

This happens especially for the quantum field operators introduced in Example
14.42 (e.g., see [KhMo15] Proposition 5.1.17 and Sect. 5.2.7):

αg(W (φ)) = W (φ ◦ g−1)

where g ∈ G, G is the isometry group (Poincaré group) of Minkowski spacetime
M and W (φ) is the Weyl element associated to the solution φ of the Klein–Gordon
equation. In the GNS representation of an isometry-invariant state ωM , the Gaussian
Poincaré vacuum, we therefore have

πωM (W (φ ◦ g−1)) = πωM (αg(W (φ))) = UgπωM (W (φ))U−1
g . (14.31)

Passing to the exponential descriptionπωM (W (φ)) = ei�(φ) in theGNSHilbert space
of ωM , we easily obtain

�(φ ◦ g−1) = Ug�(φ)U−1
g .

Within this formalism, Heisenberg’s evolution is nothing but the inverse dual action
on observables of the time displacement symmetry (Remark 13.1(4)) contained inG.

(2) In caseG is the topological group R, right and standard representations coincide.
If {αt }t∈R satisfies part (b) for the invariant state ω, Stone’s theorem warrants that the
one-parameter unitary group {Ut }t∈R representing R (πω(αt (a)) = Utπω(a)U−1

t )
admits a self-adjoint generator H : D(H) → Hω defined on the dense domain
D(H) ⊂ Hω, for whichUt = eit H . Then wemay think of {αt }t∈R as a one-parameter
group of ∗-automorphisms that describes the time evolution of the observables of the
system with the parameter t as time. This is the algebraic correspondent of Heisen-
berg’s time evolution of observables, namely, the algebraic analogue of the inverse
dual action of the time displacement symmetry R 	 t 
→ e+i t H acting on states, as
remarked above.

By Stone’s theorem, the first condition in (14.25) implies 	ω ∈ D(H) and
H	ω = 0, so 0 ∈ σp(H). If σ(H) ⊂ [0,+∞) (and sometimes one further requires
dim(Ker(H)) = 1), ω is called a ground state for the time evolution {αt }t∈R.

http://dx.doi.org/10.1007/978-3-319-70706-8_12
http://dx.doi.org/10.1007/978-3-319-70706-8_13
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(3) One may try to prove an analogous theorem for representations G 	 g 
→ αg ,
where each αg is either a ∗-automorphism or a ∗-anti-automorphism. We shall not
address this issue here. We only observe that if every element g ∈ G can be written
as product of squares g = g21 · · · g2n , as happens forR and connected Lie groups, then
every αg must be linear since αg = α2

g1 ◦ · · · ◦ α2
gn is linear, no matter whether every

αgk is linear or antilinear. So, in a representation of a Lie group,
∗-anti-automorphisms

(and the corresponding anti-unitary operators) may show up only if the group is not
connected. �

Condition (b) inTheorem14.48 seems non-physical, as it does not concern physically
accessible quantities in an evident way. A continuity condition should be formulated
in terms of physical quantities like expectation values. As a matter of fact it is
possible to reformulate the theorem and replace condition (b) by a more meaningful
request, physically. To this end we note that given a stateω on a unitalC∗-algebraAS

representing a physical quantum system, and having chosen b ∈ AS withω(b∗b) �= 0
(which is equivalent to πω(b)	ω �= 0), the functional

AS 	 a 
→ ωb(a) := ω(b∗ab)
ω(b∗b)

(14.32)

is still a state. Its meaning is clearer when we pass to the GNS representation of ω

where, by construction, we immediately find

ωb(a) = (πω(b)	ω|πω(a)πω(b)	ω)

||πω(b)	ω||2 .

We see in this way that ωb is a state in the folium of ω. The finite span Dω of the
vectors associated to these states is the one used to construct the Hilbert Hω space of
the GNS Theorem 14.4 as Hω = Dω.

If we keep all other hypotheses in Theorem14.48, condition (b) can be replaced
by the equivalent demand that the expectation values, with respect to those states, of
every observable a = a∗ ∈ AS subjected to the action αg of the group are continuous
functions of g ∈ G. We have the following physically-enhanced version of Theorem
14.48.

Proposition 14.50 Let S be a quantum systemdescribed, in the algebraic formalism,
by the unital C∗-algebra AS, and letG be a topological group with a representation
α : G 	 g 
→ αg by ∗-automorphismsαg ofAS. Supposeω is aG-invariant algebraic
state on S represented by α as in (14.29), and that U : G 	 g 
→ Uαg is the unitary
representation of G as in (14.30).

The following facts are equivalent.
(a) U is strongly continuous.
(b) The map

G 	 g 
→ ω(a∗αg(a)) ∈ C

is continuous for any given a ∈ AS.
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(c) The map
G 	 g 
→ ωb(αg(a)) ∈ C

is continuous for any given a = a∗ ∈ AS and any b ∈ AS with ω(b∗b) �= 0 as in
(14.32) inducing the state ωb.

Proof We already know that (a) and (b) are equivalent. Moreover, (b) implies (c)
because

ωb(αg(a)) = (πω(b)	ω|Ugπω(a)U−1
g πω(b)	ω)

||πω(b)	ω||2 (14.33)

and G 	 g 
→ Ug is strongly continuous. Suppose (c) holds so that all maps (14.32)
are continuous. From (14.33), we conclude, for every vector � in the dense linear
space Dω spanned by all πω(b)	ω, that the function

G 	 g 
→ (�|Uαgπω(a)U−1
αg

�) (14.34)

is continuous for every a = a∗ ∈ AS . Observing in particular that πω(a) = πω(a)∗,
it is easy to prove that the form

〈�,�′〉a,g := (�|Uαgπω(a)U−1
g �′)

is linear in the right entry, antilinear in the left one and 〈�,�′〉a,g = 〈�′,�〉a,g . By
polarisation, we conclude that also the map

G 	 g 
→ (�|Uαgπω(a)U−1
αg

�′)

is continuous, if �,�′ ∈ Dω. Taking �′ = 	ω (corresponding to b = I), since
Uαg	ω = 	ω, we have that

G 	 g 
→ (�|Uαgπω(a)	ω) (14.35)

is continuous.By linearity the self-adjoint elementa canbe replacedwith any element
of AS . Since � is a finite linear combination of vectors πω(a)	ω with a ∈ AS , we
can replace πω(a)	ω in (14.35) with � itself, and preserve continuity. Hence

G 	 g 
→ (�|Uαg�)

is continuous for every � ranging in a dense space. Here the argument used in the
proof of Theorem 14.48 also proves that G 	 g 
→ Uαg is continuous, and therefore
(a) is true. �



Appendix A
Order Relations and Groups

A.1 Order Relations, Posets, Zorn’s Lemma

A relation≥ on an arbitrary set X is called a partial order (relation) if it is reflexive
(x ≥ x , ∀ x ∈ X), transitive (x ≥ y ≥ z⇒ x ≥ z, ∀ x, y, z ∈ X) and skew-symmetric
(x ≥ y ≥ x ⇒ x = y, ∀ x, y ∈ X). The pair (X,≥) is then said a partially ordered
set (shortened to poset).

An equivalent writing of a ≥ b is b ≤ a.
The partial order ≥ is a total order if, further, either x ≥ y or y ≥ x for any

x, y ∈ X.
If (X,≥) is a partially ordered set:

(i) Y ⊂ X is upper bounded (resp. lower bounded) if it admits an upper bound
(lower bound), i.e. an element x ∈ X such that x ≥ y (y ≥ x) for any y ∈ Y ;
(ii) an element x0 ∈ X for which there is no element x �= x0 in X such that x ≥ x0 is
maximal in X. (Note that for us a maximal element in X may not be an upper bound
in X).
If (X,≥) is a poset, a subset Y ⊂ X is (totally) ordered if the relation ≥, restricted
to Y × Y , is a total order.

Recall that Zorn’s lemma is an equivalent statement to the Axiom of Choice (or
to the well-ordering axiom).

Theorem A.1 (“Zorn’s lemma”) If any ordered subset in a poset (X,≥) is upper
bounded, X admits a maximal element.

Among the various notions related to posets (X,≥), those of supremum and infimum
are useful:
(i) a is called a least upper bound (or supremum, or just sup) of the set A ⊂ X,
written a = sup A, if a is an upper bound of A and any other upper bound a′ of A
satisfies a ≤ a′;
(ii) a is called a greatest lower bound, (or infimum or inf) of A ⊂ X, written
a = inf A, if a is a lower bound for A and any other lower bound a′ satisfies a′ ≤ a;
It is immediate to see that any subset A ⊂ X has at most one least upper bound and
one greatest lower bound.

© Springer International Publishing AG 2017
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A.2 Round-up on Group Theory

A group is an algebraic structure (G, ◦) consisting in a set G and an operation
◦ : G × G → G (the composition law, often called product) satisfying three
properties:

(1) ◦ is associative

g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 , for any g1, g2, g3 ∈ G ;

(2) there exists an element e ∈ G, variously called identity, neutral element or unit,
such that

e ◦ g = g ◦ e = g , for any g ∈ G ;

(3) each element g ∈ G admits an inverse, i.e.

for any g ∈ G there exists g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e .

The identity and the inverse to a given element are easily seen to be unique.
A group (G, ◦) is commutative or Abelian if g ◦ g′ = g′ ◦ g for any g, g′ ∈ G;
otherwise it is noncommutative or non-Abelian.

A subsetG′ ⊂ G in a group is a subgroup if it becomes a group with the product
of G restricted to G′ × G′. A subgroup N in a group G is normal if it is invariant
under conjugation, i.e. for any n ∈ N and g ∈ G the conjugate element g ◦ n ◦ g−1
belongs to N . A group is said to be simple if it does not admit normal subgroups
different from {e} and itself.

If N is a normal subgroup inG, thenG/N denotes the quotient, i.e. the collection
of cosets in G defined by the equivalence relation g ∼ g′ ⇔ g = ng′ for some
n ∈ N . It is easy to prove that G/N inherits a natural group structure from G.

The centre Z of G is the commutative subgroup of G made by elements z that
commute with every group element: z ∈ Z ⇔ z ◦ g = g ◦ z for any g ∈ G.

If (G1, ◦1) and (G2, ◦2) are two groups, a (group) homomorphism from G1 to
G2 is a map h : G1 → G2 that preserves the group structure, i.e.:

h(g ◦1 g′) = h(g) ◦2 h(g′) for any g, g′ ∈ G1 .

Using obvious notation, it is clear that h(e1) = e2 and h(g−11) = (h(g))−12 for any
g ∈ G1.

The kernel Ker(h) ⊂ G of a homomorphism h : G→ G′ is the pre-image under
h of the identity e′ ofG′, i.e. the set of elements g such that h(g) = e′. Notice Ker(h)

is a normal subgroup. Clearly h is one-to-one if and only if its kernel contains the
identity of G only. Moreover, the image h(G) of a homomorphism h : G→ G′ is a
subgroup of G′ isomorphic to G/Ker(h).
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A group isomorphism is a bijective group homomorphism. An isomorphism
h : G → G is an automorphism of G. The set Aut (G) of automorphisms of G is
itself a group under the composition of maps.

If (G1, ◦1), (G2, ◦2) are groups, the direct product G1 ⊗G2 is a group with the
following structure. Its elements are the pairs (g1, g2) of the Cartesian product of
the sets G1, G2. The composition law is

(g1, g2) ◦ ( f1, f2) := (g1 ◦1 f1, g2 ◦2 f2) ∀ (g1, g2), ( f1, f2) ∈ G1 ×G2 .

The neutral element is obviously (e1, e2), where e1, e2 are the identities of G1, G2.
Moreover, G1 and G2 can be identified with normal subgroups of G1 ⊗G2.

The ensuing generalisation of the direct product plays a big role in physical ap-
plications. Let (G1, ◦1), (G2, ◦2) be groups and suppose that for any g1 ∈ G1 there
is a group isomorphism ψg1 : G2 → G2 such that:

(i) ψg1 ◦ ψg′1 = ψg1◦1g′1 ,
(ii) ψe1 = idG2 ,

where ◦ is the composition of functions and e1 the neutral element in G1. (Equiv-
alently, ψg ∈ Aut (G2) for any g ∈ G1, and the map G1 � g �→ ψg is
a group homomorphism G1 → Aut (G2).) We can endow the Cartesian prod-
uct G1 × G2 with a group structure simply by defining the composition law on
(g1, g2), ( f1, f2) ∈ G1 ×G2 as

(g1, g2) ◦ψ ( f1, f2) := (g1 ◦1 f1, g2 ◦2 ψg1( f2)) .

The operation is well defined, so (G1 ⊗ψ G2, ◦ψ) is a group called the semidirect
product ofG1 andG2 byψ . The order of the factors in the product is clearly relevant.

One can prove N is a normal subgroup of G⊗ψ N, and

ψg(n) = g ◦ψ n ◦ψ g−1 for any g ∈ G, n ∈ N.

There is also a converse of sorts. Consider a group (H, ◦), let G be a subgroup of H
and N a normal subgroup. Assume N ∩G = {e}, e being the identity of H. Suppose
also H = GN , meaning that any h ∈ H is the product h = gn of an element g ∈ G
and some n ∈ N . Then one can prove that the pair (g, n) is uniquely determined by
h, and H is isomorphic to the semidirect product G ⊗ψ N with

ψg(n) := g ◦ h ◦ g−1 for any g ∈ G, n ∈ N .

Now take a vector space V (real or complex). The group of bijective linear maps
f : V→ V with the usual composition law is indicated by GL(V), and is called the
(general) linear group of V.

If V := R
n orCn then GL(V) is denoted by GL(n,R) or GL(n,C), respectively.
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Let us define linear representations of a group. Take a group (G, ◦) and a vector
space V. A (linear, left) representation of G on V is a homomorphism ρ : G →
GL(V).

A representation ρ : G→ GL(V) is called:
(1) faithful if it is injective;
(2) free if the subgroup made of elements hv such that ρ(hv)v = v is trivial for any
v ∈ V \ {0}, i.e. it contains only the neutral element of G;
(3) transitive if, for any v, v′ ∈ V \ {0} there exists g ∈ G with v′ = ρ(g)v;
(4) irreducible if there exists no proper subspace S ⊂ V that is invariant under the
action of ρ(G), i.e. ρ(g)S ⊂ S for any g ∈ G.

In case V is a Hilbert or Banach space and ρ(G) are bounded operators on the
entire space V, the representation is said topologically irreducible if there are no
closed ρ(G)-invariant subspaces in V.



Appendix B
Elements of Differential Geometry

Let n,m = 1, 2, . . ., k = 0, 1, . . . be fixed integers andΩ ⊂ R
n an open, non-empty

set. A map f : Ω → R
m is of class Ck (or simply Ck), written f ∈ Ck(Ω;Rn), if

all partial derivatives of the components of f are continuous up to order k included.
Conventionally, Ck(Ω) := Ck(Ω;R).

A function f : Ω → R
m is (of class) C∞, or smooth, if it is Ck for any k =

0, 1, . . ., so one defines

C∞(Ω;Rn) :=
⋂

k=0,1,...
Ck(Ω;Rn) .

Again, C∞(Ω) := C∞(Ω;R). Eventually, f : Ω → R
m is Cω or real-analytic

if it is C∞ and it admits a Taylor expansion (in several real variables) at any point
p ∈ Ω , on some finite open ball around p contained in Ω . Usually, when the order
k of differentiability is not mentioned explicitly it means that k = ∞.

Notation B.1 In this section upper indices denote coordinates ofRn and components
of (contravariant) vectors. Hence the standard coordinates on Rn will be denoted by
x1, . . . , xn , instead of x1, . . . , xn . �

B.1 Smooth Manifolds, Product Manifolds, Smooth
Functions

The most general and powerful tool for describing the features of spacetime, the
three-dimensional physical space and the abstract space of physical systems in clas-
sical theories, is the notion of smooth manifold. In practice a smooth manifold is a
collection of objects, generally called points, that admits local coordinates identifying
points with n-tuples of Rn .

© Springer International Publishing AG 2017
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Definition B.2 Let n = 0, 1, 2, 3, . . . and k = 1, 2, . . . ,∞, ω be fixed. A Ck man-
ifold of dimension n is a set M , whose elements are called points, equipped with
the geometric structure defined below.
(1) M has a differentiable structure A = {(Ui , φi )}i∈I of class Ck , that is a
collection of pairs (Ui , φi ), called local charts, where Ui is a subset in M and φi a
map Ui → R

n (the local coordinate system or local frame) such that:
(i) ∪i∈IUi = M , every mapping φi is injective and φi (Ui ) ⊂ R

n is open (so M is
called an n-dimensional manifold, or just n-manifold);

(ii) local charts in A must be pairwise Ck-compatible. Two injective maps φ :
U → R

n , ψ : V → R
n withU, V ⊂ M are Ck-compatible if either U ∩ V = ∅, or

U ∩V �= ∅ and the maps φ ◦ψ−1 : ψ(U ∩V )→ φ(U ∩V ),ψ ◦φ−1 : φ(U ∩V )→
ψ(U ∩ V ) are both Ck ;

(iii)A is maximal: ifU ⊂ M is open and φ : U → R
n is compatible with every

local chart of A , then (U, φ) ∈ A .
(2) The topological requirements are:

(i) M is a second-countable Hausdorff space;
(ii)M is, byway ofA , locally homeomorphic toRn . In other terms, if (U, φ) ∈ A

then U is open and φ : U → φ(U ) is a homeomorphism.
A Cω manifold is more often called real-analytic manifold.

Remark B.3
(1) We include in the definition of manifold the case n = 0: R0 = {0} is the typical
0-dimensional manifold. Also N equipped with the topology induced by R is a 0-
dimensional manifold. Second-countability forces a 0-dimensional manifold to be a
finite or countable collection of discrete points, and the value of k becomes irrelevant.
(2)Every local chart (U, φ) enables us to assign n real numbers (x1p, . . . , x

n
p) = φ(p)

bijectively to every point p of U . The entries of the n-tuple are the coordinates of
p in the local chart (U, φ). Points in U are thus in one-to-one correspondence with
n-tuples of φ(U ) ⊂ R

n .
(3) If U ∩ V �= ∅, the compatibility of local charts (U, φ), (V, ψ) implies that the
Jacobianmatrix of φ◦ψ−1 is invertible and so has everywhere non-zero determinant.
Conversely, if φ ◦ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) is bijective, of class Ck , and with
non-vanishing Jacobian determinant onψ(U ∩V ), then alsoψ ◦φ−1 : φ(U ∩V )→
ψ(U ∩ V ) is Ck and the local charts are compatible. The proof can be found in the
renowned [CoFr98II].

Theorem B.4 (Implicit function theorem) Let D ⊂ R
n be open, non-empty, and

f : D → R
n a Ck function, for some k = 1, 2, . . . ,∞. If the Jacobian of f at

p ∈ D has non-zero determinant, there exist open neighbourhoods U ⊂ D of p and
V of f (p) such that: (i) f �U : U → V is bijective, (ii) the inverse f �−1U : V → U
is Ck.

(3) The topological requirements in (2)(i) (valid for the standard topology of Rn) are
technical and guarantee unique solutions to differential equations on M (necessary
in physics when the equations describe the evolution of physical systems) and the
existence of integrals on M . Condition (2)(ii) intuitively says that around any of its
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points M is undistinguishable from a continuous image of Rn . Standard counterex-
amples show that the Hausdorff property of Rn is not carried over to M by local
homeomorphisms, so it must be imposed explicitly.
(4) Let M be a second-countable Hausdorff space. A collection of local chartsA on
M satisfying (i) and (ii) in (1), but not necessarily (iii), plus (ii) in (2) is called a Ck

atlas on the n-manifold M . It is not hard to see that any atlas A on M is contained
in some maximal atlas. Two atlases on M such that every chart of one is compatible
with any chart of the other induce the same differentiable structure on M . Therefore
to assign a differentiable structure it suffices to prescribe a non-maximal atlas, one of
the many that determine it. The unique differentiable structure associated to a given
atlas is said to be induced by the atlas.
(5) If 1 ≤ k < ∞ there might be superfluous charts in the differentiable structure
(only a finite number!); by eliminating them we obtain a C∞ atlas. �

Examples B.5
1. The simplest examples of differentiable manifolds, of class C∞ and dimension
n, are non-empty open subsets of Rn (including R

n itself) with the standard differ-
entiable structure determined by the identity map (the inclusion, alone, defines an
atlas).
2. Consider the unit sphere S2 inR3 (with topology inherited fromR

3) centred at the
origin:

S
2 := {

(x1, x2, x3) ∈ R
3

∣∣ (x1)2 + (x2)2 + (x3)2 = 1
}

in canonical coordinates x1, x2, x3 of R3. It has dimension 2 and a smooth structure
induced by R

3 by defining an atlas with 6 local charts (S2(i)±, φ
(i)
± ) (i = 1, 2, 3) as

follows. Take the axis xi (i = 1, 2, 3) and the pair of open hemispheres S2(i)± with

‘south-to-north’ direction given by xi , and consider local charts φ
(i)
± : S2(i)± → R

2

that map p ∈ S
2
(i)± to its coordinates on the plane xi = 0. It can be proved (see

below) that S2 cannot be covered by a single (global) chart, in contrast to R3 (or any
open subspace). This shows that the class of smooth manifolds does not reduce to
open non-empty subsets of Rn , and hence is quite interesting. A similar example is
the unit circle in R2. �

GivenCk manifoldsM and N of respective dimensionsm, n, we can construct a third
Ck manifold of dimensionm+n over the topological product M×N . (The resulting
space will be Hausdorff and second-countable.) This is called product manifold of
M and N , and denoted simply by M × N . The structure described below is called
product structure. Given local charts (U, φ) on M and (V, ψ) on N it is immediate
to see

U × V � (p, q) �→ (φ(p), ψ(q)) =: φ ⊕ ψ(p, q) ∈ R
m+n (B.1)

is a local homeomorphism. If (U ′, φ′) and (V ′, ψ ′) are other charts, compatible with
the previous ones, the charts (U × V, φ ⊕ψ) and (U ′ × V ′, φ′ ⊕ψ ′) are obviously
compatible. As (U, φ) and (V, ψ) vary on M and N the charts (U×V, φ⊕ψ) define
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an atlas on M × N . The structure this atlas generates is, by definition, the product
structure.

Definition B.6 GivenCk manifoldsM , N of dimensionm, n, the product manifold
is the set M × N equipped the with product topology and the Ck structure induced
by the local charts (U × V, φ ⊕ ψ) in (B.1), when (U, φ), (V, ψ) vary on M , N .

Since a manifold is locally indistinguishable from R
n , the differentiable structure

allows to make sense of differentiable functions defined on a manifold other than Rn

or subsets. The idea is simple: reduce locally to the standard notion on Rn using the
local charts that cover the manifold.

Definition B.7 Let M, N be manifolds of dimensions m, n and class C p, Cq re-
spectively (p, q ≥ 1). A continuous map f : M → N is said Ck (0 ≤ k ≤ p, q,
possibly k = ∞ or ω) if ψ ◦ f ◦ φ−1 : Rm → R

n is a Ck map, for any choice of
local charts (U, φ) on N and (V, ψ) on M .

The collection of Ck functions from M to N , k = 0, 1, 2, . . . ,∞, ω is denoted
by Ck(M; N ); if N = R one just writes Ck(M).

A Ck diffeomorphism f : M → N is a bijective Ck map with Ck inverse.
If there is a Ck diffeomorphism f mapping M to N , the two manifolds are called
diffeomorphic (under f ).

Remark B.8
(1) Notice how we allowed for differentiable maps of class C0, which are simply
continuous maps (just as C0 diffeomorphisms are homeomorphisms). Every Ck dif-
feomorphism is clearly a homeomorphism, which explains why there cannot exist
any diffeomorphism between S2 and (a subset of) R2, for the former is compact, the
latter not. Consequently, the sphere S2 does not admit global charts.
(2) For f : M → N to be C p it is enough that ψ ◦ f ◦φ−1 is C p for any local charts
(U, φ), (V, ψ) in the given atlases, without having to check the condition for every
possible local chart on the manifolds. �

A useful notion is that of embedded submanifold. The space R
n is an embedded

submanifold in R
m if m > n. In the canonical coordinates x1, . . . , xm on R

m , Rn is
identified with the subspace given by equations xn+1 = · · · = xm = 0, while the first
n coordinates of Rm , x1, . . . , xn , are identified with the standard coordinates on Rn .
Now the idea is to replace Rn , Rm using local frames, and generalise to manifolds
N , M .

Definition B.9 LetM be aCk (k ≥ 1)manifold of dimensionm > n. An embedded
Ck submanifold of M of dimension n is an n-manifold N of class Ck such that
(a) N is a subset in M with induced topology;
(b) the differentiable structure di N is given by the atlas {(Ui , φi )}i∈I where:

(i) Ui = Vi ∩ N , φi = ψ�Vi∩N for a suitable local chart (Vi , φi ) on M ;
(ii) in the frame x1, . . . , xm associated to (Vi , φi ), the set Vi ∩ N is determined

by xn+1 = · · · = xm = 0, and the remaining coordinates x1, . . . , xn are the local
frame associated to φi .
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To finish we state an important result (see [doC92, Wes78] for example) to decide
whena subset in amanifold is an embedded submanifold.Theproof is straightforward
from Dini’s theorem [CoFr98II].

Theorem B.10 (On regular values) Let M be a Ck manifold of dimension m. Con-
sider the set

N := {p ∈ M | f j (p) = v j , j = 1, . . . , c}

determined by c(< m) constants v j and c functions f j : M → R of class Ck.
Suppose that around each point p ∈ N there exists a local chart (U, φ) on M such
that the Jacobian matrix ∂( f j ◦ φ−1)/∂xi |φ(p) ( j = 1, . . . , c, i = 1, . . . ,m) has
rank r . Then N is an embedded Ck submanifold in M of dimension n := m − c.

In particular, if the square c × c matrix

∂ f j ◦ φ−1

∂xk
, j = 1, . . . , c, k = m − c + 1,m − c + 2, . . . ,m

is non-singular at φ(p), p ∈ N, then the first n coordinates x1, . . . , xn define a
frame system around p in N.

B.2 Tangent and Cotangent Spaces. Covariant
and Contravariant Vector Fields

Let M be Ck manifold of dimension n (k ≥ 1). Consider the space Ck(M) as an
R-vector space under linear combinations

(a f + bg)(p) := a f (p)+ bg(p) , for any p ∈ M

where a, b ∈ R, f, g ∈ Ck(M). Given a point p ∈ M , a derivation at p is an
R-linear map L p : Ck(M)→ R satisfying the Leibniz rule:

L p( f g) = f (p)L p(g)+ g(p)L p( f ) , f, g ∈ Ck(M). (B.2)

A linear combination aL p + bL ′p of derivations at p (a, b ∈ R),

(aL p + bL ′p)( f ) := aL p( f )+ bL ′p( f ) , f, g ∈ Ck(M),

is still a derivation. Hence derivations at p form a vector space over R, which we
denoteD k

p. Every local chart (U, φ) withU � p automatically gives n derivations at
p, as follows. If x1, . . . , xn are coordinates associated to φ, define the kth derivation
to be

∂

∂xk

∣∣∣∣
p

: f �→ ∂ f ◦ φ−1

∂xk

∣∣∣∣
φ(p)

, f, g ∈ C1(M). (B.3)
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If 0 is the null derivation and c1, c2, . . . , cn ∈ R satisfy
∑n

k=1 ck
∂

∂xk

∣∣
p
= 0, we

choose a differentiable function coinciding with the coordinate map xl on an open
neighbourhood of p (whose closure is in U ) and vanishing outside. Then the n
derivations ∂

∂xk

∣∣
p
at p are linearly independent:

∑n
k=1 ck

∂
∂xk

∣∣
p
f = 0 implies cl =

0. Since we are free to choose l arbitrarily, every coefficient cr is zero for r =
1, 2, . . . , n. Hence the n derivations ∂

∂xk

∣∣
p
formabasis for an n-dimensional subspace

ofD k
p (actually if k = ∞ the subspace coincideswithD∞

p ). Changing chart to (V, ψ),
V � p, with frame y1, . . . , yn , the new derivations are related to the old ones by:

∂

∂yi

∣∣∣∣
p

=
n∑

k=1

∂xk

∂yi

∣∣∣∣
ψ(p)

∂

∂xk

∣∣∣∣
p

. (B.4)

The proof is direct from the definitions. Because the Jacobian ∂xk

∂yi

∣∣∣
ψ(p)

is invertible

by definition of chart, the subspace of D k
p spanned by the ∂

∂yi

∣∣∣
p
coincides with the

span of the ∂
∂xk

∣∣
p
. The subspace is thus intrinsically defined.

Definition B.11 Let M be an n-dimensional Ck manifold (k ≥ 1), and fix a point
p ∈ M .

The vector subspace of derivations at p ∈ M generated by the n derivations ∂
∂xk

∣∣
p
,

k = 1, 2, . . . , n, in any local coordinate system (U, φ)withU � p, is called tangent
space of M at p and is written TpM . The elements of the tangent space at p are the
tangent vectors at p to M . Tangent vectors are examples of contravariant vectors.

We recall that the space V ∗ of linear maps from a real vector space V to R is called
dual space to V . If the dimension of V is finite, so is the dimension of V ∗, for they
coincide. In particular, if {ei }i=1,...,n is a basis of V , the dual basis in V ∗ is the basis
{e∗ j } j=1,...,n defined via e∗ j (ei ) = δ

j
i , i, j = 1, . . . , n, by linearity. With f ∈ V ∗,

v ∈ V , one uses the notation 〈v, f 〉 := f (v).

Definition B.12 Let M be an n-dimensional Ck manifold (k ≥ 1), p ∈ M a given
point.

The dual space to TpM is called cotangent space of M at p, written T ∗p M . Points
of the cotangent space at p are called cotangent vectors at p or 1-forms at p, and
are instances of covariant vectors (covectors). For any basis ∂

∂xk

∣∣
p
of TpM , the n

elements of the dual basis are indicated by dxi |p. By definition

〈
∂

∂xk
|p, dxi |p

〉
= δik .

Let us move on to vector fields on a manifold M .
Suppose M is an n-dimensional Ck manifold (including k = ∞ and k = ω).

A contravariant Cr vector field, r = 0, 1, . . . , k, is a map assigning a vector
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v(p) ∈ TpM to any p ∈ M , so that for any local chart (U, φ) with coordinates
x1, . . . , xn where

v(q) =
n∑

i=1
vi (x1q , . . . , x

n
q )

∂

∂xi

∣∣∣∣
q

,

the n functions vi = vi (x1, . . . , xn) are Cr on φ(U ). Similarly, a covariant Cr

vector field, r = 0, 1, . . . , k is a map sending p ∈ M to a covector ω(p) ∈ T ∗p M ,
so that for any local chart (U, φ) with coordinates x1, . . . , xn where

ω(q) =
n∑

i=1
vi (x

1
q , . . . , x

n
q ) dx

i
∣∣
q

,

the n functions ωi = ωi (x1, . . . , xn) are Cr on φ(U ).

Remark B.13 Take v ∈ TpM and two local charts (U, φ), (V, ψ) with U ∩ V � p
and respective coordinates x1, . . . , xn , x ′1, . . . , x ′n . Then v = ∑n

i=1 vi
∂

∂xi

∣∣
p
=

∑n
j=1 v′

j ∂
∂x ′ j

∣∣
p
. Hence

∑n
i v

i ∂
∂xi

∣∣
p
= ∑n

j,i=1 v′
j ∂xi

∂x ′ j

∣∣∣
ψ(p)

∂
∂xi

∣∣
p
, so

∑n
i=1(

vi −∑n
j=1

∂xi

∂x ′ j

∣∣∣
ψ(p)

v′ j
)

∂
∂xi

∣∣
p
= 0. Since the derivations ∂

∂xi

∣∣
p
are linearly in-

dependent, we conclude that the components of a tangent vector in TpM transform,
under coordinate change, as

vi =
n∑

j=1

∂xi

∂x ′ j

∣∣∣∣
ψ(p)

v′ j , (B.5)

The same argument gives the formula for covariant vectors ω = ∑n
i=1 ωi dxi

∣∣
p =∑n

j=1 ω′ j dx ′ j
∣∣
p, namely

ωi =
n∑

j=1

∂x ′ j

∂xi

∣∣∣∣
ψ(p)

ω′ j . (B.6)

B.3 Differentials, Curves and Tangent Vectors

Let f : M → R be a Cr scalar field on the Ck manifold M of dimension n, and
assume k ≥ r > 1. The differential d f of f is the covariant vector field of class
Cr−1

d f |p =
n∑

i=1

∂ f

∂xi

∣∣∣∣
ψ(p)

dxi |p
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in any local chart (U, ψ).
Consider aCr curve inside theCk manifoldM (r = 0, 1, . . . , k), i.e. aCr function

γ : I → M where I ⊂ R is an open interval thought of as a submanifold in R.
Assume explicitly that r > 1. We can define the tangent vector to γ at p ∈ γ (I ) by

γ̇ (p) :=
n∑

i=1

dxi

dt

∣∣∣∣
tp

∂

∂xi

∣∣∣∣
p

,

where γ (tp) = p, in any local chart around p. The definition does not depend on the
chart. Had we defined

γ̇ ′(p) :=
n∑

j=1

dx ′ j

dt

∣∣∣∣
tp

∂

∂x ′ j

∣∣∣∣
p

in another frame system around p, using (B.5) would have given

γ̇ (p) = γ̇ ′(p) .

So we have this definition.

Definition B.14 A Cr curve, r = 0, 1, . . . , k, in the n-dimensional Ck manifold M
is a Cr map γ : I → M , where I ⊂ R is an open interval (embedded in R). When
r > 1, the tangent vector to γ at p = γ (tp), tp ∈ I , is the vector γ̇ (p) ∈ TpM
given by

γ̇ (p) :=
n∑

i=1

dxi

dt

∣∣∣∣
tp

∂

∂xi

∣∣∣∣
p

, (B.7)

in any local frame around p.

B.4 Pushforward and Pullback

Let M and N be manifolds of dimensionsm and n, and f : N → M a function (all at
leastC1). Given a point p ∈ N consider local charts (U, φ) around p in N and (V, ψ)

around f (p) in M . Indicate by (y1, . . . , yn) the coordinates on U , by (x1, . . . , xm)

those on V and introduce maps f k(y1, . . . , yn) = xk( f ◦ φ−1), k = 1, . . . ,m. Now
define:
(i) the pushforward d f p : TpN → T f (p)M , in coordinates:

d f p : TpN �
n∑

i=1
ui

∂

∂yi

∣∣∣∣
p

�→
m∑

j=1

(
n∑

i=1

∂ f j

∂yi

∣∣∣∣
φ(p)

ui
)

∂

∂x j

∣∣∣∣
p

; (B.8)

(ii) the pullback f ∗p : T ∗f (p)M → T ∗p N , in coordinates:
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f ∗p : T ∗f (p)M �
m∑

j=1
ω j dx

j | f (p) �→
n∑

i=1

⎛

⎝
m∑

j=1

∂ f j

∂yi

∣∣∣∣
φ(p)

ω j

⎞

⎠ dyi |p . (B.9)

It is not hard to see they do not depend on local frame systems. The pushforward is
also written f p∗ : TpN → T f (p)M .
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τ , 255
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tr A with A of trace class, 231
trE , 857
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w-∂α , 265
w- lim, 76
w∗- lim, 76
H(n), 655
D(Rn), 171
DG , 744
E (‘and’, logical conjunction), 309
F f , 172
Ft , 307
F−g, 172
G Gelfand transform, 416
Hn+1, 307
Jk , 772
L 1(X, μ), 25
L 2, 571
L p(X, μ), 55
Li , 571
LRS (HS), 599
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Pn , 858
S (Rn), 80, 171
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B(X), 307
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A′, 512
A+, 412
B(X), 59
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B1(H), 228
B2(H), 214
B∞(X), 201
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J(H), 694
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RS von Neumann algebra of observables of

a physical system, 599
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A with A operator, 254
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L (H), 319
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a physical system, 326
S(H), 333
S(H)adm , 381
Sp(H), 340
Sp(H)adm , 380
HS , 325
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σ -algebra, 18, 55
σ -finite, 21
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Abelian algebra, 51
Abelian group, 916
Abelian projector, 369
Abelian superselection rules, 611
Absolutely continuous function, 32, 283
Absolutely continuous measure with respect
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Absolutely continuous spectrum, 500
Absorbing set, 73
Abstract differential equations, 540
AC lattice, 359, 361
Active transformation, 667
Adjoint operator (general case), 256
Adjoint operator or Hermitian conjugate op-

erator, 132
Algebra, 50
Algebra automorphism, 51
Algebra homomorphism, 51
Algebraic dual, 59
Algebraic formulation of quantum theories,

374, 615, 867
Algebraic multiplicity, 235
Algebraic state invariant under a quantum

symmetry, 907
Algebraic state on B∞(H), 375
Algebra isomorphism, 51
Algebra of sets, 18

Algebra with unit, 51
Almost everywhere, 23
Analytic function with values in a Banach

space, 394
Analytic vector, 277, 513
Analytic vector of a representation of a Lie

group, 747
Annihilation operator, 504, 632
Anti-isomorphic Hilbert spaces, 117
Anti-unitary operator, 276, 671
Approximate point spectrum, 500
Arzelà–Ascoli theorem, 49
Asymptotic completeness, 814
Atlas, 920
Atomic lattice, 359
Atomic proposition, 326, 343
Atomistic lattice, 359
Attractive Coulomb potential, 589, 804
Axiom of choice, 915

B
Baire’s category theorem, 81
Baker-Campbell-Hausdorff formula, 631,

727
Balanced set, 73
Banach algebra, 51, 135, 394, 401
Banach lemma, 203
Banach’s inverse operator theorem, 84
Banach space, 45
Bargmann–Fock–Hilbert space, 129
Bargmann’s superselection rule for themass,

784
Bargmann’s theorem, 736
Basis of a Hilbert space, 117, 119
Basis of a topology, 11, 78
Bell’s inequalities, 850
Beppo Levi’s monotone convergence theo-

rem, 26
Bessel’s inequality, 119
Bi-invariant Haar measure, 707
Bijective map, 5
Boolean σ -algebra, 313
Boolean algebra, 313
Boost along the i th axis, 781
Borel σ -algebra, 18, 307
Borel-measurable function, 19, 307
Borel measure, 306, 307
Borel set, 307
Bosonic Fock space, 864
Bosons, 862
Bounded functional, 60
Bounded lattice, 313
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Bounded projector-valued measure, 432
Bounded R
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n-valued function, 16

Bounded set, 41, 200
Bounded set in R

n or C
n , 15

Busch’s theorem, 830

C
Calkin’s theorem, 205
Canonical commutation relations, 626
Canonical injection of a central extension,

703
Canonical projection, 85
Canonical projection of a central extension,

703
Canonical symplectic form, 640
Cartan’s theorem, 725
Cauchy property, 44
Cauchy–Schwarz inequality, 108
Cauchy sequence, 44
Cayley transform, 271
CCR, 626
Central carrier of an operator, 369
Central charge, 736, 781
Central projector, 367
Centre of a group, 916
Centre of an orthocomplemented lattice, 313
Characteristic function, 30, 129
Character of a Banach algebra with unit, 415
Character of a finite-dimensional group rep-

resentation, 768
Character of an Abelian topological group,

752
Chronological reordering operator, 819
Closable operator, 254
Closed map, 14
Closed operator, 253
Closed set, 11
Closure of an operator, 254
Closure of a set, 12
Closure operator associated to a Galois con-

nection, 390
Coherent sectors (of superselection), 378,

381, 609, 669
Coherent superposition, 340
Collapse of the wavefunction, 343
Commutant, 162
Commutant of an (generally unbounded) op-

erator, 260
Commutant of a set of (generally un-

bounded) self-adjoint operators, 512
Commutative algebra, 51

Commutative Gelfand–Najmark theorem,
418

Commutative group, 916
Commutator of a Lie algebra, 722
Commuting elements in an orthocomple-

mented lattice, 313
Commuting operators, 260, 604
Commuting orthogonal projections, 146
Commuting spectral measures, 529
Compact, 15, 198
Compact-open topology, 752
Compact operator, 200
Compatible and incompatible propositions,

317
Compatible and incompatible quantities,

300, 304
Compatible observables, 604
Complete lattice, 313
Completely additive algebraic state, 879
Completely additive measure over a lattice,

374
Completely continuous operator, 200
Complete measure, 23
Complete measure space, 23
Complete metric space, 79, 81
Complete normed space, 45
Complete orthonormal system, 119
Complete set of commuting observables,

605
Complex measure, 35, 36
Complex spectral measure associated to two

vectors, 441
Complex-valued simple function, 352
Compound quantum system, 844
Compton effect, 292
Conjugate observables, 626
Conjugate or adjoint operator (in a normed

space), 64
Conjugation of the charge, 692
Conjugation operator, 276, 671
Connected components, 17
Connected set, 16
Connected space, 16
Constant of motion, 832
Continuous Borel measure on R, 33
Continuous function, 14
Continuous functional, 61
Continuous functional calculus, 407
Continuous map, 42, 79
Continuous operator, 61
Continuous projective representation, 708
Continuous spectrum of an operator, 395
Continuous superselection rules, 383
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Contravariant vector, 924
Convergent sequence, 14, 42, 79
Convex hull of a set, 73
Convex (linear) combination, 335
Convex set, 72, 73, 113, 335
Coordinatisation problem, 361
Copenhagen interpretation, 298, 305
Core of an operator, 263
Cotangent space, 923
Countable set, 117
Counting measure, 57
Covariant vector, 924
Covering map, 723
Covering property, 359
Covering space of a topological space, 723
Creation operator, 504, 632
Cyclic vector for a ∗-algebra representation,

139

D
Darboux’s theorem, 640
De Broglie wavelength, 296
Decoherence, 857
Deficiency indices, 273
Deformation quantisation, 873
Degenerate operator, 223, 249
De Morgan’s law, 314
Dense set, 12
Density matrix, 341, 597
Diffeomorphism, 922
Differentiation inside an integral, 37
Dimension function, 368
Dini’s theorem on uniform convergence, 48
Dirac measure, 306
Dirac’s correspondence principle, 657
Direct decomposition into factors of R, 371
Direct-integral decomposition into factors,

370
Direct product of groups, 917
Direct sum, 84
Direct sum of C∗-algebras, 137
Direct sum of von Neumann algebras, 171
Discrete spectrum, 499
Discrete subgroup, 724
Distance, 78
Distributive lattice, 313
Division algebra, 138
Division ring, 138
Dixmier-Malliavin’s theorem, 747
Domain of an operator, 252
Dual action of a symmetry on observables,

687, 700, 910

Dual space of an Abelian topological group,
752

Dual vector space, 924
Du Bois-Reymond lemma, 265
Dye’s theorem, 694
Dynamical flow, 795
Dynamical symmetry, 797
Dyson series, 819

E
Ehrenfest theorem, 836
Eigenspace, 141
Eigenvalue, 141
Eigenvector, 141
Embedded submanifold, 922
Entangled states, 848
Entire function, 130
EPR paradox, 848
Equicontinuous family of operators, 71
Equicontinuous sequence of functions, 49
Equivalent norms, 89
Equivalent projective unitary representa-

tions, 699
Essentially bounded map for a PVM, 434
Essentially self-adjoint operator, 259
Essential norm with respect to a PVM, 434
Essential rank, 534
Essential rank of a measurable function with

respect to a PVM, 501
Essential spectrum, 499
Essential supremum, 58
Euclidean, or standard, distance, 79
Expansion of a compact operator with re-

spect to its singular values, 212
Exponential mapping of a Lie group, 725
Extension of an operator, 253
Extremal element of a convex set, 72
Extreme element in a convex set, 335

F
Factor (von Neumann algebra), 164, 366
Factor of type In , 368
Factor of type I I1, 366, 368
Factor of type I I I , 368
Factor of type I I I∞, 368
Faithful algebraic state, 877
Faithful representation, 696, 918
Faithful representation of a ∗-algebra, 139
Fatou’s lemma, 27
Fermionic Fock space, 864
Fermions, 862
Final space of a partial isometry, 151
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Finite measure, 21
Finite projector, 367
First integral, 832
Fischer–Riesz theorem, 56
Fischer–Riesz theorem, L∞ case, 58
Fixed-point theorem, 91
Fock space, 566, 863
Folium of an algebraic state, 878
Fourier–Plancherel transform, 178
Fourier transform, 172
Fréchet space, 80
Fredholm equation of the first kind, 237
Fredholm equation of the second kind, 239
Fredholm equation of the second kind with

Hermitian kernel, 238
Fredholm’s alternative, 240
Free representation, 918
Frobenius theorem, 138
FS3 theorem (Flato, Simon, Snellman, Stern-

heimer) on the existence of unitary
representations of Lie groups, 750

Fubini–Tonelli theorem, 34
Fuglede-Putnam-Rosenblum theorem, 466
Fuglede’s theorem, 464
Functional calculus, 407
Function of bounded variation, 32

G
Gårding space, 525, 744
Gårding’s theorem, 745
Galilean group, 706, 774, 808, 839
Galois connection on a complete lattice, 390
Gauge algebra, 616
Gauge group, 616
Gauge symmetry, 616, 667
Gauge transformation, 616, 667
Gaussian or quasi-free algebraic states, 905
Gelfand ideal, 877
Gelfand–Mazur Theorem, 402
Gelfand-Najmark theorem, 407, 895
Gelfand’s formula for the spectral radius,

404
Gelfand transform, 416
General linear group, 705
Generator of a unitary representation of a Lie

group, 743
Generator (self-adjoint) of a strongly contin-

uous one-parameter group of unitary
operators, 527

Generators of a Weyl ∗-algebra, 642
Gleason-Montgomery-Zippin theorem, 720
Gleason’s theorem, 331

Gleason’s theorem for general vonNeumann
algebras, 373

GNS representation, 646
GNS theorem, 874
GNS theorem for ∗-algebras with unit, 885
Gram–Schmidt orthonormalisation process,

126
Graph of an operator, 86, 252
Greatest lower bound, 915
Groenewold–van Hove Theorem, 660
Ground state, 911
Ground state of the hydrogen atom, 806
Group, 916
Group automorphism, 917
Group homomorphism, 696, 916
Group isomorphism, 917
Gyro-magnetic ratio of the electron, 8

H
Haag theorem, 814
Haar measure, 707, 755
Hadamard’s theorem, 404
Hahn–Banach theorem, 67
Hamiltonian formulation of classical me-

chanics, 307
Hamiltonian of the harmonic oscillator, 503
Hamiltonian operator, 795
Hamilton’s equations, 307
Hausdorff (or T2) space, 12, 42, 54, 307
Heine–Borel theorem, 15
Heisenberg’s picture, 831
Heisenberg’s relations, 626, 751
Heisenberg’s uncertainty principle, 298
Hellinger-Toeplitz theorem, 260
Hermite functions, 128, 505, 632
Hermite polynomial, 129
Hermite polynomial Hn , 129
Hermitian inner product, 108
Hermitian operator, 259
Hermitian or self-adjoint element, 135
Hermitian semi-inner product, 108
Hilbert basis, 117, 119
Hilbert-Schmidt operator, 214
Hilbert space, 112
Hilbert space associated to a physical sys-

tem, 325
Hilbert space of a non-relativistic particle of

mass m > 0 and spin 0, 624
Hilbert sum of Hilbert spaces, 147, 163, 255,

566
Hilbert’s theorem on compact operators, 208
Hilbert’s theorem on the spectral expansion

of a compact operator, 209
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Hilbert tensor product, 563
Hille–Yosida theorem, 528, 529
Hölder’s inequality, 55
Homeomorphism, 14
Homogeneous Volterra equation on

C([a, b]), 94
Homotopy, 17
Hydrogen atom, 805

I
Ideal and ∗-ideal, 205
Idempotent operator, 87
Identical particles, 858
Imprimitivity condition, 689
Imprimitivity system, 690
Imprimitivity theorem of Mackey, 690
Incoherent superposition, 340
Incompatible observables, 604
Incompatible propositions, 318
Indirect or first-kind measurement, 343
Induced topology, 11
Inertial frame system, 624
Infimum, 915
Infinite projector, 367
Infinite tensor product of Hilbert spaces, 566
Initial space of a partial isometry, 151
Inner continuity, 20
Inner product space, 108
Inner regular measure, 21
Integral of a bounded measurable map with

respect to a PVM, 436
Integral of a function with respect to a com-

plex measure, 36
Integral of a function with respect to a mea-

sure, 25
Integral of a measurable, not necessarily

bounded, function for a PVM, 489
Integral of a simple function with respect to

a PVM, 434
Interior of a set, 81
Internal point of a set, 11
Invariant subspace, 59, 629, 918
Invariant subspace under a ∗-algebra repre-

sentation, 139
Inverse dual action of a symmetry on observ-

ables, 688, 701, 832, 907
Inverse Fourier transform, 172
Inverse operator theorem of Banach, 84
Invertible map, 5
Involution, 135
Irreducible family of operators, 629
Irreducible lattice, 359

Irreducible orthocomplemented lattice, 313
Irreducible projective unitary representation,

698
Irreducible representation, 918
Irreducible representationof a ∗-algebra, 139
Irreducible space for a family of operators,

629
Irreducible subspace for a family of opera-

tors on H, 629
Irreducible unitary representation, 699
Isometric element, 135
Isometric operator, 141
Isometry, 42, 111, 270
Isometry group of R

3, 688
Isomorphic algebras, 51
Isomorphically isomorphic algebras, 51
Isomorphism of Hilbert spaces, 112, 141
Isomorphism of inner product spaces, 111
Isomorphism of normed spaces, 42
Isotopic spin, 612

J
Jointly continuous map, 44
Joint spectral measure, 509, 510, 604, 753
Joint spectrum, 510
Jordan algebra, 624, 694, 870, 872
Jordan product, 623, 694, 871

K
Kadison automorphism, 670
Kadison symmetry, 670
Kadison’s theorem, 682
Kato–Rellich theorem, 582
Kato’s theorem, 586, 801
Kernel of a group homomorphism, 916
Kernel of an operator, 132
Klein–Gordon/d’Alembert equation, 548
Klein-Gordon equation, 905
Kochen–Specker theorem, 334
Krein–Milman theorem, 78

L
Laguerre function, 129
Laguerre polynomial, 129, 805
Lattice, 312
Lattice automorphism, 315
Lattice homomorphism, 315
Lattice isomorphism, 315
Least upper bound, 915
Lebesgue-measurable function, 31
Lebesgue measure on R

n , 31
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Lebesgue measure on a subset, 31
Lebesgue’s decomposition theorem formea-

sures on R, 34
Lebesgue’s dominated convergence theo-

rem, 27
Left and right orbit of a subset by a group,

707
Left-invariant and right-invariant measure,

707
Legendre polynomials, 127
Lidskii’s theorem, 234
Lie algebra, 659, 722
Lie algebra homomorphism, 722
Lie algebra isomorphism, 722
Lie algebra representation, 723
Lie group, 720
Lie group homomorphism, 720
Lie group isomorphism, 720
Lie-Jordan algebra, 872
Lie subgroup, 724
Lie theorem, 724
Limit of a sequence, 42, 79
Limit point, 14
Lindelöf’s lemma, 13
Linear (left) representation of a group, 918
Linear representation of a group, 918
Liouville’s equation, 308
Liouville’s theorem, 308
Lipschitz function, 33
Local chart, 920
Local existence and uniqueness for first-

order ODEs, 97
Local homomorphism of Lie groups, 720
Local isomorphism of Lie groups, 720
Locally compact space, 15, 54, 198, 307
Locally convex space, 73
Locally integrable map, 265
Locally Lipschitz function, 96
Locally path-connected, 17
Locally square-integrable function, 588
Logical conjunction, ‘and’, 309
Logical disjunction, ‘or’, 309
Logical implication, 310
Logic of admissible elementary propositions

in presence of superselection rules,
382

Logic of elementary propositions of a quan-
tum system, 325, 596, 599

Logic of the von Neumann algebra R, 364
Loomis–Sikorski theorem, 316
Lorentz group, 706
Lower bound, 915
Lower bounded set, 915

LSZ formalism, 814
Lüders-von Neumann collapse postulate,

342, 598
Luzin’s theorem, 29

M
Mackey’s theorem, 640
Maximal Abelian von Neumann subalgebra,

606
Maximal ideal, 415
Meagre set, 81
Mean value, 619
Measurable function, 19
Measurable space, 18
Measure absolutely continuous with respect

to another measure, 36
Measure concentrated on a set, 22
Measure di Borel, 21
Measure dominated by another, 30, 36
Measure space, 20, 55, 306
Measuring operators, 829
Mercer’s theorem, 224
Metric, 78
Metric space, 78
Metrisable topological space, 80
Minkowski’s inequality, 55
Mixed algebraic state, 873
Mixed state, 340, 597
Mixture, 340
Modulus of an operator, 158
Momentum operator, 266, 507, 571, 624
Momentum representation, 691
Monotonicity, 20, 432
Multi-index, 80
Multiplicity of a singular value, 212
Multiplier of a projective unitary representa-

tion, 698

N
Nelson’s theorem on commuting spectral

measures, 751
Nelson’s theorem on essential self-

adjointness (Nelson’s criterion), 279
Nelson’s theorem on the existence of unitary

representations of Lie groups, 750
Neumark’s theorem, 831
Non-destructive or indirect measurements,

598
Non-destructive testing, 343
Non-meagre set, 81
Nonpure state, 340
Norm, 40
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Normal coordinate system, 726
Normal element, 135
Normal operator, 140
Normal operator (general case), 259
Normal state of a vonNeumann algebra, 374,

879
Normal states of a C∗-algebra, 878
Normal subgroup, 916
Normal vector, 108
Normed space, 40
Normed unital algebra, 51
Norm topology of a normed space, 41, 78
Nowhere dense set, 81
Nuclear operator, 228
Number operator, 504, 632
Nussbaum lemma, 278

O
Observable, 348, 598
Observable function of another observable,

351
One-parameter group of operators, 517
One-parameter group of unitary operators,

517
Open ball, 41
Open map, 14, 82
Open mapping theorem (of Banach–

Schauder)), 82
Open metric ball, 81
Open neighbourhood of a point, 11
Open set, 11, 41, 78
Operator affiliated to a von Neumann alge-

bra, 603
Operator norm, 60
Operators of spin, 770
Orbital angular momentum, 571
Orbital angular momentum operator, 571
Ordered set, 915
Ortho-automorphism, 693
Orthochronous Lorentz group, 706
Orthocomplemented lattice, 313
Orthogonal complement, 313
Orthogonal elements in an orthocomple-

mented lattice, 313
Orthogonal group, 706
Orthogonal projector, 144
Orthogonal space, 108
Orthogonal system, 119
Orthogonal vectors, 108
Orthomodular lattice, 313, 359
Orthonormal system, 119
Outer continuity, 21

Outer regular measure, 22

P
Paley-Wiener theorem, 181
Parallelogram rule, 109
Parastatistics, 863
Parity inversion, 668, 690, 729
Partial isometry, 151, 160, 579
Partially ordered set, 915
Partial order, 915
Partial trace, 857
Passive transformation, 668
Path-connected, 17
Pauli matrices, 138, 332, 680, 770, 825
Pauli’s theorem, 827
Permutation group on n elements, 858
Peter-Weyl theorem, 755, 763, 767
Phase spacetime, 307
Photoelectric effect, 291
Plancherel theorem, 178
Planck’s constant, 2, 5
Poincaré group, 706
Poincaré sphere, 680
Point spectrum of an operator, 395
Poisson bracket, 659
Polar decomposition of bounded operators,

159, 160
Polar decomposition of closed densely-

defined operators., 579
Polar decomposition of normal operators,

161
Polarisation formula, 109
Poset, 915
Position operator, 264, 507, 571, 624
Positive element in a C∗-algebra with unit,

412
Positive operator, 141
Positive-operator valued measure (POVM),

829
Positive square root, 155
Preparation of system in a pure state, 343,

606
Probabilistic state, 308
Probability amplitude, 340
Probability measure, 21, 306
Product measure, 34
Product structure, 922
Product topology, 13, 43, 85, 253
Projection, 87
Projection space, 87
Projective representation of a symmetry

group, 696



Index 947

Projective space, 336
Projective unitary representation of a group,

698
Projective unitary representations of the

Galilean group, 778
Projector-valued measure, 348, 431
Projector-valued measure su R, 350
Properly infinite projector, 367
Pullback, 926
Pure algebraic state, 873
Purely atomic Borel measure on R, 33
Purely continuous spectrum, 500
Purely residual spectrum, 500
Pure state, 340, 597
Pushforward, 926
PVM, 348
PVM P concentrated on supp(P), 432
PVM on R, 350
PVM on X, 431

Q
Quantum group associated to a group, 705
Quantum logic, 346
Quantum Noether theorem, 834
Quantum state, 327, 333, 597
Quantum symmetry, 666
Quantum symmetry in the algebraic formu-

lation, 907
Quasi-equivalent representations of a ∗-

algebra, 899
Quaternions, 138

R
Radon measure, 128
Radon–Nikodym derivative, 30, 36
Radon–Nikodym theorem, 30, 36
Range of an operator, 132
Real-analytic manifold, 920
Realisation of a Weyl ∗-algebra, 645
Reflexive space, 70, 116
Regular complex Borel measure, 65
Regular measure, 22
Relatively compact set, 15, 198
Representation of a ∗-algebra, 139
Representation of a Weyl ∗-algebra, 643
Residual spectrum of an operator, 395
Resolvent, 395
Resolvent identity, 396
Resolvent set, 395
Resonance, 556
Restricted Galilean group, 775
Riesz’s theorem for complex measures, 65

Riesz’s theorem for complex measures on
R
n , 66

Riesz’s theorem for positive Borel measures,
28, 376

Riesz’s theorem on Hilbert spaces, 115
Right-invariant Haar measure, 707
Right regular representation, 762
Right representation of a group, 701

S
Scattering, 811
Scattering operator, 813
Schröder–Bernstein theorem, 124
Schrödinger’s equation, 297, 542
Schrödinger’s picture, 832
Schrödinger’s wavefunction, 296
Schur’s lemma, 629
Schwartz distribution, 81
Schwartz space on R

n , 80, 171
Second-countable space, 13, 78
Second real cohomology group, 740
Segal–Bargmann transformation, 664
Segal symmetry, 693, 695
Self-adjoint operator, 141
Self-adjoint operator (general case), 259
Semidirect product, 688
Semidirect product of groups, 917
Seminorm, 40
Semisimple Lie algebra, 723
Semisimple Lie group, 723
Separable Borel measures and L p spaces,

128
Separable Hilbert space, 124
Separable lattice, 359
Separable L p measures and spaces, 128
Separable measure, 127
Separable topological space, 12
Separating elements, 69
Sequentially compact, 198
Sequentially continuous map, 43
Set of admissible pure states in presence of

superselection rules, 380, 609
Set of admissible states in presence of super-

selection rules, 381, 609
Set of atoms of a Borel measure on R, 33
Set of the first category, 81
Set of the second category, 81
Sharp state, 308
Signed measure, 35
Simple C∗-algebra, 885
Simple function, 24, 434
Simple group, 730, 916
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Simple Lie algebra, 723
Simple Lie group, 724
Simply connected space, 17
Singular measure with respect to another, 30
Singular spectrum, 500
Singular values of a compact operator, 212
Smooth manifold, 920
Smooth map, 919
Smooth structure, 920
Smooth vector of a representation of a Lie

group, 747
SNAG theorem, 753
Solèr–Holland’s theorem, 362
Space of analytic vectors of a unitary repre-

sentation of a Lie group, 747
Space of effects, 829
Spatial isomorphism of von Neumann alge-

bras, 167
Special Jordan algebra, 624
Special orthochronous Lorentz group, 706,

730
Special orthogonal group, 706
Special unitary group, 706
Spectral decomposition for normal opera-

tors, 449
Spectral decomposition of unbounded self-

adjoint operators, 494
Spectral measure associated to a vector, 441
Spectral multiplicity, 462
Spectral radius, 402
Spectral representation of normal operators

in B(H), 455
Spectral representation of unbounded self-

adjoint operators, 508
Spectral measure on R, 350
Spectral measure on X, 431
Spectrum of a commutative Banach algebra

with unit, 415
Spectrum of an operator, 395
Spectrum of the Hamiltonian of the hydro-

gen atom, 805
Spherical harmonics, 572
Spin, 300, 769
Spin statistical correlation, 862
Spontaneous symmetry breaking, 908
Square root of an operator, 153
Standard deviation, 619
Standard domain, 252
Standard symplectic basis of a symplectic

vector space, 640
Standard topology, 12
Statistical operator, 341, 597, 878
Stone representation theorem, 316

Stone’s formula, 523, 536
Stone’s theorem, 523, 743
Stone–von Neumann theorem, 640
Stone–von Neumann theorem, alternative

version, 641
Stone-Weierstrass theorem, 55, 127
Strongly continuous one-parameter group of

operators, 517
Strongly continuous projective unitary rep-

resentation, 711
Strongly continuous semigroup of operators,

528, 560
Strong Segal automorphism, 695
Strong topology, 74
Structure constants of a Lie algebra, 725
Structure constants of the Galilean group,

776
Sub-additivity, 20, 41, 432
Subalgebra, 51
Subgroup, 916
Subgroup of pure Galilean transformations,

776
Subgroup of space rotations, 776
Subgroup of space translations, 776
Subgroup of time displacements, 795
Subgroup of time translations, 776
Subrepresentation of a ∗-algebra, 898
Superposition principle of states, 341
Superselection charge, 611
Superselection observables, 611
Superselection rule of the angular momen-

tum, 379, 773, 826
Superselection rule of the electric charge,

379
Superselection rules, 607, 669, 889
Support of a complex measure, 36
Support of a function, 16
Support of a measure, 22
Support of a measure over a lattice, 374
Support of a projector-valued measure, 432
Supremum, 915
Symmetric operator, 259
Symmetry group, 696
Symplectic coordinates, 307
Symplectic form, 639
Symplectic linear map, 639
Symplectic vector space, 639
Symplectomorphism, 639

T
Tangent space, 923
Tensor product of Hilbert spaces, 563



Index 949

Tensor product of vectors, 561
Tensor product of von Neumann algebras,

570
Theorem corresponding toHeisenberg’sUn-

certainty Principle, 627
Theorem corresponding toHeisenberg’sUn-

certainty Principle for mixed states,
654

Theorem corresponding toHeisenberg’sUn-
certainty Principle, strong version,
654

Theorem of Arzelà–Ascoli, 49
Theorem of Banach–Alaoglu, 77
Theorem of Banach–Mazur, 50
Theorem of Banach–Steinhaus, 71
Theorem of characterisation of pure alge-

braic states, 880
Theorem on absolutely convergent series, 35
Theorem on Hilbert-space completion, 112
Theoremon ∗-homomorphisms of unitalC∗-

algebras, 411
Theorem on positive elements in a C∗-

algebra with unit, 413
Theorem on regular values, 923
Theoremon solutions to Fredholm equations

of the second kind with Hermitian
kernels, 238

Theorem on the commutant of tensor prod-
ucts of von Neumann algebras, 570

Theorem on the continuity of positive func-
tionals over C∗-algebras with unit,
877

Theorem on the eigenvalues of compact op-
erators on normed spaces, 202

Theorem on the invariance of the spectrum,
412

Theorem on the representability of algebraic
quantum symmetries, 907

Timedisplacement symmetry, 776, 795, 832,
911

Time-dependent dynamical symmetry, 797
Time-dependent Schrödinger equation, 800
Time-evolution operator, 795
Time-evolution operator in absence of time

homogeneity, 818
Time homogeneity, 794, 818
Time reversal, 691, 822–824
Topological dual, 59, 117
Topological group, 690, 705
Topological irreducibility, 629, 918
Topological space, 11
Topological vector space, 74
Topology, 11

Topology of a metric space, 78
Total angular momentum of a particle with

spin, 771
Total order relation, 915
Total variation of a measure, 35
Trace-class operator, 228
Trace of an operator of trace class, 232
Trace’s invariance under cyclic permuta-

tions, 233
Transition amplitude, 340, 597
Transition probability, 340, 672
Transitive representation, 918
Triangle inequality, 41, 78
Trotter formula, 529
Tychonoff’s theorem, 16

U
Ultrastrong topology, 166
Ultraweak topology, 166
Uniform boundedness principle, 71
Uniform topology, 74
Unital algebra, 51
Unitarily equivalent irreducible representa-

tions of the CCRs, 867
Unitarily equivalent representations of a

group, 699
Unitarily equivalent representations of ∗-

algebras, 139
Unitary element, 135
Unitary group, 706
Unitary operator, 112, 141
Unitary representation of a group, 699
Unitary transformation, 112
Universal covering of a topological space,

723
Universal representation of a C∗-algebra,

898
Upper bound, 915
Upper bounded set, 915
Urysohn’s Lemma, 16, 377

V
Vector of uniqueness, 277
Vector subspace, 5
Volterra equation, 221
Volterra equation of the second kind, 243
Volterra operator, 222
Von Neumann algebra, 162, 164, 363
Von Neumann algebra generated by a

bounded normal operator and its ad-
joint, 492



950 Index

Von Neumann algebra generated by an op-
erator, 260

Von Neumann algebra generated by a subset
of B(H), 165, 364

Von Neumann algebra of observables, 599
VonNeumann’s double commutant theorem,

162
Von Neumann’s theorem on iterated projec-

tors, 347
VonNeumann’s theoremon the continuity of

one-parameter groups of unitary op-
erators, 519

Von Neumann’s theorem on the existence
self-adjoint extensions (von Neu-
mann’s criterion), 276

W
Wavefunction, 341, 625
Wave operators, also known as Møller oper-

ators, 811
Weak derivative, 265
Weakly continuous one-parameter group of

operators, 517
Weakly non-degenerate bilinear form, 639

Weak Segal automorphism, 695
Weak topology, 74
Weak topology on a normed space, 74
Well-ordering axiom, 915
Weyl ∗-algebra, 642
Weyl C∗-algebra, 904
Weyl C∗-algebra of a symplectic vector

space, 646
Weyl calculus, 657, 660
Weyl–Heisenberg group, 655
Weyl’s (commutation) relations, 632, 642
Wigner automorphism, 672
Wigner symmetry, 672
Wigner’s theorem, 675

Y
Yukawa potential, 589, 806

Z
Zero-measure set, 23
Zero representation of an algebra, 139
Zorn’s lemma, 123, 915
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