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Preface

This book presents a novel Bohr-type rotating particle model which describes how
gravity can cause confinement of highly energetic neutrinos in bound rotational
states and thus, very surprisingly, lead to the formation of hadrons and nuclei. The
approach is deterministic, simple, and easy to follow by those trained as physicists or
chemists, including physical chemists, or chemical engineers, as it follows exactly
the steps of the Bohr treatment of the H atom. The model contains no adjustable
parameters.

Consequently this book is addressed to those natural scientists, physicists,
chemists, or engineers, who once enjoyed reading in their freshman Physics or
Chemistry class about the simple Bohr model description of the H atom, and to those
who once, in their early Physics courses, got excited about the elegance of Einstein’s
special relativity and with its initially surprising and perhaps counterintuitive results,
and also to those who, perhaps as early as high school, were impressed when they
first encountered the de Broglie wavelength expression, i.e., λ = h/p, linking the
particle momentum p with its equivalent wavelength λ via the Planck constant, h,
and thus expressing in a concise manner the dual, corpuscular and ondular (i.e.,
wave), nature of matter.

Via the synthesis of these long established concepts, the book shows how
neutrinos can be trapped by gravity in rotational states which surprisingly have all
the properties of baryons, such as neutrons and protons.

No matter how interesting all this may sound, a physicist might still ask why it
is worthwhile to read a book on a deterministic Bohr-type model which is, exactly,
a century-old approach as this book is written. There are two good reasons: The
first is the excellent agreement of experiment with the model, which contains no
adjustable parameters, shown briefly in Table 1.1 (p. 11). The second reason is that,
as shown, e.g., in Table 6.3 (p. 79) or in Fig. 6.7 (p. 81) or on the cover of this book,
the problem solved here is, similar to the Bohr H atom model, a problem in classical
mechanics, coupled with an extra algebraic equation, the de Broglie wavelength
equation, which ensures conformity with the basis of quantum mechanics. And
when it comes to mechanics, physicists, engineers, and also physical chemists, can
be equally effective.
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viii Preface

Physical chemists and engineers, on the other hand, no matter how impressed
with Bohr’s H atom model, may wonder why it may be worthwhile to read a book
on a variation of this model using gravity as the attractive force, accounting for
special relativity and taking us from the comfortable nm scale down to the f m scale
in the exotic world of high-energy physics with relativistic speeds, fast neutrinos
and perhaps with the key mysterious players of the strong force, quarks, gluons,
and color charge, all of them somehow keeping protons and neutrons together. A
first reason is that, aside from the rather general scientific interest of some of the
questions touched in this book, the physical chemist or engineer may be happy
to realize that his/her modeling may easily be extended to the subatomic world.
A second reason is that in the first five chapters of the book they will find a
very elementary and practically oriented introduction to these topics and to special
relativity, written by two colleagues formally trained as engineers and physical
chemists. These chapters aspire to familiarize them with the terminology and basic
concepts of these areas and to prepare them for the not only very simple but also
central Chapter 6 which presents the Bohr-type rotating neutrino model, leading
surprisingly to the formation of hadrons, i.e., to the formation of ordinary matter.

Similar to the Bohr treatment of the H atom, the model contains two parts,
a classical mechanical part and a second part where the de Broglie wavelength
equation is used to select, among the infinity of solutions obtained in the classical
part, the ones which are consistent with the de Broglie wavelength equation and thus
with the basis of quantum mechanics. The first part of the model accounts for the
corpuscular nature of neutrinos and the second part accounts for the ondular nature
of the same particles.

In the same way that a proton and a rotating electron form an H atom in the Bohr
model, the present model shows how three very fast rotating neutrinos attracted by
gravity can form a baryon, e.g., a neutron.

The only difference from the Bohr treatment of the H atom is that in the
present case, due to the relativistic particle velocities involved, the special relativity
theory has to be used in the classical mechanical derivation part, coupled with the
equivalence principle of inertial and gravitational mass.

A first conclusion emerging from the analysis is that neutrinos are apparently the
basic building blocks of baryons, such as neutrons and protons. A second equally
surprising conclusion is that the strong interaction force has all the features of the
Newtonian gravitational force exerted between two particles when accounting for
their relativistic velocities and for special relativity.

One may righteously ask where the extra mass comes from when three neutrinos
with rest masses of the order of 0.1 eV/c2 or 10−37 kg each form a baryon, such as a
neutron or proton with a mass of the order of 1 GeV/c2 or 10−27 kg. The answer
is simple and easy to understand: It is the very large relativistic kinetic energy
of the rotating neutrinos which constitutes the rest energy, thus the rest mass, of
the rotating bound baryon state. To much more than 99%, the mass of baryons
is the kinetic energy of their constituents, a conclusion reached recently by some
theoretical physicists using much more complex approaches.



Preface ix

Chapter 1 provides an introduction to the main theme of this book and is
addressed to all interested readers. Chapters 2–4 are addressed primarily to those
trained as chemists and engineers, as they provide an introduction to the concepts
of mass (Chapter 2), of the strong force (Chapter 3), and of elementary particles
(Chapter 4). Theoretical physicists may want to jump directly to Chapter 5 which
discusses the equivalence principle, special relativity, Newton’s gravitational law,
and the synthesis of these three cornerstones of Physics to produce an analytical
expression for the gravitational force under relativistic conditions. The relation of
this expression to general relativity is addressed both in this and in a subsequent
chapter.

Chapter 6 presents the classical mechanical relativistic treatment of the two-
neutrino and three-neutrino circular motion problems posed above and determines
those solutions of the classical problem which are consistent with the de Broglie
wavelength expression and thus with the basis of quantum mechanics.

Chapter 7 discusses the properties of the gravitational bound states and compares
with experiment to show that these bound states correspond, surprisingly, to
hadrons. The three-neutrino model describes baryons and the two-neutrino model
produces mesons.

Chapter 8 presents how rest mass is generated from the high kinetic energy of
the rotating neutrinos via the formation of hadrons, while Chapter 9 compares the
three-neutrino model with the main experimental features of the strong force and
with the standard model.

Chapter 10 discusses the usefulness of the deterministic Bohr–Einstein–de
Broglie approach to tackle problems involving both gravitational and electromag-
netic forces from the eV to the GeV range, while Chapter 11 focuses on discussing
some implications of the generalized gravitational Newtonian expression presented
in this book about the nature of dark matter and also possibly of dark energy.
Chapter 12 discusses model computed coupling constants and their good agreement
with the basic expectations of unification theories. It also summarizes the discussion
of the two main questions emerging from the analysis of the simple Bohr-type model
presented in this book: “Is the strong force simply relativistic gravity?” and “Are
relativistic neutrinos really the main building blocks of hadrons?”

We hope that all readers, including physicists who may start directly from
Chapter 5, will then enjoy the comparison with experiment and associated topics
in Chapters 7–12.

Patras, Greece Constantinos G. Vayenas
Stamatios N.-A. Souentie
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Chapter 1
1905–1930: The Golden Age of Physics

1.1 The Three Major Breakthroughs

Between 1905 and 1925 three of the most spectacular breakthroughs in the history
of natural sciences took place: Albert Einstein’s special relativity in 1905 [1], Niels
Bohr’s model of the H atom in 1913 [2] and Louis de Broglie’s expression of the
equivalent wavelength of moving particles in 1924 [3], an expression which formed
eventually the basis of quantum mechanics.

These remarkable theoretical advances involved no unknown parameters and
were confirmed by experiment thousands of times. This was a time of great scientific
euphoria and it was reasonable to expect that several more breakthroughs would
follow.

1.2 Open Problems

A century later one must admit that, despite the enormous experimental progress
and the development of the general relativity theory for gravity and of the field
of quantum mechanics on the basis of the Schrödinger [4, 5] or of the Dirac
equation [6], progress in theoretical Physics and Chemistry has been much slower
than expected, at least in producing the same type of remarkable and unquestionable
theoretical breakthroughs. Thus there is increasing experimental evidence for the
need for “Physics beyond the Standard Model of elementary particles.” Not only
this model contains too large a number, twenty-six, of adjustable parameters, but
also experiment has gradually revealed several problems, e.g. that neutrinos are not
massless [7, 8] and that it is rather doubtful if the Higgs boson really exists [9].
Thus the need to develop “Physics beyond the Standard Model” is becoming of
paramount importance.

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
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2 1 1905–1930: The Golden Age of Physics

Another major problem waiting for its solution is that of force unification,
originally posed by Albert Einstein. Today we know that there are four types of
forces, strong forces, weak forces, electromagnetic forces, and gravitational forces.

For the last two we have long established laws due to Coulomb and Newton
which describe the magnitude of the electrostatic or gravitational forces:

FC =
q1q2

εr2 , (1.1)

FG = −Gm1m2

r2 . (1.2)

The latter is believed to fail under highly relativistic conditions which is the
domain of the general relativistic theory of gravitation.

Much less is unfortunately known about the strong force and it looks as if the
Standard Model and quantum chromodynamics (QCD) are quite far from providing
a simple expression, such as those of Eqs. (1.1) and (1.2), to describe its magnitude.
We know, however, that the strong force is very significant only at short distances
(< f m) and that in this range it increases with distance, a behavior known as color
confinement. At even shorter distances it becomes quite weak, a behavior known as
asymptotic freedom.

It is believed that the strong force is mediated by gluons in the same way that
electromagnetic forces are mediated by virtual photons and gravitational forces are
mediated by gravitons. About the latter we know very little.

The gravitational force is much weaker than the strong force or the electrostatic
force. The three types of force are believed to become comparable in magnitude
at distances of the order of the Planck length, rPl = (h̄G/c3)3/2 ≈ 1.6 · 10−35 m or
energies of the order of the Planck mass mPl = (h̄c/G)1/2 ≈ 1.2 ·1019 GeV/c2.

Equally important with the problem of force unification is that of reconciling and
perhaps synthesizing General Relativity with Quantum mechanics (Fig. 1.1).

The quest for this synthesis started in the fifties with the work of Wheeler who
introduced the concept of geons, i.e. of gravitational or electromagnetic waves held
together gravitationally. Geons are classical entities based on general relativity and
small geons have been explored as classical models for elementary particles [10].
Today the quest for the synthesis of general relativity and quantum mechanics is
known widely as Quantum Gravity [11] (Fig. 1.1).

Special Relativity was historically one of the foundations of General Relativity,
the gravitational theory developed by Albert Einstein [12, 13]. Special relativistic
mechanics have provided all the necessary generalizations and corrections of
Newtonian mechanics at particle velocities near the speed of light.

On the other hand, Quantum Mechanics started historically from the de Broglie
wavelength expression

λ = h/p = h/γmv, (1.3)

which connects, via the Planck constant h, the corpuscular properties of particles,
i.e. momentum, p, mass, m, velocity, v, and Lorentz factor, γ(= (1−v2/c2)−1/2,
with their ondular (wave) aspects. Today this extremely important equation is
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Fig. 1.1 Synthesis of Newtonian mechanics or special relativistic mechanics with the de Broglie
wavelength expression; sought synthesis of general relativity and quantum mechanics; the area
marked with a questionmark is the topic of this book

Fig. 1.2 Sought synthesis of
general relativity with
quantum mechanics;
synthesis of Newtonian and
relativistic mechanics with
the de Broglie wavelength
expression

sometimes termed “old quantum mechanics” and can be hardly considered to be
part of modern quantum mechanics since neither velocity nor momentum play a
role within the formalism of the Schrödinger or of the Dirac equation (Fig. 1.1).

While the synthesis of classical mechanics with the de Broglie wavelength
equation has been quite fruitful in producing, already back in 1913, the Bohr model
of the H atom, there has been so far no similar synthesis of the de Broglie wavelength
equation with special relativistic mechanics (Fig. 1.1).

Thus while quantum gravity seeks for the synthesis of general relativity and
quantum mechanics (Figs. 1.1 and 1.2), it may be also worth examining the synthesis
of special relativistic mechanics with the de Broglie wavelength expression. This is
the area marked with a questionmark in Figs. 1.1 and 1.2.
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Fig. 1.3 Overlap areas of
Newtonian and relativistic
mechanics with the de
Broglie wavelength
expression

This is better illustrated in Fig. 1.3 which underlines that Newtonian mechanics
is a subset of special relativistic mechanics corresponding to the limit γ ∼ 1, v�c
and that the Bohr model of the H atom is a product of the synthesis of Newtonian
mechanics and the de Broglie wavelength expression. This model has been a real
triumph of science a century ago. But what can we say about the hitherto unexplored
region labeled with a questionmark in Fig. 1.3? Can the Bohr model approach be
useful in studying bound states involving light particles with relativistic velocities?

1.3 A Common Starting Point for Natural Scientists:
The Bohr Model for the H Atom

The Bohr model of the H atom, developed by the great Danish physicist in 1913,
was an important scientific milestone of the early twentieth century and is a model
which both physicists and chemists consider to be “their own,” i.e. to lie within their
own scientific domain.

In the Bohr model the electron is modeled as a negatively charged particle
rotating around the proton in a circular orbit [3].

Since the proton mass is a factor of 1836 larger than the electron mass, one can
use with a very good approximation the electron mass, me, in the equation of motion:

F = me
v2

R
. (1.4)
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The centripetal force, F , is the electrostatic attraction between the proton and the
electron, which according to Coulomb’s law is given by:

F =
e2

εR2 , (1.5)

where ε = 4πεrεo. From (1.4) and (1.5) one obtains:

R =
e2

εmev2 . (1.6)

Since both R and v are unknown, a second equation is needed in order to solve
the problem. Based on the spectral data of Lyman, Balmer, and Paschen and on his
great intuition, Niels Bohr obtained a second equation by assuming quantization of
the electron angular momentum, L, in the form:

L = mevR = nh̄, (1.7)

where n is an integer and h̄ is the reduced Planck constant (h̄ = h/2π where h =
6.626 · 10−34 Js). The same result is, of course, obtained by assuming quantization
of the action, (mev2Δt), where Δt is the period.

This was done in 1913, some 10 years before de Broglie proposed his famous
wavelength equation:

λ̄ =
h̄
p
=

h̄
mv

, (1.8)

where p is the momentum.
Thus if one assumes that:

R = nλ̄ =
nh̄

mev
, (1.9)

i.e. that the radius of rotation of the electron is an integer multiple of the electron de
Broglie wavelength, then Eqs. (1.7) and (1.8) are identical.

Consequently the, initially criticited, angular momentum or action quantization
condition of Bohr [Eq. (1.7)] is equivalent to assuming that the radius of rotation of
the electron equals, for n = 1, its reduced de Broglie wavelength λ̄ (= λ/2π).

Combining Eqs. (1.6) and (1.9) one obtains the well-known results:

v=
e2

nε h̄
(1.10)

and therefore
v

c
=

e2

nεch̄
=

α
n
, (1.11)
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where α(= e2/εch̄ = 1/137.035) is the famous fine structure constant, and the
rotational radius, R, is given by:

R =
n2h̄

mecα
= n2αo, (1.12)

which corresponds for n = 1 to the Bohr radius (αo = 0.5292 ·10−10m).
Thus from (1.11) the electron kinetic energy, T , is computed from:

T =
1
2

mev
2 =

1
2

mec2 α2

n2 , (1.13)

and the potential energy, V , is computed from:

V =− e2

εR
=−αce2me

n2ε h̄
=−α2mec2

n2 . (1.14)

Consequently the total kinetic plus potential energy, H, of the electron, i.e. the
Hamiltonian of the electron, is given by:

H= T +V=−1
2

α2mec2

n2 =−13.6
n2 eV, (1.15)

which, in view of the definition of α , can also be written as:

H=− 1
2n2 ·

mee4

ε2h̄2 =
−13.6eV

n2 . (1.16)

Equations (1.15) or (1.16) provided an excellent quantitative description of all
the spectral data obtained previously by Lyman et al.

Similar was the success of the quantum mechanical treatment of the H atom via
the Schrödinger equation some 20 years later which led to the same basic result
[Eq. (1.16)] [4, 5, 14].

For some years both the Bohr treatment, enriched by Sommerfeld to include
elliptical orbits [15], and the Schrödinger treatment were considered as viable
alternative descriptions of the same physical reality. However gradually the Bohr–
Sommerfeld treatment was abandoned in favor of the Schrödinger treatment and
its wavefunctional description of the probability Ψ ∗Ψ of finding the electron at
some position in space. What we frequently tend to forget is that the deterministic
Bohr–Sommerfeld treatment, which is based on the de Broglie wavelength equation
and thus on the historical basis of quantum mechanics, provides as successful a
mathematical description of the H atom as the quantum mechanical treatment based
on the solution of the Schrödinger equation.

Figure 1.4 provides a graphical solution to the Bohr model, i.e. of Eqs. (1.6)
and (1.9). The graph shows the curve corresponding to the classical mechanical
problem and the curve obtained from the de Broglie wavelength expression (1.9)
or, historically, from the Bohr quantization condition [Eq. (1.7)]. The usefulness of
Fig. 1.4 will become apparent in Chap. 10 and its figures.
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Fig. 1.4 Bohr H atom model: Graphical solution of Eqs. (1.6) and (1.9). The curve labeled
“Newtonian mechanics” is Eq. (1.6) rewritten in the form v2/c2 = e2/εmec2R. The curve labeled
“de Broglie equation” is Eq. (1.9) for n = 1 rewritten in the form v2/c2 = h̄2/m2

ec2R2; α is
the fine structure constant (e2/εch̄ = 1/137.035); and the kinetic energy, T , is computed from
T = (1/2)mev2

One aspect of Fig. 1.4 and of the Bohr model in general which is worth
remembering is that the solution is obtained by giving equal importance both to
the corpuscular and to the ondular nature of the electron.

1.4 Deterministic and Probabilistic Models

Was the amazing success of Bohr’s model, integrated with de Broglie’s equation,
a numerical coincidence, a fortuitous curiosity? After the views of Max Born on
the probabilistic interpretation of the wavefunction were introduced and gradually
accepted [16], the vast majority of physicists and chemists are taught that the success
of Bohr’s classical model was a good coincidence.

We came to believe that quantum mechanics, as described by the Schrödinger
equation, governs everything in our micro-cosmos, to the point that particle
velocities and trajectories are very seldom discussed anymore in modern physics and
all we hope to get as a glimpse of the reality is some wavefunction and concomitant
probability Ψ∗Ψ obtained by solving the Schrödinger or Dirac equation via a series
of elaborate numerical approximations. We came to believe that only probabilities
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of finding a particle somewhere can be computed and that deterministic treatments,
even whenever highly successful as is the case of the Bohr–Sommerfeld model, do
not provide a correct description of the reality. But in abandoning particle velocities
we have lost our only chance for utilizing the equations of special relativity in
a direct and forceful way. Albert Einstein was very excited with the de Broglie
wavelength expression: “Now I can see some light at the end of the tunnel” he had
exclaimed right after reading the PhD Thesis of Louis de Broglie. He was, however,
highly skeptical about the Schrödinger equation and its probabilistic interpretation
by Born. “God does not play with dice” he had stated bluntly.

In recent years the potential usefulness of deterministic models to gain some
insight beneath quantum mechanics has been emphasized by Nobel laureate G. t’
Hooft among others [17–20].

Even if Bohr’s success were a coincidence, and one can show mathematically
by comparing with the Schrödinger equation that it was not, it is fair to ask if
other physical problems exist, besides the H atom problem, where this classical
mechanical approach coupled at the end with the de Broglie wavelength equation
can provide a satisfactory mathematical description of the physical reality.

This is one of the central questions tackled in this book. Can this Bohr–de
Broglie-type approach, coupling a deterministic classical mechanical treatment
with the de Broglie wavelength equation, which can be viewed in essence as
an alternative expression of Heisenberg’s uncertainty principle, be also effective
in the subatomic world, the world of light particles and generation of hadrons,
thus generation of mass, i.e. the world of hadronization, via the condensation of
quark-gluon plasma?

It is thus the purpose of this book to explore the region marked with a
questionmark in Figs. 1.1, 1.2, and 1.3 and to show that the strong forces holding
together hadrons, mesons, and nuclei are relativistic gravitational forces. The ap-
proach is, as we shall see, quite straightforward and very similar to the deterministic
Bohr approach to the H atom.

In order to explore this idea one may consider a model involving two or three
relativistic (v ≈ c) rotating particles in order to simulate quarks and antiquarks
in hadrons and mesons. In following this approach two, at first insurmountable,
difficulties have to be faced: The treatment of the strong force and the treatment of
the relativistic effects.

1.5 Newton’s Gravitational Law, Special Relativity,
and the Equivalence Principle

It is rather straightforward to show, and it is proven in Chaps. 2, 5, and 6 that,
according to special relativity [21,22] and the equivalence principle, if two particles
of rest mass mo each, move with a high velocity v relative to a laboratory observer,
their inertial and thus gravitational mass equals γ3mo and thus, according to
Newton’s universal gravitational law, the gravitational force between them goes as:
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−FG =
Gm2

oγ6

r2 , (1.17)

where γ(= (1− v2/c2)−1/2) is the Lorentz factor. This equation can be derived
rigorously from the synthesis of special relativity, the equivalence principle and
Newton’s gravitational law. Consequently one cannot ignore Eq. (1.17) in treating
fast particles such as neutrinos, unless one is willing to abandon special relativity
or, perhaps more reasonably, abandon Newton’s gravitational law in the ultra-
relativistic (high Lorentz factor γ) regime. The latter might be a legitimate view,
but as shown in this book, if one sticks to Newton’s law and thus to Eq. (1.17) then
a whole new world opens: Since γ is unbound as v approaches c, then it follows
that the gravitational attraction is also unbound and can thus in principle exceed
in magnitude any other force, Coulombic or strong, as the velocity v of the two
particles approaches c.

This implies that gravity can in principle confine any fast moving particle in
bound states. It may confine protons and neutrons to form nuclei and perhaps also
gluons and quarks and, why not, even fast neutrinos, to form protons, neutrons, and
other hadrons. This is the problem treated in this book.

That gravity can become as strong as the strong interaction force is at first
a very counterintuitive idea. The gravitational attraction between two protons at
rest is 36 orders of magnitude smaller than their Coulombic repulsion. And if one
were to examine the hypothetical case of two similarly charged neutrinos, then the
gravitational force between them at rest is 58 orders of magnitude smaller than their
Coulombic repulsion. Yet all this is computed from Eq. (1.17) and Coulomb’s law
for γ = 1. When the particle velocity, v, approaches c, the Lorentz factor γ becomes
unbound and thus the ratio between the gravitational and Coulombic force, i.e.

FG

FC
=

εGm2
oγ6

e2 , (1.18)

where ε = 4πεo, can in principle reach and even exceed unity.

1.6 Relativistic Rotating Particle Models for Hadrons

One is thus compelled to think that it may be worthwhile to formulate a Bohr-type
model for the gravitational confinement of two or three light rotating particles of
rest mass mo into a bound rotational state corresponding to a hadron such as a
baryon (Fig. 1.5).

The rest mass of the bound state, mB, equals 2γmo or 3γmo, respectively, for the
two- or for the three-rotating particle model and thus if γ is sufficiently large, i.e.
v ≈ c, this model provides a simple hadronization mechanism, i.e. a mechanism
for generation of rest mass 2γmo or 3γmo starting from an initial rest mass of 2mo

or 3mo.
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Fig. 1.5 A simple mass generation baryosynthesis mechanism. The mass increases from 3mo for
the three unbound particles to 3γmo when the bound rotational state is formed

In exact analogy with the Bohr model of the H atom, there are two unknowns
in the model of Fig. 1.5: The radius R and the velocity, v, or equivalently the
Lorentz factor γ . There are also two equations: One is obtained via Newton’s second
Law and special relativity by accounting for the corpuscular nature of the rotating
particles. The second equation is obtained via the de Broglie wavelength equation
and accounts for the ondular (wave) nature of the rotating particles. By solving,
in fact analytically, these two equations for the two unknowns one is faced with a
truly exciting double surprise! First the radius R, is in the f m range. Second the
velocity, v, is so near to c that the Lorentz factor, γ , is 7.163 · 109. Thus when mo

is chosen to equal the mass of neutrinos, i.e. ∼0.04eV/c2, then the mass, 3γmo,
of the bound rotational state is found to equal 885 MeV/c2, which lies within
8% from the neutron mass of 939.565 MeV/c2! Exact agreement with the neutron
mass is obtained for mo = 0.043723eV/c2, which practically coincides with the
currently computed maximum neutrino mass [7, 8]. This is a truly exciting result.
Three neutrinos with total rest mass of 0.131 ·10−2 eV/c2 form a baryon with a rest
mass a factor of 7.163 · 109 times larger, i.e. 939.565 MeV/c2, the rest mass of a
neutron. And this baryosynthesis surprise (Chap. 6) comes without any adjustable
parameter!

There is a lot of additional experimental evidence in support of a rotating particle
model. For example the model predicts that the masses of the light baryons should
follow a (2n− 1)1/6 law, which is reminiscent of the −n−2 law of the energy levels
of the H atom. Indeed the masses of the light baryons are found to satisfy this
equation within 3%, as discussed in Chap. 6.

Strong additional experimental evidence supporting the rotating neutrino model
comes from magnetic moment data. Thus the magnetic moments, μp and μn, of
protons and neutrons, respectively, are given by:
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Table 1.1 Properties of the gravitationally confined neutrino states (computed with a neutrino rest

mass of 0.043723eV/c2) [7, 8]

Property Model predicted value Experimental value

Neutron rest mass 939.565 MeV/c2 939.565 MeV/c2

Proton rest mass 938.245 MeV/c2 938.272 MeV/c2

Baryon binding energy 208 MeV 160±10 MeV QCD transition energy
217±25 MeV QCD scale

Radius of ground state 0.630 fm ∼0.7 fm
Minimum lifetime 6.6×10−24 s 5.6×10−24 s
Proton magnetic moment 15.14·10−27 J/T 14.10·10−27 J/T
Neutron magnetic moment −10.09·10−27 J/T −9.66·10−27 J/T
Gravitational mass, γ3mo 1.607·1019 GeV/c2 1.221·1019 GeV/c2 (Planck mass)
Angular momentum 1.13 h̄ ∼ h̄

μp = 14.10 ·10−27 J/T = 2.79 μN, (1.19)

μn =−10.09 ·10−27 J/T =−1.913 μN, (1.20)

where μN(= 5.05 · 10−27 J/T) is the nuclear magneton. Recalling the definition of
magnetic moment, i.e.

μ = (1/2)qRv, (1.21)

where q is the rotating charge, R is the rotational radius and v is the velocity, and
taking as an example q = (2/3)e, the charge of a u quark, R = 1 fm, which is
considered to correspond to the size of a proton, and v ≈ c one computes from
Eq. (1.21) that:

μ = 16.02 ·10−27 J/T = 3.17 μN, (1.22)

which is surprisingly close to the value of μp (2.79 μN). This shows that there
must exist one or more charged particles (such as partons or quarks) rotating in
protons and neutrons with a rotational speed close to c. How electrical charge can
be introduced in these rotating neutrino states is discussed in Chaps. 7 and 10.

The very good, semiquantitative, agreement between the rotating neutrino model
and experiment is shown in Table 1.1. The agreement is quite impressive since the
model contains no adjustable parameters.

As shown in Table 1.1 and analyzed in Chaps. 7 and 10, it is not only the masses
of light baryons and their magnetic moments which are described by the rotating
neutrino model with great accuracy, but also the radii, spins, angular momenta, and
reduced Compton wavelengths [23].

Could all this be a great coincidence? A close look at Table 1.1, which compares
the model predictions with experiment, leaves little room for any reasonable doubt.
The agreement is semiquantitative. Furthermore the model, as will be shown in
Chaps. 6 and 7, also predicts both confinement and asymptotic freedom which are
the two key characteristics of the strong force.
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None of numerous physicists we discussed our findings with, some very
prominent ones, could find any mathematical or logical error. Some were ready
to abandon Newton’s gravitational law in the highly relativistic region and thus
Eq. (1.17). But how can we know that Newton’s law really fails in this region when
using the proper value of the inertial and gravitational mass (γ3mo) instead of the
inertial mass mo? Some others said that Eq. (1.17) may be theoretically correct but is
not in agreement with experimental data coming from distant galaxies. But couldn’t
it simply be that our consistent underestimation of the gravitational force at these
distant galaxies by using Eq. (1.17) with γ = 1 for stars and galaxies receding from
us with relativistic velocities, is what caused us to postulate the existence of the
dark matter?

Equation (1.17) is based entirely on Newton’s gravitational law, special relativity
and the well-proven equivalence principle of Einstein and Eötvös. If we are not
willing to abandon any of these well-tested and proven concepts, then this equation
is valid and everything falls into place. The formation of hadrons and nuclei from
neutrinos can be rationalized immediately and described with great accuracy, color
confinement and asymptotic freedom can be explained directly and practically
all the experimental facts regarding the strong force can be readily rationalized
(Table 1.1) as shown in Chaps. 6 and 7.

1.7 Synopsis

The Bohr model for the H atom is deterministic and gives equal weight to the
corpuscular and to the ondular (wave) nature of the electron. The combination
of classical mechanics coupled with the Coulomb equation on the one hand and
of the de Broglie wavelength equation on the other, provides excellent agreement
with experiment. No similar deterministic model has been developed yet, coupling
classical mechanics, also accounting for special relativity and for the equivalence
principle, gravitational attraction as the confining force and the de Broglie wave-
length expression. Such a model involving three rotating neutrinos is presented in
this book. The ground bound rotational state is found, as shown in this book, to
have all the properties of the neutron. There is no new theory and no adjustable
parameters.
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Chapter 2
Mass, Special Relativity and the Equivalence
Principle

2.1 The Concept of Mass

With the exception of energy there is no other concept or natural quantity more
important than mass in the natural sciences and yet its definition still poses some
interesting questions.

There are two ways to define mass and they lead to the definition of the
gravitational mass and of inertial mass.

The gravitational mass of a body, mg, is responsible for the gravitational force.
Upon considering the gravitational force, F, between the body under consideration
with mass mg and a second body, e.g. the earth, of mass Mg one can write according
to Newton’s universal gravitational law:

F = G
mgMg

r3 r (2.1)

or more commonly:

F = G
mgMg

r2 . (2.2)

The inertial mass of a body, mi, is defined from Newton’s second law of motion,
i.e. from:

F =
dp
dt

= mia = mi
dv
dt

(2.3)

and provides a measure of the resistance that a body offers to changes in its state
of motion. According to Newton, inertia is an inherent property of matter and thus
the inertial mass of a body, mi, does not depend on other bodies or events in the
Universe.
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2.2 The Equivalence Principle

According to the equivalence principle the two mass quantities defined above in
Eqs. (2.2) and (2.3) are equal, i.e.

mg = mi. (2.4)

To be more precise this is the weak equivalence principle, first formulated by
Isaac Newton and whose validity has been confirmed thousands of times, starting
from the observations of Philoponus (sixth century AD) about the time of fall of
falling balls, continuing with the similar observations of Simon Stevin and Galileo
in the sixteenth century and with the more recent and sophisticated ones by Eötvös
(1876) using the torsion balance. The more modern torsion balance measurements
have established the validity of the weak equivalence principle, i.e. mi = mg, to at
least 1 part in 1012 [1–4].

How do the equal falling time observations lead to the equivalence principle
equation (2.4)? The answer goes as follows: From Eqs. (2.2) and (2.3), one
obtains that:

mg

mi
=

r2

GMg
α. (2.5)

Upon considering another body with inertial mass m′i and gravitational mass m′g
interacting with the same second body, e.g. the earth, of gravitational mass Mg, at
the same initial distance r it follows that:

m′g
m′i

=
r2

GMg
α ′. (2.6)

Since, for the same initial distance r, the falling time, Δ t, is a monotonously
decreasing function of the initial acceleration, α , it follows that the equality Δ t =Δ t ′
leads to α =α ′. Thus from (2.5) and (2.6) it follows that the ratio mg/mi is the same
constant for all bodies.

That this constant equals unity follows e.g. by considering the equation for the
terminal velocity of a free falling body v= (2mggh/mi)

1/2 obtained by equating the
terminal kinetic energy (1/2)miv

2 with the initial potential energy mggh. The fact
that the experimentally observed value of v is given by v = (2gh)1/2 shows that
indeed the constant mg/mi ratio equals unity.

A more detailed discussion of the equivalence principle and its two other
and stronger formulations, i.e. the Einstein equivalence principle and the strong
equivalence principle is given in Chap. 5. However, it is the weak equivalence
principle, the validity of which has been thoroughly confirmed experimentally
thousands of times, which suffices for the purposes of the present book.
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2.3 Rest, Relativistic, Inertial, and Gravitational Mass
in Special Relativity: Some Questions

The above definitions of the gravitational and inertial mass had been formulated
by Newton long before Einstein developed the theory of special relativity, a theory
which has by now also been confirmed thousands of times.

The question thus arises about what happens with these definitions, as well as
with the weak equivalence principle, when the velocities of the bodies involved are
relativistic, i.e. their velocities with respect to a laboratory observer in some frame
of reference S approach the speed of light c.

In relativistic mechanics equation (2.3) takes the more general form [5]:

F =
dp
dt

= γmo
dv
dt

+ γ3mo
1
c2

(
v · dv

dt

)
v, (2.7)

where mo is the rest mass. For colinear F and v one obtains:

F =

[
γ + γ3v

2

c2

]
mo

dv
dt

=
[
γ + γ3(γ2− 1)/γ2]mo

dv
dt

= γ3mo
dv
dt

(2.8)

and thus the inertial mass, mi, which is the ratio of F and dv
dt , equals γ3mo.

This is very important to consider, since while in Newtonian mechanics we have
to deal with only one particle mass, m, equal to mi and to mg, here in the relativistic
mechanics we have to deal with three different masses (Table 2.1), i.e. the rest mass
mo, the relativistic mass γmo (corresponding to the total particle energy E = γmoc2)
and the inertial mass, mi, which at least for linear particle motion equals γ3mo [5,6],
as already shown.

Thus while for Newtonian mechanics (γ ≈ 1) the differences between these
three masses are negligible, the situation changes dramatically when considering
relativistic (v≈ c) velocities where γ can take very large values.

Assuming that the equivalence principle (mg = mi) remains valid under
relativistic conditions, and this is something which has never been challenged in the
context of any gravitational theory, including general relativity [7–10], it follows
that it is the inertial mass, mi(= γ3mo), and not the rest mass mo or the relativistic
mass γmo which has to be used in Newton’s gravitational law.

Based on the theory of general relativity, which is a gravitational theory (the
most successful and well-known one, but not the only one [11, 12]) one can obtain
Newton’s gravitational law at the limit of low particle energies, so many people

Table 2.1 Masses of a
particle

mo Rest mass
γmo Relativistic mass

γ3mo
Inertial mass
Gravitational mass
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believe that Newton’s universal gravitational law does not remain valid in the highly
relativistic regime. This, however, has not been proven experimentally using γ3mo

rather than mo in Newton’s universal gravitational law.

2.4 Newton’s Gravitational Law, Velocity and General
Relativity

Gravity or gravitation is one of the four fundamental interactions of nature, together
with electromagnetism, the nuclear strong force and the nuclear weak force.

In the gravitational phenomenon physical bodies attract each other with a
force proportional to their mass. Isaak Newton formulated in Principia his law of
universal gravitation [Eq. (2.2)] and noted in his own words that “the forces which
keep the planets in their orbits must be reciprocally as the squares of their distances
from the centers about which they resolve.”

For more than two centuries Newton’s universal gravitation law was extremely
successful in explaining all gravitational phenomena and even predicting the
existence of Neptune on the basis of the orbit of Uranus.

However by the end of the nineteenth century some observations on the
perihelion behavior of the orbit of mercury were made which could not be accounted
for exactly by Newton’s gravitational law, at least when assuming a perfectly
uniform distribution in the sun mass. These observations were described with great
accuracy by Albert Einstein’s theory of general relativity published in 1915.

Today modern physics describes gravitation almost exclusively in terms of
the general relativity theory according to which gravitation is a consequence
of the curvature of spacetime resulting from the presence of matter. According to
the general relativity theory this matter-induced curvature of spacetime governs
the motion of inertial objects.

Einstein developed the field equations of general relativity which relate the
presence of matter with the curvature of spacetime. The Einstein field equations
are commonly written in the tensor equation form:

Gik = (8πG/c4)Tik, (2.9)

which relates the Einstein tensor Gik with the stress-momentum-energy tensor
Tik [8, 9].

This equation looks simple but in reality represents a set of ten simultaneous
and nonlinear differential equations. The solutions of these Einstein field equation
are the components of the metric tensor of spacetime which describes the geometry
of spacetime. From the metric tensor one can calculate the geodesic paths, which
are the, locally straight, paths followed by free-falling objects in curved space-
time [8, 9, 13].
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Thus in general relativity gravitation is ascribed to spacetime curvature (a flat
spacetime is a Minkowski spacetime) and not to a force, which is the case in
Newtonian physics. General relativity uses the equivalence principle to equate
free fall with inertial motion and describes free-falling inertial objects as being
accelerated relative to a noninertial observer standing on the ground. In Newtonian
physics, however, no such accelerated motion can take place in absence of a force
acting on an object. It may be interesting to note that, although general relativity
does not use forces to describe motions, the inverse of the key parameter 8πG/c4

which appears in the field equations (2.9) has units of force.
Thus one naive way to look at Eq. (2.9) in one dimension is that it describes

the manner in which a Newtonian force of magnitude c4/8πG causes a spacetime
distortion proportional to the local value of Gik in presence of matter with local
energy content Tik.

Since the first experimental tests of general relativity [14], this area of research
has remained quite active [15–18]. Cases where the predictions of special and
general relativity differ have also been discussed [19].

As already noted, the 10 simultaneous nonlinear differential equations resulting
from the Einstein field equation (2.9) are very difficult to solve and analytical
solutions have been obtained only in special cases such as:

• The Schwarzschild solution which describes spacetime around a spherically
symmetric nonrotating uncharged massive body of mass M. For distances shorter
than the Schwarzschild radius, rS(= 2GM/c2), the solution describes a black
hole. For radial distances from the center which are much longer than the event
horizon, i.e. the Schwarzschild radius, rS, of the black hole, the Schwarzschild
solution practically coincides with the behavior predicted by Newton’s universal
gravitational law.

• The Kerr solution of rotating spherically symmetric uncharged massive bodies.
This solution produces black holes with multiple event horizons.

• The Reissner–Nordström solution in which the central nonrotating massive body
carries an electrical charge. This solution also describes black holes with two
event horizons.

• The Kerr–Newman solution for charged rotating massive bodies which also
predicts black holes with multiple event horizons.

Thus in the context of general relativity, significant deviations from Newton’s
gravitational law are expected under highly relativistic conditions resulting from the
curvature of spacetime. If the curvature is small and the actual spacetime geometry
may be approximated by a small perturbation of the flat Minkowski spacetime,
then one may linearize the Einstein field equations (2.9) and obtain Newton’s
gravitational law as a limiting case, as also described in Chap. 5. In summarizing
this section it should be stated that most nonrelativistic gravitational calculations
are still made with Newton’s gravitational law which is much simpler to use than
general relativity.
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It is also fair to say that experimental deviations from Newton’s gravitational law,
whose validity has been confirmed to distances as short as a few mm [3], are very
small and rare and their existence needs closer examination if one uses the proper
definition, γ3mo, of inertial mass which accounts for the particle velocity.

2.5 Quantum Gravity

Quantum gravity is the field of theoretical physics which attempts to unify quantum
mechanics with general relativity [20–22]. Such a unification appears to be quite
difficult since it was realized from the beginning of the development of the general
relativity theory and of quantum mechanics in the form of the Schrödinger equation
that the two theories are not compatible with each other. After all, general relativity
is a deterministic theory describing the trajectories (geodesics) of individual objects
in spacetime while quantum mechanics in the form of the Schrödinger equation is a
probabilistic theory which abandons the concept of particle trajectory and velocity
and instead computes probabilities of finding a given particle in a given position
in space.

This is the reason that even the combination of quantum mechanics in the form
of the Schrödinger equation with special relativity is highly problematic. In special
relativity the velocity, v of a particle relative to an observer in a frame of reference,
e.g. in the frame of a laboratory observer, plays a key role in describing all its
properties including its inertial mass and thus gravitational mass. However the
concept of particle velocity is out of use in quantum mechanics, as described by
the Schrödinger equation.

Thus quantum gravity (QG) attempts to develop a theory which reduces to
ordinary quantum mechanics in the limit of weak gravity, i.e. when the gravitational
potential, Φ , (= GM/r), is much smaller than the ratio, c2, of relativistic energy and
rest mass, i.e. when

Φ = GM/r� c2 (2.10)

or equivalently:

r� GM
c2 = rS/2, (2.11)

where rS is the Schwarzschild radius of “event horizon” of a black hole with mass M.
The same theory has to reduce to general relativity, or at least to special relativity, in
the limit of large actions, i.e. actions much larger than the reduced Planck constant
h̄, i.e. when:

GM2 > h̄c; M > (h̄c/G)1/2 (2.12)

or equivalently when:
h̄c

Mc2 < rS/2; Mc2 >
2h̄c
rS

. (2.13)
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Table 2.2 Forces and the
corresponding exchange
particles

Force Exchange particle

Electromagnetic force Virtual photon
Strong force Gluon
Weak force Vector boson
Gravitational force Graviton

Table 2.3 Planck scale Definition Value

Planck mass: mPl = (h̄c/G)1/2 1.221 ·1019 GeV/c2

Planck distance: rPl = (h̄G/c3)3/2 1.615 ·10−35 m
Planck time: tPl = (h̄G/c5)1/2 5.383 ·10−44 s

The theory must be able to describe adequately phenomena where both strong
field gravity and quantum effects are important.

Quantum mechanics is commonly used to describe phenomena at very short
(r < 10−9 m) distances.

On the contrary, general relativistic effects show up only for very large bodies,
such as collapsed stars, since the gravitational fields of ordinary stars and planets
are well described by Newtonian gravity.

On the other hand, it is possible to describe gravity in the framework of quantum
field theory as is the case with the other fundamental forces (Table 2.2) by assuming
that the attractive gravitational force is due to the exchange of virtual gravitons,
which are predicted to be spin-2 massless objects.

The existence of gravitons has not yet been shown experimentally. Also there
is yet no obvious experimental evidence calling for the introduction of quantum
gravity since classical deterministic physics (Newtonian and Einsteinian) cover
successfully gravitational effects over a very large range of masses (10−23–1050 kg)
and distances (10−2–1026 m).

Nevertheless quantum gravity appears to be necessary for understanding nature at
the Planck scale (Table 2.3) where gravitational and strong force effects are thought
to become of equal importance. This is addressed in Chap. 12.

2.6 Synopsis

According to special relativity and to the equivalence principle, the mass of linearly
moving particles to be used in Newton’s universal gravitational law is neither
the rest mass mo nor the relativistic mass, γmo, but rather the inertial and thus
gravitational mass, γ3mo. This result is generalized for arbitrary particle motion
in Chap. 5. General relativity is a very successful gravitational theory but general
relativistic effects are usually very small and become important only for very
strong gravitational fields, such as those of neutron stars. The gravitational fields
of ordinary stars are well described by Newton’s universal gravitational law which
has been shown to be valid for distances as short as 10−3m.
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Chapter 3
The Strong Force: From Quarks to Hadrons
and Nuclei

3.1 The Strong Force

The strong force is the force which binds together the constituents of protons,
neutrons, and other hadrons which are currently thought to be quarks and gluons.
It is also the force which binds together protons and neutrons to form nuclei.

The strong force is also known under the names strong interaction, strong
nuclear force and color force. When refering to the binding of protons and neutrons
to form nuclei the strong force is called the nuclear force or the residual strong
force.

The strong force is thought to be mediated by gluons acting upon quarks,
antiquarks, and the gluons themselves. This is analyzed in detail in the theory of
quantum chromodynamics (QCD).

3.1.1 Classical and Quantized Fields

Noncontact forces, such as the strong force, the electromagnetic force, the weak
force or the gravitational force used in the past to be described exclusively
by classical fields. Thus the electrical repulsion of two electrons is in classical
electrodynamics attributed to the electric field surrounding the two electrons and
created by the two electrons themselves.

In quantum electrodynamics (QED), however, the electric field is assumed to be
quantized in the form of photons and the repulsive interaction is modeled as due to
the exchange of photons between the two electrons. Thus the electromagnetic force
is mediated via the exchange of virtual photons.

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
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3.1.2 The Mediation Mechanism

For the nonphysicist reader it is probably useful to describe in qualitative terms a
little more what is meant by mediation. A qualitative picture can be obtained by
examining two ice skaters on a frozen lake throwing and catching snowballs back
and forth between them. It is evident that this ball exchange causes the two skaters
to move apart with the succession of recoils and this gives the appearance that a
repulsive force is exerted between the two skaters. The effect of this repulsive force
can be described by the exchange of the snowballs. One might question how an
attractive force could be described by this type of particle exchange mechanism
but there are of course limits to this analogy and more generally one might think
of the exchanged particles as “messagers” for moving apart or for moving closer.
Thus this simple physical picture provides a qualitative description of a mediation
mechanism.

All natural forces are currently thought to be mediated by the exchange of
real or virtual particles. Electromagnetic forces are described by the exchange of
photons, strong forces are described by the exchange of gluons and gravitational
forces are described by the exchange of gravitons. While a lot is known about
photons, little is known about gluons and even less, if anything, is known about
gravitons. One may wonder how this exchange or mediation type of mechanism
became over the years so widely accepted on the basis of so little rigid experimental
information. The reason can be sought in the great success of QED which is based
on the photon exchange mechanism.

3.1.3 History and the Postulate of Color Charge

The stability of natural nuclei, consisting of nucleons, i.e. protons and neutrons, can
only be explained if in addition to the Coulombic repulsion between protons there
exists a second force acting between nucleons which is attractive and in fact stronger
than the Coulombic repulsion. This hypothesized force was termed the strong force
and was believed for several decades, roughly between 1940 and 1970, to be a
fundamental force acting on the nucleons, i.e. on the protons and the neutrons.

When deep inelastic electron scattering led to the discovery that protons and
neutrons are not fundamental particles but consist of constituent particles, termed
originally partons by Feynman and later quarks by Gell–Mann, it became evident
that the force between nucleons is the result, or side effect, of a stronger and more
fundamental force which binds together quarks in protons and neutrons. This is
the force known today as the strong force, while the resulting weaker force acting
between nucleons is known as the nuclear force or the residual strong force.

In order to rationalize the existence of the strong force it was postulated in the
theory of QCD that quarks carry a property named color charge (without of course
any relation to visible color), and that the strong force is exerted between quarks
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carrying different color charge (blue, red, green). It was also postulated that quarks
and gluons are the only fundamental particles carrying a nonvanishing amount of
color charge and thus participating in strong interactions. Gluons mediate the strong
force exerted between quarks and this keeps quarks bound in protons and neutrons.
This is the picture of the standard model of elementary particles [1, 2].

3.1.4 Properties of the Strong Force

The strong force is the strongest of the four fundamental forces. At a distance of
1 fm it is a factor of 100 or α−1 (∼137.035, where α = e2/εch̄ is the fine structure
constant) stronger than the electromagnetic force, a factor of 1012 stronger than the
weak force and a factor of 1039 stronger than gravity.

Unlike the electromagnetic and gravitational forces, which are governed by the
Coulomb and Newton gravitational laws, and despite the color charge postulate,
there is no simple analytical expression describing the dependence of the strong
force on color charge and/or distance.

In fact the strong force exhibits two unique features which are totally different
from all other forces, electromagnetic, weak, and gravitational. These two features
are known as asymptotic freedom and confinement.

Asymptotic freedom means that, below a certain distance of the order of 0.5 fm,
the force between two particles with color charge does not increase but on the
contrary decreases with decreasing distance and in fact becomes negligible at very
short distances.

Confinement means that the strong force does not diminish but instead increases
with increasing distance, thus causing the particles (quarks and gluons) to remain
confined (Fig. 3.1). In QCD this phenomenon is termed color confinement.

The strong force is currently described by QCD, which is part of the standard
model of particle physics. In mathematical terms QCD is a non-Abelian gauge
theory based on a gauge symmetry group called SU(3) [3–5].

So far, despite very intense experimental efforts, all searches for isolating and
studying free quarks, or gluons, have failed. Confinement is too strong and only at
temperatures exceeding 3.3 · 1012 K, i.e. energies exceeding 200 MeV, confinement
gives way to a quark-gluon plasma [6–8].

When in particle accelerator experiments a quark in a proton is struck by a very
fast quark of an impacting proton then jets of newly created hadrons appear. This
phenomenon will be discussed in Chap. 9.

3.1.5 The Residual Strong Force

The residual strong force, also known as the nuclear force, is the force exerted
between nucleons, i.e. protons and neutrons in nuclei. This force is also known as
nucleon–nucleon force (NN force).
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Fig. 3.1 Force dependence
on distance for the
electromagnetic,
gravitational, and strong force

The residual strong force is a small residuum of the strong force which binds
quarks together in protons and neutrons. The residual strong force is much weaker
(roughly a factor of 100) than the strong force in the same way that the van der Waals
force is much weaker than the Coulombic force from which it originates. This can be
rationalized if the strong force is mostly neutralized within the nucleons in the same
way that the electromagnetic force is mostly neutralized inside molecular structures
held together by van der Waals forces.

Unlike the more fundamental strong force, the nuclear force decreases with
increasing distance and in fact this decrease can be approximated by a Yukawa
potential, i.e. by a negative exponential power of distance. This expression is
mathematically identical with that of the Poisson–Boltzmann expression for the
electrical potential around an ion surrounded by oppositely charged counterions.

This rapid decrease in the magnitude of the nuclear force with distance, which is
sharper than the decrease in the repulsive electromagnetic force between protons in
a nucleus, is considered to be the main cause for the instability of large nuclei, such
as those with atomic numbers exceeding 82.

The nuclear force is only exerted between hadrons, e.g. protons and neutrons.
At very short distances, less than ∼0.5 fm between the hadron centers, the NN
force is strongly repulsive. This can be understood in terms of the Pauli exclusion
principle for identical nucleons (i.e. two protons or two neutrons) and by the Pauli
exclusion principle between quarks of the same type for proton–neutron pairs.
The NN force has also a tensor component depending on the parallel or anti-parallel
spin orientation of the nucleons. At distance below∼1.2 fm the NN force is stronger
than the Coulombic repulsion between protons. At distances, however, above 1.7 fm
the NN force practically vanishes and the Coulomb repulsion dominates (Fig. 3.1).
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Due to the nuclear force the formation of stable nuclei from nucleons, i.e.
from protons and neutrons, is exoergic, i.e. energy is released when a nucleus is
created. This energy release is typically ∼7 MeV per nucleon which happens to
be in the range of αmpc2, where mp (∼938 MeV/c2) is the proton mass and α is
the fine structure constant. In view of Einstein’s famous ΔE = Δmc2 formula, a
negative ΔE yields a negative Δm (mass deficit), i.e. the nucleus mass is smaller
than the total mass of the individual nucleons. This negative Δm is typically of the
order of −αmp(≈−7 MeV/c2) per nucleon for nuclear reactions.

The situation is not different in Chemistry where Δm is typically of the order
±α2me, i.e. a few eV/c2, and thus is immeasurably small but present in all chemical
reactions. Thus in view of Einstein’s famous formula there is a mass change
associated with any reaction, be it nuclear or chemical.

The nuclear force is practically the same for proton–proton, neutron–neutron and
proton–neutron pairs, a property called charge independence. Its magnitude depends
strongly on whether the nucleon spins are parallel or antiparallel and, as previously
noted, it has a tensor (noncentral) component. This part of the force does not obey
orbital angular momentum conservation, as is the case with central force motions.

Nucleons have no net color charge and consequently the nuclear force does not
involve directly the action of the force carriers of QCD, i.e. the action of gluons.
In the same way, however, that electrically neutral atoms attract each other via
electrical polarization effects, i.e. via dipole–dipole or dipole-induced dipole or
induced dipole-induced dipole (London or van der Waals) forces, it is believed
that by analogy “color-neutral” neucleons can attract each other by a type of
“color polarization” which allows for some gluon-mediated attractive effects to be
transferred from one color-neutral nucleon to another.

The study of NN forces is commonly carried out by formulating potentials, such
as the Yukawa potential, for the nucleons and using the Schrödinger equation.
The mathematical form of the potential is derived phenomenologically and the
model parameters are obtained by fitting to experimental data, such as binding
energies, NN elastic scattering cross sections, etc. The original Yukawa potential is
nowadays seldom used and more elaborate potentials, such as the Paris potential, the
Argonne Av18 potential, and Nijmegen potentials are used. Two- and three-nucleon
potentials have been investigated thoroughly for nuclear masses up to 12.

3.1.6 Quantum Chromodynamics

QCD is a theory of the strong force based on the concept of color charge. It focuses
on the study of the symmetry unity (3), SU(3), Yang–Mills theory of quarks, which
are fermions carrying color charge in the same way that electrons carry normal
electrical charge. QCD is a quantum field theory of a particular type called a
nonabelian gauge theory. QCD is a central part of the Standard Model of particle
physics [1, 2, 9, 10].
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QCD is a successful theory in that it has been able to describe two key aspects of
the strong force, i.e. confinement and asymptotic freedom.

Confinement means that the attraction between quarks does not decrease as their
distance increases but on the contrary increases in a pronounced manner so that an
infinite amount of energy is needed to separate two quarks. This implies that they
will stay for ever bound in hadrons such as protons. Confinement can explain the
repeated failure of searches for free quarks [1, 2, 10].

Asymptotic freedom means that in very high energy reactions and thus at very
short (<0.5 fm) distances the interaction between quarks and gluons becomes very
weak. QCD is able to predict this behavior, as proven by D. Politzer, F. Wilczek, and
D. Gross in the early 1970 [3, 4], work for which they won the 2004 Nobel Prize in
Physics.

During the last few decades the string theory [11–13] has been also forcefully
deployed to describe the strong force. Strings are envisioned to have dimensions
in the Planck length scale (∼10−35 m). Progress and current directions have been
reviewed recently [13].

3.2 Synopsis

The strong force keeps the constituents of hadrons bound together. The residual
strong force keeps hadrons (protons and neutrons) bound in nuclei.

The strong force exhibits two striking features relative to Newtonian gravity
or Coulomb’s electrostatics: It exhibits confinement and asymptotic freedom.
This means that the hadron constituents, named originally partons by Feynman
and later on quarks by Gell-Mann, are bound together by a force which increases
with distance (confinement) and practically vanishes at very short (<1 fm) distances
(asymptotic freedom). The strong force is attributed to a property of quarks and
gluons called color charge. Gluons are believed to mediate the strong force exerted
between quarks. For particle energies above the QCD scale (∼200 MeV) hadrons
are believed to decompose to a quark-gluon plasma. It is the condensation of this
quark-gluon plasma which is believed to have caused the genesis of hadrons. Despite
intensive experimental efforts, no quarks or gluons have ever been isolated and
studied.
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Chapter 4
The World of Particles and the Standard Model

4.1 Elementary Particles

4.1.1 History

In particle physics elementary particles or fundamental particles are those which are
not known to have a substructure.

In the history of science, since the days of Democritos, atoms were thought to
be elementary particles. This view changed significantly in 1897 with the discovery
of the electron by J.J. Thomson. Until 1932 protons, neutrons and electrons were
the only known elementary particles. This early period is frequently called classical
period of elementary particles [1].

During that period and via the work of Planck, de Broglie, Einstein, and Compton
the photon also gradually emerged as a massless elementary particle [1, 2].

The period 1932–1960 witnessed the gradual discovery of several new particles
originally proposed on theoretical grounds. These were Yukawa’s meson which was
thought to mediate the strong force, Dirac’s positron, which is the antiparticle of
an electron (i.e. a particle with the opposite electrical charge) and Pauli’s neutrino
ν , a particle with an extremely small mass, originally and until recently [3, 4]
(1998) thought to be zero, which was necessary to maintain momentum and energy
conservation in the β -decay reaction which transforms neutrons into protons and
electrons:

n→ p++ e−+ ν̄e. (4.1)

The symbol ν̄e stands for an electron antineutrino which is the antiparticle of
the electron neutrino νe. Since the neutrino carries no electrical charge there is
still a discussion if νe and ν̄e are different particles, in which case they are termed
Dirac neutrinos, or different states of the same particle, in which case they are called
Majorana neutrinos.

In the years after 1950 several new particles were discovered which included
several mesons, such as the pi(π), the miu (μ), and the Ko (Kaon). Such particles
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A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
DOI 10.1007/978-1-4614-3936-3 4, © Springer Science+Business Media, LLC 2012

31



32 4 The World of Particles and the Standard Model

Fig. 4.1 Spectrum of scattered electrons from electron–proton scattering at an electron energy of
E = 4.96 GeV and a scattering angle of θ = 10◦C (from [5], Fig. 1, reprinted with permission from
Elsevier)

were called mesons (from μέσoς , the intermediate one) because their masses
(typically 100–600 MeV/c2) lie between the masses of light leptons (from λ επτ óς ,
the thin one) (such as the electron with a rest mass of 0.51 MeV/c2) and the heavier
baryons (from β αρύς , heavy), such as the proton (mass 938.2 MeV/c2) and the
neutron (mass 939.5 MeV/c2).

Nowadays baryons and mesons are collectively called hadrons (the big ones).
A very important discovery at the beginning of the modern period of elementary
particles (after 1960) was that hadrons have substructure and therefore are not
elementary particles. This we know from inelastic electron–proton and electron–
neutron scattering experiments, such as the ones shown in Fig. 4.1 [5] which
revealed that baryons (such as protons and neutrons) contain three point-like con-
stituents, while mesons contain two such constituents (Fig. 4.2). These constituent
point-like particles were initially termed partons by Feynmann and later on quarks
by Gell–Mann. It was postulated that these spin 1/2 constituent particles are held
together by the strong force which is mediated by massless zero spin particles,
termed gluons. As already mentioned in Chap. 3, it was also postulated that the
strong force is due to the differences in a property of quarks termed color, which
comes in three types (red, green, and blue). Quarks were also assumed to come in
three flavors (u for “up,” d for “down”, and s for “strange”) [1, 2, 6]. As already
mentioned, quarks cannot be separated and studied individually.
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Fig. 4.2 Hadrons: Baryons
and mesons. They consist of
elementary point-line
constituents (three for
baryons, two for mesons)
initially termed partons by
Feynmann and later on
quarks by Gell–Mann. The
quarks and antiquarks are
assumed to have a property
called color which is the
origin of the strong force

Quarks are also assumed to carry electrical charge, e.g. (2/3)e for u quarks and
−(1/3)e for d quarks, so that the proton which is a uud particle carries a net charge
of +e, while the neutron, which is a udd particle, carries a zero net charge.

The taxonomy of the quarks and of the other elementary particles of the Standard
Model (neutrinos, leptons, and bosons) is shown in Fig. 4.3. One observes that
quarks (top two rows), neutrinos, and leptons all come in three “generations”
with very significant increase in mass as one moves from the first to the third
“generation.”

4.1.2 The Standard Model of Elementary Particles

Thus one may summarize the present situation regarding elementary particles
by stating that they are of three types, i.e. leptons (which include the electron),
quarks, which form the hadrons, and mediators, such as the photons, which mediate
the electromagnetic force and the W± and Zo bosons, which mediate the weak
interaction.
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Fig. 4.3 Taxonomy of the elementary particles according to the standard model

All elementary particles are either bosons or fermions [1, 2, 7]. Bosons follow
Bose–Einstein statistics (allowed multiple occupancy of the same state), carry
integer spin, and are associated with forces. Fermions have half-integer spin, follow
Fermi-Dirac statistics (disallowed multiple occupancy of the same state), and are
associated with normal matter.

Table 4.1 lists the currently known elementary particles in a way similar to
Fig. 4.3. It should be noted that Table 4.1 contains both the classification of leptons
and quarks by generations according to the Standard Model of elementary particles
but also experimental data regarding masses, lifetimes, and principal decays.

This classification is also shown in Table 4.2 which introduces additionally the
twelve antiparticles corresponding to the twelve elementary fermions.

Thus according to the Standard Model of particle physics there exist 12 flavors
of elementary fermions plus their corresponding antiparticles (Tables 4.1 and 4.2).
There are also four bosons which mediate the forces and also the undiscovered
Higgs boson [8–10] which is hypothesized to mediate the creation of mass and
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Table 4.1 Elementary particles [1]; masses in MeV/c2, lifetimes in s

Principal
Generation Flavor Charge Mass Lifetime decays

Leptons (spin 1/2)

First
e (electron) −1 0.510999 ∞ –
νe (e neutrino) 0 0 ∞ –

Second
μ (muon) −1 105.659 2.19703×10−6 eνμ ν̄e

νμ (μ neutrino) 0 0 ∞ –

Third
τ (tau) −1 1776.99 2.91×10−13 eντ ν̄e,μντν̄μ ,

π−ντ
ντ (τ neutrino) 0 0 ∞ –

Quarks (spin 1/2)

First
d (down) −1/3 7
u (up) 2/3 3

Second
s (strange) −1/3 120
c (charm) 2/3 1,200

Third
b (bottom) −1/3 4,300
t (top) 2/3 17,400

Bosons (spin 1)
Strong g (8 gluons) 0 0 ∞ –
Electromagnetic γ (photon) 0 0 ∞ –
Weak W± (charged) ±1 80,420 3.11×10−25 e+νe,μ+νμ ,

τ+ντ ,

cX → hadrons
Z0 (neutral) 0 91,190 2.64×10−25 e+e−,μ+μ−,

τ+τ−,
qq̄→ hadrons

Table 4.2 Fundamental fermions

First generation Second generation Third generation

Particles
Electron: e− Muon: μ− Tau lepton: τ−
Electron-neutrino: νe Muon-neutrino: νμ Tau-neutrino: ντ
Up quark: u Charm quark: c Top quark: t
Down quark: d Strange quark: s Bottom quark: b

Antiparticles
Positron: e+ Positive muon: μ+ Positive tau lepton: τ+

Electron-antineutrino: ν̄e Muon-antineutrino: νμ Tau-antineutrino: ν̄τ
Up antiquark: ū Charm antiquark: c̄ Top antiquark: t̄
Down antiquark: d̄ Strange antiquark: s̄ Bottom antiquark: b̄

whose existence has become highly questionable after two years of intensive search
for it at the LHC of CERN near Geneva [10]. The Standard Model contains a total
of 26 adjustable parameters, a number which is too large for a mature theory. It is
thus widely recognized that, despite its successes, the Standard Model, which is
fundamentally incompatible with general relativity, is a provisional theory and not
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a fundamental one. For example, it is now well established [3, 4] that neutrinos are
not massless as assumed in the Standard Model. Also the Standard Model does not
deal at all with gravity and with the associated hypothesized mediating particles
termed gravitons. The need for “Physics beyond the Standard Model” is becoming
increasingly evident [4, 10].

4.2 Leptons

4.2.1 Charged Leptons

As shown in Fig. 4.3 and Tables 4.1 and 4.2 there are three charged leptons, i.e.
the electron (mass 0.511 MeV/c2) the muon (μ , mass 105.7 MeV/c2) and the more
recently discovered and much heavier tau lepton (τ , mass 1.777 GeV/c2). Their
corresponding antiparticles are the positron (e+), the positive muon (μ+), and the
positive tau lepton (τ+).

The muon has a relatively long lifetime (2.2 ·10−6 s) and behaves in every respect
as a heavy electron. It decomposes to an electron, a miu-neutrino (νμ) and an
electron antineutrino (ν̄e). The tau has a significantly shorter lifetime (1.9 ·10−13 s)
and also decomposes to an electron, a muon, a negatively charged pion, an electron
antineutrino, a muon antineutrino and a tau neutrino. It is difficult to understand how
a particle with such a complex decay spectrum can be considered as an elementary
particle.

It is also impressive and somehow difficult to understand how the lepton family
contains some extremely light particles, i.e. the neutrinos with masses of the order of
0.1 eV/c2 and at the same time particles as heavy as the muon (105.7 MeV/c2) and
the tau lepton (1.777 GeV/c2). The latter is ten orders of magnitude heavier than the
neutrino and it is indeed very difficult to imagine how both can belong to the same
family and be elementary particles.

4.2.2 Neutrinos

Neutrinos are the lightest known leptons. As their name suggests they are electrically
neutral. They usually travel close to the speed of light and pass through ordinary
matter almost unaffected, thus making them very difficult to detect.

Until 1980 they were believed to have no rest mass and this assumption was
built in the Standard Model. It is now firmly established that they do have rest mass
which is quite small, i.e. in the 0.04–0.4 eV/c2 range [3,4]. This makes them a factor
2.4 ·109–2.4 ·1010 lighter than protons and neutrons and 106–107 times lighter than
electrons.
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Neutrinos are extremely abundant in our universe. They are produced or
consumed with practically every nuclear reaction occurring in nature, so that
supernovae, distant stars, our sun but also human manufactured and operated nuclear
reactors are sources of neutrinos. Most neutrinos passing through the Earth originate
from the sun. These solar neutrinos are so abundant that every second in the region
of the Earth about sixty five billion, i.e. 6.5 ·1010 solar neutrinos, pass through every
square centimeter perpendicular to the direction of the sun. Yet it is estimated that
only one of them may interact with a nucleon in a human body over a lifetime.

Due to their very large abundance it is estimated that the total neutrinos mass is
equivalent to 10–100% of the total baryonic mass of the universe.

Since neutrinos are overall electrically neutral they are not affected significantly
by electromagnetic forces, although it was shown recently that neutrinos can have an
effective charge radius in presence of fermionic masses [11, 12] and that neutrinos
have magnetic dipole moments of the order of 10−19 μB, where μB = e/2me is the
Bohr magneton.

Neutrinos can be used as beam particles [2] in scattering experiments studying
the quark distribution in nucleons. Neutrinos are believed to couple to the weak
charge of the quarks via the weak interaction.

4.2.2.1 Rest Masses and Total Energies of Neutrinos

Although the rest masses of neutrinos are in the 0.04–0.4 eV/c2 range, their energy
can be very high. Thus supernova neutrinos have typical energies, E , of 10–
200 MeV.

Since the total energy of a particle, E , is related to its rest mass, mo, via the
Einstein equation:

E = γmoc2, (4.2)

where γ , the Lorentz factor, equals (1− v2/c2)−1/2, it follows that such highly
energetic neutrinos (e.g. E = 200 MeV) travel with γ values as high as 5 ·109, i.e.

γ ≈ 5 ·109 (4.3)

for mo = 0.04 eV/c2.
These extremely high γ values lead to very high inertial, mi, and thus gravita-

tional, mg, masses. Thus, as already discussed in Chap. 2 and further analyzed in
Chap. 5, one has:

mi = mg = γ3mo. (4.4)

Consequently if we take mo = 0.04 eV/c2 and E = 200 MeV it is γ = 5 ·109 and
therefore:

mi = mg = (1.25 ·1029)mo = 5 ·1018 GeV/c2 (4.5)

which, very surprisingly, is almost half the value of the Planck mass, i.e. 1.221 ·
1019 GeV/c2 or 21.8 μg. The Planck mass definition and value was first presented
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in Chap. 2 (Table 2.3). This is a huge mass for a single particle and it corresponds to a
particle energy of 1.221 ·1019 GeV. At such extremely high particle energies, termed
Planck energies, it is anticipated, in the context of the Grand Unification Theories
(GUT) [1], that the magnitudes of gravitational and strong forces merge. It thus
becomes evident that gravitational forces between such highly energetic neutrinos
may be quite significant, i.e. as strong as the strong force. This will be discussed
more quantitatively in Sect. 6.2. The strong gravitational attraction between highly
relativistic neutrinos may also be closely related to neutrino trapping [13,14] and is
quite close to the central theme of this book, presented in Chap. 6.

4.2.2.2 Neutrino Flavours

There are three types, or “flavors,” of neutrinos, i.e. electron neutrinos, muon
neutrinos and tau neutrinos. They are symbolized νe, νμ and ντ (Table 4.1).

The corresponding antiparticles are symbolized νe, νμ , and ντ , respectively
(Table 4.2). Since known neutrinos carry no net charge, it is possible that these
antineutrinos are identical to the corresponding neutrinos. Particles with this
property are known as Majorana particles.

A fourth type of neutrino, the sterile neutrino, is also being theorized in an effort
to account for neutrino oscillations.

Neutrinos play an important role in astrophysical events such as supernovae
which take place when an old massive star collapses after depletion of its nuclear
fuel. During this collapse, the star becomes for a few (∼10) seconds a neutrino star.
This demonstrates the ability of neutrinos to form condensed structures. During
these seconds the neutrinos totally dominate in number of particles and carry out
most of the energy of the implosion which leads to the formation of a neutron star.
The energy released during this implosion is much larger than that radiated during
the whole life of the star. Approximately 99% of the energy of the supernova is
released during this 10s burst of neutrinos which are the only particles to escape the
advancing core of the collapse phase of the supernova. Neutrinos are produced in
all exoergic events taking place in the cosmos (supernovae) or in the microcosmos
(nucleosynthesis, nuclear reactions, β -decay). They also play an important role in
energy transport since with their short range forces they escape all but the most
dense objects.

As already noted, it is estimated that the total mass of neutrinos in the universe
is very significant and equivalent to 10–100% of the baryonic mass of the universe.
If the neutrino masses are of several eV total, then it is estimated that neutrinos may
be the dominant mass in the universe.

There have been propositions that neutrinos might account for the “dark matter
problem” but according to some theoretical calculations neutrinos do not cluster
enough for such a purpose. In any event, due to their estimated huge number and
total mass, neutrinos must play a very important role in the formation, structure, and
ultimately in the fate of our universe.
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4.2.2.3 Neutrino Detection

Since neutrinos are thought to interact very weakly with matter, neutrino detectors
are very large in order to capture significant numbers of neutrinos. Neutrino
detectors are often constructed deep in the earth in order to isolate the detector from
cosmic rays and other radiation.

Antineutrinos were first detected near a nuclear reactor in the 1950s by Reines
and Cowan. They used two large targets containing an aqueous solution of CdCl2
and two scintillation detectors each next to the Cd targets. Antineutrinos with an
energy above 1.8 MeV interacted with protons in the water, producing positrons and
neutrons. The concomitant positron annihilations with electrons produced photons
with an energy around 0.5 MeV. In this way pairs of photons could be detected
simultaneously by the two scintillation detectors above and below the target.

The neutrons were captured by Cd nuclei thus producing γ rays of around
8 MeV. These gamma rays were detected a few microseconds after each positron
annihilation event.

During the last 50 years several others detection methods have been developed.
The Super-Kamiokande in the Japanese Alps is based on the detection of

Cherenkov radiation emitted when a neutrino creates an electron or muon (of posi-
tive or negative charge) in the water and this charged particle moves some distance
(up to 5 m) in the H2O with a velocity higher than the speed of light in H2O (which
is roughly 3/4 of the speed of light in vacuum). The resulting Cherenkov radiation
is detected by neighboring photomultiplier tubes [3].

Similar is the detection principle at the Sudbury Neutrino Observatory where
D2O (rather than H2O) is used as the detecting medium. This also allows for the
neutrino induced photodissociation of deuterium which leads to a free neutron. This
is then detected from the gamma radiation emitted after chlorine capture.

Other detectors utilize large volumes of chlorine or gallium which interact with
electron neutrinos to yield argon or germanium, respectively. The IceCube Neutrino
Observatory uses 1 km3 of Antarctic ice with photomultiplier tubes distributed
throughout the volume.

4.2.2.4 Neutrino Oscillations

Since the late 1960s it was found that the number of electron neutrinos arriving from
the sun was between one third and one half the number predicted by the Standard
Solar Model (SSM). This became known as the solar neutrino problem and remained
unresolved for 30 years.

After 1998 it was found both in the Super-Kamiokande [3] and in the Sudbury
Neutrino observatories [4] that solar and atmospheric neutrinos change flavors. This
could explain the solar neutrino problem, i.e. electron neutrinos produced in the sun
change into other flavors which cannot be detected.
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Thus neutrino oscillations is the phenomenon where neutrinos change flavor (e.g.
νμ ↔ νe) and at the same time change mass. This permits a neutrino, originally
produced as an electron neutrino at a given location, to be detected as a muon
neutrino or as a tau neutrino after traveling to some other location. According to
the standard model the existence of flavor oscillations directly implies nonzero
differences between the neutrino masses, commonly denoted m1, m2, and m3. This is
because the amount of mixing between neutrino flavors depends on the differences
in their squared masses [4, 14].

Neutrino oscillation experiments have already provided reliable values for the
neutrino mass-squared differences, Δmi j(Δm2

i j = m2
j − m2

i ), and for the mixing
angler, θi j, which are the angles in the usual particle data group definition of a
unitary mixing matrix.

The allowed ranges at the 3σ confidence level are:

Δm2
12 = 7.9(±2.8)× 10−5(eV/c2)2

|Δm2
23| = 2.6(±0.2)× 10−3(eV/c2)2

θ12 = 33.7(±1.3)

θ23 = 43.3(±9.8)

θ13 = 0(±2.6).

These lead to the following possible arrangements of the neutrino masses [3, 4]:

1. Normal mass hierarchy, i.e. m1 < m2 � m3. In this case Δm2
23 = m2

3−m2
2 > 0

and m3 ≈
√

Δm2
23 ≈ 0.051(±0.01)eV/c2. The solar neutrino oscillations occur

between the two lighter levels.

2. Inverted mass hierarchy, i.e. m1 ≈ m2 � m3 with m1 ≈ m2 ≈
√

Δm2
23 ≈

0.051(±0.01)eV/c2. In this case solar neutrino oscillations take place between
the two heavier levels.

The best current estimates of the neutrino masses are shown in Figs. 4.4 and 4.5
on the basis of the Kamiokande experiments. These lead to an estimate of mo =
0.051±0.01eV/c2 for the mass of the heaviest neutrino. Very useful information is
expected from a new neutrino observatory in Karlsruhe, called KATRIN, which is
planned to start full operation in 2013 and is expected to measure the mass of the
electron antineutrino with sub-eV precision by examining the spectrum of electrons
emitted in tritium β -decay.
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Fig. 4.4 The three light
neutrino masses as a function
of the lightest mass for the
normal (top plot) and inverted
(bottom plot) hierarchy,
reprinted from [4]

Fig. 4.5 The observable
neutrino effective mass mνr

[4] as a function of the
lightest mass for the normal
(bottom) and inverted (upper)
mass ordering. The currently
allowed 3σ ranges of the
oscillation parameters were
used. Comparison with the
detection limit of
KATRIN [4]
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4.2.2.5 Neutrino Spins and Electromagnetic Dipole Moments

Neutrinos are fermions with a spin of 1/2 and it is not yet clear if they are Dirac
or Majorana particles. In the latter case the neutrino and the antineutrino would
in fact be the same particle. The neutrino could transform into an antineutrino by
changing the orientation of its spin state. Such a change in spin would require
both the neutrino and antineutrino to have nonzero masses, and therefore to travel
slower than light. This is because such a spin change, caused only by the change in
point of observation, is possible only if there exist reference inertial frames moving
faster than the particle. Such a particle has a spin of one orientation when observed
from a frame moving slower than the particle and the opposite spin when
observed from a frame moving faster than the particle.

The still open question regarding the Dirac or Majorana nature of neutrinos has
some significant implications regarding their magnetic and electric dipole moments.
Thus a massive neutrino can have a diagonal magnetic dipole moment. It can also
have a CP-violating electric dipole moment. CP-symmetry refers to the combination
of C-symmetry (charge conjugation) and parity symmetry [1, 4]. Both Dirac and
Majorana neutrinos can have nondiagonal, magnetic, and electric dipole moments,
termed transition moments.

If the Standard Model is extended to include massive Dirac neutrinos, then the
neutrino magnetic moment is given by [4]:

μνi =
3eGFmν j

8
√

2π2
= 1.6 ·10−19

(mνi

eV

)
μB, (4.6)

where μB = e/2me is the Bohr magneton. Neutrino scattering measurement has
provided an upper limit for the neutrino magnetic moment, i.e.

μνi ≤ 1.3× 10−10μB. (4.7)

The observation of nonzero neutrino magnetic moments can be considered as
evidence for new physics at the TeV scale.

4.3 Hadrons

Hadrons are composite particles consisting of quarks and antiquarks. Baryons and
mesons belong to the hadron family. Baryons consist of three quarks, while mesons
consist of a quark and an antiquark (Fig. 4.2).

Quarks are confined in hadrons and cannot be separated from them and studied
independently. As already discussed in Chap. 3, they are held together by the strong
force due to their differences in a property called color (Fig. 4.2).

The most common baryons are the protons and neutrons which make up most
of the mass in the visible matter in the universe. Electrons, the other major
component of atoms, molecules and living organisms, are leptons. Each baryon
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Table 4.3 Quark masses
(MeV/c2) [1]

Quark flavor Bare mass Effective mass

u (up) 2 336
d (down) 5 340
s (strange) 95 486
c (charm) 1,300 1,550
b (bottom) 4,200 4,730
t (top) 174,000 177,000

has a corresponding antiparticle (antibaryon) where quarks are replaced by their
corresponding antiquarks. As an example the proton is a uud particle, i.e. it consists
of two u (up) quarks and a d (down) quark. Its corresponding antiparticle, the
antiproton, contains two up antiquarks and one down antiquark. Interestingly,
although quarks and antiquarks are universally believed to be the building blocks
of protons, neutrons, and other baryons, they have never been isolated and studied
independently. Thus there exist, for example, quite large uncertainties about their
actual masses, as shown in Table 4.3. Rigorous definitions of “bare” and “effective”
masses shown in this table are difficult to find but in a broad sense they can
be considered equivalent to rest and relativistic masses, respectively, as discussed
in Chap. 8.

As already noted, the existence of quarks has been inferred from inelastic
electron–proton and electron–neutron scattering spectra, such as the one shown
in Fig. 4.1. In addition to the dominant elastic scattering peak, there exist at least
three more inelastic scattering peaks. These spectra show conclusively that baryons
have an internal structure and thus consist of fundamental constituents which in
fact [2] are pointlike and have a spin 1/2. As already noted, these fundamental
point-like constituents were called partons by Feynman and later on quarks by Gell–
Mann [2, 15].

Also, as already discussed, there are six types of quarks according to the Standard
Model (Fig. 4.3), which include the u (up), d (down), c (charm), s (strange), t (top),
and b (bottom). Quarks participate in the strong interaction via the action of gluons
and form hadrons.

When examining the Standard Model quark content of baryons and mesons
(Table 4.4), one notes in these tables that with the exception of the proton, the
electron and the neutrinos (Table 4.1), all other elementary particles are unstable,
with lifetimes varying between 10−6 and 10−25 s. The neutron is also unstable with
a lifetime of 885.7 s and decomposes to a proton, an electron and a ν̄e electron
antineutrino as already discussed. However the neutron becomes quite stable when
it is bound with protons, forming nuclei via the residual strong force. It is worth
noting that the lifetimes of some baryons and mediators is so short (10−25 s, which
corresponds to the period of rotation of a relativistic particle on a circular orbit
of radius 1 fm) that the distinction between a particle and a resonance becomes
rather vague.
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Table 4.4 Hadrons [1]; masses in MeV/c2

Baryon Quark content Charge Mass Lifetime Principal
decays

Baryons (spin 1/2)

N

{
p
n

uud 1 938.272 ∞ –
udd 0 939.565 885.7 peν̄e

Λ uds 0 1,115.68 2.63×10−10 pπ−,nπ0

Σ+ uus 1 1,189.37 8.02×10−11 pπ0,nπ+

Σ 0 uds 0 1,192.64 7.4×10−20 Λγ
Σ− dds −1 1,197.45 1.48×10−10 nπ−
Ξ 0 uss 0 1,314.8 2.90×10−10 Λπ0

Ξ− dss −1 1,321.3 1.64×10−10 Λπ−

Λ+
c udc 1 2,286.5 2.00×10−13 pKπ ,Λππ ,

Σππ
Baryons (spin 3/2)
Λ uuu,uud,udd,ddd 2,1,0,−1 1,232 5.6×10−24 Nπ
Σ ∗ uus,uds,dds 1,0,−1 1,385 1.8×10−23 Λπ ,Σπ
Ξ ∗ uss,dss 0,−1 1,533 6.9×10−23 Ξπ
Ω− sss −1 1,672 8.2×10−11 ΛK−, Ξπ

Pseudoscalar Mesons (spin 0)
π± ud̄,dū 1,−1 139.570 2.60×10−8 μνμ
π0 (uū−dd̄)/

√
2 0 134.977 8.4×10−17 γγ

K± us̄, sū 1,−1 493.68 1.24×10−8 μνμ ,ππ ,
πππ

K0, K̄0 ds̄, sd̄ 0 497.65 K0
S : 8.95×10−11 ππ

K0
L : 5.11×10−8 πeνe,πμνμ ,

πππ
η (uū+dd̄−2ss)/

√
6 0 547.51 5.1×10−19 γγ ,πππ

η ′ (uū+dd̄− ss)/
√

3 0 957.78 3.2×10−21 ηππ ,ργ
D± cd̄,dc̄ 1,−1 1,869.3 1.04×10−12 Kππ ,Kμνμ ,

Keνc

D0, D̄0 cū,uc̄ 0 1,864.5 4.1×10−13 Kππ ,Keνc,

Kμνμ
D±s cs̄, sc̄ 1,−1 1,968.2 5.0×10−13 ηρ ,φππ ,φρ
B± ub̄,bū 1,−1 5,279.0 1.6×10−12 D∗�ν�,D�ν�,

D∗πππ
B0, B̄0 db̄,bd̄ 0 5,279.4 1.5×10−12 D∗�ν�,D�ν�,

D∗ππ
Vector Mesons (spin 1)
ρ ud̄, (uū−dd̄)/

√
2,dū 1,0,−1 775.5 4×10−24 ππ

K∗ us̄,ds̄, sd̄, sū 1,0,−1 894 1×10−23 Kπ
ω (uū+dd̄)/

√
2 0 782.6 8×10−23 πππ ,πγ

ψ cc̄ 0 3,097 7×10−21 e+e−,
μ+μ−,
5π ,7π

D∗ cd̄,cc̄,uc̄,dc̄ 1,0,−1 2,008 3×10−21 Dπ ,Dγ
ϒ bb̄ 0 9,460 1×10−20 e+e−, μ+μ−,

τ+τ−



4.3 Hadrons 45

Fig. 4.6 Combinations of
three u, d, or s quarks
forming baryons with a
spin-1/2 create the uds
baryon octet . Here Q is the
charge in units of e, s is the
strangeness, and I3 is the
isospin. For example the
proton has charge 1, isospin
1/2, and strangeness zero

When examining Table 4.4, please note that with the exceptions of the proton, the
neutron, and the Kaon (K±,K0, K̄0) all other baryons and mesons are called as the
letter of their symbol, e.g. pi for (π±,π0). Quark symbols stand for up (u), down
(d), strange (s), charm (c), and bottom (b).

4.3.1 The Standard Model Taxonomy of Hadrons

The present Standard Model taxonomy of hadrons in terms of their charge (Q),
strangeness (S), and isospin, (I3) is due primarily to Gell–Mann. Strangeness is a
measure of the number of strange quarks (s) present in the baryon and isospin is
a quantity analogous conceptually to spin, used first by Heisenberg to differentiate
between a proton and a neutron which have very similar masses. Two examples
of this Gell–Mann taxonomy, which actually led to a Nobel prize in Physics in
1969 [15], are shown in Figs. 4.6 and 4.7.

Thus Fig. 4.6. shows combinations of three u, d, or s quarks forming baryons
with spin 1/2. This is called the uds baryon octet.

Combination of three u, d, or s quarks forming baryons with spin 3/2 are shown
in Fig. 4.7. They are called the uds baryon decuplet.

4.3.2 Hadron Masses

There have been continuous efforts to find regularities regarding the hadron masses.
The most well-known correlation is due to Gell–Mann and Okubo [16, 17].
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Fig. 4.7 Combinations of three u, d, or s quarks forming baryons with a spin-3/2 create the uds
baryon decuplet

Another recently found correlation is shown in Fig. 4.8. The masses of uncharmed
baryons follow a (2n− 1)1/6 law [18]. A possible reason for this is presented
in Chap. 6.

4.3.3 Hadron Angular Momenta

There exists a very interesting observation regarding the angular momenta, L, of
hadrons and of their excited states. This is shown in Fig. 4.9.

The normalized, with respect to h̄, angular momenta of hadrons and of their
excited states are of the order of, and seem to be bounded by, the square of their
mass expressed in GeV2 [19]. The reason for this is not yet obvious. It is interesting
however to note that the angular momenta of baryons are very similar, ∼h̄, to that
of an electron in a H atom. Since the radius of baryons (∼fm) are much shorter
than that of the H atom (∼0.1 nm), it follows that the baryons must contain very fast
rotating constituents.
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Fig. 4.8 Comparison of the masses, mB, of the uncharmed baryons, consisting of u, d, and s
quarks, with equation mB = mn(2n−1)1/6, where mn is the neutron mass [18]

Fig. 4.9 Dependence of the
normalized by h̄ angular
momentum of some hadrons
and of their excited states
(resonances) on their
normalized by 1 GeV
mass [19]. Reprinted with
permission from Nature
McMillan
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This can be deduced approximately as follows: Assuming that a fraction, f , of the
baryon mass, mb, is rotating with a speed vb on a circular orbit with radius Rb, it
follows that the baryon angular momentum, Lb, is given by:

Lb = f mbvbRb ≈ h̄. (4.8)

Similarly for the electron in the ground state of the H atom it is ve =αc and thus:

Le = meαcRe ≈ h̄. (4.9)

From Eqs. (4.8) and (4.9), it follows:

vb

c
=

me

f mb
· αRe

Rb
. (4.10)

Considering a neutron as the baryon (mb=939.565 MeV/2) using me=0.511
MeV/c2, Re=0.53 · 10−10 m, Rb ≈ 0.63 · 10−15 m, α =1/137.035 and assuming
f =1/3 one computes from Eq. (4.10) that indeed vb/c ≈ 1. This point will be
addressed more exactly in Chaps. 6 and 7.

4.4 Synopsis

Things are changing significantly every decade in the fascinating world of particles.
The nature of quarks and gluons still remains an exciting mystery. There have been
some very important recent discoveries regarding neutrinos, which have been shown
to have nonzero masses and also to be able to form, even though for short times,
(only∼10 s), stable structures, such as neutrino stars during the onset of supernovae.
Neutrino trapping is also a related interesting phenomenon. Neutrinos are emitted in
practically all nuclear reactions. The angular momenta of baryons and their excited
states is of the order of h̄, similarly with the angular momentum of an electron in the
H atom Bohr model. The exact physical meaning of quark color, strangeness, and
isospin is not yet fully understood.
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11. Binosi D, Bernabéu J, Papavassiliou J (2005) The effective neutrino charge radius in the

presence of fermion masses. Nuclear Phys B 716:352–372
12. Barranco J, Miranda OG, Rashba TI (2008) Improved limit on electron neutrino charge radius

through a new evaluation of the weak mixing angle. Phys Lett B 662:431–435
13. Stuchlı̀k Z, Török G, Hledı̀k S, Urbanec M (2009) Neutrino trapping in extremely compact

objects: I. Efficiency of trapping in the internal Schwarzschild spacetimes. Class Quantum
Grav 26 035003

14. Chaturvedi K, Bipin SK, Kumar V (2012) Analytic calculation of neutrino mass eigenvalues.
Int J Theor Phys 51:622–628

15. Cropper WH (1972) Great physicists: the life and times of leading physicists from Galileo to
Hawking. Oxford University Press, Oxford

16. Okubo S (1962) Note on unitary symmetry in strong interactions. Prog Theor Phys 27:949–966
17. Chen Y, Ma B-Q (2009) Light flavor baryon spectrum with higher order hyperfine interactions.

Nuclear Phys A 831:1–21
18. Vayenas CG, Souentie S (2011) arXiv:1106.1525v2 [physics.gen-ph]
19. t’ Hooft G (2007) The making of the standard model. Nature 448:271–273



Chapter 5
The Equivalence Principle, Special Relativity,
and Newton’s Gravitational Law

5.1 The Weak Equivalence Principle

The equivalence principle has always played a central role in the development of
Physics and in our efforts to understand gravity.

The weak equivalence principle is the simplest and less demanding form of the
equivalence principle and states simply that inertial mass equals gravitational mass.
The first experimental observations leading eventually to the weak equivalence
principle can be traced back to John the Philoponus in the sixth century AD who
described correctly the negligible effect of different masses on the falling time of
dropping balls.

Some ten centuries later, in 1586, Simon Stevin had reached the same conclusion
by dropping lead balls of different masses off the Delft churchtower: All balls would
reach the ground simultaneously. Even today this remains the simplest experimental
way to check for the validity of the equivalence principle.

Around 1610 Galileo Galilei made similar observations upon rolling balls down
inclined planes. He found that they all fell simultaneously.

Galileo expressed his and previous observations in a few important lines: “The
acceleration of a test mass due to gravitation is independent of the amount of mass
being accelerated.”

This was a first expression of the weak equivalence principle and Isaac Newton,
adding his own experimental observations on the identical periods of pendulums
with different masses and identical length, proceeded to lay the foundations of the
gravitational theory in which the inertial and gravitational masses are identical.

Thus upon considering a falling body, with inertial mass mi, and upon using
Newton’s second law, it is:

F = mi
dv
dt

. (5.1)

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
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If the force acting on the body is the gravitational attraction of a second body
of mass Mg (e.g. the earth), then according to Newton’s universal gravitational law,
it is:

F = FG = G
mgMg

r2 . (5.2)

Upon combining with Eq. (5.1) one obtains:

mi

mg

dv
dt

=
GMg

r2 . (5.3)

A second falling body with inertial mass m′i and gravitational mass m′g will satisfy
the same equation, i.e.

m′i
m′g

dv’
dt

=
GMg

r2 . (5.4)

Since experiment shows that the acceleration of both particles is the same, it
follows that:

mi

mg
=

m′i
m′g

, (5.5)

i.e. the gravitational mass, passive or active, has to be proportional to the inertial
mass for all objects.

This leads to the following common expression of the weak equivalence prin-
ciple, also known as the universality of free fall: “The trajectory of a falling test
particle depends only on its initial position and velocity and is independent of its
composition and rest mass.”

The weak equivalence principle has been confirmed many thousands of times.
Most of the confirmations during the last century involve the torsion balance, first
designed in 1876 by the Hungarian Baron Loränd Eötvös. Using torsion balances
with aluminium and platinum test masses and measuring acceleration towards the
sun, it is now firmly established that any difference between gravitational and
inertial mass is less than one part in 1012 [1–3].

In summary, the weak equivalence principle is proven beyond any reasonable
doubt and has been at the center of Newtonian mechanics for more than three
centuries. This central position of the weak equivalence principle has never been
challenged after the introduction and wide acceptance of special relativity and of
relativistic mechanics. The development by Einstein of the gravitational theory of
general relativity has also never challenged the validity of the weak equivalence
principle. In fact the weak equivalence principle is always considered as one of the
cornerstones of the theory of general relativity.

Before proceeding to discuss the two other and stronger versions of the
equivalence principle, i.e. the Einstein equivalence principle and the strong equiva-
lence principle, it is useful for our analysis and subsequent synthesis to first discuss
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special relativity, the theory first published by Einstein in 1905 [4–6]. There are two
reasons for this:

• First because special relativity, like the weak equivalence principle, has been
confirmed experimentally many thousands of times and there can be no reason-
able doubt about its exact validity.

• Second because the synthesis of special relativity and of the weak equivalence
principle creates some fascinating possibilities which have not been yet fully
exploited. The reason we believe is that the general relativity theory, which is
one but not the only theory of gravity, was developed by Albert Einstein only 10
years after his pioneering special relativity paper.

With such a powerful theory for gravity as general relativity, published in 1916
[7, 8] and first tested in 1919 [9], very few researchers would invest in examining
what other possibly simpler and perhaps to some extent similar approaches may
result from the synthesis of special relativity and of the equivalence principle, which
is a key theme of the present book.

5.2 Special Relativity

It was in 1905 that Albert Einstein published his famous paper “On the
electrodynamics of moving bodies” [4] and presented the foundations of Special
Relativity on the basis of two very simple and very powerful postulates:

1. All physical laws valid in one frame of reference, S, are equally valid in any other
frame of reference, S′, moving uniformly relative to the first.

2. The speed of light (in vacuum) is the same in all inertial frames of reference,
regardless of the motion of the light source.

The second postulate is very counterintuitive at the beginning, but is firmly based
on the results of the famous and ingenuous Michelson–Morley experiments, which
established that the ether does not exist.

5.2.1 Implications of the Special Relativity:
Length Contraction and Time Dilation

We consider two inertial frames, S and S′. The latter has a velocity, v, relative to
frame S as measured in S. For simplicity one may consider that S is the frame of a
laboratory observer.

A key aspect of special relativity are the Lorentz–Einstein transformations
[10, 11].
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Table 5.1 Lorentz–Einstein
transformations x′ = γ(x−vt) x = γ(x′+vt ′)

y′ = y y = y′

z′ = z z = z′

t ′ = γ(t−vx/c2) t = γ(t ′+vx′/c2)

where γ is the Lorentz factor, i.e. γ = (1−v2/c2)−1/2

and v is the velocity of S′ as measured in S

A first and striking result is that length, e.g. of an object, and time interval as
measured in frame S (denoted �(= x2 − x1) and Δt(= t2 − t1) respectively) are
different from those measured in frame S′ (denoted �′(= x′2− x′1) and Δ t ′(= t ′2− t ′1)
respectively).

Thus it follows from Table 5.1 that

x′1 = γ(x1−vt1), (5.6)

x′2 = γ(x2−vt2), (5.7)

and therefore considering two measurements of the distance for t1 = t2 it is

�′ = x′2− x′1 = γ(x2− x1) = γ�. (5.8)

Since γ ≥ 1 Eq. (5.8) describes length contraction, i.e. the observer at S perceives
a length which is shorter than that perceived in frame S′ where the body actually
resides.

An equally interesting result is obtained for time interval Δ t. Considering two
events corresponding to two different readings of the clock, t ′1 and t ′2, at the same
point x′o = x′1 = x′2 in frame S′, one obtains from Table 5.1:

t1 = γ(t ′1 +vx′o/c2) (5.9)

t2 = γ(t ′2 +vx′o/c2) (5.10)

and thus
t2− t1 = γ(t ′2− t ′1) (5.11)

i.e.
Δt = γΔt ′. (5.12)

This is usually referred to as time dilation, i.e. the time interval measured in S
between two events taking place in S′, is the longest.

Thus it follows by observing Eqs. (5.8) and (5.12) that the measured length of
a body is greater in its rest frame than in any other frame while the time interval
between two events is the shortest in the rest frame where the two events take place.

One way to memorize these observations is to remember that the laboratory
observer S always perceives that events in S′ proceed too slowly (short distances,
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�, are covered and actually this takes long time intervals Δt). On the contrary an
observer in S′, where the body actually resides, perceives a very busy environment,
i.e. long distances are covered in short time intervals. This is common practice
among humans too, who commonly perceive that they (in S′) live in a busy
environment while others (in S) think that the people (in S′) enjoy a much slower
pace of life.

5.2.2 Transformation of Velocities

Once the Lorentz transformations for distance and time have been obtained, one can
extract the time derivatives of displacement as measured in the two different inertial
frames.

We define by x the direction of relative motion of the two reference frames and
we use Cartesian coordinates with y and z axes perpendicular to each other and to
the direction x. Since the transformations for the z direction can be obtained directly
from those for the y direction, we treat the vectors as if they have only x and y
components.

Starting from (Table 5.1):

x = γ(x′+vt ′) x′ = γ(x−vt) (5.13)

y = y′ y′ = y (5.14)

t = γ(t ′+vx′/c2) t ′ = γ(t−vx/c2) (5.15)

and considering, e.g., an object with velocity components ux′ , uy′ measured in S′,
i.e.

ux′ =
dx′

dt ′
; uy′ =

dy′

dt ′
(5.16)

one obtains after some simple algebra:

ux =
dx
dt

=
ux′+v

1+vux′/c2 ux′ =
ux−v

1−vux/c2 . (5.17)

uy =
dy
dt

=
uy′/γ

1+vux′/c2 uy′ =
uy/γ

1−vuy/c2 . (5.18)

Equations (5.17) and (5.18) represent the relativistic law of addition of two
velocities.

For example if we denote:

v = β1c, (5.19)

ux′ = β2c, (5.20)
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one obtains:
ux

c
= β =

β1 +β2

1+β1β2
(5.21)

or equivalently:

1−β =
(1−β1)(1−β2)

1+β1β2
. (5.22)

5.2.3 Accelerated Motions

Special relativity can deal not only with inertial motions, but also with accelerated
motions in a very straightforward manner [10, 11]. In this case the frame S is again
the laboratory frame and the frame S′ is an instantaneous inertial frame usually
taken to be moving together with the object under study with a velocity v relative to
the laboratory frame S.

The longitudinal and transverse accelerations with respect to the direction of
relative motion of the two inertial frames can be readily obtained starting from Eqs.
(5.17), (5.18), and (5.15), i.e.

ux =
ux′+v

1+vux′/c2 (5.23)

uy =
uy′/γ

1+vux′/c2 (5.24)

t = γ(t ′+vx′/c2) (5.25)

and differentiating at fixed instantaneous velocity v, i.e.

dux =
dux′

1+vux′/c2 −
[

ux′+v

(1+vux′/c2)2 ·
vdux′

c2

]

=
(1−v2/c2)dux′

(1+vux′/c2)2 =
dux′

γ2(1+vux′/c2)2

dt = γ(dt ′+vdx′/c2) = γ(1+vux′/c2)dt ′, (5.26)

which lead to:

ax ≡ dux

dt
=

dux′/dt ′

γ3(1+vux′/c2)3 . (5.27)

Consequently:

ax =
αx′

γ3(1+vux′/c2)3 . (5.28)
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If the particle under consideration is moving together with the instantaneous
frame S′, then it is u′x = 0 and Eq. (5.28) reduces to:

ax =
ax′

γ3 . (5.29)

This, as we shall see, is a very important result. The acceleration measured in
the laboratory frame S is γ3 times smaller than the acceleration measured in the
instantaneous frame S′.

Similarly from Eq. (5.24) one obtains:

duy =
duy′

γ(1+vux′/c2)
− uy′

γ(1+vux′/c2)2 ·
vdux′

c2 . (5.30)

Consequently

ay =
duy

dt
=

duy′/dt ′

γ2(1+vux′/c2)2 −
uy′

γ2(1+vux′/c2)3 ·
vdux′dt ′

c2 , (5.31)

and therefore:

ay =
ay′

γ2(1+vux′/c2)2 −
(vuy′/c2)ax′

γ2(1+vux′/c2)3 . (5.32)

If the body is instantaneously at rest in S′ then it is uy′ = ux′ = 0 and thus:

ay =
ay′

γ2 . (5.33)

Thus the acceleration components measured in the laboratory frame S are
decreased by a factor γ3 for the x direction and γ2 for the y direction in comparison
with the acceleration components measured in the instantaneous frame S′. The lab-
oratory observer sees that things are moving and accelerating very slowly regarding
the particle under consideration, and thus, to the extent that the force is invariant,
i.e. the same force is perceived in S and S′, then he/she is perceiving that the object
has a very large mass.

This becomes more clear in the next section.

5.2.4 Forces in Relativistic Mechanics

Similar to Newtonian mechanics, force in relativistic mechanics is defined as the
time derivative of momentum p, i.e.

F =
dp
dt

(5.34)
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and since p = γmov it follows:

F = mo
d(γv)

dt
. (5.35)

The common approach to the problem of the study of the relativistic motion of a
particle is the following: At any instant the particle has a well-defined velocity v as
measured in the laboratory reference frame S. The particle is being instantaneously
in a rest frame S′ which has the same velocity v with respect to the laboratory
frame S.

5.2.4.1 Force Invariance and the Inertial Mass

We imagine that as measured in frame S′, a test force Fox is applied parallel to
v causing an acceleration aox. Since the particle is at rest in S′ it follows that the
particle mass measured in this frame is just the rest mass mo. Consequently it is:

Fx′ = moax′ . (5.36)

In the laboratory frame S the particle is judged to have a momentum, px, given by:

px = γmov=
mov

(1−v2/c2)1/2
(5.37)

and consequently the force judged in S is given by:

Fx =
dpx

dt
=

mo

(1−v2/c2)1/2

dv
dt

+mov
d
dt

[
(1−v2/c2)−1/2

]
. (5.38)

Denoting ax = dv/dt, which is the acceleration observed in the laboratory, one
obtains:

Fx =
moax

(1−v2/c2)1/2
+

mo(v2/c2)ax

(1−v2/c2)3/2
, (5.39)

which upon collecting terms and using the definition of γ becomes:

Fx = γ3moax. (5.40)

There is, however, a very simple equation between ax and ax′ , i.e. Eq. (5.29)

ax =
1
γ3 ax′ . (5.41)

Consequently from (5.36), (5.40) and (5.41) it follows:

Fx = γ3moax = moax′ = Fx′ . (5.42)
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Fig. 5.1 Schematic of the two charged particles with rest mass mo, repelled by the Coulombic
force FC and attracted by the gravitational force FG. The figure shows the symmetry axis and two
reference frames S and S′. Inset summarizes the key [10, 11] relativistic relationships between the
observations in frames S and S′; γ3(r)mo is the longitudinal and inertial mass [11] at displacement
r; it is the mass judged in S. The same force value, F , is observed in both frames, but the two
observed accelerations, a′ and a, have a ratio of γ3 [10, 11]

This is a very important result. Despite the different values of mass and
acceleration perceived in the two frames, the measure of the x component of force
is the same. Force in the x direction is invariant.

As a result of (5.42) the mass of the moving particle perceived in S is a factor of
γ3 larger than the rest mass, mo, perceived in S′. A simple example involving linear
motion is shown in Fig. 5.1.

Returning to the more general case (Fig. 5.2) one observes that since the direction
x is that defined by the instantaneous velocity v and since the test force Fox is
also parallel to v, it follows that the instantaneous direction x is the only relevant
one for describing the motion. The vertical directions y (and z) are unimportant,
since neither the velocity v nor the force Fox have any nonzero components in these
directions. This is an important and subtle point: Regardless of the direction of the
actual force F causing the particle motion, when using the instantaneous frame S′
one can consider that the particle motion is due to the action of an instantaneous
force Fox parallel to v and that this can be done at any point of the actual particle
trajectory.

Consequently it is:

Fx = Fx′ = Fox (5.43)
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Fig. 5.2 Laboratory frame S
and instantaneous inertial
frame S′, the latter moving
with the particle under
consideration. The frame S′ is
uniquely defined by the
vector v alone regardless of
the motion (e.g. linear or
circular) performed by the
particle. The test force Fox is
applied parallel to the
instantaneous velocity v

and the instantaneous inertial mass of the particle, mi, in the direction x (or v) which
is the only direction relevant to the motion, is obtained directly from (5.42), i.e.:

mi =
Fx

ax
= γ3mo. (5.44)

This is an important and hitherto not fully exploited result: Regardless of the
actual motion performed by the particle, its inertial mass, mi, is always equal to
γ3mo.

But this being the case, it follows that due to the equivalence principle, the
gravitational mass, mg, must also equal mi, thus:

mg = mi = γ3mo. (5.45)

The very significant implications of Eq. (5.45) regarding Newton’s gravitational
law under relativistic conditions will be discussed in Sect. 5.4. It is useful here to
make some observations regarding Eq. (5.42).

For γ � 1 an observer at S′ perceives a small mass, mo, and a very large
acceleration ax′(= γ3ax).

More importantly, for γ � 1, the laboratory observer at S observes a very small
acceleration ax(= ax′/γ3) and a huge inertial mass, γ3mo.

Thus, due to the invariance of F [Eqs. (5.42) and (5.43)] it follows that, for
the laboratory observer, γ3mo is the inertial mass of a particle under relativistic
conditions, regardless of the actual motion that the particle is performing. For the
laboratory observer a particle in S′ moving on a circular path and having an
instantaneous velocity v is indistinguishable from a particle with the same rest mass
and velocity v moving on a straight line (Fig. 5.2).
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5.2.4.2 Transverse Forces

In order to appreciate the importance of the previous results and of the force
invariance Eqs. (5.42) and (5.43), it is worth making a similar calculation for the
transverse force in which case one finds that the invariance of Eq. (5.42) does not
hold. Thus one has to consider here a force, F , such that its y and z components
do not vanish because if they do, then the previous analysis is applicable. In the
instantaneous frame S′ it is in general:

Fy′ = moay′ . (5.46)

We focus on the case where the force, Fy, perceived in the laboratory frame S, is
applied perpendicular to the momentum vector mv and thus:

FyΔt = γmoΔuy. (5.47)

Therefore at the limit Δt→ 0 one obtains:

Fy = γmoay. (5.48)

We have already found [Eq. (5.33)] that ay and ay′ are related via:

ay =
ay′

γ2 (5.49)

and thus:

Fy = γmo
ay′

γ2 =
1
γ

moay′ . (5.50)

Consequently:

Fy =
1
γ

Fy′ , (5.51)

and therefore the force invariance condition does not hold.

5.3 Newton’s Universal Gravitational Law

The law of gravity was first presented by Newton in 1610. The gravitational
attraction is proportional to the product of the gravitational masses of the two
attracting bodies and inversely proportional to the square of the distance:

FG =−Gm1,gm2,g

r2 . (5.52)
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The gravitational constant G was first measured via torsion balances by
Cavendish around 1830 and the currently recommended value is 6.676 · 10−11 m3

kg−1s−2 [2, 3].
Do violations from Newton’s gravitational law exist? Equation (5.52) has been

confirmed down to submillimeter distances [1,12,13]. It is anticipated, but not really
proven, that deviations may exist at even shorter distances and that eventually the
gravitational force becomes of the same magnitude as the strong force at distances
of the order of the Planck length.

rPl =

(
Gh̄
c3

)1/2

= 1.616 ·10−35m. (5.53)

This has not yet been confirmed experimentally.
It is also anticipated in the context of general relativity, but also yet not proven

experimentally, that deviations from Newton’s gravitational law can exist under
highly relativistic conditions resulting from the curvature of spacetime [14–17].
In special relativity the spacetime geometry is described by the flat Minkowski
spacetime. By assuming that the actual spacetime geometry can be approximated by
a small perturbation of the flat Minkowski spacetime one may linearize the Einstein
field equations of general relativity and obtain [18]:

∇2ΦG = 4πGμ(x), (5.54)

where ΦG is a scalar gravitational potential, G is the Newton constant, and μ(x) is
mass density. This equation is equivalent to (5.52).

Thus in the context of general relativity significant deviations from Newton’s
gravitational law are anticipated for highly curved spacetime geometry. In dis-
cussing such deviations, however, there is an important point which has to be
clarified: Deviations from Newton’s universal gravitational law may be of two
kinds:

1. Genuine deviations, i.e. deviations observed despite the proper use of the
gravitational mass mg(= mi = γ3mo) in Eq. (5.52).

2. Artificial deviations obtained by the inappropriate use of rest mass, mo, or
relativistic mass, γmo, in Eq. (5.52). This point does not appear to have been
discussed in the literature and, to the best of our knowledge, no genuine
deviations from Newton’s gravitational law under relativistic conditions have
ever been reported.

5.4 The Synthesis of Newton’s Gravitational Law,
Equivalence Principle, and Special Relativity

Before embarking to discuss possible genuine or artificial deviations from the
classical universal Newton’s gravitational law due to the theory of general relativity
or other gravitational theories, it appears worthwhile to examine what deviations
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may be anticipated on the basis of the equivalence principle and Special Relativity
alone, since we know that these two principles have never been challenged and have
been experimentally confirmed beyond any possible doubt.

Thus, according to the weak equivalence principle, gravitational mass equals
inertial mass, i.e.

m1,g = m1,i; m2,g = m2,i (5.55)

and thus Newton’s gravitational law is written as

FG =−G
m1,im2,i

r2 . (5.56)

On the other hand we have already shown in Sect. 5.2, Eq. (5.42), that the
inertial mass, mi, perceived by the laboratory observer, i.e. the ratio of force Fx

and acceleration ax is given by:

mi = γ3mo. (5.57)

Consequently Newton’s gravitational law takes the form:

FG =−G
m1,om2,oγ3

1 γ3
2

r2 , (5.58)

where γ1 and γ2 are the Lorentz factors corresponding via:

γ1 = (1−v2
1/c2)−1/2; γ2 = (1−v2

2/c2)−1/2 (5.59)

to the velocities, v1 and v2, of the two particles under consideration relative to the
laboratory observer S.

For v1 = v2, thus γ1 = γ2, Eq. (5.59) becomes

FG =−G
m1,om2,oγ6

r2 . (5.60)

Is this a genuine deviation from Newton’s gravitational law, i.e. from the form
valid for low particle velocities relative to the observer?

FG =−Gm1,om2,o

r2 . (5.61)

The answer is clearly negative. The deviation is artificial and is introduced via
the inappropriate use of rest mass rather than gravitational mass in Eq. (5.52). When
using Eq. (5.60) the mathematical and physical essence of Newton’s gravitational
law and of the equivalence principle remain untouched, but the gravitational force
increases dramatically as v approaches c and thus becomes unbound.
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In fact the gravitational force described by (5.60) can exceed the magnitude
of any other force for sufficiently high particle velocity and thus sufficiently high
Lorentz factor γ .

Once Eq. (5.60) is derived and accepted, then the rest of the hadron formation
model described in this book is a simple algebraic exercise.

But objecting equation (5.60) implies objecting one of the three thoroughly
proven by experiment cornerstones of mechanics and physics, i.e.

1. The equivalence principle
2. Special relativity
3. Newton’s universal gravitational law at low particle velocities

Why has this equation not been derived or used before? One can think of several
reasons but perhaps the most plausible one is that after 1920 gravity related research
has been dominated almost entirely by the theory of general relativity where the
concepts of force and velocity lose a lot of the importance they have in Newtonian
and relativistic mechanics. It is not obvious how Eq. (5.60) can be derived in the
context of the general relativity theory of gravity. On the other hand to the extent that
the general relativity theory encompasses both special relativity and the equivalence
principle, then it should also in principle contain Eq. (5.60) as a limiting case. This
point is discussed in Sect. 7.3.

The basic question is how does the general relativity theory cope with the effect
of particle velocity on the gravitational attraction exerted between two particles.
It appears to be commonly thought that this can be done by considering that the
mass of the two particles is equal to their relativistic mass γmo. This however cannot
be the case, since as already noted, special relativity dictates that the inertial mass,
mi, equals γ3mo and the equivalence principle dictates that the inertial mass, mi,
equals the gravitational mass, mg, thus implying that γ3mo rather than γmo is the
gravitational particle mass, mg, to be used under relativistic conditions.

This appears to imply that the appropriate mass to be used in the field equation of
general relativity is neither the rest mass mo, nor the relativistic mass γmo but rather
the inertial and thus gravitational mass γ3mo.

One may thus conclude that with this, apparently unavoidable, choice of
gravitational mass the rotational neutrino model analyzed in this book can be
accommodated within the theory of general relativity, a point further discussed in
Sect. 7.3 of Chap. 7.

5.5 Einstein’s Equivalence Principle and Strong Equivalence
Principle

For reasons of completeness we present also here briefly the two stronger versions
of the equivalence principle, i.e. the Einstein equivalence principle and the strong
equivalence principle. Since both of these versions accept the validity of the weak
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equivalence principle, i.e. that gravitational mass equals inertial mass, they do not
affect the model and results presented in this book in any direct or indirect way,
except that they demand the constancy of the natural constants in space and time, an
assumption inherent in this model and in the vast majority of physical models.

The Einstein equivalence principle accepts the validity of the weak equivalence
principle and additionally demands that “the outcome of any local non-gravitational
experiment in a freely falling laboratory is independent of the velocity of the
laboratory and its location in spacetime.” The term “local” implies that there is no
part of the experiment taking place outside the laboratory. The Einstein equivalence
principle implies that dimensionless quantities such as the proton to electron mass
ratio and the fine structure constant do not depend on where in space and time they
are measured.

The strong equivalence principle demands the validity of the weak equivalence
principle expressed in the form “the gravitational motion of a small test body
depends only on its velocity and initial position in spacetime and not on its
constitution” and also that “the outcome of any local experiment, gravitational or
not, in a freely falling laboratory is independent of the velocity of the laboratory
and its location in spacetime.” This is the only form of the equivalence principle
which is applicable to self-gravitating bodies, such as stars, which have strong
internal gravitational interactions. The strong equivalence principle demands that
Newton’s gravitational constant G is also constant in spacetime. Estimates obtained
from orbits in the solar system and from studies of big bang nucleosynthesis suggest
that this version of the principle is also valid, as G cannot have varied by more than
10% after the big bang.

5.6 Synopsis

Both special relativity and the weak equivalence principle have been confirmed
thousands of times by experiment. Their exact validity has never been challenged.
Yet their straightforward combination leads to the surprising result that the inertial
and thus gravitational mass of a particle with a velocity v relative to a laboratory
observer is γ3mo. Thus for v approaching the speed of light, c, the Newtonian
gravitational force between two such particles becomes stronger than any other
force, including the Coulombic force. This can lead to particle, e.g. neutrino,
confinement in rotational orbits with relativistic velocities, as analyzed in the next
chapter.
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Chapter 6
The Three and Two Rotating Neutrino Models:
Particle Confinement by Gravity

6.1 Requirements for a Satisfactory Hadron Formation
Model

A satisfactory model for hadron formation should fulfil several requirements:

1. It should involve three constituent particles for the case of baryons (protons,
neutrons, etc.) and two constituent particles for the case of mesons. The
presence of these constituent particles was first deduced experimentally from
inelastic hadron–electron scattering experiments (Fig. 4.1). These constituent
particles are known as quarks, a term first introduced by Gell–Mann. The term
partons had been introduced earlier by Feynmann for the same particles.

2. It should provide an explanation about why quarks (whose masses are estimated
to be in the 4–400 MeV/c2 range vs 938.272 MeV/c2 for the proton) cannot be
isolated and studied independently.

3. It should provide a binding mechanism for quarks which are currently consid-
ered to be held together by the exchange of gluons. This binding mechanism is
the cause of the strong force.

4. This binding mechanism should be able to explain both asymptotic freedom
and color confinement, i.e. the fact that the strong force is weak at very
short distances (<1 fm, asymptotic freedom) and increases dramatically with
increasing distance, thus causing quark confinement.

5. It should be able to predict that the strong force is roughly a factor of
α−1(≈137.035) stronger than the Coulombic force in the fm distance range.
The constant α(= e2/εch̄) is the fine structure constant.

6. It should be able to predict that the condensation of these constituent particles
(quarks and gluons) to form hadrons, occurs at a temperature termed QCD
quantum chromodynamics transition temperature of ∼ 160–220 MeV in the
kT scale which correspond to an individual constituent particle energy of
about 160–220 MeV at the QCD condensation transition. This energy is also
frequently termed QCD scale.

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
DOI 10.1007/978-1-4614-3936-3 6, © Springer Science+Business Media, LLC 2012
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7. It should predict the existence of excited states and of the baryon mass
spectrum, i.e. the existence of Λ , Ξ , Ω etc. particles.

8. The model should also be able to predict hadron magnetic moments in the±2−
3 μB (nuclear magnetons) range, i.e. in the range of ±10−26 J/T.

9. It should also be consistent with the experimental hadron spins of 1/2, 3/2
etc. [1].

10. The magnitude of the dipole moments, L, of the hadrons and all their excited
states should be of the order of h̄(mB/MeV )2 [1].

11. The lifetimes (fast decay) of the unstable baryons should be around 5 ·
10−24 s [1].

12. Ideally such a model should also provide a mechanism for mass generation,
i.e. a mechanism for baryosynthesis or, equivalently, for hadronization, i.e. a
rationalization about how the mass of baryons and other hadrons, and thus the
mass of our universe was created starting from some initial conditions involving
practically no mass and only high, very high, energy.

It will be shown that all these requirements are met, without any adjustable
parameters, by the model presented in this chapter.

6.2 The Inertial and Gravitational Mass of Fast Neutrinos

During the last two decades the study of neutrino oscillations [2, 3] has shown
conclusively that all the three types, or flavors, of neutrinos (νe,νμ ,ντ ) have small
but nonzero rest masses [1–3]. While neutrinos have very small rest masses (∼0.04
to 0.4 eV/c2) [1–3] they have typically quite large (as high as 200 MeV) total
energies [2, 3]. This implies that their velocities are very near the speed of light
and that their Lorentz factors γ(= (1−v2/c2)−1/2) are very large. Since the total
energy, E , is related to the rest mass, mo, via the Einstein equation:

E = γmoc2 (6.1)

it follows, as an example, that for E = 200 MeV and mo = 0.04 eV/c2 it is γmo =
200 MeV/c2 and thus γ = 5 ·109.

On the other hand, we have seen that special relativity dictates that when a
particle moving on an instantaneous frame S′ has a velocity v and concomitant
Lorentz factor γ relative to a laboratory observer in a frame S, then the inertial mass,
mi, equals γ3mo [4, 5]. This is obtained after some simple algebra from [4, 5]:

F =
dp
dt

=
d(γmov)

dt
= γ3mo

dv
dt

, (6.2)

where p is the momentum.
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However, according to the equivalence principle, the inertial mass, mi, of a
particle equals the gravitational mass, mg [6, 7], and thus one obtains:

mg = mi = γ3mo. (6.3)

Upon substituting the above values, i.e. γ = 5 · 109 and mo = 0.04 eV/c2, one
finds:

mg = mi = 5 ·1018 GeV/c2 (6.4)

which, surprisingly, is almost half of the value of the Planck mass [6], i.e. 1.221 ·
1019 GeV/c2 (= 2.177 · 10−8 kg). Since the magnitude of gravitational and strong
forces are expected to merge at energies close to the Planck energy, 1.221 ·1019 GeV,
it is reasonable to expect that the gravitational force between such fast neutrinos in
the f m range can be quite significant, perhaps comparable in magnitude with the
strong force at the same distance, and thus can lead to the creation of very strongly
bound confined states.

Indeed one can compute as an example that the gravitational potential energy, Vg,
of two such fast moving particles when they are at a distance of 1 fm is:

Vg =−
Gm2

g

r
=−5.30 ·10−12 J =−33.09MeV, (6.5)

whereas for comparison the Coulombic potential energy of a u and a d quark at the
same distance is:

Vc =− (2/3)(1/3)e2

εr
=−5.126 ·10−14 J =−0.32MeV, (6.6)

i.e. the gravitational interaction is, surprisingly, a factor of 100 stronger than the
Coulombic interaction.

Since the strong force interaction between quarks is estimated to be a factor of
α−1(= 137.035) stronger than the Coulombic interaction at the f m range [1, 6, 8]
it follows that the magnitude of the gravitational force between fast neutrinos,
when accounting for special relativity and for the equivalence principle, can be
comparable to the magnitude of the strong force at the f m range.

This result is at first surprising but stems directly from special relativity, i.e.
Eqs. (6.2) and (6.3), from the weak equivalence principle of Eötvös and Einstein [6]
[Eq. (6.4)], and from Newton’s gravitational law, without making any assumptions.

It thus becomes interesting to examine what type of bound states such a powerful
attractive force can create.

6.3 The Three-Neutrino Model

We thus examine the circular motion of three neutrinos (e.g. three electron neutrinos
or antineutrinos) on a circle of radius R (Fig. 6.1) under the influence of their
gravitational attraction.
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Fig. 6.1 Three particles
moving at a constant
tangential velocity, v, in a
circle of radius R around their
center of mass. They are
equally spaced. F12 and F13
are two particle attraction
forces and FG is the resultant,
radial, force

6.3.1 Equivalence Principle and Inertial Mass

It is important to first examine if Eq. (6.3) for the particle inertial and gravitational
mass, i.e. mg = mi = γ3mo, obtained first via Eq. (5.40) or (5.42) or (6.2) for linear
particle motion, is also applicable when the particle performs a circular motion.
This important point was proven already in Sect. 5.2.4.1, but it is perhaps useful to
provide a similar, shorter and equally rigorous proof here.

We thus consider a laboratory frame S and an instantaneous inertial frame S′
moving with a particle with an instantaneous velocity v relative to frame S (Fig. 6.2).

It is worth noting that the instantaneous inertial frame S′ is defined by the vector
v alone and not by the overall type of motion (e.g. linear or cyclic) performed by the
particle [4, 5].

For the laboratory observer in S a particle in the instantaneous frame S′
performing a circular motion is indistinguishable from a particle of the same rest
mass mo and velocity, v, performing a linear motion (Fig. 6.2).

Thus one can assign to the frame S′ and corresponding velocity v an inertial
particle mass, mi, by considering a test force, F, parallel to v, acting on the particle.
According to the theory of special relativity the case where F and v are parallel is
the only case where the force is invariant, i.e. the force perceived in S and S′ is the
same [4].

Starting from the general relativistic equation of motion, i.e. from [4, 5]:

F =
dp
dt

= γmo
dv
dt

+ γ3mo
1
c2

(
v · dv

dt

)
v, (6.7)

and using the fact that the test force F is taken to be parallel to v, one obtains after
some simple algebra that the measures of the force, F , and of the acceleration, dv

dt ,
are related via:
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Fig. 6.2 Laboratory frame S
and instantaneous inertial
frame S′, the latter moving
with the particle under
consideration. The frame S′ is
uniquely defined by the
vector v alone regardless of
the motion (e.g. linear or
circular) performed by the
particle

F =
dp
dt

=
d(γmov)

dt
= mo

d[v(1−v2/c2)−1/2]

dt

= mo

[(
1− v2

c2

)−1/2

+
v2

c2

(
1− v2

c2

)−3/2
]

dv
dt

= mo

[
γ +

v2

c2 γ3
]

dv
dt

= mo

[
γ +
(

1− 1
γ2

)
γ3
]

dv
dt

= γ3mo
dv
dt

, (6.8)

which is Eq. (6.2).
This defines the mass γ3mo, frequently termed longitudinal mass [5], which is

the inertial mass of the particle, mi, which is always defined as the ratio of force and
acceleration [9]. Thus it is mi = γ3mo. According to the equivalence principle, mi

also equals the gravitational mass, mg, of the particle [6], i.e.:

mg = mi = γ3mo (6.9)

which is Eq. (6.3). As already noted, for given mo and v, the inertial mass mi, and
thus the gravitational mass mg are both uniquely determined by Eq. (6.9) and their
value does not depend on the type of motion (e.g. linear or circular) performed by
the particle.

Thus upon considering a second particle of rest mass mo and instantaneous
velocity measure v relative to the observer at S and at a distance r from the first
particle, it follows that the inertial and gravitational mass of the second particle is
also given by γ3mo, as in Eq. (6.9), and thus one can use these two mg values in
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Newton’s gravitational law in order to compute the gravitational force, FG, between
the two particles. Thus from:

FG =−Gm1,gm2,g

r2 , (6.10)

and from Eq. (6.9), one obtains:

FG =−Gm2
oγ6

r2 , (6.11)

which depends on the 6th power of γ [10] and accounts explicitly for the velocity
dependence of the inertial and gravitational mass. It is worth remembering that this
equation stems directly from special relativity [Eq. (6.8)], the weak equivalence
principle [Eq. (6.9)] and Newton’s gravitational law. No other assumptions are
involved.

Application of Eq. (6.11) to the circular motion of Fig. 6.1 gives after some
simple trigonometry:

FG =−Gm2
oγ6(R)√
3 R2

. (6.12)

6.3.2 The Classical Mechanical Problem

One may now consider the relativistic equation of motion [Eq. (6.7)] for the case of
a circular orbit of radius R. Since in this case due to the circular motion it is v · dv

dt = 0
the last term in Eq. (6.7) vanishes and thus one obtains:

F = γmo
dv
dt

(6.13)

and since for circular motion it is always
∣∣ dv

dt

∣∣= v2/R it follows:

F = γmo
v2

R
. (6.14)

Upon combining with Eq. (6.12) and F =−FG one obtains:

Gm2
oγ6(R)√
3 R2

=
γ(R)mov2

R
(6.15)

i.e., the gravitational force FG given by Eq. (6.12) acts as the centripetal force for
the rotational motion.

It must be noted that on the basis of (6.13) one might be tempted to assign
the value γmo, commonly termed transverse mass [4, 5], to the inertial and thus
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gravitational mass of each particle. However, as already noted, the mass mi(=
moγ3), and thus also mg is uniquely determined for given mo and v, via the colinear
to v test force F, and does not depend on the type of motion (e.g. linear or circular)
performed by the particle.

Upon utilizing γ(R) = (1−v2/c2)−1/2 in Eq. (6.15) one obtains:

R =
Gmo√

3 c2
γ5
(

γ2

γ2− 1

)
(6.16)

or, equivalently:

R = (RS/(2
√

3))γ5
(

γ2

γ2− 1

)
, (6.17)

where RS(= 2Gmo/c2) is the Schwarzschild radius of a particle with rest mass mo.
As shown in Fig. 6.3 bottom, the function R defined by Eq. (6.17) exhibits a

minimum, Rmin=2.343RS, at γmin=
√

7/5=1.1832 thus vmin=
√

2/7c. This is the
minimum radius for a circular orbit and the corresponding minimum angular mo-
mentum is Lmin=γminmovminRmin=1.481mocRS=2.963 Gm2

o/c. This condition,
i.e. L > 2.963 Gm2

o/c, is similar to the criteria L>Gm2/c found for circular orbits in
special relativity [10,11] or L > 2

√
3Gm2/c for the Schwarzschild metric in general

relativity [12] with orbits around point masses with r−1 potentials (Table 6.1).
Equation (6.17) defines two γ branches (Fig. 6.3), one corresponding to low γ

values (γ < 1.1832) the other corresponding to large γ values (γ > 1.1832). The
first branch corresponds to common Keplerian gravitational orbits. In this case γ
and thus the velocity v decreases with increasing R, e.g. v = (Gmo/(

√
3R))1/2 in

the nonrelativistic case (γ ≈ 1).
The second branch which leads to relativistic velocities defines rotational states

where γ and thus v increase with increasing R. These states with γ � 1 are the
states of primary interest to the present model. For γ � 1, e.g. γ > 102, Eq. (6.17)
reduces to:

R = (RS/(2
√

3))γ5; γ = (2
√

3)1/5(R/RS)
1/5. (6.18)

As shown in Fig. 6.3 top, γ reaches values of the order 7 ·109 for R values in the
f m (10−15 m) range. Thus for a neutrino mass of 5 · 10−2 eV/c2 (Sect. 4.2.2.4) one
observes that the relativistic mass, 3γmo, of the rotating neutrinos is of the order of
1 GeV/c2, as also shown in Fig. 6.3, top. The importance of this point is discussed
in the next section.

6.3.3 The de Broglie Wavelength Expression and Consistency
with Quantum Mechanics

We then proceed to identify among the infinity of bound rotational states described
by Eq. (6.18), each corresponding to a different R, those rotational states where R
is an integer multiple of the reduced de Broglie wavelength λ̄ (= h̄/p) of the light
rotating particles.
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Fig. 6.3 Plot of Eq. (6.17)
for R values up to 10−5 m
(top) and near the minimum
R, denoted Rmin (bottom).
The m axis is constructed
from m = 3γmo with
mo = 5 ·10−2 eV/c2

Table 6.1 Stability criteria for circular orbits

Special relativity L > Gm2/c (r−1 potential, [11] )
Special relativity L > 2.963 Gm2/c (present model, [10])
General relativity L > 3.46 Gm2/c (Schwarzschild metric, r−1 potential, [12])

Similar to the Bohr model of the H atom, this can be done by introducing
quantization of the angular momentum of the light particles in the form:
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L = γmoRc = (2n− 1)h̄. (6.19)

Solving for R one obtains:

R =
(2n− 1)h̄

γmoc
=

3(2n− 1)h̄
mc

, (6.20)

where m(= 3γmo) is the rest mass of the bound rotational state formed.
For n = 1 this is mathematically equivalent to assuming that the rotational radius,

R, equals the reduced (rotational) de Broglie wavelength, λ̄ , of the rotating neutrino.
In this way consistency with the “old quantum mechanics,” i.e. with the de Broglie
wavelength equation, is guaranteed.

Using the definition of RS(= 2Gmo/c2) one can thus introduce the ratio R/RS in
Eq. (6.20). It is:

R
RS

=
(2n− 1)h̄c

2γGm2
o

. (6.21)

This ratio is also given by Eq. (6.18), i.e.

R
RS

=
γ5

2
√

3
. (6.22)

Consequently from (6.21) and (6.22) one obtains:

γ6 =
31/2(2n− 1)h̄c

Gm2
o

= 31/2(2n− 1)
m2

Pl

m2
o
, (6.23)

or equivalently:

γ = 31/12(2n− 1)1/6 m1/3
Pl

m1/3
o

, (6.24)

where mPl = (h̄c/G)1/2 is the Planck mass. Recalling that the rest mass, m, of the
bound rotational state equals 3γmo one thus obtains:

m = 3γmo = 313/12(2n− 1)1/6m2/3
o m1/3

Pl (6.25)

and consequently the rest mass, m, of the rotational composite state has been
expressed in terms of the neutrino mass mo and of other natural constants. This
completes the solution of the three rotating neutrino problem.

6.3.4 Numerical Substitutions

Setting n = 1, mo = 0.04 eV/c2 and using mPl = 1.221 · 1019 GeV/c2 in Eq. (6.25),
one obtains:

m = 885.43MeV/c2 (6.26)
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which, surprisingly, is in the hadrons mass range and in fact differs less than
6% from the rest mass of the proton (938.272 MeV/c2) and of the neutron
(939.565 MeV/c2). Exact agreement with the neutron mass, mn, is obtained for:

mo = 0.043723eV/c2 = 7.7943 ·10−38kg, (6.27)

which corresponds via Eq. (6.24) or, easier via the first equation (6.25), i.e.
m = 3γmo, to:

γ = γn = 7.163 ·109, (6.28)

where we use the subscript n to denote that this specific γ value corresponds to the
formation of a neutron.

The mo value presented in Eq. (6.27) is the value computed from Eq. (6.25) for
n = 1, which is assumed to correspond to a neutron, i.e.:

mo =
(mn/3)3/2

31/8m1/2
Pl

. (6.29)

The thus computed mo value is in quite good agreement with the current best
estimate of mo = 0.051(±0.01)eV/c2 for the mass of the heaviest neutrino [2]
extracted from the Super-Kamiokande data [2]. As discussed in Chap. 4 this value
is computed from the square root of the

∣∣Δm2
23

∣∣ value of 2.6(±0.2)×10−3(eV/c2)2

extracted from the Super-Kamiokande data for the νμ ←→ ντ oscillations [2].
Actually as shown in Fig. 6.4 the mo value of 0.043723 eV/c2 [Eqs. (6.27)

and (6.29)] practically coincides with the currently computed maximum neutrino
mass value both for the normal mass hierarchy (m3�m2 > m1) and for the inverted
hierarchy (m1 ≈ m2�m3) [3].

This is also shown in Fig. 6.5 which compares Eq. (6.27) with the Super-
Kamiokande data in terms of the effective neutrino mass mν [3].

With this mo value Eq. (6.25) can also be written as:

m = (2n− 1)1/6mn, (6.30)

where mn is the neutron mass. As shown already in Fig. 4.8 this expression is also in
very good agreement with experiment regarding the masses of baryons consisting
of u, d, and s quarks [1, 13] which follow the (2n− 1)1/6 dependence of Eq. (6.30)
with an accuracy better than 3% [10]. This is shown more clearly in Table 6.2.

A summary of the rotating neutrino model presented in this chapter is given in
Table 6.3. The model is in retrospect quite simple.
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Fig. 6.4 The three light
neutrino masses as a function
of the lightest mass for the
normal (top plot) and inverted
(bottom plot) hierarchy,
reprinted from [3] and
comparison with Eq. (6.27) or
(6.29), i.e. mo =

(mn/3)3/2/(31/8m1/2
Pl ) =

0.043723eV/c2

Fig. 6.5 The observable
effective mass mνr as a
function of the lightest mass
for the normal (bottom) and
inverted (upper) mass
ordering [3] and comparison
with Eq. (6.27) or (6.29). The
currently allowed 3σ ranges
of the oscillation parameters
were used [3]. The estimated
detection limit of KATRIN is
also shown
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Table 6.2 Experimental [1] and computed [Eq. (6.30)] baryon masses

Experimental
Baryon mass value MeV/c2 mn(2n−1)1/6 n

N

{
p
n

938.272
939.565

939.565 1

Λ 1115.68 1128.3 2
Σ+

Σ o

Σ−

Δ

1189.37
1192.64
1197.45
1232

⎫⎪⎪⎬
⎪⎪⎭

1228.6 3

Ξ o 1314.8 1299.5 4
Ξ− 1321.3
Σ∗ 1385 1401.2 6
Ξ∗ 1533 1534.7 10
Ω− 1672 1665.3 16

6.4 The Two-Neutrino Model

Before proceeding to compare the properties of the bound three-neutrino states,
it is useful to also derive the corresponding equations for the two-neutrino model
(Fig. 6.6). In this case Eq. (6.15) takes the form:

Gm2
oγ6(R)
4R2 =

γ(R)mov2

R
(6.31)

and upon utilizing γ(R) = (1−v2/c2)−1/2 and the definition, RS = 2Gmo/c2, of the
Schwarzschild radius one obtains:

R =
Gmo

2c2 γ5
(

γ2

γ2− 1

)
(6.32)

or equivalently:

R = (RS/4)γ5
(

γ2

γ2− 1

)
. (6.33)

For γ � 1 this reduces to

R = (RS/4)γ5; γ = 41/5(R/RS)
1/5. (6.34)

Upon introducing quantization of angular momentum in the form:

L = γmoRc = (2n− 1)h̄, (6.35)

one obtains:

R =
(2n− 1)h̄

γmoc
=

2(2n− 1)h̄
mc

, (6.36)

where m(= 2γmo) is the rest mass of the bound rotational state formed.
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Table 6.3 Summary of the three rotating neutrino model

Using the definition of the Schwarzschild radius, RS = 2Gmo/c2, one can rewrite
Eq. (6.36) in the form:

R
RS

=
(2n− 1)h̄c

2γGm2
o

. (6.37)
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Fig. 6.6 Two-neutrino model

Upon combining with Eq. (6.34), i.e.

R
RS

=
γ5

4
, (6.38)

one obtains:

γ6 =
2(2n− 1)h̄c

Gm2
o

= 2(2n− 1)
m2

Pl

m2
o
, (6.39)

where mPl(= (h̄c/G)1/2) is the Planck mass. Recalling that m = 2γmo is the mass
of the bound rotational state it follows:

m = 27/6(2n− 1)1/6m2/3
o m1/3

Pl . (6.40)

Setting n = 1, mo = 0.043723 eV/c2 and using mPl = 1.221 · 1019 GeV/c2 one
obtains that γ = 7.337 ·109 and

m = 641.5MeV/c2, (6.41)

which interestingly lies in the meson mass range. Agreement with the π± mass of
139.57 MeV/c2 is obtained exactly with mo = 4.437 ·10−3 eV/c2 which is a factor of
9.85 smaller than the mo value of 4.3723 ·10−2 eV/c2 obtained from the baryon data
and which is exactly a factor of two smaller than the value of m2 = 8.88 ·10−3 eV/c2

extracted from the Kamiokande data (Fig. 4.4 top), i.e. from the Δm2
12 value of

7.9(±2.8) · 10−5(eV/c2). Since there are three types (or flavors) of neutrinos (ve,
vμ , vτ) it is possible that other combinations by two or by three neutrinos can lead
to the formation of various mesons and baryons, respectively.
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Interestingly there are ten combinations of (ve, vμ , vτ) neutrinos taken by three
and there are also ten baryons which do not contain a charm quark. Also there
are six combinations of (ve, vμ , vτ) neutrinos taken by two, and there are also six
pseudoscolar mesons and six vector mesons as already discussed in Chap. 4.

6.5 Summarizing Remarks

The three and two neutrino models presented in this chapter are rather simple and
contain no adjustable parameters. Figure 6.7 summarizes the physical model for
the three-neutrino case. The corresponding mathematical model presented in this
chapter is summarized in Table 6.3. It takes only ten simple algebraic equations to
reach the final result for the mass of the confined rotational state.

An interesting aspect of the three rotating neutrino model is presented in Fig. 6.8
which depicts the effect of the relativistic neutrino mass, γmo, on the inertial or
gravitational mass, γ3mo. Note that an eV/c2 scale is used for the relativistic
mass and a GeV/c2 scale is used for the gravitational mass. For γ = 1 the two
masses coincide (at mo = 0.043723 eV/c2). With increasing γ both masses increase
(due to the log–log scale the plot is linear) and when γmo reaches γnmo, i.e. one
third of the neutron mass (939.565 MeV/c2) and thus the mass 3γmo = 3γnmo of
the rotational three-neutrino state equals the neutron mass, then at this point the
inertial and gravitational mass, γ3mo, practically coincides with the Planck mass,
mPl = (h̄c/G)1/2 = 1.221 ·1019 GeV/c2. This very interesting result stems directly
from Eq. (6.24) which can be rewritten as:

γ3mo = 31/4(2n− 1)1/2mPl, (6.42)

i.e. for n = 1 the gravitational mass of each rotating neutrino differs less than 32%
from the Planck mass of the 1.221 · 1019 GeV/c2 or, equivalently, 2.1765 · 10−8 kg
or 21.765 μg. The Planck scale can apparently be reached by nature, in fact here in
our surroundings, much easier than usually thought.

Fig. 6.7 Schematic of the
three rotating neutrino model
with two of the three
corresponding model
equations, i.e. m = 3γmo and
Eq. (6.20) for n = 1. The third
model equation is Eq. (6.18),
which can be also rewritten as
R = Gmoγ5/(

√
3c2)
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Fig. 6.8 Effect of relativistic neutrino mass (γmo) on the inertial or gravitational neutrino mass,
γ3mo. When the latter reaches the Planck mass, the former reaches one third of the neutron mass

6.6 Synopsis

Gravity can confine three or two neutrinos in rotational states having the masses
of hadrons and mesons, respectively. This astounding result is obtained without
developing any new theory or using any adjustable parameters.

The analysis also provides a straightforward mechanism for baryosynthesis, or
more generally for hadronization: The baryon mass is due to 99.99999999% to the
kinetic energy of the rotating neutrinos. Only the remaining 10−8% corresponds to
the neutrinos mass.
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Chapter 7
Energy and Other Properties of the Rotational
States

7.1 Potential, Translational, and Total Energy
of the Neutrinos

In order to compute the gravitational potential energy of the rotating neutrinos in
the confined state, and thus also the system Hamiltonian, it is necessary to return to
the force expression (6.12) in Chap. 6.

Equation (6.18) can be used to eliminate R or γ in the force expression of
Eq. (6.12). In the former case (i.e. elimination of R) one obtains:

FG =−
√

3c4

γ4G
(7.1)

and thus, interestingly, for any fixed value of γ or R, the attractive force is uniquely
determined by the familiar G/c4 parameter of the gravitational field equations of
general relativity [1–3], i.e. Gik = (8πG/c4)Tik, which relates the Einstein tensor
Gik with the stress-momentum-energy tensor Tik [1–3].

In the latter case, i.e. elimination of γ , one obtains:

FG =−moc2

(
2
√

3
RS

)1/5
1

R4/5
. (7.2)

The force equation (7.2) refers to circular orbits only and thus defines a certain
conservative force, since the work done in moving the particles between two
points R1 and R2, corresponding to two rotational states with radii R1 and R2,
is independent of the path taken. The force vector direction is also defined, as it
is always pointing to the center of rotation and thus a conservative vector field is
defined which is the gradient of a scalar potential, denoted VG(R). The latter is the
gravitational potential energy of the three rotating particles when accounting for
their rotational motion and corresponds to the energy associated with transfer of the

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
DOI 10.1007/978-1-4614-3936-3 7, © Springer Science+Business Media, LLC 2012
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particles from the minimum circular orbit radius Rmin (Fig. 6.3) to an orbit of radius
of interest, R. The function VG(R) is obtained via integration of Eq. (7.2). Thus,
denoting by R′ the dummy variable, one obtains:

VG(R)−VG(Rmin) =

∫ R

Rmin

FGdR′

= −5moc2

(
2
√

3
RS

)1/5(
R1/5−R1/5

min

)
. (7.3)

Noting that Rmin = 2.343RS (Fig. 6.3) and that the value of the Schwarzchild
radius, RS, (= 2Gmo/c2) for neutrinos is extremely small (∼10−63 m) it follows that
for any realistic R value (e.g. above the Planck length value of 10−35 m) Eq. (7.3)
reduces to:

VG(R) =−5moc2(2
√

3)1/5(R/RS)
1/5. (7.4)

Thus while the magnitude of the gravitational force acting on the rotating
particles increases with decreasing radius, R [Eq. (7.2)], the absolute value |VG(R)|
of the gravitational potential energy increases with increasing R as shown by Eq.
(7.4). This behavior is reminiscent of asymptotic freedom [4–7], i.e. the attractive
interaction energy is small at short distances and increases significantly with
increasing distance R.

In view of Eq. (6.18), i.e. R/RS = γ5/(2
√

3), one can rewrite Eq. (7.4) as:

VG(R) =−5γmoc2. (7.5)

On the other hand the kinetic energy, T , of the three rotating neutrinos is:

T (R) = 3(γ− 1)moc2. (7.6)

Thus one may now compute the change, ΔH, in the Hamiltonian, H, i.e. in the
total energy of the system, upon formation of the rotational bound state from the
three originally free neutrinos. The Hamiltonian, H, is the sum of the relativistic
energy, E = 3γmoc2, and of the potential energy VG. The relativistic energy is
the sum of the rest energy, 3moc2, and of the kinetic energy T . Denoting by f and i
the final and initial states (i.e. the three free non-interacting neutrinos at rest and the
bound rotational state) and by (RE) the rest energy, one obtains:

ΔH = Hf−Hi

=
[
(RE)f +Tf +VG, f

]− [(RE)i +Ti+VG,i]

=
[
3moc2 + 3(γ− 1)moc2− 5γmoc2]− 3moc2

= ΔT +ΔVG =−(2γ + 3)moc2 ≈−2γmoc2, (7.7)

where the last equality holds for γ � 1 as is the case of interest here.
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Fig. 7.1 Plot of Eqs. (7.8),
(7.9), (7.10), and (6.20), the
latter for n = 1, showing the
dependence on rotational
radius, R, of the kinetic
energy, T , of the potential
energy ΔVG and of the
Hamiltonian (total energy)
ΔH. This is negative for all R,
indicating that the formation
of the bound state is exoergic
(ΔH< 0) and thus occurs
spontaneously. The total
energy, E, of the bound state
equals 3γmoc2 and thus
practically coincides with T
which equals 3(γ−1)moc2.
Note that the E vs R curve
exhibits both asymptotic
freedom (ΔVG,ΔH→ 0 for
R→ 0) and color confinement
(−ΔVG,−ΔH→ ∞ for
R→ ∞)

The same ΔH expression is, of course, obtained regardless of the choice of the
reference potential energy state. Thus in view of Eqs. (6.18), (7.4), (7.5), and (7.7),
one can summarize the dependence of ΔT , ΔVG, and ΔH on γ and R for γ� 1 as:

ΔT = T = 3(γ− 1)moc2 ≈ 3γmoc2 = 3moc2

(
2
√

3R
RS

)1/5

(7.8)

ΔVG =−5γmoc2 =−5moc2

(
2
√

3R
RS

)1/5

(7.9)

ΔH=−(2γ + 3)moc2 ≈−2γmoc2 =−2moc2

(
2
√

3R
RS

)1/5

. (7.10)

The negative sign of ΔH shows that the formation of the bound rotational state
starting from the three initially free neutrinos happens spontaneously, is exoergic
(ΔH< 0), and the binding energy BE(=−ΔH) equals 2γmoc2.

The dependence of T , ΔVG, and ΔH on rotational radius is shown in Fig. 7.1,
which also shows the reduced de Broglie wavelength of the rotating neutrino and
thus the radius of the rotational baryon state.
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7.2 Properties of the Bound States

7.2.1 Rest Energy and Binding Energy

As already noted [e.g. Eq. (6.25)] the total rest plus kinetic energy of the three
rotating particles equals 3γmoc2 and constitutes at the same time the rest energy,
mc2, of the composite particle formed, i.e. of the rotational bound state:

mc2 = 3γmoc2. (7.11)

It is useful to note that in the model the rest mass of the three particles, i.e.
3moc2, does not change when the bound state is formed. The transformation of
the kinetic energy of the three rotating particles into rest energy of the bound state
is associated with the change in choice of the boundaries of the system. In the
former case (three individual rotating particles) the boundaries are geometrically
disconnected and encompass each particle individually, in the latter case the system
boundary contains all three particles and the center of mass is at rest with respect
to the observer. Thus the formation of the bound rotating state by the three particles
provides a simple hadronization mechanism, i.e. generation of rest mass, m, starting
from an initial rest mass 3mo, according to Eq. (7.11).

It follows from (7.7) and (7.11) that:

BE =−ΔH= (2/3)mc2. (7.12)

Thus the binding energy per light particle is (2/9)mc2, which for m = mp =
938.272 MeV/c2, the proton mass, gives an energy of 208 MeV, in good qualitative
agreement with the estimated particle energy of 150–200 MeV at the transition
temperature of QCD [8] and in even better agreement with the QCD scale of
217± 25 MeV [9].

One may note here that since the potential energy expression (7.3) does not
depend on the number, N, of rotating particles but the kinetic energy, T, does, i.e.
N(γ − 1)moc2, it follows from (7.10) that, according to the model, stable rotational
states cannot be obtained for N > 5 since they lead to positive ΔH. The case N = 2
is interesting, as it leads to composite masses, m, in the range of mesons, i.e. in the
0.5 GeV/c2 range, as already shown in Sect. 6.4.

7.2.2 Radii and Lorentz Factors γ

The hadron radius computed from Eq. (6.20) for n = 1, i.e. from:

R(n = 1) =
3h̄

mnc
= 0.630fm (7.13)



7.2 Properties of the Bound States 89

equals three times the neutron Compton wavelength and is in very good agreement
with the experimental proton and neutron radii values which lie in the 0.6–0.7 fm
range.

For n > 1 the corresponding R(n) values can be computed from Eq. (6.20),
i.e. from:

R =
(2n− 1)h̄

γmoc
. (7.14)

By accounting for the γ dependence on (2n− 1) given by Eq. (6.24), i.e.

γ(n) = (2n− 1)1/6γ(n = 1) = 7.163 ·109(2n− 1)1/6, (7.15)

one obtains:

R(n) = (2n− 1)5/6R(n = 1) = 0.630(2n− 1)5/6 fm. (7.16)

The γ(n) values are in the range computed in the Sect. 6.2 for 200 MeV neutrinos.
The radii R(n) also lie, interestingly, in the range of hadron, e.g. proton or neutron,
radii.

7.2.3 Lifetimes and Rotational Periods

The period of rotation τ(n) of the neutrinos within the composite state, 2πR/v∼
2πR/c, is, using Eq. (7.16),

τ(n) = (2n− 1)5/6τp = (2n− 1)5/66.6 ·10−24 s, (7.17)

where τp = 2πRp/c = 6.6× 10−24 s is the rotation period for the proton or the
neutron. The time interval τ(n) provides a rough lower limit for the lifetime of
the composite particles, interpreted as baryons, as they can be defined only if the
neutrinos complete at least a revolution. Indeed all the known lifetimes of the
baryons are not much shorter than that estimate. The lifetime of the Δ baryons,
which is the shortest, is 5.6 ·10−24 s [10].

7.2.4 Spins and Charges

Neutrinos are fermions with spin 1/2 [10] and thus one may anticipate spin of 1/2 or
3/2 for composite states formed by three neutrinos. Indeed most baryons have spin
1/2 and some, as shown in Table 4.4, have spin 3/2 [10].

Several baryons are charged, e.g. the proton or the Ξ+. The differences in mass,
m, from their neutral brethren (i.e. the n or the Ξ o) is small and of the order of αm,
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where α(= e2/εch̄ = 1/137.0359) is the fine structure constant. Thus the rotating
neutrino model discussed here can describe with reasonable accuracy (e.g. Fig. 4.8
and Table 6.2) the masses of both neutral and charged baryons. However, since
neutrinos are electrically neutral, the question arises about how charged baryons
can be formed within the rotating neutrino model.

One possibility is that in the distant past charged neutrinos existed. Their stronger
interaction among themselves and with other particles led to their extinction via
formation of hadrons, mesons, and neutral neutrinos. A more likely explanation is
that neutral hadrons were first formed (e.g. neutrons) and then protons and electrons
were formed via the β -decay [10], i.e. n→ p+ + e−+ ν̄e, which has a half-life
of 885.7 s.

One can assume as an example that in the final state the charges of the constituent
particles are equal to those of u and d quarks, i.e. (2/3)e and −(1/3)e. This leads
as shown in the next section to very good agreement with experiment regarding
magnetic moments.

The Coulombic forces between charged particles with relativistic velocities
have been studied in detail [11, 12]. It is well established that Coulomb’s law
correctly gives the force on the test charge for any velocity of the test charge
provided the source charge is at rest [11,12]. In the simplified geometry of Figs. 6.1
or 6.7 the distance between the two particles remains constant, thus in the reference
frame of the source charge the test charge is also at rest, thus Coulomb’s law remains
valid without any relativistic corrections.

It is thus possible to estimate the Coulomb interaction energy between the
rotating particles. In the simplified geometry of Fig. 6.1 the total Coulomb potential
energy for the proton (assumed Standard Model charges 2/3, 2/3, −1/3) vanishes,
i.e. denoting ε = 4πεo one obtains:

VC,p =
e2

ε
√

3R
[(4/9)− (2/9)− (2/9)]= 0, (7.18)

while for the neutron (assumed Standard Model charges −1/3,−1/3, 2/3) it is
negative:

VC,n =
e2

ε
√

3R
[(1/9)− (2/9)− (2/9)]=− (e2/ε)

3
√

3R
, (7.19)

i.e. there is an overall attractive Coulombic interaction. Upon substituting R from
Eq. (7.14) for the case of the neutron (n = 1), one obtains:

VC,n =− e2

9
√

3εch̄
mpc2 =− α

9
√

3
mnc2 =−4.69 ·10−4 mnc2 =−0.44MeV/c2,

(7.20)

which confirms that the Coulombic interaction energy is negligible in comparison
with the relativistic gravitational interaction energy and is of the same order
of magnitude as the difference in the rest energies (∼1.3 MeV/c2) of neutrons
and protons.
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Nevertheless if the Coulomb interaction is taken into consideration, the symmetry
of the configuration of Figs. 6.1 or 6.7 is broken as not all three charges are the same.
Although the deviation from threefold symmetry is small, since the Coulombic
energy is small, and thus one may still use with good accuracy Eq. (7.20) to
estimate the attractive interaction between the three particles forming a neutron,
it is conceivable that this broken symmetry may be related to the relative instability
of the neutron (lifetime 885.7 s) vs the proton (estimated lifetime ∼1032 s [10]).

7.2.5 Magnetic Moments

It is interesting to compute the magnetic dipole moments, μ , of these bound
rotational states. Using the definition of μ(= (1/2)qRv) and considering the case
n = 1, corresponding to a proton (which is a uud baryon) with charge 2e/3 for u and
−e/3 for d it is:

μp = (1/2)eRc [(2/3)+ (2/3)− (1/3)]= (1/2)eRc. (7.21)

Upon substituting R = R(n = 1) = 0.630 fm one obtains:

μp = 15.14 ·10−27J/T (= 3μN), (7.22)

where μN is the nuclear magneton (5.05 · 10−27 J/T). This value differs less than
8% from the experimental value of 14.10 ·10−27 J/T (i.e. 2.79 μN) [13].

Equivalently, the same result can be obtained by assuming that the three
constituents (partons) of the proton have charges 2e, −e and zero, or e,e and −e.
This point will be further addressed in Chap. 10.

In the above computation [Eqs. (7.21) and (7.22)] one assumes that the spin
vectors of the three small particles are parallel to the vector of rotation of the rotating
proton state. If one considers the neutron which is a udd particle and assumes that
the spin of one of the two d quarks is parallel with the rotation vector of the rotating
neutron state and the spins of the other two particles are antiparallel to the neutron
rotation vector, then one obtains:

μn = (1/2)eRc [(−2/3)+ (1/3)− (1/3)]=−(1/3)eRc, (7.23)

and upon substitution of R = 0.630 f m, one obtains:

μn =−10.09 ·10−27J/T =−2μN, (7.24)

which is in excellent agreement with the experimental value of−9.66 ·10−27 J/T(=
−1.913μN).

This good agreement seems to imply that the spin contribution of the light
particles to the magnetic moment of the rotating state is small and only the spin
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vector orientation (parallel or antiparallel to the baryon rotation vector) is important.
Thus other parton charge combinations which are consistent with zero total charge,
and with the experimental μn value, are of the type 0, −(1/3)e and (1/3)e. In this
case the spin vector of the positively charged parton is antiparallel to the vector of
rotation of the neutron state. This point is further discussed in Chap. 10.

7.2.6 Inertial Mass and Angular Momentum

As already noted in Sect. 6.5 and Fig. 6.8, it follows from Eq. (6.24) that in the case
of the neutron or proton (n = 1) the inertial and gravitational mass of each rotating
particle, γ3mo, is related to the Planck mass, mPl = (h̄c/G)1/2, via a very simple
equation, i.e.

γ3mo = 31/4mPl = 31/4
(

h̄c
G

)1/2

= 1.607 ·1019 GeV/c2, (7.25)

which provides an interesting direct connection between the Planck mass and the
rotating neutrino model. Gravity is generally expected to reach the level of the strong
force at energies approaching the Planck scale (∼1019 GeV) [14] which is in good
agreement with the model results [Eq. (7.25)].

It is worth reminding here Wheeler’s concept of geons [1, 2, 15, 16], i.e. of
electromagnetic waves or neutrinos held together gravitationally, which had been
proposed as a classical relativistic model for hadrons [1]. Similar to the present case
[Eq. (7.25)] the minimum mass of a small geon formed from neutrinos had been
estimated [1] to lie in the Planck mass range.

It is interesting to note here that when using the inertial or gravitational mass,
γ3mo, in the definition of the Compton wavelength, λc of the particle (= h/mc)
then one computes the Planck length (∼10−35 m), but when using the mass
corresponding to the total energy of the particles, 3γmo, then one computes the
proton Compton wavelength (∼10−15 m), which is close to the actual distance
between the rotating particles. This point is further discussed in Chap. 12 and its
figures.

Another positive feature of the model is that it is qualitatively consistent with a
central experimental observation about the strong force [17], i.e. that the normalized
angular momentum of practically all hadrons and their excited states is roughly
bounded by the square of their mass measured in GeV [17]. Indeed from Eqs. (6.19)
and (6.30) one obtains:

(L/h̄)/(m/GeV)2 = 1.13(2n− 1)2/3, (7.26)

which is in reasonable qualitative agreement with experiment for small integer n
values (Fig. 7.2).



7.2 Properties of the Bound States 93

Fig. 7.2 Comparison of
Eq. (7.26) for n = 1 and 2
with the data of Fig. 4.9, i.e.
with the experimental
dependence of the normalized
by h̄ angular momentum of
some hadrons and of their
resonances on the square of
their normalized by GeV
mass [17]

7.2.7 Gravitational Force

The strong force is generally estimated to be a factor of α−1(≈137.035) stronger
than the Coulombic force at distances of the order of 1 fm [10]. It is therefore
interesting to compute the gravitational force in the actual rotational states whose
radius, R, is given by Eq. (6.20), i.e.

R =
(2n− 1)h̄

γmoc
. (7.27)

From Eq. (6.14) and accounting for v≈ c one obtains:

−FGR = γmoc2, (7.28)

which is valid for any value of R. Combining with (7.27) which is valid only for
those R values which satisfy the angular momentum quantization condition (6.20)
one obtains:

−FGR2 = (2n− 1)h̄c, (7.29)

which using the definition of α(= e2/εch̄) can also be written as:

−FG =
(2n− 1)h̄c

R2 =
(2n− 1)α−1e2

εR2 . (7.30)
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Table 7.1 Properties of the bound state (with mo = 0.043723eV/c2)

Theory Experiment Neutrino model

Rest energy – 939 MeV 939 MeV
Binding energy 160–220 MeV – 208 MeV
Radius – 0.6–0.8 fm 0.630(2n−1)1/6 fm
Lifetimes and – 5.6 ·10−24 s 6.6 ·10−24(2n−1)5/6 s
rotational periods
Spins 1/2, 3/2 1/2, 3/2 1/2, 3/2
Magnetic moments – 14.10 ·10−27 J/T(p) 15.14 ·10−27 J/T

−9.66 ·10−27 J/T(n) −10.09 ·10−27 J/T
Inertial mass ∼1019 GeV/c2 ∼1019 GeV/c2 1.607 ·1019 GeV/c2

Angular momentum – (L/h̄)/(m/GeV )2 ≤ 1 (L/h̄)/(m/GeV )2

= 1.13(2n−1)3/2

This equation shows that the magnitude of the relativistic gravitational force at the
radius of the rotational state is a factor of α−1 (137.035) larger than the Coulombic
force between two unit charges at the same distance. Since this is known to be the
case for the strong force, it follows that the relativistic gravitational force behaves in
the same way as the strong force, i.e. its coupling constant in the rotational baryon
state is a factor of α−1 stronger than the Coulombic coupling constant.

7.2.8 Summary of the Comparison with Experiment

The satisfactory agreement between the three neutrino model and experiment is
shown in Table 7.1. The model presented in Chaps. 6 and 7 includes no adjustable
parameters and predicts very well in a semiquantitative and sometimes quanti-
tative manner all the important properties of light baryons, i.e. masses, binding
energies, radii, lifetimes, spins, charges, magnetic moments, and angular momenta.
The model also shows that the magnitude of the relativistic gravitational force at the
radius of the rotational state is a factor of α−1 (137.036) larger than the magnitude
of the Coulombic force at the same distance, i.e.

−FG/FC = α−1. (7.31)

This is in very good agreement with theoretical expectations and with experiment
[14], regarding the ratio of the magnitudes, i.e. of the coupling constants, of the
strong and the Coulombic forces in the f m range. This point is further discussed in
Chap. 12.
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7.2.9 Gravitational Constant

It is interesting to note that, given the values of mn and mo, one can use Eq. (6.29)
to derive a simple formula for the gravitational constant. Thus one obtains:

mPl =
(mn/3)3

31/4m2
o

(7.32)

and using the definition of the Planck mass (mPl = (h̄c/G)1/2) it follows:

G =
31/2m4

o

(mn/3)6 h̄c. (7.33)

Upon substitution (mo = 0.043723eV/c2, mn = 939.565MeV/c2, h̄ = 1.056 ·
10−34 Js, c = 2.997 · 108 m/s) one finds the experimental G value, i.e. 6.673 ·
10−11m3 kg−1 s−2 [13, 18, 19]. When more exact values of the mass mo become
known in the future, it is possible that Eq. (7.33) may provide more exact values of
G than those obtained currently via torsion balance measurements [13, 18, 19].

7.3 Energy-Curvature Dependence and General Relativity

Since the present Bohr-type model is based on the combination of special relativity
and the equivalence principle, which was the basis of the theory of general relativity,
it is worthwhile to explore if the simple mathematical equations of the present model
may have some similarity with some limiting form of the field equations of general
relativity.

Thus by using Eq. (6.18) to eliminate R in the force expression of Eq. (6.12) one
obtains:

FG =−
√

3
c4

γ4G
(7.34)

and thus, interestingly, for any given value of γ , and thus, via Eq. (6.18), for any
given value of R, the attractive force is uniquely determined by the familiar G/c4

parameter of the gravitational field equations of general relativity, i.e.:

Gik = 8π
(

G
c4

)
Tik, (7.35)

which relates the Einstein tensor Gik with the stress-momentum-energy tensor Tik

[1, 2, 20].



96 7 Energy and Other Properties of the Rotational States

Fig. 7.3 Plot of ΔVG vs R
from Eq. (7.9)

In view of Eq. (7.3) the force, FG, can also be expressed as:

FG =−dVG

dR
(7.36)

and thus combining with (7.34) one obtains:

dR =
γ4
√

3

(
G
c4

)
dVG. (7.37)

The actual dependence of VG and ΔVG on R, obtained from Eq. (7.9), was given in
Fig. 7.1 and is also shown in Fig. 7.3. For small variations in γ and thus R and VG

Eq. (7.37) gives:

ΔR =
γ4
√

3

(
G
c4

)
ΔVG. (7.38)

Upon comparing with the field equations (7.35) one observes that (7.38) is
similar to a limiting one-dimensional analogue of (7.35) with the change in radius,
or in curvature ΔR, being analogous to the spacetime curvature due to the presence
of mass and the change in gravitational energy, ΔVG, being analogous to the stress-
momentum-energy tensor Tik.
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7.4 Model Consistency with General Relativity:
Kerr Black Holes

During the last 30 years there have been some suggestions in the context of “strong
gravity” that hadrons can be viewed as microscopic black holes. Strong gravity is
a no-main-stream area of physics which assumes that the gravitational constant G,
which equals 6.673 ·10−11 m3kg−1s−2 [13, 18, 19], has a second value, of the order
of 1028 m3kg−1s−2 at very short distances [21]. This rather arbitrary assumption has
been considered as a viable alternative to QCD in the past [22]. It thus becomes
interesting to examine whether the rotational neutrino states obtained in Chap. 6
and corresponding to hadrons can be viewed as microscopic Kerr black holes.
That hadrons may be viewed as microscopic black holes is an idea studied from
a geometric general relativistic approach in the past [23] and also discussed again
more recently [24].

In general relativity the Kerr metric (or Kerr vacuum) is an exact solution of the
Einstein field equations and describes the geometry of spacetime around a rotating
body. The Kerr metric is often used to describe rotating black holes [1–3, 24].

A necessary condition for the existence of a solution and thus for the stability of
such a rotating black hole is that:

ρ < rs/2, (7.39)

where ρ is a characteristic length defined from:

ρ =
J

Mc
, (7.40)

where J is the spin angular momentum and rs is the Schwarzschild event horizon:

rs =
2GM

c2 . (7.41)

Thus the condition (7.39) is written as:

Jc
GM2 ≤ 1. (7.42)

In the case of equality, the black hole is termed extreme black hole.
When the rotating black hole is charged, the solution of the Einstein–Maxwell

equations is the Kerr–Newman metric and the black hole is stable for:

ρ2 ≤
(

GM2− q2

ε

)(
G
c4

)
. (7.43)
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In the present rotating neutrino model case it is:

M = γ3mo; GM2 = Gm2
oγ6 (7.44)

and thus inequality (7.42) becomes:

Jc
Gγ6m2

o
≤ 1. (7.45)

Upon using J = L = (2n− 1)h̄ from Eq. (6.19) one obtains:

(2n− 1)h̄c
γ6m2

oG
≤ 1. (7.46)

Upon introducing Eq. (6.23), i.e.

γ6 = (2n− 1)31/2
(

h̄c
G

)
/m2

o, (7.47)

one obtains:
(2n− 1)h̄c

31/2(2n− 1) h̄c
G G
≤ 1;

1

31/2
≤ 1, (7.48)

i.e. inequality (7.42) is satisfied, which implies that the confined neutral rotational
state corresponding to the baryon can be viewed as a stable Kerr black hole.

If the rotational state is charged, then substituting in (7.43) one obtains that an
additional constraint for the stability of the Kerr–Newman black hole is:

(q2/e2)≤ 31/2(2n− 1)α−1 (7.49)

which is again clearly satisfied in the model for any realistic q values, i.e. ±e or
±2e/3 or ±e/3. Thus one may view the rotational state also as a stable Kerr–
Newman black hole. This might provide an explanation for the extremely long
(∼1032 s) estimated lifetime of protons but cannot provide any rationalization for
the much shorter (885.7 s) lifetime of neutrons.

7.5 Synopsis

The three rotating neutrino model is in semiquantitative agreement with experiment
regarding the rest and binding energies, radii, lifetimes, spins, magnetic moments,
and angular momenta of baryons. The inertial and gravitational mass of the rotating
neutrinos practically coincides with the Planck mass. The relativistic gravitational
coupling constant is found to be a factor of α−1(137.035) larger than the Coulombic
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coupling constant, exactly as anticipated for the strong force in the Standard Model.
The rotating neutrino hadron states are not inconsistent with general relativity and
can indeed be viewed as Kerr or Kerr–Newman black holes, as suggested during the
last few decades. This however does not appear to provide any immediate additional
information regarding the properties of these states.
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Chapter 8
Gravitational Hadronization: How Mass Can
Be Produced from Gravity

8.1 The Generation of Rest Mass by the Kinetic Energy
of the Constituents of a Confined State

This section examines the changes induced in the total energy (Hamiltonian) of a
system as well as to its relativistic energy and rest mass for two cases: First when
a H atom is formed via the Coulombic attraction of a proton and an electron and
second when a rotational state corresponding to a baryon (neutron) is formed via
the relativistic gravitational attraction of three neutrinos.

The total energy, i.e. the Hamiltonian, H, of a system consisting of N particles
(i = 1,2, . . . ,N) is the sum of the total relativistic energy, E , and of the potential
energy of the system, V :

H= E +V. (8.1)

The relativistic energy, E , of the system is the sum of its rest energy, ∑mo,ic2,
plus its kinetic energy T , which equals ∑(γi− 1)mo,ic2, i.e.

E =
N

∑
i=1

mo,ic
2 +

N

∑
i=1

(γi− 1)mo,ic
2. (8.2)

Thus in the case of a H atom, neglecting the (rather small) kinetic energy of the
proton, we can write with good accuracy:

E = mpc2 +mec2 +(γe− 1)mec2 (8.3)

H= mpc2 +mec2 +(γe− 1)mec2 +Ve, (8.4)

where Ve is the electrostatic energy of the electron. Since v = αc, thus v� c, the
kinetic energy term reduces to (1/2)mev2 = (1/2)α2mec2. Also for the circular
orbit of the Bohr model it is Ve =−2T , thus one obtains:

E = mpc2 +mec2 +(1/2)α2mec2 (8.5)

H = mpc2 +mec2− (1/2)α2mec2. (8.6)

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
DOI 10.1007/978-1-4614-3936-3 8, © Springer Science+Business Media, LLC 2012
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In the initial state (a proton and an electron at rest and “infinite” distance), both
E andH equal (mp +me)c2, thus upon formation of the bound H atom state it is:

ΔE = (1/2)α2mec2(= T ) (8.7)

ΔH=−(1/2)α2mec2 =−13.6eV. (8.8)

Thus while the system Hamiltonian has decreased by 13.6 eV, and therefore the
formation of the H atom occurs spontaneously and is exoergic, i.e. energy is being
released, at the same time the relativistic energy of the system, ΔE , has increased
by the Bohr energy (1/2)α2mec2, which actually equals T , i.e. the kinetic energy of
the electron. Consequently for a laboratory observer who cannot detect the circular
motion, the apparent rest energy of the system has increased by (1/2)α2mec2.

Thus the rest energy increase is equal to the kinetic energy of the electron (or of
the proton–electron pair) in the confined H atom state.

Similar is the situation when a composite particle (in this case a hadron) is formed
by three light particles (in this case neutrinos).

In this case in the initial state, i.e. three noninteracting neutrinos at rest, it is
Eo =Ho = 3moc2 and upon formation of the bound state it is:

E = 3moc2 + 3(γ− 1)moc2 = 3γmoc2 (8.9)

H = 3γmoc2 +VG = 3γmoc2− 5γmoc2 =−2γmoc2, (8.10)

where in the last equation we have expressed VG via Eq. (7.5).
Thus again it is ΔH < 0, i.e. the reaction is exoergic and occurs spontaneously,

but at the same time it is ΔE > 0, i.e. the relativistic energy of the system increases.
Consequently for a laboratory observer the apparent rest energy increase is ΔE =
3(γ − 1)moc2. Thus again the rest energy increase equals the kinetic energy of the
three rotating particles. But in this case, when comparing this rest energy increase
with the rest energy of the initial state, the ratio is enormous. Thus the ratio of the
masses of the final and initial states is 1+(1/2)α2(≈ 1) in the case of the H atom
and is m/3mo(= 7.163 · 109) in the case of hadron formation. This is due to the
huge (= 7.163 · 109) value of γ in the rotational state. Thus in this case apparent
rest energy and apparent rest mass are generated simply by the action of gravity,
which causes particle confinement in a high kinetic energy, thus high γ value state.
According to this simple mechanism there appears to be no need to hypothesize the
action of a boson in order to rationalize the creation of rest mass.

The results are summarized in Fig. 8.1 and in Tables 8.1 and 8.2.
It is useful to define a parameter, ξ , which expresses the ratio of new mass created

divided by the initial mass, i.e.

ξ =
new mass created

initial mass
(8.11)

ξ + 1 =
final mass

initial mass
. (8.12)
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Fig. 8.1 Apparent mass generation mechanism during formation (a) of the H atom from a proton
and an electron (left) (b) of a neutral baryon (e.g. a neutron) from three neutrinos (right)

Table 8.1 Mass generation in H atom and Baryon formation

H atom Baryon

Initial rest mass mp +me 3mo

Final rest mass mp +me +(1/2)α2me 3γmo

Rest mass increase (1/2)α2mec2 3(γ−1)mo

Binding energy (BE) (1/2)α2mec2 2γmoc2

Potential energy of BSa −α2mec2 −5γmoc2

aBound state

Table 8.2 Rest, relativistic, inertial, and gravitational mass of the neutrino
constituents of baryons

Symbol Value

Rest mass mo 0.043723 eV/c2

Relativistic mass γmo 313.188 MeV/c2

Inertial mass or gravitational mass γ3mo 1.60692 ·1019 GeV/c2

Confined state baryon mass (n = 1) m = 3γmo 939.565 MeV/c2

Thus in the case of the H atom it is:

ξ =
(1/2)meα2

mp +me
≈ 1.45 ·10−8, (8.13)

while for the case of the neutron it is:

ξ =
3(γn− 1)mo

3mo
= γn− 1≈ 7.163 ·109. (8.14)
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This powerful means of mass generation is very simple and quite different from
other proposed mass generation schemes [1–5]. It is similar in its conclusions with
the QCD results of Dürr et al. [3] who showed that even if the quark masses
vanished, the baryon mass would not change much, a phenomenon sometimes called
“mass without mass” [4, 5].

8.2 Thermodynamics of Neutrino and Quark-Gluon Plasma
Condensation

The formation of a baryon by three neutrinos is an exothermic process, as already
discussed in Chap. 7. The potential energy, VG, decreases by 5γmoc2 [Eq. (7.9)], i.e.:

ΔVG =−5γmoc2 =−(5/3)mc2, (8.15)

where m is the baryon (neutron) mass. At the same time it is ΔT = Δ(RE) = (m−
3mo)c2 ≈ mc2 where ΔT is the increase in kinetic energy of the neutrinos upon
formation of the bound state and Δ(RE) = ΔT is the increase in rest energy of the
confined state. Consequently the total Hamiltonian energy change ΔH is given by:

ΔH = ΔT +ΔVG = mc2− (5/3)mc2 =−(2/3)mc2. (8.16)

Thus the binding energy per particle, −ΔH/3, is 208 MeV which is in good
agreement with the QCD scale of 217± 25 MeV.

The change in Helmholz free energy, F , can be computed from:

ΔF = ΔH−ΘΔS, (8.17)

where Θ is the absolute temperature in K and ΔS in the entropy change associated
with baryon formation from the three neutrinos. The sign of ΔS is negative, as three
translational degrees of freedom are being lost upon formation of the confined state.
Thus to a good approximation it is:

ΔS =−kbln3, (8.18)

where kb = 1.38 ·10−23 J/K = 8.617 ·10−5 eV/K is the Boltzmann constant.
Upon combining Eqs. (8.16), (8.17), and (8.18), one obtains that the free energy

vanishes, i.e. ΔF = 0, at:

kbΘcr =
(2/3)mc2

ln3
= 570.15MeV, (8.19)



References 105

where Θcr is the critical temperature corresponding to equilibrium between
condensed (i.e. confined) and free neutrinos. This temperature is similar to the
condensation temperature of the quark-gluon plasma [6–8].

Consequently the critical kinetic (thermal) energy per particle is:

Tcr = kbΘcr/3 = 190.05MeV, (8.20)

and consequently

Θcr = 2.206 ·1012 K. (8.21)

The above computed critical or condensation energy is in good agreement with
the predictions of the QCD Theory about the QCD transition energy and temperature
(i.e. 160–200 MeV) [6–10]. Consequently the predictions of the rotating neutrino
model are in good agreement with experiment both regarding the QCD scale and
the QCD transition energy and temperature.

8.3 Synopsis

The formation of bound rotational states by relativistic neutrinos provides a very
efficient mechanism for hadronic mass generation. The high neutrino kinetic energy
becomes the rest energy and thus the rest mass of the hadrons. There is a critical
particle temperature (∼ 2.2 ·1012 K) and equivalent energy (190 MeV) below which
this mass creating condensation can take place. These values practically coincide
with those of the transition temperature and transition energy of the QCD quark-
gluon condensation.
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Chapter 9
Model Comparison with the Main Experimental
Features of the Strong Interaction Force

9.1 Quarks, Gluons, and Color Charge

Within the standard model and quantum chromodynamics (QCD) baryons consist
of three quarks or antiquarks which are bound together by the strong force which is
mediated via the exchange of gluons. The magnitude of the strong force is dictated
by the color charge of quarks, antiquarks, and gluons. Quarks cannot be isolated
and studied independently due to confinement which is the property of the strong
force to become unbound as the distance between quarks increases (above ∼1 fm).
Another key feature of the strong force is asymptotic freedom which is the property
of the strong force to become very weak at very short distances [1, 2].

Furthermore, an important aspect of the standard model is the existence of
the Higgs boson which has mediated, via the Higgs mechanism, the creation of
matter [3–5].

It therefore becomes important to examine how the rotating neutrino model
discussed in this book can fit with these theoretical concepts (quarks, gluons, color
charge, Higgs bosons) and experimental observations (confinement, asymptotic
freedom).

An answer to these questions may have been reached already by the reader
after reading Chaps. 6–8. It is time now to try to formulate and summarize some
of these answers as they emerge from the rotating neutrino model and the very good
agreement between model and experiment.

A summary of such emerging possible answers is presented in Table 9.1
according to the rotating neutrino model in parallel with those of the Standard
Model. Some of these questions and answers are further discussed below.

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
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Table 9.1 Standard model for particles and neutrino model

Standard model Neutrino model

Force Strong force Relativistic gravitational force
Force expression – FG =−Gm1,gm2,g/r2

=−Gm1,om2,oγ3
1 γ3

2/r2 a

Hadron constituent Quark Fast neutrino
Property determining Color charge Inertial(=gravitational) mass γ3mo

the force magnitude
Mediating particle Gluon –
Predicted baryon mass (Model parameter) 939 MeV/c2

Neutrino mass zero 0.043723 eV/c2

a m1,g and m2,g are the gravitational, thus also inertial, masses of two bodies; m1,o and
m2,o are the corresponding rest masses and γ1 and γ2 are the corresponding Lorentz
factors computed from the velocities v1 and v2 of the two particles relative to the
laboratory observer

Table 9.2 Quark masses and relativistic rotating neutrino mass for n=1,2 and 3
(MeV/c2)

Relativistic neutrino mass,
Quark flavor Bare mass [6] Effective mass [6] γmo,from Eq. (6.25)

u 2 336 313.2 (n = 1)
d 5 340 376.1 (n = 2)
s 95 486 409.6 (n = 3)
c 1,300 1,550
b 4,200 4,730
t 174,000 177,000

Table 9.3 Masses of fast neutrinos

Rest mass mo 0.043723eV/c2

Relativistic massin a baryon for n = 1 γmo 313.2 MeV/c2

Inertial-gravitational mass in a baryon for n = 1 γ3mo 1.607 ·1019 GeV/c2

9.1.1 Quarks

Within the rotating neutrino model, quarks are just fast rotating neutrinos, caught on
circular or elliptical orbits via (relativistic) gravitation. This can explain:

a. Why there is a very large uncertainty about the masses of quarks and
antiquarks which range from a few (∼2–6) MeV/c2, called bare masses, to a
few hundreds (∼300–500)MeV/c2, called effective masses as already discussed in
Sect. 4.3 (Table 9.2, [6]).

According to the rotating neutrino model there are three masses to consider,
rest, relativistic, and inertial-gravitational, of which the last two are by far the most
important (Table 9.3).

The effective masses of u, d, and s quarks [6] appear to correspond to the
relativistic masses of the rotating neutrinos. It is also worth keeping in mind
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that there are three neutrino flavors (νe, νμ , ντ ) with different masses, so their
combinations can lead to a variety of hadrons with different gravitational masses
for their constituent components.

b. Why quarks cannot be isolated and studied independently: First, because
the rotating neutrinos are confined, i.e., the gravitational potential energy goes to
negative infinity with increasing radius of rotation [Eq. (7.4)].

Second, because if somehow a stable baryon is forced to decompose (e.g. via
extremely energetic γ-rays) the resulting single particles have lost their rotating
partners and thus the mechanism via which their large relativistic and gravitational
mass was sustained. If they lose their high kinetic energy, they are just neutrinos with
a rest mass ten billion times smaller than the baryon mass, thus in principle barely
detectable and in practice not detectable in synchrocyclotron hadron colliders [6–9].

9.1.2 Gluons

In the rotating neutrino model there is no need for the postulate of gluons. In the
context of the model, the strong force is just relativistic gravity (i.e. gravitational
attraction between relativistic particles) and if any mediator is really needed, this
would be the graviton. In a broad sense one may say that the gluon (i.e. the means
of binding quarks or partons and in reality neutrinos together) is just the high
speed of the rotating neutrino which, via the γ3 term, creates a huge inertial and
gravitational neutrino mass, i.e. γ3mo, which inside hadrons is in the Planck mass
range (∼1019 GeV/c2).

9.1.3 Color Charge

There is apparently no need for postulating a color charge in the rotating neutrino
model. The magnitude of the attractive strong force is determined by the magnitude
of the gravitational and inertial mass γ3mo. Thus in a broad sense the gravitational
mass γ3mo may be considered to have the same function as the color charge.

9.1.4 Confinement and Asymptotic Freedom

Within the rotating neutrino model, both confinement and asymptotic freedom are
described by Eqs. (7.9) and (7.10), i.e.

ΔVG = −5moc2

(
2
√

3R
RS

)1/5

(9.1)

ΔH = −2moc2

(
2
√

3R
RS

)1/5

. (9.2)



110 9 Model Comparison with the Main Experimental...

Fig. 9.1 Schematic of a
possible newly created
hadrons jet generation
mechanism via the approach
of two baryons leading to the
formation of a jet in a
direction perpendicular to the
hadrons motion

Equation (9.2) shows that the binding energy, −ΔH, is negligible for small R
values and becomes unbound with increasing R. The former is consistent with
asymptotic freedom, the latter is consistent with confinement.

9.1.5 Scattering Cross Sections and Hadron Jets

It is possible that the rotating neutrino model may also be able to provide some input
regarding the anomalous behavior exhibited by the elastic scattering cross sections
of polarized proton beams, i.e. depending on whether they are parallel or oppositely
polarized [10]. For example the cross section for parallel beams, i.e. polarized in the
same direction are up to a factor of four larger than that observed with oppositely
polarized beams in the 10 GeV scale [10]. This behavior has been attributed to
spin–torsion interactions in the context of supergravity models [10].

The rotating neutrino model may also provide a qualitative scheme to account
for the emission of jets of newly created hadrons when highly energetic hadrons are
forced to collide with each other, such as in the LHC experiments [8]. These jets
appear in a direction vertical to the direction of the colliding protons. This behavior
could be rationalized as follows: If two rotating neutrinos, one in each colliding
baryon, come close to each other, then the gravitational attraction between them
can become very large due to their high rotational velocity and small distance, r,
and in this way the two neutrinos may escape together in a direction vertical to the
direction of the colliding baryons (Fig. 9.1) as experimentally observed.
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9.2 Synopsis

It appears feasible to obtain a straightforward, one-to-one correspondence between
the key elements of the rotating neutrino model and the key elements of the Standard
Model regarding the structure and properties of baryons and those of the strong
force acting inside the baryons. It appears that quarks may be associated with
relativistic neutrinos, that gluons may be associated with the confining action of
the relativistic gravitational force, that color charge may be associated with the
relativistic gravitational mass, and that the strong force may be associated with
the relativistic gravitational force.
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Chapter 10
The Bohr–de Broglie Approach in Physics:
The Dual Nature of Matter

10.1 Merits

The successful description of the formation and of the major properties of baryons
by the deterministic three-neutrino model discussed in this book provides support to
the idea that the remarkable success of the Bohr [1–3] and Bohr–Sommerfeld model
[4, 5] for the description of the H atom was not coincidental.

It also provides support to the idea that the deterministic coupling of relativity
with the “old quantum mechanics” as expressed by the de Broglie wavelength
equation can be quite fruitful. This combination is based after all on the very old
conclusion that the corpuscular and ondular (wave) properties of matter are equally
important.

In essence the three-neutrino model for the description of baryons is the same as
the Bohr model for the H atom (Fig. 10.1), i.e. it consists of two parts:

1. A classical mechanical part which leads to an infinity of acceptable solutions.
2. The use of the de Broglie wavelength expression in order to ensure that the

solution chosen is consistent with the dual particle-wave nature of matter
(Table 10.1 and Figs. 10.2 and 10.3).

Using the de Broglie wavelength expression is mathematically equivalent to
assuming quantization of the action or of the angular momentum. It underlines the
dual, corpuscular, and ondular nature of matter.

Thus the only difference between the two models is in the treatment of the
special relativistic corrections to the Newtonian mechanics. These corrections are
negligible and of the order of α(≈ 1/137.035) in the case of the H atom, and are
quite important in the case of the three rotating neutrino model (Fig. 10.1).

The potential importance and usefulness of deterministic models in the study of
subatomic phenomena has been discussed repeatedly by Nobel Laureate G. t’ Hooft
in recent years [6–10]. Einstein himself had questioned several times whether
the quantum mechanical description of the physical reality can be considered
complete [11, 12] or whether some level of determinism may be necessary beneath

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
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Fig. 10.1 Conceptual basis
of the Bohr model for the H
atom and of the
three-neutrino model for the
formation of baryons

Table 10.1 Deterministic models for the formation of the H atom and of the neutron
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Fig. 10.2 Graphical solution of the two equations of the Bohr model, i.e. of the classical
mechanical equation v2 = e2/εmeR [Eq. (1.6)] and of the de Broglie wavelength equation, for
n = 1, v2 = h̄2/m2

e R2 [Eq. (1.9)]. The kinetic energy, T , is computed from T = (1/2)mev2, ao is
the Bohr radius h̄/meαc

the common probabilistic quantum mechanical description introduced by Born
[13]. This idea has led to Bohmian mechanics [14] which interpret the quantum
mechanical theory in terms of “hidden” deterministic variables [14]. Experiments
have repeatedly supported the deterministic views of Einstein [15].

The exact analogy between the Bohr model for the H atom and the present
Bohr–Einstein model for the neutron is shown in Table 10.1. In both cases the
Hamiltonian, H(= T +V ), is negative, thus the rotational state is stable. The mass
increase, Δ(RE) = Δmc2, equals in both cases the translational energy, T , in the
rotating state. Thus T is negligible (∼10−4 of the electron rest energy) in the
case of the H atom and very large, equal to the rest energy of the baryon formed
(939.565 MeV), in the case of the rotating neutrino model.

The great similarity between the two models can also be seen by comparing
Fig. 10.2 (Bohr model, as in Fig. 1.4) and Fig. 10.3 (three-neutrino model). In both
cases the model solution lies at the intersection of the de Broglie equation line with
the classical mechanics curve which is a straight line in the case of the Bohr model
(Fig. 10.2) and a more complex curve consisting essentially of two straight lines
in the case of the three-neutrino model (Fig. 10.3). This curve was first discussed
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Fig. 10.3 Graphical solution of the three-neutrino model equations, i.e. of the classical mechanical
equation (6.17) with its Keplerian (γ < 1.1832) and non-Keplerian (γ > 1.1832) branch, and of
the de Broglie wavelength equation (6.20). The energy or mass axis is obtained from the γ axis and
the Einstein equation E = 3γmoc2 = mc2

in Chap. 6 and is a plot of Eq. (6.17), also shown inside the figure. In both figures
the y-axis provides the kinetic energy of the particle(s) and thus the increase in rest
energy of the system. Thus in the case of the rotating neutrino model (Fig. 10.3)
one observes how the energy E = 3γmoc2 and thus the mass 3γmo of the rotating
system varies with varying R in view of Eq. (6.17), shown in the figure, which,
as already discussed in Chap. 6, describes both Keplerian (γ ≈ 1) and relativistic
(γ�1) orbits. Other than this relativistic complication, there is complete analogy
between Figs. 10.2 and 10.3.

10.2 Limitations

Perhaps it is reasonable to anticipate that the same practical limitations faced by
the Bohr or Bohr–Sommerfeld deterministic model when attempting to describe
many-electron atoms or molecules [3] will be also encountered by the deterministic
rotating neutrino model when seeking to describe the formation of nuclei, i.e. when
seeking to describe the residual strong force rather than the strong force itself.

Although magnetic moment data can provide some useful guidelines, it is
difficult to predict qualitatively the actual neutrino orbits even for simple nuclei,



10.3 Charged Baryons 117

such as the deuteron or the 4He nucleus. Thus the classical mechanical problem by
itself becomes quite difficult while the implementation of the de Broglie wavelength
condition appears in general rather cumbersome and problematic as the nucleus size
increases. It is difficult to assess how difficult these problems will turn out to be and
to what extent they can be successfully overcome in the future.

10.3 Charged Baryons

Before concluding this chapter it is worth examining the possibility that the
light rotating particles may also acquire a charge, e.g. via the β -decay electron
abstraction, to form charged baryons such as the proton:

n→ p++ e−+ ν̄e. (10.1)

In this case the equation of motion for such a rotating light particle carrying an
electric charge q1 takes the form:

(Gm2
oγ6−Qe2/ε)√

3R2
= γmov

2R, (10.2)

which is a generalization of Eq. (6.15) with:

Q = (q1q2 + q1q3)/e (10.3)

and q1, q2, and q3 are the charges of the three hadron constituents.
In writing Eq. (10.2), with a single R value, one assumes that either q1 = q2 = q3

or that the Coulombic force is much smaller than the relativistic gravitational force.
The latter is always the case near the intersection with the de Broglie wavelength
line, as already discussed in Chap. 7 and as further examined here and in Chap. 12.

After some algebra one obtains from Eq. (10.2) that:

R = (RS/2
√

3)

(
γ2

γ2− 1

)[
γ5− QRc

γRs

]
, (10.4)

where Rs is the Schwarzschild radius, 2Gmo/c2, and Rc(= 2e2/εmoc2) provides
a measure of the effective charge radius of the rotating light particle. For Q = 0,
Eq. (10.4) reduces to Eq. (6.17). For Rc� Rs and γ ≈ 1 it reduces to the classical
nonrelativistic Coulombic rotational state limit:

R =
Qe2

εmov2 . (10.5)

Figure 10.4 provides plots of the γ(R) relation defined by Eq. (10.4) for various
values of Q. The same figure provides the graphical solution to the three-charged
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Fig. 10.4 Graphical solution of the three rotating charged particle model [Eq. (10.4)] coupled with
the de Broglie wavelength equation R = h̄/γmoc [Eq. (10.6)] for Q = 1/3,Q = 0,Q = −1/3, and
Q =−2. The circled area is magnified in Fig. 10.5

rotating particle model via the intersection of the classical mechanics γ(R) curve
with the de Broglie wavelength equation (6.20) for n = 1, i.e. with:

R = h̄/γmoc. (10.6)

One observes that the effect of Q is rather small in the vicinity of the intersection
with the de Broglie equation line, but the γ value at the intersection increases with
more positive Q, i.e. with electrostatic repulsion, a point shown better in Fig. 10.5.

Thus Fig. 10.5 focuses on the circled area of Fig. 10.4. This figure shows that for
Q =−2 the rest energy, 3γmoc2, of the confined state matches quite well that of the
proton, mp = 938.27 MeV. In view of Eq. (10.3) this suggests q1 = 2e, q2 =−e and
q3 = 0, or q1 = −e, q2 = e and q3 = e. These are charge combinations which in
Chap. 7 were found to provide an excellent fit to the proton magnetic moment, i.e.

μ = (1/2)qRc = (1/2)eRc = 3μN (10.7)

vs 2.79 μN(14.10 ·10−27 J/T) which is the experimental value.
Consequently Eq. (10.4) with Q = −2 provides a very good fit not only to the

proton mass but also to its total charge and magnetic moment of the proton.



10.4 Synopsis 119

Fig. 10.5 Graphical solution of the three rotating charged particle model [Eq. (10.4)] coupled with
the de Broglie equation R= h̄/γmoc [Eq. (10.6)] for Q= 1/3,Q= 0,Q=−1/3, and Q=−2 focus-
ing on the circled area of Fig. 10.4; mo = 0.043723 eV/c2. The intersection corresponding to Q = 0
gives the neutron mass (m = 939.565 MeV/c2) and the intersection corresponding to Q =−2 gives
the proton mass (m= 938.24 MeV/c2), the former within less than 10−4%, the latter within 0.023%

As also shown in Fig. 10.5, Eqs. (10.2) or (10.4) with Q = 0 provides a very good
fit to the neutron mass (939.565 MeV/c2). This is consistent with q1 = 0, q2 = e/3,
q3 =−e/3 which also provides a good fit (−2 μN) to the neutron magnetic moment
data (−1.913 μN) as discussed already in Sect. 7.2.5 of Chap. 7.

Why the individual charges of the constituent particles appear, from this fit, to
be different in the case of the proton (integer multiples of e) and of the neutron
(integer multiples of e/3 as in the Standard Model) is not obvious but could perhaps
be related to some charge redistribution during the β -decay reaction [Eq. (10.1)]
and to the metastable nature of the free neutron which has a lifetime of 885.7 s.

10.4 Synopsis

It appears that the deterministic Bohr–de Broglie approach which gives equal weight
to the corpuscular and ondular nature of matter can be quite useful for exploring at
least a few important problems as shown in Table 10.1. By including the Coulombic
term in the rotating light particle model one can compute not only the neutron mass,
but also the proton mass with an accuracy better than 0.0023%.
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Chapter 11
Gravity at Relativistic Velocities
and Dark Matter

11.1 Dark Matter in Galaxies

Although there is strong evidence that the mass of the Universe is dominated by
dark matter which exerts gravitational attraction, the exact nature of dark matter is
still unknown.

Common spiral galaxies are known to reside in extended dark matter (DM) halos.
The rotational speeds of their gas discs do not decline outside the visible body, in
contrast with the expectation from Keplerian circular velocities at a radius r about a
mass M, i.e. v= (GM/r)1/2. Thus the DM mass within r grows roughly as M(r) ∝ r
and it dominates the gravitational potential beyond a certain radius.

The existence of dark matter and its special distribution are both determined on
the basis of the assumption that the gravitational attraction computed from Newton’s
gravitational law can always be computed from:

FG =−G
m1m2

r2 , (11.1)

where m1 and m2 are the rest masses of two stars or galaxies and r is their distance.

11.2 Newton’s Gravitational Law and Special Relativity

However, as already discussed in this book (e.g. in Chap. 6), it follows from the
equivalence principle [1] that the gravitational mass equals the inertial mass and the
latter can in general be computed using special relativity [2, 3] from [4]:

F =
d(γmv)

dt
= γ3m

dv
dt

, (11.2)
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where γ(= (1−v2/c2)−1/2) is the Lorentz factor. Thus for an observer on earth
(laboratory observer) the gravitational attraction force exerted on a star with rest
mass m rotating at a distance r around the center of a distant galaxy of rest mass M
is given by:

FG =−GMmγ3
Mγ3

m

r2 . (11.3)

Therefore according to the equivalence principle of Einstein and Eötvös [1] and
the theory of special relativity, inertial mass equals the gravitational mass and thus
γ3

mm and γ3
MM rather than m and M have to be used in Newton’s gravitational law as

in Eq. (11.3).

11.3 Virial Theorem and Dark Matter

Historically the existence of dark matter was first proposed by Fritz Zwicky in 1933
on the basis of his observations with distant galaxies, such as the Coma Cluster of
galaxies [5, 6]. He estimated the cluster’s total mass in two different ways. First
on the basis of the motions of galaxies near its edge and second on the basis of
the number of galaxies and total brightness of the cluster. By applying the virial
theorem which states that the kinetic energy of the rotating galaxies is one half of
their potential energy of the rotating galaxies, Zwicky found experimental evidence
that the kinetic energy is much larger [5, 6]. If one assumes that the gravitational
mass is only due to the visible matter of the galaxy, then the stars far away from the
center of the galaxy have much higher velocities than those predicted by the virial
theorem. This is known as the missing mass problem.

The simplest way to rationalize the missing mass observations was to assume
that there exists some type of matter (dark matter) which is not visible. This was
the postulate made by Zwicky. Galaxies show signs of consisting mostly of a
spherically symmetric halo of dark matter with the visible matter concentrated near
the center (Fig. 11.1).

Gravitational lensing, i.e. the bending of light emitted from a very distant bright
source, such as a quasar, around a massive object, such as a cluster of galaxies, has
also provided strong evidence that in many galaxy clusters there exists significantly
more mass than indicated by the cluster’s light alone [5, 6].

It is currently estimated that ordinary matter constitutes only 4.6% of the mass of
the universe. Dark matter is estimated to account for 23% of the mass of the universe
with the remaining 72% theorized to consist of dark energy whose gravitational
effect approximates that of Einstein’s cosmological constant Λ [7–11].

It is commonly believed that dark matter is primarily nonbaryonic and three
types of nonbaryonic dark matter have been proposed, i.e. hot dark matter con-
sisting of ultrarelativistic nonbaryonic particles, warm dark matter consisting of
relativistic nonbaryonic particles, and cold dark matter consisting of nonrelativistic
nonbaryonic particles [9].
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Fig. 11.1 Radial velocity
distribution of stars in a
galaxy anticipated from
Keplerian orbits (a) and
experimentally observed (b).
The difference (b-a) is
commonly attributed to dark
mass gravitational attraction

11.4 Alternate Explanations

The existence of dark mass and dark energy represents the currently most popular
theories among cosmologists to explain the various inconsistencies from the virial
theorem that Zwicky and more recent studies have revealed. However there is
no direct experimental evidence for the existence of dark matter or dark energy.
Consequently various alternative theories have been formulated. These include
some quantum mechanical explanations as well as the possibility that dark matter
consists of neutrinos of about 1.5 eV [12, 13]. Computations have shown that in
this scenario active (left-handed) neutrinos account for 9.5% of the dark matter and
sterile (right handed) neutrinos account for 19%. This approach falls within the hot
dark matter scenario.

11.5 Gravity Modification

The most common alternative theory to dark matter is that Newton’s gravitational
law is not obeyed at great distances or in weak fields. One of the proposed
models is Modified Newtonian Dynamics (MOND) which adjusts Newton’s laws
at small accelerations [14]. However developing a successful relativistic MOND
theory is still problematic and it is not clear how the MOND theory can account
for gravitational lensing measurements of the deflection of light around galaxies.
Other gravitational theories are also being tested in connection to the missing mass
problem [15–17].
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11.6 Gravitational Mass

In Zwicky’s analysis and much of the subsequent dark matter work, the mass (M)-to-
light (luminosity, L) ratios of galaxies were determined via the following equation:

M
L ≈ 1h

(
M�
L�

)
V
, (11.4)

where h is a constant, estimated to be 5.58 in the thirties and currently believed to
lie between 0.5 and 1 [7–10] and the subscript � denotes the properties of our Sun.
From this equation one extracts the value of M which is subsequently substituted in
the equation of the gravitational potential energy, i.e.

VG =−a
GM2

r
, (11.5)

where a is a constant dependent on the density distribution. It is a = 3/5 for a
uniform sphere and a = 3/(5− n) for a polytropic sphere with polytropic index n.

It is clear from the above analysis that the value of M determined from Eq. (11.4)
is not the gravitational mass, which must be substituted in the potential energy
expression of Newton’s gravitational law [Eq. (11.5)] but rather the rest mass of the
galaxy.

In view of Table 11.1 it follows that the gravitational energy is thus underesti-
mated by a factor of γ6 while the gravitational mass is underestimated by a factor
of γ3.

The currently estimated ratio of dark and light matter mass is 23/4.6 = 5, i.e.:

MD

ML
= 5. (11.6)

On the other hand it follows from Table 11.1 that:

MD

ML,real
= γ3. (11.7)

Consequently from (11.6) and (11.7) it follows γ3 = 5 which implies γ = 1.71
and v≈ 0.81c.

Consequently the experimental observations regarding the “missing mass” could
in principle be accounted without invoking the existence of dark matter if visible

Table 11.1 Gravitational
and rest mass ratios of spiral
galaxies

Rest mass M
Relativistic mass γM
Gravitational mass γ3M
Dark-to-light mass ratio γ3
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matter had on the average a velocity near 0.81c relative to the laboratory observer on
earth. Although some distant galaxies are receding from our galaxy with velocities
very near c, still many other less distant ones have significantly lower velocities as
one can also infer from Hubble’s law. Although the velocities of stars near the center
of such galaxies are relativistic, still this explanation does not appear sufficient to
account for the entire missing mass problem [18].

11.7 Neutrinos in Space

As already analyzed in detail in this book, the gravitational mass of fast neutrinos
is not to be underestimated. A neutrino with a rest mass of 0.04 eV/c2 and total
energy of 400 MeV/c2 has a Lorentz factor γ = 1010 and thus a gravitational mass
of mg = γ3mo = 4 · 1019 GeV/c2 which is a factor of 1020 larger than the rest
mass of a proton and neutron. Consequently the gravitational attraction of such
relativistic or super relativistic neutrinos among themselves and, most importantly,
between themselves and the baryonic light-emitting constituents of galaxies cannot
be neglected. It is likely that this strong attraction may be sufficient to rationalize
not only the phenomena related to dark mass near galaxies but also those related to
dark energy far from galaxies [19–21].

11.8 Synopsis

Gravitational attraction between relativistic neutrinos may be important not only in
the interior of hadrons but also possibly in space in connection to the experimental
observations and to the postulates of dark matter and dark energy.
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Chapter 12
Force Unification: Is the Strong Force Simply
Gravity?

12.1 Coupling Constants: Facts and Expectations

A coupling constant is a dimensionless number which describes the strength of an
interaction [1–3]. Typical coupling constant values for the four fundamental forces
are shown in Table 12.1.

The coupling constant for the strong force is commonly taken to equal unity for
energies of the order of 1 GeV, i.e.:

αs ≈ 1 (12.1)

but decreases with increasing energy [4] and also depends on quark separation [2].
The value of 0.119 is used frequently in the energy range of 10–100 GeV [4]. Thus
in reality the coupling constant for the strong force is not a true constant [2, 4].

According to the Standard Model, the strong force is the force acting between the
constituent quarks of hadrons. As already discussed, this force is known to decrease
inside the hadrons so that the quarks are able to move freely, a behavior known as
asymptotic freedom. Quantum chromodynamics provides the following expression
for this behavior:

αs(E) =
12π

(33− 2nf)ln
(

E2

Λ2

) , (12.2)

where nf is the number of quarks active in attracting pair production and Λ , termed
the QCD scale is an experimentally determined parameter of the order of 200 MeV.
The most commonly used value for the QCD scale is 217± 20 MeV [4].

The electromagnetic coupling constant, αe, frequently denoted simply α , equals
the fine structure constant α (1/137.0359). This is obtained by considering the
electrostatic force energy between two electrons or protons at a distance r, i.e.

Ee =
e2

εr
(12.3)

C.G. Vayenas and S.N.-A. Souentie, Gravity, Special Relativity, and the Strong Force:
A Bohr-Einstein-de Broglie Model for the Formation of Hadrons,
DOI 10.1007/978-1-4614-3936-3 12, © Springer Science+Business Media, LLC 2012

127



128 12 Force Unification: Is the Strong Force Simply Gravity?

Table 12.1 Coupling
constants Coupling constants

Strong αS 1
Electromagnetic α 1/137
Weak αW 10−6

Gravity αg 10−39

Table 12.2 Estimated energy scales for force unification according to
the Grand Unification Theories (GUT) and according to the “Theories of
everything” [1]

and comparing it with the energy of a photon, Eph, with wavelength λ equal to
2πr, i.e.

Eph = hc/2πr = h̄c/r. (12.4)

From (12.3) and (12.4) one obtains:

αe = Ee/Eph =
e2

εch̄
= α = 1/137.0359. (12.5)

The weak coupling constant αw is estimated by using the ratio of the lifetimes of
particles decaying via the strong interaction (∼ 10−24 s) and via the weak interaction
(∼10−12 s).

To a first approximation this ratio is inversely proportional to the square of the
coupling constants of the forces which cause the decay. Consequently it is estimated
that:

αw ≈ (10−12)1/2 ≈ 10−6, (12.6)

i.e. the weak coupling constant is some six orders of magnitude smaller than the
strong force coupling constant.

As shown in Table 12.2 and Fig. 12.1, strong, electromagnetic and weak inter-
action coupling constants are expected to merge at the GUT (grand unification
theories) scale, i.e. energies per particle of ∼1016 GeV.
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Fig. 12.1 Estimated effect of
energy [1] on the coupling
constants of the strong, weak,
and electrostatic forces.
Unification with the, much
weaker, gravitational force is
anticipated to occur around
the Planck energy
(∼ 1019 GeV/c2)

12.2 Gravitational Coupling Constants

The gravitational coupling constant, αg, is computed by considering the ratio of
the gravitational force between two charged particles divided by the corresponding
Coulombic force. Thus considering two protons of mass mp each, it is:

αg

αe
=

Gm2
p

e2/ε
= 8.1 ·10−37 (12.7)

thus:

αg =
αεGm2

p

e2 = 5.9 ·10−39. (12.8)

If the force between two electrons is used, then one computes:

αg =
αεGm2

e

e2 = 1.75 ·10−45. (12.9)

Similarly one may consider the gravitational force between two neutrinos at rest
with a rest mass mo each at a distance r and divide it by the Coulombic force between
two particles of charge e at the same distance. One thus obtains

αg,o =
αεGm2

o

e2 = 1.281 ·10−59, (12.10)
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Fig. 12.2 Coupling constants dependence on rotational radius (top) and energy (bottom) according
to the rotational neutrino model

where the superscript “o” is used in “αg,o” to remind that this is the value of
the gravitational coupling constant when the neutrinos are at rest relative to the
laboratory observer.

When the three neutrinos have a velocity v and thus a Lorentz factor γ relative to
the laboratory observer, then it follows from Eq. (6.12) in p. 72 that:

αg

αg,o
=

Fg

Fg,o
= γ6/

√
3. (12.11)

Figure 12.2 provides a plot of Eqs. (12.10) and (12.11) as a function of γ and
also, via Eq. (6.18), i.e., R = (RS/(2

√
3))γ5, as a function of R.

Upon substituting in Eq. (12.11) γ = γn = 7.163 · 109 which is the value of γ
corresponding to the ground rotational radius, R(n = 1), of the bound state, one
finds: αg

αg,o
= 7.7985 ·1058 (12.12)

and thus using Eq. (12.10):
αg = 1, (12.13)
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Fig. 12.3 Coupling constants dependence on the energy, EG, associated with the gravitational
mass, γ3mo, and on the corresponding Compton wavelength λG(= h̄/γ3moc)

i.e. at R = R(n = 1) and thus γ = γ(n = 1) = γn, it is:

αg = αs = 1. (12.14)

This is an important result which confirms that the relativistic gravitational force
is exactly equal to the strong force at R = R(n = 1), a conclusion already reached in
Sect. 7.2.7.

This is also shown in Fig. 12.2 which depicts the dependence of αg on the
rotational radius R and also on γ and on energy, E . One notes that αg has two
branches. One corresponds to common nonrelativistic gravity (γ = 1, αg = αg,o)
and the other to relativistic gravity with αg = γ6αg,o/

√
3. This branch intersects the

αs = 1 line at R = R(n = 1) = 0.630fm, γ = γn, and E = mnc2 = 0.939 GeV, which
is the neutron rest energy.

Figure 12.3 shows the coupling constants dependence on the energy associated
with the gravitational mass γ3mo (labeled EG) and on the corresponding equivalent
Compton wavelength, λG, computed from λG = h̄/(γ3mo)c, i.e.

EG = γ3moc2 (12.15)
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λG =
h̄

γ3moc
. (12.16)

As shown in Fig. 12.3 the three coupling constants nearly converge at EG =√
3mPlc2 = 1.607 · 1019 GeV/c2 and R ≈ rPl ≈ 10−35 m, i.e. at the Planck energy

and Planck distance, as anticipated by the “Theories of everything” [1].
Figure 12.4 is a combination of Figs. 12.2 and 12.3. The key point is that the

relativistic gravitational coupling constant reaches unity at R(n = 1) = 0.630fm and
E = 0.939 GeV which is the radius and energy of the neutron rotational state. This is
the case when using the proper distance (R) and energy (E) scales. However when
using the gravitational mass energy scale, EG = γ3moc2, and the corresponding
equivalent Compton wavelength scale (λG = h̄/γ3moc) then αG reaches αS and
unity at the Planck energy (∼ 1019 GeV) and Planck distance scale (∼ 10−35 m)
as anticipated by most force unification theories [1, 2, 5–7], e.g. Table 12.2.

The fact that relativistic gravity appears to coincide with the strong force comes
initially as a surprise, but is strongly reminiscent of Wheeler’s geon analysis [8, 9]
and with the work of Hehl and coworkers [10] who sought for the development of
a common gauge theory for gravity and strong interactions. A unified approach to
strong and gravitational interactions using some geometrical methods of general
relativity has been also proposed for years by Recami and coworkers [11]. The
interrelation of gravity, strong gravity, black holes, and hadrons has been also
discussed by Salam coworkers [12].

One important aspect of force unification is Einstein’s expectation that elementary
particles would be described as solutions of a classical field theory [13]. General
relativity itself has a family of particle-like solutions, i.e. the Kerr solution which
reduces to the Schwarzschild solution for zero angular momentum as already
discussed in Chap. 7. The rotating neutrino model seems to offer a glimpse of such
an expectation as presented in Chaps. 6 and 7, where it was seen that different values
of the integer n correspond to the formation of different particles.

One may draw the analogy with chemistry where the solutions of the Bohr model
of the H atom and its electrostatic field are known as the ground state and the
excited states of the H atom. A simple graphical way to obtain them is given in
Fig. 12.5 where the two equations of the Bohr model (Chap. 1) have been recast
in the form:

E =− e4

2ε2me(Rv)2 (particle) (12.17)

Rv=
nh̄
me

(wave). (12.18)

In the case of the rotating neutrino model this can be done in a similar manner if
Eqs. (6.18), (7.4), and (7.5) are combined in the form:

VG(γR) =−5moc2(2
√

3/RS)
1/6(γR)1/6 (particle). (12.19)
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Fig. 12.4 Coupling constants dependence on rotational radius (top) or energy (bottom) according
to the rotating neutrino model, αe is the Coulombic coupling constant which equals the fine
structure constant α(=1/137.035); αg is the Newtonian gravitational coupling constant; αs is the
strong force coupling constant which is defined as unity; αg is the relativistic-gravitational coupling
constant which equals γ6, starts from αg,o at γ ≈ 1 and reaches unity, thus αs, at γ = γn = 7.163·109.
At this point it is R = R(n = 1) = 0.630 fm and E(= γmo) = 0.939 GeV, which is the neutron rest
energy. The corresponding EG value, defined from EG = γ3moc2, is in the Planck energy range
(1.607 · 1019 GeV) and the corresponding Compton wavelength λG(= h̄/γ3moc) is in the Planck
length range (10−35 m)
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Fig. 12.5 Graphical solution
of the Bohr model equations
for the H atom written in the
form E =−e4/2ε2me(Rv)2

(particle) and Rv= nh̄/me
(wave); α(= e2/εch̄) is the
fine structure constant and
ao(= h̄/meαc) is the Bohr
radius

On the other hand the de Broglie wavelength quantization condition (6.36) gives:

γR =
(2n− 1)h̄

moc
(wave). (12.20)

As shown in Fig. 12.6 the intersections of the plots of Eqs. (12.19) and (12.20)
define in a simple pictorial manner the rotational neutrino states discussed in
Chaps. 6 and 7, each corresponding to the mass and energy of different baryons.

12.3 Synopsis

The analysis of the coupling constant behavior of the relativistic gravitational force,
αg, as extracted from the rotating neutrino model, shows that it is negligible at
low energies and long distances and that it converges with the coupling constant
of the strong force and of the electrostatic force at short, f m, distances and at
high, 1019 GeV, energies, as anticipated by most force unification theories. It thus
appears that the rotational neutrino model provides a useful tool for investigating
some aspects of force unification.
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Fig. 12.6 Graphical solution of the rotating neutrino model for the generation of hadrons written
in the form VG(γR) = −5moc2(2

√
3/RS)

1/6(γR)1/6 (particle) and γR = (2n− 1)h̄/moc (wave)
showing the formation of the neutron (mn = 939.565 MeV) and the other baryons consisting of u,
d, and s quarks
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Epilogue

The very good agreement between experiment and the rotating neutrino model
presented in this book leads to two interesting and at first surprising suggestions:
First that hadrons consist, at least primarily, of rotating neutrinos and their mass is
due to the kinetic energy of the rotating neutrinos. And second that the strong force
is the relativistic gravitational force.

In retrospect none of these rotating neutrino model suggestions is too surprising:
Why would nature have created a separate force, aside from the gravitational and
the electromagnetic force, just in order to keep hadrons and nuclei together? And
how could neutrinos, which are emitted in all nuclear reactions, not constitute an
essential part of nucleons and nuclei?

Another interesting result which emerges from the rotating neutrino model has
to do with the concept of rest mass. Apparently what we perceive as rest mass of
baryons is to 99.99999999% the kinetic energy of the rotating neutrinos. This is to a
significant extent already known, e.g. [1, 2]. If we could somehow directly observe
this rotational motion we would never assign the value of 939 MeV to the proton or
neutron rest mass. We would say that the rest mass inside these baryons is a billion
times smaller, i.e. is the rest mass of the rotating neutrinos. Thus our definition of
rest mass appears to be relative, i.e. is related to our ability or inability to observe
the f m aspects of some phenomena.

We close by reminding to the reader that the model presented in this book does
not constitute any new theory. The model is based entirely on well-established
concepts and experimental facts (special relativity, equivalence principle, Newton’s
gravitational law, de Broglie wavelength) and, following the steps of the Bohr
model, provides an “engineering” solution to an apparently useful problem.

That gravity and the strong force appear to be the same force seems to constitute
a useful step towards the long sought force unification.

In his famous book “Dreams of a final theory” published in 1993 [3] Nobel
Laureate Steven Weinberg notes: “The century coming to a close has been in physics
a dazzling expansion of scientific knowledge. . . .” and a few lines below he adds
“But now we are stuck. The years since the mid-1970s have been the most frustrating
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in the history of elementary particle physics. We are paying the price of our own
success: theory has advanced so far that further progress will require the study of
processes at energies beyond the reach of existing experimental facilities” [3]. And
in Chap. 8 of the same book, named “Twentieth century blues,” he addresses some of
the emerging weaknesses of the standard model and the fact that the model “leaves
out a fourth force, actually the first known of all forces, the force of gravitation.”

Twenty years later with the successful construction and operation of the LHC
and some other advanced experimental facilities, it is indeed “Testing time for
theories” [4]. Famous theories such as supersymmetry [3] or the Higgs boson
mass generation mechanism [5] are now being put in direct comparison with
experiment [6, 7]. These are exciting times and there is certainly a lot more to be
found in the next few years to come.
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Appendix A
Natural Constant Symbols and Values

ao Bohr radius=0.5292×10−10 m
c Speed of light, 2.997925×108 m/s
e Unit charge, 1.6021765×10−19 C
E Energy, J or MeV
G Gravitational constant, 6.6742×10−11 m3kg−1s−2

h Planck constant, 6.6260693×10−34 Js
h̄ h/2π = 1.05457× 10−34 Js
kb Boltzman constant= 1.38 ·10−23 J/K= 8.617 ·10−5 eV/K
mPl Planck mass, (h̄c/G)1/2, 2.1765 ·10−8 kg,

1.2209·1019 GeV/c2

mp Proton mass, 1.67262171×10−27 kg= 938.272 MeV/c2

mn Neutron mass, 1.67492728×10−27 kg= 939.565 MeV/c2

me Electron mass, 9.109382 ·10−31 kg= 0.511 MeV/c2

mo Neutrino mass, 7.7943×10−38 kg= 0.043723 eV/c2 (computed, eq. 6.27)
rPl Planck distance, (h̄G/c3)1/2, 1.615 ·10−35 m
R Rotational radius, m

Greek Symbols

α Fine structure constant,
e2/εch̄, 1/137.035= 7.297353× 10−3

γ Lorentz factor (1−v2/c2)−1/2

γn Neutrino γ value in the neutron (n = 1) rotational state 7.16302·109

ε 4πεoεr = 1.112649× 10−10εr, C2/Nm2

εo Permittivity of vacuum, 8.854187817×10−12 C2/Nm2

εr Relative dielectric constant
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Symbols
β -decay, 31, 38, 90, 117
γ rays, 39

A
angular momentum, 46, 92
angular momentum conservation, 27
antiquark, bottom, 35
antiquark, charm, 35
antiquark, down, 35
antiquark, strange, 35
antiquark, top, 35
antiquark, up, 35
antiquarks, 23
asymptotic freedom, 2, 25

B
bare mass, 43
baryon decuplet, 45
baryon mass spectrum, 68
baryon masses, 78
baryon octet, 45
baryons, 32, 42
baryosynthesis mechanism, 10
binding energy, 87
binding mechanism, 67
black hole, 19
Bohmian mechanics, 115
Bohr model, 3
Bohr radius, 6
Bohr–Sommerfeld treatment, 6
Bose-Einstein statistics, 34
bosons, 34
bosons, W±, 33
bosons, Zo, 33

boundaries, 88
broken symmetry, 91

C
C-symmetry, 42
central force motions, 27
CERN, 35
charge redistribution, 119
charged baryons, 117
Cherenkov radiation, 39
circular motion, 72
circular orbit, 48
classical fields, 23
color confinement, 2
color force, 23
Compton, 31
Compton wavelength, 89
condensation energy, 105
confinement, 25
corpuscular and ondular properties of matter,

113
Coulombic coupling constant, 94
Coulombic force, 26, 90
Coulombic repulsion, 24
coupling constants, 128
Cowan, 39
CP-symmetry, 42

D
dark energy, 122
dark matter, 12, 121
de Broglie L., 8
de Broglie wavelength, 2, 75
deep inelastic electron scattering, 24
Democritos, 31
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Dirac equation, 1
Dirac neutrinos, 31, 42

E
Eötvös L., 12
effective mass, 43
Einstein A., 8
Einstein field equations, 18
Einstein tensor, 18
Einstein’s cosmological constant, 122
Einstein-Maxwell equations, 97
electric dipole moment, 42
electromagnetic force, 23
electron, 35
electron-antineutrino, 31, 35
electron-neutrino, 35, 38
elementary particles, 31
elliptical orbits, 6
Energy-curvature dependence, 95
entropy, 104
equivalence principle, 12, 16, 51
equivalent wavelength, 1
event horizon, 19
exchange of photons, 23
exoergic process, 87
exothermic process, 104

F
Fermi-Dirac statistics, 34
fermions, 27, 34
Feynman, 24, 28
fine structure constant, 67
flat spacetime, 19
flavors, 32
force invariance, 58
force unification, 2
frame of reference, 53
fundamental forces, 25
fundamental particles, 31

G
galaxy clusters, 122
Galileo Galilei, 16, 51
Gell-Mann M., 24, 28
general relativistic equation of motion, 70
general relativity, 17, 20, 95
geons, 2, 92
gluons, 2, 23, 32, 109
Grand Unification Theories (GUT), 38
gravitational constant, 95
gravitational coupling constant, 130

gravitational mass, 12, 15
gravitons, 2
Gross D., 28

H
H atom, 1
hadron jets, 110
hadronization mechanism, 9
hadrons, 32
Hamiltonian, 6, 86
Heisenberg W., 8
Helmholz free energy, 104
hidden deterministic variables, 115
Higgs boson, 107
Higgs mechanism, 107
Hubble’s law, 125

I
IceCube Neutrino Observatory, 39
inertial frames, 53
inertial mass, 12, 15
instantaneous inertial frame, 56
isospin, 45

K
KATRIN, 40, 77
Keplerian orbits, 116
Kerr black holes, 97
Kerr metric, 97
Kerr solution, 19
Kerr-Newman black holes, 99
Kerr-Newman metric, 97

L
laboratory frame, 56
laboratory observer, 54
leptons, 32
LHC, 35, 110
lifetime, 44, 89
light baryons, 11
linear motion, 70
longitudinal mass, 71
Loränd Eötvös, 52
Lorentz factor, 37

M
magnetic dipole moments, 91
magnetic moment, 11, 91
Majorana neutrinos, 31
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Majorana particles, 38
mass hierarchy, 40
masses of quarks, 108
mediation, 24
mediators, 33
mercury orbit, 18
mesons, 42, 88
mesons, pi, 31
mesons, Kaon, 31
mesons, miu, 31
Minkowski spacetime, 19, 62
missing mass, 124
MOND theory, 123
muon, 35, 36
muon-antineutrino, 35
muon-neutrino, 35, 38

N
neutrino, 36
neutrino detection, 39
neutrino flavours, 38
neutrino oscillations, 40
neutrino scattering, 42
neutron mass, 47
neutrons, 23
Newton I., 2, 18
Newton’s second law, 51
Newton’s universal gravitational Law, 8
Newtonian force, 19
Newtonian mechanics, 4, 17
Newtonian physics, 19
NN force, 25
non-Abelian gauge theory, 25
noncontact forces, 23
nuclear force, 23
nuclear magneton, 11
nucleons, 24

O
old quantum mechanics, 3, 113
orbits, 116

P
particle accelerator, 25
particle exchange mechanism, 24
particle generation, 33
partons, 32
Pauli exclusion principle, 26
perihelion, 18
Philoponus, 16, 51
photons, 23, 31

Physics beyond the Standard Model, 36
Planck length, 2
Planck mass, 2
Planck scale, 21
Poisson-Boltzmann expression, 26
Politzer D., 28
positive muon, 35
positive tau lepton, 35
positron, 35
positron annihilation, 39
potential energy, 86
principal decays, 44
protons, 23
pseudoscalar mesons, 44

Q
QCD scale, 127
quantum chromodynamics (QCD), 2, 23, 27
quantum chromodynamics transition

temperature, 67
quantum electrodynamics (QED), 23
quantum gravity, 2, 20
quantum mechanics, 20
quark flavor, 43
quark, bottom, 35
quark, charm, 35
quark, down, 35
quark, strange, 35
quark, top, 35
quark, up, 35
quark-gluon plasma, 104
quarks, 23
quarks, strange, 45

R
Reines, 39
Reissner-Nordström solution, 19
relativistic conditions, 17
relativistic energy, 86
relativistic mechanics, 17
relativistic orbits, 116
residual strong force, 23, 25
resonance, 43
rest energy, 88
rotating constituents, 46
rotating neutrino model, 10
rotation period, 89
rotational bound state, 86

S
Schrödinger, 1
Schrödinger equation, 6
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Schwarzschild radius, 19, 20, 73
Schwarzschild solution, 19
scintillation detectors, 39
Simon Stevin, 16
Sommerfeld, 6
spacetime curvature, 18
special relativity, 53, 63
speed of light, 53
spin, 42, 89
spin vectors, 91
spiral galaxies, 121
Standard Model, 2, 35
Standard Solar Model, 39
strangeness, 45
stress-momemtum-energy tensor, 18
string theory, 28
strong force, 23, 92
strong interaction, 23
Sudbury Neutrino Observatory, 39
Super-Kamiokande, 39, 40

T
t’ Hooft G., 113
tau lepton, 35, 36
tau-antineutrino, 35
tau-neutrino, 35, 38
thermodynamics, 104
Thomson J.J., 31
three neutrino model, 69

total energy, 86
translational degrees of freedom, 104
transverse mass, 72
two neutrino model, 78

U
universal gravitation, 18
universality of free fall, 52

V
van der Waals forces, 26
vector mesons, 44
vector of rotation, 91
virial theorem, 122
virtual gravitons, 21
virtual photons, 23

W
weak equivalence principle, 16, 51
weak interaction, 33, 37
Weinberg S., 137
Wilczek F., 28

Y
Yang-Mills theory, 27
Yukawa potential, 26
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