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Preface

More than ten years have passed now since the first printing of this book, and
I am happy to say that it is a success. Many thousands of volumes can today
be found worldwide in libraries, laboratories of polymer science and private
hands, with a special edition for China and an edition in Japanese. The book
obviously filled a gap. After such a period the time had come for a revision
and moderate expansion of the book’s contents and I continuously worked on
it during the last years. The basis of the new sections and chapters were again
lectures given to students of physics and chemistry in Freiburg. Proceeding in
this manner, the original ‘pedagogical style’ of the writing was continued. The
results of the effort are presented here and they include some major changes:

• The electro-optically active conjugated polymers have attracted many sci-
entists during the last decade and approach commercial uses as display
materials. The newly written Chap. 7 deals with the physical basis of the
electrooptic response and in addition discusses the spectacular electrical
conduction properties of conjugated polymers created by doping.

• Quite peculiar properties are also shown by polyelectrolytes. They became
popular in particular by their use as superabsorbers. Many researchers,
both theoreticians and experimentalists, are fascinated by the ordering
phenomena caused by the Coulomb forces. Polyelectrolyte properties are
now discussed in different chapters of the book, in Sects. 3.3, 8.4.2 and 9.2.

• The basic understanding of melt crystallization, a classical field of polymer
physics, has changed during the last decade; new experiments have pro-
vided novel insights. As a consequence, Chap. 5 was completely rewritten.
It presents the new results in a selection of figures, formulates the deduced
laws and also includes in Sect. 5.3.1 the – not yet generally accepted – ‘mul-
tistage model’ developed as an explanation of all the new observations.

• Chapter 10 also includes some substantial changes, again triggered by
progress in understanding. Some principles governing shear deformation
in semicrystalline polymers were revealed and enabled the construction of
a mechanic-rheological model (Sect. 10.1).
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In addition to these major changes, which resulted in an increase of the book
volume by more than one hundred pages, many minor corrections and modifi-
cations have been made. Many of them are reactions to remarks from readers,
and I would like to express here my high appreciation for the constructive crit-
icism. I hope that it will continue, because it is a real help. There were also
a few changes in the choice of symbols, necessitated by additional variables
introduced in the new parts. The changed symbols appear in the updated
Glossary in the Appendix.

When writing the new chapters I obtained advice by my renowned col-
leagues Prof. Heinz Bässler (Marburg), Prof. Jürgen Heinze (Freiburg), Prof.
Manfred Schmidt (Mainz) and Prof. Stephan Förster (Hamburg), and I would
like to express my gratitude to them here.

Last but not least, many thanks go to my secretary Christina Skorek.
Without her most effective support in processing the TEX file and preparing
all figures, the book with all its three editions would not have come into being.

Freiburg, November 2006 Gert Strobl



Preface to the First Edition

In our faculty, we offer to the graduate students in physics a course on ‘Con-
densed Matter Physics’ which goes beyond the usual lectures on solid state
physics, by also including the physics of simple liquids, liquid crystals and
polymers. While there is a large selection of textbooks on solid state physics
and also a choice of excellent treatises on the physics of liquids and liquid
crystals, a book on a comparable level covering the major parts of the physics
of polymers apparently does not exist. The desire is to have a textbook on
polymer physics which, ideally, would stand in line with the ‘Kittel’, the ‘Egel-
staff’ and ‘de Gennes’ books on the physics of liquid crystals, to cite only some
of the best known volumes. This book is a first attempt to comply with these
needs and to fill the gap. Certainly the aim is high, too high to be reached with
this first approach, but hopefully other polymer physicist will also take on the
task in future and then do better, once a frame is set and a first trial exists.

For me personally, writing such a textbook was indeed highly valuable and
a worthwhile experience. In a time when science has such a strong tendency
for diversification, there is a great danger of losing contact even with the
neighboring branches and simultaneously the ability to see and assess the
relevance of one’s own activities. Students have this sensitivity and often have
a better feeling about the importance of a topic. When teaching students as
a lecturer, it is of primary importance always to provide the motivation and
to make clear the role and relevance of a certain problem. Indeed, for me this
amounts to a true check which helps me to discriminate between the major
phenomena and secondary effects. Senior scientists with time tend to become
acquainted with complicated, sometimes even artificial concepts; the young
student, however, being confronted for the first time with an explanation,
reacts naturally and distinguishes intuitively between reasonable, illuminating
concepts and less attractive complicated ways of thinking. Hence, writing
a textbook also means to put the state of the art of polymer physics to the
test. If it is possible to present this field coherently and to explain convincingly
the main properties with the aid of clear and appealing concepts, then it is in
good shape. It is my impression, already gained in the lectures and now further
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corroborated during writing, that this is the case. The level of understanding is
quite satisfactory and compares well with the understanding of simple liquids
or liquid crystals. Therefore, the goal to write a coherent textbook on polymer
physics can be reached, I am only rather uncertain if I have succeeded in
demonstrating it.

As I am not sufficiently familiar from own experience with all the topics
treated in the various chapters I am certainly not in a position to eliminate
all errors. Hopefully, the ones I have made, are only minor ones. In any case,
I would be grateful for reactions and comments from readers and any indi-
cation of faults in the treatment. Some incorrect conclusions have already
been eliminated, after comments by Professor M.H. Wagner (Stuttgart) and
Dr. L. Könczöl (Freiburg), who were kind enough to go through Chaps. 7
and 8 and I wish to thank them here once again for their advice.

Even if all of us in the scientific community use the English language, for
a non-native speaker, the writing of a book is a different matter. As I do not
like to read something in bad German I guess that Anglo-American scien-
tists must feel the same. I received help at the beginning of my writing from
Dr. Sandra Gilmour, who was working at this time as a postdoctoral stu-
dent in Freiburg, and would like to express my gratitude again. Then, after
completion, the manuscript was thoroughly revised by the copy editor, but
he remarked that ‘the sentence structure is very German which often makes
it sound strange to a native speaker’. So I can only hope that this does not
amount to a problem in understanding and offer my apologies.

In the first version produced two years ago the manuscript was dictated im-
mediately after given lectures. This is the reason for the ‘pedagogical style’ of
the writing. The emphasis is on the various concepts which have successfully
established the present-day understanding of polymer physics. The focus is
on the major phenomena, both in the formation of structures and the behav-
ior under forces applied externally, mainly mechanical ones. This implies that
many further effects, although important in certain cases, remain untouched.
Hence, this textbook does not represent a comprehensive treatise and, there-
fore, should be better considered as an ‘interface’, providing help to enter into
the various fields of polymer science, emanating from a basis which shows the
interrelations. The recommendations given under the ‘Further Readings’ at
the end of each chapter, the selected works included as figures, and the bibli-
ography supplied in the Appendix are meant to open the way for more detailed
studies.

One active area of research is completely missing. These are the optical
and electrical properties, with effects such as the high conductivity of doped
conjugated polymers, electro-luminescence in polymeric light emitting diodes,
or the ferro- and piezoelectricity of poly(vinylidene fluoride), to cite only a few
examples. There is no good reason for this omission, only that I did not want
to overload the book with another topic of different character which, besides,
mostly employs concepts which are known from the physics of semi-conductors
and low molar mass molecules.
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As already mentioned, this book is primarily written for students of physics
and physicists wishing to enter into polymer science for the first time. Inter-
ested macromolecular chemists and chemical engineers may also find it useful.
The prerequisite for an understanding is not a special one, all that is needed
is a background in phenomenological and statistical thermodynamics on the
level of the respective courses in physical chemistry, together with the related
mathematical knowledge.

Of course, I will be happy if the book finds many readers. It is a matter of
fact that polymer physics is largely unknown to the majority of physicists. As
a consequence, it is only rarely included in university courses on condensed
matter behavior. This is difficult to comprehend considering the widespread
uses of polymeric materials and in view of the appealing physical concepts
developed for the description of their properties. It is therefore my wish that
this book will contribute a little to change the present situation by helping to
widen the physicists’ general knowledge with a better understanding of the
physics of polymers.

Freiburg, November 1995 Gert Strobl
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1

Constitution and Architecture of Chains

Polymers, also known as macromolecules, are built up of a large number of
molecular units that are linked together by covalent bonds. Usually they rep-
resent organic compounds, containing carbon atoms together with hydrogen,
oxygen, nitrogen, and halogens, etc. In this first chapter, we briefly survey the
main characteristics of their chemical constitution and molecular architecture
and introduce the notions employed for their description, using examples for
the explanation.

Let us begin with a look at polyethylene (PE), which has a particu-
larly simple structure. It is depicted in Fig. 1.1. The chemical repeat unit
or monomeric unit building up the chain is the CH2-(methylene)group and
their number determines the degree of polymerization, denoted by the
symbolN . Macromolecules are generally obtained by a polymerization process
starting from reactive low molar mass compounds. The name ‘polyethylene’ in-
dicates that here the process is usually based on ethylene. Figure 1.2 shows,
as a second example, the chemical composition of another common polymer,
that of polystyrene (PS). Here phenyl groups are attached as sidegroups to
the C–C backbone chain. Table 1.1 presents a selection of further conven-
tional polymers, giving the chemical constitution of the repeat units and com-
monly used short forms. The majority (from polypropylene to polycarbonate)
has a flexible backbone set-up of carbon atoms, in some cases in combination
with some heteroatoms. The four polymers following in the listing (poly(ether
ether ketone) to polyimide) are examples for polymers with a stiff backbone.

Fig. 1.1. Ethylene and polyethylene
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Fig. 1.2. Polystyrene

Rather than being carbon-based, the backbone chain can also be composed
of silicon atoms, again together with other elements. The last two materi-
als, poly(dimethylsiloxan) and poly(tetramethyl-p-silphenylene-siloxane) are
corresponding examples.

All these polymers are electrically neutral. If chains are built up of
monomers that contain an ionizable group, i.e., a group that can dissociate
into a chain-fixed kation or anion and a mobile counter-ion bearing the op-
posite charge, a polyelectrolyte is obtained. Table 1.2 collects a few typical
examples. The first three compounds are synthetic polymers, the other two
samples are biopolymers; cellulose and starch in the form of derivatives which
include ionizable substitutes.

Charges on a chain can also be created by doping processes. For con-
jugated polymers, i.e., chains with conjugated C–C double bonds, this is
particularly easy. Even more importantly, the produced charges are mobile
and thus provide electrical conductivity. Table 1.3 compiles some of these
special materials.

Rather than leading to polymers with a unique degree of polymerization,
reactions usually result in a mixture of macromolecules with various molar
masses. Therefore, for a full characterization, the molar mass distribution
function has to be determined, and this is usually accomplished by gel per-
meation chromatography. We choose the symbol M for the molar mass and
introduce the distribution function p(M) as a number density, adopting the
definition that the product

p(M)dM

gives the fraction of polymers with molar masses in the range from M to
M + dM . As a distribution function p(M) must be normalized

∞∫

0

p(M)dM = 1 . (1.1)

The average molar mass follows by

Mn =

∞∫

0

p(M)M dM . (1.2)
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Table 1.1. A selection of conventional polymers
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Table 1.1. A selection of conventional polymers (continued)
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Table 1.1. A selection of conventional polymers (continued)
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Table 1.1. A selection of conventional polymers (continued)

In this description, we treat M as a continuous variable although, strictly
speaking, M changes in discrete steps, corresponding to the molar mass of
the monomer. For the normally given high degrees of polymerization, this
discrete character does not become apparent and can be ignored.

Instead of using the number average Mn, the weight average of the
molar mass, Mw, may also be employed. Mw is given by

Mw =

∞∫
0

p(M)M ·M dM

∞∫
0

p(M)M dM
. (1.3)

The origin of Eq. (1.3) is obvious. Just recognize that the function

p′(M) =
pM

∞∫
0

p(M)M dM
(1.4)

describes the molar mass distribution in terms of weight fractions.
For molar mass distributions with a finite width Mw is always larger than

Mn. The ratio of the two mean values is used to specify the width of the
distribution. One introduces the polydispersity coefficient U defined as

U =
Mw

Mn

− 1 . (1.5)
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Table 1.2. A selection of polyelectrolytes

U does indeed measure the polydispersity, as it can be directly related to the
variance of p(M). We have

〈ΔM2〉 =

∞∫

0

p(M)(M −Mn)2 dM

=

∞∫

0

p(M)M2 dM −M
2

n (1.6)

or, according to Eq. (1.3),

〈ΔM2〉 = Mw ·Mn −M
2

n (1.7)



8 1 Constitution and Architecture of Chains

Table 1.3. A selection of conjugated polymers

and therefore
〈ΔM2〉
M

2

n

= U . (1.8)

U becomes zero only for a perfectly monodisperse sample, i.e., a sample
with a uniform molar mass.

Molar mass distributions may vary greatly between different polymeric
compounds. Distributions depend on the method of synthesis used in the poly-
merization process, and most methods belong to either of two general classes.
In the first class of processes, known as step polymerizations, monomers
react in such a way that groups are already linked together can be coupled
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Fig. 1.3. Molar mass distributions of the Schulz–Zimm type for β = 2 (left) and
of the Poisson type (right). Both correspond to the same number average degree of
polymerization, Nn = 104

with other groups. In the second class, called chain polymerizations, reac-
tive centers that react only with monomers are created at the beginning and
become shifted after the reaction to the new end of the chain, thus growing.
Figure 1.3 shows, in an idealized form, distribution functions resulting from
the two different synthetic routes. For step polymerizations, distributions are
broad, and a good representation is often achieved by the Schulz–Zimm
distribution. The latter is usually formulated in terms of the degree of poly-
merization rather than the molar mass and is given by the equation

p(N) =
1

Γ (β)

(
β

Nn

)β

Nβ−1 exp−βN

Nn

. (1.9)

The function includes two parameters: β determines the shape andNn denotes
the number average of the degree of polymerization; Γ is the gamma function.
A straightforward evaluation shows that the polydispersity index U is given
by

U =
1
β
.

Choosing β values of about two, Eq. (1.9) provides a good data fit in many
practical cases.

Much narrower distributions can be obtained for chain polymerizations.
Typical here is a Poisson distribution, given by

p(N) = exp(−Nn)
(Nn)N

Γ (N + 1)
≈ exp(−Nn)

(
Nne
N

)N

. (1.10)
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As only one parameter, Nn, is included, U is no longer an independent vari-
able. A straightforward calculation yields

U =
1
Nn

. (1.11)

The two distribution functions are presented in Fig. 1.3, choosing β = 2 for
the Schulz–Zimm distribution and equal values of Nn(= 104) in both cases.

Properties of polymer systems are generally affected by the shape of p(M).
This dependence is of considerable technical importance, and variations of
p(M) may often be used to improve and optimize the performance of mate-
rials. These are specific questions, and in the following we shall mostly omit
a discussion of them. For the sake of simplicity, sharp molar mass distribu-
tions will always be assumed, i.e., distributions like the one shown on the
right-hand side of Fig. 1.3. The degree of polymerization, N , then becomes
a well-defined quantity.

Coupling of the units in polyethylene is unambiguous. For polystyrene,
however, this is no longer the case, because styrene is composed of two different
groups, CH2 and C7H6. In principle, either group can be attached to the
growing chain, but the energetically disfavored ‘head-to-head’ and ‘tail-to-
tail’ couplings are, in fact, rare. Much more important is the choice in the
possible placements of the phenyl group on either side of the C–C backbone.
Variations may result in steric disorder along the chain. The notion used to
describe steric order is tacticity. Polymers with a unique way of coupling the
monomeric units are called isotactic and contrasted to those with an irregular
steric structure, which are addressed as atactic. If the coupling varies, in
a regular way, polymer chains are called syndiotactic. All three types are
found for polystyrene, depending on the process chosen for the synthesis.

Polyethylene and polystyrene are built up of one type of monomeric unit
only. This is not a necessity, and large variations in the chemical structure
may be achieved by a combination of different monomers. The procedure is
known as copolymerization. To give an example: Ethylene and propylene
monomers can be copolymerized, which leads to ‘ethylene-propylene copoly-
mers’. For the coupling of the two monomeric units in the chain two limiting
cases exist. In the first, the coupling is statistical and determined by the prob-
abilities of attachment of the two monomers on a growing chain. Chains of
this type are called statistical copolymers. They can exhibit a short-range
order with preferred sequences, and thus are different from a random mixing,
but possess no order in the chemical composition over the long range. The
second limiting case are block copolymers. These are obtained by coupling
long macromolecular sequences of uniform composition, and depending on the
number of sequences, di-, tri- or multiblock copolymers may be prepared. The
structures of the two types are sketched in Fig. 1.4 with the ethylene-propylene
system as an example.

The chains discussed so far all have a linear topology. There exists a large
group of polymers with a different architecture and some of their typical forms
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Fig. 1.4. Ethylene-propylene copolymers

Fig. 1.5. Polymers with non-linear architectures: Polymer with short-chain and
long-chain branches (A), polymer with grafted oligomer side chains (B), star poly-
mer (C), network of cross-linked chains (D)

are sketched in Fig. 1.5. For example, a polymer may include short-chain
and long-chain branches in a statistical distribution. A well-known repre-
sentative of this architecture is ‘low density polyethylene’, which, as a result
of the polymerization process, incorporates alkyl-branches of different length
in a random fashion. Typical values for the branching ratio, i.e., the frac-
tion of branched units, are of the order of several percent. If more extended
oligomer chains are attached to a backbone chain with different composi-
tion, grafted-chain polymers are obtained. A quite exotic species are star
polymers, where several polymer chains emanate from one common multi-
functional center.
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A qualitative change in properties is achieved by coupling all the polymer
chains of a sample together, thereby building up a three-dimensional net-
work. This is the basic structure of rubbers. In fact, a rubber represents
one huge macromolecule of macroscopic dimensions, with properties depend-
ing on the cross-link density and the functionality of the junction units.

Finally, at the end of this short first chapter, let us briefly recall the mani-
fold uses of polymers in daily life. First there are the solid polymeric materials
in various forms, ‘commodity polymers’ for widespread applications, as well
as speciality polymers for specific utilizations. In industry these are called
thermoplasts, which expresses that they can be shaped and brought into
forms of choice by thermomechanical treatments at elevated temperatures.
The price to be paid for the advantage of using comparatively simple pro-
cessing techniques is the temperature range limitation, which contrasts with
the much larger application range of ceramics and metals. Polymer fibers
comprise a second large class of materials and are mostly used for the produc-
tion of textiles and woven products. Fibers are generally obtained by spinning
processes carried out on the melt or concentrated solutions at elevated tem-
peratures, which is followed by a fixing accomplished by rapid cooling. Again,
the temperature range for uses is limited. If a fiber is heated to a too high tem-
perature it shrinks. Rubbers, technically addressed as elastomers, constitute
the third class of polymeric materials. Both synthetic and natural products
are utilized. The essential step in rubber production is the cross-linking pro-
cess. ‘Natural rubber’, for example, is obtained by heating cis-polyisoprene in
the presence of sulfur. This vulcanization process creates cross-links be-
tween the polyisoprene chains, composed of short sequences of sulfur atoms.
For high cross-link densities the large deformability characteristic of a rubber
is lost, and one obtains stiff solids. This is know as the class of duromers or
thermosets, also known as resins. Various adhesives based on the mixing
of two reacting components belong to this class of polymers. The shapes of
these compounds are rather stable and remain unaffected by heating, up to
the point of chemical decomposition. Polyelectrolytes are also broadly used.
The well-known superabsorbers are able to take up and bind large amounts
of water after cross-linking. Conjugated polymers have been increasingly em-
ployed quite recently in technical applications such as displays, where they
serve as active elements in light emitting diodes.

With the exception of natural rubber, cellulose and starch, all the above-
mentioned polymers are synthetic products. Although this book deals with
the properties of synthetic materials only, we have to be aware of the decisive
role played by polymers in nature. The control of life processes is based on
two polymer species, nucleic acids and proteins. The specific property of these
polymers is that they form stable microscopic objects, mainly as the result of
the action of intramolecular hydrogen bonds. The stable, specifically ordered
surface of the proteins provides the high selectivity and catalytic potential
used in biochemical reactions; selectivity and catalytic activity disappear when
the globular molecular shape is destroyed at elevated temperatures or upon the
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addition of an active chemical agent. The synthetic polymers discussed in this
book do not possess the potential to form a unique molecular conformation
as single chains and, therefore, do not show any biochemical activity.

The large variability in the chemical constitution and architecture of
macromolecules opens a broad route to the preparation of materials with
a wide spectrum of different properties. Chemistry, however, is not the only
factor responsible for the actual behavior. It is a specific feature of polymers
that one finds a particularly strong impact of the thermomechanical processes
experienced during manufacture since these control the final formation of
structures. An understanding of these processes is a necessary prerequisite for
a successful utilization of polymers, and the promotion of knowledge to lev-
els as high as possible therefore constitutes one of the main aims of polymer
physics.

Further Reading

F.W. Billmeyer: Textbook on Polymer Science, John Wiley & Sons, 1984
J.M.G. Cowie: Polymers: Chemistry and Physics of Modern Materials, CRC

Press, 1991
P.J. Flory: Principles of Polymer Chemistry, Cornell University Press, 1953
P. Munk: Introduction to Macromolecular Science, John Wiley & Sons, 1989
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Single Chain Conformations

Condensed matter is composed of strongly interacting molecules, and discus-
sions of the bulk properties of low molar mass compounds therefore focus
from the beginning on the role of the interaction forces between different
molecules in establishing thermal equilibrium. In dealing with polymeric sys-
tems, one encounters a different situation. As each macromolecule possesses
a huge number of internal degrees of freedom, the analysis of the properties of
the individual polymer becomes an important first point of concern. It is obvi-
ous that the understanding of single chain behavior is a necessary prerequisite
for treatments of aggregate properties, but in fact, it implies even more and
in many cases leads to a major step forward. There are, of course, phenomena
that are dominated by intermolecular forces, such as the phase behavior of
binary polymer mixtures, the structures in polyelectrolyte solutions, or the
flow properties of polymer melts. However, other important phenomena, in
particular essential parts of the viscoelasticity, are much under the control
of the dynamic properties of the individual molecules. It is therefore quite
natural and also necessary to start an introduction into polymer physics with
a discussion of the conformational states of single chains.

2.1 Rotational Isomeric States

Let us choose polyethylene as an example and consider its full steric structure.
The latter is shown in Fig. 2.1. A polymer chain like polyethylene possesses
a great internal flexibility and is able to change its conformation totally. Ba-
sically, the number of degrees of freedom of the chain is given by three times
the number of atoms, but it is convenient to split them up into two different
groups. A first group concerns changes in valence angles and bond lengths,
because they occur during molecular vibrations with frequencies in the in-
frared range. These movements are limited and do not affect the overall form
of the chain. The second group of motions is of a different character, in that
they have the potential to alter the form. These are the rotations about the
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Fig. 2.1. The steric structure of PE. Rotations about the C–C bonds result in
a change in the conformation

C–C bonds, which can convert the stretched chain of Fig. 2.1 into a coil and
accomplish the transitions between all the different conformational states.

Clearly, in dealing with the conformational properties of a given polymer,
only the latter group of degrees of freedom has to be considered. A discussion
of the conformational states of a given macromolecule therefore first of all
requires an analysis of the bond rotation potentials.

To begin with, we first go back to a related low molar mass molecule
and consider the rotational potential of ethane. Here a rotation about the
central C–C bond is possible, and one can anticipate the general form of the
rotational potential. Interaction energies may be described as a superposition
of a part that directly relates to the rotational state of the C–C bond and
non-bonded interactions between the hydrogen atoms. The latter are for
the given distances of repulsive nature. Figure 2.2 will help us to describe
the situation. The staggered conformation of ethane, shown at the bottom
on the right, corresponds to the minimum in the potential energy since it is
associated with the largest distances between the hydrogens. Owing to the
three-fold symmetry of the two methyl groups, the rotational potential ũ(ϕ)
(ϕ denotes the rotation angle) exhibits a 120◦-periodicity. Therefore, in a first
approximation, employing only the lowest order Fourier contribution, it can
be described by

ũ = ũ0(1 − cos(3ϕ)) . (2.1)

This rotational potential is indicated in the figure by the broken line and
shows three energy minima with equal potential energies.

Next, we consider the rotational potential of butane. The replacement of
one hydrogen atom by a methyl group for both carbon atoms removes the
three-fold symmetry. As a consequence, the potential energy function ũ(ϕ)
gets a shape like that indicated by the continuous curve in Fig. 2.2. The
minimum occurs for the staggered conformation depicted in the upper part
on the right, where the distance between the two methyl groups is at the
maximum. There still exist local minima in the potential energy at 120◦ and
240◦, but now at an elevated level. The maximum of ũ(ϕ) is expected for 180◦,
when the two methyl groups closely approach each other.

Particular terms are used to address the three energy minima. The con-
formational state with the lowest energy at ϕ = 0◦ is called the trans-
conformation. The other two minima at 120◦ and 240◦ are called gauche and
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Fig. 2.2. Potential energies associated with the rotation of the central C–C bond
for ethane (broken line) and butane (continuous line). The sketches show the two
molecules in views along the C–C bond

are distinguished by adding a plus or minus sign. Note that in the trans-
state the three C–C bonds of butane lie in one plane; the gauche-states are
non-planar.

The internal dynamics of butane depends on the energy difference Δũtg

between the trans-state and the gauche-state and the height of the barriers,
Δũb, between the local minima. One can envisage two limiting cases. For
R̃T � Δũb (the symbol R̃ stands for the perfect gas constant) rotations about
the C–C bonds are quasi-free, and the details of ũ(ϕ) with its minima and
maxima become irrelevant. In the opposite case, R̃T � Δũtg, the molecules
settle down in the lowest energy state, i.e., in the trans-conformation, and
only librate about the equilibrium position.

The prerequisite in order to be able to judge the actual situation, say at
ambient temperature, is therefore a knowledge of the two energy differences
Δũtg and Δũb. These can be determined by spectroscopic and calorimetric
experiments. Δũtg can be derived from temperature-dependent Raman scat-
tering experiments, due to the vibrational spectra for the trans-state and
the gauche-state being different. One selects two bands associated with the
gauche-conformation or the trans-conformation, respectively, and measures
their intensities, Ig and It, as a function of temperature. The ratio Ig/It
changes with the populations of the two states, according to

Ig
It

∝ exp−Δũtg

R̃T
. (2.2)
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An Arrhenius plot of ln(Ig/It) versus 1/T thus yields Δũtg. Experiments were
performed on different n-alkanes and gave values in the range

Δũtg � 2−3 kJ mol−1 .

The fraction φg of molecules in the two gauche-states follows from

φg =
2 exp(−Δũtg/R̃T )

1 + 2 exp(−Δũtg/R̃T )
, (2.3)

which leads to

φg � 0.5 .

Hence, trans-states and gauche-states are populated with similar probabilities.
The barrier height Δũb can be deduced, for example, from measurements

of the heat capacity of ethane. It turns out that data can only be described if
the internal degree of freedom associated with the C–C bond rotation is ac-
counted for, in addition to the translational and rotational degrees of freedom
of the whole molecule. A fit of the data yields Δũb, with the result

Δũb � 12 kJ mol−1 .

This is the barrier height for ethane. For butane, one expects somewhat larger
values.

Looking at these results, we conclude that

Δũb � R̃T � Δũtg .

Under these conditions, the internal dynamics of the butane molecule may be
envisaged as follows. Most of the time, the molecule is in one of the three con-
formational states and just vibrates about the respective energy minimum.
From time to time, the molecule collects sufficient thermal energy so that
the barrier can be passed over and the conformation changes. As the tran-
sitions take place rapidly compared to the time of staying near a minimum,
a sample of butane resembles a mixture of different rotational isomers. For
each molecule there exist three rotational isomeric states. They are all
accessible and populated according to the available thermal energy.

We now turn to polyethylene and discuss its case by starting from bu-
tane considering the effect of a replacement of the two methyl endgroups by
longer chain sequences. The result is qualitatively clear. One expects modi-
fications in the details of ũ(ϕ), which also depend on the conformations of
the two sequences. However, the overall form of the rotational potential en-
ergy of a given C–C bond will remain unchanged. There still exists an energy
minimum for the trans-conformation and local minima for two gauche-states.
Also the values of Δũtg and Δũb do not alter significantly. We may thus con-
clude that the conformation of polyethylene can again be described in terms
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of rotational isomeric states and that there are still three rotational isomeric
states per bond, corresponding to trans, gauche+ and gauche−. A polyethy-
lene chain with a degree of polymerization N therefore possesses 3N different
conformational states. In order to address one specific conformation, the ro-
tational isomeric states for all bonds have to be given. This may be done, for
example, in the form

(ϕ1, ϕ2, . . . , ϕN ) , (2.4)

whereby ϕi =̂ trans, gauche+ or gauche−.
Two different situations are found in polymer systems and shall be dealt

with separately. In the crystalline state, chains adopt unique conformations
that represent helices with a straight axis. In the fluid state, on the other hand,
all rotational isomeric states are populated, with probabilities determined by
the temperature and the respective energies.

2.2 Helices

Polymers can form crystals, not like low molar mass substances under all
circumstances, but for many species under the prerequisite that the cooling
from the molten state occurs slowly enough to enable the necessary rearrange-
ments of the chains. The building principle is obvious. As a basic requirement,
chains must adopt a straight, perfectly ordered form. Then a lattice can be
constructed by orienting the chains uniformly in one direction and packing
them laterally in a regular manner. The thus-obtained lattice with three-
dimensional order has the monomeric units as structure units. The specific
property is the strong anisotropy in the binding forces, with valence forces in
one direction and weak van der Waals forces in the two other directions.

Crystal lattices at low temperatures generally represent the structure with
the minimum internal energy. For polymer crystals one expects that the main
contribution be furnished by the intramolecular energies as determined by the
bond rotations. Structure determinations in combination with energetic cal-
culations, which have been carried out for several polymers, do indeed support
this view. They indicate that the conformation adopted by a polymer in the
crystalline phase equals, or comes very close to, the lowest energy rotational
isomeric state of the single chain. Conditions are simple if the coupling be-
tween successive bonds is only weak. Then rotations take place independently
and each bond settles down in the energy minimum.

To have equal conformations in all monomeric units is of course not a pe-
culiarity of chains with independent bonds. In the general case, in the lowest
energy state of a chain one also finds a uniform conformation of the monomers.
What is the general structure that then emerges? It is important to recognize
that this is of the helical type. To see and to illustrate this, we consider some
examples.
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Fig. 2.3. PTFE in the crystalline state. The conformation corresponds to a 13/6-
helix

We begin with polyethylene. Here, in order to have the energy minimum,
all C–C bonds must be in the trans-state. Crystalline polyethylene thus adopts
the all-trans-conformation, which is the structure shown in Fig. 2.1.

While polyethylene with its planar zig-zag structure is not a helix in
the usual sense, poly(tetrafluoroethylene) (PTFE) in the crystalline state
possesses the typical wound appearance. This chain is shown in Fig. 2.3.
Poly(tetrafluoroethylene) is obtained from polyethylene by a replacement of
all hydrogen atoms by fluorines. The reason for the resulting structure change
is easy to see. The replacement of hydrogen atoms by the much larger flu-
orines increases the interaction energy between the CF2 groups of second
nearest neighbors. When we start off from an all-trans-form, a uniform twist
of the chain diminishes the repulsive F–F interaction energies but, at the same
time, the bond rotational energy increases. There exists an energy minimum
at a finite torsion angle, ϕmin = 16.5◦.

Figure 2.4a presents as a further example a helix of poly(oxymethylene)
(POM). It corresponds to an all-gauche-conformation. Different from poly-
(tetrafluoroethylene), here a trans-rotational isomeric state also exists, but it
does not represent the energy minimum.

For some polymers, one does not observe a unique helical form but two
or three different ones that possess very similar energies. Poly(oxymethylene)
actually gives an example for such a polymorphism. Here one can also find
the helix shown in Fig. 2.4b. It also represents an all-gauche-conformation,
but the torsion angle, which was near 60◦ for the first modification, has now
increased to 77◦. Which of the two helices is formed depends on the crys-
tallization conditions. In principle, at a given temperature, only one of the
modifications can be stable, the other one being metastable. Annealing can
induce a transformation to the stable state, but often this transformation is
kinetically hindered, and then it may become difficult to identify the stable
modification.

For the description of a given helix, we have a natural basis. One refers
to the screw symmetry and just specifies the screw operation that maps the
molecule onto itself. Screw operations comprise a turn about a certain angle,
say Δζ, together with a simultaneous longitudinal shift, say Δz. These two
values that describe the move from one monomer unit to the adjacent one
constitute the external helix parameters. For polyethylene we have Δζ =
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Fig. 2.4. Two different helices formed by POM: 2/1-helix (a) and 9/5-helix (b).
Side views (left) and views along the helix axis (right)

180◦ and Δz = 1.27 Å, for poly(tetrafluoroethylene) Δζ = 166◦ and Δz =
1.31 Å, for the two polymorphic forms of poly(oxymethylene) Δζ = 180◦,
Δz = 1.78 Å and Δζ = 200◦, Δz = 1.93 Å, respectively. The external helix
parameters are functions of the internal helix parameters, the latter being
given by the bond rotational angles. The dependencies may be formulated
on the basis of geometrical considerations, assuming constant values for both
bond lengths and valence angles.

Several polymers form helices that are simple in the sense that Δζ is
a fraction of 360◦, like 180◦, 120◦ or 90◦. These are called m/1-helices, m giv-
ing the number of monomeric units arranged along one 360◦-turn. Examples
are polypropylene, polystyrene or poly-1-butene, which all form 3/1-helices.
The all-trans-conformation of polyethylene and the all-gauche-conformation of
poly(oxymethylene) correspond to 2/1-helices. The next general helical form
is given by the m/n-helices. The name is meant to indicate that m monomeric
units are equally distributed over n turns.

Particularly interesting is the observation that polymers with n > 1 of-
ten cannot be described as an m/n-helix with m and n being small numbers.
Poly(tetrafluoroethylene) and the second form of poly(oxymethylene) repre-
sent such examples. The helix of poly(tetrafluoroethylene) is usually called
a 13/6-helix, thereby indicating that 13 CF2 units are distributed over six
turns. This results in the measured value of Δζ as

360◦ · 6 : 13 = 166◦ .

Likewise, the second modification of poly(oxymethylene) also requires a non-
simple notation for the description of the conformation, namely that of a 9/5-
helix. If we recall the reason for the winding of chains, these results are not
surprising. The helix conformation represents the minimum of the intramolec-
ular energy and this may arise as a result of competing forces. The internal
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helix parameters thus determined do not always have to be associated with
a simple external helical structure.

Interestingly enough, measurements with higher accuracy showed that
even the descriptions of the poly(tetrafluoroethylene) chain as a 13/6-helix
and of the poly(oxymethylene) chain as a 9/5-helix are only approxima-
tions. Refinements of data necessitated a change in the characteristic ra-
tio m/n towards higher numbers. In the case of poly(tetrafluoroethylene),
the evaluation of electron diffraction data indicated a 473/219-helix. What
does this mean? Indeed, these observations can be understood as indicat-
ing a qualitative structural change. Rather than accepting helix descriptions
with large numbers n and m as representing exact structures, it might be
more appropriate to assume that these helices possess no strict periodicity at
all. This would mean that poly(tetrafluoroethylene) and poly(oxymethylene),
in the crystalline state, both form irrational helices. As a consequence,
the lattice lacks periodicity in one direction. We rather find, in the chain
direction, two independent length scales, as given by the height Δz per
monomeric unit and the height of one 360◦-turn, respectively. Structures like
this are generally addressed as incommensurate. They are also found in
non-polymeric materials such as, for example, certain anorganic ferromag-
netic compounds, where the positional and the magnetic order show different
periodicities.

2.3 Coils

The huge number of rotational isomeric states that a polymer chain may
adopt becomes effective in fluid phases. Polymers in solution or the melt
change between the different states, and these are populated according to
the laws of Boltzmann statistics. Because the large majority of conformations
are coil-like, it is said that polymers in the fluid state represent random
coils.

At first, one might think that any treatment of the properties of a poly-
mer has to emanate from its microscopic chemical structure, since this de-
termines the rotational isomeric states. One would then have to consider in
detail the effects of bond lengths, bond angles, rotational potentials, the pres-
ence and length of sidegroups, etc. Treatments of this kind are necessarily
specific and vary between different compounds. It is now a most important
fact that one can omit the consideration of all these structural details in many
discussions. Indeed, the dependence on the chemical constitution vanishes if
structural properties are discussed for a lowered resolution, corresponding to
length scales in the order of some nanometers. In such a coarse-grained pic-
ture, polymer chains become equivalent to each other and then also exhibit
a common behavior.

Figure 2.5 shows a polymer coil as it might look like at limited resolution.
We would observe a bent chain with a continuous appearance.
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Fig. 2.5. Polymer chain in low resolution (contour length lct, local chain direction
e(l)) together with an associated chain of Ns freely jointed segments, connecting the
junction points 0 to Ns

For its representation, we choose a curvilinear coordinate l, running from
l = 0 at one end to l = lct at the other end and describe the varying local
chain direction by unit vectors e(l).

What can be said about such a chain? A first point of interest is the inter-
nal chain flexibility. Chains may be stiff, i.e., oppose strong bending, or also
highly flexible, thus facilitating coiling. In searching for a parameter that pro-
vides a measure for the chain flexibility we can start from the orientational
correlation function. This function, denoted Kor, describes the correlation
between the chain directions at two points with a curvilinear distance Δl. It
is defined as

Kor(Δl) = 〈e(l)e(l + Δl)〉 . (2.5)

Here and in the following, the brackets indicate an ensemble average that
includes all chain conformations with their statistical weights. For homopoly-
mers, Kor is independent of the position l, and we restrict our attention to
this case. Figure 2.6 shows the general shape expected for Kor. Owing to the
flexibility of the chain, orientational correlations must vanish for sufficiently
large distances Δl. Therefore, Kor tends asymptotically to zero

Kor(Δl → ∞) → 〈e(l)〉〈e(l + Δl)〉 = 0 . (2.6)

We are looking for a parameter that measures the chain stiffness. As a suitable
choice, one can take the integral width of Kor. This is known in the literature
as the persistence length, and we denote it by lps

lps =

∞∫

0

Kor(Δl)d(Δl) . (2.7)
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Fig. 2.6. Schematic representation of the orientational correlation function of
a chain. The integral width determines the persistence length lps

The second, main point of concern are the global chain properties, as
described by statistical means. More specifically, we inquire about the distri-
bution of chain conformations. As has already been indicated, for the coarse-
grained chain this problem can be solved immediately. Distribution functions
may be directly deduced, with the aid of the following procedure. We split
the chain into subchains of uniform length, this length being much larger than
lps. Then, as indicated in Fig. 2.5, we associate with the chain a sequence of
vectors

(a1,a2, . . . ,aNs) ,

which connect the junction points of the subchains. We thus have created
a segment chain composed of Ns straight units. Now, rather than discussing
the statistical properties of the continuously bent chain, we consider the dis-
tribution functions of the segment chain. Obviously, with regard to the global
properties both agree with each other. Quantities of interest are the distribu-
tion functions for the vectors connecting any two junction points. One pair is
of special interest, namely the two end points of the chain, being connected
by the end-to-end distance vector R. Regarding the given situation, the dis-
tribution function for R can be directly formulated. As we have chosen the
subchains large compared to the persistence length, successive steps ai of the
segment chain show no orientational correlations. For this freely jointed
segments chain we therefore have a situation that is formally identical with
the case of the movement of a Brownian particle suspended in a liquid. The
latter performs a diffusive motion set up by perfectly uncorrelated steps. So
do the segments of the chain! The distribution function for the displacement
of a Brownian particle is well-known. It equals a Gaussian function and this,
therefore, also represents the solution of our polymer problem.
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Hence, it appears at first that the system can be treated quite easily. How-
ever, this is not the full truth. On reconsidering the situation more carefully,
we must recognize that an important point has been disregarded: The compar-
ison with the Brownian motion is only allowed, if the volume of the monomer
units is neglected since, in contrast to the diffusing Brownian particle, a chain
of monomers with non-vanishing sizes cannot occupy a given location twice.
What are the consequences? They are drastic indeed since the existence of an
excluded volume alters the situation not just a little, but completely. For
monomers of finite size, the stated equivalence between the polymer problem
and the diffusion case is no longer valid. Since the excluded volume forces are
effective between any two monomers at arbitrary distances along the chain
and thus, are of long-range nature, this results in a qualitative change in be-
havior. It is intuitively clear that the excluded volume interaction must result
in a chain expansion, but how can this effect be quantified? Up until 1972 this
amounted to a major problem, but then it was solved in one step by de Gennes
who noted that the problem is formally equivalent to a solvable problem in
the physics of critical phenomena. With the basic solution on hand, excluded
volume effects were analyzed further in experiments, theories and computer
simulations. Studies led to a second important conclusion: It became clear
that all expanded chains have properties in common, to be described by
simple power laws.

Since all monomeric units have a finite size, at this point one might won-
der if chains with Gaussian properties exist at all. In fact, they do exist in
two cases. First, one finds solvents known as theta solvents, which produce
conditions for the interaction between the monomeric units resulting in an
effective vanishing of the excluded volume interactions. The second case is
even more astonishing and may come as a real surprise: In the early years
of polymer science Flory predicted on theoretical grounds that chains in the
melt should behave as if the monomers have a zero volume. In fact, much
later this was proven to be valid by utilizing neutron scattering.

Hence in summary, it can be stated that polymer chains possess, on length
scales in the order of some nanometers, properties that are independent of the
chemical structure. They may be grouped into two universality classes with
common characteristic behaviors

• Gaussian or ideal chains, for vanishing excluded volume interactions,
• expanded chains, otherwise.

Strictly speaking, we have to restrict this statement somewhat. In fact, the
prediction that all coils may be assigned to either of two universality classes
holds only for very large molar masses, strictly in the limit M → ∞. Real
chains, in particular those with moderate molar masses, often exhibit interme-
diate structures representing mixed states where the chain character depends
on the selected length scale. For example, chains can be expanded over their
whole length but follow Gaussian statistics within parts, or, chains can resem-
ble straight rods for low molar masses and turn into ideal coils for high molar
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masses. The model of a persistent chain introduced later in this chapter
deals with the latter case. Examples illustrating the first sketched behavior
will also be presented.

2.3.1 The Ideal Chain

Let us now at first treat in more detail the ideal chains, on the basis of the
introduced freely jointed segments model. We choose numbers, from 0 to Ns,
for the junction points, as indicated in Fig. 2.5. The distance between the
junction points i and j is given by

rij =
j∑

l=i+1

al , (2.8)

and the end-to-end vector R by

R =
Ns∑
l=1

al . (2.9)

Of interest are the properties of the distribution function

p(R)d3R ,

which expresses the probability that the end-to-end vector points into the
volume element d3R at a distance R. The distribution function is isotropic,
depending only on

R = |R|
and is normalized ∫

p(R)d3R = 1 . (2.10)

As explained above, p(R) is identical with the distribution function for the
displacement of a Brownian particle, after Ns uncorrelated steps. The latter is
derived in many textbooks on statistical physics. It equals a Gaussian function
with the explicit form

p(R) =
(

3
2π〈R2〉

)3/2

exp− 3R2

2〈R2〉 . (2.11)

Figure 2.7 depicts this functional dependence.
It is important to note that Eq. (2.11) includes only one parameter, namely

the mean squared end-to-end distance 〈R2〉, related to p(R) by

〈R2〉 =

∞∫

R=0

p(R)R24πR2 dR . (2.12)
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Fig. 2.7. Gaussian distribution function of the end-to-end distance vector R of an
ideal chain

〈R2〉 can be directly calculated for our chain of freely jointed segments by

〈R2〉 =

〈(
Ns∑
l=1

al

)2〉
=

〈
Ns∑

l,l′=1

al · al′

〉
. (2.13)

Since
〈al · al′〉 = 〈|al|2〉δll′ , (2.14)

we obtain
〈R2〉 = Ns〈|al|2〉 . (2.15)

When dealing with polymer chains, one requires a parameter for estimat-
ing the size of the volume that encloses a polymer chain in the fluid phase.
A suitable measure is provided by the quantity R0, defined as

R0 = 〈R2〉1/2 . (2.16)

Furthermore, if we introduce a mean segment length as by

as = 〈|al|2〉1/2 , (2.17)

which agrees with the mean diameter of the subchains, as an important first
result we obtain the relation between the size of a polymer and the segment
number Ns, as

R0 = asN
1/2
s . (2.18)
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Equivalent equations hold for the distribution functions of the internal
distance vectors rij between two junction points in the chain, which follow as

p(rij) =

(
3

2π〈r2ij〉

)3/2

exp− 3rij

2〈r2ij〉
, (2.19)

with
〈r2ij〉 = |i− j|〈|al|2〉 = |i− j|a2

s . (2.20)

The coarse-grained representation of a given polymer by the freely jointed
segments model is not unambiguous. There is only the requirement to select
the subchain so that its contour length is large compared to the persistence
length lps. Different choices of subchains imply different values of Ns and as.
All pairs of values, however, have to lead to the same value of R2

0. For two
different choices, with parameters Ns, as and N ′

s, a
′
s, we have

Nsa
2
s = R2

0 = N ′
sa

′2
s (2.21)

and, therefore,
Ns

N ′
s

=
a′2s
a2
s

. (2.22)

An identical equation holds for the number of segments, Ns(i, j), between the
points i, j in the chain. A change of the subchain size from as to a′s has to be
accompanied by changes of the segment numbers according to

Ns(i, j)
N ′

s(i, j)
=
a′2s
a2
s

. (2.23)

The possibility of a rescaling of the representative freely jointed chain, as
formulated by these equations, expresses an important basic property of ideal
polymer chains, namely their self-similarity. Self-similarity here means that
independent of the chosen length scale, i.e., the resolution, an ideal chain
always exhibits the same internal structure, one for which all internal distance
vectors are distributed like Gaussian variables. A change of the length scale
leaves the characteristics of this structure invariant.

Self-similarity is the basic property of fractal objects and ideal chains do
indeed represent a nice example. The fractal dimension can be directly derived.
If one proceeds ns segmental steps, starting from a point in the interior of the
chain, there results on average a displacement of the order of

r(ns) � asn
1/2
s . (2.24)

In reverse, the number of monomers n contained in a sphere with radius r
may be estimated as

n ∝ ns ∝ r2 . (2.25)
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Hence, the fractal dimension d, being defined as the exponent in the general
relation

n ∝ rν (2.26)

between the mass of an object and its diameter, follows as

d = 2 . (2.27)

We see that the polymer chain occupying a region in three dimensions, fills
this volume only partially, corresponding to a fractal dimension d = 2. As one
consequence, the monomer density cm in the volume of size R0 occupied by
a chain decreases with an increasing degree of polymerization, N , like

cm(N) � N

R3
0

∝ 1
N1/2

. (2.28)

It is important to recognize that self-similarity holds only for a finite range.
Clearly, the upper bound is set by the size of the molecule, R0. On the other
hand, there is a lower limit, which is given by the persistence length.

It is possible to remove the arbitrariness in the choice of the freely jointed
segments model by imposing a second condition. For this purpose, the length
of the real chain in the fully extended straight form, denoted Rmax, may be
employed, and a second condition formulated as

Rmax = Nsas . (2.29)

This implies that the model chain and the real chain agree not only in size,
as assured by the equality

〈R2〉 = Nsa
2
s , (2.30)

but also in the contour length. Both equations together yield a unique value
for the segment length as, which is known as the Kuhn length aK, and given
by

as = aK =
〈R2〉
Rmax

. (2.31)

Obviously, the Kuhn length characterizes the stiffness of a given polymer
chain. Stiffer chains have larger values of aK and for a perfectly stiff chain
one obtains aK = Rmax. One may anticipate and does indeed find a close
correspondence between the persistence length and the Kuhn length, namely,
as shown later (Eq. (2.128)),

aK = 2lps .

A related parameter, called the characteristic ratio, was introduced by
Flory and is defined as

C∞ =
〈R2〉
Na2

b

. (2.32)
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Table 2.1. Characteristic ratios C∞ of some selected polymers derived from viscos-
ity measurements under theta conditions at the indicated temperatures (data from
Flory [1])

Polymer Solvent T [◦C] C∞

polyethylene dodecanol-1 138 6.7
polystyrene (atactic) cyclohexane 35 10.2
polypropylene (atactic) cyclohexane 92 6.8
polyisobutylene benzene 24 6.6
poly(vinylacetate) (atactic) i-pentanone-hexane 25 8.9
poly(methylmethacrylate) (atactic) various solvents 4–70 6.9
poly(oxyethylene) aqueous K2SO4 35 4.0
poly(dimethylsiloxane) butanone 20 6.2

Here a2
b stands for the sum of the squares of the lengths of the backbone bonds

of one monomeric unit
a2
b =

∑
i

a2
i . (2.33)

For low degrees of polymerization, this ratio is not a constant but varies
with N . For large values of N , an asymptotic value is reached and the latter
is referred to as C∞. In the hypothetical case of freely jointed bonds forming
the chain backbone, C∞ would equal unity, whereas for real polymers having
fixed valence angles and restrictions in the rotations about the C–C bonds,
the values are in the range of 4 to 12. As will be explained in a later section
(Eq. (8.167)), viscosity measurements on polymers dissolved in theta solvents
may be used for determination of C∞. Table 2.1 contains values of C∞ for
some selected polymers obtained by this method. Solvent and temperature
are always indicated, since C∞ may vary between different theta systems.

With the aid of C∞ a scaling law can be formulated, which relates the
size R0 of a polymer to the degree of polymerization N . It reads as

R2
0 = 〈R2〉 = C∞a2

bN , (2.34)

or
R0 = a0N

1/2 , (2.35)

with
a0 = abC

1/2
∞ . (2.36)

Equation (2.35) tells us how R0 scales with N : If we double N , then R0

increases by a factor 21/2. As we can see, scaling is a property of power law
dependencies, and the scaling factor follows from the exponent.

Exact Distribution Function for Finite Chain Lengths

When we formulated Eq. (2.19) for the distribution function p(R), we did this
on the basis of the assumption that the random walk carried out by a chain of
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freely jointed segments should be equivalent to the motion of a Brownian par-
ticle. We pointed out that the equivalence is lost in the presence of excluded
volume forces; however, this is not the only possible deficiency in the treat-
ment. Checking the properties for large values of R we find that the Gaussian
function never vanishes and actually extends to infinity. For the model chain,
on the other hand, an upper limit exists, and it is reached for

R = Rmax = Nsas . (2.37)

At this point, the chain is completely stretched and cannot be extended fur-
ther. It is possible to analyze the problem and to derive the exact distribution
function for the end-to-end distance vector of a finite segment chain. The
result may then be compared to the Gaussian function.

The distribution function p(R) of a chain of Ns freely jointed segments
with length as may be expressed as

p(R) =
1
Z

∫
P

l

al=R

d3a1 · d3a2 . . . d3aNs , (2.38)

where Z denotes the partition function

Z =
∫

a1

d3a1 ·
∫

a2

d3a2 . . .

∫

aNs

d3aNs =
(
4πa2

s

)Ns
. (2.39)

The integral in Eq. (2.38) includes all chain conformations {al} leading to an
end-to-end distance vector R.

One can derive an exact expression for the Fourier transform of p

p(q) =
∫

exp(−iqR)p(R)d3R . (2.40)

As the integration over all values of R removes the bounds in the integral
Eq. (2.38), all orientations of all segments become included, and p(q) may be
written as

p(q) =
1

(4πa2
s )Ns

∫

{al}

exp

(
−iq

∑
l

al

)
d3a1 d3a2 . . . d3aNs

=
1

(4πa2
s )Ns

(∫
exp(−iqa)d3a

)Ns

. (2.41)

The integral over all orientations of one segment can be evaluated. Adopting
spherical coordinates for a (|a| = as, ϑ, ϕ), with the axis (ϑ = 0) oriented
parallel to q, we have
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∫
exp(−iqa)d3a = a2

s

∫

ϑ,ϕ

exp(−iqas cosϑ) sinϑdϑdϕ

= a2
s2π

1∫

x=cos ϑ=−1

exp(−ixqas)dx

=
as4π
q

sin(qas) . (2.42)

This leads us to an analytical expression for p(q)

p(q) =
(

sin(qas)
qas

)Ns

. (2.43)

The distribution function p(R) follows as the reverse Fourier transform

p(R) =
1

(2π)3

∫
exp(iqR)

(
sin(qas)
qas

)Ns

d3q . (2.44)

Equation (2.44) can be evaluated numerically, and Fig. 2.8 shows, as an ex-
ample, the result of a calculation for Ns = 5, which corresponds to a rather
short chain. It is compared to the Gaussian function for the same value of
〈R2〉 (= Nsa

2
s = R2

max/Ns). As we can see, both equations produce almost
identical results for R < Rmax. In addition, the contributions of the Gaussian
distribution function for R > Rmax appear to be negligible.

We may conclude from this result that in treatments of polymer chains
in the melt or in solutions in the absence of excluded volume forces, the use
of the Gaussian distribution function is always permitted. However, there
exist situations that require the application of the exact equation. Rubber

Fig. 2.8. Exact distribution function for the end-to-end distance vector of a chain
of five freely jointed segments (broken line) compared to the Gaussian distribution
function with the same value of 〈R2〉 (continuous line)
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elasticity, or treatments of yielding properties of polymers are affected by the
limits in extensibility given for finite chains. Here, the Gaussian approximation
can be used for small deformations only, and dealing with large deformations
necessitates an introduction of the exact expression.

The Brownian Chain

Here the question may arise as to which system the Gaussian distribution
function Eq. (2.11) really belongs to. There is a formal answer: It is associated
with a limiting configuration of a segment chain, having an infinite number
of segments

Ns −→ ∞
and vanishing segment lengths as

as −→ 0 ,

both parameters being coupled, so that the mean squared end-to-end distance
remains constant

Nsa
2
s = R2

0 = const .

This constitutes a purely mathematical procedure, resulting in a mathematical
object rather than a real polymer chain. Note that the contour length of this
object tends to infinity,

lct = Nsas =
R2

0

as
−→ ∞ for as −→ 0 , (2.45)

and this property also emerges in the Gaussian distribution function.
The object we have thus created is usually addressed as the Brownian

chain, and it is characterized by just one parameter, namely the mean squared
end-to-end distance 〈R2〉. Although defined as a mathematical limiting struc-
ture, the Brownian chain may indeed serve as a representative of real polymer
chains in a certain well-defined region, namely for length scales that are larger
than the persistence length and smaller than the size R0 of the chain. The
Brownian chain correctly represents the fractal properties and differs from the
real chain in that it extends these fractal properties down to zero distances.

In polymer theories, one even proceeds one step further and introduces
the infinite Brownian chain, which is associated with the passage to the
limit 〈R2〉 → ∞. By this procedure, the upper bound for the self-similarity
is also removed, and we now have an object that is self-similar on all length
scales. This is exactly the situation of physical systems at critical points.
Hence, the infinite Brownian chain represents a perfect critical object and the
consequences are far-reaching. Application of all the effective theoretical tools
developed for the study of critical phenomena now also becomes possible for
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polymer systems. In particular, scaling laws that tell us how certain structure
properties scale with the degree of polymerization may be derived. As men-
tioned above, scaling laws always have the mathematical form of a power law,
and we have already met one example in Eq. (2.35),

R0 = a0N
1/2 .

We derived this relation directly, by simple arguments, but it could have been
assessed on general grounds as well, referring to fundamental properties of
critical systems. On these grounds, scaling laws may be deduced for other
properties and conditions, thereby proceeding much in the same manner as,
for example, in discussions of the critical behavior of a ferromagnet near the
Curie temperature.

We will leave this discussion now, as any further extension would definitely
be outside our scope. Nevertheless, it may have become clear that the intro-
duction of mathematical objects such as the infinite Brownian chain can be
very helpful. Although they are not real, they may be employed with success
as starting points for series expansions that lead us right back into the world
of real polymer systems.

The Debye Structure Function

Much insight into the structure of polymer systems is provided by scattering
experiments, and so we have to be concerned about the scattering properties of
single ideal polymer chains. As we shall see, the associated scattering function
can be formulated explicitly and then applied in the evaluation of experimental
data. Our treatment is based on general relations of scattering theory, in
particular on Eq. (A.21) given in the Appendix and readers who lack this
knowledge should first study Sect. A.1.1 for a brief introduction.

Let us first consider the pair distribution function for the segments of
a freely jointed chain. For Ns segments in a chain, this pair distribution func-
tion, gs(r), is given by

gs(r) =
1
Ns

Ns−1∑
m=−(Ns−1)

(Ns − |m|)
(

3
2π|m|a2

s

)3/2

exp
(
− 3r2

2|m|a2
s

)
. (2.46)

Here, gs(r) is obtained by a summation over all pairs of segments, whereby
we identify their distances with those of the (lower) adjacent junction points
(the contribution for m = 0 equals a δ-function). There exist Ns − |m| pairs
with a distance m and all these pairs have a common distribution function,
as given by Eqs. (2.19) and (2.20). Approximating the sum by an integral

Ns−1∑
m=−(Ns−1)

−→
Ns−1∫

m=−(Ns−1)

dm ≈ 2

Ns∫

m=0

dm
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and introducing the following substitutions:

u′ =
ma2

s

r2
u =

Nsa
2
s

r2
=
R2

0

r2
, (2.47)

one obtains

gs(r) = 2
Ns

R3
0

R0

r

∫ u

u′=0

(
1 − u′

u

)(
3

2πu′

)3/2

exp− 3
2u′

du′ (2.48)

=
Ns

R3
0

g̃0

(
r

R0

)
. (2.49)

The pair distribution function for the monomers follows as

g(r) =
N

Ns
gs(r) , (2.50)

giving

g(r) =
N

R3
0

g̃0

(
r

R0

)
. (2.51)

According to this result, the pair distribution function of an ideal chain is
given by a general function g̃0 that depends on the dimensionless quantity
r/R0. In this reduced representation all ideal chains become equivalent. Note
that the integral value of g̃0 is unity. Since

∫
gd3r = N (2.52)

we have ∫
g̃0

(
r

R0

)
d3

(
r

R0

)
= 1 . (2.53)

Quite characteristic is the behavior for r/R0 � 1, i.e., for distances within
the macromolecule. The integral in Eq. (2.48) may be replaced in this limit
by its value for u→ ∞, and this leads to

g(r) ∝ g̃0

(
r

R0
� 1

)
∝ 1
r
. (2.54)

Equation (2.54) expresses a power law behavior. In the last section we ad-
dressed the self-similar nature of ideal polymer chains. The power law exactly
reflects this property, since the function g(r) ∝ 1/r maintains its shape if we
alter the unit length employed in the description of r.

Next we derive the structure function of an ideal chain. It can be measured
in diluted states, i.e., for low average monomer densities

〈cm〉 ≈ 0 . (2.55)
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Using Eq. (2.50), the general Eq. (A.21) becomes

S(q) =
N

Ns

∫
exp(−iqr)gs(r)d3r . (2.56)

If we take Eq. (2.46) and carry out the Fourier transformation for the Gaussian
functions, we obtain

S(q) =
2N
N2

s

∫ Ns

m=0

(Ns −m) exp
(
−ma2

sq
2

6

)
dm . (2.57)

Hereby, we again replaced the summation by an integration. The substitutions

v′ =
ma2

sq
2

6
v =

Nsa
2
sq

2

6
=
R2

0q
2

6
(2.58)

lead to

S(q) = N
2
v

∫ v

v′=0

(
1 − v′

v

)
exp(−v′)dv′ . (2.59)

The integral can be evaluated and the result then is usually presented as

S(q) = NSD(q) (2.60)

with

SD

(
v =

R2
0q

2

6

)
=

2
v2

(exp(−v) + v − 1) . (2.61)

SD is known as the Debye structure function of an ideal chain; a plot is
shown in Fig. 2.9.

In correspondence to the pair distribution function, the Debye structure
function can also be expressed in a reduced form, with v as a general variable.
Both the equations for the pair distribution function and for the scattering
law indicate that all ideal chains are similar to each other, differing only in
the length scale as expressed by R0.

Some properties of SD are noteworthy and furnish the basis for a straight-
forward analysis of experiments. First consider the limiting behavior for v → 0,
focussing on data near the origin of reciprocal space, i.e., in the range of small
scattering angles. Series expansion of Eq. (2.61) gives

SD(v → 0) = 1 − v

3
· · · (2.62)

Experimental results are usually presented in plots of S−1 versus q2, corre-
sponding to the equivalent formulation

S−1(q2) = N−1

(
1 + q2

R2
0

18
+ · · ·

)
. (2.63)

Equation (2.63) exemplifies Guinier’s law, which generally holds for scat-
tering experiments on dilute colloidal systems. As explained in the Appendix,



2.3 Coils 37

Fig. 2.9. Debye structure function of an ideal chain with size R0

Sect. A.3.1, analysis of small angle scattering data enables the determination
of the colloidal mass, here given by the molar mass or the degree of polymer-
ization, and of the size of the colloid, here represented by R0. The general
relation formulated by Eq. (A.71) in the Appendix

S(q2) = N

(
1 − q2

R2
g

3
+ · · ·

)

or

S−1(q2) = N−1

(
1 + q2

R2
g

3
+ · · ·

)

includes the radius of gyration, denoted Rg. For a chain of N monomers,
Rg is defined as

R2
g =

1
N

N∑
i=1

〈|ri − rc|2〉

whereby rc denotes the location of the center of gravity

rc =
1
N

N∑
i=1

ri .
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As is also shown in the Appendix, this is equivalent to

R2
g =

1
2N2

N∑
i,j=1

〈|ri − rj |2〉 .

A comparison of Eqs. (2.63), (A.71) tells us that for an ideal chain we have

R2
g,0 =

R2
0

6
. (2.64)

According to Eq. (2.61), the Debye structure function exhibits a charac-
teristic asymptotic behavior

SD(v → ∞) =
2
v

=
12
q2R2

0

. (2.65)

Here we again find a power law, SD ∝ 1/q2, and indeed, it just represents the
Fourier transform of the previously discussed power law g(r) ∝ 1/r.

Quite instructive is a plot of measured data in the form Sq2 versus q,
known as the Kratky plot. This is depicted schematically in Fig. 2.10. The
plateau region, representing the part of the curve where SD ∝ 1/q2, contains
information about the internal structure of the chain. As the plateau value is
given by

Sq2(q2R2
0 � 1) =

12N
R2

0

(2.66)

=
12

C∞a2
b

. (2.67)

Fig. 2.10. Kratky plot of the scattering function of an ideal chain. The internal
rigidity of the chain results in a change to a rod-like scattering at higher q’s
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When applying Eq. (2.32), it can be used for a determination of the char-
acteristic ratio C∞, which expresses an intrinsic, molar mass independent
property.

The range of the self-similar internal structure ends when r approachesR0.
Around q � 1/R0 the curve deviates from the plateau and decays to zero. As
mentioned earlier, universal behavior is also limited towards small distances.
Specific polymer properties emerge if one approaches distances in the order of
the persistence length. For this reason, for polymers at higher q’s deviations
from the Debye structure function show up, beginning around q � l−1

ps . As
indicated in Fig. 2.10, one observes an increase in the slope and the structure
function changes into that of a rod. It can be shown that the latter is generally
given by

Srod ∝ 1
q

(2.68)

and this implies
Sq2 ∝ q . (2.69)

The point of cross-over from coil-like to rod-like scattering may be used for
an estimation of the persistence length.

Theta Solutions and Polymer Melts

As proved by experiments, ideal chains are found in theta solutions and in
the melt. It is possible to provide qualitative explanations for this peculiar
behavior and we begin with the solutions.

For an explanation of what theta conditions in polymer solutions mean, it
may help to recall the properties of real gases. For these systems the relation
between pressure p, (molar) volume ṽ and temperature can be represented by
the van der Waals equation

(
p+

ã

ṽ2

)
(ṽ − b̃) = R̃T . (2.70)

It includes two parameters, ã and b̃, which account for attractive van der
Waals forces and repulsive hard core interactions, respectively. There exists
one temperature, called Boyle temperature, where the attractive and repulsive
forces compensate each other, so that an apparent ideal gas behavior results.
To locate this point a virial expansion in terms of the particle density cm =
NL/ṽ (NL: Avogadro–Loschmidt number) can be used, in the form

p = kT (cm +A2c
2
m + A3c

3
m . . .) . (2.71)

The Boyle temperature is that point at which the second virial coefficient A2

vanishes, so that second order corrections to the ideal equation of state do
not exist. The virial expansion of the van der Waals equation is
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pṽ = R̃T − ã

ṽ
+ b̃p+ O

(
1
ṽ2

)

= R̃T − ã

ṽ
+
b̃R̃T

ṽ
+ O

(
1
ṽ2

)

= R̃T

(
1 +

1
ṽ

(
b̃− ã

R̃T

))
+ O

(
1
ṽ2

)
(2.72)

or, in terms of cm,

p = kT

(
cm + c2m

(
b̃

NL
− ã

NL
2kT

)
+ . . .

)
. (2.73)

Hence, the second virial coefficient is given by

A2 =
b̃

NL
− ã

NL
2kT

(2.74)

and we obtain for the Boyle temperature, TB, the result

TB =
ã

NLkb̃
=

ã

R̃b̃
. (2.75)

Another formulation for A2 and derivation of TB follows from the general
theory of real gases. A2 may be directly deduced from the pair interaction
potential between the gas molecules, u(r), by

A2 =
1
2

∫ ∞

r=0

(
1 − exp−u(r)

kT

)
4πr2 dr . (2.76)

Curve (a) in Fig. 2.11 gives an example of the form of u(r) that results from the
superposition of the repulsive hard core interaction, originating from Pauli’s
exclusion principle opposing an overlap of electron wave functions, and the at-
tractive dispersive forces of the van der Waals type. At the Boyle temperature
this integral vanishes.

An analogous situation is encountered in a theta solution, with the quan-
tity of interest now being the effective interaction potential between two solute
molecules, or in the polymer case, between two monomeric units. The curve (b)
in Fig. 2.11 represents the situation in a good solvent, where the potential is
repulsive at all distances. Each solute molecule is surrounded by a hydrate
shell of solvent molecules and this shell has to be destroyed when two solute
molecules or monomeric units are to approach each other. The situation in
a poor solvent is different, due to there being a preference for solute-solute
contacts. Here, the solute molecules effectively attract each other and repul-
sion occurs only at short distances, for the same reason as for the real gases,
namely the presence of hard core interactions. For poor solvents, therefore,
u(r) has an appearance similar to the pair interaction potential in a van der
Waals gas and a shape like curve (a) in Fig. 2.11.



2.3 Coils 41

Fig. 2.11. Pair interaction potential for two monomers in a poor solvent (a) and in
a good solvent (b). The potential (a) is also representative for a van der Waals gas

On dealing with solutions, the osmotic pressureΠ rather than the pressure
p becomes the quantity of interest. Its virial expansion may be written as

Π = kT (A1cm +A2c
2
m +A3c

3
m + . . .) , (2.77)

where cm now denotes the number density of monomers in the solution. If we
identify u(r) in Eq. (2.76) with the effective monomer–monomer interaction
potential, we obtain the second virial coefficient for the osmotic pressure. We
can now define what theta conditions mean: For a solution at the theta point,
A2 vanishes. A solution then becomes quasi-ideal; neither excluded volume
interactions nor attractive forces emerge, since both compensate each other.
Under this condition, monomers appear to have zero volumes and polymers
exhibit ideal chain behavior.

Figure 2.12 presents measurements of osmotic pressures for solutions of
polystyrene in cyclohexane, carried out under variation of the weight fraction
of the dissolved polymer, cw ∝ cm and of the temperature. As can be seen, A2

vanishes at 35 ◦C, which therefore represents the theta point of this system.
As indicated by the positive values of A2, for temperatures above 35 ◦C the
repulsive forces become dominant. On the other hand, we observe negative
values of A2 for T < 35 ◦C, indicative of the actual presence of effective
attractive forces between the monomers. On further cooling, the attractive
forces then lead to a separation of solvent and solute, and the sample becomes
turbid.
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Fig. 2.12. Concentration and temperature dependence of the osmotic pressure mea-
sured for solutions of PS (Mn = 1.3 ×105 g mol−1) in cyclohexane. Data from Stra-
zielle in [2]

Figure 2.13 shows the result of a light scattering experiment on the same
system, a dilute solution of polystyrene (Mn = 8.79 ×106 g mol−1) in cyclo-
hexane. The measurement was conducted exactly at the theta point. As we
have learned, ideal chains scatter according to the Debye structure function,
with the asymptotic limit SD ∝ 1/q2. The data display the product

Σ(q)q4 ∝ SDq
4 ∝ exp−R2

0q
2

6
+
R2

0q
2

6
− 1

plotted versus q2. Σ(q) is the Rayleigh ratio and Kl represents the con-
trast factor for light; definitions and equations are given in the Appendix, in
Eqs. (A.4), (A.50), and (A.51). The observed linear dependence at high q’s
demonstrates that the chains in this system do indeed show ideal behavior.

Next, let us turn to the situation in a polymer melt. The arguments to
be presented are even more qualitative than those given for the theta point,
but they nevertheless address the basic features correctly. We consider the
conditions experienced by one isolated polymer chain. The density distribu-
tion, averaged over all conformations of the macromolecule, has an appearance
similar to the bell-shaped curve in Fig. 2.14. There is a central maximum fol-
lowed by continuous decays. We begin with an ideal chain and then consider
the changes introduced by the excluded volume forces. These create a poten-
tial energy, which is sensed by each monomer. In a simplified approximate
treatment, this potential, denoted ψev

m , may be represented by the expression

ψev
m = kTvecm . (2.78)
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Fig. 2.13. Result of a light scattering experiment on a dilute solution of PS (Mn =
8.78×106 g mol−1) in cyclohexane, carried out under theta conditions (T = 34.7 ◦C).
Data from Miyaki et al. [3]

This is an empirical equation of the mean field type, based on the assump-
tion that ψev

m should be proportional to the local density of monomers. The
magnitude of the excluded volume interactions is described by the volume-like
parameter ve, with typical values of the order of 1 Å3 – 1 nm3. The factor kT
is explicitly included, not only for dimensional reasons, but also in order to
stress that excluded volume energies, like hard core interactions in general, are
of entropic nature (entropic forces are always proportional to T , as is exempli-
fied by the pressure exerted by an ideal gas, or the restoring force in an ideal
rubber to be discussed in a later chapter). If the local potential experienced
by a monomer is given by Eq. (2.78), then forces arise for all non-uniform
density distributions. For the coil under discussion, forces in radial direction
result since everywhere, with the exception of the center at x = 0, we have
dcm/d|x| < 0. The obvious consequence is an expansion of the chain.

Envisage now the situation given in the melt. In contrast to an isolated
polymer molecule, the monomer concentration cm here is constant. For the
excluded volume force onto a monomer, it is irrelevant whether the contact-
ing other monomers are parts of the same chain or of other chains. The de-
termining quantity is the total concentration and the latter does not vary.
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Fig. 2.14. Monomer density distribution for an individual chain along a line through
the center and the constant overall density in a melt (broken line)

Hence, no forces arise and the polymer chain does not expand. In the liter-
ature one often finds a particular formulation for addressing this effect. As
the concentration gradient given for an isolated chain is compensated for by
the presence of monomers from the other chains, one says that the latter ones
‘screen’ the intramolecular excluded volume interactions. Here we leave it at
this short remark. Further comments on this picture and the origin of the
saying will follow at a later stage when we discuss the properties of semidilute
solutions.

Neutron scattering experiments allowed this prediction for melts to be
verified. There is no way to investigate the conformation of single chains in
a melt by conventional scattering experiments, since a melt just represents
a densely packed ensemble of monomers which shows some short-range order.
In order to make single chains visible, one has to label them, i.e., supply them
with contrast, so that they stand out from the background produced by the
majority chains. Choosing neutrons for the scattering experiment, there is
a preparatory technique to achieve this aim. Experiments can make use of the
fact that neutrons possess different cross-sections for protons and deuterons.
On the other hand, substitution of hydrogens by deuterium for part of the
chains in a sample leaves the interaction forces and thus the chain confor-
mations essentially unchanged (minor effects exist, but in melts they appear
to be negligible). Thus, for a determination of the single chain conformation
in a melt, a dilute solution of deuterated chains in a protonated matrix (or
reversely, of protonated chains in a deuterated matrix) can be prepared and
investigated by neutron scattering. Figure 2.15 presents the results of one of
the first experiments, carried out on a solution of poly(methyl methacrylate)
(PMMA) in deuterated PMMA.
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Fig. 2.15. Scattering curves obtained in a neutron scattering experiment on solu-
tions of PMMA (mol fractions as indicated) in d-PMMA. Data from Kirste et al. [4]

The continuous lines, which give perfect data fits, represent Debye struc-
ture functions (with minor corrections to account for polydispersity effects),
thus proving the ideal behavior of chains. In addition, intensities were found
to be proportional to the weight fraction of deuterated chains

I(q) ∝ cwSD(q) . (2.79)

As will be discussed in the next chapter, exactly this proportionality is in-
dicative for a vanishing second virial coefficient. Hence, deuterated chains
dissolved in a normal melt of the same polymer represent a theta system,
fully equivalent to a theta solution with a low molar mass liquid. Therefore,
as this second criterion is also fulfilled, we have unambiguous evidence of the
existence of ideal chains in melts.

2.3.2 The Expanded Chain

Expanded chains are found in dilute solution in good solvents. The effective
interaction energy between two monomers is always repulsive here and, as
a consequence, chains become expanded. Expansion will come to an end at
some finite value since it is associated with a decreasing conformational en-
tropy. The reason for this decrease is easily seen by noting that the number
of accessible rotational isomeric states decreases with increasing chain exten-
sion. The decrease produces a retracting force, which balances the repulsive
excluded volume forces at equilibrium.
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The formal problem treated by polymer theory in the analysis of ex-
cluded volume effects is the analysis of the properties of self-avoiding ran-
dom walks. As already mentioned, it is not possible to come to a satis-
factory solution if one takes an ideal random walk as a starting point and
then introduces the excluded volume forces as a perturbation. Since ex-
cluded volume forces are effective between any pair of monomers, for ar-
bitrary distances Δl along the chain, they are of long-range nature and as
a consequence ideal chains and expanded chains become qualitatively differ-
ent. The distribution function for the end-to-end vector and, in particular,
the scaling law, which relates the size of the volume occupied by a poly-
mer with its degree of polymerization, differ qualitatively from Eqs. (2.11)
and (2.35) which are valid for ideal chains. Derivations are due to des
Cloiseaux and de Gennes. Solutions were obtained using field theoretical
techniques and renormalization group methods and here we just cite the re-
sults.

The distribution function p(R) has a general shape as indicated in Fig. 2.16.
When compared to the properties of ideal chains there is first a change in the
asymptotic behavior at large R. It is now given by

p(|R| → ∞) ∝ exp−
(
R

RF

)5/2

(2.80)

rather than by p ∝ exp[−3R2/(2R2
0)]. An even more drastic modification oc-

curs around R = 0. Whereas ideal chains there reach the maximum, expanded
chains show a steep decrease down to zero, indicating that a return of a self-

Fig. 2.16. Distribution function for the end-to-end vector of an expanded chain in
the asymptotic limit of large degrees of polymerization (RF: size of the chain)
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avoiding random walk to its starting point is highly improbable. The shape
near the origin equals the power law

p(|R| → 0) ∝
(
R

RF

)0.275

. (2.81)

The described distribution function refers to the asymptotic limit of large
degrees of polymerization. It is important to note that, as for ideal chains,
p(R) includes one parameter only, now the quantity RF, called Flory radius
in the literature. RF is a measure for the diameter of the volume that encloses
an expanded polymer chain, with the identical definition as for ideal chains

RF = 〈R2〉1/2 . (2.82)

Of central importance for the discussion of the properties of expanded
chains is the relation between RF and the degree of polymerization N . It is
given by the scaling law

RF = aFN
3/5 . (2.83)

The value of the exponent, ν = 3/5, expresses the difference to the ideal
chains, where ν = 1/2. Strictly speaking, ν = 0.6 is not the exact value, as
the calculation by renormalization group methods gives ν = 0.588, but for the
description of experimental results the rounded value is accurate enough. The
second parameter included in the equation, aF, denotes the effective length
per monomer. It depends on the microstructure of the chain, i.e., on bond
lengths, volume angles and the rotational angles of the isomeric states, and,
in particular, on the strength of the excluded volume force.

Although the rigorous solution was not presented until 1972, Flory offered
arguments in support of the scaling law Eq. (2.83) already much earlier. The
point of concern is the equilibrium conformation of a chain, being the result
of a balance between repulsive excluded volume forces and retracting forces
arising from the decreasing conformational entropy. Above, with Eq. (2.78),
we have already introduced Flory’s expression for the potential produced by
the excluded volume forces,

ψev
m = kTvecm .

ψev
m describes, in a mean field approximation, the potential experienced by

a monomer as a result of the interaction with the other monomers in its
neighborhood. Consequently, we may represent the contribution of the ex-
cluded volume interactions to the free energy density by

ΔFev

ΔV =
cmψ

ev
m

2
=
kTvec

2
m

2
(2.84)

whereby the division by 2 eliminates the twofold counting of each pair of
monomers. The excluded volume contribution to the free energy of one chain,
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denoted f ev
p , is obtained by an integration over the occupied volume, hereby

calculating the average over all conformations

f ev
p =

1
2

∫
kTve〈c2m(r)〉d3r . (2.85)

In the mean field treatment one approximates the square average 〈c2m〉 by
〈cm〉2. If we choose for the description of the mean local density 〈cm(r)〉
a Gaussian function, with a radius of gyration Rg and the maximum at the
center of gravity rc

〈cm(r)〉 = N

(
3

2πRg

)3/2

exp−3|r − rc|2
2R2

g

, (2.86)

we obtain

f ev
p =

kT

2
veN

2

(
3

4πR2
g

)3/2 ( 6
2πR2

g

)3/2 ∫
exp−6|r − rc|2

2R2
g

d3r

=
kT

2
veN

2

(
3

4πR2
g

)3/2

. (2.87)

As we are interested in the change of f ev
p following from an expansion, we

choose the ideal state with vanishing excluded volume forces, where Rg = Rg,0

and R2
0 = a2

0N , as our reference and write

f ev
p =

kT

2
ve

(
3
4π

)3/2
R4

0

a4
0

1
R3

g,0

(
Rg,0

Rg

)3

, (2.88)

or, by replacement of Rg with R assuming R ∝ Rg and applying Eq. (2.64)

f ev
p =

kT

2
ve

(
18
4π

)3/2
R0

a4
0

(
R0

R

)3

. (2.89)

Now we introduce a parameter ‘z’, defined as

z =
(

3
2π

)3/2
ve
a4
0

R0 (2.90)

and express f ev
p as

f ev
p =

kT

2
33/2z

(
R0

R

)3

. (2.91)

The parameter z is dimensionless and according to Eq. (2.91) determines the
excluded volume energy associated with a single chain.

Next, we require a formula for the second part of the free energy, f s
p, the

one originating from the conformational entropy. The following expression
appears suitable:
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f s
p = βkT

((
R0

R

)2

+
(
R

R0

)2
)

. (2.92)

This is an empirical equation that accounts for the fact that for ideal chains,
i.e., vanishing excluded volume interactions, the coil size in thermal equilib-
rium equals R0; β is a dimensionless coefficient of order unity. The first term
gives the repulsion experienced on squeezing a polymer chain, the second term
represents the retracting force built up on a coil expansion. As only the second
term appears to be relevant for the case under discussion, we ignore the first
term and write

f s
p ≈ βkT

(
R

R0

)2

. (2.93)

Combining the expressions for the two contributions yields the free energy of
a chain as a function of R

fp

(
R

R0

)
= f ev

p + f s
p =

kT

2
33/2z

(
R0

R

)3

+ βkT

(
R

R0

)2

. (2.94)

We now calculate the equilibrium value of R at the minimum of the free
energy, where

dfp

d(R/R0)
= 0 . (2.95)

This leads us to

z
(
R0

R

)4

�
(
R

R0

)
(2.96)

and to the equation

R � R0z1/5 �
(
ve
a4
0

)1/5

R
6/5
0 =

(
vea

2
0

)1/5
N3/5 . (2.97)

This is Flory’s result. We identify R with the Flory radius RF and write

RF = aFN
3/5 (2.98)

with
aF � (

vea
2
0

)1/5
. (2.99)

Here and generally we use the symbol ‘�’ in all ‘order of magnitude equa-
tions’ that correctly include all variables but omit the exact numerical front
factor.

As we can see, Flory’s simple mean field treatment leads to the same result
as the exact analysis by renormalization group methods. In fact, this comes
as a real surprise because there is no good reason to expect that a mean field
treatment, which in principle is not allowed for a single chain in view of the
pronounced concentration variations, would give the correct result. However,
it does, and so it appears that different faults in the treatment mutually cancel
out.



50 2 Single Chain Conformations

Fig. 2.17. Relation between the radius of gyration Rg and the molar mass M ,
observed in light scattering experiments on dilute solutions of PS in toluene. The
continuous straight line corresponds to the scaling law Eq. (2.83). Data from Win-
termantel et al. [5]

The scaling law Eq. (2.83) is indeed in full accord with experiments and
Fig. 2.17 presents an example. It shows the results of light scattering exper-
iments on dilute solutions of polystyrene in toluene. These can be used for
determining the radius of gyration Rg ∝ RF and the molar mass M ∝ N .
Both parameters follow from a measurement of the scattering intensity in
the low angle range, by applying Guinier’s law Eq. (A.71). The straight line
in Fig. 2.17 agrees exactly with the scaling law Eq. (2.83). The set of data
was obtained in only two runs on two polydisperse samples. In the mea-
surements, a fractionation of the samples by gel permeation chromatography
was combined with a simultaneous registration of low angle light scattering
curves.

From the scaling law Eq. (2.83) it is possible to deduce the fractal dimen-
sion of expanded chains, as well as characteristic properties of the pair distri-
bution function and the structure function. The fractal dimension d follows
from the same argument as applied above for the ideal chains, by estimating
the average number of monomers included in a sphere of radius r which is
now given by

n(r) ∝ r5/3 . (2.100)

This power law implies that we have

d = 5/3 . (2.101)

The pair distribution function in the chain interior may be derived similarly.
For a given pair distribution function g(r) the average number of monomers
in a sphere of radius r can be calculated in general by

n(r) =
∫ r

r′=0

g(r′)4πr′2 dr′ . (2.102)
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On the other hand, we know that

n(r) �
(
r

aF

)5/3

. (2.103)

Equating the two expressions and taking the first derivatives on both sides
gives

g(r)r2 ∝ r2/3 , (2.104)

hence
g(r) ∝ r−4/3 . (2.105)

Equation (2.105) describes the pair distribution function for distances that lie
within the chain interior, i.e., for r < RF. Note the difference to the respective
relation for ideal chains, g(r) ∝ r−1 (Eq. (2.54)).

More detailed considerations show that, as in the case of the ideal chains,
the pair distribution function of expanded chains may also be presented in
a reduced general form

g(r) =
N

R3
F

g̃F

(
r

RF

)
. (2.106)

Again one parameter only, RF, enters into this expression and g̃F is a general
function. Fourier transformation of the pair distribution function gives the
structure function SF(q):

SF(q) =
N

R3
F

∫
exp(−iqr)g̃F d3r . (2.107)

A straightforward evaluation of the integral yields, for the asymptotic behavior
at large q’s in an inverse correspondence to Eq. (2.105), the power law

SF(q) ∝ q−5/3 . (2.108)

Note that the fractal dimension d = 5/3 shows up directly in the asymptot-
ically valid power law. Recall that this was also found for the ideal chains,
where we had SD ∝ q−2. Indeed, we meet here a general relationship: Scat-
tering laws measured for fractal objects exhibit the fractal dimension directly
in the asymptotic exponent

S(q) ∝ q−d . (2.109)

Figure 2.18 exemplifies the predicted behavior and depicts the neutron scat-
tering curve measured for a dilute solution of polystyrene in CS2, which is
a good solvent. The plot of I−1 versus q5/3 gives a straight line, in agreement
with Eq. (2.108).

In fact, such a result, with the power law characteristic for expanded chains
extending over the full q-range of the measurement, is not always found, but
only for very high molar masses and a really good solvent. The range, where
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Fig. 2.18. Intensities obtained in a neutron scattering experiment on dilute solu-
tions of (deuterated) PS (Mw = 1.1 ×106 g mol−1) in CS2 (cw = 10−3 g cm−3). The
straight line corresponds to the scattering law characteristic for expanded chains.
Data from Farnoux [6]

Eqs. (2.105), (2.108) apply, is in general limited. There is first an upper limit
for r and correspondingly a lower limit for q, being given by the size of the
chain; the validity of Eq. (2.108) ends on approaching q � 1/RF. Near q = 0,
the structure function depends only on the degree of polymerization and the
radius of gyration of the expanded chain, as described by Guinier’s law. The
relation between Rg and RF differs slightly from the respective relation valid
for ideal chains, Eq. (2.64). Computer simulations suggest a relation of the
form

R2
g,F =

R2
F

6.66
. (2.110)

Of particular interest are the observations in neutron scattering exper-
iments on solutions of polystyrene in cyclohexane presented in Fig. 2.19.
These findings point to a second limitation for the power laws Eqs. (2.105)
and (2.108), now towards small distances r, corresponding to high values of
q. Curves enable us to follow the changes in the internal chain structure.
They are introduced if starting from an ideal conformation at the theta point
(T = 35 ◦C) by increasing the temperature. The excluded volume interaction
is ‘switched on’, and then becomes further intensified. We see that, in the
q-range of the experiment up to temperatures of about 50 ◦C, chains remain
ideal, as is demonstrated by the scattering law I−1 ∝ q2. Then, at higher tem-
peratures deviations from ideal behavior become apparent on the low q side
and indicate a cross-over to the scattering behavior of an expanded chain,
I−1 ∝ q5/3 < q2. This is a most interesting observation, as it tells us that
the chain structure actually becomes dependent on the length scale: While
the structure is still ideal for short distances, for larger distances we find the
properties of expanded chains. In other words, the fractal dimension of the
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Fig. 2.19. Neutron scattering intensities I(q) measured for dilute solutions of PS
in cyclohexane (Mw = 3.8 ×106 g mol−1; qR � 1) at the indicated temperatures
above the theta point (T = 35 ◦C). The straight lines correspond to the scattering
law of ideal chains (subsequent curves are shifted upwards by constant amounts).
Data from Farnoux et al. [7]

chain here depends on the resolution; for low resolutions d = 5/3, for high
resolutions d = 2. The cross-over occurs at a certain distance, in the literature
called thermic correlation length. Its value, ξt, can be derived from the
value of q where the change takes place in the scattering curve, by ξt � 1/q.
Obviously ξt must be determined by the excluded volume forces, i.e., by the
parameter ve, with ξt shifting to lower values on increasing ve.

The functional dependence ξt(ve) may be derived using simple scaling
arguments. The experimental observation suggests modeling a chain with non-
vanishing excluded volume interactions as indicated in Fig. 2.20. Here, the
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Fig. 2.20. Model of a composite chain with different fractal dimensions for r < ξt

(d = 2) and r > ξt (d = 5/3). The cross-over distance corresponds to the size of the
pearls

polymer is represented by a chain of Nsu subunits with size ξt, each subunit
being composed of nsu monomers. We have

N = Nsunsu . (2.111)

Since within each subunit, chain sequences exhibit ideal behavior, we can
write

ξ2t = a2
0nsu . (2.112)

Excluded volume interactions become effective for distances larger than ξt.
We may account for this behavior in the model by assuming that the subunits
cannot interpenetrate each other. The chain of subunits then displays the
properties of an expanded chain, and we express its size with the aid of the
scaling law Eq. (2.83), identifying aF with ξt and N with Nsu:

RF � ξtN
3/5
su . (2.113)

This leads us to
R

5/3
F � ξ

5/3
t

N

nsu
(2.114)

and, in combination with Eq. (2.112), to

R
5/3
F = ξ

5/3
t

a2
0

ξ2t
N =

a2
0

ξ
1/3
t

N . (2.115)

On the other hand, we may apply the scaling law Eq. (2.83) for expanded
chains also directly, together with Eq. (2.99)

R
5/3
F = a

5/3
F N = v1/3

e a
2/3
0 N . (2.116)
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A comparison shows us

ξt � a4
0

ve
. (2.117)

Thus, we have a reciprocal relation between ξt and ve.
We previously introduced the dimensionless parameter z as (Eq. (2.90))

z =
(

3
2π

)3/2
ve
a4
0

R0 .

Making use of Eq. (2.117), we realize what z actually means. We obtain

z � R0

ξt
=
a0N

1/2

a0n
1/2
su

= (Nsu)1/2 (2.118)

and thus may conclude that z2 gives the number of subunits of the model
chain.

Above, it was pointed out that samples with ideal behavior are well rep-
resented by the asymptotic limit given by the Brownian chain, provided that
the number of segments is large enough. An analogous property is found for
expanded chains. Here, a mathematical object also exists, which furnishes
a good representation of real chains. It is constructed in an analogous man-
ner by carrying out a passage to the limit N → ∞, aF → 0, ξt → 0, thereby
keeping RF constant. This mathematical object, which is a continuous curve
with infinite contour length like the Brownian chain, was named Kuhnian
chain by Janninck and des Cloiseaux. It constitutes an object with a fractal
dimension d = 5/3 for all distances r � RF, down to r → 0. Polymers in good
solvents are well represented by the Kuhnian chain provided that the number
of subunits is large, i.e., z � 1.

It is always useful to check for the number of independent parameters. For
the Brownian chain there is only one parameter, namely R0. For the expanded
chain in general, we find two parameters, RF and ξt, but in the Kuhnian limit
ξt → 0 we return again to the simple one parameter case.

2.4 The Persistent Chain

The ideal and the expanded chain were both introduced as chains composed
of freely jointed segments, under the prerequisite as � lps. For distances Δl
along the chain with Δl ≤ lps the coil models can no longer be applied, since
the local chain stiffness then leads to rod-like properties. The model of the
persistent chain, also known as the ‘worm-like chain’ or the ‘Kratky–Porod
chain’ is able to describe this change. It can be used in particular in treatments
of chains with a high backbone rigidity, i.e., a high value of lps, and, moreover,
when dealing with polyelectrolytes where the repulsive Coulomb forces acting
between ionized groups result in a stiffening.
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The basic structure of the persistent chain has, indeed, already been in-
troduced in Fig. 2.5 at the beginning of Sect. 2.3. It shows a chain with
varying curvature being represented by a curve of length lct, which possesses
at each point a well-defined tangent vector, e(l). In order to describe the chain
structure, statistics was employed and the orientational correlation function
Kor(Δl) introduced by Eq. (2.5)

Kor(Δl) = 〈e(l)e(l + Δl)〉 .
The persistent chain model is obtained by an obvious choice for Kor, namely
the exponential function

Kor(Δl) = exp−Δl
lps

. (2.119)

The persistence length is included as the characteristic parameter and is equal
to the integral width of Kor (Eq. (2.7)). A basic property of Kor is

Kor(Δl1 + Δl2) = Kor(Δl1)Kor(Δl2) , (2.120)

which means that bending motions of adjacent chain parts are not correlated.
It is possible to directly derive for the thus established model the mean

squared end-to-end distance 〈R2〉. We write

R =

lct∫

0

e(l′)dl′ (2.121)

and obtain

〈R · R〉 =

lct∫

l′=0

lct∫

l′′=0

〈e(l′)e(l′′)〉dl′ dl′′ (2.122)

= 2

lct∫

Δl=0

Kor(Δl)(lct − Δl)dΔl (2.123)

= 2

lct∫

Δl=0

exp
(
−Δl
lps

)
(lct − Δl)dΔl . (2.124)

The evaluation of the integral is straightforward and yields

〈R2〉 = 2lpslct − 2l2ps

(
1 − exp− lct

lps

)
. (2.125)

We have two limiting cases: First, for lct � lp we obtain

〈R2〉 = 2lpslct . (2.126)



2.4 The Persistent Chain 57

Since lct ∝ N , we find here, as expected, the scaling law of an ideal chain.
The Kuhn segment length aK of an ideal chain was introduced in Eqs. (2.29)
and (2.30), (Eq. (2.31))

〈R2〉 = aKlct (2.127)

if we identify lct with the length Rmax of the straight, fully extended chain.
A comparison gives the relation

2lps = aK (2.128)

between the persistence length and the length of the Kuhn segment. The other
limit, that of a stiff rod, is found for lct � lps. A power law expansion of the
exponential function in Eq. (2.125) yields

〈R2〉 = l2ct . (2.129)

Equation (2.125) thus describes the transition from rod-like properties to a coil
structure. Here the equation refers to chains with varying length lct, but, when
replacing lct by Δl and 〈R2〉 by 〈r2ij〉, it can also be applied to one given chain
to express the changing inner structure.

How does the persistence length change with the temperature? An answer
follows from a statistical mechanical treatment of the bending motion of a long
thin rod. The given mechanical property is its stiffness, which can be specified
by a bending modulus Eb. Consider now a short piece of length Δl within
this rod as is sketched in Fig. 2.21. Imagine that starting from the straight
conformation plotted on the left bending is carried out, keeping the lower end

Fig. 2.21. Bending of a section with length Δl within a thin rod: The direction θ
of the tangent vector e changes linearly between 0 and θm
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fixed and turning the upper end by an angle θm. In mechanical equilibrium θ
changes linearly,

θ(l) =
θm
Δl

l , (2.130)

within this section, i.e., a circular form with a constant curvature develops.
Using Eb, the local bending energy per unit length is given by

du
dl

=
Eb

2
de

dl
de

dl
(2.131)

=
Eb

2

(
dθ
dl

)2

. (2.132)

The total energy stored in the curved section of length Δl is therefore

Δu =
Eb

2

(
θm
Δl

)2

Δl . (2.133)

At a temperature T the mean energy uptake is given by

kT = 〈Δu〉 =
Eb

2
〈θ2

m〉
Δl

, (2.134)

which leads to
〈θ2

m〉
2

=
kTΔl
Eb

. (2.135)

The orientational correlation function specifies the magnitude of the bending
motion. We have

Kor(Δl) = 〈e(l)e(l + Δl)〉 = 〈cos θm〉 ≈ 1 − 〈θ2
m〉
2

= 1 − kTΔl
Eb

. (2.136)

Using the power law expansion of the exponential function,

Kor(Δl) ≈ 1 − Δl
lps

, (2.137)

we obtain by comparison

lps =
Eb

kT
. (2.138)

Hence, the persistence length is proportional to the bending modulus and
decreases with increasing temperature. In the case of polyelectrolyte chains in
solution, the bending modulus relates to both, the inner stiffness of the chain
as given by the properties of the chain backbone and to the Coulomb repulsive
forces between the chain-fixed ions. Note that the stiffness introduced and
expressed by the parameter lps expands the chain only over finite distances.
As demonstrated by Eq. (2.126) no long-ranged expansion results because it
is produced by the excluded volume effect. Persistent chains still belong to
the universality class of ideal chains.
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Different from the ideal chain description, the persistent chain model is
not only able to deal with short chains, but also addresses the effect of tem-
perature. Another model, which will introduced as the ‘Ising chain’ in the
next section, accomplishes these tasks in an even more detailed, rather per-
fect manner.

2.5 The Ising Chain

A discussion of the properties of a polymer chain only on the basis of the
global scaling laws or with the aid of Eqs. (2.125) and (2.138) would be in-
complete. The description of specific properties of a given polymer molecule,
as for example its internal energy or entropy, requires a different approach.
For this purpose, one needs a treatment that takes the energetics of the chain
into account. As was explained at the beginning of this chapter, chain confor-
mations may be described microscopically in terms of the accessible rotational
isomeric states. Now we shall see that this representation of a polymer corre-
sponds exactly to the one-dimensional Ising model, also known as the Ising
chain, which is an important concept in general statistical mechanics. As the
tools for the treatment of Ising chains are well-known, Birshtein and Ptitsyn,
and Flory adapted the Ising model to the polymer problem. This adaption
addressed in the literature as the rotational isomeric state (RIS) model,
opens a straightforward way to calculate the thermodynamic functions and
the specific structural properties of a given polymer chain.

The general Ising chain is set up by an array of interacting particles, with
each particle being able to change between a certain number of different states.
In the simplest case, interactions are restricted to adjacent pairs. Then the
total energy of the chain equals the sum of the interaction energies between
neighbors and for n particles is given by

u =
n∑

i=2

u(ϕi−1, ϕi) . (2.139)

Here ϕi denotes the state of particle i and u(ϕi−1, ϕi) is the pair interaction
energy.

The relation to a polymer chain becomes clear when one considers that
the energy of one conformational state is a function of the rotational isomeric
states of all Nb backbone bonds. The latter correspond to the ‘particles’ of
the Ising chain. Conditions would be trivial if all bonds were energetically
independent, since then the chain energy would be equal to Nb times the
mean energy of a single bond. In reality, however, adjacent bonds may well
affect each other. This is nicely exemplified by polyethylene, where the ‘pen-
tane effect’, indicated in Fig. 2.22, becomes effective. The depicted conforma-
tion represents the sequence gauche+-gauche−, and pentane is the shortest
n-alkane, for which this sequence may be built up. As we see, a sharp fold
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Fig. 2.22. The conformation of pentane associated with a sequence ϕ2 b= gauche+,
ϕ3 b= gauche−. A sharp fold with elevated energy is formed

is formed, and it is clear that this requires more energy than is necessary to
form two independent gauche-states. Since the Ising model deals with energies
depending on the states of both partners in a pair, it can take this situation
into account.

The main task in the computation of thermodynamic functions is the
calculation of the partition function, denoted Z. In our case, its basic form
can be formulated directly, as

Z =
∑
{ϕi}

exp−u{ϕi}
kT

. (2.140)

The summation includes all conformational states, here shortly designated
by {ϕi}, each state being determined by specifying the conformations of all
bonds

{ϕi} =̂ (ϕ1, ϕ2, . . . , ϕNb) .

The energy for each conformational state of the chain follows from Eq. (2.139).
Knowing the partition function, we can employ general laws of thermody-

namics in order to deduce the free energy per polymer chain, using

fp = −kT lnZ , (2.141)

the entropy per chain, by

sp = −∂fp

∂T
, (2.142)

and the internal energy per polymer, by

ep = fp + Tsp . (2.143)

The partition function Z can be evaluated in straightforward manner. We
write

Z =
∑
ϕ2

· · ·
∑

ϕNb−1

exp

(
− 1
kT

Nb∑
i=2

u(ϕi−1, ϕi)

)

=
∑
ϕ2

· · ·
∑

ϕNb−1

Nb∏
i=2

exp
(
− 1
kT

u(ϕi−1, ϕi)
)
, (2.144)
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or, introducing the statistical weights

t(ϕi−1, ϕi) = exp
(
− 1
kT

u(ϕi−1, ϕi)
)

(2.145)

briefly

Z =
∑
ϕ2

· · ·
∑

ϕNb−1

Nb∏
i=2

t(ϕi−1, ϕi) . (2.146)

To explain further, let us select polyethylene as an example. Here, for
the three states per bond, nine different values tij exist. We collect them in
a matrix T

T =

⎛
⎝ 1 w0 w0

1 w0 w1w0

1 w1w0 w0

⎞
⎠ . (2.147)

Thereby we attribute to the different rotational isomeric states the following
indices

trans =̂ 1, gauche+ =̂ 2, gauche− =̂ 3 .

The matrix includes two parameters, denoted w0 and w1. To understand the
matrix structure, imagine that a specific conformation is formed by subse-
quently arranging all bonds, emanating from the lowest energy state all-trans.
We start at i = 2 and then proceed up to the end, i = Nb − 1 (the step to
the last bond, i = Nb, can be omitted, since for this bond without a further
neighbor no energy contribution arises). The coefficients of the matrix give
the statistical weights associated with each step:

1. Since no energy is required if the trans-state is maintained, we have

u(i, 1) = 0 → ti1 = 1 .

2. Formation of a gauche+-state after a trans- or gauche+-state requires an
energy Δutg and thus carries a statistical weight

w0 = exp−Δutg/kT < 1 . (2.148)

3. Increased energies of formation are associated with the ‘hairpin-bend’-
conformations gauche+-gauche− and gauche−-gauche+, resulting in low-
ered statistical weights, as expressed by the product w1w0 with

w1 < 1 .

The evaluation of the partition function

Z =
∑
ϕ2

t(ϕt, ϕ2) ·
∑
ϕ3

t(ϕ2, ϕ3) · · ·
∑

ϕNb−2

t(ϕNb−3, ϕNb−2)

·
∑

ϕNb−1

t(ϕNb−2, ϕNb−1)t(ϕNb−1, ϕt) (2.149)
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can be rationalized using matrix multiplication rules. We can repeatedly apply
the general summation rule

∑
l

tiltlj = (T2)ij (2.150)

for successive reductions:

Z =
∑
ϕ2

t(ϕt, ϕ2) ·
∑
ϕ3

t(ϕ2, ϕ3) · · ·
∑

ϕNb−2

t(ϕNb−3, ϕNb−2) · (T2)ϕNb−2,ϕt

=
∑
ϕ2

t(ϕt, ϕ2) ·
∑
ϕ3

t(ϕ2, ϕ3) · · ·
∑

ϕNb−3

t(ϕNb−4, ϕNb−3) · (T3)ϕNb−3,ϕt

·
·
= (TNb−2)11 . (2.151)

Hence, Z can be obtained by calculating the power (Nb−2) of T and extract-
ing the 11-coefficient. The task of calculating the power (Nb − 2) of T can
be much simplified if T is first transformed into a diagonal form. This can be
achieved as usual by solving the set of homogeneous linear equations

∑
j

TijAj = λAi , (2.152)

i.e., evaluating the determinant

|T− λ1| = 0 . (2.153)

There are three eigenvalues, λ1, λ2 and λ3, and they set up a diagonal ma-
trix Λ. The matrix A that transforms T into Λ

Λ = A−1TA (2.154)

is composed of the three eigenvectors, (A1,j), (A2,j), (A3,j). With the aid of
Λ, the matrix multiplication becomes very simple

TNb−2 = (AΛA−1)Nb−2

= AΛA−1AΛA−1 · · ·AΛA−1

= AΛNb−2A−1 . (2.155)

We employ this equation and obtain an explicit expression for the partition
function Z

Z = A11(A−1)11λNb−2
1 +A12(A−1)21λNb−2

2 +A13(A−1)31λNb−2
3 . (2.156)
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Usually all three eigenvalues are different and one, say λ1, is the largest

λ1 > λ2, λ3 .

Since Nb is huge, the partition function is well approximated by

Z ≈ A11(A−1)11λNb−2
1 . (2.157)

The free energy then follows as

fp = −kT ((Nb − 2) lnλ1 + ln
(
A11A

−1
11

))
. (2.158)

For a polymer, where Nb � 1, we can ignore the constant second term. This
leads us to a simple expression for the free energy per bond

fp

Nb
= −kT lnλ1 . (2.159)

The entropy and the internal energy per bond follow as

sp
Nb

= k lnλ1 +
kT

λ1

∂λ1

∂T
(2.160)

and
ep
Nb

=
fp

Nb
+ T

sp
Nb

. (2.161)

As we can see, in the framework of the RIS model it is a simple matter of
deriving the thermodynamic functions for a given polymer chain, the only
requirement being a knowledge of the matrix T of the statistical weights.

Let us carry out the calculation for polyethylene. The determinant equa-
tion to be solved is ∣∣∣∣∣∣

1 − λ w0 w0

1 w0 − λ w0w1

1 w0w1 w0 − λ

∣∣∣∣∣∣ = 0 . (2.162)

This is a third order equation, but an evaluation shows that it factorizes,
having the form

(w0 − λ− w0w1)[λ2 − λ(w0 + w0w1 + 1) + w0(w1 − 1)] = 0 . (2.163)

Therefore, the solutions can be given analytically. The three eigenvalues are

λ1/2 =
1
2

[
(w0 + w0w1 + 1) ±

√
(w0 + w0w1 + 1)2 + 4w0(1 − w1)

]

λ3 = w0(1 − w1) . (2.164)

As is obvious, the largest eigenvalue is λ1.
It is instructive to consider the numerical results for polyethylene in a com-

putation for its melting point, Tf = 415K. For the energy required to form
a gauche-state after a trans-state we choose the value Δũtg = 2 kJ mol−1 (see
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Sect. 2.1) and obtain w0 = 0.56. The second statistical weight that is needed,
the product w0w1, has so far not been experimentally determined. Estimates
for the related energy of the hairpin-bend states have been obtained by po-
tential energy calculations, using empirical expressions for the non-bonded
interaction energies. Values in the range of 7 kJ mol−1 are thus indicated,
corresponding to a statistical weight w0w1 = 0.13. With these values the fol-
lowing results are obtained for the thermodynamic functions, expressed per
mol of CH2-units:

f̃ = NLfp/Nb = − 2.28 kJ mol−1 ,

s̃ = NLsp/Nb = 8.25 J K−1 mol−1 ,

ẽ = NLep/Nb = 1.14 kJ mol−1 .

It is interesting to compare these results with the measured heat of fusion and
the entropy of fusion

Δh̃f = 4.10 kJ mol−1 ,

Δs̃f = Δh̃f
m/Tf = 9.9 J K−1 mol−1 .

We notice that the experimental heat of fusion, Δh̃f , is much larger than can
be accounted for by the change in the intramolecular conformational energy,
as given by ẽ. Hence, the major part of the heat of fusion seems to be related
to a change in the intermolecular energy, i.e., to the increase in the specific
volume (which amounts to 15%). With regard to the change in entropy, the
conclusions are different. Here the major part is indeed contributed by the
change of the conformation from the all-trans state into the coiled form, with
only the smaller rest being due to the increase in free volume.

In Sect. 2.1 we carried out a first estimate of the fraction of trans-states
and gauche-states in polyethylene. In this estimate, independence of the rota-
tional isomeric states of different bonds was implicitly assumed. We now may
check for the modification introduced by the pentane effect, because the Ising
model also provides us with equations for the fractions of the different pairs
of conformational states. We rewrite the partition function

Z =
∑
{ϕi}

t(ϕ1, ϕ2) . . . t(ϕNb−2, ϕNb)

and choose a special form that collects all conformations with l pairs of type
(i, j). These pairs produce a factor tlij . We extract this factor and denote the
remainder Ω(i, j; l)

Z =
Nb−1∑
l=0

(tij)l · · ·Ω(i, j; l) . (2.165)

The probability for one specific conformation, p{ϕi}, is given by

p{ϕi} =
exp(−u{ϕi}/kT )

Z
. (2.166)
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We first derive the probability p(i, j; l) that l pairs of type (i, j) occur in the
chain. The necessary summation over the corresponding states of the chain is
already implied in our formulation, and we can write

p(i, j; l) =
tlijΩ(i, j, l)

Z
. (2.167)

From this result it follows that the average number of pairs (i, j), denoted
〈nij〉, is given by

〈nij〉 =
Nb−1∑
l=0

l
tlijΩ(i, j, l)

Z
. (2.168)

or, using the above relations, by

〈nij〉 =
tij
Z

∂Z

∂tij
=

∂ lnZ
∂ ln tij

= (Nb − 1)
∂ lnλ1

∂ ln tij
. (2.169)

The probability for a sequence (i, j) in adjacent bonds, denoted φij , is

φij =
〈nij〉
Nb − 1

=
∂ lnλ1

∂ ln tij
. (2.170)

Insertion of the statistical weights w0 and w0w1 yields

φtt = 0.29 ,
φg+t = φtg+ = φg−t = φtg− = 0.14 ,

φg+g+ = φg−g− = 0.06 ,
φg+g− = φg−g+ = 0.015 .

The pentane effect shows up quite clearly, as the fraction of pairs with se-
quences gauche+-gauche− and gauche−-gauche+ is rather low.

Finally, the fractions of trans- and gauche-conformational states in the
polyethylene chains are obtained by

φi =
∑

j

φij , (2.171)

resulting in

φt = 0.60 ,
φg+ = φg− = 0.20 .

As expected, compared to the estimate based on the assumption of indepen-
dent rotational isomeric states, the fraction of trans-states is increased.

The RIS model also enables a computation of the characteristic ratio C∞
to be made, if the stereochemical properties of the chain are included into
the considerations. The calculations are more tedious but, using the algebraic
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properties of matrices, they can still be carried out in straightforward manner.
As it turns out, the experimental value for polyethylene, C∞ = 6.7, is repro-
duced for reasonable assumptions about the molecular parameters, namely
a C–C–C valence angle of 112◦ and gauche-rotational angles ϕg+ = 127.5◦

and ϕg− = 232.5◦.
One may even advance one step further and calculate structure factors

of specific chains numerically, for a comparison with the results of scattering
experiments. Figure 2.23 presents, as an example, neutron scattering data of
polycarbonate obtained for mixtures of deuterated and protonated species.
The experiment covers a large range of q’s, and results are represented in the
form of a Kratky plot.

We observe a plateau, characteristic for ideal chains, and then a rise at
higher q’s, for distances shorter than the persistence length where the micro-
scopic chain structure takes over control. The peculiar shape of the curve in
this range reflects specific properties of polycarbonate and indeed, these can
be reproduced by calculations on the basis of the RIS model. The continu-
ous curve represents the theoretical results, and even if the agreement is not
perfect, it describes the main characteristics qualitatively correctly.

Calculations based on the RIS model now exist for the majority of common
polymers, thus providing a quantitative representation of the energetic and
structural properties of single macromolecules. The prerequisite is a knowledge
about the energies u(ϕi−1, ϕi) associated with the different pairs of confor-
mational states. Information about these values has improved steadily with
the number of carefully analyzed experiments. Clearly, the model does not
account for the excluded volume interaction, but it provides a microscopic
understanding for all situations with ideal chain behavior.

Fig. 2.23. Neutron scattering experiment on mixtures of PC and d-PC. The contin-
uous curve has been calculated on the basis of the RIS model. Data from Gawrisch
et al. [8]
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3

Polymer Solutions

After having considered the structural behavior of single chains we turn now
to the collective properties of polymers in bulk phases and in the next two
chapters we discuss liquid states of order. Liquid polymers are in thermal
equilibrium, so that statistical thermodynamics can be applied. At first view
one might think that theoretical analysis presents a formidable problem since
each polymer may interact with many other chains. This multitude of in-
teractions can, of course, create a complex situation; however, cases also ex-
ist where conditions allow for a facilitated treatment. Important representa-
tives for simpler behavior are melts and liquid polymer mixtures and the
basic reason is easy to see. As here each monomer encounters, on average,
the same surroundings, the chain as a whole experiences a mean field, thus
fulfilling the requirements for an application of a well-established theoreti-
cal scheme, the mean field treatment. We shall deal with this approach
in Chap. 4 when we discuss the properties of polymer mixtures. Chapter 4
includes in Sect. 4.4 also a brief introduction into the properties of block
copolymers, which can also be treated by mean field theories. Block copoly-
mers are obtained by chemically coupling two different polymer chains. In
addition to a homogeneous melt with short-range ordering, also lattices with
long-range order are observed, and the transformation shows some of the
properties of second order phase transitions. Polymer solutions, on the
other hand, cannot be treated under the mean field assumptions. Take ex-
panded chains in dilute solution, for example. Here, we find considerable vari-
ations in the monomer density, in the solution altogether and also within
each chain where we have a maximum at the center, followed by decays to
the edges. Here replacement of the spatially varying interaction energy den-
sity by a mean value, corresponding to an equal interaction of each monomer
with a constant mean field, is not allowed. In the previous chapter, when
discussing expanded chains, we indicated how theory can comply with such
a situation, scaling arguments and renormalization group treatments provid-
ing solutions. It was another great achievement of the French school around
des Cloiseaux and de Gennes to show that this treatment can be further
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extended to deal also with situations where chains begin to overlap. This be-
came known as the regime of semidilute solutions, and in this chapter we
shall present some major results in order to provide a first basic understand-
ing.

The situation changes completely when the dissolved chains are polyelec-
trolytes rather than electrically neutral macromolecules. Polyelectrolytes in
a, usually aqueous, – solution dissociate in polyions with fixed positive or neg-
ative charges and mobile counter-ions. The arising Coulomb forces are much
stronger than the van der Waals forces and result in quite unusual solution
properties.

3.1 Dilute and Semidilute Solutions

Polymer chains in dilute solutions are isolated and interact with each other
only during brief times of encounter. Increasing the polymer concentration in
a solvent leads to a change at a certain stage. As is schematically indicated in
Fig. 3.1, a limit is reached when the polymer molecules become closely packed
because then they begin to interpenetrate.

The monomer concentration at this limit can be estimated by regarding
that for close-packed polymers this concentration must agree with the mean
concentration in a single chain. For expanded chains we find for the critical
concentration at the overlap limit, c∗m, the expression

c∗m � N

R3
F

. (3.1)

Fig. 3.1. Polymer solution: Dilute regime (cm < c∗m) and semidilute regime with
overlapping chains (cm > c∗m). The cross-over occurs for cm = c∗m when the volumes
occupied by the individual chains just cover the sample volume
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Since we need a unique expression for the further treatments, we replace the
above estimate by an exact equation and write, per definition

c∗m =
N

R3
F

. (3.2)

It is interesting to check how the location of c∗m changes with the degree of
polymerization. For a good solvent, the scaling law Eq. (2.83) applies and we
have

c∗m =
N

a3
FN

9/5
=

1
a3
FN

4/5
. (3.3)

The volume fraction φ of polymers in a solution is generally

φ = vmcm , (3.4)

where vm designates the monomer volume. The volume fraction φ∗ associated
with the critical concentration is therefore

φ∗ = vmc
∗
m =

vm
a3
FN

4/5
. (3.5)

Since aF is always much larger than the actual length of a monomer, we have

vm
a3
F

< 1

and therefore
φ∗ < N−4/5 . (3.6)

We learn from this estimate that for a typical polymer, say with N � 104,
interpenetration of chains already begins at volume fractions below 0.001. In
order to have dilute conditions, polymer volume fractions have to be really low,
below 10−4. On the other hand, solutions with polymer volume fractions in the
order of 10−3–10−1, which can still be considered as low, are already clearly
affected by the chain interpenetration. To set this special class of solutions
apart from both the dilute and the concentrated solutions a new name was
introduced: They are called semidilute.

3.1.1 Osmotic Pressure

In discussions of solution behavior, the osmotic pressureΠ becomes a property
of primary interest. Π depends on the temperature and the concentration of
the solute. In this section we will discuss the form of this dependence and
begin with considering dilute polymer solutions.

As for low molar mass solutes, a virial expansion can also be used for
polymers to give Π in the limiting range of low concentrations

Π = kT
(
A1cm +A2c

2
m + . . .

)
. (3.7)
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This is a series expansion in powers of the solute concentration and the Ai’s
are the i-th virial coefficients. For an ideal solution of low molar mass
molecules all higher order virial coefficients beginning with the second virial
coefficient A2 vanish, and furthermore we have

A1 = 1 . (3.8)

The dependence Π(cm) then agrees exactly with the pressure-concentration
dependence of an ideal gas. For dissolved polymers the first virial coefficient
is not unity but given by

A1 = 1/N . (3.9)

The reason for the change is easily seen. Remember that the osmotic pressure
is a colligative property. It is exerted by the translational motion of the centers
of mass of the polymers only, not being affected by the internal degrees of
freedom of the chains. This implies that, for polymer solutions, the polymer
density

cp =
cm
N

(3.10)

rather than the monomer density controls quantity for the osmotic pressure.
The virial expansion therefore has to be expressed as

Π

kT
=
cm
N

+A2c
2
m + . . .

=
cm
N

(1 +NA2cm + . . .) . (3.11)

Equation (3.11) is the virial expansion valid for a dilute polymer solution. One
may also interpret the second order term. It describes an increase in osmotic
pressure due to the contacts between the dissolved polymer molecules, which
occur with a probability proportional to c2p ∝ c2m.

For experimental studies, another form is more convenient, where the num-
ber density of monomers, cm, is replaced by the mass concentration cw, using

cw =
cm
NL

Mm ; (3.12)

Mm describes the molar mass of a monomer. In addition, one introduces
a modified second virial coefficient, Ã2, defined as

Ã2 =
NLA2

M2
m

. (3.13)

Equation (3.11) can then be rewritten as

Π

R̃T
= cw

(
1
M

+ Ã2cw + . . .

)
. (3.14)

Figure 3.2 presents a typical experimental result. It shows the dependence
of the osmotic pressure on cw for a series of poly(α-methylstyrenes), with
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Fig. 3.2. Osmotic pressures measured for samples of poly(α-methylstyrene) dis-
solved in toluene (25 ◦C). Molar masses vary between M = 7 ×104 g mol−1 (up-
permost curve) and M = 7.47 ×106 g mol−1 (lowest curve). Data taken from Noda
et al. [9]

different molar masses, dissolved in toluene. First, it is noted that the limiting
values cw → 0 change with the molar mass. Actually, they agree with the
relation

lim
cw→0

Π

R̃Tcw
=

1
M

. (3.15)

Secondly, since Π/R̃T cw increases with cw, we have evidence for a non-
vanishing positive second virial coefficient as it is indicative for a good sol-
vent. The third observation is that, in the limit of high concentrations, the
molar mass dependence of Π vanishes. This occurs when the polymer chains
interpenetrate each other and an entanglement network builds up. The ob-
servation tells us that, once the entanglement network has formed, the single
chain properties become irrelevant.

An especially interesting result is presented in Fig. 3.3, which deals with
the same set of data here plotted in a special form. We make use of c∗w, the
polymer weight fraction at the overlap limit and replace cw by a dimensionless
reduced variable x, called the overlap ratio

x =
cw
c∗w

=
cm
c∗m

. (3.16)

c∗m or c∗w follow from Eq. (3.2) when RF is determined by light scattering
or, as will be explained below, also directly from A2. Along the ordinate, the
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Fig. 3.3. Data of Fig. 3.2, presented in a plot of the reduced osmotic pressure
versus the overlap ratio. The continuous lines correspond to the theoretical results
Eqs. (3.26), (3.41)

expression ΠM/(R̃T cw) is plotted. For this reduced osmotic pressure we
have a common limit for cw → 0, independent of M

lim
cw→0

ΠM

R̃Tcw
= 1 . (3.17)

The result of this redrawing procedure is quite remarkable: The curves for all
samples coincide.

The conclusions that can be drawn from these observations are far-reaching
and important. Polymers in solution interact with each other and details of
this interaction become apparent in the concentration dependence of the os-
motic pressure. The results presented in Figs. 3.2 and 3.3 strongly suggest
that the interaction obeys general laws that are valid for all polymers and
solvents.

Let us consider the given situation and search for an equation for the
osmotic pressure. First we have to inquire about the independent variables in
the system. In the case of a dilute solution, we have three of them apart from
the trivial T . To specify the single chain properties, we must know the Flory
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radius RF and the thermic correlation length ξt or the parameter z. The third
variable is the number density of polymers cp. The question arises whether
there are any more parameters that have to be accounted for when leaving
the dilute range and coming into the regime of the semidilute solutions. The
answer is no for physical reasons: We encounter only one class of interactions
throughout, the excluded volume forces, which do not differentiate between
monomers within a chain and on different chains. Their effect is implied in the
values of RF and z. As the cross-over to the semidilute regime does not bring
in any new forces, there is also no further parameter. This remains true as long
as the monomer concentration in the solution is sufficiently low so that one
has to account for binary interactions only. At higher concentrations, where
ternary interactions become progressively important; the situation changes.

Having identified the independent variables, we can formulate the following
functional dependence for Π :

Π

kT
= cpF (RF, ξt, cp) . (3.18)

F is a universal function with properties to be discussed. With the extraction
of the factor cp, we fix the limit F (cp → 0). As we expect ideal properties for
cp → 0, we have

F (cp → 0) = 1 . (3.19)

The experimental result depicted in Fig. 3.3 provides us with a hint with
regard to the form of F . It suggests that RF and cp are included in a coupled
manner, namely as the product cpR3

F, which is identical with the overlap ratio

x =
cm
c∗m

= cpR
3
F . (3.20)

We therefore write, and this was first proposed by des Cloiseaux,

Π

kT
= cpFΠ(x, z) . (3.21)

Here ξt is substituted by z.
For low concentrations, we can use a series expansion in powers of x for

the function FΠ

FΠ = 1 + h(z)x + . . . (3.22)

Since chains become ideal for z → 0, i.e., ξt → ∞, we must have

h(z = 0) = 0 . (3.23)

On the other hand, one can carry out the passage to the Kuhnian limit z → ∞
as realized in good solvents. Theory shows that there is a well-defined limiting
value, h(z → ∞) and a corresponding limiting function, which now depends
on x only

FΠ(x, z → ∞) = FΠ(x) .
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If we employ this limiting function, we obtain a general equation for the
osmotic pressure exerted by polymers in good solvents

Π

kTcp
=

ΠM

R̃Tcw
= FΠ

(
x =

cw
c∗w

)
. (3.24)

According to the derivation, Eq. (3.24) is valid for both dilute and semidilute
solutions. We now understand the experimental curve in Fig. 3.3: It exactly
represents the universal function FΠ(x).

The value of the expansion coefficient in Eq. (3.22) in the Kuhnian limit,
h(z → ∞), can be calculated using renormalization group methods, with the
result

h(z → ∞) = 0.353 . (3.25)

A check is displayed in Fig. 3.3, by inclusion of the curve corresponding to

F (x) = 1 + 0.353x . (3.26)

A comparison shows an excellent agreement with the data for x < 2.
Discussion of Eq. (3.21) enables some direct conclusions. First, consider the

dilute case, x � 1, where the virial expansion is valid. We write for FΠ(x, z)

FΠ(x, z) = 1 + h(z)x + . . . (3.27)

A comparison of Eqs. (3.21), (3.27) and Eq. (3.11) gives a relation between
the concentration at chain overlap c∗m and the second virial coefficient A2:

c∗m =
h(z)
NA2

. (3.28)

The use of Eq. (3.2) yields

A2 =
h(z)R3

F

N2
. (3.29)

The last equation relates the second virial coefficient to the Flory radius and
the degree of polymerization of the chains.

It is instructive to introduce this relation in Eq. (3.11), also replacing cm
by the polymer density cp. We obtain

Π

kT
= cp + h(z)R3

F · c2p + . . . (3.30)

Equation (3.30) formulates an interesting result. It reveals that the increase in
the osmotic pressure over the ideal behavior, as described in lowest order by
the second term on the right-hand side, may be understood as being caused
by repulsive hard core interactions between the polymer chains that occupy
volumes in the order of h(z)R3

F. To see this, just compare Eq. (3.30) with
Eq. (2.73), which is valid for a van der Waals gas. For a gas with hardcore
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interactions only, i.e., ã = 0, the second virial coefficient equals the excluded
volume per molecule b̃/NL. Therefore, we may attribute the same meaning to
the equivalent coefficient in Eq. (3.30). Our result thus indicates that polymer
chains in solution behave like hard spheres, with the radius of the sphere
depending on RF and additionally on z, i.e., on the solvent quality. For good
solvents, in the Kuhnian limit h(z → ∞) = 0.353, the radius is similar to RF.

This strong repulsion is understandable since an overlap between two coils
produces many contacts between the monomers. We can estimate the related
energy, utilizing Eq. (2.78). For monomer density distributions cm(r − rc,i)
about the centers of gravity rc,1 and rc,2 of two polymers, it is given by

f ev
pp(rc,1, rc,2) = kTve

∫
〈cm(r − rc,1)cm(r − rc,2)〉d3r . (3.31)

Assuming Gaussian density distributions, in the limit of a complete overlap,
rc,1 = rc,2, we obtain an expression identical to the internal excluded volume
interaction energy Eq. (2.91), apart from a factor 1/2. Omitting the numerical
prefactor of order unity we write

f ev
pp(rc,1 = rc,2) � kT z

(
R0

RF

)3

. (3.32)

This has to be compared with the mean kinetic energies associated with the
translational motion of the centers of mass

〈ukin〉 =
3
2
kT . (3.33)

Even for an only partial overlap, to a degree β, we have

〈ukin〉
f ev
pp

� 1
βz

� 1 (3.34)

if, as is the case for good solvents and standard degrees of polymerization

z = N1/2
su � 1 . (3.35)

As a consequence, in a dilute solution of expanded chains, interpenetration of
two polymer molecules is largely suppressed so that they do indeed resemble
hard spheres.

Equation (3.29) enables a prediction of the molar mass dependence of A2.
For good solvents we again may set h(z) = h(z → ∞) = 0.353, then obtaining

A2 = 0.353
R3

F

N2

= 0.353
a3
FN

9/5

N2
= 0.353a3

FN
−1/5 . (3.36)
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Fig. 3.4. Molar mass dependence of the second virial coefficient, obtained for solu-
tions of fractions of PS in benzene. Data from Cotton [10]

Figure 3.4 presents experimental results, obtained for solutions of fractions
of polystyrene (PS) in benzene. They do, in fact, agree with the power law
Ã2 ∝ A2 ∝ N−1/5 ∝ M−1/5.

Next we consider the other limit, x � 1, associated with an entangled
semidilute solution far above the overlap threshold. Here, the degree of poly-
merization N must become irrelevant, as is also demonstrated by the data
in Fig. 3.2. For des Cloiseaux’s expression (Eq. (3.21)) this condition implies
a stringent requirement, since N is included in both the factor cp and FΠ

Π

kT
=
cm
N
FΠ(x, z) . (3.37)

The dependence on N contributed by cp can only be eliminated if FΠ asymp-
totically shows an appropriate power law behavior. Assuming

FΠ(x, z) ∝ xμ (3.38)

and therefore

FΠ(x, z) ∝ cμm
R3μ

F

Nμ
∝ cμmN

4μ/5 , (3.39)

we obtain
Π

kT
∝ cμ+1

m N (4μ/5)−1 . (3.40)

The exponent of N has to vanish and this occurs for μ = 5/4. By introduction
of this value, we obtain the concentration dependence of the osmotic pressure
in the semidilute regime

Π

kT
∝ c9/4

m . (3.41)

Figures 3.2 and 3.3 confirm this prediction. The slope of the continuous
straight lines drawn through the data in the limit of high concentrations ex-
actly corresponds to Eq. (3.41). Note the qualitative difference to the dilute
regime, where Π ∝ c2m. We conclude that the entanglements further enhance
the osmotic pressure.
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The Zimm Diagram

Light scattering experiments permit further checks of the theoretical predic-
tions since they can be used for a determination of both the osmotic com-
pressibility and the second virial coefficient. As explained in Sect. A.3.2 of the
Appendix, a general equation in scattering theory relates the osmotic com-
pressibility (∂cm/∂Π)T to the scattering in the forward direction (Eq. (A.81))

S(q = 0) = kT

(
∂cm
∂Π

)
T

.

Taking the reciprocal expressions on both sides gives

S−1(q = 0) =
1
kT

(
∂Π

∂cm

)
T

. (3.42)

(∂Π/∂cm)T represents the osmotic modulus.
This relation is very useful. First, we can employ the virial expansion

Eq. (3.11), valid in the dilute range for a calculation of the osmotic modulus.
The result is

S−1(q = 0, cm → 0) =
1
N

+ 2A2cm . (3.43)

In a second step, Eq. (3.43) can be combined with Guinier’s law (Eq. (A.71))
for dilute solutions. The latter relates the curvature at q = 0 to the radius of
gyration of the polymer, by

S(q → 0, cm → 0) = N

(
1 − R2

gq
2

3
+ . . .

)
.

Again taking the reciprocals, we have

S−1(q → 0, cm → 0) = N−1

(
1 +

R2
gq

2

3
+ . . .

)
. (3.44)

The combination is achieved by writing the reciprocal scattering function as
a product of both expressions

S−1(q → 0, cm → 0) =
1
N

(
1 +

R2
gq

2

3
+ . . .

)
(1 + 2A2Ncm + . . .) . (3.45)

Equation (3.45) correctly describes the dependence of S−1 on q and cm within
the limit of small values of both parameters and is well-known as the basis of
Zimm plots. To make use of the equation, scattering experiments on polymer
solutions (these are mostly carried out by light) have to be conducted under
variation of both the scattering angle and the concentration. Extrapolation
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Fig. 3.5. Light scattering experiments on solutions of PS (M = 2.8 ×105 g mol−1)
in toluene at 25 ◦C. Results are presented in a Zimm plot, enabling an extrapolation
to cw = 0 and q = 0. Data from Lechner et al. [11]

of q and cm to zero then permits a determination of three parameters of the
polymer to be made. One can deduce the radius of gyration Rg, the degree of
polymerization N and the second virial coefficient A2.

The extrapolations are carried out in peculiar manner. Figure 3.5 shows,
as an example, data obtained for a dilute solution of polystyrene in toluene.
The reciprocal of the scattering function is plotted as a function of the sum
q2 + βcw, where β is a conveniently chosen constant. If we were to utilize
Eq. (3.45), then the slopes dS−1/dq and dS−1/dcm of the two lines at the
origin would give R2

g/3 and 2A2; the limiting value S−1(q = 0, cm = 0) would
furnish N . Actually, in experiments directly measurable quantities such as the
Raleigh ratio Σ and the mass concentration cw are usually employed, rather
than S and cm. Corresponding substitutions can be carried out in Eq. (3.45),
which is then converted to

cwKl

Σ
=

(
1 +

R2
gq

2

3
+ . . .

)(
1
M

+ 2Ã2cw + . . .

)
(3.46)

with

Kl = 4π2n2

(
dn
dcw

)2

/
(
NLλ

4
0

)
.

Here n denotes the index of refraction and λ0 is the wavelength in a vacuum
(see the Appendix, Eqs. (A.50)(A.51)). One obtains the modified second virial
coefficient Ã2 defined by Eq. (3.13).
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Equation (A.81) also permits us to check the osmotic pressure equation
deeper in the semidilute regime. Introduction of Eq. (3.21) gives

S−1(q = 0, cm) =
d

dcm

(cm
N
FΠ(x, z)

)

=
1
N
FΠ(x, z) +

cm
N

1
c∗m

∂FΠ

∂x
(x, z) . (3.47)

For good solvents as represented by the Kuhnian limit z → ∞, we obtain

S−1(q = 0, cm) =
1
N

(
FΠ(x) + x

∂

∂x
FΠ(x)

)
=

1
N
F ′

Π(x) . (3.48)

Here, F ′
Π(x) denotes another general function. Hence, one expects to find

a unique curve when plotting NS−1(q = 0) versus x. Light scattering exper-
iments have been carried out for various polymer solutions and they indeed
confirm this prediction. Figure 3.6 gives an experimental result in a slightly
modified representation. As an alternative to the overlap ratio x one may also
use the quantity x′ defined as

x′ = A2Ncm . (3.49)

According to Eq. (3.28), x′ is proportional to x

x′ = h(z = 0)x = 0.353x . (3.50)

Fig. 3.6. Reduced osmotic moduli of two fractions of PS (M = 2.3 × 104 and
4.7×104 g mol−1) dissolved in toluene, as derived from light scattering experiments.
In the dilute and semidilute range results agree with the theoretical prediction as
given by the continuous curve [12]
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Using the mass concentration cw, the molar mass M and the modified second
virial coefficient Ã2 rather than cm, N and A2 leaves the plotted variables
unchanged, since

NS−1(q = 0) = N
1
kT

∂Π

∂cm
= M

1
R̃T

∂Π

∂cw
(3.51)

and
x′ = A2Ncm = Ã2Mcw . (3.52)

The presented arguments provide information on the limiting behavior of
the osmotic modulus only, for x � 1 and x � 1. It is possible to derive the
full shape of the curve encompassing the dilute regime, the cross-over region,
and the semidilute range, using renormalization group methods. Figure 3.6 in-
cludes a theoretically deduced curve and demonstrates good agreement with
the experimental results. Deviations show up at higher concentrations, thereby
pointing at the limitations of the treatment. As has already been mentioned,
at higher concentrations it is no longer sufficient to consider only binary in-
teractions and we must also include higher order contributions. The situation
then becomes much more involved and it appears that universality is lost.

3.2 Screening of Excluded Volume Forces

In the previous chapter, we considered the structures of single chains in the
dilute regime. Now we may inquire how these become altered in semidilute
solutions. Discussions can be based on the pair distribution function of the
individual chains, thereby focussing on the structure of single chains in states
where chains overlap and interpenetrate. We choose for this intramolecular
pair correlation function a symbol with a hat, ĝ(r), to distinguish it from
the general pair distribution function g(r), which includes monomers from all
chains.

For ĝ(r), we can assess the behavior for both limits, dilute solutions and
the melt. As explained earlier in Sect. 2.3.2, we find for isolated expanded
chains ĝ ∝ r−4/3, for distances in the range ξt < r < RF. On the other
hand, one observes in the melt ideal chain behavior, i.e., ĝ ∝ 1/r, for r < R0.
Therefore, a change has to occur and indeed, it is possible to describe it in
qualitative terms. Explanations were first provided by Edwards in a theory
that envisages a screening effect. The view is that, similar to the screening of
the long-range Coulomb forces in electrolytes caused by the presence of mobile
ions as described by the Debye–Hückel theory (see the next section), the long-
range excluded volume forces acting within an isolated chain are screened if
monomers of other polymer molecules interfere. We have already addressed
this effect from a different point of view when discussing the chain structure
in melts referring to Fig. 2.14. There we argued that the presence of foreign
monomers reduces and finally completely removes the concentration gradient
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Fig. 3.7. Result of a neutron scattering experiment on a semidilute solution of
a mixture of deuterated and protonated PS (Mw = 1.1 × 106 g mol−1) in CS2

(cw = 0.15 g cm−3). Intensities reflect the structure factor of individual chains. The
cross-over from the scattering of an expanded chain to that of an ideal chain at
q5/3 � ξ

−5/3
s is indicated. Data from Farnoux [6]

of the monomers belonging to one chain, thus blocking the chain expansion.
In Edwards’ treatment this process formally corresponds to a screening, put
into effect by the contacts with foreign monomers.

In entangled solutions screening becomes effective at a characteristic dis-
tance called the screening length and denoted ξs. Figure 3.7 provides an
experimental example of the evidence. We see the scattering intensity mea-
sured for a semidilute solution of polystyrene in CS2, in a plot of I−1 versus
q5/3. We are interested in the single chain structure factor in the semidilute
solution, as given by the Fourier-transform of ĝ

Ŝ(q) =
∫

exp(−iqr)ĝ(r)d3r . (3.53)

Ŝ(q) can be measured if the dissolved polystyrene includes a small fraction
of deuterated molecules. Due to the large difference in the scattering length
of protons and deuterium, the deuterated chains dominate the scattering pat-
tern, which then indeed may be described as

I(q) ∝ Ŝ(q) . (3.54)

For a dilute solution, one observes the scattering function of expanded chains,
I ∝ q−5/3, which corresponds to the straight line shown previously in Fig. 2.18.
Now we notice a change at low scattering vectors q, indicative of a cross-over
from the scattering behavior of an expanded chain to that of an ideal one,
with I−1 ∝ q2 = (q5/3)6/5. The cross-over occurs around a certain q, related
to ξs by q � ξ−1

s .
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Fig. 3.8. Pair distribution function of an individual chain in a semidilute solution,
exhibiting different regions with specific power laws 4πr2ĝ ∝ (r/RF)μ. RF denotes
the Flory radius in the dilute state. The dotted line gives the function 4πr2〈cm〉. The
dashed line indicates the pair distribution function for all monomers, 4πr2g, which
deviates from 4πr2ĝ for r > ξs

Combining all the information collected so far, for the single chain pair
distribution function in a semidilute solution we can predict an overall shape
as indicated in Fig. 3.8. For the presentation we choose a plot of 4πr2ĝ(r)
versus r. The curve is a composite of different functions in four ranges, with
cross-overs at the persistence length lps, the thermic correlation length ξt and
the screening length ξs. Up to r � ξs we find the properties of the expanded
chain, which

– resembles a rigid rod for r < lps, with 4πr2ĝ = const,
– at first exhibits ideal behavior, in the range lps < r < ξt (4πr2ĝ ∝ r),
– and then shows excluded volume effects as indicated by the scaling law

ĝ ∝ r−4/3 −→ 4πr2ĝ ∝ r2/3 .

This pertains up to the cross-over at r � ξs where we again enter into an ideal
regime

4πr2ĝ ∝ r .

The final range is determined by the size of the chain.
With the knowledge about the single chain pair distribution function, one

can also predict the general shape of the pair distribution function for all
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monomers, g(r). The behavior of g(r) in the limits of small and large distances
is obvious. Since for small distances r correlations are mostly of intramolecular
nature, we there have g ≈ ĝ. On the other hand, we have a non-vanishing
asymptotic value for large distances r, given by g = 〈cm〉. Indeed, with the
aid of the screening length, we may express the behavior more accurately
as

g(r) ≈ ĝ(r) for r � ξs (3.55)

and
g(r) ≈ 〈cm〉 for r � ξs . (3.56)

Why the change from the one to the other limit must take place around ξs
is intuitively clear. ξs essentially corresponds to the distance between entan-
glement points, as these are the points where monomers interact with other
chains, which is the cause for the alteration of the chain structure. In the
literature, ξs is therefore often addressed as mesh-size, in order to emphasize
that it can also be interpreted as the diameter of the meshes of the entangle-
ment network built up by the chains in a semidilute solution. It is further-
more plausible to assume that ξs approximately equals the distance r, where
ĝ(r) comes down to values in the order of the mean monomer density in the
sample

ĝ(ξs) � 〈cm〉 , (3.57)

since this condition implies similar weights of intramolecular and intermolec-
ular contributions to g(r). Figure 3.8 also shows these properties. 4πr2g is
indicated by a dashed line that deviates from 4πr2ĝ at r � ξs. The plot also
includes the function 4πr2〈cm〉, given by the straight dotted line. It crosses
4πr2ĝ at r � ξs.

While studies of ĝ require neutron scattering experiments on partially
deuterated samples, information on g(r) can be obtained by standard X-
ray (or neutron) scattering experiments on normal solutions. Measurements
yield the screening length ξs, using a simple straightforward procedure, which
may be explained as follows. Generally the structure function for a polymer
solution is given by Eq. (A.25), which is valid for all isotropic systems (see
the Appendix, Sect. A.1.1)

S(q) =

∞∫

r=0

sin(qr)
qr

4πr2(g(r) − 〈cm〉)dr .

For the small angle range we may use a series expansion in powers of q,

S(q) =

∞∫

r=0

(
1 − 1

3
q2r2 + . . .

)
4πr2(g(r) − 〈cm〉)dr , (3.58)
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which yields for the curvature at q = 0

d2S

dq2
= −2

3

∞∫

r=0

r24πr2(g(r) − 〈cm〉)dr . (3.59)

We can represent this result by writing

d2S

dq2
= −2ξ2S(0) , (3.60)

introducing a parameter ξ. According to the definition, ξ2 is one third of the
second moment of the function 4πr2(g(r) − 〈cm〉); ξ is therefore a measure
for the width of this function. On the other hand, a look at Fig. 3.8 shows us
that this width essentially agrees with the screening length. Hence, we may
identify ξ with ξs. So far, there has been no precise definition of ξs; Eq. (3.60)
provides us with one.

Based on Eq. (3.60), S(q) may now be represented in the small angle range
by

S(q) = S(0)(1 − ξ2s q
2 + . . .) (3.61)

or, using the reciprocal function, by

S−1(q) = S(0)(1 + ξ2s q
2 + . . .) . (3.62)

Figure 3.9 presents experimental results obtained from small angle X-ray scat-
tering (SAXS) experiments on semidilute solutions of polystyrene in toluene,
choosing three different concentrations. They agree with Eq. (3.62) and enable
a determination of the concentration dependence of ξs to be made.

One can predict this dependence for the semidilute range, again using
scaling arguments. We anticipate that in a good solvent we have only one
relevant parameter, namely the overlap ratio x and write

ξs = RFFξs(x) . (3.63)

The parameter RF is included as a prefactor, in order to set the length scale.
The limiting value of Fξs for x → 0 is necessarily unity

Fξs(x → 0) = 1 . (3.64)

Within the semidilute range we expect power law behavior again

Fξs(x → ∞) ∝ xμ . (3.65)

In this range, where the chains overlap strongly, ξs has to be independent of
N and this can only be accomplished by a power law in connection with an
appropriate exponent. Application of Eqs. (2.83) and (3.3) leads to

ξs ∝ N3/5N4μ/5cμw . (3.66)
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Fig. 3.9. Solutions of PS (M = 5×104 g mol−1) in toluene, with mass concentrations
cw = 0.0105 (a), 0.0953 (b) and 0.229 g cm−3 (c). Intensities measured by SAXS.
Data from Hamada et al. [13]

Independence of ξs with regard to N requires that

μ = −3/4 . (3.67)

Hence, we obtain

ξs � RF

(
cw
c∗w

)−3/4

. (3.68)

Figure 3.10 depicts the concentration dependence of the screening length for
the same system as presented in Fig. 3.9. The decrease, as observed for higher
concentrations, agrees exactly with the scaling law Eq. (3.68).

Similar arguments may be used to derive the concentration dependence of
the mean squared end-to-end distance of a chain. If we start with an expanded
chain in a dilute solution, we expect a shrinkage back to the size of an ideal
chain when screening becomes effective on increasing the concentration. We
assume a dependence

〈R2〉1/2 = RFFR(x) (3.69)

with
FR(x → 0) = 1 . (3.70)

For higher concentrations in the semidilute regime we again expect a power
law

FR(x → ∞) ∝ xμ , (3.71)
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Fig. 3.10. The same system as in Fig. 3.9. Values derived for the concentration
dependence of the screening length ξs. Data from Hamada et al. [13]

thereby obtaining
〈R2〉1/2 ∝ N3/5cμwN

4μ/5 . (3.72)

On the other hand, since chains behave ideally for distances that are large
compared to the screening length, we have

〈R2〉1/2 ∝ N1/2 . (3.73)

A comparison yields the exponent, with the value

μ = −1/8 . (3.74)

Hence, we can formulate the equation for the dependence of the coil diameter
on the degree of polymerization and the concentration

〈R2〉1/2 ∝ N1/2c−1/8
w . (3.75)

This is proved to be valid by the results shown in Fig. 3.11. They were obtained
in neutron scattering experiments on solutions of a mixture of protonated and
deuterated polystyrenes in CS2.

Considering these results, we now see how the change from the expanded
chains in dilute solutions to the ideal chains in a melt is accomplished: With
increasing concentration the screening length decreases continuously and if it
comes down to the thermic correlation length ξt all excluded volume effects
have disappeared. Simultaneously the chain size shrinks, from the Flory ra-
dius RF in the dilute solution down to the radius R0 of the Gaussian chains
in the melt.
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Fig. 3.11. PS (M = 1.14 ×105 g mol−1) dissolved in CS2. Shrinkage of the radius
of gyration with increasing polymer concentration. Data from Daoud et al. [14]

3.3 Polyelectrolyte Solutions

The solutions dealt with so far contained electrically neutral, i.e., non-charged
polymers. Polyelectrolytes are built up of monomeric units that include an
ionizable group, i.e., a group that can dissociate in aqueous surroundings into
a chain-fixed kation or anion and a mobile counter-ion bearing the op-
posite charge. Some typical examples were already given in Table 1.2. Charges
are the origin of Coulomb forces. These are much stronger than van der Waals
forces and can thus act over longer distances. Their presence changes the con-
ditions in a qualitative manner and lead to unusual solution properties. In
particular:

• The chain stretching caused by the repulsive Coulomb forces is accompa-
nied by a regular distribution of the chains in the solvent with concentra-
tion dependent equilibrium distances.

• Given the presence of mobile counter-ions, the osmotic pressure, which is
extremely low in solutions of neutral polymers, again takes on the much
higher values of low molar mass systems.

In this section, we discuss these properties and begin with the explanation of
two basic effects.

3.3.1 Condensation and Screening of Charges

One might think at first that on dissolving a polyelectrolyte chain all counter-
ions diffuse away and distribute themselves homogeneously in the solvent.
As a consequence, the chain would get fully stretched in a reaction to the
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repulsive Coulomb forces between the chain-fixed charges. In fact, this does
not happen. This is due to two effects that change the conditions:

• In a polyelectrolyte with ionizable groups at short distances along the
chain, for example, in every monomeric unit, strong attractive forces on
the counter-ions arise that prevent them from diffusing away. Part of them
is kept as a condensate in the immediate neighborhood of the polyion so
that the effective charge density is reduced. It then appears as if units with
an elementary charge occur only at distances ξB along the chain that are
larger than the monomeric length. This characteristic minimum distance
is known as the Bjerrum length.

• Existing chain-fixed charges often do not create in full the associated
Coulomb force, but become screened by a shell of counter-ions. This for-
mation of a cloud of opposite charges is found in all electrolytes, polyions
and low molar mass ions, and results in a practical disappearance of the
Coulomb forces at distances above a certain length. This length ξD, known
as the Debye length, also describes the size of the charge compensating
cloud. It varies with the ionic strength given by the total concentration of
mobile ions.

Charge Condensation on Rod-like Polyions

Consider a single rod-like chain with radius r0, which includes monovalent
kations at regular distances lio, i.e., possesses a linear charge density e/lio. If
it is brought in a solvent with a dielectric coefficient ε it develops an electric
field. The corresponding potential V follows from an application of basic laws
of electrostatics as

V =
e

2πεε0lio
ln

r

r0
, (3.76)

where e and ε0 denote the elementary charge and the electric constant, re-
spectively. The potential has cylindrical symmetry and r denotes the distance
from the chain axes. Imagine that a single monovalent anion is placed in
the neighborhood of the chain. Will it move towards the chain under the
attractive electrostatic force or, possessing the kinetic energy 3kT/2, diffuse
away?

In order to deal with this question, the cell structure shown in Fig. 3.12
is set up. A series of cylindrical cells i with inner radii ri and a constant
thickness Δr surrounds the rod. We consider the probability of an occupation
of cell i. The electrostatic energy of the anion in cell i is

ui = −eV (ri) . (3.77)

The entropy associated with the motion within the cell amounts to

si = k ln
2πriΔr
r20

+ const = k ln
ri

r0
+ const . (3.78)
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Fig. 3.12. A rod-like polyion with radius r0 and its neighborhood subdivided into
cylindrical cells with inner radius ri and thickness Δr

The free energy is therefore

fi = ui − Tsi =
(

e2

2πεε0lio
− kT

)
ln
ri

r0
+ const (3.79)

= kT (β − 1) ln
ri

r0
+ const (3.80)

with

β =
e2

2πεε0liokT
. (3.81)

If there are many non-interacting anions, the number ni of anions in cell i at
a temperature T follows from Boltzmann statistics as

ni ∝ exp
−fi

kT
=
(
ri

r0

)1−β

. (3.82)

Referring to the number of anions in the cell at the chain surface (i = 0) one
obtains

ni

n0
=
(
ri

r0

)1−β

. (3.83)

The occupation probability for cell 0 is given by

p0 =
1∑∞

i=0
ni

n0

. (3.84)

In the calculation we replace the sum by an integral and write

∞∑
i=0

ni

n0
≈

∞∫

0

x1−β dx (3.85)
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with
x =

ri

r0
. (3.86)

For β ≤ 2 the integral diverges and consequently p0 vanishes. Under these
conditions the anions will not stay at the chain surface. The situation changes
for β > 2. The integral then remains finite and the probability p0 shows
a non-vanishing value. We thus find a critical value for β

β = 2 =
e2

2πεε0liokT
. (3.87)

What is the consequence? The result indicates the existence of a critical dis-
tance along the chain, lio, with the value

lio =
e2

4πεε0kT
= ξB . (3.88)

ξB is known as the Bjerrum length and has, according to our considera-
tions, the following meaning: If the distance between neighboring charges
on the rod is larger than ξB, all the counter-ions will diffuse away. If it is
smaller, a certain fraction stays in the immediate neighborhood of the rod
surface.

We have obtained a clear answer to our question, however, the actual situ-
ation is more complex. What we have considered is the behavior of a system of
mobile independent anions in the fixed electrical field generated by the poly-
cation, whereas, in reality, the anions interact with each other or, in other
words, modify the field. Dealing with a system of many interacting anions is
difficult. There exists no exact analytical solution; however, one can make use
of a good approximate treatment. The problem to be solved is the common
determination of both the spatially varying charge density, denoted ρe(r), and
the varying electrostatic potential V (r), under the boundary conditions set by
the existing fixed kations on the rod. For a given charge density distribution,
the electrostatic potential follows from a solution of the Poisson equation

ΔV (r) = −ρe(r)
ε0ε

. (3.89)

Reversely, V (r) determines the charge density distribution. Applying Boltz-
mann statistics, we write

ρe(r) ∝ (−e) exp− (−e)V
kT

, (3.90)

whereby, different from our first considerations, the electrostatic potential
now also accounts for the presence of the anions. With the second equation
the system is closed and solutions can be obtained by numerical evaluations.
Calculations lead to the following results. Firstly, the previous conclusion
is confirmed: For lio > ξB all counter-ions diffuse away from the polyion,
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which then creates the electrostatic potential given by Eq. (3.76). A new result
follows for lio < ξB. We concluded that then part of the counter-ions remains
near the rod. The calculations show that the effective charge density left on
the rod after the condensation of a certain fraction of anions exactly amounts
to e/ξB. Hence, independent of the actual value of lio it always appears, as if
charges are only placed at distances ξB.

What happens if the chain is not perfectly stiff but shows some curvature,
which is the reality? Essentially, the answer is: As long as the Bjerrum length
is small compared to the persistence length, over which the chain can be
regarded as stiff, the behavior does not change.

The Debye–Hückel Theory of Charge Screening

The kations in an electrolyte are preferentially surrounded by shells of anions
and vice-versa. As a consequence, the electrostatic potential created by a single
charge is modified. While an isolated positive elementary charge generates in
an electrically neutral solvent with a dielectric constant ε a potential

V (r) =
e

4πε0εr
, (3.91)

the presence of the multitude of anions and kations in the electrolyte solution
screens this potential and turns the spatial dependence into

V (r) =
e

4πε0εr
exp− r

ξD
. (3.92)

The modification of the dependence implies that the Coulomb force origi-
nating from a kation practically disappears at distances r above the Debye
screening length ξD. The effect was explained for the first time in 1923 in
the famous theory developed by Debye and Hückel, and we briefly sketch its
content. The explanation refers at first to low molar mass electrolytes, but
the results can be transferred to polyelectrolyte solutions.

The problem that we have to treat is similar to the one discussed in the
preceding chapter: One has to determine in common the interrelated functions
V (r) and ρe(r), i.e., the electrostatic potential and the charge distribution,
now for a fixed kation in an electrolytic surrounding. We consider the case of
a system of monovalent ions. If a charge distribution is given, the resulting
potential can be calculated by solving the Poisson equation in the form
valid for an isotropic system,

1
r2

d
dr

(
r2

d
dr

)
V (r) = −ρe(r)

ε0ε
. (3.93)

The inclusion of the dielectric constant ε allows the polarization properties of
the solvent to be taken into account.

In reverse, a given varying potential V (r) determines the charge distribu-
tion ρe(r). The Debye–Hückel theory uses Boltzmann statistics and writes
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for the local number densities of the kations and anions, denoted c+(r) and
c−(r),

c+(r) = c̄+ exp−eV (r)
kT

(3.94)

c−(r) = c̄− exp
eV (r)
kT

. (3.95)

Here it is assumed that for the vanishing potential at large distances from the
central kation, the densities c̄+ and c̄− are found, whereby c̄+ = c̄−. The total
charge density ρe(r) follows as

ρe(r) = ec̄+ exp−eV (r)
kT

− ec̄− exp
eV (r)
kT

. (3.96)

If the kinetic energy is large compared to the potential energy, i.e.,

eV

kT
� 1 , (3.97)

a linear approximation can be used, which leads to

ρe(r) ≈ −2ec̄+
eV (r)
kT

. (3.98)

Employing Eq. (3.96) or the linear form Eq. (3.98) together with Eq. (3.93)
implies treating a system of interacting particles as a system of individual
particles in a potential field that is collectively produced by all the particles
together. In this molecular field the particles then move independently from
each other. Actually, this treatment is an approximation, but an often used
one, known as molecular field approximation. Here it yields a qualitatively
correct, good result.

The next step in the solution is the elimination of ρe(r) from Eqs. (3.93) and
(3.98), which leads to

1
r2

d
dr

(
r2

d
dr

)
V (r) =

1
ξ2D
V (r) . (3.99)

This differential equation is known as the Poisson–Boltzmann equation.
It includes only one coefficient, namely

ξD =
(
ε0εkT

2c̄+e2

)1/2

, (3.100)

and as we shall see, ξD has the properties of the already introduced Debye
length. Performing the analogous steps in the more general case of an elec-
trolyte of arbitrary composition, with number densities c̄i of ions with charges
±zie, gives

ξD =
(
ε0εkT

Iio

)1/2

, (3.101)
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where
Iio = Σic̄iz

2
i e

2 (3.102)

is referred to as the ionic strength.
The Poisson–Boltzmann equation can be exactly solved, and the general

solution is
V (r) =

β1

r
exp− r

ξD
+
β2

r
exp

r

ξD
. (3.103)

This can be verified by inserting Eq. (3.103) back into Eq. (3.99). The obvious
requirement V (r → ∞) = 0 implies that β2 must be zero, leading to

V (r) =
β1

r
exp− r

ξD
. (3.104)

The physical meaning of the result is immediately recognized: The accumula-
tion of oppositely charged ions in the vicinity of an ion leads to such a screen-
ing effect that its Coulomb field is weakened and finally vanishes at distances
above ξD. On raising the ion strength, screening sets in at ever-decreasing dis-
tances. ξD also describes the extension of the ion cloud around the central
ion, as can be deduced from Eqs. (3.98) and (3.104).

In the immediate vicinity of the central ion, i.e., for r � ξD, the Coulomb
potential is not screened and therefore fully active. This allows the determi-
nation of the integration constant c1. The final solution for the discussed case
of a monovalent kation is

V (r) =
e

4πε0ε
exp− r

ξD
. (3.105)

It is obvious that such a charge screening is also found in polyelectrolyte
solutions. There, it affects in particular the repulsive electrostatic forces acting
between the fixed charges of the polyions. These become screened by all mobile
ions, i.e., the counter-ions and, if present, further low molar mass ions. The
size of the shielding cloud of mobile ions around the charges on the polyion is
again given by the Debye length and is determined by the ionic strength.

Given a sufficiently high salt concentration in the system, the screening
can be so strong that the polyelectrolyte chains completely lose their peculiar
properties and show a similar behavior as neutral polymer chains. This change
occurs when at a sufficiently high salt concentration the Debye length drops
below the Bjerrum length, which sets the minimum distance between effective
charges on a chain.

3.3.2 Chain Stretching, Salt Effects and Interchain Ordering

Single neutral polymers in a highly dilute solution have coiled conformations
with sizes as described by the scaling laws Eq. (2.35) and (2.83) for a theta
solvent and a good solvent, respectively,
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R = a0N
1/2 ,

R = aFN
3/5 .

What is the conformation of a polyelectrolyte chain in a solvent with a di-
electric coefficient ε, again in the case of a very high dilution? Let us assume
that it has φioN ionized groups regularly distributed along the chain with
distances lio, and furthermore lio > ξB. Then all the counter-ions will diffuse
away and their concentration in the solution be negligible. Under these con-
ditions no screening occurs and the Coulomb forces between the chain-fixed
charges develop their full power. It can be easily demonstrated that chains in
such a system become stretched, i.e., have an end-to-end distance proportional
to the degree of polymerization

R ∝ N . (3.106)

To show this, we ask about the balance between the Coulomb repulsion that
expands the chain and the entropic rubber elastic forces acting in opposite
direction. For an estimate of the total electrostatic energy stored in a chain
with a diameter of the order R, we write

f e
p � 1

4πε0ε
e2

R
(Nφio)2 =

kT ξB
R

(Nφio)2 . (3.107)

The expression implies that Coulomb interaction energies of the order
e2/(4πε0εR) arise from the repulsive interaction between the (Nφio)2 ion pairs
in the chain. On the other hand, rubber-elastic entropic forces for a polymer
chain with an end-to-end distance R lead to an increase of the free energy to
a value

f s
p � kT

Na2
0

R2 (3.108)

(compare Eq. (2.93)). The equilibrium value of R follows from

d
dR

(f e
p + f s

p) = 0 = −kT ξB
R2

(Nφio)2 +
2kTR
Na2

0

. (3.109)

We obtain
R3 � N3ξBa

2
0φ

2
io , (3.110)

i.e., R ∝ N as is indicative for a stretched chain conformation.
Note that the chain is not completely stretched. The ratio between R and

the contour length Na0 of the chain amounts to

R

Na0
=
(
ξBφ

2
io

a0

)1/3

. (3.111)
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Since the charge distance along the chain, lio = a0/φio, is always larger than
ξB, we find

R

Na0
< 1 . (3.112)

The conformation of an isolated polyelectrolyte chain can be envisaged as
a stretched object set up of coiled subunits. A coiled subunit forms for a se-
quence of n monomeric units for which the electrostatic energy arising from
the inner repulsive forces, f e, equals the thermal energy, i.e.,

kT � f e .

For an ideal coil, Eq. (3.107) can be applied again, together with R = a0n
1/2,

yielding

kT � kT ξB
n1/2a0

(nφio)2 . (3.113)

The number of monomers in the subunit is therefore

n3/2 ∝ a0

φ2
ioξB

. (3.114)

A straight sequence of subunits will then have the length

R =
N

n
a0n

1/2 ∝ Nξ
1/3
B a

2/3
0 φ

2/3
io , (3.115)

and this exactly agrees with Eq. (3.110). According to Eq. (3.114) the size of
the subunits depends on φio only. Hence, for weakly charged polyelectrolyte
chains, where φio is small, the subunits can be quite large.

The arguments presented to show that isolated polyelectrolyte chains are
stretched are straightforward, but the experimental verification is difficult.
Scattering experiments, which is the main technique for determining the size
of dissolved polymers, reach their sensitivity limits before the chains get lin-
early stretched, which requires extremely high dilutions. They can, however,
be applied to study the effect of an addition of salt at still low, but not
ultra-low, polyelectrolyte concentrations. Since the Coulomb forces then be-
come screened, chains shrink in size. Figure 3.13 presents as an example
results of light scattering experiments carried out for a dilute solution of
poly(vinylpyridium)bromide.

Addition of NaBr here causes a continuous decrease of the radius of gyra-
tion Rg.

One approach for discussing this effect is based on the properties of the
persistent chain introduced in Sect. 2.4. As was already mentioned there, when
this model is applied to polyelectrolytes, the bending modulus, Eb, relates to
both, the inner stiffness of the chain as given by the constitution of the chain
backbone and the repulsive Coulomb forces between the chain-fixed charges.
The latter depend on the distance lio of the charges along the chain, which
is always larger than ξB and on the Debye length. With the increase in the
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Fig. 3.13. Poly(vinylpyridium)bromide with different molar masses (Mw = 1.68 ×
105 − 8.8 × 105 g mol−1) in aqueous solution: Variation of the radius of gyration
with the concentration of added NaBr as determined by light scattering. From Volk
et al. [15]

ionic strength achieved by the added salt, the Debye length and, therefore,
the electrostatic contribution to Eb decrease. For a perfect agreement between
theory and experiment – as was reached with the continuous lines in the figure,
which nicely reproduce the results – the excluded volume forces between chain
segments, which are not included in the persistent chain model, also have to be
accounted for. Actually, the electrostatic forces not only enlarge Eb, but give
also an additional contribution to the magnitude of the excluded volume effect.

What happens when, beginning with a highly diluted solution with
stretched chains, the polyelectrolyte concentration is increased? With the
polyion concentration the counter-ion concentration also increases and there-
fore again the ionic strength. As a consequence, the Debye length decreases
and screening effects show up. For a larger range of concentrations one finds
conditions with

R� ξD � lio(≥ ξB) .

Under these circumstances chains are coiled, whereby they can be ideal or
expanded depending on the quality of the solvent and the concentration. Scat-
tering experiments carried out for such solutions demonstrate that a structure
forms; the ordering of the chains in the solution is higher than in an equivalent
solution of neutral polymers. The signature of the order is the appearance of
a rather sharp peak in the scattering curve and Fig. 3.14 presents a typical
example.

Applying Bragg’s law on the peak location, a characteristic distance, d,
can be derived. It varies with the concentration of the polyelectrolyte in a sys-
tematic manner as

d ∝ c−1/2
m ,
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Fig. 3.14. Small angle neutron scattering curves obtained for salt-free aqueous
solutions of NaPSS (Mw = 3.54 ×105 g mol−1). The polymer concentration varies
between 1.0 ×10−5 g l−1 (filled circles) and 2.3 ×10−4 g l−1 (filled triangles). From
Nierlich et al. [16]

as is shown in Fig. 3.15. The dependence is indicative for a parallel packing
of rods, at least locally in the 10 nm to 100 nm range.

What is the meaning of this distance d? The average volume per chain-
fixed charge is of the order liod2. In a homogeneous solution the chains will
be equally distributed in the sample volume, which implies

liod
2 � 1

cmφio
. (3.116)

The term cmφio describes both, the concentration of the chain-fixed ions as
well as that of the counter-ions and therefore determines the ionic strength,
as

Iio = e2cmφio . (3.117)

According to Eq. (3.101) the Debye length is given by

ξD =
(
ε0εkT

Iio

)1/2

, (3.118)

or, introducing the Bjerrum length by Eq. (3.88), by

ξD =
(

e2

4πξBIio

)1/2

. (3.119)
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Fig. 3.15. Concentration dependence of the distance d derived from the peak loca-
tion in scattering curves measured for various NaPSS solutions. From Förster and
Schmidt [17]

With Eq. (3.117) we write

ξD =
(

1
4πξBcmφio

)1/2

, (3.120)

and with Eq. (3.116) we finally obtain

ξD �
(
liod

2

ξB

)1/2

. (3.121)

This is an interesting result. For a strong electrolyte with lio � ξB due to the
charge condensation there follows

d � ξD . (3.122)

Hence, in this often encountered case the interchange distance equals the
Debye length. For weak electrolytes with lio > ξB the distance d is smaller
than the Debye length, d < ξD.

3.3.3 Osmotic Pressure

Osmotic pressures are measured for solutions in a cell with two compartments
that are separated by a semipermeable membrane. They arise if the dissolved
molecules are only contained in one compartment and cannot pass the mem-
brane. The osmotic pressure depends on the number density of the dissolved
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molecules only, irrespective of their size. Therefore, for solutions of neutral,
i.e., non-dissociating polymers it is extremely low and in the dilute limit given
by

Π = kT
cm
N

,

whereby cm/N describes the number density of polymers. For polyelectrolytes
the behavior changes completely. The mobile counter-ions now produce an
osmotic pressure similar to that in a low molar mass solution. The reason
for this change is easily seen: Even if their small size would allow a passage
through the semipermeable membrane, the counter-ions will not leave the
compartment with the solution because the strong electrostatic forces preserve
a global charge neutrality. Since the polyions cannot leave their compartment
due to their size, the counter-ions are kept there as well, and so become fully
active in the production of the osmotic pressure. For a dilute polyelectrolyte
solution it is therefore given by

Π

kT
=
cm
N

+ φiocm . (3.123)

The second term due to the counter-ions dominates by far, i.e.,

Π

kT
≈ φiocm . (3.124)

Writing this expression it is assumed that the distance of ionizable groups
along the chain is larger than lio > ξB, so that no counter-ion condensation
occurs.

What happens if salt is now added to the system? Figure 3.16 gives the
answer with an experimental result. For a salt-free NaPSS solution one finds
a behavior in agreement with Eq. (3.124) (the slope in the log–log representa-
tion actually indicates an increase with a power of 9/8 rather than 1 and there
exist attempts to interpret this small deviation). The second, much steeper
line refers to a solution where NaCl was added in a concentration of 10−2 mol
l−1. This concentration dependence now exactly agrees with that observed for
neutral polymers, namely, according to Eq. (3.41),

Π

kT
∝ c9/4

m .

How can the observation be understood? The ionic strength supplied by the
salt can lead to a complete screening of the chain-fixed charges, then, when
ξD < lio Na- and Cl-ions freely pass through the semipermeable membrane
and are found in both compartments. However, since charge neutrality is
preserved on both sides, an equal number of positive and negative salt ions
must pass through the membrane in each direction. Why are the counter-ions
of the polyion no longer active under these circumstances? The answer was
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Fig. 3.16. Concentration dependence of the osmotic pressure measured for aqueous
solutions of NaPSS with and without added NaCl. From Wang and Bloomfield [18]

given long ago, in a work by Donnan in 1911. Consider a positively charged
polyion and counter-ions that are identical with the negatively charged ions
of the salt. Let c′− be their concentration in the polymer compartment and c′+
the concentration of the mobile positive salt ions in the same compartment.
The other part of the cell contains dissolved salt only, with ion concentrations
c′′+ and c′′−. Charge neutrality requires for the polymer side

c′− = c′+ + cmφio , (3.125)

there are more negative than positive mobile ions, and for the other side

c′′− = c′′+ = csa ; (3.126)

csa is here introduced as the number density of salt molecules in the poly-
mer free compartment. Even if the degree of dissociation of the salt molecules
is very close to one, there still exist some non-dissociated molecules. Their
concentration, denoted c+−, is equal on both sides since they can pass freely
through the membrane. The dissociation-association equilibria fulfill the equa-
tion

c′+− = c′′+− (3.127)
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c′′+c
′′
−

c+−
= const =

c′+c
′
−

c+−
, (3.128)

hence
c′+c

′
− = c′′+c

′′
− = c2sa . (3.129)

Equation (3.125) can be rewritten as

(c′− − c′+)2 = (cmφio)2 . (3.130)

A multiplication of Eq. (3.129) by a factor 4, followed by an addition to
Eq. (3.130), yields

(c′− + c′+)2 = 4c2sa + (cmφio)2 . (3.131)

The concentration difference between the mobile ions in the two compartments
Δcio is given by

Δcio = c′− + c′+ − 2csa (3.132)

and therefore amounts to

Δcio = (4c2sa + c2mφ
2
io)

1/2 − 2csa . (3.133)

This is the quantity we searched for, because Δcio determines the osmotic
pressure. In the absence of salt, csa = 0, we have

Δcio = cmφio , (3.134)

i.e., the difference arises from the counter-ions of the polyion only. On the
other hand, for high salt concentrations

cmφio � csa

a series expansion of the square root expression yields

Δcio ≈ c2mφ
2
io

4csa
. (3.135)

The associated osmotic pressure is obtained by replacing the term φiocm in
Eq. (3.123) by Δcio, leading to

Π

kT
=
cm
N

+
φ2

io

4csa
c2m . (3.136)

The second term in Eq. (3.123), which is linear in cm, is exchanged for a term
that is quadratic in cm. The associated coefficient

ADo
2 =

φ2
io

4csa
(3.137)

formally represents a second order virial coefficient, and is known as the Don-
nan contribution to A2.
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Equation (3.136) implies that the osmotic pressure of a salt containing
solution approaches in the limit of low polyelectrolyte concentrations the value
found for neutral polymers

lim
cm→0

Π

kTcm
=

1
N

. (3.138)

Hence, after an addition of salt, osmotic pressure measurements can again be
used for a determination of the degree of polymerization.

Our considerations qualitatively explain the results of Fig. 3.16: The disso-
lution of salt in addition to the polyelectrolyte suppresses the osmotic pressure
contribution by the counter-ions and transforms the stiffened polyelectrolyte
chain into a much more flexible quasi-neutral chain. In the absence of these
polyelectrolyte characteristics, one recovers the behavior of neutral systems
and, therefore, in the semidilute range the associated scaling law Eq. (3.41).
Equation (3.136) correctly describes the general tendencies, but is not an ac-
curate expression. First, in view of the complex structures in polyelectrolytes
with shell formations and screening effects, equilibria have to be expressed
in terms of activities rather than concentrations. Furthermore, the Donnan
expression is not the only contribution to the second virial coefficient. There
exists another part, ΔA2, which accounts as usually for excluded volume ef-
fects, the quality of the solvent and the peculiar ordering phenomena found
in polyelectrolyte solutions. Therefore, in general, one has to write

Π

kT
=
cm
N

+ADo
2 c2m + ΔA2c

2
m , (3.139)

thus dealing with two contributions to the second virial coefficient.
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4

Polymer Blends and Block Copolymers

A large part of applications oriented research is devoted to the study of poly-
mer blends, since mixing opens a route for a combination of different prop-
erties. Take, for example, the mechanical performance of polymeric products.
In many cases one is searching for materials that combine high stiffness with
resistance to fracture. For the majority of common polymers these two re-
quirements cannot be realized simultaneously, because an increase in stiffness,
i.e., the elastic moduli, is usually associated with samples becoming more brit-
tle and decreasing in strength. Using mixtures offers a chance to achieve good
results for both properties. High-impact polystyrene, a mixture of polystyrene
and polybutadiene, represents a prominent example. Whereas polystyrene is
stiff but brittle, a blending with rubbers furnishes a tough material that still
retains a satisfactory stiffness. Here mixing results in a two-phase structure
with rubber particles of spherical shape being incorporated in the matrix of
polystyrene. Materials are tough, if fracture energies are high due to yield
processes preceding the ultimate failure, and these become initiated at the
surfaces of the rubber spheres where stresses are intensified. On the other
hand, inclusion of rubber particles in the polystyrene matrix results in only
a moderate reduction in stiffness. Hence, the blending yields a material with
properties that in many situations are superior to pure polystyrene. There are
other cases, where an improvement of the mechanical properties is achieved
by a homogeneous mixture of two polymers, rather than a two-phase struc-
ture. A well-known example is again given by polystyrene when blended with
poly(phenyleneoxide). In this case, a homogeneous phase is formed and as it
turns out in mechanical tests, it also exhibits a satisfactory toughness together
with a high elastic modulus.

It is generally very difficult or even impossible to predict the mechani-
cal properties of a mixture; however, this is only the second step. The first
problem is an understanding of the mixing properties, i.e., a knowledge of
under which conditions two polymeric compounds will form either a homo-
geneous phase or a two-phase structure. In the latter case, it is important to
see how structures develop and how this can be controlled. This section deals
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with these topics. We shall first discuss the thermodynamics of mixing of two
polymers and derive equations that can be used for the setting-up of phase
diagrams. Subsequently we shall be concerned with the kinetics of unmixing
and here, in particular, with a special mode known as spinodal decomposition.

4.1 The Flory–Huggins Treatment of Polymer Mixtures

Flory and Huggins devised a general scheme that enables one to deal with
the mixing properties of a pair of polymers. It provides a basic understand-
ing of the occurrence of different types of phase diagrams, in dependence on
temperature and the molar masses.

The mixing properties of two components may generally be discussed by
considering the change in the Gibbs free energy. Figure 4.1 addresses the
situation and introduces the relevant thermodynamic variables. Let us assume
that we have ñA moles of polymer A, contained in a volume VA and ñB moles
of polymer B, contained in a volume VB. Mixing may be initiated by removing
the boundary between the two compartments, so that both components can
expand to the full volume of size V = VA + VB. In order to find out whether
a mixing would indeed occur, the change in the Gibbs free energy has to
be considered. This change, called the Gibbs free energy of mixing and
denoted ΔGmix, is given by

ΔGmix = GAB − (GA + GB) , (4.1)

where GA,GB and GAB denote the Gibbs free energies of the compounds A and
B in separate states and the mixed state, respectively. Employing the Gibbs,
rather than the Helmholtz, free energy allows one to also include volume
changes in the treatment, which may accompany a mixing at constant pres-
sure. However, since the related term pΔV is always negligible, this is only
a formal remark.

The Flory–Huggins treatment represents ΔGmix as a sum of two con-
tributions

ΔGmix = −TΔSt + ΔGloc , (4.2)

Fig. 4.1. Variables used in the description of the process of mixing of two polymers,
denoted A and B
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which describe the two main aspects of the mixing process. Firstly, mixing
leads to an increase of the entropy associated with the motion of the centers
of mass of all polymer molecules, and secondly, it may change the local inter-
actions and motions of the monomers. We call the latter part ΔGloc and the
increase in the translational entropy ΔSt. ΔSt and the related decrease
−TΔSt in the Gibbs free energy always favor a mixing. ΔGloc, on the other
hand, may act favorably or unfavorably, depending on the character of the
monomer–monomer pair interactions. In most cases, and, as can be verified,
for van der Waals interactions generally, attractive energies between equal
monomers are stronger than those between unlike pairs. This behavior im-
plies ΔGloc > 0 and therefore opposes a mixing. As a free energy, ΔGloc also
accounts for changes in the entropy due to local effects. For example, a shrink-
age or an expansion of the total volume on mixing results in a change in the
number of configurations available for local motions of the monomeric units,
hence in a change of entropy to be included in ΔGloc.

The decomposition of ΔGmix in these two contributions points to the two
main aspects of the mixing process, but this alone would not be of much value.
What is needed for actual use are explicit expressions for ΔSt and ΔGloc, so
that the sum of the two contributions can be calculated. The Flory–Huggins
treatment is based on approximate equations for both parts. We formulate
them first and then discuss their origins and the implications. The equations
have the following forms:

1. The increase in the translational entropy is described by

ΔSt

R̃
= ñA ln

V
VA

+ ñB ln
V
VB

. (4.3)

Introducing the volume fractions φA and φB of the two components in the
mixture, given by

φA =
VA

V and φB =
VB

V , (4.4)

ΔSt can be written as

ΔSt

R̃
= −ñA lnφA − ñB lnφB . (4.5)

2. The change in the local interactions is expressed by the equation

ΔGloc = R̃T
V
ṽc
χφAφB . (4.6)

It includes two parameters. The less important one is ṽc, denoting the
(molar) volume of a reference unit common to both polymers. Principally
it can be chosen arbitrarily, but usually it is identified with the volume
occupied by one of the monomeric units. The decisive factor is the Flory–
Huggins parameter χ. It is dimensionless and determines in empirical
manner the change in the local free energy per reference unit.
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What is the physical background of these expressions? There are numerous
discussions in the literature, mainly based on Flory’s and Huggins’ original
derivations. As the full treatment lies outside our scope, we here present only
a simplified view, which nevertheless may aid in providing a basic understand-
ing. The view emanates from a molecular or mean field description. We
consider the actual system of interpenetrating interacting chains, which com-
prise the fluid mixture as being equivalent to a system of independent chains
that interact with a common uniform mean field set up by the many chain
system as a whole. The interaction of a given chain with all other chains, as
represented in an integral form by the mean field, has two effects. The first one
was discussed earlier: The contacts with other chains screen the intramolec-
ular excluded volume interactions, thus leading to ideal chain behavior. The
Flory–Huggins treatment assumes that this effect is maintained in a mixture,
with unchanged conformational distributions. The second effect was already
mentioned in the introduction to this chapter. Being in contact with a large
number of other chains, a given chain in a binary mixture effectively integrates
over the varying monomer–monomer interactions and thus probes their aver-
age value. The change in the monomer–monomer interactions following from
a mixing may therefore be expressed as change of the mean field, with uniform
values for all units of the A-chains and B-chains, respectively.

Equations (4.5) and (4.6) are in agreement with this picture, as can be
easily verified. In order to formulate the increase in the translational entropy
for ñA moles of independent A-chains, expanding from an initial volume VA

to a final volume V , and ñB moles of B-chains, expanding from VB to V , we
may just apply the standard equations used for perfect gases, and these lead
exactly to Eq. (4.5). As the single chain conformational distributions should
not change on mixing, we have no further contribution to the entropy (Flory
addressed in his original treatment Eq. (4.5) correspondingly as the change in
the total configurational entropy, rather than associating it with the center of
mass motions only).

Regarding the expression for ΔGloc, we may first note that Eq. (4.6) rep-
resents the simplest formula which fulfills the requirement that ΔGloc must
vanish for φA → 0 and φB → 0. More about the background may be learned
if we consider the change in the interaction energy following from a transfer
of an A-chain from the separated state into the mixture. Each chain probes
the average value of the varying contact energies with the adjacent foreign
monomers, and the increase in the potential energy per reference unit may be
written as

zeff
2
φBkTχ

′ .

Here, the effective coordination number zeff gives the number of nearest neigh-
bors (in reference units) on other chains, and a division by 2 is necessary to
avoid a double count of the pair contacts. An increase in the local Gibbs free
energy only results if an AB-pair is formed and this occurs with a probability
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equal to the volume fraction of the B’s, φB. The product kTχ′ is meant to
specify this energy increase by employing a dimensionless parameter χ′. For
the potential experienced by the units of the B-chains in the mixture we write
correspondingly

zeff
2
φAkTχ

′

with the identical parameter χ′. To obtain ΔGloc, which refers to the total sys-
tem, we have to add the contributions of all A-chains and B-chains, weighted
according to the respective fraction. This leads us to

ΔGloc =
V
ṽc

NL
zeff
2

(φAφB + φBφA)kTχ′

= R̃T
V
ṽc
φAφBzeffχ

′ . (4.7)

The prefactor VNL/ṽc gives the number of reference units in the system. As
we can see, Eq. (4.7) is equivalent to Eq. (4.6) if we set

χ = zeffχ
′ . (4.8)

Originally the χ-parameter was introduced to account for the contact energies
only. However, its meaning can be generalized and in fact, this is necessary.
Experiments indicate that ΔGloc often includes an entropic part, so that we
have in general

ΔGloc = ΔHmix − TΔSloc . (4.9)

The enthalpic part ΔHmix shows up in the heat of mixing, which is positive
for endothermal and negative for exothermal systems. As has already been
mentioned, the entropic part ΔSloc is usually due to changes in the number
of available local conformations.

A particular concept employed in the original works must also be com-
mented on, since it is still important. In the theoretical developments, Flory
used a lattice model, constructed as drawn schematically in Fig. 4.2.

The A-units and B-units of the two polymer species both have the same
volume vc and occupy the cells of a regular lattice with coordination num-
ber z. It is assumed that the interaction energies are purely enthalpic and
effective between nearest neighbors only. Excess contributions kTχ′, which
add to the interaction energies in the separated state, arise for all pairs of
unlike monomers. The parameter χ = (z − 2)χ′ was devised to deal with
this model and therefore depends on the size of the cell. Flory evaluated this
model with the tools of statistical thermodynamics. Using approximations, he
arrived at Eqs. (4.5) and (4.6).

Although a modeling of a liquid polymer mixture on a lattice may at first
look rather artificial, it makes sense because it retains the important aspects
of both the entropic and enthalpic parts of ΔGmix. In recent years, lattice
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Fig. 4.2. Lattice model of a polymer mixture. Structure units of equal size setting
up the two species of polymers occupy a regular lattice

models have gained a renewed importance as a concept that is suitable for
computer simulations. Numerical investigations make it possible to check and
assess the validity range of the Flory–Huggins treatment. In fact, limitations
exist and, as analytical calculations are difficult, simulations are very helpful
and important. We shall present one example in a later section.

Application of the two expressions for ΔSt and ΔGloc, Eqs. (4.5) and (4.6),
results in the Flory–Huggins formulation for the Gibbs free energy of mixing
of polymer blends

ΔGmix = R̃T (ñA lnφA + ñB lnφB + ñcφAφBχ) (4.10)

= R̃TV
(
φA

ṽA
lnφA +

φB

ṽB
lnφB +

χ

ṽc
φAφB

)
(4.11)

= R̃T ñc

(
φA

NA
lnφA +

φB

NB
lnφB + χφAφB

)
. (4.12)

Here, we have introduced the molar volumes of the polymers, ṽA and ṽB, using

ñA = V φA

ṽA
and ñB = V φB

ṽB
, (4.13)

and the molar number of the reference units

ñc =
V
ṽc

. (4.14)

The second equation follows when we replace the molar volumes by the degrees
of polymerization expressed in terms of the numbers of structure units. If we
choose the same volume, equal to the reference volume ṽc, for both the A-
structure and B-structure units we have

NA =
ṽA
ṽc

and NB =
ṽB
ṽc

. (4.15)
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φA and φB add up to unity,

φA + φB = 1 . (4.16)

The Flory–Huggins equation (4.11) or (4.12) is famous and widely used.
It sets the basis from which the majority of discussions of the properties of
polymer mixtures emanates.

Starting from ΔGmix, the entropy of mixing, ΔSmix, follows as

ΔSmix = −∂ΔGmix

∂T

= −R̃V
(
φA

ṽA
lnφA +

φB

ṽB
lnφB +

φAφB

ṽc

∂(χT )
∂T

)
(4.17)

and the enthalpy of mixing, ΔHmix, as

ΔHmix = ΔGmix + TΔSmix = R̃T
V
ṽc
φAφB

(
χ− ∂(χT )

∂T

)
. (4.18)

These expressions show that the χ-parameter includes an entropic contribu-
tion given by

χS =
∂

∂T
(χT ) (4.19)

and an enthalpic part

χH = χ− ∂(χT )
∂T

= −T ∂χ
∂T

, (4.20)

both setting up χ as
χ = χH + χS . (4.21)

Equation (4.19) indicates that for purely enthalpic local interactions, χ must
have a temperature dependence

χ ∝ 1
T
. (4.22)

In this case, the increase in entropy is associated with the translational entropy
only,

ΔSmix = ΔSt , (4.23)

and the heat of mixing is given by

ΔHmix = R̃T
V
ṽc
χφAφB = R̃T ñcχφAφB . (4.24)

The Flory–Huggins equation provides the basis for a general discussion
of the miscibility properties of a pair of polymers. As we shall see, this can
be achieved in a transparent manner and leads to clear conclusions. To start
with, we recall that as a necessary requirement mixing must be accompanied
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by a decrease of the Gibbs free energy. For liquid mixtures of low molar mass
molecules this is mainly achieved by the large increase in the translational
entropy. For these systems the increase in ΔSt can accomplish miscibility
even in the case of unfavorable AB-interaction energies, i.e., for mixtures with
an endothermal heat of mixing. In polymers we find a qualitatively different
situation. The Flory–Huggins equation teaches us that for polymer mixtures
the increase in the translational entropy ΔSt is extremely small and vanishes
in the limit of infinite molar mass, i.e., ṽA, ṽB → ∞. The consequences are
obvious:

• Positive values of χ necessarily lead to incompatibility. Since the entropic
part, χS , appears to be mostly positive, one may also state that no polymer
mixtures exist with a positive heat of mixing.

• If the χ-parameter is negative, then mixing takes place.

The reason for this behavior becomes clear if we regard miscibility as the re-
sult of a competition between the osmotic pressure emerging from the trans-
lational motion of the polymers and the forces acting between the monomers.
The osmotic pressure, which always favors miscibility, depends on the poly-
mer density cp, whereas the change in the free energy density associated with
the interactions between unlike monomers – it can be positive or negative – is
a function of the monomer density cm. Since cp/cm = 1/N , the osmotic pres-
sure part is extremely small compared to the effect of the monomer–monomer
interactions. Hence, mutual compatibility of two polymers, i.e., their poten-
tial to form a homogeneous mixture, is almost exclusively determined by the
local interactions. Endothermal conditions are the rule between two different
polymers, exothermal conditions are the exception. Hence, the majority of
pairs of polymers cannot form homogeneous mixtures. Compatibility is only
found if there are special interactions between the A-monomers and the B-
monomers as they may arise in the form of dipole–dipole forces, hydrogen
bonds or special donor–acceptor interactions.

All these conclusions refer to the limit of large degrees of polymerization.
It is important to see that the Flory–Huggins equation permits one to consider
how the compatibility changes if the degrees of polymerization are reduced
and become moderate or small. For the sake of simplicity, for a discussion we
choose the case of a symmetric mixture with equal degrees of polymerization
for both components, i.e.,

NA = NB = N (4.25)

Using
ñc

N
= ñA + ñB (4.26)

we obtain

ΔGmix = R̃T (ñA + ñB)(φA lnφA + φB lnφB + χNφAφB) . (4.27)
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Fig. 4.3. Gibbs free energy of mixing of a symmetric binary polymer mixture (NA =
NB = N), as described by the Flory–Huggins equation

Note that there is only one relevant parameter, namely the product Nχ. The
dependence of ΔGmix on φA is shown in Fig. 4.3, as computed for different
values of χN .

A discussion of these curves enables us to reach some direct conclusions.
For vanishing χ, one has negative values of ΔGmix for all φA, with a minimum
at φA = 0.5. In this case, we have perfect miscibility caused by the small
entropic forces related with ΔSt. For negative values of χN , we have a further
decrease of ΔGmix and therefore also perfect miscibility.

A change in behavior is observed for positive values of χN . The curves
alter their shape and for parameters χN above a critical value

(χN) > (χN)c

a maximum rather than a minimum emerges at φA = 0.5. This change leads
us into a different situation. Even if ΔGmix is always negative, there a ho-
mogeneous mixture does not always form. To understand the new conditions
consider, for example, the curve for χN = 2.4 and a blend with φA = 0.45.
There the two arrows are drawn. The first arrow indicates that a homoge-
neous mixing of A and B would lead to a decrease in the Gibbs free energy,
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when compared to two separate one component phases. However, as shown
by the second arrow, the Gibbs free energy can be further reduced, if again
a two-phase structure is formed, now being composed of two mixed phases,
with compositions φ′A and φ′′A. The specific feature in the selected curve re-
sponsible for this peculiar behavior is the occurrence of the two minima at
φ′A and φ′′A, as these enable the further decrease of the Gibbs free energy. For
which values of φA can this decrease be achieved? Not for all values, because
there is an obvious restriction: The overall volume fraction of the A-chains
has to be in the range

φ′A ≤ φA ≤ φ′′A .

Outside this central range, for φA < φ′A and φA > φ′′A, a separation into
the two-phases with the minimum Gibbs free energies is impossible and one
homogeneous phase is formed. For a given φA we can calculate the fractions
φ1, φ2 of the two coexisting mixed phases. As we have

φA = φ1 · φ′A + (1 − φ1)φ′′A , (4.28)

we find

φ1 =
φ′′A − φA

φ′′A − φ′A
(4.29)

and

φ2 = 1 − φ1 =
φA − φ′A
φ′′A − φ′A

. (4.30)

Hence in conclusion, for curves ΔGmix(φA), which exhibit two minima and
a maximum in-between, mixing properties depend on the value of φA. Misci-
bility is found for low and high values of φA only, and in the central region
there is a miscibility gap.

One can determine the critical value of χN that separates the range of
perfect mixing, i.e., compatibility through all compositions, from the range
with a miscibility gap. Clearly, for the critical value of χN , the curvature at
φA = 0.5 must vanish,

∂2ΔGmix(φA = 0.5)
∂φ2

A

= 0 . (4.31)

The first derivative of ΔGmix is given by

1
(ñA + ñB)R̃T

∂ΔGmix

∂φA
= lnφA + 1 − ln(1 − φA) − 1 + χN(1 − 2φA) (4.32)

and the second derivative by

1
(ñA + ñB)R̃T

∂2ΔGmix

∂φ2
A

=
1
φA

+
1

1 − φA
− 2χN . (4.33)
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The critical value is
χN = 2 . (4.34)

Hence, we expect full compatibility for

χ < χc =
2
N

(4.35)

and a miscibility gap for
χ > χc . (4.36)

Equations (4.35) and (4.36) describe the effect of the molar mass on the
compatibility of a pair of polymers. In the limit N → ∞ we have

χc → 0 .

This agrees with our previous conclusion that for positive values of χ polymers
of average and high molar mass do not mix at all.

The properties of symmetric polymer mixtures are summarized in the
phase diagram shown in Fig. 4.4. It depicts the two regions associated with
homogeneous and two-phase structures in a plot that uses the sample com-
position as expressed by the volume fraction φA and the parameter χN as
variables. The boundary between the one phase and the two-phase region is
called binodal. It is determined by the compositions φ′A and φ′′A of the equi-

Fig. 4.4. Phase diagram of a symmetric polymer mixture (NA = NB = N). In
addition to the binodal (continuous line) the spinodal is shown (broken line)
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librium phases with minimum Gibbs free energies in the miscibility gap. φ′A
and φ′′A follow for a given value of χN from

∂ΔGmix

∂φA
= 0 . (4.37)

Using Eq. (4.32) we obtain an analytical expression for the binodal:

χN =
1

1 − 2φA
ln

1 − φA

φA
. (4.38)

The derived phase diagram is universal in the sense that it is valid for all
symmetric polymer mixtures. It indicates a miscibility gap for χN > 2 and
enables us to make a determination of χN in this range if the compositions
of the two coexisting phases are known.

For mixtures of polymers with different degrees of polymerization, i.e.,
NA = NB, the phase diagram loses its symmetrical shape. Figure 4.5 depicts
ΔGmix(φA) for a mixture with NB = 4NA, as computed on the basis of the
Flory–Huggins equation. Straightforward analysis shows that, in this general
case, the critical value of χ is given by

χc =
1
2

(
1√
NA

+
1√
NB

)2

. (4.39)

The critical point where the miscibility gap begins is located at

φA,c =
√
NB√

NA +
√
NB

. (4.40)

The points along the binodal can be determined by the construction of the
common tangent as indicated in the figure. The explanation for this procedure
is simple. We refer here to the two arrows drawn at φA = 0.45 and the curve
calculated for χNA = 1.550. First, consider the change in ΔGmix if starting-off
from separate states, two arbitrary mixed phases with composition φ∗A and
φ∗∗A are formed. ΔGmix is given by the point at φA = 0.45 on the straight line
that connects ΔGmix(φ∗A) and ΔGmix(φ∗∗A ). This is seen when we first write
down the obvious linear relation

ΔGmix(φA) = φ1ΔGmix(φ∗A) + φ2ΔGmix(φ∗∗A ) , (4.41)

where φ1 and φ2 denote the volume fractions of the two mixed phases. Re-
calling that φ1 and φ2 are given by Eqs. (4.29) and (4.30), we obtain the
expression

ΔGmix(φA) =
φ∗∗A − φA

φ∗∗A − φ∗A
ΔGmix(φ∗A) +

φA − φ∗A
φ∗∗A − φ∗A

ΔGmix(φ∗∗A ) , (4.42)

which indeed describes a straight line connecting ΔGmix(φ∗A) and ΔGmix(φ∗∗A ).
So far, the choice of φ∗A and φ∗∗A has been arbitrary, but we know that on
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Fig. 4.5. Gibbs free energy of mixing of an asymmetric polymer mixture with
NB = 4NA, calculated for the indicated values of χNA. The points of contact with
the common tangent, located at φ′

A and φ′′
A, determine the compositions of the equi-

librium phases on the binodal. The critical values are (χNA)c = 9/8 and φc = 2/3

separating into two mixed phases, the system seeks to maximize the gain
in Gibbs free energy. The common tangent represents that connecting line
between any pair of points on the curve which is at the lowest possible level.
A transition to this line therefore gives the largest possible change ΔGmix. It
is associated with the formation of two phases with compositions φ′A and φ′′A,
as given by the points of contact with the common tangent. The binodal is
set up by these points and a determination may be based on the described
geometrical procedure.

4.1.1 Phase Diagrams: Upper and Lower Miscibility Gap

Phase diagrams of polymer blends under atmospheric pressure are usually
presented in terms of the variables φA and T . Emanating from the discussed
universal phase diagram in terms of χ and φA these can be obtained by intro-
ducing the temperature dependence of the Flory–Huggins parameter into the
consideration. This function χ(T ) then solely determines the appearance. For
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different types of temperature dependencies χ(T ), different classes of phase
diagrams emerge and we shall discuss them in this section.

Let us first consider an endothermal polymer mixture with negligible
entropic contributions to the local Gibbs free energy, i.e., a system with
χ = χH > 0. Here the temperature dependence of χ is given by Eq. (4.22)

χ ∝ 1
T
.

The consequences for the phase behavior are evident. Perfect miscibility can
principally exist at high temperatures, provided that the molar mass of the
components are low enough. The increase of χ with decreasing tempera-
ture necessarily results in a termination of this region and the formation of
a miscibility gap, found when χ > χc. For a symmetric mixture we obtained
χc = 2/N (Eq. (4.36)). If χc is reached at a temperature Tc, we can write

χ =
2
N

Tc

T
. (4.43)

The resulting phase diagram is shown in Fig. 4.6, together with the temper-
ature dependence of χ. The binodal follows from Eq. (4.38), as

T

Tc
=

2(1 − 2φA)
ln ((1 − φA)/φA)

. (4.44)

It marks the boundary between the homogeneous state at high temperatures
and the two-phase region at low temperatures.

Upon cooling a homogeneous mixture, phase separation at first sets in for
samples with the critical composition, φA = 0.5, at the temperature Tc.
For the other samples demixing occurs at lower temperatures, as described by
the binodal. We observe here a lower miscibility gap. A second name is also

Fig. 4.6. Endothermal symmetrical mixture with a constant heat of mixing. Tem-
perature dependence of the Flory–Huggins parameter (left) and phase diagram show-
ing a lower miscibility gap (right)



4.1 The Flory–Huggins Treatment of Polymer Mixtures 119

used in the literature: Tc is called the upper critical dissolution temper-
ature, shortly abbreviated UCDT. The latter name refers to the structural
changes induced when coming from the two-phase region, where one observes
a dissolution and merging of the two phases.

Experiments show that exothermal polymer blends sometimes have an up-
per miscibility gap, i.e., one which is open towards high temperatures. One
may wonder why a mixture that is homogeneous at ambient temperature sep-
arates in two phases upon heating, and we shall have to think about possible
physical mechanisms. At first, however, we discuss the formal prerequisites.
On the right-hand side of Fig. 4.7 there are phase diagrams of symmetric
polymer mixtures that display an upper miscibility gap. The various depicted
binodals are associated with different molar mass. The curved binodals relate
to polymers with low or moderate molar masses. For high molar mass, the
phase boundary becomes a horizontal line and phase separation then occurs
for χ ≥ 0 independent of φA. The latter result agrees with the general crite-
rion for phase separations in polymer systems with high molar masses. It is
therefore not particular to the symmetric system, but would be obtained in
the general case, NA = NB, as well.

The temperature dependencies χ(T ) that lead to these diagrams are shown
on the left-hand side of Fig. 4.7. Their main common property is a change of
the Flory–Huggins parameter from negative to positive values. The crossing
of the zero line takes place at a certain temperature, denoted T0. Coming from
low temperatures, unmixing sets in for T = Tc with

Nχ(Tc) = 2 .

Fig. 4.7. Phase diagram of an exothermal symmetric polymer mixture with an
upper miscibility gap. The binodals correspond to the different functions Nχ(T )
shown on the left, associated with an increase in the molar mass by factors 2, 4
and 8. Critical points are determined by Nχ(Tc/T0) = 2, as indicated by the filled
points in the drawings
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In the limit of high degrees of polymerization we have χ(Tc) → 0 and therefore
Tc → T0. We see that the prerequisite for an upper miscibility gap, or a lower
critical solution temperature, abbreviated as LCST, as it is alternatively
called, is a negative value of χ at low temperatures, followed by an increase
to values above zero.

One can envisage two different mechanisms as possible explanations for
such a behavior. First, there can be a competition between attractive forces
between specific groups incorporated in the two polymers on one side and re-
pulsive interactions between the remaining units on the other side. In copoly-
mer systems with pairs of specific comonomers that are capable of forming
stable bonds these conditions may arise. With increasing temperature the frac-
tion of closed bonds decreases and the repulsive forces finally dominate. For
such a system, χ may indeed be negative for low temperatures and positive
for high ones.

The second conceivable mechanism has already been mentioned. Some-
times it is observed that a homogeneous mixing of two polymers results in
a volume shrinkage. The related decrease in the free volume available for local
motions of the monomers may lead to a reduced number of available confor-
mations and hence a lowering of the entropy. The effect usually increases with
temperature and finally overcompensates the initially dominating attractive
interactions.

For mixtures of polymers with low molar mass there is also the possibility
that both a lower and an upper miscibility gap appear. In this case, χ crosses
the critical value χc twice, first during a decrease in the low temperature range
and then, after passing through a minimum, during the subsequent increase at
higher temperatures. Such a temperature dependence reflects the presence of
both a decreasing endothermal contribution and an increasing entropic part.

As we can see, the Flory–Huggins treatment is able to account for the var-
ious general shapes of existing phase diagrams. This does not mean, however,
that one can reproduce measured phase diagrams in a quantitative manner.
To comply strictly with the Flory–Huggins theory, the representation of mea-
sured binodals has to be accomplished with one temperature-dependent func-
tion χ(T ) only. As a matter of fact, this is rarely the case. Nevertheless, data
can be formally described if one allows for a φA-dependence of χ. As long as
the variations remain small, one can consider the deviations as perturbations
and still feel safe on the grounds of the Flory–Huggins treatment. For some
systems, however, the variations with φA are large. Then the basis is lost and
the meaning of χ becomes rather unclear. Even then the Flory–Huggins equa-
tion is sometimes employed but only as a means to carry out interpolations
and extrapolations and to relate different sets of data. That deviations arise
is not unexpected. The mean field treatment, on which the Flory–Huggins
theory is founded, is only an approximation with varying quality.

Let us look at two examples.
Figure 4.8 presents phase diagrams of mixtures of different polystyrenes

with polybutadiene (PB), all of them with moderate to low molar mass
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Fig. 4.8. Phase diagrams for different PS/PB-mixtures, exhibiting lower misci-
bility gaps. (a) M(PS) = 2250 g mol−1, M(PB) = 2350 g mol−1; (b) M(PS) =
3500 g mol−1, M(PB) = 2350 g mol−1; (c) M(PS) = 5200 g mol−1, M(PB) =
2350 g mol−1. Data from Roe and Zin [19]

(M = 2000−4000g mol−1). The temperature points on the curves are mea-
sured cloud points. As samples are transparent in the homogeneous phase
and become turbid when demixing starts, the cloudiness can be used for a de-
termination of the binodal. For an accurate detection one can use measure-
ments of the intensity of scattered or transmitted light. Here, we are dealing
with an endothermal system that exhibits a lower miscibility gap. Note that
Tc, as given by the highest point of each curve, decreases with decreasing molar
mass in accordance with the theoretical prediction. The curves, which provide
a satisfactory data fit, were obtained on the basis of the Flory–Huggins theory
assuming a weakly φA-dependent χ.

As a second example, Fig. 4.9 shows a phase diagram obtained for mixtures
of polystyrene and poly(vinylmethylether) (PVME). Here, one observes that
homogeneous mixtures are obtained in the temperature range below 100 ◦C
and that there is an upper miscibility gap. The phase diagram depicted in the
figure was obtained for polymers with molar mass M(PS) = 2 ×105 g mol−1,
M(PVME) = 4.7×104 g mol−1. For molar mass in this range the contribution
of the translational entropy becomes very small indeed and mixing properties
are mostly controlled by χ. The curved appearance of the binodal, which con-
trasts with the result of the model calculation in Fig. 4.7 where we obtained
a nearly horizontal line for polymers, is indicative of a pronounced compo-
sitional dependence of χ. This represents a case where the Flory–Huggins
treatment does not provide a comprehensive description. Interactions in this
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Fig. 4.9. Phase diagram of mixtures of PS (M = 2 ×105 g mol−1) and PVME
(M = 4.7 ×104 g mol−1), showing an upper miscibility gap. Data from Hashimoto
et al. [20]

mixture are of a complex nature and apparently change with the sample com-
position, so that it becomes impossible to represent them by only one con-
stant.

4.2 Phase Separation Mechanisms

As we have seen, binary polymer mixtures can vary in structure with tempera-
ture, forming either a homogeneous phase or in a miscibility gap a two-phase
structure. We now have to discuss the processes that are effective during
a change, i.e., the mechanisms of phase separation.

Phase separation is induced, when a sample is transferred from the one
phase region into a miscibility gap. Usually, this is accomplished by a change
in temperature, upward or downward depending on the system under study.
The evolution of the two-phase structure subsequent to a temperature jump
can often be continuously monitored and resolved in real-time, owing to the
high viscosity of polymers, which slows down the rate of unmixing. If necessary
for detailed studies, the process may also be stopped at any stage by quench-
ing samples to temperatures below the glass transition. Suitable methods for
observations are light microscopy or scattering experiments.

Figure 4.10 presents as an example two micrographs obtained with a light
microscope using an interference technique, showing two-phase structures
observed for mixtures of polystyrene and partially brominated polystyrene
(PBrxS), with both species having equal degrees of polymerization (N = 200).
The two components show perfect miscibility at temperatures above 220 ◦C
and a miscibility gap below this temperature. Here phase separation was in-
duced by a temperature jump from 230 ◦C to 200 ◦C, for two mixtures of
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Fig. 4.10. Structure patterns emerging during phase separation in PS/PBrxS-
mixtures. left : Pattern indicating phase separation by nucleation and growth
(φ(PS) = 0.8); right : Pattern suggesting phase separation by spinodal decompo-
sition (φ(PS) = 0.5) [21]

different composition, φ(PS) = 0.8 and φ(PS) = 0.5. We observe two struc-
ture patterns that do not only vary in length scale, but differ in the general
characteristics: The picture on the left shows spherical precipitates in a ma-
trix, whereas the pattern on the right exhibits interpenetrating continuously
extending domains. The diverse evidence suggests that different mechanisms
were effective during phase separation. Structures with spherical precipitates
are indicative of nucleation and growth and the pattern with two struc-
turally equivalent interpenetrating phases reflects a spinodal decomposi-
tion. In fact, this example is quite typical and is representative of the results
of investigations on various polymer mixtures. The finding is that structure
evolution in the early stages of unmixing is generally controlled by either of
these two mechanisms.

The cause for the occurrence of two different modes of phase separation
becomes revealed when we consider the shape of the curve ΔGmix(φA). As φA

is the only independent variable, in the following we will omit the subscript A,
i.e., replace φA by the shorter symbol φ. The upper part of Fig. 4.11 depicts
functions ΔGmix(φ) computed for three different values of χ, which belong to
the one phase region (χi), the two-phase region (χf) and the critical point (χc).
The lower part of the figure gives the phase diagram, with the positions of
χi, χf and χc being indicated. The arrows ‘1’ and ‘2’ indicate two jumps that
transfer a polymer mixture from the homogeneous phase into the two-phase
region.

Immediately after the jump, the structure is still homogeneous but, of
course, no longer stable. What is different in the two cases, is the character
of the instability. The difference shows up when we consider the consequences
of a spontaneous local concentration fluctuation, as it could be thermally
induced directly after the jump. Figure 4.12 represents such a fluctuation
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Fig. 4.11. Temperature jumps that transfer a symmetric binary polymer mixture
from the homogeneous state into the two-phase region. Depending upon the location
in the two-phase region, phase separation occurs either by nucleation and growth
(‘1’) or by spinodal decomposition (‘2’)
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Fig. 4.12. Local concentration fluctuation

schematically, being set up by an increase δφ in the concentration of A-chains
in one half of a small volume d3r and a corresponding decrease in the other
half. The fluctuation leads to a change in the Gibbs free energy, described as

δG =
1
2
(g(φ0 + δφ) + g(φ0 − δφ))d3r − g(φ0)d3r . (4.45)

Here, we have introduced the free energy density, i.e., the Gibbs free energy
per unit volume, denoted g(φ). Series expansion of g(φ) up to the second order
in φ for δG yields the expression

δG =
1
2
∂2g

∂φ2
(φ0)δφ2 d3r . (4.46)

We calculate ∂2g/∂φ2 with the aid of the Flory–Huggins equation, i.e., write

∂2g

∂φ2
=

1
V
∂2ΔGmix

∂φ2
(4.47)

with ΔGmix given by Eq. (4.11). Then the change δG associated with the local
fluctuation is

δG =
1
2

1
V
∂2ΔGmix

∂φ2
(φ0)δφ2 d3r . (4.48)

This is a most interesting result. It tells us that, depending on the sign of
the curvature ∂2ΔGmix/∂φ

2, the fluctuation may either lead to an increase,
or a decrease in the Gibbs free energy. In stable states, there always has to be
an increase to ensure that a spontaneous local association of monomers A dis-
integrates again. This situation is found for jump ‘1’. It leads to a situation
where the structure is still stable with regard to spontaneous concentration
fluctuations provided that they remain sufficiently small. Jump ‘2’ represents
a qualitatively different case. Since the curvature here is negative, the Gibbs
free energy decreases immediately, even for an infinitesimally small fluctu-
ation, and no restoring force arises. On the contrary, there is a tendency
for further growth of the fluctuation amplitude. Hence, by the temperature
jump ‘2’ an initial structure is prepared, which is perfectly unstable.

It is exactly the latter situation which results in a spinodal decomposition.
The process is sketched at the bottom of Fig. 4.13. The drawing indicates
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Fig. 4.13. Mechanisms of phase separation: Nucleation and growth (top) and spin-
odal decomposition (bottom). The curved small arrows indicate the direction of the
diffusive motion of the A-chains

that a spinodal decomposition implies a continuous growth of the amplitude
of a concentration fluctuation, starting from infinitesimal values and ensuing
up to the final state of two equilibrium phases with compositions φ′ and φ′′.
The principles governing this process have been studied in numerous investi-
gations and clarified to a large extent. We shall discuss its properties in detail
in the next section. At this point, we leave it with one short remark with
reference to the figure. There the arrows indicate the directions of flow of the
A-chains. The normal situation is found for nucleation and growth, where the
flow is directed as usual, towards decreasing concentrations of the A-chains.
In spinodal decompositions, the flow direction is reversed. The A-chains dif-
fuse towards higher concentrations, which formally corresponds to a negative
diffusion coefficient.

The upper half of the figure shows the process that starts subsequent to
the temperature jump ‘1’. As small fluctuations decay again, the only way to
achieve a gain in the Gibbs free energy is a large fluctuation, which directly
leads to the formation of a nucleus of the new equilibrium phase with composi-
tion φ′′. After it has formed it can increase in size. Growth is accomplished by
regular diffusion of the chains since there exists, as indicated in the drawing,
a zone with a reduced φ at the surface of the particle that attracts a stream
of A-chains.

The process of nucleation and growth is not peculiar to polymers, but ob-
served in many materials and we consider it only briefly. The specific point
making up the difference to the case of a spinodal decomposition is the ex-
istence of an activation barrier. The reason for its occurrence is easily recog-
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Fig. 4.14. Activation barrier encountered during formation of a spherical nucleus.
Curves (a)–(d) correspond to a sequence 2:3:4:5 of values for Δg/σif

nized. Figure 4.14 shows the change of the Gibbs free energy, ΔG, following
from the formation of a spherical precipitate of the new equilibrium phase.

ΔG depends on the radius r of the precipitate, as described by the equation

ΔG(r) = −4π
3
r3Δg + 4πr2σif (4.49)

with
Δg = g(φ0) − g(φ′′) . (4.50)

Equation (4.49) emanates from the view that ΔG is set up by two contri-
butions, one being related to the gain in the bulk Gibbs free energy of the
precipitate, the other to the effect of the interface between particle and ma-
trix. This interface is associated with an excess free energy and the symbol σif

stands for the excess free energy per unit area.
Since the building up of the interface causes an increase in the free energy,

a barrier ΔGb develops, which first has to be overcome before growth can set
in. The passage over this barrier constitutes the nucleation step. Representing
an activated process, it occurs with a rate given by the Arrhenius equation,

νnuc ∝ exp−ΔGb

kT
, (4.51)

whereby ΔGb is the barrier height

ΔGb =
16π
3

σ3
if

(Δg)2
. (4.52)
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Equation (4.52) follows from Eq. (4.49) when searching for the maximum.
ΔGb increases with decreasing distance from the binodal where we have
Δg = 0. The change is illustrated by the curves in Fig. 4.14, which were
calculated for different values of the ratio Δg/σif . We learn from this behav-
ior that, in order to achieve reasonable rates, nucleation requires a certain
degree of supercooling (or overheating, if there is an upper miscibility gap).

Nucleation and growth occurs if the unmixing is induced at a temperature
near the binodal, where the system is still stable with regard to small concen-
tration fluctuations. Further away from the binodal this restricted metasta-
bility is lost and spinodal decomposition sets in. Transition from one growth
regime to another occurs in the range of the spinodal, which is defined as
the locus of those points in the phase diagram where the stabilizing restoring
forces vanish. According to the previous arguments this occurs for

∂2ΔGmix

∂φ2
= 0 . (4.53)

Equation (4.53) determines a certain value χ for each φ and for the resulting
spinodal curve we choose the designation χsp(φ). In the case of a symmet-
ric mixture with a degree of polymerization N for both species, we can use
Eq. (4.33) for a determination. The spinodal follows as

χsp =
1

2NφA(1 − φA)
. (4.54)

It is this line that is included in Figs. 4.4 and 4.11. For NA = NB we start
from Eq. (4.11) and obtain

∂2ΔGmix

∂φ2
∝ 1
NAφ

+
1

NB(1 − φ)
+

∂2

∂φ2
χφ(1 − φ) . (4.55)

In this case, the spinodal is given by the function

2χsp =
1

NAφ
+

1
NB(1 − φ)

. (4.56)

As was mentioned earlier, reality in polymer mixtures often differs from the
Flory–Huggins model in that a φ-dependent χ is required. Then we have to
write for the equation of the spinodal

1
NAφ

+
1

NB(1 − φ)
= − ∂2

∂φ2
(χ(φ)φ(1 − φ)) = 2Λ . (4.57)

Here we have introduced another function, Λ, which is related to χ by

Λ = χ− (1 − 2φ)
∂χ

∂φ
− 1

2
φ(1 − φ)

∂2χ

∂φ2
. (4.58)
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We see that the situation has now become more involved. As we shall learn in
the next section, rather than χ, Λ follows from an experimental determination
of the spinodal.

It might appear at first that the spinodal marks a sharp transition be-
tween two growth regimes, but this is not true. Activation barriers for the
nucleation are continuously lowered when approaching the spinodal and thus
may lose their effectiveness already prior to the crossing. As a consequence,
the transition from the nucleation and growth regime to the region of spin-
odal decompositions is actually diffuse and there is no way to employ it for
an accurate determination of the spinodal. There is, however, another effect
for which the spinodal is significant and well-defined: The distance from the
spinodal controls the concentration fluctuations in the homogeneous phase.
The next section deals in detail with this interesting relationship.

4.3 Critical Fluctuations and Spinodal Decomposition

The critical point of a polymer mixture, as given by the critical temperature Tc

jointly with the critical composition φc, is the locus of a second order phase
transition. Second order phase transitions have general properties that are
found independent of the particular system; this may be a ferromagnetic or
ferroelectric solid near its Curie temperature, a gas near the critical point,
or, as in our case, a mixture. As one general law, the approach of a critical
point is always accompanied by a strong increase of the local fluctuations of
the order parameter associated with the transition. For our mixture, the
order parameter is given by the composition, as specified, for example, by the
volume fraction of A-chains. So far, we have been concerned with the overall
concentrations of the A- and B-chains in the sample only. On microscopic
scales, concentrations are not uniform but show fluctuations about the mean
value, owing to the action of random thermal forces. According to the general
scenario of critical phase transitions, one expects a steep growth of these
fluctuations on approaching Tc.

The most convenient technique for a verification are scattering experi-
ments, as these probe the fluctuations directly. Figure 4.15 presents, as an
example, results obtained by neutron scattering for a mixture of (deuterated)
polystyrene and poly(vinylmethylether). As was mentioned earlier, this sys-
tem shows an upper miscibility gap (Fig. 4.9). Measurements were carried
out for a mixture with the critical composition at a series of temperatures
in the one phase region. The figure depicts the reciprocals of the scattering
intensities in plots versus q2. We notice that approaching the critical point
indeed leads to an overall increase of the intensities, with the strongest growth
being found for the scattering in the forward direction q → 0. The tempera-
ture dependence of the forward scattering is shown on the right hand side, in
a plot of S−1(q → 0) against 1/T . Data indicate a divergence, and its location
determines the critical temperature. Here we find Tc = 131.8 ◦C.
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Fig. 4.15. Results of neutron scattering experiments on a (0.13:0.87)-mixture of
d-PS (M = 3.8 ×105 g mol−1) and PVME (M = 6.4 ×104 g mol−1). Sc denotes
the scattering function Eq. (4.79) referring to structure units with a molar vol-
ume ṽc. Intensities increase on approaching the critical point (left). Extrapolation of
S(q → 0) to the point of divergence yields the critical temperature (right). Data
from Schwahn et al. [22]

When the phase boundary is crossed through the critical point, a spinodal
decomposition is initiated, and it can be followed by time-dependent scatter-
ing experiments. Figure 4.16 shows the evolution of the scattering function
during the first stages, subsequent to a rapid change from an initial tem-
perature Tin two degrees below Tc, to Tfi = 134.1 ◦C, located 2.3 ◦C above.
Beginning at zero time with the equilibrium structure factor associated with
the temperature Tin in the homogeneous phase, a peak emerges and grows in
intensity.

Figure 4.17 presents, as a second example, a further experiment on mix-
tures of polystyrene and poly(vinylmethylether), now carried out by time
dependent light scattering experiments (this sample had a lower critical tem-
perature, probably due to differences in behavior between normal and deuter-
ated polystyrene). Experiments encompass a larger time range and probe
the scattering at the small q’s reached when using light. Again one observes
the development of a peak, and it also stays at first at a constant position.
Here, we can see that during the later stages it shifts to lower scattering
angles.

This appearance of a peak which grows in intensity, initially at a fixed
position and then shifting to lower scattering angles, can in fact be considered
as indicative of a spinodal decomposition. One can say that the peak reflects
the occurrence of wave-like modulations of the local blend composition, with
a dominance of particular wavelengths. Furthermore, the intensity increase
indicates a continuous amplitude growth. This, indeed, is exactly the process
sketched at the bottom of Fig. 4.13.
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Fig. 4.16. The same system as in Fig. 4.15. Transient scattering functions Str(q, t)
measured after a temperature jump from Tin = 130 ◦C (one phase region) to Tfi =
134.1 ◦C (two-phase region). Times of evolution are indicated (in seconds) [22]

Fig. 4.17. Time dependent light scattering experiments, conducted on a (0.3:0.7)-
mixture of PS (M = 1.5 ×105 g mol−1) and PVME (M = 4.6 ×104 g mol−1) subse-
quent to a rapid transfer from a temperature in the region of homogeneous states
to the temperature Tfi = 101 ◦C located in the two-phase region. Numbers give the
time passed after the jump (in seconds). Data from Hashimoto et al. [23]
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All these findings, the steep growth of the concentration fluctuations in
the homogeneous phase near the critical point, as well as the kinetics of
spinodal decomposition with its strong preference for certain wavelengths,
can be treated in a common theory. It was originally developed by Cahn,
Hilliard, and Cook, in order to treat unmixing phenomena in metallic al-
loys and anorganic glasses, and then adjusted by de Gennes and Binder to
the polymer case. Polymers actually represent systems that exhibit these
phenomena in a particularly clear form and thus allow a verification of the
theories. In the following three subsections, which concern the critical scat-
tering as observed in the homogeneous phase, the initial stages of spinodal
decomposition and the late stage kinetics, some main results will be pre-
sented.

4.3.1 Critical Scattering

Here we consider the concentration fluctuations in the homogeneous phase and
also the manner in which these are reflected in measured scattering functions.

How can one deal with the fluctuations? At first view it might appear that
the Flory–Huggins treatment does not give any help. Accounting for all micro-
scopic states, the Flory–Huggins expression for the Gibbs free energy includes
also the overall effect of all the concentration fluctuations in a mixture. The
overall effect, however, is not our point of concern. We wish to grasp a single
fluctuation state, as given by a certain distribution of the A’s specified by
a function φ(r) and determine its statistical weight. What we need for this
purpose is a knowledge about a constrained Gibbs free energy, namely that
associated with a single fluctuation state only.

To solve our problem we use a trick that was originally employed by
Kadanoff in an analysis of the critical behavior of ferromagnets. Envisage
a division of the sample volume in a large number of cubic ‘blocks’, with vol-
umes vB that, although being very small, still allow the use of thermodynamic
laws; block sizes in the order of 10–100nm3 seem appropriate for this purpose.
For this grained system, the description of a certain fluctuation state is ac-
complished by giving the concentrations φi of all blocks i. The (constrained)
free energy of a thus characterized fluctuation state can be written down, pro-
ceeding in three steps. As we may apply the Flory–Huggins equation for each
block separately, we first write a sum

G({φi}) =
∑

i

vBg(φi) . (4.59)

Here, g stands for the free energy density of the mixture

g(φ) = φgA + (1 − φ)gB + R̃T

[
φ

ṽA
lnφ+

(1 − φ)
ṽB

ln(1 − φ) +
χ

ṽc
φ(1 − φ)

]
,

(4.60)
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gA and gB denoting the free energy densities of the one component phases.
Being in close contact, neighboring blocks, interact with each other across
the interfaces and we have to inquire about the related interfacial energy.
We know that it must vanish for equal concentrations and increase with the
concentration difference, independent of the direction of change. The simplest
expression with such properties is the quadratic term

β(φi − φj)2 ,

where φi, φj are the concentrations in the adjacent blocks. It includes a coef-
ficient β that determines the strength of the interaction. We add this term to
the first sum and write

G({φi}) =
∑

i

vBg(φi) +
∑
ij

β(φi − φj)2 . (4.61)

Finally, replacing the summation by an integral, we obtain

G(φ(r)) =
∫ (

g(φ(r)) + β′(∇φ)2
)

d3r (4.62)

with β′ = βv
−1/3
B . With this result we have solved our problem. Equa-

tion (4.62) describes in an approximate, empirical manner the free energy
to be attributed to a given fluctuation state φ(r). It is known in the literature
as Ginzburg–Landau functional and is widely applied in treatments of
various kinds of fluctuations.

The equation can be further simplified if a linearization approximation is
used. Clearly the state with a uniform concentration,

φ(r) = const = φ ,

has the lowest free energy, Gmin. For considering the change in the Gibbs free
energy

δG = G − Gmin

as it results from a fluctuation

δφ(r) = φ(r) − φ

we may use a series expansion of g(δφ) up to the second order

δG =
∫

V

(
δg(δφ(r)) + β′(∇δφ)2

)
d3r (4.63)

=
∂g

∂φ

∫

V
δφd3r +

1
2
∂2g

∂φ2

∫

V
(δφ)2 d3r + β′

∫

V
(∇δφ)2 d3r . (4.64)
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Conservation of the masses of the two species implies
∫

V
δφd3r = 0 , (4.65)

and we only have to calculate the second derivative of g. This leads to

δG =
R̃T

2

(
1

ṽAφ
+

1
ṽB(1 − φ)

− 2χ
ṽc

)∫

V
(δφ)2 d3r + β′

∫

V
(∇δφ)2 d3r . (4.66)

This is a useful result. It relates the Gibbs free energy of a given fluctuation
state to two parameters only, namely the integral or mean values of (δφ)2 and
(∇δφ)2.

We now turn to scattering experiments. They may generally be regarded
as carrying out a Fourier analysis, in our case a Fourier analysis of the con-
centration fluctuations in the mixture. We therefore represent δφ(r) as a sum
of wave-like modulations with amplitudes φk

δφ(r) = V−1/2
∑

k

exp(ikr)φk . (4.67)

For a finite sample volume V , the sum includes a sequence of discrete values
of k (see Eq. (A.117)). When writing a Fourier series in terms of exponential
functions, the amplitudes φk are complex numbers

φk = |φk| exp(iϕk)

with a modulus |φk| and a phase ϕk. Since δφ(r) is a real quantity, we have

φ−k = φ∗k (4.68)

and therefore
|φk| = |φ−k| . (4.69)

When we introduce the Fourier series into the integral of Eq. (4.66), we ob-
tain ∫

V
(δφ)2 d3r = V−1

∑
k,k′

φkφk′

∫

V
exp[i(kr + k′r)]d3r . (4.70)

Since ∫

V
exp[i(k + k′)r] d3r = Vδk,−k′ (4.71)

we can write ∫

V
(δφ)2 d3r =

∑
k

φkφ−k =
∑

k

|φk|2 . (4.72)
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For the gradient term we obtain in similar manner
∫

V
(∇δφ)2 d3r =

∑
k

(ik) · (−ik)φkφ−k =
∑

k

|k|2|φk|2 . (4.73)

Introducing Eqs. (4.72), (4.73) into Eq. (4.66), we obtain

δG =
R̃T

2

∑
k

(
1
ṽAφ

+
1

ṽB(1 − φ)
− 2χ

ṽc
+ β′′|k|2

)
|φk|2 . (4.74)

The coupling constant β′′ = 2β′(R̃T )−1 is unknown at this point of the dis-
cussion, but later on we shall learn more about it.

As we can see, the Fourier transformation leads to a decoupling. Whereas,
in direct space, we have a short-ranged coupling between fluctuations at differ-
ent positions as expressed by the gradient term in Eq. (4.66), different Fourier
amplitudes φk contribute separately to δG, thus being perfectly independent.
Hence, the wave-like modulations of the concentration may be regarded as the
basic modes of the system, which can be excited independently from each
other. The general dynamics of the concentration fluctuations in a polymer
mixture is described as a superposition of all these modes, each mode being
characterized by a certain wavevector.

Having an expression for the free energy increase associated with the exci-
tation of the mode k, one can calculate its mean squared amplitude in thermal
equilibrium 〈|φk|2〉. It follows from Boltzmann statistics as

〈|φk|2〉 =
∫

|φk|2 exp−δG(φk)
kT

δ|φk|
/∫

exp−δG(φk)
kT

δ|φk| . (4.75)

Evaluation of the integrals yields

〈|φk|2〉 = NL
−1

(
1

ṽAφ
+

1
ṽB(1 − φ)

− 2χ
ṽc

+ β′′|k|2
)−1

. (4.76)

The result includes a singularity that comes up if the denominator equals
zero. It tells us that finite concentration fluctuations can exist only under the
condition

1
ṽAφ

+
1

ṽB(1 − φ)
− 2χ

ṽc
+ β′′|k|2 > 0 . (4.77)

Regarding Eq. (4.56), this is equivalent to

χsp − χ+
ṽc
2
β′′|k|2 > 0 . (4.78)

As we can see, in the limit k → 0, the stability criterion of the Flory–Huggins
theory, χ < χsp, is recovered. For finite values of k, the criterion becomes
modified.
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Next, we relate the calculated fluctuations amplitudes to the scattering
function obtained in X-ray or light scattering experiments. Discussions are
usually based on a scattering function that refers to the reference volume
common for both species, vc, or in the language of the lattice models, on
a scattering function that refers to the cells of the lattice. It is denoted as Sc

and defined as
Sc(q) =

1
Nc

〈|C(q)|2〉 . (4.79)

C(q) is the scattering amplitude and Nc stands for the total number of A-units
and B-units in the sample. The scattering function Sc(q) can be directly
related to the mean squared amplitudes of the fluctuations 〈|φk|2〉. As is shown
in Sect. A.4.1 in the Appendix, the relation is

Sc(q) =
1
vc

〈|φk=q|2〉 . (4.80)

Making use of Eq. (4.76), we obtain the scattering function of a polymer
mixture. It is given by the following equation:

Sc(q) =
(

1
NAφ

+
1

NB(1 − φ)
− 2χ+ ṽcβ

′′q2
)−1

. (4.81)

The result allows a reconsideration of the open question about the functional
form of the coupling coefficient β′′. Insight results from a view on the limiting
properties of the scattering function for low concentrations of the polymers
A and B, respectively. For the discussion it is advantageous to change to the
reciprocal of the scattering function, since this leads to a separation of the
contributions of the A’s and B’s

1
Sc

=
1

NAφ
+

1
NB(1 − φ)

− 2χ+ ṽcβ
′′q2 . (4.82)

First consider the limit φ → 0. When A is the minority species, present only
in low concentration, our equation gives

1
Sc

→ 1
φNA

+ ṽcβ
′′q2 . (4.83)

On the other hand, for this case, the exact form of Sc is known. Since in
melts polymer chains are ideal, Sc is given by the Debye structure function
(Eqs. (2.60) and (2.61)), multiplied by the volume fraction φ in order to
account for the dilution

Sc = φNASD(R2
Aq

2) . (4.84)

Using the series expansion Eq. (2.63) we may write

1
Sc

≈ 1
NAφ

(
1 +

R2
Aq

2

18

)
. (4.85)
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Equivalently, when choosing polymer B as the diluted species, our equation
leads to

1
Sc

→ 1
(1 − φ)NB

+ ṽcβ
′′q2 , (4.86)

whereas the complete expression is

1
Sc

=
1

(1 − φ)NBSD(R2
Bq

2)
(4.87)

≈ 1
NB(1 − φ)

(
1 +

R2
Bq

2

18

)
. (4.88)

A comparison of Eq. (4.83) with Eq. (4.85) and Eq. (4.86) with Eq. (4.88)
gives us an explicit expression for the coupling constant β′′: Equations agree
for

β′′ =
1
ṽc

R2
A

18NAφ
+

1
ṽc

R2
B

18NB(1 − φ)
. (4.89)

Inserting this expression into Eq. (4.82), we obtain as the final result

1
Sc

=
1

φNA

(
1 +

R2
Aq

2

18

)
+

1
(1 − φ)NB

(
1 +

R2
Bq

2

18

)
− 2χ . (4.90)

Is this really correct? Considering the simple Ginzburg–Landau functional,
Eq. (4.62), which we chose as our starting point, this is a legitimate question
and indeed the comparisons with the known limiting behaviors for φ → 0 and
(1−φ) → 0 point at limitations. Full agreement in these limits is only reached
for R2

Aq
2 � 1, R2

Bq
2 � 1.

One might suspect that these limitations can be removed by an obvious
extension of Eq. (4.90). It is possible to construct a scattering function that
is correct for the known limits without being restricted to low q’s. Evidently
this is accomplished by the equation

1
Sc

=
1

φNASD(R2
Aq

2)
+

1
(1 − φ)NBSD(R2

Bq
2)

− 2χ . (4.91)

In fact, Eq. (4.91) represents the correct result. It can be obtained with the aid
of a theoretical method superior to the Ginzburg–Landau treatment known as
the random phase approximation. The interested reader finds the deriva-
tion in the Appendix, Sect. A.4.1.

The use of Eq. (4.91) enables us to make an evaluation of scattering ex-
periments, in particular

• a determination of the Flory–Huggins parameter χ and the coil sizes
RA, RB;

• a determination of the spinodal, based on the temperature dependence of
the concentration fluctuations in the homogeneous phase.
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We reduce the discussion again to the case of symmetric polymer mixtures
with

NA = NB = N

and apply Eq. (4.90), now in the form

1
Sc

=
1
N

1
φ(1 − φ)

+
q2

18N

(
R2

A

φ
+

R2
B

1 − φ

)
− 2χ

=
1
N

1
φ(1 − φ)

+
1

Nφ(1 − φ)
q2

18
R2

φ − 2χ . (4.92)

In the last equation we have introduced a φ-dependent average over the coil
radii, Rφ, defined as

R2
φ = (1 − φ)R2

A + φR2
B . (4.93)

Applying Eq. (4.54), we may also write

1
Sc

= 2(χsp − χ) + 2χsp

R2
φ

18
q2 . (4.94)

Equation (4.94) enables us to make a determination of χ and Rφ for a (sym-
metric) polymer mixture. Figure 4.18 presents, as an example, results of small
angle X-ray scattering experiments, carried out on mixtures of polystyrene
and partially brominated polystyrene (PBrxS, with x = 0.17). Data are rep-
resented by a plot S−1

c versus q2, as suggested by Eq. (4.94). The difference
in slopes indicates a change of Rφ with the composition, telling us that the
coil sizes of polystyrene and the partially brominated polystyrene are different
(analysis of the data yielded R(PS) = 32 Å, R(PBrxS) = 39 Å). The bottom
part of Fig. 4.18 presents the values derived for χ, together with χsp according
to Eq. (4.54). Results show that χ is not a constant, although the changes are
comparatively small. Strictly speaking, the measurement yields Λ (Eq. (4.58))
rather than χ, but the difference seems negligible.

An understanding of the microscopic origin of the observed φ-dependence
on theoretical grounds is difficult and this is a situation where computer sim-
ulations can be quite helpful. In fact, computations for a lattice model have
led to qualitatively similar results, as demonstrated by the curves depicted
in Fig. 4.19. These curves all exhibit the slight curvature of the experimental
curves. A second result of the simulations is particularly noteworthy. Com-
puter simulations can be used for general checks of the assumptions of the
Flory–Huggins model, which cannot be accomplished in an easy manner by
analytical considerations. In the example, computations were carried out for
a simple cubic lattice. In order to reduce the ‘equilibration time’ in the com-
puter, as given by the number of steps necessary to reach the equilibrium
when starting from an arbitrary configuration, 20% of the lattice sites were
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Fig. 4.18. Results of SAXS experiments on mixtures of PS and PBrxS, both species
having equal degrees of polymerization (N = 430). Scattering functions for φ(PS) =
0.42 and 0.62 (top) and derived function χ(φ) (bottom). The upper curve in the
lower figure represents χsp [24]

left empty. Calculations were carried out for different values of χ′. We dis-
cussed the predictions of the Flory–Huggins model and expect from it, for
a dense system, the relation Eq. (4.8)

(Λ =)χ = zeffχ
′ . (4.95)

The simulation yielded consistently lower values, i.e.,

Λ < zeffχ
′ . (4.96)

There is first a trivial reason, given by the presence of the vacancies that
reduce the interaction energy, but this contributes only a factor of about
0.8. The observed difference is definitely larger and this points at deficiencies
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Fig. 4.19. Results obtained in a Monte-Carlo simulation for a lattice model of
a polymer mixture (NA = NB = 16; simple cubic lattice, i.e., zeff = 4; 80% of
the lattice are occupied by the chains). Calculation of the function Λ(φ) for differ-
ent values of zeffχ′ (φ = φA/(φA + φB) is the relative concentration of A-chains).
Calculation by Sariban and Binder [25]

of the mean field approximation in the description of this model system. Obvi-
ously, the number of AB-contacts is smaller than expected under the assump-
tion of a random distribution of the chains. A closer inspection of the data
indicated an enhanced number of intramolecular contacts and also some inter-
molecular short-range order. Hence, the simulation tells us, as a general kind
of warning, that one should be careful in interpreting measured χ-parameters.
There can always be perturbing effects. Shortcomings of the Flory–Huggins
treatment show up in particular if the molar masses are low. Some effects
emerge only for such systems, an important one being the short-range order-
ing mentioned above. Short-range order effects can only arise if the distances
over which the concentration fluctuations are correlated are larger than or
similar to the chain size. Conversely, for chains with sufficiently high degrees
of polymerization, short-range order effects are ruled out; chains actually aver-
age over all local concentration fluctuations and experience the mean value of
the contact energies only. In our case, both the experiment and the simulation
refer to moderate or even low degrees of polymerization and the qualitative
comparison appears justified.
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Next, let us return once again to Fig. 4.15, which shows temperature de-
pendent measurements on mixtures of deutero-polystyrene and poly(vinylme-
thyl-ether). Now, we can recognize the theoretical basis of the chosen repre-
sentation S−1 versus q2, namely as corresponding to Eq. (4.91). A change in
temperature with the resulting change in χ leads to a parallel shift of the curve
S−1(q2). The right part of the figure shows the limiting value S−1(q → 0) as
a function of temperature, directly expressing the T -dependence of χ accord-
ing to

1
Sc(q → 0)ṽc

=
2(χsp − χ)

ṽc
. (4.97)

For χ(T ) the observed straight line indicates a linear dependence

χsp − χ ∝ T−1 − T−1
sp . (4.98)

If we wish to account for both upper and lower miscibility gaps, we may write
in linear approximation

χsp − χ ∝ |T − Tsp| (4.99)

and thus expect a temperature dependence

S−1(0) ∝ |T − Tsp| . (4.100)

The data in Fig. 4.15 were obtained for a mixture with the critical concen-
tration and here the extrapolation to the point where Sc(0) diverges yielded
the critical temperature. We can now also see the procedure to be used for
a determination of the complete spinodal. One has to carry out temperature-
dependent measurements for a series of mixtures, which cover the whole range
of compositions. Extrapolations on the basis of Eq. (4.100), i.e., a continuation
of the temperature-dependent S−1

c (0) down to zero, yields the spinodal Tsp(φ),
as represented in a (φ, T )-phase diagram. Figure 4.20 shows, as an example,
a respective set of data that was obtained in another neutron scattering study
on mixtures of deuterated polystyrene and poly(vinylmethylether). The lin-
ear relation Eq. (4.100) appears verified and the corresponding extrapolations
then yield the spinodal depicted in the lower half of the figure.

The concentration fluctuations in a mixture are spatially correlated, with
the degree of coupling decreasing with the distance. We may inquire about
the correlation length of the fluctuations, i.e., the maximum distance over
which correlations remain essential. The answer follows from the scattering
function. Rewriting Eq. (4.94), we obtain for the small angle range a curve
with Lorentzian shape,

Sc =
1

2(χsp − χ)
1

1 + ξ2φq
2
. (4.101)
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Fig. 4.20. Spinodal of a mixture of d-PS (M = 5.93 ×105 g mol−1) and PVME
(M = 1.1 ×106 g mol−1) (bottom) as derived from the temperature dependence of
neutron scattering intensities in forward direction (top). Data from Han et al. [26]

The parameter ξ2φ is given by

ξ2φ =
χspR

2
φ

18(χsp − χ)
. (4.102)

ξφ represents the correlation length, as is revealed by a Fourier transformation
of Sc. It yields the correlation function for the concentration fluctuations in
direct space

〈δφ(0)δφ(r)〉 ∝
∫

exp(iqr)Sc(q)d3q (4.103)
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(if an explanation is necessary, look at the derivation of Eq. (A.17) in the
Appendix). The evaluation is straightforward and leads to

〈δφ(0)δφ(r)〉 ∝ 1
r

exp− r

ξφ
. (4.104)

As we can see, ξφ indeed describes the spatial extension of the correlations.
In all second order phase transitions, the correlation length of the fluctu-

ations of the order parameter diverges at the critical point. We also find this
behavior in our system, when making use of Eq. (4.100). For the temperature
dependence of ξφ we obtain the power law

ξφ ∝ (χsp − χ)−1/2 ∝ |T − Tsp|−1/2 . (4.105)

If an experiment is conducted for the critical composition φc, then one observes
the divergence of ξφ. For concentrations different from φc, the increase of ξφ
stops when the binodal is reached.

4.3.2 Decomposition Kinetics

After having crossed the spinodal, either through the critical point or some-
where else by a rapid quench that passes quickly through the nucleation and
growth range, unmixing sets in by the mechanism known as spinodal decom-
position. Measurements like the ones presented in Figs. 4.16 and 4.17 allow
detailed investigations. The experiments yield the time-dependent transient
scattering function, which we denote as Str(q, t).

Theory has succeeded to derive an equation of motion for Str(q, t),
which can be used for an analysis of the kinetics of structure evolution in the
early stages of development. It has the following form:

dStr(q, t)
dt

= −Γ (q)(Str(q, t) − Sc(q)) . (4.106)

Sc is defined by Eq. (4.91) and Γ (q) is a rate constant, determined by

Γ (q) = 2q2λ(q)S−1
c (q) . (4.107)

λ is a function that relates to the single chain dynamics in the mixture.
A derivation of this equation lies outside our scope, so that we can only

consider briefly its background and some implications. First of all, note that
Eq. (4.106) has the typical form of a first order relaxation equation, as it is
generally used to describe irreversible processes that bring a system from an
initial non-equilibrium state back to equilibrium. Therefore, if rather than
crossing the spinodal, the temperature jump is carried out within the one
phase region, causing a transition of the structure into a new state with higher
or lower concentration fluctuations, then the applicability of the equation is
unquestionable. Indeed, Eq. (4.106) is meant to cover this ‘normal’ case as
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well. Sc then represents the structure factor associated with the new equilib-
rium state. The different factors included in the equation for the relaxation
rate Γ are all conceivable. A quadratic term in q always shows up for particle
flows based on diffusive motions and these have to take place if a concentra-
tion wave is to alter its amplitude. Its background is of a twofold nature and
easily seen. Firstly, according to Fick’s law, flow velocities are proportional to
concentration gradients and thus proportional to q. Secondly, with increasing
wavelength, particles have to go over correspondingly larger distances and this
produces a second factor q. Both effects together give the characteristic q2.
The origin of the factor S−1

c is revealed by a look at Eqs. (4.74) and (4.82).
Equation (4.74) is formally equivalent to the energy (u)-displacement (x) re-
lation of a harmonic oscillator

u =
1
2
ax2 . (4.108)

We therefore may also address the factor in Eq. (4.74), which corresponds to
a as a ‘stiffness coefficient’, now related to the formation of a concentration
wave. Interestingly enough, exactly this stiffness coefficient shows up again in
Eq. (4.82) for S−1

c , apart from a trivial factor R̃T/ṽc. As S−1
c is determined by

this factor only, it can replace the stiffness coefficient in equations. Clearly, the
latter affects the relaxation rate and therefore has to be part of any equation
for Γ . Since our system shows close similarities to an overdamped harmonic
oscillator, both having the same equation of motion, we can also understand
the linear dependence of Γ on S−1

c . Hence in conclusion, for temperature
jumps within the one phase region, Eq. (4.106) looks perfectly reasonable. It
may appear less obvious that its validity is maintained if temperature jumps
transfer the system into the two-phase region so that spinodal decomposition
sets in. One could argue that, in view of the continuous character of critical
phase transitions, one could expect the same kinetic equations to hold on both
sides of the phase boundary, but a direct proof is certainly necessary and is
indeed provided by the theoretical treatments.

A change occurs in the meaning of Sc. For temperatures in the two-phase
region, Sc can no longer be identified with an equilibrium structure function.
Nevertheless, its definition by Eq. (4.91) is maintained. This implies that Sc

shows negative values at low q’s, being positive only for high q’s. Here we
are dealing with a virtual structure function, which is not a measurable
quantity but defined by an extrapolation procedure. In order to obtain Sc,
one has to determine the temperature dependence of χ in the homogeneous
phase, introduce it into Eq. (4.91) and use this equation also for temperatures
in the two-phase region.

The specific character of the spinodal decomposition can now be under-
stood as being a consequence of the peculiar q-dependence of the rate con-
stant Γ . Figure 4.21 presents results of a calculation applying Eq. (4.107). For
q’s below a critical value qc, S−1

c and therefore Γ (q) take on negative values.
A negative value of Γ indicates an amplitude growth, instead of the usual
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Fig. 4.21. Rate constants Γ determining the time-dependent changes of the struc-
ture function of a symmetric polymer mixture (RA = RB = R) after a temper-
ature jump from the homogeneous phase (χ < χsp) into the two-phase region
(χ > χsp) (continuous lines). Curves correspond to different distances from the
spinodal, (χ − χsp)/χsp = 0.1−0.4 and were obtained applying Eqs. (4.107), (4.91)
(τ = NR2φ(1 − φ)/6λ(0)). The dashed line gives the rate constants at the spin-
odal, the dotted line those associated with a temperature jump within the one phase
region to χ/χsp = 0.9

decay. The main feature in the curve is the maximum in the growth rate, −Γ ,
at a certain value qmax somewhere in the range

0 < qmax < qc .

Structure evolution is controlled by the concentration waves with wavevectors
around qmax. These constitute the dominant modes of structure formation and
determine the length scale of the pattern during the early stages of develop-
ment. Figure 4.21 also indicates the temperature dependence of qmax and the
largest associated growth rate. We see that the approach of the spinodal in
the two-phase region is accompanied by a decrease of qmax. Straightforward
analysis shows that the decrease obeys the power law

qmax ∝ (χ− χsp)1/2 ∝ |Tsp − T |1/2 . (4.109)
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Simultaneously, a slowing down of the growth rate occurs according to

−Γ (qmax) ∝ −q2maxS
−1
c (qmax) . (4.110)

Employing Eq. (4.94) we obtain

−Γ (qmax) ∝ −q2max

(
(χsp − χ) + χsp

R2
φ

18
q2max

)
∝ |Tsp − T |2 . (4.111)

This critical slowing down also shows up on the other side of the phase
boundary, when for a critical mixture the critical temperature is approached
from the one phase region. The kinetic parameter of interest, to be used on
both sides, is the collective diffusion coefficient, Dcoll, defined as

Dcoll = lim(q → 0)
Γ (q)
2q2

, (4.112)

and it is given by
Dcoll = λ(0)Sc(0)−1

. (4.113)

The attribute ‘collective’ is used in order to distinguish this parameter from
the self-diffusion coefficient of the individual chains, which relates to the
single chain dynamics as expressed by λ only, and therefore shows no critical
slowing down. We see that Dcoll takes on positive and negative values, crossing
zero at the spinodal

Dcoll ∝ χsp − χ ∝ ±|T − Tsp| . (4.114)

Equation (4.106) can be solved exactly and the solution is

Str(q, t) = Sc(q) + (Str(q, 0) − Sc(q)) exp[−Γ (q)t] . (4.115)

Figure 4.22 presents the results of model calculations performed on the basis
of this equation. We find that a spinodal decomposition leads to an intensity
increase for all q′s, with a maximum at a certain qmax. Growing in intensity, the
peak stays at a fixed position. In the long time limit we observe an exponential
law

Str(qmax) ∝ exp(−Γt) . (4.116)

As we can see, the model calculations reproduce the main features of the
experimental observations during the initial stages of spinodal decompositions.
In fact, the equations can be applied for a representation of experimental
data and we refer here once again to the measurement presented in Fig. 4.16.
Figure 4.23 shows a plot on the left-hand side according to

ln
Str(q, t) − Sc(q)
Str(q, 0) − Sc(q)

= ln
ΔS(q, t)
ΔS(q, 0)

= −Γ (q)t . (4.117)
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Fig. 4.22. Spinodal decomposition initiated by a jump from the one phase region
(Nχ = 1) to the two-phase region (Nχ = 2.5). Model calculation for a symmetric
polymer blend (NA = NB = N, RA = RB = R) on the basis of Eqs. (4.115), (4.107),
(4.91). The numbers represent units of time [27]

The virtual structure function Sc(q) has been constructed by a linear ex-
trapolation of the equilibrium values in the homogeneous region shown in
Fig. 4.15; the change from positive to negative values occurs for qc =
2.9 ×10−2 nm−1. For all q′s we find exponential time dependencies in agree-
ment with Eq. (4.115). The derived rate constants Γ are given by the lowest
curve (134.1 ◦C) on the right-hand side. One has negative values for q < qc and
in this range a maximum in the growth rate. In addition, the right-hand figure
includes the results of two other experiments, one conducted at T = 133 ◦C,
even closer to Tc, and the other at T = 131.85 ◦C, which is in the one phase
region. One observes a shift of qmax towards zero for T → Tc and on both
sides of Tc a critical slowing down for Dcoll ∝ d2Γ/dq2(q = 0), which is in
full agreement with the theoretical predictions.

Late Stage Kinetics

The described initial stages of spinodal decomposition constitute the entrance
process, thereby setting the basic structure characteristics and the primary
length and time scales. They represent a first part only, coming to an end
when the concentration waves produce, in summary, variations δφ, which al-
ready approach the concentrations of the two equilibrium phases. Then the
exponential increase of the amplitudes cannot continue further and the kinet-
ics must change. A first natural effect is a retardation of the growth rate, and
a second is a shift of qmax towards lower values. An example for this generally
observed behavior was presented in Fig. 4.17 with the light scattering curves
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Fig. 4.23. Same system as in Figs. 4.15 and 4.16 [22]. Plot demonstrating an ex-
ponential time dependence of the transient scattering intensities at T = 134.1 ◦C
for different q′s (1.79 ×10−2; 2.2 ×10−2; 2.4 ×10−2; 2.6 ×10−2; 3.62 ×10−2 nm−1)
(left). Derived rate constants Γ (q) for growth (Γ < 0) or decay (Γ > 0), together
with the results of equivalent experiments for T = 133 ◦C (> Tc = 131.9 ◦C) and
T = 131.85 ◦C (< Tc) (right)

obtained for a polystyrene/poly(vinylmethylether) mixture. Theory has dealt
with these first changes by a generalization of the linear equations valid for
the initial stages and accounting for the saturation effects introduced by the
bounds. Treatments are rather involved and we cannot present them here. In-
terestingly enough, after this second period, there follows a third part where
behavior again becomes simpler. This is the regime of the late stage kinet-
ics and we will briefly describe some major observations in this section.

The micrograph on the right-hand side of Fig. 4.10 was obtained during
this late stage of structure evolution and represents an instructive example.
The interconnected domains are set up by the two equilibrium phases. The
interfaces are well-established and it can be assumed that their microscopic
structure, as described by the concentration profile of the transition zone, has
also reached the equilibrium form. Further observations for the same system,
a mixture of polystyrene and partially brominated polystyrene, are included
in Fig. 4.24. The three micrographs were obtained at somewhat earlier times.
Although the observed structures are finer and therefore less well-resolved,
it seems clear that they are identical in their general character. What we
see here is a coarsening process and, importantly, the observations suggest
that all these transient structures which are passed through during the late
stages of unmixing are similar to each other and differ only in length scale. It is
possible to checks for the suspected similarity by light scattering experiments.
Figure 4.25 depicts, as an example, scattering curves obtained for a mixture
of polybutadiene (PB) and polyisoprene (PI).
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Fig. 4.24. Structure development during the late stages of spinodal decomposition
observed for a PS/PBrxS-(1:1) mixture. Micrographs were obtained during anneal-
ing at 200 ◦C (< Tc = 220 ◦C) for 1 min (left), 3 min (center) and 10 min (right) [21]

Here a spinodal decomposition can be initiated by a temperature jump
into an upper miscibility gap. Similarity implies that in a representation with
reduced variables, plotting log(I/Imax) versus log(q/qmax), curves measured
at different times must become identical. As we can see, this is indeed true. We
notice in addition that even the structures observed at different temperatures
are similar to each other. We thus have a most simple situation that allows
us to describe the kinetics of unmixing by the time dependence of just one
parameter. Possible choices are either q−1

max, representing a typical length in
the structure, or the interfacial area per unit volume, denoted by O12. In fact,
both quantities are related. Two-phase systems in general have two primary
structure parameters, namely the volume fraction of one phase, φ, and O12.
As explained in Sect. A.4.2 in the Appendix, from φ and O12 one can derive
a characteristic length of the structure, lc, as

lc =
2φ(1 − φ)

O12
(4.118)

(see Eq. (A.161)). lc and q−1
max have equal orders of magnitude and are pro-

portional to each other

lc = const q−1
max , (4.119)

the proportionality constant depending on the structure type. Clearly, when
the formation of the equilibrium phases is completed for the first time, φ is
fixed and does not change any more. Hence from this point on, throughout the
late stages of unmixing, one must find a strict inverse proportionality between
lc or q−1

max and O12. O12 can be directly derived from the scattering curve us-
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Fig. 4.25. Light scattering curves obtained for a PB (M = 5.8 ×105 g mol−1)/PI
(M = 1×105 g mol−1)-(1:1) mixture during the late stage of spinodal decomposition
at the indicated temperatures (top; curves for 45 ◦C and 60 ◦C are shifted by con-
stant amounts in vertical direction). Each curve contains measurements for different
times and these superpose exactly. Time dependence of the interfacial area per unit
volume, O12, in agreement with a power law O12 ∝ t−1, as indicated by the straight
line with slope −1 (bottom). Data from Takenaka and Hashimoto [28]

ing Porod’s law (Eq. (A.159)), which states that the scattering function of
a two-phase system generally shows an asymptotic behavior according to the
power law

S(q → ∞) ∝ O12

q4
. (4.120)
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Fig. 4.26. Macroscopic domains in a two-phase PS/PBrxS-(1:1) mixture, formed
after 2 h of annealing [21]

The curves in Fig. 4.25 are in agreement with this law, which can therefore
be employed for a determination of O12. The time dependence of O12 is given
in the lower half of Fig. 4.25. Results indicate a decrease of O12 inverse to t,

O12 ∝ t−1 . (4.121)

Here, we cannot discuss the theories developed for the late stage kinetics,
but the physical background must be mentioned, since it is basically different
from the initial stages discussed above. Whereas the kinetics in the initial
stages is based on diffusive processes only, the late stages are controlled by
convective flow. The driving force originates from the excess free energy of the
interfaces. The natural tendency is a reduction of O12 and this is achieved by
a merging of smaller domains into larger ones.

The latter mechanism remains effective up to the end; however, the struc-
ture characteristics must finally change as the similarity property cannot be
maintained. The very end is a macroscopic phase separation, as shown, for
example, in Fig. 4.26 and clearly, the final structure is always of the same type
independent of whether phase separation has started by spinodal decomposi-
tion or by nucleation and growth.

4.4 Block Copolymer Phases

If two different polymeric species are coupled together by chemical links, one
obtains block copolymers. These materials possess peculiar properties and we
will consider them in this section.

In the discussion of the behavior of binary polymer mixtures, we learned
that, in the majority of cases, they separate into two phases. As the linkages
in block copolymers inhibit such a macroscopic phase separation, one may
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Fig. 4.27. Different classes of microphase separated structures in block copolymers,
as exemplified by PS-block -PI. The numbers give the phase boundaries in terms of
the volume fraction of the PS blocks. Figure taken from a review article by Bates
and Frederickson [29]

wonder how these systems react under comparable conditions. Figure 4.27
gives the answer with a drawing: The A’s and B’s still segregate but the
domains have only mesoscopic dimensions corresponding to the sizes of the
single blocks. In addition, as all domains have a uniform size, they can be
arranged in regular manner. As a result ordered mesoscopic lattices emerge.
In the figure it is also indicated that this microphase separation leads to
different classes of structures in dependence on the ratio between the degrees
of polymerization of the A’s and B’s. For NA � NB spherical inclusions of
A in a B-matrix are formed and they set up a body-centered cubic lattice.
For larger values NA, but still NA < NB, the A-domains have a cylindrical
shape and are arranged in a hexagonal lattice. Layered lattices form under
essentially symmetrical conditions, i.e., NA ≈ NB. Then, for NA > NB, the
phases are inverted and the A-blocks now constitute the matrix.

In addition to these lattices composed of spheres, cylinders and layers,
periodic structures occur under special conditions where both phases are con-
tinuous and interpenetrate each other. These bicontinuous gyroid structures
exist only in a narrow range of values NA/NB, between the regimes of the
cylindrical and lamellar structures and, as it appears, only when the repul-
sion forces between the A’s and the B’s are not too strong. To be sure, the
figure depicts the structures observed for polystyrene-block -polyisoprene, but
these are quite typical. Spherical, cylindrical and layer-like domains are gen-
erally observed in all block copolymers. Less is known about how general the
bicontinuous special types like the gyroid lattices are.

The majority of synthesized compounds are di-block copolymers com-
posed of one A-chain and one B-chain; however, tri-blocks and multiblocks,
comprising an arbitrary number of A-chains and B-chains, can be prepared
as well. One can also proceed one step further and build up multiblocks that
incorporate more than two species, thus again increasing the variability. The
question may arise as to whether all these modifications result in novel struc-
tures. In fact, this is not the case. The findings give the impression that at
least all block copolymers composed of two species exhibit qualitatively sim-
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Fig. 4.28. SAXS curves measured for a series of PS-block -PI with different molar
masses in the microphase separated state: (a) M = 2.1×104 g mol−1, φ(PS) = 0.53;
(b) M = 3.1 ×104 g mol−1, φ(PS) = 0.40; (c) M = 4.9 ×104 g mol−1, φ(PS) =
0.45 (left). Transmission electron micrographs obtained using ultra-thin sections of
specimen stained with OsO4 (right). Structures belong to the layer regime. Data
from Hashimoto et al. [30]

ilar phase behaviors. Changes then occur for ternary systems. For the latter,
the observed structures still possess periodic orders, but the lattices are more
complex. Here, we shall only be concerned with the simplest systems, the
di-block copolymers.

Suitable methods for an analysis of block copolymer structures are electron
microscopy and small angle X-ray scattering (SAXS) experiments. Figure 4.28
gives an example and on the left-hand side presents scattering curves obtained
for a series of polystyrene-block -polyisoprenes where both blocks had similar
molar mass. Structures belong to the layer regime and one correspondingly
observes series of equidistant Bragg reflections. The right-hand side depicts
micrographs obtained for the same samples in an electron microscope using



154 4 Polymer Blends and Block Copolymers

ultra-thin sections of specimens where the polyisoprene blocks were stained
with OsO4. The layered structure is clearly visible and one notices an increase
of the layer thicknesses with the molar masses of the blocks.

In binary polymer mixtures, under favorable conditions one finds homo-
geneous phases. They either arise if the forces between unlike monomers are
attractive or, generally, if the molar masses are sufficiently low. Block copoly-
mers behave similarly and can also have a homogeneous phase. It actually has
a larger stability range than the corresponding binary mixture. Recall that for
a symmetric mixture (NA = NB) the two-phase region begins at (Eq. (4.35))

(χNA)c = 2 .

If a symmetric di-block copolymer is formed from the same A- and B-chains,
the transition between the homogeneous phase and the microphase separated
state takes place at a higher χ, namely for

(χNA)c ≈ 5 . (4.122)

The complete phase diagram of a block copolymer is displayed in Fig. 4.29 in
a schematic representation. Variables are the volume fraction of the A-blocks

φA =
NA

NA +NB
(4.123)

Fig. 4.29. Phase diagram of a di-block copolymer in a schematic representation.
The curve describes the points of transition between the homogeneous phase and
the microphase separated states. The ordered states are split into different classes
as indicated by the dashed boundary lines. They are only shown here for the region
of higher values of χNAB away from the phase transition line
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and the product χNAB, where NAB describes the total degree of polymeriza-
tion

NAB = NA +NB .

The transition line separating the homogeneous phase from the various mi-
crophase separated structures has an appearance similar to the binodal of
a polymer mixture. There is, however, a basic difference: In the block copoly-
mer case, we are dealing with a one component system rather than a binary
mixture. The line therefore relates to a phase transition rather than to a mis-
cibility gap. It should also be noted that, in contrast to the binodal of a mix-
ture, the transition line tells us nothing about the internal composition of the
microphases. In principle, these could be mixed states; however, with the ex-
ception of situations near the transition line, compositions are mostly close to
pure A- or B-states. The schematic drawing indicates only the structures aris-
ing under the conditions of a strong segregation, χNAB � 10, where solely
lattices of spheres, cylinders and layers are found. The situation for a weak
segregation with χNAB just above the critical value is more complicated.
Here, also the bicontinuous structures are found and subtle features decide
about their stability relative to the three major forms.

4.4.1 Layered Structures

Each of the ordered structures represents under the respective conditions the
state with the lowest Gibbs free energy. Calculations of the Gibbs free energies
and comparisons between the various lattices and the homogeneous phase can
therefore provide an understanding of the phase diagram. In addition, they
make it possible to determine the structure parameters.

Theoretical analyses were carried out by Meier and Helfand. A full presen-
tation lies outside our possibilities but in order to gain at least an impression
of the approaches, we will pick out the layered structures as an example and
discuss the equilibrium conditions. The main result will be a power law that
formulates the dependence of the layer thicknesses on the degree of polymer-
ization of the blocks.

If we think about the structural changes that accompany a transition from
the homogeneous phase to an ordered layer structure, we find three contribu-
tions to the change in the Gibbs free energy

Δgp = Δhp − TΔsp,if − TΔsp,conf . (4.124)

There is a change in enthalpy, a change in entropy following from the arrange-
ment of the junction points along the interfaces and another change in entropy
resulting from altered chain conformations. We write the equation in terms of
quantities referring to one di-block polymer.

The driving force for the transitions comes from the enthalpic part. In
the usual case of unfavorable AB-interactions, i.e., χ > 0, there is a gain
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in enthalpy on unmixing. We assume a maximum gain, achieved when we
have a random distribution of the monomers in the homogeneous phase and
a perfect segregation in the lamellar phase. Then the enthalpy change per
polymer, Δhp, is given by

Δhp = −kTχNABφA(1 − φA) + Δhp,if . (4.125)

The first term follows directly from Eq. (4.24). The second term, Δhp,if , ac-
counts for an excess enthalpy that is contributed by the interfaces. To see the
background, bear in mind that interfaces always possess a finite thickness,
typically in the order of one to several nm. Within this transition layer the
A’s and B’s remain mixed, which leads to an increase in enthalpy proportional
to χ and to the number of structure units in the transition layer. Let the thick-
ness of the transition layer be dt and the interface area per polymer op, then
we may write

Δhp,if � kTχ
opdt

vc
. (4.126)

vc again is the volume of the structure unit, commonly chosen for both the
A- and B-chains.

The two entropic parts both work in the opposite direction. There is first
the loss in entropy, which results from the confinement of the junction points,
being localized in the transition layer. For a layered phase with layer thick-
nesses dA and dB, and therefore a period

dAB = dA + dB , (4.127)

Δsp,if may be estimated using a standard equation of statistical thermody-
namics

Δsp,if � k ln
dt

dA + dB
. (4.128)

The second entropic contribution, Δsp,conf , accounts for a decrease in entropy,
which follows from a change in the chain conformations. The Gaussian confor-
mational distribution found in the homogeneous phase cannot be maintained
in the microphase separated state. Formation of a layer structure leads, for
steric reasons, necessarily to a chain stretching, which in turn results in a loss
in entropy. For a qualitative description we employ the previous Eq. (2.93),

Δsp,conf � −k
(
R

R0

)2

, (4.129)

where R and R0 are now the end-to-end distances of the block copolymer in
the layered and the homogeneous phase, respectively. Assuming that chain
sizes and layer spacings are linearly related, by

R = βdAB , (4.130)
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the equation converts into

Δsp,conf � −kβ2

(
dAB

R0

)2

. (4.131)

We can now search for the equilibrium. First note that op and dAB are
related by the obvious equation

opdAB = NABvc . (4.132)

We therefore have only one independent variable, for example op. Using all
the above expressions, we obtain for the change in the Gibbs free enthalpy

1
kT

Δgp = −χNABφA(1 − φA) + χopdtv
−1
c + ln

dt

dAB
+ β2

(
dAB

R0

)2

. (4.133)

If we neglect the slowly varying logarithmic term, we obtain for the derivative

1
kT

dΔgp
dop

= χ
dt

vc
− 2β2N

2
ABv

2
c

R2
0

1
o3p

. (4.134)

The equilibrium value of op follows as

o3p ∝ 2
v3
c

R2
0dtχ

N2
AB . (4.135)

With
R2

0 ∝ v2/3
c NAB (4.136)

we find

o3p ∝ v
7/3
c

dtχ
NAB . (4.137)

Replacement of op by dAB gives us the searched-for result

d3
AB =

N3
ABv

3
c

o3p
∝ χdtv

2/3
c N2

AB . (4.138)

How does this result compare with experiments? Figure 4.30 depicts the data
obtained for the samples of Fig. 4.28. Indeed, the agreement is perfect. The
slope of the line in the double logarithmic plot exactly equals the predicted
exponent 2/3.

4.4.2 Pretransitional Phenomena

A characteristic property of polymer mixtures in the homogeneous phase is
the increase of the concentration fluctuations associated with an approaching
of the point of unmixing. A similar behavior is found for the homogeneous
phase of block copolymers and a first example is given in Fig. 4.31. The figure
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Fig. 4.30. Set of samples of Fig. 4.28. Molecular weight dependence of the layer
spacing dAB

Fig. 4.31. SAXS curves measured for a polystyrene-block -polyisoprene (M = 1.64×
104 g mol−1, φ(PS) = 0.22) in the homogeneous phase. The dotted line on the base
indicates the temperature dependence of the peak position [31]

shows scattering functions measured for a PS-block -PI under variation of the
temperature. The temperature of the transition to the microphase separated
state is located around 85 ◦C, just outside the temperature range of the plot.
The curves exhibit a peak, with an intensity that strongly increases when the
temperature moves towards the transition point.

The feature in common with the polymer mixtures is the intensity in-
crease; however, we can also see a characteristic difference: The maximum of
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the scattering intensity and the largest increase are now found for a finite
scattering vector qmax, rather than at q = 0. As scattering curves display
the squared amplitudes of wave-like concentration fluctuations, the observa-
tion tells us that concentration fluctuations with wavevectors in the range
|k| ≈ qmax are always large compared to all the others and show a partic-
ularly strong increase on approaching the phase transition. What do these
observations mean? Clearly, they remind us of the pretransitional phenom-
ena observed for second order phase transitions. There, the approach of the
transition point is always associated with an unusual increase of certain fluc-
tuations. Hence as it appears, one also finds properties in the homogeneous
phase that have much in common with the behavior of critical systems, not
only for polymer mixtures, but also for block copolymers.

The general shape of the scattering curve, showing a maximum at some
qmax and going to zero for q → 0 is conceivable. As explained in Sect. A.3.2
of the Appendix, the forward scattering, S(q → 0), always relates to the fluc-
tuation of the number of particles in a fixed macroscopic volume. In our case,
this refers to both the A’s and the B’s. The strict coupling between A- and
B-chains in the block copolymers completely suppresses number fluctuations
on length scales that are large compared to the size of the block copolymer.
The limiting behavior of the scattering function, S(q → 0) → 0, reflects just
this fact. On the other hand, for large q’s, scattering of a block copolymer
and of the corresponding polymer mixture composed of the decoupled blocks,
must be identical because here only the internal correlations within the A-
and B-chains are of importance. As a consequence, asymptotically the scat-
tering law of ideal chains, S(q) ∝ 1/q2, shows up again. Hence, one expects
an increase in the scattering intensity coming down from large q’s and when
emanating from q = 0 as well. Both increases together produce a peak, located
at a certain finite qmax.

The increase of the intensity with decreasing temperature reflects a grow-
ing tendency for associations of the junction points accompanied by some
short-ranged segregation. As long as this tendency is not too strong, this
could possibly occur without affecting the chain conformations, i.e., chains
could still maintain Gaussian properties. If one adopts this view, then the
scattering function can be calculated explicitly. Leibler and others derived
the following expression for the scattering function per structure unit Sc:

1
Sc(q)

=
1

S0
c (q)

− 2χ (4.139)

with S0
c (q), the scattering function in the athermal case, given by

S0
c (q)NABSD

(
R2

0q
2
)

= φ(1 − φ)NANBSD

(
R2

Aq
2
)
SD

(
R2

Bq
2
)

−1
4
[
NABSD

(
R2

0q
2
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(
R2

Aq
2
)

−(1 − φ)NBSD

(
R2

Bq
2
)]2

. (4.140)
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R2
0 denotes the mean squared end-to-end distance of the block copolymer,

given by
R2

0 = R2
A +R2

B . (4.141)

With regard to the effect of χ, Eq. (4.139) is equivalent to Eq. (4.91). Indeed,
the physical background of both equations is similar and they are obtained
in an equal manner by an application of the random phase approximation
(RPA). The interested reader can find the derivation in Sect. A.4.1 in the
Appendix.

Importantly, Eq. (4.139) describes the effect of χ directly. It becomes very
clear if one plots the inverse scattering function. Then changes in χ result
in parallel shifts of the curves only. Figure 4.32 depicts the results of model
calculations for a block copolymer with a volume fraction of polystyrene blocks
of φ = 0.22, in correspondence to the sample of Fig. 4.31. The curves were
obtained for the indicated values of the product χNAB.

Obviously the calculations represent the main features correctly: They
yield a peak at a certain qmax, which grows in intensity with increasing χ, i.e.,
with decreasing temperature. The important result comes up for χNAB = 21.4.
For this value we find a diverging intensity at the position of the peak,
S(qmax) → ∞. This is exactly the signature of a critical point. We thus real-
ize that the RPA equation formulates a critical transition with a continuous
passage from the homogeneous to the ordered phase. When dealing with crit-
ical phenomena, it is always important to see the order parameter. Here it is

Fig. 4.32. Theoretical scattering functions of a block copolymer with φ = 0.22,
calculated for the indicated values of χNAB
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Fig. 4.33. SAXS curves measured for a PS-block -PI (φ(PS) = 0.44, M = 1.64 ×
104 g mol−1) in the temperature range of the microphase separation. The transition
occurs at Tt = 362 K. Data from Stühn et al. [32]

of a peculiar nature. According to the observations it is associated with the
amplitudes of the concentration waves with |k| = qmax.

For φ = 0.22, the critical point is reached for NABχ = 21.4. With the aid
of the RPA result, Eq. (4.140), one can calculate the critical values for all φ’s.
In particular, for a symmetric block copolymer one obtains

χNAB = 10.4 .

This is the lowest possible value and the one mentioned in Eq. (4.122).
In polymer mixtures, one calls the curve of points in the phase diagram,

where S(q = 0) apparently diverges, the spinodal. One can use the same
notion for block copolymers and determine this curve in an equal manner by
a linear extrapolation of scattering data measured in the homogeneous phase.
We again denote this spinodal by Tsp(φ).

Regarding all these findings, one could speculate that the microphase sep-
aration might take place as a critical phase transition in the strict sense,
at least for block copolymers with the critical composition associated with
the lowest transition temperature. In fact, experiments that pass over the
phase transition show that this is not true and they also point to other lim-
itations of the RPA treatment. Figure 4.33 presents scattering curves ob-
tained for a polystyrene-block -polyisoprene near to the critical composition
(φ(PS) = 0.44) in a temperature run through the transition point. As we
can see, the transition is not continuous up to the end but is associated with
the sudden appearance of two Bragg reflections. Hence, although the global
behavior is dominated by the steady growth of the concentration fluctuations
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typical for a critical behavior, finally there is a discontinuous step, which
converts this transition into one of weakly first order.

There exists another weak point in the RPA equation. As a basic assump-
tion, it implies that chains in the homogeneous phase maintain Gaussian sta-
tistical properties up to the transition point. The reality is different and this
is not at all surprising: An increasing tendency for an association of the junc-
tion points also necessarily induces a stretching of chains, for the same steric
reasons that in the microphase separated state lead to the specific power law
Eq. (4.138). This tendency is shown by the data presented in Fig. 4.33 and,
even more clearly, by the results depicted in Fig. 4.31. In both cases, qmax

shifts to smaller values with decreasing temperature, as is indicative for chain
stretching.

The details of the transition are interesting. Figure 4.34 depicts the tem-
perature dependence of the inverse peak intensity I−1 (qmax).

Equation (4.139) predicts a dependence

S(qmax)−1 ∝ χsp − χ , (4.142)

or, assuming a purely enthalpic χ with χ ∝ 1/T (Eq. (4.22)),

S(qmax)−1 ∝ T−1
sp − T−1 . (4.143)

The findings, however, are different. We can see that the data follow a linear
law only for temperatures further away from the transition point and then

Fig. 4.34. Measurements shown in Fig. 4.33: Temperature dependence of the re-
ciprocal peak intensity, showing deviations from the RPA predictions. The linear
extrapolation determines the spinodal temperature
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deviate towards higher values. The transition is retarded and does not take
place until a temperature 35 K below the spinodal point is reached. Accord-
ing to theoretical explanations, which we cannot further elaborate on here,
the phenomenon is due to a lowering of the Gibbs free energy, caused by
the temporary short-range order associated with the fluctuations. The short-
range order implies local segregations and thus a reduction of the number of
AB-contacts, which in turn lowers the Gibbs free energy. We came across this
effect earlier in the discussion of the causes of the energy lowering observed in
computer simulations of low molar mass mixtures. Remember that there the
effect exists only for low enough molar masses, since for high molar masses
a short-range ordering becomes impossible. The same prerequisite holds for
block copolymers and this is also formulated by the theories.

The short-range ordering is even more pronounced for asymmetric block-
copolymers with φA � φB, which form in the microphase separated state

Fig. 4.35. PS-block -PI (φ(PS) = 0.11): (a) Scattering curves referring to the homo-
geneously disordered state (T = 458 K), (b) the state of liquid-like order between
spherical domains (T = 413 K), and (c) the bcc ordered state (T = 318 K). The
continuous lines are fits of structural models for the different states of order. From
Schwab and Stühn [33]
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a bcc-lattice of spheres. The fluctuation-affected temperature range between
Tsp and Tt is even larger and the short-range ordering here shows up quite
clearly in the scattering curves. Figure 4.35(b) presents as an example the scat-
tering curve obtained for polystyrene-block -polyisoprene (φ(PS) = 0.11) at
T = 413K (Tsp = 450K, Tt = 393K) in a comparison with scattering curves
measured above Tsp in the homogeneous phase (a) and in the microphase sep-
arated state respectively (c). Curve (c) shows the Bragg reflections of a bcc-
lattice and the data points in (a) are perfectly reproduced by the RPA equa-
tion. Interestingly, the data points in (b) are well-represented by a curve calcu-
lated for the scattering of hard spheres with liquid-like ordering; the continu-
ous line drawn through the data points was obtained using the Perkus–Yevick
theory, which deals with such liquids. Hence, the ordering during cooling of
this block copolymer proceeds in two steps, beginning with the formation of
spherical domains that are then placed at the positions of a lattice. The second
step takes place when the repulsive interaction reaches a critical value.
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5

The Semicrystalline State

At first it may seem questionable that polymers can set up a crystal at all,
but after thinking about it a little it becomes clear how this can be accom-
plished. In principle, a periodic structure in three dimensions is obtained by
choosing identical helical conformations for all polymers, orienting the helical
axes of all chains parallel to each other and then packing the chains laterally
in a regular manner. The scheme is applicable for all polymers, provided that
they have a linear architecture and a regular chemical constitution. Hence, we
may conclude that polymers have the potential to crystallize. As we shall see,
they indeed form crystals, however, this occurs in a peculiar way.

For an understanding of the peculiarities, it is helpful to begin with a look
at the crystallization behavior of simpler but related systems, namely that of
oligomers. Oligomers are chain molecules of lower molar mass, prominent ex-
amples being the n-alkanes (CnH2n+2) or the perfluoro-n-alkanes (CnF2n+2).
In contrast to polymers that always show a certain distribution in the molar
mass of the chains, oligomers represent sharp fractions with a uniform molar
mass. Oligomers readily crystallize and the crystal structures of various com-
pounds have been determined by standard methods of X-ray crystallography.
The results indicate that common principles exist in the composition of crys-
tals; Fig. 5.1 depicts them in a schematic drawing: Crystals are composed of
stacked layers, each layer being assembled of chain molecules with identical
helical conformations. The endgroups of the molecules set up and occupy the
interfaces. Oligomer molecules in the melt take on coiled conformations, just
like polymers. In order to form a crystal, these chains have to be straightened
and separated from each other and then attached in helical form onto the
growing lateral crystal surface.

Can this building principle be transferred to polymers? At first, one can-
not see any reason why it should not be employed for polymers in the same
way, in case we have sharp fractions. For a polymer with uniform molar mass,
the same type of crystal, composed of extended straight chains with the end-
groups assembled in planar interfaces, could be formed in principle and it
would again represent the equilibrium state with the lowest free energy. How-
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Fig. 5.1. Structure of an oligomer crystal. Schematic drawing showing two layers

ever, a serious problem now arises, quite independently of the unrealistic as-
sumption of a uniform molar mass. Starting from a melt of coiled, mutually
interpenetrating macromolecules it is just impossible to reach this ideal crys-
talline state. The required complete disentangling would need a too long time
as it is associated with an extremely high entropic activation barrier. What
happens instead? The way in which polymer systems react under these con-
ditions is that cooling a melt below the equilibrium melting point produces
structures that are only crystalline in parts. One observes layer-like crystal-
lites that are separated by disordered regions, thus setting up a lamellar
two-phase structure. That the crystallites formed have the shape of lay-
ers is not surprising considering the principles governing the crystallization of
oligomers. There, the formation of the interfaces can be regarded as a natural
way to deal with the endgroups, which cannot be incorporated into the sin-
gle layers. Similarly, polymer crystallization requires that the entanglements
present in the melt be dealt with and disposed of, as the large majority of
them cannot be resolved and eliminated within the given time. Adopting this
view, we can address the basic mechanism leading to the formation of two-
phase structures in crystallizable polymer systems as a separation process.
Crystallization occurs together with a preceding unmixing, whereby sequences
that can be stretched and incorporated into a growing crystal are separated
from chain parts near entanglements that can only be removed and shifted
into the amorphous regions. To be sure, not only entanglements consti-
tute the non-crystallizable chain parts, but endgroups, chemical perturbations
like co-units and short chain branches, or stereo defects that oppose a trans-
formation into the regular helical form as well. They all become accumu-
lated in the amorphous parts of a partially crystalline or semicrystalline
polymer.

In the previous chapter, we discussed liquid polymer systems. These exist
in specific states selected by the laws of equilibrium thermodynamics. The
rules that control structure formation during crystallization are different and
this is an important point: Structure formation is here governed by kinet-
ical criteria rather than by equilibrium thermodynamics. What does this
mean? Indeed, here we encounter a new criterion: The structure that devel-
ops at a given temperature is that with the maximum rate of development
rather than that with the lowest free energy. As a consequence, treatment of
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the crystallization behavior of polymers requires considerations about path-
ways and kinetics of the transition. Thermodynamics is still necessary for the
description of the driving forces, but it now constitutes only a partial aspect
of the problem; time and efficiency come into play as decisive factors.

5.1 Structure Characteristics

Being kinetically controlled, structures of partially crystalline samples are
always strongly affected by the processing and show a memory of the thermal
history, i.e. temperatures and times of crystallization, cooling rates, etc. A first
requirement for the analysis are experiments enabling a characterization of
the evolving structures. In this section, we will deal with some of the applied
techniques and main observations.

5.1.1 Morphological Elements

Semicrystalline polymers exhibit different characteristic features on different
length scales. Proceeding from low to high resolutions, we begin with the
morphological elements in the µm–mm range, as observed in a polarizing
optical microscope. Figure 5.2 gives a typical example. It shows optical
micrographs obtained for a sample of poly(L-lactic acid) (PLLA) that has
been cooled from the melt to a temperature where crystallization occurs. We
observe spherical objects, so-called spherulites, which appear somewhere in
the view field and then grow in size. Correspondingly, the process is addressed
as a crystallization by nucleation and growth of spherulites. Inspection
shows that the spherulites usually grow with a constant rate up to the point
where they touch each other. For two spherulites that were nucleated at the
same time, the area of contact is planar, if starting times are different, the
boundary is bent. Finally, the whole volume is covered by bound spherulites.
Their final sizes depend on the nucleation density and can vary over a large
range, from several 100 nm up to some cm.

Fig. 5.2. Growing spherulites observed during the crystallization of PLLA in
an optical microscope (polarized light, crossed nicols) (by Cho, FMF, Universität
Freiburg, 2006)
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Fig. 5.3. Ordering of the indicatrices in a spherulite and the resulting Maltese cross
extinction pattern as observed between cross nicols. The orientation of the Maltese
cross coincides with the directions of polarizer and analyzer

Spherulites are optically anisotropic objects. As in the example of Fig. 5.2,
in many cases one observes a Maltese cross between crossed nicols. The ap-
pearance of a Maltese cross is indicative of a specific arrangement of the opti-
cal indicatrices and Fig. 5.3 represents the type of order. The basic property
is a systematic variation of the orientation of the indicatrices. As indicated
in the drawing, one of the axes is directed at each point along the radius
vector. The cause of the birefringence is obvious: It originates from the op-
tical anisotropy of the stretched polymer chains in the crystallites. Findings
directly tell us that the chains in the crystallites must be oriented either par-
allel or perpendicular to the spherulite radius. In fact, a closer examination
based on a determination of the sign of the birefringence shows that the chain
orientation is always perpendicular to the radius vector.

The optical observations cannot resolve the crystalline-amorphous struc-
ture. Observation of the crystallites requires methods that provide an analysis
in the 10–100nm range. Electron microscopy (EM) and atomic force mi-
croscopy (AFM) are particularly suited for this purpose. Figure 5.4 shows as
one example the surface of a partially crystalline polyethylene (PE), as it be-
comes reproduced in the electron microscope when using a carbon film replica
technique. The picture of the surface resembles a landscape with many ter-
races. These obviously result from cuts through stacks of laterally extended,
slightly curved crystalline lamellae, which have thicknesses in the order of
10 nm.

Figure 5.5 presents as another example the AFM image of the surface of
a crystallized sample of poly(L-lactic acid). Using the tapping technique,
during the scan the vibrating AFM tip probes the varying local viscoelastic
properties. The curved edges of stacked flat lying lamellar crystallites are
clearly apparent.

More insight into the internal structure of the stacks of lamellae follows
from electron microscopic studies on ultra-thin slices if these are stained.
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Fig. 5.4. EM image of a carbon film replica of a surface of PE. Picture obtained
by Eppe and Fischer [34]

Fig. 5.5. AFM tapping mode image of the surface of a sample of PLLA (obtained
by Cho, FMF, Universität Freiburg, 2006)

Figure 5.6 shows a typical picture of polyethylene being stained by OsO4.
Because it is rejected by the crystallites, the staining agent only enters the
disordered regions. The image is due to the different absorption of the electron
beam, which is high in the Os-containing amorphous regions and low for the
crystallites. The white lines therefore correspond to layer-like polyethylene
crystallites, which are separated by amorphous regions given by the dark
parts. More accurately, only those crystallites are observed that happen to
be oriented with their surface perpendicular to the slice surfaces so that the
electron can pass through with minor absorption.

The presented three micrographs are typical and they indeed exemplify
the basic structural principle in the morphology of semicrystalline polymers:
These are built up as a two-phase structure, and are composed of layer-like
crystallites that are separated by amorphous regions.

If we now regard both, the essentially planar structure in the 10 nm range
and the isotropic spherulites observed in the µm range, we may wonder, how
these two can fit together. Figure 5.7 shows how this is accomplished and how
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Fig. 5.6. Ultra-thin slice of a PE sample stained with OsO4. Electron micrograph
obtained by Kanig [35]

Fig. 5.7. Central sheaf-like part observed at an early stage of development of
a spherulite of iPS. Electron micrograph obtained by Vaughan and Bassett [36]
(left). Schematic drawing showing branching and splaying in the fully developed
spherulite (right)

the stacks of layers set up and fill the space of the spherulites. The left-hand
side depicts an electron micrograph of the center of a spherulite of isotactic
polystyrene (iPS) at an early stage of development. The center is sheaf-like
and formed by an aggregate of layers. On further growth, more layers are
created and finally a stable spherical growth surface is established.

The right-hand side of Fig. 5.7 shows the principle that has to be obeyed
during growth. In order to keep the increasing surface of the spherulite filled
with layers, branching and splaying is a necessary requirement. The orien-
tational distribution of the crystallites within a developed spherulite, that is to
say the internal texture, is well-determined. Away from the central sheaf-like
region the surface normal of the crystalline layers is always directed perpen-
dicular to the radius vector. As we deduced from the birefringence properties
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Fig. 5.8. Banded spherulites of PE. Optical micrographs showing a regular
sequence of concentric rings (polarized light, crossed nicols; left) and electron
micrographs of a surface that cuts through a spherulite (obtained by Vaughan and
Bassett [36]; right)

of the spherulites, the same holds for the direction of the crystalline chains.
Chain direction and surface normal must not be identical, but the enclosed
angle is usually small.

Quite often, banded spherulites are observed. Figure 5.8 presents such
a case, as given again by a sample of polyethylene. As shown by the opti-
cal micrograph on the left, here, in addition to the Maltese cross, one finds
light extinctions along circles in a periodic manner. The observation indicates
a regular rotation of the chain direction and the layer normal about the radius
vector. This is confirmed by electron microscopic investigations, for example,
the micrograph shown on the right-hand side. Both experiments tell us that,
on µm length scales, the crystallites are twisted and that this occurs strictly
periodically. The coherence of this texture throughout the whole spherulite is
astonishing; the orientations of all crystallites are well-determined and thus
exactly correlated.

The crystalline lamellae have a granular substructure. Evidence is pro-
vided by the widths of the hk0-Bragg reflections in wide angle X-ray scattering
(WAXS) patterns, which give the inverse of the coherence length along the
normal onto the respective lattice plane (see Eq. (5.23)). For polymers, re-
flections are much broader than in the case of low molar mass crystals and
generally indicate coherence lengths of several to some tens of nanometers
only. This small coherence length is to be identified with the extension of
crystal blocks that compose the lamella. They show up directly in electron
micrographs when a staining agent penetrates into the block boundaries. Fig-
ure 5.9 presents as an example electron micrographs obtained for a sample of
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Fig. 5.9. Sample of LDPE with a crystallinity φc ≈ 0.5. EM micrographs of a stained
ultra-thin section obtained by Michler [37]. Crystallites are composed of mosaic
blocks

Fig. 5.10. Sample of iPP: AFM tapping mode image showing a granular substruc-
ture of the edge-on oriented crystal lamellae (1 µm scan). From Magonov et al. [38]

polyethylene (of low density, LDPE). The granular structure is clearly appar-
ent, and as we can see, the lateral extension of the blocks is comparable to
the crystallite thickness.

There are cases in which the granular substructure is also seen in AFM
tapping mode images. The example presented in Fig. 5.10 was obtained for
a sample of isotactic polypropylene (iPP).

The blocky substructure is fundamental for the deformation properties of
semicrystalline polymers. A main yielding mechanism is block sliding, which
sets in in a cooperative manner at the yield point (see Figs. 10.13 and 10.14
in Sect. 10.1). The strain-controlled, comparatively simple deformation prop-
erties of semicrystalline polymers are mainly based on the many degrees of
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Fig. 5.11. Surface regions of a crystal in a semicrystalline polymer

freedom offered by block sliding; internally stiff crystal layers would cause
a quite different, much more complex deformation behavior.

How do the chain conformation and the packing change in the transition
from the crystal into the surrounding melt? The sketch in Fig. 5.11 presents
a view known as the switchboard model. When a crystal develops, entan-
glements are shifted to the surface and loops that bring some of the chains
back into the crystal form. In the literature, this interface is addressed as the
fold surface of the crystal, because it can be anticipated that it includes
a higher number of sharp folds. These reduce effectively the chain flux given
by the number of chains passing through a unit area. Since the crossing of
an area parallel to the fold surface is perpendicular within the crystal but
mostly oblique in the melt, the chain flux has to be reduced. Computer sim-
ulations show that this reduction does not take place abruptly but extends
over a certain transition zone.

5.1.2 Structure Parameters

The polymer crystalline state is composed of chains in that helical conforma-
tion which corresponds to the minimum of the intramolecular conformational
energy. The interaction energy between neighboring chains determines the
packing mode but leaves the chain conformation unchanged. The crystallo-
graphic lattice structure follows from both the helix conformation and the
packing. Figure 5.12 presents as an example the structure of the unit cell of
polyethylene. Two chains with all-trans conformation pass through the cell,
with their C–C planes in nearly perpendicular orientation. One unit-cell then
includes two C2H4 groups.

Structure analysis for polymer crystallites, i.e., the determination of the
edge lengths and angles of the unit cell and of the positions of all atoms therein,
is carried out as for low molar mass compounds first of all by X-ray scattering
experiments. The conventional straightforward methods of X-ray structure
analysis, however, cannot be applied since these require single crystals, which
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Fig. 5.12. Unit cell of PE crystallites: Orthorhombic symmetry, a = 7.42 Å,
b = 4.95 Å, c = 2.55 Å. Each cell is occupied by two C2H4 groups. Structure determi-
nation by Bunn [39]

are unavailable for polymers. As the best choice under the given conditions,
analysis then is based on the evaluation of scattering patterns obtained for
fibers. In fibers or oriented films, crystallites can exhibit a high degree of
orientation, with a virtually uniform direction for one of the crystallographic
axes. Figure 5.13 shows, as an example, the X-ray scattering pattern obtained
for an uniaxially oriented film of poly(tetrafluoroethylene) (PTFE).

Bragg reflections in such a fiber diagram are generally arranged along
layer-lines that are oriented perpendicular to the drawing direction. The lat-
ter coincides with the chain direction in the crystallites. To carry out a struc-
ture analysis, all reflections have to be assigned to lattice planes, i.e., associ-
ated with the respective Miller indices. Although the assignment is facilitated
when using fiber diagrams rather than an isotropic scattering pattern, it is
usually not straightforwardly accomplished and then requires trial-and-error
methods.

Even if one solves the indexing problem and then proceeds with the anal-
ysis by an evaluation of measured reflection intensities, one cannot expect to
achieve an accuracy in the crystal structure data that would be comparable
to those of low molar mass compounds. This is not only a result of the lack of
single crystals, but also represents a principal property: In small crystallites,
as they are found in partially crystalline polymers, lattice constants can be
affected by their size. Furthermore, disorder is more frequently found as in
low molar mass systems, in particular, in the region near the fold surface.

A semicrystalline polymeric solid has a certain degree of crystallization.
There are two slightly different choices for the definition of this crystallinity
and the selection depends on the method of determination. Consider, for ex-
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Fig. 5.13. Fiber diagram obtained for a sample of PTFE with uniaxial orientation
in an X-ray scattering experiment at 15 ◦C [40]

ample, a measurement of the density of a sample. For a two-phase structure
the total mass is given by

Vρ = Vaρa + Vcρc . (5.1)

Here, Va and Vc denote the volumes occupied by the amorphous and the
crystalline parts and V is the total volume; ρa, ρc and ρ give the respective
densities. As one possibility, the crystallinity φc can be identified with the
volume fraction of the crystalline material, i.e.,

φc =
Vc

V . (5.2)

Using Eq. (5.1) φc follows as

φc =
ρ− ρa

ρc − ρa
. (5.3)

In order to apply Eq. (5.3), the densities of the crystalline and the amorphous
phase have to be known. There is no problem with ρc, as this can be derived
from the lattice constants. The determination of ρa is less direct. Usually it
is obtained by an extrapolation of the values measured in the melt, with the
assumption of a constant expansion coefficient.

The most often used method for a determination of the crystallinity is
a measurement of the heat of fusion, ΔHf , of a sample. This leads us to
the other possibility, namely to use the weight fraction of the crystalline
material. It follows from ΔHf as

φc =
ΔHf

ΔHf(φc = 1)
. (5.4)
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The prerequisite is a knowledge of the heat of fusion of a fully crystalline
sample ΔHf (φc = 1). Since a fully crystalline sample normally cannot be
prepared, extrapolation methods have to be used. If a homogeneous series of
oligomers is available, then one can measure their heats of fusion and sub-
sequently carry out an extrapolation to the limit of an infinite molar mass,
either empirically, or better, on the basis of a theoretical expression. Another
feasible procedure is a combination of calorimetric and density measurements
for samples with different crystallinity, i.e., a measurement of ΔHf as a func-
tion of the density. Then a series of data can be extrapolated to ρ = ρc.
Equation (5.4) neglects the effect of the crystallite surfaces. As will be dis-
cussed later in this chapter, the surface free energy results in a decrease in the
melting points and also somewhat reduces the heat of fusion. These effects
can be accounted for, but in practice they are mostly ignored.

Crystallinity values should not be regarded as quantities of high accu-
racy, for various reasons. They are introduced assuming a two-phase struc-
ture with well-defined properties of the single phases. Actually this is not
strictly true, as properties of both the crystallites and the amorphous regions
may vary between different samples, or even within a sample, and the transi-
tion is not sharp. Therefore, when comparing crystallinity values from differ-
ent measurements, one should always be aware of possible slight variations,
in addition to the necessary distinction between volume and weight based
values.

Representing a bulk property, the crystallinity tells us nothing about the
characteristic lengths of the partially crystalline structure. Approximate val-
ues can be taken from the electron micrographs but, in order to obtain ac-
curate data, X-ray scattering experiments have to be used. As typical length
scales of partially crystalline structures are in the order of 10 nm, the associ-
ated scattering curves are found in the small angle range. Figure 5.14 shows
as an example some scattering functions Σ(q) (see Eqs. (A.3) and (A.4) in
the Appendix) measured for a sample of polyethylene. Data were obtained
for a series of different temperatures, beginning at the temperature of crystal-
lization coming from the melt of 125 ◦C and continuing down to 31 ◦C during
a stepwise cooling. The general shape of the curves corresponds to the morpho-
logical features appearing in the electron micrographs. The stacks of layer-like
crystallites show a periodicity, although not in the sense of a strict long-range
order. This quasi-periodicity, named long spacing, becomes reflected in the
peak. By applying Bragg’s law one can derive from the peak position qmax

the long spacing dac:

dac =
2π
qmax

. (5.5)

The temperature-dependent changes in the intensity and in the shape of the
scattering curves in the figure are due to both changes in the electron densities
of the crystallites and the amorphous regions as well as continuous modifica-
tions in the structure to be discussed later in this chapter.
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Fig. 5.14. SAXS curves measured for a sample of PE after completion of a crys-
tallization at 125 ◦C and at the indicated temperatures during a subsequent cool-
ing [41], [42]

As explained in detail in Sect. A.4.2 in the Appendix, it is possible to
evaluate the small angle X-ray scattering (SAXS) curves in greater detail.
A Fourier transformation of the scattering function Σ(q) yields the electron
density correlation function

K(z) = 〈(ce(0) − 〈ce〉) · (ce(z) − 〈ce〉)〉 . (5.6)

Here ce(z) denotes the electron density distribution along the stack normal.
K(z) possesses peculiar properties that can be directly used for a struc-
ture characterization. They are given on the left-hand side of Fig. 5.15 in
a schematic drawing.

Included are:

• the inner surface Oac, i.e., the area of interface between crystalline and
amorphous regions (per unit volume);

• the electron density difference between the crystalline and amorphous
parts Δce = ce,c − ce,a;

• the long spacing dac;
• depending on the crystallinity, either the thickness dc of the crystallites

(for φc < 0.5) or the thickness of the disordered regions da (for φc > 0.5).
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Fig. 5.15. Schematic drawing showing the basic properties of the electron density
correlation function K(z) associated with a stack of crystalline and amorphous layers
(left). K(z) derived from the scattering curve of PE for 31 ◦C in Fig. 5.14, giving
φc = 0.85, Oac = 0.065 nm−1, da = 4.6 nm, Δce = 52 nm−3, dac = 34 nm (right)

On the right-hand side of Fig. 5.15, the correlation function deduced from one
of the scattering curves in Fig. 5.14 is presented as an example. The derived
parameters have typical values.

Evaluation of the small angle X-ray scattering curves assumes a two-phase
structure. This is not strictly valid as the interfaces are not sharp; the pres-
ence of the crystallites affects the surrounding melt. The limited resolving
power of small angle X-ray scattering experiments does not allow detection
of these changes. These show up when techniques that probe mobilities and
the conformational statistics of the chain molecules rather than densities are
used, the most prominent ones being Raman and NMR spectroscopy. Here,
we consider two examples: a Raman spectroscopic experiment on polyethylene
and an NMR experiment on poly(ε-caprolactone)(PεCL).

The Raman spectrum of a polymer is sensitive to the chain conformation
since the latter determines the vibrational properties. One expects character-
istic differences between a crystalline sequence with a unique regular helical
conformation and the wide distribution of different conformations typical for
a melt. Figure 5.16 displays spectra measured for polyethylene, in part (a) the
spectrum of a crystal, measured for a specially prepared sample of ‘extended
chain’ polyethylene with a crystallinity close to 100%, and in part (b) the spec-
trum of the melt. The third spectrum (part (c)) was obtained for a partially
crystalline sample. The spectrum of the crystal shows sharp bands because re-
strictive selection rules apply; in order to be Raman active, all monomers have
to move in-phase. This contrasts with the disordered liquid state, where in the
absence of a structural symmetry, selection rules are relaxed and the Raman
bands are broadened. On first view, the spectrum of the semicrystalline sam-
ple looks like a superposition of the elementary spectra (a) and (b); however,
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Fig. 5.16. Raman spectra measured for different states of order of PE: extended
chain sample with a crystallinity close to 100% (a); melt (b); partially crystalline
sample (c) [43]

a closer look shows significant deviations. The spectral range between 1400
and 1500 cm−1 is assigned to the CH2 scissor vibrations with a deformation
of the H–C–H valence angle. In the crystalline state two C2H4 groups occupy
a unit cell (Fig. 5.12). As a result the scissor vibration splits into a doublet,
corresponding to the frequency difference between in-phase and anti-phase vi-
brations of the two groups. The two sharp lines located at 1416 and 1440 cm−1

represent this doublet. In the crystalline sample they have equal intensities,
but in the semicrystalline state this is no longer found. The findings can be
interpreted as being indicative of the occurrence of regions in a semicrystalline
sample where chain sequences are still in the all-trans conformation but not
packed in an orthorhombic unit cell. Then the splitting disappears and only
the band at 1440 cm−1 remains, as can be derived from the spectrum of the
triclinic modification of n-alkanes with only one chain per unit cell. Super-
position results in the observed enhancement of the 1440 cm−1 band. The
Raman spectrum of a partially crystalline sample thus includes more contri-
butions than just one corresponding to the orthorhombic crystalline state and
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a second one corresponding to the pure melt. It appears that this third contri-
bution originates from regions that, although being disordered, still include an
enhanced fraction of all-trans sequences. The transition region between crys-
tals and the melt may well have such properties. A decomposition of a given
spectrum in three parts can be straightforwardly accomplished and yields the
respective fractions. In the case of the example given in Fig. 5.16c, obtained
for a polyethylene with high molar mass (M > 106 g mol−1), the following
values were obtained:

• orthorhombic crystalline phase 66%,
• transition zones 13%,
• melt-like amorphous phase 21%.

Generally speaking, nuclear magnetic resonance spectroscopy (NMR)
provides information on the local state of order and the molecular dynamics
in a solid or liquid by probing it with spin carrying nuclei. Protons (1H), deu-
terium (2H) and the carbon isotope 13C (the major carbon isotope 12C has
zero spin) are particularly suited for studies. There is a large variety of NMR
experiments, distinguished by the way the spins are excited and the manner in
which the resulting magnetization is further modified and probed. One of the
basic experiments are measurements of the decay of the transverse magneti-
zation produced by 90◦ pulse, known as free induction decay (FID). They
can be used for studies of semicrystalline polymers, in particular applied in
investigations of the crystallization kinetics. As a typical example Fig. 5.17 re-
produces on the left-hand side a set of 1H FID curves, A(t), registered during
the crystallization of poly(ε-caprolactone) at 50 ◦C.

Fig. 5.17. PεCL, crystallization at 51 ◦C studied by time-dependent 1H NMR.
Measured FIDs A(t) (left) and extracted component Ar(t) associated with protons
with reduced mobility (right) [44]
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The uppermost curves are those obtained at the beginning when the sam-
ple is still in the molten state and the lowest curves are those measured at
the end when the crystallization process is completed. One observes a con-
tinuous change in the curve shape. The main feature is the development of
a first rapid decay of the FID amplitude completed at about 30 µs. The de-
cay is to be associated with protons in the crystallites that experience strong
dipole–dipole interactions. The FID measurement ends at around 0.5 s; then
the amplitude of the FID signal has dropped to vanishingly small values. The
log–log representation of the FIDs shows that in the asymptotic limit of long
decay times one always finds the signal of the melt, reduced in intensity. The
reduction factor directly yields the mass fraction of protons that are still in
melt-like surroundings. The signal that remains after a subtraction of the
melt-like component, denoted by Ar(t), is to be assigned to all protons that
have changed their local mobility, i.e., both those included in the crystals and
those in amorphous regions in the vicinity of crystal surfaces. The right-hand
side of Fig. 5.17 shows these signals throughout the crystallization process.
Splitting them up into contributions from the crystallites and a remaining
part yields the respective weight fractions. Here, the following values were
obtained at the end of the crystallization process:

• The melt-like fraction drops to 10%,
• the amorphous component with a reduced mobility ends at 35%,
• and the crystalline part amounts to 55%.

5.2 Kinetics of Crystallization and Melting

When a low molar mass fluid is cooled, it crystallizes immediately when the
equilibrium melting point is reached. A polymer melt behaves differently.
Crystallization starts only at a considerable supercooling, at first slowly and
then accelerating on further decreasing the temperature. Under practical cir-
cumstances the solidification process thus extends over a large temperature
range. Samples crystallized in this manner have a non-uniform inner structure
and cannot be used for basic studies. Necessary for this are crystallization ex-
periments under isothermal conditions, for crystallization temperatures that
cover the whole range of temperatures from near the equilibrium melting point
to the glass transition temperature. The times required for the crystallization
varies therein in a characteristic manner; Fig. 5.18 presents some examples.
It shows the temperature dependencies of the spherulite growth rates of i-po-
lystyrene, poly(ε-caprolactam) (nylon6) and poly(tetramethyl-p-silpheylene
siloxane) (TMPS). We observe a maximum for all three polymers, with rapid
drops on both sides towards the melting points at high temperatures and the
glass transition at low temperatures.

In order to characterize the crystallization properties of a given polymer
system, experiments have to be carried out with the objective to determine
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Fig. 5.18. Temperature dependence of the radial growth rate u of spherulites of iPS
(left), nylon6 (center) and TMPS (right). Data from different authors taken from
[45]

the parameters of the developing structure, i.e., the crystal thickness, the long
spacing, or the crystallinity, in dependence on the crystallization temperature.
Polymers of the same basic type may vary in their chemical regularity, they
often include stereo defects or co-units, or in the molar mass. It is important
to know the influence of these factors on the crystallization behavior.

As in low molar mass systems crystal formation in a polymer melt starts
with a nucleation step. Thermal fluctuations form in the melt embryos,
i.e., particles with an enhanced inner order. If the size of an embryo surpasses
a critical value it turns into the nucleus of a growing crystal; smaller embryos
disappear again. It is possible to directly observe this process with an atomic
force microscope, as is shown in Fig. 5.19 for a crystallizing polyether (short
name BA-C8, the material crystallizes slowly at room temperature). The en-
circled dot in the left-hand picture is a nucleus that subsequently develops
into a single lamellar crystallite.

Nucleation is a bulk property to be described by a rate, τ−1
nuc, per unit

volume. Experiments on ensembles of µm sized melt droplets allow a determi-
nation when the nucleation time τnuc is much longer than the time required
by the expanding crystallite to cover the whole droplet. Figure 5.20 shows
results of such an experiment conducted for poly(ethylene oxide) (PEO). As
expected for a bulk property, the observations on ensembles of droplets with
various volumes V show that

τnuc ∝ V−1 . (5.7)
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Fig. 5.19. BA-C8 crystallizing at 22 ◦C. AFM tapping mode phase images of a nu-
cleus (left), one growing primary lamella and the development of branches (right).
From Chan et al. [46]. Copyright (2002) American Chemical Society

Fig. 5.20. Nucleation times τnuc observed for PEO droplets of various sizes (base
areas) in the temperature range 267–270 K. From Massa and Dalnoki-Veress [47]

Data indicate as a further characteristic feature that τnuc changes exponen-
tially with temperature. This finding demonstrates that the nucleation step is
an activated process associated with a free energy barrier to be surmounted.

As can be seen in the further images of Fig. 5.19, the growing lamella keeps
a constant thickness. Crystal growth takes place in the lateral direction only,
i.e., it is two-dimensional. There is no growth in chain direction perpendicular
to the layer surface. A widening in this direction is, however, achieved by
splaying processes and these are necessary for setting up a spherulite. The
right-hand image of Fig. 5.19 shows the development of a first branch out
of the primary lamella, found here when the lamellar crystallite has reached
a length of about 1 µm. The result of a repetition of branching shows up in
Fig. 5.21. The object shown is on the way to ending up as a spherulite. As
a characteristic feature it keeps a pair of ‘eyes’ at the center.

The figures under consideration concern the nucleation out of a homoge-
neous, pure melt; however, this is not the usual case. Under practical con-
ditions, nucleation mostly starts on the surface of low molar mass particles,
which come into the sample either uncontrolled, or deliberately as nucleat-
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Fig. 5.21. In-situ AFM recording of crystallizing BA-C8 (at 22 ◦C). AFM tapping
mode images of a homogeneously nucleated growing spherulite obtained at different
times. From Li et al. [48]. Copyright (2003) Elsevier Science Ltd

ing agents. The addition of nucleating agents is a measure of considerable
technical importance. It helps to diminish the supercooling at the onset of
crystallization during cooling, as a result of a strong reduction of the surface
free energy of the nucleus. If spherulites start from some heterogeneity by het-
erogeneous nucleation a different growth pattern is observed; an example
is given in Fig. 5.22.

Here, many lamellar crystallites develop simultaneously, emanating from
the surface of the heterogeneity. As a consequence, the growing object shows
a quasi-spherical symmetry from the very beginning which differs from the
initial anisotropy associated with a homogeneous nucleation.

If the branching rate is low, building up of a spherulite becomes a sequen-
tial process where some rapidly growing dominant lamellae at first set up
a frame that is subsequently filled by slower growing subsidiary lamellae.
Atomic force microscopy enables an observation of the sequential building
up in real time. Figure 5.23 presents as an example a series of images ob-
tained during an isothermal crystallization of polyethylene at a temperature
of 133 ◦C. The picture on the left-hand side shows a few lamellae that have ad-
vanced with a very rapid growth. As shown by further pictures this is followed
by a retarded in-filling growth. The growth speed of the latter is obviously
much slower. In spite of the retardation in their development subsidiary crys-
tallites have the same thickness as the preceding dominant lamellae. After
completion of the crystallization the two sorts can no longer be distinguished.

Whether spherulites grow, for high splaying rates, with a completed inner
structure or in a sequential manner, subsidiary crystallites being filled-in later,
can be deduced from crystallization isotherms, which can be recorded by
various tools, the most popular ones being calorimetry, wide angle and small
angle X-ray scattering and dilatometry. If different tools are commonly used,
either simultaneously or one after the other in a comparison, it is possible
to discriminate between different factors acting together in the crystalliza-
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Fig. 5.22. In-situ AFM recording of crystallizing BA-C8 (22 ◦C). Tapping mode
images of a heterogeneously nucleated growing spherulite obtained at different times.
From Li et al. [48]. Copyright (2003) Elsevier Science Ltd

Fig. 5.23. PE, crystallized at 133 ◦C: AFM tapping mode phase images obtained
after different times of development (scale bar : 1 µm). From Hobbs [49]. Copyright
(2003) Springer

tion process. Figure 5.24 presents crystallization isotherms of a syndiotactic
polypropylene (sPP) obtained by SAXS and dilatometry.

The appropriate parameter used in SAXS studies of crystallization kinetics
is the Porod coefficient P defined as (Eq. (A.160))

P =
1

8π3
(Δce)2Oac . (5.8)

P is determined by the inner surface, Oac, and the electron density differ-
ence, Δce. Multiplication with the crystal thickness, dc, leads to

Pdc =
1

4π3
(Δce)2φc (5.9)

and thus to a property that includes the crystallinity φc. On the other hand,
dilatometry yields the change in the specific volume, δv, or the change in the
global density, δρ. They can also be related to Δce and φc by

δv ∝ δρ ∝ Δceφc . (5.10)
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Fig. 5.24. sPP: Crystallization isotherms as given by the time dependence of P
(from SAXS, filled symbols) and of the density change δρ (from dilatometry, open
symbols). The initial slope indicates a kinetic power law P ∝ δρ ∝ t3 [50]

Figure 5.24 uses a log–log plot in the representation of the time dependencies
P (t) and δρ(t). The power law for the initial development of the crystallinity
can be derived from the initial slope as

φc ∝ t3 . (5.11)

This is the functional dependence expected for a growth with constant growth
rate of spherulites with a constant inner structure. The agreement in the
kinetics recorded in terms of P and in terms of δρ implies that the den-
sity in the growing lamellar crystallites does not change. The different func-
tional dependencies of δρ and P on Δce, linear and quadratic ones, respec-
tively, would result in different isotherms for P and δρ if Δce would vary in
time.

As it turns out, the full time dependence is well-represented by the
Avrami equation

φc(t) ∝ 1 − exp−(zt)β (5.12)

with β = 3. The Avrami equation was originally obtained by statistical ge-
ometrical considerations dealing with the problem of how a sample volume
gets covered by growing objects of a certain shape. Thereby it is assumed
that these start at random points, either all at once or at random times. It
is the objective of the Avrami treatment to relate the ‘Avrami exponent’ β
and the rate coefficient z to the shape of the particles, their growth rate, and
the time distribution of the nucleation events. The coefficient β = 3 indicates
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growth of a constant number density of spheres (cs) with a constant rate (u),
which leads to

z ∝ c1/3
s u . (5.13)

This is the situation given for the system of Fig. 5.24.
Figure 5.25 depicts isotherms that were obtained in simultaneous small

and wide angle X-ray scattering (SWAXS) experiments, carried out for
a polyethylene-co-octene with 14% per weight of octene co-units (PEcO14).
The time dependence of the product Pdc is compared with the time de-
pendence of the intensity of the 110-Bragg reflection, IB. Both series of
isotherms coincide. Hence, Δce is again a constant, i.e., the development of
crystallinity is based on the growth of lamellar crystallites with a constant
density. The power law found for the initial stages of crystallinity develop-
ment is Pdc ∝ IB ∝ tν with ν = 1.4−1.6. Such a result indicates that the
crystallinity development is dominated by an in-filling process rather than
a growth of spherulites with a completed inner structure. An open frame of
dominant lamellae here developed very rapidly in a first step and the main
part of the crystallization process is then the creation of subsidiary lamellae.

Figures 5.24 and 5.25 contain measurements at different crystallization
temperatures and indicate a specific temperature dependence of the crystal-
lization time. The shifts of the isotherms with temperature correspond to the
law

Δ log τ ∝ ΔT . (5.14)

Fig. 5.25. SWAXS experiments on PEcO14: Crystallization isotherms as given by
the time dependence of the product Pdc (open symbols) and by the change of the
intensity of the 110-reflection IB (filled symbols). The initial slopes indicate a kinetic
power law Pdc ∝ IB ∝ tν with ν = 1.4−1.6 [51]
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Here τ denotes some characteristic time of the crystallization process, for ex-
ample, that at which half of the final crystallinity is reached. The exponential
change of τ with temperature tells that, as in the nucleation step, crystal
growth is associated with an activation barrier. For polyethylene, where τ
changes by a decade within 4 K, this barrier is lower and more temperature
sensitive than in s-polypropylene, where a shift in the crystallization temper-
ature of 15 K is necessary for a comparable change. There are different views
in the literature about the nature of this barrier; one possible explanation is
given later in Sect. 5.3.1.

The uniformity in the thickness of the lamellar crystallites, which generally
results if crystallization processes are conducted isothermally, does not imply
a uniform stability. In a subsequent heating process melting still extends over
a broad temperature range. Part of the stability variations can be associated
with the sequential building up of the spherulites; subsidiary lamellae always
melt prior to the dominant crystallites although both have equal thicknesses.
The lowering of the stability of the subsidiary crystallites is due to the con-
straints encountered when they form in between the already present dominant
crystallites. Figure 5.26 presents corresponding observations in a differential
scanning calorimeter (DSC), an instrument which measures the heat flow
into a sample during heating, cooling or under isothermal conditions, for an
octene copolymer of s-polypropylene (sP(PcO15)).

Fig. 5.26. sP(PcO15): DSC melting curves obtained after different times of an
isothermal crystallization at 55 ◦C and 65 ◦C [52]
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The sample was isothermally crystallized at two temperatures, under vari-
ation of the time of crystallization. The structures developed during the preset
times were probed by heating scans. It is evident that the crystals developed
first all possess a high melting point, i.e., the highest possible stability, whereas
the later formed crystals melt much earlier, i.e., have a lower stability. Accom-
panying SAXS experiments showed a larger crystal thickness for the higher
crystallization temperature, which led to a higher final melting point, but no
thickening during the heating.

A constant crystal thickness during heating is not always observed. A dif-
ferent scenario is found when the crystallization is conducted on the low tem-
perature side of the crystallization range. Then the crystal thickness increases
immediately when the heating begins and reorganization processes continue
up to the final melting point. This final melting point is independent of the
initial crystallization temperature. Figure 5.27 shows as an example the DSC
melting curves of s-polypropylene for various crystallization temperatures and
Fig. 5.28 depicts the changes of the crystal thickness and the long spacing
during the heating subsequent to a crystallization at 25 ◦C. The final melting
point is constantly at 145 ◦C. The ongoing recrystallization processes do
not show up in the DSC curves, i.e., they do not change the crystallinity.

Polymers are often modified by introducing co-units into the chain in a sta-
tistical distribution. Figure 5.29 shows the consequence for the melting prop-
erties, exemplified for poly(L-lactic acid) and related statistical copolymers
that include x% of mesomonomers (P(LcMx)LA). The figure presents the DSC
heating curves measured for the different samples subsequent to an isothermal
crystallization at 80 ◦C. We see that the melting temperature shifts to lower
values with increasing co-unit content and this is accompanied by a drop in
the heat of fusion, hence, the crystallinity.

Fig. 5.27. sPP, crystallized at various temperatures followed by a heating to the
melt: DSC curves obtained with a heating rate of 10 K/min [53]
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Fig. 5.28. sPP, crystallized at 25 ◦C and heated up to the melt: Temperature
dependencies of crystal thickness dc (circles) and long spacing dac (triangles) [53]

Fig. 5.29. PLLA, P(LcM1)LA (dash-dotted), P(LcM3)LA (dotted), P(LcM5)LA
(dashed): DSC heating curves obtained after an isothermal crystallization at 130 ◦C.
Heck and Siegenführ, Physikalisches Institut, Universität Freiburg, 2006

5.3 Laws for the Structure Development

Crystallization and melting of polymers is controlled by a number of laws.
These concern

• the variation of the main structural parameters dc, dac, φc with the crys-
tallization temperature;

• the dependence of melting points on the crystal thickness;
• the structural changes during recrystallization processes; and
• the temperature dependence of growth rates.



5.3 Laws for the Structure Development 191

Fig. 5.30. sPP and sP(PcOx), x:% per weight of octene-units: Unique crystal-
lization line (through open symbols) and a series of melting lines (through filled
symbols) [52]

A knowledge of effects of the molar mass or, for statistical copolymers, of
the co-unit content, is also of importance. Some of these relationships are
remarkably simple, as demonstrated by the following examples.

Figure 5.30 collects data obtained by temperature-dependent SAXS exper-
iments conducted on s-polypropylene and some derived octene-copolymers.
The samples were crystallized at various temperatures Tcr and then heated
up to the molten state. From the SAXS curves the crystal thicknesses dc were
deduced, both at Tcr and at the melting point Tf . The figure presents the
inverse thickness values d−1

c as a function of Tcr using open symbols, and
as measured at Tf , with filled symbols. Here heating from Tcr to Tf did not
change the thickness, as is indicated by the vertical connecting lines.

The relationships between Tf and d−1
c for the different samples, given by

the series of dashed lines, can be described by the Gibbs–Thomson equa-
tion. It expresses the melting point depression resulting from the finite size
of the crystallites, proceeding as follows. For Gibbs free energies ga and gc
of a monomer in the melt and in an infinite perfect crystal, respectively, and
an excess free energy σe to be attributed to each of the two monomeric units
located at the surfaces, the equilibrium condition at the melting point of crys-
tallites composed of sequences of n monomers, Tf(n), becomes

gcn+ 2σe = gan . (5.15)
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Fig. 5.31. sPP crystallized at 25 ◦C and 70 ◦C followed by heating: Inverse crystal
thicknesses at the beginning (filled squares), during recrystallization and at final
melting (star). The crystallization line from Fig. 5.30 and the line controlling re-
crystallization (dots) [53]

The equation can be combined with a linear approximation for the difference
ga − gc:

ga − gc ≈ Δsf(T∞
f − T ) =

Δhf

T∞
f

(T∞
f − T ) . (5.16)

Here Δsf and Δhf denote the entropy and the heat of fusion per monomer,
respectively, and T∞

f represents the equilibrium melting point associated
with a sample of macroscopic size. This gives

Tf(n) = T∞
f − 2σeT

∞
f

Δhf

1
n
. (5.17)

Equation (5.17) is known as the Gibbs–Thomson equation and describes the
melting point depression resulting from the finite size of the crystallites in
one direction. It is valid under the given conditions, where crystallization
and melting occur on the lateral crystal face only, through the attachment or
removal of a complete sequence. The results in Fig. 5.30 agree with Eq. (5.17).
Plots of Tf versus d−1

c ∝ n−1 indeed produce straight melting lines. An
extrapolation to d−1

c → 0 yields the respective equilibrium melting point for
each sample. The melting lines shift to lower temperatures when co-units
are introduced; the higher the co-unit content is the larger is the shift. This
corresponds to the melting point depression in low molar mass systems when
a solute is present, as described by Raoult’s law.

The relationship between the crystallization temperature T and d−1
c is dif-

ferent. The data points of all copolymers are commonly allocated on a unique
crystallization line, i.e., dc is simply determined by the equation

d−1
c = Cc(T∞

c − T ) . (5.18)
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The temperature T∞
c (= 195 ◦C) is above all the equilibrium melting points

T∞
f of the different samples. Crystallization line and melting lines cross each

other, and Eq. (5.18) holds for each sample up to the respective point of
intersection. Higher temperatures are rarely reached under practical circum-
stances. However, it is known that the dependence of the crystal thickness
on the crystallization temperature then changes so that d−1

c always remains
below the melting line value.

As mentioned above, heating a sample after a crystallization in the low
temperature region of the crystallization range is accompanied by continu-
ous recrystallization processes up to the final melting. Figure 5.31 shows the
crystal thickness data of s-polypropylene from Fig. 5.28, now in a plot of d−1

c

versus T , together with a second data set measured for a crystallization tem-
perature of 70 ◦C. It also includes the crystallization line of s-polypropylene
as given in Fig. 5.30. The figure shows the recrystallization line as a fur-
ther feature. When this line is reached after some initial changes it controls
for all crystallization temperatures, and as it turns out also commonly for all
samples, the further variation of d−1

c up to the point of final melting. The
recrystallization line is given by the equation

d−1
c = Cr(T∞

c − T ) . (5.19)

It again includes T∞
c (here 195 ◦C) as the limiting temperature, but has an-

other slope than the crystallization line (Cr < Cc). The final melting, indi-
cated by a star, occurs at that temperature where the recrystallization line
intersects the melting line.

Figure 5.32 presents as a second example the results of analogous experi-
ments carried out for poly(ε-caprolactone)(PεCL). One again finds a linear re-
lationship between d−1

c and the crystallization temperature; the crystallization
line here starts from T∞

c = 135 ◦C and another linear relationship between
melting points and d−1

c in agreement with the Gibbs–Thomson law; extrapo-
lation yields an equilibrium melting point T∞

f = 99 ◦C. Samples crystallized
below 42 ◦C all melt at 58 ◦C after a recrystallization process, for higher crys-
tallization temperatures thicknesses remain constant until final melting.

s-Polypropylene and poly(ε-caprolactone) represent typical examples. In
fact, crystallization, recrystallization and melting of bulk polymers can always
be discussed in the framework of a generally applicable scheme. This is given
in Fig. 5.33, with data referring to s-polypropylene and its related statistical
copolymers. Described by a d−1

c /T -diagram, the scheme always contains three
lines:

• a crystallization line representing the relationship between the crystal-
lization temperature and the inverse crystal thickness d−1

c , as given by
Eq. (5.18);

• a recrystallization line that controls the course of recrystallization pro-
cesses, given by Eq. (5.19), and
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Fig. 5.32. PεCL: Crystallization line (T∞
c = 135 ◦C) and melting line (T∞

f = 98 ◦C)
[54]

Fig. 5.33. A general scheme treating crystallization, recrystallization and melt-
ing of s-polypropylene: Common crystallization line, common recrystallization line,
sample-dependent melting line (here for the sample of Fig. 5.31)
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Fig. 5.34. Crystallinities of sPP and sP(PcOx) after crystallizations at different
temperatures: Crystallinity φc derived from the DSC heat of fusion (open symbols)
and linear crystallinity φl determined by SAXS (filled symbols). Temperature de-
pendence of dc (right axis) [54]

• a melting line on which all final melting points Tf are located; according
to the Gibbs–Thomson equation it is given by

d−1
c = Cf(T∞

f − Tf) . (5.20)

The crystallization line and the recrystallization line are sample-invariant, i.e.,
they are not affected by the tacticity or the co-unit content. The melting line,
on the other hand, shifts to lower temperatures when the chemical disorder in
the chain increases; its slope remains constant. Melting line and recrystalliza-
tion line intersect each other at a certain temperature and a certain value d−1

c .
This point of intersection, denoted by Xs in Fig. 5.33, marks the end of recrys-
tallization processes. If the initial value of the crystal thickness is above the
thickness value at Xs no recrystallization occurs, the sample just melts. If the
initial thickness is below the critical value recrystallization processes precede
the melting. Whenever the recrystallization line is reached during heating, d−1

c

varies from thereon guided by this line, up to the temperature at Xs where
the crystals melt. This temperature of final melting varies between different
samples according to the location of Xs.

The crystal thickness and also the long spacing change with the crys-
tallization temperature, but the crystallinity as determined after completion
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Fig. 5.35. Crystallinities of PεCL after crystallizations at different temperatures T :
Weight fraction crystallinity φc derived from the DSC signal (open symbols) and
linear crystallinity φl determined by SAXS (filled symbols). Temperature dependence
of dc (crossed symbols, right axis) [54]

of the isothermal crystallization remains constant over a wide temperature
range. Figures 5.34 and 5.35, referring again to a set of s-polypropylenes and
copolymers and to poly(ε-caprolactone), show, together with dc-data, the tem-
perature dependence of the SAXS based linear crystallinity

φl =
dc

dac
(5.21)

and of the crystallinity derived from the heat of fusion. As can be seen, crys-
tallinities are constant for each sample and they decrease with increasing
co-unit content.

What is the effect of the molar mass on the semicrystalline structure?
Figure 5.36 presents a characteristic result: An increase in the molar mass
leads to an increase of the amorphous layer thickness da, but dc is unaffected,
depending only on the crystallization temperature. A data evaluation shows
that the long spacing dac = da + dc is comparable to Ro, the size of the chain
in the melt

dac � R0 ∝
√
M . (5.22)
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Fig. 5.36. Fractions of PEEK, crystallized at various temperatures T : Temperature
dependence of the thicknesses of crystallites (dc) and amorphous intercrystalline
layers (da) for different molar masses. From Dosière et al. [55]

The relation indicates that a chain that has already been included with one or
more sequences in a crystallite will usually not be incorporated into another
one; adjacent crystallites are then kept at a distance of the order of the coil
diameter.

As was mentioned earlier, the lamellar crystallites possess a blocky sub-
structure. Block diameters can generally be derived from linewidths of hk0-
reflections in WAXS patterns, Δqhk0, by application of the Scherrer equa-
tion

Dhk0 =
2π

Δqhk0
(5.23)

(q is the scattering vector, see Eq. (A.3), Δqhk0 denotes the integral linewidth).
Figure 5.37 presents the diameters thus obtained, again for a set of different
s-polypropylenes with copolymers. The given lengths were derived from the
linewidth of the 200-reflection, i.e., they refer to the direction perpendicular
to the 200-lattice planes. As can be seen, all points D−1

200(T ) are allocated
on one common line. When continued, this line again ends at T∞

c = 195 ◦C,
like the crystallization line of s-polypropylene (which is also included in the
figure).

Growth rates vary only within a small temperature interval accord-
ing to Eq. (5.14), which holds for a practically constant activation barrier.
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Fig. 5.37. Different samples of sPP (sPP, sP(PcOx) and the commercial sPP Fina)
crystallized at various temperatures T : Crystallization line d−1

c versus T determined
by SAXS (open symbols) and inverse lateral coherence lengths D−1

200 derived from
the linewidth of the 200-reflection (filled symbols) [56]

Figure 5.38 covers a larger interval for poly(ε-caprolactone) and shows the
spherulite growth rate u as determined in a polarizing optical microscope.
u is in the nm/s-range and the bending of the logu versus T curve indicates
a changing activation barrier. The line representing the experimental data is
given by the expression

u = u0 exp− TA

T − TV
· exp− TG

Tzg − T
. (5.24)

The second exponential factor with parameters TG and Tzg is dominant in the
temperature range of the experiment. Tzg is the zero growth temperature;
according to Eq. (5.24) u goes to zero, i.e., the barrier height divergences on
approaching Tzg. A comparison with Fig. 5.32 shows that Tzg (= 77 ◦C) is
22 ◦C below the equilibrium melting point of poly(ε-caprolactone).

The first exponential factor with parameters TV and TA only has a mi-
nor influence on the data in Fig. 5.38 but shows up clearly in the overall
temperature dependence of u down to the glass transition temperature as il-
lustrated by the three examples in Fig. 5.18. It describes the steep decrease
on the low temperature side caused by the slowing down of the segmental
mobility in the melt when approaching the glass transition. We will concern
ourselves with this slowing down in later chapters, in particular in Sect. 6.3.2,
and here only cite a main result. In the melt, chain segments experience fric-
tional forces emanating from contacting adjacent segments and these increase
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Fig. 5.38. Temperature dependence of the radial growth rate of spherulites of
PεCL as measured in a polarizing microscope. Representation by Eq. (5.24) with
TA = 1350 K, TV = −110 ◦C and TG = 443 K; the zero growth temperature is
Tzg = (77 ± 1) ◦C [57]

progressively on cooling. This increase is well-described by the Vogel–Fulcher
equation (Eq. (6.126)) as

ζ ∝ exp
TA

T − TV
. (5.25)

ζ is the segmental frictional coefficient and its inverse determines the seg-
mental mobility that affects u. TV, the Vogel temperature is located 30–70 ◦C
below the glass transition temperature and TA is an activation temperature,
with typical values in the range of 1000–2000K. According to Eq. (5.24) sim-
ilar functional dependencies exist on both the low temperature and the high
temperature side, but for different physical reasons. The given examples are
representative. Experiments on various crystallizable polymer systems have
shown that Eq. (5.24) always provides a satisfactory description of the growth
rate data.

5.3.1 The Multistage Model

What is the physical background of the linear dependencies showing up in the
T/d−1

c -diagram of Fig. 5.33, i.e., the meaning of the crystallization and the re-
crystallization lines? First of all, the difference between the crystallization and
the melting lines demonstrates that different laws control crystallization and
melting in bulk polymers. Here, crystallization and melting are not reverse
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processes. While melting is based on a direct transfer of chain sequences from
lateral crystal faces into the melt, formation of crystals obviously follows an-
other route. Characteristic features are the independence of dc of the tacticity
or the co-unit content and the control of dc by a temperature, T∞

c , which is
different from the equilibrium melting point. They indicate that the pathway
includes a transient phase with a structure intermediate between crystal and
melt.

Figure 5.39 depicts a possible pathway within a multistage model. A thin
layer with a mesomorphic inner structure forms between the lateral crystal
face and the melt, stabilized by epitaxial forces. All the stereo defects and
co-units are already rejected on its front. A high inner mobility allows a spon-
taneous thickening of the layer up to a critical value where the core region
crystallizes under formation of a block. In a last step the surface region of this
block, at first still disordered, perfects, which leads to a further stabilization.

The thermodynamic conditions under which such a mesomorphic phase
can interfere and affect the crystallization process are described in Fig. 5.40.
The schematic plot shows the difference of the chemical potential (per
monomer) to that of the melt (‘a’) for both the crystalline phase (label ‘c’)
and the mesomorphic phase (‘m’):

Δgac = gc − ga,

Δgam = gm − ga . (5.26)

Coming from high temperatures the chemical potential of the crystalline phase
drops below the value of the melt when crossing the equilibrium melting point,
now denoted T∞

ac . The mesomorphic phase requires a lower temperature, T∞
am,

to fall with its chemical potential below that of the melt. The plot also in-
cludes a temperature T∞

mc. It represents the temperature of a virtual transition,
namely that between the mesomorphic phase and the crystalline phase. The
transition temperatures have the order T∞

mc > T∞
ac > T∞

am. Since the chemi-
cal potential of the crystal is always below that of the mesomorphic phase,

Fig. 5.39. Multistage model: A possible pathway followed in the growth of polymer
crystallites
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Fig. 5.40. Thermodynamic conditions assumed for crystallizing polymers: Temper-
ature dependencies of the chemical potentials of the mesomorphic phase and the
crystalline phase. The potentials are referred to the chemical potential of the melt
and denoted by Δgam and Δgac

the mesomorphic phase is only metastable for macroscopic systems. However,
for small objects with sizes in the nm range, stabilities can be inverted. Due
to their usually lower surface free energy thin mesomorphic layers can have
a lower Gibbs free energy than a crystallite with the same thickness.

Thermodynamics relates the three transition temperatures T∞
am, T∞

ac , T∞
mc

to the heats of transition Δhca = ha − hc and Δhma = ha − hm. Since the
slopes of Δgam and Δgac are given by the entropy changes Δsma = sa − sm
and Δsca = sa − sc, respectively, one can write

(T∞
mc − T∞

ac )Δsca = (T∞
mc − T∞

am)Δsma , (5.27)

and therefore one obtains

Δhma

Δhca
≈ Δsma

Δsca
=

T∞
mc − T∞

ac

T∞
mc − T∞

am

. (5.28)

It is possible to construct a thermodynamic scheme that shows the features
of Fig. 5.33, i.e., a crystallization line, a recrystallization line, both being
unaffected by co-units and stereo-defects, and a melting line. It deals with
four different phases:

• the amorphous melt and
• the mesomorphic layers (labeled ‘m’), and two limiting forms of the block-

like crystallites, namely
• native crystals (labeled ‘cn’) and
• stabilized crystals (labeled ‘cs’).

The scheme is displayed in Fig. 5.41 and delineates the stability ranges and
transition lines for these phases.
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Fig. 5.41. (T/n−1)-phase diagram for polymer layers in a melt (label a) dealing
with three phases: mesomorphic (m), native crystalline (cn) and stabilized crys-
talline (cs). Lines of size-dependent phase transitions. Two routes for an isothermal
crystallization followed by heating: A (low crystallization temperatures) and B (high
crystallization temperatures)

The variables in this phase diagram are as in Fig. 5.33: the tempera-
ture and the inverse crystal thickness. The thickness is given by the num-
ber n of structure units in a stem, i.e., n = dc/Δz with Δz denoting the
stem length increment per structure unit. The transition lines are denoted
by Tmcn, Tacn, Tmcs , Tacs , Tam, all to be understood as functions of n−1. They
represent equilibria determined by thermodynamics. Tacs is identical with the
Gibbs–Thomson melting line and therefore given by Eq. (5.17)

T∞
ac − T ≈ 2σacsT

∞
ac

Δhca

1
n

(5.29)

(T∞
f is renamed in T∞

ac , Δhf in Δhca and σe in σacs). Proceeding in an anal-
ogous manner in the derivation of expressions for the other size-dependent
phase transitions, one obtains for Tmcn the equation

T∞
mc − T ≈ (2σacn − 2σam)T∞

mc

Δhcm

1
n

(5.30)

and for Tmcs the equation

T∞
mc − T ≈ (2σacs − 2σam)T∞

mc

Δhcm

1
n
. (5.31)
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σam and σacn denote respective surface free energies. The line Tam refers to the
transition between the melt and the mesomorphic layer and is correspondingly
described by

T∞
am − T ≈ 2σamT

∞
am

Δhma

1
n
. (5.32)

The line begins at the temperature T∞
am .

The scheme identifies

• Tmcn with the crystallization line, i.e., the experimental relationship
Eq. (5.18) with Eq. (5.30);

• Tmcs with the recrystallization line, i.e., Eq. (5.19) with the theoretical
expression Eq. (5.31).

This implies in particular that T∞
c , the controlling temperature for the crystal

thickness, is set equal to the transition temperature T∞
mc.

Of particular importance are the triple points Xn and Xs. At Xn both
mesomorphic layers and native crystals have the same Gibbs free energy as
the melt, at Xs this equality holds for the stabilized crystallites. The posi-
tions of Xn and Xs control what happens during an isothermal crystallization
followed by heating. In agreement with the experiments the scheme predicts
two different scenarios. In the figure they are exemplified by the routes A and
B, respectively. Route B, realized by crystallizations at high temperatures,
is as follows: At the point of entry, labeled ‘1’, chains are attached from the
melt onto the front of a mesomorphic layer with minimum thickness. The
layer spontaneously thickens until the transition line Tmcn is reached at point
‘2’, where native crystals form immediately. The subsequently following sta-
bilization transforms them into a lower free energy state and the triple point
is shifted to Xs. On heating crystallites remain stable up to the transition
line Tacs associated with a melting of the crystal. Route A (low crystallization
temperatures) is different. The beginning is the same, i.e., a start at point 1
with an attachment of chain sequences onto a spontaneously thickening meso-
morphic layer, then, on reaching Tmcn, the formation of native crystals followed
by a stabilization. When heating the stabilized crystals they at first remain
stable. Then, the transition line Tmcs is crossed which relates to a transfor-
mation into the mesomorphic state instead of melting. The consequence for
a further heating is a continuous recrystallization mediated by the mesophase
((3a) to (3b)). This ends at the triple point Xs where the crystal melts.

What is the nature of the temperature-dependent activation barrier show-
ing up in the second exponential factor in Eq. (5.24) determining the growth
rate? In particular, what is the meaning of the zero growth temperature Tzg?
The model described in this section includes a possible answer. The series
of steps sketched in Fig. 5.39 involves several activation barriers. The first
step, attachment of a chain sequence on the growth front of the mesomorphic
layer, may be dominant, and observations support this supposition. Before
a sequence that lies coiled in the melt is incorporated into the growing meso-
morphic layer, it has to be ‘activated’ by a transfer into an overall straightened
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form as required for an attachment. Different from the crystal, the mesomor-
phic layer thereby allows for a variety of conformations. The straightening
has to reach at least the length given by the initial thickness of the mesomor-
phic layer. The number of monomers in such a sequence, n∗, is determined by
Eq. (5.32) as

n∗ =
2σamT

∞
am

Δhma

1
T∞

am − T
. (5.33)

Since the straightening leads to a decrease in entropy that is proportional to
the sequence length, it introduces an entropic activation barrier

−ΔS
k

∝ n∗ . (5.34)

Transition of the barrier takes place with a probability

exp
ΔS
k

= exp− const
T∞

am − T
. (5.35)

If Tzg is identified with T∞
am, this agrees with the experimental result as given

by Eq. (5.24). Hence, it is the distance to T∞
am that controls the growth rate

of polymer crystallites in the high temperature range.
Application of the scheme to experimental results, as given by the crys-

tallization, melting and recrystallization lines of a system, the zero growth
temperature as well as measured heats of fusion, yields the thermodynamic
parameters included in the equilibrium relationships. Figure 5.42 shows once

Fig. 5.42. PεCL: Crystallization line, recrystallization line (dots) and melting line
(dashes) determined by SAXS, zero growth temperature T∞

am (from Fig. 5.38) and
a ⇒ m transition line (dash-dots)
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Table 5.1. PεCL: Thermodynamic data derived from the experiments

T∞
mc T∞

ac T∞
am Δhca Δhma σacn σacs σam

◦C ◦C ◦C kJ
mol C6H10O2

kJ
mol C6H10O2

kJ
mol

kJ
mol

kJ
mol

135 99 77 17.9 10.5 9.9 8.5 2.5

again the data of poly(ε-caprolactone) from Fig. 5.32, now complemented by
the recrystallization line and the a ⇒ m transition line. The latter is fixed
by T∞

am (= Tzg) and the location of Xs. The data derived from the figure are
shown in Table 5.1. The heat of fusion Δhca = 17.9 kJ/mol C6H10O2 is taken
from the literature. The heat of transition Δhma = 10.5 kJ/mol C6H10O2

follows from Eq. (5.28) and the three surface free energies are deduced from
the slopes of the respective transition lines. Data indicate that the mesophase
is more crystal-like than melt-like.

5.4 Mechanisms of Secondary Crystallization

One might think at first that the formation of the semicrystalline structure is
essentially completed when the crystallization at the first chosen temperature
is finished. This is not the case. Crystallization continues on cooling to room
temperature, proceeding by two different modes of secondary crystalliza-
tion.

Especially broad crystallization and melting ranges are observed for poly-
mers that include a small amount of non-crystallizable co-units, such as short-
chain branches or chemically different monomers. Figure 5.43 presents two
melting curves of a commercial polyethylene that has about 3% of short chain
branches. The melting process was here followed by calorimetry and in a par-
allel experiment also by a measurement of the thermal expansion coefficient
β using a dilatometer. This particular sample had first been crystallized by
a step-wise cooling, being kept for extended times at a series of discrete tem-
peratures. The melting curve is very broad and exhibits a fine-structure that
obviously keeps a memory of this special thermal history.

Figure 5.44 displays as a second example the results of a Raman spec-
troscopic experiment on a linear polyethylene. Spectra were measured in the
ranges of the CC stretching and CH2 twisting vibrations at different tempera-
tures during cooling. Pronounced changes are observed and the results of the
data evaluation are given in the bottom figure. One notices a continuous de-
crease of the melt-like fraction, an increase of the crystalline fraction, and an
essentially constant value for the fraction of methylene units in the transition
zone.

Detailed insight into the nature of such secondary crystallization processes
comes from small angle X-ray scattering experiments. In Fig. 5.14 a series of
SAXS curves was presented for a sample of linear polyethylene at the end
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Fig. 5.43. Melting curves of a sample of branched PE crystallized by stepwise
cooling (melt at 115 ◦C → 100 ◦C → 75 ◦C → 50 ◦C → 25 ◦C), obtained in mea-
surements of the specific heat using a DSC (left) and of the expansion coefficient β,
registered in a dilatometer (right) [58]

of an isothermal crystallization at 125 ◦C and at several temperatures during
a subsequent cooling. This is now complemented in Fig. 5.45 by the derived
electron density correlation functions.

Pronounced changes are observed and the analysis of the shapes of K(z)
indicates how the semicrystalline structure changes during cooling. Insights
are provided by a look at the self-correlation triangle with maximum at the
origin. As indicated in the schematic drawing on the left-hand side of Fig. 5.15,
the width of its base gives the thickness of the amorphous layers. Obviously,
this thickness decreases continuously during cooling. The correlation functions
K(z) were evaluated and in the left column Fig. 5.46 presents plots of the
derived structure parameters.

The crystallinity, reaching 75% after the primary crystallization, increases
further during cooling by another 10% and this is associated with a decrease in
the thickness of the amorphous layers to half of its original value. The interface
area Oac is much less affected by the structure change and remains constant
below 100 ◦C. The column of plots on the right-hand side collects the results
of an analogous SAXS experiment, now conducted on the sample of Fig. 5.43,
the polyethylene with short chain branches. One finds a different behavior:
The primary crystallization process yields only a crystallinity of 15%, which
then goes up by another 35% during cooling. Here, secondary crystallization
produces the larger part of crystals.

Results like these enable structural interpretations to be made. The ob-
servations on the branched polyethylene indicate the formation of additional
crystallites during cooling. These become successively inserted into the orig-
inal stack built up during the initial isothermal crystallization. On the other
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Fig. 5.44. Raman spectra measured for a sample of PE (M ≥ 106 g mol−1) in the
frequency ranges of the CC stretching vibrations (top left) and the CH2 twisting
vibrations (top right). Spectra were registered after completion of an isothermal
crystallization at 126 ◦C and then successively at 115 ◦C, 100 ◦C and 25 ◦C. Fractions
of methylene units in the orthorhombic-crystalline, amorphous and intermediate
phases, as derived from a decomposition of the spectra (bottom) [43]

hand, the mechanism dominating the behavior in linear polyethylene is a con-
tinuous shift of the interface towards the amorphous regions corresponding to
a surface crystallization process. Both processes have in common that they
reduce the mean thickness of the amorphous layers but they accomplish this
in different manner. Observations show that both processes are largely re-
versible. They both emanate from the primary structure built up during the
first crystallization and leave this structure, as given by the positions of the
primary crystallites, unchanged. The next parts of this section concern these
two processes, known as the insertion mode of secondary crystallization and
surface crystallization and melting.
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Fig. 5.45. Same sample as Fig. 5.14. Electron density correlation functions K(z)
derived from the scattering curves [42]

5.4.1 The Insertion Mode

Using an electron microscope, it is possible to look at the structure that exists
at the end of the primary isothermal crystallization at elevated temperatures
and to compare it with the final state reached after cooling the sample down to
room temperature. Figure 5.47 presents two micrographs showing the struc-
ture of a polyethylene with short chain branches at 100 ◦C and at ambient
temperature. The images were obtained for thin sections where the crystallites
show up as white lines as in Fig. 5.6. The difference in the morphologies for
the two temperatures is evident. The partially crystalline structure at 100 ◦C
(right-hand image) is composed of crystallites with large lateral extensions
and uniform thickness. At room temperature this uniformity is lost. As is ap-
parent, many thin lamellae have formed in between the primary crystallites.

The observation suggests a structural development by the mechanism
sketched in Fig. 5.48. The left-hand side shows what happens during the lat-
eral growth of a single crystallite. Growth is associated with the transport to
the surface of all non-crystallizable chain parts, such as short chain branches,
end groups, and entanglements. As a consequence, a zone is created which has
an enhanced concentration (cB) of non-crystallizable units. Together with the
crystallite this zone sets up a region with thickness dmin that cannot be entered
by any other growing crystalline lamella. As a result, after completion of the
primary crystallization at T0, distances between the centers of adjacent crys-
tallites will vary between dmin as the lower and dmax ≈ 2dmin as an upper limit;
if a distance is larger than 2dmin, another crystallite will grow in between. The
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Fig. 5.46. Changes of the crystallinity φc, the interface area per unit volume Oac

and the mean thickness of the amorphous layers d̄a during cooling of samples of
linear PE (left column) and branched PE (right column), as derived from SAXS
experiments and density measurements [41], [59]



210 5 The Semicrystalline State

Fig. 5.47. Electron micrographs showing the structures of a PE with short chain
branches after an isothermal crystallization at 100 ◦C (right) and a subsequent cool-
ing to room temperature (left). Images were obtained on thin sections stained with
OsO4 [59]

sketch on the right-hand side describes what happens during cooling: Addi-
tional crystallites are inserted into the primary stack. At the first tempera-
ture, T1, they appear only in the thickest amorphous regions. On cooling to
the next temperature, T2, crystallization proceeds into the next thinner amor-
phous layers and on further cooling into even thinner ones. With decreasing
temperature, the crystal thickness decreases as well. The variable controlling
the temperature at which a crystallite forms within a given amorphous layer
is the concentration of non-crystallizable units therein. Their presence leads
to a growth rate reduction, shifting the crystallization to lower temperatures.

The central point in the scheme is the non-uniform distribution of the non-
crystallizable units in the primary stack, being higher in the thinner and lower
in the thicker amorphous layers. The necessary prerequisite for this is a sup-
pression of any transport of non-crystallizable units through the crystallites,
so that the difference in concentrations is maintained and an equilibration pre-
vented. For branched polyethylene this condition is obviously fulfilled, which
appears reasonable considering the size of the short-chain branches.

The additional crystallites that form during cooling do not need a sepa-
rate nucleation step. Figure 5.49 shows the difference in crystallization kinetics
between the primary isothermal crystallization and the subsequent secondary
crystallization steps. The time dependence of the density for the primary
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Fig. 5.48. Consecutive building up of a stack of crystallites during cooling via the
insertion mechanism. Formation of a crystallite generates a zone of thickness dmin

that cannot be entered by other crystallites (left). Primary crystallization at T0

produces a stack of crystallites with varying distances dac in the range dmin < dac <
2dmin. On cooling to T1 and T2 further lamellae become successively inserted, their
thicknesses decreasing together with the temperature (right)

Fig. 5.49. Crystallization isotherms observed in density measurements on a PE
sample with short chain branches. Note the difference in shape between the primary
crystallizations at 100 ◦C or 96 ◦C and the subsequent crystallizations on stepwise
cooling from 100 ◦C to 75 ◦C and 50 ◦C [58]

crystallization shows a sigmoidal shape. In contrast, in the subsequent crys-
tallization, the maximum crystallization rate is found at the beginning. An
explanation is indicated in Fig. 5.50. Crystallites are often slightly tilted with
respect to each other. In this situation a gradient in the concentration of
non-crystallizable units is built up. The consequences are obvious: A lamella
growing at a given temperature, say T0, in between two tilted crystallites
practically stops at first at a certain point and then continues growth on fur-
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Fig. 5.50. Growth of a lamella in between two tilted crystallites. At the primary
temperature T0 growth practically stops at a certain point and then proceeds upon
cooling to T1 and T2, accompanied by a thinning

ther cooling to T1 and T2. From step to step, the thickness of the crystallite
becomes successively smaller.

5.4.2 Surface Crystallization and Melting

By indicating a continuous shift of the interfaces, the results of the SAXS ex-
periments on linear polyethylene given in the left column of Fig. 5.46 suggest
the occurrence of a surface crystallization and melting process. Corroborating
evidence comes from the Raman-spectroscopic findings depicted in Fig. 5.44.
There we see that in spite of pronounced changes in the crystallinity the frac-
tion of material in the transition zones is largely constant, which is indicative
for an unchanged interfacial area as expected for a surface melting process.
Figure 5.51 shows a sketch of this peculiar mode of crystallization. A change of
temperature is accompanied by a continuous shift of the interface, on cooling
towards the amorphous regions and on heating towards the crystallites.

The existence of this process demonstrates that the structure of the amor-
phous intercrystalline layers in a semicrystalline polymer is different from
a polymer melt. The reason can be easily seen: All the chain sequences are
fixed with their ends in the crystallites and, furthermore, the concentration
of entanglements is enhanced. As a consequence, the mean chemical potential
of the units is higher than in a melt and varies with the layer thickness. The
direction of change is obvious. The numbers of entanglements and points of
chain entry into the crystallites are constant. The motional restrictions thus
become diminished if the layer thickness increases, which implies a decrease
in the chemical potential. Under such conditions each change in temperature
leads to a new local equilibrium between crystallites and amorphous regions,
via a surface crystallization or melting process.
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Fig. 5.51. Schematics of the process of surface crystallization and melting

The continuously renewed equilibration has a prerequisite: A shift of the
interface necessitates a rearrangement of the chains in the crystallites, which
can only be accomplished if the chains possess sufficient mobility within the
crystals. For polyethylene this condition is fulfilled, a longitudinal mobility
being provided by the α-process (see Fig. 6.28). Direct evidence comes from
a NMR experiment on polyethylene using a resonance of 13C. The resonance
frequency differs between the crystalline and the amorphous phase; in terms
of the ppm-units used in NMR spectrocopy (frequency shifts are expressed
in ‘parts per million’ referring to the resonance frequency of a standard sub-
stance), the resonance of the crystallites is found at 32.5 ppm and the signal
of the amorphous parts at 30.5 ppm. The shift can only be observed if the
much larger shifts due to the magnetic interactions between all the spins in
the sample are completely removed. This can be accomplished by a rapid ro-
tation of the sample about the ‘magic angle’ θ = 54.7◦ (θ is the angle enclosed
by the magnetic field and the rotation axis). The experiment considered uses
this technique and is called a magic angle spinning 13C two-dimensional
exchange (MAS 13C 2d) experiment. It is possible to explain its information
content in broad outlines.

Figure 5.52 shows the results of measurements at two different tempera-
tures, 363 K and 373 K. Functions that depend on two variables, p(ω1, ω2), are
represented in two-dimensional plots with level-line plots as inserts. A certain
‘mixing time’ tm belongs to each curve. The functions p(ω1, ω2) represent the
probability that a 13C nucleus, which was at a position with a resonance fre-
quency ω1 at zero time, changes within a time tm to a position with a resonance
frequency ω2. In the figures we observe four peaks, two large ones, designated
‘a’ and ‘c’, located on the diagonal ω1 = ω2 and two smaller ones, ‘ac’ and
‘ca’, found in off-diagonal positions. Contributions to the diagonal peaks orig-
inate from those 13C nuclei that either remained within the crystalline phase
(ω1 = ω2 = 32.5 ppm) or within the amorphous phase (ω1 = ω2 = 30.5 ppm).
The two off-diagonal peaks relate to shifted monomers, which moved from
the crystalline to the amorphous phase (ω1 = 32.5, ω2 = 30.5) or in reverse
direction (ω1 = 30.5, ω2 = 32.5). A comparison of the two results in Fig. 5.52
indicates that the amount of exchange increases with time and temperature.

The experiment demonstrates that a motional mechanism is active, which
produces the exchange. It appears reasonable to assume that a longitudinal
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Fig. 5.52. MAS 13C 2d exchange spectra measured for a sample of PE (M =
4 ×106 g mol−1) at 363 K (left) and 373 K (right). Work reported by Schmidt-Rohr
and Spiess [60]

transport is mediated by diffusing conformational defects, such as a local
chain twist by 180◦. A large set of data obtained under variation of tm and
the temperature was evaluated and yielded the rate of a displacement over
the length of one CH2 unit. Figure 5.53 shows the temperature dependence
of this jump rate. It obeys an Arrhenius law with an activation energy Ã =
105 kJ mol−1.

A second observation in Fig. 5.52 is also noteworthy. There are non-
vanishing values of p (ω1, ω2) between the peak ‘c’ and the off-diagonal peaks
‘ac’ and ‘ca’. This is just the range where contributions of the transition zones
are expected, when units are passing through during a change from the crys-
tallite into the amorphous phase. The monomers only remain for a short time
in this region, then diffuse away, either into the crystallite or towards the
center of the amorphous zones.

Temperature modulated differential scanning calorimetry
(TMDSC) and heat wave spectroscopy (HWS) are particularly suited to
study a reversible process like surface crystallization and melting. They ex-
tract heat flows associated with reversible structure changes and separate
them from latent heats of fusion and crystallization. Experiments probe the
reaction of a sample onto an imposed oscillating temperature

T (t) = T + δT exp(−iωt) , (5.36)

whereby the mean temperature T is kept constant. The programmed temper-
ature induces an oscillating, in general phase-shifted heat flow

Q̇(t) = Q̇+ δQ̇ exp(−iωt) . (5.37)



5.4 Mechanisms of Secondary Crystallization 215

Fig. 5.53. Rate of jumps over one CH2 unit performed by the crystalline sequences
in PE. Result of the NMR experiment of Fig. 5.52 [60]

The dynamic heat capacity of the sample, C(ω), expresses the ratio be-
tween the amplitudes of the heat flow and the heating rate

dT
dt

= −iωδT exp(−iωt) (5.38)

as

C(ω) =
δQ̇

−iωδT
. (5.39)

The normally used dynamic specific heat c(ω) as given by the heat capacity
per unit mass is in general a complex, frequency-dependent quantity of the
form

c(ω) = c′(ω) + ic′′(ω) = |c|(ω) exp(iϕ(ω)) . (5.40)

Surface crystallization and melting shows up in the dynamic heat capacity
with a contribution that varies with the modulation frequency. Figure 5.54
reproduces results obtained for polyethylene choosing various modulation fre-
quencies between 8 ×10−3 Hz and 0.4 Hz. The frequency dependence of the
signal amplitude indicates the time scale of the process. The results demon-
strate that surface melting and crystallization takes place with rates within
this range. For a frequency of 0.04Hz the signal amplitude is reduced to half
its original value, which means that 25 s is here the characteristic time as-
sociated with surface crystallization and melting. This time depends on the
temperature and here refers to 130 ◦C.

One may wonder if surface crystallization and melting represents a wide-
spread phenomenon, since similar conditions as in polyethylene are also found
for many other polymers. As it appears this is not the case. Positive evidence
so far is restricted to polyethylene and poly(ethylene oxide). Surface crystal-
lization and melting being the exception, the insertion mode is the rule and
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Fig. 5.54. PE studied by TMDSC and HWS: Temperature dependence of the mod-
ulus of the dynamic specific heat measured for various frequencies [61]

mainly responsible for the generally observed secondary crystallization. As it
does not require a mobile crystalline phase, it can always occur.

5.5 Crystallization from Oriented Melts

Polymeric materials are usually processed from the melt state. In common
operations such as injection molding, film blowing or fiber spinning the melt
is subject to extensive shear flow before it solidifies on cooling. The orienta-
tion of the chain sequences in flow fields affects the crystallization properties.
Times of crystallization are reduced, crystal textures become anisotropic and
non-uniform, and morphologies can change completely in qualitative manner.
A wealth of experience concerning correlations between processing parame-
ters, inner structure and resulting mechanical properties of bodies of polymeric
resins has been collected, but this must be supported by a knowledge of the
basic phenomena that control flow enhanced crystallization. In order to
achieve this knowledge experiments have to be carried out under well-defined
conditions of flow impact. Some of these, having clear results, are presented
in this section.

An appropriate procedure is the application of a short shear pulse on
a sample confined by two parallel plates, which is then followed by an obser-
vation of the evolving structure. The pulse time can be kept short compared
to the crystallization time. Experiments then extract the effect of flow on the
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initial stages of the crystallization process, i.e, in particular, on the nucleation.
The micrograph shown in Fig. 5.55 was obtained in a polarizing optical micro-
scope (crossed nicols) for a sample of i-polypropylene (iPP) that crystallized
at 141 ◦C. The shear pulse at the beginning with a duration of 12 s produced
a flow field with a maximum shear stress σzx = 0.06MPa at the two plate
surfaces; σzx linearly decreases towards the interior and vanishes in the cen-
ter. The micrograph depicts the structure in a microtomed section through
the layer in a view onto the flow direction, i.e., the zx-plane. Bright skin
regions with a thickness of 55 µm appear at both surfaces, which have a ho-
mogeneous, strong birefringence. The inner core region contains spherulites
whose size rises towards the central region. The large spherulites near the cen-
ter developed only during a subsequent cooling; a quiescent melt crystallizes
at 141 ◦C only very slowly. From the picture two conclusions can be drawn:
• If a threshold value of the stress (here σzx = 0.047MPa) is surmounted,

a uniformly oriented structure form rather than spherulites.
• Shear stresses below the threshold enhance the density of nuclei resulting

in spherulites. The density rises from the low value of the quiescent melt
up to a maximum reached at the threshold.

Other experiments show that effects not only relate to the magnitude of the
shearing stress but also to the pulse duration, i.e., to the applied mechan-
ical work. In the experiment of Fig. 5.56 the kinetics of crystallization of
i-polypropylene initiated by pulses with various shearing times was monitored
by turbidity measurements. The developing crystals scatter light and thus at-
tenuate the intensity I of a beam passing through the sample; curves show
the time-dependent attenuation coefficient I(t)/I(0). Crystallization times, as

Fig. 5.55. iPP, crystallized at 141 ◦C after a shear pulse (duration 12 s) with a stress
σzx = 0.06 MPa at the confining plates. Optical micrograph showing the structure
in the zx-plane after cooling to room temperature (polarizer and analyzer are ±45◦

to the flow direction). From Kornfield et al. [62]
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Fig. 5.56. iPP, sample between two glass slides, crystallization at 141 ◦C initiated
by shearing pulses (σzx = 0.06 MPa at slide) with various durations. Kinetics of the
crystallization is monitored by a measurement of the light attenuation coefficient
I(t)/I(0). From Kornfield et al. [62]

given, for example, by the time at which the attenuation coefficient drops by
50%, decrease by two orders of magnitude when comparing quiescent condi-
tions with an initiation by shear pulses with times of more than 5 s. According
to Eq. (5.13) this implies an increase in the number density of spherulites by
a factor 106. The nucleation density varies non-linearly with the shearing time
and saturates at about 5 s.

The nonlinearity is also seen in the experimental results presented in
Fig. 5.57. Nucleation densities cnuc in i-polypropylene were again determined
after shearing pulses of different lengths producing different amounts of shear
Δezx, now also at various temperatures. The dependence of cnuc on the me-
chanical work σzxΔezx can be represented by a power law with an exponent
varying between 3 and 4. As apparent, all lines converge at high values of the
applied work.

What does the structure of the skin layer, which is uniformly highly ori-
ented, look like? Figures 5.58, 5.59, and 5.60 give typical examples for its
nature. The image in Fig. 5.58 was obtained for polyethylene with an AFM.
Orientation in the surface region of a melt film was achieved by dragging
a razor blade. The contact with the blade also somewhat cooled the melt so
that it started to crystallize. Scanning was carried out after completion of
the crystallization process at room temperature. In the image many stacked
lamellae are seen edge-on, as well as three parallel thin microfibrils oriented
along the direction of dragging. Chains have identical orientations in the fib-
rils and the lamellae thus produce the uniform strong birefringence of this
peculiar structure. The images in Figs. 5.59 and 5.60, obtained with the aid
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Fig. 5.57. iPP, crystallization at the given temperatures subsequent to shearing
pulses of different length (Δezx: shear displacement, σzx: shearing stress): Density
of nuclei cnuc. From Janeschitz-Kriegl [63]

Fig. 5.58. AFM image depicting a PE shish kebab structure (scale bar : 300 nm).
The surface of a melt film was sheared and cooled with a dragged razor blade thus
inducing a crystallization in the oriented state. From Hobbs et al. [64]

of an electron microscope for a drawn ultra-thin film of i-polystyrene (iPS),
indicate how this structure forms.

The first step is the nucleation and rapid growth of a microfibril with
a thickness in the nm-range. This fibril then serves as nucleus for the row
of lamellae growing in perpendicular direction. Figure 5.59 presents an early
stage of the lamellar growth and Fig. 5.60 a late stage where neighboring
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Fig. 5.59. EM micrograph of a thin film of iPS strained at 240 ◦C and cooled
with a rate of 102 K s−1 to room temperature. A shish kebab at an early stage of
development is seen. From Petermann and Gleiter [65]

Fig. 5.60. iPS strained at 240 ◦C and slowly cooled to room temperature (1 K s−1):
Interdigitating fully developed shish kebabs. The electron scattering pattern in the
insert is indicative for a uniform chain orientation in all crystallites. From Petermann
and Gleiter [65]

lamellar stacks interdigitate. Shish kebab is the name commonly used for
this morphology; ‘shish’ for the primary fibrillar crystal and ‘kebab’ for the
lamellar crystallites nucleated by the shish.

The lamellar crystallites grow according to the same laws that are valid
for the crystals in the spherulites. Since the nucleation sites are all along
a microfibril a row of crystallites with a uniform chain orientation results. The
splaying typical for growing spherulites is suppressed; there exists a stack of
parallel lamellae from the very beginning. The new phenomenon are the micro-
fibrils and they form in peculiar manner. If the degree of chain orientation in



5.5 Crystallization from Oriented Melts 221

a melt surpasses a certain threshold, a new type of nucleus appears, initiating
a growth in longitudinal, i.e., chain direction, which is opposite to the lamellar
crystallites that grow laterally. This longitudinal growth is very rapid, much
more rapid than the lateral growth of the ‘kebabs’ and has specific properties:
(i) The nucleus is always oriented in flow direction, but the growing fibril does
not necessarily proceed along the flow lines. It can also enter non-oriented
regions of the melt and continue the growth straightforwardly, or change the
direction of growth on approaching some obstacle. Figure 5.61 shows the EM
image of a shish kebab grown in an oriented thin film of i-polystyrene. The film
was placed on a microscope grid, and the grid together with the adhering film
was deformed in the temperature range where shish kebabs form (225–250 ◦C).
The image, which was obtained after a quench to room temperature, shows
a bending of the shish by nearly 90◦ on approaching a bar of the grid. As is
apparent, it is first of all the growing microfibril itself that creates a localized
strain field at its tip, which aligns the chains in the melt along its direction.
In this sense, one finds here a self-supported growth process.
(ii) If the fibril growth is stopped by cooling, a reheating does not take up the
longitudinal growth again, which again contrasts the properties of transverse
growth of lamellar crystals. The strain at the tip has relaxed and does not
come back.
(iii) The growth speed of the fibrils increases with increasing temperature;
hence, it is seemingly controlled by rheological properties rather than a su-
percooling. Figure 5.62 shows the result of an experiment in which the shish
formation was followed via the developing birefringence Δn. The initial rise
of Δn relates to the chain stretching in the melt; the next, much stronger rise
is caused by the developing shishs. Shishs obviously develop more rapidly at
higher temperatures. As is apparent, the chain alignment near the tip of the
growing fibril is facilitated at higher temperatures.

Fig. 5.61. EM image of a shish kebab grown in an oriented thin film of iPS. The black
edge on the left-hand side is a bar of a microscope grid. From Petermann et al. [66]
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Fig. 5.62. iPP, development of shish kebabs in a strained melt followed by measure-
ments of the light intensity after the passage of a beam through a sample (crossed
polarizers). The direction of strain is 45◦ against the crossed polarizers. From Korn-
field et al. [62]
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Mechanical and Dielectric Response

In the large majority of present day uses of polymeric materials the focus is
on their mechanical performance. Properties are of a peculiar nature since
polymer melts are different from low molar mass liquids and polymer solids
differ from conventional crystalline solids. While the latter usually represent
perfectly elastic bodies and low molar mass liquids develop viscous forces
only, bulk polymers combine elastic and viscous properties in both the fluid
and the solid state. Therefore, they are generally addressed as viscoelastic
and, in fact, polymers are the main representatives of this special class of
materials.

Viscoelastic behavior does not just mean a superposition of independent
viscous and elastic forces, but in addition it includes a new phenomenon known
as anelasticity, where both become coupled. It becomes apparent in the
observation that part of the deformation, although being reversible, requires
a certain time to become established when a load is applied.

The contributions of perfect elasticity, anelasticity, and viscous flow to
the total mechanical response of a sample possess different weights for dif-
ferent polymers and, in particular, they vary greatly with temperature. This
strong temperature dependence represents another characteristic property of
polymeric materials and contrasts with the much less sensitive behavior of
metals or ceramics. As a consequence of the changes, the temperature range
for a certain application of a polymer is limited. The most important limi-
tation results from the glass transition, where the elasticity and strength
shown by a glassy solid are lost and the polymer becomes melt-like or, if it
is cross-linked, turns into a rubber. In addition, there are other transitions
in the sense of further, usually weaker changes in the mechanical properties
occurring within a narrow temperature range and they sometimes induce un-
desired effects. It is clear that, for the use of a polymeric compound, one
requires a good knowledge of all these processes. Since this pattern is com-
plex, analysis necessitates special measures in both the experimental methods
of characterization and the theoretical descriptions.
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Different fields are concerned and they all need their own approaches:
• The properties under moderate loads, where deformations and velocities

of viscous flow remain small;
• the case of large reversible deformations realized in rubbers and the rheo-

logical properties of polymer melts at higher strain rates, both representing
non-linear behavior;

• and, finally, of special importance for applications, large deformations,
yielding and fracture.

We shall treat the first topic in this chapter and subsequently, in Chaps. 9
and 10, large deformations, non-linear flow and the ultimate properties of
yield and break.

In electrical applications, polymers are often used as isolators. Since it is
then important to be informed about possible electric losses, one needs to
know their dielectric properties in dependence on frequency and temperature.
As we shall see, a description of the response of dielectric materials to applied
time-dependent electric fields is formally equivalent to the treatment of time-
dependent mechanical responses. Therefore, we shall discuss both together in
this chapter. There also exist electrically conductive polymers, namely poly-
mers with conjugated double bonds after a doping process. Their properties
will be treated separately in the next chapter.

6.1 Response Functions

If a mechanical or an electric field is applied to a polymer sample and remains
sufficiently small, then the reaction, as given by the deformation and the polar-
ization, respectively, can be described by linear equations. We shall first deal
with the linear viscoelasticity, which can be specified by various mechanical
response functions, and then with the linear dielectric behavior, as character-
ized by the time-dependent or frequency-dependent dielectric function.

6.1.1 Viscoelasticity

A direct simple method to study the viscoelastic properties of a given sample
is the creep experiment. This is carried out by instantaneously applying
a constant force, which is then followed by a measurement of the resulting
deformation as a function of time.

Figure 6.1 schematically indicates a possible result, referring to the case
where an uniaxial tensile load is applied, which then leads to an elonga-
tion ΔLz. In general, it will be found that the creep curve represents a su-
perposition of three contributions:
• a perfectly elastic, i.e., instantaneous response;
• a retarded elastic deformation, i.e., an anelastic part; and
• viscous flow.
The first two contributions are reversible, the last one is irreversible.
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Fig. 6.1. Creep curve of a polymer sample under tension (schematic). The elonga-
tion ΔLz induced by a constant force applied at zero time is set up by a superposition
of an instantaneous elastic response (dashed line), a retarded anelastic part (dash-
dot line), and viscous flow (dotted line). An irreversible elongation is retained after
an unloading and the completion of the recovery process

It is of interest to determine separately the reversible and irreversible parts,
and this can be accomplished in an easy manner by removing the load from
the sample and monitoring the subsequent recovery process. As indicated in
Fig. 6.1, this first leads to an immediate shortening, which is then followed
by a retarded further length reduction; only the irreversible part, caused by
the viscous flow, remains.

If the force applied is sufficiently small, then one finds that the creep curve,
ΔLz(t), becomes proportional to the force. In this linear viscoelastic range
one can use the ratio between the time-dependent elongation and the force for
a description of the response. For a sample under tension the tensile creep
compliance D(t) is introduced as

D(t) =
ezz(t)
σ0

zz

. (6.1)

Here ezz(t) denotes the time-dependent longitudinal strain

ezz(t) =
ΔLz

Lz
, (6.2)

where Lz is the original sample length; σ0
zz stands for the constant tensile

stress applied at zero time (as usual, the first subscript indicates the normal
vector of the face acted upon and the second one gives the direction of the
stress component). It is important to recognize that D(t) provides, in prin-
ciple, a complete characterization of the tensile properties of a given sample.
Practical measurements are, of course, limited because registration cannot
start before a certain minimum and extend over a certain maximum time.
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Fig. 6.2. Stress relaxation curve (schematic)

A second method in mechanical tests is the stress relaxation experi-
ment. Here, a certain constant strain is instantaneously imposed on a sample
and the stress induced by this procedure is measured as a function of time.
Figure 6.2 schematically shows the possible shape of a stress relaxation curve
for an uniaxially deformed sample. The tensile stress has its maximum di-
rectly after the deformation act and then it decays. Anelastic components
first produce a downward step. If the sample can flow, the stress will further
decrease and finally vanish completely. The result of such an experiment can
be described by the time-dependent tensile modulus E(t), defined as

E(t) =
σzz(t)
e0zz

, (6.3)

whereby e0zz denotes the imposed longitudinal strain.
The third method used is dynamic-mechanical experiments. In these

measurements, samples are exposed to a periodically varying stress field, for
example, to a tensile stress

σzz(t) = σ0
zz exp(−iωt) . (6.4)

The resulting time-dependent longitudinal strain, ezz(t), is indicated in Fig. 6.3.
It varies with the frequency of the stress, but shows in general a phase-lag.
Therefore, for the strain we write

ezz(t) = e0zz exp(iϕ) exp(−iωt) . (6.5)

A full description of the relation between σzz(t) and ezz(t) is provided by the
complex dynamic tensile compliance D(ω), defined as

D(ω) =
ezz(t)
σzz(t)

=
e0zz exp(iϕ)

σ0
zz

= D′ + iD′′ . (6.6)
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Fig. 6.3. Time dependence of stress (σzz) and strain (ezz) in a dynamic-mechanical
experiment (schematic)

We write the dynamic compliance as a function D(ω) because it generally
varies with the frequency. To completely characterize the viscoelastic tensile
properties of a given sample, one is indeed required to know the complete
functional dependence.

As an alternative, one can also employ the complex dynamic tensile
modulus E(ω), defined as

E(ω) =
σzz(t)
ezz(t)

=
1

D(ω)
= E′ − iE′′ . (6.7)

The different choices for the sign in front of the imaginary parts D′′ and E′′

represent a convention and result in positive values for both. The signs are
reversed if the oscillation is described as σzz(t) ∝ exp(iωt) rather than by
Eq. (6.4).

Analogous experiments can be carried out for other kinds of mechanical
loading. Of particular importance are measurements for simple shear, which
determine the relation between the shear strain ezx, giving the displacement
along x per unit distance normal to the shear plane z = const, and the shear
stress σzx, as given by the force per unit area, acting on the shear plane
along x. Shear properties of samples are described by

• the shear compliance

J(t) =
ezx(t)
σ0

zx

, (6.8)

• the time-dependent shear modulus

G(t) =
σzx(t)
e0zx

, (6.9)
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• the dynamic shear compliance

J(ω) =
e0zx

σ0
zx

exp(iϕ) , (6.10)

and
• the dynamic shear modulus

G(ω) =
σ0

zx

e0zx

exp(−iϕ) . (6.11)

As has already been mentioned, a dynamic-mechanical measurement at one
frequency does not possess the same information content as creep or stress
relaxation experiments, and in order to achieve equivalence, these measure-
ments have to be carried out under variation of ω over a sufficiently large
range. Commercially available mechanical spectrometers usually scan a range
of three to four orders of magnitude. As this is still limited, one might sus-
pect at first that the information content is reduced compared to the time-
dependent experiments. However, as it turns out, if measurements are com-
bined with temperature variations, one can also achieve a satisfactory overall
characterization. We shall come back to this point for an explanation below.

Having introduced three different methods for a characterization of vis-
coelastic properties, one may wonder whether the results are interrelated. This
is indeed the case, but before entering into this matter, we look at dielectric
measurements.

6.1.2 Orientational Polarization

Application of an electric field E on a non-conducting sample leads to a po-
larization P . In electrostatics this process is described by the linear relation

P = ε0(ε− 1)E . (6.12)

Employing the dielectric displacement vector D, one can write equivalently

D = ε0E + P = ε0εE . (6.13)

In both equations the response is given by the dielectric function ε.
If the experiment is carried out with a constant field E0 being switched

on at zero time, one finds in general a time-dependent polarization P (t), set
up of an instantaneous part P u and a retarded part P or

P (t) = P u + P or(t) . (6.14)

One describes this result with the aid of a time-dependent dielectric function
ε(t), as

P (t) = ε0(ε(t) − 1)E0 (6.15)
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or, split up into the two contributions, by

P (t) = ε0(εu − 1)E0 + ε0Δε(t)E0 . (6.16)

The immediately reacting part, P u, is due to the shift of the electron clouds
and the deformation of the molecular skeletons occurring within times corre-
sponding to frequencies in the UV-range and the IR-range, respectively. The
retarded part, P or, arises for polar molecular fluids and originates from the
orientation of the permanent dipoles.

More common than using dc-fields is the use of ac-fields for the character-
ization of dielectric properties of samples. On applying a sinusoidally varying
field, represented in complex notation as

E(t) = E0 exp(−iωt) , (6.17)

there results, in general, a time-dependent polarization

P (t) = P 0 exp(iϕ) exp(−iωt) . (6.18)

The angle ϕ denotes a possible phase-lag. For a description of the relation
between the polarization and the field, one can again choose, as in the analo-
gous case of the dynamic-mechanical experiment, their complex ratio, known
as complex dielectric susceptibility. Rather than the latter, we will use
the closely related complex dielectric function ε(ω), defined as

ε(ω) =
D(t)
E(t)

= ε0 +
P0

E0
exp(iϕ) . (6.19)

ε(ω) splits up into a real and an imaginary part

ε(ω) = ε′(ω) + iε′′(ω) . (6.20)

6.1.3 General Relationships

It may have already been noticed that all the described experiments corre-
spond to a common basic scheme. There is a force or field, represented here by
the stress or the electric field, which leads to a ‘displacement’, as given by the
strain or the polarization. In all the cases considered, the force and the result-
ing displacement are related by a linear equation. Hence, we deal throughout
with linear responses. Clearly, many other effects exist that also represent
linear responses. There are reactions on still other kinds of mechanical loading
but also on the applications of other fields, as for example, a magnetic field B,
which induces a magnetization M .

There is a second characteristic property that all cases have in common.
One always deals with a pair of energy conjugated variables, that is to say, the
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displacement caused by the field results in work. More specifically, if a field ψ
gives rise to a displacement dx, then the work per unit volume is

dW
V = ψdx . (6.21)

This holds for the tensile load where

dW
V = σzz dezz = Dσzz dσzz , (6.22)

for the applied shear stress where

dW
V = σzx dezx = Jσzx dσzx , (6.23)

and also for the dielectric experiment when we identify dx with the change
of the dielectric displacement vector, hence

dW
V = EdD . (6.24)

So far, we have discussed the response of systems only for forces with spe-
cial time dependencies. The creep compliance describes the reaction on a force
that is switched on at zero time and then remains constant; the dynamic com-
pliance specifies the response on a sinusoidally varying stress. What happens
in the general case, when an arbitrary time-dependent force ψ(t) is applied?
There is a specific function that enables us to deal with this general situa-
tion, sometimes called the primary response function. It is introduced by
considering the effect of an infinitely short pulse, as represented by

ψ(t) = ψ0δ(t) (6.25)

where δ(t) is the delta function. The primary response function, denoted by
μ(t), describes the time-dependent displacement x(t) caused by this pulse as

x(t) = ψ0μ(t) . (6.26)

It is instructive to look at some typical examples as sketched in Fig. 6.4.
A damped harmonic oscillator reacts to a pulse by starting an oscillation with
exponentially decaying amplitudes, and this is shown in part (a). The effect
on a perfectly viscous body is quite different since it just becomes plastically
deformed and then maintains the new shape (b). Part (c) shows the reaction
of a perfectly elastic sample, i.e., a Hookean solid, which is only deformed
during the short time of the pulse. Finally, part (d) represents the reaction of
an overdamped oscillator or relaxator exhibiting an exponential decay.

The primary response function indeed enables us generally to formulate the
displacement resulting from an arbitrary time-dependent force. It is given by

x(t) =
∫ t

−∞
μ(t− t′)ψ(t′)dt′ . (6.27)
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Fig. 6.4. Primary response function of a damped harmonic oscillator (a), a perfectly
viscous body (b), a Hookean solid (c), and a simple relaxatory system (d)

The physical background of Eq. (6.27) is easily seen. The integral relation just
follows from the two basic properties of linear systems, namely the causality
principle and the validity of the superposition principle:

• Causality requires that the displacement at a given time can only depend
on the forces in the past and this finds its expression in the limits chosen
for the integral.

• Employing the superposition principle, an arbitrary time-dependent force
can first be divided into a sequence of pulses with adjusted heights and
then the total reaction can be represented as a sum over the responses to
all the pulses. The integral expresses exactly this procedure.

Emanating from Eq. (6.27), one can derive the interrelations between the
various response functions. We formulate them in terms of the general variables
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x and ψ and consider, as a first example, the displacement x(t) resulting from
a force with amplitude ψ0 switched on at zero time. Equation (6.27) yields
directly

x(t) =
∫ t

0

μ(t− t′)ψ0 dt′ . (6.28)

As for the creep experiment, the result can also generally be described with
the aid of the ratio

x(t)
ψ0

= α(t) . (6.29)

The name used for this function α(t) is time-dependent susceptibility.
We obtain

α(t) =
∫ t

0

μ(t− t′)dt′ =
∫ t

0

μ(t′′)dt′′ . (6.30)

Taking the derivative on both sides gives the relation between μ(t) and α(t):

μ(t) =
dα
dt

(t) . (6.31)

Second, consider the stress relaxation experiment. In terms of the general
variables it is to be described as

x0 =
∫ t

0

μ(t− t′)ψ(t′)dt′ , (6.32)

where x0 denotes the imposed displacement. We introduce a general time-
dependent modulus a(t) as

a(t) =
ψ(t)
x0

. (6.33)

a(t) and μ(t) are related by the integral equation

1 =
∫ t

0

μ(t− t′)a(t′)dt′ . (6.34)

If we eliminate μ(t) from this equation with the aid of Eq. (6.31), we find
the interrelation between the time-dependent susceptibility and the time-
dependent modulus

1 =
∫ t

0

dα
dt

(t− t′)a(t′)dt′ . (6.35)

An important equation is obtained, if we take Eq. (6.31), introduce it into
Eq. (6.27),

x(t) = −
∫ t

−∞

dα
dt′

(t− t′)ψ(t′)dt′ , (6.36)
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and then carry out a partial integration, leading to

x(t) =
∫ t

−∞
α(t− t′)dψ(t′) . (6.37)

Rather than beginning with Eq. (6.27), in the polymer literature, Eq. (6.37) is
often used as the basis. It is then understood as the mathematical formulation
of the Boltzmann superposition principle, which states that each loading
step makes an independent contribution to the final deformation and that the
latter then follows by simple addition. This is exactly the physical meaning of
the integral. The contributions are described in the integral. As we can see,
the after-effect of each step is a creep curve, starting with the step and being
weighted by the step height.

Rather than considering the displacement x(t) in dependence on the forces
in the past, ψ(t′ < t), one can ask conversely for the functional dependence of
the force ψ(t) on the previous displacements x(t′ < t). The solution is obvious:
We just have to exchange the susceptibility α(t − t′) against the generalized
time-dependent modulus a(t − t′) and represent ψ(t) as a sum of relaxation
curves:

ψ(t) =

t∫

−∞
a(t− t′)dx(t′) . (6.38)

This is the alternative form of the Boltzmann superposition principle and it
is of importance in particular in rheological treatments.

Let us finally come to the dynamic experiments, where an oscillatory force

ψ(t) = ψ0 exp(−iωt) (6.39)

is applied. It results in a displacement, to be written in general as

x(t) = x0 exp(iϕ) exp(−iωt) . (6.40)

Employing Eq. (6.27), this relation corresponds to

x0 exp(iϕ) exp(−iωt) =
∫ t

−∞
μ(t− t′)ψ0 exp(−iωt′)dt′ . (6.41)

The complex amplitude ratio

x0 exp(iϕ)
ψ0

= α(ω) (6.42)

describes the result of a dynamic experiment. α(ω) is called general dynamic
susceptibility, and we obtain for it

α(ω) =
∫ t

−∞
μ(t− t′) exp[iω(t− t′)] dt′ . (6.43)
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With the substitution

t− t′ = t′′

we can write

α(ω) =
∫ ∞

0

μ(t′′) exp(iωt′′)dt′′ =
∫ ∞

−∞
μ(t′′) exp(iωt′′)dt′′ , (6.44)

taking into account that μ(t′′ < 0) = 0. As we can see, the primary response
function, μ(t) and the dynamic susceptibility, α(ω) correspond to a pair of
Fourier transforms.

The dynamic susceptibility is in general a complex quantity

α(ω) = α′(ω) + iα′′(ω) . (6.45)

Actually, the real part α′(ω) and the imaginary part α′′(ω) are not indepen-
dent, but related by the Kramers–Kronig dispersion relations. These
have the following forms:

α′(ω0) =
1
π

P
∫ ∞

−∞

α′′(ω)
ω − ω0

dω (6.46)

α′′(ω0) = − 1
π

P
∫ ∞

−∞

α′(ω)
ω − ω0

dω . (6.47)

The relations include a special type of integral, the Cauchy integral, which
eliminates the singularity at ω = ω0. In the case of Eq. (6.46), it is defined by

P
∫ ∞

−∞

α′′(ω)
ω − ω0

dω = lim
δ→0

[∫ ω0−δ

−∞

α′′

ω − ω0
dω +

∫ ∞

ω0+δ

α′′

ω − ω0
dω

]
, (6.48)

and equivalently for Eq. (6.47). According to this expression, ω0 is approached
in a synchronized manner from both sides. Then the positive and negative
divergent values compensate each other and the singularity does not emerge.
A derivation of the Kramers–Kronig relations can be found in many textbooks
on statistical mechanics. Here, we leave it with one remark concerning their
physical origin: The relations can be regarded as a consequence of the causality
principle, since the derivation makes use of one condition only, namely that
μ(t′′) vanishes for t′′ < 0.

It is important that we now discuss the work resulting from the movement
under the action of the force. A most useful and simple result is obtained for
the dynamic experiments. Here the force

ψ(t) = ψ0 exp(−iωt) (6.49)

produces a displacement

x(t) = α(ω)ψ(t) = (α′ + iα′′)ψ(t) . (6.50)
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For a calculation of the work one has to use the true values ψ(t) and x(t),
which follow from the complex notation by an extraction of the real part. We
therefore write

ψ(t) = ψ0 cos(ωt) (6.51)

and
x(t) = α′ψ0 cos(ωt) + α′′ψ0 sin(ωt) . (6.52)

The power is given by

1
V

dW
dt

= ψ
dx
dt

= −ψ2
0

2
ωα′ sin(2ωt) + ψ2

0ωα
′′ cos2(ωt) . (6.53)

There are two contributions, one proportional to α′ and the other proportional
to α′′. These two contributions just represent two different aspects of the work.
The first contribution varies periodically between positive and negative values,
which indicates an energy exchange between the driving part and the driven
system. Obviously this first term is associated with an energy that during one
half-period is stored in the driven system and during the successive half-period
then is completely returned.

The second contribution is qualitatively different, as it yields a non-
vanishing positive value in the time average

1
V

dW
dt

=
1
2
ψ2

0ωα
′′(ω) . (6.54)

Hence, work is expended on the driven system. If the sample is kept under
isothermal conditions, the internal energy E does not change, i.e.,

dE
dt

= 0 . (6.55)

Since generally, according to the first law of thermodynamics, we have

dE = dW + dQ , (6.56)

we find
dW
dt

= − dQ
dt

. (6.57)

This means that the power is dissipated, i.e., returned by the system in the
form of heat.

We see that the susceptibility separates the elastic part and the viscous
dissipative part of the work expended on the system. They show up in the
real part α′(ω) and the imaginary part α′′(ω), respectively. It is important
to note that the two parts are not independent even if they represent quite
different physical properties. In fact, they are related by the Kramers–Kronig
relations, Eqs. (6.46) and (6.47).
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We finish this section by mentioning another frequently used quantity,
known as the loss tangent. It is defined as

tan δ(ω) =
α′′(ω)
α′(ω)

. (6.58)

According to the definition, tan δ(ω) describes the ratio between the dissipated
and the reversibly exchanged work.

6.2 Relaxatory Modes

Orientational polarization, as it is found in polar liquids, provides a good ex-
ample for explaining the physical background of reversible retarded responses.
First consider the natural state without a field. Here we have no polariza-
tion and this arises from distributing the orientations of the polar units in
the sample isotropically. If an electric field is now applied, the orientational
distribution changes. Since dipole orientations in the field direction are pre-
ferred, the distribution function becomes anisotropic. As a consequence we
find a non-vanishing value for the orientational polarization P or.

For systems, where the coupling between the polar units is so weak that
they can reorient largely independently from each other, P or can be calculated
in simple manner. It then just emerges from the competition between the
interaction energy of the dipoles with the electric field and the kinetic energy
of the molecular rotation. The calculation is carried out in many textbooks
on physical chemistry and the result reads, in an approximate form,

P or � cm
|p|2|E|
3kT

. (6.59)

p is the dipole moment of the reorienting units and cm gives their number
density.

Establishment of the new equilibrium subsequent to a sudden application
of an electric field requires a finite time. To see the origin of the retardation,
envisage the rotational dynamics in the fluid. Owing to the strongly varying
intermolecular forces, the dipole carrying units cannot rotate freely, but rather
show a statistical kind of motion. For independent units, this motion may be
described as a rotational diffusion, that is to say, it equals a succession of
uncorrelated angular steps. The diffusive motion leads to a complete reorien-
tation within a certain time, say τ . In fact, τ is the only parameter required
to characterize completely the state of rotational motion in a system of inde-
pendent units. Therefore, it sets the time scale for generally all changes in the
orientational distribution function. Hence, in particular, it also determines the
time needed to attain the new equilibrium set by a changed electric field.

What is the microscopic background of the retarded mechanical responses?
As we have learned, one can envisage a polymeric fluid as an ensemble of ma-
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cromolecules that change between the various conformational states. The pop-
ulations of the different states are determined by the laws of Boltzmann statis-
tics. If a mechanical field is now applied, a change in the population numbers
is induced. For example, consider a rubber to which a tensile stress is imposed.
Clearly, now all conformations that are accompanied by an extension along
the direction of stress are preferred. The repopulation of the conformational
states and the resulting increase in the sample length require a finite time,
which must correspond to the time scale of the conformational transitions.

Compared to the dielectric response first considered, the mechanical reac-
tion is more complex. Dielectric relaxation in a system of independent polar
units originates from their individual reorientational motions. In the mechan-
ical relaxation of a rubber we find a different situation. Here, we are dealing
with transitions between the different conformations of a chain and not with
individual movements of single groups. Rather than having one process only,
in this case, a large number of different modes exist, and these may vary
over a wide range in the characteristic times. As a consequence, the sample’s
response showing up in the time-dependent change of its length subsequent
to the application of the tensile stress cannot be associated with a single time
constant only, but is of a complex nature.

There is also a simple situation equivalent to the dipole reorientations in
mechanical behavior. In glassy polymers, large-scale conformational changes
are inhibited but the possibility of localized conformational transitions re-
mains. These can be observed, for example, for polymers with side-groups.
In the next section, an example will be presented where the side-groups of
a polymer chain possess just two conformational states. Application of stress
here leads to a change in the respective occupation numbers and the redistri-
bution occurs within a time as given by the rate of jumps between the two
states. Macroscopically, a detectable change in the shape of the loaded sample
results, which can be related to a single characteristic time only.

In all the examples discussed, we are concerned with the passage from
a non-equilibrium situation, created by the sudden imposition of an external
field, to the new equilibrium. The change is accompanied and driven by a de-
crease in the free energy. Using mechanistic terms one could say that a system
that at first, when having an enhanced free energy, is ‘strained’, ‘relaxes’while
going to the equilibrium. Correspondingly, all these retarded transitions into
a new equilibrium are generally addressed as relaxation processes. The
name includes even more, namely the underlying microscopic motions as well.
The notion ‘relaxation’ thus has a broad meaning in the literature, and is not
at all restricted to the first introduced stress relaxation experiment, which
just represents one special case.

6.2.1 Single-Time Relaxation Process

As we have seen, the time dependence of a macroscopic relaxation process
always reflects the underlying microscopic dynamics. We may now proceed
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and look for kinetical equations that correctly describe the time dependence
of the observed retarded responses.

There is an obvious choice for the simple case when only a single charac-
teristic time is included. It goes back to Debye, who proposed it in a famous
work on the dielectric properties of polar liquids, based on a statistical me-
chanical theory. We formulate the equation for the above-mentioned simple
mechanical relaxation process, associated with transitions between two con-
formational states only, and consider a creep experiment under shear stress.
The equation has the following form:

dezx

dt
= −1

τ

(
ezx(t) − ΔJσ0

zx

)
. (6.60)

It represents a linear differential equation of the first order, implying the as-
sumption that, for a system in non-equilibrium, relaxation takes place with
a rate that increases linearly with the distance from the equilibrium state. This
is not a specific kind of expression devised to deal exclusively with our prob-
lem. Equivalent equations are broadly used in thermodynamics to describe
the kinetics of all sorts of irreversible processes. Importantly, the equation
includes one time constant only, the relaxation time τ .

A further parameter, ΔJ , here determines the equilibrium value of the
anelastic contribution to the shear strain following from an applied stress σ0

zx.
The equilibrium value is given by the product ΔJσ0

zx. In accordance with the
physical meaning, ΔJ is called the relaxation strength. This is, in fact,
a general name also used for the analogous parameters in other relaxation
processes. They all have in common that they determine the magnitude of
the effect, as given, for example, by a contribution to the strain, the stress or
the polarization.

The solution of the relaxation equation for the creep experiment, i.e.,
a step-like application of a stress σ0

zx at zero time, can be written down di-
rectly. It is given by

ezx(t) = ΔJσ0
zx

(
1 − exp

(
− t

τ

))
. (6.61)

This is indeed a correct representation of the creep curve observed for a single-
time relaxation process. The physical properties of the process are included
in the two parameters ΔJ and τ . The latter agrees with the transition rates
between the two conformational states. It is more difficult to predict and thus
to interpret the relaxation strength. As is intuitively clear, the prerequisite
for an alteration of the population numbers under an applied shear stress is
a change in the ‘shape’ of the active unit, as only then can a change in the
energy arise. To formulate this interaction energy for a unit as represented
by a whole monomer or only the side-group can, however, be difficult; much
more difficult than the case considered above of the interaction of a dipole
with an electric field. It is therefore not surprising that calculations of me-
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chanical relaxation strengths on microscopic grounds are rare and quantitative
interpretations of measured values an exception.

The relaxation equation (6.60) is not restricted in use to step-like
changes in the external conditions, but also holds if the equilibrium value
ΔJσzx is not a constant and changes with time. In particular, it can be
employed to treat dynamic-mechanical experiments. As is clear, applying an
oscillatory shear stress

σzx(t) = σ0
zx exp(−iωt) (6.62)

means to impose an oscillatory variation for the characterization of dielectric
properties of samples for the equilibrium strain, ΔJσzx(t). If we introduce it
into the relaxation equation, we obtain

dezx

dt
= −1

τ

(
ezx(t) − ΔJσ0

zx exp(−iωt)
)
. (6.63)

An oscillatory stress results in an oscillatory strain as given by Eq. (6.10),

ezx(t) = σ0
zxJ(ω) exp(−iωt) . (6.64)

If we take this solution, introduce it into Eq. (6.63) and take away the common
exponential factor from both sides, we obtain the dynamic compliance. It is
given by

J(ω) =
ΔJ

1 − iωτ
. (6.65)

The dynamic compliance of the single-time relaxation process, in the literature
also addressed as the Debye process, thus has a simple form, being a function
of the product ωτ and ΔJ only. Separation into the real and the imaginary
part yields

J(ω) = J ′ + iJ ′′ =
ΔJ

1 + ω2τ2
+ i

ΔJωτ
1 + ω2τ2

. (6.66)

Figure 6.5 depicts J ′ and J ′′ using a logarithmic scale for the variable ωτ . The
use of a logarithmic scale is not only convenient, regarding that experiments
usually cover several orders of magnitude, but also has the advantage that
the curves then exhibit characteristic symmetries. The imaginary part, which
describes the loss, forms a symmetric bell-shaped curve with maximum at
ωτ = 1. If J ′′ is written in the form

J ′′ =
ΔJ

10− log(ωτ) + 10log(ωτ)
, (6.67)

the symmetry is obvious.
The real part shows a steep decrease in the range of the loss maximum

and its physical cause is easily revealed. If the mechanical field applied has
a frequency that is small compared to the transition rates in the system,
establishment of thermal equilibrium is rapid compared to the period of the
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Fig. 6.5. Real part (left) and imaginary part (right) of the dynamic compliance
associated with a mechanical Debye process

field and the system can always remain in equilibrium. Hence, we encounter
quasistatic conditions and observe the full relaxation strength. At the other
limit, when the frequencies of the field applied are large compared to the
transition rates, equilibrium cannot be established and the system reacts to
the average strain only, which is zero. The crossover from one to the other
regime only occurs in the range ωτ � 1.

The maximum in J ′′ and the steepest descent of J ′ are located at the
same frequency. Furthermore, the area under the loss curve and the relaxation
strength ΔJ are proportional to each other. Integration gives the following
relation: ∫ ∞

−∞
J ′′ d log(ωτ) =

π

2 ln 10
ΔJ . (6.68)

In fact, these properties are not specific to the Debye process, but have
a deeper basis, which extends their validity. According to the Kramers–Kronig
relations, J ′ and J ′′ are mutually dependent and closer inspection of the equa-
tions reveals that it is impossible, in principle, to have a loss without a simul-
taneous change in J ′. Both effects are coupled, the reason being, as mentioned
above, the validity of the causality principle.

The loss curve has a characteristic width, the total width at half height
amounting to 1.2 decades. Compared to the loss at the resonance frequency of
an oscillating system, the loss curve of the Debye process is much broader. In
fact, a halfwidth of 1.2 decades presents the lower limit for all loss curves found
in relaxing systems. Loss curves that are narrower are therefore indicative of
the presence of oscillatory contributions, or more generally speaking, indicate
effects of moments of inertia.

A simple check whether a measured dynamic compliance or a dielectric
function agrees with a Debye process is provided by the Cole–Cole plot. Let
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us illustrate it with a dielectric single-time relaxation process. If we choose
an expression analogous to Eq. (6.66) for the dipolar polarization and also
take into account the instantaneous electronic polarization with a dielectric
constant εu, the dielectric function ε(ω) shows the form

ε = εu +
Δε

1 + ω2τ2
+ i

ωτΔε
1 + ω2τ2

. (6.69)

When for all values of ωτ the associated pairs ε′(ωτ) and ε′′(ωτ) are plotted
in a plane as shown in Fig. 6.6, a semicircle is obtained. The circle begins for
ωτ = 0 at ε′ = εu + Δε and ends for ωτ → ∞ at ε′ = εu. The proof for the
circular form of the Cole–Cole plot is straightforward, as we can write

[
ε′ −

(
εu +

Δε
2

)]2

+ (ε′′)2 =
[
2ε′ − 2εu − Δε

2

]2

+ (ε′′)2

=
[
2Δε− Δε(1 + ω2τ2)

2(1 + ω2τ2)

]2

+
Δε2ω2τ2

(1 + ω2τ2)2

=
Δε2(1 + ω2τ2)2

4(1 + ω2τ2)2
=

Δε2

4
. (6.70)

Figure 6.6 presents, as examples, results of dielectric studies on certain rod-like
molecules, shortly designated as ‘C6C3’, which carry a longitudinal electric
dipole. The Cole–Cole plot on the left-hand side represents measurements
in the liquid phase of this low molar mass compound. Points are arranged
along a semicircle, as is indicative of a Debye process. The data given on
the right-hand side were obtained for a polymer, which has the C6C3-rods
attached as side-groups onto a polysiloxane backbone. Obviously, the coupling
modifies the rotational kinetics so that it no longer equals a Debye process.
Here a satisfactory representation of data is achieved by the use of an empirical
function, with the form

ε(ω) =
Δε

1 + (−iωτ)β
. (6.71)

Fig. 6.6. Cole–Cole plots of dielectric data obtained for a dipole carrying a rod-like
molecule of low molar mass (left) and a polysiloxane with these molecules attached
as side-groups (right) [67]
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It is known in the literature as the Cole–Cole function, and with β it
includes an additional parameter. The more the value of β differs from unity,
the more pronounced the deviations from a single-time relaxation. In the
example, we have β = 0.92.

6.2.2 Retardation and Relaxation Time Spectra

Having established the properties of the single-time relaxation process, we
now also have a means of representing a more complex behavior. This can
be accomplished by applying the superposition principle, which must always
hold in systems controlled by linear equations. Considering shear properties
again, we write for a dynamic compliance J(ω) with general shape a sum of
Debye processes with relaxation times τl and relaxation strengths ΔJl

J(ω) = Ju +
∑

l

ΔJl

1 − iωτl
. (6.72)

Often it is more appropriate to employ a representation in integral form

J(ω) = Ju +
∫

1
1 − iωτ

LJ(log τ)d log τ . (6.73)

The characteristic function in this integral that specifies the relaxation prop-
erties of the system is LJ (log τ), called the retardation time spectrum of
the shear compliance J .

An identical function can be used in order to describe the result of a creep
experiment on the system. One only has to substitute the dynamic compliance
of the Debye process by the associated elementary creep function, as given by
Eq. (6.61). This leads to

J(t) = JuΘ(t) +
∫ (

1 − exp
(
− t

τ

))
LJ (log τ)d log τ . (6.74)

The immediate reaction with amplitude Ju is here represented by the Heavi-
side function Θ(t), which is unity for t > 0 and zero for t < 0.

The superposition approach may first look as a purely formal one, but
a physical basis also exists, valid for many of the cases of interest. We are
mostly dealing with the kinetics of transitions between the different conforma-
tional states. Motions include both local changes and cooperative movements
of many monomers up to the full length of a chain. It appears reasonable to
assume that the resulting total dynamics can be described as a superposition
of a large number of independent relaxatory modes, each one representing
a single-time relaxation process. In fact, theories like the Rouse model or the
reptation model, to be discussed in the next chapter, lend support to this
mode picture, which therefore may well be regarded as a notion suitable for
general considerations.
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Alternative to the shear compliances, J(t) and J(ω), one can also use for
the description of the properties under shear the shear moduli, G(t) and G(ω).
As we shall find, this can drastically change the values of the relaxation times.
Let us first consider a single Debye process, now in combination with a super-
posed perfectly elastic part and calculate the associated dynamic modulus.
We have

J(ω) = Ju +
ΔJ

1 − iωτ
, (6.75)

and therefore

G(ω) =
1

J(ω)
=

1 − iωτ
Ju(1 − iωτ) + ΔJ

(6.76)

=
1
Ju

Ju − iωτJu + ΔJ − ΔJ
Ju + ΔJ − iωτJu

=
1
Ju

− ΔJ
JuJr

1
1 − iωτ̂

.

Here Jr is defined as
Jr = Ju + ΔJ , (6.77)

and τ̂ denotes another time constant, defined as

τ̂ = τ
Ju

Jr
. (6.78)

The subscripts ‘r’ and ‘u’ stand for the attributes ‘relaxed’ and ‘unrelaxed’, re-
spectively. We can also introduce the ‘relaxed’ and ‘unrelaxed’ limiting values
of the shear modulus, by

Gr =
1
Jr
, (6.79)

Gu =
1
Ju

, (6.80)

and the change of G, giving the relaxation strength, by

ΔG = Gu −Gr . (6.81)

Using these parameters, the dynamic modulus obtains the simple form

G(ω) = Gu − ΔG
1 − iωτ̂

. (6.82)

The important point in this result is that, compared to the dynamic com-
pliance, the characteristic time has changed. This change from τ to τ̂ can
be quite large. For example, the relaxation processes that are responsible for
the glass transition transfer a polymer sample from the glassy to the rubbery
state, which means a change in the compliance by four orders of magnitude.
This large change then shows up correspondingly in the ratio between τ and τ̂ .
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Rather than representing the viscoelastic properties of a given sample in
the form of Eq. (6.73), i.e., by a superposition of Debye processes, which are
specified by ΔJl and τl, one can perform an analogous procedure based on
single-time relaxation processes specified by ΔGl and τ̂l. We then write in the
integral form

G(ω) = Gu −
∫

1
1 − iωτ̂

HG(log τ̂ )d log τ̂ . (6.83)

It now includes the characteristic function HG(log τ̂ ), which obviously differs
from LJ (log τ). HG(log τ̂ ) is called the relaxation time spectrum of G.

The corresponding expression for the time-dependent modulus is

G(t) = Gr +
∫

exp
(
− t

τ̂

)
HG(log τ̂ )d log τ̂ . (6.84)

In order to show that this is true, we have to prove that the time-dependent
modulus for the Debye process does indeed equal the exponential function
exp−(t/τ̂). For the proof, we first calculate the primary response function,
μ(t), by use of Eq. (6.31):

μ(t) =
dJ
dt

=
ΔJ
τ

exp
(
− t

τ

)
+ Juδ(t) . (6.85)

Then we apply Eq. (6.34)

1 =
ΔJ
τ

∫ t

0

exp
(
− t− t′

τ

)
G(t′)dt′ + Ju

∫ t

0

δ(t− t′)G(t′)dt′ . (6.86)

This leads to

exp
(
t

τ

)
=

ΔJ
τ

∫ t

0

exp
(
t′

τ

)
G(t′)dt′ + Ju exp

(
t

τ

)
G(t) . (6.87)

Taking on both sides the time derivative and dividing by τ−1 exp(t/τ) yields

1 = ΔJG(t) + JuG(t) + τJu
dG
dt

. (6.88)

Differentiating for a second time gives the equation

0 = Jr
dG
dt

+ τJu
d2G

dt2
. (6.89)

This is solved by

G(t) = Gr + ΔG exp
(
− t

τ̂

)
(6.90)

for
0 = −Jr

τ̂
+ τJu

1
(τ̂ )2

(6.91)
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or
τ̂ = τ

Ju

Jr
, (6.92)

in agreement with Eq. (6.78). Equations (6.90) and (6.92) confirm that
Eq. (6.84) is correct.

Relaxation or retardation time spectra like HG(log τ̂) or LJ(log τ) can
always be used for a representation of measured data although its derivation
from experimentally obtained modulus functions or compliance functions can
be difficult. The inversion of one of the integral equations, Eqs. (6.73), (6.74),
(6.83) or (6.84), belongs to a class of problems called ‘ill-posed’. Here small
fluctuations in the data, which cannot be avoided, become greatly magnified
by the mathematical solution algorithm, thus leading to large variations in
the derived quantities. Modern mathematical procedures can provide help,
by allowing us to include in the solution any additional knowledge about the
spectral functions. If they can be applied, situations improve and calculated
spectra may then possess a satisfactory accuracy.

In this section, the focus was on the difference in the characteristic times
observed in measurements of compliances or moduli, respectively. In the ex-
planation, we had to use two different symbols, the notation τ for the retar-
dation time and τ̂ for the relaxation time. In what follows we shall not
persist in this differentiation and write τ generally, for all kinds of character-
istic times observed in experiments.

6.3 Specific Relaxation Processes and Flow Behavior

After the introduction of the various interrelated response functions and basic
concepts like the Debye process and the derived spectral representations in
the second part of this chapter we now come to the description and discussion
of actual polymer behavior. In fact, relaxation processes play a dominant role
and result in a complex pattern of temperature-dependent and frequency-
dependent properties.

We already have a general picture suitable for considerations. As has been
emphasized, dealing with fluid polymers means dealing with an ensemble of
chains that can exist in a manifold of different conformational states. Thermal
equilibrium is a dynamical situation where chains change between these states
activated by thermal energies. The microscopic dynamics shows up in the
macroscopic experiments. Relaxation rates observed in certain mechanical or
dielectrical measurements equal the rates of transitions within a certain group
of conformations.

The rates of conformational transitions of a chain encompass an enor-
mously wide range. Local rearrangements including only a few adjacent
monomers are usually rapid and take place with rates similar to those in
ordinary liquids. Conformational changes of more extended sequences require
much longer times. In particular, relaxatory modes associated with the chain
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as a whole show a pronounced dependence on the molar mass, as relaxation
then has to propagate over larger and larger distances. Flow behavior is gov-
erned by these sluggish modes and therefore sets up the terminal region,
i.e., the long time end, of the spectrum of relaxations.

The rates of the relaxatory modes in a sample do not cover the whole spec-
tral range homogeneously, but usually one observes a separation into several
zones where relaxation rates are accumulated. Each zone belongs to a group
of processes with similar roots. It has become a convention to designate these
different groups by Greek letters, α, β and γ, and to use the symbol α for
the process with the lowest transition rates showing up at the highest tem-
perature. On the other hand, the symbol γ is used for the processes observed
at the low temperature end and this means those with the highest transition
rates.

In the remaining part of this chapter, we discuss the properties of some
major groups of relaxation processes in polymers as there are

• local processes, to be observed in the glassy state;
• cooperative processes in longer chain sequences that provide the basis for

the elasticity of rubbers and the viscoelasticity of polymer melts;
• chain diffusion, which controls the flow behavior; and
• specific processes in partially crystalline states, associated with coupled

motions of sequences in the crystallites and the amorphous regions.

6.3.1 Local Processes

Figure 6.7 shows the results of a dynamic shear experiment carried out on
poly(cyclohexyl methacrylate) (PCHMA) in the glassy state. One observes
a relaxation process that produces a loss maximum just in the frequency range
of the mechanical spectrometer. With increasing temperature the position of
the loss maximum shifts to higher values.

Considering the chemical constitution of PCHMA, there is an obvious
assignment for this ‘γ-process’: It reflects the flip-motion between the chair-
conformation and the boat-conformation of the cyclohexane sidegroup. Since
this process changes the shape of the sidegroup, it couples to the applied
shear field. The assignment is corroborated by the observation that this pro-
cess shows up whenever a cyclohexyl group is attached to a polymer chain.
The relaxation rates were similar for all samples investigated, as expected for
a mode with local character.

Figure 6.8 shows the temperature dependence of the relaxation rate in an
Arrhenius-plot. The data were obtained in several experiments on polyacry-
lates and poly(methylacrylates) with pendant cyclohexyl groups. The linearity
of the plot is indicative of an activated process, the relaxation time being given
by the Arrhenius law

τ = τ0 exp
Ã

R̃T
. (6.93)
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Fig. 6.7. Frequency dependence of the mechanical loss tangent measured for
PCHMA at the indicated temperatures (after Heijboer [68])

Fig. 6.8. Temperature dependence of the relaxation rates of the γ-process in poly-
acrylates (open symbols) and poly(methacrylates) (filled symbols) with pendant cy-
clohexyl groups. Data from Heijboer [69]

The relaxation rate τ−1 equals the rate of transitions between the two confor-
mational states. The observed activation energy, Ã = 47 kJ mol−1, therefore
has to be identified with the height of the energy barrier that has to be passed
over during a change.
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A remarkable fact to be noted in Fig. 6.7 is the constancy in the peak
amplitude and the shape of the loss curves when varying the temperature.
This behavior, in combination with the regular temperature shift according
to Arrhenius’ law, opens the way for an alternative experimental procedure.
Rather than carrying out frequency-dependent measurements at one temper-
ature, loss curves may also be registered by temperature-dependent measure-
ments at constant frequency. Figure 6.9 presents such measurements, and as
can be seen, they provide equivalent information. The relationship between
the relaxation rate and the temperature follows equally from both measure-
ments by a registration of the loss maxima.

In the combination of frequency-dependent and temperature-dependent
measurements, one can even go one step further, thereby establishing an im-
portant general procedure. For groups of relaxation processes that encompass
a broader time range, it often happens that the experimentally limited fre-
quency range of the experimental device is not large enough to include the
curves completely. Measurements carried out at a sequence of different tem-
peratures can provide the missing information. As indicated by our example,
different parts of the loss curve are placed into the accessible frequency win-
dow on changing the temperature. This property can now be used to set up
the complete loss curve by a synthesis. The sections obtained at the different
temperatures can be coupled together by carrying out appropriate shifts along
the log ω-axis, thus ending up in one continuous curve.

What is applied here is known in the literature as the time–temperature
superposition principle. The result of the synthesis is called a master
curve. For a thermally activated Debye process, the basis of the principle is

Fig. 6.9. Temperature dependent measurements of the loss tangent of the γ-process
of PCHMA for several fixed frequencies ω/2π (after Heijboer [68])
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easily seen. According to Eq. (6.65), the dynamic compliance and the dynamic
modulus are here functions of the product ωτ , or equivalently, of log(ωτ). If
we also use Eq. (6.93), we may then represent the compliance as a function of
a sum of terms

J(logωτ) = J

(
logω + log τ0 +

Ã

R̃T
log e

)
. (6.94)

The expression tells us that there are two ways of achieving a change in J ,
namely either by a shift in logω, or by a shift in T−1. The effects of frequency
and temperature thus appear as superposed, and Eq. (6.94) informs us about
the correspondences.

As a prerequisite for the construction of a master curve, the shape of the
loss curve must remain constant under temperature variations. For the system
under discussion, this is obviously fulfilled. Measured curves coincide after
appropriate shifts along the logω-axis, as is shown in Fig. 6.10 for the real
and imaginary part of the dynamic shear modulus. The example represents
an ideal case, and here there is also no need for a synthesis of the curves
from parts. In many other cases, however, construction of the master curve
is the only means of exploring a group of relaxation processes in total. Even

Fig. 6.10. Real and imaginary part of the dynamic shear modulus in the range
of the γ-process of PCHMA, synthesized as a master curve using measurements at
various temperatures. Curves represent the viscoelastic behavior at −80 ◦C. The
dashed curve indicates a perfect Debye process. Data from Heijboer [69]
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if one is not sure whether curve shapes are really temperature-independent,
construction of a master curve remains useful as it can always provide a rough
overall view, which is good for qualitative purposes.

Figure 6.10 shows also a comparison with the Debye process. We notice
that the γ-process of the cyclohexyl groups does not agree with a single-
time relaxation process, but exhibits some broadening. This may be caused
by a coupling between adjacent sidegroups, as a conformational change in
one sidegroup may well affect the neighbors. More specifically, the jump rate
may depend on the conformations of the neighbors, which then would lead
to a distribution of relaxation times, as is indicated by the broadened loss
spectrum.

6.3.2 Glass–Rubber Transition and Melt Flow

Figure 6.11 presents creep curves, registered for a sample of polystyrene un-
der shear stress at various temperatures between −268 ◦C and 296.5 ◦C. We
observe a creep compliance that encompasses the enormously broad range of
nine orders of magnitude. At the lowest temperatures, the mechanical prop-
erties are those of a glass. At the other limit, the high temperature end,
the behavior is dominated by viscous flow as indicated by the characteris-
tic linear increase of J with time. The transition from the solid-like to the
liquid-like behavior occurs continuously, and importantly, obviously in a sys-
tematic manner. Indeed, the way curves change with temperature indicates
that again time-temperature superposition is obeyed. Temperature variations
result in shifts of the creep compliance along the log t-axis, apparently without
essential modifications in shape. The consequence is the same as for the just
discussed local processes: On varying the temperature, different parts of J(t)
show up in the time-window of the experiment, and they can be reassembled
to form a master curve. Applying this procedure yields the overall creep curve
and it evidently has a shape as indicated schematically in Fig. 6.12. We can
estimate the encompassed total time range by roughly summing up the time
ranges of the sections included and find an enormous extension of about 20
orders of magnitude.

J(t) has a characteristic shape composed of several parts. Subsequent to
the glassy range with a solid-like compliance in the order of 10−9 N−1 m2,
an additional anelastic deformation emerges and eventually leads to a shear
compliance in the order of 10−5 N−1 m2. The latter value is typical for a rub-
ber. For a certain time a plateau is maintained but then there finally follows
a steady linear increase of J , as is indicative for viscous flow. The displayed
creep curve of polystyrene is not a peculiar one and may be regarded as rep-
resentative for all amorphous, i.e., noncrystalline polymers. One always finds
these four parts in

• a glassy region;
• the glass–rubber transition, often also called the ‘α-process’,
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Fig. 6.11. Creep compliance of PS (Mw = 3.85 ×105 g mol−1), as measured at the
indicated temperatures. Data from Schwarzl [70]

• a rubber–elastic plateau; and
• the terminal flow range.

These are the basic ingredients determining the mechanical properties of amor-
phous polymers and we now discuss them in a brief overview.

A first important conclusion can be drawn immediately; it concerns the
nature of the main part, the glass–rubber transition. As we find a systematic
shift of the time range of the transition with temperature, it is obvious that we
are dealing here with a purely kinetical phenomenon rather than with a struc-
tural transition like the melting process or a solid-solid phase change. Curves
demonstrate that whether a sample reacts like a glass or a rubber is just
a question of time. Temperature enters only indirectly, in that it determines
the characteristic time that separates glassy from rubbery behavior.
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Fig. 6.12. General shape of the complete creep curve of PS, as suggested by the
appearance of the different parts shown in Fig. 6.11

In Chap. 9, we will discuss the properties of rubbers. These are net-
works, composed of chemically cross-linked macromolecules. Owing to the
weak restoring forces, application of stress here induces a deformation that
is very large compared to solids. The observation of a plateau in the creep
compliance at a height comparable to the compliance of rubbers indicates
that a polymer melt actually resembles a temporary network. This behavior
expresses a major property specific for polymeric liquids: These include chain
entanglements, i.e., constraints for the motion arising from the chain connec-
tivity, which act like cross-links. Different from true cross-links of chemical
nature, entanglements are only effective for a limited time during which they
are able to suppress flow. This time becomes apparent in the creep curve as
the end of the plateau region.

Subsequent to the plateau, flow sets in. As is intuitively clear, the time
needed for the chain disentangling increases with the molar mass and this
shows up in a corresponding broadening of the plateau. Results of dynamic-
mechanical experiments on polystyrene, presented later in Fig. 6.16, exemplify
the behavior. The data also indicate a lower limit: When decreasing the molar
mass one reaches a point, where the plateau vanishes. Then the glass–rubber
transition and the terminal flow region merge together. Absence of the plateau
means the absence of an entanglement network. The observation tells us that
entanglement effects only exist above a certain minimum molar mass. For each
polymer one finds for that a characteristic value, known as the molar mass
at the entanglement limit.

The measurements at high temperatures in Fig. 6.11 indicate a viscous
flow with a constant creep rate, determined by a viscosity η0

dJ
dt

∝ 1
η0

. (6.95)
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Fig. 6.13. Molecular weight dependence of the viscosity as observed for the indi-
cated polymers. For better comparison curves are suitably shifted in horizontal and
vertical directions. Data from Berry and Fox [71]

As the flow velocity relates to the disentangling time, this also holds for the
melt viscosity. Indeed, η0 and the disentangling time for entangled melts show
the same dependence on the molar mass. Figure 6.13 collects the results of
viscosity measurements for various polymers. As should be noted, a power law
behavior

η0 ∝ Mν (6.96)

is generally observed. One finds two regions, with different values of the expo-
nent ν and a cross-over at a critical molar massMc. For molar masses below
Mc one has ν = 1; above Mc one observes ν ≈ 3.2−3.6. If viscosity measure-
ments are further extended, up to the range of ultra-high molar masses, one
finally observes an exponent ν = 3. Figure 6.14 presents such measurements
for 1,4-polyisoprene (PI), for molar masses up to Mw = 3 ×106 g mol−1.

Importantly, as is also shown by Fig. 6.16, the two parts of the mechanical
response separated by the rubber–elastic plateau differ in their molar mass
dependence. In contrast to the terminal flow region, the glass–rubber transi-



254 6 Mechanical and Dielectric Response

Fig. 6.14. Molar mass dependence of the zero shear rate viscosity of Pl. The lower

figure indicates for Mw > 2×105 g mol−1 a power law η0 ∝ M
3
w. The critical molar

mass as determined by the location of the break is Mc = 1.3 ×104 g mol−1. From
Pyckhout-Hintzen et al. [72]

tion remains largely unaffected by the molar mass. The findings teach us that
chain equilibration in reaction to an applied field takes place as a two-step
process with a finite delay time in between. In the first step, equilibration by
relaxatory modes only includes chain sequences up to a certain length, which
is determined by the distance between the entanglements. As this distance is
independent of M , this holds likewise for the characteristic time of this first
step. Further relaxation is postponed until a chain extricates itself from the
tube formed by the other surrounding molecules and this process is of course
strongly affected by the molar mass.

As explained in the first part of this chapter, the viscoelastic properties
of polymers may also be studied by stress relaxation experiments or dynamic
mechanical measurements. Since all response functions are interrelated, the
mentioned ingredients of the mechanical behavior of amorphous polymers
show up in the other experiments as well. To give an example, Fig. 6.15
displays the time-dependent tensile modulus registered for polyisobutylene
(PIB). Measurements were again conducted for a series of temperatures. As
expected, data show the glass–rubber transition (for temperatures in the range
190–220K), followed by a plateau (around 230 K) and finally the onset of flow.
The right-hand side presents the composite master curve, set up by shifting
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Fig. 6.15. Time-dependent tensile modulus of PIB. Measurements at the indi-
cated temperatures (left) and master curve, constructed for a reference temperature
T = 298 K (right). The insert displays the applied shifts. Data from Castiff and
Tobolsky [73]

the partial curves as indicated by the arrows. The shifts along the log t-axis,
which have to be carried out when going from the master curve to the mea-
sured parts, are displayed in the insert. In the construction of the master curve
the time-dependent modulus obtained at 298K was kept fixed, while all other
curves were displaced. The shift factor, denoted log aT , is zero at this refer-
ence temperature. The result represents the complete time-dependent shear
modulus at the reference temperature. Comparable to the creep compliance
in Fig. 6.12, this tensile modulus again encompasses a huge range of about 20
orders of magnitude in time.

Regarding the large number of conformational changes that must take
place if a rubber is to be extended, the glass–rubber transition cannot equal
a single-time relaxation process and this is shown by the curve shapes. To
describe E(t), empirical equations that often provide good data fits exist.
A first one is concerned with the beginning of the transition range. It is known
as the Kohlrausch–Williams–Watts (KWW) function and has the form
of a stretched exponential function

E(t) ∝ exp−
(
t

τ

)β

. (6.97)
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Fig. 6.16. Storage shear moduli measured for a series of fractions of PS with differ-
ent molar masses in the range M = 8.9×103 to 5.81×105 g mol−1. The dashed line in
the upper right corner indicates the slope corresponding to the power law Eq. (8.82)
derived for the Rouse model of the glass transition. Data from Onogi et al. [74]

The KWW function employs two parameters: τ sets the time scale and β
determines the extension in time of the decay process. For values β < 1
a broadening results, as is always observed for the glass–rubber transition.
Typical values are in the order β � 0.5. The KWW function holds only at
the beginning, i.e., in the short-time range of the glass–rubber transition.
Subsequently, there often follows a power law

E(t) ∝ t−ν . (6.98)

Experimentally it is indicated by a linear range in the center, when using
a log–log plot. Typical values of the exponent are ν � 0.5.

Figure 6.16 presents, as a third example, results of dynamic-mechanical
measurements. They were obtained for a series of monodisperse polystyrenes,
i.e., fractions with sharp molar masses. The curves depict the frequency de-
pendence of the storage shear modulus, G′(ω). As we note, the order of ap-
pearance of the viscous flow and the α-process is reversed when compared to
the time-dependent measurements. The flow-dominated long-time behavior
emerges first at low frequencies, whereas an investigation of the rubber–glass
transition requires measurements at the high frequency end. The plateau ap-
pears in between. Its width varies systematically with the molar mass, as has
already been mentioned and discussed. There is no plateau at all for the sam-
ple with the lowest molar mass (M = 8.9 ×103 g mol−1), but after its first
appearance, it widens progressively with further increasing molar masses.
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Low Frequency Properties of Polymer Melts

Also of interest in Fig. 6.16 is the finding that the shapes of curves in the
terminal region remain similar to each other for all molar masses. More specif-
ically, within the limit of low frequencies, a constant slope emerges, indicating
a power law G′(ω) ∝ ω2. It is possible to explain this asymptotic behavior
and to relate it to the properties of flowing polymer melts.

For a Newtonian low molar mass liquid, knowledge of the viscosity is fully
sufficient for the calculation of flow patterns. Is this also true for polymeric
liquids? The answer is no under all possible circumstances. Simple situations
are encountered, for example, in dynamical tests within the limit of low fre-
quencies or for slow steady state shears and even in these cases, one has to
include one more material parameter in the description. This is the recover-
able shear compliance, usually denoted by J0

e and it specifies the amount
of recoil observed in a creep recovery experiment when the load is removed.
J0

e relates to the elastic and anelastic parts in the deformation and has to be
accounted for in all calculations. Experiments show that, at first, for M <Mc,
J0

e increases linearly with the molar mass and then reaches a constant value
that essentially agrees with the plateau value of the shear compliance.

At higher strain rates more complications arise. There the viscosity is no
longer constant and shows a decrease with increasing rate, which is com-
monly addressed as shear-thinning. We will discuss this effect and related
phenomena in Chap. 9 when dealing with non-linear behavior. In this section,
the focus is on the limiting properties at low shear rates, as expressed by the
zero shear rate viscosity, η0, and the recoverable shear compliance at zero
shear rate, J0

e .
Our concern is to find out how the characteristic material parameters η0

and J0
e are included in the various response functions. To begin with, consider

a perfectly viscous system in a dynamic-mechanical experiment. Here the
dynamic shear compliance is given by

J = i
1
η0ω

. (6.99)

This is seen when introducing the time dependencies

σzx = σ0
zx exp(−iωt) ,

ezx = Jσ0
zx exp(−iωt)

into the basic equation for Newtonian liquids

σzx = η0
dezx

dt
, (6.100)

which results in

σ0
zx exp(−iωt) = −η0iωJσ0

zx exp(−iωt) . (6.101)
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In a polymer melt, the viscous properties of Newtonian liquids combine with
elastic forces. The latter contribute a real part to the dynamic shear compli-
ance, to be identified with J0

e :

J ′(ω → 0) = J0
e . (6.102)

Combining Eqs. (6.99) and (6.102) gives the dynamic shear compliance of
polymeric fluids in the limit of low frequencies

J(ω → 0) = J0
e + i

1
η0ω

. (6.103)

As we can see, η0 and J0
e show up directly and separately, in the limiting

behavior of J ′ and J ′′.
The dynamic shear modulus follows as

G(ω → 0) =
1

J(ω → 0)
=

η0ω

η0ωJ0
e + i

=
η2
0ω

2J0
e − iη0ω

(η0ωJ0
e )2 + 1

, (6.104)

giving
G′(ω → 0) = J0

e η
2
0ω

2 (6.105)

in agreement with Fig. 6.16, and

G′′(ω → 0) = η0ω . (6.106)

We thus find characteristic power laws also for the storage and the loss mod-
ulus that again include J0

e and η0 in a well-defined way.
One may wonder if η0 and J0

e can also be deduced from the time-dependent
response functions, as for example, from G(t). Indeed, direct relationships
exist, expressed by the two equations

η0 =

∞∫

0

G(t)dt (6.107)

and

J0
e η

2
0 =

∞∫

0

G(t)tdt . (6.108)

The first relation follows immediately from Boltzmann’s superposition princi-
ple in the form of Eq. (6.38) when applied to the case of a deformation with
constant shear rate ėzx. We have

(dx=̂)dezx = ėzx dt (6.109)
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and thus

(ψ=̂) σzx = ėzx

t∫

t′=−∞
G(t− t′)dt′ = ėzx

∞∫

t′′=0

G(t′′)dt′′ . (6.110)

Since per definition

σzx = η0ėzx ,

we find

η0 =

∞∫

t=0

G(t)dt .

To derive the second equation, we consider a dynamic-mechanical experiment
and treat it again on the basis of Boltzmann’s superposition principle, writing

σzx =

t∫

t′=−∞
G(t− t′)ėzx(t′)dt′ . (6.111)

Introducing
ezx(t) = e0zx exp(−iωt) (6.112)

and
σzx(t) = G(ω)ezx(t) (6.113)

we obtain

G(ω) = −
∞∫

t′′=0

G(t′′)iω exp(iωt′′)dt′′ , (6.114)

setting t′′ = t− t′. In the limit ω → 0 we use the series expansion

G(ω → 0) =

∞∫

t′′=0

G(t′′)(−iω + ω2t′′ + . . .)dt′′ , (6.115)

giving

G′(ω → 0) = ω2

∞∫

t=0

G(t)tdt . (6.116)

A comparison with Eq. (6.105) yields Eq. (6.108).
Combination of Eqs. (6.107) and (6.108) can be used for estimating the

average time of stress decay subsequent to a sudden shear deformation of
a melt. We introduce this time, denoted by τ̄ , as
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τ̄ =

∞∫
t=0

G(t)tdt

∞∫
t=0

G(t)dt
, (6.117)

and then obtain simply
τ̄ = J0

e η0 . (6.118)

Equation (6.118) for the mean viscoelastic relaxation time may be applied
for both non-entangled and entangled melts and yields different results for
the two cases. For non-entangled melts, i.e., M < Mc, we have J0

e ∝ M and
η0 ∝M , hence

τ̄ ∝M2 . (6.119)

For molar masses above the entanglement limit, i.e., M > Mc, one finds
J0

e = const and η0 ∝ Mν with ν = 3−3.6, therefore,

τ̄ ∝ η0 ∝Mν with ν = 3−3.6 . (6.120)

Vogel–Fulcher Law and the WLF Equation

We turn now to another point and consider the temperature dependence.
Recall that the data indicate the validity of time-temperature or frequency-
temperature superposition. This has an important implication: The findings
show that the processes comprising the terminal flow region and the glass–
rubber transition change with temperature in the same manner. Particularly
suited for the description of this common temperature dependence is the shift
parameter log aT . We introduced it in connection with the construction of
the master curves, but it also has a well-defined physical meaning. This be-
comes revealed when we look at the equations valid in the terminal range,
Eqs. (6.105) and (6.106). It is to be noted that ω and η0 enter into the expres-
sions for the dynamic modulus and the dynamic compliance not separately,
but only as a product. As temperature only affects η0, we conclude that aT

and η0 must be proportional quantities. The exact relationship follows when
taking into account that shift parameters always relate to a certain reference
temperature. Let this reference temperature be T0. Then aT is given by

aT =
η0(T )
η0(T0)

. (6.121)

With the aid of aT we can express response functions at any temperature in
terms of the respective response function at T0. Explicitly, for the dynamical
shear modulus, the following relation holds:

G(T, ω) = G(T0, aTω) , (6.122)
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or for a logarithmic frequency scale

G(T, logω) = G(T0, logω + log aT ) . (6.123)

In correspondence to this, we write for the time-dependent shear modulus

G(T, t) = G

(
T0,

t

aT

)
, (6.124)

or
G(T, log t) = G(T0, log t− log aT ) . (6.125)

The uniform temperature dependence implies a joint rescaling of the re-
laxation times of all modes in both the glass transition range and the terminal
flow region, and one may wonder how this might arise. One should be aware
that these modes vary greatly in their spatial extensions, which begin with the
length of a Kuhn segment and go up to the size of the whole chain, and also
vary in character, as they include intramolecular motions as well as diffusive
movements of the whole chain, and nevertheless, all modes behave uniformly.
There seems to be only one possible conclusion: The temperature dependence
must be a property of the individual segments. Since all modes are based
on the motion of segments, their mobility affects each mode alike. There is
a notion that suitably expresses this property and this is the segmental fric-
tional coefficient. We will introduce it in the next chapter, in the treatment
of microscopic dynamics. For the moment, it is sufficient to say that frictional
forces that act in identical manner on all the segments exist. They uniformly
control the kinetics of all the relaxatory modes of the chains. The common
temperature dependence of all relaxatory modes in the α-transition range and
the terminal zone, and thus of the viscosity, just reflects that of the segmental
frictional force.

Equation (6.121) relates aT to the temperature dependence of the viscosity.
Numerous experiments were carried out to measure this function. They led to
a specific result. As it turns out, for the majority of polymer systems, η0(T ) is
well-represented by an empirical equation known as the Vogel–Fulcher law.
It has the form

η0(T ) = B exp
TA

T − TV
. (6.126)

In addition to the prefactor B two parameters are included, namely the acti-
vation temperature TA and the Vogel temperature TV. The introduction
of the latter makes up the difference to Arrhenius’ law.

The function η0(T ), as formulated by the Vogel–Fulcher law, includes
a singularity at T = TV. However, whether the viscosity really diverges if
T approaches TV cannot be checked by any experiment. Measurements of
viscosities always come to an end about 50 K above TV, because η0 is then al-
ready very large, reaching values in the order of 1013 poise. Notwithstanding
the fact that the point of divergence is out of reach, validity of the Vogel–
Fulcher equation is well-established since effects of a finite Vogel temperature
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Fig. 6.17. Temperature dependencies of the viscosity η0 of PIB (open symbols,
right axis) and of the relaxation time of the α-process τα (filled symbols, left axis).
Both correspond to a Vogel–Fulcher function (continuous line). Data from Plazek
et al. [75]

are clearly observable also in the range of accessible temperatures. There, the
function η0(T ) exhibits a characteristic curvature that distinguishes it from
Arrhenius behavior. Figure 6.17 depicts, as an example, results obtained for
polyisobutylene (PIB). An increase to high values of η0 is observed at low
temperatures and it can be described by a Vogel–Fulcher function, as given
by the continuous line. The figure also includes the temperature dependence
of the characteristic time τα of the glass–rubber transition. It is given by

τα = τ0 exp
TA

T − TV
(6.127)

with the same values for TA and TV as in Eq. (6.126).
Having an equation for the temperature dependence of the viscosity, we

may also formulate the shift factor log aT . Equations (6.126) and (6.121) yield

log aT = log eTA

(
1

T − TV
− 1
T0 − TV

)

= log e(−TA)
T − T0

(T0 − TV)(T − TV)

= log e
(−TA)
T0 − TV

T − T0

T − T0 + (T0 − TV)
. (6.128)
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This is usually expressed as

log aT = −C1
T − T0

T − T0 + C2
, (6.129)

introducing two parameters, C1 and C2, defined as

C1 = log e
TA

T0 − TV
and C2 = T0 − TV . (6.130)

Equation (6.129) was postulated by Williams, Landel and Ferry and is well-
known in the literature under the abbreviated name WLF equation.

When master curves are constructed one chooses in most cases the glass
transition temperature Tg as reference temperature. Tg is obtained by a stan-
dard calorimetric or volumetric measurement, as explained in Sect. 6.3.3. It
is found that, for this choice of T0, the parameters C1 and C2 of the WFL
equation have values which are bound to certain ranges, namely

C1 = 14−18,
C2 = (30−70) K .

The values of C2 indicate that TV is located (30−70) K below Tg.

The Dielectric α-Process and the Normal Mode

The two groups of relaxatory modes that in mechanical relaxation experiments
lead to the α-transition and the final viscous flow also emerge in the dielectric
response.

Figure 6.18 presents, as a first example, the frequency dependencies of the
real and imaginary part of the dielectric constant, obtained for poly(vinylace-
tate) (PVA) at the indicated temperatures. One observes a strong relaxation
process.

Figure 6.19 displays the temperature dependence of the relaxation rate, as
derived from the maxima of the loss curves. For a comparison it also includes
the temperature dependencies of the loss maxima of the mechanical α-process,
as observed in measurements of either J ′′(ω) or G′′(ω). As we can see, the
dielectric relaxation rates are located intermediately between the rates ob-
tained in the mechanical experiments and, importantly, all three temperature
dependencies are similar, the rates differing only by constant factors. The as-
signment of this dielectric relaxation process is therefore obvious: It originates
from the same group of processes as the mechanical α-process and thus is to
be addressed as the dielectric α-process.

There are other polymers that in addition show the chain disentangling
associated with the flow transition. An example is given by cis-polyisoprene
(PIP). Figure 6.20 depicts the dielectric loss ε′′ in a three-dimensional repre-
sentation of the functional dependence on frequency and temperature. Two
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Fig. 6.18. Dielectric α-process in PVA. Data from Ishida et al. [76]

relaxation processes show up. The one with the higher frequency again repre-
sents the α-process, the other is called the normal mode, for reasons to be
seen below.

To learn more about the two processes, it is instructive to check for the mo-
lar mass dependencies. In fact, one here finds a characteristic difference. The
results of studies on a set of samples with different molar mass are displayed in
Fig. 6.21. We observe that the α-process is molar mass independent, whereas
the normal mode shows pronounced changes. Figure 6.22 depicts these changes
in a plot of the relaxation time τ of the normal mode in dependence on the
molar mass. Data demonstrate the validity of a power law,

τ ∝Mν ,
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Fig. 6.19. Frequency–temperature locations of the dielectric loss maxima (open
symbols) of PVA, compared to the maxima of G′′ (continuous line) and J ′′ (broken
line) observed in mechanical experiments. Collection of data published in [77]

with two different values for the exponent,

ν = 3.7 for M > 104 g mol−1

and

ν = 2 for M < 104 g mol−1 .

The cross-over from one to the other regime shows up as a sharp bend in the
curve.

We have already met such a molar mass dependence in Eqs. (6.119) and
(6.120), when formulating the average viscoelastic relaxation time τ̄ of poly-
mer melts. Roughly speaking, τ̄ gives the time required by a chain for a com-
plete conformational reorganization. This also implies a full reorientation of
the end-to-end distance vector of the chain. This is exactly this motion that
shows up in the dielectric normal mode.

The question arises as to why cis-polyisoprene, different from poly(vinyl-
acetate), shows the chain reorientation in its dielectric spectrum. The reason
becomes clear when we look at the chemical constitution of polyisoprene, and
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Fig. 6.20. Frequency dependence and temperature dependence of the dielectric
loss in cis-PIP (M = 1.2 ×104 g mol−1), indicating the activity of two groups of
relaxatory modes. Spectra obtained by Boese and Kremer [78]

focus in particular on the associated dipole moments. Figure 6.23 displays
the chemical structure. The main point is that isoprene monomers are po-
lar units that possess a longitudinal component p|| of the dipole moment,
which always points in the same direction along the chain. As a consequence,
the longitudinal components of the dipoles of all monomers become added
up along the contour, giving a sum proportional to the end-to-end distance
vector R. In the dielectric spectrum the kinetics of this total dipole of the
chain is observable, hence also the chain reorientation as described by the
time dependence R(t).

The peculiar name ‘normal mode’ needs a comment. As will be explained
in detail in the next chapter, chain dynamics in melts may be described with
the aid of two theoretical models known as the Rouse model and the reptation
model. In the framework of these treatments chain kinetics is represented as
a superposition of statistically independent relaxatory normal modes. As
it turns out, the dielectric normal mode is associated with the mode with
the longest relaxation time. For non-entangled melts this is the lowest order
Rouse mode; for entangled melts, it is the lowest order reptation mode.
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Fig. 6.21. Temperature dependence of the relaxation rates of the dielectric α-
process and the normal mode, observed for samples of cis-PIP with different molar
mass (four values are indicated). The solid lines are fits based on the WLF equation.
Data from Boese and Kremer [78]

In addition to the longitudinal component of the dipole per monomer, there
is also a transverse part. As the reorientation of the transverse component
requires only local changes in the conformation, it can take place much more
rapidly than the spatially extended normal mode. Hence, a qualitative change
in the kinetics occurs and indeed, it is this movement that shows up in the
α-process. Both the α-process and the normal mode obey the Vogel–Fulcher
law, in full analogy to the common behavior of the α-process and the terminal
relaxation in mechanics.

It is possible to write down approximate expressions for the relaxation
strengths Δε of the two processes. As a chain may be described as a sequence
of freely jointed segments, we can just make use of Eqs. (6.16) and (6.59),
and introduce for the α-process and the normal mode the transverse and the
longitudinal component of the dipole moment, respectively. The relaxation
strength of the α-process then follows as

ε0Δεα � cs
〈(ps

⊥)2〉
3kT

. (6.131)
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Fig. 6.22. Molecular weight dependence of the relaxation time of the dielectric
normal mode in cis-PIP. Data from Boese and Kremer [78]

Fig. 6.23. Stereochemical constitution of a monomer unit of cis-PIP. The electric
dipole moment, split into a longitudinal and a transverse component, is indicated

Here, ps
⊥ is the transverse dipole moment per segment, and cs gives the number

density of segments. The brackets indicate an averaging over all rotational
isomeric states of one segment. The relaxation strength of the normal mode
follows equivalently, by introduction of the mean longitudinal dipole moment
per segment

ε0Δεnm � cs
〈(ps

‖)
2〉

3kT
. (6.132)
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Neither the α-process nor the normal mode equal a single-time relaxation
process. A good representation of data is often achieved by the use of the
empirical Havriliak–Negami equation, which has the form

ε− εu =
Δε

(1 + (−iωτ)β1)β2
. (6.133)

This function is a formal generalization of the single-time relaxation func-
tion, achieved by an inclusion of two additional parameters, β1 and β2 (for
β2 = 1 it equals the Cole–Cole function mentioned earlier). These determine
the asymptotic behavior, β1 on the low frequency side, since

β1 ≈ d log ε′′

d logω
for ωτ � 1 , (6.134)

and the product β1β2 on the high frequency side, since

β1β2 = − d log ε′′

d logω
for ωτ � 1 . (6.135)

Obviously β2 determines the curve asymmetry. It is needed for the data repre-
sentation because the observed curves ε′′(ω) generally exhibit a larger broad-
ening on the high frequency side. Typical values are β1 � 0.5, β2 � 0.7 for
the α-process and β1 � 1, β2 = 0.4 for the normal mode.

Equations (6.131) and (6.133) together provide a description of the di-
electric α-transition, with the assumption that dipoles of different segments
reorient independently. In fact, this is only true at larger distances from the
glass transition temperature. On approaching Tg deviations show up. Fig-
ure 6.24 shows the temperature dependence of the relaxation strength of
poly(vinylacetate) and one observes a pronounced increase. The behavior in-
dicates increasing correlations between the motions of the transverse dipoles,
not only along one chain, but possibly also between adjacent segments on
different chains.

6.3.3 The Glass Transition Temperature

The mechanical experiments clearly demonstrate that the transition from the
glassy to the liquid state is a purely kinetical phenomenon. Whether the com-
pliance of a sample is small as in a glass, or large as for a rubber, depends only
on the measuring time or the applied frequency. The reasons were discussed
above. Rubber elasticity originates from the activity of the α-modes, a ma-
jor group of relaxation processes in polymer fluids. The establishment of the
deformation subsequent to the application of a load requires a certain time,
given by the time scale of the α-modes. If the load varies too rapidly, the de-
formation cannot follow and the sample reacts like a glass. We also discussed
the effect of temperature and found, as a main property of the α-modes, that
relaxation times change according to the Vogel–Fulcher law. The progressive
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Fig. 6.24. Temperature dependence of the relaxation strength Δεα of the dielectric
α-process in PVA. Data from Ishida et al. [76]

increase of the relaxation times on cooling implied by this law finally leads to
a freezing of the α-modes within a comparatively small temperature range. If
they are frozen, we have a glass.

We thus find glass-like reactions for both sufficiently high frequencies
and sufficiently low temperatures; but are the two situations really compa-
rable? The answer is, yes and no, depending on the point of view. Yes, be-
cause both situations have in common that the α-modes cannot equilibrate.
No, if we consider the thermodynamic state of order. In the first case, we
are dealing with a system in thermal equilibrium and study its reaction on
perturbations; in the second situation, however, the system has become non-
ergodic, i.e., thermal equilibrium is only partially established. A major part
of the internal degrees of freedom, as represented by the α-modes, cannot
equilibrate. The temperature, where the transition from a liquid equilibrium
state to a non-ergodic one, i.e., only partially equilibrated state takes place, is
called the glass transition temperature, with the general designation Tg.

How can Tg be determined? In principle this can be achieved in various
ways. However, two of the methods are of special importance and are used
in the majority of cases. These are temperature-dependent measurements of
the expansion coefficient or the heat capacity of a sample, carried out dur-
ing heating or cooling runs. They need only small amounts of material, and
standard equipment is commercially available.

Figures 6.25 and 6.26 present as examples the results of a volumetric and
a calorimetric measurement on poly(vinylacetate). The glass transition has
a characteristic signature that shows up in the curves. As we can see, the
transition is associated with steps in the expansion coefficient dρ−1/dT and
the heat capacity dH/dT , i.e., changes in the slope of the functions ρ−1(T )
and H(T ). The transition extends over a finite temperature range with typical
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Fig. 6.25. Temperature dependence of the specific volume of PVA, measured during
heating. Dilatometric results obtained after a quench to −20 ◦C, followed by 0.02 or
100 h of storage. Data from Kovacs [79]

widths in the order of 10 degrees. The calorimetric experiment also exhibits an-
other characteristic feature. One can see that the location of the step depends
on the heating rate Ṫ , showing a shift to higher temperatures on increasing
the rate.

In view of the broadening of the step and the rate effects, it does not seem
appropriate to introduce a sharply defined Tg. For practical use as material
parameter and for comparisons it is sufficient to conduct the measurements
with a standard heating or cooling rate (|Ṫ | = (10−1 − 1)K s−1) and to pick
out some temperature near the center of the step, for example, that associated
with the maximum slope. The thus obtained values of Tg have a tolerance of
some degrees, but this must be accepted regarding the physical nature of the
phenomenon.

The cause for the occurrence of the steps in the heat capacity and the ex-
pansion coefficient is easily seen. Cooling a sample below Tg results in a freez-
ing of the α-modes. The observations tell us that the α-modes affect not
only the shape of a sample, but also its volume and its enthalpy. This is not
at all surprising. If segments move, they produce an additional volume in
their neighborhoods. In the literature, this is often called a free volume in
order to stress that it is not occupied by the hard cores of the monomers.
The free volume increases with temperature because motions intensify, that



272 6 Mechanical and Dielectric Response

Fig. 6.26. Heat capacity of PVA, as measured in a differential calorimeter during
heating (with two different heating rates) and cooling

is to say, the jump rates increase and, more importantly, a growing num-
ber of conformational states becomes populated and not all of them allow
a dense chain packing. Therefore, when on crossing Tg from low temperatures
the α-modes become active, beginning slowly and then steadily increasing in
intensity, a growing additional free volume correspondingly arises. Thermal
expansion in the glass is due to the anharmonicity of vibrational motions,
as in crystalline solids. As we can see, the α-modes contribute another, even
larger part to the expansion coefficient and it comes into effect at Tg.

That a corresponding behavior is found for the enthalpy and the heat
capacity is conceivable. As the free volume incorporates energy, changes in the
volume and in the enthalpy are interrelated and this results in simultaneous
steps in the expansion coefficient and the heat capacity.

Being in a non-equilibrium state, liquids below Tg have a tendency further
to change the structure in the direction towards the equilibrium. A slow de-
crease in volume and enthalpy is often observed. Figure 6.25 also exemplifies
this behavior. Prolonged storage of the sample of poly(vinylacetate) below Tg

for 100 h results in a shrinkage in volume. Note that, as a consequence, Tg,
as measured during the subsequent heating, is shifted to lower values. For-
mally, this may be associated with the shift of the point of intersection of the
two lines representing the glassy and liquid state. Physically, it is caused by
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a change in the microstructure. Ageing is the technical term used in general
for these processes and they can produce problems since often the mechanical
properties deteriorate.

We have seen that the position of the step in the expansion coefficient or
the heat capacity, observed during a cooling run, depends on the cooling rate.
It is possible to analyze this dependence in more detail and to derive a crite-
rion for the location of the glass transition. To begin with, recall what happens
when cooling a polymeric liquid. In the fluid state, all degrees of freedom equi-
libriate rapidly so that thermal equilibrium is always maintained. Conditions
change on approaching the glass transition since, here, the relaxation times
of the α-modes reach values that are too high to further allow for a con-
tinuous equilibriation. Vibrations and local modes still react immediately to
programmed temperature changes but the sluggish α-modes lag behind more
and more. Finally, after having crossed the transition range, the energy ex-
change between the instantaneously reacting modes and the α-modes stops
completely.

In an analysis, one has to consider the time dependence of relaxation
processes under non-isothermal conditions as imposed during a cooling or
heating run. Observations suggest that we represent the sample volume as
a sum of two contributions

V(T ) = Vu(T ) + ΔVα(T ) . (6.136)

The first part Vu describes the volume of a hypothetical system without α-
modes, being determined by the hard cores of the molecules, the anharmonic-
ity of the vibrations and possible effects of local relaxation processes. The
second term ΔVα accounts for the free volume produced by the α-modes.
An analogous description is suggested for the enthalpy and we formulate it
correspondingly as

H(T ) = Hu(T ) + ΔHα(T ) . (6.137)

Since Vu(T ) and Hu(T ) pass continuously through the glass transition without
any peculiar effects, we may reduce the discussion to the contributions of the
α-modes. To keep the equations simple, we disregard the multimode character
of the α-process and assume a single relaxation time, τα, with a temperature
dependence following the Vogel–Fulcher law. Then kinetics can be analyzed
by an application of the relaxation equation

dΔHα

dt
= −τ−1

α (T )(ΔHα − ΔHα,eq(T )) , (6.138)

which is formulated here for the calorimetric experiment. According to this
equation, the change from a non-equilibrium value of the enthalpy associ-
ated with the α-modes, ΔHα, to the equilibrium value, ΔHα,eq, occurs with
a temperature-dependent rate τ−1

α .
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The experimental heat capacity, cα, is given by

cα =
dΔHα

dT
, (6.139)

while the equilibrium value, cα,eq, is represented by

cα,eq =
dΔHα,eq

dT
. (6.140)

We consider a temperature program based on a constant cooling rate Ṫ < 0,

T (t) = T (0) + Ṫ t . (6.141)

Under these conditions the relaxation equation converts into the relation

cα(t)Ṫ = −τ−1
α (T )(ΔHα(t) − (ΔHα,eq(0) + Ṫ cα,eqt)) . (6.142)

Differentiation on both sides yields

Ṫ
dcα
dt

= − τ−1
α (T )Ṫ (cα − cα,eq) (6.143)

− dτ−1
α

dT
Ṫ (ΔHα(t) − (ΔHα,eq(0) + Ṫ cα,eqt)) ,

assuming a constant value for cα,eq. Combination of both differential equa-
tions, followed by a division by Ṫ on both sides, results in

dcα
dt

= −τ−1
α (T )(cα − cα,eq) + cα

d ln τ−1
α

dT
Ṫ . (6.144)

Here we find two terms determining the quantity of interest, dcα/dt. At tem-
peratures far above Tg, the first term dominates. Here, the relaxation rates are
high and change only slowly with temperature. Within this limit, Eq. (6.144)
may be replaced by

dcα
dt

≈ −τ−1
α (T )(cα − cα,eq) . (6.145)

To see the consequences, just consider a cooling run starting at a tempera-
ture T . Beginning with cα = 0, the equilibrium value cα,eq will be reached
within a time τα(T ). From thereon, cα remains constant and equal to cα,eq.

In the other limit, for temperatures around and below Tg, the relaxation
rates are very low and their changes, as described by the Vogel–Fulcher law,
are large. Hence, the second term dominates and Eq. (6.144) can be approxi-
mated by

dcα
dt

≈ cα
d ln τ−1

α

dT
Ṫ (6.146)

or
d ln cα

dT
≈ d ln τ−1

α

dT
. (6.147)
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The solution is
cα ∝ τ−1

α , (6.148)

or, using the Vogel–Fulcher law Eq. (6.127),

cα(T ) ∝ τ−1
0 exp− TA

T − TV
. (6.149)

We see that in this range, cα converges rapidly to zero.
The cross-over from one to the other regime and thus the glass transition

takes place when both terms have the same order of magnitude. Equating the
two terms yields

τ−1
α � d ln τ−1

α

dT
Ṫ , (6.150)

or
d ln τ−1

α

dt
τα � 1 . (6.151)

Equation (6.151) formulates a criterion for Tg. It states that Tg is reached
during a cooling run when the relative change of the relaxation rate τ−1

α

within a time in the order of τα is no longer negligible.
It is interesting to calculate the relaxation time at Tg, as it follows from

these equations. Using the Vogel–Fulcher law gives

TA

(Tg − TV)2
Ṫ τα(Tg) � 1 . (6.152)

We have typically TA � 2000 K, Tg − TV � 50 K and therefore

TA

(Tg − TV)2
� 1 K−1 . (6.153)

For a cooling rate Ṫ � 10−2 K s−1 we thus arrive at

τα(Tg) � 102 s . (6.154)

Hence, a calorimetric measurement and a volumetric experiment produce the
step at a temperature where the relaxation time of the α-modes is in the order
of minutes.

Equation (6.152) correctly describes the effect of the heating or cooling
rates. If |Ṫ | is increased, the step occurs at an even shorter relaxation time τα,
and therefore at higher temperatures, which is in accordance with the exper-
iment. For for illustration and further confirmation, Fig. 6.27 presents the
results of numerical solutions of Eq. (6.144), as obtained for three different
cooling rates, with typical values chosen for the other parameters. The shifts
largely agree with the experimentally observed behavior.

To show some typical values, Table 6.1 collects the Tg’s of several amor-
phous polymers. One finds two major groups. First the natural and synthetic
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Fig. 6.27. Model calculation on the basis of Eq. (6.144), simulating heat capacity
measurements during cooling runs with the indicated rates (TA = 2000 K, TV =
300 K, τα(∞) = 10−11 s, T (t = 0) = 400 K) [80]

Table 6.1. Glass transition temperatures of some common polymers

Polymer Tg [K]

poly(dimethyl siloxane) 146
polybutadiene (cis) 164
polyisoprene (cis) (natural rubber) 200
polyisobutylene 200
poly(vinyl methylether) 242
poly(α-methyl styrene) 293
poly(vinyl acetate) 305
polystyrene 373
poly(methyl methacrylate) (atactic) 378
poly(acrylic acid) 379
poly(acrylonitrile) 398
polycarbonate 418

rubbers, together with poly(dimethyl siloxane), which have Tg’s far below
ambient temperature, and second polymers, which are glassy at room tem-
perature. The latter mostly have Tg’s located around 100 ◦C.

A concern of practical importance is a knowledge of relations between
the chemical constitutions of polymers and their respective glass transition
temperatures. A good microscopic understanding is lacking, but there are
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a number of empirical rules based on the assumption that different molecular
units give separate contributions to Tg. Also quite useful are mixing rules,
which describe the Tg-values of blends as a function of the Tg’s of the compo-
nents in pure states and their volume fractions. As it turns out, in many cases
a good representation is achieved by the Fox–Flory equation, given by

1
Tg

=
φA

TA
g

+
φB

TB
g

. (6.155)

6.3.4 Relaxation in Partially Crystalline Systems

The relaxation behavior of partially crystalline systems is complex and differ-
ent from amorphous polymers. Observations give the general impression that,
in comparison to amorphous systems, partially crystalline samples are much
less uniform in behavior. Many of the systems exhibit peculiarities and these
can dominate the viscoelastic properties. This is not the place to explore this
large field in the depth it requires, because this would mean that we would have
to discuss separately the mechanical behavior of polyethylene, poly(ethylene
terephthalate), polypropylene, i-polystyrene, poly(tetrafluoroethylene), etc.
For illustration purposes we select polyethylene as an instructive example.

We begin with a look at the results of a temperature-dependent measure-
ment of the storage shear modulus and the mechanical loss tangent shown in
Fig. 6.28. Data were obtained with the help of a torsion pendulum working
with a frequency of about 1 s−1. The figure includes data obtained for two
commercial samples, a linear polyethylene with high crystallinity and a low
density polyethylene (LDPE) with short-chain branches. Two groups of re-
laxation processes show up for linear polyethylene, one at low temperatures,
designated as γ-process, and another at high temperatures, called the ‘α-
process’. For the branched polyethylene a third process emerges in addition,
the ‘β-process’ characterized by a loss maximum at around −20 ◦C.

The change in behavior from the highly crystalline linear polyethylene
to samples with lower crystallinity occurs continuously, as is demonstrated
by the measurement shown in Fig. 6.29. Here chlorination was employed for
a controlled reduction of the crystallinity. We observe that decreasing the
crystallinity results in a strong increase of the loss signal related to the β-
process.

The relaxation behavior of amorphous polymers was dominated by two
processes, the glass-rubber transition and the terminal flow region, which are
both characterized by a temperature dependence given by the WLF equation.
For polyethylene, one cannot expect a flow transition because flow is sup-
pressed by the crystallites in the sample. The fact is that for linear polyethy-
lene, i.e., polyethylene with high crystallinity, there is no WLF-controlled
process at all. The numerous measurements in the literature provide clear
evidence that the two processes observed in linear polyethylene, α and γ, are
both based on activated mechanisms obeying the Arrhenius law. The process
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Fig. 6.28. Temperature dependence of the storage shear modulus (top) and the loss
tangent (bottom) of linear (LPE) and branched polyethylene (LDPE). Data obtained
by Flocke [81], using a torsion pendulum with frequencies in the order of 1 s−1

that does show a WLF behavior is the β-process. The disappearance of the β-
process in polyethylene samples with high crystallinity tells us that the state of
order and the molecular dynamics in the disordered regions, which still make
up a non-negligible part of the sample volume (typically 20%), differs quali-
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Fig. 6.29. Temperature dependence of the loss tangent of chlorinated PE, obtained
for a series of different samples with chlorine contents between 0 and 28.2%. Results
of a torsion pendulum measurement by Schmieder and Wolf [82]

tatively from that in an amorphous polymer. On the other hand, increasing
the volume fraction of disordered material evidently changes the mobility in
these regions towards the usual properties of a melt. The β-process observed
for polyethylene with low crystallinity indeed corresponds to the glass–rubber
transition in amorphous polymers.

The use of the Greek letters in agreement with the convention of choosing
the symbols α, β, γ, etc. for a designation of the processes in the sequence they
show up from high temperatures downwards, may produce some confusion
in the meaning of the term α-process. While for amorphous polymers, it is
identical with the glass–rubber transition, this is not the case for polyethylene.
Here, if the glass-rubber transition exists at all, it is called the ‘β-process’.

The mobility in the disordered regions of polyethylene shows great vari-
ations. The β-process, as observed in dielectric measurements, is unusually
broad and changes its shape with temperature. Figure 6.30 presents results
obtained for a sample of polyethylene that included vinylacetate groups as
co-units in the chains. These co-units are rejected from the crystallites and
accumulate in the amorphous regions. Because the groups carry a dipole mo-
ment, their dynamics shows up in the dielectric spectrum. The difference in
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Fig. 6.30. Frequency dependence and temperature dependence of the dielectric loss
associated with the β-process in PEcVA with 17% per weight of VA units [83]

behavior between the glass transition in an amorphous polymer and the β-
process in a partially crystalline system such as polyethylene becomes very
clear when comparing Fig. 6.30 with Fig. 6.18, which shows the α-process for
poly(vinylacetate). For the partially crystalline poly(ethylene-co-vinylacetate)
(PEcVA) loss curves are much broader and also exhibit a pronounced tem-
perature dependence. The observations are indicative of large variations in
the segmental mobility in the disordered regions, obviously caused by the
restrictions and limitations imposed by the crystallites and the trapped en-
tanglements. The temperature dependence is partly due to the continuous
change in crystallinity that we discussed in Sect. 5.4. This, however, is not
the whole effect since the structural changes practically end at about 0 ◦C,
while the progressive broadening goes on. The β-process has a cooperative
character, which implies that segmental motions are correlated up to a cer-
tain distance ξβ . Consequently, hindrances such as crystallite surfaces become
effective over a similar range. The observed increase in the variance of the
mobilities on approaching Tg may thus be understood as being caused by an
increase in ξβ . Since it appears that, close to Tg, the whole amorphous layer
is affected, one concludes that the correlation length then becomes similar to
the layer thickness, i.e., is in the order of some nanometers.

The largest changes in the mechanical properties of polyethylenes with
moderate to high crystallinity are caused by the α-process. Figures 6.31 and
6.32 present results of frequency-dependent measurements of the tensile mod-
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Fig. 6.31. Mechanical α-process in LDPE. Loss tangent (top) and temperature
dependence of the frequency of the loss peak (bottom) [84]

ulus of such a sample, conducted at different temperatures between 26 ◦C and
95 ◦C. As can be seen, the loss tangent shows a systematic shift to higher
frequencies. The temperature dependence of the loss maximum is indicative
of an activated process with an activation energy Ã = 104 kJ mol−1. Fig-
ure 6.32 shows that the storage tensile modulus decays with both decreasing
frequencies and rising temperatures, whereby the latter effect is caused by the
continuous melting.

What is the origin of the α-process? Different observations must be in-
cluded in the considerations. First, remember the results of the NMR exper-
iment presented in Sect. 5.4.2. Here, a longitudinal chain transport through
the crystallites was clearly indicated. The chain motion is apparently accom-
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Fig. 6.32. Same system as in Fig. 6.31. Frequency-dependent storage tensile mod-
ulus [84]

plished by a 180◦-twist defect, which is created at a crystal surface and then
moves through the crystallite to the other side. As a result, all monomers of
a crystalline sequence are rotated by 180◦ and shifted over the length of one
CH2-unit. This screw-motion alone cannot set up the α-process, since it is
mechanically inactive. As the crystals remain unchanged, both internally and
in their external shape, there is no coupling to a stress field. Furthermore,
the high relaxation strength of the α-process suggests a location in the weak
amorphous parts of the structure rather than in the crystallites. How can
the different observations be cast in one common picture? The answer is that
the α-process in polyethylene has a composite nature. The mechanical relax-
ation indeed originates from an additional shearing of the amorphous regions.
However, the prerequisite for this shearing is a chain movement through the
crystallites. If such a motion is thermally activated, the pinning of the amor-
phous sequences onto the crystallite surfaces is no longer permanent. This
allows a reorganization of the amorphous regions, which gives rise to a fur-
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ther stress decay. Hence, in the α-process, two relaxation processes, one in
the crystallites and the other one located in the amorphous zones, are cou-
pled. As indicated by the broadness of the loss curves, the α-process is based
on a larger group of relaxatory modes. Since the temperature variation leaves
the shape of the loss curves essentially unchanged, we conclude that all modes
employ the same elementary process, to be identified with the step-like lon-
gitudinal shifts of the crystalline sequences. NMR experiments and dynamic
mechanical measurements indeed yield nearly identical activation energies –
Ã = 105 kJ mol−1 in Fig. 5.53 and Ã = 104 kJ mol−1 in Fig. 6.31. Of interest
is a comparison of the rate of elementary steps with the mechanical relaxation
rate. The difference amounts to four orders of magnitude, telling us that the
reorganization of the chains in the amorphous regions is a complex procedure
requiring a huge number of elementary steps.

The experiments show the basic effect of the polyethylene crystallites.
While in an amorphous polymer the transition from the glassy state to the
melt is accomplished by one group of relaxatory modes within 10 to 20 K, the
same process extends in a semicrystalline system like polyethylene over a much
larger temperature range. Another NMR spectroscopic experiment is suitable
for analyzing in detail these continuous mobility changes. The experiment is
carried out for deuterated polyethylene. Deuterons (2H) possess twice the spin
of protons (I = 1 compared to I = 1/2), but the magnetic moment is much
smaller so that effects of dipole–dipole interactions are comparatively weak.
The peculiar property of 2H is a large electric quadrupole moment and this
interacts with the local electric field gradient tensor. Usually one deals with
CH-bonds, where the electrons do indeed produce a strong field gradient at
the location of the proton or deuteron. As a result of the interaction, the
transitions Iz = 1 → 0 and Iz = 0 → −1 become associated with different
energy changes. The two lines may be represented as

ω = ω0 ± ωQ , (6.156)

where ω0 stands for the Larmor-frequency of an isolated 2H, and ωQ represents
the quadrupole splitting. ωQ depends only on the angle θ enclosed by the
magnetic field and the CH-bond direction that sets the orientation of the
uniaxially symmetric field gradient tensor. For standard magnetic fields the
splitting amounts to values in the order ωQ/2π � 105 s−1. Deuterons thus
represent spin labels that are exclusively governed by the local interaction
with the electric field gradient.

The line shape of a 2H NMR absorption spectrum under static conditions
directly reflects the orientational distribution of the CH-bonds in the sample.
Molecular dynamics modifies the spectral shape in a predictable way. Reori-
entational motion of individual CH-bonds generally leads to a narrowing of
the line. A simple situation arises in the rapid exchange limit when the
reorientation rate τ−1

r becomes large compared to the inverse of the spectral
width,

τ−1
r � ω−1

Q . (6.157)
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Then the shift ±ωQ(θ) caused by the quadrupole-field gradient interaction is
replaced by the time average ωt

Q. For an isotropic reorientational motion this
leads to a complete vanishing of the splitting. If reorientations only include
a limited angular range, a certain splitting is retained. Specific motions lead
to specific spectra. Theory enables precise predictions to be made and thus
to discriminate between different motional processes.

Figure 6.33 depicts results of a corresponding study of linear polyethy-
lene. Spectra of deuterons in the amorphous phase of a perdeuterated sample
are shown, as measured at different temperatures between 163K and 313 K,
making use of a large difference in the spin-lattice relaxation time by which
they can be separated from the deuterons in the crystallites. The experimen-
tal spectra are compared with the results of a model calculation. In agree-
ment with the experimental spectrum at 163K the model spectrum repre-
sents a superposition of a rigid phase (70%) and deuterons incorporated in
mobile kink-defects (30%); kink-defects correspond to a sequence gauche−-
trans-gauche+ or gauche+-trans-gauche− in an otherwise stretched part of the
chain. The transition between the two conformers is mechanically active, be-
cause it changes the chain contour. This conformational transition is regarded
as the probable mechanism of the γ-process; the NMR experiments corrobo-
rate the assignment. Analysis of the next NMR spectra shows that the state
of motion based on mobile kink-defects pertains up to 200K, whereby the
mobility increases continuously due to a rising defect concentration. Above
200K the situation changes. In order to reproduce the spectra measured at
213K and 293 K for part of the deuterons a reorientational motion that cov-
ers a larger angular range has to be assumed. Conformational considerations
show that such wider motions can be accomplished by correlated rotations
of five subsequent bonds in a chain, different from the three-bond motion of
a kink-defect. Reproduction of the spectrum at 313K requires that one as-
sumes an even larger correlation range along the chain, incorporating seven
subsequent bonds. Figure 6.34 summarizes all the results. The picture that

Fig. 6.33. Observed (left) and calculated (right) pairs of 2H NMR spectra of the
mobile deuterons in the amorphous regions of PE at different temperatures. Work
of Spiess et al. [85]
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Fig. 6.34. Fractions of flexible units with different lengths in the amorphous regions
of PE derived from the analysis of the 2H NMR line shapes displayed in Fig. 6.33 [85]

thus emerges is that of an amorphous phase that is influenced by the lim-
itations imposed by constraints. The constraints, which originate from the
crystallites and trapped entanglements, are weakened upon heating and dis-
appear only at the final melting.
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7

Conjugated Polymers

The large majority of polymers, first of all the broadly used commodity materi-
als polyethylene, polypropylene, poly(ethylene terephthalate) or polystyrene,
have similar electrical and optical properties: They are insulators and they are
colorless, i.e., they possess no mobile charges and the lowest electronic excita-
tions are in the UV region. There exists a peculiar class of polymers with quite
different properties; these are polymers with conjugated double bonds in the
main chain. They are semiconductors or conductors and interact with light.

Figures 7.1 and 7.2 depict a characteristic observation. A thin film of poly-
(phenylene vinylene) (PPhV) covered with two different electrodes made of
an indium-tin oxide alloy (ITO) and calcium, respectively, is placed on a glass
substrate and then connected to an external source of current. Nothing hap-
pens up to a voltage of 2 V, but then a flow of current sets in and grows with
further rising voltage. Simultaneously with the onset of current the PPhV
film begins to emit light, with an intensity proportional to the current. The
effect is known as electroluminescence. A setup with such a performance
is called a light emitting diode, abbreviated LED. The word ‘diode’ hereby

Fig. 7.1. Principal set-up of a polymer LED device
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Fig. 7.2. ITO/PPhV/Ca LED: Variation of the current density (filled symbols) and
the luminescence intensity (open symbols) with the applied voltage. From Friend
and Greenham [86]

indicates that the current can flow only in one direction; if the voltage di-
rection is reversed, practically no current flows. The active element in this
organic light emitting diode, shortly OLED, is the conjugated poly-
mer poly(phenylene vinylene). All conjugated polymers possess conjugated
π electrons, i.e., electrons that are delocalized rather than being part of one
valence bond. Excitation energies of conjugated π electrons are usually in the
visible range and they are, therefore, addressed as being optically active.
A selection of prominent examples has already been given in Table 1.3 in
Chap. 1.

It was a second, really spectacular property that initiated the interest in
conjugated polymers. In 1977 it was found by Shirakawa, Heeger and McDi-
armid that films of polyacetylene (PAc) increase their conductivity tremen-
dously when they are exposed to iodine vapor, from a basic value at the lower
end of the semiconducting range up to values comparable to metals. Fig-
ure 7.3 represents these iodine dopant induced changes in a comparison with
other materials. They encompass the enormous range of seventeen orders of
magnitude.

It is understandable that these unusual findings triggered intense activi-
ties in research and development. The first conjugated polymers under study
were all unstable in air and it was very difficult to prepare films. Suitable
chemical modifications then succeeded to produce stable materials. They can
be processed from solution or even the melt, sometimes via a conversion of
short-chain precursors.
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Fig. 7.3. Range of conductivities covered by doped PAc in a comparison with other
materials

To provide a brief introduction into this peculiar class of polymer materi-
als, in this chapter we first consider the elementary optical excitations, then
discuss the electroluminescence, and finally deal with the conduction proper-
ties and the magnetism of doped samples.

7.1 Electrooptic Activity

7.1.1 Excitons and Free Charges

Considering the physical background of the optical and electrical activity of
conjugated polymers several questions immediately come up, namely:

• What is the nature of the excited states that are created when photons
are absorbed?

• What transitions show up in the subsequent luminescence?
• What levels are used by charge carriers when a current is flowing?

We discuss these in this section.
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Fig. 7.4. Optical absorption spectra of two-ring, three-ring, four-ring, and five-ring
oligomers of phenylene vinylene. A shift to lower energies with increasing length of
the molecule is observed. From Cornil et al. [87]

Regarding the first question it is instructive to have a look at the exper-
imental result presented in Fig. 7.4. The figure shows absorption spectra in
the visible range, which were obtained for a series of oligomers of phenylene
vinylene. The four presented absorption bands all have a similarly fine struc-
ture and are shifted against each other; the higher the number of monomers,
the lower the frequency. A first conclusion can be drawn from the invariance
of the profile of the bands. Since it is independent of the number of coupled
monomers it must be a property of the monomer itself. We therefore first ask
about the elementary optical excitations of a monomer. Figure 7.5 presents its
chemical structure on the left-hand side and on the right-hand side a sketch
of the distribution of the π electrons. One bond of each double bonds is set
up by two σ electrons, the other is formed from overlapping atomic pz orbitals
oriented perpendicularly to the (xy-)plane of the planar molecular skeleton.
The conjugation, i.e., the resonance interaction between the π bonds results
in delocalized π electron states. Here, these states are occupied by the eight π
electrons of a phenylene vinylene unit. There is a highest occupied molecular π
orbital abbreviated HOMO. Above it there exists a gap and it extends up to
next level, the lowest unoccupied molecular π orbital, shortly called LUMO.
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Fig. 7.5. (left) Structure unit of PPhV. (right) Clouds of π electrons in a unit,
placed above and below the plane of the CC backbone. The lines connecting the
carbon atoms represent the σ bonds

For conjugated polymers the gap energy is in the range of 1.5 eV to 3 eV, i.e.,
in the range of visible light and the near infrared, similar to anorganic semi-
conductors. As always in the ground state of a multielectron system with an
even number of electrons, the spins compensate each other so that a singulet
state, denoted S0, results.

The absorption bands in Fig. 7.4 are to be assigned to the lowest possible
one-electron excitation. This is accomplished by a transfer of the electron at
the HOMO level to the next higher state. One might think at first that this
is the LUMO level, but this is incorrect. The LUMO level would indeed be
occupied if a ninth electron were added to the monomer. If, however, the
electron in the HOMO level is excited, this level is left empty, and the then
positively charged monomer exerts an attractive Coulomb force. The force
reduces the excitation energy, which now falls below the gap energy. The
thus formed state can be thought of as a coupled electron–hole pair and is
named an exciton. In order to be optically active, the transition must have
a non-vanishing transition dipole moment. One requirement for this is an
unchanged total spin. Hence, this exciton state is necessarily a singulet state
and is denoted S1.

The fine structure of the bands follows from the fact that together with
an electronic excitation also vibrations of the molecular skeleton are induced.
There is a prerequisite for such a common electronic and vibrational excita-
tion: It only happens if the transfer of the electron to a higher level leads to
a change in the molecular structure, i.e., some change in bond lengths and
bond angles. Figure 7.6 explains this coupling, dealing with two possible sit-
uations. The Franck–Condon principle states that electronic transitions
are very rapid compared to motions of the nuclei setting up the molecular
skeleton. Hence, they always take place at constant positions of the nuclei.
In the drawings on the left-hand side of Fig. 7.6 transitions are therefore de-
scribed by an arrow in the vertical direction, starting from the vibrational
ground state (nv = 0) in the electronic ground state S0. The variable X rep-
resents here some displacement coordinate. If the structure were not affected
by the electronic excitation, the transition would automatically lead into the
vibrational ground state of S1, as indicated in the upper left figure. Then,
as shown on the right, only one sharp absorption band is expected, which is
rarely seen. On the other hand, if the electron transfer also produces a shift
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Fig. 7.6. Appearance of the exciton band profile if the excitation leaves the structure
of the molecule unchanged (top right) and if it leads to some change (bottom right).
The left-hand side explains the difference of the spectra by applying the Franck–
Condon principle; X represents a displacement coordinate

in the equilibrium value of the structure coordinate X , the electronic excita-
tion is necessarily coupled to an excitation of a vibrational quantum. This is
explained by the lower left figure, where the vertical arrow ends at nv = 1
in the S1 level. In this case, there also exist non-vanishing probabilities for
transitions to even higher and also lower vibrational levels. As a result, a band
with a fine structure appears, as shown on the right side, and exactly this is
observed in the experiment.

The red shift of the bands following from an increase of the molar mass
of the oligomer is a well-known phenomenon. The continuing interaction be-
tween the π electrons of the coupled monomers extends the conjugation over
the whole chain. The interaction further stabilizes all the π electrons, i.e.,
leads to a drop of all energy levels and a lowering of the energy difference
between S0 and S1. There is another important consequence of the interac-
tion: If an exciton is created at some monomer by the absorption of a photon,
it will not remain stationary, but propagate. After a short time it can be
found on each monomer of the chain with equal probability. An exciton car-
ries energy. To move an exciton, i.e., the energy that it represents, it is not
necessary to move the constituting electron–hole pair itself. A shift of the en-
ergy can also be achieved by a simultaneous decay-excitation process in two
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neighboring monomers. The rate of this transfer depends on the overlap of
the associated wave functions, as is described by the Förster mechanism.
The delocalization of the exciton that extends in the stationary state over the
whole oligomer concerns both the excited electron and the created hole. The
mean distance between the electron and the hole varies between different ma-
terials. For conjugated polymers it lies above the monomer diameter, typically
being of the order of a few monomer lengths. Excitons are also a characteris-
tic feature in the excitation spectra of anorganic semiconductors. There, the
electron–hole distance is larger, corresponding to many lattice cells. These
bound pairs are addressed as Mott–Wannier excitons. On the other hand,
for excitons found in molecular crystals or ionic solids both the electron and
the hole remain within the size of one molecule. These excitons are known as
Frenkel excitons. The excitons in conjugated oligomers or polymers have
an intermediate position, in between the Mott–Wannier and the Frenkel type.

In a perfectly ordered solid or a perfectly ordered macromolecule excitons
move according to quantum-mechanical kinetics, i.e., like wave packets. Be-
cause this requires strict phase relationships in space and time, this mode
of motion, addressed in the literature as coherent motion of excitons, is
perturbed by all deviations from regularity. Chains of conjugated polymers
always include various defects such as kinks and torsions. These break the
conjugation. Typically, regular sequences extend only over five to ten repeat
units. The results of measurements for a series of oligomers like the ones dis-
played in Fig. 7.4 can be used for the estimate. The red shift of the exciton
frequency ω with increasing monomer number, n, can be described by the
equation

ω(n) = ω0 +
Δω
n

. (7.1)

Applying this to the exciton frequency observed for a polymer gives the num-
ber of conjugated structure units n. Conjugated polymers are semicrystalline
systems, built up of crystalline and amorphous regions, and the crystallites
often contain a high amount of defects. As a consequence, the coherent mode
of motion is only found within ordered crystalline domains with sizes in the
nm range. Long-range energy transfers in such a structure remain possible,
but by a much slower incoherent kind of exciton motion, to be described as
a diffusive hopping process. Referring to this rate determining process only,
a conjugated polymer in the solid state resembles an ensemble of domains
of varying size, from ordered assemblies of regular chain sequences down to sin-
gle monomers incorporated in the coiled chain parts in the amorphous regions.
With the size of these sites the excitation energy also varies, the minimum
being found for the largest domains. Even under these conditions of a varying
excitation energy, excitons can carry out hopping motions between adjacent
domains. The highest transfer rates are found for resonance transitions
between domains with equal excitation energies, but a transition to a domain
with a lower or higher energy is also possible, although with a lower rate. The
latter moves must be supported by the creation or annihilation of phonons.
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Fig. 7.7. PPhV: Time-dependent change of the fluorescence spectrum after an
excitation pulse at 2.65 eV (arrow). The waiting times are given. From Bässler [88]

Of course, the time an exciton can use for a motion is limited. At any time
an exciton can spontaneously annihilate under the emission of a photon, thus
contributing to the luminescence. In addition, there always exist mechanisms
of a non-radiative decay. Figure 7.7 shows an experiment that reflects the dif-
fusive motion of excitons within the energy landscape associated with the
broad density of states distribution provided by the ensemble of domains.
The figure shows luminescence spectra observed subsequent to a short pulse
after a certain waiting time. One finds a time-dependent change of the lumi-
nescence spectrum with a shift to lower energy with increasing time. Hence,
there is a tendency of the excitons to diffuse to the domains with lower exci-
tation or decay energy. The process can be modeled and the development of
the luminescence reproduced.

Due to the coupling of the excited electron to the hole left back on the
HOMO level, excitons are non-charged particles that cannot contribute to
an electrical current. A current requests the motion of free charges, either
electrons or holes. These can indeed exist in conjugated polymers. They are
found if

• an exciton dissociates into a free electron and a free hole after an additional
energy input,

• rather than creating an exciton, an absorbed photon immediately produces
a free electron–free hole pair,

• free holes or electrons are supplied by dopants or injected from the elec-
trodes.

The experiments shown in Figs. 7.8 and 7.9 provide examples for the first two
processes.
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Fig. 7.8. PdAc: Photoconductive spectral response (circles) compared to the optical
absorption spectrum (continuous line). From Pakbaz et al. [89]

The first figure presents the spectro-photoconductive response of
poly(diacetylene) (PdAc). Some low voltage is applied to the sample, but
at first virtually no current is observed. The sample is then illuminated by
monochromatic radiation under variation of the frequency. When coming from
low frequencies the photon energy of 3 eV is reached, a flow of current sets in
and rises with further increasing photon energy. Obviously, if photons with
energies above this limit are absorbed they create free carriers in the sam-
ple, thus enabling a current to flow under the applied voltage. Interesting
is the comparison with the frequency dependence of the absorbance, which
is also shown in the figure. Photon absorption begins much earlier, already
at 1.5 eV, but is at first not associated with a photocurrent. Hence, in this
first frequency range only excitons are created. The energy difference between
the peak at 2.4 eV associated with the creation of an exciton and the onset
of the photocurrent amounts to about 0.6 eV. Its meaning is clear: It repre-
sents the dissociation energy of the exciton, i.e., the electron–hole binding
energy.
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Fig. 7.9. PPhV: Photoconductive spectral response (circles) compared to the op-
tical absorption spectrum (continuous line). From Lee et al. [90]

The second example, which deals with poly(phenylene vinylene), shows
that this difference can also be very small and virtually vanish. Here, the onset
of the absorption is practically identical with the onset of the photocurrent.
The reason for this peculiar property of poly(phenylene vinylene) is still under
discussion. There might exist sites (in particular places located at the film-
electrode interface) where the additional energy necessary to dissociate the
exciton is spontaneously provided.

As has been mentioned, transferring an electron up to a higher level in gen-
eral leads to changes in the structure of the molecular skeleton. A structural
response is also to be expected for a freely moving electron or hole: It polarizes
its surroundings on the chain. This polarization generally leads to an energy
decrease. Theoretical estimates for this drop yield a value of the order 0.1 eV
and indicate an extension of the polarization over a couple of monomers. The
polarization remains localized and moves together with the electron or hole.
Many treatments in the literature emphasize this effect, then dealing with
negatively or positively charged moving particles named polarons instead of
just considering the motion of free electrons and holes.

Like excitons, electrons, holes or polarons also carry out a hopping motion
between the domains in a conjugated polymer. Each domain provides unoc-
cupied states around the LUMO and HOMO level for electrons and holes,
respectively. They are delocalized within the domains and vary, as for the
excitons, in their energy with the domain size. The tails of the correspond-
ing density of states distributions act as shallow traps that keep the charges
temporarily fixed.
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Fig. 7.10. One-electron levels and multielectron states created by excitations of one
π electron in an ordered domain of a conjugated polymer. Prior to the excitation,
in the ground state S0 the electron occupies the HOMO level. S1 denotes a first
order singulet exciton with an energy at the lower bound of the associated vibronic
band. The creation of an exciton is in general coupled to simultaneous vibrational
excitations; nv are vibrational quantum numbers. T1 denotes a first order triplet
exciton at the lower bound of an associated vibronic band. The LUMO level is at
the lower edge of the band Π∗ of states with one non-bonded electron. The VACUUM
level is that of electrons with vanishing kinetic energy outside the sample

Figure 7.10 summarizes once again the energetic situation, giving a scheme
for the energies of all the discussed states, both one electron levels and mul-
tielectron states, referring to one domain. One additional feature is included.
On the left-hand side a further multielectron state denoted T1 is shown. It
represents a first order triplet exciton. It differs from the singulet exciton in
the total spin, which here has the quantum number 1. It is not possible to cre-
ate triplet excitons by a photon absorption starting from the ground state S0

since it necessitates a change in the spin direction. However, there exists an-
other pathway for the formation of triplet excitons, namely a spontaneous
coupling of a free electron and a free hole; they may have been created by an
injection from the electrodes or the dissociation of singlet excitons. Sponta-
neous decays of triplet excitons under the omission of photons are forbidden,
strictly speaking, they still remain possible but occur with an extremely low
rate. Triplet excitons decrease the efficiency of light emitting diodes, as will
be discussed in the next section.

7.1.2 Electroluminescence

In the introduction to this chapter a light-emitting diode was described as
being set up of a polymer film (PPhV) and two different electrodes (ITO and
Ca) on the surfaces (Fig. 7.1). Figure 7.2 then showed that for voltages above
a critical value a current coupled to the emission of light flows. Figure 7.11 now
displays the spectrum of the emitted light as well. The curve denoted EL
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Fig. 7.11. PPhV: Luminescence spectra after an electrical (EL) and a photonic
(PL) excitation, shown together with the optical absorption spectrum. From Friend
and Greenham [91]

represents this spectrum with a broad band with fine structure. The band
is to be assigned to the vibronically broadened annihilation of an exciton.
Also included in the figure is the photo luminescence spectrum (PL) observed
after an excitation of poly(phenylene vinylene) by photons with energies above
2.6 eV. The two emission bands EL and PL are practically identical. Hence,
both an electrical or optical excitation create the same excitons, which then
annihilate under the emission of photons. The figure also shows the optical
absorbance spectrum of poly(phenylene vinylene). It sets in at the frequency
of the exciton and shows a strong rise at 2.4 eV. Here the photon energy
reaches the value that is required to excite one electron from the HOMO to
the LUMO level, i.e., to create a free electron and a free hole.

A discussion of the functioning of a polymer LED can be based on the
energy level scheme given in Fig. 7.12. It deals with the conditions in an LED
onto which an external voltage is applied. Polymer LEDs are set up using two
different electrodes. One of them, in the ITO example, has a high work function
(as given by the energy that has to be supplied to transfer an electron from the
Fermi level to the vacuum level). The second one, here calcium, has a low work
function. When the electrodes are attached to the polymer film, electrical
double layers spontaneously form at the interfaces; as always happens when
two different conductive materials are brought in contact with each other. The
layer on the metal side is very thin, the oppositely charged depletion layer near
the surface of the polymer film has some extension. As a consequence, steps
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Fig. 7.12. Energy level diagram for a ITO/PPhV/Ca LED under a voltage as given
by the difference between the anode and cathode potential. Work functions of the
two electrodes. Barriers to the injection of electrons, Δεe, and holes, Δεh

in the electrostatic potential V arise at both metal–polymer interfaces. The
step heights have such values that in the initial equilibrium state, i.e., the
state established before the application of an external voltage, the chemical
potential of the electrons, which now includes also an electrostatic contribution
(-e)V , becomes identical in all three materials. Applying an external voltage
leads to deviations from the current-free equilibrium state, and a current starts
to flow. Within the polymer film the electrostatic potential decays. The decay
of the potential that determines the electrical field,

E = − dV
dx

, (7.2)

and the current density j are related by

j = σelE . (7.3)

σel denotes the electric conductivity. For all semiconductors σel is to be
described by

σel = eceνel,e + echνel,h . (7.4)

ce or ch denote the number densities of electrons and holes. The variables
νel represent electric mobilities. They give the ratio between the mean
velocity ū of a charged particle and the acting electric field

νel =
|ū|
E

. (7.5)
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Compared to anorganic semiconductors electric mobilities in conjugated poly-
mers are generally low.

If an LED is activated by an external voltage, from the cathode electrons
change into the polymer film to the LUMO level of mobile free electrons and
holes are simultaneously ejected by the anode and enter the HOMO levels.
The barriers to be surmounted have heights Δεh and Δεe and the entrance
steps are represented by the curved arrows denoted (1). As is obvious, under
the given conditions with electrodes with strongly differing work functions,
cathode and anode cannot be exchanged. The then arising high barriers al-
low for only a low current. The setup thus indeed has rectification properties,
i.e., is a diode. Within the polymer layer both the electrons and the holes
move by a hopping process from domain to domain, directed by the applied
field as indicated by curved arrows (2). Sometimes it happens that an elec-
tron and a hole arrive at one site at the same time. Then an exciton can
form under a transfer of the binding energy to the lattice (3). The exciton
also carries out a diffusive motion between the domains (4). However, being
a neutral particle, its hopping motion is random, i.e., non-directed. At some
time the exciton will spontaneously annihilate under the emission of a pho-
ton (5).

Poly(phenylene vinylene) and also other conjugated polymers have an im-
balance in the properties of electrons and holes. The entrance barrier is higher
and the mobility is lower for the electrons, and as a result electrons are accu-
mulated near the cathode. As a consequence, the emission region also shifts
to the neighborhood of the cathode. Near a metal surface excitons annihi-
late more frequently in radiationless manner and the luminescence efficiency
drops. To avoid this undesired effect modern LEDs are often constructed from
two organic layers, one preferentially transporting electrons (ETL), and the
other one, the conjugated polymer, transporting holes (HTL) first of all. For
such an ITO–HTL–ETL–Ca LED the light emission region moves toward the
HTL–ETL interface in the center and the rate of radiationless decays de-
creases.

If an electron and hole couple within one domain, either a singulet (S1)
or a triplet exciton (T1) forms. Since triplet excitons have three independent
states, corresponding to quantum numbers Sz = 1, 0,−1 for the spin compo-
nent in the z-direction, while only one state exists for the singulet exciton,
triplets form with a three times higher rate than singulets. Their existence in
a LED can be observed by spectroscopical means. Triplets possess a charac-
teristic absorption band that relates to a transition from T1 to a higher order
triplet state. Figure 7.13 shows this characteristic band for poly(phenylene
vinylene). The experiment demonstrates that triplets are generally created
when free electrons and holes are present; they may have been produced by
either applying a current or an optical excitation with photons of sufficiently
high energy.

As has already been mentioned, the existence of the triplet excitons is
a disadvantage of polymer LEDs. They do not contribute to the luminescence



7.1 Electrooptic Activity 301

Fig. 7.13. PPhV: Absorption spectrum assigned to triplet excitons demonstrating
their presence after an electrical (open circles) or optical (filled symbols) excitation.
Measurements were carried out at 20 K. From Brown et al. [92]

signal of the device and, therefore, reduce its efficiency. Putting all relevant
factors together, the electroluminescence efficiency, γEL, of a polymer LED
can be described as

γEL = φoptpexφSppl . (7.6)

pex gives the probability that an electron and a hole entering the organic layers
from the external current form an exciton, φS describes the fraction of sin-
gulet excitons and ppl denotes the photoluminescent quantum yield. ppl differs
from unity due to the presence of quenching sites offering non-radioactive
decay paths to the excitons. A polymer LED represents a multilayer structure
whose optical properties are affected by reflections, refraction and interference
phenomena. This is globally expressed by the fourth factor, φopt, dealing with
the outcoupling, i.e., giving the fraction of photons emitted from the front
surface.

The color of the light emitted by a polymer LED, which is determined by
the exciton energy, can be varied by chemical substitutions or by changes in
the conjugation length. The conjugation range can be reduced in controlled
manner by the introduction of co-units into the chain. Another means is a dis-
solution of chains of the conjugated polymer in a matrix of a common polymer;
Fig. 7.14 gives such an example. A ladder polyphenylene (PPh) was blended
with polystyrene (PS). For a concentration of 30% of the conjugated polymer
the emission line shows a broad spectral distribution (a). The distribution be-
comes sharper when decreasing the concentration. In the dilute limit of 1% of
ladder polyphenylene one observes a line with a sharp maximum in the blue
range (c).
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Fig. 7.14. Electroluminescence spectra of a ladder PPhV dissolved in PS (a: 30%,
b: 10%, c: 1% PPhV, from Friend and Greenham [93])

7.2 Effects of Doping

7.2.1 Electrical Conductivity

Dealing with the electrical conductivity of polyacetylene (PAc), Fig. 7.3 in
the introduction to this chapter described the effect of doping with iodine.
While pure polyacetylene is a semiconductor as all conjugated polymers, the
doping process turns it into a system that finally possesses an electric conduc-
tivity comparable to metals with values in the range of 104 to 105 Ω−1 cm−1.
‘Doping’ of a semiconductor means that an oxidizing or reducing agent is in-
troduced into the sample. In the case of conjugated polymers this is usually
carried out either by an exposure of the sample to a corresponding gas or the
placement in a corresponding liquid. Oxidizing atoms or molecules take up
electrons from their surroundings, in a conjugated polymer first π electrons
from the HOMO level. They thus act as electron acceptors. As a result
holes, i.e. positive charge carriers, are created. Reducing agents supply ad-
ditional electrons and thus function as electron donators. These electrons
occupy states at and near the LUMO level. With such a supply of electrons
or holes the number of free charges increases greatly. As is shown in Fig. 7.3
for polyacetylene, the resulting rise in the conductivity can be tremendous.
Polyacetylene is not an exception; doping results for all conjugated polymers
to similarly large values of the conductivity.
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Fig. 7.15. PPhV during a doping with gaseous Na (left) and Cs (right): X-ray scat-
tering patterns obtained after different times of gas exposure (final concentrations
are x = 0.9 and 0.8 dopant atoms per monomer). The scattering curves show changes
of the crystal structure associated with an intercalation of the dopant atoms. From
Winokur [94]

The concentration of dopant molecules or atoms in the highly conductive
state typically amounts to some percent of the number density of monomers.
When becoming dissolved in a sample, dopant atoms may have a preference
for the amorphous regions, but they also enter the crystals. Figure 7.15 demon-
strates that this even happens in a regular manner. X-ray scattering curves
measured during the process of doping of poly(phenylene vinylene) with Na
and Cs, respectively, show the disappearance of some Bragg reflections and
the appearance of new ones. Obviously, a new structure develops in which the
dopant atoms are placed on regular lattice sites.

Figure 7.16 shows the results of temperature-dependent conductivity mea-
surements for samples of polyacetylene doped with various amounts of iodine.
The conductivities measured at room temperature for the samples with the
highest dopant contents are comparable to those of metals. It is important
to note that even if the room temperature values are comparable, there ex-
ists a striking difference in the temperature dependence. Whereas for metals
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Fig. 7.16. Temperature-dependent conductivities σel(T ) of various iodine doped
PAc samples. Conductivities increase with rising iodine content. From Kaneko and
Ishiguro [95]

the conductivity always decreases with rising temperature, one here observes
here, and this is typical for all doped conjugated polymers, the reverse ten-
dency, i.e., a positive temperature coefficient of the conductivity. For many
doped conjugated polymers the conductivity practically vanishes for temper-
atures near zero, opposite to metals where here the largest values are reached.
This qualitative difference is indicative of a difference in the mechanism of
motion of the charges. In metals, there are freely moving ballistic electrons
that are scattered from time to time at perturbations of the lattice; between
two successive scattering events the charge carrier becomes accelerated by
the electric field. Quite different from the metallic kinetics, charge carriers in
doped conjugated polymers carry out a directed hopping motion from do-
main to domain. The largest domains are within the crystalline regions, with
sizes up to several ten nanometers. The domains in the amorphous regions
are smaller and have sizes in the nanometer range. The quantum-mechanical
motion within a domain is much more rapid than the hopping between do-
mains and can be neglected in time considerations. The interdomain jumps
have to be activated. Since this needs thermal energy, jump rates and thus
the conductivity decrease when the temperature is lowered.

Independent of the mechanism of motion, electrical conductivities can al-
ways be described by Eq. (7.4) as

σel = eceνel,e + echνel,h .
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Fig. 7.17. PPy samples doped with increasing amounts of PF6 (highest to low-
est curve): Temperature dependence of the resistivity σ−1

el indicative of a hopping
motion of the charges. From Menon et al. [96]

For given electron and hole densities ce and ch as determined by the dopant
content, the temperature dependence σel(T ) just reflects the temperature de-
pendence of the electric mobilities νel,e and νel,h. For a hopping motion with
varying hopping distances theories predict a temperature dependence of the
mobility and, thus, of the electric conductivity as given by the equation

σel ∝ exp−
(
TA

T

)1/4

. (7.7)

Such a dependence is indeed found in experiments. Figure 7.17 presents as
an example the temperature dependence of the resistivity σ−1

el of polypyrrol
(PPy) doped with PF6. In the figure lnσ−1

el is plotted versus T−1/4, as sug-
gested by Eq. (7.7). The straight lines indicate agreement with the theory.
Resistivities and activation temperatures TA are lowered when more dopant
is introduced.

Although this is the typical behavior, at high dopant contents one some-
times also finds evidence for a closer approach to metallic properties. Fig-
ure 7.18, which presents results for polyaniline (PAn), shows a nearly constant
conductivity for the lowest temperatures and highest dopant contents. It ap-
pears that here the motion no longer has an activated character. According
to an explanation offered in the literature, the charges here move from site to
site by tunneling processes that require no thermal activation.
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Fig. 7.18. PAn doped with increasing amounts of cresol: Change of the temperature
dependence of the resistivity indicative for a transition from a hopping motion of the
charges to a quasi-metallic transport mode (lowest curve). From Menon et al. [96]

As all semicrystalline polymers, conjugated polymers can be oriented by
drawing. Figure 7.19 shows that for such oriented samples the conductiv-
ity becomes anisotropic, having much higher values in the drawing direction
than perpendicular to it. Such a behavior is to be expected. Since the ordered
regions in a sample of a conjugated polymer are more extended in the chain di-
rection, less jumps are required to proceed over a certain distance. The barriers
for jumps between sites adjacent in the chain direction might also be lower.

Applying an external pressure lowers the distances between the monomers
and thus will, in tendency, raise the interdomain jump rates. One therefore ex-
pects an increase in the conductivity; Fig. 7.20 shows that this is indeed found.

7.2.2 Magnetism and Reflectivity

A metal possesses a continuous distribution of energy levels in the conduction
band and they are occupied by electrons up to the Fermi energy εF. Similar
conditions are found in each ordered domain of a conjugated polymer, even
if the wave functions are spatially restricted. The Π∗ band is composed of
a quasi-continuous sequence of states beginning at the LUMO level and it can
be occupied by the electrons supplied by the dopants. These fill the Π∗ band
up to a certain level determined by the dopant concentration. Together with
their spin electrons have a magnetic moment μB, the Bohr magneton. Para-
magnetic properties are therefore to be expected, however, as in metals, they
are peculiar. Magnetic properties of metals have a specific character due to
the fact that each level is occupied twice, with one spin-up and one spin-down
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Fig. 7.19. PAc oriented by stretching: Increase of the anisotropy of the conductivity
with the stretching ratio λ = L/L0. From Naarmann [97]

electron. If a magnetic field is applied, electron spins cannot just reorient but,
when doing so, simultaneously have to change the level. Figure 7.21 explains
the situation and the response of metallic electrons to an applied magnetic
field. The density of energy levels D(ε) is here shown together with its mirror
image, with the right-hand and left-hand sides corresponding to states with
spins parallel and anti-parallel to the field direction, respectively. As long as
no magnetic field is present, it is found that both parts are filled up to the
Fermi surface at εF. If a magnetic field of strength B is applied, the energy of
all parallely oriented spins is increased by μBB, while that of the anti-parallel
spins is reduced by the same amount. In the first instance, the situation in the
middle of the figure is obtained. This does not, however, correspond to the new
equilibrium state, since the spin system can gain energy by a redistribution
into the situation shown on the right-hand side of the figure. As shown in many
textbooks on solid state physics, this redistribution leads to a magnetization

M = 2μB
3ce
4εF

μBB = μ0ce
3μ2

B

2εF
B

μ0
, (7.8)

hence, to a temperature-independent paramagnetic susceptibility

χm = μ0ce
3μ2

B

2εF
. (7.9)
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Fig. 7.20. PPy doped with PF6: Variation of the temperature-dependent conduc-
tivity with the applied pressure. From Menon et al. [98]

This is known as Pauli paramagnetism. In view of the energetic situation
in the domains of a highly doped conjugated polymer, where the additionally
supplied electrons also fill the Π∗ band in the manner described by the left
drawing in Fig. 7.21, one also expects Pauli paramagnetism here. This is
indeed observed. Figure 7.22 shows as an example the magnetic properties
of polyacetylene samples with different dopant contents x. For the highest
dopant content the paramagnetic susceptibility is temperature-independent,
as is characteristic for Pauli paramagnetism. The findings for lower dopant
contents or non-doped polyacetylene are different. They indicate a change
towards the behavior of isolated electron spins. Isolated electron spins are
found in many paramagnetic organic or anorganic materials where radicals are
incorporated. They react on an applied field with a simple reorientation and
the susceptibility becomes temperature-dependent following the Curie law

χm = μ0ce
μ2

B

kT
. (7.10)

Obviously, in non-doped or low doped conjugated polymers isolated spins are
dominant.
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Fig. 7.21. Paramagnetism of metallic electrons at low temperature. Left : The start-
ing point in the absence of a field. Occupied energy levels for the two spin orientations
are represented separately. D is the density of states with D ∼ (ε − εF)1/2. Middle:
The change in the energies upon switching on a magnetic field. Right : Lowering
of the energy through a redistribution and a reestablishment of a uniform Fermi
surface

Another characteristic property of metals is their total reflection of light.
Even more, metals reflect all electromagnetic radiation with frequencies below
a critical frequency located in the ultra-violet region. This critical frequency,
which is known as the plasma frequency ωpl, relates to the fundamental
vibration of lowest frequency that the plasma of electrons can carry out in
the positively charged lattice. An electromagnetic wave can only propagate
in metals if it is carried on by a plasma vibration with the same frequency,
hence, only for ω > ωpl. The nature of the fundamental plasma oscillation is
indicated in the drawing of Fig. 7.23. Imagine, as shown in Fig.7.23, a disc-like
metallic sample and consider that all the electrons are shifted upwards by Δx.
In this way, a negative and positive layer of charge forms on the upper and
lower surfaces, respectively, and thus, as in a capacitor, there is a homogeneous
electric field Ex, whose strength is given by

ε0Ex = eceΔx . (7.11)

The field acts, in turn, on the electrons and leads to an acceleration described
by the equation of motion

ceme
d2Δx
dt2

= −eceEx = − 1
ε0

e2c2eΔx . (7.12)

The solution of this equation is a vibration with eigenfrequency

ω2
pl =

cee
2

ε0me
. (7.13)
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Fig. 7.22. PAc doped with various amounts x of iodine: Temperature dependence
of the magnetic susceptibility of spins in the sample. From Epstein et al. [99]

Fig. 7.23. The fundamental mode of the plasma vibrations: The surface charges
which form upon a collective displacement of all electrons generate a restoring elec-
tric field

Do plasma vibrations also occur in highly doped conjugated polymers? Ac-
cording to the findings, the answer is yes, because these indeed reflect light.
Even under the spatial limitations in the domains the free charges occupying
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Fig. 7.24. Temperature-dependent negative dielectric constant measured at 6.5 ×
109 Hz for PAn doped with cresol. From Joo et al. [100]

the Π∗ band are able to carry out plasma vibrations, with a fundamental
vibration similar to that sketched in Fig. 7.23. For an electron density ce
comparable to metals the basic frequency ωpl is again in the ultra-violet re-
gion. Total reflectivity then must also hold for radiation in the infrared and
microwave region; Fig. 7.24 provides an example for the latter range. The
Maxwell equations relate total reflection of electromagnetic waves with a ma-
terial possessing a negative dielectric constant. In the figure, the curve dealing
with properties of polyaniline shows such a negative dielectric constant, which
here implies total reflection of microwave radiation.
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8

Microscopic Dynamics

Chapter 6 provided an overview of the characteristics of the mechanical and
dielectric behavior of polymer systems. We discussed the material properties
as they are described by the various response functions and were in particular
concerned with the pronounced effects of temperature. These macroscopic
properties have a microscopic basis. So far, we have addressed this basis only
in qualitative terms. This chapter deals with the microscopic dynamics and
hereby, in particular, with some models yielding a quantitative description for
observed macroscopic properties.

Before we come to these models, we need to introduce a basic law of sta-
tistical thermodynamics, which is required for some of the subsequent treat-
ments, namely the fluctuation-dissipation theorem. In the previous chap-
ter it was pointed out that the relaxation times showing up in time-dependent
or frequency-dependent response functions equal certain characteristic times
of the molecular dynamics in thermal equilibrium. This is true in the range
of linear responses, where interactions with applied fields are always weak
compared to the internal interaction potentials and therefore leave the times
of motion unchanged. The fluctuation-dissipation theorem concerns this situ-
ation and explicitly describes the relation between the microscopic dynamics
in thermal equilibration and macroscopic response functions.

8.1 The Fluctuation-Dissipation Theorem

Imagine that we select within a sample a subsystem contained in a volume v,
which is small but still macroscopic in the sense that statistical thermody-
namics can be applied. If we could measure the properties of this subsystem
we would observe time-dependent fluctuations, for example in the shape of
the volume, i.e., the local strain, the internal energy, the total dipole moment,
or the local stress. The fluctuation-dissipation theorem relates these sponta-
neous, thermally driven fluctuations to the response functions of the system.
We formulate the relationship for two cases of interest, the fluctuations of the
dipole moments in a polar sample and the fluctuations of stress in a melt.
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The total dipole moment of a subsystem

pv =
∑

i

pi (8.1)

is the result of the superposition of the group dipole moments pi contained in
the subvolume v. Together with the single dipole moments pi the total dipole
moment varies in time and a characterization can be achieved with the aid of
correlation functions. The simplest, but also most important one is the second
order time correlation function

〈pv(t′) · pv(t
′ + t)〉 = 〈pv(0) · pv(t)〉 .

This describes the correlation between the results of two observations of pv,
carried out at t′ and t′ + t. t′ is thereby arbitrary since systems in thermal
equilibrium are homogeneous in time. Fluctuations occur independently along
x, y and z. The correlation function for one of the components, denoted by
pv, is therefore

〈pv(0)pv(t)〉 =
〈pv(0) · pv(t)〉

3
. (8.2)

In the previous chapter we dealt with the dielectric response. Application of
an electric field produces a polarization. If the field is imposed at zero time
the polarization develops as described by Eq. (6.16),

P (t) = ε0Δε(t)E0 , (8.3)

finally leading to the equilibrium value

P (∞) = ε0Δε(∞)E0 . (8.4)

If the electric field then is switched off, the polarization returns back to zero,
in a time-dependent process described by

P (t) = ε0(Δε(∞) − Δε(t))E0 . (8.5)

t here gives the time elapsed since the moment of switching off. The fluctu-
ation-dissipation theorem relates the correlation function of the fluctuations
of the component of the total dipole moment along the field direction, pv, to
the decay function of the polarization, by

〈pv(0)pv(t)〉 = vkTε0(Δε(∞) − Δε(t)) . (8.6)

The left-hand side deals with spontaneous fluctuations in thermal equilib-
rium as they arise from the molecular dynamics, the right-hand side con-
cerns the reaction of a sample to the imposition of an external field. The
fluctuation-dissipation theorem thus states that linear responses of macro-
scopic systems and equilibrium fluctuations are related to each other. More
specifically, Eq. (8.6) states that the regression of spontaneous fluctuations,
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as they occur in subsystems of mesoscopic size, follows the same law as the
relaxation subsequent to an external perturbation of a macroscopic system.
The fluctuation-dissipation theorem was first introduced as a hypothesis by
Onsager and later, in 1951, proved by Callen and Welton.

As a second example, we formulate the theorem considering the stress
fluctuations in quiescent melts with focus on the shear component σzx. In
this case it has the form

〈σzx(0)σzx(t)〉 = kT
G(t)
v

. (8.7)

The physical background is the same as in the first example. Equation (8.7)
states that the regression of the fluctuations of the local shear stress follows
the same law as the macroscopic stress relaxation.

The limiting values for t = 0 of Eqs. (8.6) and (8.7) provide the variances
of the fluctuating variables. We obtain the equations

〈p2
v〉 = vε0Δε(∞)kT (8.8)

and
〈σ2

zx〉 = kT
G(0)
v

, (8.9)

which imply that all fluctuations increase proportionally to T . When compar-
ing the two expressions we also recognize a characteristic difference. The total
dipole moment represents an extensive variable, pv ∝ v, and here the variance
is proportional to the size of the subsystem. On the other hand, for the local
stress, an intensive variable, the variance decreases inversely to the subsystem
size. The latter behavior needs a comment, since a question may arise: Which
value has to be attributed to an intensive variable in a subsystem? The answer
is: Intensive variables, here σzx, have to be identified with the spatial average
in v. This average varies between different subsystems in a sample, or, for one
given subsystem it varies with time. Equation (8.9) states that the variations
decrease if the averaging volume is increased. This, indeed, expresses a basic
requirement of thermodynamics. In the thermodynamic limit, i.e., for systems
of infinite size, intensive variables must become sharp.

The name ‘fluctuation-dissipation theorem’ actually refers to another ver-
sion of the relationship, namely the one holding if times are replaced by fre-
quencies. We use general terms and choose the symbol Xv for the extensive
variable and the notation ψ0 for the applied constant field or force. For the
linear response, we write in equivalence to Eq. (6.29)

Xv(t) = vα(t)ψ0 (t ≥ 0) (8.10)

with α(t) as general time-dependent susceptibility. The general form of
Eq. (8.6) is

〈Xv(0)Xv(t)〉 = vkT (α(∞) − α(t)) . (8.11)
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Rather than characterizing the dynamics of a fluctuating state variable by the
time-dependent correlation function 〈Xv(0)Xv(t)〉, one can also describe it by
the spectral density 〈Xv(ω)2〉. The Wiener–Chinchin theorem, a funda-
mental theorem of statistical physics, states that these two functions represent
a pair of Fourier transforms, i.e.,

〈Xv(0)Xv(t)〉 =
1
2π

∫ ∞

−∞
〈Xv(ω)2〉 exp(−iωt)dω (8.12)

and
〈Xv(ω)2〉 =

∫ ∞

−∞
〈Xv(0)Xv(t)〉 exp(iωt)dt . (8.13)

The steady state susceptibility, α(t → ∞), agrees with the limiting value of
the dynamic susceptibility at zero frequency,

α(t → ∞) = α′(ω = 0) . (8.14)

If we apply Eqs. (8.12) and (8.14) in Eq. (8.11), setting t = 0, we obtain

1
2π

∫ ∞

−∞
〈Xv(ω)2〉dω = vkTα′(ω = 0) (8.15)

or, employing the Kramers–Kronig dispersion relation Eq. (6.46),

1
2π

∫ ∞

−∞
〈Xv(ω)2〉dω = vkT

1
π

∫ ∞

−∞

α′′(ω)
ω

dω . (8.16)

Equating the integrants on both sides yields the other version of the fluctu-
ation-dissipation theorem

〈Xv(ω)2〉 =
2vkT
ω

α′′(ω) . (8.17)

It is this form that is addressed by the name, as the expression relates the
spectral density of the fluctuations of Xv to the imaginary part of the asso-
ciated dynamic susceptibility and, as mentioned earlier, the latter describes
the energy dissipation.

An analogous relationship holds for the spectral density of the field fluc-
tuations. The general form of the fluctuation dissipation theorem is here

〈ψ(ω)2〉 =
2kT
vω

a′′(ω) . (8.18)

a′′(ω) represents the imaginary part of the general dynamic modulus defined
as

a(ω) =
1

α(ω)
. (8.19)
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Fluctuations arise from all dynamical modes in the system; however, dif-
ferent experiments associate them with different weights. Take, for example,
the glass–rubber transition. The transition shows up in measurements of the
dynamic compliance, the dynamic modulus and the dielectric function. Even
if the shapes D′′(ω), E′′(ω) and ε′′(ω) differ from each other, the maxima of
the absorption curves being located at different frequencies, all experiments
yield spectral densities that follow from the dynamics of the same group of
motions, namely the α-modes. In the dielectric experiment these are weighted
according to the changes of dipole moments, in compliance measurements the
weighting factor relates to the changes in the shape of a polymer and in the
dynamic modulus curve it depends on the internal stresses or moment trans-
fers along a chain. The relaxation time spectrum of the α-modes is very broad
and encompasses more than four orders of magnitude. The main contributions
to the moduli originate from modes with short relaxation times, whereas the
compliances put the major weight on the long-time part of the spectrum. The
dielectric α-process has its maximum usually in between the two mechanical
processes and thus appears to put main emphasis on the central part.

The fluctuation-dissipation theorem may be regarded as an interface be-
tween the microscopic and the macroscopic properties of a sample. It provides
us with a prescription of how to proceed when these two are to be related. On
the microscopic side, a theoretical analysis of dynamical models often enables
us to calculate equilibrium correlation functions for properties of interest. The
fluctuation-dissipation theorem then relates these correlation functions with
the results of measurements of corresponding response functions.

In the following, we will discuss some microscopic dynamical models. We
begin with the Rouse model, which describes the dynamics of chains in
a non-entangled polymer melt. The effects of entanglements on the motion can
be accounted for by the reptation model, which we will treat subsequently.
Then we shall be concerned with the motion of polymer chains in a solvent,
when the hydrodynamic interaction between the segments of a chain plays
a prominent role. At the end of this chapter, we briefly discuss the modes
of motion in polyelectrolyte solutions, which are strongly affected by
Coulomb forces.

8.2 The Rouse Model

If a polymer molecule is stretched out by applying forces to the end groups
and the forces are removed again it returns to the initial coiled conformation.
The reason for this behavior has already been mentioned: The transition back
to an isotropic coil increases the number of available rotational isomeric states
and thus the entropy. The recoiling effect can also be expressed in mechanistic
terms, by stating that, if the two endgroups of a polymer chain are held fixed
at a certain distance, a tensile force arises due to the net moment transfer onto
the ends. If, rather than keeping hold of the endgroups, two arbitrary points
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within a polymer molecule are kept at constant positions, a tensile force also
arises between them.

We shall derive this force in the next chapter when dealing with the elas-
ticity of rubbers. If Gaussian properties are assumed the result, as given by
Eq. (9.13), is as follows: If a sequence within a chain that has a mean squared
end-to-end distance 〈Δr2〉 is chosen and its endpoints are at a distance Δr,
then the tensile force is

f = bΔr (8.20)

with
b =

3kT
〈Δr2〉 . (8.21)

The result implies that a sequence behaves like a spring, showing a linear
dependence of the force on the extension. The force constant b is proportional
to the absolute temperature T , as is characteristic for forces of entropic origin.
Note furthermore that b decreases on increasing the size of the sequence.

A polymer chain in a melt moves in the surroundings set up by the other
chains. At first, this looks like a complicated situation. However, as it turns
out, one can employ a simple, approximate treatment. For particles of at
least mesoscopic size, the various interactions with adjacent molecules may
be represented in summary by one viscous force. This is well-known from
treatments of the dynamics of a colloid in a solvent. There it can be assumed
that if a colloid moves with a velocity u, the solvent molecules in contact with
its surface create a force that is proportional to u and the solvent viscosity ηs,

f = ζu (8.22)

with
ζ ∝ ηs . (8.23)

ζ is the friction coefficient. We shall utilize this equation also in Sect. 8.4,
where more explanations will be provided.

Rouse devised a treatment of the dynamics of polymer chains in a melt,
which makes use of this notion of a viscous force and also takes account of the
tensile forces arising in stretched parts of the chain. The procedure used in
setting up the Rouse model is remarkably simple. In a first step the chain is
subdivided into NR Rouse sequences, each sequence being sufficiently long
to ensure Gaussian properties. Then, in a second step, each Rouse sequence
is substituted by a bead and a spring. The springs are the representatives
of the elastic tensile forces, while the beads play the role of centers whereon
friction forces apply. The thus emerging Rouse chain is composed of a series
of beads connected by springs, as depicted in Fig. 8.1.

The equations of motion of the Rouse chain are formulated with all inertial
effects neglected. Then the velocity drl/dt of bead l is given by

ζR
drl

dt
= bR(rl+1 − rl) + bR(rl−1 − rl) . (8.24)
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Fig. 8.1. Rouse chain composed of NR beads connected by springs

The left-hand side represents the viscous force, the parameter ζR designating
the friction coefficient per bead. On the right-hand side we have the elastic
forces originating from the adjacent beads, which are located at the positions
rl−1 and rl+1. The force constant bR of the springs depends on the mean
squared end-to-end distances of the Rouse sequences, a2

R and follows from
Eq. (8.21) as

bR =
3kT
a2
R

. (8.25)

It is easy to solve this set of differential equations. Note at the beginning
that motions in the three directions of space, x, y, z, decouple and are equiv-
alent. For the treatment we select the z-direction and consider the equations
of motion

ζR
dzl

dt
= bR(zl+1 − zl) + bR(zl−1 − zl) . (8.26)

First we discuss chains with infinite length. In this case, we have translational
symmetry in terms of l. Then there must be wave-like solutions of the form

zl ∝ exp
(
− t

τ

)
exp(ilδ) . (8.27)

They include an exponential time dependence, as can be anticipated for re-
laxation processes; δ describes the phase shift between adjacent beads. If we
take Eq. (8.27) and introduce it in Eq. (8.26), we obtain the dependence of
the relaxation rate τ−1 on δ

τ−1 =
bR
ζR

(2 − 2 cos δ) =
4bR
ζR

sin2

(
δ

2

)
. (8.28)

Figure 8.2 presents this dependence for values of δ between −π and +π.
Considerations can be restricted to this range, as other values of δ give nothing
new for a discrete chain.
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Fig. 8.2. Relaxation rates of Rouse modes as a function of the phase shift δ. Marks
on the inside of the abscissa show the mode positions for a cyclic chain with NR = 10
beads, the marks on the outside give the modes of a linear chain with the same
length. The lowest order Rouse modes of the two chains with relaxation rates τ−1

R

are especially indicated by a filled square and a filled circle

A formal means of accounting for the finite size of a chain while maintain-
ing the wave-like solutions is provided by the introduction of cyclic boundary
conditions. For a chain with NR beads, this implies the equality

zl = zl+NR , (8.29)

which is satisfied if
NRδ = m2π . (8.30)

NR discrete values of the phase shift are thus selected

δm =
2π
NR

m , m = −
(
NR

2
− 1

)
, . . . ,

NR

2
. (8.31)

Figure 8.2 shows the locations for NR = 10.
Even if for polymers cyclic boundary conditions can be translated into

reality, namely by a synthesis of cyclic macromolecules, common polymer
systems are composed of linear chains. These linear chains possess free ends
where the tensile forces vanish. The boundary conditions then become

z1 − z0 = zNR−1 − zNR−2 = 0 (8.32)

or, in differential form,

dz
dl

(l = 0) =
dz
dl

(l = NR − 1) = 0 . (8.33)
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The real and the imaginary part of Eq. (8.27)

zl ∝ cos(lδ) exp− t

τ
(8.34)

zl ∝ sin(lδ) exp− t

τ
(8.35)

represent separate solutions of the equation of motion. The boundary condi-
tion at l = 0 is only fulfilled by the cosine solution. The condition for the
upper end, l = NR − 1, then selects the values of δ by

dzl

dl
(l = NR − 1) ∝ sin[(NR − 1)δ] = 0 . (8.36)

Since this is solved by
(NR − 1)δ = mπ , (8.37)

we obtain the following eigenvalues for a linear chain with free ends: δm:

δm =
π

NR − 1
m , m = 0, 1, 2, · · · , NR − 1 . (8.38)

Hence, we find for the linear chain NR independent solutions. They are called
Rouse modes and differentiated by their order m. Figure 8.2 shows the
eigenvalues δm for a chain with NR = 10, compared to a cyclic Rouse chain.

Figure 8.3 presents the displacement pattern associated with the lowest
order Rouse mode with m = 1 (the solution for m = 0 describes a free

Fig. 8.3. Displacement pattern of the primary Rouse mode
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translation). The relaxation rate of this mode, shortly called Rouse rate τ−1
R ,

follows from Eq. (8.38) together with Eq. (8.28) as

τ−1
1 = τ−1

R ≈ bR
ζR

π2

(NR − 1)2
, (8.39)

or, with Eq. (8.25), as

τ−1
R ≈ 3kTπ2

ζRa2
R(NR − 1)2

. (8.40)

The result includes the size aR of the Rouse sequences and, therefore, a quan-
tity with a freedom of choice. This arbitrariness can be removed. Since

R2
0 = a2

R(NR − 1) , (8.41)

we obtain for the Rouse time τR the expression

τR =
1

3π2

(ζR/a2
R)

kT
R4

0 . (8.42)

The result indicates that the ratio ζR/a2
R should be independent of the choice

of the sequence. This is true if the friction coefficient ζR is proportional to
the number of monomer units in the sequence. Strictly speaking, the latter
property constitutes a basic requirement for the validity of the Rouse model:
The friction coefficient of a sequence must to be proportional to the number of
monomer units. In fact, this is not trivial and obvious from the very beginning.
It seems to be correct in a melt because, as we shall see, here the Rouse
model works quite satisfactorily if compared to experimental results. On the
other hand, the assumption is definitely wrong for isolated polymer chains
in a solvent where hydrodynamic interactions strongly affect the motion; we
shall be concerned with this point in a subsequent section.

Equation (8.42) gives the dependence of the Rouse time on the degree of
polymerization. Since

R2
0 = a2N , (8.43)

we obtain
τR ∝ N2 . (8.44)

The shortest relaxation time in the Rouse spectrum depends on the choice of
the Rouse sequence and follows, form = NR−1, from Eqs. (8.28) and (8.38) as

τNR−1 =
ζRa

2
R

12kT
=

(ζR/a2
R)

12kT
a4
R . (8.45)

We see that there is a cut-off at the short-time end that depends on aR.
Of course, further relaxation modes exist. However, they can no longer be
described by the Rouse model as motions become localized in this range
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of high relaxation rates and then depend on the chemical composition of
a chain.

As we can see, the motion of a polymer chain in a non-entangled melt as
represented by the Rouse model can be described as a superposition of 3NR

linearly independent Rouse modes, corresponding toNR modes in x-, y- and z-
directions, respectively. In a dynamic equilibrium state all these Rouse modes
become thermally excited and it is instructive to calculate their mean-squared
amplitudes. The displacement pattern of mode m is given by

zl = Zm cos(lδm) . (8.46)

Zm denotes a normal coordinate, that determines the mode amplitude.
Thermal excitations of modes, oscillatory modes as well as the relaxatory
modes discussed here, depend on the associated change in free energy. For the
bead-and-spring model the change in free energy per polymer chain, Δfp, is
given by

Δfp =
bR
2

NR−2∑
l=0

(zl+1 − zl)2 (8.47)

=
bR
2
Z2

m

NR−2∑
l=0

{cos[(l + 1)δm] − cos(lδm)}2 (8.48)

≈ bR
2
Z2

mδ
2
m

NR−2∑
l=0

sin2(δml) =
bR
2
NR − 1

2
Z2

mδ
2
m . (8.49)

The function Δfp(Zm) determines the probability distribution p(Zm) for the
amplitude Zm, which follows from Boltzmann statistics as

p(Zm) ∝ exp−Δfp(Zm)
kT

. (8.50)

Since
Δfp ∝ Z2

m , (8.51)

we find a Gaussian distribution for the normal coordinate Zm. The variance
〈Z2

m〉 may be derived from the property

〈Δfp〉 =
kT

2
, (8.52)

giving
bR
2
NR − 1

2
δ2m〈Z2

m〉 =
3kT
2a2

R

NR − 1
2

δ2m〈Z2
m〉 =

kT

2
. (8.53)

Note that, as expected for an ideal chain, 〈Z2
m〉 is indeed independent of

temperature since

〈Z2
m〉 =

2a2
R

3(NR − 1)δ2m
, (8.54)
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or, using Eq. (8.38),

〈Z2
m〉 =

2
3π2

R2
0

m2
. (8.55)

According to this result, the amplitudes of the Rouse modes rapidly decrease
with increasing mode order m. If we consider the contributions of the dif-
ferent Rouse modes to the known total mean squared end-to-end distance,
〈R2〉 = R2

0, we find that a large part is already provided by the three lowest or-
der Rouse modes. Contributions to the end-to-end distance in the z-direction,
〈R2

z〉 = R2
0/3, all come from z-polarized Rouse modes with odd m’s

〈(zNR−1 − z0)2〉 = 〈(2Z1)2〉 + 〈(2Z3)2〉 + . . . (8.56)

which leads to

〈(zNR−1 − z0)2〉 =
8
π2

R2
0

3

(
1 +

1
9

+ . . .

)
=
R2

0

3
. (8.57)

Hence, 90% of the total mean squared end-to-end distance of a chain originates
from the lowest order Rouse modes. In theoretical treatments, polymer chains
are sometimes substituted by elastic dumbells, set up by two beads connected
by a spring. The justification for this simplification follows from the dominant
role of the primary Rouse modes.

We finish this section with the schematic drawing displayed in Fig. 8.4,
which is meant to indicate what the time-dependent fluctuations of the am-
plitude of a Rouse mode may look like. The interaction of a chain with its
surroundings leads to excitations of this mode at random times, which are
here represented in an idealized manner by sharp steps. In between, the mode
amplitude decreases exponentially with a characteristic relaxation time as
described by the equation of motion. These are the only parts in the time-
dependent curve that show well-defined temporal properties. We may there-
fore anticipate that the shape of the time correlation function is solely de-
termined by the repeated periods of exponential decay. Regarding the results

Fig. 8.4. Time dependence of the amplitude Zm of a Rouse mode (schematic)



8.2 The Rouse Model 325

of this section, we may thus formulate the time correlation function for the
normal coordinate Zm directly, as

〈Zm(0)Zm(t)〉 = 〈Z2
m〉 exp− t

τm
=

2R2
0

3π2m2
exp− t

τm
, (8.58)

the relaxation time τm being given by Eqs. (8.38) and (8.28).

8.2.1 Stress Relaxation

Having discussed the microscopic dynamical properties of a system of Rouse
chains, we now inquire about the resulting mechanical behavior and consider
as an example the shear stress relaxation modulus, G(t). G(t) can be described
with the aid of the fluctuation-dissipation theorem utilizing Eq. (8.7), as

〈σzx(0)σzx(t)〉 = kT
G(t)
v

.

We have to calculate the fluctuations in the stress field produced by a sys-
tem of Rouse chains in thermal equilibrium. As explained above, fluctuations
of an intensive variable such as the stress depend upon the size of the cho-
sen subsystems. We select subsystems of volume v, having orthogonal edges
with lengths lx, ly and lz as displayed in Fig. 8.5. Being concerned with the
shear stress σzx, we recognize that contributions all arise from springs with
a non-vanishing component of extension in the x-direction. We choose the
symbols x̂i, ŷi, ẑi for the three components of the extension of spring i, which
may be incorporated in any chain, and designate by fx,i the associated force
component along x. The mean value of σzx in a subsystem is obtained by
a summation over the contributions of all included springs i

σzx =
∑

i

1
lxly

ẑi

lz
fx,i . (8.59)

Fig. 8.5. Notions used in the calculation of the tensile stress σzx associated with
a system of Rouse chains: Reference volume v = lxlylz; unit area, crossed by the
spring i with extensions x̂i and ẑi along x and z
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To see the background of this equation, consider a unit area normal to the
z-axis, as indicated in Fig. 8.5. Stress on this plane is produced by all springs
crossing it. The term

1
lxly

ẑi

lz

expresses the probability that spring i, with an extension ẑi along z, crosses
the unit area. When crossing this area, the spring contributes a force fx,i to
σzx. We now adopt Eq. (8.20) and write

σzx =
1

lxlylz

∑
i

ẑifx,i =
1
v

∑
i

ẑifx,i =
bR
v

∑
i

ẑix̂i . (8.60)

σzx, being defined as the spatial average in a volume v, represents a fluc-
tuating quantity that shows different values in different subsystems or for
measurements at different times. The ensemble average vanishes

〈σzx〉 = 0 , (8.61)

since
〈ẑix̂i〉 = 〈ẑi〉〈x̂i〉 = 0 (8.62)

regarding that the movements of Rouse chains along z and x are indepen-
dent. The time correlation function of the fluctuations of the shear stress,
〈σzx(0)σzx(t)〉, follows as

〈σzx(0)σzx(t)〉 =
1
v2
b2R

∑
k,l,k′,l′

〈x̂k,l(0)ẑk,l(0)x̂k′,l′(t)ẑk′,l′(t)〉 . (8.63)

Here, the extensions along x and z of the spring l on the chain k are denoted
x̂k,l and ẑk,l and those of the spring l′ on the chain k′ correspondingly. The
sum includes all chains contained in v. As the extensions of springs in different
chains are uncorrelated, we write

〈σzx(0)σzx(t)〉 =
1
v2
cpvb

2
R

∑
l,l′

〈x̂l(0)x̂l′(t)〉〈ẑl(0)ẑl′(t)〉 , (8.64)

where cpv gives the number of chains in v.
Chain dynamics may be represented as a superposition of independent

Rouse modes. The displacements of mode m′, polarized in the z-direction, are
given by

zl = Zm′ cos(δm′ l) . (8.65)

The extensions of the springs follow by taking the derivative

ẑl = zl+1 − zl ≈ dzl

dl
= −Zm′δm′ sin(δm′ l) . (8.66)
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Equivalently, the extension associated with mode m, polarized along x, is
given by

x̂l = xl+1 − xl ≈ dxl

dl
= −Xmδm sin(δml) . (8.67)

We thus obtain

〈x̂l(0)x̂l′ (t)〉 =
∑
m

〈Xm(0)Xm(t)〉 sin(δml) sin(δml
′)δ2m (8.68)

and

〈ẑl(0)ẑl′(t)〉 =
∑
m′

〈Zm′(0)Zm′(t)〉 sin(δm′ l) sin(δm′ l′)δ2m′ . (8.69)

Since

∑
l

sin(δml) sin(δm′ l)
∑
l′

sin(δml
′) sin(δm′ l′) =

(
NR − 1

2

)2

δm,m′ (8.70)

where δm,m′ denotes the Kronecker-delta, we find

〈σzx(0)σzx(t)〉 =
1
v
cpb

2
R

(
NR − 1

2

)2

· (8.71)
∑
m

δ4m〈Xm(0)Xm(t)〉〈Zm(0)Zm(t)〉 .

Introducing the mean-squared amplitudes 〈X2
m〉 and 〈Z2

m〉 of the Rouse modes
in thermal equilibrium, as given by Eq. (8.53), leads to

〈σzx(0)σzx(t)〉 =
1
v
cp(kT )2

∑
m

〈Xm(0)Xm(t)〉
〈X2

m〉
〈Zm(0)Zm(t)〉

〈Z2
m〉 . (8.72)

Now we utilize the fluctuation-dissipation theorem, i.e., apply Eq. (8.7) to
obtain the shear relaxation modulus

G(t) = cpkT
∑
m

〈Xm(0)Xm(t)〉
〈X2

m〉
〈Zm(0)Zm(t)〉

〈Z2
m〉 . (8.73)

Equation (8.73) relates G(t) to the magnitudes and the time dependencies of
the fluctuations of the Rouse modes in thermal equilibrium. The time corre-
lation functions are given by Eq. (8.58)

〈Zm(0)Zm(t)〉 = 〈Z2
m〉 exp− t

τm
, (8.74)

and equivalently

〈Xm(0)Xm(t)〉 = 〈X2
m〉 exp− t

τm
. (8.75)
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Hence, we finally obtain

G(t) = cpkT

NR−1∑
m=1

exp
(
−2

t

τm

)
. (8.76)

Equation (8.76) describes the shear stress relaxation modulus associated with
a system of Rouse chains. The result has a remarkably simple structure, be-
cause all Rouse modes contribute to G(t) with the same weight. Note that
the relaxation rates are increased by a factor of two with regard to the Rouse
mode rates τ−1

m .
Equation (8.76) may be further evaluated by carrying out the summation.

If we disregard the short-time range, the discussion may be reduced to the
contributions of the low order Rouse modes and we can replace Eqs. (8.28)
and (8.38) by the approximate relation

τ−1
m ≈ τ−1

R m2 . (8.77)

Introduction into Eq. (8.76) and a change from the summation to an integral
gives

G(t) ∝
NR−1∫

m=1

dm exp
(−2τ−1

R m2t
) ≈

∞∫

m=0

dm exp
(−2τ−1

R m2t
)

(8.78)

or, with the substitution

u = m

(
t

τR

)1/2

, (8.79)

the expression

G ∝
(τR
t

)1/2
∞∫

u=0

exp(−2u2) du , (8.80)

hence
G(t) ∝ t−1/2 . (8.81)

The result is a power law that is characteristic for the relaxation of Rouse
chains and it may be compared with experiments on polymer melts. Indeed,
one finds good agreement for several systems. The center of the glass–rubber
transition, as observed in stress relaxation experiments, is often well-described
by Eq. (8.81). Figure 8.6 depicts, as an example, the time-dependent shear
modulus of poly(vinylchloride) (PVC), presented as a master-curve referred
to the glass transition temperature (Tg = 65 ◦C). The slope of the log–log plot
corresponds to an exponent −1/2.

The power law for the time-dependent modulus can be transformed into
a law valid for the frequency domain, either by applying the general relations of
linear response or by using the ω-dependent form of the fluctuation-dissipation
theorem. The result is

G′(ω) ∝ (η0ω)1/2 . (8.82)

The measurement shown in Fig. 6.16 agrees with this prediction.
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Fig. 8.6. Time-dependent shear modulus of PVC. Master curve set up for Tg =
65 ◦C as the reference temperature. The dashed line indicates the slope predicted
by the Rouse model. Data from Eisele [101]

We can also determine the viscosity in the zero shear rate limit by appli-
cation of Eq. (6.107) as

η0 =

∞∫

0

G(t)dt

= kT cp

NR−1∑
m=1

τm
2

≈ kT cp
τR
2

∞∑
m=1

1
m2

= kT cpτR
π2

12
. (8.83)

Regarding Eq. (8.44), the result indicates a linear dependence of η0 on the
degree of polymerization,

η0 ∝ cm
N
N2 ∝ N . (8.84)

This is in full agreement with the observations on non-entangled melts dis-
played in Fig. 6.13.

The Rouse model is also applicable for entangled melts, however, only in
a restricted manner. While a description of the motion of the whole polymer
chain is not possible it still can be employed for a treatment of the dynamics
of the chain parts between entanglements. We will discuss the resulting overall
behavior in the next section.



330 8 Microscopic Dynamics

The Rouse model also has intrinsic limitations at short times. According
to Eq. (8.76), the unrelaxed modulus is determined by the number density of
Rouse sequences, cR, since we find

G(0) = cpkT (NR − 1) = cRkT . (8.85)

This dependence on the choice of the sequence associated with an element of
the Rouse chain may look strange at first; however, the cause of this apparent
arbitrariness and the solution of the problem are easy to see. One has to realize
that the internal degrees of freedom of the sequence give further contributions
to the shear modulus; the correct value follows only from both parts together.
We therefore have to write in general

G(t) = ΔGmic(t) +GRouse(t) (8.86)

where the first part, ΔGmic(t), accounts for the short-time properties. In con-
trast to the Rouse modes, the internal modes are finally controlled by the
microstructure, i.e., the chemical composition. The point of transition from
the Rouse representation to the detailed description has, indeed, a freedom
of choice; one has only to stay outside the range where specific microscopic
effects appear.

8.2.2 The Dielectric Normal Mode

We return once again to the frequency-dependent and temperature-dependent
measurements of the dielectric function of polyisoprene (PI) presented in
Sect. 6.3.2. As shown in Figs. 6.20 and 6.21, two relaxation processes ex-
ist. The low frequency process, the normal mode, is the one of interest here.
As has already been mentioned, it reflects the movements of the end-to-end
distance vector R of the chain. The Rouse model enables these movements
to be treated in the case of melts that are not entangled. Earlier, we learned
that the motion of the end-to-end distance vector is to a large part due to
the superposition of the three lowest order Rouse modes, polarized in the x,
y and z-directions. Therefore, the dielectric normal mode, when measured for
samples with a molar mass below the entanglement limit, may be identified
with these primary modes.

For a Rouse chain built up of NR polar sequences, each one carrying
a dipole moment with a longitudinal component pl

‖, the total dipole mo-
ment pp is given by

pp =
NR−1∑

l=0

pl
‖ . (8.87)

Let us refer in the discussion to a representation of the dielectric data in
the time domain, as expressed by the time-dependent dielectric function ε(t).
Figure 8.7 depicts its general shape in a schematic drawing. The α-process
and the normal mode show up as two subsequent steps located at the



8.2 The Rouse Model 331

Fig. 8.7. General shape of the time-dependent dielectric function ε(t) of PI showing
the α-process and the dielectric normal mode (schematic drawing)

times τα and τnm, with heights corresponding to the relaxation strengths
Δεα and Δεnm.

The fluctuation-dissipation theorem provides an exact description of the
step Δεnm(t) associated with the normal mode. Employing Eq. (8.6) in com-
bination with Eq. (8.2) and using the relation

〈pv(0)pv(t)〉 = vcp〈pp(0)pp(t)〉 (8.88)

assuming independent motions of different chains, we obtain

cp〈pp(0)pp(t)〉 = 3kTε0(Δεnm(∞) − Δεnm(t)) . (8.89)

The relaxation strength, Δεnm(∞), follows from

cp
〈
p2

p

〉
= 3kTε0Δεnm(∞) . (8.90)

Since 〈
p2

p

〉
= NR

〈(
pl
‖
)2
〉

(8.91)

and
〈R2〉 = NRa

2
R (8.92)

we have

〈
p2

p

〉
=

〈(
pl
‖
)2
〉

a2
R

〈R2〉 = β2〈R2〉 . (8.93)
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Equation (8.93) relates the variance of the dipole moment of the polymer to
the mean squared end-to-end distance of the chain. We therefore substitute
in Eq. (8.89) pp by R, thus obtaining

cpβ
2〈R(0)R(t)〉 = 3kTε0(Δεnm(∞) − Δεnm(t)) . (8.94)

Now we employ the Rouse model. As the end-to-end distance vector is essen-
tially determined by the lowest order Rouse modes, we can also represent the
time correlation function in good approximation by

〈R(0)R(t)〉 ≈ R2
0 exp− t

τR
. (8.95)

Applying Eq. (8.95) in Eq. (8.94) leads to

ε0Δεnm(t) � cpβ
2R2

0

3kT

(
1 − exp− t

τR

)
. (8.96)

Equation (8.96) provides a description of the normal mode, giving the relax-
ation strength as well as the relaxation time. Notice in particular that the
observed molar mass dependence of τnm for non-entangled melts as shown in
Fig. 6.22,

τnm ∝M2 , (8.97)

is in full agreement with the prediction of the Rouse theory

τR ∝ N2 . (8.98)

Further contributions with minor weights originate from the subsequent Rouse
modes with m > 1. They may lead to the observed line-broadening on the high
frequency side, as described empirically by the Havriliak–Negami equation.

We finish this discussion with two remarks. Experiments mostly yield the
frequency-dependent complex dielectric constant, rather than ε(t). The con-
version is carried out straightforwardly by application of the general relation-
ships Eqs. (6.31) and (6.44). We write

ε0Δεnm(ω) =
∫ ∞

0

d
dt

(ε0Δεnm(t)) exp(iωt)dt (8.99)

= ε0Δεnm(∞)
∫ ∞

0

1
τR

exp
(
− t

τR

)
exp(iωt)dt (8.100)

= ε0Δεnm(∞)
1

1 − iωτR
, (8.101)

thus arriving, as expected, at the expression for a Debye process.
The second remark concerns the use of the order of magnitude symbol in

Eq. (8.96). In fact, this result is not exact, because we disregard possible inner
field effects. Complete treatments of dielectric functions of polar liquids must
account for the difference between the externally applied electric field and the
local field effective at the position of a dipole. These inner fields may well
modify the dynamics of polar chains, but to include this effect theoretically
is not a simple task and lies outside our scope.
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8.3 Entanglement Effects in Polymer Melts

Entanglements constitute a major feature of the structure in polymer melts
and strongly affect the dynamics. Because they interpenetrate each other (the
more they interpenetrate, the higher the molar mass), polymer molecules be-
come entangled. Since the chains are linearly connected objects that cannot
cross each other, the individual motions become constrained, and it is impos-
sible for the chain to move freely as a whole in all directions.

How can one deal with this situation? It is important to recognize that the
restrictions are of peculiar nature in that they mainly concern the lateral chain
motion, i.e., the motion perpendicular to the chain contour. It is this property
that enables a simple model to be constructed. Grasping this main point, de
Gennes and Edwards suggested to envisage the chain dynamics as a motion
confined to a tube. This tube is set up by those of the adjacent polymers
that represent obstacles for the lateral motion. Owing to its simplicity, the
tube model allows us to carry out a theoretical analysis. As we will see, it can
explain the properties of entangled polymers to a large degree in quantitative
terms.

We have already met several manifestations of the entanglements, in par-
ticular

• the occurrence of the rubber-elastic plateau in the time-dependent and
frequency-dependent mechanical response functions,

• the change in the molar mass dependence of the viscosity when the entan-
glements become effective, and

• the change in the molar mass dependence of the relaxation time of the
dielectric normal mode at the same point.

Hence, the effect of the entanglements is two-fold, since both the elastic and
the viscous properties are concerned. The observations all indicate the exis-
tence of a critical molar mass, introduced earlier as the critical molar mass
at the entanglement limit, denoted by Mc. Polymers with low molar masses,
M < Mc, exhibit no entanglement effects, but for M > Mc they show up
and become dominant. All properties that are founded on motions on length
scales corresponding to a molar mass above Mc are affected. This holds, in
particular, for the viscosity and the dielectric normal mode since these include
the whole polymer chain. On the other hand, Rouse dynamics is maintained
within the sequences between the entanglement points, as has already been
mentioned.

The change in the dynamics from a free Rouse motion to a movement
constrained to a tube, which occurs at a certain sequence length, shows up
in quasi-elastic neutron scattering experiments. These experiments have the
advantage that they combine a spatial resolution in the 1–10 nm range with
a frequency resolution in the GHz-range. In addition, experiments may be
conducted on mixtures of deuterated and protonated polymers. Since deu-
terium and hydrogen have different scattering cross-sections, one can study
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directly the individual properties of the minority species. Studies are usually
carried out on a dilute solution of protonated chains in a deuterated matrix.
Experiments then yield the intermediate scattering law S(q, t). A Fourier
transformation relates S(q, t) to the time-dependent pair correlation function
of the monomers in protonated chains g(r, t)

S(q, t) =
∫

exp(−iqr)(g(r, t) − 〈cm〉) d3r (8.102)

(if necessary, for an understanding the explanations to Eq. (A.34) in the Ap-
pendix should be checked). For a dilute solution g(r, t) agrees with the pair
correlation function of the monomers of one chain. Hence, experiments inform
about the motion of individual chains.

If the motion of the chains in the melt is not restricted, the long-time limit
of the pair correlation function is given by

g(r, t→ ∞) = 〈cm〉 . (8.103)

As a consequence, the intermediate scattering function vanishes for long times

S(q, t→ ∞) = 0 . (8.104)

This behavior changes if the motion of the chains remains confined. Under
such conditions the pair correlation function differs from 〈cm〉 for all times,

g(r, t→ ∞) = 〈cm〉 , (8.105)

if the distances r lie within the confinement range. For distances r outside this
zone, g(r, t) is determined by the contributions of other chains and Eq. (8.104)
remains valid.

Figure 8.8 presents the results of quasielastic neutron scattering experi-
ments on melts of poly(ethylene-co-propylene). The curves belong to different
scattering vectors q. We can see that decay times decrease with increasing q,
as is generally expected for all kinds of diffusive motions.

A straightforward theoretical analysis proves that the intermediate scat-
tering law of a system of Rouse chains may be expressed as a function of one
dimensionless variable only, which is defined as

u = q2a2
R

(
t

τ(δ = π)

)1/2

= q2
(

12kTa2
Rt

ζR

)1/2

. (8.106)

τ(π) is the minimum relaxation time of the Rouse chain, as given by Eq. (8.45).
When using the variable u, measurements at different q’s coincide, or better,
become parts of one common curve. The lower part of Fig. 8.8 displays this
reduced representation. The dynamics at short times up to u = 2 is indeed
Rouse-like. All the curves merge together and correspond to the prediction of
the Rouse model. For longer times, however, the situation changes, as curves
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Fig. 8.8. Results of a quasielastic neutron scattering experiment carried out for
a melt of poly(ethylene-co-propylene) at 199 ◦C (10% protonated chains dissolved in
a deuterated matrix; M = 8.6×104 g mol−1). Intermediate scattering laws measured
at the indicated scattering vectors (top); data representation using the dimensionless
variable u = q2(12kTa2

Rt/ζR)1/2 (bottom). From Richter et al. [102]
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Fig. 8.9. Size d of the confinement range, as derived from the long-time limits of
the curves shown in Fig. 8.8 [102]

now deviate from the Rouse scattering law. The measured curves level-off
rather than tending to zero. As explained above, exactly this behavior is
indicative of a confinement, at least a temporary one in the time range of the
experiment. Hence, we find clear evidence for a change from Rouse dynamics
to a confined motion.

It is possible to derive from the long-time limiting values the size of the
confinement range. S(q, t → ∞) actually provides a Fourier analysis of its
shape. To see this, just note that S(q, t→ ∞) is given by

S(q, t→ ∞) =
∫

exp(−iqr)(g(r,∞) − 〈cm〉) d3r (8.107)

and furthermore, that the function

g(r,∞) − 〈cm〉

has non-vanishing values only for distances r within the confinement range.
Consequently, a measurement of the halfwidth Δq of S(q,∞) yields an es-
timate of the diameter d of the confinement range, based on the reciprocity
relation of Fourier transforms

d � 1
Δq

. (8.108)

Results, as obtained for different temperatures, are shown in Fig. 8.9. We
notice that d increases with rising temperature, i.e., the motional constraints
become weaker.

The neutron scattering experiments indicate that the Rouse model re-
mains valid for chain sequences below a critical length. This suggests that we
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represent the time-dependent shear modulus of an entangled polymer melt as
being composed of three parts

G(t) = ΔGmic(t) + cpkT

NR−1∑
m=m∗

exp
(
−2

t

τm

)
+ cpkTm

∗Φ
(
t

τd

)
(8.109)

As above in Eq. (8.86), ΔGmic(t) describes the short-time contributions deter-
mined by the chemical microstructure of the chain. The central part is given
by the Rouse model. It represents the dynamics for chain sequences that are
shorter than the chain parts between entanglements and, on the other side,
are still long enough to ensure that Gaussian properties hold. The Rouse mode
with the longest relaxation time not yet affected by the entanglements is that
with the order m∗ given by

δm∗(NR,c − 1) � π , (8.110)

where NR,c is the number of Rouse units corresponding to a sequence with
the critical molar mass Mc. Using Eq. (8.38) we obtain

m∗ π

NR − 1
(NR,c − 1) � π (8.111)

or
m∗ � NR − 1

NR,c − 1
. (8.112)

The associated relaxation time is, according to Eq. (8.77),

τm∗ ≈ τR

(
NR,c − 1
NR − 1

)2

. (8.113)

Rouse modes with m < m∗ do not exist. They become replaced by other
relaxation processes and the third term in Eq. (8.109) describes this contri-
bution. The relaxation strength is identical to that of the replaced Rouse
modes, because this part remains unrelaxed after the decay of all modes with
m ≥ m∗. Writing the correlation function for the long-term part in the form
Φ(t/τd) implies the assumption that, similar to the Rouse-modes, also this
part is controlled by a single characteristic time, the disentangling time τd,
only. As introduced here, Φ(t/τd) is a general function that is normalized, i.e.,

Φ(0) = 1 .

τd may be identified, for example, with the integral width of Φ

∞∫

t=0

Φdt = τd .
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It is known from the experiments (Figs. 6.13 and 6.14) that τd shows a power
law dependence on M ,

τd ∝ Mν , with ν = 3−3.6 .

A main feature of the behavior expressed by Eq. (8.109) is the formation
of a gap in the spectrum of relaxation times, arising between the first two
contributions and the long-time part. This gap produces the plateau region,
and the extension is determined by the ratio τd/τm∗ . For the dependence of
this ratio on the molar mass we can write

τd
τm∗

� Mν

Mν
c

, (8.114)

considering that τd � τm∗ for M � Mc.
In order to see the effect of the entanglements on the viscosity, we apply

Eq. (6.107),

η0 =

∞∫

0

G(t)dt , (8.115)

to Eq. (8.109). Ignoring the short-time part ΔGmic(t), we find that the shear
viscosity is given by the relaxation strengths and the mean relaxation times
of both the Rouse modes and the disentangling processes, as

η0 = cpkT [(NR −m∗)τα +m∗τd] (8.116)

or

η0 = G(0)
(
G(0) −Gpl

G(0)
τα +

Gpl

G(0)
τd

)
. (8.117)

Gpl denotes the plateau modulus and τα is the mean relaxation time of the
Rouse mode part, agreeing with the mean relaxation time of a Rouse system
of chains with NR equal to NR,c. Because the first term on the right-hand side
of Eq. (8.117) is constant, for the molar mass dependence of the viscosity of
entangled melts we obtain the expression

η0 = β1 + β2τd(M) = β1 + β3M
ν . (8.118)

In the limit of high molar mass, M �Mc, we have

η0 ∝ τd ∝ Mν . (8.119)

8.3.1 The Reptation Model

Starting from the tube concept and considering the motions of the confined
chains, Doi and Edwards devised a theory that became well-known as the
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Fig. 8.10. Modeling the lateral constraints on the chain motion imposed by the
entanglements by a tube. The average over the rapid wriggling motion within the
tube defines the primitive path (continuous dark line)

reptation model. The model assumptions are indicated in Fig. 8.10. Under
the constraints imposed by the tube, the chain motion may be thought of
as being set up of two different components. First, there is a rapid wriggling
motion oriented along the tube cross-sections. It corresponds to the Rouse
part in the spectrum. Averaging over several cycles of this rapid motion gives
the mean positions of the monomers along the tube, represented in the figure
by the dark line in the tube center. This line, called the primitive path,
describes the shortest path connecting the endgroups of the chain, which is
compatible with the topology of the entanglements as modeled by the tube.
The second component of the motion is the time-dependent evolution of this
primitive path and exactly this process leads to the disentangling of the chain.
The Doi–Edwards theory focuses on the latter mechanism and thus reduces
the problem of the motion of a chain under the constraints in a melt to the
problem of the time dependence of the primitive path.

Both the actual chain and the primitive path represent random coils. Since
the end-to-end distances are equal, we have

R2
0 = NRa

2
R = lprapr . (8.120)

Here, we have introduced the contour length of the primitive path, lpr, and an
associated sequence length apr. apr characterizes the stiffness of the primitive
path and is determined by the topology of the entanglement network.

The process of disentangling, as it is envisaged in the reptation model, is
sketched in Fig. 8.11. The motion of the primitive chain, the name given
to the dynamic object associated with the primitive path, is described as
a diffusion along its contour, that is to say, a reptation. The associated
curvilinear diffusion coefficient can be derived from the Einstein relation,
which holds generally, independent of the dimension or the topology. Denoting
it D̂, we have

D̂ =
kT

ζp
. (8.121)
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Fig. 8.11. Reptation model: Breakdown of the tube resulting from a reptative
motion of the primitive chain. The parts left empty disappear

Here, ζp is the friction coefficient of the chain. As there are no entanglements
within the tube, ζp equals the sum of the friction coefficients of all beads

ζp = NRζR . (8.122)

Hence, D̂ is given by

D̂ =
kT

NRζR
. (8.123)

The diffusive motion leads to a continuous disentangling of the chain, as in-
dicated in the figure. When parts of the chain have left the original tube, the
empty part of the tube is filled with other chains and disappears. The result of
the process is a continuous shortening of the initial tube and simultaneously
a continuous increase in the amount of reorientation of the chain. The process
of disentangling is finished when the initial tube has vanished.

The time needed to achieve a complete disentangling can be estimated.
In order to become disentangled, chains have to diffuse over a distance lpr,
i.e., the original length of the primitive path, and this requires a time

τd � l2pr

D̂
. (8.124)

If we use Eqs. (8.120) and (8.123) we obtain the molar mass dependence of
the disentangling time

τd ∝ ζRN
3
R . (8.125)

Since τd determines the viscosity, the reptation model also predicts

η0 ∝ N3
R ∝ M3 , (8.126)

which perfectly agrees with the experimental result of Fig. 6.14 in the limit
of high molar masses. There are several suggestions for how to explain the
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deviations showing up for intermediate molar masses in Figs. 6.14 and 6.13.
Generally speaking, they result from the fact that for such molar masses
the tube is not yet a stable object. Its contour length as determined by the
primitive path fluctuates and the constraints set by the entanglements may
be released since the chains involved also diffuse. Both effects accelerate the
chain motion.

Doi and Edwards analyzed the described disentangling process of the prim-
itive chain in more detail. As in the case of the Rouse motion, the dynamics
of the disentangling process can also be represented as a superposition of in-
dependent modes. Again, only one time constant, the disentangling time τd,
is included, and it sets the time scale for the complete process. In the Doi–
Edwards treatment, τd is identified with the longest relaxation time. Calcu-
lations result in an expression for the time-dependent shear modulus in the
terminal flow region. It has the form

G = GplΦ

(
t

τd

)
(8.127)

with

Φ =
8
π2

∑
odd m

1
m2

exp
(
−m2

τd
t

)
. (8.128)

The Einstein relation, already employed in Eq. (8.121) to write down the
curvilinear diffusion coefficient in the tube, also gives us, when used as nor-
mally, the diffusion coefficient of a polymer in a melt, provided that there are
no entanglements. We call it D and find

D =
kT

ζp
=

kT

NRζR
∝ 1
M

. (8.129)

How does this result change for an entangled melt? The reptation model gives
an answer. One only has to realize that the disentangling process is associated
with a shift of the center of mass of a polymer molecule over a distance in the
order of lpr along the primitive path and, therefore, leads to a mean-squared
displacement

〈Δr2c 〉 � R2
0 = lprapr . (8.130)

Since the diffusion coefficient in three dimensions is generally given by

D =
〈Δr2c 〉
6Δt

, (8.131)

we obtain
D ∝ lprapr

τd
∝ NR

N3
R

∝ 1
M2

. (8.132)

Hence, according to the reptation model, the transition from a non-entangled
to an entangled polymer melt should be accompanied by a change in the
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Fig. 8.12. Determination of diffusion coefficients of deuterated PE chains in a PE
matrix by infrared absorption measurements in a microscope. Concentration profiles
φ(x) obtained in the separated state at the beginning and at a later stage of dif-
fusive mixing (the dashed lines were calculated for monodisperse components; the
deviations are due to polydispersity) (left). Diffusion coefficients at T = 176 ◦C,
derived from measurements on a series of d-PEs of different molar mass (right). The
continuous line corresponds to a power law D ∝ M2. Work of Klein [103]

exponent of the power law for the diffusion coefficient, D ∝ Mν , from ν = −1
to ν = −2.

Equation (8.132) is in good agreement with experimental results, as is
exemplified by the data presented in Fig. 8.12. Here, diffusion coefficients of
deuterated polyethylenes in a matrix of a standard polyethylene were mea-
sured in a microscope using infrared radiation. The infrared radiation discrim-
inates between the two components due to the different vibrational properties
of the two species. Concentration profiles then can be directly determined by
an absorption measurement. Following the time-dependent evolution of the
concentration profile, starting with separated components in two films in lat-
eral contact, enables a determination of the diffusion coefficient to be carried
out. The left-hand side of Fig. 8.12 depicts two typical concentration profiles,
the curve on the left giving the initial profile at the boundary of the two films,
the curve on the right referring to a later stage of development. Experiments
were conducted for a series of deuterated polyethylenes with different molar
masses. The right-hand side shows the diffusion coefficients as obtained for
T = 176 ◦C. The slope of the broken line exactly agrees with the theoretical
prediction.

There is another beautiful experiment that is even more convincing in its
support of the reptation model. Fluorescence microscopy enables the motion of
fluorescently stained single chains to be observed directly. The technique was
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Fig. 8.13. Series of images of a fluorescently stained DNA chain embedded in a con-
centrated solution of unstained chains: Initial conformation (left); partial stretching
by a rapid move of the bead at one end (second from the left); chain recoil by a repta-
tive motion in the tube (subsequent pictures to the right). Reprinted with permission
from T. Perkins, D.E. Smith and S. Chu. Science, 264:819, 1994. Copyright (1994)
American Association for the Advancement of Science

applied to a concentrated solution of monodisperse DNA molecules with an
ultra-high molar mass corresponding to a contour length in the 100 µm-range.
A coated 1 µm-diameter polystyrene sphere was attached on one end of the
chain and it could be manipulated and moved with the aid of optical tweezers.
In one experiment the test chain was rapidly pulled at this end; Fig. 8.13
shows the subsequent relaxation. We see that the recoil follows exactly the
path formed by the chain in its original conformation, i.e., the drawing back
occurs within the tube. We thus have direct evidence that tube-like constraints
exist in this system and that they are stable for a long time.

8.4 Solution Viscosities

Having discussed the dynamics of polymer chains in the melt, in this section,
we will examine their motion in solution as well as the related viscous prop-
erties. As we shall see, here the diffusion coefficient cannot be described by
either of the two equations for the melt, but is given by

D ∝ kT

ηsR
∝M−ν (8.133)

with ν = 3/5 for good solvents. The reason for the qualitatively different
behavior is the dominant effect of hydrodynamic interactions. They turn
each chain into a closed object that cannot be penetrated by the solvent. Cor-
respondingly, the viscosity increase produced by dissolved polymers equals
that of dispersed colloids. Peculiar effects arise again for polyelectrolytes.
Strong electrostatic interchain interactions are found already at very low con-
centrations. They change the character of the diffusive motions and greatly
enhance the viscosity.
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8.4.1 Neutral Polymers: Hydrodynamic Interaction

We first consider an internally rigid colloidal particle suspended in a liquid.
Application of an external force will cause the particle to move. The mo-
tion necessarily affects the surrounding liquid. The enforced replacement of
solvent molecules from the front to the back of the moving colloid results
in a disturbance that extends over a larger region. For a constant velocity,
a flow field that moves in the stationary state together with the particle is
created. Figure 8.14 depicts this flow field. It has a major component in the
direction of the velocity of the colloid. Since the flow field is inhomogeneous
and includes velocity gradients, energy is dissipated. The force acting on the
particle provides the power.

We can analyze this force in more detail. To begin with, remember the
simple case of a shear flow created if two parallel plates are moved against
each other with constant velocity vx. Here, a linear velocity profile evolves,
like that included in Fig. 8.16. The power that has to be supplied is given by

dW
dt

= fvx = ηs
∂vx

∂z
LxLy

∂vx

∂z
Lz = ηsV

(
∂vx

∂z

)2

. (8.134)

ηs denotes the viscosity of the fluid, Lz is the thickness of the liquid layer, and
the product LxLy gives the area of the plates. The expression on the right-
hand side states that the power dissipated per unit volume is proportional to
ηs and to the square of the velocity gradient. Here, the result was obtained
for the particular case of a constant velocity gradient. Theories for the general

Fig. 8.14. Flow field created in a liquid if a suspended spherical particle is moved
by the action of an external force (Eq. (8.147)). The thicker arrow in the center
represents the force
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case of arbitrary flow fields with varying velocity gradients derive the following
expression for the dissipated power:

dW
dt

= ηs

∫

V

∂vi

∂xj

∂vi

∂xj
d3r (8.135)

(we adopt the convention of performing a summation on repeated indices).
The flow field v(r) produced by the particle if it is dragged with a constant

velocity u through the liquid can generally be described as

v(Δr) = H(Δr)u , (8.136)

in component notation

vi(Δr) = Hik(Δr)uk , (8.137)

whereby Δr = r − rc denotes the distance between r and the colloid po-
sition rc. Employing Δr means that the flow field moves together with the
particle, i.e., is stationary in a particle fixed coordinate system. The tensor H
determines, when applied on u, the velocity field. The velocity gradient tensor
included in Eq. (8.135) follows by calculating the derivative

∂vi

∂rj
=

∂

∂Δrj
Hik(Δr)uk = hijk(Δr)uk . (8.138)

Here we introduced another tensor, of third rank, with components hijk. The
formulated dependence is of the linear type, therefore, holds for Newtonian
liquids. All low molar mass liquids behave in Newtonian manner, at least for
ordinary velocities. If Eq. (8.138) is inserted into Eq. (8.135), followed by an
integration over the whole flow field, the dissipated power is obtained

dW
dt

= ηs

∫

V
hijkhijlukul d3r = ηsukβklul . (8.139)

Here, we introduced yet another tensor, with components βkl. It is specific for
the particle and depends on its size and shape.

The power required for dragging the particle is supplied by the force acting
on it

dW
dt

= f · u = flul . (8.140)

Comparing Eqs. (8.139) and (8.140) we obtain

fl = ηsukβkl . (8.141)

Hence, u and f are linearly related. Force and velocity do not need to be
oriented parallel to each other, but for moving spheres they do for symmetry
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reasons, and we will discuss only this case. Here the tensor βki reduces to
a scalar parameter, β and one can write

f = ηsβu . (8.142)

The proportionality constant relating the applied force to the resulting veloc-
ity is the friction coefficient ζ, and is given by

ζ = βηs . (8.143)

In order to calculate the friction coefficient of a spherical colloid, the
Navier–Stokes equation for liquids has to be solved, with the boundary con-
dition that the liquid layer adjacent to the particle adheres to its surface thus
moving with the same velocity. The problem was solved long ago by Stokes.
The result is the famous equation

ζ = 6πRηs . (8.144)

It states that the friction coefficient of a sphere scales linearly with the ra-
dius R. When dealing with particles that are isotropic on average but other-
wise have an arbitrary structure, it is sometimes convenient to replace them
by an equivalent sphere. The replacement implies that we assign to the
particle a hydrodynamic radius Rh, defined by

Rh =
ζ

6πηs
. (8.145)

According to the definition, Rh is the radius of a spherical particle that pos-
sesses the same friction coefficient as the given colloid.

We return once again to the flow field depicted in Fig. 8.14. Actually it
represents the result of a calculation first carried out by Oseen. Oseen derived
the field produced by a point-like particle being dragged through the liquid
by a force f . As proved in his treatment, the following analytical expression
relates the flow field v(Δr) to f :

v(Δr) =
1

8πηs

(
f

Δr
+

(f · Δr)Δr

Δr3

)
, (8.146)

or, using a tensor notation

vi =
1

8πηsΔr

(
δij +

ΔriΔrj

ΔrkΔrk

)
fj (8.147)

= HOs
ij fj .

HOs
ij is known as the Oseen hydrodynamic interaction tensor. In a com-

mon situation there exists a certain flow field, v0(r) and a suspended particle
moves at first with the liquid. Application of an external force, f , on the par-
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ticle then produces a disturbance, vd(Δr). It becomes superposed on v0(r)
so that the flow field changes to

v(r) = v0(r) + vd(Δr) . (8.148)

The Oseen tensor provides an accurate description of vd(Δr).
The central point of Oseen’s result is the predicted slow decay of the distur-

bance with the reciprocal of the distance. This implies that the hydrodynamic
interaction is of a long-ranged nature and therefore strong and effective. The
consequences for a group of particles are drastic. Since the flow has a major
component in the direction of the force, all particles in the group will support
each other in the motion. As a result, a group of particles which interact via
flow field forces, i.e., are coupled by the hydrodynamic interaction, moves
faster through the liquid than isolated particles under the same total external
force. What happens in the special case of a polymer? The answer is intuitively
clear. The monomers of the coil, being confined to a volume with a diameter
in the order of Rg, strongly interact via the hydrodynamic forces. Indeed, the
coupling becomes so strong that all solvent molecules within the coil region
are forced to move together with the chain segments, so that the coil can
essentially be considered as impermeable. Therefore, polymers in a solvent
actually behave like hard spheres and the hydrodynamic radius Rh attributed
to them thus has a real significance.

It is possible to elaborate this intuitive picture in a thorough theory and
this task was first carried out by Kirkwood and Risemann. Their result relates
the hydrodynamic radius to the radius of gyration, Rg, of the chain, by

Rh ≈ 2
3
Rg , (8.149)

or the friction coefficient of a polymer molecule, ζp, to Rg by

ζp = 4πηsRg . (8.150)

The Einstein relation relates the friction coefficient of a colloid to its diffusion
coefficient. Applying it to Eq. (8.150), we obtain for the diffusion coefficient
of a dissolved polymer the expression

D =
kT

4πηsRg
. (8.151)

Equation (8.151) opens another route for the determination of the radius
of gyration of chains and thus, if the effective length per monomer is known,
for the degree of polymerization and the molar mass. A method for mea-
suring D is required for this purpose and there exists a standard technique,
namely dynamic light scattering. It generally results in a determination of the
intermediate scattering law S(q, t), like the quasielastic neutron scattering ex-
periments discussed earlier, but with different resolutions in space and time.
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Fig. 8.15. Results of a dynamic light scattering experiment on a solution of PS
(M = 4.9×104 g mol−1, cw = 0.053 g cm−3) in dioxane: Intermediate scattering law
S(q, t) for different values of the scattering angle in the range 2ϑB = 40◦ to 150◦ (in
steps of 10◦) (top); derived q-dependence of the rate of decay τ−1 (bottom) [104]

Figure 8.15 provides an example. Data were obtained for a dilute solution of
polystyrene in toluene.

The result may be explained as follows. First note that for the given spatial
resolution, in the order of the wavelength of light, polymers appear point-like.
A dilute solution of polymers, therefore, resembles a system of independently
moving point-like colloids. The intermediate scattering law then relates to the
diffusive motion of the center of mass of a single polymer, as described by the
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self-correlation part of the time-dependent pair correlation function, ĝ(r, t)
(see Eq. (A.32) in the Appendix). ĝ(r, t) is given for a diffusing colloid by

ĝ =
1

(4πDt)3/2
exp− r2

4Dt
, (8.152)

which is the solution of the basic differential equation for diffusive motions,

∂

∂t
ĝ(r, t) = DΔĝ(r, t) , (8.153)

for the initial condition
ĝ(r, t = 0) = δ(r) . (8.154)

The intermediate scattering law therefore has the form

S(q, t) =
∫

V
exp(−iqr)ĝ(r, t) d3r

= exp(−Dq2t) . (8.155)

Hence, a simple exponential decay is expected and indeed verified by the ex-
periments, e.g. those presented in Fig. 8.15. The signature of diffusive motions
is the predicted linear increase of the relaxation rate with the square of the
scattering vector, the diffusion coefficient D representing the proportionality
constant. This dependence is also shown in the figure.

Intrinsic Viscosity

A second, even simpler technique for determining the hydrodynamic radius is
viscosimetry. Generally, the suspension of colloids or the dissolution of poly-
mers leads to an increase in the measured macroscopic viscosity. It is easy
to see the principal reason for this effect when considering the simple shear
flow situation depicted in Fig. 8.16. We choose a spherical volume element of
the liquid and follow the changes imposed by the flow field. As we can see,
it becomes translated, rotated and deformed. If this volume element is now
replaced by a rigid spherical colloid, the translation and rotation are still pos-
sible; however, the deformation is inhibited. The inability of the rigid sphere
to realize the deformation that would be necessary to keep the linear profile
of the flow field unperturbed, results in an additional local flow around the
sphere. The local flow is associated with high velocity gradients and, there-
fore, causes an extra energy dissipation. This additional dissipation of energy
becomes apparent in an increase in the force required to move the upper plate,
when compared to the pure solvent at the same plate velocity. If this force
is measured, one can derive an effective macroscopic viscosity η, upon
utilizing the same equation as for a pure fluid,

f = ηLxLy
∂vx

∂z
. (8.156)
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Fig. 8.16. Translation, rotation and deformation of a spherical volume element in
a liquid under the conditions of simple shear flow

The quantity of interest is the excess of η over the viscosity of the pure sol-
vent, ηs. It was Einstein who demonstrated that this excess can be directly
interpreted when dealing with a suspension of spheres. He derived the follow-
ing series expansion:

η = ηs(1 + γφ+ . . .) . (8.157)

The expansion variable φ denotes the volume fraction occupied by spheres,
and γ is a numerical factor (γ = 2.5). The result is remarkably simple, because
it implies that the excess viscosity is only dependent on the volume fraction
of the spheres, irrespective of whether there are many small spheres or larger
spheres in smaller numbers.

Equation (8.157) can be applied to a solution of polymers since the macro-
molecules behave like hard, impermeable spheres with volumes as given by the
hydrodynamic radius. Detailed theoretical treatments suggest a minor correc-
tion, because it is found that the hydrodynamic radius to be used in viscosity
measurements differs slightly from that applied in the representation of the
diffusion coefficient. While the latter is given by Eq. (8.149), viscosity mea-
surements have to be based on the relation

Rh ≈ 7
8
Rg . (8.158)

φ in Eq. (8.157) is then given by

φ = cp
4π
3
R3

h ≈ cp
7π
6
R3

g . (8.159)

Works on polymer solutions employ a particular quantity in order to spec-
ify the excess viscosity. It is known as intrinsic viscosity and generally
denoted [η]. [η] is defined as

[η] = lim
cw→0

ηr

cw
(8.160)

with
ηr =

η − ηs

ηs
, (8.161)
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thus including a passage to the limit of vanishing polymer concentrations. ηr is
the reduced excess viscosity. Applying Eq. (8.157), the intrinsic viscosity
follows as

[η] =
γφ

cw
. (8.162)

Since
cp ∝ cw

M
(8.163)

and generally

Rg ∝ aNν ∝ a

(
M

Mm

)ν

(8.164)

with

a = aF , ν = 3/5 for chains in good solvents and
a = a0 , ν = 1/2 for chains in theta solvents,

the intrinsic viscosity results as

[η] = const
a3

M

(
M

Mm

)3ν

. (8.165)

This is usually expressed by the formula

[η] = KMμ (8.166)

whereby, as a comparison shows, the prefactor is given by

K = const
(

a

Mν
m

)3

(8.167)

and the exponent by
μ = 3ν − 1 . (8.168)

Equation (8.166) is known as the Mark–Houwink–Sakurada relation. It
generally holds quite well. The data obtained for two different solutions of
poly(isobutylene) presented in Fig. 8.17 provide an example.

With the aid of such molar mass-dependent [η] measurements one can dis-
criminate between ideal and expanded chains. One finds an exponent μ = 0.5
corresponding to ν = 0.5 for ideal chains and larger values for expanded
chains, up to the limit of μ = 0.8 corresponding to ν = 0.6 expected for
an expanded chain with ultra-high molar mass. In addition, the prefactor K
can be used for determining the chain stiffness as expressed by the effective
length per monomer a. Since the constant in Eq. (8.167) is known, a can be
derived. In particular, by carrying out measurements of [η] in theta solvents,
the characteristic ratio, C∞ = a2/a2

b (Eq. (2.32)), can be determined.
Once the value of K and μ have been established for a given polymer-

solvent system, and usually μ is found to lie somewhere in between the two
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Fig. 8.17. Intrinsic viscosity-molar mass relationship for PI in diisobutylene (DIB)
at 20 ◦C and in cyclohexane at 30 ◦C. Data collected in Flory’s book [105]

limiting cases of an ideal and an expanded chain, molar masses of samples
can be derived from measured intrinsic viscosities. Due to these relationships,
viscosity measurements have become a standard analytical tool that is simple
and therefore frequently applied.

The intrinsic viscosity refers to the limit of a zero polymer concentra-
tion and thus deals with the effect of completely separated chains on the
solution viscosity only. For finite concentrations the chains partially overlap,
which leads to an increase of the reduced excess viscosity. The increase is
well-described by

ηr = [η] + βH[η]2cw + . . . (8.169)

The coefficient βH is known as the Huggins constant.

8.4.2 Polyelectrolytes: Coulomb Interaction

Not surprisingly, the chain stretching and regular interchain ordering gener-
ated by the electrostatic forces in polyelectrolyte solutions are also accompa-
nied by a peculiar dynamics. Motions are generally accelerated by the action
of the strong Coulomb forces. These are much stronger than the entropic and
enthalpic forces controlling the diffusive motion in dilute solutions of neutral
polymers. In addition, motions become cooperative, the modes of motion in-
cluding both the polyions and the mobile counter-ions in coupled manner.
Separate concentration fluctuations of polyions and counter-ions would cause
charge density fluctuations and therefore decay immediately.

Dynamic light scattering provides a means to observe these fluctuations
and Fig. 8.18 gives an example. For each scattering vector q a decay time τ of
the thus selected fluctuation, with wave vector k = q, was measured. Concen-
tration fluctuations in liquids are always of diffuse nature, since all particles
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Fig. 8.18. Results of a dynamic light scattering study on aqueous solutions of
NaPSS: Variation of the collective diffusion coefficient Dcoll = τ−1/q2 with the
concentration of added NaCl. For low values of c̃s a second slower mode appears.
From Drifford and Dalbietz [106]

carry out diffusive motions, individually and cooperatively. Consequently, the
rate of decay shows the proportionality

τ−1 ∝ q2

or, introducing the collective diffusion coefficient Dcoll, follows the equation

τ−1 = Dcollq
2 . (8.170)

The experiment investigated the effect of the addition of salt on the dynamics.
The initial conditions in the practically salt-free situation are given at the
beginning. Here Dcoll shows a large value of about 3×10−6 cm2 s−1. Increasing
the salt content c̃s leads to a drop of Dcoll by one order of magnitude, ending
up at values typical for solutions of neutral polymers. The change comes as
expected considering that the charges on the polyions are increasingly screened
by the salt ions. At the end the Coulomb forces have practically disappeared.
At low salt concentrations a second fluctuation mode shows up. It indicates the
existence of long living associates that perform very slow motions. Indeed, such
slow modes are often found in highly viscous systems, also in concentrated
polymer solutions or polymer melts near to Tg.
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Fig. 8.19. Aqueous solutions of sodium carboxy cellulose with added NaCl: Vari-
ation of the reduced viscosity with the polymer concentration for (1) no dissolved
NaCl (2) 2.5×10−4 mol l−1 (3) 5×10−3 mol l−1 and (4) 5×10−2 mol l−1 NaCl. From
Dautzenberg et al. [107]

The Coulomb forces with the resulting build-up of structures in polyelec-
trolyte solutions also have drastic consequences for the solution viscosity. Vari-
ations in the viscosity with the polymer content are conveniently discussed in
terms of the reduced excess viscosity ηr (Eq. (8.161)). For solutions of neutral
polymers ηr increases slowly with the polymer concentration cw, as described
by Eq. (8.169). Polyelectrolyte solutions exhibit a quite different behavior.
They show very high values of ηr already at very low polymer concentrations
and one then often observes a drop rather than an increase with cw. Curve 1
in Fig. 8.19 gives a typical example of this behavior. The decrease can be
empirically described by the Fuoss–Strauss relation

ηr =
β1

1 + β2c
1/2
w

. (8.171)
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Fig. 8.20. Concentration dependence of the reduced excess viscosity measured
for aqueous solutions of NaPSS for (left) various molar masses at a constant salt
concentration c̃s = 4 ×10−6 mol l−1 and (right) for a sample with a molar mass
Mw = 1.6×104 g mol−1 for different concentrations of NaCl. From Cohen et al. [108]

The further curves given in the figure demonstrate that on the addition of
salt, i.e., on weakening the Coulomb forces, the viscosity generally decreases.
For high enough salt concentrations, curve 4, one finally arrives at the same
behavior as is found for neutral polymer solutions, namely, a slow increase
of ηr with cw. An interesting case is presented by curve 2: Here the viscosity
passes over a maximum.

In fact, if curve 1 had been continued by further measurements into the
range of very low polymer concentrations, a maximum would also have been
found. Figure 8.20 shows thus completed curves obtained in a series of mea-
surements carried out for various molar masses. The occurrence of the maxi-
mum in ηr is a general phenomenon found for all polyelectrolytes. As demon-
strated by the depicted curves, the location of the maximum is independent of
the molar mass. The molar mass only changes the value of ηr in the expected
direction, with increasing molar mass to higher viscosities. The figures on the
right-hand side again represent the effect of the addition of salt: One observes
a general decrease, now together with a shift of the maximum position to
higher polymer concentrations when the salt concentration c̃s increases. In-
terestingly, a check shows that the location of the maximum is associated with
a constant ratio cw/c̃s.

Obviously, these peculiar properties of the viscosity are a consequence of
the structure formation in polyelectrolyte solutions. Imposing a shear flow on
a polyelectrolyte solution leads to a constant destruction and reformation of
the structure. The force required to keep these processes running depends on
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the binding forces that stabilize the structure in a quiescent solution. The in-
crease of ηr observed at very low concentrations of the polymer, which is much
larger than the enhancement found for neutral polymers, indicates that at first
the binding forces increase. The drop setting in after passing the maximum is
indicative for a weakening of the binding forces, following from the decrease
of the Debye screening length. It is interesting to note that a similar concen-
tration dependence of the viscosity is found in dispersions of charged colloids.
Here, lattices under the action of the Coulomb forces are formed, which also
undergo a destruction–reformation process in shear flows. Theories have been
developed for this simpler system and describe the reduced excess viscosity
by the equation

ηr ∝ cwξ
3
D . (8.172)

The first factor accounts for the initial increase and the second factor produces
the subsequent decrease of ηr, both originating in changes in the lattice binding
force.
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9

Non-Linear Mechanics

The observations, notions and model calculations presented so far in the dis-
cussions of mechanical properties concerned the range of linear responses only.
In fact, when applying polymeric materials under realistic conditions one fre-
quently reaches the limits of these treatments, since non-linear effects appear
and have to be properly accounted for. In this chapter, we shall deal with
three cases of special importance:

• When using rubbers, non-linear mechanical properties are encountered
in all situations of practical interest. Rubbers exhibit large deformations
even under comparatively weak external forces and thus are mostly found
outside the range of small strains.

• Rubbers swell if a solvent penetrates. This isotropic dilatation becomes
particularly large if cross-linked polyelectrolytes are swollen by water. The
equilibrium state here is controlled by both the osmotic pressure of the
mobile counter-ions and the non-linear network properties.

• During processing of polymer melts, strain rates are usually so high that
a characterization of the flow properties by a constant viscosity coefficient
as for low molar mass Newtonian liquids is no longer adequate.

We begin with a look at three typical examples. The first one is presented
in Fig. 9.1 and depicts the load-extension curve observed for a sample of
natural rubber. The extension is described by the ratio between the lengths
in the stressed and the initial natural state, denoted λ, and the load is given
in terms of the force per cross-section unit area in the undeformed state,
denoted σ̂zz . The measurement goes up to an extension ratio of about seven,
thus demonstrating the unique deformability of rubbers. Non-linearity is
evident in the curve. It exhibits a sigmoidal shape; a linear law holds only for
a small range around the origin.

The other two examples deal with the flow properties of polymer melts as
they are encountered under ordinary processing conditions. Figure 9.2 presents
results of measurements of the viscosity of a melt of polyethylene, obtained
at steady state for simple shear flows under variation of the shear rate. Data
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Fig. 9.1. Load-extension curve registered for a sample of natural rubber (λ: exten-
sion ratio; σ̂zz: tensile stress). Comparison with the function Eq. (9.31) derived for
an ideal rubber (broken line). Results from Treloar [109]

were collected for a series of different temperatures. At low shear rates one
finds a constant value for the viscosity coefficient, i.e., a strict proportionality
between shear stress and shear rate, but then a decrease sets in. This deviation
from linearity is commonly found in polymers and begins already at moderate
shear rates. As one observes a decrease in the required shear stress, the effect
is commonly addressed as shear thinning.

The third example concerns a further characteristic property of flowing
polymer melts. If during an extrusion process a polymer melt is forced to flow
through a capillary, the extrudate shows a lateral expansion at the exit. Fig-
ure 9.3 shows the thickening ratio of a polystyrene melt, i.e., the ratio d/d0

between the diameter of the extrudate and the diameter of the capillary, as
a function of the extrusion rate that is here specified by the shear rate mea-
sured at the wall. Again the magnitude of the effect increases with the shear
rate. The behavior indicates that shear flow in polymer melts is accompanied
by the development of a normal stress acting perpendicularly to the shear
stress and the direction of the flow. In the interior of the capillary, this pres-
sure is provided by the wall. The thickening takes place at the moment when
the end of the wall is reached. The building-up of normal stresses in simple
shear flows is a non-linear phenomenon, being absent in Newtonian liquids.
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Fig. 9.2. Shear rate dependence of the viscosity η, observed for a melt of PE at
various temperatures. Measurements by Meissner [110]

Indeed, if normal stresses are found, they are in lowest order proportional to
the square of the shear rate.

A qualitative understanding of the origin of the normal stress phenomenon
is not difficult. We learned in the previous chapters that a polymer melt
resembles a transient network of entangled polymers. High shear rates, as
they are encountered in a capillary, result in a deformation of the chains and,
therefore, also of the formed network. As a consequence, tension builds up
along the lines of flow and draws the extrudate back when the confinement
provided by the walls of the tube terminates. As the tension increases with
the strain rate, the chain recoil at the exit increases as well and the extrudate
rearranges to a larger diameter.

In this qualitative consideration, we have already addressed a principal
point: If strains in a rubber or strain rates in flowing polymer melts are not
really small, the chains are displaced significantly from their equilibrium con-
formations corresponding to isotropic random coils. If structures are altered
by external stresses or during flow, then, as has already been emphasized in
the previous chapters, we are leaving the range of linear responses and non-
linear effects appear. Hence, we have a clear-cut criterion and may judge from
the presence of non-linearities whether or not structure changes have been
induced.

The two other experiments also exemplify this general relationship. The
non-linear sigmoidal stress-strain curve of a rubber under a tensile force shown
in Fig. 9.1 is indicative of and caused by the significant changes in the con-
formational distribution of the chains building up the rubber network. Also
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Fig. 9.3. Extrudate thickening observed for a melt of PS for various shear rates
and temperatures. Data from Burke and Weiss [111]

the shear thinning demonstrated by the data in Fig. 9.2 originates from in-
duced conformational changes. We learned in the last chapter that, according
to Eq. (8.119), the viscosity coefficient is directly related to the time required
by the chains for a disentangling. Apparently this time is reduced in flowing
melts, as a consequence of a preorientation of chains, which removes some of
the entanglements and thus facilitates the disentangling.

That we are considering network mechanics and the non-Newtonian flow
properties of melts here in one common chapter is for good reasons: The
elastic part in the response of a polymer melt, which is a main cause for its
peculiar flow properties, is due to the existing network of entanglements. Un-
derstanding the origin of rubber elasticity thus also provides us with a basis
for understanding the elastic forces in polymer melts. Some of the microscopic
models dealing with the non-Newtonian flow properties of polymer melts ac-
tually describe the melt as a network of entanglements that are continuously
created and destroyed.

Setting up microscopic models helps in the basic understanding; however,
perfect agreement with experimental data is not usually reached. In this situ-
ation, a different approach becomes important. One can aim at constructing
empirical constitutive equations with the objective of having expressions
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on hand that can describe the associated stresses for any kind of strain or
flow fields. Here, polymer networks and melts can again be treated by the
same formalism, which enables finite deformations to be described without
the limitations imposed in the linear treatments. This is achieved by the intro-
duction of the Cauchy strain tensor, as will be explained in a forthcoming
section. Using this tool we will first formulate Finger’s constitutive equa-
tion, which is valid for all isotropic elastic bodies and apply it to rubbers.
Then Lodge’s rheological equation of state of rubber-like liquids will be
presented and used for a description of the flow properties of polymer melts.

We begin with a discussion of the physical basis of rubber elasticity.

9.1 Rubber Elasticity

Rubbers find use in a large variety of products such as elastic foams, films,
bands, or tires, and possess unique mechanical properties that sets them apart
from all other materials. With regard to the microscopic state of order and the
local molecular dynamics, rubbers are in the liquid state; their flow properties,
however, differ qualitatively from those of fluids. Rubbers are built up of cross-
linked polymers, and the cross-links completely suppress any irreversible flow.
A piece of rubber can actually be envisaged as one huge polymer molecule
of macroscopic size that possesses a high internal flexibility. The cross-links
stabilize the shape of a sample, but this shape can be greatly changed by
the application of stress. There are opposing forces that balance the external
stress; however, compared to the internal forces in crystalline or glassy solids,
these are very weak, resulting in elastic moduli four orders of magnitude
smaller. As we shall see and discuss in more detail in this chapter, these
restoring forces are mainly of entropic nature.

Let us begin by considering a prismatic piece of rubber with orthogonal
edges Lz, Lx = Ly, and inquire about the force produced by an extension
ΔLz in the z-direction. We will use the extension ratio λ as an independent
variable, defined as

λ =
Lz + ΔLz

Lz
. (9.1)

Thermodynamics provides the general tool to be applied in order to obtain
the force and we first have to select the appropriate thermodynamic potential.
In dealing with a rubber, we choose the Helmholtz free energy, considering
that one is usually interested in the force under isothermal conditions and,
moreover, that rubbers are practically incompressible. For a piece of rubber
that is to be extended in one direction, the Helmholtz free energy F is a func-
tion of λ. Knowing F , the force f required to obtain an extension λ follows by
taking the derivative

f =
(

∂F
∂ΔLz

)
V,T

=
1
Lz

(
∂F
∂λ

)
V,T

. (9.2)
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In general, this force is set up of two different contributions

f =
1
Lz

(
∂E
∂λ

)
V,T

− T

Lz

(
∂S
∂λ

)
V,T

(9.3)

= fE + fS . (9.4)

fE denotes the energetic contribution and fS gives the entropic part of the
force. Under the condition that the volume V is not only constant on varying λ,
but also on changing T , a temperature-dependent measurement of the force f
enables us to make a separate determination of the two parts. The entropic
part follows as

fS = − T

Lz

(
∂S
∂λ

)
V,T

=
T

Lz

(
∂2F
∂T∂λ

)
V

= T

(
∂f

∂T

)
V,λ

(9.5)

and the energetic part as

fE = f − T

(
∂f

∂T

)
V,λ

= −T f
∂

∂T
ln
(

f

T

)∣∣∣∣∣
V,λ

. (9.6)

Many kinds of loading experiments have been performed on a large variety
of different rubbers and they all agree on the general conclusion that the
retractive forces are mainly of entropic origin. This is at least true for the
interesting range of moderate to large deformations; at the very beginning of
the deformation process, i.e., at low extensions, the energetic part may give
more significant contributions. The observations suggest the introduction of
the concept of an ideal rubber, as a body with the property

fE = 0 ,

hence

f = fS .

As we shall see, ideal rubbers possess properties that reproduce at least quali-
tatively the main features in the behavior of real rubbers and thus can provide
an approximate first description. Equation (9.6) implies that for an ideal rub-
ber force and temperature are linearly related,

f ∝ T .

Indeed, a strict proportionality to the absolute temperature is the character-
istic signature of all forces of entropic origin. Just remember the ideal gas
where we find p ∝ T .

Temperature measurements can be used in order to detect and specify
deviations from the ideal case for a given sample. If a piece of rubber is ther-
mally isolated and stretched, its temperature increases. The relation between
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an elongational step dλ and the induced change dT in temperature follows
from

dE = C dT = fLz dλ (9.7)

as
dT =

fLz

C
dλ , (9.8)

where C denotes the heat capacity. For a non-vanishing energetic contribution
to the force, the measured temperature increase becomes smaller. Observed
reductions are typically in the order of 10–20%.

One might think at first that the energetic part of the force, fE , can be
derived also from a temperature-dependent measurement of the force on the
basis of Eq. (9.6). In fact, direct application of this equation is experimentally
difficult since the volume does not remain constant under the normally given
constant pressure conditions. Indeed, thermal expansion is observed and this
is also the reason for the occurrence of a thermoelastic inversion point.
This shows up in temperature-dependent measurements on rubbers that are
kept at a fixed length. Figure 9.4 shows a series of measurements that were
performed at different values of λ. For high extensions, we find the signature

Fig. 9.4. Observation of a thermoelastic inversion point for natural rubber: The
temperature dependence of the force at constant extension exhibits a reversal in
slope. Measurements by Anthony et al. [112]
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of ideal rubbers, i.e., an increase f ∝ T . For low extensions, on the other
hand, thermal expansion overcompensates this effect, and then even leads to
a decrease of the force.

Obviously, the entropic forces must originate from the polymer chains
that set up the network. It is easy to see the physical basis of the retraction
mechanism: When chains are extended on stretching the network, the number
of available rotational isomeric states and thus the entropy decreases, and this
produces a retractive force. Statistical thermodynamics can describe this effect
in more detail, employing model considerations.

9.1.1 The Fixed Junction Model of Ideal Rubbers

Let us first consider a single polymer chain with a mean squared end-to-end
distance R2

0 and inquire about the force that arises if the two ends become
separated. As sketched in Fig. 9.5, we assume that one end-group of the chain
is located at the origin of a cartesian coordinate system and the second end-
group can be moved along the y-axis. In order to keep this second end fixed at
a distance y, a non-vanishing force has to be applied. This can be calculated
using the same equation as for the macroscopic piece of rubber and follows as

f =
∂fp

∂y
= −T ∂sp

∂y
. (9.9)

Here, fp and sp denote the free energy and the entropy of the chain, which,
being set up of freely jointed segments, has an invariant internal energy ep,
being associated with the kinetic energy of motion only. Polymer chains in
rubbers possess Gaussian properties as in a melt and this can be used for
a calculation of the entropy sp. Applying a basic law of statistical thermody-
namics, the entropy can be derived from the partition function, Zp(y), by

sp = k lnZp(y) . (9.10)

In our case, the partition function is determined by the number of conforma-
tions available for the chain if the second end is at a distance y. Zp(y) can be

Fig. 9.5. External force f required to keep the ends of a polymer chain at a fixed
distance
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directly written down. Remember that for a mobile free end the probability
distribution in space is given by the Gaussian function (Eq. (2.11))

p(x, y, z) =
(

3
2πR2

0

)3/2

exp−3(x2 + y2 + z2)
2R2

0

with

R2
0 = 〈x2 + y2 + z2〉 .

This probability distribution just reflects the number of conformations avail-
able for the chain if the end-to-end distance vector is kept fixed at (x, y, z).
Therefore, the quantity of interest, Zp(y), is given by

Zp(y) ∝ p(0, y, 0) ∝ exp− 3y2

2R2
0

. (9.11)

The entropy follows from Eq. (9.10) as

sp(y) = sp(0) + k

(
− 3y2

2R2
0

)
, (9.12)

which for the force yields the simple expression

f =
3kT
R2

0

y = by . (9.13)

This in an interesting result. It states that this entropic force increases linearly
with the distance between the two end-groups, just as if they were connected
by a mechanical spring. The stiffness constant, denoted b, increases with tem-
perature and decreases with increasing size of the chain.

The force disappears only for y = 0. This, however, does not imply that the
end-groups are coupled together in thermal equilibrium. A harmonic oscillator
with a stiffness constant b in contact with a heat bath at a temperature T
shows a non-vanishing mean squared displacement 〈y2〉. Straightforward ap-
plication of Boltzmann statistics yields

〈y2〉 =
kT

b
. (9.14)

Here we obtain correspondingly

〈y2〉 =
R2

0

3
, (9.15)

which is the result expected for a Gaussian chain.
A rubber represents an ensemble of polymer chains, each one running

between two cross-links. The Helmholtz free energy of a sample is related to
the distribution function of the conformational states. Since the chains are
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not free, the ends being fixed at cross-links, a change in the external shape of
a sample necessarily modifies the distribution function. We have to consider
this change and calculate the resulting change in free energy.

To keep the treatment simple we include a number of assumptions:

• All the chains composing the network have the same degree of polymeriza-
tion N , and thus identical values for the stiffness constant b ∝ R−2

0 ∝ N−1.
• The conformational distribution in the undeformed state agrees with that

of an uncross-linked melt, i.e., is given by an isotropic Gaussian function.
• The cross-link points are fixed within the sample. Any sample deformation

becomes directly transferred to the cross-links and changes their positions
in an affine manner.

The model so set up is the simplest one to treat and is known as the fixed
junction model with reference to the last point. Let us refer again to a pris-
matic piece of rubber, with edges Lx, Ly and Lz, and consider a homogeneous
orthogonal deformation, which changes the lengths of the edges as follows:

Lx → λ1Lx , (9.16)
Ly → λ2Ly , (9.17)
Lz → λ3Lz . (9.18)

The extension ratios λ1, λ2 and λ3 also determine the shifts in the locations of
all junction points and therefore the changes of the end-to-end distance vectors
of all chains. More specifically, the end-to-end distance vector of chain i in the
unstrained state

r′
i =

⎛
⎜⎝
x′i
y′i
z′i

⎞
⎟⎠

transforms affinely into a vector ri in the deformed sample, given by

ri =

⎛
⎜⎝
xi = λ1x

′
i

yi = λ2y
′
i

zi = λ3z
′
i

⎞
⎟⎠ .

We wish to calculate the change in entropy resulting from the deformation
and first write down the entropy in the stress free state. For a single chain
with ends fixed at a distance r′

i, the entropy is given by Eq. (9.12) replacing
y2 by r′2i

s′i = sp(0, 0, 0) − 3k
2R2

0

(
x′2i + y′2i + z′2i

)
. (9.19)

To obtain the total entropy of the sample, we include in the summation all
chains of a Gaussian ensemble. For a volume V and a chain density cp we
write
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S′ =
∑

i

s′i = Vcp
∫
sp(x′, y′, z′)p(x′, y′, z′)dx′ dy′dz′

= Vcp
∫ (

sp(0, 0, 0)− k
3

2R2
0

(
x′2 + y′2 + z′2

))

· 3
2R2

0π
exp

[
− 3

2R2
0

(
x′2 + y′2 + z′2

)]
dx′ dy′ dz′

= Vcp
(
sp(0, 0, 0)− 3k

2R2
0

(〈x′2〉 + 〈y′2〉 + 〈z′2〉)
)

= Vcp
(
sp(0, 0, 0)− 3k

2

)
. (9.20)

Next, we derive the entropy in the deformed state, S. It follows as

S = Vcp
∫ (

sp(0, 0, 0) − k
3

2R2
0

(
λ2

1x
′2 + λ2

2y
′2 + λ2

3z
′2))

·
(

3
2R2

0π

)3/2

exp
[
− 3

2R2
0

(
x′2 + y′2 + z′2

)]
dx′ dy′ dz′

= Vcp
(
sp(0, 0, 0) − 3k

2R2
0

(
λ2

1〈x′2〉 + λ2
2〈y′2〉 + λ2

3〈z′2〉
))

= Vcp
(
sp(0, 0, 0) − 1

2
k
(
λ2

1 + λ2
2 + λ2

3

))
. (9.21)

In the calculation of the integral we refer to the distribution function in the
initial stress free state and the deformation is accounted for by introducing
into the expression for S the modified single chain entropies. The quantity of
interest is the change in entropy, following as

ΔS = S − S′ = −Vcp k2
(
λ2

1 + λ2
2 + λ2

3 − 3
)
. (9.22)

Consider now the case of an uniaxial extension in z-direction, with an exten-
sion ratio λ, i.e.,

λ3 = λ . (9.23)

The induced changes in the two lateral directions are equal to each other,

λ1 = λ2 . (9.24)

Assuming incompressibility, as expressed by

λ1λ2λ3 = 1 , (9.25)

we have
λ2

1λ = 1 . (9.26)
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Using these relations, we obtain for the change in entropy resulting from an
uniaxial extension λ the expression

ΔS = −Vcpk
2

(
2
λ

+ λ2 − 3
)
. (9.27)

The force follows as above, by taking the derivative of the associated free
energy

f = − T

Lz

∂S
∂λ

= − T

Lz

∂ΔS
∂λ

=
VcpkT
Lz

(
− 1
λ2

+ λ

)
. (9.28)

Replacement of the force by the stress yields a form that is independent of the
sample dimensions. The stress in the deformed state is obtained by referring
to the actual cross-section

σzz =
f

(LxLy/λ)
. (9.29)

This leads to

σzz = cpkT

(
λ2 − 1

λ

)
. (9.30)

Sometimes, for direct comparisons with measured load-extension curves, the
nominal stress, sometimes also called the engineering stress and denoted
σ̂zz is used. Here the force is referred to the cross-section LxLy in the initial
state, giving

σ̂zz =
f

LxLy
= cpkT

(
λ− 1

λ2

)
. (9.31)

As we can see, the model considerations result in a short analytical expres-
sion for the stress–strain relationship of an uniaxially deformed ideal rubber.
Equations (9.30) and (9.31) are valid for all values of λ, including λ > 1 and
λ < 1, both extensions and compressions, respectively. It is important to note
that apart from T the stress depends on the chain density cp only. The fact
that there is no explicit effect of the degree of polymerization implies that our
initial assumption of a uniform value of N for the chains between cross-links
is not a necessary prerequisite for the result and can therefore be omitted.
As long as cp is constant, the same elastic force emerges for any distribution
of N ; each chain gives in the isotropic average an equal contribution to the
stress, which is independent of the length. Figure 9.6 shows the dependence
as given by Eq. (9.31). In the limit of large extensions the retractive force in-
creases linearly with λ, while in the compression range the behavior is mostly
non-linear. Clearly the pressure must diverge for λ → 0. Per definition, the
elastic modulus E is related to small strains only, being determined by the
slope at the origin, λ = 1. One obtains

E =
dσzz

dezz
(ezz = 0) =

dσzz

dλ
(λ = 1) =

dσ̂zz

dλ
(λ = 1) = 3cpkT . (9.32)
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Fig. 9.6. Uniaxially deformed ideal rubber: Dependence of the nominal stress (σ̂zz)
on the extension ration (λ) according to Eq. (9.31)

We will compare these model predictions with load-deformation curves of
real rubbers, but beforehand a remark is necessary. It is clear that there is no
basis for a comparison of absolute values. These depend in the model on the
density cp of chains between chemical cross-links, however, in a rubber not
only the chemical junction points, but also the entanglements act as cross-
links. In a polymer melt, in the region of the rubbery plateau, the latter are
indeed the only ones present. Chemical cross-linking stabilizes the topological
cross-links, because these become trapped if a permanent network is created.
The relative weight of the contribution of the entanglements to the force can
be estimated, in the simplest way by comparing the retractive forces before
and after the chemical cross-linking of a melt. As it turns out, chain entangling
is even dominant for the usual low cross-link densities and accounts for the
larger part of the total force. Entanglements differ from the chemical cross-
links in that they are not fixed and may slip along chains, which diminishes
their efficiency. Actually, a certain reduction in efficiency on similar grounds is
also to be anticipated for the chemical cross-links. We have assumed a perfect
fixing in space; however, in reality, the junction points fluctuate, performing
a restricted Brownian motion around their mean positions (which is, in fact,
accounted for in an improved model, known as the ‘phantom network’). Hence,
in conclusion, one normally has to relinquish a prediction of absolute stress
values and reduce comparisons with models to the shape of measured curves.
Values for cp, as derived from a data fitting, have to be addressed as an
effective density of active elements. cp may be formally translated into
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a mean molar mass of chains between junction points, denoted Meff ,
through

cp =
ρ

Meff
NL (9.33)

but Meff is just another empirical parameter. It depends in an unpredictable
manner on the cross-link density, the functionality of the cross-linking groups;
they can couple together the ends of three, four or even more chains, the chain
stiffness, etc.

We should now look at two sets of data, presented previously in Fig. 9.1
and now in Fig. 9.7. Both figures include adjusted model curves. It is to be
noted that the data in Fig. 9.7, which cover the range of moderate extensions
together with compression states, are remarkably well-represented. On the
other hand, pronounced differences show up in Fig. 9.1, which goes to large ex-
tensions. The reason for the discrepancy becomes clear when recalling a basic
property of the Gaussian model chain. As pointed out previously (Sect. 2.3.1),
the Gaussian description implies an infinite contour length of chains; however,
in reality their lengths are finite. Each chain possesses a maximum extension
as given by its length in the straight helical conformation. Obviously, this
limitation must produce at larger extensions deviations from the Gaussian
behavior and this is the cause of the observed increase in stress. In fact, it is
possible to account for this effect and so to improve the agreement. One has to
replace the Gaussian distribution in Eq. (9.11) by real distribution functions,

Fig. 9.7. Extension (λ > 1)-compression (λ < 1) curve of natural rubber, compared
to the theoretical function Eq. (9.31) derived for an ideal rubber (continuous line).
Data from Treloar [109]



9.1 Rubber Elasticity 371

either by the exact distribution function given in Sect. 2.3.1 or a suitable ap-
proximation and then modify the entropy calculations correspondingly. Thus
corrected curves usually provide a satisfactory representation of measured
curves even in the range of larger extensions.

Last but not least, models that assume ideal behavior do not account for
the always present energetic effects. Therefore, a comprehensive representation
of thermoelastic data encompassing a larger temperature range, like the ones
displayed in Fig. 9.4, cannot be achieved with these models alone.

Regarding these complications, one might feel that attempts to account
for all the remaining deviations by proper modifications of statistical thermo-
dynamic models of ideal rubbers do not look very promising. In this situation,
a certain drawback is to be considered as appropriate. Rather than searching
for a detailed microscopic understanding, one can look for phenomenological
treatments enabling an empirical representation of the mechanical properties
of a given rubbery material. One might think at first that this is a simpler goal
to achieve. However, even this is not a trivial task, in particular if one’s aim
is a comprehensive description of all modes of deformation employing only
a small number of material parameters. This is exactly the desire of engineers
who need reliable and directly applicable material functions for working with
rubbers. Continuum mechanics provides appropriate tools for generally deal-
ing with large deformations, not only those found in rubbers, but also those
encountered in flowing polymer melts. In the next section, we will briefly
discuss the basis of these concepts.

9.1.2 The Cauchy Strain Tensor

Elasticity theory for solids is formulated with the assumption that strains
remain small. One then finds the linear relations between stress and strain as
they are described by Hooke’s law. For rubbers, deformations are generally
large and the linear theory then becomes invalid. We have to ask how strain
can be characterized in this general case and how it can be related to the
applied stress.

First, let us recall the definition of stress. In deformed rubbers the state
of stress can be described in the same manner as in the case of small de-
formations of solids, by giving the stress tensor σ = (σij). The meaning of
the components σij is indicated in Fig. 9.8. Imagine that we pick out a cubic
volume element in the deformed body at the position r, with edges parallel to
the laboratory fixed cartesian coordinate system. Then σ specifies the forces
that the material outside the cube exerts through the surfaces on the parti-
cles in the interior. More specifically, component σij denotes the force per unit
area acting along the j-axis on the face oriented perpendicular to the i-axis.
Knowledge of σ also enables us to calculate the force f acting on any plane
with normal vector n. f follows as the product

f = σ × n . (9.34)
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Fig. 9.8. Description of the stress around a material point at r in a deformed body:
Stress tensor components σij specifying the forces acting on the faces of a cubic
volume element

The stress tensor is symmetric, i.e.,

σij = σji , (9.35)

since static equilibrium is only attained for a vanishing torque on the cube.
Sometimes, in special cases, the stress tensor is calculated for the forces being
referred to the cross-section in the undeformed state. For rubbers under a large
strain, this leads to altered values and these, as mentioned earlier, are called
nominal or engineering stresses.

A deformation of a body of rubber displaces all material points in the
sample. There is a one-to-one correspondence between the locations of a ma-
terial point in the deformed and the unstrained body. We again refer to the
laboratory-fixed coordinate system and describe the relation between the lo-
cations in the deformed state

r =

⎛
⎝x
y
z

⎞
⎠

and the initial natural state

r′ =

⎛
⎝x′

y′

z′

⎞
⎠

by the displacement function

r′(r) .

Choosing this function rather than the reverse relation r(r′) implies that one
refers to the deformed body in the description of the strain, in agreement with
the description of the stress.
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Not all functions r′(r) result in stress. If a sample is translated or rotated
as a rigid body, no stress arises. Clearly, the general prerequisite for stress is
a change in internal distances. For a check one can pick out a material point
at r, select a neighboring material point at r + dr and inquire about the
change in their distance on removing the load. If dr transforms into dr′, the
difference of the squares of the lengths is given by

dr′ · dr′ − dr · dr . (9.36)

As the relation between dr′ and dr is determined by the vector gradient of
the mapping function r′(r),

dr′ =
∂r′

∂r
· dr , (9.37)

with (
∂r′

∂r

)
ij

=
∂r′i
∂rj

, (9.38)

we can write for the squared lengths difference

dr′i dr
′
i − dri dri =

∂r′i
∂rj

drj
∂r′i
∂rk

drk − dri dri

= drj(Cjk − δjk)drk . (9.39)

Here, we have introduced a tensor C, defined as

Cjk =
∂r′i
∂rj

∂r′i
∂rk

. (9.40)

C is called the Cauchy strain tensor. Any deformation, it may be large
or small, homogeneous or non-uniform, can be characterized by a space-
dependent function C(r). Knowing C(r), the local extensions in all direc-
tions can be obtained for each material point of a deformed body just by
a calculation of the two-fold product Eq. (9.39). Recall that we have intro-
duced the Cauchy strain tensor by a two-step procedure based on the com-
plete description of the deformation by the displacement function r′(r), go-
ing first to the deformation gradient function ∂r′/∂r and then proceeding
to C(r). The first step eliminated rigid translations and the second step the
rotations, overall as well as local ones. C(r) therefore does indeed include
only those parts of the body motion that are true deformations giving rise to
the development of stress. For homogeneous states of strain, C(r) reduces to
one unique tensor and, in the following, we will deal with this simpler case
only.

It is easy to see the significance of the various components of the Cauchy
strain tensor and we refer here to Fig. 9.9. First consider the infinitesimal
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differential vector dr1 parallel to the x-axis. On unloading it transforms into
dr′

1, which has the squared length

dr′
1 · dr′

1 =

((
∂x′

∂x

)2

+
(
∂y′

∂x

)2

+
(
∂z′

∂x

)2
)

dx2 . (9.41)

The right-hand side equals the product C11 dx2. Hence, generalizing this re-
sult, the diagonal elements Cii describe the length changes of the edges of a cu-
bic volume element, oriented parallel to the axes of the laboratory fixed carte-
sian coordinate system, the changes being expressed in terms of the squared
length ratios.

Second, consider the angle θ′13 enclosed by dr′
1 and dr′

3, the transforms
of dr1 = idx, dr3 = j dy. Its cosine follows from

|dr′
1||dr′

3| cos θ′13 = dr′
1 · dr′

3 . (9.42)

The right-hand side agrees with the product C13 dxdy. Hence, we obtain

cos θ′13 =
C13

(C11C33)1/2
(9.43)

and learn from this example that the non-diagonal elements of the Cauchy
strain tensor describe the changes of the three rectangular angles of the cube.

The Cauchy strain tensor is symmetric by definition. Therefore, it can be
converted into a diagonal form by an appropriate rotation of the coordinate
system. We deal with these conditions as indicated in Fig. 9.9, by attaching,
to each selected material point, a triple of orthogonal infinitesimal distance

Fig. 9.9. Notions used in the definition of the Cauchy strain tensor: The material
point at r in the deformed body with its neighborhood shifts on unloading to the
position r′. The orthogonal infinitesimal vectors dr1 and dr3 in the deformed state
transform into the oblique pair of vectors dr′

1 and dr′
3. Orthogonality is preserved

for the vectors dra, drc oriented along the principal axes
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vectors dra, drb and drc, oriented parallel to the principal axes, which
diagonalize the Cauchy tensor. The zero non-diagonal elements of the Cauchy
tensor in the principal axes system imply that all angles θ′ij , enclosed by the
transforms of the infinitesimal distance vectors, designated as dr′

a, dr′
b and

dr′
c, are 90◦. Hence, on unloading the orthogonal triple dra, drb, drc may

become rotated and the three vectors may change their lengths; orthogonality,
however, is preserved. Previously we introduced factors λi as denoting the
extension ratios in orthogonal deformations, with reference to the natural
unstrained state (Eqs. (9.16)–(9.18)). The Cauchy strain tensor in diagonal
form includes the reciprocal values λ−1

i as

Cij = δijλ
−2
i . (9.44)

Instead of employing the Cauchy strain tensor one can also utilize the
Eulerian strain tensor defined as

2Eij = δij − Cij . (9.45)

In the limit of infinitesimal deformations the Eulerian strain tensor becomes
identical with the strain tensor used in the linear elasticity theory, as can be
easily shown. The components eij of the linear strain tensor are defined as

eij =
1
2

(
∂si

∂r′j
+
∂sj

∂r′i

)
, (9.46)

whereby s denotes the shift of the material point r′ in the undeformed state
induced by the load, i.e.,

s = r − r′ . (9.47)

For small deformations it makes no difference, whether the undeformed or the
deformed body is chosen as the reference frame. We can therefore also write

eij =
1
2

(
∂si

∂rj
+
∂sj

∂ri

)
. (9.48)

Eij may be rewritten as

Eij =
1
2

(
δij − ∂(rk − sk)

∂ri

∂(rk − sk)
∂rj

)

=
1
2

(
δij −

(
δki − ∂sk

∂ri

)(
δkj − ∂sk

∂rj

))

=
1
2

(
∂si

∂rj
+
∂sj

∂ri
− ∂sk

∂ri

∂sk

∂rj

)
. (9.49)

Hence, in linear approximation, neglecting in the limit of infinitesimal defor-
mations the second order term, we do indeed obtain

Eij = eij . (9.50)
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9.1.3 Finger’s Constitutive Equation

We are now in the position to formulate empirical stress-strain relations in the
form of constitutive equations. The Cauchy strain tensor focuses on those
parts in the deformation of a body that produce stress. We can therefore as-
sume that the stress, σ, is a function of the Cauchy strain tensor, C, only. As
this basic assumption alone is certainly too general for a promising approach,
one may wonder if there are any restrictions with regard to the possible form
of the functional dependence. In fact, theoretical analysis has led to the con-
clusion that such restrictions do exist. The problem aroused much interest as
early as at the end of the last century and a main result was due to Finger.
He succeeded in deriving a constitutive equation that is generally valid for all
elastic isotropic bodies. The term ‘elastic’ is here used in the general sense,
implying that the body reacts in a well-defined way to an externally applied
force and returns completely to its natural state upon unloading. Finger ar-
rived at the conclusion that the stress-strain relation for this kind of general
elastic or, as they are sometimes called, hyperelastic bodies depends on one
scalar function only, namely the relation between the free energy density and
the state of strain as characterized by the strain invariants.

As any second rank tensor, the Cauchy strain tensor possesses three in-
variants. These are expressions in terms of the tensor components Cij , which
remain invariant under all rotations of the coordinate system. The three in-
variants of the Cauchy strain tensor are given by the following expressions:

IC = C11 + C22 + C33 , (9.51)
IIC = C11C22 + C22C33 + C33C11 ,

−C12C21 − C13C31 − C23C32 , (9.52)
IIIC = DetC . (9.53)

For the diagonal form Eq. (9.44), they reduce to

IC = λ−2
1 + λ−2

2 + λ−2
3 , (9.54)

IIC = λ−2
1 λ−2

2 + λ−2
2 λ−2

3 + λ−2
3 λ−2

1 , (9.55)
IIIC = λ−2

1 λ−2
2 λ−2

3 . (9.56)

There are different choices for the invariants since any combination gives new
invariant expressions, but the most common is the one cited here. As the free
energy density depends on the local strain only and, being a scalar quantity,
must be invariant under all rotations of the coordinate system, one can readily
assume for the free energy density a functional dependence

f(IC , IIC , IIIC) . (9.57)

With these ingredients Finger’s constitutive equation can be formu-
lated. It relates the Cauchy strain tensor to the stress tensor as

σ = c−1C−1 + c01 + c1C . (9.58)
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C−1 denotes the inverse of the Cauchy tensor, 1 is the unit tensor. c−1, c0, c1
describe functions of the three invariants and these are directly related to the
free energy density. The relations are

c−1 = 2III3/2
C

∂f

∂IIC
, (9.59)

c0 = −2III1/2
C

(
IIC

∂f

∂IIC
+ IIIC

∂f

∂IIIC

)
, (9.60)

c1 = −2III1/2
C

∂f

∂IC
. (9.61)

Finger derived this equation on the basis of general arguments. As we can
see, it provides us with a powerful tool: Once one succeeds in determining the
strain dependence of the free energy of a body, the stresses produced in all
kinds of deformations can be predicted.

There is an alternative form of Finger’s equation, which gives us a choice
and is, indeed, to be preferred when dealing with rubbers. We introduce the
Finger strain tensor B, being defined as the reciprocal of the Cauchy strain
tensor

B = C−1 . (9.62)

The substitution of C by B implies, as the main point, that one is now choos-
ing the invariants of B as independent variables, rather than those associated
with C. The second form of Finger’s constitutive equation is

σ = b1B + b01 + b−1B−1 (9.63)

with

b1 =
2

III
1/2
B

∂f

∂IB
, (9.64)

b0 =
2

III
1/2
B

(
IIB

∂f

∂IIB
+ IIIB

∂f

∂IIIB

)
, (9.65)

b−1 = −2 · III1/2
B

∂f

∂IIB
. (9.66)

Because the directions of the principal axes of B and C must coincide, the
diagonal form of the Finger strain tensor is simply

Bij = λ2
i δij . (9.67)

The invariants then follow as

IB = λ2
1 + λ2

2 + λ2
3 , (9.68)

IIB = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 , (9.69)

IIIB = Det B . (9.70)
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Whether to use the first or the second form of Finger’s constitutive equa-
tion is just a matter of convenience, depending on the expression obtained
for the free energy density in terms of the one or the other set of invariants.
For the system under discussion, a body of rubbery material, the choice is
clear: The free energy density of an ideal rubber is most simply expressed
when using the invariants of the Finger strain tensor. Equation (9.22), giving
the result of the statistical mechanical treatment of the fixed junction model,
exactly corresponds to

f =
G

2
(IB − 3) . (9.71)

As we can see, the second and third invariants, IIB and IIIB , are not in-
cluded. The third invariant relates generally to the relative volume change.
For incompressible bodies it is equal to unity,

IIIB = λ2
1λ

2
2λ

2
3 = 1 , (9.72)

and can, therefore, be omitted in the further treatments. When writing down
Eq. (9.71) we introduced a parameter G. As it will turn out, G denotes the
shear modulus.

Knowing f , we can formulate the constitutive equation of an ideal rubber.
Since only b1 gives a contribution, we simply obtain

σ = GB . (9.73)

This result, however, is not yet complete. For an incompressible solid like
a rubber, superposition of a hydrostatic pressure onto the other applied ex-
ternal forces leaves the shape of the sample and thus the state of strain un-
changed. We can account for this arbitrariness by including the undetermined
hydrostatic pressure, denoted p, as a further component in the equation and
rewrite it as

σ = GB − p1 . (9.74)

The constitutive equation thus yields stresses that are indeterminate to the
extent of an arbitrary hydrostatic pressure.

The same modification is necessary when dealing in general with incom-
pressible hyperelastic bodies. Introducing the additional term in Finger’s con-
stitutive equation, Eq. (9.63), and regarding the absence of IIIB , we obtain

σ = 2
∂f

∂IB
B− 2

∂f

∂IIB
B−1 − p1 . (9.75)

This is now a constitutive equation, which looks appropriate for our purposes.
Being generally valid for all incompressible elastic bodies, it can be applied in
particular for the treatment of real rubbers.

So far, we have been concerned with uniaxial deformations of rubbers only.
Utilizing Eq. (9.75) we can analyze any kind of deformation in a straightfor-
ward manner and, in particular, the important case of a simple shear. To
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begin with, we check once again for the results obtained for the known case
of uniaxial strain or compression of an ideal rubber. Here, the transformation
equations are

z′ = λ−1z , (9.76)
x′ = λ1/2x , (9.77)
y′ = λ1/2y . (9.78)

The Cauchy strain tensor follows from Eq. (9.40) as

C =

⎛
⎝λ 0 0

0 λ 0
0 0 λ−2

⎞
⎠ (9.79)

and the Finger tensor therefore as

B =

⎛
⎝λ−1 0 0

0 λ−1 0
0 0 λ2

⎞
⎠ . (9.80)

The inversion of the Cauchy tensor, which is necessary when deriving the
Finger tensor, is trivial in this case. For non-orthogonal deformations this
is more complicated. Here one can make use of a direct expression for the
components of B, which has the form

Bij =
∂ri

∂r′k

∂rj

∂r′k
. (9.81)

The proof of Eq. (9.81) is straightforward. We have

BijCjk =
∂ri

∂r′l

∂rj

∂r′l

∂r′m
∂rj

∂r′m
∂rk

. (9.82)

Since
∂r′m
∂rj

∂rj

∂r′l
=
∂r′m
∂r′l

= δml (9.83)

we indeed obtain

BijCjk =
∂ri

∂r′l

∂r′l
∂rk

= δik . (9.84)

Due to the unknown hydrostatic pressure, p, the individual normal stresses
σii are indeterminate. However, the normal stress differences are well-defined.
Consider the difference between σzz and σxx. Insertion of the Finger strain
tensor associated with uniaxial deformations, Eq. (9.80), in the constitutive
equation (9.74) yields

σzz − σxx = G(λ2 − λ−1) . (9.85)
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As σxx vanishes, the result is in agreement with the previous Eq. (9.30).
A comparison reveals the equality

G = cpkT . (9.86)

In the uniaxial deformation mode both lateral dimensions change. Other
types of strain are obtained if one of the lateral edges is kept fixed. Shear
is the general name used for this group of deformations. We first consider
an orthogonal deformation known as pure shear, which corresponds to the
following transformation relations:

z′ = λ−1z , (9.87)

x′ = λx , (9.88)

y′ = y . (9.89)

Figure 9.10 schematically depicts this deformation, together with the two
other modes considered here, uniaxial loading and simple shear. For all modes
the drawings indicate the changes in shape of a cubic volume element cut out
in the stressed state, resulting from an unloading. The Finger strain tensor
associated with pure shear has the form

B =

⎛
⎝λ−2 0 0

0 1 0
0 0 λ2

⎞
⎠ . (9.90)

Insertion of B in Eq. (9.74) results in the following expressions for the normal
stress differences:

σzz − σxx = G(λ2 − λ−2) , (9.91)
σzz − σyy = G(λ2 − 1) , (9.92)
σyy − σxx = G(1 − λ−2) . (9.93)

Hence, for this mode we find non-vanishing values for all three normal stress
differences.

As our third example we consider the important case of simple shear, in
the form indicated in Fig. 9.10. The transformation relations are

x′ = −γ · z + x , (9.94)
y′ = y , (9.95)
z′ = z . (9.96)

Here, the symbol γ stands for the shear strain, defined as

γ = tan
(
θ′xz −

π

2

)
(9.97)
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Fig. 9.10. Several modes of deformation of a rubber. Changes in shape of a cubic
volume element picked out in the stressed state, as it results from the unloading.
Acting components of stress are indicated

(γ is identical with the component ezx of the linear strain tensor). Application
of Eq. (9.81) yields the associated Finger strain tensor

B =

⎛
⎝1 + γ2 0 γ

0 1 0
γ 0 1

⎞
⎠ . (9.98)

Use in Eq. (9.74) gives

σzx = Gγ , (9.99)
σxx − σzz = Gγ2 , (9.100)
σyy − σzz = 0 . (9.101)

These are noteworthy results. First, we find a linear relation between the
shear stress σzx and the shear strain γ, which is unlimited. Thus, for this
special kind of load, linearity is retained up to arbitrarily large deformations.
We can also identify G, introduced at first as an empirical constant, as indeed
representing the shear modulus. The predicted linearity is largely corroborated
by the experimental findings. Figure 9.11 depicts the dependence σzx(γ) as
measured for a sample of natural rubber. A steady increase in shear strain is
observed, which is essentially linear, apart from a slight curvature at moderate
deformations.
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Fig. 9.11. Shear stress–shear strain curve observed for a sample of natural rubber
during simple shear. Data of Treloar [109]

Non-linearity shows up in the second finding. We observe that simple shear
is accompanied by the development of a non-vanishing normal stress difference
σxx − σzz . The effect is non-linear since it is proportional to the square of γ.
The result tells us that in order to establish a simple shear deformation in
a rubber, application of shear stress alone is insufficient. One has to apply in
addition either pressure onto the shear plane (σzz < 0) or a tensile force onto
the plane normal to the x-axis (σxx > 0), or an appropriate combination of
both. The difference σxx − σzz is called the primary normal stress difference;
likewise σyy − σzz is commonly designated as the secondary normal stress
difference. As we can see, the latter vanishes for an ideal rubber.

Having found such a simple description for ideal rubbers, enabling us to
make predictions of the stress for all kinds of deformations in a straightfor-
ward way, one might presume that the modifications in behavior, as they
are observed for real rubbers, can be accounted for by suitable alterations
performed in the framework of the general equation for incompressible solids
Eq. (9.75). In a first step one may consider the effects of an inclusion of the
second term proportional to B−1 in the simplest possible form, by assuming
constant values for both, the derivative ∂f/∂IB and the derivative ∂f/∂IIB.
Such a choice is equivalent to a free energy function

f = β1(IB − 3) + β2(IIB − 3) , (9.102)

where β1 and β2 denote the two constants. The resulting constitutive equation
is

σ = −p1 + 2β1B− 2β2B−1 . (9.103)
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In the consideration of uniaxial extensions we can proceed in analogous man-
ner as above, and we are led to the result

σzz − σxx = 2β1(λ2 − λ−1) − 2β2(λ−2 − λ) (9.104)
= (2β1λ+ 2β2)(λ− λ−2) . (9.105)

For a derivation of the state of stress under simple shear, we need the form
of B−1 = C. It follows by applying Eq. (9.40) to Eqs. (9.94) to (9.96). The
result is

B−1 =

⎛
⎝ 1 0 −γ

0 1 0
−γ 0 1 + γ2

⎞
⎠ . (9.106)

Equation (9.103) then yields

σzx = (2β1 + 2β2)γ , (9.107)
σxx − σzz = (2β1 + 2β2)γ2 , (9.108)
σyy − σzz = 2β2γ

2 . (9.109)

For simple shear, we have thus again obtained linearity for σzx, as for ideal
rubbers, but now with non-vanishing values for both the primary and the
secondary normal stress difference.

The suggestion to expand the treatment in this way is due to Mooney.
It was readily accepted and applied with success for the description of ten-
sile stress–strain curves. Figure 9.12 presents an example, which also reveals,
however, a major deficiency. Data are shown in the form of a Mooney plot,
which is based on Eq. (9.105) written as

σ̂zz

λ− λ−2
= 2β1 +

2β2

λ
(9.110)

employing the nominal tensile stress and setting σ̂xx = 0. Results encompass
both the extension and the compression range. We notice that the Mooney
equation yields a satisfactory data representation for the extension range, with

Fig. 9.12. Mooney plot of compression and extension data obtained for natural
rubber. Results from Rivlin and Saunders [113]
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a value β2 > 0 as determined by the slope; however, there is no continuation
into the range of compressions, where we find β2 ≈ 0. Hence, the simple
modification of the free energy function as expressed by Eq. (9.102) is actually
inadequate for the desired general representation of real rubber behavior.

There are various suggestions for a better choice, however, they are all
rather complicated and their discussion is outside our scope. It appears today
that a short analytical expression for the free energy density of a real rubber
in the form of a simple extension of the free energy density of an ideal rubber
does not exist. Even so, the general constitutive equation, Eq. (9.75), certainly
provides us with a sound basis for treatment. Once the functional dependence
of the free energy density, f(IB, IIB), has been mapped by a suitable set
of experiments, and one succeeds in representing the data by an empirical
expression, one can predict the stresses for any kind of deformation.

9.2 Swelling of Neutral and Electrolytic Gels

When a cross-linked polymer sample is placed in a solvent, the solvent
molecules penetrate into the network and swell it. After a certain time an
equilibrium state becomes established where network forces and osmotic pres-
sure balance each other. While the degrees of swelling thus reached for com-
mon elastomers remain moderate, depending on the solvent quality and the
cross-link density, one observes a spectacularly large swelling when putting
a cross-linked polyelectrolyte in a good solvent as represented by water; the
widely employed superabsorbers make use of this property. In the following
we will discuss both cases.

The take-up of solvent molecules from the surroundings transfers a network
from its initial dry state with volume Vg0 to a swollen state with a larger
value Vg. The equilibrium is associated with a certain swelling ratio

Q =
Vg

Vg0
=

1
φp

, (9.111)

where φp describes the polymer volume fraction in the swollen state. Q, or φp,
are determined by the equality of two pressures, the osmotic pressure acting
towards an expansion and the contra-acting stress of the isotropically dilitated
network.

How is this equilibrium state of the gel determined; solvent filled networks
are generally addressed as gels, water filled networks often also more specif-
ically as hydrogels? Equilibrium conditions have to be established for the
solvent molecules, because they can move freely from one part of the sys-
tem, the gel, to the other part, the surroundings with the pure solvent. The
requirement is the equality of the (molar) chemical potential of the solvent
(subscript s) in the two phases (superscripts g and 0)

g̃g
s = g̃0

s . (9.112)
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Since the solvent concentration is reduced in the gel and thus the chemical
potential under normal pressure, an equal chemical potential can only be
achieved for an enhanced pressure in the gel, i.e., pg > p0. The pressure
difference is the osmotic pressure

Π = pg − p0 . (9.113)

Π depends on the properties of the gel in the swollen state, as given by the
(molar) concentration c̃m of monomeric units, the interaction between solvent
and network chains as expressed by the Flory–Huggins parameter χ, and for
a polyelectrolyte network, the fraction φio of ionized monomers. How is the
pressure difference generated? The simple answer is: It is provided by the
isotropic stress of the swollen network, σ. Hence, the equilibrium condition is

Π = σ . (9.114)

In order to determine the equilibrium we need expressions for the dependence
of both Π and σ on the swelling ratio Q.

An expression for the isotropic network stress is obtained using Eq. (9.22)
in the case of an isotropic dilatation

λx = λy = λz = λ . (9.115)

This leads to the increase of the Helmholtz free energy; we here still use
ΔF rather than ΔG, i.e., we neglect the atmospheric pressure contribution
patmΔV – to

ΔF = −TΔS = Vg0c̃p0
R̃T

2
(3λ2 − 3) . (9.116)

Here, c̃p0 denotes the (molar) concentration of chain segments between cross-
links in the dry state. With

Vg

Vg0
= λ3 = Q (9.117)

one obtains
ΔF =

3
2
Vg0c̃p0R̃T

(
Q2/3 − 1

)
. (9.118)

The isotropic stress follows from

σ =
dΔF
dVg

(9.119)

and is therefore given by

σ =
1
Vg0

dΔF
dQ

= c̃p0R̃TQ
−1/3 . (9.120)

Equation (9.120) is obviously incomplete, as it would give a non-vanishing
stress in the initial state, i.e., for Q = 1. In fact, in the dry state the network
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forces, which always act towards a volume shrinkage, are counter-balanced by
repulsive monomer–monomer interaction forces. The total external stress σ
thus includes a second contribution, prep, so that we have

σ = c̃p0R̃TQ
−1/3 + prep , (9.121)

with
prep(Q = 1) = −c̃p0R̃T . (9.122)

However, since there is obviously

prep(Q � 1) ≈ 0 , (9.123)

this second contribution can be neglected when calculating the gel equilibrium
state.

Dealing with the osmotic pressure we first consider the case of an electri-
cally neutral network in a good solvent. We refer here to the Flory–Huggins
treatment of A/B-polymer mixtures (Sect. 4.1) and use it for a network(A)–
solvent(B) system, by just setting

NA → ∞ ,

NB = 1 ,
ñB = ñs ,

ṽc = ṽs = ṽm ,

ṽs and ṽm denoting the equally chosen molar volumes of the solvent and the
monomeric units respectively. Application of the Flory–Huggins theory in this
case is certainly not a fully legitimate step, because polymer solutions cannot
be treated satisfactorily by a mean field theory, but the general tendencies
still show up. The difference g̃g

s − g̃0
s , which would evolve for a uniform normal

pressure follows from

g̃g
s − g̃0

s =
∂ΔGmix

∂ñs
(9.124)

with
ΔGmix = R̃T (ñs lnφs + χñsφp) . (9.125)

Expression (9.125) is obtained from Eq. (4.10) by the above setting. The
osmotic pressure compensates the drop in the chemical potential, i.e.,

Πṽs = − (
g̃g
s − g̃0

s

)
. (9.126)

Performing the calculation we start from

g̃g
s − g̃0

s = R̃T

(
lnφs +

ñs

φs

dφs

dñs
+ χφp + χñs

d
dñs

(1 − φs)
)

(9.127)

with
φs =

ñsṽs
ñsṽs + Vp

=
ñsṽs
V (9.128)
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and

dφs

dñs
=

d
dñs

ñsṽs
V =

V ṽs − ñsṽ
2
s

V2
=
ñsṽs
ñsV (1 − φs) =

φs

ñs
(1 − φs) . (9.129)

We obtain with
φp = 1 − φs (9.130)

the result
g̃g
s − g̃0

s = R̃T
(
ln(1 − φp) + φp + χφ2

p

)
= −Πṽs . (9.131)

A simple expression for the equilibrium degree of swelling is obtained for
a high dilution of the network in the gel, i.e., φp � 1. Then the osmotic
pressure is

Π ≈ R̃T

ṽs
φ2

p

(
1
2
− χ

)
, (9.132)

and the equilibrium is reached, according to Eq. (9.114), for

c̃p0Q
−1/3 =

(
1
2 − χ

)
ṽs

1
Q2

(9.133)

or

Q5/3 =
1
c̃p0

1
2 − χ

ṽs
. (9.134)

As expected, swelling increases with the solvent quality (χ < 0) and a decrease
in the degree of cross-linking. Figure 9.13 gives an example of the latter factor.
According to the stress–strain law for ideal rubbers, Eq. (9.30), we have for
the tensile stress at a fixed extension the proportionality

σzz ∝ c̃p0 . (9.135)

In a comparison of tensile stresses in the dry state and swelling ratios in
a solvent for networks with different cross-link densities one therefore expects
a relationship

Q5/3 ∝ σzz . (9.136)

The result of such a comparison, conducted for poly(ε-caproamide) networks
in m-cresol, is shown in the figure, and it agrees with the expectation.

Next, we consider the situation in a salt free polyelectrolyte network. Since
charge neutrality is preserved within the gel due to the strong Coulomb forces,
the counter-ions cannot leave this phase and, therefore, produce their full
osmotic pressure. It depends on their concentration φioc̃m as

Π

R̃T
= φioc̃m =

φioc̃m0

Q
. (9.137)

Here, c̃m0 denotes the molar concentration of monomers in the dry state, which
equals the molar concentration of the counter-ions. The contributions of the
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Fig. 9.13. Poly(ε-caproamide)s with various cross-link densities: Relationship be-
tween swelling ratios Q in m-cresol and tensile stresses σzz in the dry state at three
extensions λ. From Schaefgen and Flory [114]

network chains and the interaction between solvent molecules and monomers
to Π are small compared to the effect of the counter-ions and can usually be
neglected.

To obtain the swelling equilibrium for the electrolyte gel we use Eq. (9.120)
together with Eq. (9.137) on the basis of Eq. (9.114)

φioc̃m0

Q
= c̃p0Q

−1/3 . (9.138)

This leads to

Q =
(
φioc̃m0

c̃p0

)3/2

. (9.139)

The expression on the right-hand side depends on the molar mass Meff of the
chains between cross-links, since

c̃m0

c̃p0
=
Meff

Mm
(9.140)

with Mm denoting the molar mass of the monomeric units. If the ratio
Meff/Mm is large, the degree of swelling Q is large as well. Figure 9.14 shows
as an example the swelling properties of a poly(acrylic acid) (PAA) hydrogel.
For pure water Q is in the order of 102.



9.2 Swelling of Neutral and Electrolytic Gels 389

Fig. 9.14. PAA gels with different cross-link densities (260, 433 and 606 mol m−3):
Equilibrium degree of swelling by water as a function of the NaCl concentration
outside the gel. From Schröder and Oppermann [115]

One can again ask how Q changes in the presence of salt. As was discussed
earlier (Sect. 3.3.3) salt reduces the osmotic pressure. The swelling ratio will
also drop, which is shown by the experiment. Here, the reduction amounts
to more than one order of magnitude. On the other hand, water is usually
a good solvent for polyelectrolytes, i.e., one with a negative χ-parameter.
Obviously, this favorable interaction further promotes the entrance of water
into the gel and thus increases the swelling ratio. Both effects can be dealt
with theoretically. In Sect. 3.3.3 we derived the Donnan equation, which gives
the osmotic pressure in a polyelectrolyte for a higher salt concentration in the
surroundings (Eq. (3.136) under neglect of the first term)

Π = R̃T
φ2

ioc̃
2
m

4c̃sa
. (9.141)

With
φp = c̃mṽm (9.142)

the equilibrium condition here reads

c̃p0Q
−1/3 =

φ2
io

4c̃saṽ2
m

1
Q2

, (9.143)
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or

Q5/3 =
φ2

io

4c̃p0ṽ2
mc̃sa

. (9.144)

If in the case of a high negative χ-parameter, the solvent quality must also be
accounted for, the swelling equilibrium is given by

Q5/3 =
1
c̃p0

[
φ2

io

4ṽ2
mc̃sa

+
1
2 − χ

ṽs

]
. (9.145)

The Donnan contribution to the osmotic pressure vanishes in the limit of very
high salt concentration, and we then end up again at the swelling properties
of an electrically neutral network, i.e., at Eq. (9.134).

9.3 Non-Newtonian Melt Flow

Polymers owe their attractiveness as materials for a wide range of applications
to a large extent to their ease of processing. Manufacturing processes such as
injection molding, fiber spinning or film formation are mainly conducted in the
melt and it is a great advantage of polymers that their melting temperatures
are comparatively low. On the other hand, the flow properties of polymer
melts are complicated and process control requires a broad knowledge. To
deal with simple Newtonian liquids, one needs just one parameter, namely
the viscosity η. In principle, knowing it allows us to calculate stresses for any
given flow pattern. Polymeric liquids are more complex in behavior. From
the very beginning, i.e., even at low frequencies or low shear rates, one has
to employ two coefficients for a characterization. As we have already seen in
the discussion of linear responses, in addition to the shear viscosity one needs
to know the recoverable shear compliance that relates to the always present
elastic forces. At higher strain rates more complications arise. There, η and
Je are no longer constants but change with the shear rate. In this section, we
will briefly discuss these phenomena.

The problem that has to be solved in order to set the processing of poly-
mer melts on a solid basis is the formulation of rheological equations of state.
The rheologists’ approach in treating the problems of melt flow is generally
a purely empirical one. The objective is to find analytical expressions correctly
describing the relationships between the time-dependent strains or velocities
in a given fluid and the emerging stresses. Ideally, equations should be gen-
erally applicable, i.e., hold for all possible strain histories, and at the same
time be analytically simple, to facilitate their use. As we will see, for polymer
melts this aim amounts to a difficult task. We can enter into this field only in
a very restricted manner and will present solely the simplest model, known as
the Lodge fluid. The main purpose of this section is to introduce and dis-
cuss some standard experiments commonly employed for a characterization of
polymer flow behavior. They refer to situations frequently encountered under
practical conditions.
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9.3.1 Rheological Material Functions

Two of the various flow patterns realized in polymer melts during processing
are of particular importance. First, there is the flow through a tube. Here,
all volume elements move along straight lines parallel to the axis. The veloc-
ities are non-uniform, the maximum velocity being found at the center and
the minimum at the wall where the fluid particles are fixed. The consequence
of the varying velocities are frictional forces acting between the volume ele-
ments incorporated in adjacent stream lines. Obviously, flow through tubes
is locally equivalent to shear flows. Similarly to simple shear, layers of liquid
slide over each other without changing their form. A different kind of defor-
mation is found in extensional flows. These are encountered, for example,
during melt spinning in the fiber production. The dominant feature now is
the stretching of all volume elements, which means a great change in form;
the sliding of adjacent layers against each other, giving the main effect in
shear flow, is less important. Hence, we have, at least, two different classes
of deformations, which both have to be analyzed. As a minimum, for a first
rheological characterization of a given polymer one needs two kinds of exper-
imental arrangements, and we discuss them one after the other.

Simple shear flow is identical with the pattern depicted in Fig. 9.15.
The velocity field is given by

vx = γ̇z , (9.146)
vy = vz = 0 . (9.147)

The only parameter included is the shear rate γ̇. There is an instrument that
is widely used because it realizes simple shear flow conditions in a manner
convenient for experiments. This is the cone-and-plate rheometer sketched
on the left-hand side of Fig. 9.16. The polymer melt is placed in the gap and,
if the gap angle is kept small, then the shear rate is the same everywhere.
With the aid of this apparatus, various experiments may be carried out, as
for example,

• determinations of the steady state properties at constant shear rates,
• measurements under oscillatory shear,

Fig. 9.15. Pattern of simple shear flow. Arrows indicate the velocity field
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Fig. 9.16. Standard arrangements used for the characterization of shear flows (left)
and extensional flows (right). Shear viscosities can be derived from the torque mea-
sured in a cone-and-plate rheometer; the primary normal stress difference is deduced
from the axial force. Elongational viscosities follow from the tensile force required
for the drawing of a molten fibre in the tensile rheometer, as monitored by a leaf
spring

• observations of the stress growth for linearly increasing shear,
• detection of the shear, stress relaxation after a sudden deformation of the

melt, and
• studies of the elastic recovery after unloading.

The two material parameters characterizing polymeric fluids at low strain
rates, the viscosity, η, and the recoverable shear compliance, Je, can be directly
determined. η follows from the measurement of the torque under steady state
conditions, Je shows up in the reverse angular displacement subsequent to an
unloading, caused by the retraction of the melt. From the discussion of the
properties of rubbers we already know that simple shear is associated with
the building-up of normal stresses. More specifically, one finds a non-vanishing
value of the first normal stress difference. We may anticipate, therefore, that
the deformation of the entanglement network in a shear-deformed polymer
melt likewise results in the emergence of normal stresses. The cone-and-plate
rheometer permits us to make a direct determination, because this causes
a thrusting axial force. Being proportional to the square of the shear in rubbers
and equivalently, as we shall learn, to the square of the shear rate in polymer
melts, normal stresses constitute a non-linear phenomenon. Although they
can be small for low shear rates, they are present from the very beginning.

The properties of melts under extensional flows can be studied with the
aid of a tensile rheometer. The basic experimental arrangement is sketched
on the right-hand side of Fig. 9.16. A cylindrical rod of polymer melt, usually
floating on a liquid substrate, is drawn by two pairs of ribbed rollers. One
of the rollers is mounted on a leaf spring, so that the force required for the
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drawing process can be monitored by the deflection. It is important to recog-
nize the conditions imposed if the rollers circulate with a constant frequency.
Obviously, the procedure realizes a constant rate of elongation relative to the
momentary length, i.e., a constant value for the relative length change per
second. Expressed in terms of the stretching ratio, λ, we have

1
λ(t)

dλ
dt

= const (9.148)

The process thus differs from a drawing where clamps attached to the two
ends of a sample move with a constant relative speed, as this leads to

dλ
dt

= const (9.149)

The constant in Eq. (9.148) is known as the Hencky rate of extension and
we choose for it the symbol ėH

ėH =
d lnλ

dt
. (9.150)

Whereas experiments conducted with a constant rate of elongation yield a lin-
ear extension with time, those carried out with a constant Hencky rate result
in an exponential time dependence of λ,

λ(t) = exp(ėHt) . (9.151)

For solids one may choose either of the two drawing processes. For liquids
a drawing with a constant Hencky rate of extension is to be preferred, because
the original length included in λ then becomes irrelevant, as is desired.

We now introduce the major rheological material functions, with illus-
trations provided by typical experimental results. Figure 9.17 depicts data
obtained for low density polyethylene under steady shear flow conditions, em-
ploying a cone-and-plate rheometer. Curves display both the shear rate de-
pendence of the viscosity, with similar results as in Fig. 9.1, and the shear rate
dependence of the first normal stress difference. The stresses arising for simple
shear flows may be generally expressed by the following set of equations:

σzx = η(γ̇)γ̇ , (9.152)
σxx − σzz = Ψ1(γ̇)γ̇2 , (9.153)
σyy − σzz = Ψ2(γ̇)γ̇2 . (9.154)

Equations include and thus define three rheological material functions:

• the shear viscosity η,
• the primary normal stress coefficient Ψ1, and
• the secondary normal stress coefficient Ψ2.
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Fig. 9.17. PE under steady state shear flow at 150 ◦C: Strain rate dependencies of
the viscosity η, the primary normal stress coefficient Ψ1 and the recoverable shear
strain γe. The dotted line represents Eq. (9.157). Results obtained by Laun [116]

All three functions are dependent on the shear rate γ̇. Ψ2 does not appear in
the figure, because it is difficult to deduce it from measurements in a cone-and-
plate rheometer. It can be obtained using other devices and results indicate
that Ψ2 is usually much smaller than Ψ1, thus having only a minor effect on
the flow behavior. The important property showing up in the measurements
is the shear thinning, observed for both η and Ψ1 and setting in for strain
rates above γ̇ � 10−2 s−1.

The third curve in the figure, denoted γe, gives the amount of shear strain
recovery subsequent to a removal of the external torque. There is an interesting
observation. The linear increase of γe with γ̇ at low shear rates is exactly
determined by the zero shear rate values of the viscosity and the primary
normal stress coefficient, η0 and Ψ1,0. This is revealed by the coincidence of
the limiting curve γe(γ̇ → 0) with the dotted line representing the linear
function

Ψ1,0

2η0
γ̇ =

σxx − σzz

2σzx
. (9.155)

The agreement implies a relationship between the zero shear rate value of the
recoverable shear compliance, following from γe as

J0
e = lim

γ̇→0

γe

σzx
(9.156)
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and the zero shear values of the viscosity and the primary normal stress coef-
ficient. It has the following form:

J0
e =

Ψ1,0

2η2
0

. (9.157)

The relationship implies that, in the limit of low shear rates, we still have only
two independent parameters. The primary normal stress coefficient does not
represent an independent property, but is deducable from the two parameters
controlling the linear response, J0

e and η0.
Figure 9.18 refers to two other standard experiments. It depicts the re-

sults of stress growth experiments, conducted again on a polyethylene
melt. The figure includes both measurements probing shear and tensile prop-
erties, thus facilitating a direct comparison. Curves show the building-up of
shear stress upon inception of a steady state shear flow at zero time and the
development of tensile stress upon inception of a steady state extensional flow.
Measurements were carried out for various values of the shear rate γ̇ or the
Hencky rate of extension ėH.

Fig. 9.18. Results of stress growth experiments in shear, η+(t), and extension,
η̂+(t), at different deformation rates γ̇ and ėH, respectively, carried out for PE at
150 ◦C. Measurements by Meissner [117]



396 9 Non-Linear Mechanics

The results of the shear experiments are described with the aid of the
time-dependent viscosity defined as

η+(t, γ̇) =
σzx(t)
γ̇

. (9.158)

In analogous manner the time-dependent extensional viscosity, defined
as

η̂+(t) =
σzz(t)
ėH

, (9.159)

is employed for a description of the properties of extensional flow. The steady
state value reached after the period of growth

η̂ = η̂+(t → ∞) =
σzz

ėH
(9.160)

is known as the extensional viscosity or Trouton viscosity. A look at
the results is instructive and shows us characteristic differences between shear
and tensile deformations. First consider the limit of low strain rates. We find
here a simple result, as both curves agree in shape, only differing by a factor
of three. As we shall see below, the two curves can be deduced from the flow
properties in the linear regime, by application of Lodge’s equation of state for
rubber-like liquids. The reason for the difference and the fact that the larger
forces arise in the extensional flow is obvious. For equal values of γ̇ and ėH, the
tensile strains produce much larger deformations. Of particular interest is the
comparison of the behavior at larger strain rates. In both cases one observes
characteristic deviations from the low strain rate curves. The shear stressing
leads to deviations to lower values, i.e., to a shear thinning. The asymptotic
values reached at long duration give the steady state shear viscosities shown
in Fig. 9.17. An opposite behavior appears in the tensile deformation mode,
where we find deviations to higher values, indicating a strain hardening.
In the latter experiments it is often difficult to reach the steady state, as
this is frequently preceded by a fracture of the melt fibre. Sometimes one
is successful and then curves like the one shown in Fig. 9.19 are observed.
The shape in the range before the steady state plateau is reached reminds
one of stress–strain curves of rubbers under uniaxial load, like that shown in
Fig. 9.1. The similarity might suggest that, like the rubber, here in the melt
a strain hardening again arises from the limited extensibility of the mobile
chain sequences. As it turns out, however, this is not the primary cause. As
will be shown in the next section, an increase in stress is also predicted for the
Lodge liquid if strain rates become large compared to intrachain relaxation
rates.

A further typical result is shown in Fig. 9.20, giving the plateau values
of the extensional viscosity at steady state as a function of the associated
drawing stress σzz . Measurements were carried out for various low density
polyethylenes (PE-LD) and one linear polyethylene (PE-HD). For the major-
ity of samples, in the non-linear range one first observes an increase and then
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Fig. 9.19. Tensile stress growth curves observed for PE at 150 ◦C, obtained for
a constant Hencky strain rate ėH = 0.1 s−1. Data from Laun and Münstedt [118]

Fig. 9.20. Steady state extensional viscosities η̂ as a function of the applied tensile
stress, as observed for various samples of PE. Data are given in reduced form, with
reference to the respective zero shear rate viscosities η0. From Münstedt and Laun
[119]

for higher strain rates and stresses, after passing over a maximum, a decrease.
We may understand this behavior as being the result of competition between
two effects. After the first period of strain hardening there follows a viscosity
reduction on further increasing the strain rates, owing to a decrease in the
entanglement density in the oriented fiber occurring for similar reasons as in
the case of shear thinning.
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9.3.2 The Lodge Liquid

Treatments of flows of polymer melts require a rheological equation of state
that allows a calculation of the stress tensor for all points r of a given flow
field. We have a complete description of the flow kinetics if we specify for
each material point, located at r at time t, the full trajectory in the past. The
latter may be expressed by the function

r′(r, t, t′) , (9.161)

which describes the positions r′ at the previous times t′. Clearly we may start
from the assumption that the stress field at time t, σ(r, t), is a functional of
the trajectories of all material points. This statement, however, is obviously
too general to be useful for applications. We have learned in the discussion
of finite deformations of rubbers how the problem can be reduced. An es-
sential reduction was achieved by the introduction of the Cauchy tensor C,
or alternatively, the Finger tensor B. As we have seen, the state of stress
of a hyperelastic body may be described by functions σ(C) or σ(B). This
notion can be extended and generalized to treat the time-dependent deforma-
tions occurring in polymer melts. Referring to the Finger tensor, we introduce
a function

B(r, t, t′)

depending on the present time t and a previous time t′, with components Bij

being given by

Bij(t, t′) =
∂ri

∂r′k

∂rj

∂r′k
. (9.162)

This is analogous to the previous definition, Eq. (9.81), which is now applied to
the state of the melt at time t′, given by the displacement function r′(r, t, t′),
rather than to the natural state of a rubber. According to the definition,
the time-dependent Finger strain tensor, B(r, t, t′), characterizes the
deformation of the neighborhood of the material point at r that has taken
place between the past time t′ and the present time t. With the aid of the
Finger tensor, we have formulated a general equation of state valid for all
hyperelastic bodies. Likewise, we now assume that the stress in a flowing melt
can be expressed as a functional of the tensors B(r, t, t′):

σ(r, t) = σ(B(r, t, t′)) , with t′ < t . (9.163)

This general expression first accounts for the principal of causality by stating
that the state of stress at a time t is dependent on the strains in the past only.
Second, by using the time dependent Finger tensor B, one extracts from the
flow fields only those properties that produce stress and eliminates motions
like translations or rotations of the whole body that leave the stress invariant.
Equation (9.163) thus provides us with a suitable and sound basis for further
considerations.
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The problem is to find expressions that can describe the experimental
observations. We have a perfect solution if we succeed in constructing an
equation of state that correctly formulates the stresses for an arbitrary strain
history. To reach this final goal is certainly very difficult. It might appear,
however, that we have a suitable starting point. Polymer fluids have much
in common with rubbery materials. In a simplified view, we find, as the only
difference, that cross-links are permanent in rubbers whereas, in fluids, they
are only temporary with lifetimes that are still large compared to all the
internal equilibration processes. Hence, it makes sense to search for a formula
that includes, from the very beginning, the properties of rubbers as expressed
by the equation of state of ideal rubbers, Eq. (9.74).

Lodge was the first to formulate such an equation by a combination
of Eq. (9.74) with the Boltzmann superposition principle as expressed by
Eq. (6.111). Explicitly, the Lodge equation of state of rubber-like
liquids, when written for homogeneous deformations, has the following
form

σ(t) = −
t∫

t′=−∞
G(t− t′)

dB(t, t′)
dt′

dt′ . (9.164)

The Boltzmann superposition principle represents the stress as a result of
changes in the state of strain at previous times. In the linear theory that is
valid for small strains, these can be represented by the linear strain tensor. In
Lodge’s equation the changes in the latter are substituted by changes in the
time dependent Finger tensor

−dB(t, t′) ,

thus enabling us to describe finite strains. The meaning of the function G
remains unchanged. It still represents the stress relaxation modulus.

To see the consequences implied by this equation of state, it is instructive
to consider at first simple shear flow conditions. We may write down the time-
dependent Finger tensor immediately, just by replacing in Eq. (9.98), derived
for a deformed rubber, γ by the increment γ(t) − γ(t′). This results in

B(t, t′) =

⎛
⎝1 + (γ(t) − γ(t′))2 0 γ(t) − γ(t′)

0 1 0
γ(t) − γ(t′) 0 1

⎞
⎠ . (9.165)

Next, we introduce B into Lodge’s equation of state, calculate the derivatives
and thus obtain all stress components. The result for the shear stress is

σzx(t) =

t∫

t′=−∞
G(t− t′)

dγ
dt′

dt′ , (9.166)
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and for the primary normal stress difference we obtain

(σxx − σzz)(t) = 2

t∫

t′=−∞
G(t− t′)(γ(t) − γ(t′))

dγ
dt′

dt′ . (9.167)

The secondary normal stress difference vanishes, as was the case for an ideal
rubber

σyy − σzz = 0 . (9.168)

Representing a combination of the equation of state of ideal rubbers and
Boltzmann’s superposition principle, Lodge’s equation provides an interpola-
tion between the properties of rubbers and viscous liquids. The limiting cases
of an elastic rubber and the Newtonian liquid are represented by

G = const (9.169)

and
G(t− t′) = ηδ(t− t′) , (9.170)

respectively. Insertion of a constant G in Lodge’s equation reproduces the
elastic properties of a rubber under simple shear deformation, as we find

σzx(t) = Gγ(t) , (9.171)

(σxx − σzz)(t) = 2G

t∫

t′=0

(γ(t) − γ(t′))
dγ
dt′

dt′

= Gγ2(t) . (9.172)

If we take Eq. (9.170), we obtain

σzx(t) = η
dγ
dt

(9.173)

(σxx − σzz)(t) = 0 , (9.174)

i.e., the flow properties of a Newtonian liquid.
Next, let us consider the predictions for a shear stress growth experiment.

In a stress growth experiment, a linearly increasing shear is imposed, i.e.,

γ(t) = γ̇t for t > 0 . (9.175)

Applying Eq. (9.166), we obtain for the time-dependent shear stress

σzx(t) = γ̇

t∫

t′=0

G(t− t′)dt′ , (9.176)
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and for the primary normal stress difference

(σxx − σzz)(t) = 2γ̇2

t∫

t′=0

G(t− t′)(t− t′)dt′

= 2γ̇2

t∫

0

G(t′′)t′′ dt′′ . (9.177)

The results give us the following expressions for the material functions η+(t)
and Ψ+

1 (t):

η+(t) =

t∫

0

G(t′′)dt′′ (9.178)

and

Ψ+
1 (t) = 2

t∫

0

G(t′′)t′′ dt′′ . (9.179)

The steady state values reached after passing through the period of stress
growth equal the asymptotic limits for t→ ∞, i.e.,

η = η+(t→ ∞) (9.180)

Ψ1 = Ψ+
1 (t → ∞) . (9.181)

We thus obtain, for the steady state viscosity and the steady state primary
normal stress coefficient, the expressions

η =

∞∫

0

G(t′′)dt′′ (9.182)

Ψ1 = 2

∞∫

0

G(t′′)t′′ dt′′ . (9.183)

As we can see, both are independent of the strain rate γ̇. Hence, as a first
conclusion, Lodge’s equation of state cannot describe the shear thinning phe-
nomenon. Equation (9.182) is in fact identical with Eq. (6.107) derived in the
framework of linear response theory. The new result contributed by Lodge’s
formula is the expression Eq. (9.183) for the primary normal stress difference.
It is interesting to note that the right-hand side of this equation already ap-
peared in Eq. (6.108) of the linear theory, formulating the relationship between
G(t) and the recoverable shear compliance J0

e . If we take the latter equation,
we realize that the three basic parameters of the Lodge rubber-like liquid, η0,
J0

e and Ψ1,0, are indeed related, by

Ψ1,0 = 2J0
e η

2
0 . (9.184)
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The result exactly reproduces the experimental observations in the limit of
low shear rates as presented in Fig. 9.17; the straight dotted line is based
on this relation. We may conclude, therefore, that Lodge’s equation correctly
describes the development of normal stresses in the initial period of shear-
stressed polymeric liquids.

Next, we consider the second class of experiments and check the predictions
of the Lodge model with regard to extensional flows. Using again an equation
from the ideal rubbers we can directly write down the time-dependent Finger
tensor B(t, t′). It has the form

B(t, t′) =

⎛
⎜⎜⎜⎜⎝

(
λ(t)
λ(t′)

)−1

0 0

0
(

λ(t)
λ(t′)

)−1

0

0 0
(

λ(t)
λ(t′)

)2

⎞
⎟⎟⎟⎟⎠ (9.185)

and follows from Eq. (9.80) by a substitution of the stretching ratio λ referring
to the natural state by the relative length change between times t′ and t as
given by the ratio λ(t)/λ(t′). Tensile stress growth experiments are conducted
with a constant Hencky rate of extension, starting the drawing process at
zero time. This leads to an exponential time dependence of λ as expressed by
Eq. (9.151) and therefore to the following expression for the time-dependent
Finger tensor:

B(t, t′) =

⎛
⎝ exp[−ėH(t− t′)] 0 0

0 exp[−ėH(t− t′)] 0
0 0 exp[2ėH(t− t′)]

⎞
⎠ . (9.186)

Insertion of B(t, t′) in the equation of state for rubber-like liquids yields the
normal stress difference

(σzz − σxx)(t) = −
t∫

t′=0

G(t− t′)
d
dt′

(exp[2ėH(t− t′)]

− exp[−ėH(t− t′)])dt′

= ėH

t∫

t′=0

G(t− t′)(2 exp[2ėH(t− t′)]

+ exp[−ėH(t− t′)])dt′ . (9.187)

In the absence of lateral pressures, i.e.,

σxx = 0 ,

we can formulate the result as

σzz(t) = ėHη̂
+(t, ėH) (9.188)
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with

η̂+(t, ėH) =

t∫

t′′=0

G(t′′)(2 exp(2ėHt′′) + exp(−ėHt′′))dt′′ . (9.189)

Figure 9.21 shows the time-dependent viscosities derived from Eqs. (9.178)
and (9.189) for both simple shear and extensional flow. For simplicity a single
exponential relaxation with a relaxation time τ is assumed for G(t′′). The
dotted line represents the time-dependent viscosity for simple shear, η+(t),
which is independent of γ̇. A qualitatively different result is found for the
extensional flow. As we can see, the time-dependent extensional viscosity η̂+(t)
increases with ėH and for ėH > 0.5τ−1 a strain hardening arises.

It is interesting to compare these calculations with the experimental results
presented in Fig. 9.18. Indeed, there is perfect agreement in the limit of low
deformation rates, γ̇ → 0 and ėH → 0. In both the model and the experiment,
we find two parallel curves for η(t) and η̂(t) that are separated by a factor 3.
Notice that the factor 3 also emerges for a rubber under static conditions,
where we found E = 3G (Eqs. (9.32) and (9.86)). There is no agreement at all
for the shear flow at finite strain rates since shear thinning phenomena are not
accounted for. Similarly, the agreement is lacking for the tensile stress growth
experiments at higher strain rates. Although the Lodge model predicts an

Fig. 9.21. Time-dependent viscosities for shear and extensional flow, η+ and η̂+,
as predicted by Lodge’s equation of state. Calculations are performed for different
Hencky strain rates ėH, assuming a single exponential relaxation modulus G(t) ∝
exp(−t/τ )
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increase with the strain rate, the experimental curves differ from the calculated
data. In particular, the viscosity reduction at high strain rates indicated by
the final values is not accounted for by the model. Hence, we have to conclude
that the capacity of the Lodge model is limited when compared to the behavior
of real polymer melts. What it provides is a correct prediction of the normal
stress phenomena at low strain rates and it also describes part of the stress
enhancement observed in extensional flows.

As it is obviously necessary to alter the assumptions, one might check
at first whether moderate modifications of the Lodge model can lead to an
improvement of the agreement with the experiment. Still, the Lodge model can
be regarded as a good starting point, as it furnishes a perfect representation
of data for low strain rates, independent of the total deformation. There are
various proposals in the literature on how an improvement could be achieved;
however, a fully satisfactory equation of state in the sense of providing all
material functions in quantitative terms for a given polymer, using a small
number of adjustable parameters, has not been found so far. Rather than
giving an overview, which definitely lies outside our scopes, we will just cite,
for illustration, one of the better known approaches. One generalization of
Eq. (9.164) has the following form:

σ = −
t∫

t′=−∞
G(t− t′)

dΦ(B(t, t′))
dt′

dt′ . (9.190)

Here, while retaining the relaxation function G(t − t′), the Finger tensor is
replaced by a functional Φ depending on B(t, t′) and its invariants IB(t, t′)
and IIB(t, t′). The modification makes it possible to account for the viscosity
reduction effects. As an example, one can factorize Φ and write

Φ(B(t, t′)) = exp[−β(IB(t, t′) − 3)]B(t, t′) . (9.191)

The exponential acts like a damping function and causes stress reductions if
the deformations become large, as is desired.

9.3.3 The Stress-Optical Rule

Figures 9.22 and 9.23 present experimental results that at first glance may
look quite astonishing. Flowing polymer melts are birefringent, for obvious
reasons and the experiment compares for a stretched polystyrene the time
dependence of the birefringence

Δn = nc − na (9.192)

(nc and na are the indices of refraction along and normal to the stretching
direction) with that of the tensile stress. The time dependencies shown in
Fig. 9.22 have a similar appearance and indeed, as proved by the plot of Δn
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Fig. 9.22. Time dependence of tensile stress observed in stretching experiments
(ėH = 0.075 s−1) carried out on PS at the indicated temperature (right). Simultane-
ous measurement of the birefringence as a function of time (left). Data of Matsumoto
and Bogue [120]

Fig. 9.23. Relation between birefringence and tensile stress deduced from the data
of Fig. 9.22 after an elimination of the time [120]
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versus σzz in Fig. 9.23, obtained by elimination of t from all curves, there is
a strict relationship, even common to all temperatures. Moreover, over a wide
range of stresses a linear relationship

Δn = const σzz (9.193)

is found. As only differences between normal stresses are well-defined, we write
more accurately

Δn = Copt(σzz − σxx) . (9.194)

Equation (9.194) is known as the linear stress-optical rule and is gener-
ally valid for polymer melts. The proportionality constant Copt is called the
stress-optical coefficient, and its value is a characteristic property for each
polymer.

The linear stress-optical rule also holds under the conditions of simple
shear flow. Observed data comply with the scenario depicted schematically in
Fig. 9.24. The drawings show the principal axes of the stress tensor and of
the optical indicatrix, for different shear rates. Data evaluation proves that
the orientations of the two triples of principal axes always coincide, as is
indicated in the sketches. The inclination angle of the primary axis, θc, is
45◦ for infinitesimally small shear rates and then decreases towards zero on
increasing γ̇. The stress optical rule here reads

Δn = nc − na = Copt(σc − σa) . (9.195)

It can be verified by simultaneous measurements of the birefringence nc −na,
the inclination angle θc and the shear stress σzx. Straightforward calculations
yield the following relation between the principal stresses σa, σc and the shear
stress σzx in the laboratory-fixed coordinate system:

2σzx = (σc − σa) sin(2θc) . (9.196)

Combination of Eqs. (9.195) and (9.196) gives

Δn sin(2θc)
2σzx

= Copt . (9.197)

Figure 9.25 shows the results of measurements of Copt based on this equation,
carried out for two different samples of polyethylene over a wide range of
shear rates γ̇. As we note, Copt is strictly constant, in striking contrast to the
shear viscosities η, which are included in the figure for comparison. Here we
find a linear relation that is valid within the range of non-linear mechanical
behavior. Surely we are in the non-linear range: Birefringence is indicative
of changes in the conformational distribution of the chains and this, in turn,
leads to the non-linearity.

Validity of the linear stress-optical rule is a key observation with regard
to the physical nature of the stresses created in flowing polymer melts. Gen-
erally speaking, stress in a polymer fluid arises from all forces acting between
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Fig. 9.24. Stress-optical relation as observed in polymer melts under simple shear
flow: Optical indicatrix (ellipsoids drawn with continuous lines) and stress tensor
(ellipsoids drawn with broken lines) show equal orientations of the principal axes and
proportionality between the birefringence nc −na and the principal stress difference
σc − σa. The inclination angle θc decreases with increasing shear rate

monomers on alternate sides of a reference plane. In polymers, we may di-
vide them into two parts. We first have the strong valence bond forces, which
are effective along a polymer chain, and second the non-bonded interactions
active between all monomers on adjacent positions; they may belong to the
same or to different chains. Having two contributions to the stress, the ques-
tion arises as to how this can be accommodated with the validity of the
stress-optical rule. Because only intrachain deformations produce optical ef-
fects we must conclude that the intramolecular forces dominate the situation
in flowing polymer melts, the effects of the non-bonded interactions being
negligible.

Indeed, under this assumption the stress-optical rule can be verified and
interpreted. We describe a chain in the spirit of the Rouse model, as sketched
in Fig. 9.26. Each polymer is subdivided into sequences of equal size, long
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Fig. 9.25. Steady state shear viscosities and the stress optical coefficient observed
for two samples of PE with different molar mass distributions at 150 ◦C. Measure-
ments by Wales [121]

Fig. 9.26. Representation of a polymer chain as a series of freely jointed springs
with extensions r̂i and orientation angles θi

x, θi
y, θi

z

enough to ensure that they behave like elastic springs, with a force constant
bR given by Eq. (8.18),

bR =
3kT
a2
R

. (9.198)

Using this representation of the chains in a melt, which may or may not be en-
tangled, we can deduce the linear stress-optical rule. Previously, in Eq. (8.60)
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we formulated an expression for the contribution of stretched springs to the
shear stress σzx

σzx =
bR
v

∑
i

x̂iẑi .

The summation included all springs i in the volume v, with extensions x̂i and
ẑi along the x and z-directions. Because all springs behave equivalently we
can also write

σzx = bRcspr〈x̂iẑi〉 (9.199)

where cspr is the number density of springs. The same arguments can be
used in order to find an expression for the tensile stress. In full analogy to
Eq. (9.199) it reads

σzz = bRcspr〈ẑiẑi〉 . (9.200)

For the normal stress difference we obtain correspondingly

σzz − σxx = csprbR
(〈ẑ2

i 〉 − 〈x̂2
i 〉
)
. (9.201)

The averaging carried out on the right-hand sides involves two steps, a time
average over the fluctuations of each spring and subsequently the average over
all springs. 〈ẑ2

i 〉 and 〈x̂2
i 〉 describe the resulting mean squared extensions along

z (the unique axis) and x.
Introducing the total extension r̂i and the orientation angles θi

z and θi
x as

described in Fig. 9.26, we may write for each spring i

ẑi = r̂i cos θi
z , (9.202)

x̂i = r̂i cos θi
x . (9.203)

We also insert the above expression for bR and obtain

σzz − σxx = cspr
3kT
a2
R

(〈cos2 θi
z〉 − 〈cos2 θi

x〉
) 〈r̂2i 〉 (9.204)

with the assumption of independent fluctuations of r̂i and the orientation
angles. Since for each spring i we have

cos2 θi
x + cos2 θi

y + cos2 θi
z = 1 , (9.205)

for the average over all springs correspondingly

〈cos2 θi
x〉 + 〈cos2 θi

y〉 + 〈cos2 θi
z〉 = 1 , (9.206)

furthermore, due to the overall uniaxial symmetry

〈cos2 θi
x〉 = 〈cos2 θi

y〉 (9.207)



410 9 Non-Linear Mechanics

and therefore
〈cos2 θi

x〉 =
1
2
(
1 − 〈cos2 θi

z〉
)
, (9.208)

for the normal stress difference we obtain

σzz − σxx = cspr
3kT
a2
R

(
3〈cos2 θi

z〉 − 1
2

)
〈r̂2i 〉 . (9.209)

The expression in parentheses on the right-hand side characterizes the degree
of orientation of the springs in the sample and is known as the orientational
order parameter. We denote it Sspr

or and write shortly

σzz − σxx = cspr
3kT
a2
R

〈r̂2i 〉Sspr
or . (9.210)

Next, we consider the optical properties of a spring. A stretched spring is
an optically anisotropic object and we may write down a general expression
for the associated polarizability tensor, denoted βspr. It must have the form

βspr = nmβF (f ) . (9.211)

Here, β stands for the polarizability tensor of one monomer unit in a perfect
orientation parallel to the stretching direction of the spring and nm is the
number of monomers per spring. F (f ) is a certain function of the tensile force
in the spring, of even character

F (f ) = F (−f ) (9.212)

and with the limiting values

F (f → 0) −→ 0 (9.213)
F (f → ∞) −→ 1 . (9.214)

There are good arguments in support of Eq. (9.211). The application of
a force f simultaneously with the stretching of the spring also causes an
orientation of the incorporated segments. The degree of orientation must be
an unambiguous function of f only, not dependent on nm. The latter point
becomes clear when we consider the change in βspr resulting from a coupling
in series of nspr springs with equal forces. One expects, of course,

βspr ∝ nspr (9.215)

and this is only fulfilled by the form Eq. (9.211). The even symmetry of F (f )
and the limits F (f → 0,∞) are due to obvious reasons.

We may also formulate an expansion in powers of f valid for small forces.
In the absence of linear terms we have

βspr = nmβF2f
2 (9.216)
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with

F2 =
1
2

d2F

df 2 . (9.217)

In the next chapter we will again discuss the birefringence of uniaxially de-
formed samples. As will be shown, one can relate Δn to the degree of orienta-
tion of the monomers in a sample, as expressed by the associated orientational
order parameter, Sm

or, and the anisotropy of the polarizability per monomer,
Δβ, using

Δn =
n̄2 + 2
n̄

1
6ε0

cmΔβSm
or (9.218)

(see Eqs. (10.50) and (10.28)). We use the same equation to formulate Δn for
an ensemble of springs instead of the monomers and obtain

Δn =
n̄2 + 2
n̄

1
6ε0

csprΔβsprSspr
or . (9.219)

As the spring extensions and, thus the forces, fluctuate, we write for the
anisotropy, Δβspr, of the polarizability of a spring

Δβspr = nmΔβ〈F (f )〉 . (9.220)

Now we can express the stress-optical ratio. Adopting the series expansion
Eq. (9.216) and using Eqs. (9.210), (9.219), and (9.220), we obtain

Δn
σzz − σxx

=
n̄2 + 2
n̄

1
6ε0

nmΔβa2
R

3kT
〈f 2〉
〈r̂2i 〉

F2 . (9.221)

Since
f =

3kT
a2
R

r̂i (9.222)

and for an ideal chain

a2
R = nma

2
0 ,

there finally results

Δn
σzz − σxx

= Copt =
1

2ε0
n̄2 + 2
n̄

kT

a2
0

F2Δβ . (9.223)

With this we have found an expression for Copt that is, indeed, constant
for a given polymer. We conclude that the stress-optical coefficient includes
three microscopic parameters, the size a0 of a monomer, expressing the chain
stiffness, the optical anisotropy per monomer, Δβ, and the coefficient F2,
which relates to the elastic restoring forces.

Here we have presented the linear stress-optical rule as a basic property of
polymer melts but, of course, it also holds for rubbers, with unchanged stress-
optical coefficients. This must be the case, since stresses arise from a network
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of chains in both melts and rubbers, so that the arguments presented above
apply for both systems equally. Figure 9.27 shows as an example the relation
between birefringence and tensile stress as observed for a sample of natural
rubber.

Validity of the linear stress-optical rule points at the dominant role of
the network forces in polymer melts. The Lodge equation of state can be
interpreted on this basis. We introduced the equation empirically, as an ap-
propriate combination of properties of rubbers with those of viscous liquids.
It is possible to associate the equation with a microscopic model. Since the
entanglement network, although temporary in its microscopic structure, leads
under steady state conditions to stationary viscoelastic properties, we have
to assume a continuous destruction and creation of stress-bearing chain se-
quences. This implies that at any time the network will consist of sequences
of different ages. As long as a sequence exists, it can follow all imposed defor-
mations.

To describe this situation, one may proceed as follows. Let n(t, t′)dt′ be
the number of stress-bearing sequences per unit volume, created during an
interval dt′ at a past time t′ and persisting up to the present time t. Their
contribution to the stress at t can be expressed as

n(t, t′)kTB(t, t′)dt′ (9.224)

Fig. 9.27. Relation between birefringence and tensile stress for natural rubber. The
upper curve is shifted in the vertical direction. Work of Treloar [109]
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if we adopt ideal rubber behavior (Eqs. (9.74) and (9.86)). An equation in
agreement with the Lodge equation of state is obtained when writing

(σ + p1)(t) =

t∫

t′=−∞
n(t, t′)kTB(t, t′)dt′ . (9.225)

Here the contributions of all active chain sequences with different ages are
superimposed. To show the agreement, we rewrite the Lodge equation

(σ + p1)(t) = −
t∫

t′=−∞
G(t− t′)

dB(t, t′)
dt′

dt′ (9.226)

by carrying out an integration by parts

(σ+p1)(t) = −B(t, t′ = t)
dG
dt′

(t′ = t)+

t∫

t′=−∞

dG(t− t′)
dt′

B(t, t′)dt′ . (9.227)

Since
B(t, t) = 1 (9.228)

we may incorporate the first term on the right-hand side in p1 and write

(σ + p1)(t) =

t∫

t′=−∞
m(t− t′)B(t, t′)dt′ (9.229)

with

m(t− t′) =
dG(t− t′)

dt′
. (9.230)

This is a second form for the equation of state of rubber-like liquids. m(t−t′) is
called a memory function, because it characterizes the fading of the memory
of the past. Since Eqs. (9.225) and (9.229) have equal forms we find here

m(t− t′) = kTn(t, t′) . (9.231)

The model of appearing and disappearing load-bearing chain sequences thus
provides us with a possible interpretation of the memory function of the Lodge
liquid.
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10

Deformation, Yielding and Fracture

A prerequisite for the use of polymeric materials in daily life is their mechani-
cal stability. Goods made of plastics must keep their form under the permitted
loads and one has to be sure that they will not break under ordinary condi-
tions. Therefore, a good knowledge of the limits of mechanical stability is of
utmost importance. This chapter deals with these ultimate properties. We
will discuss the mechanisms and laws controlling deformation in polymeric
solids and also present some of the generally used basic concepts of fracture
mechanics. From the long experience in polymer manufacturing there exists
a wealth of knowledge. It is far too broad to treat it here in a survey. So we
will just consider some of the main observations.

Deformations of a polymeric solid always include, in addition to the re-
versible part, an irreversible flow. Usually this plastic flow sets in immediately
when a sample is stretched and becomes very intensified when the yield point
is reached. Upon further drawing this strain softening is often followed by
a strain hardening, which stabilizes the sample again. Temperature plays
a big role and there are also effects from the environment when fluids or gases
that permeate into the polymer are present. From all the observations on
various polymeric solids, it has become clear that there are two routes for
the yielding. They have a different appearance and are easily discriminated.
The first type is known as shear yielding. Figure 10.1 gives an example
and depicts the behavior of a polyethylene with high crystallinity. Stretch-
ing a sample with a constant drawing rate results in the load-extension curve
shown. The force increases at first but then, reaching the yield point, it passes
over a maximum and somewhere a neck appears. Continuing the drawing, the
neck extends up to the full length of the sample. This cold-drawing takes
place under a constant tensile force and finally elongates the sample by several
times its original length. If the stretching is continued further, the force in-
creases again, up to the point of breaking. The sketches included in the figure
illustrate all these changes. Shear yielding can also occur without necking and
then leads to a continuously growing homogeneous plastic deformation of the
sample. In the next section, this simpler case exemplified by a polyethylene
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Fig. 10.1. Load (nominal tensile stress σ̂zz)-extension (ratio λ) curve of a sample
of PE (M = 3.6×105 g mol−1, φc = 0.8, drawing rate dλ/dt = 2.4×10−2 s−1). The
changes in the shape of the sample are schematically indicated

with low crystallinity will be presented in detail. Shear yielding is typical for
all semicrystalline polymers, but it is also found for a few amorphous poly-
mers. Polycarbonate (PC) is an example. Figure 10.2 presents a photograph
of a stretched polycarbonate developing a neck. The image explains the ori-
gin of the name ‘shear yielding’: Here we observe shear bands and they are
preferentially oriented along the directions of maximum shear stress.

The second route of yielding is observed, for example, for polystyrene.
Figure 10.3 depicts again a load-extension curve. The force increases at first
linearly but then, after a slight bending, the sample breaks before a maximum
is reached. In the bending range just before fracture, a whitening is observed,
as shown by the photograph. Closer inspection reveals the formation of many
void containing microdeformation zones. These localized zones of plastic flow
are called crazes, and crazing is the term used to address this other mech-

Fig. 10.2. Formation of shear bands at the beginning of necking, observed for
a sample of PC. The arrows indicate the direction of the applied tensile stress.
Micrograph obtained by Morbitzer [122]
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Fig. 10.3. Stress-strain curve of a sample of PS and photograph showing crazes

anism. Shear yielding and crazing are not alternative processes that exclude
each other. Often both show up together, or one follows the other. Which one
is dominant depends on the stress conditions and the temperature.

The amount of flow before fracture determines the ductility of a polymer
sample. In tough materials, a considerable amount of energy is dissipated by
yield processes prior to fracture. In contrast, brittle samples break without
showing much preceding flow. The difference becomes apparent in the fracture
energy, which is much lower for brittle samples than for tough compounds. The
fracture energy, as determined by the area under the load-extension curve, is
the appropriate measure for the ductility of a given sample. Therefore, regard-
ing our examples, polyethylene is to be considered as tough and polystyrene
as brittle.

The ductility changes with temperature. This is demonstrated by Fig. 10.4,
showing measurements on poly(vinylchloride) (PVC) at different tempera-
tures. Second, a series of load-extension curves obtained at one temperature
for various strain rates is presented. Poly(vinylchloride) is always brittle when
compared to polyethylene and the brittleness of the sample increases upon
lowering the temperature and on increasing the strain rate. These tendencies,
which are generally found, are due to obvious reasons. Yielding is based on
specific relaxation processes and thus depends on the ratio of strain rates to
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Fig. 10.4. Stress–strain curves of PVC measured at room temperature for the
indicated strain rates (left) and at different temperatures for a constant strain rate
(ėzz = 10−3 s−1) (right). From Retting [123]

the respective relaxation rates. Large values of this ratio imply that plastic
flow cannot take place and this results in brittle behavior. Sometimes, an
early break at high strain rates is also caused by adiabatic heating effects.
If the heat is not conducted away rapidly enough, crystallites may melt and
the sample fails by a kind of melt fracture. Toughness is a property that is
appreciated in many applications. The desire for high-performance polymer
materials is to have, simultaneously, a high stress at the yield point, high val-
ues of the elastic modulus and a high ductility. To achieve this synergism is
a difficult task and a main goal of industrial research.

10.1 Shear Deformation in Semicrystalline Polymers

If forces are applied to a semicrystalline polymer in the way of a tension,
a compression or a simple shear, deformations take place under a constant
volume. Hence, they are always composed of a reversible elastic shear and
an irreversible shear yielding. In this section, we discuss the properties of
tensile deformations. As it is found, here deformation mechanisms change
at three critical strains associated with a strain softening, a strain hardening
and a loss of memory of the initial sample shape. The drawing stress is set up
of contributions from the amorphous network, the skeleton of crystallites and
viscous forces, and experiments enable a separation to be carried out.

10.1.1 Critical Strains

A number of different experiments are necessary for a characterization of
the tensile deformation properties of a sample. Measurements carried out for
a poly(ethylene-co-vinylacetate) (PEVA12, 12% vinylacetate units, φc = 0.33)
provide an instructive, typical example.
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Fig. 10.5. Stretching curve measured for PEVA12 with a strain rate ėH = 0.005 s−1

(continuous line). Quasi-static stress-strain relationship (squares) [124]

Tensile stress deforms PEVA12 homogeneously, i.e., without a necking.
Figure 10.5 shows the stretching curve describing the relationship between
the tensile stress

σzz =
f

A
(f : force, A : varying cross-section) (10.1)

and the true strain or Hencky strain

eH = lnλ . (10.2)

The stretching curve was measured with a fixed Hencky strain rate ėH =
0.005 s−1. The shape of the curve is highly non-linear. It indicates a strain
softening at a yield point, located at eH ≈ 0.1. Later there follows a strain
hardening, setting in at eH ≈ 0.6.

The true strain is always composed of a recoverable elastic part, eH,e, and
a non-recoverable plastic part, eH,p, as

eH = eH,e + eH,p . (10.3)

A decomposition is provided by a step-cycle test like the one presented
in Fig. 10.6. In this test mode the stretching is performed stepwise, being
interrupted after each step by an unloading-loading cycle. The cycle amplitude
gives the elastic part, the strain remaining at zero load the plastic part. The
continuous run of Fig. 10.5 is also included and it coincides with the series of
steps. The results of a decomposition at various strains are given in Fig. 10.7.
They show some remarkable features typical for semicrystalline polymers:



420 10 Deformation, Yielding and Fracture

Fig. 10.6. Step-cycle test carried out for PEVA12 (ėH = 0.005 s−1) [124]

Fig. 10.7. Elastic (triangles) and plastic (squares) parts of the strain derived from
the step-cycle test shown in Fig. 10.6 [124]

• The elastic strain reaches a maximum value on a plateau. This occurs at
that strain where strain hardening sets in, in PEVA12 for eH ≈ 0.6.

• A plastic strain develops from the very beginning of the deformation pro-
cess and not, as in metals, only for strains above a yield point.

• The plateau has a limited extension and the elastic strain then decreases
again.



10.1 Shear Deformation in Semicrystalline Polymers 421

Fig. 10.8. PEVA12: Stress relaxation after a stretching to eH = 0.8 (open spheres).
Comparison with a theoretical calculation (continuous line) [124]

If a semicrystalline polymer is stretched to a certain strain and then arrested,
the stress decays. Figure 10.8 shows the time dependence of the stress decay

Δσzz = σzz(0) − σzz(t) (10.4)

for PEVA12 after a stretching to eH = 0.8 in a Δσzz vs. log t plot. In the
experiment more characteristic features show up:

• The decay follows a logarithmic law over a large time range, Δσzz ∝
log t+ const.

• This range is limited and finally an end value is approached.

A subtraction of the total amount of stress decay, Δσzz(t → ∞), from the
respective initial stresses measured along the stretching curve gives the stress-
true strain relationship associated with the limit of zero strain rates, i.e.,
under quasi-state conditions. The quasi-static stress-strain relationship
obtained in this manner for PEVA12 is included in Fig. 10.5.

Figures 10.9 to 10.11 illustrate how stretching curves and critical strains
vary with temperature, again with results for PEVA12, and with the crys-
tallinity; here polyethylenes with different crystallinities are compared. Curves
demonstrate a further general property of semicrystalline polymers. While the
stresses vary in systematic manner, there is no effect on the critical strains
for softening (eH ≈ 0.1) and hardening (eH ≈ 0.6) and virtually no change
in the elastic–plastic composition of the strains. Hence, tensile deformation
of semicrystalline polymers is strain-controlled and changes the mechanism
at two critical strains that are temperature and crystallinity invariant.

What is the background of these peculiar deformation properties? A first
insight is provided by the stretching curves in Fig. 10.11, when considering
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Fig. 10.9. PEVA12: Stretching curves measured at the indicated temperatures
(ėH = 0.005 s−1) [125]

Fig. 10.10. PEVA12: Plastic (squares) and elastic (triangles) parts of the strain
deduced from step-cycle tests at different temperatures [125]

the similarity in shape of the curves of the high crystallinity sample PE27
with that of PEVA27, which is a rubber-like material. It indicates that, even
if PE27 is a solid from the external appearance, the tensile deformation prop-
erties are still those of a rubber. They are only modified by a high effective
inner viscosity. The rubber-like forces originate from the amorphous regions,
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Fig. 10.11. Stretching curves obtained at room temperature for various PE samples
with different crystallinities (ėH = 0.005 s−1) [125]

cross-links being given not only by the crystallites but also by the locked-in
entanglements. Crystallization from the melt does not remove the entangle-
ments, but just shifts them into the remaining fluid-like regions. That the
original entanglement network is globally preserved up to rather high defor-
mations is demonstrated by findings such as those presented in Fig. 10.12.

Fig. 10.12. Shrinkage of a stretched PE sample upon heating. Observations for
various initial extensions. The heating program is given in the insert [126]
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A polyethylene with high crystallinity was stretched to different extensions λ,
then one clamp of the stretching device was opened and the shrinkage ob-
served. The opening led to a rapid first contraction as given by the elastic
part of the strain. When the sample was subsequently heated the shrinkage
continued. For λ < 2.5 it shrank back to its original length when the tem-
perature of complete crystal melting was reached. The entanglement network
then returned to its initial isotropic state. A memory of the original shape was
preserved in this manner. For λ > 2.5 the recovery was no longer complete.
Now the drawing was accompanied by disentangling processes. Figure 10.7
indicates that the elasticity plateau ends at a certain strain. As comparisons
show, exactly at this strain chains begin to disentangle.

Strain control of the deformation properties implies that the strain is ho-
mogeneous in the semicrystalline sample. The crystal lamellae possess a gran-
ular substructure; nm-sized crystal blocks are the basic morphological el-
ements. The sliding motions of the blocks against each other provide suf-
ficient degrees of freedom to accommodate any imposed strain. Figure 10.13
is a sketch of the given situation and Fig. 10.14 shows an image, as ob-
tained in an electron microscope for a drawn poly(1-butene)(P1B) sample.
In addition to the sliding, blocks can be sheared or can experience a solid–
solid phase transition, from the stable modification to another modification,
which is preferred in a stress field. Block sliding sets in at the beginning of
drawing as a local process and then, at the yield point, it turns into a col-
lective motion. The block movements are partially reversible, partially irre-
versible.

The subsequent strain hardening relates to another mechanism, namely
a morphological transformation. Drawing an initially isotropic sample at first
deforms the spherulites, but then destroys them and creates a fibrillar struc-
ture. Figure 10.15 presents micrographs obtained in a polarizing microscope
before and after drawing a film of polyethylene. The morphology in the ex-
tended state is set up of fibrillar elements. Optical microscopy cannot resolve
the fibrils. These show up in an atomic force microscope, as for example, in the
picture of Fig. 10.16. Why does fibrillation start at a certain critical strain?
The answer is that the network always exerts a stress on the crystal blocks. At

Fig. 10.13. Arrangement of crystal blocks within a lamella. Imposing an external
strain leads to sliding motions
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Fig. 10.14. Electron micrograph of a drawn sample of P1B showing a splitting-up
of the crystal lamellae into blocky elements. From Yang and Geil [127]

Fig. 10.15. Morphological changes on cold-drawing, observed for a film of PE in
a polarizing optical microscope. Micrographs obtained by Hay and Keller [128]

a certain external strain, which is transferred without changes to the network,
it reaches a value where blocks, first the oblique oriented ones experiencing the
highest resolved shear stress, are no longer stable, disassociate and transform
into fibrils.

All structural changes may also be followed by X-ray scattering, by regis-
tration of scattering patterns during drawing, or for necking samples at various
positions in the shoulder. This is exemplified by Fig. 10.17, which in addition
to the isotropic pattern of the original structure of a polyethylene and the
final pattern measured in the neck center also includes a pattern obtained
somewhere in the shoulder region. The two latter patterns are typical fiber
diagrams showing cylindrical symmetry around the drawing direction. The
sliding and shearing of crystal blocks and a transformation of a certain frac-
tion into the triclinic modification produces the pattern in the middle. Fibril
formation is indicated by the appearance of sharp Bragg reflections on the
equator. They show up for the first time when the plateau in the elastic strain
is reached and the region of strain hardening is entered.
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Fig. 10.16. Surface structure of a cold-drawn PE film registered with an atomic
force microscope, using the deflection mode [126]

Fig. 10.17. X-ray scattering patterns of PE, as registered for the isotropic part
(left), the center of the shoulder (center) and the neck (right) of a cold-drawn
sample. The two reflections in the isotropic pattern are to be assigned to the 110-
lattice and the 200-lattice planes of orthorhombic PE. The third reflection with
a larger lattice plane spacing emerging in the textured patterns is due to a triclinic
crystalline phase that forms during drawing [126]

10.1.2 Constituents of the Drawing Stress

The stress arising during stretching a semicrystalline polymer thus is set up
of three contributions:

• rubber-like forces originating from the stretched network of entangled
amorphous chain sequences,

• forces transmitted by the skeleton of crystallites, and
• forces arising from the viscosity.

An evaluation of experimental data on the basis of the rheomechanical model
depicted in Fig. 10.18 allows their determination. In the zero strain rate limit,
where all viscous forces vanish, one finds a superposition of the network force
with a force that is transmitted by the crystal skeleton. The model describes
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Fig. 10.18. A three-component model treating the tensile deformation properties
of semicrystalline polymers

this quasi-static stress by the lower two branches with stresses (1−φc)σn and
φcσc. The third branch represents the relaxing viscous stress σr. As shown
later in this section (Fig. 10.22), drawing stresses increase with the strain rate
according to the relation

σy = σ0 ln ėH + const . (10.5)

This suggests describing the viscous force σr by the Eyring law of viscosities
as

σr

σ0
= asinh

ėH
ė0

(10.6)

≈ ln
ėH
ė0

(
for

ėH
ė0

� 1
)
. (10.7)

In the limit ėH → 0 the Eyring law turns into the Newton law, with

σr ≈ σ0

ė0
ėH . (10.8)

The Eyring law of viscosity uses two parameters, the reference stress σ0 and
the reference strain rate ė0, rather than one viscosity coefficient η0 only. Ac-
cording to Eq. (10.8) η0, σ0 and ė0 are related by

σ0

ė0
= η0 . (10.9)

The relaxing stress branch includes also an elastic element, with a Young’s
modulus Er.
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The stress transmitted by the crystal skeleton, φcσc, is of peculiar nature.
In principal, the block sliding could lead to a complete decay of the force
acting within the skeleton, but this is not found; after a sufficiently long time
a stationary value of the crystal transmitted stress is reached. Therefore, the
skeleton of the blocks does not resemble a purely viscous system. It cannot
be treated like an ideal elasto-plastic body either. The latter system remains
elastic until a certain yield point where a permanent flow at a constant stress
sets in, but semicrystalline polymers behave differently. There exists a plastic
flow from the very beginning, down to smallest strains and stresses. Even more
importantly, this flow is limited and remains finite at every imposed strain or
applied stress. Hence, the crystal skeleton shows a behavior to be addressed
as finite plasticity. This plasticity arises together with an elasticity that can
be high, being represented by the elastic strain eH,e. What is the background
of this behavior? The answer is that the plastic deformation remains finite
because the sample hardens during the flow, in a manner that finally brings
all flow processes to an end.

All parameters of the rheomechanical model can be derived from a set of
experiments like the ones for PEVA12 presented here. The properties of the
relaxing stress branch follow from the stress relaxation experiments. σr obeys
the differential equation

ėH =
σ̇r

Er
+ ė0 sinh

σr

σ0
= 0 (10.10)

or
d
dt
σr

σ0
= − 1

τr
sinh

σr

σ0
(10.11)

with
τ−1
r =

ė0Er

σ0
=
Er

η0
. (10.12)

τr denotes the relaxation time in the Newtonian limit of low stresses. The
differential equation can be solved by a separation of the variables σr/σ0 and
t/τr. The result is

σr(t)
σ0

= 2atanh
(

tanh
σr(0)
2σ0

exp− t

τr

)
. (10.13)

Using

atanhx =
1
2

ln
1 + x

1 − x
(valid for |x| < 1) (10.14)

for times in the range
t

τr
� 1 (10.15)

leads to the observed logarithmic time dependence

σr(t)
σ0

≈ ln
t

τr
+ const (10.16)
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Fig. 10.19. Decomposition of the stretching curve shown in Fig. 10.5 in the three
components of the model in Fig. 10.18: Quasi-static elasto-plastic contribution of
the crystal skeleton (φcσc), elastic stress of the entanglement network ((1 − φc)σn)
and relaxing viscous stress (σr) [124]

As can be seen, the curve slope gives the reference stress σ0. A fit of stress
relaxation data by Eq. (10.13), as exemplified in Fig. 10.8, yields the total
amount of stress relaxation Δσzz(t → ∞) = σr.

For the splitting of the quasi-static stress – obtained after the substraction
of σr from the measured stress σ – into its two components, the asymptotic
behavior at large strains can be used. It is dominated by the network forces and
thus determined by the associated network shear modulus. The properties of
the crystallite branch, i.e., the associated elasticity and finite plasticity, follow
from step-cycle tests.

Figure 10.19 shows the decomposition of the stress into its three parts for
the stretching curve of Fig. 10.5. For this polyethylene with low crystallinity
skeleton force and viscous stresses are of similar magnitude. The network
stress is at first negligible, but finally dominates. The plateau observed for σc

is conceivable. From the onset of fibril formation a further elongation of the
crystal skeleton can be achieved by a morphological transition, namely the
transformation of blocks into fibrils. This takes place at a constant or only
slowly increasing stress.

10.1.3 The Mechanics of Neck Formation

Figure 10.1 showed the drawing properties of a polyethylene with high crys-
tallinity at room temperature. Having reached the yield point, visible flow sets
in at some point of the sample and is accompanied by a drop in the load. The
lateral dimensions narrow and finally a neck is formed, with a smaller, but
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Fig. 10.20. States of deformation of a volume element passed over by a shoulder
with the profile b(z), and the velocity dz/dt relative to the shoulder

again stable cross-section area. A shoulder with a continuous profile develops
between the original parts and the neck. Further extension of the sample is
achieved by an increase of the neck length, i.e., a move of the two shoulders
over the sample. The external force that has to be applied for this cold-drawing
remains constant as long as the neck length increases.

It is instructive to analyze in detail the deformation process arising from
the passage of the shoulder over some point in the sample. We select a sample
with cylindrical shape, consider a volume element at the centerline and follow
the changes in its shape from the original state into the final extended state.
The states of deformation imposed on the volume element if the shoulder
is moved over its position are well-defined. Since shear flow occurs without
a volume change, the sequence of deformation states can be directly derived
from the profile of the shoulder. We choose a moving coordinate system fixed
at the center of the shoulder and describe the profile of the shoulder by the
function b(z), giving the radius b of the sample as a function of the coordi-
nate z, as indicated in Fig. 10.20. For a volume element at the centerline, with
radius lρ and length lz, we have due to its incompressibility

lz(z)πl2ρ(z) = const (10.17)

Its extension, λ depends on z only, being given by

λ(z) =
lz(z)

lz(−∞)
=
l2ρ(−∞)
l2ρ(z)

=
b2(−∞)
b2(z)

. (10.18)

The profile also determines the strain rate, being given by

dλ
dt

=
dλ
dz

dz
dt

= −2b2(−∞)
b3(z)

db
dz

dz
dt

. (10.19)

Here, dz/dt denotes the velocity of the volume element relative to the shoulder
as measured in the moving coordinate system. Since the material flow through
the shoulder is a constant, we write

πb2(z)
dz
dt

= const ,
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and therefore obtain
dλ
dt

∝ − 1
b5(z)

db
dz

(10.20)

or, in terms of the Hencky strain rate,

ėH =
1
λ

dλ
dt

∝ − 1
b3

db
dz

. (10.21)

Equation (10.21) states that the extension rate of the volume element is not
a constant but strongly time-dependent. It starts from zero, then increases,
passes over a maximum near the position of the largest slope in the profile
and finally returns to zero.

This peculiar time dependence of the deformation rate is associated with
a simple law for the evolution of stress. Since the external force during cold-
drawing is constant, the tensile stress acting on the volume element follows
from

σzz(z)πb2(z) = const (10.22)

if we assume a uniform distribution over the cross-section. As a consequence
stress and extension become linearly related,

σzz(z) ∝ λ(z) . (10.23)

Equation (10.23) is imposed by the conditions of the drawing experiment. In-
deed, it is exactly this requirement by which the time-dependent deformation
λ(t) is selected and thus the profile determined.

In order to understand how this selection mechanism works we need
to know the variation of the stretching curves with the applied Hencky
strain rate. Figure 10.21 presents a series of curves σzz(λ) obtained for
a polyethylene with high crystallinity, for Hencky strain rates in the range
ėH = (0.35− 10) ×10−2 s−1. With increasing strain rate, the stress increases
throughout the whole range. Figure 10.22 shows the relation between the
stress at the yield point, σy, and the strain rate. It is well-described by the
expression

σy = σ0 ln ėH + const , (10.24)

indicating validity of the Eyring law of viscosities, Eq. (10.7).
Let us for the moment forget about the strain rate effects and assume

a rate-independent stress–strain curve of the same type as the experimental
curves. We may ask for the expected result of an experiment where the exter-
nally applied tensile stress increases linearly with the extension, σzz ∝ λ,
which is the condition experienced by each volume element during cold-
drawing. Figure 10.23 depicts the situation. If the load reaches the yield point,
here at λA ≈ 1.1, the stress will from thereon follow the straight line included
in the figure. Obviously, equilibrium cannot be established over a large range
of deformations up to the point where the line and the stress-extension curve
cross each other again. At this point, λB, an equilibrium is again established.
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Fig. 10.21. Stress-extension curves measured under video control for a sample of
PE (M = 3.6×105 g mol−1, φc = 0.8) at the indicated Hencky strain rates. Constant
strain rates were accomplished by a registration of the strain in the center of the
developing neck and a continuous readjustment of the applied tensile force [126]

Fig. 10.22. Dependence of the stress at the plateau, σy, on the Hencky strain rate,
deduced from the data in Fig. 10.21 [126]

Between λA and λB, there exists a gap in the sequence of accessible states of
deformation, which is a consequence of the non-linearity of the stress-extension
curve.
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Fig. 10.23. Mechanical response of a volume element in a fiber with the shown
σzz(λ) dependence, if subjected to a linearly increasing stress as represented by
the straight line. For a hypothetical sample without internal friction there is no
equilibrium between λA and λB. In the real sample, a balance is achieved by the
strain rate-dependent viscous forces (thin line with steps)

Absence of deformation states between λA and λB is the ideal case. The
observation of a shoulder with finite extension in cold-drawn polymer sam-
ples indicates that reality is different, as this implies a continuous transition
from λA to λB. The establishment of force-balanced states also in the transi-
tion region is accomplished by the strain rate effects. Quite generally, stresses
grow and decay with increasing and decreasing strain rates, respectively, thus
allowing for a continuous readjustment of the internal forces to the linear re-
lation σzz ∝ λ imposed by the drawing-experiment. According to Eq. (10.21),
the shoulder profile determines the strain rate at each point, and it possesses
exactly that shape necessary for the balance.

Is there a criterion that allows us to predict whether or not necking occurs
on stretching a sample with a constant speed? Our discussion of the factors
determining the shoulder profile has already focussed on the main point giv-
ing the answer. Necking is a direct consequence of the occurrence of a gap
in the sequence of accessible states. Figure 10.24 may help to further explain
the situation. Being concerned about the equilibrium properties of an incom-
pressible fiber with a sigmoidal σzz(λ) dependence, we also should have a look
at the shape of the associated force-extension curve given by f(λ) ∝ σzz/λ.
As we can see, in contrast to σzz(λ), which possesses a plateau, f(λ) exhibits
a maximum and a minimum. The extrema are located at the positions where

d
dλ

σzz

λ
= 0 (10.25)

or
dσzz

dλ
=
σzz

λ
, (10.26)
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Fig. 10.24. λ-dependence of the retracting force f (left, broken line) and the free
energy F (right) of an elastic fiber with a sigmoidal stress-extension relation σzz(λ)
(left, continuous line). The locations of the extrema in f(λ) follow from the Considère
tangent construction, as indicated on the left

and these can be determined by the tangent construction shown in the figure.
The procedure is known as the Considère construction. We may calculate
the free energy of the fiber in dependence on λ. It follows as

F(λ) =

λ∫

1

fdλ′ (10.27)

and the result is also included in the figure. Importantly, the shape of F(λ)
indicates that we have three ranges that differ in the mechanical stability,
namely

λ < λA: a (small) stable range ,
λA < λ < λB: an instable intermediate zone ,

λ > λB: a final stablerange .

λA and λB are determined by the common tangent on two points of F(λ), as
is shown in the drawing. The cause of the instability and the consequences
are evident. A transition from the homogeneous state C to a mixture of states
A and B, as represented by the point C∗ on the connecting line, results in
a decrease of F and will therefore take place spontaneously. The situation is
perfectly analogous to the transition to a two-phase state found for a binary
mixture within the miscibility gap discussed earlier (see Fig. 4.5 and the re-
lated explanations). Now we have a gap in the sequence of accessible states of
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deformation. Hence, a hyperelastic fiber with a sigmoidal σzz(λ)-curve, which
leads to a maximum and minimum in the load-extension curve, must disin-
tegrate within a certain range of λ’s into a two-phase structure, with parts
extended to λA and other parts extended to λB. The equilibrium phases either
follow from the common tangent construction applied on F(λ), or equivalently
by searching for the Maxwell line solution for f(λ) (equal values for the in-
tegral between λA and λB, independent of whether it is calculated for the
horizontal Maxwell line or along the curve f(λ)). If these conditions are given,
an experimental load-extension curve might look like the one indicated in the
figure: After the first increase, the load drops at some point λy > λA and de-
cays to the horizontal line. λy may be identified with the technical yield point.
The load drop is accompanied by the first formation of the second phase, with
elongation λB, i.e., the appearance of the neck. A move along the horizontal
line, i.e., the drawing at constant load, is accomplished by the neck extension.
After having reached λ = λB, the second phase extends further.

Of course, a cold-drawing of a polymeric solid with an amorphous or
semicrystalline structure does not exactly agree with the drawing of this hy-
pothetical hyperelastic fiber, since there are large contributions of friction by
internal forces and also irreversible structural changes. As mentioned above in
the discussion of the shoulder profile, this produces strain rate effects, which
in the drawing process lead to the occurrence of transition states with de-
formations intermediate between the two coexisting states. However, a qual-
itative change in the stability criteria is not to be expected and one can
therefore use the criterion: Necking is to be anticipated if the Considère con-
struction applied to the true stress-extension curves, σzz(λ), finds two points
with dσzz/dλ = σzz/λ.

10.1.4 Fibrillar State of Order

Cold-drawing converts an initially isotropic semicrystalline sample into the
oriented fibrillar state. At room temperature this is a stable structure; the
skeleton of fibrillar crystallites built up during the drawing prevents the ori-
ented amorphous network from retracting again. How can this quasi-stable
structure be experimentally characterized? The parameter that is now ad-
ditionally needed in a global description is the degree of orientation. It can
be measured optically, spectroscopically or by scattering methods. Here, we
briefly discuss

• measurements of the optical birefringence,
• evaluations of orientation-dependent deuteron NMR spectra, and
• analyses of X-ray fiber patterns.

Small angle X-ray scattering experiments provide insight into the crystalline-
amorphous structure of the fibrils and the changes following from annealing
processes. Of importance is also the question of the drawability of semicrys-
talline polymers. It is controlled by the properties of the entanglement net-
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work in the initial state and greatly enhanced when the entanglement density
is reduced by special preparation techniques.

Relation Between Birefringence and Orientational Order

An appropriate measure for the degree of orientation in an uniaxially drawn
sample is the orientational order parameter of the monomeric units, Sm

or, de-
fined as the average

Sm
or =

〈
3 cos2 θ − 1

2

〉
. (10.28)

Here θ denotes the angle between the long axis of a monomer and the unique
axis, i.e., the direction of drawing. For an isotropic sample we have

Sm
or = 0 . (10.29)

The maximum value reached for a perfectly oriented sample where all mono-
mers, they can be incorporated in crystallites or part of sequences in the
amorphous regions, are aligned with their long axes in drawing direction is

Sm
or = 1 . (10.30)

Favorable conditions are met for a cold-drawn fiber or film when its birefrin-
gence Δn = n‖ − n⊥ can be determined (n‖ and n⊥ denote the refractive
indices along and perpendicular to the drawing direction). Here, Sm

or can be
directly deduced from Δn, using the relation

Sm
or =

Δn
Δnmax

. (10.31)

Δnmax denotes the maximum birefringence realized in the ideal case of a per-
fectly oriented sample.

In order to derive Eq. (10.31), two coordinate systems are introduced.
The first one, with coordinates x, y, z, is fixed on the sample, with the z-axis
oriented in the drawing direction. The second, with coordinates x′, y′, z′,
is anchored on a monomer unit and varies in orientation between different
monomers. We choose the latter local coordinate system in such a way that
the polarizability tensor per monomer, β′, has a diagonal form

β′ =

⎛
⎝β⊥ 0 0

0 β⊥ 0
0 0 β⊥ + Δβ

⎞
⎠ . (10.32)

Hereby, we assume an uniaxial local symmetry with the symmetry axis in the
chain direction, which is a good approximation for many polymers. β′ can be
transformed into the sample-fixed coordinate system by

β = Ω−1 · β′ · Ω . (10.33)
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Ω is the rotation matrix that accomplishes the transformation. We calculate
the diagonal elements of β. βxx follows as

βxx =
∑

l

Ω−1
xl β

′
llΩlx

= β⊥ cos2 θx′,x + β⊥ cos2 θy′,x + (β⊥ + Δβ) cos2 θz′,x

= β⊥ + Δβ cos2 θz′,x , (10.34)

where θi′,j denotes the angle between the axes i′ and j. The results for βyy

and βzz are correspondingly

βyy = β⊥ + Δβ cos2 θz′,y , (10.35)

βzz = β⊥ + Δβ cos2 θz′,z . (10.36)

Because the monomer orientations vary, we take the averages

〈βxx〉 = 〈βyy〉 = β⊥ + Δβ〈cos2 θz′,x〉 , (10.37)

〈βzz〉 = β⊥ + Δβ〈cos2 θz′,z〉 . (10.38)

The mean values of all non-diagonal elements, 〈βi	=j〉, vanish due to the uni-
axial symmetry of the sample. Since

cos2 θz′,x + cos2 θz′,y + cos2 θz′,z = 1 , (10.39)

hence
2〈cos2 θz′,x〉 = 1 − 〈cos2 θz′,z〉 , (10.40)

we have

〈βzz〉 − 〈βxx〉 = Δβ
3〈cos2 θz′,z〉 − 1

2
(10.41)

or in short, introducing the orientational order parameter defined by Eq. (10.28)

〈βzz〉 − 〈βxx〉 = ΔβSm
or . (10.42)

Next we search for an expression for the dielectric tensor

ε =

⎛
⎝ ε⊥ 0 0

0 ε⊥ 0
0 0 ε||

⎞
⎠ . (10.43)

Application of the Clausius–Mosotti equation yields

ε|| − 1 = (ε|| + 2)
1

3ε0
cm〈βzz〉 ≈ (ε̄+ 2)

1
3ε0

cm〈βzz〉 (10.44)

and
ε⊥ − 1 ≈ (ε̄+ 2)

1
3ε0

cm〈βxx〉 , (10.45)
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with
ε̄ = (2ε⊥ + ε||)/3 . (10.46)

The anisotropy of the dielectric constant

Δε = ε|| − ε⊥ (10.47)

follows as

Δε = (ε̄+ 2)
1

3ε0
cm(〈βzz〉 − 〈βxx〉) (10.48)

= (ε̄+ 2)
1

3ε0
cmΔβSm

or .

Finally, the birefringence Δn is obtained using

Δε = Δ(n2) ≈ 2n̄Δn , (10.49)

which results in

Δn =
n̄2 + 2
n̄

1
6ε0

cmΔβSm
or (10.50)

= ΔnmaxSm
or . (10.51)

Hence, measurements of the birefringence indeed yield the orientational order
parameter Sm

or of the monomers.
Even if the derivation is straightforward, application of Eq. (10.50) has

some restrictions. First, samples have to be transparent, but fibers and ori-
ented film often contain voids that scatter the light and thus perturb the
determination of Δn. Second, an accurate knowledge of Δnmax is more the
exception than the rule. For example, the value for amorphous polyethylene is
still unknown. One cannot just use the known birefringence of n-alkane crystal-
lites, accounting only for the lower density. The birefringence in polyethylene
systems is strongly affected by the inner field, which varies with the chain
conformation and the packing density. Oriented polyethylenes would have
a negative birefringence, i.e., n‖ < n⊥, without the inner field. Hence, the
inner field plays a decisive role and it is difficult to calculate the magnitude
of the birefringence for the different states of order.

Orientation Dependence of NMR Spectra

Alternatively, for characterizing the state of orientation one can also em-
ploy NMR spectroscopy, with the best conditions being found for deuter-
ated samples. The general procedure was sketched previously, at the end of
Sect. 6.3.4: As 2H spectra depend on the orientational distribution of the C–H
bonds relative to the external magnetic field, they may be evaluated by model
calculations under variation of the orientational distribution function of the
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Fig. 10.25. 2H NMR spectra registered for the crystalline and the amorphous phase
of cold-drawn PE. Spectra were obtained for orientations of the unique axis of the
samples parallel (0◦) and perpendicular (90◦) to the magnetic field. From Spiess
et al. [129]

monomers. NMR can discriminate between deuterons in crystallites and amor-
phous regions on the basis of the different mobilities. These result in different
spin-lattice relaxation times, which enables the degrees of orientation in both
phases of a semicrystalline sample to be separately determined. Figure 10.25
gives an example and presents NMR spectra obtained for the crystalline and
amorphous regions of a cold-drawn polyethylene registered for two different
sample orientations relative to the magnetic field. Data evaluation is carried
out by a comparison with model calculations. Here the results indicate a sub-
stantially lower degree of orientational order in the amorphous regions than
for the crystallites; spectra can be reproduced when assuming Gaussian ori-
entational distribution functions with half widths of about 3 degrees for the
crystallites and 24 degrees for the monomers in the amorphous regions.

X-Ray Fiber Patterns

Figure 10.17 demonstrated that the development of orientational order during
a cold-drawing process can be followed by the registration of X-ray scatter-
ing patterns. These contain information about both the orientational texture
of the crystallites and the orientational distribution of the chain axes in the
amorphous regions. These orientational distributions show up in the azimuthal
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Fig. 10.26. PEVA12: Azimuthal variation of the 110 reflection intensity I110(ϕ)
(top) and of the intensity at the halo maximum Ihalo(ϕ) (bottom), deduced from X-
ray scattering patterns obtained at different stages of the cold-drawing process [125]

variation of the intensities of Bragg reflections and the amorphous halo, re-
spectively. Figure 10.26 presents such intensity variations in quantitative form,
as observed on drawing the polyethylene sample of Fig. 10.5 to the indicated
strains. At the end, the fibrillar state is reached. A data evaluation yielded
the variations of the order parameters S110 and Shalo and they are depicted
in Fig. 10.27. They are again defined as the average

〈
3 cos2 θ − 1

2

〉

but, different from Eq. (10.28), θ now denotes the angle between the drawing
direction and the normal on the chain direction. A perfect orientation along
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Fig. 10.27. Order parameters S110, Shalo associated with the orientational distribu-
tions of the normals on the chain direction within the crystalline and the amorphous
regions. The final values refer to the fibrillar state [125]

the drawing direction would lead to the value S110 = Shalo = −0.5. For
the PEVA12 sample this perfect order is not reached in the fibrils, whereby
a difference exists between the better oriented crystalline and the less oriented
amorphous chain sequences.

The Inner Fiber Structure

As was discussed in detail in Sect. 5.1, X-ray scattering experiments in the
small-angle range (SAXS) can be used for an investigation of crystalline-
amorphous superstructures. The conversion of the spherulitic structure com-
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Fig. 10.28. SAXS diagrams registered for PE drawn in the solid state at 70 ◦C
directly after the drawing (left) and after a subsequent heat treatment at 120 ◦C
(right). The arrow displays the drawing direction. Experiment by Fischer et al. [130]

posed of isotropically distributed stacks of crystallites with quasi-periodic
order into an oriented state that is still partially crystalline, the degree of
crystallinity remains largely unchanged, leads to a scattering pattern like the
one shown on the left-hand side of Fig. 10.28. This two-point diagram
obtained for a cold-drawn polyethylene, with two intensity maxima on the
meridian parallel to the direction of drawing was registered on an X-ray film
using a high resolution camera. The maxima indicate a quasi-periodic density
fluctuation along the oriented fibrils. An interesting effect is observed when
samples that were cold-drawn in the solid state are annealed at temperatures
that are elevated but still below the temperature of final melting. As shown
by the scattering pattern on the right-hand side of Fig. 10.28, this leads to
a disappearance of the streaks along the equator and an increase in the in-
tensities of the two meridional reflections. The disappearance of the streaks
indicates a fusion of neighboring fibrils and the intensity increase is indicative
of an improvement in the crystalline-amorphous ordering. The structural re-
organization corresponds to a process of defect clustering, which assembles all
entanglements that cannot be incorporated into a crystal, in laterally extended
layer-like disordered regions. Figure 10.29 suggested by Fischer illustrates this
view.

Fiber Drawability

The drawability of polymer samples as given by the maximum draw ratio
before fracture determines the achievable maximum degree of orientation; the
higher the drawability, the higher the degree of orientation. Since the degree
of chain orientation in a fiber determines the fiber stiffness, it is of interest to
have preparation procedures that lead to a high draw ratio. It is found that
the primary factor affecting the drawability is the entanglement density. If the
number of entanglements is reduced, the drawability increases.

A procedure of technical importance leading to a reduction is gel-spin-
ning. A high molar mass polymer is dissolved in a solvent and the solution
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Fig. 10.29. Improvement of the ordering between crystalline and amorphous regions
resulting from a heat treatment of a cold-drawn sample. From Fischer et al. [130]

Fig. 10.30. Load-extension curves observed on drawing at 90 ◦C a melt crystallized
sample of PE (a) and a gel-spun PE fiber (b). From Lemstra et al. [131]

is spun through a die into a cooling bath, thus producing a gel. Then the
solvent is removed by drying or extraction and the fiber is drawn again. Figure
10.30 shows a load-extension curve obtained for polyethylene prepared in this
way, in comparison with its usual cold-drawing behavior. We can see that the
drawability has increased tremendously. The reason for the drastic change is
the reduction of the number of entanglements by the dissolution process and
the transfer of this lowered number to the gel and the dried fiber. One expects
an inverse relation between the polymer concentration in the solution and the
drawability of the fiber and this is indeed observed. Figure 10.31 depicts the
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Fig. 10.31. Relation between the maximum draw ratio of a gel-spun PE fiber
(M > 106 g mol−1) and the concentration in the solution. Data from Iguchi and
Kyotani [132]

dependence of the maximum draw ratio, λmax, on the volume fraction φ of
polyethylene in the solution, it corresponds to a function λmax ∝ φ−1/2.

Gel-spinning has gained technical importance because the subsequent
ultra-drawing yields particularly high stiffness values. Elastic moduli up to
2 ×1011 Nm−2 have been obtained for polyethylene for draw ratios of about
100, which comes rather near the theoretical limit given by the stiffness of
a bundle of all-trans polyethylene chains E = 3 ×1011 Nm−2.

10.2 Crazing

Electron microscopy can be used to have a direct look on the structure of
a craze. Figure 10.32 presents a micrograph obtained from a microtomed
ultra-thin slice cutting through a craze in polystyrene. In addition, for further
clarification, Fig. 10.33 gives a sketch of a craze, drawn for a location on an
edge. Crazes are found both at the surface and in the interior of samples, and
represent, as shown by the figures, localized zones of deformation. As indicated
by the sketch, they have the form of a lens containing fibrils in a void matrix.
The micrograph shows these fibrils connecting the two surfaces of the craze.
The fibrils have diameters in the order of 10 nm and fill the craze volume to
about 50%. The resulting large density difference to the matrix is the cause
of the strong light scattering by the crazes and leads to the stress whitening.
Diameters of crazes when they become visible in an optical microscope are in
the order of µm, but then they can grow up to macroscopic dimensions, up
to the cross-section of the whole sample.

For which polymers and under which conditions do crazes occur? Crazes
form primarily in amorphous polymers, for molar masses above the entan-
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Fig. 10.32. Electron micrograph of a craze in PS, obtained by Kambour [133]

Fig. 10.33. Edge-located craze. The surfaces of the deformation zone are connected
by fibrils that only partially fill the craze

glement limit. There is no craze formation under compression or under pure
shear. The typical situation leading to craze initiation is the imposition of
an uniaxial or biaxial tensile stress. If such stresses are applied and fulfill
certain threshold conditions, crazes form statistically, preferentially at first
at the sample surface. The initiation rate depends on the applied stress, as
is shown in Fig. 10.34. The higher the stress imposed, the shorter the time
for the observation of the first crazes. After the initial increase with time,
the craze density saturates. Removing the stress, the crazes close their open-
ings somewhat, but survive. They disappear only if the sample is annealed at
temperatures above the glass transition.

Regarding the statistical nature of their appearance, craze formation looks
like an activated process. Although the details of the initiation step are not yet
clarified, it is generally assumed that cavitation, i.e., the development of mi-
crovoids, must play a primary role. As the creation of pores in a homogeneous
material is exceedingly difficult, it also seems clear that local heterogeneities,
resulting in a stress intensification, are a necessary prerequisite. Hence, the
activation energy of the process may be related to the formation of pores, at
locations where tensile stresses are sufficiently magnified.

Figure 10.35 presents a nice experiment, where a planar stress field
(σ3 = 0) with varying values of the two in-plane principal stresses, σ1 and
σ2, was produced by a tensile force on a plate of poly(methylmethacrylate),
into which a circular hole had been cut. One observes regions without any
crazes and other regions where crazes occur, showing a systematically vary-
ing density. Observations of this kind suggest the formulation of a criterion
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Fig. 10.34. Increase of the number of crazes with time, observed for a sample of
PS subject to various states of tensile stress. Work of Argon and Hannoosh [134]

Fig. 10.35. Craze pattern in the vicinity of a hole in a plate of PMMA subjected
to a tensile stress in horizontal direction. Micrograph from Sternstein et al. [135]

for crazing, giving the boundary line between planar stress states that lead
to crazing and those that do not. For the experiment presented here, which
referred to surface crazes only, the condition for crazing may be written as

|σ1 − σ2| ≥ A +
B

σ1 + σ2
(10.52)

with A < 0 and B > 0. A and B are material parameters that depend on
temperature. The major point expressed by the criterion is that both shear,
as given by the difference σ1 −σ2, and a dilatational component, as described
by the sum σ1 + σ2, are necessary prerequisites for the formation of crazes.

Crazes under a constant stress are not stable and grow in length and
thickness with a constant rate. The direction of growth is well-defined with
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Fig. 10.36. Curvilinear crazes developed in the high stress region near a hole in
a plate of PMMA, following lines perpendicular to the maximum principal stress.
From Sternstein et al. [135]

the craze tip moving perpendicularly to the maximum principal stress. If the
direction of the maximum stress changes, the direction of the craze changes
accordingly. This is demonstrated by the photograph presented in Fig. 10.36.
The crazes start at the points of largest stress enhancement at the edge of the
hole and then proceed perpendicularly to the maximum principal stress.

Simultaneously with the lateral dimensions, the thickness increases. This is
accompanied by an equivalent increase in the length of the fibrils connecting
the craze surfaces. Since observations indicate a constant thickness of the
fibrils subsequent to a short initial period, their growth obviously occurs by
a drawing-in of fresh material from the surfaces. It thus appears that the
fibril drawing process is equivalent to the macroscopic cold-drawing by neck
extension, now taking place in mesoscopic dimensions, with the shoulders
being fixed onto and moving together with the craze surfaces. Indeed, the
extension ratios found for the microfibrils, which can be directly derived from
the volume fraction of material within the craze, essentially agree with the
draw ratios associated with neck formation.

It is possible to provide an estimate for the draw ratio reached. It may
be identified with the point where strain hardening sets in and, as for an
entangled polymer melt, the hardening is caused by the approach of the chain
sequences between entanglements to their limits of extensibility. First we need
the knowledge of the molar mass of these sequences. This molar mass, denoted
Me, can be obtained with the aid of Eq. (9.86),

G = cpkT ,

which gives the shear modulus of an ideal rubber. Me may be calculated if we
identify G with the plateau value of the dynamic shear modulus of the melt,
Gpl, and write for the density of active chains

cp =
ρ

Me
NL . (10.53)
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Me then follows as

Me =
NLkTρ

Gpl
. (10.54)

The degree of polymerization Ne and the contour length lct,e of chains with
molecular weight Me are

Ne =
Me

Mm
(10.55)

and
lct,e = amNe , (10.56)

where am andMm stand for the length and the molecular weight per monomer,
respectively. Chains with an end-to-end distance vector oriented along the
drawing direction experience the highest draw ratios. Their average end-to-
end distance in the isotropic state, Re, according to Eq. (2.35) is

Re = a0N
1/2
e . (10.57)

With the knowledge of lct,e and Re the draw ratio at the onset of strain
hardening can be estimated. Calling it λmax, we write

λmax � lct,e
Re

=
am

a0
N1/2

e . (10.58)

Figure 10.37 shows a comparison between experimentally determined draw
ratios of craze fibrils and values of λmax. The agreement is not perfect, but the
general tendency of the data is satisfactory. The analysis shows that the crazes
are stabilized by strain hardened fibrils bearing the imposed load. Without
the strain hardening effect, stable crazes would not exist.

An appealing model explaining the mechanism of lateral craze growth
was suggested by Argon. It is indicated in Fig. 10.38 with a schematic draw-
ing of the edge of a craze and its development with time. The main point
in the model is an assumed instability of the air–polymer interface, which
may arise under the conditions of the sharply decaying dilatational stress
effective at the craze tip. The phenomenon is known from fluids, where
menisci advance under the action of a suction gradient. There the sur-
face becomes instable with regard to wave-like perturbations above a crit-
ical wavelength. The same instability may arise in a growing craze. As in-
dicated in the drawing, here fibrils may be repeatedly produced near the
advancing craze tip, by the break-up of the interface after a transverse cor-
rugation. The wavelength of the corrugation determines the distance and,
thus, the thickness of the fibrils. A prerequisite for the process is plastic
flow in a limited zone in front of the moving edge, as may readily occur
for the given high stress values. Material enters this plastic zone at the outer
end, then advances through the zone under increasing strain and finally be-
comes included in the interface convolution process forming the fibrillar craze
matter.
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Fig. 10.37. Extension ratios λ of craze fibrils observed for various compounds,
plotted against the draw ratio at the onset of strain hardening, λmax, as derived
from the plateau modulus. From Kramer [136]

We finish this chapter with a look at the structure of high impact
polystyrene, abbreviated HIPS, which is a widely-used product belonging to
the larger class of rubber toughened thermoplastics. Mixing polystyrene
with an elastomer like polybutadiene results in a two-phase structure. Figure
10.39 displays the structural details as they appear in an electron micrograph.
Embedded in the polystyrene matrix are spherical inclusions of polybutadiene
and the picture shows that the structure is even more complex, since there are
again polystyrene inclusions within the inclusion. High impact polystyrene is
a tough material and owes this toughness to the initiation of crazes in large
numbers. These are observed in the picture. If stress is applied, crazes are
generated at the surfaces of the inclusions, which produce a stress intensifi-
cation. One might think at first that for the given high density of crazes the
material would also fracture more easily. However, since each craze only runs
to an adjacent rubber particle and there becomes arrested, this is not the
case.
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Fig. 10.38. Argon’s model of lateral craze growth based on the phenomenon known
as ‘meniscus instability’. Side view of the corrugated polymer-air interface (left).
Advances of the craze front by a repeated break-up of the interface (view in fibril
direction, right) [137]

Fig. 10.39. Electron micrograph of a stained microtomed section of HIPS, showing
crazes running between the elastomeric precipitates. From Kambour [133]

10.3 Brittle Fracture

If the stress applied to a polymeric solid is sufficiently high to initiate a pro-
nounced yielding and is then further enhanced, the point of break is finally
reached. In tough samples there is extensive plastic flow before fracture, which
results in a large amount of energy being dissipated, whereas, in brittle com-
pounds, failure occurs much earlier, immediately after the begin of strain
softening. Samples of polystyrene or poly(methylmethacrylate) break after
the first observation of crazes and thus exemplify brittleness. In the last sec-
tion of this chapter we will consider this process of brittle fracture in more
detail.
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It is a general observation for all kinds of solid materials – metals, ceramics
or polymers – that they never reach their theoretical limits of strength. How is
this theoretical limit determined? For a low molar mass crystal this is easy
to see when considering, for example, the change of the free energy associated
with a homogeneous dilatation. Basically, the free energy is determined by
the pair interactions between the atoms or molecules in the crystal and this
function, u(r), has a general shape as sketched in Fig. 10.40. Enlarging the
volume by applying an external isotropic dilatational stress, σ, first requires
an increasing stress, but then σ passes over a maximum and a region of me-
chanical instability is entered where crystals spontaneously disintegrate. The
location of the maximum thus determines the theoretical limit of strength. It
follows from u(r), the condition being

dσ
dV =

d2F
dV2

∼ d2u

dr2
= 0 . (10.59)

We obtain this result for a hypothetical isotropic dilatational stress. Using
similar arguments, one could also deduce the theoretical limits for other kinds
of stress.

In a polymeric solid conditions are more complex. There are both in-
termolecular van der Waals forces and intramolecular covalent forces and,
furthermore, the microscopic structure is amorphous or only partially crys-
talline. Microscopic fracture mechanisms are, therefore, more involved and
also include chain slippage and chain scission. The latter process can occur in
fully extended sequences that are anchored with their ends in crystallites or
immobile entanglements, by a combined effect of mechanical stress and ther-
mal fluctuations. Even if the situation is complicated, based on some rough
knowledge of the bond energies and intermolecular forces one can still obtain
some estimate of the theoretical limits of strength. Comparing it to measured

Fig. 10.40. Theoretical limit for the mechanical stability under an isotropic tensile
stress σ. u(r) is the pair potential in a low molar mass crystal
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fracture strengths, it is found that the theoretical limits are far from being
reached for polymeric solids.

What is the cause of the large difference? This is easily revealed. The
lack of agreement is due to the presence of flaws in solid bulk matter. Near
flaws, which may be microvoids, microcracks, inclusions of foreign particles or
other structural heterogeneities, stresses become greatly intensified. As a con-
sequence, when applying stress, the limits of stability are locally exceeded and
fracture is then initiated.

Being controlled by the flaws in a sample, fracture strength is not a well-
defined bulk property like the parameters and functions describing viscoelas-
ticity. This has consequences for the characterization of strength by measure-
ments. As different samples never possess an equal distribution of flaws, an
exact reproducibility cannot be expected and large variations are the rule.
Predictions with regard to the strength of bulk samples can, therefore, only
be of statistical nature, based on series of measurements and the deduction
of probabilities that fracture occurs under given conditions of stress. A pecu-
liar feature is the volume dependence. Since fracture can start at any flaw,
the increase in the total number with increasing volume reduces the mechan-
ical stability of a sample correspondingly. Hence, dealing with the property
strength is not a conventional task and requires special measures.

An obvious way to overcome some of the difficulties and to have a frame
for reproducible measurements is the preparation of special samples that have
a macroscopic flaw where fracture is initiated, followed by a propagation of
the crack in controlled manner. Although this procedure cannot remove the
principal difficulty encountered in the assessment of the fracture behavior of
a given sample, it can provide true material parameters for use in comparisons
of different compounds. Figure 10.41 depicts a standard configuration, with

Fig. 10.41. Standard configuration (opening mode I) considered in linear fracture
mechanics: Infinite plate containing a crack of length 2c subject to a tensile stress σzz
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a sharp crack introduced in a plate. Applying stress, the fracture starts at
the two edges. Linear fracture mechanics deals with these conditions and
describes the behavior of sharp cracks cut into an elastic body.

10.3.1 Linear Fracture Mechanics

The analysis was first carried out by Griffith in a treatment of the brittle
fracture of metals. Its transfer to polymeric solids may look questionable at
first, as these are neither ideally elastic nor linear in the response at strains
near to failure. Actually, Griffith’s considerations are of general nature and
can also be applied to polymers, after introducing some physically important
but formally simple modifications.

We consider the plate shown in Fig. 10.41, which contains a crack of length
2c. The plate has a thickness d, a Young’s modulus E, and its surface area
is assumed as infinite. If a tensile force is applied perpendicular to the crack
direction, one finds a uniform uniaxial stress far from the crack, denoted σzz .
It is possible to calculate the drop of the elastic free energy of the plate,
which results if the length of the crack is increased by Δ2c. The solution of
the problem is given by the expression

ΔF =
πcσ2

zz

E
dΔ2c . (10.60)

The increase of the crack length produces additional surfaces on both sides
and this requires a work ΔW , which is proportional to their area

ΔW = 2wdΔ2c . (10.61)

The equation includes w as proportionality constant. Treating perfectly brit-
tle solids, Griffith identified w with the surface free energy. For polymers,
the meaning of w has to be modified. As will be discussed, other contribu-
tions appear and even take control. The condition for fracture follows from
a comparison of the two quantities ΔF and ΔW , which independent of the
contributions to w. A crack grows if the strain energy release rate GI,
given by

GI =
1
d

ΔF
Δ2c

=
πcσ2

zz

E
, (10.62)

can provide the work needed to create the new surface. This is the case for

GI ≥ 2w = GIc . (10.63)

Equation (10.63) is known as Griffith’s fracture criterion. It includes
a critical value of the strain energy release rate, denoted GIc and the lat-
ter is determined by the surface parameter w. The subscript ‘I’ is used in the
literature to indicate reference to the opening mode I of Fig. 10.42 and to
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Fig. 10.42. Values of the tensile stress σzz,c at the beginning of crack growth in
samples of PMMA containing a crack of length 2c. β2 is a geometrical constant,
equal to π for infinite plates and with slightly different values for finite bodies. Data
from Williams [138]

discriminate it from other possible modes of loading. From Eqs. (10.62) and
(10.63) the critical value of the tensile stress follows as

σzz,c =
(

2Ew
πc

)1/2

. (10.64)

σzz,c sets the stability limit for the crack. For tensile stresses below the limit,
the crack just opens maintaining a constant length 2c. If the tensile load
exceeds σzz,c, the crack starts growing, until it has crossed the sample cross-
section, i.e., until it has completed the fracture. Note that only two material
coefficients enter into the fracture criterion Eq. (10.64), namely the Young’s
modulus E and the surface parameter w.

One result of the treatment is the predicted dependence of σzz,c on the
crack length c. One expects σzz,c ∝ 1/

√
c, and this is indeed verified by

experimental observations. Figure 10.42 depicts, as an example, fracture data
obtained for poly(methylmethacrylate) at room temperature, represented in
a plot of σ2

zz,c versus c−1.
There is a second, equivalent form of the fracture criterion. It is possible to

calculate the stress field near to the tip of the crack in the plate of Fig. 10.41.
The result is given by the expression

σij(r, θ) =
KI

(2πr)1/2
Φij(θ) (10.65)
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when employing the coordinates r, θ and y introduced in the figure. According
to this expression, the stress tensor with components σij depends on the dis-
tance r from the tip and the angle θ only and not on y. We have here a state of
plane stress, with σyy = 0 and non-vanishing values of the stress only parallel
to the plate surfaces. The stress distribution is given by a certain angular-
dependent tensor function Φij(θ) and the r-dependent factor 1/(2πr)1/2. The
result implies that the relative stress distribution around the crack tip does
not vary with the external load, which just affects the magnitude. The effect
of the load is completely accounted for by the parameter KI, known as the
stress intensity factor. The stress intensity factor can be calculated with
the result

KI = σzz(πc)1/2 . (10.66)

Equation (10.65) predicts a singularity for the stress at the crack tip, as
σij → ∞ for r → 0. Therefore, the local stresses, as described by this ex-
pression, cannot be utilized in the formulation of a fracture criterion. Instead,
the stress intensity factor can be employed and the condition to be fulfilled
for a stable crack formulated as

KI ≤ KIc (10.67)

Here KIc denotes the critical value of the stress intensity factor. The approach
is conceivable because theoretical analysis proves that, in spite of the diver-
gence of the stress at the tip, the total elastically stored energy remains finite.
KI can be directly related to the stored energy and, thus, to the strain energy
release rate GI. As the comparison of Eq. (10.66) with Eq. (10.62) shows, the
relationship reads

KI
2 = EGI . (10.68)

As it turns out, the relation holds not only for the configuration of Fig. 10.41,
but also for plates with a finite surface area, or for a semi-infinite plate with
a notch at the edge. The critical value of the stress intensity factor KIc follows
from a combination of Eqs. (10.68) and (10.63), as

KIc
2 = 2wE . (10.69)

It is determined by two material coefficients only, as is the case for GIc.
In conclusion, Griffith’s analysis of the crack stability provides two true

material parameters, the critical values at failure of the strain energy release
rate, GIc, and of the stress intensity factor, KIc. Either of them can be used for
a description of the fracture properties of common, i.e., not precracked sam-
ples, in the sense that higher values of GIc or KIc indicate a higher resistance
to failure.

10.3.2 The Slow Mode of Crack Growth

Griffith’s analysis predicts a stable crack for stresses below the critical limit
of failure and an uncontrolled accelerated growth above the limit, due to
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the permanent excess of the released strain energy over the required surface
free energy. Polymer behavior is different, as is exemplified by the results
of fracture experiments conducted on poly(methylmethacrylate) depicted in
Fig. 10.43. Studies were carried out under variation of the external load, i.e.,
of KI, with crack velocities being registered with the aid of a high speed
camera. Cracks are stable up to a certain value of the stress intensity factor
or the strain energy release rate, and we denote the latter GIi. At this point
crack growth sets in, however, not in an accelerated manner but with a slow
stationary growth rate (in order to establish a constant stress intensity factor
for growing cracks, the tensile load has to be permanently readjusted to fulfill
Eq. (10.66)). The growth rate increases with KI until a second point is reached
where a transition takes place, leading to a non-stationary, i.e., accelerated
mode of growth. This second transition is called the critical transition, and
its location in terms of the stress intensity factor and the strain energy release
rate is denoted KIc and GIc, respectively. Crack velocities ċ after the critical
transition are determined by inertial forces and the velocity of elastic waves.

The polymer specific feature is the existence of a range of stationary slow
growth preceding the uncontrollable rapid mode of failure, i.e., the occurrence
of the subcritical crack growth in the range GIi < GI < GIc. Its origin be-
comes basically clear if we look at Fig. 10.43 from the other perspective, as
giving the strain energy release rate GI as a function of an imposed crack veloc-
ity ċ. Under stationary conditions, GI must equal the work suspended to form
new surfaces as expressed by the parameter 2w. According to the curves w in-
creases with ċ for subcritical growths. In Griffith’s original treatment of brittle

Fig. 10.43. Crack growth as a function of GI, as observed for PMMA (M = 2 ×
106 g mol−1) at room temperature. From Döll [139]
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fracture w corresponded to the surface free energy only, which just relates to
the absence of binding forces in one direction. In the case under discussion,
the fracture of polymers, the situation is qualitatively different. The work re-
quired for the formation of a surface during fracture is here dominated by
a preceding plastic flow. The observed rate dependence of w is a property of
the flow processes. Indeed, the values of w deduced from Griffith’s fracture
criterion for polymers are much larger than the surface free energy alone.
For example, for poly(methylmethacrylate) one finds GIc � 100−1000J m−2,
compared to a surface free energy 2ws � 0.1 J m−2. Hence, although the frac-
ture of materials like polystyrene and poly(methylmethacrylate) is still called
brittle, it does not comply with this name in the strict sense.

The growth rate dependence of the work suspended in plastic flows is
conceivable if we recall, for example, the strain rate dependence of the force
applied for the shear yielding during cold-drawing. In the range of subcritical
growth one finds a power law for the relation between KI and ċ,

KI ∝ ċμ (10.70)

with a small exponent μ (≈ 1/25).
There is a detailed picture of the flow processes controlling the slow growth

of cracks and it directly relates to crazing. Insight again comes from electron
microscopy. Figure 10.44 presents micrographs of the region around a crack tip
showing a plastically deformed zone in front of the tip. The image with higher
resolution on the right-hand side indicates that this zone is filled with fibrils
as is found in the interior of a craze. From such observations a picture of crack
growth emerges as it is indicated schematically in the upper part of Fig. 10.45.
If a tensile load is applied, the high stresses in the immediate neighborhood
of the crack tip result in a crossing of the yield point and the formation of
a zone with plastic deformation. In polymers, the pertinent mode of local

Fig. 10.44. Crack tip (bright sections on the right in both pictures) within a craze
in PS. Electron micrographs obtained by Michler [140]
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Fig. 10.45. Crack propagation behind a simultaneously moving zone with crazed
matter. The profile of the preceding craze tip can be derived from the interference
pattern produced by the two reflected beams. The fringe pattern presented here was
obtained for PMMA by Doyle [141]

plastic flow is crazing. Hence, fibrils form in the plastic zone, being separated
by voids. If the applied stress is further enhanced, the fibrils elongate and
reach at a certain point their limit of internal stability at which they break.
At this moment, a crack has formed within the craze and subcritical crack
growth starts. Under the applied stress the craze grows being followed by the
crack tip within the craze. For a fixed value of KI stationary conditions are
established, with a constant cusp-like shape of the zone with crazed matter in
front of the tip and a constant crack velocity. Failure is completed when the
crack has expanded over the sample cross-section.

Additional evidence for a crack growth behind a growing craze provides the
surface structure of fractured samples. Images obtained by scanning electron
microscopy show a thin film formed of collapsed fibrils on the fracture surface.
Figure 10.46 presents as an example such an image, here of a fracture surface
of poly(methylmethacrylate).

The cusp-like profile of the craze zone in front of the crack may be deduced
from another experiment on poly(methylmethacrylate), presented in the lower
part of Fig. 10.45. The displayed fringe pattern is observed in a microscope,
when the region around the crack tip is illuminated by a light beam from
above. As a result of the interference of two light beams, one reflected at
the upper and the other at the lower surface of the craze with crack, an
interference pattern emerges. Analysis enables the profile of the craze in front
of the crack to be determined. The profiles thus measured are cusp-like, as in
the schematic drawing.

With the knowledge of the structure of the plastic zone in front of the
crack tip one can write down a simple equation for the surface parameter 2w,
known also as material resistance. The total expended work equals that
consumed on drawing the fibrils in the craze up to their maximum length at
the point of break. As was discussed in the previous section, fibrils elongate
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Fig. 10.46. Fracture surface of PMMA as observed in a scanning electron micro-
scope. The structure originates from collapsed crazed matter. Micrograph obtained
by Döll and Könczöl [142]

by an incorporation of fresh material at the craze surface, which takes place
under a constant tensile stress. Hence, we write

2w ≈ σyΔzb , (10.71)

where σy stands for the tensile stress effective at the craze surface and Δzb
denotes the maximum fibril length, reached at the point of break. This leads
to an expression for the stress intensity factor that can be used to deal with
the slow crack growth regime. Stationary growth implies equality of GI with
2w, hence

KI = EGI = EσyΔzb . (10.72)

One may ask for the cause of the fibril rupture. Ideally, for a fibril with
constant width, elongation by the incorporation of additional material at both
ends could continue infinitely. Reality is different, since the fibril diameter is
not truly stable but narrows due to an ongoing creep. Away from the crack
tip this is a slow process, but adjacent to the tip it becomes accelerated by
the intensification of stress. Rather than breaking somewhere in the central
part, fibrils often fail at the craze surface, for example, if an obstacle prevents
a further material supply. Generally, the stability of the fibrils against rupture
increases with the molar mass, as the necessary chain disentangling requires
more and more time, and both σy and Δzb go to higher values. As a con-
sequence, the strength of samples also increases with the molar mass; this is
shown by the data in Fig. 10.47. They were obtained from measurements on
fractions of polystyrene. In addition to the critical stress at break, the figure
includes also the minimum stresses for the observation of crazes. Opposite
to the stresses at failure the latter ones are M -independent; craze initiation
is a local event, depending primarily on the interaction between neighboring
chain sequences.
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Fig. 10.47. Fractions of PS, subject to uniaxial stress. Molar mass dependencies
of the minimum stress for the observation of crazes and the stress at failure. Data
from Fellers and Kee [143]

On the basis of Eq. (10.72) we can understand how the balance between
the released strain energy and the energy consumption in work of plastic
deformation is realized over a finite range of crack velocities. This becomes
accomplished by the rate dependence of the drawing stress σy, which goes
up with ċ, and that of Δzb. By the increase of 2w = σyΔzb with ċ, a new
equilibrium with GI can be established following any upward change in GI

or KI. The limit of stationary slow growth is reached when 2w is no longer
rate sensitive enough to compensate for the increase in GI. Then growth is no
longer stationary and the crack expands in an uncontrolled manner.

We finish this last chapter with a short remark on environmental ef-
fects. Indeed, the influences of environmental gases or liquids on crazing and
failure of polymeric materials can be rather strong and have to be properly
accounted for in experiments. The primary action of active agents involves
absorption and thus swelling of the material, with the result of plastification,
i.e., a decrease of Tg, and a reduction of surface energies. Both effects obvi-
ously facilitate craze initiation, since cavitation processes are involved and the
chain mobility is increased. Craze growth is promoted as well, for the same
reasons, and so is the tendency for failure, since the load carrying capacity
of the fibrils may be diminished. The presence of agents that diffuse into the
polymer may therefore greatly reduce the barriers for crazing and fracture. In
extreme cases, bodies may even break spontaneously on coming into contact
with an absorbing agent, since then frozen strains are released and produce
internal stresses. It is obvious that these are technically important influences
and they have to be carefully considered to be sure that materials are safe
under all possible environmental conditions.



10.3 Brittle Fracture 461

Further Reading

E.H. Andrews, P.E. Reed, J.G. Williams, C.B. Bucknall: Advances in Poly-
mer Science, Vol. 27 Failure in Polymers, Springer, 1978

H.H. Kausch: Polymer Fracture, Springer, 1978
H.H. Kausch (Ed.): Advances in Polymer Science Vol. 91/92 Crazing in

Polymers, Springer, 1990
G.H. Michler: Kunststoff-Mikromechanik, Carl Hanser, 1992
I.M. Ward: Mechanical Properties of Solid Polymers, John Wiley & Sons,

1971



A

Scattering Experiments

A.1 Fundamentals

As for bulk condensed matter in general, analysis of the microscopic structure
of polymer systems is mostly carried out by scattering experiments. This Ap-
pendix is meant to provide the reader with a summary of results of scattering
theory, including both general and specific equations, in a selection suggested
by the needs of the considerations in this book.

Depending on the system under study and the desired resolution, photons
in the X-ray and light scattering range or neutrons are used. The general
set-up of a scattering experiment is indicated schematically in Fig. A.1. We
have an incident beam of monochromatic radiation with wavelength λ and
an intensity I0. It becomes scattered by a sample and the intensity I of the
scattered waves is registered by a detector (D) at a distance A, under variation
of the direction of observation. Employing the scattering vector q, defined
as

q = kf − ki , (A.1)

where kf and ki denote the wave vectors of the incident and the scattered
plane waves, respectively, the result of a scattering experiment is usually ex-
pressed by giving the intensity distribution in q-space, I(q). In the ma-
jority of scattering experiments on polymers the radiation frequency remains
practically unchanged. Then we have

|kf | ≈ |ki| =
2π
λ

(A.2)

and |q| is related to the Bragg scattering angle ϑB by

|q| =
4π
λ

sinϑB (A.3)

(ϑB is identical to half of the angle enclosed by ki and kf).
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Fig. A.1. General set-up of a scattering experiment

A.1.1 Basic Equations

Two different functions can be used for representing scattering data in reduced
forms. The first one, denoted Σ(q), is the differential scattering cross-
section per unit volume

Σ(q) =
1
V

dσ
dΩ

=
1
V
I(q)A2

I0
. (A.4)

In light scattering experiments this function is called the Rayleigh ratio.
While the effect of the volume is removed, Σ(q) remains dependent on the
scattering power of the particles in the sample, which varies with the applied
radiation. For X-rays, the scattering power is related to the electron densi-
ties, for light scattering to the associated refractive indices and for neutron
scattering to the scattering length densities.

This dependence on the applied radiation is eliminated in the second func-
tion which, however, can only be employed if the scattering can be treated as
being due to just one class of particles. In polymer systems these can be iden-
tified with the monomeric units. For equal particles the scattering properties
can be described by the interference function S(q), also called scattering
function or scattering law, which is defined as

S(q) =
I(q)
ImNm

. (A.5)

Here Nm represents the total number of particles/monomers in the sample
and Im is the scattering intensity produced by one particle, if placed in the
same incident beam. The interference function expresses the ratio between the
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actual intensity and the intensity that would be measured, if all particles in the
sample were to scatter incoherently. It thus indeed describes the interference
effect.

As may be directly verified, Σ(q) and S(q) are related by the equation

Σ(q) = 〈cm〉
(

dσ
dΩ

)
m

S(q) . (A.6)

Here (dσ/dΩ)m denotes the scattering cross section per particle or monomer
and 〈cm〉 stands for their mean density

〈cm〉 =
Nm

V . (A.7)

Scattering diagrams generally emerge from the superposition and interfer-
ence of the scattered waves emanating from all the particles in the sample.
If we describe the amplitudes of single scattered waves at the point of regis-
tration by the detector in normalized form, by complex numbers of modulus
unity and phases ϕi, the total scattering amplitude is obtained as

C =
Nm∑
i=1

exp(iϕi) . (A.8)

Simple geometrical considerations presented in all textbooks dealing with scat-
tering theory show that the phases ϕi are determined by the particle posi-
tions ri and the scattering vector q only, being given by

ϕi = −qri . (A.9)

Hence, the scattering amplitude produced by a set of particles at locations ri

may be formulated as a q-dependent function

C(q) =
Nm∑
i=1

exp(−iqri) . (A.10)

The scattering intensity is proportional to the squared modulus of C. Since
measurements require a certain time, average values are generally obtained
and we write

I(q) ∝ 〈|C(q)|2〉 . (A.11)

The brackets indicate an ensemble average that involves, as always in sta-
tistical treatments of physical systems, all microscopic states of the sample.
For ergodic systems the time average carried out by the detector equals the
theoretical ensemble average.

As the normalization of the amplitudes of the single scattered waves
is already implied in the definition of the interference function Eq. (A.5),
Eq. (A.11) may be completed as

S(q) =
1

Nm
〈|C(q)|2〉 . (A.12)
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This is a basic equation of general validity and it may serve as starting point
for the derivation of other forms of scattering equations.

Our task is the calculation of the above average of the squared scattering
amplitude. A first formula follows directly by use of Eq. (A.10), leading to

S(q) =
1

Nm

Nm∑
i,j=1

〈exp[−iq(ri − rj)]〉 . (A.13)

Instead of specifying the discrete positions ri of all particles, one can also
use a continuum description and introduce the particle density distribution
cm(r). First we write down the scattering amplitude for a single microstate,
as represented by the associated density distribution

C(q) =
∫

V
exp(−iqr)(cm(r) − 〈cm〉)d3r . (A.14)

As scattering occurs only if cm varies within the sample, we here subtract
the mean value 〈cm〉, thus relating the scattering directly to the fluctuations.
As we can see, C(q) equals the Fourier transform of the fluctuations in the
particle density. Insertion of Eq. (A.14) into Eq. (A.12) and carrying out the
ensemble average yields

S =
1

Nm

∫

V

∫

V
exp[−iq(r′ − r′′)]

〈
[cm(r′) − 〈cm〉][cm(r′′) − 〈cm〉]

〉
d3r′d3r′′ . (A.15)

For all macroscopically homogeneous systems, where

〈cm(r′)cm(r′′)〉 = 〈cm(r′ − r′′)cm(0)〉 , (A.16)

this equation reduces to a single integral. Substitution of r′ − r′′ by r yields

S(q) =
1

〈cm〉
∫

V
exp(−iqr)(〈cm(r)cm(0)〉 − 〈cm〉2)d3r . (A.17)

Equation (A.17) expresses S(q) as the Fourier transform of the space depen-
dent correlation function of the particle density.

A third form of the basic scattering equation is obtained if structures
are characterized with the aid of the pair distribution function g(r). Per
definition, the product

g(r)d3r

gives the probability that, starting from a given particle, the particle itself or
some other particle is found in the volume element d3r at a distance r. The
pair distribution function g(r) is composed of two parts,
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g(r) = δ(r) + g′(r) , (A.18)

the delta function giving the self-contribution and the second part, g′, the
contributions of the other particles. For fluid systems with short-range order,
the limiting value of the pair distribution function at large distances equals
the mean density

g(|r| → ∞) → 〈cm〉 . (A.19)

As follows directly from the definitions, the density distribution and the
pair distribution function are related by

〈cm(r)cm(0)〉 = 〈cm〉g(r) . (A.20)

Insertion of Eq. (A.20) into Eq. (A.17) gives

S(q) =
∫

V
exp(−iqr)(g(r) − 〈cm〉)d3r . (A.21)

As we notice, the scattering function once again equals a Fourier transform,
now of the pair distribution function.

From Eq. (A.21) there follows the asymptotic value of S for large values
of q. In the limit q → ∞ only the contribution of the self-correlation part,
δ(r), is left and we find

S(q → ∞) → 1 . (A.22)

We conclude that, for large q, there are neither constructive nor destructive
interferences between the particles so that they behave like incoherent scat-
terers.

For isotropic systems with

g(r) = g(r = |r|) (A.23)

the scattering function is also isotropic

S(q) = S(q = |q|) . (A.24)

The Fourier relation between g(r) and S(q) then has the form

S(q) =

∞∫

r=0

sin(qr)
qr

4πr2(g(r) − 〈cm〉)dr . (A.25)

We have formulated three equivalent relations, Eqs. (A.13), (A.17) and
(A.21), which can all be employed in the evaluation of scattering data. All
three equations express a Fourier relation between S(q) and functions that
describe properties of the microscopic structure in statistical terms. To put
special emphasis on this well-defined structural background, S(q), firstly in-
troduced as the ‘scattering function’, is often also addressed as the structure
function or structure factor. We will use all these different names, chosen
freely.
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A.1.2 Time-Resolved Scattering Experiments

Since the particles in a sample are moving, the interference pattern fluctuates
in time. The fluctuations can be included in the treatment, by representing the
scattering amplitude as a function with a statistical time dependence, C(q, t).
So far we have dealt with the case of static scattering experiments, where
the fluctuations are not registered and the detector only provides the mean
value of the scattering intensity. It is also possible to conduct scattering exper-
iments with neutrons or light in such a way that the time-dependent fluctua-
tions are monitored. These time-resolved measurements provide information
on the internal dynamics in a sample and thus can considerably expand the
information content of a scattering experiment.

Here we give a summary of the main results as they follow from a purely
classical treatment. These are applicable for quasielastic scattering ex-
periments, i.e., experiments where the amount of energy exchange between
the neutrons or photons and the sample remains small compared to both the
initial energy of the scattered particles and the thermal energy kT of the
particles in the sample. In studies of relaxation processes in polymer systems
these requirements are generally fulfilled.

If the particles in the sample are mobile, their positions or, in the contin-
uum description, the density distribution become functions of time, ri(t) or
cm(r, t). As a consequence the scattering amplitude C fluctuates, and we may
write either

C(q, t) =
Nm∑
i=1

exp[−iqri(t)] (A.26)

or
C(q, t) =

∫

V
exp(−iqr)[cm(r, t) − 〈cm〉]d3r . (A.27)

There are techniques that provide a statistical analysis of these time-
dependent fluctuations. The main result of the analysis is a determination
of the time correlation function of the scattering amplitude, defined as

S(q, t) =
1

Nm
〈C(q, t′ + t)C∗(q, t′)〉 . (A.28)

The chosen form relates to the previous Eq. (A.12) and expands it by an
inclusion of the time dependence. S(q, t) expresses the correlation in time of
the scattering amplitudes measured at two times separated by t. The station-
ary character of thermal equilibrium states implies that the right-hand side
is independent of t′. In dynamic light scattering experiments the deter-
mination of S(q, t) is accomplished by the photon correlation technique. In
dynamic neutron scattering experiments, spin-echo measurements
can be used in order to obtain the correlation function.

S(q, t) is called intermediate scattering function or intermediate
scattering law, and plays a central role in the analysis of dynamic scattering
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experiments. The importance is due to S(q, t) being related in a well-defined
way to the equilibrium dynamics in the system. The relation can be directly
established, by insertion of the time-dependent scattering amplitudes, as de-
scribed by Eq. (A.26) or Eq. (A.27), in Eq. (A.28). This results in

S(q, t) =
1

Nm

Nm∑
i,j=1

〈exp[−iq(ri(t) − rj(0))]〉 (A.29)

and

S(q, t) =
1

Nm

∫

V

∫

V
exp[−iq(r′ − r′′)]

(〈cm(r′, t)cm(r′′, 0)〉 − 〈cm〉2) d3r′ d3r′′ . (A.30)

For a macroscopically homogeneous system the latter equation reduces to

S(q, t) =
1

〈cm〉
∫

V
exp(−iqr)(〈cm(r, t)cm(0, 0)〉 − 〈cm〉2)d3r . (A.31)

In the discussion of the structure of samples we employed the pair distri-
bution function g(r). This notion can be generalized to include also the dy-
namics, by introducing the time-dependent pair distribution function
g(r, t). Per definition, the product

g(r, t)d3r

describes the probability that, starting from a given particle at zero time, the
same or another particle is found in the volume element d3r at a distance r,
if the check is performed after a time delay t. As in the case of the static
Eq. (A.18), one finds two contributions

g(r, t) = ĝ(r, t) + g′(r, t) . (A.32)

The first one, ĝ, gives the probability that a particle will become displaced
by r during the time t; the second contribution, g′, is furnished by the other
particles.

As follows directly from the definitions, g(r, t) is proportional to the space-
dependent and time-dependent density correlation function

〈cm(r, t)cm(0, 0)〉 = 〈cm〉g(r, t) . (A.33)

Consequently, Eq. (A.31) is equivalent to

S(q, t) =
∫

V
exp(−iqr)(g(r, t) − 〈cm〉)d3r . (A.34)

Equation (A.34) is the generalization Eq. (A.21).
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Rather than measuring the time correlation function of the scattering am-
plitude, one can also use a monochromator and determine the spectral density.
As stated by the Wiener–Chinchin theorem, the spectral density of a fluctu-
ating quantity and its time correlation function are related by Fourier trans-
formations. In our case, we have

S(q, ω) =

∞∫

t=−∞
exp(iωt)S(q, t)dt (A.35)

and reversely

S(q, t) =
1
2π

∞∫

ω=−∞
exp(−iωt)S(q, ω)dω . (A.36)

S(q, ω) is known as the dynamic scattering law or, emphasizing the
structural background, as the dynamic structure factor. Using Eq. (A.34)
we obtain

S(q, ω) =
∫

V

∞∫

t=−∞
exp[−i(qr − ωt)](g(r, t) − 〈cm〉)d3rdt . (A.37)

As we can see, dynamic scattering experiments carried out under variation of
the scattering vector and the frequency yield a Fourier analysis of the time-
dependent pair distribution function.

Usually, experiments give the partial differential cross-section per unit vol-
ume

Σ(q, ω) =
1
V

d2σ

dωdΩ
. (A.38)

It is related to the dynamic scattering law by

Σ(q, ω) = 〈cm〉
(

dσ
dΩ

)
m

S(q, ω) (A.39)

in full analogy to Eq. (A.6).
Finally, we formulate relations between static and dynamic scattering func-

tions. According to the definitions, the static scattering law is identical with
the dynamic scattering law at zero time

S(q) = S(q, t = 0) . (A.40)

Applying Eq. (A.36) we can introduce S(q, ω) and obtain

S(q) =
1
2π

∞∫

ω=−∞
S(q, ω)dω . (A.41)
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For the differential cross-section we find correspondingly

Σ(q) =
1
2π

∞∫

ω=−∞
Σ(q, ω)dω . (A.42)

A.2 Absolute Intensities in Light-,
X-ray- and Neutron-Scattering Experiments

In standard light scattering experiments on polymer solutions, absolute scat-
tering intensities are usually determined since this is necessary for the deter-
mination of molar masses. Measurements of absolute intensities also provide
additional information in X-ray or neutron diffraction studies on multicom-
ponent and multiphase polymer systems. In the following, we will give the
equations to be used.

For a complete evaluation of absolute scattering intensities one requires
a knowledge of the differential cross-section per monomer, as this is included
in Eq. (A.6). Let us first deal with light scattering experiments on dilute
polymer solutions. The quantity of interest here is the effective differential
cross-section of the dissolved monomers. Clearly it must be related to the
difference in the polarizabilities of the solute and the solvent, as no scattering
at all would arise for equal polarizabilities. Since a dilute solution scatters light
like a gas, we can use Rayleigh’s scattering equation, thereby substituting the
polarizability of the gas atoms by the difference in the polarizabilities between
solute and solvent molecules, denoted δβ

(
dσ
dΩ

)
m

=
π2δβ2

ε20λ
4
0

. (A.43)

More accurately, δβ expresses the difference between the polarizability of
a monomer and the total polarizability of all displaced solvent molecules that
together occupy an equal volume. λ0 denotes the wavelength of the light in
vacuum. Equation (A.43) is valid for the scattering of isotropic particles if
both the incoming and the scattered beam are polarized perpendicular to the
scattering plane.

For dilute systems, δβ can be related to the difference between the indices
of refraction of the solution, n, and the pure solvent, ns, by

cmδβ = ε0
(
n2 − n2

s

)
. (A.44)

We apply this relation in Eq. (A.43) and obtain

(
dσ
dΩ

)
m

=
π2

λ4
0

(
n2 − n2

s

)2
c2m

. (A.45)
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Use of the approximation

n2 − n2
s ≈ dn2

dcm
cm = 2ns

dn
dcm

cm (A.46)

yields (
dσ
dΩ

)
m

=
4π2n2

s

λ4
0

(
dn
dcm

)2

. (A.47)

The Rayleigh ratio follows from Eq. (A.6) as

Σ(q) =
4π2n2

s

λ4
0

cm

(
dn
dcm

)2

S(q) . (A.48)

Replacement of the number density of monomers, cm, by their concentration
by weight, cw, using

cm = cwNL/Mm , (A.49)

finally yields
Σ(q) = KlMmcwS(q) (A.50)

with the contrast factor for light, Kl, given by

Kl =
4π2n2

s

λ4
0NL

(
dn
dcw

)2

. (A.51)

Light scattering experiments are usually evaluated on the basis of this equa-
tion.

Next, the respective relations for X-ray scattering experiments are given.
In the small angle range, which is of special interest for polymer studies, the
effective differential cross-section per monomer is(

dσ
dΩ

)
m

= r2e (Δz)
2 . (A.52)

Here re denotes the classical electron radius

re = 2.81 ×10−15 m . (A.53)

Δz again describes a difference between monomer and displaced solvent
molecules, now the difference in the total number of electrons. Δz may be
deduced from the electron densities of the single components, the electron
density of the monomeric unit, ce,m, and the electron density of the solvent,
ce,s. We may write

(Δz)2 = (ce,m − ce,s)2v2
m (A.54)

(vm stands for the monomer volume). If we now take Eqs. (A.52) and (A.54),
introduce them into Eq. (A.6) and also exchange cm for cw with the aid of
Eq. (A.49) we obtain a result analogous to Eq. (A.50),

Σ(q) = KxMmcwS(q) . (A.55)
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The contrast factor Kx now relates to X-ray scattering and is given by

Kx = r2e (ce,m − ce,s)2v2
m

NL

M2
m

. (A.56)

For the evaluation of X-ray scattering experiments on multicomponent and
multiphase systems such as polymer blends or partially crystalline polymer
systems, a fourth form of scattering equations is often appropriate. We first
refer to a one component system composed of particles with zm electrons,
corresponding to a differential cross-section

(
dσ
dΩ

)
m

= z2
mr

2
e . (A.57)

We now introduce the spatially varying electron density ce(r). It is given by

zmcm(r) = ce(r) . (A.58)

Replacing cm(r) by ce(r) in Eq. (A.17) and applying Eq. (A.6) results in

Σ(q) = r2e

∫

V
exp(−iqr)(〈ce(r)ce(0)〉 − 〈ce〉2)d3r . (A.59)

Considerations on a more general basis show that Eq. (A.59) not only holds for
one component systems but is generally valid in X-ray scattering experiments.
It describesΣ as the Fourier transform of the space-dependent electron density
correlation function. Equation (A.59) is equivalent to Eqs. (A.13), (A.17) and
(A.21), when used together with Eq. (A.6).

Finally, we turn to neutron scattering experiments and directly write down
the corresponding equations. The cross-section per monomer or per solvent
molecule follows from the sum over the scattering lengths bi of the respec-
tive constituent atoms, when calculating the square

(
dσ
dΩ

)
m

=

(∑
i

bi

)2

. (A.60)

It is obvious that neutron scattering experiments on dilute solutions can also
be described by an equation with the form of Eqs. (A.50), (A.55)

Σ(q) = KnMmcwS(q) . (A.61)

Now we have to use the contrast factor for neutron scattering, denoted Kn.
It is given by

Kn =

⎛
⎝∑

i

bi −
∑

j

bj

⎞
⎠

2

NL

M2
m

. (A.62)
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There are two sums on the right-hand side. The first one with running index i
refers to the monomer, the second one, with index j, is meant to represent
the total scattering length of the displaced solvent molecules. Clearly, for
neutron scattering, similarly to the scattering of photons, it is the difference
in scattering power between monomers and solvent molecules that determines
the absolute scattering intensity.

We can also formulate a general equation for neutron scattering in analogy
to Eq. (A.59) valid for X-rays. This is achieved by substituting the product
rece by the scattering length density cn, resulting in

Σ(q) =
∫

V
exp(−iqr)(〈cn(r)cn(0)〉 − 〈cn〉2)d3r . (A.63)

All these equations concern a coherent process of neutron scattering, since
they all express interferences, and these can only arise for well-defined phase
relations between the scattered waves emanating from the different parti-
cles. In fact, in neutron scattering experiments, one encounters a complication
since there always exists an additional contribution of incoherent scattering
processes. The latter take place without a regular phase relation between dif-
ferent particles. Although this second part cannot contain any information on
the structure, it is nevertheless important since it can be used in quasielas-
tic scattering experiments for the study of single particle motions. Complete
treatments and experiments show that one can measure an intermediate scat-
tering law associated with the incoherent part only and that this directly
relates to the Fourier transform of the self-correlation function of a mov-
ing particle, denoted ĝ(r, t) in Eq. (A.32). Explicitly, the relation has the
form

Sinc(q, t) =
∫

V
exp(−iqr)(ĝ(r, t) − ĝ(r, t→ ∞))d3r . (A.64)

The relative weights of the coherent and the incoherent process in a neu-
tron scattering experiment vary greatly between different atoms. For hydro-
gen atoms, for example, the incoherent scattering is dominant, and dynamic
neutron scattering experiments on organic materials therefore frequently fo-
cus on the dynamics of the single particles. For deuterium we find the reverse
situation, with a dominance of the coherent process, which opens the way for
investigations of the structure and of collective dynamical processes.

A.3 Low Angle Scattering Properties

A.3.1 Guinier’s Law

Scattering experiments at low angles on dilute colloidal systems, polymer
solutions included, can be applied for a determination of the molar mass and
the size of colloids or polymers. The relation may be explained as follows.
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We start from Eq. (A.13) and consider a dilute system of polymers or,
more general, colloids, each one composed of N monomeric units. For Np

colloids in the sample we have

Nm = NNp . (A.65)

For a dilute system we neglect all interferences between different colloids.
Equation (A.13) can then be rewritten as

S(q) =
1

Nm

Nm∑
i,j=1

〈exp[−iq(ri − rj)]〉

=
1

NpN
Np

N∑
i,j=1

〈exp[−iq(ri − rj)]〉 . (A.66)

In the low angle range close to the origin we may use a series expansion up
to second order, giving

S(q) ≈ 1
N

N∑
i,j=1

〈
1 − iq(ri − rj) +

1
2
[q(ri − rj)]2

〉
. (A.67)

For isotropic systems the linear term vanishes and the quadratic term trans-
forms into

〈[q(ri − rj)]2〉 =
1
3
q2〈|ri − rj |2〉 . (A.68)

This leads to

S(q) ≈ 1
N

⎛
⎝N2 − q2

6

N∑
i,j=1

|ri − rj |2
⎞
⎠ . (A.69)

If we introduce the radius of gyration, defined by

R2
g =

1
2N2

N∑
i,j=1

|ri − rj |2 , (A.70)

we obtain an expression for the structure factor in the limit of low q’s

S(q) ≈ N

(
1 − q2R2

g

3
+ · · ·

)
. (A.71)

The equation, often addressed as Guinier’s law, tells us that measurements
in the low angle range can be used for a determination of the size of a colloid,
as characterized by Rg, and the mass, as given by N .

An equivalent, probably better known definition of Rg is

Rg =
1
N

N∑
i=1

〈|ri − rc|2〉 (A.72)
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whereby rc denotes the center of mass of the colloid, given by

rc =
1
N

N∑
i=1

ri . (A.73)

The equivalence follows by noting that

N∑
i,j=1

(ri − rj)2 =
N∑

i,j=1

[(ri − rc) − (rj − rc)]2

= N

⎛
⎝ N∑

i

(ri − rc)2 +
N∑
j

(rj − rc)2

⎞
⎠

−2
N∑
i

(ri − rc)
N∑
j

(rj − rc)

= 2N
N∑
i

(ri − rc)2 , (A.74)

thereby taking into account that

N∑
i

(ri − rc) = 0 . (A.75)

A.3.2 Forward Scattering

A general relation associates the limiting value of the structure factor in the
forward direction, S(q → 0), with the fluctuation of the number of particles
in a given volume V and, furthermore, based on thermodynamics, with the
isothermal compressibility of the sample.

The relation follows directly from an application of Eq. (A.15)

S(q → 0) =
1

〈Nm〉

〈⎛
⎝
∫

V
(cm(r) − 〈cm〉)d3r

⎞
⎠

2〉

=
1

〈Nm〉
〈
(Nm − 〈Nm〉)2〉 . (A.76)

The ratio
〈(Nm − 〈Nm〉)2〉

〈Nm〉 =
〈N 2

m〉 − 〈Nm〉2
〈Nm〉 (A.77)

is independent of the chosen volume. This must be the case, since the left-
hand side of the equation, i.e., S(q), does not depend on V , and it also follows
from the treatment of fluctuations in statistical thermodynamics. Fluctuation
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theory relates the particle number fluctuation to the isothermal compressibil-
ity

κT =
(
∂〈cm〉
∂p

)
T

, (A.78)

by
〈N 2

m〉 − 〈Nm〉2
〈Nm〉 = kTκT . (A.79)

Combination of Eqs. (A.76) and (A.79) yields

S(q → 0) = kTκT . (A.80)

Equation (A.80) is generally valid for all one-component systems, independent
of the state of order, which may be gaseous, liquid-like or crystalline.

An equation that is fully equivalent to Eq. (A.80) can be applied in studies
of polymer solutions. The limiting value for q → 0 of the structure factor of
a solution is given by

S(q → 0) = kTκosm (A.81)

as it follows by a replacement of κT in Eq. (A.80) by the osmotic compress-
ibility

κosm =
(
∂〈cm〉
∂Π

)
T

. (A.82)

Π denotes the osmotic pressure and 〈cm〉 gives the mean monomer density in
the solution. The replacement is justified by fluctuation theory, which derives
for the fluctuation of the number of colloids in a fixed volume of a solution an
equation equivalent to Eq. (A.79), substituting κT by κosm.

A.4 Special Polymer Systems

A.4.1 Binary Mixtures and Block Copolymers

Scattering experiments play a prominent role in the analysis of structures of
polymer mixtures and block copolymers. Scattering curves of the homoge-
neous fluid state can be evaluated quantitatively by a comparison with theo-
retical scattering functions. We derive the theoretical functions in this section
using general relations between fluctuations and response functions.

In the discussion of concentration fluctuations in polymer blends in
Sect. 4.3, we obtained Eq. (4.74) for the increase in the Gibbs free energy
associated with the formation of a concentration wave of the A-chains. It
shows that the excitation of a wave with wave vector k to an amplitude φk

leads to an energy increase δG given by the quadratic form

δG =
1
2
ak|φk|2 . (A.83)
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While Eq. (4.74) contained an expression for ak based on the Flory–Huggins
theory of polymer mixtures, in a more general view ak can be considered as
representing a general modulus. Equation (A.83) can also be presented in the
form

δG =
1
2
ψkφ

∗
k , (A.84)

thereby introducing with
ψk = akφk (A.85)

a field that is the energetic conjugate to φk. The linear relation between ψk

and φk can alternatively be expressed as

φk = αkψk , (A.86)

employing a response coefficient αk. αk is the reciprocal of ak

αk =
1
ak

. (A.87)

The mean squared fluctuations of φk in thermal equilibrium follow by applying
Boltzmann statistics. The probability distribution is

p(φk) ∝ exp−ak|φk|2
2kT

(A.88)

which yields

〈|φk|2〉 =
kT

ak
= kTαk . (A.89)

The fluctuation 〈|φk|2〉 shows up in a scattering experiment as determining
the scattering intensity at q = k. In Sect. 4.3 we used a lattice model and
introduced the scattering function per cell, Sc(q) (Eq. (4.79)). A separate
calculation presented at the end of this section will demonstrate that Sc(q)
and 〈|φk=q|2〉 are related by

vcSc(q) = 〈|φk=q|2〉 (A.90)

(vc denotes the cell volume). Using this equation we find the following re-
lationship between the scattering function Sc(q) and the response coeffi-
cients αk:

vcSc(q) = kTαk=q . (A.91)

This is an important result. It says that the problem of calculating the struc-
ture factor of a mixture of polymer chains is equivalent to the problem of
calculating response functions. De Gennes was the first to use this equiva-
lence in polymer theories. The procedure is usually addressed as random
phase approximation, abbreviated RPA, adopting a name firstly chosen by
Bohm, Pines and Nozieres in a work on electron properties in metals. Equa-
tion (A.91) can be applied in two directions. If response coefficients are known,
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scattering functions can be calculated, and, vice versa, if structure factors are
known, the knowledge may be used for the derivation of response coefficients.
In the following, both ways will be combined.

We first inquire about the scattering function of an athermal mixture of A-
and B-chains, assuming that the mixture is densely packed and incompressible.
Under this condition we may choose either the A- or the B-monomers as
the representative particles responsible for the scattering, and we select the
monomers A.

We approach the problem with a calculation of the response coefficient
associated with an excitation of a concentration wave with wave vector k.
Imagine that this excitation is due to the action of a sinusoidally varying
potential field which interacts exclusively with the A’s. If this potential has
the strength ψk, the response is described by

φk = α0
kψk . (A.92)

Although the field only interacts directly with the A’s, there are, as we shall
see, more effects contributing to α0

k; α0
k represents a collective response

coefficient. The upper index ‘0’ is meant to indicate that here we are treating
an athermal system with χ = 0.

Owing to the incompressibility, an excitation of a concentration wave of the
A’s with amplitude φk is necessarily associated with a simultaneous excitation
of a concentration wave of the B’s. The latter has an amplitude in opposite
direction

φB
k = −φA

k = −φk . (A.93)

Formally, the induced displacement of the B’s may be regarded as a result of
the action of a second potential, an internal field with amplitude ψ̂k. Since
this internal field arises from the requirement of a constant total monomer
density, it cannot discriminate between A- and B-monomers, but must act
on both species equally. The external potential ψk and the induced internal
field ψ̂k together produce the following responses:

φk = αAA
k (ψk + ψ̂k) , (A.94)

φB
k = −φk = αBB

k ψ̂k (A.95)

The A-chains interact with both the external potential and the induced inter-
nal field, whereas the B-chains interact with the internal field only. We have
introduced here two further response coefficients, αAA

k and αBB
k . According

to the equations they represent response coefficients for the A- and B-chains
separately, expressing how chains of both types respond to the acting fields.
As all many-chain effects that ensure the constant total density are included
in ψ̂k, αAA

k and αBB
k represent true single chain response coefficients. This fact

is important, as one now has to ask about the responses of non-interacting
single chains only, and the answer is simple. Recall that chains are ideal in
a melt, so that we have to inquire about the response coefficients of Gaussian
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chains. These, however, are known, since response coefficients are propor-
tional to structure factors, and the structure factors of ideal chains are given
by the Debye equation Eq. (2.61). It can be applied separately for the A- and
B-chains, thus yielding αAA

k and αBB
k .

For a calculation of Sc(q) we have to compute the collective response
coefficient α0

k. First we eliminate the induced field ψ̂k. Addition of Eqs. (A.94)
and (A.95) leads to

ψ̂k = − αAA
k

αAA
k + αBB

k

ψk . (A.96)

Insertion of Eq. (A.96) into Eq. (A.94) gives

φk =
αAA

k αBB
k

αAA
k + αBB

k

ψk . (A.97)

Comparison of this equation with Eq. (A.92) yields

1
α0

k

=
1

αAA
k

+
1

αBB
k

(A.98)

We thus obtain an explicit expression for the collective response coefficient
α0

k, in terms of the known single chain response coefficients αAA
k and αBB

k .
With this we have essentially solved our first problem.

Next, we turn to a non-athermal mixture. The difference in the interaction
between like and unlike chains is accounted for in the spirit of the Flory–
Huggins treatment by introduction of the χ parameter. This is achieved by
changing Eq. (A.92) into

φk = α0
k(ψk + χ′φk) (A.99)

with
χ′ =

2χkT
vc

. (A.100)

On the other hand, we shall retain the representation of the single chain re-
sponses by ideal chain response coefficients, assuming that this is still a good
approximation. The idea behind Eq. (A.99) is easy to see, as it corresponds to
a sequence of two steps. If an external potential ψk initiates a concentration
wave, this wave in turn produces a molecular field χ′φk, which for χ′ > 0 fur-
ther reinforces and for χ′ < 0 weakens the external potential. Equation (A.99)
is identical in form with the well-known mean field equation of ferromagnets,
where the Weiss-field λM produced by the magnetization M reinforces the
primary magnetic field H

M = αH(H + λM) (A.101)

(αH is the magnetic susceptibility). Equation (A.99) gives
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φk =
α0

k

1 − χ′α0
k

ψk (A.102)

hence

αk =
φk

ψk
=

α0
k

1 − χ′α0
k

. (A.103)

Taking the reciprocals on both sides yields

1
αk

=
1
α0

k

− χ′ . (A.104)

Equation (A.104) relates the collective response coefficient α0
k of an athermal

polymer mixture to that of a mixture with a non-vanishing χ parameter.
We can now combine Eqs. (A.98), (A.100) and (A.104) to obtain the final

result of the RPA treatment, which has the form

1
αk

=
1

αAA
k

+
1

αBB
k

− 2χkT
vc

. (A.105)

Block copolymers constitute a second system that has been successfully
treated in the RPA framework. We remark at the beginning that we have
only to discuss the athermal situation since the effect of a non-vanishing χ
parameter can then be treated in the same manner as for the polymer mix-
tures. The response equations for a block copolymer melt in the homogeneous
phase can be directly formulated, writing

φk = αAA
k (ψk + ψ̂k) + αAB

k ψ̂k (A.106)

φB
k = −φk = αBA

k (ψk + ψ̂k) + αBB
k ψ̂k . (A.107)

Incompressibility is accounted for in the same way as for polymer mixtures, by
the introduction of the internal field ψ̂k. The new feature in the block copoly-
mer system is the occurrence of the coefficients αAB

k and αBA
k . They describe

cross-responses given by the reaction of the A-chains to a force that acts on
the B-chains and vice-versa. As is obvious, cross-responses are generated by
the chemical coupling of the A- and B-chains. It is exactly this coupling that
sets block copolymers apart from binary mixtures and it changes the response
conditions.

The two coupled equations can be evaluated. First note that the ratio
between ψ and ψ̂k is fixed by the assumed incompressibility

0 = ψk

(
αAA

k + αBA
k

)
+ ψ̂k

(
αAB

k + αBA
k + αAA

k + αBB
k

)
. (A.108)

ψ̂k can be eliminated from Eqs. (A.106) and (A.108). We thus obtain the
collective response coefficient of the A-blocks

α0
k =

φA
k

ψk
=

αAA
k αBB

k − αAB
k αBA

k

αAB
k + αBA

k + αAA
k + αBB

k

. (A.109)
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Equation (A.109) represents the RPA result for athermal block copolymers.
The effect of a non-vanishing χ parameter can be accounted for as above in
Eq. (A.104) by writing

1
αk

=
1
α0

k

− 2χkT
vc

. (A.110)

α0
k is now given by Eq. (A.109).

In order to obtain the full expressions for the scattering functions of poly-
mer mixtures and block copolymers, we have to substitute the collective and
single chain response coefficients by the corresponding scattering laws. Re-
sponse coefficients and scattering functions are related by Eq. (A.91). The
single chain AA- and BB-response coefficients are thus given by the corre-
sponding Debye scattering functions

kT

vc
αAA

k=q = φNASD(RAq) (A.111)

kT

vc
αBB

k=q = (1 − φ)NBSD(RBq) . (A.112)

NA, NB and RA, RB are the degrees of polymerization and the mean squared
end-to-end distances of the two polymers. The factors φ and 1−φ account for
the dilution of the respective chains in the mixture or the block copolymer.

An expression for the cross-response coefficients is still needed. The Debye-
structure functions SD(RAq) and SD(RBq) are the Fourier transforms of the
pair distribution functions gAA(r) and gBB(r) for the A- and B-monomers
within their blocks. Considering this definition, it is clear how the coefficients
for the cross responses αAB

k and αBA
k are to be calculated. They correspond to

the Fourier transforms of the pair distribution functions gAB(r) and gBA(r)
describing the probability of finding a B- or A-monomer at a distance r from
a A- or B-monomer, respectively. Actually, both are identical

gAB(r) = gBA(r) . (A.113)

We do not present the calculation here. It is straightforward and leads to

1
2
[NABSD(R0q) − φNASD(RAq) − (1 − φ)NBSD(RBq)] =

kT

vc
αAB

k=q (A.114)

with
NAB = NA +NB and R2

0 = R2
A +R2

B . (A.115)

Introduction of Eqs. (A.111)–(A.114) into Eqs. (A.98) and (A.109), respec-
tively, together with the use of Eq. (A.104), yields the RPA scattering func-
tions given in Sects. 4.3 and 4.4.2.

For completion, at the end of this section we derive Eq. (A.90),

Sc(q) =
〈|φk=q|2〉

vc
.
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We start from Eq. (A.14),

C(q) =
∫

V
exp(−iqr)(cm(r) − 〈cm〉)d3r ,

which relates the scattering amplitude C(q) to the density distribution cm(r)
of A-monomers. The density fluctuation in polymer mixtures can be described
as a superposition of waves with wave vector k and amplitude ck

cm(r) − 〈cm〉 = V−1/2
∑

k

ck exp(ikr) (A.116)

with

ck=0 = 0 .

If we choose periodic boundary conditions in a box with equal side lengths L,
the sum includes the wave vectors

k =
2π
L

⎛
⎝n1

n2

n3

⎞
⎠ , (A.117)

where the ni’s are integer numbers. The density of the wave vectors in the
k-space is given by

L3/(2π)3 = V/(2π)3 . (A.118)

Since cm(r) is a real function, we have

ck = c∗−k . (A.119)

Scattering intensities are proportional to mean squared scattering amplitudes

〈|C(q)|2〉 =
1
V
∑
k,k′

〈ckc∗k′〉 ·
∫

V

∫

V
exp[−i(q − k)r] exp[i(q − k′)r′]d3rd3r′ .

(A.120)

Waves with different wave vectors, with the exception of pairs k′ = −k, are
statistically independent, i.e.,

〈ckc∗k′〉 = 〈|ck|2〉δk,k′ + 〈c2k〉δk,−k′ . (A.121)

Since c2k includes a random phase, the second term on the right-hand side
vanishes

〈c2k〉 = 0 . (A.122)
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We use the Fourier representation of the δ-function and write∫

V

∫

V
exp[−i(q − k)(r − r′)]d3rd3r′ = V

∫

V
exp(−iqΔr)dΔr

= V(2π)3δ(q − k) . (A.123)

This transforms Eq.(A.120) into

〈|C(q)|2〉 =
∑

k

〈|ck|2〉(2π)3δ(q − k) . (A.124)

Scattering experiments do not detect the individual values of k and q as
described by Eq. (A.117) but integrate over finite ranges Δq3. Therefore,
applying Eq. (A.118), we obtain

〈|C(q)|2〉 = V〈|ck=q|2〉 . (A.125)

Now we introduce the scattering function of the lattice model, defined by
Eq. (4.79):

Sc(q) =
1
Nc

〈|C(q)|2〉
= vc〈|ck=q|2〉 . (A.126)

Replacement of the fluctuations in the monomer density by fluctuations in
the volume fraction occupied by the A-chains, using

δφ = vcδcm , (A.127)

which implies
〈|φk|2〉 = v2

c 〈|ck|2〉 , (A.128)

finally leading to

Sc(q) =
〈|φk=q|2〉

vc
,

which is the relationship to be derived.

A.4.2 Two-Phase Layer Systems

Isotropic samples of a semicrystalline polymer essentially correspond to an en-
semble of densely packed, isotropically distributed stacks of parallel lamellar
crystallites. If the extensions of the stacks parallel and normal to the lamel-
lar surfaces are large compared to the interlamellar distance, the scattering
behavior can be related to the electron density distribution ce(z) measured
along a trajectory normal to the surfaces. This trajectory will pass through
amorphous regions with density ce,a and crystallites with a core density ce,c.
The average density 〈ce〉 lies between these two limits.
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We calculate the scattering cross-section per unit volume by application
of Eq. (A.59) and consider at first an ensemble of equally oriented stacks. If
we choose the orientation of the surface normals parallel to the z-axis, the
electron density distribution depends on z only and we can write

Σ(q) = r2e

∫

x,y,z

exp[−i(qxx+qyy+qzz)](〈ce(z)ce(0)〉−〈ce〉2)dxdydz . (A.129)

Carrying out the integrations for x and y, we obtain

Σ(q) = r2e (2π)2δ(qx)δ(qy)

∞∫

−∞
exp(−iqzz)K(z)dz (A.130)

where K(z) designates the one-dimensional electron density correlation
function

K(z) = 〈(ce(z) − 〈ce〉)(ce(0) − 〈ce〉)〉
= 〈ce(z)ce(0)〉 − 〈ce〉2 . (A.131)

The scattering of an isotropic ensemble of stacks of lamellae, as is found
in melt crystallized samples, follows from Eq. (A.130) by calculation of the
isotropic average, i.e., by distributing the intensity at ±qz equally over the
surface of a sphere with the same radius. The resulting isotropic intensity
distribution, Σ(q), is given by

Σ(q) =
2

4πq2
r2e (2π)2

∞∫

−∞
exp(−iqz)K(z)dz . (A.132)

The reverse Fourier relation is

K(z) =
1

2r2e

1
(2π)3

∞∫

−∞
exp(iqz)4πq2Σ(q)dq

=
1
r2e

1
(2π)3

∞∫

0

cos(qz)4πq2Σ(q)dq . (A.133)

Equation (A.133) enables K(z) to be determined if Σ(q) is known.
K(z) has a characteristic shape, allowing an evaluation that leads directly

to the main parameters of the stack structure. In order to explain the pro-
cedure, we first establish the shape of K(z) for a strictly periodic two-phase
system and then proceed by a considering the modifications introduced by
a stepwise perturbation of the system. Figure A.2 provides an illustration and
sketches all the steps.
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Fig. A.2. Two phase-layer system representative for a semicrystalline poly-
mer. Electron density distribution ce(z) − 〈ce〉 and the associated one-dimensional
correlation function K(z) for a perfectly ordered system (a). Effects of varying inter-
crystalline spacings (b), varying crystallite thicknesses (c) and diffuse interfaces (d)
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The periodic structure shows an electron density distribution ce(z) as in-
dicated on the left of part (a). It can be described by specifying the long
period dac, the crystallite thickness dc and the electron density difference
ce,c − ce,a. The crystallinity φc = dc/dac in this example lies below 50%. We
first calculate a special correlation function, denoted Ka(z), defined as

Ka(z) = 〈(ce(z) − ce,a)(ce(0) − ce,a)〉 . (A.134)

When using Ka, all electron densities refer to the electron density of the
amorphous regions. Since the ensemble average is identical with an average
over all points z′ in a stack, Ka(z) may be obtained by an evaluation of the
integral

Ka(z) =
1
Δ

∫ Δ/2

−Δ/2

[ce(z′) − ce,a][ce(z + z′) − ce,a]dz′ . (A.135)

The integration range Δ has to be sufficiently large. The functions ce(z) and
ce(z+z′) are square distributions, and contributions to the integral arise only
if two crystalline regions overlap. Consequently, Ka(z) is proportional to the
length of the overlap region and given by

Ka(z) =

{
(ce,c − ce,a)2(dc − z)/dac if |z| < dc

0 if dc < |z| < dac − dc

(A.136)

and being periodic by
Ka(z + dac) = Ka(z) . (A.137)

Having determined Ka, one obtains K(z) by

K(z) = Ka(z) − (〈ce〉 − ce,a)2 . (A.138)

The result is shown on the right of part (a). There is a regular sequence
of triangles, centered at z = 0, dac, 2dac, etc., which reflect the correlations
within one crystallite, between next neighbors, second neighbors, etc. The
self-correlation triangle centered at the origin exhibits some characteristic
properties. The value at z = 0, denoted Q, is

K(z = 0) = Q = φc(1 − φc)(ce,c − ce,a)2 . (A.139)

The slope dK/dz is

dK
dz

=
dKa

dz
= −Oac

2
(ce,c − ce,a)2 . (A.140)

Here, Oac denotes the specific internal surface given by the area per unit
volume of the interface separating crystalline and amorphous regions. For the
periodic stack it is related to the long period by
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Oac =
2
dac

. (A.141)

The horizontal baseline between the triangles is located at

K = −B = −(〈ce〉 − ce,a)2 (A.142)
= −φ2

c(ce,c − ce,a)2 . (A.143)

K(z) reaches the base-line at
z1 = dc . (A.144)

It is to be recognized that application of these relations is not restricted to
the ordered periodic system but can be extended, with slight modifications,
to real systems that may show variations in the thicknesses of the crystalline
and amorphous regions, and may also possess diffuse phase boundaries. The
changes in K(z) resulting from a successive perturbation of the initial system
are schematically indicated in Figs. A.2(b)–(d). All structures in this sequence
are understood as having equal crystallinities and equal specific internal sur-
faces.

First, as indicated in part (b), fluctuations in the intercrystalline spacings
are introduced. Since the self-correlation part remains unchanged, the only
consequence is a broadening of the peak attributed to next-neighbor corre-
lations. There is a maximum at the position of the most probable distance
between neighboring crystallites, and it determines the long spacing.

Second, as shown in part (c), we superpose variations in the crystallite
thickness. Since φc and Oac are assumed to be constant, the value of the
correlation function at the origin, Q, the initial slope dK/dz(z = 0) and the
base-line coordinate B are not affected. A modification occurs near the base of
the triangle where K(z) becomes curved. If we extrapolate the straight part
of K(z), it intercepts the base-line at

z1 =
Q+B

dK/dz
=

φc

Oac/2
. (A.145)

The number average of the crystallite thickness, d̄c, is given by

Oac

2
d̄c = φc . (A.146)

Therefore, we have
z1 = d̄c . (A.147)

Finally, in the last step, we associate the crystallite surfaces with transition
zones (part (d)). We do it under the condition that for each crystallite i with
thickness di

c the total number of electrons remains unchanged, i.e.,
∫

[ce(z′) − ce,a]dz′ = (ce,c − ce,a)di
c . (A.148)
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Using this equation reversely, one may attribute to each crystallite with a dif-
fuse surface a corresponding lamella with sharp boundaries and thickness di

c.
If this replacement is carried out for all crystallites, one returns to a two-phase
structure, which we address as the corresponding two-phase system. For
a transition zone with an extension dt there results a change in the shape of the
correlation function around the origin within the range z < dt. If dt is small
compared to the thicknesses of all crystallites, there still remains a linear por-
tion in the center of the right-hand side of the self-correlation triangle. This
allows us to derive directly the parameters of the corresponding two-phase
system. Extrapolation of the linear section to z = 0 gives Q, and a continu-
ation down to the base-line at K = −B yields d̄c. The crystallinity φc, the
specific internal surface Oac and the electron density difference then follow by

φc =
B

B +Q
, (A.149)

Oac =
2φc

d̄c
, (A.150)

(ce,c − ce,a)2 =
Q

φc(1 − φc)
. (A.151)

So far, we have discussed the case φc < 0.5. If we wish to investigate samples
with φc > 0.5, we have to substitute φc against the volume fraction of the
amorphous phase

φa = 1 − φc (A.152)

and d̄c against the number average of the thickness of the amorphous lay-
ers, d̄a. The substitution rule follows from Babinet’s reciprocity theorem,
which declares that an exchange of the densities in a two-phase structure
leaves the scattering function unchanged.

A crucial point of the analysis lies in the knowledge required of the base-
line coordinate B. For samples of low or high crystallinity (φc < 0.3 or
φc > 0.7), the base-line usually shows up. The intermediate region is prob-
lematic, as here the base-line may not be observed. Then X-ray scattering
experiments have to be complemented by other data such as, for example, the
density.

In this discussion of the scattering properties of a polymeric layer system,
we have dealt with a special two-phase system. Some of the properties are
not specific but generally valid for all two-phase systems, independent of their
structure. Here we give three equations of particular importance.

First, we come back to Eq. (A.139). Use of Eq. (A.133) yields

Q = (ce,c − ce,a)2φc(1 − φc) =
1

r2e (2π)3

∞∫

q=0

4πq2Σ(q)dq . (A.153)

Q is often called the invariant, for obvious reasons. The total integral, as
obtained by an integration over all the reciprocal space, only depends on the
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volume fractions of the two phases and the electron density difference, hence,
it is invariant with regard to the detailed structure. Equation (A.153) is not
a specific property of layered systems, but generally valid. The proof is simple.
One has to formulate the Fourier transformation reverse to Eq. (A.59), ex-
pressing the three-dimensional electron density correlation function as a func-
tion of Σ(q)

〈ce(r)ce(0)〉 − 〈ce〉2 =
1

r2e (2π)3

∫
exp(iqr)Σ(q)d3q (A.154)

and consider the limit r → 0

〈c2e〉 − 〈ce〉2 =
1

r2e (2π)3

∫
Σ(q)d3q . (A.155)

Direct calculation shows that for a two-phase system the left-hand sides of
Eqs. (A.153) and (A.155) agree.

Secondly, we consider the asymptotic behavior Σ(q → ∞), looking first
at the layer system. Due to the reciprocity property of Fourier transforms,
Σ(q → ∞) relates to the limiting behavior K(z → 0). Therefore, using
Eqs. (A.132), (A.139) and (A.140) in a series expansion, we can write

Σ(q → ∞) =
1

2πq2
r2e (2π)2 lim

q→∞

∞∫

−∞
cos(qz)

(
Q− Oac

2
(ce,c − ce,a)2z

)
dz .

(A.156)
For the purpose of a derivation of the asymptotic properties, we employ the
following special representation of K valid for small values of z:

Q− Oac

2
(ce,c − ce,a)2z ≈ Q exp

(
−Oac(ce,c − ce,a)2

2Q

)
z . (A.157)

With this, the integral can be evaluated

Σ(q → ∞) =
2πr2e
q2

lim
q→∞

∞∫

−∞
cos(qz)Q exp

(
−Oac(ce,c − ce,a)2z

2Q

)
dz ,

(A.158)
which yields

Σ(q → ∞) =
2πr2e
q4

Oac(ce,c − ce,a)2 , (A.159)

or, in an often used form

Σ(q → ∞) = r2e
P

(q/2π)4
with P =

OacΔc2e
8π3

. (A.160)

Equation (A.160), known as Porod’s law with P as the Porod coefficient
is generally valid for arbitrary two-phase systems. Indeed, an asymptotic law
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Σ(q) ∝ 1/q4 is the characteristic signature of two-phase systems with sharp
boundaries. According to Eq. (A.159), the asymptotic behavior depends only
on the interface area per unit volume, multiplied by the square of the density
difference.

A third interesting parameter, lc, follows from a combination of Q and Oac

in the same manner as appears in Eq. (A.157) in the exponent

lc =
2Q

Oac(ce,c − ce,a)2
=

2φc(1 − φc)
Oac

. (A.161)

lc characterizes the length scale of the two-phase structure. Equation (A.161)
is a generalization of Eq. (A.146), which concerns d̄c and, thus, also a char-
acteristic length. The determination of lc has an advantage. As the electron
density difference is eliminated, there is no need for intensity measurements
in absolute units.
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B

Glossary of Symbols

a0 : effective length per monomer for an ideal chain (Eq. (2.35))
ab : bond length (Eq. (2.33))
aF : effective length per monomer for an expanded chain (Eq. (2.83))
aK : Kuhn length (Eq. (2.31))
am : length per monomer in the crystalline state
apr : segment length of a primitive chain (Eq. (8.120))
aR : size of the Rouse segment
al : element of a freely jointed chain
as : length of segments of a freely jointed chain (Eq. (2.17))
a(t) : general time-dependent modulus (Eq. (6.33))
a(ω) : general dynamic modulus (Eq. (8.19))
aT : WLF reduction factor (Eq. (6.122))
A2 : second virial coefficient (Eq. (2.77))
Ã2 : modified second virial coefficient (Eq. (3.13))
bi : neutron scattering length of atoms i
bR : force constant of springs in the Rouse chain (Eq. (8.25))
B, (Bij) : Finger strain tensor (Eq. (9.81))
B(t, t′) : time-dependent Finger strain tensor (Eq. (9.162))
B : magnetic field strength
ce(r) : number density of electrons
ch(r) : number density of holes
ce,i : number density of electrons in region i
cm(r) : number density of monomers (or other particles)
c∗m : number density of monomers at the overlap limit (Eq. (3.2))
cp : number density of polymers
cs : number density of salt molecules
cw : density by weight of a polymer in solution
c+(r) : number density of kations
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c−(r) : number density of anions
ck : Fourier component of cm(r)
c(ω) : dynamic specific heat
C : heat capacity
C∞ : characteristic ratio (Eq. (2.32))
C(q) : scattering amplitude (Eq. (A.14))
C1, C2 : WLF parameters (Eq. (6.129))
C, (Cij) : Cauchy strain tensor (Eq. (9.40))
Copt : stress-optical coefficient (Eq. (9.194))
d : fractal dimension of a polymer chain
di : thickness of the i-layer
dac : long period of partially crystalline structure
dAB : long period of block copolymers with layer structure
dt : thickness of transition layer
D : self-diffusion coefficient of chains (Eq. (8.131))
D̂ : curvilinear diffusion coefficient of reptating chains
Dcoll : collective diffusion coefficient (Eq. (4.112))
D(t) : time-dependent tensile compliance (Eq. (6.1))
D(ω) : dynamic tensile compliance (Eq. (6.6))
Dhkl : coherence length along the direction hkl

D : dielectric displacement vector
e : elementary charge
ẽ : internal energy per mole of monomers
ep : internal energy of a polymer chain
e : unit vector
E : internal energy of a sample
E, E : electric field strength
E(t) : time-dependent tensile modulus (Eq. (6.3))
E(ω) : dynamic tensile modulus (Eq. (6.7))
Eb : bending modulus of persistent chain (Eq. (2.131))
e, (eij) : linear strain tensor (Eq. (9.46))
E, (Eij) : Eulerian strain tensor (Eq. (9.45))
eH : Hencky strain (Eq. (10.2))
ėH : Hencky strain rate (Eq. (9.150))
f, f : force
f : Helmholtz free energy density
f̃ : Helmholtz free energy per mole of monomers
fp : Helmholtz free energy of a polymer chain
f e
p : electrostatic energy included in a polyion
f ev
p : excluded volume interaction energy in a polymer chain
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f ev
pp : interaction energy between two polymer chains
f s
p : rubber–elastic energy of an expanded chain
F : Helmholtz free energy of a sample
Fi : universal functions (i = Π : Eq. (3.21); i = ξ: Eq. (3.63);

i = R: Eq. (3.69))
g(r) : pair distribution function
gs(r) : pair distribution function of chain segments
ĝ(r) : intramolecular part of the pair distribution function
g(r, t) : time-dependent pair distribution function
ĝ(r, t) : self-correlation part of g(r, t)
G(t) : time-dependent shear modulus
G(ω) : dynamic shear modulus
Gpl : plateau modulus in polymer melts
GI : strain energy release rate (Eq. (10.62))
GIc : critical value of GI at the onset of crack growth (Eq. (10.63))
g : Gibbs free energy density
gA/B : Gibbs free energy density of the phase of A/B-chains
gp : Gibbs free energy of a polymer chain
ga : chemical potential of a monomer in the melt
gc : chemical potential of a monomer in an infinite crystal
Δgij : difference in the chemical potential between phases i and j

(= gj − gi)
G : Gibbs free energy of a sample
ΔGb : activation barrier (Eq. (4.51))
ΔGloc : local part of ΔGmix

ΔGmix : Gibbs free energy of mixing
h(z) : osmotic pressure coefficient (Eq. (3.27))
Δhf : heat of fusion per monomer
Δhij : enthalpy change per monomer in a transition from phase i

to phase j
hp : enthalpy of a polymer chain
ΔHf : heat of fusion
ΔHmix : heat of mixing
H(log τ̂ ) : relaxation time spectrum (Eq. (6.84))
(HOs

ij ) : Oseen tensor (Eq. (8.147))
I : scattering intensity
IB : Bragg reflection intensity
Ii, IIi, IIIi : invariants of tensor i (Eq. (9.53))
Iio : ionic strength (Eq. (3.102))
j : electric current density
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J(t) : time-dependent shear compliance
J(ω) : dynamic shear compliance
J0

e : recoverable shear compliance (Eq. (6.103))
k : Boltzmann constant
k : wave vector
K(z) : one-dimensional electron density correlation function

(Eq. (A.131))
Kor(l) : orientational correlation function (Eq. (2.5))
Ki : contrast factors for light, X-rays and neutrons

(Eqs. (A.51), (A.56) and (A.62))
KI : stress intensity factor (Eq. (10.65))
KIc : critical value of KI at the onset of crack growth (Eq. (10.69))
lc : characteristic length of a non-periodic two-phase system

(Eq. (A.161))
lio : distance of ionic charges along the chain
lps : persistence length (Fig. 2.6)
lct : contour length of a chain
lpr : contour length of primitive path (Eq. (8.120))
L(log τ) : retardation time spectrum (Eq. (6.73))
m(t− t′) : memory function (Eq. (9.229))
M : molar mass of polymer
Mn : number average molar mass
Mw : weight average molar mass
Mc : critical molar mass at the entanglement limit (Eq. (6.96))
Me : average molar mass of the sequences between entanglement

points (Eq. (10.54))
Mm : molar mass of a monomeric unit
M : magnetization
ni : principal indices of refraction
Δn : birefringence coefficient
n : number of monomers in a crystalline stem
ni : number of particles in cell i
ñi : moles of polymer i in a sample
ñc : moles of units (lattice cells) in a binary mixture
Nb : number of backbone bonds in a chain
Ni : degree of polymerization (number of monomers) of polymer i
NR : number of Rouse segments in a chain
NR,c : critical number of Rouse segments at the entanglement limit
Ns : number of segments in a chain
Nsu : number of ideal subunits in an expanded chain
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NL : Avogadro–Loschmidt number
Nc : number of cells in a binary mixture
Nm : number of monomers (or particles) in a sample
Np : number of polymers (colloids) in a sample
op : interface area per junction point
Oij : interface area per unit volume (between phases i, j)
p : pressure
p : distribution function (for R, rij , M etc.)
P : Porod coefficient (Eq. (A.160))
p : dipole moment
P : polarization
q : scattering vector (q = |q| = 4π sinϑB/λ)
Q : heat
Q : gel swelling ratio
Q : SAXS invariant for two phase system (Eq. (A.153))
re : classical electron radius (Eq. (A.53))
rij : vector connecting the junction points i, j in a freely jointed chain
R : end-to-end distance vector of a polymer chain
R : size (〈|R|2〉1/2) of a polymer chain
R0 : size of an ideal chain
RF : size of an expanded chain
Rg : radius of gyration of a polymer or colloid
Rh : hydrodynamic radius (Eq. (8.145))
R̃ : perfect gas constant
S(q) : scattering function (scattering law), referred to one monomer

(Eq. (A.5))
S(q, t) : intermediate scattering law (Eq. (A.28))
Sc(q) : scattering law, referred to one lattice cell (Eq. (4.79))
SD(R0q) : Debye structure function (Eq. (2.61))
Sm

or : orientational order parameter of monomers (Eq. (10.28))
sp(T ) : entropy of a polymer chain
S(T ) : entropy of a sample
Δsf : entropy of fusion per monomer
Δsij : entropy change per monomer in a transition from phase i

to phase j
ΔSmix : entropy of mixing
ΔSt : increase in the translational entropy
Tc : critical temperature (binary mixtures)
T∞

c : temperature controlling the crystal thickness (Eq. (5.18))
Tf : melting temperature
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T∞
f : melting temperature of an infinite crystal
Tg : glass transition temperature
T∞

ij : transition temperature for phases i and j

Tsp : temperature on spinodal
TA : activation temperature (Eq. (6.126))
TV : Vogel temperature (Eq. (6.126))
T, (tij) : statistical weight matrix in RIS model (Eq. (2.147))
u : growth rate of a spherulite
u : velocity of a particle
ũ(ϕ) : rotational potential of a backbone bond (per mol)
v : specific volume
vc : volume of a structure unit in a binary mixture
ve : excluded volume parameter (Eq. (2.78))
vm : volume of a monomer
ṽi : molar volume of species i
V (r) : electrostatic potential
V : sample volume
v(r) : flow field
w : surface parameter in fracture mechanics (Eq. (10.61))
W : work
x̂i, ŷi, ẑi : extension of Rouse segment i (Eq. (8.66))
Xm, Ym, Zm : normal coordinates of Rouse modes m (Eq. (8.46))
x : overlap ratio (Eq. (3.16))
z : number of electrons in a molecule
zeff : effective coordination number (Eq. (4.7))
z : parameter determining f e

p and Nsu (Eqs. (2.90) and (2.118))
Z : partition function
α(t) : time-dependent susceptibility (Eq. (6.29))
α(ω) : dynamic susceptibility (Eq. (6.42))
β : mean monomer polarizability
Δβ : anisotropy of the monomer polarizability
γ : shear strain
γe : recoverable shear strain
γEL : electroluminescence efficiency (Eq. (7.6))
Γ : relaxation rate
δ : phase shift
ε(t) : time-dependent dielectric function (Eq. (6.16))
ε(ω) : complex dielectric function
ε0 : electric constant
εF : Fermi energy
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ζ : friction coefficient of spherical colloid (Eq. (8.143))
ζR : friction coefficient of a Rouse segment (Eq. (8.24))
η : steady state shear viscosity
η0 : zero shear rate viscosity
η̂ : extensional viscosity (Eq. (9.160))
η+(t) : time-dependent shear viscosity (Eq. (9.158))
η̂+(t) : time-dependent extensional viscosity (Eq. (9.159))
ηr : reduced excess viscosity (Eq. (8.161))
ηs : solvent viscosity
[η] : intrinsic viscosity of a dissolved polymer (Eq. (8.160))
ϑB : Bragg scattering angle
θ : orientation angle
κosm : osmotic compressibility (Eq. (A.82))
λ : extension ratio (Eq. (9.1))
Λ(φ) : effective interaction parameter (Eq. (4.57))
μ(t− t′) : primary response function (Eq. (6.27))
μB : Bohr magneton
μ0 : magnetic constant
νel : electric mobility (Eq. (7.5))
νnuc : nucleation rate
ξB : Bjerrum length (Eq. (3.88))
ξD : Debye screening length (Eq. (3.92))
ξs : screening length in semidilute solutions (Fig. 3.8)
ξt : thermic correlation length (Eq. (2.117))
ξφ : correlation length of concentration fluctuations (Eq. (4.101))
Π : osmotic pressure
ρ : mass density
ρa : mass density of amorphous regions
ρc : mass density of crystallites
ρe(r) : charge density distribution
ρn(r) : varying neutron scattering length density
σ : isotropic dilatational stress
σ1, σ2, σ3 : principal stresses
σ, (σij) : stress tensor
σ̂ij : nominal stresses
σel : electric conductivity
σe : excess free energy of monomers at the fold surface
σif : excess free energy per unit area of interface
σij : excess free energy of monomers at the i, j-interface
Σ(q) : scattering cross section per unit volume
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τd : disentangling time
τi : characteristic time of a relaxation process i
τnuc : nucleation time
τR : Rouse time (Eq. (8.42))
ϕi : rotation angle of bond i

φi : fraction of a component i
φl : linear crystallinity (Eq. (5.21))
φk : Fourier component of a concentration fluctuation δφ(r)
χ : Flory–Huggins parameter (Eq. (4.6))
χc : critical value of χ (Eq. (4.35))
χsp : value of χ along the spinodal (Eq. (4.56))
χm : magnetic susceptibility
ψ : general potential
ψev

m : potential of excluded volume forces (Eq. (2.78))
Ψ1 : primary normal stress coefficient (Eq. (9.153))
Ψ1,0 : primary normal stress coefficient at zero shear rate
Ψ2 : secondary normal stress coefficient (Eq. (9.154))
ω : frequency
Ω : rotation matrix
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