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Preface

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

The Science of Algorithmic Trading and Portfolio Management is a reference book intended

to provide traders, portfolio managers, analysts, students, practitioners, and financial execu-

tives with an overview of the electronic trading environment, and insight into how algorithms

can be utilized to improve execution quality and fund performance.

We provide a discussion of the current state of the market and advanced modeling techniques

for trading algorithms, stock selection, and portfolio construction.

This reference book will provide readers with:

� An understanding of the new electronic trading environment.

� An understanding of transaction cost analysis (TCA) and proper metrics for cost measurement

and performance evaluation.

� A thorough understanding of the different types of trading algorithms: liquidity seeking,

dark pools, arrival price, implementation shortfall (IS), volume weighted average price

(VWAP), arrival price, and portfolio implementation shortfall.

� Proven market impact modeling techniques.

� An understanding of algorithmic trading across various asset classes: equities, futures,

fixed income, foreign exchange, and commodities.

� Advanced algorithmic forecasting techniques to estimate daily liquidity and monthly volumes.

� An algorithmic decision making framework to ensure consistency between investment

and trading objectives.

� A best execution process.

Readers will subsequently be prepared to:

� Develop real-time trading algorithms customized to specific institutional needs.

� Design systems to manage algorithmic risk and dark pool uncertainty.

� Evaluate market impact models and assess performance across algorithms, traders, and

brokers.

� Implement electronic trading systems.

For the first time, portfolio managers are not forgotten and will be provided with proven

techniques to better construct portfolios through:

� Stock Selection

� Portfolio Optimization

� Asset Allocation

� MI Factor Scores
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� Multi-Asset Investing

� Factor Exposure Investing

The book is categorized in three parts. Part I focuses on the current electronic market envi-

ronment where we discuss trading algorithms, market microstructure research, and transac-

tion cost analysis. Part II focuses on the necessary mathematical models that are used to

construct, calibrate, and test market impact models, as well as to develop single stock and

portfolio trading algorithms. The section further discusses volatility and factor models, as

well as advanced algorithmic forecasting techniques. Part III focuses on portfolio manage-

ment techniques and how TCA and market impact can be incorporated into the investment

decisions, stock selection, and portfolio construction to improve portfolio performance. We

introduce readers to an advanced portfolio optimization process that incorporates market

impact and transaction costs directly into the portfolio optimization. We provide insight into

how MI factor scores can be used to improve stock selection, as well as a technique that can

be used by portfolio managers to decipher broker-dealer black box models. This section con-

cludes with an overview of high frequency trading, and the necessary mathematical knowl-

edge required to develop black box trading models.

xvi Preface



Acknowledgments

There are several people who made significant contributions to the concepts introduced

throughout the text. Without their insights, comments, suggestions, and criticism, the final

version of this book and these models would not have been possible. They are:

Roberto Malamut, Ph.D., was instrumental in the development of the methodologies and

framework introduced in this book. His keen mathematical insight and market knowledge

helped advance many of the theories presented throughout the text. Morton Glantz, my coau-

thor from Optimal Trading Strategies, provided invaluable guidance and direction, and

helped turn many of our original ideas into formulations that have since been put into prac-

tice by traders and portfolio managers, and have now become mainstream in the industry.

The All-Universe Algorithmic Team: Roberto Malamut (again), Andrew Xia, Hernan Otero,

Deepak Nautiyal, Don Sun, Kevin Li, Peter Tannenbaum, Arun Rajasekhar, and Mustaq Ali,

and Tom M. Kane and Dan Keegan too! And to complete the All-Universe team: Pierre

Miasnikof, Agustin Leon, and Alexis Kirke for all of their early contribution in developing

and testing many of the ideas and models that have now become ingrained into the algorith-

mic trading landscape. Their contribution to algorithmic trading is second to none.

Wayne Wagner provided valuable direction and support over the years. His early research

has since evolved into its own science and discipline known as transaction costs analysis

(TCA). His early vision and research has helped pave the way for making our financial mar-

kets more efficient and investor portfolios more profitable. Robert Almgren and Neil Chriss

provided the ground breaking work on the efficient trading frontier, and introduced the

appropriate mathematical trading concepts to the trading side of the industry. Their seminal

paper on Optimal Liquidation Strategies is the reason that trading desks have embraced

mathematical models and algorithmic trading.

Victoria Averbukh Kulikov, Director of Cornell Financial Engineering Manhattan (CFEM),

allowed me to lecture on Algorithmic Trading (Fall 2009 & Fall 2010) and test many of my

theories and ideas in a class setting. I have a great deal of gratitude to her and to all the stu-

dents for correcting my many mistakes before they could become part of this book. They

provided more answers to me than I am sure I provided to them during the semester.

Connie Li, Quantitative Analyst at Numeric Investments (and M.S. in Financial Engineering

from Cornell University), provided invaluable comments and suggestions throughout the

writing of the book. And most importantly, corrected the errors in my math, the grammar in

my writing, and helped simplify the many concepts discussed throughout the book. Scott

Wilson, Ph.D., Analyst at Cornerstone Research, provided invaluable insight and direction

for modeling trading costs across the various asset classes, and was influential in helping to

structure the concepts behind the factor exposure allocation scheme.

xvii



Ayub Hanif, Ph.D. Researcher, Financial Computing and Applied Computational Science,

University College London, for his extraordinary contribution to the book as the author of

Chapter 13: High Frequency Trading and Black Box Models. This chapter has provided

more insight into the secretive word of black box modeling and high frequency trading than

has been disseminated in all the seminars and conferences I have attended put together. It is

a must read for any investor seeking to manage a portfolio and earn a profit in the ultracom-

petitive high frequency and high velocity trading space.

Additionally, Dan Dibartolomeo, Jon Anderson, John Carillo, Sebastian Ceria, Curt Engler,

Marc Gresack, Kingsley Jones, Scott Wilson, Eldar Nigmatullin, Bojan Petrovich, Mike

Rodgers, Deborah Berebichez, Jim Poserina, Mike Blake, and Diana Muzan for providing

valuable insight, suggestions, comments, during some of the early drafts of this manuscript.

This has ultimately lead to a better text. The team at Institutional Investor and Journal of

Trading, Allison Adams, Brian Bruce, and Debra Trask for ongoing encouragement and sup-

port on the research side of the business.

A special thanks to Richard Rudden, Stephen Marron, John Little, Cheryl Beach, Russ

Feingold, Kevin Harper, William Hederman, John Wile, and Kyle Rudden, from my first job

out of college at R.J. Rudden Associates (now part of Black and Veatch) for teaching the

true benefits of thinking outside of the box, and showing that many times a non-traditional

approach could often prove to be the most insightful.

Finally, Hans Lie, Richard Duan, Trista Rose, Alisher Khussainov, Thomas Yang, Joesph

Gahtan, Fabienne Wilmes, Erik Sulzbach, Charlie Behette, Min Moon, Kapil Dhingra, Harry

Rana, Michael Lee, John Mackie, Nigel Lucas, Steve Paridis, Thomas Reif, Steve Malin,

Marco Dion, Michael Coyle, Anna-Marie Monette, Mal Selver, Ryan Crane, Matt Laird,

Charlotte Reid, Ignor Kantor, Aleksandra Radakovic, Deng Zhang, Shu Lin, Ken Weston,

Andrew Freyre-Sanders, Mike Schultz, Lisa Sarris, Joe Gresia, Mike Keigher, Thomas

Rucinski, Alan Rubenfeld, John Palazzo, Jens Soerensen, Adam Denny, Diane Neligan,

Rahul Grover, Rana Chammaa, Stefan Balderach, Chris Sinclaire, James Rubinstein, Frank

Bigelow, Rob Chechilo, Carl DeFelice, Kurt Burger, Brian McGinn, Dan Wilson, Kieran

Kilkenny, Kendal Beer, Edna Addo, Israel Moljo, Peter Krase, Emil Terazi, Emerson Wu,

Trevor McDonough, Simon, Jim Heaney, Emilee Deutchman, Seth Weingram, and Jared

Anderson.

Best Regards,

Robert Kissell, Ph.D.

xviii Acknowledgments



Chapter1
Algorithmic Trading

INTRODUCTION
Algorithmic trading represents the computerized executions of financial

instruments. Algorithms trade stocks, bonds, currencies, and a plethora

of financial derivatives. Algorithms are also fundamental to investment

strategies and trading goals. The new era of trading provides investors

with more efficient executions while lowering transaction costs—the

result, improved portfolio performance. Algorithmic trading has been

referred to as “automated,” “black box” and “robo” trading.

Trading via algorithms requires investors to first specify their investing

and/or trading goals in terms of mathematical instructions. Dependent

upon investors’ needs, customized instructions range from simple to highly

sophisticated. After instructions are specified, computers implement those

trades following the prescribed instructions.

Managers use algorithms in a variety of ways. Money management funds—

mutual and index funds, pension plans, quantitative funds and even hedge

funds—use algorithms to implement investment decisions. In these cases,

money managers use different stock selection and portfolio construction

techniques to determine their preferred holdings, and then employ algo-

rithms to implement those decisions. Algorithms determine the best way to

slice orders and trade over time. They determine appropriate price, time,

and quantity of shares (size) to enter the market. Often, these algorithms

make decisions independent of any human interaction.

Similar to a more antiquated, manual market-making approach, broker dealers

and market makers now use automated algorithms to provide liquidity to the

marketplace. As such, these parties are able to make markets in a broader

spectrum of securities electronically rather than manually, cutting costs of

hiring additional traders.

Aside from improving liquidity to the marketplace, broker dealers are

using algorithms to transact for investor clients. Once investment decisions

are made, buy-side trading desks pass orders to their brokers for execution

1
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using algorithms. The buy-side may specify which broker algorithms to

use to trade single or basket orders, or rely on the expertise of sell-side

brokers to select the proper algorithms and algorithmic parameters. It is

important for the sell-side to precisely communicate to the buy-side expec-

tations regarding expected transaction costs (usually via pre-trade analysis)

and potential issues that may arise during trading. The buy-side will need

to ensure these implementation goals are consistent with the fund’s

investment objectives. Furthermore, it is crucial for the buy-side to deter-

mine future implementation decisions (usually via post-trade analysis) to

continuously evaluate broker performance and algorithms under various

scenarios.

Quantitative, statistical arbitrage traders, sophisticated hedge funds, and

the newly emerged class of investors known as high frequency traders

will also program buying/selling rules directly into the trading algorithm.

The program rules allows algorithms to determine instruments and how

they should be bought and sold. These types of algorithms are referred to

as “blackbox” or “profit and loss” algorithms.

For years, financial research has focused on the investment side of a busi-

ness. Funds have invested copious dollars and research hours on the quest

for superior investment opportunities and risk management techniques,

with very little research on the implementation side. However, over the

last decade, much of this initiative has shifted towards capturing hidden

value during implementation. Treynor (1981), Perold (1988), Berkowitz,

Logue, and Noser (1988), Wagner (1990), and Edwards and Wagner

(1993) were among the first to report the quantity of alpha lost during

implementation of the investment idea due to transaction costs. More

recently, Bertsimas and Lo (1996), Almgren and Chriss (1999, 2000),

Kissell, Glantz, and Malamut (2004) introduced a framework to minimize

market impact and transaction costs, as well as a process to determine

appropriate optimal execution strategies. These efforts have helped provide

efficient implementation—the process known as algorithmic trading1.

While empirical evidence has shown that when properly specified, algo-

rithms result in lower transaction costs, the process necessitates investors

be more proactive during implementation than they were previously uti-

lizing manual execution. Algorithms must be able to manage price, size,

and timing of the trades, while continuously reacting to market condition

changes.

1A review of market microstructure and transaction cost literature is provided in

Chapter 2, Market Microstructure.
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Advantages
Algorithmic trading provides investors with many benefits such as:

� Lower Commissions. Commissions are usually lower than traditional

commission fees since algorithmic trading only provides investors

with execution and execution-related services (such as risk manage-

ment and order management). Algorithmic commissions typically do

not compensate brokers for research activities, although some funds

pay a higher rate for research access.

� Anonymity. Orders are entered into the system and traded automatically

by the computer across all execution venues. The buy-side trader either

manages the order from within his firm or requests that the order is

managed by the sell-side traders. Orders are not shopped or across trad-

ing floor as they once were.

� Control. Buy-side traders have full control over orders. Traders determine

the venues (displayed/dark), order submission rules such as market/limit

prices, share quantities, wait and refresh times, as well as when to accel-

erate or decelerate trading based on the investment objective of the fund

and actual market conditions. Traders can cancel the order or modify the

trading instructions almost instantaneously.

� Minimum Information Leakage. Information leakage is minimized

since the broker does not receive any information about the order or

trading intentions of the investor. The buy-side trader is able to specify

their trading instructions and investment needs simply by the selection

of the algorithm and specifications of the algorithmic parameters.

� Transparency. Investors are provided with a higher degree of transpar-

ency surrounding how the order will be executed. Since the underlying

execution rules for each algorithm are provided to investors in advance,

investors will know exactly how the algorithm will execute shares in the

market, as algorithms will do exactly what they are programmed to do.

� Access. Algorithms are able to provide fast and efficient access to the

different markets and dark pool. They also provide co-location, low

latency connections, which provides investors with the benefits of

high speed connections.

� Competition. The evolution of algorithmic trading has seen competition

from various market participants such as independent vendors, order

management and execution management software firms, exchanges,

third party providers, and in-house development teams in addition to

the traditional sell-side broker dealers. Investors have received the ben-

efits of this increased competition in the form of better execution ser-

vices and lower costs. Given the ease and flexibility of choosing and

switching between providers, investors are not locked into any one
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selection. In turn, algo providers are required to be more proactive in

continually improving their offerings and efficiencies.

� Reduced Transaction Costs. Computers are better equipped and faster

to react to changing market conditions and unplanned events. They are

better capable to ensure consistency between the investment decision

and trading instructions, which results in decreased market impact cost,

less timing risk, and a higher percentage of completed orders (lower

opportunity cost).

Disadvantages
Algorithmic trading has been around only since the early 2000s and it is

still evolving at an amazing rate. Unfortunately, algorithms are not the be

all and end all for our trading needs. Deficiencies and limitations include:

� Users can become complacent and use the same algorithms regardless

of the order characteristics and market conditions simply because

they are familiar with the algorithm.

� Users need to continuously test and evaluate algorithms to ensure they

are using the algorithms properly and that the algorithms are doing

what they are advertised to do. Users need to measure and monitor

performance across brokers, algorithms and market conditions to under-

stand what algorithms are most appropriate given the type of market

environment.

� Algorithms perform exactly as they are specified, which is nice when

the trading environment is what has been expected. However, in the

case that unplanned events occur, the algorithm may not be properly

trained or programmed for that particular market, which may lead to

sub-par performance and higher costs.

� Users need to ensure consistency across the algorithm and their invest-

ment needs. Ensuring consistency is becoming increasingly difficult in

times where the actual algorithmic trading rule is not as transparent as

it could be or when the algorithms are given non-descriptive names

that do not provide any insight into what they are trying to do.

� Too many algos and too many names. VWAP, volume weighted aver-

age price, is an example of a fairly descriptive algorithmic name and is

fairly consistent across brokers. However, an algorithm such as Tarzan

is not descriptive and does not provide insights into how it will trade

during the day. Investors may need to understand and differentiate

between hundreds of algorithms, and keep track of the changes that

occur in these codebases. For example, a large institution may use

twenty different brokers with five to ten different algorithms each, and

with at least half of those names being non-descriptive.
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� Price Discovery. As we discuss in Chapter 2 (Market Microstructure)

the growth of algorithms and decline of traditional specialists and

market marker roles has led to a more difficult price discovery process

at the open. While algorithms are well versed at incorporating price

information to determine the proper slicing strategy, they are not yet

well versed at quickly determining the fair market price for a security.

CHANGING TRADING ENVIRONMENT
The US equity markets have experienced sweeping changes in market

microstructure, rapid growth in program trading, and a large shift to elec-

tronic trading. In 2001, both the New York Stock Exchange (NYSE) and

NASDAQ moved to a system of quoting stocks in decimals (e.g., cents per

share) from a system of quoting stocks in fractions (e.g., 1/16th of a dollar

or “teenies”). As a consequence, the minimum quote increment reduced

from $0.0625/share to $0.01/share. While this provides investors with a

much larger array of potential market prices and transactions closer to true

intrinsic values, it has also been criticized for interfering with the main role

of financial markets, namely, liquidity and price discovery.

The decrease in liquidity shortly after decimalization has been documented

by Bacidore, Battalio, and Jennings (2001), NASDAQ Economic Research

(2001), and Beesembinder (2003). This was also observed in the US equity

markets after moving from a quoting system of 1/8th ($0.125/share) to

1/16th (0.0625/share) and in Canada when the Toronto Stock Exchange

moved from a system of 1/8th ($0.125/share) to nickels ($0.05/share). For

example, see Harris (1994, 2003), Jones and Lipson (1999), and Goldstein

and Kavajecz (2000).

Some market participants argued that actual market liquidity did in fact

remain stable after decimalization, although it was spread out over a larger

number of price points. For example, suppose that prior to decimalization

the best offer for a stock was 5000 shares at $30.00. However, after

decimalization the market offers were 500 shares at $29.98, 1000 shares

at $29.99, 2000 shares at $30.00, 1000 shares at $30.01, and 500 shares at

$30.02. In this example, neither the total liquidity or average offered price

for 5000 shares has changed, but the measured liquidity at the best market

ask has decreased from 5000 shares pre-decimalization to 500 shares

post-decimalization. So, while market depth (e.g., “transaction liquidity”)

measured as the total quantity of shares at the national best bid and offer

(NBBO) has decreased, actual market liquidity may be unaffected. What

has changed in this example is that now it takes five times as many trans-

actions to fill the 5000 share order. Thus, even if liquidity has remained
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stable, trading difficulty, as measured by the number of transactions required

to complete the order, has in fact increased.

Another major structural event that occurred with dramatic effects on

trading was Reg NMS, regulation of national market systems. Reg NMS

was a series of initiatives to modernize our national securities markets.

The main goals were to promote competition across market centers and

orders, and provide fair and efficient pricing mechanisms. The rules that

had the greatest effect on the markets were:

� Order Protection (Rule 611)—Establish, maintain, and enforce written

policies and procedures to prevent “trade-throughs.” Trade-throughs are

the execution of trades at prices inferior to protected quotes. A protected

quote is an order that is immediately and automatically accessible.

� Access (Rule 610)—Requires fair and non-discriminatory access to

quotes and routing of orders to those market centers with the best

prices.

� Sub Penny Pricing (Rule 612)—minimum pricing increments.

Analysis of market volumes has found that while visible liquidity at the

best bid and ask may have decreased, actual traded volume has increased

dramatically. Figure 1.1 shows the increase in volume for NYSE listed

securities from 2000 to 2012. Total consolidated volume peaked during

the financial crisis in 2008�2009 where it was more than 63 the aver-

age in 2000. Volume has succumbed since 2009, but in 2012 it is still

3.33 the 2000 average. While volumes increased in the market, the issue

of fragmentation transpired. Traded volume in the NYSE was between 80

and 90% on average for 2000 through 2005, but then started decreasing
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■ Figure 1.1 NYSE Listed Consolidated Volume.
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(partly due to Reg NMS in 2007) through 2008/2009. Currently, the NYSE

group accounts for only 33% and the traditional NYSE floor exchange

accounts for 20%�23% of total volume in NYSE listed stocks. The NYSE

group includes trades in the NYSE, American Express (AMEX), and

Archipelago Exchange (ARCA). This is illustrated in Figure 1.2.

Empirical evidence from the NYSE confirms that decimalization made

trading more difficult by increasing the total number of transactions

required to fill an order. Average trade size on the NYSE has decreased

82% since 2000 when the average trade size was 1222 shares compared

to only 222 shares in 2012. Investors with large positions now require

more than five times the number of trades to complete the order than was

required prior to decimalization. This does not even include the increase

in quote revisions and cancellations for price discovery purposes (and

fishing expeditions). Figure 1.3 shows the rapid decrease in trade size

over the period 2000 through about 2005, with the decline continuing

more gradually until about 2009. Since 2009, the average trade size has

been just over 200 shares per trade. Figure 1.4 shows the decline in average

trade size for the NYSE group. The difference in this analysis is that in 2004

the NYSE combined with AMEX and ARCA started to include crossing ses-

sion volumes, auctions, etc., into its reported volume statistics. As a result,

higher volume values were reported on the NYSE group reports than to the

consolidated public tape, and average trade sizes were much larger than the

median or the average trade sizes excluding auctions and crossing session

volume. Even under this new definition we can see that the average trade

sizes (computed by dividing the NYSE group reported volume by the total

number of reported trades) dramatically declined. These average sizes
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show the different equity listings (NYSE, AMEX, ARCA, and NASDAQ),

and exchange traded funds (ETFs). In May and June of 2006, the NYSE

group started reporting all crossing session volumes in its ETF and AMEX/

ARCA volume statistics resulting in what appears to be an increase in trade

size. The increase was due to the reporting data and not any increase in trade

size. The most representative average trade size figures in this chart are the

all trades average (computed from market data) and the NYSE reported

NASDAQ values, since all NASDAQ trades and volume were reported to

the tape. The NYSE does not run any crossing or auctions for NASDAQ

listed stocks. One interesting observation that follows is that the average

ETF trade size (441 shares in 2012) is almost double the average equity size
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All Stocks

ARCA/AMEX

NASDAQ

ETF

All Trades

Average Trade Size by Market

0

200

400

600

800

1000

1200

Ja
n-

20
04

Ju
n-

20
04

N
ov

-2
00

4

A
pr

-2
00

5

S
ep

-2
00

5

F
eb

-2
00

6

Ju
l-2

00
6

D
ec

-2
00

6

M
ay

-2
00

7

O
ct

-2
00

7

M
ar

-2
00

8

A
ug

-2
00

8

Ja
n-

20
09

Ju
n-

20
09

N
ov

-2
00

9

A
pr

-2
01

0

S
ep

-2
01

0

F
eb

-2
01

1

Ju
l-2

01
1

D
ec

-2
01

1

M
ay

-2
01

2

■ Figure 1.4 Average Trade Size by Market.

0

200

400

600

800

1000

1200

1400

Ja
n-

2
0

0
0

S
e

p-
2

0
0

0

M
ay

-2
0

0
1

Ja
n-

2
0

0
2

S
e

p-
2

0
0

2

M
ay

-2
0

0
3

Ja
n-

2
0

0
4

S
e

p-
2

0
0

4

M
ay

-2
0

0
5

Ja
n-

2
0

0
6

S
e

p-
2

0
0

6

M
ay

-2
0

0
7

Ja
n-

2
0

0
8

S
e

p-
2

0
0

8

M
ay

-2
0

0
9

Ja
n-

2
0

1
0

S
e

p-
2

0
1

0

M
ay

-2
0

1
1

Ja
n-

2
0

1
2

Average Trade Size

■ Figure 1.3 Average Trade Size.

8 CHAPTER 1 Algorithmic Trading



(222 shares in 2012). A comparison of volume and trade size is shown in

Figure 1.5. Notice the inverse relationship between the two. While volumes

have increased, average trade size has declined, thus causing a higher

number of trades and more work to complete an order. A comparison of the

distribution of trade sizes in 2000 and in 2012 is shown in Figure 1.6.

The quantity of block trading activity on the NYSE has also decreased

considerably (Figure 1.7). The decreased activity has greatly contributed

to the smaller trade sizes and increased difficulty in completing an order.

However, many of the challenges can be attributed to algorithmic trading.

The percentage of block volume (10,000 shares or more) has decreased

dramatically from 52% of total volume in 2000 to fewer than 20%
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in 2012. The number of block transactions has decreased 95% from about

2.6% of total trades to 0.1% of total trades in 2012. Clearly, trading has

become more difficult, measured from the number of transactions

required to fill an order.

Our analysis period has seen a dramatic surge in program trading activity

over 2000 through 2007. During this time, program trading increased from

about 10% of total volume to almost 40%. Then in August 2007, there was

a market correction that is believed to have been due to a high correlation

across different quantitative strategies and which caused many quantitative

funds to incur losses and lose assets under management. Subsequently, pro-

gram trading activity declined through about September 2008. Moreover,

due to the financial crisis many funds turned to program trading to facilitate

their trading needs from a risk management perspective, which caused pro-

gram trading to again increase through 2010 where it seems to have since

leveled off at about 30%�35% of total market volume (Figure 1.8).

It is easy to see that the increase in program trading has also helped open

the door for algorithmic trading. Program trading is defined as trading a

basket of 15 or more stocks with a total market value of $1 million or more.

Since 2000, program trading on the NYSE has increased 273% from 10% in

2000 to 36% in 2012. This more than threefold increase in program trading

has been attributable to many factors. For example, institutional investors

have shifted towards to embracing quantitative investment models (e.g.,

mean-variance optimization, long-short strategies, minimal tracking error

portfolios, stock ranking model, etc.) where the model results are a list of

stocks and corresponding share quantities, compared to the more traditional

fundamental analysis that only recommends whether a stock should be
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bought or sold without any insight into the number of shares to transact. The

recent increase in program trading activity is also due to large broker-

dealers offering program trading at lower commission rates than traditional

block executions. Technological improvements (e.g., Super DOT on the

NYSE, Super Montage on NASDAQ, and in-house trading systems) have

made it much easier for brokers to execute large lists of stocks more effi-

ciently. Now, combine the large increase in program trading with the large

reduction in block volume and we begin to appreciate the recent difficultly

in executing large positions and the need for more efficient implementation

mechanisms. Execution and management of program trades have become

much more efficient through the use of trading algorithms, and these pro-

gram trading groups have pushed for the advancement and improvement of

trading algorithms as a means to increase productivity.

RECENT GROWTH IN ALGORITHMIC TRADING
To best position themselves to address the changing market environment,

investors have turned to algorithmic trading. Since computers are more effi-

cient at digesting large quantities of information and data, more adept at

performing complex calculations, and better able to react quickly to chang-

ing market conditions, they are extremely well suited for real-time trading

in today’s challenging market climate. Algorithmic trading became popular

in the early 2000s. By 2005, it accounted for about 25% of total volume.

The industry faced an acceleration of algorithmic trading (as well as a pro-

liferation of actual trading algorithms) where volumes increased threefold

to 75% in 2009. The rapid increase in activity was largely due to the

increased difficulty investors faced executing orders. During the financial

crisis, it was not uncommon to see stock price swings of 5�10% during the
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day, as well as the changing market environment (discussed above). These

trends are shown in Figure 1.9. Over the years there have been various

sources providing algorithmic trading estimates. For example, Tabb Group

and Aite Group have published participation rates for buy-side algorithmic

trading usage that are lower than our figures reported in this book. Our esti-

mates include the execution’s end product. So, even if the investor did not

trade directly with an algorithm but did in fact route the algorithm to a bro-

ker who ultimately transacted the shares with an algorithm, those shares are

included with the algorithmic trading volume figures.

The decade 2000�2010 was also associated with changing investor styles

and market participants. We analyzed market participant order flow by sev-

eral different categories of investors: traditional asset managers (including

mutual funds, indexers, quantitative funds, and pension funds), retail inves-

tors, hedge funds (including statistical arbitrage and proprietary trading

funds), market makers, and high frequency traders. In our definition, the high

frequency trader only consisted of those investors considered liquid or rebate

traders. We discuss the different types of high frequency trading below.

In 2003�2004 market volumes were led by asset managers, accounting

for 40% of total volume. High frequency traders had almost negligible per-

centages in 2003 but grew to about 10% of the total market volumes in

2006. During the financial crisis, high frequency/rebate traders accounted

for about 33% of volumes followed by hedge funds (21%). The biggest

change we have observed over 2000�2012 is the decrease in asset

manager volumes from 40% (2003) to about 23% (2012), and the increase

in high frequency trading from 1�3% to about 30% of total volumes.
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Hedge fund trading volumes as a percentage of the total decreased slightly,

but this is due to the increased competition across hedge funds, withdrawal

of dollars, and a shift for some of these funds and managers from tradi-

tional hedge fund strategies into the ultra-short-term high frequency strate-

gies. Hedge fund volume percentage also increased slightly in 2012. These

changing volume percentages are illustrated in Figure 1.10.

Opponents of high frequency trading will often argue that it is disadvanta-

geous to institutional and retail investors because it is causing trading costs

to spike and liquidity to dryup. We have always found it humorous that

whenever someone is trying to make a point or effect change to something

that will benefit them, they pull retail into the mix and imply that the current

structure is harming those retail investors in particular, so we must make

changes in order to protect these mom and pop investors. Otherwise, these

retail investors are almost entirely ignored. What is more likely in these

situations is that the market has become increasingly competitive and high

frequency traders have achieved higher levels of profitability than

traditional investors. As such, they are pushing for change that will either

favor their particular trading needs or investment style, or help them, albeit

in an indirect way, by taking an advantage away from a competitor.

For example, during the period of increased high frequency trading

activity (2006�2009) these funds were reported to be highly profitable.

Conversely, over the same period the more traditional funds were not

as profitable as they had been previously, especially in comparison to the

high frequency traders. As a result, the belief (either correct or not) is

that high frequency traders must be doing something that is harmful and
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detrimental to the general markets. Their trading must be toxic. A similar

situation occurred back in the early 2000s when traditional hedge funds

were highly profitable. They were greatly criticized at the time for being

“fast money” and causing price dislocations due to their buying and selling

pressure, which wasn’t good for, you’ve guessed it, retail investors.

As a follow-up to the high frequency criticism, many financial pundits are

stating that high frequency trading accounts for upwards of 50�70% of total

market volumes. These are much different values than what our research has

found. We estimated high frequency trading to account for only 33% of total

volume. What is behind this difference? It just so happens that this differ-

ence is due to the definition of “high frequency” trader. These parties have

grouped high frequency traders (our rebate trader definition) with market

maker participants and some hedge fund traditional statistical arbitrage tra-

ders (including pairs trading, index arbitrage, and market neutral strategies).

Figure 1.11 shows a plot of the percentage of market volume for high

frequency trading (HFT), market making (MM), and hedge funds (HF).

Notice the increasing trend of HFT and the initial decrease in HF trading

percentage, but with a recent increase. Market making (MM) appears to

have been relatively steady, but has decreased from about 20% down to

17% of market volumes. Notice our maximum HFT market volume per-

centage of 33% in 2010. We additionally plot trends consisting of high

frequency trading and market making (HFT1MM) and high frequency

trading, market making, and hedge funds (HFT1MM1HF). Notice that

at the peak of the financial crisis, 2008�2009, high frequency trading

was only about 33% of total market share—a large discrepancy from

the widely reported 50�70%. But the combination of HFT and MM
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percentage peaks at about 50% during the period and then tapers off in

2011�2012 when markets have become increasingly competitive and

some high frequency traders have exited the business. Furthermore, as we

add the hedge fund trader percentage to HFT and MM, we start approach-

ing values of about 60�70%. Thus, the classification of the different types

of traders is what accounts for the disparity in statistical figures.

An important issue to point out is that the actual market volume percentage

of HFT1MM1HF has only increased slightly over 2003�2012 from 57

to 70%. So, it is more likely that the more nimble market makers and

hedge fund traders turned to high frequency trading strategies rather than

this class of investors just appearing overnight.

Algorithmic trading is currently one of the hottest areas of capital

expenditure for Wall Street firms (both buy-side and sell-side). There

are numerous conferences and seminars dedicated to algorithmic trading

throughout the US, Europe, Asia, and Australia. Unfortunately, the

amount of academic research has not kept pace with the surge in algo-

rithmic trading. Most industry awareness regarding algorithmic trading

has come from broker-dealers whose marketing information is mainly

self-serving, with the main purpose being to increase order flow and

business. There is a strong need for unbiased academic research and a

well-tested decision making methodology. We seek to bridge the gap

between academia and Wall Street.

INVESTMENT CYCLE
The investment cycle consists of four distinct phases: asset allocation,

portfolio construction, implementation, and portfolio attribution. Asset

allocation consists primarily of distributing investment dollars across

stocks, bonds, cash, and other investment vehicles in order to achieve a

target level of return within a specified level of risk exposure and toler-

ance. Portfolio construction consists primarily of selecting the actual

instruments to hold in each asset class. Implementation has historically

consisted of selecting an appropriate broker-dealer, type of execution

(e.g., agency transaction or principal bid), and now includes specification

algorithms and algorithmic trading rules. Portfolio managers evaluate the

performance of the fund to distinguish between market movement and

skilled decision making ability in the portfolio attribution phase of the

cycle.

Until more recently, the vast majority of research (academic and practi-

tioner) has focused on improved investment decisions. Investors have a
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large array of investment models to assist in asset allocation and portfolio

construction. Unfortunately, investors do not have nearly the same quan-

tity of trading tools to analyze implementation decisions. The quality of

trading tools has changed significantly with the rise of portfolio trading

tools and transition management. With the advent of algorithmic trading

these tools are being developed further and gaining greater traction.

CLASSIFICATIONS OF ALGORITHMS
One of the more unfortunate events in the financial industry is the prolif-

eration of the algorithmic nomenclature used to name trading algorithms.

Brokers have used catchy names and phrases for the algorithms to have

them stand out from competitors rather than using naming conventions

that provide insight into what it is that the algorithm is trying to accom-

plish. While some of the industry algorithms do have logical, descriptive

names, such as “VWAP,” “TWAP,” “Arrival Price,” and “Implementation

Shortfall,” there are many others such as “Tarzan,” “Bomber,” “Lock and

Load,” and one of the all-time favorites “The Goods,” although this name

is soon to be replaced. None of these catchy names offer any insight into

what it is that the algorithm is trying to accomplish or the actual underly-

ing trading strategy.

As a way to shed some light on the naming convention used, we suggest

classifying algorithms into one of three categories: Aggressive, Working

Order, and Passive. These are as follows:

Aggressive: The aggressive family of algorithms (and sometimes hyper-

aggressive strategies) are designed to complete the order with a high level

of urgency and capture as much liquidity as possible at a specified price or

better. These algorithms often use terminology such as “get me done,”

“sweep all at my price or better,” “grab it,” etc.

Working Order: The working order algorithms are the group of algorithms

that look to balance the trade-off between cost and risk, as well as the

management of appropriate order placement strategies through appropriate

usage of limit/market orders. These algorithms consist of VWAP/TWAP,

POV, implementation shortfall (IS), arrival price, etc.

Passive: The passive family of algorithms consists of those algorithms that

seek to make large usage of crossing systems and dark pools. These algo-

rithms are mostly designed to interact with order flow without leaving a

market footprint. They execute a majority of their orders in the dark pools

and crossing networks.
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TYPES OF ALGORITHMS
Single Stock Algorithms: Single stock algorithms interact with the market

based on user specified settings and will take advantage of favorable

market conditions only when it is in the best interest of the order and the

investor. Single stock algorithms are independent of one another while

trading in the market and make decisions based solely on how those deci-

sions will affect the individual order.

VWAP: Volume weighted average price. These algorithms participate in

proportion with the intraday volume curve. If 5% of the day’s volume

trades in any specified period then the VWAP algorithm will transact 5%

of the order in that period. The intraday volume profile used to follow a

U-shaped pattern with more volume traded at the open and close than mid-

day. But recently, intraday volume profiles have become more back-loaded

and resemble more of a J-shaped pattern than U-shaped pattern. A VWAP

strategy is a static strategy and will remain constant throughout the day.

TWAP: Time weighted average price. These algorithms execute orders

following a constant participation rate through the entire day. A full day

order will trade approximately 1/390th of the order in each 1 minute

bucket (there are 390 minutes in the trading day in the US). It is impor-

tant to note that many TWAP algorithms do not participate with volume

in the opening and closing auctions since there is no mathematical

method to determine the quantity of shares to enter into these auctions. In

Optimal Trading Strategies, the TWAP curve was referred to as the uni-

form distribution or uniform strategy and was used for comparison pur-

poses. A TWAP strategy is a static strategy and will remain constant

throughout the day.

Volume: These strategies are referred to volume inline, percentage of volume

(POV), of participation rate algorithms. These algorithms participate with

market volume at a pre-specified rate such as 20% and will continue to trade

until the entire order is completed. The algorithms will trade more shares in

times of higher liquidity and fewer shares in times of lower liquidity, and

thus react to market conditions (at least to changing volume profiles). One

drawback to these volume strategies is that they do not guarantee completion

of the order by the end of the time horizon. For example, if we are trading an

order that comprises 20% of the day’s volume at a POV5 20% rate but the

actual volume on the day is only half of its normal volume, the order would

not complete by the end of the day. As a safety around potential uncompleted

orders, some brokers have offered a parameter to ensure completion by the

end of the period. This parameter serves as a minimum POV rate and adjusts

in real-time to ensure order completion by the designated end time.
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Arrival Price: The arrival price algorithm has different meanings across

different brokers and vendors. So it is important to speak with those

parties to understand the exact specifications of these algorithms. But in

general, the arrival price algorithm is a cost minimization strategy that is

determined from an optimization that balances the trade-off between cost

and risk (e.g., Almgren and Chriss, 1997). Users specify their level of

risk aversion or trading urgency. The resulting solution to the optimiza-

tion is known as the trade schedule or trade trajectory and is usually

front-loaded. However, some parties solve this optimization based on a

POV rate rather than a static schedule in order to take advantage of

changing liquidity patterns.

Implementation Shortfall: The implementation shortfall algorithm is similar

to the arrival price algorithm in many ways. First, its meaning varies across

the different brokers and different vendors and so it is important to speak

with those parties to understand their exact specifications. Second, we base

the implementation shortfall algorithm on Perold’s (1988) paper and seek

to minimize cost through an optimization that balances the trade-off

between cost and risk at a user specified level of risk aversion. In the early

days of algorithms trading, the arrival price and implementation shortfall

algorithms were identical across different brokers. Thus, to distinguish

implementation shortfall from arrival price, brokers began to incorporate

real-time adaptation tactics into the implementation shortfall logic. These

rules specify how the initial solution will deviate from the optimally pre-

scribed strategy in times of changing market liquidity patterns and market

prices. Thus, while arrival price and implementation shortfall still do not

have a standard definition across the industry, the general consensus is that

the arrival price algorithm is constant while the implementation shortfall

algorithm incorporates a second level of adaptation tactics based on market

volumes and market prices.

Basket Algorithms: Basket algorithms, also known as portfolio algo-

rithms, are algorithms that manage the trade-off between cost and total

basket risk based on a user specified level of risk aversion. These algo-

rithms will manage risk throughout the trading day and adapt to the

changing market conditions based on user specifics. The algorithms are

usually based on a multi-trade period optimization process. They make

real-time trading decisions based on how those decisions will affect the

overall performance of the basket. For example, a basket algorithm may

choose to not accelerate trading in an order even when faced with avail-

able liquidity and favorable prices if doing so would increase the residual

risk of the basket. Furthermore, the basket algorithm may be more
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aggressive in an order even in times of illiquidity and adverse price

movement if doing so would result in a significant reduction of residual

basket risk. The biggest difference between single stock and

basket algorithms is that the basket algorithm will manage cost and total

basket risk (correlation and covariance) whereas the single stock algo-

rithm will seek to manage the cost and individual risk of the stock.

Important basket trading constraints include cash balancing, self-financ-

ing, minimum and maximum participation rate.

Risk Aversion Parameter: The meaning of the risk aversion parameter

used across the different brokers will vary. First, the optimization

technique is not constant. For example, some parties will optimize the

trade-off between cost and variance since it fits a straightforward qua-

dratic optimization formulation. Others optimize based on the trade-off

between cost and standard deviation (square root of variance) which

results in a non-linear optimization formulation. Second, the definition

of the risk aversion parameter, usually denoted by λ, varies. Some bro-

kers specify λ5 dCost/dRisk where λ. 0. Some map λ to be between

0 and 1 (05most passive and 15most aggressive), and still others

map risk aversion to be between 1 and 3 or 1 and 10. Thus selecting a

value of λ5 1 could mean the most aggressive strategy, the most pas-

sive strategy, or somewhere in the middle. Still others use a qualitative

measure such as passive, medium, aggressive, etc., rather than a speci-

fied value of λ. Investors need to discuss the meaning of the risk aver-

sion parameter with their providers in order to determine how it should

be specified in the optimization process in order to ensure consistency

across trading goal and investment objective.

Black Box Algorithms: The family of black box trading algorithms are

commonly referred to as profit and loss algorithms and/or robo trading

algorithms. These include all algorithms that make investment decisions

based on market signals and execute decisions in the marketplace. Unlike

the implementation algorithms that are tasked with liquidating a pre-

determined position within some specified guidelines or rules, the black

box algorithms monitor market events, prices, trading quantities, etc., for

a profiting opportunity search. Once profiting opportunity appears in the

market, the algorithm instantaneously buys/sells the shares. Many black

box algorithms have time horizons varying from seconds to minutes, and

some longer time horizons run from hours to days. While many investors

use blackbox algorithms, they are still primarily tools of the quants,

and especially when it comes to high frequency trading. Some black box

trading algorithms are pairs-trading, auto market making, and statistical
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arbitrage. Black box trading strategies and the corresponding mathemat-

ics are discussed in detail in Chapter 13.

ALGORITHMIC TRADING TRENDS
Algorithmic usage patterns have also changed with the evolution of trading

algorithms. In the beginning, algorithmic trading was mostly dominated by

VWAP/TWAP trading that utilized a schedule to execute orders. The

advantage: investors acquired a sound performance benchmark, VWAP, to

use for comparison purposes. The improvement in algorithms and their

ability to source liquidity and manage micro order placement strategies

more efficiently led the way for price-based algorithms such as arrival

price, implementation shortfall, and the Aggressive in the Money (AIM)

and Passive in the Money (PIM) tactics. During the financial crisis, inves-

tors were more concerned with urgent trading and sourcing liquidity and

many turned to “Liquidity Seeking” algorithms to avoid the high market

exposure present during these times. The financial crisis resulted in higher

market fragmentation owing to numerous venues and pricing strategies and

a proliferation of dark pools. However, the industry is highly resourceful

and quick to adapt. Firms developed internal crossing networks to match

orders before being exposed to markets, providing cost benefits to inves-

tors, and incorporating much of the pricing logic and smart order capabili-

ties into the liquidity seeking algorithms. Thus usage in these algos has

remained relatively constant. Currently, liquidity seeking algos account for

36% of volumes, VWAP/TWAP 25%, volume 16%, arrival price/IS 10%,

and portfolio algos 7%. This is shown in Figure 1.12.
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TRADING VENUE CLASSIFICATION
Displayed Market
A displayed exchange is a trading venue that discloses order book informa-

tion. This consists of bid and offer prices, share quantities, and depth of

book. Investors transacting in a displayed venue are able to see exactly

how many shares are available at each price increment. This allows inves-

tors to compute expected transaction prices for a specified number of

shares and also the expected wait time for a limit order to transact since

they have knowledge where the order would sit in the queue and how

many orders would need to transact ahead of them before their order will

execute. Examples of displayed exchanges are the NYSE, NASDAQ,

Chicago, CBOE, etc.

Dark Pool
A dark pool is a crossing network or other type of matching system that

does not display or disseminate order information such as bids and offers,

depth of book, number of orders, buy/sell imbalances, etc. Customers enter

buy or sell orders into the dark pool. The order is executed only if there is

a match. Dark pools do have drawbacks, however. These include no prior

knowledge of order execution or where orders will sit in the order book

queue. The dark pool’s opaque/non-transparent nature makes it difficult for

customers to determine if a market order or marketable limit order will exe-

cute at the specified prices. In addition it is problematic to calculate the like-

lihood that a limit order will be executed at a specified price increment

since the customer does not know where it will sit in the queue. An advan-

tage of the dark pool is that since order details are not disseminated there is

no information leakage. Investors can enter large block orders without show-

ing their hand to market participants. Dark pools also allow investors to

cross at the midpoint of the bid-ask spread, and are maintained by brokers

and third party vendors. Broker “internal dark pools” are used for matching

internal and client orders away from the displayed exchanges. Third party

dark pools, such as Liquidnet, Bids Trading, and Level ATS, provide inves-

tors with the opportunity to trade large block positions anonymously, thus

reducing information leakage and market impact.

Grey Pool
The term grey pool denotes a displayed venue that allows investors to

enter hidden orders and view displayed orders, prices, depth of book,

etc., similar to the displayed exchanges. However, there may be another

level of hidden orders on the order book transacting with incoming orders
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providing there is a match. For example, an investor sending a market

order to a “grey pool” may transact at a price better than the NBBO if

there is a hidden order in the venue at a better price.

Dark Pool Controversies
Historically there has been a large amount of debate surrounding dark pool

executions, adverse selection, and toxic order flow. Adverse selection

refers to situations when you use a dark pool and have the order executed

fully (100%). Subsequent price movement is in your favor (e.g., buys

become cheaper and sells become higher) so you would have been better

off waiting to make the trade. And when you do not execute in the dark

pool or execute less than the full order (,100%) the subsequent price

movement is away from your order (e.g., buys become more expensive

and sells become lower in value). The belief is that there is either some

information leakage occurring in the dark pool or the interaction with high

frequency orders is toxic, meaning that the high frequency traders are able

to learn information about the order, such as the urgency of the investor or

the number of shares that still need to be executed. In turn, they adjust

their prices based on leaked knowledge. However, we have not yet found

evidence of adverse selection in dark pools to confirm these suspicions.

But let us evaluate the above situation from the order level. Suppose we

have a buy order for 100,000 shares and there is a seller with an order

for 200,000 shares. Thus, there is a sell imbalance of 2100,000 shares.

If both parties enter the order into the crossing network (dark pool or

other type of matching system) there will be 100,000 shares matched

with the buy order being 100% filled and the sell order being only 50%

filled. The seller will then need to transact another 100,000 shares in the

market and the incrementing selling pressure will likely push the price

down further due to the market impact cost of their order. So the down-

ward price movement is caused by the market imbalance, not by the dark

pool. Next, suppose that the seller only has 50,000 shares. Thus, there is

a 150,000 buy imbalance. If these orders are entered into the crossing

network, 50,000 shares of the buy order will match. The buyer will then

need to transact the additional 50,000 shares in the displayed market

where the buying pressure will likely push the price up further. Thus we

can see that the adverse price movement is caused by the market imbal-

ance and not the dark pool. This type of price movement is commonly

observed in times of market imbalances.

To be fair, there was a time when dark pools and venues allowed flash

orders to be entered into their systems. These flash orders would provide
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some market participants with a preview of whether there would be a

match before the entire marketplace. Many believed that this provided an

unfair advantage to those privileged to these flash orders. Flash trading is

no longer allowed in any of the market venues.

TYPES OF ORDERS
The market allows numerous different types of orders such as market,

limit, stop loss, etc. But the three most important order types for algorith-

mic trading are market, limit, and marketable limit orders.

Market Order: A market order specifies to the algorithm to buy or sell at

the best available market price. This order is most likely to be executed

because there are no restrictions on its price and it will not be placed into

an order book. The disadvantage is that in today’s markets, prices can

move away so quickly that the best ask or best bid could in effect be much

higher or much lower than they were at the time the order was routed for

execution. Market order will “take” liquidity.

Limit Order: A limit order specifies to the algorithm to buy or sell at the

specified limit price or better. In most cases the limit order will be entered

into the order book of the exchange or venue and is subject to the queue

before it is eligible to be executed. For example, in price-time priority,

existing orders at that price or better will need to transact before that order

with an offsetting buyer. A limit order is not guaranteed to execute, but

provides some safety surrounding the execution price and ensures that the

execution will not be worse than the pre-specified limit price. A limit order

will “provide” liquidity and is also referred to as posting an order.

Marketable Limit Order: A marketable limit order is an order that specifies

to the algorithm to buy or sell at a specified price or better. This order will

either be executed in the market at the specified price or better, or be can-

celled if there are no existing orders at that price or better in the market.

Rebates: Depending upon the exchange or venue, investors may receive

a rebate for posting liquidity to the exchange and others may provide a

rebate for taking liquidity from the exchange. Different rebate models are

discussed further in Chapter 2.

EXECUTION OPTIONS
Here the investor provides the broker with the order or basket to trade in

the market on their behalf. The broker exerts “best efforts” to achieve the

best prices for the investor. They receive a commission for their role in
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the execution. The investor, however, incurs all market risk and price

uncertainty. For example, if prices for a buy order increase during trad-

ing investors will receive less favorable prices, but if prices decrease

investors will receive more favorable prices. Investors do not know

what the prices will be in advance. The broker’s profit in an agency

execution will be the commission received less any applicable fees

incurred during trading.

Principal bid. A principal bid, also known as a capital commitment or risk

bid, is when the investor provides the broker with the order or basket, and

the broker provides the investor with immediate executions at specified

prices such as the day’s closing price or the midpoint of the bid-ask spread

at some agreed upon point in time. The broker charges the investor a pre-

mium (e.g., the principal bid) which is more than the standard agency

commission fee. In this case, the investor transfers all risk and price uncer-

tainty to the broker. If the broker is able to transact the acquired position

or basket in the market at a lower cost than the principal bid premium they

will make a profit, but if they incur a cost higher than the principal bid

premium they will incur a loss. The advantage that brokers often have

over investors in a principal bid transaction is that they have an inventory

of customer order flow that could be used to offset the acquired position,

or they may have potential hedging vehicles such as futures, ETFs, etc.,

that will allow them to trade more passively and incur lower costs. Quite

often investors need to implement an investment decision within some

specified time constraint which may lead to higher transactions costs.

Brokers are not necessarily tied to these requirements.

A principal bid for an order can occur for a single stock order or a basket

of stock. For a single stock order the broker will be provided with the

name of the stock and shares to trade. Depending on the relationship

between broker and investor, the broker may or may not be provided with

the order side. The broker will then provide the investor with the principal

bid for the order. If they are not provided with the side they may provide

the investor with a two way market. Since the broker knows the exact

stock, they are able to incorporate actual market events and company spe-

cific risk into the principal bid premium. For a basket principal bid, inves-

tors will often solicit bids from multiple brokers. To keep their trading

intentions and actual orders hidden until they select the winning broker,

they only provide the brokers with a snapshot of the trade list: includes

average order size, trade list value, volatility, risk, tracking error, and

depending upon their relationship, a breakdown by side, although the sides

may simply be listed as side A and side B. Since the broker is not privi-

leged to the actual names in the trade list, they incur a second level of risk.
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Thus, they often factor in a buffer to their principal bid premium to

account for not knowing the exact names or position sizes.

THE TRADING FLOOR
The equity trading operation at a broker dealer is primarily broken into

three trading desks: cash, program, and electronic. Investors utilize these

desks in different manners and for many different reasons. An overview

of the primary functions is provided below.

Cash Trading: The cash trading desk, also known as the single stock or

block desk, is utilized by investors who have orders subject to potential

adverse price momentum, or when they have a strong alpha conviction or

directional view of the stock. Traditionally, the block trading desk was

used to transact large block orders and for capital commitment in favorable

and adverse market conditions. Nowadays, investors additionally use block

desks to transact single stock and multi-stock orders, large and small order

sizes, in times of potential price movement. In these cases, investors rely

on the expertise of block traders and their understanding of the stock, sec-

tor, and market, to determine the appropriate implementation strategy and

timing of order placement. The cash desk has also historically been the

desk where investors would route orders to pay for research and to accu-

mulate credits for future investment banking allocations from IPOs and

secondary offerings. Fundamental portfolio managers (e.g., stock pickers)

who transact single stock positions are primary clients of the cash desk.

We can summarize their trading goal as to minimize the combination of

market impact cost and adverse price movement.

Program Trading: The program trading desk, also known as the portfolio

trading desk, is used by investors to trade baskets of stocks. These baskets

are also known as lists, programs, or portfolios. Investors will utilize a

program trading desk primarily for risk management and cash balancing.

In these cases, the portfolio manager does not typically have a strong

short-term view of a stock and is concerned with the overall performance

of the basket. They seek the expertise of program traders to determine the

best way to manage the overall risk of the basket so that they can trade in

a more passive manner and minimize market impact cost. In times of a

two sided basket consisting of buys and sells, the program trader will trade

into a hedged position to protect the investor from market movement. In

times of a one-sided basket, the program trader will seek to offset orders

and partial orders with the highest marginal contribution to risk. Very often

these are the names with high idiosyncratic or company specific risk, pend-

ing news, or otherwise deemed as toxic due to liquidity or unstable trading

25The Trading Floor



patterns. Investors will transact with a program desk either via an agency

execution or capital commitment. Other investors will solicit the expertise

of a program trader when they are trading a basket where the sell orders

will be financing the buy orders and wish to keep cash position balanced

throughout the day so that they are not short cash at the end of the day.

For program trades, the capital commitment is also known as a principal

trade or risk bid. Quantitative portfolio managers are the primary clients

of the program desk since these are the investors who more often trade

baskets. Their primary trading objective is to minimize market impact and

timing risk.

Electronic Trading: The electronic trading desk, also known as the algo-

rithmic or “algo” desk, is the primary destination for investors who are

seeking to capture liquidity, retain full control of the trading decision,

remain anonymous, and minimize information leakage. Investors will

often utilize an electronic desk when they are not anticipating any type of

short-term price momentum. Here the primary goal of the investor is

to gain access to the numerous market venues and be positioned to capture

as much liquidity as they can within their price targets. Traditionally, the

electronic trading desk was utilized for smaller orders, e.g., #1�3% ADV,

or what were believed to be “easy” trades. Now, investors use algorithms

to trade both large and small orders, single stock orders and portfolios

consisting of hundreds of names or more. Many investors do in fact use

algorithms for their block and portfolio program trading needs, providing

they have ample control over the execution of the algorithm and

the algorithm is customizable to the investment objective of the fund.

Electronic trading is performed on an agency basis only. The primary

trading objective of these clients is to minimize market impact and oppor-

tunity cost—that is, to complete the entire order without adversely affect-

ing market prices.

Research Function
The research function on the equity side also has three main segments

and each is closely interconnected with each of the trading desks. These

research roles are equity analyst, quantitative analyst, and transaction

cost analyst.

Equity analysts evaluate individual companies using primarily fundamental

data and balance sheet information. These analysts then provide ratings on

the company such as buy, sell, hold, or short, or provide price targets or

expected levels of return, based on their earnings and growth expectations.

If a highly regarded analyst changes their rating on a stock, such as changing

26 CHAPTER 1 Algorithmic Trading



a sell rating to a buy rating, it is pretty likely that the stock price will move

and move quickly right after the analyst’s report is made public. Equity ana-

lysts do move stock prices and are considered the “rock stars” of investment

research.

Quantitative analysts evaluate the relationship between various factors

(both company and economic) and company returns. They use these

factors to determine what is driving market returns (as opposed to com-

pany specific returns)—e.g., growth, value, quality, etc. Quantitative

analysts determine optimal portfolios based on these relationships and

their expectations of future market conditions. They also rely on

optimization techniques, statistical analysis, and principal component

analysis. However, unlike their equity analyst brethren, quantitative

analysts do not move the market or cause volumes to increase. Portfolio

managers do not typically incorporate recommendations from quantitative

analysts directly into their portfolio. Instead, managers will use quantita-

tive analysis for independent verification of their own findings, and as an

idea generation group. Managers tend to rerun quantitative analyst studies

to verify their results and to see if there is potential from their

suggestions. Quantitative analysts are also used at times to run specified

studies, evaluate specific factors, etc. In this role, they serve as an out-

source consultant.

Transaction cost analysts are tasked with evaluating the performance of

algorithms and making changes to the algorithms when appropriate.

These analysts study actual market conditions, intraday trading patterns,

and market impact cost. They perform market microstructure studies.

The results and findings of these studies are incorporated into the under-

lying trading algorithms and pre-trade models that assist investors

in determining appropriate trading algorithms. Unlike equity and quanti-

tative analysts, transaction cost analysts do not make any stock or invest-

ment recommendations, and their research findings do not move stock

prices. Buy-side traders rely on transaction cost analysts to understand

current market conditions and the suite of trading algorithms.

Sales Function
The role of the sales person on the trading floor is to connect the

buy-side client with sell-side research. There are three main areas of the

selling function, which follows the research offerings described above.

First, equity sales, also known as research or institutional sales, is

responsible for providing the portfolio manager client with all company

research. However, since the primary concern of the majority of
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portfolio managers is stock specific company research, the equity sales

person focuses on providing their portfolio manager clients with equity

analyst research. Since this is the research that could potentially move

stock prices immediately, it has a high level of urgency. The program

sales trader for the most part takes the lead in connecting their clients

with quantitative research. Since they deal with these quant managers

on a daily basis, they are well aware of their clients’ research interests.

Quant managers do not have the same sense of urgency in reviewing

quant research, since this research is not company specific and will not

move stock prices. Again, they are interested in quant research to verify

their own findings, to gain insight into what is affecting the market,

what approaches are working and not working, and for additional

investment ideas. Buy-side quant managers will often re-check and

verify the results of the sell-side quant research teams before they incor-

porate any of the findings into their portfolio. Transaction cost analysis

(TCA) research, as mentioned, is not intended to provide managers with

stock specific information, stock recommendations, or price targets.

TCA research is performed to gain an understanding of the market.

This information is then incorporated into the underlying trading algo-

rithms and pre-trade analytics that are intended to assist investors in

determining the appropriate algorithm for their order.

Consequently, electronic trading desks usually have a team of analysts

that provide buy-side traders with transaction cost analysis research. This

research will also provide insight into what algorithms or trading strate-

gies are best suited for various market conditions. The primary client

of TCA research is the buy-side trader, although recently a trend has

emerged where portfolio managers (both fundamental and quantitative)

are becoming interested in learning how to incorporate transaction costs

into the portfolio construction phase of the investment cycle and uncover

hidden value and performance. TCA is beginning to target managers as

well as traders.

Table 1.1 Trading Floor Function

Desk Primary Research Sales

Cash Equity Institutional Sales Team

Program Quant Program Sales Traders

Electronic TCA Algo Sales Team
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ALGORITHMIC TRADING DECISIONS
As the trading environment has become more complex and competitive,

investors have turned to “efficient” algorithms for order execution and

navigation. However, utilization of algorithms alone does not guarantee

better performance. Investors need to become more proactive than a sim-

ple “set and forget” mindset. They need to specify an appropriate set of

algorithmic trading rules and corresponding parameters, and most impor-

tant, ensure that the implementation parameters are consistent with the

overall investment objectives of the fund. Otherwise, it is unlikely that

best execution will be achieved.

Proper specification of algorithmic parameters requires rules to be speci-

fied on a macro- and microscale. The macro-level decisions are specified

by users prior to trading and consist of selecting the appropriate optimal

trading strategy that is consistent with the investment objectives, and

defining how the algorithms are to adapt in real-time to changing market

conditions. The micro-level decisions consist of order submission rules

and are made at the trade level by the algorithm level. These decisions

are made through usage of limit order models and smart order routers.

To ensure “best execution,” investors need to select those brokers and

algorithms that can best align the micro-level trading with the user speci-

fied macro-level goals.

Macro-Level Strategies
The macro-level strategy decision rules consist of specifying an appropri-

ate optimal trading strategy (e.g., order slicing schedule or percentage

of volume rate) and real-time adaptation tactics that will take advantage of

real-time market conditions such as liquidity and prices when appropriate.

This type of decision making process is consistent with the framework

introduced by Kyle (1985), Bertsimas and Lo (1998), Almgren and Chriss

(1999, 2000), Kissell and Glantz (2003), and Kissell, Glantz, and Malamut

(2004). For investors, macro-level trading specification consists of a three-

step process:

1. Choose implementation benchmark

2. Select optimal execution strategy

3. Specify adaptation tactics

To best address these questions, investors need a thorough understanding

of market impact, timing risk, and efficient intraday optimization. A

detailed explanation of the algorithmic decision making process is pro-

vided in Chapter 8.
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Step 1—Choose Implementation Benchmark
The first step of the macro decision process is selection of the implemen-

tation price benchmark. The more common price benchmarks include

implementation shortfall (IS), decision price, price at order entry

(“inline”), opening price, prior night’s close, future closing price, and

VWAP. Another common implementation goal is to minimize tracking error

compared to some benchmark index. It is essential that the implementation

goal be consistent with the manager’s investment decision. For example,

a value manager may desire execution at their decision price (i.e., the price

used in the portfolio construction phase), a mutual fund manager may desire

execution at the closing price to coincide with valuation of the fund, and

an indexer may desire execution that achieves VWAP (e.g., to minimize mar-

ket impact) or one that minimizes tracking error to their benchmark index.

Step 2—Select Optimal Execution Strategy
The second step of the process consists of determining the appropriate

optimal execution strategy. This step is most often based on transaction

cost analysis. Investors typically spend enormous resources estimating

stock alphas and consider these models proprietary. Market impact esti-

mates, however, remains the holy grail of transaction cost analysis and

are usually provided by brokers due to the large quantity of data required

for robust estimation. Risk estimates, on the other hand, can be supplied

by investors, brokers, or a third party firm.

The selected optimal execution strategy could be defined in terms of a

trade schedule (also referred to as slicing strategy, trade trajectory, waves),

a percentage of volume (“POV”), as well as other types of liquidity partici-

pation or price target strategies. For example, trade as much as possible at

a specified price or better.

The more advanced investor’s will perform TCA optimization. This con-

sists of running a cost-risk optimization where the cost component consist

of price trend, and market impact cost. That is,

Min ðMI1TrendÞ1λURisk

where λ is the investor’s specified level of risk aversion. Investors who are

more risk averse will set λ. 1 and investors who are less risk averse will

set λ, 1. In situations where the trader does not have any expectations

regarding price trend, our TCA optimization is written in terms of market

impact cost and risk as follows:

Min MI1λURisk

Depending upon expected price trend, optimization may determine an

appropriate front- and/or back-loading algorithm to take advantage of

30 CHAPTER 1 Algorithmic Trading



better prices. For example, an algorithm may call for a 15% POV rate

in the morning, increasing to a POV of 25% beginning midday (back-

loading) to take advantage of expected better prices in the afternoon

while still balancing the trade-off between market impact and timing risk.

Furthermore, an algorithm may call for a POV of 30% in the morning,

falling to 10% in the afternoon (front-loading) as a means to reduce risk

and hedge the trade list.

Solving the optimization problem described above for various levels of risk

will result in numerous optimal trading strategies. Each has the lowest cost

for the specified level of risk and the lowest risk for the specific amount of

cost. The set of all these optimal strategies comprises the efficient trading

frontier (ETF) first introduced by Almgren and Chriss (1999).

After computing the ETF, investors will determine the most appropriate

“optimal” strategy for their implementation goal. For example, informed

traders with expectations regarding future price movement are likely to

select an aggressive strategy (e.g., POV5 30%) with higher cost but

more certainty surrounding expected transaction prices. Indexers are

likely to select a passive strategy (e.g., POV5 5%) or a risk neutral strat-

egy to reduce cost. Some investors may select a strategy that balances the

trade-off between cost and risk depending upon their level of risk aver-

sion, and others may elect to participate with volume throughout the day

(e.g., VWAP strategy).

It is important that investors thoroughly evaluate alternative strategies to

determine the one that provides the highest likelihood of achieving their

investment goal. Figure 1.13 shows four different “optimal” strategies.
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A = High Cost & Low Risk

Efficient Trading Frontier
Almgren & Chriss (1997)

D = “Irrational”

B = Medium Cost & Medium Risk 

C = Low Cost & High Risk

■ Figure 1.13 Efficient Trading Frontier.
Almgren and Chriss (1997)
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The aggressive strategy (A) corresponds to higher cost but low risk. The

normal strategy (B) is associated with a mid-level of cost and a mid-level

of risk. The passive strategy (C) is a low cost strategy but does have

higher risk. Selection of a strategy such as D would not be appropriate

because there are alternative strategies with the same risk but lower cost,

lower risk at the same cost, or both lower cost and lower risk. A strategy

such as D is deemed an irrational trading strategy and will never provide

best execution.

Step 3—Specify Adaptation Tactic
The next step in the decision process consists of specifying how the algo-

rithm is to adapt to changing market conditions. Algorithms may also

include multiple types of adaptation tactics. Below are some common

adaptation settings. Mathematical techniques behind these adaptation

tactics are provided in Chapter 8.

Volume-based. Adjust the trading schedule based on market liquidity.

A POV/participation rate algorithm is an example of a volume-based

adaptation tactic. While these are often constant volume rates, they result

in faster trading in times of higher market volume and slower trading in

times of lower market volume.

Price-based. Adjust the trading schedule based on market prices.

Aggressive-in-the-Money (AIM) algorithms that trade faster in times of

favorable prices and slower in times of adverse price movement, and

Passive-in-the-Money (PIM) algorithms that trade slower in times of

favorable prices and faster in times of adverse price movement are types

of price-based scaling algorithms.

Time-based. The algorithm adjusts its trading rate to ensure executions

by a specified time, such as no later than the close. This algorithm may

well finish sooner than specified but will not finish any later.

Probabilistic. Determines the appropriate trading rate to always provide

the best chances (highest likelihood) of achieving the investment objec-

tive. It is based on a non-linear optimization technique, such as maximiz-

ing Sharpe ratio or minimizing tracking error.

Optimization Technique. The trade schedule is continuously adjusted so that

its expected finishing price will be within a specified tolerance. These types

of algorithms will often be based on a variation of a z-score measure (see

Chapter 9) and incorporate realized costs (past), sunk cost or savings

(dependent upon price increase or decrease since commencement of
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trading), and expected future price (based on actual market conditions and

specified trading strategy).

Cash Balancing. In times of trading investors often select cash balancing

adaptation techniques. The most common variations of cash balancing

are risk management and self-financing. Risk management adaptation

techniques will manage the unexecuted positions to keep the risk within a

specified tolerance level. Self-financing adaptation techniques are used

when the sells will be used to pay for the buys. Here we are managing

the shares that have already traded, and depending upon market prices

and movement, may require the unexecuted buy shares to be revised

(either increasing or decreasing) depending on actual prices.

Dark Pool Utilization. Investors may elect to use dark pools in a different

manner than the displayed venues. For example, investors may choose

to try to maximize trading in dark pools but keep trading in the displayed

markets at a different rate. Furthermore, the participation in dark pools

and displayed venues may also be determined by stock prices or market

movement.

Micro-Level Decisions
The micro-level pricing decisions, as stated above, consist of the order

submission rules. The actual decision models are embedded directly into

the trading algorithms and utilize limit order models and smart order rou-

ters. These decision points are not entered by the user directly as with the

macro decisions, but the algorithms and decision path are to ensure that

executions adhere to the higher level macro goals entered by the investor.

The goal of a micro-level scheme is threefold. First, to ensure the execu-

tions follow the optimally prescribed strategy entered by the user.

Second, to ensure that the algorithms deviate from the optimally pre-

scribed strategy only when it is in the best interest of and defined by the

investor. Third, to achieve fair and reasonable prices without incurring

unnecessary market impact cost. In situations where the fixed costs and

exchange costs are high, optimizing, crossing, and micromanagement on

each exchange can also lead to substantial cost savings.

It is essential that the micro pricing strategy ensures consistency with the

macro-level objective and ensures transactions adhere to the specified

implementation goal. For example, it would not be in the best interest of

the fund to execute an aggressive strategy (e.g., POV5 40%) using solely

limit orders, because execution with limit orders is not guaranteed execu-

tion and there is a high likelihood that this type of strategy may fall

behind the targeted rate. But it would be appropriate to transact a passive
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macro strategy (e.g., POV5 5%) utilizing a larger number of limit orders

to avoid crossing the bid-ask spread, since there is ample time for these

limit orders to be lifted in the market.

In most situations it will be appropriate to use a combination of limit,

market, floats and reserve orders. For example, suppose the specified

macro-level optimal strategy is a POV rate of 15%. Here a micro-level

algorithm may submit limit orders to the market for execution better

than the mid-quote for as long as the actual POV rate is consistent with

15% of market volume, but once the algorithm starts lagging behind the

specified rate or some specified tolerance level it would submit appropri-

ately sized and spaced market orders to be more aggressive and adhere

to the 15% rate. A reserve order could also be used to automatically

replenish limit orders at favorable prices. Some of the more advanced

micro pricing strategies utilize real-time data, prices and quotes, order

book, and recent trading activity to forecast very short-term price trends

and provide probabilistic estimates surrounding the likelihood that a limit

order will execute within a certain period of time.

Limit Order Models
Limit order models determine the appropriate mix of limit and market orders

to best adhere to the higher level macro goals. The limit order model is a

probabilistic model that takes into account current market conditions, price

momentum, order book information, macro goal and timing. Traditionally,

limit order models will determine the probability that an order will execute

in the market at a stated price and within a stated amount of time. The limit

order model here is a modified limit order model with the output being a

mix of prices and share quantities to ensure completion by the end of the

time period (or at least a high enough likelihood of completion) rather than a

probability estimate of executing at a specified price point.

For example, if the optimal trading rate specified in the macro-level decision

for a buy order is POV5 10% and we forecast 10,000 shares will be traded

in the next 1 minute, then we will need to execute 1000 shares in the next

1 minute to adhere to our 10% POV rate. If the current market is $30.00�
$30.10 the limit order model may determine that the most cost effective mix

of prices, order type, and share quantity to trade these 1000 shares in the

next 1 minute is:

� Limit order, 200 shares at $29.95

� Limit order, 300 shares at $30.00

� Limit order, 300 shares at $30.05

� Market order, 200 shares at $30.10
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Smart Order Routers
The smart order router (SOR) is responsible for routing the child orders to

the different exchanges, venues, and dark pools. The SOR will collect,

monitor, and maintain trading activity data at the different venues and dark

pools throughout the day using market/public data and in-house transac-

tions. The SOR determines the likelihood of executing an order at each of

the different venues based on frequency of trading and where the order

would reside in the order book queue at that price. If the trading frequency

and all else is equal across two venues, the SOR will route the limit order

to the venue where it will sit highest in the queue. If one venue has 10,000

shares at the desired price and another venue has 5000 shares at the desired

price, the SOR will route the shares to the venue with only 5000 shares

since it is more likely to execute at that location quicker. The SOR deter-

mines on an expected value basis the likelihood of trading so it may route

the order to a venue where it initially sits lower in the queue if that venue

has higher trading activity or it may route the order to a venue that does

not trade as frequently as others if it sits higher in the queue. For the most

part this is an expected value calculation.

Revisiting our example above, where we are tasked with trading 1000

shares in the next 1 minute with the best mix of limit and market prices

being: 200 @ $29.95, 300 @ $39.00, 300 @ $30.05, and 200 @ $30.10

(the offer), the SOR may decide to enter 200 shares in a dark pool at the

midpoint of the bid-ask spread ($30.05), 300 shares at the primary

exchange at the best bid price of $30.00. Furthermore, 200 shares may be

entered into a non-traditional exchange @ $29.95 where it sits first in

the queue and perhaps even having to pay a rebate for posting (inverted

pricing model).

Finally, the SOR may determine that to avoid potentially falling behind the

schedule and having to possibly trade 200 shares at the market at the end

of the 1 minute period where the price may move away (increase for the

buy order) it would be best to trade 100 shares at the market immediately

and 100 shares after perhaps 30�45 seconds, thus increasing the likelihood

that they will not fall behind and have to trade in an aggressive and costly

manner to catch up.

One reason why someone might decide to pay to post an order is to

ensure that they will be the first 200 shares to trade at that price (if the

market falls). Rational investors would route an order to a venue where

they will receive a rebate to trade over a venue where they have to pay to

trade. Here the savings achieved by transacting at the better price will

more than make up for the rebate that has to be paid for posting liquidity.
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Another reason why someone may pay a rebate to post is that rather

than have to increment the bid price to be first in the queue (at a 1 cent

increment), the investor may decide to enter the order to an exchange

where they pay to post (inverted pricing model) to almost ensure them-

selves top of the queue because the counterparty would rather transact

with their order and receive a rebate than transact with another order on

a different venue and pay a fee. Here, the rebate cost of posting the order

will be lower than the 1 cent that they would need to increment the bid

even after accounting for any rebate they may receive.

In times of the NYSE and NASDAQ (well really ARCA and INET for

algorithms) order routing was a much easier problem. But now with mul-

tiple destinations, venues, dark pools, etc., this is a much more complex

problem.

In addition to maintaining order routing data across the various exchanges

and computing the probabilities of executions, the SOR is also responsible

for all order submission rules. The more common pricing rules as mentioned

are market, limit, marketable limit, and floating prices that are pegged

to a reference price such as the bid, ask, or midpoint and change with

the reference price, etc. Varying these order types allows the algorithm to

adhere to the optimally prescribed strategy by executing aggressively (i.e.,

market orders) and/or passively (i.e., limit orders) when needed. Order sizes

are set in quantities that can be easily absorbed by the market. The order

type variation disguises the actual trading intentions (i.e., limit orders) and

minimizes potential adverse price impact (i.e., market orders). A reserve

(iceberg) order is another technique commonly used in micro pricing

strategies and refers to a continuously replenishing order at a stated size.

For example, a 10,000 share order could be entered as a 1000 share

reserve book order where 1000 shares would be displayed and immedi-

ately replenished each time it transacts until the order is filled. Finally,

the SOR maintains, randomizes, and varies wait and cancellation times

to help disguise trading intentions. Some orders may remain in the mar-

ket for longer periods of time while other orders remain on the book for a

shorter period of time before cancellation. Additionally, randomizing the

time between orders and waves helps hide trading intentions, minimizes

information leakage, and helps improve the likelihood of achieving more

favorable prices.

An important note that is often overlooked in the algorithmic trading

arena is that a smart order router should only be used as a smart order

router. Many vendors have made the mistake of forcing the smart order

router to provide a combination of services such as limit order model,

36 CHAPTER 1 Algorithmic Trading



macro strategy selection model, etc. These parties have tried to market

these services as an all-in-one algorithmic smart order solution. Without

understanding the macro-level needs of the investor or their trading

goals, it is simply not possible to provide this type of all-in-one

solution. The best in class solutions to these algorithmic issues have fol-

lowed our algorithmic decision making process: trading goal, adaptation

tactic, limit order model, order submission rules, not the all-in-one type

of solution.

ALGORITHMIC ANALYSIS TOOLS
Pre-Trade Analysis
The first step in developing an algorithmic trading strategy is to perform

pre-trade analysis. This provides investors with the necessary data to make

informed trading decisions on both the macro- and micro-levels, and

serves as input into the algorithms. Pre-trade analysis provides investors

with liquidity summaries, cost and risk estimates, and trading difficulty

indicators as a means to screen which orders can be successfully imple-

mented via algorithmic trading and which orders require manual interven-

tion. It also provides potential risk reduction and hedging opportunities to

further improve algorithmic execution strategies. Pre-trade data is com-

prised of current prices and quotes, liquidity and risk statistics, momentum,

and an account of recent trading activity. This also provides investors with

necessary data to develop short-term alpha models.

Intraday Analysis
Intraday analysis is used to monitor trading performance during trading.

These systems will commonly provide in real-time the number of shares

executed, the realized costs for those executed shares, the price movement

since trading began (which translates to either a sunk cost or savings), and

the expected market impact cost and timing risk for the remaining shares

based on the implementation strategy and expected market conditions

(which could be different from those expected at the beginning of trading).

Some of the more advanced intraday analysis systems will provide z-score

estimates, which are the projected risk adjusted trading costs for all shares

(based on strategy and market conditions), as well as comparisons to

projected final trading costs for various different algorithms and strategies.

The intraday analysis systems are used by traders to evaluate market

conditions and make revisions to their algorithms.
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Post-Trade Analysis
Algorithmic post-trade analysis is a two part process that consists of cost

measurement and algorithm performance analysis. First, cost is measured

as the difference between the actual realized execution price and the speci-

fied benchmark price. This allows investors to critique the accuracy of the

trading cost model to improve future cost estimates and macro strategy

decisions, and provide managers with higher quality price information

to improve investment decisions. Second, algorithmic performance is

analyzed to assess the ability of the algorithm to adhere to the optimally

prescribed strategy, its ability to achieve fair and reasonable prices, and

determine if the algorithm deviates from the optimally specified strategy

in an appropriate manner. Investors must continuously perform post-trade

analysis to ensure brokers are delivering as advertised, and question those

executions that are out of line with pre-trade cost estimates.

Rule-Based Trading
Rule-based trading algorithms control the macro-level decisions such as

order slicing strategies that break larger orders into smaller pieces to

trade over time in order to reduce market impact cost. These instruc-

tions, however, are based on simple logic and heuristics, with many of

the guidelines being completely arbitrary (e.g., participate with volume

over a specified period, trade faster when prices are favorable, trade

slower in times of adverse trends, etc.). Furthermore, many of these so-

called rule-based algorithms do not provide insight into potential costs

or associated risk. Furthermore, they do not provide necessary transpar-

ency to determine the most appropriate algorithm given the objectives

of the fund. For the most part, rule-based trading algorithms are a “black

box” approach to trading.

Quantitative Techniques
Quantitative algorithmic trading also controls the macro-level decisions

but differs from rule-based trading in that all decisions are based on

robust statistical models and a sound mathematical framework. For exam-

ple, quantitative models serve as the basis for developing strategies to

minimize the difference between expected execution price and a specified

benchmark price, to minimize cost subject to a maximum level of risk

exposure, or to maximize the probability of transacting more favorably

than a specified benchmark price. Quantitative algorithms manage overall

transaction costs (e.g., market impact, price momentum, and timing risk),

and provide investors with necessary transparency regarding cost and
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risk, and insight into how the algorithm will behave in times of changing

prices or varying market conditions. This transparency also allows inves-

tors to evaluate alternative strategies (algorithms) and determine the most

appropriate “optimal” strategy (algorithm) given the underlying trading

goal and investment objective.

HIGH FREQUENCY TRADING
High frequency trading (HFT) is the usage of sophisticated mathematical

techniques and high speed computers to trade stocks, bonds, or options

with the goal to earn a profit. This differs from the execution trading

algorithms that are tasked with implementing an investment decision that

has previously been determined. In other words, the HFT system makes

both the investment and trading decisions simultaneously. High frequency

trading in this sense is also called “black box” and “robo” trading.

HFT strategies can be classified into three different styles: Auto Market

Making (AMM), Quant Trading/Statistical Arbitrage, and Rebate/Liquidity

Trading. Donefer (2010) provides a similar classification in “Algos Gone

Wild,” Journal of Trading (Spring 2010). There is often some overlap across

these styles as we point out below, but for the most part, each of these

styles has completely different goals and objectives. In short, high frequency

trading has these features:

� Automated trading. Algorithms determine what to buy and what to sell,

as well as the micro order placement strategies such as price, size, and

timing of the trade. These decisions are determined from actual real-time

market data including price signals, momentum, index or sector move-

ment, volatility, liquidity, and order book information. These decisions

are made independent of human interaction.

� No net investment. HFT does not require a large cash inflow since the

inventory imbalances are netted out by the close each day. HFT strate-

gies take both long and short positions in different names and close

these position before the end of day so that they do not take on any

overnight risk. In cases where the HFT holds overnight positions they

will mostly likely use the proceeds from short sales to pay for the buys.

� Short trading horizons. Depending upon the strategies, HFT time

horizons can vary from seconds to minutes, but also up to hours.

Auto Market Making
Auto market making (AMM) provides the financial community with the

same services as the traditional market makers or specialists. The main
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difference, however, is that rather than employing human market makers

the AMM system uses advanced computer systems to enter quotes and

facilitate trades. The registered AMM still has an obligation to maintain

a fair and orderly market, provide liquidity when needed, and provide

market quotes a specified percentage of the time.

AMM systems automatically enter bids and offers into the market. After

the AMM system transacts with a market participant they become either

long or short shares and they will seek to offset any acquired position

through further usage of limit orders. The AMM systems look to profit

from buying at the bid and selling at the offer and earning the full spread.

And as an incremental incentive, registered auto market maker firms are

often provided an incremental rebate for providing liquidity. Therefore,

they can profit on the spread plus rebates provided by the exchange. This

is also causing some difficulty for portfolio managers seeking to navigate

the price discovery process and determine fair value market prices.

AMM black box trading models will also include an alpha model to help

forecast short-term price movement to assist them in determining the opti-

mal holding period before they are forced to liquidate an acquired position

to avoid a loss. For example, suppose the bid-ask spread is $30.00 to

$30.05 and the AMM system bought 10,000 shares of stock RLK at the

bid price of $30.00. If the alpha forecast expects prices to rise the AMM

will offer the shares at the ask price of $30.05 or possibly higher in order

to earn the full spread of $0.05/share or possibly more. However, if the

alpha forecast expects prices to fall, the AMM system may offer the shares

at a lower price such as $30.04 to move to the top of the queue or if the

signal is very strong the AMM systems may cross the spread and sell the

shares at $30.00 and thus not earn a profit, but not incur a loss either.

Most AMM traders prefer to net out all their positions by the end of the

day so that they do not hold any overnight risk. But they are not under any

obligation to do so. They may keep positions open (overnight) if they are

properly managing the overall risk of their book or if they anticipate future

offsetting trades/orders (e.g., they will maintain an inventory of stock for

future trading). Traditional AMM participants continue to be concerned

about transacting with an informed investor, as always, but it has become

more problematic with electronic trading since it is more difficult to infer

if the other side is informed (has strong alpha or directional view) or unin-

formed (e.g., they could be a passive indexer required to hold those num-

ber of shares), since the counterparty’s identity is unknown.

Some of the main differences between AMM and traditional MM are that

AMM maintains a much smaller inventory position, executes smaller
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sizes, and auto market makers are not committing capital for large trades

as the traditional market makers once did.

Quantitative Trading/Statistical Arbitrage
Traditional statistical arbitrage trading is trying to profit between a

mispricing in different markets, in indexes, or even ETFs. Additionally,

statistical arbitrage trading strategies in the high frequency sense will try

to determine profiting opportunities from stocks that are expected to

increase or decrease in value, or at least increase or decrease in value com-

pared to another stock or group of stocks (e.g., relative returns). Utilizing

short time frame “long-short” strategies relies on real-time market data

and quote information, as well as other statistical models (such as PCA,

probit and logit models, etc.). These traders do not necessarily seek to

close out all positions by the end of the day in order to limit overnight risk,

because they are based on alpha expectations and the profit and loss is

expected to be derived from the alpha strategies, not entirely from the

bid-offer spread. This is the traditional statistical arbitrage strategy in

the past, but the time horizon could be much shorter now due to potential

opportunity, better real-time data, and faster connectivity and computa-

tional speeds. This category of trading could also include technical analy-

sis based strategies as well as quant models (pairs, cointegration). These

types of trading strategies have traditionally been considered as short-term

or medium-term strategies, but due to algorithmic and electronic trading,

and access to an abundance of real-time data and faster computers, these

strategies have become much more short-term, reduced to hours or min-

utes, and are now also considered as HFT strategies. However, they do not

necessarily need to be that short-term or an HFT strategy. These partici-

pants are less constrained by the holding period of the positions (time) and

most concerned by the expected alpha of the strategy.

Rebate/Liquidity Trading
This is the type of trading strategy that relies primarily on market order flow

information and other information that can be inferred or perceived from

market order flow and real-time pricing, including trades, quotes, depth of

book, etc. These strategies include “pinging” and/or “flash” orders, and a

strong utilization of dark pools and crossing venues (e.g., non-traditional

trading venues). Many of these non-traditional trading venues have struc-

tures (such as the usage of flash orders) that may allow certain parties to

have access to some information before other parties. These traders seek

to infer buying and selling pressure in the market based on expected order

flow and hope to profit from this information. The liquidity trading
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strategies can be summarized as those strategies that seek to profit through

inefficient market information. What is meant by this is the information that

can be inferred, retrieved, processed, computed, compiled, etc., from market

data to generate a buy or sell signal, through the use of quick systems and

better computers, infrastructure, location of servers, etc., co-location, pin-

ging, indications of interest (IOIs), flash orders. The “liquidity trading” HFT

is often the category of HFT that is subject to the most scrutiny and ques-

tions in the market. Market participants are worried that these strategies

have an unfair advantage through the co-location, available order types,

ability to decipher signals, etc. These participants counter argue that they

adhere to the same market rules and have an advantage due to their

programming skills or mathematical skills, better computers, connectivity

(e.g., supercomputers) and co-location of servers, which are available to all

market participants (albeit for a cost).

Another variation of the rebate trader is an opportunistic AMM. This is

again similar to the AMM and the traditional market-making role, but the

opportunistic trader is not under any obligations to provide liquidity or

maintain a fair and orderly market. These market participants will provide

or take liquidity at their determined price levels, as they are not required to

continuously post bids and offers, or maintain an orderly market. Since

they are not registered or under any obligations to provide liquidity, these

parties do not receive any special rebates that are made available to the

registered AMM. This party tends to employ alpha models to determine

the best price for the stocks (e.g., theoretical fair value models) and corre-

sponding bids and offers to take advantage of market prices—they only

tend to provide quotes when it is in their best interest to do so and when

there is sufficient opportunity to achieve a profit. If prices are moving

away from them, they may no longer keep a market quote. As a result,

they may only have a quote on one side of the market, or will quickly close

the position via a market order to avoid potential adverse price movement.

These parties expect to profit via the bid-ask spread (similar to the tradi-

tion AMM participants) as well as via market rebates and alpha signals.

But unlike traditional AMM participants, the rebates and alpha signals are

a primary P/L opportunity. They only perform the AMM function when

these signals are in their favor, and they do not have any obligation to con-

tinuously provide market quotes. The opportunistic AMM participants are

more likely to net and close their positions by the end of the day because

they do not want to hold any overnight risk even if they are well hedged.

Furthermore, the opportunistic AMM participants are not willing to hold

any inventory of stock in anticipation of future order flow. But they will

hold an inventory (usually small) of stock (either long or short) based on

42 CHAPTER 1 Algorithmic Trading



their alpha signal—which is usually very short-term (before the end of the

day). They often close or net their positions through market orders, and do

so especially when they can lock in a profit. Additionally, some of the

opportunistic AMM may continuously net positions throughout the day so

that they keep very little cash exposure. These parties also try to profit via

rebates, and utilize limit order models (and other statistical models relying

on real-time data) to infer buying and selling pressure and their preferred

prices.

DIRECT MARKET ACCESS
Direct market access or “DMA” is a term used in the financial industry

to describe the situation where the trader utilizes the broker’s technology

and infrastructure to connect to the various exchanges, trading venues, and

dark pools. The buy-side trader is responsible for programming all algorith-

mic trading rules on their end when utilizing the broker for direct market

access. Often funds combine DMA services with broker algorithms to have

a larger number of execution options at their disposal.

Brokers typically provide DMA to their clients for a reduced commission

rate but do not provide the buy-side trader with any guidance on structur-

ing the macro- or micro-level strategies (limit order strategies and smart

order routing decisions). Investors utilizing DMA are required to specify

all slicing and pricing schemes, as well as the selection of appropriate

pools of liquidity on their own.

In the DMA arena, the buy-side investor is responsible for specifying:

1. Macro trading rules. Specify the optimal trading time and/or trading

rate of the order.

2. Adaptation tactics. Rules to determine when to accelerate or decelerate

trading, based on market prices, volume levels, realized costs, etc.

3. Limit order strategies. How should the order be sliced into small pieces

and traded in the market, e.g., market or limit order, and if limit order,

at what price and how many shares.

4. Smart order routing logic. Where should orders be posted, displayed or

dark, how long should we wait before revising the price or changing

destination, how to best take advantage of rebates.

The investor then takes advantage of the broker’s DMA connectivity to

route the orders and child orders based on these sets of rules. Under DMA,

the investor is in a way renting the broker’s advanced trading platforms,

exchange connectivity, and market gateways.
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Many broker networks have been developed with the high frequency

trader in mind and are well equipped to handle large amounts of data,

messages, and volume. The infrastructure is built on a flexible ultra-low

latency FIX platform. Some of these brokers also provide smart order

routing access, as they are often better prepared to monitor and evaluate

level II data, order book queues, and trading flows and executions by

venue in real-time.

Advantages
� Lower Commissions. Brokers are paid a fee by the fund to compensate

them for their infrastructure and connectivity to exchanges, trading

venues, dark pools, etc. This fee is usually lower than the standard

commission fee and the fund does not receive any additional benefit

from the broker such as order management services, risk management

controls, etc.

� Anonymity. Orders are entered into the system and managed by the

trader. Brokers do not see or have access to the orders.

� Control. Traders have full control over the order. Traders determine the

venues (displayed/dark), order submission rules such as market/limit

prices, share quantities, wait and refresh times, as well as when to accel-

erate or decelerate trading based on the investment objective of the fund

and actual market conditions. Information leakage is minimized since

the broker does not receive any information about the order or trading

intentions of the investor.

� Access. Access to the markets via the broker’s technology and infra-

structure. This includes co-location, low latency connections, etc.

� Perfectly Customized Strategies. Since the investor defines the exact

algorithmic trading rules, they are positioned to ensure the strategy is

exactly consistent with their underlying investment and alpha expecta-

tions. Funds rarely (if ever) provide brokers with proprietary alpha

estimates.

Disadvantages
� Increased Work. Funds need to continuously test and evaluate their

algorithms, write and rewrite codes, develop their own limit order

models and smart order routers.

� Lack of Economies of Scale. Most funds do not have access to the large

number and breadth of orders entered by all customers. Therefore,

they do not have as large a data sample to test new and alternative

algorithms. Brokers can invest substantial resources in an algorithmic
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undertaking since the investment cost will be recovered over numerous

investors. Funds incur the entire development cost themselves.

� Research Requirements. Need to continuously perform their own

research to determine what works well and under what types of market

conditions.

� Locked-Into Existing Systems. Difficult and time consuming to rewrite

code and redefine algorithms rules for all the potential market condi-

tions and whenever there is a structural change in the market or to a

trading venue. However, many traders who utilize DMA also have the

option of utilizing broker suites of algorithms (for a higher commission

rate). The main exception in this case is the high frequency traders.

� Monitoring. Need to continuously monitor market conditions, order

book, prices, etc., which could be extremely data intensive.
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Chapter2
Market Microstructure

INTRODUCTION
Market microstructure is the study of financial markets and how they operate.

Market microstructure research primarily focuses on the structure of

exchanges and trading venues (e.g. displayed and dark), the price discovery

process, determinants of spreads and quotes, intraday trading behavior, and

transaction costs. Market microstructure continues to be one of the fastest

growing fields of financial research due to the rapid development of algorith-

mic and electronic trading.

As a result of the high speed evolution of financial markets in the last

decade, today’s number of trading venues and exchanges have mushroomed,

with more on the horizon, and trading processes have evolved exponentially

in complexity and sophistication. Traditional trading functions and partici-

pants have been surpassed by computers and electronic trading agents.

Human intervention in the trading process has expanded from the traditional

matching and routing of orders to one requiring complex analysis and

sophisticated real-time decision making. The market microstructure analyst

is now tasked with understanding all issues surrounding the ever-changing

marketplace.

Most of the academic research up until now has focused on valuation

techniques to uncover the fair market price of an instrument, expected

return forecasts, and risk modeling techniques. Analysts may employ a

bottom-up approach to determine the fair value price of a company by

examining the company’s balance sheet, fundamentals, sales figures, year-

over-year growth, and revenue forecasts. Analysts may also utilize a top-

down approach to determine which factors, sectors, or other subgroups

will likely under- or overperform going forward. Additionally, analysts

may utilize a quantitative process, such as the capital asset pricing model

(CAPM) or arbitrage pricing theory (APT) to perform asset allocation and

determine optimal portfolio mixes.
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While the bottom-up, top-down, and quantitative approaches provide

valuable insight into the market’s assessment of fair value and appropri-

ate stocks to hold in the portfolio, these techniques do not provide insight

into how to measure and incorporate investors’ subjective assessment and

preference of the securities or how markets will react to the arrival of

“new” information. Without taking into account these preferences, portfo-

lio managers could transact at unfavorable prices, causing a drag on per-

formance; a common reason why funds underperform their peers. As will

be a theme in this chapter, it is the role of the market microstructure

researcher/analyst to provide insight and valuable information to traders

and portfolio managers so that the best possible market prices are cap-

tured—thus reducing the performance drag and improving portfolio

returns.

One of the main roles of financial markets is to provide investors with

a fair and transparent price discovery and liquidity snapshot. Unlike

formal economic theory suggests, financial markets are far from friction-

less. In fact, it is this inefficiency that often leads to costly implementation.

As such, market microstructure analysts are tasked with understanding not

only the price discovery process and market liquidity, but also how prices

will change with the arrival of new information and competing customer

orders.

Historically, companies would either list on a traditional exchange (listed)

such as the New York Stock Exchange (NYSE) or trade in an over-the

counter-market (OTC) such as the National Association of Securities

Dealers Automatic Quotation market (NASDAQ). Stocks listed on the

NYSE would trade via a system utilizing a sole specialist, whose job was to

match customer orders, keep a fair and orderly market, provide liquidity,

and maintain a central order book consisting of all customer buy and sell

orders. Specialists would have access to all orders residing in the central

order, allowing them to determine the overall buy-sell imbalance and estab-

lish a fair value price based on market information. Specialists would dis-

seminate the best bid and best ask prices to the public marketplace.

Stocks listing in the OTC market would trade via NASDAQ’s dealer-based

system with multiple market makers. Each market maker provides their best

bid and ask price to a central quotation system. Customers wishing to trade

would route their order to the market maker with the best quoted price.

Through competition with multiple parties vying for orders, customers were

almost ensured that they would receive the best available fair prices. Similar

to specialists, market makers were responsible for maintaining a fair and

orderly market, providing liquidity, and disseminating prices. But unlike
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specialists, market makers were not privileged to the entire market buy-sell

imbalance, as they only had access to their central order book consisting of

their customer orders. The privilege differences provided some difficulties

at times in establishing fair value market prices due to the fragmentation of

orders. Still, the competitive system played a large role in determining fair

market prices.

Times have changed, and the underlying trading process is far from

the simple process of yesteryear. There are more than thirteen displayed

trading venues including exchanges and alternative trading systems

(ATSs) and from thirty to forty electronic crossing networks (ECNs) which

are known as electronic communication networks. To make matters more

difficult, the rules of engagement for each venue differ with several differ-

ent pricing and queuing models. For example, maker-taker, inverted, com-

mission based, price-time, price-size, etc.

To keep abreast of the rapidly changing market structure, many funds

have created an in-house market microstructure analyst role and some

have hired a team of analysts. In order to develop the most efficient and

profitable trading algorithms and systems, market participants need to

fully understand the inner workings of each venue and how it affects their

orders, and ultimately their bottom line.

We provide an overview of the different venues and provide empirical

data relating to intraday trading patterns such as spreads, volumes, vola-

tility, and trading stability. The chapter concludes with a discussion of

the market microstructure surrounding special event days, with special

attention paid to the “Flash Crash” of May 6, 2010 and what really hap-

pened during the day.

In the remainder of this chapter, we describe the current state of the equity

markets and review some of the important market microstructure research

papers that have not only provided the groundwork for the evolution of

exchanges, but also provided a foundation for trading algorithms, high

frequency trading, and ultimately improved stock selection and portfolio

construction.

Readers are encouraged to study these research works and empirical findings

as if it were a final exam.

MARKET MICROSTRUCTURE LITERATURE
Academia has been performing market microstructure research since the

1970s. And while the research has expanded immensely, the current work
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that is being incorporated into trading algorithms and black box models

is based on many of the earlier groundbreaking works.

How exactly has market microstructure research evolved over time?

First, research in the 1970s and 1980s focused mainly on spreads, quotes,

and price evolution. In the following decade, 1990�2000, interest turned

to transaction cost analysis but focused on slippage and cost measure-

ment. The following period, 2000�2010, was marked with decimaliza-

tion and Reg-NMS, and research turned to algorithmic trading. Studies

focused on pre-trade analysis in order to improve trading decision and

computer execution rules, and the development of optimal trading

strategies for single stocks and portfolios. The 2010 era so far has

been marked with market fragmentation, high frequency trading, algo-

rithmic trading in multi-asset classes, and exchange traded fund

research. And many portfolio managers are studying how best

to incorporate transaction costs into stock selection and portfolio con-

struction. These eras of market microstructure research are shown in

Table 2.1.

To help analysts navigate the vast amount of market microstructure

research and find an appropriate starting point, we have highlighted some

sources that we have found particularly useful. First, the gold standard is

the research by Ananth Madhavan in two papers: “Market Microstructure:

A Survey” (2000) and “Market Microstructure: A Practitioner’s Guide”

(2002). Algorithmic Trading Strategies (Kissell, 2006) provides a litera-

ture review in Chapter 1, and Algorithmic Trading & DMA by Barry

Johnson (2010) provides in-depth summaries of research techniques being

incorporated into today’s trading algorithms for both order execution and

black box high frequency trading. Finally, Institutional Investor’s Journal

of Trading has become the standard for cutting edge academic and

practitioner research.

Table 2.1 A Brief History of Market Microstructure Research and TCA

Era General Interest

1970�1990 Spreads, Quotes, Price Evolution, Risk Premium

1990�2000 Transaction Costs, Slippage, Cost Measurement, Friction

2000�2010 Algorithms, Pre-Trade, Black Box Models, Optimal Trading
Strategies

2010� Market Fragmentation, High Frequency, Multi-Assets,
and Portfolio Construction
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Some of the more important research papers for various transaction cost

topics and algorithmic trading needs are shown in the following tables.

Table 2.2 provides important insight into spread cost components. These

papers provide the fundamental needs for order placement and smart

order routing logic. Table 2.3 provides important findings pertaining to

trade cost measurement and trading cost analysis. These papers provide a

framework for measuring, evaluating, and comparing trading costs across

brokers, trading, and algorithms. Table 2.4 provides insight into pre-trade

cost estimation. These papers have provided the groundwork for trading

cost and market impact models across multi-assets as well as providing

insight into developing dynamic algorithmic trading rules. Finally, Table 2.5

provides an overview of different trade cost optimization techniques for

algorithmic trading and portfolio construction.

THE NEW MARKET STRUCTURE
Over the last few years, there have been some dramatic and significant

changes to the structure of the equities markets. Some of the changes were in

response to changing regulations and the electronic environment, while some

have been due to changing investor preference and investment style. We are

certain these will continue to evolve over time.

Table 2.2 Spread Cost Analysis

Category Payment Study

Order Processing Order processing fee Tinic (1972)

Service provided Demetz (1968)

Inventory Cost Risk-reward for
holding inventory

Garmen (1976)
Stoll (1978)
Ho and Stoll (1981)
Madhavan and Sofianos (1998)
Amidhud and Mendelson (1980)
Treynor (1971)
Copeland and Galai (1983)
Gosten and Harris (1988)
Huang and Stoll (1997)
Easley and O’Hara (1982, 1987)
Kyle (1985)

Adverse
Selection

Payment for
transacting with
informed investors

Payment for
transacting with
investor with private
information
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Table 2.3 Cost Measurement Analysis

Study Type Observation

Perold (1988) Value Line Fund 17.5% Annual

Wagner and Edwards (1993) Total Order Cost

Liquidity Demanders 5.78%
Neutral Investors 2.19%

Liquidity Suppliers 21.31%

Beebower and Priest (1980) Trades

Buys 20.12%

Sells 0.15%

Loeb (1983) Blocks

Small Sizes 1.1�17.3%

Large Sizes 2.1�25.4%
Holthausen, Leftwich and Trades

Mayer (1999) Buys 0.33%

Sells 0.40%

Chan and Lakonishok (1993) Trades

Buys 0.34%

Sells 20.04%

Chan and Lakonishok (1995) Orders

Buys 0.98%
Sells 0.35%

Chan and Lakonishok (1997) Orders

NYSE 1.01�2.30%

NASDAQ 0.77�2.45%

Keim and Madhavan (1995) Block Orders 3�5%

Keim and Madhavan (1997) Institutional Orders 0.20�2.57%

Plexus Group (2000) Market Impact 0.33%

Delay 0.53%
Opportunity Cost 0.16%

Kraus and Stoll (1972) Blocks 1.41%

Lakonishok, Shleifer, and
Vishny (1992)

1.30�2.60%

Malkiel (1995) 0.43�1.83%

Haung and Stoll (1996) NYSE 25.8 cents

NASDAQ 49.2 cents
Wagner (2003) 0.28�1.07%

Conrad, Johnson and Wahal
(2003)

0.28�0.66%

Berkowitz, Logue and Noser
(1988)

VWAP Cost 5 bp

Wagner (1975) Trading Costs 0.25 �
2.00%1

Note: Positive value indicates a cost and negative value indicates a saving.
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Historically, companies were either listed on an exchange such as the New

York Stock Exchange (NYSE) and traded primarily on that stock exchange

floor or listed on the over-the-counter (OTC) market and traded primarily in

the National Association of Securities Dealers Automated Quotation

(NASDAQ) market. The NYSE market was primarily comprised of estab-

lished blue chip companies; companies with strong balance sheets, low vola-

tility, and a long history of earnings and dividends. They were household

names such as GE, IBM, Ford, AT&T, etc. The NASDAQ market was pri-

marily comprised of newer and smaller companies and attracted technology

companies such as MSFT, WorldCom, Red Hat, Ebay, Amazon, etc. Many

of these smaller companies at the time of their IPO did not have the large bal-

ance sheets or a long history of earnings or dividends, thus making their

stocks more volatile in general.

Listed securities transacted more than 90% of their volume on the NYSE.

Customers would use brokers to help route orders to the specialist. Limit

orders would be entered into the specialist’s central order book which

included all customer limit orders from all member brokers. They would

Table 2.4 Cost Estimation

Study Structure Factors

Chan and Lakonishok (1997) Linear Size, Volatility, Trade Time, Log(Price)

Keim and Madhavan (1997) Log-Linear Size, Mkt Cap, Style, Price

Barra (1997) Non-Linear Size, Volume, Trading Intensity, Elasticity, etc.
Bertsimas and Lo (1998) Linear Size, Market Conditions, Private Information

Almgren and Chriss (2000) Non-Linear Size, Volume, Sequence of Trade

Breen, Hoodrisk, and Korajczyk (2002) Linear 14 Factors - Size, Volatility, Volume, etc.

Kissell and Glantz (2003) Non-Linear Size, Volatility, Mkt Conditions, Seq. of Trades

Lillo, Farmer, and Mantegna (2004) Non-Linear Order Size, Mkt Cap

Table 2.5 Trade Cost Optimization

Study Optimization Technique

Bertsimas and Lo (1998) Price Impact and Private Information
Almgren and Chriss (2000) Risk Aversion, Value at Risk

Kissell and Glantz (2003) Risk Aversion, Value at Risk, Price
Improvement

Kissell and Malamut (2006) Trading and Investing Consistency
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execute based on priority determined by price and time (price-time priority).

Market orders routed to the specialist would transact with the best market

prices in the limit order book. Buy market orders would transact with the

lowest priced ask or offer in the limit book. Sell market orders would trans-

act with the highest priced bid in the limit order book. If there were multiple

“Bids” or “Asks” at the same prices, the orders which have been in the order

book the longest amount of time transacted first.

NASDAQ listed (OTC) stocks traded in a market maker system. Each

market maker would provide the market with their best bid and ask price

and stand ready to transact the specified number of shares at the specified

prices. Market makers, like the specialist, were required to maintain a

stable and orderly market. Customers would enter orders with their brokers,

who could also display these orders to the market as a customer limit order

and have the shares and price shown in the quote. While price-time priority

was still the rule for routed orders, brokers could transact with the market

maker of their choice. Due to the fragmentation of the market surrounding

multiple market makers, a market maker who just increased their bid price

could receive an order over a market maker who has displayed that better

price for a significantly longer amount of time. However, the competition

surrounding multiple market makers led to better prices and a more efficient

market—competition at its best. The equity markets are much different now

compared to the days of the NYSE and a single specialist model, or

NASDAQ with multiple market makers, even though parts of each still exist

today. Now, instead of two trading exchanges, there are numerous trading

venues. Currently, there are thirteen trading venues consisting of exchanges,

alternative trading systems (ATS), and electronic communication networks

(ECNs) also known as electronic crossing networks. At current count, there

are in excess of thirty dark pools including third party and broker-owned

internal dark pools which are used to match internal order flow.

Looking at the sheer number of potential venues shows that there could

be an enormous amount of fragmentation and inefficient pricing if ana-

lysts and traders do not have a full understanding of how these venues

behave and operate. This has further created the need for market micro-

structure analysts.

Going back to the circa 1995�2005 era, an important distinguishing

characteristic between listed and NASDAQ companies was that listed

companies were usually the larger, more established companies. They

had strong balance sheets and a long history of earnings and dividends,

they had lower price volatility, and more stable trading patterns, partly

due to the role played by a single intermediary—the specialist. NASDAQ
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companies were usually the smaller and less established companies. They

did not have as strong balance sheets as the listed companies and they

certainly did not have as long a corporate earnings and dividend paying

history (some did not even have any history of profits at all). In addition,

these companies had higher price volatility, less stable intraday trading

patterns, and higher company specific risk.

At that time fewer analysts covered NASDAQ companies. Many of these

companies were also new era technology stocks so techniques used to

value them were not as developed as they are today. Analysts at times

would force the traditional valuation techniques for companies with histor-

ical earnings, profits, sales figures, etc., such as GE, AT&T, IBM, etc. But

these approaches would break down for companies that did not have any

profits or pay dividends. How could we value a company using a dis-

counted dividend model if it had never paid out any dividends? How could

we forecast sales if the company is based on an idea without any previous

sales, or forecast performance in a new industry such as internet shopping,

where there was no history whether or not consumers would embrace the

approach? While at the time we all knew these concepts would take off

and be embraced, we did not know which companies would excel and

which would falter.

What we did observe during that time was that company characteristics had

a great effect on the underlying market impact cost of an order. And they

still do!

1995�2005 triggered a great deal of discussion surrounding which

exchange (NYSE or NASDAQ) was more efficient and provided investors

with lower costs. But the reason was not because of the NYSE structure

having lower costs than NASDAQ. In actuality, it was due to the majority

of NYSE companies with trading characteristics that caused lower trading

costs, such as lower volatility, larger market cap, more stable intraday

trading patterns, lower company specific risk, and were followed by a

larger number of equity analysts—producing less potential for informed

trader surprises. As mentioned, the majority of NASDAQ companies at

that time were more volatile, with smaller market cap, less stable trading

patterns, a greater quantity of company specific risk—creating greater

potential for informed trader surprises than NYSE companies. However,

when we isolated these characteristics across exchanges, and held trade

size and strategy constant, we did not find any statistical difference across

costs. Stocks on both exchanges had very similar cost structures and

we concluded that costs were similar across the NYSE and NASDAQ

(after adjusting for trading characteristics). In today’s markets, with

55The New Market Structure



numerous exchanges and trading venues, we find the same patterns; costs

are related to trading characteristics. Different exchanges provide different

needs for investors. We did not find that any one structure was less effi-

cient or more costly than another. One factor, however, that stuck out as

having a very large correlation with cost is liquidity. Both historically and

in today’s markets, we have found that those venues with greater liquidity

were associated with lower trading costs.

PRICING MODELS
Currently there are three different pricing models used by trading venues:

maker-taker, taker-maker, also known as inverted pricing models, and

commission based. All of the different models are put forth to attract as

much liquidity as possible to their exchange.

Maker-Taker Model. In the maker-taker model, the maker is the investor

posting and providing liquidity. In return, the maker is paid a rebate to

provide liquidity to the exchange, and the taker of liquidity is charged a

larger transaction fee than the rebate paid to the maker. The rebate is only

provided if a transaction takes place. Thus, investors are incentivized to

provide liquidity to the particular exchange or venue.

Taker-Maker (Inverted) Model. In the taker-maker model, the investor

posting the order is charged a fee for supplying liquidity and the inves-

tor taking the liquidity is provided a rebate. Why would investors pay

to provide liquidity when they could enter liquidity on another venue

and receive a rebate for this service? The answer is simple. Suppose the

investor is at the end of a long price-time priority queue. The investor

could increment their bid or offer price costing them a full price incre-

ment. However, a better option that allows them to jump to the top of

the queue is to place the order on a taker-maker exchange, where the

rebate charged would still be less than the price increment. Hence,

liquidity taking investors have two options; one being charged a fee to

take liquidity and another being paid to take liquidity. At the same price,

rational investors would always select the option where they would be

paid a rebate as opposed to having to pay a rebate. The taker-maker

model allows investors to jump to the front of the line for a small fee.

As long as this fee is less than the full price increment (less any expected

rebate the investor is expected to receive from the transaction) they

would select the pay to post option. The option proves valuable in situa-

tions where investors are looking to improve the best market price or

utilize a market order where they would pay the entire spread and rebate

in addition to crossing the spread.
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Commission. In the commission-based model, both the liquidity provider

and liquidity supplier are charged a fee for transacting with liquidity. This

was the original pricing model of exchanges, but currently attracts the least

amount of interest. Investors could place an order on a commission-based

venue and they could jump to the front of the queue (similar to with the

taker-maker model). Although there is no incentive for the liquidity taker

to transact with that particular exchange over a maker-taker exchange

unless the commission fee is less than the rebate. Commission fee struc-

tures are popular with dark pools and crossing networks where investors

are allowed to transact within the bid-ask spread, thus receiving better

prices even after commissions paid.

ORDER PRIORITY
Currently there are two types of priority models in use: “price-time” priority

and “price-size” priority. In price-time models, orders receive execution

priority based on the time the order was entered into the venue. Orders are

sorted based on price and then time so that the best priced and longest stand-

ing orders are executed first. In price-size models, orders are sorted based

on price and then order size so that the largest orders are executed first.

This incentivizes investors to enter larger orders as a way to move to the

front of the line, rather than increase their price or submit orders to a taker-

maker model. Investors with large orders are often encouraged to utilize the

price-size priority model.

EQUITY EXCHANGES
The landscape of trading exchanges has changed dramatically since the early

days of the NYSE and NASDAQ. There are four exchange groups operating

ten exchanges with an additional three independent venues, and dark pools.

These groups are (Table 2.6):

� NYSE/EuroNext: NYSE, ARCA, AMEX

� NASDAQ/OMX: NASDAQ, BSX, PSX

� Bats: BYX, BZX

� DirectEdge: EDGA, EDGX

� Independents: NSX, CBOE, CBSX

� Finra: TRF (trade reporting facilities)

NEW NYSE TRADING MODEL
The NYSE model has changed dramatically from what is depicted in

television and movies with crowds of people huddled around a central

figure yelling and screaming orders at one another and manically
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gesturing hand signals. Much of this change has been forced by the evo-

lution algorithmic and electronic trading.

The NYSE antiquated specialist system has been replaced with a model

that features a physical auction managed by designated market makers

(DMMs) and a completely automated auction that includes algorithmic

quotes from DMMs and other market participants. The old NYSE spe-

cialist system has evolved into a system comprised of three key market

participants: DMMs Supplemental Liquidity Providers (SLPs), and

Trading Floor Brokers. Each participant’s role is described as follows:

Designated Market Makers
Each stock traded on the NYSE has a single designated market maker

(DMM) whose role has superseded the specialist. The role of the DMM is to:

� Maintain fair and orderly markets for their assigned securities.

� Quote at the national best bid and offer (NBBO) for a specified per-

centage of the time.

Table 2.6 Trading Venue Pricing Rules

Pricing Rules
Priority Trading

Rules

Parent Name Short
Maker-
Taker

Taker-
Maker

Per
Share

Price-
Time

Price-
Size

NYSE EuroNext New York Stock Exchange NYSE O O
American Stock Exchange AMEX O O
Archipelago ARCA O O

NASDAQ OMX NASDAQ NASDAQ O O
NASDAQ/Philly PSX O O
NASDAQ/Boston BX O O

Bats Bats X BZX O O
Bats Y BYX O O

DirectEdge Direct Edge A EDGA O O
Direct Edge X EDGX O O

Regionals National Stock Exchange NSX O O
Chicago Board Options
Exchange

CBSX O O

Chicago Exchange CHX O O
Finra Finra TRF TRF O O

Source: NYSE, as of 1Q-2012.

58 CHAPTER 2 Market Microstructure



� Facilitate price discovery during the day, market open and close, periods

of trading imbalances, and times of high volatility.

� Provide liquidity and price improvement to the market.

� Match orders based on a pre-programmed capital commitment schedule.

DMMs will no longer be the agent for orders on the Display Book, and

their algorithms do not receive a “look” at incoming orders. This ensures

fairness and that the DMMs compete as a market participant. In exchange

for these obligations and restrictions, DMMs will be:

� Parity with incoming orders.

� Permitted to integrate their floor-based trading operations into a related

member firm, while subject to strict information barriers.

DMMs will have their performance periodically reviewed, and will receive

transparent economic incentives based on performance (Table 2.7).

Supplemental Liquidity Providers
Supplemental liquidity providers (SLPs) are high volume trading members

who provide liquidity to their NYSE stocks. Unlike the DMM, where there

is only a single member designated to each stock, multiple SLPs may be

assigned to a stock. The rules of engagement for the SLP are:

� Maintain a bid or offer at the NBBO in each assigned security for at

least 10% of the trading day.

� Trade only for their proprietary accounts. They are prohibited from

trading for public customers or on an agency basis.

� Cannot act as a DMM and SLP for the same stock.

� Will not receive any unique information (unlike a DMM).

The SLP program rewards aggressive liquidity suppliers who complement

and add competition to existing quote providers. SLPs who post liquidity

Table 2.7 Comparison of Specialist vs. Designated Market Maker (DMM)

Role Specialist (Old) Designated Market Maker (New)

Trading
Responsibility

Agency responsibility, visibility to all incoming
orders

Market maker with quoting obligation, no
advanced “look”

Priority Yield on all orders Parity

Obligations Affirmative and negative obligations, open,
close

Affirmative obligations, open, close

Technology S-quotes, SAPI Addition of Capital Commitment Schedule (CCS)

Economics Economic incentive Economic incentive tied to providing liquidity
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in their assigned security and execute against incoming orders will be

awarded a financial rebate by the NYSE.

Trading Floor Brokers
Floor brokers of the NYSE exchange will continue to trade customer

orders on parity with other orders. They are positioned at the point of sale

during the market open and close, as well as during any intraday situation

that requires unique handlings to execute orders (such as halts and

restarts). Floor brokers are now equipped with state-of-the art computer

systems, handheld order management devices, and trading algorithms that

provide parity with DMMs and the NYSE Display Book. The revised role

of the floor broker now provides:

� Trading customer orders parity with other market participants with the

parity benefit being integrated into algorithms designed specifically for

the NYSE environment.

� Ability to offer customers the competitive benefits of algorithmic

speed and strategies benchmarked against the NBBO, directly from the

NYSE point of sale.

� A new technology “Block Talk” enables NYSE floor brokers to more

efficiently locate deep liquidity. Block Talk allows floor brokers to

broadcast and subscribe to specific stocks, thus creating an opportunity

to trade block-sized liquidity not otherwise accessible electronically.

� These messages do not contain any specific order information, thus

minimizing information leakage.

Source:

http://www.nyse.com/pdfs/fact_sheet_dmm.pdfhttp://www.nyse.com/pdfs/

03allocation_policy_instructions_wd.pdf

http://usequities.nyx.com/listings/dmms

NASDAQ SELECT MARKET MAKER PROGRAM
NASDAQ has also implemented a new market maker program, now

known as the NASDAQ Select Market Maker Program (SMMP). The pro-

gram has been implemented to encourage market making firms to provide

liquidity at the NBBO, which in turn will improve the price discovery pro-

cess and ensure stable or orderly markets. Firms that achieve select market

maker designation status will be provided with increased visibility to the

issuer community (CEO/CFO/IR Officers) through: NASDAQ Online,

NASDAQ Market Intelligence Desk, and also through NASDAQ spon-

sored events.
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NASDAQ select market maker designations are available for NASDAQ

and non-NASDAQ listed securities. All registered market maker firms

are eligible for select status and there is no limit to the number of select

market makers in a particular stock. NASDAQ does not grant any special

trading privileges to select market makers.

The program is as follows:

Securities are split into one of two tiers of stock. Tier 1 includes securities

with an average daily trading volume (ADV) of less than 1 million shares

per day. Tier 2 includes securities with an ADV greater than 1 million shares

per day. For tier 1 stocks select market maker needs to display orders at the

NBBO at least 15% of the time. For tier 2 stocks select market maker needs

to display orders at the NBBO at least 10% of the time. Select status is based

on the previous month’s quoting statistics on a stock by stock basis

(Table 2.8).

EMPIRICAL EVIDENCE
In this section we examine the underlying data to see if the market micro-

structure findings from a two exchange system (NYSE and NASDAQ)

still hold true. Later in Chapter 7, Advanced Algorithmic Forecasting

Techniques, we provide techniques needed to best forecast volumes and

intraday profiles (among other things), as well as offer insight into how

we can best utilize this information when developing algorithms and

specifying trading strategies. Our analysis period was 1Q-2012.

Trading Volumes
Market Share
The equity markets are dominated by four major regional and crossing

exchange groups. Of these, the NYSE has the largest market share with

24.5% of total share volume. NASDAQ is second with 21.6% of total

Table 2.8 NASDAQ Select Market Maker Program

ADV Requirement

Tier 1 ,1,000,000 Shares NBBO 15% or more

Tier 2 $1,000,000 Shares NBBO 10% or more

Source: http://www.nasdaqtrader.com/content/ProductsServices/Trading/SelectMarketMaker/smm_
factsheet.pdf.
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share volume. Bats and DirectEdge are third and fourth, respectively. For

the period analyzed we found Bats with 10.4% and DirectEdge with

9.3% of stock share volume. DirectEdge and Bats have been pretty con-

sistent with each having about 9%�10% of total market share. The

regional exchanges, surprisingly, only account for about 1.3% of total

share volume. Finra TRF volume consists of the dark pools and crossing

networks matches including both third party networks and internal broker

dealing crossing systems. These trades account for about 33% of total

share volume traded in the market (Figure 2.1).

Large and Small Cap Trading
NYSE listed large cap (LC) stocks account for a much larger percentage of

market share than NYSE listed small cap (SC) stocks. NYSE LC stocks

account for 77% of market volumes and NYSE SC stocks account for about

23% of market volumes. The breakdown of NASDAQ market share is not as

skewed for large cap as it is for NYSE stocks. NASDAQ large cap stocks

account for 52% of the market volume and NASDAQ small cap stocks

account for 48% of the market volume. It is important to point out that there

is not a difference across exchange. The NYSE trades more volume in large

cap compared to small cap, and vice versa for NASDAQ. Historically,

the smaller, less established companies would list on the NASDAQ exchange

and would often migrate to the NYSE exchange as they grew and matured.

This trend, however, is beginning to change, as we see some large cap NYSE

listed companies moving to the NASDAQ exchange. For example,

Texas Instruments (Dec. 2011) and Kraft (Jun. 2012) moved from the NYSE

to NASDAQ.

NYSE
EuroNext

25% 

NASDAQ OMX
22%

Bats
10%

DirectEdge
9%

Regionals
1%

Finra TRF
33%

Exchange Group-Market Share

■ Figure 2.1 Market Share.
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Do Stocks Trade Differently Across the Exchanges
and Venues?
We next analyzed volumes across all trading venues. Stocks were segmented

by exchange listing and then by market cap to determine if there is any mate-

rial difference to how they trade.

For NYSE stocks we found very little difference between large and small

cap stocks. Small cap stocks did trade slightly more in the NYSE/AMEX

market (Specialist/DMM model) and in the crossing networks (Finra-TRF).

Large caps traded a little more in the alternative exchanges, NASDAQ,

and ARCA. For NASDAQ stocks, we once again found similar trading

activity across large and small cap stocks. Large cap stocks traded a little

more on NASDAQ and ARCA and small cap stocks traded slightly more in

the crossing networks.

We next analyzed the difference across market cap stocks and how they

trade in the different venues. We found that the listed large cap stocks traded

much more on the NYSE/AMEX venue as expected, since these are primar-

ily the stocks that are listed on the NYSE exchange, and the NASDAQ large

cap stocks traded more in the NASDAQ venue as well as in the alternative

exchanges and ARCA. Similar results were found for small cap stocks.

Listed small cap stocks traded a larger percentage in NYSE/AMEX and

NASDAQ small cap stocks traded a larger percentage in NASDAQ. The

trading volumes across the different alternative exchanges were similar but

with NASDAQ small caps trading slightly more in the alternative exchanges

and in the dark pools (Figure 2.2).

Volume Distribution Statistics
Investigation into stock trading patterns uncovered some interesting

volume distribution properties, namely, the difference in trading volume

across market capitalization. As expected, large cap stocks trade a much

higher number of shares than small cap stocks. Large cap stocks traded an

average of 6.1 million shares per day and small cap stocks traded an aver-

age of 496,000 shares per day. NASDAQ large cap stocks (7.4 million)

trade more daily volume than NYSE listed large cap stocks (5.8 million).

NYSE listed small cap stocks 639,000 trade more daily volume than

NASDAQ listed small cap stocks (400,000).

The difference across trading volume by large cap is likely to be driven

by sector and information content. First, NASDAQ is more dominated by

large cap technology and internet stocks than the NYSE. These compa-

nies are also more likely to be growth companies or companies with a
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high return potential, thus making them attractive to those seeking higher

returns. Since NASDAQ stocks are traded more via market makers there is

some double counting in the names. Additionally, the NASDAQ technology

and internet stocks are becoming a favorite of retail investors, since they are

known names and it is sexier to trade technology and internet stocks than,

say, utilities. NYSE small cap stocks are believed to trade more volume

than NASDAQ small cap stocks because these are the more established

companies with a history of earnings and company specific fundamentals.

Furthermore, NYSE small cap stocks are usually larger than NASDAQ

small cap stocks. Finally, the designated market maker model has lower

spreads that result in lower trading costs and hence make NYSE small cap

stocks a more attractive investment opportunity than NASDAQ small cap

stocks. Another interesting daily volume property is that the median daily

volume is much lower than the average daily volume measure. The ratio

of median volume to average volume is NYSE-LC5 0.48, NASDAQ-

LC5 0.38, NYSE-SC5 0.40, and NASDAQ-SC5 0.37. This is an indica-

tion that NYSE stocks have much more stable day-to-day patterns than
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NASDAQ stocks. Analysis of the skewness of absolute daily volumes

finds NYSE5 4.33 and NASDAQ5 5.59, and large cap5 3.23 and small

cap5 5.43. This shows that daily volumes are very positively skewed for all

stocks (NYSE and NASDAQ, and large and small cap stocks). High kurtosis

is also an indication of peaked means and fat tails, or in this case, an indica-

tion of outliers. Non-normal distribution patterns for asset returns and their

repercussion on risk and return have been greatly researched and published.

But the non-normal volume profiles and their repercussion on daily trading

costs and ultimately portfolio returns have not been given the same level of

attention as with asset prices. But it is just as important.

Another aspect of daily volume distribution and the use of “average” over

“median” is that the positive skewness of the distribution causes the “aver-

age” volume metric to overestimate actual volumes the majority of times.

Since volumes are highly skewed by positive outliers, it results in a value

that could be much higher than the middle point of the distribution. In our

data, the average is approximately in the 60�65% percentile, thus leading

to an overestimation of daily volume 60�65% of the time. We have found

(as we show in later chapters) that the median is a much more accurate

predictor of daily volume than average. Why is this so? The reason is

simple. When there are earnings announcements, company news, or macro

events there will be more volume traded than on a normal day. Stock vol-

ume is highly skewed. As a fix, many practitioners compute the average by

taking out the highest and lowest one or two data points, which results in a

much more accurate measure. Interestingly, practitioners can compute a

more accurate adjusted average by taking out the highest one or two data

points since they are the most skewed outliers (Table 2.9).

Day of Week Effect
Historically there has always been a day of week pattern associated with

market volumes. Stocks would trade the least amount on Monday, increas-

ing on Tuesday and Wednesday and then decreasing on Thursday and

Friday. Examination of large cap trading volume in 2012 found similar

patterns. Mondays were the least active trading day with volume increas-

ing on Tuesday�Thursday and falling slightly on Friday. We found similar

patterns across NYSE and NASDAQ listed large cap stocks. Analysis of

small cap stocks found a different pattern. Volumes were the lowest on

Monday as expected, but highest on Tuesday and Friday. Similar patterns

for small cap stocks were found for NYSE and NASDAQ listed stocks.

Next we examined the day of week effect for large and small cap stocks

across time to see if the Friday effect for small cap stocks is relatively new
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or due to randomness. We evaluated volumes by day over 2009�2012 to

address this question. For large cap stocks we found similar weekly patterns

for each of the years except for 2010 where volumes increased on Friday.

For small cap stocks we found that the current weekly pattern has existed

since at least 2009. One of the common beliefs for why Friday volumes

have increased for small cap stocks is that portfolio managers do not want

to hold weekend risk for stocks with a large amount of company specific

risk. Thus, where managers may have been willing to hold open positions

over the weekend at one point in time, they may be less willing to hold open

positions in these names in today’s trading environment. In 2010 large cap

stocks exhibited similar patterns with Friday volumes increasing. A belief

by market participants is that this was the result of a hangover effect where

managers were not willing to hold open positions for large as well as small

cap stocks due to market environment and uncertainty at that point in time.

Table 2.9 Daily Volume Distribution Statistics

Avg Avg Avg Avg Avg Avg

ADV Median St Dev Skew Kurt CoV

Exchange

NYSE 2,450,075 592,194 1,360,792 4.33 38.98 74%

NASDAQ 991,463 177,048 689,431 5.59 58.01 99%

Market Cap

LC 6,160,167 2,785,869 3,186,060 3.31 23.65 55%

SC 495,593 187,777 429,620 5.43 55.60 95%

NYSE

LC 5,836,089 2,785,869 2,986,093 3.23 22.77 54%

SC 639,273 255,871 491,600 4.92 47.65 85%

NASDAQ

LC 7,405,640 2,753,902 3,954,560 3.61 27.04 59%

SC 400,455 148,711 388,579 5.77 60.86 102%

Large Cap

NYSE 5,836,089 2,785,869 2,986,093 3.23 22.77 54%

NASDAQ 7,405,640 2,753,902 3,954,560 3.61 27.04 59%

Small Cap

NYSE 639,273 255,871 491,600 4.92 47.65 85%

NASDAQ 400,455 148,711 388,579 5.77 60.86 102%
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Managers are still haunted by the overnight collapse of many large cap com-

panies during the financial crisis (Figure 2.3).

Intraday Trading Profiles
We examined the intraday trading patterns for spreads, volume, volatility,

and intraday trading stability. Historically, each of these measures fol-

lowed a U-shaped pattern. For example, volume and volatility were both

high at the open, decreasing into mid-day and then increasing again into

the close. Spreads also followed a similar U-shaped intraday trading

pattern. Examination of the same profiles in today’s market found a dis-

tinctly different trading pattern. There were also distinct differences across

market capitalization (LC/SC) and exchange listing (NYSE/NASDAQ).

Our analysis period was 1Q-2012.

Spreads
� Intraday spreads were measured as the average bid-ask spread in each

15 minute trading period.

� Spreads are higher at the open than mid-day, but do not spike at the

close. Spreads in fact decrease slightly into the close.
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■ Figure 2.3 Day of Week Effect.
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� Spreads decrease and level out after about the first 15�30 minutes for

large cap stocks and after about 30�60 minutes for small cap stocks.

The amount of time spreads persist at the higher values is longer than it

was historically where both large and small cap spreads used to decline

rather quickly and often within 15 minutes for both.

� Small cap spreads persist longer than large cap spreads.

� Small cap spreads are higher than large cap spreads due to the higher

risk of each company, lower trading frequency, and higher potential

for transacting with an informed investor.

� NYSE stocks have slightly lower spreads than NASDAQ stocks even

after adjusting for market capitalization.

Analysis of intraday spreads found three observations worth noting. First,

spreads are much higher in the beginning of trading and these higher

spreads persist longer due to a difficult price discovery process. Specialists

and market makers used to provide a very valuable service to the financial

markets in terms of price discovery and determining the fair starting

price for the stock at the market open. Now, the price discovery is often

left to trading algorithms transacting a couple of hundred shares of stock at

a time. While algorithms have greatly improved, they are still not as well

equipped as the specialists and market makers in assisting price discovery.

For example, specialists used to have access to the full order book and

investor orders prior to the market open. So they could easily establish a

fair value opening price by balancing these orders and customer prefer-

ences. Market makers also had a large inventory of positions and customer

orders which allowed them to provide reasonable opening prices. The

current electronic trading arena, where investors only have access to their

individual orders, does not allow for an efficient price discovery process.

Second, NASDAQ spreads are lower than NYSE spreads even after adjust-

ing for market cap. The belief is that this is likely due to the NYSE desig-

nated market maker (DMM) system that has been established to encourage

the DMM participants to participate in the process by providing liquidity

when necessary. Third, spreads now decrease going into the close rather

than increasing. This is likely due to greater transparency surrounding

closing imbalances and investors’ ability to offset any closing auction

imbalance (Figure 2.4).

Volumes
� Intraday volume is measured as the percentage of the day’s volume

that traded in each 15 minute trading period.

� Intraday volume profiles are not following the traditional U-shaped

trading patterns.
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� Intraday profiles are more “J” shaped, with only slightly more volume

traded at the open and then decreasing and then increasing significantly

into the close.

� NYSE listed companies trade a little less at the open and a little less

at the close than NASDAQ listed companies.

� Small cap stocks trade more at the open and close than large caps.

There are five likely reasons why intraday trading patterns have shifted

from a U-shaped trading pattern to a J-shaped pattern. First, similar to an

increase in Friday daily volumes, where managers are less inclined to hold

open positions over the weekend, traders are less inclined to hold open

positions overnight and they make a more conscious effort to complete

those positions before the market close. Second, there are currently fewer

active investment strategies in today’s markets than previously. Active

managers typically trade at the open at known and preferred prices, rather

than wait until towards the end of the day when prices are not known.

Third, there are more index funds and closet index funds today than
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previously. These are the managers who more often trade at and into the

close than in the morning hours. This is done in order to transact as close

to the closing price as possible and to minimize tracking error compared to

the closing price, since the fund will be valued based on the day’s closing

price. Fourth, there has been a dramatic increase in exchange traded funds

(ETFs). ETFs are used for many different reasons. For example, ETFs are

used to gain certain market exposures or to hedge very short-term risk.

And very often investors who were hedging short-term market risk net out

those positions at the end of the day, resulting in increased trading volume.

ETF trading has also caused an increase in trading volume towards the end

of the day due to the creation and redemption of these ETFs. While we

have not found evidence suggesting correlation between overall ETF

and stock volumes, we have found a statistically significant relationship

between the shift in intraday volume trading and ETF volume. Thus, ETF

trading has played a part in shifting the stock’s intraday volume profile

towards the close and away from the open. Fifth, the increase in closing

imbalance data and the investor’s ability to offset end of day imbalances

(as well as easy and direct access to this information) has helped improve

the price discovery process. This coupled with less end of day price

volatility allows funds an easier time to achieve market prices at the close

than previously and hence leads to more trading at the close. Finally, over

the last few years there has been a decrease in quantitative investment

strategies. Quant managers have reduced leverage of their portfolios and

the general economic climate has not provided these managers with as

much profiting opportunity as in years past. Since quant managers do not

currently have a strong need to achieve particular market prices they are

able to utilize a more passive execution style such as VWAP rather than

utilizing a front-loading execution style such as IS or arrival price.

To the extent that there is another shift away from Index and ETF trading

back to active management and quantitative styles, we are likely to see a

corresponding shift in intraday volume profiles with more volume trading at

the open and less dramatic spiking towards the close. Portfolio manager

investment styles have a dramatic effect on when volumes occur throughout

the day (Figure 2.5).

Volatility
� Measured as the average high-low percentage price range in each

15 minute trading period.

� Does not currently follow its historical U-shaped profile. Intraday vol-

atility is higher at the open than mid-day and only increases slightly

into the close.
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� Higher at the open due to a more difficult price discovery process and

the higher levels persist for a longer period of time than historically.

� Does not increase into the close to the same extent that it did historically.

� Slightly lower volatility at NYSE listed stocks than NASDAQ listed

stocks.

� Small cap intraday volatility is much higher than large cap volatility as

expected.

As mentioned, the old specialist and market maker system provided

valuable price discovery. Today’s market algorithms, however, are left to

determine the fair value price by trading a couple of hundred shares at a

time. It is not uncommon to look at the tape and see a price change of

$0.50/share at the open with only a few hundred shares trading in the inter-

val. Leaving algorithms to determine fair market prices by trading
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relatively small amounts causes opening period volatility to be higher than it

was previously as well as to persist longer than it did before. It appears that

the NYSE DMM system is providing value in terms of lower opening

spreads and volatility levels. The decrease in end of day volatility is due to

an improved and more transparent closing auction process (Figure 2.6).

Intraday Trading Stability—Coefficient of Variation
� Measured as the average standard deviation of interval volume.

� High variation in volumes at the open. Leveling off mid-day and then

decreasing into the close.

� Small cap volume variation is about 23 large cap variation.

� No difference in volume variation across NYSE and NASDAQ listed

stocks after adjusting for market cap.

Coefficient of variation is a rarely used risk statistic in the industry. As any

trader will confirm, intraday liquidity risk is one of the most important

aspects of trading and will be one of the primary reasons for a trader to
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deviate from a prescribed strategy, change the algorithm, or adjust the algo-

rithmic parameters and settings. The intraday coefficient of variation, when

computed and used properly, will serve as a valuable liquidity risk measure

and provide information that allows traders to improve overall performance.

Additionally, as we show in later chapters, the coefficient of variation is a

large determinant of stock specific trading cost and could be a valuable com-

ponent of any market impact model (Figure 2.7).

Special Event Days
In the paper, “US Exchange Auction Trends: Recent Opening and Closing

Auction Behavior, and the Implications on Order Management Strategies”

(Kissell and Lie, 2011), the authors evaluated intraday trading profiles

across exchanges, indexes, and market cap categories. The analysis found

that trading behavior varied greatly on special event days including: FOMC,

triple witching, company earnings, index changes, month and quarter end,

day before and after holidays, and early closing days (Table 2.10).
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The analysis evaluated trading patterns during four different periods: full

day, intraday, opening auction, and closing auction. These periods are

defined as:

Full Day: the full trading day from 9:30 a.m. to 4:00 p.m. and

includes opening and closing auction volume.

Intraday: the full trading day from 9:30 a.m. to 4:00 p.m. and

excludes opening and closing auction volumes. This consists of the vol-

ume and trading patterns that are actionably by traders and algorithms.

Opening Auction: volume that trades in the opening auction volume

on the day.

Closing Auction: volume that trades in the closing auction volume on

the day.

Table 2.10 Special Event Day Volumes - Percentage of a Normal Day’s Volume

Normal
Day FOMC

Triple
Witching

Company
Earnings

Index
Chg

Month
End

Qtr
End

Before/After
Holidays

Early
Close

Daily Volumes

NYSE 100% 104% 120% 189% 187% 108% 104% 94% 37%

NASDAQ 100% 104% 147% 191% 281% 109% 105% 96% 46%

SP500 100% 104% 119% 184% 124% 107% 105% 92% 33%

R2000 100% 104% 145% 192% 285% 109% 106% 96% 48%

Intraday Volume

NYSE 100% 105% 94% 191% 141% 103% 100% 93% 37%

NASDAQ 100% 105% 115% 193% 186% 103% 102% 95% 45%

SP500 100% 105% 97% 186% 106% 103% 100% 91% 32%

R2000 100% 105% 110% 193% 183% 103% 102% 95% 47%

Market on Close %

NYSE 3.2% 2.7% 11.6% 4.6% 50.9% 8.6% 7.7% 3.6% 1.3%

NASDAQ 3.9% 3.1% 10.5% 6.0% 102.8% 10.0% 8.2% 4.5% 1.7%

SP500 3.3% 2.9% 10.2% 4.4% 20.8% 7.8% 7.8% 3.7% 0.9%
R2000 4.0% 3.1% 11.6% 6.1% 110.7% 10.3% 8.4% 4.5% 2.1%

Market on Open %

NYSE 0.9% 0.8% 18.3% 1.9% 0.9% 0.8% 0.7% 1.0% 0.8%

NASDAQ 1.2% 1.1% 27.5% 2.3% 1.2% 1.0% 0.9% 1.4% 1.3%

SP500 0.7% 0.7% 15.6% 1.3% 0.7% 0.7% 0.6% 0.8% 0.6%

R2000 1.3% 1.1% 29.8% 2.5% 1.3% 1.1% 0.9% 1.4% 1.4%

Source: Kissell & Lie (2011).
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Share volumes in each of these periods were compared to the average

volumes that trade in these periods on normal trading days in order to

gain insight into the changing trading behavior by special event day.

The main findings from the paper are:

� Small cap stocks trade a higher percentage in the opening and closing

auctions than large cap stocks.

� NYSE large cap stocks trade a higher percentage of the day’s volume

in auctions than NASDAQ large cap stocks.

� NASDAQ small cap stocks trade a higher percentage of the day’s

volume in auctions than NYSE small cap stocks.

� FOMC days. There was 4% more trading volume on the day but 5%

more volume during the intraday period. Both opening auction volume

and closing auction volume were lower than on normal trading days.

On FOMC days traders concentrated trading around the time of the

FOMC meeting and new announcement.

� Triple Witching. Large caps stocks traded 20% more volume and small

cap stocks traded 45% more volume than on normal days. However,

the change in intraday volume (total volume not including the opening

and closing auctions) was not nearly as dramatic. Large cap volume

was 3% lower than normal and small cap volume was only 10% more

than normal. The opening auction volume was 15% more for large cap

and 29% more for small cap, and the closing auction volume was 10%

more for large cap and 12% more for small cap stocks.

� Company Earnings. Volumes on company earnings days were on aver-

age almost twice as high as normal days and this was consistent across

all categories of the trading day. For the full day, large cap volume was

84% higher and small cap volume was 92% higher. Intraday volumes

were 86% higher for large caps and 92% for small caps. The auction

volumes were also about twice as high as on normal days. But in times

where the earnings announcement was during the trade day the closing

auction volume was considerably higher. In times where the earnings

announcement was the prior evening or before market hours the open-

ing auction volume was much higher.

� Index Change. A large difference across market cap volumes for large

and small cap stocks on days of index changes. Large cap traded 24%

more volume but small cap volume was 185% more than on normal

day’s. Large caps intraday volume was 6% more than normal and small

cap was 83% more. The large majority of the increase in volume, as

expected, was traded in the closing auction. Large cap stocks traded

20.8% of a normal day’s volume in the closing auction compared to

3.3% on a normal day, and small cap stocks traded 110.7% of a normal

75Empirical Evidence



days volume in the closing auction compared to 4.0% on a normal day.

There was no change in the volumes traded in the opening auction on

index change days.

� Month End. Total volumes were 7% higher for large cap stocks and

9% for small cap stocks. Intraday volumes were only 3% higher for both

large and small caps compared to normal days. Closing auction volumes

were 8.6% of a normal day for large caps and 10.0% of a normal day

for small caps. Opening auction volume was slightly less than what is

normally experienced.

� Quarter End. Surprisingly, closing auction volumes, while higher

than a normal day’s, was actually lower than month end volumes.

Large cap volumes were 5% higher and small cap volumes were 6%

higher than normal days. There were no differences in intraday

volumes compared to normal trading days. The big difference was

similar to month end. Large caps traded 7.8% of a normal day’s vol-

ume and small caps traded 8.4% of a normal day’s volume in the

closing auction.

� Before/After Holidays. Volumes were lower as expected. Large caps

traded 8% lower and small caps traded 4% lower than on normal days.

Intraday volumes changes were pretty similar. Intraday large cap

was 9% and intraday small cap was 5% lower than on normal days.

� Early Close. Large cap volumes were 267% of normal days and small

cap volumes were 252% of normal days. Closing auction volumes

were also much lower, large cap was 0.9% of a normal day and small

cap was 2.1% of a normal day. Opening auction volumes, however,

were consistent with normal days.

Each of these categories has different repercussions for trading, traders,

and algorithms and insight into each can result in dramatically improved

trading performance. Conducting on-going market microstructure

research for these special event days provides analysts and developers

with essential insight into how best to transact stocks on these days. This

could lead to improved trading performance and higher portfolio returns

(Table 2.10).

FLASH CRASH
The flash crash of May 6, 2010 was a very significant financial event for

many reasons. On the morning of May 6, 2010 the market opened slightly

down from the previous close. The financial markets were worried about

the debt crisis in Greece—potential defaults—which was dominating the

news. At about 2:45 p.m. the flash crash hit. The SPX index lost 102 points
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(28.7%), the DJIA lost 1010 points (29.3%), the VIX volatility index

surged 40% from 24 to 41, some stocks and ETFs declined 60%, 70%, 80%

and more—all the way down to pennies. The entire crash lasted about 20

minutes and almost fully rebounded by the end of the day.

At the end of the day the SPX was only down 3.24%, the DJIA was only

down 3.20%, and the VIX dropped to 33. While there is much criticism

about the structure of the US markets and potential for these large drops,

critics have not given nearly enough credit to the overall system and its

ability to self-correct. Consider this: The market dropped almost 10% in

about a 20 minute period, but then was resilient enough to recover before

the end of the day.

I recall the events of May 6 pretty well. I was on a client visit watching

the financial news in a hotel lobby at the time of the crash. The network

was showing the events in Greece and discussing the potential for a

Greece default. Then the crash began, the television showed the declines

in the S&P and Dow Jones, but it was too early for any type of discus-

sion or commentary on the situation.

I called the trading desk within minutes and asked what was going on.

They were also unaware of the crash in progress, but aware of the decline

in prices. I heard people on the trading floor asking if the data was bad,

there must have been some lost data connection. No one knew the reason

or the extent of what was happening—it was so quick. I heard others in

the background stating that Greece was rioting and a default was immi-

nent. When I arrived at the client meeting the financial media showed that

the S&P and Dow Jones were down only slightly, but nothing to signal a

large crash. I started believing my colleagues, and thought that the decline

must have been bad data and not a crash. But then the discussion quickly

turned to what happened. It was a “Flash Crash” although the term wasn’t

coined until afterwards.

The initial theories were that it was a “fat” finger error, where a single trader

entered an order with too many zeros, or a futures trader trading too large a

position in too short of a period of time, or something to do with high fre-

quency traders. Questions were being asked if the high frequency traders

rigged the market for gain, if they did not provide enough liquidity to

the market (when in fact they were not under any obligation to provide liquid-

ity), and whether they have unfair advantage over regular investors because

of faster access to the market and more efficiently written programming code.

Regardless of the true reason, many market participants turned on the

high frequency traders. It was their fault. What I thought was humorous
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at the time was that no one was able to isolate what it was that the high

frequency traders were doing at the time that was not everyday business.

But there was a large market belief that it was the high frequency traders’

fault. They served as a nice scapegoat. Especially since it has been reported

that over the previous few years they all made boat loads of profits; so they

must be bad.

The SEC issued a report in September 2010 discussing the flash crash.

While the report put forth many theories and hypotheses for its cause, it did

not provide ample statistical evidence supporting the theories behind the

cause. Many of these potential reasons stated as potential causes of the crash

also happened in the past and without any issues at all, so there must have

been, as many have stated, a perfect storm. But what really was that perfect

storm?

There was also a lot of discussion surrounding the events and people

stating that the markets are fragile and the current structure is flawed.

Many have stated that regulators need to make some significant and

drastic changes to the structure. Some have stated that spreads need to

increase to nickels while others stated that spreads need to decrease

to sub-penny.

The important take-away points from the flash crash for algorithmic

trading:

� Algorithmic and electronic trading is exponentially quicker than

humans transacting orders manually. The nice thing about algorithms

is that they will do exactly what you program them to do, and the

not-so-nice thing about algorithms is that they will do exactly what

you program them to do. So if you do not program every potential

event into its logic there will be times when there are unforeseen mar-

ket events and this could lead to dire results.

� Specialists and market makers always played a very important role in

financial markets regarding price discovery. While this process failed

during the program crash of 1987, I do not recall any other event since

then leading up to the flash crash where there was such a large market

decline. Specialists and market makers have been halting orders when

appropriate and spending time to understand what is going on. We are

now in a system where there is no single specialist and/or market

maker controlling stocks and halting trading when necessary.

� Developers need to incorporate safeguards into algorithms to protect

investors from the ominous days. However, these safeguards cannot be

too strict because they may exclude investors from transacting in a rap-

idly moving market where there are no issues.
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� Market crashes happen. There has been a long history of crashes and

bubbles from tulip bulbs, the crash of 1929, the program crash, technol-

ogy bubble, housing, flash crash, to name just a few. These events have

happened in the past and will happen again. As financial professionals,

we need not only to be prepared when they happen, but knowledgeable

enough to be able to react in the proper way when surprise events occur.

Empirical Evidence from the Flash Crash
Investigation into actual trading data on flash crash day confirmed atypical

trading behavior in most stocks. However, what struck as much different

from other crashes was the market’s ability to rebound and self-correct. Our

investigation focused on traded volume and price movement over the full

day, as well as a review of the intraday trading patterns.

Our main findings are (Table 2.11):

� Volumes were about twice as high as normal. Large cap stocks traded

200% of average, small cap stocks traded 183% of average. These

volumes were significantly higher than normal, especially for a non-

special event day.

Table 2.11 May 6, 2010—Flash Crash

Percentage Change Z-Score

Category 30ADV
06/05/2010
Volume

Avg
Ratio

Close-
Close

Open-
Close

High-
Low

Close-
Close

Open-
Close

High-
Low

Market Cap

LC 7,088,778 13,551,862 2.00 23.2% 22.7% 210.7% 21.8 21.5 26.1

SC 502,188 950,161 1.83 23.8% 23.4% 211.8% 21.4 21.2 24.4

Exchange

Listed 2,875,366 5,515,632 1.95 23.7% 23.2% 211.7% 21.6 21.3 25.2

NASDAQ 1,089,932 2,051,336 1.79 23.7% 23.3% 211.5% 21.4 21.2 24.4

Listed

LC 6,773,377 12,869,070 1.99 23.1% 22.7% 210.5% 21.8 21.5 26.1

SC 666,493 1,348,684 1.92 24.1% 23.5% 212.4% 21.5 21.2 24.6

NASDAQ

LC 8,297,812 16,169,230 2.02 23.6% 23.0% 211.4% 21.9 21.6 26.1

SC 395,032 690,254 1.77 23.7% 23.3% 211.5% 21.3 21.2 24.3
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� Large cap stocks finished the day down 3.2% from the prior night’s

close and down 2.7% from the opening. This is equivalent to a 1.8

(close-to-close) and 1.5 (open-to-close) sigma event and is not some-

thing considered out of the norm in itself. The sigma-event measure

is a standard z-score measurement and is computed by dividing the

price movement by the daily volatility as a means to normalize across

stocks. Z-scores or sigma events between 1/21 are considered

normal movement. Z-scores between 1/22, while high, are still con-

sidered relatively normal since 95% of the observations should be

between a z-score of 1/22. Theoretically, z-Scores should only

be .3 or ,23 0.27% of the time.

� Small cap stocks finished the day down 3.8% from the prior night’s close

and down 3.4% from the opening. This is equivalent to a 1.4 (close-to-

close) and 1.2 (open-to-close) sigma event. Again, this is not something

unexpected or something that should be considered out of the ordinary.

� Analysis of the high-low range, however, showed that the day was much

out of the ordinary. The high-low percentage range measured as the

change from the high of the day to the low of the day was 210.7% for

large cap stocks and 211.8% for small cap stocks. This is equivalent to

a z-score of 6.1 for large caps and 4.4 for small caps. To put this into

perspective, we should only see price movement of this magnitude 1 in

7.5 million years for large cap and 1 in 738 years for small cap.

� Even though prices returns have much fatter tails than the normal dis-

tribution, this analysis shows that the intraday price movement was

much different than ordinary. And then couple this price movement

with an almost equal and opposite reversal and we can start to see the

significance of this flash crash event.

The next phase of the flash crash analysis focused on evaluating the

intraday behavior for the SPY exchange traded fund (ETF), as a proxy

for the SP500 index and a sample of ten stocks. The analysis really shed

light onto what happened on flash crash day.

The SPY volume on flash crash day was 3.3 times its 30 day average.

This was much higher than the average for all stocks which was about

2 times its average. The close-to-close price change was 23.4% which

was consistent with other stocks, but due to much lower volatility this

movement was equivalent to a 3.5 sigma event (Z523.5). The high-low

price change for SPY was 210.8% which was also consistent with the

average stock high-low range (210.7% for large cap stocks).

Figure 2.8 illustrates the intraday prices and volumes for SPY. Price

remained relatively flat throughout the day. Then beginning at

80 CHAPTER 2 Market Microstructure



approximately 1 p.m. prices started to decline slowly. Around 2:40 p.m.

there was a very sharp decline in prices that lasted for about 20 minutes,

followed by a price reversal. SPY did experience another slight decrease

towards the close but this was due to offsetting positions that were

acquired during the day. Volume in SPY followed almost an identical pat-

tern. Volumes were pretty constant until about 2:00 p.m. when they started

to increase. Then there was the sharp increase in volume traded at the time

of the flash crash right around 2:40 p.m. Volumes leveled off slightly after

the reversal but still remained much higher than normal into the close.

Our sample of ten stocks has some similar patterns to SPY (Table 2.12).

The average volume ratio was 3.6 compared to 3.3 (SPY). The close-to-

close price change was 23.4% (same as SPY) and the open-close change

was 24.3% compared to 22.9% for SPY. The most dramatic difference,

however, was the magnitude of the high-low price change for these stocks.

The average percentage high-low price change was 235.3% which was 3.3

times higher than the high-low percentage range for SPY.

The intraday price movement (normalized starting at 100) for these names is

shown in Figure 2.9. Notice that most of the stocks had price movement that

was relatively constant up until about 2:40 p.m. Some stocks opened much

lower or declined over the first half-hour but these also remained pretty con-

stant through the flash crash. Each experienced a very sudden and sharp

decline which was quickly followed by a reversal. Note how quickly prices

declined for all of these stocks only to be followed by another quick and

sharp reversal. The close-to-close price change of 23.4% was equivalent to

a 22.1 sigma event. On a 250 day trading year we should expect declines of
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this magnitude to occur about 5 times a year. So this type of movement is

not that out of the ordinary or unexpected. However, the average high-low

price range was 235.3% and is equivalent to a 222.6 sigma event! We

have heard of 6 sigma before, well this is almost 4 times higher than a 6

sigma event! This magnitude decline in prices followed by a price reversal

of almost the same magnitude is highly unlikely and unexpected. Volumes
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■ Figure 2.9 Intraday Price Movement (Sample of Stock).

Table 2.12 Sample of Actual Volumes and Price Movement (Flash Crash)

Percentage Change Z-Score

Symbol Volume
Ratio

Close-Close Open-Close High-Low Close-Close Open-Close High-Low

IPXL 2.6 24.4% 24.4% 262.1% 22.2 22.2 230.8
SAM 5.6 20.7% 26.1% 252.5% 20.4 23.6 231.0

PG 2.6 22.3% 21.9% 237.2% 22.9 22.4 246.9

GTY 2.9 23.9% 23.5% 235.9% 22.5 22.2 222.6

MAIN 6.2 24.7% 24.3% 233.0% 22.8 22.5 219.7

CNP 3.1 23.5% 23.5% 231.4% 22.7 22.8 224.4

ESRX 2.7 22.8% 22.9% 227.6% 22.0 22.0 219.2

GGC 3.1 22.4% 25.7% 227.5% 20.8 21.9 29.4

CMO 2.7 24.9% 24.6% 225.3% 22.7 22.6 214.0
FSYS 4.3 24.3% 25.8% 220.4% 21.6 22.2 27.6

Avg 3.6 23.4% 24.3% 235.3% 22.1 22.4 222.6
SPY 3.3 23.4% 22.9% 210.8% 23.5 23.0 211.3
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were slightly higher at the open for some stocks—these were the stocks that

experienced the price declines early in the trading day. The stocks experi-

enced some slight spikes in volumes during the day leading up to the flash

crash but then all stocks experienced dramatic increases that far exceeded

historical trading patterns. Furthermore, the reduction in trading volume

tapered off slightly after the rebound but was still dramatically higher than

normal days and there were further spikes at the close (Figure 2.10).

What Should Regulators do to SafeGuard Investors
from Potential Future Flash Crashes?
In order to safeguard investors (both retail and professional) from potential

future crashes and other types of avoidable market disruptions, there are sev-

eral steps regulators could take to improve market quality. These steps are:

� Regulations are needed to safeguard investors from any type of market

disruptions: price movement, volume spikes, volatility measures, and

information content.

� Market-wide trading halts are needed in order to allow all market

participants to catch their breath and process information and ensure a

level playing field.

� Circuit breakers based on price movement. This is needed at the index

and stock level.

� Circuit breakers based on volume deviation from the norm. This is

needed at the stock level.

� Accommodations can be made to these triggers and circuit breakers

based on special event days (as described above).

Intraday Volume Patterns
May 6, 2010
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Comparison with Previous Crashes
Investors and regulators need to keep in mind that our financial markets

are very resilient. On the day of the flash crash markets recovered within

a 20�30 minute time period. The mispricing of securities self-corrected

itself much quicker than in previous crashes which took several years for

full recovery.

To show this, we compared the Dow Jones Industrial Average (DJIA) for

the May 6, 2010 flash crash to the crash of October 1929 and the 1987 pro-

gram trading crash. First, in October 1929 the DJIA declined 13.7% on

October 28, 1929 and declined another 12.5% on the 29th. Over this two

day period the index was down 32.9% from its high to its low. This decline

was further followed by an economic depression. The program trading crash

took place on Monday October 19, 1987, and the DJIA declined 25.6% that

day. The index was also down 4.7% the previous Friday. The recovery

period following the 1987 program crash was several years but was not

nearly as long as the 1929 crash.

Now compare these crashes to the May 6, 2010 flash crash. On the day,

the DJIA declined 9.7% from its high to its low. This decline was quite

rapid and took place almost entirely over a 30 minute period. On the day,

the DJIA was down 3.2%, not nearly the same magnitude as the previous

crashes. Furthermore, the DJIA recovered immediately following the flash

crash. Figure 2.11 shows the movement of the DJIA for each of these

crashes starting from thirty days before the crash to one year after the

crash (250 days). The index values were normalized to a value of 100 at

1929 1987-Program 2010 Flash Crash
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time t2 30. One year following the 1929 crash the DJIA was still down

30%. One year after the 1987 program trading crash markets were still

down 20%. But one year following the flash crash markets were actually

up 15%.

CONCLUSION
In this chapter we have provided an overview of market microstructure

research. We have provided some of the more important industry findings

and leading edge papers that provided the basis for many of today’s exe-

cution and black box trading algorithms. Today’s investors find them-

selves in a much different environment than the two exchange structure

that was mutually exclusive for NYSE and OTC stocks. Traders today

are faced with thirteen different displayed venues and from thirty to forty

different dark pools and crossing networks, and different pricing models

for each such as the maker-taker model, the inverse taker-maker model,

as well as traditional straight commission. The chapter concluded with an

overview of the current state of market microstructure and trading

research that is being performed on a daily basis. These findings are

being used by developers to improve and better calibrate trading algo-

rithms, by traders to make improved trading decisions, and by portfolio

managers to improve stock selection and portfolio construction. A thor-

ough understanding of current market microstructure topics, market

dynamics, and the current state of research models is essential for any

investor seeking to achieve best execution.
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Chapter3
Algorithmic Transaction Cost Analysis

INTRODUCTION
Transaction cost analysis (TCA) has regained a new found interest in the

financial community as a result of the proliferation of algorithmic trading.

Portfolio managers and traders are using TCA to evaluate performance of

brokers and their algorithms. Furthermore, TCA is used by portfolio man-

agers to improve performance as part of their stock selection and portfolio

construction process.

Currently, there are many investors who utilize TCA to select their trading

algorithms and make informed trading decisions. Those investors who are

not yet utilizing TCA as a decision-making tool are missing valuable

opportunities to improve portfolio performance and increase returns.

TCA has evolved significantly over the last several years, though it is still

commonly conceptualized as a vague and unstructured concept. The

accompanying literature and research still remains muddled due to misrep-

resentation by many brokers, vendors, and industry participants. We set

out to shed new light below.

In order to fully assist investors’ algorithmic transaction cost performance,

we have developed a framework that consists of pre-, intra-, and post-trade

analysis. Our framework is based on an unbundling scheme where costs are

classified by ten components and categorized by where they occur during

implementation. This scheme is based on the work of Perold (1988) and

Wagner and Edwards (1993), and has been described in Journal of Trading,

“The Expanded Implementation Shortfall: Understanding Transaction Cost

Components,” Kissell (2006), and in Optimal Trading Strategies (2003).

Madhavan (2000, 2002) provides a detailed investigation of financial litera-

ture discussing transaction cost components and is considered by many as

the gold standard of TCA literature review.
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What Are Transaction Costs?
In economics, transaction costs are the fees paid by buyers, but not received

by sellers, and/or the fees paid by sellers, but not received by buyers.

In finance, transaction costs refers to the premium above the current market

price required to attract additional sellers into the market, and the discount

below the current market price required to attract additional buyers into

the market. Transaction costs are described by Ronald Coarse (1937) in

“The Nature of the Firm” as an unavoidable cost of doing business. He was

subsequently awarded the Economics Nobel Prize in 1991 for his leading

edge work.

What Is Best Execution?
The perception that best execution is an elusive concept has become

severely overplayed in the industry. In reality, “best execution” is a very

simple and direct concept:

Best execution (as stated in Optimal Trading Strategies) is the process of

determining the strategy that provides the highest likelihood of achieving

the investment objective of the fund. The strategy consists of managing

transaction costs during all phases of the investment cycle, and deter-

mining when it is appropriate to take advantage of ever-changing market

conditions.

Wayne Wagner described best execution in even simpler terms:

It is the process of maximizing the investment idea.

Best execution does not depend on how close the execution price occurs to

an arbitrary benchmark price (such as the open, close, high, low, VWAP,

etc.). Rather, it does depend on the investor’s ability to make proper trading

decisions by incorporating all market uncertainties and the current market

conditions. The ultimate goal of best execution is to ensure that the trading

decisions are consistent with the overall investment objectives of the fund.

(See Kissell and Malamut (2007) for a discussion on ensuring consistency

between investing and trading consistency.)

To determine whether or not best execution has been met requires the

performance evaluation to be made based on the “information set” that was

available at the beginning of trading combined with the investment objec-

tive of the fund. If either the information set or the underlying investment

objective is not known or is not available it is simply not possible to deter-

mine if best execution was achieved—regardless of how close the transac-

tion prices were to any benchmark price.
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What Is the Goal of Implementation?
Implementation is the process of determining suitable appropriate trad-

ing strategies and adaptation tactics that will result in best execution.

Unfortunately, it is not possible for investors to pre-evaluate and deter-

mine the best way to execute a position under all possible scenarios, but

investors can develop rules and guidelines to make these tasks quicker,

easier, and more efficient during trading.

In Wayne Wagner’s terminology,

Implementation is the Journey to Best Execution.

UNBUNDLED TRANSACTION COST COMPONENTS
We have identified ten distinct transaction cost components: commissions,

taxes, fees, rebates, spreads, delay cost, price appreciation, market impact,

timing risk, and opportunity cost. These are described below following the

definitions in Kissell (2003, 2006).

1. Commission
Commission is payment made to broker-dealers for executing trades and

corresponding services such as order routing and risk management.

Commissions are commonly expressed on a per share basis (e.g., cents per

share) or based on total transaction value (e.g., some basis point of transac-

tion value). Commission charges may vary by:

i. Broker, fund (based on trading volume), or by trading type (cash,

program, algorithms, or DMA).

ii. Trading difficulty, where easier trades receive a lower rate and the

more difficult trades a higher rate. In the current trading arena commis-

sions are highest for cash trading followed by programs, algorithms,

and DMA.

2. Fees
Fees charged during execution of the order include ticket charges assessed

by floor brokers, exchange fees, clearing and settlement costs, and SEC

transaction fees. Very often brokers bundle these fees into the total commis-

sions charge.

3. Taxes
Taxes are a levy assessed based on realized earnings. Tax rates will vary

by investment and type of earning. For example, capital gains, long-term
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earnings, dividends, and short-term profits can all be taxed at different

percentages.

4. Rebates
The rebate component is a new transaction cost component that is the

byproduct of the new market environment (see Chapter 2). Trading venues

charge a usage fee using a straight commission fee structure, a maker-

taker model, or a taker-maker (inverted) model. In a straight commission

model, both parties are charged a fee for usage of the system. In the

maker-taker model, the investor who posts liquidity is provided with a

rebate and the investor who takes liquidity is charged a fee. In an inverted

or taker-maker model, the investor posting liquidity is charged a fee and

the investor who takes liquidity is provided with a rebate. In both cases the

fee charged will be higher than the rebate provided to ensure that the trad-

ing venue will earn a profit. Brokers may or may not pass this component

onto their clients. In the cases when it does not pass through the compo-

nent the broker will pay the fee or collect the rebate for their own profit

pool. The commission rate charged to investors in these cases is likely to

already have this fee and/or rebate embedded in its amount.

Since the fee amount or rebate collected is based on the trading venue and

whether the algorithm posts or takes liquidity, the selection of trading

venue and smart router order logic could be influenced based on the net

incremental cost or rebate for the broker rather than the investor. Many

questions arise (and rightly so) as to whether or not the broker is really

placing orders correctly based on the needs of their investor or are looking

to capture and profit from the rebates themselves. Analysts are highly

encouraged to inquire about and challenge the logic of rebate-fee payment

streams generated by various types of trading algorithms and smart routers

in order to confirm the logic is in their best interest.

5. Spreads
The spread is the difference between best offer (ask) and best bid price.

It is intended to compensate market makers for the risks associated with

acquiring and holding an inventory while waiting to offset the position

in the market. This cost component is also intended to compensate for

the risk potential of adverse selection or transactions with an informed

investor (i.e., acquirement of toxic order flow). Spreads represent the

round-trip cost of transacting for small orders (e.g., 100 share lots) but

do not accurately represent the round-trip cost of transacting blocks

(e.g., 10,0001 shares).
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6. Delay Cost
Delay cost represents the loss in investment value between the time the

manager makes the investment decision and the time the order is released

to the market. Managers who buy rising stocks and sell falling stocks will

incur a delay cost. Delay cost could occur for many reasons.

First, delay cost may arise because traders hesitate in releasing the orders

to the market. Second, cost may occur due to uncertainty surrounding who

are the most “capable” brokers for the particular order or trade list. Some

brokers are more capable at transacting certain names or more capable in

certain market conditions. Third, traders may decide to hold off the trans-

action because they believe better prices may occur. However, if the mar-

ket moves away, e.g., an adverse momentum, then the delay cost can be

quite large. Fourth, traders may unintentionally convey information to the

market about their trading intentions and order size (information leakage).

Fifth, overnight price change movement may occur. For example, stock

price often changes from the close to the open. Investors cannot participate

in this price change, so the difference results in a sunk cost or savings

depending on whether the change is favorable. Investors who are properly

managing all phases of the investment cycle can minimize (if not avoid

completely) all delay cost components except for the overnight price

movement.

7. Price Appreciation
Price appreciation represents how the stock price would evolve in a market

without any uncertainty (natural price movement). Price appreciation is

also referred to as price trend, drift, momentum, or alpha. It represents the

cost (savings) associated with buying stock in a rising (falling) market or

selling (buying) stock in a falling (rising) market. Many bond pricing

models assume that the value of the bond will appreciate based on the

bond’s interest rate and time to maturity.

8. Market Impact
Market impact represents the movement in the price of the stock caused

by a particular trade or order. It is one of the more costly transaction cost

components and always results in adverse price movement and a drag on

performance. Market impact will occur due to the liquidity demand

(temporary) of the investor and the information content (permanent) of the

trade. The liquidity demand cost component refers to the situation where

the investors wishing to buy or sell stock in the market have insufficient

counterparties to complete the order. In these situations, investors will
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have to provide premiums above the current price for buy orders or discount

their price for sell orders to attract additional counterparties to complete

the transaction. The information content of the trade consists of inadver-

tently providing the market with signals to indicate the investor’s buy/sell

intentions, which in turn the market often interprets the stock as under-or

overvalued, respectively.

Mathematically, market impact is the difference between the price trajectory

of the stock with the order and what the price trajectory would have been

had the order not been released to the market. Unfortunately, we are not

able to simultaneously observe both price trajectories and measure market

impact with any exactness. As a result, market impact has been described as

the “Heisenberg uncertainty principle of trading.” This concept is further

described and illustrated in Chapter 4, Market Impact Models.

9. Timing Risk
Timing risk refers to the uncertainty surrounding the estimated transaction

cost. It consists of three components: price volatility, liquidity risk, and

parameter estimation error. Price volatility causes the underlying stock

price to be either higher or lower than estimated due to market movement

and noise. Liquidity risk drives market impact cost due to fluctuations in

the number of counterparties in the market. Liquidity risk is dependent

upon volumes, intraday trading patterns, as well as the aggregate buying

and selling pressure of all market participants. Estimation error is the stan-

dard error (uncertainty) surrounding the market impact parameters.

10. Opportunity Cost
Opportunity cost is a measure of the forgone profit or avoided loss of not

being able to transact the entire order (e.g., having unexecuted shares at

the end of the trading period). The main reasons that opportunity cost may

occur are adverse price movement and insufficient liquidity. First, if man-

agers buy stocks that are rising, they may cancel the unexecuted shares of

the order as the price becomes too expensive, resulting in a missed profit.

Second, if managers cannot complete the order due to insufficient market

liquidity (e.g., lack of counterparty participation) the manager would again

miss out on a profit opportunity for those unexecuted shares due to favor-

able price movement.

TRANSACTION COST CLASSIFICATION
Transaction costs can be classified into investment related, trading related,

and opportunity cost components shown above.
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Investment-Related Costs are the costs that arise during the investment

decision phase of the investment cycle. They occur from the time of the

investment decision to the time the order is released to the market.

These costs often arise due to lack of communication between the

portfolio manager and trader in deciding the proper implementation

objective (strategy), or due to a delay in selecting the appropriate broker

or algorithm. The longer it takes for the manager and trader to resolve

these issues, the higher potential for adverse price movement and higher

investment cost. Traders often spend valuable time investigating how

trade lists should be implemented and what broker or trading venue to

use. The easiest way to reduce investment-related transaction cost is the

use of proper pre-trade analysis, alternative strategy evaluations, and

algorithm selections in order for the manager and traders to work closely

together to determine the strategy most consistent with the investment

objective of the fund.

Trading-Related Costs. Trading-related transaction costs comprise the

largest subset of transaction costs. They consist of all costs that occur

during actual implementation of the order. While these costs cannot be

eliminated, they can be properly managed based on the needs of the fund.

The largest trading-related transaction costs are market impact and timing

risk. However, these two components are conflicting terms and often

referred to as the “trader’s dilemma,” as traders need to balance this trade-

off based on the risk appetite of the firm. Market impact is highest utilizing

an aggressive trading strategy and lowest utilizing a passive strategy.

Timing risk, on the other hand, is highest with a passive strategy and

lowest with an aggressive strategy. Market impact and timing risk are two

conflicting terms.

Opportunity Cost. Opportunity cost, as stated above, represents the fore-

gone profit or loss resulting from not being able to fully execute the order

within the allotted period of time. It is measured as the number of unexe-

cuted shares multiplied by the price change during which the order was in

the market. Opportunity cost will arise either because the trader was unwill-

ing to transact shares at the existing market prices (e.g., prices were too

high) or because there was insufficient market liquidity (e.g., not enough

sellers for a buy order or buyers for a sell order) or both. The best way to

reduce opportunity cost is for managers and traders to work together to

determine the number of shares that can be absorbed by the market within

the manager’s specified price range. If it is predetermined that the market

is not able to absorb all shares of the order within the specified prices, the

manager can modify the order to a size that can be easily transacted at their

price points.
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TRANSACTION COST CATEGORIZATION
Financial transaction costs are comprised of fixed and variable components

and are either visible or hidden (non-transparent).

Fixed cost components are those costs that are not dependent upon the

implementation strategy and cannot be managed or reduced during

implementation. Variable cost components, on the other hand, vary dur-

ing implementation of the investment decision and are a function of the

underlying implementation strategy. Variable cost components make up

the majority of total transaction costs. Money managers, traders, and

brokers can add considerable value to the implementation process simply

by controlling these variable components in a manner consistent with the

overall investment objective of the fund.

Visible or transparent costs are those costs whose fee structure is known

in advance. For example, visible costs may be stated as a percentage of

traded value, as a $/share cost applied to total volume traded, or even as

some percentage of realized trading profit. Visible cost components are

primarily attributable to commissions, fees, spreads, and taxes. Hidden or

non-transparent transaction costs are those costs whose fee structure is

unknown. For example, the exact cost for a large block order will not be

known until after the transaction has been completed (if executed via

agency) or until after the bid has been requested (if principal bid). The

cost structures for these hidden components are typically estimated using

statistical models. For example, market impact costs are often estimated

via non-linear regression estimation.

Non-transparent transaction costs comprise the greatest portion of total

transaction cost and provide the greatest potential for performance

enhancement. Traders and/or algorithms need to be especially conscious

of these components in order to add value to the implementation process.

If they are not properly controlled they can cause superior investment

opportunities to become only marginally profitable and/or profitable

opportunities to turn bad. Table 3.1 illustrates our Unbundled Transaction

Costs categories. Table 3.2 illustrates our Transaction Cost classification.

TRANSACTION COST ANALYSIS
Transaction cost analysis (TCA) is the investor’s tool to achieve best

execution. It consists of pre-trade, intraday, and post-trade analysis.

Pre-trade analysis occurs prior to the commencement of trading. It consists

of forecasting price appreciation, market impact and timing risk for the
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specified strategy, evaluating alternative strategies and algorithms, and

selecting the strategy or algorithm that is most consistent with the overall

investment objective of the fund.

Intraday analysis is intended to ensure that the revised execution strategies

will continuously be aligned with the high level trading decisions. It con-

sists of specifying how these strategies are to adapt to the endlessly chang-

ing market conditions (e.g., price movement and liquidity conditions). The

only certainty in trading is that actual conditions will differ from expected.

Participants need to understand when it is appropriate to change their

strategy and take advantage of these changing market conditions.

Both pre-trade and intraday analysis consist of making and revising

execution strategies (in real-time) to ensure trading goals are consistent

Table 3.1 Unbundled Transaction Costs

Fixed Variable

Visible: Commission Spreads

Fees Taxes

Rebates
Delay Cost

Hidden: n/a Price Appreciation

Market Impact

Timing Risk

Opportunity

Table 3.2 Transaction Cost Classification

Transaction Costs

Investment Costs Trading Costs Opportunity Cost

- Taxes - Commission - Opportunity Cost
- Delay Cost - Fees

- Rebates
- Spreads
- Price Appreciation
- Market Impact
- Timing Risk
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with overall investment objectives. Best execution is determined more on

decisions made pre-trade than post-trade. Most analysts are very good

Monday morning quarterbacks. However, investors need a quality coach

who can make and execute decisions under pressure with unknown

conditions.

Post-trade analysis, on the other hand, does not consist of making any

type of trading decision (either pre-trade or intraday). Post-trade analysis

is used to determine whether the pre-trade models give accurate and

reasonable expectations, and whether pre-trade and intraday decisions are

consistent with the overall investment objectives of the fund. In other

words, it is the report card of execution performance.

Post-trade analysis consists of two parts: measuring costs and evaluating

performance. All too often, however, there is confusion regarding the

meaning of these parts. For example, comparison of the execution price

to the VWAP price over the day is not a trading cost—it is a proxy for

performance. Comparison to the day’s closing price is not a cost—it is

a proxy for tracking error. And, comparison of execution price to the

opening price on the day or the market price at time of order entry is

a cost to the fund and does not give insight into the performance of the

trade.

Post-trade analysis needs to provide a measurement of cost, and evalua-

tion of performance at the broker, trader, and algorithm level. When

appropriate, the post-trade report should provide universe comparisons,

categorization breakdowns (large/small orders, adverse/favorable price

movement, high/low volatility, market up/down, etc.) and trend analysis.

Measuring/Forecasting
A cost measure is an “ex-post” or “after the fact” measure, and is deter-

mined via a statistical model. It is always a single value and can be either

positive (less favorable) or negative (savings). It is computed directly

from price data. A cost forecast, on the other hand, occurs “ex-ante” or

“prior to trading.” It is an estimated value comprised of a distribution

with an expected mean (cost) and standard deviation (timing risk).

The average or mean trading cost component is comprised of market

impact and price appreciation. The forecasted market impact estimate will

always be positive and indicate less favorable transaction prices. The price

appreciation component, on the other hand, could be zero (e.g., no expecta-

tion of price movement), positive, indicating adverse price movement and

less favorable expected transaction prices, or negative, indicating favorable
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price momentum and better transaction prices. The trading cost standard

error term is comprised of price volatility, liquidity risk, and parameter

estimation error from the market impact model.

Cost versus Profit and Loss
There is not much consistency in the industry regarding the terminology

or sign to use when measuring and forecasting costs. Many participants

state cost as a positive value while others state cost as a negative value.

For example, some participants refer to a positive cost of 130 bp as

underperformance and a negative cost of 230 bp as outperformance

(savings). Others treat this metric in the opposite way with the 130 bp

indicating better transaction prices and 230 bp indicating worse trans-

action prices.

To avoid potential confusion, our “Cost” and “Profit and Loss”

terminology throughout the text will be as follows:

A “Cost” metric will always use a positive value to indicate under-

performance and a negative value to indicate better performance. For

example, a cost of 30 bp indicates less favorable execution than the

benchmark and 230 bp cost indicates better performance than the

benchmark.

A “Profit and Loss” or “PnL” metric will always use a negative value

to indicate underperformance and a positive value to indicate better

performance. For example, a PnL of 25 bp indicates less favorable

execution than the benchmark and a PnL of 15 bp indicates better

performance compared to the benchmark.

IMPLEMENTATION SHORTFALL
Implementation shortfall (IS) is a measure that represents the total cost

of executing the investment idea. It was introduced by Perold (1988)

and is calculated as the difference between the paper return of a port-

folio where all shares are assumed to have transacted at the manager’s

decision price and the actual return of the portfolio using actual transac-

tion prices and shares executed. It is often described as the missed

profiting opportunity as well as the friction associated with executing

the trade. Many industry participants refer to implementation shortfall

as slippage or simply portfolio cost.

Mathematically, implementation shortfall is written as:

IS5Paper Return2Actual Return ð3:1Þ
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Paper return is the difference between the ending portfolio value and its

starting value evaluated at the manager’s decision price. This is:

Paper Return5 S � Pn 2 S � Pd ð3:2Þ

Here S represents the total number of shares to trade, Pd is the man-

ager’s decision price, and Pn is the price at the end of period n. S � Pd
represents the starting portfolio value and S � Pn represents the ending

portfolio value. Notice that the formulation of the paper return does

not include any transaction costs such as commissions, ticket charges,

etc. The paper return is meant to capture the full potential of the man-

ager’s stock picking ability. For example, suppose a manager decides

to purchase 5000 shares of a stock trading at $10 and by the end of the

day the stock is trading at $11. The value of the portfolio at the time

of the investment decision was $50,000 and the value of the portfolio

at the end of the day was $55,000. Therefore, the paper return of this

investment idea is $5000.

Actual portfolio return is the difference between the actual ending port-

folio value and the value that was required to acquire the portfolio minus

all fees corresponding to the transaction. Mathematically, this is:

Actual Portfolio Return5
�X

sj
�
� Pn 2

X
sjpj 2 fees ð3:3Þ

where,

ðP sjÞ represents the total number of shares in the portfolio

ðP sjÞ � Pn is the ending portfolio valueP
sjpj is the price paid to acquire the portfolio

and fees represent the fixed fees required to facilitate the trade such as

commission, taxes, clearing and settlement charges, ticket charges,

rebates, etc. sj and pj represent the shares and price corresponding to the

jth transaction.

For example, suppose a manager decides to purchase 5000 shares of

stock trading at $10. However, due to market impact, price apprecia-

tion, etc., the average transaction price of the order was $10.50 indi-

cating that the manager invested $52,500 into the portfolio. If the stock

price at the end of the day is $11 the portfolio value is then worth

$55,000. If the total fees were $100, then the actual portfolio return is

$55,0002 $52,5002 $1005 $2400.
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Implementation shortfall is then computed as the difference between paper

return and portfolio return as follows:

IS5 S � Pn 2 S � Pd|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Paper Return

2
�X

sj
�
� Pn 2

X
sjpj 2 fees|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Actual Portfolio Return

ð3:4Þ

In our example above, the implementation shortfall for the order is:

IS5 $50002 $24005 $2600

The implementation shortfall metric is a very important portfolio man-

ager and trader decision making metric. It is used to select stock picking

ability, measure trading costs, and as we show below, measure broker

and algorithmic performance.

Implementation shortfall can be described in terms of the following three

examples:

1. Complete Execution

2. Opportunity Cost (Andre Perold)

3. Expanded Implementation Shortfall (Wayne Wagner)

Complete Execution
Complete execution refers to the situation where the entire order is transacted

in the market. That is
P

sj 5 S. Suppose a manager decides to purchase S
shares of stock that is currently trading at Pd and at the end of the trading

horizon the price is Pn. Then implementation shortfall is computed following

the above calculation as follows:

IS5 ðS � Pn 2 S � PdÞ2
��X

sj
�
� Pn 2

X
sjpj 2 fees

�

Since
P

sj 5 S this equation reduces to:

IS5
X

sjpj 2 S � Pd 1 fees

This could also be written in terms of the average execution price Pavg
for all shares as follows:

IS5 S � Pavg 2 S � Pd 1 fees5 S � ðPavg 2 PdÞ1 fees

since
P

sjpj 5 S � Pavg . Notice that when all shares are executed the imple-

mentation shortfall measure does not depend on the future stock price Pn
at all.
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Example: A manager decided to purchase 5000 shares when the stock was

at $10. All 5000 shares were transacted in the market, but at an average

transaction price of $10.50. If the commission fee was $100 then imple-

mentation shortfall of the order is:

IS55000 � ð$10:502 $10:00Þ1 $1005 $2600

Opportunity Cost (Andre Perold)
The opportunity cost example refers to a situation where the manager does

not transact the entire order. This could be due to prices becoming too

expensive or simply a lack of market liquidity. Either way, it is essential

that we account for all unexecuted shares in the implementation shortfall

calculation. This process is a follows:

First, compute the paper portfolio return:

Paper Return5 S � Pn 2 S � Pd
Next, compute the actual portfolio return for those shares that were executed:

Actual Return5
�X

sj
�
Pn 2

X
sjpj 1 fees

Then, the implementation shortfall is written as:

IS5 ðS � Pn 2 S � PdÞ2
��X

sj
�
Pn 2

X
sjpj 1 fees

�

Let us now expand on this formulation. Share quantity S can be rewritten in

terms of executed shares
P

sj and unexecuted shares ðS2
P

sjÞ as follows:

S5
X

sj|ffl{zffl}
Executed

1
�
S2

X
sj
�

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Unexecuted

If we substitute the share quantity expression above into the previous IS

formulation we have:

IS5
X

sj 1 S2
X

sj
� �

� Pn 2
X

sj 1 S2
X

sj
� �

� Pd
� �
2

X
sj

� �
Pn 2

X
sjpj 1 fees

� �

This equation can be written as:

IS5
X

sjpj 2
X

sjPd|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Execution Cost

1 S2
X

sj
� �

� Pn 2 Pdð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Opportunity Cost

1 fees
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This is the implementation shortfall formulation of Perold (1988) and

differentiates between execution cost and opportunity cost. The execution

cost component represents the cost that is incurred in the market during

trading. Opportunity cost represents the missed profiting opportunity by

not being able to transact all shares at the decision price.

Example: A manager decides to purchase 5000 shares of a stock at $10

but the manager is only able to execute 4000 shares at an average price

of $10.50. The stock price at the end of trading is $11.00. And the com-

mission cost is $80, which is reasonable since only 4000 shares traded in

this example compared to 5000 shares in the above example. Then imple-

mentation shortfall including opportunity cost is:

IS5
X

sjpj 2
X

sjPd
� �

1 S2
X

sj
� �

� Pn 2 Pdð Þ1 fees

It is important to note that in a situation where there are unexecuted

shares then the IS formulation does depend upon the ending period stock

price Pn but in a situation where all shares do execute then the IS formu-

lation does not depend upon the ending period price Pn.

Furthermore, in situations where we have the average execution price of

the order, IS further simplifies to:

IS5
X

sj � Pavg 2 Pd
� �

1 S2
X

sj
� �

� Pn 2 Pdð Þ1 fees

In our example we have:

IS5 4000 � $10:502 $10:00ð Þ11000 � $11:002 $10:00ð Þ1 $80

5 $20001 $10001 $805 $3080

The breakdown of costs following Perold is: execution cost5 $2000,

opportunity cost5 $1000, and fixed fee5 $80.

Expanded Implementation Shortfall (Wayne Wagner)
Our third example shows how to decompose implementation shortfall

based on where the costs occur in the investment cycle. It starts with

opportunity cost, and further segments the cost into a delay component

which represents the missed opportunity of being unable to release the

order into the market at the time of the investment decision. “Expanded

Implementation Shortfall” is based on the work of Wayne Wagner and

is often described as Wagner’s Implementation Shortfall. This measure-

ment provides managers with valuable insight into “who” is responsible

for which costs. It helps us understand whether the incremental cost was
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due to a delay in releasing the order to the market or due to inferior perfor-

mance by the trader or by the algorithm. Knowing who is responsible for

cost will help investors improve the process of lowering transaction costs

going forward. Wagner’s expanded implementation shortfall categorizes

cost into delay, trading, and opportunity related cost. Perold’s original

formulation did not separate delay and trading related costs when they

occurred during the implementation phase. Wagner’s formulation of

implementation shortfall is what makes it possible to measure performance

across traders, brokers, and algorithms.

The derivation of the expanded implementation shortfall is as follows.

First, define two time horizons: investment and trading. The investment

horizon is the time from the investment decision td to beginning of

trading t0. The trading horizon is the time from beginning of trading t0
to the end of trading tn. The corresponding prices at these time intervals

are Pd, which is the decision price, P0 which is the price at beginning of

trading, also known as the arrival price, and Pn, which is the price at

the end of trading. All prices are taken as the mid-point of the bid-ask

spread if during market hours or the last traded price or official close if

after hours.

Next, rewrite the price change over these two intervals as follows:

Pn 2Pdð Þ5 Pn 2P0ð Þ1 P0 2 Pdð Þ

Now substitute this price into Perold’s implementation shortfall:

IS5
X

sjpj 2
X

sjPd
� �

1 S2
X

sj
� �

� Pn 2Pdð Þ1 fees

This is:

IS5
X

sjpj 2
X

sjPd
� �

1 S2
X

sj
� �

� Pn 2P0ð Þ1 P0 2 Pdð Þð Þ1 fees

This expression can then be written based on our investment and trading

horizons and is known as the Expanded Implementation Shortfall or

Wagner’s Implementation Shortfall. This is as follows:

Expanded IS5 S P02Pdð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Delay Related

1
X

sjpj2
X

sj
� �

P0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Trading Related

1 S2
X

sj
� �

Pn2P0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Opportunity Cost

1 fees
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This could also be written in terms of the average transaction price Pavg as
follows:

Expanded IS5 S P02Pdð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Delay Related

1
X

sj
� �

Pavg2P0
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Trading Related

1 S2
X

sj
� �

Pn2P0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Opportunity Cost

1 fees

This is the expanded implementation shortfall metric proposed by Wayne

Wagner that makes a distinction between the investment and trading

horizons. It was first identified in Wagner (1975) and later explained

in Wagner (1991) and Wagner and Edwards (1993).The delay related com-

ponent has also been referred to as the investment related cost. The delay

cost component could be caused by the portfolio manager, buy-side trader,

or broker-dealer. For example, see Almgren and Chriss (2000), Kissell and

Glantz (2003), or Rakhlin and Sofianos (2006).

Example: A manager decides to purchase 5000 shares of a stock at $10.

By the time the order is finally released to the market the stock price has

increased to $10.25. If the manager is only able to execute 4000 shares

at an average price of $10.50 and the stock price at the end of trading is

$11.00 what is the expanded implementation shortfall cost by compo-

nents? Assume total commission cost is $80.

The calculation of the expanded implementation shortfall is:

Expanded IS5 5000 � $10:252 $10:00ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Delay Related

1 4000 � $10:502 $10:25ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Trading Related

1 1000 � $11:002 $10:25ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Opportunity Cost

1 $805 $3080

The delay related component is: $1250

The trading related component is: $1000

The opportunity cost component is: $750

Fixed fee amount is: $80

Total expanded implementation shortfall5 $3080.

Notice that Wagner’s expanded IS cost is the same value as Perold’s IS.

However, the opportunity cost in this example is $750 compared to $1000

previously. The reason for this difference is that the expanded IS measures

opportunity cost from the time the order was released to the market as

opposed to the time of the manager’s decision. In actuality, the delay related
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cost component above can be further segmented into a trading related delay

cost and an opportunity related delay cost. This is shown as follows:

Delay Cost5 S � P0 2 Pdð Þ5 S2
X

sj
� �

� P0 2Pdð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Opportunity Related Delay

1
X

sj
� �

P0 2 Pdð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Trading Related Delay

Analysts may wish to include all unexecuted shares in the opportunity

cost component as a full measure of missed profitability.

It is important to point out that in many cases the analysts will not have

the exact decision price of the manager since portfolio managers tend to

keep their decision prices and reasons for the investment to themselves.

However, analysts know the time the order was released to the market.

Hence, the expanded implementation shortfall would follow our formula-

tion above where we only analyze costs during market activity, that is,

from t0 to tn. This is:

Market Activity IS5
X

sj
� �

Pavg 2P0
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Trading Related

1 S2
X

sj
� �

Pn 2P0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Opportunity Cost

1 fees

Implementation Shortfall Formulation
The different formulations of implementation shortfall discussed above are:

IS5 S � Pavg 2Pd
� �

1 fees ð3:5Þ

Perold IS5
X

sj � Pavg 2Pd
� �

1 S2
X

sj
� �

� Pn 2Pdð Þ1 fees ð3:6Þ

Wagner IS5S P02Pdð Þ1
X

sj
� �

Pavg2P0
� �

1 S2
X

sj
� �

Pn2P0ð Þ1 fees

ð3:7Þ

Mkt Act: IS5
X

sj
� �

Pavg2P0
� �

1 S2
X

sj
� �

Pn2P0ð Þ1 fees ð3:8Þ

Trading Cost/Arrival Cost
The trading cost component is measured as the difference between the

average execution price and the price of the stock at the time the order

was entered into the market (arrival price). It is the most important metric

to evaluate broker, venue, trader, or algorithmic performance, because it

quantifies the cost that is directly attributable to trading and these spe-

cific parties. It follows directly from the trading related cost component

from the expanded implementation shortfall. The investment related and
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opportunity cost components are more attributable to investment managers

than to the trading party.

The trading cost or arrival cost component is:

Arrival Cost$ 5
X

sjpj 2
X

sj
� �

P0 ð3:9Þ

S; sj .0 for buys

S; sj , 0 f or sells

In basis points this expression is:

Arrival Costbp 5

P
sjpj 2

P
sj

� �
P0P

sj
� �

P0
� 104bp ð3:10Þ

In general, arrival costs can be simplified as follows:

Arrival Costbp 5 Side � Pavg 2P0
P0

� 104bp ð3:11Þ

where,

Side5
1 if Buy
21 if Sell

�

EVALUATING PERFORMANCE
In this section we describe various techniques to evaluate performance

(note: we will use the profit and loss (PnL) terminology). These methods can

be used to evaluate and compare trade quality for a single stock or basket

of trades, as well as performance across traders, brokers, or algorithms. It can

also serve as the basis for universe comparisons. In the following section we

provide non-parametric statistical techniques that are being used to compare

algorithmic performance.

Techniques that will be discussed in this section include: market or index

adjusted cost, benchmark comparisons, various volume weighted average

price (VWAP), participation weighted average price (PWP), relative per-

formance measure (RPM), and z-score statistical measures.

Trading Price Performance
Trading price performance or simply trading PnL is identical to the

trading cost component above and is measured as the difference between
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the average execution price and the price of the stock at the time the order

was entered into the market (arrival price). A positive value indicates

more favorable transaction prices and a negative value indicates less favor-

able transaction prices. Trading PnL is a measure of the cost during trading

and reports whether the investor did better or worse than the arrival price.

For example, a trading PnL of 210 bp indicates the fund underperformed

the arrival price benchmark by 10 bp. The formulation for trading PnL

multiplies the arrival cost calculation above by minus 1. This is:

Trading PnLbp 521 � Side � Pavg 2 P0
P0

� 104bp ð3:12Þ

Benchmark Price Performance
Benchmark price performance measures are the simplest of the TCA per-

formance evaluation techniques. These are intended to compare specific

measures such as net difference and tracking error, or to distinguish

between temporary and permanent impact. Some of the more commonly

used benchmark prices include:

� Open—as a proxy for arrival price.

� Close—insight into end-of-day tracking error and is more commonly

used by index funds that use the closing price in valuation of the fund.

� Next Day Open—as a way to distinguish between temporary and per-

manent market impact.

� Next Day Close or Future Day Close—also to distinguish between

temporary and permanent impact.

The benchmark PnL calculation is:

Trading PnLbp 521 � Side � Pavg 2 PB
PB

� 104bp ð3:13Þ

where PB 5 benchmark price:

VWAP Benchmark
The VWAP benchmark is used as a proxy for fair market price. It helps

investors determine if their execution prices were in line and consistent

with fair market prices.

The calculation is:

VWAP PnLbp 521 � Side � Pavg 2VWAP
VWAP

� 104bp ð3:14Þ
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where VWAP is the volume weighted average price over the trading

period. A positive value indicates better performance and a negative value

indicates underperformance.

Interval VWAP comparison serves as a good measure of execution quality

and does a nice job of accounting for actual market conditions, trading

activity, and market movement. The interval VWAP, however, does suffer

from three issues. First, the larger the order the closer the results will be to

the VWAP price, as the order price will become the VWAP price. Second,

actual performance can become skewed if there are large block trades that

occur at extreme prices (highs or lows) in crossing venues, especially in

cases where investors have limited opportunity to participate with those

trades. Third, the VWAP measure does not allow easy comparison across

stocks or across the same stock on different days. For example, it is not

possible to determine if missing VWAP by 3 bps in one stock is better

performance than missing VWAP by 10 bps in another stock. If the first

stock has very low volatility and the second stock has very high volatility,

missing VWAP by 10 bps in the second name may in fact be better perfor-

mance than missing VWAP by 3 bps in the first name.

There are three different VWAP performance metrics used: full day, interval,

and VWAP to end of day.

Full Day VWAP: Used for investors who traded over the entire trading

day from open to close. There is currently no “official” VWAP price on

the day but many different providers, such as Bloomberg, Reuters, etc.,

do offer one. These vendors determine exactly what trades will be

included in the VWAP calculations but they may not use all the market

trades. For example, some providers may filter trades that were delayed

or negotiated because they do not feel these prices are indicative of what

all market participants had fair access to.

Interval VWAP: Used as a proxy for the fair market price during the time

the investor was in the market trading. The interval VWAP is a specific

VWAP price for the investor over their specific trading horizon and needs

to be computed from tic data. This is in comparison to a full day VWAP

price that is published by many vendors.

VWAP to End of Day: Used to evaluate those orders that were completed

before the end of the day. In these cases, the broker or trader made a

conscious decision to finish the trade before the end of the day. This

VWAP to End of Day provides some insight into what the fair market

price was including even after the order was completed. It helps determine

if the decision to finish the order early was appropriate. This is a very
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useful metric to evaluate over time to determine if the trader or broker is

skilled at market timing. But it does require a sufficient number of obser-

vations and a large tic data set.

It is worth noting that some B/Ds and vendors refer to the VWAP compari-

son as a cost rather than a gain/loss or performance indication. For those

parties, a positive value indicates a higher cost (thus underperformance) and

a negative value indicates a lower cost (thus better performance) and is

the complete opposite of the meaning in the formula above. Unfortunately,

representation of costs, P/L, or G/L as a metric is not consistent across

industry participants and investors need to be aware of these differences.

Participation Weighted Price (PWP) Benchmark
Participation weighted price (PWP) is a variation of the VWAP analysis.

It is intended to provide a comparison of the average execution price to

the likely realized price had they participated with a specified percentage

of volume during the duration of the order.

For example, if the PWP benchmark is a 20% POV rate and the investor

transacted 100,000 shares in the market starting at 10 a.m. the PWP-20%

benchmark price is computed as the volume weighted average price of the

first 500,000 shares that traded in the market starting at 10 a.m. (the arrival

time of the order). It is easy to see that if the investor transacted at a

20% POV rate their order would have been completed once 500,000 shares

traded in the market since 0.20*500,0005 100,000 shares. The number of

shares in a PWP analysis is equal to the number of shares traded divided

by the specified POV rate.

The PWP PnL metric is computed as follows:

PWP Shares5
Shares Traded
POV Rate

ð3:15Þ

PWP Price5 volume weighted price of the first PWP shares starting

at the arrival time t0

PWP PnLbp 521 � Pavg 2PWP Price
PWP Price

� 104bp ð3:16Þ

The PWP benchmark also has some inherent limitations similar to the

VWAP metric. First, while PWP does provide insight into fair and reason-

able prices during a specified time horizon it does not allow easy compari-

son across stocks or across days due to different stock price volatility and
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daily price movement. Furthermore, investors could potentially manipulate

the PWP by trading at a more aggressive rate to push the price up for buy

orders or down for sell orders, and give the market the impression that

they still have more to trade. Since temporary impact does not dissipate

instantaneously, the PWP price computed over a slightly longer horizon

could remain artificially high (buy orders) or artificially low (sell orders)

due to temporary impact cost. Participants may hold prices at these artifi-

cially higher or lower levels waiting for the non-existent orders to arrive.

The end result is a PWP price that is more advantageous to the investor

than what would have occurred in the market if the order had actually

traded over that horizon.

Relative Performance Measure (RPM)
The relative performance measure (RPM) is a percentile ranking of trading

activity. It provides an indication of the percentage of total activity that

the investor outperformed in the market. For a buy order, it represents the

percentage of market activity that transacted at a higher price and for a

sell order it represents the percentage of market activity that transacted

at a lower price. The RPM is modeled after the percentile ranking used in

standardized academic tests and provides a descriptive statistic that is more

consistent and robust than other measures.

The RPM was originally presented in Optimal Trading Strategies

(2003) and Kissell (2007) and was based on a volume and trade metric.

That original formulation, however, had at times small sample size and

large trade percentage limitations bias. For example, the original formu-

lation considered all of the investor’s trades at the average transaction

price as outperformance. Therefore, in situations where the investor

transacted a large size at a single price all the shares were considered

as outperformance and the end result would overstate the actual perfor-

mance. Leslie Boni (2009) further elaborates on this point in her article

“Grading Broker Algorithms,” Journal of Trading, Fall 2009, and pro-

vides some important insight and improvements.

To help address these limitations, we revised the RPM formulation as

follows:

The RPM is computed based on trading volume as follows:

RPM5
1
2
� % of volume traded at a price less favorable or equal to Pavg
� ��

1 12% of volume traded at a price less favorable or equal to Pavg
� ��

ð3:17Þ
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This metric can also be formulated for buy and sell orders as follows:

RPMBuy5
1
2
� Total Volume1Volume at Price.Pavg2Volume at Price,Pavg

Total Volume

� 	

ð3:18Þ

RPMSell5
1
2
� Total Volume1Volume at Price,Pavg2Volume at Price.Pavg

Total Volume

� 	

ð3:19Þ

This formulation of RPM is now the average of the percentage of volume

that traded at our execution price or better and 1 minus the average of the

percentage of volume that traded at our price or worse. Thus, in effect,

it treats half of the investor’s orders as better performance and half the

order as worse performance. As stated, the original formulation treated all

of the investor’s shares as better performance and inflated the measure.

The RPM is in many effects a preferred measure to the VWAP metric

because it can be used to compare performance across stocks, days, and

volatility conditions. And it is not influenced to the same extent as VWAP

when large blocks trade at extreme prices.

The RPM will converge to 50% as the investor accounts for all market

volume in the stock on the day similar to how the VWAP converges to the

average execution price for large orders.

Brokers achieving fair and reasonable prices on behalf of their investors

should achieve an RPM score around 50%. RPM scores consistently

greater than 50% are an indication of superior performance and scores

consistently less than 50% are an indication of inferior performance. The

RPM measure can also be mapped to a qualitative score, for example:

RPM Quality

0�20% Poor
20�40% Fair
40�60% Average
60�80% Good
80�100% Excellent

Pre-Trade Benchmark
The pre-trade benchmark is used to evaluate trading performance from the

perspective of what was expected to have occurred. Investors compute the

difference between actual and estimated to determine whether perfor-

mance was reasonable based on how close they came to the expectation.
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Actual results that are much better than estimated could be an indication of

skilled and quality execution, whereas actual results that are much worse

than estimated could be an indication of inferior execution quality.

The difference between actual and estimated, however, could also be due

to actual market conditions during trading that are beyond the control of

the trader—such as sudden price momentum, or increased or decreased

liquidity conditions. (These are addressed below through the use of the

z-score and market adjusted cost analysis.)

The pre-trade performance benchmark is computed as follows:

Pre-Trade Difference5Estimated Arrival Cost2Actual Arrival Cost ð3:20Þ
A positive value indicates better performance and a negative value indicates

worse performance.

Since actual market conditions could have a huge influence on actual costs,

some investors have started analyzing the pre-trade difference by computing

the estimated market impact cost for the exact market conditions—an

ex-post market impact metric. While this type of measure gives reasonable

insight in times of higher and lower volumes, on its own it does not give an

adequate adjustment for price trend. Thus investors also factor out price

trend via a market adjusted performance measure.

Index Adjusted Performance Metric
A market adjusted or index adjusted performance measure is intended to

account for price movement in the stock due to the market, sector, or

industry movement. This is computed using the stock’s sensitivity to the

underlying index and the actual movement of that index as a proxy for the

natural price appreciation of the stock (e.g., how the stock price would

have changed if the order was not released to the market).

First compute the index movement over the time trading horizon:

Index Costbp 5
Index VWAP2 Index Arrival Cost

Index Arrival Cost
� 104bp ð3:21Þ

Index arrival is the value of the index at the time the order was released to

the market. Index VWAP is the volume weighted average price for the

index over the trading horizon. What is the index volume weighted price

over a period? Luckily there are many ETFs that serve as proxies for vari-

ous underlying indexes such as the market (e.g., SPY), or sectors, etc., and

thus provide easy availability to data to compute volume weighted average

index prices.
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If the investor’s trade schedule sequence followed a different weighting

scheme than volume weighting, such as front-or back-loaded weightings,

it would be prudent for investors to compute the index cost in each period.

In times where the index VWAP is not available, it can be approximated

as Index VWAP5 1=2 � Rm, where Rm is the total return in basis points

of the underlying index over the period. The 1/2 is the adjustment factor to

account for continuous trading Kissell (2008).

The index adjusted cost is then:

Index Adjusted Costbp 5Arrival Costbp 2 b̂KI � Index Costbp ð3:22Þ

b̂KI is the stock k’s sensitivity to the index. It is determined via linear

regression in the same manner we calculate beta to the market index.

Notice all we have done is subtract out the movement in the stock price

that we would have expected to occur based only on the index movement.

The index cost is not adjusted for the side of the trade.

Z-Score Evaluation Metric
The z-score evaluation metric provides a risk adjusted performance score

by normalizing the difference between estimated and actual by the timing

risk of the execution. This provides a normalized score that can be com-

pared across different stocks and across days. (A z-score measure is also

used to measure the accuracy of pre-trade models and to determine if these

models are providing reasonable insight to potential outcomes cost.)

A simple statistical z-score is calculated as follows:

Z5
Actual2 Expected
Standard Deviation

For transaction cost analysis, we compute the normalized transaction cost

as follows:

Z5
Pre-Trade Cost Estimate2Arrival Cost

Pre-Trade Timing Risk
ð3:23Þ

Notice that this representation is opposite the statistical z-score measure (z5

(x�u)/sigma). In our representation a positive z-score implies performance

better than the estimate and a negative value implies performance worse than

the estimate. Dividing by the timing risk of the trade normalizes for overall

uncertainty due to price volatility and liquidity risk. This ensures that the

sign of our performance metrics are consistent—positive indicates better per-

formance and negative indicates lower quality performance.
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If the pre-trade estimates are accurate, then the z-score statistic should be

a random variable with mean zero and variance equal to one. That is,

ZB 0; 1ð Þ. There are various statistical tests that can be used to test this

joint hypothesis.

There are several points worth mentioning with regards to trading cost

comparison. First, the test needs to be carried out for various order sizes

(e.g., large, small, and mid-size orders). It is possible for a model to

overestimate costs for large orders and underestimate costs for small

orders (or vice versa) and still result in ZB 0; 1ð Þ on average. Second, the

test needs to be carried out for various strategies. Investors need to have

a degree of confidence regarding the accuracy of cost estimates for all of

the broker strategies. Third, it is essential that the pre-trade cost estimate

be based on the number of shares traded and not the full order. Otherwise,

the pre-trade cost estimate will likely overstate the cost of the trade and

the broker being measured will consistency outperform the benchmark

giving the appearance of superior performance and broker ability. In

times where the order was not completely executed, the pre-trade cost esti-

mates need to be adjusted to reflect the actual number of shares traded.

Finally, analysts need to evaluate a large enough sample size in order to

achieve statistical confidence surrounding the results, as well as conduct

cross-sectional analysis in order to uncover any potential bias based on

size, volatility, market capitalization, and market movement (e.g., up days

and down days).

It is also important to note that many investors are using their own pre-trade

estimates when computing the z-score measure. There is a widespread

resistance to using a broker’s derived pre-trade estimate to evaluate their

own performance. As one manager stated, everyone looks great when we

compare their performance to their cost estimate. But things start to fall into

place when we use our own pre-trade estimate. Pre-trade cost comparison

needs to be performed using a standard pre-trade model to avoid any bias

that may occur with using the provider’s own performance evaluation model.

Market Cost Adjusted Z-Score
It is possible to compute a z-score for the market adjusted cost as a means

of normalizing performance and comparing across various sizes, strategies,

and time periods similar to how it is used with the trading cost metric. But

in this case, the denominator of the z-score is not the timing risk of the

trade since timing risk accounts in part for the uncertainty in total price

movement (adjusted for the trade schedule). The divisor in this case has

to be the tracking error of the stock to the underlying index (adjusted for
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the trading strategy). Here the tracking error is identical to the standard

deviation of the regression equation:

Index Adj Cost5Arrival Cost2 b̂kI � Index Cost1 ε

Where the adjusted tracking error to the index is
ffiffiffiffiffi
σ2
ε

p
Here we subtract only estimated market impact cost (not total estimated

cost) for the market adjusted cost since we already adjusted for price

appreciation using the stock’s underlying beta and index as its proxy.

Mkt Adj Z-Score5
Pre-Trade Estimate2Mkt Adj Cost
Adj Tracking Error to the Index

ð3:24Þ

Adaptation Tactic
Investors also need to evaluate any adaptation decisions employed during

trading to determine if traders correctly specify these tactics and to ensure

consistency with the investment objectives. For example, many times

investors instruct brokers to spread the trades over the course of the day

to minimize market impact cost, but if favorable trading opportunities

exist then trading should accelerate to take advantage of the opportunity.

Additionally, some instructions are to execute over a predefined period of

time, such as the next two hours, but with some freedom. In these situa-

tions, brokers have the opportunity to finish earlier if favorable conditions

exist, or extend the trading period if they believe the better opportunities

will occur later in the day.

The main goal of evaluating adaptation tactics is to determine if the

adaptation decision (e.g., deviation from initial strategy) was appropriate

given the actual market conditions (prices and liquidity). That is, how

good a job does the broker do in anticipating intraday trading patterns

and favorable trading opportunities.

The easiest way to evaluate adaptation performance is to perform the

interval VWAP and interval RPM analyses (see above) over the time

period specified by the investor (e.g., a full day or for the specified two

hour period) instead of the trading horizon of the trade. This will allow

us to determine if the broker actually realized better prices by deviating

from the initially prescribed schedule and will help distinguish between

skill and luck.

As with all statistical analyses, it is important to have a statistically signifi-

cant sample size and also perform cross-sectional studies where data points

are grouped by size, side, volatility, market capitalization, and market
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movement (e.g., up days and down days) in order to determine if there is

any bias for certain conditions or trading characteristics (e.g., one broker

or algorithm performs better for high volatility stocks, another broker or

algorithm performs better in favorable trending markets, etc.).

COMPARING ALGORITHMS
One of the biggest obstacles in comparing algorithmic performance is that

each algorithm trades in a different manner, under a different set of market

conditions. For example, a VWAP algorithm trades in a passive manner

with lower cost and more risk compared to an arrival price algorithm which

will trade in a more aggressive manner and have higher cost but lower risk.

Which is better?

Consider the results from two different algorithms. Algorithm A has

lower costs on average than algorithm B. Can we conclude that A is

better than B? What if the average cost from A and B are the same but

the standard deviation is lower for A than for B. Can we now conclude

that A is better than B? Finally, what if A has a lower average cost and

also a lower standard deviation? Can we finally conclude that A is

better than B? The answer might surprise some readers. In all cases the

answer is no. There is simply not enough information to conclude that

A is a better performing algorithm than B even when it has a lower cost

and lower standard deviaion. We need to determine whether or not this

is a statistical difference or due to chance.

One of the most fundamental goals of any statistical analysis is to deter-

mine if the differences in results are “true” differences in process or if they

are likely only due to chance. To assist with the evaluation of algorithms

we provide the following definition:

Performance from two algorithms is equivalent if the trading

results are likely to have come from the same distribution of costs.

There are two ways we can go about comparing algorithms: paired obser-

vations and independent samples.

A paired observation approach is a controlled experiment where orders

are split into equal pairs and executed using different algorithms over the

same time periods. This is appropriate for algorithms that use static trading

parameters such as VWAP and percentage of volume (POV). These are

strategies that will not compete with one another during trading and

are likely to use the exact same strategy throughout the day. For example,

trading 1,000,000 shares using a single broker’s VWAP algorithm will
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have the same execution strategy as trading two 500,000 share orders

with two different VWAP algorithms (provided that the algorithms

are equivalent). Additionally, trading 1,000,000 shares with one broker’s

POV algorithm (e.g., POV5 20%) will have the same execution strategy

as using two different broker POV algorithms at one-half the execution

rate (e.g., POV5 10% each). A paired observation approach ensures that

identical orders are executed under identical market conditions. Analysts

can also choose between the arrival cost and VWAP benchmark as the per-

formance metric. Our preference for the paired sample tests is to use the

VWAP.

An independent sampling approach is used to compare orders that are

executed over different periods of time using different algorithms. This

test is appropriate for algorithms such as implementation shortfall that

manage the trade-off between cost and risk and employ dynamic adapta-

tion tactics. In these cases we do not want to split an order and trade in

algorithms that adapt trading to real-time market conditions because we

do not want these algorithms to compete with one another. For example,

if a 1,000,000 shares order is split into two orders of 500,000 shares and

given to two different brokers, these algorithms will compute expected

impact cost based on their 500,000 shares not on the aggregate imbalance

of 1,000,000 shares. This is likely to lead to less than favorable prices

and higher than expected costs since the algorithms will likely transact at

an inappropriately faster or slower rate. The algorithm may confuse the

incremental market impact from the sister order with short-term price

trend or increased volatility, and react in a manner inappropriate for the

fund, resulting in higher prices. Our preference is to use the arrival cost

as our performance metric in the independent sample tests.

A paired observation approach can use any of the static algorithms provid-

ing that the underlying trade schedule is the same across brokers and algo-

rithms, e.g., VWAP and POV. An independent sampling approach needs

to be used when we are evaluating performance of dynamic algorithms

that adapt to changing market conditions.

Non-Parametric Tests
We provide the outline of six non-parametric tests that can be used

to determine if two algorithms are equivalent. They are based on paired

samples (Sign Test, Wilcoxon Signed Rank Test), independent samples

(Median Test, Mann-Whitney U Test) and evaluation of the underlying data

distributions (Chi-Square and Kolmogorov-Smirnov goodness of fit).

Readers who are interested in a more thorough description of these tests as
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well as further theory are referred to Agresti (2002), De Groot (1986),

Green (2000), and Mittelhammer, Judge and Miller (2000). Additionally,

Journal of Trading’s “Statistical Methods to Compare Algorithmic

Performance” (2007) gives additional background and examples for the

Mann-Whitney U test and the Wilcoxon signed rank test. We follow the

mathematical approach presented in the JOT article below.

Each of these approaches consists of: (1) devising a hypothesis, (2) the

calculation process to compute the test statistic, and (3) comparing that

test statistic to a critical value.

Paired Samples
For paired samples the analysis will split the order into two equal pieces

and trade each in a different algorithm over the same exact time horizon.

It is important in these tests to only use algorithms that do not compete

with one another such as VWAP, TWAP, or POV. A static trade schedule

algorithm could also be used in these tests since the strategy is predefined

and will not compete with another. The comparison metric used in these

tests can be either arrival cost or VWAP performance.

Sign Test
The sign test is used to test the difference in sample medians. If there is a

statistical difference between medians of the two paired samples we con-

clude that the algorithms are not equivalent.

Hypothesis:

H0: Medians are the same p5 0:5ð Þ
H1: Medians are different p 6¼ 0:5ð Þ

Calculation Process:

1. Record all paired observations.

(Xi, Yi)5 paired performance observations for algorithms X and Y.

Let Zi5Xi�Yi.

k5 number of times Zi. 0.

n5 total number of pairs of observations.

2. T is the probability that z$ k using the binomial distribution

T5
Xn
j5k

n
j

� 	
� pj � 12pj

� �n2j
5

Xn
j5k

n
j

� 	
� 0:5ð Þj � 0:5ð Þn2j

For a large sample the normal distribution can be used in place of the

binomial distribution.
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Comparison to Critical Value:

� α is the user specified confidence level, e.g., α5 0:05:
� Reject the null hypothesis if T$α or T$ 12α ).

�

Wilcoxon Signed Rank Test
The Wilcoxon signed rank test determines whether there is a difference in

the average ranks of the two algorithms using paired samples. This test

can also be described as determining if the median difference between

paired observations is zero. The testing approach is as follows:

Hypothesis:

H0: Sample mean ranks are the same

H1: Sample mean ranks are different

Calculation process:

1. Let (Ai, Bi) be the paired performance results.

Let Di 5Ai 2Bi where Di . 0 indicates algorithm A had better perfor-

mance and Di , 0 indicates algorithm B had better performance.

2. Sort the data based on the absolute values of differences

D1j j; D2j j;?; Dnj j in ascending order.
3. Assign a rank ri to each observation. The smallest absolute value differ-

ence is assigned a rank of 1, the second smallest absolute value difference

is assigned a rank of 2, . . ., and the largest absolute value difference is

assigned a rank of n.

4. Assign a signed rank to each observation based on the rank and the

original difference of the pair. That is:

Si 5
1ri if Ai 2Bi . 0
2ri if Ai 2Bi , 0

� �

5. Let Tn be the sum of all ranks with a positive difference. This can be

determined using an indicator function Wi defined as follows:

Wi 5
1 if Si . 0
0 if Si , 0

� �

Tn 5
Xn
i51

ri �Wi

Since the ranks ri take on each value in the range ri 5 1, 2, . . ., n (once

and only once) Tn can also be written in terms of its observation as

follows:

Tn 5
Xn
i51

i �Wi
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� If the results are from the same distribution then the differences

Di should be symmetric about the point θ5 0 - P Di $ 0ð Þ5 1=2
and P Di # 0ð Þ5 1=2.

� If there is some bias in performance then differences Di will be

symmetric about the biased value θ5 θ�- P Di $ θ�ð Þ5 1=2 and

P Di # θ�ð Þ5 1=2.
� Most statistical texts describe the Wilcoxon signed ranks using a

null hypothesis of θ� 5 0 and alternative hypothesis of θ� 6¼ 0. This
book customizes the hypothesis test for algorithmic comparison.

6. If performance across algorithms is equivalent then there is a 50%

chance that Di . 0 and a 50% chance that Di , 0. The expected value

and variance of our indicator function W is as follows:

E Wð Þ5 1=2 � 111=2 � 05 1=2

V Wð Þ5 E X2
� �

2 ½E Wð Þ�2 5 1=22 1=2
� �2

5 1=4

7. This allows us to easily compute the expected value and variance of

our summary statistic Tn. This is as follows:

E Tnð Þ5
Xn
i51

i � E Wið Þ5 1
2
�
Xn
i51

i5
n n11ð Þ

4

V Tnð Þ5
Xn
i51

i2 � V Wið Þ5 1
4
�
Xn
i51

i2 5
n n11ð Þ 2n11ð Þ

24

As n-N, Tn converges to a normal distribution and we can use the

standard normal distribution to determine our critical value:

Zn 5
Tn 2 E Tnð Þffiffiffiffiffiffiffiffiffiffiffiffi

V Tnð Þ
p

Comparison to Critical Value:

� Reject the null hypothesis if Znj j.Cα=2 where Cα=2 is the critical

value on the standard normal curve corresponding to the 12α confi-

dence level.

� For a 95% confidence test (e.g., α5 0:05) we reject the null hypothesis
if Znj j. 1:96.

� Above we are only testing if the distributions are different (therefore

we use a two-tail test).

� This hypothesis can also be constructed to determine if A has better

(or worse) performance than B based on whether Di . 0 or Di , 0
and using a one-tail test and corresponding critical values.
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Independent Samples
The independent samples can be computed over different periods, used for

different stocks. The total number of observations from each algorithm can

also differ. As stated above, it is extremely important for the analyst to

randomly assign trades to the different algorithms, ensure similar trading

characteristics (side, size, volatility, market cap) and market conditions over

the trading period. Below are two non-parametric tests that can be used

to compare algorithms using independent samples. It is best to compare

like algorithms in these tests such as arrival price, IS, aggressive-in-the-

money, etc. Since the orders are not split across the algorithms, they can be

dynamic and will not compete with one another.

Mann-Whitney U Test
The Mann-Whitney U test compares whether there is any difference in

performance from two different algorithms. It is best to compare “like”

algorithms in this case (e.g., IS to IS, ultra-aggressive to ultra-aggres-

sive, etc.). The arrival cost metric is the performance metric in this

test.

Hypothesis:

H0: Same performance

H1: Different performance

Calculation Process:

1. Let m represent the number of orders transacted by broker A.

Let n represent the number of orders transacted by broker B.

Total number of orders5m1 n.

2. Combine the samples into one group.

3. Order the combined data group from smallest to largest cost.

For example, the smallest value receives a rank of 1, the second smallest

value receives a rank of 2, . . ., the largest value receives a rank of

m1 n.

Identify each observation with an “A” if the observation was from

algorithm A and “B” if it was from algorithm B.

4. The test statistic T is the sum of the ranks for all the observations

from algorithm A.

This can be computed using help from an indicator function defined as

follows:

Wi 5
1 if the observation was from algorithm A
0 if the observation was from algorithm B

� �
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Then the sum of the ranks can be easily computed as follows:

T5
Xn
i51

ri �Wi

� If the underlying algorithms are identical the actual results from each

sample will be evenly distributed throughout the combined grouping.

If one algorithm provides better performance results its sample should

be concentrated around the lower cost rankings.

� In the situation where the null hypothesis is true the expected rank

and variance of T are:

E Tð Þ5 m � m1 n1 1ð Þ
2

V Tð Þ5 mn � m1 n11ð Þ
12

As with the Wilcoxon signed rank test, it can be shown that as n;m-N
the distribution of T converges to a normal distribution. This property

allows us to test the hypothesis that there is no difference between broker

VWAP algorithms using the standard normal distribution with the following

test statistic:

Z5
T2 E Tð Þffiffiffiffiffiffiffiffiffiffi

V Tð Þ
p

Comparison to Critical Value:

� Reject the null hypothesis H0 if Zj j.Cα=2.

� Cα=2 is the critical value on the standard normal curve corresponding

to the 12α confidence level.

� For example, for a 95% confidence test (i.e. α5 0:05) we reject the

null hypothesis if Zj j. 1:96. Notice here we are only testing if the dis-

tributions are different (therefore a two tail-test).

� The hypothesis can also be constructed to determine if A has better (or

worse) performance than B by specifying a one-tail test. This requires

different critical values.

Analysts need to categorize results based on price trends, capitalization,

side, etc. in order to determine if one set of algorithms performs better or

worse for certain market conditions or situations. Many times a grouping

of results may not uncover any difference.

An extension of the Mann Whitney U test used to compare multiple

algorithms simultaneously is the Kruskal-Wallis one way analysis of
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variance test. This test is beyond the scope of this reference book,

but readers interested in the concept can reference Mansfield (1994) or

Newmark (1988).

Median Test
The median test is used to determine whether or not the medians of two or

more independent samples are equal. If the medians of the two samples

are statistically different from one another then the algorithms are not

equivalent. This test is as follows:

Hypothesis:

H0: Same medians

H1: Different medians

Calculation Process:

1. Use arrival cost as the performance measure.

2. Choose two algorithms that are similar (e.g., arrival, IS, etc.). This

experiment can be repeated to compare different algorithms.

3. Use a large enough number of orders and data points in each algo-

rithm so that each has a representative sample size. Make sure that

the orders traded in each algorithm are similar: size, volatility, market

cap, buy/sell, and in similar market conditions.

4. Let X5 set of observations from algorithm A.

Let Y5 set of observations from algorithm B.

5. Determine the overall median across all the data points.

6. For each sample count the number of outcomes that are less than or

equal (“LE”) to the median and the number of outcomes that are

greater than (“GT”) the median. Use the table below to tally these

results.

Sample A Sample B Subtotal

LE overall median a b (a1 b)
GT overall median c d (c1 d)
Subtotal (a1 c) (b1 d) (a1 b1 c1 d)5 n

7. Compute the expected frequency for each cell

efij 5
total observations in row i1 total observations in column j

overall total number of observations
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8. Compute test statistic χ2

χ2 5
X number of observations2 efð Þ2

ef

χ2 5
a2ef11ð Þ2
ef11

1
b2ef12ð Þ2
ef12

1
c2ef21ð Þ2
ef21

1
d2ef22ð Þ2
ef22

David M. Lane (Rice University) provided an alternative calculation

of the test statistic χ2 that makes a correction for continuity. This

calculation is:

χ2 5
n ad2bcj j2n

2

� �2
a1 bð Þ c1 dð Þ a1 cð Þ b1 dð Þ

Comparison to Critical Value:

� df 5 number of columns2 1ð Þ � number of rows2 1ð Þ5 1:
� Reject the null hypothesis if χ2 $χ2� df 5 1; α5 0:05ð Þ5 3:84:

Distribution Analysis
Distribution analysis compares the entire set of performance data by deter-

mining if the set of outcomes could have been generated from the same

data generating process (“DGP”). These tests could be based on either

pair-samples or independent samples. Analysts need to categorize results

based on price trends, capitalization, side, etc. in order to determine if one

set of algorithms performs better or worse for certain market conditions

or situations. Many times a grouping of results may not uncover any differ-

ence in process.

Chi-Square Goodness of Fit
The chi-square goodness of fit test is used to determine whether two data

series could have been generated from the same underlying distributions.

It utilizes the probability distribution function (pdf). If it is found that the

observations could not have been generated from the same underlying

distribution then we conclude that the algorithms are different.

Hypothesis:

H0: Data generated from same distribution

H1: Data generated from different distributions
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Calculation Process:

1. Use the arrival cost as the performance measure.

2. Choose two algorithms that are similar (e.g., arrival, IS, etc.).

3. Trade a large enough number of orders in each algorithm in order to

generate a representative sample size. Ensure that the orders traded in

each algorithm have similar characteristics such as side, size, volatility,

trade time, and market cap, and were traded in similar market conditions.

4. Let X5 set of results from algorithm A.

Let Y5 set of results from algorithm B.

5. Categorize the data into groups of buckets.

Combine the data into one series. Determine the bucket categories

based on the combined data. We suggest using from ten to twenty cat-

egories based on number of total observations. The breakpoints for

the category buckets can be determined based on the standard devia-

tion of the combined data or based on a percentile ranking of the

combined data. For example, if using the standard deviation method

use categories such as ,23σ, 23σ to 22.5σ, . . ., 2.5σ to 3σ, 3σ1.

If using the percentile ranking method order all data points from low-

est to highest and compute the cumulative frequency from 1/n to

100% (where n is the combined number of data point). Select break

points based on the values that would occur at 10%, 20%, . . ., 100%

if ten groups, or 5%, 10%, . . ., 95%, 100% if twenty buckets. Count

the number of data observations from each algorithm that fall into

these bucket categories.

6. Compute the test statistic χ2

χ25
Xm
k51

observed sample X in bucket k2observed sample Y in bucket kð Þ2
observed sample Y in bucket k

m5 number of buckets.

Comparison to Critical Value:

� Reject the null hypothesis if χ2 $χ2� df 5m2 1; α5 0:05ð Þ

Kolmogorov-Smirnov Goodness of Fit
The Kolmogorov-Smirnov goodness of fit test is used to determine whether

two data series of algorithmic performance could have been generated from

the same underlying distributions. It is based on the cumulative distribution

function (cdf). If it is determined that the data samples could not have been

generated from the generating process then we conclude that the algorithms

are different.
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Hypothesis:

H0: Data generated from same distribution

H1: Data generated from different distributions

Calculation Process:

1. Use the arrival cost as the performance measure.

2. Choose two algorithms that are similar (e.g., arrival, IS, etc.).

3. Trade a large enough number of orders in each algorithm in order to

generate a representative sample size. Ensure that the orders traded in

each algorithm have similar characteristics such as side, size, volatility,

trade time, and market cap, and were traded in similar market conditions.

4. Let X5 set of results from algorithm A�n observations in total.

Let Y5 set of results from algorithm B�m observations in total.

5. Construct empirical frequency distributions for each data series by

ranking the data from smallest to lowest. Let FA xð Þ be the cumulative

probability for data series A at value x and Let FB xð Þ be the cumula-

tive probability for data series B at value x. That is, these functions

represent the number of data observations in each respective data

series that are less than or equal to the value x.

6. Compute the maximum difference between these cumulative functions

over all values. That is:

Dn 5
mn
m1n

� �1=2
max

x
FA xð Þ2 FB xð Þ
�� ��

Mathematicians will often write this expression as:

Dn 5
mn
m1n

� �1=2
sup
x

FA xð Þ2 FB xð Þ
�� ��

Comparison to Critical Value:

� The critical value is based on the Kolmogorov distribution.

� The critical value based on α5 0:05 is 0.04301.

� Reject the null hypothesis if Dn $ 0:04301.

EXPERIMENTAL DESIGN
There are five concerns that need to be addressed when performing the

statistical analyses described above. These are: (1) Proper Statistical Test;

(2) Small Sample Size; (3) Data Ties; (4) Categorization of Data; and (5)

Balanced Sample Set.
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Proper Statistical Tests
In statistical testing, the preferred process is a controlled experiment so that

the analyst can observe the outcomes from two separate processes under

identical market conditions (e.g., Wilcoxon signed rank test). While this is

an appropriate technique for static strategies such as VWAP and POV algo-

rithms, it is not an appropriate technique for those algorithms with dynamic

trading rates and/or those that employ real-time adaptation tactics.

Employing a controlled experiment for dynamic algorithms will likely

cause the algorithms to compete with one another and will lead to decreased

performance. For dynamic algorithms (e.g., implementation shortfall and

ultra-aggressive algorithms) it is recommended that investors utilize the two

sample non-pair approach and the Wilcoxon-Mann-Whitney ranks test.

In theory, it is appropriate to compare algorithms with static strategies (e.g.,

VWAP and POV) with the Wilcoxon-Mann-Whitney ranks test. However,

doing so causes more difficulty with regards to robust categorization and

balanced data requirements. It is recommended that algorithms with static

parameters be compared via the Wilcoxon signed rank test approach.

Small Sample Size
In each of these statistical techniques it is important to have a sufficiently

large data sample in order to use the normal approximation for hypothesis

testing. In cases where the sample sizes are small (e.g., n and/or m small)

the normal distribution may not be a reasonable approximation methodology

and analysts are advised to consult statistical tables for the exact distribu-

tions of Tn and T. We recommend using at least n. 100 and m. 100 for

statistically significant results.

Data Ties
It is assumed above the results are samples from a continuous distribution

(i.e., statistically there will never be identical outcomes). Due to finite

precision limitations, analysts may come across duplicate results, inhibit-

ing a unique ranking scheme. In these duplicate situations, it is recom-

mended that the data point be included in the analysis twice. In the case

that algorithm “A” is the better result for one data point and algorithm

“B” is the better result for the second data point, a unique ranking

scheme will exist. If the tail areas of the results are relatively the same

this approach should not affect the results. If the tail areas are different

this may be a good indication that the data is too unreliable and further

analysis is required. Analysts with strong statistical training may choose

alternative ranking schemes in times of identical results.
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Proper Categorization
When analyzing algorithmic performance it is important to categorize trades

by side (buy/sell/short), size, market conditions (such as up and down days),

company capitalization (large, mid, and small cap), etc. Categorization

allow analysts to determine if one algorithm works statistically better or

worse in certain situations. For example, if VWAP algorithm “A” makes

market bets by front-loading executions and VWAP algorithm “B” makes

market bets by back-loading, “A” will outperform “B” for buys on days

with a positive drift and for sells on days with a negative drift. Conversely,

algorithm “B” will outperform “A” for buys on days with a negative drift

and for sells on days with a positive drift. A statistical test that combines

executions from a large array of market conditions may miss this difference

in performance especially if we are comparing averages or medians. It is

essential that analysts perform robust statistical hypothesis testing for all

performance testing techniques.

Balanced Data Sets
It is imperative that analysts utilize a random selection process for submit-

ting orders to algorithms and ensure that the data sets are balanced across

the specified categorization criteria, e.g., size, side, capitalization, market

movement, etc. This basically states that the percentage breakdown in

the categorization groups described above will be similar. Otherwise, the

statistical results may fall victim to Simpson’s Paradox (e.g., dangers that

arise from drawing conclusions from aggregate samples).

FINAL NOTE ON POST-TRADE ANALYSIS
One final note on post-trade analysis is the following. Consider the possi-

bility that performance is equivalent across all families of algorithms. For

example, there is no difference across VWAP algorithms, IS algorithms,

ultra-aggressive algorithms, etc. Subsequently, two important issues arise.

First, can brokers still add value to the trading process? Second, is there any

need for third party post-trade services? The answer to both these questions

is yes.

Brokers can still add value to the process by providing appropriate pre-trade

analysis to ensure proper selection of algorithms and algorithmic parameters.

Furthermore, brokers can partner with investors to customize algorithms to

ensure consistency across the investment and trading decisions. For example,

see Kissell and Malamut (2006) and Engle and Ferstenberg (2006). Most

127Final Note on Post-Trade Analysis



importantly, however, broker competition propels innovation and advance-

ment that continue to benefit investors.

Third party consultants also serve as an essential service to the industry.

Not only can they be used by the buy-side to outsource numerical analysis,

but more importantly, these consultants have access to a larger universe

of trades for various investment styles and algorithms, both robust and

balanced, and are thus positioned to provide proper insight into perfor-

mance and trends. Comparatively, brokers typically only have access to

trades using their algorithms and investors only have access to their trades.

Access aside, the statistical testing procedure of these consultants cannot

remain a black box; transparency is crucial in order for the industry to

extract value from their services. Transaction cost analysis remains an

essential ingredient to achieve best execution. When administered prop-

erly, improved stock selection and reduced costs have proven to boost

portfolio performance. As such, advancement of TCA models is an essen-

tial catalyst to further develop the algorithmic trading and market effi-

ciency space.
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Chapter4
Market Impact Models

INTRODUCTION
This chapter provides an overview of market impact models with emphasis

on the “Almgren & Chriss” and the “I-Star” approaches. The Almgren and

Chriss (AC) model, introduced by Robert Almgren and Neil Chriss (1997),

is a path-dependent approach that estimates costs for an entire order based

on the sequence of trades. This is referred to as a bottom-up approach

because the cost for the entire order is determined from the actual

sequence of trades.

The I-Star model, introduced by Robert Kissell and Roberto Malamut

(1998), is a top-down cost allocation approach. First, we calculate the cost

of the entire order, and then allocate to trade periods based on the actual

trade schedule (trade trajectory). The preferred I-Star formulation is a

power function incorporating imbalance (size), volatility, liquidity, and

intraday trading patterns.

Alternative market impact modeling approaches have also appeared in the

academic literature. For example, Wagner (1991); Kissell and Glantz

(2003); Chan and Lakonishok (1997); Keim and Madhavan (1997); Barra

(1997); Bertismas and Lo (1998); Breen, Hodrick, and Korajczyk (2002);

Lillo, Farmer, and Mantegna (2003); and Gatheral (2010, 2012).

DEFINITION
Market impact is the change in price caused by a particular trade or order.

It is one of the more costly transaction cost components and always causes

adverse price movement. Market impact is often the main reason managers

lag behind their peers. Market impact costs will occur for two reasons:

liquidity needs and urgency demands (temporary), and information content

(permanent).

Temporary Impact represents the liquidity and urgency cost compo-

nent. This is the price premium buyers have to provide the market to

attract additional sellers and the price discount sellers need to provide
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to attract additional buyers. This cost component can be effectively

managed during implementation of an investment decision.

Permanent Impact represents the information cost component. The

information content, whether real or perceived, causes market participants

to adjust their prices to a new perceived fair value. The rationale is that

informed investors typically buy undervalued stock and sell overvalued

stock. As participants observe buy orders their perception (at least to some

extent) is that the stock is undervalued and they will adjust their offer

prices upwards. As participants observe sell orders their perception (again,

at least to some extent) is that the stock is overvalued and they will adjust

bid prices downward. It is an unavoidable trading cost.

Mathematically, we define market impact as the difference between the

actual price trajectory after the order is released to the market and the price

trajectory that would have occurred if the order were never released.

Regrettably, we cannot observe both price trajectories simultaneously and

it is not possible to construct a controlled experiment to measure both

trajectories at the same time. As a result, market impact is often referred to

as the Heisenberg uncertainty principle of finance.

Example 1: Temporary Market Impact
A trader receives a buy order for 50,000 shares of RLK. Market quotes

show 1000 shares at $50; 2000 shares at $50.25; 3000 shares at $50.50; and

4000 shares at $50.75. The trader can only execute 1000 shares at the best

available price and another 9000 shares at the higher prices for an average

price of $50.50. But this only represents 10,000 shares of the original

50,000 share order. In order to attract additional seller liquidity into the

market, the trader must offer the market an incremental premium above

$50.75. The liquidity and urgency need of this trade caused the trader to

incur impact. Another option available to the traders is to wait for additional

sellers to arrive at the current market prices. If this occurs the trader will be

able to transact at a better price, but if prices move higher due to general

market movement while the trader is waiting for sellers to arrive the price

could become even higher and the cost more expensive. Waiting for addi-

tional counterparties to arrive is always associated with market risk.

Example 2: Permanent Market Impact
A trader receives a buy order for 250,000 shares of RLK currently trading

at $50. However, inadvertently this information is released to the market

signaling that the stock is undervalued. Thus, investors who currently own

stock will be unwilling to sell shares at the undervalued price of $50 and
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will adjust their price upwards to reflect the new information requiring the

buyer to pay, say, an additional $0.10/share higher or $50.10 total. This is

an example of the information content cost and permanent market impact.

GRAPHICAL ILLUSTRATIONS OF MARKET IMPACT
This section provides graphical illustrations of market impact from different

perspectives.

Illustration 1—Price Trajectory
Madhavan (2000, 2002) presents a lucid graphical description of a sell order’s

temporary and permanent market impact cost. We use the same technique to

graphically illustrate these concepts placing a buy order and sell order.

Figure 4.1a illustrates market impact for a buy order. Following a $30.00

opening trade, the stock fluctuates between $29.99 and $30.01, the result

$29.90

$29.95

$30.00

$30.05

$30.10

$30.15

$30.20

$30.25

$30.30

Buy Order

$29.70

$29.75

$29.80

$29.85

$29.90

$29.95

$30.00

$30.05

$30.10
Sell Order

(a)

(b)

■ Figure 4.1 Price Evolution. Madhavan Formulation (2000, 2002).
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of the bid-ask bounce. At this time, an investor enters the market and

submits a sizable buy order that immediately pushes the price to $30.25.

The premium above current market price serves to attract additional sell-

ers to complete the entire position. Price reversion immediately follows

this transaction; but the price reverts to $30.05 not the original price of

$30.00. Market participants inferred this trade as information based, due

likely to the stock being undervalued. As a result, participants looking to

sell additional shares were no longer willing to sell shares at $30.00 but

would be willing to offer the shares at $30.05—what they perceive to be

the new fair value. The investor incurred $0.25 of total market impact

with $0.20 temporary impact (liquidity needs) and $0.05 permanent

impact (information content).

Figure 4.1b illustrates the same concept but for a sell order. The stock

begins trading at $30.00 and fluctuates between $29.99 and $30.01 due

to the bid-ask bounce. An investor with a large order enters the market

and immediate pushes the price down to $29.75. The investor needed to

discount the price to attract additional buyers. After the transaction, we

once again observe price reversion but the price only returns to $29.95,

not $30.00. Market participants believed the price was overvalued causing

them to re-establish a fair value price. Total cost to the investor is $0.25

with $0.20 being temporary (liquidity needs) and $0.05 being permanent

(information content).

Illustration 2—Supply-Demand Equilibrium
We present a second illustration of the market impact concept through

traditional economic supply-demand curves (Figure 4.2a�d). We use these

curves to show the effect of a buy order on the stock price. Figure 4.2a

depicts a system currently in equilibrium with q* shares transacting at

price of p*. Figure 4.2b shows the effect of a new buyer entering the

market on the equilibrium of the system. Assume the new buyer wishes

to transact an incremental Δq shares. This results in a shift in the demand

curve from D to D0 to reflect the increased demand q15 q*1Δq.

It appears that the new equilibrium price for q1 shares is p1 but this is

incorrect. Immediately after the new buyer enters the market, the group

of existing sellers is likely to believe the demand was driven because the

market price was undervalued and they will raise their selling prices. This

results in an upwardshift in the supply curve from S to S0 and causes the

price to increase to p2 from p1 (Figure 4.2c) for q1 shares. The impact from

the incremental demand of Δq is p2�p*. After the trade, participants

re-evaluate the price due to the information content of the trade. Their

belief is likely to be that the incremental demand was due to the price
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being undervalued. Sellers will thus increase their asking price in the

presence of the newly discovered information causing buyers to pay a

higher price.

After shares transact, we face some uncertainty—what happens next?

After the trade the demand curve will shift back to its previous level. But

will the supply curve remain at S0 or will it return to S? Will equilibrium

quantity return to its original pre-incremental investor level qnew5 q* or

will equilibrium quantity decrease qnew, q* due to higher market prices?

This is shown in Figure 4.2d.

One scenario assumes reduced market volume following the incremental

demand. Since price increased due to the trade’s information content (shift

in the supply curve from S to S0) fewer buyers are willing to transact at high-
er prices matching the original equilibrium quantity q*. For example, value

managers buy stock only if they are within a specified price range because

these prices can generate a higher profit for the manager. Therefore, once

the market adjusts its pricing to reflect higher prices managers no longer
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■ Figure 4.2 Supply-Demand Equilibrium.
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will purchase those shares because they are outside the specified price

range. The result: lower trading volume. The new equilibrium point will be

the intersection of the original demand curve and the new supply curve S0,
in agreement with a new equilibrium price of p4 and a new equilibrium

quantity of qnew. Here we expect a post-trade price increase (p4. q*) and a

post-trade volume decrease (qnew, q*). A breakdown of the market

impact cost in this scenario is total impact5 p2�p*, with temporary

impact5 p2�p4 and permanent impact5 p4�p*.

In a second scenario the original number of buyers may continue to

purchase the same number of shares even at higher prices. For example,

index managers hold certain stocks and quantities in their portfolio regard-

less of their market prices because they need to mimic the underlying

index. Therefore, after the increment shares Δq are transacted the number

of buyers returns to pre-trade levels. Since they are willing to transact at

higher prices the demand curve returns to a higher level D00. The new equi-

librium point: the point of intersection between S0 and D00. Demand

is identical to the pre-trade level q* while the price will be p3 (higher

than the original equilibrium level of p* and also higher than p4 (from

the first scenario) where we assumed fewer buyers post-trade due to the

higher prices). A breakdown of the market impact cost in this scenario

is total impact5 p2�p*, with temporary impact5 p2�p3 and permanent

impact5 p3�p*. In both scenarios, the total impact of the trade is identical

except for new post-trade equilibrium points. This results in computations

for permanent and temporary impact along with different expectations for

forward looking market volumes.

New equilibrium demand level and price uncertainty are major reasons

behind the difficulty in distinguishing between temporary and permanent

market impact cost. Regrettably, this is rarely addressed in the financial

literature.

The question remains: Does excess market volume lead to more or less

volume going forward? We often find that excess market volume corre-

sponds with excess volume in the short-term. However, the higher volume

is generally attributed to news—for example, earnings, major macro-

economic events or new announcements, corporate actions, and so on.

Higher volume can also tie to investors implementing substantial orders

executed over multiple days. We have uncovered evidence of volume

returning to its original state as well as volume levels returning to lower

levels. No statistical evidence exists suggesting that levels would remain

at a higher state. In the rare cases where volume stood higher than

pre-trade levels, the reasoning was: (1) the stock joined an index, (2) merger
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or acquisition, or (3) new product introduction. The best explanation we

can offer concerning volume level expectations following a large trade

is it will depend on investor mix prior to the large trade/order execution

and the underlying reason of the order transaction. Additional research is

needed in this area.

Illustration 3—Temporary Impact Decay Function
Temporary market impact is short-lived in the market. But how long

exactly does it take for the price to move from the higher levels to the

new equilibrium levels? This is referred to as temporary impact decay or

dissipation of temporary impact. Figure 4.3a illustrates an example where

the price is $30 but a large buy order pushes the price to $30.25. After

time, this price reverts to a new equilibrium price of $30.05. But the price

does not revert in a single jump but rather over time. Figure 4.3b depicts

dissipation of temporary impact for three different decay rates: fast,

medium, and slow. This figure shows that analysts need to not only

understand the effect of impact but also the speed at which temporary
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impact decays. Investors must understand differences in dissipation rate

when they structure trade schedules otherwise they may pay prices much

higher than expected.

Figure 4.3c illustrates prices that could occur under a fast and a slow decay

rate under the same sequence of trades. In this example, the starting price

is $30.00 and each trade’s market impact is $0.25, with $0.20 temporary and

$0.05 permanent. The first trade price under both trajectories is $30.25.

The second trade price is comprised of temporary and permanent impact

for the second trade, plus permanent impact of the first trade plus the

remaining temporary impact of the first trade. A fast decay rate will cause

investors to incur a lower amount of temporary impact than a slow decay

rate. In the example, the second trade price is $30.30 for the fast decay

rate and $30.38 for the slow decay rate. The slower decay rate causes

the investor to incur $0.08/share more than the fast decay rate due to the

amount of temporary impact still present in the market from the first trade.

The spacing between these trades was just long enough for the temporary

impact to dissipate fully for the fast decay function but not nearly enough

for the slow decay function. The third trade price is equal to the permanent

impact from the first two trades, plus the temporary impact amount of the

first trade still, plus the temporary impact of the second trade price (if tem-

porary impact still exists at the time of these trades). Under the fast decay

schedule the third trade price is $30.35, which is comprised of permanent

impact from all three trades ($0.05/share each) and temporary impact from

the third trade only ($0.20/share) since the temporary impact from the pre-

ceding two trades has already been fully dissipated in the market. Under

the slow decay rate the third trade price is $30.46, which is comprised

of permanent impact from all three trades (0.05/share each—permanent

impact is a cumulative effect) plus $0.033/share of remaining temporary

impact from the first trade, plus $0.081/share of remaining temporary

impact from the second trade, plus $0.20/share of temporary impact from

the third trade. We see that the average execution price is $30.30 for the

fast decay rate and $30.37 for the slow decay rate. Investors must under-

stand the temporary impact function’s decay rate to avoid the cumulative

effect of temporary impact. The prices under the different decay schedules

are shown in Table 4.1.

Table 4.1 Temporary Impact Rate of Decay

Temporary Impact Trade 1 Trade 2 Trade 3 Avg Price

Fast Decay $30.25 $30.30 $30.35 $30.30

Slow Decay $30.25 $30.38 $30.46 $30.37
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Figure 4.3d depicts how temporary decay can be determined from an

exponential decay function. First, it is important to note the required

properties of a decay function include: decreasing over time; always non-

negative; approaches zero asymptotically, otherwise the decay function

may include some permanent effect; and most important, provides an

accurate representation of reality. Too often, we find quasi-quants selecting

decay functions that possess only some of these required properties but

when tested with real data the function does not provide an accurate

description of the system. In many of these cases investors are better off

using intuition than depending on insight from a faulty model.

A useful decay function that exhibits these properties and proves an accu-

rate representation of reality is the exponential decay function. This func-

tion provides the percentage of temporary impact remaining over time

(compared to t5 0) and is written as d tð Þ5 e2γ�t . Here γ. 0 is the decay

parameter that determines the rate of decay. Larger values of γ will decay

at a faster rate than smaller values. From this expression the percentage

of temporary impact that has already decayed at time t is: 12 d tð Þ.
An appealing property of the exponential decay function is that it

decreases at a constant rate. In other words, the percentage reduction from

one period to the next is the same. For example, with a parameter of

γ5 0:5, the percentage of temporary impact remaining after the first

period d 1ð Þ5 e20:5�1 5 0:6065 and after two periods the percentage of

temporary impact remaining is d 21ð Þ5 e20:5�2 5 0:3679 and can also be

written as d 2ð Þ5 d 2ð Þ2. The amount of temporary impact that has decayed

after one period in this case is 12 e20:5�1 5 0:3935. After two periods the

amount of temporary impact that has decayed is 12 e20:5�2 5 0:632.
Figure 4.3d illustrates the quantity of temporary impact remaining for this

function over several trade periods. Readers can verify that values in this

figure match values computed above.

Example—Temporary Decay Formulation
The current price is $30.00 and the temporary impact of each trade xk is f xkð Þ
(we exclude permanent impact here for simplicity). If the decay function

parameter is γ the prices for our sequence of trades is:

P0 5 30:00

The price of the first trade P1 is the initial price plus the impact of the

trade:

P1 5 P0 1 f x1ð Þ
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The price of the second trade P2 is the initial price plus the impact of the

second trade plus the remaining impact from the first trade:

P2 5P0 1 f x2ð Þ1 f x1ð Þ � e2γ�1

The price of the third trade P3 is the initial price plus the impact of the

third trade plus all remaining temporary impact from all previous trades:

P3 5P0 1 f x3ð Þ1 f x2ð Þ � e2γ�1 1 f x1ð Þ � e2γ�2

Following, the price of the kth trade Pk is:

Pk 5P0 1 f xkð Þ1 f xk21ð Þ � e2γ�1 1?1 f xk2j
� � � e2γ�j 1?1 f x1ð Þ � e2γ� k21ð Þ

A general formulation of this expression is:

Pk 5P0 1
X

f xj
� � � e20:5� k2jð Þ

Illustration 4—Various Market Impact Price
Trajectories
Mathematically, market impact is the difference between the price trajec-

tory of the stock with the order and the price trajectory that would have

occurred had the order had not been released to or traded in the market.

We are not able to observe both price paths simultaneously, only price

evolution with the order or price evolution in the absence of the order.

Scientists have not figured a way to construct a controlled experiment that

will observe both situations simultaneously. Our failure to simultaneously

observe both potential price trajectories’ market impact has often been

described as the Heisenberg uncertainty principle of finance.

Figure 4.4 illustrates four potential effects of market impact cost.

Figure 4.4a shows the temporary impact effect of a trade. The buy order

pushes the price up and then it reverts to its original path. Figure 4.4b

depicts the permanent impact effect of a trade. The buy order pushes the

price up. However, after the trade the price does not revert to its original path,

but instead is parallel at a level higher than the original path. Figure 4.4c

shows a combination of temporary and permanent impact. First, the order

pushes the stock price up followed by some temporary reversion, but in

this case the price trajectory remains just slightly higher than and parallel

to the original trajectory. Figure 4.4d illustrates temporary impact dis-

guised as permanent impact. In this example, the decay of market impact

is extremely slow. It is so slow in fact that temporary impact has not
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completely dissipated by the end of the trading horizon or trade day. Thus,

the end of day price is composed of permanent impact with a large quantity

of temporary impact still remaining. Uninformed analysis may mistakenly

identify the full price dislocation as permanent impact. Incorrect identifica-

tion can have a dire consequence on post-trade attribution and performance

evaluation. Recognizing this prospect, many analysts have begun to employ

future prices such as the next day’s opening price or the closing price on the

next trade day or two trade days hence to ensure temporary impact has fully

dissipated.

DEVELOPING A MARKET IMPACT MODEL
To best understand the proposed market impact modeling approach it is

helpful to review what has been uncovered in previous studies. First, cost

is dependent on number of shares traded (e.g., trade size, total order size,

or imbalance). This was demonstrated by Loebb (1983); Holtausen,

Leftwich and Mayers (1987); Chan and Lakonishok (1993); Plexus Group

(2000), etc. Second, costs vary by volatility and market capitalization, e.g.,

Stoll (1978); Amidhud and Mendelson (1980); Madhavan and Sofianos (1998);
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Chan and Lakonishok (1995); Keim and Madhavan (1997); Breen,

Hodrick and Korajczyk (2002). Third, price impact results from informa-

tion leakage and liquidity needs. Fourth, market conditions affect the

underlying costs, e.g., Beebower and Priest (1980); Wagner and Edwards

(1993); Perold and Sirri (1993); Copeland and Galai (1983); Huang and

Stoll (1994), etc. Finally, trading strategy (style) influences trading cost,

e.g., Kyle (1985); Bertismas and Lo (1998); Grinold and Kahn (1999)

and Almgren and Chriss (1999, 2000). Following these results, we are

finally ready to define the essential properties for a market impact model.

Essential Properties of a Market Impact Model
Based on these research and empirical findings, we postulate the essen-

tial properties of a market impact model below. These expand on those

published in Optimal Trading Strategies (2003) and Algorithmic Trading

Strategies (2006).

P1. Impact costs increase with size. Larger orders will incur a higher

impact cost than smaller orders in the same stock and with the same

strategy.

P2. Impact costs increase with volatility. Higher volatility stocks incur

higher impact costs for the same number of shares than for lower

volatility stocks. Volatility serves as a proxy for price elasticity.

P3. Impact cost and timing risk depend on trading strategy (e.g., trade

schedule, participation rate, etc.). Trading at a faster rate will incur

higher impact cost but less market risk. Trading at a slower rate will

incur less impact but more market risk. This is known as the trader’s

dilemma. Traders need to balance the trade-off between impact cost

and risk.

P4. Impact costs are dependent upon market conditions and trading

patterns. As the order is transacted with more volume the expected

impact cost will be lower. As the order is transacted with less volume

the expected impact cost will be higher.

P5. Impact cost consists of a temporary and a permanent component.

Temporary impact is the cost due to liquidity needs and permanent

impact is the cost due to the information content of the trade. They

each have a different effect on the cost of the trade.

P6. Market impact cost is inversely dependent upon market capitalization.

Large cap stocks have lower impact cost and small cap stocks have

higher impact cost in general (holding all other factors constant). Some

difference in cost across market capitalization categories, however,
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can be explained by volatility. For example, there are examples of

small cap stocks with lower costs than some large cap stocks holding

all other factors constant and there are examples of large cap stocks

having higher costs than small cap stocks holding all other factors con-

stant. This difference, however, can usually be explained through price

volatility.

P7. Trading costs increase with spreads. Stocks with larger bid-ask

spreads have higher trading costs than stocks with smaller spreads (all

other factors held constant).

Additional factors that are found to explain differences in impact cost

across stocks include:

P8. Trading stability. Differences in impact cost at the stock level are

also dependent upon the stability of daily volumes and the intraday

trading patterns (e.g., how the stock trades throughout the day and

the quantity of block volume). Stocks with stable trading patterns

(e.g., certainty surrounding day-to-day volumes, intraday volume

profile, and quantity of block executions) are generally associated

with lower impact cost than stocks exhibiting a high degree of instabil-

ity (e.g., high uncertainty surrounding day-to-day volumes, large varia-

tions in intraday patterns, and choppy or sporadic block executions).

Since large cap stocks are associated with more stable trading patterns

and small cap stocks generally relate to less stable trading patterns,

market cap is a reasonable proxy for trading stability. However, at

times mature small cap companies exhibits more stability than large

caps, and vice versa.

P9. Stock specific risk (idiosyncratic risk). We found the error in trading

cost (measured as the difference between the estimated cost and the

actual cost) was correlated to the stock’s idiosyncratic risk. This is

an indication that price elasticity is dependent on stock volatility but

there also appears to be a company specific component.

P10. Spreads are a proxy for trading pattern uncertainty. While spreads

are treated as a separate transaction cost component, we have found

that spreads are also correlated with company specific market impact

cost. This finding, however, is more likely to be due to stocks specific

trading stability than due to actual spreads (because spread costs were

subtracted from the trading cost). Stocks with higher spreads were

also usually those stocks with less stable intraday trading patterns.

The higher spreads seemed to account for the instability in intraday

trading patterns.
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DERIVATION OF MODELS
We provide an in-depth discussion of two market impact modeling

approaches: the Almgren & Chriss path dependent approach and the I-Star

cost allocation approach.

Almgren & Chriss—Market Impact Model
The Almgren & Chriss (AC) market impact model is path dependent

based on the actual sequence of trades and executions. Cost is computed

as the difference between the actual transaction value of the sequence

of trades and the transaction value that would have occurred had all the

trades been executed at the arrival price. The AC model follows closely

to the graphical representative shown in the price trajectory graphs of

Madhavan (2000).

The cost function corresponding to the AC model is:

Cost5 Side �
X

xiP0 2
X

xipi
� �

ð4:1Þ

where,

Side5
11 Buy Order
21 Sell Order

�

xi 5 shares traded in the ith transaction

pi 5 price of the ith transaction

P0 5 arrival price

X
xi 5 total shares traded

It is important to note here that this calculation only incorporates the trad-

ing related transaction cost component and not potential opportunity cost.

For purposes of building a market impact model, one of the basic underly-

ing assumptions is that all shares of the order X will be transacted, e.g.,P
xi 5X.

The Almgren & Chriss model computes market impact cost for each

individual trade. The entire sequence of trades is then rolled up to determine

total value traded and total trading cost. Because this approach is based on

the sequence of trades the model is referred to as a path dependent approach.

Additionally, because total cost is derived from trade level data it is also

often referred to as a bottom-up approach.
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The side indicator function above allows us to use a consistent expression

for buy and sell orders. Many authors prefer to state the trading cost function

separately for buys and sells as follows:

Cost5

P
xiP0 2

P
xipi BuysP

xipi 2
P

xiP0 Sells

(

In a later chapter (Chapter 8, Algorithmic Decision Making Framework)

we expand on the order completion assumption and introduce ways

investors can incorporate opportunity cost into the market impact model

and decision making process. We show how investors can develop

strategies to maximize the likelihood of executing an order within the

desired price range (e.g., within their limit price) and hence minimize

the probability of incurring opportunity cost due to adverse price

movement.

The Almgren & Chriss model is comprised of three main components:

temporary cost function, permanent cost function, and the market impact

dissipation function. The temporary and permanent impact functions

define how much the stock price will move based on the number of shares

traded. The dissipation function defines how quickly the temporary price

dislocation will converge or move back to its fair value (or in most situa-

tions, the new fair value which incorporates the permanent market impact

cost).

Let us utilize a discrete time period random walk model. This process is

described below.

Random Walk with Price Drift—Discrete
Time Periods
Let the arrival price or starting price be P0.

The price in the first period is equal to the starting price plus price drift in

the first period plus noise (price volatility). That is, P1 5 P0 1ΔP1 1 ε1.

Here ΔPj represents the natural price movement of the stock in the jth

period and is independent of the order (e.g., it would have occurred if

the order was or was not transacted in the market), and εj is random noise

(volatility) in the jth period.

The price in the second period is,

P2 5P1 1ΔP2 1 ε2
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By substitution we have,

P25P11ΔP21ε25 P01ΔP11ε1ð Þ1ΔP21ε25P01ΔP11ΔP21ε11ε2

This can also be written as:

P2 5P0 1
X2
j51

ΔPj 1
X2
j51

εj

The discrete random walk model can then be generalized to determine

the expected price Pk at any period of time k as follows:

Pk 5P0 1
Xk

j51

ΔPj 1
Xk

j51

εj

In practice, we often make assumptions about the properties and distribution

of the price drift ΔPj and volatility εj terms such as a constant drift term or

constant volatility.

In the case where there is no price drift term (e.g., no stock alpha over the

period), the discrete random walk model simplifies to:

Pk 5P0 1
Xk

j51

εj

Random Walk with Market Impact
(No price drift)
Now let us consider the discrete random walk model without price drift

but with impact cost.

Let, P0 5 arrival price, f xkð Þ5 temporary impact and g xkð Þ5 permanent

impact from xk shares, and ε is random noise.

The first trade price is:

P1 5P0 1 f x1ð Þ1 g x1ð Þ1 ε1

The second trade price is the equal to the first trade price plus temporary

and permanent impact caused by trading x2 shares less the quantity of

temporary impact from the first trade that has dissipated from the market

price at the time of the second trade. This is:

P2 5P1 1 f x2ð Þ1 g x2ð Þ2 ff x1ð Þ � ð12 e2γ�1Þg1 ε2
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where, f x1ð Þ � 12 e2γ�1� �
represents the reduction of temporary market

impact from the first trade.

Now, if we substitute our first trade price into the equation above we have:

P2 5 fP0 1 f x1ð Þ1 g x1ð Þ1 ε1g1 ff x2ð Þ1 g x2ð Þg2 ff x1ð Þ � 12 e2γ�1� �g1 ε2

This reduces to:

P2 5P0 1 ff x2ð Þ1 f x1ð Þ � e2γ�1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cumulative Temporary

1 fg x1ð Þ1 g x2ð Þg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Cumulative Permanent

1 fε1 1 ε2g|fflfflfflfflffl{zfflfflfflfflffl}
Cumulative Noise

where f x1ð Þ � e2γ�1 is the remaining temporary impact from the first trade.

Following, this formulation, the price in the third period is:

P3 5 P0 1 ff x3ð Þ1 f x2ð Þ � e2γ�1 1 f x1ð Þ � e2γ�2g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cumulative Temporary

1 fg x1ð Þ1 g x2ð Þ1 g x3ð Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cumulative Permanent

1 fε1 1 ε2 1 ε3g|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Cumulative Noise

After simplifying, we have:

P3 5P0 1
X3
j51

f xj
� � � e2γ� 32jð Þ 1

X3
j51

g xj
� �

1
X3
j51

εj

In general, the price in period k is:

Pk 5P0 1
Xk
j51

f xj
� � � e2γ� k2jð Þ 1

Xk
j51

g xj
� �

1
Xk
j51

εj

With the addition of price drift ΔP into our formulation the equation

becomes:

Pk 5P0 1
Xk
j51

ΔPj 1
Xk
j51

f xj
� � � e2γ� k2jð Þ 1

Xk
j51

g xj
� �

1
Xk
j51

εj

To estimate the AC model we need to first define our f xð Þ and g xð Þ
impact functions and corresponding parameters, as well as the dissipa-

tion impact rate.

f xð Þ5 side � a1 � xa2

g xð Þ5 side � b1 � xb2

decay function5 e2γ�t
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Then, we have to estimate the following five parameters using actual

trade data:

a1; a2; b1; b2; γ

In practice, it is often difficult to find statistically significant robust and

stable parameters over time. Often parameters jump around from period

to period and from stock to stock. Furthermore, these parameters frequently

take on counterintuitive values such as the case if either a2 , 0 or b2 , 0
which would imply cheaper costs as we increase the quantity of shares

traded. This would also create an arbitrage opportunity. For example, an

investor would be able to purchase a large number of shares of stock and

then sell smaller pieces of the order at higher prices. While this may be

appropriate for a large bulk purchase at an outlet store it does not hold true

for stock trading.

The Almgren & Chriss model is:

Pk 5 P0 1
Xk
j51

f xj
� � � e2γ� k2jð Þ 1

Xk
j51

g xj
� �

1
Xk
j51

εj ð4:2Þ

I-STAR MARKET IMPACT MODEL
This section provides an overview of the I-Star market impact model. The

model was originally developed by Kissell and Malamut (1998) and has

been described in Optimal Trading Strategies (Kissell and Glantz, 2003),

A Practical Framework for Estimating Transaction Costs and Developing

Optimal Trading Strategies to Achieve Best Execution, (Kissell, Glantz,

and Malamut (2004)), and Algorithmic Trading Strategies (Kissell, 2006).

The model has greatly evolved since its inception in order to accommodate

the rapidly changing market environment such as algorithmic trading,

Reg-NMS, decimalization, dark pools, defragmentation, and a prolifera-

tion of trading venues, etc. A full derivation of the model is provided

below with additional insight into where the model has evolved to incorpo-

rate industry and market microstructure evolution.

The I-Star impact model is:

I�bp 5 a1 �
Q

ADV

� 	a2

� σa3 ð4:3Þ

MIbp 5 b1 � I� � POVa4 1 12 b1ð Þ � I� ð4:4Þ

TR5σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
� 1
3
� S
ADV

� 12 POV
POV

r
� 104bp ð4:5Þ
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MODEL FORMULATION
I-Star is a cost allocation approach where participants incur costs based

on the size of their order and the overall participation with market volumes.

The idea behind the model follows from economic supply-demand

equilibrium starting at the total cost level1. The model is broken down

into two components: Instantaneous Impact denoted as I-Star or I* and

Market Impact which denoted as MI which represents impact cost due to

the specified trading strategy. This impact function is broken down into a

temporary and permanent term.

I-Star: Instantaneous Impact Equation

I�bp 5 a1 �
Q

ADV

� 	a2

� σa3 ð4:6Þ

In trading, I-Star represents what we call theoretical instantaneous impact

cost incurred by the investor if all shares were released to the market.

This component can also be thought of as the total payment required to

attract additional sellers or buyers to the marketplace. For example, the

1The reasoning behind this formulation and how it diverges from the Almgren &

Chriss expression is simple. Prior to moving into the financial industry I was employed

by R.J. Rudden Associates, Inc., a leading global consulting firm specializing in utility

cost of service studies as part of rate cases. In these cases, utilities (both natural gas

and electric companies) formulated studies to determine serving cost per customer class

by mapping actual costs to usage point and allocating this quantity to each party based

on usage percentage. This would ensure each customer paid only for services consumed

based on the cost of providing that service. While many services were easy to compute

usage by each customer, such as electric kwh or natural btu consumption, others were

more difficult to compute due to services or mechanics that are shared across custo-

mers. For example, there are multiple parties sharing the same generators, overhead

transmission lines, pipeline and natural gas storage facilities, as well as corporate func-

tions such as strategy and administrative services. The basic concept of these studies

was that we started with a total cost value that was known from accounting records,

and then these costs were mapped and allocated to the appropriate customer based on

usage and cost to provide the service. This was done to ensure a fair and

equitable system across all customers so that no single customer class was being charged

more than their fair usage. Those who played a large role (and unknowingly) in the

development of an industry leading market impact model include: Rich Rudden, Steve

Maron, John Little, Russ Feingold, Kevin Harper, and William Hederman. Thus fittingly,

when I was presented with a project to compute and estimate market impact cost, the

modeling approach I undertook followed this cost allocation methodology. The I-Star

model follows directly from this system. Actual costs as mapped to their underlying

components and allocated to point of usage. The methodology is described in this chapter

and as we show has many appealing properties for execution strategies, algorithmic trad-

ing rules, as well as for portfolio optimization and basket trading strategies.
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premium buyers must provide or discount sellers grant to complete the

order within a specified timeframe.

In economics, I-Star represents the incremental cost incurred by demanders

resulting from a supply-demand imbalance. We depicted this above via a

graphical illustration. Following that example, our I-Star cost is determined

directly from the imbalance Δq and the corresponding change in price Δp,
that is, I� 5Δq �Δp5Δq � p2 2 p�ð Þ (Figure 4.2d).
The variables of the instantaneous impact equation are:

Q5market imbalance the difference between buying and selling pressureð Þ
ADV 5 30 day average daily volume computed during exchange hoursð Þ

σ5 30 day volatility day-to-day price changeð Þ
a1; a2; a3 5model parameters via non-linear regression analysisð Þ

Market Impact Equation

MIbp 5 b1 � I� � POVa4|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Temporary Impact

1 12 b1ð Þ � I�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Permanent Impact

ð4:7Þ

Market impact represents the cost that is expected to be borne by the

trader based upon the underlying execution strategy, e.g., percentage of

volume (POV), trade schedule, etc.

The variables of the model are:

I� 5 instantaneous impact

POV 5 percentage of volume trading rate

b1 5 temporary impact parameters via non-linear regression analysisð Þ
a4 5model parameters via non-linear regression analysisð Þ

Market impact further consists of the temporary and permanent cost

component.

Derivation of the Model
Consider a situation where buyers have V shares to buy and sellers have

V shares to sell—both within the same time period and urgency needs. In

this situation we have an equilibrium condition where the shares to buy

are equal to the shares to sell. Therefore, we expect there to be V shares

transacted in the market without any extraordinary price movement (but

there may be some price movement due to market, natural alpha, or

noise).
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Now suppose another participant (participant A) enters the market with

an order to buy Q shares over the same time and with the same urgency

needs. This creates a buy market imbalance equal to the Q shares. Notice

that this is equivalent to the Δq shares from our supply-demand above.

The new buy shares are V 1Q and the sell shares remain at V . In order

for these additional Q shares to execute buyers will have to provide a

premium to the market to attract the additional sellers.

Let’s define this total premium as I�$. Notice here that we are describing

this process using dollar units. This process is the same whether dollars,

dollars/share, or basis points are used. Our temporary impact parameter

(b1 from Equation 4.7) defines the breakdown between temporary and

permanent cost. Total temporary cost is b1 � I�$ and total permanent cost

is 12 b1ð Þ � I�$.
In this formulation, it is not fair to assume that the entire temporary cost

will be borne by participant A alone. The temporary cost will be rather

shared (allocated) across all buyers. Think of this approach as an average

costing methodology.

Since we now expect there to be V1Q shares traded, that is, the original

V shares plus the newly arrived Q shares, the portion of total temporary

impact expected to be borne by investor A is calculated in proportion to

their total trade volume. This is:

Cost Allocation Method
Temporary market impact cost is dependent upon the underlying trading

rate. This rate is expressed in terms of percentage of volume or simply

POV. It is:

POV 5
Q

Q1V

In this notation, Q is the net imbalance (absolute difference between

buying and selling pressure), V is the expected volume excluding the

order imbalance, and Q1V is the total number of shares that is expected

to trade in the market.

Therefore we have,

Temporary Impact5 b1 � I�$ �
Q

Q1V
ð4:8Þ

Permanent Impact5 12 b1ð Þ � I�$ ð4:9Þ
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Or alternatively,

MI5 b1 � I�$ �
Q

Q1V
1 12 b1ð Þ � I�$ ð4:10Þ

We can see from Equation 4.10 that if participant A transacts more

aggressively, say in a shorter period where only half of the expected market

volume will transact, that is, 12V , the temporary market impact cost allocated

to participant A will now be:

Q
Q1 1

2V

which is a higher percentage than previously.

If A trades over a longer period of time where 2V shares are expected to

trade, market impact cost allocated to them will be:

Q
Q12V

which is a smaller percentage than previously.

This example helps illustrate that market impact cost is directly related

to the urgency of the strategy. Quicker trading will incur higher costs on

average than slower trading which will incur lower costs on average.

Trading risk, on the other hand, will be lower for the more urgent orders

and higher for the more passive orders, i.e. the trader’s dilemma.

Due to the rapidly changing nature of the financial markets from regula-

tory change, structural changes, and investor confidence and perception of

order flow information that often accompanies aggressive trading, many

participants have begun to fit the market impact model using a more

general form of the equation that incorporates an additional parameter a4.
This formulation is:

MIbp 5 b1 � I� �
Q

Q1V

� 	a4

1 12 b1ð Þ � I� ð4:11Þ

Or in terms of POV we have:

MIbp 5 b1 � I� � POVa4 1 12 b1ð Þ � I� ð4:12Þ

The relationship between temporary impact and POV rate is shown in

Figure 4.5. The percentage of temporary impact that will be allocated to

the order is shown on the y-axis and the corresponding POV rate is shown

on the x-axis. The figure shows the percentage allocated for various POV

functions For example, when a4 5 1 the relationship is linear and costs
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change at the same rate. When a4 5 1/2 the relationship is a squareroot func-

tion. Costs increase much quicker for the lower POV rates and at

a reduced rate for the higher POV rates. When a4 5 2 the relationship is a

squared function. Costs increase at a faster rate for the lower POV rates

and at a slower rate for the higher POV rates. Depending upon the rate of

change, the a4 parameter, investors may structure their underlying trading

schedule in different ways, either trading faster or slower than normally.

Notice that at POV5 100% investors incur the entire temporary cost

regardless of the function of the temporary impact rate.

Up to this point we have not yet defined the functional form of I�. Our
practical experience, empirical evidence, and data observations have

found that trading cost is dependent upon size, volatility, and strategy.

Thus, our functional form needs to include at least these variables. Some

alternative or competing models have included market cap or other stock

fundamental factors to differentiate between costs for different stocks

even for the same relative size, e.g., 5% ADV. Our analysis has found

that volatility provides a better fit than variables such as market cap, log of

market cap, etc. At the very least, we need to ensure that the model adheres

to the essential properties defined above.

I* Formulation
Our preferred functional form for I� is the following power function:

I�bp 5 a1 �
Q

ADV

� 	a2

� σa3 ð4:13Þ
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Notice the function form includes parameters a1; a2; a3 so that we do not

force any preconceived notions onto the model such as a square root func-

tion with size or a linear relationship with volatility. These parameter

values are derived from our underlying data set.

At this point, we alert readers about setting fixed parameter values. For

example, many industry participants set a2 5 1/2 which is the square root func-

tion—or more precisely, numerous industry participants assume that costs

increase with the square root of size. Fixing this parameter value to a2 5 1/2

implies that investors will react to order and trade information in the same

exact manner for all stocks and markets and in all time periods regardless of

the underlying economic conditions. Which is simply not true. Investors react

to trade information in different ways at different times. For example, recall

the differences in market dynamics during the low volatility period of

2003�2004 and the high volatility period of Sept 2008 through Mar 2009.

Where did this 1/2 or square root belief come from? We believe the
1/2 power was set in place due to the way volatility scales with time or

because of the 1/2 parameter behind the optimal economic order quantity

model. While in these cases there is a natural reason for the 1/2 parameter,

the same is not true when dealing with market impact cost modeling or

price evolution and displacement based on order information.

There have been other functional forms of I� that have been proposed.

For example, Optimal Trading Strategies (2003) presents three forms of

the I-Star model:

I�bp 5 a1 �
Q

ADV

� 	
1 a2 � σ1 a3 ð4:14Þ

I�bp 5 a1 �
Q

ADV

� 	
1 a2 � σa3 1 a4 ð4:15Þ

I�bp 5 a1 �
Q

ADV

� 	a2

� σa3 ð4:16Þ

We have performed significant testing on these models (as well as other

function forms) using numerous data sets, time periods, and global

regions, and found the power function formulation to be the most robust,

stable, and accurate.

One important question that surfaces: Since the parameters a1; a2; a3; b1
are estimated across a data set of stocks and are identical for all stocks,

how do we differentiate trading cost across different stocks and the same

order size?
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To address this let us revisit our graphical illustration of market impact

using the supply-demand curves. When a new buyer enters the market

the demand curve shifts out while the supply curve shifts up to account

for order information. A new clearing price P2 emerges at the intersection

of these new curves, and is determined from the slope of the supply and

demand curves. This slope happens to be the price elasticity of demand

and supply. In actuality, it is often difficult to ascertain the correct price

elasticity for a physical good, and even more difficult to ascertain the

correct price elasticity for a financial instrument. However, the volatility

term serves as an effective proxy for the financial instruments price elasticity

term. Notice that volatility is present in each of the variations of I-Star above.

Volatility is used in the model to assist us uncover how market impact will

differ across stocks. This is explained as follows:

The instantaneous impact equation for a particular stock k is:

I�k 5 a1 �
Qk

ADVk

� 	a2

� σa3
k ð4:17Þ

Rewrite this expression as follows:

I�k 5 fa1 � σa3
k g|fflfflfflfflffl{zfflfflfflfflffl}

Sensitivity

� Qk

ADVk

� 	
|fflfflfflfflffl{zfflfflfflfflffl}

Shape

a2

ð4:18Þ

We now have a sensitivity expression a1 � σa3
k which is stock specific and

a shape expression Q
ADV

� �a2
which is a universal shape relationship across

all stocks. If we have parameter a2 5 1 then we have a linear function

where its slope is a1 � σa3
k . This is identical to the supply-demand repre-

sentation we showed above. In our formulation, we allow for non-linear

supply and demand curves where each stock has its own sensitivity but

the shape of the curve is the same across all instruments (which has been

found to be a reasonable relationship).

A natural question is why do we not estimate these parameters at the

stock level? The answer—we do not have sufficient data to estimate these

parameters for all stocks. If we look at market impact for a single stock,

change is often dominated by market movement and noise making it very

difficult to determine robust and stable parameters at the stock level. In

the next chapter, we show challenges behind fitting a stock level model.

Comparison of Approaches
How do the Almgren & Chriss and I-Star models compare? Readers

might be interested to know that both of these models will converge to
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the same trading trajectory for certain parameter values. This was shown by

Roberto Malamut (Ph.D., Cornell University) via simulation techniques. In

addition, even if the estimated parameters are close to true parameter values

for both models the resulting trading trajectories from each model will be

extremely close to one another, thus resulting in the same underlying trading

strategy. We, however, have found an easier time finding a relationship

between cost and order size using the I-Star impact model. But we encour-

age readers to experiment with both approaches to determine the modeling

technique that works best for their needs. Calibration of the I-Star model

and required data set is described next.

Underlying Data Set
The underlying data set needed to fit the I-Star model shown above

includes: Q5 imbalance or order size, ADV 5 average daily volume, V� 5
actual trading volume, σ5 price volatility, POV 5 percentage of volume,
and Cost5 arrival cost. These variables are described as follows.

Imbalance/Order Size
Recall, we based the I-Star model on total market imbalance (e.g.,

differences in buyer and seller transaction pressure). Regrettably, exact

buy-sell imbalance at any point is neither known nor reported by any

source so we have to infer this information from various data sets and

techniques. The following methodologies have been used to infer order

sizes and imbalances:

Lee and Ready Tick Rule—imbalance is defined as the difference between

buy-initiated and sell-initiated trades in the trading interval. A positive

imbalance signifies a buy-initiated order and a negative imbalance sig-

nifies a sell-initiated order. The Lee and Ready tick rule maps each trade

to the market quote at that point in time. Trades at prices higher than the

bid-ask spread mid-point are denoted as buy-initiated and trades at prices

lower than the bid-ask spread mid-point are designated as sell initiated-

trades. Trades exactly at the mid-point are designated based on the previous

price change. If the previous change was an up tic, we designate the trade

buy-initiated; down tic, a sell-initiated trade. The modified Lee and Ready

tick rule assigns trades as buy- or sell-initiated based on price change. An

up tic or zero-up tic is known as a buy-initiated trade and a down tic or

zero-down tic represents a sell-initiated trade. The proliferation of dark

pools prompted many practitioners to exclude trades that occurred inside the

bid-ask spread from being designed as buy- or sell-initiated. The difference

between buy-initiated and sell-initiated trades is denoted as the order
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imbalance, and the VWAP price over the period is used as a proxy for the

average execution price for the order and is used to compute arrival cost.

Order Data—broker-dealers and vendors (including OMS and EMS com-

panies) have large investor order databases. These actual order sizes and

execution prices coupled with the stock specific information serve as

input data for the model.

Customer Order Data—customers maintain their own inventory of trades

and orders. Clients have access to the full order size and actual execution

prices. These data points are used for input in to the model.

ADV5 average daily trading volume. This metric is computed based on

total market volume during exchange hours over a specified historical

period such as a 20 or 30 day period. There has been much discussion

regarding the appropriate time period to measure ADV and how the average

should be calculated. In Chapter 7, Advanced Algorithmic Forecasting

Techniques, we discuss many of the metrics being used and how an analyst

can best determine the historical ADV measure for their needs.

V� 5 actual market volume over the trading period. If the order was

traded in the market over the period from 9:30 a.m. to 4:00 p.m. this

measure is the actual volume on the day, but if the order was traded over

the period form 10:00 a.m. to 2:00 p.m. then this statistic is measured as

total market volume during the time the order was traded in the market,

from 10:00 a.m. through 2:00 p.m.

σ5 annualized volatility expressed as a decimal (e.g., 0.20 and not 20%

or 20). It is computed as the standard deviation of log price returns (close-

to-close) over the previous 20 or 30 days. In Chapter 6, Price Volatility,

we discuss various different volatility forecasting methods used in the

industry. The Journal of Trading article titled “Intraday Volatility Models:

Methods to Improve Real-Time Forecasts” Kissell (2012) presents techni-

ques on how analysts can develop real-time volatility forecasts to help

improve trading decisions and algorithmic trading performance.

Percentage of Volume5 computed as the market imbalance or customer

order size divided by the actual market volume that traded in the market

during the trading period. That is:

POV 5
Q
V�

Arrival Cost5 the difference between the execution price of the order

and the arrival price of the order, e.g., the mid-point of the bid-ask
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spread when the order was released to the market. This measure is usu-

ally expressed in basis points. That is:

Cost5 Side � Pavg 2P0
P0

� 104bp

where,

Pavg 5 average execution price of the order

P0 5 arrival price

Side5
11 if Buy
21 if Sell

�

Pre-trade of pre-trades. Another technique that has become more popular

and is being used by portfolio managers is known as the pre-trade of pre-

trade approach. Investors use pre-trade estimates provided by multiple

broker-dealers and/or vendors for various order sizes, strategies, and

stocks. These data points are used as input to the I-Star model, the results

of which form a general consensus model of the industry. The technique is

further described in Chapter 5, Estimating I-Star Model Parameters, as

well as “Creating Dynamic Pre-trade Models: Beyond the Black Box”

(Journal of Trading, Fall 2011).

Imbalance size issues. Each of the previously discussed methodologies

to derive our order imbalance size is accompanied by some inherent lim-

itations. These include:

1. Misidentification. Imbalance is inferred from the trade and may mis-

identify buys as sells and vice versa.

2. Survivorship Bias. Investors often allow orders that are trading well

(inexpensive) to continue to trade and cancel those orders that are

underperforming (expensive)

3. Small Orders. Large concentrations of small orders cause results to be

skewed to be more accurate for small trades and potentially less accurate

for large trades.

4. Incomplete Data Set. B/Ds and vendors are often not familiar with

investors and portfolio managers’ intentions. They often observe day

orders from the fund only (the fund may give a large multi-day order

to different brokers each day in order to disguise their trading

intentions).

5. Over-fitting. The universe of trades is executed in a very similar manner,

making it difficult to perform what-if analysis and evaluate alternative

trading strategies.
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PARAMETER ESTIMATION TECHNIQUES
Estimating parameters of the I-Star model is not as direct as estimating

the betas of a linear regression model. The I-Star model is non-linear and

dependent on the product of parameters and these parameters are extremely

sensitive in the marketplace. As a result it is difficult to find robust para-

meters that are stable over time.

For example, our model is:

I� 5 a1 �
Q

ADV

� 	a2

� σa3

MI5 b1 � I� � POVa4 1 12 b1ð Þ � I�

After substitution we have:

MI5 b1 � a1 �
Q

ADV

� 	a2

� σa3

� 	
� POVa4 1 12 b1ð Þ � a1 �

Q
ADV

� 	a2

� σa3

� 	

Below are three different techniques that have been used in the industry

to estimate the parameters of this model. These techniques are:

1. Two-Step Process

2. Guesstimate Technique

3. Non-Linear Least Squares

Technique 1: Two-Step Process
The two step regression process involves fitting the parameters of the

models in two stages. This technique was developed for the case where

a4 5 1 and there is a linear relationship between temporary impact and

trading cost. This is as follows:

Step 1: Estimate Temporary Impact Parameter
Group the data into different POV rate categories such as 1% buckets.

It is important to have a balanced data set so that the sizes and volatilities

in each bucket are consistent across different POV rates. Otherwise, sample

the data such that each POV bucket has identical order size and volatility

characteristics.

One method to fit parameters is to group data into size and volatility buckets

and compute each category’s average market impact. This grouping is useful
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because the grouping eliminates noise (better shows a pattern) and provides

a balanced data set (e.g., the underlying sample data is not skewed to certain

sizes). When we group the data, we filter out small sample categories. For

example, require at least 10 or 20 data points for each grouping bucket to be

included in the estimation analysis.

Next, run a regression of the average cost of each POV category as a

function of the POV rate. That is:

Avg Cost5α0 1α1 � POV

Solve for α0 and α1 via linear regression analysis. Then estimate b1 from

the estimated alphas as follows:

b̂1 5
α1

α0 1α1

Notice here that the intercept term α0 corresponds to POV5 0. It further
indicates the cost quantity that will be incurred regardless of the POV

rate in the analysis2.

Step 2: Estimate ai Parameters
The process to estimate parameters a1; a2; a3 follows from our estimated

value for b̂1 above. We have:

MI5 b̂1 � I� � POV 1 ð12 b̂1Þ � I�

Next factor the equation as follows:

MI5 I� � b̂1POV 1 12 b̂1
� �� �

Dividing both sides by b̂1POV1 12 b̂1
� �

gives:

MI

b̂1POV 1 12 b̂1
� �� � 5 I�

2During my economic consulting days with R.J. Rudden Associates, Inc., we used a

similar analysis called a zero mains study. This study served to determine the break-

down between the fixed cost of installing a gas main and the variable cost of the gas

main that is dependent upon the size of the main. The intercept term is equivalent to a

gas main of zero inches and represents the fixed cost. The two-step regression analysis

follows from this type of study.
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Next, let MI0 5
MI

b̂1POV1 12 b̂1
� �� � then we have:

MI0 5 I�

Now rewrite I� in its full functional form:

MI0 5 a1 �
Q

ADV

� 	a2

� σa3

The model parameters can now be estimated via non-linear regression tech-

niques such as non-linear least squares or maximum likelihood estimates. It

is important for analysts to evaluate heteroscedasticity and multicollinearity

across the data.

After grouping the data, we often see the equation’s LHS MI0 will have
all positive values (or only a few categories with negative values). In

these cases we can perform a log transformation of the data. If all LHS

data points are positive then we can transform all data points. If there are

a few grouping categories with negative values we can transform all the

positive LHS records and either eliminate the groupings with negative

values or give these records a transformed LHS value of say 23 or 25

(the exact value will depend upon the positive LHS values and units).

Another benefit of performing a log transformation is that this transfor-

mation will correct (approximately) for the heteroscedasticity—no other

adjustment is required.

The log transformation of the equation is as follows:

ln MI0ð Þ5 ln α1ð Þ1α2ln
Q

ADV

� 	
1α3ln σð Þ

This regression can now be solved via OLS—which is nice and direct and

has easy statistics to interpret. The estimated I-Star parameters are then:

a1 5 expðα1 1 0:5 � SEÞ; a2 5α2; and a3 5α3

It is important to note that the two-step process can also be performed using

the a4 parameter and non-linear temporary market impact rate. In this case,

we would estimate values for b1 and a4 in the first steps, and proceed in

exactly the same manner in the second step starting with:

MI0 5
MI

b̂1POVa4 1 12 b̂1
� �� �
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Technique 2: Guesstimate Technique
The “guesstimate” technique is actually more complex than a simple guess

at the solution. Rather this technique offers an iterative process where we

make an educated guess for b1 and then solve for a1; a2; a3 similar to

how we solve in the two-step process above after estimating b1. For

example, we have found from empirical data that for the most part we have

0:80# b1 # 1:00. Thus, we can perform an iterative solution process where

we let b1 vary across these values. For example, allow b1 to take on each of

the values of b1 5 0:80; 0:81; . . .; 1:00. Then estimate the alpha parameters

via non-linear regression analysis. The best fit solution, and thus, model

parameter values, can be determined by the best fit non-linear R2 statistic.

In the case where the temporary impact POV rate parameter a4 6¼ 1 we can

devise an iterative approach to allow both b1 and a4 to vary over their

feasible ranges and determine the best fit for all parameters: a1; a2; a3; a4; b1.
For example,

Let b1 5 0:80; 0:81; . . .;1:00

Let a4 5 0:00;0:05; . . .; 2:00

Analysts can choose the increment in these iterative loops to be smaller

or larger as they feel necessary.

Technique 3: Non-Linear Optimization
Non-linear optimization is very sensitive to the actual convergence

technique used, the starting solution, and of course, the level of correlation

across the underlying input variables. The solution often has a difficult time

distinguishing parameters and we are left with a good model fit but with

estimated parameters based on the composite value k1 5 b1 � a1. While the

model may display an accurate fit, it would be difficult to distinguish

between the effects of b1 or a1 individually. We could end up with a model

that fits data well but which is limited in its ability to provide sensitivity

and direction. Analysts choosing to solve the parameters of the model via

non-linear regression of the full model need to thoroughly understand the

repercussions of non-linear regression analysis as well as the sensitivity of

the parameters, and potential solution ranges for the parameters. Non-linear

regression estimation techniques are the main topic of Chapter 5.

Model Verification
We introduce methods to test and verify results by first forecasting market

influences cost and timing risk using estimated parameters. Estimates are

compared to actual costs in four different ways.
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Model Verification 1: Graphical Illustration
Plot estimated and actual costs for various order sizes as a scatter graph

(cost as y-axis and size as x-axis). Compute average cost for different order

sizes to eliminate market noise, making sure to incorporate enough obser-

vations in each size category to eliminate the effect of market noise.

Graphical illustration is the most helpful performance analysis for clients,

although it is the least helpful from a statistical perspective.

Model Verification 2: Regression Analysis
Run a regression between actual and estimated costs using all data. If the

forecasting model is accurate, then the regression results should show an

intercept statistically equal to zero and a slope statistically equal to one.

The R2 may be lower due to noise but the t-stat and f-value should be very

high implying a suitable model. This analysis will show visually whether

or not the model is working well (e.g., all order sizes). Regression is the

second most useful tool to help clients evaluate our model, and the second

most effective statistical technique.

Model Verification 3: Z-Score Analysis
This technique allows us to jointly evaluate both the accuracy of the market

impact and timing risk models. The test consists of computing a statistical

z-score to determine the number of standard deviations the actual cost was

from the estimated cost. The z-score is calculated as follows:

Z5
Actual2Cost Estimated Market Impact

Timing Risk

If the model is accurate we should find the average z-score to be close

to zero and the standard deviation (or variance) to be close to 1. That is,

an accurate model will have:

ZB 0; 1ð Þ

It is important that we compute and evaluate the z-score for various order

sizes and categories such as buys and sells, market cap, volatility, and so

forth to ensure the model is robust or if deficiencies exist.

The distribution of the z-score and the chi-square goodness of fit of the

data test will help evaluate the model statistically. This procedure has

proven the most useful tool evaluating models from both a statistical

basis and real-time TCA analysis (e.g., in the algorithms or from a reporting

perspective).
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Model Verification 4: Error Analysis
We analyze the error term (regression residual) to determine if we ignored

factors driving trading cost. We compute the error term δi (difference

between estimated and actual) as follows:

δi 5 Estimated MI2Actual Cost

Then we regress δi on factors: market movement, side of order (buy vs.

sell), sector, order size (to determine robustness of fit), market cap, and

so forth. A statistically significant result would indicate the “factor” is a

consistent contributor to trading cost.

Important Note: Analysts should perform data verification across all sample

orders, grouping data into categories to determine bias. For example, you

should perform data verification by order size categories, side of the order

(buys and sells separate), by sector, volatility, and market movement (up

days and down days). If bias is present, you need to discover where and

why bias occurred and follow through to solutions.
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Chapter5
Estimating I-Star Model Parameters

INTRODUCTION
In this chapter we introduce a framework enabling readers to build, test,

and evaluate market impact models. The much celebrated “I-Star” model

will be validated through this framework and techniques. Readers should

experiment with alternative models and formulations of I-Star and deter-

mine the most suitable methodology given their trading and investing

needs.

Our framework is based on the scientific method, a “process” quants use

to achieve higher levels of knowledge. The scientific method works quite

well—elementary school through Ph.D. dissertations. Yet, it appears,

numerous Wall Street analysts seem to have abandoned the scientific in

favor of models grounded in quark-gluon plasma . . . —say another $3

billion dollar hedging loss!

The scientific method is an “experimentation process” whereby analysts

ask and respond to questions objectively. It provides the tools needed to

uncover the truth through rigorous experimentation and statistical

testing.

Off the record comment: Managers, if your analysts are not following the

steps provided here it might be time to replace your analysts. Analysts, if

your managers are not asking questions relating to this process, or they

are not properly scrutinizing results, it might be time to find a new job.

Industry professionals, if your vendors, brokers, consultants, or advisors

are not providing essential background material, statistical evidence, and

model transparency it is time to find new partners.

Our objective in this chapter is twofold: (1) teach model building and

parameter estimation, and (2) help analysts expand their knowledge of

market impact models—significantly.
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SCIENTIFIC METHOD
We employ the scientific method throughout this chapter to explore

phenomena and observations, and pursue truth and the quest for greater

knowledge. The steps are:

1. Ask a Question

2. Research the Problem

3. Construct a Hypothesis

4. Test the Hypothesis

5. Analyze the Data

6. Conclusions and Communication

Step 1: Ask a Question
A second grader may ask “Will my plant grow better using a white light bulb

or a yellow light bulb?” A Ph.D. candidate may ask “What is the best mone-

tary policy to stimulate GDP and hold back inflation in a new electronic

economy with no country borders and minimal barriers to entry?” A Wall

Street quant may simply ask “How much will my order move the market?”

Step 2: Research the Problem
The second step is to learn as much as possible about the problem. It is

important to identify what worked and what failed in order to avoid

reinventing the wheel and also to avoid potential dead-end approaches and

other pitfalls. Ph.D. candidates will likely find that the literature review is

one of the most important stages in the dissertation process. To paraphrase

Bernard of Chartres and Isaac Newton, you will always reach higher

heights when standing on the shoulders of giants.

Step 3: Construct the Hypothesis
The third step is to predict a solution to the problem. In scientific terminol-

ogy, this is known as specifying the hypothesis. Our market impact model

hypothesis includes formulating a mathematical model and incorporating

those factors found to influence market price movement. It is important

we develop a model that is easily measured and focused. Models that can-

not be measured or fail to answer our questions are cast aside.

Step 4: Test the Hypothesis
Step four of the scientific method involves fair, objective, unbiased experi-

ments. Here we perform hypothesis tests on parameters to ensure they are

statistically significant and test the overall accuracy of the solution. In

164 CHAPTER 5 Estimating I-Star Model Parameters



addition, we undertake sensitivity analysis on parameters to uncover any

inherent limitations.

Step 5: Analyze the Data
We test our hypothesis to ensure the model’s appropriateness and that it

provides solid estimates of market impact. The experimental tests will

either confirm our (model) formulation is appropriate and accurate, rule

the model out, or suggest a revision or re-formulation of the model.

Quite simply, does the model work? Does it require modification or

should it be thrown out?

This will ensure your model offers a solid account of reality. This step

also involves sensitivity analysis, evaluating errors, and performing what-

if analysis surrounding extreme cases and possibilities (e.g., stress-testing

the model). Here we want to learn just about everything we can—where

it works well, and where its limitations may reside. We use a control data

group for comparisons—that is, we perform an “out-of-sample” test uti-

lizing a data set not included in the calibration phase. Control groups are

used everywhere. In medicine—placebo drugs. Physics and engineer-

ing—controlled experiments both with and without the factors we are

seeking to understand. Mathematicians and statisticians typically hold

out, say one-third of the data sample to perform “out-of-sample” testing.

If the model fails to predict outcomes accurately, revise the model formu-

lation, your hypothesis, or return to the third step. You may determine in

this phase that the model/hypothesis is an inappropriate solution, which is

also a valuable piece of information. See Simulating Neural Networks, by

Freeman (1994) for statistical out-of-sample testing procedures.

Step 6: Conclusion and Communication
Scientists communicate experiment results through wide ranging

mediums.

Wall Street for the most, however, fails to share technological advances,

particularly if a potential profit opportunity exists. The most accurate

models are usually kept under lock and key to be paid for by their top

investors or utilized by in-house trading groups.

Mathematical models, like I-Star, offer researchers both a workhorse

model and a set of parameters to assist in the decision making process—

stock selection, portfolio construction, optimization, trading algorithms,

and black box modeling.
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We now focus on applying the steps of the scientific method to estimate

and test our market impact model.

SOLUTION TECHNIQUE
The Question
How much will my order cost me to trade?

In other words, how much premium is required to attract additional sell-

ers so I can complete my order; how much do I need to discount my

price to attract additional buyers so I can complete my order?

Research the Problem
The research step for our market impact modeling problem consists of

both academic research (e.g., literature review), and observation and

analysis of actual data.

First, let us start with the academic literature. Madhavan (2000, 2002),

highly regarded as the ultimate starting point, provides a detailed review

of relevant transaction cost analysis research and the market microstruc-

ture literature leading up to algorithmic trading. Almgren and Chriss

(1997); Kissell and Glantz (2003); Kissell, Glantz and Malamut (2004);

Wagner (1991); Gatheral (2010, 2012); and Domowitz and Yegerman

(2006, 2011) provide us with a strong foundation and starting point for

algorithmic trading findings.

Our review of the literature provided many key findings. Cost is depen-

dent upon the number of shares traded (e.g., trade size, total order size,

or imbalance). This has been shown by Loebb (1983); Holtausen,

Leftwich and Mayers (1987); Chan and Lakonishok (1993); Plexus

Group (2000) and others. Empirical evidence reveals that costs vary by

volatility and market capitalization. For example, see Stoll (1978);

Amidhud and Mendelson (1980); Madhavan and Sofianos (1998); Chan

and Lakoniskhok (1995); Keim and Madhavan (1997); and Breen,

Hodrick and Korajczyk (2002) to name a few.

Price impact results directly from trade and/or information leakage,

as well as the liquidity needs of the investor or institutional fund. Market

conditions over the trading period highly affect the underlying costs as

well. See Beebower and Priest (1980); Wagner and Edwards (1993);

Perold and Sirri (1993); Copeland and Galai (1983); and Stoll (1995).

Additionally, there has been numerous evidence presented by Kyle (1985),

Bertismas and Lo (1998); Grinold and Kahn (1999); and Almgren and
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Chriss (1999, 2000) that finds that trading strategy (style) influences trad-

ing cost. Breen, Hodrick and Korajczyk (2002) provide a foundation for

testing models which we utilize in the model error analysis section of the

scientific method (Step 5: Analyze the Data).

From these publications a common underlying theme: price impact is

caused by order size, trading strategy (e.g., level of transaction urgency,

percentage of volume, participation rate, etc.), volatility, market capitali-

zation, side (buy/sell)—as well as spreads and price.

Next we observe and analyze actual customer order data. Our data obser-

vation universe consists of actual executed trades during a three month

period Jan. 2010 through Mar. 2010. While there are no specific steps to

observe and analyze data, we recommend visualization by plotting data

and simple analyses such as linear regression to uncover potential

relationships.

As part of this step, we plotted the average trading cost (measured as the

difference between the average execution price and mid-point of the

spread at the time of the order arrival) as a function of several different

variables including size, volatility, percentage of volume (POV) rate, and

price. We segmented data into large cap and small cap stock (as per our

literature research findings). Stocks with market capitalization of $2B or

more were classified as large cap stocks, while stocks with market capi-

talization less than $2B were classified as small cap stocks. Traditionally,

large cap stocks are categorized as stocks with a market cap greater than

$5B, mid-cap stocks as stocks with a market cap between $2B and $5B,

and small cap stocks as stocks with market caps less than $2B. We

grouped mid-cap stocks in the large cap or small cap categories based on

actual market cap. Readers are welcome to repeat steps in this chapter to

determine if an additional category of stocks is needed.

There are several issues worth mentioning:

� First, share amounts traded were not necessarily the entire order. We

were not able to observe the number of unexecuted shares or opportunity

cost corresponding to the total order size. This may lead to survivorship

bias where orders with favorable price momentum are completed more

often than orders with adverse market movement resulting in lower than

actual observed costs.

� Second, we were unable to observe actual specified trading strategy at

the beginning of trading. We do not know whether traders or man-

agers engaged in any opportunistic trading during the execution of the

order. This would occur in situations whereby traders became more
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aggressive in times of favorable price momentum and less aggressive

in times of adverse price momentum and might give the impression

that trading at faster rates could lead to lower costs than trading at a

slower rate. We only had access to the actual trading conditions and

market volumes over the trading horizon.

� Third, we did not discard data points or stocks. Readers and analysts

should remember that our research step is a learning step. All data

points should be included and observed to fully understand the under-

lying data set and system at hand—including outliers.

� Fourth, we require at least 25 data points for each bucket; less than

25 data points does not provide a reasonable point estimate of the trade

cost for that particular interval. Unfortunately, the fourth requirement

resulted in largely smaller trade sizes.

� Fifth, we did not know if these shares were part of a larger order

where parts were executed the previous day(s) and/or portions were

to be executed on subsequent day(s).

� Finally, the R2 statistic reported is the R2 for the grouped and averaged

data set. In these cases, the measure is often inflated—however, it does

provide insight into whether the dependent variables are related to

the independent variable (e.g., trading cost). Here we are still in our learn-

ing mode—so the R2 on grouped data indeed provides valuable insight.

Our graphical illustrations contained all data points. We computed buck-

ets for the x-value and then computed the average cost for all data points

that fell into that particular bucket. For example, we computed the aver-

age cost for all order sizes that were 5% ADV (rounded to nearest 1%

ADV). The data points included in these intervals may have varying

volatilities and POV rates as well as prices. All of these variables will

have some effect on the actual cost of the trade. However, in this

research and learn step, even this type of averaging approach will yield

some insight into the underlying relationships between cost and variable.

Large Cap Stocks. Our large cap observations are shown in Figure 5.1.

Findings mirror results in leading academic research. Costs were posi-

tively related to size, volatility, and POV rate, and negatively related to

price. We ran a simple linear regression on the grouped data for each

explanatory variable separately. The strongest relationship (based on R2)

for cost was size (R25 0.44). The second strongest relationship was with

volatility (R25 0.40). This was followed by POV rate (R25 0.36) and

then price (R25 0.24). In each of these cases, visual inspection shows that

the relationship between cost and explanatory variable may be non-linear.

Small Cap Stocks. Our small cap observations are illustrated in

Figure 5.2. Our findings also reflected the academic research with large
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cap stocks. Costs were positively related to size, volatility, and POV rate,

and negatively related to price. The simple linear regression on the

grouped data and each explanatory variable separately determined the

strongest relationship for cost was with volatility (R25 0.71). The second

strongest relationship was with size (R25 0.40). This was followed by

POV rate (R25 0.39) and then price (R25 0.12). Similar to the large cap

universe, our visual inspection of actual data shows that the relationship

with small cap stocks and our variables also appears to be non-linear.

Market Cap. We analyzed the relationship between trading costs and

natural log of market cap. This is shown in Figure 5.3. Here the relation-

ship is negative—costs are lower for larger stocks as well as non-linear.

Small cap stocks were more expensive to trade than large cap stocks. The

relationship between trading cost and market cap was fairly strong with

R25 0.70.

Spreads. Figure 5.4 reveals costs as a function of spreads. Average

spreads over the day were rounded to the nearest basis point (bp). The
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relationship between trading cost and spreads is positive such that stocks

with higher spreads show higher trading cost. The fit was R25 0.13.

Keep in mind—spreads are a separate transaction cost component.

Table 5.1 summarizes the results of our simple linear regression analysis

of cost on each variable separately. We include the standard error and t-

stat, along with coefficient and R2 for each regression.

At this point, judicious analysts may prefer to perform additional analy-

ses on the data to evaluate linear vs. non-linear relationship, as well as

the correlation across explanatory factors and its effect on costs. For

example, larger orders are usually executed with higher POV rates and

smaller orders more often with lower POV rates. This unfortunately

introduces a high degree of correlation. Furthermore, smaller cap stocks

typically have higher volatility and larger cap stocks have lower volatility

resulting in additional negatively correlated variables.

It is important to account for correlation across dependent variables when

you estimate the model’s parameters and test for statistical significance.
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Our goal in the research step was simply to learn from the data and we

found that our data set was consistent with the previous research findings

and academic literature.

Construct the Hypothesis
Our hypothesis is that market impact cost follows a power function rela-

tionship with size, volatility, and strategy (POV rate), and is comprised

of a temporary and a permanent impact component. The formulation is

the now famous “I-Star” model:

I�bp 5 a1 �
S

ADV

� �a2

� σa3 ð5:1Þ

y = –2.9295x + 35.838
R2 = 0.696 
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MIbp 5 b1 � I� � POVa4 1 ð12 b1Þ � I� ð5:2Þ

where,

I5 instantaneous impact cost expressed in basis points (bp)

MI5market impact cost expressed in basis points (bp)

S5 shares to trade

ADV5 average daily volume

POV5 percentage of volume expressed as a decimal (e.g., 0.20)

σ5 annualized volatility expressed as a decimal (e.g., 0.20)

a1; a2; a3; a4; b1 5model parameters (estimated below)

Table 5.1 Actual Trading Costs—Simple Linear Regression Results

Large Cap Stocks

Size Volatility POV Price

Est. 150.72 11.44 19.86 20.03

SE 33.89 3.37 3.72 0.01

t-stat 4.45 3.40 5.34 23.48
R2 44% 40% 36% 24%

Small Cap Stocks

Size Volatility POV Price

Est. 221.62 19.60 37.42 20.16

SE 53.24 3.00 6.25 0.09

t-stat 4.16 6.53 5.99 21.87

R2 40% 72% 39% 16%

Stock Characteristics

LnMktCap Price

Est. 22.93 2876.64

SE 0.30 175.68

t-stat 29.92 24.99

R2 70% 37%

Notes:
Simple linear regression results
Costs were analyzed compared to each variable separately
These results are not that of a multi-linear regression
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Note that quite often we will rewrite our market impact model using the

variable Size as follows:

I�bp 5 a1 � Sizea2 � σa3 ð5:3Þ

where,

Size5
Shares
ADV

Test the Hypothesis
The fourth step in the scientific method consists of testing our hypothesis.

But before we start testing the hypothesis with actual data it is essential

to have a complete understanding of the model and dependencies across

variables and parameters. We need to understand what results are consid-

ered feasible values and potential solutions.

Let us start with the interconnection between the a1 and a2 parameters.

Suppose we have an order of 10% ADV for a stock with volatility of 25%.

If we have I� 5 84 bp and â3 5 0:75, then any combination of a1 and a2
that satisfies the following relationship are potential feasible parameter

values:

I�bp 5 a1 � Sizea2 � σ0:75

or,

84 bp5 a1 � ð0:10Þa2 � ð0:25Þ0:75

Solving for a2 in the above formula yields:

a2 5 ln
I�

a1 � σa3

� �
� 1
lnðSizeÞ

Using the data in our example we have:

a2 5 ln
84

a1 � 0:25a0:75
� �

� 1
lnð0:10Þ

However, not all combinations of a1 and a2 are feasible solutions to the

model. Having prior insight into what constitutes these feasible values

will assist dramatically when estimating and testing the model para-

meters. For example, we know that a2. 0 otherwise costs would be

decreasing with order size and it would be less expensive to transact

larger orders than smaller orders and there would be no need to slice and

order and trade over time (not to mention an arbitrage opportunity).

173Solution Technique



Figure 5.5a illustrates this point by showing the combinations of a1 and

a2 that result in I*5 84 for 100, a1, 1250. But notice that for values

of a1,230 the resulting a2 value is negative thus violating one of our

feasibility requirements.

Another relationship we have with the I-Star model is with parameter b1,
which is the temporary market impact parameter—in other words, the per-

centage of instantaneous impact (I*) that is due to the liquidity needs of the

investor and/or immediacy needs. Thus we have by definition 0# b1# 1.

Next, suppose that we have a market impact cost of MI5 25:3 bp for a

stock with volatility5 25% and POV rate5 30% with known parameters

a2 5 0:50, a3 5 0:75 and a4 5 0:50.

In this example, we have a known value of MI but the value of I-Star

is not known. Then as long as the combinations of a1 and b1 result in

MI5 84 bp the equation is correct.
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The set of potential feasible solutions are those where we have b1 expressed

in terms of a1 as follows:

b1 5
MI
I�

21
� �

� 1
POVa4 21

� �

Using the data in our example we have,

b1 5
25:3
I�

21
� �

� 1
0:300:5 2 1

� �

Figure 5.5b depicts the combinations of b1 and a1 resulting in solutions with

MI5 84 bp. But notice that there are several combinations of a1 and b1 that

are not feasible solutions to the problem. Since we have a constraint on b1
such that 0# b1# 1 we additionally have 425, a1, 800. Further, empirical

evidence has found b1. 0.70, thus we have 625, a1, 800.

Performing these types of sensitivity analyses around the model parameters

for those parameters with a known interval will greatly help analysts critique

models and results.

Data Definitions
We are now ready to begin testing the I-Star model with actual data. As men-

tioned in Chapter 4, we will be calibrating our model using market tic data.

Using market data as opposed to actual customer order data will provide

three major benefits. First, it provides us with a completely independent

data set for estimation and allows us to use the customer order data set as

our control group that will be used for comparison purposes. Second,

using the market data universe will allow us to eliminate some inherent

biases in the data due to potential opportunistic trading where investors

trade faster and in larger quantities (shares are added to the order) in

times of favorable price momentum, and slower and in smaller quantities

(shares or cancelled/opportunity cost) in times of adverse price momen-

tum. Third, this eliminates situations where we (i.e., the broker or ven-

dor) are not provided with the complete order because it is traded over

multiple days.

This section describes the data sets used to estimate the market impact

parameters. The underlying data used for compiling the data statistics is

actual tic data. This is also known as time and sales data, and includes

the price of the trade, the number of shares transacted, and date and time

of the trade. The data is available via the New York Stock Exchange

(e.g., TAQ data for trade and quote data) for all securities traded in the

US and/or from various third party data vendors.
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The data elements that need to be compiled and or recorded are shown in

Table 5.2.

Universe of Stocks
The universe of stocks used for parameter estimation is the S&P1500.

This provides a robust sample of 500 large cap stocks, 400 mid-cap

stocks, and 600 small cap stocks.

Analysis Period
The time period for the analysis is the three month period Jan. 2010 to

Mar. 2010 (and is the same period as is available for the control group).

Time Period
Data was compiled for three times periods. Full day 9:30 a.m. to 4:00 p.m.

Morning 9:30 a.m. to 1:00 p.m. and Afternoon 1:00 p.m. to 4:00 p.m.

Number of Data Points
There were 1500 stocks, three periods per day, and about 65 trading days

over the three months resulting in N5 292,500 data points.

Imbalance
Daily imbalance is estimated from actual tic data during exchange hours

only (e.g., all trades between the hours of 9:30 a.m. and 4:00 p.m. or

Table 5.2 MI Data Sources

Factor Data Source

Buy Volume Tic Data

Sell Volume Tic Data

Volume Tic Data
Turnover Tic Data

VWAP Tic Data

First Price Tic Data

Cost Tic Data

Imbalance Tic Data

ADV End of Day

Volatility End of Day

Size/Imbalance Derived
POV Derived
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within our morning or afternoon periods). Data is first sorted in ascending

order by time and trades are designated as buy-initiated or sell-initiated

based on the modified Lee & Ready (1993) tic rule. Buy-initiated trades

are those trades that occurred on an up tic or zero-up tic. Sell-initiated

trades are those trades that occurred on a down tic or zero-down tic.

Trades are not able to be designated as a buy-initiated or sell-initiated

until after the first price change.

Imbalance is computed as the absolute difference between buy-initiated

and sell-initiated volume for the particular period. The calculation is as

follows:

Q5
X

Buy Volume2
X

Sell Volume
��� ��� ð5:4Þ

Side
The side of the imbalance is “buy” if there is more buy-initiated volume

and “sell” if there is more sell-initiated volume. Mathematically, the side

designation is:

Side5
11 if

P
Buy Volume.

P
Sell Volume

21 if
P

Sell Volume.
P

Buy Volume

�
ð5:5Þ

Volume
Total market volume that traded over the same period used to calculate

the imbalance.

VðtÞ5
Xt

i51

vi ð5:6Þ

Where t denotes the total number of trades during the period and vi is the
volume corresponding to the ith trade in the period.

Turnover
Turnover is the total dollar value traded during the trading period.

TurnoverðtÞ5
Xt

i51

pi � vi ð5:7Þ

where pi is the price of the ith trade.
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VWAP
VWAP is the volume weighted average price during the trading period.

VWAP5

Pt
i51

pi � vi
Pt
i51

vi

ð5:8Þ

First Price
The mid-point of the bid-ask spread at the beginning of the trading inter-

val. This is denoted as P0.

Average Daily Volume
The average daily traded volume (ADV) in the stock over the previous T

trading days. The value of T does vary by practitioner. For example, the

more common historical periods are 10, 22, 30, and 66 days of data.

Earlier we found that T5 30 days of data are a sufficient number of data

points to measure the mean.

ADV 5
1
T

XT
i51

ViðdayÞ ð5:9Þ

where ViðdayÞ is the total volume that traded on the ith historical day (e.g.,

i days ago).

Annualized Volatility
Annualized volatility is the standard deviation of the close-to-close logarith-

mic price change scaled for a full year using a factor of 250 days. Many

practitioners use a 252 day scaling factor. However, for our purposes esti-

mating market impact, the difference is negligible. Annualized volatility is

included in the market impact model as a proxy for price volatility. For con-

sistency, we use T5 30 days of data to compute our volatility estimate.

σ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
250
T21

XT
i52

ðri2ravgÞ2
vuut ð5:10Þ

where, ri is the log return on the ith historical day and ravg is the average

log return over the period. It is important to note that our annualized

volatility is expressed as a decimal (e.g., 0.205 20%).
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Size
The imbalance size expressed as a percentage of ADV. It is expressed as

a decimal, that is, an imbalance size of 30% ADV is expressed as 0.30.

Size5
Q

ADV
ð5:11Þ

POV Rate
The percentage of volume rate (POV) is computed from imbalance and

period volume. It is a proxy for trading strategy. It is important to note

that percentage of volume is expressed as a decimal.

POV 5
Q
VðtÞ ð5:12Þ

Cost
Cost is defined as the difference between average execution price and the

first price (expressed as a fraction of the initial price). It follows the defi-

nition of trading cost used in the implementation shortfall methodology

(Perold, 1988). Here we compute cost as the logarithmic price change

between average execution price and arrival price. We use the VWAP

price over the interval as our proxy for average execution price. This cal-

culation is as follows:

Cost5 ln
VWAP
P0

� �
� Side � 104bp ð5:13Þ

Additional Insight: we discuss the expanded implementation shortfall

measure introduced by Wagner (1991) in Chapter 3, Transaction Cost

Analysis. In Chapter 6, Price Volatility, we discuss techniques to estimate

forward looking volatility. In Chapter 7, Advanced Algorithmic Forecasting

Techniques, we discuss alternative methodologies for estimating daily

volume. These include using various time periods, the mean vs. median,

as well as advanced statistical measures such as autoregressive moving

averages (ARMA).

Estimating Model Parameters
Estimation of the parameters for the complete I-Star model requires

non-linear estimation techniques such as non-linear least squares, maximum

likelihood, generalized method of moments, etc. In Chapter 4, Market

Impact Models, we discuss three techniques including a two-step process, a

guesstimate, and non-linear regression analysis.
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In this section we use non-linear least squares regression techniques to

estimate the parameters of our model.

I5 a1 � Sizea2 � σa3 ð5:14Þ

MI5 b1 � I � POVa4 1 ð12 b1Þ � I ð5:15Þ

These parameters are: a1; a2; a3; a4; and b1.

Outliers. To avoid potential issues resulting from outliers we filtered our

data points based on daily stock volume and overall price movement. If a

data point was outside of a specified range we excluded that data point.

Filtering is commonly done on market impact data sets to avoid the

effect of high price movement due to a force or market event that is not

due to the buying or selling pressure of investors.

In our analysis we filtered the data to include only those data points with:

1. Daily Volume # 3*ADV

2. 2 4�σffiffiffiffiffiffi
250

p #Log Price Change (close-to-close)# 14�σffiffiffiffiffiffi
250

p

We decided to use four times the daily volatility to account for the poten-

tial incremental price movement due to the buying or selling pressure in

an adverse momentum market. Analysts may choose to use different

break points as well as filtering criteria.

Factor Independence. As is the case with any regression analysis we require

explanatory factors to be independent. Unfortunately, our derivation process

results in correlation across factors but this correlation is reduced by using

multiple time horizons (full day, morning, and afternoon). Analysts can fur-

ther reduce the correlation across factors through a sampling process of the

data where we select a subset of data points such that the cross factor corre-

lation is within a specified level (e.g., 20.10# rho# 0.10). Our resulting

data set had N5 180,000 points and the resulting correlation matrix is

shown in Table 5.3.

Table 5.3 Factor Correlation Matrix

Size Volatility POV

Size 1 20.05 0.08

Volatility 20.05 1 20.03

POV 0.08 20.03 1
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Analysts can determine what is considered to be an acceptable level

of cross factor correlation for their particular needs and determine the

data sample set within these criteria through a random sampling process.

Heteroscedasticity. Analysis of the complete model above reveals poten-

tial heteroscedasticity of the error term. Each stock in the sample has dif-

ferent volatilities and POV rates (resulting in different trading times) and

a different distribution of the error term. Kissell (2006) provides techni-

ques to correct for heteroscedasticity in this model. One important note,

however, is that after grouping the data into bins there is not much differ-

ence between the parameter estimation results without correcting for het-

eroscedasticity. We highly recommend analysts perform both analyses to

understand the dynamics of this model before deciding if the heterosce-

dasticity step can be ignored.

Grouping Data. Prior to performing our non-linear regression we grouped

our data into buckets in order to average away noise and to ensure a bal-

anced data set. Data was bucketed into categories based on size, volatil-

ity, and POV rate according to the following criteria:

Size5 0.5%, 1%, 2%, . . ., 30%

Volatility5 10%, 20%, . . ., 80%
POV Rate5 1%, 5%, 10%, . . ., 65%

If we use too fine increments excessive groupings surface and we have

found that a substantially large data grouping does not always uncover a

statistical relationship between cost and our set of explanatory factors.

Next we averaged costs for each category above. We required at least 25

observations in order for the bucket to be included in the regression analysis.

We required at least 25 data points in order to average away noise and deter-

mine the most likely cost given the category of size, volatility, and POV rate.

Sensitivity Analysis
We discussed briefly that we need to ensure a solution with a feasible set

of parameter values. In other words, we are setting constraints on the

model parameters. These feasible values are:

100# a1 # 1000
0:10# a2 #1:0
0:10# a3 #1:0
0:10# a4 #1:0
0:70# b1 #1

181Solution Technique



It is important to note here that the feasible range of model parameters is

also dependent upon the current financial regime. For example, sensitivity

and parameter values during the financial crisis of 2008�2009 could be

much different than during a low volatility regime. Analysts need to con-

tinuously evaluate what constitutes a feasible range for the parameters.

The process we used to determine the sensitivity of model results to these

parameters is as follows:

1. Start with parameter a1.
2. Sets its value to a1 5 100.
3. Solve the non-linear least squares model with a1 5 100 and the above

constraints on the other parameters.

4. Record the resulting parameter values and non-linear R2 estimate

e.g., ða1 5 100; a2 5 â2; a3 5 â3; a4 5 â4; b1 5 b̂1;NonR2Þ
5. Increase the value of a1 (e.g., set a1 5 150) and re-run the non-linear

least squares regression, record the values, repeat until a1 5 1000.
6. Repeat these steps for all the parameters., i.e., hold one parameter

value constant and solve for the other four. Record results.

7. Plot and analyze the results.

We performed the above analysis for all feasible values of the parameters.

For each parameter we plotted the specified parameter value and the non-

linear R2 from the best fit non-linear regression. For example, for

a1 5 100, the best fit non-linear R2 was R25 0.23. For a1 5 150, the best
fit non-linear R2 was R25 0.38, etc.

The results of our sensitivity analysis are shown in Figure 5.6a�e.

Figure 5.6a shows the results for parameter a1. The graph shows R2

increasing from 0.28 (at a15 100) to a maximum value of R25 0.41

(at a15 700), and then decreasing again to R25 0.38. If we look at

Figure 5.6a we find that the best fit R2 value varies very little between the

values a15 600 to a15 800. The best fit equation is pretty flat between

these values. This type of result is not unique to the I-Star model; it is

in fact pretty common across most non-linear equations and is the reason

we have been stressing the need to perform a thorough sensitivity analysis

on the data.

Figure 5.6b�e illustrates the sensitivity analysis for a2 through b1.

Parameter a2 has its best fit value at about a25 0.55 and appears to have a

range between a25 0.45 to a25 0.65. Parameter a3 reaches its best fit

at a35 0.75 with a range of about a35 0.65 to a35 0.80. Parameter a4
reaches its best fit at a45 0.45 with a range of about a45 0.4 to a45 1.

Parameter b1 reaches its best fit at b15 0.92 with a range of b15 0.87 to
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b15 1.00. It is important to mention that the model is not highly sensitive

to parameters a4 or b1 and the best fit equations for these parameters vary

very little within these ranges. For example, varying b1 between 0.87 and

1.00 results in a non-R2 of 0.4070 (min) to 0.4087 (max). Notice how flat

this curve is even over the range 0.80 to 1.00. Thus it is no wonder why it

has been so difficult in practice to uncover a difference between temporary

and permanent market impact cost.

We learn a valuable lesson from the sensitivity analysis—it provides intu-

ition surrounding feasible values of the parameters as well as how much

we can expect those parameter values to vary. This is extremely useful in

performing what if analysis and running alternative scenarios such as

buy/sell, large cap/small cap, etc. (as we show below).
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Next we performed our non-linear least squares regression for the full

model without holding any parameter value fixed. We allowed the model

to determine the set of parameters using the specified constraints to

ensure feasible values. The results of the regression are shown in

Table 5.4. The table includes parameter standard errors from the non-

linear regression and has a non-linear R25 0.42. These statistical results

indicate a strong fit. Additionally, notice these results are all within the

ranges we previously determined. This provides a higher degree of confi-

dence in our results.

The best fit equation using these estimated parameters is:

I5 708 � Size0:55 � σ0:71 ð5:16Þ

MI50:98 � I � POV0:50 1 ð120:98Þ � I ð5:17Þ

To further evaluate costs and determine differences across categories we

further categorized the data into samples that consisted of large and small

cap companies, buy and sell orders, and a breakdown by market cap and

order size. In all cases, there was a high fit of the data. The non-linear R2

ranged from 0.40 to 0.43. These results are shown in Table 5.5.

An analysis of the costs estimates over time did not find any differences

across buy and sell orders when holding volatility and trading strategy

constant. However, in practice, managers and traders often find sell

orders to be more costly than buy orders for various reasons. First, buy

orders are cancelled more often then sell orders. As the price moves too

high the advantage and incremental alpha decreases and managers are

better suited investing in an alternative stock. There are substitution

stocks for buy orders but not for sell orders. Once a stock has fallen out

of favor and the manager decides to remove the stock from the portfolio

they will complete the order regardless of the price. Therefore, managers

do not always realize the entire cost of the buy order because they rarely

factor in opportunity cost. But the entire cost of the sell order is always

realized. Second, managers typically sell stocks at a more aggressive rate

Table 5.4 Estimated MI Parameters

Scenario a1 a2 a3 a4 b1

All Data 708 0.55 0.71 0.50 0.98

SE 100 0.03 0.02 0.05 0.04

R2 0.42
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than they buy stocks causing the cost to be higher due to the correspond-

ing urgency level and not due to any systematic difference in order side.

Third, when managers decide to sell stocks that have fallen out of favor

it is often due to fundamentals and corresponds to increased volatility

and decreased liquidity, further increasing the cost to trade. Managers

often select stocks to hold in their portfolio under the most favorable of

market conditions thus causing the buy orders to be less expensive than

the sell orders. Again, this is due to a difference in company fundamental

and less favorable explanatory factors. It is not due to any difference in

cost due to the side of the order.

Analysis of costs by market cap, however, did find a difference in trading

costs. Large cap stocks were less expensive to trade than small cap stocks.

This difference was primarily due to small cap stocks having higher volatil-

ity and increased stock specific risk—both causing a higher price elasticity

to order flow, i.e., increased market impact sensitivity. Additionally, large

cap stocks usually have a larger amount of analyst coverage and therefore

these stocks often have a lower quantity of information based trading and

lower permanent impact. When the market observes increased trading activ-

ity in small cap stocks it appears that the belief is due to information based

trading. This is also true with small cap index managers who do not try to

hold the entire small cap universe but instead seek to minimize tracking

error to the index by holding a smaller number of stocks from a universe

that they believe will likely outperform the small cap index.

As stated previously, it is possible for the parameters of the model to

vary but to still get the same cost estimates. Analysts interested in

Table 5.5 Estimated MI Parameters

Scenario a1 a2 a3 a4 b1 R2

All Data 708 0.55 0.71 0.50 0.98 0.42

Large Cap 687 0.70 0.72 0.35 0.98 0.43

Small Cap 702 0.47 0.69 0.60 0.97 0.43
Buy 786 0.58 0.74 0.60 0.90 0.43

Sell 643 0.44 0.67 0.60 0.98 0.43

Large—Buy 668 0.68 0.68 0.45 0.90 0.43

Large—Sell 540 0.52 0.64 0.45 1.00 0.41

Small—Buy 830 0.50 0.76 0.70 0.92 0.43

Small—Sell 516 0.71 0.69 0.10 0.90 0.40

Average: 675 0.57 0.70 0.48 0.95 0.42
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detailed differences across these categories can test the model using the

parameters published in Table 5.5.

Cost Curves
Trading cost estimates can be computed for an array of order sizes and

trading strategies expressed in terms of POV rate. For example, using

parameters for the all data scenario (Equation 5.16 and Equation 5.17),

trading an order that is 10% ADV for a stock with volatility5 25% uti-

lizing a full day VWAP strategy is expected to cost 23.2 bp. Trading this

order more aggressively, say with a POV rate of 20%, will cost 30.9 bp.

Trading the same order more passively, say with a POV rate of 5%, will

cost 17.2 bp.

Figure 5.7 graphically illustrates trading cost estimates for this stock

(volatility5 25%) for various order sizes ranging from 1% ADV through

50% ADV, for four different trading strategies: VWAP, POV5 10%,

POV5 20%, and POV5 40%. This figure also shows the model has the

expected concave shape.

Table 5.6 provides the underlying cost curve data grids for this order.

These cost curves provide the expected trading cost for various order

sizes executed using various trading strategies (VWAP and POV rates) in

tabular form. Cost curves (as will be discussed in later chapters) provide

portfolio managers with essential data required for stock selection, port-

folio construction, and optimization.
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Statistical Analysis
We are now up to step five of the scientific method where we analyze

the data. In this step we compare the results of the model with the esti-

mated parameter set to actual customer order data (the control group).

We additionally perform an error analysis where we compare the esti-

mated costs to the actual costs, and then perform a stock outlier analysis

where we regress the model error on stock specific characteristics (such

as market cap, spread, idiosyncratic risk, etc.).

Error Analysis
The first step in our error analysis was to compute the estimated market

impact cost for each of the customer orders in the control group. But

unlike the research step where we used all of the data points, here we fil-

tered potential outliers in order to ensure we were analyzing the price

impact due to the order’s buying and selling pressure. We filtered data

points from the control group identical to filtered data points derived

from the market data cost section. We filtered days with volume greater

than 3 times ADV and days with price movement greater than 4 times

the stock’s daily volatility. We conducted the filtering process because it

is highly likely that on days with these types of volumes and/or price

movement it was more likely to be due to market or stock specific new

information rather than excessive buying or selling pressure.

Table 5.6 Estimated Market Impact Curves

Trading Strategy

Size
(% ADV) VWAP

POV
5 5%

POV
5 10%

POV
5 15%

POV
5 20%

POV
5 25%

POV
5 30%

POV
5 35%

POV
5 40%

1% 2.4 4.8 6.5 7.7 8.6 9.4 10.1 10.7 11.2
5% 11.7 11.7 15.8 18.8 21.1 23.0 24.6 26.0 27.3

10% 23.2 17.2 23.2 27.5 30.9 33.8 36.2 38.2 40.1

15% 34.5 21.6 29.1 34.5 38.8 42.3 45.3 47.9 50.2

20% 45.5 25.3 34.1 40.5 45.5 49.6 53.1 56.2 58.9

25% 56.1 28.6 38.6 45.8 51.5 56.1 60.1 63.6 66.6

30% 66.5 31.7 42.8 50.7 56.9 62.1 66.5 70.4 73.7

35% 76.6 34.5 46.6 55.2 62.0 67.7 72.5 76.6 80.3

40% 86.5 37.2 50.2 59.5 66.8 72.9 78.0 82.5 86.5
45% 96.1 39.7 53.6 63.5 71.3 77.8 83.3 88.1 92.3

50% 105.4 42.1 56.8 67.3 75.6 82.5 88.3 93.4 97.9

The data above is on the spreadsheet named Figure 5.7
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Our error analysis consists of estimating the market impact cost for each

of the remaining data points. We then grouped these data points into 1%

ADV categories and graphically compared the results (Figure 5.8a). We

observed a very strong and accurate fit for order size up to about 15%

ADV and for sizes of 20% to 30% it appears that we are overestimating

the actual cost. Figure 5.8b is an xy-scatter plot of estimated cost (y-axis)

as a function of actual cost (x-axis). This graph shows that our market

impact model is accurate for costs up to approximately 40 to 50 bp. Again,

the model seems to overestimate costs for larger more expensive orders.

Figure 5.8c plots the actual error measured as the difference between esti-

mated cost and actual cost by order size. This figure gives the appearance

that the model begins to overestimate costs at around 10%�15% ADV.

The difference emerging here between estimated cost and actual cost is

not concerning for the larger more expensive orders due to survivorship

bias and opportunistic trading. That is, investors are more likely to com-

plete the larger size orders in times of favorable price momentum and a

lower cost environment. Furthermore, investors are more likely to

increase the original order in times of more favorable prices. In times of

adverse price movement and a higher trading cost environment investors

0
20
40
60
80

100
120
140
160

0% 5% 10% 15% 20% 25% 30% 35%

C
os

t (
B

as
is

 P
oi

nt
s)

Size (% ADV)

Comparison of Actual to Estimated Costs
(a)

(b)

(c)

(d)

Act. Cost
Est. Cost

0
20
40
60
80

100
120
140
160

0 20 40 60 80 100 120

E
st

im
at

ed
 C

os
t (

bp
)

Actual Cost (bp)

Cost Comparison

–60

–40

–20

0

20

40

60

0% 5% 10% 15% 20% 25% 30% 35%

C
os

t E
rr

or
 (

bp
)

Size (% ADV)

Cost Error = Actual – Estimated 

–2.00
–1.50
–1.00
–0.50
0.00
0.50
1.00
1.50
2.00

0% 5% 10% 15% 20% 25% 30% 35%

Z
-S

co
re

Size (% ADV)

Z-Score

■ Figure 5.8 (a) Comparison of Actual to Estimated Costs; (b) Cost Comparison; (c) Error Analysis; (d) Z-Score Analysis.
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are more likely to not complete the order and cancel shares. This results

in the actual measured costs being lower than they would have been had

it not been for the price momentum and market conditions. Unfortunately

we do not have a full audit trail in this case to be able to incorporate

opportunistic trading and opportunity cost into our error analysis. But

investors with a full audit trail will be equipped to properly incorporate

opportunity cost as well as survivorship bias and opportunistic trading.

The next question is how far off the estimated cost is from the actual cost

for the larger orders. Especially considering some orders are exposed to

much greater market risk than others. To address this question we com-

puted the z-score for each of the orders. That is,

Z5
Actual Cost2 Estimated MI

Timing Risk
ð5:18Þ

The estimated timing risk is computed as:

TR5σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
� 1
250

� Size � 12POV
POV

r
� 104bp ð5:19Þ

Regardless of the distribution of the error, if the model is accurate the

mean z-score will be zero and the variance will be one. That is,

ZBð0; 1Þ

We computed the average z-score in each size bucket. This is shown

in Figure 5.8d. This analysis shows that the risk adjusted error is not as

inaccurate as it first appears. The average z-score for all order sizes,

while significantly different from zero, is still within 1/21 standard

deviation. To be more exact, the z-score is 1/20.25 standard units for

sizes up to 30% ADV. Thus, while the model is overestimating actual

trading costs (likely due to opportunistic trading and survivorship bias),

the risk adjusted error term is not considered grossly erroneous. The error

is quite reasonable and thus not a large concern.

Stock Specific Error Analysis
The next step in our error analysis is to determine if there is anything

specific to the stock or particular company that would help improve the

accuracy of the model and reduce estimation error. For this step we follow

the techniques presented by Breen, Hodrick and Korajczyk (2002).

Our error analysis was carried out by estimating the expected market impact

cost using the parameters determined above and comparing these estimates

to the actual order costs. The average error measured as the estimated cost
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minus actual cost was determined for each stock and the average z-score

was also computed for each stock. We then regressed the error squared and

the z-score squared against stock specific variables including ln market cap,

ln price, spreads, beta, and tracking error. We chose to regress the squared

error and z-score metrics in order to determine which stock specific vari-

ables, if any, would assist us to understand and reduce the model error at

the stocks level.

Figure 5.9a�e illustrates the regression results of the error squared as a

function of the variables. As is consistent with previous research studies
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and academic reports, the error term is negatively related to market cap

and price. Stocks with higher market capitalization and higher prices will

have lower market impact cost. The error term is also positively related

to spreads, beta, and tracking error (as a proxy for idiosyncratic risk).

This is consistent with our expectations. Higher spreads are an indication

of less stable trading patterns and more intraday risk. Higher beta is an

indication of higher risk stocks and a higher level of price sensitivity.

Higher tracking error or idiosyncratic risk is an indication of stock spe-

cific risk and potentially higher information content and permanent mar-

ket impact cost.

This error analysis provides some valuable insight and potential

variables for analysts to incorporate into the model to improve its accu-

racy. The results of the regression coefficients for the stock specific

analysis for the error squared and the z-score squared are shown in

Table 5.7.

Table 5.7 Stock Specific Error Analysis

LnMktCap LnPrice Spreads Beta T.E.

Error2

Est. 2 99.65 2 158.30 5.72 267.28 131.74

S.E. 8.75 15.64 0.62 37.03 11.54

t-stat 2 11.39 2 10.12 9.28 7.22 11.41

Z-Score2

Est. 2 0.011 2 0.015 0.001 0.019 0.011

S.E. 0.002 0.003 0.000 0.008 0.002

t-stat 2 6.046 2 4.647 7.327 2.544 4.715
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Chapter6
Price Volatility

INTRODUCTION
In this chapter, we discuss price volatility and factor models and how

they can be used to improve trading performance. We present various

techniques that are used in the industry to forecast volatility as well as

appropriate methods to calibrate these models.

Volatility is the uncertainty surrounding potential price movement, calcu-

lated as the standard deviation of price returns. It is a measure of the

potential variation in price trend and not a measure of the actual price

trend. For example, two stocks could have the exact same volatility but

much different trends. If stock A has volatility of 10% and price trend of

20%, its one standard deviation return will be between 10 and 30%. If

stock B also has volatility of 10% but price trend of 5%, its one standard

deviation return will be between 25 and 15%. Stock with higher volatil-

ity will have larger swings than the stock with lower volatility, resulting

in either higher or lower returns.

There are two volatility measures commonly used in the industry: real-

ized and implied. Realized volatility is computed from historical prices

and is often referred to as historical volatility. Realized volatility uses

past history to predict the future. Implied volatility, on the other hand, is

computed from the market’s consensus of the fair value for a derivative

instrument such as the S&P500 index option contract. Implied volatility

is a “forward” looking or “future” expectation estimate.

Historical Volatility lets the data predict the future.

Implied Volatility lets the market predict the future.

We utilize volatility in many different ways. For example, traders use

volatility to understand potential price movement over the trading day, as

input into market impact models, to compute trading costs, and to select

algorithms. Algorithms use volatility to determine when it is appropriate
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to accelerate or decelerate trading rates in real-time. Portfolio managers

use volatility to evaluate overall portfolio risk, as input into optimizers,

for value-at-risk calculations, as part of the stock selection process, and

to develop hedging strategies. Derivatives desks use volatility to price

options and other structured products. In addition, plan sponsors use vola-

tility to understand the potential that they will or will not be able to meet

their long-term liabilities and financial obligations. Volatility is a very

important financial statistic.

DEFINITIONS
Price Returns/Price Change
Price returns or price change can be computed using either the “percent-

age” returns or “log” returns formulation. But since returns have been

found to be log-normally distributed it is appropriate to use the log

returns calculation. We describe these two measures:

Percentage Price Return

rt 5
pt
pt21

2 1 ð6:1Þ

Log Price Return

rt 5 ln
pt
pt21

� �
ð6:2Þ

Where lnð�Þ represents the natural log function.

Average Return
This average period price return r is calculated differently for the “per-

centage” and “log” methods.

Average return—percentage method

The process for computing an n-period average return using the percent-

age change methodology is:

Start with:

pn 5 p0 � ð11rÞn

Then solving for r we have:

r5
pn
p0

� �1
n

2 1 ð6:3Þ
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Notice that the average return is not calculated as the simple average of

all returns.

Average return—logarithmic change method

The average return using the log methodology, however, is determined

directly from the simple average formula. This is:

r5
1
n

X
rk ð6:4Þ

The average can also be computed directly from the starting and ending

price as follows:

r5
1
n
� ln pt

p0

� �
ð6:5Þ

How do percentage returns and log returns differ?

For small changes, there actually is not much difference between these

two measures. Figure 6.1 shows a comparison percentage price change

compared to log price change over the range of returns from 240%

through 140%. As shown in this figure, there are very small differences

in calculation process between 220 and 120%, and negligible differ-

ences between 210 and 110%. However, we start to see differences

once we are outside of this range. For trading purposes where the daily

price change is quite often less than 610% either returns measure is

reasonable. However, for a portfolio manager with a longer time horizon

we will start to see some differences between these two measures.
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Log returns can take on any value from 2N to 1N and the distribution

of returns is symmetric. However, the percentage returns can only take on

values between 2100% and 1N. The percentage return data values

have a skewed distribution while the log returns distribution is symmetric.

The log returns method is a symmetric measure and provides mathematical

simplification in many of our calculations. It is also more intuitive than the

percentage change method. For example, if the price for a financial asset

changes from 100 to 80 the percentage price change is 220%. However, if

the price in the next period changes from 80 to 100 the percentage price

change is 125%. So this asset first lost 20% then increased 25%, but it is

currently at its original starting value—it is not 15% overall. But using

the log returns method we do not run into this inconsistency. If the stock

price changes from 100 to 80 this corresponds to a log change of

222.31%. If the price in the next period increases from 80 to 100, this

corresponds to a log change of 122.31%. The sum of these returns states

that the current price should be the same as the starting price since

122.31% 222.31%5 0 which is exactly what we have.

Price returns have been found to have a log-normal distribution.

Thus using the log returns measure is more consistent with the underly-

ing data. Going forward we will use the log returns methodology.

Volatility
Volatility is calculated as the standard deviation of price returns.

σi 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n21

Xn
k51

ðrik2riÞ2
s

ð6:6Þ

In the formulation above, there are n historical returns but we divide by

(n21) to ensure an unbiased estimate. This formulation is also called the

sample standard deviation.

Covariance
The covariance of returns for two stocks σij is a measure of the

co-movement of prices.

σij 5
1

n22

X
ðrik 2 riÞðrjk 2 rjÞ ð6:7Þ

Positive covariance means that the prices will move up and down

together and negative covariance means that the prices will move in

opposite directions.
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Correlation
The correlation between two stocks ρij is the covariance of the stocks

divided by the volatility of each stock. This provides a correlation coeffi-

cient between one and minus one: 21# ρij # 1.

ρij 5
σij

σi � σj
ð6:8Þ

Stocks with a correlation of ρij 5 1 move perfectly with one another,

stocks with a correlation of ρij 52 1 move perfectly in the opposite

direction of one another, and stocks with a correlation of ρij 5 0 do not

move together at all. Correlation provides a measure of the strength of

co-movement between stocks.

Dispersion
The dispersion of returns is computed as the standard deviation of returns

for a group of stocks. It is a cross-sectional measure of overall variability

across stocks.

dispersionðrpÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n21
�
Xn
j51

ðrj2rpÞ2
vuut ð6:9Þ

where rj is the average return for the stock and rp is the average return

across all stocks in the sample.

Dispersion is very useful to portfolio managers because it gives a mea-

sure of the directional movement of prices and how close they are mov-

ing in conjunction with one another. A small dispersion measure

indicates that the stocks are moving up and down together. A large dis-

persion measure indicates that the stocks are not moving closely together.

Value-at-Risk
Value-at-risk (VaR) is a summary statistic that quantifies the potential loss

of a portfolio. Many companies place limits on the total value-at-risk to pro-

tect investors from potential large losses. This potential loss corresponds to

a specified probability α level or alternatively a (12α) confidence.

If the expected return profile for a portfolio is rBNðrp;σ2
p Þ. Then a α%

VaR estimate is the value return that occurs at the 12α probability level

in the cumulative normal distribution. If α5 95% this equation is:

0:055
ðr�
2N

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp 2
ðr2rpÞ2
2σp

� �
ð6:10Þ
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Implied Volatility
Implied volatility is determined from the price of a call or put option.

For example, the Black-Scholes option pricing model determines the

price of a call option as follows:

C5 S �Nðd1Þ2X � e2rf T �Nðd2Þ ð6:11Þ
where,

d1 5
lnðS=XÞ1 ðrf 1σ2=2ÞT

σ
ffiffiffi
T

p

d2 5 d1 2σ
ffiffiffi
T

p

C5 call price

X5 strike price

S5 stock price

σ5 stock volatility

N(d)5 probability that actual return will be less than d

rf5 risk free rate of return

T5 future time period

The implied volatility is the value of the volatility in the above formula

that will result in the current value of the call option. Since the call

option price is determined by the market, we are able to back into the

volatility terms that would provide this value, thus, the volatility is

implied by the formulation. Implied volatility is most often solved via

non-linear optimization techniques.

Beta

βk 5
covðrk; rmÞ
varðrmÞ

5
σij

σ2
m

ð6:12Þ

The beta of a stock represents the stock’s sensitivity to a general market

index. It is determined as the covariance of returns between the stock and

the market divided by the variance of the index (volatility squared).

The calculation is also the slope of the regression line of stock returns

(y-axis) as a function of market returns (x-axis). Stocks with a positive

beta, βk . 0, move in the same direction as the market and stocks with a

negative beta, βk , 0, will move in the opposite direction of the market.

Stocks with an absolute value of beta greater than one, jβkj. 1, are more

variable than the market and stocks with an absolute value of beta less

than one, jβkj. 1, are less variable than the market.
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MARKET OBSERVATIONS—EMPIRICAL FINDINGS
In order that we better understand the meaning of these variability trends

in the market, we evaluated volatility, correlation, and dispersion over

the period January 1, 2000 through June 30, 2012. The universe used for

our analysis was the SP500 index for large cap stocks and the R2000

index for small cap stocks. Stocks that were in each index on the last

trading day in the month were included in calculations for that month.

Volatility: Volatility was computed as the 22-day standard deviation of

log returns annualized using a scaling factor of
ffiffiffiffiffiffiffiffi
250

p
. We computed vol-

atility for all stocks in our universe on each day and reported the cross-

sectional average as our daily data point. Figure 6.2a shows the average

stock volatility for large cap stocks. At the beginning of 2000, volatility

was fairly high. This was primarily due to the technology boom and

increased trading volume. Volatility began the decade around 60% but

decreased to about 20%. Volatility remained low until spring 2007 and

then started to spike in August 2007 due to the quant crisis. But this was

nothing compared to the financial crisis period of 2008�2009 where vol-

atility spiked to over 100% and reached as high as 118%. Following the

financial crisis volatility decreased to more reasonable levels of 20�30%

and these lower levels persisted until fall 2011 due to the US debt ceiling

crisis and the re-emergence of macroeconomic uncertainty in Europe.

After the US addressed its debt issues volatility decreased shortly

thereafter.

The average large cap volatility during our sample period was 36% and

the average small cap volatility was 54%. Small cap volatility tends to be

consistently higher than large cap volatility.

Correlation: Correlation was computed as the 22-day correlation mea-

sure across all pairs of stocks in each index. Figure 6.2b shows the aver-

age pair-wise correlation across all pairs of stock on each day for large

cap stocks. For example, for a universe with 500 stocks there

are 124,500 unique two pair combinations. Hence, we computed corre-

lations across all 124,500 combinations of stock and show the average

value in Figure 6.2b. For an index consisting of 2000 stocks there are just

slightly less than 2 million unique combinations of stock (1,999,000 to be

exact). Computing average pair-wise correlations is a very data intensive

process. The graph of average large cap correlations over our period found

relatively low correlation (less than 30%) at the beginning of the decade but

then spiking at the time of the collapse bubble. This increase in correlation

was due in part to the markets re-evaluation of stock prices to lower levels

and a sell-off of stock from institutions that further pushed the prices in the
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■ Figure 6.2 Market Observations: Volatility, Correlation and Dispersion.



same direction. Since spring 2007 correlations have been on the rise and

only recently seem to have leveled off, but at much higher levels than at the

beginning of the decade. An interesting finding of our historical analysis is

that the market experienced the highest level of correlation following the

flash crash (but very short lived) and again during the US debt ceiling crisis.

These correlation levels were even higher than the levels experienced during

the financial crisis when markets experienced their highest levels of

volatility.

The average large cap pair-wise correlation during our sample period was

32% and average small cap pair-wise correlation was 23%. Opposite to

the volatility relationship mentioned above, small cap correlation tends to

be lower than large cap correlation. This is primarily due to smaller com-

panies having a larger amount of company risk. However, there are peri-

ods when correlation is greater across the small cap stocks.

Dispersion: We measured dispersion as the standard deviation of the

22-day stock return. For example, for the SP500 we computed the 22-day

price return for each of the 500 stocks in the index. We then computed

the standard deviation of these returns as our dispersion. Figure 6.2c

illustrates large cap returns dispersion over our analysis period. As shown

in the figure, dispersion was fairly constant at the beginning of the

decade and then declined through August 2007 when it suddenly

increased and spiked during the financial crisis. Dispersion decreased

shortly thereafter but began increasing again during the US debt crisis of

fall 2011. Comparison of dispersion to pair-wise correlation shows a

slightly negative relationship. As correlation increases dispersion tends to

fall and as correlation decreases dispersion tends to increase. This inverse

relationship between dispersion and correlation is more dramatic for

small cap stocks than for large cap stocks.

Over our sample period, the average large cap dispersion was 36% and

the average small cap dispersion was 58%. Dispersion tends to be consis-

tently larger for small caps than for large caps.

Volatility Clustering: Figure 6.2d illustrates the daily price change for

the SP500 index. Notice the extent of volatility clustering. This means

that large price swings tend to be followed by large price swings (either

positive or negative) and small price swings tend to be followed by small

price swings (either positive or negative). The beginning of the decade

was associated with a higher volatility regime due to the technology bub-

ble. This was followed by relatively lower volatility through the begin-

ning of the quant breakdown starting in August 2007 followed by ultra-

high volatility during the financial crisis of 2008�2009. The graph also
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illustrates the higher volatility period after the flash crash in May 2010

and again during the US debt crisis in fall 2011. Volatility appears to be

time varying with a clustering effect. Thus, traditional models that give

the same weighting to all historical observations may not be the most

accurate representation of actual volatility. The volatility clustering phe-

nomenon was the reason behind the advanced volatility modeling techni-

ques such as ARCH, GARCH, and EWMA. These models are further

discussed below. Table 6.1 provides a summary of our market observa-

tions over the period from January 2000 through June 2012.

FORECASTING STOCK VOLATILITY
In this section, we describe various volatility forecasting models as well

as appropriate techniques to estimate their parameters. We also introduce

a new model that incorporates a historical measure coupled with insight

from the derivatives market. These models are:

� Historical Moving Average (HMA)

� Exponential Weighted Moving Average (EWMA)

� Autoregressive Models (ARCH and GARCH)

� HMA-VIX Adjustment

Some of these descriptions and our empirical findings have been dissemi-

nated in the Journal of Trading’s “Intraday Volatility Models: Methods to

Improve Real-Time Forecasts,” Fall 2012. Below we follow the same

outline and terminology as in the journal.

Volatility Models
We describe four different volatility models: the historical moving

average (HMA), the exponential weighted moving average (EWMA)

introduced by JP Morgan (1996), an autoregressive heteroscedasticity

(ARCH) model introduced by Engle (1982), a generalized autoregressive

Table 6.1 Market Observations from Jan. 2000�Jun. 2012

Avg Volatility Avg Correlation Avg Dispersion

Statistic LC SC LC SC LC SC

Avg: 36% 54% 32% 23% 36% 58%

Stdev: 16% 20% 15% 12% 16% 20%

Min: 18% 30% 3% 2% 16% 33%
Max: 119% 146% 81% 67% 118% 142%
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conditional heteroscedasticity (GARCH) model introduced by Bollerslev

(1986), and an HMA-VIX adjustment model that combines the stock’s

current realized volatility with an implied volatility measure1.

We fit the parameters of these models to the SP500 and R2000 indexes

over the one-year period July 1, 2011 through June 30, 2012 and compare

the performance of the models. Readers are encouraged to experiment

with these techniques to determine which model work best for their needs.

Price Returns
Price returns for each index were computed as the natural log of close-

to-close price change:

yt 5 lnðpt=pt21Þ ð6:13Þ

A general short-term model of price returns is:

yt 5C1σtεt ð6:14Þ

where C is a constant, εt is random noise with distribution εtBNð0;1Þ,
and σt is the time varying volatility component. In practice, the short-

term constant term C is rarely known in advance and analysts often use a

simplifying assumption of C5 0. Then the general short-term price

returns model simplifies to:

yt 5σtεt ð6:15Þ

Data Sample We used the SP500 and R2000 index returns over the one-

year period July 1, 2011 through June 30, 2012 as our data sample.

Figure 6.3a shows the daily price returns for the SP500. The standard devi-

ation of daily returns over this period was 1.5% and the SP500 index had

price swings as high as 14.6% on August 9, 2011 and as low as 26.9%

on August 8, 2011. These large swings occurred during the US debt crisis

(Aug.�Sep. 2011). Figure 6.3b shows the price returns for the R2000

index over the same period. The R2000 index had a standard deviation of

daily returns of 2.1%, and price swings as high as 16.7% on August 9,

2011 and as low as 2 9.3% on August 8, 2011. As is evident in both fig-

ures, volatility was fairly low through middle of August 2011 when there

was a sudden spike in volatility that caused it to remain high through year

1The HMA-VIX volatility model was presented at Curt Engler’s CQA/SQA Trading

Seminar (February 2009), “Volatility: Is it safe to get back in the water?” and taught as

part of the volatility section in Cornell University’s Graduate Financial Engineering

Program, “Introduction to Algorithmic Trading,” Fall 2009 (Kissell and Malamut). The

HMA-VIX model was also published in Journal of Trading, “Intraday Volatility

Models: Methods to Improve Real-Time Forecasts,” Fall 2012.
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end. This was then followed by a relatively low volatility period from

January 2012 through the end of May 2012 when markets started to expe-

rience increasing volatility levels. The most important finding over the

time period investigated is that the volatility of both indexes appears to be

time varying with clustering. The volatility model needs to be able to

quickly adjust to these types of sudden regime shifts.

Historical Moving Average (HMA)
The historical moving average volatility measure is computed by definition:

σ2
t 5

1
n2 1

Xn
k51

y2t2k ð6:16Þ
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This is a simple unbiased average of squared returns (since we are tak-

ing the trend term to be C5 0). The advantage of this approach is that

the calculation straightforward. The disadvantage is that the HMA

assumes returns are independent and identically distributed with con-

stant variance. However, this assumption does not seem to hold true

over the period analyzed (see Figure 6.3a and Figure 6.3b). Since this

model applies equal weightings to all historical data points it has been

found to be slow to adapt to changing volatility regimes, such as the

US debt crisis (Aug.�Sep. 2011) and during the financial crisis (Sep.

2008�Mar. 2009).

Exponential Weighted Moving Average (EWMA)
The exponential weighted moving average (EWMA) is computed

as follows:

σ̂2
t 5 ð12λÞy2t21 1λσ̂2

t21 ð6:17Þ

EWMA applies weights to the historical observations following an expo-

nential smoothing process with parameter λ where 0#λ# 1. The value

of the smoothing parameter is determined via maximum likelihood esti-

mation (MLE). JP Morgan (1994) first introduced this model as part of

their Risk Metrics offering.

The advantage of the EWMA is that it places more emphasis on the

recent data observations. This allows the model to quickly update in a

changing volatility environment. Additionally, its forecasts only require

the previous period price change and the previous volatility forecast.

We do not need to recalculate the forecast using a long history of

price returns.

Arch Volatility Model
The ARCH volatility model was introduced by Engle (1982) and consists

of the “p” previous returns. We can formulate it as follows:

σ̂2
t 5ω1

Xp
i51

αir
2
t2i ð6:18Þ

where, ω. 0;α1; . . .;αp $ 0;
P

αi , 1.

The parameters of the model are determined via ordinary least squares

(OLS) regression analysis. The model differs from the HMA in that it

does not apply the same weightings to all historical observations. To the

extent that the more recent observations have a larger effect on current
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returns, the ARCH model will apply greater weight to the more recent

observations. This allows the model to update quickly in a changing vola-

tility environment.

A simple ARCH(1) model consists of the previous day’s price return.

This is formulated as:

σ̂2
t 5ω1α1y

2
t2i ð6:19Þ

where, ω. 0; 0#α1 , 1.

GARCH Volatility Model
The GARCH volatility model was introduced by Bollerslev (1986) and is an

extension of the ARCH model (Engle, 1982). A GARCH(p,q) model consists

of “p” previous returns and “q” previous volatility forecasts as follows:

σ̂2
t 5ω1

Xp
i51

αir
2
t2i 1

Xq
j51

βjσ̂
2
t2j ð6:20Þ

where, ω. 0;α1; . . .;αp; b1; . . .; bq $ 0;
P

αi 1
P

βj , 1.

The GARCH model applies more weight to the more recent observations

thus allowing the model to quickly adapt to changing volatility regimes.

The parameters of the model are determined via maximum likelihood

estimation.

A simple GARCH(1,1) model consists of only the previous day’s price

return and previous day’s volatility forecast and is formulated as:

σ̂2
t 5ω1α1y

2
t2i 1β1σ̂

2
t2j ð6:21Þ

where, ω. 0;α1; b1 $ 0;α1 1 b1 , 1.

HMA-VIX ADJUSTMENT MODEL
The HMA-VIX volatility forecasting model is an approach that combines

the stock’s current volatility with an implied volatility estimate. We for-

mulate this model as:

σ̂t 5σt21 �
VIXt21

σSPX;t21
� AdjFactor ð6:22Þ

where σt21 is the HMA stock trailing volatility, σSPX;t21 is the SP500

index trailing volatility, VIXt21 is the VIX implied volatility index, and

AdjFactor is the adjustment factor needed to correct for the risk premium

embedded in the VIX contract.

206 CHAPTER 6 Price Volatility



Over the years the options market has proven to be a valuable, accurate, and

timely indicator of market volatility and changing regimes. Options traders

are able to adjust prices quickly based on changing volatility expectations.

Analysis can easily infer these expectations through the options prices.

This is known as the implied volatility. The question arises then if implied

volatility is an accurate and timely estimate of volatility then why cannot

analysts just use implied volatility from the options market rather than use

results from these models? The answer is simple. Unfortunately, implied

volatility estimates do not exist for all stocks. The options market at the

stock level is only liquid for the largest stocks. Accurate implied volatility

estimates do not exist across all stocks. Fortunately, the options market still

provides valuable information that could be extended to the stock level and

help provide accurate forward looking estimates, and in a more timely man-

ner than the other historical techniques. This also provides ways for algo-

rithms to quickly adjust to changing expectations in real-time and provide

investors with improved trading performance.

The HMA-VIX technique consists of adjusting the stock’s trailing volatil-

ity by the ratio of the VIX index to the SP500 trailing volatility plus a

correction factor. The ratio of the VIX to the SP500 realized shows

whether the options market believes that volatility will be increasing or

decreasing. However, since the VIX usually trades at a premium of 1.31

to the SP500 trailing volatility we need to include an adjustment factor to

correct for this premium. If the VIX Index/SP500 realized volatility

.1.31 then we conclude that the options market believes volatility will

be increasing and if the VIX Index/SP500 realized volatility ,1.31 then

we conclude that the options market believes volatility will be

decreasing.

The increasing/decreasing expectation obtained from the options market

is then applied to individual stocks. A comparison of the VIX implied to

the SP500 trailing is shown in Figure 6.4.

The advantage of incorporating the implied expectations into our real-

time volatility estimator is that if there is a sudden market event that will

affect volatility it will almost immediately be reflected in the HMA-VIX

measure. The historical models (HMA, EWMA, ARCH and GARCH)

will not react to the sudden market event until after this event has

affected stock prices. Thus the historical models will always be lagging

behind the event to some degree. Furthermore, if the options market is

anticipating an event that has not yet occurred, and has priced the uncer-

tainty of the event into its prices, the HMA-VIX model will also reflect

the anticipated event and increased uncertainty prior to that event taking
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place. Just the worry of a potential event taking place will be reflected in

the HMA-VIX model. Models updated nightly will miss this event and

will not necessarily provide timely accurate volatility estimates.

Determining Parameters via Maximum Likelihood
Estimation
Parameters of the GARCH and EWMA volatility models are computed

via maximum likelihood estimation (MLE). An overview of the

estimation process follows.

Likelihood Function
Let log price returns be normally distributed with mean zero and time

varying volatility, that is, ytBNð0; σ̂2
t Þ. Then the probability density func-

tion (pdf) of these returns at any time is:

ftðyt ; σ̂tÞ5
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ̂2

t

q � e2
y2t
2σ̂2t ð6:23Þ

The likelihood of achieving the observed series of returns is:

L5 L
n

t51

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ̂2

t

q � e2
y2t
2σ̂2t ð6:24Þ
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The log likelihood function lnðLÞ of achieving this sequence of returns is:

lnðLÞ5
Xn
t51

2
1
2
lnð2πÞ2 1

2
lnðσ̂2

t Þ2
1
2
y2t
σ̂2
t

 !
ð6:25Þ

The parameters of the EWMA and GARCH models are found by maxi-

mizing the lnðLÞ where σ̂2
t is defined from the corresponding volatility

models. This maximization process can be simplified as:

Max: lnðLÞ5
Xn
i51

2 lnðσ̂2
i Þ2

y2i
σ̂2
i

ð6:26Þ

Many times optimization packages will only minimize an equation. In

these situations, the parameters are found by minimizing the negative of

the log likelihood function as follows:

Min: 2 lnðLÞ5
Xn
i51

lnðσ̂2
t Þ1

y2i
σ̂2
i

ð6:27Þ

Estimation Results
Our parameter estimation results are shown in Table 6.2. For the EWMA

model, we found λ5 0:88 for both the SP500 and R2000. For the GARCH

model we found β5 0:84 for the SP500 and β5 0:82 for the R2000. These

findings are slightly lower than what has been previously reported for other

times where λ and β are closer to 0.95 and indicate a stronger persistence.

This difference is likely due to the cause of volatility persistence over our

timeframe—high volatility regime caused by the debt issues followed by

a lower volatility regime after the issues were resolved. The Aug. 2011

through Sep. 2011 debt issue in the US was relatively short-lived and was

resolved relatively quickly.

MEASURING MODEL PERFORMANCE
We compared the HMA-VIX technique to the historical moving average

(HMA), exponential weighted moving average (EWMA), and generalized

autoregressive conditional heteroscedasticity (GARCH) models. We eval-

uated the performance of the volatility models using three different

criteria: root mean square error (RMSE), root mean z-score squared error

(RMZSE), and an outlier analysis. Menchero, Wang and Orr (2012) and

Patton (2011) provide an in-depth discussion of alternative volatility
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evaluation statistics that can be used to further critique the accuracy of

these models. Our usage of these aforementioned performance statistics is

to provide a point of comparison across techniques. These procedures are:

Root Mean Square Error (RMSE)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
ðσ̂t2σtÞ2

r
ð6:28Þ

The RMSE is simply the difference squared between the estimated

volatility σ̂t and realized volatility. Realized volatility was measured as

the square root of squared return (e.g., absolute value of return), that is,

σt 5
ffiffiffiffiffi
y2t

p
. This follows along the lines of the more traditional statistical

tests such as minimizing sum of squares used in regression analysis.

Root Mean Z-Score Squared Error (RMZSE)

RMZSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X y2t
σ̂2
t

21

 !2
vuut ð6:29Þ

The RMZSE is a measurement of the squared difference between our test

statistic z and one.

This test is derived as follows. Let, z5 y2μ
σ . Then we have E½z�5 0 and

Var½z�5 1.

Since we have ytBNð0; σ̂2
t Þ, our test statistic z can be written as zt 5

yt
σ̂t
.

And the variance of z is simply, Var zt½ �5 y2t
σ̂2
t
5 1. The root mean z-score

squared error is then a test of how close the test statistic is to its

theoretical value.

Table 6.2 Estimated Parameters

EWMA GARCH

Index λ Ω α β

SP500 0.8808 3.42E-06 0.1519 0.8420

R2000 0.8758 9.92E-06 0.1614 0.8222
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Outlier Analysis
The outlier analysis was used to determine the number of times actual

returns exceeded a predicted three standard deviation movement. That is:

Outlier if
yt
σ̂t

����
����.3

The outlier analysis consists of determining the total number of outliers

observed based on the predicted volatility from each model. We chose

three standard deviations as the criteria for outliers. If the absolute value

of price return for the index was greater than 3 times the forecasted stan-

dard deviation for the index on that day the observation was counted as

an outlier. The goal of the outlier analysis was to determine which model

resulted in the fewest number of surprises.

Results
The HMA-VIX model was found to be a significant improvement over

the historical moving average model. It also performed better than the

GARCH and EWMA models under various test statistics, and as well as

the GARCH and EWMA models in the other tests.

RMSE performance criteria: The HMA-VIX volatility model was the best

performing model. The EWMA was the second best model for the SP500

index followed by the GARCH. The GARCH was the second best model

for the R2000 index followed by the EWMA. So while the HMA-VIX was

the best there was no clear second best. As expected, the simple HMA stan-

dard deviation model was the worst performing model for both indexes.

RMZSE performance criteria: The GARCH model was the best

performing model for both the SP500 and R2000 indexes. The HMA-

VIX was the second best performing model for the R2000 index followed

by the EWMA. The EWMA was the second best performing model for the

SP500 index followed closely by the HMA-VIX. Therefore, while

the GARCH was the best there was no clear second best. The HMA-VIX

model performed as well as the EWMA based on the RMZSE analysis.

These testing metrics for the RMSE and RMZSE are shown in Table 6.3.

Outlier performance criteria: The HMA-VIX and GARCH models had the

fewest number of outliers (surprises) for predicted SP500 index returns.

There were two surprises with these models. The EWMA approach resulted

in three outliers and the HMA resulted in five. The GARCH and EWMA

models resulted in two outliers each for the R2000 index. The HMA-VIX

had three outliers and the HMA had six. Overall, the GARCH model had
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fewest outliers with four in total, followed by the HMA-VIX and EWMA

with five each. The HMA had the most outliers with 11 in total. The total

number of outliers from each model is shown in Figure 6.5.

Figure 6.6 illustrates the ratio of price return divided by predicted HMA-

VIX volatility for the SP500 index over our sample period. As shown in

this figure, there were two outliers that occurred towards the end of

August 2011 during the US debt ceiling crisis.

Under a conservative set of testing criteria, there appears to be compelling

statistical evidence that the HMA-VIX adjustment model is as accurate as

the EWMA and GARCH models. These are extremely encouraging results

since only the HMA-VIX model is capable of reacting in real-time to mar-

ket events or potential market events that will impact volatility but have

not yet affected realized market prices. The historical models will not

react to these events until that information is captured in the prices. This

Table 6.3 Performance Results

SP500 R2000

Model RMSE RMZSE RMSE RMZSE

HMA 0.0106 2.6310 0.0135 4.9373

HMA-VIX 0.0095 2.2965 0.0129 4.1787

EWMA 0.0102 2.1019 0.0131 4.1824
GARCH 0.0103 1.6825 0.0131 3.2585
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makes the HMA-VIX model a potentially powerful volatility forecasting

model for intraday trading applications and electronic trading algorithms.

Some of the advantages of the HMA-VIX volatility model over other

techniques are:

� Reacts to new information sets prior to those events affecting prices.

Historical models will only react to new information after it has already

affected prices. There is always some degree of lag when using historical

models or models based on realized prices.

� Incorporates real-time information from the options market, e.g., forward

looking implied volatility, across the full universe of stock. Implied stock

volatility is only available for a very limited number of stocks.

� Provides necessary real-time volatility estimates that can be incorpo-

rated into trading applications and electronic trading algorithms.

� Allows algorithms to make real-time revision to their execution strate-

gies, limit order model, and smart order routing logic in real-time.

� Performed as well as, and in some cases better than, some of the

more traditional volatility forecasting models.

As a follow-up exercise, we propose further research that combines alterna-

tive historical volatility measures with forward looking implied volatility

terms. For example, combine the GARCH or EWMA models with an

implied volatility term. The implied volatility term can be based on the ratio

of the VIX index to S&P trailing volatility (as proposed above), or possibly

based on the net change or log change in the VIX index from one period to

the next. It is often said that execution performance will only be as good as

the models that are used to manage the executions, and that those models

are only as good as the accuracy of the forecasted explanatory factors. Since
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real-time volatility is often a key explanatory factor in these models, having

improved volatility forecasts on hand will likely lead to more accurate mod-

els. And having more accurate models will allow investors to better react to

changing market conditions. And most importantly, this ensures consistency

between trading decisions and investing objectives of the fund.

Table 6.4 provides a comparison of the different volatility forecasting models.

Problems Resulting from Relying on Historical
Market Data for Covariance Calculations
Next we want to highlight two issues that may arise when relying on his-

torical data for the calculation of covariance and correlation across stocks

using historical price returns. These issues can have dire results on our

estimates. They are:

� False Relationships.

� Degrees of Freedom.

False Relationships
It is possible for two stocks to move in the same direction and have a nega-

tive calculated covariance and correlation measure and it is possible for

two stocks to move in opposite directions and have a positive calculated

covariance and correlation measure. Reliance on market data to compute

covariance or correlation between stocks can result in false measures.

Table 6.4 Volatility Forecasting Models

Volatility
Model

Formula Parameter(s) Calculation

HMA σ2
t 5

1
N2 1

XN
i51

r2t2i n/a By Definition

EWMA σ_
2
t 5 ð12λÞr2t21 1λσ_

2
t21

λ MLE

ARCH(1) σ_
2
t 5ω1αr2t21

ω;α OLS

GARCH(1,1) σ_
2
t 5ω1αr2t21 1βσ_

2
t21

ω;α;β MLE

VIX Adj. σ_
2
t 5σ2

t21 �
VIXt21

SP500σ t21

� �2

n/a By Definition

σ_
2
t 5 β0 1β1 � VIX2

t21
β0;β1 OLS
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Following the mathematical definition of covariance and correlation we

find that the covariance of price change between two stocks is really a

measure of the co-movement of the “error terms” of each stock not the

co-movement of prices. For example, the statistical definition of covari-

ance between two random variables x and y is:

σxy 5E½ðx2 xÞðy2 yÞ�

It is quite possible for two stocks to have the same exact trend but whose

errors (noise term) are on opposite sides of the trend lines. For example,

if x5 y5 z, x5 d, y52 d and d. z, our covariance calculation is:

E½ðx2 xÞðy2 yÞ�5 E½ðd2 zÞð2 d2 zÞ�5 E½2 d2 1 z2�

Since d. z, we have E½2 d2 1 z2�, 0 which is a negative measured

covariance term indicating the stocks trend in opposite directions.

But these two stocks move in exactly the same direction, namely, z.

It is also possible for two stocks to move in opposite directions but have

a positive covariance measure. For example, if x5 z and y52 z,
x5 y5 d, and d. z, the covariance calculation is:

E½ðx2 xÞðy2 yÞ�5E½ðd2 zÞðd22 zÞ�5E½d2 2 z2�

Since d. z we have E½d2 2 z2�. 0 which is a positive measured covari-

ance term indicating the stocks trend in the same direction. But these two

stocks move in the exact opposite direction.

The most important finding above is that when we compute covariance and

correlation on a stock by stock basis using historical returns and price data it

is possible that the calculated measure is opposite of what is happening in the

market. These “false positive” and/or “false negative” relationships may be

due to the error term about the trend rather than the trend or possibly due to

too few data points in our sample.

Example 1: False negative signal calculations

Table 6.5a contains the data for two stocks A and B that are moving in the

same direction. Figure 6.7a illustrates this movement over 24 periods. But

when we calculate the covariance between these stocks we get a negative

correlation, ρ520.71. How can stocks that move in the same direction

have a negative covariance term? The answer is due to the excess terms

being on opposite sides of the price trend (Figure 6.7b). Notice that these

excess returns are now on opposite sides of the trend which results in a

negative covariance measure. The excess returns are indeed negatively

correlated but the direction of trend is positively correlated.
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Example 2: False positive signal calculations

Table 6.5b contains the data for two stocks C and D that are moving in

opposite directions. Figure 6.7c illustrates this movement over 24 periods.

But when we calculate the covariance between these stocks we get a nega-

tive correlation, ρ510.90. How can stocks that move in the same direction

have a negative covariance term? The answer is due to the excess terms

being on the same side of the price trend. Figure 6.7d illustrates the excess

return in each time period. Notice that these excess returns are now on oppo-

site sides of the trend which results in a negative covariance measure.

Table 6.5a False Negative Signals

Market Prices Period Returns Excess Returns

Period A B A B A B

0 $10.00 $20.00

1 $11.42 $22.17 13.3% 10.3% 7.0% 5.3%

2 $11.12 $25.48 22.6% 13.9% 28.8% 8.9%
3 $12.60 $28.62 12.5% 11.6% 6.3% 6.6%

4 $12.96 $33.56 2.8% 15.9% 23.4% 10.9%

5 $16.91 $30.59 26.6% 29.3% 20.4% 214.3%

6 $17.63 $33.58 4.2% 9.3% 22.0% 4.3%

7 $17.78 $37.86 0.8% 12.0% 25.4% 7.0%

8 $19.93 $38.93 11.4% 2.8% 5.2% 22.2%

9 $23.13 $38.94 14.9% 0.0% 8.7% 25.0%

10 $24.21 $39.64 4.6% 1.8% 21.6% 23.2%
11 $23.39 $46.32 23.5% 15.6% 29.7% 10.6%

12 $23.92 $49.59 2.3% 6.8% 23.9% 1.8%

13 $25.50 $51.45 6.4% 3.7% 0.2% 21.3%

14 $23.97 $56.96 26.2% 10.2% 212.4% 5.2%

15 $27.35 $56.60 13.2% 20.6% 7.0% 25.6%

16 $31.27 $57.37 13.4% 1.3% 7.2% 23.7%

17 $30.03 $61.26 24.0% 6.6% 210.2% 1.6%

18 $36.04 $61.02 18.2% 20.4% 12.0% 25.4%
19 $32.01 $67.66 211.9% 10.3% 218.1% 5.3%

20 $33.16 $69.90 3.5% 3.3% 22.7% 21.7%

21 $37.32 $66.33 11.8% 25.2% 5.6% 210.2%

22 $34.71 $73.60 27.3% 10.4% 213.5% 5.4%

23 $39.08 $71.58 11.9% 22.8% 5.7% 27.8%

24 $44.33 $66.43 12.6% 27.5% 6.4% 212.5%

Avg: 6.2% 5.0% 0.0% 0.0%

Correl: 20.71 20.71
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The excess returns are indeed positively correlated but the direction of trend

is negatively correlated.

To correct for the calculation of covariance and correlation it is advised

to compare stock price movement based on a common trend (such as the

market index) or a multi-factor model. Factor models are discussed

further below.

Table 6.5b False Positive Signals

Market Prices Period Returns Excess Returns

Period C D C D C D

0 $60.00 $50.00

1 $65.11 $50.82 8.2% 1.6% 5.5% 5.1%

2 $63.43 $45.93 22.6% 210.1% 25.3% 26.6%
3 $71.51 $47.43 12.0% 3.2% 9.3% 6.7%

4 $60.90 $37.31 216.1% 224.0% 218.7% 220.5%

5 $93.93 $58.09 43.3% 44.3% 40.7% 47.8%

6 $85.83 $50.77 29.0% 213.5% 211.7% 210.0%

7 $68.19 $28.10 223.0% 259.2% 225.7% 255.7%

8 $73.95 $36.34 8.1% 25.7% 5.5% 29.2%

9 $88.56 $42.51 18.0% 15.7% 15.4% 19.2%

10 $100.69 $52.41 12.8% 20.9% 10.2% 24.4%
11 $95.29 $40.31 25.5% 226.3% 28.2% 222.8%

12 $112.56 $42.10 16.7% 4.3% 14.0% 7.8%

13 $99.59 $37.12 212.2% 212.6% 214.9% 29.1%

14 $95.56 $30.63 24.1% 219.2% 26.8% 215.7%

15 $103.88 $34.49 8.3% 11.9% 5.7% 15.4%

16 $119.10 $44.81 13.7% 26.2% 11.0% 29.7%

17 $100.88 $24.90 216.6% 258.7% 219.3% 255.3%

18 $117.90 $33.90 15.6% 30.9% 12.9% 34.3%
19 $143.46 $39.28 19.6% 14.7% 17.0% 18.2%

20 $118.28 $28.70 219.3% 231.4% 222.0% 227.9%

21 $108.05 $18.39 29.0% 244.5% 211.7% 241.0%

22 $137.49 $34.52 24.1% 63.0% 21.4% 66.5%

23 $147.63 $41.95 7.1% 19.5% 4.4% 23.0%

24 $113.77 $21.63 226.1% 266.2% 228.7% 262.7%

Avg: 2.7% 23.5% 0.0% 0.0%

Correl: 0.90 0.90
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Degrees of Freedom
A portfolio’s covariance matrix consists of stock variances along the

diagonal terms and covariance terms on the off diagonals. The covariance

matrix is a symmetric matrix since the covariance between stock A and

stock B is identical to the covariance between stock B and stock A.

If a portfolio consists of n stocks the covariance matrix will be n3 n and

with n2 total elements. The number of unique variance terms in the

matrix is equal to the number of stocks, n. The number of covariance

terms is equal to ðn2 2 nÞ and the number of unique covariance terms is

ðn2 2 nÞ=25 n � ðn2 1Þ=2.
The number of unique covariance parameters can also be determined

from:

Unique Covariances5
n
2

� �
5

nðn2 1Þ
2

ð6:30Þ

The number of total unique elements k in the n3 n covariance matrix is

equal to the total number of variances plus total number of unique covar-

iances. This is:

k5 n1
nðn21Þ

2
5

n � ðn1 1Þ
2

ð6:31Þ

In order to estimate these total parameters we need a large enough set of

data observations to ensure that the number of degrees of freedom is at

least positive (as a starting point). For example, consider a system of m

equations and k variables. In order to determine a solution for each

variable we need to have m$ k or m2 k$ 0. If m, k then the set of

equations is underdetermined and no unique solution exists. Meaning, we

cannot solve the system of equations exactly.

The number of data points, d, that we have in our historical sample period

of time is equal to d5 n � t since we have one data point for each stock n.

If there are t days in our historical period we will have n � t data points.

Therefore, we need to ensure that the total number of data points, d, is

greater than or equal to the number of unique parameters, k, in order to be

able to solve for all the parameters in our covariance matrix. This is:

d$ k

n � t$ n � ðn11Þ
2

t$
ðn1 1Þ

2
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Therefore, for a 500 stock portfolio there will be 125,250 unique para-

meters. Since there are 500 data points per day we need just over 1 year

of data (250 trading days per year) just to calculate each parameter in the

covariance matrix.

But now, the problem associated with estimating each parameter entry in

the covariance matrix is further amplified because we are not solving for

a deterministic set of equations. We are seeking to estimate the value of

each parameter. A general rule of thumb is that there needs to be at least

20 observations for each parameter to have statistically meaningful

results.

The number of data points required is then:

d$ 20 � k

n � t$ 20 � n � ðn11Þ
2

t$ 10 � ðn1 1Þ

Therefore, for a 500 stock portfolio (the size of the market index) we

need 5010 days of observations, which is equivalent to over 20 years of

data! Even if we require only 10 data points per parameter this still

results in over 10 years of data! Figure 6.8b shows the number of days of

data that is required to estimate the parameters of the covariance matrix

for different numbers of stocks.

It has been suggested by some industry pundits that it is possible to esti-

mate all unique parameters of the covariance matrix using the same num-

ber of observations as there are unique parameters. However, these

pundits also state that in order for this methodology to be statistically

correct we need to compute the covariance terms across the entire uni-

verse of stocks and not just for a subset of stocks. But even if this is true,

the relationship across companies in the methodology needs to be stable.

The reasoning is that if we do use the entire universe of stocks with

enough data points we will uncover the true intrarelationship across all

subgroups of stocks and have accurate variance and covariance measures.

In the US there are over 7000 stocks and thus over 24.5 million para-

meters. This would require over 14 years of data history! We are pretty

confident in the last 14 years that many companies have changed main

lines of products (e.g., Apple), changed their corporate strategy (e.g.,

IBM), and thus these relationships have changed. So even if we had

enough data points we know that companies do change, violating the

requirements for this approach.
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The last point to make is that for a global covariance matrix with a global

universe of over 50,000 companies (at least 50,000!) there would be over

1.25 billion unique parameters and we would need a historical prices

series of over 100 years! Think about how much has changed in just the

last 10 years, let alone 100 years.

FACTOR MODELS
Factor models address the two deficiencies we encountered when using

historical market data to compute covariance and correlation. First, these

models do not require the large quantity of historical observations that

are needed for the sample covariance approach in order to provide accu-

rate risk estimates. Second, factor models use a set of common explana-

tory factors across all stocks and comparisons are made to these factors
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across all stocks. However, proper statistical analysis is still required to

ensure accurate results.

Factor models provide better insight into the overall covariance and cor-

relation structure between stocks and across the market. Positive correla-

tion means that stocks will move in the same direction and negative

correlation means that stocks will move in opposite direction.

A factor model has the form:

rt 5α0 1 f1tb1 1 f2tb2 1?1 fktbk 1 et ð6:32Þ

where,

rt 5 stock return in period t.

α0 5 constant term.

fkt 5 factor k value in period t.

bk 5 exposure of stock i to factor k. This is also referred to as beta,

sensitivity, or factor loadings.

et 5 noise for stock i in period t. This is the return not explained by

the model.

Parameters of the model are determined via ordinary least squares (OLS)

regression analysis. Some analysts apply a weighting scheme so more recent

observations have a higher weight in the regression analysis. These weight-

ing schemes are often assigned using a smoothing function and “half-life”

parameter. Various different weighting schemes for regression analysis can

be found in Green (2000).

To perform a statistically correct regression analysis the regression model

is required to have the following properties. (see Green (2000); Kennedy

(1998); Mittelhammer (2000), etc.).

Regression properties:

1. EðetÞ5 0
2. VarðetÞ5 Eðe0eÞ5σ2

e

3. VarðfkÞ5 E½ðfk2f kÞ2�5σ2
fk

4. EðefkÞ5 0
5. Eðfkt ; fltÞ5 0
6. Eðetet2jÞ5 0
7. EðeitejtÞ5 0

Property (1) states that the error term has a mean of zero. This will always

be true for a regression model that includes a constant term b̂0k or for a

model using excess returns EðritÞ5 0. Property (2) states that the variance
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of the error term for each stock is σ2
ei. Properties (1) and (2) are direct

byproducts of a properly specified regression model. Property (3) states

that the variance of each factor is σ2
fk and is true by definition. Property (4)

states that the error term (residual) and each factor are independent.

Analysts need to test to ensure this property is satisfied. Property (5) states

that the explanatory factors are independent. Analysts need to properly

select factors that are independent or make adjustments to ensure that they

are independent. If the factors are not truly independent the sensitivities to

these factors will be suspect. Property (6) states that the error terms are

independent for all lagged time periods, i.e., no serial correlation or corre-

lation of any lags across the error terms. Property (7) states that the error

terms across all stocks are independent, i.e., the series of all error terms are

uncorrelated. Since the error term in a factor model indicates company

specific returns or noise that is not due to any particular market force these

terms need to be independent across companies. If there are stocks with

statistically significant correlated error terms then it is likely that there is

some market force or some other explanatory variable that is driving

returns that we have not accounted for in the model. In this case, while the

sensitivities to the selected variables may be correct, some of our risk cal-

culations may be suspect because we have not fully identified all sources

of risk. For example, company specific risk, covariance and correlation,

and portfolio risk may be suspect due to an incomplete model and may

provide incorrect correlation calculations.

When constructing factor models analysts need to test and ensure that all

properties are satisfied.

Matrix Notation
In matrix notation our single stock factor model is:

ri 5αi 1 Fbi 1 ei ð6:33Þ
where,

ri 5

ri1
ri2
^
rin

2
664

3
775; αi 5

αi1

αi2

^
αin

2
664

3
775; F5

f11 f21 ? fk1
f12 f22 ? fk2
^ ^ & ^
f1n f2n ? fkn

2
664

3
775; bk 5

bi1
bi2
^
bik

2
664

3
775 ei 5

ei1
ei2
^
ein

2
664

3
775

ri 5 vector of stock returns for stock i

rit 5 return of stock i in period t

αi 5 vector of the constant terms

F5 column matrix of factor returns

fjt 5 factor j in period t
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bi 5 vector of risk exposures

bij 5 risk sensitivity of stock i to factor j

ei 5 vector of errors (unexplained return)

eit 5 error term of stock i in period t

n5 total number of time periods

m5 total number of stocks

k5 total number of factors

Constructing Factor Independence
Real-world data often results in factors that are not independent which

violates regression property (5). This makes it extremely difficult to

determine accurate risk exposures to these factors. In these situations,

analysts can transform the set of dependent original factors into a new set

of factors that are linearly independent (Kennedy, 1988).

This process is described as follows:

Let F, G, and H represent three explanatory factors that are correlated.

First, sort the factors by explanatory power. Let F be the primary driver of

risk and return, let G be the secondary driver, and let H be the tertiary driver.

Second, remove the correlation between F and G. This is accomplished

by regressing the secondary factor G on the primary factor F as follows:

G5 ~v0 1 ~v1F1 eG

The error term in this regression eG is the residual factor G that is not

explained by the regression model and by definition (property (4)) is

independent of F. Then let ~G be simply eG from the regression. That is:

~G5G2 ~ν0 2 ~ν1F

Third, remove the correlation between factor H and factor F and the new

secondary factor ~G. This is accomplished by regressing H on F and ~G as

follows:

H5 γ̂0 1 γ̂1F1 γ̂2 ~G1 eH

The error term in this regression eH is the residual factor H that is not

explained by the regression model and by definition (property (4)) is indepen-

dent of F and G. This process can be repeated for as many factors as are

present.
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The factor model with uncorrelated factors is finally re-written as:

r5αo 1 Fbf 1 ~Gb~g 1 ~Hb~h 1 ε ð6:34Þ

This representation now provides analysts with a methodology to calcu-

late accurate risk exposures to a group of predefined factors which are

now independent.

Estimating Covariance Using a Factor Model
A factor model across a universe of stocks can be written as:

R5α1 Fβ1 ε ð6:35Þ

where,

R5

r11 r21 ? rm1

r12 r22 ? rm2

^ ^ & ^
r1n r2n ? rmn

2
664

3
775 F5

f11 f21 ? fk1
f12 f22 ? fk2
^ ^ & ^
f1n f2n ? fkn

2
664

3
775 α0 5

α1

α2

^
αn

2
664

3
775

β5

b11 b21 ? bm1

b12 b22 ? bm2

^ ^ & ^
b1k b2k ? bmk

2
664

3
775 ε5

ε11 ε21 ? εm1

ε12 ε22 ? εm2

^ ^ & ^
ε1n ε2n ? εmn

2
664

3
775

This formulation allows us to compute the covariance across all stocks

without the issues that come up when using historical market data. This

process is described following Elton and Gruber (1995) as follows:

The covariance matrix of returns C is calculated as:

C5 E½ðR2E½R�Þ0ðR2E½R�Þ�

From our factor model relationship we have:

R5α1 Fβ1 ε

The expected value of returns is:

E½R�5α1 Fβ

Now we can determine the excess returns as:

R2 E½R�5 ðF2 FÞβ1 ε

Now substituting in the above we have:

C5 E½ððF2FÞ2β1 εÞ0ððF2 FÞβ1 εÞ�
5 E½β0ðF2FÞ2β12β0ðF2 FÞε1 ε0ε�
5 β0E½ðF2FÞ2�β12β0E½ðF2 FÞε�1E½ε0ε�
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By property (4):

E½2β0ðF2 FÞε�5 0

By property (2) and property (7) we have,

E½ε0ε�5
σ2
e1 0 ? 0
0 σ2

e2 ? 0
^ ^ & ^
0 0 ? σ2

en

2
664

3
7755Λ

which is the idiosyncratic variance matrix and is a diagonal matrix con-

sisting of the variance of the regression term for each stock.

By property (3) and property (5) the factor covariance matrix is:

E½ðF2FÞ2�5
σ2
f1 0 ? 0
0 σ2

f2 ? 0
^ ^ & ^
0 0 ? σ2

fk

2
664

3
7755 covðFÞ

The factor covariance matrix will be a diagonal matrix of factor variances. In

certain situations there may be some correlation across factors. When this

occurs, the off-diagonal entries will be the covariance between the factors.

Additionally, the beta sensitivities may be suspect meaning that we may not

know the true exposures to each factor and we will have some difficulty

determining how much that particular factor contributes to returns. However,

the covariance calculation will be correct providing we include the true factor

covariance matrix.

Finally, we have our covariance matrix derived from the factor model to be:

Covariance Matrix

C5β0covðFÞβ1Λ ð6:36Þ

This matrix can be decomposed into the systematic and idiosyncratic

components. Systematic risk component refers to the risk and returns that

are explained by the factors. It is also commonly called market risk or

factor risk. The idiosyncratic risk component refers to the risk and returns

that are not explained by the factors. This component are also commonly

called stock specific risk, company specific, and diversifiable risk. This

is shown as:

C5 β0cov½F�β|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Systematic

Risk

1 Λ|{z}
Idiosyncratic

Risk

ð6:37Þ
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TYPES OF FACTOR MODELS
Factor models can be divided into four categories of models: index mod-

els, macroeconomic models, cross-sectional or fundamental data models,

and statistical factor models. These are described below.

Table 6.6 provides a comparison of the common risk factor models used in

the industry. A description of each is provided below.

Index Model
There are two forms of the index model commonly used in the industry:

single index and multi-index models. The single index model is based on

a single major market index such as the SP500. The same index is used

as the input factor across all stocks. The multi-index model commonly

incorporates the general market index, the stock’s sector index, and addi-

tionally, the stock’s industry index. The market index will be the same

for all stocks but the sector index and industry index will be different

based on the company’s economic grouping. All stocks in the same sector

will use the same sector index, and all stocks in the same industry will

use the same industry index.

Single Index Model
The simplest of all the multi-factor models is the single index model.

This model formulates a relationship between stock returns and market

movement. In most situations, the SP500 index or some other broad mar-

ket index is used as a proxy for the whole market.

Table 6.6 Risk Factor Models

Volatility
Model

Types Formula Parameter Calculation

Time Series Index, Macro,
Technical

R5 B̂F1 ε B̂ OLS

Cross-
Sectional

Fundamental R5 BF̂1 ε F̂ OLS

Statistical/PCA Implicit
Factors

R5 B̂F̂1 ε B̂; F̂ OLS, MLE

Data Driven C Eigenvalue,
SVD Factor
Analysis
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In matrix notation, the single factor model has general form:

ri 5αi 1 b̂iRm 1 ei ð6:38Þ

ri5 column vector of stock returns for stock i

Rm5 column vector of market returns

ei5 column vector of random noise for stock i

b̂i 5 stock return sensitivity to market returns

In the single index model we need to estimate the risk exposure b̂i to the

general index Rm. In situations where the index used in the single index

model is the broad market index and the constant term is the risk free

rate, the single index model is known as the CAPM model (Sharpe,

1964) and the risk exposure b̂i is the stock beta, β.

Multi-Index Models
The multi-index factor model is an extension of the single index model that

captures additional relationships between price returns and corresponding

sectors and industries. There have been numerous studies showing that the

excess returns (error) from the single index model are correlated across

stocks in the same sector, and with further incremental correlation across

stocks in the same industry (see Elton and Gruber, 1995).

Let Rm 5market returns, Sk 5 the stock’s sector returns, and Ik 5 the

stock’s industry return. Then the linear relationship is:

ri 5αi 1 bimRm 1 bikSk 1 bilIi 1 ei

where bim is the stock’s sensitivity to the general market movement, bik is
the stock’s sensitivity to its sector movement, and bil is the stock’s sensi-

tivity to its industry movement.

There is a large degree of correlation, however, across the general market,

sectors, and industry. These factors are not independent and analysts need

to make appropriate adjustment following the process outlined above.

The general multi-index model after multicollinearity now has form:

ri 5αi 1 b̂imRm 1 b̂
�
isk
~Sk 1 b̂

�
iIl
~Il 1 ε ð6:39Þ

Macroeconomic Factor Models
A macroeconomic multi-factor model defines a relationship between

stock returns and a set of macroeconomic variables such as GDP,

inflation, industrial production, bond yields, etc. The appeal of using

macroeconomic data as the explanatory factors in the returns model is
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that these variables are readily measurable and have real economic

meaning.

While macroeconomic models offer key insight into the general state of

the economy they may not sufficiently capture the most accurate corre-

lation structure of price movement across stocks. Additionally, macro-

economic models may not do a good job capturing the covariance of

price movement across stocks in “new economies” or a “shifting

regime” such as the sudden arrival of the financial crisis beginning in

Sep. 2008.

Ross, Roll, and Chen (1986) identified the following four macroeconomic

factors as having significant explanatory power with stock return. These

strong relationships still hold today and are:

1. Unanticipated changes in inflation.

2. Unanticipated changes in industrial production.

3. Unanticipated changes in the yield between high-grade and low-grade

corporate bonds.

4. Unanticipated changes in the yield between long-term government

bonds and t-bills. This is the slope of the term structure.

Other macroeconomic factors have also been incorporated into these

models include change in interest rates, growth rates, GDP, capital invest-

ment, unemployment, oil prices, housing starts, exchange rates, etc. The

parameters are determined via regression analysis using monthly data

over a five-year period, e.g., 60 observations.

It is often assumed that the macroeconomic factors used in the model are

uncorrelated and analysts do not make any adjustment for correlation

across returns. But improvements can be made to the model following

the adjustment process described above.

A k-factor macroeconomic model has the form:

ri 5αi0 1 b̂i1f1 1 b̂i2f2 1?1 b̂ikfk 1 ei ð6:40Þ

Analysts need to estimate the risk exposures biks to these macro-

economic factors.

Cross-Sectional Multi-Factor Models
Cross-sectional models estimate stock returns from a set of variables that

are specific to each company rather than through factors that are common

across all stocks. Cross-sectional models use stock specific factors that
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are based on fundamental and technical data. The fundamental data con-

sists of company characteristics and balance sheet information. The tech-

nical data (also called market driven) consists of trading activity metrics

such as average daily trading volume, price momentum, size, etc.

Because of the reliance on fundamental data, many authors use the term

“fundamental model” instead of cross-sectional model. The rationale

behind the cross-sectional model is similar to the rationale behind the

macroeconomic model. Since managers and decision-makers incorporate

fundamental and technical analysis into their stock selection process it is

only reasonable that these factors provide insight into return and risk for

those stocks. Otherwise why would they be used?

Fama and French (1992) found that three factors consisting of (1) market

returns, (2) company size (market capitalization), and (3) book to market ratio

have considerable explanatory power. While the exact measure of these vari-

ables remains a topic of much discussion in academia, notice that the last two

factors in the Fama-French model are company specific fundamental data.

While many may find it intuitive to incorporate cross-sectional data into

multi-factor models, these models have some limitations. First, data require-

ments are cumbersome requiring analysts to develop models using company

specific data (each company has its own set of factors). Second, it is often

difficult to find a consistent set of robust factors across stocks that provide

strong explanatory power. Ross and Roll had difficulty determining a set of

factors that provided more explanatory power than the macroeconomic mod-

els without introducing excessive multicollinearity into the data (Figure 6.9).

The cross-sectional model is derived from company specific variables,

referred to as company factor loadings. The parameters are typically
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determined via regression analysis using monthly data over a longer

period of time, e.g., a five-year period, with 60 monthly observations.

The cross-sectional model is written as:

rit 5 x�i1 f̂ 1t 1 x�i2 f̂ 2t 1?1 x�ikf̂ kt 1 eit ð6:41Þ

where x�ij is the normalized factor loading of company i to factor j. For

example,

x�kl 5
xkl 2 EðxkÞ

σðxkÞ

where EðxkÞ is the mean of xk across all stocks and σðxkÞ is the standard

deviation of xk across all stocks.

And unlike the previous models where the factors were known in

advance and we estimate the risk sensitivities, here we know the factor

loadings (from company data) and we need to estimate the factors.

Statistical Factor Models
Statistical factor models are also referred to as implicit factor models and

principal component analysis (PCA). In these models neither the explana-

tory factors nor sensitivities to these factors are known in advance and

they are not readily observed in the market. However, both the statistical

factors and sensitivities can be derived from historical data.

There are three common techniques used in statistical factor models:

eigenvalue-eigenvector decomposition, singular value decomposition,

and factor analysis. Eigenvalue-eigenvector is based on a factoring

scheme of the sample covariance matrix and singular value decomposi-

tion is based on a factoring scheme of the matrix of returns (see

Pearson, 2002). Factor analysis (not to be confused with factor models)

is based on a maximum likelihood estimate of the correlations across

stocks. In this section we discuss the eigenvalue-eigenvector decompo-

sition technique.

The statistical factor models differs from the previously mentioned mod-

els in that analysts estimate both the factors (Fks) and the sensitivities to

the factors (biks) from a series of historical returns. This model does not

make any prior assumptions regarding the appropriate set of explanatory

factors or force any preconceived relationship into the model.

This approach is in contrast to the explicit modeling approaches where

analysts must specify either a set of explanatory factors or a set of
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company specific factor loadings. In the explicit approaches analysts

begin with either a set of specified factors and estimate sensitivities to

those factors (i.e., index models and macroeconomic factor model) or

begin with the factor loadings (fundamental data) and estimate the set of

explanatory factors (cross-sectional model).

The advantage of a statistical factor model over the previously described

explicit approaches is that it provides risk managers with a process to

uncover accurate covariance and correlation relationships of returns with-

out making any assumptions regarding what is driving the returns. Any

preconceived bias is removed from the model. The disadvantage of this

statistical approach is that it does not provide portfolio managers with a

set of factors to easily determine what is driving returns since the statisti-

cal factors do not have any real-world meaning.

To the extent that analysts are only interested in uncovering covariance

and correlation relationships for risk management purposes, PCA has

proven to be a viable alternative to the traditional explicit modeling

approaches. Additionally, with the recent growth of exchange traded

funds (ETFs) many managers have begun correlating their statistical fac-

tors to these ETFs in much the same way Ross and Roll did with eco-

nomic data to better understand these statistical factors.

The process to derive the statistical model is as follows:

Step 1. Compute the sample covariance matrix by definition from his-

torical data. This matrix will likely suffer from spurious relation-

ships due the data limitations (not enough degrees of freedom

and potential false relationships). But these will be resolved via

principal component analysis.

Let C represent the sample covariance matrix.

Step 2. Factor the sample covariance matrix. We based the factorization

scheme on eigenvalue-eigenvector decomposition. This is:

C5VDV 0 ð6:42Þ

where D is the diagonal matrix of eigenvalues sorted from larg-

est to smallest, λ1 .λ2 .?.λn and V is the corresponding

matrix of eigenvectors and these eigenvalues are determined by

computing the percentage of total variance that is explained by

each eigenvector. In finance, the terminology that is most often

used when referring to determining the eigenvalue with the
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strongest predictive power is principal component analysis.

These matrices are as follows:

D5

λ1 0 ? 0
0 λ2 ? 0
^ ^ & ^
0 0 ? λn

2
664

3
775 V 5

v11 v21 ? vn1
v12 v22 ? vn2
^ ^ & ^
v1n v2n ? vnn

2
664

3
775

Since D is a diagonal matrix, we have D5D1=2D1=2, D5D0,
and D1=2 5 ðD1=2Þ0

Then, our covariance matrix C can be written as:

C5VDV 0 5VD1=2D1=2V 0 5VD1=2ðVD1=2Þ0

Step 3. Compute β in terms of the eigenvalues and eigenvectors:

β5 ðVD1=2Þ0

Then the full sample covariance matrix expressed in terms of β is:

β0β5VD1=2ðVD1=2Þ0 ð6:43Þ

Step 4. Remove spurious relationship due to data limitation.

To remove the potential spurious relationship we only use the

eigenvalues and eigenvectors with the strongest predictive power.

How many factors should be selected?

In our eigenvalue-eigenvector decomposition each eigenvalue λk of the

sample covariance matrix explains exactly λk=
P

λ percent of the total

variance. Since the eigenvalues are sorted from highest to lowest, a plot

of the percentage of variance explained will show how quickly the pre-

dictive power of the factors declines. If the covariance matrix is gener-

ated by say 10 factors then the first 10 eigenvalues should explain the

large majority of the total variance.

There are many way to determine how many factors should be selected to

model returns. For example, some analysts will select the minimum number

of factors that explain a pre-specified amount of variance, some will select

the number of factors up to where there is a break-point or fall-off in

explanatory power. And others may select factors so that the variance .1/n.

Assuming that each factor should explain at least 1/n of the total. Readers

can refer to Dowd (1998) for further techniques.
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If it is determined that there are k factors that sufficiently explain returns,

the risk exposures are determined from the first k risk exposures for each

stock since our eigenvalues are sorted from highest predictive power to

lowest.

β5

β11 β21 ? βm1
β12 β22 ? βm2
^ ^ & ^
β1k β2k ? βmk

2
664

3
775

The estimated covariance matrix is then:

C5 β0
nxk

β
kXn

1 Λ
nXn

ð6:44Þ

In this case the idiosyncratic matrix Λ is the diagonal matrix consisting

of the difference between the sample covariance matrix and β0β. That is,

Λ5 diagðC2β0βÞ ð6:45Þ

It is important to note that in the above expression C2β0β the off-

diagonal terms will often be non-zero. This difference is considered to be

the spurious relationship caused by the data limitation and degrees of

freedom issue stated above. Selection of an appropriate number of factors

determined via eigenvalue decomposition will help eliminate these false

relationships.
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Chapter7
Advanced Algorithmic
Forecasting Techniques

INTRODUCTION
This chapter introduces readers to advanced algorithmic forecasting tech-

niques. We begin by reformulating our transaction cost equations in terms

of the various trading strategy definitions, such as percentage of volume,

trade rate, and trade schedules, and calibrate the parameters for these

model variations. Estimated market impact costs for each approach are

compared for the different data samples.

Readers are next introduced to the various sources of algorithmic trading

risk including price volatility, liquidity risk, and parameter estimation

uncertainty. We derive algorithmic forecasting techniques to estimate

daily volume and monthly ADVs. The daily volume forecasting model is

based on an autoregressive moving average (ARMA) time series which

incorporates a median metric with a day of week effect adjustment fac-

tor, and the monthly ADV model incorporates previous volume levels,

momentum, and market volatility.

The chapter concludes with an overview of the various transaction

equations that are utilized to construct the efficient trading frontier and

to develop optimal “best execution” strategies. All of which are essen-

tial building blocks for traders and portfolio managers interested in

improving portfolio returns through best in class transaction costs

management practices1.

1We would like to thank Connie Li, M.S. from Cornell Financial Engineering and

Quantitative Analyst at Numeric Investors, for providing invaluable insight into the

proper formulation of these mathematical techniques and for testing and verifying these

equations.
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TRADING COST EQUATIONS
Our market impact and timing risk equations expressed in terms of per-

centage of trading volume POV are:

I�bp 5 â1U
X

ADV

� �â2
Uσâ3 ð7:1Þ

MIbp 5 b̂1UI�UPOVâ4 1 ð12 b̂1ÞUI� ð7:2Þ

TRbp 5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
U

1
250

U
X

ADV
U
12POV
POV

r
U104bp ð7:3Þ

where,

X5 total shares to trade

ADV 5 average daily volume

σ5 annualized volatility (expressed as a decimal, e.g., 0.20)

POV 5 X
X1Vt

5 percentage of trading volume rate

Vt 5 expected market volume during trading period (excluding the

order’s shares X)
â1; â2; â3; â4; b̂1 5model parameters estimated via non-linear estima-

tion techniques

Model Inputs
On the surface, the cost estimation process seems fairly straightforward,

especially after having already estimated the model parameters. Investors

simply need to enter their shares X and preferred POV execution strategy,

and the model will determine cost estimates for these inputs.

Although, is the process really this simple and straightforward? Will the

model provide accurate cost forecasts?

To answer these questions, let’s take a closer look at our equations. Our

transaction cost model actually consists of three different sets of input

information:

1. User specified inputs: X;POV
2. Model parameters: â1; â2; â3; â4; b̂1
3. Explanatory factors: σ;ADV ;Vt

The first set of input information is entered by the user and is based on the

investment decision and the investor’s urgency preference. In Chapter 5,

Estimating I-Star Model Parameters, we provided non-linear regression

techniques to estimate the parameters of the model and test the model’s

sensitivity. In Chapter 6, Price Volatility, we provided techniques to
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forecast price volatility and price covariance. What about the volume sta-

tistics—ADV and Vt? How are these variables determined?

During the parameter estimation phase we showed how to measure these

variables over the historical sample period to incorporate them into the

non-linear regression model. What about our forecasting needs? Are the

volume patterns expected to be exactly the same in the future as they

were in the past? The answer is likely no. If historical variable values are

used for the forward-looking forecast with differing market conditions

then the actual costs could be much different than the forecasted esti-

mates even with the correct model form and actual parameters.

For example, suppose there was a sudden spike in volatility and a

decrease in liquidity, similar to what was experienced during the financial

crisis and debt crisis. If the cost model did not incorporate these new

input variables, a higher cost execution strategy would be selected as a

result of dramatically underestimating costs. Furthermore, many times

portfolio managers are interested in future expected costs under various

market conditions. Managers typically buy shares under the most favor-

able conditions, such as low volatility and high liquidity, and sell shares

under very dire circumstances, such as high volatility, low liquidity, and

decreasing prices. It is actually these market circumstances at times that

help managers decide whether to buy or sell shares. So even if the model

is formulated correctly and the parameters are exact, incorporating the

incorrect volume and volatility values will lead to inaccurate cost esti-

mates. This chapter will provide the necessary techniques to forecast

daily Vt and monthly ADV conditions.

TRADING STRATEGY
Algorithmic trading makes use of three types of trading strategies:

percentage of volume POV , trading rate α, and trade schedule xk

Let,

X5 total shares to trade

Vt 5 expected volume during the trading horizon (excluding shares

from the order)

The trading strategy variables are:

Percentage of Volume

POV 5
X

X1Vt
0%# POV # 100% ð7:4Þ
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The percentage of volume POV variable measures the amount of market

volume the order participated with over the trading period. For example,

if a trader executes 20,000 shares of stock over a period where 100,000

shares traded in the market (including the order) the POV rate is 20,000/

100,0005 20%. POV is a very intuitive measure. For example, POV 5

25% means the order participated with 25% of market volume, and

POV 5 100% means that the trader accounted for all the market volume

during this period. POV is the preferred trading strategy metric when

monitoring current and historical activity.

The disadvantage of the POV strategy is that it contains a decision variable

in the denominator, which creates an additional layer of mathematical com-

plexity during trade strategy optimization and increases the solution time.

Trading Rate

α5
X
Vt

α$0 ð7:5Þ

The trading rate variable α is the ratio of the shares traded X to the market

volume Vt during the trading period, excluding its own traded shares. For

example, if a trader executed 20,000 shares in the market over a period of

time when 100,000 shares traded in the market; 20,000 shares were from the

investor’s order and 80,000 shares from other participants, so the trading

rate is α5 20;000=80;0005 25%. If a trader executed 20,000 shares in

the market over a period of time when 30,000 shares traded in the market;

20,000 shares were from the investor’s order and 10,000 shares from other

participants, so the trading rate is α5 20;000=10;0005 200%.

Trading rate, unfortunately, is not as intuitive as POV rate. A trade rate of

α5 100% does not mean that the trader participated with 100% of market

volume but rather the investor participated with 50% of market volume. The

advantage of the trade rate is that it does not have a decision variable in the

denominator so trading solution calculations are less complex and optimiza-

tion processing time is much quicker. Trading rate is the preferred metric

when forecasting costs and developing single stock optimal trading strategies.

Trade Schedule
The trade schedule xk strategy defines exactly how many shares to trans-

act in a given trading period. For example, the trade schedule for an order

executed over n-period is

x1; x2; x3; . . .; xn ð7:6Þ
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and represents the number of shares to trade in periods 1;2; 3; . . .; n. The
total number of shares executed over this period is X5

P
xi. The advan-

tage of the trade schedule is that it allows front-loading and/or back-

loading of trades to take advantage of anticipated price movement, vol-

ume conditions, as well as effective risk management during a basket

trade (these are further discussed in Chapter 9, Portfolio Algorithms).

Comparison of POV rate to Trade Rate
There is a direct relationship between the trading rate α and POV rate:

POV 5
α

11α
and α5

POV
12 POV

A comparison of POV rate to α is shown in Figure 7.1. For POV less

than 15% there is minimal difference in these two calculations. However,

as we start increasing these rates, the measures start to deviate.

TRADING TIME
We define trading time in terms of volume time units. The value repre-

sents the percentage of a normal day’s volume that would have traded at

a given point in time. For example, if 1,000,000 shares trade on an aver-

age trading day, the volume time when 250,000 shares trade is:

t� 5 250;000=1;000;0005 0:25. The volume time when 1,250,000

shares trade is: t� 5 1;250;000=1;000;0005 1:25.
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■ Figure 7.1 Trading Strategies.
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Volume time t� is expressed as:

t� 5
Vt

ADV
ð7:7Þ

Trading time can also be written in terms of trade rate α and POV rate.

This calculation is as follows. Suppose the order is comprised of

X shares. Then we can write trading time as:

t� 5
Vt

ADV
U

X
X

� �
5

X
ADV

U
Vt

X

In terms of trade rate α we have:

t� 5
X

ADV
Uα21 ð7:8Þ

In terms of POV rate we have:

t� 5
X

ADV
U
12POV
POV

ð7:9Þ

TRADING RISK COMPONENTS
The timing risk ðTRÞ measure is a proxy for the total uncertainty sur-

rounding the cost estimate. In other words, it is the standard error of our

forecast. This uncertainty is comprised of three components: price uncer-

tainty, volume variance, and parameter estimation error. These are further

described as follows:

Price Volatility: price volatility refers to the uncertainty surrounding

price movement over the trading period. It will cause trading cost (ex-

post) to be either higher or lower depending upon the movement and side

of the order. For example, if the price moves up $0.50/share, this move-

ment results in a higher cost for buy orders but a lower cost (savings) for

sell orders. For a basket of stock, price volatility also includes the covari-

ance or correlation across all names in the basket. Price volatility is the

most commonly quoted standard error for market impact analysis. It is

also very often the only standard error component.

Volume Variance: volume variance refers to the uncertainty in volumes

and volume profiles over the trading horizon which could be less than,

equal to, or more than a day. For example, if an investor trades an order

over the full day, the cost will be different if total volume is 1,000,000

shares, 5,000,000 shares, or only 200,000 shares.
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Parameter Estimation Error: parameter estimation error is the standard

error component from our non-linear regression models. As shown in

Chapter 5, Estimating I-Star Model Parameters, there is some degree of

uncertainty surrounding the parameters which will affect market impact

estimates. For simplicity, we define the timing risk measure to only

include the price volatility term when quoting the standard error of the

market impact estimate but analysts conducting advanced sensitivity anal-

ysis may want to incorporate these additional components into the timing

risk estimate. We have found the easiest way to determine the overall

uncertainty is via Monte-Carlo simulation where volumes, intraday pro-

file, price movement, and parameter values are sampled from historical

observations and their estimated distribution. Investors performing this

type of analysis may find that corresponding market impact uncertainty is

much larger than simply the standard deviation of price movement.

TRADING COST MODELS—REFORMULATED
Market Impact Expression
Our market impact equations can be restated in terms of our trading strat-

egies as follows:

I-Star
The I-Star calculation written in basis point and total dollar units is:

I�bp 5 a1U
Q

ADV

� �a2
Uσa3 ð7:10Þ

I�$=Share 5 a1U
Q

ADV

� �a2
Uσa3U1024UP0 ð7:11Þ

I�$ 5 a1U
Q

ADV

� �a2
Uσa3U1024UXUP0 ð7:12Þ

Market Impact for a Single Stock Order
The units of the market impact cost will be the same units as the instanta-

neous cost I-Star. Market impact cost for the three different trading strat-

egy definitions is:

MIðPOVÞ5 b̂1UI�UPOVâ4 1 ð12 b̂1ÞUI� ð7:13Þ

MIðαÞ5 b̂1UI�Uαâ4 1 ð12 b̂1ÞUI� ð7:14Þ
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MIðxkÞ5
Xt
k51

b1UI�U
x2k

XUvk

0
@

1
A1 ð12 b1ÞUI�

with
P

xk 5X

ð7:15Þ

The derivation of the trade schedule market impact formula above

(Equation 7.15) is:

Start with the instantaneous cost estimate I�. This value is allocated to

each trade period based on the percentage of the order transacted in that

period. If xk shares of the total order X were executed in period k then

the percentage I� allocated to period k is:

I�U
xk
X

Therefore, the percentage of temporary impact allocated to period k is

b1UI�U
xk
X and the percentage of permanent impact allocated to period k is

ð12 b1ÞUI�U xk
X .

The temporary impact cost is allocated to the investor based on the per-

centage of volume of the trade in that period. This is:

b1UI�U
xk
X
U

xk
xk 1 vk

For simplicity, however, we rewrite temporary impact cost in terms of

the trade rate as follows:

b1UI�U
xk
X
U
xk
vk

Finally, the total market impact cost of a trade schedule over all periods

is determined by summing the cost over all periods. That is:

MIðxkÞ5
Xn
k51

b1UI�U
xk
X
U
xk
vk

1
Xn
k51

xk
X
Uð12 b1ÞUI�

This formulation is then simplified as:

MIðxkÞ5
Xn
k51

b1UI�U
x2k

XUvk

� �
1 ð12 b1ÞUI�

The units of the market impact cost formula will be the same as the units

used in the I� formula shown in Equations 7.10 to 7.12. Kissell and

Glantz (2003) and Kissell, Glantz, and Malamut (2004) provide alterna-

tive derivations of the trade schedule market impact formulation.
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Important note:

Notice that the market impact formulation for a one-period trade schedule

reduces to:

MIbp 5 b̂1UI�U
X
Vt

� �
1 ð12 b̂1ÞUI� ð7:16Þ

This is the same formulation as Equation 7.15 with a4 5 1. The importance

of this equation is that it will be used to calibrate the market impact para-

meters for the trade schedule solution (shown below). Recall that this was

also the simplified version of the model described in the two-step regres-

sion process shown in Chapter 5, Estimating I-Star Model Parameters.

Market impact cost across stock is an additive function. Therefore, the

impact for a basket of stock is the sum of impacts for the entire basket.

The addition problem is simplified when market impact is expressed in

dollar units so that we do not need to worry about trade value weightings

across stocks. These are:

Market Impact for a Basket of Stock

MI$ðPOVÞ5
Xm
i51

ðb̂1UI�i UPOVâ4
i 1 ð12 b̂1ÞUI�i Þ ð7:17Þ

MI$ðαÞ5
Xm
i51

ðb̂1UI�i Uαâ4
i 1 ð12 b̂1ÞUI�i Þ ð7:18Þ

MI$ðxkÞ5
Xm
i51

Xn
k51

b1UI�i U
x2ik

XiUvik

� �
1 ð12 b1ÞUI�i ð7:19Þ

TIMING RISK EQUATION
The timing risk for an order executed over a period of time t� following

a constant trading strategy is as follows:

TRðt�Þbp 5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
Ut�

r
U104bp ð7:20Þ

This equation simply scales price volatility for the corresponding trading

period t� and adjusts for the trade strategy (e.g., decreasing portfolio

size). For example, σ is first scaled to a one-day period by dividing byffiffiffiffiffiffiffiffi
250

p
, then this quantity is scaled to the appropriate trading time period
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by multiplying by
ffiffiffiffi
t�

p
. Recall that t� is expressed in volume time units

where t� 5 1 represents a one-day time period (volume-time). And since

the order size is decreasing in each period, timing risk needs to be further

adjusted downward by the
ffiffiffiffiffiffiffiffi
1=3

p
factor (see derivation below). This

value is converted to basis points by multiplying by 104bp.

Therefore, timing risk is expressed in terms of POV and α following

Equations 7.8 and 7.9 respectively. This is:

TRbpðPOVÞ5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

U
12POV
POV

r
U104bp ð7:21Þ

TRbpðαÞ5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

Uα21

r
U104bp ð7:22Þ

These values expressed in terms of dollars follow directly from above:

TR$ðPOVÞ5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

U
12POV
POV

r
UXUP0 ð7:23Þ

TR$ðαÞ5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

Uα21

r
UXUP0 ð7:24Þ

The reason the timing risk equations simplify so nicely is that the POV
and α strategies assume a constant trading rate. Timing risk for a trade

schedule, however, is not as nice. It is slightly more complicated since

we need to estimate the risk for each period. This is as follows:

Let,

rk 5 number of unexecuted shares at the beginning of period k

rk 5
Pn

j5k xj
d5 number of trading periods per day

vk 5 expected volume in period k excluding the order shares

σ2U 1
250 U

1
d

� �
5 price variance scaled for the length of a trading period

P0 5 stock price at the beginning of the trading period

Timing risk for a trade schedule is the sum of the dollar risk in each trad-

ing period. That is:

TR$ðxkÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k51

r2k Uσ2U
1

250
U
1
d
UP2

0

s
ð7:25Þ

In this notation, σ2 is expressed in ($/share)2 units and scaled for the

length of the trading period. We divide by 250 to arrive at the volatility

for a day and then further divide by the number of periods per day d. For
example, if we break the day into 10 equal periods of volume we have

d5 10. Finally, multiplying by P2
0 converts volatility from (return)2 units
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to ($/share)2. Timing risk (variance) is now the sum of each period’s vari-

ance over n trading horizons. Taking the square root gives timing risk

value in total dollars.

Now suppose that we follow a constant trade rate. That is, the portfolio

will be decreasing in a constant manner.

Derivation of the 1/3 factor

As shown above, risk for a specified trade rate is:

ℜðαÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2U

1
250

U
X

ADV
U
1
α
Uσ2U

1
3
UP2

0

r
ð7:26Þ

The derivation of the 1/3 adjustment factor is as follows:

Let R represent the vector of shares and C represent the covariance

matrix scaled for a single period expressed in $=Share
� �2

. Then the one-

period portfolio risk is:

ℜð1Þ5
ffiffiffiffiffiffiffiffiffiffiffi
R0CR

p
ð7:27Þ

For simplicity, we proceed forward using variance (risk squared). This is:

ℜ2ð1Þ5R0CR ð7:28Þ

The total variance over n periods is an additive function:

ℜ2ðnÞ5 R0CR|ffl{zffl}
1

1 R0CR|ffl{zffl}
2

1?1 R0CR|ffl{zffl}
n

5 nUR0CR ð7:29Þ

For a constant portfolio R, variance scales with the square root of the

number of trading periods:

ℜðnÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nUR0CR

p
5

ffiffiffi
n

p
U
ffiffiffiffiffiffiffiffiffiffiffi
R0CR

p
5

ffiffiffi
n

p
Uℜð1Þ ð7:30Þ

This is often shown using the time notation as follows:

ℜðtÞ5 ffiffi
t

p
Uℜð1Þ ð7:31Þ

For a portfolio where the share quantities change from period to period,

the risk calculation will not simplify as it does above. Risk will need to

be computed over all periods. This is:

ℜ2ðnÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0
1CR1|fflfflffl{zfflfflffl}
1

1 R0
2CR2|fflfflffl{zfflfflffl}
2

1 . . .1 R0
nCRn|fflfflffl{zfflfflffl}
n

s
ð7:32Þ
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Where Rk is the vector of portfolio shares in period k, this reduces to:

ℜðnÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k51

R0
kCRk

s
ð7:33Þ

Trading risk for a trade schedule for a single stock execution is calculated

as follows:

ℜ2ðrkÞ5
Xn
j51

r2j Uσ
2UP2

0 ð7:34Þ

where σ2 is the corresponding one-period variance expressed in $=Share
� �2

,

P0 is the current price, andℜ2ðrkÞ is the total dollar variance for the strategy.
Notice that we are simply summing the variance in each period.

For a continuous trade rate strategy where we execute the same number

of shares in each period, the number of unexecuted shares at the begin-

ning of each trade period is calculated as follows:

rj 5X2
X
n
Uðj21Þ5X 12

ðj21Þ
n

� �
ð7:35Þ

where X is the total number of shares in the order.

Then the number of unexecuted shares at the beginning of each period

squared is:

r2j 5X2 12
ðj21Þ
n

� �2
ð7:36Þ

Now let,

σ2 5 the annualized variance

t� 5 total time to trade in terms of a year (same units as volatility),

e.g., t5 1 is one year, t5 1/2505 1 day, etc.

n5 number of periods in the trading interval

Then we have,

t�Uσ2 5 variance scaled for the time period

t�U σ2

n 5 variance scaled for a trading interval

For example, if the trading time is one day and the day is segmented into

ten periods then we have:

σ2ðtrading periodÞ5 1
250

U
σ2

10
ð7:37Þ
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The variance of the trade schedule is:

ℜ2ðrkÞ5
Xn
j51

R2
j Ut

�U
σ2

n
UP2

0 ð7:38Þ

By Equations 7.36 and 7.38 we have:

ℜ2ðrkÞ5
Xn
j51

X2 12
ðj21Þ
n

� �2
Ut�U

σ2

n
UP2

0 ð7:39Þ

By factoring we have:

ℜ2ðrkÞ5X2UP2
0Ut

�U
σ2

n
U
Xn
j51

12
ðj21Þ
n

� �2
ð7:40Þ

And by expansion we have:

ℜ2ðrkÞ5X2UP2
0Ut

�U
σ2

n
U
Xn
j51

12
2ðj2 1Þ

n
1

ðj21Þ2
n2

� �
ð7:41Þ

Using the following identities:

Xn
j51

15 n

Xn
j51

x5
nðn1 1Þ

2

Xn
j51

x2 5
nðn11Þð2n1 1Þ

6

Equation 7.41 is now:

ℜ2 5X2UP2
0Ut

�Uσ2U
1
n

n2 ðn21Þ1 ðn21Þð2n21Þ
6n2

� �
ð7:42Þ

This further reduces to:

ℜ2 5X2UP2
0Ut

�Uσ2U
1
3
1

1
n
1

1
2n

1
1
6n2

� �
ð7:43Þ

Now if we let the number of trading periods over the defined trading time

increase, the size of the trading interval becomes infinitely small and our

trade schedule strategy approaches a continuous trade rate strategy.

To show this we take the limit as n approaches infinity in Equation 7.43:

lim
n-N

X2UP2
0Ut

�Uσ2U
1
3
1

1
n
1

1
2n

1
1
6n2

� �
5X2Ut�Uσ2U

1
3

ð7:44Þ
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Therefore, the timing risk for a continuous strategy trading over a period

of time t� is:

ℜ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2UP2

0Ut�σ2U
1
3

r
ð7:45Þ

Substituting back for t� 5 1
250 U

X
ADV U

1
α we get:

ℜðαÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2UP2

0U
1

250
U

X
ADV

U
1
α
Uσ2U

1
3

r
ð7:46Þ

Simplifying we have, timing risk for a single stock order:

ℜðαÞ5σUXUP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

U
1
α

r
ð7:47Þ

QED

Timing Risk for a Basket of Stock
The timing risk for a basket of stock expressed in total dollars is:

TR$ðxkÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2U

Xn
k51

r0k ~Crk

s
ð7:48Þ

where,

rk 5 column vector of unexecuted shares at the beginning of the

period k

rk 5

r1k
r2k
^
rmk

0
BB@

1
CCA

rik 5 unexecuted shares of stock i at the beginning of period k
~C5 covariance matrix expressed in terms of ($/share)2 and scaled for

a trading period.

To express the timing risk for the basket of stock in terms of basis points

we simply divide the timing risk dollar amount by the initial value of the

trade list V$ 5
P

XUP0U104.

COMPARISON OF MARKET IMPACT ESTIMATES
Market impact parameters are computed for the different trading strategy

representations of the model (Equation 7.13, Equation 7.14 and
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Equation 7.16) and for each of the data samples: all data, large cap, and

small cap categories. These results are shown in Table 7.1.

As expected, the non-linear R2 statistics are almost equivalent for the

POV and trade rate strategies since there is a near one-to-one relationship

between POV and α, especially for realistic percentages of volume levels

(e.g., POV , 40%). Additionally, the trade schedule non-linear R2 is just

slightly lower than POV and trade rate strategies, which implies the trade

schedule formulation provides reasonable results.

Comparison of parameter values, however, from the different models is

not the preferred process to evaluate models. As we showed in Chapter 5,

models could have seemingly different parameter sets yet provide the

same cost estimates. Then the easiest way to compare models is through

cost estimates for various sizes and strategies.

Our analysis consisted of comparing costs for sizes from 1% ADV to

35% ADV for a full day VWAP strategy and an equivalent POV5 20%
strategy. We used the parameters for the full universe category and a

volatility5 30% for the comparison test. The results are shown in

Figure 7.2 and show that these results are consistent under the various

model forms. Readers are encouraged to verify these calculations and to

compare the models using the parameters from large cap and small cap

data sets for different strategies.

Figure 7.2a compares market impact estimates for a VWAP strategy

using POV , trade rate, and the trade schedule. Notice that the POV rate

Table 7.1 Market Impact Parameters by Trade Strategy Definition

a1 a2 a3 a4 b1 non-R2

All Data

POV 708 0.55 0.71 0.50 0.98 0.41

Trade Rate 534 0.57 0.71 0.35 0.96 0.41

Trade Schedule 656 0.48 0.45 1 0.90 0.38

Large Cap Sample

POV 687 0.70 0.72 0.35 0.98 0.42

Trade Rate 567 0.72 0.73 0.25 0.96 0.42

Trade Schedule 707 0.59 0.46 1 0.90 0.37

Small Cap Sample

POV 702 0.47 0.69 0.60 0.97 0.42

Trade Rate 499 0.49 0.69 0.40 0.97 0.42

Trade Schedule 665 0.42 0.47 1 0.90 0.39
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and trade rate estimates are virtually indistinguishable and the trade

schedule estimates only have a slight difference.

Figure 7.2b compares market impact estimates for POV5 20%, and

trade rate α5 25%. The trade schedule cost estimates also corresponded

to α5 25% but with a4 5 1. Again there is minimal difference between

the three trade strategy definitions.
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VOLUME FORECASTING TECHNIQUES
Daily Volumes
Our daily volume forecasting approach is based on an autoregressive

moving average (ARMA) technique. Our research finds daily volumes to

be dependent upon: (1) either a moving average (ADV) or a moving

median (MDV) daily volume, (2) a historical look-back period of 10

days, (3) a day of week effect, or (4) a lagged daily volume term.

Additional adjustments can also be made to the volume forecasts on spe-

cial event days such as earnings, index reconstitution, triple and quadru-

ple witching days, fed day, etc. (see Chapter 2, Market Microstructure).

Our daily volume forecasting analysis is as follows:

Definitions
Historical Look-Back Period. The number of days (data points) to use

in the forecasts. For example, should the measure be based on 66 days,

30 days, 20 days, 10 days, or 5 days of data?

Average Daily Volume (ADV). Average daily volume computed over a

historical period. We will use a rolling average in our forecast.

Median Daily Volume (MDV). Median daily volume computed over a

historical period. We use a rolling median in our forecast.

Day of Week. A measure of the weekly cyclical patterns of trading

volumes. Stocks tend to trade different percentages per days. This cycli-

cal effect has varied over time and differs across market cap categories.

Lagged Daily Volume Term. We found some evidence of persistence in

market volume. Many times both high and low volume can persist for

days. However, the persistence is more often associated with high volume

days due to the effect of trading large orders over multiple days to mini-

mize price impact. Thus, when an institution is transacting a multi-day

order, there is likely to be excess volume.

Author’s Note: It is important to differentiate between the ADV measure

used to normalize order size in the market impact estimate and the ADV

or MDV measure used to predict daily volume. The ADV used in the for-

mer model needs to be consistent with the definition used by traders to

quantify size. For example, if traders are using a 30-day ADV measure as

a reference point for size, the market impact model should use the same

metric. It is essential that the ADV measure that is used to quote order

size by the trader be the exact measure that is used to calibrate the mar-

ket impact parameters in the estimation stage. The daily volume forecast,
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however, is used to determine costs for the underlying trading strategy—

whether it be a trade schedule, a POV based strategy, or a trading rate

based strategy. An order for 100,000 shares or 10% ADV will have dif-

ferent expected costs if the volume on the day is 1,000,000 shares or

2,000,000 shares. In this case, a more accurate daily volume estimate

will increase precision in the cost estimate and lead to improved trading

performance.

Daily Forecasting Analysis—Methodology
Time Period: Jan. 1, 2011 through Dec. 31, 2011.

Sample Universe: SP500 (large cap) and R2000 (small cap) indexes on

Dec. 31, 2011. We only included stocks where we had complete trading

history over the period Nov. 10, 2010 through Dec. 31, 2011. The days

from Nov. 11, 2010 to Dec. 31, 2010 were used to calculate the starting

point for the historical average daily volume (ADV) and historical

median daily volume (MDV) on Jan. 1, 2011.

Variable Notation
VðtÞ5 actual volume on day t.

V̂ðtÞ5 forecasted volume for day t.

MDVðnÞ5median daily volume computed using previous n trading

days.

ADVðnÞ5Average daily volume computed using previous n trading

days.

Day Of WeekðtÞ5The percentage of weekly volume that typically

trades on the given weekday.

β̂5Autoregressive sensitivity parameter—estimated via OLS regres-

sion analysis.

eðtÞ5 forecast error on day t.

ARMA Daily Forecasting Model

V̂ðtÞ5VtðnÞUDay Of WeekðtÞ1 β̂Ueðt21Þ ð7:49Þ

where VtðnÞ is either the n-day moving ADV or n-day moving MDV,

and eðt2 1Þ is the previous day’s volume forecast error (actual minus

estimate). That is

eðt21Þ5Vðt2 1Þ2 ðVt21ðnÞUDay Of Weekðt21ÞÞ ð7:50Þ

The error term above is calculated as the difference between actual vol-

ume on the day and estimated volume only using the day of week
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adjustment factor. The theoretical ARMA model will cause persistence of

the error term as it includes the previous day’s error in the forecast, e.g.,

eðt2 2Þ. However, our analysis has found that we could achieve more

accurate estimates defining the error term only as shown above.

Additionally, computation of daily volume estimates is also made easier

since we do not need to maintain a series of forecast errors.

Analysis Goal
The goal of our daily volume forecasting analysis is to determine:

� Which is better ADV or MDV?

� What is the appropriate number of historical days?

� Day of week adjustment factor.

� Autoregressive volume term.

The preferred form of the ARMA model is determined via a three step

process; the forecasting model should be re-examined at least on a

monthly basis and recalibrated when necessary.

Step 1. Determine which is more appropriate: ADV or MDV and the

historical look-back number of days.

� Compute the ADV and MDV simple forecast measure for various

look-back periods, e.g., let the historical look-back period range from

t5 1 to 30.

� Compute the percentage error between the actual volume on the day

and simple forecast measure. That is:

� εðtÞ5 lnðVðtÞ=VðnÞÞ
� The percentage error is used to allow us to compare error terms

across stocks with different liquidity.

� Calculate the standard deviation of the error term for each stock over

the sample period.

� Calculate the average standard deviation across all stocks in the

sample.

� Repeat the analysis for look-back periods from 1 to 30 days.

� Plot the average standard deviation across stocks for each day (from 1

to 30).

A plot of our forecast error analysis for each measure is shown in

Figure 7.3a for large cap stocks and in Figure 7.3b for small cap stocks.

Notice that for both large and small cap stocks the MDV measure has a

lower error than the ADV. This is primarily due to the positive skew of

daily volume which causes the corresponding ADV measure to be higher.

Next, notice that the error term for both market cap categories follows a
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convex shape with a minimum error point. For large cap stocks the mini-

mum error is around 5�10 days and for small cap stocks the minimum

error is close to 10 days.

Conclusion 1

� We conclude that the median daily volume using a historical period

of 10 days, i.e., MDV(10), has the lowest forecast error across stocks

and market cap during our analysis period.

Author’s Note: As shown above, the ADV measure will more often be

higher than the actual volume due to the positive skew of the volume dis-

tribution. Volume distributions tend to have more above average than
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■ Figure 7.3 Daily Volume Forecast.
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below average outliers. This will result in actual costs being higher than

the predicted cost. For example, if we trade 200,000 shares out of a total

ADV of 1,000,000 shares, we may be tempted to state that a full day strat-

egy corresponds to a trading rate of 20%. However, if the actual volume

on the day is only 800,000 shares, the actual trading rate will be 25%,

resulting in higher than predicted costs. The market impact forecasting

error will be biased (to the high side) when using the ADV measure to

predict daily volume. In our sample, we found the ADV to be higher than

the actual volume on the day 65% of the time.

Step 2. Estimate the Day Of WeekðtÞ parameter.

We analyzed whether or not there is a cyclical trading pattern during the

week. To avoid bias that may be caused by special event days such as

FOMC, triple witching, index reconstitution, earnings, month end, etc.,

we adjusted for these days in our analysis. It is important to note that if

month end is not excluded from the data there may be a strong bias sug-

gesting that Friday is the heaviest trading day of the week, since three out

of seven month ends occur on Fridays (due to weekends). Many investors

trade more often on the last day of the month.

Our day of week process is as follows:

� For each stock compute the percentage of actual volume traded on

the day compared to the average volume in the week.

� Exclude the special event days that are historically associated with

higher traded volume.

� Compute the average percentage traded on each day across all stocks

in the sample.

� It is important to use a large enough sample in the analysis. We used

one full year trading period to compute the day of week effect.

The result of our day of week analysis is shown in Figure 7.4. Monday is

consistently the lowest volume day in the week for large and small cap

stocks. After adjusting for month end volume, we found that small cap

volume increases on Fridays but large cap volume decreases. The effect

may be due to investors not being willing to hold an open position in

small cap stocks over the weekend for fear there is too much market

exposure for small cap stocks and therefore they may elect to pay higher

market impact before weekend to ensure completion.

Conclusion 2

� Stock trading patterns exhibit a cyclical weekly pattern.

� The cyclical pattern is different for large cap and small cap stocks.
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Step 3. Estimate the autoregressive parameter β̂.

The autoregressive parameter is used to correct for persistence of volume

over consecutive days. We found above average volume days were more

likely to be followed by above average volume days and below average

volume days were more likely to be followed by below average volume

days. But the relationship was much more significant for above average

volume days than for the below average volume days. This process is as

follows:

� Estimate volume for the day based on the 10-day median plus the day

of week adjustment.

� Compute the forecast error term as the difference between the actual

volume on the day and the estimated volume. This difference is:

� ε(t)5V(t) � Median(t) �Day Of Week(t)

� Run a regression of the error term on its one-day lagged term, that is,

� ε(t)5α1β � ε(t � 1)

� Compute the slope term β for large and small cap stocks.

Large cap stocks had a much larger degree of autocorrelation than small

cap stocks. The average correlation of errors was βlarge 5 0:452 for large

cap stocks and βsmall 5 0:284 for small cap stocks. After correcting for

autocorrelation there was still a very slight amount of autocorrelation

present, but this will have a negligible effect on our forecasts due to the

constant term in our regression model.
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256 CHAPTER 7 Advanced Algorithmic Forecasting Techniques



Forecast Improvements
We next compared the results from our preferred ARMA model (shown

above) to a simple 30-day ADV measure (e.g., ADV30) to determine the

extent of the forecasting improvement. The preferred ARMA model reduced

forecast error 17% for large cap stocks and 21% for small cap stocks.

Daily Volume Forecasting Model
Our daily volume forecasting models for large and small cap stocks can

finally be formulated as:

Large Cap V̂ðtÞ5MDVð10ÞUDay Of WeekðtÞ1 0:450Ueðt21Þ ð7:51Þ

Small Cap V̂ðtÞ5MDVð10ÞUDay Of WeekðtÞ1 0:283Ueðt21Þ ð7:52Þ

Conclusion 3

� There is statistical evidence that there is persistence of volume trading.

� Forecasts can be improved through incorporation of an autoregressive

term.

� Table 7.2 shows the one period lag analysis results and the error cor-

relation results. Notice how dramatically the correlation across suc-

cessive period error terms decreases. The correlation of the error

terms decrease �0.311 by using the ARMA model Table 7.3 shows

Table 7.3 Comparison of Error Terms Between ARMA Model and ADV Model

Mkt Cap ADV30 ARMA Net Change
Improvement

Percent
Improvement

LC 40.9% 33.9% 2 7.0% 2 17.1%

SC 56.0% 44.3% 2 11.7% 2 20.9%

All 53.2% 42.8% 2 10.4% 2 19.5%

Forecasting Model: Y(t)5Median(10)*DOW1 AR*Y(t2 1)

Table 7.2 One-Period Lag—Error Correlation

Category Beta
Correlation
Before Adj.

Correlation
After Adj.

Net Chg.
Improvement

LC 0.450 0.452 2 0.015 2 0.437

SC 0.283 0.284 2 0.008 2 0.276

All 0.319 0.320 2 0.010 2 0.311
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the ARMA volume forecasting model improvement over the naı̈ve

thirty day average daily volume measure (e.g., ADV30). The error

between actual volume and forecasting volume decreases �19.5%

with the ARMA model over the naı̈ve ADV30 measure.

Author’s Note:

� In theory, the beta term in an ARMA model is often shown to be

forecasted without the constant term alpha, but since we are using a

moving median it is not guaranteed that the mean error will be zero

and thus a constant term is needed.

� The ARMA forecast with the “beta” autoregressive terms can be

computed both with and without special event days. Since it is

important that this technique be continuous, unlike the day of week

adjustment, we need to include all days. As an adjustment, we can:

(1) Treat the special event day and day after the special event as any

other day and include an adjustment for the previous day’s fore-

casted error, (2) define the forecast error to be zero on a special

event day (this way it will not be included in the next day’s fore-

cast), or (3) use a dummy variable for special event days.

� Our analysis calculated an autoregressive term across all stocks in

each market cap category. Users may also prefer to use a stock spe-

cific autoregressive term instead. We did not find statistical evidence

that a stock specific beta is more accurate for large cap stocks but

there was some evidence supporting the need for a stock specific beta

for the small cap stocks. Readers are encouraged to experiment with

stock specific forecasts to determine what works best for their spe-

cific needs.

FORECASTING MONTHLY VOLUMES
In this section we describe a process to forecast average monthly volume

levels. This process could also be extended to estimate annual volume

levels. Having a forward looking ADV estimate can be very helpful for

the portfolio manager who is looking to rebalance his/her portfolio at

some future point in time when volumes may look much different than

they do now.

Methodology:

Period: Ten years of data: Jan. 2002 through Dec. 2011.

Universe: Average daily volumes for large cap (SP500) and small cap

(R2000) stocks by month.
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Definitions:

VðtÞ5 average daily volume across all stocks per day in correspond-

ing market cap category.

σðtÞ5 average stock volatility in the month.

SPX5 SP500 index value on last day in month.

ΔVðtÞ5 log change in daily volume (MOM).

ΔVðtÞ5 lnfVðtÞg2 lnfVðt2 1Þg

ΔVðt2 1Þ5 previous month’s log change in daily volume (MOM) to

incorporate an autoregressive term. This is also a proxy for momentum.

ΔVðt21Þ5 lnfVðt2 1Þg2 lnfVðt2 2Þg

ΔVðt2 12Þ5 log change in daily volume (MOM) one year ago to

incorporate a monthly pattern.

ΔVðt212Þ5 lnfVðt212Þg2 lnfVðt213Þg

ΔσlargeðtÞ5 log change in large cap volatility (MOM).

ΔσlargeðtÞ5 lnfσlargeðtÞg2 lnfσlargeðt2 1Þg

ΔσsmallðtÞ5 log change in small cap volatility (MOM).

ΔσsmallðtÞ5 lnfσsmallðtÞg2 lnfσsmallðt2 1Þg

ΔSpxðtÞ5 log change in SP500 index value (MOM). We used the

change in SP500 index values for both large cap and small cap

forecasts.

ΔSpxðtÞ5 lnfspxðtÞg2 lnfspxðt2 1Þg

Monthly Volume Forecasting Model:

ΔVðtÞ5 b0 1 b1UΔVðt21Þ1 b2UΔVðt2 12Þ1 b3UΔσ1 b4UΔSpx

Figure 7.5 shows the average daily volume per stock in each month for

large cap and small cap stocks over the period Jan. 2002 through Dec.

2011 (10 years of monthly data). For example, in Jun. 2011 the average

daily volume for a large cap stock was 5,766,850 per day and the average

daily volume for a small cap stock was 555,530 per day. It is important

to note that historical volume levels will change based on stock splits and

corporate actions.
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Analysis:

The monthly volume forecasting analysis is to determine an appropriate

relationship to predict the expected change in monthly volume levels.

Since the number of trading days will differ in each month due to

weekends, holidays, etc., it is important that we adjust for the number of

trading days in order to make a fair comparison across time. Our analysis

included a one and twelve month autoregressive terms, the change in

monthly volatility levels for each market cap category, and the MOM

change in SP500 index for both large and small cap stocks.
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■ Figure 7.5 (a) Average Daily Volumes by Month for Large Cap Stocks; (b) Average Daily Volumes by Month for Small Cap Stocks.
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We estimated our regression coefficients for large and small cap stocks

using a ten year horizon. We further defined three periods to evaluate the

stability of these relationships. These periods are:

Ten Years: 1/2002�12/2011

Five Years: 1/2007�12/2011

Five Years: 1/2002�12/2006

Regression results:

The result of our regression study is shown in Table 7.4. In total, there are

six scenarios that were analyzed—three for LC and three for SC. The results

show the estimated betas, corresponding standard errors and t-stat, and the

R2 statistic. Overall our regression model had a very strong fit. The model

did explain a larger percentage of the variation for large cap stocks than for

small cap stocks (as is expected due to the trading stability of the smaller

companies). The R2 using 10 years of data was R25 0.70 for large cap

stocks and R25 0.39 for small cap stocks. Overall, our formulation is a very

statistically sound model.

Table 7.4 Monthly Volume Forecast Regression Results

Large Cap Stocks (SP500) Small Cap Stocks (SP500)

Ten Years: 2002�2011 Ten Years: 2002�2011

const ΔV(2 1) ΔV
(2 12)

Δσ ΔSpx const ΔV(21) ΔV
(2 12)

Δσ ΔSpx

beta 0.0056 2 0.2990 0.1354 0.5461 2 0.1877 beta 0.0029 2 0.2212 0.2385 0.3569 0.3437

se 0.0064 0.0435 0.0461 0.0328 0.1466 se 0.0077 0.0732 0.0784 0.0475 0.1717

t-stat 0.8806 2 6.8785 2.9352 16.6699 2 1.2798 t-stat 0.3773 2 3.0216 3.0423 7.5084 2.0016

R2 0.79 R2 0.39

Recent Five Years: 2007�2011 Recent Five Years: 2007�2011

const ΔV
(2 1)

ΔV
(212)

Δσ ΔSpx const ΔV
(21)

ΔV
(2 12)

Δσ ΔSpx

beta 2 0.001 2 0.313 0.088 0.529 2 0.432 beta 2 0.001 2 0.225 0.143 0.362 0.140

se 0.009 0.060 0.061 0.042 0.196 se 0.012 0.100 0.109 0.058 0.222

t-stat 2 0.072 2 5.245 1.461 12.601 2 2.201 t-stat 2 0.103 2 2.254 1.310 6.259 0.629

R2 0.83 R2 0.49
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Our monthly volume forecasting models for large and small cap stocks are:

Large Cap: ΔVðtÞ50:005620:2990UΔVðt21Þ10:1354UΔVðt2 12Þ
10:5461UΔσlargeðtÞ20:1877UΔSpx

ð7:53Þ

Small Cap: ΔVðtÞ50:002920:2212UΔVðt21Þ10:2385UΔVðt2 12Þ
10:3569UΔσsmallðtÞ1 0:3437UΔSpx

ð7:54Þ

Main Observations:

� Monthly volumes exhibit trend reversion.The sign of the ΔVðt2 12Þ
variable was negative across both large and small cap stocks in each of

the scenarios. If volume levels were up in one month, they were more

likely to be down in the following month. If volume levels were down in

one month, they were more likely to be up in the following month. This

relationship is more significant for large cap than small cap stocks.

Monthly volumes exhibit a positive seasonal trend. The sign of the

ΔVðt2 12Þ variable was positive and significant in most cases indicat-

ing a monthly pattern exists, although monthly volume levels vary. For

example, December and August are consistently the lowest volume

months during the year. October and January are the two highest volume

months of the year (measured over our 10 year period). The relationship

is stronger for small cap than for large cap stocks.

� Volumes are positively correlated with volatility. One way of thinking

about this is that volume causes the volatility. Another explanation is

that portfolio managers have a better opportunity to differentiate

themselves and earn a higher return in times of increasing volatility.

Hence they trade and rebalance their portfolios more often. The rela-

tionship here is slightly stronger for large cap stocks.

� The connection between volume and price level (SPX index) is the

only factor that produces different relationships for large and small

cap stocks. Small cap volume has always been positively related to

price level. As the market increases, volume in small cap stocks

increases, likely due to high investor sentiment during times of

increasing market levels. Investors will put more in small cap stocks

in a rising market hoping to earn higher returns, but will trade small

stocks less often in a decreasing market. The strength of this relation-

ship, has declined between the 2002�2006 and 2007�2011 periods.

During 2002�2006 large cap stock volumes were also positively

related to market price levels. But that relationship has reversed dur-

ing 2007�2011.
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� Currently, large cap stock volume is inversely related to prices.

The relationship could be due to the current investor sentiment

(since the financial crises). Investors are very weary of the market

and fear further sharp declines. A cash investment of a fixed dollar

amount will purchase fewer shares in a rising market but more

shares in a falling market. Redemption of a fixed dollar amount

will require few shares be traded in a rising market and more

shares be traded in a declining market. We expect that this trend

will stay constant and may additionally become negative for small

cap volumes until investor sentiment and overall market confidence

increases.

� Our analysis did not uncover any relationships between volume

levels and correlation. However, correlation still remains a favorite

indicator for portfolio managers. We suggest readers experiment

with alternative correlation measures such as log change and actual

level. This may improve the accuracy of our volume forecast

model.

FORECASTING COVARIANCE
In this section we discuss a technique to construct a short-term risk

model based on our price volatility forecasting model and multi-factor

model to estimate covariance. In Kissell and Glantz (2003) we provide

a detailed process to construct a short-term trading risk model based on

a principal component risk model and a GARCH volatility estimate. In

this section we provide a more general process that can incorporate any

risk model combined with any volatility estimate (e.g., the HMA-VIX

approach).

This process is as follows:

Let,

C5 covariance matrix constructed from our multi-factor model

D5 diagonal matrix of historical volatilities (from risk model)

D̂5 diagonal matrix of forecasted volatilities (e.g., HMA-VIX, Garch,

etc.)

P5 diagonal matrix of current prices

Step 1: Convert the covariance matrix C to a correlation matrix Rho by

dividing by the corresponding volatility terms:

Rho5D21CD21
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Step 2: Incorporate the forecasted volatility from the preferred forecasting

model, e.g., HMA-VIX, GARCH, EWMA, etc., into the new covariance

matrix Ĉ:

Ĉ5 D̂ðRhoÞD̂5 D̂D21CD21D̂

This covariance matrix will now be scaled to the same time period as the

price volatility term. For example, if the volatility forecast is a one-day fore-

cast then the covariance matrix Ĉ is also a one-day estimate. If we are inter-

ested in a time period that is different than the time scale of the price

volatility estimate we simply divide by that appropriate value. For example, if

we break the day into n trading periods the covariance matrix for the time

horizon is:

Ĉ5
1
n
UD̂ðRhoÞD̂5

1
n
UD̂D21CD21D̂

Step 3: Convert the covariance matrix expressed in (returns)2 into

($/share)2. Here we simply multiply by our diagonal price matrix from P
above:

~C5 PĈP5
1
n
UPD̂D21CD21D̂P

This covariance matrix is now scaled for the appropriate length of time

for our trading period and is expressed in ð$=shareÞ2 for our trade sched-

ule timing risk calculations. This matrix will also be extremely important

for portfolio optimization.

The general form of our trading risk model is:

~C5
1
n
UPD̂D21CD21D̂P ð7:55aÞ

Many times investors will need the covariance matrix to be adjusted for a

one-sided portfolio. In this case, we adjust the entries in the covariance

matrix based on the side of the order. For example,

c�ij 5 sideðiÞUsideðjÞUcij ð7:55bÞ

Where cij is the computed covariance scaled for the length of the trading

period and in ð$=shareÞ2. The full side adjusted covariance is computed

via matrix multiplication following techniques above as follows:

~C5
1
n
UðSideÞPD̂D21CD21D̂PðSideÞ ð7:55cÞ

Where ðSideÞ is a diagonal matrix consisting of either a 1 if a buy order

or 21 if a sell order. We make use of the side adjusted trading risk

covariance in Chapter 8 through Chapter 10.
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EFFICIENT TRADING FRONTIER
The efficient trading frontier (ETF) is the set of all optimal trading strate-

gies. These are the strategies that contain the least risk for a specified cost

and have the lowest cost for a specified risk. A rational investor is someone

who will only trade via an optimal trading strategy. If an investor is trading

via a strategy that is not on the efficient trading frontier it is unlikely that

they will achieve best execution regardless of their actual execution costs.

If a strategy is not optimal (e.g., it is above the ETF) then there exists a

strategy with either (1) a lower cost for the same level of risk, (2) less

risk for the same cost, or (3) a strategy with lower cost and less risk.

The efficient trading frontier is constructed via an optimization process.

The general equation is:

Min L5Cost1λURisk ð7:56Þ
where cost represents both market impact and alpha cost. In situations

where investors do not have an alpha forecast or believe the natural price

drift over the trading horizon to be zero they will only include the market

impact cost component in the optimization.

Analysts then solve this equation for all values of λ. 0 and plot the sets of

cost and risk. An example of the efficient trading frontier is shown in

Figure 7.6. This figure illustrates the trade-off between market impact and

timing risk. As the strategy becomes more aggressive timing risk decreases

but market impact increases. As the strategy becomes more passive timing

risk increases but market impact decreases. Market impact and timing risk

are conflicting terms. Decreasing one term results in an increase in the other

term. Unfortunately there is no way to simultaneously minimize both terms.

M
ar

ke
t I

m
pa

ct

Timing Risk

Efficient Trading Frontier

<----- Aggressive <-----Passive 

■ Figure 7.6 Efficient Trading Frontier.

265Efficient Trading Frontier



Figure 7.7 illustrates various optimal trading strategies. Strategy A1 in

the figure is not an optimal strategy because it does not contain the least

cost for the level of risk or the lower risk for the corresponding cost. For

example, strategy A2 has the same market impact as A1 but reduced risk.

Strategy A3 has the same timing risk as A1 but lower impact. Strategy A4

has both lower market impact and less timing risk that A1. All of these

strategies would be preferred over A1.

Figure 7.8 illustrates the efficient trading frontier in the presence of alpha

momentum. Notice in this case that market impact is decreasing until

strategy X1 is reached. After this time, however, market impact begins to

increase again due to the alpha cost of the trade. If the trader executes

too passively the increased alpha cost will become greater than the

reduced market impact cost. Hence, in these situations traders waiting

too long to trade will incur increased risk and increased cost. The most

passive trader should execute the trade represented by strategy X1.
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■ Figure 7.7 Illustration of Different Trading Strategies.
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The optimization process for a single stock order and trade portfolio is

shown below. The single stock process is further discussed in Chapter 8,

Algorithmic Decision Making Framework and the portfolio optimization

process is further discussed in Chapter 9, Portfolio Algorithms.

Single Stock Trade Cost Objective Function

Minðb1I�αa4 1 ð12 b1ÞI�Þ1λU σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

S
ADV

U
1
α

r
U104bp

 !
ð7:57Þ

Portfolio Trade Cost Objective Function

Min
Xm
i51

Xn
j51

xijU b1UI
�
i U

xij
Xi

� �
U
xij
vij

1
xij
Xi

� �
Uð12 b1ÞUI�i

� �
1λU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2U

Xn
j51

r0k Crk

vuut
ð7:58Þ

Both of these optimizations will also contain user specified constraints.

Author’s Note:

It is important to mention that the parameter λ is used to specify the

investor’s level of risk aversion. This represents how much market impact

cost the investor is willing to incur to reduce timing risk by an additional

unit. In this formulation lambda can take on any value greater than zero.

That is, λ$ 0.

In a cost-risk optimization the value of lambda is directly related to the

resulting optimal trading strategy plotted on the efficient trading frontier.

The tangent on the ETF at this point will be equal to the negative value

of specified lambda. If λ5 1 then the tangent of the ETF at this point

will have a slope equal to m521.

In general, setting lambda high will result in an aggressive strategy with

higher market impact but lower timing risk. Setting lambda low will

result in a passive strategy with lower market impact but higher timing

risk. Unfortunately, there is no universal convention for the meaning of

lambda in the optimization process.

Some brokers will optimize the trade-off between cost and variance

rather than cost and standard deviation (as we show above). In optimiza-

tion, the meaning of lambda will be much different using variance rather

than standard deviation (the square root of lambda). Additionally, the
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value of lambda used in cost-variance optimization will not be the nega-

tive value of the tangent of the strategy on the efficient trading frontier.

Additionally, some brokers specify a mapping between the strategies on

the efficient trading frontier and a qualitative term. For example, using

Low, Med, and High, or Passive, Normal, and Urgent, where each of these

qualitative labels are mapped to different values of lambda. Other brokers

may map values of lambda to be between 1#λ# 10 where 15 passive

and 105 aggressive, or between 1#λ# 3. Some only allow values

between say 0#λ# 1 in a slightly reformulated optimization such as:

MinL5λUCost1 ð12λÞURisk

It is important to point out that there is not enough consistency in the

industry to compare results based on the selected value of lambda. There

are large differences across the meaning of algorithmic parameters.

Investors need to understand the optimization process used by their bro-

kers and vendors and its meaning on the cost-risk trade-off in order to

make an informed trading decision.
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Chapter8
Algorithmic Decision
Making Framework

INTRODUCTION
We introduce readers to the algorithmic decision making framework.

The process includes macro- and micro-level decisions specified prior to

trading to ensure consistency between the “the trading goal” and the

“investment objective.” The macro-level decision refers to the best exe-

cution strategy (BES) most consistent with the investment objective. The

micro-level decision refers to how the algorithm will behave in real-time

and how it will adapt to changing market conditions. Subsequently, it is

the goal of the limit order model and smart order router to ensure that

order placement and actual executions adhere to the investor’s specifica-

tions. Only investors who possess full knowledge and proper specifica-

tion of these criteria will be positioned to achieve best execution.

Before we discuss our algorithmic decision making framework, it is

important to restate a few important concepts. Algorithmic trading is the

computerized execution of financial instruments following pre-specified

rules and guideline. Algorithmic trading provides many benefits. They do

exactly what they are instructed to do—and do it well. However, one of

the more unfortunate aspects of algorithmic trading is that they do

exactly what they are instructed to do. If they are not provided with

instructions that are in the best interest of the fund over all possible sets

of market events, the results will likely be unfavorable execution and

subpar performance.

Algorithmic decision frameworks have been previously studied from the

perspective of the macro and micro viewpoint. For example, macro deci-

sions have been studied by Barra (1997); Bertsimas and Lo (1998);

Almgren and Chriss (1999, 2000); Cox (2000); and Kissell, Glantz, and

Malamut (2004). Micro decisions have been studied more recently such

as in Journal of Trading’s “Algorithmic Decision Making Framework,”
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(Kissell and Malamut, 2006), and Institutional Investor’s Guide to

Algorithmic Trading, “Understanding the P&L Distribution of Trading

Algorithms,” (Kissell and Malamut, 2005). Additionally, Almgren and

Lorenz analyzed real-time adaptive strategies in Institutional Investor’s

Algorithmic Trading III: Precision, Control, Execution, “Adaptive Arrival

Price,” (Spring 2007), and also in Journal of Trading’s “Bayesian

Adaptive Trading with a Daily Cycle,” (Fall 2006).

We now expand the previous research findings and provide an appropri-

ate algorithmic framework that incorporates both macro and micro deci-

sions. Our focus is with regards to single stock trading algorithms and

single stock algorithmic decisions.

In Chapter 9, Portfolio Algorithms, we provide an algorithmic decision

making framework for portfolio and program trading.

EQUATIONS
The equations used to specify macro and micro trading goals are stated

below. Since we are comparing execution prices to a benchmark price in

$/share units our transaction cost analysis will be expressed in $/share units.

For single stock execution (in the US) this is most consistent with how

prices and costs are quoted by traders and investors. Additionally, our pro-

cess will incorporate the trading rate strategy α but readers are encouraged

to examine and experiment with this framework for the percentage of vol-

ume and trade schedule strategies. These transaction cost models were pre-

sented in Chapter 7, Advanced Algorithmic Forecasting Techniques.

Variables

I0 5 Instantaneous Impact in $=Share

MI0 5Market Impact in $=Share

TR0 5 Timing Risk in $=Share

PA0 5 Price Appreciation Cost in $=Share

X5Order Shares

Y 5 Shares Traded ðCompletedÞ
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ðX2YÞ5Unexecuted Shares ðResidualÞ

θ5
Y
X
5 Percentage of Shares Traded

ð12 θÞ5 X2Y
X

5Percentage of Shares Remaining

ADV5Average Daily Volume

Vt 5Volume over Trading Horizon ðexcluding the orderÞ

σ5Annualized Volatility

α5Trade Rate at Time5 t

POVt 5Percentage of Volume at Time5 t

Pt 5Market Price at Time5 t

Pt 5Realized Average Execution Price at Time5 t

μ5Natural Price Appreciation of the Stock ðnot caused by trading imbalanceÞ

Important Equations

I-Star I0$=Share 5 a1U
X

ADV

� �a2
Uσa3UP0U1024 ð8:1Þ

Market Impact MI0$=ShareðαÞ5 b1UI0Uα1 ð12 b1ÞUI0 ð8:2Þ

Timing Risk TR0
$=ShareðαÞ5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

Uα21

r
UP0 ð8:3Þ

Price Appreciation Cost PA0
$=ShareðαÞ5

X
ADV

U
1
αt

Uμt ð8:4Þ

Future Price EðPnÞ5P0 1 ð12 b1ÞUI0 ð8:5Þ

Benchmark Cost Cost5 ðP2PbÞUSide ð8:6Þ
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Trade Rate αt 5
Y
Vt

ð8:7Þ

POVt αt 5
Y

Y 1Vt
ð8:8Þ

Important Note: for our analysis we are using the market impact formula-

tion with the trade rate strategy with a4 5 1. This is equivalent to the sin-

gle period trade schedule formulation discussed in Chapter 7, Advanced

Algorithmic Forecasting Techniques.

ALGORITHMIC DECISION MAKING FRAMEWORK
The algorithmic decision making framework is about traders instructing

the algorithm to behave in a manner consistent with the investment objec-

tives of the fund. If traders enter orders into an algorithm without any pre-

specified rules, or with rules that are not consistent with their investment

objective, the only thing we can be certain of is that the algorithm will not

achieve best execution. Of course the algorithm may realize favorable

prices at times, but this would be due to luck rather than actual intentions.

Best execution is only achieved through proper planning.

Best execution is evaluated based on the information set at the time of

the trading decision (e.g., ex-ante). Anything else is akin to playing

Monday morning quarterback.

The algorithmic decision making framework consists of:

1. Select Benchmark Price

2. Specify Trading Goal (Best Execution Strategy)

3. Specify Adaptation Tactic

1) Select Benchmark Price
Investors need to first select their benchmark price. This could be the

current price which is also known as the arrival price, a historical price

such as the previous day’s closing price, or a future price such as the

closing price on the trade day. These are described as follows:

Arrival Price Benchmark
The arrival price benchmark is often selected by fundamental managers.

These are managers who determine what to buy and what to sell based

on company balance sheets and long-term growth expectations. These

managers may also use a combination of quantitative and fundamental
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(e.g., “quant-timental” managers) information to construct portfolios

based on what stocks are likely to outperform their peer group over time.

These managers often have a long term view on the stocks.

The arrival price benchmark is also an appropriate benchmark price for

situations where a market event triggers the portfolio manager or trader

to release an order to the market.

The arrival price benchmark is:

E0½Arrival Cost�5 ðP2 P0ÞUSide

The E0 notation here is used to denote that this is the expected cost at the

beginning of trading. The expected cost for a buy order with strategy

expressed in terms of trading rate is:

Let,

P0 5Arrival Price

P5P0 1 ðb1UI0UαÞ1 ð12 b1ÞUI0

Then the expected cost is:

E0½P2 P0�5 ðb1UI0UαÞ1 ð12 b1ÞUI0 5MI0

And we have,

E0½Arrival Cost�5 ðb1UI0UαÞ1 ð12 b1ÞUI0 ð8:9Þ

For the arrival price benchmark the expected cost is equal to the market

impact of the trade.

Historical Price Benchmark
Quantitative managers who run optimization models may select a histori-

cal price as their benchmark if this represents the price used in the opti-

mization process. Until recently, many quant managers would run

optimizers after the close incorporating the closing price on the day.

Optimizers determine the mix of stocks and shares to hold in the portfolio

and the corresponding trade list for the next morning. These orders are

then submitted to the market at the open the next day. The overnight

price movement represents a price jump or discontinuity in the market

that the trader is not able to participate with and represents either a sunk

cost or a saving to the fund at the time trading begins. If the manager is

looking to buy shares in a stock that closed at $30.00 but opened at

$30.05, the $0.05/share move represents a sunk cost to the manager. But
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if the stock opened at $29.95, the $0.05/share move represents a saving

to the manager. Depending upon this overnight price movement the man-

ager may change the trading strategy to become more or less aggressive.

Even in situations where the portfolio manager uses current market prices

in the stock selection process there will likely be some delay (although it

may be very short in duration) in determining what stocks and shares

need to be purchased and/or sold and releasing those orders to the mar-

ket. Thus by the time these orders are entered into the market the current

market price will be different than the historical price benchmark that

was used to determine what stocks to hold in the portfolio.

The historical benchmark price is:

E0½Historical Cost�5 ðP2 PhistÞUSide

The E0 notation is used to denote that this is the expected cost at the

beginning of trading. This cost for a buy order and a strategy expressed

in terms of trade rate using our formulas above is described as follows:

Let,

Phist 5Historical Decision Price

P5 P0 1 ðb1UI0UαÞ1 ð12 b1ÞUI0

Then the difference is:

E0½P2Phist �5 ðb1UI0UαÞ1 ð12 b1ÞUI0 1 ðP0 2PhistÞ

If we define the delay cost to be ðP0 2 PhistÞ our historical cost is:

E0½P2 Phist �5MI0 1Delay

And we have:

E0½Historical Cost�5 ðb1UI0UαÞ1 ð12 b1ÞUI0 1 ðP0 2PhistÞ ð8:10Þ

Notice that this is the same cost function as the arrival cost above plus a

delay component that is a constant. When a manager selects the previous

night’s closing price as the benchmark price and starts trading at the

open, the “Delay” cost represents the overnight price movement and

translates to either a sunk cost or savings to the fund.

Unfortunately, as managers’ claim time and time again, this movement

represents a sunk cost much more often than it represents a saving because

managers as a group do a very good job at figuring out what stocks are mis-

priced. Thus, if there is any gap in trading, such as the overnight close, the
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rest of the market will usually learn of this mispricing and adjust their mar-

ket quotes to reflect the proper pricing at the open the next day.

Future Price Benchmark
Index managers often select the closing price to be their benchmark

because this is the price that will be used to value the fund. Any transac-

tion that is different than the closing price on the day of the trade will

cause the actual value of the fund to differ from the index benchmark

price thus causing tracking error. In order to avoid incremental tracking

error and potential subpar performance, index managers often seek to

achieve the closing price on the day.

An interesting aspect of using a future price as the benchmark is that

your performance will look better than it actually is because the future

price will also include the permanent impact of the order. So while per-

manent impact will have an adverse effect on the arrival price or histori-

cal price benchmark, it will not have any effect on a future price

benchmark (from a cost perspective). Investors are expected to perform

better against a future price benchmark by the amount of the permanent

impact than they will against the arrival price.

The future cost derivation is explained as follows:

E0½Future Cost�5 ðP2 EðPnÞÞ

The E0 notation is used to denote that this is the expected cost at the

beginning of trading. Thus,

EðPnÞ5P0 1 ð12 b1ÞUI0

P5P0 1 ðb1UI0UαÞ1 ð12 b1ÞUI0

The expected future cost is:

E0½P2EðPnÞ�5 ðb1UI0UαÞ5Temporary Market Impact

And we have,

E0½Future Cost�5 ðb1UI0UαÞ ð8:11Þ

Notice that the future cost function only consists of temporary market

impact. As stated, this is because permanent impact is reflected in the

future price. So the future cost function that only includes temporary

impact will be lower than the arrival cost function that includes both tem-

porary and permanent impact.
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Comparison of Benchmark Prices
A comparison of the efficient trading frontier for the different benchmark

prices is shown in Figure 8.1. The arrival price frontier is the middle curve

in the graph. The arrival price cost consists of both temporary and perma-

nent impact measured from the price when trading begins. In this example,

the previous close frontier has the highest cost for the corresponding level

of timing risk due to adverse overnight price movement (sunk cost). In real-

ity, the previous close frontier could be higher, lower, or the same as the

arrival price frontier. The future price benchmark, such as the day’s closing

price, is the lowest frontier. It consists only of the temporary impact

because the future price will be comprised of the permanent impact cost.

If an investor is ever given the choice of which benchmark to use to

judge performance it behooves the investors to select a future price

benchmark since this cost will likely be less than a historical or arrival

price benchmark. The future price will always include the permanent

impact of the order and the temporary impact that has not yet fully dissi-

pated (see Chapter 4, Market Impact Models).

2) Specify Trading Goal
The next step in the process is to select the trading goal so that it is con-

sistent with the underlying investment objective. To assist in the process

we describe five potential best execution strategies for investors. While

these may not comprise all possibilities they do address needs for many

investment professionals. Techniques for specifying the macro-level trad-

ing goal have been previously studied by Kissell, Glantz, and Malamut

(2004). We expand on those findings.
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■ Figure 8.1 Efficient Frontier Graphs.
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These trading goals are: (1) minimize cost, (2) minimize cost with risk

constraint, (3) minimize risk with cost constraint, (4) balance the trade-

off between cost and risk, and (5) price improvement.

1. Minimize Cost
The first criterion “minimize cost” sets out to find the least-cost trading

strategy. Investors may seek to find the strategy that minimizes market

impact cost. If investors have an alpha or momentum expectation over

the trading horizon, they will seek to minimize the combination of market

impact cost and price appreciation cost. The solution of this goal is found

via optimization.

Min MI0 1Alpha0 ð8:12Þ

In situations where investors do not have any alpha view or price

momentum expectation the solution to this optimization will be to trade

as passively as possible. That is, participate with volume over the entire

designated trading horizon because temporary impact is a decreasing

function and will be lowest trading over the longest possible horizon. A

VWAP strategy in this case is the strategy that will minimize cost. In

situations where investors have an adverse alpha expectation the cost

function will achieve a global minimum. If this minimum value corre-

sponds to a time that is less than the designated trading time the order

will finish early. If the minimum value corresponds to a time that is

greater than the designated trading time then the solution will again be a

VWAP strategy.

Example: An investor is looking to minimize market impact and price

appreciation cost. The optimal trading rate to minimize this cost is found

through minimizing the following equation:

Min: b1UI0Uα1 ð12 b1ÞUI0 1
X

ADV
U
1
α
Uμ ð8:13Þ

Solving for the optimal trading rate α� we get:

α� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XUμ

b1UIUADV

r
ð8:14Þ

Figure 8.2a illustrates a situation where investors seek to minimize mar-

ket impact and alpha. Notice in this case that the efficient trading frontier

decreases and then increases and has a minimum cost at $0.16 with a cor-

responding timing risk of $0.65. The trading rate that will minimize total

cost is 9%. This is denoted by strategy A1 in the diagram.
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2. Minimize Cost with Risk Constraint
Our second criterion is to minimize cost for a specified quantity of risk. The

risk constraint is often specified by the portfolio manager or by firm mandate

that will not allow risk to exceed the specified level ℜ�. The optimization is:

Min Cost
s:t: TR0 5ℜ� ð8:15Þ

Example: An investor looking to minimize market impact cost (not includ-

ing price appreciation) subject to a specified level of timing risk will deter-

mine the optimal trading rate through minimizing the following equation:

Min: b1UI0Uα1 ð12 b1ÞUI0

s:t: σU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

Uα21

s
UP0 5ℜ� ð8:16Þ
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The optimal trading rate is:

α� 5
XUσ2UP2

0

3U250UADVUℜ�2 ð8:17Þ

Figure 8.2b illustrates this trading goal through strategy A2. Here, A2 is

the strategy that minimizes cost for a risk exposure of $0.40/share. It has

an expected cost of $0.20/share and corresponds to a trading rate of 25%

and a POV rate of 20%.

3. Minimize Risk with Cost Constraint
A portfolio manager’s preferred investment stock is LMK with an

expected return of 10% and the next most attractive stock is RLK with

an expected return of 9.5%. The manager determines that X shares can

be purchased at a cost of 50 bp (0.50%). Purchasing any more shares of

LMK will cause the cost to be greater than the incremental return of

50 bp and the manager would be better off investing some portion of the

dollars in the second most attractive stock. Therefore, the manager deci-

des to transact the X shares using a strategy that will minimize risk for a

cost of 50 bp. This optimization is as follows:

Min TR0

s:t: Cost0 5C� ð8:18Þ

Example: An investor looking to minimize timing risk for a specified level

of market impact cost (not including price appreciation) will determine the

optimal trading rate through minimizing the following equation:

Min: σU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

Uα21

s
UP0

s:t: b1UI0Uα1 ð12 b1ÞUI0 5C�
ð8:19Þ

Solving for the optimal trading rate we get:

α� 5
C� 2 ð12 b1ÞUI

b1UI
ð8:20Þ

Figure 8.2c illustrates the BES for an investor with a maximum cost of

$0.10/share. Here, strategy A3 has the lowest timing risk of $0.73/share,

and corresponds to a trading rate of 7% and a POV rate of 6.5%.

4. Balance Trade-off between Cost and Risk
The fourth criterion “Balance Trade-off between Cost and Risk” is used by

investors with a certain level of risk aversion defined by the parameter λ.
Risk adverse investors will set λ to be high to avoid market exposure and risk
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neutral investors set λ to be small. Setting lambda to be zero is equivalent to

our first criterion—minimize cost—since the risk term would be ignored.

This trading goal is also known as the standard “cost-risk” optimization or

algorithmic optimization objective function. It is formulated as follows:

Min Cost0 1λURisk0 ð8:21Þ

Example: An investor looking to minimize the combination of market

impact cost (not including price appreciation) and timing risk for a speci-

fied risk aversion value λ will determine the optimal trading rate through

minimizing the following equation:

Min: ðb1UI0Uα1 ð12 b1ÞUI0Þ1λU σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250
U
1
3
U

X
ADV

Uα21

r
UP0

 !
ð8:22Þ

Solving for the optimal trading rate we get:

α� 5
b1UI

λUσUP0U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 U

1
250 U

X
ADV

q
0
B@

1
CA

2
3

ð8:23Þ

Notice that this optimal solution is in terms of the investor’s risk aversion

parameter.

Figure 8.2d illustrates the BES for an investor with a risk aversion λ5 1.
In this case the solution is at the point where the tangent to the ETF is

21. This is noted by strategy A4 on the ETF and has cost5 $0.28/share

and timing risk5 $0.25. The trading rate that achieves this optimal strat-

egy is 57% and corresponds to POV5 36%.

5. Price Improvement
The fifth criterion “Price Improvement” is used by investors wishing to

maximize the probability that they will execute more favorably than a

specified cost. Usually, this is the goal of participants seeking to maximize

short-term returns or exploit a pricing discrepancy. Additionally, it is often

the goal used by agency traders seeking to maximize the likelihood of out-

performing a cost such as a principal bid, or the strategy utilized by a prin-

cipal trading desk looking to minimize chances of gamblers ruin and

maximize profiting opportunity. The proof of the price improvement strat-

egy was derived by Roberto Malamut (see Optimal Trading Strategies,

p. 225, and Kissell, Glantz, and Malamut (2004, p 45).
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The price improvement optimization is:

Max: Prob ðCost#C�Þ ð8:24aÞ

where C� is the specified target price, cost, or principal bid that the

investor is seeking to outperform. Mathematically, this optimization can

also be written as:

Max:
C� 2E½Cost�

TR0 ð8:24bÞ

Example: An investor seeking to maximize the probability of achieving

price improvement over a market impact cost of C� (not including price

appreciation cost) will determine the optimal trading rate via the follow-

ing optimization:

Max:
C� 2 ðb1UI0Uα1 ð12 b1ÞUI0Þ
σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

250 U
1
3 U

X
ADV Uα

21
q

UP0
ð8:25Þ

Solving for the optimal trading rate we get:

α� 5
C� 2K
3Ub1UI

ð8:26Þ

Figure 8.2e illustrates the process used to determine the price improve-

ment strategy for a cost of $0.30/share. The top graph shows the efficient

trading frontier with cost on the y-axis and timing risk on the x-axis.

The bottom graph shows the probability that each of the strategies on the

efficient trading frontier will incur a cost of less than $0.30/share. The

probability was determined assuming a normal distribution with mean

equal to the expected cost (y-axis) and standard deviation equal to the

timing risk (x-axis). The strategy that maximizes the likelihood that the

cost will be less than $0.30/share is found by drawing a line from

the cost of $0.30 on the y-axis tangent to the efficient trading frontier.

This is denoted by strategy A5 and has expected cost of $0.18/share and

timing risk of $0.40/share. The strategy has a 62.1% chance of outper-

forming $0.30/share. Strategy A6 has an expected cost of $0.30/share and

timing risk of $0.23/share and so a probability of 50% of outperforming

$0.30/share. Obviously, any strategy to the left of A6 will have an

expected cost higher than $0.30/share so the probability that the actual

cost will be less than $0.30/share will be less than 50%. Strategy A7 has

an expected cost of $0.10/share and timing risk of $0.84/share. The corre-

sponding probability that this strategy will have a cost less than $0.30/

share is 59.7%. Notice the shape of this probability curve. The probabil-

ity of outperforming $0.30/share increases fast until strategy A5 (the
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highest probability of outperforming). The probability of outperforming

$0.30/share decreases at a slower rate as we execute more passively. This

tells us that it is more beneficial to trade more passively than more

aggressively when seeking to outperform a specified price.

Further Insight
Many times traders will specify the strategy in simpler terms. In some

cases the strategies are well thought out and developed, but in other

cases, they are simply instructions for the algorithms to follow and may

or may not be in the best interest of the fund. These strategies include:

Volume Based. A volume-based strategy will instruct the algorithm to fol-

low a specified trading rate such as 15 or 20% of the volume. At times,

these trading rate values are consistent with the investment objective of

the fund and thus achieve best execution, but in other cases they will not

be consistent with the investment objective and will not achieve best exe-

cution regardless of the actual performance. The volume-based strategy

could be in terms of trade rate α or percentage of volume POV .

Price Based. A price-based algorithm will instruct the algorithm to trade

at a certain rate based on market prices. As prices become more or less

favorable these algorithms will trade either faster or slower. These

include algorithms such as ladder and step functions.

Hyper-Aggressive. A hyper-aggressive algorithm is one that executes as

many shares as possible within a specified price level. As long as actual

prices are more favorable than the specified price these algorithms will

transact as aggressively as they can.

Passive/Dark Pool. The passive or dark pool algorithms are those that

will transact primarily in dark pools and crossing networks. Usually these

algorithms do not have a specified maximum trading rate such as is asso-

ciated with the volume-based algorithms. They can participate with as

much volume as possible provided they only transact in dark pools.

Investors believe that if they are trading only in dark pools then they are

minimizing their market impact cost and information leakage. While this

is a widely held belief it is not correct. Market impact cost is caused by

buying/selling imbalance. If you are on the side of the imbalance you

will incur a higher cost. If you enter shares into a dark pool and your

entire order is traded then there is a counterparty with at least as many

shares as your order and possibly more shares, otherwise you would not

have had your entire order executed. If you enter shares into a dark pool

and only a portion of your order is executed then there is counterparty
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with an order that was smaller than your order, otherwise your entire

order would have been executed. If you enter an order into a dark pool

but do not have any shares traded then there were not any counterparties

in the dark pool at that time.

Get-Me-Done. The get-me-done type of algorithms will trade at a specified

rate until the order is complete. However, if there is ample liquidity in the

order book the algorithm will accelerate trading and sweep the book pro-

viding that doing so will complete the order. Usually traders will not want

to accelerate trading and sweep the book complete, because by doing so

they will likely signal their trading intentions to the market which may

result in higher future prices (buy order), lower future prices (sell order),

and higher permanent impact for all orders. But in the case where the order

would be completed by sweeping the book the less favorable future prices

will not affect the performance of the investor. One way to disguise trad-

ing intentions is to sweep all liquidity in the book except for the final 100

shares so that you do not affect the market price or NBBO. Many algo-

rithms are set up to react to changing prices or quotes and utilizing this

type of sweeping technique would keep those algorithms at bay—at least

for the time being anyway.

When we analyze our trading goals it is important to point out that every

BES has an expected cost (mean) and timing risk (uncertainty) compo-

nent. Once the strategy on the efficient trading frontier is determined the

expected cost and timing risk value are shown by drawing a horizontal

line from the strategy to the y-axis to determine the expected cost and a

vertical line from the strategy to the x-axis to determine the correspond-

ing timing risk. Additionally, drawing a line that is tangent to the strategy

on the efficient trading frontier to the y-axis results in the value where

the strategy will have the highest probability of out-performing. In all

case these values are unique except for the situation where we seek to

minimize cost (market impact and alpha). In this case, the tangent from

strategy A1 (Figure 8.2a) will be a horizontal line, and the expected cost

of the strategy and the cost where the strategy will have the highest prob-

ability of outperforming will be the same. The strategy will have a 50%

chance of outperforming that particular cost.

3) Specify Adaptation Tactic
The third step in the algorithmic decision making process is to specify

how the algorithm is to adapt to changing market conditions. This is also

commonly referred to as dynamic optimization or adaptive pricing.

Mathematicians may cringe at phrase “dynamic optimization” in this
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instance since this process is really “real-time re-optimization” and not

true mathematical “dynamic optimization.” But regardless of the nomen-

clature used, the goal is for investors to define how the algorithm will

react to changing market conditions.

There are often times when investors may not want the algorithm to

adapt to changing market conditions. For example, investors seeking to

achieve the day’s closing price would not want to make any adjust-

ments to the algorithm because it may cause the algorithm to finish

early and increase tracking error compared to the closing price.

Investors seeking to achieve the VWAP price would want to adhere to

the intraday volume profile regardless of price movement or volatility.

Additionally, investors trading hedged baskets or hedged portfolios may

not want to deviate from their initial prescribed strategy regardless of

market conditions since doing so may ruin the hedge and increase risk

exposure. Portfolio adaptation tactics are further discussed in Chapter 9,

Portfolio Algorithms.

Below we discuss three methodologies for revising intraday algorithmic

trajectories based on expected total trading cost. These are: targeted cost,

aggressive-in-the-money (AIM), and passive-in-the-money (PIM) strate-

gies1. These studies also provide an in-depth analysis surrounding the

underlying profit and loss distributions corresponding to these tactics as

well as real-time solutions.

Adaptation tactics and how they influence algorithmic decision and trad-

ing performance were previously studied by Kissell and Malamut (2005,

2006) and Almgren and Lorenz (2006, 2007). We follow the approach

from the Journal of Trading introduced by Kissell and Malamut (2005,

2006).

Projected Cost
At the beginning of trading the projected cost is equal to the initial cost

estimate (described in step 2 above). But after trading begins the pro-

jected cost will be comprised of four components: realized cost, momen-

tum cost, remaining market impact cost, and alpha trend cost.

1Tom Kane, former Managing Director at JP Morgan and Merrill Lynch, introduced the

naming of the Aggressive-in-the-Money (AIM) and Passive-in-the-Money (PIM) adap-

tation tactics. Furthermore, unlike many of the names chosen for algorithms, the AIM

and PIM provide investors with a description of their behavior.
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This is explained as follows:

Suppose that X represents the total order shares, Y represents the shares

that have traded, and ðX2YÞ represents the shares that have not yet

traded (unexecuted shares). Then,

θ5 Y
X represents the percentage of shares traded.

ð12 θÞ5 ðX2YÞ
X represents the percentage of shares not yet traded.

Additionally, let,

E0½U�5 initial time expectation. The expected cost and prices at the

beginning of trading.

Et½U�5 time expectation. The expected cost and prices at the current

point in time.

E0½Cost�5C� initial estimated cost.

Pt 5 market price at time t.

Pt 5 average execution price of the Y shares at time t.

Then the cost components are:

Realized Cost: the actual cost of the Y traded shares. This is:

RealizedðCostðtÞÞ5 θUðPt 2 P0ÞUSide ð8:27Þ

Momentum Cost: the price movement in the stock from the time trading

began to the current time. This price movement results in either a sunk

cost or savings to the investor. Momentum cost is applied to the number

of unexecuted shares since these are the shares that will realize the cost

or realize the savings. This is:

Et ½MomentumðCostÞ�5 ð12 θÞUðPt 2 P0ÞUSide ð8:28Þ

Remaining Market Impact: the remaining market impact cost of the

unexecuted shares. This is the expected price impact that will result from

trading the unexecuted shares in the current market environment (liquidity

and volatility) and with the current trading rate. Mathematically this is:

Et ½MI0�5 ð12 θÞUðb1UI0Uαt 1 ð12 b1ÞUI0Þ ð8:29Þ

Alpha Trend: the cost that will result due to the alpha trend over the trad-

ing horizon. Mathematically this is:

Et Alpha0
� �

5 ð12 θÞU X
ADV

U
1
αt

Uμt ð8:30Þ

where μt is the alpha trend over the trading horizon expressed in $/share.
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Notice that the remaining market impact cost and alpha trend are the

only components that can be affected by the trading strategy. Investors

will seek to manage projected costs by trading either faster or slower

based on market conditions, price momentum, and desired adaptation

tactic.

The timing risk of these unexecuted shares represents the uncertainty sur-

rounding the market impact estimate for the remaining shares. This is:

Et TR
0½ �5σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 θÞU X

ADV
U
1
αt

r
UP0 ð8:31Þ

The projected cost of the order is then,

Et Projected Cost $=share
� �� �

5RealizedðCostðtÞÞ51 Et ½Momentum�
1Et½MI0�1 Et ½Alpha0�

ð8:32Þ

Written formulaically this is:

Et Projected
� �

5 θUðPt 2 P0ÞUSideUð12 θÞðððPt 2 P0ÞUSideÞ

1 ðb1UI0Uαt 1 ð12 b1ÞUI0ÞÞ1 ð12 θÞU X
ADV

U
1
αt

Uμt

ð8:33Þ

Notice that this projected cost expression consists of a component that is

“sunk” and “unavoidable” and a component that is “controllable.” The

sunk cost component is comprised of the realized cost for the transacted

shares. The unavoidable component is comprised of the momentum cost

and permanent market impact cost. The controllable component is com-

prised of the price impact of the shares that are to be traded and alpha

cost of these shares. This is also the component that can be managed

through proper selection of the trading strategy.

Recall that our initial cost is denoted as E0½Cost� and is expressed in

$/share but could also be expressed in total dollars or in basis points.

For simplicity, we proceed in the examples below without the alpha term

in basis point units. We leave it as an exercise for our readers to work

through the math including the alpha cost component.

Let Kt represent the costs that are unavoidable (realized, momentum, and

permanent):

Kt5θUðPt2P0ÞUSide1 ð12θÞUððPt2P0ÞUSideÞ1 ð12θÞUð12b1ÞUI0 ð8:34Þ
Then the projected cost can be simplified as follows:

EtðCostÞ5Kt 1 ð12 θÞðb1UI0UαtÞ
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where αt is the trading rate that will be used from the current time

through the completion of the order.

Target Cost Tactic
The targeted cost adaptation tactic will minimize the squared difference

between the projected cost and original cost from the best execution strat-

egy. This tactic will always revise the strategy to put us back on track to

get as close as we can to the original expected trading cost. Here, the

strategy becomes more aggressive in times of favorable price movement

and more passive in times of adverse price movement.

Mathematically, the target cost optimization is found by minimizing the

following:

Min L5 ðE0ðCostÞ2EtðCostÞÞ2
s:t: LB� #αt #UB�

The general optimization needs to include expectations for volume and

volatility over the remainder of the trading period. Volatility can be

adjusted by the HMA-VIX adjustment described in Chapter 6, Price

Volatility. The upper and lower bounds are included to ensure that the

optimal strategy will be within levels specified by the investor. Some

investors request to trade no slower than some level (e.g., $ 5%) and no

faster than another level (e.g., # 40%). Furthermore, most investors do

require completion of the order by some end time. Thus the optimal strat-

egy needs to be at least fast enough to ensure that trading will be com-

pleted by the specified end time or market close.

For the trading rate strategy the targeted cost adaptation tactic objective

function is:

Min L5 ðC�2ðKt1ð12θÞðb1UI0UαtÞÞÞ2 ð8:35Þ
where C� is the original expected cost from the BES, and Kt is the

unavoidable cost at time t based on realized cost and market movement.

Solving for αt we get,

αt 5
C� 2Kt

ð12 θÞðb1UI0Þ
ð8:36Þ

This rate is then adjusted to ensure it satisfies our boundary conditions.

That is written mathematically as:

α�
t 5minðmaxðLB;αtÞ;UBÞ

Figure 8.3a compares the cost distribution from a targeted cost adaptation

tactic to the cost distribution of a constant trading rate. The expected cost of

the targeted rate C2 will be lower than the constant rate C1 since this tactic
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takes advantage of favorable market conditions. However, since the trading

rate executes slower in times of adverse price movement it will expose the

trader to higher market risk. This is shown in the cost distribution with a fat-

ter tail at the right signifying higher probability of these higher costs.

Additionally, in times of continued favorable price momentum over the life

of the defined trading horizon this tactic will not have the opportunity to

transact with the most favorable market prices since it is likely that the order

will be completed before the most favorable prices occur in the market.

Aggressive-in-the-Money
The aggressive-in-the-money (AIM) adaptation tactic maximizes the

probability that the actual cost will be less than the original cost from the

best execution strategy. This optimization is equivalent to maximizing

the Sharpe Ratio of the trade where performance (return) is measured as

the difference between original cost and projected cost. This type of opti-

mization has also been defined as maximizing the information ratio of

Good Risk Bad Risk

Constant Trade Rate

AIM Tactic

C2 < C1 C3 < C2

C3 < C1 C1 < C4

Bad RiskGood Risk

Constant Trade Rate

Target Tactic

Bad RiskGood Risk

Target Tactic

AIM Tactic

Bad RiskGood Risk

Constant Trade Rate

PIM Tactic

(b) AIM Adaptation Tactic

(a) Target Adaptation Tactic (c) Comparison of Target to AIM Adaptation Tactic

(d) PIM Adaptation Tactic

■ Figure 8.3 Adaptation Tactics.

289Algorithmic Decision Making Framework



the trade (Almgren and Chriss, 2000). The AIM adaptation tactic

becomes more aggressive in times of favorable price momentum and less

aggressive in times of adverse price momentum.

If investors selected the price improvement best execution strategy in

step 2 it is essential that we use the exact same cost in the AIM adapta-

tion strategy, otherwise the resulting strategy will have a lower probabil-

ity of executing more favorably than initially intended and will not be

consistent with the trading goal.

Mathematically, the AIM tactic is found by maximizing the following

equation:

Min L5
E0ðCostÞ2EtðCostÞ

EtðTRÞ
s:t: LB� #αt #UB�

Here, E0ðCostÞ is either the original expected cost from the BES in step 2

or the cost used to generate the price improvement strategy in step 2. And

EtðCostÞ and EtðTRÞ are the expected projected cost and timing risk for the

order at time t. Also, the expected cost term needs to include the alpha

cost component in times when traders have a short-term alpha expectation.

For the trading rate strategy (without an alpha term) the AIM adaptation

tactic objective function is:

Min L5
C� 2 ðKt 1 ð12 θÞðb1UI0UαtÞÞ
σU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 θÞU X

ADV U
1
αt

q
UP0

ð8:37Þ

Where C� is either the original expected cost from the BES or the cost

used to generate the price improvement best execution strategy and Kt is

the unavoidable cost at time t based on realized cost and market

movement.

Solving for αt we get,

αt 5
C� 2Kt

3Uð12 θÞðb1UI0Þ
ð8:38Þ

This trading rate then needs to ensure that it satisfies our boundary condi-

tions (i.e., user specified maximum and/or minimum rates, or the mini-

mum rate required to ensure completion of the order). That is written

mathematically as:

α�
t 5minðmaxðLB;αtÞ;UBÞ
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Compared to a constant trading rate, the AIM adaptation tactic will incur

a lower cost on average but will have increased risk exposure. The cost

distribution of the AIM tactic is shown in Figure 8.3b. Notice that its

expected cost C3 is lower than that of the constant rate C1, but it does

have higher bad risk exposure.

Compared to the targeted cost strategy the AIM tactic will trade at a

slightly slower rate. Notice that the optimal AIM strategy is 1/3 of the

optimal targeted cost solution. This results in a slightly lower cost than

the targeted tactic and an increased potential for better prices if the favor-

able trend continues. But it is also associated with increased risk expo-

sure and a potential for higher costs in times of adverse price movement.

Figure 8.3c shows the cost distribution of the targeted cost tactic to the

AIM tactic. Notice that the AIM cost C3 is lower than the targeted cost

C2 but also has increased risk exposure as shown by the fatter tail on the

right hand side (bad risk).

Passive-in-the-Money
The passive-in-the-money (PIM) adaptation tactic is a price-based scaling

tactic intended to limit the potential losses and high costs in times of

adverse price movement. It allows investors to better participate in gains

to share in gains in times of favorable price movement.

The PIM tactic was originally designed with the Arrow-Pratt constant rel-

ative risk aversion (CRRA) formulation (see Pratt, 1964 and Arrow,

1971) in mind. But after conversations with a large number of investors

we revised this adaptation tactic to be the mirror image of the AIM tactic.

For example, investors may decelerate when trading prices are favorable

because they believe the prices are going to continue to improve, and by

trading slower they will further reduce market impact and continue to

realize better prices. PIM will trade faster in times of adverse movement

because investors believe that the adverse trend will continue to worsen.

Thus we would rather pay higher market impact cost to avoid the most

adverse prices and minimize the “bad” fat tail events. In other words, the

PIM adaptation tactic minimizes potential bad outliers and increases our

chances of achieving the good outliers.

The PIM tactic is found by maximizing the negative of the AIM adapta-

tion tactic. Mathematically this formulated as:

Max L52
E0ðCostÞ2 EtðCostÞ

EtðTRÞ
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or alternatively as the following minimization problem,

Min L5
EtðCostÞ2E0ðCostÞ

EtðTRÞ

In this case E0ðCostÞ is the original cost from the BES in step 2 and

EtðTRÞ is the price uncertainty for the remainder of the order. If the

investor has an alpha expectation this additional cost will need to be

incorporated into this expression.

For the trading rate strategy (without an alpha term) the PIM adaptation

tactic objective function is:

Min L5
ðKt 1 ð12 θÞðb1UI0UαtÞÞ2C�

σU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 θÞU X

ADV U
1
αt

q
UP0

ð8:39Þ

where C� is the original expected cost, Kt is the unavoidable cost at

time t, and the denominator is the price uncertainty for the remainder of

the order.

Solving for αt we get,

αt 5
Kt 2C�

3Uð12 θÞðb1UI0Þ
ð8:40Þ

Incorporation of our boundary conditions yields,

α�
t 5minðmaxðLB;αtÞ;UBÞ

The optimal PIM solution is similar to the optimal AIM solution. The

only difference is in the numerator where the PIM numerator is the nega-

tive of the AIM numerator. This ensures a mirror image between the two

adaptation tactics. As prices become more favorable the PIM tactic will

slow down and as prices become less favorable the PIM tactic will speed

up. This results in a cost distribution with a higher mean cost than the

AIM and targeted cost tactics, but with a much lower probability of

incurring higher costs due to persistence of adverse price movement. The

PIM tactic protects against the fat tail and “bad” risk events and provides

increased opportunity to achieve better prices in times of favorable

trends. But this comes with a slightly higher cost. Unfortunately in

finance there is no free lunch. This is shown in Figure 8.3d. Notice that

the expected cost for PIM, C4, is higher than of the constant rate C1. But

it is associated with less bad risk and a much higher possibility of achiev-

ing the better prices from the favorable price trend.
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Comparison across Adaptation Tactics
As a strategy deviates from the initial best execution strategy due to the

specification of an adaptation tactic, it results in a new expected cost dis-

tribution. The targeted cost and AIM adaptation tactics result in a skewed

distribution with a lower expected trading cost but with more “bad” risk.

These strategies will take advantage of better market prices by trading at

a quicker rate, which results in a lower expected trading cost, but they

also trade at a slower rate when prices are less favorable, which increases

the chances of incurring costly outliers.

Comparison of the targeted tactic (Equation 8.36) to the AIM tactic

(Equation 8.38) shows that the AIM tactic trading rate is 1/3 of the tar-

geted cost rate. This results in a lower expected cost for the AIM strategy

since it allows the fund to participate with favorable price trends for a

longer period of time, but since it trades slower it will also expose the

order to more market risk which will result in a higher potential for

costly outliers when adverse price trends persist.

One strategy that is being used by investors to overcome the “bad” risk

issue associated with the targeted cost or AIM adaptation tactic is to set

the lower bound or minimum trading rate equal to the original trading rate

from step 2—specify trading goal. This then allows investors to take

advantage of the better prices when they arise and it will not cause the

fund to incur incremental market risk over the constant rate since it will

trade no slower than the original trading rate.

The PIM adaptation tactic (Equation 8.40) also results in a skewed distribu-

tion, but, unlike the target and AIM tactics, PIM protects investors from

“bad” risk by accelerating trading when the adverse momentum begins. The

goal of PIM is to complete the order before prices can become too expensive

to trade. An advantage of PIM is that it increases “good” risk exposure since

it trades slower when there are favorable market prices. But this results in a

slightly higher cost on average—but with bad risk protection.

Figure 8.4 provides an example of the difference between the three tac-

tics for a buy order. At the current price the target rate is trading at 30%

and both AIM and PIM are at 10%. As prices decline, the target and

AIM tactics increase and the PIM tactic decreases. Notice that the target

tactic increases three times as quickly (as we determined mathemati-

cally). The PIM tactic will decrease down to its minimum rate (which is

specified by investor) and in this example is 5%. As prices increase, both

the target and AIM tactics decrease and will continue to decrease down

to the investor’s specified minimum rate. Since the AIM tactic (10%) is
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lower than the target rate (30%) it will reach its minimum rate quicker

than the target rate. But notice how the PIM tactic trading rate increases

as prices increase. It is the exact mirror image to the AIM tactic.

Modified Adaptation Tactics
Many investors are proponents of specifying adaptation tactics based

only on the current market prices and arrival price, or based on current

market prices plus remaining market impact cost and arrival price. In this

type of scenario, the algorithm ignores what has happened in the past,

and only considers the current point in time and expected future prices.

While this type of tactic is preferred by some market participants, we are

not proponents of this type of tactic. If an investor is not concerned with

what happened in the past while they are trading they should not be con-

cerned with what happened in the past after trading is completed.

Otherwise, they exhibit inconsistent behavior. If an investor wants to

trade a certain way halfway through the order that is different than at the

beginning of the order, the chances are that they could have defined a

different initial strategy and adaptation tactic at the beginning of trading

and would have realized even better results. Consistency and pre-

planning is paramount when it comes to algorithmic trading.

How Often Should We Re-Optimize Our Tactics?
There are many different theories for when and why an investor should re-

optimize their trading rates. Some of these are quite appropriate and some
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■ Figure 8.4 Comparison of Adaptation Tactics.
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are really quite silly. Suffice it to say, investors should not treat trading

algorithms like video games and make changes only for the sake of making

changes. Revisions to strategies should be made when appropriate from the

perspective of the investment objective as well as to disguise trading inten-

tions. Of course revisions could always be made because of the arrival of

new information that was either not known at the beginning of trading or is

different than what was believed at the beginning of trading.

There are four techniques that are actively being used by algorithms to

revise trading strategies. These are continuous, trade-based, time period,

and z-score. First, some algorithms continuously revise their trading rate.

With today’s computer power some algorithms are continuously revising

rates based on what is observed in the market. Second, some algorithms

revise their trading rate after each child order is executed or cancelled.

Third, some trading algorithms will revise their trading rate based on a

defined time period such as every 30 seconds (or faster or slower).

However, some of the more sophisticated algorithms employing higher

levels of sophistication and anti-game logic will revise their trading algo-

rithms based on a z-score criterion. This is as follows:

The z-score is measured as the difference between the expected cost at

the current point in time and the original expected cost divided by the

remaining timing risk of the order. That is:

EtðZÞ5
E0ðCostÞ2EtðCostÞ

EtðTRÞ
ð8:41Þ

This formulation of EtðZÞ will be negative if we are underperforming our

expected cost and positive if we are outperforming our expected cost.

Negative is bad and positive is good.

The algorithm may determine to only revise the trading rate if the z-score

is higher or lower than a specified value such as 6 1 or 6 1/2. For exam-

ple, only revise the trading rate if the projected z-score at time t is greater
than or less than a trader specified criteria. The z-score specifies the num-

ber of standard deviations the expected finishing cost will be from the

original cost. Quite often in statistics we use a z-score within 6 1 to sig-

nify expected performance, but in trading, many investors prefer a more

conservative measure of the z-score and use6 1/2 as the reference value to

re-optimize. Additionally, some investors elect to re-optimize only if the

projected z-score is less than some value such as Z,2 1 or Z,2 1/2

indicating less than desirable performance. Additionally, and what is

often most important for many investors, the z-score re-optimization

logic makes it more difficult to uncover what the algorithm is doing
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because it is not updating continuously, after each trade, or based on a

specified period of time.

An example of the z-score re-optimization criteria for a buy order is

shown in Figure 8.5. At the current price of $30.00 the algorithm is trans-

acting with a trading rate of 20%. The algorithm will continue to trade at

this rate while price levels are between $29.92 and $30.08. If prices fall

below $29.92 then the algorithm will increase to a trading rate of 25%

and continue at this rate as long as prices are between $29.85 and

$30.00. Notice that this logic does not return the trading algorithm to the

original rate of 20% when prices move back above $29.92. If prices

increase above $30.08 the trading rate will decrease to 15% and remain

at this level while prices are between $30.00 and $30.15. Again, notice

that the algorithm does not return to the original rate of 20% after the

prices fall back below $30.08. It is important to point out in this example

that at a market price of $30.00 it is possible for the algorithm to be

transacting at three different trading rates: 15%, 20%, or 25%. This

makes it increasingly difficult for any trader to decipher the intentions of

the trading algorithm or goal of the trader.

The exact rate in use by the algorithm will be determined in part by cur-

rent and forecasted market conditions, realized and projected trading

costs, and the investor’s z-score criteria. All of which makes it increas-

ingly difficult to uncover the investor’s execution strategy.
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Chapter9
Portfolio Algorithms

INTRODUCTION
Portfolio algorithms and multi-period trade schedule optimization has

gained momentum in the financial community due to the increase in pro-

gram and algorithmic trading. By understanding how portfolio trading deci-

sions influence returns, traders will be better prepared to make decisions

consistent with the overall investment objectives of the fund. Unfortunately,

traditional optimization techniques are not adequate for portfolio needs due

to the non-linearity of the price impact function, the large number of deci-

sion variables, and the time it takes to calculate the answer.

Each time a trader is given a trade list to execute (e.g., basket, program, or

portfolio) they face an inherent dilemma. Trading too quickly will result in

too much price impact due to liquidity demands and information leakage

but trading too slowly will result in too much risk which could lead to even

higher costs in times of adverse price movement (“trader’s dilemma”).

In order to address the conflicting expressions of market impact cost and tim-

ing risk, traders derive a trade schedule (“slicing strategy”) that balances the

trade-off between price impact and risk based on a specified level of risk

aversion. The appropriate computational technique to solve this problem for a

portfolio is the multi-period trade schedule optimization. But unlike the port-

folio manager who usually has ample time to run sophisticated optimization

algorithms and perform thorough sensitivity analysis, a timely solution for

the trader is mandatory especially considering that many times they are given

the order just before the market open or during the trading day. Most cur-

rently available optimization routines take too much time to solve the trader’s

dilemma to be useful for investors. These packages can take several minutes,

hours, or more, especially if the problem involves thousands of stocks over a

long trading horizon. Traders require real-time solutions in seconds or less.

Trade schedule optimization to minimize total trading costs has been

previously studied. For example, Bertsimas and Lo (1998) provided an

approach to minimize price impact in the presence of expected future
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information. The goal is to minimize total cost arising from price impact

and price drift. Almgren and Chriss (1999, 2000) expanded on the idea of

trade schedule optimization by incorporating a risk aversion parameter and

set out to balance two conflicting terms (price impact and risk) based on the

investor’s risk appetite. Their proposed market impact formulation contains

the right shape and market impact properties (e.g., convex shape with dollar

value) but their objective function results in a path dependent stochastic pro-

cess with a difficult and slow solution.

Malamut (2002, 2006) devised an approximated QP formulation and provided

insight into parametric trade schedules to solve a non-linear impact formula-

tion. Kissell, Glantz and Malamut (2004) incorporate a drift term into the

objective functions and offer alternative goals to mean-variance optimization

such as maximizing the probability of outperforming a specified cost (e.g.,

maximize the Sharpe ratio of the trade). Obizhaeva and Wang (2005) study

an inter-temporal (not static) trade sequencing problem. They seek to solve a

path dependent problem similar to Almgren and Chriss (2000) by understand-

ing the half-life of a trade (e.g., the time for temporary impact to dissipate).

Their techniques, however, are only presented for a single stock order.

In the financial literature, the mean-variance portfolio optimization of

Markowitz (1952) clearly stands out as one of the more important quantita-

tive approaches. The technique is widely used by portfolio managers and

is an effective tool to manage risk and improve returns. However,

mean-variance optimization is mostly used in the context of a one-period

investment model. Li and Ng (2000) derive a solution to the multi-period

mean-variance optimization problem where the allocation decision is

reviewed in every period. Therefore, the proposed solution is dynamic since

the decision to invest is reviewed after each period’s results are known.

In this chapter, we present a multi-period trade schedule optimization

approach for portfolio optimizers (Malamut, 2002). We offer four

approaches that can be used to solve the trader’s dilemma in an amount

of time that can be useful for traders. These approaches expand on tech-

niques presented in Optimal Trading Strategies (2003) and introduce

real-time adaptation techniques to determine when it is appropriate to

take advantage of market conditions given the overall risk composition

of the trade basket.

TRADER’S DILEMMA
A typical trading situation is as follows: traders are provided with a basket

of stock (e.g., program, trade list, portfolio, etc.) to transact in the market.
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The basket may be one-sided (e.g., all buys or all sells) or two-sided (e.g.,

both buys and sells). Traders are then tasked with determining the most

appropriate way to transact the order over a specified period of time. This is

accomplished by balancing the trade-off between cost and risk based on a

user specified level of risk aversion. Mathematically, this is stated as

follows:

Min CostðxkÞ1λURiskðxkÞ

Where λ represents trader specified level of risk aversion, and xk is used

to denote the discrete trade schedule representing exactly how the shares

are to be transacted in each period for each stock.

Variables

X5 shares to trade

Yt 5 shares executed at time t

SideðiÞ5 11 if buy order

21 if sell order

�

ADV 5 average daily volume

σ5 annualized volatility

C5 covariance matrix; scaled for the length of the trading period in ð$=ShareÞ2

xij 5 shares of stock i to trade in period t

rij 5 residual shares of stock i at beginning of period t

rij 5
Xn
k5j

xik

vit 5 volume for stock i in period t

Pi0 5 arrival price

Pit 5market price in period t

Pit 5 average execution price at time t

m5 number of stocks in the portfolio

n5 number of trading periods during the horizon

d5 number of trading periods per day
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TRANSACTION COST EQUATIONS
This section describes the trading cost equations that will be used to

solve the portfolio trader’s dilemma. When performing portfolio optimi-

zation it is most beneficial to express the trading strategy in terms of a

trade schedule to allow us to most effectively manage total portfolio risk

and express costs in total dollars to allow us to easily sum costs across

stocks. The formulations used here are based on the equations provided

in Chapter 7, Advanced Algorithmic Forecasting Techniques.

For a portfolio of m stocks that are to be executed over n trading periods

we have:

The trade schedule x as an m3 n matrix as follows:

x5

x11 x12
x21 x22

. . . x1n

. . . x2n
^ ^
xm1 xm2

& ^
? xmn

0
B@

1
CA

The residual schedule r as an m3 n matrix as follows:

r5

r11 r12
r21 r22

. . . r1n

. . . r2n
^ ^
rm1 rm2

& ^
? rmn

0
B@

1
CA

where rij 5
Pn
k5j

xik.

For simplicity of notation, we define xk and rk to be the column vectors

of the trade and residual matrices, respectively, as follows:

xk 5

x1k
x2k
^
xmk

0
B@

1
CA rk 5

r1k
r2k
^
rmk

0
B@

1
CA

The covariance matrix C is an m3 n matrix as follows:

C5

c11 c12
c21 c22

? c1m
? c2m

^ ^
cm1 cm2

& ^
? cmm

0
B@

1
CA
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where C is scaled for the length of the trading horizon and expressed in

terms of ð$=shareÞ2, cij is the covariance between stock i and stock j, and

cii is the variance of stock i.

Market Impact

I�$i 5 a1U
Xi

ADVi

� �a2
Uσa3

i U1024UPi0UXi ð9:1Þ

MI$ðxkÞ5
Xm
i51

Xn
t51

b1UI�i Ux
2
it

XiUvit

 !
1 ð12 b1ÞI�i ð9:2Þ

This formulation of market impact follows from the trade schedule for-

mulation with parameter a4 5 1. These parameters are given in Table 9.1.

Price Appreciation

PA$ðxkÞ5
Xn
i51

Xm
t51

xijUΔp�i Ut ð9:3Þ

where Δpi is the per period price appreciation term expressed in $/share

adjusted for the side of the order. For example, if the price is expected to

increase $0.05/share per period and we are selling shares the price appre-

ciation term is:

Δp�i 5 sideðiÞUΔpi 521U$0:05=share52$0:05=share

Table 9.1 Market Impact Parameters—Trade Schedule Strategy

Data Sample a1 a2 a3 a4 b1

All Data 656 0.48 0.45 1 0.90

Large Cap 707 0.59 0.46 1 0.90

Small Cap 665 0.42 0.47 1 0.90
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Timing Risk

TRðrkÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k51

r0kCrk

s
ð9:4Þ

where C is the trading risk covariance matrix expressed in ($/share)2, and

is scaled for the length of the trading interval, and rk is the residual vec-

tor of unexecuted shares at the beginning of period k.

One-Sided Optimization Problem
It is important to note that our I-Star market impact equation

(Equation 9.1) requires that the trade size X be positive, i.e., Xi . 0 for

all stocks. This creates a difficulty when optimizing a two-sided portfolio

since we need to have a way to incorporate the negative market relation-

ship between buy and sell orders. Similar to how we adjusted the price

appreciation term by the side of the order, we adjust the covariance term

by the side of each order and thereby convert the portfolio optimization

problem to a one-sided optimization problem. That is:

c�ij 5 sideðiÞUsideðjÞUcij

Then our transaction cost equations will properly account for the sided

covariance across stocks. Notice in this calculation that the variance of a

stock will be positive, the covariance between two stocks on the same side

(i.e., both buys or both sells) will be equal to the original covariance term

and the covariance between two stocks with opposite side orders (i.e., one

buy and one sell) will be the negative of the original covariance term.

OPTIMIZATION FORMULATION
Using the expressions above the complete portfolio trader’s dilemma

translates to:

Min
x

Xm
i51

Xn
t51

b1UI�i Ux
2
it

XiUvit

 !
1 ð12b1ÞI�i 1

Xn
i51

Xm
t51

xijUΔpijUt

( )
1λU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k51

r0kCrk

s

ð9:5Þ

Subject to constraints:

i. Pn
t51

xit 5 Xi
Completion

ii. xit $ 0 No Short Sales
iii. rit 2 rit11 $ 0 Shrinking Portfolio
iv.

rit 5
Pn
k5t

xik
Residual Schedule
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v. xit 5 rit 2 rit11 Trade Schedule
vi. α�

i;min #
xit
vit
#α�

i;min Trade Rate Bounds
vii. x�i;min # xit # x�i;max Trade Size Bounds
viii. r�i;min # rit # r�i;max Residual Size Bounds
ix.

LB#
Pm
i51

Pk
j51

ðsideðiÞUxijUpik #UB
Self-Financing

x. LB# ðsideðiÞUrijpijÞ#UB Risk-Management

Constraint Description
Investors may include all or some of the constraints above. These constraints

are fund specific and can be omitted if deemed unnecessary by the trader.

These constraints are described as follows:

i. Completion: ensures that the optimization solution will executes all

shares in all orders within the defined trading horizon.

ii. No Short Sales: ensures that the side of the order will not change.

For example, the optimization solution will only buy shares for a

buy order and sell shares for a sell order. Without this constraint, it

is possible that the optimization may overbuy or oversell during the

day and then have to offset the newly acquired position.

iii. Shrinking Portfolio: ensures that the size of the order keeps

decreasing. For example, if the order is to buy 100,000 shares the

positions will always be decreasing towards zero and will never

increase. Without this constraint the optimization solution may

determine it would be best to first sell 25,000 shares so that the

order increases to 125,000 shares. While this type of strategy may

be the best way to manage overall portfolio risk it may not be an

acceptable solution for the investor. For example, it exposes the

investor to short-term risk if the stock is halted after the position

size increases to 125,000 shares.

iv. Residual Schedule: defines the residual share quantity in each

period in terms of unexecuted shares at that point in time. Used if

the decision variable is the trade share amount.

v. Trade Schedule: defines the shares to trade in terms of the residual

shares. Used if the decision variable is the residual trade vector.

vi. Trade Rate Bounds: the defined maximum and minimum trading

rates. For example, investors may wish to trade at least 1% of the

total market volume in each period but no more than say 25% of

total market volume in each period. These constraints are most

often defined in terms of percentage of volume rate so may need to

be converted to the trade rate definition.
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vii. Trade Size Bounds: defines the maximum and/or minimum num-

ber of shares to execute in each period through completion of the

order. For example, investors may wish to trade at least 100 shares

in each period and no more than say 25,000 shares.

viii. Residual Size Bounds: defines the maximum and/or minimum

position sizes (e.g., unexecuted shares) at different points in time.

The investor may wish to give the optimizer some leeway on the

solution but within a user specified tolerance band. For example,

the investor may require one-half of the order to be executed within

the first two hours of the trading day.

The last two constraints are often stated as cash-balancing constraints.

However, the term cash balancing is a very vague term in the industry

and has two different meanings. These cash-balancing constraints are

“self-financing,” and “risk-management.”

ix. Self-Financing: The self-financing constraint is used by investors

who are looking to have their sell orders finance their buy orders.

This constraint manages the cash transactions throughout the day.

For example, if this constraint is positive it indicates that they have

bought more than they have sold, and therefore will need to pay

incremental dollars. If this constraint is negative it indicates that they

will have sold more than they have purchased, and will have incre-

mental dollars that they will receive. Investors will often place toler-

ance bands on the cash position so that they will not have to provide

too much additional cash for the purchases or receive too much cash

back from sells. The self-financing constraint manages cash-flow

from the perspective of shares already traded. It is often intended to

keep the fund from having to raise cash at the end of the day in cases

where the buy dollar amount was higher than the sell dollar amount.

x. Risk-Management: The risk-management constraint is used by inves-

tors to manage risk throughout the trading day. Here risk is managed by

the net value of the unexecuted shares. These investors believe that as

long as the value of the remaining shares to be purchased is equal to the

value of shares to be sold the portfolio is hedged from market move-

ment. This constraint, however, does not incorporate the sensitivity to

the market. For example, if the investor is buying a list of high beta

technology stocks and selling a list of low beta consumer staples they

may not be hedged from market movement. If the market goes up the

prices of the technology stocks are likely to go up more than the con-

sumer staples stocks thus requiring the investor to provide additional

cash at the end of the day and incur a higher trading cost. The risk-

management constraint manages cash-flow from the perspective of
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unexecuted shares. Cash balancing for risk-management was originally

implemented when investors did not have full confidence in the under-

lying intraday covariance model.

Objective Function Difficulty
The formulation of the objective function above presents many difficulties.

First, the problem is not linear or quadratic, thus creating increased complex-

ity for the optimization routine. Second, the timing risk component is repre-

sented as a square root function as opposed to a squared term in a quadratic

programming (QP) optimization problem. For example, portfolio construc-

tion optimization models often express risk as a variance term (risk squared)

and can be directly incorporated into quadratic optimizations. Finally, there

are n�m decision variables in our full formulation—one decision variable

for each stock in each trading period. In portfolio construction there are

m decision variables—one for each stock. Our portfolio optimization requires

m times more solution variables.

Unfortunately, the time to solve these optimization algorithms increases

at an exponential rate with the number of variables. For a 500-stock port-

folio executed over 26 trading intervals (e.g., 15 minute intervals) this

results in 13,000 decision variables and takes much more than 26 times

longer to solve. Combined with the constraints above, it makes solving

this optimization extremely slow.

Investors require accurate solutions within a short enough timeframe to

be useful for trading. By “short enough” we mean a matter of seconds or

minutes as opposed to minutes or hours.

Fortunately, there are accurate transformations and approximations that

allow us to solve the trader’s dilemma in a reasonable amount of time.

These techniques are:

� Quadratic Optimization Approach

� Trade Schedule Exponential

� Residual Schedule Exponential

� Trade Rate Optimization

Optimization Objective Function Simplification
The full portfolio optimization objective function (Equation 9.5) includes

permanent market impact cost. Because this cost is not dependent upon

the specified trading strategy we can omit it from the objective function

without changing the optimal solution. However, permanent impact needs
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to be added back into the estimated cost in order to provide investors

with the full portfolio trading cost estimate.

Additionally, to simplify calculations going forward, we exclude the

price appreciation term from the cost function. We only include market

impact cost.

PORTFOLIO OPTIMIZATION TECHNIQUES
Quadratic Programming Approach
The trader’s dilemma can be solved using a quadratic optimization (QP)

by making a couple of changes to the formulation. First, formulate the

problem in terms of the residual trade schedule. Second, we use the vari-

ance expression for risk, which does not include the square root function,

instead of the standard deviation expression of risk, which includes the

square root expression. Third, we use a variance aversion parameter in

place of the traditional risk aversion parameter.

This will allow us to now solve the problem via a traditional quadratic

optimization. The only outstanding issue, however, is determining the

exact solution at the investor’s specified level of risk aversion. This can be

solved as follows. Recall that the risk aversion parameter is equal to the

negative tangent of the efficient trading frontier (ETF) at the optimal trad-

ing strategy. If we solve sets of our QP optimization and plot the ETF, i.e.,

market impact as a function of risk using the square root function for all

optimization results, we can determine the strategy on the ETF where the

slope of the tangent is equal to the negative of the investor’s risk aversion.

This may take several iterations but it is entirely feasible.

This is an entirely valid transformation since cost-variance can be mapped

to cost-risk and is consistent with Markowitz (1952) mean-variance opti-

mization. Markowitz actually presented an optimization using return and

variance but then plotted the trade-off using return and standard deviation.

Markowitz’s efficient investment frontier shows the trade-off between

return and standard deviation but is solved using return and variance. The

biggest difference here is that traders are seeking an exact point on the

frontier and in an amount of time that will be useful for trading.

The QP trade cost minimization is written in terms of the residual schedule

as follows:

Min
r

Xm
i51

Xn
t51

b1UI�i Uðrit2rit11Þ2
XiUvit

1λ�U
Xn
k51

r0kCrk ð9:6Þ
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Subject to:

ri1 5 Xi for all i
rin11 5 0 for all i
0# riJ 2 riJ11 # x�i;max for all i, j
rij $ 0 for all i, j

Notice that this formulation is written only in terms of the residual

shares. This is permissible since xij 5 rij 2 rij11. Additionally, ri1 5Xi is

the proper residual starting value and rin11 5 0 is the terminal value to

ensure all shares are transacted by the end of trading and satisfying our

completion requirement. The last two constraints ensure the solution

adheres to the shrinking portfolio constraint, and the minimum and maxi-

mum trade quantity values. Finally, λ� is the variance aversion parameter

and is different from the risk aversion parameter.

An inherent difficulty with the QP solution, however, is that there is no way

to map risk aversion to variance aversion, so the actual process may need sev-

eral iterations to determine the solution at the desired level of risk aversion.

Another difficulty is that the formulated problem dramatically increases

in size as the number of stocks in the portfolio increases. This may

diminish the efficiency benefits of the QP approach as the trade list

becomes too large.

In matrix notation, the quadratic optimization is written as follows:

Min
~r

1
2
U~r0Q~r ð9:7Þ

Subject to:

~A1 ~r0 5 ~b1
~A2 ~r0 $ ~b2
~rij $ 0

Where, ~r5mUðn1 1Þ3 1, Q5mUðn1 1Þ3mUðn1 1Þ, ~A1 5 2m3mU
ðn1 1Þ, ~b1 5 2m3 1, ~A2 5 2mUðn1 1Þ3mUðn1 1Þ, and ~b2 5 2mU
ðn1 1Þ3 1. The derivation of these matrices is provided in the appendix to

this chapter.

This representation of the trader’s dilemma above provides many advan-

tages. First, there are many well known optimization algorithms suited to

solve a QP minimization problem. Second, this formulation allows us to

take complete advantage of diversification and hedging opportunities.
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The disadvantage of this formulation is that the risk term in the objective

function is expressed in terms of variance and may require several itera-

tions to determine the trade schedule corresponding to the investor’s level

of risk aversion. For large trade lists this problem can be quite resource

taxing. Malamut (2002) provided an adjustment to the QP model to

directly convert the standard deviation risk aversion parameter to the var-

iance risk aversion parameter which can be used to further simplify the

risk aversion/variance aversion issue.

Trade Schedule Exponential
The trade schedule exponential approach parameterizes the trade schedule

based on an exponential decay function with parameter θi. It is a non-linear

optimization routine that uses the square root function for our risk expression.

The number of stocks to transact in a period is determined as follows:

xij 5XiU
e2jθiPn

k51
e2kθi

ð9:8Þ

The optimization formulation for the trade schedule exponential approach

is a non-linear optimization formulation:

Min
x

Xm
i51

Xn
t51

b1UI�i Ux
2
it

XiUvit
1λU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k51

r0kCrk

s
ð9:9Þ

Subject to:

xij 5 XiU e2jθiPn
k51

e2kθi

for all i, j

rij 5
Pn
k5j

xik
for all i, j

LBi # θi #UBi for all i

Expressing the trade schedule as a parametric exponential formulation pro-

vides many benefits. First, there is only one parameter to estimate for each

stock regardless of the number of specified trading periods and trading

days. For example, an m-stock portfolio executed over n trading horizons

has only m parameters to determine regardless of the trading horizon

whereas the complete problem and QP optimization has n�m decision

variables. Second, since Equation 9.9 is true for all stocks we are guaran-

teed of completion. Third, since e2jθi . 0 for all j we have xij . 0 for all

periods and are ensured to adhere to the shrinking portfolio constraint.
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Most essential, however, is that since the trade schedule is expressed in

terms of a continuous exponential function the analytical gradient and

Hessian can be easily computed. This dramatically increases the computa-

tional efficiency of a non-linear optimization algorithm. Finally, it incor-

porates the investor’s exact risk aversion parameter.

A limitation of the exponential trade schedule, however, is that it does

not allow as much freedom to take advantage of natural hedging and

diversification as the exact NLP and QP approaches described above.

The lower and upper bounds are included on the trading schedule param-

eter to ensure the order is traded within a user specified rate.

Residual Schedule Exponential
The residual schedule exponential is a technique that parameterizes the resid-

ual schedule in terms of an exponential decay function. It is a non-linear opti-

mization routine and uses the square root function for the risk term.

The residual number of shares in each period is determined by the

following:

rij 5XiUe2jωi ð9:10Þ

This formulation is a decreasing function so it will always adhere to our

decreasing portfolio constraint. But since it is always positive, i.e.,

rij . 0, we need to incorporate some terminal value to force the order to

complete (within some tolerance).

The optimization formulation for the trade schedule exponential is:

Min
x

Xm
i51

Xn11

t51

b1UI�i Uðrit2rit11Þ2
XiUvit

1λU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn11

k51

r0kCrk

vuut ð9:11Þ

Subject to:

rij 5 XiUe2jωi for all i, j
ri1 5 Xi for all i
rin11 # 100 for all i
xij 5 rij 2 rij11 for all i, j
LBi #ωi #UBi for all i

Expressing the trade schedule as a parametric exponential formulation

provides many benefits.

First, there is only one parameter to estimate for each stock regardless of

the number of specified trading periods and trading days. For example,

309Portfolio Optimization Techniques



an m-stock portfolio executed over n trading horizons has only m para-

meters to determine regardless of the trading horizon whereas the com-

plete problem and QP optimization each have decision variables. Second,

since Equation 9.10 holds for all stocks we are ensured of completion of

the order. Third, since e2jωi . 0 for all j we guarantee we adhere to our

shrinking portfolio constraint. Most essential, however, is that since the

residual schedule is expressed in terms of a continuous exponential func-

tion, the analytical gradient and Hessian can be easily computed. This

dramatically increases the computational efficiency.

A limitation of the residual trade schedule exponential, similar to the

exponential trade schedule, is that it does not allow as much freedom to

take advantage of natural hedging and diversification as the exact NLP

and QP approaches above. The lower and upper bounds are included on

the trading schedule parameter to ensure the order is traded within a user

specified rate.

Trading Rate Parameter
The trade strategy can also be expressed in terms of a trading rate param-

eter α. Here the number of shares to transact is equal to a specified per-

centage of market volume excluding the order shares. The process is best

explained as follows. For a specified trading rate α, the expected time to

complete the order (expressed as a percentage of a trading day) is:

t5
X

ADV
U
1
α

If the trading day is segmented into n trading periods then the order will

be completed in T periods where:

T5 tUn5
X

ADV
U
1
α
Un ðrounded up to the nearest integerÞ ð9:12Þ

For example, if the order size X
ADV 5 10% and the trading rate α5 10%

the order will complete in a day. If the trading rate is α5 20% the order

will complete in one-half day, and if the trading rate is α5 5% the order

will complete in two days.

Market Impact Expression
For a constant trading rate the temporary market impact cost for a single

stock is:

MIðαÞ5 b1UI�α
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For a basket of stock the market impact cost is:

MIðαiÞ5
Xm
i51

b1UI�i αi ð9:13Þ

Timing Risk Expression
The timing risk for a portfolio cannot be expressed as a continuous func-

tion in terms of the trading rate parameter because at some time the resid-

ual shares would fall below zero. But we can overcome this problem by

approximating the residual with the following continuous exponential

function:

rij 5XiUe2jγi ð9:14Þ

where,

γi 5 2:74UT21:22 1 0:01 ð9:15Þ

This representation of residuals results in approximately the same risk

that is computed using the trade schedule strategy.

The trade rate optimization problem is formulated as follows:

Min
Xm
i51

b1UI�i αi 1λ
ffiffiffiffiffiffiffiffiffi
rtCr

p
ð9:16Þ

Subject to:

rij 5 XiUe2jγi for all i, j

γi 5 2:74UTi21:22 1 0:01 for all i

Ti 5
Xi

ADVi
1
α Un for all i

LBi #αi #UBi for all i, j

The LB needs to be set at a value that will ensure the order will be com-

pleted by the investor’s specified end time.

Representation of the trade schedule in terms of trading rate provides

many benefits. There is only one parameter per stock. The market impact

cost and timing risk expressions are greatly simplified. Completion of the

order and the shrinking portfolio constraint are guaranteed. And since the

gradient and Hessian are easily computable, it provides efficiency and

speed for the non-linear optimization.

A limitation of the trade rate formulation is that it does not provide as

much freedom to take complete advantage of risk reduction opportunities
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as the approaches above. But it does provide guidelines to adapt to

changing liquidity conditions (e.g., transact more shares in times of high-

er market volumes and transact less shares in times of lower market vol-

ume) throughout the trade periods which is not provided from any of

the previously described techniques. And as we show below, it provides

the quickest solutions even for large trade lists.

Comparison of Optimization Techniques
To compare the performance of the different optimization techniques we

conducted a simulation experiment to measure solution time and accu-

racy. The experiment is as follows:

Sample Universe. Our sample universe was the SP500 index as of

December 31, 2011.

Number of Stocks. We constructed portfolios that ranged in size from 10,

25, 50, 100, . . .450, and 500 stocks.

Order Size. We randomly defined order sizes from 0�25% ADV.

Volatility. We used actual stock volatility from the sample.

Covariance Matrix. We constructed our covariance matrix using a corre-

lation between stocks that was equal to the average stock sector to sector

correlation. For example, if the average correlation between a technology

and utility stock was rho5 0.15 we used a correlation of 0.15 to compute

the covariance between a technology stock and a utility stock along with

their actual volatility.

Number of Simulations. We performed twenty simulations for each port-

folio for each optimization technique. Ten simulations were performed

for a one-sided portfolio, e.g., cash investment, five simulations were per-

formed using a two-sided portfolio with equal weights in each side, and

five simulations were performed using a 130-30 two-sided portfolio, that

is, the dollar weights in one side were 130% of the total and the weights

in the other side accounted for 2 30% of the dollar value.

Performance Measure. We recorded the time to solve each portfolio

with each optimization technique and also measured the accuracy of

each technique by comparing the resulting trade schedule to the true

trade schedule determined by solving the portfolio using the non-linear

optimization routine that solved the exact objective formulation

(Equation 9.5). Advantages and disadvantages of each technique are

shown in Table 9.2.
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Risk Aversion. The risk aversion parameters were randomly selected from

the following values λ5 0:3; 1;2.

Trading Days. We broke the day into thirteen intervals of equal volume.

In total, our simulation experiment took several days to run. The optimi-

zations were run using a 64-bit pc, with an Intel i7 processor, 2.6 GHz,

and with 8 Gigs of RAM. Since the actual optimization times are also

Table 9.2 Comparison of Optimization Techniques

Optimization
Technique

Advantages Disadvantages

Non-Linear
Optimization

Determines exact solution
to the exact problem

Takes too long to solve to
be useful to traders

Takes full advantage of
diversification and hedging

Many parameters—one for
each stock and period

Quadratic
Optimization

Provides most accurate
trade schedule

Many parameters—one for
each stock and each period

Takes full advantage of
diversification and hedging

Slow solution for larger
trade lists

Could require multiple
iterations

Trade
Schedule
Exponential

Very fast optimization
solution

Does not allow full freedom
in specifying trade schedule

Few parameters—one per
stock

Trade schedule is forced to
follow exponential decay

Takes very good advantage
of diversification and
hedging

Very accurate model

Residual
Schedule
Exponential

Very fast optimization
solution

Does not allow full freedom
in specifying trade schedule

Few parameters—one per
stock

Forces a front-loaded trade
schedule

Takes very good advantage
of diversification and
hedging

Very accurate model
Trade Rate Quickest optimization

solution
Does not take full
advantage of diversification
and hedging

Adapts to changing market
conditions in real-time

Requires approximation of
residual risk function

Few parameters—one per
stock

Least accurate of the
methods
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dependent upon pc, processor, and memory, analysts are encouraged to

setup these experiments and analyze solution time and accuracy for the

approach described above incorporating the trade list characteristics most

common for their fund (e.g., small cap index, global index, growth,

value, momentum, one-sided, two-sided equal, 130-30, etc).

How long did it take to solve the portfolio objective problem?

Figure 9.1 plots the log of the average time in seconds for each optimiza-

tion routine for each portfolio size. As expected, the non-linear optimiza-

tion routine, which solved for the square root risk term and a decision

variable for each stock and each period, was the slowest but did provide

us with the exact trade schedule to the problem. The quadratic optimiza-

tion technique, which provided exact shares to trade in each period but

solved for the variance of risk, was the next slowest. This technique,

however, provided reasonable solution times for portfolio sizes up to

about 100 stocks (analysts need to determine what is considered a reason-

able solution time for their needs). A difficulty with the QP approach is

that analysts need to determine the proper variance aversion parameter

from the investor’s specified risk aversion parameter. So this mapping

could require several runs of the problem. The trade schedule exponential

and residual schedule exponential techniques provided a large improve-

ment in solution time over the quadratic optimizer. The fastest solution

was for the trade rate technique. To show the effect of the number of

names in the portfolio on solution time the non-linear (NLP) optimizer

took 55 minutes to solve a 500-stock portfolio. The quadratic optimizer
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(QP) provided dramatic improvement over the non-linear approach and

only took 4.4 minutes to solve. But for a trader, even 4.4 minutes may be

too long especially if they desire to perform re-optimization during the

day. The fastest solutions for a 500-stock portfolio were the 14 seconds for

the trade schedule exponential solution, 10 seconds for the residual sched-

ule exponential, and only 5 seconds for the trade rate technique. These are

all dramatic time improvements over the NLP and QP formulations.

How accurate was the solution for each optimization technique?

Figure 9.2 shows the accuracy of each approach. The quadratic optimizer

was 98% accurate. This was followed by the trade schedule exponential

93%, residual schedule exponential 91%, and trade rate technique at

84%. Accuracy was measured as 1 minus the error between the actual

trade schedule determined from the NLP solution and the trade schedule

determined from each of our approaches.

This simulation experiment highlighted the inverse relationship between

solution time and accuracy. The quicker we solve, the less accurate the

solution. In some circles this has become known as the “developer’s

dilemma.” Solving too fast may give an inaccurate result, but solving too

slow may miss the opportunity altogether.

It appears that the exponential approaches provide the highest level of accu-

racy and the quickest solution times. Additionally, the exceptionally quick

solution of the trade rate technique could be used in conjunction with the

exponential approaches or quadratic optimization for full risk management
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and quick solution times. Analysts need to determine the time available for

the initial optimization as well as real-time re-optimizations (described

below) to determine the best approach given time constraints.

PORTFOLIO ADAPTATION TACTICS
The optimization techniques provided above provide investors and algo-

rithms with appropriate initial trading strategies. These trade schedules were

determined based on expected market conditions and price movement.

Unfortunately, the only thing we are sure about with regards to markets is

that actual conditions will not be the same as expected conditions.

To adjust for changing conditions during the day investors can utilize the

same adaptation tactics with a portfolio as they can with single stock

trading (see Chapter 8). In this section we discuss the AIM and PIM tac-

tics for portfolio trading needs.

The AIM and PIM tactics are:

AIM: Max
Et ½Cost�2 E0½Cost�
Et ½Timing Risk� ð9:17Þ

PIM: Max
E0½Cost�2Et½Cost�
Et½Timing Risk� ð9:18Þ

where,

E0½Cost�5C� 5 original estimated cost ðincluding permanet impactÞ

Et ½Cost�5 expected total cost at time t ðincludes realized and unrealizedÞ

Et ½Timing Risk�5 expected timing risk at time t ðunexecuted shares onlyÞ

The original cost estimate is determined from the original optimization

solution. It includes temporary impact, permanent impact, and price

appreciation. Even if the optimization does not include the permanent

impact component (for optimization simplification) the permanent impact

cost needs to be added into the estimated cost. Permanent impact cost is

a true cost to investors but since it will not influence the optimization

solution it is often not included in the optimization formulation.

The time expectations for cost and timing risk are computed as follows:

Then our cost equations are:

Realized$ðCostðtÞÞ5
X
i

SideðiÞUYiUðPij 2 Pi0Þ ð9:19Þ
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Momentum$ðCostðtÞÞ5
X
i

SideðiÞUðXi 2YiÞUðPit 2Pi0Þ ð9:20Þ

EtðMIÞ5
Xm
i51

Xn
j5t

b1UI�i Ux
2
ij

XiUvij
1
Xm
i51

Yit

Yit 1Xi
Uð12 b1ÞUI�i ð9:21Þ

Notice that our market impact and timing risk equations only incorporate

trading activity from the current period through the end of the trading

horizon. Additionally, since permanent market impact will be reflected in

market prices during trading we need to incorporate permanent impact

cost in the re-optimization adjusted for quantity of shares traded. This is

shown as the second expression on the right hand side in Equation 9.21.

Therefore we have,

E0½Cost�5C� ð9:22Þ

Et ½Cost�5Realized1Momentum$ðCostðtÞÞ1 Et ½MI� ð9:23Þ

Description of AIM and PIM for Portfolio Trading
Portfolio adaptation tactics are illustrated in Figure 9.3. In this scenario,

the portfolio manager is rebalancing the portfolio and also investing addi-

tional cash. This results in a trade list with an initially higher buy value

than sell value. Figure 9.3a illustrates how the basket will be traded under

expected market conditions. Here the buy order has an initial risk of

$150K and the sell order has an initial risk of $100K. The manager opti-

mizes the trade schedule using techniques described above and this results

in the buys initially being transacted at a faster rate to offset the incremen-

tal risk until the residual position is hedged. Following this optimized trade

schedule, the position is traded into the hedged position at 12 p.m. After

this time, the buys and sells are transacted at the same trading rate.

Figure 9.3b illustrates how the basket may be traded in a situation with

favorable price movement. Suppose that by 10:15 a.m. there was a

decline in market prices after the open. This makes buys cheaper but sells

more expensive. But since there are more shares to buy than there are to

sell investors are better off. A manager employing the AIM tactic can

take advantage of the better market prices and trade into the hedged posi-

tion at a faster rate. Here the manager achieves the hedged position by

11:15 a.m. After this time the portfolio is traded at the more passive rate
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until completion to reduce market impact cost. A manager employing the

PIM adaptation tactic will wish to take advantage of the “good” risk and

“better” prices and trade at a slower rate. Here the manager does not

trade into the hedged position until 1:15 p.m. After this time the shares

are traded at a passive rate to reduce market impact cost. In both situa-

tions, once the basket achieves its maximum hedged position the AIM

and PIM tactics will not have any effect on the trading schedule. But

there is usually something that can always be refined during trading.
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How Often Should We Re-Optimize?
The next question that often arises is how often should we re-optimize the

portfolio? Many of the self-proclaimed industry pundits state it should be

done continuously. Others state that re-optimization should be performed at

certain intervals, such as every 5, 10, or 15 minutes. We could not disagree

more. Portfolio algorithms should be re-optimized if performance is pro-

jected to be dramatically different than what is expected, market conditions

are different than what we planned, or if there are opportunities to take

advantage of liquidity and prices. The difference between single stock and

portfolio algorithms, however, is that when trading portfolios investors are

interested in the overall portfolio risk and not necessarily the performance

of an individual order. For example, if there is sufficient liquidity and favor-

able prices that would allow the trader to complete the order at great prices

it may not be in their best interest to do so if the net result would adversely

affect the hedge of the portfolio and increase overall portfolio risk. Portfolio

analysis needs to be performed from the risk perspective of the portfolio not

from the risk perspective of any individual stock.

Our recommendation for re-optimization criteria is based on the Z-score

of projected performance. This is similar to the Z-score re-optimization

criteria used for the single stock algorithms. This measure is:

Zt 5
E0ðCostÞ2 EtðCostÞ
EtðTiming RiskÞ ð9:24Þ

A positive score indicates investors are performing better than projected

and a negative score indicates investors are performing worse than pro-

jected. The Z-score above measures the number of standard deviations

away from our original cost estimate we are projected to finish given

actual market conditions. Investors could elect to re-optimize the portfo-

lio algorithm if the Z-score at any point in time exceeds a specified

range such as jZj. 6 1 or jZj. 6 1/2. Some investors elect to only

re-optimize if the Z-score is less than a specified value. In these cases

re-optimization would only occur if performance is expected to be less

favorable.

Investors, of course, could also re-optimize if there is opportunity to devi-

ate from an optimally prescribed strategy to improve the overall risk

characteristics of the trade list and reduce trading costs. This can also be

done on an individual stock basis and is described below.

Investors should also re-optimize and change their strategy if there is rea-

son to believe that their trading intentions have been uncovered by market

participants, which would lead to higher trading costs.
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MANAGING PORTFOLIO RISK
We have previously discussed adaptation techniques to manage risk from

a portfolio optimization perspective following our AIM and PIM method-

ologies using real-time re-optimization. In this section we discuss three

techniques to determine how to evaluate potential deviation tactics for

individual stocks.

These are:

1. Minimize Trading Risk

2. Maximize Trading Opportunity

3. Program-Block Decomposition

From the investor’s perspective, these techniques provide: improved

algorithmic trading rules, better specification of market and limit orders,

and appropriate utilization of non-traditional trading venues such as

crossing networks and dark pools where liquidity is not transparent.

These criteria have been stated in Optimal Trading Strategies (2003) and

in Algorithmic Trading Strategies (2006). We expand on those findings

and apply them to today’s portfolio trading algorithm needs.

Residual Risk Curve
The total dollar risk in a trade period for a portfolio is:

Risk$ðtÞ5
ffiffiffiffiffiffiffiffiffiffi
rtt Crt

p
ð9:25Þ

where rt is the residual share vector at time t and C is the side adjusted

covariance matrix scaled for the length of the trading interval.

The residual risk curve shows how the total portfolio risk will change as

we change the number of shares of a particular stock and hold the

amount of all other shares constant.

From the first and second derivatives of Equation 9.25 we find that the

residual risk curve is a convex function with a single minimum value at:

ri;min 5
21
σ2
i

X
j 6¼i

rjσij ð9:26Þ

This minimum value could be either more or less than the current number

of shares of the stock in the portfolio. If the minimum value is less than

the current position traders could reduce portfolio risk by trading shares

and reducing the holding size. If the minimum value is greater than the

current position traders could reduce portfolio risk by adding shares to
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the portfolio and increasing the holding size. However, if a trader needs

to adhere to a shrinking portfolio constraint they can only reduce portfo-

lio risk if this minimum value is less than the current number of shares

held in the basket.

Figure 9.4 depicts the scenario where the residual risk curve achieves

its minimum value. In this example, an investor with a basket of stock

has ri shares of stock i. The figure shows two interesting trading

values. The first is rimin 5 ri 2 yi and represents the number of shares

that can be traded to achieve minimum portfolio risk. The second value

is rimax 5 ri 2 zi, which represents the maximum number of shares that

can be transacted without adversely affecting risk. That is, the residual

risk will be exactly the same after trading the shares as it was before

trading the shares. These two values will be referred to as: (1) mini-

mum trading risk quantity, and (2) maximum trading opportunity,

respectively.

The minimum trading risk quantity is useful for investors continuously

striving to take advantage of favorable liquidity conditions to minimize

portfolio risk over time. The maximum trading opportunity is useful for

investors striving to reduce trading cost without adversely affecting the

overall risk of the trade basket. In both situations investors can accelerate

transactions in a stock without adversely affecting risk.
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Minimum Trading Risk Quantity
The minimum trading risk quantity is calculated as follows.

Let r be the current portfolio and let yk indicate the number of shares to

trade in stock k. Then these vectors are:

r5

r1
^
rk
^
rm

0
BBBB@

1
CCCCA y5

0
^
yk
^
0

0
BBBB@

1
CCCCA ðr2 yÞ5

r1
^

rk 2 yk
^
rm

0
BBBB@

1
CCCCA

where ðr2 yÞ is the portfolio after trading yk shares of stock k. Notice

that the y vector only contains one value yk for the stock that we are

looking to trade. Having zeros in the other entries ensures that the other

position sizes remain constant. Our goal is to determine the value of yk
that will minimize portfolio risk.

Portfolio risk after trading will be:

Risk5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 yÞ0Cðr2 yÞ

p
The number of shares to trade that will minimize total portfolio risk is

determined by differentiating portfolio risk with respect to yk, setting this

derivative equal to zero, and solving for yk. Mathematically, this is:

@Risk
@yk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 yÞ0Cðr2 yÞ

p
50

Solving, we get:

yk 5
1
σ2
k

Xn
j51

rjσij ð9:27Þ

If an investor needs to adhere to the shrinking portfolio constraint, the

feasible trading interval are values between zero and the original position

size rk. Recall that we are using a one-sided portfolio formulation and we

have already adjusted the covariance matrix. This constraint is:

0# yk # rk

Thus the actual number of shares that can be traded adhering to the

shrinking portfolio constraint is:

y�k 5minðmaxð0; ykÞ; rkÞ
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Maximum Trading Opportunity
Calculation of the maximum trading opportunity is as follows:

Let r be the current portfolio and zk indicate the number of shares to

trade in stock k.

Then these vectors are:

r5

r1
^
rk
^
rm

0
BBBB@

1
CCCCA z5

0
^
zk
^
0

0
BBBB@

1
CCCCA ðr2 zÞ5

r1
^

rk 2 zk
^
rm

0
BBBB@

1
CCCCA

where ðr2 zÞ is the portfolio after trading zk shares of stock k. Notice

that the z vector only contains one value zk for the stock that we are look-

ing to trade. Having zeros in the other entries ensures that the other posi-

tion sizes remain constant.

Our goal here is to determine the maximum number of shares zk that can
be traded such that the risk after trading is equal to the risk before

trading.

Mathematically, this is as follows:

ffiffiffiffiffiffiffiffiffi
r0Cr

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 zÞ0Cðr2 zÞ

p
Squaring both sides yields:

r0Cr5 ðr2 zÞ0Cðr2 zÞ

Expanding this equation yields:

z0Cz22r0Cz5 0

Solving for zk yields two solutions as is expected since this is a quadratic

equation. These solutions are:

zk 5 0 ð9:28Þ

zk 5 2U
1
σ2
k

Xn
j51

rjσij ð9:29Þ

The first solution (Equation 9.28) is the naı̈ve solution and implies that

we do not trade. If there are no transactions then of course the risk does

not change. The second solution (Equation 9.29) is the value that is most

interesting to traders. It signifies the most trades that can occur without

adversely affecting portfolio risk. Also notice that this solution is twice
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the value of the minimum trade risk quantity, which makes sense since

the residual risk curve is symmetric around the minimum value.

If traders need to adhere to the shrinking portfolio constraint the bounds

on zk are:

0# zk # rk

Thus the actual number of shares that can be traded adhering to the

shrinking portfolio constraint is:

z�k 5minðmaxð0; zkÞ; rkÞ

Figure 9.5 depicts the residual risk curve for stock II. At the initial port-

folio position there are r2 5 7000 shares of stock II and the total portfo-

lio risk is $2965. Total risk can be minimized by trading y2 5 2583
shares resulting in total risk of $2,932 and a new position size for stock

II of 4417 shares. Traders can transact up to z2 5 5167 shares, resulting

in a new position size of stock II of 1833 shares, and still have the same

overall risk of $2965 as we had prior to trading. Trading more than 5167

shares would result in higher risk exposure.

When to Use These Values?
The minimum trading risk and maximum trading opportunity quantities

provide valuable guidelines for how much an algorithm or trader can
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deviate from an optimally prescribed schedule without adversely affect-

ing performance. The recommendations are to accelerate trading up to

the maximum trading opportunity in times of favorable market prices and

liquidity and to decelerate trading to the minimum risk quantity in times

of high impact costs and lower liquidity.

For example, whenever faced with favorable prices algorithmic trading

rules can be specified to take advantage of the displayed liquidity up to

the maximum trading opportunity. Algorithmic trading rules can also be

specified to enter and display limit orders up to the maximum trading

opportunity. In times of illiquidity, high market impact, or short-term

price drift (with expected trend reversal) algorithmic trading rules can be

written to decelerate trading down to the minimum trading risk quantity.

Program-Block Decomposition
When investors enter orders into crossing venues or dark pools the execu-

tions are not guaranteed. Transactions will occur only if there is a coun-

terparty. When entering baskets into dark pools traders are often

concerned that only some of their orders will trade and the resulting

residual risk will be more than the original value.

One way investors can address this problem is to decompose the basket

into block and program subsets. The block subset represents those shares

contributing incremental risk to the basket. These are the shares that can

be entered into a dark pool and would result in less risk no matter how

many shares are executed. The program subset represents those shares

that are providing risk reduction through either diversification or hedging.

Accelerated trading of any of these shares is not recommended because if

the executions are not in the proper proportions the resulting residual risk

will be higher than the starting level of risk.

For example, stock A and stock B are perfectly correlated. If we are buy-

ing $150K of A and selling $100K of B we have $50K worth of incre-

mental risk from stock A. Thus, we could enter $50K shares of A into a

dark pool without worrying about our residual risk increasing. No matter

how many shares of A trade in the dark pool the resulting portfolio risk

will be lower than the original value. Now suppose that we are buying

$100K of stock A and selling $100K of stock B (the same value in both

stocks). Since these stocks are perfectly correlated our market exposure is

hedged and the total portfolio risk is equal to the stock’s idiosyncratic

risk values. We want to trade these names together to minimize risk and

maintain our hedged position. If we enter both stocks into a dark pool but

are only able to transact one of the names then the resulting residual risk
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will increase. These shares should be transacted as a pair to maintain risk

and to minimize market impact cost. In the latter scenario it would not

be advisable to submit these orders into a dark pool for execution.

The general technique to determine our program-block decomposition is

through min-max optimization. That is, we seek to minimize the maxi-

mum residual risk position. This is determined as follows:

Let,

R5 ðr1;?; rk;?; rmÞ0 represent the current trade portfolio
M5

Pm
i51

ri represents the total number of shares in the portfolio

Y 5 ðy1;?; yk;?; ymÞ0 represents the block subset

R2Y 5 ðr1 2 y1;?; rk 2 yk;?; rm 2 ymÞ0 represents the program subset

C5 one-sided covariance matrix scaled for a trading period and

expressed in ($/share)2

Next, let,

Z5 ðz1;?; zk;?; zmÞ0 represent the untraded shares from the block sub-

set after submission to the dark pool. That is, Y is entered into a dark

pool where some trades occur. Z represents those shares that did not

transact in the dark pool. Then,

R2Y 1Z5 ðr1 2 y1 1 z1;?; rk 2 yk 1 zk;?; rm 2 ym 1 zmÞ0 represents

the residual portfolio after submission to the dark pool.

Then, the resulting total residual risk is:

Risk5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2Y 1ZÞ0CðR2Y 1ZÞ

p
ð9:30Þ

with 0# zk # yk # rk to ensure that there is no overtrading.

Mathematically, program-block decomposition can be formulated as a

min-max optimization problem where we minimize the worse-case sce-

nario. For a given number of shares S, where S5 y1 1?1 ym, the block

subset is determined as follows:

Min
x

Max
y

ðR2Y 1ZÞ0CðR2Y 1ZÞ ð9:31Þ

Subject to:

0# zk # yk # rk for all k
S5 y1 1 y2 1?1 ym for all k
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Notice in this case we make use of variance rather than standard deviation

(square root) enabling the formulation of a quadratic optimization problem.

Figure 9.6 illustrates the program-block decomposition process. The

graph shows the maximum and minimum residual risk that could arise

for the corresponding number of shares that are entered into the dark

pool or crossing network. The x-axis shows the number of shares from

zero to M (the total number of shares). The graph shows three data series.

The horizontal line is the initial risk of the portfolio. This is the residual

risk that would arise if nothing is traded in the dark pool. The minimum

residual risk line shows the best-case scenario for the corresponding num-

ber of shares. This is the residual risk if all shares are traded in the dark

pool. This is a decreasing value. The maximum residual risk line shows

the worse-case scenario that would arise if only some of the shares are

entered into the dark pool. This is an increasing value. For example, sup-

pose that an investor enters the entire hedged two-sided basket into a

dark pool. If all shares are executed than the residual risk will be zero

(since there are not any shares remaining). But if only one side of the

portfolio is executed (such as all buy orders) the residual portfolio will

have fewer shares but risk will be higher because the investor is no lon-

ger hedged to market movement.

In performing this exercise there will always be some number of shares

S1 such that the worse-case scenario will be equal to the initial risk value.

This quantity S1 is a “free block order” or “free crossing order” and

represents the number of shares that can be entered into the dark pool
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and ensure the residual risk will never increase, regardless of the number

of shares that may or may not transact. The free block order resolves

anxieties traders may have about adverse selection. For example, if an

investor is buying $150K of stock RLK and selling $100K of stock LMK

(with correlation5 1) the investor has market exposure of $50K due to

the higher value in RLK. Hence, the investor could enter $50K of RLK

into a dark pool and will always be better off if any shares are executed.

This $50K represents the “free block order” or “free block cross.” This

number of shares should always be entered into a dark pool to reduce

market risk.

APPENDIX
The matrices for the QP technique in Equation 9.7 are calculated as follows:

~rmUðn11Þ31 5

r11
^

r1;n11

2
4

3
5

r21
^

r2;n11

2
4

3
5

^
rm1

^
rm;n11

2
4

3
5

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

QmUðn11Þ3mUðn11Þ 5 ~MmUðn11Þ3mUðn11Þ 12λ�U ~CmUðn11Þ3mUðn11Þ;

where,

~M5

M1 0 0 ? 0
0 M2 0 ? 0
0 0 & ^
^ ^ Mm21 0
0 0 0 Mm

0
BBBB@

1
CCCCA

Mi 5

I0i 2I0i 0 ? 0
2I0i 2I0i 0 ? 0
0 0 & ^
^ ^ 2I0i 2I0i
0 0 2I0i I0i

0
BBBB@

1
CCCCA

Ii 5
nUb1Ii
XiVi
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~C5

C11 C12 ? C1m

C12 C22 ? C2m

^ ^ & ^
C1m C2m ? Cmm

0
BB@

1
CCA Cij 5

σij 0 ? 0
0 σij ? 0
^ ^ & ^
0 0 ? σij

0
BB@

1
CCA

Please note that ~C is a symmetric matrix, therefore we have, Cij 5Cji for

all i and j.

The equality constraint matrix ~A1 and vector ~b1 are:

~A15

1 0 ? 0
0 0 ? 0
^ ^ & ^
0 0 ? 0

2
664

3
775

0 0 ? 0
1 0 ? 0
^ ^ & ^
0 0 ? 0

2
664

3
775 ?

0 0 ? 0
0 0 ? 0
^ ^ & ^
1 0 ? 0

2
664

3
775

0 0 ? 1
0 0 ? 0
^ ^ & ^
0 0 ? 0

2
664

3
775

0 0 ? 0
0 0 ? 1
^ ^ & ^
0 0 ? 0

2
664

3
775 ?

0 0 ? 0
0 0 ? 0
^ ^ & ^
0 0 ? 1

2
664

3
775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

~b15

S1
S2
^
Sm
0
0
^
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

The inequality constraint matrix ~A2 and vector ~b2 are:

~A2 5

A0
2 0 ? 0
0 A0

2 ? 0
^ ^ & ^
0 0 ? A0

2

2
664

3
775

Av2 0 ? 0
0 Av2 ? 0
^ ^ & ^
0 0 ? Av2

2
664

3
775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

A0
2 5

21 1 0 ? 0
0 21 1 ? 0
^ ^ & & ^
0 0 ? 21 1

0
BB@

1
CCA

Av25

1 21 0 ? 0
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And x�i is the maximum quantity that can be traded in any period for

stock i defined by the trader.
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Chapter10
Portfolio Construction

INTRODUCTION
This chapter introduces techniques to bridge the gap between portfolio

construction and trading. We introduce a quantitative framework to deter-

mine the appropriate “optimal” execution strategy given the “optimal”

portfolio on the efficient investment frontier.

Portfolio optimization is the process of determining an optimum mix of

financial instruments. These consist of portfolios with the highest return

for a specified level risk and the least risk for a specified return. These

optimal portfolios are determined through advanced mathematical model-

ing approaches such as quadratic programming, and more recently conic

optimization.

Markowitz (1952) presented a quantitative process to construct efficient

portfolios through optimization. The set of all efficient portfolios constitu-

tes what Markowitz coined the Efficient Frontier. Sharpe (1964) expanded

on the efficient frontier concept by providing investors with a means to

determine the most appropriate efficient portfolio on the frontier. The tech-

nique used by Sharpe was based on maximizing investor economic utility

(investor happiness). Sharpe further introduced the industry to the capital

asset pricing model (CAPM) which in the simplest forms is a technique to

combine the market portfolio with a risk-free asset to further improve the

set of risk-return above the efficient frontier. CAPM also provided the

industry with metrics to quantify and manage risk, allocate investment dol-

lars, etc. This ground breaking work by Markowitz and Sharpe paved the

way for Roll and Ross (1980) with arbitrage pricing theory, Black and

Litterman (1992) with alternative portfolio optimization techniques, Fama

and French (1992, 1993) with their three factor model, and Michaud and

Michaud (1998) with their portfolio resampling using Monte Carlo meth-

ods. Unfortunately, not as much attention has been given to portfolio con-

struction with transaction costs. But as we show in this chapter, Markowitz

and Sharpe have also paved the way to determine the most appropriate

best execution strategy given the investment objectives of the fund.
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The underlying goal of this chapter is to provide the necessary theory

and mathematical framework to properly incorporate transaction costs

into the portfolio optimization. This chapter builds on the findings from

“Investing and Trading Consistency: Does VWAP Compromise the Stock

Selection Process?” Kissell and Malamut in Journal of Trading, Fall,

2007. We expand on those concepts by providing the necessary mathe-

matical models and quantitative framework. The process is reinforced

with graphical illustrations1.

PORTFOLIO OPTIMIZATION AND CONSTRAINTS
Many quantitative portfolio managers construct their preferred investment

portfolios following the techniques introduced by Markowitz (1952) and

Sharpe (1964). But often during the optimization process these managers

will incorporate certain constraints into the process. These constraints are

used by managers for many different reasons and in many different ways.

For example, to reflect certain views or needs, to provide an additional

layer of safety, or to ensure the results provide more realistic expecta-

tions. Some of the more common reasons for incorporating constraints

into the portfolio optimization are:

� Fund Mandates

� Maximum Number of Names

� Reflect Future Views

� Risk Management

� Transaction Cost Management

Fund Mandates. Many funds have specified guidelines for their portfo-

lios. Optimization constraints are used to ensure the resulting optimal

mix adheres to these strategies. For example, these may specify a prede-

termined asset allocation process that requires certain percentages to be

invested across stocks, bonds, cash, etc. These mandates may also define

a predetermined max exposure to a risk factor or a sector. And some

index funds may not be allowed to have their tracking error to a bench-

mark exceed a certain level regardless of alpha expectations.

1We would like to thank the following people for helpful comments, suggestions,

insight, and especially for their helpful criticism and direction throughout several itera-

tions of this chapter. Without their greatly appreciated help and insight, these advanced

optimization techniques would not have been possible. They are: Jon Anderson, John

Carillo, Sebastian Ceria, Curt Engler, Morton Glantz, Marc Gresack, Kingsley Jones,

Roberto Malamut, Pierre Miasnikoff, Eldar Nigmatullin, Bojan Petrovich, Mike

Rodgers, and Peter Tannenbaum.
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Maximum Number of Names. Some managers will limit the number of

names in the portfolio so that they can better manage the portfolio. These

portfolio managers usually employ a combination of quantitative and

qualitative portfolio management. These managers perform a quantitative

portfolio optimization limiting the number of names to hold in the portfo-

lio, e.g., only hold, say, fifty or fewer names at most. The portfolio man-

ager will follow these limited number of companies in fine detail and

make changes if a company has fallen out of favor or if their expectation

on potential company growth or dividend stream has changed. It is much

more difficult to perform fundamental analysis on a portfolio of several

hundred names than on a portfolio with only fifty or fewer names.

Reflect Future Views. Managers may specify minimum weighting in a

group of stocks or in a sector if they feel this group is likely to outper-

form the market of their benchmark index. Many times the managers

may not have specific stock level alphas or stock specific views, but will

apply a higher weighting to the group as a whole. Additionally, managers

may specify a maximum weighting for a group of stocks if they believe a

particular group will underperform the market and they do not have a

view on any particular stock.

Risk Management. Portfolio managers may at times be suspicious of the

estimated portfolio risk, stock volatility, or covariance across names from

a particular risk model. In this case, mangers are mostly concerned about

type II error—that is, the potential for the risk model to present false pos-

itive relationships. A desired property of optimizers is that the results

will exploit beneficial relationships. But if these relationships are false

positive relationships, the solution will actually increase, rather than

decrease, portfolio risk. Thus, as means to provide an added level of

safety surrounding potential false positive relationships, managers may

specify maximum position sizes, maximum levels of risk exposure, or a

maximum stock specific weight (e.g., hold no more than 5 or 10% of the

total portfolio value in a specific stock). This constraint is intended to

protect the fund from potential errors in the input data.

Manage Transaction Costs. The effect of transaction costs and their drag

on performance can often be detrimental to fund performance. The larger

the position size, the higher the transaction cost. Many times we observe

the liquidation cost (selling the order) is much more expensive than the

acquisition cost (buying the order). Managers are more likely to buy

stocks in favorable market conditions and sell stocks when they have

fallen out of favor, when volatility has spiked, and when liquidity dries up.

Thus, the liquidation cost is often much more costly than the purchasing
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cost. As a means to protect the fund from these higher liquidation costs,

managers may place a maximum level on the position size, such as no

more than 10% of ADV.

The effect of transaction costs on portfolio returns and their drag on over-

all performance has been well documented. For example, Loeb (1983)

found that block trading could result in an additional 1�2% of cost for

large cap stocks and as much as 17�25% or more for small cap illiquid

stocks. Wagner and Edwards (1993) found that implementation of trading

decisions could approach almost 3% of the trade value in times of

adverse market movement. Chan and Lakonishok (1995) found that the

hidden trading cost components due to market impact and opportunity

cost could amount to more than 1.5% of trade value. Grinold and Kahn

(2000) examined the effect of transaction costs on portfolio construction.

Kissell and Malamut (2006) found that inefficient executions, i.e., imple-

menting via strategies or algorithms that are not consistent with the

investment objective, can increase tracking error by 10�25 bp for passive

index managers and by as much as 50 bp for actively managed funds.

And more recently, studies have found that transaction costs may still

account for additional slippage of up to 1% of annual performance. With

such high trading costs associated with implementation it is no wonder

that portfolio managers underperform their benchmarks (Treynor, 1981).

In addition to the high transaction costs and corresponding trading fric-

tion, there is often an additional drag on portfolio returns due to a mis-

alignment between the investment objective and trading desk goals. For

example, suppose a value manager enters a buy order for a stock that is

undervalued in the market. This manager wants to execute the position

in an aggressive manner before the market discovers the mispricing and

makes a correction. If this order is executed by a trader via a full-day

VWAP strategy it is very likely that the market correction will occur

before the order is complete causing the manager to pay higher prices or

potentially not complete the order fully, which results in high opportu-

nity cost. In either case, the manager does not achieve the full potential

of the opportunity because of the trading strategy not because of the

investment decision. In this case it would be much more advantageous

to trade via a more aggressive strategy, such as an arrival price or imple-

mentation shortfall algorithm, in order to transact more shares at the

manager’s decision price. VWAP strategy in this example is not an

appropriate strategy and is misaligned with the investment objective of

the fund. Even if the trader achieved or outperformed the VWAP price

in this example the selection of the VWAP strategy would be an inap-

propriate decision.
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Consider another situation where the portfolio manager constructs an

optimal portfolio on the efficient investment frontier (EIF) and the deci-

sion is implemented using an optimal strategy on the efficient trading

frontier (ETF). Many would argue that, since both the portfolio and

underlying trading strategy are optimal, the fund is positioned to achieve

its maximum performance, and hence, the trading decision is best execu-

tion. But this is not necessarily true. Suppose the trader executes the trade

list via a passive full-day VWAP strategy. If there is adverse price move-

ment over the day the manager would realize less favorable prices and

incur a higher trading cost. If there is favorable price movement over the

day the manager would realize better prices and a lower trading cost.

Regardless of the actual prices incurred and resulting trading cost, this

fund may have been exposed to unnecessary incremental market expo-

sure. And in Markowitz’s terminology, this results in lower investor util-

ity. The same situation would hold true for a trader who executes more

aggressively than necessary. In this case the fund will incur an unneces-

sarily high trading cost and again lower investor utility. It is imperative

that both investor objectives and trading goals be aligned in order for

investors to achieve the targeted level of investor utility.

Portfolio managers and traders are often at odds with each other regard-

ing what constitutes best execution and how a portfolio decision should

be implemented. Managers often wish to use the benchmark price that

was used in their optimization process. Traders often seek to achieve the

price that is being used to measure their performance such as the VWAP

price. This results in an inconsistency between the investment objectives

and trading goals, and often leads to suboptimal portfolios and lower

levels of investor utility. Investors and traders need to partner across all

phases of the investment cycle to capture maximum levels of return.

The true magnitude of underperformance is probably understated in the

industry even after accounting for market impact and opportunity cost.

This is primarily due to the inconsistency across portfolio manager objec-

tives and trader goals. This inconsistency often leads to higher cost and/

or higher risk and ultimately lower ex-post investor utility. While alpha

decay and transaction costs are often discussed in the literature, the

reduction in investor utility is seldom if ever discussed, and this is even

more difficult to observe than market impact.

TRANSACTION COSTS IN PORTFOLIO OPTIMIZATION
Transaction costs as part of the portfolio optimization process are not a

new concept. There have been many attempts to account for these costs
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during stock selection. A brief history of these approaches is described

below.

First Wave: The first wave of portfolio optimization with transaction

costs focused on incorporating the bid-ask spread cost into the optimiza-

tion process. The belief was that, since trading costs are generally lower

for large cap liquid stocks and trading costs are generally higher for small

cap illiquid stocks, spreads would be a good proxy for costs since spreads

are generally lower for large cap stocks and higher for small cap stocks.

By decreasing expected returns by the round-trip spread cost, managers

felt that the optimizer would determine a more appropriate mix of stock

and a more accurate expected return. The optimized solution would apply

larger weights to stocks with smaller spreads and lower weights to stocks

with higher spreads. While this process was a good first step in the pro-

cess it still did not account for the possibility that a large number of

shares of a large cap liquid stock could, in fact, be more expensive than a

small number of shares of a small cap illiquid stock. The first wave of

portfolio optimization with transaction costs did not account for the cost

associated with the size of the order.

Second Wave: The second wave of portfolio optimization with transac-

tion costs focused on incorporating a market impact estimate that was

dependent upon order size. These types of models have been previously

formulated by Balduzzi and Lynch (1999) and by Lobo, Fazel, and Boyd

(2006). In this process, larger orders will have higher market impact cost

than smaller orders in the same names. The expectation is that the opti-

mization process would determine sizes that could be easily absorbed

into the market without incurring inappropriate levels of impact and the

resulting optimal solution would provide a more efficient allocation of

dollars across the different stocks. In this approach, however, the market

impact formula used was based on a “static” cost-size relationship and

does not provide any cost reduction benefits from the underlying execu-

tion strategy.

This means that estimated cost will be exactly the same for the number

of shares transacted regardless of whether those shares were to be trans-

acted with a high level of urgency or passively through the day.

Furthermore, the optimization process, even though it considered the risk

term to determine the optimal mix of stocks and portfolio weightings,

does not consider the risk composition of the other names in the trade list

to determine corresponding impact cost. For example, suppose the trade

list consists of only a single buy order for 500,000 shares of RLK. The

manager is exposed to both market risk and company specific
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(idiosyncratic) risk from the order and will more often trade in an aggres-

sive manner and incur higher cost. Next suppose that the trade list con-

sists of the same 500,000 share buy order for RLK and an additional 100

buy orders. Here the manager achieves diversification of company spe-

cific risk due to the large number of names in the trade basket and hence

is only exposed primarily to market risk. The manager could trade this

list at a more moderate rate since there is less risk exposure (only one

source of risk as opposed to two sources of risk). This results in a lower

market impact cost for the 500,000 shares of RLK. Finally, suppose the

manager performs a rebalance of the portfolio and the trade list is com-

prised of the 500,000 buy order for RLK plus an additional 100 stocks to

buy and an additional 100 stocks to sell (with equal dollars across both

the buy list and sell list). This trade list will now achieve risk reduction

from diversification of company specific risk just like it did in the previ-

ous scenario and will also achieve market risk reduction from having a

two-sided portfolio (due to the buy and sell orders). Now RLK can be

traded in a passive manner and the corresponding trading cost will be

even lower.

The second wave of portfolio optimizers did not take into account the

corresponding trading cost resulting from the actual implementation

strategy—which as we demonstrated above can vary dramatically. The

second wave of optimizers would assess the same exact cost to the order

regardless of the other names in the trade list and regardless of how

those shares would be transacted. Aggressive, moderate, and passive

strategies would all be assumed to incur the same trading cost. Finally,

the second wave of portfolio optimizers did not provide managers or

traders with any insight at all into how the targeted portfolio should be

best implemented. It is left to the managers and traders to determine.

But as we have discussed above, the goals of these parties are often

conflicting.

Third Wave: The third wave of portfolio optimization with transaction

costs consists of incorporating a market impact function that is dependent

upon the size of the order, the overall risk composition of the trade list,

and the underlying trade schedule. This portfolio optimization problem

has been studied by Engle and Ferstenberg (2006, 2007) and Kissell and

Malamut (2006). The advantages of this type of optimization are (1) it

will properly account for the trading cost based on the underlying trading

strategy, and (2) it will provide as output from the process the exact trad-

ing schedule to achieve the targeted portfolio so there will be perfect

alignment between portfolio manager and trader. For example, these opti-

mization processes will have different costs for the 500,000 share order
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of RLK (from above) based on the composition of the optimal trade list.

This will also result in a more appropriate allocation of dollars across

assets and across stocks. The portfolio will be more efficient.

Furthermore, since the byproduct of the optimization will include both

the new targeted portfolio and the underlying instructions and trading

schedule to achieve that portfolio there will be no ambiguities between

the investment objectives and trading goals. Traders will be provided

with the underlying execution strategy (directly from the optimizer) to be

used to transact those shares. Portfolio manager and trader goals will

finally be aligned!

In the remainder of the chapter, we provide the necessary background

and quantitative framework to assist portfolio managers and traders prop-

erly align investment objectives and trading goals. This results in a single

best execution trading strategy for the specific investment decision. We

expand the Markowitz efficient trading frontier to include transaction

costs and show there are various cost-adjusted frontiers but only one effi-

cient trading frontier. The chapter concludes with an introduction to the

necessary mathematics and optimization process to develop multi-period

portfolio optimizers incorporating transaction cost analysis.

Some of the highlights of the chapter include:

� Unification of the investment and trading decisions resulting in con-

sistency across all phases of the investment cycle and providing a true

best execution process.

� There exist multiple cost-adjusted efficient investment frontiers but a

single optimal trading strategy.

� The Sharpe ratio determines the appropriate level of risk aversion for

trade schedule optimization.

� Evidence that a naı̈ve VWAP strategy is often an inefficient execution

strategy because it may lead to lower levels of investor utility and

suboptimal ex-post portfolios.

� Evidence that a passive VWAP strategy and an aggressive execution

strategy may result in identical levels of investor utility.

� Portfolio optimization framework that properly incorporates market

impact and timing risk estimates. This leads to an improved best exe-

cution frontier and optimal ex-post portfolios.

� An approach to determine whether a suboptimal Markowitz portfolio

exists resulting in a more efficient and pareto optimal portfolio after

trading costs. For example, it may be possible for an ex-ante subopti-

mal portfolio to have higher risk-return characteristics (and be more

optimal) than the originally optimal portfolio ex-post.
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PORTFOLIO MANAGEMENT PROCESS
Quantitative portfolio managers pride themselves on making rational invest-

ment decisions, constructing efficient investment portfolios, and maximiz-

ing investor utility. In fact, this is the central theme of modern portfolio

theory (MPT). Portfolio managers following this course of action will seek

to maximize return for a specified quantity of risk (variance).

This optimization is formulated as follows:

Max w0r

s:t: w0Cw#σ2�
pP

w5 1

ð10:1Þ

where w is the vector of weights, r is the vector of expected returns, C is

the covariance matrix, and σ2�
p is the targeted or maximum level of risk.

This optimization can also be formulated as the dual of Equation 10.1

where the goal is to minimize risk for a targeted return r�. This optimiza-

tion is formulated as:

Min w0Cw

s:t: w0r# r�P
w51

ð10:2Þ

The set of all solutions to the portfolio optimization problem above

results in the set of all efficient portfolios and comprises the efficient

frontier. This is the set of all portfolios with highest return for a given

level of risk or the lowest risk for a specified return. Proceeding, to avoid

confusion, we use the term efficient investment frontier (EIF) to denote

the set of optimal investment portfolios (Markowitz and Sharpe) and the

efficient trading frontier (ETF) to denote the set of optimal trading strate-

gies (Almgren and Chriss).

The set of all optimal portfolios can also be found using Lagrange multi-

pliers as follows:

Max w0r2λUw0Cw

s:t:
P

w5 1
ð10:3Þ

where λ denotes the investor’s risk appetite (e.g., level of risk aversion).

Solving for all values of λ$ 0 provides us with the set of all efficient

portfolios.
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Example: Efficient Trading Frontier w/ and w/o Short
Positions
In this example, we construct the efficient frontier using the techniques

above for a subset of 100 large cap stocks from the SP500 index. We

construct these portfolios with and without a short sales constraint. That

is, one portfolio is a long-only portfolio where all weights have to be pos-

itive, and the other portfolio contains both long and short positions and

the weights could be positive or negative. This is shown in Figure 10.1.

Notice how the efficient frontier with short sales allowed provides higher

returns for the same risk than the no short sales case. This is because

investors can use short positions to better manage risk in the portfolio.

Additionally, this example demonstrates how the usage of constraints

(in this example no short sales allowed) may result in reduced portfolio

performance.

Example: Maximizing Investor Utility
In this example, we show how investors determine their investment port-

folio based on their utility preferences. Utility preferences, expressed in

terms of indifference curves, are the set of all return-risk portfolios that

provide the investor with equal quantities of “happiness.” Investors,

therefore, are indifferent to which portfolio on the indifference curve

they actually own since all of these portfolios provide the same quantity

of economic utility. Investors, of course, will always prefer higher returns

for the same level of risk than lower returns. Thus, the goal of the inves-

tor is always to be on the highest indifference curve possible.
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■ Figure 10.1 Efficient Trading Frontier.
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In Figure 10.2 we show the efficient frontier with three different utility

curves. These indifference curves are ordered such that U1 .U2 .U3.

Therefore, investors will prefer portfolios on U1 to portfolios on U2 , and

will prefer portfolios on U2 to portfolios on U3. Notice that these utility

curves are shaped in such a way that investors will only accept more risk

if they receive higher returns. For utility curve U3 investors are equally

happy with either portfolio A2 or A3 since they are on the same indiffer-

ence curve. But investors prefer portfolio A1 to either A2 or A3 since

utility curve U2 is higher than utility curve U3 (U2 .U3). Unfortunately,

utility curve U1 does not intersect with the efficient trading frontier

and does not contain any optimal portfolios�it is an unattainable level.

The best that investors can achieve is A1 on curve U2.

This utility maximization proves to be an invaluable exercise for not only

determining the preferred optimal portfolio, but also for determining the

optimal trade schedule to achieve that optimal portfolio. We make further

use of utility optimization below.

TRADING DECISION PROCESS
Once the optimal portfolio has been constructed traders are tasked with

determining the appropriate implementation plan to acquire that new

position. As discussed through the text, when implementing these deci-

sions investors encounter the by now all too well known trader’s

dilemma—trading too quickly results in too much market impact cost but

trading too slowly results in too much timing risk.

To determine the best way to implement the portfolio manager’s

decision, Almgren and Chriss (1999, 2000) provided a framework similar
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■ Figure 10.2 Maximizing Investor Utility.
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to Markowitz (1952) to solve this trader’s dilemma by balancing the

trade-off between market impact cost ðMIÞ and timing risk ðTRÞ.
Mathematically, these optimal trading strategies are computed as follows:

Min MIðxÞ1λUTRðxÞ ð10:4Þ

where x denotes the optimal trading schedule (e.g., how shares are to be

transacted over the trading horizon) and λ denotes the investor’s level of

risk aversion. The appropriate formulation of the market impact function

and portfolio optimization techniques have been the focus of earlier

chapters.

If we solve Equation 10.4 for all values of λ$ 0 we obtain the set of all

optimal strategies. When plotted, these strategies constitute the Almgren

and Chriss efficient trading frontier (ETF). This is illustrated in

Figure 10.3. In this example, we have highlighted three different strate-

gies. Strategy x denotes a moderately paced trade schedule with market

impact 25 bp and timing risk 50 bp, strategy z is an aggressive strategy

with high market impact 200 bp but low timing risk 25 bp, and strategy

y is a passive strategy, e.g., VWAP, with low market impact 10 bp but

much higher timing risk 300 bp. The efficient trading frontier is illus-

trated in Figure 10.3.

What is the appropriate optimal strategy to use?

There has been quite a bit of research and industry debate focusing on

how to determine the appropriate optimal strategy. Bertsimas and Lo

(1998) propose minimizing the combination of market impact and price

appreciation (price drift) without regards to corresponding trading risk.
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■ Figure 10.3 Efficient Trading Frontier.
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Investors in this case need to specify their alpha component. In a situa-

tion where there is not any directional view of natural price appreciation,

the underlying strategy is a VWAP that will minimize market impact

cost. Almgren and Chriss (1999, 2000) propose two solutions. First, bal-

ance the trade-off between market impact and timing risk at the inves-

tor’s level of risk aversion. Second, minimize the value-at-risk at the

investor’s alpha level (e.g., 95%). Kissell, Glantz, and Malamut (2004)

provide a macro-level decision making framework (also, see Chapter 8)

to determine the most appropriate strategy based on the investment objec-

tive of the fund.

In order to determine the most appropriate trade schedule for the trade

list we do need further information regarding the underlying investment

objective. An investor who has uncovered a market mispricing may

choose to execute more aggressively and take advantage of the temporary

market inefficiency. A manager performing a portfolio rebalance may

elect to trade via a strategy that best manages the cost and risk trade-off.

And an index manager who is purchasing shares and quantities in order

to replicate the underlying benchmark index may not have any momen-

tum expectations and may trade passively over the day following a

VWAP strategy to minimize impact.

Fundamental and active managers who do not construct portfolios based

on mean-variance optimization will often achieve better performance uti-

lizing pre-trade analysis and following trade schedule optimization techni-

ques. And portfolio managers who do utilize mean-variance optimization

can achieve even better results by combining the investment and trading

decisions.

UNIFYING THE INVESTMENT AND TRADING
THEORIES
In this section we provide techniques to bridge the gap between the invest-

ment and trading theories. We follow the approach outlined by Engle and

Ferstenberg (2007) and Kissell and Malamut (2007) below.

Let us first start by re-examining our optimal trading strategies, this time

from the context of portfolio theory.

A portfolio manager constructs the efficient investment frontier (EIF) uti-

lizing quadratic optimization (Equation 10.3) and then determines their

preferred optimal portfolio utilizing investor utility maximization follow-

ing Sharpe (Figure 10.2).
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Suppose that this preferred portfolio has expected return u� 5 10% and

risk σ� 5 20%. The trader then performs trade schedule optimization

(Equation 10.4) and constructs the efficient trading frontier (ETF) using

values of 0#λ# 10 to determine the best way to implement the portfolio.

Rather than analyze our trade schedules in the traditional cost-risk space,

let us examine our trading cost consequences by overlaying the efficient

trading frontier on the efficient investment frontier (Figure 10.4). Notice

that the efficient trading frontier is now inverted from its more traditional

appearance and shows the cost-adjusted potential risk-return profile for

optimal portfolio A1. The efficient portfolio A1 is no longer associated

with a single expected return and risk. There are multiple sets of potential

return and risk depending upon the trading strategy.

The adjusted return for the portfolio will be reduced by the estimated

impact cost. That is:

Adjusted Return5Portfolio Return2 Strategy ðCostÞ ð10:5Þ

The new timing risk, however, will increase due to the market exposure

incurred while acquiring the position. The actual increase in risk is addi-

tive in variance (risk value squared). We add the one day timing risk to

the annualized portfolio risk value. This is calculated as follows:

Adjusted Risk5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPortfolio RiskÞ2 1 ðStrategy RiskÞ2

q
ð10:6Þ
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■ Figure 10.4 Investment Frontier with Trading Frontier as an Overlay. Source: Journal of Trading (2007).
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Let us now examine three potential trading strategies represented by

x; y; and z. The expected market impact and corresponding timing risk

for these strategies and their consequence on the overall risk-return pro-

file for optimal portfolio A1 is shown in Table 10.1.

Notice the reduction in return is equal to the trading cost corresponding to

the strategy but the increase in risk is actually less than the timing risk of

the strategy. This is because risk is sub-additive (the variance expression

is additive making the square root of this term less than additive). For

example, to implement portfolio A1 using strategy y returns are expected

to decline by 0.10% (10 bp) and risk will increase by 0.224% (22.4 bp)

due to the corresponding timing risk of the transaction. Notice that the

overall risk consequence from the strategy is much less than the risk

incurred on the day of 3% (300 bp) due to the sub-additive nature of risk.

Variance is additive and risk is sub-additive (Equation 10.6). On the other

extreme, let us evaluate implementation via strategy z. Here return will be

reduced by 2% due to the market impact of strategy z and the increase in

portfolio risk will be negligible at 0.002% or 0.2 bp. Notice that for the

investment portfolio the underlying market impact cost of the strategy has

a much more dramatic effect on the ex-ante portfolio than the timing risk

of the strategy. This is an important observation for the portfolio manager

when devising the appropriate strategy to execute the trade.

Therefore, even a strategy with a large quantity of timing risk will have a

much smaller effect on overall portfolio risk. But a strategy with a large

quantity of market impact cost will have a large effect on overall portfo-

lio returns.

Following the example in Table 10.1, the best the manager can expect to

do after trading costs is to realize an ex-post portfolio return from 8 to

9.90%, with corresponding portfolio risk of 20.002 to 20.224%,

Table 10.1 Cost-Adjusted Risk-Return Values

Trading Costs Adjusted Risk-Return

Scenario Impact
Timing
Risk Return Risk

Portfolio A1 10% 20%

Strategy y 0.10% 3.00% 9.90% 20.224%

Strategy x 0.25% 0.50% 9.75% 20.006%

Strategy z 2.00% 0.25% 8.00% 20.002%
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respectively. Notice the effect of trading costs on portfolio performance.

This cost dominates the effect of the timing risk of the strategy.

Important Note: The investor will not be able to achieve the expected

portfolio return even via a very passive strategy such as VWAP because

even a very passive VWAP strategy will incur permanent impact cost.

The portfolio risk calculation is sub-additive whereas portfolio variance

is an additive relationship. This results in trading costs primarily due to

market impact cost having a much more dramatic effect on portfolio per-

formance than corresponding timing risk of the strategy.

Which execution strategy should the trader use?

As stated above, some investors may wish to trade passively, such as

with strategy y, to minimize market impact cost and some may wish to

trade aggressively, such as with strategy z, to minimize timing risk or

possibly lock in a market mispricing or realized profit. Further, there are

other investors who prefer a strategy somewhere in the middle, such as

strategy x. But which strategy is most appropriate? Since each of these

strategies lie on the efficient trading frontier can they all be considered a

best execution strategy?

The answer is no. There is only a single best execution strategy. (This

answer may surprise some readers.)

Our conclusion is described following the same investor utility maximi-

zation that was used to determine the preferred optimal portfolio A1 on

the efficient trading frontier.

Combining the efficient investment and efficient trading frontiers onto

one chart provides investors with the ability to determine the proper opti-

mal strategy for a specified portfolio. To show this, first recall that inves-

tors determine their preferred optimal portfolio through maximizing their

utility function. But now let us maximize investor utility for both fron-

tiers. This is illustrated in Figure 10.5.

The portfolio manager selected portfolio A1 as the preferred strategy

because it was the portfolio that maximized the investor’s utility function

(shown as U2 in Figure 10.2). Now let us apply the same technique used

to determine portfolio A1 to determine the optimal trading strategy. First,

utility U4 passes through two strategies on the efficient trading frontier:

aggressive strategy z and passive strategy y. Since both of these strategies

lie on the same indifference curve they provide the investor with equal

utility. This may be surprising to many. This analysis shows that two

seemingly opposite strategies (aggressive and passive) can have the same
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effect on investor utility and thus the investor is indifferent as to whether

they trade aggressively or passively.

But investors can achieve higher results. Indifference curve U3 is higher

than U4 and so provides the investor with a higher level of utility.

Additionally, curve U3 intersects with a single trading strategy x.
Therefore, strategy x is the single strategy that maximizes investor utility

and represents the single best execution strategy. It is also the strategy

that is most consistent with the investment objective.

There are two additional insights that need to be highlighted. First, the

VWAP strategy represented by strategy y is not necessarily consistent

with the investment object because it results in a lower level of investor

utility. The VWAP strategy corresponds to U4 which is below the opti-

mal utility U3 corresponding to strategy x. Investors wishing to hold port-

folio A1 and trade via VWAP are not aligning their trading decisions

with their investment goals. Investor utility is not being maximized to its

fullest extent.

Second, the VWAP strategy is also associated with the same level of

investor utility as an aggressive strategy denoted as z on the ETF. Since

both strategies lie on the same investor utility curve U4 they are provid-

ing the same level of happiness and investor utility. Here we have what

appears to be two conflicting strategies but with the same level of utility,

which means that investors are completely indifferent as to which strat-

egy they use to acquire portfolio A1. But neither strategy is the preferred

strategy since they are not associated with the highest value of utility.
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■ Figure 10.5 Using Indifference Curves to Determine the Most Appropriate Execution Strategy. Source:
Journal of Trading (2007).
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The optimization process used here is the same process utilized by inves-

tors to determine their optimal preferred efficient portfolio. In this depic-

tion, the maximum level of achievable utility is U3 and corresponds to

trade strategy x. Therefore, investors with preferred portfolio A1 need to

implement their investment decision utilizing strategy x to ensure consis-

tency between investment and trading goals. Notice that in the case of a

VWAP trading strategy y investors incur too much risk, resulting in a

lower utility than associated with strategy x. Also, there additionally cor-

responds an aggressive strategy z with an equivalent level of utility as

associated with the VWAP strategy. The last important point here is that

there is a single “optimal” trading strategy corresponding to each effi-

cient portfolio.

The importance of this representation in Figure 10.5 is that it clearly

illustrates there is a “single” optimal trading strategy consistent with the

underlying investment portfolio. This is the strategy that maximizes

investor utility.

COST-ADJUSTED FRONTIER
The cost-adjusted frontier is the efficient investment frontier after adjust-

ing for trading costs (e.g., the ex-post frontier). An example of the deri-

vation of the cost-adjusted frontier is as follows:

First, start with three efficient portfolios on the efficient investment fron-

tier. These portfolios represent the Markowitz (ex-ante) efficient

portfolios.

Second, perform trade schedule optimization for each portfolio. This will

result in the set of all optimal trading strategies for each of the portfolios.

It provides three different efficient trading frontiers.

Third, overlay the efficient trading frontier for each portfolio onto the

efficient investment frontier. These adjusted portfolios portray the set of

risk-return profiles for each of the efficient portfolios after adjusting for

trading costs.

The cost-adjusted frontier is then the highest envelope of all cost-

adjusted portfolios. This process is illustrated in Figure 10.6 and shows

multiple cost-adjusted frontiers. For each portfolio on the frontier there is

a corresponding ETF. We can draw the cost-adjusted frontier as the curve

through all corresponding points of the same strategy. For example, the

VWAP cost-adjusted frontier is drawn by connecting all VWAP strate-

gies on the ETF, and the same process is carried out for the aggressive
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and normal strategies. Then, the best the investor can achieve is the enve-

lope of the highest cost-adjusted points. This frontier is now referred to

as the cost-adjusted frontier.

The VWAP frontier shows the expected risk-return profile for the optimal

portfolios if VWAP was used to implement the decision. The aggressive

frontier shows the expected risk-return profile for the optimal portfolios

if an aggressive strategy was used to implement the decision. The optimal

cost-adjusted frontier is the upper envelope of all the cost-adjusted

portfolios.

It is interesting to point out here that in our example, the VWAP strategy

is an inefficient ex-post frontier because the VWAP frontier lies below

the cost-adjusted frontier and it is associated with a lower level of inves-

tor utility.

Another interesting aspect is that the VWAP frontier is equivalent to a

cost-adjusted frontier constructed from an aggressive strategy (aggressive

frontier). Notice that the VWAP frontier passes through the most passive

strategies on the efficient trading frontier as well as a more aggressive

strategy on the efficient trading frontier. Neither the passive VWAP fron-

tier nor the aggressive frontier is a preferred strategy since they do not

maximize investor utility. Therefore, execution via a VWAP or overly

aggressive strategy leads to decreased utility. To maximize utility it is

essential that the underlying trading strategy not incur too much cost (pri-

marily market impact) or too much risk.
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Investors will always seek out the highest efficient investment portfolio.

Engle and Ferstenberg (2006, 2007) provide an alternative discussion of

the cost-adjusted frontier. In their article, the authors present a framework

to incorporate transaction costs directly into the investment process in

order to determine a more efficient ex-post portfolio.

DETERMINING THE APPROPRIATE LEVEL OF RISK
AVERSION
Suppose a manager constructs a portfolio by maximizing investor utility

and then submits the list to the trader for execution. In most situations

the trader does not have sufficient time or tools to perform a detailed

cost analysis to determine the appropriate cost-adjusted frontier and cor-

responding execution strategy. However, the trader usually does have suf-

ficient time to perform a single trade cost optimization as defined in

Equation 10.4. But how should the trader specify the level of risk aver-

sion to ensure the trading decision is consistent with the investment

decision?

A joint examination of the efficient investment frontier and the cost-

adjusted frontier provides some insight into our question (Figure 10.7). In

the figure A represents the selected optimal portfolio and X represents the

single best execution strategy. The question now shifts to finding this strat-

egy. If we assume that all investors are indeed rational investors then the

tangent to the efficient investment frontier at the optimal portfolio A is

equal to the Sharpe ratio S of the portfolio (Sharpe, 1966),
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■ Figure 10.7 Determining the Appropriate Level of Risk Aversion. Source: Journal of Trading (2007).
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e.g., S5 dReturn=dRisk. The corresponding level of risk aversion on the

efficient trading frontier at the best execution strategy X is

λ5 dCost=dRisk. This is also equal to the slope of the tangent at the point

of the intersection of the cost-adjusted frontier and the ETF overlay.

Notice that the slopes of the two tangents are approximately equal.

Therefore, the corresponding level of risk aversion to ensure consistency

across investment and trading decisions can be determined from the

Sharpe ratio of the trade, e.g., λDS. While this may not be the exact value

it does at least ensure a large amount of consistency between investment

and trading decisions. And it provides the trader with an appropriate input

into the trade schedule optimization process which is extremely useful at

times when they do not have enough time to perform a detailed analysis.

S5 dReturn=dRiskD dCost=dRisk5λ
SDλ ð10:7Þ

BEST EXECUTION FRONTIER
The next step in the portfolio construction process is for managers to con-

sider the possibility that there may be a suboptimal Markowitzian portfo-

lio, but after adjusting for trading costs and trading risk, this portfolio

may in fact be pareto efficient with improved risk-return characteristics

over the set of optimal Markowitzian portfolios. For example, is it possi-

ble that a portfolio that does not lie on the theoretical Markowitz efficient

investment frontier, but after accounting for variable market impact cost

and timing risk, the resulting cost-adjusted risk-return profile lies above

the cost-adjusted frontier?

This problem is illustrated in Figure 10.8. First, consider the three effi-

cient portfolios on the efficient investment frontier ðA1;A2; and A3Þ.
After accounting for trading costs, we arrive at the corresponding portfo-

lios ðx1; x2; and x3Þ. The set of all cost-adjusted optimal portfolios results

in the cost-adjusted frontier (described above). Next, consider the possi-

bility that there exist a set of suboptimal portfolios ðB1;B2; and B3Þ.
These are portfolios that do not initially lie on the efficient investment

frontier but due to more favorable trading statistics (e.g., higher liquidity,

lower impact sensitivity, lower volatility, etc.) they result in cost-adjusted

portfolios ðy1; y2; and y3Þ with higher risk-return characteristics. The

resulting cost-adjusted portfolios correspond to a higher level of investor

utility.

This frontier is defined as the best execution frontier. If these portfolios

do in fact exist, investors would greatly benefit by investing in portfolios
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that appear suboptimal prior to trading but after trading they result in

portfolios that achieve a higher risk-return trade-off and investor utility

than starting with the optimal portfolio. Notice that the utility associated

with the best execution frontier is higher than the utility associated with

the cost-adjusted frontier.

While it is not guaranteed that a suboptimal portfolio will always result

in a higher cost-adjusted frontier, it is entirely possible. The best execu-

tion frontier can only be uncovered via incorporation of trading costs and

risks directly in the portfolio optimization decision. For many portfolio

managers, the quest for the best execution frontier has become the next

generation of portfolio research. This is exactly what Wayne Wagner was

referring to when he defined best execution as the process of maximizing

the investment idea.

PORTFOLIO CONSTRUCTION WITH TRANSACTION
COSTS
The integration of transaction costs into the investment decision process

has been previously addressed in the academic literature. For example,

Leland (1996) studied the appropriate time to rebalance a portfolio con-

sisting of stocks and bonds in the presence of transaction costs. Michaud

(1998) introduces a portfolio optimization technique based on Monte

Carlo methods to construct optimal portfolios in the presence of risk and

return uncertainty. Ginold and Kahn (2000) examined various techniques
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to incorporate transaction costs into the investment decision. Tutuncu and

Koenig (2003) address the optimal asset allocation problem under the

scenario where the estimated returns are unreliable. Balduzzi and Lynch

(1999) study a multi-period optimization problem in the presence of costs

that are either fixed or proportional to trade value. Malamut and Kissell

(2002) study efficient implementation of a multi-period trade cost optimi-

zation from the perspective of the trader. Mitchell and Braun (2004) also

consider portfolio rebalancing in the presence of convex transaction costs

where costs are dependent solely on the quantity of shares transacted.

Engle and Ferstenberg (2007) discuss a cost-adjusted frontier.

Most of these research works fall into what we coined the second wave

of portfolio optimizers earlier in the chapter. In this section, we introduce

the necessary techniques to solve the portfolio optimization problem

(third wave of optimizers) and determine the best execution frontier. We

differentiate from the above works in many ways (see Kissell &

Malamut, 2007). For example:

1. We examine the portfolio optimization in terms of both market impact

cost and trading risk.

2. We define market impact to be dependent upon the size of the order

and the underlying execution strategy. In this case, investors have the

opportunity to achieve further cost reduction through trading a diver-

sified and/or well-hedged portfolio. Thus, depending upon the under-

lying trade list, the number of shares in an order could vary.

3. Our solution is based on a multi-period optimization problem that

separates the total investment horizon into a trading period where

shares are transacted and a holding period starting after the acquisi-

tion of the targeted portfolio and where no other shares are transacted.

These problems are linked by the total shares to trade S and the trade

schedule used to acquire those shares, that is, S5
P

x.
4. Our ultimate goal in this section is the quest for the best execution

frontier.

An interesting aspect of the current portfolio construction environment is

that the process appears to be backwards. For example, the results of the

current portfolio optimizer provide us with a targeted future portfolio.

The next question is to determine how we should best get to that end

point. But what if the road is too bumpy or if no efficient road exists?

Then what? We would only find this out after setting out on our journey.

A better process is a forward looking view of portfolio construction.

Rather than start with the future targeted portfolio and work our way

backwards through the unknown as we do now, we begin to move
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forward from the current portfolio and buy and sell shares efficiently

until we arrive at the optimal end point. Proceeding in this manner will

ensure that we only take an efficient implementation path or only a diffi-

cult path if the end return more than offsets the incremental cost. The

end product in this case is determined directly from the trade schedule

and ensures the most frictionless path was taken.

Quest for best execution frontier
The quest for the best execution frontier is centered on proper integration

of trading costs into the portfolio optimization. The trick is to incorporate

a variable market impact function dependent upon the number of shares

transacted (size), volatility, trade strategy, and the overall risk composi-

tion of the trade list (covariance) to take advantage of potential diversifi-

cation and hedging opportunities.

For consistency of notation and uniformity across trading horizon and

holding periods we express decisions in terms of dollars and shares to

trade rather than the traditional investment units of weights and returns.

This is also more important because it is the dollar value and shares

traded that affect market impact cost and not the weight of the stock in

our portfolio.

Using these new units, the original portfolio construction optimization

problem (Equation 10.3) can be written in terms of a cash investment

and shares to trade as follows:

Max
S

S0ðPt 2P0Þ1λUS0CS

s:t: S0P0 5V$

ð10:8Þ

where S is the vector of shares to hold in the portfolio (decision variable),

Pt is the vector of expected prices at time t, P0 is the vector of current

prices, and C is the covariance matrix expressed in ($/shares)2.

To properly incorporate trading costs into Equation 10.8 it is necessary to

introduce a new decision variable xk to denote how shares are to be trans-

acted over time (e.g., the underlying trading strategy). This solution is

best accomplished via a multi-period optimization formulation that con-

siders both a trading horizon where investors acquire shares from t5 1 to

t5 n, and an investment or holding horizon where no other shares are

transacted from t5 n to t5T.

Let us now consider the effect of trading costs on portfolio return and

risk in terms of the multi-period context.
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Return
Expected stock return is the difference between expected future price and

expected average execution price multiplied by the number of shares in

the position. Here, the expected average execution price needs to incorpo-

rate market impact cost.

For a general market impact function in the absence of natural price

appreciation during the trading horizon, the expected execution value for

a stock can be computed as follows:

SiPi 5
Xn
j51

xijðPi0 1MIðxijÞÞ

Si 5
Xn
j51

xij

ð10:9Þ

where Pi0 is the current price, xij is the number of shares of stock i to

trade in period j, and MIðxijÞ is the market impact cost expressed in

$/share for transacting xij shares, Si is the total number of shares,

Si; xij;MIðxijÞ. 0 for buys or long positions, and Si; xij;MIðxijÞ, 0 for

sells or short positions. Notice that this representation of the market

impact cost MIðxijÞ does indeed provide costs that are dependent upon the

underlying trading strategy x.

The total expected dollar return for the stock is:

μi 5 SiPit 2 SiPi

5 SiPit 2
Xn
j51

xijðPi0 1MIðxijÞÞ

5 SiPit 2 SiPi0 2
Xn
j51

xijMIðxijÞ

ð10:10Þ

For an m-stock portfolio, the total expected dollar return accounting for

market impact is:

μp 5
Xm
i51

SiPit 2 SiPi0 2
Xn
j51

xijMIðxijÞ
 !

ð10:11Þ

Further insight and formulation of market impact models customized for the

portfolio construction process can be found at www.KissellResearch.com.

Risk
The risk (variance) of a portfolio over a specified trading period is deter-

mined from the number of shares held in the portfolio and the correspond-

ing covariance matrix. The total portfolio risk for either a held portfolio or
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a portfolio that is changing over time is computed by summing the portfo-

lio variance over each period. The total risk borne by a portfolio manager

over a multi-period horizon is thus determined as follows:

Let rk be the vector of shares held in the portfolio at time k, e.g.,

rk 5

r1k
r2k
^
rmk

0
B@

1
CA ð10:12Þ

where rij is the number of shares of stock i held in the portfolio at the

beginning of period j. That is,

rij 5
Xj
k51

xik ð10:13Þ

Notice that this is the reverse notation used for residual shares in the

trade schedule optimization. Then the total risk borne by the portfolio

manager over the entire T-period horizon is:

σ2
p 5 r01C

�r1 1?1 r0nC
�rn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Trading Horizon

1 r0n11C
�rn11 1?1 r0tC

�rt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Holding Period

ð10:14Þ

where C� is the covariance matrix expressed in ($/shares)2 scaled to the

length of the trading period. For example, if each trading interval is fif-

teen minutes and C is the annualized covariance matrix, we have

C� 5
1

250
U
1
26

UC since there are approximately 250 trading days in a

year and 26 fifteen minute intervals in a day. Now, since there are no

additional transactions in the portfolio after the end of the trading horizon

(e.g., k5 n1 1,. . ., t) we have rin11 5 rin12 5?5 rit 5 Si for all stocks.
In compressed form, Equation 10.14 is written as:

σ2
p 5

Xn
j51

r0jC
�rj|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Trading Horizon

1 ðt2 nÞS0C�S|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Holding Period

ð10:15Þ

since there are n trading periods and ðt2 nÞ periods where the portfolio

is held and unchanged.

The full investment optimization incorporating market impact and timing

risk can now be expressed as follows:

Max
x

Xm
i51

SiPit 2 SiPi0 2
Xn
j51

xijMIðxijÞ
 !

2λU
Xn
j51

r0jC
�rj 1 ðt2 nÞS0C�S

 !

ð10:16Þ
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Subject to:

i. SiPi0 1
Pn
j51

xijðPi0 1MIðxijÞÞ5V$

ii. Si 5
Pn
j51

xij

iii. rij 5
Pj
k51

xij

iv. xij $ 0

The new objective function in Equation 10.16 correctly incorporates a

variable trading cost function along with estimated return and portfolio

risk. The decision variables are S and xij although S is computed from xij.
We distinguish between these two variables for notation purposes only—

the only true decision variable for the optimizer is xij. The important

decision variable for portfolio managers is the number of shares to hold

in the portfolio S, while the important decision variable for traders is how

those shares need to be transacted over time.

The first constraint above ensures that the entire cash value V$ will be

invested into the portfolio and follows from the definition of expected trans-

action value in Equation 10.9. The second constraint defines the number of

shares that will be held in the portfolio. The third constraint defines the

cumulative number of shares transacted in period j. The fourth constraint is

an optional constraint and can be specified for a cash investment only xij$ 0,
liquidation only xij# 0, no constraint to incorporate both buys and sells.

Following Equation 10.16 the new portfolio optimization problem can be

separated into the traditional investment and trading horizons as follows2:

Max
x

Xm
i51

ðSiPit2SiPi0Þ2λUðt2nÞS0C�S

 !
2

Xm
i51

Xn
j51

xijMIðxijÞ1λr0jC
�rj

 !

ð10:17Þ
This new formulation brings four interesting aspects to light. They are:

1. Risk aversion λ is the same for both portfolio manager and trader.

2. Trader’s dilemma is not dependent upon any benchmark price.

3. Portfolio optimization with trading costs requires a multi-period process.

4. The portfolio manager’s and trader’s decisions are not separable—

they are linked by S5
P

x.

2This separation of the portfolio optimization problem into corresponding trading and

investment horizons was first presented publicly in December, 2003 expanding on the

work of Kissell and Malamut presented in Optimal Trading Strategies.

357Portfolio Construction with Transaction Costs



These are explained as follows:

First, as shown in Equation 10.16 the complete portfolio optimization is

only based on a single risk aversion parameter. This ensures consistency

across the investment and trading decisions. A consequence of this formu-

lation is that any trading strategy derived using a risk aversion parameter

that is different than that used during portfolio construction will result in

lower investor utility since it would not correctly quantify trading risk

with investment risk. This is most notable for a VWAP strategy where

risk aversion is set to be λ5 0 and results in higher risk and lower utility.

Second, notice that the expression in the trading horizon section of

Equation 10.17 is not dependent upon any benchmark price. Indirectly it

is based on the current price since we are starting with the current portfo-

lio value. Thus, any post-trade analysis based solely on a specified

benchmark price or computed as the difference between average execu-

tion price and some benchmark is not the ideal approach to evaluate a

trader’s performance or skill because it does not consider the underlying

goal of the manager or trader. Since the newly formulated portfolio opti-

mization is now based on an expected market impact cost and corre-

sponding trading risk estimates, subsequent post-trade performance

attributions need to incorporate these values in order to be able to provide

any meaningful benefits. It is, however, essential that post-trade analysis

be performed to assess the accuracy of the market impact and trading

risk estimates to ensure appropriate future investment decisions.

Furthermore, with the advent of algorithmic trading, algorithms based on

achieving a specified benchmark price rather than a specified cost will

surely hinder overall portfolio performance. For example, a VWAP strat-

egy will likely increase risk exposure and reduce overall utility.

Third, portfolio construction with trading costs needs to be formulated as

a multi-period optimization problem. This requires both a trading period

that will accommodate a market impact estimate based on size, volatility,

and composition of the trade list (e.g., diversified market impact effect),

and an investment holding period where there will not be additional

changes to the portfolio. As shown above, to achieve the maximum bene-

fit it is essential that the market impact cost be based on both size and

strategy. Thus allowing managers to implement their decisions in an

appropriate manner—aggressive, passive, or normal—depending upon

the risk composition of the trade list.

Fourth, the portfolio manager’s and trader’s decisions are not separable.

A decision making framework that first maximizes the risk-return profile

in the investment problem then minimizes trading costs is not guaranteed
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to maximize the entire objective function. This type of decision making

timeline is also exactly opposite to what happens in practice where shares

are transacted first in order to arrive at the optimal portfolio. The process

formulated in Equation 10.17 is based on transacting shares in the market

first to be consistent with practice. And addressing these issues in reverse

order—e.g., determine first shares S and then trade schedule x—is only

part of the whole picture and is likely to make overall performance even

worse.

CONCLUSION
In this chapter we presented a process to unify the investment and trading

theories. We presented a framework that overlays the efficient trading

frontier (ETF) onto the efficient investment frontier to determine a set of

cost-adjusted frontiers. The analysis showed that while a traditional

Almgren-Chriss trade cost optimization will result in numerous efficient

strategies, there is only a single “optimal” execution strategy consistent

with the underlying investment objective.

The analysis also shows that a traditional VWAP strategy is not consis-

tent with the investment objective and may compromise the portfolio

manager’s stock selection ability by resulting in lower levels of investor

utility. The reason is that the corresponding VWAP frontier is inferior

(lies below) to the cost-adjusted frontier. Furthermore, an overly aggres-

sive execution strategy is also an inappropriate strategy because its

cost-adjusted frontier lies below the optimal cost-adjusted frontier. To

maximize investor utility it is essential that the trading strategy not incur

too much impact (aggressive strategy) or too much risk (VWAP strategy).

Doing so is likely to result in sub-par performance.

In the last part of this chapter we presented a methodology to incorporate

variable trading cost estimates (market impact and timing risk) directly

into the investment optimization process. Recent attempts in this arena

have been insufficient since resulting cost estimates have only been

dependent upon the number of shares transacted not on the overall list

composition. Managers could achieve performance improvement by

incorporating market impact cost estimates directly into the investment

process such that costs will be dependent upon shares transacted and trad-

ing strategy, taking advantage of overall risk reduction. This in turn could

dramatically reduce the overall cost of the list.

The resulting procedure, however, is a relatively difficult non-linear

multi-period optimization problem but recent advancements in
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optimization routines and computational power allow the required for-

mulation to be solved quickly and efficiently. For example, see

Malamut (2002) and www.KissellResearch.com.

The appropriate optimization technique is based on a multi-period pro-

cess that segments the time horizon into a trading period where shares

are transacted and an investment holding period where there are no fur-

ther changes to the portfolio. With this new multi-period formulation it is

possible that a suboptimal Markowitzian portfolio (e.g., below the effi-

cient investment frontier) will result in better performance and higher

utility due to more favorable trading statistics (liquidity and volatility).

We refer to this set of ex-ante optimal portfolios as the best execution

frontier.

To summarize, our main findings in this chapter are:

� There exist multiple sets of cost-adjusted frontiers for every efficient

portfolio on the efficient investment frontier.

� There is a single “optimal trading strategy” that is consistent with the

investment objective resulting in a single optimal cost-adjusted fron-

tier. This is the best execution strategy for the investment portfolio.

� The proper level of risk aversion for a trade cost optimization to be

consistent with the investment objective of the fund is the Sharpe

ratio of the portfolio, or the forecasted Sharpe ratio of the investment

decision.

� Evidence that a VWAP strategy is seldom consistent with the invest-

ment objectives and may lead to a suboptimal portfolio and lower

levels of investor utility.

� A formulated multi-period investment portfolio optimization problem

that considers both market impact cost and trading risk with the

investment decision and leads to the best execution frontier.

� The formulated model provides opportunity to achieve cost reduction

for a diversified trade list.

� The formulated model provides the preferred portfolio and corre-

sponding road map (trade strategy) to build into those holdings.

� Market impact dominates ex-post performance much more than tim-

ing risk. Market impact results in a direct reduction in cost whereas

timing risk is a sub-additive function and does not have the same lin-

ear relationship with portfolio risk.

� Post-trade analysis needs to incorporate the estimated costs of the

trade (e.g., market impact and trading risk), and not solely rely on a

benchmark price.

360 CHAPTER 10 Portfolio Construction

http://www.KissellResearch.com


Chapter11
Quantitative Portfolio Management

Techniques

INTRODUCTION
Transaction cost analysis (TCA) has become an important decision-

making tool for portfolio managers. It allows managers to uncover hidden

opportunities that may otherwise not be as transparent, especially given

the vast array of data propagating the marketplace. Portfolio managers

who once treated transaction costs as an unavoidable cost of business have

turned to TCA as a valuable source of incremental alpha. TCA has finally

made it to mainstream portfolio management.

Below are just a few ways that TCA is being incorporated into the stock

selection phase of the investment cycle.

Quantitative Overlays. Managers select the universe of stocks for poten-

tial inclusion into the portfolio. They then determine a subset of stocks

from that universe that meet specified investment criteria such as market

cap, price to earnings, book value, forecasted profit, etc. As a final filter,

managers further reduce the potential investment list based on the

expected trading cost. Stocks that are too expensive to transact are elimi-

nated from potential inclusion into the portfolio.

MI Factor Scores. Incorporates both liquidity and volatility to determine

a market impact factor score to rank stocks based on trading cost. The

higher the score the more expensive it is to transact the stock. The MI

factor score provides an equal and fair comparison across all stocks. We

show below that MI factor scores provide a large benefit over other tech-

niques that simply rely solely on liquidity or volatility (such as a maxi-

mum % ADV to hold in the portfolio).

Cost Curves. Cost curves provide managers with the expected market

impact cost for various share quantities and execution strategies. Share

quantities are usually expressed in terms of percentage of ADV and the
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strategies are usually expressed in terms of percentage of market volume

(POV rate) or in terms of trading time.

Alpha Capture. Managers determine the expected profit level of an

investment idea based on the stocks projected alpha and the correspond-

ing trading cost. This helps to maximize expected ex-post stock return

(e.g., returns after incurring trading cost). Managers then select stocks

based on ex-post return.

Investment Capacity. Determine how many shares of a stock can be

transacted before the trading cost erodes the expected stock return

beyond a specified level. For example, suppose that a manager has deter-

mined that an investment strategy is expected to achieve an incremental

return of 3% over its benchmark. The manager turns to TCA to deter-

mine how many shares can be purchased with a trading cost equal to the

incremental return of 3%. After this point, the manager is better off

investing in their next most attractive investment idea.

Portfolio Optimization. Portfolio optimization techniques are being devel-

oped to provide managers with the “optimal” weightings and the underly-

ing transaction strategy to achieve those positions. These optimizations

incorporate expected returns, volatility, correlation, and market impact to

determine the optimal mix of stock. Market impact cost is determined

from the underlying market impact model parameters. And, the resulting

execution strategy is the “best execution” strategy that provides exact con-

sistency between investing and trading decisions. The optimization tech-

nique will take advantage of any synergies resulting from diversification

or market hedging opportunities. Portfolio optimization with transaction

cost analysis has become one of leading areas of research for portfolio

managers and is discussed in Chapter 10, Portfolio Construction.

Back Testing. Managers use market impact back-testing series to test

investment ideas and determine if those ideas will be profitable in different

market conditions. All too often, however, managers find a strategy works

well in the back-testing environment but once the strategy goes live it does

not provide the expected level of return due to implementation costs. Some

of the more forward thinking managers have begun incorporating historical

trading costs into their back-testing scenarios. The biggest issue we have

encountered here is that while there are participants providing historical

costs these are based on the actual market structure and actual cost of trad-

ing at that specific point in time. This could result in dramatically overstat-

ing the true cost of trading (such as in the early to mid-1990s) when stocks

were quoted in 1/8ths (well really odd-eights or quarters, see Christie and

Stoll 1994). Overstating the true costs in a back-testing environment could
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have the opposite results and cause managers to eliminate an investment

idea on the basis of it being cost prohibitive when in fact its costs may

be much lower now given market structure improvements and increased

efficiency from competition. It is imperative that any cost index developed

for back testing is based on today’s market structure, regulations, and com-

petition, and the trading characteristics at the historical point in time

(liquidity, volatility, size, etc.). Only then can a manager determine the

strategy’s true feasibility and the realistic return expectations of the invest-

ment idea. We discuss techniques to develop back-testing cost series in

Chapter 12, Cost Index and Multi-Asset Trading Costs.

Liquidation Cost. The cost of trading, unfortunately, is not symmetric. The

cost to enter (buy) the position is usually less expensive that the cost to exit

(sell) the position. This cost, however, is not due to any structural difference

between buying and selling stock, but it is rather due to a difference in the

underlying investment decision at the time of the stock purchase and stock

sale. Managers will buy stocks under the most advantageous market condi-

tions and sell stock under more dire circumstances. For example, managers

tend to buy stocks with attractive company fundamentals, low volatility,

and at times when there is liquidity. But managers tend to sell stocks when

they fall out of favor, when company fundamentals tank, volatility spikes,

and liquidity dries up. All of which increase trading cost of favor.

Sensitivity Analysis. Managers are beginning to incorporate their own

market views in investment planning phases. Managers are performing

sensitivity analysis to better determine trading cost under various scenar-

ios such as increased and decreased volatility scenarios such as were

present during the financial crisis of 2008�2009. Portfolio managers who

are able to incorporate their views of the market conditions will improve

the portfolio construction process, which will result in portfolios that are

more consistent with their underlying investment objective.

ARE THE EXISTING MODELS USEFUL ENOUGH FOR
PORTFOLIO CONSTRUCTION?
The needs of traders and portfolio managers are very different when it

comes to market impact analysis. Traders use market impact models to

estimate trading costs, and to evaluate and select trading algorithms.

Portfolio managers use market impact models for cost estimates that can

be incorporated directly into the stock selection process. Portfolio man-

agers, however, need to be able to run these models independently of bro-

kers and vendors so that these parties will not have any opportunity to

reverse engineer the manager’s decision making process. Managers also
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need to be able to perform sensitivity and “what-if” analyses to determine

the cost of trading under various market conditions. Managers need to be

able to incorporate their own proprietary view of markets including their

volatility and liquidity estimates, as well as their proprietary alpha esti-

mates. Finally, managers do not want to be reliant upon what other bro-

kers and vendors feel are appropriate values for the input variables,

especially if these views differ from their own.

The current state of market impact models falls well short of the needs

of portfolio managers. Broker models are often black box models, and

most do not provide managers with sufficient transparency into the

approach to allow the managers to evaluate or critique the results. Much

of the reason why brokers keep these models so secretive and hidden is

that they do not want the investment community to judge their models.

To test this point, simply ask the broker salesperson to write the formula-

tion of their market impact model, the definition of their input variables,

and the model parameters. Then sit back and observe their responses.

And if these parties do provide this information, try to duplicate their

results for a few different samples of stocks.

Brokers will usually state numerous reasons why they are unable to provide

their model to the client. They often claim that the model needs to be con-

nected to a tic database, that the model is specific for their algorithms, and

that the model uses a proprietary approach, or that the data cannot be redis-

tributed. Regardless of the reason stated, investors should be extremely cau-

tious of using any model or approach that is not amply described or

transparent. These models have to be analyzed, tested, and verified.

To be fair, there may be some truth to why these models cannot be pro-

vided to the client. But it is still likely that the vendor is hesitant to pro-

vide the functional form because it may reveal that the model is not

nearly as complex or sophisticated as claimed. Keeping the functional

form of market impact models hidden from potential users makes it diffi-

cult for users to properly evaluate the model.

Suffice to say, that current industry market impact models have not

evolved to a level needed by portfolio managers. A summary of these

reasons, as stated in Journal of Trading (see Kissell, 2012), is as follows:

Current State of Vendor Market Impact Models
� Vendor models are black box approaches with no transparency. They

do not provide the underlying formulas and often do not provide the

complete set of input variables and explanatory factors used to
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estimate costs. And while many of these models do provide accurate

pre-trade estimates, their lack of transparency does not allow portfolio

managers to perform “what-if” analysis under various scenarios, or

incorporate their own market expectations and alpha views into the

process.

� Pre-trade cost calculations are often performed on the vendor’s server.

Managers need to pass their portfolio from their site to the vendor’s

server to obtain cost estimates. When portfolio holdings, data, or

information leaves the manager’s site there is always the potential for

information leakage allowing the outside party to reverse engineer the

manager’s decision process. This could be detrimental to the fund’s

competitive edge.

� Pre-trade impact models incorporate the vendor’s market expecta-

tions. These systems do not easily allow managers to revise factor

expectations. For example, these models do not allow managers to

change volatility, average daily volume, or expected liquidity over the

trading horizon. If managers have better forecasts of explanatory vari-

ables there is no easy way for them to incorporate these values into

the pre-trade estimates. And even if vendors make necessary provi-

sions, there is still no way to do so without alerting these vendors of

their own proprietary forecasts.

� Portfolio managers are very sensitive to alpha erosion. In other words,

how much of their alpha will they capture given trading costs. But

since managers are reluctant to pass these alpha estimates to any ven-

dor’s system these models are not able to structure strategies to mini-

mize alpha erosion. Furthermore, managers are suspicious of any party

providing alpha estimates for free and to a large array of customers.

� Constructing in-house market impact models is resource intensive and

time consuming. Firms developing in-house models using their own

trade data have the advantage of knowing the full order size, includ-

ing shares cancelled and the decision price, and they can also incorpo-

rate their own proprietary market views into the cost estimate. This

allows the market impact model to be customized for the fund’s spe-

cific investment behavior. But this still does not allow the fund to per-

form thorough sensitivity analysis for a situation where they want to

analyze an order that may be traded differently than they have in the

past because they do not have any historical observations. These mod-

els could potentially suffer from in-sample bias.

The current approach being used by managers to incorporate TCA esti-

mates into the stock selection process is to utilize systems such as vendor/

broker web-sites, APIs, etc. Managers are asked to send their portfolios or
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potential portfolios to the vendor so that they can perform the analysis.

The vendor will then analyze the basket, estimate costs, and send the

results back to the manager.

This approach, however, requires that the information be passed from the

manager’s site to the vendor’s server where the data will be computed,

and possibly even stored, before being sent back to the manager.

Investors who are using the process need to ensure that their data queries

are not being saved or stored at the vendor’s or broker’s site without their

prior approval. If the data is stored on the vendor’s site it could poten-

tially allow parties outside the manager’s firm to reverse engineer the

investment decision.

To alleviate this fear, some vendors provide results of their models to

managers in the form of cost curves and include a specified universe of

stocks with various sizes and execution strategies. PMs can query and fil-

ter these data points for the stocks they are interested in analyzing, but

this is a very inefficient process and requires an iterative approach to

determine optimal solutions.

Portfolio managers continuously state that they are leery of anything that

could potentially result in any kind of information leakage or reverse

engineering of the investment decision process. And rightly so! It is the

stock selection and portfolio construction process that is the true value of

the manager. Even if managers use a verified secure FTP or API protocol

that is not viewable by the vendor, the process still does not allow inves-

tors to incorporate their own proprietary variables into the analysis. For

example, they still cannot integrate proprietary volatility estimates or

expected liquidity conditions into the model to perform “what-if” analy-

sis. And we have yet to meet a portfolio manager willing to share their

proprietary alpha estimates with any outside party for improved pre-trade

analysis.

If the vendor or broker will not provide the model to managers what are

they to do? Managers could develop their own market impact model

using tic data or by incorporating their own inventory of orders and

trades to calibrate the model. But this is very often very time consuming,

resource intensive, and could suffer from in-sample error if they rely

only on their own trade data. An alternative approach is for managers to

develop and build their own models but incorporate broker and vendor

pre-trade cost estimates to calibrate the model. This will also allow the

managers to incorporate their proprietary views of liquidity, volatility,

and even their own alpha estimates.
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This latter approach is referred to as the pre-trade of pre-trade approach

and it has become very popular among portfolio managers. An abstract

of the approach was published in Journal of Trading (Kissell, 2011),

and subsequently presented at the Northfield Risk Conference (August

2012). We follow the process described in the Journal of Trading

below.

PRE-TRADE OF PRE-TRADES
The pre-trade of pre-trade modeling approach consists of using broker-

dealer and/or vendor cost estimates as input into the market impact model.

Managers then calibrate their preferred market impact model with these

cost estimates. This allows managers to focus on stock selection and anal-

ysis rather than spending valuable resource time and dollars managing

data, corporate actions, and building system infrastructure.

But why can a portfolio manager not request cost estimates for various

stocks and trading strategies across different brokers and vendors, and

then take the average cost as the estimate rather than calibrating their own

model? While this type of approach is being used in the industry, it does

have some limitations.

� First, it does not provide managers with the ability to determine how

costs will vary by company characteristics such as volatility, market

cap, or liquidity states. For example, if volatility in the stock increased

what would be its effect on cost?

� Second, the modeling approach used by vendors is still a black box

approach and without a functional form managers are not able to inte-

grate trading cost estimates with their proprietary stock selection

models.

� Third, managers cannot express their views of market conditions

(volatility and liquidity) or incorporate their own proprietary alpha

estimates. There is always the potential that the vendor’s view of the

market conditions will be dramatically different from the view of the

portfolio manager. This creates another level of inconsistency between

trading and investing.

� Finally, these approaches do not allow managers to perform sensitiv-

ity analysis. For example, managers need to be able to investigate the

cost of buying stock in the current market environment and be able to

investigate the cost of selling stock at a future point in time and under

an entirely different set of market conditions.
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Estimation Process
The pre-trade of pre-trade cost estimation process is described through

the following example. For illustrative purposes, we use two stocks and

three brokers. In practice, investors are encouraged to use a much larger

sample of stocks with various order sizes and transaction strategies, and

solicit cost estimates from more than three brokers.

Analysts can also implement this approach without revealing their hand to

their brokers simply by using a financial data provider such as Bloomberg

since many brokers have embedded their pre-trade models into these

financial systems. Managers can generate a large enough sample of trades

through these systems to calibrate the pre-trade of pre-trade model without

their brokers becoming any the wiser or learning their true intentions (also

see Kyle, 1985).

This approach will also allow analysts to test and critique broker models

from various perspectives. Our pre-trade of pre-trade process is as

follows:

Step I: Select Preferred Market Impact Model

The first step in the process is to select the preferred market impact model.

In this example, we use a simplified version of the I-Star model that does

not separate temporary and permanent impact. Analysts are encouraged to

experiment with different cost models to determine the formulation that

works best for their needs. This model is:

MIbp 5 a1USize
a2Uσa3UPOVa4 ð11:1Þ

Step II: Solicit Broker-Dealer Cost Estimates

The second step in the process is to collect cost estimates for a universe

of stocks from different brokers. Be sure to use a large enough range of

stock characteristics, sizes, and trading strategies.

It is important to note that the vendors who are providing the cost esti-

mates for the estimation process are likely to have constructed their mod-

els from their own trade data. In these cases, the model may be well

suited their client’s trading styles but it may not be as accurate for differ-

ent trading styles. There is the potential that this model would have a

very good in-sample fit but may not be as accurate out-of-sample (suffer

from in-sample bias). An example of this is as follows. Suppose broker

A’s clients consist only of traditional long-term buy and hold indexer

managers who usually incur low impact cost, and broker B’s clients con-

sist only of short-term trading funds who typically transact in a high cost
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environment due to price momentum. Both broker models may be accu-

rate for their particular client base, but if the model is applied to the other

broker’s clients the model would provide inaccurate estimates.

Investors also need to ensure that the brokers they solicit cost estimates

from have properly corrected for multicollinearity and heteroscedasticity.

Analysts are encouraged to explore these correction methods with their

brokers and vendors.

Table 11.1 shows cost estimates for two stocks from three brokers.

Notice how these estimates can vary across brokers. For example, the

cost estimates for trading 1% ADV of RLK using a POV5 20% strategy

is 6.0 bp from broker I, 11.4 bp from broker II, and 4.7 bp from broker

III. For an order of 30% ADV using a POV5 5% strategy the estimates

are 31.0 bp from broker I, 17.4 bp from broker II, and 21.0 bp from bro-

ker III. Broker II had the highest cost estimate in the first situation and

the lowest cost estimate in the second situation. It is not uncommon for

broker cost estimates to vary to this extent.

Step III: Estimate Model Parameters

The third step of the process is to estimate the model parameters. Since

vendors will have positive cost estimates we are able to log-transform

our model and solve for the parameters using ordinary least squares

(OLS). Since OLS regression analysis is well understood, analysts can

easily critique and evaluate the performance of these models.

If any broker or vendor provides a negative cost estimate, meaning you

will profit on the trade immediately, it may be time to find a different

broker!

The log-transformed simplified I-Star model is:

lnðMIbpÞ5 lnða1Þ1 a2UlnðSizeÞ1 a3UlnðσÞ1 a4UlnðPOVÞ ð11:2Þ

Estimates for the model parameters obtained using data from Table 11.1

are shown in Table 11.2.

The best fit log-transformed model is:

lnðMIbpÞ5 6:6610:57UlnðSizeÞ1 0:78UlnðσÞ1 0:52UlnðPOVÞ ð11:3Þ

The model has a high R2 ðR2 5 0:93Þ, significant t-stats ðtc0Þ, and a high

F-stat ðF5 513:47Þ. This indicates that this is a very reasonable model. If

the regression results had low R2 and/or insignificant t-stats or F-stat, then

the proposed analytical form of the preferred model (see step I) should not

be used. The good thing is that since most pre-trade models include size,
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Table 11.1 Broker-Dealer Cost Estimates

Stock Size Volt. POV Broker I Broker II Broker III

RLK 1% 20% 5% 3.6 4.7 2.2

RLK 1% 20% 10% 5.9 6.1 2.4

RLK 1% 20% 20% 6.0 11.4 4.7
RLK 5% 20% 5% 10.1 8.0 7.8

RLK 5% 20% 10% 14.8 14.0 12.2

RLK 5% 20% 20% 23.9 20.7 12.2

RLK 10% 20% 5% 18.2 12.7 10.9

RLK 10% 20% 10% 18.5 18.3 11.3

RLK 10% 20% 20% 24.4 29.1 19.9

RLK 15% 20% 5% 16.3 13.9 14.8

RLK 15% 20% 10% 22.6 18.9 17.8
RLK 15% 20% 20% 36.6 35.1 30.4

RLK 20% 20% 5% 19.6 21.8 16.6

RLK 20% 20% 10% 27.1 26.0 24.2

RLK 20% 20% 20% 47.3 37.2 36.4

RLK 25% 20% 5% 23.8 23.2 21.2

RLK 25% 20% 10% 29.1 33.0 34.0

RLK 25% 20% 20% 40.6 39.4 37.7

RLK 30% 20% 5% 31.0 17.4 21.0
RLK 30% 20% 10% 33.1 32.0 27.9

RLK 30% 20% 20% 62.3 52.9 38.0

ABC 1% 30% 5% 3.7 6.9 3.1

ABC 1% 30% 10% 7.8 6.9 4.3

ABC 1% 30% 20% 11.6 13.1 7.2

ABC 5% 30% 5% 12.5 13.0 10.4

ABC 5% 30% 10% 16.5 19.1 14.0

ABC 5% 30% 20% 29.5 27.9 14.5
ABC 10% 30% 5% 21.8 17.9 16.7

ABC 10% 30% 10% 32.0 24.3 26.2

ABC 10% 30% 20% 33.5 39.1 31.7

ABC 15% 30% 5% 26.6 18.3 15.2

ABC 15% 30% 10% 34.8 28.0 25.0

ABC 15% 30% 20% 55.9 48.3 41.7

ABC 20% 30% 5% 33.4 23.2 26.7

ABC 20% 30% 10% 41.1 40.3 31.7
ABC 20% 30% 20% 52.0 49.8 56.0

ABC 25% 30% 5% 36.3 22.0 27.8

ABC 25% 30% 10% 49.4 37.7 32.3

ABC 25% 30% 20% 57.4 50.7 65.1

ABC 30% 30% 5% 30.7 31.9 27.3

ABC 30% 30% 10% 43.5 33.5 56.2

ABC 30% 30% 20% 65.3 59.1 72.3
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volatility, and strategy (in terms of percentage of volume, time, or trading

rate), users will find that the simplified I-Star model works extremely well

in the pre-trade of pre-trade process.

Therefore, the simplified I-Star model is:

MIbp 5 793USize0:57Uσ0:78UPOV0:52 ð11:4Þ

Recall that E½expflnða1Þg�5 a1 1 1
2 Uσ

2.

Investors can also estimate the parameters of the full I-Star model includ-

ing the b1 parameter to differentiate between permanent and temporary

impact cost if desired. This technique is also fairly straight-forward but

requires more sophisticated estimation process such as non-linear least

squares or maximum likelihood estimation since the equation cannot be

linearized via log-transformation.

This pre-trade of pre-trade technique (also referred to as the aggregated

model) allows investors to construct models that are a general consensus

of market participants. It is a way to survey the market and draw a general

conclusion of expectations. The most appealing aspect of using a pre-trade

of pre-trade model is that it provides investors and analysts with a quick

and easy process to generate the necessary cost data to fit these models.

Investors and buy-side analysts often have difficultly constructing the

input data set for their in-house model since the process is extremely data

intensive and resource draining.

Table 11.2 Regression Results

ln(a1) a2 a3 a4

Estimate 6.66 0.57 0.78 0.52

Std Error 0.15 0.02 0.09 0.03

t-stat 43.88 34.59 8.76 16.34
R2: 0.93

SeY: 0.20

F-Stat. 513.47

Calculation

ln(a1) 6.66

seY 0.020697

a1* 6.68

a1 793.3635
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Applications
We are now at a point where we can begin to incorporate our pre-trade

market impact cost estimates into the investment decision process for stock

selection, portfolio optimization, alpha capture, and “what-if” analysis.

The model we will use for our analysis is:

MIbp 5793USize0:57Uσ0:78UPOV0:52 ð11:5Þ

We next illustrate how our pre-trade of pre-trade model can be used to

address various portfolio manager needs. This builds on Journal of Trading,

“Creating Dynamic Pretrade Models: Beyond the Black Box,” Fall 2011.

Example 1
An investor wishes to determine expected impact cost for RLK for an

order of 10% ADV utilizing a POV5 20% strategy. The volatility of RLK

is 20%. Cost estimates were provided by all three brokers (Table 11.1) and

are shown below in Table 11.3.

The pre-trade of pre-trade (aggregated model) cost estimate is computed

from the following:

MIbp 5793Uð0:10Þ0:57Uð0:20Þ0:78Uð0:20Þ0:52 526:3 bp

The average cost from the three brokers is 24.5 bp and the estimated cost

using our pre-trade of pre-trade model is 26.3 bp. Notice that the estimate

from the pre-trade of pre-trades is consistent with the average of the bro-

ker models.

The advantage now is that the average estimated cost across brokers can

be computed directly from Equation 11.5 without having to access broker

models or shift through broker data. The pre-trade of pre-trades is an

important tool for those parties wishing to minimize information leakage.

Table 11.3 Estimated Costs

Broker Est. Cost

I 24.4

II 29.1

III 19.9

Avg: 24.5
I-Star Model: 26.3
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Example 2
Next suppose the portfolio manager expects volatility in RLK to jump

from 20 to 40%. What is the expected market impact cost for the same

order with the new volatility estimate?

The only way the PM can obtain estimates from the three brokers is to

provide the brokers with their proprietary volatility forecast 40% and ask

the broker to re-run the scenario with this volatility estimate. But it is

likely that the PM will not be willing to provide any broker with their

market view and proprietary expectations for any stock.

But in the case of the aggregated pre-trade of pre-trade cost model the

portfolio manager can easily re-compute the cost estimate with the new

volatility estimate directly. This is as follows:

MIbp 5 793Uð0:10Þ0:57Uð0:40Þ0:78Uð0:20Þ0:52 5 45:2 bp

Portfolio managers can generate these estimates incorporating their

expectations without providing proprietary information to brokers.

Example 3
The portfolio manager is interested in the cost of transacting an order of

7.5% ADV of stock ABC using a full day VWAP strategy. But unfortu-

nately, the manager did not request cost estimates for this size order from

their brokers. The options for the PM are to request cost estimates for

ABC from their brokers but then the brokers would now know that the

manager is interested in stock ABC, or interpolate cost estimates for this

scenario. Unfortunately, linear interpolation is not a direct process

because neither the order size nor POV rate was provided by any of the

brokers. But it still can be done in three steps.

The PM can easily utilize the aggregate pre-trade model to determine the

expected cost under this scenario. This calculation is:

MIbp 5 793Uð0:075Þ0:57Uð0:30Þ0:78Uð0:0698Þ0:52 5 17:7 bp

Example 4
A PM is evaluating a worse case scenario to liquidate a 10% ADV posi-

tion of RLK under extreme situations using a full day VWAP strategy.

The PM is interested in the cost to liquidate the position if volatility

spikes to 40% and volume on the trade day is only half of its normal vol-

ume. Here, the POV rate for the full day VWAP strategy is 0.10/(0.51

0.10)5 0.167.
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Once again, the broker models are not flexible enough to provide cost

estimates for this situation without the PM providing the brokers with

proprietary volatility and liquidity. But we can utilize the aggregate pre-

trade model to determine the expected cost under this scenario. This cal-

culation is:

MIbp 5 793Uð0:10Þ0:57Uð0:40Þ0:78Uð0:167Þ0:52 5 41:1 bp

Notice once again that this cost is significantly higher than what we

would find from any of the vendor pre-trade models under current market

conditions.

The more important concepts of the pre-trade of pre-trade modeling

approach are:

� Simplified I-Star provides a valuable starting point and serves as an

appropriate workhorse model.

� This allows investors to infer essential information from broker black

box models.

� Vendor pre-trade models incorporate the current point in time variables

such as current volatility, current liquidity conditions. But we often

want to understand the exit costs that will occur under an entirely dif-

ferent set of market conditions.

� Managers can incorporate their own market views into the analysis

(e.g., volatility, liquidity, as well as proprietary alpha signals).

� Managers can perform analyses independent of other brokers and

vendors (minimizes information leakage).

� A transparent model allows stress testing, “what-if,” and sensitivity

analyses.

HOW EXPENSIVE IS IT TO TRADE?
All too often we hear portfolio managers complain that their incremental

alpha was lost during trading and the fund underperformed their bench-

mark due to transaction costs. But how true is this statement? Is the

underperformance really due to the transaction drag on the fund or is it

due to inferior stock selection? As we show below, the corresponding

trading cost of an investment idea is often much more expensive than

originally anticipated. And this is especially true when managers liqui-

date a position (e.g., sell the holding).

To begin, let us compare trading costs across large cap (SP500) and small

cap (R2000) stocks. Table 11.4 provides the average trading characteristics
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for these samples (as of June 2012). For example, the average daily trading

volume for an SP500 stock is 5,666,180 shares per day, and the average

daily trading volume for an R2000 stock is 503,553 shares per day. On

average, SP500 stocks trade 11.25 times more daily share volume than

R2000 stocks. The average daily dollar turnover value in these names is

even more exaggerated. An SP500 stock trades $202,511,240 per day and

an R2000 stock trades only $6,674,599 per day. This is more than 30 times

more traded dollars per day per stock in SP500 names than in R2000

names. Additionally, R2000 stocks have higher volatility and larger

spreads than SP500, thus also increasing trading costs.

What does this have to do with trading costs? Well everything. Trading

costs are usually stated for order sizes or share quantities expressed in

terms of % ADV. In these cases, when we compare the actual cost of

trading across SP500 and R2000, the difference between the stock cate-

gories of stock is large but not outrageously large. And the difference is

mostly due to volatility, spreads, company specific risk, and higher per-

ceived information-based trading in small cap stocks compared to large

cap stocks.

For example, the average cost of trading an order of 10% ADV via a

VWAP strategy is 19.8 bp for large cap and 27.8 bp for small cap. Small

cap stocks are 70% more expensive. Utilizing a POV5 20% strategy the

cost is 37.4 bp for large cap and 55.7 bp for small cap. Small caps are

149% more expensive. Much of this difference, as mentioned, is

explained by small cap volatility (43%) being higher than large cap vola-

tility (30%), and small cap spreads (49 bp) being higher than large cap

spreads (3.3 bp). Figure 11.1 shows this difference in trading cost across

various order sizes for large and small cap stocks for a POV5 20%

strategy.

Table 11.4 Comparison of Trading Characteristics: June 2012

Index Avg Dollar
Turnover*

Avg Daily
Volume*

Avg
Price

Avg
Volatility

Avg
Rho

Median
Spread (cps)

Median
Spread (bp)

SP500 202,511,240 5,666,180 $54.28 30% 0.57 1.80 3.32
R2000 6,674,599 503,553 $20.34 43% 0.39 10.01 49.16

Net
Diff

195,836,641 5,162,627 $33.93 213% 0.18 28.21 245.84

Ratio 30.34 11.25 2.67 0.70 1.45 0.18 0.07

*5 Stock level averages, e.g., the avg ADV for an SP500 stock was 5,666,180 shares per day in June 2012.
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The trading cost difference between large and small cap stocks becomes

even more dramatic when we analyze the dollar amount of a trade. For

example, if we invest $5 million in a large cap stock it results in an aver-

age order size of 5.8% ADV and a cost of 17.6 bp (POV5 20%). But the

same amount invested in a small cap stock results in an average size of

394% ADV and a cost of 266.6 bp (POV5 20%). This is now more than

15 times more expensive to trade small caps compared to large caps for

the same dollar investment. This is an outrageous difference! Figure 11.2

shows the comparison of trading costs across large and small cap stocks

across equivalent dollar amounts. Notice how dramatically more expen-

sive small cap stocks are to transact compared to large cap stocks even

when holding the execution strategy constant (POV5 20%).

Another useful way to compare trading costs is by total dollar allocation.

For example, index funds allocate their dollar investment across stocks

based on the stocks’ weightings in the index. Stocks with higher weight-

ings receive a large dollar investment and stocks with smaller weightings

receive a smaller dollar investment. A $3 billion investment allocated to

each index based on market capitalization weightings results in an aver-

age order size of 2.8% ADV for SP500 and a corresponding cost of

10.4 bp. The same investment in the R2000 index results in an average

order size of 42.8% and corresponding trading cost of 101.4 bp. Small

cap stocks are 9.7 times more expensive to trade than large cap—even

for a passive index fund. This differential is especially dramatic consider-

ing that the dollars are allocated across a much larger number of stocks

for the R2000 index (1992 stocks in June 2012) compared to the SP500

index (500 stocks in June 2012). Figure 11.3 compares the difference in

trading costs for various investment amounts across market cap weighted

replication of the indexes.
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Table 11.5 shows the estimated market impact parameters for large cap

and small cap stocks using data from 2011.

Acquisition and Liquidation Costs
An important issue that needs to be fully understood in the portfolio man-

agement process is that the cost to acquire a position is often lower than

the cost to liquidate that same position. Earlier we mentioned that we

have not found any true statistical difference between the cost to buy

shares and the cost to sell shares. So how can this be true? First, the cost

to buy and sell shares is the same when everything else is the same, such

as volatility, market volumes, and incremental buying and selling
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pressure from other investors. Quite often, however, market participants

observe, and data confirms, that buy orders are less expensive to transact

than sell orders. But we have found that this is due to managers selling

stocks more aggressively, as well as survivorship bias where managers

have a complementary stock to buy when prices become too expensive

but do not have a complementary stock to sell when the company has

fallen out of favor.

But what also occurs at this point in time is that the stock volatility has

spiked and liquidity has decreased. Even in cases where there is more

trading in the name (such as during the financial crisis), the amount of

transactable liquidity is often much lower because there are several inves-

tors on the same side of the order as the manager, thus everyone is com-

peting for the smaller liquidity pool. All of which increase the cost to

trade. Portfolio managers buy in times of favorable conditions and sell in

times of adverse conditions and market stress. For example, an index

manager may hold 5% of the ADV of a stock in the portfolio. If this

stock is suddenly deleted from the index the expected trading cost to

liquidate the position will likely be greater than the expected cost of trad-

ing an order of 5% ADV. This is because all index managers who own

the stock will have to sell the shares and liquidate the position from their

portfolio and thus the aggregated market selling pressure will be equal to

the aggregated number of shares that need to be sold. In many situations,

the number of shares that need to be transacted due to an index reconsti-

tution could be much greater than 100% of the stock’s ADV. Thus, the

trading cost for the index event trade is dramatically higher than the costs

that would occur from a non-index event trade.

To further highlight this point we examined a $100 million small cap

portfolio comprised of 100 stocks. The average order size corresponding

to this investment amount is 35% ADV and the volatility 42%. If the

portfolio is purchased via a full day VWAP strategy the expected cost is

106 bp. This is a very realistic cost estimate for a small cap strategy

under normal market conditions. But now suppose that liquidity has dried

Table 11.5 Estimated Market Impact Parameters

Scenario a1 a2 a3 a4 b1

All Data 708 0.55 0.71 0.50 0.98

SP500 687 0.70 0.72 0.45 0.98

R2000 702 0.47 0.69 0.55 0.97

*5 Estimation Period: 1H2011.
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up and volatility has spiked. If transactable liquidity is now only half of

normal levels and volatility has doubled, the cost to liquidate the position

will jump from 106 to 215 bp. Costs are more than 2 times more expen-

sive to sell than to buy. This was caused by market conditions at the time

of the sale and not due to any difference in buying or selling sensitivity.

The overall round-trip trading cost of this strategy is approximately

321 bp. If the manager was expecting and planned for a round-trip trans-

action cost of 200�220 bp they would quickly realize that the liquidation

cost of the position eroded their entire incremental alpha and caused

them to incur a loss. And the end result is likely that they under-

performed their benchmark.

Figure 11.4 shows the market impact cost to acquire each of the 100

stocks in our example. Notice the extent that this cost can vary across all

names in the portfolio. The range of cost is from 21 bp (least expensive)

to 271 bp (most expensive). The actual cost to trade is determined from

the dollar allocation to each name as well as the stock’s liquidity (ADV)

and volatility. And as this analysis shows—actual trading cost by stock

can vary tremendously.

Figure 11.5 shows the market impact cost to liquidate each of the 100 stocks

in our example. The stock by stock cost in this example varies from 45 to

527 bp with an average of 215 bp. Again, notice how much higher the liqui-

dation cost is compared to the acquisition cost shown in Figure 11.4.

Formulaically, the liquidation cost in a stressed trading environment com-

puted directly from the simplified I-Star market impact model is as

follows.
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379How Expensive Is It to Trade?



In a normal environment the market impact cost is:

MINormal 5 a1USizea2Uσa3U
Size

11Size

� �a4
ð11:6Þ

In a stressed environment where volatility doubles and liquidity is halved

the portfolio manager incorporates these expectations into the cost esti-

mation model as follows:

MIStressed 5 a1USizea2Uð2UσÞa3U
Size

0:51Size

� �a4
ð11:7Þ

Therefore, in a stressed environment the cost premium is equal to:

CostPremium 5 2a3U
1
0:5

� �a4
52a3U2a4 52a31a4 ð11:8Þ

This cost premium for the full I-Star model can also be approximated

from the simplified I-Star equation since the value of b1 is often small. In

our example, the increase in cost can be approximated with the above

cost premium equation and our small cap market impact parameters as

follows:

CostPremium 52a31a4 5 20:6910:55 521:24 52:36

Portfolio Management—Screening Techniques
Given the large potential variation in trading costs across stocks, man-

agers have begun using many different techniques to screen and filter for
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■ Figure 11.5 Cost to Liquidate Each Position in the 100 Stock Portfolio.
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those names that could potentially be too expensive to buy and/or sell.

One common technique is to limit the position size based on a percentage

of the stock’s average daily volume, for example, set a maximum size of

10% ADV. The belief in this case is that the market would always be

able to absorb an order of this size without the investor inflicting too

much impact into the stock price. But the maximum % ADV value is

often an arbitrary value and even at this level there are names that are

still potentially very expensive to transact.

To better show this point, we analyzed the trading cost corresponding to

10% ADV position size for large (SP500) and small (R2000) cap portfo-

lios. The trading cost for a 10% ADV order size in each of the stocks in

the SP500 index is shown in Figure 11.6a. The average cost is 20 bp but

these costs vary greatly from a low of 3 bp to a high of 48 bp. For small

cap stocks, the average cost of a 10% ADV order is 37 bp with a range

of 6 to 160 bp (Figure 11.7a). There are also a very large number of

names with costs greater than 60 bp.

Two questions arise when performing this type of PM screening pro-

cess. First, why should the portfolio managers limit the order size to

only 10% ADV for those stocks with very low trading costs? And sec-

ond, should the maximum size not be set lower for those very expen-

sive to trade stocks? The answer to both of these questions is: Yes. If

a stock has low trading costs and is a very appealing investment

opportunity the manager should not limit the holding size to some

arbitrary value. And if a stock is very expensive to trade, that stock

should be held in a much lower quantity in the portfolio—or possibly

not held at all.

To help determine the maximum % ADV size to hold in a portfolio, man-

agers can reverse engineer the filtering process. Rather than starting with

an arbitrary size constraint, managers can specify the cost level that they

feel is appropriate for the portfolio. For example, managers may deem a

reasonable cost to trade large cap stocks is 20 bp. This cost level is often

tied to the expected alpha of the fund and will be further discussed

below. Then managers compute for the investable universe the size that

can be traded resulting in the cost of 20 bp. The maximum size for the

stock is then determined for all stocks by solving the MI equation by set-

ting the LHS equal to 20 bp and solving for size. Mathematically, this is

found by solving for size in the following:

205 b1Uða1USizea2Uσa3 ÞUPOVa4 1 ð12 b1ÞUða1USizea2Uσa3 Þ ð11:9Þ
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The one caveat here is that the manager needs to further specify the

underlying execution strategy. For example, if the strategy is a VWAP

strategy, then the corresponding POV rate is:

POV 5
Size

11 Size

� �

Therefore, we are not able to solve Equation 11.9 in terms of size
directly. But we can determine the size via fairly straightforward numeri-

cal methods but we still need to solve for each stock individually.

The size corresponding to a cost of 20 bp using a full day VWAP strat-

egy is found from the following equation where we substitute POVwith
Size

15 Size
:

205 b1Uða1USizea2Uσa3 ÞU Size
11Size

� �a4
1 ð12 b1ÞUða1USizea2Uσa3 Þ ð11:10Þ

Notice that in this formulation the portfolio manager can also incorporate

stress testing to determine the position size that will result in a cost of

20 bp under adverse market conditions by changing the volatility and

liquidity.

Figure 11.6b shows the holding sizes for SP500 stocks resulting in a trad-

ing cost of 20 bp (the average cost for an order of 10% ADV). The aver-

age position size is about 10% as expected and the range is from 4 to

76% ADV. (The figure truncates the scale at 35%). Figure 11.7b shows

the position sizes for R2000 stocks resulting in a trading cost of 37 bp

(the average cost for an order of 10% ADV). The average position size is

again about 10% and the range in order sizes is from 2 to 67% ADV.

This analysis shows that there are many stocks the manager can hold in

the portfolio at more than 10% ADV and not worry about incurring

unnecessary transaction costs, even under stressed market conditions.

And if these stocks do have appealing alpha expectations the manager

can greatly enhance portfolio performance by determining appropriate

order sizes to maximize profits. Additionally, there are other stocks that

should not be held even at the 10% ADV level because the correspond-

ing costs will be too high and will erode too much of the uncovered

alpha. These are the stocks that need to be held in much lower quanti-

ties or possibly not held in the portfolio at all. Unfortunately, the

computational process above does not have a direct analytical form but

could be solved via optimization or other non-linear solution

techniques.
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Portfolio managers could improve fund performance by analyzing

appropriate holding sizes based on both alpha expectations and trading

costs.

MI FACTOR SCORES
The preceding section showed how portfolio managers could back into

the order size that could be transacted for a specified cost. But this often

requires complicated numerical procedures to find the solution and this

must be solved for each stock individually. This analyses can be done,

but they are often quite time consuming.

The market impact factor score (MI Factor Score) is an alternative

method to efficiently screen stocks based on trading costs. The MI Factor

Score incorporates the I-Star market impact model, corresponding para-

meters, and stock specific trading characteristics (liquidity, volatility, and

market price) to determine a trading cost score. The higher the score the

more expensive the stock is to trade and the lower the score the less

expensive the stock is to trade.

Manager’s use the MI Factor Score to improve their stock screening pro-

cess by filtering for the more expensive and difficult names to trade. In

addition to being a direct calculation, this provides an improvement over

methodologies that only consider liquidity or only consider volatility

when filtering for trading costs.

The advantage to our MI factor score is that it does not require compli-

cated or sophisticated numerical procedures, and it is a more accurate

representation of the trading cost environment. The derivation of the MI

factor score is as follows:

Derivation of the MI Factor Score for Shares
Step 1. Start with the I-Star model:

I�ðSharesÞ5 a1U
Shares
ADV

� �a2
Uσa3 ð11:11Þ

Step 2. Rearrange the terms in the expression by factoring out shares:

I�ðSharesÞ5 a1U
1

ADV

� �a2
Uσa3

� �
USharesa2 ð11:12Þ
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Step 3. The MI factor score is then:

ΚðSharesÞ5 a1U
1

ADV

� �a2
Uσa3|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MI Factor ScoreðSharesÞ

ð11:13Þ

The MI factor score provides managers with the stock’s market impact

sensitivity ΚðSharesÞ. For the same number of shares to trade and the

same strategy, the MI factor score will provide a ranking value of each

stock’s trading cost. This score allows a fair and consistent comparison

of cost of trading across stocks and includes both liquidity and volatility

terms. If the MI factor score is twice as high for one stock compared to

another stock, the cost to trade the first stock will be twice as high as for

the second stock.

Portfolio managers finally have a trading cost factor score that will

alleviate the need to utilize broker-dealer pre-trade models, and perform

time consuming numerical procedures. The factor score can be easily com-

puted on the manager’s desktop or integrated into a proprietary in-house

model. The only requirement to compute the score is to have the market

impact parameters and stock trading characteristics (see Kissell, 2013).

In many situations, portfolio managers are not setting out to invest in a

specified number of shares or in a specified order size (% ADV). They

are more often setting out to invest a specified dollar value into a stock

or basket of stocks. To accommodate these needs we can reformulate the

MI factor score in terms of dollars.

The number of shares that can be purchased for a fixed dollar amount is:

Shares5
Dollars$
Price

ð11:14Þ

Then we can compute the MI factor score in terms of dollars as follows:

Step 1a. Start with the I-Star model:

I�ðSharesÞ5 a1U
Shares
ADV

� �a2
Uσa3 ð11:15Þ

Step 1b. Convert shares to dollars:

I�ðDollars$Þ5 a1U
Dollars$
Price

U
1

ADV

� �a2
Uσa3 ð11:16Þ
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Step 2. Rearrange the terms in the expressions and factor out dollars:

I�ðDollars$Þ5 a1U
1

Price
U

1
ADV

� �a2
Uσa3

� �
UDollars$2 ð11:17Þ

Step 3. The MI factor score is then:

ΚðDollars$Þ5 a1U
1

Price
U

1
ADV

� �a2
Uσa3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MI Factor ScoreðDollars$Þ

ð11:18Þ

Current State of MI Factor Scores
Portfolio managers are using the MI factor scores as an additional layer of

quantitative screening, and as part of asset allocation and stock selection.

Since the factor score incorporates both liquidity and volatility, and pro-

vides a consistent comparison across all stocks, they are quickly becoming

the preferred TCA screening tool for funds. Results incorporating MI fac-

tor scores have been found to adhere to best execution practices by better

ensuring consistency between trading goals and investing needs.

Kissell Research Group has begun providing MI factor scores to portfolio

managers for global equities and various financial instruments across the

multi-assets classes1.

MI Factor Score Analysis
We compared the MI factor scores expressed in terms of dollars for large

and small cap stocks. Scores are sorted from smallest (cheapest to trade)

to largest (most expensive to trade). Large cap stocks had an average MI

factor score of K5 0:001 (Figure 11.8a). Visual inspection of the scores

finds approximately three distinct categories. The first grouping consists

of the 100 least expensive stocks to trade, the middle grouping consists

of the 300 stocks with an average trading cost, and the last grouping con-

sists of the 100 most expensive stocks to trade.

The first grouping of stocks represents, the cheapest trading cost stocks.

Managers could transact these names with the least amount of worry of

adversely affecting prices. Managers could also select to hold larger quan-

tities of these stocks without incurring abnormally high costs. The third

grouping of stocks represents the expensive trading cost stocks. These are

the names that will result in the highest market impact cost of the group.

1Kissell Research Group, www.KissellResearch.com.
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Managers should analyze these names to fully understand their trading

characteristics and they may be best served by holding few shares of these

stocks in the portfolio unless, of course, the incremental alpha will more

than offset the incremental trading cost.

Stocks in the R2000 index also have a very similar MI factor score

(dollar) shape. This is shown in Figure 11.8b. The average MI factor

score for R2000 stocks is K5 0:42. Notice that this is much larger than

the average score for SP500 (K5 0:001). This difference is primarily

due to SP500 stocks having higher prices and much higher liquidity. The

market is also more sensitive to trading small cap stocks in general. Our

market impact analysis found higher values for small cap stocks com-

pared to large cap stocks. Visual inspection finds that there are
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approximately 400 stocks that are relatively inexpensive to trade (in rela-

tion to other small cap stocks) and approximately 400 stocks that are rel-

atively very expensive to trade (in relation to other small cap stocks).

Managers could take advantage of these MI scores by increasing holdings

in the stocks with low factor scores without the worry of adversely

inflicting abnormal levels of market impact cost above acceptable levels.

The 400 very expensive to trade stocks could result in dramatically high-

er levels of market impact cost much above and beyond what is expected,

especially in times of a stressed market environment. These are the trades

that often turn a great investment opportunity into one that is just moder-

ately profitable and possibly incurs a loss.

Notice in Figure 11.8b how quickly the MI factor score increases for the

tail end of the small cap universe. The last 100 stocks are extremely costly

and very sensitive to investment dollars. Managers should think about

excluding these stocks from their portfolio or at least holding smaller

investment dollars in these names, unless, of course, the expected stock

alpha will more than offset these incremental transaction costs.

Please note that these break points are found by visual inspection and

analysts need to determine actual break points based on their investment

needs and alpha expectations. In the end, these MI factor scores provide

a vast improvement over other screening techniques that only use liquid-

ity or only use volatility.

ALPHA CAPTURE PROGRAM
An alpha capture analysis provides the portfolio manager with the quan-

tity of forecasted alpha that can be achieved via an appropriately struc-

tured trading strategy. Forecasted alpha in this manner has alternatively

been referred to as price return, price appreciation, price trend, price evo-

lution, and drift (Kissell, 2003).

The quantity of the alpha that can be captured by managers is dependent

upon the size of the order, the alpha forecast, the cost of the trade, and the

underlying strategy. For example, if a strategy is expected to provide a

return of 10% over a period the alpha capture analysis will provide infor-

mation about how much of the expected return the manager will be able to

achieve for various order sizes. An order of 5% ADV may be able to cap-

ture 9.8%, an order of 10% ADV may be able to capture 9.5%, an order of

25% ADV may only be able to capture 9.0% of the return, etc. The larger

the order size, the lower the expected alpha the manager will realize due

to trading costs. In other words, the alpha capture strategy will estimate

the profitability of a strategy.
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Alpha capture programs provide managers with answers to many of their

investment related questions: How much alpha will my investment

achieve? How much should I invest? And most importantly, how is trans-

action cost analysis being utilized to analyze profitability concerns?

To accurately compute expected alpha capture, managers need to specify

their alpha estimates and have accurate market impact modeling capabili-

ties. And this is yet another reason why TCA has historically gained so lit-

tle traction in the industry. Portfolio managers are unwilling to provide

brokers with their alpha estimates, and brokers have been unwilling to

provide managers with the underlying market impact models.

Market impact and alpha cost are conflicting terms. Trading too fast will

incur too much impact but trading too slow will miss too much alpha

(or missed profit opportunity). Subsequently, we refer to this conflicting

expression as the portfolio manager’s dilemma.

In Chapter 5 we provided techniques to develop and test a market impact

model. In this chapter we provided a pre-trade of pre-trade model to deci-

pher broker models, to calibrate preferred market impact parameters, and

allow those models to function as a stand-alone application on the inves-

tor’s own desktop and as part of their own in-house proprietary systems.

The pre-trade of pre-trades approach is the easiest way for analysts and

managers to solve the issue of not having a market impact model on their

desktop. The process provides managers with a functional form of a

model and also allows them to run that model from their own desktop.

They can then incorporate their own liquidity and volatility views, and

perform sensitivity analysis with different alpha estimates and various

different market conditions. This last piece is the most important since it

allows managers to keep their alpha expectations proprietary. Imagine if

fund managers did provide their brokers with their alpha views!

Example 5
Portfolio managers develop alpha capture programs by incorporating the

simplified I-Star impact model and the manager’s alpha forecast. For a

continuous trading strategy and an alpha estimate following a linear trend,

the manager will incur an alpha cost equal to one-half the total alpha

movement over the trading period t. This mathematical representation is:

Alpha Costbp 5
1
2
U
μbp

d
Ut ð11:19Þ

Where μbp is the alpha forecast, d is the time horizon of the alpha fore-

cast, and t is the time to complete the order with the condition 0# t# 2.
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For example, if the alpha forecast is that the stock will increase 5% over

the next three days we have μbp 5 500 bp and d5 3.

We can further express our trading time t in terms of our trading strategy

α as follows:

t5
Shares
ADV

U
1
α

ð11:20Þ

Then our alpha cost is:

Alpha Costbp 5
1
2
U
μbp

d
U
Shares
ADV

U
1
α

ð11:21Þ

Our simplified I-Star market impact model is:

MIbp 5 a1U
Shares
ADV

� �a2
Uσa3Uα ð11:22Þ

In a properly structured alpha capture program the manager will seek

to maximize the expected profit from this opportunity. This is deter-

mined as:

Max π5μbp 2
μbp

2d
U
Shares
ADV

U
1
α
1 a1U

Shares
ADV

� �a2
Uσa3Uα

� �
ð11:23Þ

The solution to the problem is:

α� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μbp

2d
U
Shares
ADV

U a1U
Shares
ADV

� �a2
Uσa3

� �21
s

ð11:24Þ

The maximum alpha capture opportunity is:

π� 5μbp 2
μbp

2d
U
Shares
ADV

U
1
α� 1 a1U

Shares
ADV

� �a2
Uσa3Uα�

� �
ð11:25Þ

Example 6
A small cap stock is expected to increase 3% in the next 3 days. The

next most attractive investment will increase 2% in the next three days.

The manager wants to answer three questions:

1. How much alpha can a manager capture if the order size is 10%

ADV?

2. How much can be invested in this stock before we begin to incur a

loss?
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3. How much should the manager invest in the stock?

Part 1. How much alpha can a manager capture if the order size is

10% ADV?

The solution to how much alpha can a manager capture if the order size

is 10% ADV is found by maximizing our expected profit

(Equation 11.23). In this example, the alpha forecast is 3% over three

days. For simplicity, we illustrate this concept using a linear appreciation

model. In practice, managers can incorporate any trend preference they

have, such as a compounded model, non-linear, exponential, or even a

step function where the return only occurs overnight and is constant dur-

ing the day.

The alpha capture optimization is illustrated in Figure 11.9 for a small

cap stock with annualized volatility5 43%. If we execute an order of

10% ADV ultra-aggressively the market impact cost will be 132 bp (the

instantaneous impact cost) but we will not incur any alpha cost. Since the

stock will return 3% or 300 bp over the period this urgent execution strat-

egy will earn us a net return of 168 bp. If we trade passively over the

entire three day period our impact cost will be 23 bp but our alpha cost

will be 150 bp. The total cost will be 173 bp and out net profit will be

127 bp which is less than trading the entire position at once. A naı̈ve ana-

lyst may elect to trade the entire order at once to earn a higher expected

return. But this would not be an appropriate option. Take a look at the

graph in Figure 11.9. Notice how the market impact cost is decreasing

over the period and alpha cost is increasing over the period as expected.

But most importantly, take a look at the total cost curve. This cost starts

high when market impact is dominating the total cost, decreases, and

then begins to increase again when the alpha cost starts to dominate the

total cost. The total cost function will always be a convex function unless

the manager is buying stocks that are decreasing in value or selling stocks

that are increasing in value.

The minimum cost occurs at a trading time of 0.45 days (just slightly less

than half of a day in volume time). The corresponding market impact cost

is 54 bp and corresponding alpha cost is 23 bp for a total cost of 77 bp.

The net profit the manager can earn is 223 bp (300 bp 2 77 bp5 223 bp).

Notice that this is much larger than the profit of 168 bp for the ultra-

aggressive instantaneous strategy and the 127 bp for the passive strategy.

The maximum alpha capture for this order is 223 bp.

Part 2. How much can be invested in this stock before we begin to incur

a loss is found by maximizing the number of shares that be transacted at
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a cost equal to the projected alpha of 3% or 300 bp. This is determined

by solving the following optimization:

Max Shares

s:t: a1U Shares
ADV

 !a2

Uσa3Uα5300 bp
ð11:26Þ

In this example, the manager could purchase up to 91% of the stock’s

ADV over 1.5 days at a cost of 300 bp. This is provided in Figure 11.9.

Part 3. How much should the manager invest in the stock is determined

by performing economic opportunity cost analysis. The portfolio manager

will invest dollars in the stock until the net profit is equal to the expected

return of the next most attractive vehicle (economic opportunity cost). In

this example, the manager can purchase an order equal to 15% ADV

resulting in a net profit of 201 bp. Purchasing any more than 15% ADV
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will cause the manager’s profit to fall below 200 bp, and then the man-

ager would be better by investing the investing amount in the next most

attractive opportunity and earning the profit of 200 bp. This is shown in

Figure 11.9.

In practice, many portfolio managers may elect to investigate a profit

maximizing strategy that consists of the appropriate allocation of dollars

across both stocks simultaneously.

Alpha Capture Curves
The alpha capture curve is the portfolio manager’s answer to the trader

cost curve. Alpha capture curves provide the maximum quantity of total

alpha that can be achieved (captured) for a given order size. These calcu-

lations follow Equation 11.23 and an example of an alpha capture curve

is shown in Table 11.6 using stock data from Figure 11.9. The left hand

column shows the order size as a percentage of average daily volume.

The columns show the maximum alpha that can be achieved for different

alpha forecasts and time horizons. Similar to the trading cost curves, the

alpha capture curves are specific for the stock and alpha forecast. Alpha

capture curves provide managers with invaluable reference data to deter-

mine the size or dollar value that can be invested into a stock.

Table 11.6 Alpha Capture Curves

Portfolio Manager Profit Curves

Maximum Trading Profit

Alpha over 3 days

% ADV 1% 2% 3% 4%

1% 87 184 282 380
5% 65 156 250 346

10% 45 132 223 317

15% 29 112 201 293

20% 15 95 182 272

25% 2 79 164 253

30% 210 64 148 236

35% 222 51 133 219

40% 232 38 118 204
45% 243 25 105 190

50% 252 14 92 176
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Alpha capture curves provide managers with the following (Table 11.6):

1. Expected alpha capture (profit level) for a specified order size and

alpha forecast. For example, if the manager wants to transact an order

for 30% ADV in a stock where the forecasted alpha is 3% over three

days, the maximum profit (excluding trading costs) the manager can

expect to achieve is 148 bp.

2. It provides the manager with the the maximum order size that can be

traded for a profit. For example, if the alpha forecast is 1% over three

days the manager can trade up to 25% ADV. At 25% ADV the man-

ager will net a profit of 2 bp. Trading more shares will cause the man-

ager to incur a loss on the trade (e.g., the trading cost was higher than

the alpha forecast). If the manager sets out to trade 30% ADV in this

stock they would expect to incur a cost of 210 bp.

3. It provides the manager with the means to determine the appropriate

order size while evaluating the economic opportunity cost of the

trade. For example, following the scenario in Example 6, a manager

whose most attractive investment opportunity is a stock with an alpha

forecast expectation of 3% over three days and second most attractive

opportunity is a stock with an alpha forecast of 2% over three days

could trade up to 15% ADV in the first stock before having to allo-

cate dollars to the second stock. This is shown in Table 11.6. Notice

that for an order of 15% ADV, the maximum trading profit for the

investment vehicle at 3% over three days is 201 bp. Investing any

more than 15% ADV will cause the net profit level to be less than

200 bp (2%). Hence, the manager would be better off investing the

incremental dollars in the next most attractive investment.

Important Note: Alpha capture curves provide managers with a quick ref-

erence for profitability. In our examples above, we only included the one-

way implementation cost of the trade. The expectation in this analysis is

that the manager would hold the acquired position over a longer period of

time. Investors who are looking to take advantage of a short-term trend

and trade in and out of these positions in shorter time horizons will also

need to include the liquidation cost (sell cost) of the trade. If the expecta-

tion is that the market conditions will be exactly the same during liquida-

tion of the order investors can simply double the implementation cost (buy

cost). But if the market conditions are expected to be different during

liquidation than acquisition managers could use techniques provided above

to determine realistic liquidation costs for the order based on their expecta-

tion for market conditions during these times. Yet another reason why

managers need their own market impact models. These expectations can

be incorporated into the optimization process described above.
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Chapter12
Cost Index & Multi-Asset Trading Costs

INTRODUCTION
This chapter is separated into two sections. In the first section we intro-

duce readers to the cost index methodology. In the second section we

introduce techniques for investing and trading across multi-asset classes.

First, cost indexes provide investors with trading cost estimates based on

actual market conditions and aggregated buying and selling pressure

across all market participants. We derive cost indexes for historical and

real-time data sets. These assist investors to improve stock selection,

back-test investment ideas, perform portfolio attribution analysis, critique

algorithms, and hold their providers accountable for performance in real-

time. We also present a market impact simulation experiment that can be

used to evaluate and construct stock specific market impact models. This

simulation technique shows the difficulty in formulating these models

and estimating corresponding parameters at the stock level even when the

true parameters are known. The cost index has become an essential

(if not the most essential) trading cost metric for investors.

We next turn our attention to investing methodologies across different

asset classes. We discuss the trading caveats of trading similar instru-

ments such as equities, exchange traded funds, and futures. For example,

many times a portfolio manager’s investment objective is to acquire a

specified beta exposure to the market or SP500 index. Other times a man-

ager’s objective is to acquire exposure to a different factor or macro eco-

nomic indicator. This is commonly referred to as “Investing in Beta” or

“Investing in Factor Exposure.” The manager determines what the end

goal is but is indifferent as to which underlying instruments are used to

acquire that exposure. We provide techniques to determine how to best

acquire the specified exposure given market conditions and trading costs.

Managers could improve portfolio performance through more efficient

implementation. As we show, many times the optimal portfolio mix will

be an allocation across the three asset types: equities, exchange traded

funds, and futures. The chapter concludes with the introduction of an
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impact model that can be applied across the different markets, regions,

and asset classes. We provide readers with the estimated coefficients by

the different asset classes, and corresponding cost estimates for various

position sizes.

Highlights of the chapter include the following:

� Cost Index

� Historical

� Real-Time

� Back-Testing

� MI Simulation Exercise

� Multi-Asset Class Investing

� Investing in Beta

� Multi-Asset Market Impact Model

COST INDEX
The cost index was developed to assist investors gauge the trading cost

environment and the market’s overall sensitivity to order flow.

The cost index helps portfolio managers understand changing trading

cost dynamics, explain portfolio slippage and tracking error, and also

provides necessary input into portfolio construction models. These

indexes also serve as an important input factor when back-testing invest-

ment ideas. The cost index assists traders evaluate broker performance

and algorithms, and also provides a real-time cost metric based on actual

market conditions and overall buying and selling pressure in the stock.

This provides traders with a valuable reference point to hold their provi-

ders honest during the chaotic trading day.

The cost index can be defined across market capitalization categories

such as large cap and small cap stocks, and also in different global

regions, markets, and countries, as well as for individual stocks and other

financial instruments. The cost index can also be customized for any

individual benchmark, market index, or other type of investor need. Cost

indexes have been previously studied by Kissell and Tannenbaum (2009)

and Kissell (2006).

In the industry, there are numerous performance based indexes such as

the SP500 and Russell 2000 that provide insight into market movement

and value, and numerous volatility indexes such as the VIXs (SP500)

and RVX (R2000) providing insight into market uncertainty and risk.

Our cost index is intended to provide investors with an indication of the
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trading cost environment. But unlike performance and volatility indexes,

the cost index is dependent upon order size and trading strategy, in addi-

tion to actual market conditions. But it is entirely possible to report trad-

ing costs on a normalized basis.

How is the cost index constructed?

The cost index is constructed based on actual market conditions (volumes

and volatility) and corresponding market impact parameters. This differs

slightly from forward looking pre-trade estimates based on expected mar-

ket conditions. In situations where the cost index is requested for a histor-

ical time period such as the previous five years the calculation is based

on the actual market conditions over those five years and the correspond-

ing point-in-time market impact parameters. If the market impact para-

meters are updated weekly the construction of the index will require five

years of weekly market impact parameters. Notice that this is similar to

the calculation of an index such as the SP500 index which requires the

adjustment factor for changing index membership. Here the adjustment

factor changes whenever there is a change to the index membership as

well as when there are corporate actions affecting the valuation of the

index. Many managers have begun maintaining a history of market

impact parameters on a daily basis.

Cost Basis
The underlying basis for the cost index can be constructed in various

ways depending upon the investment needs of the fund. The three most

common are size, dollar value, and share quantity. In addition to the cost

basis the cost index is dependent upon the corresponding implementation

strategy. These are described below.

Size. Trading costs are computed for a specified trading rate such as 10%

ADV. This is the most common representation of the cost index. A size

metric is often preferred because it serves as a nice comparison point

across stocks and across time. But if the stock has exhibited an increase

or decrease in volumes, the size metric would no longer be a consistent

basis because these share quantities would not be constant over time.

Dollar Value. Portfolio managers often request the cost indexes to be con-

structed for a specified dollar value such as $10 million for a single order

or possibly $100 million or more if investing in an index or portfolio.

Many portfolio managers have set dollar amounts to invest each month

and are interested in the cost to transact that dollar quantity and how those

costs have evolved over time. One limitation of using a dollar value,
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however, is that the actual shares to transact are dependent on price levels.

For example, investing $10 million when prices are high will results in

fewer shares to purchase and lower cost and investing $10 million when

prices are low will result in more shares to purchase and higher costs. The

price level will cause the trading costs to be higher or lower even if the

investment value and market conditions remain unchanged.

Shares. The share quantity cost basis is most often used when computing cost

indexes for individual stocks. This works well for the individual stock and

trading over time since it is not dependent upon overall volume levels, but it

makes it difficult to compare the cost of trading across different stocks with

different prices. For example, a one million share order of IBM represents a

fairly large percentage of overall daily trading volume but a one million share

order of MSFT represents a much smaller percentage of daily trading volume.

Therefore, these costs will likely be much different for the same share quan-

tity. This is helpful for managers evaluating the acquisition cost of a position

and a future liquidation cost for the same number of shares.

Cost Strategy
When constructing the cost index we must also specify the underlying

trading strategy. For example, a passive strategy (e.g., VWAP) will incur
lower costs than an aggressive (e.g., POV5 20%). It is important when

we calculate the cost index that we use a constant strategy for consistency.

The cost index for 2012 is illustrated for two different scenarios. Figure 12.1

illustrates the trading cost index in 2012 for an order size of 10% ADV
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executed via a full day VWAP strategy for large and small cap stocks. The

index was computed based on average stock volatility in each category in

each month and the corresponding market impact parameters. This index

shows how actual costs for this order size change from month to month and

also shows the difference in trading costs between large and small cap

stocks. Our large cap index was in the 20 �25 bp range for the majority of

the year. The small cap index was in the 40�50 bp range over the year but

spiked as high as 50 bp in November 2012. The spike in the index in

November 2012 was much more dramatic for small cap stocks than for large

cap stocks. A short-term cost index such as this helps portfolio managers

perform portfolio attribution to understand tracking error and the trading

cost environment. It also allows portfolio managers to analyze whether the

missed alpha was due to poor stock selection or inferior trading, or whether

it was due to unavoidable market conditions.

Some portfolio managers have requested the cost index to be computed

based on the I-Star expression without incorporating the strategy or based

on an optimized cost index incorporating market impact and timing risk.

These strategies are:

I-Star Index (without strategy):

I� 5 a1USizea2Uσa3 ð12:1Þ

Optimized Cost Index:

Min ℒ5MI1λUTR ð12:2Þ

The advantage of using the I-Star calculation (Equation 12.1) is that it is

not strategy dependent and so provides managers with a fair comparison

of trading costs over time which then can be mapped to any investor

strategy. The difficulty is that this value is a proxy for the instantaneous

trading cost (ultra-aggressive) and will thus provide cost estimates much

higher than will be realized in the market. It works well, however, if used

to normalize the change in cost across time (see below).

The advantage of the optimized cost metric (Equation 12.2) is that the

cost reflects both market impact cost and timing risk so it also provides

investors with a measure of cost and trading difficulty (uncertainty). The

difficulty is that this metric will tend to be higher than the expected mar-

ket impact cost of the trade since it does add the timing risk expression

to the total value. Investors further need to specify the risk aversion

parameter λ. In this case, investors should use the corresponding MI esti-

mate at the optimized solution.
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Normalization Process
As indicated above, there are some difficulties with the I-Star and opti-

mized cost index derivations. Mainly, these metrics will overstate the

cost to trade because they either indicate the ultra-aggressive trading cost

or incorporate an extra term (timing risk) into the estimate. For example,

if the expected cost of a trade is 206 50 bp the expected cost is 20 bp.
If we quote a cost of 70 bp we would be overstating the true expected

cost. In these cases, these derivations are often normalized based on a

base time period with a value of 100. Costs are then scaled up or down

based on the actual cost metric.

For example, if we set the index in Jan. 20125 100, then a cost index of

105 would indicate that costs are 5% higher than in Jan. 2012 and a cost

index of 95 would indicate that costs are 5% lower than Jan. 2012. As

we show below, the normalized cost index is extremely useful for funds

to construct and customize their own historical cost index series.

The cost index normalization process is as follows:

� Start with the trading cost calculation such as that in Equation 12.1 or

Equation 12.2 and compute this cost metric over the required period.

� Select the base time period. For illustrative purposes we set Jan. 2012

to be our base month (e.g., Jan. 20125 100).

� Compute the normalized cost in each period following:

Normalized CostðtÞ5 I�ðtÞ
I�ðJan 2012Þ ð12:3Þ

Figure 12.2 illustrates the normalization process using the I-Star cost cal-

culation for large cap stocks. We compute the I-Star cost in each month

based using an order size of 10% ADV and then normalize based on Jan.

2012 as the base year. That is, Jan. 20125 100. The normalized cost index

can be constructed for different sizes or by dollar value or share quantity.

Portfolio managers are often interested in the cost of trading different

size orders such as 5% or 25% ADV or trading via a different strategy

than was used in the historical index calculation. These costs could vary

greatly from the cost computed for 10% ADV. In these situations, man-

agers have a few options available. They could recreate the cost index

for the specified order size and market conditions. But computing the

cost index for the desired order size over the required time period could

become a very time consuming exercise, especially if the portfolio man-

ager wishes to evaluate several different order sizes and various different

strategies, as well as a large number of potential stocks.
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An alternative approach is to construct the cost index for the desired time

period using the current trading cost for the specified order size and adjust-

ing for the normalized index value. For example, suppose the manager is

interested in the cost of trading an order of 20% ADV with a POV5 25%
strategy. The current trading cost for this order is 51 bp, and the current and

previous month’s normalized index are 105 and 95 respectively. From the

normalized cost index we estimate that the trading cost in the previous

month was 95/1055 0.90 or 90% less. Therefore, the expected cost for

trading 20% ADV via POV5 25% is 95/105*51 bp5 46 bp.

The normalized cost index provided the necessary information to recreate

historical trading costs without the need to reconstruct the index for this

size and strategy. Furthermore, we did not need access to historical mar-

ket conditions or market impact parameters since this information was

already embedded into the normalized cost index time series.

The backwards-propagation process can be generalized as follows:

Trade Costðt2 k; Size; POVÞ5Current Trade Costðt; Size; POVÞ

�Normalized Indexðt2 kÞ
Normalized IndexðtÞ

ð12:4Þ

Where Trade Costðt2 k; Size;POVÞ is the historical cost at time t2 k for

the specified Size and POV , and Current Trade Costðt; Size;POVÞ is the

current trading cost at time t for the identical Size and POV rate. The

current trading cost is estimated via the preferred market impact model

(e.g., see Chapter 5 or Chapter 11).
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This approach has been found to be extremely useful for investors look-

ing to evaluate market trends and to evaluate the performance of their

brokers and algorithms. Furthermore, it has proven extremely valuable

for portfolio managers performing portfolio attribution and evaluating

potential investment opportunities.

Customized Indexes
There are many times when portfolio managers need customized cost

indexes for specified indexes, such as market capitalization, growth/

value, sector, country, or specific stocks, etc. These cost indexes could be

constructed using size (% ADV), dollar value, or share quantity as dis-

cussed above, as well as for a specified implementation strategy defined

by the portfolio manager.

Each of these customized cost indexes can be constructed providing we

have the required data, such as the normalized cost index described

above, or historical market impact parameters and corresponding market

conditions. We discuss three customization approaches for developing

cost indexes below.

Actual Trading Costs. Many times portfolio managers are interested in

historical costs for their specific trading style and investment strategies.

As mentioned, these costs can be used for portfolio attribution as well as

to assist managers improve future stock selection. In this case, portfolio

managers can follow the approach described above and back-propagate

their current trading costs using the normalized cost index. This is a very

efficient and accurate estimate of the historical trading cost environment

for portfolio managers whose investment styles and trading strategies

will be similar over these periods.

Reconstruction. Portfolio managers at times will need to understand his-

torical trading costs for investment styles that may be different from the

investment styles and/or trading strategies they are currently using. This

could be used for portfolio attribution or peer group comparison, or more

likely, to investigate the profiting opportunity from a different portfolio

construction approach via back-testing and simulation. In these situations,

portfolio managers will recreate the historical cost index for the specific

market conditions and specified orders. This requires managers to have

access to not only the historical cost index but also the underlying histori-

cal market impact parameters.

Stock Specific Indexes. There are times when managers wish to analyze

or back-test trading ideas on a per stock basis. To do so historically we
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would simply apply the historical market impact parameters and stock

specific trading characteristics to compute the historical trading cost. But

many active managers require a finer market impact estimate in order to

differentiate cost across companies more than is possible from stock vola-

tility and market cap. These are the active managers who are seeking to

uncover superior investment opportunities through fundamental analysis

using the company’s balance sheet and accounting data. In these cases, it

would be appropriate to correlate or define the market impact sensitivity

parameter a1 with company fundamentals to try to establish a relation-

ship. Then, as long as we have historical company specific fundamentals,

we can determine a stock specific trading cost sensitivity parameter. In

Chapter 5, Estimating I-Star Model Parameters, we analyzed the error of

the estimation model and showed that the error term is positively corre-

lated with spreads, beta, and tracking error, and negatively correlated

with log of market cap, and log of price. Thus these data relationships

could be a very good starting point to estimate a stock specific sensitivity

parameter. It is very important to point out here that this is a very time

consuming and very data intensive exercise.

The question that often arises is, “Would it be better to construct stock

specific market impact model?” Unfortunately, stock specific models are

extremely difficult to uncover due to the nature of the data. For many

stocks, price movement is dominated by the general market movement,

volatility, and company news. Market impact for many stocks only has

the dominating price effect if the order size is significant enough to dom-

inate market movement and volatility. Additionally, many of the studies

that uncover a stock specific relationship are not necessarily incorrect,

but analysts will find it extremely difficult to establish a stock specific

model across all stocks in all markets.

We encourage suspicious readers to test the validity of these findings.

And to assist in this process, we outline a single stock market impact

simulation exercise that can be used as the foundation for testing market

impact modeling approaches later in the chapter (Market Impact

Simulation).

REAL-TIME COST INDEX
A real-time cost index provides investors with the expected trading cost

given actual market conditions and aggregated market imbalance. This

metric combines actual volume patterns, volatility, and buying and selling

pressure across all investors, and determines the fair value market price

for these conditions. It is important to point out here that the derivation

403Real-Time Cost Index



of the real-time cost index is not based on a specified order size. It is

derived from aggregated (estimated) overall buying and selling pressure.

The real-time cost index provides investors with the expected cost they

should have incurred by trading over the specified trading horizon.

For example, if the customer buy order size is 5% ADV but there are

additional incremental buyers in the market comprising an additional

30% ADV in aggregate, market impact will be representative of an order

of 135% ADV not 15% (e.g., 130%1 5%5 35%). If the customer

buy order is 5% ADV but there are incremental sellers in the market

comprising an additional 230% ADV in aggregate then market impact

will be representative of an order of 225% ADV and not 15% ADV

(e.g., 230%1 5%5225%). Actual impact cost is a function of aggre-

gated market imbalance and actual market conditions.

Traders can use real-time cost indexes to measure and evaluate trading

performance in real-time and hold their broker’s accountable for trading

decisions before the end of the day and while they still have time to

revise the trading strategy or change algorithmic parameters. Portfolio

managers can use these metrics in an attempt to uncover a mispricing or

other potential profiting opportunity.

Let us examine how a real-time cost index can provide insight to hold

the broker accountable. Suppose the broker provides a pre-trade cost

estimate of 30 bp for the order. But by 1:30 p.m. the cost is already at

80 bp and is 50 bp more than quoted. So the typical scenario is for the

buy-side trader to call the broker and ask why the cost is so much higher

than the pre-trade estimate. The typical conversation that often follows is

that the sell-side trader quotes to the buy-side trader that volatility is up,

there is less volume and the market moved away or from us. While all

of this may be true, it still does not address whether the 180 bp was jus-

tified for these market conditions. The question that should be asked

here is: what should the cost be given higher volatility, less volume, and

adverse market movement? Should the actual cost given these conditions

only be 60 bp and not 80 bp, which would imply that the broker is pro-

viding sub-par performance by 20 bp, or should the actual cost in these

conditions be 120 bp, in which case the broker would be adding value

by 40 bp?

The real-time cost index will provide the expected trading cost given these

market conditions and actual aggregate buying and selling pressure. Buy-

side firms can easily quote these metrics and push their brokers to do a bet-

ter job in explaining the issues surrounding actual trade performance.

“Volatility is up and the market moved away” simply won’t cut it anymore!
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Another example for the usefulness of the real-time cost index is its

application to critique the VWAP price. For example, suppose the fund

achieved the VWAP price over the trading period but the VWAP price

was 50 bp higher than the arrival price. The cost index will tell us if the

50 bp cost was the appropriate cost given market conditions and aggre-

gated buying and selling pressure, or if the broker achieved the VWAP

price by trading aggressively and pushing the price up.

Portfolio managers, on the other hand, can use real-time cost indexes to eval-

uate buying and selling opportunities. By analyzing pressure in the stock and

market conditions, managers can determine whether the price is too higher or

too low and whether a short-term reversal is likely to occur. These are just

some of the high frequency strategies being tested by many managers.

Figure 12.3 illustrates the real-time cost index for AAPL on April 4,

2012 as of 1:30 p.m. The top graph shows the real-time trading cost
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based on actual market conditions and aggregated buying and selling

pressure from the open through 1:30 p.m. The bottom graph shows the

corresponding (estimated) cumulative buy-sell imbalance in the stock

over the same period of time. We used the I-Star model and correspond-

ing parameters from Chapter 5 to compute these costs. The buy-sell

imbalance was computed from tick data following the modified Lee &

Ready tick rule. Then based on market conditions, volumes, volatility,

and the buy-sell imbalance we are able to compute the trading cost. The

graph shows that there was early buying pressure in the stock that pushed

the trading cost up but the buying pressure was short lived. There was a

subsequent sell-off in the stock beginning at around 10:15 a.m. continu-

ing through about 1:15 p.m. causing prices to also decline.

The real-time cost index provides investors with a metric that can be

used to measure the performance of their broker in real-time.

Furthermore, this metric is transparent and can be verified by both par-

ties, and computed over any specified time period used for the trading

horizon. Brokers can no longer hide in the shadows and provide vague

and elusive responses when questioned about their trading performance

in real-time. The real-time cost index has leveled the playing field for

buy-side and sell-side firms.

The most important aspect here is that it allows both broker and investor

to better partner and determine when it is most appropriate to change

intraday strategies and revise algorithmic trading parameters.

Figure 12.4 illustrates the end of day real-time cost index for AAPL dur-

ing April 2012. The top graph shows the end of day real-time cost index

given actual market conditions and buying-selling pressure. This is the

cost an investor trading over the full day was expected to incur based on

what actually occurred in the market conditions over that horizon. In

actuality, the real-time cost index can be computed for any intraday time

period. The bottom graph shows the estimated buy-sell imbalance on the

day expressed as % ADV.

This metric can be used to further evaluate trader, broker, and algorith-

mic performance since it incorporates actual market activity. This mea-

sure can assess whether the VWAP price on the day was reasonable

given market activity. Money managers have been using these metrics to

determine whether there is any persistence of order imbalance in any

stocks over time, which could signal a mispricing due to the market

impact cost (here we have temporary impact disguised as permanent)

with likely trend reversion. Money managers who uncover these signals

could potentially earn a short-term profit.
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Another way that daily imbalance data is being used by traders is in con-

junction with index changes. Often the expected index change is known

in advance, although the exact number of shares in the index and weight-

ing may not be known until the announcement date. The annual Russell

Index Reconstitution is a primary example of when the index changes

could be pre-traded. The daily cost index is a key tool to help determine

if the change has been overtraded on the actual reconstitution day.

Changes that have been overtraded are likely to be those trades that have

“gone the wrong way” on reconstitution day. That is, the adds to the

index fall in price and the deletes from the index increase in price.

The error that we have seen most often with regards to the cost index and

index changes is that brokers and vendors use the same market impact para-

meters as with normal non-event trading days. For index reconstitution,

investors are best served with a set of impact parameters specific to the index

event.
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Back-Testing
Money managers will often construct portfolios via optimization pro-

cesses. To help in the construction process these same managers will

often run numerous studies testing different ideas, how prices react to dif-

ferent sets of factors, and how these portfolios perform under various

market conditions. Interest lies not only in which companies will outper-

form or achieve excess returns, but rather how stocks will perform com-

pared to different factors.

Quantitative managers spend much time and energy testing, re-testing,

and verifying ideas and ensuring the uncovered relationships are statisti-

cally sound before settling on the preferred portfolio. Often this requires

the investment ideas to be tested over a very long horizon, such as twenty

to thirty years, or possibly more if data is available.

All too often, unfortunately, portfolio managers find a strategy works well

in the back-testing analysis but once it is put into production the strategy

does not achieve the expected level of return or worse case loses money.

Why does this happen you ask. Well the primary reason is due to the

implementation cost of the strategy. Costs are often much higher in reality

than expected or planned. Of course, some of this is driven by the quant

managers themselves. Quantitative managers do a great job at uncovering

opportunities, but unfortunately all quants seem to find the same opportu-

nities at the same time. This increases the buying and selling pressure in

the stocks, leading to a higher cost. For example, if the manager’s order is

5% ADV it is more likely that the group of quantitative managers will

exert buying pressure in the stock close to possibly 50�75% ADV or

more. This leads to higher trading costs in reality than would be reflective

of the 5% order and could lead to reduced profits or losses. But it is also

due to managers often using an unrealistic transaction cost estimate such

as 20 bp or possibly just one half of the spread.

Another issue that could potentially arise is one where the manager

deems the trading cost is too expensive and offsets the incremental alpha.

Thus, the manager would abandon this strategy because they believe it

would be unprofitable. However, many times managers are using histori-

cal costs that are too high or do not properly reflect today’s trading envi-

ronment. For example, it is possible that if we traded the same list

historically based on today’s market structure (decimals, algorithms, etc.)

the transaction cost would be much lower than we expect thus making

the strategy profitable. If the manager does not include a realistic trading

cost expectation in their back-testing environment it may cause them to

abandon a potentially profitable investment idea.
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To combat these situations where managers incur a loss due to unex-

pected high trading costs or abandon a strategy that seems unprofitable

due again to inaccurate transaction costs, managers are back-testing

investment ideas using historical cost index series.

The important part of the cost index is to provide the historical trading

cost based on today’s market structure conditions not on the historical

structure. For example, in the early 1990s the market was trading in 1/

8ths or really 1/4s according to the odd-eighths paper of Christie and

Stoll (1994). Let’s take a look at what has happened since then. The

market changed from the 1/8th quoting system to one of 1/16ths (tee-

nies), the SEC order handling rules came into play, decimalization,

algorithms, Reg-NMS, growth of electronic trading venues and the pro-

liferation of dark pools, and now having ten, twelve, or more displayed

venues compared to only two mutually exclusive exchanges, NYSE and

NASDAQ.

All of these regulatory changes have dramatically improved the effi-

ciency of our financial markets and reduced trading costs. Therefore,

when we back-test using trading costs our goal is to construct a back-

testing cost index series based on the costs that would have occurred his-

torically based on today’s market structure and trading environment, not

what actually occurred back then. We use today’s market structure

because we do not want to miss out on an opportunity that would not

have been profitable during yesterday’s market structure, but given

today’s market environment the strategy is greatly profitable.

To assist managers resolve these issues and potentially uncover additional

investment opportunities, we constructed a cost index based on today’s

market structure and the historical market conditions. This is shown in

Figure 12.5 for US large cap stocks. Our cost index covers the periods

from 1991�2012 (22 years). The cost index shows costs gradually

decreasing over the 1990s but spiking in the late 1990s (Latam Crisis)

and beginning of the tech boom with increased volatility. Costs remained

at higher levels with large fluctuations until the tech bubble crash in

March 2003. Cost then remained low through the quant crisis and dramat-

ically spiked during the financial crisis, flash crash, and again during the

US debt crisis. Quantitative portfolio managers could suffer large losses

if they use a constant trading cost such as 20 bp to enter and exit posi-

tions. Many times a strategy appears profitable due to lower modeled

costs, but these are the strategies that suffer the largest losses when

implemented. This cost index could also result in portfolio managers

finding that a strategy that would not have been profitable due to the
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spread size of 1/8th or 1/4 in the 1990s many now only incur a trading

cost of a few cents and result in a profitable strategy.

These historical cost index series could be used in conjunction with a

portfolio manager’s current costs to determine an appropriate customized

series via our back-propagation technique (Equation 12.4).

Market Impact Simulation
In this section we present a market impact simulation experiment to

highlight the difficulty in developing stock specific market impact mod-

els. The approach also presents techniques that can be used by investors

to test and evaluate different types of financial models, not just market

impact models. The techniques are centered around simulating market

conditions and prices following a defined model and model parameters.

The exercise then sets out to estimate the model parameters based on

the simulated data. If the process can uncover the “true” parameter

values then the modeling and estimation approach is reasonable.

Otherwise, even if the model is perfect, the difficulty in estimating

model parameters may cause the approach to be unusable. Remember in

this case that, since we are simulating data based on a specified model,

the “true” parameters are those parameters that were used to simulate

the data.
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How difficult is it to derive a stock specific market impact model? In

Chapter 5 we discussed techniques to derive a general equation market

impact formula and a universal set of parameters across all stocks

ða1; a2; a3; a4; and b1Þ. Since this model incorporates stock volatility and

stock ADV into the formulation it in a way provides different estimates

across stocks. But recall the last part of the chapter where we uncovered

a relationship between stock errors and company fundamental data. We

found strong evidence that market impact is negatively correlated with

log of market cap and log of price, and positively correlated with beta,

spreads, and stock specific risk (tracking error). This finding suggests

that we might still be able to improve our results at the stock level by

including these data. But then why not simply calibrate a stock specific

model similar to how we have stock specific volatility and beta esti-

mates. The short answer is that we simply do not have enough data

available. Price movement is often dominated by market movement,

market noise (volatility), and buying and selling pressure from all other

investors. This makes it very difficult to uncover stable statistical rela-

tionships between price movement and customer orders.

To illustrate the difficulty associated with estimating stock specific

parameters let us examine the estimation process using simulated data1.

We know that one of the biggest drawbacks with market impact estima-

tion is the “Heisenberg uncertainty principle of trading”; that is, we can

only observe the price trajectory with the order or the price trajectory

without the order—not both. Therefore, we are not able to accurately

determine price movement caused solely by the order. Well this is cer-

tainty true in reality. But let’s take a step back for a moment. Suppose

that we do know the exact relationship between price movement and

buying and selling pressure of a trade. Then we can simulate trade data

and test our market impact estimation approach on the simulated data to

determine if we have an accurate estimation technique. The important

point to keep in mind is that stock price is driven by many factors such

as stock specific alpha, general market movement, impact from the

order, buying and selling pressure from other participants, and price

volatility. If we know exactly the relationship between price impact and

buying-selling pressure we can simulate a market impact data series,

and then test our model against that simulated series to determine if our

modeling approach is able to uncover the true relationship.

1A variation of this exercise was previously given to my Cornell University Financial

Engineering graduate students as a final project, and it does a great job to highlight the

difficulty in constructing stock specific parameters.
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Analysts are encouraged to duplicate these simulation tests with differ-

ent order sizes, volatility, liquidity, and market impact sensitivity to

observe the difficulty with calibrating a stock specific model. Then

repeat the same experiment for a group of stocks, say 100 plus stocks,

and then again with say 500 stocks. A pattern will start to emerge.

Simulation Scenario
Stock RLK. Current price P0 5 $50, annualized volatility σ5 30%, the

stock trades 1,000,000 shares per day. The customer order will consist of

order sizes from225% to125% ADV. The average trade size is 200 shares

per trade and the distribution of trade size is shown below as SharesðtÞ.
Simulate market trades for the customer and all other investors. Let the

total volume traded from all other market participants be equal to one

million shares where the side of the order is randomly assigned (50%

chance of a buy and 50% chance of a sell), and let the customer order

size and side be specified in advance. Then the simulated data is as fol-

lows. Let,

P0 550

SideðtÞ5 11 0:50
21 0:50

�

Customer SideðtÞ511 ðbuy orderÞ

The customer order side is specified in advance:

SharesðtÞ5
0:90 100
0:06 500
0:03 1000
0:01 5000

8>><
>>:

Avg Share Size5 200

Number trades during the day5 5000

ADV5 1;000;000

MIðSharesðtÞÞ50:0000025USharesðtÞ

For a 20% order size on a stock that trades one million shares per day,

this market impact cost will be equivalent to 40 bp (and is consistent

with our findings in Chapter 5). For simplicity, we assume a linear

impact relationship but analysts are encouraged to try various formula-

tions of the impact model.
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Beta5 1

σmarket 50:20

σstock 50:30

σε 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:302 20:202

p
Rm 5 simulated market returns following random walk with 5000 trades

in the day with volatility scaled for one day and one trading period, i.e.,

σmarket Per Trade Period5 0:20U
1ffiffiffiffiffiffiffiffi
250

p U
1ffiffiffiffiffiffiffiffiffiffiffi
5000

p

The simulation process is as follows:

Step 1. Specify the customer order size and side. For example, in itera-

tion 1 specify a buy order for 200,000 shares of RLK. This

represents 20% ADV and will consist of approximately 1000

customer trades since stock RLK has an average trade size of

200 shares. Analysts performing this simulation exercise will

change the order size and side in each iteration.

Step 2. Simulate 5000 trades from other market participants and the

number of trades from the simulated order. Sequence the cus-

tomer trades throughout the day following any preferred method-

ology. For example, sequence customer trades over the day

following a VWAP strategy or an aggressive front-loaded strat-

egy. Customer order trades should be alternated with market par-

ticipant trades in a random fashion but following the specified

strategy. We encourage analysts to experiment with various

sequencing schemes to simulate different trading algorithms. For

the first iteration there will be 6000 trades in total: 5000 from

other market participants and 1000 from the customer order.

Step 3. Simulate market prices for these orders:

Pt 5Pt21 1 ðMIðSharesðtÞÞUSideðtÞÞ20:95UðMIðSharesðt2 1ÞÞ
USideðt21ÞÞ1BetaURm 1 ξt

where ξtBNð0;σεÞ and t5 1 to 6000. Notice that in the formu-

lation above we add in the full market impact of the trade and

subtract 95% of the impact from the previous trade. This

accounts for the dissipation of temporary impact—we assume an

immediate dissipation of 95%. The 95% factor is consistent with

our findings in Chapter 5. Readers are encouraged to experiment

with various different temporary percentages and market impact
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sensitivities. Also notice that the side of the order for the cus-

tomer will be either 11 or 21 in the full iteration depending if

the side was specified to be a buy order or a sell order respec-

tively. The side of the order from all other market participants

will be randomized (50% chance the trade was initiated from a

buy order and 50% chance the trade was initiated from a sell

order). The side of the order in our example only affects the

market impact cost of the trade.

Step 4. Compute the average execution price of the customer’s trade

using the simulated price data above.

Step 5. Compute the customer trade cost as the difference between the

average execution price and the starting price (adjusted for the

side of the order).

Step 6. Repeat this experiment 22 times (one month of data) changing

the customer’s order size and side designations in each iteration.

Step 7. Plot the customer’s trading cost on each day as a function of

order size.

Step 8. Estimate the market impact sensitivity for one month of data

and observe how close the estimated value is to the true value.

Step 9. Repeat this experiment several times to mimic several months of

data. For each month estimate the market impact sensitivity.

Analysts are encouraged to perform these simulation exercises changing

the variables above such as the temporary impact dissipation rate, market

participant side parameter, total volume on the day, beta, volatility, etc.

This will further highlight the difficulty in uncovering the true relation-

ship between market impact and customer order size.

Figure 12.6 illustrates the above simulation exercise for one month (22

trading days) of data. The order sizes range from 0% to 25% ADV. But

the relationship we uncovered from the data indicates that cost and size

are negatively related which would suggest that larger order sizes have

lower costs. The reason we have difficulty in uncovering a relationship

between customer order and impact is, as mentioned previously, actual

price movement is often dominated by stock alpha, market movement,

buying and selling pressure from other market participants, and volatility.

Readers who carry out this simulation exercise are sure to have a difficult

time estimating accurate market impact sensitivities using the customer

order. In addition, this exercise also shows how unstable these parameters

could be month to month (readers are encouraged to simulate several months

worth of data and estimate parameters in each month). Notice that we used a

very simple market impact model above and very basic assumptions and we
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still encountered difficulty. With a more sophisticated model it would be

even more difficult to obtain accurate results. But if we simulate data for a

universe of stocks (e.g., for 500 stocks) over a month we will see a pattern

begin to emerge, even when using stocks with different volatilities and differ-

ent average daily volumes. Suspicious readers are encouraged to duplicate

the analysis outlined above. This should convince our doubtful readers.

MULTI-ASSET CLASS INVESTING

Investing in Beta Exposure and Other Factors
Many times portfolio managers are interested in acquiring a specific mar-

ket exposure, and the actual holdings in the portfolio are not as important

as long as the portfolio achieves the desired exposure level. For example,

managers looking to acquire exposure to the general market index—

SP500—have several different investment vehicles. They could invest in

the underlying stocks, they could purchase an exchange traded fund, or

they could construct a portfolio comprised of futures contracts on the

SP500. In all of these cases, the manager’s portfolio will have the same

beta exposure and the same underlying growth characteristics. Therefore,

from the perspective of investor utility, portfolio managers should be

indifferent as to which portfolio they actually hold.

The only difference in returns across these portfolios then should be due

to the implementation cost of acquiring the asset and any corresponding

y = –668.09x + 76.141
R2 = 0.1339
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■ Figure 12.6 Single Stock Market Impact Simulation.
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management fee. To achieve the highest returns possible, managers need

to understand the cost structure of each asset, and choose the most cost

effective path to gain the desired exposure.

Example:

A portfolio manager looking to gain exposure to the general market index

can purchase either stocks, exchange traded funds, or futures. How

should the manager determine the best approach to acquire the exposure?

Based on what we have observed in practice, stocks often have the lowest

cost for smaller sizes, followed by exchange traded funds for slightly

larger sizes, and then futures for the largest sizes. This is illustrated in

Figure 12.7a. In this example, stocks are the most inexpensive option for

investment dollars up to $250 million. Exchange traded funds are the

most inexpensive investment vehicle for investment dollars from $250

million to $667 million. And futures are the most inexpensive for invest-

ments of $667 million and higher.

Note: These values and breakpoints are for illustration purposes only

based on data from 2011. Investors need to apply techniques provided

in this chapter to determine the exact break points for today’s market

conditions.

What causes these differences across investment vehicles?

Equities: Equities often have the lowest implementation cost for smaller

dollar values but these costs increased at the fastest rates. Equity trading

costs tend to increase at the fastest rates because buying or selling pres-

sure often causes market participants to believe that the excessive trans-

action pressure is due to a mispricing of the stock price or due to

changing company fundamentals that have not yet been fully dissemi-

nated into the market. The corresponding price change then often attracts

momentum players and active managers hoping to achieve a short-term

trading profit which further impacts the stock price.

Exchange Traded Funds: ETFs tend to have initial trading costs (inter-

cept term) higher than the underlying stocks. This is primarily due to the

trading cost corresponding with acquiring the position (similar to stocks)

and also the management fee charged by the ETF fund manager for

maintaining the appropriate ETF portfolio. ETF trading costs, however,

increase at a slower rate with investment value than the underlying stocks

due to shadow liquidity. Shadow liquidity refers to the potential trading

volumes from market participants who stand ready to buy or sell shares

in an ETF if there is a mispricing in the market. As soon as the ETF price
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is pushed too high or too low compared to the underlying securities these

market participants jump in and perform a statistical arbitrage type func-

tion. If these participants can acquire the underlying stocks at a lower

price than the ETF they will buy the shares and sell the ETF. If the ETF

price is lower (due to selling pressure) than the price of the underlying

securities these participants will buy the ETF and sell the stock. In the-

ory, they will have a net zero risk position and will profit from the differ-

ence in prices. Since the acquired position is hedged—they have the

exact same long and short exposure—they can trade out of both positions

passively over time without incurring high trading costs and lock in a

profit. Additionally, ETFs can often increase or decrease the number of

its outstanding shares through creation and/or redemption. This differs

from company stock that has a constant number of shares outstanding. In

these cases, portfolio managers can purchase the underlying ETFs in the

market if there are sufficient sellers, and if not, they can purchase the

underlying equity shares and create the ETF. Alternatively, portfolio

managers could sell the ETFs in the market if there are sufficient buyers,

and if not, managers could redeem the shares and sell them in the

market.

There is often a fee corresponding to the creation and redemption process

but in these cases the fee would still be less than the incremental market

impact cost for attracting necessary counterparties. The last point worth

mentioning here is that ETFs do not suffer the same information content

as stocks since ETF transactions are more likely believed to be due to a

macro event rather than any specific company event. If there is a large

buyer or seller of a stock it is more often believed to be due to company

specific information such as a mispricing, undervaluation, or simply

changing company fundamentals that have not yet been fully dissemi-

nated into the market.

How does this affect the ETF volumes in the market impact model?

Since ETFs have corresponding “shadow” liquidity, analysts will often

use a higher volume estimate than is reflected in the data. Some analysts

may apply an adjustment factor, e.g., 1.5, and some analysts may attempt

to measure total potential volume that could be used to create and redeem

shares from the underlying stock volume data and corresponding weights

in the ETF.

How about ETF market impact price sensitivity? The price sensitivity

expression in the ETF market impact model a1 is often higher than the

stock model price sensitivity parameter. This is because the ETF volatil-

ity is lower due to diversification (e.g., market risk only) whereas stock

418 CHAPTER 12 Cost Index & Multi-Asset Trading Costs



volatility is comprised of both market risk and company specific risk.

The ETF price sensitivity a1 parameter needs to be higher to avoid a

potential arbitrage opportunity. For example, suppose volumes are identi-

cal across stocks and ETF (we are ignoring shadow liquidity here for

simplicity). If the manager invests the same dollar amount in the ETF or

in the underlying stock portfolio (following the same weightings) the

trading costs should be the same. But since the ETF volatility will be less

than the weighted stock portfolio the market impact model will estimate

lower costs for the ETF than the portfolio of stocks. To correct for the

mispricing, a proper ETF market impact model will need to have a higher

sensitivity term as follows:

a1ETF 5 a1StockU
w0σ
σp

� �a3

where w0σ is the weighted volatility of the ETF portfolio and σp is the

ETF portfolio volatility incorporating all covariance and correlation

benefits.

Futures: The initial cost of trading futures is usually the highest com-

pared to ETFs and equities. The reason is primarily due to the roll cost

associated with purchasing the next futures contract at the time of the

contract expiration. Managers who maintain a portfolio of futures con-

tracts will need to continuously purchase the next contract. This creates a

recurring cost. An advantage of trading futures is that the contract sizes

are usually extremely large in size and trading costs increase at the slow-

est rate compared to ETFs and equities. Investors will transact in futures

for various reason. First investors purchase futures to hedge positions.

Second, managers purchase futures contracts often for speculation. Third,

investors have begun investing in futures portfolios due to the cost advan-

tage they provide for very large orders. All of these investment reasons

provide a great deal of liquidity for futures contracts and result in lower

incremental trading costs.

Beta Investment Allocation
A common misconception with beta allocation investment strategies is

that the portfolio manager should purchase only a single investment vehi-

cle to achieve their exposure. For example in Figure 12.7a we found that

equities are the most cost efficient vehicle if dollar value is less than

$250 million. ETFs are the most cost effective vehicle if dollar value is

between $250 and $667 million, and futures are the most cost effective if

dollar value is greater than $667 million. But this is only true if the
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portfolio manager can only invest in a single asset. Managers, however,

can incur lower trading costs if they allocate investment dollars across all

three alternative options (Figure 12.7b). For example, equities are the

lowest trading cost up to $167 million dollars. For investment values

between $167 million and $500 million managers would be $167 million

in equities and the remainder in ETFs up to $500 million. And after $500

million, the allocation should be $167 million in equities, $333 million in

ETFs, and the remainder in futures. Now the manager could achieve the

same exposure but a lower trading cost.

Figure 12.7c shows the minimum cost allocation scheme compared to the

all-or-none examples in Figure 12.7a. Notice that for values up to $167

million the costs are the same but at higher dollar values the manager is

best served via an allocation schedule as shown in Figure 12.7b

(Table 12.1).

MULTI-ASSET TRADING COSTS
In this section we examine multi-asset trading costs2. We utilize the

I-Star impact model, developed in earlier chapters, to investigate differ-

ences in cost structures across the asset classes, as well as to estimate the

underlying transaction costs for various order sizes. Our analysis across

asset classes found that the I-Star model performed well across both

global equity markets and across the different asset classes, hence, it is

an important decision-making tool for portfolio managers to evaluate

asset allocation, portfolio construction, and best execution trading

strategies.

Table 12.1 Allocation Schedule

Investment Value Allocation

Dollar Value, $167M All Dollars in Equities

$167M#Dollar Value# $500M $167M in Stock, (Dollar Value�$167M)
in ETF

Dollars. $500M $167M in Stock, $333M in ETF,
(Dollar�$500) in Futures

2Scott Wilson, Ph.D. provided much of the early direction and insight in applying the

I-Star impact model to estimate trading costs across various asset classes. He performed

this leading research while an intern at a large pension plan and while completing his

Ph.D. in Economics. He is currently working for Cornerstone Research.

420 CHAPTER 12 Cost Index & Multi-Asset Trading Costs



The market impact model parameters used in our analysis were calibrated

using data over the period 1H2011. See Kissell Research Group (www.

KissellResearch.com) for updated impact parameters3.

Global Equity Markets
The first part of this analysis consisted of evaluating trading costs across

the global equity markets. This included: US Large Cap Stocks (US-LC),

US Small Cap Stocks (US-SC), Canada, Europe, Australia, Hong Kong,

Japan, and China, as well as for Developed Europe, Developed Asia,

Latin America, and the Frontier Markets.

The model parameters were calibrated following the techniques provided

in chapter 5 and using data from 1H2011. We then estimated trading cost

for an order size of 10% ADV executed via a full day VWAP strategy.

We used a constant volatility rating of 25% for all groups to allow for

fair comparison across all markets. As expected, US and Canada large

cap stock trading costs were relatively stable over the analysis period

except for a spike in Aug-Sep 2011 due to the US debt crisis. Canadian

trading costs were stable throughout the period and were not as affected

by the economic issues encountered in the US. Japan and Hong Kong

were the markets with the next lowest trading costs. Both countries had

months in 2011 where impact cost spiked due to changing price sensitiv-

ity caused by economic and political events in the region. Developed

Europe experienced the greatest fluctuation in trading costs throughout

2011 with periods of spiking cost which appeared to be related to the

ongoing macro-economic climate and uncertainty in Europe. Australia

and China had trading costs that were consistent with US-SC stocks and

relatively stable over the period. The emerging markets and Latin

America countries experienced much higher trading costs over the analy-

sis period 2011. This was primarily due to a much higher information

content of the order (at least a much higher perceived information con-

tent) and a resulting higher permanent market impact cost. Costs in these

markets were more than 2.5 times greater than for US large cap stocks.

The Frontier markets had by far the highest trading costs in 2011. These

costs were more than 4.0 times higher than for US large cap stocks. The

higher costs in the Frontier markets appeared to be driven by hyper sensi-

tivity to order flow and trade imbalance, resulting in high information

3Kissell Research Group maintains updated market impact parameters and trading cost

estimates for various asset classes, see www.KissellResearch.com for most recent data

sets.
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contents of the trade and higher permanent impact costs. This was consis-

tent with the findings in the other emerging markets and Latin America.

The parameters of the model for our analysis and trading costs estimates

for 2011 are provided in Table 12.2a. Investors interested in current trad-

ing costs by global region and country are referred to www.

KissellResearch.com (see I�Star Global Cost Index Quarterly Report and

Country Trading Cost Analysis).

Multi-Asset Classes
The second part of this analysis consisted of evaluating trading costs

across multi-asset classes. Our asset classes consisted of US Large Cap

Stocks (US-LC), US Small Cap Stocks (US-SC), liquid and illiquid

Exchange Traded Funds (ETFs), Futures, Government and Corporate

Bonds, Commodities, and Exchange Rates (FX). In this analysis, we com-

puted the trading cost for a trade value of $10 million USD executed via a

strategy of POV5 10%. This was used in place of a constant order size (%

ADV) which is more commonly used in the equity markets because trans-

action values can vary dramatically across asset classes. In our multi-asset

trading cost analysis, we also placed boundaries on some of the model

parameters in order to make fair comparisons of costs across different

asset classes. Portfolio managers and analysts can achieve improvements

in the models forecasting accuracy by allowing more freedom on the

values of the parameters and eliminating the constraints using the parame-

ter estimation phase. Our first goal, however, was to uncover an appropri-

ate market impact model, determine the cost structure surrounding trading

costs in the different asset classes, and for evaluation and comparison to

the global equity markets. Further research is suggested to determine

appropriate bounds on the underlying model parameters.

Why do trading costs vary across asset classes?

Our analysis found that trading costs vary across asset classes for several

reasons. These include: 1) Investment Objective, 2) Trading Liquidity,

and 3) Competition.

Definitions. There are many reasons why investors will select to transact

different instruments. For example, the most common investment objec-

tives include: 1) buy and hold investing, 2) risk hedging, 3) speculation,

and 4) price arbitrage opportunities.

Trading Liquidity includes: 1) trade volume, 2) shadow liquidity, 3) mis-

pricing liquidity, and 4) factor exposure liquidity. Each is described as

follows. Trade volume across the asset classes is a very general term
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Table 12.2a Equity Market Trading Cost Analysis (2011): Quantity Expressed in Terms of Order Size (%ADV)

Parameter US-LC US-SC Canada Developed
Europe

Australia Hong
Kong

Japan China Emerging
Europe

Emerging
Asia

Latam Frontier

a1: 1507.5 1831.7 1525.6 1772.7 1809.9 1333.4 1543.7 1351.2 1945.9 2431.9 2356.0 2756.0
a2: 0.38 0.45 0.41 0.60 0.65 0.50 0.49 0.41 0.56 0.52 0.52 0.42

a3: 0.94 0.91 0.95 0.81 0.60 0.81 0.85 0.91 0.74 0.92 1.05 1.05

a4: 1.05 1.04 0.94 1.05 0.94 0.95 0.93 0.96 1.00 1.00 0.80 0.80

b1: 0.97 0.93 0.97 0.90 0.95 0.94 0.95 0.90 0.83 0.84 0.81 0.82

Size (%
ADV)

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

Volatility 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25%
POV Rate 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 9%

I-Star (bp) 169.6 183.1 159.0 144.1 177.5 137.4 152.3 148.9 192.1 205.1 166.0 244.4

MI (bp) 18.4 27.0 21.0 24.8 26.6 21.5 23.0 28.3 46.8 48.5 51.3 73.4

Table 12.2b Multi-Asset Trading Cost Analysis (2011): Quantity Expressed in Terms of Constant $USD Value

Parameter US-LC US-SC Liquid ETF Illiquid ETF Futures Gov’t Bond Corp. Bond Commodity Currency

a1: 0.97 1.13 0.24 0.41 0.22 0.19 2.76 0.54 0.15

a2: 0.38 0.45 0.38 0.40 0.38 0.37 0.38 0.38 0.41
a3: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a4: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

b1: 0.97 0.93 0.99 0.94 0.99 1.00 0.80 0.99 0.90

Dollars $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000 $10,000,000

Volatility 25% 25% 25% 25% 25% 25% 25% 25% 25%

POV Rate 10% 10% 10% 10% 10% 10% 10% 10% 10%

I-Star (bp) 110.9 399.6 27.7 65.2 24.7 18.9 314.9 62.1 27.7

MI (bp) 14.1 65.1 3.0 10.0 2.7 1.9 88.2 6.8 5.3



used to denote actual transaction volume, transaction value (in dollars),

as well as number of contracts, etc. Shadow liquidity refers to the under-

lying stock liquidity for a financial product where the underlying pricing

scheme is a financial instrument that trades on its own in the market. The

term is most commonly used to refer to the underlying stock volume for

an ETF instrument. For example, investors wishing to buy an ETF can

either purchase the ETF in the market or purchase the underlying stocks

that comprise the ETF in the market and then create the ETF. Hence,

investors wishing to purchase an ETF have two available sources of

liquidity that can be used to complete the transaction. Mispricing liquid-

ity refers to the volume that is on-standby in the market and ready to

transact if there is a mispricing between two instruments or an arbitrage

opportunity. The most common occurrence of mispricing liquidity is

associated with statistical arbitrage traders who are standing by ready to

transact in an index and its underlying stock members or in an exchange

traded fund and its underlying stock members if there is a market mispri-

cing. These traders will sell (short) shares in the over-valued instrument

and buy shares in the under-valued instrument. Factor exposure liquidity

refers to the investors’ ability to invest in a similar financial instrument

which provides the risk characteristics and expected returns stream as the

desired instrument. For example, investors interested in gaining exposure

to the SP500 index have numerous options available. They can purchase

the stocks that comprise the SP500 index, purchase any of the large cap

SP500 index exchange traded funds, an SP500 futures contract, a mini

futures contract, etc. All of these instruments will provide the investor

with exact same returns and risk. They all have the same risk composi-

tion and same stream of future returns.

Competition refers to the investors’ ability to transact the financial instru-

ment from various venues, broker-dealers, and/or market participants.

Competition has been found to dramatically reduce trading costs in the

equity markets. A marketplace with multiple venues is more competitive

and cost efficient than a market with a single or relatively few dealers for

the financial instrument.

Observations

The following results are based on empirical data and market observa-

tions over the period 1H2011 and trade costs estimates were based on a

transaction size of $10 million USD.

Equities. A trade value of $10 million USD is equivalent to an order size

of 4% ADV for a US large cap stock and an order size of 80% ADV for

a US small cap stock. The reason the small cap order size is so much
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larger than for the large cap order size is that the price of the small cap

stock is about one-half the price of large cap stocks and small cap vol-

ume is about one-tenth large cap stock. Thus, resulting in small cap order

sizes that are dramatically larger than for large cap stocks for the same

dollar value. The corresponding cost estimate of $10 million USD was

14.1bp for the large cap stock and 65.1bp for the small cap stock. This

results in a small cap stock cost that is 4.6 times greater than for the

equivalent dollar value invested in the large cap stock.

Exchange Traded Funds (ETFs). Cost estimates for the liquid ETF were

approximately 280% less than costs for large cap stocks. This reduction

in cost was primarily due to the shadow liquidity and factor exposure

liquidity corresponding to exchange traded funds. For example, using a

single stock market impact model, the estimated cost for transacting

100% ADV of a broad market ETF such as the SPY could be as high as

200bp. But the actual trading cost for this investment is closer to

10�20bp since the investor has many options to achieve this market

exposure and the desired ETF. Investors could 1) purchase the desired

ETF, 2) they could purchase the underlying stocks and create the ETF, 3)

they could purchase a Futures contract, exchange the futures for the phys-

ical stock, and then create the ETF. Costs corresponding to the illiquid

ETFs were found to be 225% to 235% less than large cap stocks.

Futures. Future trading costs (stock index futures) were found to be

280% less than large cap stocks. Future contracts were also found to be

less sensitive to larger order sizes than for stocks or for ETFs. Investors

could improve the model forecasting accuracy by fine tuning the impact

model for each index individually. Portfolio managers wishing to invest

in a futures portfolio, however, will incur an incremental cost at the time

of futures expiration where they will have to settle the contract then pur-

chase another futures contract. This is known as the “roll cost” and it

plays a large part in the total trading cost of futures contracts.

Bonds. The corresponding cost of government bonds were -90% lower

than the cost of large cap stocks. Most of the cost was due to the spread

cost of the bonds. Unlike equities, where investors can purchase shares at

the bid and sell shares at the ask (offer), investors are much more likely

to pay the full spread cost when transacting government bonds. The cor-

responding cost of corporate bonds was dramatically higher than large

cap stocks. Our analysis found that the cost of transacting corporate

bonds was 1526% higher than the cost of transacting large cap stocks.

That is, corporate bonds were 6.26 times more expensive to transact than

large cap stocks! This appears to be due to much smaller availability of
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corporate bonds than for equities and also the bid-ask spread. Investors

seeking to purchase corporate bonds will often have to find a dealer with

an existing inventory and then additionally pay the ask price. Investors

seeking to sell corporate bonds will need to find a dealer willing to take

on inventory and then sell the bonds at the bid price. The corresponding

risk-premium of a corporate bond can be dramatically reduced by these

transaction costs if the investor does not hold the bond for its remaining

duration. We do expect corporate bond transaction costs to decrease with

increased market transparency. We did not find a large relationship

between corporate bonds and order size as has been found with equities.

Transaction costs in the corporate bond market appear to be related to

the competitiveness of the market and number of corresponding dealers.

Commodities. Commodity transaction costs were on average about

250% lower than large cap stocks. Much of this cost was due to the bid-

ask spread rather than due to the transaction size. We also found that

trading costs across different commodities varied greatly. For example,

precious metals had costs that were much different than fossil fuels such

as oil and natural gas, and were much different than agricultural goods

such as corn, sugar, wheat, etc. Commodity prices did not appear to be

strongly related to actual transaction size as it is for equities. Thus, a

structural difference between equities and commodities.

Currency. Currency trading (e.g., exchange rates, FX) was 263% less

than large cap stocks. The largest component of the FX trading cost was

the market spread. We did not find as large a relationship between trading

cost and transaction value for currencies as we observed for stocks. But

investors did transact at the full spread rather than transacting within the

spread as is often accomplished in the equities markets. The market struc-

ture for FX trading is much different than the equities markets.

These results are shown in Table 12.2b.

A major finding between the cost structure with equities and other asset

classes is that price sensitivity to the underlying order size (e.g., price

elasticity) is much more instrument specific than it is for stocks. We

found the parameters a1, a2, a3, a4 and b1 were relatively stable across

stocks in our equity market grouping (e.g., US-LC, US-SC, Europe, etc.),

but these parameters did vary by instruments in other asset classes. For

example, the model parameters could be much different for a liquid

broad market ETF compared to a specific factor ETF such as a dividend

yielding ETF or a bond index ETF. Model parameters could also vary

greatly across the many different commodities such as Oil, Natural Gas,

Gold, Silver, Corn, Wheat, etc.
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Room for Improvement. As mentioned above, in our multi-asset trading

cost analysis we bounded the market impact parameters (e.g., set con-

straints on the potential set of solutions) in order to be able to make a

fair cost comparison of trading costs across the different assets classes.

But as our results above found, we can improve the forecasting accuracy

of the model by allowing these parameters to vary by asset class. Many

of the asset classes have relationships different from the equity markets.

For example, currencies, commodities, and corporate bonds were found

to have a much lower relationship with cost and size as was found for

equities. Portfolio managers investing in multi-asset classes were best

served by using a market impact model that was constructed specifically

for that financial instrument, and allowing the parameters of the model to

vary appropriately.

Finally, the cost structure of many of these asset classes has changed

since 2011. Investors seeking to have the most up to date cost estimates

and impact model parameters are referred to www.KissellResearch.com

as well as Kissell (2013), “Multi-Asset Trading Cost Estimates,” working

paper available upon request.
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Chapter13
High Frequency Trading and

Black Box Models
Ayub Hanif, Ph.D.

INTRODUCTION
The growth in active investing has seen the rise of high frequency trad-

ing. Since the credit crisis and the subsequent flurry of regulations with

respect to derivatives, no area of finance has been under such scrutiny as

high frequency trading. High frequency trading is characterized by an

enhanced turnover of capital in response to market dynamics. This usu-

ally results in enhanced trading activity coupled with smaller gains per

trade. In contrast with traditional investing and trading, the holding

period and thus the investment horizon is orders of magnitude smaller.

High frequency trading strategies themselves have found preponderance

amongst money managers with most opting to close these strategies out

daily (Aldridge, 2009). Closing out positions overnight provides three

key advantages to a money manager:

� Through the proliferation of trading and execution venues, trading is

now virtually a 24-hour a day activity. Thus overnight positions, given

the slivers they are trying to capitalize on, could become extremely risky.

Closing flat at the end of trading in one’s main market removes this risk.

� Capital is not committed beyond the course of close of business,

enabling transparent accounting.

� Typically, overnight positions taken out on margin are paid for at the

overnight carry rate which is usually slightly above LIBOR. Overnight

LIBOR volatility and the chances of hyperinflation can quickly deterio-

rate with overnight positions becoming increasingly expensive and

diminishing any profits accrued. Closing out avoids overnight carry risk,

providing substantial savings in tight lending and high-interest regimes.

Furthermore, it has been argued that high frequency trading contributes

to market efficiency. There is added liquidity, reduced trading costs and
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a general stabilization of market systems. Though they are premised in

the antithesis of efficient markets, high frequency strategies remove mar-

ket inefficiencies and impound information into prices faster. Liquidity is

enhanced, owing to the increased trade count; however, during severe

dislocations this may become scarce. In addition, automation provides

numerous operational benefits, i.e., a reduced headcount and thus reduced

expenses alongside removal of human error.

Frequently, the term black box trading is used to describe high frequency

trading strategies. Black box trading or black box models in general are

seemingly complex and mathematically sophisticated ways of detecting

anomalies and inefficiencies in the market. Indeed, quantitative trading

thrives through such a façade; however; the innards of such models are

not beyond the understanding of most people. Quantitative trading applies

a rigorous, thorough and scientific method to the trading process. These

are the inner workings of the black box, which are commonly understood

to be unknown and unknowable. Figure 13.1 removes the illusory veneer

from the black box. It is important to note that such a setup is not the

same across traders. However, it succinctly captures the key groupings

within their frameworks (Narang, 2009).

Inside the black box there are three key components: the alpha model, the

risk model, and the transaction cost model, which feed into the portfolio

construction model, which in turn feeds into the execution model. The

alpha model is the edge sought by quant traders, being the focus of this

Risk Model Alpha Model Transaction Cost Model

Portfolio Construction Model

Execution Model

Data

Research

■ Figure 13.1 Stylized Black Box Trading System
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chapter, and usually involves some form of price prediction. The risk

model in turn ensures checks and balances against adverse positions and

exposures are in place. The transaction cost model aids the portfolio con-

struction model to decipher what trades and/or positions are necessary to

achieve the trading goal, passing these decisions onto the execution model

to enact.

Transient to the core of the black box is accurate and well-curated data.

High frequency, or tick-by-tick, data is vast. The number of observations

for a single day in a liquid market is around 30 years of daily data

(Dacorogna et al., 2001). Rigorous research on accurate data is at the

very core of a successful high frequency strategy. Prior to detailing some

strategies and an evaluation framework, we shall take a closer look at

high frequency data.

DATA AND RESEARCH
High frequency data originates from the financial markets. By its very

nature it is irregularly spaced in time, however, and with the sheer vol-

ume being reported by liquid markets can only be understood using con-

tinuous dynamics (Hanif and Protopapas, 2013). Financial data providers

usually report hundreds of thousands of prices for a single market a day.

Dacorogna et al. (2001) argue, correctly, that high frequency data should

be the primary concern of those interested in understanding the financial

markets, especially given the effect of market dynamics on everyday

investors. Unfortunately this is not the case with most academic and

empirical financial literature for, they argue, two reasons.

Firstly, it is costly and resource-intensive to collect, store, manipulate

and curate high frequency data. This is precisely why most available data

is either daily or lower frequencies. The second reason is more subtle.

Most statistical modeling and machine learning tools assume time-series

homogeneity; that is they assume regularly spaced data points. Little

work has been done to look into irregular data with Hanif and Protopapas

(2013), described above, working towards bridging the gap between regu-

larized and irregular time series. Homogeneous financial time-series do

not come from the markets but are the result of post-processing on raw

tick-by-tick data.

Time-series operators such as interpolation methods are used to transform

inhomogeneous time-series into a homogeneous time-series ready for

analysis. Variables which are commonly used to capture intraday dynam-

ics include price, return, realized volatility, bid-ask spread, tick frequency,
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realized skewness, volatility ratio between time resolutions, direction

change indicators, and overlapping returns. A word of caution. A cursory

glance at financial markets will display the complexity of simply inquir-

ing about the price. Price quotes could be the bid-ask pair; transaction

prices, which may or may not be former bid or ask quotes; irregular bid,

ask, transaction prices; or simply the mid-price. The research process

needs to be clear in its acquisition of the correct data needed, as trivial

requests may lead to adverse results.

Having acquired high frequency data we are now ready for the analysis.

The preferred methodology for research is the scientific method which

consists of three steps (Dacorogna et al., 2001). The first of these steps is

to discover and understand the fundamental, statistical properties of the

data. These properties are known as “stylized facts” in the econometrics

and finance literature and are quite widely reported. See, for example,

Cont (2001) for an empirical analysis of asset returns and their associated

stylized facts and statistical properties.

Secondly, we formulate models based on empirical facts. The focus here

should be on robust models derived from empirical analysis rather than

on loose conjecture. This is where our understanding of the markets and

the data should coincide. There has been quite some debate on whether

to take a time-series (modeling statistical properties of the data) or micro-

structure (modeling market behavior) approach, though with high

frequency data one should be able to test microstructure models

(Hasbrouck, 2007; Dacorogna et al., 2001). The third and final step is to

test whether these models reproduce the stylized facts and statistical

properties discovered in the first step. The focus here is on prediction

of future movements, opportunities, risks and rewards. It is thus clear

that to undertake this process successfully, we need good, reliable high

frequency data.

STRATEGIES
Statistical Arbitrage
If you can simultaneously buy an asset low and trade it high you have

pure, deterministic arbitrage. Existence of deterministic arbitrage lies

around the idea that a riskless profit can be made by replicating the

future payoffs of an asset with a basket of other assets, with the price of

the replicating portfolio not exceeding the costs of the original asset.

This can be formalized thus:

jpayoff ðSt 2RðStÞÞj. TransactionCost ð13:1Þ
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where St is some asset or combination of assets, R(St) is the cost of the

replicating portfolio and where TransactionCost represents the net costs

involved in buying and selling the assets. As you are not committing any

capital this is also known as riskless arbitrage—however, given the fleet-

ing nature of such opportunities it is diminished by competition amongst

arbitrageurs. Statistical arbitrage can be seen as a generalization of deter-

ministic arbitrage, relying more heavily on the statistical properties of the

mispricing dynamics. Mispricing dynamics refers to the tendency for

basis risk to mean-revert or fluctuate around a stable, long-run level

(Dunis et al., 2004). As such, statistical arbitrage strategies are also

known as mean-reverting or relative value strategies. A critical point

must be noted here, as statistical arbitrage is grounded in statistical regu-

larities, assumptions on the existence of fair value amongst assets can be

relaxed and in most cases are found to be irrelevant.

A simple statistical arbitrage strategy is pairs trading which aims to capi-

talize on the imbalances between two assets in the hope of making

money once the imbalance is corrected. Pairs trading is a pure relative

value strategy between two (possibly more) assets: Given two securities

which historically moved together, take a long-short position as they

diverge and realize a profit as the spread, the mispricing dynamics, con-

verge back to the long-run mean.

Cointegration analysis is used to identify stochastic trends between secu-

rities. This is enhanced with an error-correction model (ECM) to provide

a mechanism to capture short-term dynamics describing how the long-

term equilibrium can be corrected to and restored. Though not proposing

the theory, we demonstrate that if the markets were indeed efficient,

predictable components could be identified given the right techniques.

Following from Kakoullis (2010), a random walk (RW) with a drift com-

ponent is given by:

yt 5 a1 yt21 1 εt ð13:2Þ

where ytBIð1Þ; εtBIð0Þ which can be seen as a first-order autoregressive

model AR(1):

yt 5 a1ϕyt21 1 εt

where εBNð0;σ2Þwith ϕ5 1 indicative of stationarity. We use the stan-

dard notation I(1), integrated order 1, to denote that the process is non-

stationary and needs to be differenced once in order to become station-

ary. Such a process is said to have a stochastic trend. To introduce
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cointegration we consider two time-series vt and mt with common sto-

chastic trends

vt 5 nt21 1 εnt 1 εvt ð13:3Þ

mt 5 nt21 1 εnt 1 εmt ð13:4Þ

where nt is a RW process εnt ; ε
v
t ; ε

m
t BIð0Þ independent of each other and

vt ;mtBIð1Þ. Thus

vt 2mt 5 εvt 2 εmt ð13:5Þ

therefore it can be said that vt and mt have a stochastic trend given by nt
and are therefore cointegrated. This result has important forecasting con-

sequences: Given a pair of RW processes with a common stochastic

trend, if a combination of them produces a stationary error/disequilibrium

term then theoretically they can be predicted and exploited.

Dickey and Fuller (1979) demonstrated that if Equation 13.2 has a unit

root, the process itself may be cointegrated where one or more combina-

tion of variables may be stationary though the individual variables may

be non-stationary. Two variables which are cointegrated do not trend far

away from one another. Thus cointegration is the long-term relationship

between the series, where both are I(1) but a linear combination of the

two series is stationary. Given this framework we can describe a standard

cointegration analysis for statistical trading:

1. Test for unit roots: usually done using the augmented Dickey-Fuller

(ADF) test of order q which is based on the regression:

ΔSt 1 a1βSt�1 1 γ1ΔSt�1 1?1 γqΔSt�q 1 εt ð13:6Þ

where Δ is the first difference operator. The lags q are used to

remove any autocorrelation which could introduce bias into the resi-

duals. Use the t-ratio test statistic on β̂ with H0:β vs H1:β, 0.
2. If all series are confirmed to be stationary, test for cointegration. The

simplest measure uses the Engle-Granger regression which is an ordi-

nary least squares (OLS) regression:

S1t 5β1 1β2S
2
t 1?1 βnS

n
t 1 εt ð13:7Þ

If the unit roots indicate that εt is stationary, then the variables SA. . . Sn

are cointegrated with cointegrating vector ð1; 2β̂2;. . .; 2 β̂nÞ or in other

words W5 S1 2β̂2S2 2? 2 β̂nSn. A portfolio is constructed off of this
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vector as follows (where “1 ” (“2 ”) indicates a long (short) position

respectively):

Security 1 2 . . . N
Position 11 β̂2

. . . β̂N

3. Employ an ECM to provide a mechanism for the spreads deviation

from the long-term equilibrium to be corrected. Given the time-series

SA and SB an ECM can be expressed:

ΔSAt 5 a1 1
Xm
i51

βi
1;1ΔSAt2i 1

Xm
i51

βi
1;2ΔSBt2i 1 γ1Wt21 1 ε1t ð13:8Þ

ΔSBt 5 a2 1
Xm
i51

βi
2;1ΔSBt2i 1

Xm
i51

βi
2;2ΔSAt2i 1 γ2Wt21 1 ε2t ð13:9Þ

where W is the mispricing term as given above. The lag lengths, as

well as the coefficients, can be determined by OLS.

4. As the errors ε1t ; ε
2
t are normally distributed, the vector

γ1
γ2

� �

defines how the mispricing shall be corrected. The coefficients of this

vector correction determine the speed of adjustment. The generalized

vector error-correction model (VECM) can thus be represented:

ΔSt 5 a1
Xm
i51

βiΔSt�i 1
Xq
j51

ΓWt�j 1 εt ð13:10Þ

where

St 5

s1t
^

snt

0
B@

1
CA; a5

s1
^

an

0
B@

1
CA;B5

β1;1 . . . β1;n

^ & ^

βn;1 ? βn;n

0
B@

1
CA

Γj 5

γj1;1 . . . γj1;n

^ & ^

γjn;1 ? γjn;n

0
B@

1
CA;Wt 5

w1
t

^

wn
t

0
B@

1
CA; εt

ε1t
^

εnt

0
B@

1
CA

which can be estimated via OLS applied to each equation individually.

Once a pair has been identified any deviation from the long-term equilib-

rium should be corrected through an investment strategy to address the

disequilibrium: short the overpriced security and long the underpriced

security. The ECM can be used to calculate the length of the mispricing

and timings for order execution.
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Applying this to real 5-minute data for the GBL and GBM EUREX

futures contracts, following Kakoullis (2010), first rebase the data to aid

visual inspection and test for stationarity using ADF tests. The rebased

price series alongside the rebased spread series can be seen in

Figure 13.2(a) and Figure 13.2(b) respectively. Tables 13.1 and 13.2 indi-

cate we can reject stationarity at the 5% significance level (as the spread

t-statistic . 5% critical significance level). It can thus be concluded that

both GBL and GBM are non-stationary.

Secondly, test for cointegration by running an Engle-Granger regression

of the form

GBLrebt 5 a1 bGBMreb
t 1 εt ð13:11Þ

and test the error variable term εt for stationarity. Following the same

t-statistic test as above it can be said that the spread is weakly stationary,

thus GBL and GBM are stationary with cointegrating vector (1, 2b).

Thirdly, build an ECM of the form of Equation 13.4. A VECM is built using

a general-to-specific approach: a general model is initialized with i5 5 (five

period lags) for both series which are then used to systematically remove

insignificant variables and test the error variable term εt for stationarity.

Following the same t-statistic test as above it can be said that the spread is

weakly stationary.

Finally, as the coefficients of the disequilibrium term Wt21 have opposite

signs and both are highly significant given their t-statistic, then an error

correction mechanism from long-term deviations exists. Furthermore, the

magnitude of the coefficients gives an indication of the timing until

adjustment, e.g., γ15 2 0.027 can be interpreted as a 2.7% adjustment

in 5 minutes or 3 hours for mean-reversion. Corollary, as the coefficient

of ΔGBMreb(21) is significant in Equation 13.11 we can say that GBM

leads GBL.

Triangular Arbitrage
Triangular arbitrage exploits mispricing across at least three foreign

exchange (FX) rates. Consider the scenario where you initially hold xi
dollars. If you sell these dollars to buy euros, convert these euros to

pounds, and finally convert these pounds into xf dollars then you will

realize a profit if xf . xi. If the intermediate rate does not exist you can

calculate the synthetic cross to complete the exchange.

In highly liquid markets, such opportunities should be limited and if they

were to exist you would expect to find the difference xf2 xi to be very

small (Daniel et al., 2009). Given this restriction, when such
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■ Figure13.2 Pairs Trading: EUREX Contracts.

Table 13.1 Pairs Trading: ADF Tests

ADF t-stat 5% critical

GBL 22.692 23.458

GBM 21.477 23.458

Spread(εt) 23.128 22.871

Source: Kakoullis, 2010
Determined by their respective t-statistic. Final parameters are given in Table 13.2

Table 13.2 Pairs Trading: VECM Spread Model

ΔGBLreb ΔGBM reb

Coefficients t-stat Coefficients t-stat

γ1 20.027 23.63 � �
γ2 � � 0.014 23.06

ΔGBLreb(2 1) 20.096 21.76 � �
ΔGBMreb(2 1) 0.159 1.90 � �
Source: Kakoullis, 2010
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discrepancies are identified the differential between the identified and

execution price becomes extremely important. Implementation shortfall

needs to be minimized through, for instance, a highly optimized trading

architecture (Hanif and Smith, 2012a).

Taking the example from Dacorogna et al. (2001), for a trader interested

in yen, the interrelation between the three currencies (Japanese yen,

Great British pound and the US dollar) is captured in the dynamics:

GBP=JPYbid 5
USD=JPYbid

USD=GBPask
; GBP=JPYask 5

USD=JPYask

USD=GBPbid
:

These dynamics represent the triangular relationship between the three

currencies. If a direct market between them all exists and these dynamics

are strongly deviated from, the deviation can be exploited through a set

of riskless transactions.

A frequently employed mechanism for identifying triangular arbitrage

opportunity is the rate product:

γðtÞ5 L
3

i51
riðtÞ ð13:12Þ

where ri(t) is an exchange rate at time t (Aiba et al., 2002). An arbitrage

opportunity is available if γ . 1 but, again crucially, this shall only be

realized if the transaction is completed at the arbitrage decision prices.

Continuing from the above, if you initially hold yen there are two unique

rate products which can be calculated:

γ1ðtÞ5 ðJPY=GBPbidðtÞÞ � ðGBP=USDbidðtÞÞ �
1

JPY=USDaskðtÞ

� �
ð13:13Þ

γ2 tð Þ5 1
JPY=GBPaskðtÞ

� �
� 1

GBP=USDaskðtÞ

� �
� ðJPY=USDbidðtÞÞ ð13:14Þ

These two rate products represent the universe of arbitrage opportunities

for this set of exchange rates (Daniel et al., 2009).

Suppose we observe the quotes JPY/GBPbid5 0.00761, GBP/USDbid5

1.60085 and JPY/USDask5 0.01100. We check the implicit cross rate by

Equation 13.4.

JPY=USDimplied
ask 5 JPY=GBPbid � GBP=USDbid ð13:15Þ

0:012085 0:00761 � 1:60085 ð13:16Þ
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and find that an arbitrage opportunity exists as the implicit cross rate

does not equal the quoted rate:

JPY=USDimplied
ask 6¼ JPY=USDask ð13:17Þ

We can capitalize on this inefficiency by buying dollars and spending

pounds, spending those dollars to purchase yen and subsequently

exchanging our recently acquired yen into pounds. Given a d1,000,000

we earn an arbitrage free profit of d107,497.14. All these steps are sum-

marized in Figure 13.3.

Liquidity Trading
Liquidity trading is a particularly adept high frequency trading strategy

which mimics the role of the traditional market maker. Liquidity traders,

or scalpers for short, attempt to make the spread (buy the bid, sell the

ask) in order to capture the spread gain. Such efforts allow for profit

even if the bid or ask do not move at all. The key idea here away from

traditional day traders is to establish and liquidate positions extremely

quickly.

Contrary to traditional traders who would double down on winners, scal-

pers gain their advantage through increasing the number of winners. The

aim here is to make as many short trades as possible, whilst keeping a

¥145,531,818.20

£1,000,000
Start

$1,600,850

£1,107,497.14
End

Buy $ Spend £

Sbid £/$ = 1.60085

Buy £ Spend ¥

Sbid ¥/£ = 0.00761

Buy ¥ Spend $

Sask ¥/$ = 0.01100

■ Figure 13.3 Triangular Arbitrage Example.
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close eye on market microstructure. Decimalization has eroded scalpers’

profits so the imperative on keeping things simple and getting the market

data and execution architecture in place is ever increased. Scalping is the

least quantitatively involved strategy which we are covering. To ensure it

works well one needs to have a good quantitative model of market direc-

tion on which there is a plethora of literature—see for instance the appli-

cation of neural networks (Resta, 2006), traditional time-series analysis

techniques (Dacorogna et al., 2001), and sequential Monte-Carlo methods

(Hanif and Smith, 2012b; Javaheri, 2005).

Complementary to the above, there are two further types of scalping

(Graifer, 2005). Volume scalping is usually achieved through purchasing

a large number of shares for a small gain and betting on an extremely

small price improvement. This type of scalping works only on highly liq-

uid stocks. The third type of scalping is closest to traditional trading. The

trader enters into a trade and closes out as soon as the first exit condition,

usually when the 1:1 risk/reward is met.

Scalping is affected by liquidity, volatility, time horizons and risk manage-

ment. As mentioned above, some traders favor liquid markets, whilst others

favor illiquid markets. Volatility is a specific concern of novice scalpers;

however, professional scalpers are indifferent to periods of volatility as a

thoroughly calibrated directional model should enable the scalper to benefit

from both upswings and downturns. Scalpers typically operate in time-

frames beyond common technical analysis, and hence require bespoke tools

to enable them to capitalize on microstructural changes. Finally, it is imper-

ative that robust risk management protocols are in place to avoid any accu-

mulations of losses and losing streaks (Graifer, 2005).

It would be prudent to note, financial advisers engaged in scalping are

frequently found guilty of market manipulation. Scalping by traders is

akin to front-running by advisers (buy a security and subsequently advise

a purchase) and has been ruled illegal by the US Supreme Court with the

SEC taking a blunter view and banning any scalping where a trust rela-

tionship exists between the trader and recommendee (Court, 1963;

Commission, 2012).

Market-Neutral Arbitrage
Market-neutral arbitrage is a class of strategies based on fundamental the-

ories of finance. An active strategy, the trader seeks to capitalize on

stock selection as a long-short investment strategy (Fabozzi et al., 2008).

In contrast to traditional investing, the trader here is aiming to use

insights about both stocks which are expected to outperform and those
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expected to underperform the market. Achieving market neutrality from

an investment perspective usually involves commitments of equal

amounts of capital to over- and underperforming stocks, though in sys-

tematic trading market neutrality is achieved solely through exploitation

of systematic risks of the stocks. The key idea here is to neutralize the

portfolio against broad market moves, achieved by the offset of long

positions’ price sensitivity by short positions’ price sensitivity (Jacobs

and Levy, 2004).

Market-neutral strategies are underpinned by the capital asset pricing

model (CAPM) developed by Sharpe (1964); Lintner (1965); Treynor

(1961); and Mossin (1966). CAPM is given by:

E½Ri�5Rf 1 βiðE½RM�2Rf Þ ð13:18Þ

where Ri is the return on the capital asset, Rf is the risk-free rate, RM is

the return on the market portfolio and βi is a measure of the systematic

risk of the capital asset i relative to the market portfolio. CAPM is typi-

cally solved using OLS. The market portfolio is understood to be a port-

folio consisting of market assets and the corresponding return is defined

as the market return. Taking long-short positions with the same beta

neutralizes systematic risk (having a beta of zero). Self-evidently such

a construction is not risk-free though it will provide positive returns in

recompense for accrued risk.

A common extension includes measures of investment managers’ perfor-

mance. Alpha is the intrinsic return on a capital asset and is used to mea-

sure returns in excess of the market. Taking the market regression of

CAPM we have:

Ri;t 2Rf 5αi 1βiðRM;t 2Rf Þ1 εt ð13:19Þ

Following Aldridge (2009), we shall proceed to describe a common

market-neutral trading strategy.

Systematically trading the market-neutral pair of securities i and j

involves determining the statistical significance means tests between the

alphas and betas:

β̂5 β̂i 2 β̂j ð13:20Þ

σ̂Δβ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
βi

ni
1

s
σ2
βj

nj
ð13:21Þ
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where ni and nj are the number of observations used in the estimation of

Equation 13.19. The t-statistic is then calculated:

tβ 5
Δβ̂
σ̂Δβ

ð13:22Þ

The difference test and t-statistics for alpha follow the same form as

Equations 13.20 to 13.22.

A typical t-test is conducted, which evaluates to statistically similar if the

t-statistic falls into a one standard deviation interval:

tβA½Δβ̂ � σ̂Δβ ;Δβ̂1 σ̂Δβ � ð13:23Þ
Complementary to the above, the difference in the alphas must show

both economic viability (exceeding trading costs TC) and strong statisti-

cal significance usually at the 95% confidence interval:

Δα̂. TC ð13:24Þ

jtαj. ½Δα̂12σ̂Δα� ð13:25Þ

Given a pair of securities satisfying the tests of Equations 13.23 to 13.25,

a long position is taken in the security with higher alpha and a short posi-

tion is taken in the security with lower alpha, held and closed out by the

time horizon determined in the forecast.

Index and Exchange Traded Fund Arbitrage
Index arbitrage is driven by relative mispricing dynamics of constituent

securities. Recollecting that an index and exchange traded fund (ETF) is

comprised of a basket of securities with the prevailing price being, usually,

a weighted average of the constituent securities, the Law of One Price from

economics dictates that in an efficient market, all identical goods must have

only one price (Burdett and Judd, 1983). If the relative prices between con-

stituents and their index/ETF trackers diverge an arbitrage opportunity

exists. In what follows index and ETF are used interchangeably.

Exploitation of an index arbitrage opportunity where the price of the rep-

licating portfolio net of transaction costs RPTC is greater than the index

price net of transaction costs ITC

RPTC $ ITC ð13:26Þ
would involve shorting the replicating portfolio and going long the index.

This position would be closed once a profit had been realized. Similarly,

where the price of the replicating portfolio net of transaction costs is

less than the price of the index itself, again net of transaction costs, an
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arbitrageur would go long the replicating portfolio and short the index,

closing out once profits have been realized. A preponderant form of

index arbitrage is basis trading where mispricing dynamics (difference

between the spot-price and related futures contract) are exploited by buy-

ing the index and selling related futures contracts. Intuitively, the gain

from one of these positions will exceed the loss on the other, resulting in

a net gain.

Realizing the mispricing correction is in effect mean-reversion. Alexander

(1999) details a cointegration based index arbitrage strategy to deliver

stable returns. Following a cointegration statistical portfolio trading process:

1. We choose to go long-short in eight different countries with the

European, Asian and Far East (EAFE) Morgan Stanley index as our

benchmark. We aim to beat EAFE and are tasked with finding the

basket of eight countries which are currently most highly correlated

with the EAFE index.

2. Perform cointegration regression of log-EAFE price index y on log

price indices of the local currencies x1, . . . , xn:

yt 5 a1β1x1; t1 . . .1 βnxn; t1 εt ð13:27Þ

to find optimal allocations and associated cointegrating vector.

3. Having identified which countries lead EAFE, we arbitrage by the

exploitation rules detailed above.

Merger Arbitrage
Mergers and acquisitions is a mainstay of financial intermediation and

the global markets. Academic effort has focused on wealth effects and

associated economic reasons around merger periods which is in stark

contrast to traders’ efforts to capitalize on mispricing preceding deal

completion (Branch and Yang, 2003). Such a trading strategy is known

as merger arbitrage, though it is commonly also referred to as risk arbi-

trage and event arbitrage.

Merger arbitrage usually involves buying the stock that is being acquired

and shorting the stock of the acquirer aiming to capture the offer pre-

mium which always persists after an announcement of intention. This

premium reflects the risk inherent to the deal, hence risk arbitrage, and is

the difference between the offered consideration and the target price. The

long-short positions reflect the spread between the offered consideration

and the target price through the merger period.

To enact this, an arbitrageur would need to calculate the rate of return

implicit to the current spread compared with the event risk of the deal.
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If the spread can cover and exceed the expected event risk, arbitrage

trades are executed (Anson, 2008). If the merger is successful the

target stock price will converge to the offered consideration, thus the

arbitrageurs will earn initial spreads from the day the long-short posi-

tions were taken (another relative-value strategy). However, if the

merger fails arbitrage performance is correlated to the performance

of the individual long-short positions. Clearly, predicting merger suc-

cess is the most important factor for merger arbitrageurs (Baker

and Savaşoglu, 2002; Mitchell, 2001). The three key components of

merger information for merger arbitrage success: firm/deal information,

market price information and risk arbitrageur information (Branch and

Yang, 2003).

Examining the purchase of MCI Corporation by Verizon Communications as

detailed by Anson (2008), we can understand the dynamics of merger arbi-

trage. Verizon was locked in a bidding war with QWest Communications for

the purchase of MCI through 2005 with Verizon finally coming out on top

with a purchase price of $8.44 billion. At the announcement of its intention,

the Verizon arbitrage trade was:

� Sell 1000 shares of Verizon at $36.

� Buy 1000 shares of MCI at $20.

While for QWest the arbitrage trade was:

� Sell 1000 shares of QWest at $4.20.

� Buy 1000 shares of MCI at $20.

Verizon and QWest competed for MCI with Verizon winning in October

2005. By then, MCI was trading at $25.50, Verizon had lost value and

was trading at $30, and QWest was unchanged. The total return for the

MCI/Verizon merger arbitrage trade:

Long MCI gain 10003 ($25.502 $20) 5 $5500
Short Verizon gain 10003 ($362 $30) 5 $6000
Short rebate interest 4%3 10003 $363 240/360 5 $960
Total 5 $12,460

The return on investment is: $12,4604$20,0005 62.3%. Similarly, for

the MCI/QWest merger arbitrage trade:

Long MCI gain 10003 ($25.502 $20) 5 $5500
Short QWest gain 10003 ($4.202 $4.20) 5 $0
Short rebate interest 4%3 10003 $4.203 240/360 5 $112
Total 5 $5612
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Here, the return on investment is: $5612 4 $20,0005 28.06% which,

when compared to the alternate bet, patently reflects an incorrect call.

Again, making this call makes or breaks the arbitrage opportunity.

A simple model of evaluating completion provides the market’s assess-

ment of the likelihood (not to be confused with desirability) of comple-

tion. Brown and Raymond (1986) provide a formal model for the

prediction of successful mergers and acquisitions. Given an announce-

ment of consideration, if the merger is successful a long-short position

would return a yield:

ðPTt 2 PmtÞ=Pmt ð13:28Þ

However, as the tender is not given to be accepted, the risk of falling

through must be considered through the possibility of a negative return:

ðPF 2PmtÞ=Pmt ð13:29Þ

where PF is the price the target stock falls to if the merger is unsuccess-

ful. Indeed it cannot be said with certainty what value PF will take.

However, pre-announcement prices can be used as proxies to assess the

overall risk-reward profile.

Given this framework, we can assess the market’s prediction of the likeli-

hood of the merger. Computing the period t merger probability xt given

the merger arbitrage payoff is zero:

EðΠtÞ5 xt½ðPTt 2 PmtÞ=Pmt�1 ð12 xtÞ½ðPF 2PmtÞ=Pmt�
5 xt ½ðPTt=PmtÞ21�1 ð12 xtÞ½ðPF=PmtÞ21�
50

ð13:30Þ

Thus:

xt 5
12 ðPF=PmtÞ

ðPTt=PmtÞ2 ðPF=PmtÞ
ð13:31Þ

where (PTt /Pmt) and (PF /Pmt) are defined as tender and failure premiums

respectively. Thus likelihood xt describes the price assimilation of the

tender into the market price as of period t.

Merger arbitrage is deal driven and not market driven. Consequently

returns are correlated to the relative value between the two stocks when

the arbitrage is executed and as such they are not, in general, correlated

to returns of the general stock market (Anson, 2008). Exceptions to

this rule are statistical speculators who will actively seek risk arbitrage

opportunities.
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EVALUATION
Back-testing is the quantitative evaluation of a model’s performance,

both from a statistical and trading perspective. Revisiting our modeling

paradigm described in the section Data and Research above, our models

are calibrated on a subset of historical data known as the in-sample set.

To lend any sort of value to the model we must test performance on

a far larger set of data unseen to the strategy (the out-of-sample set).

This enables us to provide statistical significance measures to our model

and ensure we have not over-fitted to the in-sample data set. Over-fitting

is the phenomenon where you have modeled the idiosyncrasies of a

particular data set rather than modeling the latent dynamics. When

modeling we need to ensure we reach a balance between over- and

under-fitting data.

Back-testing is the closest we come to true forecasting or trading whilst

preparing our models, enabling direct comparison of forecasting accuracy

and trading performance (Dunis et al., 2004). Back-tests provide three

complementary purposes (Dowd, 2008). Firstly, we can assess our mod-

el’s statistical validity compared with real historical data. Secondly, they

enable diagnostic checks to be carried out in aid of understanding the

strengths and weaknesses of the model. It shows us how the strategy can

actually capture opportunities and crucially where and how it fails to do

so. Finally, back-tests allow us to formally compare and rank alternative

models. A good strategy should do well in all three measures.

As we are evaluating a strategy and an underlying point forecast or direc-

tional change model there are two principle out-of-sample measures we

need to test for: forecasting accuracy and trading performance. To back-

test a strategy we need the strategy’s forecasts alongside daily profits and

losses (P/L) realized by the portfolio. At first hand, this task looks quite

trivial. However, we are not looking for accounting excellence; rather we

are looking for data on the P/L attributable to the market risks that were

taken. We require P/L data to reflect our risk taking and to remove

aspects which are not directly related to current market risk taking (e.g.,

fee income, unrealized P/L, yields, dividends, etc.). Having assembled

our data set we are ready for the analysis.

To start off with we run some straightforward statistical analysis on the

data. Plotting and analyzing cumulative P/L, P/L histograms to under-

stand the empirical distribution used in conjunction with quantile-

quantile charts in aid of understanding empirical distributions vs. fore-

casted distributions. In addition, we calculate summary statistics off of

the data, including moments and tail (extreme value) analysis.
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A number of measures are used to assess forecasting accuracy. These

include the traditional statistical accuracy measures: mean absolute error,

root mean square error, mean absolute percentage error and Theil’s

inequality coefficient (Theil-U). Mean absolute percentage error and

Theil-U enable evaluation of instances where forecast errors must be

modeled independently of the variables. As such are they constructed to

lie within the range [0,1], with zero indicating a perfect fit. The measure

correct directional change assesses the ability of the strategy to predict

the actual next period change of a forecast variable, an important issue in

a trading strategy. Statistical performance measures used to analyze fore-

casting accuracy are detailed in Table 13.3. Please refer to Hanke and

Reitsch (1998) and Pindyck and Rubinfeld (1998) for detailed discussion

on these measures.

Forecasting accuracy measures enable us to understand the statistical

underpinnings of our strategy. However, they not lend well into analysis

Table 13.3 Statistical Performance Measures

Performance Measure Description

Mean Absolute Error
MAE5

1
T

XT
t51

j~yt 2 ytj ð13:32Þ

Mean Absolute Percentage Error MAPE5
100
T

XT
t51

~yt 2 yt
yt

����
���� ð13:33Þ

Root Mean Square Error
RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t51

ð~yt2ytÞ2
vuut ð13:34Þ

Theil’s Inequality Coefficient

U5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t51

ð~yt2ytÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t51

ð~ytÞ2 1
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

PT
t51

ðytÞ2
s ð13:35Þ

Correct Directional Change CDC5
100
N

XN
t51

Dt ð13:36Þ

where Dt5 1 if yt � ~yt.0 else Dt5 0

Source: Dunis et al. (2004)
yt is the actual change at time t.
~yt is the forecast change.
t5 1 to t5 T for the forecast period.
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of trading performance. Such measures are optimized with respect to

some mathematical or statistical precedent. However, ultimately our

results are analyzed financially to which these measures are not opti-

mized. To whit: the forecast accuracy is calibrated through model estima-

tion but the true value should be based on performance of the trading

strategy (Dunis et al., 2004). Common trading performance measures are

detailed in Tables 13.4�13.7. Important measures include the Sharpe

ratio, maximum drawdown and the average gain/loss ratio. The Sharpe

ratio is a risk-adjusted measure of return and allows for direct compari-

son across the industry. Maximum drawdown is a measure of downside

risk, and the average gain/loss ratio is a measure of overall profit (Dunis

and Jalilov, 2002; Fernandez-Rodriguez et al., 2000). Back-test measures

will shed light on different aspects of the strategy, determining the over-

all quality of the forecasts, as in the end financial gain depends more on

trading performance than forecasting accuracy.

Table 13.4 Trading Simulation Performance Measures

Performance Measure Description

Annualized Return
RA 5 252 � 1

N

XN
t51

Rt ð13:37Þ

Cumulative Return
RC 5

XN
t51

RT ð13:38Þ

Annualized Volatility
σA 5

ffiffiffiffiffiffiffiffi
252

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2 1

XN
t51

ðRt2RÞ2
vuut ð13:39Þ

Sharpe Ratio SR5 RA=σA

Maximum Daily Profit Maximum value of Rt over the period ð13:40Þ
Maximum Daily Loss Minimum value of Rt over the period ð13:41Þ
Maximum DrawDown Maximum negative value of

X
ðRtÞ over the period ð13:42Þ

MD5 min
t5 1;...;N

RCt 2 max
i5 1;...;t

ðRCi Þ
� �

ð13:43Þ

% Winning Trades

WT 5 100. . .

PN
t51

Ft

NT
ð13:44Þ

where Ft5 1 if Transaction Profitt$0

Source: Dunis et al. (2004)
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Table 13.5 Trading Simulation Performance Measures

Performance Measure Description

% Losing Trades

LT 5 100 �

PN
t51

Gt

NT
ð13:45Þ

where Gt5 1 if Transaction Profitt# 0

Number of Up Periods Nup 5Number of Rt.0 ð13:46Þ

Number of Down Periods
Ndown 5Number of Rt,0 ð13:47Þ

Number of Transactions NT 5
XN
t51

Lt ð13:48Þ

where Lt5 1 if Trading Signalt 6¼ Trading
Signalt21

Total Trading Days
X

ðRtÞ ð13:49Þ

Avg. Gain in Up Periods AG5
X

ðRt.0Þ
� 	

=Nup ð13:50Þ

Avg. Loss in Down Periods AL5
X

ðRt,0Þ
� 	

=Ndown ð13:51Þ

Avg. Gain/Loss Ratio GL5 AG=AL ð13:52Þ

Source: Dunis et al. (2004)

Table 13.6 Trading Simulation Performance Measures

Performance Measure Description

PoL5
ð12PÞ MaxRisk

Að Þ
P

" #
ð13:53Þ

Probability of 10% Loss
where P5 0:5 � 11

hðWT � AGÞ1 ðLT � ALÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðWT � AG2Þ1 ðLT � AL2Þ�

p
 ! !

ð13:54Þ

andΛ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðWT � AG2Þ1 ðLT � AL2Þ�

p
ð13:55Þ

MaxRisk is the risk level defined by the user.

Profits T-statistics T-statistics5
ffiffiffiffiffi
N�

p RA

σA
ð13:56Þ

Source: Dunis et al. (2004)
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SUMMARY
We have introduced high frequency trading and demystified the black box.

High frequency trading is an application of systematic and quantitative algo-

rithms for the trading of securities. Critical to an effective strategy is soundly

curated high frequency data coupled with a rigorous research framework.

We described a number of practical trading strategies alongside examples.

These strategies form the alpha model of the black box.

Statistical arbitrage capitalizes on statistical misrepresentations in the

prices of related securities. Triangular arbitrage assesses triangular rela-

tions between currencies, taking positions when these relations are bro-

ken. Liquidity trading attempts to make the spread in the high frequency

domain, focusing on the number of winners rather than on the volume

per given trade. Market-neutral arbitrage builds on classical relations

defined by CAPM to take long-short positions in mispriced securities.

Index arbitrage exploits discrepancies in the Law of One Price, taking

relative positions to capitalize. And finally, merger arbitrage aims to cap-

italize on mispricing dynamics prior to deal completion.

Table 13.7 Trading Simulation Performance Measures

Performance Measure Description

Number of Periods Daily Returns Rise
NPR5

XN
t51

Qt ð13:57Þ

where Qt5 1 if yt. 0 else Qt5 0

Number of Periods Daily Returns Fall
NPF5

XN
t51

St ð13:58Þ

where St5 1 of yt. 0 else St5 0

Number of Winning Up Periods
NWU5

XN
t51

Bt ð13:59Þ

where Bt5 1 if Rt. 0 and yt. 0 else Bt5 0

Number of Winning Down Periods NWD5
XN
t51

Et ð13:60Þ

where Et5 1 if Rt. 0 and yt, 0 else Et5 0

Winning Up Periods (%) WUP5 100 : ðNWU=NPRÞ ð13:61Þ
Winning down Periods (%) WDP5 100 : ðNWD=NPFÞ ð13:62Þ

Source: Dunis et al. (2004)
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We have described a thorough back-testing framework and highlighted that

it is critical to assess not only forecasting accuracy of our model but also its

trading performance. Various metrics were defined to assess both statistical

forecasting accuracy and statistical trading performance. We discussed how

the Sharpe ratio, maximum drawdown and average gain/loss ratio are

important trading performance metrics in the industry, enabling us to not

only rank models but to also rate traders.
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tactic, 32, 289�291

Aite Group, 11�12

Algorithmic Trading Strategies, 146

Algorithmic/“algo” desk. See Electronic

trading desk

Algorithms, 1

classifications of, 16

comparing, 115�125

portfolio. See Portfolio algorithms

types of, 17�20

Almgren & Chriss (AC) market impact

model, 129, 142�143

Alpha capture program, 362, 388�394

Alpha cost, 390

Alternative trading systems (ATSs), 49, 54

Analysis tools, algorithmic, 37�39

intra-day analysis, 37

post-trade analysis, 38

pre-trade analysis, 37

quantitative techniques, 38�39

rule based trading, 38

Annualized return, 448t

Annualized volatility, 155, 178, 448t

Arbitrage pricing theory (APT), 47

ARMA daily forecasting model, 252�253

Arrival cost, 104�105, 155�156

Arrival price algorithm, 18

Arrival price benchmark, 272�273

Arrow-Pratt constant relative risk aversion

(CRRA) formulation, 291

Asset allocation, 15, 395�396, 420t

Augmented Dickey-Fuller (ADF), 434

Auto market making (AMM), 39�41

opportunistic, 42�43

Autoregressive heteroscedasticity (ARCH)

volatility model, 202�203,

205�206

Autoregressive moving average (ARMA)

time series, 235

Autoregressive parameter, estimating, 256

Average daily volume (ADV), 155, 178,

251

Average return, 194�196

Average trading cost, 167

B
Back-testing, 408�410

Balance trade-off between cost and risk,

280�281

Balanced data sets, 127

Basket algorithms, 18�19

Bats, 57

trading venue pricing rules, 58t

Benchmark price

performance, 106

selecting, 272�275

arrival price benchmark, 272�273

comparison of, 276

future price benchmark, 275

historical price benchmark, 273�275

Best execution frontier, 351�352

Beta exposure, 415�420

Beta investment allocation, 415�419

Beta of a stock, 198

Black box algorithm, 2

Black box models, 364�365, 430

data and research, 431�432

evaluation, 446�449

and high-frequency trading, 429

strategies, 432�445

index & exchange-traded fund

arbitrage, 442�443

liquidity trading, 439�440

market-neutral arbitrage, 440�442

merger arbitrage, 443�445

statistical arbitrage, 432�436

triangular arbitrage, 436�439

Black box trading, 19�20, 39, 430

Block trading activity, 9�10, 10f

Block trading desk, 25

Buy order, 184�185

Buy-initiated trades, 177

Buy-side quant managers, 27�28

Buy-side trading desks, 1�2

C
Capital asset pricing model (CAPM), 47,

228, 331, 441

Capital commitment. See Principal bid

CAPM model. See Capital asset pricing

model (CAPM)

Cash balancing adaptation techniques, 33

Cash trading desk, 25

Cash-balancing constraints, 304�305

Catchy names and phrases for the

algorithms, 16

Chi-square goodness of fit test, 123�125

Classifications of algorithms, 16

Closing auction period, 74

Coarse, Ronald, 87�88

Coefficient of variation, 72�73

Commission-based model, 57

Commissions, 89

Communicating experiment results,

165�166

Company specific risk, 226�227

Complete execution, 99�100

Constraint description, 303�306

objective function difficulty, 305

optimization objective function

simplification, 305�306

Correct directional change (CDC), 447t

Correlation, 197

465



Cost, defined, 179

Cost, minimizing, 277�278

with risk constraint, 279�280

Cost allocation method, 149�151

Cost curves, 186, 361�362

Cost estimation, 53t

Cost index, 396�403

in 2012, 398f

cost basis, 397�398

dollar value, 397�398

shares, 398

cost strategy, 398�399

customized indexes, 402�403

normalization process, 400�403

Cost measurement analysis, 52t

“Cost” metric, 97

Cost-adjusted frontier, 348�350

Cost-adjusted risk-return values, 345t

“Cost-risk” optimization, 281

Covariance, forecasting, 263�264

Covariance matrix, 219, 226

Covariance of returns, 196

Cross-sectional multi-factor models,

229�231

Cumulative return, 448t

Current price, 272

Current trade cost, 398

Customer order data, 155

Customized indexes, 402�403

actual trading cost, 402

D
Daily cost index, 407

Daily volume forecasting model, 257�258

Dark pool, 21

algorithms, 283�284

controversies, 22�23

utilization, 33

Data, analyzing, 165

Data definitions, 175�176

Data observation universe, 167

Data ties, 126

Day of week

defined, 251

effect, 65�67

estimating, 255

Decimalization, 7�9

Decision making framework, algorithmic,

269

adaptation tactic, 284�292, 289f

aggressive-in-the-money (AIM)

adaptation tactic, 289�291

comparison across, 293�294

modified, 294

passive-in-the-money (PIM)

adaptation tactic, 291�292

re-optimizing, 294�296

target cost tactic, 288�289

benchmark price, selecting, 272�275

arrival price benchmark, 272�273

comparison of, 276

future price benchmark, 275

historical price benchmark, 273�275

trading goal, specifying, 276�284

cost and risk, balance trade-off

between, 280�281

cost minimization, 277�278

cost minimization with risk constraint,

279�280

get-me-done type of algorithms, 284

hyper-aggressive algorithm, 283

passive/dark pool algorithms,

283�284

price-based algorithm, 283

price improvement, 279f, 281�283

risk minimization with cost constraint,

280

volume-based strategy, 283

Delay cost, 91

Designated market markers (DMM),

58�59

Direct market access (DMA), 43�45

advantages, 44

disadvantages, 44�45

DirectEdge, 57

trading venue pricing rules, 58t

Disadvantages of algorithmic trading, 4�5

Discrete time period random walk model,

143�144

Dispersion of returns, defined, 197

Displayed market, 21

Distribution analysis, 123�125

chi-square goodness of fit test, 123�125

Kolmogorov-Smirnov goodness of fit,

124�125

Diversifiable risk, 226�227

Dow Jones Industrial Average (DJIA), 84

“Dynamic optimization,” 284�285

E
Efficient investment frontier (EIF), 335,

339, 346

Efficient trading frontier, 31, 265�268,

306, 335, 339

w/ and w/o short positions, 340

Eigenvalue-eigenvector, 231, 233

Electronic crossing networks (ECNs), 49,

54

Electronic trading desk, 26

Empirical evidence, 61�76

coefficient of variation, 72�73

day of week effect, 65�67

intraday trading profiles, 67�73

spreads, 67�68

volatility, 70�73

volumes, 68�70

special event days, 73�76

trading volumes, 61�63

large and small cap trading, 62

market share, 61�62

volume distribution statistics, 63�65

Engle-Granger regression, 434�435

Equities, 416

Equity exchanges, 57, 58t

Equity sales, 27�28

Equity trading operation, 25

Error analysis, 162, 187�189

Error-correction model (ECM), 433

Estimated costs, 372t

European, Asian and Far East (EAFE)

index, 443

Event arbitrage. See Merger arbitrage

Exchange traded funds, 7�9, 69�70, 232,

415�418

Execution options, 23�25

Expanded implementation shortfall,

101�105

Experimental design, 125�127

balanced data sets, 127

categorization of data, 127

data ties, 126

sample size, 126

statistical tests, 126

Exponential weighted moving average

(EWMA), 202�203, 205, 209�210

F
Factor analysis, 231. See also Factor

models

Factor models, 221�226

covariance estimation using, 225�226

cross-sectional multi-factor models,

229�231

factor independence, constructing,

224�225

index models, 227�228
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macroeconomic factor models, 228�231

matrix notation, 223�224

multi-index factor model, 228

single index model, 227�228

statistical factor models, 231�234

types of, 227�234

Factor risk, 226�227

Fees, 89

Finra, 57

trading venue pricing rules, 58t

First price, 178

Fixed cost, 94

Flash crash, 76�85

comparison with previous crashes,

84�85

empirical evidence from, 79�83

Forecasting techniques, advanced

algorithmic, 235

covariance, forecasting, 263�264

efficient trading frontier, 265�268

portfolio trade cost objective function,

267�268

single stock trade cost objective

function, 267

market impact estimates, comparison of,

248�250

monthly volumes, forecasting, 258�263

timing risk equation, 243�248

timing risk for a basket of stock, 248

trading cost equations, 235�237

model inputs, 236�237

trading cost models, 241�243

I-Star calculation, 241

market impact for a basket of stock,

243

market impact for a single stock

order, 241�243

trading risk (TR) components, 240�241

parameter estimation error, 241

price volatility, 240

volume variance, 240

trading strategy, 237�239, 239f

comparison of POV rate to trade rate,

239

percentage of volume, 237�238

trade schedule, 238�239

trading rate, 238

trading time, 239�240

volume forecasting techniques, 251�258

analysis goal, 253�256

ARMA daily forecasting model,

252�253

daily volume forecasting model, 254f,

257�258

forecast improvements, 257

Full day period, 74

Fund mandates, 332

Fundamental models. See Cross-sectional

multi-factor models

Future price benchmark, 275

G
GARCH volatility model, 202�203, 206,

209�210

Get-me-done type of algorithms, 284

Grey pools, 21�22

Growth in algorithmic trading, 11�15

Guesstimate technique, 160

H
Hedge funds (HF), 12�15

Heisenberg uncertainty principle of

finance, 130

Heteroscedasticity, 181

High frequency traders, 2

High frequency trading (HFT), 14�15,

39�43

auto market making (AMM), 39�41

and black-box models, 429

data and research, 431�432

evaluation, 446�449

quantitative trading/statistical arbitrage, 41

rebate/liquidity trading, 41�43

strategies, 432�445

index and exchange-traded fund

arbitrage, 442�443

liquidity trading, 439�440

market-neutral arbitrage, 440�442

merger arbitrage, 443�445

statistical arbitrage, 432�436

triangular arbitrage, 436�439

Historical daily cost index, 407f

Historical look-back period, 251

Historical moving average (HMA),

202�205, 209�210

Historical price benchmark, 273�275

Historical volatility, 193

HMA-VIX volatility forecasting model,

202�203, 206�209, 213

Hyper-aggressive algorithm, 283

Hypothesis

constructing, 164, 171�173

testing, 164�165, 173�175

I
I* formulation, 151�153

Idiosyncratic risk component, 226�227

Imbalance, computing, 177

Imbalance size issues, 156�157

Implementation benchmark, selection of,

30

Implementation phase of investment cycle,

15

Implementation shortfall (IS), 18, 97�105

complete execution, 99

expanded implementation shortfall,

101�105

formulation, 104�105

opportunity cost, 100�101

trading cost/arrival cost, 104�105

Implicit factor models. See Statistical

factor models

Implied volatility, 193, 198, 207

Independents, 57

samples, 120�123

Index adjusted performance metric,

111�112

Index and exchange-traded fund arbitrage,

442�443

Index models, 227�228

multi-index model, 228

single index model, 227�228

Information leakage, 366

In-house market impact models, 365

Instantaneous impact equation, 147�148

Institutional sales. See Equity sales

Intraday period, 74

analysis, 37, 95

spreads, 67

trading profiles, 67�73

spreads, 67�68

volatility, 70�73

volumes, 68�70

volume, 68

Intraday trading stability, coefficient of

variation, 72�73

Inverted pricing model. See Taker-maker

model

“Investing in Beta” 395�396, 415�420

Investing in Factor Exposure.

See “Investing in Beta”

Investment cycle, 15�16

Investment strategies, 362

Investment-related costs, 93

Investor utility, maximizing, 340�341

I-Star calculation, 241
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I-Star index, 399

I-Star market impact model, 129, 146�148

parameter estimation techniques, 157�162

guesstimate technique, 160

model verification, 160�162

non-linear optimization, 160

two step regression process, 157�159

I-Star model parameters, estimating, 163,

179�191

cost curves, 186

error analysis, 187�189

scientific method, 163�166

asking question, 164

conclusion and communication,

165�166

data analysis, 165

hypothesis, constructing, 164

hypothesis, testing, 164�165

problem, research on, 164

solution technique, 166�191

analysis period, 176

annualized volatility, 178

average daily traded volume (ADV),

178

cost, 179

data definitions, 175�176

first price, 178

hypothesis, constructing, 171�173

hypothesis, testing, 173�175

imbalance, 176�177

number of data points, 176

POV rate, 179

problem, research on, 166�171

question, 166

side, 177

size, 179

time period, 176

turnover, 177

universe of stocks, 176

volume, 177

VWAP, 178

sensitivity analysis, 181�186

statistical analysis, 187

stock specific error analysis, 189�191

K
Kolmogorov-Smirnov goodness of fit,

124�125

L
Large and small cap trading, 62

Large cap index, 398�399

Large cap stocks, 62, 167, 185

Lee & Ready tick rule, 154�155

Likelihood function, 208�209

Limit order, 23

marketable, 23

models, 34

Liquidation costs, 377�380

Liquidity seeking algorithms, 20

Liquidity trading, 439�440

Log price return, 194

Log returns, 196

M
Macro/micro trading goals, equations for

specifying, 270�272

Macroeconomic factor models, 228�231

Macro-level strategies decision rules,

29�33

adaptation tactic, specifying, 32�33

implementation benchmark, selection of,

30

optimal execution strategy, selection of,

30�32

Maker-taker model, 56

Mann-Whitney U test, 120�122

Market cost adjusted z-score, 113�114

Market expectations, 365

Market exposure, 395�396, 415

Market impact, 91�92, 301

for a basket of stock, 243

for a single stock order, 241�243

Market impact cost, 171�173, 377f, 399,

412�413, 418, 421

Market impact equation, 148�154

comparison of approaches, 153�154

cost allocation method, 149�151

derivation of model, 148�149

I* formulation, 151�153

Market impact factor scores, 384�388

analysis, 386�388

current state of, 386

scores, 387f

shares, derivation of, 384�386

Market impact models, 129

definition, 129�131

derivation of, 142

Almgren & Chriss (AC) market

impact model, 142�143

random walk with market impact,

144�146

random walk with price drift,

143�144

developing, 139�140

essential properties of, 140�141

graphical illustrations of, 131�139

market impact price trajectories,

138�139

price trajectory, 131�132

supply-demand equilibrium, 132�135

temporary decay formulation,

137�138

temporary impact decay function,

135�137

I-Star market impact model, 146

model formulation, 147�156

I-Star, 147�148

market impact equation, 148�154

underlying data set, 154�156

parameter estimation techniques,

157�162

guesstimate technique, 160

model verification, 160�162

non-linear optimization, 160

two step regression process, 157�159

permanent impact, 130�131

research step for, 166�171

temporary impact, 130

Market impact price trajectories, 138�139

Market making (MM), 14�15

Market microstructure, 47

empirical evidence, 61�76

day of week effect, 65�67

intraday trading profiles, 67�73

intraday trading stability, coefficient

of variation, 72�73

special event days, 73�76

trading volumes, 61�63

volume distribution statistics, 63�65

equity exchanges, 57

flash crash, 76�85

comparison with previous crashes,

84�85

empirical evidence from, 79�83

literature, 49�51

NASDAQ select market maker program,

60�61

new market structure, 51�56

new NYSE trading models, 57�60

designated market markers (DMM),

58�59

supplemental liquidity providers

(SLPs), 59�60

trading floor brokers, 60

order priority, 57
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pricing models, 56�57

research on, 50

gold standard, 50

Market order, 23

Market risk, 226�227

Market share, 61�62

Market structure, changes in, 51�56

Marketable limit order, 23

Market-neutral arbitrage, 440�442

Markowitz (ex-ante) efficient portfolios,

348

Mathematical models, 165

Matrix notation, 223�224

Maximum likelihood estimation (MLE),

205

Maximum number of names

in portfolio optimization, 333

Mean absolute error, 447t

Mean absolute percentage error, 447t

Median daily volume (MDV), 251

Median test, 122�123

Merger arbitrage, 443�445

Micro-level pricing decisions, 29, 33�37

limit order models, 34

smart order router (SOR), 35�37

Mispricing dynamics, 432�433

Model parameters, estimating, 179�191,

410

cost curves, 186

error analysis, 187�189

sensitivity analysis, 181�186

statistical analysis, 187

stock specific error analysis, 189�191

Modern portfolio theory (MPT), 339

Money management funds, 1

Monthly volumes, forecasting, 258�263

analysis, 260

methodology, 258�259

monthly volume forecasting model, 259

observations, 262�263

regression results, 261

Morgan Stanley index, 443

Multi-asset class investing, 412�415

beta investment allocation, 415�419

investing in beta exposure, 415�420

Multi-asset market impact, 412�415

Multi-asset trading costs, 419�420

Multi-index factor model, 227�228

N
NASDAQ/OMX, 57

trading venue pricing rules, 58t

National Association of Securities Dealers

Automatic Quotation market

(NASDAQ), 48, 53, 60�61

National best bid and offer (NBBO), 5�6,

58

New York Stock Exchange (NYSE), 48,

175

New York Stock Exchange trading models,

changes in, 57�60

designated market markers (DMM),

58�59

supplemental liquidity providers (SLPs),

59�60

trading floor brokers, 60

Non-linear optimization, 160

Non-parametric tests, 116�123

independent samples, 120�123

Mann-Whitney U test, 120�122

median test, 122�123

paired samples, 117

sign test, 117�118

Wilcoxon signed rank test, 118�119

Non-transparent transaction costs, 94

Normalized cost index, 401

backwards-propagation process, 401

NYSE EuroNext, 57

trading venue pricing rules, 58t

O
Objective function difficulty, 305

One-sided optimization problem, 302

Opening auction period, 74

Opportunity cost, 92�93, 100�101

by Andre Perold, 100�101

Optimal execution strategy, selection of,

30�32

Optimal Markowitzian portfolios, 351

Optimal Trading Strategies, 146

Optimization formulation, 302�306

constraint description, 303�306

objective function difficulty, 305

optimization objective function

simplification, 305�306

Optimization techniques, comparison of,

312�316

Optimized cost index, 399

Order data, 155

Order priority, 57

Orders, types of, 23

Ordinary least-squares (OLS) regression,

205�206, 434�435

Outlier analysis, 211

“Out-of-sample” testing, 165

Over-the counter-market (OTC), 48, 54

P
Paired samples, 116�117

Pairs trading, 437f, 437t

Paper return, 98

Parameter estimation error, 92, 241

Parameter estimation techniques, 157�162

guesstimate technique, 160

model verification, 160�162

error analysis, 162

graphical illustration, 161

regression analysis, 161

z-score analysis, 161

non-linear optimization, 160

two step regression process, 157�159

Participation weighted price (PWP)

benchmark, 108�109

Passive family of algorithms, 16

Passive-in-the-money (PIM) adaptation

tactic, 32, 291�292

Percentage of volume (POV), 17, 30, 110,

115�116, 148�149, 155, 157,

237�238

rate, 179

Percentage price return, 194

Permanent market impact, 130

example, 130�131

Perold, Andre

implementation shortfall formulation,

104�105

opportunity cost by, 100�101

Portfolio algorithms, 297

adaptation tactics, 316�319

AIM and PIM for portfolio trading,

description of, 317�318

re-optimization, 319

cash-balancing constraints, 304�305

managing portfolio risk, 320�328

maximum trading opportunity,

323�324

minimum trading risk quantity, 322

program-block decomposition,

325�328

optimization, 298, 331

comparison of, 312�316, 313t

first wave of, 336

optimization techniques, comparison

of, 312�316

quadratic programming approach,

306�308
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Portfolio algorithms (Continued)

residual schedule exponential,

309�310

second wave of, 336

techniques, 306�316

third wave of, 337�338

trade schedule exponential, 308�309

trading rate parameter, 310�312

transaction costs in, 335�338

optimization formulation, 302�306

constraint description, 303�306

objective function difficulty, 305

optimization objective function

simplification, 305�306

residual risk curve, 320�321

trader’s dilemma, 298�299

transaction cost equations, 300�302

market impact, 301

one-sided optimization problem, 302

price appreciation, 301

timing risk, 302

Portfolio algorithms, 297. See also Basket

algorithms

Portfolio attribution phase, 15

Portfolio construction, 331

best execution frontier, 351�352

cost-adjusted frontier, 348�350

determining appropriate level of risk

aversion, 350�351

phase, 15

portfolio management process, 339�341

portfolio optimization and constraints,

332�335

trading decision process, 341�343

transaction costs in portfolio

optimization, 335�338

unifying investment and trading

theories, 343�348

with transaction costs, 352�359

expected stock return, 355

risk of a portfolio, 355�359

Portfolio managers, 15, 25, 27�28, 50, 93,

193�194, 235, 262, 280, 298,

332�333, 337�338, 343,

358�359, 361, 363�366, 373, 378,

384�386, 389, 393t, 395�398,

415, 419�420

Portfolio trading desk. See Program trading

desk

Post-trade analysis, 38, 96

adaptation tactic, 114�115

benchmark price performance, 106

cost versus profit and loss, 97

index adjusted performance metric,

111�112

market cost adjusted z-score, 113�114

measuring/forecasting, 96�97

participation weighted price (PWP)

benchmark, 108�109

performance evaluation, 105�115

pre-trade benchmark, 110�111

relative performance measure (RPM),

109�110

trading price performance, 105�106

VWAP benchmark, 106�108

z-score evaluation metric, 112�113

Pre-trade analysis, 37, 95�96

Pre-trade benchmark, 110�111

Pre-trade cost calculation, 365

Pre-trade impact models, 365

Pre-trade modeling approach, 367�374

applications, 372�374

cost estimation process, 368�371

Pre-trade of pre-trades, 156, 367�374

Price appreciation, 91

Price change, 194

Price impact, 166�167

Price improvement, 279f, 281�283

Price returns, 194, 196, 203�204

data sample, 203�204

standard deviation of, 196

Price trajectory, 131�132

Price volatility, 193�194, 240

ARCH volatility model, 205�206

definitions, 194�198

average return, 194�196

beta, 198

correlation, 197

covariance, 196

dispersion, 197

implied volatility, 198

log price return, 194

percentage price return, 194

price returns/price change, 194

value-at-risk, 197

volatility, 196

estimation results, 209

exponential weighted moving average

(EWMA), 205

factor models, 221�226

constructing factor independence,

224�225

covariance estimation using,

225�226

cross-sectional multi-factor models,

229�231

index models, 227�228

macroeconomic factor models,

228�231

matrix notation, 223�224

multi-index factor model, 228

single index model, 227�228

statistical factor models,

231�234

types of, 227�234

GARCH volatility model, 206

historical moving average (HMA),

204�205

HMA-VIX volatility forecasting model,

206�209

likelihood function, 208�209

market observations, 199�202

measuring model performance,

209�221

outlier analysis, 211

price returns, 203�204

data sample, 203�204

reliability on historical market data,

problems from, 214�221

degrees of freedom, 219�221

false relationships, 214�218

results, 211�214

root mean square error (RMSE), 210

root mean z-score squared error

(RMZSE), 210

stock volatility, forecasting,

202�206

volatility models, 202�206

Price-based adaptation tactic, 32

Price-based algorithm, 283

Price-size models, 57

Price-time models, 57

Pricing models, 56�57

commission-based model, 57

maker-taker model, 56

taker-maker model, 56

Principal bid, 24

Principal component analysis (PCA), 27,

231�232

Problem, researching, 164, 166�171

“Profit and loss” algorithm, 2, 97

Program sales trader, 27�28

Program trading, 10�11, 25�26, 84

Program trading desk, 25�26

Proper categorization, 127

Proper statistical tests, 126
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Q
Quadratic programming approach,

306�308

Quant managers, 27�28

Quantitative algorithmic techniques,

38�39

Quantitative analysts, 27

Quantitative portfolio management

techniques, 361

acquisition costs, 377�380

alpha

capture program, 388�394

curves, 393�394

for managers, 394

broker-dealer cost estimates, 370t

liquidation costs, 377�380

MI factor scores, 384�388

analysis, 386�388

current state of, 386

shares, derivation of, 384�386

portfolio construction, models of,

363�367

vendor market impact models, current

state of, 364�367

pre-trade modeling approach,

367�374

applications, 372�374

cost estimation process, 368�371

screening techniques, 380�384

Quantitative portfolio managers, 25�26,

339

Quantitative trading/statistical arbitrage, 41

Questioning, 164, 166

QWest Communications, 444

R
R2000 index cost analysis, 203�204, 211,

382f

Random walk

with market impact, 144�146

with price drift, 143�144

Realized volatility, 193

Real-time cost index, 403�415

back-testing, 408�410

market impact simulation, 410�412

Real-time trading costs, 405�406

Rebate/liquidity trading, 41�43

Rebates, 23, 90

Recent growth in algorithmic trading,

11�15

Reflect future views

in portfolio optimization, 333

Regression analysis, 161

Relative performance measure (RPM),

109�110

Re-optimization, 319

Research function, 26�27

Research sales. See Equity sales

Residual risk curve, 320�321

Residual schedule exponential, 309�310

Risk arbitrage. See Merger arbitrage

Risk aversion parameter, 19

Risk bid. See Principal bid
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