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Preface 

national Symposium CCN2005 on “Complex Computing-Networks: A Link 
between Brain-like and Wave-Oriented Electrodynamics Algorithms,” convened at 
Do�u� University of Istanbul, Turkey, on 13–14 June 2005, in connection with the 
bestowal of the honorary doctorate degrees on Professors Leopold B. Felsen and 
Leon O. Chua, for their extraordinary achievements in electromagnetics, and non-
linear systems, respectively. The symposium was co-organized by Cem Göknar 
and Levent Sevgi, in consultation with Leopold B. Felsen and Leon O. Chua. 

Istanbul is a city with wonderful natural and historical surroundings, a city not 
only interconnecting Asia and Europe but also Eastern and Western cultures. 
Therefore, CCN2005 was a memorable event not only in the lifetime of Drs. Felsen, 
Chua, and their families, but also for all the other participants who were there to 
congratulate the recipients and participate in the symposium. 

CCN2005, together with the Bestowal Ceremony – unique in combining 
EM/APS and CAS disciplines – was an excellent opportunity for the colleagues, 
collaborators, students, and international scientists who gathered at Do�u� to dis-
seminate and share the recent advances in the fields of electromagnetics, nonlinear 
systems and their computational aspects. The symposium attracted about 60 partici-
pants from several countries with 45 papers from academia and engineering insti-
tutes, which addressed diverse problems in both EM and CAS subject areas. The 
2-day, parallel EM and CAS sessions ended with a joint session and a joint 
panel discussion on the problems and challenges of future electrical engineering 
education.  

The degree-bestowal ceremony took place in the morning of 13 June 2005, 
together with the opening ceremony of CCN2005. After a short greeting by 
Prof. Talha Dinibütün, the Rector of Do�u� University, Prof. Sevgi, who had pro-
posed Prof. Felsen’s nomination, delivered his introductory speech on Felsen’s 
achievements and personality. This was followed by the speech of Prof. Göknar, 
who had proposed Prof. Chua’s nomination. The introduction of both nominees 
was followed by the bestowal of the degrees by Prof. Dinibütün. The ceremony 
continued with the acceptance replies of Profs. Felsen and Chua, and ended with 
their photographs being taken along with family, students, friends and colleagues.  
The gala dinner during the evening of 14 June 2005, was a special affair that took 
place at the Moda Sea Club, a wonderful place on the Asiatic seaside, in Kad�köy. 
After a short sunset cocktail party on the balcony, the guests enjoyed a selection of 
rich Turkish cuisine, a variety of unlimited drinks (wines and Turkish Raki) and 
music. The surprise of the evening came from Prof. S�dd�k Yarman, former rector 
of I��k University, who presented a short piano recital, from Turkish classical 
music to Argentinian tangos.  The beat and emotions peaked when he played the 
well-known Jewish song, Havah Nagilah, for Leo Felsen.  

This book contains the ceremonials and the proceedings pertaining to the Inter-
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The organizers are indebted to various individuals and organizations for their 
support of this event. Acknowledgement in particular goes to Do�u� University, 
TÜB�TAK – The Scientific and Technological Research Council of Turkey, 
TELS�M and IEEE Turkey Section. The editors express their sincere appreciation 
to all participants in the symposium and to the authors who contributed to this 
book. Special acknowledgement goes to the local committee members for their 
efforts during the workshop and to the editorial assistants Ç. Ulu���k, M. Y�ld�z, 
T. Bekri and �. Ergüler for their valuable collaboration. 

 
Unfortunately CCN2005 became the last event Leopold B. Felsen was able 

to attend, as his condition deteriorated upon his return to the States and he 
sadly passed away on 24 September 2005. We are honoured to have been able 
to offer him this last occasion to share his scientific knowledge and human 
values, both of which we hold in great esteem. 

 
�stanbul 
October 2005 
 

�zzet Cem Göknar Levent Sevgi 
CCN Co-editor CCN Co-editor 
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Electromagnetic Theory 
 



Wave Models for Networks and Fields  

C. Christopoulos, P. Sewell, and J. Paul 

George Green Institute for Electromagnetics Research, University of Nottingham, 
Nottingham NG7 2RD, UK, christos.christopoulos@nottingham.ac.uk,  
Fax: +44-115-951-5616, Tel.: +44-115-951-5557 

Abstract  

The paper aims to illustrate the relationship and limits of applicability of the network and 
field paradigms as applied to the study of electromagnetic (EM) phenomena especially at 
high frequencies. A particular focus is the transmission-line modelling or matrix method 
(TLM) which is particularly suited to this discussion as it models EM phenomena by ex-
ploiting both paradigms. Particular attention is paid to the interpretation of TLM and the 
manner in which embedded subwavelength structures are modelled. 

Introduction 

Advances in technology in recent years have lead to the introduction of signal 
processing and transmission techniques in wire and/or wireless systems which are 
clocked at rates in the GHz range. Virtually all equipment connected to electrical 
supplies contains tightly packed controllers, microprocessors, sensors and actua-
tors, communicating through multiple interconnects carrying high-speed digital 
signals. Wireless equipment is increasingly being introduced into both domestic 
and industrial environments. With several pieces of equipment in close proximity 
to each other, generating very high frequencies problems of interference, 
crosstalk, electromagnetic compatibility (EMC), and signal integrity (SI) increas-
ingly become the dominant factors in design. Designers need access to efficient 
and accurate computer based tools to predict performance, optimise design, and 
reduce costs without incurring delays and re-engineering costs. The need for so-
phisticated numerical models becomes apparent as for the current highly inte-
grated complex designs intuitive techniques based entirely on the skills of the de-
signer are not adequate. It may be argued that with more powerful computers we 
can solve more complex problems using well established modelling methodolo-
gies. Although this is true up to a point, it fails to recognise that the complexity of 
the problems we need to solve grows faster than the technology available to us to 
search for solutions [1]. We need to not only make full use of modern computer 



technology (including parallel and grid technologies) but also develop new and 
innovative approaches to modelling [2, 3]. These alone can offer a step increase in 
modelling and simulation capabilities and thus offer the scope for iterative design 
of complex practical systems. It is in this area of innovative modelling techniques 
that this paper aims to make a contribution. 

At low frequencies the dominant paradigm is that of the network [4]. For elec-
trically small circuits it is convenient to assume that electrical energy storage is 
concentrated (lumped together) in a component described as a capacitor. Simi-
larly, magnetic energy is lumped in an inductor, losses in a resistor, etc. Under this 
assumption, the resulting circuit behaviour can be studied in its entirety by using 
topological concepts. The so-called lumped circuit theory is well developed and is 
the corner stone of the training of young engineers. It has many admirable attrib-
utes including simplicity, clarity, generality, and intellectual economy. One can 
envisage a lumped capacitor as the simplest “macromodel” embodying in a simple 
elegant formulation a rather complex physical process. As the frequency increases, 
the circuit can no longer be regarded as electrically small and the network para-
digm fails. If “electrically small” assumption fails in only one dimension then, 
transmission line (TL) theory may be applied, based on distributed energy storage 
and loss. In the general case of a circuit which is electrically large in all three di-
mensions, the network paradigm must be replaced by the field paradigm. Here, 
transfer of action over distance between electrical charges is used to transfer en-
ergy and information. In addition to the topology of the circuit which is important 
when the network concept is used, we now also need to take account of the ge-
ometry of the circuit. This complicates matters significantly. In contrast to the 
network case where models and computer solvers are based on Kirchhoff’s laws, 
the physical laws representing interactions in this regime are expressed in Max-
well’s equations. It is pointed out that the fundamental concept is that of the field 
and that the network concept is a convenient simplification whose validity is sub-
ject to certain limitations. 

In modern design at high-frequencies it is inevitable that field solutions are 
sought to Maxwell’s equations. However, the difficulties of solving these equa-
tions and the complexity of modern designs make for a combination which is very 
demanding. Computational electromagnetics (CEM) is the discipline which ad-
dresses the development of computer-based tools for solving electromagnetic 
problems in complex configurations. Several generic techniques exist for this task 
such as the method of moments, finite element method, finite difference time-
domain method [3], and transmission-line modelling or matrix method (TLM) [2, 
4]. We focus on the TLM method and its enhancements as it brings out more 
clearly the interplay between network and field concepts.  

The TLM Method 

Ever since the advent of electricity as a scientific discipline efforts were made  
to relate its phenomenology to familiar mechanical concepts and to bring out 
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analogies between kinetic and potential energy and the concepts of lumped induc-
tance and capacitance. High-frequency phenomena, e.g. wave propagation re-
quired a different way of thinking and the underlying mathematical modelling 
took a longer time to develop. The linkage between lumped component networks 
and fields were apparent for some time [5] but could not be exploited for the lack 
of powerful enough computational resources. However, in the 1970s work by 
Johns and colleagues [6] introduced the fundamentals of simulating EM field 
problems by analogy to networks. At the most basic level the analogy may be es-
tablished by observing the isomorphism between equations describing one-
dimensional wave propagation: 

2 2

2 2

j j j

x t t
με μσ∂ ∂ ∂= +

∂ ∂ ∂  
(1) 

and the equations for a lossy transmission line with series inductance L, shunt ca-
pacitance C and shunt resistance R for a segment x long: 

( ) ( )
2 2

2 22 2

i LC i L i

x t tx x R

∂ ∂ ∂= +
∂ ∂ ∂Δ Δ

, (2) 

where j is the current density in the field problem and i is the current in the net-
work problem. Inspection of (1) and (2) shows the desired analogy: 

 
σε →→→ ji . (3) 

   
In effect, solution of the field problem may be reduced to the solution of a net-

work problem consisting of a cascade of subnetworks each of size x. For accu-
racy, we must choose x <<  (typically 10 x ~ ) to meet the criterion for using 
lumped component representations.  We observe that using lumped components is 
tantamount to introducing a space discretization. This is the first step in solving a 
problem by computer as it allows a finite number of space sampling points and 
hence of memory allocations. The second step is the time discretization which al-
lows a finite number of calculations to be performed and hence a finite run time. 
Time discretization is accomplished by replacing lumped components by trans-
mission line segments (two-port link lines or one-port stubs). The finite propaga-
tion time t along these segments is effective the sampling time for the solution of 
the problem. In conclusion, in TLM, we construct a three-dimensional lattice or 
matrix of transmission lines consisting of the repetition of a basic cell or node of 
dimensions x y z << 3 in which we map the geometrical, electrical, and mate-
rials details of the problem. Solution of this network yields the desired electric and 
magnetic field by analogy to the network voltages and currents. In this way the 
transitions from networks to fields is seamless offering great intellectual economy 
and all the advantages of the well developed and efficient network characteriza-
tion and solving techniques. Basic nodes in TLM are available in two and three 
dimensions. As an example we show the 3D TLM symmetrical condensed node 
(SCN) in Fig. 1. 

 

L

xΔ
1

RΔx
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The basic computational scheme is based on the successive application of two 
procedures on all the nodes of the problem. These are the scattering of the 12 inci-
dent voltage pulses V i to each node to produce 12 reflected pulses V r: 

[ ]r i=V S V  (4) 

and the connection of the reflected voltage pulses to adjacent nodes to become the 
incident pulses at the next time step 

1 [ ]i r
k k+ =V C V , (5) 

where [S] and [C] are appropriate scattering and connection matrices, respectively, 
[2]. 

Another way of looking at the TLM formulation is to reason that the network of 
transmission lines inside a node must be such that it presents an admittance to in-
coming voltage pulses that matches the admittance [Y] relating magnetic and elec-
tric fields. This effectively dictates that the incident and reflected voltage pulses 
are related as follows, 

{ } { }0 0[ ] [ ] [ ] [ ]r iy I Y y I Y+ = −V V , (6) 
 
 

 
Fig. 1. The 3D TLM symmetrical condensed node (SCN) 
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where, [I] is the identity matrix and y0 is a scalar quantity. The best way to obtain 
the admittance matrix is to solve (6) as an eigenvalue problem. The resulting ei-
genvectors allow us to decompose the pulses V into their modal components X. 
Incident and reflected modal components are related by, 

0

0

r in
n n

n

y
X X

y

γ
γ

−=
+ ,  (7) 

where n is the eigenvalue for the nth mode. In 2D TLM schemes there are four 
degrees of freedom and hence four modes may be selected. The eigenvalues of [Y] 
are most easily identified from a cylindrical field expansion (for 2D) and manipu-
lation of (7) then shows that modes experience a simple phase shift (delay) as they 
travel through the node [7]. In effect, the TLM node acts as an automatic analyser 
of incoming pulses into modes, shifts each mode accordingly and then recomposes 
the total voltage pulses for transmission to neighbouring nodes. Similar principles 
apply in 3D [8]. A field theoretical derivation of the TLM scheme directly from 
the method of moments has also been presented [9]. 

Embedded Structures in TLM 

We present here three examples of how the basic TLM scheme may be adapted to 
accommodate particular embedded objects such as thin wires, volumes of an un-
structured mesh, and frequency dependent features. 

A particular difficulty in dealing with practical problems is the description of 
thin wires (wire diameter smaller than nodal size) as part of a large problem space. 
The ideas explored in the previous section may be exploited here. At the surface 
of each node containing wire(s) the admittance matrix and its eigenvalues may be 
again derived (using cylindrical field expansions around long wires) so that in-
coming voltage pulses and their associated modal components are scattered 
accordingly taking account of the presence of the wire(s). Since even for 2D 
problems four modes are included, this is a superior scheme when compared to 
traditional approaches based on quasistatic approximations which include only 
(symmetrical) quasistatic solutions. The result is greater accuracy and better 
placement of individual wires of a wire bundle inside a node [10]. An example is 
shown in Fig. 2. 

Arbitrarily placed subwavelength features may also be embedded into TLM 
modes using the procedures described in [11] . This is achieved by generalizing 
the modal approach of 6. A surface admittance operator can be identified that re-
lates the tangential electric and magnetic field components on the boundaries of 
the TLM node by choosing a suitable set of local field equations that intrinsically 
satisfy the boundary conditions of the scattering object. The eigensolutions of this 
operator again yield the familiar scattering operation characteristic of TLM and 
embodied by (7). This process is perfectly general and promises to significantly 
extend the scope for accurate fine feature modelling within the TLM paradigm. 
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The approaches described above allow the introduction of wire-like features into a 
structured mesh. There are however applications where a greater flexibility in the 
structure of the mesh allows better models to be obtained, e.g. in avoiding  
staircase approximations of curved boundaries. Unstructured meshes based of tri-
angular (in 2D) and tetrahedral (in 3D) nodes have also been developed based on 
modal techniques and the derivation whenever possible of network representations 
of each node. The latter, although not essential, is a very useful discipline in the 
derivation of these schemes as its ensures stability and passivity of the resulting 
schemes [12,13]. Of particular utility is the capability of formulating mixed  
structured and unstructured meshes of different spatial resolutions interfaced by 
triangular or tetrahedral elements [14]. 

Fig. 2. Comparison of the fields in front of a wire bundle illuminated by a plane wave using 
the multiwire TLM-node. Observations are made both 2 and 8 nodes from the bundle. The 
wire diameters are in the range 1.4–10% of the node size 

 
In these schemes, the use of significant volumes of structured meshes for large 

empty regions ensures that computational efficiency is maintained and moreover, 
the small quantity of unstructured mesh used to interface the structured regions are 
guaranteed an explicitly stable algorithm. An example of how this is done is 
shown in Fig. 3. 

In many applications, where a time-domain solution is required, we have mate-
rials with frequency dependent properties and/or features which are fine compared 
with the prevailing spatial resolution and have frequency dependent properties 
(e.g. frequency selective surfaces, perforated screens, etc). In the latter case, one 
may envisage refining the mesh to the point where these features can be accurately 
mapped. However, the computational cost implications are very unfavourable and, 
in most cases, outside the reach of even the most powerful computers. An ap-
proach, which has been found advantageous, is to embed into the TLM algorithm 

Frequency ratio f/f max

Thin wire node

Analytic

Electric filed Ez [Vm-1]

Multinode
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a digital filter procedure which mimics the behaviour of the embedded feature. 
The steps involved are to characterize the feature in the frequency-domain (by ex-
perimental, analytical, or numerical means), obtain the poles and zeros through the 
application of Prony’s method, and to convert the resulting transfer function into a 
discrete time-domain procedure by applying the bilinear z-transform. This digital 
filter interface (DFI) is then embedded into the TLM time stepping procedure pro-
viding a very powerful and efficient technique. 

 
Fig. 3. Typical use of unstructured TLM nodes to interface structured Cartesian regions 

Thin features, e.g. perforated screens and printed circuit boards may be intro-
duced into a TLM mesh by modifying the procedure used to exchange information 
between adjacent cells. In the general case, the partial reflection and transmission 
caused by a feature is described by a scattering matrix, i.e, )(ω

f
S
=

  

( ) ( ) ( )
( ) ( )f

R T
S

T R

ω ω
ω

ω ω
= , (8) 

where the reflection and transmission coefficients  )(ωR  and )(ωT  are fre-

)(ωR  and )(ωT  in the Padé form, e.g. 

( ) 0 0 1

0 1

0

NP
i

NPi

i NP
NP NP

i

i

i

b s
b b s b s

R s
a a s s

a s

=

=

+ + += =
+ + +

L

L
, (9) 

where s is the complex frequency, NP is the number of poles, ai and bi are real co-
efficients and NP 1a = . The bilinear transform is 

1

1

2 1
1

z
s

t z

−

−

−=
Δ + , (10) 

where tΔ  is the time-step and z–1 represents a delay of one time-step. Using (10) 
in (9) yields directly the required discrete time algorithm [15]. 

quency -dependent. A time-domain implementation is obtained by expressing 
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–

A result for an equipment cabinet with a perforated wall containing a printed 
circuit board (PCB) as shown in Fig. 4. The PCB consisted of FR4 material with a 
copper backing having a total thickness of 1.6 mm. The relative permittivity of the 

r
copper backing on the PCB is electrically connected to the base of the cabinet. 
The digital filter approximations for the perforated screen had three poles and for 
the PCB had one pole. The measured and simulated results for the shielding effec-
tiveness of this enclosure are shown in Fig. 5. 

 
Fig. 4. Configuration of the PCB loaded cabinet with a perforated screen 
 
 

 
Fig. 5. Shielding effectiveness of a PCB loaded cabinet with a perforated screen 

FR4 material  was  taken  as =4.55 − j0.080,  independent  of frequency. The ε
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Conclusions  

The modelling of electromagnetic interactions in complex systems uses a variety 
of approaches based on the solution of Maxwell’s equations by numerical means. 
We have shown how the synergies between network and field concepts may be 
profitably exploited in the TLM method to derive versatile solution algorithms of 
elegance, simplicity, and efficiency. 
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Abstract  

The interaction of a two-wire transmission line with an incident electromagnetic field is in-
vestigated. It is shown that previous models, based on the reaction concept and the principle 
of reciprocity, can be extended to allow for the quantification of the induced currents and 
voltages at the transmission line terminations in the general case where the transmission 
line is unbalanced.  

Introduction 

The influence of external fields on parallel wire structures configured as transmis-
sion-line circuits is an issue of concern in the design of noise-immune electronic 
systems. Traditionally, this topic has been addressed in the context of noise cou-
pling to electronic wiring in large-scale platforms relevant to automotive and avi-
onics EMC design. More recently, this topic has received significant attention in 
the context of noise-immune distribution of multi-GHz signals in performance-
driven, integrated electronic systems. More specifically, the prediction and quanti-
fication through modeling of radiated emissions from and/or coupling to the 
printed circuit board that houses the components of an integrated electronic sys-
tem is essential for ensuring system noise immunity and electromagnetic compli-
ance. 

When a set of parallel wires are configured to form a transmission line system, 
the following two requirements must be met for transmission line theory to pro-
vide for sufficiently accurate quantification of electromagnetic signal transmission 
on the system [1]. First, the cross-sectional dimensions of the wire and the dis-
tance between them should all be small compared to the wavelength for all fre-
quencies in the operating bandwidth of the transmission line system. Second, the 
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transmission line system should be “balanced,” in the sense that at any cross sec-
tion of the system on a plane perpendicular to the transmission-line axis the alge-
braic sum of the currents in all wires should be zero. Both of these conditions are, 
more often than not, violated in practice. The latter condition, in particular, is very 
difficult to satisfy in a printed circuit board environment, where the high density 
of component integration leads to unavoidable imbalances in wire lengths. Such 
imbalances are known to be the primary contributors to enhanced emissions from 
signal distribution networks [2]. However, violations of even the first requirement 
may occur in modern printed circuit board designs when a large number of wires 
are combined into a single bus. Consider, for example, an 8-conductor, planar 
(microstrip) interconnect bus used for a 10 Gbps signal transmission. At 5 GHz, 
assuming an effective permittivity of 4, the wavelength is 3 cm. If the conductor 
pitch in the bus is 0.2 cm the total lateral extent of the cross section of the bus is 
1.5 cm, which amounts to an electrical length of half the wavelength at 5 GHz. 
Clearly, the validity of transmission line theory for the analysis of signal transmis-
sion for such a bus becomes questionable at the upper end of the transmitted signal 
bandwidth. 

It is for these reasons that full-wave electromagnetic models are being em-
ployed for the quantification of signal transmission in high-speed interconnect 
structures. Given a set of driving (source) and receiving (termination) conditions, 
such models yield the currents in the conductors and the source and load circuits. 
Such modeling, while driven by the desire to assess the integrity of the transmitted 
signal, it also provides for the quantification of radiated emissions from the trans-
mission-line structure. The reciprocal problem, namely, the quantification of sig-
nal coupling to the transmission line, requires the solution of yet another full-wave 
problem, where now the excitation is the incident electromagnetic field. However, 
if only the induced voltages and currents at the terminations are of interest, a sim-
pler and computationally more efficient approach for their computation is possi-
ble. This approach is the main focus in this paper.  

The literature of electromagnetic radiation from and coupling to transmission 
lines is very rich. Rather than providing a thorough review, we restrict ourselves 
to identifying the following three papers that are most relevant to the topic consid-
ered here [3–5]. The interested reader is referred to the additional references in the 
above papers for a more comprehensive review of the pertinent literature. The 
methodology we propose to use is closely related to the one discussed in [3]. 
However, the transmission line-related restrictions imposed in [3] are relaxed, thus 
extending the methodology to the calculation of electromagnetic field coupling to 
a set of parallel wires in a balanced or unbalanced transmission line configuration. 

Radiation from a Driven Transmission Line 

Our presentation is for the case of the interaction of a time-harmonic electromag-
netic field with the two-wire transmission line structure depicted in Fig. 1. It is as-
sumed that the parallel longer sections of the two wires, taken to be along the 
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x axis of the reference coordinate system, are of equal length. Thus, any imbal-
ances in the system are introduced by the wire connections to the terminations. 
More specifically, assuming that the source and load are described in terms of 
lumped elements of negligible length compared to the wavelength of interest, their 
actual placement along the y-directed sections of the wires is taken as a variable in 
the definition of the geometry. Depending on their position, they split the y-
directed sections of the wires into segments of different length. These segments, 
added to the length l of each one of the x-directed sections, result in the two wires 
having, in general, unequal lengths, thus leading to an unbalanced transmission 
line. 

 
Fig. 1. A terminated two-wire transmission line 
 

Assuming that the wire configuration of Fig. 1 is embedded in free space,  
its electromagnetic analysis can be performed using well-known, method-of-
moments techniques for the solution of an integral equation statement of the perti-
nent electromagnetic problem [6]. Such an analysis yields the current distribution 
in the wires and provides for the subsequent computation of the radiated fields. 

As an example, let us consider the case of a transmission line system of length  
l = 3.4 m, wire axes separation s = 0.7 m and circular wire cross section of diame-
ter d = 1 cm. The characteristic impedance,  Z0, is obtained from 

0
FZ s

Z
dπ= , (1) 

where ZF is the free space wave impedance [7], to be 593 Ohm. The line is driven 
on the left by a voltage source of strength 1 V and input impedance Z0. The termi-
nation impedance is chosen to be Z0/3 Ohm. The placement of both the load and 
the source is at a distance of 10.5 cm from the bottom wire. This results in an un-
balanced system, where the top wire has a total length of 4.59 m, while the length 
of the bottom wire is 3.61 m. 

The commercially-available software MiniNEC [8] was used for the full-wave 
solution of the problem. Depicted in Figs. 2 and 3 are the radiation patterns on the 
xy plane, at a frequency of 30 and 300 MHz, respectively. At these frequencies the 
difference in the wire lengths is approximately 0.1, and 1 wavelength. Three  
radiation patterns are depicted in each figure. Two of them are the radiation 
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pattern produced by the MiniNEC-computed currents in the wires for the unbal-
anced as well as for the balanced case (with source and load set at the center of the 
end sections, thus making the two wires equal in length). The third one is the ra-
diation pattern produced by the currents obtained from a standard transmission-
line theory based analysis of the structure. For this case, the current in the two y-
directed end sections was taken to be constant along the wires, of value equal to 
the transmission-line theory result for the current through the voltage source for 
the left wire segment and the current through the load for the right wire segment. 
Once the current distribution in the wires are available, the resulting radiated 
fields can be readily computed in terms of electromagnetic potential integrals 
[7,9]. 
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Fig. 2.  Normalized radiation pattern for the two wire line in the xy-plane. Normalization is 
with respect to the average power density for each case. l = 3.4 m, h = 0.7 m, ZL1 = Z0, 
ZL2 = Z0/3, V01 = 1 V, f = 30 MHz. Solid line: Transmission-line current distributions with 
constant current at end wires (–22.1 dBm). Dash-dot line: MoM solution for the balanced 
case (–22.2 dBm, 1.2%). Dashed line: MoM solution for the unbalanced case (–19.2 dBm, 
2.4%). For each case the quantities in parentheses is the total radiated power and its per-
centage of the input power, i.e. the radiation efficiency 

 
The radiation patterns make evident the impact of wire length differences and 

transmission line theory approximations on the accuracy of radiated emissions 
calculation from transmission-line systems. As anticipated, the accuracy of trans-
mission line theory-based radiated emissions calculations worsens as the fre-
quency increases and the electrical length of the end sections becomes an appre-
ciable fraction of the wavelength. It is instructive to compare the current 
distributions in the wires for the three models. The magnitude and phase of the 
current distribution in the wires for the three cases and for the two frequencies of 
30 and 300 MHz are depicted in Figs. 4–7. As anticipated, a significant discrep-
ancy exists between the full-wave solution and the transmission-line solution 

, f = 30 MHz, xy−plane
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at 300 MHz. This discrepancy is attributed to the significant radiation from the 
two-wire system at this frequency, considering that the x-directed wire section are 
about three wavelengths long while the y-directed wires at the two ends are 0.7 
wavelengths long. Furthermore, the impact of unequal wire lengths on the current 
distribution in the wires is also more pronounced at this higher frequency. 
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Fig. 3.  Normalized radiation pattern for the two wire line in the xy-plane. Normalization is 
with respect to the average power density for each case. l = 3.4 m, h = 0.7 m, Z  = Z0, 
Z  = Z0/3, V01 = 1 V, f = 300 MHz. Solid line: Transmission-line current distributions with 
constant current at end wires (–4.3 dBm). Dash-dot line: MoM solution for the balanced 
case (–8.3 dBm, 28.5%). Dashed line: MoM solution for the unbalanced case (–8.5 dBm, 
25.4%). For each case the quantity in parentheses is the total radiated power and its per-
centage of the input power, i.e. the radiation efficiency 
 

In summary, these computations make evident the impact that the electrical 
length of the wires and their separation as well as geometric imbalances in the 
transmission-line configuration can have on the accurate prediction of radiated 
emissions from transmission-line circuits. Thus, in view of the principle of recip-
rocity, one expects a similar discrepancy to be observed in the calculation of the 
coupling of electromagnetic fields to a two-wire, transmission line configuration 
under balanced and unbalanced conditions. 

Electromagnetic Coupling to a Transmission Line 

The geometry depicted in Fig. 8 will be used for the development of a model  
for the prediction of the induced voltages and currents at the terminations of the 
two-wire transmission line configuration. The wires are assumed to be perfectly 

, f = 300 MHz, xy−plane
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conducting. The termination impedances ZL2 and ZL1 at x = ± l/2, respectively, are 
assumed known. Both loads are assumed to be lumped; hence, their length is as-
sumed to be negligible compared to the wavelength. Their actual position along 
the y coordinate is the parameter through which we control the balancing of the 
two-wire system. 
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Fig. 4. Magnitude of the current distribution in the wires of the terminated two-conductor 
system of Fig. 1 at f = 30 MHz 

Fig. 5. Phase of the current distribution in the wires of the terminated two-conductor system 
of  Fig. 1 at f = 30 MHz 

For the coupling problem the voltage source is set to zero. However, for the 
purposes of applying the concept of reaction and the associated reciprocity principle, 
we will also consider a driven problem where now the voltage source is nonzero. 
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Furthermore, the source and load impedances for the driven problem need not be 
the same with those of the coupling problem. Let t ( )D

I x , b ( )D
I x  be, respectively, 

the calculated currents along the top and bottom x-directed wires for the driven 
problem. Also, let l ( )D

I y , r ( )D
I y  be, respectively, the calculated currents along 

the left and right y-directed segments. Consider, next, the two cylindrical tubes 
formed by the surface of the two wires. These, together with the tubular surfaces 
enclosing the source and the load circuits define a closed surface S that encloses 
the two-wire configuration. In the volume Ve exterior to S the radiated fields (E r,
H

r) of the driven problem satisfy the source-free system of Maxwell’s equations. 
Consider, next, the coupling problem, where the terminated two-wire configu-

ration is excited by an incident field. Without loss of generality, the incident field 
is taken to be a time-harmonic, uniform plane wave, defined by its direction of 
propagation and the polarization of its electric field. We define the incident field, 
(Ei, H

i), as the field that would exist everywhere in space in the absence of the 
two-wire circuit. The interaction of the incident field with the wires results in a 
secondary field, (Es, H

s), radiated by the two-wire system. 

Fig. 6. Magnitude of the current distribution in the wires of the terminated two-conductor 
system of  Fig. 1 at f = 300 MHz 

The resulting total field, (Et, H
t), is the superposition of the incident and secon-

dary fields; hence, we write  
t i s= +E E E  ,       t i s= +H H H .  (2) 

In view of the linearity of the problem and the fact that the sources of the secon-
dary field are the induced currents in the wires, it follows that the secondary field 
satisfies the source-free system of Maxwell’s equations in Ve.
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Fig. 7. Phase of the current distribution in the wires of the terminated two-conductor system 
of  Fig. 1 at f = 300 MHz 

Use of the reciprocity theorem for the fields (Es, H
s) and (Er, H

r) in Ve yields 

ˆ ˆ( ) ( )t r r t i r r i

S S
nds nds× − × ⋅ = × − × ⋅E H E H E H E H , (3) 

where n̂  is the unit normal on S, taken to be pointing into Ve. In deriving the 
above equation use was made of (2). Since on the surface of the perfectly conduct-
ing wires it is tˆ 0n × =E  and rˆ 0n × =E , (3) may be cast in the following form 

ˆ ˆ ˆ( ) ( ) ( )
gaps x y

t r r t i r i r

S S S
nds nds nds× − × ⋅ = × ⋅ + × ⋅E H E H E H E H . (4) 

In the above equation gaps source loadS S S= U  denotes the portions of the surface S
enclosing the electrically small gaps at either end of the line associated with the 
source and load terminals, while t b

x x xS S S= U  and t b
y y yS S S= U , are respectively, 

t
x

b
x

t
y

b
y

on the left-hand side of the above equation over Sgaps has been shown in [3] to be 

1 1 1 1 2 2 2 2ˆ( ) ( ) ( )
gaps

t r r t C D D C C D D C

S
nds V I V I V I V I× − × ⋅ = − + −E H E H  , (5) 

where ( 1 1,C CV I ), ( 2 2,C CV I ) are the induced voltages and currents at the terminations 
due to the incident field, while ( 1 1,D DV I ), ( 2 2,D DV I ) are the voltages and currents at 
the source and load terminals for the driven problem. 

Next we consider the remaining integrals on the right-hand side of (4). Since 
both integrals are of similar form, it suffices to consider only one of them. In par-
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the portions of S associated with the x-directed (S  for top and S for bottom)  and 

the y-directed (S  for top and S for bottom) sections of the two wires. The integral 
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ticular, we choose to consider the integration over t
xS . Let us introduce a local, 

right-handed, coordinate system on t
xS , with n̂ and x̂ being two of the unit vectors. 

Clearly, the third unit vector t̂ is in the direction tangent to the contour of the 
cross-section of the wire. Let x t nˆˆˆ . Making use of the vector identity 

( ) ( ) ( )( ) ( )( )a b c d a c b d a d b c  (6) 

we have 

ˆˆˆ ˆ ˆ( ) ( )( ) ( )( )
ttt
xxx

i r i r i r

SSS
nds t x ds x t dsE H E H E H  (7) 

 

Fig. 8. Geometry of the terminated transmission line used for the calculation of the induced 
currents and voltages at the terminations due to an incident electromagnetic field 

In considering further each one of the two terms on the right-hand side of (7) we 
will make the assumption that the cross-sectional dimension of the wires are much 
smaller than the wavelength. Thus, the variation of the incident electric and mag-
netic field vectors around the contour Ct(x) of the cross section of the top wire at 
position x will be assumed negligible and the field values on the contour will be 
taken to be equal to their values at the axis of the wire at the given position x. 
Consequently, the second integral on the right-hand side of (7) is written as fol-
lows 

/ 2

/ 2 ( )
ˆˆˆ( )( ) ( , / 2, 0) ( )

t
x

li r i
x ClS xt

rx t ds x s t dl dxE H E H . (8) 

Recognizing the line integral of the tangential magnetic field r
t̂H  along the con-

tour Ct(x) as the axial current, t ( )
D

I x , at position x in the top wire, the above inte-
gral may be cast in the following form 

/ 2

/ 2
ˆˆ( )( ) ( , /2, 0) ( )

t
x

li r i D
x tlS

x t ds x s I x dxE H E . (9) 

L l

t

L

r

b

−  − 
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Furthermore, in view of the fact that the wire cross sectional dimensions are as-
sumed much smaller than the wire lengths, the axial component of the current on 
the wires is dominant, and any circulating component of the current can be as-
sumed negligible; hence, rˆ 0x ⋅ ≈H  on t

xS  making the first term on the right-hand 
side of (7) approximately zero. Obviously, this approximation becomes exact for 
the case where the current flow on the two-wire system is taken to be consistent 
with the excitation of a transverse electric and magnetic (TEM) mode. Combining 
this result with (9), allows us to cast (7) in the form 

/ 2

/ 2
ˆ( ) ( , /2, 0) ( ) .

t
x

li r i D

x t
S l

nds x s I x dx−
−

× ⋅ =E H E  (10) 

A similar development for the x-directed section of the bottom wire yields 

/ 2

/ 2
ˆ( ) ( , / 2, 0) ( ) .

b
x

li r i D

x b
S l

nds x s I x dx
−

× ⋅ = − −E H E  (11) 

Following an identical process as above it is straightforward to show that the 
remaining integral on the right-hand side of (4) may be cast in the form 

/ 2 / 2

/ 2 / 2
ˆ( ) ( /2, , 0) ( ) ( / 2, , 0) ( ) .

y

s si r i D i D

y l y r
S s s

nds l y I y dy l y I y dy
− −

− × ⋅ = − +E H E E  (12) 

Using (5), (10), (11), and (12) in (4) we obtain the following equation 

1 1 1 1 2 2 2 2( ) ( )C D D C C D D C
V I V I V I V I− + −

where, given the incident field and the current distribution along the wires ob-
tained from the solution of the driven problem for a given set of source and load 
conditions, the right-hand side term F is computed as follows 

/ 2 / 2

/ 2 / 2
/ 2 / 2

/ 2 / 2

( , /2, 0) ( ) ( , /2, 0) ( )

( /2, , 0) ( ) ( / 2, , 0) ( ) .

l li D i D

x t x b
l l

s si D i D

y l y r
s s

F x s I x dx x s I x dx

l y I y dy l y I y dy

− −

− −

= − − −

− − −

E E

E E

 

(14) 

Equation (13) contains the four unknown quantities of interest, ,1 1 2, ,C C C
V I V  

and 2
C

I . In view of the termination constraints 

1 1 1
C C

LV Z I= − ,   2 2 2
C C

LV Z I= −  (15) 

only two of them are independent. Thus, two independent equations are required 
for their computation. These two equations can be obtained from (13) by using 
two independent sets of current distributions on the wires, obtained from the solu-
tion of the driven problem with two different sets of source and load conditions. It 
is important to emphasize that for the case of unbalanced transmission lines a full-
wave electromagnetic field solver is used to calculate these “trial” sets of current 
distributions on the wires. 

= F  (13) ,
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Fig. 8. Magnitude of induced load current due to an incident plane wave with a 
linearly-polarized, y-directed electric field, propagating in the +x-direction. 

i i ˆ
yE y=E , ˆ

xk k x= , ZL1 = 0, ZL2 = Z0 

Numerical Examples 

The response of the terminated transmission line excited by an incident electro-
magnetic field is obtained from (13–15). The line is terminated as shown in Fig. 1 
with the source V01 shorted. The output of interest is the load current IL2 at the ter-
minating impedance ZL2, computed as a function of frequency for different polari-
zations and propagation directions of the incident field.  

First we consider the case where the electric field of the incident wave is 
i i ˆ

yE y=E , with propagation vector ˆ
xk k x= . The line terminations are assigned 

the values ZL1 = 0 and ZL2 = Z0, where Z0 is the characteristic impedance of the 
transmission line. The calculated magnitude of the load current versus frequency 
is plotted in Fig. 9. The results from three models are depicted, namely, the trans-
mission line-based model, the full-wave model for the balanced wire configura-
tion, and the full-wave model for the unbalanced case. Once again, it is stressed 
that these models are the models used for the calculation of the trial currents used 
in (12) and (13) for the calculation of the voltages and currents at the loads.  

For low frequencies the three models yield very similar results. This is to be 
expected since, as it is evident from (14), only the trial currents in the termination 
wires contribute to the source term and the transmission-line approximation of a 
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constant current at the termination wires is reasonable at low frequencies. 
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of the two wires have a minor impact on the current distributions. However, as the 
frequency increases and the wire separation becomes electrically large, the dis-
crepancy between the current distributions along the wires for the balanced and 
unbalanced cases becomes more pronounced. Furthermore, for the transmission-
line theory-based trial currents, the approximation of constant current at the end 
sections breaks down. Thus, for higher frequencies a significant difference is  
observed between the values of the induced load current predicted by the three 
models. 

 

 

Fig. 10. Magnitude of the induced load current due to an incident plane wave with a line-
arly-polarized, x-directed electric field, propagating in +y-direction. i i ˆ

xE x=E , ˆ
yk k y= , 

ZL1 = ZL2=Z0 

As a second example we consider the case where the electric field of the inci-
dent wave is i i ˆ

xE x=E , with propagation vector ˆ
yk k y= . The line terminations 

are assigned the values ZL1 = ZL2 = Z0, where Z0 is the characteristic impedance of 
the transmission line. The calculated magnitude of the load current versus fre-
quency is plotted in Fig. 10. In this case the termination wires are normal to the 
incident electric field. Thus, the value of the source term F in (12) is impacted 
only by the interaction of the incident electric field with the x-directed wires. 
Thus, differences between the induced currents for the balanced and the unbal-
anced case are anticipated at all frequencies. This is indeed the case as illustrated 
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Furthermore, at low frequencies any imbalances caused by differences in the lengths 

in Fig. 10. With regards to the solution for the case of the balanced circuit, 
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tained from using the transmission line currents as trial currents, we expect them 
to be in good agreement, overall, since the contribution of the end wires to the 
source term is zero. This good agreement is evident from the plot in Fig. 10. How-
ever, both Figs. 9 and 10 make apparent the importance of utilizing accurate 
“trail” currents, predicted from full-wave analysis in the system of (12–14) when 
the induced load voltages and currents are to be computed for the case of unbal-
anced transmission-line circuits and at frequencies for which the transmission-line 
configuration is electrically large 

Concluding Remarks 

In summary, we have proposed and demonstrated a convenient mathematical 
formulation for the computation of electromagnetic coupling to the source and 
load ends of a two-wire system configured for use as a transmission line. The pro-
posed methodology makes use of current distributions on the two-wire system, ob-
tained with the system driven by a time-harmonic source and, thus, operated as an 
electromagnetic waveguide, in a reciprocity-based relationship between the fields 
of the coupling problem of interest and the driven problem, to yield a system of 
algebraic equations that can be solved readily for the induced currents or voltages 
at the terminations. Compared to past approaches, the proposed methodology al-
lows for the induced voltages and currents to be calculated accurately even in the 
case of unbalanced wires. 

As demonstrated through the numerical studies presented in the paper, the end 
sections of the wires, associated with the source and load connections, along with 
any imbalances in the system caused by these end connections, can have a signifi-
cant impact on the induced currents and voltages, especially for those frequencies 
for which the electrical length of the end sections becomes appreciable. However, 
for such cases, the accuracy of the proposed methodology is strongly dependent 
on the accuracy with which the trial current distributions in the wires is calculated. 
More specifically, current distributions obtained from a full-wave analysis of the 
driven problem must be used as trial currents in the case of unbalanced transmis-
sion line configurations, as well as for frequencies for which the electrical size of 
the circuit and its end sections is appreciable. 
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Abstract  

The aim of the present work is to reveal the effect of the motion on the scattering by a mov-

velocity. This canonical problem permits one to investigate the effect of both the velocity 

ena. In the present work the incident wave is supposed to be a monochromatic plane elec-
tromagnetic wave while the half-plane is perfectly conducting.   

Introduction 

During more than one century which followed the foundation of Maxwell’s the-
ory, propagation and scattering of the electromagnetic wave have been investi-
gated extensively by considering various kind of mediums and scatterers. A 
common property of a good deal of these investigations is that they concern the 
scatterers which are at rest with respect to the observer. But in some cases, which 
are of importance from both pure scientific and technical points of view, the scat-
terers are in motion. The communication satellites, guided missiles and modern 
swift vehicles such as air-planes, trains, and cars can be enumerated among this 
kind of scatterers. To have a correct and deep insight into moving objects one has 
to formulate and solve the related mathematical problems exactly through the con-
cepts of the special theory of relativity [1]. In spite of its importance, the works 
devoted to this subject are rather few [2–11]. They are not interested, for example, 
in a detailed discussion of the shadowing and reflected waves individually. The 
aim of the present work consists of this task. To this end we consider the scattering 

ing edge. To this end one considers the edge of a half-plane, which moves with constant 

and the direction of motion on the reflection, shadowing, and edge-diffraction phenom-
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of a monochromatic plane wave by a moving half-plane and analyze the resulting 
problem through an exact full-relativistic approach. The results we will obtain 
from the solution of this canonical problem will permit us to reveal the effect of 
the motion on both the edge-diffraction and the shadowing and reflection 
phenomena. In order to reduce the mathematical difficulties inherent to both the 
half-plane configuration and the motion, we will consider only a particular case of 
motion which occurs with a constant velocity in a direction normal to the half-
plane. Furthermore, the incident wave is assumed to be a plane wave propagating 
in an arbitrary direction which is normal to the edge. 

The results we will obtain will show that the edge-excited wave is never time 
harmonic while the waves excited by the plane (i.e. the shadowing and reflected 
waves) are always time-harmonic. The frequency of these latter is sometimes 
equal to that of the incident wave but sometimes differs from it (Doppler’s effect). 
It is also interesting that the apparent shadow and reflection boundaries are never 
parallel to the incident rays (aberrations). The physical explanations of various 
shifts are also different depending on the direction and numerical value of the ve-
locity. One of the interesting issues we will obtain is that, depending on the values 
of the velocity and incidence angle, a shadow region appears in the apparently il-
luminated region while a lit region appears in the apparently shadow region. Fur-
thermore, the moving sheet provides, sometimes, an energy to the reflected wave.  

Formulation of the Problem 

Consider a cartesian coordinate system ' ' ' 'O x y z  and assume that the half-
plane { 'x ∈(0,∞), 'y  = 0, 'z ∈(– ∞,∞)} consists of  a perfectly conducting 
sheet. In what follows this co-ordinate system and the conducting sheet will be 
denoted by 'K  and S, respectively. In the problem to be addressed in this work S 

reference system K  and is illuminated by a monochromatic plane wave. The prob-
lem consists then of the investigation of the influence of the motion on the scat-
tered wave to be observed from the reference system K. This latter will be repre-
sented by a Cartesian coordinate system Oxyz. For the sake of simplicity, we will 
consider here only a particular case in which S moves parallel to the Oy axis (see 
Fig. 1). 

Without loss of generality, the incidence angle θ  (observed in K ) may always 
be assumed as θ ∈(0,π ) if two directions of motion are considered separately:  
υ  = ± υ ey . Here υ  > 0 denotes the velocity of  S while ey stands for the usual unit 
coordinate vector. As to the polarization of the incident wave, it will be considered 
that the incident electric field is parallel to the edge, namely: 

 
                           E i = {E0 exp[ik(xcos  + ysin  - ct)]}ez                                          (1) 

 

Κ′(and K ) makes a uniform rectilinear motion, in vacuum, with respect to another 

ℜ

 

θ

 

θ
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Fig. 1. Half-plane moving with velocity υ  = υ ey  

Here the super-indice (i) in Ei  signifies the incident electric field, ℜ{.} stands 
for the real part  while c is the velocity of the wave in vacuum. As to the constants 
k and E0, they are the wave number and the complex amplitude of the incident 
electric field, respectively. It is worthwhile to notice that ω = kc is the angular fre-
quency. 

Solution of the Problem 

To solve the problem mentioned above rigorously, we will transform first the ex-
pression of the incident wave, which is known in K, into the system ′  and solve 
the problem in ′ . Then the exact expression of the solution, obtained in ′ , will 
be transformed into the system K. The above-mentioned transformations can be 
made through the Lorentz  transformation  formulae because they are quite exact 
expressions satisfying the Maxwell equations. 

Let the clocks in K and ′  be so adjusted that O ≡  'O  when t = 't  = 0 (see 
Fig. 1). Here t and 't  denote, as usual, the times measured in K and 'K , respec-
tively. Under this assumption one writes in K (for the sake of simplicity we will 
omit the operation ℜ{.}if it is not necessary) 
 

                           ( )0 exp cos sinE ik x y ctθ θ= + −i
zE e                                          (2a) 

 
and 

y, y1

O'
S

q

X'

XO

ut

K

K

KK
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( ) ( )0 exp cos sin sin cosE

Z
ik x y ctθ θ θ θ= + − −i

x yH e e ,                   (2b) 

which are transformed  into 'K  as  

       ( cos sin )
2

0 1 sin
1 ( / )

ik x y i t
E v

e
cc

θ θ ωθ
υ

′ ′ ′ ′ ′ ′ ′+ −′ = −
−

i
zE e                              (3a) 

                                                                                                                                                                                                   

( )( cos sin )
2

0 1 sin sin cos
1 ( / )

ik x y i t
E v

e
cZ c

θ θ ωθ θ θ
υ

′ ′ ′ ′ ′ ′ ′+ −′ ′ ′= − −
−

i
x yH e e                  (3b) 

with  

                       
2

1 sin ,
1 ( / )

vkk k c
cc

θ ω
υ

′ ′ ′= − =
−

                               (4a) 

 

     2sin / cossin , cos 1 ( / )
1 ( / )sin 1 ( / )sin

v c
v c

v c v c

θ θθ θ
θ θ

−′ ′= = −
− −

.                   (4b) 

 
In (2b) and (3b) /Z μ ε=  stands for the characteristic impedance of the space 

(i.e. the vacuum. ε  = permittivity, μ  = permeability, and Z = 120π  ). To reveal 
the expressions (3a) and (3b) one has to use the transform formulas [12] 

 

             
2

2 2

/, , ,
1 ( / ) 1 ( / )

y vt t vy c
x x y t

c cυ υ

′ ′ ′ ′+ +′= = =
− −

                             (5a) 

 

           
( ) ( )

1 3 3 1
1 2 2 32 2

, ,
1 / 1 /

E v H E v H
E E E E

v c v c

μ μ+ −′ ′ ′= = =
− −

                        (5b) 

and 

                
( ) ( )

1 3 3 1
1 2 2 32 2

, ,
1 / 1 /

H v E H v E
H H H H

v c v c

ε ε− +′ ′ ′= = =
− −

.                    (5c) 

 
In (5b) and (5c) the subindices (1), (2), and (3) stand for the cartesian coordi-

nates of  vectors while k′ and θ ′ appearing in (3a) and (3b) are the wave-number 
and incidence angle observed in the system  ′ , respectively. It is worthwhile to 
remark that both sinθ ′  and cosθ ′ may have positive and negative values for 

(0, ).θ ∈  Hence the incidence direction to be observed in K ′ exhibits various in-
teresting possibilities with ( , ).θ ′∈ −  

Since the explicit expression of the incident wave is totally known in ′  and 
the problem is already classical, by referring to some standard references (see for 
example [13]) one can directly write the expression of the scattered wave 

3 ( , , )E x y t′ ′ ′ ′s as follows: 

K

K
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( )
0

3 2
( , , ) 1 sin cos

( cos )2 1 ( / )

i x y i t
s

L

iE v e
E x y t k k

c k kv c

α γ α ω
θ θ

α θ απ

′ ′ ′ ′± −
′ ′ ′ ′ ′ ′ ′= − +

′ ′ ′− +−

where the integration line L denotes the real axis seen in Fig. 2 and ( )γ α is the 
square-root function 2 2( ) kγ α α ′= − defined in the complex-plane cut as shown in 
Fig. 2 with the condition (0) .ikγ ′= −  In (6) the sign ( )±  stands for (+1) when 
y vt′ < and (–1) when .y vt′ >  

 
 
 

 

 

Fig. 2. The integration line L and the complex -plane 

The expression of the scattered field s
3E x y t( , , )  which is valid in K can now be 

obtained by using the inverse Lorentz formulas [12] 

                  
2

2 2

/, , ,
1 ( / ) 1 ( / )

y vt t vy c
x x y t

c cυ υ
− −′ ′ ′= = =

− −
                   (7a) 

and 

        
( ) ( )

3 1 3
1 2 3 32 2

10, 0,
1 / 1 /

s s s
s s s sE v H Ev

E E E E i
yv c v c

μ
ω

′ ′ ′+ ∂′= = = = −
′ ′∂− −

      (7b) 

From (6–7b) one gets 
   

[ ]
( )

[ ]
( )2

2
2

( )/
1 ( / )

1 ( / )0
3 2

1 ( / )sin 1 ( ) ( ) /
( , , ) cos

( cos )2 1 ( / )

y vt
i xt vy c

i v c
v cs

L

iE v c iv e
E x y t k k e d

k kv c

α γ α
ωθ γ α ω

θ α
α θ α

−
±−

′− −
− ′− − ±

′ ′ ′= +
′ ′ ′− +−

                                                   
(8) 

Now by making the substitutions 
 
                    cos , ( ) sin , sink ik d kα β γ α β α β′ ′ ′= = − = −          (9a) 

and 

                     
2

cos , ( ) sin , (0, )
1 ( / )

y vt
x R R

v c
φ φ φ π−′ ′ ′ ′ ′= = − ± ∈

−
    (9b) 

 
the resulting integral is transformed into a suitable form which can be evaluated 
by using the steepest-descent path method. Since ( , )θ ′∈ −  this evaluation gives 
the following  expression:  

– When (0, )θ π′∈ or sin /v cθ >  one has 

   
              

  O  L 

ℑ  

     

  -k´   k´cos ´  

dα ,       (6) 

ℜ
θ

α  

α

π
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            ( )
( )

3
3 3

3

( , , ) ,
( , , ) ( , , )

( , , ) ,

i
s ss

r

E x y t H y vt
E x y t E x y t

E x y t H y vt

θ φ
θ φ

′ ′− − >
= +

′ ′− <
                  (10a) 

– When ( ,0)θ π′∈ − or sin /v cθ <  one has 

                    ( )
( )

3
3 3

3

( , , ) ,
( , , ) ( , , )

( , , ) ,

r
s ss

i

E x y t H y vt
E x y t E x y t

E x y t H y vt

θ φ
θ φ

′ ′− − >
= +

′ ′− − − <
.     (10b) 

Here ( )H x is the usual Heaviside unit step function while i
3( , , )E x y t  is the inci-

dent wave given through (2a). r
3 ( , , )E x y t  appearing in (10a and 10b) can be de-

fined as the reflected wave by the moving conducting half plane and its explicit 
expression is given by 

                      ( )3 0( , , ) exp cos sinr k
E x y t E ik x y

k
θ θ

′′ ′′ ′′ ′′= − + −                      (11a) 

where 

                           
2

2

(1 / ) 2( / )(1 sin )

1 ( / )

v c v c
k k

v c

θ− + −
′′ =

−
                                     (11b) 

and 

           
{ }2

2

2( / ) 1 ( / ) sin
cos cos , sin

1 ( / )

v c v ck k

k k v c

θ
θ θ θ

− +
′′ ′′= =

′′ ′′ −
           (11c) 

As to ss
3 ( , , )E x y t  appearing in (10a and 10b) it is the edge diffracted field which 

is expressed by 

            
0

3 2

1 sin
cos( , , ) 1 sin sin

2 cos1 ( / )
ss

v

E v k kc
E x y t

c k kv c

θ
θφ φ
φ

− ′ ′ ′+′ ′+
′ ′ ′+−  

                                             
( ) ( )

( )

2

2

/2

1 /

1
2
cos cos

t vy c
i ik R

v c
F k R

e
e

k R

ωφ θ

φ θ

−
′− ′ ′

−
′ ′ ′ ′−

×
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        (12a) 

with 

     
2 2

2 2 2 2 2 2 2 2

1 /cos , sin
(1 / ) ( ) (1 / ) ( )

y vtx v c

x v c y vt x v c y vt
φ φ

−−′ ′= =
− + − − + −

 (12b) 

and 

                                       
2 2 2 2

2 2
(1 / ) ( )

1 /
x v c y vt

R
v c

− + −′ =
−

                                (12c) 

In (12a) the function ( )F x stands for 
                                            ( )/ 4( ) ix iF x x e erfc e xπ− −=                                  (13) 

with erfc( )x  being the classical error function. 

ct ,

=

.
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By considering (10a) together with (2a) and (11a), one concludes that when 
sin /v cθ > the incident wave is cancelled by (– i

3E ) in the region y vt>  and 
θ φ′ ′> to  create a shadow region. In the half-space y vt<  a reflected wave of fre-
quency k cω′′ ′′= , which propagates in the direction determined by the angle θ ′′  is 
excited (see Fig. 3). The boundaries of the shadow and reflection regions are de-
termined by the equation tan tanθ φ′ ′= , which is equivalent to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Shadow and reflection boundaries when (0, / 2)θ π∈ and sin /v cθ >  
 
                                                ( ) tany vt x θ− = − ± %                                                           (14a) 
with 

                                            sin / / sintan
cos cos

v c v cθ θθ
θ θ

′′− −= =
′′

% .                                       (14b) 

 
When sin /v cθ < , from (10b), (2a), and (11a), one concludes that  the half-

space located above the conducting sheet ( y vt> ) is not shadowed. Indeed, in this 
half-space a monochromatic plane wave defined by (11a–11c) appears in the re-
gion where ( )θ φ′ ′− >  (see Fig. 4).  This interesting phenomenon can be easily ex-
plained by observing that in this case one always has ( ,0)θ ′∈ − , which shows 
that the incident wave i

3E′  seems to an observer lying in the reference system K ′  
as a wave coming from the half-space 0y′ >    (i.e. y vt> ). Therefore, in K ′ it is re-
flected by the sheet into the region above it. The field defined by (11a) is nothing 
but this reflected wave observed by an observer lying in the reference system K. 
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Fig. 4. Shadow and reflection boundaries when (0, / 2)θ ∈ and sin /v cθ <  
 

It is also easily seen that in the half-space y vt< the incident wave is cancelled 
in the region defined by ( )θ φ′ ′− > to create a shadow region. For this case the re-
flection and shadow boundaries denoted by θ%  can be determined by the equation 
tan( ) tanθ φ′ ′− = , namely: 

                                        / sin sin /tan
cos cos

v c v cθ θθ
θ θ

′′− −= =
′′

%                                 (15) 

Conclusions and Discussions 

From the analysis made above one concludes that the scattering by a moving half-
plane exhibits various interesting phenomena which are sometimes unexpected. 
For example, some terms excited by plane are not time-harmonic even if the inci-
dent wave is so. The time-harmonic terms are also divided into two groups. The 
frequency of the first group is quite identical to the frequency of the incident wave 
while that of the second group differs from it and depends also on the incidence 
angle and velocity. Another interesting issue due to the motion is that the reflec-
tions, as well as the shadow boundaries, are never parallel to the direction of the 
incident rays. Hence both the shadow and the reflection regions are sometimes 
smaller while sometimes larger than those pertinent to the motionless case. 

What is much more interesting is that a shadow region is observed in seemingly 
illuminated region while a lit region (involving a wave of frequency equal to or 
different from the frequency of the incident wave!) is observed behind the half-
plane (i.e., traditionally shadow region). These kind of unexpected phenomena are 
observed when the half-plane moves in a direction normal to itself. 
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Abstract  

Ray chaos, manifested by the eventual exponential divergence of nearby originating ray tra-
jectories, is a peculiar phenomenon which can occur even in linear electromagnetic propagation 
environments with relatively simple geometry, as a consequence of the inherent nonlinear-
ity of ray-tracing maps. This paper provides a compact review of known results on wave 
propagation in ray-chaotic scenarios, and their potential implications for electromagnetic 
engineering applications.  

Introduction 

Deterministic chaos [1–3] is nowadays recognized as a pervasive natural  
phenomenon of relevance in many fields of applied science and engineering, including 
electromagnetics (EM) (see [4] for a compact review). Of special interest, under 
high-frequency (HF)/short-pulse (SP) conditions, are the theoretical aspects and 
implications of ray chaos, which is manifested by the exponential separation of 
nearby-originating ray trajectories launched into certain complex deterministic en-
vironments. Remarkably, such behavior, which could intuitively be expected in 
very complex and cluttered propagation scenarios (e.g., urban areas), can also be 
observed in relatively simple (but coordinate-nonseparable) structures that give 
rise to multiple reflections, focusing, and defocusing, such as homogeneously 
filled “billiard-shaped” enclosures [3, 5, 6], (n>3)-disk “pinballs” [7, 8], or appro-
priately configured inhomogeneous refractive media with ray-trapping properties  
 



38      V. Galdi et al. 

[9]. At first glance, ray-chaos may appear as a mere artifact stemming from ap-
proximating a linear wave equation (which operates in the HF regime with arbi-
trarily small but finite wavelengths, and does not exhibit exponential sensitivity to 
initial conditions in deterministic environments) in terms of a nonlinear ray equa-
tion that is based on the zero-wavelength HF limit. Nevertheless, there is substan-
tiated evidence that the dynamic behavior of ray-chaotically-inclined systems, 
when observed at short (but finite) wavelengths, exhibits anomalous features 
which differ considerably from those associated with “regular” (e.g., coordinate-
separability-induced) ray characteristics. Therefore, in ray-chaotically-inclined 
configurations, the onset of ray chaos serves as a “footprint” in HF wave dynamics 
that implies a “transition” to observables which are no longer well-matched to the 
pre–chaotic wave physics (see [10–13] for a review of known results). Besides the 
inherent academic interest, ray chaos has been demonstrated to play an important 
role in a variety of engineering applications (see [14–21] and the references 
therein). 

In an ongoing series of investigations [22–31], we have focused on the study of 
HF/SP EM wave dynamics in ray-chaotic scenarios. In this paper, we provide a 
compact overview of background theory (mainly within the framework of quan-
tum physics) as well as selected results from our EM investigations. 

Summary of Known Results: “Ray-Chaotic Footprints” 

Most available investigations on the HF wave dynamics in ray-chaotically-
inclined configurations are set in a quantum physics framework (classical vs. 
quantum chaos, see [10–13] for a review). Nevertheless, the main results and con-
clusions are rather general and apply to all kinds of time-harmonic wave phenom-
ena. In most studies, emphasis is placed on the analysis of high-order modes in 
ray-chaotic “billiard” resonators, both from a numerical [32–41] and experimental 
[42–53] viewpoint. Good agreement between theoretical conjectures, numerical 
simulations and measurements in 2-D and 3-D experiments has usually been ob-
served for eigenvalue statistics [46, 51], and for eigenfunction morphology and 
spatial statistics [42, 44, 47].  

What seems to emerge is the presence of distinctive features in the HF wave 
dynamics which distinguish ray-chaotic boundary value problems (BVPs) from 
those (e.g., coordinate-separable) exhibiting regular ray behavior. Remarkably, in 
most cases, such “ray-chaotic footprints” have universal properties. For instance, 
in internal BVPs, the (asymptotic) neighboring-eigenvalue spacing distribution for 
regular geometries is known to be Poissonian [54]. Conversely, for ray-chaotic 
geometries, theoretical [55], numerical [51, 56, 57], and experimental [46, 51] in-
vestigations have revealed a deep connection between the spectral (eigenvalue, ei-
genfunction) ensemble properties and certain classes of random matrices [58] 
which were first introduced in the 1960s by Wigner [59] and Dyson [60] to de-
scribe the spectra of complex quantum systems (e.g., atomic nuclei) whose Hamil-
tonians are not known in detail. More recent studies have shown other examples of 
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ray-chaotic footprints in internal BVPs, related to field nodal-domain [61] and im-
pedance/scattering matrix [62, 63] statistics.  

In external BVPs, ray-chaotic footprints have been observed in the random-like 
angular spectrum properties of the scattering matrix and cross-sections, with in-
triguing connections to the dwell-time distribution of the corresponding ray dy-
namics [7, 8].  

Overall, with a few notable exceptions (see, e.g., [34]), the wave dynamics 
turns out to undergo a “transition” from a regular regime (with smooth depend-
ence on parameter variations) to an irregular regime (with sensitive dependence 
on parameter variations, and ergodic random-like behavior), as the frequency of 
operation is increased. In such an irregular regime, the full-wave properties are 
most naturally described in statistical terms, and a well-established model is based 
on the assumption that the field at any point is a superposition of a large number 
of plane waves with fixed wavevector amplitude, and uniformly distributed arri-
val-directions and phases [64]. Under (generally fulfilled) additional ergodicity as-
sumptions, this yields rather general consequences in the wavefield statistics: In an 
arbitrary spatial domain spanning several wavelengths (sufficiently large so as to 
yield meaningful statistics, and yet sufficiently small so as to reveal possible spa-
tial variations), the wavefield samples constitute a zero-average Gaussian ensem-
ble, with spatial field correlation exhibiting peculiar (universal) forms [64, 65] 
(e.g., J0 Bessel function in the 2-D case). The random-plane-wave (RPW) model 
has been demonstrated to reproduce the statistical properties (both predicted [57] 
and measured [52]) of high-order HF wavefunctions of strongly chaotic billiards 
in the irregular ergodic regime, still in accord with the random-matrix theory [66]. 
Remarkably, similar RPW models have been developed and applied successfully 
to the study of complex radar signatures [19, 21] as well as narrowband EM re-
verberation enclosures [67]. The reader is also referred to [68–70], where exam-
ples of billiards with “mixed” dynamics are considered, and possible deviations 
from the RPW model are explored.  

For SP excitation, the insofar complete analogy between quantum physics and 
EM is no longer generally applicable, since the equivalence between the wave 
equation and time-dependent Schrödinger equation holds only in particular ap-
proximated (e.g., paraxial) regimes. Therefore, application to the EM counterpart 
of known results from quantum physics concerning possible ray-chaotic footprints 
in the SP wave dynamics (see, e.g., [71, 72]) is not straightforward. However, in-
triguing results have recently been obtained in acoustics applications of ray-chaos-
enhanced time-reversal focusing [16, 73–75], for which the EM analogy is rather 
straightforward. In these investigations, theoretical and experimental support is 
provided for the possibility, in ray-chaotic cavities, of achieving time-reversal fo-
cusing using a single transmitter/receiver, by trading off (in view of ergodicity) 
the conventional spatial sampling with temporal sampling. Further results for the 
SP case are discussed later (see also [31]).  
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Summary of Our Recent Results 

Our interest in ray-chaotic propagation scenarios originated with the study of re-

verberating enclosures (see [76] for a recent review of the subject). Besides their 
practical utility as tools for narrowband EM compatibility/interference testing, 
such structures constitute an intriguing paradigm of the deterministic/stochastic in-
teractions in complex systems. In [22], we introduced a simple 2-D ray model of 
(mechanically) mode-stirred reverberating enclosures, which revealed the connec-
tion between the spatial field homogenization with Rayleigh-like field intensity 
distribution in time observed in reverberating enclosures [77] and the onset of 
chaos as the peak-to-peak displacement of the mode-stirring wall becomes compa-
rable to the EM field wavelength. Remarkably, the simple model in [22] was 
found to reproduce experimentally observed features, thereby providing useful in-
sight into the underlying physics, and suggesting conceptual foundations of the 
well known thermodynamic theory of reverberating enclosures [78], as well as 
performance assessment in terms of Lyapounov exponents [1–3]. This suggested a 
deeper investigation of the general properties of wave dynamics in ray-
chaotically-inclined enclosures vs. enclosures with regular (nonchaotic) features. 
Our subsequent studies were accordingly structured along two main research lines: 

 
1. HF analysis of novel classes of two-dimensional (2-D) ray-chaotic wave guid-

ing/scattering configurations. In [24, 26, 27, 30], we explored a configuration 
consisting of dielectric stratifications with exponentially tapered refractive  
index profile bounded by a smooth perfectly-electric-conducting periodic un-
dulating bottom surface. The main novel feature in this configuration, which 
constitutes the EM analog of the gravitational billiard in [9], is the absence of a 
top-layer boundary, thereby allowing internal-external coupling (via the undu-
lating bottom) between refractively spatially-confined and outgoing (leaky) 
rays and modes. For this configuration, we performed a comprehensive ray 
analysis, which revealed the onset of typical chaotic behavior. For specially tai-
lored synthetic test profiles, we also carried out a rigorous full-wave analysis 
that allowed for comprehensive parametric study of the associated wave dy-
namics, with estimates of accuracy. Results for the HF regime indicated trends 
toward irregularity and other anomalous characteristics (not observed in ge-
ometries with “regular” ray behavior) which can thus be interpreted as “ray-
chaotic footprints”. In the irregular (random-like, ergodic) regime, the wave 
dynamics was found to be described effectively  by random-wave statistical 
models similar to those in [10–13]. In order to gain further insight, in [28, 29] 
the above analysis was extended to a cylindrical version, whose transverse fi-
nite extent in free space allowed for characterization and assessment of 
(monostatic or bistatic) radar cross sections. The performance characteristics 
produced by these model environments might be of interest in radar counter-
measures and smart microwave absorbers. Possible applications are currently 
under investigation. 

2. SP wavepacket propagation in ray-chaotic (e.g., stadium-shaped) enclosures. 
These studies were initially aimed at the design of pulsed (wideband) reverber-
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ating (multiechoing) enclosures, based on the speculation that, in ray-chaotic 
enclosures, under suitable conditions, an initially localized EM wave-packet 
would eventually generate a nearly-uniform and isotropic “pulse shower” illu-
minating an equipment under test in a fashion largely independent of the target 
location, orientation, shape, and electrical constitutive properties. In [23], a pre-
liminary study in a stadium-shaped geometry, within the limits of a simple ray 
analysis, confirmed the viability of such approach. Rigorous full-wave numeri-
cal simulations of the same scenario were subsequently carried out in [25, 31], 
via finite-difference-time-domain (FDTD) method. While bouncing around the 
walls, along the ray path skeleton, the wavepacket was found to undergo focus-
ing at the concave curved wall and natural spreading elsewhere (including 
straight-wall reflection), progressively losing its initial space-time localization. 
and eventually covering uniformly the entire enclosure. Statistical analysis of 
the late-time spatial field distributions revealed the presence of interesting ran-

dom-wave signatures, in terms of Gaussian field distributions and uniform and 
isotropic spatial correlation (with correlation length on the order of the pulse 
length), which turn out to be consistent with those from random-wave models 
encountered in the time-harmonic case. The same statistical analysis performed 
for regular (e.g., rectangular and circular) geometries indicated more regular 
field distributions (even at late times), with significant deviations from Gaus-
sian statistics and isotropic spatial correlation, and increased sensitivity to 
wavepacket initial conditions. This suggests pulsed-reverberation techniques 
with their space-filling randomized outcome as potential candidates for wide-
band EM interference and/or EM compatibility testbeds.  

Conclusions and Perspectives 

A compact overview of results pertaining to HF and SP wave dynamics in ray-
chaotic scenarios, and their potential relevance to EM engineering applications, 
has been attempted here. In particular, several examples and paradigms of “ray-
chaotic footprints” in the wave dynamics have been illustrated. 

It is worth stressing that the summary here is far from exhaustive, and some of 
the relevant issues involved are as yet unsettled (see, e.g., [79]). The reader is en-
couraged to further explore this subject, which is not only appealing but may have 
potentially interesting applications. 
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Abstract 

This paper introduces Matlab-based two dimensional (2D) virtual propagation tools (VT) 
which can be used to investigate EM propagation over user-specified nonflat terrain 
through inhomogeneous atmosphere. The VTs can be used for both engineering (GSM cov-
erage planning, digital site survey, etc.) and educational purposes (e.g., in EM Theory, 
Wireless Communication, Antennas and Propagation lectures). 

Introduction 

The design of today’s communication systems necessitates a good understanding 
of electromagnetic (EM) wave propagation in three-dimensional (3D) realistic en-
vironments [1–3]. 

However the 2D techniques have successfully been applied to simplified, but still 
realistic problems [1 16]. Historically, these techniques can be classified as: 

1. Analytical approximate. 
2. 2D Numerical. 
3. Hybrid, which are combinations of 1 and 2. 

Analytical solutions are based on ray/mode approaches (e.g., see [1, 2] for the 
details of early analytical approaches). The single and multiknife-edge analytical 
approximations of nonflat, nonpenetrable terrain profiles have also been intro-
duced and are used if there are a few dominating hills between the transmitter and 
receiver [5, 6]. 

Numerical solutions are basically divided into two subgroups; the frequency-
domain (FD) techniques, such as PE [9–12] and method of moments (MoM)  

above with nonhomogenous atmosphere has not been solved analytically, yet. 

–

The 3D EM wave equation in spherical coordinates, over nonflat lossy ground, 
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based propagators [7, 8], and the time-domain (TD) techniques that are based on 
finite-difference time domain (FDTD) [13] and transmission line matrix (TLM) 
[14] methods. Analytical solutions are limited only a number of idealized geome-
tries and certain refractivity conditions, but they are easy to compute. On the other 
hand, numerical solutions are applicable to more general geometries with almost 
arbitrary refractivities, but they are computationally complex and time consuming. 
Therefore, it is wise to hybridize analytical–numerical methods intelligently to 
broaden their range of applicability and accuracy. 

Standard atmosphere corresponds to atmospheric refractivity decreasing with 
height plus earth curvature, resulting an atmospheric refractivity increasing with 
height for normalized Cartesian coordinates. For bilinear type, there exists a sur-
face duct (linearly decreasing atmospheric refractivity) up to a certain height given 
by the user and standard atmosphere over this height. Elevated duct (trilinear) type 
atmosphere means that there exists a duct between first and second heights also 
chosen by the user. The effect of atmosphere onto EM propagation can be ob-
served by choosing the desired refractivity. 

Two-Dimensional Groundwave Propagators 

A few Matlab-based 2D propagator VTs are designed and presented in this section 
(These VTs can be downloaded from http://www3.dogus.edu.tr/lsevgi or culuisik). 

Snell_gui 

A 2D propagation package Snell_gui [4] is prepared using Matlab to visualize ray 
characteristics. The ray shooting algorithm is based on consecutive application of 
Snell’s law. It shoots a number of rays through a propagation medium character-
ized by various linear vertical refractivity profiles, so the user may visualize vari-
ous ducting and antiducting characteristics depending on the supplied parameters. 
The front-panel of the, Snell_gui package is shown in Fig. 1. 

Knife_gui 

The package Knife_gui is based on the mathematical formulation of the classical 
knife-edge problem [5, 6]. Diffraction occurs when the direct line-of-sight (LOS) 
propagation between the transmitter and the receiver is obstructed by an opaque 
obstacle whose dimensions are considerably larger than the signal wavelength, 
and the radio waves are scattered and additionally attenuated. The diffraction 
mechanism allows the reception of radio signals when the LOS conditions are not 
satisfied (NLOS case), whether in urban or rural environments. 
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Fig. 1. The front panel of Snell_gui (left) vertical refractivity profile (right) ray trajectories 
 

The Matlab-based Knife_gui VT is designed to account for the knife-edge dif-

the boundary of the terrain by locating a number of points using the mouse. The 
rougher the terrain profile the higher the number of points that should be located. 
Then, the cubic-spline curve fitting algorithm is used to obtain the Z-dependent ter-
rain function. Finally, the peak of the terrain is calculated automatically, and is re-
placed by a knife-edge obstacle with the same height at the same range.  

Once, the user-specified parameters are supplied, propagation factor vs. range 
at a given height, and, propagation factor vs. height at the last range are calculated, 
and plotted at left and right, respectively (see Fig. 2). 

The results of the 2-Ray model (i.e., the direct and ground-reflected rays) are 
also plotted in the figures, just to give an idea for the expected effects of the ter-
rain. 

The terrain profile may be recorded in a file for future usage. The name of the 
file may be supplied by the user. The created terrain files may also be called by 
the user. The buttons “save terrain” and “load terrain” are reserved for these pur-
poses, respectively. 

The creation of any type of a terrain profile is one of the most effective part of 
this tool, since one may often requires to rebuild an existing terrain and run his/her 
own propagation codes. 

It should be noted that, Knife_gui can be used for longitudinal terrain profiles 
with a dominating hill between the source and receiver that obscures the LOS path 
and the result may only represent the order of attenuation. 
 

fraction effects. The front panel of this VT is shown in Fig. 2.  First, the user specifies 
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Fig. 2. The front panel of Knife_gui 

 
 

Fig. 3. Geometrical fundamentals of the Propmom_gui 
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Propmom_gui  

The VT Propmom_gui is based on the MoM and uses the 2D Green’s function. 
The surface length is approximated by N tilted straight segments of horizontal 
width z as shown in Fig. 3. Once, the digital longitudinal terrain segments are 
specified, segment currents, caused by the EM fields illuminating these segments, 
are calculated from N×N matrix system [Z][I] = [V] where ZNN, IN, and VN are the 
surface impedance matrix of the segments, segment currents and incident voltages, 
respectively. Finally, the scattered fields caused by these segment currents at a 
chosen observation point are extrapolated by using the 2D– Green’s function 
propagators. 

The front-panel of the Propmom_gui VT is designed as shown in Fig. 4. Input 
parameters are given at the top of the interface. At the left side, terrain points are 
marked and terrain function is drawn on the top, and the diffraction loss vs. range 
at an observation height is drawn on the bottom. At right, the diffraction loss vs. 
height at maximum range is drawn. 

 

Fig. 4. The Propmom_gui, dashed-lines represent flat earth 2D-Ray results. 
(top) user-built terrain profile  (bottom) Signal vs. range at constant height, (right) 
Signal vs. height at constant range 
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SSPE_gui 

The SSPE_gui VT is based on step by step solution of a 2D parabolic (reduced 
from the 2D Helmholtz) equation based on discrete (fast) Fourier transformation 
(FFT), and models a one-way (forward) propagation problem [9]. 

PE is an initial value problem; an initial transverse field distribution is injected, 
and longitudinally propagated through a medium specified by its refractive index 
profile and the transverse field profile at the next range step is obtained. By  
sequential operations accessing the x and kx domains via FFT and inverse FFT, re-
spectively, one may obtain the transverse field profile at any range. In 2D rectan-
gular coordinates, the earth’s curvature is included by modifying the refractivity 
profile. Extra terms may also be added to model various super or sub-refraction 
propagation cases [1, 9]. 
 

 
Fig. 5. The front panel of SSPE_gui (left) signal vs. height (right) user-specified terrain and 
colored signal vs. range/height map 

The front panel of the SSPE_gui VT is shown in Fig. 5. The operational pa-
rameters are grouped into three: frequency and range/height are supplied at left; 
the transmit antenna parameters, such as the beamwidth and the tilt are supplied at 
the middle and refractivity profile is given at right. The two windows are reserved 
for height/range graphics. The field strength vs. range/height is plotted at the right 
window, together with the user-designed terrain profile. The refractivity and field 
vs. height are plotted inside the left window. Field vs. height at 10 different ranges 
between the transmitter and the receiver are plotted one by one at left, as the wave 
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propagates from left to the right. When maximum range is reached the 3D plot is 
given at right, where different colors correspond to different field strengths. 

A few simulation scenarios are given in Figs. 6 and 7. In Fig. 6, a two-hill, rela-
tively smooth terrain and its effect to the transmitted narrow beam at 100 MHz is 
shown. In Fig. 7, a rough surface and scattering of waves for a beam, tilted down-
wards at 60 MHz is given.  

 

 
Fig. 6. SSPE_gui VT and a typical 2-hill propagation scenario 
 

SSPE vs. MoM 

The presented VTs in Sect. 2 work better under different, approximate conditions. 
The challenge is then to design a propagation scenario in which one can compare 
one VT against the other. Before doing this, they may be tested against each other 
under limiting cases. For example, Knife_gui vs. Propmom_gui comparison is 
possible if there is a “clear” single-knife-edge terrain between the Tr/Rx pair. 
Similarly, SSPE_gui vs. Propmom_gui comparison is possible for the flat-Earth 
case, where both can also be calibrated against analytical 2-Ray solution. 

Beside these exceptional scenarios, one should be very careful while comparing 
one against the other. To illustrate this, a typical comparison is given in Fig. 8. 
Here SSPE_gui is compared against Propmom_gui. The field strength at a height 
of 100 m over the terrain is calculated using both methods. The magnitude of the 
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field strength calculated with the SSPE is about 5–10 dB less then the one calcu-
lated with MoM. The reason of this difference is that MoM does take into account 
not only the forward propagation and also the backward propagation where SSPE 
calculates only the forward propagation. 

 
Fig. 7. Typical results for SSPE_gui 

Fig. 8. SSPE vs. MoM: Signal vs. range at a height of 100 m over the terrain 



Conclusion 

Different propagation VTs are presented in this paper. The aim is to discuss vari-
ous challenging features of the 2D propagation simulations. These VTs may also 
be used as education tools in undergraduate and advanced level EM lectures. 
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Abstract 

The numerical modeling and simulation of multimixed path surface wave propagation is 
discussed. Sea–land, sea–land–sea transitions are modeled via fast integral equation solu-
tions and the results are compared against the parabolic equation method.   

Introduction 

The calculation of propagation effects along ocean paths in the presence of differ-
ent-sized islands has still been a challenging EM propagation problem. It requires 
analytical solution of three-dimensional (3D) wave equation with the specified 
boundary conditions in spherical coordinate system; this solution has not appeared 
yet. The efforts have been towards the solution along propagation paths between 
the transmitter and receiver in 2D simplified media. Analytical approximate solu-
tions, based on either ray or mode, or their hybrid forms, mostly can tackle this 
problem in an approximate sense and when the propagation path heights are zero. 
Numerical simulators, such as fast integral equation (FIE) solutions and the split 
step parabolic equation method (SSPE) are promising techniques. 

In real word systems, such as those exemplified above, the problem of deter-
mining the propagation characteristics between any two selected points can best be 
addressed via accurate and versatile simulation models. Such simulators are ex-
pected to accept the characteristics of the propagation environment as input (digi-
tized map of the nonflat terrain, ground cover types, parameters of the troposphere,  
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etc.) and provide wave propagation characteristics as output, in a nearly real-time 
basis. Clearly such simulation tools would be indispensable to the decision-maker, 
service planner, site-engineer or the leader of a small military ground contingent, 
and it has therefore been a continuing challenge to develop simulators, which sat-
isfy these requirements. 

In this study, propagation along ocean paths including islands taking into con-
sideration the electrical parameter differences between sea and land as well as is-
land heights is investigated. 

Multiflat Mixed-Path Propagation Modeling 

The multimixed path propagation problem that was first mentioned by Millington 
[1] is an interesting propagation problem at high frequencies (HF). The problem of 
excess propagation losses caused by the existing nonhomogeneous surface paths is 
taken into account and has been analyzed with different analytical approximate as 
well as numerical techniques in the frequency domain [1, –9]. Recently, promising 
time domain techniques have also been introduced [10, –11]. In fact, at 100 MHz 
and above, both land and sea surfaces act as a perfectly conducting (PEC) medium 
and mixed path effects are almost negligible. But for the lower frequencies, espe-
cially at HF (3–30 MHz) it is essential to analyze the propagation as a mixed path 
problem. Because of the higher penetration depth of the land the ground absorbs 
more energy than sea, since sea has a larger conductivity compared to land (typi-
cal electrical parameters – the conductivity and the relative permittivity – of the 
land and ocean are ε r = 15–20, σ  = 0.01 S m-1 for land, and ε r = 70–80, σ  = 4–5 
S m-1 for ocean). If the path starts over Poor Ground (i.e., ε r = 15, σ  = 0.001 S m-

1) and continues over the ocean, an increase of the signal at the transition between 
the two segments is expected; this is the well-known recovery effect, which has 
been observed experimentally by Millington [1]. The reverse is also true (i.e., if 
the path starts over the ocean and continues over the land a decrease of the signal 
at the transition between the two segments is expected). In early studies as well as 
recent numerical ones, only the electrical parameter variations of the surface are 
taken into account. The height differences along the propagation paths cannot be 
considered.  

The Millington effect can be investigated analytically by using ray and/or mode 
methods. The ray (Norton) approach involves direct, ground-reflected, and surface 
waves on a spherical Earth, while the mode (Wait) approach involves surface 
waves in terms of Airy functions and based on the use of an equivalent earth-
flattened linear atmosphere profile. The hybridization of these two extends the 
range of applicability of each; the HFMIX package has been introduced for this 
purpose [7]. Either by using ray-mode theories separately or by using HFMIX, one 
may deal with smooth-boundary phenomena, such as: 

– Surface wave path loss or field strength variation with respect to range (es-
pecially beyond the horizon and when both transmitter and receiver are on 
the surface). 
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– Range and/or height propagation variations in interference regions (i.e., 
when transmitter and receiver are above the surface and within the line-of-
sight, LOS). 

It should be noted that ray-mode techniques cannot handle problems such as the 
propagation over rough surface terrain, or the propagation through surface and/or 
elevated ducts formed by inhomogeneous vertical as well as horizontal atmos-
pheric conditions. 

In Fig. 1, HFMIX computations of path loss calculations over multimixed path 
are shown for different propagation scenarios. In these plots, dashed and solid 
lines correspond to path loss over sea and mixed paths, respectively. It should be 
noted that altitude of land is taken as zero. The substantial sharp increase in the 
path loss is shown in Fig. 1a for a sea–land transition at 200 km away from the 
transmitter. In order to demonstrate effects of sea–land and land–sea transitions 
together a typical 50-km island, which is 200 km away from the transmitter, is 
chosen and path loss calculated for this scenario is plotted in Fig. 1b. The increase 
in the path loss and the recovery of the signal are clearly observed through sea–
land and land–sea transitions, respectively. Finally, path loss variations through 
multipaths are given in Fig. 1c, d for eight and four islands between transmitter 
and receiver, respectively. 
 

Fig. 1. Multipath loss versus range (a) sea–land transition at 200 km, (b) eight islands with 
lengths 4, 9, 41, 32, 15, 23, 78, and 18 km at radial distances 5, 42, 90, 139, 190, 218, 264, 
and 347 km, respectively, (c) a 50-km island at 200 km, (d) three islands with lengths 12, 
28, and 13 km at distances 40, 98, and 331 km, respectively 

It has been shown in many studies [2–9] that (a) having an island along the 
propagation path increases the path loss, (b) excess loss can be minimized by op-
erating the radar at a lower frequency, (c) for the given example, excess loss 
caused by the islands is between 5 and 15 dB, (d) nearby islands cause more loss 
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than far islands, and (e) critical parameters for mixed-path losses are the radial 
lengths of the islands and the distance in between them. 

Multi-Nonflat Mixed-Path Propagation Modeling 

The multi-sea–land transition contributions onto the surface wave path loss when 
the height of the land is nonzero can be handled – up to certain extent – numeri-
cally. The most promising numerical techniques for these types of problems are 
the SSPE [5–8] and the FIE [12–15]. 

SSPE 

A 2D groundwave propagation problem, which is described by the Helmholtz 
equation plus boundary conditions, can be reduced to a parabolic form under slow 
longitudinal variations (either in geometry or in medium refractivity). Transform-
ing the boundary value problem into an initial-value problem makes the solution 
amenable to numerical implementation in terms of the discrete Fourier transform 
(DFT), as long as transverse boundary conditions are satisfied. A step-by-step 
longitudinal solution – the SSPE scheme – is given as 

{ }Δ
−×Δ−= − zxuFFT

k

xk
jFFTxn

k
jzxu z ,(

2
exp)1(

2
exp),( 0

0

2
120 , (1) 

where x and z are the longitudinal (range) and the vertical (height) coordinates,  
0 z

k0, n, FFT and FFT-1 correspond to the range step size, transverse and free space 
wave numbers, the refractive index of the atmosphere, the fast and inverse fast 
Fourier transforms, respectively. The SSPE has been in use for more than three 
decades, first introduced for underwater acoustics and then for ground wave 
propagation modeling (see 6, 8 for a historical overview as well as analytical de-
tails).  

The SSPE is a one-way scheme and can account for the forward scattered fields 
(i.e., backward scattered fields are neglected). It accounts for all types of boundary 
conditions as well as atmospheric effects that are included as the refractivity varia-
tions. Up to a certain extent, the SSPE can accommodate propagation over nonflat 
terrain paths. Modeling of nonflat terrain effects on the propagation of waves can 
be incorporated into the SSPE algorithm (a) by using piecewise linear (PL) ap-
proximations, (b) by conformal mapping (CM), and (c) by staircase discretization 
(SD). 

The Fast Integral Solutions: MoM with FBSA 

Fast integral equation (FIE) methods have been used to calculate scattered field 
over an electrically large nonflat and/or rough terrain profile illuminated by an in-
cident electromagnetic field (see [12–15] for the historical review, variety of ap-
plications, and related references). The method of moments (MoM) based propa-

      

respectively, and u(x, z) is the wave function. The other parameters: Δ x = x–x , k , 
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gation models requires analytical derivation of the 3D Green’s function. More-
over, the surface terrain profile function is also required. The electric field integral 
equation (EFIE) or the magnetic field integral equation (MFIE) can be used to rep-
resent the propagation of the TM- or TE-type polarized waves.  

First, the propagation path (the longitudinal terrain profile) is replaced with a 
number of neighboring segments [12]. The segment lengths are specified accord-
ing to the EM signal frequency. As a rough criterion, the length of each segment 
should be equal to or less than the wavelength over ten. Assuming that  

– the incident field is of finite extent in space and illuminates only the propa-
gation path portion between the transmitter and receiver 

– current induced on each of the segment when illuminated by the source 
– segment lengths and induced current on each segment are constant 

one can apply the point-matching MoM technique and obtains the closed form ma-
trix equation: 

[ ] [ ]V Z I= ⋅  ,    (2) 

where [ ]I  contains the unknown coefficients of segment currents Im, [ ]Z  is the 
impedance matrix whose entries are given in [12], and [ ]V  denotes the incident 
field evaluated at the matching points.  

Direct solution of this matrix forms results in the segment currents from which 
the scattered fields at any specified observation point can be calculated using the 
Green’s function propagator. Obviously, the solution of (2) is very time consum-
ing as the number of segments increase (i.e., for the long-range propagation prob-
lems. For example, a 100 km propagation problem requires 100,000×100,000 ma-
trix inversion at 30 MHz (10 m wavelength). Instead of the direct solution of the 

3

spectral acceleration (FBSA) with O(N) operations is used to find the unknown 
current coefficients for electrically very large terrains. For further details on 
FBSA, the reader is referred to [12–15]. It should be noted that FBSA can take 
into account the variations of the electrical parameters of the surface and uses im-
pedance type boundary condition, therefore different combinations of land–sea 
transitions are possible. On the other hand, it cannot take the refractivity variations 
into account; only terrain effects can be investigated with this method. 

Numerical Results 

The aim here is to show the advantages of using MoM-FBSA and the SSPE meth-
ods in the simulations of the mixed-path propagation problems. The main interest 
is to find out the effects of terrain heights along the propagation path at various 
signal frequencies. The atmosphere is assumed to be homogeneous. Because of 
the challenging nature of the problem only a limited number of studies exist in lit-
erature [4, 5, 9]. The strategy in the simulations is as follows 

 

–system defined by (2), which requires O(N ) operations, the forward  backward 
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– specify a propagation scenario which focuses on the terrain height differ-
ences 

– specify another scenario which focuses on the electrical parameters on the 
boundary 

A typical scenario is pictured in Fig. 2. A 7-km long island of 100 m height is 
located 4 km away from the source, and the maximum range is 15 km. A 10 W, 
isotropically radiating transmitter, which is assumed as a horizontal electric di-
pole, is located 0.9λ  above the ocean and the height of receiver is taken as 0.1λ . 

 

Fig. 2. A 15-km long scenario with a 7-km long, 100-m high island 

The electric field calculated with the MoM-FBSA method in dB, along the 
propagation path shown in Fig. 2 at 30 MHz signal frequency is plotted in Fig. 3.  

 

Fig. 3. Signal strength versus range over the scenario at 30 MHz is given in Fig. 2 

In order to interpret the curves, first look at Fig. 1, the curves (a) and (b). The 
ocean – land transition causes a sharp decrease in the signal strength and the de-
crease is proportional with the signal frequency. Now, if we come back to Fig. 3, 
the smooth curve represents the results for the homogeneous, flat PEC path. The 
other two curves belong to nonflat PEC and lossy islands. Obviously, either PEC 
or lossy, the presence of the nonflat island strengthens the signal in front of, and 
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weakens the signal behind the island. This is consistent with the result in [5] as 
shown in Fig. 4. 
 

E
-f

ie
ld

 (d
B

V
m

–1
)

60      C.A. Tunç et al. 



The propagation path includes a Gaussian-shaped, 10-km long, 250-m high island. Physical 
parameters, land:  = 0.002 (S m–1), ε r = 10: sea:  = 5 (S m–1), ε r = 80. Dashed: island 
with zero-height [5] 

To be able to see the signal level drop (Millington effect) at the sea–land inter-
face simulated with the MoM-FBSA the plot in Fig. 3 is zoomed around that re-
gion. The result, shown in Fig. 5, clearly illustrates the Millington effect. 

Fig. 5. Signal strength versus range over the scenario given in Fig. 2 (zoomed around sea–
land junction at 4 km) 

The last scenario is given in Fig. 6 for the path loss variations over PEC terrain, 
calculated by both MoM-FBSA and SSPE, for sea–land–sea transition where is-
land height is 300 m and the frequency is 12 MHz. Here, transmitter and receiver 
heights are 2.51λ  and 2.59λ , respectively. It should also be noted that indistin-
guishable results are obtained if the electrical parameters of the ground are taken 
into account together with irregular terrain. 
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Fig. 4. Loss relative to a PEC ground versus range for an inhomogeneous path at 10 MHz. 
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Fig. 6. MoM-FBSA versus SSPE for a typical propagation scenario (terrain height = 300 m, 
f = 12 MHz). Solid: MoM with FBSA, dashed: SSPE  

Extensive amount of numerical simulations are repeated for variety of propaga-
tion scenarios with different-sized islands at different operating frequencies and 
similar results are observed: 

– The presence of an island along the ocean propagation paths causes sharp de-
creases in the signal strength and a recovery process occurs afterwards. 

– The higher the frequency at HF band the deeper the signal loss at the ocean-
land transition. 

– The island height directly affects the signal strength both in front of the island 
and afterwards.  

– The higher the island the stronger the signal strength in front of the island, 
and deeper the loss afterwards. 

Conclusions 

Path loss simulations over multimixed paths through homogeneous atmosphere 
have been performed. The aim is to find out the contributions of island heights. 
Typical scenarios are designed and powerful propagators are compared. It is ob-
served that if transmitter is a few wavelengths over ground, electrical changes of 
ground do not considerably affect the path loss variations, therefore the effect of 
height differences along the path dominates. However, both electrical parameters 
and irregular terrain should be considered when the transmitter is near to the sur-
face of the ground. 
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Abstract  

In this work, a pole matching method is presented for the analytical reconstruction, from 
full-wave data, of the scattering properties of frequency selective surfaces (FSS). This 
method allows one to synthesize the scattering response of an FSS from the identification 
of a few parameters, which exhibits a weak dependence with respect to the angle of inci-
dence. This property implies that the full-wave analysis of the FSS can be performed for a 
limited set of incidence directions, from which the overall response can be obtained by a 
simple and numerically efficient algorithm. The final outcome is an analytical form for the 
scattering matrix which may be conveniently used in ray-tracing algorithms, based on local 
flat-surface approximations of curved FSS.  

Introduction 

Frequency selective surfaces (FSS) [1, 2] are widely used for the realization of po-
larizers and dichroic reflectors. Due to the large dimensions of these structures, the 
analysis is usually performed by resorting to high-frequency techniques, such as 
Physical Optics (PO) or Geometrical Optics (GO), sometimes augmented by dif-
fraction theories (PTD, UTD, ITD). In this framework, it would be desirable to 
have a simple and accurate surface impedance model of periodic surfaces, to be 
interfaced with existing high-frequency electromagnetic simulation tools. 

Recently, a method has been introduced for the efficient synthesis of the FSS 
admittance (patch-type FSS) or impedance (aperture-type FSS) matrix, focused on 
the study of dispersion properties of FSS-based artificial surfaces [3–5]. This 
method is based on the application of the Foster’s reactance theorem [6], which 
implies that FSS admittance functions of frequency satisfy the pole-zero analytical 
properties of the driving point LC admittance functions [7]. The identification of 
the poles and zeros of the FSS equivalent admittance allows a reconstruction of 
the surface response over a large frequency band. The FSS equivalent admit-



tance/impedance is derived directly from the method of moment (MoM) matrix, 
by a proper projection onto the Floquet modes. 

In this work, the method is extended to the analysis and synthesis of FSS with 
losses. The method allows to synthesize the scattering response of an FSS, from 
the identification of a few parameters (poles and residues of the equivalent FSS 
admittance/impedance matrix) which exhibit a weak dependence on the angle of 
incidence. This property implies an MoM analysis of the FSS for a limited set of 
incidence angles. The overall response is then interpolated with a numerically  
efficient algorithm. Unlike the technique described in [7], here the analytical 
matching of pole and zeros is substituted with an analytical matching of poles and 
residues; this allows the generalization of the generalized Foster’s properties to all 
the terms of the admittance (impedance) matrix in case of losses. 
This chapter is organized as follows. Introduction provides a brief overview of the 
spectral domain Floquet waves (FW)-based MoM, for both patch-type and aper-
ture-type FSS. In MoM Solution, a FW-based network and the relevant admit-
tance/impedance matrix at the accessible modal ports are defined, with emphasis 
on the dominant mode two-ports admittance network. Accessible Mode Admis-
tance Network presents same important properties of the two-ports FSS-network 
matrices and it indicates how they can be used in order to obtain an analytical ap-
proximation of the FSS-network matrix entries. In Properties of FSS-Network  

method in conjunction with ray-tracing techniques. In Application Oriented Algo-
ritham numerical results obtained from full-wave analysis and from the  
pole-residues analytical reconstruction are compared. Conclusions are drawn in 
Numerical Results. 

MoM Solution 

Let us consider an infinite planar FSS consisting of patches printed on a multilayer 
dielectric slab. We will first describe the MoM analysis associated with patch-type 
FSS and next we will briefly present the results to aperture-type FSS obtained 
with a similar process. A rectangular (x, y, z) reference system is assumed with the 
z axis orthogonal to the FSS and the origin at the FSS level. The periodicities of 
the FSS are dx and dy along x and y, respectively. An incident, either transverse 
electric (TE) or transverse magnetic (TM), plane wave is assumed to illuminate 
the structure, with zero phase at the origin of the reference system. The incident 
plane wave imposes a phasing kx and ky in the principal directions, with 

2 2 2 2/x yk k cω+ < . 
The numerical computation of the equivalent currents at the interface of the 

planar periodic structure is performed via a numerical solution of the electric field 
integral equation (EFIE) by using a spectral periodic MoM approach. More than 
discussing the numerical implication of the MoM scheme, our objective here is to 
construct an appropriate form of the admittance matrix to characterize the FSS 
surface.  

Matrix Entries an application-oriented algorithm is presented for the use of the 
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Fig. 1. A planar patch-type FSS and relevant plane wave excitation for TE and TM polari-
zation 

Due to the periodicity of the problem, the analysis can be reduced to that of a 
single periodic cell, with phase-shift boundary conditions applied to the ideal ver-
tical walls. By applying the equivalence theorem (Fig. 2), an electric current dis-
tribution is assumed on the region of the metallic patches, radiating with the 
Green’s function (GF) of the grounded slab. By imposing the boundary conditions 
on the surface of the metallic patches, the EFIE is derived, as follows: 
 
 ( ) 0s imp+ =E J E , (1) 

 
where Es is the field radiated by the currents J induced on the dipoles, and Eimp = 
Einc + Eref  is the impressed field at the interface (in the absence of printed di-
poles), which is given by the sum of the incident (Einc) and reflected (Eref) fields. 
From here on, the bold characters indicate vectors and the carets indicate unit vec-
tors. As suggested by Tascone and Orta in [2], the equivalent currents J are ex-
pressed in terms of basis functions, 

 
1

( ) ( )
N

n n

n

I
=

=t tJ r   f r , (2) 

where ˆ ˆ
t xx yy= +r  denotes the two-dimensional space vector. Figure 2 shows  

used as well. 
 

subdomain triangular basis functions, but entire domain basis functions can be 



 

Fig. 2. Application of the equivalence principle to the basic cell of (a) patch-type FSS and 
(b) aperture-type FSS. Phase shift conditions are imposed on the vertical walls. A triangular 
mesh is shown, with subdomain basis functions used for the expansion of  the electric 

Let us denote by ' 2 '/xp x xk k p d= + , ' 2 '/yq y yk k q d= +  the FW wavenumbers in the x 
and y direction, respectively, and by ' 'ˆ ˆ

q xp yqk x k y= +k  the relevant vector form, where 
q  denotes the two FW indices ( ', ')p q . By denoting with 

q
 the nodes of the recip-

rocal lattice, 2 ' 2 'ˆ ˆ
x y

p q

q d d
x y

π π= + , and with k the impressed vector wavenumber, 
ˆ ˆ

x yk x k y= +k , we obtain 
q q= +k k , with q = 0, 1, 2,… and 0 =k k  by definition. It 

is also useful to introduce the normalized spectral vectors  

 ˆˆ ˆˆq

q q q

q q

zσ α σ= = ×
⋅
k

  ;       
k k

 (3) 

as a spectral basis to describe TM and TE field components, respectively. By us-
ing a Galerkin spectral MoM approach, (1) is reduced to the matrix equation 
 Z I V= , (4) 

where { }T

1,m m N
V V

=
=  is the known column vector of the complex amplitude of the 

impressed field on the nf  basis, { }T

1,n n N
I I

=
=  is the column vector of the current ex-

pansion, and { }MoM
MoM

, 1,nm
n m N

Z Z
=

=  is the MoM impedance matrix, with entries given 

in an appropriate TE/TM form via  

 
1

*

0

ˆ ˆˆ ˆ( ) [ ( ) ( ) ] ( )
M

MoM TM TE
mn m q GF q q q GF q q q n q

q

Z Z Zσ σ α α
−

=

= ⋅ + ⋅F k k k F k% % . (5) 

In (5), ( ) ( )]n mF k  [F k% %  is the Fourier transform of the basis [test] function 
( ) [ ( )]n mt tf r  f r , sampled at the FW wavenumbers 

qk , and TM /
GF ( )EZ k  are the TM/TE 

components of the individual element spectral electric field GF, sampled at the 

MoM
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vector FW wavenumber 
qk . In (5), the modal FW expansion is truncated at the in-

teger M–1 with M larger than N; this is an obvious consequence of the continuity 
of the FW on the entire periodicity cell, which implies the use of more FW modes 
than basis functions to describe the patch current. The GF impedances can be 
found by solving the pertinent transmission line problem representing the stratifi-
cation for the TE and TM case. The MoM matrix can be expressed in the compact 
form as 

H

MoM GFZ Q Z Q= , (6) 

where { }TM TE
GF GF 0, 1

diag ( ), ( )q q
q M

Z Z Z
= −

=GF k k  is a diagonal 2 2M M×  matrix, 

{ }TM TE
0, 1, ,
1,

, q Mq n q n
n N

Q Q Q = =
=

=  is a 2M N×  matrix and { } 1,
0, 1

TM* TE*
, ,,

H

m N
q M

T

m q m qQ Q Q
=
= −

=   is an 2N M×  ma-

trix, the superscript H denoting transpose conjugate. The entries of the Q matrices 
are given by TM

, ˆ( )i q i q qQ σ= ⋅F k% , TE
, ˆ( )i q i q qQ α= ⋅F k%

For an aperture-type FSS, the FSS is substituted by a continuous, infinitely thin 
PEC screen with magnetic current distribution on both sides; these currents have 
equal amplitude and opposite signs on the two different sides to ensure the conti-
nuity of the electric field through the aperture. The integral equation which im-
poses the continuity of the magnetic field is imp( ) ( )s s

+ −+ = −H M H H M , where the 
superscript + and – refer to the Green’s function of the upper and lower region, re-
spectively. The magnetic current is expanded in terms of basis functions  

 
1

ˆ( ) ( )
N

n n

n

V z
=

= ×t tM r g r . (7) 

Imposing the continuity of the magnetic field leads to the following representa-
tion 
 Y V I= , (8) 

where { }T

1,n n N
V V

=
=  is the unknown column vector, 

{ }T *
imp1,

,  G ( ) H ( )m m mm N
I I I

=
= = − ⋅k k%  is the known column vector of the impressed 

magnetic field on the MoM basis. The MoM matrix may be expressed in the com-
pact form  

 
H

MoM GFY P Y P= , (9) 

where { }
1

TM TE
GF GFGF GF 1,

diag ( ), ( )q q
q M

Y Y Y Z
−

=
= =k k  is a diagonal 2 2M M×  matrix, ob-

tained by solving the GF z-transmission line for each FW wavevector,  

{ } 1,
0, 1

TTM* TE*
, ,,

H

m N
q M

m q m qP P P
=
= −

=   is an 2N M×  matrix, and { } 0, 1
1,

TM TE
, ,,

q M
n N

q n q nP P P
= −
=

=  is a 2M N×  

matrix, whose components are given by TM
, ˆ( )i q i q qP σ= ⋅G k% , TE

, ˆ( )i q i q qQ α= ⋅G k%  (I = 

n,m), being ( )iG k%  the Fourier transform of ( )i tg r . 

 (i=n, m). 

MoM



Accessible Mode Admittance Network 

Let us assume that we are observing the field at a certain distance z from the FSS. 
In this case, the FW modes that are completely attenuated do not contribute to the 
field at z. In a multimode network description, this implies that the relevant modal 
ports can be considered as not “accessible” to the observer, and therefore ne-
glected. This concept was introduced by Rozzi [8] for waveguide problems and is 
commonly used to calculate the coupling between FSSs located at different levels 
[2]. When we are dealing with the scattering from an FSS, the only accessible 
mode is the propagating one. On the other hand, when dealing with the FSS inter-
action with a proximity located antenna or array, accessible modes also include 
higher order evanescent modes that have a nonnegligible amplitude at the an-
tenna/array level. Denoted by 2 AM the number of accessible TE-TM ports, con-
sider the 2 AM -port network in Fig. 3, where each port is associated to an FW 
mode of TE or TM type. This network consists of a multiport “FSS network” 
loaded in parallel at each port by a modal TE or TM transmission line representing 
the unprinted multilayer dielectric slab. The FSS-network is conveniently charac-
terized by 2 2A AM M×  admittance (impedance) matrices  

 FSS

FW FWFSSI Y V=  (10) 
for patch-type FSS 
 FSS

FWFW FSSV Z I=  (11) 

for aperture-type FSS, where FSS T
FW FW , FW ,

TM TE
0, 1[ , ]

q q Aq MI I I = −= ( T
FW FW , FW ,

TM TE
0, 1[ , ]

q q Aq MV V V = −= ), is 
the vector of the FW amplitudes of the magnetic (electric) field expansion at the 
FSS level and denotes the FW electric current flowing into the FSS network (the 
FW voltage at the ports).  

The FSS-network matrices are given as a function of MoMZ  matrix as 

                
11 1

( , ; )
H H

FSS MoM GF MoM GFx yY k k q Z q Y q Z q Yω
−− −

= −      (12) 

for patch-type FSS, and 
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Fig. 3. Multiport accessible FW-mode network and relevant transmission-line parameter 
TM TE TE TM0 1 0

0 0 1 1
0 0 1

( ) ,  ( ) ;  ( )  ( )z z r

z z

k k
Y Y Y Y

k k

ωε ωε ε
ωμ ωμ

= = = =k k k k  are the modal z-

transmission line TE-TM characteristic admittances relevant to the free-space (subscript 0) 
and the dielectric regions (subscript 1), respectively, and 2 2 2

z x yk k k k= − −  and 

2 2 2
1z r x yk k k kε= − −  

                    
11 1

( , ; )
H H

FSS MoM GF MoM GFx yZ k k p Y p Z p Y p Zω
−− −

= −   (13) 

for aperture-type FSS. In (12) and (13), the dependence on the frequency  
and on the impressed wave vector has been emphasized, and 

{ } { }0, 1 0 , 1
1, 1,

TM TE TM TE
, , , ,, , ,

q M q MA A
n N n N

q n q n q n q nq Q Q p P P= − = −
= =

= =  , are matrices of size 2 AM N× which project the 

MoM basis onto the FW basis (and vice versa for their transpose conjugate Hq  

and Hp . 
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Fig. 4. (a) Two-port modal network relevant to propagating the TE and TM FW-mode. (b) 
Diagram ( , )x yk k ω−  (the figures refer to a case dx > dy). Below the two portions of the up-
per conical surfaces, the higher order FW modes  are cutoff. This region identifies the 
validity of the FSS-network in (a). The free-space speed of light is denoted by c. The “light 
cone” is also depicted, and its surface identifies the cutoff of the dominant propagating 
mode 

Dominant-Mode Two-Port Admittance Network  

Let us assume that only one pair of TE-TM propagating FW modes are accessible 
for a given z level (MA = 1). As a special case of (10) (capacitive FSS) and (11) 
(inductive FSS), the FSS is modeled by the two-port network shown in Fig. 4a. 
The utilization of a two-port network is subject to the existence of an observation 
level z where the dominant TE and TM FW-modes are the only accessible modes. 
This implies that all the higher-order FW-modes must be cutoff. The cut-off con-
dition of the higher-order FW-modes implies a limitation to the observable disper-
sion diagram. Figure 4b shows a dispersion diagram with angular frequency ω on 
the vertical axis and the wavenumbers kx and ky on the horizontal axes. Due to the 
periodicity of the FW spectrum, the observation may be restricted to the Brillouin 
region ( , )

x x y yd d d dx xk k− < < − < < , with a further (due to the symmetry of the struc-
ture) restriction to positive values of kx and ky. The cut-off region for higher-order 
modes is imposed by the conditions 2 2 2 2/x yk k cξ η ω+ >  for ( , ) (0,0)ξ η ≠ . As a conse-
quence, within the observed wavenumber plane, the cut-off region is delimited by 
portions of two cones whose vertices are at the FW wavenumbers closest to the 
origin (details are shown in Fig. 4b). A third cone is depicted in the same figure; 
its surface 2 2 2 2/x yk k cω+ =  defines the cut-off of the dominant mode. Although this 
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cone is not essential for the validity of the two-port model, it bounds the slow-
wave region and is important for the study of the dispersion properties. Intersec-
tions of this cone with the vertical planes -kx and -ky identify the well-known 
“light lines” in these two planes. Figure 4b also shows the horizontal 
plane max( , )M x yc d dω ω= = , which is the minimum frequency at which the 
higher-order FW modes are attenuated for any wavenumber. 

Properties of FSS-Network Matrix Entries 

Here we describe the properties of the two-port FSS matrix entries in order to es-
tablish a convenient analytical form. For the sake of convenience, let as consider 
each element of  the matrix as a function dependent on θ  and φ , where  

0 sin cosxk k θ φ=  and 0 sin sinyk k θ φ= . In this case, the cut-off region shown in 
Fig. 4 can be expressed as a function of θ  and φ , obtaining the surfaces pre-
sented in Fig. 5. 

 

Fig. 5. Monomodal propagation region for the fundamental FW ( , )θ φ ω−  (the figures refer 
to a case dx > dy). Below the two portions of the upper surfaces ( )1 ,ω θ φ  and ( )2 ,ω θ φ , the 
higher order FW modes  are cut off. This region identifies the validity of the FSS-network 
in Fig. 4a. The free-space speed of light is denoted by c. The  “light plane” is also depicted, 
and its surface identifies the cut-off of the dominant propagating mode 

Absence of Losses 

Consider for simplicity the patch-type FSS and denote by ( )FSS , ,ijY θ φ ω the entries of 
the two-port dominant mode admittance matrix. In the absence of losses, the 

ω ω

π



equivalent FSS admittance is purely reactive for every ω . Note that this is valid 
within the cut-off region of the higher-order FW-modes described in Fig. 4; in-
deed, for frequency where another pair of TE-TM modes is propagating, the two-
port FSS matrix loses its properties to be purely reactive. The imaginary part of 
the (purely imaginary) entries, seen as a function of frequency, possesses the same 
pole structure of a passive LC admittance matrix, with capacitive behavior at low 
frequency. Moreover, from network theory, it can be demonstrated that all the en-
tries of the FSS-network matrix have the same poles [9]. Thus, the properties of 
the FSS matrix entries are: 
 

1. all the entries ( )FSS , ,ijY θ φ ω possess the same poles 
2. the poles lie on the real ω -axis and are simple 
3. a zero must be in 0ω =  
4. the poles are symmetrically displaced with respect to the origin 

 
An important consequence of these properties is that the admittance frequency 

function can be approximated by the following limited-bandwidth expression 

                            ( ) ( )
( ) ( )02 2

1

2 ,
, , ,

,

ijN
nij ij

FSS
n n

ja
Y ja

θ φ ω
θ φ ω θ φ ω

ω β θ φ=

−
= +

−
. (14) 

In (14) the following properties hold 
5. ( ),ij

na θ φ  represents the ( ω -independent) residue associated to the nth pole 
in the ω -plane and it is a real function of the incident angle. For the diago-
nal entries ( ),ii

na θ φ  is real and positive 

Small Losses 

In the case of small losses, each FSS network matrix entry can be approximated as  

                ( ) ( )
( ) ( ) ( )02 2

1

2 ,
, , ,

, ,

ijN
nij ij

FSS
n n n

ja
Y ja

j

θ φ ω
θ φ ω θ φ ω

ω β θ φ ωγ θ φ=

−
= +

− −
, (15) 

the same expression can be written for ( ), ,ij

FSSZ θ φ ω  entries for aperture-type FSS. 
In (15) small losses have been assumed, i.e., ( ) ( ), ,n nβ θ φ γ θ φ>> , so that 

( ), / 2nγ θ φ−  and ( ),nβ θ φ  are the real and imaginary part of the pole, respectively. 
Under the small losses assumption the poles are very close to the real ω -axis and 
their position in the complex ω  plane can be evaluated from the real axis fre-
quency variation of the imaginary part of the matrix entries. The following proper-
ties are verified: 

1. ( ),ij

na θ φ  represents the ω -independent residue associated to the nth pole 
and in the ω  plane it is a real function of the incidence angle. For diagonal 
entries ( ),ii

na θ φ  real and positive 
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2. The quantities ( ) ( )0 , , ,ii iia aθ φ θ φ∞ are independent on ω  and represent the 
quasistatic capacitance (inductance) of the patch-type (aperture type) FSS. 
Their dependence on ( ),θ φ  is found to be very weak and thus very easy to 
approximate; 

Equation (15) allows an analytical definition of the admittance (impedance), 
over a broad frequency range, on the basis of the determination of the aspect-
dependent poles and residues. As will be discussed later on, they can be calculated 
for a few values of the incidence angles , and can then be approximated. 

We note that the numerical calculation of FSSY  in (15) is accurate at those angles 
where FSS

ijY  exhibits poles or zeros, because the MoM matrix is well-conditioned 
there. 

Approximation of Poles and Residue 

From the approximation (15), the analytical representation of the FSS in a broad 
frequency range can be derived from the following functions 
                                  ( ) ( ) ( ) ( )0, , , , , , ,ij ij

n n na aθ φ β θ φ γ θ φ θ φ . (16) 

In many practical cases, the poles that should be considered are very few. As a 
practical rule the approximation is very good if one includes the poles within the 
frequency range of interest plus the closer one outside the same range. Since in 
many cases the properties of the FSS are used at low frequency regime or close to 
the first resonance, the inclusion of one or two poles is satisfactory in most of the 
cases. 

All the functions in (16) show a very weak variation against the incidence an-
gles and are easy to approximate from the data related to a few angular samples by 
a simple trigonometric polynomial form 

            
1 2

1 2 1 2

1 2

2 1 2 1
0 0

( , ) cos( )cos(2 ) sin( )sin(2 )
N N

ij

n n n n n

n n

n n n nθ φ δ φ θ η φ θ
= =

Ψ = +% , (17) 

where 
1 2n nδ  and 

1 2n nη  are coefficients calculated on the basis of a least mean square 
approximation. In many practical cases, N1 and N2 are very small integer numbers. 
As an illustrative example, Fig. 6 presents the approximated curves for the ring-
dipole FSS shown in the inset. 



Fig. 6. Approximated poles and residue surfaces for a ring-dipole FSS. (a) Structure layout; 
Dx = 8.5 mm, Dy = 6.5 mm, L = 1.9 mm, w = 0.4 mm, R = 5.57 mm, s = 1.18 mm, h1 = 0.75 
mm, ε r1 = 4.4–j0.0704, h2 = 2.7 mm, εr2
residue ( )11

2 ,a θ φ . (c) An example of an approximated surfaces for the real part of one pole 
( )11

2 ,β θ φ and (d) for the imaginary part of one pole ( )11
2 ,γ θ φ . For all this function the ap-

proximated surfaces have been evaluated with N1 = 2 and N2 = 1 

Application-Oriented Algorithm 

The analysis of curved FSS reflectors or frequency selective radomes, which are 
large in terms of a wavelength, are often based on the flat surface approximation 
of the local curved structure and on the decomposition of the illuminating wave in 
terms of local rays or beams. These schemes use local reflection and transmission 
coefficients to calculate local currents or scattered fields, thus requiring the calcu-
lation of the scattering matrix for a large number of incident aspects and frequen-
cies. The pole-residue method described here allows an agile transmission of data 
from a EM solver for the analysis of FSS and a EM solver based on  
high-frequency (HF) method (e.g., Physical Optics, Geometric Optics, etc.). The 
present polo-residue matching scheme, thanks to the capability to reconstruct an 
analytical form of the admittance matrix, with the use of few parameters, estab-
lishes a link from the FSS solver and the HF solver by exchanging data relevant to 
the few interpolation coefficients. The logical scheme of this data exchange is 

= 1.13–j0.00565. (b) Approximated surfaces for a 
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shown in Fig. 7. Data, relevant to an angular under sampling of the FSS matrix en-
tries, feed a “Data Compressor” which calculates the coefficients of the least mean 
square approximation of poles and residues. The coefficients 

1 2n nδ  and 
1 2n nη  are 

thus transmitted to the HF solver which is provided by a “Decoder Module”. This 
module constructs the analytical form of ( )FSS , ,Y θ φ ω  over continuous angles and 
frequencies. From this latter matrix, the scattering matrix is obtained from simple 
algebraic manipulations. This scheme does not alter the internal architecture of the 
solvers and implies a preprocessing time which is negligible with respect to the 
overall calculation time. 

 

FSS solver HF solver

' ' '

Angular under sampling:

( , , )n m iY θ φ ω

( Encoder)

,nm nmδ η

Decoder

Analytical representation:

 ( , , )Y θ φ ω

FSS solver HF solver

' ' '

Angular under sampling:

( , , )FSS n m iY θ φ ω

( Encoder)

,nm nmδ η

Decoder

Analytical representation:

 ( , , )FSSY θ φ ω
 

 

Fig. 7. Logical structure of the data compression algorithm 

Numerical Results 

The analytical closed form of the ( )FSS , ,ijY θ φ ω  have been used to reconstruct the 
scattering parameters of the entire structures shown in the inset of the Figs. 8 and 
9. Both the figures show the transmission coefficients for an incidence plane 

Data compressor

wave.  The continuous lines are the full-wave analysis results while the dotted ones
are the reconstructed solutions via the present method. A good agreement between
the two solutions is found for all the components of the scattering parameters



Fig. 8 Transmission coefficients for an incidence plane wave impinging from and 
(a) FSS layout (the geometry is the same of that in Fig.6 (a)). Continuous lines refer 

to full-wave analysis results obtained by the spectral domain method of moment; dotted 
lines refer to analytical solution reconstructed via pole-residue method (b) TE-polarized 
incident wave and TE-polarized transmitted wave, (c) TM-polarized incident wave and 
TM-polarized transmitted wave, (d) TE-polarized incident wave and TM-polarized trans-
mitted wave. 
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(d)  
Fig. 9. Transmission coefficients for an incident plane wave impinging from and 

(a) FSS layout. Continuous lines refer to full-wave analysis results obtained by the 
spectral domain method of moment; dotted lines refer to analytical solution reconstructed 
via pole-residue method (a) TE-polarized incident wave and TE-polarized transmitted 
wave, (b) TM-polarized incident wave and TM-polarized transmitted wave, (c) TE-
polarized incident wave and TM-polarized transmitted wave. 

Conclusions 

In this paper, a method for obtaining the analytical solution of the admittance 
(scattering) matrix of FSSs is presented. This method has been illustrated here 
with reference to a patch-type FSS or aperture-type FSS. On the basis of a spectral 
MoM solution, an equivalent network-matrix is defined with the ports correspond-
ing to the accessible TE and TM FW of the exact Floquet expansion. The admit-
tance matrix is then characterized by poles and residues associated to the matrix 
entries for a few values of the incidence angles. The identification of a set of sur-



faces associated with the poles and residue of the FSS and their regularity allows 
the interpolations of these surfaces by low-order polynomials. Network theory 
properties allow the approximation of the entries in terms of summation of rational 
functions. The consequent closed form expression is applied to evaluate the gener-
alized scattering matrix as a function of the angle and polarization of incidence 
plane wave.  

It is worth remarking that the full-wave analysis for each incident aspect ( ),θ φ  
is very efficient, since it implies the inversion of a moderate size MoM matrix; 
however, obtaining accurate information on the continuous ( ),θ φ  domain requires 
a large amount of computational time. The main peculiarity of the method pre-
sented here is concerned with the possibility of reconstructing an analytical closed 
form the generalized scattering matrix in the continuous ( ),θ φ  domain over a 
large frequency range, starting from the response of the structure at a few samples. 
This is particularly useful to establish a link between an FSS solver and an HF 
solver for the analysis of large FSS curved structure or frequency selective radome 
no matter about the internal code solver structure. The general process described 
here can be applied for the synthetic description of different wave phenomena, 
like those relevant to surface wave propagation and electromagnetic band-gap de-
scription, near-field interaction (Green’s function) and wave diffraction involving 
periodic surfaces. 
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Abstract  

This work is concerned with the analysis of the possibilities to perform complex transfor-
mations from solutions to wave equations which depend on a real variable into a complex-
coordinates space. In first place, the solutions resulting from adding a constant imaginary 
term to the initial real coordinates have been explored in detail. A more general analysis 
concerning the possibilities to obtain valid complex transformations is next explored. The 
work itself frames into a “coming back to basics” procedure involving what we have named 
as Complex Signal Theory, necessary to fully understand the physical insight under the 
complex analysis of wave propagation problems.  

Introduction 

The so-called analytical continuation of functions from real to complex variable 
has been extensively used from the 1970s as an analytical tool for solving elec-
tromagnetic problems, mainly those concerned with the radiation and scattering of 
Gaussian beams (refer, for instance, to [1, 2]). This kind of analysis has presented 
powerful possibilities from the practical point of view. That complex extension 
implies certain transformations from physical real quantities to nonphysical com-
plex ones (the distance between two real positions becomes a complex distance 
between nonreal points, real angles become complex ones); new complex reflec-
tion and diffraction laws arise, together with physical descriptions in terms of 
complex rays, etc. Besides the practical uses of such an approach, we find both 
 interesting and important to understand its physical insight and meaning and its 
possible interpretation. 
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For that purpose, the present authors have devoted some papers [3–6] to the 
analysis and interpretation of those complex quantities, along with the suitable 
parameterizations of the complex spaces arising thereof, and the corresponding 
real propagation space. Based on these results, the procedure is currently being ex-
tended to the analysis of scattering problems, obtaining also well-defined parame-
terizations for the induced currents [7] as well as the analysis of scattering fields 
and physical reflection–diffraction laws currently under investigation. 

These results together with our initial aims suggested a general scheme of how 
the problem should be tackled, leading to a very important coming back to basics 
procedure involving what we have denominated as Complex Signal Theory [8]. 
This scheme involves (a) the revision and extension of a set of important theoreti-
cal concepts, and (b) the practical application of these theoretical analyses into 
Electromagnetics. The present work, framed in (a), is concerned with a reconsid-
eration and possible extension of the idea of generating new or more general  solu-
tions of the (scalar) wave equation by a complex continuation of real points or co-
ordinates in a previous solution. This work will summarize the results and 
conclusions obtained up to date regarding these questions by considering two suc-
cessive phases. 

In the first phase, introduced in Complex Extensions, the complex extension of a 
function, obtained by adding a constant imaginary part to the real coordinates, is 
considered. The aim here is to analyze the possibilities and restrictions of this 
technique when applied to problems which are described by a differential equation 
with its own boundary conditions, and in particular, to the 2D and 3D electromag-
netic radiation and scattering problems. The second phase deals with a more  
general treatment of the complex extension, general complex transformations in 
General Complex Transformations, in which a real coordinate is converted into a 
complex function of the real coordinates of the position. The conditions to be  
imposed on the transformation to provide with valid solutions to the original  
real problem lead to a set of general equations; their analysis will provide with 
important conclusions about the possibilities of this kind of generalization. 

Complex Extensions 

The starting point is a given function of real coordinates, )(rG  which is a valid so-
lution to a certain problem (wave equation plus boundary conditions), for instance, 
the Green’s function of a particular EM problem. The possibilities of the complex 
extension will be explored by adding an imaginary displacement to the real argu-
ment of the function, birr +=→ r  [4, 7] (usually represented by the original co-
ordinates in which the problem was defined), and understanding and translating 
the meaning of such a function into the real space.1 The underlying ideas of this 

                                                           
1 For instance, the 2D radiated field by an infinite line current source in free space is pro-

portional to |)|( 0
)1(

0 srrkH − . The usual complex transformation consists on adding an 

82      M.J.G. Morales et al. 



About Complex Extensions and Their Application in Electromagnetics      83 

analysis are directly related to answer questions like (a) is this an analytic con-
tinuation or, in fact, is a nonanalytic complex transformation? (b) is the same to 
complexify source locations than observation points? (c) is this procedure valid in 
any coordinates system? 

The analytical study concerning this problem was based on the fact that the new 
set of solutions had to continue being valid solutions of the original wave equa-
tion; thus, the new associated problems arising from the complexification proce-
dure (problems for which the new functions might be valid solutions) have been 
studied in detail for the complex extensions which leads to the transformation 
from homogeneous plane waves to inhomogeneous plane waves, from cylindrical 
waves to complex beams, and from spherical waves to complex revolution sym-
metry beams. As a particular application, the analysis of the complex radiation 
condition has been also studied in detail, as well as the relation between the origi-
nal real coordinates space and the space of complex coordinates. The details of 
this analysis may be found in [9]. 

The main conclusions regarding these analyses may be summarized as follows 
(a) this type of complex transformation is not an analytical continuation from the 
real space into the complex one. This means that the nice properties associated to 
holomorphic functions do not hold in these problems; (b) only those coordinates 
that do not appear as metric coefficients in the wave equation are susceptible to be 
extended into a complex variable with the new solution continuing being a valid 
solution to the original wave equation2; (c) as a consequence, this kind of trans-
formation will be only valid to represent inhomogeneous plane waves, complex 
beams, and 3D complex axis-symmetric beams from their corresponding real solu-
tions, that is, plane waves, cylindrical waves and 3D spherical waves; (d) for the 
point source (3D) or line source (2D) problems in free space, the complex dis-
placement of observation points is equivalent to the displacement of the source 
points; in the absence of sources, only the displacement of the observation points 
makes sense. 

General Complex Transformations 

Let )(ςG  be a given function of a real variable, any of the coordinates of a suit-
able 2D- or 3D-coordinate system, which is a valid solution to a certain 2D- or 

                                                                                                                                     
imaginary constant term to the source coordinates, sx i cossx b ϑ= − , sz i sinsz b ϑ= −  
leading to |)|( 0

)1(
0 sr−rkH  

2 For instance, the real angular variable ϕ  may be extended into a complex variable 
iϕ ϕ ν= −  in the polar description of a 2D free source problem,  
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    in this case, the metric coefficients ρ/1  and 2/1 ρ  do not depend on variable ϕ . This 
extension, when applied to a homogeneous plane wave, provides with a valid description 
for the nonhomogeneous plane wave solution 



 

3D-problem (wave equation plus boundary conditions). Next, the possibilities of a 
complex extension will be explored by considering the transformation from the 
real variable, ς , to a complex variable, w , defined as an arbitrary function of po-
sition, w( ) ( ) i ( )r u r v rς → = +

r r r
. Note that the position might be expressed in a coor-

dinate system at will. Obviously, )(wG  satisfies the same wave equation in w  as 
)(ςG  did respect to ς . For that, )(wG  must be analytic in a certain domain of the 

complex w-plane in order to guarantee the existence of derivatives of )(wG . The 
allowed transformations are those for which the new function = )(:)( rGrg w  is 

also a valid solution of the 2D- or 3D-wave equation. The underlying ideas to this 
problem are related to questions like (a) is the constant imaginary extension de-
scribed in Sect. 2 the only valid transformation to obtain new descriptions of the 
solutions of a wave problem? (b) which are the conditions for the general trans-
formation w  to provide with valid solutions to the wave equation? The cases for 
2D plane waves, 2D cylindrical waves and 3D spherical waves with spherical 
symmetry have been carefully analyzed [8] leading to a number of interesting and 
important results that will be next summarized. 

The extension ),( yxx w→  in the 2D plane wave problem will be valid if the 
condition 
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is fulfilled. Arguing that G  and d / dwG  are linearly independent, this condition 
leads to the following pair of equations, 
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with the transformations w  being independent of k . By making the substitution 

morphic function. On the other hand, by differentiating the first equation (3) re-
spect to x  and y  and using the second equation, one easily arrives to the conclu-
sion that the only valid transformations are the linear ones, i.e., cbyax ++=w  
with , ,a b c C∈ , and 122 =+ ba  (as it is the case in Complex Extensions).  

The extension3 ),(),( yxww =→ ϕρρ  in the 2D cylindrical wave problem leads 
to the following condition on w, 
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which can be split, on the same argument as before, in the pair of equations 

                                                           
3 The problem is much more simple-stated and solved by using cartesian coordinates. That 

is the reason why we rewrite the transformation as ),( yxw→ρ  

w (= +u x y, ) iv(x y, )  in the last equations, one concludes that w(x, y)  is not a holo-
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By defining ),(),( 2 yxyx ws = , the new equations for s  can be easily solved, 
with the final result that the most general valid transformation is 

2
1

2
1 )()( byaxw +++=  with  C∈11,ba  (as is the case in Complex Extensions). 

Finally, the extension ),,(),,( zyxrr ww =→ ϕϑ  in the 3D spherical wave prob-
lem (with spherical symmetry) leads to  
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As before, this condition can be written as a pair of equations in ),,( zyx  that 
may be rewritten in terms of the auxiliary variable ),,(),,( 2 zyxzyx ws = ; the new 
equations for s  may be written as 
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The analyses of these equations result much more complicated than in the 2D 
cylindrical wave problem. At this point, it has been demonstrated than the usual 
extension in Complex Extensions is a valid solution to this equation; by the way, 
the possibility of a more general solution is currently under analysis. 

Conclusions 

In this paper, we have studied the possibilities offered by a complex extension of 
the real coordinates in solutions to the scalar wave equation for generating more 
general classes of solutions. Two instances of that extension have been consid-
ered. The first one consists in a mere constant imaginary translation in any coordi-
nates that do not appear in the metric coefficients of the corresponding coordinate 
system, such as yx,  and z  in a cartesian system, and ϕ  in cylindrical or spherical 
ones. In particular, inhomogeneous plane or cylindrical waves are obtained as 
generalizations of homogeneous ones, and axis-symmetrical spherical waves are 
related to waves with spherical symmetry. In a second step, we have defined a 
more general complex extension in which any real coordinate is transformed into a 
complex variable, function of the position coordinates. For the two-dimensional 
problems considered, the valid transformations are not holomorphic and the only 
class of solutions obtained always reduce to the simple translations previously 
considered. In three dimensional problems the situation is very involved, and it is 
the object of current analysis. The detailed analyses concerning those studies have 



 

provided also with new ideas about generalizing complex transformations that will 
be tackled in future works. 
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Abstract 

In the present work the radiation of sound from a bifurcated circular waveguide formed by 
a semi-infinite rigid duct inserted axially into a larger infinite tube with discontinuous wall 
impedance is analyzed. The formulation of the boundary-value problem in terms of Fourier 
integrals leads to a matrix Wiener–Hopf equation which is uncoupled by the introduction of 
infinite sum of poles. The exact solution is then obtained in terms of the coefficients of the 
poles, where these coefficients are shown to satisfy infinite system of linear algebraic equa-
tions. This system is solved numerically and the influence of the parameters such as the 
outer cylinder radius and the discontinuity of the surface impedances on the radiation phe-
nomenon is shown graphically. 

Introduction 

In the present work the radiation of sound from a bifurcated circular waveguide 
formed by a semi-infinite rigid duct inserted axially into a larger infinite tube with 
discontinuous wall impedance is analyzed. This problem is a generalization of a 
previous work by A.D. Rawlins [1] who considered the same geometry in the case 
where the infinite cylindrical casing surrounding the semi-infinite rigid tube is 
lined uniformly with an acoustically absorbing material. The generalization con-
sisting of assuming that the lining of the outer cylinder is discontinuous (two-part) 
is not straightforward, since the resulting boundary-value problem leads to a ma-
trix Wiener–Hopf equation in stead of a scalar one. We will assume that the mouth 
of the inner cylinder is separated from the rim of impedance discontinuity occur-
ring on the outer cylinder by a length l: 

To the best of authors’ knowledge, the mixed boundary value problem which 
we will solve in this article, has not been previously treated and may serve as a 
reference problem for combined analytical–numerical techniques. In its original form, 

A. Büyükaksoy and A. Demir 



 the matrix Wiener–Hopf equation encountered in this work does not seem to be 
solvable by applying the known factorization methods. However, for l  0, it is 
shown that the premultiplication by a suitable entire matrix, reduces the matrix 

applicable (see for example [1–3]). The solution contains two infinite sets of un-
known coefficients satisfying two infinite systems of linear algebraic equations. 
These systems are solved numerically and the influence of the surface impedances 
of the two-part outer cylinder on the diffraction phenomenon is shown graphically. 

Analysis 

Consider the radiation problem depicted in Fig. 1. A time harmonic plane sound 
wave mode with time factor exp(-iwt), propagates out of the open end of a semi-
infinite circular cylindrical duct defined by ){ }, 0, 2 , 0a zρ φ= ∈ <  where  
(ρ , φ , z) denote the usual cylindrical polar coordinates. This semi-infinite tube is 
inserted axially into a larger infinite waveguide of radius ρ  = b. The part 

){ }, 0, 2 , 0b z lρ φ= ∈ < ≤ of the outer duct is lined with an acoustically ab-
sorbent material having a surface admittance η 1, while the part 

){ }, 0, 2 ,b z lρ φ= ∈ >  is coated by another acoustically absorbent material 
which is characterized by a surface admittance η 2. From the symmetry of the ge-
ometry of the problem and of the incident field, the acoustic field everywhere will 
be independent of φ  . We shall therefore introduce a scalar potential u(ρ , z) which 
defines the acoustic pressure and velocity by p = iωσ 0 u and v = grad u, respec-
tively, where σ 0  is the density of the undisturbed medium. 

The incident field is taken to be 
 

ui
 = exp (ikz), (1) 

 
where k = ω / c denotes the wave number of the space. For the sake of analytical 
convenience we will assume that the surrounding medium is slightly lossy and k 

has a small positive imaginary part. The lossless case will be obtained by letting 
Im k → 0 at the end of the analysis. 

For analysis purposes it is convenient to express the total field uT
 (ρ , z) as  

follows 
 

Wiener–Hopf equation into a form for which the weak factorization method is 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )1

2

, ; , ,
, 2

, ; , , ,

i

T
u z u z a z

u z
u z a b z

ρ ρ
ρ

ρ ρ
+ < ∈ −∞ ∞

=
∈ ∈ −∞ ∞
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Fig. 1. Geometry of the problem 

Derivation of the Wiener–Hopf system 

For the unknown fields u1 (ρ , z) and u2 (ρ , z) which satisfy the Helmholtz  
equation  
 

 
it is appropriate to use the following Fourier integral representations 
 

 
and 

 
with J0 (Kρ ) and Y0 (Kρ ) being the Bessel and Neumann functions of zeroth order 
and 

22)( αα −= kK . (4c) 
 

The square-root function is defined in the complex α -plane, cut along α  = k to  
α  =  k + i ∞  and α  = −  k to α  = −  k − i ∞,  such that K (0) = k. 

The unknown spectral coefficients A(α ), B (α ) and C (α ) are to be determined 
with the aid of the following boundary and continuity relations: 
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(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

 
Inserting (4a) and (4b) into (5a–e) and inverting the resulting integral equations 

we obtain after some straightforward manipulations, the following matrix Wiener–
Hopf equation: 
 

 

In the above equation 1,2 ( )Φ α+  and 1,2 ( )Φ α−  are defined by  
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Since, uj (ρ , z) = ( )ike z  as ∞→z owing to the analytical properties of 
Fourier integrals we can show that 1,2 ( )Φ α+  and 1,2 ( )Φ α−  are regular in the upper  
(Im α  > Im(−  k)) and lower (Im α  < Im k) halves of the complex α -plane. 

Here J (nj,α ), Y (nj,α ) and Mp (nj,α ) stand for 

 

and 
 

Notice that M0 (nj,α ) and K(α )M1 (nj,α ) are entire functions of α .  

Solution of the Coupled System of Wiener–Hopf Equations 

In order to solve the matrix Wiener–Hopf equations given in (6) it is convenient 
first to multiply it on the left by the following entire matrix 
 

 , 
to get 
 

 
with 

 
(9c) 

(9d) 

 
Consider first the Wiener–Hopf equation in (9a) and rearrange it in the follow-

ing form 
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Here, N+ (α ) and N− (α ) are the split functions regular and free of zeros in he 
upper and lower half planes, respectively, resulting from the Wiener–Hopf factori-
zation of N (α ) as 

N (α )=N+ (α )N− (α ) (11a) 
 
Their explicit expressions can easily be obtained as 
 

(11b) 

 
where α  = ±  α m’s are symmetrical zeros of the function K (α ) M1 (n1,α ) while  
α  = ± β m ‘s are symmetrical zeros of K (α ) M1 (n2,α ). 

The left-hand side of (12) is an upper function except for the poles of the first 
term resulting from the zeros of K (α ) M1 (n2,α ) lying in the upper half-plane, 
namely at α  = βm  with 
 

K(± βm )M1 (n2, ± βm)=0,   Imβm > Imk. (12) 
 

If the infinite system of poles is subtracted from both sides of (10), we obtain 
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Consider now the Wiener–Hopf equation in (9b) and write the scalar kernel 
+ − + of 

 
L(α ) as a product of two functions L (α ), L (α ); where L (α ) is regular and free 
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 zeros in the upper half  plane  Im α  > −  Im k and L−(α ) is regular and free of zeros 
in the lower region Im α  < Im k. By following the method described in [?], this 
product split can easily be accomplished to give 
 

 
 

L−(α )= L+(− α ), 
 

(15b) 
 
where T stands for 
 

(15c) 
 
and ξ m and χ m are the roots of the following equations: 
 

, 
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Now, (9b) can be rewritten as 
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By proceeding similarly, its solution reads  
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(18c) 

 
The solution of the simultaneous Wiener–Hopf equations has now been ob-

tained in terms of infinite series of constants cm and dm. By using (13b), (18a), 
(18c) and (14a) we can show that these constants are to be solved through the so-
lution of the following two infinite sets of linear algebraic equations 
 

, 

 

(19a) 
 

 
(19b) 

 

These coupled systems of algebraic equations will be solved numerically. All 
the numerical results were derived by truncating the infinite series and the infinite 
systems of linear algebraic equations after the first N terms. It is checked that the 
amplitude of the diffracted field becomes insensitive to the increase of the trunca-
tion number after N = 5. 

Scattered Field and Computational Results 

The scattered field in the region ρ  < a, can be obtained by evaluating the fol-
lowing integral 

(20) 

 

with where  is a straight line parallel to the real α -axis, lying in the strip  
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expression given in (18a) we get, for z > 0 , 
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(21)

The transmission coefficient  of the fundamental mode is defined as the 
complex coefficient multiplying the travelling wave term exp(iξ 1z) and is com-
puted from the contribution of the first pole at α  = −  ξ 1. The result is 
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(22) 

 

  

Fig. 2. Transmission coefficient versus the radius kb of the external waveguide for different 
values of ξ2 

Figure 2 shows the variation of the transmission coefficient versus the radius of 
the outer cylinder in the case where l = 0, for different values of the acoustic im-
pedance contrast. We increased the imaginary part of ξ 2 = 1/η 2 , while the imped-
ance ξ 1 = 1/η 1 is kept constant. It is observed that the amplitude of the transmit-
ted field increases when the contrast |ξ 2 − ξ 1| increases, as expected. 
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Abstract  

Scattering of electromagnetic waves by an elliptic cylinder immersed halfway between two 
half spaces of different properties has been studied. A discrete index radial Mathieu func-
tion transform is derived and used to obtain scattered fields in both half spaces. 

Introduction 

To investigate the features of various media by means of electromagnetic radia-
tion, it is necessary to know the field scattered by inhomogeneities of these media. 
The problem under consideration has also acquired practical relevance in fields 
such as the study of contaminated surfaces as well as detection of defects. Addi-
tionally the solution of canonical problems such as the one under consideration is 
important in the sense of scattering and diffraction theories. The aim of this article 
is to present solutions, in terms of new discrete index of the radial Mathieu func-
tion transform, to the problem of the scattering of electromagnetic waves by a per-
fect conducting elliptic cylinder immersed halfway between two half spaces of 
different  properties. The problem of scattering by an elliptic metal cylinder at the 
interface between isorefractive half-spaces had been dealt with in the literature [1]. 
The configuration under consideration and the formulation presented in this arti-
cle, to the best of the authors’ knowledge, has not been considered before. 

Formulation 

We consider the problem of scattering of harmonic electromagnetic waves by an 
infinite cylinder of elliptic cross-section embedded halfway between two semi-
infinite media of different properties. Let u,φ , z  be elliptic coordinates with the 
axis of the elliptic cylinder along the z  axis on the interface between the two half 
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spaces and the normal to the interface at / 2φ = ± . We take the surface of the el-
liptic cylinder as u = a  and the distance between the foci as 2w. Medium one oc-
cupies the half space 

1 { , 0 , }R a u zφ= < < ∞ ≤ ≤ −∞ < < ∞  while medium two 
occupies the half space 

2 { , 0 , }R a u zφ= < < ∞ ≥ ≥ − −∞ < < ∞ . 

 
The time dependence is exp(–iwt) whose factor will be suppressed throughout. 

11,εk  and 
1μ  are, respectively, the wave number, permittivity, and permeabil-

ity in R1. 22 ,εk and 
2μ  are corresponding quantities in R2. A Dirichlet condition 

is imposed on the surface of the elliptic cylinder. It should be noted that the treat-
ment of the problem with the Neumann boundary condition is imposed on the sur-
face of the elliptic cylinder goes on lines similar to those discussed in this article. 
In what follows field excitation is provided by an impressed line source located at 

),( 00 φu in medium one.  

By using the symmetry of the problem structure with respect to the planes 
/ 2φ = ± , we split the problem into two independent subproblems. The boundary 

conditions on the symmetry planes correspond to either an electric wall or a mag-
netic wall. Without loss of generality, we confine our attention to the case of an 
electric wall. Under the above conditions the field components are derived from a 
Green’s function / izG E ωμ= , where zE is the longitudinal electric field. The 

transverse field components are obtained from zE as 

                    
2

z
u

i E
H

k h

ωε
φ

− ∂=
∂

,                                      (1a) 

 

                                                  
2

zi E
H

k h u
φ

ω ε ∂=
∂

.                                        (1b) 

 
G satisfies the inhomogeneous Helmholtz equation 
 

   2 2 0 0
1 1 2

) (
( ) ( , )t

u u
k G u

h

δ δ φ φφ ( − − )∇ + = −  ,                     (2a) 

where 
1 1/k cω= , 

1 11/c μ ε1=  is the speed in R1, 
2 2 2 2(cosh cosh w u φ= − ) is 

the Jacobian of the transformation from the ( , )x y coordinate system to the 

( ,u φ) coordinate system. 

In R2 , 2 ( , )G u φ  satisfies the homogeneous Helmholtz equation 

 
                                          2 2

2 2( ) ( , ) 0,t k G u φ∇ + =                                    (2b) 
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where 
1 1/k cω= ,

2 2 21/c μ ε= is the speed in R2.
2

t∇  stands for the trans-

verse (with respect  to z ) Laplacian 
 

                           

2 2
2

2 2 2

1
t

h u φ
∂ ∂∇ = +
∂ ∂   

                                           (3) 

Tangential field components are continuous across the interface between the 
two media 

 

                          1 2( , ( ,z zE u uφ φ= 0) = Ε = 0) ,                                    (4a) 

 
 

1 2( , ( ,u uH u H uφ φ= 0) = = 0).                                 (4b) 

Equation (4b) reduces on account of (1a) to 
 

                     
1 2

2

1 1
( , ( ,z zE u E uφ φ

μ φ μ φ1

∂ ∂= 0) = = 0)
∂ ∂   

          (4b ' ) 

 
and radiation condition is to be satisfied as ∞→u . 
 
A Dirichlet boundary condition is imposed on the surface of the elliptic cylin-

der requiring 
                                             0),(2,1 == φauEz

.                                  (4c) 

 
We propose to solve the above boundary value problem by means of a discrete 

index of radial Mathieu function transform. 
Applying the index transform 
 
                                                                                                                          (5) 
 
 

to (2a) and (2b) and making use of orthogonality relation in (A10), we obtain the 
ordinary differential equations (ODEs) 

 
 
                                                                                                                        (6a) 
  
 
                                                                                                                        (6b) 
 
whose solutions are in terms of angular Mathieu functions [3]. 
 
We represent 1 1( , )pg ν φ  as 

1,2 1,2 1,2 1,2( , ( , ( , )p p

p

G u g k w uφ ν φ 1,2) = )

2
2 2 2 2

1 1 1 1 1 0[ ( cos ( , ( , ) ( ),p p p

d
k w g k w u

d
ν φ ν φ δ φ φ

φ 1 02 + − )] ) = − −

2
2 2 2 2

2 2 2 2[ ( cos ( , 0p p

d
k w g

d
ν φ ν φ

φ2 + − )] ) =
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                                                                                                                           (7) 

),( 1

)0(

1 φpvg  satisfies the source conditions: 

1. ),( 1

)0(

1 φpvg  is continuous across 0φφ =  

                                                                        (8a) 
 

2. ),( 1

)0(

1 φ
φ pvg

d

d
is discontinuous across 0φφ =  with 

  

                                                                                          (8b) 
                                      
 

and both ),( 1

)0(

1 φpvg  and ),( 1

)1(

1 φpvg  satisfy the electric wall boundary 

condition at / 2φ = , namely 

                                                                                                            (9) 
 
 
In what follows, we choose for the ODEs in (6a) and (6b) solutions of the form 

1,2 1,2 1,2 1,2( , ) sin[(p n pS k w aν φ υ=
 

(10a) 

 

1,2 1,2 1,2 1,2( , ) cos[(p n pC k w bν φ υ=
 

(10b) 

Hence, 

                                                                (11a) 
         
 
where <> φφ |  is the lesser |  greater of φ   and 0φ , 

  
(11a1) 

 

           
 
with the prime indicating differentiation with respect to φ , and 
  

                                                                                  (11b) 
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1 1 1 1 1 1( , ( , ( ,p p pg g gν φ ν φ ν φ) = ) + )

(0) (0)
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d d
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                                                  (11a2) 
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In R2,  ),(
22
φ

p
vg  satisfies the electric wall boundary condition at 

/ 2φ = − . Hence 
(1)

2 2 2 2 2 2( , ( ) ( ,p p pg f k wνν φ),   (12) 

where 
      

(13) 
 

1 1( )pA v  and 
2 2( )pA v are transform spectra to be determined from the boundary 

conditions on the interface between the R1 and R2 as per (4a) and (4b')

.

 
 
Remark. The Dirichlet boundary condition on the surface of the elliptic cylin-

der, given in (4c), is built in the eigen functions 
1,2 1,2( , )p k w uΦ . This is one advan-

tage of using the discrete index of radial Mathieu function transform for problems 
with boundaries along u= constant. 

 
                                                                                                 (14a) 

where 
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Applying the boundary conditions in (4a) and (4b') we obtain 
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with 
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Linear System Derivation  

We multiply (16a) and (16b) by 1 1( , )q k w uΦ and integrate on u from a to ∞  
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' '

1 1 1 1 1 1 2 2 2 2 2 2( ) ( , /2) ( ,0) ( ) ( , /2) ( ,0)q q q p p p qp

p

A C k w S k w A C k w S k w Cν ν ν νν π ν= −
           

q∀  ,              (17b) 
where 

                           1 2 2( , ) ( , )qp q p
a

C k w u k w u du
∞

1=  .                              (18) 

We cast the linear system as  
    

s+D1 1 1 1 1[ ( , / 2) ( ,0)]p pS k w C k wν ντ− A1=CD2 2 2 2 2[ ( , / 2) ( ,0)]p pS k w C k wν ν− − A 

(19a) 
 
D3[

'

1 1 1 1( , / 2) ( ,0)q qC k w S k wν ν ]A1=CD4
'

2 2 2 2[ ( , / 2) ( ,0)]p pC k w S k wν ν− A2 (19b) 

where s is the vector 
 

                                  

1 1

1 0'

1 1 1 1

( , ){ ( , )}
( ,0) ( , / 2)

q

q

q q

f k w
s k w u

S k w C k w

ν

ν ν

τ φ0
1=  .            (20) 

Di [.] , i=1:4 are diagonal matrices with diagonal elements [.]  and A1,2 are the 
vectors of spectral amplitudes. 

From the above we derive 
  

A1=M1

-1s,                                                       (21a) 
A2=M2

-1s,                                                       (21b) 
where 

 M1=CD4

-1
(D2C

-1D3 – D4C
-1D1),                              (21c) 

M2 = D3CD2 – D1CD4 .                                       (21d) 
 

2 2 2 2 2 2( ) ( , / 2) ( ,0)p p p qp

p

A S k w C k w Cν νν− −

utilizing the orthonormality relation of (A10) to reach 

Φ p
p

p

p

Remark. Had we used expansions on the angular periodic Mathieu functions in-

Φ Φ

p p ,

p p ,

Φ
p

stead of the discrete index of radial Mathieu functions transform, the lack of an 
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resulted in the appearance of dense matrices in the linear system. This is another 
advantage of using the discrete index of radial Mathieu function transform for 
problems with boundaries along φ = constant. 

Conclusions  

The problem of scattering of electromagnetic waves by an elliptic cylinder with 
a Dirichlet condition on its surface and buried halfway between two half spaces 
has been formulated in terms of a new index of the radial Mathieu function trans-
form. Expressions for the total field have been derived. It is concluded that the in-
dex of the radial Mathieu function transform formulation suits naturally express-
ing the fields in domains bounded by both radial and angular boundaries. It also 
allows for expressing the electromagnetic field for arbitrary refractive indices in 
the two half spaces. The approach of this paper is applicable for 2D and 3D prob-
lems of thermal conductivity, acoustics and elastodynamics. It applies as well, 
with the appropriate index transform, to right circular cylindrical and spherical 
configurations. 
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Abstract  

This paper presents nulling in offset parabolic reflector with cluster array feed employing a 
genetic algorithm (GA). Unlike the conventional GA which uses random initial phase and 
amplitude settings, initial settings of one of the individuals is chosen as binary representa-
tion of conjugate field matching vector. We consider the pattern nulling problem in circu-
larly polarized case which is widely used in most satellite and other terrestrial communica-
tion systems.  

Introduction 

The study of array-feed parabolic reflector is largely concentrated on pattern shap-
ing, beam scanning, and compensation of surface distortions. The main goal of 
these investigations is the desired beam pattern with low side lobe levels. Low 
sidelobes do not guarantee adequate reception of a desired signal in the presence 
of jamming or interference sources. It then becomes necessary to insert deep null 
to reject the jamming sources [1, 2]. 

Widely used search based techniques for electromagnetic applications are con-
jugate gradient, random search, and genetic algorithms. Conjugate gradient and 
random search methods have the disadvantage of getting stuck in local minima. 
The global optimization methods such as genetic algorithm (GA), overcomes get-
ting trapped in local minima. The comparison between the GA and other search 
based techniques is well documented in the literature [3–7] . GA offers a very at-
tractive solution for beamforming and pattern nulling problem of the parabolic re-
flector with array feed [8, 9]. In this study, we implement the GA for pattern 
nulling problem of the offset parabolic reflector with array feed.   



Focal Region Fields of Offset Parabolic Reflector  

The offset parabolic reflector with array feed geometry is shown in Fig. 1. The 
diameter and the focal length of the reflector are Doff and f, respectively. The 
cluster array feed with interelement spacing d is located on the focal plane of the 
reflector and the aperture angle with respect to the z-axis is denoted by  θ off. A 
uniformly polarized incident plane wave induces electric currents on the reflector 
surface, which in turn produces the scattered fields on the focal plane. Using the 
PWS-FFT approach of Nagamune and Pathak [10],  scattering fields from axially 
symmetric parabolic reflector to the focal plane, when incident plane wave comes 
from the iθ   direction can be written as: 

( ) ( ), ; , ; yx z
jk yjk x jk z

i x y i x yE x y V k k e e e dk dkθ θ
∞ ∞

′−′ ′− −

−∞ −∞

′ ′ ′ ′= ,  (1) 

where the scattered field ( ), ;x y iV k k θ′ ′  characterizes the axially symmetric  
parabolic antenna.  For our offset parabola geometry, the above formula must be 
modified in order to calculate the focal region fields on the f f( , )x y  plane. We can 
introduce new coordinates f( , , )f fx y z  by rotating the y axis through offθ  and by 
introducing a coordinate transformation between ( , )x z  and ( , )f fx z  in terms of 

offθ . Equation (1) then becomes  

( ) ( ) cos sin
, , x off f y f z off fjk x jk y jk x

x yi x yE x y V k k e e e dk dk
θ θ

∞ ∞
′ ′ ′− − −

−∞ −∞

′ ′ ′ ′= .  (2) 

We now define cos sinx off z offk k kα θ θ′ ′ ′= + , so that 

( ) ( ), , f y f z
jk x jk y jk f

x yi x yE x y V k k e e e dk dkα

∞ ∞
′ ′− − ′−

−∞ −∞

′ ′ ′ ′=  .  (3) 

After some manipulations, the integral in (3) can be defined in terms of kα′ and 

yk ′  for the case of the offset parabolic antenna, where the array feed is on 
( , )f fx y plane and the scattered field becomes [11] 

                 ( ) ( ), ; , f y f z
jk x jk y jk f

f f i y yE x y k k e e e dk dkα
α αθ

∞ ∞
′ ′− − ′−

−∞ −∞

′ ′ ′ ′= ℑ ,                (4) 

where  

                      ( ) ( )
( )

,
,

cos / sin

x y

y

off x y off

V k k
k k

k k
α θ θ−

′ ′
′ ′ℑ =

′ ′
                   (5) 

and 

        2 2 2cos sinx off off yk k k k kα αθ θ′ ′ ′ ′= − − −  .                  (6) 

 
Equation (4) gives us the possibility of calculating the focal region field of the 

offset parabolic reflector via Fourier transform techniques. 
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Fig. 1. Geometry of offset parabolic reflector with cluster feed 

Pattern Nulling Formulation  

Our goal is to define the cost function which meets our requirements such as low-
side lobes, pattern nulls for jamming sources and main beam for the desired direc-
tion. The cost function of the GA to be employed in this paper is based on a typi-
cal beam forming problem defined as [12, 13]: 

( )( )
                              min 

ˆsubject to ,            1,...

H

H

i const a i

w Rw

w E f i Lθ φ ρ⋅ = =
  (7) 

where L is the number of the constraints which defines the peak and the nulls of 
the pattern. fi takes the values of 1 or 0, depending on whether the constraint de-
fines a peak or a null,  respectively. The other parameters in (7) can be defined 
with regard to the array-feed reflector beamforming problem shown in Fig. 1. aρ̂  
is the polarization vector of the array antenna. For simplicity, we choose the array 
feed antenna pattern to be unity in all directions. w is the weight  vector whose 
elements, j

e m

m mw a
δ=  represent complex array weights of feed element m. 

const( , )iE θ φ   is the electric field on the array elements when the incident plane 
wave is coming from the ( )const,iθ φ  direction. const const( , ) ( , )H

i iR E Eθ φ θ φ= ⋅  is a 
matrix describing the coupling between secondary scattering electric fields from 
the reflector reaching the field elements. 

The optimization problem given in (7) is known as linearly constraint beam 
former or Capon’s beam former. Capon’s beam former attempts to minimize the 
power contributed by signals coming from directions other than ( )1,i i Lθ = ⋅⋅ ⋅ , 

, ,

while maintaining a fixed gain in the directions ( )1, ,i i Lθ = ⋅⋅ ⋅ . A closed-form so-
lution to this problem is available, but it requires matrix inversion. For array-feed 
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parabolic reflector applications, the matrix is ill conditioned (the ratio of the ma-
trix elements are very high because of the high gain and narrow beam properties 
of the parabolic reflector) and evaluation of the matrix inversion requires special 
treatment. 

 Our aim is to find the optimum weight vector due to cost or fitness function 
given below, using a GA 

 ( )
( )( )

( )( )
1

1

1

ˆ 1
,... min

ˆ

H H

peak a

M L H

nulli ai

w Rw w E
F w w

w E

α θ ρ

β θ ρ−

=

+ ⋅ − +
=

⋅
  ,               (8) 

where M is the number of array elements. L is the number of constraints, which 
defines the nulls of the pattern. α  and β  are positive numbers which weight the 
relative importance of the nulls and the peak, respectively. Fig. 2 shows a flow-
chart of the implemented GA. In this study, GA iteration begins with an initial 
population including the conjugate field matching (CFM) weight vector [14]. 
CFM weight vector is calculated by *

0 peak aˆ( )w Eγ θ ρ= ⋅ , where γ   is some constant. 

 

 

 

 

 

Fig. 2.  Flow chart of the genetic algorithm 

Results and Conclusion 

In the numerical calculations we choose an offset parabolic reflector with seven 
element cluster feed. Cluster feed is located on the focal plane of the offset 
reflector as shown in Fig. 1. The offset reflector antenna parameters are taken as 

Fill an individual with binary representation of
w0 = γE*(θpeak). Fill the other individuals with 
1s and 0s. 

Calculate costs using (8) for each individual.

Sort costs from best to worst and discard bottom
half of the list. 

Create new genes from selected top 50%. 
Replace discarding genes with newly created genes.

Mutate randomly selected genes. 

,

0 108D λ= , 94.87f λ= , 16.87h λ= , and off 38.11θ = o . The interelement 
spacing of the cluster array feed is chosen to be d λ= . 
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We selected two chromosomes representing the phase ( )mδ  and the amplitude 
( )ma

chromosome. Each chromosome consists of 7M =  genes, and each gene is 
represented by 5 bits. This implies that the amplitude and phase of the coefficients 
are multiples of 0.0323° and 11.6129°, respectively.  

In the calculations, we tested the algorithm with two jammer signals which 
have the same power as the desired signal. In the results to be presented, the GA is 
carried out through 70 iterations. Typically achieved cost values as a function of 
the GA iterations are shown in Fig. 3. Here cost1 = Hw Rw , cost2 = 

( )( )peak aˆ 1Hw Eα θ ρ⋅ − , cost3 = ( )( )null1 aˆHw Eβ θ ρ⋅ , and cost4 =  

( )( )null1 aˆHw Eβ θ ρ⋅  refer to the individual terms in (7). Furthermore, each term 

is normalized with respect to its maximum value for illustration purposes. It is 
evident from Fig. 3 that convergence is achieved after about 60 iterations. 
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Fig. 3. Convergence of the implemented genetic algorithm 

The optimization procedure is carried out when the desired and jamming 
signals are on the same constant φ  plane. For the determination of optimized 
weight vector performances other than the optimization plane, the results are given 
both in u–v and θ –φ  graphs. The u–v graph represents the projection of the 
incident field on the xy-plane. In the u–v graphs, vertical and horizontal axis are 

sin sinv θ φ= , and sin cosu θ φ= , respectively. Thus, the polar and azimuthal 
angle dependences are presented. 

 of the array element weights. Twenty individuals are used for each 
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We tested the algorithm for various scenarios when the incident plane wave and 
array feed are circularly polarized. In the first example given in Fig. 4, the desired 
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signal and jamming sources are at peak 0θ = o ,  null1 0.5θ = o , and  null2 0.6θ = − o  on 
the const 60φ = o  plane. The desired nulls are in the region of the main beam.  The 
achieved null depth is 20 dB.    In Fig. 5, the desired signal and jamming sources 
are at peak 0.6θ = − o , null1 0θ = o , and null2 0.4θ = o  on the const 30φ = o  plane.  In this 
example, one of the desired null corresponds to the natural main beam  of the 
paraboloid.  This causes the main beam to split into two parts. The null depth is 
calculated to be approximately 40 dB. 

In the examples we have investigated, the sidelobe and jamming signal sup-
pressions achieved are more than 20 dB and 40 dB, respectively. We have shown 
the applicability of the GA on the nulling problem of the offset feed parabolic re-
flector. The robust global optimization properties of the GA make it useful in ana-
lyzing such problems with easy implementation.  

Fig. 4.  Optimized pattern of offset reflector with array feed for circular polarization: 
φconst=60°, θpeak=0°, θnull1=0.5°, θnull2=–0.6°, (a) u–v graph,  (b) θ–φ graph 

Fig. 5.  Optimized pattern of offset reflector with array feed for circular polarization: 
φconst=30°, θpeak=–0.6°, θnull1=0°, θnull2=0.4°, (a) u–v graph, (b) θ–φ graph 
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Abstract  

Introduction 

The dielectric rod antenna consists of a dielectric cylinder excited by a hollow 
waveguide. It was observed that by shaping the radiating end of the dielectric rod, 
the radiation characteristics improved considerably giving better directivity and 
beamwidth. However, these studies were conducted on a dielectric rod excited 
with the TE11 mode from a hollow waveguide [1]. The fundamental propagating 
mode in a cylindrical dielectric structure is the HE11 mode which has no cut-off 
frequency. 

Yaghjian and Kornhauser [2] studied the problem of a circular semi-infinite di-
electric rod antenna excited by the hybrid HE11 mode from a hollow waveguide. 
Based on the postulation that the tapering of the radiating end would match the 
impedance of the dielectric rod to that of free space, Georghiades [3] and Hoydal  

The numerical results of a theoretical model for a tapered rode excited by the dominant 
HE11 mode are compared to experimental measurements. The theoretical model is based 
upon the combination of the exact modal field solutions for a step profile cylindrical dielec-
tric rod waveguide, local mode theory, and the equivalence principle for the determination 
of equivalent current densities. The far-zone radiation field is considered to be the summa-
tion of the two radiating components in the dielectric rod/cone structure. The “aperture“ of 
the uniform dielectric rod at the transition  plane (rod/cone interface) and the dielectric 
taper itself. In the former case, the field is obtained from the equivalent surface current 
densities on the aperture surface, whereas in the latter case, the field is obtained from the 
equivalent volume polarization current density induced in the conical structure. Mode con-
verter was constructed to excite the proper mode in experimental measurements to 
compare the proposed theoretical model. Satisfactory agreement was achieved in 
comparing theory to experimental measurements. This paper aims to look at certain class 
of complex electromagnetic problems that are currently under investigation, and/or, that 
need to be addressed; and a tutorial introduction into modeling and numerical simulation 
approaches.  



[4] predicted the radiation patterns of the dielectric tapered rod antenna excited by 
the HE11 mode. They made use of the local mode theory in conjunction with 
equivalent surface and volume current distributions. Previous studies indicate that 
the local mode theory is quite useful in applications involving tapered geometries 
[5]. The results of the methods used in are compared here with the experimentally 
measured radiation patterns of the tapered dielectric rod antenna. The observation 
of a main lobe along the axis of the dielectric cone, in the case of the HE11 mode, 
supports the assumptions made of an adiabatic tapering of the dielectric. The coni-
cal structure is approximated by a series of thin concentric cylinders. The radiation 
field is then synthesized as the superposition of the fields from the dielectric-rod 
and from the conical taper. The tapering must be sufficiently slow to avoid higher-
order coupling effects. 

Formulation of the Problem 

Consider the combined dielectric rod/cone geometry depicted in Fig. 1. It consists 
of a uniform dielectric rod with core radius a and refractive index n1 immersed in 

2

linearly into a cone. In order to consider only the guided modes in the rod, the 
condition n1 > n2 must be satisfied. In general, the waveguide can support multiple 
modes depending on the media parameters n1, n2, the free-space wavelength  and 
the rod radius a. The HE11 mode is called the fundamental mode of a cylindrical 
dielectric waveguide because it is the only mode without a cutoff condition.  

 
Fig. 1. Tapered uniform cylindrical dielectric rod/cone geometry 
 

Let ii HE ,  represent the incident vector fields of a possible mode propagating 
in the +z direction. As this incident surface wave propagates into the tapered  
region, a fraction of the field is reflected back in the –z direction while the rest is 
considered to be transmitted further and will be referred to as scattered fields. The 

an infinite medium of refractive index n . At z = 0 the dielectric rod begins to taper 
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scattered fields are represented by s s,− −E H  in the z<0 region and s s,+ +E H  in the z>0 
region. Hence, the total fields for z<0  can be written as: 

 
                               −-

t i sE = E + E ,       t i sH = H + H                                   (1) 

and for z>0 
                                  + +

t i sE = E + E ,        + +
t i sH = H + H                                 (2) 

 
The far field consists mainly of the scattered fields s s,E H since the incident fields 

i i,E H  do not contribute to the far field radiation. Hence, the far field radiation can 
be determined by finding the total scattered fields due to the rod/cone geometry. 

These fields are evaluated  by decomposing the rod/cone structure into two 
separate regions as shown in Fig. 2, and then using fictitious equivalent surface 
and volume currents as sources to account for the scattered fields in the z<0 re-
gion, as shown in Fig. 2(a), as 

 

                                      ia EE =   ,   ia HH =                                      (3) 

 
and in Fig. 2(b) for z>0  as 
 

                                       0Ea =
+   ,   0Ha =

+  .                                      (4) 

Fig. 2. Decomposition of the dielectric rod/cone structure: (a) The dielectric rod in the z<0 
region. (b) The tapered dielectric in the z>0 region 

To support these fields the surface equivalence theorem, introduced by Schel-
kunoff, states that there may exist fictitious electric and magnetic surface current 

densities  sJ  and sM  on the  z=0  plane such that:  
 

 

− −

−−
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   ˆ ˆ+
s a a iJ = n×(H - H ) = -z × H .                                       (5) 

ˆ ˆ+
s a a iM = -n×(E - E ) = z × E .                                      (6) 

 
The total fields must equal the superposition of the fields in Fig. 2a and b. There-
fore, the fields in Fig. 2b are given by: 

                             
                       

sitb EEEE =−=   ,       
sitb HHHH =−=               (7) 

for  z<0, and 
                      istb EE0EE +=−= +++ ,     istb HH0HH +=−= +++ ,      (8) 

 
for z>0. Again according to the surface equivalence theorem, these fields yield 
fictitious surface current densities sJ and sM  in the z=0 plane. The superposition 
of the fictitious surface currents in Fig. 2a and b must produce a null field. Hence, 

 
                             t

s s s s sJ = J + J = 0 J = -J                                          (9) 

                             t
s s s s sM = M + M = 0 M = -M                               (10) 

 
Thus for Fig. 2b the equivalent surface currents are 
 

                       ˆs iJ = z × H ,         ˆs iM = -z × E                               (11) 

 
and are known. From sJ  and sM ,  the unknown fields sE   and sH   can be evalu-

ated. The equivalent surface currents '

sJ and '

sM   account for only a part of the to-
tal scattered field. The remaining scattered field is due to the unknown field cE  in 
the cone as depicted in Fig. 3a. This scattered field can now be found by introduc-
ing an equivalent electric volume current density as seen in Fig. 3b.  

 

Fig. 3. The dielectric cone: (a) actual problem, (b) volume equivalence model 

−

− − − − − −

′ ′

′ ′

′ ′

′ ′

′ ′
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The equivalent volume current vJ  exists only within the space previously occu-
pied by the dielectric cone where it radiates into a free-space environment. By 
manipulating, Maxwell’s equations, valid within the dielectric cone, it can be 
shown that 

                                        2- jωμ∇× =s sE H ,                                              (12) 

                                     
2jωε∇× = +s v sH J E ,                                           (13) 

where 
                                      2

2 1( 1)j nωε= −v cJ E                                               (14) 

 
and where cE  is the unknown E-field within the dielectric cone. However, cE  

which is dependant on the radius of the cone, can be determined using the local 

mode theory and the principle of power conservation. 

The Dielectric Taper 

In the case of a slow change in the profile of the dielectric rod, it is possible to 
evaluate approximately the modal field solutions of Maxwell’s equations within 
local regions [2]. These local modes are governed by the local field solutions and 
the principle of conservation of power. Since such a solution assumes a negligible 
change in the power of the local mode, it is often called the adiabatic approxima-

tion. The local mode field solutions are constructed by approximating the dielec-
tric cone by a series of cylindrical sections as shown in Fig. 4. The profile is inde-
pendent of z within each section and is defined at the center z=zc The local mode 
field solutions within each finite section are approximated by the modal fields of  
an infinitely long rod having radius a(z)  equal to the radius at the center of the 
section. 

 

Fig. 4. The approximate model for the dielectric cone 
 
Assuming that the length of the section z  is large compared to the length scale of 
the fields within z , such an approximation is fairly accurate. 
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As a local mode propagates, its phase increases across each section by the 
product of c( )zβ and the section length z . Consequently, the phase at an arbi-

trary position along the nonuniform dielectric rod is the sum of such products. 
However, the slow variation of the dielectric rod means that the propagation 

constant c( )zβ  varies only slightly between adjacent sections. Hence the sum of 

the phase contributions from each section can be approximated [2] by 

                              
0

1

( ) ( )
n z

c

i

z z dβ δ β ξ ξ
=

=  .                                          (15) 

Power Conversation 

The local mode fields are very accurate approximations to Maxwell’s equations in 
slowly varying waveguides. However since they do not represent an exact solu-
tion, the local mode will suffer some loss of power as it propagates along the coni-
cal region. This loss of power can be attributed to coupling to radiation modes and 
higher order local modes. Even though the radius a(z) varies from section to sec-
tion, the power of the local mode must be conserved along the dielectric rod/cone 
structure. This principle of power conservation can be expressed as       

                                             00 >< = zz PP ,                                                      (16) 

where 0zP <  is the total average power carried by the mode in the uniform cylin-

drical dielectric waveguide for the 
11HE  mode [5] is: 
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where a ( ) ( )u z a zγ =  and a ( ) ( )w z a zζ = , while the parameters u, w, C1, C2, C3 and 
C4 and  are also shown to be functions of  z since they all change as the profile 
changes. From above one can obtain 

 

                0

0

( )
( )
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P
E z E

P z
= , 0

0

( )
( )
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P
H z H

P z
= ,            (18) 

where rodE  and rodH are the constant field amplitudes in the dielectric rod. In or-

der to simplify further calculations, the unknown excitation coefficients are cho-
sen so as to normalize the directive gain to unity (0 dB) at the maximum of the 
main radiation lobe. 

p
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Numerical and Experimental Results 

The theoretical predictions of the previous sections were compared with the far 
field radiation pattern generated by dielectric cones excited with the fundamental 
HE11 mode. The experimental set-up consisted of a signal generator that excited 
the fields inside a waveguide of rectangular cross-section. This cross-section was 
gradually converted into a circular cross-section, thereby forming an open-ended 
circular waveguide. A mode converter was then attached to the circular 
waveguide. Finally, a cylindrical dielectric rod with tapered ends was inserted into 
the mode converter. Figure 5 shows the antenna assembly used in the experiment. 

 
 

 
Fig. 5. Experimental antenna assembly 
 

A mode converter is attached to the section of waveguide described above. The 
TE11 field in the circular waveguide is thus converted to a propagating HE11 mode. 
The mode converter used in this experiment was designed by Pietrangelo [8]. 
Again, the radiation pattern emitted by the open-ended mode converter was com-
pared against the theoretical radiation pattern for the HE11 mode as predicted by 
Thomas [9]. The theoretical results are plotted along with the experimentally ob-
served radiation patterns in Fig. 6a. There is a good agreement between the two 
sets of data indicating a satisfactory conversion of the TE11 mode into the HE11 
mode. The far field radiation patterns from a tapered dielectric cone excited by the 

HE11 mode was determined previously by Hoydal [5]. For this purpose, a set of 

plexiglass n = 1.6. The taper lengths under study were 2.8, 1.9 and 1.5 long. Figure 
6b shows the typical far field pattern for the dielectric cone. 

Conclusions  

The use of the local mode theory and the principles of  power conservation to 
model the linear tapering of a cylindrical dielectric rod has produced satisfactory 
results when theory is compared with experimental measurements.  

 

signal

dielectric tapet

joint
rectangular cross-section

mode convertet

circular cross-section

three taper lengths were used with two different materials, Teflon, n = 1.449 and 
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Fig. 6. (a) HE11 mode far field radiation pattern from an open-ended mode converter with 
guide radius= 7.5 mm at 18 GHz. The straight line (lower curve) is a theoretical result and 
the upper line is an experimental result, (b) HE11 mode far field radiation pattern for teflon 
tapered rod of  L=2.8 cm, n=1.449, a = 7.5 mm in the far field of  r=1 m, °= 0ϕ  at 18 
GHz. The straight line (upper curve) is a theoretical result and the lower curve is an ex-
perimental result 
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Abstract 

Design alternatives of low-cost, small-size, and high-performance spiral antenna arrays for 
wireless applications are presented. Polarization and radiation characteristics, beam form-
ing, and pattern nulling capabilities are investigated numerically via the finite-difference 
time-domain (FDTD) and numerical electromagnetic code (NEC-2) simulators. 

Introduction 

Spiral antennas are circularly polarized and almost frequency independent, and 
can be used for broadband and/or multiband multipurpose applications, such as in 
mobile communication, early warning, and direction finding systems, bluetooth 
applications, etc. [1–13].  They have been analyzed under various conditions; spi-
rals in free space [5, 11, 12], spirals on planar reflectors [3–13], spirals in cavities 
[5] and spirals on dielectric substrates [5–10]. The shape of a spiral radiator can be 
equiangular [1], Archimedean [2, 5, 6, 8–13] or logarithmic, etc.  

The consumer wants to use PC laptops in different applications, for example, 
listen to the FM radio, watch TV channels, to access easily to all kinds of wireless 
connections via three-band GSM systems and Bluetooth devices. On the other 
hand, the producer wants to have a single broadband antenna to cope with all these 
requirements. One solution is to design (almost) frequency-independent arrays of 
spiral elements with beam forming and pattern nulling capabilities [14]. The pur-
pose here is to discuss design alternatives for both PC laptops and Bluetooth trans-
receivers. 



Archimedean Spiral Antenna Optimized for 2.5 GHz 

Archimedean spirals have mostly circular and/or rectangular shapes, and are fabri-
cated either on microstrips or wire-elements forms [4]. The upper and lower fre-
quencies of the radiation are determined by the feed point distance and diameter of 
the spiral antenna. Radiation patterns of Archimedean spirals are typically bi-
directional, but can be backed by conducting plates (less than quarter-wavelength 
in distance) or cavities to eliminate the back lobes [3]. They are mostly two-arm, 
but multiarm types are also used to improve pattern symmetry, and direction find-
ing perfomance.  

Spiral antennas are balanced structures so they require balanced feed. Input im-
pedance of the spiral antennas are in the order of 140–200 . Normally, they are 
connected to unbalanced 50 - coax cables [3], therefore a balun must be in-
cluded with the feed design.  

The radiation field can be decomposed into right and left hand circular polar-
ized (RHCP and LHCP) components by using Eθ and Eϕ as ER= Eθ +j Eϕ and EL= 
Eθ -j Eϕ . The axial ratio AR (defined as ( ) ( )R L R LAR /E E E E= + − ) is a pa-
rameter that describes the degree of CP, depends on the number of antenna turns 
(nt), and is approximately given by ( )AR 2nt 1 / 2nt= + for large number of turns. 
Figure 1 shows the Archimedean spiral antenna element designed and optimized 
for Bluetooth applications.  

Fig. 1.  (a) Configuration Archimedean spiral antenna, (b) FDTD computation space,  

As will be shown, this antenna may be used from VHF frequencies up to a few 
GHz. The antenna which is optimized for the frequencies around 2.5 GHz is com-
posed of two arms inside of a 45 mm×  45 mm aperture. The antenna arms are 
made of a wire of 1mm-radius, and are symmetrically wound with respect to the 

Ω
Ω

(c) 2 × 2  hybrid HV spiral array antenna 
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feed point and each arm has K filaments (K=9) whose lengths are x0, x0, 2x0, 2x0, 
0 0 0 0 0

9x0=45 mm, respectively. The incremental increase of filaments is 10 mm. The 
antenna is located on the yz-plane as shown in the figure. The FDTD computation 
space and disctretization values are also given in the figure (see Fig. 1b), together 
with a 2× 2 array composed of these Archimedean elements (see Fig. 1c). It should 
be noted that, the outer-most filament of this spiral are horizontal at left, but verti-
cal at right, which are named as H-arm and V-arm elements, respectively. This is 
important, since it determines the domination of vertical (Eθ) and horizontal (Eϕ) 
polarized components of the radiated fields. 

Design Alternatives and Simulations 

Different planar arrays of this Archimedean spirals are designed and array per-
formances are investigated numerically by using in-house prepared FDTD pack-
age [15] and the public-domain NEC-2 code [16] comparatively. Characteristic 
parameters such as input impedance and AR are calculated and is found that the 
input impedance of the Archimedean spiral is around 200 Ω (and real), and AR is 
much less than 3 dB around 2.5 GHz, as expected and well documented elsewhere 
[6–9]. Therefore, the emphasis has placed on radiation characteristics and beam 
forming capabilities in this section. 

The FDTD and NEC-2 parameterizations 

The performances of the Archimedean spiral antenna and various arrays of these 
elements are simulated via the FDTD and NEC-2 codes, therefore electromagnetic 
radiation characteristics are obtained in both time and frequency domains. The 
NEC-2 yields radiation patterns directly, but off-line frequency transformation is 
required for the FDTD-based patterns. The FDTD was first used in [5] to investi-
gate various performance parameters of the spirals.  
The discretization parameters of NEC-2 simulations are as follows: 

• Each arm is divided into 80 segments (with 5 mm segment length that corre-
sponds to more than wavelength over 20 at 2.5 GHz) therefore, 160 segments 
are used to represent a single Archimedean antenna.  

• A 7.5 cm ×  7.5 cm PEC planar plane at 1cm back of each antenna is modeled 
as a square mesh with the sizes of 5 mm ×  5 mm; this means 450 segments 
are used for each antenna.   

• Less than a minute is enough to calculate radiation characteristics of a single 
antenna (610 seg.), around 7 min for 2× 2 (2440 seg.) and 25 min for 2× 3 
(3,660 seg.) arrays with PEC at back with NEC in a 512 MB RAM memory 
PC with 1 GHz CPU speed.  

• On the other hand, an array of 2×5 requires total of 6,100 segments and typi-
cal calculations with NEC in the same PC is more than 150 min.  

3x , 3x ,…, Kx , Kx . The shortest and longest filaments are x =10 mm and 

Design Alternatives of Spiral Antenna Arrays for Wireless Applications      125 



Similarly, FDTD discretization parameters are: 

Archimedean antenna in FDTD ( y = z = 1 mm) 
– 
– The number of simulation time step is 3000 which is enough for the  

transient time analysis ( t = 1.92 ps) 
– The volume is terminated by 8-cell Berenger’s PML 
– Far fields are extrapolated via the TD near-to-far field transformation  

(NTTF) 
– FDTD analysis of the spiral with 7.5 cm ×  7.5 cm PEC plate lasts nearly 

15 min (nearly 98% of this time is used for 180-point NTFF transformation) 
– The computation time for the 2 × 5 array reaches up to 9 h 

It should be noted that, NEC-2 simulates single frequency radiation characteris-
tics. On the other hand broadband characteristics can be obtained via single FDTD 
simulation by exciting the antenna with a voltage pulse. Then, off-line frequency 
transformation is applied at a number of desired frequencies to the time domain 
recorded data and radiation patterns are obtained. 

Single Archimedean Spiral 

First, single Archimedean elements are investigated numerically and results are 
shown in Figs. 2 and 3. 
 

Fig. 2. The discrete NEC-2 model of the Archimedean spiral backed by a conducting plate 
and its 3D radiation pattern at 2.5 GHz (directivity gain is 9.4 dB) 

Archimedean spirals are planar and typically bi-directional. The bi-directional 
characteristic can be changed to unidirectional by backing the spiral element with 
a conducting plane. A few numerical tests have been done with both packages to 
optimize the plate sizes and distance from the antenna. It is found that backing the 
antenna element (1 cm behind) with a conducting plate (1.5 times larger than the 
antenna) yields nearly 20 dB front-to-back-ratio (FBR), and directivity gain of 9.4 dB. 

On the other hand, the volume reaches up to 41 ×  395 × 155 for 2 × 5 array 

– A 41 × 107× 107 computation volume is required for the same single 
x =
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In Fig. 2, the Archimedean spiral with a conducting plate behind, modeled in 
NEC-2, and its three-dimensional (3D) radiation pattern are plotted. Horizontal 
(xy-plane) radiation patterns of both electric field components are plotted in Fig. 3. 
 

Fig. 3. Horizontal radiation patterns of the Archimedean spiral backed with a conducting 
plate (1 cm behind) at 2.5 GHz (directivity gain is 9.4 dB); Solid: FDTD, Dashed: NEC-2 

Archimedean Spiral Arrays 

In addition to the broadband characteristics, multiple Archimedean spirals may 
also be used to form phased arrays, so that adoptive beam forming and interfer-

2× 5 are designed and investigated numerically with both FDTD and NEC-2 pack-

meet optimum design requirements (i.e., low-size, beam forming capability of 
nearly 60–90°  and beam steering capability up to ±  30° ) when interelement dis-
tance is taken as 8 cm. Figures 4 and 5, show two examples. 
 

Fig. 4. Vertical radiation pattern of the two-arm Archimedean spiral antenna at 2.5 GHz 
with directivity gain of 9.4 dB, Solid: θE , Dashed: ϕE

ence nulling capabilities can be satisfied [14]. Various arrays of 2 × 2, 2 × 3, and 

ages. These tests showed that an array of 2 × 5 (ten element Archimedean spirals) 

Eq Ef

, Dotted: Total field 
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In Fig. 4, the vertical radiation pattern (at 2.5 GHz operating frequency) of the 

Archimedean array is plotted. The directivity gains of the single and array Archi-
medean are calculated to be 9.4 and 18.2 dB, respectively. It should be noted that, 
both Eθ and Eϕ components of the radiated fields have almost equal amplitudes as 
shown in the figures, which results in a pure CP at this frequency. 
 

Fig. 5. Vertical (xz-plane) radiation pattern of the 2×5 array at 2.5 GHz with directivity gain 
of 18.2 dB, Solid: θE , Dashed: ϕE , Dotted: Total field 

that elements are excited phase shifted, equal amplitude voltage sources in NEC-2, 
but with equal amplitude, time delayed voltage pulses in FDTD to point main 
beam of the array along a desired direction. The NEC-2 and FDTD results agree 
very well. 

single Archimedean spiral antenna is given. In Fig. 5, the pattern of the 2 × 5 

Z

Beam steering capabilities of the 2×5 Archimedean array are given in Figs. 6 
and 7, for the beam angles of 0°  and 30° , respectively. It should be noted 

Eq
Ef

GHz operating frequency; Solid: FDTD, Dashed: NEC-2 (directivity gain is 18.2 dB). All 
elements are equally fed (no phasing in NEC-2, no delay in FDTD) 

Fig. 6. Horizontal (xy-plane) radiation pattern of the 2 × 5 Archimedean spiral array at 2.5 
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GHz operating frequency; Solid: FDTD, Dashed: NEC-2 (directivity gain is 18.2 dB). 
Beam angle is 30° from boresight (elements are phase shifted in NEC-2 and delayed in 
FDTD) 

The last examples belong to the FDTD simulations of a single spiral element, 
and an array of Archimedean spirals, both of which are designed on microstrip 
structures. The results are presented in Figs. 8 and 9, respectively. 
 

 
r

r

Eq
Ef

Fig. 7. Horizontal (xy-plane) radiation patter of the 2 × 5 Archimedean spiral array at 2.5 

Dashed: ε = 1.0 

Eq
Ef

Fig. 8.  Beams of the single microstrip Archimedean spiral at 2.5 GHz; Solid: ε = 9.6, 
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capabilities are investigated. Numerical simulations showed that this structure may 
be used to cover all radio/TV broadcast up to several GHz frequencies. Electroni-
cally and/or mechanically switched sub arrays of 2 × 3 or 2 × 4 can also be used 
without severe degradation in broadband nature and beam forming performances 
if space/dimension is a critical design parameter. 

 

r

Dashed: εr = 1.0 
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Abstract  

Vertical metallizations in planar geometry, like via holes in MMICs, shorting strips, and 
probe feeds in microstrip antennas, have become the integral parts of high-frequency cir-
cuits and/or multifunction antennas. Therefore, an efficient full-wave electromagnetic simu-
lation algorithm needs to be developed for the analysis of planar geometries with multiple 
vertical metallizations. In this study, it is demonstrated that using the method of moments 
(MoM) in conjunction with the discrete complex image method (DCIM) for the analysis of 
printed structures with multiple vertical strips results in a robust and efficient full-wave 
analysis tool. The use of DCIM together with MoM has already proved to be very efficient 
for printed geometries, where efficiency implies the overall computational performance. 
However, the approach proposed here is not only efficient in this sense but also extremely 
efficient to handle multiple vertical metallization.  

Introduction 

Spatial-domain method of moments (MoM) is one of the most popular techniques 
for the solution of mixed-potential integral equation (MPIE) for printed geome-
tries in multilayer planar media [1]. Introduction of the closed-form Green’s func-
tions with the help of discrete complex image method (DCIM) [2], their robust 
and efficient derivation using the two level approach [3,4] and analytical evalua-
tion of the corresponding matrix entries [5] have improved the efficiency of this 
method considerably. However, this efficiency was only achievable in the case of 
horizontal-only planar conductors and several problems arise in the implementa-
tion of the vertical metallizations mainly due to the implementation of DCIM to 
get spatial-domain Green’s functions. The problems related to the implementation 
of DCIM-MoM for the analysis of printed geometries with vertical metallization 
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were discussed and their remedies were proposed and implemented in [6]. In this 
work, the method proposed and implemented in [6] for the analysis of vertical 
metallization is extended to facilitate the analysis of printed structures with multi-
ple vertical metallization with almost no additional computational cost to the cost 
of the same horizontal geometry with one vertical metallization.  

Formulation of the Problem 

For the sake of illustration, a typical 3D microstrip structure is shown in Fig. 1, 
where there are multiple planar layers with infinite extent in transverse directions, 
i.e., xy-plane, and two vertical strips.  

      

    
Fig. 1. A general 3D microstrip structure 

The analysis of such structures via DCIM-MoM requires writing MPIE first: 
the tangential components of the electric field on the conductor surfaces are writ-
ten in terms of the surface current density J and the associated Green’s functions 
of vector and scalar potentials, which result in the following MPIEs: 

1 ( )JA q

i ii iE j G J G
j i

ω
ω

∂= − ∗ + ∗∇ ⋅
∂

     for ,i x y= , (1) 
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1 ( )JA A A q

z zx x zy z zz zE j G J j G J j G J G
j z

ω ω ω
ω

∂= − ∗ − ∗ − ∗ + ∗ ∇ ⋅
∂

,     (2) 

where A A

xx yyG G= , the term A

ijG  and qG  represent the i-directed vector potential 

at r due to a j-directed electric dipole of unit strength located at r′  and the scalar 
potential of a unit point charge associated with an electric dipole, respectively. As 
the integral equations are obtained in the spatial domain, the Green’s functions – 
the kernels of integral equations – need to be obtained in the spatial domain as 
well, where DCIM is employed to transfer the spectral-domain Green’s functions 
(known analytically in planar layered media) to the spatial domain analytically [4]. 
Once the spatial-domain Green’s functions are obtained in closed-forms, the only 
unknown, the current density in the integral equations, can be solved for by using 
the MoM, which transfers the integral equation to a set of linear equations. In the 
implementation of the MoM, the unknown function, the surface current density J 
in this case, is expanded in terms of known basis functions with unknown coeffi-
cients, as ( )( , , ) ( , , )m m

i i im
J x y z I B x y z= , where i can be x, y or z, m

iB  is the 

basis function with unknown coefficient ( )m

iI  defined at thm ,  position on the 
subdivided conductor. After substituting the expanded current densities into the 
integral equations (1) and (2), the boundary conditions are applied in the integral 
sense through the well-known testing procedure of the MoM, where the field ex-
pressions are multiplied by known testing functions m

iT
′
 for ,  ,  or i x y z=  and 

integrated on the conductors and set to zero. As a result of all these steps, a matrix 
equation for the unknown amplitudes of the basis functions is obtained as 
[ ][ ] [ ]Z I V= , where Z is the impedance, V is the excitation, and I is the un-
known current amplitude matrices. Note that the impedance matrix is composed of 
sub-matrices, ,  ,  , and xx xy yx yyZ Z Z Z , corresponding to matrix entries due to 

horizontal conductors, and ,  ,  , xz zx yz zyZ Z Z Z , and zzZ , corresponding to matrix 
entries due to vertical conductors and to interactions of vertical conductors with 
horizontal conductors, all of which were already given in [6]. In the evaluation of 
the matrix entries corresponding to vertical conductors, the main difficulty arises 
from the implementation of DCIM to get the spatial-domain closed-form Green’s 
functions, which require the use of constant and z z′  values during the exponen-
tial approximation of the spectral-domain Green’s functions via the generalized 
pencil-of-function method. In other words, employed closed-form Green’s func-
tions are only valid for those fixed values of and z z′ . However, since MoM ma-
trix entries associated with the vertical conductors require the convolution and in-
ner-product integrals to be performed over z  and/or z′  variables, such an 
approximation with fixed values of and z z′  results in a Green’s function for 
the fixed values of  and z z′ , but cannot be used to calculate the convolution and 
inner-product integrals. As a result, MoM matrix entries involving z  and/or 'z  
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integrations need a special treatment, which was proposed in [6] and is demon-
strated on the following inner-product term: 

( , ), ( , ) ( ) ( , )

                         ( )

q

z x x z x

q

z x

T y z G B x y dyT y dxdy B x y
z x x

dz T z G
z

∂ ∂ ∂′ ′ ′ ′∗ =
′∂ ∂ ∂

∂ ′ ′ ′⋅
∂

Note that the integration over z in (3) is the source of the problem since the closed-
form spatial-domain Green’s function q

xG  is already evaluated at constant z. So to 
be able to employ it in the above integration, it has to be evaluated at sufficiently 
enough points along the z-direction. However, if the spatial-domain Green’s func-
tion q

xG  is written in terms of its spectral-domain representation q

xG% , the inner-
most integral in the above expression becomes 

( ) ( )(2)
0

1( ) ,  ,  
4

def
q q

x z x
SIP

F dz T z dk k H k G k z z cons
z

ρ ρ ρ ρρ ρ
π

∂ ′ ′= − =
∂

%  

( ) ( )(2)
0

1 ( ) ,  ,  ,        (4)
4

q

z x
SIP
dk k H k GPOF dz T z G k z z cons

z
ρ ρ ρ ρρ ρ

π
∂′ ′= − ⋅ =
∂

%%

where GPOF{ } represents the approximation process with complex exponentials 
by using the GPOF method. The integration over z  can be evaluated analytically 
once the spatial-domain Green’s function in the inner-product expression (3) is 
written in terms of the inverse transform of its spectral-domain representation. 
Then, the exponential approximation procedure using the GPOF method is in-
voked for the resulting spectral-domain function. Therefore, the need for evalua-
tion of the spatial-domain Green’s function at different z-points is eliminated by 
obtaining this auxiliary function. When q

xF  is substituted into (3), the following 
expression is obtained: 

 

( ), , , ( ) ( , ),    q qxz
x x z x

BT
G dudvF u v z cons dyT y B x u y v

z x u

∂∂ ∂′∗ = = ⋅ − −
∂ ∂ ∂

 
where x x u′− = , y y v′− = , and 

spx x= , i.e., the x-coordinate of the vertical metal-
lization which is constant for this case. Note that the evaluation of the auxiliary 
function ( , )q

xF u v  does not depend on the lateral directions, and they are explicit 
functions of 'xxu −=  and 'yyv −= . Therefore, as long as the basis functions 
used to represent the current densities along the vertical conductors have identical 
z
tries corresponding to another vertical strip. In other words, the auxiliary func-
tions corresponding to the basis and/or testing functions on a vertical conductor 
are obtained as explicit functions of x  and y , as long as the domains of z  and 'z   

 (3)

(5) 

(x−x ,y−y ,z,z =cons.).                              

-dependencies, the same auxiliary functions can be used to find the matrix en-
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integrations are the same. This is not a severe restriction because it only requires 
the use of the same basis and testing functions for all vertical conductors, and no 
restriction on the meshing of horizontal conductors.  

Results and Discussions 

In this part of the study, the formulation described above is applied to a microstrip 
line with four vertical y-spanning strips, as shown in Fig. 2, to assess the computa-
tional efficiency of the method. Note that the word “efficiency” used here is in the 
sense of MoM matrix fill-in time required for every additional vertical conductor. 
The dielectric constant of the medium is r = 4.0, the length and width of the line 
is 18.0 and 0.1 cm, respectively. The thickness of the substrate is 0.4 cm, the fre-
quency of operation is 2 GHz. To validate the method, the current distribution 
along the microstrip line is obtained by the method proposed in this paper, and 
compared to that from a commercially available EM simulation software em by 
Sonnet. An excellent agreement is observed, slight differences in the amplitude 
can be attributed to the inherent models of the approaches: em by Sonnet solves 
the problem in shielded environment while the method proposed here solves it in 
open environment, which inevitable causes some differences on the resonant fre-
quencies for the structures.  
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Fig. 2.  Microstrip line with shorting strips: =f 2.0 GHz, =ε 4.0 

Once the validation is complete, the computational efficiency of the proposed 
method is assessed in terms of the CPU (central processing unit) time obtained 
from a 1.5 GHz Centrino CPU. Considering that the basic unit of the whole 
method is the GPOF method, and that it is repeatedly used to get the closed-form 
Green’s functions and the auxiliary functions, Table 1 provides the information on 
the total number of GPOF implementation and the total CPU times corresponding 
to Green’s functions with fixed z  and 'z  values (for a 3D structure, only 

A

yy

A

xx GG =   and q

xG  are in this category), and corresponding to different types of 
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auxiliary functions. Note that these counts are based on assuming two basis func-
tions along the vertical conductors, and two counts of GPOF for each Green’s 
function and three counts of GPOF for each auxiliary functions. As the thickness 
of the substrate is uniform, which is usually the case for most of antenna and mi-
crowave applications, two basis functions are used over every vertical strip, and 
naturally they have the same z  and 'z  dependencies, satisfying the only criterion 
for the efficiency of the method for multiple vertical strips. 

After having noted the fundamental contributor to the fill-in time, and its 
counts, the microstrip line in Fig. 2 is first analyzed with one vertical strip (at  x = 
7.0 cm), and then the number of vertical strips is increased to four by one-by-one.   

As the ultimate measure for the efficient handling of multiple vertical metalli-
zation, in addition to the first one, the percentage increase in the matrix fill time 
for additional vertical strips are listed in Table 2. It is observed that adding new 
vertical strips to the existing ones has almost no effect on the computational com-
plexity of the whole method. This can be stated with numbers that adding new 
vertical strips to the microstrip line with one vertical strip costs about 1.2 percent 
of the cost of adding the first vertical strip.  In Table 2, the CPU time to fill the 
MoM matrix entries of the first vertical strip is normalized to 100, excluding al-
ready filled in 

xxZ  entries, and the CPU times to fill the additional MoM matrix 
entries corresponding to 2nd, 3rd and 4th vertical strips are found to be less than 
1.3 s each. 

 

Table 1.  Gpof count and corresponding cpu times 

Green’s or Auxiliary functions 
involving 

Number of GPOF 
applied CPU time (s) 

no z or z′ integrations 4 1.078 

only z or z′ integrations 18 2.000 

both z and z′ integrations 24 3.500 
 

Table 2.  Percentage increase in matrix fill time 
 

Number of vertical strips Percentage increases in Matrix fill 
time (%) 

1 100 
2 1.207 
3 1.234 
4 1.272 
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Fig. 3.  Magnitudes of the current distribution obtained by using the proposed method (des-
ignated by MPIE) and by em from Sonnet 

Conclusion 

As vertical conductors have become the indispensable parts of microwave and an-
tenna circuits, there has been demand for EM-based simulation tools that would 
efficiently handle printed structures with multiple vertical metallization. In this 
paper, this issue has been addressed with a proposed method and its validation. 
Since the efficiency of the DCIM-MoM for horizontal only structures has already 
been proven, this method has recently been tailored for printed structures with 
multiple vertical conductors. In the case of vertical conductors, the efficiency of 
the method, DCIM-MoM, has been hindered by the difficulties arising during the 
use and derivation of spatial-domain Green’s functions. After having addressed 
these difficulties with a suitable solution, its extension to multiple vertical metalli-
zations has been explained. It has been shown mathematically and numerically 
that as long as the vertical dependencies of the basis or testing functions are cho-
sen to be the same, the inclusion of additional vertical metallizations is extremely 
efficient. Therefore, this approach seems to be a good candidate to use in conjunc-
tion with an optimization algorithm in a CAD tool.  
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Abstract 

A Matlab-based lumped (LC) and scattered (microstrip line) filter design tool is designed. 
Based on the analogy between wave and circuit (transmission line) theories a broadband fil-
ter prototype is introduced for all types of lowpass, highpass, bandpass, and bandstop fil-
ters. The designed microstrip filters are also validated via the finite-difference time-domain 
method. The tool can be used as teaching, learning, and design purposes. 

Introduction 

Lumped element filter theory has already reached in its mature stage and design 
principles and steps are mostly given in undergraduate lecture notes (see, for ex-
ample, [1] for classical approaches and examples). On the other hand, the design 
of microwave filters based on waveguides, cavities, and microstrip circuits has 
been subject of many articles, and still remains of great importance in the devel-
opment of microwave networks (see, for example, [2, 3]). Basically, there are two 
different microstrip filter design approaches; to start with full wave electromag-
netic equations, or to use the analogy between wave and circuit (transmission line) 
theories [4].    

In this paper, a Matlab-based filter design tool, FILTER_GUI, is introduced. 
The user first selects the filter type (one out of four) and then specifies filter pa-
rameters – frequency band, center frequency, attenuation, etc. Then, the order of 
the filter is calculated and the lumped (LC) element filter prototype is designed. A 
generic microstrip line filter is used for all types of filters, and once the LC 
prototype is ready the tool calculates microstripline filter dimensions based on the 
analogy between wave and circuit (transmission line) theories. The full-wave fi-
nite- difference time-domain simulator M-PATCH [3] is also used for data verifi-
cation. 



Analog (Lumped Element) Filter Theory 

Analog filter theory deals with the design of lumped (LC) element filters. There 
are various mathematical methods in analog filter theory. Two of them are widely 
used (see Fig. 1);  

– Butterworth filters which satisfy the desired amplitude response without 
ripples inside the passband 

– Chebychev filters which yields steeper initial descent into the stopband, 
and the payoff is the undesired ripples in the passband. 

Fig. 1. The Butterworth and Chebyshev filter responses  

In a two port circuit, each of the L and C elements and their combinations has 
different frequency characteristics at microwaves. For example, a capacitor (in-
ductor) connected parallel (serial) between the input and output ports, behaves like 
a low-pass filter. On the other hand, they behave like highpass filters if connected 
serially between the input and output. Cascading multiple of these elements results 
in broadband filters as depicted in Fig. 2. Here, Chebychev type filter is used. 

Fig. 2. Two typical lowpass filter prototypes 
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The design parameters for the Chebychev filters are the maximum permissible 
ripple in the passband RdB and the attenuation at a given frequency beyond the 
passband, AdB. The order of the filter is specified from these two parameters. The 
actual design procedure is nothing but supplying these two filter characteristics. 
The first step is to guess the order of the lowpass prototype. The lowpass proto-
type has a source impedance of Rs=1  and a cutoff frequency of c=1. By using 
the frequency and impedance scaling lowpass prototype can be converted into a 
highpass, bandpass, or bandstop prototype (Fig. 3). 

Fig. 3. Lowpass, highpass, bandpass, and bandstop filter characteristics 

Microstrip Filter Design 

Lumped (LC) element filters mostly work at low frequencies. Circuit elements 
such as inductors and capacitors are available only for a limited range of values 
and are difficult to implement at microwaves. Also electrical effects of element 
seals, connection wires, jumper lengths, etc., are no longer negligible at micro-
wave frequencies. Therefore, scattered parameters approach (i.e., transmission line 
theory) is used in filter design at microwaves.  

Microwave filters are mostly integrated on a printed board with other system 
circuits and elements, therefore microstrip lines are the basic filter elements at 
microwaves. One design approach is to use Richard’s transformations coupled 
with Kuroda’s four identities [2], which allows realization of the lumped element 
filter prototypes in terms of open or short-circuited transmission line stubs [4] (see 

fc f

f f f f f
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ries inductors to series stubs, and shunt capacitors to shunt stubs. Since microstrip-
line implementation of the series stubs is extremely difficult. Kuroda identities are 
used to convert these to shunt stubs (see Fig. 5).  

Richard’s transformation is used in the implementation of lowpass filter proto-
type at microwaves. With this transformation a lowpass filter prototype can be 
transformed into its transmission line equivalent lowpass prototype. According to 
Richard’ transformation a capacitor can be replaced with an open-circuited stub, 
and an inductor can be replaced with a short-circuited stub (see Fig. 6). The 
lengths of these stubs should be /8 at the cutoff frequency. Note that N is the  
degree of a filter. 

 

Fig. 4. Open- and short-circuited transmission line stubs and their equivalent circuits 

Fig. 5. Series to parallel stub using Kuroda identities 

 

Fig. 4) (Note that N is the degree of a filter). Richard’s transformations convert se-
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Fig. 6. Lumped (LC) element to transmission line lowpass filter transformation 

At microwaves, bandpass, and bandstop filters require elements which behave 
as series or parallel resonant circuits. Therefore, bandpass and bandstop filter 
prototypes can be realized using quarter-wavelength-long transmission line  
resonators. A parallel resonator circuit of lumped element filter prototype can be 
replaced with a short-circuited stub [3] (see Fig.7). On the other hand, a series 
resonator in bandstop filter prototype can be replaced with an open-circuited stub 
at microwave frequencies. 

Fig. 7. Filter sections used in bandpass and bandstop filter at microwave frequencies 
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The Matlab Filter Design Package  

The MATLAB tool FILTER.GUI has been prepared for both LC and microstrip 
circuit filter design [4]. The front panel of the tool is shown in Fig. 8. A pop-up 
menu at top-right is reserved for the selection of any of lowpass, highpass, band-
pass and bandstop filter types. Once the user specifies a filter type the filter fre-
quency characteristic, its LC prototype, and the microstripline prototype appear at 
top-left. Filter characteristics and microstripline substrate specifications (dielectric 
thickness and relative permittivity) are supplied by the user either from the data 
boxes or by using the sliding bars. The output data of the designed filter is given at 
bottom-left. Here, the order of the filter, values of LC elements, and the dimen-
sions of the microstripline prototype filter are given at this section. The graph at 
bottom-right is for the frequency response of the designed filter. The transfer func-
tion vs. frequency (either in linear or in logarithmic scale) is given at this window. 
Lowpass filter is used as the default type in the front panel. 
 

Fig. 8. The front panel of the FILTER_GUI tool with a third-order lowpass filter design 

An example of a lowpass filter design is presented in Fig. 9. Here, the user 
specifies the 3 dB filter cutoff frequency as 1 GHz, and 10 dB attenuation at 1.4 
GHz. With these specifications the order of the filter is found to be 3. The values 
of the LC elements of the third-order lowpass filter and microstrip filter dimen-
sions are calculated accordingly. Insertion loss vs. frequency obtained with both 
the Matlab filter tool and M-PATCH package are also given in Fig. 10. As  
observed, filter characteristics are in good agreement. 
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Fig. 9. The filter responses obtained via both Matlab tool and the M-PATCH package 

The next example belongs to a bandpass filter design. A 1 GHz passband 
around the center frequency of 2 GHz is requested. The outof passband attenua-
tion is requested to be 20 dB at 3 GHz. Figure 9 shows frequency responses of this 
filter. Again, the specifications are observed to be satisfied.  
 

Fig. 10. A third-order bandpass filter design; Insertion loss vs. frequency obtained via the 
tool and M-PATCH package 
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Conclusion 

The analogy between lumped and scattered parameter representations can be used 
in filter design. A Matlab filter tool that can be used for both engineering and edu-
cational purposes is designed. Any type of a filter with the desired band and at-
tenuation characteristics is chosen first. The tool designs the filter with LC ele-
ments and then converts it into a microstrip line filter. The same microstrip circuit 
is used for all types of filters and the desired characteristics are satisfied by only 
adjusting the widths and lengths of main line and the stubs.    
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Abstract 

Novel, generic double-arm microstrip structures which can be used as both electromagnetic 
bandstop and bandpass filters are introduced. The design steps, numerical simulations, 
practical realization, and experimentations are briefly discussed. Examples of microstrip 
electromagnetic bandstop and bandpass filters are presented. 

Introduction 

Microstrip planar electromagnetic (EM) bandstop (BS) and bandpass (BP) struc-
tures have been widely used in microwave and millimeter wave wireless systems 
and MMIC applications [1, 2], for example, to improve radiation and beam steer-
ing characteristics of antennas [3], to achieve high performance filters, to act as an 
artificial magnetic conductor [4], to form frequency-selective surfaces, and to de-
sign power dividers, couplers, etc. These structures have attracted significant in-
terest especially because of the simplicity in manufacturing and ease in monolithi-
cally integration with other circuits.  

Novel, generic microstrip double-arm structures are introduced to design com-
pact EM BS and BP filters. One of the structures was first introduced in [5] for the 
realization of EM bandgap filters. Then, the double-arm structure has been modi-
fied also to obtain EM BP filters [6]. In this paper, first, analog filter design prin-
ciples are summarized briefly to give a clue for the construction of the generic 
structure. Then, characteristics of the EM BS and BP filters are analyzed with an 
FDTD-based M-PATCH package [7, 8]. The dimensions are optimized after a se-

quency. 

ries of numerical simulations. Finally, the filters are fabricated, the scattering 
parameters are measured, and the results are presented as insertion loss vs. fre-



Classical Chebychev-Type Broadband Filters 

Broadband filters may be designed by using serial/parallel combinations of 
multi-inductor (L) and capacitor (C) elements. The theory of analog filter design is 
in its mature stage and variety of filter analysis and synthesis methods can be 
found in classical books. One of the different types is the Chebychev filter, which 
is used when steeper descent (attenuation) beyond the passband is required at a 
cost of a permissible ripple (see, [9] for brief information and various applica-
tions). The design parameters of the Chebychev filter are the maximum permissi-
ble ripple inside the band, and the attenuation at a given frequency outside, that 
determines the descent rate; from which the order of the filter can be extracted. 
Figure 1 illustrates frequency characteristics of EM BS and BP filters. 

 

Fig. 1. EM BS (top) and BP (bottom) filter design characteristics 

The standard design prototype is the lowpass filter (LP), and the other proto-
types – highpass (HP), BP and BS filters – can be derived from this LP design. A 
generic third-order LP filter that can be used to design BP and BS filters is shown 
in Fig. 2 together with LP to BP, and LP to BS filter transformations. As shown in 
Fig. 2, serial LC resonant circuits inserted parallel, and parallel resonant circuits 
inserted serially between input and output behaves as a BS filter. Alternatively, a 
parallel LC resonant circuit inserted parallel, and series resonant circuit inserted 
serially between input and output behaves as a BP filter. In other words, replacing 
serial and parallel resonant pairs in the circuit results in a transformation from BS 
to BP filter, and this forms the initiative of the design of the generic double-arm 
microstrip structure.  

f
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Fig. 2. Classical analogy between LP and BS (top), and BP (bottom) filters. Actual values 
are obtained via well-known transformation equations [9] 

The Generic Double-Arm Microstrip Structures 

Lossless open- or short-circuited (i.e., OC or SC) short stubs act as pure inductors 
or capacitors, depending on the signal wavelength [7], and they are widely used in 
microstrip circuits, such as impedance matchers, couplers, filters, etc. Similarly, 
OC and/or SC stubs may be used as serial or parallel resonant pairs when bend 
and coupled to the main line in microstrip circuits.  

The proposed structures are given in Fig. 3, and are composed of two slot-
etched (L-shaped) stubs one coupled to the other on the rectangular patch. The two 
L-shaped stubs, one in the vicinity of the other, on both sides of the main line (top 
figure) act as two parallel LC circuits with two different resonance frequencies, 
and are capacitively coupled each other so as to obtain broad and clean stopband 
characteristics. Once the main line is removed and sizes are optimally selected 
(bottom figure) the structure behaves like a BP filter. These generic structures are 
investigated numerically as well as experimentally (and found that it is almost 
equivalent to the third-order BS and BP structures given in Fig. 2). First, the di-
mensions are optimized according to the design requirements by performing 
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fabricated with optimum dimensions and its S-parameters are measured with 
Agilent-8714 ES network analyzer.  
 

Fig. 3. Proposed microstrip generic structure for EM BS (a), and BP (b) filters 

Figure 4 explains the analogy of the proposed structure for the BS filter design. 
Here, the structure in Fig. 3a is used and the parameters are chosen as follows: 
Center frequency: 1.5 GHz, bandwidth: 500 MHz, attenuation: 40 dB, input/output 

r 1

2 mm, s = 5 mm. 

Fig. 4. Design principles of the proposed structure and individual and collective effects of 
the L-shaped arms (insertion loss vs. frequency) 

several simulation trials via the FDTD package M-PATCH [7]. Then, the structure is 

L

W

W

W

W

W

W

L

L

L

s

s

s

–

–

–

–

–

–

L =27 
loads: 50 , substrate = 2.4, thickness: h = 1 mm, W = 25 mm, L = 30 mm, 
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As seen, the L-shaped stubs individually act as single resonant pairs and result 
in attenuation in narrow bands (the shorter and longer stubs resonate at higher and 
lower frequencies, respectively). The transient responses of both structures are in-
vestigated via the FDTD method and typical examples are given in Fig. 5. 
 

 

Fig. 5. Transient EM behaviors in the substrate, beneath the microstip structures (a) BS, (b) 
BP filters 

The simulated transient responses at different time instants are shown for the 
visualization of broadband EM scattering along the structures, where one can trace 
the propagation along the line, wave coupling to the stubs and multireflections, 
back and forth that eliminates/strengthens signal transmission inside a certain 
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band. From these time domain responses broadband frequency responses are cal-
culated via off-line discrete Fourier transformation (DFT). 

The transfer characteristics of the BS filter with the parameters given for Fig. 4, 
obtained numerically and experimentally, are plotted in Fig. 6. The simulated and 
measured results agree very well. Variety of simulation tests are performed to ana-
lyze effects of some of the geometrical parameters, such as the slot width (s) and 
the patch length (L1). These tests show that the width of the stopband decreases as 
the slot width increases, and center frequency of the filter is inversely proportional 
with the length L1. 

Fig. 6. Insertion loss vs. frequency of the proposed EM BS filter 

The characteristics of the third-order Chebychev BS filter as shown in Fig. 2 
(top) is also plotted in Fig. 6, with the actual element values of C1=5.933 pF, 
L1=1.897 nH, C2 =1.100 pF, L2 =10.186 nH, and C3 = 5.837 pF, L3 =1928 nH for 
50  source and load impedances. 

The same generic structure may also be used to obtain EM BP filter. In order to 
do that the main line between the two L-shaped arms is removed, and DC block-
age and BP characteristics are satisfied by the capacitive coupling between the 
arms. An example is given in Fig. 7, which is obtained after a series of FDTD pa-
rameter optimization simulations. The parameters of this 1.5 GHz filter with 500 

r
mm, L = 43 mm, L2 1 2 = 5.9 mm, W3 = 0.3 mm, s1 = 0.3 mm, 

2
urement data is obtained, as clearly observed in the figure. It should be noted that 
the width of the passband of the filter may be extended by (1) moving the center 
frequency toward the higher frequency region, (2) by using dielectric substrate 
with higher permittivity values [10].  

MHz bandwidth on a microstrip with = 2.4 and h = 1 mm, are found to be W = 46 
1 = 27 mm, W  = 1  mm,W

s = 42.8 mm. Again, good agreement between the simulation results and the meas-
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Fig. 7. Insertion loss vs. frequency of the BP filter; Solid, FDTD; dashed, Measurement 

EM BP filters may also be realized with the first EM BS structure (in Fig. 3a) 
by using SC pins. An example is given in Fig. 8. Here, the center frequency of the 
BP filter is around 4.5 GHz, and the width of the passband is nearly 2 GHz. 

Fig. 8. BP filter characteristics of the first structure with SC pins at the end of the longer L-
shaped arm 
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Conclusion 

Novel double-arm generic microstrip structures that can be used both as EM 
bandpass and bandstop filters are proposed. Classical filter approaches are used 
initially for the analogy and to create the shape of the structure first, and optimized 
via a full-capable FDTD simulator. The structures are also fabricated and meas-
ured for the validation purposes. It is demonstrated that the bandstop and bandpass 
characteristics can flexibly be controlled by tuning the lengths and interdistance of 
the stubs and/or by using short circuit pins. The filter performances may also be 
improved by using multigeneric elements between input and output of the circuit.  
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Abstract  

Based on generalized transmission line equations a novel impedance/admittance transfor-
mation algorithm with finite differences is proposed and substantiated. This algorithm is of 
second-order accuracy. The algorithm is combined with the method of lines. The algorithm 
is suitable for eigenmode calculations and for the analysis of waveguide structures with ani-
sotropic materials. 

Introduction 

Generalized transmission line (GTL) equations in matrix notation were developed 
some years ago for developing efficient analysis algorithms based on the method 
of lines [1–3]. They can be written for arbitrary orthogonal coordinate systems 
where one of the coordinates is the direction of propagation (or direction of solu-
tion) and for general anisotropic materials [3]. These GTL equations are coupled, 
first-order differential equations for the transversal electric and magnetic fields 
with respect to the propagation (or solution) direction. Especially, in Cartesian co-
ordinates these GTL equations can be combined to wave equations for the trans-
versal electric or magnetic fields and can be solved analytically. However, this 
combination and solution is not possible in cases where the coupling matrices de-
pend on the desired coordinate for the solution. In Fig. 1 examples of cylindrical 
waveguides with inhomogeneous layers are given. To obtain the eigenmodes of 
these waveguides we assume wave propagation according to exp (–jβz) in longi-
tudinal or z-direction. In the cross-section we discretize in azimuthal direction and 
solve the equations for homogeneous layers in radial direction by the general pro-
cedure described in [4]. In case of inhomogeneous layers in azimuthal direction an 
analytical solution in radial direction cannot be given. For such cases we have de-
veloped an impedance/admittance transformation with finite differences analog to 

Analysis of Waveguide Structures 

by Combination of the Method of the Lines 

and Finite Differences 



the analytical case [3, 5–8]. The algorithm is analog to the construction of differ-
ence operators presented in [9] and is therefore of second-order accuracy. Most of 
the given formulation is quite general and can be used with other FD methods as 
well. This is a numerically stable algorithm. It can also be used for concatenating 
various waveguide sections in complex devices in analogous way. The algorithm 
will be substantiated by numerical results. 

 
Fig. 1. Cross-sections of cylindrical waveguides with inhomogeneous layers 

         
Fig. 2. Discretized circular cross-sections as example 
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Basic Theory 

GTL Equations in Matrix Notation 

The algorithm to be developed is based on GTL equations which are analogous to 
the well-known equations for coupled multiconductor transmission lines. GTL 
equations can be derived in arbitrary orthogonal coordinate systems [3]. The mate-
rial can be arbitrary anisotropic and inhomogeneous. The device or waveguide un-
der study is divided into homogeneous sections or layers in the direction x3 of spe-
cial solution (analytical or by FD). Hence, the material parameters in the cross-
sections (layers) are functions of x1 and x2 (in layers one of these coordinates) 
only. By using the following definitions 

 
 (1) 

the GTL equations in matrix notation are given by [3] 

 
   (2) 

 
where 1x , 2x , 3x  are the coordinates of orthogonal coordinate system, nor-

malized with the free space wave number. The magnetic field components are 
normalized with the free space wave impedance 0η , symbolized by a tilde (~). 

The propagation or the special solution takes place in 3x -direction. The matrices 
3
HE,

x
R  and 3

HE,
x

S  contain the differential operators in transversal direction and 
the material parameters normalized with the metric factors. The superscript sym-
bolise the direction 3x . For details see [3]. We give here also the formulas for cy-

lindrical coordinates r,φ, z and for solution in r-direction for the special anisot-
ropic case where the matrices [ ]rS HE,  are zero. By using the definitions 

 
 (3) 

 
we obtain the GTL equations in more detail 

 
 (4) 

[ ] tt

1 2 2 1
ˆ ˆE= , , H= , ,xn xn xn xnE E H H−% %

3 3 3 3
H E E H

3 3

ˆ ˆ ˆ ˆ ˆ ˆE= j H E, H= j E H,x x x xR S R S
x x

∂ ∂− − − −
∂ ∂

ttˆ ˆ, , , ,r r
z zE rE E H H rHφ φ= = −% %

c c
E H

ˆ ˆ ˆj , jr r r r rr H R E r E R
r r

∂ ∂= − = −
∂ ∂

ˆ .rH
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In case of eigenmode calculation we assume propagation in z-direction accord-
ing to eexp( j )r zε− and replace zD  by ej rε− . We write the GTL equations 
(4) according to  

 (5) 

where the superscript “e” symbolises the eigenmode problem. We redefined the 
field vectors according to 

 
 (6) 

 
Especially in case of inhomogeneous layers the GTL equations in (5) cannot be 

solved analytically. 

Impedance transformation with finite differences 

Discretization. The fields and the field equations are discretized in the cross-
section. Figure 3 shows as example a cross-section of a microstrip waveguide on a 
cylindrical body with two-dimensional discretization of adequate discretization 
points. The one-dimensional discretization is given by radial lines connecting the 

and • points, respectively. The type of boundary conditions depends on the spe-
cial problem. The field components are collected in column vectors and writing in 

 

 
Fig. 3. Cross-section of a rib waveguide with subdivision of the rib layer 

e e e e e e
E H

d dˆ ˆ ˆ ˆ, ,
d d

r r r r r rr H R E r E R H
r r

= − = −

tteˆ ˆ, j , j , .r re
z zE rE E H H rHφ φ= − = % %
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boldface letters. In the one-dimensional case the collection is performed in φ-
direction e.g., starting at the left boundary. In the two-dimensional case the collec-
tion is made in radial direction and from left to right. The material parameters are 
collected in diagonal matrices. In what follows, matrices are written with boldface 
italic letters. For details see [2, 3]. In discretized form (2) reads: 

 (7) 

We have withdrawn the superscripts and introduced the general coordinate u  

for 3x . The combined GTL equation is a first-order differential equation 

 
 (8) 

 

 
 (9) 

u is the coordinate for which we would like to solve the equation. The matrix 
Q̂  in (9) on the left side is given in the general form; on the right side it is given 
for the eigenmode problem according to (5). In many cases, e.g., for isotropic ma-
terials the submatrices SE,H are equal to zero. In many cases the matrix Q̂  de-
pends on u. In the eigenmode problem of Fig. 1 e.g., an analytical solution in the 
inhomogeneous layers is impossible. (The solution for the homogeneous layers is 
described in [4].) Therefore, we describe solutions with the help of finite differ-
ences in the next sections. Especially the solution with quadratic field interpola-
tion is adequate in these problems. 

Linear field interpolation. We divide the section or the layer in as many  
subsections or sublayers as necessary (see layer II in Fig. 3) of length or thickness 

uΔ , respectively. For small distances uΔ  between the subports A and B we ob-
tain by using finite differences and linear field interpolation between the sub-ports 
A and B: 

 (10) 

On the left side we used, as usual, central differences and on the right side 
arithmetic mean values. Equation (10) results in 

(11) 

 
Equation (11) may be transformed to 

 

H H E

d dˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= j , j .
d dEu u

− − −H E H E = - H ER S R S

tt td ˆˆ ˆ ˆ ,
du

F = F = E HQF, .

e
E H 1 H

e
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u −− −

S R R
Q = Q =

R S R

( ) ( ) ( )
ˆ ˆ

B A B A A B
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 (12) 

Now, the impedance and admittance transformation formulas between the ports 
A and B are analogous to the well-known cases. By defining impedances and ad-
mittances according to , , ,

ˆ=A B A B A BE Z H  and , , ,
ˆ=A B A B A BH Y E , we have in detail 

 
 (13) 

 
As in the analytic algorithm the field and impedance/admittance transformation 

can also be performed in the opposite direction in analogous manner. 
Quadratic field interpolation. For approximating the left side of (8) we used 

central differences. It is well known that the result is of second order accuracy in 
the center between the subports A and B [9]. Now, we would also like to have 
second-order accuracy on the right side of (8). In (10) we have used arithmetic 
mean values between the subports A and B with first-order accuracy. To obtain 
second-order accuracy we need three subports. Figure 4 illustrates the quadratic 
interpolation for a single function f(x). The following interpolation with  

 

 
Fig. 4. Quadratic interpolation between two points by using three neighbouring points 
 
quadratic accuracy holds for the places l l / 2i i ix x x h −= = −  and 

2/r iii hxxx −== on the left and right sides of xi: 

 
 (14) 

 

 
 (15) 
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Using equidistant discretization (hi–1 = hi) we obtain 

 
 (16) 

We will now use the results with equidistant discretization for the field vector 
F. The nonequidistant case is analogous: 

 
 (17) 

FO,C is F at O Au u u= − Δ  and C Bu u u= + Δ , respectively. The point O is on the 
left side of A and the point C is on the right side of B. Both formulas are for the 
same point mu (see (10)). 

Now we would like to use these two different formulas for (16) at two different 
points, actually m

1 1 20.5( )u u u= +  and m
2 2 30.5( )u u u= + . We obtain 

 (18) 

 

 (19) 

For linear change of the field i.e., for F3 = F2 + (F2 – F1) in the first equation 
and F1 = F2 – (F3 – F2) in the second equation, we obtain again the result as arith-
metic mean value. This procedure can be continued with further steps uΔ  until 
the upper side of the layer or the end of the section. Knowing, e.g., the field at 
plane (or cross-section) 1 (or A) we can now determine the fields at planes (cross-
sections) 2 (or B) and 3 (or C) by the equation system 

 

 (20) 

The field at plane (or cross-section) 2 is given from this equation system by 

  (21) 

Where 
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 (22) 

The fields at plane (or cross-section) k + 1 at uuu kk Δ+=+1  with 2≥k  are 
given from (19) by 

,  (23) 

 

 (24) 

 

 
 (25) 

where 2≥k  and 

 
 (26) 

For k = 1 see (21). The short-circuit admittance and open-circuit impedance 
matrices in the sublayer k for impedance/admittance transformation are calculated 
from (11) by using kV̂ . The impedance or admittance transformation is performed 
analogously as before in case of linear field interpolation. The imped-
ance/admittance transformation in opposite direction is analogous. These field 
transformation formulas can also be used for beam propagation methods (BPM). 

Numerical Results  

The rib waveguide cross-section (see Fig. 3) is suitable to check the accuracy of 

the algorithm because we can transform the impedances in all layers I–V in one 

step with analytical formulas. To test the impedance/admittance transformation 

formulas we first calculated the value eff effn ε=  for the HE00-mode of the struc-

ture in the conventional way. In the second case we use the proposed imped-

ance/admittance transformation with finite differences, e.g., in the rib layer (layer 

II) between the horizontal interfaces of the sub-layers. The rib layer was divided 
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into sublayers according to Fig. 3. Only for the rib layer we used the FD formulas.  
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The results for the frequency range k0d = 5 to k0d = 6 are shown in Fig. 5a. Pa-

rameter is the number of sublayers. The results approach the analytical values 

from the lower (upper) side in the linear (quadratic) case. Figure 5b shows the dif-

ference of the values obtained at k0d = 6 with the FD impedance/admittance trans-

formation and the analytical result as function of the chosen number of sublayers 

(1/number). We can see that with increasing number of the sublayers the value neff 

converges to the value with analytical impedance/admittance transformation. The 

error for the linear field approximation is nearly three times larger than the error 

for quadratic field approximation. 

 
Fig. 5. Results for the HE00-mode of the structure in Fig. 2 using linear and quadratic FD 

impedance/admittance transformation formulas in the rib layer: (a) dispersion (b) conver-

gence of the neff  value at k0d = 6 
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Abstract  

Permittivity measurements using resonant cavity techniques have been the subject of nu-

merous studies over past 40 years. Conventional cavity perturbation measurements nor-

mally use a transmission cavity, sweeper, power detector, and an oscilloscope or other in-

strument to record the resonance curve and thereby provide the necessary information on 

the Q-factor to calculate the permittivity of a sample material placed within the cavity.  

Some recent measurement methods referred to as “active” make use of oscillating loop 

containing the test cavity such that the frequency of oscillation is close to the resonant fre-

quency of the cavity with its test sample. An appropriate algorithm adjusts components in 

the resonant loop such that the oscillating frequency is made exactly equal to the resonant 

frequency of the test cavity.  

The Q-factor of the cavity is found by modulating a phase shifter within the loop, such 

as to produce a frequency shift in the oscillating frequency, proportional to the cavity Q-

factor. The absolute value of the Q-factor is then found by relating the relative Q-factor 

measurement of the test cavity to the measurement made on a reference cavity containing a 

sample material of known permittivity.  

Introduction 

The measurement of the resonant frequency (f0s) and the Q-factor (QLS) of a per-

turbed microwave cavity has been of increasing interest in the measurement of the 

dielectric properties of materials [1, 2]. In addition, such measurements are also 

used for nondestructive on line measurements of physical and chemical parame-

ters that have to be monitored in various industrial processes. In this latter applica-

tion, open cavity rather than closed-cavity resonators must be used. More recently, 

automatic tracking techniques have also been used for measuring passive-cavity 

parameters in dynamic processes. Similar tracking systems were used to measure 

the permittivity of materials. The technique now presented measures of both the 

resonant frequency shift and the Q-factor by means of a phase-locked microwave 

loop circuit generating a number of microwave frequency signals. The active 

signals are measured with an automatic microwave frequency counter. The pro-



posed technique of measurement is entirely digital; therefore, it is very accurate 

and reliable. In addition, the rate of measurement is limited largely by the count 

rate of the automatic frequency counter such that the required time of measure-

ment for the cavity Q-factor and the resonant frequency can be less than 12 s. 

Method and Theory of Measurement  

The closed-loop circuit for measuring the passive frequency shift of microwave 

cavity resonances by active frequency techniques was described in previous pa-

pers [3, 4]. The block diagram in Fig. 1 illustrates how changes in the loaded Q-

factor of the microwave cavity may be measured simultaneously with the fre-

quency shift by the use of the same automatic microwave frequency counter. An 

electronic phase shifter introduces a periodic phase shift inside the closed-loop 

circuit. The corresponding frequency shift of the oscillating system is measured 

with the frequency counter. A microprocessor then adjust the mechanical phase 

shifter in the closed loop such as to minimize the amplitude of the measured fre-

quency shifts. At this setting of the closed-loop system the average active fre-

quency (f0) corresponds to the passive resonant frequency of the cavity, and the 

active frequency shift Δ f0 can then be used to calculate the loaded Q-factor of the 

cavity as below (see Figs. 1 and 2). A human being recognizes external  

environment by using variety of sensor information. The scenario given in Fig. 2 

possesses majority of challenging EM problems, from communication to control, 

system management to cooperation, etc. Some problems may be listed as follows: 

Frequency Generated by a Step Phase Modulation Inside the Reentrant 
Loop 

Under steady-state conditions it can be shown that the system in Fig. 1 will oscil-

late when the total phase shift in the reentrant loop is equal to an integral number 

N of a 2  radian and the total gain is greater than unity. The above phase condition 

can be written, with no perturbation of the cavity as follows: 

( ) NQT eAMLC ωωω 2,, 00 =++++  ,                (1) 

( ) NQT eAMLC ωωω 2',,'' 00 =++++ ,               (2) 

where 

Φe = the value of the electronic phase shifter at the minimum value of the stepwise 

phase modulation, 

Φe′  = the value of the electronic phase shifter at the maximum value of the step-

wise phase modulation. The peak to peak value Δ Φ = Φe′ –Φe is kept constant 

throughout the experiment. 

ω = the radian oscillation frequency when the value of the electronic phase 

shifter is Φe, 

Φ Φ Φ Φ

Φ Φ Φ Φ

p
p
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ω ′  = the radian oscillation frequency when the value of the electronic phase 

shifter is Φe′ , 

ΦM0 = the value of the mechanical phase shift without a sample in the cavity. 

This value is adjusted to some value between 0º and 360º such that the oscillation 

conditions of (1) and (2) are satisfied and the frequency difference ω – ω′  is it its 

minimum value, as shown in Fig. 2, 

ΦA = the total phase shift of the amplifiers and the other components used in 

the closed loop shown in Fig. 1. This value can be considered to be constant 

within the operating range, 

ω0 = the passive resonant frequency of the unperturbed cavity, 

QL = the loaded cavity Q-factor of the unperturbed cavity, 

ΦC(ω, ω0, QL) = the respective phase shifts introduced by the cavity at the os-

cillation frequency ω, 

ΦC(ω ′, ω 0, QL) = the respective phase shifts introduced by the cavity at the 

oscillation frequency , 

T = the time required by the signal to travel around the closed loop (see Fig. 3). 

 

 

 

 
Fig. 1. Active resonating loop at microwave frequencies 
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The system in Fig. 1 will also oscillate at different frequencies when the cavity 

resonant frequency and the cavity Q-factor are perturbed from f0 and QL to f0S and 

QLS. The new frequencies (ωS, ω S ) generated by the perturbed cavity are given by 

the following expressions: 

( ) NQT eASMLSSSCS ωωω 2,, 00 =++++ ,                 (3) 

( ) NQT eASMLSSSCS ωωω 2',,'' 00 =++++ .             (4) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Schematic arrangement for an active circuit of high power real-time permittivity 

measurements 

 

In previous equations, ΦM0 is the value of the mechanical phase shift when a 

sample is introduced into the cavity such that the oscillation conditions of (3) and 

(4) are satisfied and the frequency difference (ω S – ω S′) is at its minimum value. 

In (1–4) the value of N is constant such as to avoid frequency mode jumps in 

the generated signals. In practice, it was found that a frequency shift of up to 

′

Φ Φ Φ Φ

Φ Φ Φ Φ

p
p

60 MHz at an operating frequency of 2,450 MHz could be tolerated without ob-

serving frequency mode jumps, provided the length of the reentrant loop was 
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minimized. The values of  ΦC (ω S , ω0S , QLS) and ΦC(ωS′, ω 0S, QLS) correspond to 

the phase shift introduced by the perturbed cavity at frequencies ω S and ω S′ . 

Relation Between the Cavity Resonance Perturbation (f0 – f0S) and the 
active radian Frequency Shift (ωS – ω ) 

The relation between the active frequencies of the perturbed and unperturbed 

cavity, with no phase modulation inside the reentrant loop, has been given as fol-

lows: 

 

FfS /2 0Δ=− ωω ,                                                      (5) 

where 

 

2
00

1
Q

TQ

Q

T
F eωω ++=                                                       (6) 

and 

Q0 = the unloaded cavity factor, 

Qe = the external cavity Q-factor, 

T = the time required for an electric signal to travel around the loop, 

Δ f0 = the passive resonant frequency shift of the cavity equal to (f0  – f0S). 

 

The value of T was obtained by a phase shift versus frequency shift measure-

ments with a network analyzer, and it was found to be 7 ns. The value of Q0 (also 

measured with the analyzer and a counter) was in the order of 6,000 for the cavity 

designed in Fig. 1. At an operating frequency of 2,450 MHz, the value of ωT/Q0 

therefore, is, much less unity. Similarly, it can be shown that the value of 

ωTQe /Q0
2 is negligible, and (6) is therefore reduced to the following simple equa-

tion: 

( )002 ff SS −=− πωω                                           (7) 

 

Equation (7) indicates that the difference in the active frequencies (fS – f ) is 

equal to the difference (f0S – f0) in the passive resonant frequency of the test cavity. 

Passive resonant frequency shifts of a test cavity therefore can be measured di-

rectly with an automatic frequency counter, as shown in Fig. 2. 

Relation between the Normalized Cavity Q-Factors (QLS /QL) and the 
Active Frequencies 

The loaded test cavity in Fig. 1 will produce a phase shift ΦC(ωS, ω 0S, QLS) at the 

radian oscillation frequency ω S for a cavity resonance ω 0S as follows: 

p
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( ) ( )−
= −

S

SS
LSLSSSC QQ

0

01
0 2tan,,

ω
ωωωω ,                         (8) 

 

where QLS is the loaded cavity Q with a sample and ω0S is the resonant frequency, 

with a sample, expressed in radians. 

For small values of ΦC(ωS, ω 0S, QLS), less than 15º, we can write: 

 

( ) ( ) SSSLSLSSSC QQ 000 /2,, ωωωωω −= .                     (9) 

 

In a similar manner we can also write: 

 

( ) ( ) 000 /2,, ωωωωω −= LLC QQ ,                     (10) 

 

( ) ( ) 000 /'2,,' ωωωωω −= LLC QQ ,                        (11) 

 

( ) ( ) SSSLSLSSSC QQ 000 /'2,,' ωωωωω −= .             (12) 

 

For the preceding equations we find that: 
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  .                              (13) 

 

For the value of T = 7 ns and ω 0 = 2  ×  2,450 MHz the value of ω0T/2QLS < 1 

whenever QLS >50. Hence ω0T/2QLS << 1 when QLS >> 500; (13) may then be 

simplified as follows: 

( )
( )'

'

0

0

SS

S

L

LS

Q

Q

ωω
ωω

ω
ω

−
−= .                                            (14) 

 

However, the ω value can easily be made equal to ω0, by a proper choice of the 

phase value ΦM, as already shown in Fig. 2. Hence, from (7) and (14), we can 

write the normalized loaded cavity Q-factor (QLS/QL) when ωS is also set equal to 

ω 0S by varying Φ M in the same manner: 

 

( )
( )'

'

SS

S

L
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Q

Q

ωω
ωω

ω
ω

−
−=  .                                        (15) 
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We, therefore, have shown in (7) and (15) that the passive cavity perturbation 

parameters (f0 – f0S) and (QL/QLS) can be obtained from active frequency meas-

urements when the initial loaded cavity Q-factor (QL) is known. 

Permittivity Measurements 

When a small sample is introduced in a cavity, it causes a frequency shift. If the 

sample has losses, the complex frequency shift is given by: 

 

( )
( )⋅+⋅

⋅Δ+⋅Δ
−=

−
dVHHEE

dVHHEE

*

00

*

00

*

0

*

00

με

με
ω

ωω
,                           (16) 

 

where E0, H0 and E, H represent the field in the original and perturbed cavity, re-

spectively, and ω 0 and ω are the corresponding resonant frequencies. In addition, 

Δ ε and Δ μ are the changes in the permittivity and permeability of the medium of 

cavity, respectively, due to the introduction of the sample. Also, the dV is the ele-

mental volume. A small change in permittivity at a point of zero electric field or a 

small change of permeability at the position of zero magnetic field does not vary 

the resonant frequency. 

For a small nonmagnetic sample (μr = 1) placed at the electric field maximum, 

the electric field applied to the sample can be assumed uniform, and (16) can be 

simplified as: 

⋅Δ
−=

−

V

Vs

dVE

dVEE

2

00

*

0

0

2ε

ε

ω
ωω

 .                                             (17) 

 

In the previous equation, 
0εεε −=Δ  and

r 0ε ε ε= ⋅ . But 
r r r' j ''ε ε ε= − . Thus 

(17) becomes: 

( ) ⋅−
−=−

Vs

Vs

r

dVE

dVEE

2

00

*

0

0

2

1

ε

ε

ω
ωω

 .                                    (18) 

 

The change of the complex eigenfrequency can be related to the changes in the 

resonance frequency f = Re (f) and the Q-factor of the cavity through the relation 

(14), or in a simplified form as follows: 

 

              

                                                    .                        (19) −+−=−
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In previous equation, QS and Q0 are the quality factors of the cavity with and 

without sample in the cavity, and fS and f0 are the resonant frequencies of the cav-

ity with or without the sample in the sample holder. 

Comparing (18) with (19), we have: 

 

 

   (20) 

 

 

 

Finally, the real part and the imaginary parts of permittivity are: 

 

 ,    (21) 

 

 

 

  ,   (22) 

 

where 

 

 
.    (23) 

 

 

 

In (21) and (22), the parameter C0 is generally assumed to be a constant, which 

depends of the geometry and the location of the sample and resonant mode of the 

cavity, but approximately independent of the permittivity of samples. When the 

resonant mode is a higher order mode, it is very complicated to calculate C0 using 

classical electromagnetic analytical methods. Thus, C0 is usually obtained by a 

calibration method using a known permittivity sample as a standard. It should be 

pointed out that the standard sample should be as small as possible and should 

have a similar geometry with the samples to be measured so as to improve the 

measurement accuracy. 
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Fig. 3. Measurement principle; phase relation-based active system algorithm 
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Abstract  

The accelerating demand for higher network capacities has driven the need for backbone 
wavelength division multiplexed (WDM) all-optical networks (AON) capable of dynami-
cally routing several millions even billions of packets that are in transit. At the present state 
of technological development optical burst switching (OBS) appears to be the most promis-
ing switching technique for meeting transparency and bandwidth on demand requirements 
in such ultra high capacity networks.  Several protocols have been proposed for OBS net-
works.  In this work, we consider a version of the Just-In-Time (JIT) protocol and investi-
gate its burst drop probability (BDP) performance utilizing a Monte-Carlo simulation ap-
proach. 

Introduction 

As a result of the sharp increase in the Internet traffic in recent years, service pro-
viders are facing an accelerating demand for greater bandwidths in backbone ter-
restrial networks. Optical networks (ON) present an attractive solution for meeting 
this demand due to their capability of providing great amount of raw bandwidth 
along fiber links and the higher switching capacities of optical cross-connects 
(OXCs) in comparison to existing electronic routers. However, the effective usage 
of bandwidth capacity of fiber links could only be realized after the introduction 
of wavelength division multiplexed (WDM) technology. So far, several switching 
techniques have been proposed to transmit data over WDM networks, and current 
research is focused on all optical networks (AONs) wherein the data is kept in the 
optical domain throughout the network without undergoing optic/electronic/optic 
(OEO) conversion at intermediate nodes. Switching techniques proposed for 
AONs can be classified under the following main types: optical circuit switching 
(OCS), optical packet switching (OPS), and optical burst switching (OBS). OCS 
technology, though well matured and widely deployed, is rather inefficient in 
meeting bandwidth on demand requirement. On the other hand, the implementation 



of OPS may still be a decade away, awaiting some major technological advance-
ments. OBS has been proposed as an intermediate solution for eliminating the ma-
jor disadvantages of OCS and OPS.   

Optical Burst Switching 

OBS makes better use of network resources when compared to OCS, and it can 
readly be implemented on AONs, utilizing off-the-shelf hardware. In OBS, data 
packets which need to be routed to the same destination are aggregated into super 
packets called bursts before they are injected to the network. A burst has only one 
control packet which is sent in a separate signaling channel with an offset time, 
and unlike OCS, the burst is sent after this offset time without waiting for the ac-
knowledgement of successful end-to-end reservation. Control packets undergo 
OEO conversion at the intermediate nodes, and offset time is determined in such a 
way as to account for the total processing delay encountered by the control packet 
along its route. As a result, the switching fabric can be configured dynamically for 
the requested resource.  

Since wavelength (λ) channels are not engaged on a continuous basis in serv-
ing the traffic demand between a pair of nodes, their idle periods can be utilized in 
serving different transmission requests.  Hence, at the present state of technologi-
cal developments, among the switching techniques mentioned above, OBS seems 
to be the most suitable approach for improving the bandwidth utilization effi-
ciency in an existing or to be deployed AON. 

The following three main protocols have been proposed for OBS: just-in-time 
(JIT), horizon, and just-enough-time (JET) [1]. In this paper, we consider the 
simulation of an OBS network utilising a variation of JIT protocol developed by 
the JumpStart Group in the USA. [2] which utilizes on-the-fly path unicast signal-
ing, explicit setup and estimated release and does not require a global time syn-
chronization in the network. This feature of the JIT protocol is essential for the 
applicability of the Monte Carlo technique for modeling and simulation of OBS 
networks. 

Simulation Approach 

In order to analyze the performance of OBS, we utilize the simulation approach 
proposed in [3] which is based on the Monte Carlo Technique (MCT) [4]. The 
network is assumed to have reached steady-state conditions and that all processes 
have stationary distributions. Each transmission attempt of a set of bursts consti-
tutes a random MC experiment resulting in burst transmission/drop events. In a 
single execution of the simulation, this experiment is repeated in a sufficiently 
large number of times, NS, so as to determine an estimator PDB ˆ  for the performance 
parameter burst drop probability (BDP), together with an associated confidence 
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interval. Confidence interval is attached to a certain MC run size, NS, by running 
the simulation several times and calculating the variance of the samples for 

PDB ˆ obtained at each step. 
Our model may be divided into two subparts: burst injection and contention 

control. Burst injection is governed by the current traffic offered to the network as 
described by the burst arrival process and the internodal weights, as well as by the 
λ assignment scheme and the protocol. Contention control, on the other hand, in-
volves identification of burst collision events on the intermediate nodes and de-
termination whether or not they can be avoided utilizing provided contention reso-
lution techniques.    

There are two major difficulties in evaluating the overall BDP performance in 
an OBS network. First, it presents a computational extensive task which rapidly 
grows to become untractable as the network complexity is increased [5]. Second, 
no workable definition has so far been reported in the literature for the concept of 
load in an OBS network, which would be necessary for a single parameter quanti-
fication BDP performance of the network.   In this paper we use the two-
parameter quantification approach proposed in [3], wherein the simulation results 
are represented as functions of both the average accepted number , NA, of bursts 
by the network at a simulation run of size, NS, as well as of the channel occupation 
ratio, U, defined as,  

U = 1 / (1 + Tidle/Tbusy) (1) 

 
where, Tbusy is determined by summing burst duration with a route dependent off-
set time and Tidle by the burst arrival process. 

Network Topology and Simulation Results  

The studied network model is the 16-node NSFNET topology (Fig. 1). There are 
25 bidirectional fiber links each of supporting 64 λ-channels in one direction. All 
nodes are treated as edge nodes, and it is assumed that full wavelength conversion 
capability may be provided to all or to a subset of the nodes for contention resolu-
tion purposes. We consider a fixed routing scheme and use Dijktra’s shortest path 
algorithm for route computation in the network by determining the weights of the 
links simply by their physical lengths. Moreover, for convenience, we introduced 
following simplifying assumptions: constant burst length; fixed routing along 
shortest paths; uniform traffic matrix; exponentially distributed interarrivals. 

For all calculations presented in this paper, the MCS run size NS = 120 has been 
used. We have verified independently that this run size yields a confidence interval 
for the numerical results obtained for PDB ˆ sufficient to ensure two digit precision. 
A typical set of results for the variation of PDB ˆ  with NA and U is given in Fig. 2. 
The estimators for BDP presented in Fig. 2 correspond to the average values taken 
over 120 MCSs, for each (NA , U). 
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Fig. 1. 16-node NSFNET topology 

Burst Contention  

Figure 2 shows that for constant U burst dropping probability increases with NA. 
This is to be expected, since more traffic requests result in more λ-channel reser-
vations on the links; hence, burst contention probability rises. However, burst con-
tention is not only a function of the number of accepted burst at the instant corre-
sponding to a MC experiment but also of a local time window around the burst as 
determined by the burst arrival process and quantified by the channel utilization 
ratio U. 

 
Fig. 2. PDB ˆ  vs. N

A for various values of U 

The significance of this latter effect is clearly observable in Fig. 2 by noting the 
differences between PDB ˆ values corresponding to different U values for the same 
number of accepted bursts. This can be explained by the fact that as U increases, 
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the  possibility for interposition  of bursts decreases. This is better demonstrated 
by the sample output given in Table 1 for NA ≅  500.  
Table 1. Average number of interposed bursts for increasing U at NA = 511 

NA = 511 

U Average number of inter-
posed bursts 

0.053 77 

0.100 57 

0.323 21 

0.954 0 

 

As seen from this table the number of interposed bursts rapidly increases at lower 
U values resulting in a lower burst contention probability and, hence in a lower 
Table 1, average number of interposed bursts for increasing U at NA = 511 for 
given NA.  In other words, for the same value of Table 1, average number of inter-
posed bursts for increasing U at NA = 511, NA, increases with decreasing U due to 
the cumulative effect of interposition and λ-conversion, which can be clearly seen 
from the representative example given in Table 2. 
 

Table 2. PDB ˆ  vs. N
A
 for various values of U 

 U = 0.954 U = 0.100 

^
BDP (%) 0.951 0.938 

NA 460 566 

average number of directly transmitted bursts 237 293 

average number of only -converted bursts 218 93 

average number of only interposed bursts 0 62 

average number of both interposed and converted bursts 0 113 

As a result of these observations, we can conclude that OBS would signifi-
cantly improve the performance of an OCS network when the overall network 
traffic load decreases as a result of decrease in either NA or in U. For comparison 
purposes, we have also plotted in Fig. 2 the variation of connection blocking prob-
ability with NA in an OCS network with the same topology.  It should be noted 
that in Fig. 2 there is substantial difference between the curves marked with OCS 
and U = 0.954, although one would expect that for U values approaching 1, i.e., 
full channel utilization, burst blocking probabilty in an OBS network would ap-
proach to the connection blocking probability an OCS network. However, this dif-
ference can easily be understood by noting that in the present implementation of 
JIT protocol the definition of NA excludes bursts which fail to get acknowledge-

λ

ment for the presence of a free difference λ-channel at the source node, whereas 
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corresponding connection requests are counted as blocked connections in the case 
of OCS. 

Table 3. A comparison of successfully delivered network traffic at NA = 511 for 
various values of U 

 U = 0.954 U = 0.323 U = 0.100 U = 0.053 

average number of directly transmitted 
bursts 

263 264 265 266 

average number of only -converted 
bursts 

237 158 87 66 

average number of only interposed 
bursts 

0 21 57 71 

average number of both interposed and 
converted bursts 

0 63 100 106 

average number of bursts losted 11 5 2 2 

 
One of the interesting results that is obtained via simulation is that the number 

of directly transmitted bursts does not change with U, whereas the number of in-
terposed and λ-converted ones are strongly dependent on U. A sample compari-
son is given in Table 3, and it can again be seen that the interposition dominates 
the various factors effecting PDB ˆ  in OBS networks.  

Contention Resolution 

network topology are equipped with full wavelength conversion capability. By ob-
serving the number of conversion at each node, we are able to determine the bot-
tlenecks in the network, i.e., the overloaded nodes/links.  The average number of 
λ-conversions made on each node of the network for contention resolution pur-
poses is shown in Fig. 3 for constant U and NA. 

Fig. 3. Number of λ-conversions at NA = 511 and U = 0.100 for full λ-conversion capability 
at each node 

λ
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Fig. 4. Number of λ-conversions at NA = 511 and U = 0.100 for no λ-conversion capability 
at nodes 2, 3, 11, 13, and 16 

From Fig. 3, it is seen that nodes 6, 7, 9, and 12 are the most crowded ones in 
the considered topology. In other words, under the uniform traffic matrix and 
fixed routing assumptions considered here, these nodes are shared by many routes. 
Indeed, given the above-mentioned constraints this could be anticipated by simply 
looking at the network topology given in Fig. 1, that the links between these cen-
trally placed nodes would get overloaded at increased traffic loads. 

On the other hand, one observes from Fig. 3 it seems that very little λ-
conversions occur at nodes 1, 2, 3, 4, and 13, and almost no λ-conversion is 
needed at nodes 11 and 16. Therefore, we expect that this it would have little ef-
fect on the PDB ˆ performance of the network, if λ-conversion capability would be 
provided not to all nodes in the network but rather to a suitably chosen subset of 
these nodes. This is demonstrated in Fig. 4 which corresponds to the case wherein 
no λ-conversion capability is provided at 5 of the 16 nodes in the network. It 
should be noted that, as expected, in this case PDB ˆ increases only slightly from 
0.355 to 0.644% and the numbers of λ-conversions made in the other nodes of the 
network remain essentially unchanged. 

Conclusion 

We have demonstrated the feasibility of a Monte-Carlo type simulation approach 
for evaluation of the overall BDP performance in an OBS network under fairly 
realistic conditions. The applicability of our approach is restricted to protocols 
which do not require a global synchronization and to networks which have 
reached steady-state conditions characterized by stationary distributions of all 
processes. Utilizing a version of the JIT protocol as an example, we have been 
able to investigate the effects of the various factors effecting the BDP in an OBS 
network. Although, in the presentation, some additional restrictions were in-
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troduced in relation to traffic and to routing and wavelength assignment (RWA) 
algorithms, it should be noted that these latter are introduced solely for the pur-
poses of simplifying the discussion and the proposed method can be used with 
equal ease and efficiency under different traffic and RWA assumptions.   
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Abstract  

This paper addresses the problem of identifying the nonlinear hydrodynamic processes 
which contribute to the time-varying geometry of the sea surface via their radar signatures. 
Progress is illustrated with results from a broad research program based on a suite of radars, 
from HF to millimetre wave, and also make use of information derived from passive elec-
tromagnetic sensors in the visible and infrared bands. 

Introduction 

The ocean surface boundary layer can be modelled as a dynamical system subject 
to forces acting over an extraordinary range of spatial and temporal scales. At the 
global scale, the oceanic response can be represented in terms of familiar phenom-
ena such as tides, Rossby waves, Kelvin waves, and tsunamis, while at progres-
sively shorter length scales we observe infragravity waves, gravity waves, capil-
lary waves, and eventually thermal fluctuations. From a practical point of view, 
though, the range which is most relevant to human affairs and characterised by 
variability requiring measurement extends from length scales of ~104 m to ~10–2 m. 

The equations which describe the evolution of the state of the sea surface are 
essentially nonlinear – formally they describe the class of volume preserving  
diffeomorphisms in R3 – but, over a wide range of conditions, a linearised hydro-
dynamic approximation yields an satisfactory solution, accurate to a relative  
precision of typically 10–2 – 10–3.  While this approach serves many practical 
needs well, it breaks down under some of the most interesting conditions, such as 
high sea states and wave breaking. Further, when air–sea fluxes integrated over 
one scale determine stresses and dynamical response at another scale, nonlinear 
effects can emerge as the dominant factors. And furthermore, when the remote 
sensing signatures of linear phenomena saturate, it is only through the signatures 



of the nonlinear effects that we can measure the oceanographic and meteorological 
parameters of interest.  

In order to investigate these phenomena, the researcher’s tool of choice is usu-
ally electromagnetic radiation. The reasons for this are clear – the vector nature of 
the field supplies multiple degrees of freedom for the coupling to the surface, the 
electrical properties of sea water are known and well behaved, electromagnetic 
stress is negligible, the boundary value problem formulated from Maxwell’s equa-
tions is linear in the field variables so simultaneous sensing with multiple electro-
magnetic sensors is feasible, both active and passive sensing technologies are 
widely available, achievable spatial and temporal sampling resolutions are consis-
tent with the phenomena of interest, and so on.  Thus the central task which pre-
sents itself is the design and interpretation of radar remote sensing measurements 
which reveal the nonlinear dynamics of the surface boundary layer over a wide 
range of spatial and temporal scales –  an inverse problem. 

In practice the solution of Maxwell’s equations relies on introducing a number 
of assumptions and approximations, each of which has its own domain of validity. 
Typical examples of such simplifications of the electromagnetic aspects of the 
problem are (1) adopting the Rayleigh hypothesis, (2) replacing the vector wave 
equation with the Helmholtz equation and solving for temporal variability via the 
quasistationary approximation, and (3) modelling the sea water as a  perfectly 
electrically conducting fluid. Clearly the solution of the inverse problem relies on 
the correct formulation of the direct problem. Hence not only must we characterise 
the dynamical system under investigation, we must ensure the fidelity of the map-
ping which embodies the relation between the incident and scattered electromag-
netic field for the corresponding class of boundary conditions. 

This paper reports on part of an integrated research program – RIOBL (Radio-
physical Investigation of the Oceanic Boundary Layer)  –  which is addressing 
some aspects of the  ocean remote sensing problem with the aid of a suite of radar 
and other electromagnetic sensors. In the following section, the way in which 
nonlinearity manifests itself in radar signatures is formalised as a departure from 
linear state evolution. Next, the individual radar sensors contributing to RIOBL 
are briefly described and representative measurement capabilities illustrated with 
results from recent trials. The signatures of some specific nonlinear processes are 
modelled and compared with sensor measurements.  Here we focus attention on 
wave–wave interactions in the gravity wave regime, studied both in the spatial 
domain and in k-space, modulational instability of wave trains arising from 
nonlinearity and (possibly) locally nonuniform wind stress, and the presence of 
impenetrable bodies in the flow.  Finally, some related activities of the RIOBL 
program are reviewed. 

 
Evolution of the Oceanic Boundary Layer Geometry 

Viewed as a dynamical system, the ocean boundary layer geometry can be described 
by a Hamiltonian which generates the equations of motion and hence defines the 
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temporal evolution of the geometry which constitutes the boundary condition for 
the Maxwell equations. As a simple illustration, consider the ‘oceanographic’ 
spectral model of the sea surface, that is, a superposition of weakly interacting 
primary waves, whose directional power density (the directional wave spectrum) 
is governed by an appropriate radiative transport equation,  

 
 , 
 

where  Sin is the source term for wave generation by wind or other causes, Snl is the 
source term for nonlinear wave–wave interactions, and  Sdis  represents dissipation 
processes. Numerous parametric models for N(k) have been proposed, based on a 
wide variety of experimental data. The nonlinearity associated with wave–wave 
interactions is particularly relevant to HF radar where gravity waves are the pri-
mary entities which contribute to the scattering process. For the moment we as-
sume a low sea state so the surface is single valued and take the water body to be 
simply connected, that is, we ignore spray. 

One effect of nonlinear interactions is to modify the instantaneous surface ge-
ometry, as with the Stokes expansion, for example, resulting in sharpened crests 
and flattened troughs. This may be amenable to static (instantaneous) measure-
ment; for instance, accurate measurement of surface slope or the statistical distri-
bution of surface slope provides a partial window onto this aspect of nonlinearity, 
as will be discussed later. Another class of consequences can be seen in the dy-
namics, manifested as temporal coherence structure associated with phase cou-
pling and exchange of energy between normal modes. 

In field theoretic notation, we can write the Hamiltonian of the gravity wave 
field as a sum over orders of wave interaction [1], 
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which becomes  
 

0 0( ) ( ) ( )( ) ( )k k ki t t i kx t i kx t

lin k k k k

k k k

t c e e c e c t
ω ω ω ψ− − − −= = = , 

 
which is the state resulting from independent propagation of the normal modes, as 
expected. The precision with which we can measure the nonlinear dynamics of a 
system initially in state ( )0tΨ  depends on the ability of the sensor scattering 
kernel to discriminate between the state space trajectory 

( )0tΨ ⎯→⎯ 0H
lin ( )tΨ and the trajectory ( )0tΨ ⎯→⎯H

obs ( )tΨ . How this 
difference manifests itself in a given radar signature will depend on the choice of 
signal processing and influence the selection of optimum radar parameters.  

Radar Sensors for Oceanic Boundary Layer Studies 

The frequency bands which have been employed for active coherent radar sensing 
of the sea surface range from MF (~106 Hz) to W-band (~1011 Hz), while lidar and 
other optical sensors operate up to ~1015 Hz. The present operational radar capa-
bility in the RIOBL program fall within the range 3× 106–3× 1010 Hz, as detailed 
later. It is apparent that some established technologies are not yet represented in 
our inventory, notably VHF radar and synthetic aperture radars in any band, but 
there is still considerable scope for multiscale measurements of ocean surface ge-
ometry. 

HF Radar 

At the low end of the frequency scale, RIOBL makes use of four HF radars. Three 
of these are state-of-the-art skywave radars [2] while one, SECAR, is an advanced 
HF surface wave radar [3]. The skywave radars operate from 5 to 30 MHz, the 
surface wave radar from 4 to 16 MHz. The transmit and receive facilities of the 
Australian Jindalee skywave radar are shown in Fig. 1. 
 

       
Fig. 1.  Transmit and receive facilities of the Jindalee skywave radar 

Ψ
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HF skywave radars achieve vast coverage at the expense of subjecting the sig-
nals to the fluctuations of the ionospheric magnetoplasma, so the quality of the 
data is dependent on the prevailing space weather. Nevertheless, a sea surface ge-
ometry description in terms of a spectrum of gravity waves can be extracted from 
the Doppler spectrum of the radar echoes. The contributions arising from nonlin-
ear wave–wave interactions are generally localised in Doppler and hence can be 
separated under favourable propagation conditions.   

 

 
Fig. 2.  Receive array of the SECAR HF surface wave radar 

HF surface wave radars avoid the problems of the ionosphere and hence yield 
superior quality information, though with some unique complications arising from 
the subtleties of surface wave propagation. Nominal sampling parameters of all 
the HF radar sensors are listed in Table 1. 

Microwave Radar 

The microwave facilities supporting RIOBL consist of two van-mounted radars, 
both fully polarimetric [4].  Figure 2 shows the vans deployed during a recent 
measurement campaign. One system operates from 8 to 18 GHz [4], the other 
from 0.1 to 18 GHz. Wide-angle bistatic operation is supported. These radars can 
achieve range resolutions down to 0.15 m, but beamwidth is limited to ~3°  at 10 
GHz, so crossrange resolution is the main limitation in practice. Principal sam-
pling parameters are listed in Table 1.  

 

            
Fig. 3.  DSTO’s dual microwave radars (a) and millimetre wave radar (b) 
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Millimetre Wave Radar 

A fully polarimetric mm-wave radar operating at 35 GHz has been built to provide 
a capability for studying capillary waves, spray, and spume, and surfactant effects. 
At present this radar is not integrated into a mobile facility.  Principal sampling 
parameters are included in Table 1.  

Table 1. Principal sampling parameters of radars involved in the RIOBL program 

 
 (2 radars) 

frequency 
band (GHz) 

0.005 – 
0.030 

0.004 – 
0.016 

(i)     8–18 
(ii)    0.1–18 

35 

maximum 
range 
(km) 

3,000 300 (i)    6 
(ii)   10 

6 

range resolu-
tion 
(m) 

5,000 3,000 (i)   0.15–150 
(ii)  0.15–150 

0.15–150 

beamwidth at 
mid-band 
(deg.) 

0.5–1 2–4 (i)   3 
(ii)  3 

3 

pulse repeti-
tion frequency 
(Hz) 

3–60 2–60 (i) 10–105  
(ii) 10–105 

10–105 

coherent  
integration  (s) 

1–60 1–150 (i)   0.02–10 
(ii)  0.02–10 

0.01–10 

bistatic mode 
 

Y Y (i)   Y 
(ii)  N 

N 

polarimetric 
 

N  N (VV only) (i)   Y 
(ii)  Y 

Y 

Radar Signatures of Nonlinear Processes 

Wave Shape 

The wave shape asymmetries engendered by nonlinearity and the corresponding 
slope distributions are amenable to direct measurement by various radar and lidar 
sounding techniques, depending on the scattering geometry. Polarimetric radar is 
well suited to the measurement of large-scale surface slopes when the characteris-
tic length scale l of large-scale slope variability satisfies l >>λ and when small 
scale roughness is present so as to provide a Bragg scattering surface texture with 
its distinctive scattering matrix [5]. For X-band radar, where λ ~ 0.03 m, the  
extended Bragg scattering kernel domain of validity corresponds to a minimum 

HF skywave HF surface  microwave  mm-wave 
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length scale of ~1 m, which is adequate for resolving surface gravity waves in the 
frequency band below ~0.5 Hz.  

From the present perspective, the key issue is whether polarimetric radar can 
measure the spatial slope distribution with precision sufficient to identify the pres-
ence of nonlinear contributions and to determine their spatial and spectral proper-
ties. We have chosen to address this question by examining the ‘known’ surface 
geometry of ship wakes.    

Adopting the two-scale surface model with extended Bragg scattering from 
capillary waves, we have modelled the polarimetric response of a representative 
wake as computed by two ship wake modelling codes – one linearised [6], one 
fully nonlinear [7]. The nonlinearity arises both at the free surface, where the ki-
nematic and dynamic boundary conditions apply, and in the approximations used 
to model the rigid body condition. Figure 4 shows the elevation distribution in the 
wake of a uniformly translating submerged spheroid as computed by the two 
codes. 

Fig. 4.  Surface displacement for the Kelvin wake produced by a submerged spheroid com-
puted by (a) linear hydrodynamics, and (b) fully nonlinear hydrodynamics 

Figure 5 shows the predicted polarimetric radar response from the wake com-
puted according to linearised hydrodynamics [8]; it is evident that the crosspolar 
response in the linear polarisation basis provides far greater sensitivity and ability 
to map the wake slope pattern than the copolar responses. The conditions under 
which the crosspolar response or an alternative polarimetric analysis can achieve 
the requisite accuracy are the subject of on-going research. 
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Fig. 5.  Simulated wake power scattering matrix elements, (XY ↔ HV,VH) 

Wave Harmonics and Intermodulation Products 

Another signature related to wave shape is the direct measurement of phase-
locked harmonics and intermodulation products arising from weak nonlinear in-
teractions of primary modes as described by H3, H4, etc., in accordance with the 
predictions of Stokes [9], Zakharov [10], Hasselmann [11] and others. 
Quasilocality of the interaction in k-space supports a direct interpretation of fea-
tures in the HF radar Doppler spectrum in terms of a weighted integral function of 
the actual Hamiltonian H3. This is illustrated in Fig. 6 which compares (1) a sea 
clutter Doppler spectrum recorded with a skywave radar, with (2) a theoretical 
spectrum calculated for the prevailing sea conditions as determined by an in situ 
wavebuoy but assuming linear wave theory, and (3) a theoretical spectrum allow-
ing for nonlinear wave triad interactions. The contributions of nonlinearity are ob-
vious in this example. By collecting data at multiple frequencies, and for bistatic 
geometries, it is possible to derive additional information about H3. The extent to 
which higher order nonlinearities can be observed in HF Doppler spectra is the 
subject of ongoing research, especially as the action and energy fluxes associated 
with on-shell resonances may obscure the geometrical signature.  
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Wave Instabilities 

Weak interaction theory appears to provide a satisfactory description of some 
classes of nonlinear behaviour but the theory fails to predict local nonlinearities 
such as the Benjamin–Feir instability. This modulational sideband instability oc-
curs when kh > 1.36 and is thus expected to be present in developing seas where a 
strong narrow-band wave spectrum is observed.  

Data was acquired under conditions expected to favour the Benjamin–Feir in-
stability during an experiment in the Timor Sea with the SECAR HF surface wave 
radar [3]. Figure 7 presents a continuous-wavelet transform of the clutter data and 
compares it with the predictions of a simplified clutter model based on linear wave 
evolution. The measurements give the impression of a low frequency modulation 
of the linear spectrum with a period in the vicinity of 100 s. Theoretical analysis is 
underway to assess the likelihood that this effect is the signature of recurrence as 
predicted by Lake et al. [12].  

 

 
Fig. 6.  Simulated HF Doppler spectra with and without hydrodynamic nonlinearity com-
pared with a measured spectrum obtained with skywave radar 
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Fig. 7.  Continuous wavelet transform of a simple narrow-band clutter model (top) with that 
of experimental HF surface wave clutter data 

Another example of spatiotemporal modulation of the gravity wave field is pre-
sented in Fig. 8, obtained with an HF surface wave radar. Here the ratio of scatter-
ing contributions from specific linear wave components to those from nonlinear 
wave components is plotted against range.  Superimposed on the figure is the re-
ceived power, showing that the signal-to-noise ratio is high out to range cell 90 or 
so. The distinctive feature of the nonlinear-to-linear ratio (NLR) is the strong peri-
odic modulation on a length scale of  ~10 range cells.  In this measurement the 
range cell depth was  ~1.5 km,  so the ‘wavelength’ of the modulation was  ~ 15 
km. This is perhaps more consistent with coupling to atmospheric gravity waves, 
but purely hydrodynamic explanations may exist. Again, detailed analysis is un-
derway to resolve the issue. 

 
Fig. 8.  Range variation of a parameter which measures one particular  nonlinear-to-linear 
wave ratio, showing periodic modulation, not yet explained 
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Breaking Waves 

Breaking waves are an extreme case of nonlinear behaviour and hitherto have 
been studied mainly in terms of their configuration space geometry. Interest in 
their radar signatures has, until recently, concentrated on time domain signatures 
and their statistical characterisation – the well-known ‘sea spike’ clutter phenome-
non. Physics-based modelling of the radar signatures of breaking waves has 
tended to focus on (1) specular point trajectories, and (2) integral formulations 
such as moment methods applied to simple one-dimensional evolving wave pro-
files. 

We have studied wave breaking via the Cloude–Pottier decomposition of the 
coherency matrix and obtained good agreement with theory; details can be found 
in [13] and [14].  

Conclusions  

Nonlinear processes are active over a wide range of spatial scales in the oceanic 
boundary layer. While complicating the behaviour and mathematical description 
of the boundary layer, these processes can provide means for determining impor-
tant geophysical parameters which are poorly resolved by sensor response predi-
cated on linearised physics. 

In this paper we have illustrated some representative studies from our multisensor 
research program aimed at elucidating the mechanisms of hydrodynamic nonlin-
earity in the oceanic boundary layer. HF radars have been used to measure nonlin-
ear wave interactions in k-space, while polarimetric microwave radar techniques 
have been developed and applied to the equivalent problem of ocean wave shape 
measurement in configuration space, after validation on deterministic wake pat-
terns. Electromagnetic scattering from breaking waves has been modelled and 
compared with experiment through the agency of the Cloude–Pottier decomposi-
tion of the coherency matrix.  Measurements of foam and spray generation have 
been conducted, though these are not reported here. Other electromagnetic sensing 
techniques such as sunglint inversion, previously based on linear wave theory, are 
being extended to address the nonlinear reality.  

Forthcoming experiments will involve multiple sensor measurements of a 
common sea patch to crossvalidate techniques and guide the development of 
matched signal processing. 
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Abstract  

A simple design for fine tuning of the monopole which involves a tuning strip placed as a 
part of the monopole at the feed point of the antenna is presented. Utilizing the strip, the 
maximum return loss was increased in the order of 15 dB and the fine tuning range of the 
centre frequency  is about ± 150 MHz  for the return loss > 30 dB. 

Introduction 

Recently, much effort to overcome the technical difficulties in the ultra-wideband 
system has been expended by researchers and industry that delivered the regula-
tion of spectrum mask and mitigated the interferences with other communication 
systems. There are general factors determining the antenna performance of the 
wideband system. Those are input matching representing VSWR and antenna effi-
ciency, radiation pattern, frequency-independent main lobe, gain flatness and so 
on [1–6]. Conventional designs of printed monopoles on a dielectric substrate for 
improving the operating bandwidth and reducing the length of monopole are usu-
ally achieved by suitably adjusting the flare angle of the triangular monopole  
[1–3]. In this letter, I present a simple design for ultimate impedance matching of 
the monopole which involves a tuning strip placed as a part of the monopole at the 
feed point of the antenna (Fig. 1). By adjusting the length and width of the strip, 
better impedance matching and fine tuning of the centre frequency of the antenna 
can easily be realized without significantly reducing antenna bandwidth.  The pro-
posed structure has been implemented utilizing several strip lengths and widths 
and it was demonstrated that the return loss of microstrip-fed printed triangular 
monopole antennas can be substantially increased without adversely affecting 
their bandwidth.  Details of the experimental results are presented and discussed.  



Antenna Design and Experimental Results  

Figure 1 shows the geometry of the microstrip-fed printed monopole antenna and 
the feeding line. Triangular part of the monopole has a length  of 0.136λ0 and a 
width d of 0.073λ0. As a result, the flare angle is 30°  and for the antenna without 
the strip the centre frequency is 1.82 GHz.  The feeding line is a 50 Ω microstrip 
line with w = 0.8 mm and g = 0.12λ0 where λ0 =164.8 mm is the free-space wave-
length for the centre frequency 1.82 GHz (see Fig. 1). The structure is realized on 
an aluminates plate substrate (εr = 9.8, 120 mm ×  100 mm, h = 0.76 mm). 

 

a

b

d

w

h

g

r

substrate

ground  
Fig. 1. Geometry of microstrip-fed printed triangular monopole with the tuning strip 

 
The microstrip-fed triangular antennas with various strip length (a) and width 

(b) are built and tested. Measured values of bandwidth, centre frequency and 
maximum return loss values of the antenna structures investigated are shown in 
Fig. 2 as a function of the strip length (a), for the strip width (b) parameter values 
of 2.0, 1.2 and 0.7 mm. The values of other parameters of the antenna geometry 
related to the figures are εr = 9.8, w = 0.8 mm, h = 0.76 mm, g = 20 mm,  = 22.5 
mm, d = 12 mm. The common starting point of the curves in Fig. 2 corresponds to 
the monopole without the strip. 

As seen in Fig. 2a, the return loss at the centre frequency can be increased from 
25 dB to 42 dB by adjusting the values of the strip parameters a, b. While increas-
ing the return loss, the bandwidth (Δ f ) and centre frequency (f0) also undergo 
some changes.  It can be deduced from the results in Fig. 2b, that only the narrow 

monopole without the strip, which is defined as the frequency which yields maxi-
mum return loss. The bandwidth values depicted in Fig. 2c are all determined 
from the return loss value of 30 dB, for comparison purposes. The results are 

strip (b =  0.7 mm) case provides fine tuning around the centre frequency of the 

r
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summarized in Table 1, to enable a comparison between the antennas with differ-
ent strip dimensions. 
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Fig. 2. (a) Measured return loss characteristics of the monopole versus the strip  length for 
different strip  widths, (b) measured centre frequency characteristics of the monopole ver-
sus the strip  length for different strip widths, (c) measured bandwidth characteristics of the 
monopole versus the strip length for different strip  widths 

 
a     (mm) 4.0 2.0 3.0 – 

b     (mm) 0.7 1.2 2.0 – 

Lr   (dB) 42 42 42 25 

0 1.83 1.80 1.81 1.83 

Δ f   (MHz) 150 130 140 – 

Δ a  (mm) 4.2 3.7 1.8 – 

Table 1. Comparison between monopoles with different strip dimensions for the maximum 
return loss 

 
In this table a and f0 correspond to the values which yield maximum return loss 

value (Lr) for the corresponding strip width b. The bandwidth Δ f around f0 is 
measured for 30 dB return loss, in all cases. Δ a values given in the table  which 
correspond to total  permissible variation of the strip length a, under the condition 
that the return loss exceeds 30 dB provide a measure of the tuning sensitivity of 
the proposed design.  The last column in Table 1 shows the f0 and Lr values of the 
conventional antenna without the strip.  It is clearly seen from Table 1 that the nar-

antenna. Note also, since Δ a is largest for the narrow strip, it will be easier to fine 
tune the structure to achieve stated bandwidth return loss performance. 

Figure 3 shows the curves of the measured return loss versus frequency for the 
antennas with the three sets of strip dimensions shown in Table 1.  For comparison 

f    (GHz) 

row strip (b = 0.7 mm) provides match without altering the centre frequency of the 
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purposes, the measured return loss of the triangular monopole without the strip is 
also shown on the same figure. In all cases the utilization of the strip provides ex-
cellent matching with residual return losses of about 40 dB, and relatively band-
width of about 20% for Lr > 10 dB.  On the other hand, it can also be seen from 
this figure that for the conventional antenna without the strip, the relative band-
width determined for Lr > 10 dB is 24%. This result is in good agreement with that 
reported in [1] for similar conventional antenna structure when the flare angle 
30° . It can, therefore, be concluded that the utilization of a tuning strip as pro-
posed in this letter, will significantly improve the matching of triangular mono-
poles without appreciably affecting their bandwidth. 
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Fig. 3. Measured return loss of the monopole versus frequency for different optimum strip 
width and length 

Conclusions  

A novel design which is simple to implement, and which provides ultimate match 
for the microstrip-fed triangular monopole antenna has been described and dis-
cussed. It has been experimentally shown that for different strip widths and 
lengths, the return loss which was 25 dB without the strip can be increased to 
about 40 dB with the proposed structure.  Moreover, the proposed design does not 
appreciably affect the attainable bandwidths, and easily allows for finely adjust-
ment of the bandwidth, centre frequency and the return loss of such antennas re-
quired different applications in mobile and telecom communications. 
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Abstract  

A chiral material is modeled by a circuit element approach in this paper. The definition of a 
suitable circuit element, which we call chiralic circuit element, is given by this approach. 
We defined chiralic circuits, which use chiralic circuit element. A chiralic circuit is a device 
designed by using chiralic materials.  

Introduction 

The chiralic materials have some interesting properties: propagation velocity of 
waves in chiral media is an example. A chiral media split a wave into two coun-
terparts both of them propagates with different velocities. Does this character may 
be useful to design some specific circuits, devices, or systems? Most of biological 
systems, phantom materials are chiral media, basically. So, the interaction mecha-
nism of electromagnetic waves and signals with living bodies are related to the 
characters of chiral materials. This interaction gives an idea to consider some suit-
able circuit modelization of biological materials. Considering a chiral medium as a 
circuit-like element does this modelization. We make specific arrangements to do 
this and derive a suitable definition usable for such circuit-like elements. We call 
chiralic circuit element.  

We consider the simple case. The constitutive relations are follower for an iso-
tropic, nondispersive chiral medium where ε, μ, and χ are permittivity, perme-
ability, and chirality, respectively [1]: 

 

t∂
∂+= EHB ,    (1a) 

 

t∂
∂−= HED ,    (1b) 

μ

ε

χ

χ



The use of Laplace’s transform [2] is convenient as a result of some certain 
analytical restrictions: We consider B is summable over all finite intervals and 
there is a constant c for which  

 

∞<
∞ −

0

|t|c dte||B ,    (2a) 

 
then  
 

Δ
=B L dte}p;{ pt

0

−∞
= BB ,     0p Re > ,   (2b) 

 
is exist when  p = σ + iτ is such that σ ≥ c. The Laplace’s transforms of (1a) and 
(1b) are: 

 
0p EEHB −+=  ,    (3a) 

 
0p HHED +−=  ,    (3b) 

 
where E0 and H0 are initial values.  

Let us consider a regular surface S. E and H have continuous derivatives on S. 
The integration of (3a) and (3b) on S gives  

 
e
0

ehb p φ−φ+φ=φ ,   (4a) 
 

h
0

hed φ+φ−φ=φ ,   (4b) 
 

where we use definitions below: 
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Fig. 1. A suitable schematic interpretation of chiralic circuit element 

Chiralic Circuit Element  

The specific functions included in (3a) and (3b) have some characteristics suitable 

(3b) as 
 

010
01

p

p −
+Ψ

−ε
=Φ ,   (6) 

 
to illustrate these concepts, where 0Ψ  is the initial value matrix; i.e., t=0. Here we 
put definitions below:  

Tdb ][ φφ=Φ
Δ

,     (7a) 
 

The ][ φφ=Ψ
Δ

,     (7b) 
 

Th
0

e
00 ][=

Δ
.    (7c) 

 
Now, let us think of the chiral material using the approaches in circuit and sys-

tem techniques [3]. The functions Φ  and Ψ  in (6) are like the output and input 
concepts in circuit and system theory, respectively. The role of 0Ψ  is the same as 
the initial value of input. We can consider a circuit element corresponding to (6) if 
we put following concepts: the [2 1]Φ ×  and [2 1]Ψ ×  are suitable to consider as the in-
put-like effect and the inner effect, respectively (Fig. 1). The uses of these two ef-
fect functions give the equations similar to circuit-system equations. We call these 
equations chiralic circuit equations. 

 

y

y

y
f

f

to determine new concepts in circuit and system theories. Let us rearrange (3a) and 

yμχ

χ
χ

ffΨ
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A chiralic circuit element is defined in Laplace transform domain with parame-
ter p by (6). The chiralic circuit element is a circuit-like device (Fig. 1). 

Chiralic Circuits 

Let us consider the Laplace’s transformation of Maxwell’s equations from (2b). 
We write: 

 
m

0prot JBBE −=−+  ,   (8a) 
  

e
0prot JDDH =+− ,     (8b) 

 
ediv ρ=D  ,     (8c) 

 
mdiv ρ=B  .    (8d) 

 
Let us consider a closed volume V. Let S be a regular surface in V and C be the 

boundary of S. We accept E and H have partial derivatives with respect to the 
space coordinates on S and C up to the first order. We accept D and B have first 
order partial derivatives with respect to the space coordinates in V. The surface in-
tegrals of (8a) and (8b) and volume integrals of (8c) and (8d) give follower, where 
dot (.) over φ illustrates the first-order derivative with respect to time, respec-
tively: 

 
me

0
h
0

e
0

e2he IpppV −φ+φ+φ=φ+φ+ & ,  (9a) 
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e
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h
0
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0
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me
0

eh qp +φ=φ+φ  .             (9d) 
 

Here we put following definitions, where T illustrates the matrix transposition:  
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A specific partitioning of matrix (11) gives following two matrix equations, 

which are suitable to consider as equations of a convenient circuit: 
 

I
10
01

 
p

p

p

p
pV 00

−
+′+=Ψ

ε
+ UU  , (12a) 

 

Q 
01
10

0 U+
−

=Ψ
−

 .    (12b) 

 
 

U [2x1] is unit matrix (2× 2), V[2×1] is the output-like effect, I[2x1] is the source de-
fined by total amount of current, Q[2 1] is the source defined by total amount of 
charge distribution: i.e.,  

 

[ ]Tem III
 

 
Δ
=  ,   (13a) 

 

[ ] Tme qqQ
 

 
Δ
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 dV. 

Using three 4 ×1  vectors puts the  (9a–9d) to following matrix form by:  

.

χ μμ
χ
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χ Ψ

×
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Fig. 2. A suitable schematic interpretation of chiralic circuit involving a chiralic circuit ele-
ment 

 
The V and Ψ  like output voltage and output current, respectively, in circuit 

theory. Similarly, the 0Ψ  and 0Ψ&  like initial conditions and I and Q like the 
source. We call 0[2 1]Ψ ×  and 0[2 1]Ψ ×

&  initial effects. Equations (12a) and (12b) may 
be considered as a circuit-like equation and a circuit-like element definition, re-
spectively. So, (12a) and (12b) may be solved by circuit techniques. We call 
chiralic circuit equations (12a) and (12b). These equations are suitable to use de-
signing circuits including chiralic materials. We call chiralic circuits such devices. 
The chiralic circuit is a device designed by using a chiralic circuit element (Fig. 
2). The summary of the analogy explained above between the concept of chiralic 
circuits and the concept of circuits and systems theory is given in Table 1. 

Examples 

We take (12a) and (12b) and investigate the influences of the variations of various 
parameters on the chiralic circuit variables (see Table 1). The chirality was 
changed among 0.001, 0.1, 10, and 100 and conclusions in below are considered: 
the first element of output-like effect; i.e., V1 grows 0.01 V up for χ=1. The sec-
ond element of output-like effect; i.e., V2 grows 100 A up. V1 grows from 100 V 
to 200 V up. V2 grows from 0.01 A to 10 A up. If the first element of inner effect; 
i.e., ψ1 grows then the output-like effect grows. If ψ1 drops down then the output-
like effect decreases. If 10–3

The variation of chirality between 10–3 and 10 does not make change in output-
like effect. The variations of output-like effect versus inner effect for smaller val-
ues of chirality less then 4π  ×  10–7 give the result below: the first and second ele-
ments of output-like effects grow 200 V and 100 A up, respectively. If χ de-
creases to 10–20 from 10–7, then the first element of inner effect decreases a value 
less then 1. If χ < 10–30  then the inner effect is almost zero. 

y

y
v

v

Chiralic circuit

Ordinary

circuit

< χ < 10 then the output-like effect is almost the same. 
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 Table 1. Analogy between the concept of chiralic circuit and the concept of systems 
 

chiralic circuit variables systems variables 
 

T
V   V U  e m=  output-like effect output (voltage) 

T
I    I I  m e= source effect input (current) 

T
Q    q q  e m=  source effect source 

T[ ]b dφ φ
Δ

Φ =  input-like effect 
output 

T[ ]e hφ φ
Δ

Ψ =  inner effect 
output 

T
0 0 0[ ]e hΨ φ φ

Δ
=  initial effect 

initial condition 

T
0 0 0[ ]e hΨ φ φ

Δ
= & &&  initial effect 

initial condition 

Equation (6): chiralic circuit element description equation 
Equation (12a): circuit-like equation either loop and node equa-

tions or tableau equation or state 
equation [3, p. 728] 

Equation (12b): circuit-like element 
description 

description equation  

Conclusions and Discussions 

The chiralic circuit element is defined. The essentials of a circuit-like device are 
given. The design of chiralic circuits is considered and chiralic circuit equations 
are given. Some properties of chiralic circuits are discussed. The method is very 
useful for calculations in very complicated systems working at all frequencies. 

References 

[1]  J.A. Kong, Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2000 
[2]  I.N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972 
[3]  L.D. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits, Series in Elec-

trical Engineering, McGraw-Hill, New York, 1987 

A Chiralic Circuit Element and Its Use  in a Chiralic Circuit      209 



Part II 
 
 
 
 
 
 
 
 
 
 
 
 

Circuit Theory 



Dynamical Systems Analysis Using Differential 

Geometry 

J.-M. Ginoux and B. Rossetto 

Laboratoire P.R.O.T.E.E., équipe EBMA/ISO 
Université du Sud Toulon-Var, B.P. 20132, 83957, La Garde, 
ginoux@univ-tln.fr, rossetto@univ-tln.fr 

Abstract 

This paper aims to analyze trajectories behavior and attractor structure of chaotic dynamical 
systems with the Differential Geometry and Mechanics formalism. Applied to slow-fast 
autonomous dynamical systems (S-FADS), this approach provides: on the one hand a 
kinematics interpretation of the trajectories motion, and on the other hand, a direct determi-
nation of the slow manifold equation. The attractivity of this manifold established with a 
new criterion makes it possible to ensure attractors stability. Then, a qualitative description 
of the geometrical structure of the attractor is presented. It consists in considering it as the 
deployment in the space phase of a special submanifold that is called singular manifold. 
The attractor can be obtained by integration of initial conditions taken on this singular 
manifold. Applications of this method are made for the following models: cubic-Chua, and 
Volterra–Gause.  

Introduction 

In the Mechanics formalism the solution of a dynamical system is considered as 
the co-ordinates of a moving point M at the instant t. Then, three kinematics vari-
ables are attached to this point which represents the “trajectory curve”:  

 
( )X t : parametric representation of chaotic orbit 

( )V t : instantaneous velocity vector 

( )t : instantaneous acceleration vector. 
 

The Differential Geometry allows to use the Frénet frame [2] which is moving 
with the “trajectory curve” and directed towards its motion, consists in, a unit  
tangent vector to the “trajectory curve”, a unit normal vector, directed towards the 
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interior of the concavity of the curve and a unit binormal vector to the trajectory 
curve so that the trihedron ( ), ,τ β ν  is direct (cf. Fig. 1).  

 
 

 

 
Fig. 1. Frénet frame and osculating plane 

In this moving frame the instantaneous acceleration vector may be decomposed 
in a tangential and normal component both depending on instantaneous velocity 
and acceleration vectors directions 

 

.V
V

V

V

τ

ν

γγ

γ
γ

=

∧
=

, 
(1) 

 
The osculating plane [7] to the “trajectory curve” presented in Fig. 1. is the 

plane passing through a fixed point I and spanned by the instantaneous velocity 
and acceleration vectors. Its equation may be provided by the coplanarity condi-
tion (2). 

 
( ) 2 M  (P)   μ, /  IM = μV + ∀ ∈ ⇔ ∃ ∈ . 

  
This coplanarity condition may be written:  
 
 .( ) 0IM V γ∧ = .  (2) 

 
In this formalism, trajectory presents two “metric properties”: 
 

τ
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β

( )V t

( )tγ
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– curvature which expresses the rate of change of the tangent when moving 
along the “trajectory curve”.ℜ  represents the radius of curvature. 

– 

words, the rate of change of the osculating plane. ℑ
of torsion 

 

  
3 2

2

1

1 .( )

V

V V

V

V

ν
γ γ

γ γ
γ

∧
= =

ℜ

∧= −
ℑ ∧

,
 (3) 

 
Then, the use of the instantaneous acceleration vector makes it possible to de-

limit the slow and fast domains of the phase space. 

Definition 

The domain of the phase space in which the tangential component of the instanta-
neous acceleration vector is negative, i.e., the domain in which the system is  
decelerating is called slow domain. The domain of the phase space in which the 
tangential component of the instantaneous acceleration vector is positive, i.e., the 
domain in which the system is accelerating is called fast domain. 

New Method of Determination of the Slow Manifold 
Equation 

Applying both formalisms, recalled in the previous section, to slow-fast autono-
mous dynamical systems (S-FADS) or to autonomous dynamical systems which 
can be considered as slow-fast (CAS-FADS), i.e., systems whose functional Jaco-
bian matrix has a “fast eigenvalue” which is a real, negative and dominant on a 
large domain of the phase space [6], a new method of determination of the slow 
manifold equation is proposed. 

Proposition 1 

The equation of the osculating plane (P) passing through a fixed point I of a  
dynamical system (S-FADS or CAS-SFADS) and spanned by the instantaneous, 
velocity vector V  and acceleration vector , is the slow manifold equation asso-
ciated to this system. 
 

torsion which measures, roughly speaking, the magnitude and sense of 
deviation of the “trajectory curve” from the osculating plane, or, in other 

. 

 represents the radius 
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In order to specify the attractivity of this manifold a new criterion based on the 
envelope theory is also proposed [4]. 

Proposition 2 

The attractivity of the slow manifold is given by the sign of the torsion which 
constitutes the envelope of the slow manifold defined by the osculating plane. 
 

It can be shown [4] that the total differential with respect to time of the osculat-
ing plane equation defined by the coplanarity condition (2) corresponds to the tor-
sion. Thus, the location of the points where the torsion vanishes corresponds to the 
location of the points where the osculating plane is stationary. 

 
Then, a qualitative description of the attractor structure is presented with the in-

troduction of a submanifold called singular manifold. 

Proposition 3 

The singular manifold is defined like the location of the points belonging to the 
slow manifold and for which the tangential component of the instantaneous accel-
eration vector vanishes. This leads to the following equations: 

 
 0,

0.τ

φ
γ

=
=

 (4) 

 
This one-dimensional manifold is a submanifold of the slow manifold. 

Let us consider the location of the points obtained by integration in a given 
time of initial conditions taken on this manifold. Each point being the iterated to 
the antecedent point. They constitute a submanifold which also belongs to the at-
tractor. The whole of these manifolds corresponds to different points of integration 
making it possible to reconstitute the attractor by redeployment of the singular 
manifold. 

Applications and Numerical Simulations 

Applications of this new method are made for the following models: cubic-
Chua and Volterra–Gause. 
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Cubic-Chua’s circuit 

Let us first recall the cubic Chua’s circuit [1] which is a (S-FADS). Parameters 
used are 

 
0.05,  2ε μ= = , 
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==
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In Fig. 2 is plotted the slow manifold equation associated to the cubic-Chua’s  
circuit. 
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Fig. 2. Slow manifold equation associated to the cubic-Chua’s circuit defined by the  
osculating plane method 

In Fig. 3 is plotted the location of the point where the torsion associated to the  
cubic-Chua’s circuit vanishes. 
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Fig. 3. Location of the point where the torsion associated to the cubic-Chua’s circuit  
vanishes, i.e., where the osculating plane is stationary 

Volterra–Gause model 

In order to illustrate the concept of deployment let us apply it on a three-
dimensional predator–prey model elaborated by Ginoux et al. [3]. This model  
consisted of a prey, a predator and top-predator has been named Volterra–Gause 
because it combines the original model of Volterra (1926) incorporating a logisitic 
limitation of Verhulst (1838) type on the growth of the prey and a limitation of 
Gause (1935) type on the intensity of the predation of the predator on the prey and 
of  top-predator on the predator 
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Parameters used are 

 
1 20.866,  1.428,  0.577,  0.376ξ ε δ δ= = = = . 

 
This model exhibits a chaotic attractor in the snail shell shape presented in Fig. 4. 
The use of the algorithm developed by Wolf et al. [8] made it possible to compute 
what can be regarded as its Lyapunov exponents: (+0.035, 0.000, −0.628). 
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Then, the Kaplan–Yorke [5] conjecture provided the following Lyapunov di-
mension: 2.06. So, the fractal dimension of this chaotic attractor is close to that of 
a surface and it is thus possible to consider a deployment of a singular manifold. 
Taking some points on the slow manifold for which the tangential component of 
the instantaneous acceleration vector vanishes, and joining these points, a “line” or 
more generally, a “curve” is formed. Then, using numerical integration, this 
“curve” (respectively. “line”) is deployed through the phase space and its deploy-
ment reconstitutes to the attractor shape. The result is plotted in Fig. 4. 
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Fig. 4.  Deployment of the singular manifolds ( )1 2,S S  joining the singular points J and K 
of the system (6) 

Conclusions and Discussions 

The use of Mechanics and Differential Geometry formalism provided on one hand, 
a kinematics interpretation of the nature of the motion of chaotic trajectories, and 
on the other hand, a direct determination of the slow manifold equation associated 
to (S-FADS) or to (CAS-FADS). It is obvious that on the slow manifold, provided 
by the osculating plane method, the “trajectory curve” is decelerating.  

Moreover, the introduction of the singular manifold which can reconstitute the 
attractor by successive integrations of points taken on this submanifold, i.e., by re-
deployment, provides a qualitative description of its structure. 

The Mechanics formalism and more precisely the radius of curvature and the 
torsion could be useful to go further in the geometrical description and thus in the 
understanding of the attractor structure.  
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Abstract  

This paper presents results of the research of the complex interactions’ model, which is 
based on the r-neighbourhood 2D cellular automaton. The automaton rule was formulated 
due to the social impact theory, proposed by Latane and Nowak. We tested how the size of 
neighbourhood influenced the behaviour of the automaton and for which minimum r value, 
the process of system interactions is reflected in the proper way. 

The r-Neighbourhood  2D Cellular Automaton 

The 2D cellular automata (CA) is the net of cells. The interactions are described 
on elements, which belong to the r-neighbourhood, that is these elements posi-
tioned in the distance, which not exceed r from the ijth cell (Fig. 1). 

 
 

ij th cell 

Moor 
neighbourhood

interconnections

 

contour. 

We consider two types of  neighbourhoods: Von Neumann – it includes cells 
positioned in south, north, west and east direction from the ij th cell, Moore – it 
includes cells positioned in south, north, west, east, south-east, south-west, north-
east and north-west direction from the ij th cell. 

tFig. 1. 9-Element Moore neighbourhood of the ij th cell for r=1, marked by the do ted line 
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Elementary cells can take only two values  σi,j (t)∈{–1, 1}  and their next state 
depends on the states of neighbouring cells, according to the rule. The rule,  which 
reflects the complex interactions among elements of a whole system due to the so-
cial impact theory (formulated by Latane [1]) was proposed by Nowak [2]. If we 
assume that in the r-neighbourhood the impact of each kl th cell is directly propor-
tional to the so called strength parameter fkl and inversely proportional to the 
square of distance dijkl  from the ij th cell, the rule function is [3] 

 ( ) )t(f)t(
d
fsign1t ijij

ijkl
rj,...,rjl
ri,...,rik

kl2
ijkl

kl
ij σβ+σ=+σ

≠
+−=
+−=

,  (1) 

where the distance is 

 ( )ljkidijkl −−= ,max . (2) 

The value of the distance variable is between 1 and the neighbourhood radius r.  

Impact of the Radius of the Neighbourhood 
on the Automata Behaviour 

We assumed the same value of strength parameters f and β in order to simplify the 
model of interactions and test only the impact of the increase of the r value on the 
final state of the automaton. Thus, nearest neighbours take the main role in the 
creation of the next state. But their impact can be minimised by more distant cells 
if only their number is big enough. From this point of view the r radius should be 
bigger to reflect the impact of a large set of cells. On the other hand, in real sys-
tems, individuals change their preferences by the contact with rather small group 
of other elements, which are placed not far from the individual in the system 
space. Because of that radius r can be decreased. 

For the r  1, we made a series of experiments to observe how the different r 
values influence the final state of the automaton. In each case, the  cells taking the 
minority state do not touch borders of the net, in order not to disturb the process of 
the final state creation by the boundary conditions.  

The program for the CA simulation was written in Turbo Pascal and run on 
AMD Duron personal computer. 

The input sets 

We tested six categories of input sets for which cells in “1” state created character-
istics patterns: IN1 – a single convex figure, IN2 – a few convex figures of differ-
ent size, IN3 – a concave figure, IN4 – the figure containing irregular opposite 
state regions inside, IN5 – separate points and groups of maximum 4 points, IN6 – 
the crossing segments. 

≥

 

( )
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The stabilisation of the automaton for various r value  

The radius of the neighbourhood was changed from 1 to the maximum dimension 
of the biggest input figure (21). We tested how many steps K were necessary to 
receive the final state and what kind of stabilisation would be observed (majority 
states only or various states). This same experiment was made for both Von Neu-
mann and Moore types of neighbourhood. The results are shown in Figs. 2 and 3. 
The rule function (1) is the weighted majority function. In the case of r = 1 it is 
not possible that the separate minority states survive. The same occurs for other 
value of r. Bigger islands (more then four cells) of minority states remain stable 
for Von Neumann type of neighbourhood for every r.  
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Fig. 2. The relation between the radius r and the step K for Von Neumann type neighbour-
hood 

 
In Fig. 2 we can see that for majority of inputs, the number of steps K is the 

same for different r. The input patterns were not change. Only for IN5 and IN6 we 
observed removing the input pattern, faster for bigger r in the second case.  

For the Moore type of neighbourhood the graphs have the  peak points (see Fig. 3). 
Starting with the r value of the peak point the automaton stabilises in one majority 
state only. Below this value some of the minority states survive. 

For the convex input figures, the r in the peak is bigger then for concave ones. 
After the peak, K does not change together with increasing r in some intervals. 

r-Neighbourhood Impact on 2D Cellular Automata Model of Complex Interactions 
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Fig. 3. The relation between the radius r and the step K for Moore type of neighbourhood 

Conclusions 

Together with the extension of the Moore type neighbourhood above some level 
we lose the information about the local behaviour of the CA cells. As the result, 
only the global process of minority states’ death can be observed. In the case of 
the Von Neumann type neighbourhood, the behaviour of the automaton is the 
same for various radiuses. Thus, the increase of r does not result in more precise 
model of the system. Moreover, more time for the automaton processing is de-
manded. 
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Abstract 

This paper presents the stability conditions of cellular neural network (CNN) scheme em-
ploying a new nonlinear activation function, called trapezoidal activation function (TAF). 
The new CNN structure can classify linearly nonseparable data points and realize Boolean 
operations (including XOR) by using only a single-layer CNN. In order to simplify the sta-
bility analysis, a feedback matrix W is defined as a function of the feedback template A and 
2D equations are converted to 1D equations. The stability conditions of CNN with TAF are 
investigated and a sufficient condition for the existence of a unique equilibrium and global 
asymptotic stability is derived.  

Introduction 

Cellular neural networks (CNNs) are widely used in image processing and pattern 
recognition fields [1–5]. CNN is a large-scale nonlinear processing array consist-
ing of, unlike most other neural networks, only locally interconnected cells; this 
facilitates its analysis, design and implementation with VLSI circuits. In image 
processing applications, each cell in CNN represents a pixel in the image. Stability 
issues of CNN are investigated in many papers. Some of these are: (1) that CNN is 
stable if the templates are symmetrical is proven in [4,5], (2) the focus is on the 
dynamic behavior of two-cell CNN in [6], (3) stability conditions of generalized 
cellular neural networks are given in [7], (4) in [4–7], CNN stability is analyzed 
for the standard activation function as in [4,5], and (5) global exponential stability 
conditions of CNN via a new Lyapunov function are stated in [8]. It is well-known  
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that the standard uncoupled CNN single-layer structures, extremely useful for re-
alizing Boolean functions, are not capable of classifying linearly nonseparable 
data. Uncoupled CNN can only classify linearly separable data, that is can only 
separate the input space with hyper-planes [9]. Recently, a single perceptron-like 
cell with: (1) double threshold, (2) implemented using only five MOS transistors, 
(3) capable of classifying data, which are not linearly separable has been reported 
in [10]. 

In this paper, the definition of standard CNN with PWL (CNNwPWL) is briefly 
reviewed, then the proposed trapezoidal activation function (TAF) and CNN with 
TAF (CNNwTAF), which is a generalization of CNN with double threshold, are 
introduced. Then, stability analysis of CNNwTAF is achieved: first by converting 
the 2-D template description of the CNNwTAF into a system of vector ordinary 
differential equations (VODE), and finally by applying the Lyapunov stability cri-
terion to extract a sufficient condition for global asymptotic stability.  

CNN with Sigmoid PWL Activation Function 

CNN as defined by Chua and Yang is described by a set of differential equations: 
 

 IUBYAX
dt

dX +++−= **   (1) 

 
with the operation * in conventional form meaning 

 
 
 

2 1 2 1 2 1 2 1

1, 1 1, 1
1 1 1 1
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(2) 

 where m  and n  represent the number of rows and columns of the cellular neural 
network and ijijij yxu ,,  denote the input state and output of the cell ),( jiC , re-
spectively. The templates A,B  composed of the weights Aij and Bij denote the 
feedback and feed-forward templates, respectively. The term I,  called the offset 
(bias), is a constant for each cell. For a CNN with r -neighborhood, it is clear that 
A  and B  have size (2 1) (2 1)r r+ × + . 

In standard CNN literature, the relation between the output and the state of the 
cell is defined by a sigmoid activation function [4,5], its standard Piecewise-
Linear (PWL) version, which is defined by (3), is illustrated in Fig. 1a. 
 −−+= 1)(1)(

2
1)( txtxty

ijijij
.  (3) 
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 Fig. 1. Activation functions; (a) Standard PWL activation function, (b) Trapezoidal activa-
tion function (TAF) 

CNN with Trapezoidal Activation Function (TAF) 

Recently an activation function with double threshold has been introduced and 
implemented with five MOS transistors in [10]; the finite slope version of this  
activation function, which will be used in this paper, is shown in Fig. 1b, and its 
representation in (4). Note that the standard PWL activation function shown in 
Fig. 1a is recovered and if the slopes m1, m2 tend to infinity the double threshold 
activation function in [10] is obtained 
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Stability of CNN with TAF 

In the case of arbitrary r-neighborhood, { }nmr ,min1 ≤≤ , where m, n  represent 
number of rows and columns of the cellular neural network, (2) can be rewritten 
as 

 ++−=
+

=

+

=
−−+−−+

12

1

12

1
1,1 ))(()(

)( r
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jrljrkiklij
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The term ijs  is a different constant value for each cell, as the inputs iju  are con-
stant, similarly the terms klB  and II ij =  are constant. The activation function f  
used in (5) is the trapezoidal activation function defined by (4). As there are 

  m n×  cells in a CNN, there are  m n×  states in total. For the purpose of de-
scribing the behaviour of the CNN by a system of vector ordinary  
differential equations (VODE) as in [9,12], a map, which transforms the  
description of  the cells in a 2-D space into a 1-D space is given with  

11 12 1

21 21 2
11 12 1 1 2

1 2

 C
n

n

n ij m m mn

ij

m m mn

C C C

C C C
C C C C C C C

C

C C C

′
⎯⎯→ =  (6a) 

The elements of the vector C  can be represented as Cp where nijp )1( −+= . 
The inverse relation is given by following expression: 

 =
n

p
pi )( , ppj =)(  )mod(n (6b) 

where •   means that  )( pi is the quotient of the division np . 
In the sequel (5) will be rewritten in the following form using (6): 

 
1
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q

d
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= − + + ,   mnp ,...,2,1=   (7)  

Comparing (5) and (7), a relation between coefficients pqw  and the elements 
klA of the template matrix will be established. An extremely sparse matrix W  as 

in (8a) can be constructed: 

( ) ( ) 1,   ( ) ( ) 1

1 ( ) ( ) 1 2 1
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Note thatW  has the symmetry property described in (8b) 
 pmnqmnpq WW −+−+= 1,1 .  (8b) 
 

. 
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Equation (9) is obtained, considering expressions (7) and (8) then defining 
)()( txtix pj

=  and    sij = sp for nijp )1( −+=  
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Finally (7) can be rewritten in the more compact form as 

 SXWXX
d t

d ++−= )(f.   (10)  

with [ ] ′= )(),...(),( 21 txtxtxX p , [ ] ′= psssS ,..., 21 , mnp =   and W is a weight  matrix
 with the dimension ( )mn mn× .  

At an equilibrium state, the following condition holds for each cell 
d ( ) ( ) 0
d p p pex t x t x
t

= = = , which used in (7) gives: 
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1
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m n

pe pq qe p
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x t w f x t s
=

= +    for  mnp ,...,2,1= . (11) 

Therefore in order to find the equilibrium states one has to investigate the  
solutions of the algebraic equation (12) for a given set of constant inputs 
 X W . ( X ) S= +f , where [ ] ′= ixxxX ,...,, 21 , mni = .  (12) 
If we define a function G , such that 

 
 ( ) . ( )G X W X S= +f . (13) 

 
Substituting (13) for the right-hand side of (12), (14) is obtained 
 )(XGX = ,  (14)  
which means that the equilibrium state eX is a fixed point of the func-
tion mnmnG ℜ→ℜ: . Since G is continuous and bounded, according to Brouwer 
fixed-point theorem [11], there is at least one fixed point of (14).   

Lyapunov Stability 

It is clear that there is at least one equilibrium point of (7) according to Brouwer 
fixed point theorem. Now, Lyapunov stability criterion will be applied to check 
the stability of this point. If [ ]e 1e 2e e, ,..., iX x x x

′= , mni = , is an equilibrium point, 
then the deviation ie  for a a single cell at a given time t  is 
 ( ) ( )i i iee t x t x= −  ,    1,2,...,i mn= , (15) 
where, )(txi  is the state of the cell i  and eix  is the equilibrium point of the same 
cell. Rate of change in the deviation of each cell will then be 
 )()( txte ii = .  (16) 

Substitution of the right-hand side of (7) for )(txi  yields  
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By rearranging (17)  
 ( ) ieii xtetx +=)(  (18)  

then comparing (11), (17), (18)   
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is obtained. 
An equilibrium point of (19) is e [0,0,...,0]e ′=  to prove the global asymptotic  

stability of CNNs described by (7), it is sufficient to prove the global asymptotic 
stability of the trivial solution of (19) as TAF ( )f • satisfies the Lipschitz condi-
tion [8,11].  

Let the positive function defined by (20) be selected as a Lyapunov function 
candidate 
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Differentiation of this function with respect to t  along trajectories yields 
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The trapezoidal activation function given in (4) satisfies the Lipschitz condition 
yxyfxf −≤− μ)()( ,  0>μ  (22) 

with 

 { }
−−

=−≥
3412

21
2,2max,max

ττττ
μ mm . (23)      

Rearranging (21) by using inequality (22) the following inequalities can be written 
as: 
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Then it is sufficient that the following inequality be satisfied to ensure stability: 
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From (11a) (11b) one can see that the matrix W  has the property  

:
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Rearranging inequality (28) as 
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then selecting all the constants ic  to have the same value c  and considering  
the relation between the template A and the matrix W in (29) , 
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and finally the inequality 
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is reached which, represents a sufficient condition for the stability of the system. It 
shows how the stability of CNNwTAF depends on the elements of the template 
A  and the maximum absolute slope of the activation function. In order to extend 

the stability range, the best value of the parameter c  used in Lyapunov function 
can be investigated. If the right-hand side of inequality (43) is set as large as pos-
sible, the elements of the template A  will take their values in a wider range. 
Therefore, c  has been set to 1/  which value makes the right-hand side of ine-
quality maximum. If inequality (43) is rearranged using 1c μ=  

 2 1 2 1

1 1

1 
r r

kl

k l
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is obtained as a sufficient stability condition. To summarize it has been shown 
that: 

Theorem: For fixed constant inputs if the template element values of 
CNNwTAF described by state equations (1) satisfy inequality (33) then the state 
trajectory converges asymptotically to a unique equilibrium state; moreover the 
optimal bound for inequality (33) is obtained as  1c μ= . 

Condition (34) re-evaluated for CNNwPWL, yields the stability criterion  
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A
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since there is only one slope μ   equal to1   in PWL activation function, as shown 
in Fig. 1a. 

 

μ
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Conclusion 

In this paper, CNN with a new kind of nonlinearity, namely trapezoidal activa-
tion function (CNNwTAF) has been introduced; CNNwTAF is a generalization of 
the single perceptron-like cell with double threshold which was presented in [10].  
Sufficient stability criterion has been obtained for CNNwTAF by transforming the 
2-D state equations of CNNwTAF into regular 1-D state equations then using 
fixed-point and Lyapunov stability theorems; that this stability criterion can also 
be applied to CNN with PWL activation function has also been shown. Another 
improvement on the stability criterion is that, stable templates can be designed 
without possessing the symmetry property. In particular, stable non-symmetrical 
templates will be very useful in texture classification and pattern recognition 
fields. Another advantage provided by CNNwTAF is the extra design flexibility 
made possible by the availability of tunable parameters of the activation function 
which can be adjusted jointly with or disjoint from the template parameters.  
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Abstract  

This paper presents some applications of cellular neural network (CNN) scheme employing 
a new nonlinear activation function, called trapezoidal activation function (TAF). The new 
CNN structure can classify linearly nonseparable data points and realize Boolean operations 
(including XOR) by using only a single-layer CNN.  

Introduction 

Cellular neural networks (CNNs) are widely used in image processing and pattern 
recognition fields [1–4]. CNN is a large-scale non-linear processing array consist-
ing of, unlike most other neural networks, only locally interconnected cells; this 
facilitates its analysis, design and implementation with VLSI circuits. In image 
processing applications, each cell in CNN represents a pixel in the image. It is 
well-known that the standard uncoupled CNN single-layer structures, extremely 
useful for realizing Boolean functions, are not capable of classifying linearly non- 
separable data. The parity is a binary function of the inputs, which returns a high 
output if the number of inputs set to 1 is odd and a low output if that number is 
even. Therefore, for n inputs, the parity problem consists of being able to divide 
the n-dimensional input space into disjoint decision regions such that all input pat-
terns in the same region yield the same output and, thus is linearly non-separable. 
Uncoupled CNN can only classify linearly separable data, that is can only separate 
the input space with hyper-planes [4]. Recently a single perceptron-like cell with: 
(1) double threshold, (2) implemented using only five MOS transistors, (3) capa-
ble of classifying data which  are not linearly separable has been reported in [5,6]. 
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In Sect. 1 of this paper, the definition of standard CNN with PWL 
(CNNwPWL) is briefly reviewed, then the proposed trapezoidal activation func-
tion (TAF) and CNN with TAF (CNNwTAF), which is a generalization of CNN 
with double threshold, are introduced and sufficient stability criterion of 
CNNwTAF is given. In Sect. 2, it is shown that a single-layer CNNwTAF can be 
used for performing non-separable tasks such as eXclusive OR (XOR) and parity 
problems. 

CNN with Sigmoid PWL Activation Function 

CNN as defined by Chua and Yang is described by a set of differential equations: 
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where m  and n  represent the number of rows and columns of the cellular neural 
network, and ijijij yxu ,,  denote the input state and output of the cell ),( jiC , 
respectively. The templates ,A B  composed of the weights Aij and Bij denote the 
feedback and feed-forward templates, respectively. These templates have equal 
size, which depends on the predefined neighborhood radius of the cellular neural 
network. The term ,I  called the offset (bias), is a constant for each cell.  

In standard CNN literature, the relation between the output and the state of the 
cell is defined by a sigmoid activation function [2,3], its standard Piecewise-
Linear (PWL) version, which is defined by (3), is illustrated in Fig. 1a 
 −−+= 1)t(x1)t(x

2
1)t(y

ijijij

  (3) 

CNN with Trapezoidal Activation Function (TAF) 

 
Recently an activation function with double threshold has been introduced and 
implemented with five MOS transistors in [5,6]; the finite slope version of this ac-
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tivation function, which will be used in this paper, is shown in Fig. 1b, and its  
representation in (4). 
 

 Fig. 1. Activation functions: (a) Standard PWL activation function, (b) Trapezoidal activa-
tion function (TAF) 
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Sufficient  Stability Condition of CNNwTAF 

 
Sufficient stability condition of CNNwTAF is given in [7] as 
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where r is the neighborhood, μ  the maximum absolute value of the slopes of 
activation function, and klA is the element of the template .A  To summarize it has 
been shown that: 
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Theorem: For fixed constant inputs if the template element values of 
CNNwTAF described by state equations (1) satisfy inequality (5) then the state 
trajectory converges asymptotically to a unique equilibrium state.  

Condition (5) re-evaluated for CNNwPWL, yields the stability criterion  
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since there is only one slope μ   equal to 1   in PWL activation function, as shown 
in Fig. 1. 

 Linearly Nonseparable Applications 

As mentioned in sect. 1, the single-layer uncoupled standard CNN is very useful 
for realizing Boolean functions, but is not capable of performing the XOR opera-
tion which consists of linearly non-separable data. The XOR-type classification to 
date has been achieved with multi-layer structures [4,8]. In the sequel, CNNwTAF 
will be used for performing the XOR operation with a single-layer structure as 
introduced in [5,6].  

Fig. 2.   Original image which used for XOR applications 

Parity 2 

This kind of CNN performs the eXclusive OR (XOR) on adjacent pixels of a line. 
“Given the four possible combination of two adjacent pixels, the output will be 
white only if these adjacent pixels are not of the same kind, otherwise the output is 
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black.” This task is linearly non-separable and cannot be realized with a single 
layer standard uncoupled CNN.  The templates and the activation function pa-
rameters are 

 
0 0 0
0 0.125 0
0 0 0

A =  ,  
0 0 0
0 0.25 0.1
0 0 0

B =  ,   0.075I = −  (7) 

 
[ ] [ ]0.1 0.0, 0.1, 0.2,,,, 4321 =ττττ  

 
Four input images, which have been used in these applications of the paper, are 

illustrated in Fig. 2. Using these templates the outputs of CNNwTAF correspond-
ing to these special input images are shown in Fig. 3. Using the transpose of tem-
plate ,B  everything else remaining the same, XOR on adjacent pixels of a vertical 
line is performed. The outputs for this task are shown in Fig. 4. 

 

Fig. 3.   CNN outputs for horizontal parity 2 applications 

Parity 2 on three adjacent pixels  

This kind of CNN performs the XOR operation on adjacent three pixels of a line 
according to “given the three adjacent pixels of a line, the output will be white if 
the pixel at the center and at least one of the neighboring pixels is not of the same 
kind; otherwise, if all three pixels are of the same kind, the output is black”. This 
task is also linearly non-separable; choosing the templates and the activation func-
tion parameters as in (8), the outputs to the same test input set are shown in Fig. 5. 

− −
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0 0 0
0 0.125 0
0 0 0

A =   
0 0 0

0.1 0.25 0.1
0 0 0

B =  ,  0.075I = − , (8) 

       [ ] [ ]0.2 0.1, 0.2, 0.3,,,, 4321 =ττττ . 

 

Fig. 4. CNN outputs for vertical-2 applications  

 
 

Fig. 5. CNN outputs for parity 2  over 3-pixels in the same vertical line 

 

− −

 ,
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If the template B  is transposed, one can use this templates and same activation 
function for performing same function on the vertical lines. 

Conclusion 

    In this paper, CNN with a new kind of nonlinearity, namely Trapezoidal Activa-
tion Function (CNNwTAF) has been introduced. CNNwTAF is a generalization of 
the single perceptron-like cell with double threshold which was presented in [5,6].  
The theoretical sufficient stability results have been tested on various well-known 
examples. Another improvement on the stability criterion is that, stable templates 
can be designed without possessing the symmetry property. In particular, stable 
non-symmetrical templates will be very useful in texture classification and pattern 
recognition fields. Another advantage provided by CNNwTAF is the extra design 
flexibility made possible by the availability of tunable parameters of the activation 
function which can be adjusted jointly with or disjoint from the template parame-
ters. Finally, the advantage of CNNwTAF in providing a single layer CNN capa-
ble of performing linearly non-separable tasks such as eXclusive OR and parity 
problems has been demonstrated with several examples but needs further elabora-
tion and application to real-life problems such as anomaly detection in geophysics, 
early epileptic seizure warning in medicine.  
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Abstract  

In this paper, a CNN-based fingerprint verification system is realized. It consists of three 
main processing stages, Image Preprocessing, Feature Extraction, and Feature Matching, as 
well as a system database.  

In the Image-Preprocessing stage, the quality of an original gray-scale noisy fingerprint 
image is enhanced. As a result, a binary thinned fingerprint is obtained. In the Feature-
Extraction stage, distinguishable real features (ridge endings and ridge bifurcations) in the 
thinned fingerprint as well as their feature attributes are extracted. False features are elimi-
nated based on a distance criterion. In the subsequent Feature-Matching stage, a similarity 
comparison scheme which is tailor-made for CNNs is presented. For the final decision, a 
combination of two simple criteria with an adjustable parameter is proposed. 

By using a real fingerprint test database, the simulation results show that the system is 
able to distinguish between two fingerprints which belong to two different people. It can 
achieve zero False Acceptance Rate for any possible user in the test database, if the adjust-
able parameter is suitably chosen. Under the requirement of zero False Acceptance Rate, 
the system can achieve a relatively good False Rejection Rate for almost half of the users in 
the test database. 

Motivation 

Personal identification can be encountered almost everywhere in our society. Re-
cently, with the increasing demand on high security, positive person identification 

has become more and more important in our everyday life. The term positive per-
son identification means identification of a person with high certainty. The tradi-
tional identification methods are based on “something that you possess” and 
“something that you know” such as key, user-ID, password, PIN, etc. [1]. Another 
family of identification methods makes use of the physical characteristics of a per-
son, e.g., fingerprints, hands, voice, iris, signature, etc. These characteristics are 
called biometrics [1]. Among all biometrics, the fingerprint is the oldest and the 
most prevalent one.  

Thanks to the increasing power of computers and to the substantial progress in 
fingerprint capture devices, the use of fingerprint for computer-aided personal 
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identification in civilian applications, such as banking security and physical access 
control, is becoming increasingly attractive. In particular, fingerprint based posi-
tive personal identification in portable applications is of great significance. For the 
purpose of commercialization, such a system has to take the following four crucial 
factors into consideration: processing speed, recognition rate, power consumption, 
and size. 

Cellular Neural Networks (CNNs) [2,3], proposed by Chua and Yang in 1988, 
are able to execute complex nonlinear signal processing operations completely in 
parallel and simultaneously with low power consumption, because each cell itself 
is a relatively simple analog circuit “processor.” Moreover, each cell is locally in-
terconnected with its neighboring cells within some predefined neighborhood. 
This local connectivity property makes CNNs very suitable for VLSI implementa-
tion, resulting in CNN chips which are tailor-made for real-time image and signal 
processing. Furthermore, thanks to the advanced techniques in fingerprint sensors 
[4,5] and CNN hardware implementation [6,7], it is very likely in the not-too dis-
tant future to incorporate a capacitive fingerprint sensor on a CNN chip. Thus, 
CNNs have the potential to realize a fingerprint-based recognition system on one 

chip. 
Until now, CNNs have shown their superiority among others in image process-

ing, pattern recognition and generation, as well as nonlinear signal processing in 
general [8,9]. In this paper, we examine the potential of CNNs for fingerprint-
based personal verification with the view of realizing the resulting system on one 
CNN chip. 

CNN-based Fingerprint Verification System 

The main problem in fingerprint verification is to decide how similar two finger-
prints are, the one to be verified and the one stored in the database. 

Fig. 1. Block diagram of a CNN-based fingerprint verification system 
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A CNN-based fingerprint verification system is illustrated in Fig. 1. The system 
works in two distinct modes: enrollment and verification. The purpose of the en-
rollment mode is to create a database. During this mode, the fingerprint of an en-
rollee finger is first captured and then processed in the subsequent two stages: Im-
age Preprocessing and Feature Extraction. Image-Preprocessing is aimed at 
enhancing the quality of the captured fingerprint image which is very noisy in na-
ture, thus facilitating the subsequent stage, Feature Extraction. After the Feature 
Extraction stage, a set of representative features of the enrollee fingerprint, the mi-

nutia template, is stored in the database. During the verification mode, a claimed 
finger undergoes the same three processing steps as in the enrollment mode. The 
result, a test minutia template, is compared with a minutia template from the data-
base in the Feature Matching stage. A matching score which measures the similar-
ity between the two minutia templates is calculated. Higher values indicate higher 
confidence in a match. In practice, the matching score is compared with a thresh-
old which is predefined by the user for the final decision, Yes or No. 

CNN Fingerprint Image Preprocessing 

Normally, the images captured in the Fingerprint Reading stage are gray-scale and 
subject to noise. Their quality is therefore not satisfactory for accurate processing. 
For this reason, Image Preprocessing is a crucial part of a fingerprint-based  
verification system. It aims at reducing noise, enhancing the quality of the  
captured fingerprint image, and facilitating the subsequent processing steps. 

Algorithm overview 

The proposed CNN fingerprint image preprocessing algorithm consists of three 
successive operation units: Fingerprint Sharpening, Fingerprint Ridge Enhance-
ment, and Fingerprint Thinning, see Fig. 2. The detailed description of this algo-
rithm and some examples can be found in [10]. 

 

Fig. 2. Block diagram of Fingerprint Image Preprocessing 

The goal of Fingerprint Sharpening is to increase the contrast of an original fin-
gerprint, and to sharpen ridges and reduce the noise in the original fingerprint. 
Fingerprint Ridge Enhancement removes white holes within fingerprint ridges, 
and transforms the gray-scale input image into a black/white output image. Fin-
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gerprint Thinning reduces the width of ridges to one pixel. This step will facilitate 
the extraction of characteristic features in the Feature-Extraction stage. 

Fingerprint sharpening algorithm 

In this stage, two CNN operations – CNN High-boost and CNN Lowpass – are 
applied to the original gray-scale fingerprint image. Its block diagram is shown in 
Fig. 3. 

An original gray-scale fingerprint first goes through a CNN High-boost opera-
tion. A key point distinguishing this operation from a normal CNN High-boost 
operation is that the bias I is not constant but an image of the same size as the 
original fingerprint. Usually, in an original gray-scale fingerprint, some regions 
are brighter and some are darker, which makes it advantageous to have a spatially 
variant bias. The algorithm to generate this bias image I is composed of three op-
erations: Heat Diffusion, Contrast Stretching, and Gray-Scale Inversion. The CNN 
High-boost is then followed by a CNN Lowpass filter which suppresses the high 
frequency noise. The resulting image is shown in Fig. 5b. 

 

Fig. 3. Block diagram of Fingerprint Sharpening 

 

 
Fig. 4. Block diagram of Fingerprint Ridge Enhancement  
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Fingerprint ridge enhancement algorithm 

In this stage, a CNN Hole-filling template [11] is used to further improve the qual-
ity of the fingerprint obtained in the Fingerprint Sharpening unit. In a normal CNN 
Hole-filling operation, the input image is binary and the states are initialized as 
black but with a white boundary. During this operation, all white areas surrounded 
by black pixels in an image are filled with black pixels. But in fingerprints, we 
wish to fill up with dark pixels only the bright areas surrounded by dark pixels 
within ridges, thus enhancing ridges, while outside the ridges all bright areas 
surrounded by dark pixels have to remain bright. To attain this goal, we have to 
find an appropriate initial-state image for the Hole-filling operation. 

Fig. 4 presents the block diagram of the Fingerprint Ridge Enhancement Algo-
rithm. The algorithm used for creating an appropriate initial state is emphasized by 
a darker mask. It consists of two parallel stages. The goal of the upper stage is to 
obtain a “binarized” fingerprint directly from the gray-scale sharpened fingerprint, 
in which ridges are thinner than their corresponding gray-scale counterpart  
valleys. The lower stage is aimed at marking those valleys in the sharpened  
fingerprint by black which are completely surrounded by ridges. The outputs of 
the two parallel stages pass together through the Logic AND operation. Finally, 
this output fingerprint is inverted. This is the appropriate initial state image 

we were looking for. 
Now, the sharpened fingerprint goes through the main CNN Hole-filling opera-

tion together with the above obtained initial state image. This CNN Hole-filling 
operation fills up with black pixels only the white holes within ridges, keeps open 
all valleys completely surrounded by ridges, and at the same time transforms the 
gray-scale input fingerprint into a black/white fingerprint. The final result is 
shown in Fig. 5c. 

Fingerprint thinning algorithm 

Fingerprint Thinning peels black pixels from ridges until the ridges are only one 
pixel wide. For this purpose, a CNN Thinning template set [11] has been em-
ployed. This set is composed of eight different templates. It peels black pixels on 
ridges from eight different directions – northwest, north, northeast, east, southeast, 
south, southwest, and west. 

Fig. 5d is the result of the Thinning operation. This thinned fingerprint main-
tains almost all characteristics of the original fingerprint of Fig. 5a. From this 
thinned fingerprint, fingerprint features can be more easily extracted, as will be 
discussed in the forthcoming section, CNN Fingerprint Feature Extraction. 
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CNN Fingerprint Feature Extraction 

The goal of the Feature-Extraction unit is to extract distinguishable features in fin-
gerprints, as well as their attributes, in order to guarantee the subsequent unit: Fea-
ture Matching. 

One distinguishes two main features in a fingerprint image: ridge endings and 
ridge bifurcations [1,12]. An ending is a feature where a ridge terminates.  
A bifurcation is a feature where a ridge splits from a single path to two paths 
at a Y-junction. Due to noisy original images and artifacts produced in the 
Image-Preprocessing stage, spurious minutiae will always be present. Thus,  
after the minutiae are extracted, the spurious minutiae must be eliminated. 

Fig. 5. Image preprocessing: (a) original fingerprint (b) Sharpened fingerprint  
(c) Enhanced fingerprint (d) Thinned fingerprint 

Algorithm overview 

The proposed CNN Feature-Extraction algorithm consists of four main processing 
units – Ending Detection, Bifurcation Detection, False Feature Elimination, and 
Direction Detection – in addition to several simple CNN operations, see Fig. 6. 
The detailed description of this algorithm can be found in [13]. 

Fig. 6. Block diagram of fingerprint feature extraction 

First, the endings and bifurcations are extracted in parallel from the thinned 
fingerprint image in the Ending-Detection and Bifurcation-Detection units. The 
resulting two images are added together in the Logic OR operation [11], and the 
output fed to the False Feature-Elimination unit. Here, false feature sets consist-
ing of at least one ending and one bifurcation can be deleted. With the subsequent 
Logic AND [11] we obtain a new ending/bifurcation image. In the following two 
False Feature-Elimination operations, the remaining false endings and false bifur-
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cations are eliminated separately. The resulting endings and bifurcations are then 
regarded as real features and result in an ending feature image and a bifurcation 

feature image. Finally, the direction of ridges leaving endings and bifurcations is 
extracted separately in the Direction-Detection units. 

Ending-Detection algorithm 

In a thinned fingerprint image, a ridge ending has only one black neighbour in its 
nearest 3 × 3 neighbourhood. Thus, we can find these points by first eliminating 
all isolated black points, and then finding all black points that have at most one 
black neighbour, see Fig. 7. 

Fig. 7. Block diagram of the Ending-Detection algorithm 

Fig. 8. Block diagram of the Bifurcation-Detection Algorithm 

Bifurcation-Detection algorithm 

In a thinned fingerprint image, a bifurcation has exactly three black neighbours in 
its nearest 3×3 neighbourhood. But not all points which have exactly three black 
neighbours are bifurcations. This is taken into account by our algorithm, as shown 
in Fig. 8.  

In “Junction Point Extraction”, the black pixels which have at least three black 
neighbours in their nearest neighbourhood are extracted. However, this still leaves 
T- and Corner-forms from which we have to extract real bifurcations. To this end, 
two different operations are applied in parallel: Isolated Point Extraction [11] and 
Junction Point Extraction in T- and Corner-form. The first extracts black pixels 
which are alone in an input image, the second retains only black pixels which have 
at least two black neighbours among their north, east, south, and west neighbours. 
Finally, the resulting two images are added in Logic OR [11] to obtain only 
the bifurcations. 
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False Feature-Elimination algorithm 

As mentioned earlier, false minutiae – endings and bifurcations – are not  
always avoidable after Ending Detection and Bifurcation Detection and must 
be eliminated. 

Experience shows that two false minutiae – two false endings, or two false bi-
furcations, or one false ending and one false bifurcation – are normally close to 
each other [12]. Based on this fact, we have developed a CNN False Feature-
Elimination algorithm that can eliminate two black points with a distance smaller 
than or equal to n pixels. Here distance means the number of white pixels 
separating two black pixels. Our algorithm is shown in Fig. 9. 

 
Fig. 9. Block diagram of the False Feature-Elimination Algorithm (for distance ≤ -pixels, 
n is even) 

Assuming that n is given, the input first goes through the Dilation operation n/2 
times. As a result, two black points whose distance was equal to or smaller than n 
will be connected together and form an ensemble. This ensemble then goes 
through two different Erosion operations in parallel, Erosion/ and Erosion/, n/2 
times each. Erosion/works as follows: black pixels whose northeast and southwest 
neighbours are both black remain black, all other pixels become or remain white. 
A similar principle holds for Erosion/. After this, the two resulting images are 
added together in the Logic OR operation, and finally the Isolated Point Extraction 
operation is applied. 

Direction-Detection algorithm 

In digital fingerprint-based verification systems, the direction of ridges leaving 
endings and bifurcations is represented by a vector parallel to the ridges leaving 
minutiae. In a planar CNN system, this cannot be done, because the output of the 
system is an image.  

In order to extract the direction of ridges leaving endings and bifurcations, we 
use the CNN operation Figure Reconstruction [11]. With this operation, we can 
reconstruct one or several figures from an input image by using a suitable initial 
state. 

n
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CNN Fingerprint Feature Matching 

The goal of the Fingerprint Feature-Matching unit is to decide whether the finger-
print to be verified ( rℑ ) is the same as one ( dℑ ) in the system database under 
some conditions. To attain this goal, a similarity function needs to be defined first, 
then a decision criterion, e.g., a distance threshold. The final decision: dr ℑ=ℑ  
is made, when the distance between rℑ  and dℑ  is smaller than or equal to the 
predefined threshold. Otherwise, one decides that dr ℑ≠ℑ . 

It should be noted that the features extracted in the Fingerprint Feature-
Extraction unit are sensitive to translation displacement and rotation. We have in-
tegrated Translation into our Feature-Matching algorithm and taken Rotation into 
account in the System Database. We store not only the ending and bifurcation fea-
ture images of the user’s fingerprint, but also their rotated versions in the system 
database. This spares rotation operations normally needed in a minutia-based fea-
ture matching. 

Feature matching overview 

The proposed CNN Fingerprint Feature-Matching algorithm consists of two main 
processing units: Similarity Comparison and Decision Making, as illustrated in 
Fig. 10. The detailed description of this algorithm can be found in [14]. 

Fig. 10. Block diagram of fingerprint feature matching 

In the upper Similarity Comparison unit, the ending feature image r
eℑ of rℑ  is 

compared with the ending feature image d
eℑ of .dℑ  The lower Similarity Com-

parison unit works similarly. As a result, so-called similarity degrees  and 
are determined. Finally, depending on the values of Se and Sb, a decision is made 
in Decision Making whether rℑ  is to be considered as identical with or different 
from dℑ . 
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Similarity comparison 

The Similarity Comparison unit is aimed at determining the similarity degree of 
two images. Fig. 11 shows its block diagram for the ending feature images. It 
looks similar for the bifurcation feature images. 

As shown in Fig. 11, the ending feature image r
eℑ  is shifted to predetermined 

positions (k, l) in Translation and the result is denoted by )l,k(r
eℑ . Then, 

)l,k(r
eℑ  is compared with d

eℑ  in Point Pattern Comparison. At each position (k, 
l), we obtain a comparison score Se(k, l) ∈ [0, 1] which describes the similarity be-
tween ( , )r

e k lℑ  and d
eℑ . The smaller Se(k, l), the more similar ( , )r

e k lℑ  and d
eℑ . 

Let Semin be the minimum of Se(k, l) over all considered positions (k, l), and  
denote by (ke, le) (one of) the position(s) at which the minimum is taken. We then 
define the similarity degree between r

eℑ  and d
eℑ  as  

The same is done for the bifurcation feature images and kb, lb, Sbmin,  are defined 
accordingly. and  together describe the similarity between rℑ  and dℑ . 
Based on and , a decision will be made in Decision Making whether 

dr ℑ=ℑ or dr ℑ≠ℑ . 
For the detailed description of Point Pattern Comparison and Translation, we 

refer to [14]. 

Decision making 

Decision aking is the last stage in the Feature-Matching unit. It is shown in  
Fig. 12. The decision dr ℑ=ℑ  s made if and  satisfy both criteria, Position 

and Average. Otherwise, the decision dr ℑ≠ℑ  is taken. 

Fig. 11. Similarity comparison for ending feature image 

M
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Fig. 12. Decision making 

(1) Position. The Position criterion is satisfied if the position (ke, le) is within 
the 3×3 neighborhood of the position (kb, lb) in the Translation Grid. This can be 
written as 

 },1,0{)
T

|ll|,
T

|kk|max(
step

be

step

be ∈−−
 (1) 

where Tstep is the step size between two adjacent positions, see [14]. 
Note that in the Position criterion, we do not require (ke, le) = (kb, lb) exactly. 

The reason is that the distortion in fingerprints caused by translation, rotation and 
some other noise may result in the loss of fingerprint features. All this can impair 
the reliability of the similarity degree  obtained in the Similarity Com-
parison unit. Thus, the proposed 3×3 neighborhood in the Translation Grid in the 
Position criterion can increase the tolerance of the Feature-Matching algorithm to 
all possible distortions inherent in fingerprints. 

(2) Average. As mentioned earlier, the smaller Se min and Sb min, the more we 
consider rℑ  and dℑ  to be identical. Among the many possible criteria, we pro-
pose to consider both fingerprints, rℑ  and dℑ , to be identical only if  

 ,
2

SS
ms

minbmine <+
 (2) 

for some msΘ  ∈ [0, 1]. 
The parameter msΘ  needs to be adjusted depending on applications. A smaller 

msΘ  specifies a tighter Average criterion, which may result in a higher possibility 
with which  rℑ will be rejected. In very high security applications, we prefer a 
very low False Acceptance Rate (FAR) which requires a small msΘ . On the con-
trary, in forensic applications, we prefer a low False Rejection Rate (FRR) which 
requires a large msΘ . In practice, for a specific application, these two factors trade 
off against one other. 

Θ
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The performance of the system was evaluated by two different rates, the False 
Acceptance Rate and the False Rejection Rate. As the name implies, the FAR de-
scribes the ability of the system to differentiate between unequal fingerprints, 
while the FRR describes the ability of the system to identify fingerprints which 
belong to the same finger. To this end, a real fingerprint database was used. It con-
tains 168 fingerprints belonging to 21 different people and each person has eight 
different scans of the same finger. 

Simulations were performed as follows: one fingerprint version of person i is 
stored in the system database, while the other 20 people are regarded as imposters 
who try to enter the system without permission. Hence, out of 168 fingerprints, 
160 fingerprints, belonging to the other 20 people, are used to determine FAR(i) 
and the eight fingerprints of person i are used to determine FRR(i). Moreover, in 
the decision criteria, we chose msΘ = 0.5. 

Fig. 13 illustrates the resulting FAR and FRR. As can be seen from Fig. 13(a), 
we obtain a zero FAR for any possible user in the test database. This means that 
no matter which person is stored in the system database, any fingerprint from the 
other 20 people will be correctly rejected. 

Fig. 13. System performance 

Figure 13b shows the strong dependency of the FRR on the person stored in the 
system database. For person 1, 12, and 13, we obtain FRR = 0. This means that for 
each of them all 8 fingerprint versions are correctly verified. For person 8, 17, and 
18, we obtain the worst possible FRR = 7/8 which means that none of the other 
seven fingerprint versions of the same person is allowed to access the system, ex-
cept the fingerprint version stored in the system database itself. Taking an average 

over all people, we get 399.0
8

21/67FRR == . This means that for the test data-

base on average a system user will be falsely rejected slightly more than three 
times every eight attempts. The unsatifying FRR for some people can be explained 
by the largely varying quality between different fingerprint versions of the same 
person. 
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Conclusions 

A fingerprint verification system has been fully designed and realized by using 
CNNs. It consists of three processing stages, Image Preprocessing, Feature Extrac-
tion, and Feature Matching, as well as of a system database. 

The proposed CNN Image-Preprocessing algorithm can improve the contrast of 
an original gray-scale fingerprint, reduce the high frequency noise in the original 
fingerprint, recover the destroyed connectivity in the ridges thus enhancing the 
fingerprint ridges, and finally turn the original fingerprint image into a binary im-
age. The resulting black lines all have unit width while containing essentially all 
the necessary characteristics of the original fingerprint image. 

The proposed CNN Feature-Extraction algorithm is able to extract almost all 
genuine endings and bifurcations as well as their corresponding direction attrib-
utes, and to eliminate the spurious endings and bifurcations which may result from 
the noisy original fingerprint and the previous processing operations. 

The proposed CNN Feature-Matching algorithm is simple and effective. It 
compares rℑ and dℑ  by determining the similarity degree between their ending 
feature images and that between their bifurcation feature images, and reaches a 
decision by applying the combination of two simple criteria. It is able to tackle 
translation as well as rotation distortions. It is able to recognize that ,r dℑ = ℑ  if 

rℑ  is only a translated and/or rotated version of dℑ . 
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Abstract  

Cellular automata are basic computational structures of interacting units which are capable 
of exposing self-organization and emergent behavior. To investigate this behavior we im-
plemented a distributed hardware/software environment covering a genetic algorithm and 
attached hardware accelerators for a fast specimen evaluation in a hardware-in-the-loop 
fashion. To keep the accelerator flexible enough to support a fast adaptation of the cell in-
terconnect structure our hardware is realized on FPGA hardware. We describe the software 
of the genetic algorithm and then concentrate on the architecture optimizations necessary 
for a flexible, yet reasonably small implementation of the cellular automata hardware. The 
resulting area/time trade-off is discussed. In addition, an architecture for runtime reconfigu-
ration of the cellular automaton is proposed. 

Introduction 

Cellular automata (CA) have a long history going back to von Neumann. They  
describe basic massively parallel calculations in a decentralized computing system 
in an idealized way in terms of a lattice of identical cells which communicate in a 
next-neighbor style. For overviews on CA history, background and applications, 
see [1,6,7]. CAs are highly regular structures supporting a cell-based design style 
which becomes necessary with shrinking technology nodes and the advent of 
nanoelectronic circuits [8,9]. Circuits based on the principles of cellular automata 
are a promising approach towards meeting optimization criteria like low power 
consumption, high performance and small circuit size. Such arrangements expose 
interesting properties, including adaptiveness [10] or the emergence of complex 
system behavior from the very simple individual cell settings (see, e.g. [2,11]).  

Emergence here means the appearance of higher-level qualities of such a sys-
tem arising from the lower-level qualities of its components. CAs are one of the 

tionmost simple and general arrangements for that kind of interaction. The investiga
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found in traditional CAs, but can be extended to more nature-like systems [3]. In 
fact, a specific model of interconnect networks was found to be extremely well 
suited to model and analyze nature-inspired systems, the small-world networks 
[4,5]. Small-world graphs exhibit a certain degree of irregularity, though embed-
ded in an otherwise regular lattice structure. Figure 1 shows an example of a regu-
lar lattice graph and a small-world graph.  

 

 
Fig. 1. Principle of a regular (left) and a small-world (right) connected lattice with 20 
nodes, following [4]. For the small-world graph, only a few connections are irregular, 
which might result in different node grades 

Such a structure can be created by randomly displacing individual edges while 
walking once through all the nodes. For larger graphs, some basic graph properties 
like the average path length L or the local clustering coefficient C of nodes depend 
very sensitive on the probability chosen for the random displacements. In a spe-
cific range of displaced edges lies the small-world region which is, basically, 
characterized by a small L combined with a still large C, thus well supporting 
closely connected local interaction and short global paths. 

The effect of randomly replacing a growing number of local connections by ar-
bitrary (potentially global) connections is shown in Fig. 2. It can be seen that a 
few number of displacements in a completely regular lattice graph already result 
in a greatly reduced characteristic path length. At the same time, the local cluster-
ing remains high for a long time. Finally, the graph adopts the characteristics of a 
random graph. A small path length should support global communication much 
better than found in regular lattice structures. A high local clustering, at the same 
time, should provide (almost) the same capability for local information inter-
change as possible in a regular lattice. 

 
 

Overview 

For further investigations of CAs based on different interconnect models, a fast 
method to evaluate the behavior of a large number of specific CA specimen must 
be available. A genetic algorithm (GA) can be used to evolve CA behavior in the 
form of a transition function (TF) table. Assuming a regular lattice structure, the 

 of emergent behavior is not limited to regular lattice structures as they are 
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Fig. 2. Characteristic path length and local clustering coefficient for a series of displaced 
graph structures (averaged over 10 runs). The small-world region is found between highly 

TF table completely defines the individual automaton and its behavior. The high 
number of different individuals produced by the GA will result in a large base of 
samples for a comparison of different models. For the GA process, the fitness of 
each individual of each generation must be evaluated by applying sample patterns 
(a set of initial cell states, IC) and inspecting the output patterns (final cell states) 
after a certain number of steps. To accelerate the GA beyond a simple distribution 
of the workload to several hosts, a dedicated hardware directly performing the CA 
computations can be used.  

In this paper a software implementation of the GA is discussed likewise a 
hardware architecture for fast CA evaluation with hardwired cell connections and 
a communication interface for TF and IC down- and output pattern uploading. A 
method is discussed which allows to trade speed for area. Finally, an architecture 
is presented which allows to program the cell interconnection pattern at runtime 
via the network interface.  

Client/Server Implementation of the Genetic Algorithm 

The GA software is implemented as a distributed Java program using a client/server 
architecture. The GA is running as a client process. Its task is the generation of  
an initial and any new generation of CA individuals. A stub server process is 
used to encapsulate the hardware accelerator which performs the execution  
of individual CAs. The individuals are completely represented by their transition 
function (TF) tables (their genetic code), which are evolved by the GA. For an 
automaton execution, the automaton input is a bit pattern defining the initial state  
 
 

 
for each cell. The output is the actual state vector after a specific number of transi-
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tion steps. To start a simulation, a set of TF tables and a set of test vectors must be 
transferred from the client to a server process. The test vectors are then applied to 
each individual by the dedicated hardware accelerator and the resulting outputs are 
sent back to the client.  

Genetic algorithm implementation 

For each new generation the operations selection, cross-over and mutation are ap-
plied to the current individuals to form the next generation. In addition, one can 
work with elitism, ensuring that the fittest individuals of each generation survive 
into the next one without being changed. The algorithm given in Fig. 3 shows the 
cycle of the GA in pseudocode (the variables correspond to sets of data vectors 
and are denoted with square brackets). The fitness of the individuals is needed for 
the selection and elitism processes and is calculated by evaluating each individual 
of this_gen using a set of 100 sample input vectors. For this purpose, the TF tables 
and a set of sample data are sent to the servers for CA simulations before. The fit-
ness rating inside the rate_all function is performed based on the performance data 
delivered by the server processes. 
funct genetic algorithm 

begin 
this_gen[] ←  generate-initial-population(); 
for number_of_generations do 

send(this_gen[], samples[]); 
receive(performance[]); 
fitness[] ← rate_all(this_gen[], performance[]); 
elite[] ← elitism(this_gen[], fitness[]); 
selected[] ← select(this_gen[], fitness[]); 
selected[] ← crossover(selected[]); 
mutate(selected[]); 
next_gen[] ← selected[]∪ elite[]; 
this_gen[] ← next_gen[]; 

od 
end 

Fig. 3. Pseudocode of GA cycle 

The answers are collected and the fitness of individuals i is calculated based on 
its performance on the sample input vectors  

samples

samplesk ki

i

c
fitness

∈∀= ,

 

where ci,k = 1 if sample k was classified correctly and ci,k = 0 otherwise and samples 
is the set of input sample vectors. The individuals of the last generation of the GA 
represent the result of the evolution process. 
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Server processes 

The main purpose of the server processes is the evaluation of individuals, i.e., to 
get performance data for each individual in terms of how good it can solve the 
sample problems represented by the sample input vectors. This functionality is en-
capsulated in the server process. After receiving a set of TF tables and a set of test 
vectors, it produces a byte stream which is sent to the FPGA via a network con-
nection. It then immediately switches to receive mode and collects the result data 
produced by the FPGA. This byte stream is converted to the external data format, 
an array of Boolean vectors, and sent back to the server. 

Integration of the hardware model 

The cellular automaton is embedded into an testbed architecture which enables the 
communication with the server process encapsulating the hardware-implemented 
CA via a serial link. Actually, this serial connection can be bridged to an TCP/IP 
connection using an RJ45 socket sized device which is known as XPORT.  

The overall architecture is depicted in Fig. 4. The architecture allows to first 
download all test input patterns and all individuals (represented by their TF table) 
via a serial link or a TCP/IP connection, respectively. These data are stored in two 
RAMs implemented with the block RAMs of the FPGA. When the RAMs are 
completely initialized, the state registers of the automaton cells can initially be 
loaded from the input pattern RAM with a certain input pattern and a certain num-
ber of CA cycles can be performed for a certain individual the TF table of which is 
provided by the function table RAM. The results are finally located in the state 
registers and are transfered to a parallel loadable shift register. The serial control-
ler starts to transmit the data while the CA continues to process the next input pat-
tern. If a transmission is still in progress when the CA has completely processed 
the current pattern/individual combination (which usually is the case), the CA is 
stopped until the transmitter is ready to be loaded with the current result. This ap-
proach allows to continuously upstream the calculation results with maximal link 
speed. The testbed automatically performs the above described operations for all 
possible pattern/individual pairs in a predefined order and is finally ready to 
receive new configuration data from the serial link.  
 

The Cellular Automata Model 

The straight forward CA realization for cells with one bit wide input and output 
ports consists of a Boolean function f which maps the current state and the inputs 
of a cell to its next state stored at the rising edge of the clock in the cell’s state reg-
ister.  Thus, each cell can be considered as a finite state machine (FSM) with two 
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Fig. 4. Architecture of the CA testbed. The TF tables and the input patterns of the CA are 
stored in embedded Block RAM (BRAM) of the FPGA. The interfacing to the server proc-
ess is realized by a serial link 

states. Therefore the overall automaton consists of N interacting FSMs. The state 
of a certain FSM serves as its output, i.e., each cell forms a special case of a 
Moore-machine. The inputs of each FSM are the outputs of M other FSMs accord-
ing to the adjacency matrix. Having this in mind, it is obvious, that the overall CA 
has 2N distinguishable states. The input to the automaton is an N bit IC pattern 
forming the initial state. The automaton then performs a certain number of cycles 
updating its state in each cell. Afterwards, the result of the operation performed by 
the CA is its final state. As mentioned earlier, the main task of the hardware accel-
eration is to evaluate a large number of individuals using a large number of ICs as 
fast as possible. In order to perform this task, it is necessary to have the (Boolean) 
function f programmable. Therefore, it is realized by a Look-up Table (LUT) as 
shown in Fig. 5a. Figure 5b shows the CA cell internals. A number of LUTs and 
the initial patterns are downloaded from a host computer via the interface de-
scribed in the previous section. A controller ensures that the automaton performs a 
certain number of cycles for all possible LUT/input combinations and finally the 
generated output patterns are uploaded to the host computer for further evaluation. 

 

Approach for a time/area trade-off 

The parallel access to the transition table results in huge input multiplexers for 
each cell, accounting for large area requirements. The mutliplexer size can be re-
duced by sequencing the table accesses. Figure 6a shows the adapted cell for the 
sequential scheme, using four sequential accesses. In four consecutive cycles, the 
four quarters of the transition table are connected to the cell inputs and the table 
access is partially decoded using five of the seven address bits. The four remaining 
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Fig. 5. (a) Hardware realization of an RLCA with M = 6 inputs. The inputs of all multiplex-
ers are the same for all cells and are defined by a global table. (b): Hardware realization of a 
single cell with M = 6 inputs. The selection signal for the multiplexer is a binary number 
formed by the current state of the corresponding cell and the M states of the cell’s inputs. 
The output of each multiplexer defines the next state of the corresponding cell 

possible bit values are shifted into four flip-flops and one is selected (using the 
remaining two address bits) and stored into the state flip-flop in a fifth cycle. This 
shift/select scheme can be used for any r-splittings of the transition table into 2r 
sections, resulting in a 2r–bit shift chain and 2r + 1 clock cycles for one CA step, 
thus enabling a time/area trade-off. This is especially true for FPGA-based de-
signs, where a large number of flip-flops is available but the logic resources are 
limited. In this case, unused registers can directly be traded for multiplexer area: 
The input size of the main multiplexer of each cell is reduced to 1/2rth which 
means an area reduction by a factor of 2r. In the case of r = 2, the 4-split reduces 
the number of inputs from 128 to 32, along with the number of global wires to 
each cell, which is a tremendous improvement. For the table splitting on the other 
hand, we need an additional sequencer for the 2r cycles and 128/2r (32 for r = 2) 
2r:1 multiplexers, finalizing the trade-off.  

Reconfigurable interconnect architecture 

A similar architecture which allows to program an arbitrary connection between 
individual cells is depicted in Fig. 6b. We use a mixed parallel/sequential method 
similar to the scheme already explained in the earlier section. All cell outputs can 
be routed to any input of any of the  other cells. The states of all cells are sequen-
tially transferred to all other cells using a 2p bit wide bus. This transfer is per-
formed in 2q consecutive clock cycles. A run-time programmable p+q bit wide 
register holds the index of the neighbor whose state is needed. Thus, M such slices 
are needed within one cell. If the number of cells is less than 2p+q, the additional  
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bits in the last transfer cycle are ignored by setting the bits in the index register 
properly. For example, if p = 6 and q = 2, the 256 possible states are transferred in 
four clock cycles using a 64 bit bus. Five clock cycles are needed in total in order 
to have the state of the neighboring cell available at the slice’s output. 
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Fig. 6. (a) Internal structure of a cell for the area improved CA. Besides the main cell flip-
flop, four additional flip-flops are used to collect the four possible next-state bits. An addi-
tional multiplexer selects the right one after four clock cycles. The whole cell requires five 
clock cycles for one CA step. (b) Reconfigurable communication backplane: The N (with N 
≤ 2p+q) current states of the cells are sequentially transmitted in 2p consecutive clock cycles 
using blocks of 2p bits. M registers hold the indices of the cells which are connected to the 
cell under consideration. Each index is encoded by p+q bits, where p bits are used to  
address the bit number within a block and q bits represent the block’s address 

Conclusion 

A hardware-in-the-loop approach is used for the hardware accelerated evaluation 
of cellular automata evolved by a genetic algorithm which is implemented in 
software. Based on a basic parallel hardware implementation of the CA, an 
area/time trade-off is developed and a flexible solution feasible for the fast evalua-
tion of different connection structures in the small-world domain, a run-time pro-
grammable architecture, is presented.  
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Abstract  

CMOS implementation of a neuron activation function. Proposed current mode circuit can 
classify data separable with more complex decision boundaries than hyperplanes. SPICE 
simulation results are included to verify the expected outcomes.  

Introduction 

The basic building block of a Feed-forward Artificial Neural Network (FANN)  
is a simple processing element called neuron. The response of each neuron in a 
FANN is the output of a block with nonlinear transfer characteristic, called activa-
tion function, in the shape of a sigmoid which is monotonically nondecreasing and 
is bounded by finite upper and lower limits. Typical activation functions are: the 
hard limiter characterized by the signum function, the piecewise linearized version 
of the hard limiter, or the continuously differentiable version expressed with the 
exponential function [1]. A popular choice for neuron activation function (NAF) 
can be defined as 
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where k >0 is proportional to the neuron gain determining the steepness of the 
continuous function f (x). The continuous function is shown in Fig. 1. for k =7.   
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Fig. 1. Neuron activation function 

The kind of data that the perceptron classifies can be linearly separable by a 
hyperplane  as shown in Fig. 2a and not of the type as shown in Fig. 2b which ne-
cessitates an activation function with double threshold; its piecewise linear version 
is called the Trapezoidal Activation Function (TAF). The stability properties of 
NN with TAFF have been investigated in [3]; a switched capacitor CMOS imple-
mentation of a cell with TAF was proposed in [4].   

 

           

                                        (a)                                (b) 

Fig. 2.   (a) Linearly separable  (b) double threshold decision regions 

In this paper an analog circuit realization of a neuron activation function is pro-
posed to classify data of the two hyper-planes. The circuit makes use of two 
CMOS-only current follower circuits operating in current mode; one follower has 
a transfer characteristic which is shaped like a sigmoid and the other shaped like a 
sigmoid rotated around the y-axis, together providing a TAF hence, a decision re-
gion like in Fig. 2b. Moreover, it is shown that by mismatching the bias currents 
of the followers more interesting decision regions can be obtained. 

Current Followers  

The Current Follower (CF), with its symbol shown in Fig. 3, is an active multi-
terminal element defined with the following matrix equality: 

f(X)

X
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where the plus and minus signs of the current transfer ratio refer to a CF+ and CF–, 
respectively; K is the current gain of the current follower.  

 

Fig. 3. Symbol of the current follower 

Current followers have been widely used to synthesize various analog signal 
processing circuits, such as analog filtering circuits [5]. Similarly using CFs to de-
velop a double threshold classifier seems to be promising. 

Current mirrors are used to construct current followers. A class AB CMOS 
realization of a CF+ is given in Fig. 4 and its DC transfer characteristic is shown 
in Fig. 5; this characteristic can be used to build the desired activation function  
of neural network structures. CF– is obtained by adding cross-coupled current-
mirrors to the implementation of CF+. 
 

Fig. 4. Class AB implementation of CF+ 

The desired new configuration for realizing a double threshold classifier can be 
obtained by using a shifted CF+ and a shifted CF– in the implementation. 
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Fig. 5. DC transfer characteristics of a CF+ 

Block Diagram Description 

The block diagram of the proposed circuit, consisting of two current follower 
blocks with transfer characteristics shown in the boxes and expressed as in (3), is 
given in Fig. 6. In (3) K is the current follower circuit’s current gain and the other 
symbols are as shown in the block diagram of Fig. 6; it should be observed that 
the current sources at the input ports provide the x-axis intercept of the current fol-
lowers. The adder blocks shown in Fig. 6 need to be implemented simply with 
single nodes as the circuit operates in current mode 
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In order to achieve the appropriate trapezoidal current transfer characteristic shape 
as shown in Fig. 6 the following constraints must be satisfied: 

                         d b and  Ii1=Ii2=Iin .                                             (4) 

However, as will be shown in the sequel, much more interesting decision regions 
can be obtained if the equality constraint in (4) is not fulfilled. 

.  
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Fig. 6. Activation function circuit block diagram 

MOS Circuit 

The proposed activation function circuit’s schematic which consists of two cur-
rent followers, is shown in Fig. 7. The transistors M1 and M2 in the figure are for 
providing the bias, transistors M3, M4, M5 and M6 constitute the input stage of the 
negative current follower, transistors M7, M8, M9 and M10 constitute the input 
stages of the positive current follower. Current sources Is1 and Is2 are used to shift 
the input currents of the current follower, consequently of the x-axis intercepts of 
TAF. This shift of the intercept points by adjusting the starting and ending 
boundaries of the specified decision region makes the device custom tunable. It 
should be observed that in the circuit all the transistors are working in saturation. 
In the sequel PSPICE simulation results using TSMC MOSIS 0.35 μm CMOS 
process model will be given. 

Fig. 7. The schematic of the circuit 
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Simulation Results 

The voltage supply used in the proposed circuit is ±2.5 V, the current IB is  
chosen as 200 μA and the total power dissipation of the circuit is 19.3 mW.  The 
dimensions of the transistors are given in Table 1. Following a SPICE simulation, 
Io1-Ii1 and Io2-Ii2 characteristics of the circuit are shown in Fig. 8a and b,  
respectively. Taking Ii1=Ii2=Iin, Is1=50 mA and Is2=20 mA, results in the Io-Iin  
characteristic of the circuit shown in Fig. 9. 

 
MOSFET W (μm) L (μm) 

M1, M2, M3, M4 10 0.7 
M5, M6,M9, M10,M11, 

M12,M13, M14 M15, M16,M18 
7 0.7 

M7, M17 9 0.7 
M8 8 0.7 

Table 1. Dimensions of the transistors 

Fig. 8. (a) Io1–Ii1 characteristics of the circuit. (b) Io2–Ii2 characteristic of the circuit 
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5.0mA 5.0mA

40mA 80mA
–5.0mA –5.0mA
–2.0mA

0A 0A

0A 40mA 80mA–2.0mA 0A



Current Mode Double Threshold Neuron Activation Function      273 

Fig. 9. Io-Iin characteristic of the circuit 

The 3-D surface graphics of the circuit for Ii1=Ii2=Iin is shown in Fig. 10 which  
exhibits the desired behavior of an FANN cell with TAF. 

 
Fig. 10. Surface graphic of FANN cell with TAF 

The surface graphics of the circuit for unequal input currents Ii1 and Ii2 (equality 
in (4) not satisfied) is shown in Fig. 11. The interesting feature of this surface 
graphic is the presence of three different decision regions. 

 

 
Fig. 11. Surface graphic of FANN cell 
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Conclusion 

In this paper, a current mode CMOS-only neuron activation function circuit has 
been proposed. This neuron classifies linearly nonseparable data, subject to some 
boundary conditions. Violation of boundary conditions yields more complex deci-
sion regions which need to be identified. 

For further research, the main issue that remains to be addressed is the exact 
class of data which can be identified with such a circuit topology.  
 

References 

[1]  C. Fausto and V. Maurizio, “A Mixed Mode Perceptron Cell for VLSI Neural Net-
works”, ICECS, pp. 377–380, 2001 

[2]  A.K. Gupta and N. Bhat, “Asymmetric Cross-Coupled Differential Pair Configuration 
to realize Neuron Activation Function and its Derivative”, IEEE Trans. Circuit Syst., 
vol. 52, pp.10–13, 2005 

[3]  E. Bilgili., .C. Göknar and O.N. Uçan “Cellular Neural Networks with Trapezoidal 
Activation Function,” resubmitted to Int. J. Circuit Theory Applic. 

[4]  D.Y. Aksın, S. Aras, .C. Göknar, “CMOS Realization of User Programmable, Single-
Level, Double-Threshold Generalized Perceptron,” Proceedings of Turkish Artificial 

Intelligence and Neural Networks Conference, TAINN-2000, zmir, Turkey, June 2000 
[5]  S.I. Lio, J.J. Chen, H.W. Tsao and J.H. Tsay, “Design of biquad filters with a single 

current follower”, IEE Proceedings, Part G, vol. 140, No. 3, 1993 



Gradient Networks for Clustering 

H. Do an and C. Güzeli  

Department of Electrical & Electronics, Dokuz Eylül University Kaynaklar  
Campus, 35160 Buca, Izmir, Turkey  
hatice.dogan@eee.deu.edu.tr,  
cuneyt.guzelis@deu.edu.tr  
Tel. +90-232-4127164 Fax: +90-232-4534279 

Abstract 

In this paper, two different optimization formulations for clustering problem are considered. 
The first one is the common mixed-integer optimization formulation and the second one is 
the binary integer optimization formulation which was proposed by the authors. The costs 
of the optimization problems were minimized by two different gradient dynamical net-
works. The performances of the networks were compared with each other on the image 
compression applications. 

Introduction 

Clustering is the partition of the data into k groups in such a way that data in a 
given group are more similar to each other according to a chosen similarity meas-
ure than the rest [1, 2]. Each group is called cluster. In a former work of the au-
thors, a new mixed-integer optimization formulation for the clustering problem 
was proposed which is quite different from the ones available in the literature and 
transformed into a binary integer optimization formulation [3]. In this paper, the 
performances of the max coupled gradient network which was proposed for the 
minimization of the common optimization formulation [4] and the gradient net-
work which was proposed for the minimization of the binary integer optimization 
formulation are compared with each other. The paper is organized as follows: the 
max coupled gradient network is reviewed in Sect. 2, the gradient network is ex-
plained in Sect. 3, applications and results are presented in Sect. 4 and conclusions 
are given in Sect. 5. 
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Max Coupled Gradient Network 

A common optimization formulation of the clustering can be given as the follow-
ing optimization problem: 
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where xj  ,  j = 1,…, L ; xj ∈Rn a finite set of sample data vectors, k is the  number 
of clusters, Cnxk = (c1,...,ck); ci ∈Rn, is the center matrix which consists of k, n di-
mensional center vectors, MkxL = (m1,...,mL) with m ∈ {0,1}k, is an indicator ma-
trix whose elements represent the memberships of data to certain clusters and  ||⋅|| 
is the Euclidean norm. Constraints provide that no data vector can be assigned to 
more than one cluster.  

A coupled gradient network which consists of two coupled interacting networks 
C-network and M-network was proposed for the minimization of (1) in [4]. C-
network is a dynamical network which is associated to continuous variables, i.e. 
centers. M-network is an algebraic network which is associated to discrete vari-
ables, i.e., cluster indicators. The network operates in a similar way to k-means 
clustering but centers and partitions are updated in a different manner. The output 
of the C-network is given as an input of the M-network without waiting the set-
tlement of the C-network. The convergence analysis of this network can be found 

tions and has the following linear dynamics: 
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mij ‘s in (2) are the outputs of algebraic M-network (maxnet) which consists of 
k×L neurons whose inputs are equal to − ||xj -ci||

2· mij ‘s can be calculated by using 
(3) 
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If mij = 1 for more than one i for the same j index, the smallest i should be chosen 
to satisfy the constraint

=
=k

i ijm
1

1.  

The forward Euler numerical integration was used for the computer simulation. 
The initial centers were chosen among the sample data in a random way. The time 
step in the numerical integration was set to 0.005. 

in [4]. The C-network consists of n × k neurons which has linear activation func-
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Gradient Network 

The binary integer optimization formulation of clustering was proposed in [3] 
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where mi is the ith row of the matrix M. In the last equation, objective function is 
the sum of maximum of different discrete equations. Each equation is coupled to 

each other via
=

=k

i ijm
1

1. 

mization of (4) in [3]. The columns of the network represent the data vectors that 
are to be classified and the rows of the network represent the given classes. mij’s 
are the outputs of the neurons. The winner-take-all rule was adopted to the outputs 
of the neurons that are in the same column for the satisfaction of the constraints. 
The dynamics of this network is given as 
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where z is the simulation step. To prevent the network for being trapped in early 
local minima noise is introduced into the system. During the optimization process 
the additive noise should approach zero in time so that the network itself will be-
come deterministic prior to reaching the final solution. 

Applications 

The networks are tested on image compression applications. To compress an im-
age, the whole image is divided into L blocks (a block represents a data vector xj 

chosen as 128. Algorithms were tested with 20 different random initial conditions. 
If an empty cluster occurs during the simulation, E(M) becomes infinite, because 
the number of elements in one cluster is in the denominator. To avoid this situa-
tion (6) is modified as follows: 

A Gradient network which consists of k × L neurons was proposed for the mini-

which occupies l × l pixels) and mapped onto the networks as network parameters. 
The data vectors were extracted from 128 ×128 images. The images were divided 
into 4 × 4 blocks to generate none-overlapping 16 dimensional vectors. The k was 
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where ftr and trf̂  are the pixel gray levels from the original and the reconstructed 
images and 255 is the peak gray level [5]. The PSNR results are shown in Table 1. 

Table 1. Average PSNRs of the reconstructed images 

Images Max Coupled GN Gradient Network 
bird 32.43 33.08 
Lena 27.57 27.86 
cameraman 24.57 25.79 

Conclusions 

In this paper two different optimization formulations and two different gradient 
networks are considered. According to the simulation results the performance of 
the gradient network is better than the max coupled gradient network. Also the 
gradient network has two major advantages: 

(1) optimization is done according to the one variable which indicates the 
membership of the data vector and 

(2) contrary to the first formulation, the second formulation does not contain 
the distance term so the computation time needed for the gradient network is much 
less than the max coupled gradient network. 
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Abstract 

We study a matrix inequality problem which was found to be useful in deriving sufficient 
conditions for the synchronization in networks of coupled chaotic systems. We consider 
classes of matrices for which this problem has an exact solution and solve the general case 
by solving sequentially a series of semidefinite programming problems. 

Introduction 

Recently, synchronization in networks of coupled chaotic systems has received 
considerable attention [1–4]. In [1,5–7], sufficient conditions for synchronization 
were obtained by means of a Lyapunov function and under certain assumptions the 
synchronization condition is reduced to a condition that depends on properties of the 
coupling matrix. For instance, in [8] the synchronization condition depends on the 
smallest nonzero eigenvalue of the symmetric part of the coupling matrix. On the other 
hand, for coupled linear systems the synchronization condition depends on the 
eigenvalues of the coupling matrix. Since the eigenvalues of a matrix can differ sig-
nificantly from the eigenvalues of its symmetric part, the question is whether we 
can bridge the gap between these two sets of conditions. We show that this question 
can be studied by solving an optimization problem with nonlinear semidefinite con-
straints. In particular, we solve this problem by solving a sequence of linear semidefi-
nite programming problems. 

We say a real matrix G is positive (semi-)definite if its symmetric part ½(G + GT) 

is positive (semi-)definite, i.e., xT(G + GT)x > 0 (> 0) 0≠∀x . We denote this by 
G 0 (G  0). This is equivalent to saying that the eigenvalues of G + GT 
are positive (nonnegative). 
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Synchronization in a Coupled Network of Chaotic 
Systems 

Definition 1. W is the set of real matrices with zero row sums and nonpositive 
off-diagonal elements. Ws is the set of irreducible symmetric matrices in W. 

 
Definition 2. A function f (y, t) is P-uniformly decreasing if   

( y-z)T P ( f( y, t) - f (z,t) ) ≤ -c|| y- z ||2 for some c > 0 and all y, z, t. 
 

It is easy to show that matrices in Ws have a simple zero eigenvalue [1]. We 
begin with a version of the synchronization result in [1,8]: 

 
Theorem 1.  A coupled network of n identical chaotic systems described by the 

state equation 

 x  = ( f (x1, t),... f (xn, t))T + (G ⊗  D(t))x , (1) 
 
where x = (x1, …, xn)T  synchronizes  in the sense that ||xi -xj || → 0 as 
t → ∞  if there exists a symmetric P 0 and a matrix U ∈  Ws such that: 

 
– The function f ( y,t) + D(t)y is P-uniformly decreasing 

– For all t, U(G – I) ⊗ PD(t)  0. 
 
In (1), the matrix G describes the static coupling topology between systems 

whereas the matrix D(t) describes the time-varying coupling term between two 
systems. The term D(t)y is the amount of feedback needed to stabilize  
y  = f ( y,t). Theorem 1 motivates us to define the following quantity. 

 
Definition 3.  Let μ(G) be the supremum of the set of real numbers μ such that 

U(G – μI )  0 for some U ∈  Ws. 
 
Using this definition, it follows that the network in (1) synchronizes if there  

exists a symmetric matrix P  0 such that f(y,t) + μ(G)D(t)y is P-uniformly  

decreasing and PD(t) = D(t)TP  0 for all t [5]. This suggests that μ(G) is a 
measure of how well the topology of the coupled network is amenable to synchro-
nization. The larger μ(G) is, the smaller D(t) needs to be and the easier it is to syn-
chronize the network. 

Theorem 1 is obtained via Lyapunov’s direct method and can be a global result. 
There exists another class of synchronization criteria based on the computation of 
Lyapunov exponents. These results are local in nature and are mathematically less 
rigorous. In these criteria, the nonzero eigenvalue of G with the smallest real part is 
important. Under certain conditions, by Corollary 3 this eigenvalue is larger than the 

 ,



Matrix Inequality and Its Application                                                                            281 

smallest nonzero eigenvalue of the symmetric part of G. Studying μ(G) allows us to 
find out what the gap is between the applicability of these two classes of methods.1 

Properties of μ(G) 

Since matrices in Ws are positive semidefinite, the set of real numbers such that 
U(G – μI )  0 for some U ∈Ws is an interval, i.e., if U(G – μI )  0 for some  
U ∈  Ws, then U(G - I)  0 for all  ≤  μ. 

 
Lemma 1 [1].  If A∈Ws and either AX  0 or AX  0, then X is a matrix 

with constant row sums. 
 
Lemma 1 implies that μ(G) is only defined when the matrix G has constant row 

sums. A matrix with constant row sums can be converted into a matrix with zero row 
sums by adding a multiple of the identity matrix. Thus for the purpose of finding 
μ(G) we can assume without loss of generality that G has zero row sums. In other 
words, adding I to G shifts μ(G) by . Therefore we focus on the set of zero row 
sums matrices. For a matrix with zero row sums, 0 is an eigenvalue with eigenvec-
tor e = (1,…,1)T. The next theorem shows that the quantity μ(G) exists for zero row 
sum matrices and gives a lower bound. 

 
Theorem 2.  If G has zero row sums, then μ(G) exists, i.e. there is a real number 

μ and a matrix U ∈  Ws such that U(G – μI)  0. Furthermore, 

μ(G) ))(()( min
TGGg +≥≥ λβ , 

where β  is defined as β (G)= ,|| || 1min x e x⊥ = xTGx 
 

Proof. Let J be the n by n matrix of all 1s and let Q = I Jn− . It is clear that 
Q ∈  Ws. Let U = Q. Define  the symmetric matrix H =  (U{G – μI) + (U(G – 
μI))T) =  (G + GT) – μQ –  (JG + GTJ). Since Je = ne and Ge = Qe = 0, 
it follows that He = 0. Let x ⊥ e with ||x|| = 1. This means that Qx = x. 
Then xTHx = xT(G + GT)x–μ- n xT{JG + GTJ)x. Since x ⊥ e, this implies 

 
 

                                                           
1 See [5] for further discussion between these two classes of results 
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Jx = 0 and thus xTHx = xT{G + GT)x – μ which means that H  0 if,  
μ 1

2≤  xT(G + GT)x. This implies μ(G) β≥ (G). The proof is then complete by 

noting that (G) ≥  min||x||=1x
TGx = minλ  (1/2 (G + GT)).  

 

Note that (G) = min||Kx||=1x
TKTGKx = λ min ( KT(G + GT)K) where K is 

an n by n–1 matrix whose columns form an orthonormal basis of e ⊥ , the  
orthogonal complement of e. Furthermore, by the Courant–Fischer min–max  

theorem, (G) ≤  2 ( (G + GT)), the second smallest eigenvalue of  (G+GT). 

 
Definition 4.  For a matrix G with zero row sums, let L(G) denote the eigen-

values of G that do not correspond to the eigenvector e. 
 
Corollary 1.  If G is a real matrix with zero row sums and zero column sums, 

then μ(G) ≥  s
2λ  (G) where s

2λ  (G) is the smallest eigenvalue in L( (G + GT)). 

Proof. Since e is an eigenvector of  (G+GT), we have s

2λ  (G) = (G). The result 

then follows from Theorem 2. 
 
Corollary 2.  If G∈W and has zero column sums, then μ(G) ≥  (G) ≥  0. If 

in addition G + GT is irreducible, then μ(G) ≥ (G) > 0. 
Proof. For a symmetric matrix X ∈W, 2(X) ≥ 0. For a matrix X∈Ws, 

2(X) > 0. This is a consequence of Perron–Frobenius theory (see e.g., [1]). The theo-
rem then follows from Theorem 2 and the fact that G + GT ∈W.  

 
Next we show an upper bound for μ(G). 
 
Definition 5. For a real matrix G with zero row sums, define μ2(G) as  

2 ( )(G) min Re( )L G∈= λμ λ ,  where Re( ) is the real part of . 
 
Theorem 3.  If G is a real matrix with zero row sums, then  

μ(G) ≤  μ2(G). 
Proof. This is a generalization of Theorem 3 in [5] and the proof  

is similar. Let  ∈L(G) with corresponding eigenvector v. Let U∈  Ws 
be such that U(G – μI) 0 for some real number μ. The kernel of U is 
spanned by e. By definition of L(G), v is not in the kernel of U. Since  
 
 
 
 

1
2

1
2

1
21

2

1
2

1
2

 ,



Matrix Inequality and Its Application                                                                            283 

(G – μI)v = (  – μ)v, this implies that v*U(G – μI)v = (  – μ )v*Uv. Positive 
semidefiniteness of U(G – μI) implies that Re(v*U(G – μI)v) ≥ 0. Since U is 
symmetric positive semidefinite and v is not in the kernel of U, v*Uv > 0. 
This implies that R ( ) – μ > 0.  

 
The following result may be of independent interest. 
 
Corollary 3.  If G is a real matrix with zero row sums, then 

m i n  (1/2(G  + GT))  ≤  β (G) μ≤ 2(G) .  
Proof. Follows from Theorems 2 and 3.  
 
Theorems 2 and 3 show that (G) ≤  μ(G) ≤  μ2(G). Next we present 

two classes of matrices for which there is a closed form expression for μ(G). 
 
Theorem 4. If G is a real normal matrix with zero row sums, then  

(G) = μ(G)=μ 2(G ) .  
Proof. First note that by normality G has zero column sums (see for 

example [1]). Furthermore, for a real normal matrix, the eigenvalues of 
(1/2)(G+GT) are just the real parts of the eigenvalues of G [9]. This implies that 
μ2(G)= s

2λ (G). The result then follows from Corollary 1 and Theorem 3.  
 
Theorem 5  [5]. If G is a triangular zero row sums matrix, then μ(G) = μ2(G). 
 
In the following section, we study via computer simulations matrices in W 

whose values of μ(G) are close to μ2(G). 

Computing μ(G) via Semidefinite Programming 

In this section, we show how μ(G) can be computed by solving a sequence of 
semidefinite programming (SDP) problems. 

First we note that by Theorems 2 and 3, μ(G) can be bounded in the inter-
val [ , μ2]. Next we show that for a fixed μ, finding U ∈  Ws such that  
U(G – I)  0 is a feasibility SDP problem. Clearly U(G – I)  0 is a lin-
ear matrix inequality. A matrix U is in Ws if and only if: 

 
1. U is symmetric 
2. all off-diagonal elements of U are nonpositive 
3. each row of U sums to zero 
4. zero eigenvalue of U has multiplicity 1, i.e., 0 ∉L(G). 

 
The first three requirements can clearly be cast as matrix constraints for an SDP 

problem. As for the fourth requirement, it is easy to show that it is equivalent to  

e



284      C.W. Wu 

 
the linear matrix inequality KTUK  0 where K is as defined in Sect. 3. To ensure 
that we do not get a very small U, we use the constraint KTUK  I instead. It is 
clear that this does not affect the value of μ(G). Thus the feasibility SDP problem we 
need to solve is 

 
Find U = UT such that 
U(G - μI) 0,  Ue = 0, Ui,j ≤ 0    ji ≠∀  and –KTUK  I.           (2) 
 

Since the set of values of μ such that U(G – μI) 0 for some U ∈ Ws is an inter-
val, we can compute μ(G) by using the bisection method to successively refine μ and 
then solving the corresponding SDP problem (2). This is shown in Algorithm 1 
where ub is initially set to μ2(G) and lb is initially set to (G). 

Algorithm 1 Compute μ(G) 
μ ←  ub 
if Problem (2) is infeasible then  

while |ub — lb| >   do  
μ ←  1/2(ub + lb) 
if Problem (2) is infeasible then 

ub ← μ   
else 

    Ib ←  μ,  
end if 

end while  
end if  
μ(G) ←  μ  
 
 
There exists many public domain and commercial programs that can 

solve SDP problems. The reader is referred to http://www-user.tu-chemnitz.de/ 
~helmberg/sdp_software.html for a list. We have elected to use CSDP 4.7 [10] 
with  the YALMIP 3 MATLAB interface  (http://control.ee.ethz.ch/ ~joloef/ 
yalmip.msql) to solve the SDP problem. 

Zero row sums matrices 

Our computer results are summarized in Table 1. Zero row sums matrices of 
small order are generated and their values of μ(G) are computed. For each order n, 

5,000 zero row sums matrices are chosen by generating the off-diagonal elements inde-

pendently from a uniform distribution in the interval 1 1, .2 2− The matrices are 

categorized into two groups depending on whether all their eigenvalues are real or 
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not. For each group, the mean and the standard deviation of the quantities 

0 ≤  i(G) = 
)()(
)()(

2 GG

GG

βμ
βμ

−
− 1≤ and r(G ) = 

)(
)(

2 G

G

μ
μ

are listed. 

Table 1. Statistics of i(G) =
)()(
)()(

2 GG

GG

βμ
βμ

−
−  and r(G) =

)(
)(

2 G

G

μ
μ  for zero row sum 

matrices. 

We observe quite a difference between the behavior of i(G) and r(G) for matrices 
with only real eigenvalues and for matrices with complex eigenvalues. In particu-
lar, we see that i(G) is close to 1 for matrices with only real eigenvalues which  
implies that μ(G) is close to μ2(G) in this case. On the other hand, for matrices 
with complex eigenvalues, the statistics of i(G) show that μ(G) is usually signifi-
cantly less than μ2(G). 

Matrices in W 

Our computer results for matrices in W are summarized in Table 2. For each 
order n, 5,000 zero row sums matrices are chosen by generating the off-diagonal 
elements independently from a uniform distribution in the interval [–1,0]. The matri-
ces are categorized into two groups depending on whether all their eigenvalues are 
real or not. For each group, the mean and the standard deviation of the quantities 
i(G) and r(G) are listed. 

Table 2. Statistics of  matrices in W. i(G) =
)()(
)()(

2 GG

GG

βμ
βμ

−
−  and r(G) =

)(
)(

2 G

G

μ
μ

only real eigenvalues

order

real and complex elgenvalues

real and complx eigenvalues

order

only real eigenvalues



286      C.W. Wu 

In contrast to general zero row sums matrices, the behaviors of μ(G) for  
matrices in W with only real eigenvalues and for matrices in W with complex  
eigenvalues are similar. Furthermore, μ(G) is very close to μ2(G), especially for  
matrices with only real eigenvalues. It remains to be seen whether the small discrepancy 
between μ(G) and μ2(G) is real or an artifact of the numerical algorithm. 

Conclusions 

We study a quantity μ(G) of a matrix G which characterizes the coupling topology in 
networks of coupled chaotic systems. This quantity is useful in determining a syn-
chronization criterion for the network. We derive upper and lower bounds for (G), 
give closed form expressions of μ(G) for some classes of matrices and present an 
algorithm for determining μ(G) using semidefinite programming. The computer re-
sults suggest that μ(G) is close to the upper bound μ2(G) when 

1. G∈W or 
2. G is a zero row sums matrix with only real eigenvalues. 

An interesting question for further investigation is what are the (non-normal) matrices 
for which  = μ2? 

Finally, we would like to point out that for the case of dynamic coupling topol-
ogy (G = G(t) is a matrix that changes with time), the quantity (G(t)) is useful 
in characterizing the synchronization properties [11]. 
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Abstract  

In this work, we carry out a rigorous analysis of Chua’s circuit in terms of short periodic 
orbits. The circuit is considered with parameter values for which the Roessler type attractor 
is observed. A very narrow enclosure of the set enclosing the attractor is found and all short 
periodic orbits embedded within the numerically observed attractor are located. A compari-
son with nonrigorous technique for detection of periodic orbits using the method of 
close returns is also presented. 

Introduction 

The existence and exact positions of periodic orbits are key properties in analysis 
of nonlinear systems and in many applications. In this work, we describe and 
compare two methods for detection of periodic orbits in chaotic systems. The first 
one is a nonrigorous method based on the search for pseudoperiodic points, while 
the second one is an interval arithmetic method allowing to rigorously find all 
short cycles.  

In Sect. 3 results of finding periodic orbits using a combination of the method 
of close returns and the Newton method are presented. In Sect. 4 we describe a 
rigorous method for finding all low-period cycles and its application for the 
Chua’s circuit. We also compare the results obtained with these two methods. 

Chua’s Circuit 

The Chua’s circuit [1] is a simple third-order piecewise linear electronic circuit 
exhibiting very complex trajectories. It is defined by the set of equations 
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where g(z) = Gbz + 0.5(Ga  Gb)(|z+1|  |z 1|) is a three segment piecewise  
linear characteristics. The circuit is studied with the following parameter values 
(after parameter rescaling) C1 = 1, C2 = 7.65, Ga = 3.4429, Gb = 2.1849,  
L = 0.06913, R = 0.33065, R0 = 0.00036, for which the Roessler-type attractor is 
observed in computer simulations (compare Fig. 1a). 

Fig. 1. Computer simulations of Chua’s circuit, (a) Roessler-type attractor, (b) trajectory of 
the Poincaré map defined by the hyperplane 2 = {x: x1 = 1} 

The state space 3ℜ can be divided into three open regions 
3

1 1{ : 1}U x x= ∈ℜ < − , 2 1{ :| | 1}U x x= < , and 3 1{ : 1}U x x= <  separated 
by planes 1 = {x: x1= 1} and 2 = {x: x1 = 1}. In the regions Ui, the system is 
linear, the state equation can be written as: ( )i ix A x p= −  where 

3 3 3,x

i iA p∈ℜ ∈ℜ  and the solution has the form 

  
In the analysis of the Chua’s circuit we use the technique of the Poincaré map. 

We study the Poincaré map P : 22 ΣΣ   defined as: 

  (2) 
where (t, x) is the trajectory of the system based at x, and (x) is the time 

needed for the trajectory (t, x) to reach 2. An example trajectory of P is shown 
in Fig. 1b. 

For piecewise linear systems the planes separating linear regions are the most 
natural choice for the hyperplanes defining the Poincaré map. For the parameter 
values considered the Poincaré map is continuous on the attractor, which makes it 
possible to rigorously find all short period cycles. 

,

,
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Detection of Short Periodic Orbits 

As the first method for detection of periodic orbits we use a combination of the 
method of close returns and the Newton method. Periodic orbits of P are three ex-
tracted using the method of close returns [2]. We monitor a trajectory ( yi) and look 
for δ –pseudoperiodic orbits, i.e., for points yi such that || ||i p iy y+ − ≤δ ,  where 

δ  is a small positive real number. 
The performance of the method of close returns used for finding all low-period 

cycles depends on the way we treat pseudoperiodic orbits that are close to each 
other. A criterion to distinguish different orbits is based on the computation of dis-
tance between two pseudoperiodic orbits 

 
If we find a new pseudoperiodic orbit (x0, x1,…,xp 1) of length p we compute its 

distance from all pseudoperiodic orbits of the same length already found. If the 
minimum distance is smaller than , where  is a fixed positive real number, we 
skip the new pseudoperiodic orbit. 

The method of close returns is a very good technique for detection of periodic 
orbits from experimental data. The quality of pseudoperiodic orbits obtained using 
this method is however low, i.e., δ  is usually large. In theory we could choose 
arbitrarily small value of δ  to locate all periodic orbits embedded within a cha-
otic attractor. The main drawback of using very small δ  is that we would have to 
wait very long to find any pseudoperiodic orbit. 

In case we have access to the equations defining the dynamical system we can 
use this information to improve approximation of the periodic orbit. One of the 
options is to use the Newton method. The Newton method is an iterative method 
for finding zeros of an n-dimensional function : n n

f ℜ ℜ . Starting from the 
initial point x0 we compute successive approximations using the formula: 

 
where f′ (xk) is the Jacobian matrix of f evaluated at xk. The Newton method has 

a quadratic convergence provided that the initial point is chosen close enough to 
the zero of f. 

The Newton method can be used for finding period–p orbits of f by applying 
the Newton operator to the map nxp nxp:F ℜ ℜ  defined by  

 
where z = (x0, . . . , xp 1). F(z) = 0 if and only if x0 is a fixed point of f p. This  

approach gives better results than searching for zeros of the map id  f p. 
The method for detection of periodic orbits of P up to length m consists of the 

following steps. For successive iterations yi of P, we compute the distance between 
yi and the previous iterations yi p for p = 1, 2,…,m. If for a given p the distance 
||yi yi p|| is smaller than δ  we use the Newton method to improve approximation 
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of the position of the periodic orbit starting from 1
0( ) p

j jx −
= , where xj = yi p+j for  

j = 0, …, p  1. If the Newton method does not converge the pseudoperiodic orbit 
is skipped. Next we compute the distance between this periodic orbit and periodic 
orbits of the same length found before. If the minimum distance is smaller than  
the pseudoperiodic orbit is skipped. The orbit is also skipped if we suspect that  
p is not the minimum period, i.e., if 

 
for some k such that p | k. Otherwise, we record the periodic orbit as a new one. 
This technique has been applied for search of periodic orbits of length p ≤  30 of 
the Poincaré map P associated with the Chua’s circuit. In the search process we 
have used δ = 0.03 for detection of pseudoperiodic orbits and  = 0.001 for elimi-
nation of close orbits. The trajectory of the Poincaré map composed of 10,000 
points was generated. 38013 δ –pseudoperiodic orbits were found. The last orbit 
was found for the iteration i = 5024. For the remaining iterations no new periodic 
orbits were found. This indicates that probability of locating all periodic orbits 
with period p ≤  30 is high. 

Fig. 2. Short periodic orbits of the Chua’s circuit 

Periodic orbits with length n ≤  22 are shown in Fig. 2. The results are col-
lected in Table 1. We report the starting point x0, the maximum distance 

 
after improving the approximation using the Newton method, the distance d to the 
closest orbit found before and number s of periodic orbits that were skipped in the 
search process as they were located close to a given orbit. This parameter tells us 
how frequently trajectories visit the neighborhood of a given orbit. 

A periodic orbit may be not found if either it is located in the part of the attrac-
tor which is visited very rarely or what is more likely the orbit is located close to 
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another orbit, i.e., we have chosen too large . On the other hand decreasing  may 
produce many spurious orbits. For example, when  = 10 5 was used the procedure 
found two period-2 orbits, and two period-4 orbits, while we know from the re-
sults obtained in the next section that there is only one period-2 and one period-4 
orbit. 

We cannot say whether all orbits found are true different periodic orbits. For 
example it is likely that the second of the period-18 orbits found corresponds in 
fact to the same orbit as the first one. In the next section we verify the results  
obtained here with the results of rigorous computations. We confirm that for p ≤  
16 all orbits are found correctly, and no spurious orbits are detected. It however 
remains unknown whether the results obtained for p > 16 are correct. 

Table 1. Periodic orbits of the Poincaré map found using the method of close returns  
combined with the Newton method, Qp — the number of period–p cycles found, see expla-
nations in the text 
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Study of Periodic Orbits with Interval Methods 

Here, we validate the results obtained in the previous section using the interval 
methods. For rigorous evaluation of P and its Jacobian we use analytical formulas 
for solutions of linear systems (see [3] for details). 

We start the rigorous analysis by finding a positively invariant set A (i.e., a set 
such that P(x) ∈  A for all x ∈  A) containing the numerically observed attractor. 
We have proved that the set A shown in Fig. 3 is positively invariant. This was 
done by covering the region A by a number of boxes, computing image of each 
box, and checking that all images are enclosed in A. 

 
Fig. 3. A positively invariant set enclosing the numerically observed attractor 

In the second step, we find the graph representation of the dynamics of the  
system in the trapping region (see also [4]). The trapping region is covered by 
 –boxes, i.e., sets of the form v  =  [k1  1, (k1+1)  1 ] × [k2  2 , (k2+1)  2 ], where ki 
are integer numbers, i are fixed positive real numbers, and  = ( 1, 2). In the  
following computations we use the covering of A composed of 11891 –boxes 
with  = (0.000125, 0, 0003125). 

Next, the set {( , ) : ( ) }i j i jE v v P v v= ∩ ≠ ∅  of nonforbidden transitions  between

#E = 67485. 
Using the graph representation we can find all low-period cycles of the Poin-

caré map (see [5] for details). We start by finding all period-p cycles in the graph. 
In order to study the existence of periodic orbits corresponding to this cycle we 
use the Hansen–Sengupta operator H, which is a standard interval tool for proving 
the existence of zeros of nonlinear maps (compare [6]). We evaluate the interval 
operator H on the interval vector z, corresponding to the cycle under study. If 

( )z H z∩ = ∅  then there is no period-n orbits in z.  If ( )H z z⊂  then there is 
exactly one period-n orbit inside z. 

 these boxes is found. It was checked that for the covering considered  
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Using the procedure described earlier we have found all periodic orbits of P 
with period p ≤  16. The results are collected in Table 2. One should notice that 
there are no periodic orbits with period 6, 10, and 14. 

Table 2. Number of periodic orbits of the Poincaré map found using interval methods, Qp is 
the number of period-p cycles 

 
These results confirm that the nonrigorous method discussed in the first part  

of this paper correctly detects all periodic orbits up to period 16. We were how-
ever not able to check the results obtained for longer periods due to very long 
computation time needed to complete the full search for periodic orbits in the 
trapping region. 

Conclusions 

In this paper we have described two methods for detection of periodic orbits in 
chaotic systems. As an example, we have used these methods for finding short pe-
riodic orbits for the Chua’s circuit. 

We have shown that the method of close returns combined with the Newton 
method is capable of detecting all low-period cycles. Its main advantage is that it 
is an easy to implement general method, which can be used for a broad class of 
nonlinear systems. 

We have also described a rigorous method for studying the existence of peri-
odic orbits in piecewise linear systems. The main assumptions for the method to 
work is that the Poincaré map is continuous in the region containing the numeri-
cally observed attractor. With this assumption it is possible to find all low-period 
cycles for the system. 

For the Chua’s circuit, we have found a trapping region for the Poincaré map 
and all periodic orbits with period n ≤  16 enclosed in the trapping region. These 
results have been used to validate the results obtained by the first method. 
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Abstract 

In this study, a complex behavior in a ring of chaotic circuits related with intermittency is 
investigated. When each chaotic circuit generates three-periodic solution, various different 
types of synchronization states are observed. However, if a control parameter of each  
chaotic circuit is varied to generate intermittency chaos near the three-periodic window, 
intermittency bursts interrupt the synchronizations and different synchronizations reappear 
after the bursts settle down. 

Introduction 

Synchronization and the related bifurcation of coupled chaotic networks are good 
models to describe various higher-dimensional nonlinear phenomena in the field 
of natural science. In particular, the breakdown of chaos synchronization has at-
tracted many researchers’ attentions and their mechanisms have been gradually 
made clear [1–5]. However, a lot of phenomena around chaos synchronization are 
still veiled as well as other nonlinear problems. Hence, in order to understand and 
exploit such phenomena, it is important to discover them, to model them, and to 
investigate them. 

On the other hand, intermittency chaos [6] is deeply related to the edge of chaos 
[7] and many people suggest that such a behavior between order and chaos gains 
better performance for various kinds of information processing than fully devel-
oped chaos. Therefore, we consider that unveiling various roles of the intermit-
tency chaos is important to exploit it for future engineering applications. 

In this study, a complex behavior in a ring of chaotic circuits related with 
intermittency is investigated. At first, we analyze behavior in a basic system of 
two coupled chaotic circuits. Next, we observe more complex behavior when the 
two coupled chaotic circuits are expanded to a ring of chaotic circuits. In that case, 
we observe various different types of synchronization states when each chaotic 



298      Y. Uwate et al. 

circuit generates three-periodic solution. And, we vary a control parameter of each 
chaotic circuit to generate intermittency chaos near the three-periodic window. So, 
we can observe a complex behavior of the various synchronization states. Namely, 
intermittency bursts interrupt the synchronizations and different synchronizations 
reappear after the bursts settle down. 

Basic Coupled Circuit 

Figure 1 shows the basic coupled circuit. Each subcircuit is three-dimensional 
autonomous one and consists of three memory elements, one linear negative resis-
tor and one diode. We can regard the diodes as pure resistive elements, because 
operation frequency is not too high. Figure 2 shows three-periodic attractor ob-
served from each subcircuit. 

 
Fig. 1. Basic coupled circuit 

Fig. 2. Three-periodic attractor observed form each subcircuit. (a) Computer calculated 
result. xk vs. zk.  = 7.0,  = 0.152,  = 0.0, and  = 100.0.  (b) Circuit experimental result Ik 
vs. vk. L1 = 300 mH, L2 = 10 mH, C = 33 nF, r = 740  and R = 0.0  

Figure 3(1) shows that three different types of synchronization states, when the 
two circuits generating the three-periodic attractors are coupled. These three syn-
chronization states can be obtained by giving different initial conditions. As we 
can see from the figures, the two circuits tend to be synchronized in antiphase. 
This is because the states minimizing the energy consumed by the coupling resis-
tor R correspond to stable synchronization states. For three-periodic solutions 
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there exist three different peaks in the waveform. Hence, three different synchro-
nization states can coexist as shown in Fig. 3 (1). 

We also confirm the generation of the three different synchronization states in 
circuit experiments as shown in Fig. 3(2). 

Next, we vary a control parameter of each subcircuit to generate intermittency 
chaos near the three-periodic window as shown in Fig. 4. 

Fig. 3. Time waveforms of three synchronization states. (1) Computer calculated results.  
 = 7.0,  = 0.152,  = 0.005 and  = 100.0. (2) Circuit experimental results. L1 = 300 mH, 

L2 = 10 mH, C = 33 nF, r = 740  and R = 40.0 . (a) State T1. (b) State T2. (c) State T3. 

Fig. 4. Intermittency chaos near the three-periodic window. (a) Computer calculated result. 
xk vs. zk.  = 7.0,  = 0.133682,  = 0.0 and  = 100.0. (b) Circuit experimental result. Ik vs. 
vk. L1 = 300 mH, L2 = 10 mH, C = 33 nF, r = 735  and R = 0.0 . 

If we couple the two chaotic circuits when the intermittency chaos appear, we 
can observe a complex behavior of the three synchronization states. Namely, 
intermittency bursts disturb the synchronizations and different synchronizations 
appear and disappear in a chaotic way. 

In order to investigate the complex phenomenon, we define the Poincaré sec-
tion as z1 = 0 and x1 < 0. The data of x1 on the Poincaré map is denoted as 1x̂ . 
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Further we plot the discrete data of 2x̂  on the Poincaré map when 1x̂  is smaller 

than –1.2. This threshold is introduced in order to extract only the data when 1̂x  
takes the largest peak (bullets in the waveform in Fig. 3). Figure 5(a) shows the 
discrete data of 2x̂ obtained by the above-mentioned method. We can see that the 
synchronization states are interrupted by the intermittent bursts and different syn-
chronization states reappear after the bursts settle down. Although the results can 
not be shown in the same manner, we also confirmed the same phenomenon in the 
circuit experiments. The changing of the synchronization states can be shown in a 
picture as Fig. 5b. 

 

Fig. 5.   Time  series   of synchronization  states  disturbed   by   intermittency   chaos.      
(a) Computer calculated results.  = 7.0,  = 0.133682,  = 0.005 and  = 100.0. (b) Circuit 
experimental results. L1=300 mH, L2=10 mH, C=33 nF, r=735  and R = 40.0  

Ring of Chaotic Circuits 

In this section, we consider a ring of the circuits as shown in Fig. 6. In this circuit 
adjacent two subcircuits are coupled by one resistor R. Because such coupling sys-
tems tend to minimize the energy consumed by the coupling resistors, every two 
adjacent subcircuits tend to synchronize with antiphase. 

 
Fig. 6. Ring of chaotic circuits 



Complex Behavior and its Analysis in Chaotic Circuits Networks with Intermittency      301 

 
At first, the i–v characteristics of the diodes are approximated by two-segment 

piecewise-linear functions as 
 ).EirEir(5.0)i(v ddkdkd −−+=  (1) 
By changing the variables and parameters: 
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the normalized circuit equations are given as: 
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where 
 )1y1y(5.0)y(f kkk −−+=  (4) 
and 
 RN0R1LLN xx,xx ==  (5) 
Note that when the coupling parameter , which is in proportion to R, is equal to 
zero, the coupling term in (3) vanishes. For all of computer calculations, 
the fourth-order Runge–Kutta method is used with step size h = 0.005. 
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Fig. 7. Various different types of synchronization states (computer calculated results). 
=7.0, =0.16, =0.005 and =50.0. 

Upper figures: 2 2ˆ x̂R Lx +  Middle figures: 33 ˆˆ
LR xx + . Lower figures: 44 ˆˆ

LR xx +  

At first, we carried out computer simulations for the case of N = 4. When each 
chaotic circuit generates three-periodic solution, we observed various different 
types of synchronization states by changing initial values. Figure 7 shows three 
examples of the synchronization states. In the figure, the upper figures show the 
data of 22 ˆˆ

LR xx + , when 11 ˆˆ
LR xx + is smaller than –1.2. The middle and the 

lower figures are 33 ˆˆ
LR xx +  and 44 ˆˆ

LR xx + , respectively. Namely, each figure 

shows the synchronization state of the circuits, when 11 ˆˆ
LR xx +  is defined as the 

reference signal. As shown in Fig. 3, the two coupled circuits have three different 
synchronization states (T1, T2, and T3). Because this feature remains in the case of 
the ring, we can confirm the generation of various different synchronization  
patterns characterized by combinations of T1, T2, and T3. For example, the upper 
figure in Fig. 7a shows that the synchronization state between the reference  
circuit and the second circuit is T2 (see Fig. 3b). Note that the synchronization 
state between the reference circuit and the third circuit is inverted, because this 
type of coupling makes the adjacent circuits to be synchronized at antiphase. In 
the case of N = 4, we can say that there exist 34–1= 27 synchronization patterns in 
the ring. 

Next, we vary a control parameter of each chaotic circuit to generate intermit-
tency chaos near the three-periodic window. We can observe a complex behavior 
of the various synchronization state in a ring of chaotic circuits when the intermit-
tency chaos appear. Figure 8 shows that the frozen synchronization patterns in Fig. 7 
are disturbed by intermittency chaos and different patterns appear and reappear in 
a chaotic way. 
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Fig. 8. Time series of synchronization states disturbed by intermittency chaos for  
N = 4.  = 7.0,  = 0.152,  = 0.005 and  = 50.0.  (a) 22 ˆˆ

LR xx + . (b) 33 ˆˆ
LR xx + . 

(c) 44 ˆˆ
LR xx + . 

Next, we consider the case of N = 8. In this case, 38–1 = 2,187 different syn-
chronization patterns coexist, when each chaotic circuit generates three-periodic 
window. We can confirm that the complex phenomena changing a large number 
of synchronization patterns are generated in the ring (see Fig. 9). 

This feature would be expanded to the ring with N chaotic circuits for any  
even N. In that case, we could observe the complex phenomena changing 3(N-1) dif-
ferent synchronization patterns. 

Fig. 9. Time series of synchronization states disturbed by intermittency chaos for  
N = 8.  = 7.0,  = 0.152,  = 0.005 and  = 50.0. (a) 2L2R x̂x̂ + . (b) 33 ˆˆ

LR xx +  .

(c) 44 ˆˆ
LR xx + .(d)  55 ˆˆ

LR xx + . (e) 66 ˆˆ
LR xx + .   (f) 77 ˆˆ

LR xx + .  (g) 88 ˆˆ
LR xx +  

Conclusions 

In this study, we investigated a complex behavior in a ring of coupled chaotic  
circuits related with intermittency chaos near the three periodic window. We  
confirmed that the intermittency bursts interrupt the synchronization states and 
different synchronization patterns reappear after the bursts settle down. 
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Remark 

We have proposed the modeling of the complex behavior in the two coupled cha-
otic circuits related with intermittency using a first-order Markov chain with four 
states. By computer simulations, we have confirmed the results obtained from the 
Markov chain model agree very well [8]. Furthermore, we consider that the 
switchings of the synchronization states in the complex behavior are caused by 
intermittency bursts of each chaotic circuit. Hence, we modeled the complex 
behavior by using one-dimensional map derived from the subcircuit and occur-
rence probabilities of different synchronization states [9]. 
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Abstract 

In this paper, we discuss the analysis of noisy nonlinear systems and circuits. 
Especially we consider circuits with an oscillatory behavior and limit cycles,  
respectively. Moreover, we study the Andronov–Hopf bifurcation in sinusoidal 
electrical oscillators under noisy disturbance. For this purpose the deterministic 
description of oscillators must be generalized using the concept of probability 
functions as well as invariant measures. It turns out that these two bifurcation 
approaches are not equivalent in general. We illustrate these noisy bifurcation 
concepts by means of a Meissner oscillator including a transistor. 

Introduction 

Although noise is of interest in all classes of nonlinear circuit this subject was 
studied during the last few years very intensively in the case of oscillator circuits. 
It is known that oscillators belong to the earliest electronic circuits. In 1913, 
Meissner developed a first tube oscillator for radio transmitter applications; see 
Mathis [20] for details of the history of electrical oscillators. Of course, tubes are 
replaced in almost all modern oscillator circuits by transistors but the functionality 
of these circuits does not change in principles. Especially the oscillatory behavior 
of these circuits can only be obtained if nonlinearity is included. This leads to 
nonlinear differential equations for the deterministic description of this class of 
circuits and it became a big obstacle for a successful circuit analysis. It follows 
that a complete and systematic design process for the class of oscillatory circuits 
including nonlinearities is missing until now although some progress was made 
during the last two decades. Recent efforts are related to the development of de-
sign approaches using computer algebra systems where the nonlinear describing 
equations can be solved at least in the case of polynomial nonlinearity models. 
These approaches apply nonlinear transformation and equivalence principles (see 
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e.g., [22]) as well as perturbation series (averaging [19–23], Volterra series [9], 
polynomial series [7]) and the Andronov–Hopf bifurcation theorem 
([1, 12, 16, 17, 25]) in order to deal with nonlinearities. Although the main ideas 
of these concepts are well-known, further research is needed in order to develop  
a reliable CAD system for oscillators which is useful for designers of oscillator 
circuits.  

Whereas deterministic analysis approaches proceed the problem of noise in  
oscillator circuits came in the focus of research during the last few years. Since 
electronic oscillator circuits based on nonlinear devices we have to consider noise 
in nonlinear circuits. Some interesting results about noisy nonlinear circuits were 
published by Weiss and Mathis [31] as well as Wyatt  and Coram [33] but their 
physical descriptions are restricted in essential to thermal noise in nonlinear cir-
cuits and we have to assume reciprocal circuits with positive resistors. Weiss and 
Mathis developed a new approach for noise analysis of nonlinear circuits based on 
ideas of nonlinear nonequilibrium thermodynamics which were invented by 
Stratonovich [26]. However, a noise analysis of oscillator circuits including non-
reciprocal devices (e.g., transistors; equivalent to negative resistors using feedback 
principle) from first physical principles is not possible until now. Only certain 
noise aspects of active devices can be studied by these thermodynamical concepts 
(see e.g., [32]). If we are interested in noise properties of complete oscillator cir-
cuits nonreciprocal effects of electronic devices have to be included. With respect 
to noise behavior of electronic oscillator circuits many research was done with  
respect to phase noise; see Lee and Hajimiri [15] and Goldberg [10] for an  
overview. Since a sophisticated basis of phase noise in nonreciprocal circuits is 
missing these authors use a phenomenological approach. In our paper, we study 
noise aspects of oscillator circuits also on the foundations of a phenomenological  
approach and its impact to bifurcation phenomena. 

Deterministic Circuit Description 

Although the deterministic describing equations of oscillatory circuits are gener-
ally of the type of so-called differential algebraic equations (DAEs, see e.g., [16]) 
we will consider only those oscillator models which can be described by explicit 
ordinary differential equations 
 ( ), : ,n nx F x F R R= →  (1) 
the state-space equations. In contrast to transient analysis problems we have to 
consider (stable) asymptotic solutions of (1) and especially limit cycles in  
oscillator circuits. Since in higher dimensional cases no systematic methods for 
calculating limit cycles are available Papalexi, Mandelstam, and Andronov devel-
oped a bifurcation approach for electrical oscillators using ideas from Poincaré’s 
results of nonlinear differential equations (see [20] and in particular the papers of 
Bissell [9] and of Aubin, Dalmedico [6]). A first overview on this subject was 
published in 1935 and later on these results were included in the monograph of 
Andronov, Witt, and Chaikin that was published in 1937 (English version: 1966 
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[1]). The main idea of Papalexi, Mandelstam, and Andronov was the embedding 
of equation (1) into a μ -parametrized family of differential equation 

 nn RRRFxFx →×= :),,( μ  (2 ) 
for searching a qualitative changing of the asymptotic solutions within this family. 
It is already known from Poincaré that there is a changing in the case of the de-
scribing equations of sinusoidal oscillators from a stable equilibrium to a stable 
limit cycle and therefore Mandelstam et al. [17] studied this case intensively; 
today this phenomenon is called Andronov–Hopf bifurcation. Unfortunately their 
fundamental results were not noticed by other researchers in electrical engineer-
ing. It lasted more than 40 years until this subject was considered again in the 
electrical engineering community by Mees and Chua [24] in 1979. Afterwards 
Andronov–Hopf bifurcation became an essential subject in the theory of electrical 
circuits (e.g., [17, 18]). It should be remarked that in higher order dimensional sys-
tems  ( 2>d ) additional methods (e.g., the center manifold theorem or Liapunov–
Schmidt approach) are needed (see e.g., [12, 19]). 

Whereas many aspects of deterministic networks and systems can be studied 
efficiently in “time-domain” differential equations (1) or (2) there is an equivalent 
description that emphasized the statistical point of view. It is known from classical 
mechanics (e.g., [11]) that differential equations of form (1) or (2) can be formu-
lated as Frobenius–Perron evolution equation or as generalized Liouville equa-
tion. In these cases we are interested in the dynamics of a suitable class of density 
functions : .n nf R R→  The dynamics can be formulated by an associated Fro-

benius–Perron–Operator t  in the following form: 

 ( )( , ) ( ) .tf x t f x=  (3) 

This equation is closely related to the generalized Liouville equation (see [23]) 

 ( ) ( ) ( )
1

: ,
n

i

i i

f Ff div f F L f
t x=

∂ ⋅∂ = − ⋅ = − =
∂ ∂

 (4) 

where tΡ  is related to the Liouville operator L  in the energy-preserving case. 
The changing from (1) or (2) to (3) or (4) can be interpreted in the following man-
ner: instead considering the system dynamics starting from a single initial point 
we consider weighted whole sets of initial points where the density function f  is 
the weighting function. An advantage of this representation is that it can be gener-
alized to the more general class of noisy systems. 

Stochastic Circuit Description 

It was already mentioned that in the case of nonreciprocal circuits a physical  
derivation of dynamical equations for noisy electrical networks from first principle 

Ρ

Ρ



308      W. Mathis 

we us the so-called Langevin approach. For describing stochastic networks and 
systems we start with a deterministic description of circuits (1) and add a white 

noise stochastic processξ  
 ( ) ( ) ,x F x xσ ξ= +  (5) 
where the coefficient ( )xσ  characterizes the coupling of the noise source and the 
average of the process ξ vanishes that is 0=ξ . The first term of (5) can be  
interpreted as the dissipation term where as the second term corresponds to the 
fluctuation  term. 

Using the concept of stochastic differential equations ξ  has to be interpreted as 
a generalized white noise process but in order to solve these equations a more 
generalized concept of integration (e.g., [14]) is needed. In essential there are two 
concepts of stochastic integration which are due to Ito and Stratonovich, respec-
tively; see van Kampen [30] for further details with respect to their interpretation. 
The associated type of stochastic differential equation is 
 ( ) ( ) ,dx F x dt x dW= +  (6) 
where W  is the Wiener process. Both concepts of stochastic differential equations 
are mathematical equivalent to a corresponding Fokker–Planck partial differential 

equation which generalizes in some sense the concept of the Liouville equation of 
(4) (see also [3], Sect 4.2) 

 
( ) ( ),

1,

22

1 == ∂∂
∂+

∂
⋅∂

−=
∂
∂ n

ji ji

n

i i

i

xx

f

x

Ff

t

f
 (7) 

In the case of linear stochastic differential equations – the original subject of 
Langevin – there is no difference between Ito’s and Stratonovich’s type. Unfortu-
nately stochastic differential equations (of Ito or Stratonovich type) are sound 
concepts only from a mathematical point of view if we consider nonlinear Lange-
vin equations. The reason is that certain interpretation rules are needed for this 
type of differential equations; otherwise its meaning is not well defined. It is inter-
esting to see that for nonlinear Langevin equations in contrast to linear ones the 
associated deterministic equation (without noise) does not correspond to the aver-
aged equation (see van Kampen’s paper for further details [28]) 
 

 ( ) ( )
d xdx

F x x
dt dt

σ ξ= = +  (8) 

Note that the first moment of x  does not fulfill the differential equation even if 
σ  is constant since the function F  and the average operator ⋅   does not com-
mute. Only if ( )xFxF =)(  is valid (just like in the linear case) the averaged 
stochastic process x  – that is the first moment of the process – fulfills the deter-
ministic equation )(xFx = .  Therefore, with van Kampen [29, 30] we come to 

σ

σ

is  
 

not available. Therefore a heuristic approach is needed. For our considerations  

.

.
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the conclusion that there is no good reason why the dissipation term of (5) should 
be identical to the vector field of the deterministic equation. However, only in the 
reciprocal case a sound physical concept is available (e.g., [32]). 

Bifurcation Concepts in Noisy Circuits and Systems 

In the previous section we consider two related concepts for describing general 
stochastic or noisy circuits and systems if we have a deterministic description of a 
network or a system of the form )(xFx = . As mentioned above, we have to ap-
ply the heuristic Langevin approach if nonreciprocal (nonlinear) circuits are stud-
ied where associated stochastic differential equations can be derived. From a sys-
tems theoretical point of view stochastic differential equations belong to the class 
of state space equations which are formulated in time-domain. An alternative con-
cept for describing noisy circuits we use probability density functions f  which 
satisfies a Fokker–Planck-type equation (7). 

In this section, we are concerned with parametrized families of stochastic dy-
namical systems in the Langevin form ξμ )(),( xGxFx += and its associated 
Fokker–Planck equation. Although it is known that both concepts are equivalent 
from a mathematical point of view it turns out that there are different concepts of 
stochastic bifurcation. The earlier stochastic bifurcation concept based on the 
Fokker–Planck-type description which was founded in physical applications; see 
e.g., Horsthemke and Lefever [11]. In this approach a qualitative changing of 
stationary solutions within the family of Fokker–Planck equations is studied. 
Although it is a suggestive concept which can be illustrated easily there is no time 
dependence included and therefore it is rather a static concept to bifurcation. In the 
mathematical literature it is called “P-bifurcation” (e.g., [5]). 

Another “dynamical” concept of stochastic bifurcation is based on the stochas-
tic differential equation itself. In contrast to the P-bifurcation concept where we 
are looking for qualitative changes of the asymptotic probability density function 
the dynamical (or D-) bifurcation concept is concerned with qualitative changes of 
certain properties within the family of stochastic differential equations. For this 
purpose a suitable analogue for equilibrium points of deterministic differential 
equations is needed. It turns out (see [5]) that so-called invariant measures of sto-
chastic flows are adequate analogues for deterministic equilibrium points. In doing 
so we assume that like in the deterministic case a stochastic differential equation is 
replaced by a “stochastic flow” or so-called cocycle; the readers are left to e.g., 
Arnold [5]. 

Note that if 0x  is a deterministic equilibrium point of a cocycle 0 0( , , )t x xϕ ω =  
then the Dirac measure 

0xδ  is stationary and invariant. Therefore there is a close 
relationship of deterministic equilibrium points and invariant measures.  
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Therefore the fundamental question of D-bifurcation is “Are there other in-
variant measures than Dirac measures?”. It turns out that a necessary condition for 
qualitative changing in the sense of D-bifurcation is the vanishing of a Lyapunov 
exponent. It should be mentioned that there is no general relation between 
P-bifurcation and D-bifurcation. 
 

 
Fig. 1. Transistor Meissner oscillator 

For illustrating these bifurcation concepts we restrict us for simplicity to 
2-dimensional circuit. However, further results as well as corresponding analytical 
and numerical methods will be published in forthcoming papers. For higher 
dimensional systems stochastic concepts for normal forms and/or center manifolds 
are needed (see [5]). We consider a Meissner oscillator circuit in fig. 1. If 02 =k  
the following circuit equation for the voltage between basis and emitter can be de-
rived 2

0( 1/( ))LCω =  

 ( ) .03 2
0

2
31

2
0 =+−−+ BEBEBEBE uuukkM

L

R
u ωω  (9) 

Equation (9) can be normalized in the standard van der Pol form 
2( ) 0x x x x− μ − γ + = . Now we assume with Ariaratnam [2] that we have a noisy 

resistor which results in an additive decomposition of 
 ( ) .02

0 =+−+− xxxx γξσμ  (10) 
If (10) is converted into first-order equations and polar coordinate transforma-

tions are applied to the system we obtain after a stochastic averaging the following 
stochastic differential equation for the amplitude process )(ta . 

For the analysis of D-bifurcations we have to determine the stability of station-
ary solutions ( )sa t by means of associated Lyapunov exponents. If small varia-
tions )(tr of ( )sa t  are considered the following linearized stochastic differential 
equation for amplitude process can derived: 

 .
8
3

4
3

8
5

2
1 2

1

22
0 as dWrdtradr σγσμ +−+=  (12) 
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For the bifurcation analysis, the zeros of the Lyapunov exponents have to be found 

 .
4
3

4
1

2
1 22

0 −+= saγσμλ  (13) 

Obviously, it results a zero Lyapunov exponent for the trivial solution 0=sa  at 
2

0 / 4μ σ= − .  Furthermore, for the same value of 0μ  we have a zero Lyapunov 
exponent for 0≠sa , too, such that we have a D-bifurcation. 

For studying P-bifurcation we need a solution of the stationary Fokker–Planck 
equation associated to the noisy van der Pol equation. It turns out that a first P-
bifurcation occurs at 8/2

0 σμ = , where the peak of the probability density 
function shifts as 2 1/2

0: 2(( /8)/ ) .pa = μ − σ γ  Another changing occurs at 
2/2

0 σμ = ,  where the uni-modal density centered at the origin changes to a bi-
modal density possessing a ring of peaks; see Ariaratnam [2]. Note that 0μ -
values for D- and P-bifurcation differ substantially.  

Conclusions 

In our paper, similarities and differences of describing methods for deterministic 
and stochastic circuits and systems are discussed. Especially, we discussed some 
difficulties with respect to a sound physical interpretation of describing equations 
of noisy networks and systems if nonlinear and nonreciprocal circuits and systems 
are considered. Moreover, we considered basic ideas of two concepts of bifurcation 
analysis in noisy nonlinear circuits and systems. By means of a generalized noisy 
van der Pol equation derived from a Meissner oscillator including a transistor 
these bifurcation concepts are illustrated. 
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Abstract 

This paper deals with the controllability problem of a class of piecewise linear systems, known as 
linear complementarity systems. It is well-known that checking certain controllability prop-
erties of very simple piecewise linear systems are undecidable problems. In an earlier paper, 
however, a complete characterization of the controllability of the so-called conewise linear 
systems has been achieved. By employing this characterization and exploiting the special 
structure of linear complementarity systems, we present a set of inequality-type conditions 
as necessary and sufficient conditions for their controllability. Our treatment is based on the 
ideas and the techniques from geometric control theory together with mathematical program-
ming. 

Introduction 

Ever since Kalman’s seminal work [10] introduced the notion of controllability in 
the state space framework, it has been one of the central notions in systems and con-
trol theory. In the early 1960s, Kalman [11] himself and many others (see e.g. [9] 
for historical details) studied controllability of finite-dimensional linear systems exten-
sively and established algebraic tests for controllability. Soon after, constrained con-
trollability problems, i.e. problems for which the inputs are constrained to assume 
values from a subset of the entire input space, became popular (see for instance [12]). 
Early work in this direction consider only constraint sets which contain the origin in 

origin in its interior in many interesting cases, for instance, when only nonnegative 
controls are allowed. Saperstone and Yorke [14] were the first to consider constraint 
sets that do not have the origin in their interior. In particular, they considered the 
case for which the inputs are constrained to the set [0,1]. More general constraint 
sets were studied by Brammer [2]. He showed that the usual controllability condition 

their interior [12, Thm. 8, p. 92]. However, the constraint set does not contain the 
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together with a condition on the real eigenvalues of the system matrix is neces-
sary and sufficient for controllability of linear systems with nonnegative in-
puts [2, Thm. 1.4]. 

While the algebraic characterization of controllability of finite dimensional lin-
ear systems is among the classical results of systems theory, global controllability 
results for nonlinear systems have been hard to come by. When it comes to 
hybrid systems, the situation gets even more hopeless. In fact, Blondel and 
Tsitsiklis [1] proved that the reachability problem of a bimodal piecewise linear 
discrete-time system is an undecidable problem. However, our recent work [3–5] 
shows that one can come up with algebraic conditions for controllability of 
conewise linear. In this paper, our aim is to extend the ideas of [3–5] to a 
class of hybrid systems called linear complementarity systems (LCSs). 

The following notational conventions will be in force throughout the pa-
per. The symbol ℜ  denotes the set of real numbers, nℜ  n-tuples of real num-
bers, and n mℜ n × m real matrices. The set of complex numbers is denoted 
by C. For a matrix A∈ n mℜ , AT stands for its transpose, A–1 for its inverse 
(if exists), im A for its image, i.e. the set {y∈ nℜ | y = Ax for some x∈ mℜ }. 
We write Aij for the (i, j)th element of A. For ⊆α   {1, 2,. . .  , n}, and ⊆β {1, 
2,…, m}, αβA  denotes the submatrix { } .

, βα ∈∈ kjjkA  If =α   {1,2, ...,n} ( β = 

{1,2,... ,m}), we also write )( ∗∗ αβ AA . Inequalities for vectors must be un-
derstood componentwise. Similarly, max operator acts on the vectors com-
ponentwise. We write x ⊥  y if xTy = 0. 

Linear Complementarity Problem/System 

The problem of finding a vector z ∈ mℜ  such that 

z ≥  0, (1a) 
q + Mz≥ 0, (1b) 

zT(q + Mz)=  (1c) 
for a given vector q ∈ mℜ and a matrix M ∈ m mℜ is known as the linear com-
plementarity problem. We denote (1) by LCP(q, M). It is well-known [7, 
Thm. 3.3.7] that the LCP(q, M ) admits a unique solution for each q if, 
and only if, M is a P-matrix. It is also known that z depends on q in a 
Lipschitz continuous way in this case. 

Linear complementarity systems consist of nonsmooth dynamical  
systems that are obtained in the following way. Take a standard linear  
input/output system. Select a number of input/output pairs (ZI,WI), and  
impose for each of these pairs complementarity relation of the type (1) at each  

×

×

×
0
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time t, i.e. both zi(t) and wi(t) must be non-negative, and at least one of them 
should be zero for each time instant t ≥  0. This results in a dynamical sys-
tem of the form 

)(tx = Ax{t) + Bu(t) + Ez{t), (2a) 
w(t) = Cx(t) + Du(t) + Fz(t), (2b) 

0 ≤  z{t) ⊥  w(t) ≥  0, (2c) 
where u ∈ ,mℜ  x ∈ nℜ , and z, w  ∈ kℜ . A wealth of examples and application 
areas of LCSs can be found in [6,8,15,16]. 

A set of standing assumptions throughout this paper are the following.  
Assumption 1.   The following conditions are satisfied for the LCS (2) 

1. The matrix F is a P-matrix 

2. k = m 
3. The transfer matrix D + C(sl — A)–1B is invertible as a rational matrix 
These assumptions are technical in nature and most of the subsequent re-
sults can be generalized in cases for which these assumptions do not hold. How-
ever, we focus on LCSs that satisfy Assumption 1 in order not to blur the 
main message of the paper. 

It follows from Assumption 1 that z{t) is a piecewise linear function of 
Cx(t) + Du{t). This means that for each initial state x0 and locally-integrable input 
u there exist a unique absolutely continuous state trajectory xxo,u and locally-
integrable trajectories (zxo,u,wxo,u) such that xxo,u(0)=X0 and the triple  
(xxo,u ,zxo,u,wxo,u) satisfies the relations (2) for almost all t ≥  0. 

We say that the LCS (2) is (completely) controllable if for any pair of states 
(xo,xf) ∈ nn+ℜ  there exists a locally integrable input u such that the trajectory 
xxo,u of (2) satisfies xx ,u(T) = xf for some T > 0. 

In two particular cases, one can employ the available results for the linear sys-
tems to determine whether (2) is controllable. 

Linear systems 

Consider the LCS 

)(tx  = Ax(t) + Bu(t), (3a) 
w(t) = u{t) + z{t), (3b) 

0 ≤  z{t) ⊥  w(t) ≥  0. (3c) 
It can be verified that Assumption 1 holds. Note that this system is controllable if, 
and only if, the linear system (3a) is controllable. In turn, this is equivalent to the 
implication 

00,,, ===∈∈ ∗∗ zzBzAzCzC Tn λλ .                  (4) 
In this case, we say that the pair (A,B) is controllable.  

o
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Linear systems with nonnegative inputs 

Consider the LCS 

)(tx  = Ax(t) + Bu(t)+Bz(t), (5a) 
w(t) = u(t) + z(t), (5b) 

0 ≤  z{t) ⊥  w(t) ≥  0. (5c) 
Note that the solution to the LCP (5b) and (5c) can be given as z(t) = 

u–(t) and w(t) = u+(t) where =+ :ξ  max(ξ , 0) and =− :ξ  max(–ξ , 0)  denote 
the positive and negative part of the real vector −+ −= ξξξ respectively. 

Therefore, this LCS is controllable if, and only if, the linear system 

)(tx  = Ax t) + Bv(t) 
with the input constraint v(t) ≥  0 is controllable. It follows from [2, Cor. 3.3] 

that this system is controllable if, and only if, the following two conditions 
hold: 

1. the pair (A,B) is controllable 
2. the implication 

00,,, =≥=ℜ∈ℜ∈ zzBzAzz TTTn λλ                (6) 

holds. 

Main results 

To formulate the main results we need some nomenclature. Consider the linear 
( 

 

x  = Ax + Bu, (7a) 

 y = Cx + Du, (7b) 
where x nℜ∈  is the state, u 

mℜ∈ is the input, y 
pℜ∈  is the output, and the ma-

trices A, B, C, D are of appropriate sizes. We define the invariant zeros of 
the system (7) to be the zeros of the nonzero polynomials on the diagonal 
of the Smith form of 

 
−

=
DC

BSIA
P s)( .  (8) 

The matrix )(sP is sometimes called the system matrix. It is known, for instance 
from [17, Cor. 8.14], that the transfer matrix D + C(sl – A)–1B is invert-
ible as a rational matrix if, and only if, the system matrix )(λP   is of rank n + m 

(

system A, B, C, D S (
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for all but finitely many C∈λ . In this case, the values of C∈λ  such that rank 
)(λP  < n + m coincide with the invariant zeros. Let Λ  (A, B, C, D) denote the 

set of all invariant zeros of the system (7). 
The following theorem presents algebraic necessary and sufficient conditions 

for the controllability of an LCS. 
 
Theorem 2. Consider an LCS (2) satisfying Assumption 1. It is controllable if, 

and only if, the following two conditions hold: 
1. The pair (A, [B E]) is controllable 
2. For all ∈λ Λ  (A, B, C, D) ℜ , the system of inequalities 

 0≥η , (9a) 

 [ ]TT ηξ 0=
−

DC

BSIA
, (9b) 

 [ ] 0≤
F

ETT ηξ  (9c) 

admits no nonzero solution ( ηξ , ). 

A quick sketch of the proof 

The main ingredients of the proof are conewise linear systems. A conewise linear 
system (CLS) is a dynamical system of the form 

 x (t) = Ax{t) + Bu{t) + f(Cx(t) + Du{t)) (10) 
where x nℜ∈  is the state, u mℜ∈ is the input, A n n×∈ℜ , B n m×∈ℜ , C 

p n×∈ℜ , D p m×∈ℜ and the function f is a conewise linear function, i.e., there 
exist an integer r, solid polyhedral cones yi and matrices Mi n p×∈ℜ  for i = 1, 
2,...,r such that i

r

i yU 1=  = Pℜ  and f(y) = Miy if y∈  Yi 
Note that the function f is necessarily continuous since the cones yi are 

closed due to polyhedrality. In turn, continuity implies Lipschitz continuity 
in this case. A somewhat more explicit representation for CLSs can be given by 
 x (t) = (A  + M iC)x(t) + (B + M iD)u(t) if Cx(t) + Du(t) ∈  Yi . (11) 

 
By using the fact that the solutions of an LCP with a P-matrix depend on 
the data in a Lipschitz continuous way, we can reformulate the LCS (2) as a CLS. 
This results in a CLS of the form 

,

 x = uQxP αα +  whenever .0≥+ uSxR αα  (12) 
where 

∗
−

∗−= αααα
α CFEAP 1:    ∗

−
∗−= αα

α
αα

DFEBQ 1:   (13a) 

,

 . 

,

,
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−
−
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CF
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cc
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1
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1

−
−

=
•

−
•

•
−

αααααα

αααα

DFFD
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cc

     (13b)  

I 

At this point, we invoke the following theorem on the controllability of 
LCS. 

Theorem 3. Consider the CLS (10) such that p = m and the transfer 

matrix D + C(sl – A)–1B is invertible as a rational matrix. It is completely 
controllable if, and only if, 

1. the relation 

 
=

ℜ=++
r

i

nii DMBimCMA
1

)(|  (14) 

is satisfied and 

2. the implication m

i

n wz ℜ∈ℜ∈ℜ∈ ,,λ  

[ ] 0zr,..,2,1iallforYw,0
DC

DMBICMA
wz ii

ii
T
i

T ==∈=
+λ−+

holds. 
Here the notation |M imN  denotes the so-called controllability subspace as-

sociated to the matrix pair (M, N), i.e. | imM N = imN + MimN +  + 
M P–1 imN where M pxpℜ∈  and F* denotes the dual cone associated to the non-
empty set F, i.e., F = {y | xTy ≥  for all x F∈ }. 

By using (12) and Theorem 3, one can show that the two conditions of 
these theorems are equivalent. 

Particular cases 

We can recover the two particular cases that are mentioned earlier from Theorem 
2 as follows. 

Linear systems. If we take C = 0, D = I, E = 0, and F = I as in (3), the two con-
ditions of Theorem 2 boil down to: 

1. The pair (A,B) is controllable 
2. For all λ ∈ Λ  (A, B, 0, I) ℜ⊂ , the system of inequalities 
 0≥η ,  (15a)  
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 [ ]TT ηξ 0=
−

DC

BIA λ
,          (15b) 

 [ ] 0
0

≤
I

TT ηξ ,               (15c) 

admits no nonzero solution ( ηξ , ). 
Note that (15a) and (15c) imply that η  = 0. This means that if (A,B) is 

controllable then (15b) the only solution (15b) is ξ  = 0. Hence, we recover the 
case of linear systems. 

 
Linear systems with nonnegative inputs. If we take C = 0, D = I, E = B, F = I 

as in (5), the two conditions of Theorem 2 boil down to: 
1. The pair (A,B) is controllable. 
2. For all λ ∈ Λ  (A, B, 0, I) ℜ , the system of inequalities 

 ,0≥η  (16a) 

 [ ]TT ηξ 0=
−

DC

BIA λ
, (16b) 

 [ ] 0≤
I

B
TT ηξ ,               (16c) 

admits no nonzero solution ( ηξ , ). 
Note that (16c) is already satisfied for this case. Together with (16a), the equal-

ity (16b) implies that the second condition is equivalent to the second condition 
that is presented in (6). 

Computational issues 

Theorem 2 requires that one needs to check whether a set of inequalities of the 
form (9) admits only the trivial solution. However, it might be sometimes easier to 
check whether a given set of inequalities admits a nontrivial solution. To do 
so, one can employ the following alternative theorem which is originally due 
to Tucker [13, (1.6.10)]. 

Theorem 4. Let W p r×∈ℜ  , X p s×∈ℜ , Y q r×∈ℜ , and Z q s×∈ℜ  be given ma-
trices. Exactly one of the following statements hold: 

1.  There exists a nonzero ),( ςρ  
sr +ℜ∈ such that 
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0≥ρ , 

0=+ ςρ XW , 

0≥+ ςρ ZY . 

2.  There exists a nonzero ( ηξ , ) qp+ℜ∈  such that 

0≥η , 

0≤+ ςξ TT YW , 

0=+ ςξ TT ZX . 

A direct application of the theorem to (9) gives the following alternative formula-
tion of the second condition in Theorem 2: 

2’ For all λ ∈ Λ  (A, B, C, D) ℜ , the system of inequalities 
 0≥ρ ,                 (17a) 

 [ ] 0=−+ ςλρ IBAE , (17b) 

 [ ] 0≥+ ςρ CDF . (17c) 

  
admits a nonzero solution ),( ςρ . 

Conclusions 

In this paper, we studied the controllability problem for the linear complementar-
ity class of hybrid systems. These systems are closely related to the so-called 
conewise linear systems. By exploiting this connection, together with the 
special structure of complementarity systems, we derived algebraic necessary and 
sufficient conditions for the controllability. We also showed that Kalman’s 
and Bramer’s results for linear systems can be recovered from our theorem. Our 
treatment employed a mixture of methods from both mathematical programming 
and geometric control theory. Obvious question is how one can utilize these tech-
niques in order to establish necessary and/or sufficient conditions for the (feed-
back) stabilizability problem. 
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A Simple Artificial Neural Network Structure for 

Generating Chaos 

N. Serap engör 

Faculty of Electrical Electronics Engineering, Istanbul Technical University,  
Istanbul, Turkey 

Abstract 

A rather simple artificial neural network (ANN) structure capable of yielding cha-
otic behavior will be introduced. Even though it is similar in some aspects to some 
known ANN structures, difference of this chaos-generating structure from others 
will be pointed out. Simulation results showing chaotic behavior will be given. 

Introduction 

As more the chaotic behavior of natural and physical systems observed, more in-
terest and need arose in obtaining structures giving rise to chaotic behavior.  

Unlike the old tendency, to find a way of preventing chaos, nowadays more ef-
fort is spent in different areas of engineering to observe chaos, analyze it and find 
a way of utilizing it [1, 2]. In most of the applications of artificial neural networks 
(ANN) as, designing associative memory, solving optimization problems and 
identifying and controlling  nonlinear systems, the main concern is to find an 
ANN structure where the trajectories of  the system end up in one of  the equilib-
rium points stable in the sense of Lyapunov [3, 4]. Still, there has been some at-
tempts to utilize chaotic behavior of complex ANN structures [5, 6]. 

Recently, it has been shown that by modifying the activation function of Elman 
Network (EN) and creating an autonomous dynamical system by output feedback 
it is possible to obtain chaotic behavior even with a single neuron [6].  

In this work, an ANN structure with continuous and discrete time versions will 
be introduced and it will be shown that the chaotic ANN introduced in [6] can be 
obtained from the proposed ANN as a special case. Simulation results revealing 
chaotic behavior will  be given. 
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The Proposed Chaotic Artificial Neural Network Structure 

The continuous time, autonomous, nonlinear system given by (1) is capable of 
providing bounded solutions that are not stable in the sense of Lyapunov, thus giv-
ing rise to a broad class of  signals resembling those encountered in different natu-
ral and physical phenomena [2] 

 [ ]
)()(

)(ˆ)(ˆ)(

tt

ttt

oi

iihihh

xwy
xwfwxwx

=

+=  (1) 

In this set of equations, state variables and output are denoted by x(t) and y(t), 
respectively  and ℜ∈)(ty , nt ℜ∈)(x , ( ) : n n⋅ ℜ → ℜf , nniihihh ×ℜ∈www ,ˆ,ˆ  
and noi ℜ∈w . The activation function f(⋅) is a bounded function. 

The system given in (1) is similar to Hopfield network (HN), but for different 
choices of activation function and for a large set of weight parameters, its solu-
tions are quite different than that of HN. The differences between two systems are 
not only the choice of activation function f(⋅) and constraints on weight matrices 

hihh ww ˆ,ˆ  but while the bias, i.e., offset term is missing in (1), there is an extra 
weight matrix iiw . As the purpose is to obtain an autonomous system capable of  
giving solutions other than stable equilibrium points the bias term is not consid-
ered.  

In HN, the complete stability of the system, i.e., all trajectories ending at one of 
the stable equilibrium points, is provided by bounded, monotonic f(⋅) function and 
constraints on weight matrices. When these obligations are not fulfilled, it is pos-
sible to obtain unbounded solutions. It has been observed that the system given in 
(1), especially with nonmonotonic activation functions has bounded input bounded 
output stable solutions, that are unstable in the sense of Lyapunov for a large set of 
weight matrices.  

A difference equation version of (1) is given in (2) 

 
( 1) ( ) ( )

( ) ( ).

hh hi ii

oi

k k k

k k

+ = +

=

x w x w f w x

y w x
 (2) 

The ANN structure corresponding to the first set of equations in (2) is given in 
Fig. 1. 

In order to obtain chaotic behavior, EN, a recurrent ANN structure, has been 
modified in [6] by replacing the hyperbolic tangent activation function with a 

nonlinear function of type 
−

= 2
2

2)( R
x

xe
R

g
exg  and by connecting the output 

of EN to its input. Thus in [6], an autonomous, discrete-time nonlinear system has 
been obtained as shown below 

 
)k()k(

))k(()1k(
Ty xwy

Wxfx

=

=+
 (3) 

,

.
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In this set of equations 
( )k ∈ℜy , ( ) nk ∈ℜx , ( ) : n n⋅ ℜ → ℜf , 

ˆ
Tx u y= +W w w w  and x n n×∈ℜw , u n∈ℜw  and y n∈ℜw  

Here the indexes of weight matrices are kept same as in [6]. It can be easily 
concluded that the system given in (3) corresponds to the system given by (2), 
when whh is a zero matrix, ˆhi =w I , ˆii =w W , and the activation function f(⋅) is 
chosen to be g(⋅) as  stated earlier. 

The well-known chaos yielding systems, as Chua oscillator, Lorenz equations 
are also special cases of the system given by (1). 

 
Fig. 1. The proposed ANN structure. 

These systems can be obtained from the proposed structure with a suitable set 
of weight matrices, when the degree of the system is chosen to be three. If two of 
the activation functions are taken to be linear and one remaining is chosen as the 
nonlinear function of the system interested in, chaotic behavior of these systems 
can be obtained. Of course, the possibility of obtaining chaotic behavior is not re-
stricted to these two special systems.  

Simulation Results 

By setting a computer experiment with random choices of iihihh www ,ˆ,ˆ  and dif-
ferent activation functions, chaotic behavior has been observed as the solutions of 
the continuous time system given by (1) with system degree 3≥n . The differen-
tial equation set has been solved using forward Euler method with time step 0.1. 

 

w

w
hi (wii

f

z-1

ii

hh

x(k)

x(k)

f(.) f(.)

w x(k)

x(k))

x(k+1)
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Fig. 2.  State portrait of continuous time system with dimension 3 

One of many chaotic behaviors is the system with degree three which has the 
phase portrait given in Fig. 2. The activation function f(x) and weight matrices re-
lated with this example are as following: 

−<−
−≤≤−−

<<−−
≤≤+

>

=

25.1
125.05.0

11
215.05.0

25.1

)(

x

xx

xx

xx

x

xf  

=
0.0482   0.3803    1.6924 
0.0195   0.6436   0.5077 

1.0091   0.5913    0.6145
ˆ  whh , 

=
1.0106   0.9219   0.8051  

0.0592   0.2193    1.4151   
2.1707   0.5287    1.0565 

ˆ hiw , 

[ ]1.0950    0.3179   0.0000=oiw , Iw =ii . 
The discontinuous activation function gives rise to a differential equation sys-

tem with discontinuous right-hand side. A problem would be showing the exis-
tence and uniqueness of solution for this system. It can be shown that there exists 
a unique solution in the sense of Fillipov [7].  

, 

−
−

−
−

−
−

−− −

−

−
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Fig. 3. State portrait of continuous time system with dimension 4 
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Fig. 4. State portrait of  discrete time system with dimension 2 

Figure 3 is another example of chaotic behavior, where the same activation 
function is used but the degree of the system is four. Due to lack of space, weight 
matrices for this case is not given. 

For different choices of activation functions chaotic behavior has been also ob-
served for the system given by (2). Phase portrait of one such example with sys-
tem degree 2 is given in Fig. 4, where as an activation function g(x) given in The 
proposed Chaotic Artificial Neural Netuorle strucutre is considered. 

The weight matrices giving rise to chaotic behavior in Fig. 4 are as follows: 

=
0.0011     0.0010
0.0004   0.0006

hhw , =
2.1000    0       

0      2.1000 
hiw , 

=
0.1537    0.1068 
0.0995   0.6280

iiw  

− −

−

− −

−
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[ ]0.1146    1.1863io =w . 
During the computer experiment, the above weight matrices both for continu-

ous time and discrete time have been obtained by selecting randomly and observ-
ing the behavior of the system. It is observed that while different nonmonotonic, 
piecewise linear activation functions are more capable of providing chaotic behav-
ior for continuous time systems, continuous activation functions have to be fa-
vored for discrete time systems. Another observation is, as the dimension in-
creases in discrete case, observing chaos is frequent. Using the activation 
functions of the above given examples, for example with dimension 2 ratio of ob-
serving chaotic behavior is 12/40 while with dimension 5 the ratio is 32/40. On the 
contrary, for the continuous time as the dimension increases, observing chaos is 
less. For example with dimension 3 ratio of observing chaotic behavior is 21/40 
while with dimension 4 the ratio is 14/40. 

Also it has to be pointed out that observing chaotic behaviour is more frequent 
if hhw  matrix in discrete time has very small components and ˆ hhw  matrix in con-
tinuous time case has all negative components. One explanation of this, if the sys-
tems given by (1) and (2) observed, they can be thought as linear systems with 
nonlinear feedback terms. So, by choosing hhw  and ˆ hhw  as mentioned, rendering 
a Lyapunov stable system into chaotic system by state feedback is more probable. 
For example, in continuous time case for a system of dimension 4, the ratio of 
chaotic behavior is 2/40 when ˆ hhw  is chosen from a normal distribution with 
mean zero and variance one. The same ratio is 14/40, when ˆ hhw  is chosen from a 
uniform distribution on the interval (–1.0, 0.0). 

Conclusion 

An ANN structure capable of generating chaotic behavior is proposed. Experi-
mental results for different activation functions and different system dimensions 
are given to show the usefulness of the structure in obtaining chaos. 

One application of this structure could be nonlinear system identification. Thus, 
the proposed structure has been used to obtain the chaotic time series of  Fei-
genbaum system. The weights were adapted according to gradient descent method 
to minimize the instantaneous square of error between the chaotic time series ob-
tained from Feigenbaum system and output of proposed neural network structure. 
The result was not superior to existing structures as EN, etc. but was as satisfac-
tory as them. 
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Abstract  

Traditional wireless technologies are not well suited to meet the extremely demanding re-
quirements of providing the very high data rates with the ubiquity, mobility and portability 
characteristic of cellular systems.  Some fundamental barriers, related to the nature of the 
radio channel as well as the limited bandwidth availability at the frequencies of interest, 
stand in the way.  Unique sets of efficient advanced signal processing algorithms and tech-
niques is the one of the primary enablers that will allow lifting these limits, primarily due to 
the impressive advent of low cost and low power digital signal processors.  As an applica-
tion of advanced signal processing techniques, we will consider the solution of blind phase 
noise estimation and data detection problem via a computationally efficient sequential 
Monte Carlo (SMC) methodology in this paper.   

Introduction 

Advanced signal processing methods, such as the expectation-maximization (EM) 
algorithm, the SAGE algorithm, the Baum–Welch algorithm, per-survivor proc-
essing, Kalman filters and their extensions, hidden Markov modeling, SMC filters, 
and stochastic approximation algorithms, in collaboration with inexpensive and 
rapid computing power provide a promising avenue for overcoming the limitations 
of current wireless technologies. Applications of the advanced signal processing 
algorithms mentioned earlier include, but are not limited to, joint/blind/sequence 
detection, decoding, synchronization, equalization, as well as channel estimation 
techniques employed in advanced wireless communication systems, such as 
OFDM/OFDMA, space–time–frequency coding, MIMO, CDMA, and multiuser 
detection in time and frequency-selective MIMO channels. In particular, the de-
velopment of suitable algorithms for wireless multiple access systems in nonsta-
tionary and interference-rich environments presents major challenges to the sys-
tem designer. While considerable previous work has addressed many aspects of 
this problem separately, for example, single-user channel equalization, interfer-
ence suppression for multiple access channels, and tracking of time-varying chan-
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nels, the problem of jointly combining these impairments in wireless channels has 
only recently become significant. On the other hand, the optimal solutions mostly 
cannot be implemented in practice because of their prohibitively high computa-
tional complexity. The statistical tools implemented by the advanced signal proc-
essing techniques above provide promising new routes for the design of low-
complexity signal processing techniques with performance approaching the theo-
retical optimum for fast and reliable communication in the highly severe and dy-
namic wireless environment. Although over the past decade such methods have 
been successfully applied in a variety of communication contexts, many technical 
challenges remain in emerging applications, whose solutions will provide the 
bridge between the theoretical potential of such techniques and their practical util-
ity.  

As an application of advanced signal processing techniques, we will address the 
solution of blind phase noise estimation and data detection problem via SMC 
methodology in the sequel. 

Phase Synchronization  

Carrier phase synchronization is a critical issue in coherent digital communication 
systems. A considerable amount of research has been carried out for data detection 
in the presence of the time-varying phase noise as well as the fixed phase offset 
[1]. Estimating the phase offset and detecting the data jointly by maximum likeli-
hood (ML) technique does not seem to be analytically tractable. Even if the likeli-
hood function can be evaluated offline, however, it is invariably a nonlinear func-
tion of the parameter to be estimated, which makes the maximization step (which 
must be performed in real-time) computationally infeasible. A number of subop-
timal algorithms have thus been proposed, most of which employ a two-stage re-
ceiver structure with a phase noise estimation stage followed by the data detection 
[2]. Phase synchronization is typically implemented by a decision directed (or data 
aided) or nondecision directed (or nondata aided). Decision directed schemes de-
pend on availability of reliably detected symbol for obtaining the phase estimate, 
and therefore, they usually require transmission of pilot or training data. However, 
in applications where bandwidth is the most precious resource, training data can 
significantly reduce the overall system capacity. Thus blind or nondata-aided 
techniques become an attractive alternative [3, 4].  Unlike data-aided techniques, 
nondata-aided methods do not require knowledge of the transmitted data, and in-
stead, they exploit statistics of digital transmitted signal. ML estimation tech-
niques can also be used in nondecision-directed methods if the symbols transmit-
ted are treated as random variables with known statistics so that the likelihood 
function can be averaged over the data sequence received. Unfortunately, except 
for few simple cases, this averaging process is mathematically impracticable and it 
can be obtained only by some approximations which are valid only either at high 
or low SNR values [5].  

On the other hand, in order to provide an implementable solution, recently there 
have been a substantial amount of work on iterative formulation of the parameter 
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estimation problem based on the EM technique [6]. It is known that the EM algo-
rithm derives iteratively and converges to the true ML estimation of these un-
known parameters. The main drawbacks of this approach are that the algorithm is 
sensitive to the initial starting values chosen for the parameters, it does not neces-
sarily converge to the global extremum and the convergence can be slow. Fur-
thermore, in situation where the posterior distribution must be constantly updated 
with arrival of the new data with missing parts, EM algorithm can be highly inef-
ficient, because the whole iteration process must be redone with additional data. 
The SMC methodology [7] that has emerged in the field of statistics and engineer-
ing has shown great promise to solve such problems. This technique can approxi-
mate the optimal solution directly without compromising the system model. More 
importantly, the SMC yields a fully blind algorithm and allows for both Gaussian 
and non-Gaussian ambient noise as well as high-speed parallel implementations. 
Furthermore, the tracking the time-varying phase noise and the data detection are 
naturally integrated [8].  

System Description 

We consider a channel-coded communication system in the presence of random 
phase noise and the additive Gaussian noise. The input binary information bit td  
are encoded using some channel code, resulting in a code bit stream tb . The code 
bits are passed to a symbol mapper, yielding complex data symbols ts , which take 
values from a finite alphabet set 1 2{ }AA a a a| |= , , , , where A| |  represents the cardi-
nality of the set A . Each data symbol is then transmitted through a channel whose 
input–output relationship is given by  
 0 1tj

t t ty s e n t
θ= + , = , ,  (1) 

where t t ty s θ, , , are the received signal, the transmitted symbols and the phase 
noise, respectively, and tn  the additive complex Gaussian noise with mean zero 
and the variance 2 2[ ]n tE nσ = | | . The phase noise process tθ  at tth sampling instant 
is defined as a Wiener process determined as  
 1 1 2t t tu tθ θ −= + , = , ,  (2) 
 0 uniform( )θ π π− ,+  (3) 
where { }tu  is a sequence of independent and identically distributed (i.i.d.) zero-
mean random variables with variance equal to 2

uσ . Note that as Wiener phase 
noise is the accumulation of white noise, its variance increase linearly with t . It is 
assumed that tu  and tn are independent.  Our main objective is to solve the prob-
lem of online detection of the symbols ts  and estimation of the phase noise tθ , 
completely blindly, based on the received signals up to time t , 0{ }t

i iy = .  Defining 
the vectors,  
 0 1 0 1 0 1[ ] , [ ] , [ ]T T T

t tt t ts s s y y yS Y θ θ θθ= , , , = , , = , , ,t  
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the problem may be formulated by making Bayesian inference with respect to the 
posterior distribution  
 ( )tt tp S Yθ , | 0 0 0 0 11

( ) ( ) ( ) ( ) ( )t

t j j j j jj
p p p y s p p y sSθ θ θ θ θ−=

∝ | , | | ,∏
0

2 2 2
2 2 21 1 1

0 0 0 11
( ) ( )exp exp ( ) 0 1j

u

t jj
t j j j jj

p p y s e y s e tS
θθ

σ σ σ
θ θ θ −=

∝ − | − | − − − | − | , = , ,∏
 

Although this joint distribution can be written out explicitly up to a normaliz-
ing constant, the computation of the corresponding marginal joint distributions 

( )tt tp s Yθ, | ,  necessary for online joint symbol detection and phase noise estima-
tion involve very high dimensional integration. Therefore, the task is mathemati-
cally infeasible in practice. The Gibbs samples [9] is a Monte Carlo method for 
overcoming this difficulty. However, it is not an adaptive procedure and has diffi-
culty dealing with sequentially observed data. With new data  coming the whole 
computation must be repeated to incorporate new information. In the following 
section, we present an adaptive blind algorithm for the joint symbol detection and 
the phase noise estimation which is based on a Bayesian formulation of the prob-
lem called SMC method first developed by [9].   

SMC Technique for Blind Detection and Estimation 

We first consider the case of uncoded system, where the symbols are assumed to 
independent and identically distributed, i.e.,  
 1( ) ( )tt i t i iP s a P s a a AS −= | = = , ∈ . (4) 

For simplicity the symbols are chosen from a QPSK constellation. When no 
prior information about the symbols is available, the symbols are assumed to take 
each possible value in A  with equal probability, i.e., ( ) 1t iP s a A= = / | | . Since we 
are interested in jointly estimating the symbol ts  and the phase noise tθ , at time t  
based on the observation tY , the Bayes solution requires the posterior distribution  

 1( ) ( ) ( )t t tt t tt t tp s p p dS S SY Y Yθ θ −, | = | , | .  (5) 
Note that with a given tS , the nonlinear (Kalman filter) model (1), (2) can be 

converted into a linear model by linearizing the observation equation (1) as fol-
lows [10]: 
 1t t tuθ θ −= + , (6) 
 t t t t t t ty s H s Q nθ= + + , (7) 

where 1 1

1, (1 )t t t t
j j

t t t t
H je Q j eθ θ

θ| − | −

| −= = −   and 1t tθ | −  denotes the estimator of tθ  
based on the observations 1 0 1 1( )t ty y yY − −= , , .  Then the state-space model (3), (4) 
becomes a linear Gaussian system. Hence,  2( ) ( ( ) ( ))

t t
tt t ttp NS S SY θ θθ μ σ| , , , where 

the mean ( )
t

tSθμ  and the variance 2 ( )
t

tSθσ  can be obtained as follows. Denoting  

 2( ) , ( )
t t

t t t tt t
MS Sθ θμ σθ ||= =  (8) 
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t tθ |  and t tM |  can be calculated recursively by using the Extended Kalman 
Technique [10, page 449–452] with the given tS  as 
 1

11 ( ), (1 )t t
j

t t t t t t t t tt t t t
K y s e M K H Mθ

θ θ | −
| | −| | −= + − = −  (9) 

   
where  

 1 2
1 1 11 1 12

1( )
t t t

t t t t t ut t t t

t t n

M H
K M M

M
σθ θσ

∗
| −

| − − | −| − − | −
| −

= , = , = + .
+

 

We can now make timely estimates of tθ  and detection of ts  based on the cur-
rently available observation tY , up to time t , blindly, as follows. With the Bayes 
theorem, we realize that the optimal solution to this problem is  

 

( )

{ } ( ) ( ) ( )
tt

t t

t t t tt t tt t t t t t tt
E p d p d p dS S SY Y Y Y

S

Sθ

θ

μ

θ θ θ θ θ θ θθ = | = | = | , | , .  (10) 

It then follows that  
 { } ( ) ( )

t
t

t tt t ttt
E p dS S SY Y

S
θθ μθ = | = | . (11) 

Similarly, the data can be detected by the hard decisions on the symbol ts  by   
 ˆ arg max ( )

i

tt t i
a A

s P s a Y
∈

= = | , (12) 

where ( ) {1( ) }t tt i t iP s a E s aY Y= | = = | . . 1{}⋅  is an indicator function defined as  

 
1 if

1( )
0 otherwise

t i

t i

s a
s a

=
=

.
 

In most cases, an exact evaluations of the expectations (10) and (11) are ana-
lytically intractable. SMc technique can provide us an alternative way for the re-
quired computation. Specifically, following the notation adopted in [11], if we can 
draw m  independent random samples ( )

1{ }mj
t jS =  from the distribution ( )ttp S Y| , 

then we can approximate the quantities of interest { }tE Yθ |  and {1( ) }tt iE s a Y= |  in 
(12) and  ( )tt iP s a Y= | , respectively, by  

 ( )( )

1 1

1 1{ } ( ), {1( ) } 1( )
t

m m
jj

t tt t i t i

j j

E E s a s aSY Y
m m

θθ μ
= =

| ≅ = | ≅ = . (13) 

But, usually drawing samples from ( )ttp S Y|  directly is usually difficult. In-
stead, sample generation from some trial distribution may be easier as follows:  

 ( ) ( ) ( )( )

1 1

1 1{ } ( ) , {1( ) } 1( ) 1 2 .
m m

j j jj
ttt t t t i t i t

j jt t

E y w E s a s a w i AS Y
W W

θ μ
= =

| ≅ = | ≅ = , = , ,. .,| |  (14) 

with ( )j

t tW w= . The pair ( )( )( ) 1 2jj
t tw j mS , , = , , ,  is called a properly weighted  

sample with respect to distribution ( )ttp S Y| . Note that the samples ( )j
tS  can be 

drawn from the distribution ( )ttq S Y|  sequentially as follows. We can choose ( )q ⋅  
to satisfy  
 11 1( ) ( )t tt tq qS SY Y −− −| = | .  

Then, it can be easily shown that  11 1( ) ( ) ( )t t tt t ttq q s qS S SY Y Y −− −| = | , | ,  and one 
can draw samples ( )j

ts  from a trial distribution ( )
1( )j

t ttq s SY −| ,  and let ( ) ( )( )
1( )j jj

t ttsS S −= ,  
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for 0 1t = , , . Specifically, it was shown in [11] that a suitable choice for the trial 
distribution is of the form 
 ( ) ( )

1 1( ) ( )j j
t tt tt tq s p sS SY Y− −| , = | , . (15) 

For this trial distribution, it is shown in [11] that the importance weight is up-
dated according to  
 ( ) ( ) ( )

1 11 ( ) 0 1j j j
t tt t tw w p y tSY − −−= | , , = , , . (16) 

The predictive distribution in (16) is given by  
 ( ) ( ) ( )

1 1 11 1 1( ) ( ) ( )
i

j j j
t t tt t tt t t i t i

a A

p y p y s a P s aS S SY Y Y− − −− − −
∈

| , = | , , = = | ,  

 ( )
1 1( ) ( )

i

j
t tt t i t i

a A

p y s a P s aSY − −
∈

= | , , = = , (17) 

where (17) holds because ts  is independent of 1tS −  and 1tY − . Furthermore, it can 
be shown from the state and observation equations in (9), respectively, that  
 ( ) 2( )( )

1 1( ) ( ( ) ( ))
t t

j jj
t tt t i y yp y s a N i iSY μ σ− −| , , = ,  (18) 

with mean and variance given by  

 1

( ) ( )( )
1 1( ) { } ( )

t t

j jj
t ty t t i i t ti E y s a a H QSY θμ μ

−− −= | , , = = +
, (19) 

 
1

2( ) 2( ) 2 2( )
1 1( ) Var{ }

t t

j jj
t ty t t i n pi y s aSY θσ σ σ σ

−− −= | , , = = + + , (20) 

where the quantities ( )j
tθ

μ  and 2( )j
tθ

σ  in (19 ) and (20) can be computed recursively 
for the extended Kalman equations given in (9). The trial distribution in (14) can 
be computed as follows:  

 ( ) ( )
11 1( ) ( )j j

t tt tt i t t ip s a p y s aS SY Y −− −= | , = | , , = ( )
1 1( )j

t tt iP s a SY − −× = | , ( )j

t iξ ,=  (21) 

where it follows from (6) and (7) that  

 
( ) 2

( )
2( ) 2( )

( )1 exp ( )
( ) ( )

t

t t

j

t yj

t i t ij j

y y

y i
P s a

i i

μ
ξ

πσ σ,

|| − ||
= − = .  (22) 

 
We now summarize the SMC blind data detection and phase noise estimation 

algorithm as follows:  
Step 1- Initialization:  
Initialize the extended Kalman filter: Choose the initial mean and the variance 

of the estimated tθ  as the mean and the variance of a uniform distribution defined 
on )− ,+  as  
 

1

( )( )
1 1 0jj

θμ θ− − |−= =  

 
1

2( ) ( ) 2
1 1 12 1 2j jM j mθσ π

− − |−= = / , = , , , .  (23) 

• Initialize the importance weights: All importance weights are initialized as 
( )
1 1 1 2jw j m− = , = , , , . Since the data symbols are assumed to be independent, initial 

symbols are not needed be generated.  
Step 2- Compute ( )j

t iξ , : For each ia A∈  compute the ( ) 2( )( ) ( )
t t

j j

y yi iμ σ,  and ( )j

t iξ ,  
from (19), (20) and (22), respectively.  

Step 3- Draw samples 1 2j

ts j m, = , , , : Draw ( )j

ts  from the set A  with prob-
abilities  
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 ( ) ( )( )j j

t i t i iP s a a Aξ ,= ∝ , ∈ .  (24) 

Append ( )j

ts  to ( )
1

j
tS −  to obtain ( )j

tS .   
Step 4- Compute the importance weights 
 ( ) ( ) ( )

1
i

j j j

t t t i

a A

w w ξ− ,
∈

= .  

Step 5- Detect the symbol : Detect the symbol  from (12),  (13) and (14).  
Step 6- Update the a posteriori mean and variance of the phase noise:  
If the samples drawn up to time t  is tS  in Step 3, set  

 
( )( ) 2( ) 2( ) ( )( ) ( )( ) , ( ) 1 2

t t t t

jj j j jj j
t t t tt t

M j mS Sθ θ θ θμ μ σ σθ
Δ Δ

||= = = , , , .= =  

and update according to the Kalman equations (9).  
Step 5- Do the resampling  described as  in [11].  

Numerical and Simulation Results 

In this section, we provide some computer simulation examples to demonstrate the 
performance of the proposed SMC approach for blind phase noise estimation and 
data detection. The phase process is modeled by AR process driven by a white 
Gaussian noise with 2 0 0314uσ = . . It is assumed BPSK modulation is employed. In 
order to demonstrate the performance of the adaptive SMC approach, we first pre-
sent the performance (in terms of the phase error ( ) t t

kφ θ θ= − ) during one simula-
tion run for different initial phase errors ( ) 0 4 2 3 4k = , / , / , / ,φ . The phase error 
for several values of (0)φ  at SNR 10 dB=  is shown in Fig. 1.  The performance of 
the proposed algorithm is further exploited by the evaluation of average BER over 
observed block for different SNRs and different initial phase errors. The uncoded 
average BER performance of this adaptive approach is plotted in Fig. 2.  

tS tS
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Fig. 1. Tracking performance for different initializations at SNR = 10 dB 

 

Our simulations indicate that  
–as the initial phase error (0)φ  approaches , the probability that the phase er-
ror converges to the dual equilibrium point becomes very high  

–as the initial phase error (0)φ  approaches , the BER increases, for (0) =φ ,   
the BER is almost equal to 1 (due to ambiguity).  

 

f(k) for several values of f (0) at =10dB

f(0)=0

f(0)=p/2

f(0)=p
f(0)=3p/4

k

Fig. 2. BER performance 
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Conclusions 

We have developed a new adaptive Bayesian advanced signal processing approach 
for blind phase noise estimation and data detection based on SMc methodology. 
The optimal solutions to joint symbol detection and phase noise estimation prob-
lem is computationally prohibitive to implement by conventional methods. Thus 
the proposed advanced signal processing sequential approach offers an novel and 
powerful approach to tackling this problem at a reasonable computational cost. 
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Abstract  

In this paper, a new type of clock-controlled stream cipher referred as CCDM (clock-
controlled stream cipher with dual mode) is proposed. This model uses five linear feedback 
shift registers (LFSRs) and has two different clocking mechanisms that provide security 
enhancements, especially against guess and determine type of attacks, compared to conven-
tional LFSR-based stream generators. Besides its security power against some well-known 
attacks, the cipher also generates keystream sequences with nice statistical properties.  

Introduction 

Stream ciphers are one of the most important classes of encryption algorithms 
used to ensure security in digital communication. The design of many stream ci-
phers is based on use of linear feedback shift registers (LFSRs), due to their sim-
plicity, speed of implementation in hardware and providing sequences with good 
statistical properties. A stream cipher cannot be considered suitable for crypto-
graphic applications unless its output sequences have large periods, large linear 
complexities and possess certain randomness properties. Moreover a stream cipher 
must provide high resistance against well-known cryptanalytic attacks such as 
time-memory trade-off attacks, guess-determine attacks and correlation attacks. 
The use of clock-controlled mechanism in stream generators can be a good alter-
native for achieving these properties. 

In this study, we present a new LFSR-based stream cipher which consisted of 
five LFSRs and uses a 128-bit secret key K and a 287-bit initialization vector (IV). 
In classical clock-controlled stream generator models, usually there is a single 
clock-controlling mechanism; this mechanism can be controlled by a single regis-
ter such as in case of LILI keystream generator, alternating step generator, ORYX  
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[1–3], or clock-control mechanism can take inputs from each of the registers 
which is also known as mutual clock-control mechanism as in the case of A5/1 
[4]. For the CCDM algorithm, there are two different clocking mechanisms but 
operate with same LFSRs. By means of this property, information about which al-
gorithm is used in which part of the generated keystream sequence can be hidden 
from a third party, although all details of the algorithm are given. As a result, in-
crease in cryptanalysis complexity of the system has been achieved. 

Description of CCDM 

The proposed algorithm is a simple LFSR-based binary stream cipher and has five 
LFSRs of lengths 61, 127, 107, 89 and 31 bits and denoted as R1, R2, R3, R4 and 
R5, respectively. The system works over two different modes as CCDM-Mode I 
and CCDM-Mode II that are shown in Figs. 1 and 2 respectively. The contents of 
R5 related to secret key K determines in which mode the cipher will operate. Since 
the whole responsibility of the R5 is selection of modes, it is not depicted in the 
figures. According to the selected mode, R1 controls the clocking of R2, R3 and 
R4 or it gives input bits to the clocking control mechanism. The remaining LFSRs, 
R2, R3 and R4, are responsible for generating the output sequence. In both the 
modes, R1 and R5 are regularly clocked. All of the registers have primitive poly-
nomials for their feedback functions as follows: 

 
              LFSR R1: g1(x) = x61 +x53 +x45 +x38 +x30 +x23 +x15 +x7 + 1,                        
  
              LFSR R2:  g2(x) = x127 +x103 +x96 +x87 +x66 +x51 +x41 + x35 +x23 +x3 + 1,    
 
              LFSR R3: g3 (x) = x107 +x93 +x81 +x67 +x54 +x41 +x27 +x13 + 1,     
 
              LFSR R4: g4 (x) = x89 +x83 +x80 +x55 +x53 +x42 +x39 +x + 1, 
             
              LFSR R5: g5 (x) = x31 +x27 +x23 +x19 +x15 +x11 +x7 +x3 + 1.           
 
Algorithm uses a 128-bit secret key K and a 287-bit IV which can be known. In 

the following subsections the detailed description of the two modes will be given. 
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Fig. 1. The block diagram of CCDM-Mode I 

 
 

 
Fig. 2. The block diagram of CCDM-Mode II 

CCDM Mode-I 

As it can be seen from Fig. 1, in CCDM-Mode I four LFSRs, R1, R2, R3 and R4 
can be categorized into three classes according to their functions in the algorithm; 
clock-controlling, S-box selection and key stream generation. R1 has a length of 
61 bits and controls the clocking of the other three registers. In each clock cycle, it 
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computes the functions fC2, fC3 and fC4, each of these determines how many times 
R2, R3 and R4 are clocked, respectively, as given below: 

 
                         1)38(1)8(12))38(1),8(1(2 ++= RRRRfC

,                                       (1)                                                    

1)56(1)22(12))56(1),22(1(3 ++= RRRRfC ,                                     (2) 
                        1)42(1)16(12))42(1),16(1(4 ++= RRRRfC .                                   (3) 
 
Let Ci(t) represent the number of clocking of Ri according to fCi(t) at time t for                 

i ∈{1,2,3,4}. As it can be seen from (1–3), Ci(t) ∈{1,2,3,4} whose distribution of 
elements is close to uniform. Therefore, each of R2, R3 and R4 is clocked at least 
once and at most four times in each clock cycle. After the clocking of the R2, R3 
and R4, R1 is stepped once. CCDM-Mode I uses 4×16 S-boxes of s5DES [5] for 
the keystream generation. In each cycle, R4 decides which S-boxes are used by R2 
and R3, according to the values of the functions fS2 and fS3 : 

 
                       1)24(4R)12(4R2)6(4R42 +++=Sf  ,                                    (4) 

                       1)29(4R)17(4R2)10(4R43 +++=Sf   .                                             (5) 

and R3, respectively. For example; if fS2  is 3 and fS3  is 5, then R2 uses S-box S3 and R3 
uses S-box S5 in generating the output sequence.  

The job of R2 and R3 is producing the key stream according to the S-boxes selected by 
R4 as follows: Let Sj stand for the selected S-box of R2 and Sk represent the S-box for R3 
where j and k denote the order of selected S-box for R2 and R3, so 81 ≤≤ j   and 

81 ≤≤ k . Sj uses six bits of R2 and Sk uses six bits of R3 as input bits with respect to the 
row column method shown in Table 1. According to the table, Sj_row and Sk_row are the 
variables that keep the computed results for row decision of Sj and Sk, respectively. In a 
similar fashion, Sj_column and Sk_column save the computed values for column decision of 
Sj and Sk. Each of Sj_output and Sk_output keeps the appropriate four bits output. Another 
four bits of sequence is produced by concatenating the last two bits of R2 and R3. The first 
two bits of the sequence come from last two bits of R3 and the remained two bits of the se-
quence come from last two bits of R2. Then by applying XOR to the three 4-bit sequences 
that are produced by the S-boxes and combination of last bits of the two LFSRs, four bits of 
key stream is generated. In the following part, whole algorithm is summarized: 

 
– The functions fC2, fC3 and fC4  are computed according to the specified bits 

of R1 
– R2, R3 and R4 are stepped with respect to the results of fC2, fC3 and fC4 
– R1 is clocked once 
– fS2  and fS3  are evaluated according to the specified bits of R4; Sj and Sk 

are determined 
– Each of Sj and Sk contributes four bits output by using appropriate bits of 

R2–R3 
– Four-bit sequence is generated by combining the last two bits of R2 and 

R3  
– By XOR’ing these three 4-bit sequences, 4 bits of key stream is generated 

Equations (4) and (5) evaluate the orders of S-boxes to use among eight S-boxes for R2 

–
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Table 1. S-Box row–column method of CCDM-Mode I 

 
     Sj_row = 2R2(26) + R2(70) 
     Sk_row = 2R3(12) + R3(32) 
     Sj_column = 8R2(6) + 4R2(22) + 2R2(46) + R2(64) 
     Sk_column = 8R3(21) + 4R3(40) + 2R3(53) + R3(61) 
     Sj_output = Sj (Sj_row)( Sj_column) 
     Sk_output = Sk (Sk_row)( Sk_column) 

CCDM Mode-II 

In this mode, instead of clock-control mechanism depending on a single register, a 
mutual clock control one is applied. The algorithm is depicted in Fig. 2. As can be 
seen all of the four registers as R1, R2, R3 and R4 give input to the clock-control 
mechanism. R1 gives two bit-input to the each of three clock-control functions 
which are denoted as fC2, fC3 and fC4. These functions are given by: 

 
2)38(1)8(12))38(1),8(1(2 ++= RRRRfC

                                       (6) 

2)56(1)22(12))56(1),22(1(3 ++= RRRRfC
                                    (7) 

2)42(1)16(12))42(1),16(1(4 ++= RRRRfC                                      (8) 
 

where R1(i) represents the ith tap bit of R1 at time instant t. fC2, fC3 and fC4 give in-
teger numbers that are the numbers of clocking of R2, R3 and R4 at time t, respec-
tively. If Ci(t) represents the number of clocking for ith register according to fCi

(t) 

at time t, then Ci(t) ∈{2,3,4,5}. If the clocking mechanism of the generator were 
like that, each of R2, R3 and R4 would be clocked at least twice and at most five 
times between the generations of two consecutive bits. However for this mode, 
clocking mechanism also depends on R2, R3 and R4 as follows: For each key 
stream bit generation majority of kth clocking tap bit of R2, R3 and R4, T2k, T3k 
and T4k, respectively, is calculated and only those registers whose clocking tap 
value is the same as majority result are clocked Ci(t) times. If there exists a regis-
ter whose clocking tap value is not equal to majority, it is clocked once. So each of 
R2, R3 and R4 is clocked at least once and at most five times before each key 
stream bit is produced. The tap bit locations of the registers are shown in Fig. 3. 
The value of ‘k’ is determined according the result of 4R1(23)+2R1(34)+R1(52). 
For example, let the R1(23), R1(34) and R1(52) be 1, 0 and 1, respectively. Then  
 
 
 
 
 

,
,
,
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‘k’ is evaluated as 5. Thus, for this case clocking tap bits of R2, R3 and R4 be-
come T25, T35 and T45. Majority of these clocking tap bits is calculated and two or 
three registers whose clocking tap value is the same as majority result are clocked 
Ci(t) times. By using this clocking mechanism nonlinearity of the system is in-
creased and stop and go clocking mechanism which may permit attacks is 
avoided.  
 

 
Fig. 3. Clocking tap bit locations of the generator registers R2, R3 and R4 

Four bits of key stream z(t) is generated by taking 4 bits from each of  R2, R3, 
R4 and using these input bits in four third-order nonlinear  Boolean functions, 
each of which requires six input variables. Following the bit generation, clockings 
of R1, R2, R3 and R4 are done. Finally R1 is stepped once.  

Security of the Proposed Cipher 

For a cipher design, the crucial point that a designer has to consider is its resis-
tance against different attacks. Therefore, in this section we consider a number of 
attacks with respect to CCDM algorithm. These attacks are known-plaintext at-
tacks conducted under the assumption that the cryptanalyst knows the whole in-
ternal structure of the generator. 

Time Memory Trade-Off Attacks  

Time-memory trade-off attack is a practical method to decrease the time for key 
search when plaintext is given in advance. This type of attack can be applied, if 
the cipher has a small state size. Usually, in time-memory trade-off attacks, at-
tacker produces a number of output bits from certain states of the cipher and then 
keeps these cipher states and their corresponding outputs in pairs in a sorted list. 
Then he searches to find a match between a received keystream sequence and the 
stored output sequences. If this occurs, the corresponding cipher state is obtained 
and from this state the key can be successfully recovered. One can see that the 
state size of CCDM is N= 2415; it is too large compared to the key size 2128, so 
such an attack for CCDM is infeasible. An enhanced time memory trade-off attack 
presented in [6] can be applied. According to this study, state space N can be dis-
tributed between memory M, computational time T and known amount of data D 
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with respect to the equation M 2 TD2 = N2 for NTD ≤≤2 . Notice that since N2= 
2830, TD2> 2750 must be satisfied with the assumption that available memory to the 
attacker is about terabytes. However, such an attack is not better than exhaustive 
key search and it is impractical.   

Guess-and-Determine Attacks  

The basic idea of guess-and-determine type of attacks is to guess some unknown 
contents of the stream generator and then from the guessed values deduce the re-
mained unknown parts. Generally, for clock-ontrolled stream ciphers contents of 
the register that controls the clocking of the others is first guessed and then the in-
formation about future clockings of the other registers are revealed. After, the 
cryptanalyst tries to recover the whole state of the cipher using this information. 
To apply this attack on CCDM, one has to know in which mode the cipher oper-
ates, so he has to make assumptions about the contents of R5 and K. Also in the 
second mode of CCDM, all of the registers give input bits to the clocking mecha-
nism, thus guessing the contents of R1 cannot be enough to know the clockings of 
the others. Furthermore, since length of R1 is 61 bits, guessing its internal state 
will cost 261 complexity. Considering clocking mechanism, use of S-boxes, length 
of registers and mode transitions, we have found no such attacks applicable on the 
proposed cipher.   

Correlation attacks  

Correlation attacks are usually the most effective attack type on certain stream ci-
phers. The main idea behind this attack is the cryptanalyst can attempt in some 
way to detect a correlation between the known output sequence and the output of 
one individual LFSR. Clock-controlled stream ciphers provide practical resistance 
against fast correlation attacks first described in [7]. However, there are different 
correlation attacks that can be applied on clock-controlled LFSR based stream ci-
phers, such as unconstrained embedding attack, constrained embedding attack, 
edit distance attack and edit probability attack [8].  

If di(t) represents the number of clocking of ith generator register of CCDM at 
time t, di(t) ∈{1,2,3,4,5} for i ∈{2,3,4}, then expected value of di(t) can be ex-
pressed as: 

 
        1 1 3 3 3 3 1 1 1 1 1 46 40{ ( )} 1 2 3 4 5 1 2 3 4 2.6875.

2 4 16 16 16 16 2 4 4 4 4 32 32iE d t = + + + + + + + + = + =     (9) 

 
Then the deletion rate Pd of the system can be given as: 
  

63.0
6875.2
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P

i

d
 .                                (10) 
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Since deletion rate of the system is greater than 0.5, according to [9], the un-
constrained embedding attack cannot be successful. Moreover, let dmax represent 
maximum possible number of clocking of any generator register at time t as 
dmax(t)=max(di(t)) = 5. In [9], it is shown that, the constrained embedding attack 
can be successful if the length of the observed output sequence is greater than a 
value linear in the length of the generator register and super exponential in dmax. 
For CCDM stream cipher, dmax is 5 which requires prohibitively large amount of 
known key stream sequence, so such an attack becomes practically impossible. 
Also, edit distance and edit probability type correlation attacks proposed in [10] 
and [11] cannot be effective, since these attacks are correlation attacks on the ini-
tial state of the generator registers implying an exhaustive search over all possible 
initial states. Thus, the computational complexities of the attacks remain exponen-
tial and applications of these attacks on the CCDM stream cipher are not practical. 

Statistical Attacks  

A keystream generator which produces sequences exhibiting basic statistical bi-
ases or detectable characteristics cannot be considered as a secure cipher. Key 
stream sequence of the CCDM is investigated by using the statistical tests of FIPS 
140-2 and NIST Statistical Test Suite to determine its randomness properties [12, 
13]. The FIPS tests are based on performing a pass/fail statistical test on 10,000 
sequences of 20,000 bits each produced by our proposed stream cipher. For the 
NIST tests, 1,000 keys for CCDM cipher are randomly chosen to generate key 
streams of length 106 bits. The cipher passes FIPS 140-2 in proportion of 99.49%. 
For the CCDM, the generated sequences pass the NIST Tests with a significance 
level of = 0.01. Thus, no statistical weaknesses have been detected. 

Period and Linear Complexity 

A keystream generator cannot be suitable for cryptographic applications unless its 
generated sequences have large period and high linear complexity. Due to mutual 
clock control in the CCDM-Mode II, it does not seem possible to establish 
mathematical results about the period and linear complexity of the cipher. How-
ever, we can give upper bounds for the period and linear complexity of the algo-
rithm with ignoring the mutual clock controlling and mode transition effect. All of 
the LFSRs used in CCDM have primitive feedback polynomials, so the individual 
periods of R1, R2, R3, R4 and R5 denoted as P1, P2, P3, P4 and P5 become, re-
spectively, as 261–1, 2127–1, 2107–1, 289–1 and 231–1. Notice that all of these num-
bers are Mersenne Prime. Thus gcd(Pi, Si)=1 for i∈{2,3,4}where Si represents sum 
of clockings of ith register in P1 duration. According to [14], since Si  cannot be a 
multiple of P2, P3 and P4  and the degrees of the primitive feed back polynomials 
of R2, R3 and R4 are prime, the period of the key stream generator  Pz  can be 
written as:  
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),gcd(),gcd(),gcd( 443322

54321

PSPSPS

PPPPPP
Pz = .                                 (11) 

 
Also, since gcd(Pi, Si)=1 for i∈{2,3,4}, (11) is simplified to: 
 

415
54321 2≈= PPPPPPPz

.                                             (12) 
It can be seen that, the period of the sequence is enough high by considering the 

security requirements.  
According to [15] since gcd(Pi, Si) = 1 for i ∈{2,3,4}, the period of the clock 

control register becomes a multiplier in the upper bound on the linear complexity 
of the nonuniformly decimated sequence. Also in [1], it is given that if the deci-
mating sequence is randomly chosen, then the probability that maximum linear 
complexity is obtained can be made arbitrarily close to one for appropriately cho-
sen generator register lengths and the period of the clock control register. For 
CCDM, the clock control register is R1 whose period is 261–1. Thus; if LC denotes 
the linear complexity of the keystream sequence generated by CCDM, LC, is very 
likely to lower bounded by 261–1. It is clear that linear complexity of the sequence 
is high enough considering the fact that about 262 known plaintext bits must be in-
tercepted in order to perform the Berlekamp-Massey attack [16]. Since such an 
amount of known keystream generated with same key and initial vector the regis-
ters seems not sensible and system should be reinitialized with a different initial 
vector well before this amount of data is generated, CCDM is considered to be se-
cure for Berlekamp-Massey attack. 

Conclusion  

In this paper, we proposed a new stream cipher called CCDM, which is based on 
irregular clocking and operating on two different modes. The description of the 
cipher and its security properties were given and shown that CCDM is secure con-
sidering some well known attacks. Also produced output sequences have large pe-
riod, high linear complexity and good statistical properties. Some properties of 
CCDM have not yet been addressed, for example hardware implementation, opti-
mized software code and investigation of CCDM against different attacks. These 
subjects will be concern of a future paper. 
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Abstract  

In this study, a CAN model has been constituted using the OPNET software which is based 
on discrete event simulation technique. Its evaluation in reliable real-time communication 
environments has been realized using the obtained simulation results. Performance assess-
ment of the network model has been carried out depending upon such parameters as end-to-
end message delay, throughput, and packet loss ratio. 

Introduction 

The controller area network (CAN) has been employed in many distributed real-
time control applications in the industrial environments. CAN protocol is one of 
the most advanced and common autobus protocols in the communications indus-
try. Initially it was intended for use in only automotive applications. It is currently 
also deployed in many other industrial applications due to its high performance 
and superior characteristics. Its common applications include intelligent motor 
control, robot control, intelligent sensors/counters, laboratory automation and me-
chanical tools [1–3]. 

In this paper, we present a CAN model that has been constituted using the 
OPNET software based on discrete event simulation technique. Its evaluation in 
reliable real-time communication environments has been realized using the ob-
tained simulation results. Performance assessment of the network model has been 
carried out depending upon such parameters as end-to-end message delay, 
throughput and packet loss ratio. 

Rest of the paper is organized as follows: “Modeling and Simulation of the 
CAN” introduces the basics of the CAN as well as the proposed CAN model and 
its simulation. Simulation results obtained and performance evaluation are pre-
sented next, followed by final remarks. 

Modeling Controller Area Networks 

C. Bayilmi , . Ertürk , C. Çeken , and . Özçelik
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Modeling and Simulation of the CAN 

The CAN employs a serial communication protocol based on a CSMA/CD+CR 
Access mechanism with the use of priorities. It is used to support distributed real-
time control and multiplexing. The maximum data rate that can be achieved de-
pends on the bus length. For example, the maximum data rates for 30-m and  
500-m buses are 1 Mbit s–1 and 100 Kbit s–1, respectively. As CAN utilizes a pri-
ority based bus arbitration technique, the node with the highest priority continues 
transmitting without any interruption. Thus CAN has a very predictable behavior 
and in fact CAN networks can operate at near 100% bus bandwidth [1]. 

CAN nodes do not have addresses. Instead, each CAN message has an identi-
fier pointing out the node it is produced. The identifier field serves two purposes: 
assigning a priority for transmission and allowing message filtering upon recep-
tion. Two versions of CAN are existed and they only differ in the size of identifier 
field (i.e., 11 and 29 bit identifiers with CAN 2.0A and CAN 2.0B, correspond-
ingly). CAN has very efficient error detection mechanisms detecting five different 
error types such as bit, bit stuffing, CRC, specific delimiter and ACK errors. Also 
each node maintains two error counters: the transmit error counter and the receiver 
error counter. There are several rules governing how these counters are incre-
mented and/or decremented [4]. 

The project model of the CAN network is shown in Fig. 1. It consists of eight 
CAN nodes, exchanging real-time data among as given in Table 1. The node 
model of the proposed CAN network is depicted in Fig. 2. A general CAN model 
consists of a three layered architecture: physical layer, data link layer (DLL) and 
application layer. First one provides the means for communication with CAN bus 
and has a bus receiver and a bus transmitter. Second one is the actual CAN con-
troller implementing CAN protocol. The latter includes and realizes different 
types of application functionalities (CANopen, SDS, DeviceNet, etc.). 
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Table 1. CAN messages 

Fig. 1. CAN network project model 

Fig. 2. CAN network node model  
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Process model developed for the CAN DLL functions is presented in Fig. 3. 
The Start state takes the initial values related to the CAN nodes. The FromBusrec 
state represents the CAN node starting message reception from the bus and also is 
used for the priority check by means of message identification numbers. The Idle 
state is used to handle all interrupt invocations. The Resolution state introduces 
predefined delays after the FromBusrec state succeeds in order to complete a CAN 
message transmission. The Receive state is used to begin a CAN message recep-
tion with the highest priority, which is destined to this CAN node; otherwise, the 
message is ignored. The FromSource state receives CAN messages from the Ap-
plication layer and places them into a buffer. After, they are moved into the CAN 
bus by the Send state. Finally, the BusOff state suspends the CAN node according 
to status of fault counter. 

 
Fig. 3. CAN network process model 

Simulation Results and Performance Evaluation 

In this section, the communication behavior of the CAN nodes in the developed 
network environment is presented, followed by a discussion about the system per-
formance. Data rate of the CAN bus is 100 Kbit s–1 and all of the nodes in the bus 
generate CAN messages following an exponential distribution with the mean 1 s. 
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Each CAN node introduces a single CAN message with a certain priority to the 
network. Priority, data length, and destination address of the CAN messages pro-
duced in the source CAN nodes are given in Table 1. 

In Fig. 4a, average end-to-end delay results of highest priority message (CAN 
Node 1) and lowest priority message (CAN Node 8) vs. the simulation run time 
are presented. As seen from the figure highest priority message experiences lower 
average end-to-end delays compared to the lowest priority message as expected. 
Figure 4b illustrates that the average throughput of CAN bus is about 15 packets 
per second. And finally, in Fig. 4c the average packet loss ratio of CAN bus is 
shown. As seen from the figure the average packet loss ratio is approximately 0.01 
which is well reasonable for a CAN system. 

 
Fig. 4. (a) Average end to end delay of highest and lowest priority messages, (b) average 
throughput of CAN bus, (c) average packet loss ratio of CAN bus 
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Conclusions 

The main objective of this presented work has been to model and simulate a CAN 
network using OPNET Modeler software. Performance of the realized CAN 
model is examined with respect to average end-to-end message delay, throughput, 
and packet loss ratio parameters. According to the simulation results obtained, 
highest priority message has a lower average end-to-end delays compared to the 
lowest priority message because the highest priority lets it continue without any 
interruption. 
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