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PREFACE

The mathematics needed for the study of economics and business continues to grow with each passing
year, placing ever more demands on students and faculty alike. Introduction to Mathematical
Economics, third edition, introduces three new chapters, one on comparative statics and concave
programming, one on simultaneous differential and difference equations, and one on optimal control
theory. To keep the book manageable in size, some chapters and sections of the second edition had to
be excised. These include three chapters on linear programming and a number of sections dealing with
basic elements such as factoring and completing the square. The deleted topics were chosen in part
because they can now be found in one of my more recent Schaum books designed as an easier, more
detailed introduction to the mathematics needed for economics and business, namely, Mathematical
Methods for Business and Economics.

The objectives of the book have not changed over the 20 years since the introduction of the first
edition, originally called Mathematics for Economists. Introduction to Mathematical Economics, third
edition, is designed to present a thorough, easily understood introduction to the wide array of
mathematical topics economists, social scientists, and business majors need to know today, such as
linear algebra, differential and integral calculus, nonlinear programming, differential and difference
equations, the calculus of variations, and optimal control theory. The book also offers a brief review
of basic algebra for those who are rusty and provides direct, frequent, and practical applications to
everyday economic problems and business situations.

The theory-and-solved-problem format of each chapter provides concise explanations illustrated
by examples, plus numerous problems with fully worked-out solutions. The topics and related
problems range in difficulty from simpler mathematical operations to sophisticated applications. No
mathematical proficiency beyond the high school level is assumed at the start. The learning-by-doing
pedagogy will enable students to progress at their own rates and adapt the book to their own
needs.

Those in need of more time and help in getting started with some of the elementary topics may
feel more comfortable beginning with or working in conjunction with my Schaum’s Outline of
Mathematical Methods for Business and Economics, which offers a kinder, gentler approach to the
discipline. Those who prefer more rigor and theory, on the other hand, might find it enriching to work
along with my Schaum’s Outline of Calculus for Business, Economics, and the Social Sciences, which
devotes more time to the theoretical and structural underpinnings.

Introduction to Mathematical Economics, third edition, can be used by itself or as a supplement
to other texts for undergraduate and graduate students in economics, business, and the social sciences.
It is largely self-contained. Starting with a basic review of high school algebra in Chapter 1, the book
consistently explains all the concepts and techniques needed for the material in subsequent
chapters.

Since there is no universal agreement on the order in which differential calculus and linear algebra
should be presented, the book is designed so that Chapters 10 and 11 on linear algebra can be covered
immediately after Chapter 2, if so desired, without loss of continuity.

This book contains over 1600 problems, all solved in considerable detail. To get the most from the
book, students should strive as soon as possible to work independently of the solutions. This can be
done by solving problems on individual sheets of paper with the book closed. If difficulties arise, the
solution can then be checked in the book.
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For best results, students should never be satisfied with passive knowledge�the capacity merely
to follow or comprehend the various steps presented in the book. Mastery of the subject and doing well
on exams requires active knowledge�the ability to solve any problem, in any order, without the aid
of the book.

Experience has proved that students of very different backgrounds and abilities can be successful
in handling the subject matter presented in this text if they apply themselves and work consistently
through the problems and examples.

In closing, I would like to thank my friend and colleague at Fordham, Dr. Dominick Salvatore, for
his unfailing encouragement and support over the past 25 years, and an exceptionally fine graduate
student, Robert Derrell, for proofreading the manuscript and checking the accuracy of the solutions.
I am also grateful to the entire staff at McGraw-Hill, especially Barbara Gilson, Tina Cameron,
Maureen B. Walker, and Deborah Aaronson.

EDWARD T. DOWLING
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Integrals. 15.7 L’Hôpital’s Rule. 15.8 Consumers’ and
Producers’ Surplus. 15.9 The Definite Integral and Probability.

CHAPTER 16 First-Order Differential Equations 362
16.1 Definitions and Concepts. 16.2 General Formula for
First-Order Linear Differential Equations. 16.3 Exact
Differential Equations and Partial Integration. 16.4 Integrating
Factors. 16.5 Rules for the Integrating Factor.
16.6 Separation of Variables. 16.7 Economic Applications.
16.8 Phase Diagrams for Differential Equations.

CHAPTER 17 First-Order Difference Equations 391
17.1 Definitions and Concepts. 17.2 General Formula for
First-Order Linear Difference Equations. 17.3 Stability
Conditions. 17.4 Lagged Income Determination Model.
17.5 The Cobweb Model. 17.6 The Harrod Model.
17.7 Phase Diagrams for Difference Equations.

viiCONTENTS



CHAPTER 18 Second-Order Differential Equations and
Difference Equations 408
18.1 Second-Order Differential Equations. 18.2 Second-Order
Difference Equations. 18.3 Characteristic Roots.
18.4 Conjugate Complex Numbers. 18.5 Trigonometric
Functions. 18.6 Derivatives of Trigonometric Functions.
18.7 Transformation of Imaginary and Complex Numbers.
18.8 Stability Conditions.

CHAPTER 19 Simultaneous Differential and Difference Equations 428
19.1 Matrix Solution of Simultaneous Differential Equations,
Part 1. 19.2 Matrix Solution of Simultaneous Differential
Equations, Part 2. 19.3 Matrix Solution of Simultaneous
Difference Equations, Part 1. 19.4 Matrix Solution of
Simultaneous Difference Equations, Part 2. 19.5 Stability and
Phase Diagrams for Simultaneous Differential Equations.

CHAPTER 20 The Calculus of Variations 460
20.1 Dynamic Optimization. 20.2 Distance Between Two
Points on a Plane. 20.3 Euler’s Equation and the Necessary
Condition for Dynamic Optimization. 20.4 Finding Candidates
for Extremals. 20.5 The Sufficiency Conditions for the
Calculus of Variations. 20.6 Dynamic Optimization Subject to
Functional Constraints. 20.7 Variational Notation.
20.8 Applications to Economics.

CHAPTER 21 Optimal Control Theory 493
21.1 Terminology. 21.2 The Hamiltonian and the Necessary
Conditions for Maximization in Optimal Control Theory.
21.3 Sufficiency Conditions for Maximization in Optimal
Control. 21.4 Optimal Control Theory with a Free
Endpoint. 21.5 Inequality Constraints in the Endpoints.
21.6 The Current-Valued Hamiltonian.

Index 515

viii CONTENTS



CHAPTER 1

Review

1.1 EXPONENTS

Given n a positive integer, xn signifies that x is multiplied by itself n times. Here x is referred to
as the base and n is termed an exponent. By convention an exponent of 1 is not expressed: x1 � x,
81 � 8. By definition, any nonzero number or variable raised to the zero power is equal to 1: x0 � 1,
30 � 1. And 00 is undefined. Assuming a and b are positive integers and x and y are real numbers for
which the following exist, the rules of exponents are outlined below and illustrated in Examples 1 and
2 and Problem 1.1.

1. xa(xb) � xa�b 6.
1
xa � x�a

2.
xa

xb � xa�b 7. �x � x1/2

3. (xa)b � xab 8.
a

�x� x1/a

4. (xy)a � xa ya 9.
b

�xa � xa/b � (x1/b)a

5. �x
y�

a

�
xa

ya 10. x�(a/b)�
1

xa/b

EXAMPLE 1. From Rule 2, it can easily be seen why any variable or nonzero number raised to the zero power
equals 1. For example, x3/x3 � x3�3 � x0 � 1; 85/85 � 85�5 � 80 � 1.

EXAMPLE 2. In multiplication, exponents of the same variable are added; in division, the exponents are
subtracted; when raised to a power, the exponents are multiplied, as indicated by the rules above and shown in
the examples below followed by illustrations in brackets.

a) x2(x3) � x2�3 � x5� x6 Rule 1

[x2(x3) � (x · x)(x · x · x) � x · x · x · x · x � x5]

b)
x6

x3 � x6�3 � x3� x2 Rule 2

�x6

x3 �
x · x · x · x · x · x

x · x · x
� x · x · x � x3 �

c) (x4)2 � x4 · 2� x8� x16 or x6 Rule 3

[(x4)2 � (x · x · x · x)(x · x · x · x) � x8]
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d) (xy)4 � x4 y4� xy4 Rule 4

[(xy)4 � (xy)(xy)(xy)(xy) � (x · x · x · x)(y · y · y · y) � x4 y4]

e) �x

y �
5

�
x5

y5 �
x5

y
or

x

y5 Rule 5

� �x

y �
5

�
(x)
(y)

(x)
(y)

(x)
(y)

(x)
(y)

(x)
(y)
�

x5

y5 �
f)

x3

x4 � x3�4 � x�1�
1
x
� x3/4 Rules 2 and 6

�x3

x4 �
x · x · x

x · x · x · x
�

1
x �

g) �x � x1/2 Rule 7

Since �x · �x � x and from Rule 1 exponents of a common base are added in multiplication, the
exponent of �x, when added to itself, must equal 1. With 1–

2�
1–
2 � 1, the exponent of �x is 1–

2. Thus,
�x · �x � x1/2 · x1/2 � x1/2�1/2 � x1 � x.

h)
3�x � x1/3 Rule 8

Just as
3�x ·

3�x ·
3�x � x, so x1/3 · x1/3 · x1/3 � x1/3�1/3�1/3 � x1 � x.

i) x3/2 � (x1/2)3 or (x3)1/2 Rule 9

[43/2 � (41/2)3� (�4)3 � (�2)3 � �8, or equally valid, 43/2 � (43)1/2 � (64)1/2��64 � �8]

j) x�2/3 �
1

x2/3 �
1

(x1/3)2 or
1

(x2)1/3 Rule 10

�27�2/3 �
1

(271/3)2 �
1

(3)2 �
1
9

, or equally valid, 27�2/3 �
1

(272)1/3 �
1

(729)1/3 �
1
9 �

See Problem 1.1.

1.2 POLYNOMIALS

Given an expression such as 5x3, x is called a variable because it can assume any number of
different values, and 5 is referred to as the coefficient of x. Expressions consisting simply of a real
number or of a coefficient times one or more variables raised to the power of a positive integer are
called monomials. Monomials can be added or subtracted to form polynomials. Each of the monomials
comprising a polynomial is called a term. Terms that have the same variables and exponents are called
like terms. Rules for adding, subtracting, multiplying, and dividing polynomials are explained in
Examples 3 through 5 and treated in Problems 1.2 to 1.4.

EXAMPLE 3. Like terms in polynomials can be added or subtracted by adding their coefficients. Unlike terms
cannot be so added or subtracted. See Problems 1.2 and 1.3.

a) 4x5� 9x5� 13x5 b) 12xy� 3xy � 9xy

c) (7x3� 5x2� 8x)� (11x3� 9x2� 2x) � 18x3� 4x2� 10x

d) (24x� 17y)� (6x� 5z) � 30x� 17y� 5z

EXAMPLE 4. Like and unlike terms can be multiplied or divided by multiplying or dividing both the coefficients
and variables.

a) (5x)(13y2) � 65xy2 b) (7x3 y5)(4x2 y4) � 28x5 y9

c) (2x3 y)(17y4 z2) � 34x3 y5 z2 d)
15x4 y3 z6

3x2 y2 z3 � 5x2 yz3

2 REVIEW [CHAP. 1



e)
4x2 y5 z3

8x5 y3 z4 �
y2

2x3 z

EXAMPLE 5. In multiplying two polynomials, each term in the first polynomial must be multiplied by each term
in the second and their products added. See Problem 1.4.

(6x� 7y)(4x� 9y) �

�

(2x� 3y)(8x� 5y� 7z) �

�

24x2� 54xy� 28xy� 63y2

24x2� 82xy� 63y2

16x2� 10xy� 14xz� 24xy� 15y2� 21yz

16x2� 14xy� 14xz� 21yz� 15y2

1.3 EQUATIONS: LINEAR AND QUADRATIC

A mathematical statement setting two algebraic expressions equal to each other is called an
equation. An equation in which all variables are raised to the first power is known as a linear equation.
A linear equation can be solved by moving the unknown variable to the left-hand side of the equal sign
and all the other terms to the right-hand side, as is illustrated in Example 6. A quadratic equation of
the form ax2� bx� c� 0, where a, b, and c are constants and a� 0, can be solved by factoring or using
the quadratic formula:

x �
�b��b2� 4ac

2a
(1.1)

Solving quadratic equations by factoring is explained in Example 7 and by the quadratic formula in
Example 8 and Problem 1.6.

EXAMPLE 6. The linear equation given below is solved in three easy steps.
x

4
� 3 �

x

5
� 1

1. Move all terms with the unknown variable x to the left, here by subtracting x/5 from both sides of the
equation.

x

4
� 3�

x

5
� 1

2. Move any term without the unknown variable to the right, here by adding 3 to both sides of the
equation.

x

4
�

x

5
� 1� 3 � 4

3. Simplify both sides of the equation until the unknown variable is by itself on the left and the solution is
on the right, here by multiplying both sides of the equation by 20 and subtracting.

20 · �x

4
�

x

5 � � 4 · 20

5x� 4x
x
� 80
� 80

EXAMPLE 7. Factoring is the easiest way to solve a quadratic equation, provided the factors are easily
recognized integers. Given

x2� 13x� 30 � 0

by factoring, we have

(x� 3)(x� 10) � 0

3REVIEWCHAP. 1]



For (x� 3)(x� 10) to equal 0, x� 3 or x� 10 must equal 0. Setting each in turn equal to 0 and solving for x,
we have

x� 3 �
x �

0
�3

x� 10 �
x �

0
�10

Those wishing a thorough review of factoring and other basic mathematical techniques should consult another
of the author’s books, Schaum’s Outline of Mathematical Methods for Business and Economics, for a gentler, more
gradual approach to the discipline.

EXAMPLE 8. The quadratic formula is used below to solve the quadratic equation

5x2� 55x� 140 � 0

Substituting a � 5, b � �55, c � 140 from the given equation in (1.1) gives

x �
�(�55)��(�55)2� 4(5)(140)

2(5)

�
55��3025� 2800

10
�

55��225
10

�
55� 15

10

Adding �15 and then �15 to find each of the two solutions, we get

x �
55� 15

10
� 7 x �

55� 15
10

� 4

See Problem 1.6.

1.4 SIMULTANEOUS EQUATIONS

To solve a system of two or more equations simultaneously, (1) the equations must be consistent
(noncontradictory), (2) they must be independent (not multiples of each other), and (3) there must be
as many consistent and independent equations as variables. A system of simultaneous linear equations
can be solved by either the substitution or elimination method, explained in Example 9 and Problems
2.11 to 2.16, as well as by methods developed later in linear algebra in Sections 11.8 and 11.9.

EXAMPLE 9. The equilibrium conditions for two markets, butter and margarine, where Pb and Pm are the prices
of butter and margarine, respectively, are given in (1.2) and (1.3):

8Pb� 3Pm� 7

�Pb� 7Pm� 19

(1.2)

(1.3)

The prices that will bring equilibrium to the model are found below by using the substitution and elimination
methods.

Substitution Method

1. Solve one of the equations for one variable in terms of the other. Solving (1.3) for Pb gives

Pb � 7Pm� 19

2. Substitute the value of that term in the other equation, here (1.2), and solve for Pm.

8Pb� 3Pm� 7

8(7Pm� 19)� 3Pm� 7

56Pm� 152� 3Pm� 7

53Pm� 159

Pm� 3
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3. Then substitute Pm � 3 in either (1.2) or (1.3) to find Pb.

8Pb� 3(3) � 7

8Pb � 16

Pb � 2

Elimination Method

1. Multiply (1.2) by the coefficient of Pb (or Pm) in (1.3) and (1.3) by the coefficient of Pb (or Pm) in (1.2).
Picking Pm, we get

7(8Pb� 3Pm� 7)

�3(�Pb� 7Pm� 19)

56Pb� 21Pm � 49

3Pb� 21Pm � �57

(1.4)

(1.5)

2. Subtract (1.5) from (1.4) to eliminate the selected variable.

53Pb � 106

Pb � 2

3. Substitute Pb � 2 in (1.4) or (1.5) to find Pm as in step 3 of the substitution method.

1.5 FUNCTIONS

A function f is a rule which assigns to each value of a variable (x), called the argument of the
function, one and only one value [ f(x)], referred to as the value of the function at x. The domain of a
function refers to the set of all possible values of x; the range is the set of all possible values for f(x).
Functions are generally defined by algebraic formulas, as illustrated in Example 10. Other letters, such
as g, h, or the Greek letter �, are also used to express functions. Functions encountered frequently in
economics are listed below.

Linear function:

f(x) �mx� b

Quadratic function:

f(x) � ax2� bx� c (a� 0)

Polynomial function of degree n:

f(x) � an xn� an�1 xn�1� · · ·� a0 (n � nonnegative integer; an� 0)

Rational function:

f(x) �
g(x)
h(x)

where g(x) and h(x) are both polynomials and h(x)� 0. (Note: Rational comes from ratio.)

Power function:

f(x) � axn (n � any real number)

EXAMPLE 10. The function f(x) � 8x� 5 is the rule that takes a number, multiplies it by 8, and then subtracts
5 from the product. If a value is given for x, the value is substituted for x in the formula, and the equation solved
for f(x). For example, if x � 3,

f(x) � 8(3)� 5 � 19

f(x) � 8(4)� 5 � 27If x � 4,

See Problems 1.7 to 1.9.
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EXAMPLE 11. Given below are examples of different functions:

Linear: f(x) � 7x� 4 g(x) � �3x h(x) � 9

Quadratic: f(x) � 5x2� 8x� 2 g(x) � x2� 6x h(x) � 6x2

Polynomial: f(x) � 4x3� 2x2� 9x� 5 g(x) � 2x5� x3� 7

Rational: f(x) �
x2� 9
x� 4

(x��4) g(x) �
5x

x� 2
(x� 2)

Power: f(x) � 2x6 g(x) � x1/2 h(x) � 4x�3

1.6 GRAPHS, SLOPES, AND INTERCEPTS

In graphing a function such as y � f(x), x is placed on the horizontal axis and is known as the
independent variable; y is placed on the vertical axis and is called the dependent variable. The graph
of a linear function is a straight line. The slope of a line measures the change in y (	y) divided by a
change in x (	x). The slope indicates the steepness and direction of a line. The greater the absolute
value of the slope, the steeper the line. A positively sloped line moves up from left to right; a negatively
sloped line moves down. The slope of a horizontal line, for which 	y � 0, is zero. The slope of a vertical
line, for which 	x� 0, is undefined, i.e., does not exist because division by zero is impossible. The y
intercept is the point where the graph crosses the y axis; it occurs when x � 0. The x intercept is the
point where the line intersects the x axis; it occurs when y � 0. See Problem 1.10.

EXAMPLE 12. To graph a linear equation such as

y � �1–
4x� 3

one need only find two points which satisfy the equation and connect them by a straight line. Since the graph of
a linear function is a straight line, all the points satisfying the equation must lie on the line.

To find the y intercept, set x � 0 and solve for y, getting y � �1–
4(0)� 3, y � 3. The y intercept is the point

(x, y) � (0, 3). To find the x intercept, set y � 0 and solve for x. Thus, 0 � �1–
4x� 3, 1–

4x � 3, x � 12. The x intercept
is the point (x, y) � (12, 0). Then plot the points (0, 3) and (12, 0) and connect them by a straight line, as in Fig.
1-1, to complete the graph of y � �1–

4x� 3. See Examples 13 and 14 and Problems 1.10 to 1.12.

EXAMPLE 13. For a line passing through points (x1, y1) and (x2, y2), the slope m is calculated as follows:

m �
	y

	x
�

y2� y1

x2� x1

x1� x2

For the line in Fig. 1-1 passing through (0, 3) and (12, 0),

m �
	y

	x
�

0� 3
12� 0

� �
1
4

and the vertical intercept can be seen to be the point (0, 3).

6 REVIEW [CHAP. 1

Fig. 1-1



EXAMPLE 14. For a linear equation in the slope-intercept form

y � mx� b m, b � constants

the slope and intercepts of the line can be read directly from the equation. For such an equation, m is the slope
of the line; (0, b) is the y intercept; and, as seen in Problem 1.10, (�b/m, 0) is the x intercept. One can tell
immediately from the equation in Example 12, therefore, that the slope of the line is �1–

4, the y intercept is (0, 3),
and the x intercept is (12, 0).

Solved Problems

EXPONENTS

1.1. Simplify the following, using the rules of exponents:

a) x4 · x5

x4 · x5� x4�5� x9

b) x7 · x�3

x7 · x�3� x7�(�3) � x4

�x7 · x�3� x7 ·
1
x3 � x · x · x · x · x · x · x ·

1
x · x · x

� x4 �
c) x�2 · x�4

x�2 · x�4 � x�2�(�4) � x�6�
1
x6

�x�2 · x�4 �
1

x · x
·

1
x · x · x · x

�
1
x6 �

d) x2 · x1/2

x2 · x1/2 � x2�(1/2) � x5/2 ��x5

[x2 · x1/2 � (x · x)(�x)
� (�x · �x · �x · �x)(�x) � (x1/2)5 � x5/2]

e)
x9

x3

x9

x3 � x9�3 � x6

f)
x4

x7

x4

x7 � x4�7 � x�3 �
1
x3

�x4

x7 �
x · x · x · x

x · x · x · x · x · x · x
�

1
x3 �
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g)
x3

x�4

x3

x�4 � x3�(�4) � x3�4 � x7

� x3

x�4 �
x3

1/x4 � x3 · x4 � x7�

h)
x3

�x

x3

�x
�

x3

x1/2 � x3�(1/2) � x5/2 ��x5

i) (x2)5

(x2)5� x2 · 5� x10

j) (x4)�2

(x4)�2 � x4 · (�2)� x�8�
1
x8

k)
1
x5 ·

1
y5

1
x5 ·

1
y5 � x�5 · y�5� (xy)�5 �

1
(xy)5

l)
x3

y3

x3

y3 � �x

y �
3

POLYNOMIALS

1.2. Perform the indicated arithmetic operations on the following polynomials:

a) 3xy� 5xy b) 13yz2� 28yz2 c) 36x2 y3� 25x2 y3

d) 26x1 x2� 58x1 x2 e) 16x2 y3 z5� 37x2 y3 z5

a) 8xy, b) �15yz2, c) 11x2 y3, d) 84x1 x2, e) �21x2 y3 z5

1.3. Add or subtract the following polynomials as indicated. Note that in subtraction the sign of
every term within the parentheses must be changed before corresponding elements are
added.

a) (34x� 8y)� (13x� 12y)

(34x� 8y)� (13x� 12y) � 47x� 4y

b) (26x� 19y)� (17x� 50y)

(26x� 19y)� (17x� 50y) � 9x� 31y

c) (5x2� 8x� 23)� (2x2� 7x)

(5x2� 8x� 23)� (2x2� 7x) � 3x2� 15x� 23

d) (13x2� 35x)� (4x2� 17x� 49)

(13x2� 35x)� (4x2� 17x� 49) � 9x2� 18x� 49

8 REVIEW [CHAP. 1



1.4. Perform the indicated operations, recalling that each term in the first polynomial must be
multiplied by each term in the second and their products summed.

a) (2x� 9)(3x� 8)

(2x� 9)(3x� 8) � 6x2� 16x� 27x� 72 � 6x2� 11x� 72

b) (6x� 4y)(3x� 5y)

(6x� 4y)(3x� 5y) � 18x2� 30xy� 12xy� 20y2 � 18x2� 42xy� 20y2

c) (3x� 7)2

(3x� 7)2 � (3x� 7)(3x� 7) � 9x2� 21x� 21x� 49 � 9x2� 42x� 49

d) (x� y)(x� y)

(x� y)(x� y) � x2� xy� xy� y2 � x2� y2

SOLVING EQUATIONS

1.5. Solve each of the following linear equations by moving all terms with the unknown variable to
the left, moving all other terms to the right, and then simplifying.

a) 5x� 6 � 9x� 10 b) 26� 2x � 8x� 44

5x� 6 �
5x� 9x �

�4x �

x �

9x� 10
�10� 6
�16
4

26� 2x �

�2x� 8x �

�10x �

x �

8x� 44
�44� 26
�70
7

c) 9(3x� 4)� 2x � 11� 5(4x� 1) d)
x
3
� 16 �

x
12
� 14

9(3x� 4)� 2x �

27x� 36� 2x �

27x� 2x� 20x �

5x �

x �

11� 5(4x� 1)
11� 20x� 5
11� 5� 36
�30
�6

x

3
� 16 �

x

12
� 14

x

3
�

x

12
� 14� 16

Multiplying both sides of the equation by the least common denominator (LCD), here 12, gives

12 · �x

3
�

x

12� � 30 · 12

4x� x �

x �

360
120

e)
5
x
�

3
x� 4

�
7
x

[x� 0, �4]

5
x
�

3
x� 4

�
7
x

Multiplying both sides by the LCD, we get

x(x� 4) · �5
x
�

3
x� 4 � �

7
x

· x(x� 4)

5(x� 4)� 3x �

8x� 20 �
x �

7(x� 4)
7x� 28
8
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1.6. Solve the following quadratic equations, using the quadratic formula:

a) 5x2� 23x� 12 � 0
Using (1.1) and substituting a � 5, b � 23, and c � 12, we get

x �
�b��b2� 4ac

2a

�
�23��(23)2� 4(5)(12)

2(5)
�
�23��529� 240

10

�
�23��289

10
�
�23� 17

10

x �
�23� 17

10
� �0.6 x �

�23� 17
10

� �4

b) 3x2� 41x� 26 � 0

x �
�(�41)��(�41)2� 4(3)(26)

2(3)
�

41��1681� 312
6

�
41��1369

6
�

41� 37
6

x �
41� 37

6
� 13 x �

41� 37
6

�
2
3

FUNCTIONS

1.7. a) Given f(x) � x2� 4x� 5, find f(2) and f(�3).

Substituting 2 for each occurrence of x in the function gives

f(2) � (2)2� 4(2)� 5 � 7

Now substituting �3 for each occurrence of x, we get

f(�3) � (�3)2� 4(�3)� 5 � �8

b) Given f(x) � 2x3� 5x2� 8x� 20, find f(5) and f(�4).

f(5) � 2(5)3� 5(5)2� 8(5)� 20 � 145
f(�4) � 2(�4)3� 5(�4)2� 8(�4)� 20 � �260

1.8. In the following graphs (Fig. 1-2), where y replaces f(x) as the dependent variable in functions,
indicate which graphs are graphs of functions and which are not.

For a graph to be the graph of a function, for each value of x, there can be one and only one value
of y. If a vertical line can be drawn which intersects the graph at more than one point, then the graph is
not the graph of a function. Applying this criterion, which is known as the vertical-line test, we see that (a),
(b), and (d) are functions; (c), (e), and ( f) are not.

1.9. Which of the following equations are functions and why?

a) y ��2x� 7
y � �2x� 7 is a function because for each value of the independent variable x there is one and

only one value of the dependent variable y. For example, if x � 1, y � �2(1)� 7 � 5. The graph
would be similar to (a) in Fig. 1-2.
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b) y2 � x
y2 � x, which is equivalent to y � ��x, is not a function because for each positive value of x,

there are two values of y. For example, if y2 � 9, y � �3. The graph would be similar to that of (c)
in Fig. 1-2, illustrating that a parabola whose axis is parallel to the x axis cannot be a function.

c) y� x2

y � x2 is a function. For each value of x there is only one value of y. For instance, if x � �5,
y � 25. While it is also true that y � 25 when x � 5, it is irrelevant. The definition of a function simply
demands that for each value of x there be one value of y, not that for each value of y there be only
one value of x. The graph would be like (d) in Fig. 1-2, demonstrating that a parabola with axis
parallel to the y axis is a function.

d) y��x2� 6x� 15
y � �x2� 6x� 15 is a function. For each value of x there is a unique value of y. The graph would

be like (b) in Fig. 1-2.

e) x2� y2 � 64
x2� y2 � 64 is not a function. If x � 0, y2 � 64, and y � �8. The graph would be a circle, similar

to (e) in Fig. 1-2. A circle does not pass the vertical-line test.

f) x� 4
x � 4 is not a function. The graph of x � 4 is a vertical line. This means that at x � 4, y has many

values. The graph would look like ( f) in Fig. 1-2.

GRAPHS, SLOPES, AND INTERCEPTS

1.10. Find the x intercept in terms of the parameters of the slope-intercept form of a linear equation
y �mx� b.

Setting y � 0, 0 � mx� b

mx � �b

x � �
b

m

Thus, the x intercept of the slope-intercept form is (�b/m, 0).
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1.11. Graph the following equations and indicate their respective slopes and intercepts:

a) 3y� 15x� 30 b) 2y� 6x � 12 c) 8y� 2x� 16 � 0 d) 6y� 3x� 18 � 0

To graph an equation, first set it in slope-intercept form by solving it for y in terms of x. From
Example 14, the slope and two intercepts can then be read directly from the equation, providing three
pieces of information, whereas only two are needed to graph a straight line. See Fig. 1-3 and Problems
2.1 to 2.10.

a) 3y� 15x � 30
3y � �15x� 30

y � �5x� 10
Slope m � �5
y intercept: (0, 10)
x intercept: (2, 0)

b) 2y� 6x � 12
2y � 6x� 12
y � 3x� 6

Slope m � 3
y intercept: (0, 6)
x intercept: (�2, 0)

c) 8y� 2x� 16 � 0
8y � 2x� 16

y � 1–
4x� 2

Slope m � 1–
4

y intercept: (0,�2)
x intercept: (8, 0)

d) 6y� 3x� 18 � 0
6y � �3x� 18

y � �1–
2x� 3

Slope m � �1–
2

y intercept: (0, 3)
x intercept: (6, 0)
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1.12. Find the slope m of the linear function passing through: a) (4, 12), (8, 2); b) (�1, 15), (3, 6); c)
(2,�3), (5, 18).

a) Substituting in the formula from Example 13, we get

m �
y2� y1

x2� x1
�

2� 12
8� 4

�
�10

4
� � 2

1
2

b) m �
6� 15

3� (�1)
�
�9
4
� �2

1
4

c) m �
18� (�3)

5� 2
�

21
3
� 7

1.13. Graph (a) the quadratic function y� 2x2 and (b) the rational function y � 2/x.

Fig. 1-3
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CHAPTER 2

Economic
Applications of

Graphs and
Equations

2.1 ISOCOST LINES

An isocost line represents the different combinations of two inputs or factors of production that
can be purchased with a given sum of money. The general formula is PKK�PL L� E, where K and
L are capital and labor, PK and PL their respective prices, and E the amount allotted to expenditures.
In isocost analysis the individual prices and the expenditure are initially held constant; only the
different combinations of inputs are allowed to change. The function can then be graphed by
expressing one variable in terms of the other, as seen in Example 1 and Problems 2.5 and 2.6.

EXAMPLE 1. Given: PK K�PLL � E

PK K � E�PL L

K �
E�PL L

PK

K �
E

PK

� �PL

PK
� L

This is the familiar linear function of the form y � mx� b, where b � E/PK � the vertical intercept and
m � �PL/PK � the slope. The graph is given by the solid line in Fig. 2-1.

From the equation and graph, the effects of a change in any one of the parameters are easily discernible. An
increase in the expenditure from E to E� will increase the vertical intercept and cause the isocost line to shift out
to the right (dashed line) parallel to the old line. The slope is unaffected because the slope depends on the relative
prices (�PL/PK) and prices are not affected by expenditure changes. A change in PL will alter the slope of the line
but leave the vertical intercept unchanged. A change in PK will alter the slope and the vertical intercept. See
Problems 2.5 and 2.6.
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2.2 SUPPLY AND DEMAND ANALYSIS

Equilibrium in supply and demand analysis occurs when Qs �Qd. By equating the supply and
demand functions, the equilibrium price and quantity can be determined. See Example 2 and Problems
2.1 to 2.4 and 2.11 to 2.16.

EXAMPLE 2. Given: Qs � �5� 3P Qd � 10� 2P

In equilibrium, Qs � Qd

Solving for P, �5� 3P � 10� 2P

5P � 15 P � 3

Substituting P � 3 in either of the equations,

Qs � �5� 3P � �5� 3(3) � 4 � Qd

2.3 INCOME DETERMINATION MODELS

Income determination models generally express the equilibrium level of income in a four-sector
economy as

Y� C� I�G� (X�Z)

where Y� income, C� consumption, I � investment, G� government expenditures, X � exports,
and Z� imports. By substituting the information supplied in the problem, it is an easy matter to solve
for the equilibrium level of income. Aggregating (summing) the variables on the right allows the
equation of be graphed in two-dimensional space. See Example 3 and Problems 2.7 to 2.10 and 2.17
to 2.22.

EXAMPLE 3. Assume a simple two-sector economy where Y � C� I, C � C0� bY, and I � I0. Assume further
that C0 � 85, b � 0.9, and I0 � 55. The equilibrium level of income can be calculated in terms of (1) the general
parameters and (2) the specific values assigned to these parameters.

1. The equilibrium equation is
Y � C� I

Substituting for C and I,

Y � C0� bY� I0

Solving for Y,

Y� bY �

(1� b)Y �

C0� I0

C0� I0

Y �
C0� I0

1� b
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The solution in this form is called the reduced form. The reduced form (or solution equation) expresses
the endogenous variable (here Y) as an explicit function of the exogenous variables (C0, I0) and the
parameters (b).

2. The specific equilibrium level of income can be calculated by substituting the numerical values for the
parameters in either the original equation (a) or the reduced form (b):

a) Y � C0� bY� I0 �

Y� 0.9Y �

0.1Y �

Y �

85� 0.9Y� 55

140

140

1400

b) Y �
C0� I0

1� b
�

85� 55
1� 0.9

�
140
0.1

� 1400

The term 1/(1� b) is called the autonomous expenditure multiplier in economics. It measures the multiple
effect each dollar of autonomous spending has on the equilibrium level of income. Since b �MPC in the
income determination model, the multiplier � 1/(1�MPC).

Note: Decimals may be converted to fractions for ease in working with the income determination
model. For example, 0.1� 1––

10, 0.9 � 9––
10, 0.5 � 1–

2, 0.2 � 1–
5, etc.

2.4 IS-LM ANALYSIS

The IS schedule is a locus of points representing all the different combinations of interest rates and
income levels consistent with equilibrium in the goods (commodity) market. The LM schedule is a
locus of points representing all the different combinations of interest rates and income levels consistent
with equilibrium in the money market. IS-LM analysis seeks to find the level of income and the rate
of interest at which both the commodity market and the money market will be in equilibrium. This can
be accomplished with the techniques used for solving simultaneous equations. Unlike the simple
income determination model in Section 2.3, IS-LM analysis deals explicitly with the interest rate and
incorporates its effect into the model. See Example 4 and Problems 2.23 and 2.24.

EXAMPLE 4. The commodity market for a simple two-sector economy is in equilibrium when Y � C� I. The
money market is in equilibrium when the supply of money (Ms) equals the demand for money (Md), which in turn
is composed of the transaction-precautionary demand for money (Mt) and the speculative demand for
money (Mz). Assume a two-sector economy where C � 48� 0.8Y, I � 98� 75i, Ms � 250, Mt � 0.3Y, and
Mz � 52� 150i.

Commodity equilibrium (IS) exists when Y � C� I. Substituting into the equation,

Y �

Y� 0.8Y �

48� 0.8Y� 98� 75i

146� 75i

0.2Y� 75i� 146 � 0 (2.1)

Monetary equilibrium (LM) exists when Ms �Mt�Mz. Substituting into the equation,

250 � 0.3Y� 52� 150i

0.3Y� 150i� 198 � 0 (2.2)

A condition of simultaneous equilibrium in both markets can be found, then, by solving (2.1) and (2.2)
simultaneously:

0.2Y� 75i� 146 � 0 (2.1)

0.3Y� 150i� 198 � 0 (2.2)
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Multiply (2.1) by 2, add the result (2.3) to (2.2) to eliminate i, and solve for Y

0.4Y� 150i� 292 � 0 (2.3)
0.3Y� 150i� 198 � 0
0.7Y � 490 � 0

Y � 700

Substitute Y � 700 in (2.1) or (2.2) to find i.

0.2Y� 75i� 146 �
0.2(700)� 75i� 146 �

140� 75i� 146 �
75i �

i �

0
0
0
6
6––
75 � 0.08

The commodity and money markets will be in simultaneous equilibrium when Y � 700 and i � 0.08. At
that point C � 48� 0.8(700) � 608, I � 98� 75(0.08) � 92, Mt � 0.3(700) � 210, and Mz � 52� 150(0.08) � 40.
C� I � 608� 92 � 700 and Mt�Mz � 210� 40 � 250 �Ms.

Solved Problems

GRAPHS

2.1. A complete demand function is given by the equation

Qd��30P� 0.05Y� 2Pr� 4T

where P is the price of the good, Y is income, Pr is the price of a related good (here a substitute),
and T is taste. Can the function be graphed?

Since the complete function contains five different variables, it cannot be graphed as is. In ordinary
demand analysis, however, it is assumed that all the independent variables except price are held constant
so that the effect of a change in price on the quantity demanded can be measured independently of the
influence of other factors, or ceteris paribus. If the other variables (Y, Pr, T) are held constant, the function
can be graphed.

2.2 (a) Draw the graph for the demand function in Problem 2.1, assuming Y� 5000, Pr� 25, and
T � 30. (b) What does the typical demand function drawn in part (a) show? (c) What happens
to the graph if the price of the good changes from 5 to 6? (d) What happens if any of the other
variables change? For example, if income increases to 7400?

a) By adding the new data to the equation in Problem 2.1, the function is easily graphable. See
Fig. 2-2.

Qd � �30P� 0.05Y� 2Pr� 4T � �30P� 0.05(5000)� 2(25)� 4(30) � �30P� 420

b) The demand function graphed in part (a) shows all the diferent quantities of the good that will be
demanded at different prices, assuming a given level of income, taste, and prices of substitutes (here
5000, 30, 25) which are not allowed to change.

c) If nothing changes but the price of the good, the graph remains exactly the same since the graph
indicates the different quantities that will be demanded at all the possible prices. A simple change in
the price of the good occasions a movement along the curve which is called a change in quantity
demanded. When the price goes from 5 to 6, the quantity demanded falls from 270 [420� 30(5)] to
240 [420� 30(6)], a movement from A to B on the curve.
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d) If any of the other variables change, there will be a shift in the curve. This is called a change in demand
because it results in a totally new demand function (and curve) in response to the changed conditions.
If income increases to 7400, the new demand function becomes

Qd � �30P� 0.05(7400)� 2(25)� 4(30) � �30P� 540

This is graphed as a dashed line in Fig. 2-2.

2.3. In economics the independent variable (price) has traditionally been graphed on the vertical
axis in supply and demand analysis, and the dependent variable (quantity) has been graphed on
the horizontal. (a) Graph the demand function in Problem 2.2 according to the traditional
method. (b) Show what happens if the price goes from 5 to 6 and income increases to 7400.

a) The function Qd � 420� 30P is graphed according to traditional economic practice by means of the
inverse function, which is obtained by solving the original function for the independent variable in
terms of the dependent variable. Solving algebraically for P in terms of Qd, therefore, the inverse
function of Qd � 420� 30P is P � 14� 1––

30Qd. The graph appears as a solid line in Fig. 2-3.

b) If P goes from 5 to 6, Qd falls from 270 to 240.

P �

5 �
1––
30Qd �

Qd �

14� 1––
30 Qd

14� 1––
30Qd

9
270

P �

6 �
1––
30Qd �

Qd �

14� 1––
30 Qd

14� 1––
30Qd

8
240

The change is represented by a movement from A to B in Fig. 2-3.
If Y � 7400, as in Problems 2.2(d), Qd � 540� 30P. Solving algebraically for P in terms of Q, the

inverse function is P � 18� 1––
30Qd. It is graphed as a dashed line in Fig. 2-3.

2.4. Graph the demand function

Qd��4P� 0.01Y� 5Pr� 10T

when Y� 8000, Pr � 8, and T � 4. (b) What type of good is the related good? (c) What happens
if T increases to 8, indicating greater preference for the good? (d) Construct the graph along
the traditional economic lines with P on the vertical axis and Q on the horizontal axis.

a) Qd � �4P� 0.01(8000)� 5(8)� 10(4) � �4P� 80

This is graphed as a solid line in Fig. 2-4(a).

b) The related good has a negative coefficient. This means that a rise in the price of the related good will
lead to a decrease in demand for the original good. The related good is, by definition, a
complementary good.
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c) If T � 8, indicating greater preference, there will be a totally new demand.

Qd � �4P� 0.01(8000)� 5(8)� 10(8) � �4P� 120

See the dashed line in Fig. 2-4(a).

d) Graphing P on the vertical calls for the inverse function. Solving for P in terms of Qd, the inverse of
Qd � 80� 4P is P � 20� 1–

4Qd and is graphed as a solid line in Fig. 2-4(b). The inverse of
Qd � 120� 4P is P � 30� 1–

4Qd. It is the dashed line in Fig. 2-4(b).

2.5 A person has $120 to spend on two goods (X, Y) whose respective prices are $3 and $5. (a)
Draw a budget line showing all the different combinations of the two goods that can be bought
with the given budget (B). What happens to the original budget line (b) if the budget falls by
25 percent, (c) if the price of X doubles, (d) if the price of Y falls to 4?

a) The general function for a budget line is Px X�PY Y � B

If Px � 3, PY� 5, and B � 120, 3X� 5Y � 120

Solving for Y in terms of X in order to graph the function, Y � 24� 3–
5X

The graph is given as a solid line in Fig. 2-5(a).
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b) If the budget falls by 25 percent, the new budget is 90 [120� 1–
4(120) � 90]. The equation for the new

budget line is

3X� 5Y � 90
Y � 18� 3–

5X

The graph is a dashed line in Fig. 2-5(a). Lowering the budget causes the budget line to shift parallel
to the left.

c) If PX doubles, the original equation becomes

6X� 5Y � 120
Y � 24� 6–

5X

The vertical intercept remains the same, but the slope changes and becomes steeper. See the dashed
line in Fig. 2-5(b). With a higher price for X, less X can be bought with the given budget.

d) If PY now equals 4,

3X� 4Y � 120
Y � 30� 3–

4X

With a change in PY, both the vertical intercept and the slope change. This is shown in Fig. 2-5(c) by
the dashed line.

2.6. Either coal (C) or gas (G) can be used in the production of steel. The cost of coal is 100, the
cost of gas 500. Draw an isocost curve showing the different combinations of gas and coal that
can be purchased (a) with an initial expenditure (E) of 10,000, (b) if expenditures increase by
50 percent, (c) if the price of gas is reduced by 20 percent, (d) if the price of coal rises by 25
percent. Always start from the original equation.

a) PC C�PG G � E

100C� 500G � 10,000
C � 100� 5G

The graph is a solid line in Fig. 2-6(a).

b) A 50 percent increase in expenditures makes the new outlay 15,000 [10,000� 0.5(10,000)]. The new
equation is

100C� 500G � 15,000
C � 150� 5G

The graph is the dashed line in Fig. 2-6(a).
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c) If the price of gas is reduced by 20 percent, the new price is 400 [500� 0.2(500)], and the new
equation is

100C� 400G � 10,000
C � 100� 4G

The graph is the dashed line in Fig. 2-6(b).

d) A 25 percent rise in the price of coal makes the new price 125 [100� 0.25(100)].

125C� 500G � 10,000
C � 80� 4G

The graph appears as a dashed line in Fig. 2-6(c).

GRAPHS IN THE INCOME DETERMINATION MODEL

2.7. Given: Y� C� I, C� 50� 0.8Y, and I0� 50. (a) Graph the consumption function. (b) Graph
the aggregate demand function, C� I0. (c) Find the equilibrium level of income from the
graph.

a) Since consumption is a function of income, it is graphed on the vertical axis; income is graphed on the
horizontal. See Fig. 2-7. When other components of aggregate demand such as I, G, and X�Z are
added to the model, they are also graphed on the vertical axis. It is easily determined from the linear
form of the consumption function that the vertical intercept is 50 and the slope of the line (the MPC
or 	C/	Y) is 0.8.

b) Investment in the model is autonomous investment. This means investment is independent of income
and does not change in response to changes in income. When considered by itself, the graph of a
constant is a horizontal line; when added to a linear function, it causes a parallel shift in the original
function by an amount equal to its value. In Fig. 2-7, autonomous investment causes the aggregate
demand function to shift up by 50 parallel to the initial consumption function.

c) To obtain the equilibrium level of income from a graph, a 45
 dashed line is drawn from the origin.
If the same scale of measurement is used on both axes, a 45
 line has a slope of 1, meaning that as
the line moves away from the origin, it moves up vertically (	Y) by one unit for every unit it moves
across horizontally (	X). Every point on the 45
 line, therefore, has a horizontal coordinate (abscissa)
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exactly equal to its vertical coordinate (ordinate). Consequently, when the aggregate demand function
intersects the 45
 line, aggregate demand (as graphed on the vertical) will equal national income (as
graphed on the horizontal). From Fig. 2-7 it is clear that the equilibrium level of income is 500, since
the aggregate demand function (C� I) intersects the 45
 line at 500.

2.8. Given: Y� C� I�G, C� 25� 0.75Y, I � I0 � 50, and G�G0 � 25. (a) Graph the aggregate
demand function and show its individual components. (b) Find the equilibrium level of income.
(c) How can the aggregate demand function be graphed directly, without having to graph each
of the component parts?

a) See Fig. 2-8.

b) Equilibrium income � 400.

c) To graph the aggregate demand function directly, sum up the individual components,

Agg. D � C� I�G � 25� 0.75Y� 50� 25 � 100� 0.75Y

The direct graphing of the aggregate demand function coincides exactly with the graph of the
summation of the individual graphs of C, I, and G above.

2.9. Use a graph to show how the addition of a lump-sum tax (a tax independent of income)
influences the parameters of the income determination model. Graph the two systems indi-
vidually, using a solid line for (1) and a dashed line for (2).

1) Y� C� I
C� 100� 0.6Y
I0 � 40

2) Y� C� I
C� 100� 0.6Yd
I0 � 40

Yd � Y�T
T � 50

The first system of equations presents no problems; the second requires that C first be converted from
a function of Yd to a function of Y.

1) Agg. D � C� I

� 100� 0.6Y� 40
� 140� 0.6Y

2) Agg. D � C� I

� 100� 0.6Yd� 40 � 140� 0.6(Y�T)
� 140� 0.6(Y� 50) � 110� 0.6Y
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A lump-sum tax has a negative effect on the vertical intercept of the aggregate demand function equal to
�MPC(T). Here �0.6(50) � �30. The slope is not affected (note the parallel lines for the two graphs in
Fig. 2-9). Income falls from 350 to 275 as a result of the tax. See Fig. 2-9.

2.10. Explain with the aid of a graph how the incorporation of a proportional tax (a tax depending
on income) influences the parameters of the income determination model. Graph the model
without the tax as a solid line and the model with the tax as a dashed line.

1) Y� C� I
C� 85� 0.75Y
I0 � 30

2) Y� C� I
C� 85� 0.75Yd
I0 � 30

Yd � Y�T
T � 20� 0.2Y

1) Agg. D � C� I

� 85� 0.75Y� 30
� 115� 0.75Y

2) Agg. D � C� I

� 85� 0.75Yd� 30 � 115� 0.75(Y�T)
� 115� 0.75(Y� 20� 0.2Y)
� 115� 0.75Y� 15� 0.15Y � 100� 0.6Y

Incorporation of a proportional income tax into the model affects the slope of the line, or the MPC. In this
case it lowers it from 0.75 to 0.6. The vertical intercept is also lowered because the tax structure includes
a lump-sum tax of 20. Because of the tax structure, the equilibrium level of income falls from 460 to 250.
See Fig. 2-10.

EQUATIONS IN SUPPLY AND DEMAND ANALYSIS

2.11. Find the equilibrium price and quantity for the following markets:

a) Qs ��20� 3P
Qd � 220� 5P

c) Qs� 32� 7P � 0
Qd� 128� 9P � 0

b) Qs ��45� 8P
Qd � 125� 2P

d) 13P�Qs � 27
Qd� 4P� 24 � 0
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Each of the markets will be in equilibrium when Qs � Qd.

a) Qs �

�20� 3P �

8P �

P �

Qs �

Qs �

c) Qs �

Qd �

7P� 32 �
16P �

P �

Qs �

Qs �

Qd

220� 5P

240
30
�20� 3P � �20� 3(30)
70 � Qd

7P� 32
128� 9P

128� 9P

160
10
7P� 32 � 7(10)� 32
38 � Qd

b) Qs �

�45� 8P �

10P �

P �

Qd �

Qd �

d) Qs �

Qd �

�27� 13P �

17P �

P �

Qd �

Qd �

Qd

125� 2P

170
17
125� 2P � 125� 2(17)
91 � Qs

�27� 13P

24� 4P

24� 4P

51
3
24� 4P � 24� 4(3)
12 � Qs

2.12. Given the following set of simultaneous equations for two related markets, beef (B) and pork
(P), find the equilibrium conditions for each market, using the substitution method.

1) QdB� 82� 3PB�PP

QsB ��5� 15PB

2) QdP� 92� 2PB� 4PP

QsP��6� 32PP

Equilibrium requires that Qs � Qd in each market.

1) QsB �

�5� 15PB �

18PB�PP �

QdB

82� 3PB�PP

87

2) QsP �

�6� 32PP �

36PP� 2PB �

QdP

92� 2PB� 4PP

98

This reduces the problem to two equations and two unknowns:

18PB�PP � 87
�2PB� 36PP � 98

(2.4)
(2.5)
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Solving for PP in (2.4) gives

PP � 18PB� 87

Substituting the value of this term in (2.5) gives

�2PB� 36(18PB� 87) � 98 �2PB� 648PB� 3132 � 98
646PB � 3230 PB � 5

Substituting PB � 5 in (2.5), or (2.4),

�2(5)� 36PP � 98
36PP� 108 PP � 3

Finally, substituting the values for PB and PP in either the supply or the demand function for each
market,

1) QdB � 82� 3PB�PP � 82� 3(5)� (3)
QdB � 70 � QsB

2) QdP� 92� 2PB� 4PP � 92� 2(5)� 4(3)
QdP� 90 � QsP

2.13. Find the equilibrium price and quantity for two complementary goods, slacks (S) and jackets
(J), using the elimination method.

1) QdS � 410� 5PS� 2PJ

QsS ��60� 3PS

2) QdJ� 295�PS� 3PJ

QsJ��120� 2PJ

In equilibrium,

1) QdS �

410� 5PS� 2PJ �

470� 8PS� 2PJ �

QsS

�60� 3PS

0

2) QdJ�

295�PS� 3PJ �

415�PS� 5PJ �

QsJ

�120� 2PJ

0

This leaves two equations

470� 8PS� 2PJ � 0
415�PS� 5PJ � 0

(2.6)
(2.7)

Multiplying (2.7) by 8 gives (2.8). Subtract (2.6) from (2.8) to eliminate PS, and solve for PJ.

(2.8)3320� 8PS� 40PJ � 0
�(�470� 8PS� 2PJ � 0)

2850 � 38PJ � 0
PJ � 75

Substituting PJ � 75 in (2.6),

470� 8PS� 2(75) � 0
320 � 8PS PS � 40

Finally, substituting PJ � 75 and PS � 40 into Qd or Qs for each market,

1) QdS � 410� 5PS� 2PJ � 410� 5(40)� 2(75)
Qds � 60 � QsS

2) QdJ � 295�PS� 3PJ � 295� 40� 3(75)
QdJ � 30 � QsJ

2.14. Supply and demand conditions can also be expressed in quadratic form. Find the equilibrium
price and quantity, given the demand function

P�Q2� 3Q� 20 � 0 (2.9)

and the supply function

P� 3Q2� 10Q� 5 (2.10)
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Either the substitution method or the elimination method can be used, since this problem involves
two equations and two unknowns. Using the substitution method, (2.10) is solved for P in terms of Q.

P� 3Q2� 10Q � 5
P � 3Q2� 10Q� 5

Substituting P � 3Q2� 10Q� 5 in (2.9),

(3Q2� 10Q� 5)�Q2� 3Q� 20 � 0
4Q2� 7Q� 15 � 0

Using the quadratic formula Q1, Q2 � (�b��b2� 4ac)/(2a), where a � 4, b � �7, and c � �15, Q1� 3,
and Q2 � �1.25. Since neither price nor quantity can be negative, Q � 3. Substitute Q � 3 in (2.9) or
(2.10) to find P.

P� (3)2� 3(3)� 20 � 0 P � 2

2.15. Use the elimination method to find the equilibrium price and quantity when the demand
function is

3P�Q2� 5Q� 102 � 0 (2.11)

and the supply function is

P� 2Q2� 3Q� 71 � 0 (2.12)

Multiply (2.12) by 3 to get (2.13) and subtract it from (2.11) to eliminate P.

3P�Q2� 5Q� 102 � 0
�(3P� 6Q2� 9Q� 213 � 0)

7Q2� 4Q� 315 � 0
(2.13)

Use the quadratic formula (see Problem 2.14) to solve for Q, and substitute the result, Q � 7, in (2.12)
or (2.11) to solve for P.

P� 2(7)2� 3(7)� 71 � 0 P � 6

2.16. Supply and demand analysis can also involve more than two markets. Find the equilibrium price
and quantity for the three substitute goods below.

Qd1 � 23� 5P1�P2�P3

Qd2 � 15�P1� 3P2� 2P3

Qd3 � 19�P1� 2P2� 4P3

Qs1 ��8� 6P1

Qs2 ��11� 3P2

Qs3 ��5� 3P3

For equilibrium in each market,

Qd1 �

23� 5P1�P2�P3 �

31� 11P1�P2�P3 �

Qs1

�8� 6P1

0

Qd2�

15�P1� 3P2� 2P3�

26�P1� 6P2� 2P3�

Qs2

�11� 3P2

0

Qd3 �

19�P1� 2P2� 4P3 �

24�P1� 2P2� 7P3 �

Qs3

�5� 3P3

0

This leaves three equations with three unknowns:

31� 11P1�P2�P3 � 0
26�P1� 6P2� 2P3 � 0
24�P1� 2P2� 7P3 � 0

(2.14)
(2.15)
(2.16)

Start by eliminating one of the variables (here P2). Multiply (2.14) by 2 to get

62� 22P1� 2P2� 2P3 � 0
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From this subtract (2.16).

62� 22P1� 2P2� 2P3 � 0
�(24� P1� 2P2� 7P3) � 0

38� 23P1 � 9P3 � 0 (2.17)

Multiply (2.16) by 3.

72� 3P1� 6P2� 21P3 � 0

Add the result to (2.15).

26� P1� 6P2� 2P3 � 0
72� 3P1� 6P2� 21P3 � 0
98� 4P1 � 19P3 � 0 (2.18)

Now there are two equations, (2.17) and (2.18), and two unknowns. Multiply (2.17) by 19 and (2.18) by
9; then add to eliminate P3.

722� 437P1� 171P3 � 0
882� 36P1� 171P3 � 0

1604� 401P1 � 0
P1 � 4

Substitute P1 � 4 in (2.18) to solve for P3.

98� 4(4)� 19P3� 0
19P3 � 114 P3� 6

Substitute P1 � 4 and P3 � 6 into (2.14), (2.15), or (2.16), to solve for P2.

31� 11(4)�P2� (6) � 0 P2� 7

EQUATIONS IN THE INCOME DETERMINATION MODEL

2.17. Given: Y� C� I�G, C� C0� bY, I � I0, and G�G0, where C0 � 135, b � 0.8, I0� 75, and
G0 � 30. (a) Find the equation for the equilibrium level of income in the reduced form. (b)
Solve for the equilibrium level of income (1) directly and (2) with the reduced form.

a) From Section 2.3, Y �

�

Y� bY �

(1� b)Y �

C� I�G

C0� bY� I0�G0

C0� I0�G0

C0� I0�G0

Y �
C0� I0�G0

1� b

b) 1) Y �

Y� 0.8Y �

0.2Y �

Y �

C� I�G � 135� 0.8Y� 75� 30
240
240
1200

2) Y �
C0� I0�G0

1� b

�
135� 75� 30

1� 0.8

� 5(240) � 1200

2.18. Find the equilibrium level of income Y� C� I, when C� 89� 0.8Y and I0 � 24.

Y�
C0� I0

1� b
� 5(89� 24) � 565
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From Problem 2.17, the value of the multiplier [1/(1� b)] is already known for cases when b � 0.8. Use
of the reduced form to solve the equation in this instance is faster, therefore, although the other method
is also correct.

2.19. (a) Find the reduced form of the following income determination model where investment is
not autonomous but is a function of income. (b) Find the numerical value of the equilibrium
level of income (Ye). (c) Show what happens to the multiplier.

Y� C� I C� C0� bY I � I0� aY

where C0� 65, I0 � 70, b � 0.6, and a � 0.2.

a) Y �

�

Y� bY� aY �

(1� b� a)Y �

Y �

C� I

C0� bY� I0� aY

C0� I0

C0� I0

C0� I0

1� b� a

b) Y �

�

Y� 0.6Y� 0.2Y �

0.2Y �

Y �

C� I

65� 0.6Y� 70� 0.2Y

65� 70
135
675

c) When investment is a function of income, and no longer autonomous, the multiplier changes from
1/(1� b) to 1/(1� b� a). This increases the value of the multiplier because it reduces the
denominator of the fraction and makes the quotient larger, as substitution of the values of the
parameters in the problem shows:

1
1� b

�
1

1� 0.6
�

1
0.4
� 2.5

1
1� b� a

�
1

1� 0.6� 0.2
�

1
0.2
� 5

2.20. Find (a) the reduced form, (b) the numerical value of Ye, and (c) the effect on the multiplier
when a lump-sum tax is added to the model and consumption becomes a function of disposable
income (Yd).

Y� C� I C� C0� bYd I � I0 Yd � Y�T

where C0� 100, b � 0.6, I0� 40, and T � 50.

a) Y � C� I � C0� bYd� I0 � C0� b(Y�T)� I0� C0� bY� bT� I0

Y� bY � C0� I0� bT

Y �
C0� I0� bT

1� b

b) Y � 100� 0.6Yd� 40 � 140� 0.6(Y�T) or Y �
100� 40� 0.6(50)

1� 0.6
�

110
0.4

� 140� 0.6(Y� 50) � 140� 0.6Y� 30 � 275
Y� 0.6Y � 110

0.4Y � 110
Y � 275

The graph of this function is given in Problem 2.9.

c) As seen in part a), incorporation of a lump-sum tax into the model leaves the multiplier at 1/(1� b).
Only the aggregate value of the exogenous variables is reduced by an amount equal to �bT.
Incorporation of other autonomous variables such as G0, X0, or Z0 will not affect the value of the
multiplier either.
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2.21. Find (a) the reduced form, (b) the numerical value of Ye, and (c) the effect on the multiplier
if a proportional income tax (t) is incorporated into the model.

Y� C� I C� C0� bYd T � T0� tY Yd � Y�T

where I � I0 � 30, C0� 85, b � 0.75, t � 0.2, and T0 � 20.

a) Y � C� I � C0� bYd� I0

� C0� b(Y�T)� I0 � C0� b(Y�T0� tY)� I0

� C0� bY� bT0� btY� I0

Y� bY� btY � C0� I0� bT0

(1� b� bt)Y � C0� I0� bT0

Y �
C0� I0� bT0

1� b� bt

b) Once the reduced form is found, its use speeds the solution. But sometimes the reduced form is not
available, making it necessary to be familiar with the other method.

Y � C� I � 85� 0.75Yd� 30 � 115� 0.75(Y�T)
� 115� 0.75(Y� 20� 0.2Y) � 115� 0.75Y� 15� 0.15Y

Y� 0.75Y� 0.15Y �

0.4Y �

Y �

100
100
250

The graph of this function is given in Problem 2.10.

c) The multiplier is changed from 1/(1� b) to 1/(1� b� bt). This reduces the size of the multiplier
because it makes the denominator larger and the fraction smaller:

1
1� b

�
1

1� 0.75
�

1
0.25

� 4

1
1� b� bt

�
1

1� 0.75� 0.75(0.2)
�

1
1� 0.75� 0.15

�
1

0.4
� 2.5

2.22. If the foreign sector is added to the model and there is a positive marginal propensity to import
(z), find (a) the reduced form, (b) the equilibrium level of income, and (c) the effect on the
multiplier.

Y� C� I�G� (X�Z) C� C0� bY Z� Z0� zY

where I � I0 � 90, G�G0 � 65, X � X0� 80, C0 � 70, Z0� 40, b � 0.9, and z � 0.15.

a) Y � C� I�G� (X�Z) �
Y� bY� zY �

(1� b� z)Y �

C0� bY� I0�G0�X0�Z0� zY

C0� I0�G0�X0�Z0

C0� I0�G0�X0�Z0

Y �
C0� I0�G0�X0�Z0

1� b� z

b) Using the reduced form above,

Y �
70� 90� 65� 80� 40

1� 0.9� 0.15
�

265
0.25

� 1060
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c) Introduction of the marginal propensity to import (z) into the model reduces the size of the multiplier.
It makes the denominator larger and the fraction smaller:

1
1� b

�
1

1� 0.9
�

1
0.1
� 10

1
1� b� z

�
1

1� 0.9� 0.15
�

1
0.25

� 4

IS-LM EQUATIONS

2.23. Given: C� 102� 0.7Y, I � 150� 100i, Ms � 300, Mt � 0.25Y, and Mz � 124� 200i. Find (a) the
equilibrium level of income and the equilibrium rate of interest and (b) the level of C, I, Mt,
and Mz when the economy is in equilibrium.

a) Commodity market equilibrium (IS) exists where

Y �

�

Y� 0.7Y �

0.3Y�

C� I

102� 0.7Y� 150� 100i

252� 100i

100i� 252 � 0

Monetary equilibrium (LM) exists where

Ms �

300 �
Mt�Mz

0.25Y� 124� 200i

0.25Y� 200i� 176 � 0

Simultaneous equilibrium in both markets requires that

0.3Y� 100i� 252 � 0
0.25Y� 200i� 176 � 0

(2.19)
(2.20)

Multiply (2.19) by 2, and add the result to (2.20) to eliminate i:

0.6Y� 200i� 504 � 0
0.25Y� 200i� 176 � 0
0.85Y � 680

Y � 800

Substitute Y � 800 in (2.19) or (2.20):

0.25Y� 200i� 176 �
0.25(800)� 200i� 176 �

�200i �

i�

0
0
�24
0.12

b) At Y � 800 and i � 0.12,

C � 102� 0.7(800) � 662 Mt � 0.25(800) � 200
I � 150� 100(0.12) � 138 Mz � 124� 200(0.12) � 100

and

C� I �

662� 138 �
Y Mt�Mz �

800 200� 100 �
Ms

300

2.24. Find (a) the equilibrium income level and interest rate and (b) the levels of C, I, Mt, and Mz

in equilibrium when

C� 89� 0.6Y I � 120� 150i Ms� 275 Mt � 0.1Y Mz � 240� 250i
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a) For IS:

Y � 89� 0.6Y� 120� 150i

Y� 0.6Y � 209� 150i

0.4Y� 150i� 209 � 0

For LM:

Ms �Mt�Mz

275 � 0.1Y� 240� 250i

0.1Y� 250i� 35 � 0

In equilibrium,

0.4Y� 150i� 209 � 0
0.1Y� 250i� 35 � 0

(2.21)
(2.22)

Multiply (2.22) by 4, and subtract the result from (2.21) to eliminate Y.

0.4Y� 150i� 209 � 0
�(0.4Y� 1000i� 140 � 0)

1150i � 69
i � 0.06

Substitute i � 0.06 in (2.21) or (2.22).

0.4Y� 150(0.06)� 209 � 0
0.4Y � 200

Y � 500

b) At Y � 500 and i � 0.06,

C � 89� 0.6(500) � 389 Mt� 0.1(500) � 50
I � 120� 150(0.06) � 111 Mz� 240� 250(0.06) � 225

and

C� I �

389� 111 �
Y Mt�Mz�

500 50� 225 �
Ms

275
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CHAPTER 3

The Derivative
and the
Rules of

Differentiation

3.1 LIMITS

If the functional values f(x) of a function f draw closer to one and only one finite real number L
for all values of x as x draws closer to a from both sides, but does not equal a, L is defined as the limit
of f(x) as x approaches a and is written

lim
x→a

f(x) � L

Assuming that limx→a f(x) and limx→a g(x) both exist, the rules of limits are given below, explained
in Example 2, and treated in Problems 3.1 to 3.4.

1. lim
x→a

k � k (k � a constant)

2. lim
x→a

xn � an (n � a positive integer)

3. lim
x→a

kf(x) � k lim
x→a

f(x) (k � a constant)

4. lim
x→a

[f(x)� g(x)]� lim
x→a

f(x)� lim
x→a

g(x)

5. lim
x→a

[f(x) · g(x)]� lim
x→a

f(x) · lim
x→a

g(x)

6. lim
x→a

[f(x)� g(x)]� lim
x→a

f(x)� lim
x→a

g(x) �lim
x→a

g(x)� 0�
7. lim

x→a
[f(x)]n � �lim

x→a
f(x)�

n

(n� 0)
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EXAMPLE 1. a) From the graph of the function f(x) in Fig. 3-1, it is clear that as the value of x approaches 3
from either side, the value of f(x) approaches 2. This means that the limit of f(x) as x approaches 3 is the number
2, which is written

lim
x→3

f(x) � 2

As x approaches 7 from either side in Fig. 3-1, where the open circle in the graph of f(x) signifies there is a
gap in the function at that point, the value of f(x) approaches 4 even though the function is not defined at that
point.

Since the limit of a function as x approaches a number depends only on the values of x close to that number, the
limit exists and is written

lim
x→7

f(x) � 4

b) In Fig. 3-2, as x approaches 4 from the left (from values less than 4), written x → 4�, g(x) approaches 3, called
a one-sided limit; as x approaches 4 from the right (from values greater than 4), written x → 4�, g(x) approaches
4. The limit does not exist, therefore, since g(x) does not approach a single number as x approaches 4 from
both sides.

EXAMPLE 2. In the absence of a graph, limits can be found by using the rules of limits enumerated above.

a) lim
x→5

9 � 9 Rule 1

b) lim
x→6

x2 � (6)2 � 36 Rule 2

c) lim
x→3

2x3 � 2 lim
x→3

x3 � 2(3)3 � 54 Rules 2 and 3

d) lim
x→2

(x4� 3x) � lim
x→2

x4� 3 lim
x→2

x Rule 4

� (2)4� 3(2) � 22

e) lim
x→4

[(x� 8)(x� 5)] � lim
x→4

(x� 8) · lim
x→4

(x� 5) Rule 5

� (4� 8) · (4� 5) � �12

3.2 CONTINUITY

A continuous function is one which has no breaks in its curve. It can be drawn without lifting the
pencil from the paper. A function f is continuous at x � a if:

1. f(x) is defined, i.e., exists, at x� a

2. lim
x→a

f(x) exists, and

3. lim
x→a

f(x) � f(a)
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All polynomial functions are continuous, as are all rational functions, except where undefined, i.e.,
where their denominators equal zero. See Problem 3.5.

EXAMPLE 3. Given that the graph of a continuous function can be sketched without ever removing pencil from
paper and that an open circle means a gap in the function, it is clear that f(x) is discontinuous at x � 4 in Fig. 3-3(a)
and g(x) is discontinuous at x � 5 in Fig. 3-3(b), even though limx→5 g(x) exists.

3.3 THE SLOPE OF A CURVILINEAR FUNCTION

The slope of a curvilinear function is not constant. It differs at different points on the curve. In
geometry, the slope of a curvilinear function at a given point is measured by the slope of a line drawn
tangent to the function at that point. A tangent line is a straight line that touches a curve at only one
point. Measuring the slope of a curvilinear function at different points requires separate tangent lines,
as in Fig. 3-4(a).
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The slope of a tangent line is derived from the slopes of a family of secant lines. A secant line S
is a straight line that intersects a curve at two points, as in Fig. 3-4(b), where

Slope S �
y2� y1

x2� x1

By letting x2 � x1�	x and y2 � f(x1�	x), the slope of the secant line can also be expressed by a
difference quotient:

Slope S �
f(x1�	x)� f(x1)

(x1�	x)� x1

�
f(x1�	x)� f(x1)

	x

If the distance between x2 and x1 is made smaller and smaller, i.e., if 	x → 0, the secant line pivots back
to the left and draws progressively closer to the tangent line. If the slope of the secant line approaches
a limit as 	x → 0, the limit is the slope of the tangent line T, which is also the slope of the function at
the point. It is written

Slope T � lim
	x→0

f(x1�	x)� f(x1)
	x

(3.1)

Note: In many texts h is used in place of 	x, giving

Slope T � lim
h→0

f(x1� h)� f(x1)
h

(3.1a)

EXAMPLE 4. To find the slope of a curvilinear function, such as f(x) � 2x2, (1) employ the specific function in
the algebraic formula (3.1) or (3.1a) and substitute the arguments x1�	x (or x1� h) and x1, respectively, (2)
simplify the function, and (3) evaluate the limit of the function in its simplified form. From (3.1),

Slope T � lim
	x→0

f(x�	x)� f(x)
	x

1) Employ the function f(x) � 2x2 and substitute the arguments.

Slope T � lim
	x→0

2(x�	x)2� 2x2

	x

2) Simplify the result.

Slope T � lim
	x→0

2[x2� 2x(	x)� (	x)2]� 2x2

	x

� lim
	x→0

4x(	x)� 2(	x)2

	x

Divide through by 	x.

Slope T � lim
	x→0

(4x� 2	x)

3) Take the limit of the simplified expression.

Slope T � 4x

Note: The value of the slope depends on the value of x chosen. At x � 1, slope T � 4(1) � 4; at x � 2, slope
T � 4(2) � 8.
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3.4 THE DERIVATIVE

Given a function y � f(x), the derivative of the function f at x, written f �(x) or dy/dx, is
defined as

f �(x) � lim
	x→0

f(x�	x)� f(x)
	x

if the limit exists (3.2)

or from (3.1a), f �(x) � lim
h→0

f(x1� h)� f(x1)
h

(3.2a)

where f �(x) is read ‘‘the derivative of f with respect to x’’ or ‘‘f prime of x.’’
The derivative of a function f �(x), or simply f �, is itself a function which measures both the slope

and the instantaneous rate of change of the original function f(x) at a given point.

3.5 DIFFERENTIABILITY AND CONTINUITY

A function is differentiable at a point if the derivative exists (may be taken) at that point. To be
differentiable at a point, a function must (1) be continuous at that point and (2) have a unique tangent
at that point. In Fig. 3-5, f(x) is not differentiable at a and c because gaps exist in the function at those
points and the derivative cannot be taken at any point where the function is discontinuous.

Continuity alone, however, does not ensure (is not a sufficient condition for) differentiability. In
Fig. 3-5, f(x) is continuous at b, but it is not differentiable at b because at a sharp point or kink, called
a cusp, an infinite number of tangent lines (and no one unique tangent line) can be drawn.

3.6 DERIVATIVE NOTATION

The derivative of a function can be written in many different ways. If y � f(x), the derivatives can
be expressed as

f �(x) y�
dy
dx

df
dx

d
dx

[ f(x)] or Dx[f(x)]

If y � �(t), the derivative can be written

��(t) y�
dy
dt

d�
dt

d
dt

[�(t)] or Dt[�(t)]

If the derivative of y � f(x) is evaluated at x � a, proper notation includes f �(a) and
dy
dx �a

.
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EXAMPLE 5. If y � 5x2� 7x� 12, the derivative can be written

y�
dy

dx

d

dx
(5x2� 7x� 12) or Dx(5x2� 7x� 12)

If z ��8t� 3, the derivative can be expressed as

z�
dz

dt

d

dt
(�8t� 3) or Dt(�8t� 3)

See Problems 3.6 to 3.8.

3.7 RULES OF DIFFERENTIATION

Differentiation is the process of finding the derivative of a function. It involves nothing more
complicated than applying a few basic rules or formulas to a given function. In explaining the rules of
differentiation for a function such as y � f(x), other functions such as g(x) and h(x) are commonly
used, where g and h are both unspecified functions of x. The rules of differentiation are listed below
and treated in Problems 3.6 to 3.21. Selected proofs are found in Problems 3.24 to 3.26.

3.7.1 The Constant Function Rule

The derivative of a constant function f(x) � k, where k is a constant, is zero.

Given f(x) � k, f �(x) � 0

EXAMPLE 6. Given f(x) � 8, f �(x) � 0
Given f(x) � �6, f �(x) � 0

3.7.2 The Linear Function Rule

The derivative of a linear function f(x) �mx� b is equal to m, the coefficient of x. The derivative
of a variable raised to the first power is always equal to the coefficient of the variable, while the
derivative of a constant is simply zero.

Given f(x) �mx� b, f �(x) �m

EXAMPLE 7. Given f(x) � 3x� 2, f �(x) � 3
Given f(x) � 5� 1–

4x, f �(x) � �1–
4

Given f(x) � 12x, f �(x) � 12

3.7.3 The Power Function Rule

The derivative of a power function f(x) � kxn, where k is a constant and n is any real number, is
equal to the coefficient k times the exponent n, multiplied by the variable x raised to the n� 1
power.

Given f(x) � kxn f �(x) � k · n · xn�1

EXAMPLE 8. Given f(x) � 4x3 f �(x) � 4 · 3 · x3�1� 12x2

Given f(x) � 5x2, f �(x) � 5 · 2 · x2�1� 10x

Given f(x) � x4, f �(x) � 1 · 4 · x4�1� 4x3

See also Problem 3.7.
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3.7.4 The Rules for Sums and Differences

The derivative of a sum of two functions f(x) � g(x)� h(x), where g(x) and h(x) are both
differentiable functions, is equal to the sum of the derivatives of the individual functions. Similarly, the
derivative of the difference of two functions is equal to the difference of the derivatives of the two
functions.

Given f(x) � g(x)� h(x), f �(x) � g�(x)� h�(x)

EXAMPLE 9. Given f(x) � 12x5� 4x4, f �(x) � 60x4� 16x3

Given f(x) � 9x2� 2x� 3, f �(x) � 18x� 2

See Problem 3.8. For derivation of the rule, see Problem 3.24.

3.7.5 The Product Rule

The derivative of a product f(x) � g(x) · h(x), where g(x) and h(x) are both differentiable
functions, is equal to the first function multiplied by the derivative of the second plus the second
function multiplied by the derivative of the first. Given f(x) � g(x) · h(x),

f �(x) � g(x) · h�(x)� h(x) · g�(x) (3.3)

EXAMPLE 10. Given f(x) � 3x4(2x� 5), let g(x) � 3x4 and h(x) � 2x� 5. Taking the individual derivatives,
g�(x) � 12x3 and h�(x) � 2. Then by substituting these values in the product-rule formula (3.3),

f �(x) � 3x4(2)� (2x� 5)(12x3)
and simplifying algebraically gives

f �(x) � 6x4� 24x4� 60x3 � 30x4� 60x3

See Problems 3.9 to 3.11; for the derivation of the rule, see Problem 3.25.

3.7.6 The Quotient Rule

The derivative of a quotient f(x) � g(x)� h(x), where g(x) and h(x) are both differentiable
functions and h(x)� 0, is equal to the denominator times the derivative of the numerator, minus the
numerator times the derivative of the denominator, all divided by the denominator squared. Given
f(x) � g(x)/h(x),

f �(x) �
h(x) · g�(x)� g(x) · h�(x)

[h(x)]2 (3.4)

EXAMPLE 11. Given

f(x) �
5x3

4x� 3

where g(x) � 5x3 and h(x) � 4x� 3, we know that g�(x) � 15x2 and h�(x) � 4. Substituting these values in the
quotient�rule formula (3.4),

f �(x) �
(4x� 3)(15x2)� 5x3(4)

(4x� 3)2

Simplifying algebraically,

f �(x) �
60x3� 45x2� 20x3

(4x� 3)2 �
40x3� 45x2

(4x� 3)2 �
5x2(8x� 9)
(4x� 3)2

See Problems 3.12 and 3.13; for the derivation of the rule, see Problem 3.26.
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3.7.7 The Generalized Power Function Rule

The derivative of a function raised to a power, f(x) � [g(x)]n, where g(x) is a differentiable
function and n is any real number, is equal to the exponent n times the function g(x) raised to the n� 1
power, multiplied in turn by the derivative of the function itself g�(x). Given f(x) � [g(x)]n,

f �(x) � n[g(x)]n�1 · g�(x) (3.5)

EXAMPLE 12. Given f(x) � (x3� 6)5, let g(x) � x3� 6, then g�(x) � 3x2. Substituting these values in the
generalized power function formula (3.5) gives

f �(x) � 5(x3� 6)5�1 · 3x2

Simplifying algebraically,

f �(x) � 5(x3� 6)4 · 3x2� 15x2(x3� 6)4

Note: The generalized power function rule is derived from the chain rule which follows below. See Problems 3.14
and 3.15.

3.7.8 The Chain Rule

Given a composite function, also called a function of a function, in which y is a function of u and
u in turn is a function of x, that is, y � f(u) and u � g(x), then y � f [g(x)] and the derivative of y with
respect to x is equal to the derivative of the first function with respect to u times the derivative of the
second function with respect to x:

dy

dx
�

dy

du
·
du

dx
(3.6)

See Problems 3.16 and 3.17.

EXAMPLE 13. Consider the function y � (5x2� 3)4. To use the chain rule, let y � u4 and u � 5x2� 3. Then
dy/du � 4u3 and du/dx � 10x. Substitute these values in (3.6):

dy

dx
� 4u3 · 10x � 40xu3

Then to express the derivative in terms of a single variable, substitute 5x2� 3 for u.

dy

dx
� 40x(5x2� 3)3

For more complicated functions, different combinations of the basic rules must be used. See
Problems 3.18 and 3.19.

3.8 HIGHER-ORDER DERIVATIVES

The second-order derivative, written f 
(x), measures the slope and the rate of change of the first
derivative, just as the first derivative measures the slope and the rate of change of the original or
primitive function. The third-order derivative f�(x) measures the slope and rate of change of the
second-order derivative, etc. Higher-order derivatives are found by applying the rules of differentia-
tion to lower-order derivatives, as illustrated in Example 14 and treated in Problems 3.20 and 3.21.

EXAMPLE 14. Given y � f(x), common notation for the second-order derivative includes f 
(x), d 2 y/dx2, y
, and
D2 y; for the third-order derivative, f�(x), d3 y/dx3, y�, and D3 y; for the fourth-order derivatives, f (4)(x), d4 y/dx4,
y(4), and D4 y; etc.

39THE DERIVATIVE AND THE RULES OF DIFFERENTIATIONCHAP. 3]



Higher-order derivatives are found by successively applying the rules of differentiation to derivatives of the
previous order. Thus, if f(x) � 2x4� 5x3� 3x2,

f �(x) �
f 
(x) �
f�(x) �

f (4)(x) �

8x3� 15x2� 6x

24x2� 30x� 6
48x� 30
48 f (5)(x) � 0

See Problems 3.20 and 3.21.

3.9 IMPLICIT DIFFERENTIATION

Introductory economics deals most often with explicit functions in which the dependent variable
appears to the left of the equal sign and the independent variable appears to the right. Frequently
encountered in more advanced economics courses, however, are implicit functions in which both
variables and constants are to the left of the equal sign. Some implicit functions can be easily converted
to explicit functions by solving for the dependent variable in terms of the independent variable; others
cannot. For those not readily convertible, the derivative may be found by implicit differentiation. See
Example 16 and Problems 3.22, 3.23, 4.25, and 4.26; also see Section 5.10 and Problems 5.20, 5.21, 6.51,
and 6.52.

EXAMPLE 15. Samples of explicit and implicit functions include:

Explicit: y � 4x y � x2� 6x� 7 y �
x4� 9x3

x2� 13

Implicit: 8x� 5y� 21 � 0 3x2� 8xy� 5y� 49 � 0 35x3 y7� 106 � 0

EXAMPLE 16. Given 3x4� 7y5� 86 � 0, the derivative dy/dx is found by means of implicit differentiation in two
easy steps.

1) Differentiate both sides of the equation with respect to x while treating y as a function of x,

d

dx
(3x4� 7y5� 86) �

d

dx
(0) (3.7)

d

dx
(3x4)�

d

dx
(7y5)�

d

dx
(86) �

d

dx
(0)

where
d

dx
(3x4) � 12x3,

d

dx
(86) � 0,

d

dx
(0) � 0. Using the generalized power function rule for

d

dx
(7y5)

and noting that
d

dx
(y) �

dy

dx
, we get

d

dx
(7y5) � 7 · 5 · y5�1 ·

d

dx
(y) � 35y4 dy

dx

Substitute the above values in (3.7).

12x3� 35y4 dy

dx
� 0 (3.8)

(2) Now simply solve (3.8) algebraically for dy/dx:

�35y4 dy

dx
� �12x3

dy

dx
�

12x3

35y4

Compare this answer to that in Example 16 of Chapter 5.
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Solved Problems

LIMITS AND CONTINUITY

3.1. Use the rules of limits to find the limits for the following functions:

a) lim
x→2

[x3(x� 4)]

lim
x→2

[x3(x� 4)] � lim
x→2

x3 · lim
x→2

(x� 4) Rule 5

� (2)3 · (2� 4) � 8 · 6 � 48

b) lim
x→4

3x2� 5x
x� 6

lim
x→4

3x2� 5x

x� 6
�

lim
x→4

(3x2� 5x)

lim
x→4

(x� 6)
Rule 6

�
3(4)2� 5(4)

4� 6
�

48� 20
10

� 2.8

c) lim
x→2

�6x3� 1

lim
x→2

�6x3� 1 � lim
x→2

(6x3� 1)1/2

� [lim
x→2

(6x3� 1)]1/2 Rule7

� [6(2)3� 1]1/2 � (49)1/2 � �7

3.2. Find the limits for the following polynomial and rational functions.

a) lim
x→3

(5x2� 4x� 9)

From the properties of limits it can be shown that for all polynomial functions and all rational
functions, where defined, limx→a f(x) � f(a). The limits can be taken, therefore, by simply evaluating
the functions at the given level of a.

lim
x→3

(5x2� 4x� 9) � 5(3)2� 4(3)� 9 � 42

b) lim
x→�4

(3x2� 7x� 12)

lim
x→�4

(3x2� 7x� 12) � 3(�4)2� 7(�4)� 12 � 8

c) lim
x→6

4x2� 2x� 8
5x2� 6

lim
x→6

4x2� 2x� 8
5x2� 6

�
4(6)2� 2(6)� 8

5(6)2� 6
�

124
186

�
2
3

3.3. Find the limits of the following rational functions. If the limit of the denominator equals zero,
neither Rule 6 nor the generalized rule for rational functions used above applies.

a) lim
x→7

x� 7
x2� 49
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The limit of the denominator is zero, so Rule 6 cannot be used. Since we are only interested in
the function as x draws near to 7, however, the limit can be found if by factoring and canceling, the
problem of zero in the denominator is removed.

lim
x→7

x� 7
x2� 49

� lim
x→7

x� 7
(x� 7)(x� 7)

� lim
x→7

1
x� 7

�
1
14

b) lim
x→�7

x� 7
x2� 49

lim
x→�7

x� 7
x2� 49

� lim
x→�7

x� 7
(x� 7)(x� 7)

� lim
x→�7

1
x� 7

The limit does not exist.

c) lim
x→6

x2� 2x� 24
x� 6

With the limit of the denominator equal to zero, factor.

lim
x→6

x2� 2x� 24
x� 6

� lim
x→6

(x� 4)(x� 6)
x� 6

� lim
x→6

(x� 4) � 10

3.4. Find the limits of the following functions, noting the role that infinity plays.

a) lim
x→0

2
x

(x� 0)

As seen in Fig. 1-3(b), as x approaches 0 from the right (x → 0�), f(x) approaches positive infinity;
as x approaches 0 from the left (x → 0�), f(x) approaches negative infinity. If a limit approaches either
positive or negative infinity, the limit does not exist and is written

lim
x→0�

2
x
� � lim

x→0�

2
x
� �� The limit does not exist.

b) lim
x→�

2
x

lim
x→��

2
x

As also seen in Fig. 1-3(b), as x approaches �, f(x) approaches 0; as x approaches ��, f(x) also
approaches 0. The limit exists in both cases and is written

lim
x→�

2
x
� 0 lim

x→��

2
x
� 0

c) lim
x→�

3x2� 7x
4x2� 21

As x →�, both numerator and denominator become infinite, leaving matters unclear. A trick in
such circumstances is to divide all terms by the highest power of x which appears in the function. Here
dividing all terms by x2 leaves

lim
x→�

3x2� 7x

4x2� 21
� lim

x→�

3� (7/x)
4� (21/x2)

�
3� 0
4� 0

�
3
4
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3.5. Indicate whether the following functions are continuous at the specified points by determining
whether at the given point all the following conditions from Section 3.2 hold: (1) f(x) is defined,
(2) limx→a f(x) exists, and (3) limx→a f(x) � f(a).

a) f(x) � 5x2� 8x� 9 at x � 3

1) f(3) � 5(3)2� 8(3)� 9 � 30

2) lim
x→3

(5x2� 8x� 9) � 5(3)2� 8(3)� 9 � 30

3) lim
x→3

f(x) � 30 � f(3) f(x) is continuous.

b) f(x) �
x2� 3x� 12

x� 3
at x� 4

1) f(4) �
(4)2� 3(4)� 12

4� 3
�

40
1
� 40

2) lim
x→4

x2� 3x� 12
x� 3

� 40

3) lim
x→4

f(x) � 40 � f(4) f(x) is continuous.

c) f(x) �
x� 3
x2� 9

at x � 3

1) f(3) �
3� 3

(3)2� 9

With the denominator equal to zero, f(x) is not defined at x � 3 and so cannot be continuous
at x � 3 even though the limit exists at x � 3. See steps 2 and 3.

2) lim
x→3

x� 3
x2� 9

� lim
x→3

x� 3
(x� 3)(x� 3)

� lim
x→3

1
x� 3

�
1
6

3) lim
x→3

f(x) � 1–
6� f(3). So f(x) is discontinuous at x � 3.

DERIVATIVE NOTATION AND SIMPLE DERIVATIVES

3.6. Differentiate each of the following functions and practice the use of the different notations for
a derivative.

a) f(x) � 17 b) y ��12

f �(x) � 0 (constant rule)
dy

dx
� 0

c) y� 5x� 12 d) f(x) � 9x� 6

y� � 5 (linear function rule) f � � 9

3.7. Differentiate each of the following functions using the power function rule. Continue to use the
different notations.

a) y� 8x3 b) f(x) ��6x5

d

dx
(8x3) � 24x2 f � � �30x4
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c) f(x) � 5x�2

f �(x) � 5(�2) · x[�2�(1)] � �10x�3� �
10
x3

d) y��9x�4

dy

dx
� �9(�4) · x[�4�(1)] � 36x�5 �

36
x5

e) y�
7
x
� 7x�1

Dx(7x�1) � 7(�1)x�2 � �7x�2 � �
7
x2

f) f(x) � 18�x� 18x1/2

df

dx
� 18�1

2 � · x1/2�1 � 9x�1/2 �
9

�x

3.8. Use the rule for sums and differences to differentiate the following functions. Treat the
dependent variable on the left as y and the independent variable on the right as x.

a) R� 8t2� 5t� 6 b) C� 4t3� 9t2� 28t� 68

dR

dt
� 16t� 5 C � � 12t2� 18t� 28

c) p � 6q5� 3q3 d) q � 7p4� 15p�3

dp

dq
� 30q4� 9q2 Dp(7p4� 15p�3) � 28p3� 45p�4

THE PRODUCT RULE

3.9. Given y � f(x) � 5x4(3x� 7), (a) use the product rule to find the derivative. (b) Simplify the
original function first and then find the derivative. (c) Compare the two derivatives.

a) Recalling the formula for the product rule from (3.3),

f �(x) � g(x) · h�(x)� h(x) · g�(x)

let g(x) � 5x4 and h(x) � 3x� 7. Then g�(x) � 20x3 and h�(x) � 3. Substitute these values in the
product� rule formula.

y� � f �(x) � 5x4(3)� (3x� 7)(20x3)

Simplify algebraically.

y� � 15x4� 60x4� 140x3� 75x4� 140x3

b) Simplify the original function by multiplication.

y � 5x4(3x� 7) � 15x5� 35x4

Take the derivative.
y� � 75x4� 140x3

c) The derivatives found in parts (a) and (b) are identical. The derivative of a product can be found by
either method, but as the functions grow more complicated, the product rule becomes more useful.
Knowledge of another method helps to check answers.
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3.10. Redo Problem 3.9, given y � f(x) � (x8� 8)(x6� 11).

a) Let g(x) � x8� 8 and h(x) � x6� 11. Then g�(x) � 8x7 and h�(x) � 6x5. Substituting these values in
(3.3),

y� � f �(x) � (x8� 8)(6x5)� (x6� 11)(8x7)
� 6x13� 48x5� 8x13� 88x7� 14x13� 88x7� 48x5

b) Simplifying first through multiplication,

y � (x8� 8)(x6� 11) � x14� 11x8� 8x6� 88

Then y� � 14x13� 88x7� 48x5

c) The derivatives are identical.

3.11. Differentiate each of the following functions using the product rule. Note: The choice of
problems is purposely kept simple in this and other sections of the book to enable students to
see how various rules work. While it is proper and often easier to simplify a function
algebraically before taking the derivative, applying the rules to the problems as given in the long
run will help the student to master the rules more efficiently.

a) y� (4x2� 3)(2x5)

dy

dx
(4x2� 3)(10x4)� 2x5(8x) � 40x6� 30x4� 16x6 � 56x6� 30x4

b) y� 7x9(3x2� 12)

dy

dx
� 7x9(6x)� (3x2� 12)(63x8) � 42x10� 189x10� 756x8 � 231x10� 756x8

c) y� (2x4� 5)(3x5� 8)

dy

dx
� (2x4� 5)(15x5)� (3x5� 8)(8x3) � 30x8� 75x4� 24x8� 64x3 � 54x8� 75x4� 64x2

d) z� (3� 12t3)(5� 4t6)

dz

dt
� (3� 12t3)(24t5)� (5� 4t6)(�36t2) � 72t5� 288t8� 180t2� 144t8 � �432t8� 72t5� 180t2

QUOTIENT RULE

3.12. Given

y�
10x8� 6x7

2x

(a) Find the derivative directly, using the quotient rule. (b) Simplify the function by division and
then take its derivative. (c) Compare the two derivatives.

a) From (3.4), the formula for the quotient rule is

f �(x) �
h(x) · g�(x)� g(x) · h�(x)

[h(x)]2

where g(x) � the numerator � 10x8� 6x7 and h(x) � the denominator � 2x. Take the individual
derivatives.

g�(x) � 80x7� 42x6 h�(x) � 2
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Substitute in the formula,

y� �
2x(80x7� 42x6)� (10x8� 6x7)(2)

(2x)2

�
160x8� 84x7� 20x8� 12x7

4x2 �
140x8� 72x7

4x2

� 35x6� 18x5

b) Simplifying the original function first by division,

y �
10x8� 6x7

2x
� 5x7� 3x6

y� � 35x6� 18x5

c) The derivatives will always be the same if done correctly, but as functions grow in complexity, the
quotient rule becomes more important. A second method is also a way to check answers.

3.13. Differentiate each of the following functions by means of the quotient rule. Continue to apply
the rules to the functions as given. Later, when all the rules have been mastered, the functions
can be simplified first and the easiest rule applied.

a) y�
3x8� 4x7

4x3

Here g(x) � 3x8� 4x7 and h(x) � 4x3. Thus, g�(x) � 24x7� 28x6 and h�(x) � 12x2. Substituting in the
quotient formula,

y� �
4x3(24x7� 28x6)� (3x8� 4x7)(12x2)

(4x3)2

�
96x10� 112x9� 36x10� 48x9

16x6 �
60x10� 64x9

16x6 � 3.75x4� 4x3

b) y�
4x5

1� 3x
(x� 1–

3)

(Note: The qualifying statement is added because if x � 1–
3, the denominator would equal

zero and the function would be undefined.)

dy

dx
�

(1� 3x)(20x4)� 4x5(�3)
(1� 3x)2 �

20x4� 60x5� 12x5

(1� 3x)2 �
20x4� 48x5

(1� 3x)2

c) y�
15x2

2x2� 7x� 3

dy

dx
�

(2x2� 7x� 3)(30x)� 15x2(4x� 7)
(2x2� 7x� 3)2

�
60x3� 210x2� 90x� 60x3� 105x2

(2x2� 7x� 3)2 �
105x2� 90x

(2x2� 7x� 3)2

d) y�
6x� 7
8x� 5

(x� 5–
8)

dy

dx
�

(8x� 5)(6)� (6x� 7)(8)
(8x� 5)2 �

48x� 30� 48x� 56
(8x� 5)2 �

26
(8x� 5)2
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e) y�
5x2� 9x� 8

x2� 1

dy

dx
�

(x2� 1)(10x� 9)� (5x2� 9x� 8)(2x)
(x2� 1)2

�
10x3� 9x2� 10x� 9� 10x3� 18x2� 16x

(x2� 1)2 �
9x2� 6x� 9

(x2� 1)2

THE GENERALIZED POWER FUNCTION RULE

3.14. Given y � (5x� 8)2, (a) use the generalized power function rule to find the derivative; (b)
simplify the function first by squaring it and then take the derivative; (c) compare answers.

a) From the generalized power function rule in (3.5), if f(x) � [g(x)]n,

f �(x) � n[g(x)]n�1 · g�(x)

Here g(x) � 5x� 8, g�(x) � 5, and n � 2. Substitute these values in the generalized power function
rule,

y� � 2(5x� 8)2�1 · 5 � 10(5x� 8) � 50x� 80

b) Square the function first and then take the derivative,

y � (5x� 8)(5x� 8) � 25x2� 80x� 64
y� � 50x� 80

c) The derivatives are identical. But for higher, negative, and fractional values of n, the generalized
power function rule is faster and more practical.

3.15. Find the derivative for each of the following functions with the help of the generalized power
function rule.

a) y� (6x3� 9)4

Here g(x) � 6x3� 9, g�(x) � 18x2, and n � 4. Substitute in the generalized power function rule,

y� � 4(6x3� 9)4�1 · 18x2

� 4(6x3� 9)3 · 18x2 � 72x2(6x3� 9)3

b) y� (2x2� 5x� 7)3

y� � 3(2x2� 5x� 7)2 · (4x� 5)
� (12x� 15)(2x2� 5x� 7)2

c) y�
1

7x3� 13x� 3

First convert the function to an easier equivalent form,

y � (7x3� 13x� 3)�1

then use the generalized power function rule,

y� �

�

�

�1(7x3� 13x� 3)�2 · (21x2� 13)
�(21x2� 13)(7x3� 13x� 3)�2

�(21x2� 13)
(7x3� 13x� 3)2
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d) y��34� 6x2

Convert the radical to a power function, then differentiate.

y �

y� �

�

(34� 6x2)1/2

1–
2(34� 6x2)�1/2 · (�12x)

�6x(34� 6x2)�1/2 �
�6x

�34� 6x2

e) y�
1

�4x3� 94

Convert to an equivalent form; then take the derivative.

y �

y� �

�

(4x3� 94)�1/2

�1–
2(4x3� 94)�3/2 · (12x2) � �6x2(4x3� 94)�3/2

�6x2

(4x3� 94)3/2 �
�6x2

�(4x3� 94)3

CHAIN RULE

3.16. Use the chain rule to find the derivative dy/dx for each of the following functions of a function.
Check each answer on your own with the generalized power function rule, noting that the
generalized power function rule is simply a specialized use of the chain rule.

a) y� (3x4� 5)6

Let y � u6 and u � 3x4� 5. Then dy/du � 6u5 and du/dx � 12x3. From the chain rule in (3.6),

dy

dx
�

dy

du

du

dx

Substituting,
dy

dx
� 6u5 · 12x3 � 72x3 u5

But u � 3x4� 5. Substituting again,

dy

dx
� 72x3(3x4� 5)5

b) y� (7x� 9)2

Let y � u2 and u � 7x� 9, then dy/du � 2u and du/dx � 7. Substitute these values in the
chain rule,

dy

dx
� 2u · 7 � 14u

Then substitute 7x� 9 for u.

dy

dx
� 14(7x� 9) � 98x� 126

c) y� (4x5� 1)7

Let y � u7 and u � 4x5� 1; then dy/du � 7u6, du/dx � 20x4, and

dy

dx
� 7u6 · 20x4 � 140x4 u6
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Substitute u � 4x5� 1.

dy

dx
� 140x4(4x5� 1)6

3.17. Redo Problem 3.16, given:

a) y� (x2� 3x� 1)5

Let y � u5 and u � x2� 3x� 1, then dy/du � 5u4 and du/dx � 2x� 3. Substitute in (3.6).

dy

dx
� 5u4(2x� 3) � (10x� 15)u4

But u � x2� 3x� 1. Therefore,

dy

dx
� (10x� 15)(x2� 3x� 1)4

b) y��3(x2� 8x� 7)4

Let y � �3u4 and u � x2� 8x� 7. Then dy/du � �12u3, du/dx � 2x� 8, and

dy

dx
� �12u3(2x� 8) � (�24x� 96)u3

� (�24x� 96)(x2� 8x� 7)3

COMBINATION OF RULES

3.18. Use whatever combination of rules is necessary to find the derivatives of the following
functions. Do not simplify the original functions first. They are deliberately kept simple to
facilitate the practice of the rules.

a) y�
3x(2x� 1)

5x� 2

The function involves a quotient with a product in the numerator. Hence both the quotient rule
and the product rule are required. Start with the quotient rule from (3.4).

y� �
h(x) · g�(x)� g(x) · h�(x)

[h(x)]2

where g(x) � 3x(2x� 1), h(x) � 5x� 2, and h�(x) � 5. Then use the product rule from (3.3) for
g�(x).

g�(x) � 3x · 2� (2x� 1) · 3 � 12x� 3

Substitute the appropriate values in the quotient rule.

y� �
(5x� 2)(12x� 3)� [3x(2x� 1)] · 5

(5x� 2)2

Simplify algebraically.

y� �
60x2� 15x� 24x� 6� 30x2� 15x

(5x� 2)2 �
30x2� 24x� 6

(5x� 2)2

Note: To check this answer one could let

y � 3x ·
2x� 1
5x� 2

or y �
3x

5x� 2
· (2x� 1)

and use the product rule involving a quotient.
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b) y� 3x(4x� 5)2

The function involves a product in which one function is raised to a power. Both the product rule
and the generalized power function rule are needed. Starting with the product rule,

y� � g(x) · h�(x)� h(x) · g�(x)

where g(x) � 3x h(x) � (4x� 5)2 and g�(x) � 3

Use the generalized power function rule for h�(x).

h�(x) � 2(4x� 5) · 4 � 8(4x� 5) � 32x� 40

Substitute the appropriate values in the product rule,

y� � 3x · (32x� 40)� (4x� 5)2 · 3

and simplify algebraically,

y� � 96x2� 120x� 3(16x2� 40x� 25) � 144x2� 240x� 75

c) y� (3x� 4) ·
5x� 1
2x� 7

Here we have a product involving a quotient. Both the product rule and the quotient rule are
needed. Start with the product rule,

y� � g(x) · h�(x)� h(x) · g�(x)

where g(x) � 3x� 4 h(x) �
5x� 1
2x� 7

and g�(x) � 3

and use the quotient rule for h�(x).

h�(x) �
(2x� 7)(5)� (5x� 1)(2)

(2x� 7)2 �
33

(2x� 7)2

Substitute the appropriate values in the product rule,

y� � (3x� 4) ·
33

(2x� 7)2�
5x� 1
2x� 7

· 3 �
99x� 132
(2x� 7)2 �

15x� 3
2x� 7

�
99x� 132� (15x� 3)(2x� 7)

(2x� 7)2 �
30x2� 210x� 111

(2x� 7)2

One could check this answer by letting y � (3x� 4)(5x� 1)/(2x� 7) and using the quotient rule
involving a product.

d) y�
(8x� 5)3

(7x� 4)

Start with the quotient rule, where

g(x) � (8x� 5)3 h(x) � 7x� 4 h�(x) � 7

and use the generalized power function rule for g�(x),

g�(x) � 3(8x� 5)2 · 8 � 24(8x� 5)2

Substitute these values in the quotient rule,

y� �
(7x� 4) · 24(8x� 5)2� (8x� 5)3 · 7

(7x� 4)2

�
(168x� 96)(8x� 5)2� 7(8x� 5)3

(7x� 4)2
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To check this answer, one could let y � (8x� 5)3 · (7x� 4)�1 and use the product rule involving the
generalized power function rule twice.

e) y� � 3x� 4
2x� 5 �

2

Start with the generalized power function rule,

y� � 2� 3x� 4
2x� 5 � ·

d

dx �
3x� 4
2x� 5 � (3.9)

Then use the quotient rule,

d

dx �
3x� 4
2x� 5 � � (2x� 5)(3)� (3x� 4)(2)

(2x� 5)2 �
7

(2x� 5)2

and substitute this value in (3.9),

y� � 2� 3x� 4
2x� 5 � ·

7
(2x� 5)2 �

14(3x� 4)
(2x� 5)3 �

42x� 56
(2x� 5)3

To check this answer, let y � (3x� 4)2 · (2x� 5)�2, and use the product rule involving the generalized
power function rule twice.

3.19. Differentiate each of the following, using whatever rules are necesary:

a) y� (5x� 1)(3x� 4)3

Using the product rule together with the generalized power function rule,

dy

dx
� (5x� 1)[3(3x� 4)2(3)]� (3x� 4)3(5)

Simplifying algebraically,

dy

dx
� (5x� 1)(9)(3x� 4)2� 5(3x� 4)3 � (45x� 9)(3x� 4)2� 5(3x� 4)3

b) y�
(9x2� 2)(7x� 3)

5x

Using the quotient rule along with the product rule,

y� �
5x[(9x2� 2)(7)� (7x� 3)(18x)]� (9x2� 2)(7x� 3)(5)

(5x)2

Simplifying algebraically,

y� �
5x(63x2� 14� 126x2� 54x)� 5(63x3� 27x2� 14x� 6)

25x2 �
630x3� 135x2� 30

25x2

c) y�
15x� 23
(3x� 1)2

Using the quotient rule plus the generalized power function rule,

y� �
(3x� 1)2 (15)� (15x� 23)[2(3x� 1)(3)]

(3x� 1)4

Simplifying algebraically,

y� �
15(3x� 1)2� (15x� 23)(18x� 6)

(3x� 1)4 �
�135x2� 414x� 123

(3x� 1)4
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d) y� (6x� 1)
4x

9x� 1

Using the product rule and the quotient rule,

Dx � (6x� 1)
(9x� 1)(4)� 4x(9)

(9x� 1)2 �
4x

9x� 1
(6)

Simplifying algebraically,

Dx �
(6x� 1)(36x� 4� 36x)

(9x� 1)2 �
24x

9x� 1
�

216x2� 48x� 4
(9x� 1)2

e) y� � 3x� 1
2x� 5 �

3

Using the generalized power function rule and the quotient rule,

y� � 3� 3x� 1
2x� 5 �

2 (2x� 5)(3)� (3x� 1)(2)
(2x� 5)2

Simplifying algebraically,

y� �
3(3x� 1)2

(2x� 5)2

17
(2x� 5)2 �

51(3x� 1)2

(2x� 5)4

HIGHER-ORDER DERIVATIVES

3.20. For each of the following functions, (1) find the second-order derivative and (2) evaluate it at
x � 2. Practice the use of the different second-order notations.

a) y� 7x3� 5x2� 12

1)
dy

dx
� 21x2� 10x 2) At x � 2,

d2 y

dx2 � 42(2)� 10

d2 y

dx2 � 42x� 10 � 94

b) f(x) � x6� 3x4� x

1) f �(x) � 6x5� 12x3� 1
f 
(x) � 30x4� 36x2

2) At x � 2, f 
(x) � 30(2)4� 36(2)2

� 624

c) y� (2x� 3)(8x2� 6)

1) Dy � (2x� 3)(16x)� (8x2� 6)(2)
� 32x2� 48x� 16x2� 12
� 48x2� 48x� 12

D2 y � 96x� 48

2) At x � 2, D2 y � 96(2)� 48
� 240

d) f(x) � (x4� 3)(x3� 2)

1) f � � (x4� 3)(3x2)� (x3� 2)(4x3)
� 3x6� 9x2� 4x6� 8x3

� 7x6� 8x3� 9x2

f 
 � 42x5� 24x2� 18x

2) At x � 2, f 
 � 42(2)5� 24(2)2� 18(2)
� 1212
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e) y�
5x

1� 3x

1) y� �
(1� 3x)(5)� 5x(�3)

(1� 3x)2 2) At x � 2, y
 �
30� 90(2)
[1� 3(2)]4

�
5� 15x� 15x

(1� 3x)2 �
5

(1� 3x)2 �
�150
(�5)4

y
 �
(1� 3x)2 (0)� 5[2(1� 3x)(�3)]

(1� 3x)4 � �
6
25

�
�5(�6� 18x)

(1� 3x)4 �
30� 90x

(1� 3x)4 �
30

(1� 3x)3

f) y�
7x2

x� 1

1) y� �
(x� 1)(14x)� 7x2(1)

(x� 1)2 2) At x � 2, y
 �
14

(2� 1)3

�
14x2� 14x� 7x2

(x� 1)2 �
7x2� 14x

(x� 1)2 � 14

y
 �
(x� 1)2 (14x� 14)� (7x2� 14x)[2(x� 1)(1)]

(x� 1)4

�
(x2� 2x� 1)(14x� 14)� (7x2� 14x)(2x� 2)

(x� 1)4

�
14(x� 1)
(x� 1)4 �

14
(x� 1)3

g) f(x) � (8x� 4)3

1) f � � 3(8x� 4)2 (8) 2) At x � 2, f 
 � 384[8(2)� 4]
� 24(8x� 4)2 � 4608

f 
 � 2(24)(8x� 4)(8)
� 384(8x� 4)

h) y� (5x3� 7x2)2

1) Dy � 2(5x3� 7x2)(15x2� 14x) 2) At x � 2, D2 y � 750(2)4� 1400(2)3� 588(2)2

� 150x5� 350x4� 196x3 � 3152
D2 y � 750x4� 1400x3� 588x2

3.21. For each of the following functions, (1) investigate the successive derivatives and (2) evaluate
them at x� 3.

a) y� x3� 3x2� 9x� 7

1) y� � 3x2� 6x� 9
y
 � 6x� 6
y� � 6

y(4) � 0

2) At x � 3, y� � 3(3)2� 6(3)� 9 � 54
y
 � 6(3)� 6 � 24
y� � 6

y(4)� 0

b) y� (4x� 7)(9x� 2)

1) y� � (4x� 7)(9)� (9x� 2)(4)
� 36x� 63� 36x� 8 � 72x� 55

y
 � 72
y� � 0

2) At x � 3, y� � 72(3)� 55 � 161
y
 � 72
y� � 0

53THE DERIVATIVE AND THE RULES OF DIFFERENTIATIONCHAP. 3]



c) y� (5� x)4

1) Dx � 4(5� x)3 (�1) � �4(5� x)3

Dx
2 � �12(5� x)2 (�1) � 12(5� x)2

Dx
3 � 24(5� x)(�1)
� �24(5� x) � 24x� 120

Dx
4 � 24

Dx
5 � 0

2) At x � 3, Dx � �4(5� 3)3 � �32
Dx

2 � 12(5� 3)2 � 48
Dx

3 � 24(3)� 120 � �48
Dx

4 � 24
Dx

5 � 0

IMPLICIT DIFFERENTIATION

3.22. Use implicit differentiation to find the derivative dy/dx for each of the following equations.

a) 4x2� y3 � 97

Take the derivative with respect to x of both sides,

d

dx
(4x2)�

d

dx
(y3) �

d

dx
(97) (3.10)

where
d

dx
(4x2) � 8x,

d

dx
(97) � 0, and use the generalized power function rule because y is con-

sidered a function of x,

d

dx
(y3) � 3 · y2 ·

d

dx
(y)

Set these values in (3.10) and recall that
d

dx
(y) �

dy

dx
.

8x� 3y2 �dy

dx � � 0

�3y2 �dy

dx � � �8x

dy

dx
�

8x

3y2

b) 3y5� 6y4� 5x6 � 243

Taking the derivative with respect to x of both sides,

d

dx
(3y5)�

d

dx
(6y4)�

d

dx
(5x6) �

d

dx
(243)

15y4�dy

dx � � 24y3�dy

dx � � 30x5 � 0

Solve for dy/dx,

(15y4� 24y3) �dy

dx � � �30x5

dy

dx
�

�30x5

15y4� 24y3

c) 2x4� 7x3� 8y5 � 136

d

dx
(2x4)�

d

dx
(7x3)�

d

dx
(8y5) �

d

dx
(136)
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8x3� 21x2� 40y4�dy

dx � � 0

40y4�dy

dx � � �(8x3� 21x2)

dy

dx
�
�(8x3� 21x2)

40y4

3.23. Use the different rules of differentiation in implicit differentiation to find dy/dx for each of the
following:

a) x4 y6 � 89

d

dx
(x4 y6) �

d

dx
(89)

Use the product rule and the generalized power function rule.

x4 ·
d

dx
(y6)� y6 ·

d

dx
(x4) �

d

dx
(89)

x4 · 6y5 dy

dx
� y6 · 4x3 � 0

Solve algebraically for dy/dx.

6x4y5 dy

dx
� �4x3 y6

dy

dx
�
�4x3 y6

6x4 y5 �
�2y

3x

b) 2x3� 5xy� 6y2 � 87

d

dx
(2x3� 5xy� 6y2) �

d

dx
(87)

Note that the derivative of 5xy requires the product rule.

6x2� �5x · �dy

dx � � y · (5)� � 12y�dy

dx � � 0

Solving algebraically for dy/dx

(5x� 12y)�dy

dx � � �6x2� 5y

dy

dx
�
�(6x2� 5y)

5x� 12y

c) 7x4� 3x3 y� 9xy2� 496

28x3� �3x3 · �dy

dx � � y · 9x2� � �9x · 2y�dy

dx � � y2 · 9 � � 0

28x3� 3x3�dy

dx � � 9x2 y� 18xy �dy

dx � � 9y2 � 0

(3x3� 18xy)�dy

dx � � �28x3� 9x2y� 9y2

dy

dx
�
�(28x3� 9x2 y� 9y2)

3x3� 18xy
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d) (5y� 21)3 � 6x5

d

dx
[(5y� 21)3] �

d

dx
(6x5)

Use the generalized power function rule.

3(5y� 21)2 · 5�dy

dx � � 30x4

15(5y� 21)2�dy

dx � � 30x4

dy

dx
�

30x4

15(5y� 21)2

e) (2x3� 7y)2� x5

d

dx
(2x3� 7y)2 �

d

dx
(x5)

2(2x3� 7y) ·
d

dx
(2x3� 7y) � 5x4

(4x3� 14y)�6x2� 7�dy

dx � � � 5x4

24x5� 28x3�dy

dx � � 84x2 y� 98y �dy

dx � � 5x4

(28x3� 98y)
dy

dx
� 5x4� 24x5� 84x2 y

dy

dx
�

5x4� 24x5� 84x2 y

28x3� 98y

See also Problems 4.24, 4.25, 5.20, 5.21, 6.51, and 6.52.

DERIVATION OF THE RULES OF DIFFERENTIATION

3.24. Given f(x) � g(x)� h(x), where g(x) and h(x) are both differentiable functions, prove the rule
of sums by demonstrating that f �(x) � g�(x)� h�(x).

From (3.2) the derivative of f(x) is

f �(x) � lim
	x→0

f(x�	x)� f(x)
	x

Substituting f(x) � g(x)� h(x),

f �(x) � lim
	x→0

[g(x�	x)� h(x�	x)]� [g(x)� h(x)]
	x

Rearrange terms.

f �(x) � lim
	x→0

g(x�	x)� g(x)� h(x�	x)� h(x)
	x

Separate terms, and take the limits.

f �(x) � lim
	x→0

� g(x�	x)� g(x)
	x

�
h(x�	x)� h(x)

	x �
� lim

	x→0

g(x�	x)� g(x)
	x

� lim
	x→0

h(x�	x)� h(x)
	x

� g�(x)� h�(x)

56 THE DERIVATIVE AND THE RULES OF DIFFERENTIATION [CHAP. 3



3.25. Given f(x) � g(x) · h(x), where g�(x) and h�(x) both exist, prove the product rule by demonstrat-
ing that f �(x) � g(x) · h�(x)� h(x) · g�(x).

f �(x) � lim
	x→0

f(x�	x)� f(x)
	x

Substitute f(x) � g(x) · h(x).

f �(x) � lim
	x→0

g(x�	x) · h(x�	x)� g(x) · h(x)
	x

Add and subtract g(x�	x) · h(x),

f �(x) � lim
	x→0

g(x�	x)h(x�	x)� g(x�	x)h(x)� g(x�	x)h(x)� g(x)h(x)
	x

Partially factor out g(x�	x) and h(x).

f �(x) � lim
	x→0

g(x�	x) [h(x�	x)� h(x)]� h(x) [g(x�	x)� g(x)]
	x

� lim
	x→0

g(x�	x) [h(x�	x)� h(x)]
	x

� lim
	x→0

h(x) [g(x�	x)� g(x)]
	x

� lim
	x→0

g(x�	x) · lim
	x→0

h(x�	x)� h(x)
	x

� lim
	x→0

h(x) · lim
	x→0

g(x�	x)� g(x)
	x

� g(x) · h�(x)� h(x) · g�(x)

3.26. Given f(x) � g(x)/h(x), where g�(x) and h�(x) both exist and h(x)� 0, prove the quotient rule
by demonstrating

f �(x) �
h(x) · g�(x)� g(x) · h�(x)

[h(x)]2

Start with f(x) � g(x)/h(x) and solve for g(x),

g(x) � f(x) · h(x)

Then take the derivative of g(x), using the product rule,

g�(x) � f(x) · h�(x)� h(x) · f �(x)

and solve algebraically for f �(x).

h(x) · f �(x) � g�(x)� f(x) · h�(x)

f �(x) �
g�(x)� f(x) · h�(x)

h(x)

Substitute g(x)/h(x) for f(x).

f �(x) �
g�(x)�

g(x) · h�(x)
h(x)

h(x)

Now multiply both numerator and denominator by h(x),

f �(x) �
h(x) · g�(x)� g(x) · h�(x)

[h(x)]2
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CHAPTER 4

Uses of the
Derivative in

Mathematics and
Economics

4.1 INCREASING AND DECREASING FUNCTIONS

A function f(x) is said to be increasing (decreasing) at x � a if in the immediate vicinity of the
point [a, f(a)] the graph of the function rises (falls) as it moves from left to right. Since the first
derivative measures the rate of change and slope of a function, a positive first derivative at x � a
indicates the function is increasing at s; a negative first derivative indicates it is decreasing. In short,
as seen in Fig. 4-1,

f �(a)� 0: increasing function at x � a
f �(a)� 0: decreasing function at x � a

A function that increases (or decreases) over its entire domain is called a monotonic function. It is said
to increase (decrease) monotonically. See Problems 4.1 to 4.3.

4.2 CONCAVITY AND CONVEXITY

A function f(x) is concave at x � a if in some small region close to the point [a, f(a)] the graph of
the function lies completely below its tangent line. A function is convex at x � a if in an area very close
to [a, f(a)] the graph of the function lies completely above its tangent line. A positive second derivative
at x � a denotes the function is convex at x � a; a negative second derivative at x � a denotes the
function is concave at a. The sign of the first derivative is irrelevant for concavity. In brief, as seen in
Fig. 4-2 and Problems 4.1 to 4.4,

f 
(a)� 0: f(x) is convex at x � a
f 
(a)� 0: f(x) is concave at x � a
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If f 
(x)� 0 for all x in the domain, f(x) is strictly convex. If f 
(x)� 0 for all x in the domain, f(x) is
strictly concave.

4.3 RELATIVE EXTREMA

A relative extremum is a point at which a function is at a relative maximum or minimum. To be
at a relative maximum or minimum at a point a, the function must be at a relative plateau, i.e., neither
increasing nor decreasing at a. If the function is neither increasing nor decreasing at a, the first
derivative of the function at a must equal zero or be undefined. A point in the domain of a function
where the derivative equals zero or is undefined is called a critical point or value.
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To distinguish mathematically between a relative maximum and minimum, the second-derivative
test is used. Assuming f �(a) � 0,

1. If f 
(a)� 0, indicating that the function is convex and the graph of the function lies completely
above its tangent line at x � a, the function is at a relative minimum at x � a.

2. If f 
(a)� 0, denoting that the function is concave and the graph of the function lies completely
below its tangent line at x � a, the function is at a relative maximum at x � a.

3. If f 
(a) � 0, the test is inconclusive.

For functions which are differentiable at all values of x, called differentiable or smooth functions, one
need only consider cases where f �(x) � 0 in looking for critical points. To summarize,

f �(a) � 0 f 
(a)� 0: relative minimum at x � a
f �(a) � 0 f 
(a)� 0: relative maximum at x � a

See Fig. 4-3 and Problems 4.5 and 4.6.

4.4 INFLECTION POINTS

An inflection point is a point on the graph where the function crosses its tangent line and changes
from concave to convex or vice versa. Inflection points occur only where the second derivative equals
zero or is undefined. The sign of the first derivative is immaterial. In sum, for an inflection point at a,
as seen in Fig. 4-4 and Problems 4.6 and 4.7(c),

1. f 
(a) � 0 or is undefined.
2. Concavity changes at x � a.
3. Graph crosses its tangent line at x � a.

4.5 OPTIMIZATION OF FUNCTIONS

Optimization is the process of finding the relative maximum or minimum of a function. Without
the aid of a graph, this is done with the techniques developed in Sections 4.3 through 4.4 and outlined
below. Given the usual differentiable function,

1. Take the first derivative, set it equal to zero, and solve for the critical point(s). This step
represents a necessary condition known as the first-order condition. It identifies all the points
at which the function is neither increasing nor decreasing, but at a plateau. All such points are
candidates for a possible relative maximum or minimum.
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2. Take the second derivative, evaluate it at the critical point(s), and check the sign(s). If at a
critical point a,

f 
(a)� 0, the function is concave at a, and hence at a relative maximum.
f 
(a)� 0, the function is convex at a, and hence at a relative minimum.
f 
(a) � 0, the test is inconclusive. See Section 4.6.

Assuming the necessary first-order condition is met, this step, known as the second-order derivative
test, or simply the second-order condition, represents a sufficiency condition. In sum,

Relative maximum
f �(a) � 0
f 
(a)� 0

Relative minimum
f �(a) � 0
f 
(a)� 0

Note that if the function is strictly concave (convex), there will be only one maximum (minimum),
called a global maximum (minimum). See Example 1 and Problems 4.7 to 4.9.

EXAMPLE 1. Optimize f(x) � 2x3� 30x2� 126x� 59.

a) Find the critical points by taking the first derivative, setting it equal to zero, and solving for x.

f �(x) � 6x2� 60x� 126 � 0
6(x� 3)(x� 7) � 0

x � 3 x � 7 critical points

(b) Test for concavity by taking the second derivative, evaluating it at the critical points, and checking the
signs to distinguish beteween a relative maximum and minimum.

f 
(x) � 12x� 60
f 
(3) � 12(3)� 60 � �24� 0 concave, relative maximum
f 
(7) � 12(7)� 60 � 24� 0 convex, relative minimum

The function is maximized at x � 3 and minimized at x � 7.

4.6 SUCCESSIVE-DERIVATIVE TEST FOR OPTIMIZATION

If f 
(a) � 0, as in Fig. 4-4(a) through (d), the second-derivative test is inconclusive. In such cases,
without a graph for guidance, the successive-derivative test is helpful:
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1. If the first nonzero value of a higher-order derivative, when evaluated at a critical point, is an
odd-numbered derivative (third, fifth, etc.), the function is at an inflection point. See Problems
4.6(b) and (d) and 4.7(c).

2. If the first nonzero value of a higher-order derivative, when evaluated at a critical point a, is
an even-numbered derivative, the function is at a relative extremum at a, with a negative value
of the derivative indicating that the function is concave and at a relative maximum and a
positive value signifying the function is convex and at a relative minimum. See Problems 4.6(a)
and (c), 4.7(d), and 4.9(c) and (d).

4.7 MARGINAL CONCEPTS

Marginal cost in economics is defined as the change in total cost incurred from the production of
an additional unit. Marginal revenue is defined as the change in total revenue brought about by the sale
of an extra good. Since total cost (TC) and total revenue (TR) are both functions of the level of output
(Q), marginal cost (MC) and marginal revenue (MR) can each be expressed mathematically as
derivatives of their respective total functions. Thus,

if TC� TC(Q), then MC�
dTC
dQ

and if TR � TR(Q), then MR �
dTR
dQ

In short, the marginal concept of any economic function can be expressed as the derivative of its total
function. See Examples 2 and 3 and Problems 4.10 to 4.16.

EXAMPLE 2.

1. If TR � 75Q� 4Q2, then MR � dTR/dQ � 75� 8Q.
2. If TC � Q2� 7Q� 23, then MC � dTC/dQ � 2Q� 7.

EXAMPLE 3. Given the demand function P � 30� 2Q, the marginal revenue function can be found by first
finding the total revenue function and then taking the derivative of that function with respect to Q. Thus,

TR � PQ � (30� 2Q)Q � 30Q� 2Q2

Then MR�
dTR
dQ

� 30� 4Q

If Q � 4, MR � 30� 4(4) � 14; if Q � 5, MR � 30� 4(5) � 10.

4.8 OPTIMIZING ECONOMIC FUNCTIONS

The economist is frequently called upon to help a firm maximize profits and levels of physical
output and productivity, as well as to minimize costs, levels of pollution, and the use of scarce natural
resources. This is done with the help of techniques developed earlier and illustrated in Example 4 and
Problems 4.17 to 4.23.

EXAMPLE 4. Maximize profits � for a firm, given total revenue R � 4000Q� 33Q2 and total cost
C � 2Q3� 3Q2� 400Q� 5000, assuming Q� 0.

a) Set up the profit function: � � R�C.

� � 4000Q� 33Q2� (2Q3� 3Q2� 400Q� 5000)
� �2Q3� 30Q2� 3600Q� 5000
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b) Take the first derivative, set it equal to zero, and solve for Q to find the critical points.

�� � �6Q2� 60Q� 3600 � 0
� �6(Q2� 10Q� 600) � 0
� �6(Q� 30)(Q� 20) � 0

Q � �30 Q � 20 critical points

c) Take the second derivative; evaluate it at the positive critical point and ignore the negative critical point,
which has no economic significance and will prove mathematically to be a relative minimum. Then check
the sign for concavity to be sure of a relative maximum.

�
 �

�
(20) �

�12Q� 60
�12(20)� 60 � �300� 0 concave, relative maximum

Profit is maximized at Q � 20 where

�(20) � �2(20)3� 30(20)2� 3600(20)� 5000 � 39,000

4.9 RELATIONSHIP AMONG TOTAL, MARGINAL, AND AVERAGE CONCEPTS

A total product (TP) curve of an input is derived from a production function by allowing the
amounts of one input (say, capital) to vary while holding the other inputs (labor and land) constant.
A graph showing the relationship between the total, average, and marginal products of an input can
easily be sketched by using now familiar methods, as demonstrated in Example 5.

EXAMPLE 5. Given TP � 90K2�K3, the relationship among the total, average, and marginal products can be
illustrated graphically as follows.

1. Test the first-order condition to find the critical values.

TP� � 180K� 3K2 � 0
3K(60�K) � 0

K � 0 K � 60 critical values

Check the second-order conditions.

TP
 � 180� 6K

TP
(0) � 180� 0 convex, relative minimum
TP
(60) � �180� 0 concave, relative maximum

Check for inflection points.

TP
 � 180� 6K � 0
K � 30

K� 30 TP
� 0 convex
K� 30 TP
� 0 concave

Since, at K � 30, TP
 � 0 and concavity changes, there is an inflection point at K � 30.

2. Find and maximize the average product of capital APK.

APK �
TP
K
� 90K�K2

AP�K � 90� 2K � 0
K � 45 critical value

AP
K ��2� 0 concave, relative maximum
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3. Find and maximize the marginal product of capital MPK, recalling that MPK � TP� � 180K� 3K2:

MP�K � 180� 6K � 0
K � 30 critical value

MP
K � �6� 0 concave, relative maximum

4. Sketch the graphs, as in Fig. 4-5.

Note that (a) MPK increases when TP is convex and increasing at an increasing rate, is at a maximum
where TP is at an inflection point, and decreases when TP is concave and increasing at a decreasing rate;
(b) TP increases over the whole range where MPK is positive, is at a maximum where MPK � 0, and
declines when MPK is negative; (c) APK is at a maximum where the slope of a line from the origin to the
TP curve is tangent to the TP curve, i.e., where MPK � APK; (d) MPK�APK when APK is increasing,
MPK � APK when APK is at a maximum, and MPK�APK when APK decreases; and (e) MPK is negative
when TP declines. See also Problem 4.26.

Solved Problems

INCREASING AND DECREASING FUNCTIONS, CONCAVITY AND CONVEXITY

4.1. From the graphs in Fig. 4-6, indicate which graphs (1) are increasing for all x, (2) are decreasing
for all x, (3) are convex for all x, (4) are concave for all x, (5) have relative maxima or minima,
and (6) have inflection points.
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1) a, d: increasing for all x.

2) b, f: decreasing for all x.

3) b, c: convex for all x.

4) d, e: concave for all x.

5) c, e: exhibit a relative maximum or minimum.

6) a, f: have an inflection point.

4.2. Indicate with respect to the graphs in Fig. 4-7 which functions have (1) positive first derivatives
for all x, (2) negative first derivatives for all x, (3) positive second derivatives for all x, (4)
negative second derivatives for all x, (5) first derivatives equal to zero or undefined at some
point, and (6) second derivatives equal to zero or undefined at some point.

1) a, b, h: the graphs all move up from left to right.

2) d, f, g: the graphs all move down from left to right.

3) d, e, h: the graphs are all convex.

4) a, c, f: the graphs are all concave.

5) c, e: the graphs reach a plateau (at an extreme point).

6) b, g: the graphs have inflection points.
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4.3. Test to see whether the following functions are increasing, decreasing, or stationary at x � 4.

a) y� 3x2� 14x� 5

y� � 6x� 14
y�(4) � 6(4)� 14 � 10� 0 Function is increasing.

b) y� x3� 7x2� 6x� 2

y� � 3x2� 14x� 6
y�(4) � 3(4)2� 14(4)� 6 � �2� 0 Function is decreasing.

c) y� x4� 6x3� 4x2� 13

y� � 4x3� 18x2� 8x

y�(4) � 4(4)3� 18(4)2� 8(4) � 0 Function is stationary.

4.4. Test to see if the following functions are concave or convex at x � 3.

a) y��2x3� 4x2� 9x� 15

y� �

y
 �

y
(3) �

�6x2� 8x� 9
12x� 8
�12(3)� 8 � �28� 0 concave

b) y� (5x2� 8)2

y� �

y
 �

y
(3) �

2(5x2� 8)(10x) � 20x(5x2� 8) � 100x3� 160x

300x2� 160
300(3)2� 160 � 2540� 0 convex

RELATIVE EXTREMA

4.5. Find the relative extrema for the following functions by (1) finding the critical value(s) and (2)
determining if at the critical value(s) the function is at a relative maximum or minimum.

a) f(x) ��7x2� 126x� 23

1) Take the first derivative, set it equal to zero, and solve for x to find the critical value(s).

f �(x) � �14x� 126 � 0
x � 9 critical value

2) Take the second derivative, evaluate it at the critical value(s), and check for concavity to
distinguish between a relative maximum and minimum.

f 
(x) � �14
f 
(9) � �14� 0 concave, relative maximum

b) f(x) � 3x3� 36x2� 135x� 13

1) f �(x) � 9x2� 72x� 135 � 0

� 9(x2� 8x� 15) � 0

� 9(x� 3)(x� 5) � 0

x � 3 x � 5 critical values

2) f 
(x) � 18x� 72
f 
(3) � 18(3)� 72 � �18� 0 concave, relative maximum
f 
(5) � 18(5)� 72 � 18� 0 convex, relative minimum
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c) f(x) � 2x4� 16x3� 32x2� 5

1) f �(x) � 8x3� 48x2� 64x � 0
� 8x(x2� 6x� 8) � 0
� 8x(x� 2)(x� 4) � 0

x � 0 x � 2 x � 4 critical values

2) f 
(x) � 24x2� 96x� 64
f 
(0) � 24(0)2� 96(0)� 64 � 64� 0 convex, relative minimum
f 
(2) � 24(2)2� 96(2)� 64 � �32� 0 concave, relative maximum
f 
(4) � 24(4)2� 96(4)� 64 � 64� 0 convex, relative minimum

4.6. For the following functions, (1) find the critical values and (2) test to see if at the critical values
the function is at a relative maximum, minimum, or possible inflection point.

a) y��(x� 8)4

1) Take the first derivative, set it equal to zero, and solve for x to obtain the critical value(s).

y� � �4(x� 8)3 � 0
x� 8 � 0

x � 8 critical value

2) Take the second derivative, evaluate it at the critical value(s), and check the sign for
concavity to distinguish between a relative maximum, minimum, or inflection point.

y
 � �12(x� 8)2

y
(8) � �12(8� 8)2 � 0 test inconclusive

If the second-derivative test is inconclusive, continue to take successively higher derivatives
and evaluate them at the critical values until you come to the first higher-order derivative
that is nonzero:

y� �

y�(8) �
y(4) �

y(4)(8) �

�24(x� 8)
24(8� 8) � 0 test inconclusive
�24
�24� 0

As explained in Section 4.6, with the first nonzero higher-order derivative an even-numbered
derivative, y is at a relative extremum. With that derivative negative, y is concave and at a
relative maximum. See Fig. 4-8(a).

b) y � (5� x)3

1) y� � 3(5� x)2(�1) � �3(5� x)2� 0
x � 5 critical value

2) y
 � 6(5� x)
y
(5) � 6(5� 5) � 0 test inconclusive

Continuing to take successively higher-order derivatives and evaluating them at the
critical value(s) in search of the first higher-order derivative that does not equal zero,
we get

y� � �6
y�(5) � �6� 0

As explained in Section 4.6, with the first nonzero higher-order derivative an odd-
numbered derivative, y is at an inflection point and not at an extreme point. See Fig.
4-8(b).
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c) y��2(x� 6)6

1) y� � �12(x� 6)5� 0
x � 6 critical value

2) y
 � �60(x� 6)4

y
(6) � �60(0)4 � 0 test inconclusive

Continuing, we get

y� �

y(4) �

y(5) �

y(6) �

�240(x� 6)3

�720(x� 6)2

�1440(x� 6)
�1440

y�(6) �
y(4)(6) �
y(5)(6) �
y(6)(6) �

0 test inconclusive
0 test inconclusive
0 test inconclusive
�1440� 0

With the first nonzero higher-order derivative an even-numbered derivative, y is at an
extreme point; with y(6)(6)� 0, y is concave and at a relative maximum.

d) y� (4� x)5

1) y� � 5(4� x)4 (�1) � �5(4� x)4 � 0
x � 4 critical value

2) y
 � 20(4� x)3

y
(4) � 20(0)3� 0 test inconclusive

Moving on to the third- and higher-order derivatives, we get

y� �

y(4) �

y(5) �

�60(4� x)2

120(4� x)
�120

y�(4) �
y(4)(4) �
y(5)(4) �

0 test inconclusive
0 test inconclusive
�120� 0

With the first nonzero higher-order derivative an odd-numbered derivative, y is at an
inflection point.

OPTIMIZATION

4.7. For the following functions, (1) find the critical values, (2) test for concavity to determine
relative maxima or minima, (3) check for inflection points, and (4) evaluate the function at the
critical values and inflection points.
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a) f(x) � x3� 18x2� 96x� 80

1) f �(x) � 3x2� 36x� 96 � 0
� 3(x� 4)(x� 8) � 0

x � 4 x � 8 critical values

2) f 
(x) � 6x� 36
f 
(4) � 6(4)� 36 � �12� 0 concave, relative maximum
f 
(8) � 6(8)� 36 � 12� 0 convex, relative minimum

3) f 
 � 6x� 36 � 0
x � 6

With f 
(6) � 0 and concavity changing between x � 4 and x � 8, as seen in step 2, there is
an inflection point at x � 6.

4) f(4) � (4)3� 18(4)2� 96(4)� 80 � 80 (4, 80) relative maximum
f(6) � (6)3� 18(6)2� 96(6)� 80 � 64 (6, 64) inflection point
f(8) � (8)3� 18(8)2� 96(8)� 80 � 48 (8, 48) relative minimum

b) f(x) ��x3� 6x2� 15x� 32

1) f �(x) � �3x2� 12x� 15 � 0
� �3(x� 1)(x� 5) � 0

x � �1 x � 5 critical values

2) f 
(x) � �6x� 12
f 
(�1) � �6(�1)� 12 � 18� 0 convex, relative minimum

f 
(5) � �6(5)� 12 � �18� 0 concave, relative maximum

3) f 
(x) � �6x� 12 � 0
x � 2 inflection point at x � 2

4) f(�1) � �40
f(2) � 14
f(5) � 68

(�1, �40)
(2, 14)
(5, 68)

relative minimum
inflection point
relative maximum

c) f(x) � (2x� 7)3

1) f �(x) � 3(2x� 7)2 (2) � 6(2x� 7)2 � 0
x � 3.5 critical value

2) f
(x) � 12(2x� 7)(2) � 24(2x� 7)
f 
(3.5) � 24[2(3.5)� 7] � 0 test inconclusive

Continuing on to successively higher-order derivatives, we find

f� � 48
f�(3.5) � 48� 0

3) As explained in Section 4.6, with the first nonzero higher-order derivative an odd-numbered
derivative, the function is at an inflection point at x � 3.5. With an inflection point at the only
critical value, there is no relative maximum or minimum.

4) f(3.5) � 0 (3.5, 0) inflection point

Testing for concavity to the left (x � 3) and right (x � 4) of x � 3.5 gives

f 
(3) � 24[2(3)� 7] � �24� 0 concave
f 
(4) � 24[2(4)� 7] � 24� 0 convex
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d) f(x) � (x� 2)4

1) f �(x) � 4(x� 2)3 � 0
x � �2 critical value

2) f 
(x) � 12(x� 2)2

f 
(�2) � 12(�2� 2)2 � 0 test inconclusive

Continuing, as explained in Section 4.6, we get

f�(x) �
f�(�2) �
f (4)(x) �

f (4)(�2) �

24(x� 2)
24(�2� 2) � 0 test inconclusive
24
24� 0 relative minimum

With the first nonzero higher-order derivative even-numbered and greater than 0, f(x) is
minimized at x � �2.

3) There is no inflection point.

4) f(�2) � 0 (�2, 0) relative minimum

4.8. Optimize the following quadratic and cubic functions by (1) finding the critical value(s) at which
the function is optimized and (2) testing the second-order condition to distinguish between a
relative maximum or minimum.

a) y� 7x2� 112x� 54

1) Take the first derivative, set it equal to zero, and solve for x to find the critical value(s).

y� � 14x� 112 � 0
x � �8 critical value

2) Take the second derivative, evaluate it at the critical value, and check the sign for a relative
maximum and minimum.

y
 � 14
y
(�8) � 14� 0 convex, relative minimum

Here, with y
 � a constant greater than zero, y is strictly convex and so we can draw the
further conclusion that y is at a global minimum at x � �8.

b) y��9x2� 72x� 13

1) y� � �18x� 72 � 0
x � 4 critical value

2) y
 � �18
y
(4) � �18� 0 concave, relative maximum

Here, with y
 � a constant less than zero, y is strictly concave and so we can also conclude
that y is at a global maximum at x � 4.

c) y� x3� 6x2� 135x� 4

1) y� � 3x2� 12x� 135 � 0
� 3(x2� 4x� 45) � 0
� 3(x� 5)(x� 9) � 0

x � �5 x � 9 critical values

2) y
 � 6x� 12
y
(�5) � 6(�5)� 12 � �42� 0 concave, relative maximum

y
(9) � 6(9)� 12 � 42� 0 convex, relative minimum

70 USES OF THE DERIVATIVE IN MATHEMATICS AND ECONOMICS [CHAP. 4



d) y��2x3� 15x2� 84x� 25
1) y� � �6x2� 30x� 84 � 0

� �6(x� 2)(x� 7) � 0
x � �2 x � 7 critical values

2) y
 � �12x� 30
y
(�2) � �12(�2)� 30 � 54� 0 convex, relative minimum

y
(7) � �12(7)� 30 � �54� 0 concave, relative maximum

4.9. Optimize the following higher-order polynomial functions, using the same procedure as in
Problem 4.8.

a) y� x4� 8x3� 80x2� 15

1) y� � 4x3� 24x2� 160x � 0
� 4x(x� 4)(x� 10) � 0

x � 0 x � �4 x � 10 critical values

2) y
 � 12x2� 48x� 160
y
(�4) � 12(�4)2� 48(�4)� 160 � 224� 0 convex, relative minimum

y
(0) � 12(0)2� 48(0)� 160 � �160� 0 concave, relative maximum
y
(10) � 12(10)2� 48(10)� 160 � 560� 0 convex, relative minimum

b) y��3x4� 20x3� 144x2� 17

1) y� � �12x3� 60x2� 288x � 0
� �12x(x� 3)(x� 8) � 0

x � 0 x � 3 x � �8 critical values

2) y
 � �36x2� 120x� 288
y
(�8) � �36(�8)2� 120(�8)� 288 � �1056� 0 concave, relative maximum

y
(0) � �36(0)2� 120(0)� 288 � 288� 0 convex, relative minimum
y
(3) � �36(3)2� 120(3)� 288 � �396� 0 concave, relative maximum

c) y��(x� 13)4

1) y� � �4(x� 13)3 � 0
x� 13 � 0 x � �13 critical value

2) y
 � �12(x� 13)2

y
(�13) � �12(�13� 13)2 � 0 test inconclusive

Continuing as explained in Section 4.6 and Problem 4.6, we get

y� �

y�(�13) �
y(4) �

y(4)(�13) �

�24(x� 13)
�24(0) � 0 test inconclusive
�24
�24� 0 concave, relative maximum

d) y� (9� 4x)4

1) y� � 4(9� 4x)3 (�4) � �16(9� 4x)3 � 0
9� 4x � 0 x � 21–

4 critical value
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2) y
 �

y
(21–
4) �

y� �

y�(21–
4) �

y(4) �

y(4)(21–
4) �

�48(9� 4x)2 (�4) � 192(9� 4x)2

192(0)2� 0 test inconclusive
384(9� 4x)(�4) � �1536(9� 4x)
�1536(0) � 0 test inconclusive
6144
6144� 0 convex, relative minimum

MARGINAL, AVERAGE, AND TOTAL CONCEPTS

4.10. Find (1) the marginal and (2) the average functions for each of the following total functions.
Evaluate them at Q� 3 and Q� 5.

a) TC� 3Q2� 7Q� 12

1) MC �
dTC
dQ

� 6Q� 7

At Q � 3, MC � 6(3)� 7 � 25
At Q � 5, MC � 6(5)� 7 � 37

2) AC �
TC
Q
� 3Q� 7�

12
Q

At Q � 3, AC � 3(3)� 7� 12––
3 � 20

At Q � 5, AC � 3(5)� 7� 12––
5 � 24.4

Note: When finding the average function, be sure to divide the constant term by Q.

b) � �Q2� 13Q� 78

1)
d�
dQ

� 2Q� 13 2) A� �
�

Q
� Q� 13�

78
Q

At Q � 3, A� � 3� 13� 78––
3 � 16

At Q � 5, A� � 5� 13� 78––
5 � 7.6

At Q � 3,
d�
dQ

� 2(3)� 13 � �7

At Q � 5,
d�
dQ

� 2(5)� 13 � �3

c) TR � 12Q�Q2

1) MR �
dTR
dQ

� 12� 2Q

At Q � 3, MR � 12� 2(3) � 6
At Q � 5, MR � 12� 2(5) � 2

2) AR �
TR
Q
� 12�Q

At Q � 3, AR � 12� 3 � 9
At Q � 5, AR � 12� 5 � 7

d) TC� 35� 5Q� 2Q2� 2Q3

1) MC �
dTC
dQ

� 5� 4Q� 6Q2

At Q � 3, MC � 5� 4(3)� 6(3)2 � 47
At Q � 5, MC � 5� 4(5)� 6(5)2 � 135

2) AC �
TC
Q
�

35
Q
� 5� 2Q� 2Q2

At Q � 3, AC � 35––
3 � 5� 2(3)� 2(3)2 � 28.67

At Q � 5, AC � 35––
5 � 5� 2(5)� 2(5)2 � 52

4.11. Find the marginal expenditure (ME) functions associated with each of the following supply
functions. Evaluate them at Q� 4 and Q� 10.

a) P �Q2� 2Q� 1

To find the ME function, given a simple supply function, find the total expenditure (TE) function
and take its derivative with respect to Q.

TE � PQ � (Q2� 2Q� 1)Q � Q3� 2Q2�Q

ME �
dTE
dQ

� 3Q2� 4Q� 1

At Q � 4, ME � 3(4)2� 4(4)� 1 � 65. At Q � 10, ME � 3(10)2� 4(10)� 1 � 341.

72 USES OF THE DERIVATIVE IN MATHEMATICS AND ECONOMICS [CHAP. 4



b) P �Q2� 0.5Q� 3

TE � PQ � (Q2� 0.5Q� 3)Q � Q3� 0.5Q2� 3Q

ME � 3Q2�Q� 3

At Q � 4, ME � 3(4)2� 4� 3 � 55. At Q � 10, ME � 3(10)2� 10� 3 � 313.

4.12. Find the MR functions for each of the following demand functions and evaluate them at Q� 4
and Q� 10.

a) Q� 36� 2P b) 44� 4P�Q� 0

P � 18� 0.5Q

TR � (18� 0.5Q)Q � 18Q� 0.5Q2

P � 11� 0.25Q

TR � (11� 0.25Q)Q � 11Q� 0.25Q2

MR �
dTR
dQ

� 11� 0.5QMR �
dTR
dQ

� 18�Q

At Q � 4, MR � 18� 4 � 14
At Q � 10, MR � 18� 10 � 8

At Q � 4, MR � 11� 0.5(4) � 9
At Q � 10, MR � 11� 0.5(10) � 6

4.13. For each of the following consumption functions, use the derivative to find the marginal
propensity to consume MPC � dC/dY.

a) C� C0� bY b) C� 1500� 0.75Y

MPC �
dC

dY
� b MPC �

dC

dY
� 0.75

4.14. Given C� 1200� 0.8Yd, where Yd � Y�T and T � 100, use the derivative to find the
MPC.

When C � f(Yd), make C � f(Y) before taking the derivative. Thus,

C � 1200� 0.8(Y� 100) � 1120� 0.8Y

MPC �
dC

dY
� 0.8

Note that the introduction of a lump-sum tax into the income determination model does not affect the
value of the MPC (or the multiplier).

4.15. Given C� 2000� 0.9Yd, where Yd � Y�T and T � 300� 0.2Y, use the derivative to find the
MPC.

C � 2000� 0.9(Y� 300� 0.2Y) � 2000� 0.9Y� 270� 0.18Y � 1730� 0.72Y

MPC �
dC

dY
� 0.72

The introduction of a proportional tax into the income determination model does affect the value of
the MPC and hence the multiplier.

4.16. Find the marginal cost functions for each of the following average cost functions.

a) AC� 1.5Q� 4�
46
Q
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Given the average cost function, the marginal cost function is determined by first finding the total
cost function and then taking its derivative, as follows:

TC � (AC)Q � �1.5Q� 4�
46
Q � Q � 1.5Q2� 4Q� 46

MC �
dTC
dQ

� 3Q� 4

b) AC�
160
Q
� 5� 3Q� 2Q2

TC � � 160
Q
� 5� 3Q� 2Q2� Q � 160� 5Q� 3Q2� 2Q3

MC �
dTC
dQ

� 5� 6Q� 6Q2

OPTIMIZING ECONOMIC FUNCTIONS

4.17. Maximize the following total revenue TR and total profit � functions by (1) finding the critical
value(s), (2) testing the second-order conditions, and (3) calculating the maximum TR or �.

a) TR � 32Q�Q2

1) TR� � 32� 2Q � 0
Q � 16 critical value

2) TR
 � �2� 0 concave, relative maximum

3) TR � 32(16)� (16)2 � 256

Note that whenever the value of the second derivative is negative over the whole domain of the
function, as in (2) above, we can also conclude that the function is strictly concave and at a global
maximum.

b) � � �Q2� 11Q� 24

1) �� � �2Q� 11 � 0
Q � 5.5 critical value

2) �
 � �2� 0 concave, relative maximum

3) � � �(5.5)2� 11(5.5)� 24 � 6.25

c) � � �1–
3Q

3� 5Q2� 2000Q� 326

1) �� � �Q2� 10Q� 2000 � 0
�1(Q2� 10Q� 2000) � 0

(Q� 50)(Q� 40) � 0
Q � �50 Q � 40 critical values

(4.1)
(4.2)

2) �
 � �2Q� 10
�
(40) � �2(40)� 10 � �90� 0 concave, relative maximum

�
(�50) � �2(�50)� 10 � 90� 0 convex, relative minimum

Negative critical values will subsequently be ignored as having no economic significance.

3) � � �1–
3(40)3� 5(40)2� 2000(40)� 326 � 50,340.67

Note: In testing the second-order conditions, as in step 2, always take the second derivative from
the original first derivative (4.1) before any negative number has been factored out. Taking the
second derivative from the first derivative after a negative has been factored out, as in (4.2), will
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reverse the second-order conditions and suggest that the function is maximized at Q � �50 and
minimized at Q � 40. Test it yourself.

d) � � �Q3� 6Q2� 1440Q� 545

1) �� � �3Q2� 12Q� 1440 � 0
�3(Q� 20)(Q� 24) � 0

Q � 20 Q � �24 critical values

2) �
 � �6Q� 12
�
(20) � �6(20)� 12 � �132� 0 concave, relative maximum

3) � � �(20)3� 6(20)2� 1440(20)� 545 � 17,855

4.18. From each of the following total cost TC functions, find (1) the average cost AC function, (2)
the critical value at which AC is minimized, and (3) the minimum average cost.

a) TC�Q3� 5Q2� 60Q

1) AC �
TC
Q
�

Q3� 5Q2� 60Q

Q
� Q2� 5Q� 60

2) AC� � 2Q� 5 � 0 Q � 2.5
AC
 � 2� 0 convex, relative minimum

3) AC(2.5) � (2.5)2� 5(2.5)� 60 � 53.75

Note that whenever the value of the second derivative is positive over the whole domain of the
function, as in (2) above, we can also conclude that the function is strictly convex and at a global
minimum.

b) TC�Q3� 21Q2� 500Q

1) AC �
Q3� 21Q2� 500Q

Q
� Q2� 21Q� 500

2) AC� � 2Q� 21 � 0 Q � 10.5
AC
 � 2� 0 convex, relative minimum

3) AC � (10.5)2� 21(10.5)� 500 � 389.75

4.19. Given the following total revenue and total cost functions for different firms, maximize profit
� for the firms as follows: (1) Set up the profit function � � TR�TC, (2) find the critical
value(s) where � is at a relative extremum and test the second-order condition, and (3) calculate
the maximum profit.

a) TR � 1400Q� 6Q2 TC� 1500� 80Q

1) � � 1400Q� 6Q2� (1500� 80Q)
� �6Q2� 1320Q� 1500

2) �� � �12Q� 1320 � 0
Q � 110 critical value

�
 � �12� 0 concave, relative maximum

3) � � �6(110)2� 1320(110)� 1500 � 71,000
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b) TR � 1400Q� 7.5Q2 TC�Q3� 6Q2� 140Q� 750

1) � � 1400Q� 7.5Q2� (Q3� 6Q2� 140Q� 750)
� �Q3� 1.5Q2� 1260Q� 750 (4.3)

2) �� � �3Q2� 3Q� 1260 � 0
� �3(Q2�Q� 420) � 0
� �3(Q� 21)(Q� 20) � 0

Q � �21 Q � 20 critical values

Take the second derivative directly from (4.3), as explained in Problem 4.17(c), and ignore
all negative critical values.

�
 � �6Q� 3
�
(20) � �6(20)� 3 � �123� 0 concave, relative maximum

3) � � �(20)3� 1.5(20)2� 1260(20)� 750 � 15,850

c) TR � 4350Q� 13Q2 TC�Q3� 5.5Q2� 150Q� 675

1) � � 4350Q� 13Q2� (Q3� 5.5Q2� 150Q� 675)
� �Q3� 7.5Q2� 4200Q� 675

2) �� �

�

�

�
 �

�
(35) �

�3Q2� 15Q� 4200 � 0
�3(Q2� 5Q� 1400) � 0
�3(Q� 40)(Q� 35) � 0

Q � �40 Q � 35 critical values

�6Q� 15
�6(35)� 15 � �225� 0 concave, relative maximum

3) � � �(35)3� 7.5(35)2� 4200(35)� 675 � 94,262.50

d) TR � 5900Q� 10Q2 TC� 2Q3� 4Q2� 140Q� 845

1) � � 5900Q� 10Q2� (2Q3� 4Q2� 140Q� 845)
� �2Q3� 6Q2� 5760Q� 845

2) �� �

�

�

�
 �

�
(30) �

�6Q2� 12Q� 5760 � 0
�6(Q2� 2Q� 960) � 0
�6(Q� 32)(Q� 30) � 0

Q � �32 Q � 30 critical values

�12Q� 12
�12(30)� 12 � �372� 0 concave, relative maximum

3) � � �2(30)3� 6(30)2� 5760(30)� 845 � 112,555

4.20. Prove that marginal cost (MC) must equal marginal revenue (MR) at the profit-maximizing
level of output.

� � TR�TC

To maximize �, d�/dQ must equal zero.

d�

dQ
�

dTR
dQ

�
dTC
dQ

� 0

dTR
dQ

�
dTC
dQ

MR �MC Q.E.D.
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4.21. A producer has the possibility of discriminating between the domestic and foreign markets for
a product where the demands, respectively, are

Q1 � 21� 0.1P1 (4.4)
Q2 � 50� 0.4P2 (4.5)

Total cost� 2000� 10Q where Q�Q1�Q2. What price will the producer charge in order to
maximize profits (a) with discrimination between markets and (b) without discrimination? (c)
Compare the profit differential between discrimination and nondiscrimination.

a) To maximize profits under price discrimination, the producer will set prices so that MC �MR in each
market. Thus, MC �MR1�MR2. With TC � 2000� 10Q,

MC �
dTC
dQ

� 10

Hence MC will be the same at all levels of output. In the domestic market,

Q1 � 21� 0.1P1

P1 � 210� 10Q1Hence,

TR1 � (210� 10Q1)Q1 � 210Q1� 10Q1
2

and MR1 �
dTR1

dQ1

� 210� 20Q1

When MR1 �MC, 210� 20Q1� 10 Q1 � 10

When Q1 � 10, P1� 210� 10(10) � 110

In the foreign market, Q2 � 50� 0.4P2

Hence, P2 � 125� 2.5Q2

TR2� (125� 2.5Q2)Q2 � 125Q2� 2.5Q2
2

Thus, MR2 �
dTR2

dQ2

� 125� 5Q2

When MR2 �MC, 125� 5Q2 � 10 Q2 � 23

When Q2 � 23, P2� 125� 2.5(23) � 67.5

The discriminating producer charges a lower price in the foreign market where the demand is
relatively more elastic and a higher price (P1 � 110) in the domestic market where the demand is
relatively less elastic.

b) If the producer does not discriminate, P1 � P2 and the two demand functions (4.4) and (4.5) may
simply be aggregated. Thus,

Q � Q1�Q2 � 21� 0.1P� 50� 0.4P � 71� 0.5P

Hence, P � 142� 2Q

TR � (142� 2Q)Q � 142Q� 2Q2

and MR �
dTR
dQ

� 142� 4Q

When MR �MC, 142� 4Q � 10 Q � 33

When Q � 33, P � 142� 2(33) � 76

When no discrimination takes place, the price falls somewhere between the relatively high price of
the domestic market and the relatively low price of the foreign market. Notice, however, that the
quantity sold remains the same: at P � 76, Q1 � 13.4, Q2 � 19.6, and Q � 33.
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c) With discrimination,

TR � TR1�TR2 � P1Q1�P2 Q2 � 110(10)� 67.5(23) � 2652.50

TC � 2000� 10Q, where Q � Q1�Q2.

TC � 2000� 10(10� 23) � 2330

Thus, � � TR�TC � 2652.50� 2330 � 322.50

Without discrimination,

TR � PQ � 76(33) � 2508

TC � 2330 since costs do not change with or without discrimination. Thus, � � 2508� 2330 � 178. Profits
are higher with discrimination (322.50) than without discrimination.

4.22. Faced with two distinct demand functions

Q1 � 24� 0.2P1 Q2 � 10� 0.05P2

where TC� 35� 40Q, what price will the firm charge (a) with discrimination and (b) without
discrimination?

a) With Q1 � 24� 0.2P1,

P1 �

TR1 �

MR1 �

120� 5Q1

(120� 5Q1)Q1 � 120Q1� 5Q2
1

120� 10Q1

The firm will maximize profits where MC �MR1 �MR2

TC � 35� 40Q

MC � 40

When MC �MR1, 40 � 120� 10Q1 Q1 � 8

When Q1 � 8, P1 � 120� 5(8) � 80

In the second market, with Q2 � 10� 0.05P2,
P2 �

TR2 �

MR2 �

200� 20Q2

(200� 20Q2)Q2 � 200Q2� 20Q2
2

200� 40Q2

When MC �MR2, 40 � 200� 40Q2 Q2 � 4

When Q2 � 4, P2 � 200� 20(4) � 120

b) If the producer does not discriminate, P1 � P2 � P and the two demand functions can be combined,
as follows:

Q � Q1�Q2 � 24� 0.2P� 10� 0.05P � 34� 0.25P

Thus,

P �

TR �
MR �

136� 4Q

(136� 4Q)Q � 136Q� 4Q2

136� 8Q

At the profit-maximizing level, MC �MR.

40 � 136� 8Q Q � 12

At Q � 12, P � 136� 4(12) � 88
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4.23. Use the MR �MC method to (a) maximize profit � and (b) check the second-order conditions,
given

TR � 1400Q� 7.5Q2 TC�Q3� 6Q2� 140Q� 750

a) MR � TR� � 1400� 15Q, MC � TC� � 3Q2� 12Q� 140

Equate MR �MC. 1400� 15Q � 3Q2� 12Q� 140

Solve for Q by moving everything to the right.

3Q2� 3Q� 1260 � 0
3(Q� 21)(Q� 20) � 0

Q � �21 Q � 20 critical values

b) TR
 � �15 TC
 � 6Q� 12

Since � � TR�TC and the objective is to maximize �, be sure to subtract TC
 from TR
, or you will
reverse the second-order conditions and select the wrong critical value.

�
 �

�

�
(20) �

TR
�TC

�15� 6Q� 12 � �6Q� 3
�6(20)� 3 � �123� 0 concave, relative maximum

Compare these results with Problem 4.19(b).

THE MARGINAL RATE OF TECHNICAL SUBSTITUTION

4.24. An isoquant depicts the different combinations of inputs K and L that can be used to produce
a specific level of output Q. One such isoquant for the output level Q� 2144 is

16K1/4 L3/4� 2144

(a) Use implicit differentiation from Section 3.9 to find the slope of the isoquant dK/dL which
in economics is called the marginal rate of technical substitution (MRTS). (b) Evaluate the
marginal rate of technical substitution at K � 256, L� 108.

a) Take the derivative of each term with respect to L and treat K as a function of L.

d

dL
(16K1/4 L3/4) �

d

dL
(2144)

Use the product rule since K is being treated as a function of L.

16K1/4 ·
d

dL
(L3/4)�L3/4 ·

d

dL
(16K1/4) �

d

dL
(2144)

�16K1/4 ·
3
4

L�1/4� � �L3/4 · 16 ·
1
4

K�3/4 ·
dK

dL � � 0

12K1/4L�1/4� 4K�3/4 L3/4 ·
dK

dL
� 0

Solve algebraically for dK/dL.

dK

dL
�
�12K1/4 L�1/4

4K�3/4 L3/4 �
�3K

L

b) At K � 256 and L � 108.

MRTS �
dK

dL
�
�3(256)

108
� �7.11

This means that if L is increased by 1 relatively small unit, K must decrease by 7.11 units in order to
remain on the production isoquant where the production level is constant. See also Problem 6.51.
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4.25. The equation for the production isoquant is

25K3/5 L2/5 � 5400

(a) Find the MRTS and (b) evaluate it at K � 243, L� 181.

a) Treat K as a function of L and use the product rule to find dK/dL, which is the MRTS.

25K3/5 ·
2
5

L�3/5�L2/5 · 25 ·
3
5

K�2/5 ·
dK

dL
� 0

10K3/5 L�3/5� 15K�2/5 L2/5 ·
dK

dL
� 0

Solve algebraically for dK/dL.

dK

dL
�
�10K 3/5 L�3/5

15K�2/5 L2/5 �
�2K

3L
�MRTS

b) At K � 243 and K � 181,

MRTS �
dK

dL
�
�2(243)
3(181)

� �0.895

This means that if L is increased by 1 relatively small unit, K must decrease by 0.895 unit in order to
remain on the production isoquant where the production level is constant. See Problem 6.52.

RELATIONSHIP BETWEEN FUNCTIONS AND GRAPHS

4.26. Given the total cost function C�Q3� 18Q2� 750Q, use your knowledge of calculus to help
sketch a graph showing the relationship between total, average, and marginal costs.

a) Take the first and second derivatives of the total cost function

C� � 3Q2� 36Q� 750
C
 � 6Q� 36

and check for (1) concavity and (2) inflection points.

1) For Q� 6, C
� 0 concave
For Q� 6, C
� 0 convex

2) 6Q� 36 � 0
Q � 6

C(6) � (6)3� 18(6)2� 750(6) � 4068

With C(Q) changing from concave to convex at Q � 6,

(6, 4068) inflection point

b) Find the average cost function AC and the relative extrema.

AC �
TC
Q
� Q2� 18Q� 750

AC� � 2Q� 18 � 0

Q � 9 critical value

AC
 � 2� 0 convex, relative minimum
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c) Do the same thing for the marginal cost function

MC � C� �

MC� �

MC
 �

3Q2� 36Q� 750
6Q� 36 � 0

Q � 6 critical value
6� 0 convex, relative minimum

d) Sketch the graph as in Fig. 4-9, noting that (1) MC decreases when TC is concave and increasing at
a decreasing rate, increases when TC is convex and increasing at an increasing rate, and is at a
minimum when TC is at an inflection point and changing concavity; and (2) AC decreases over the
whole region where MC�AC, is at a minimum when MC � AC, and increases when MC�AC.
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CHAPTER 5

Calculus of
Multivariable

Functions

5.1 FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DERIVATIVES

Study of the derivative in Chapter 4 was limited to functions of a single independent variable such
as y � f(x). Many economic activities, however, involve functions of more than one independent
variable. z � f(x, y) is defined as a function of two independent variables if there exists one and only
one value of z in the range of f for each ordered pair of real numbers (x, y) in the domain of f. By
convention, z is the dependent variable; x and y are the independent variables.

To measure the effect of a change in a single independent variable (x or y) on the dependent
variable (z) in a multivariable function, the partial derivative is needed. The partial derivative of z with
respect to x measures the instantaneous rate of change of z with respect to x while y is held constant.
It is written �z/�x, �f/�x, fx(x, y), fx, or zx. The partial derivative of z with respect to y measures the rate
of change of z with respect to y while x is held constant. It is written �z/�y, �f/�y, fy(x, y), fy, or zy.
Expressed mathematically,

�z
�x
� lim
	x→0

f(x�	x, y)� f(x, y)
	x

(5.1a)

�z
�y
� lim
	y→0

f(x, y�	y)� f(x, y)
	y

(5.1b)

Partial differentiation with respect to one of the independent variables follows the same rules as
ordinary differentiation while the other independent variables are treated as constant. See Examples
1 and 2 and Problems 5.1 and 5.23.

EXAMPLE 1. The partial derivatives of a multivariable function such as z � 3x2 y3 are found as follows:

a) When differentiating with respect to x, treat the y term as a constant by mentally bracketing it with the
coefficient:

z � [3y3] · x2
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Then take the derivative of the x term, holding the y term constant,

�z

�x
� zx � [3y3] ·

d

dx
(x2)

� [3y3] · 2x

Recalling that a multiplicative constant remains in the process of differentiation, simply multiply and
rearrange terms to obtain

�z

�x
� zx � 6xy3

b) When differentiating with respect to y, treat the x term as a constant by bracketing it with the coefficient;
then take the derivative as was done above:

z � [3x2] · y3

�z
�y
� zy � [3x2] ·

d

dy
(y3)

� [3x2] · 3y2 � 9x2y2

EXAMPLE 2. To find the partial derivatives for z � 5x3� 3x2 y2� 7y5:

a) When differentiating with respect to x, mentally bracket all y terms to remember to treat them as
constants:

z � 5x3� [3y2]x2� [7y5]

Then take the derivative of each term, remembering that in differentiation multiplicative constants
remain but additive constants drop out, because the derivative of a constant is zero.

�z

�x
�

d

dx
(5x3)� [3y2] ·

d

dx
(x2)�

d

dx
[7y5]

� 15x2� [3y2] · 2x� 0
� 15x2� 6xy2

b) When differentiating with respect to y, block off all the x terms and differentiate as above.

z � [5x3]� [3x2]y2� 7y5

�z
�y
�

d

dy
[5x3]� [3x2] ·

d

dy
(y2)�

d

dy
(7y5)

� 0� [3x2] · 2y� 35y4

� �6x2 y� 35y4

See Problem 5.1.

5.2 RULES OF PARTIAL DIFFERENTIATION

Partial derivatives follow the same basic patterns as the rules of differentiation in Section 3.7. A
few key rules are given below, illustrated in Examples 3 to 5, treated in Problems 5.2 to 5.5, and verified
in Problem 5.23.
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5.2.1 Product Rule

Given z � g(x, y) · h(x, y),

�z
�x
� g(x, y) ·

�h
�x
� h(x, y) ·

�g
�x

(5.2a)

�z
�y
� g(x, y) ·

�h
�y
� h(x, y) ·

�g
�y

(5.2b)

EXAMPLE 3. Given z � (3x� 5)(2x� 6y), by the product rule,

�z

�x
� (3x� 5)(2)� (2x� 6y)(3) � 12x� 10� 18y

�z

�y
� (3x� 5)(6)� (2x� 6y)(0) � 18x� 30

5.2.2 Quotient Rule

Given z� g(x, y)/h(x, y) and h(x, y)� 0,

�z
�x
�

h(x, y) · �g/�x� g(x, y) · �h/�x
[h(x, y)]2 (5.3a)

�z
�y
�

h(x, y) · �g/�y� g(x, y) · �h/�y
[h(x, y)]2 (5.3b)

EXAMPLE 4. Given z � (6x� 7y)/(5x� 3y), by the quotient rule,

�z

�x
�

(5x� 3y)(6)� (6x� 7y)(5)
(5x� 3y)2

�
30x� 18y� 30x� 35y

(5x� 3y)2 �
�17y

(5x� 3y)2

�z

�y
�

(5x� 3y)(7)� (6x� 7y)(3)
(5x� 3y)2

�
35x� 21y� 18x� 21y

(5x� 3y)2 �
17x

(5x� 3y)2

5.2.3 Generalized Power Function Rule

Given z� [g(x, y)]n,

�z
�x
� n[g(x, y)]n�1 ·

�g
�x

(5.4a)

�z
�y
� n[g(x, y)]n�1 ·

�g
�y

(5.4b)

EXAMPLE 5. Given z � (x3� 7y2)4, by the generalized power function rule,

�z

�x
� 4(x3� 7y2)3 · (3x2) � 12x2(x3� 7y2)3

�z

�y
� 4(x3� 7y2)3 · (14y) � 56y(x3� 7y2)3
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5.3 SECOND-ORDER PARTIAL DERIVATIVES

Given a function z � f(x, y), the second-order (direct) partial derivative signifies that the function
has been differentiated partially with respect to one of the independent variables twice while the other
independent variable has been held constant:

fxx � ( fx)x �
�

�x ��z�x� �
� 2 z
�x2 fyy � ( fy)y �

�

�y ��z�y� �
� 2 z
�y2

In effect, fxx measures the rate of change of the first-order partial derivative fx with respect to x while
y is held constant. And fyy is exactly parallel. See Problems 5.6 and 5.8.

The cross (or mixed) partial derivatives fxy and fyx indicate that first the primitive function has been
partially differentiated with respect to one independent variable and then that partial derivative has
in turn been partially differentiated with respect to the other independent variable:

fxy� ( fx)y �
�

�y ��z�x� � � 2 z
�y �x

fyx � ( fy)x �
�

�x ��z�y� � � 2 z
�x �y

In brief, a cross partial measures the rate of change of a first-order partial derivative with respect to
the other independent variable. Notice how the order of independent variables changes in the different
forms of notation. See Problems 5.7 and 5.9.

EXAMPLE 6. The (a) first, (b) second, and (c) cross partial derivatives for z � 7x3� 9xy� 2y5 are taken as
shown below.

a)
�z

�x
� zx � 21x2� 9y

�z

�y
� zy � 9x� 10y4

b)
� 2 z

�x2 � zxx� 42x
� 2 z

�y2 � zyy � 40y3

c)
� 2 z

�y�x
�
�

�y � �z�x � �
�

�y
(21x2� 9y) � zxy � 9

� 2 z
�x�y

�
�

�x � �z�y � �
�

�x
(9x� 10y4) � zyx � 9

EXAMPLE 7. The (a) first, (b) second, and (c) cross partial derivatives for z � 3x2 y3 are evaluated below at
x � 4, y � 1.

a) zx �

zx(4, 1) �
6xy3

6(4)(1)3 � 24
zy �

zy(4, 1) �
9x2y2

9(4)2 (1)2 � 144

b) zxx �

zxx(4, 1) �
6y3

6(1)3� 6
zyy�

zyy(4, 1) �
18x2 y

18(4)2 (1) � 288

c) zxy �
�

�y
(6xy3) � 18xy2 zyx�

�

�x
(9x2 y2) � 18xy2

zxy(4, 1) � 18(4)(1)2 � 72 zyx(4, 1) � 18(4)(1)2 � 72

ByYoung’s theorem, if both cross partial derivatives are continuous, they will be identical. See Problems 5.7
to 5.9.

5.4 OPTIMIZATION OF MULTIVARIABLE FUNCTIONS

For a multivariable function such as z � f(x, y) to be at a relative minimum or maximum, three
conditions must be met:

1. The first-order partial derivatives must equal zero simultaneously. This indicates that at the
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given point (a, b), called a critical point, the function is neither increasing nor decreasing with
respect to the principal axes but is at a relative plateau.

2. The second-order direct partial derivatives, when evaluated at the critical point (a, b), must
both be negative for a relative maximum and positive for a relative minimum. This ensures
that from a relative plateau at (a, b) the function is concave and moving downward in relation
to the principal axes in the case of a maximum and convex and moving upward in relation to
the principal axes in the case of a minimum.

3. The product of the second-order direct partial derivatives evaluated at the critical point must
exceed the product of the cross partial derivatives also evaluated at the critical point. This
added condition is needed to preclude an inflection point or saddle point.

In sum, as seen in Fig. 5-1, when evaluated at a critical point (a, b),

Relative maximum
1. fx, fy � 0
2. fxx, fyy� 0
3. fxx · fyy� ( fxy)2

Relative minimum
1. fx, fy� 0
2. fxx, fyy� 0
3. fxx · fyy� ( fxy)2

Note the following:

1) Since fxy � fyx by Young’s theorem, fxy · fyx� ( fxy)2. Step 3 can also be written fxx · fyy

� ( fxy)2� 0.
2) If fxx · fyy� ( fxy)2, when fxx and fyy have the same signs, the function is at an inflection point;

when fxx and fyy have different signs, the function is at a saddle point, as seen in Fig. 5-2, where
the function is at a maximum when viewed from one axis but at a minimum when viewed from
the other axis.
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3) If fxx · fyy� ( fxy)2, the test is inconclusive. See Example 8 and Problems 5.10 and 5.11; for
inflection points, see Problems 5.10(c) and 5.11(b) and (c); for saddle points see Problems
5.10(d) and 5.11(a) and (d).

4) If the function is strictly concave (convex) in x and y, as in Fig. 5-1, there will be only one
maximum (minimum), called an absolute or global maximum (minimum). If the function is
simply concave (convex) in x and y on an interval, the critical point is a relative or local
maximum (minimum).

EXAMPLE 8. (a) Find the critical points. (b) Test whether the function is at a relative maximum or
minimum, given

z � 2y3� x3� 147x� 54y� 12

a) Take the first-order partial derivatives, set them equal to zero, and solve for x and y:

zx � �3x2� 147 �
x2 �

x �

0
49
�7

zy � 6y2� 54 �
y2 �

y �

0
9
�3

(5.5)

With x � �7, y � �3, there are four distinct sets of critical points: (7, 3), (7,�3), (�7, 3), and
(�7,�3).

b) Take the second-order direct partials from (5.5), evaluate them at each of the critical points, and check
the signs:

1)
2)
3)
4)

zxx�

zxx(7, 3) �
zxx(7,�3) �
zxx(�7, 3) �

zxx(�7,�3) �

�6x

�6(7) � �42� 0
�6(7) � �42� 0
�6(�7) � 42� 0
�6(�7) � 42� 0

zyy �

zyy(7, 3) �
zyy(7,�3) �
zyy(�7, 3) �

zyy(�7,�3) �

12y

12(3) � 36� 0
12(�3) � �36� 0
12(3) � 36� 0
12(�3) � �36� 0

Since there are different signs for each of the second direct partials in (1) and (4), the function
cannot be at a relative maximum or minimum at (7, 3) or (�7,�3). When fxx and fyy are of different signs,
fxx · fyy cannot be greater than ( fxy)2, and the function is at a saddle point.

With both signs of the second direct partials negative in (2) and positive in (3), the function may be
at a relative maximum at (7,�3) and at a relative minimum at (�7, 3), but the third condition must be
tested first to ensure against the possibility of an inflection point.

c) From (5.5). take the cross partial derivatives and check to make sure that zxx(a, b) · zyy(a, b)� [zxy(a, b)]2.

zxy� 0 zyx � 0
zxx(a, b) · zyy(a, b) � [zxy(a, b)]2

From (2),

From (3),

(�42) · (�36) �

1512�
(42) · (36) �

1512�

(0)2

0
(0)2

0

The function is maximized at (7,�3) and minimized at (�7, 3); for inflection points, see Problems 5.10(c)
and 5.11(b) and (c).

5.5 CONSTRAINED OPTIMIZATION WITH LAGRANGE MULTIPLIERS

Differential calculus is also used to maximize or minimize a function subject to constraint. Given
a function f(x,y) subject to a constraint g(x, y) � k (a constant), a new function F can be formed by
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(1) setting the constraint equal to zero, (2) multiplying it by � (the Lagrange multiplier), and (3) adding
the product to the original function:

F(x, y, �) � f(x, y)��[k� g(x, y)] (5.6)

Here F(x, y, �) is the Lagrangian function, f(x, y) is the original or objective function, and g(x, y) is the
constraint. Since the constraint is always set equal to zero, the product �[k� g(x, y)] also equals zero,
and the addition of the term does not change the value of the objective function. Critical values x0, y0,
and �0, at which the function is optimized, are found by taking the partial derivatives of F with respect
to all three independent variables, setting them equal to zero, and solving simultaneously:

Fx(x,y, �) � 0 Fy(x, y, �) � 0 F�(x, y, �) � 0

Second-order conditions differ from those of unconstrained optimization and are treated in Section
12.5. See Example 9; Problems 5.12 to 5.14; Sections 6.6, 6.9, and 6.10; and Problems 6.28 to 6.39 and
6.41 to 6.44.

For constraints involving inequalities, see Chapter 13 for concave programming.

EXAMPLE 9. Optimize the function

z � 4x2� 3xy� 6y2

subject to the constraint x� y � 56.

1. Set the constraint equal to zero by subtracting the variables from the constant as in (5.6), for reasons to
be explained in Section 5.6.

56� x� y � 0

Multiply this difference by � and add the product of the two to the objective function in order to form
the Lagrangian function Z.

Z � 4x2� 3xy� 6y2��(56� x� y) (5.7)

2. Take the first-order partials, set them equal to zero, and solve simultaneously.

Zx� 8x� 3y�� � 0 (5.8)

Zy� 3x� 12y�� � 0 (5.9)

�� � 56� x� y � 0 (5.10)

Subtracting (5.9) from (5.8) to eliminate � gives

5x� 9y � 0 x � 1.8y

Substitute x � 1.8y in (5.10),

56� 1.8y� y � 0 y0 � 20

From which we find

x0� 36 �0 � 348

Substitute the critical values in (5.7),

Z � 4(36)2� 3(36)(20)� 6(20)2� (348)(56� 36� 20)
� 4(1296)� 3(720)� 6(400)� 348(0) � 9744

In Chapter 12, Example 5, it will be shown that Z is at a minimum. Notice that at the critical values, the
Lagrangian function Z equals the objective function z because the constraint equals zero. See Problems
5.12 to 5.14 and Sections 6.6, 6.9, and 6.10.
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5.6 SIGNIFICANCE OF THE LAGRANGE MULTIPLIER

The Lagrange multiplier � approximates the marginal impact on the objective function caused by
a small change in the constant of the constraint. With � � 348 in Example 9, for instance, a 1-unit
increase (decrease) in the constant of the constraint would cause Z to increase (decrease) by
approximately 348 units, as is demonstrated in Example 10. Lagrange multipliers are often referred to
as shadow prices. In utility maximization subject to a budget constraint, for example, � will estimate
the marginal utility of an extra dollar of income. See Problem 6.36.

Note: Since in (5.6) above �[k� g(x, y)]� �[g(x, y)� k]� 0, either form can be added to or
subtracted from the objective function without changing the critical values of x and y. Only the sign
of � will be affected. For the interpretation of � given in Section 5.6 to be valid, however, the precise
form used in Equation (5.6) should be adhered to. See Problems 5.12 to 5.14.

EXAMPLE 10. To verify that a 1-unit change in the constant of the constraint will cause a change of
approximately 348 units in Z from Example 9, take the original objective function z � 4x2� 3xy� 6y2 and
optimize it subject to a new constraint x� y � 57 in which the constant of the constraint is 1 unit larger.

Z �

Zx �

Zy �

Z� �

4x2� 3xy� 6y2��(57� x� y)
8x� 3y�� � 0
3x� 12y�� � 0
57� x� y � 0

When solved simultaneously this gives

x0� 36.64 y0� 20.36 �0 � 354.2

Substituting these values in the Lagrangian function gives Z � 10,095 which is 351 larger than the old constrained
optimum of 9744, close to the approximation of the 348 increment suggested by �.

5.7 DIFFERENTIALS

In Section 3.4 the derivative dy/dx was presented as a single symbol denoting the limit of 	y/	x
as 	x approaches zero. The derivative dy/dx may also be treated as a ratio of differentials in which
dy is the differential of y and dx the differential of x. Given a function of a single independent
variable y� f(x), the differential of y, dy, measures the change in y resulting from a small change
in x, written dx.

Given y � 2x2� 5x� 4, the differential of y is found by first taking the derivative of y with respect
to x, which measures the rate at which y changes for a small change in x,

dy
dx
� 4x� 5 a derivative or rate of change

and then multiplying that rate at which y changes for a small change in x by a specific change in x(dx)
to find the resulting change in y(dy).

dy � (4x� 5)dx a differential or simple change

Change in y � rate at which y changes for a small change in x · a small change in x.

EXAMPLE 11.

1. If y � 4x3� 5x2� 7, then dy/dx � 12x2� 10x and the differential is

dy � (12x2� 10x) dx

2. If y � (2x� 5)2, then dy/dx � 2(2x� 5)(2) � 8x� 20 and the differential is

dy � (8x� 20) dx

See Problem 5.15.
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5.8 TOTAL AND PARTIAL DIFFERENTIALS

For a function of two or more independent variables, the total differential measures the change in
the dependent variable brought about by a small change in each of the independent variables. If
z � f(x, y), the total differential dz is expressed mathematically as

dz � zx dx� zy dy (5.11)

where zx and zy are the partial derivatives of z with respect to x and y respectively, and dx and dy are
small changes in x and y. The total differential can thus be found by taking the partial derivatives of
the function with respect to each independent variable and substituting these values in the formula
above.

EXAMPLE 12. The total differential is found as follows:

1. Given: z � x4� 8xy� 3y3

zx � 4x3� 8y zy � 8x� 9y2

which, when substituted in the total differential formula, gives

dz � (4x3� 8y) dx� (8x� 9y2) dy

2. Given: z � (x� y)/(x� 1)

zx �
(x� 1)(1)� (x� y)(1)

(x� 1)2 �
y� 1

(x� 1)2

zy �
(x� 1)(�1)� (x� y)(0)

(x� 1)2 �
�1(x� 1)
(x� 1)2 �

�1
x� 1

The total differential is dz �
y� 1

(x� 1)2 dx� � 1
x� 1 � dy

If one of the independent variables is held constant, for example, dy � 0, we then have a partial
differential:

dz � zx dx

A partial differential measures the change in the dependent variable of a multivariate function
resulting from a small change in one of the independent variables and assumes the other independent
variables are constant. See Problems 5.16 and 5.17 and 6.45 to 6.52.

5.9 TOTAL DERIVATIVES

Given a case where z� f(x, y) and y � g(x), that is, when x and y are not independent, a change
in x will affect z directly through the function f and indirectly through the function g. This is illustrated
in the channel map in Fig. 5-3. To measure the effect of a change in x on z when x and y are not
independent, the total derivative must be found. The total derivative measures the direct effect of x
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on z, �z/�x, plus the indirect effect of x on z through y,
�z
�y

dy
dx

. In brief, the total derivative is

dz
dx
� zx� zy

dy
dx

(5.12)

See Examples 13 to 15 and Problems 5.18 and 5.19.

EXAMPLE 13. An alternative method of finding the total derivative is to take the total differential of z

dz � zx dx� zy dy

and divide through mentally by dx. Thus,

dz

dx
� zx

dx

dx
� zy

dy

dx

Since dx/dx � 1,
dz

dx
� zx� zy

dy

dx

EXAMPLE 14. Given

z � f(x, y) � 6x3� 7y

where y � g(x) � 4x2� 3x� 8, the total derivative dz/dx with respect to x is

dz

dx
� zx� zy

dy

dx

where zx � 18x2, zy � 7, and dy/dx � 8x� 3. Substituting above,

dz

dx
� 18x2� 7(8x� 3) � 18x2� 56x� 21

To check the answer, substitute y � 4x2� 3x� 8 in the original function to make z a function of x alone and then
take the derivative as follows:

z � 6x3� 7(4x2� 3x� 8) � 6x3� 28x2� 21x� 56

Thus,
dz

dx
� 18x2� 56x� 21

EXAMPLE 15. The total derivative can be expanded to accommodate other interconnections as well. Given

z � 8x2� 3y2 x � 4t y � 5t

the total derivative of z with respect to t then becomes

dz

dt
� zx

dx

dt
� zy

dy

dt

where zx � 16x, zy � 6y, dx/dt � 4, and dy/dt � 5. Substituting above,

dz

dt
� 16x(4)� 6y(5) � 64x� 30y

Then substituting x � 4t and y � 5t immediately above,

dz

dt
� 64(4t)� 30(5t) � 406t
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5.10 IMPLICIT AND INVERSE FUNCTION RULES

As seen in Section 3.9, functions of the form y� f(x) express y explicitly in terms of x and are
called explicit functions. Functions of the form f(x, y) � 0 do not express y explicitly in terms of x and
are called implicit functions. If an implicit function f(x, y) � 0 exists and fy� 0 at the point around
which the implicit function is defined, the total differential is simply fx dx� fy dy � 0.

Recalling that a derivative is a ratio of differentials, we can then rearrange the terms to get the
implicit function rule:

dy
dx
�
�fx

fy
(5.13)

Notice that the derivative dy/dx is the negative of the reciprocal of the corresponding partials.

dy
dx
�
�fx

fy
��

1
fy/ fx

Given a function y � f(x), an inverse function x � f�1(y) exists if each value of y yields one and
only one value of x. Assuming the inverse function exists, the inverse function rule states that the
derivative of the inverse function is the reciprocal of the derivative of the original function. Thus, if
Q� f(P) is the original function, the derivative of the original function is dQ/dP, the derivative of the
inverse function [P � f�1(Q)] is dP/dQ, and

dP
dQ
�

1
dQ/dP

provided
dQ
dP
� 0 (5.14)

See Examples 16 and 17 and Problems 5.20 to 5.22, 6.51, and 6.52.

EXAMPLE 16. Given the implicit functions:

(a) 7x2� y � 0 (b) 3x4� 7y5� 86 � 0

the derivative dy/dx is found as follows:

a) From (5.13),
dy

dx
� �

fx

fy

Here fx � 14x and fy � �1. Substituting above,

dy

dx
� �

14x

(�1)
� 14x

The function in this case was deliberately kept simple so the answer could easily be checked by solving
for y in terms of x and then taking the derivative directly. Since y � 7x2, dy/dx � 14x.

b)
dy

dx
� �

fx

fy

� �
12x3

�35y4 �
12x3

35y4

Compare this answer with that in Example 16 of Chapter 3.

EXAMPLE 17. Find the derivative for the inverse of the following functions:

1. Given Q � 20� 2P,

dP

dQ
�

1
dQ/dP

where dQ/dP � �2. Thus,

dP

dQ
�

1
�2
� �

1
2
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2. Given Q � 25� 3P3,

dP

dQ
�

1
dQ/dP

�
1

9P2 (P� 0)

Solved Problems

FIRST-ORDER PARTIAL DERIVATIVES

5.1. Find the first-order partial derivatives for each of the following functions:

a) z � 8x2� 14xy� 5y2 b) z � 4x3� 2x2 y� 7y5

zx �

zy �

16x� 14y

14x� 10y

zx �

zy �

12x2� 4xy

2x2� 35y4

c) z� 6w3� 4wx� 3x2� 7xy� 8y2 d) z � 2w2� 8wxy� x2� y3

zw �

zx �

zy �

18w2� 4x

4w� 6x� 7y

�7x� 16y

zw �

zx �

zy �

4w� 8xy

8wy� 2x

8wx� 3y2

5.2. Use the product rule from (5.2) to find the first-order partials for each of the following
functions:

a) z � 3x2(5x� 7y)
zx �

�

and zy �

�

3x2(5)� (5x� 7y)(6x)
45x2� 42xy

3x2(7)� (5x� 7y)(0)
21x2

b) z � (9x� 4y)(12x� 2y)
zx �

�

and zy �

�

(9x� 4y)(12)� (12x� 2y)(9)
108x� 48y� 108x� 18y � 216x� 30y

(9x� 4y)(2)� (12x� 2y)(�4)
18x� 8y� 48x� 8y � �30x� 16y

c) z � (2x2� 6y)(5x� 3y3)
zx �

�

�

and zy �

�

�

(2x2� 6y)(5)� (5x� 3y3)(4x)
10x2� 30y� 20x2� 12xy3

30x2� 30y� 12xy3

(2x2� 6y)(�9y2)� (5x� 3y3)(6)
�18x2 y2� 54y3� 30x� 18y3

�72y3� 18x2 y2� 30x

d) z � (w� x� y)(3w� 2x� 4y)
zw �

�

zx �

�

and zy �

�

(w� x� y)(3)� (3w� 2x� 4y)(1)
6w� x� 7y

(w� x� y)(2)� (3w� 2x� 4y)(�1)
�w� 4x� 2y

(w� x� y)(�4)� (3w� 2x� 4y)(�1)
�7w� 2x� 8y
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5.3. Use the quotient rule from (5.3) to find the first-order partials of the following functions:

a) z�
5x

6x� 7y
b) z �

x� y
3y

zx �
(6x� 7y)(5)� (5x)(6)

(6x� 7y)2 zx �
3y(1)� (x� y)(0)

(3y)2

�
�35y

(6x� 7y)2 �
1
3y

and zy �
(6x� 7y)(0)� (5x)(�7)

(6x� 7y)2 and zy �
3y(1)� (x� y)(3)

(3y)2

�
35x

(6x� 7y)2 �
�3x

(3y)2 �
�x

3y2

c) z�
4x� 9y
5x� 2y

d) z �
x2� y2

3x� 2y

zx �
(5x� 2y)(4)� (4x� 9y)(5)

(5x� 2y)2 zx �
(3x� 2y)(2x)� (x2� y2)(3)

(3x� 2y)2

�
53y

(5x� 2y)2 �
3x2� 4xy� 3y2

(3x� 2y)2

and zy �
(5x� 2y)(�9)� (4x� 9y)(2)

(5x� 2y)2 and zy �
(3x� 2y)(�2y)� (x2� y2)(2)

(3x� 2y)2

�
�53x

(5x� 2y)2 �
�2x2� 6xy� 2y2

(3x� 2y)2

5.4. Find the first-order partial derivatives for each of the following functions by using the
generalized power function rule from (5.4):

a) z � (x� y)2 b) z � (2x� 5y)3

zx �

�

and zy �

�

2(x� y)(1)
2(x� y)
2(x� y)(1)
2(x� y)

zx �

�

and zy �

�

3(2x� 5y)2(2)
6(2x� 5y)2

3(2x� 5y)2(�5)
�15(2x� 5y)2

c) z� (7x2� 4y3)5 d) z � (5w� 4x� 7y)3

zx �

�

and zy �

�

5(7x2� 4y3)4(14x)
70x(7x2� 4y3)4

5(7x2� 4y3)4(12y2)
60y2(7x2� 4y3)4

zw �

�

zx �

�

and zy �

�

3(5w� 4x� 7y)2(5)
15(5w� 4x� 7y)2

3(5w� 4x� 7y)2(4)
12(5w� 4x� 7y)2

3(5w� 4x� 7y)2(7)
21(5w� 4x� 7y)2

5.5. Use whatever combination of rules is necessary to find the first-order partials for the following
functions:

a) z �
(5x2� 7y)(3x2� 8y)

4x� 2y
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Using the quotient rule and product rule,

zx �
(4x� 2y)[(5x2� 7y)(6x)� (3x2� 8y)(10x)]� (5x2� 7y)(3x2� 8y)(4)

(4x� 2y)2

�
(4x� 2y)(30x3� 42xy� 30x3� 80xy)� (5x2� 7y)(12x2� 32y)

(4x� 2y)2

�
(4x� 2y)(60x3� 38xy)� (5x2� 7y)(12x2� 32y)

(4x� 2y)2

and zy �
(4x� 2y)[(5x2� 7y)(8)� (3x2� 8y)(�7)]� (5x2� 7y)(3x2� 8y)(2)

(4x� 2y)2

�
(4x� 2y)(40x2� 56y� 21x2� 56y)� (5x2� 7y)(6x2� 16y)

(4x� 2y)2

�
(4x� 2y)(19x2� 112y)� (5x2� 7y)(6x2� 16y)

(4x� 2y)2

b) z � (5x2� 4y)2(2x� 7y3)

Using the product rule and the generalized power function rule,

zx �

�

and zy �

�

(5x2� 4y)2(2)� (2x� 7y3)[2(5x2� 4y)(10x)]
2(5x2� 4y)2� (2x� 7y3)(100x3� 80xy)
(5x2� 4y)2(21y2)� (2x� 7y3)[2(5x2� 4y)(�4)]
21y2(5x2� 4y)2� (2x� 7y3)(�40x2� 32y)

c) z �
(3x� 11y)3

2x� 6y

Using the quotient rule and the generalized power function rule,

zx�
(2x� 6y)[3(3x� 11y)2(3)]� (3x� 11y)3(2)

(2x� 6y)2

�
(18x� 54y)(3x� 11y)2� 2(3x� 11y)3

(2x� 6y)2

and zy�
(2x� 6y)[3(3x� 11y)2(11)]� (3x� 11y)3(6)

(2x� 6y)2

�
(66x� 198y)(3x� 11y)2� 6(3x� 11y)3

(2x� 6y)2

d) z � �8x� 7y
5x� 2y�

2

Using the generalized power function rule and the quotient rule,

zx � 2 �8x� 7y

5x� 2y � �
(5x� 2y)(8)� (8x� 7y)(5)

(5x� 2y)2 �
�

16x� 14y

5x� 2y � �19y

(5x� 2y)2 � � �(266y2� 304xy)
(5x� 2y)3

and zy � 2 �8x� 7y

5x� 2y � �
(5x� 2y)(7)� (8x� 7y)(2)

(5x� 2y)2 �
�

16x� 14y

5x� 2y � 19x

(5x� 2y)2 � � 304x2� 266xy

(5x� 2y)3
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SECOND-ORDER PARTIAL DERIVATIVES

5.6. Find the second-order direct partial derivatives zxx and zyy for each of the following functions:

a) z� x2� 2xy� y2

zx �

zxx �

2x� 2y

2
zy� 2x� 2y

zyy� 2

b) z� x3� 9xy� 3y3

zx �

zxx �

3x2� 9y

6x

zy� �9x� 9y2

zyy� �18y

c) z� 2xy4� 7x3 y
zx �

zxx �

2y4� 21x2 y

42xy

zy � 8xy3� 7x3

zyy � 24xy2

d) z� x4� x3 y2� 3xy3� 2y3

zx �

zxx �

4x3� 3x2 y2� 3y3

12x2� 6xy2

zy � 2x3 y� 9xy2� 6y2

zyy � 2x3� 18xy� 12y

e) z� (12x� 7y)2

zx �

�

zxx �

2(12x� 7y)(12)
288x� 168y

288

zy � 2(12x� 7y)(�7)
� �168x� 98y

zyy� 98

f) z� (7x� 3y)3

zx �

�

zxx �

�

3(7x� 3y)2(7)
21(7x� 3y)2

42(7x� 3y)(7)
2058x� 882y

zy �

�

zyy�

�

3(7x� 3y)2(3)
9(7x� 3y)2

18(7x� 3y)(3)
378x� 162y

g) z� (x2� 2y)4

zx �

*zxx �

�

4(x2� 2y)3(2x) � 8x(x2� 2y)3

8x[3(x2� 2y)2(2x)]� (x2� 2y)3(8)
48x2(x2� 2y)2� 8(x2� 2y)3

zy � 4(x2� 2y)3(2) � 8(x2� 2y)3

zyy � 24(x2� 2y)2(2) � 48(x2� 2y)2

5.7. Find the cross partial derivatives zxy and zyx for each of the following functions:

a) z� 3x2� 12xy� 5y2

zx �

zxy �

6x� 12y

12
zy � 12x� 10y

zyx� 12

b) z� x3� xy� 2y3

zx �

zxy �

3x2� y

�1
zy� �x� 6y2

zyx� �1

c) z� 8x2 y� 11xy3

zx �

zxy �

16xy� 11y3

16x� 33y2

zy � 8x2� 33xy2

zyx � 16x� 33y2

*By the product rule.

96 CALCULUS OF MULTIVARIABLE FUNCTIONS [CHAP. 5



d) z � (8x� 4y)5

zx �

�

zxy �

�

5(8x� 4y)4(8)
40(8x� 4y)4

160(8x� 4y)3(�4)
�640(8x� 4y)3

zy �

�

zyx �

�

5(8x� 4y)4(�4)
�20(8x� 4y)4

�80(8x� 4y)3(8)
�640(8x� 4y)3

In items (a) through (d) above, notice how, in accord with Young’s theorem, zxy � zyx no matter which first
partial is taken initially.

5.8. Find the first-order and second-order direct partial derivatives for the following functions:

a) z � x0.4 y0.6

zx �

zxx �

0.4x�0.6 y0.6

�0.24x�1.6 y0.6

zy �

zyy �

0.6x0.4y�0.4

�0.24x0.4 y�1.4

b) f(x, y) � x0.7 y0.2

fx �

fxx �

0.7x�0.3 y0.2

�0.21x�1.3 y0.2

fy �

fyy �

0.2x0.7 y�0.8

�0.16x0.7 y�1.8

c) z � 2w6 x5 y3

zw �

zww �

12w5 x5 y3

60w4 x5 y3

zx �

zxx �

10w6 x4 y3

40w6 x3 y3

zy �

zyy�

6w6x5 y2

12w6 x5 y

d) f(x, y, z) � 10x3 y2 z4

fx �

fxx �

30x2 y2 z4

60xy2 z4

fy �

fyy �

20x3 yz4

20x3 z4

fz �

fzz �

40x3 y2 z3

120x3y2 z2

5.9. Find the cross partials for each of the following functions:

a) z � x0.3 y0.5

zx �

zxy �

0.3x�0.7 y0.5

0.15x�0.7 y�0.5

zy �

zyx �

0.5x0.3y�0.5

0.15x�0.7 y�0.5

b) f(x, y) � x0.1 y0.8

fx �

fxy �

0.1x�0.9 y0.8

0.08x�0.9 y�0.2

fy �

fyx �

0.8x0.1y�0.2

0.08x�0.9 y�0.2

c) z � w3 x4 y3

zw �

zwx �

zwy �

3w2 x4 y3

12w2 x3 y3

9w2 x4 y2

zx �

zxw �

zxy �

4w3 x3 y3

12w2 x3 y3

12w3 x3 y2

zy �

zyw�

zyx�

3w3x4 y2

9w2x4 y2

12w3 x3 y2

d) f(x, y, z) � x3 y�4 z�5

fx �

fxy �

fxz �

3x2 y�4 z�5

�12x2 y�5z�5

�15x2 y�4z�6

fy �

fyx �

fyz �

�4x3y�5 z�5

�12x2 y�5 z�5

20x3 y�5 z�6

fz �

fzx�

fzy�

�5x3 y�4 z�6

�15x2 y�4z�6

20x3 y�5 z�6

Note how by Young’s theorem in (c) zwx � zxw, zyw� zwy, and zxy� zyx and in (d) fxy � fyx, fxz� fzx, and
fyz � fzy.
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OPTIMIZING MULTIVARIABLE FUNCTIONS

5.10. For each of the following quadratic functions, (1) find the critical points at which the function
may be optimized and (2) determine whether at these points the function is maximized, is
minimized, is at an inflection point, or is at a saddle point.

a) z� 3x2� xy� 2y2� 4x� 7y� 12

1) Take the first-order partial derivatives, set them equal to zero, and solve simultaneously,
using the methods of Section 1.4.

zx �

zy �

z � 1

6x� y� 4 � 0
�x� 4y� 7 � 0
y � 2 (1, 2) critical point

(5.15)
(5.16)

2) Take the second-order direct partial derivatives from (5.15) and (5.16), evaluate them at the
critical point, and check signs.

zxx � 6 zyy � 4
zxx(1, 2) � 6� 0 zyy(1, 2) � 4� 0

With both second-order direct partial derivatives everywhere positive, the function is
possibly at a global minimum. Now take the cross partial from (5.15) or (5.16),

zxy � �1 � zyx

evaluate it at the critical point and test the third condition:

zxy(1, 2) � �1 � zyx(1, 2)
zxx(1, 2) · zyy(1, 2)� [zxy(1, 2)]2

6 · 4 � (�1)2

With zxx zyy� (zxy)2 and zxx, zyy� 0, the function is at a global minimum at (1, 2).

b) f(x, y) � 60x� 34y� 4xy� 6x2� 3y2� 5

1) Take the first-order partials, set them equal to zero, and solve.

fx �

fy �

x � 4 y �

60� 4y� 12x � 0
34� 6y� 4x � 0
3 (4, 3) critical point

(5.17)
(5.18)

2) Take the second-order direct partials, evaluate them at the critical point, and check their
signs.

fxx�

fxx(4, 3) �
�12
�12� 0

fyy �

fyy(4, 3) �
�6
�6� 0

Take the cross partial from (5.17) or (5.18),

fxy � �4 � fyx

evaluate it at the critical point and test the third condition:

fxy(4, 3) �
fxx(4, 3) · fyy(4, 3)�
�12 · �6 �

�4 � fyx(4, 3)
[ fxy(4, 3)]2

(�4)2

With fxx fyy� ( fxy)2 and fxx, fyy� 0, the function is at a global maximum at (4, 3).
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c) z � 48y� 3x2� 6xy� 2y2� 72x

1)
zx � �6x� 6y� 72 � 0
zy � �6x� 4y� 48 � 0

x � 0 y � 12 (0, 12) critical point

2) Test the second-order direct partials at the critical point.

zxx�

zxx(0, 12) �
�6
�6� 0

zyy �

zyy(0, 12) �
�4
�4� 0

With zxx and zyy� 0 for all values, the function may be at a global maximum. Test the cross
partials to be sure.

zxy�

zxy(0, 12) �
zxx(0, 12) · zyy(0, 12)�
�6 · �4 �

�6 � zyx

�6 � zyx(0, 12)
[zxy(0, 12)]2

(�6)2

With zxx and zyy of the same sign and zxx zyy� (zxy)2, the function is at an inflection point at
(0, 12).

d) f(x, y) � 5x2� 3y2� 30x� 7y� 4xy

1) fx �

fy �

10x� 4y� 30 � 0
4x� 6y� 7 � 0

x � 2 y � 2.5 (2, 2.5) critical point

2) fxx �

fxx(2, 2.5) �
10
10� 0

fyy �

fyy(2, 2.5) �
�6
�6� 0

Testing the cross partials,

fxy � 4 � fyx

fxx(2, 2.5) · fyy(2, 2.5)� [ fxy(2, 2.5)]2

10 · �6 � 42

Whenever fxx and fyy are of different signs, fxx fyy cannot be greater than ( fxy)2, and the
function will be at a saddle point.

5.11. For the following cubic functions, (1) find the critical points and (2) determine if at these points
the function is at a relative maximum, relative minimum, inflection point, or saddle point.

a) z(x, y) � 3x3� 5y2� 225x� 70y� 23

1) Take the first-order partials and set them equal to zero.

zx� 9x2� 225 � 0 (5.19)

zy� �10y� 70 � 0 (5.20)

Solve for the critical points.

9x2 �

x2 �

x �

225
25
�5

�10y �

y �

�70
7

(5, 7) (�5, 7) critical points
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2) From (5.19) and (5.20), take the second-order direct partials,

zxx � 18x zyy � �10

evaluate them at the critical points and note the signs.

zxx(5, 7) �
zxx(�5, 7) �

18(5) � 90� 0
18(�5) � �90� 0

zyy(5, 7) �
zyy(�5, 7) �

�10� 0
�10� 0

Then take the cross partial from (5.19) or (5.20),

zxy � 0 � zyx

evaluate it at the critical points and test the third condition.

At (5, 7),
At (�5, 7),

zxx(a, b)
90
�90

·
·
·

zyy(a, b)
�10
�10

�

�

�

[zxy(a, b)]2

0
0

With zxx zyy� (zxy)2 and zxx, zyy� 0 at (�5, 7), z(�5, 7) is a relative maximum. With
zxxzyy� (zxy)2 and zxx and zyy of different signs at (5, 7), z(5, 7) is a saddle point.

b) f(x,y) � 3x3� 1.5y2� 18xy� 17

1) Set the first-order partial derivatives equal to zero,

fx� 9x2� 18y � 0 (5.21)
fy � 3y� 18x � 0 (5.22)

and solve for the critical values:

18y �
y �

9x2

1–
2x

2
3y �
y �

18x
6x (5.23)

Setting y equal to y, 1–
2x

2 � 6x

x2� 12x �

x(x� 12) �
0
0

x � 0 x � 12

Substituting x � 0 and x � 12 in y � 6x from (5.23),

y � 6(0) � 0
y � 6(12) � 72

Therefore, (0, 0) (12, 72) critical points

2) Take the second-order direct partials from (5.21) and (5.22),

fxx� 18x fyy� 3

evaluate them at the critical points and note the signs.

fxx(0, 0) �
fxx(12, 72) �

18(0) � 0
18(12) � 216� 0

fyy(0, 0) � 3� 0
fyy(12, 72) � 3� 0

Then take the cross partial from (5.21) or (5.22),

fxy � �18 � fyx

evaluate it at the critical points and test the third conditon.

At (0, 0),
At (12, 72),

fxx(a, b)
0

216

·
·
·

fyy(a, b)
3
3
648

�
�
�
�

[ fxy(a, b)]2

(�18)2

(�18)2

324
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With fxx fyy� ( fxy)2 and fxx, fyy� 0 at (12, 72), f(12, 72) is a relative minimum. With
fxx fyy� ( fxy)2 and fxx and fyy of the same sign at (0, 0), f(0, 0) is an inflection point.

c) f� 3x3� 9xy� 3y3

1) fx � 9x2� 9y � 0 (5.24)
fy � 9y2� 9x � 0 (5.25)

From (5.24), 9y � 9x2 y � x2

Substitute y � x2 in (5.25),

9(x2)2� 9x � 0
9x4� 9x � 0

9x(x3� 1) � 0
9x � 0

x � 0
or x3� 1 � 0

x3 � 1
x � 1

Substituting these values in (5.24), we find that if x � 0, y � 0, and if x � 1, y � 1.
Therefore,

(0, 0) (1, 1) critical points

2) Test the second-order conditons from (5.24) and (5.25).

fxx �

fxx(0, 0) �
fxx(1, 1) �

18x

18(0) � 0
18(1) � 18� 0

fyy �

fyy(0, 0) �
fyy(1, 1) �

18y

18(0) � 0
18(1) � 18� 0

fxy � �9 � fyx

At (0, 0),
At (1, 1),

fxx(a, b)
0

18

·
·
·

fyy(a,b)
0

18

�

�

�

[ fxy(a,b)]2

(�9)2

(�9)2

With fxx and fyy� 0 and fxx fyy� ( fxy)2 at (1, 1), the function is at a relative minimum at (1, 1).
With fxx and fyy of the same sign at (0, 0) and fxx fyy� ( fxy)2, the function is at an inflection
point at (0, 0).

d) f(x, y) � x3� 6x2� 2y3� 9y2� 63x� 60y

1) fx � 3x2� 12x� 63 � 0
3(x2� 4x� 21) � 0

(x� 3)(x� 7) � 0
x � �3 x � 7

fy� 6y2� 18y� 60 � 0
6(y2� 3y� 10) � 0

(y� 2)(y� 5) � 0
y � 2 y � �5

(5.26)

Hence (�3, 2) (�3,�5) (7, 2) (7,�5) critical points

2) Test the second-order direct partials at each of the critical points. From (5.26),

(i)
(ii)

(iii)
(iv)

fxx �

fxx(�3, 2) �
fxx(�3,�5) �

fxx(7, 2) �
fxx(7,�5) �

6x� 12
�30� 0
�30� 0
30� 0
30� 0

fyy �

fyy(�3, 2) �
fyy(�3,�5) �

fyy(7, 2) �
fyy(7,�5) �

12y� 18
42� 0
�42� 0
42� 0
�42� 0

101CALCULUS OF MULTIVARIABLE FUNCTIONSCHAP. 5]



With different signs in (i) and (iv), (�3, 2) and (7,�5) can be ignored, if desired, as saddle
points. Now take the cross partial from (5.26) and test the third condition.

fxy � 0 � fyx

From (ii),
From (iii),

fxx(a, b) ·
(�30) ·

(30) ·

fyy(a, b)
(�42)

(42)

�

�

�

[ fxy(a, b)]2

(0)2

(0)2

The function is at a relative maximum at (�3,�5), at a relative minimum at (7, 2), and at
a saddle point at (�3, 2) and (7,�5).

CONSTRAINED OPTIMIZATION AND LAGRANGE MULTIPLIERS

5.12. (1) Use Lagrange multipliers to optimize the following functions subject to the given constraint,
and (2) estimate the effect on the value of the objective function from a 1-unit change in the
constant of the constraint.

a) z� 4x2� 2xy� 6y2 subject to x� y � 72

1) Set the constraint equal to zero, multiply it by �, and add it to the objective function, to
obtain

Z � 4x2� 2xy� 6y2��(72� x� y)

The first-order conditions are

Zx � 8x� 2y�� � 0 (5.27)

Zy � �2x� 12y�� � 0 (5.28)

Z� � 72� x� y � 0 (5.29)

Subtract (5.28) from (5.27) to eliminate �.

10x� 14y � 0 x � 1.4y

Substitute x � 1.4y in (5.29) and rearrange.

1.4y� y � 72 y0 � 30

Substitute y0 � 30 in the previous equations to find that at the critical point

x0 � 42 y0 � 30 �0 � 276

Thus, Z � 4(42)2� 2(42)(30)� 6(30)2� 276(72� 42� 30) � 9936.

2) With � � 276, a 1-unit increase in the constant of the constraint will lead to an increase of
approximately 276 in the value of the objective function, and Z � 10,212.

b) f(x, y) � 26x� 3x2� 5xy� 6y2� 12y subject to 3x� y � 170

1) The Lagrangian function is

F � 26x� 3x2� 5xy� 6y2� 12y��(170� 3x� y)

Thus, Fx � 26� 6x� 5y� 3� � 0 (5.30)

Fy � 5x� 12y� 12�� � 0 (5.31)

F� � 170� 3x� y � 0 (5.32)

Multiply (5.31) by 3 and subtract from (5.30) to eliminate �.

�21x� 41y� 10 � 0 (5.33)

Multiply (5.32) by 7 and subtract from (5.33) to eliminate x.

48y� 1200 � 0 y0 � 25
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Then substituting y0 � 25 into the previous equations shows that at the critical point

x0 �
145
3
� 48

1
3

y0 � 25 �0 �
�139

3
� �46

1
3

Using x0 �
145
3

, y0 � 25, and �0 �
�139

3
, F � �3160.

2) With � � �461–
3, a 1-unit increase in the constant of the constraint will lead to a decrease of

approximately 461–
3 in the value of the objective function, and F ��3206.33.

c) f(x, y, z) � 4xyz2 subject to x� y� z � 56

1) F � 4xyz2��(56� x� y� z)

Fx � 4yz2�� � 0 (5.34)

Fy � 4xz2�� � 0 (5.35)

Fz � 8xyz�� � 0 (5.36)

F� � 56� x� y� z � 0 (5.37)

Equate �’s from (5.34) and (5.35).

4yz2 � 4xz2 y � x

Equate �’s from (5.34) and (5.36)

4yz2� 8xyz z � 2x

Substitute y � x and z � 2x in (5.37).

56� x� x� 2x � 0 4x � 56 x0 � 14

Then substituting x0 � 14 in the previous equations gives

x0 � 14 y0 � 14 z0 � 28 �0� 43,904
F0 � 614,656

2) F1 � F0��2 � 614,656� 43,904 � 658,560

See Problem 12.28 for the second-order conditions.

d) f(x, y, z) � 5xy� 8xz� 3yz subject to 2xyz � 1920

1) F � 5xy� 8xz� 3yz��(1920� 2xyz)

Fx � 5y� 8z� 2�yz � 0 (5.38)

Fy � 5x� 3z� 2�xz � 0 (5.39)

Fz � 8x� 3y� 2�xy � 0 (5.40)

F� � 1920� 2xyz � 0 (5.41)

Solve (5.38), (5.39), and (5.40) for �.

� �
5y� 8z

2yz
�

2.5
z
�

4
y

(5.42)

� �
5x� 3z

2xz
�

2.5
z
�

1.5
x

(5.43)

� �
8x� 3y

2xy
�

4
y
�

1.5
x

(5.44)
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Equate �’s in (5.42) and (5.43) to eliminate 2.5/z,

4
y
�

1.5
x

4x � 1.5y x �
1.5
4

y

and �’s in (5.43) and (5.44) to eliminate 1.5/x.

2.5
z
�

4
y

4z � 2.5y z �
2.5
4

y

Then substitute x � (1.5/4)y and z � (2.5/4)y in (5.41).

1920 � 2 · �1.5
4

y � · y · �2.5
4

y �
y3 � 1920 ·

16
7.5
� 4096

y0 � 16

and the critical values are x0 � 6, y0 � 16, z0� 10, and �0� 0.5.

F0 � 1440

2) F1 � F0��0 � 1440� 0.5 � 1440.5

5.13. In Problem 5.12(a) it was estimated that if the constant of the constraint were increased by 1
unit, the constrained optimum would increase by approximately 276, from 9936 to 10,212.
Check the accuracy of the estimate by optimizing the original function z � 4x2� 2xy� 6y2

subject to a new constraint x� y� 73.

Z� 4x2� 2xy� 6y2��(73� x� y)
Zx � 8x� 2y�� � 0
Zy ��2x� 12y�� � 0
Z� � 73� x� y � 0

Simultaneous solution gives x0 � 42.58, y0 � 30.42, �0 � 279.8. Thus, Z0 � 10,213.9, compared to the
10,212 estimate from the original �, a difference of 1.9 units or 0.02 percent.

5.14. Constraints can also be used simply to ensure that the two independent variables will always
be in constant proportion, for example, x � 3y. In this case measuring the effect of � has no
economic significance since a 1-unit increase in the constant of the constraint would alter the
constant proportion between the independent variables. With this in mind, optimize the
following functions subject to the constant proportion constraint:

a) z� 4x2� 3x� 5xy� 8y� 2y2 subject to x � 2y

With x� 2y � 0, the Lagrangian function is

Z � 4x2� 3x� 5xy� 8y� 2y2��(x� 2y)
Zx � 8x� 3� 5y�� � 0
Zy � 5x� 8� 4y� 2� � 0
Z� � x� 2y � 0

When solved simultaneously, x0 � 0.5, y0 � 0.25, and �0� �2.25. Thus, Z0 � �1.75.
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b) z ��5x2� 7x� 10xy� 9y� 2y2 subject to y � 5x

The Lagrangian function is Z � �5x2� 7x� 10xy� 9y� 2y2��(5x� y)

Zx� �10x� 7� 10y� 5� � 0
Zy� 10x� 9� 4y�� � 0
Z� � 5x� y � 0

Solving simultaneously, x0� 5.2, y0 � 26, and �0 � �43. Thus, Z0 � 135.2.

See also Problems 12.19 to 12.28.

DIFFERENTIALS

5.15. Find the differential dy for each of the following functions:

a) y � 7x3� 5x2� 6x� 3

dy

dx
� 21x2� 10x� 6

Thus, dy � (21x2� 10x� 6) dx

b) y � (4x� 3)(3x� 8)

dy

dx
� (4x� 3)(3)� (3x� 8)(4) � 24x� 23

Thus, dy � (24x� 23) dx

c) y �
9x� 4

5x

dy

dx
�

5x(9)� (9x� 4)(5)
(5x)2 �

20
25x2

dy �
4

5x2 dx

d) y � (11x� 9)3

dy

dx
� 3(11x� 9)2(11)

dy � 33(11x� 9)2 dx

5.16. Find the total differential dz � zx dx� zy dy for each of the following functions:

a) z � 5x3� 12xy� 6y5

zx� 15x2� 12y zy� �12x� 30y4

dz � (15x2� 12y) dx� (12x� 30y4) dy

b) z � 7x2 y3

zx� 14xy3 zy � 21x2 y2

dz � 14xy3 dx� 21x2 y2 dy

c) z � 3x2(8x� 7y)

zx � 3x2(8)� (8x� 7y)(6x) zy� 3x2(�7)� (8x� 7y)(0)
dz � (72x2� 42xy) dx� 21x2 dy

d) z � (5x2� 7y)(2x� 4y3)

zx � (5x2� 7y)(2)� (2x� 4y3)(10x) zy � (5x2� 7y)(�12y2)� (2x� 4y3)(7)
dz � (30x2� 40xy3� 14y) dx� (112y3� 60x2 y2� 14x) dy
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e) z�
9y3

x� y

zx �
(x� y)(0)� 9y3(1)

(x� y)2 zy �
(x� y)(27y2)� 9y3(�1)

(x� y)2

dz �
�9y3

(x� y)2 dx�
27xy2� 18y3

(x� y)2 dy

f) z� (x� 3y)3

zx � 3(x� 3y)2(1) zy� 3(x� 3y)2(�3)
dz � 3(x� 3y)2 dx� 9(x� 3y)2 dy

5.17. Find the partial differential for a small change in x for each of the functions given in Problem
5.16, assuming dy � 0.

a) dz � (15x2� 12y) dx b) dz � 14xy3 dx c) dz � (72x2� 42xy) dx

d) dz � (30x2� 40xy3� 14y) dx e) dz �
�9y3

(x� y)2 dx f) dz � 3(x� 3y)2 dx

TOTAL DERIVATIVES

5.18. Find the total derivative dz/dx for each of the following functions:

a) z� 6x2� 15xy� 3y2 where y� 7x2

dz

dx
� zx� zy

dy

dx

� (12x� 15y)� (15x� 6y)(14x)
� 210x2� 84xy� 12x� 15y

b) z� (13x� 18y)2 where y � x� 6

dz

dx
� zx� zy

dy

dx

� 26(13x� 18y)� 36(13x� 18y)(1)
� �10(13x� 18y)

c) z�
9x� 7y
2x� 5y

where y � 3x� 4

dz

dx
� zx� zy

dy

dx

�
59y

(2x� 5y)2�
59x

(2x� 5y)2 (3) �
59(y� 3x)
(2x� 5y)2

d) z� 8x� 12y where y � (x� 1)/x2

dz

dx
� zx� zy

dy

dx

� 8�
12(�x2� 2x)

x4

� 8�
12(x� 2)

x3
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5.19. Find the total derivative dz/dw for each of the following functions:

a) z � 7x2� 4y2 where x � 5w and y � 4w

dz

dw
� zx

dx

dw
� zy

dy

dw
� 14x(5)� 8y(4) � 70x� 32y

b) z � 10x2� 6xy� 12y2 where x � 2w and y � 3w

dz

dw
� zx

dx

dw
� zy

dy

dw
� (20x� 6y)(2)� (�6x� 24y)(3) � 22x� 84y

IMPLICIT AND INVERSE FUNCTION RULES

5.20. Find the derivatives dy/dx and dx/dy for each of the following implicit functions:

a) y� 6x� 7 � 0

dy

dx
�
�fx

fy

�
�(�6)

1
� 6

dx

dy
�
�fy

fx

�
�(1)
�6

�
1
6

b) 3y� 12x� 17 � 0

dy

dx
�
�fx

fy

�
�(�12)

3
� 4

dx

dy
�
�fy

fx

�
�(3)
�12

�
1
4

c) x2� 6x� 13� y � 0

dy

dx
�
�fx

fy

�
�(2x� 6)
�1

� 2x� 6
dx

dy
�
�fy

fx

�
�(�1)
2x� 6

�
1

2x� 6
(x��3)

Notice that in each of the above cases, one derivative is the inverse of the other.

5.21. Use the implicit function rule to find dy/dx and, where applicable, dy/dz.

a) f(x, y) � 3x2� 2xy� 4y3 b) f(x, y) � 12x5� 2y

dy

dx
�
�fx

fy

� �
6x� 2y

12y2� 2x

dy

dx
�
�fx

fy

�
�60x4

�2
� 30x4

c) f(x, y) � 7x2� 2xy2� 9y4 d) f(x, y) � 6x3� 5y

dy

dx
�
�fx

fy

� �
14x� 2y2

36y3� 4xy

dy

dx
�
�fx

fy

�
18x2

�5
� 3.6x2

e) f(x, y, z) � x2 y3� z2� xyz f) f(x,y, z) � x3 z2� y3� 4xyz

dy

dx
�
�fx

fy

� �
2xy3� yz

3x2y2� xz

dy

dx
�
�fx

fy

� �
3x2 z2� 4yz

3y2� 4xz

dy

dz
�
�fz

fy

� �
2z� xy

3x2y2� xz

dy

dz
�
�fz

fy

� �
2x3 z� 4xy

3y2� 4xz

5.22. Find the derivative for the inverse function dP/dQ.

a) Q� 210� 3P

dP

dQ
�

1
dQ/dP

� �
1
3
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b) Q� 35� 0.25P

dP

dQ
�

1
�0.25

� � 4

c) Q� 14�P2

dP

dQ
�

1
2P

(P� 0)

d) Q� P3� 2P2� 7P

dP

dQ
�

1
3P2� 4P� 7

VERIFICATION OF RULES

5.23. For each of the following functions, use (1) the definition in (5.1a) to find �z/�x and (2) the
definition in (5.1b) to find �z/�y in order to confirm the rules of differentiation.

a) z� 38� 7x� 4y

1) From (5.1a),
�z
�x
� lim

	x→0

f(x�	x, y)� f(x, y)
	x

Substituting,
�z
�x
� lim

	x→0

[38� 7(x�	x)� 4y]� (38� 7x� 4y)
	x

� lim
	x→0

38� 7x� 7	x� 4y� 38� 7x� 4y

	x

� lim
	x→0

7	x

	x
� lim

	x→0

7 � 7

2) From (5.1b),
�z
�y
� lim

	y→0

f(x,y�	y)� f(x, y)
	y

Substituting,
�z

�y
� lim

	y→0

[38� 7x� 4(y�	y)]� (38� 7x� 4y)
	y

� lim
	y→0

38� 7x� 4y� 4	y� 38� 7x� 4y

	y

� lim
	y→0

�4	y

	y
� lim

	y→0

(�4) � �4

b) z� 18x� 5xy� 14y

1)
�z

�x
� lim

	x→0

[18(x�	x)� 5(x�	x)y� 14y]� (18x� 5xy� 14y)
	x

� lim
	x→0

18x� 18	x� 5xy� 5	xy� 14y� 18x� 5xy� 14y

	x

� lim
	x→0

18	x� 5	xy

	x
� lim

	x→0

(18� 5y) � 18� 5y
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2)
�z
�y
� lim

	y→0

[18x� 5x(y�	y)� 14(y�	y)]� (18x� 5xy� 14y)
	y

� lim
	y→0

18x� 5xy� 5x	y� 14y� 14	y� 18x� 5xy� 14y

	y

� lim
	y→0

�5x	y� 14	y

	y
� lim

	y→0

(�5x� 14) � �5x� 14

c) z � 3x2 y

1) �z
�x
� lim

	x→0

[3(x�	x)2 y]� 3x2 y

	x

� lim
	x→0

3x2 y� 6x	xy� 3(	x)2 y� 3x2 y

	x

� lim
	x→0

6x	xy� 3(	x)2 y

	x

� lim
	x→0

(6xy� 3	xy) � 6xy

2)
�z
�y
� lim

	y→0

[3x2(y�	y)]� 3x2 y

	y

� lim
	y→0

3x2 y� 3x2	y� 3x2y

	y
� lim

	y→0

3x2	y

	y
� lim

	y→0

3x2 � 3x2

d) z � 4x2 y2

1)
�z
�x
� lim

	x→0

[4(x�	x)2 y2]� 4x2 y2

	x

� lim
	x→0

4x2 y2� 8x	xy2� 4(	x)2 y2� 4x2 y2

	x

� lim
	x→0

8x	xy2� 4(	x)2 y2

	x

� lim
	x→0

(8xy2� 4	xy2) � 8xy2

2)
�z
�y
� lim

	y→0

[4x2(y�	y)2]� 4x2 y2

	y

� lim
	y→0

4x2 y2� 8x2y	y� 4x2(	y)2� 4x2y2

	y

� lim
	y→0

8x2y	y� 4x2(	y)2

	y
� lim

	y→0
(8x2 y� 4x2	y) � 8x2 y
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CHAPTER 6

Calculus of
Multivariable
Functions in

Economics

6.1 MARGINAL PRODUCTIVITY

The marginal product of capital (MPK) is defined as the change in output brought about by a small
change in capital when all the other factors of production are held constant. Given a production
function such as

Q� 36KL� 2K 2� 3L2

the MPK is measured by taking the partial derivative �Q/�K. Thus,

MPK �
�Q
�K
� 36L� 4K

Similarly, for labor, MPL� �Q/�L� 36K� 6L. See Problems 6.1 to 6.3

6.2 INCOME DETERMINATION MULTIPLIERS AND COMPARATIVE STATICS

The partial derivative can also be used to derive the various multipliers of an income
determination model. In calculating how the equilibrium level of the endogenous variable can be
expected to change in response to a change in any of the exogenous variables or parameters, income
determination multipliers provide an elementary exercise in what is called comparative static analysis
or, more simply, comparative statics, which we shall study later in greater detail in Chapter 13.
Given

Y� C� I�G� (X�Z)
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where C� C0� bY G�G0 Z� Z0

I � I0� aY X � X0

Using simple substitution as in Problem 2.19, the equilibrium level of income is

Ȳ�
1

1� b� a
(C0� I0�G0�X0�Z0) (6.1)

Taking the partial derivative of (6.1) with respect to any of the variables or parameters gives the
multiplier for that variable or parameter. Thus, the government multiplier is given by

�Ȳ
�G0

�
1

1� b� a

The import multiplier is given by

�Ȳ
�Z0

��
1

1� b� a

And the multiplier for a change in the marginal propensity to invest is given by �Ȳ/�a, where, by means
of the quotient rule,

�Ȳ
�a
�

(1� b� a)(0)� (C0� I0�G0�X0�Z0)(�1)
(1� b� a)2 �

C0� I0�G0�X0�Z0

(1� b� a)2

This can alternately be expressed as

�Ȳ
�a
�

1
1� b� a

(C0� I0�G0�X0�Z0) � 1
1� b� a�

which from (6.1) reduces to

�Ȳ
�a
�

Ȳ
1� b� a

See Problems 6.4 to 6.8.

6.3 INCOME AND CROSS PRICE ELASTICITIES OF DEMAND

Income elasticity of demand �Y measures the percentage change in the demand for a good resulting
from a small percentage change in income, when all other variables are held constant. Cross price
elasticity of demand �c measures the relative responsiveness of the demand for one product to changes
in the price of another, when all other variables are held constant. Given the demand function

Q1� a� bP1� cP2�mY

where Y� income and P2 � the price of a substitute good, the income elasticity of demand is

�Y�
�Q1

Q1
�
�Y
Y
�
�Q1

�Y � Y
Q1

�
and the cross price elasticity of demand is

�c�
�Q1

Q1
�
�P2

P2
�
�Q1

�P2
�P2

Q1
�

See Examples 1 and 2 and Problems 6.18 to 6.21.
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EXAMPLE 1. Given the demand for beef

Qb � 4850� 5Pb� 1.5Pp� 0.1Y (6.2)

with Y � 10,000, Pb � 200, and the price of pork Pp � 100. The calculations for (1) the income elasticity and (2)
the cross price elasticity of demand for beef are given below.

1) �Y �
�Qb

Qb

�
�Y

Y
�
�Qb

�Y � Y

Qb
� (6.3)

From (6.2),
�Qb

�Y
� 0.1

and Qb � 4850� 5(200)� 1.5(100)� 0.1(10,000) � 5000 (6.4)

Substituting in (6.3), �Y � 0.1(10,000/5000) � 0.2.
With �Y� 1, the good is income-inelastic. For any given percentage increase in national income,

demand for the good will increase less than proportionately. Hence the relative market share of the good
will decline as the economy expands. Since the income elasticity of demand suggests the growth potential
of a market, the growth potential in this case is limited.

2) �c �
�Qb

Qb

�
�Pp

Pp

�
�Qb

�Pp
� Pp

Qb
�

From (6.2), �Qb/�Pp � 1.5; from (6.4), Qb � 5000. Thus,

�c� 1.5 � 100
5000 � � 0.03

For substitute goods, such as beef and pork, �Q1/�P2� 0 and the cross price elasticity will be
positive. For complementary goods, �Q1/�P2� 0 and the cross price elasticity will be negative. If
�Q1/�P2 � 0, the goods are unrelated.

EXAMPLE 2. Continuing with Example 1, the percentage change in the demand for beef resulting from a 10
percent increase in the price of pork is estimated as follows:

�c �
�Qb

Qb

�
�Pp

Pp

Rearranging terms and substituting the known parameters,

�Qb

Qb

� �c

�Pp

Pp

� (0.03)(0.10) � 0.003

The percentage change in the demand for beef �Qb/Qb will be 0.3 percent.

6.4 DIFFERENTIALS AND INCREMENTAL CHANGES

Frequently in economics we want to measure the effect on the dependent variable (costs, revenue,
profit) of a change in an independent variable (labor hired, capital used, items sold). If the change is
a relatively small one, the differential will measure the effect. Thus, if z � f(x, y), the effect on z of a
small change in x is given by the partial differential

dz � zx dx

The effect of larger changes can be approximated by multiplying the partial derivative by the proposed
change. Thus,

	z � zx	x
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If the original function z � f(x, y) is linear,

dz
dx
�
	z
	x

and the effect of the change will be measured exactly:

	z � zx	x

See Examples 3 and 4 and Problems 6.9 to 6.17.

EXAMPLE 3. A firm’s costs are related to its output of two goods x and y. The functional relationship is

TC � x2� 0.5xy� y2

The additional cost of a slight increment in output x will be given by the differential

dTC � (2x� 0.5y) dx

The costs of larger increments can be approximated by multiplying the partial derivative with respect to x by the
change in x. Mathematically,

	TC �
�TC
�x

	x (6.5)

Since �TC/�x � the marginal cost (MCx) of x, we can also write (6.5) as

	TC � MCx	x

If initially x � 100, y � 60, and 	x � 3, then

	TC � [2(100)� 0.5(60)] � 510

EXAMPLE 4. Assume in Section 6.2 that b � 0.7, a � 0.1, and Y � 1200. The differential can then be used to
calculate the effect of an increase in any of the independent variables. Given the partial derivative

�Ȳ
�G0

�
1

1� b� a

the partial differential is

dȲ �
1

1� b� a
dG0

In a linear model such as this, where the slope is everywhere constant,

�Ȳ

�G0

�
	Ȳ

	G0

Hence 	Ȳ �
1

1� b� a
	G0

If the government increases expenditures by $100,

	Ȳ �
1

1� 0.7� 0.1
(100) � 500

6.5 OPTIMIZATION OF MULTIVARIABLE FUNCTIONS IN ECONOMICS

Food processors frequently sell different grades of the same product: quality, standard, economy;
some, too, sell part of their output under their own brand name and part under the brand name of a large
chain store. Clothing manufacturers and designers frequently have a top brand and cheaper imitations for
discount department stores. Maximizing profits or minimizing costs under these conditions involve
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functions of more than one variable. Thus, the basic rules for optimization of multivariate functions (see
Section 5.4) are required. See Examples 5 and 6 and Problems 6.22 to 6.27.

EXAMPLE 5. A firm producing two goods x and y has the profit function

� � 64x� 2x2� 4xy� 4y2� 32y� 14

To find the profit-maximizing level of output for each of the two goods and test to be sure profits are
maximized:

1. Take the first-order partial derivatives, set them equal to zero, and solve for x and y simultaneously.

�x� 64� 4x� 4y � 0 (6.6)

�y� 4x� 8y� 32 � 0 (6.7)

When solved simultaneously, x̄ � 40 and ȳ � 24.
2. Take the second-order direct partial derivatives and make sure both are negative, as is required for a

relative maximum. From (6.6) and (6.7),

�xx� �4 �yy� �8

3. Take the cross partials to make sure �xx�yy� (�xy)2. From (6.6) and (6.7), �xy� 4 � �yx. Thus,

�xx�yy�

(�4)(�8)�
32�

(�xy)2

(4)2

16

Profits are indeed maximized at x̄ � 40 and ȳ � 24. At that point, � � 1650.

EXAMPLE 6. In monopolistic competition producers must determine the price that will maximize their profit.
Assume that a producer offers two different brands of a product, for which the demand functions are

Q1 � 14� 0.25P1 (6.8)

Q2 � 24� 0.5P2 (6.9)

and the joint cost function is

TC � Q1
2� 5Q1Q2�Q2

2 (6.10)

The profit-maximizing level of output, the price that should be charged for each brand, and the profits are
determined as follows:

First, establish the profit function � in terms of Q1 and Q2. Since � � total revenue (TR) minus total cost (TC)
and the total revenue for the firm is P1 Q1�P2 Q2, the firm’s profit is

� � P1 Q1�P2Q2�TC

Substituting from (6.10),

� � P1 Q1�P2 Q2� (Q1
2� 5Q1Q2�Q2

2) (6.11)

Next find the inverse functions of (6.8) and (6.9) by solving for P in terms of Q. Thus, from (6.8),

P1 � 56� 4Q1 (6.12)

and from (6.9), P2 � 48� 2Q2 (6.13)

Substituting in (6.11),

� � (56� 4Q1)Q1� (48� 2Q2)Q2�Q1
2� 5Q1 Q2�Q2

2

� 56Q1� 5Q1
2� 48Q2� 3Q2

2� 5Q1Q2 (6.14)

Then maximize (6.14) by the familiar rules:

�1� 56� 10Q1� 5Q2 � 0 �2 � 48� 6Q2� 5Q1� 0

which, when solved simultaneously, give Q̄1 � 2.75 and Q̄2� 5.7.
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Take the second derivatives to be sure � is maximized:

�11 � �10 �22� �6 �12� �5 � �21

With both second direct partials negative and �11�22� (�12)2, the function is maximized at the critical values.
Finally, substitute Q̄1 � 2.75 and Q̄2 � 5.7 in (6.12) and (6.13), respectively, to find the profit-maximizing

price.

P1 � 56� 4(2.75) � 45 P2 � 48� 2(5.7) � 36.6

Prices should be set at $45 for brand 1 and $36.60 for brand 2, leading to sales of 2.75 of brand 1 and 5.7 of brand
2. From (6.11) or (6.14), the maximum profit is

� � 45(2.75)� 36.6(5.7)� (2.75)2� 5(2.75)(5.7)� (5.7)2 � 213.94

6.6 CONSTRAINED OPTIMIZATION OF MULTIVARIABLE FUNCTIONS
IN ECONOMICS

Solutions to economic problems frequently have to be found under constraints (e.g., maximizing
utility subject to a budget constraint or minimizing costs subject to some such minimal requirement of
output as a production quota). Use of the Lagrangian function (see Section 5.5) greatly facilitates this
task. See Example 7 and Problems 6.28 to 6.39. For inequality constraints, see concave programming
(Section 13.7) in Chapter 13.

EXAMPLE 7. Find the critical values for minimizing the costs of a firm producing two goods x and y when the
total cost function is c � 8x2� xy� 12y2 and the firm is bound by contract to produce a minimum combination
of goods totaling 42, that is, subject to the constraint x� y � 42.

Set the constraint equal to zero, multiply it by �, and form the Lagrangian function,

C � 8x2� xy� 12y2��(42� x� y)

Take the first-order partials,

Cx � 16x� y�� � 0
Cy � �x� 24y�� � 0
C� � 42� x� y � 0

Solving simultaneously, x̄ � 25, ȳ � 17, and �̄ � 383. With �̄ � 383, a 1-unit increase in the constraint or
production quota will lead to an increase in cost of approximately $383. For second-order conditions, see Section
12.5 and Problem 12.27(a).

6.7 HOMOGENEOUS PRODUCTION FUNCTIONS

A production function is said to be homogeneous if when each input factor is multiplied by a
positive real constant k, the constant can be completely factored out. If the exponent of the factor is
1, the function is homogeneous of degree 1; if the exponent of the factor is greater than 1, the function
is homogeneous of degree greater than 1; and if the exponent of the factor is less than 1, the function
is homogeneous of degree less than 1. Mathematically, a function z� f(x, y) is homogeneous of degree
n if for all positive real values of k, f(kx, ky) � kn f(x, y). See Example 8 and Problem 6.40.

EXAMPLE 8. The degree of homogeneity of a function is illustrated below.

1. z � 8x� 9y is homogeneous of degree 1 because

f(kx, ky) � 8kx� 9ky � k(8x� 9y)

2. z � x2� xy� y2 is homogeneous of degree 2 because

f(kx, ky) � (kx)2� (kx)(ky)� (ky)2 � k2(x2� xy� y2)
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3. z � x0.3 y0.4 is homogeneous of degree less than 1 because

f(kx, ky) � (kx)0.3(ky)0.4 � k0.3�0.4(x0.3 y0.4) � k0.7(x0.3 y0.4)

4. z � 2x/y is homogeneous of degree 0 because

f(kx, ky) �
2kx

ky
� 1 � 2x

y � since
k

k
� k0� 1

5. z � x3� 2xy� y3 is not homogeneous because k cannot be completely factored out:

f(kx, ky) � (kx)3� 2(kx)(ky)� (ky)3

� k3 x3� 2k2 xy� k3 y3 � k2(kx3� 2xy� ky3)

6. Q � AK�L� is homogeneous of degree ��� because

Q(kK, kL) � A(kK)�(kL)� � Ak�K�k�L� � k���(AK�L�)

6.8 RETURNS TO SCALE

A production function exhibits constant returns to scale if when all inputs are increased by a given
proportion k, output increases by the same proportion. If output increases by a proportion greater
than k, there are increasing returns to scale; and if output increases by a proportion smaller than k,
there are diminishing returns to scale. In other words, if the production function is homogeneous of
degree greater than, equal to, or less than 1, returns to scale are increasing, constant, or diminishing.
See Problem 6.40.

6.9 OPTIMIZATION OF COBB-DOUGLAS PRODUCTION FUNCTIONS

Economic analysis frequently employs the Cobb-Douglas production function q � AK�L� (A� 0;
0��, �� 1), where q is the quantity of output in physical units, K is the quantity of capital, and L is
the quantity of labor. Here � (the output elasticity of capital) measures the percentage change in q for
a 1 percent change in K while L is held constant; � (the output elasticity of labor) is exactly parallel;
and A is an efficiency parameter reflecting the level of technology.

A strict Cobb-Douglas function, in which ��� � 1, exhibits constant returns to scale. A
generalized Cobb-Douglas function, in which ���� 1, exhibits increasing returns to scale if ���� 1
and decreasing returns to scale if ���� 1. A Cobb-Douglas function is optimized subject to a budget
constraint in Example 10 and Problems 6.41 and 6.42; second-order condtions are explained in Section
12.5. Selected properties of Cobb-Douglas functions are demonstrated and proved in Problems 6.53
to 6.58.

EXAMPLE 9. The first and second partial derivatives for (a) q � AK�L� and (b) q � 5K 0.4L0.6 are illustrated
below.

a) qK �

qKK �

qKL �

�AK��1 L�

�(�� 1)AK��2 L�

��AK��1L��1

qL �

qLL �

qLK �

�AK�L��1

�(�� 1)AK�L��2

��AK��1L��1

b) qK �

qKK �

qKL �

2K�0.6 L0.6

�1.2K�1.6 L0.6

1.2K�0.6 L�0.4

qL �

qLL �

qLK �

3K 0.4 L�0.4

�1.2K 0.4L�1.4

1.2K�0.6 L�0.4

EXAMPLE 10. Given a budget constraint of $108 when PK � 3 and PL � 4, the generalized Cobb-Douglas
production function q � K 0.4 L0.5 is optimized as follows:

1. Set up the Lagrangian function.

Q � K 0.4L0.5��(108� 3K� 4L)
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2. Using the simple power function rule, take the first-order partial derivatives, set them equal to zero, and
solve simultaneously for K0 and L0 (and �0, if desired).

�Q

�K
� QK � 0.4K�0.6 L0.5� 3� � 0 (6.15)

�Q

�L
� QL� 0.5K 0.4 L�0.5� 4� � 0 (6.16)

�Q
��
� Q� � 108� 3K� 4L � 0 (6.17)

Rearrange, then divide (6.15) by (6.16) to eliminate �.

0.4K�0.6 L0.5

0.5K 0.4 L�0.5 �
3�
4�

Remembering to subtract exponents in division,

0.8K�1 L1� 0.75

L

K
�

0.75
0.8

L � 0.9375K

Substitute L � 0.9375K in (6.17).

108� 3K� 4(0.9375K) � 0 K0 � 16
Then by substituting K0 � 16 in (6.17), L0 � 15

EXAMPLE 11. The problem in Example 10 where q � K 0.4L0.5, PK � 3, PL � 4, and B � 108 can also be solved
using the familiar condition from microeconomic theory for output maximization

MUK

MUL

�
PK

PL

as demonstrated in (a) below and illustrated in (b).

a) MUK �
�q

�K
� 0.4K�0.6 L0.5 MUL�

�q

�L
� 0.5K 0.4 L�0.5

Substituting in the equality of ratios above,

0.4K�0.6 L0.5

0.5K 0.4 L�0.5 �
3
4

and solving as in Example 10,

0.8K�1 L1 � 0.75
L � 0.9375K

Then substituting in the budget constraint,

3K� 4L �

3K� 4(0.9375K) �
K0�

108
108
16 L0 � 15

which is exactly what we found in Example 10 using the calculus. See Fig. 6-1.
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b)

6.10 OPTIMIZATION OF CONSTANT ELASTICITY OF SUBSTITUTION
PRODUCTION FUNCTIONS

The elasticity of substitution � measures the percentage change in the least-cost (K/L) input ratio
resulting from a small percentage change in the input-price ratio (PL/PK).

� �

d(K/L)
K/L

d(PL/PK)
PL/PK

�

d(K/L)
d(PL/PK)

K/L
PL/PK

(6.18)

where 0����. If � � 0, there is no substitutability; the two inputs are complements and must be
used together in fixed proportions. If � � �, the two goods are perfect substitutes. A Cobb-Douglas
production function, as shown in Problem 6.57, has a constant elasticity of substitution equal to 1. A
constant elasticity of substitution (CES) production function, of which a Cobb-Douglas function is but
one example, has an elasticity of substitution that is constant but not necessarily equal to 1.

A CES production function is typically expressed in the form

q � A[�K��� (1��)L��]�1/� (6.19)

where A is the efficiency parameter, � is the distribution parameter denoting relative factor shares, �
is the substitution parameter determining the value of the elasticity of substitution, and the parameters
are restricted so that A� 0, 0��� 1, and ���1. CES production functions are optimized subject to
budget constraints in Example 12 and Problems 6.43 and 6.44. Various important properties of the
CES production function are demonstrated and proved in Problems 6.59 to 6.69.

EXAMPLE 12. The CES production function

q � 75[0.3K�0.4� (1� 0.3)L�0.4]�1/0.4

is maximized subject to the constraint 4K� 3L � 120 as follows:

1. Set up the Lagrangian function.

Q � 75(0.3K�0.4� 0.7L�0.4)�2.5��(120� 4K� 3L)

2. Test the first-order conditions, using the generalized power function rule for QK and QL.

QK � �187.5(0.3K�0.4� 0.7L�0.4)�3.5(�0.12K�1.4)� 4� � 0
� 22.5K�1.4(0.3K�0.4� 0.7L�0.4)�3.5� 4� � 0 (6.20)

QL � �187.5(0.3K�0.4� 0.7L�0.4)�3.5(�0.28L�1.4)� 3� � 0
� 52.5L�1.4(0.3K�0.4� 0.7L�0.4)�3.5� 3� � 0 (6.21)

Q� � 120� 4K� 3L � 0 (6.22)

118 CALCULUS OF MULTIVARIABLE FUNCTIONS IN ECONOMICS [CHAP. 6

Fig. 6-1

Slope�
�K

�L
�MPK/MPL

Slope�
�K

�L
� PK/PL



Rearrange, then divide (6.20) by (6.21) to eliminate �.

22.5K�1.4(0.3K�0.4� 0.7L�0.4)�3.5

52.5L�1.4(0.3K�0.4� 0.7L�0.4)�3.5 �
4�
3�

22.5K�1.4

52.5L�1.4 �
4
3

Cross multiply. 67.5K�1.4 � 210L�1.4

K�1.4 � 3.11L�1.4

Take the �1.4 root, K � (3.11)�1/1.4L � (3.11)�0.71L

and use a calculator. K � 0.45L

Substitute in (6.22).

120� 4(0.45L)� 3L � 0 L0 � 25 K0� 11.25

Note: To find (3.11)�0.71 with a calculator, enter 3.11, press the yx key, then enter 0.71 followed by the
�/� key to make it negative, and hit the � key to find (3.11)�0.71 � 0.44683.

Solved Problems

MARGINAL CONCEPTS

6.1. Find the marginal productivity of the different inputs or factors of production for each of the
following production functions Q:

a) Q� 6x2� 3xy� 2y2

MPx �
�Q
�x
� 12x� 3y

MPy �
�Q
�y
� 3x� 4y

b) Q� 0.5K 2� 2KL�L2

MPK � K� 2L

MPL � 2L� 2K

c) Q� 20� 8x� 3x2� 0.25x3� 5y� 2y2� 0.5y3

MPx � 8� 6x� 0.75x2

MPy � 5� 4y� 1.5y2

d) Q� x2� 2xy� 3y2� 1.5yz� 0.2z2

MPx � 2x� 2y

MPy � 2x� 6y� 1.5z

MPz � 1.5y� 0.4z
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6.2. (a) Assume ȳ � 4 in Problem 6.1(a) and find the MPx for x � 5 and x � 8. (b) If the marginal
revenue at x̄ � 5, ȳ � 4 is $3, compute the marginal revenue product for the fifth unit of x.

a) MPx � 12x� 3y

At x � 5, ȳ � 4, MPx � 12(5)� 3(4) � 72.
At x � 8, ȳ � 4, MPx � 12(8)� 3(4) � 108.

b) MRPx �MPx(MR)
At x̄ � 5, ȳ � 4, MRPx � (72)(3) � 216.

6.3. (a) Find the marginal cost of a firm’s different products when the total cost function is
c� 3x2� 7x� 1.5xy� 6y� 2y2. (b) Determine the marginal cost of x when x � 5, ȳ� 3.

a) MCx � 6x� 7� 1.5y

MCy � 1.5x� 6� 4y

b) The marginal cost of x when x � 5 and y is held constant at 3 is

MCx � 6(5)� 7� 1.5(3) � 41.5

INCOME DETERMINATION MULTIPLIERS AND COMPARATIVE STATICS

6.4. Given a three-sector income determination model in which

Y� C� I0�G0

C� C0� bYd
Yd �

T �
Y�T C0, I0, G0, T0� 0 0� b, t� 1
T0� tY

determine the magnitude and direction of a 1-unit change in (a) government spending, (b)
lump-sum taxation, and (c) the tax rate on the equilibrium level of income. In short, perform
the comparative-static exercise of determining the government multiplier, the autonomous tax
multiplier, and the tax rate multiplier.

To find the different multipliers, first solve for the equilibrium level of income, as follows:

Y � C0� bY� bT0� btY� I0�G0

Ȳ �
1

1� b� bt
(C0� bT0� I0�G0) (6.23)

Then take the appropriate partial derivatives.

a)
�Ȳ

�G0

�
1

1� b� bt

Since 0� b� 1, �Ȳ/�G0� 0. A 1-unit increase in government spending will increase the equilibrium
level of income by 1/(1� b� bt).

b)
�Ȳ

�T0

�
�b

1� b� bt
� 0

A 1-unit increase in autonomous taxation will cause national income to fall by b/(1� b� bt).

c) Since t appears in the denominator in (6.23), the quotient rule is necessary.

�Ȳ

�t
�

(1� b� bt)(0)� (C0� bT0� I0�G0)(b)
(1� b� bt)2

�
�b(C0� bT0� I0�G0)

(1� b� bt)2 �
�b

1� b� bt �
C0� bT0� I0�G0

1� b� bt �
Thus, from (6.23),

�Ȳ

�t
�

�bȲ

1� b� bt
� 0

A 1-unit increase in the tax rate will cause national income to fall by an amount equal to the tax rate
multiplier.
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6.5. Given a simple model

Y� C� I0�G0

C� C0� bYd
Yd � Y�T

T � T0

where taxation does not depend on income, calculate the effect on the equilibrium level of
income of a 1-unit change in government expenditure exactly offset by a 1-unit change in
taxation. That is, do the comparative-static analysis of finding the balanced-budget multiplier
for an economy in which there is only autonomous taxation.

Y � C0� b(Y�T0)� I0�G0

Ȳ�
1

1� b
(C0� bT0� I0�G0)

Thus, the government multiplier is

�Ȳ
�G0

�
1

1� b
(6.24)

and the tax multiplier is

�Ȳ

�T0

�
�b

1� b
(6.25)

The balanced-budget effect of a 1-unit increase in government spending matched by a 1-unit increase in
taxation is the sum of (6.24) and (6.25). Therefore,

	Ȳ �
1

1� b
� � �b

1� b� �
1

1� b
�

b

1� b
�

1� b

1� b
� 1

A change in government expenditure matched by an equal change in government taxation will have a
positive effect on the equilibrium level of income exactly equal to the change in government expenditure
and taxation. The multiplier in this case is �1.

6.6. Given Y� C� I0�G0 Yd � Y�T
C� C0� bYd T � T0� tY

where taxation is now a function of income, demonstrate the effect on the equilibrium level of
income of a 1-unit change in government expenditure offset by a 1-unit change in autonomous
taxation T0. That is, demonstrate the effect of the balanced-budget multiplier in an economy in
which taxes are a positive function of income.

From (6.23), Ȳ � [1/(1� b� bt)](C0� bT0� I0�G0). Thus,

�Ȳ

�G0

�
1

1� b� bt
(6.26)

and
�Ȳ

�T0

�
�b

1� b� bt
(6.27)

The combined effect on Ȳ of a 1-unit increase in government spending and an equal increase in
autonomous taxation is the sum of (6.26) and (6.27). Thus,

	Ȳ�
1

1� b� bt
� � �b

1� b� bt � �
1� b

1� b� bt

which is positive but less than 1 because 1� b� 1� b� bt. A change in government expenditures equaled
by a change in autonomous taxes when taxes are positively related to income in the model, will have a
positive effect on the equilibrium level of income, but the effect is smaller than the initial change
in government expenditure. Here the multiplier is less than 1 because the total change in taxes
(	T � 	T0� t	Y) is greater than the change in G0.
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6.7. Given
Y� C� I0�G0�X0�Z
C� C0� bYd

T � T0� tY
Z� Z0� zYd

where all the independent variables are positve and 0� b, z, t� 1. Determine the effect on the
equilibrium level of income of a 1-unit change in (a) exports, (b) autonomous imports, and (c)
autonomous taxation. In short, perform the comparative-static analysis of finding the export,
autonomous import, and autonomous taxation multipliers. [Note that Z� f(Yd)].

From the equilibrium level of income,

Y � C0� b(Y�T0� tY)� I0�G0�X0�Z0� z(Y�T0� tY)

Ȳ�
1

1� b� bt� z� zt
(C0� bT0� I0�G0�X0�Z0� zT0)

a)
�Ȳ
�X0

�
1

1� b� bt� z� zt
� 0

because 0� b, z� 1. A 1-unit increase in exports will have a positive effect on Ȳ, which is given by
the multiplier.

b)
�Ȳ

�Z0

�
�1

1� b� bt� z� zt
� 0

An increase in autonomous imports will lead to a decrease in Ȳ.

c)
�Ȳ

�T0
�

z� b

1� b� bt� z� zt
� 0

because a country’s marginal propensity to import z is usually smaller than its marginal propensity to
consume b. With z� b, z� b� 0. An increase in autonomous taxes will lead to a decrease in national
income, as in (6.27), but the presence of z in the numerator has a mitigating effect on the decrease
in income. When there is a positive marginal propensity to import, increased taxes will reduce cash
outflows for imports and thus reduce the negative effect of increased taxes on the equilibrium level
of income.

6.8. Determine the effect on Ȳ of a 1-unit change in the marginal propensity to import z in
Problem 6.7.

�Ȳ

�z
�

(1� b� bt� z� zt)(T0)� (C0� bT0� I0�G0�X0�Z0� zT0)(1� t)
(1� b� bt� z� zt)2

�
T0

1� b� bt� z� zt
�

Ȳ(1� t)
1� b� bt� z� zt

�
�[Ȳ� (T0� tȲ)]

1� b� bt� z� zt
�

�Ȳd

1� b� bt� z� zt
� 0

DIFFERENTIALS AND COMPARATIVE STATICS

6.9. Y� C� I0�G0

C� C0� bYd
Yd � Y�T

T � T0� tY
C0 � 100
G0 � 330

I0 � 90
T0 � 240

b � 0.75
t � 0.20

(a) What is the equilibrium level of income Ȳ? What is the effect on Ȳ of a $50 increase in (b)
government spending and (c) autonomous taxation T0?
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a) From (6.23), Ȳ �
1

1� b� bt
(C0� bT0� I0�G0)

�
1

1� 0.75� 0.75(0.20)
[100� 0.75(240)� 90� 330]

�
1

0.40
(100� 180� 90� 330) � 2.5(340) � 850

b) If government increases spending by 50,

	Ȳ �
�Ȳ
�G0

	G0 �
1

1� b� bt
(50) � 2.5(50) � 125

c) If autonomous taxation T0 increases by 50,

	Ȳ �
�Ȳ

�T0

	T0 �
�b

1� b� bt
(50) �

�0.75
1� 0.75� 0.75(0.20)

(50) � �1.875(50) � �93.75

6.10. If the full-employment level of income Yfe in Problem 6.9(a) is 1000 and the government wishes
to achieve it, by how much should it change (a) government spending or (b) autonomous
taxation?

a) The desired increase in economic activity is the difference between the full-employment level of
income (1000) and the present level (850). Thus, the desired 	Ȳ � 150. Substituting in the formula
from Problem 6.9(b),

	Ȳ �
�Ȳ

�G0

	G0

150 � 2.5	G0 	G0 � 60

Increased government expenditure of 60 will increase Ȳ by 150.

b) If the government wishes to alter autonomous taxes to achieve full employment, from Problem
6.9(c),

	Ȳ �
�Ȳ

�T0

	T0

150 � �1.875	T0 	T0 � �80

The government should cut autonomous taxes by 80.

6.11. Explain the effect on the government deficit (a) if policy a in Problem 6.10 is adopted and (b)
if policy b is adopted instead.

a) The government’s financial condition is given by the difference between receipts T and expenditures
G. At the initial 850 level of income,

T � 240� 0.2(850) � 410 G0 � 330 T�G0 � 410� 330 � 80

The government has a surplus of 80.
If the government increases spending by 60, expenditures rise by 60. But tax revenues also

increase as a result of the increase in income. With 	Ȳ� 150, 	T � 0.2(150) � 30. With expenditures
rising by 60 and receipts increasing by 30, the net cost to the government of stimulating the economy
to full employment is only $30. At the new Ȳ � 1000,

T � 240� 0.2(1000) � 440 G0 � 330� 60 � 390 T�G0 � 440� 390 � 50

The government surplus is reduced to $50 from the previous $80 surplus.
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b) If the government reduces T0 by 80, tax revenue falls initially by 80. But the $150 stimulatory effect
on income has a positive effect on total tax collections, since 	T � 0.2(150) � 30. Thus, the net cost
of reducing autonomous taxation to stimulate the economy to full employment is $50. The
government surplus is reduced to $30:

T � 160� 0.2(1000) � 360 G0 � 330 T�G0 � 360� 330 � 30

6.12. (a) If the proportional tax in Problem 6.9 is increased by 10 percent, what is the effect on Ȳ?
(b) If the government wants to alter the original marginal tax rate of 20 percent to achieve
Yfe� 1000, by how much should it change t?

a) If the proportional tax is increased by 10 percent,

	t � 0.10(0.20) � 0.02

The resulting change in income is

	Ȳ�
�Ȳ

�t
	t

Substituting from Problem 6.4(c),

	Ȳ �
�bȲ

1� b� bt
(0.02)

Since a change in one of the parameters, unlike a change in one of the independent variables, will alter
the value of the multiplier, the multiplier will only approximate the effect of the change.

	Ȳ �
�0.75(850)

0.4
(0.02) � �31.88

b) The government wants to raise Ȳ by 150. Substituting 	Ȳ � 150 in the equation above,

150 �
�0.75(850)

0.4
	t

	t ��0.09

The tax rate should be reduced by approximately 0.09. The new tax rate should be around 11 percent
(0.20� 0.09 � 0.11).

6.13. Given Y�
C�

C� I0�G0�X0�Z
C0� bYd

T �
Z�

T0� tY
Z0� zYd

with b �
X0 �

z �

0.9
150
0.15

t �
Z0 �

T0 �

0.2
55
150

C0�

I0�

G0�

125
92.5
600

Calculate (a) the equilibrium level of income, (b) the effect on Ȳ of an increase of 60
in autonomous exports X0, and (c) the effect on Ȳ of an increase of 30 in autonomous
imports Z0.

a) From Problem 6.7,

Ȳ �
1

1� b� bt� z� zt
(C0� bT0� I0�G0�X0�Z0� zT0)

�
1

1� 0.9� 0.9(0.2)� 0.15� 0.15(0.2)
[125� 0.9(150)� 92.5� 600� 150� 55� 22.5]

� 2.5(800) � 2000
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b) 	Ȳ �
�Ȳ
�X0

	X0 �
1

1� b� bt� z� zt
(60) � 2.5(60) � 150

c) 	Ȳ �
�Ȳ
�Z0

	Z0 �
�1

1� b� bt� z� zt
(30) � �2.5(30) � �75

6.14. If the full-employment level of income in Problem 6.13 is 2075, (a) by how much should the
government increase expenditures to achieve it? (b) By how much should it cut autonomous
taxes to have the same effect?

a) The effect of government spending on national income is

	Ȳ �
�Ȳ
�G0

	G0

substituting 	Ȳ � 75,

75 �
1

1� b� bt� z� zt
	G0 � 2.5	G0 	G0 � 30

b) 	Ȳ �
�Ȳ
�T0
	T0

75 �
z� b

1� b� bt� z� zt
	T0 � �1.875	T0 	T0 � �40

The government should cut autonomous taxation by 40.

6.15. Calculate the effect on the government deficit if the government in Problem 6.14 achieves full
employment through (a) increased expenditures or (b) a tax cut.

a) If the government increases expenditures by 30, the government deficit increases initially by 30.
However, income is stimulated by 75. With 	Ȳ � 75, 	T � 0.2(75) � 15. Tax revenue increases by 15.
Thus the net cost to the government from this policy, and the effect on the deficit, is $15
(30� 15 � 15).

b) If the government cuts autonomous taxation by 40, tax revenues fall initially by 40. But income
increases by 75, causing tax revenues to increase by 15. Thus the net cost to the government of this
policy is 25 (40� 15 � 25), and the government deficit worsens by 25.

6.16. Calculate the effect on the balance of payments (B/P) from (a) government spending and (b)
the tax reduction in Problem 6.14.

a) Since B/P � X�Z, substituting from Problem 6.13,

B/P � X0� (Z0� zYd) � X0�Z0� zY� zT0� ztY (6.28)

With an increase of 30 in government spending, 	Ȳ � 75. Since Y is the only variable on the
right-hand side of (6.28) to change,

	(B/P) � �z(75)� zt(75)

Substituting z � 0.15, zt � 0.03, 	(B/P) � �9.

b) When the government cuts autonomous taxes by 40, 	Ȳ� 75. Adjusting (6.28),

	(B/P) � �z(75)� z(�40)� zt(75) � �15

The reduction in taxes leads to a greater increase in disposable income than the increased government
spending, resulting in a higher level of imports and a more serious balance of payments deficit.
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6.17. Estimate the effect on Ȳ of a one-percentage-point decrease in the marginal propensity to
import from Problem 6.13.

	Ȳ �
�Ȳ
�z
	z

Substituting from Problem 6.8,

	Ȳ �
�Ȳd

1� b� bt� z� zt
	z

where Ȳd � Ȳ�T0� tȲ � 2000� 150� 0.2(2000) � 1450

Thus, 	Ȳ �
�1450

0.4
(�0.01) � �36.25

PARTIAL ELASTICITIES

6.18. Given Q� 700� 2P� 0.02Y, where P � 25 and Y� 5000. Find (a) the price elasticity of
demand and (b) the income elasticity of demand.

a) �d �
�Q
�P � P

Q �
where �Q/�P � �2 and Q � 700� 2(25)� 0.02(5000) � 750. Thus,

�d � �2 � 25
750 � � �0.067

b) �Y �
�Q

�Y � Y

Q � � 0.02 �5000
750 � � 0.133

6.19. Given Q� 400� 8P� 0.05Y, where P � 15 and Y� 12,000. Find (a) the income elasticity of
demand and (b) the growth potential of the product, if income is expanding by 5 percent a year.
(c) Comment on the growth potential of the product.

a) Q � 400� 8(15)� 0.05(12,000) � 880 and �Q/�Y � 0.05. Thus,

�Y�
�Q

�Y � Y

Q � � 0.05 �12,000
880 � � 0.68

b)
�Y �

�Q

Q
�
�Y

Y

Rearranging terms and substituting the known parameters,

�Q

Q
� �Y

�Y

Y
� 0.68(0.05) � 0.034

The demand for the good will increase by 3.4 percent.

c) Since 0��Y� 1, it can be expected that demand for the good will increase with national income, but
the increase will be less than proportionate. Thus, while demand grows absolutely, the relative market
share of the good will decline in an expanding economy. If �Y� 1, the demand for the product would
grow faster than the rate of expansion in the economy, and increase its relative market share. And if
�Y� 0, demand for the good would decline as income increases.
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6.20. Given Q1 � 100�P1� 0.75P2� 0.25P3� 0.0075Y. At P1 � 10, P2� 20, P3 � 40, and
Y� 10,000, Q1� 170. Find the different cross price elasticities of demand.

�12 �
�Q1

�P2
� P2

Q1
� � 0.75 � 20

170 � � 0.088

�13 �
�Q1

�P3
� P3

Q1
� � �0.25 � 40

170 � � �0.059

6.21. Given Q1� 50� 4P1� 3P2� 2P3� 0.001Y. At P1 � 5, P2 � 7, P3 � 3, and Y� 11,000, Q1 � 26.
(a) Use cross price elasticities to determine the relationship between good 1 and the other two
goods. (b) Determine the effect on Q1 of a 10 percent price increase for each of the other goods
individually.

a) �12 � �3( 7––
26) � �0.81 �13 � 2( 3––

26) � 0.23

With �12 negative, goods 1 and 2 are complements. An increase in P2 will lead to a decrease in Q1.
With �13 positive, goods 1 and 3 are substitutes. An increase in P3 will increase Q1.

b) �12 �
�Q1

Q1

�
�P2

P2

Rearranging terms and substituting the known parameters,

�Q1

Q1

� �12

�P2

P2

� �0.81(0.10) � �0.081

If P2 increases by 10 percent, Q1 decreases by 8.1 percent.

�13 �
�Q1

Q1

�
�P3

P3

�Q1

Q1

� �13
�P3

P3

� 0.23(0.10) � 0.023

If P3 increases by 10 percent, Q1 increases by 2.3 percent.

OPTIMIZING ECONOMIC FUNCTIONS

6.22. Given the profit function � � 160x� 3x2� 2xy� 2y2� 120y� 18 for a firm producing two
goods x and y, (a) maximize profits, (b) test the second-order condition, and (c) evaluate the
function at the critical values x̄ and ȳ.

a) �x� 160� 6x� 2y � 0 �y� �2x� 4y� 120 � 0

When solved simultaneously, x̄ � 20 and ȳ � 20.

b) Taking the second partials,

�xx � �6 �yy� �4 �xy� �2

With both direct second partials negative, and �xx�yy� (�xy)2, � is maximized at x̄ � ȳ � 20.

c) � � 2782

6.23. Redo Problem 6.22, given � � 25x� x2� xy� 2y2� 30y� 28.

a) �x � 25� 2x� y � 0 �y� �x� 4y� 30 � 0

Thus, x̄ � 10 and ȳ � 5.
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b) �xx � �2 �yy � �4 �xy� �1

With �xx and �yy both negative and �xx�yy� (�xy)2, � is maximized.

c) � � 172

6.24. A monopolist sells two products x and y for which the demand functions are

x � 25� 0.5Px (6.29)

y � 30�Py (6.30)

and the combined cost function is

c� x2� 2xy� y2� 20 (6.31)

Find (a) the profit-maximizing level of output for each product, (b) the profit-maximizing price
for each product, and (c) the maximum profit.

a) Since � � TRx�TRy�TC, in this case,

� � Px x�Pyy� c (6.32)

From (6.29) and (6.30),

Px � 50� 2x (6.33)

Py � 30� y (6.34)

Substituting in (6.32),

� � (50� 2x)x� (30� y)y� (x2� 2xy� y2� 20)
� 50x� 3x2� 30y� 2y2� 2xy� 20 (6.35)

The first-order condition for maximizing (6.35) is

�x � 50� 6x� 2y � 0 �y � 30� 4y� 2x � 0

Solving simultaneously, x̄ � 7 and ȳ� 4. Testing the second-order conditon, �xx � �6, �yy� �4, and
�xy � �2. With both direct partials negative and �xx�yy� (�xy)2, � is maximized.

b) Substituting x̄� 7, ȳ � 4 in (6.33) and (6.34),

Px � 50� 2(7) � 36 Py � 30� 4 � 26

c) Substituting x̄ � 7, ȳ � 4 in (6.35), � � 215.

6.25. Find the profit-maximizing level of (a) output, (b) price, and (c) profit for a monopolist with the
demand functions

x � 50� 0.5Px (6.36)

y � 76�Py (6.37)

and the total cost function c� 3x2� 2xy� 2y2� 55.

a) From (6.36) and (6.37),

Px � 100� 2x (6.38)

Py � 76� y (6.39)
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Substituting in � � Px x�Py y� c,

� � (100� 2x)x� (76� y)y� (3x2� 2xy� 2y2� 55)
� 100x� 5x2� 76y� 3y2� 2xy� 55 (6.40)

Maximizing (6.40),

�x � 100� 10x� 2y � 0 �y � 76� 6y� 2x � 0

Thus, x̄ � 8 and ȳ � 10. Checking the second-order condition, �xx � �10, �yy � �6, and �xy � �2.
Since �xx, �yy� 0 and �xx�yy� (�xy)2, � is maximized at the critical values.

b) Substituting x̄ � 8, ȳ � 10 in (6.38) and (6.39),

Px � 100� 2(8) � 84 Py � 76� 10 � 66

c) From (6.40), � � 725.

6.26. Find the profit-maximizing level of (a) output, (b) price, and (c) profit for the monopolistic
producer with the demand functions

Q1 � 491–
3�

2–
3P1 (6.41)

Q2 � 36� 1–
2P2 (6.42)

and the joint cost function c�Q1
2� 2Q1 Q2�Q2

2� 120.

a) From (6.41) and (6.42),

P1 � 74� 1.5Q1 (6.43)

P2 � 72� 2Q2 (6.44)

Substituting in � � P1 Q1�P2 Q2� c,

� � (74� 1.5Q1)Q1� (72� 2Q2)Q2� (Q1
2� 2Q1 Q2�Q2

2� 120)
� 74Q1� 2.5Q1

2� 72Q2� 3Q2
2� 2Q1 Q2� 120 (6.45)

The first-order condition for maximizing (6.45) is

�1 � 74� 5Q1� 2Q2 � 0 �2� 72� 6Q2� 2Q1 � 0

Thus, Q̄1 � 11.54 and Q̄2� 8.15. Testing the second-order condition, �11 � �5, �22� �6, and
�12 � �2. Thus, �11, �22� 0; �11�22� (�12)2, and � is maximized.

b) Substituting the critical values in (6.43) and (6.44),

P1 � 74� 1.5(11.54) � 56.69 P2 � 72� 2(8.15) � 55.70

c) � � 600.46

6.27. Find the profit-maximizing level of (a) output, (b) price, and (c) profit when

Q1 � 5200� 10P1 (6.46)

Q2 � 8200� 20P2 (6.47)

and c� 0.1Q1
2� 0.1Q1 Q2� 0.2Q2

2� 325

a) From (6.46) and (6.47)

P1 � 520� 0.1Q1 (6.48)

P2 � 410� 0.05Q2 (6.49)

129CALCULUS OF MULTIVARIABLE FUNCTIONS IN ECONOMICSCHAP. 6]



Thus, � � (520� 0.1Q1)Q1� (410� 0.05Q2)Q2� (0.1Q1
2� 0.1Q1 Q2� 0.2Q2

2� 325)
� 520Q1� 0.2Q1

2� 410Q2� 0.25Q2
2� 0.1Q1 Q2� 325 (6.50)

Maximizing (6.50),

�1 � 520� 0.4Q1� 0.1Q2 � 0 �2 � 410� 0.5Q2� 0.1Q1 � 0

Thus, Q̄1 � 1152.63 and Q̄2 � 589.47. Checking the second-order condition, �11 � �0.4, �22 � �0.5,
and �12 � �0.1 � �21. Since �11, �22� 0 and �11�22� (�12)2, � is maximized at Q̄1 � 1152.63 and
Q̄2 � 589.47.

b) Substituting in (6.48) and (6.49),

P1 � 520� 0.1(1152.63) � 404.74 P2 � 410� 0.05(589.47) � 380.53

c) � � 420,201.32

CONSTRAINED OPTIMIZATION IN ECONOMICS

6.28. (a) What combination of goods x and y should a firm produce to minimize costs when the joint
cost function is c� 6x2� 10y2� xy� 30 and the firm has a production quota of x� y � 34? (b)
Estimate the effect on costs if the production quota is reduced by 1 unit.

a) Form a new function by setting the constraint equal to zero, multiplying it by �, and adding it to the
original or objective function. Thus,

C � 6x2� 10y2� xy� 30��(34� x� y)
Cx � 12x� y�� � 0
Cy � 20y� x�� � 0
C� � 34� x� y � 0

Solving simultaneously, x̄ � 21, ȳ � 13, and �̄ � 239. Thus, C � 4093. Second-order conditions are
discussed in Section 12.5.

b) With � � 239, a decrease in the constant of the constraint (the production quota) will lead to a cost
reduction of approximately 239.

6.29. (a) What output mix should a profit-maximizing firm produce when its total profit function is
� � 80x� 2x2� xy� 3y2� 100y and its maximum output capacity is x� y � 12? (b) Estimate
the effect on profits if output capacity is expanded by 1 unit.

a) � � 80x� 2x2� xy� 3y2� 100y��(12� x� y)
�x � 80� 4x� y�� � 0
�y � �x� 6y� 100�� � 0
�� � 12� x� y � 0

When solved simultaneously, x̄� 5, ȳ � 7, and �̄ � 53. Thus, � � 868.

b) With �̄ � 53, an increase in output capacity should lead to increased profits of approximately 53.

6.30. A rancher faces the profit function

� � 110x� 3x2� 2xy� 2y2� 140y

where x � sides of beef and y� hides. Since there are two sides of beef for every hide, it follows
that output must be in the proportion

x
2
� y x � 2y
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At what level of output will the rancher maximize profits?

� � 110x� 3x2� 2xy� 2y2� 140y��(x� 2y)
�x � 110� 6x� 2y�� � 0
�y � �2x� 4y� 140� 2� � 0
�� � x� 2y � 0

Solving simultaneously, x̄ � 20, ȳ � 10, �̄ � 30, and � � 1800.

6.31. (a) Minimize costs for a firm with the cost function c� 5x2� 2xy� 3y2� 800 subject to the
production quota x� y � 39. (b) Estimate additional costs if the production quota is increased
to 40.

a) C � 5x2� 2xy� 3y2� 800��(39� x� y)
Cx � 10x� 2y�� � 0
Cy � 2x� 6y�� � 0
C� � 39� x� y � 0

When solved simultaneously, x̄ � 13, ȳ � 26, �̄ � 182, and c � 4349.

b) Since �̄ � 182, an increased production quota will lead to additional costs of approximately 182.

6.32. A monopolistic firm has the following demand functions for each of its products x and y:

x � 72� 0.5Px (6.51)

x � 120�Py (6.52)

The combined cost function is c� x2� xy� y2� 35, and maximum joint production is 40. Thus
x� y � 40. Find the profit-maximizing level of (a) output, (b) price, and (c) profit.

a) From (6.51) and (6.52),

Px � 144� 2x (6.53)

Py � 120� y (6.54)

Thus, � � (144� 2x)x� (120� y)y� (x2� xy� y2� 35) � 144x� 3x2� xy� 2y2� 120y� 35.
Incorporating the constraint,

� � 144x� 3x2� xy� 2y2� 120y� 35��(40� x� y)

Thus, �x � 144� 6x� y�� � 0
�y � �x� 4y� 120�� � 0
�� � 40� x� y � 0

and, x̄ � 18, ȳ � 22, and �̄ � 14.

b) Substituting in (6.53) and (6.54),

Px � 144� 2(18) � 108 Py � 120� 22 � 98

c) � � 2861

6.33. A manufacturer of parts for the tricycle industry sells three tires (x) for every frame (y).
Thus,

x
3
� y x � 3y
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If the demand functions are

x � 63� 0.25Px (6.55)

y � 60� 1–
3Py (6.56)

and costs are

c� x2� xy� y2� 190

find the profit-maximizing level of (a) output, (b) price, and (c) profit.

a) From (6.55) and (6.56),

Px � 252� 4x (6.57)

Py � 180� 3y (6.58)

Thus, � � (252� 4x)x� (180� 3y)y� (x2� xy� y2� 190) � 252x� 5x2� xy� 180y� 190� 4y2

Forming a new, constrained function,

� � 252x� 5x2� xy� 4y2� 180y� 190��(x� 3y)

Hence, �x � 252� 10x� y�� � 0 �y � �x� 8y� 180� 3� � 0 �� � x� 3y � 0

and x̄ � 27, ȳ � 9, and �̄ � 27.

b) From (6.57) and (6.58), Px� 144 and Py� 153.

c) � � 4022

6.34. Problem 4.22 dealt with the profit-maximizing level of output for a firm producing a single
product that is sold in two distinct markets when it does and does not discriminate. The
functions given were

Q1 �

Q2 �

c�

21� 0.1P1

50� 0.4P2

2000� 10Q where Q�Q1�Q2

(6.59)

(6.60)

(6.61)

Use multivariable calculus to check your solution to Problem 4.22.

From (6.59), (6.60), and (6.61),

P1 � 210� 10Q1 (6.62)

P2 � 125� 2.5Q2 (6.63)

c � 2000� 10Q1� 10Q2

With discrimination P1� P2 since different prices are charged in different markets, and therefore

� � (210� 10Q1)Q1� (125� 2.5Q2)Q2� (2000� 10Q1� 10Q2)
� 200Q1� 10Q1

2� 115Q2� 2.5Q2
2� 2000

Taking the first partials,

�1 � 200� 20Q1 � 0 �2 � 115� 5Q2 � 0

Thus, Q̄1 � 10 and Q̄2 � 23. Substituting in (6.62) and (6.63), P̄1 � 110 and P̄2 � 67.5.
If there is no discrimination, the same price must be charged in both markets. Hence P1 � P2.

Substituting from (6.62) and (6.63),

210� 10Q1� 125� 2.5Q2

2.5Q2� 10Q1� �85
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Rearranging this as a constraint and forming a new function,

� � 200Q1� 10Q1
2� 115Q2� 2.5Q2

2� 2000��(85� 10Q1� 2.5Q2)

Thus, �1� 200� 20Q1� 10� � 0 �2 � 115� 5Q2� 2.5� � 0 �� � 85� 10Q1� 2.5Q2� 0

and Q̄1 � 13.4, Q̄2 � 19.6, and �̄ � �6.8. Substituting in (6.62) and (6.63),

P1 � 210� 10(13.4) � 76
P2 � 125� 2.5(19.6) � 76
Q � 13.4� 19.6 � 33

6.35. Check your answers to Problem 4.23, given

Q1 � 24� 0.2P1 Q2 � 10� 0.05P2

c� 35� 40Q where Q�Q1�Q2

From the information given,

P1 � 120� 5Q1 (6.64)

P2 � 200� 20Q2 (6.65)

c � 35� 40Q1� 40Q2

With price discrimination,

� � (120� 5Q1)Q1� (200� 20Q2)Q2� (35� 40Q1� 40Q2) � 80Q1� 5Q1
2� 160Q2� 20Q2

2� 35

Thus, �1 � 80� 10Q1� 0 �2 � 160� 40Q2 � 0

and Q̄1 � 8, Q̄2 � 4, P1 � 80, and P2 � 120.
If there is no price discrimination, P1 � P2. Substituting from (6.64) and (6.65),

120� 5Q1� 200� 20Q2

20Q2� 5Q1 � 80 (6.66)

Forming a new function with (6.66) as a constraint,

� � 80Q1� 5Q1
2� 160Q2� 20Q2

2� 35��(80� 5Q1� 20Q2)

Thus, �1 � 80� 10Q1� 5� � 0 �2 � 160� 40Q2� 20� � 0 �� � 80� 5Q1� 20Q2 � 0

and Q̄1 � 6.4, Q̄2� 5.6, and �̄ � �3.2. Substituting in (6.64) and (6.65),

P1 � 120� 5(6.4) � 88
P2 � 200� 20(5.6) � 88
Q � 6.4� 5.6 � 12

6.36. (a) Maximize utility u �Q1 Q2 when P1 � 1, P2� 4, and one’s budget B� 120. (b) Estimate the
effect of a 1-unit increase in the budget.

a) The budget constraint is Q1� 4Q2 � 120. Forming a new function to incorporate the constraint,

U � Q1 Q2��(120�Q1� 4Q2)

Thus, U1 � Q2�� � 0 U2 � Q1� 4� � 0 U� � 120�Q1� 4Q2 � 0

and Q̄1 � 60, Q̄2 � 15, and �̄ � 15.

b) With �̄ � 15, a $1 increase in the budget will lead to an increase in the utility function of
approximately 15. Thus, the marginal utility of money (or income) at Q̄1 � 60 and Q̄2 � 15 is
approximately 15.
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6.37. (a) Maximize utility u �Q1 Q2, subject to P1 � 10, P2 � 2, and B� 240. (b) What is the
marginal utility of money?

a) Form the Lagrangian function U � Q1 Q2��(240� 10Q1� 2Q2).

U1 � Q2� 10� � 0 U2� Q1� 2� � 0 U� � 240� 10Q1� 2Q2� 0

Thus, Q̄1 � 12, Q̄2 � 60, and �̄ � 6.

b) The marginal utility of money at Q̄1 � 12 and Q̄2 � 60 is approximately 6.

6.38. Maximize utility u �Q1 Q2�Q1� 2Q2, subject to P1� 2, P2 � 5, and B� 51.

Form the Lagrangian function U � Q1Q2�Q1� 2Q2��(51� 2Q1� 5Q2).

U1� Q2� 1� 2� � 0 U2 � Q1� 2� 5� � 0 U� � 51� 2Q1� 5Q2� 0

Thus, Q̄1 � 13, Q̄2 � 5, and �̄ � 3.

6.39. Maximize utility u � xy� 3x� y subject to Px� 8, Py � 12, and B� 212.

The Lagrangian function is U � xy� 3x� y��(212� 8x� 12y).

Ux � y� 3� 8� � 0 Uy � x� 1� 12� � 0 U� � 212� 8x� 12y � 0

Thus, x̄ � 15, ȳ � 72–
3, and �̄ � 11–

3.

HOMOGENEITY AND RETURNS TO SCALE

6.40. Determine the level of homogeneity and returns to scale for each of the following production
functions:

a) Q� x2� 6xy� 7y2

here Q is homogeneous of degree 2, and returns to scale are increasing because

f(kx, ky) � (kx)2� 6(kx)(ky)� 7(ky)2 � k2(x2� 6xy� 7y2)

b) Q� x3� xy2� 3y3� x2 y

here Q is homogeneous of degree 3, and returns to scale are increasing because

f(kx, ky) � (kx)3� (kx)(ky)2� 3(ky)3� (kx)2(ky) � k3(x3� xy2� 3y3� x2 y)

c) Q�
3x2

5y2

here Q is homogeneous of degree 0, and returns to scale are decreasing because

f(kx, ky) �
3(kx)2

5(ky)2 �
3x2

5y2 and k0� 1

d) Q� 0.9K 0.2 L0.6

here Q is homogeneous of degree 0.8 and returns to scale are decreasing because

Q(kK, kL) � 0.9(kK)0.2(kL)0.6� Ak0.2 K 0.2k0.6 L0.6

� k0.2�0.6(0.9K 0.2 L0.6) � k0.8(0.9K 0.2 L0.6)

Note that the returns to scale of a Cobb-Douglas function will always equal the sum of the exponents
���, as is illustrated in part 6 of Example 8.
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CONSTRAINED OPTIMIZATION OF COBB-DOUGLAS FUNCTIONS

6.41. Optimize the following Cobb-Douglas production functions subject to the given constraints by
(1) forming the Lagrange function and (2) finding the critical values as in Example 10.

a) q � K 0.3 L0.5 subject to 6K� 2L� 384

1) Q � K 0.3 L0.5��(384� 6K� 2L)

2) QK � 0.3K�0.7 L0.5� 6� � 0 (6.67)

QL� 0.5K 0.3 L�0.5� 2� � 0 (6.68)

Q� � 384� 6K� 2L � 0 (6.69)

Rearrange, then divide (6.67) by (6.68) to eliminate �.

0.3K�0.7 L0.5

0.5K 0.3 L�0.5 �
6�
2�

Subtracting exponents in division,

0.6K�1L1 � 3

L

K
�

3
0.6

L � 5K

Substitute L � 5K in (6.69).

384� 6K� 2(5K) � 0 K0 � 24 L0� 120

Second-order conditions are tested in Problem 12.27(b).

b) q � 10K 0.7 L0.1, given PK � 28, PL� 10, and B� 4000

1) Q � 10K0.7 L0.1��(4000� 28K� 10L)

2) QK � 7K�0.3 L0.1� 28� � 0 (6.70)

QL� 1K 0.7L�0.9� 10� � 0 (6.71)

Q� � 4000� 28K� 10L � 0 (6.72)

Divide (6.70) by (6.71) to eliminate �.

7K�0.3 L0.1

1K 0.7 L�0.9 �
28�
10�

7K�1L1 � 2.8

L

K
�

2.8
7

L � 0.4K

Substituting in (6.72), K0 � 125 L0 � 50

See Problem 12.27(c) for the second-order conditions.

6.42. Maximize the following utility functions subject to the given budget constraints, using the same
steps as above.

a) u � x0.6 y0.25, given Px � 8, Py� 5, and B� 680

1) U � x0.6 y0.25��(680� 8x� 5y)

2) Ux� 0.6x�0.4 y0.25� 8� � 0 (6.73)

Uy� 0.25x0.6 y�0.75� 5� � 0 (6.74)

U� � 680� 8x� 5y � 0 (6.75)
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Divide (6.73) by (6.74).

0.6x�0.4 y0.25

0.25x0.6 y�0.75 �
8�
5�

2.4x�1y1 �

y �

1.6
2–
3x

Substitute in (6.75). x0 � 60 y0 � 40

b) u � x0.8 y0.2, given Px � 5, Py � 3, and B� 75

1) U � x0.8 y0.2��(75� 5x� 3y)

2) Ux� 0.8x�0.2 y0.2� 5� � 0 (6.76)

Uy� 0.2x0.8 y�0.8� 3� � 0 (6.77)

U� � 75� 5x� 3y � 0 (6.78)

Divide (6.76) by (6.77).

0.8x�0.2 y0.2

0.2x0.8y�0.8 �
5�
3�

4x�1 y1 �

y �

5–
3
5––
12x

Substitute in (6.78). x0 � 12 y0 � 5

CONSTRAINED OPTIMIZATION OF CES PRODUCTION FUNCTIONS

6.43. Optimize the following CES production function subject to the given constraint by (1) forming
the Lagrange function and (2) finding the critical values as in Example 12:

q � 80[0.4K�0.25� (1� 0.4)L�0.25]�1/0.25 subject to 5K� 2L� 150

1) Q � 80(0.4K�0.25� 0.6L�0.25)�4��(150� 5K� 2L)

2) Using the generalized power function rule for QK and QL,

QK � �320(0.4K�0.25� 0.6L�0.25)�5(�0.1K�1.25)� 5� � 0
� 32K�1.25(0.4K�0.25� 0.6L�0.25)�5� 5� � 0 (6.79)

QL� �320(0.4K�0.25� 0.6L�0.25)�5(�0.15L�1.25)� 2� � 0
� 48L�1.25(0.4K�0.25� 0.6L�0.25)�5� 2� � 0 (6.80)

Q� � 150� 5K� 2L � 0 (6.81)

Rearrange, then divide (6.79) by (6.80) to eliminate �.

32K�1.25(0.4K�0.25� 0.6L�0.25)�5

48L�1.25(0.4K�0.25� 0.6L�0.25)�5 �
5�
2�

32K�1.25

48L�1.25 � 2.5

K�1.25 � 3.75L�1.25

Take the �1.25 root.

K � (3.75)�1/1.25L � (3.75)�0.8L

To find (3.75)�0.8, enter 3.75 on a calculator, press the yx key, then enter 0.8 followed by
the �/� key to make it negative, and hit the � key to find (3.75)�0.8 � 0.34736.
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Thus,
K � 0.35L

Substitute in (6.81).

150� 5(0.35L)� 2L � 0 L0� 40 K0 � 14

6.44. Optimize the CES production function

q � 100[0.2K�(�0.5)� (1� 0.2)L�(�0.5)]�1/(�0.5)

subject to the constraint 10K� 4L� 4100, as in Problem 6.43.

1) Q � 100(0.2K 0.5� 0.8L0.5)2��(4100� 10K� 4L)

2) QK � 200(0.2K 0.5� 0.8L0.5)(0.1K�0.5)� 10� � 0
� 20K�0.5(0.2K 0.5� 0.8L0.5)� 10� � 0 (6.82)

QL� 200(0.2K 0.5� 0.8L0.5)(0.4L�0.5)� 4� � 0
� 80L�0.5(0.2K 0.5� 0.8L0.5)� 4� � 0 (6.83)

Q� � 4100� 10K� 4L � 0 (6.84)

Divide (6.82) by (6.83) to eliminate �.

20K�0.5(0.2K 0.5� 0.8L0.5)
80L�0.5(0.2K 0.5� 0.8L0.5)

�
10�
4�

20K�0.5

80L�0.5 � 2.5

K�0.5 � 10L�0.5

Take the �0.5 root. K � (10)�1/0.5 L � (10)�2 L

K � 0.01L

Substitute in (6.84). L0 � 1000 K0 � 10

PARTIAL DERIVATIVES AND DIFFERENTIALS

6.45. Given Q� 10K 0.4 L0.6, (a) find the marginal productivity of capital and labor and (b) determine
the effect on output of an additional unit of capital and labor at K � 8, L� 20.

a) MPK �
�Q

�K
� 0.4(10)K�0.6 L0.6 � 4K�0.6 L0.6 MPL �

�Q

�L
� 0.6(10)K 0.4 L�0.4 � 6K 0.4 L�0.4

b) 	Q � (�Q/�K)	K. For a 1-unit change in K, at K � 8, L � 20, 	Q � 4K�0.6 L0.6� 4(8)�0.6(20)0.6.
Using a calculator,

	Q � 4K�0.6 L0.6 � 4(8)�0.6(20)0.6 � 4(0.28717)(6.03418) � 6.93

Note: to find (8)�0.6 on a calculator, enter 8, press the yx key, then enter 0.6 followed by the
�/� key to make it negative, and hit the � key to find (8)�0.6 � 0.28717. To find (20)0.6, enter

20, press the yx key, then enter 0.6, and hit the � key to find (20)0.6 � 6.03418.

For a 1-unit change in L,

	Q � 6K 0.4 L�0.4 � 6(8)0.4(20)�0.4 � 6(2.29740)(0.30171) � 4.16

6.46. Redo Problem 6.45, given Q� 12K 0.3 L0.5 at K � 10, L� 15.

a) MPK � 3.6K�0.7 L0.5 MPL � 6K 0.3 L�0.5
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b) For a 1-unit change in K, at K � 10, L � 15, 	Q � 3.6K�0.7 L0.5.

	Q � 3.6(10)�0.7(15)0.5 � 3.6(0.19953)(3.87298) � 2.78
For a 1-unit change in L,

	Q � 6(10)0.3(15)�0.5 � 6(1.99526)(0.25820) � 3.09

6.47. Given Q� 4�KL, find (a) MPK and MPL, and (b) determine the effect on Q of a 1-unit change
in K and L, when K � 50 and L� 600.

a) Q � 4�KL � 4(KL)1/2. By the generalized power function rule,

MPK � QK � 2(KL)�1/2(L) �
2L

�KL
MPL � QL � 2(KL)�1/2(K) �

2K

�KL

b) For a 1-unit change in K at K � 50, L � 600,

	Q � 2[50(600)]�1/2(600) � 2(0.00577)(600) � 6.93

For a 1-unit change in L,

	Q � 2[50(600)]�1/2(50) � 2(0.00577)(50) � 0.58

6.48. Redo Problem 6.47, given Q� 2�KL, where K � 100 and L� 1000.

a) Q � 2(KL)1/2

MPK � (KL)�1/2(L) �
L

�KL
MPL � (KL)�1/2(K) �

K

�KL

b) For a 1-unit change in K at K � 100, L � 1000,

	Q � [100(1000)]�1/2(1000) � (0.00316)(1000) � 3.16

For a 1-unit change in L,

	Q � [100(1000)]�1/2(100) � (0.00316)(100) � 0.316

6.49. A company’s sales s have been found to depend on price P, advertising A, and the number of
field representatives r it maintains.

s � (12,000� 900P)A1/2 r1/2

Find the change in sales associated with (a) hiring another field representative, (b) an extra $1
of advertising, (c) a $0.10 reduction in price, at P � $6, r � 49, and A � $8100.

a) 	s �
�s

�r
	r �

1
2

(12,000� 900P)A1/2 r�1/2	r

� 1–
2[12,000� 900(6)](8100)1/2(49)�1/2(1) � 1–

2(6600)(90)(1–
7) � 42,429

b)
	s �

�s

�A
	A �

1
2

(12,000� 900P)A�1/2 r1/2	A �
1
2

(6600) � 1
90 � (7)(1) � 256.67

c) 	s �
�s

�P
	P � �900A1/2r1/2	P � �900(90)(7)(�0.10) � 56,700

6.50. Given the sales function for a firm similar to the one in Problem 6.49: s � (15,000
� 1000P)A2/3 r1/4, estimate the change in sales from (a) hiring an extra field representative, (b)
a $1 increase in advertising, and (c) a $0.01 reduction in price, when P � 4, A � $6000, and
r � 24.
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a) 	s � 1–
4(15,000� 1000P)A2/3r�3/4	r

� 1–
4(11,000)(6000)2/3(24)�3/4(1)

� 2750(330.19)(0.09222) � 83,740

b) 	s � 2–
3(15,000� 1000P)A�1/3 r1/4	A

� 2–
3(11,000)(6000)�1/3(24)1/4(1)

� (7333.33)(0.05503)(2.21336) � 893

c) 	s ��1000A2/3 r1/4	P

��1000(6000)2/3(24)1/4(�0.01)
� 10(330.19)(2.21336) � 7308

6.51. Given the equation for a production isoquant

16K 1/4 L3/4� 2144

use the implicit function rule from Section 5.10 to find the slope of the isoquant dK/dL which
is the marginal rate of technical substitution (MRTS).

Set the equation equal to zero to get

F(K, L) � 16K 1/4L3/4� 2144 � 0

Then from the implicit function rule in Equation (5.13),

dK

dL
�
�FL

FK

�
�12K 1/4L�1/4

4K�3/4 L3/4 �
�3K

L
�MRTS

Compare this answer with that in Problem 4.24.

6.52. Given the equation for the production isoquant

25K 3/5 L2/5� 5400

find the MRTS, using the implicit function rule.

Set up the implicit function,

F(K, L) � 25K 3/5L2/5� 5400 � 0

and use (5.13).

dK

dL
�
�FL

FK

�
�10K 3/5 L�3/5

15K�2/5 L2/5 �
�2K

3L
�MRTS

Compare this answer with that in Problem 4.25.

PROOFS

6.53. Use the properties of homogeneity to show that a strict Cobb-Douglas production function
q � AK�L�, where ��� � 1, exhibits constant returns to scale.

Multiply each of the inputs by a constant k and factor.

q(kK, kL) � A(kK)�(kL)� � Ak�K�k�L�

� k���(AK�L�) � k���(q)

As explained in Section 6.9, if ��� � 1, returns to scale are constant; if ���� 1, returns to scale are
increasing; and if ���� 1, returns to scale are decreasing.
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6.54. Given the utility function u � Axa yb subject to the budget constraint Px x�Py y � B, prove that
at the point of constrained utility maximization the ratio of prices Px/Py must equal the ratio
of marginal utilities MUx/MUy.

U � Axa yb��(B�Pxx�Pyy)

Ux � aAx1�1 yb��Px � 0 (6.85)

Uy � bAxa yb�1��Py � 0 (6.86)

U� � B�Px x�Py y � 0

where in (6.85) aAxa�1 yb � ux�MUx, and in (6.86) bAxa yb�1 � uy �MUy.

From (6.85), � �
aAxa�1 yb

Px

�
MUx

Px

From (6.86), � �
bAxa yb�1

Py

�
MUy

Py

Equating �’s,
MUx

Px

�
MUy

Py

MUx

MUy

�
Px

Py

Q.E.D.

6.55. Given a generalized Cobb-Douglas production function q � AK�L� subject to the budget
constraint PK K�PLL� B, prove that for constrained optimization the least-cost input
ratio is

K
L
�
�PL

�PK

Using the Lagrangian method,

Q � AK�L���(B�PK K�PL L)

QK � �AK��1L���PK � 0 (6.87)

QL � �AK�L��1��PL � 0 (6.88)

Q� � B�PK K�PLL � 0

From (6.87) and (6.88),

�AK��1L�

PK

� � �
�AK�L��1

PL

Rearranging terms,
PL

PK

�
�AK�L��1

�AK��1 L�

where L��1� L�/L and 1/K��1� K/K�. Thus,

PL

PK

�
�K
�L

K

L
�
�PL

�PK

Q.E.D. (6.89)

6.56. Prove that for a linearly homogeneous Cobb-Douglas production function Q� AK�L�,
� � the output elasticity of capital (�QK) and � � the output elasticity of labor (�QL).

From the definition of output elasticity,

�QK �
�Q/�K
Q/K

and �QL �
�Q/�L

Q/L
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Since ��� � 1, let � � 1�� and let k � K/L. Then

Q � AK�L1�� � A �K

L �
�

L � Ak�L

Find the marginal functions.

�Q

�K
� �AK��1 L1�� � �AK��1L�(��1)� �A �K

L �
��1

� �Ak��1

�Q

�L
� (1��)AK�L�� � (1��)A �K

L �
�

� (1��)Ak�

Find the average functions.

Q

K
�

Ak�L

K
�

Ak�

K
� Ak��1

Q

L
�

Ak�L

L
� Ak�

Then divide the marginal functions by their respective average functions to obtain �.

�QK �
�Q/�K
Q/K

�
�Ak��1

Ak��1 � � Q.E.D.

�QL�
�Q/�L
Q/L

�
(1��)Ak�

Ak�
� 1�� � � Q.E.D.

6.57. Equation (6.89) gave the least-cost input ratio for a generalized Cobb-Douglas production
function. Prove that the elasticity of substitution � of any generalized Cobb-Douglas production
function is unitary, i.e., that � � 1.

In Section 6.10, the elasticity of substitution is defined as the percentage change in the least-cost K/L
ratio resulting from a small percentage change in the input-price ratio PL/PK.

� �

d(K/L)
K/L

d(PL/PK)
PL/PK

�

d(K/L)
d(PL/PK)

K/L
PL/PK

(6.90)

Since � and � are constants in (6.89) and PK and PL are independent variables, K/L can be considered a
function of PL/PK. Noting that in the second ratio of (6.90), � � the marginal function divided by the
average function, first find the marginal function of (6.89).

d(K/L)
d(PL/PK)

�
�

�

Then find the average function by dividing both sides of (6.89) by PL/PK.

K/L
PL/PK

�
�

�

Substituting in (6.90),

� �

d(K/L)
d(PL/PK)

K/L
PL/PK

�
�/�
�/�

� 1 Q.E.D.
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6.58. Use the least-cost input ratio for a Cobb-Douglas function given in (6.89) to check the answer
to Example 10, where q � K 0.4 L0.5, PK � 3, and PL� 4.

With � � 0.4 and � � 0.5, from (6.89),

K

L
�

0.4(4)
0.5(3)

�
1.6
1.5

Capital and labor must be used in the ratio of 16K : 15L. This confirms the answer found in Example 10
of K0 � 16, L0 � 15.

6.59. Given the CES production function

q � A[�K��� (1��)L��]�1/� (6.91)

and bearing in mind from Problem 6.54 that the ratio of prices must equal the ratios of marginal
products if a function is to be optimized, (a) prove that the elasticity of substitution � of a CES
production is constant and (b) demonstrate the range that � may assume.

a) First-order conditions require that

�Q/�L
�Q/�K

�
PL

PK

(6.92)

Using the generalized power function rule to take the first-order partials of (6.91),

�Q
�L
� �

1
�

A[�K��� (1��)L��]�(1/�)�1(��)(1��)L���1

Canceling ��’s, rearranging 1��, and adding the exponents �(1/�)� 1, we get

�Q

�L
� (1��)A[�K��� (1��)L��]�(1��)/�L�(1��)

Substituting A1��/A� � A for A,

�Q

�L
� (1��)

A1��

A�
[�K��� (1��)L��]�(1��)/�L�(1��)

From (6.91), A1��[�K��� (1��)L��]�(1��)/� � Q1�� and L�(1��) � 1/L1��. Thus,

�Q
�L
�

1��
A� �Q

L�
1��

(6.93)

Similarly,
�Q
�K
�
�

A� �Q

K �
1��

(6.94)

Substituting (6.93) and (6.94) in (6.92), which leads to the cancellation of A� and Q,

1��
� �K

L �
1��

�
PL

PK

�K

L �
1��

�
�

1��
PL

PK

K̄

L̄
� � �

1�� �
1/(1��)

� PL

PK
�

1/(1��)

(6.95)

Since � and � are constants, by considering K̄/L̄ a function of PL/PK, as in Problem 6.57, we can find

142 CALCULUS OF MULTIVARIABLE FUNCTIONS IN ECONOMICS [CHAP. 6



the elasticity of substitution as the ratio of the marginal and average functions. Simplifying first by
letting

h � � �

1�� �
1/(1��)

K̄
L̄
� h � PL

PK
�

1/(1��)

(6.96)

The marginal function is

d(K̄/L̄)
d(PL/PK)

�
h

1�� �
PL

PK
�

1/(1��)�1

(6.97)

and the average function is

K̄/L̄
PL/PK

�
h(PL/PK)1/(1��)

PL/PK

� h � PL

PK
�

1/(1��)�1

(6.98)

By dividing the marginal function in (6.97) by the average function in (6.98), the elasticity of
substitution is

� �

d(K/L)
d(PL/PK)

K/L
PL/PK

�

h

1��
(PL/PK)1/(1��)�1

h(PL/PK)1/(1��)�1 �
1

1��
(6.99)

Since � is a given parameter, � � 1/(1��) is a constant.

b) If �1��� 0, �� 1. If � � 0, � � 1. If 0����, �� 1.

6.60. Prove that the CES production function is homogeneous of degree 1 and thus has constant
returns to scale.

From (6.91), Q � A[�K��� (1��)L��]�1/�

Multiplying inputs K and L by k, as in Section 6.7,

f(kK, kL) � A[�(kK)��� (1��)(kL)��]�1/�

� A{k��[�K��� (1��)L��]}�1/�

� A(k��)�1/�[�K��� (1��)L��]�1/�

� kA[�K��� (1��)L��]�1/� � kQ Q.E.D.

6.61. Find the elasticity of substitution for the CES production function,
q � 75(0.3K�0.4� 0.7L�0.4)�2.5, given in Example 12.

From (6.99), � �
1

1��

where � � 0.4. Thus, � � 1/(1� 0.4) � 0.71.

6.62. Use the optimal K/L ratio in (6.95) to check the answer in Example 12 where
q � 75(0.3K�0.4� 0.7L�0.4)�2.5 was optimized under the constraint 4K� 3L� 120, giving
K̄ � 11.25 and L̄� 25.

From (6.95),
K̄

L̄
� � �

1��
PL

PK
�

1/(1��)
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Substituting � � 0.3, 1�� � 0.7, and � � 0.4,

K̄

L̄
� �0.3

0.7
3
4 �

1/1.4

� �0.9
2.8 �

0.71

� (0.32)0.71 � 0.45

With K̄ � 11.25 and L̄ � 25, K̄/L̄ � 11.25/25 � 0.45.

6.63. Use (6.95) to check the answer to Problem 6.43 where q � 80(0.4K�0.25� 0.6L�0.25)�4 was
optimized subject to the constraint 5K� 2L� 150 at K̄ � 14 and L̄� 40.

Substituting � � 0.4, 1�� � 0.6, and � � 0.25 in (6.95),

K̄

L̄
� �0.4

0.6
2
5 �

1/1.25

� �0.8
3 �

0.8

� 0.35

Substituting K̄ � 14 and L̄ � 40, 1–
4

4–
0 � 0.35.

6.64. Find the elasticity of substitution from Problem 6.63.

From (6.99), � �
1

1��
�

1
1� 0.25

� 0.8

6.65. Use (6.95) to check the answer to Problem 6.44 where q � 100(0.2K 0.5� 0.8L0.5)2 was optimized
subject to the constraint 10K� 4L� 4100 at K̄ � 10 and L̄� 1000.

With � � 0.2, 1�� � 0.8, and � � �0.5,

K̄

L̄
� � �0.2

0.8 � � 4
10� �

1/(1�0.5)

� �0.8
8 �

2

� (0.1)2 � 0.01

Substituting K̄ � 10 and L̄ � 1000, 10––––
1000 � 0.01.

6.66. Find the elasticity of substitution from Problem 6.65.

From (6.99), � �
1

1��
�

1
1� 0.5

� 2

6.67. (a) Use the elasticity of substitution found in Problem 6.64 to estimate the effect on the
least-cost (K̄/L̄) ratio in Problem 6.43 if PL increases by 25 percent. (b) Check your answer by
substituting the new PL in (6.95).

a) The elasticity of substitution measures the relative change in the K̄/L̄ ratio brought about by a
relative change in the price ratio PL/PK. If PL increases by 25 percent, PL � 1.25(2) � 2.5. Thus,
PL/PK � 2.5/5 � 0.5 vs. 2–

5 � 0.4 in Problem 6.43.
The percentage increase in the price ratio, therefore, is (0.5� 0.4)/0.4 � 0.25. With the elasticity

of substitution � 0.8 from Problem 6.64, the expected percentage change in the K̄/L̄ ratio is

	(K̄/L̄)
K̄/L̄

� 0.8(0.25) � 0.2 or 20%

With (K̄/L̄)1� 0.35, (K̄/L̄)2 � 1.2(0.35) � 0.42.

b) Substituting PL � 2.5 in (6.95),

K̄

L̄
� �0.4

0.6
2.5
5 �

0.8

� �1
3 �

0.8

� 0.42
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6.68. (a) Use the elasticity of substitution to estimate the new K̄/L̄ ratio if the price of capital
decreases by 20 percent. Assume the initial data of Problem 6.43. (b) Check your answer.

a) If PK decreases by 20 percent, PK � 0.8(5) � 4. Thus, PL/PK �
2–
4 � 0.5 which is a 25 percent increase

in the PL/PK ratio, as seen above. Therefore,

	(K̄/L̄)
K̄/L̄

� 0.8(0.25) � 0.2 or 20%

and (K̄/L̄)2 � 1.2(0.35) � 0.42.

b) Substituting PK � 4 in (6.95),

K̄

L̄
� �0.4

0.6
2
4 �

0.8

� �0.8
2.4 �

0.8

� 0.42

6.69. (a) If the price of labor decreases by 10 percent in Problem 6.44, use the elasticity of substitution
to estimate the effect on the least-cost K̄/L̄ ratio. (b) Check your answer.

a) If PL decreases by 10 percent, PL� 0.9(4) � 3.6, and the PL/PK ratio also decreases by 10 percent.
With a 10 percent decrease in PL/PK and an elasticity of substitution � 2,

	(K̄/L̄)
K̄/L̄

� 2(�0.10) � �0.20 or �20%

With the old K̄/L̄ � 0.01, (K̄/L̄)2 � (1� 0.2)(0.01) � 0.8(0.01) � 0.008.

b) Substituting PL � 3.6 in (6.95),

K̄

L̄
� �0.2

0.8
3.6
10 �

2

� �0.72
8 �

2

� (0.09)2 � 0.0081
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CHAPTER 7

Exponential and
Logarithmic

Functions

7.1 EXPONENTIAL FUNCTIONS

Previous chapters dealt mainly with power functions, such as y � xa, in which a variable base
x is raised to a constant exponent a. In this chapter we introduce an important new function in
which a constant base a is raised to a variable exponent x. It is called an exponential function and
is defined as

y� ax a� 0 and a� 1

Commonly used to express rates of growth and decay, such as interest compounding and depreciation,
exponential functions have the following general properties. Given y � ax, a� 0, and a� 1:

1. The domain of the function is the set of all real numbers; the range of the function is the set
of all positive real numbers, i.e., for all x, even x� 0, y� 0.

2. For a� 1, the function is increasing and convex; for 0� a� 1, the function is decreasing and
convex.

3. At x� 0, y � 1, independently of the base.

See Example 1 and Problems 7.1 and 7.2; for a review of exponents, see Section 1.1 and
Problem 1.1.

EXAMPLE 1. Given (a) y � 2x and (b) y � 2�x � (1–
2)

x, the above properties of exponential functions can readily
be seen from the tables and graphs of the functions in Fig. 7-1. More complicated exponential functions are
estimated with the help of the yx key on pocket calculators.
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7.2 LOGARITHMIC FUNCTIONS

Interchanging the variables of an exponential function f defined by y � ax gives rise to a new
function g defined by x� ay such that any ordered pair of numbers in f will also be found in g in reverse
order. For example, if f(2) � 4, then g(4) � 2; if f(3) � 8, then g(8) � 3. The new function g, the inverse
of the exponential function f, is called a logarithmic function with base a. Instead of x � ay, the
logarithmic function with base a is more commonly written

y � loga x a� 0, a� 1

Loga x is the exponent to which a must be raised to get x. Any positive number except 1 may serve as the
base for a logarithm. The common logarithm of x, written log

10
x or simply log x, is the exponent to which

10 must be raised to get x. Logarithms have the following properties. Given y � loga x, a� 0, a� 1:

1. The domain of the function is the set of all positive real numbers; the range is the set of all real
numbers�the exact opposite of its inverse function, the exponential function.

2. For base a� 1, f(x) is increasing and concave. For 0� a� 1, f(x) is decreasing and convex.
3. At x� 1, y � 0 independent of the base.

See Examples 2 to 4 and Problems 7.5 and 7.6.

EXAMPLE 2. A graph of two functions f and g in which x and y are interchanged, such as y � 2x and x � 2y in Fig. 7-2,
reveals that one function is a mirror image of the other along the 45
 line y � x, such that if f(x) � y, then g(y) � x.
Recall that x � 2y is equivalent to and more commonly expressed as y � log2 x.

a) y � 2x b) y � log2 x ↔ x � 2y

x y x y

�3
�2
�1

0
1
2
3

1–
8
1–
4
1–
2

1
2
4
8

1–
8
1–
4
1–
2

1
2
4
8

�3
�2
�1

0
1
2
3

Fig. 7-2
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Fig. 7-1

a) y � 2x b) y� 2�x � (1–
2)

x

(�3, 1–
8)

x� 2y or y� log2 x

(1–
8, �3)

y � x
y � 2x

y� 2x

y� 2�x � (1/2)x



EXAMPLE 3. Knowing that the common logarithm of x is the power to which 10 must be raised to get x, it
follows that

log 10 � 1
log 100 � 2

log 1000 � 3

since 101� 10
since 102� 100
since 103� 1000

log 1 �
log 0.1 �

log 0.01 �

0
�1
�2

since 100 � 1
since 10�1 � 0.1
since 10�2 � 0.01

EXAMPLE 4. For numbers that are exact powers of the base, logs are easily calculated without the aid of
calculators.

log7 49 �
log36 6 �

log3
1–
9 �

2
1–
2

�2

since 72 � 49
since 361/2 � 6
since 3�2 � 1–

9

log2 16 �
log16 2 �

log2
1–
8 �

4
1–
4

�3

since 24 � 16
since 161/4 � 2
since 2�3 � 1–

8

For numbers that are not exact powers of the base, log tables or calculators are needed.

7.3 PROPERTIES OF EXPONENTS AND LOGARITHMS

Assuming a, b� 0; a, b� 1; and x and y are any real numbers:

1. ax · ay � ax�y 4. (ax)y � axy

2.
1
ax � a�x 5. ax · bx � (ab)x

3.
ax

ay � ax�y 6.
ax

bx � �a
b�

x

For a, x, and y positive real numbers, n a real number, and a� 1:

1. loga xy � loga x� loga y 3. loga xn � n loga x

2. loga �
x
y
� loga x� loga y 4. loga �n x �

1
n

loga x

Properties of exponents were treated in Section 1.1 and Problem 1.1. Properties of logarithms are
treated in Example 5 and Problems 7.12 to 7.16.

Table 7.1

x log x x log x x log x x log x

1
2
3
4
5

0.0000
0.3010
0.4771
0.6021
0.6990

6
7
8
9

10

0.7782
0.8451
0.9031
0.9542
1.0000

11
12
13
14
15

1.0414
1.0792
1.1139
1.1461
1.1761

16
17
18
19
20

1.2041
1.2304
1.2553
1.2788
1.3010

EXAMPLE 5. The problems below are kept simple and solved by means of logarithms to illustrate the properties
of logarithms.

a) x � 7 · 2
log x � log 7� log 2
log x � 0.8451� 0.3010
log x � 1.1461

x � 14

b) x � 18� 3
log x � log 18� log 3
log x � 1.2553� 0.4771
log x � 0.7782

x � 6
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c) x � 32

log x � 2 log 3
log x � 2(0.4771)
log x � 0.9542

x � 9

d) x ��3 8
log x � 1–

3 log 8
log x � 1–

3(0.9031)
log x � 0.3010

x � 2

7.4 NATURAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS

The most commonly used base for exponential and logarithmic functions is the irrational number
e. Expressed mathematically,

e� lim
n→��1�

1
n �

n

� 2.71828 (7.1)

Exponential functions to base e are called natural exponential functions and are written y � ex; logarithmic
functions to base e are termed natural logarithmic functions and are expressed as y� loge x or, more
commonly, ln x. Thus ln x is simply the exponent or power to which e must be raised to get x.

As with other exponential and logarithmic functions to a common base, one function is the inverse
of the other, such that the ordered pair (a, b) will belong to the set of ex if and only if (b, a) belongs
to the set of ln x. Natural exponential and logarithmic functions follow the same rules as other
exponential and logarithmic functions and are estimated with the help of tables or the ex and ln x
keys on pocket calculators. See Problems 7.3, 7.4, and 7.6.

7.5 SOLVING NATURAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Since natural exponential functions and natural logarithmic functions are inverses of each other,
one is generally helpful in solving the other. Mindful that ln x signifies the power to which e must be
raised to get x, it follows that:

1. e raised to the natural log of a constant (a� 0), a variable (x� 0), or a function of a variable
[ f(x)� 0] must equal that constant, variable, or function of the variable:

eln a � a eln x � x eln f (x)� f(x) (7.2)

2. Conversely, the natural log of e raised to the power of a constant, variable, or function of a
variable must also equal that constant, variable, or function of the variable:

ln ea � a ln ex � x ln ef(x)� f(x) (7.3)

See Example 6 and Problems 7.18 to 7.22.

EXAMPLE 6. The principles of (7.2) and (7.3) are used below to solve the given equations for x.

a) 5ex�2 � 120

1) Solve algebraically for ex�2,
5ex�2 � 120
ex�2 � 24

2) Take the natural log of both sides to eliminate e.

ln ex�2 � ln 24
From (7.3), x� 2 � ln 24

x � ln 24� 2

Enter 24 on your calculator and press the ln x key to find ln 24 � 3.17805. Then substitute and solve.

x � 3.17805� 2 � 1.17805
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b) 6 ln x� 7 � 12.2

1) Solve algebraically for ln x,

6 ln x � 19.2
ln x � 3.2

2) Set both sides of the equation as exponents of e to eliminate the natural log expression,

eln x� e3.2

From (7.2), x � e3.2

Enter 3.2 on your calculator and press the ex key to find e3.2 � 24.53253 and substitute.

x � 24.53253

Note: On many calculators the ex key is the inverse (shift, or second function) of the ln x key,
and to activate the ex key, one must first press the INV ( Shift , or 2ndF ) key followed by the
ln x key.

7.6 LOGARITHMIC TRANSFORMATION OF NONLINEAR FUNCTIONS

Linear algebra and regression analysis involving ordinary or two-stage least squares which are
common tools in economic analysis assume linear functions or equations. Some nonlinear functions,
such as Cobb-Douglas production functions, can easily be converted to linear functions through simple
logarithmic transformation; others, such as CES production functions, cannot. For example, from the
properties of logarithms, it is clear that given a generalized Cobb-Douglas production function

q � AK�L�

ln q � ln A�� ln K�� ln L (7.4)

which is log-linear. But given the CES production function,

q � A[�K��� (1��)L��]�1/�

ln q � ln A�
1
�

ln [�K��� (1��)L��]

which is not linear even in logarithms because of K�� and L��. Ordinary least-square estimation of the
coefficients in a log transformation of a Cobb-Douglas production function, such as in (7.4), has the
nice added feature that estimates for � and � provide direct measures of the output elasticity of K and
L, respectively, as was proved in Problem 6.56.

Solved Problems

GRAPHS

7.1. Make a schedule for each of the following exponential functions with base a� 1 and then sketch
them on the same graph to convince yourself that (1) the functions never equal zero; (2) they
all pass through (0, 1); and (3) they are all positively sloped and convex.
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a) y � 3x b) y � 4x c) y� 5x

a) b) c)

x

�3
�2
�1

0
1
2
3

y

1––
27

1–
9
1–
3

1
3
9

27

x

�3
�2
�1

0
1
2
3

y

1––
64
1––
16

1–
4

1
4

16
64

x

�3
�2
�1

0
1
2
3

y

1–––
125

1––
25

1–
5

1
5

25
125

Fig. 7-3

7.2. Make a schedule for each of the following exponential functions with 0� a� 1 and then sketch
them on the same graph to convince yourself that (1) the functions never equal zero; (2) they
all pass through (0, 1), and (3) they are all negatively sloped and convex.

a) y � (1–
3)

x � 3�x b) y � (1–
4)

x� 4�x c) y � (1–
5)

x � 5�x

a) b) c)

x

�3
�2
�1

0
1
2
3

y

27
9
3
1
1-
3
1–
9

1––
27

x

�3
�2
�1

0
1
2
3

y

64
16
4
1
1–
4

1––
16
1––
64

x

�3
�2
�1

0
1
2
3

y

125
25
5
1
1–
5

1––
25
1–––

125

Fig. 7-4

7.3. Using a calculator or tables, set up a schedule for each of the following natural exponential
functions y � ekx where k� 0, noting (1) the functions never equal zero; (2) they all pass
through (0, 1), and (3) they are all positively sloped and convex.
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y� 5x

y � 4x

y � 3x

y � 5�x

y � 4�x

y � 3�x



a) y� e0.5x b) y � ex c) y � e2x

a) b) c)

x

�2
�1

0
1
2

y

0.37
0.61
1.00
1.65
2.72

x

�2
�1

0
1
2

y

0.14
0.37
1.00
2.72
7.39

x

�2
�1

0
1
2

y

0.02
0.14
1.00
7.39

54.60

Fig. 7-5

7.4. Set up a schedule, rounding to two decimal places, for the following natural exponential
functions y� ekx where k� 0, noting (1) the functions never equal zero; (2) they all pass
through (0, 1); and (3) they are all negatively sloped and convex.

a) y� e�0.5x b) y � e�x c) y� e�2x

a) b) c)

x

�2
�1

0
1
2

y

2.72
1.65
1.00
0.61
0.37

x

�2
�1

0
1
2

y

7.39
2.72
1.00
0.37
0.14

x

�2
�1

0
1
2

y

54.60
7.39
1.00
0.14
0.02

Fig. 7-6

7.5. Construct a schedule and draw a graph for the following functions to show that one is the mirror
image and hence the inverse of the other, noting that (1) the domain of (a) is the range of (b)
and the range of (a) is the domain of (b); and (2) a logarithmic function with 0� a� 1 is a
decreasing function and convex.

a) y � (1–
2)

x � 2�x b) x � (1–
2)

y or y � log1/2 x

a) b)

x

�3
�2
�1

0
1
2
3

y

8
4
2
1
1–
2
1–
4
1–
8

x

8
4
2
1
1–
2
1–
4
1–
8

y

�3
�2
�1

0
1
2
3

Fig. 7-7
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y � (1–
2)x y � x

y � log1/2x

y � e�2x

y � e�x

y � e�0.5x

y � e2x

y� ex

y� e0.5x



7.6. Given (a) y � ex and (b) y � ln x, and using a calculator or tables, construct a schedule and draw
a graph for each of the functions to show that one function is the mirror image or inverse of the
other, noting that (1) the domain of (a) is the range of (b) while the range of (a) is the domain
of (b), (2) ln x is negative for 0� x� 1 and positive for x� 1; and (3) ln x is an increasing
function and concave.

a) y � ex b) y � ln x

x

�2
�1

0
1
2

y

0.13534
0.36788
1.00000
2.71828
7.38906

x

0.13534
0.36788
1.00000
2.71828
7.38906

y

�2
�1

0
1
2

Fig. 7-8

EXPONENTIAL-LOGARITHMIC CONVERSION

7.7. Change the following logarithms to their equivalent exponential forms:

a) log8 64 � 2

64 � 82

c) log7
1–
7��1
1–
7 � 7�1

b) log5 125 � 3

125 � 53

d) log3
1––

81 ��4
1––
81 � 3�4

e) log36 6 � 1–
2

6 � 361/2

f) log16 2 � 1–
4

2 � 161/4

g) loga y� 6x

y � a6x

h) log2 y � 7x

y � 27x

7.8. Convert the following natural logarithms to natural exponential functions:

a) ln 32 � 3.46574

32 � e3.46574

b) ln 0.8 ��0.22314

0.8 � e�0.22314

c) ln 20 � 2.99573

20 � e2.99573

d) ln 2.5 � 0.91629

2.5 � e0.91629

e) ln y ��4x

y � e�4x

f) ln y � 2t� 1

y � e2t�1

7.0. Change the following exponential forms to logarithmic forms:

a) 81 � 92

log9 81 � 2

b) 32 � 25

log2 32 � 5
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y� ex y� x

y� ln x



c) 1–
9 � 3�2

log3
1–
9 � �2

(d) 1––
16� 2�4

log2
1––
16 � �4

e) 5 � 1251/3

log125 5 � 1–
3

f) 11 � 1211/2

log121 11 � 1–
2

g) 27 � 93/2

log9 27 � 3–
2

h) 64 � 2563/4

log256 64 � 3–
4

7.10. Convert the following natural exponential expressions to equivalent natural logarithmic
forms:

a) 4.8 � e1.56862

ln 4.8 � 1.56862

b) 15 � e2.70805

ln 15 � 2.70805

c) 0.6 � e�0.51083

ln 0.6 � �0.51083

d) 130 � e4.86753

ln 130 � 4.86753

e) y� e(1/2)t

ln y � 1–
2t

f) y � et�5

ln y � t� 5

7.11. Solve the following for x, y, or a by finding the equivalent expression:

a) y � log30 900

900 � 30y

y � 2

b) y � log2
1––

32

1––
32 � 2y

y � �5

c) log4 x � 3

x � 43

x � 64

d) log81 x � 3–
4

x � 813/4

x � 27

e) loga 27 � 3

27 � a3

a � 271/3

a � 3

f) loga 4 � 2–
3

4 � a2/3

a � 43/2

a � 8

g) loga 125 � 3–
2

125 � a3/2

a � 1252/3

a � 25

h) loga 8 � 3–
4

8 � a3/4

a � 84/3

a � 16

PROPERTIES OF LOGARITHMS AND EXPONENTS

7.12. Use the properties of logarithms to write the following expressions as sums, differences, or
products:

a) loga 56x

loga 56x � loga 56� logax

b) loga 33x4

loga 33x4 � loga 33� 4 loga x

c) loga x2 y3

loga x2 y3 � 2 loga x� 3 loga y

d) loga u5 v�4

logau5 v�4 � 5 loga u� 4 loga v
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e) loga
6x
7y

loga

6x

7y
� loga 6x� loga 7y

� loga 6� loga x� (loga 7� loga y)
� loga 6� loga x� loga 7� loga y

f) loga
x7

y4 g) loga�
3

x

loga

x7

y4 � 7 loga x� 4 loga y loga �3
x � 1–

3 loga x

7.13. Use of the properties of logarithms to write the following natural logarithmic forms as sums,
differences, or products:

a) ln 76x3

ln 763 � ln 76� 3 ln x

b) ln x5 y2

ln x5 y2 � 5 ln x� 2 ln y

c) ln
x4

y6 d) ln
8x
9y

ln
x4

y6 � 4 ln x� 6 ln y ln
8x

9y
� ln 8x� ln 9y

� ln 8� ln x� (ln 9� ln y)
� ln 8� ln x� ln 9� ln y

e) ln �
4

x

ln �4
x � 1–

4 ln x

f) ln(x
5

�y)

ln(x
5�y) � 5 ln x� 1–

2 ln y

g) ln
3�

5
x

�y
h) ln 	x7

y4

ln
3�5

x

�y
� ln 3� 1–

5 ln x� 1–
2 ln y ln 	x7

y4 �
1–
2(7 ln x� 4 ln y)

7.14. Use the properties of exponents to simplify the following exponential expressions, assuming a,
b� 0 and a� b:

a) ax · ay

ax · ay � ax�y

b) a4x · a5y

a4x · a5y � a4x�5y

c)
a2x

a3y d)
ax

bx

a2x

a3y � a2x�3y ax

bx � �a

b�
x

e) �a7x f) (ax)4y

�a7x � (a7x)1/2� a(7/2)x (ax)4y � a4xy

7.15. Simplify the following natural exponential expressions:

a) e5x · e2y b) (e3x)5

e5x · e2y � e5x�2y (e3x)5 � e15x
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c)
e8x

e6x d)
e4x

e7x

e8x

e6x � e8x�6x � e2x e4x

e7x � e4x�7x � e�3x �
1

e3x

7.16. Simplify the following natural logarithmic expressions:

a) ln 8� ln x b ln x5� ln x3

ln 8� ln x � ln 8x
ln x5� ln x3 � ln

x5

x3 � ln x2 � 2 ln x

c) ln 12� ln 5� ln 6 d) ln 7� ln x� ln 9

ln 12� ln 5� ln 6 � ln
12 · 5

6
� ln 10 ln 7� ln x� ln 9 � ln

7 · 9
x
� ln

63
x

e) 1–
2 ln 81 f) 5 ln 1–

2

1–
2 ln 81 � ln 811/2� ln 9 5 ln 1–

2 � ln (1–
2)

5 � ln 1––
32

g) 1–
3 ln 27� 4 ln 2

1–
3 ln 27� 4 ln 2 � ln 271/3� ln 24 � ln (3 · 16) � ln 48

h) 2 ln 4� 1–
3 ln 8

2 ln 4� 1–
3 ln 8 � ln 42� ln 81/3 � ln 16––

2 � ln 8

7.17. Simplify each of the following exponential expressions:

a) e3 ln x

e3 ln x � eln x3
But from (7.2), eln f(x)� f(x), so

e3 ln x � x3

b) e4 ln x�5 ln y

e4 ln x�5 ln y � eln x4
· eln y5

� x4 y5

c) e(1/2) ln 6x

e(1/2) ln 6x � eln (6x)1/2 � (6x)1/2 ��6x

d) e4 ln x�9 ln y

e4 ln x�9 ln y �
eln x4

eln y9 �
x4

y9

SOLVING EXPONENTIAL AND LOGARITHMIC FUNCTIONS

7.18. Use the techniques from Section 7.5 to solve the following natural exponential functions
for x:

a) 3e5x � 8943

1) Solve algebraically for e5x.

e5x � 2981
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2) Then take the natural log of both sides to eliminate e.

ln e5x � ln 2981

From (7.3), 5x � ln 2981

To find the value of ln 2981, enter 2981 on a calculator and press the ln x key to find
ln 2981 � 8.00001 � 8. Then substitute and solve algebraically.

5x � 8
x � 1.6

b) 4e3x�1.5 � 360

1) Solve for e3x�1.5. e3x�1.5 � 90

2) Take the natural log. ln e3x�1.5 � ln 90

From (7.3), 3x� 1.5 � ln 90

For ln 90, enter 90 on a calculator and press the ln x key to find ln 90 � 4.49981 � 4.5. Substitute and
solve.

3x� 1.5 � 4.5 x � 2

c) 1–
2e

x2
� 259

1) Solve for ex2
ex2
� 518

2) Take the natural log. ln ex2
� ln 518

From (7.3), x2� 6.24998 � 6.25 x � �2.5

7.19. Using the techniques of Section 7.5, solve the following natural logarithmic functions for x:

a) 5 ln x� 8 � 14

1) Solve algebraically for ln x.

5 ln x � 6 ln x � 1.2

2) Set both sides of the equation as exponents of e to eliminate the natural log.

eln x � e1.2

From (7.2), x � e1.2

To find the value of e1.2, enter 1.2 on a calculator, press the ex key to find e1.2 � 3.32012, and
substitute. If the ex key is the inverse of the ln x key, enter 1.2, then press the lNV key
followed by the ln x key.

x � 3.32012 � 3.32

b) ln (x� 4)2 � 3

1) Simplify with the laws of logs, then solve for ln x.

2 ln (x� 4) � 3
ln (x� 4) � 1.5

2) eln(x�4) � e1.5

From (7.2), x� 4 � e1.5

Using a calculator, x� 4 � 4.48169
x � 4.48169� 4 � 0.48169
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c) In �x� 34 � 2.55

1) Simplify and solve, 1–
2 ln (x� 34) � 2.55

ln (x� 34) � 5.1

2) From (7.2) x� 34 � e5.1 � 164
x � 130

7.20. Solve each of the following equations for x in terms of y:

a) loga x � y3 b) loga x � loga 3� loga y

x � ay3
x � 3y since addition in logs � multiplication in algebra

c) ln x � 3y d) ln x � loga y e) loga x� ln y

x � e3y x � eloga y x � aln y

f) y� gehx

To solve for x when x is an exponent in a natural exponential function, take the natural log of
both sides and solve algebraically, as follows:

ln y � ln g� hx ln e � ln g� hx

x �
ln y� ln g

h

g) y� aex�1

ln y � ln a� (x� 1) ln e � ln a� x� 1
x � ln y� ln a� 1

h) y� p(1� i)x

When x is an exponent in an exponential function with a base other than e, take the common log
of both sides and solve algebraically.

log y � log p� x log(1� i)

x �
log y� log p

log(1� i)

7.21. Use common logs to solve each of the following equations:

a) y� 625(0.8)

1) Take the common log of both sides of the equation, using the properties of logarithms from
Section 7.3.

log y � log 625� log 0.8

To find the logs of 625 and 0.8, enter each number individually on the calculator, press the
log x key to get the common log of each number, and perform the required arithmetic.

log y � 2.79588� (�0.09691) � 2.69897

2) Since log y � 2.69897 indicates that 10 must be raised to the 2.69897 power to get y, to find
the antilogarithm of 2.69897 and solve for y, enter 2.69897 on a calculator, press the 10x key
to find that 102.69897 � 500, and substitute. If the 10x key is the inverse of the log x key, enter
2.69897 and press the INV key followed by the log x key.

y � antilog 2.69897 � 102.69897 � 500
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b) y� 40–––
100

1) log y � log 40� log 100

2) log y � 1.60206� 2 � �0.39794

y � antilog (�0.39794) � 10�0.39794 � 0.4

c) y�
130
0.25

1) log y � log 130� log 0.25

2) log y � 2.11394� (�0.60206) � 2.71600

y � antilog 2.71600 � 102.71600 � 519.996 � 520

d) y� (1.06)10

1) log y � 10 log 1.06

2) log y � 10(0.02531) � 0.2531

y � antilog 0.2531 � 100.2531 � 1.791

e) y� 10240.2

1) log y � 0.2 log 1024

2) log y � 0.2(3.0103) � 0.60206

y � antilog 0.60206 � 100.60206 � 4

f) y��
5

1024

1) log y � 1–
5 log 1024

2) log y � 1–
5(3.0103) � 0.60206

y � antilog 0.60206 � 100.60206 � 4

The answer is the same as in part (e) because y � 10241/5 � 10240.2� 4. Taking the fifth root
is the same thing as raising to the 0.2 or one-fifth power. in one case the log is divided by
5; in the other, it is multiplied by 0.2.

7.22. Use natural logs to solve the following equations:

a) y � 12.53

1) ln y � 3 ln 12.5

To find the natural log of 12.5, enter 12.5 on a calculator and press the ln x key to find
ln 12.5 � 2.52573. Then substitute.

2) ln y � 3(2.52573) � 7.57719

Since ln y � 7.57719 indicates that e must be raised to the 7.57719 power to get y, to find the
antilogarithme of 7.57719 and solve for y, enter 7.57719 on a calculator press the ex key to
find that e7.57719 � 1953.1 and substitute. If the ex key is the inverse of the ln x key, enter
7.57719 and press the INV key followed by the ln x key.

y � antiloge 7.57719 � e7.57719 � 1953.1

b) y��
4

28,561

1) ln y � 1–
4 ln 28,561

2) ln y � 1–
4(10.25980) � 2.56495

y � antiloge 2.56495 � e2.56495 � 13
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CHAPTER 8

Exponential and
Logarithmic
Functions in

Economics

8.1 INTEREST COMPOUNDING

A given principal P compounded annually at an interest rate i for a given number of years t will
have a value S at the end of that time given by the exponential function

S � P(1� i)t (8.1)

If compounded m times a year for t years,

S � P�1�
i

m �
mt

(8.2)

If compounded continuously at 100 percent interest for 1 year,

S � P lim
m→� �1�

1
m �

m

� P(2.71828) � Pe

For interest rates r other than 100 percent and time periods t other than 1 year,

S � Pert (8.3)

For negative growth rates, such as depreciation or deflation, the same formulas apply, but i and r
are negative. See Example 1 and Problems 8.1 to 8.6 and 8.9 to 8.17.

EXAMPLE 1. Find the value of $100 at 10 percent interest for 2 years compounded:

1. Annually, S � P(1� i)t.

S � 100(1� 0.10)2� 121
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2. Semiannually, S � P[1� (i/m)]mt, where m � 2 and t � 2.

S � 100�1�
0.10

2 �
2(2)

� 100(1� 0.05)4

To find the value of (1.05)4, enter 1.05 on a calculator, press the yx key, enter 4, and hit the � key to
find (1.05)4 � 1.2155. Then substitute.

S � 100(1.2155) � 121.55

3. Continuously, S � Pert.

S � 100e0.1(2)� 100e0.2

For e0.2, enter 0.2 on a calculator, press the ex key to find that e0.2� 1.2214, and substitute. If the ex key
is the inverse (shift, or second function) of the ln x key, enter 0.2 and press the INV ( Shift , or 2nd F )
key followed by the ln x key.

S � 100(1.2214) � 122.14

8.2 EFFECTIVE VS. NOMINAL RATES OF INTEREST

As seen in Example 1, a given principal set out at the same nominal rate of interest will earn
different effective rates of interest which depend on the type of compounding. When compounded
annually for 2 years, $100 will be worth $121; when compounded semiannually, S � $121.55; when
compounded continuously, S � $122.14.

To find the effective annual rate of interest ie for multiple compounding:

P(1� ie)t � P�1�
i

m �
mt

Dividing by P and taking the tth root of each side,

1� ie� �1�
i

m �
m

ie� �1�
i

m �
m

� 1 (8.4)

To find the effective annual rate of interest for continuous compounding:

1� ie� er

ie� er� 1 (8.5)

See Example 2 and Problems 8.7 and 8.8.

EXAMPLE 2. Find the effective annual rate of interest for a nominal interest rate of 10 percent when
compounded for 2 years (1) semiannually and (2) continuously.

1. Semiannually, ie � �1�
i

m �
m

� 1 � (1.05)2� 1

For (1.05)2, enter 1.05 on a calculator, press the x2 key, or press the yx key, and then enter 2 followed
by the � key, to find (1.05)2� 1.1025, and substitute.

ie � 1.1025� 1 � 0.1025 � 10.25%
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2. Continuously, ie� er� 1 � e0.1� 1

To find the value of e0.1, enter 0.1 on a calculator, press the ex key to learn e0.1 � 1.10517, and
substitute.

ie � 1.10517� 1 � 0.10517 � 10.52%

8.3 DISCOUNTING

A sum of money to be received in the future is not worth as much as an equivalent amount of
money in the present, because the money on hand can be lent at interest to grow to an even larger sum
by the end of the year. If present market conditions will enable a person to earn 8 percent interest
compounded annually, $100 will grow to $108 by the end of the year. And $108 1 year from now,
therefore, is worth (has a present value of) only $100 today.

Discounting is the process of determining the present value P of a future sum of money S. If under
annual compounding

S � P(1� i)t

then P �
S

(1� i)t � S(1� i)�t (8.6)

Similarly, under multiple compoundings P � S[1� (i/m)]�mt, and under continuous compounding
P � Se�rt. When finding the present value, the interest rate is called the discount rate. See Example 3
and Problems 8.18 to 8.22.

EXAMPLE 3. The present value of a 5-year bond with a face value of $1000 and no coupons is calculated below.
It is assumed that comparable opportunities offer interest rates of 9 percent under annual compounding.

P � S(1� i)�t � 1000(1� 0.09)�5

To find the value of (1.09)�5, enter 1.09 on a calculator, press the yx key, and enter �5 by first entering 5 and then
pressing the �/� key followed by the � key to find (1.09)�5 � 0.64993, and substitute.

P � 1000(0.64993) � 649.93

Thus, a bond with no coupons promising to pay $1000 5 years from now is worth approximately $649.93 today
since $649.93 at 9 percent interest will grow to $1000 in 5 years.

8.4 CONVERTING EXPONENTIAL TO NATURAL EXPONENTIAL FUNCTIONS

In Section 8.1 we saw that (1) exponential functions are used to measure rates of discrete growth,
i.e., growth that takes place at discrete intervals of time, such as the end of the year or the end of the
quarter as in ordinary interest compounding or discounting; and (2) natural exponential functions are
used to measure rates of continuous growth, i.e., growth that takes place constantly rather than at
discrete intervals, as in continuous compounding, animal development, or population growth. An
exponential function S � P(1� i/m)mt expressing discrete growth can be converted to an equivalent
natural exponential function S � Pert measuring continuous growth, by setting the two expressions
equal to each other, and solving for r, as follows:

P�1�
i

m �
mt

� Pert

By canceling P’s,

�1�
i

m �
mt

� ert
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Taking the natural log of each side,

ln�1�
i

m �
mt

� ln ert

mt ln�1�
i

m � � rt

Dividing both sides by t,

r �m ln�1�
i

m �

Thus, S � P�1�
i

m �
mt

� Pem ln (1�i/m)t (8.7)

See Examples 4 and 5 and Problems 8.37 to 8.42.

EXAMPLE 4. A natural exponential function can be used to determine the value of $100 at 10 percent interest
compounded semiannually for 2 years, as shown below.

S � Pert

where r �m ln(1� i/m). Thus,

r � 2 ln�1�
0.10

2 � � 2 ln 1.05 � 2(0.04879) � 0.09758

Substituting above,

S � 100e(0.09758)2 � 100e0.19516

Using a calculator here and throughout,

S � 100(1.2155) � 121.55

as was found in Example 1.
Note that with natural exponential functions, the continuous growth is given by r in Pert. Thus, the continuous

growth rate of $100 at 10 percent interest compounded semiannually is 0.09758, or 9.758 percent a year. That is
to say, 9.758 percent interest at continuous compounding is equivalent to 10 percent interest when compounded
semiannually.

EXAMPLE 5. A small firm with current annual sales of $10,000 projects a 12 percent growth in sales annually.
Its projected sales in 4 years are calculated below in terms of an ordinary exponential function.

S � 10,000(1� 0.12)4

� 10,000(1.5735) � 15,735

EXAMPLE 6. The sales projections specified in Example 5 are recalculated below, using a natural exponential
function with r � m ln(1� i/m) and m � 1.

r � ln 1.12 � 0.11333
S � 10,000e0.11333(4)� 10,000(1.5735) � 15,735

8.5 ESTIMATING GROWTH RATES FROM DATA POINTS

Given two sets of data for a function�sales, costs, profits�growing consistently over time, annual
growth rates can be measured and a natural exponential function estimated through a system of
simultaneous equations. For example, if sales volume equals 2.74 million in 1996 and 4.19 million in
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2001, let t � 0 for the base year 1996, then t � 5 for 2001. Express the two sets of data points in terms
of a natural exponential function S � Pert, recalling that e0 � 1.

2.74 � Per(0)� P (8.8)

4.19 � Per(5) (8.9)

Substitute P � 2.74 from (8.8) in (8.9) and simplify algebraically.

4.19 � 2.74e5r

1.53 � e5r

Take the natural log of both sides.

ln 1.53�
0.42527 �

r �
S �

ln e5r� 5r
5r
0.08505 � 8.5%
2.74e0.085tSubstituting,

With r � 0.085, the rate of continuous growth per year is 8.5 percent. To find the rate of discrete growth
i, recall that

r �m ln�1�
i

m�
Thus, for annual compounding with m� 1,

0.085 �
1� i �

i �

ln(1� i)
antiloge 0.085 � e0.085 � 1.08872
1.08872� 1 � 0.08872 � 8.9%

See Example 7 and Problems 8.43 to 8.45.

EXAMPLE 7. Given the original information above, an ordinary exponential function for growth in terms of
S � P(1� i)t can also be estimated directly from the data.

Set the data in ordinary exponential form.

2.74 � P(1� i)0 � P (8.10)

4.19 � P(1� i)5 (8.11)

Substitute P � 2.74 from (8.10) in (8.11) and simplify.

4.19 � 2.74(1� i)5

1.53 � (1� i)5

Take the common log of both sides.

log 1.53 �
1–
5(0.18469) �
log(1� i) �

5 log(1� i)
log(1� i)
0.03694

1� i � antilog 0.03694 � 100.03694 � 1.08878
i � 1.08878� 1 � 0.08878 � 8.9%

Substituting, S � 2.74(1� 0.089)t
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Solved Problems

COMPOUNDING INTEREST

8.1. Given a principal P of $1000 at 6 percent interest i for 3 years, find the future value S when the
principal is compounded (a) annually, (b) semiannually, and (c) quarterly.

a) From (8.1), S � P(1� i)t� 1000(1� 0.06)3

For (1.06)3, enter 1.06 on a calculator, press the yx key, enter 3 followed by the � key to find
(1.06)3 � 1.19102, then substitute.

S � 1000(1.19102) � 1191.02

b) From (8.2), S � P�1�
i

m �
mt

� 1000�1�
0.06

2 �
2(3)

� 1000(1.03)6

For (1.03)6, enter 1.03, hit the yx key and then 6, and substitute.

S � 1000(1.19405) � 1194.05

c) S � 1000�1�
0.06

4 �
4(3)

� 1000(1.015)12

Enter 1.015, hit the yx key then 12, and substitute.

S � 1000(1.19562) � 1195.62

8.2. Redo Problem 8.1, given a principal of $100 at 8 percent for 5 years.

a) S � 100(1.08)5

� 100(1.46933) � 146.93

b) S � 100 �1�
0.08

2 �
2(5)

� 100(1.04)10

� 100(1.48024) � 148.02

c) S � 100 �1�
0.08

4 �
4(5)

� 100(1.02)20

� 100(1.48595) � 148.60

8.3. Redo Problem 8.1, given a principal of $1250 at 12 percent for 4 years.

a) S � 1250(1.12)4 � 1250(1.57352) � 1966.90

b) S � 1250(1.06)8 � 1250(1.59385) � 1992.31

c) S � 1250(1.03)16 � 1250(1.60471) � 2005.89

8.4. Find the future value of a principal of $100 at 5 percent for 6 years when compounded (a)
annually and (b) continually.

a) S � 100(1.05)6 � 100(1.34010) � 134.01

b) From (8.3), S � Pert � 100e0.05(6)� 100e0.3

For e0.3, enter 0.3, hit the ex key, and substitute.

S � 100(1.34986) � 134.99
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8.5. Redo Problem 8.4, given a principal of $150 at 7 percent for 4 years.

a) S � 150(1.07)4 � 150(1.31080) � 196.62

b) S � 150e0.07(4)� 150e0.28� 150(1.32313) � 198.47

8.6. From Problems 8.4 and 8.5, use natural logs to find (a) S � 100e0.3 and (b) S � 150e0.28.

a) ln S � ln 100� 0.3 ln e � 4.60517� 0.3(1) � 4.90517
S � antiloge 4.90517 � e4.90517 � 134.99

b) ln S � ln 150� 0.28 ln e � 5.01064� 0.28 � 5.29064
S � antiloge 5.29064 � e5.29064 � 198.47

8.7. Find the effective annual interest rate on $100 at 6 percent compounded (a) semiannually and
(b) continuously.

a) From (8.4), ie � �1�
i

m �
m

� 1

� 1.0609� 1 � 0.06090 � 6.09%

b) From (8.5), ie � er� 1 � e0.06� 1
� 1.06184� 1 � 0.06184 � 6.18%

8.8. Calculate the rate of effective annual interest on $1000 at 12 percent compounded (a) quarterly
and (b) continuously.

a) ie � �1�
i

m �
m

� 1 � (1.03)4� 1

� 1.12551� 1 � 0.12551 � 12.55%

b) ie � er� 1 � e0.12� 1
� 1.12750� 1 � 0.12750 � 12.75%

TIMING

8.9. Determine the interest rate needed to have money double in 10 years under annual
compounding.

S � P(1� i)t

If money doubles, S � 2P. Thus, 2P � P(1� i)10.
Dividing by P, and taking the tenth root of each side,

2 � (1� i)10 (1� i) ��10
2

For �10
2, enter 2, press the �x

y key, then 10 followed by the � key, and substitute. If the �x
y is the inverse

(shift, or second function) of the yx key, enter 2, hit the INV ( Shift , or 2ndF ) key followed by the yx

key, and then enter 10 and hit the � key.

1� i �

i �

1.07177
1.07177� 1 � 0.07177 � 7.18%

Note that since �10
2 � 21/10� 20.1, �10

2 or any root can also be found with the yx key.
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8.10. Determine the interest rate needed to have money double in 6 years when compounded
semiannually.

S � P�1�
i

m �
mt

2P � P�1�
i

2 �
2(6)

2 �
1� 0.5i �

ln (1� 0.5i) �
1� 0.5i �

0.5i �

i �

1(1� 0.5i)12

�12
2

1––
12 ln 2 � 1––

12(0.69315) � 0.05776
e0.05776 � 1.05946
1.05946� 1 � 0.05946
0.11892 � 11.89%

8.11. What interest rate is needed to have money treble in 10 years when compounded quarterly?

S � P�1�
i

4 �
4(10)

If money trebles,

3P � P�1�
i

4 �
40

3 �
1� 0.25i �

(1� 0.25i)40

�40
3

ln (1� 0.25i) �
1
40

ln 3 � 0.02747

1� 0.25i � e0.02747 � 1.02785

i � 0.1114 � 11.14%

8.12. At what interest rate will money treble if compounded continuously for 8 years?

S � Pert

3P � Per(8)

ln 3 � ln e8r

1.09861 � 8r r � 0.1373 � 13.73%

8.13. At what interest rate will money quintuple if compounded continuously for 25 years?

S � Pert

5 � e25r

ln 5 � 25r

1.60944 � 25r r � 0.0644 � 6.44%

8.14. How long will it take money to double at 12 percent interest under annual compounding?
Round answers to two decimal places.

S � P(1� i)t 2 � (1� 0.12)t

ln 2 � t ln 1.12 0.69315� 0.11333t
t � 6.12 years
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8.15. How long will it take money to increase to 21–
2 times its present value when compounded

semiannually at 8 percent?

S � P�1�
0.08

2 �
2t

2.5 � (1.04)2t

ln 2.5 � 2t ln 1.04 0.91629 � 2(0.03922) t

t � 11.68 years

8.16. How long will it take money to double at 5 percent interest when compounded quarterly?

S � P�1�
0.05

4 �
4t

2 � (1.0125)4t

ln 2 � 4t ln 1.0125 0.69315 � 4(0.01242) t

t � 13.95 years

8.17. How long will it take money (a) to quadruple when compounded continuously at 9 percent and
(b) to treble at 12 percent?

a) S � Pert

ln 4 � 0.09t

t � 15.4 years

4 � e0.09t

1.38629 � 0.09t

b) S � Pert

ln 3 � 0.12t

t � 9.16 years

3 � e0.12t

1.09861 � 0.12t

DISCOUNTING

8.18. Find the present value of $750 to be paid 4 years from now when the prevailing interest rate
is 10 percent if interest is compounded (a) annually and (b) semiannually.

a) Using (8.6) and its modifications throughout,

P � S(1� i)�t � 750(1.10)�4

For (1.10)�4, enter 1.10, hit the yx key, enter 4, then press the �/� key to find (1.10)�4� 0.68301,
and substitute.

P � 750(0.68301) � 512.26

b) P � S�1�
i

m �
�mt

� 750(1.05)�8

� 750(0.67684) � 507.63

8.19. Redo Problem 8.18, for $600 to be paid 7 years hence at a prevailing interest rate of 4
percent.

a) P � 600(1.04)�7

� 600(0.75992) � 455.95
b) P � 600(1.02)�14

� 600(0.75788) � 454.73

8.20. Find the present value of $500 in 3 years at 8 percent when interest is compounded (a) annually
and (b) continuously.

a) P � 500(1.08)�3

� 500(0.79383) � 396.92
b) P � Se�rt � 500e�0.08(3) � 500e�0.24

� 500(0.78663) � 393.32
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8.21. Redo Problem 8.20, for $120 in 5 years at 9 percent.

a) P � 120(1.09)�5

� 120(0.64993) � 77.99
b) P � 120e�0.09(5) � 120e�0.45

� 120(0.63763) � 76.52

8.22. Use natural logs to solve Problem 8.21(b).

P � 120e�0.45

ln P � ln 120� (�0.45) � 4.78749� 0.45 � 4.33749
P � antiloge 4.33749 � e4.33749 � 76.52

EXPONENTIAL GROWTH FUNCTIONS

8.23. A firm with sales of 150,000 a year expects to grow by 8 percent a year. Determine the expected
level of sales in 6 years.

S � 150,000(1.08)6

� 150,000(1.58687) � 238,031

8.24. Profits are projected to rise by 9 percent a year over the decade. With current profits of 240,000,
what will the level of profits be at the end of the decade?

� � 240,000(1.09)10

� 240,000(2.36736) � 568,166

8.25. The cost of food has been increasing by 3.6 percent a year. What can a family with current food
expenditures of $200 a month be expected to pay for food each month in 5 years?

F � 200(1.036)5

� 200(1.19344) � 238.69

8.26. If the cost of living had continued to increase by 12.5 percent a year from a base of 100 in 1993,
what would the cost-of-living index be in 2000?

C � 100(1.125)7

� 100(2.28070) � 228.07

8.27. A discount clothing store reduces prices by 10 percent each day until the goods are sold. What
will a $175 suit sell for in 5 days?

P � 175(1� 0.10)5

� 175(0.9)5 � 175(0.59049) � 103.34

8.28. A new car depreciates in value by 3 percent a month for the first year. What is the book value
of a $6000 car at the end of the first year?

B � 6000(0.97)12

� 6000(0.69384) � 4163.04

8.29. If the dollar depreciates at 2.6 percent a year, what will a dollar be worth in real terms 25 years
from now?

D � 1.00(0.974)25

� 1.00(0.51758) � 0.5176 or 51.76¢
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8.30. The cost of an average hospital stay was $500 at the end of 1989. The average cost in 1999 was
$1500. What was the annual rate of increase?

1500 �
3 �

1� i �

500(1� i)10

(1� i)10

�10
3

For �10
3, enter 3, press the �x

y key then 10, and substitute.

1� i � 1.11612 i � 0.11612 � 11.6%

8.31. A 5-year development plan calls for boosting investment from 2.6 million a year to 4.2 million.
What average annual increase in investment is needed each year?

4.2 �
1.615 �
1� i �

i �

2.6(1� i)5

(1� i)5

�5
1.615 � 1.10061

0.10061 � 10%

8.32. A developing country wishes to increase savings from a present level of 5.6 million to 12 million.
How long will it take if it can increase savings by 15 percent a year?

12 � 5.6(1.15)t

To solve for an exponent, use a logarithmic transformation

ln 12 �
2.48491 �

0.13976t �

ln 5.6� t ln 1.15
1.72277� 0.13976t

0.76214 t � 5.45 years

8.33. Population in many third-world countries is growing at 3.2 percent. Calculate the population 20
years from now for a country with 1,000,000 people.

Since population increases continually over time, a natural exponential function is needed.

P � 1,000,000e0.032(20) � 1,000,000e0.64

� 1,000,000(1.89648) � 1,896,480

8.34. If the country in Problem 8.33 reduces its population increase to 2.4 percent, what will the
population be in 20 years?

P � 1,000,000e0.024(20) � 1,000,000e0.48

� 1,000,000(1.61607) � 1,616,070

8.35. If world population grows at 2.6 percent, how long will it take to double?

2 � e0.026t

ln 2 � 0.026t

0.69315 � 0.026t t � 26.66 years

8.36. If arable land in the Sahel is eroding by 3.5 percent a year because of climatic conditions, how
much of the present arable land A will be left in 12 years?

P � Ae�0.035(12)� Ae�0.42

� 0.657047A or 66%
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CONVERTING EXPONENTIAL FUNCTIONS

8.37. Find the future value of a principal of $2000 compounded semiannually at 12 percent for 3
years, using (a) an exponential function and (b) the equivalent natural exponential function.

a) S � P�1�
i

m �
mt

� 2000�1�
0.12

2 �
2(3)

� 2000(1.06)6� 2000(1.41852) � 2837.04

b) S � Pert

where r � m ln (1� i/m) � 2 ln 1.06 � 2(0.05827) � 0.11654.

Thus, S � 2000e0.11654(3) � 2000e0.34962 � 2000(1.41853) � 2837.06*

8.38. Redo Problem 8.37 for a principal of $600 compounded annually at 9 percent for 5 years.

a) S � 600(1.09)5 � 600(1.53862) � 923.17

b) S � Pert, where r � ln 1.09 � 0.08618. Thus,

S � 600e0.08618(5) � 600e0.4309 � 600(1.53864) � 923.18*

8.39. Redo Problem 8.37 for a principal of $1800 compounded quarterly at 8 percent interest for 21–
2

years.

a) S � 1800(1.02)10

� 1800(1.21899) � 2194.18
b) r � 4 ln 1.02 � 4(0.01980) � 0.07920

S � 1800e0.07920(2.5) � 1800e0.19800

� 1800(1.21896) � 2194.13*

8.40. Find the equivalent form under annual discrete compounding for S � Pe0.07696t.

r � m ln �1�
i

m �
Since compounding is annual, m � 1

0.07696 � ln (1� i)
1� i � antiloge 0.07696 � 1.08

i � 0.08
S � P(1.08)tThus,

8.41. Find the equivalent form under semiannual discrete compounding for Pe0.09758t.

r � 2 ln (1� 0.5i)
0.09758 � 2 ln (1� 0.5i)

1� 0.5i � antiloge 0.04879 � 1.05
0.5i � 0.05 i � 0.10

S � P(1.05)2tThus,

8.42. Find the equivalent form for S � Pe0.15688t under quarterly compounding.

r � 4 ln (1� 0.25i)
1–
4(0.15688) � ln (1� 0.25i)

1� 0.25i � antiloge 0.03922 � 1.04
i � 0.16

S � P(1.04)4t
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ESTABLISHING EXPONENTIAL FUNCTIONS FROM DATA

8.43. An animal population goes from 3.5 million in 1997 to 4.97 million in 2001. Express population
growth P in terms of a natural exponential function and determine the rate of growth.

3.50 � P0 er(0) � P0 (8.12)

4.97 � P0 er(4) (8.13)

Substitute P0 � 3.50 from (8.12) in (8.13) and simplify.

4.97 � 3.50e4r

1.42 � e4r

Take the natural log of both sides.

ln 1.42 �
0.35066 �

r �

ln e4r � 4r

4r

0.08767 � 8.8%

Thus, P � 3.50e0.088t r � 8.8%

8.44. Costs C of a government program escalate from 5.39 billion in 1995 to 10.64 billion in 2001.
Express costs in terms of an ordinary exponential function, and find the annual rate of
growth.

5.39 � C0(1� i)0� C0 (8.14)

10.64 � C0(1� i)6 (8.15)

Substitute C0 � 5.39 from (8.14) in (8.15) and simplify.

10.64 � 5.39(1� i)6

1.974 � (1� i)6

Take the common log of both sides.

log 1.974 �
1–
6(0.29535) �
log (1� i) �

6 log (1� i)
log (1� i)
0.04923

1� i � antilog 0.04923 � 100.04923 � 1.12
i � 1.12� 1 � 0.12 � 12%

C � 5.39(1� 0.12)t i � 12%Hence,

8.45. Redo problem 8.44, given C� 2.80 in 1991 and C� 5.77 in 2001.

2.80 � C0(1� i)0� C0 (8.16)

5.77 � C0(1� i)10 (8.17)

Substitute C0 � 2.80 in (8.17) and simplify.

5.77 � 2.80(1� i)10

2.06 � (1� i)10

Take the logs. log 2.06 �
1––
10(0.31387) �
log (1� i) �

10 log (1� i)
log (1� i)
0.03139

1� i � antilog 0.03139 � 100.03139 � 1.07495
i � 1.07495� 1 � 0.07495 � 7.5%

Hence, C � 2.80(1� 0.075)t i � 7.5%
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CHAPTER 9

Differentiation of
Exponential and

Logarithmic
Functions

9.1 RULES OF DIFFERENTIATION

The rules of exponential and logarithmic differentiation are presented below, illustrated in
Examples 1 to 4, and treated in Problems 9.1 to 9.8. Selected proofs for the rules are offered in
Problems 9.35 to 9.40.

9.1.1 The Natural Exponential Function Rule

Given f(x) � eg(x), where g(x) is a differentiable function of x, the derivative is

f �(x) � eg(x) · g�(x) (9.1)

In short, the derivative of a natural exponential function is equal to the original natural exponential
function times the derivative of the exponent.

EXAMPLE 1. The derivatives of each of the natural exponential functions below are found as follows:

1. f(x) � ex

Let g(x) � x, then g�(x) � 1. Substituting in (9.1),

f �(x) � ex · 1 � ex

The derivative of ex is simply ex, the original function itself.

2. f(x) � ex2

Since g(x) � x2, then g�(x) � 2x. Substituting in (9.1),

f �(x) � ex2
· 2x � 2xex2
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3. f(x) � 3e7�2x

Here g(x) � 7� 2x, so g�(x) � �2. From (9.1),

f �(x) � 3e7�2x ·�2 � �6e7�2x

Evaluating the slope of this function at x � 4,

f �(4) � �6e7�2(4)� �6e�1 � �6� 1
2.71828 � � �2.2

See also Problem 9.1.

9.1.2 The Exponential Function Rule for Base a Other Than e

Given f(x) � ag(x), where a� 0, a� 1, and g(x) is a differentiable function of x, the derivative is

f �(x) � ag(x) · g�(x) · ln a (9.2)

The derivative is simply the original function times the derivative of the exponent times the natural
log of the base.

EXAMPLE 2. The exponential function rule for base a is demonstrated in the following cases:

1. f(x) � a1�2x. Let g(x) � 1� 2x, then g�(x) � �2. Substituting in (9.2),

f �(x) � a1�2x ·�2 · ln a � �2a1�2x ln a

2. y � ax. Here g(x) � x and g�(x) � 1. From (9.2),

y� � ax · 1 · ln a � ax ln a

Remember that a may also assume a numerical value. See Problem 9.2(c) through (g).

3. y � x2 a3x. With y a product of x2 and a3x, the product rule is necessary.

y� � x2(a3x · 3 · ln a)� a3x(2x)
� xa3x(3x ln a� 2)

See also Problem 9.2.

9.1.3 The Natural Logarithmic Function Rule

Given f(x) � ln g(x), where g(x) is positive and differentiable, the derivative is

f �(x) �
1

g(x)
· g�(x) �

g�(x)
g(x)

(9.3)

See Example 3 and Problems 9.3 to 9.5.

EXAMPLE 3. Finding the derivative of a natural logarithmic function is demonstrated below:

1. f(x) � ln 6x2. Let g(x) � 6x2, then g�(x) � 12x. Substituting in (9.3),

f �(x) �
1

6x2 · 12x �
2
x

2. y � ln x. Since g(x) � x, g�(x) � 1. From (9.3),

y� �
1
x

· 1 �
1
x
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3. y � ln (x2� 6x� 2). The derivative is

y� �
1

x2� 6x� 2
· (2x� 6) �

2x� 6
x2� 6x� 2

Evaluating the slope of this function at x � 4,

y�(4) � 1–
4

4–
2 �

1–
3

9.1.4 The Logarithmic Function Rule for Base a Other Than e

Given f(x) � loga g(x), where a� 0, a� 1, and g(x) is positive and differentiable, the derivative
is

f �(x) �
1

g(x)
· g�(x) · loga e or f �(x) �

1
g(x)

· g�(x) ·
1

ln a
(9.4)

since loga e� 1/ln a. See Example 4 and Problems 9.6 and 9.40.

EXAMPLE 4. Derivatives of logarithmic functions to base a are found as shown below.

1. f(x) � loga (2x2� 1). Let g(x) � 2x2� 1; then g�(x) � 4x. Substituting in (9.4),

f �(x) �
1

2x2� 1
· 4x · loga e �

4x

2x2� 1
loga e

or, from (9.4), f �(x) �
4x

(2x2� 1) ln a

2. y � loga x. Here g(x) � x, and g�(x) � 1. From (9.4),

y� �
1
x

· 1 · loga e �
loga e

x

or y� �
1

x ln a

9.2 HIGHER-ORDER DERIVATIVES

Higher-order derivatives are found by taking the derivative of the previous derivative, as
illustrated in Example 5 and Problems 9.9 and 9.10.

EXAMPLE 5. Finding the first and second derivatives of exponential and logarithmic functions is illustrated
below:

1. Given y � e5x. The first and second derivatives are

dy

dx
� e5x(5) � 5e5x

d 2y

dx2 � 5e5x(5) � 25e5x

2. Given y � ax. The first derivative is

dy

dx
� ax(1) ln a � ax ln a
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where ln a is a constant. Thus, the second derivative is

d2 y

dx2 � ax(ln a)(1)(ln a) � ax(ln a)2 � ax ln2 a

3. Given y � ln 2x. The first derivative is

dy

dx
�

1
2x

(2) �
1
x

or x�1

By the simple power function rule,

d2 y

dx2 � �x�2 or �
1
x2

4. Given y � loga 3x. The first derivative is

dy

dx
�

1
3x

(3)
1

ln a
�

1
x ln a

By the quotient rule, where ln a is a constant, the second derivative is

d2 y

dx2 �
x ln a(0)� 1 ln a

(x ln a)2 �
�ln a

x2 ln2 a
� �

1
x2 ln a

9.3 PARTIAL DERIVATIVES

Partial derivatives are found by differentiating the function with respect to one variable, while
keeping the other independent variables constant. See Example 6 and Problem 9.11.

EXAMPLE 6. Finding all the first and second partial derivatives for a function is illustrated below:

1. Given z � e(3x�2y). The first and second partials are

zx � e(3x�2y)(3) � 3e(3x�2y)

zxx � 3e(3x�2y)(3) � 9e(3x�2y)

zy� e(3x�2y)(2) � 2e(3x�2y)

zyy� 2e(3x�2y)(2) � 4e(3x�2y)

zxy � 6e(3x�2y) � zyx

2. Given z � ln (5x� 9y), the partial derivatives are

zx �
5

5x� 9y
zy�

9
5x� 9y

By the simple quotient rule,

zxx �
(5x� 9y)(0)� 5(5)

(5x� 9y)2 zyy�
(5x� 9y)(0)� 9(9)

(5x� 9y)2

�
�25

(5x� 9y)2 �
�81

(5x� 9y)2

zxy�
�45

(5x� 9y)2 � zyx

9.4 OPTIMIZATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Exponential and logarithmic functions follow the general rules for optimization presented in
Sections 4.5 and 5.4. The method is demonstrated in Example 7 and treated in Problems 9.12
to 9.21.
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EXAMPLE 7. The procedure for finding critical values and determining whether exponential and logarithmic
functions are maximized or minimized is illustrated below:

1. Given y � 2xe4x. Using the product rule and setting the derivative equal to zero, we get

dy

dx
� 2x(4e4x)� 2(e4x) � 0

� 2e4x(4x� 1) � 0

For the derivative to equal zero, either 2e4x� 0 or 4x� 1 � 0. Since 2e4x� 0 for any value of x,

4x� 1 � 0 x̄ � �1–
4

Testing the second-order condition,

d2 y

dx2 � 2e4x(4)� (4x� 1)(2e4x)(4) � 8e4x(4x� 2)

Evaluated at the critical value, x̄ � �1–
4, d 2y/dx2 � 8e�1(�1� 2) � 8/e� 0. The function is thus at a

minimum, since the second derivative is positive.

2. Given y � ln (x2� 6x� 10). By the natural log rule,

dy

dx
�

2x� 6
x2� 6x� 10

� 0

Multiplying both sides by the denominator x2� 6x� 10,

2x� 6 � 0 x̄ � 3

Using the simple quotient rule for the second derivative,

d2 y

dx2 �
(x2� 6x� 10)(2)� (2x� 6)(2x� 6)

(x2� 6x� 10)2

Evaluating the second derivative at x̄ � 3, d2 y/dx2 � 2� 0. The function is minimized.

3. Given z � e(x2�2x�y2�6y).

zx� (2x� 2)e(x2�2x�y2�6y)� 0 zy � (2y� 6)e(x2�2x�y2�6y)� 0

Since e(x2�2x�y2�6x)� 0 for any value of x or y,

2x� 2 � 0
x̄ � 1

2y� 6 � 0
ȳ � 3

Testing the second-order conditions, using the product rule,

zxx � (2x� 2)(2x� 2)e(x2�2x�y2�6y)� e(x2�2x�y2�6y)(2)
zyy � (2y� 6)(2y� 6)e(x2�2x�y2�6y)� e(x2�2x�y2�6y)(2)

When evaluated at x̄ � 1, ȳ � 3,

zxx � 0� 2e�10� 0 zyy � 0� 2e�10� 0

since e to any power is positive. Then testing the mixed partials,

zxy � (2x� 2)(2y� 6) e(x2�2x�y2�6y)� zyx

Evaluated at x̄ � 1, ȳ � 3, zxy � 0 � zyx. Thus, the function is at a minimum at x̄ � 1 and ȳ � 3 since zxx

and zyy� 0 and zxx zyy� (zxy)2.

9.5 LOGARITHMIC DIFFERENTIATION

The natural logarithm function and its derivative are frequently used to facilitate the differen-
tiation of products and quotients involving multiple terms. The process is called logarithmic
differentiation and is demonstrated in Example 8 and Problem 9.22.
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EXAMPLE 8. To find the derivative of a function such as

g(x) �
(5x3� 8)(3x4� 7)

(9x5� 2)
(9.5)

use logarithmic differentiation as follows:

a) Take the natural logarithm of both sides.

ln g(x) � ln
(5x3� 8)(3x4� 7)

(9x5� 2)

� ln (5x3� 8)� ln (3x4� 7)� ln (9x5� 2)

b) Take the derivative of ln g(x).

d

dx
[ln g(x)] �

g�(x)
g(x)

�
15x2

5x3� 8
�

12x3

3x4� 7
�

45x4

9x5� 2
(9.6)

c) Solve algebraically for g�(x) in (9.6).

g�(x) � � 15x2

5x3� 8
�

12x3

3x4� 7
�

45x4

9x5� 2 � · g(x) (9.7)

d) Then substitute (9.5) for g(x) in (9.7).

g�(x) � � 15x2

5x3� 8
�

12x3

3x4� 7
�

45x4

9x5� 2 � ·
(5x3� 8)(3x4� 7)

(9x5� 2)

9.6 ALTERNATIVE MEASURES OF GROWTH

Growth G of a function y� f(t) is defined as

G�
dy/dt

y
�

f �(t)
f(t)

�
y�
y

From Section 9.1.3 this is exactly equivalent to the derivative of ln y. The growth of a function,
therefore, can be measured (1) by dividing the derivative of the function by the function itself or (2)
by taking the natural log of the function and then simply differentiating the natural log function. This
latter method is sometimes helpful with more complicated functions. See Example 9 and Problems 9.23
to 9.30.

EXAMPLE 9. Finding the growth rate of V � Pert, where P is a constant, is illustrated below by using the two
methods outlined above.

1. By the first method, G �
V �

V

where V � � Pert(r) � rPert. Thus,

G �
rPert

Pert � r

2. For the second method, take the natural log of the function.

ln V � ln P� ln ert � ln P� rt

and then take the derivative of the natural log function with respect to t.

G �
1
V

dV

dt
�

d

dt
(ln V) �

d

dt
(ln P� rt) � 0� r � r
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9.7 OPTIMAL TIMING

Exponential functions are used to express the value of goods that appreciate or depreciate over
time. Such goods include wine, cheese, and land. Since a dollar in the future is worth less than a
dollar today, its future value must be discounted to a present value. Investors and speculators seek
to maximize the present value of their assets, as is illustrated in Example 10 and Problems 9.31
to 9.34.

EXAMPLE 10. The value of cheese that improves with age is given by V � 1400(1.25)�
–
t. If the cost of capital

under continuous compounding is 9 percent a year and there is no storage cost for aging the cheese in company
caves, how long should the company store the cheese?

The company wants to maximize the present value of the cheese: P � Ve�rt. Substituting the given values of
V and r, P � 1400(1.25)�

–
t e�0.09t. Taking the natural log,

ln P � ln 1400� t1/2 ln 1.25� 0.09t

Then taking the derivative and setting it equal to zero to maximize P,

1
P

dP

dt
� 0�

1
2

(ln 1.25) t�1/2� 0.09 � 0

dP

dt
� P �1

2
(ln 1.25) t�1/2� 0.09� � 0 (9.8)

Since P� 0, 1–
2(ln 1.25) t�1/2� 0.09 � 0

t�1/2 �
0.18

ln 1.25

t � � ln 1.25
0.18 �

2

� �0.22314
0.18 �

2

� 1.54 years

Using the product rule when taking the second derivative from (9.8), because P � f(t), we get

d2 P

dt2 � P �� 1
4

(ln 1.25) t�3/2 � � �1
2

(ln 1.25) t�1/2� 0.09� dP

dt

Since dP/dt � 0 at the critical point,

d2 P

dt2 � P �� 1
4

(ln 1.25) t�3/2 � � �P(0.05579t�3/2)

With P, t� 0, d2 P/dt2� 0 and the function is at a maximum.

9.8 DERIVATION OF A COBB-DOUGLAS DEMAND FUNCTION USING A
LOGARITHMIC TRANSFORMATION

A demand function expresses the amount of a good a consumer will purchase as a function of
commodity prices and consumer income. A Cobb-Douglas demand function is derived by maximizing
a Cobb-Douglas utility function subject to the consumer’s income. Given u � x�y� and the budget
constraint px x� py y �M, begin with a logarithmic transformation of the utility function

ln u � � ln x�� ln y
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Then set up the Lagrangian function and maximize.

U � � ln x�� ln y��(M� px x� py y)

Ux � � ·
1
x
��px � 0 � � �px x

Uy � � ·
1
y
��py � 0 � � �py y

U� �M� px x� py y � 0

Add ��� from Ux and Uy, recalling that px x� py y�M.

��� � �(px x� py y) � �M

Thus, � �
���

M

Now substitute � � (���)/M back in Ux and Uy to get

�

x
� ����M �px � 0 x̄�� �

�����
M
px
� (9.9a)

�

y
� ����M �py � 0 ȳ�� �

�����
M
py
� (9.9b)

For a strict Cobb-Douglas function where ��� � 1,

x̄ �
�M
px

and ȳ �
�M
py

(9.9c)

EXAMPLE 11. Given the utility function u � x0.3 y0.7 and the income constraint M � 200, from the information
derived in Section 9.8, the demand functions for x and y are (a) derived and (b) evaluated at px � 5, py � 8 and
px � 6, py � 10, as follows:

a) From (9.9c), x̄ �
�M

px

and ȳ�
�M

py

b) At px � 5, py � 8,

x̄ �
0.3(200)

5
� 12 and ȳ �

0.7(200)
8

� 17.5

At px � 6, py � 10,

x̄�
0.3(200)

6
� 10 and ȳ �

0.7(200)
10

� 14

Solved Problems

DERIVATIVES OF NATURAL EXPONENTIAL FUNCTIONS

9.1. Differentiate each of the following natural exponential functions according to the rule
d/dx[eg(x)]� eg(x) · g�(x):

a) y� e2x b) y � e(�1/3)x

Letting g(x) � 2x, then g�(x) � 2,
and y� � e2x(2) � 2e2x

g(x) � �1–
3x, g�(x) � �1–

3, and
y� � e�(1/3)x(�1–

3) � �
1–
3e

(�1/3)x
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c) y� ex3
d) y � 3ex2

y� � ex3
(3x2) � 3x2 ex3

y� � 3ex2
(2x) � 6xex2

e) y� e2x�1 f) y � e1�4x

y� � e2x�1(2) � 2ex�1 y� � �4e1�4x

g) y� 5e1�x2
h) y � 2xex

y� � �10xe1�x2
By the product rule,

y� � 2x(ex)� ex(2) � 2ex(x� 1)

i) y� 3xe2x j) y � x2 e5x

y� � 3x(2e2x)� e2x(3) � 3e2x(2x� 1) y� � x2(5e5x)� e5x(2x) � xe5x(5x� 2)

k) y�
e5x� 1
e5x� 1

By the quotient rule,

y� �
(e5x� 1)(5e5x)� (e5x� 1)(5e5x)

(e5x� 1)2 �
10e5x

(e5x� 1)2

l) y�
e2x� 1
e2x� 1

y� �
(e2x� 1)(2e2x)� (e2x� 1)(2e2x)

(e2x� 1)2 �
�4e2x

(e2x� 1)2

DIFFERENTIATION OF EXPONENTIAL FUNCTIONS WITH BASES OTHER THAN e

9.2. Differentiate each of the following exponential functions according to the rule
d/dx[ag(x)]� ag(x) · g�(x) · ln a:

a) y � a2x

Letting g(x) � 2x, then g�(x) � 2, and

y� � a2x(2) ln a � 2a2x ln a

b) y� a5x2

y� � a5x2
(10x) ln a � 10xa5x2

ln a

c) y� 42x�7

y� � 42x�7(2) ln 4 � 2(4)2x�7 ln 4

Using a calculator, y� � 2(1.38629)(4)2x�7 � 2.77258(4)2x�7

d) y� 2x

y� � 2x(1) ln 2 � 2x ln 2 � 0.69315(2)x

e) y� 7x2

y� � 7x2
(2x) ln 7 � 2x(7)x2

ln 7 � 2x(7)x2
(1.94591) � 3.89182x(7)x2

f) y� x3 2x

By the product rule, recalling that x3 is a power function and 2x is an exponential function,

y� � x3[2x(1) ln 2]� 2x(3x2) � x2 2x(x ln 2� 3)

g) y� x2 25x

y� � x2[25x(5) ln 2]� 25x(2x) � x25x(5x ln 2� 2)
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DERIVATIVES OF NATURAL LOGARITHMIC FUNCTIONS

9.3. Differentiate each of the following natural log functions according to the rule
d/dx[ln g(x)]� 1/[g(x)] · g�(x):

a) y� ln 2x3 b) y � ln 7x2

Let g(x) � 2x3, then g�(x) � 6x2, and y� �
1

7x2 (14x) �
2
x

y� �
1

2x3 (6x2) �
3
x

c) y� ln (1� x) d) y � ln (4x� 7)

y� �
1

1� x
y� �

1
4x� 7

(4) �
4

4x� 7

e) y� ln 6x f) y � 6 ln x

y� �
1
6x

(6) �
1
x

y� � 6�1
x � �

6
x

Notice how a multiplicative constant within the log expression in part (e) drops out in differentiation,
whereas a multiplicative constant outside the log expression in part ( f) remains.

9.4. Redo Problem 9.3 for each of the following functions:

a) y� ln2 x � (ln x)2

By the generalized power function rule,

y� � 2 ln x
d

dx
(ln x) � 2 ln x �1

x � �
2 ln x

x

b) y� ln2 8x� (ln 8x)2

y� � 2 ln 8x� 1
8x �(8) �

2 ln 8x

x

c) y� ln2(3x� 1) � [ln (3x� 1)]2

y� � 2 ln (3x� 1)� 1
3x� 1 �(3) �

6 ln (3x� 1)
3x� 1

d) y� ln2(5x� 6)

y� � 2 ln (5x� 6)� 1
5x� 6 �(5) �

10 ln (5x� 6)
5x� 6

e) y� ln3(4x� 13)

y� � 3[ln (4x� 13)]2� 1
4x� 13 �(4) � 3 ln2(4x� 13) � 4

4x� 13 � � 12
4x� 13

ln2(4x� 13)

f) y� ln (x� 5)2� [ln (x� 5)]2

Letting g(x) � (x� 5)2, then g�(x) � 2(x� 5), and

y� �
1

(x� 5)2 [2(x� 5)] �
2

x� 5
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g) y� ln (x� 8)2

y� �
1

(x� 8)2 [2(x� 8)] �
2

x� 8

h) y� 3 ln (1� x)2

y� � 3� 1
(1� x)2 � [2(1� x)] �

6
1� x

9.5. Use the laws of logarithms in Section 7.3 to simplify the differentiation of each of the following
natural log functions:

a) y� ln (x� 5)2

From the rules for logs, ln (x� 5)2� 2 ln (x� 5). Thus, as in Problem 9.4( f),

y� � 2� 1
x� 5 �(1) �

2
x� 5

b) y� ln (2x� 7)2 c) y � ln [(3x� 7)(4x� 2)]

y � 2 ln (2x� 7) y � ln (3x� 7)� ln (4x� 2)

y� � 2� 1
2x� 7 �(2) �

4
2x� 7

y� �
3

3x� 7
�

4
4x� 2

d) y� ln [5x2(3x3� 7)] e) y � ln
3x2

x2� 1

y � ln 5x2� ln (3x3� 7) y � ln 3x2� ln (x2� 1)

y� �
10x

5x2 �
9x2

3x3� 7
y� �

2
x
�

2x

x2� 1

�
2
x
�

9x2

3x3� 7

f) y� ln
x3

(2x� 5)2 g) y � ln 	2x2� 3
x2� 9

y � ln x3� ln (2x� 5)2 y � 1–
2[ln (2x2� 3)� ln (x2� 9)]

y� �
1
x3 (3x2)� 2 � 1

2x� 5 �(2) y� �
1
2 �

4x

2x2� 3
�

2x

x2� 9 �
�

3
x
�

4
2x� 5

�
2x

2x2� 3
�

x

x2� 9

DERIVATIVES OF LOGARITHMIC FUNCTIONS WITH BASES OTHER THAN e

9.6. Differentiate each of the following logarithmic functions according to the rule

d
dx

[loga g(x)]�
1

g(x)
· g�(x) · loga e�

1
g(x)

· g�(x) ·
1

ln a

a) y � loga (4x2� 3) b) y � log4 9x3

y� �
1

4x2� 3
(8x) � 1

ln a � y� �
1

9x3 (27x2)� 1
ln 4 �

�
8x

(4x2� 3) ln a
�

3
x ln 4
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c) y� log2 (8� x) d) y � x3 log6 x

y� �
1

(8� x)
(�1) � 1

ln 2 �
� �

1
(8� x) ln 2

By the product rule,

y� � x3�1
x

(1)� 1
ln 6 �� � log6 x(3x2)

�
x2

ln 6
� 3x2 log6 x

e) y� loga �x2� 7

From the law of logs, y � 1–
2 loga (x2� 7). Thus,

y� �
1
2 � 1

x2� 7
(2x) � 1

ln a �� � x

(x2� 7) ln a

COMBINATION OF RULES

9.7. Use whatever combination of rules are necessary to differentiate the following functions:

a) y� x2 ln x3

By the product rule,

y� � x2� 1
x3 �(3x2)� ln x3(2x) � 3x� 2x ln x3 � 3x� 6x ln x � 3x(1� 2 ln x)

b) y� x3 ln x2

y� � x3� 1
x2 �(2x)� ln x2(3x2) � 2x2� 6x2 ln x � 2x2(1� 3 ln x)

c) y� ex ln x

By the product rule,

y� � ex�1
x � � (ln x)(ex) � ex�1

x
� ln x�

d) y� e�2x ln 2x

y� � e�2x� 1
2x �(2)� ln 2x(�2e�2x) � e�2x�1

x
� 2 ln 2x �

e) y� ln e3x�2

y� �
1

e3x�2 (3e3x�2) � 3

since ln e3x�2 � 3x� 2, d/dx(ln e3x�2) � d/dx(3x� 2) � 3.

f) y� eln x

y� � eln x�1
x � � x �1

x � � 1

since eln x � x.

g) y� eln (2x�1)

y� � eln (2x�1)� 1
2x� 1 �(2) � 2

since eln (2x�1) � 2x� 1.
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h) y� ex ln x

y� � ex ln x d

dx
(x ln x)

Then using the product rule for d/dx(x ln x),

y� � ex ln x�x �1
x � � (ln x)(1) � � ex ln x(1� ln x)

i) y� ex2 ln 3x

y� � ex2 ln 3x�x2 � 1
3x �(3)� ln 3x(2x)�

� ex2 ln 3x(x� 2x ln 3x) � xex2 ln 3x(1� 2 ln 3x)

SLOPES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9.8. Evaluate the slope of each of the following functions at the point indicated:

a) y� 3e0.2x at x� 5.

y� � 0.6e0.2x

At x � 5, y� � 0.6e0.2(5)� 0.6(2.71828) � 1.63097.

b) y� 2e�1.5x at x � 4.

y� � �3e�1.5x

At x � 4, y� � �3e�1.5(4)� �3e�6 � �3(0.00248) ��0.00744.

c) y� ln (x2� 8x� 4) at x � 2.

y� �
2x� 8

x2� 8x� 4

At x � 2, y� � 1–
2

2–
4 � 0.5.

d) y� ln2 (x� 4) at x � 6.

At x � 6,
y� � [2 ln (x� 4)]� 1

x� 4 �(1) �
2 ln (x� 4)

x� 4

y� �
2 ln 10

10
�

2(2.30259)
10

� 0.46052

SECOND DERIVATIVES

9.9. Find the first and second derivatives of the following functions:

a) y� e3x b) y � e�(1/2)x

y� � 3e3x

y
 � 9e3x

y� � �1–
2e
�(1/2)x

y
 � 1–
4e
�(1/2)x

c) y� 3e5x�1 d) y � 2xex

y� � 15e5x�1

y
 � 75e5x�1

By the product rule,
y� � 2x(ex)� ex(2) � 2ex(x� 1)
y
 � 2ex(1)� (x� 1)(2ex) � 2ex(x� 2)
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e) y� ln 2x5 f) y � 4 ln x

y� �
1

2x5 (10x4) �
5
x
� 5x�1 y� � 4�1

x �(1) �
4
x
� 4x�1

y
 � �5x�2 �
�5
x2 y
 � �4x�2

9.10. Take the first and second derivatives of each of the following functions:

a) y� a3x

y� � a3x(3) ln a � 3a3x ln a

where ln a � a constant. Thus,

y
 � (3a3x ln a)(3) ln a � 9a3x(ln a)2

b) y� a5x�1

y� � a5x�1(5) ln a � 5a5x�1 ln a

y
 � (5a5x�1 ln a)(5) ln a � 25a5x�1(ln a)2

c) y� loga 5x

y� �
1
5x

(5)
1

ln a
�

1
x ln a

� (x ln a)�1

Using the generalized power function rule,

y
 � �1(x ln a)�2 ln a �
�ln a

x2 ln2 a
� �

1
x2 ln a

d) y� log3 6x

y� �
1
6x

(6)� 1
ln 3 � �

1
x ln 3

� (x ln 3)�1

y
 � �1(x ln 3)�2 (ln 3) �
�ln 3

x2 ln2 3
� �

1
x2 ln 3

e) y� 3xex

By the product rule,

y� � 3x(ex)� ex(3) � 3ex(x� 1)
y
 � 3ex(1)� (x� 1)(3ex) � 3ex(x� 2)

f) y�
4x

3 ln x

By the quotient rule,

y� �
(3 ln x)(4)� 4x(3)(1/x)

9 ln2 x
�

12 ln x� 12
9 ln2 x

�
12(ln x� 1)

9 ln2 x

y
 �
(9 ln2 x)[12(1/x)]� 12(ln x� 1){[9(2) ln x](1/x)}

81 ln4 x
�

(108/x)(ln2 x)� (216/x)(ln x� 1)(ln x)
81 ln4 x

�
4 ln x� 8(ln x� 1)

3x ln3 x
�
�4 ln x� 8

3x ln3 x
�

4(2� ln x)
3x ln3 x
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PARTIAL DERIVATIVES

9.11. Find all the first and second partial derivatives for each of the following functions:

a) z� ex2�y2

zx � 2xex2�y2
zy� 2yex2�y2

By the product rule,

zxx �

�

2x(2xex2�y2
)� ex2�y2

(2)
2ex2�y2

(2x2� 1)
zyy�

�

2y(2yex2�y2
)� ex2�y2

(2)
2ex2�y2

(2y2� 1)

zxy � 4xyex2�y2
� zyx

b) z� e2x2�3y

zx �

zxx �

�

4xe2x2�3y

4x(4xe2x2�3y)� e2x2�3y(4)
4e2x2�3y(4x2� 1)

zy �

zyy �

3e2x2�3y

9e2x2�3y

zxy � 12xe2x2�3y � zyx

c) z� a2x�3y

zx �

�

zxx �

�

a2x�3y(2) ln a

2a2x�3y ln a

2a2x�3y(ln a)(2)(ln a)
4a2x�3y ln2 a

zy �

�

zyy�

�

a2x�3y(3) ln a

3a2x�3y ln a

3a2x�3y(ln a)(3)(ln a)
9a2x�3y ln2 a

zxy� 6a2x�3y ln2 a � zyx

d) z� 43x�5y

zx �

�

zxx �

�

43x�5y(3) ln 4
3(4)3x�5y ln 4
3(4)3x�5y(ln 4)(3)(ln 4)
9(4)3x�5y ln2 4

zy �

�

zyy �

�

43x�5y(5) ln 4
5(4)3x�5y ln 4
5(4)3x�5y(ln 4)(5)(ln 4)
25(4)3x�5y ln2 4

zxy� 15(4)3x�5y ln2 4 � zyx

e) z� ln (7x� 2y)

zx �
7

7x� 2y
zy�

2
7x� 2y

By the quotient rule,

zxx�
(7x� 2y)(0)� 7(7)

(7x� 2y)2 �
�49

(7x� 2y)2 zyy�
(7x� 2y)(0)� 2(2)

(7x� 2y)2 �
�4

(7x� 2y)2

zxy �
�14

(7x� 2y)2 � zyx

f) z� ln (x2� 4y2)

zx �
2x

x2� 4y2 zy �
8y

x2� 4y2

zxx �
(x2� 4y2)(2)� 2x(2x)

(x2� 4y2)2 �
8y2� 2x2

(x2� 4y2)2 zyy �
(x2� 4y2)(8)� 8y(8y)

(x2� 4y2)2 �
8x2� 32y2

(x2� 4y2)2

zxy�
�16xy

(x2� 4y2)2 � zyx
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g) z� loga (x� 2y)

zx �
1

(x� 2y) ln a
zy �

�2
(x� 2y) ln a

zxx �
�1 ln a

(x� 2y)2 ln 2 a
�

�1
(x� 2y)2 ln a

zyy �
4 ln a

(x� 2y)2 ln2 a
�

4
(x� 2y)2 ln a

zxy�
2

(x� 2y)2 ln a
� zyx

h) z� loga (3x2� y2)

zx �
6x

(3x2� y2) ln a
zy �

2y

(3x2� y2) ln a

zxx �
(3x2� y2)(ln a)(6)� 6x(6x ln a)

(3x2� y2)2 ln2 a
zyy �

(3x2� y2)(ln a)(2)� 2y(2y ln a)
(3x2� y2)2 ln2 a

�
6y2� 18x2

(3x2� y2)2 ln a
�

6x2� 2y2

(3x2� y2)2 ln a

zxy�
�12xy

(3x2� y2)2 ln a
� zyx

OPTIMIZATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9.12. Given y� 4xe3x, (a) find the critical values and (b) determine whether the function is
maximized or minimized.

a) By the product rule,

y� � 4x(3e3x)� e3x(4) � 0
4e3x(3x� 1) � 0

Since there is no value of x for which 4e3x � 0, or for which ex � 0,

3x� 1 � 0 x̄ � �1–
3

b) y
 � 4e3x(3)� (3x� 1)(12e3x) � 12e3x(3x� 2)

At x̄� �1–
3, y
 � 12e�1(1). And y
 � 12(0.36788)� 0. The function is minimized.

9.13. Redo Problem 9.12, given y � 5xe�0.2x

a) y� � 5x(�0.2e�0.2x)� e�0.2x(5) � 0
5e�0.2x(1� 0.2x) � 0

Since 5e�0.2x� 0, (1� 0.2x) � 0 x̄ � 5

b) y
 � 5e�0.2x(�0.2)� (1� 0.2x)(�1e�0.2x) � e�0.2x(0.2x� 2)

At x̄� 5, y
 � e�1(1� 2). And y
 � (0.36788)(�1)� 0. The function is at a maximum.

9.14. Redo Problem 9.12, given y � ln (x2� 8x� 20).

a) y� �
2x� 8

x2� 8x� 20
� 0

Multiplying both sides by x2� 8x� 20 gives 2x� 8 � 0 and x̄ � 4.

b) y
 �
(x2� 8x� 20)(2)� (2x� 8)(2x� 8)

(x2� 8x� 20)2

At x̄ � 4, y
 � 8––
16� 0. The function is at a minimum.
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9.15. Redo Problem 9.12, given y � ln (2x2� 20x� 5).

a) y� �
4x� 20

2x2� 20x� 5
� 0

4x� 20 � 0 x̄ � 5

b) y
 �
(2x2� 20x� 5)(4)� (4x� 20)(4x� 20)

(2x2� 20x� 5)2

At x̄ � 5, y
 � �180/2025� 0. The function is at a maximum.

9.16. Given the function z � ln (2x2� 12x� y2� 10y), (a) find the critical values and (b) indicate
whether the function is at a maximum or minimum.

a) zx �
4x� 12

2x2� 12x� y2� 10y
� 0 zy �

2y� 10
2x2� 12x� y2� 10y

� 0

4x� 12 � 0 x̄ � 3 2y� 10 � 0 ȳ � 5

b) zxx �
(2x2� 12x� y2� 10y)(4)� (4x� 12)(4x� 12)

(2x2� 12x� y2� 10y)2

zyy �
(2x2� 12x� y2� 10y)(2)� (2y� 10)(2y� 10)

(2x2� 12x� y2� 10y)2

Evaluated at x̄ � 3, ȳ � 5,

zxx�
(�43)(4)� 0

(�43)2 �
�172
1849

� 0 zyy�
(�43)(2)� 0

(�43)2 �
�86
1849

� 0

zxy �
� (4x� 12)(2y� 10)

(2x2� 12x� y2� 10y)2 � zyx

At x̄ � 3, ȳ � 5, zxy� 0 � zyx. With zxx, zyy� 0 and zxx zyy� (zxy)2, the function is at a maximum.

9.17. Redo Problem 9.16, given z � ln (x2� 4x� 3y2� 6y).

a) zx �
2x� 4

x2� 4x� 3y2� 6y
� 0 zy�

6y� 6
x2� 4x� 3y2� 6y

� 0

2x� 4 � 0 x̄ � 2 6y� 6 � 0 ȳ � 1

b) zxx �
(x2� 4x� 3y2� 6y)(2)� (2x� 4)(2x� 4)

(x2� 4x� 3y2� 6y)2

zyy �
(x2� 4x� 3y2� 6y)(6)� (6y� 6)(6y� 6)

(x2� 4x� 3y2� 6y)2

At x̄ � 2, ȳ � 1,

zxx �
(�7)(2)� 0

(�7)2 � �
14
49
� 0 zyy�

(�7)(6)� 0
(�7)2 � �

42
49
� 0

zxy �
� (2x� 4)(6y� 6)

(x2� 4x� 3y2� 6y)2 � zyx

At x̄ � 2, ȳ � 1, zxy� 0 � zyx. With zxx, zyy� 0 and zxx zyy� (zxy)2, the function is at a maximum.

9.18. Redo Problem 9.16, given z � e(3x2�6x�y2�8y).

a) zx� (6x� 6)e(3x2�6x�y2�8y)� 0 zy� (2y� 8) e(3x2�6x�y2�8y)� 0

6x� 6 � 0 x̄ � 1 2y� 8 � 0 ȳ � 4
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b) Using the product rule,

zxx� (6x� 6)(6x� 6)e(3x2�6x�y2�8y)� e(3x2�6x�y2�8y)(6)
zyy� (2y� 8)(2y� 8)e(3x2�6x�y2�8y)� e(3x2�6x�y2�8y)(2)

Evaluated at x̄ � 1, ȳ � 4,

zxx� 0� 6e�19� 0 zyy� 0� 2e�19� 0

Then testing the cross partials,

zxy� (6x� 6)(2y� 8)e(3x2�6x�y2�8y) � zyx

At x̄ � 1, ȳ � 4, zxy� 0 � zyx. The function is at a minimum since zxx, zyy� 0 and zxx zyy� (zxy)2.

9.19. Given z � e(2x2�12x�2xy�y2�4y), redo Problem 9.16.

a) zx � (4x� 12� 2y)e(2x2�12x�2xy�y2�4y) � 0
4x� 2y� 12 � 0 (9.10)

zy � (�2x� 2y� 4)e(2x2�12x�2xy�y2�4y) � 0
�2x� 2y� 4 � 0 (9.11)

Solving (9.10) and (9.11) simultaneously, x̄� 8, ȳ � 10.

b) zxx � (4x� 12� 2y)(4x� 12� 2y)e(2x2�12x�2xy�y2�4y)� e(2x2�12x�2xy�y2�4y)(4)
zyy � (�2x� 2y� 4)(�2x� 2y� 4)e(2x2�12x�2xy�y2�4y)� e(2x2�12x�2xy�y2�4y)(2)

Evaluated at x̄ � 8, ȳ � 10,

zxx� 0� 4e�68� 0 zyy� 0� 2e�68� 0

Testing the mixed partials, by the product rule,

zxy� (4x� 12� 2y)(�2x� 2y� 4)e(2x2�12x�2xy�y2�4y)� e(2x2�12x�2xy�y2�4y)(�2) � zyx

Evaluated at x̄ � 8, ȳ � 10, zxy � 0� 2e�68 � zyx. Since zxx,zyy� 0 and zxx zyy� (zxy)2, the function is
at a minimum.

9.20. Given the demand function

P � 8.25e�0.02Q (9.12)

(a) Determine the quantity and price at which total revenue will be maximized and (b) test the
second-order condition.

a) TR � PQ � (8.25e�0.02Q)Q

By the product rule,

dTR
dQ

� (8.25e�0.02Q)(1)�Q(�0.02)(8.25e�0.02Q) � 0

(8.25e�0.02Q)(1� 0.02Q) � 0

Since (8.25e�0.02Q)� 0 for any value of Q, 1� 0.02Q � 0; Q̄� 50.
Substituting Q̄ � 50 in (9.12), P � 8.25e�0.02(50) � 8.25e�1. And P � 8.25(0.36788) � 3.04.

b) By the product rule,

d2 TR
dQ2 � (8.25e�0.02Q)(�0.02)� (1� 0.02Q)(�0.02)(8.25e�0.02Q) � (�0.02)(8.25e�0.02Q)(2� 0.02Q)

Evaluated at Q̄ � 50, d2TR/dQ2 � (�0.02)(8.25e�1)(1) � �0.165(0.36788)� 0. TR is at a maxi-
mum.
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9.21. (a) Find the price and quantity that will maximize total revenue, given the demand function
P � 12.50e�0.005Q. (b) Check the second-order condition.

a) TR � (12.50e�0.005Q)Q

dTR
dQ

� (12.50e�0.005Q)(1)�Q(�0.005)(12.50e�0.005Q)

� (12.50e�0.005Q)(1� 0.005Q) � 0

1� 0.005Q � 0 Q̄� 200

Thus, P � 12.50e�0.005(200) � 12.50e�1 � 12.50(0.36788) � 4.60

b)
d2 TR
dQ2 � (12.50e�0.005Q)(�0.005)� (1� 0.005Q)(�0.005)(12.50e�0.005Q)

� (�0.005)(12.50e�0.005Q)(2� 0.005Q)

Evaluated at Q̄ � 200, d2 TR/dQ2� (�0.005)(12.50e�1)(1) � �0.0625(0.36788)� 0. The function is
maximized.

LOGARITHMIC DIFFERENTIATION

9.22. Use logarithmic differentiation to find the derivatives for the following functions:

a) g(x) � (x3� 2)(x2� 3)(8x� 5) (9.13)

1) Take the natural logarithm of both sides.

ln g(x) � ln (x3� 2)� ln (x2� 3)� ln (8x� 5)

2) Take the derivative of ln g(x).

d

dx
[ln g(x)] �

g�(x)
g(x)

�
3x2

x3� 2
�

2x

x2� 3
�

8
8x� 5

(9.14)

3) Solve algebraically for g�(x) in (9.14).

g�(x) � � 3x2

x3� 2
�

2x

x2� 3
�

8
8x� 5� · g(x) (9.15)

4) Then substitute (9.13) for g(x) in (9.15).

g�(x) � � 3x2

x3� 2
�

2x

x2� 3
�

8
8x� 5� [(x3� 2)(x2� 3)(8x� 5)]

b) g(x) � (x4� 7)(x5� 6)(x3� 2) (9.16)

1) ln g(x) � ln (x4� 7)� ln (x5� 6)� ln (x3� 2)

2)
d

dx
[ln g(x)] �

g�(x)
g(x)

�
4x3

x4� 7
�

5x4

x5� 6
�

3x2

x3� 2

3) g�(x) � � 4x3

x4� 7
�

5x4

x5� 6
�

3x2

x3� 2 � · g(x) (9.17)

4) Finally, substituting (9.16) for g(x) in (9.17),

g�(x) � � 4x3

x4� 7
�

5x4

x5� 6
�

3x2

x3� 2 � · (x4� 7)(x5� 6)(x3� 2)

c) g(x) �
(3x5� 4)(2x3� 9)

(7x4� 5)

1) ln g(x) � ln (3x5� 4)� ln (2x3� 9)� ln (7x4� 5)
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2)
d

dx
[ln g(x)] �

g�(x)
g(x)

�
15x4

3x5� 4
�

6x2

2x3� 9
�

28x3

7x4� 5

3) g�(x) � � 15x4

3x5� 4
�

6x2

2x3� 9
�

28x3

7x4� 5 � · g(x)

4) g�(x) � � 15x4

3x5� 4
�

6x2

2x3� 9
�

28x3

7x4� 5 � ·
(3x5� 4)(2x3� 9)

(7x4� 5)

GROWTH

9.23. The price of agricultural goods is going up by 4 percent each year, the quantity by 2 percent.
What is the annual rate of growth of revenue R derived from the agricultural sector?

Converting the revenue formula R � PQ to natural logs,

ln R � ln P� ln Q

The derivative of the natural log function equals the instantaneous rate of growth G of the function (see
Section 9.6). Thus,

G �
d

dt
(ln R) �

d

dt
(ln P)�

d

dt
(ln Q)

But
d

dt
(ln P) � growth of P � 4%

d

dt
(ln Q) � growth of Q � 2%

Thus, G �
d

dt
(ln R) � 0.04� 0.02 � 0.06

The rate of growth of a function involving a product is the sum of the rates of growth of the individual
components.

9.24. A firm experiences a 10 percent increase in the use of inputs at a time when input costs are
rising by 3 percent. What is the rate of increase in total input costs?

C �

ln C �

PQ

ln P� ln Q

G �
d

dt
(ln C) �

d

dt
(ln P)�

d

dt
(ln Q) � 0.03� 0.10 � 0.13

9.25. Employment opportunities E are increasing by 4 percent a year and population P by 2.5
percent. What is the rate of growth of per capita employment PCE?

PCE �
E

P

ln PCE � ln E� ln P

Taking the derivative to find the growth rate,

G �
d

dt
(ln PCE) �

d

dt
(ln E)�

d

dt
(ln P) � 0.04� 0.025 � 0.015 � 1.5%

The rate of growth of a function involving a quotient is the difference between the rate of growth of
the numerator and denominator.
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9.26. National income Y is increasing by 1.5 percent a year and population P by 2.5 percent a year.
What is the rate of growth of per capita income PCY?

PCY �
Y

P

ln PCY � ln Y� ln P

G �
d

dt
(ln PCY) �

d

dt
(ln Y)�

d

dt
(ln P) � 0.015� 0.025 � �0.01 � �1%

Per capita income is falling by 1 percent a year.

9.27. A country exports two goods, copper c and bananas b, where earnings in terms of million
dollars are

c� c(t0) � 4 b � b(t0) � 1

If c grows by 10 percent and b by 20 percent, what is the rate of growth of export
earnings E?

E �

ln E �

c� b

ln (c� b)

G �
d

dt
(ln E) �

d

dt
ln (c� b)

From the rules of derivatives in Section 9.1.3,

GE �
1

c� b
[c�(t)� b�(t)] (9.18)

From Section 9.6,

Gc �
c�(t)
c(t)

Gb �
b�(t)
b(t)

Thus, c�(t) � Gc c(t) b�(t) � Gb b(t)

Substituting in (9.18), GE �
1

c� b
[Gc c(t)�Gb b(t)]

Rearranging terms, GE �
c(t)

c� b
Gc�

b(t)
c� b

Gb

Then substituting the given values,

GE�
4

4� 1
(0.10)�

1
4� 1

(0.20) �
4
5

(0.10)�
1
5

(0.20) � 0.12 or 12%

The growth rate of a function involving the sum of other functions is the sum of the weighted average
of the growth of the other functions.

9.28. A company derives 70 percent of its revenue from bathing suits, 20 percent from bathing caps,
and 10 percent from bathing slippers. If revenues from bathing suits increase by 15 percent,
from caps by 5 percent, and from slippers by 4 percent, what is the rate of growth of total
revenue?

GR� 0.70(0.15)� 0.20(0.05)� 0.10(0.04) � 0.105� 0.01� 0.004 � 0.119 or 11.9%
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9.29. Find the relative growth rate G of sales at t � 4, given S(t) � 100,000e0.5�–
t

ln S(t) � ln 100,000� ln e0.5�
–
t � ln 100,000� 0.5�t

Take the derivative and recall that 0.5�t � 0.5t1/2,

G �
d

dt
ln S(t) �

S�(t)
S(t)

� 0.5�1
2 � t�1/2 �

0.25

�t

At t � 4, G �
0.25

�4
� 0.125 � 12.5%

9.30. Find the relative growth of profits at t � 8, given �(t) � 250,000e1.2t1/3
.

ln�(t) � ln 250,000� 1.2t1/3

and G �
d

dt
ln�(t) �

��(t)
�(t)

� 1.2�1
3 � t�2/3 �

0.4
t2/3

At t � 8, G �
0.4
82/3 �

0.4
4
� 0.1 � 10%

OPTIMAL TIMING

9.31. Cut glass currently worth $100 is appreciating in value according to the formula

V� 100e�
–
t� 100et1/2

How long should the cut glass be kept to maximize its present value if under continuous
compounding (a) r � 0.08 and (b) r � 0.12?

a) The present value P is P � Ve�rt. Substituting for V and r,

P � 100e�
–
t e�0.08t � 100e�

–
t�0.08t

Converting to natural logs, ln P � ln 100� ln e�
–
t�0.08t � ln 100� t1/2� 0.08t. Taking the derivative,

setting it equal to zero, and recalling that ln 100 is a constant,

d

dt
(ln P) �

1
P

dP

dt
�

1
2

t�1/2� 0.08

dP

dt
� P�1

2
t�1/2� 0.08 �� 0 (9.19)

Since P� 0, 1–
2t
�1/2 �

t�1/2 �

0.08
0.16

t � (0.16)�2 �
1

0.0256
� 39.06

Testing the second-order condition, and using the product rule since P � f(t),

d2 P

dt2 � P�� 1
4

t�3/2� � �1
2

t�1/2� 0.08� dP

dt

Since dP/dt � 0 at the critical value,

d2P

dt2 �
�P

4�t3

which is negative, since P and t must both be positive. Thus, t � 39.06 maximizes the function.
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b) If r � 0.12, substituting 0.12 for 0.08 in (9.19) above,

dP

dt
� P�1

2
t�1/2� 0.12 � � 0

1–
2t
�1/2 � 0.12

t � (0.24)�2 �
1

0.0576
� 17.36

The second-order condition is unchanged. Note that the higher the rate of discount r, the shorter the
period of storage.

9.32. Land bought for speculation is increasing in value according to the formula

V� 1000e
3�

–
t

The discount rate under continuous compounding is 0.09. How long should the land be held to
maximize the present value?

P � 1000e
3�

–
t e�0.09t � 1000e

3�
–
t�0.09t

Convert to natural logs. ln P � ln 1000� t1/3� 0.09t

Take the derivative.
d

dt
(ln P) �

1
P

dP

dt
�

1
3

t�2/3� 0.09 � 0

dP

dt
� P�1

3
t�2/3� 0.09 � � 0

1–
3t
�2/3 � 0.09 t � 0.27�3/2 � 7.13 years

The second-order condition, recalling dP/dt � 0 at the critical value, is

d2 P

dt2 � P�� 2
9

t�5/3� � �1
3

t�2/3� 0.09� dP

dt
� �

2P

9�3
t5
� 0

9.33. The art collection of a recently deceased painter has an estimated value of

V� 200,000(1.25)
3�
�
t2

How long should the executor of the estate hold on to the collection before putting it up for
sale if the discount rate under continuous compounding is 6 percent?

Substituting the value of V in P � Ve�rt,

P �

ln P �

200,000(1.25)t2/3
e�0.06t

ln 200,000� t2/3 ln 1.25� 0.06t

d

dt
(ln P) �

1
P

dP

dt
�

2
3

(ln 1.25) t�1/3� 0.06 � 0

dP

dt
� P�2

3
(ln 1.25) t�1/3� 0.06� � 0

t�1/3 �
3(0.06)
2 ln 1.25

t � � 0.18
2(0.22314) �

�3

� (0.403)�3 � 15.3 years

9.34. The estimated value of a diamond bought for investment purposes is

V� 250,000(1.75)
4�

–
t
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If the discount rate under continuous compounding is 7 percent, how long should the diamond
be held?

P �
ln P �

250,000(1.75)t1/4
e�0.07t

ln 250,000� t1/4 (ln 1.75)� 0.07t
d

dt
(ln P) �

1
P

dP

dt
�

1
4

(ln 1.75) t�3/4� 0.07 � 0

dP

dt
� P�1

4
(ln 1.75) t�3/4� 0.07� � 0

1
4

(ln 1.75) t�3/4� 0.07 � 0 t � � 0.28
ln 1.75 �

�4/3

� (0.50)�4/3 � 2.52 years

SELECTED PROOFS

9.35. Derive the derivative for ln x.

From the definition of a derivative in Equation (3.2),

f �(x) � lim
	x→0

f(x�	x)� f(x)
	x

Specifying f(x) � ln x,

d

dx
(ln x) � lim

	x→0

ln (x�	x)� ln x

	x

From the properties of logs, where ln a� ln b � ln (a/b),

d

dx
(ln x) � lim

	x→0

ln [(x�	x)/x]
	x

Rearranging first the denominator and then the numerator,

d

dx
(ln x) � lim

	x→0
� 1
	x

ln
x�	x

x � � lim
	x→0

� 1
	x

ln �1�
	x

x � �
Multiply by x/x.

d

dx
(ln x) � lim

	x→0
�1

x
·

x

	x
ln �1�

	x

x � �
From the properties of logs, where a ln x � ln xa,

d

dx
(ln x) � lim

	x→0
�1

x
ln �1�

	x

x �
x/	x

�
�

1
x

lim
	x→0

� ln �1�
	x

x �
x/	x

�
Since the logarithmic function is continuous,

d

dx
(ln x) �

1
x

ln � lim
	x→0

�1�
	x

x �
x/	x

�
Let n � x/	x and note that as 	x → 0, n → �. Then

d

dx
(ln x) �

1
x

ln � lim
n→� �1�

1
n�

n

�
But from Section 7.4, e � the limit as n → � of (1� 1/n)n, so

d

dx
(ln x) �

1
x

ln e �
1
x

· 1 �
1
x
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9.36. Derive the derivative for y� ln g(x), assuming g(x) is positive and differentiable.

Using the chain rule notation from (3.6), let y � ln u and u � g(x). Then

dy

dx
�

dy

du
·
du

dx

where
dy

du
�

1
u

and
du

dx
� g�(x)

Substituting,
dy

dx
�

1
u

· g�(x)

Then replacing u with g(x),

dy

dx
�

1
g(x)

· g�(x)

Hence,
d

dx
[ln g(x)] �

1
g(x)

· g�(x) �
g�(x)
g(x)

9.37. Show that the derivative of the function y � ex is ex.

Take the natural logarithm of both sides,

ln y � ln ex

ln y � xFrom Equation (7.3),

Use implicit differentiation and recall that y is a function of x and so requires the chain rule,

1
y

·
dy

dx
� 1

dy

dx
� y

Replace y with ex,

d

dx
(ex) � ex

9.38. Given y � eg(x), prove that dy/dx � eg(x) · g�(x).

Use the chain rule, letting y � eu and u � g(x); then

dy

dx
�

dy

du
·
du

dx

where
dy

du
� eu and

du

dx
� g�(x)

Substituting,
dy

dx
� eu · g�(x)

Then replace y with eg(x) on the left-hand side and u with g(x) on the right-hand side,

d

dx
(eg(x)) � eg(x) · g�(x)
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9.39. Prove that loga (x/y) � loga x� loga y.

Let s � loga x and t � loga y. Then from the definition of a logarithm in Section 7.2

as � x and at � y

and
as

at �
x

y

Substituting from the property of exponents, where as/at � as�t,

as�t �
x

y

Again using the definition of a logarithm,

loga

x

y
� s� t

But s � loga x and t � loga y, so

loga

x

y
� loga x� loga y

9.40. From Equation (9.4), prove that loga e� 1/ln a.

Set each side of the given equation as an exponent of a.

aloga e� a1/ln a

But aloga e� e. Substituting,

e � a1/ln a

Then taking the log of both sides,

loga e � loga a1/ln a �
1

ln a
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CHAPTER 10

The Fundamentals of
Linear (or Matrix)

Algebra

10.1 THE ROLE OF LINEAR ALGEBRA

Linear algebra (1) permits expression of a complicated system of equations in a succinct, simplified
way, (2) provides a shorthand method to determine whether a solution exists before it is attempted,
and (3) furnishes the means of solving the equation system. Linear algebra however, can be applied
only to systems of linear equations. Since many economic relationships can be approximated by linear
equations and others can be converted to linear relationships, this limitation can in part be averted.
See Example 2 and Section 7.6.

EXAMPLE 1. For a company with several different outlets selling several different products, a matrix provides
a concise way of keeping track of stock.

Outlet

1
2
3
4

�
Skis

120
200
175
140

Poles

110
180
190
170

Bindings

90
210
160
180

Outfits

150
110
80

140
�

By reading across a row of the matrix, the firm can determine the level of stock in any of its outlets. By
reading down a column of the matrix, the firm can determine the stock of any line of its products.

EXAMPLE 2. A nonlinear function, such as the rational function z � x0.3/y0.6, can be easily converted to a linear
function by a simple rearrangement

z �
x0.3

y0.6 � x0.3y�0.6

followed by a logarithmic transformation

ln z � 0.3 ln x� 0.6 ln y
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which is log-linear. In similar fashion, many exponential and power functions are readily convertible to linear
functions and then handled by linear algebra. See Section 7.6.

10.2 DEFINITIONS AND TERMS

A matrix is a rectangular array of numbers, parameters, or variables, each of which has a carefully
ordered place within the matrix. The numbers (parameters, or variables) are referred to as elements
of the matrix. The numbers in a horizontal line are called rows; the numbers in a vertical line are called
columns. The number of rows r and columns c defines the dimensions of the matrix (r� c), which is
read ‘‘r by c.’’ The row number always precedes the column number. In a square matrix, the number
of rows equals the number of columns (that is, r � c). If the matrix is composed of a single column,
such that its dimensions are r� 1, it is a column vector; if a matrix is a single row, with dimensions
1� c, it is a row vector. A matrix which converts the rows of A to columns and the columns of A to
rows is called the transpose of A and is designated by A� (or AT). See Example 3 and Problems 10.1
to 10.3.

EXAMPLE 3. Given

A � �
a11

a21

a31

a12

a22

a32

a13

a23

a33
�

3�3

B � �3 9 8
4 2 7 � 2�3

C � �
7
4
5�3�1

D � [3 0 1]1�3

Here A is a general matrix composed of 3� 3 � 9 elements, arranged in three rows and three columns. It is
thus a square matrix. Note that no punctuation separates the elements of a matrix. The elements all have double
subscripts which give the address or placement of the element in the matrix; the first subscript identifies the row
in which the element appears, and the second identifies the column. Positioning is precise within a matrix. Thus,
a23 is the element which appears in the second row, third column; a32 is the element which appears in the third row,
second column. Since row always precedes column in matrix notation, it might be helpful to think of the subscripts
in terms of RC cola or some other mnemonic device. To determine the number of rows, always count down; to
find the number of columns, count across.

Here B is a 2� 3 matrix. Its b12 element is 9, its b21 element is 4. And C is a column vector with dimensions
3� 1; D is a row vector with dimensions 1� 3.

The transpose of A is

A� � �
a11 a21 a31

a12 a22 a32

a13 a23 a33
�

and the transpose of C is

C� � [7 4 5]

10.3 ADDITION AND SUBTRACTION OF MATRICES

Addition (and subtraction) of two matrices A�B (or A�B) requires that the matrices be of
equal dimensions. Each element of one matrix is then added to (subtracted from) the corresponding
element of the other matrix. Thus, a11 in A will be added to (subtracted from) b11 in B; a12 to b12; etc.
See Examples 4 and 5 and Problems 10.4 to 10.8.

EXAMPLE 4. The sum A�B is calculated below, given matrices A and B:

A � �
8 9 7
3 6 2
4 5 10�3�3

B � �
1 3 6
5 2 4
7 9 2�3�3

A�B � �
8� 1 9� 3 7� 6
3� 5 6� 2 2� 4
4� 7 5� 9 10� 2�3�3

� �
9 12 13
8 8 6

11 14 12�3�3
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The difference C�D, given matrices C and D, is found as follows:

C � �4 9
2 6� 2�2

D � �1 7
5 4�2�2

C�D � �4� 1 9� 7
2� 5 6� 4� 2�2

� � 3 2
�3 2 � 2�2

EXAMPLE 5. Suppose that deliveries D are made to the outlets of the firm in Example 1. What is the new level
of stock?

D � �
40 20 50 10
25 30 10 60
15 0 40 70
60 40 10 50

�
To find the new level of stock, label the initial matrix S and solve for S�D. Adding the corresponding

elements of each matrix,

S�D � �
120� 40 110� 20 90� 50 150� 10
200� 25 180� 30 210� 10 110� 60
175� 15 190� 0 160� 40 80� 70
140� 60 170� 40 180� 10 140� 50

� � �
160 130 140 160
225 210 220 170
190 190 200 150
200 210 190 190

�
10.4 SCALAR MULTIPLICATION

In matrix algebra, a simple number such as 12, �2, or 0.07 is called a scalar. Multiplication of a
matrix by a number or scalar involves multiplication of every element of the matrix by the number.
The process is called scalar multiplication because it scales the matrix up or down according to the size
of the number. See Example 6 and Problems 10.10 to 10.12.

EXAMPLE 6. The result of scalar multiplication kA, given k � 8 and

A � �
6 9
2 7
8 4�3�2

is shown below

kA � �
8(6) 8(9)
8(2) 8(7)
8(8) 8(4)�3�2

� �
48 72
16 56
64 32�3�2

10.5 VECTOR MULTIPLICATION

Multiplication of a row vector A by a column vector B requires as a precondition that each vector
have precisely the same number of elements. The product is then found by multiplying the individual
elements of the row vector by their corresponding elements in the column vector and summing the
products:

AB� (a11� b11)� (a12� b21)� (a13� b31) etc.

The product of row-column multiplication will thus be a single number or scalar. Row-column vector
multiplication is of paramount importance. It serves as the basis for all matrix multiplication. See Example 7 and
Problems 10.13 to 10.18.
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EXAMPLE 7. The product AB of the row vector A and the column vector B, given

A � [4 7 2 9]1�4 B � �
12
1
5
6
�

4�1

is calculated as follows:

AB � 4(12)� 7(1)� 2(5)� 9(6) � 48� 7� 10� 54 � 119

The product of vectors

C � [3 6 8]1�3 D � �
2
4
5�3�1

is CD � (3� 2)� (6� 4)� (8� 5) � 6� 24� 40 � 70

Note that since each set of vectors above has the same number of elements, multiplication is possible.

Reversing the order of multiplication in either of the above and having column-row vector
multiplication (BA or DC) will give a totally different answer. See Problem 10.36.

EXAMPLE 8. The meaning of vector multiplication is perhaps easiest understood in terms of the following
example. Assume Q is a row vector of the physical quantities of hamburgers, fries, and sodas sold, respectively,
on a given day and P is a column vector of the corresponding prices of hamburgers, fries, and sodas.

Q � [12 8 10] P � �
1.25
0.75
0.50�

Then by vector multiplication the total value of sales (TVS) for the day is

TVS � QP � [12(1.25)� 8(0.75)� 10(0.50)] � 26.00

10.6 MULTIPLICATION OF MATRICES

Multiplication of two matrices with dimensions (r� c)1 and (r� c)2 requires that the matrices be
conformable, i.e., that c1 � r2, or the number of columns in 1, the lead matrix, equal the number of rows
in 2, the lag matrix. Each row vector in the lead matrix is then multiplied by each column vector of the
lag matrix, according to the rules for multiplying row and column vectors discussed in Section 10.5. The
row-column products, called inner products or dot products, are then used as elements in the formation
of the product matrix, such that each element cij of the product matrix C is a scalar derived from the
multiplication of the ith row of the lead matrix and the jth column of the lag matrix. See Examples 9
to 11 and Problems 10.19 to 10.33.

EXAMPLE 9. Given

A � � 3 6 7
12 9 11 � 2�3

B � �
6 12
5 10

13 2�3�2

C � �1 7 8
2 4 3 �2�3

A shorthand test for conformability, which should be applied before undertaking any matrix multiplication,
is to place the two sets of dimensions in the order in which the matrices are to be multiplied, then mentally circle
the last number of the first set and the first number of the second set. If the two numbers are equal, the number
of columns in the lead matrix will equal the number of rows in the lag matrix, and the two matrices will be
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conformable for multiplication in the given order. Moreover, the numbers outside the circle will provide, in proper
order, the dimensions of the resulting product matrix. Thus, for AB

2� 3 � 3� 2

2� 2

The number of columns in the lead matrix equals the number of rows in the lag matrix, 3 � 3; the matrices are
conformable for multiplication; and the dimensions of the product matrix AB will be 2� 2. When two matrices
such as A and B are conformable for multiplication, the product AB is said to be defined.

For BC,

3� 2 � 2� 3

3� 3

The number of columns in the lead matrix equals the number of rows in the lag matrix, 2 � 2; hence B and C are
conformable. The product BC is defined, and BC will be a 3� 3 matrix.

For AC,

2� 3 � 2� 3

A and C are not conformable for multiplication. Thus, AC is not defined.

EXAMPLE 10. Having determined that A and B in Example 9 are conformable, the product AB � D can be
found. Remembering to use only rows R from the lead matrix and only columns C from the lag matrix, multiply
the first row R1 of the lead matrix by the first column C1 of the lag matrix to find the first element d11 (� R1C1)
of the product matrix D. Then multiply the first row R1 of the lead matrix by the second column C2 of the lag
matrix to get d12 (� R1 C2). Since there are no more columns left in the lag matrix to be multiplied by the first row
of the lead matrix, move to the second row of the lead matrix. Multiply the second row R2 of the lead matrix by
the first column C1 of the lag matrix to get d21 (�R2C1). Finally, multiply the second row R2 of the lead matrix
by the second column C2 of the lag matrix to get d22 (� R2 C2). Thus,

AB � D � �R1 C1 R1 C2

R2 C1 R2 C2
� � � 3(6)� 6(5)� 7(13) 3(12)� 6(10)� 7(2)

12(6)� 9(5)� 11(13) 12(12)� 9(10)� 11(2) � 2�2
� �139 110

260 256� 2�2

The product of BC is calculated below, using the same method:

BC � E � �
R1C1 R1C2 R1C3

R2C1 R2C2 R2C3

R3C1 R3C2 R3C3
� � �

6(1)� 12(2) 6(7)� 12(4) 6(8)� 12(3)
5(1)� 10(2) 5(7)� 10(4) 5(8)� 10(3)

13(1)� 2(2) 13(7)� 2(4) 13(8)� 2(3)�3�3

� �
30 90 84
25 75 70
17 99 110�3�3

EXAMPLE 11. Referring to Example 1, suppose that the price of skis is $200, poles $50, bindings $100, and
outfits $150. To find the value V of the stock in the different outlets, express the prices as a column vector P, and
multiply S by P.

V � SP � �
120 110 90 150
200 180 210 110
175 190 160 80
140 170 180 140

�
4�4

�
200
50

100
150

�
4�1
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The matrices are conformable, and the product matrix will be 4� 1 since

4� 4 � 4� 1

4� 1

Thus,

V � �
R1 C1

R2 C1

R3 C1

R4 C1

� � �
120(200)� 110(50)� 90(100)� 150(150)
200(200)� 180(50)� 210(100)� 110(150)
175(200)� 190(50)� 160(100)� 80(150)
140(200)� 170(50)� 180(100)� 140(150)

�
4�1

� �
61,000
86,500
72,500
75,500

�
4�1

10.7 COMMUTATIVE, ASSOCIATIVE, AND DISTRIBUTIVE LAWS IN MATRIX
ALGEBRA

Matrix addition is commutative (that is, A�B� B�A) since matrix addition merely involves
the summing of corresponding elements of two matrices and the order in which the addi-
tion takes place is inconsequential. For the same reason, matrix addition is also associative,
(A�B)�C�A� (B�C). The same is true of matrix subtraction. Since matrix subtraction
A�B can be converted to matrix addition A� (�B), matrix subtraction is also commutative
and associative.

Matrix multiplication, with few exceptions, is not commutative (that is, AB� BA). Scalar
multiplication, however, is commutative (that is, kA�Ak). If three or more matrices are conformable,
that is, Xa�b, Yc�d, Ze�f, where b � c and d � e, the associative law will apply as long as the matrices
are multiplied in the order of conformability. Thus (XY)Z� X(YZ). Subject to these same conditions,
matrix multiplication is also distributive: A(B�C) �AB�AC. See Examples 12 to 14 and Problems
10.34 to 10.48.

EXAMPLE 12. Given

A � � 4 11
17 6� B � �3 7

6 2�
To show that matrix addition and matrix subtraction are commutative, demonstrate that (1) A�B � B�A and
(2) A�B � �B�A. The calculations are shown below.

1) A�B � � 4� 3 11� 7
17� 6 6� 2� � � 7 18

23 8� � B�A � �3� 4 7� 11
6� 17 2� 6� � � 7 18

23 8�
2) A�B � � 4� 3 11� 7

17� 6 6� 2� � � 1 4
11 4 � � �B�A � ��3� 4 �7� 11

�6� 17 �2� 6� � � 1 4
11 4 �

EXAMPLE 13. Given

A � � 3 6 7
12 9 11 � 2�3

B � �
6 12
5 10

13 2�3�2

It can be demonstrated that matrix multiplication is not commutative, by showing AB� BA, as follows:

Matrix AB is conformable. 2� 3 � 3� 2 AB will be 2� 2

AB � � 3(6)� 6(5)� 7(13) 3(12)� 6(10)� 7(2)
12(6)� 9(5)� 11(13) 12(12)� 9(10)� 11(2) � 2�2

� �139 110
260 256�2�2
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Matrix BA is conformable. 3� 2 � 2� 3 BA will be 3� 3

BA � �
6(3)� 12(12) 6(6)� 12(9) 6(7)� 12(11)
5(3)� 10(12) 5(6)� 10(9) 5(7)� 10(11)

13(3)� 2(12) 13(6)� 2(9) 13(7)� 2(11)�3�3

� �
162 144 174
135 120 145
63 96 113�3�3

Hence AB� BA. Frequently matrices will not even be conformable in two directions.

EXAMPLE 14. Given

A � �
7 5
1 3
8 6�3�2

B � �4 9 10
2 6 5� 2�3

C � �
2
6
7�3�1

To illustrate that matrix multiplication is associative, that is, (AB)C � A(BC), the calculations are as follows:

AB � �
7(4)� 5(2) 7(9)� 5(6) 7(10)� 5(5)
1(4)� 3(2) 1(9)� 3(6) 1(10)� 3(5)
8(4)� 6(2) 8(9)� 6(6) 8(10)� 6(5)�3�3

� �
38 93 95
10 27 25
44 108 110�3�3

(AB)C � �
38 93 95
10 27 25
44 108 110�3�3

�
2
6
7�3�1

� �
38(2)� 93(6)� 95(7)
10(2)� 27(6)� 25(7)
44(2)� 108(6)� 110(7)�3�1

� �
1299
357

1506�3�1

BC � �4(2)� 9(6)� 10(7)
2(2)� 6(6)� 5(7) � 2�1

� �132
75 � 2�1

A(BC) � �
7 5
1 3
8 6�3�2

�132
75 � 2�1

� �
7(132)� 5(75)
1(132)� 3(75)
8(132)� 6(75)�3�1

� �
1299
357

1506�3�1

Q.E.D.

10.8 IDENTITY AND NULL MATRICES

An identity matrix I is a square matrix which has 1 for every element on the principal diagonal
from left to right and 0 everywhere else. See Example 15. When a subscript is used, as in In, n denotes
the dimensions of the matrix (n� n). The identity matrix is similar to the number 1 in algebra since
multiplication of a matrix by an identity matrix leaves the original matrix unchanged (that is,
AI � IA�A). Multiplication of an identity matrix by itself leaves the identity matrix unchanged:
I� I � I2 � I. Any matrix for which A�A� is a symmetric matrix. A symmetric matrix for which
A�A�A is an idempotent matrix. The identity matrix is symmetric and idempotent.

A null matrix is composed of all 0s and can be of any dimension; it is not necessarily square.
Addition or subtraction of the null matrix leaves the original matrix unchanged; multiplication by a
null matrix produces a null matrix. See Example 15 and Problems 10.49 to 10.51.

EXAMPLE 15. Given

A � �
7 10 14
9 2 6
1 3 7� B � � 5 12

20 4� N � �0 0
0 0� I � �

1 0 0
0 1 0
0 0 1�

it is possible to show that (1) multiplication by an identity matrix leaves the original matrix unchanged, that is,
AI � A, (2) multiplication by a null matrix produces a null matrix, that is, BN � N, and (3) addition or subtraction
of a null matrix leaves the original matrix unchanged, that is, B�N � B. The calculations are shown below.
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1) AI � �
7 10 14
9 2 6
1 3 7��

1 0 0
0 1 0
0 0 1� � �

7(1)� 10(0)� 14(0) 7(0)� 10(1)� 14(0) 7(0)� 10(0)� 14(1)
9(1)� 2(0)� 6(0) 9(0)� 2(1)� 6(0) 9(0)� 2(0)� 6(1)
1(1)� 3(0)� 7(0) 1(0)� 3(1)� 7(0) 1(0)� 3(0)� 7(1)�

� �
7 10 14
9 2 6
1 3 7� Q.E.D.

2) BN � � 5(0)� 12(0) 5(0)� 12(0)
20(0)� 4(0) 20(0)� 4(0)� � �0 0

0 0� Q.E.D.

3) B�N � � 5� 0 12� 0
20� 0 4� 0� � � 5 12

20 4� Q.E.D.

10.9 MATRIX EXPRESSION OF A SYSTEM OF LINEAR EQUATIONS

Matrix algebra permits the concise expression of a system of linear equations. As a simple
illustration, note that the system of linear equations

7x1� 3x2 � 45
4x1� 5x2 � 29

can be expressed in matrix form

AX � B

where A� �7 3
4 5� X � �x1

x2
� and B� �45

29�
Here A is the coefficient matrix, X is the solution vector, and B is the vector of constant terms. And X
and B will always be column vectors. See Examples 16 and 17.

EXAMPLE 16. To show that AX � B accurately represents the given system of equations above, find the
product AX. Multiplication is possible since AX is conformable, and the product matrix will be 2� 1.

2� 2 � 2� 1

(2� 1)

Thus, AX � �7 3
4 5� �

x1

x2
� � �7x1� 3x2

4x1� 5x2
�

2�1

and AX � B: �7x1� 3x2

4x1� 5x2
� � �45

29� Q.E.D.

Here, despite appearances, AX is a 2� 1 column vector since each row is composed of a single element which
cannot be simplified further through addition.

EXAMPLE 17. Given

8w� 12x� 7y� 2z � 139
3w� 13x� 4y� 9z � 242
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To express this system of equations in matrix notation, mentally reverse the order of matrix multiplication:

�8 12 �7 2
3 �13 4 9 � 2�4 �

w

x

y

z
�

4�1

� �139
242 � 2�1

Then, letting A � matrix of coefficients, W � the column vector of variables, and B � the column vector of
constants, the given system of equations can be expressed in matrix form

A2�4 W4�1 � B2�1

Solved Problems

MATRIX FORMAT

10.1. (a) Give the dimensions of each of the following matrices. (b) Give their transposes and indicate
the new dimensions.

A� �6 7 9
2 8 4� B� �

12 9 2 6
7 5 8 3
9 1 0 4

� C� �
12
19
25
�

D� �
2 1
7 8
3 0
9 5

� E� [10 2 9 6 8 1] F� �
1 2 5
5 9 3
6 7 6
3 8 9

�
a) Recalling that dimensions are always listed row by column or rc, A � 2� 3, B � 3� 4, C � 3� 1,

D � 4� 2, E � 1� 6, and F � 4� 3. C is also called a column vector; E, a row vector.

b) The transpose of A converts the rows of A to columns and the columns of A to rows.

A� � �
6 2
7 8
9 4�3�2

B� � �
12 7 9
9 5 1
2 8 0
6 3 4

�
4�3

C� � [12 19 25]1�3

D� � �2 7 3 9
1 8 0 5� 2�4

E� � �
10
2
9
6
8
1

�
6�1

F� � �
1 5 6 3
2 9 7 8
5 3 6 9�3�4

10.2. Given a21� 4, a32 � 5, a13 � 3, a23 � 6, a12� 10, and a31��5, use your knowledge of subscripts
to complete the following matrix:

A� �
6
—
—

—
7
—

—
—
9
�
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Since the subscripts are always given in row-column order, a21 � 4 means that 4 is located in the
second row, first column; a32 � 5 means that 5 appears in the third row, second column; etc. Thus,

A � �
6 10 3
4 7 6

�5 5 9�
10.3. A firm with five retail stores has 10 TVs t, 15 stereos s, 9 tape decks d, and 12 recorders r in store

1; 20t, 14s, 8d, and 5r in store 2; 16t, 8s, 15d, and 6r in store 3; 25t, 15s, 7d, and 16r in store 4;
and 5t, 12s, 20d, and 18r in store 5. Express present inventory in matrix form.

Retail
store

1
2
3
4
5
�

t

10
20
16
25
5

s

15
14
8

15
12

d

9
8

15
7

20

r

12
5
6

16
18
�

MATRIX ADDITION AND SUBTRACTION

10.4. Find the sums A�B of the following matrices:

a) A� � 8 9
12 7� B� �13 4

2 6�
A�B � � 8� 13 9� 4

12� 2 7� 6�� �21 13
14 13�

b) A� � 7 �10
�8 2� B� ��8

12
4
�6�

A�B � � 7� (�8) �10� 4
�8� 12 2� (�6) � � ��1 �6

4 �4�
c) A� [12 16 2 7 8] B� [0 1 9 5 6]

A�B � [12 17 11 12 14]

d) A� �
9 4
2 7
3 5
8 6

� B� �
1 3
6 5
2 8
9 2

�
A�B � �

10 7
8 12
5 13

17 8
�

10.5. Redo Problem 10.4, given

A� �
0 1 �6 2
�3 5 8 7

2 9 �1 6
� B� �

7 2 12 6 5
4 3 8 10 6
1 0 5 11 9

�
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Matrices A and B are not conformable for addition because they are not of equal dimensions;
A � 3� 4, B � 3� 5.

10.6. The parent company in Problem 10.3 sends out deliveries D to its stores:

D� �
4 3 5 2
0 9 6 1
5 7 2 6

12 2 4 8
9 6 3 5

�
What is the new level of inventory?

I2 � I1�D � �
10 15 9 12
20 14 8 5
16 8 15 6
25 15 7 16
5 12 20 18

�� �
4 3 5 2
0 9 6 1
5 7 2 6

12 2 4 8
9 6 3 5

� � �
14 18 14 14
20 23 14 6
21 15 17 12
37 17 11 24
14 18 23 23

�
10.7. Find the difference A�B for each of the following:

a) A� � 3 7 11
12 9 2� B� �6 8 1

9 5 8�
A�B � � 3� 6 7� 8 11� 1

12� 9 9� 5 2� 8 � � ��3 �1 10
3 4 �6�

b) A� �
16

2
15

9
� B� �

7
11
3
8
�

A�B � �
16� 7
2� 11

15� 3
9� 8

� � �
9

�9
12
1
�

c) A� �
13 �5 8

4 9 1
10 6 �2

� B� �
14
9
�3

2
6

13

�5
8

11
�

A�B � �
�1
�5
13

�7
3

�7

13
�7
�13�

10.8. A monthly report R on sales for the company in Problem 10.6 indicates

R � �
8 12 6 9

10 11 8 3
15 6 9 7
21 14 5 18
6 11 13 9

�
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What is the inventory left at the end of the month?

I2�R � �
14 18 14 14
20 23 14 6
21 15 17 12
37 17 11 24
14 18 23 23

�� �
8 12 6 9

10 11 8 3
15 6 9 7
21 14 5 18
6 11 13 9

� � �
6 6 8 5

10 12 6 3
6 9 8 5

16 3 6 6
8 7 10 14

�
CONFORMABILITY

10.9. Given

A� �
7 2 6
5 4 8
3 1 9

� B� �6 2
5 0� C� �

11
4

13
�

D� �14
4� E� [8 1 10] F� [13 3]

Determine for each of the following whether the products are defined, i.e., conformable for
multiplication. If so, indicate the dimensions of the product matrix. (a) AC, (b) BD, (c) EC, (d)
DF, (e) CA, ( f) DE, (g) DB, (h) CF, (i) EF.

a) The dimensions of AC, in the order of multiplication, are 3� 3 � 3 � 1. Matrix AC is defined

since the numbers within the dashed circle indicate that the number of columns in A equals the
number of rows in C. The numbers outside the circle indicate that the product matrix will be
3 � 1.

b) The dimensions of BD are 2 � 2 � 2 � 1. Matrix BD is defined; the product matrix will be
2 � 1.

c) The dimensions of EC are 1 � 3 � 3 � 1. Matrix EC is defined; the product matrix will be
1 � 1, or a scalar.

d) The dimensions of DF are 2 � 1 � 1 � 2. Matrix DF is defined; the product matrix will be
2 � 2.

e) The dimensions of CA are 3 � 1 � 3 � 3. Matrix CA is undefined. The matrices are not

conformable for multiplication in that order. [Note that AC in part (a) is defined. This illustrates that
matrix multiplication is not commutative: AC� CA.]

f) The dimensions of DE are 2 � 1 � 1 � 3. Matrix DE is defined; the product matrix will be
2 � 3.

g) The dimensions of DB are 2 � 1 � 2 � 2. The matrices are not conformable for multiplication.
Matrix DB is not defined.

h) The dimensions of CF are 3 � 1 � 1 � 2. The matrices are conformable; the product matrix
will be 3 � 2.

i) The dimensions of EF are 1 � 3 � 1 � 2. The matrices are not conformable, and EF is not
defined.
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SCALAR AND VECTOR MULTIPLICATION

10.10. Determine Ak, given

A� �
3 2
9 5
6 7

� k � 4

Here k is a scalar, and scalar multiplication is possible with a matrix of any dimension. Hence the
product is defined.

Ak � �
3(4) 2(4)
9(4) 5(4)
6(4) 7(4)� � �

12 8
36 20
24 28�

10.11. Find kA, given

k ��2 A� �
7
�5

2

�3
6
�7

2
8
�9

�
kA � �

�2(7)
�2(�5)
�2(2)

�2(�3)
�2(6)
�2(�7)

�2(2)
�2(8)
�2(�9)� � �

�14
10
�4

6
�12

14

�4
�16

18�

10.12. A clothing store discounts all its slacks, jackets, and suits by 20 percent at the end of the year.
If V1 is the value of stock in its three branches prior to the discount, find the value V2 after the
discount, when

V1 � �
5,000 4,500 6,000

10,000 12,000 7,500
8,000 9,000 11,000

�
A 20 percent reduction means that the clothing is selling for 80 percent of its original value. Hence

V2 � 0.8V1,

V2 � 0.8�
5,000 4,500 6,000

10,000 12,000 7,500
8,000 9,000 11,000� � �

4,000 3,600 4,800
8,000 9,600 6,000
6,400 7,200 8,800�

10.13. Find AB, given

A� [9 11 3] B� �
2
6
7
�

Matrix AB is defined; 1 � 3 � 3 � 1; the product will be a scalar, derived by multiplying each

element of the row vector by its corresponding element in the column vector and then summing the
products.

AB � 9(2)� 11(6)� 3(7) � 18� 66� 21 � 105
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10.14. Find AB, given

A� [12 �5 6 11] B� �
3
2
�8

6
�

Matrix AB is defined; 1 � 4 � 4 � 1.

AB � 12(3)� (�5)(2)� 6(�8)� 11(6) � 44

10.15. Find AB, given

A� [9 6 2 0 �5] B� �
2

13
5
8
1
�

Matrix AB is defined; 1 � 5 � 5 � 1.

AB � 9(2)� 6(13)� 2(5)� 0(8)� (�5)(1) � 101

10.16. Find AB, given

A� [12 9 2 4] B� �
6
1
2
�

Matrix AB is undefined; 1 � 4 � 3 � 1. Multiplication is not possible.

10.17. If the price of a TV is $300, the price of a stereo is $250, the price of a tape deck is $175, and
the price of a recorder is $125, use vectors to determine the value of stock for outlet 2 in
Problem 10.3.

The value of stock is V � QP. The physical volume of stock in outlet 2 in vector form is
Q � [20 14 8 5]. The price vector P can be written

P � �
300
250
175
125

�
Matrix QP is defined; 1 � 4 � 4 � 1. Thus

V � QP
� 20(300)� 14(250)� 8(175)� 5(125) � 11,525

10.18. Redo Problem 10.17 for outlet 5 in Problem 10.3.

Here Q � [5 12 20 18], P remains the same. Matrix QP is defined. Thus,

V � 5(300)� 12(250)� 20(175)� 18(125) � 10,250

MATRIX MULTIPLICATION

10.19. Determine whether AB is defined, indicate what the dimensions of the product matrix will be,
and find the product matrix AB, given

A� �12 14
20 5� B� �3 9

0 2�
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Matrix AB is defined; 2 � 2 � 2 � 2; the product matrix will be 2 � 2. Matrix multiplication

is nothing but a series of row-column vector multiplications in which the a11 element of the product matrix
is determined by the product of the first row R1 of the lead matrix and the first column C1 of the lag
matrix; the a12 element of the product matrix is determined by the product of the first row R1 of the lead
matrix and the second column C2 of the lag matrix; the aij element of the product matrix is determined
by the product of the ith row Ri of the lead matrix and the jth column Cj of the lag matrix, etc. Thus,

AB � �R1 C1 R1 C2

R2 C1 R2 C2
� � �12(3)� 14(0) 12(9)� 14(2)

20(3)� 5(0) 20(9)� 5(2)� � �36 136
60 190 �

10.20. Redo Problem 10.19, given

A� �4 7
9 1� B� �3 8 5

2 6 7�
Matrix AB is defined; 2 � 2 � 2 � 3; the product matrix will be 2 � 3.

AB � �R1 C1 R1 C2 R1 C3

R2 C1 R2 C2 R2 C3
� � �4(3)� 7(2) 4(8)� 7(6) 4(5)� 7(7)

9(3)� 1(2) 9(8)� 1(6) 9(5)� 1(7) � � �26 74 69
29 78 52�

10.21. Redo Problem 10.19, given

A� �3 1
8 2� B� �

2 9
4 6
7 5

�
Matrix AB is not defined; 2 � 2 � 3 � 2. The matrices cannot be multiplied because they are

not conformable in the given order. The number of columns (2) in A does not equal the number of rows
(3) in B.

10.22. Redo Problem 10.19 for BA in Problem 10.21.

Matrix BA is defined; 3 � 2 � 2 � 2; the product matrix will be 3 � 2.

BA � �
2 9
4 6
7 5� �

3 1
8 2� � �

R1 C1 R1 C2

R2 C1 R2 C2

R3 C1 R3 C2
� � �

2(3)� 9(8) 2(1)� 9(2)
4(3)� 6(8) 4(1)� 6(2)
7(3)� 5(8) 7(1)� 5(2)�� �

78 20
60 16
61 17�

10.23. Redo Problem 10.19 for AB� in Problem 10.21, where B� is the transpose of B:

B� � �2 4 7
9 6 5�

Matrix AB� is defined: 2 � 2 � 2 � 3; the product will be a 2 � 3 matrix.

AB� � �3 1
8 2� �

2 4 7
9 6 5 � � �3(2)� 1(9) 3(4)� 1(6) 3(7)� 1(5)

8(2)� 2(9) 8(4)� 2(6) 8(7)� 2(5) � � �15 18 26
34 44 66�

(Note from Problems 10.21 to 10.23 that AB� BA�AB�. The noncommutative aspects of matrix
multiplication are treated in Problems 10.36 to 10.41.)
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10.24. Redo Problem 10.19, given

A� �
7 11
2 9

10 6
� B� �12 4 5

3 6 1�
Matrix AB is defined; 3 � 2 � 2 � 3; the product matrix will be 3 � 3.

AB � �
R1 C1 R1 C2 R1 C3

R2 C1 R2 C2 R2 C3

R3 C1 R3 C2 R3 C3
� � �

7(12)� 11(3) 7(4)� 11(6) 7(5)� 11(1)
2(12)� 9(3) 2(4)� 9(6) 2(5)� 9(1)

10(12)� 6(3) 10(4)� 6(6) 10(5)� 6(1)� � �
117 94 46
51 62 19

138 76 56�

10.25. Redo Problem 10.19, given

A� �6 2 5
7 9 4� B� �

10 1
11 3
2 9

�
Matrix AB is defined; 2 � 3 � 3 � 2; the product matrix will be 2 � 2.

AB � �R1 C1 R1 C2

R2C1 R2C2
� � �6(10)� 2(11)� 5(2) 6(1)� 2(3)� 5(9)

7(10)� 9(11)� 4(2) 7(1)� 9(3)� 4(9)� � � 92 57
177 70 �

10.26. Redo Problem 10.19, given

A� [2 3 5] B� �
7 1 6
5 2 4
9 2 7

�
Matrix AB is defined; 1 � 3 � 3 � 3. The product matrix will be 1 � 3.

AB � [R1C1 R1C2 R1 C3] � [2(7)� 3(5)� 5(9) 2(1)� 3(2)� 5(2) 2(6)� 3(4)� 5(7)] � [74 18 59]

10.27. Redo Problem 10.19, given

A� �
5
1

10
� B� �

3 9 4
2 1 8
5 6 1

�
Matrix AB is not defined; 3 � 1 � 3 � 3. Multiplication is impossible in the given order.

10.28. Find BA from Problem 10.27.

Matrix BA is defined; 3 � 3 � 3 � 1. The product matrix will be 3 � 1.

BA � �
3 9 4
2 1 8
5 6 1��

5
1

10� � �
R1 C1

R2 C1

R3 C1
� � �

3(5)� 9(1)� 4(10)
2(5)� 1(1)� 8(10)
5(5)� 6(1)� 1(10)� � �

64
91
41�
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10.29. Redo Problem 10.19, given

A� �
2 1 5
3 2 6
1 4 3

� B� �
10 1 2
5 3 6
2 1 2

�
Matrix AB is defined; 3 � 3 � 3 � 3. The product matrix will be 3 � 3.

AB � �
R1 C1 R1 C2 R1 C3

R2 C1 R2 C2 R2 C3

R3 C1 R3 C2 R3C3
� � �

2(10)� 1(5)� 5(2) 2(1)� 1(3)� 5(1) 2(2)� 1(6)� 5(2)
3(10)� 2(5)� 6(2) 3(1)� 2(3)� 6(1) 3(2)� 2(6)� 6(2)
1(10)� 4(5)� 3(2) 1(1)� 4(3)� 3(1) 1(2)� 4(6)� 3(2)�

� �
35 10 20
52 15 30
36 16 32�

10.30. Redo Problem 10.19, given

A� �
3
1
4
5
� B� [2 6 5 3]

Matrix AB is defined; 4 � 1 � 1 � 4. The product matrix will be 4 � 4.

AB � �
R1 C1 R1 C2 R1 C3 R1 C4

R2 C1 R2 C2 R2 C3 R2 C4

R3 C1 R3 C2 R3 C3 R3 C4

R4 C1 R4 C2 R4 C3 R4 C4

�� �
3(2) 3(6) 3(5) 3(3)
1(2) 1(6) 1(5) 1(3)
4(2) 4(6) 4(5) 4(3)
5(2) 5(6) 5(5) 5(3)

� � �
6 18 15 9
2 6 5 3
8 24 20 12

10 30 25 15
�

10.31. Find AB when

A� [3 9 8 7] B� �
2
5
3
�

Matrix AB is undefined and cannot be multiplied as given; 1 � 4 � 3 � 1.

10.32. Find BA from Problem 10.31.

Matrix BA is defined; 3 � 1 � 1 � 4. The product matrix will be 3 � 4.

BA � �
R1 C1 R1 C2 R1 C3 R1 C4

R2 C1 R2 C2 R2 C3 R2 C4

R3 C1 R3 C2 R3 C3 R3 C4
� � �

2
5
3� [3 9 8 7]

� �
2(3) 2(9) 2(8) 2(7)
5(3) 5(9) 5(8) 5(7)
3(3) 3(9) 3(8) 3(7)� � �

6 18 16 14
15 45 40 35
9 27 24 21�
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10.33. Use the inventory matrix for the company in Problem 10.3 and the price vector from Problem
10.17 to determine the value of inventory in all five of the company’s outlets.

V � QP. QP is defined; 5 � 4 � 4 � 1; V will be 5 � 1.

V � �
10
20
16
25
5

15
14
8

15
12

9
8

15
7

20

12
5
6

16
18
��300

250
175
125

� � �
R1 C1

R2 C1

R3 C1

R4 C1

R5 C1

� � �
10(300)� 15(250)� 9(175)� 12(125)
20(300)� 14(250)� 8(175)� 5(125)
16(300)� 8(250)� 15(175)� 6(125)
25(300)� 15(250)� 7(175)� 16(125)

5(300)� 12(250)� 20(175)� 18(125)
� � �

9,825
11,525
10,175
14,475
10,250

�
THE COMMUTATIVE LAW AND MATRIX OPERATIONS

10.34. To illustrate the commutative or noncommutative aspects of matrix operations (that is,
A�B� B�A, but in general, AB� BA), find (a) A�B and (b) B�A, given

A� �
7 3 2
1 4 6
2 5 4

� B� �
2 0 5
3 4 1
7 9 6

�
a) A�B � �

7� 2 3� 0 2� 5
1� 3 4� 4 6� 1
2� 7 5� 9 4� 6� � �

9 3 7
4 8 7
9 14 10�

b) B�A � �
2� 7 0� 3 5� 2
3� 1 4� 4 1� 6
7� 2 9� 5 6� 4� � �

9 3 7
4 8 7
9 14 10�

A�B � B�A. This illustrates that the commutative law does apply to matrix addition.

Problems 10.35 to 10.42 illustrate the application of the commutative law to other matrix
operations.

10.35. Find (a) A�B and (b) �B�A given

A� �
5 3
4 9

10 8
6 12

� B� �
3 13
7 9
2 1
8 6

�
a) A�B � �

5� 3
4� 7

10� 2
6� 8

3� 13
9� 9
8� 1

12� 6
� � �

2 �10
�3 0

8 7
�2 6

�
b) �B�A � �

�3� 5
�7� 4
�2� 10
�8� 6

�13� 3
�9� 9
�1� 8
�6� 12

� � �
2 �10

�3 0
8 7

�2 6
�

A�B � �B�A. This illustrates that matrix subtraction is commutative.
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10.36. Find (a) AB and (b) BA, given

A� [4 12 9 6] B� �
13
5
�2

7
�

Check for conformability first and indicate the dimensions of the product matrix.

a) Matrix AB is defined; 1 � 4 � 4 � 1. The product will be a 1 � 1 matrix or scalar.

AB � [4(13)� 12(5)� 9(�2)� 6(7)] � 136

b) Matrix BA is also defined; 4 � 1 � 1 � 4; the product will be a 4 � 4 matrix.

BA � �
13(4)
5(4)

�2(4)
7(4)

13(12)
5(12)

�2(12)
7(12)

13(9)
5(9)

�2(9)
7(9)

13(6)
5(6)

�2(6)
7(6)

� � �
52
20
�8
28

156
60

�24
84

117
45

�18
63

78
30

�12
42
�

AB� BA. This illustrates the noncommutative aspect of matrix multiplication. Products generally
differ in dimensions and elements if the order of multiplication is reversed.

10.37. Find (a) AB and (b) BA, given

A� �
7 4
6 2
1 8

� B� ��3 9 1
2 12 7�

a) Matrix AB is defined; 3 � 2 � 2 � 3; the product will be 3 � 3.

AB � �
7(�3)� 4(2) 7(9)� 4(12) 7(1)� 4(7)
6(�3)� 2(2) 6(9)� 2(12) 6(1)� 2(7)
1(�3)� 8(2) 1(9)� 8(12) 1(1)� 8(7)�� �

�13 111 35
�14 78 20

13 105 57�
b) Matrix BA is also defined; 2 � 3 � 3 � 2; the product will be 2 � 2.

BA � ��3(7)� 9(6)� 1(1) �3(4)� 9(2)� 1(8)
2(7)� 12(6)� 7(1) 2(4)� 12(2)� 7(8)� � �34 14

93 88�
AB� BA. Matrix multiplication is not commutative. Here the products again differ in dimensions
and elements.

10.38. Find (a) AB and (b) BA, given

A� �
4 9 8
7 6 2
1 5 3

� B� �
1 2 0
5 3 1
0 2 4

�
a) Matrix AB is defined; 3 � 3 � 3 � 3; the product will be 3 � 3.

AB � �
4(1)� 9(5)� 8(0) 4(2)� 9(3)� 8(2) 4(0)� 9(1)� 8(4)
7(1)� 6(5)� 2(0) 7(2)� 6(3)� 2(2) 7(0)� 6(1)� 2(4)
1(1)� 5(5)� 3(0) 1(2)� 5(3)� 3(2) 1(0)� 5(1)� 3(4)� � �

49 51 41
37 36 14
26 23 17�
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b) Matrix BA is also defined and will result in a 3 � 3 matrix.

BA � �
1(4)� 2(7)� 0(1) 1(9)� 2(6)� 0(5) 1(8)� 2(2)� 0(3)
5(4)� 3(7)� 1(1) 5(9)� 3(6)� 1(5) 5(8)� 3(2)� 1(3)
0(4)� 2(7)� 4(1) 0(9)� 2(6)� 4(5) 0(8)� 2(2)� 4(3)� � �

18 21 12
42 68 49
18 32 16�

AB� BA. The dimensions are the same but the elements differ.

10.39. Find (a) AB and (b) BA, given

A� �7 5 2 6
1 3 9 4� B� �

1
0
�1

3
�

a) Matrix AB is defined; 2 � 4 � 4 � 1; the product will be 2 � 1.

AB � �7(1)� 5(0)� 2(�1)� 6(3)
1(1)� 3(0)� 9(�1)� 4(3)� � � 23

4�
b) Matrix BA is not defined; 4 � 1 � 2 � 4. Multiplication is impossible. This is but another

way in which matrix multiplication is noncommutative.

10.40. Find (a) AB and (b) BA, given

A� �11 14
2 6� B� �

7 6
4 5
1 3

�
a) Matrix AB is not defined; 2 � 2 � 3 � 2 and so cannot be multiplied.

b) Matrix BA is defined; 3 � 2 � 2 � 2 and will produce a 3 � 2 matrix.

BA � �
7(11)� 6(2) 7(14)� 6(6)
4(11)� 5(2) 4(14)� 5(6)
1(11)� 3(2) 1(14)� 3(6)� � �

89 134
54 86
17 32�

BA�AB, because AB does not exist.

10.41. Find (a) AB and (b) BA, given

A� �
�2

4
7
� B� [3 6 �2]

a) Matrix AB is defined; 3 � 1 � 1 � 3; the product will be a 3 � 3 matrix.

AB � �
�2(3)

4(3)
7(3)

�2(6)
4(6)
7(6)

�2(�2)
4(�2)
7(�2)� � �

�6
12
21

�12
24
42

4
�8
�14�

b) Matrix BA is also defined; 1 � 3 � 3 � 1, producing a 1 � 1 matrix or scalar.

BA � [3(�2)� 6(4)� (�2)(7)] � 4

Since matrix multiplication is not commutative, reversing the order of multiplication can lead to
widely different answers. Matrix AB results in a 3 � 3 matrix, BA results in a scalar.
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10.42. Find (a) AB and (b) BA, for a case where B is an identity matrix, given

A� �
23 6 14
18 12 9
24 2 6

� B� �
1 0 0
0 1 0
0 0 1

�
a) Matrix AB is defined; 3 � 3 � 3 � 3. The product matrix will also be 3 � 3.

AB � �
23(1)� 6(0)� 14(0) 23(0)� 6(1)� 14(0) 23(0)� 6(0)� 14(1)
18(1)� 12(0)� 9(0) 18(0)� 12(1)� 9(0) 18(0)� 12(0)� 9(1)
24(1)� 2(0)� 6(0) 24(0)� 2(1)� 6(0) 24(0)� 2(0)� 6(1)� � �

23 6 14
18 12 9
24 2 6�

b) Matrix BA is also defined; 3 � 3 � 3 � 3. The product matrix will also be 3 � 3.

BA � �
1(23)� 0(18)� 0(24) 1(6)� 0(12)� 0(2) 1(14)� 0(9)� 0(6)
0(23)� 1(18)� 0(24) 0(6)� 1(12)� 0(2) 0(14)� 1(9)� 0(6)
0(23)� 0(18)� 1(24) 0(6)� 0(12)� 1(2) 0(14)� 0(9)� 1(6)� � �

23 6 14
18 12 9
24 2 6�

Here AB � BA. Premultiplication or postmultiplication by an identity matrix gives the original
matrix. Thus in the case of an identity matrix, matrix multiplication is commutative. This will also be
true of a matrix and its inverse. See Section 11.7.

ASSOCIATIVE AND DISTRIBUTIVE LAWS

10.43. To illustrate whether the associative and distributive laws apply to matrix operations [that is,
(A�B)�C�A� (B�C), (AB)C�A(BC), and A(B�C) �AB�AC, subject to the condi-
tions in Section 10.7], find (a) (A�B)�C and (b) A� (B�C), given

A� �6 2 7
9 5 3� B� �9 1 3

4 2 6� C� � 7 5 1
10 3 8�

a) A�B � �6� 9 2� 1 7� 3
9� 4 5� 2 3� 6 � � �15 3 10

13 7 9�
(A�B)�C � �15� 7 3� 5 10� 1

13� 10 7� 3 9� 8� � �22 8 11
23 10 17�

b) B�C � �9� 7 1� 5 3� 1
4� 10 2� 3 6� 8� � �16 6 4

14 5 14 �
A� (B�C) � �6� 16 2� 6 7� 4

9� 14 5� 5 3� 14 � � �22 8 11
23 10 17�

Thus, (A�B)�C � A� (B�C). This illustrates that matrix addition is associative. Other aspects of
these laws are demonstrated in Problems 10.44 to 10.47.

10.44. Find (a) (A�B)�C and (b) A� (�B�C), given

A� �
7
6

12
� B� �

3
8
5
� C� �

13
2
6
�

a) A�B � �
7� 3
6� 8

12� 5� � �
4

�2
7� b) �B�C � �

�3� 13
�8� 2
�5� 6�� �

10
�6

1�
(A�B)�C � �

4� 13
�2� 2

7� 6� � �
17
0

13� A� (�B�C) � �
7� 10
6� (�6)

12� 1 � � �
17
0

13�
Matrix subtraction is also associative.
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10.45. Find (a) (AB)C and (b) A(BC), given

A� [7 1 5] B� �
6 5
2 4
3 8

� C� �9 4
3 10�

a) Matrix AB is defined; 1 � 3 � 3 � 2, producing a 1 � 2 matrix.

AB � [7(6)� 1(2)� 5(3) 7(5)� 1(4)� 5(8)] � [59 79]

Matrix (AB)C is defined; 1 � 2 � 2 � 2, leaving a 1� 2 matrix.

(AB)C � [59(9)� 79(3) 59(4)� 79(10)] � [768 1026]

Matrix BC is defined; 3 � 2 � 2 � 2, creating a 3 � 2 matrix.

BC � �
6(9)� 5(3) 6(4)� 5(10)
2(9)� 4(3) 2(4)� 4(10)
3(9)� 8(3) 3(4)� 8(10)� � �

69 74
30 48
51 92�

Matrix A(BC) is also defined; 1 � 3 � 3 � 2, producing a 1 � 2 matrix.

A(BC) � [7(69)� 1(30)� 5(51) 7(74)� 1(48)� 5(92)] � [768 1026]

Matrix multiplication is associative, provided the proper order of multiplication is maintained.

10.46. Find (a) A(B�C) and (b) AB�AC, given

A� [4 7 2] B� �
6
5
1
� C� �

9
5
8
�

a) B�C � �
6� 9
5� 5
1� 8� � �

15
10
9�

Matrix A(B�C) is defined; 1 � 3 � 3 � 1. The product matrix will be 1 � 1.

A(B�C) � [4(15)� 7(10)� 2(9)] � 148

b) Matrix AB is defined; 1 � 3 � 3 � 1, producing a 1 � 1 matrix.

AB � [4(6)� 7(5)� 2(1)] � 61

Matrix AC is defined; 1 � 3 � 3 � 1, also producing a 1 � 1 matrix.

AC � [4(9)� 7(5)� 2(8)] � 87

Thus, AB�AC � 61� 87 � 148. This illustrates the distributive law of matrix multiplication.

10.47. A hamburger chain sells 1000 hamburgers, 600 cheeseburgers, and 1200 milk shakes in a week.
The price of a hamburger is 45¢, a cheeseburger 60¢, and a milk shake 50¢. The cost to the chain
of a hamburger is 38¢, a cheeseburger 42¢, and a milk shake 32¢. Find the firm’s profit for the
week, using (a) total concepts and (b) per-unit analysis to prove that matrix multiplication is
distributive.

220 THE FUNDAMENTALS OF LINEAR (OR MATRIX) ALGEBRA [CHAP. 10



a) The quantity of goods sold Q, the selling price of the goods P, and the cost of goods C, can all be
represented in matrix form:

Q � �
1000
600

1200� P � �
0.45
0.60
0.50� C � �

0.38
0.42
0.32�

Total revenue TR is

TR � PQ � �
0.45
0.60
0.50��

1000
600

1200�
which is not defined as given. Taking the transpose of P or Q will render the vectors conformable
for multiplication. Note that the order of multiplication is all-important. Row-vector multiplication
(P�Q or Q�P) will produce the scalar required; vector-row multiplication (PQ� or QP�) will produce
a 3 � 3 matrix that has no economic meaning. Thus, taking the transpose of P and premultiplying,
we get

TR � P�Q � [0.45 0.60 0.50] �
1000
600

1200�
where P�Q is defined; 1 � 3 � 3 � 1, producing a 1 � 1 matrix or scalar.

TR � [0.45(1000)� 0.60(600)� 0.50(1200)] � 1410

Similarly, total cost TC is TC � C�Q:

TC � [0.38 0.42 0.32] �
1000
600

1200� � [0.38(1000)� 0.42(600)� 0.32(1200)] � 1016

Profits, therefore, are

� � TR�TC � 1410� 1016 � 394

b) Using per-unit analysis, the per-unit profit U is

U � P�C � �
0.45
0.60
0.50�� �

0.38
0.42
0.32� � �

0.07
0.18
0.18�

Total profit � is per-unit profit times the number of items sold

� � UQ � �
0.07
0.18
0.18��

1000
600

1200�
which is undefined. Taking the transpose of U,

� � U�P � [0.07 0.18 0.18] �
1000
600

1200�
� [0.07(1000)� 0.18(600)� 0.18(1200)] � 394 Q.E.D.

10.48. Crazy Teddie’s sells 700 CDs, 400 cassettes, and 200 CD players each week. The selling price of
CDs is $4, cassettes $6, and CD players $150. The cost to the shop is $3.25 for a CD, $4.75 for
a cassette, and $125 for a CD player. Find weekly profits by using (a) total and (b) per-unit
concepts.
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a) Q � �
700
400
200� P � �

4
6

150� C � �
3.25
4.75

125.00�
TR � P�Q � [4 6 150]�

700
400
200� � [4(700)� 6(400)� 150(200)] � 35,200

TC � C�Q � [3.25 4.75 125] �
700
400
200� � [3.25(700)� 4.75(400)� 125(200)] � 29,175

� � TR�TC � 35,200� 29,175 � 6025

b) Per-unit profit U is

U � P�C � �
4
6

150�� �
3.25
4.75

125.00� � �
0.75
1.25

25.00�
Total profit � is

� � U�Q � [0.75 1.25 25] �
700
400
200� � [0.75(700)� 1.25(400)� 25(200)] � 6025

UNIQUE PROPERTIES OF MATRICES

10.49. Given

A� � 6 �12
�3 6� B� �12 6

6 3�
(a) Find AB. (b) Why is the product unique?

a) AB � � 6(12)� 12(6) 6(6)� 12(3)
�3(12)� 6(6) �3(6)� 6(3) � � �0 0

0 0�
b) The product AB is unique to matrix algebra in that, unlike ordinary algebra in which the product of

two nonzero numbers can never equal zero, the product of two non-null matrices may produce a null
matrix. The reason for this is that the two original matrices are singular. A singular matrix is one in
which a row or column is a multiple of another row or column (see Section 11.1). In this problem, row
1 of A is �2 times row 2, and column 2 is �2 times column 1. In B, row 1 is 2 times row 2, and column
1 is 2 times column 2. Thus, in matrix algebra, multiplication involving singular matrices may, but need
not, produce a null matrix as a solution. See Problem 10.50.

10.50. (a) Find AB and (b) comment on the solution, given

A� �6 12
3 6� B� �12 6

6 3�
a) AB � �6(12)� 12(6) 6(6)� 12(3)

3(12)� 6(6) 3(6)� 6(3) � � �144 72
72 36 �

b) While both A and B are singular, they do not produce a null matrix. The product AB, however, is also
singular.
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10.51. Given

A� �4 8
1 2� B� �2 1

2 2� C� ��2 1
4 2�

a) Find AB and AC. (b) Comment on the unusual property of the solutions.

a) AB � �4(2)� 8(2) 4(1)� 8(2)
1(2)� 2(2) 1(1)� 2(2)� � �24 20

6 5�
AC � �4(�2)� 8(4) 4(1)� 8(2)

1(�2)� 2(4) 1(1)� 2(2) � � �24 20
6 5�

b) Even though B� C, AB � AC. Unlike algebra, where multiplication of one number by two different
numbers cannot give the same product, in matrix algebra multiplication of one matrix by two different
matrices may, but need not, produce identical matrices. In this case, A is a singular matrix.
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CHAPTER 11

Matrix Inversion

11.1 DETERMINANTS AND NONSINGULARITY

The determinant 
A 
 of a 2� 2 matrix, called a second-order determinant, is derived by taking the
product of the two elements on the principal diagonal and subtracting from it the product of the two
elements off the principal diagonal. Given a general 2� 2 matrix

A� �a11 a12

a21 a22
�

the determinant is 
A 
� �a11 a12

a21 a22 �
(�)
(�)

� a11 a22� a12 a21

The determinant is a single number or scalar and is found only for square matrices. If the
determinant of a matrix is equal to zero, the determinant is said to vanish and the matrix is termed
singular. A singular matrix is one in which there exists linear dependence between at least two
rows or columns. If 
A 
� 0, matrix A is nonsingular and all its rows and columns are linearly
independent.

If linear dependence exists in a system of equations, the system as a whole will have an infinite
number of possible solutions, making a unique solution impossible. Hence we want to preclude linearly
dependent equations from our models and will generally fall back on the following simple determinant
test to spot potential problems. Given a system of equations with coefficient matrix A,

If 
A 
� 0, the matrix is singular and there is linear dependence among the equations. No unique
solution is possible.

If 
A 
� 0, the matrix is nonsingular and there is no linear dependence among the equations. A
unique solution can be found.

The rank � of a matrix is defined as the maximum number of linearly independent rows or columns
in the matrix. The rank of a matrix also allows for a simple test of linear dependence which follows
immediately. Assuming a square matrix of order n,

If �(A) � n, A is nonsingular and there is no linear dependence.

If �(A)� n, A is singular and there is linear dependence.

See Example 1 and Problems 11.1, 11.3, and 11.17. For proof of nonsingularity and linear
independence, see Problem 11.16.
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EXAMPLE 1. Determinants are calculated as follows, given

A � �6 4
7 9� B ��4 6

6 9�
From the rules stated above,


A 
 � 6(9)� 4(7) � 26

Since 
A 
� 0, the matrix is nonsingular, i.e., there is no linear dependence between any of its rows or columns.
The rank of A is 2, written �(A) � 2. By way of contrast,


B 
 � 4(9)� 6(6) � 0

With 
B 
 � 0, B is singular and linear dependence exists between its rows and columns. Closer inspection reveals
that row 2 and column 2 are equal to 1.5 times row 1 and column 1, respectively. Hence �(B) � 1.

11.2 THIRD-ORDER DETERMINANTS

The determinant of a 3� 3 matrix

A� �
a11 a12 a13

a21 a22 a23

a31 a32 a33
�

is called a third-order determinant and is the summation of three products. To derive the three
products:

1. Take the first element of the first row, a11, and mentally delete the row and column in which
it appears. See (a) below. Then multiply a11 by the determinant of the remaining elements.

2. Take the second element of the first row, a12, and mentally delete the row and column in which
it appears. See (b) below. Then multiply a12 by �1 times the determinant of the remaining
elements.

3. Take the third element of the first row, a13, and mentally delete the row and column in which
it appears. See (c) below. Then multiply a13 by the determinant of the remaining elements.

�
a11 a12 a13

a21 a22 a23

a31 a32 a33
� �

a11 a12 a13

a21 a22 a23

a31 a32 a33
� �

a11 a12 a13

a21 a22 a23

a31 a32 a33
�

(a) (b) (c)

Thus, the calculations for the determinant are as follows:


A 
� a11 �a22 a23

a32 a33
� � a12(�1) �a21 a23

a31 a33
� � a13 �a21 a22

a31 a32
�

� a11(a22 a33� a23 a32)� a12(a21 a33� a23 a31)� a13(a21 a32� a22 a31) (11.1)

� a scalar

See Examples 2 and 3 and Problems 11.2, 11.3, and 11.17.

In like manner, the determinant of a 4� 4 matrix is the sum of four products; the determinant of
a 5� 5 matrix is the sum of five products; etc. See Section 11.4 and Example 5.

225MATRIX INVERSIONCHAP. 11]

�

�

�

�

�

�

�

�

�

���������������������������



EXAMPLE 2. Given

A � �
8 3 2
6 4 7
5 1 3�

the determinant 
A 
 is calculated as follows:


A 
 � 8 � 4 7
1 3 � � 3(�1) � 6 7

5 3 � � 2 � 6 4
5 1 �

� 8[4(3)� 7(1)]� 3[6(3)� 7(5)]� 2[6(1)� 4(5)]

� 8(5)� 3(�17)� 2(�14) � 63

With 
A 
� 0, A is nonsingular and �(A) � 3.

11.3 MINORS AND COFACTORS

The elements of a matrix remaining after the deletion process described in Section 11.2 form a
subdeterminant of the matrix called a minor. Thus, a minor 
Mij 
 is the determinant of the submatrix
formed by deleting the ith row and jth column of the matrix. Using the matrix from Section 11.2,


M11 
� �a22 a23

a32 a33
� 
M12 
� �a21 a23

a31 a33
� 
M13 
� �a21 a22

a31 a32
�

where 
M11 
 is the minor of a11, 
M12 
 the minor of a12, and 
M13 
 the minor of a13. Thus, the determinant in (11.1)
can be written


A 
 � a11 
M11 
� a12(�1) 
M12 
� a13 
M13 
 (11.2)

A cofactor 
Cij 
 is a minor with a prescribed sign. The rule for the sign of a cofactor is


Cij 
� (�1)i�j 
Mij 


Thus if the sum of the subscripts is an even number, 
Cij 
� 
Mij 
, since �1 raised to an even power is
positive. If i� j is equal to an odd number, 
Cij 
�� 
Mij 
, since �1 raised to an odd power is negative.
See Example 3 and Problems 11.18 to 11.24.

EXAMPLE 3. The cofactors (1) 
C11 
, (2) 
C12 
, and (3) 
C13 
 for the matrix in Section 11.2 are found as
follows:

1) 
C11 
 � (�1)1�1 
M11 


Since (�1)1�1 � (�1)2� 1,


C11 
 � 
M11 
 � � a22 a23

a32 a33
�

2) 
C12 
 � (�1)1�2 
M12 


Since (�1)1�2 � (�1)3� �1,

3) 
C13 
 � (�1)1�3 
M13 


Since (�1)1�3 � (�1)4� 1,


C12 
 � � 
M12 
 � � � a21 a23

a31 a33
� 
C13 
 � 
M13 
 � � a21 a22

a31 a32
�
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11.4 LAPLACE EXPANSION AND HIGHER-ORDER DETERMINANTS

Laplace expansion is a method for evaluating determinants in terms of cofactors. It thus simplifies
matters by permitting higher-order determinants to be established in terms of lower-order deter-
minants. Laplace expansion of a third-order determinant can be expressed as


A 
� a11 
C11 
� a12 
C12 
� a13 
C13 
 (11.3)

where 
Cij 
 is a cofactor based on a second-order determinant. Here, unlike (11.1) and (11.2), a12 is
not explicitly multiplied by �1, since by the rule of cofactors 
C12 
 will automatically be multiplied
by �1.

Laplace expansion permits evaluation of a determinant along any row or column. Selection of a
row or column with more zeros than others simplifies evaluation of the determinant by eliminating
terms. Laplace expansion also serves as the basis for evaluating determinants of orders higher than
three. See Examples 4 and 5 and Problem 11.25.

EXAMPLE 4. Given

A � �
12 7 0
5 8 3
6 7 0�

the determinant is found by Laplace expansion along the third column, as demonstrated below:


A 
 � a13 
C13 
� a23 
C23 
� a33 
C33 


Since a13 and a33 � 0


A 
 � a23 
C23 
 (11.4)

Deleting row 2 and column 3 to find 
C23 
,


C23 
 � (�1)2�3 � 12 7
6 7 �

� (�1)[12(7)� 7(6)] � �42

Then substituting in (11.4) where a23 � 3, 
A 
 � 3(�42) � �126. So A is nonsingular and �(A) � 3.
The accuracy of this answer can be readily checked by expanding along the first row and solving for 
A 
 .

EXAMPLE 5. Laplace expansion for a fourth-order determinant is


A 
 � a11 
C11 
� a12 
C12 
� a13 
C13 
� a14 
C14 


where the cofactors are third-order subdeterminants which in turn can be reduced to second-order subdeter-
minants, as above. Fifth-order determinants and higher are treated in similar fashion. See Problem 11.25(d)
to (e).

11.5 PROPERTIES OF A DETERMINANT

The following seven properties of determinants provide the ways in which a matrix can be
manipulated to simplify its elements or reduce part of them to zero, before evaluating the
determinant:

1. Adding or subtracting any nonzero multiple of one row (or column) from another row (or
column) will have no effect on the determinant.

2. Interchanging any two rows or columns of a matrix will change the sign, but not the absolute
value, of the determinant.

3. Multiplying the elements of any row or column by a constant will cause the determinant to be
multiplied by the constant.
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4. The determinant of a triangular matrix, i.e., a matrix with zero elements everywhere above or
below the principal diagonal, is equal to the product of the elements on the principal
diagonal.

5. The determinant of a matrix equals the determinant of its transpose: 
A 
� 
A� 
.
6. If all the elements of any row or column are zero, the determinant is zero.
7. If two rows or columns are identical or proportional, i.e., linearly dependent, the determinant

is zero.

These properties and their use in matrix manipulation are treated in Problems 11.4 to 11.15.

11.6 COFACTOR AND ADJOINT MATRICES

A cofactor matrix is a matrix in which every element aij is replaced with its cofactor 
Cij 
 . An
adjoint matrix is the transpose of a cofactor matrix. Thus,

C� �

C11 
 
C12 
 
C13 


C21 
 
C22 
 
C23 


C31 
 
C32 
 
C33 
� Adj A� C� � �


C11 
 
C21 
 
C31 


C12 
 
C22 
 
C32 


C13 
 
C23 
 
C33 
�

EXAMPLE 6. The cofactor matrix C and the adjoint matrix Adj A are found below, given

A � �
2 3 1
4 1 2
5 3 4�

Replacing the elements aij with their cofactors 
Cij 
 according to the laws of cofactors,

C � �� �
�
�

1 2
3 4
3 1
3 4
3 1
1 2

�
�
�

�

�

�
�
�

4 2
5 4
2 1
5 4
2 1
4 2

�
�
�

�

�
�
�

4 1
5 3
2 3
5 3
2 3
4 1

�
�
� �� �

�2 �6 7
�9 3 9

5 0 �10�
The adjoint matrix Adj A is the transpose of C,

Adj A � C� � �
�2 �9 5
�6 3 0

7 9 �10�
11.7 INVERSE MATRICES

An inverse matrix A�1, which can be found only for a square, nonsingular matrix A, is a unique
matrix satisfying the relationship

AA�1� I �A�1 A

Multiplying a matrix by its inverse reduces it to an identity matrix. Thus, the inverse matrix in linear
algebra performs much the same function as the reciprocal in ordinary algebra. The formula for
deriving the inverse is

A�1 �
1


A 

Adj A

See Example 7 and Problem 11.25.
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EXAMPLE 7. Find the inverse for

A � �
4 1 �5

�2 3 1
3 �1 4�

1. Check that it is a square matrix, here 3� 3, since only square matrices can have inverses.
2. Evaluate the determinant to be sure 
A 
� 0, since only nonsingular matrices can have inverses.


A 
 � 4[3(4)� 1(�1)]� 1[(�2)(4)� 1(3)]� (�5)[(�2)(�1)� 3(3)]
� 52� 11� 35 � 98� 0

Matrix A is nonsingular; �(A) � 3.

3. Find the cofactor matrix of A,

C � �� �
�
�

3 1
�1 4

1 �5
�1 4

1 �5
3 1

�
�
�

�

�

�
�
�

�2 1
3 4
4 �5
3 4
4 �5

�2 1

�
�
�

�

�
�
�

�2 3
3 �1
4 1
3 �1
4 1

�2 3

�
�
�
� � �

13 11 �7
1 31 7

16 6 14�
Then transpose the cofactor matrix to get the adjoint matrix.

Adj A � C� � �
13 1 16
11 31 6
�7 7 14�

4. Multiply the adjoint matrix by 1/ 
A 
 � 1––
98 to get A�1.

A�1 �
1
98 �

13 1 16
11 31 6
�7 7 14� � �

13––
98
11––
98

� 1––
14

1––
98
31––
98
1––
14

16––
98
6––
98
1–
7
� � �

0.1327 0.0102 0.1633
0.1122 0.3163 0.0612

�0.0714 0.0714 0.1429�
5. To check your answer, multiply AA�1 or A�1 A. Both products will equal I if the answer is correct. An

inverse is checked in Problem 11.26(a).

11.8 SOLVING LINEAR EQUATIONS WITH THE INVERSE

An inverse matrix can be used to solve matrix equations. If

An�n Xn�1 � Bn�1

and the inverse A�1 exists, multiplication of both sides of the equation by A�1, following the laws of
conformability, gives

A�1
n�n An�n Xn�1 �A�1

n�n Bn�1

From Section 11.7, A�1 A� I. Thus,

In�n Xn�1 �A�1
n�n Bn�1

From Section 10.8, IX � X. Therefore,

Xn�1 � (A�1 B)n�1

The solution of the equation is given by the product of the inverse of the coefficient matrix A�1 and
the column vector of constants B. See Problems 11.27 to 11.33.
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EXAMPLE 8. Matrix equations and the inverse are used below to solve for x1, x2, and x3, given

4x1� x2� 5x3 � 8
�2x1� 3x2� x3 � 12

3x1� x2� 4x3 � 5

First, express the system of equations in matrix form,

AX � B

�
4 1 �5

�2 3 1
3 �1 4��

x1

x2

x3
� � �

8
12
5�

From Section 11.8,

X � A�1B

Substituting A�1 from Example 7 and multiplying,

X � �
13––
98
11––
98

� 1––
14

1––
98
31––
98
1––
14

16––
98
6––
98
1–
7
��

8
12
5� � �

104–––
98
88––
98

� 8––
14

�

�

�

12––
98
372–––
98
12––
14

�

�

�

80––
98
30––
98
5–
7
� � �

196–––
98

490–––
98
14––
14
� � �

2
5
1�

Thus, x̄1 � 2, x̄2 � 5, and x̄3 � 1.

11.9 CRAMER’S RULE FOR MATRIX SOLUTIONS

Cramer’s rule provides a simplified method of solving a system of linear equations through the use
of determinants. Cramer’s rule states

x̄i �

Ai 


A 


where xi is the ith unknown variable in a series of equations, 
A 
 is the determinant of the coefficient
matrix, and 
Ai 
 is the determinant of a special matrix formed from the original coefficient matrix by
replacing the column of coefficients of xi with the column vector of constants. See Example 9 and
Problems 11.34 to 11.37. Proof for Cramer’s rule is given in Problem 11.38.

EXAMPLE 9. Cramer’s rule is used below to solve the system of equations

6x1� 5x2 � 49
3x1� 4x2 � 32

1. Express the equations in matrix form.
AX � B

�6 5
3 4� �

x1

x2
� � � 49

32 �
2. Find the determinant of A


A 
 � 6(4)� 5(3) � 9

3. Then to solve for x1, replace column 1, the coefficients of x1, with the vector of constants B, forming a
new matrix A1.

A1 � �49 5
32 4 �
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Find the determinant of A1,


A1 
 � 49(4)� 5(32) � 36

and use the formula for Cramer’s rule,

x̄1 �

A1 


A 


�
36
9
� 4

4. To solve for x2, replace column 2, the coefficients of x2, from the original matrix, with the column vector
of constants B, forming a new matrix A2.

A2 � �6 49
3 32 �

Take the determinant,


A2 
 � 6(32)� 49(3) � 45

and use the formula

x̄2 �

A2 


A 


�
45
9
� 5

For a system of three linear equations, see Problem 11.35(b) to (e).

Solved Problems

DETERMINANTS

11.1. Find the determinant 
A 
 for the following matrices:

a) A� � 9 13
15 18� b) A� �40 �10

25 �5�

A 
 � 9(18)� 13(15) � �33 
A 
 � 40(�5)� (�10)(25) � 50

c) A� �
7 6
9 5
2 12

�
The determinant does not exist because A is a 3� 2 matrix and only a square matrix can have a
determinant.

11.2. Find the determinant 
A 
 for the following matrices. Notice how the presence of zeros simplifies
the task of evaluating a determinant.

a) A� �
3 6 5
2 1 8
7 9 1

�

A 
 � 3 � 1 8

9 1 � � 6 � 2 8
7 1 � � 5 � 2 1

7 9 �
� 3[1(1)� 8(9)]� 6[2(1)� 8(7)]� 5[2(9)� 1(7)]

� 3(�71)� 6(�54)� 5(11) � 166
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b) A� �
12 0 3

9 2 5
4 6 1

�

A 
 � 12 � 2 5

6 1 � � 0 � 9 5
4 1 � � 3 � 9 2

4 6 �
� 12(2� 30)� 0� 3(54� 8) � �198

c) A� �
0 6 0
3 5 2
7 6 9

�

A 
 � 0 � 5 2

6 9 � � 6 � 3 2
7 9 � � 0 � 3 5

7 6 �
� 0� 6(27� 14)� 0 � �78

RANK OF A MATRIX

11.3. Determine the rank � of the following matrices:

a) A� �
�3 6 2

1 5 4
4 �8 2

�

A 
 � �3 � 5 4

�8 2 � � 6(�1) � 1 4
4 2 � � 2 � 1 5

4 �8 �
� �3[10� (�32)]� 6(2� 16)� 2(�8� 20) � �98

With 
A 
� 0, A is nonsingular and the three rows and columns are linearly independent. Hence,
�(A) � 3.

b) B� �
5
2
�3

�9
12
�18

3
�4

6
�

B 
 � 5 � 12 �4

�18 6 � � 9(�1) � 2 �4
�3 6 � � 3 � 2 12

�3 �18 �
� 5[72� (�72)]� 9[12� (�12)]� 3[�36� (�36)]

� 5(0)� 9(0)� 3(0) � 0

With 
B 
 � 0, B is singular and the three rows and columns are not linearly independent. Hence,
�(B)� 3. Now test to see if any two rows or columns are independent. Starting with the submatrix
in the upper left corner, take the 2� 2 determinant.

� 5 �9
2 12 � � 60� (�18) � 78� 0

Thus, �(B) � 2. There are only two linearly independent rows and columns in B. Row 3 is �1.5 times
row 2, and column 3 is �1–

3 times column 2.
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c) C� �
�8
10
24

2
�2.5
�6

�6
7.5

18
�


C 
 � �8 ��2.5 7.5
�6 18 � � 2(�1) � 10 7.5

24 18 � � 6 � 10 �2.5
24 �6 �

� �8[�45� (�45)]� 2(180� 180)� 6[�60� (�60)] � 0

With 
C 
 � 0, �(C)� 3. Trying various 2� 2 submatrices,

�
�

�8
10
10
24

2
�2.5
�2.5
�6

�
�

� 20� 20 � 0

� �60� (�60) � 0

�
�

2
�2.5
�2.5
�6

�6
7.5
7.5

18

�
�

� 15� 15 � 0

� �45� (�45) � 0

With all the determinants of the different 2� 2 submatrices equal to zero, no two rows or columns
of C are linearly independent. So �(C)� 2 and �(C) � 1. Row 2 is �1.25 times row 1, row 3 is �3
times row 1, column 2 is �1–

4 times column 1, and column 3 is 3–
4 times column 1.

d) D� �
2 5
7 11
3 1

�
Since the maximum number of linearly independent rows (columns) must equal the maximum
number of linearly independent columns (rows), the rank of D cannot exceed 2. Testing a
submatrix,

� 2 5
7 11 � � 22� 35 � �13� 0 �(D) � 2

While it is clear that there are only two linearly independent columns, there are also only two linearly
independent rows because row 2 � 2 times row 1 plus row 3.

PROPERTIES OF DETERMINANTS

11.4. Given A� �
2 5 1
3 2 4
1 4 2

�
Compare (a) the determinant of A and (b) the determinant of the transpose of A. (c) Specify
which property of determinants the comparison illustrates.

a) 
A 
 � 2(4� 16)� 5(6� 4)� 1(12� 2) � �24

b) A� � �
2 3 1
5 2 4
1 4 2�


A� 
 � 2(4� 16)� 3(10� 4)� 1(20� 2) � �24

c) This illustrates that the determinant of a matrix equals the determinant of its transpose. See
Section 11.5.

11.5. Compare (a) the determinant of A and (b) the determinant of A�, given

A� �a11 a12

a21 a22
�
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a) 
A 
 � a11 a22� a12 a21 b) A� � �a11 a21

a12 a22
� 
A 
 � a11 a22� a21 a12

11.6. Given A� �
1 4 2
3 5 4
2 3 2

�
(a) Find the determinant of A. (b) Form a new matrix B by interchanging row 1 and row 2 of
A, and find 
B 
. (c) Form another matrix C by interchanging column 1 and column 3 of A, and
find 
C 
. (d) Compare determinants and specify which property of determinants is illustrated.

a) 
A 
 � 1(10� 12)� 4(6� 8)� 2(9� 10) � 4

b) B � �
3 5 4
1 4 2
2 3 2�


B 
 � 3(8� 6)� 5(2� 4)� 4(3� 8) � �4

c) C � �
2 4 1
4 5 3
2 3 2�


C 
 � 2(10� 9)� 4(8� 6)� 1(12� 10) � �4

d) 
B 
 � �
A 
 . Interchanging any two rows or columns will affect the sign of the determinant, but not
the absolute value of the determinant.

11.7. Given W � �w
y

x
z�

(a) Find the determinant of W. (b) Interchange row 1 and row 2 of W, forming a new matrix
Y, and compare the determinant of Y with that of W.

a) 
W 
 � wz� yx

b) Y � � y z

w x� 
Y 
 � yx�wz � �(wz� yx) � �
W 


11.8. Given A� �
3 5 7
2 1 4
4 2 3

�
(a) Find the determinant of A. (b) Form a new matrix B by multiplying the first row of A by
2, and find the determinant of B. (c) Compare determinants and indicate which property of
determinants this illustrates.

a) 
A 
 � 3(3� 8)� 5(6� 16)� 7(4� 4) � 35

b) B � �
6 10 14
2 1 4
4 2 3� 
B 
 � 6(3� 8)� 10(6� 16)� 14(4� 4) � 70

c) 
B 
 � 2 
A 
 . Multiplying a single row or column of a matrix by a scalar will cause the value of the
determinant to be multiplied by the scalar. Here doubling row 1 doubles the determinant.

234 MATRIX INVERSION [CHAP. 11



11.9. Given A� �
2 5 8
3 10 1
1 15 4

�
(a) Find 
A 
 . (b) Form a new matrix B by multiplying column 2 by 1–

5 and find 
B 
 . (c) Compare
determinants.

a) 
A 
 � 2(40� 15)� 5(12� 1)� 8(45� 10) � 275

b) Recalling that multiplying by 1–
5 is the same thing as dividing by or factoring out 5,

B � �
2 1 8
3 2 1
1 3 4� 
B 
 � 2(8� 3)� 1(12� 1)� 8(9� 2) � 55

c) 
B 
 � 1–
5 
A 


11.10. Given A� �a11 a12

a21 a22
� B� �a11 ka12

a21 ka22
�

Compare (a) the determinant of A and (b) the determinant of B.

a) 
A 
 � a11 a22� a12 a21 b) 
B 
 � a11 ka22� ka12a21 � k(a11 a22)� k(a12 a21)
� k(a11 a22� a12a21) � k 
A 


11.11. Given A� �
5 1 4
3 2 5
4 1 6

�
(a) Find 
A 
 . (b) Subtract 5 times column 2 from column 1, forming a new matrix B, and find

B 
 . (c) Compare determinants and indicate which property of determinants is illustrated.

a) 
A 
 � 5(12� 5)� 1(18� 20)� 4(3� 8) � 17

b) B � �
0 1 4

�7 2 5
�1 1 6� 
B 
 � 0� 1(�42� 5)� 4(�7� 2) � 17

c) 
B 
 � 
A 
 . Addition or subtraction of a nonzero multiple of any row or column to or from another
row or column does not change the value of the determinant.

11.12. (a) Subtract row 3 from row 1 in A of Problem 11.11, forming a new matrix C, and (b)
find 
C 
 .

a) C � �
1 0 �2
3 2 5
4 1 6 �

b) 
C 
 � 1(12� 5)� 0� (�2)(3� 8) � 17

11.13. Given the upper-triangular matrix

A� �
�3 0 0

2 �5 0
6 1 4

�
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which has zero elements everywhere above the principal diagonal, (a) find 
A 
 . (b) Find the
product of the elements along the principal diagonal and (c) specify which property of
determinants this illustrates.

a) 
A 
 � �3(�20� 0)� 0� 0 � 60

b) Multiplying the elements along the principal diagonal, (�3)(�5)(4) � 60.

c) The determinant of a triangular matrix is equal to the product of the elements along the principal
diagonal.

11.14. Given the lower-triangular matrix

A� �
2 �5 �1
0 3 6
0 0 �7

�
which has zero elements everywhere below the principal diagonal, find (a) 
A 
 and (b) the
product of the diagonal elements.

a) 
A 
 � 2(�21� 0)� (�5)(0� 0)� 1(0� 0) � �42

b) 2(3)(�7) � �42

11.15. Given A� �
12 16 13
0 0 0

�15 20 �9
�

(a) Find 
A 
 . (b) What property of determinants is illustrated?

a) 
A 
 � 12(0� 0)� 16(0� 0)� 13(0� 0) � 0

b) If all the elements of a row or column equal zero, the determinant will equal zero. With all the
elements of row 2 in A equal to zero, the matrix is, in effect, a 2� 3 matrix, not a 3� 3 matrix. Only
square matrices have determinants.

SINGULAR AND NONSINGULAR MATRICES

11.16. Using a 2� 2 coefficient matrix A, prove that if 
A 
� 0, there is linear independence between
the rows and columns of A and a unique solution exists for the system of equations.

Start with two linear equations in two unknowns

a11 x� a12 y � b1 (11.5)

a21 x� a22 y � b2 (11.6)

and solve for x by multiplying (11.5) by a22 and (11.6) by �a12 and then adding to eliminate y.

a11 a22 x� a12 a22y �

�a12 a21 x� a12 a22y �

(a11 a22� a12 a21)x �

x �

a22b1

�a12 b2

a22b1� a12b2

a22b1� a12 b2

a11a22� a12 a21

(11.7)

where a11 a22� a12a21 � 
A 
 . If, in (11.7), 
A 
 � a11 a22� a12a21 � 0, x has no unique solution, indicating
linear dependence between the equations; if 
A 
 � a11 a22� a12 a21� 0, x has a unique solution and the
equations must be linearly independent.
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11.17. Use determinants to determine whether a unique solution exists for each of the following
systems of equations:

a) 12x1� 7x2� 147
15x1� 19x2� 168

To determine whether a unique solution exists, find the coefficient matrix A and take the
determinant 
A 
 . If 
A 
� 0, the matrix is nonsingular and a unique solution exists. If 
A 
 � 0, the
matrix is singular and there is no unique solution. Thus,

A � �12 7
15 19�


A 
 � 12(19)� (7)15 � 123

Since 
A 
� 0, A is nonsingular and a unique solution exists.

b) 2x1� 3x2 � 27
6x1� 9x2 � 81

A � �2 3
6 9� 
A 
 � 2(9)� 6(3) � 0

There is no unique solution. The equations are linearly dependent. The second equation is 3 times
the first equation.

c) 72x1� 54x2� 216
64x1� 48x2� 192

A � �72 �54
64 �48 � 
A 
 � 72(�48)� (�54)(64) � �3456� 3456 � 0

A unique solution does not exist because the equations are linearly dependent. Closer inspection
reveals the second equation is 8–

9 times the first equation.

d) 4x1� 3x2� 5x3 � 27
x1� 6x2� 2x3 � 19

3x1� x2� 3x3 � 15

A � �
4 3 5
1 6 2
3 1 3� 
A 
 � 4(18� 2)� 3(3� 6)� 5(1� 18) � �12

A unique solution exists.

e) 4x1� 2x2� 6x3 � 28
3x1� x2� 2x3 � 20

10x1� 5x2� 15x3 � 70

A � �
4 2 6
3 1 2

10 5 15� 
A 
 � 4(15� 10)� 2(45� 20)� 6(15� 10) � 0
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There is no unique solution because the equations are linearly dependent. Closer examination
reveals the third equation is 2.5 times the first equation.

f) 56x1� 47x2� 8x3 � 365
84x1� 39x2� 12x3 � 249
28x1� 81x2� 4x3 � 168

A � �
56 47 8
84 �39 12
28 �81 4�

Factoring out 28 from column 1 and 4 from column 3 before taking the determinant,


A 
 � 28(4)�
2 47 2
3 �39 3
1 �81 1 �

The linear dependence between column 1 and column 3 is now evident. The determinant will
therefore be zero, and no unique solution exists.


A 
 � 112[2(�39� 243)� 47(0)� 2(�243� 39)] � 112(0) � 0

MINORS AND COFACTORS

11.18. Find (a) the minor 
Mij 
 and (b) the cofactor 
Cij 
 for each of the elements in the first row,
given

A� �a11 a12

a21 a22
�

a) To find the minor of a11, mentally delete the row and column in which it appears. The remaining
element is the minor. Thus, 
M11 
 � a22. Similarly, 
M12 
 � a21.

b) From the rule of cofactors,


C11 
 � (�1)1�1 
M11 
 � �1(a22) � a22


C12 
 � (�1)1�2 
M12 
 � �1(a21) � �a21

11.19. Find (a) the minors and (b) the cofactors for the elements of the second row, given

A� �13 17
19 15�

a) 
M21 
 � 17 
M22 
 � 13

b) 
C21 
 � (�1)2�1 
M21 
 � �1(17) � �17

C22 
 � (�1)2�2 
M22 
 � �1(13) � 13

11.20. Find (a) the minors and (b) the cofactors for the elements of the second column, given

A� � 6 7
12 9�

a) 
M12 
 � 12 
M22 
 � 6

b) 
C12 
 � (�1)1�2 
M12 
 � �12

C22 
 � (�1)2�2 
M22 
 � 6
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11.21. Find (a) the minors and (b) the cofactors for the elements of the first row, given

A� �
5 2 �4
6 �3 7
1 2 4

�
a) Deleting row 1 and column 1,


M11 
 � ��3 7
2 4 � � �26

Similarly,

M12 
 � � 6 7

1 4 � � 17


M13 
 � � 6 �3
1 2 � � 15

b) 
C11 
 � (�1)2 
M11 
 � �26

C12 
 � (�1)3 
M12 
 � �17

C13 
 � (�1)4 
M13 
 � 15

11.22. Find (a) the minors and (b) the cofactors for the elements of the third row, given

A� �
9 11 4
3 2 7
6 10 4

�
a) Deleting row 3 and column 1,


M31 
 � � 11 4
2 7 � � 69

Similarly, 
M32 
 � � 9 4
3 7 � � 51


M33 
 � � 9 11
3 2 � � �15

b) 
C31 
 � (�1)4 
M31 
 � 69

C32 
 � (�1)5 
M32 
 � �51

C33 
 � (�1)6 
M33 
 � �15

11.23. Find (a) the minors and (b) the cofactors for the elements in the second column, given

A� �
13 6 11
12 9 4
7 10 2

�
a) 
M12 
 � � 12 4

7 2 � � �4


M22 
 � � 13 11
7 2 � � �51


M32 
 � � 13 11
12 4 � � �80

b) 
C12 
 � (�1)3 
M12 
 � �1(�4) � 4

C22 
 � (�1)4 
M22 
 � �51

C32 
 � (�1)5 
M32 
 � �1(�80) � 80

239MATRIX INVERSIONCHAP. 11]



11.24. Find (1) the cofactor matrix C and (2) the adjoint matrix Adj A for each of the following:

a) A� �7 12
4 3�

1) C � � 
C11 
 
C12 


C21 
 
C22 
 � � � 
M11 
 �
M12 


�
M21 
 
M22 
 � � � 3 �4
�12 7 �

2) Adj A � C� � � 3 �12
�4 7 �

b) A� ��2 5
13 6�

1) C � � 6 �13
�5 �2 � 2) Adj A � � 6 �5

�13 �2 �

c) A� � 9 �16
�20 7�

1) C � � 7 20
16 9� 2) Adj A � � 7 16

20 9�

d) A� �
6 2 7
5 4 9
3 3 1

�

1) C � �

C11 
 
C12 
 
C13 


C21 
 
C22 
 
C23 


C31 
 
C32 
 
C33 
 � � �� �

�
�

4 9
3 1
2 7
3 1
2 7
4 9

�
�
�

�

�

�
�
�

5 9
3 1
6 7
3 1
6 7
5 9

�
�
�

�

�
�
�

5 4
3 3
6 2
3 3
6 2
5 4

�
�
� � � �

�23 22 3
19 �15 �12

�10 �19 14�

2) Adj A � C� � �
�23 19 �10

22 �15 �19
3 �12 14�

e) A� �
13 �2 8
�9 6 �4
�3 2 �1

�

1) C � �� �
�
�

6 �4
2 �1

�2 8
2 �1

�2 8
6 �4

�
�
�

�

�

�
�
�

�9 �4
�3 �1
13 8
�3 �1
13 8
�9 �4

�
�
�

�

�
�
�

�9 6
�3 2
13 �2
�3 2
13 �2
�9 6

�
�
� � � �

2 3 0
14 11 �20

�40 �20 60�

2) Adj A � C� � �
2
3
0

14
11

�20

�40
�20

60�
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LAPLACE EXPANSION

11.25. Use Laplace expansion to find the determinants for each of the following, using whatever row
or column is easiest:

a) A� �
15 7 9

2 5 6
9 0 12

�
Expanding along the second column,


A 
 � a12 
C12 
� a22 
C22 
� a32 
C32 
 � 7(�1) � 2 6
9 12 � � 5 � 15 9

9 12 � � 0

� �7(�30)� 5(99) � 705

b) A� �
23 35 0
72 46 10
15 29 0

�
Expanding along the third column,


A 
 � a13 
C13 
� a23 
C23 
� a33 
C33 


� 0� 10(�1) � 23 35
15 29 � � 0 � �10(142) � �1420

c) A� �
12 98 15

0 25 0
21 84 19

�
Expanding along the second row,


A 
 � a21 
C21 
� a22 
C22 
� a23 
C23 
 � 0� 25 � 12 15
21 19 � � 0 � 25(�87) � �2175

d) A� �
2 4 1 5
3 2 5 1
1 2 1 4
3 4 3 2

�
Expanding along the first row,


A 
 � a11 
C11 
� a12 
C12 
� a13 
C13 
� a14 
C14 


� 2(�1)1�1�
2 5 1
2 1 4
4 3 2 � � 4(�1)1�2�

3 5 1
1 1 4
3 3 2 � � 1(�1)1�3 �

3 2 1
1 2 4
3 4 2 � � 5(�1)1�4 �

3 2 5
1 2 1
3 4 3 �

Then expanding each of the 3� 3 subdeterminants along the first row,


A 
 � 2�2 � 1 4
3 2 �� 5 � 2 4

4 2 �� 1 � 2 1
4 3 � � � 4�3 � 1 4

3 2 � � 5 � 1 4
3 2 � � 1 �1 1

3 3 � �
� 1 �3 � 2 4

4 2 �� 2 � 1 4
3 2 �� 1 � 1 2

3 4 � � � 5�3 � 2 1
4 3 � � 2 � 1 1

3 3 � � 5 �1 2
3 4 � �

� 2[2(�10)� 5(�12)� 1(2)]� 4[3(�10)� 5(�10)� 1(0)]
� 1[3(�12)� 2(�10)� 1(�2)]� 5[3(2)� 2(0)� 5(�2)]

� 2(42)� 4(20)� 1(�18)� 5(�4) � 6
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e) A� �
5 0 1 3
4 2 6 0
3 0 1 5
0 1 4 2

�
Expanding along the second column,


A 
 � a12 
C12 
� a22 
C22 
� a32 
C32 
� a42 
C42 


� 0� 2(�1)2�2�
5 1 3
3 1 5
0 4 2 � � 0� 1(�1)4�2 �

5 1 3
4 6 0
3 1 5 �

Then substituting the values for the 3� 3 subdeterminants,


A 
 � 2(�60)� 1(88) � �32

INVERTING A MATRIX

11.26. Find the inverse A�1 for the following matrices. Check your answer to part (a).

a) A� �24 15
8 7�

A�1 �
1


A 

Adj A

Evaluating the determinant, 
A 
 � 24(7)� 15(8) � 48

Then finding the cofactor matrix to get the adjoint,

C � � 7 �8
�15 24 �

and Adj A � C� � � 7 �15
�8 24 �

Thus, A�1 �
1
48 � 7 �15

�8 24 � � �
7––
48

�1–
6

� 5––
16

1–
2
� (11.8)

Checking to make sure A�1 A � I, and using the unreduced form of A�1 from (11.8) for easier
computation,

A�1 A �
1
48 � 7 �15

�8 24 � �
24 15
8 7� �

1
48 � 7(24)� 15(8) 7(15)� 15(7)

�8(24)� 24(8) �8(15)� 24(7)�
�

1
48 �48 0

0 48� � �1 0
0 1�

b) A� �7 9
6 12�


A 
 � 7(12)� 9(6) � 30

The cofactor matrix is

C � � 12 �6
�9 7�

and Adj A � C� � � 12 �9
�6 7�
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Thus, A�1 �
1
30 � 12 �9

�6 7� � �
2–
5

�1–
5

� 3––
10
7––
30
�

c) A� ��7 16
�9 13�


A 
 � �7(13)� 16(�9) � 53

C � � 13 9
�16 �7 �

Adj A � C� � �13 �16
9 �7 �

A�1�
1
53 �13 �16

9 �7 � � �
13––
53
9––
53

�16––
53

� 7––
53
�

d) A� �
4 2 5
3 1 8
9 6 7

�

A 
 � 4(7� 48)� 2(21� 72)� 5(18� 9) � �17

The cofactor matrix is

C � �� �
�
�

1 8
6 7
2 5
6 7
2 5
1 8

�
�
�

�

�

�
�
�

3 8
9 7
4 5
9 7
4 5
3 8

�
�
�

�

�
�
�

3 1
9 6
4 2
9 6
4 2
3 1

�
�
�
� � �

�41 51 9
16 �17 �6
11 �17 �2�

and Adj A � C� � �
�41 16 11

51 �17 �17
9 �6 �2�

Thus, A�1� �
1
17 �

�41 16 11
51 �17 �17
9 �6 �2� � �

41––
17

�3
� 9––

17

�16––
17

1
6––
17

�11––
17

1
2––
17
�

e) A� �
14 0 6

9 5 0
0 11 8

�

A 
 � 14(40)� 0� 6(99) � 1154

The cofactor matrix is

C � �
40 �72 99
66 112 �154

�30 54 70�
The adjoint is

Adj A � �
40 66 �30

�72 112 54
99 �154 70�
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Then A�1 �
1

1154 �
40 66 �30

�72 112 54
99 �154 70� � �

20–––
577

� 36–––
577
99––––

1154

33–––
577
56–––
577

� 77–––
577

� 15–––
577
27–––
577
35–––
577
�

MATRIX INVERSION IN EQUATION SOLUTIONS

11.27. Use matrix inversion to solve the following systems of linear equations. Check your answers on
your own by substituting into the original equations.

a) 4x1� 3x2 � 28
2x1� 5x2 � 42

�4 3
2 5� �

x1

x2
� � �28

42 �
where from Section 11.8, X � A�1B. Find first the inverse of A, where 
A 
 � 4(5)� 3(2) � 14. The
cofactor matrix of A is

C � � 5 �2
�3 4�

and Adj A � C� � � 5 �3
�2 4�

Thus, A�1 �
1
14 � 5 �3

�2 4� � �
5––
14

�1–
7

� 3––
14

2–
7
�

Then substituting in X � A�1 B and simply multiplying matrices,

X � �
5––
14

�1–
7

� 3––
14

2–
7
�

2�2
� 28

42 � 2�1

� � 10� 9
�4� 12 � 2�1

� �1
8 � 2�1

Thus, x̄ � 1 and x̄2� 8.

b) 6x1� 7x2 � 56
2x1� 3x2 � 44

�6 7
2 3� �

x1

x2
� � � 56

44 �
where 
A 
 � 6(3)� 7(2) � 4.

C � � 3 �2
�7 6� Adj A � C� � � 3 �7

�2 6�
and A�1�

1
4 � 3 �7
�2 6� � �

3–
4

�1–
2

�7–
4
3–
2
�

Thus, X � �
3–
4

�1–
2

�7–
4
3–
2
�

2�2
� 56

44 � 2�1

� � 42� 77
�28� 66� 2�1

� ��35
38 � 2�1

and x̄1 � �35 and x̄2 � 38.

11.28. The equilibrium conditions for two related markets (pork and beef) are given by

18Pb� Pp � 87
�2Pb� 36Pp � 98
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Find the equilibrium price for each market.

� 18 �1
�2 36� �

Pb

Pp
� � � 87

98 �
where 
A 
 � 18(36)� (�1)(�2) � 646.

C � �36 2
1 18� Adj A � �36 1

2 18�
and A�1�

1
646 �36 1

2 18� � �
18–––
323
1–––323

1–––646
9–––323
�

Thus, X � �
18–––
323
1–––323

1–––646
9–––323
� � 87

98 �� �
1615––––
323
969–––
323

� � � 5
3�

and P̄b � 5 and P̄p � 3.
This is the same solution as that obtained by simultaneous equations in Problem 2.12. For practice try

the inverse matrix solution for Problem 2.13.

11.29. The equilibrium condition for two substitute goods is given by

5P1� 2P2 � 15
�P1� 8P2 � 16

Find the equilibrium prices.

� 5 �2
�1 8� �

P1

P2
� � �15

16 �
where 
A 
 � 5(8)� (�1)(�2) � 38.

C � �8 1
2 5� Adj A � �8 2

1 5�
and A�1 �

1
38 �8 2

1 5� � �
4––
19
1––
38

1––
19
5––
38
�

Thus, X � �
4––
19
1––
38

1––
19
5––
38
� � 15

16 � � �
60� 16

19
15� 80

38
� � �4

2.5�

and P̄1 � 4 and P̄2 � 2.5.

11.30. Given: the IS equation 0.3Y� 100i� 252 � 0 and the LM equation 0.25Y� 200i� 176 � 0.
Find the equilibrium level of income and rate of interest.

The IS and LM equations can be reduced to the form

0.3Y � 100i � 252
0.25Y� 200i � 176

and then expressed in matrix form where

A � �0.3 100
0.25 �200� X � �Y

i � B � �252
176 �
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Thus, 
A 
 � 0.3(�200)� 100(0.25) � �85

C � ��200 �0.25
�100 0.3 �

Adj A � ��200 �100
�0.25 0.3�

and A�1� �
1
85 ��200 �100

�0.25 0.3� � �
40
––
17

0.05
17

�

20
––
17

0.06
17

�
Thus, X � �

40
––
17

0.05
17

�

20
––
17

0.06
17

� �252
176 � � �

10,080� 3520
17

12.6� 10.56
17

� � �800
0.12�

In equilibrium Ȳ � 800 and ī � 0.12 as found in Problem 2.23 where simultaneous equations were used.
On your own, practice with Problem 2.24.

11.31. Use matrix inversion to solve for the unknowns in the system of linear equations given
below.

2x1� 4x2� 3x3� 12
3x1� 5x2� 2x3� 13
�x1� 3x2� 2x3� 17

�
2 4 �3
3 �5 2

�1 3 2��
x1

x2

x3
� � �

12
13
17�

where 
A 
 � 2(�16)� 4(8)� 3(4) � �76.

C � �� �
�
�

�5 2
3 2
4 �3
3 2
4 �3

�5 2

�
�
�

�

�

�
�
�

3 2
�1 2

2 �3
�1 2

2 �3
3 2

�
�
�

�

�
�
�

3 �5
�1 3

2 4
�1 3

2 4
3 �5

�
�
� � � �

�16 �8 4
�17 1 �10
�7 �13 �22�

Adj A � �
�16 �17 �7
�8 1 �13

4 �10 �22�
A�1 � �

1
76 �

�16
�8

4

�17
1

�10

�7
�13
�22� � �

16––
76
8––
76

� 4––
76

17––
76

� 1––
76
10––
76

7––
76
13––
76
22––
76
�

where the common denominator 76 is deliberately kept to simplify later calculations.

Thus, X � �
16––
76
8––
76

� 4––
76

17––
76

� 1––
76
10––
76

7––
76
13––
76
22––
76
��

12
13
17� � �

192� 221� 119
76

96� 13� 221
76

�48� 130� 374
76

�� �
7
4
6 � � �

x̄1

x̄2

x̄3
�
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11.32. The equilibrium condition for three related markets is given by

11P1� P2� P3� 31
�P1� 6P2� 2P3� 26
�P1� 2P2� 7P3� 24

Find the equilibrium price for each market.

�
11
�1
�1

�1
6

�2

�1
�2

7��
P1

P2

P3
� � �

31
26
24�

where 
A 
 � 11(38)� 1(�9)� 1(8) � 401.

C � �� �
�
�

6 �2
�2 7
�1 �1
�2 7
�1 �1

6 �2

�
�
�

�

�

�
�
�

�1 �2
�1 7
11 �1
�1 7
11 �1
�1 �2

�
�
�

�

�
�
�

�1 6
�1 �2
11 �1
�1 �2
11 �1
�1 6

�
�
� � � �

38 9 8
9 76 23
8 23 65�

Adj A � �
38 9 8
9 76 23
8 23 65�

A�1�
1

401 �
38 9 8
9 76 23
8 23 65�� �

38–––
401
9–––

401
8–––

401

9–––
401
76–––
401
23–––
401

8–––
401
23–––
401
65–––
401
�

X � �
38–––
401
9–––

401
8–––

401

9–––
401
76–––
401
23–––
401

8–––
401
23–––
401
65–––
401
��

31
26
24� � �

1178� 234� 192
401

279� 1976� 552
401

248� 598� 1560
401

� � �
4
7
6� � �

P̄1

P̄2

P̄3
�

See Problem 2.16 for the same solution with simultaneous equations.

11.33. Given Y� C� I0, where C� C0� bY. Use matrix inversion to find the equilibrium level of Y
and C.

The given equations can first be rearranged so that the endogenous variables C and Y, together with
their coefficients �b, are on the left-hand side of the equation and the exogenous variables C0 and I0 are
on the right.

Y�C � I0

�bY�C � C0

Thus, � 1 �1
�b 1 � �

Y

C � � �I0

C0
�

The determinant of the coefficient matrix is 
A 
 � 1(1)� 1(�b) � 1� b. The cofactor matrix is

C � �1 b

1 1�
Adj A � �1 1

b 1�

247MATRIX INVERSIONCHAP. 11]



and A�1 �
1

1� b �1 1
b 1 �

Letting X � � Y

C � , X �
1

1� b �1 1
b 1 � �

I0

C0
� � 1

1� b � I0�C0

bI0�C0
�

Thus, Ȳ �
1

1� b
(I0�C0) C̄ �

1
1� b

(C0� bI0)

Example 3 in Chapter 2 was solved for the equilibrium level of income without matrices.

CRAMER’S RULE

11.34. Use Cramer’s rule to solve for the unknowns in each of the following:

a) 2x1� 6x2 � 22
�x1� 5x2 � 53

From Cramer’s rule,

x̄i �

Ai 


A 


where Ai is a special matrix formed by replacing the column of coefficients of xi with the column of
constants. Thus, from the original data,

� 2 6
�1 5 � �

x1

x2
� � � 22

53 �
where 
 A 
 � 2(5)� 6(�1) � 16.

Replacing the first column of the coefficient matrix with the column of constants,

A1 � �22 6
53 5 �

where 
A1 
 � 22(5)� 6(53) � �208. Thus,

x̄1�

A1 


A 


� �
208
16
� �13

Replacing the second column of the original coefficient matrix with the column of constants,

A2 � � 2 22
�1 53�

where 
A2 
 � 2(53)� 22(�1) � 128. Thus,

x̄2 �

A2 


A 


�
128
16
� 8

b) 7p1� 2p2 � 60
p1� 8p2 � 78

A � �7 2
1 8�

where 
A 
 � 7(8)� 2(1) � 54.

A1 � �60 2
78 8 �
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where 
A1 
 � 60(8)� 2(78) � 324.

A2 � �7 60
1 78 �

where 
A2 
 � 7(78)� 60(1) � 486.

p̄1�

A1 


A 


�
324
54
� 6 and p̄2 �


A2 


A 


�
486
54
� 9

c) 18Pb� Pp � 87
�2Pb� 36Pp � 98

A � � 18 �1
�2 36�

where 
A 
 � 18(36)� (�1)(�2) � 646.

A1 � �87 �1
98 36�

where 
A1 
 � 87(36)� 1(98) � 3230.

A2 � � 18 87
�2 98�

where 
A2 
 � 18(98)� 87(�2) � 1938.

P̄b �

A1 


A 


�
3230
646

� 5 and P̄p �

A2 


A 


�
1938
646

� 3

Compare the work involved in this method of solution with the work involved in Problems 2.12 and
11.28 where the same problem is treated first with simultaneous equations and then with matrix
inversion.

11.35. Redo Problem 11.34 for each of the following:

a) 0.4Y� 150i � 209
0.1Y� 250i � 35

A � �0.4 150
0.1 �250�

where 
A 
 � 0.4(�250)� 150(0.1) � �115.

A1 � �209 150
35 �250 �

where 
A1 
 � 209(�250)� 150(35) � �57,500.

A2 � �0.4 209
0.1 35 �

where 
A2 
 � 0.4(35)� 209(0.1) � �6.9.

Ȳ �

A1 


A 


�
�57,500
�115

� 500 and ī �

A2 


A 


�
�6.9
�115

� 0.06

Compare this method of solution with Problem 2.24.
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b) 5x1� 2x2� 3x3 � 16
2x1� 3x2� 5x3 � 2
4x1� 5x2� 6x3 � 7


A 
 � �
5
2
4

�2
3

�5

3
�5

6� � 5(18� 25)� 2(12� 20)� 3(�10� 12) � �37


A1 
 � �
16
2
7

�2
3

�5

3
�5

6� � 16(18� 25)� 2(12� 35)� 3(�10� 21) � �111


A2 
 � �
5
2
4

16
2
7

3
�5

6� � 5(12� 35)� 16(12� 20)� 3(14� 8) � �259


A3 
 � �
5
2
4

�2
3

�5

16
2
7 � � 5(21� 10)� 2(14� 8)� 16(�10� 12) � �185

x̄1�

A1 


A 


�
�111
�37

� 3 x̄2�

A2 


A 


�
�259
�37

� 7 x̄3 �

A3 


A 


�
�185
�37

� 5

c) 2x1� 4x2� x3 � 52
�x1� 5x2� 3x3 � 72
3x1� 7x2� 2x3 � 10


A 
 � �
2

�1
3

4
5

�7

�1
3
2 � � 2(31)� 4(�11)� 1(�8) � 114


A1 
 � �
52
72
10

4
5

�7

�1
3
2 � � 52(31)� 4(114)� 1(�554) � 1710


A2 
 � �
2

�1
3

52
72
10

�1
3
2 � � 2(114)� 52(�11)� 1(�226) � 1026


A3 
 � �
2

�1
3

4
5

�7

52
72
10 � � 2(554)� 4(�226)� 52(�8) � 1596

x̄1�

A1 


A 


�
1710
114

� 15 x̄2�

A2 


A 


�
1026
114

� 9 x̄3 �

A3 


A 


�
1596
114

� 14

d) 11p1� p2� p3 � 31
�p1� 6p2� 2p3 � 26
�p1� 2p2� 7p3 � 24


A 
 � �
11
�1
�1

�1
6

�2

�1
�2

7� � 11(38)� 1(�9)� 1(8) � 401


A1 
 � �
31
26
24

�1
6

�2

�1
�2

7� � 31(38)� 1(230)� 1(�196) � 1604
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A2 
 � �
11
�1
�1

31
26
24

�1
�2

7� � 11(230)�31(�9)� 1(2) � 2807


A3 
 � �
11
�1
�1

�1
6

�2

31
26
24 � � 11(196)� 1(2)� 31(8) � 2406

Thus, p̄1�

A1 


A 


�
1604
401

� 4 p̄2 �

A2 


A 


�
2807
401

� 7 p̄3 �

A3 


A 


�
2406
401

� 6

Compare the work involved in this type of solution with the work involved in Problems 2.16 and
11.32.

11.36. Use Cramer’s rule to solve for x and y, given the first-order conditions for constrained
optimization from Example 7 of Chapter 6:

�TC
�x

� 16x� y�� � 0

�TC
�y

� 24y� x�� � 0

�TC
��

� 42� x� y � 0

Rearrange the equations,

16x� y�� � 0
�x� 24y�� � 0
�x� y � �42

and set them in matrix form.

�
16
�1
�1

�1
24
�1

�1
�1

0��
x

y

�
� � �

0
0

�42�
Expanding along the third column,


A 
 � (�1)(1� 24)� (�1)(�16� 1)� 0 � �42

A1 � �
0
0

�42

�1
24
�1

�1
�1

0�
Expanding along the first column, 
A 1 
 � �42(1� 24) � �1050.

A2 � �
16
�1
�1

0
0

�42

�1
�1

0�
Expanding along the second column, 
A2 
 � �(�42)(�16� 1) � �714.

A3 � �
16
�1
�1

�1
24
�1

0
0

�42�
Expanding along the third column, 
A3 
 � �42(384� 1) � �16,086.
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Thus, x̄ �

A1 


A 


�
�1050
�42

� 25 ȳ �

A2 


A 


�
�714
�42

� 17

and �̄ �

A3 


A 


�
�16,086
�42

� 383

11.37. Use Cramer’s rule to find the critical values of Q1 and Q2, given the first-order condi-
tions for constrained utility maximization in Problem 6.37: Q2� 10� � 0, Q1� 2� � 0, and
240� 10Q1� 2Q2 � 0.

�
0
1

�10

1
0

�2

�10
�2

0��
Q1

Q2

�
� � �

0
0

�240�
Thus, 
A 
 � �(1)(�20)� (�10)(�2) � 40.

A1� �
0
0

�240

1
0

�2

�10
�2

0� � �240(�2) � 480

A2� �
0
1

�10

0
0

�240

�10
�2

0� � �(�240)(10) � 2400

A3� �
0
1

�10

1
0

�2

0
0

�240� � �240(�1) � 240

Thus, Q̄1�

A1 


A 


�
480
40
� 12 Q̄2 �


A2 


A 


�
2400
40

� 60

and �̄ �

A3 


A 


�
240
40
� 6

11.38. Given
ax1� bx2 � g (11.9)
cx1� dx2 � h (11.10)

Prove Cramer’s rule by showing

x̄1 �
�g b
h d�
�a b
c d �

�

A1 


A 


x̄2�
�a g
c h �
�a b
c d �

�

A2 


A 


Dividing (11.9) by b,

a

b
x1� x2 �

g

b
(11.11)
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Multiplying (11.11) by d and subtracting (11.10),

ad

b
x1� dx2 �

dg

b

�cx1� dx2 � �h

� ad� cb

b � x1 �
dg� hb

b

x̄1 �
dg� hb

ad� cb
�

� g b

h d �

� a b

c d �
�


A1 


A 


Similarly, dividing (11.9) by a, x1�
b

a
x2 �

g

a
(11.12)

Multiplying (11.12) by �c and adding to (11.10),

�cx1�
bc

a
x2 � �

cg

a

cx1� dx2 � h

� ad� bc

a � x2 �
ah� cg

a

x̄2 �
ah� cg

ad� bc
�

� a g

c h �

� a b

c d �
�


A2 


A 


Q.E.D.
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CHAPTER 12

Special
Determinants

and Matrices and
Their Use in

Economics

12.1 THE JACOBIAN

Section 11.1 showed how to test for linear dependence through the use of a simple determinant.
In contrast, a Jacobian determinant permits testing for functional dependence, both linear and
nonlinear. A Jacobian determinant 
J 
 is composed of all the first-order partial derivatives of a system
of equations, arranged in ordered sequence. Given

y1 � f1(x1, x2, x3)
y2 � f2(x1, x2, x3)
y3 � f3(x1, x2, x3)


J 
� � �y1, �y2, �y3

�x1, �x2, �x3
� �

�y1

�x1

�y2

�x1

�y3

�x1

�y1

�x2

�y2

�x2

�y3

�x2

�y1

�x3

�y2

�x3

�y3

�x3

Notice that the elements of each row are the partial derivatives of one function yi with respect to
each of the independent variables x1, x2, x3, and the elements of each column are the partial derivatives
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of each of the functions y1, y2, y3 with respect to one of the independent variables xj. If 
 J 
� 0, the
equations are functionally dependent; if 
J 
� 0, the equations are functionally independent. See
Example 1 and Problems 12.1 to 12.4.

EXAMPLE 1. Use of the Jacobian to test for functional dependence is demonstrated below, given

y1 � 5x1� 3x2

y2 � 25x1
2� 30x1 x2� 9x2

2

First, take the first-order partials,

�y1

�x1

� 5
�y1

�x2

� 3
�y2

�x1

� 50x1� 30x2
�y2

�x2

� 30x1� 18x2

Then set up the Jacobian,


J 
 � � 5
50x1� 30x2

3
30x1� 18x2

�
and evaluate,


J 
 � 5(30x1� 18x2)� 3(50x1� 30x2) � 0

Since 
J 
 � 0, there is functional dependence between the equations. In this, the simplest of cases,
(5x1� 3x2)2 � 25x2

1� 30x1 x2� 9x2
2.

12.2 THE HESSIAN

Given that the first-order conditions zx � zy� 0 are met, a sufficient condition for a multivariable
function z � f(x, y) to be at an optimum is

1) zxx, zyy� 0 for a minimum
zxx, zyy� 0 for a maximum
zxx zyy� (zxy)22)

See Section 5.4. A convenient test for this second-order condition is the Hessian. A Hessian 
H 
 is a
determinant composed of all the second-order partial derivatives, with the second-order direct partials
on the principal diagonal and the second-order cross partials off the principal diagonal. Thus,


H 
� �zxx zxy

zyx zyy
�

where zxy � zyx. If the first element on the principal diagonal, the first principal minor, 
H1 
� zxx is
positive and the second principal minor


H2 
� �zxx zxy

zxy zyy
� � zxx zyy� (zxy)2� 0

the second-order conditions for a minimum are met. When 
H1 
� 0 and 
H2 
� 0, the Hessian 
H 
 is
called positive definite. A positive definite Hessian fulfills the second-order conditions for a
minimum.

If the first principal minor 
H1 
� zxx� 0 and the second principal minor


H2 
� �zxx zxy

zxy zyy
� � 0

the second-order conditions for a maximum are met. When 
H1 
� 0, 
H2 
� 0, the Hessian 
H 
 is
negative definite. A negative definite Hessian fulfills the second-order conditions for a maximum. See
Example 2 and Problems 12.10 to 12.13.
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EXAMPLE 2. In Problem 5.10(a) it was found that

z � 3x2� xy� 2y2� 4x� 7y� 12

is optimized at x0� 1 and y0 � 2. The second partials were zxx � 6, zyy � 4, and zxy � �1. Using the Hessian to
test the second-order conditions,


H 
 � � zxx zxy

zyx zyy
� � � 6 �1

�1 4 �
Taking the principal minors, 
H1 
 � 6� 0 and


H2 
 � � 6 �1
�1 4 � � 6(4)� (�1)(�1) � 23� 0

With 
H1 
� 0 and 
H2 
� 0, the Hessian 
H 
 is positive definite, and z is minimized at the critical values.

12.3 THE DISCRIMINANT

Determinants may be used to test for positive or negative definiteness of any quadratic form. The
determinant of a quadratic form is called a discriminant 
D 
 . Given the quadratic form

z� ax2� bxy� cy2

the discriminant is formed by placing the coefficients of the squared terms on the principal diagonal
and dividing the coefficients of the nonsquared term equally between the off-diagonal positions.
Thus,


D 
� �a

b
2

b
2

c �
Then evaluate the principal minors as in the Hessian test, where


D1 
� a and 
D2 
� �a

b
2

b
2

c � � ac�
b2

4

If 
D1 
, 
D2 
� 0, 
D 
 is positive definite and z is positive for all nonzero values of x and y. If 
D1 
� 0
and 
D2 
� 0, z is negative definite and z is negative for all nonzero values of x and y. If 
D2 
� 0, z is
not sign definite and z may assume both positive and negative values. See Example 3 and Problems
12.5 to 12.7.

EXAMPLE 3. To test for sign definiteness, given the quadratic form

z � 2x2� 5xy� 8y2

form the discriminant as explained in Section 12.3.


D 
 � � 2
2.5

2.5
8 �

Then evaluate the principal minors as in the Hessian test.


D1 
 � 2� 0 
D2 
 � � 2
2.5

2.5
8 � � 16� 6.25 � 9.75� 0

Thus, z is positive definite, meaning that it will be greater than zero for all nonzero values of x and y.
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12.4 HIGHER-ORDER HESSIANS

Given y� f(x1, x2, x3), the third-order Hessian is


 H 
� �
y11 y12 y13

y21 y22 y23

y31 y32 y33
�

where the elements are the various second-order partial derivatives of y:

y11 �
�2 y
�x1

2 y12�
�2 y
�x2�x1

y23 �
�2 y
�x3�x2

etc.

Conditions for a relative minimum or maximum depend on the signs of the first, second, and third
principal minors, respectively. If 
H1 
� y11� 0,


H2 
� �y11 y12

y21 y22
� � 0 and 
H3 
� 
H 
� 0

where 
H3 
 is the third principal minor, 
H 
 is positive definite and fulfills the second-order conditions
for a minimum. If 
H1 
� y11� 0,


H2 
� �y11 y12

y21 y22
� � 0 and 
H3 
� 
H 
� 0


H 
 is negative definite and will fulfill the second-order conditions for a maximum. Higher-order
Hessians follow in analogous fashion. If all the principal minors of 
H 
 are positive, 
H 
 is positive
definite and the second-order conditions for a relative minimum are met. If all the principal minors of

H 
 alternate in sign between negative and positive, 
H 
 is negative definite and the second-order
conditions for a relative maximum are met. See Example 4 and Problems 12.8, 12.9, and 12.14 to
12.18.

EXAMPLE 4. The function

y � �5x1
2� 10x1� x1x3� 2x2

2� 4x2� 2x2 x3� 4x2
3

is optimized as follows, using the Hessian to test the second-order conditions.
The first-order conditions are

�y

�x1

� y1 � �10x1� 10� x3 � 0

�y

�x2
� y2 � �4x2� 2x3� 4 � 0

�y

�x3
� y3 � x1� 2x2� 8x3� 0

which can be expressed in matrix form as

�
�10

0
1

0
�4

2

1
2

�8��
x1

x2

x3
� � �

�10
�4

0� (12.1)

Using Cramer’s rule (see Section 11.9) and taking the different determinants, 
A 
 � �10(28)� 1(4) � �276� 0.
Since 
A 
 in this case is the Jacobian and does not equal zero, the three equations are functionally
independent.


A1 
 � �10(28)� 1(�8) � �288 
A2 
 � �10(32)� (�10)(�2)� 1(4) � �336


A3 
 � �10(8)� 10(4) � �120
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Thus, x̄1 �

A1 


A 


�
�288
�276

� 1.04 x̄2�

A2 


A 


�
�336
�276

� 1.22 x̄3 �

A3 


A 


�
�120
�276

� 0.43

taking the second partial derivatives from the first-order conditions to prepare the Hessian,

y11 � �10
y21 � 0
y31 � 1

y12 � 0
y22 � �4
y32 � 2

y13 � 1
y23 � 2
y33 � �8

Thus, 
H 
 � �
�10

0
1

0
�4

2

1
2

�8�
which has the same elements as the coefficient matrix in (12.1) since the first-order partials are all linear. Finally,
applying the Hessian test, by checking the signs of the first, second, and third principal minors, respectively,


H1 
 � �10� 0 
H2 
 � ��10
0

0
�4 � � 40� 0 
H3 
 � 
H 
 � 
A 
 � �276� 0

Since the principal minors alternate correctly in sign, the Hessian is negative definite and the function is
maximized at x̄1 � 1.04, x̄2 � 1.22, and x̄3 � 0.43.

12.5 THE BORDERED HESSIAN FOR CONSTRAINED OPTIMIZATION

To optimize a function f(x, y) subject to a constraint g(x, y), Section 5.5 showed that a new
function could be formed F(x, y,�) � f(x, y)��[k� g(x, y)], where the first-order conditions are
Fx � Fy � F� � 0.

The second-order conditions can now be expressed in terms of a bordered Hessian 
 H̄ 
 in either
of two ways:


H̄ 
� �
Fxx

Fyx

gx

Fxy

Fyy

gy

gx

gy

0
� or �

0
gx

gy

gx

Fxx

Fyx

gy

Fxy

Fyy
�

which is simply the plain Hessian

�Fxx Fxy

Fyx Fyy
�

bordered by the first derivatives of the constraint with zero on the principal diagonal. The order of a
bordered principal minor is determined by the order of the principal minor being bordered. Hence 
H̄ 

above represents a second bordered principal minor 
H̄2 
, because the principal minor being bordered
is 2� 2.

For a function in n variables f(x1, x2, . . ., xn), subject to g(x1, x2, . . ., xn),


H̄ 
�

F11

F21

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Fn1

g1

F12

F22

Fn2

g2

· · ·
· · ·

· · ·
· · ·

F1n

F2n

Fnn

gn

g1

g2

gn

0

or

0
g1

g2

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

gn

g1

F11

F21

Fn1

g2

F12

F22

Fn2

· · ·
· · ·
· · ·

· · ·

gn

F1n

F2n

Fnn

where 
H̄ 
� 
H̄n 
, because of the n� n principal minor being bordered.
If all the principal minors are negative, i.e., if 
H̄2 
, 
H̄3 
, . . ., 
H̄n 
�0, the bordered Hessian is

positive definite, and a positive definite Hessian always satisfies the sufficient condition for a relative
minimum.

If the principal minors alternate consistently in sign from positive to negative, i.e., if 
H̄2 
� 0,
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H̄3 
� 0, 
H̄4 
� 0, etc., the bordered Hessian is negative definite, and a negative definite Hessian always
meets the sufficient condition for a relative maximum. Further tests beyond the scope of the present
book are needed if the criteria are not met, since the given criteria represent sufficient conditions, and
not necessary conditions. See Examples 5 and 6 and Problems 12.19 to 12.27. For a 4� 4 bordered
Hessian, see Problem 12.28.

EXAMPLE 5. Refer to Example 9 in Chapter 5. The bordered Hessian can be used to check the second-order
conditions of the optimized function and to determine if Z is maximized or minimized, as demonstrated below.

From Equations (5.8) and (5.9), Zxx� 8, Zyy � 12, Zxy � Zyx � 3. From the constraint, x� y � 56, gx � 1, and
gy � 1. Thus,


H̄ 
 � �
8 3 1
3 12 1
1 1 0 �

Starting with the second principal minor 
H̄2 
 ,


H̄2 
 � 
H̄ 
 � 8(�1)� 3(�1)� 1(3� 12) � �14

With 
H̄2 
 � 0, 
H̄ 
 is positive definite, which means that Z is at a minimum. See Problems 12.19 to 12.22.

EXAMPLE 6. The bordered Hessian is applied below to test the second-order condition of the generalized
Cobb-Douglas production function maximized in Example 10 of Chapter 6.

From Equations (6.15) and (6.16), QKK � �0.24K�1.6L0.5, QLL � �0.25K0.4 L�1.5, QKL� QLK � 0.2K�0.6 L�0.5;
and from the constraint, 3K� 4L � 108, gK � 3, gL � 4,


H̄ 
 � �
�0.24K�1.6 L0.5

0.2K�0.6 L�0.5

3

0.2K�0.6 L�0.5

�0.25K0.4 L�1.5

4

3
4
0 �

Starting with 
H̄2 
 and expanding along the third row,


H̄2 
 � 3(0.8K�0.6 L�0.5� 0.75K0.4 L�1.5)� 4(�0.96K�1.6 L0.5� 0.6K�0.6 L�0.5)

� 2.25K0.4L�1.5� 4.8K�0.6 L�0.5� 3.84K�1.6 L0.5 �
2.25K0.4

L1.5 �
4.8

K0.6 L0.5 �
3.84L0.5

K1.6 � 0

With 
H̄2 
� 0, 
H̄ 
 is negative definite and Q is maximized. See Problems 12.23 to 12.28.

12.6 INPUT-OUTPUT ANALYSIS

In a modern economy where the production of one good requires the input of many other goods
as intermediate goods in the production process (steel requires coal, iron ore, electricity, etc.), total
demand x for product i will be the summation of all intermediate demand for the product plus the final
demand b for the product arising from consumers, investors, the government, and exporters, as
ultimate users. If aij is a technical coefficient expressing the value of input i required to produce one
dollar’s worth of product j, the total demand for product i can be expressed as

xi � ai1 x1� ai2 x2� · · ·� ain xn� bi

for i � 1, 2, . . ., n. In matrix form this can be expressed as

X �AX�B (12.2)

where X � �
x1

x2

···
xn

� A� �
a11

a21

– – – – – – – – – – – – – – – – –

an1

a12

a22

an2

· · ·
· · ·

· · ·

a1n

a2n

ann

� B� �
b1

b2

···
bn

�
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and A is called the matrix of technical coefficients. To find the level of total output (intermediate and
final) needed to satisfy final demand, we can solve for X in terms of the matrix of technical coefficients
and the column vector of final demand, both of which are given. From (12.2),

X�AX �
(I�A)X �

X �

B
B
(I�A)�1 B (12.3)

Thus, for a three-sector economy

�
x1

x2

x3
� � �

1� a11 � a12 � a13

� a21 1� a22 � a23

� a31 � a32 1� a33
�
�1

�
b1

b2

b3
�

where the I�A matrix is called the Leontief matrix. In a complete input-output table, labor and capital
would also be included as inputs, constituting value added by the firm. The vertical summation of
elements along column j in such a model would equal 1: the input cost of producing one unit or one
dollar’s worth of the commodity, as seen in Problem 12.39. See Example 7 and Problems 12.29 to
12.39.

EXAMPLE 7. Determine the total demand x for industries 1, 2, and 3, given the matrix of technical coefficients
A and the final demand vector B.

A � �
0.3 0.4 0.1
0.5 0.2 0.6
0.1 0.3 0.1� B � �

20
10
30�

From (12.3), X � (I�A)�1 B, where

I�A � �
1 0 0
0 1 0
0 0 1�� �

0.3 0.4 0.1
0.5 0.2 0.6
0.1 0.3 0.1� � �

0.7 �0.4 �0.1
�0.5 0.8 �0.6
�0.1 �0.3 0.9�

Taking the inverse,

(I�A)�1�
1

0.151 �
0.54 0.39 0.32
0.51 0.62 0.47
0.23 0.25 0.36�

and substituting in (12.3),

X �
1

0.151 �
0.54 0.39 0.32
0.51 0.62 0.47
0.23 0.25 0.36��

20
10
30� �

1
0.151 �

24.3
30.5
17.9� � �

160.93
201.99
118.54�� �

x1

x2

x3
�

12.7 CHARACTERISTIC ROOTS AND VECTORS (EIGENVALUES, EIGENVECTORS)

To this point, the sign definiteness of a Hessian and a quadratic form has been tested by using the
principal minors. Sign definiteness can also be tested by using the characteristic roots of a matrix.
Given a square matrix A, if it is possible to find a vector V� 0 and a scalar c such that

AV � cV (12.4)

the scalar c is called the characteristic root, latent root, or eigenvalue; and the vector is called the
characteristic vector, latent vector, or eigenvector. Equation (12.4) can also be expressed

AV � cIV
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which can be rearranged so that

AV� cIV � 0
(A� cI)V � 0 (12.5)

where A� cI is called the characteristic matrix of A. Since by assumption V� 0, the characteristic
matrix A� cI must be singular (see Problem 10.49) and thus its determinant must vanish. If A� 3� 3
matrix, then


A� cI 
� �
a11� c

a21

a31

a12

a22� c

a32

a13

a23

a33� c � � 0

With 
A� cI 
� 0 in (12.5), there will be an infinite number of solutions for V. To force a unique
solution, the solution may be normalized by requiring of the elements vi of V that �vi

2 � 1, as shown
in Example 9.

If
1) All characteristic roots (c) are positive, A is positive definite.
2) All c’s are negative, A is negative definite.
3) All c’s are nonnegative and at least one c� 0, A is positive semidefinite.
4) All c’s are nonpositive and at least one c� 0, A is negative semidefinite.
5) Some c’s are positive and others negative, A is sign indefinite.

See Examples 8 and 9 and Problems 12.40 to 12.45, and Section 9.3.

EXAMPLE 8. Given

A � ��6 3
3 �6�

To find the characteristic roots of A, the determinant of the characteristic matrix A� cI must equal zero. Thus,


A� cI 
 � ��6� c

3
3

�6� c � � 0 (12.6)

(�6� c)(�6� c)� (3)(3) � 0
c2� 12c� 27 � 0 (c� 9)(c� 3) � 0

c1 � �9 c2 � �3

Testing for sign definiteness, since both characteristic roots are negative, A is negative definite. Note (1) that c1� c2

must equal the sum of the elements on the principal diagonal of A and (2) c1 c2 must equal the determinant of the
original matrix 
A 
.

EXAMPLE 9. Continuing with Example 8, the first root c1 � �9 is now used to find the characteristic vector.
Substituting c � �9 in (12.6),

��6� (�9)
3

3
�6� (�9) � �

v1

v2
� � 0

�3 3
3 3� �

v1

v2
� � 0 (12.7)

Since the coefficient matrix is linearly dependent, (12.7) is capable of an infinite number of solutions. The product
of the matrices gives two equations which are identical.

3v1� 3v2 � 0

Solving for v2 in terms of v1,

v2 � �v1 (12.8)
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Then, normalizing the solution in (12.8) so that

v1
2� v2

2 � 1 (12.9)

v2 � �v1 is substituted in (12.9), getting

v1
2� (�v1)2� 1

Thus, 2v1
2 � 1, v1

2� 1–
2. Then taking the positive square root, v1��1–

2 ��0.5. From (12.8), v2 � �v1. Thus,
v2 � ��0.5, and the first characteristic vector is

V1� � �0.5
��0.5 �

When the second characteristic root c2 � �3 is used,

��6� (�3)
3

3
�6� (�3) � �

v1

v2
� � ��3 3

3 �3� �
v1

v2
� � 0

Multiplying the 2� 2 matrix by the column vector,

�3v1� 3v2� 0
3v1� 3v2� 0

Thus, v1 � v2. Normalizing,

v1
2� v2

2� 1
(v2)2� v2

2� 1
2v2

2� 1

v2��0.5 v1 ��0.5

Thus, V2 � ��0.5
�0.5�

Solved Problems

THE JACOBIAN

12.1. Use the Jacobian to test for functional dependence in the following system of equations:

y1 � 6x1� 4x2

y2 � 7x1� 9x2

Taking the first-order partials to set up the Jacobian 
J 
,

�y1

�x1
� 6

�y1

�x2
� 4

�y2

�x1
� 7

�y2

�x2
� 9

Thus, 
J 
 � � 6 4
7 9 � � 6(9)� 7(4) � 26

Since 
J 
� 0, there is no functional dependence. Notice that in a system of linear equations the
Jacobian 
J 
 equals the determinant 
A 
 of the coefficient matrix, and all their elements are identical. See
Section 11.1, where the determinant test for nonsingularity of a matrix is nothing more than an application
of the Jacobian to a system of linear equations.

262 SPECIAL DETERMINANTS AND MATRICES AND THEIR USE IN ECONOMICS [CHAP. 12



12.2. Redo Problem 12.1, given

y1 � 3x1� 4x2

y2 � 9x1
2� 24x1 x2� 16x2

2

The first-order partials are

�y1

�x1

� 3
�y1

�x2

� �4
�y2

�x1

� 18x1� 24x2

�y2

�x2

� �24x1� 32x2

Thus, 
J 
 � � 3
18x1� 24x2

�4
�24x1� 32x2

� � 3(�24x1� 32x2)� 4(18x1� 24x2) � 0

There is functional dependence: (3x1� 4x2)2 � 9x1
2� 24x1 x2� 16x2

2.

12.3. Redo Problem 12.1, given

y1 � x1
2� 3x2� 5

y2 � x1
4� 6x1

2 x2� 9x2
2

�y1

�x1
� 2x1

�y1

�x2
� �3

�y2

�x1
� 4x1

3� 12x1 x2
�y2

�x2
� �6x1

2� 18x2


J 
 � � 2x1

4x1
3� 12x1x2

�3
�6x1

2� 18x2
� � 2x1(�6x1

2� 18x2)� 3(4x1
3� 12x1 x2) � 0

There is functional dependence: y2 � (y1� 5)2, where

y1� 5 �
(x1

2� 3x2)2 �

x1
2� 3x2� 5� 5 � x1

2� 3x2

x1
4� 6x2

1 x2� 9x2
2and

12.4. Test for functional dependence in each of the following by means of the Jacobian:

a) y1 � 4x1� x2

y2 � 16x1
2� 8x1 x2� x2

2


J 
 � � 4
32x1� 8x2

�1
8x1� 2x2

� � 4(8x1� 2x2)� 1(32x1� 8x2) � 64x1� 16x2� 0

The equations are functionally independent.

b) y1 � 1.5x1
2� 12x1 x2� 24x2

2

y2 � 2x1� 8x2


J 
 � � 3x1� 12x2

2
12x1� 48x2

8 � � 8(3x1� 12x2)� 2(12x1� 48x2) � 0

There is functional dependence between the equations.

c) y1 � 4x1
2� 3x2� 9

y2 � 16x1
4� 24x1

2 x2� 9x2
2� 12


J 
 � � 8x1

64x1
3� 48x1 x2

3
24x1

2� 18x2
� � 8x1(24x1

2� 18x2)� 3(64x1
3� 48x1 x2) � 0

The equations are functionally dependent.
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DISCRIMINANTS AND SIGN DEFINITENESS OF QUADRATIC FUNCTIONS

12.5. Use discriminants to determine whether each of the following quadratic functions is positive or
negative definite:

a) y��3x1
2� 4x1 x2� 4x2

2

Since the coefficients of the squared terms are placed on the principal diagonal and the coefficient
of the nonsquared term x1x2 is divided evenly between the a12 and a21 positions, in this case,


D 
 � ��3 2
2 �4 �

where 
D1 
 � �3� 0 
D2 
 � ��3 2
2 �4 � � (�3)(�4)� (2)(2) � 8� 0

With 
D1 
�0 and 
D2 
� 0, y is negative definite and y will be negative for all nonzero values of
x1 and x2.

b) y� 5x1
2� 2x1 x2� 7x2

2

The discriminant is 
D 
 � � 5 �1
�1 7 �

where 
D1 
 � 5� 0 and 
D2 
 � 
D 
 � 5(7)� (�1)(�1) � 34� 0. With 
D1 
� 0 and 
D2 
� 0, y is
positive definite and y will be positive for all nonzero values of x1 and x2.

12.6. Redo Problem 12.5 for y� 5x1
2� 6x1 x2� 3x2

2� 2x2 x3� 8x3
2� 3x1 x3.

For a quadratic form in three variables, the coefficients of the squared terms continue to go on the
principal diagonal, while the coefficient of x1 x3 is divided evenly between the a13 and a31 positions, the
coefficient of x2 x3 is divided between the a23 and a32 positions, etc. Thus,


D 
 � �
5

�3
�1.5

�3
3

�1

�1.5
�1

8 �
where 
D1 
 � 5� 0 
D2 
 � � 5 �3

�3 3 � � 6� 0

and 
D3 
 � 
D 
 � 5(23)� 3(�25.5)� 1.5(7.5) � 27.25� 0. Therefore, y is positive definite.

12.7. Use discriminants to determine the sign definiteness of the following functions:

a) y��2x1
2� 4x1 x2� 5x2

2� 2x2 x3� 3x3
2� 2x1 x3


D 
 � �
�2

2
1

2
�5

1

1
1

�3 �
where 
D1 
 � �2� 0 
D2 
 � ��2 2

2 �5 � � 6� 0

and 
D3 
 � 
D 
 � �2(14)� 2(�7)� 1(7) � �7� 0. So y is negative definite.

b) y��7x1
2� 2x2

2� 2x2 x3� 4x3
2� 6x1 x3


D 
 � �
�7

0
�3

0
�2

1

�3
1

�4 �
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where 
D1 
 � �7 
D2 
 � ��7 0
0 �2 � � 14

and 
D3 
 � 
D 
 � �7(7)� 3(�6) � �31. And y is negative definite.

THE HESSIAN IN OPTIMIZATION PROBLEMS

12.8. Optimize the following function, using (a) Cramer’s rule for the first-order condition and (b)
the Hessian for the second-order condition:

y � 3x1
2� 5x1� x1 x2� 6x2

2� 4x2� 2x2 x3� 4x3
2� 2x3� 3x1 x3

a) The first-order conditions are

y1 � 6x1� 5� x2� 3x3 � 0
y2 � �x1� 12x2� 4� 2x3 � 0 (12.10)
y3 � 2x2� 8x3� 2� 3x1 � 0

which in matrix form is �
6

�1
�3

�1
12
2

�3
2
8��

x1

x2

x3
� � �

5
4

�2�
Using Cramer’s rule, 
A 
 � 6(92)� 1(�2)� 3(34) � 448. Since 
A 
 also equals 
J 
, the equations are
functionally independent.


A1 
 � 5(92)� 1(36)� 3(32) � 400

A2 
 � 6(36)� 5(�2)� 3(14) � 184

A3 
 � 6(�32)� 1(14)� 5(34) � �8

Thus, x̄1 �
400
448

� 0.89 x̄2 �
184
448

� 0.41 x̄3�
�8
448

��0.02

b) Testing the second-order condition by taking the second-order partials of (12.10) to form the
Hessian,

y11� 6
y21� �1
y31� �3

y12 � �1
y22 � 12
y32 � 2

y13 � �3
y23 � 2
y33 � 8

Thus, 
H 
 � �
6

�1
�3

�1
12
2

�3
2
8 �

where 
H1 
 � 6� 0 
H2 
 � � 6
�1

�1
12 � � 71� 0

and 
H3 
 � 
H 
 � 
A 
 � 448� 0. With 
H 
 positive definite, y is minimized at the critical values.

12.9. Redo Problem 12.8, given y ��5x1
2� 10x1� x1 x3� 2x2

2� 4x2� 2x2 x3� 4x3
2.

a) y1 � �10x1� 10� x3 � 0
y2 � �4x2� 4� 2x3 � 0 (12.11)
y3 � x1� 2x2� 8x3 � 0

In matrix form, �
�10

0
1

0
�4

2

1
2

�8��
x1

x2

x3
� � �

�10
�4

0�
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Using Cramer’s rule, 
A 
 �

A1 
 �

A2 
 �

A3 
 �

�10(28)� 1(4) � �276
�10(28)� 1(�8) � �288
�10(32)� 10(�2)� 1(4) � �336
�10(8)� 10(4) � �120

Thus, x̄1 �
�288
�276

� 1.04 x̄2�
�336
�276

� 1.22 x̄3 �
�120
�276

� 0.43

b) Taking the second partials of (12.11) and forming the Hessian,


H 
 � �
�10

0
1

0
�4

2

1
2

�8�
where 
H1 
 � �10� 0, 
H2 
 � 40� 0, and 
H3 
 � 
A 
 � �276� 0. Thus, 
H 
 is negative definite, and
y is maximized.

12.10. A firm produces two goods in pure competition and has the following total revenue and total
cost functions:

TR � 15Q
1
� 18Q2 TC� 2Q1

2� 2Q1 Q2� 3Q2
2

The two goods are technically related in production, since the marginal cost of one is dependent
on the level of output of the other (for example, �TC/�Q1� 4Q1� 2Q2). Maximize profits for
the firm, using (a) Cramer’s rule for the first-order condition and (b) the Hessian for the
second-order condition.

a) � � TR�TC � 15Q1� 18Q2� 2Q1
2� 2Q1 Q2� 3Q2

2

The first-order conditions are

�1� 15� 4Q1� 2Q2 � 0
�2� 18� 2Q1� 6Q2 � 0

In matrix form,

��4 �2
�2 �6� �

Q1

Q2
� � ��15

�18 �
Solving by Cramer’s rule,


A 
 � 24� 4 � 20 
A1 
 � 90� 36 � 54 
A2 
 � 72� 30 � 42

Thus, Q̄1 �
54
20
� 2.7 Q̄2�

42
20
� 2.1

b) Using the Hessian to test for the second-order condition,


H 
 � ��4 �2
�2 �6 �

where 
H1 
 � �4 and 
H2 
 � 20. With 
H 
 negative definite, � is maximized.

12.11. Using the techniques of Problem 12.10, maximize profits for the competitive firm whose
goods are not technically related in production. The firm’s total revenue and total cost
functions are

TR � 7Q1� 9Q2 TC�Q1
2� 2Q1� 5Q2� 2Q2

2
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a) � � 7Q1� 9Q2�Q1
2� 2Q1� 5Q2� 2Q2

2

�1 � 7� 2Q1� 2 � 0 Q̄1� 2.5
�2 � 9� 5� 4Q2 � 0 Q̄2� 1

b) 
H 
� �
�2 0

0 �4 �
where 
H1 
 � �2 and 
H2 
 � 8. So 
H 
 is negative definite, and � is maximized.

12.12. Maximize profits for a monopolistic firm producing two related goods, i.e.,

P1 � f(Q1, Q2)

when the goods are substitutes and the demand and total cost functions are

P1 � 80� 5Q1� 2Q2 P2 � 50�Q1� 3Q2 TC� 3Q1
2�Q1 Q2� 2Q2

2

Use (a) Cramer’s rule and (b) the Hessian, as in Problem 12.10.

a) � � TR�TC, where TR � P1 Q1�P2 Q2.

� � (80� 5Q1� 2Q2)Q1� (50�Q1� 3Q2)Q2� (3Q1
2�Q1 Q2� 2Q2

2)
� 80Q1� 50Q2� 4Q1 Q2� 8Q1

2� 5Q2
2

�1 � 80� 4Q2� 16Q1 � 0 �2� 50� 4Q1� 10Q2 � 0

In matrix form, ��16
�4

�4
�10� �

Q1

Q2
� � ��80

�50 �

A 
 � 160� 16 � 144 
A1 
 � 800� 200 � 600 
A2 
 � 800� 320 � 480

and Q̄1 �
600
144

� 4.17 Q̄2 �
480
144

� 3.33

b) 
H 
 � ��16 �4
�4 �10 �

where 
H1 
 � �16 and 
H2 
 � 144. So � is maximized.

12.13. Maximize profits for a producer of two substitute goods, given

P1 � 130� 4Q1�Q2 P2 � 160� 2Q1� 5Q2 TC� 2Q1
2� 2Q1 Q2� 4Q2

2

Use (a) Cramer’s rule for the first-order condition and (b) the Hessian for the second-order
condition.

a) � � (130� 4Q1�Q2)Q1� (160� 2Q1� 5Q2)Q2� (2Q1
2� 2Q1 Q2� 4Q2

2)
� 130Q1� 160Q2� 5Q1 Q2� 6Q1

2� 9Q2
2

�1 � 130� 5Q2� 12Q1 � 0 �2� 160� 5Q1� 18Q2� 0

Thus, ��12 �5
�5 �18� �

Q1

Q2
� � ��130

�160�

A 
 � 191


A1 
 � 1540 Q̄1 �
1540
191

� 8.06


A2 
 � 1270 Q̄2 �
1270
191

� 6.65

b) 
H 
 � ��12 �5
�5 �18 �


H1 
 � �12 and 
H2 
 � 191. So � is maximized.
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12.14. Redo Problem 12.13 for a monopolistic firm producing three related goods, when the demand
functions and the cost function are

P1 � 180� 3Q1�Q2� 2Q3 P2 � 200�Q1� 4Q2 P3 � 150�Q2� 3Q3

TC�Q1
2�Q1 Q2�Q2

2�Q2 Q3�Q3
2

a) � � (180� 3Q1�Q2� 2Q3)Q1� (200�Q1� 4Q2)Q2� (150�Q2� 3Q3)Q3

� (Q1
2�Q1 Q2�Q2

2�Q2 Q3�Q3
2)

� 180Q1� 200Q2� 150Q3� 3Q1Q2� 2Q2 Q3� 2Q1 Q3� 4Q1
2� 5Q2

2� 4Q3
2

�1 � 180� 3Q2� 2Q3� 8Q1� 0 �2 � 200� 3Q1� 2Q3� 10Q2 � 0
�3 � 150� 2Q2� 2Q1� 8Q3 � 0

In matrix form,

�
�8 �3 �2
�3 �10 �2
�2 �2 �8��

Q1

Q2

Q3
�� �

�180
�200
�150�


A 
 �

A1 
 �

A2 
 �

A3 
 �

�8(76)� 3(20)� 2(�14) � �520
�180(76)� 3(1300)� 2(�1100) � �7580
�8(1300)� 180(20)� 2(50) � �6900
�8(1100)� 3(50)� 180(�14) � �6130

Thus, Q̄1 �
�7580
�520

� 14.58 Q̄2�
�6900
�520

� 13.27 Q̄3 �
�6130
�520

� 11.79

b) 
H 
 � �
�8 �3 �2
�3 �10 �2
�2 �2 �8 �

where 
H1 
 � �8, 
H2 
 � 71, and 
H3 
 � 
H 
 � 
A 
 � �520. And � is maximized.

12.15. Maximize profits as in Problem 12.14, given

P1 � 70� 2Q1�Q2�Q3 P2 � 120�Q1� 4Q2� 2Q3 P3 � 90�Q1�Q2� 3Q3

TC�Q1
2�Q1 Q2� 2Q2

2� 2Q2 Q3�Q3
2�Q1 Q3

a) � � 70Q1� 120Q2� 90Q3� 3Q1 Q2� 5Q2 Q3� 3Q1 Q3� 3Q1
2� 6Q2

2� 4Q3
2

�1 � 70� 3Q2� 3Q3� 6Q1 � 0 �2� 120� 3Q1� 5Q3� 12Q2 � 0
�3 � 90� 3Q1� 5Q2� 8Q3 � 0

Thus, �
�6 �3 �3
�3 �12 �5
�3 �5 �8��

Q1

Q2

Q3
�� �

�70
�120
�90�


A 
 �


A1 
 �


A2 
 �


A3 
 �

�336

�2000 Q̄1 �

�2160 Q̄2 �

�1680 Q̄3 �

�2000
�336

�2160
�336

�1680
�336

� 5.95

� 6.43

� 5
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b) 
H 
 � �
�6 �3 �3
�3 �12 �5
�3 �5 �8 �

where 
H1 
 � �6, 
H2 
 � 63, and 
H3 
 � 
H 
 � 
A 
 � �336. � is maximized.

12.16. Given that Q� F(P), maximize profits by (a) finding the inverse function P � f(Q), (b) using
Cramer’s rule for the first-order condition, and (c) using the Hessian for the second-order
condition. The demand functions and total cost function are

Q1 � 100� 3P1� 2P2 Q2 � 75� 0.5P1�P2 TC�Q1
2� 2Q1 Q2�Q2

2

where Q1 and Q2 are substitute goods, as indicated by the opposite signs for P1 and P2 in each
equation (i.e., an increase in P2 will increase demand for Q1 and an increase in P1 will increase
demand for Q2).

a) Since the markets are interrelated, the inverse functions must be found simultaneously. Rearranging
the demand functions to get P � f(Q), in order ultimately to maximize � as a function of Q alone,

�3P1� 2P2 � Q1� 100
0.5P1�P2 � Q2� 75

In matrix form,

��3
0.5

2
�1� �

P1

P2
� � �Q1� 100

Q2� 75 �
Using Cramer’s rule,


A 
 � 2


A1 
 � �Q1� 100
Q2� 75

2
�1 � � �Q1� 100� 2Q2� 150 � 250�Q1� 2Q2

P1 �

A1 


A 


�
250�Q1� 2Q2

2
� 125� 0.5Q1�Q2


A2 
 � ��3
0.5

Q1� 100
Q2� 75 � � �3Q2� 225� 0.5Q1� 50 � 275� 0.5Q1� 3Q2

P2 �

A2 


A 


�
275� 0.5Q1� 3Q2

2
� 137.5� 0.25Q1� 1.5Q2

b) � � (125� 0.5Q1�Q2)Q1� (137.5� 0.25Q1� 1.5Q2)Q2� (Q1
2� 2Q1 Q2�Q2

2)
� 125Q1� 137.5Q2� 3.25Q1 Q2� 1.5Q1

2� 2.5Q2
2

�1 � 125� 3.25Q2� 3Q1 � 0 �2� 137.5� 3.25Q1� 5Q2 � 0

Thus, ��3
�3.25

�3.25
�5 � �Q1

Q2
� � ��125

�137.5 �

A 
 �


A1 
 �


A2 
 �

4.4375

178.125 Q̄1 �

6.25 Q̄2 �

178.125
4.4375

6.25
4.4375

� 40.14

� 1.4

c) 
H 
 � ��3
�3.25

�3.25
�5 �


H1 
 � �3, 
H2 
 � 
 H 
 � 
A 
 � 4.4375, and � is maximized.
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12.17. Redo Problem 12.16 by maximizing profits for

Q1 � 90� 6P1� 2P2 Q2 � 80� 2P1� 4P2 TC� 2Q1
2� 3Q1 Q2� 2Q2

2

where Q1 and Q2 are complements, as indicated by the same sign for P1 and P2 in each
equation.

a) Converting the demand functions to functions of Q,

��6 �2
�2 �4� �

P1

P2
� � �Q1� 90

Q2� 80�

A 
 � 20


A1 
 � �Q1� 90 �2
Q2� 80 �4 � � �4Q1� 360� 2Q2� 160 � 200� 4Q1� 2Q2

P
1
�

200� 4Q1� 2Q2

20
� 10� 0.2Q1� 0.1Q2


A2 
 � ��6 Q1� 90
�2 Q2� 80 � � �6Q2� 480� 2Q1� 180 � 300� 6Q2� 2Q1

P2 �
300� 6Q2� 2Q1

20
� 15� 0.3Q2� 0.1Q1

b) � � (10� 0.2Q1� 0.1Q2)Q1� (15� 0.3Q2� 0.1Q1)Q2� (2Q1
2� 3Q1 Q2� 2Q1

2)
� 10Q1� 15Q2� 2.8Q1 Q2� 2.2Q1

2� 2.3Q2
2

�1 � 10� 2.8Q2� 4.4Q1 � 0 �2 � 15� 2.8Q1� 4.6Q2 � 0

Thus, ��4.4 �2.8
�2.8 �4.6 � �

Q1

Q2
� � ��10

�15 �

A 
 � 12.4


A1 
 � 4 Q̄1 �
4

12.4
� 0.32


A2 
 � 38 Q̄2 �
38

12.4
� 3.06

c) 
H 
 � ��4.4 �2.8
�2.8 �4.6 �


H1 
 � �4.4, 
H2 
 � 
A 
 � 12.4, and � is maximized.

12.18. Redo Problem 12.16, given

Q1 � 150� 3P1�P2�P3 Q2 � 180�P1� 4P2� 2P3 Q3 � 200� 2P1�P2� 5P3

TC�Q1
2�Q1 Q2� 2Q2

2�Q2 Q3�Q3
2�Q1 Q3

a) Finding the inverses of the demand functions

�
�3

1
2

1
�4

1

1
2

�5��
P1

P2

P3
� � �

Q1� 150
Q2� 180
Q3� 200�


A 
 � �36


A1 
 �
�

(Q1� 150)(20� 2)� 1(�5Q2� 900� 2Q3� 400)� 1(Q2� 180� 4Q3� 800)
�4980� 18Q1� 6Q2� 6Q3

P
1
�
�4980� 18Q1� 6Q2� 6Q3

�36
� 138.33� 0.5Q1� 0.17Q2� 0.17Q3
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A2 
 �
�

�3(�5Q2� 900� 2Q3� 400)� (Q1� 150)(�5� 4)� 1(Q3� 200� 2Q2� 360)
�5090� 9Q1� 13Q2� 7Q3

P2 �
�5090� 9Q1� 13Q2� 7Q3

�36
� 141.39� 0.25Q1� 0.36Q2� 0.19Q3


A3 
 �
�

�3(�4Q3� 800�Q2� 180)� 1(Q3� 200� 2Q2� 360)� (Q1� 150)(1� 8)
�4450� 9Q1� 5Q2� 11Q3

P3 �
�4450� 9Q1� 5Q2� 11Q3

�36
� 123.61� 0.25Q1� 0.14Q2� 0.31Q3

b) � � P1 Q1�P2 Q2�P3Q3�TC
� 138.33Q1� 141.39Q2� 123.61Q3� 1.42Q1 Q2

�1.33Q2 Q3� 1.42Q1 Q3� 1.5Q1
2� 2.36Q2

2� 1.31Q3
2

�1� 138.33� 1.42Q2� 1.42Q3� 3Q1 � 0
�2� 141.39� 1.42Q1� 1.33Q3� 4.72Q2 � 0
�3� 123.61� 1.33Q2� 1.42Q1� 2.62Q3 � 0

Thus, �
�3
�1.42
�1.42

�1.42
�4.72
�1.33

�1.42
�1.33
�2.62��

Q1

Q2

Q3
� � �

�138.33
�141.39
�123.61�


A 
 � �22.37


A1 
 � �612.27 Q̄1 �
�612.27
�22.37

� 27.37


A2 
 � �329.14 Q̄2 �
�329.14
�22.37

� 14.71


A3 
 � �556.64 Q̄3 �
�556.64
�22.37

� 24.88

c) 
H1 
 � �
�3
�1.42
�1.42

�1.42
�4.72
�1.33

�1.42
�1.33
�2.62�


H1 
 � �3, 
H2 
 � 12.14, and 
H3 
 � 
A 
 � �22.37. And � is maximized.

THE BORDERED HESSIAN IN CONSTRAINED OPTIMIZATION

12.19. Maximize utility u � 2xy subject to a budget constraint equal to 3x� 4y � 90 by (a) finding the
critical values x̄, ȳ, and �̄ and (b) using the bordered Hessian 
H̄ 
 to test the second-order
condition.

a) The Lagrangian function is U � 2xy��(90� 3x� 4y)

The first-order conditions are

Ux� 2y� 3� � 0 Uy � 2x� 4� � 0 U� � 90� 3x� 4y � 0

In matrix form,

�
0
2

�3

2
0

�4

�3
�4

0��
x

y

�
� � �

0
0

�90 � (12.12)

Solving by Cramer’s rule, 
A 
 � 48, 
A1 
 � 720, 
A2 
 � 540, and 
A3 
 � 360. Thus, x̄ � 15, ȳ � 11.25,
and �̄ � 7.5.
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b) Taking the second partials of U with respect to x and y and the first partials of the constraint with
respect to x and y to form the bordered Hessian,

Uxx � 0 Uyy � 0 Uxy� 2 � Uyx cx � 3 cy� 4

From Section 12.5,


H̄ 
 � �
0 2 3
2 0 4
3 4 0 � or 
H̄ 
 � �

0 3 4
3 0 2
4 2 0 �


H̄2 
 � 
H̄ 
 � �2(�12)� 3(8) � 48� 0 
H̄2 
 � 
H̄ 
 � �3(�8)� 4(6) � 48� 0

The bordered Hessian can be set up in either of the above forms without affecting the value of the
principal minor. With 
H̄ 
 � 
A 
� 0, from the rules of Section 12.5 
H̄ 
 is negative definite, and U is
maximized.

12.20. Maximize utility u � xy� x subject to the budget constraint 6x� 2y � 110, by using the
techniques of Problem 12.19.

a) U � xy� x��(110� 6x� 2y)
Ux� y� 1� 6� � 0 Uy � x� 2� � 0 U� � 110� 6x� 2y � 0

In matrix form,

�
0
1

�6

1
0

�2

�6
�2

0��
x

y

�
� � �

�1
0

�110�
Solving by Cramer’s rule, x̄ � 91–

3, ȳ� 27, and �̄ � 42–
3.

b) Since Uxx � 0, Uyy � 0, Uxy� 1 � Uyx, cx � 6, and cy � 2,


H̄ 
 � �
0 1 6
1 0 2
6 2 0 � 
H̄2 
 � 
H̄ 
 � 24

With 
H̄2 
� 0, 
H̄ 
 is negative definite, and U is maximized.

12.21. Minimize a firm’s total costs c� 45x2� 90xy� 90y2 when the firm has to meet a production
quota g equal to 2x� 3y � 60 by (a) finding the critical values and (b) using the bordered
Hessian to test the second-order conditions.

a) C � 45x2� 90xy� 90y2��(60� 2x� 3y)
Cx� 90x� 90y� 2� � 0 Cy� 90x� 180y� 3� � 0

C� � 60� 2x� 3y � 0

In matrix form,

�
90
90
�2

90
180
�3

�2
�3

0��
x

y

�
� � �

0
0

�60�
Solving by Cramer’s rule, x̄ � 12, ȳ � 12, and �̄ � 1080.

b) Since Cxx � 90, Cyy� 180, Cxy � 90 � Cyx, gx � 2, and gy � 3,


H̄ 
 � �
90 90 2
90 180 3
2 3 0 �


H̄2 
 � �450. With 
H̄2 
� 0, 
H̄ 
 is positive definite and C is minimized.
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12.22. Minimize a firm’s costs c� 3x2� 5xy� 6y2 when the firm must meet a production quota of
5x� 7y � 732, using the techniques of Problem 12.21.

a) C � 3x2� 5xy� 6y2��(732� 5x� 7y)
Cx � 6x� 5y� 5� � 0 Cy � 5x� 12y� 7� � 0

C� � 732� 5x� 7y � 0

Solving simultaneously, x̄ � 75 ȳ � 51 �̄ � 141

b) With Cxx � 6, Cyy � 12, Cxy� 5 � Cyx, gx � 5, and gy � 7,


H̄ 
 � �
6 5 5
5 12 7
5 7 0 �


H̄2 
 � 5(35� 60)� 7(42� 25) � �244. Thus, 
H̄ 
 is positive definite, and C is minimized.

12.23. Redo Problem 12.21 by maximizing utility u � x0.5 y0.3 subject to the budget constraint
10x� 3y � 140.

a) U � x0.5 y0.3��(140� 10x� 3y)
Ux � 0.5x�0.5 y0.3� 10� � 0 Uy � 0.3x0.5 y�0.7� 3� � 0

U� � 140� 10x� 3y � 0

Solving simultaneously, as shown in Example 10 of Chapter 6,

x̄ � 8.75 ȳ � 17.5 and �̄ � 0.04

b) With Uxx � �0.25x�1.5 y0.3, Uyy � �0.21x0.5 y�1.7, Uxy � Uyx � 0.15x�0.5 y�0.7, gx � 10, and gy � 3,


H̄ 
 � �
�0.25x�1.5 y0.3

0.15x�0.5 y�0.7

10

0.15x�0.5 y�0.7

�0.21x0.5 y�1.7

3

10
3
0�

Expanding along the third column,


H̄2 
 � 10(0.45x�0.5 y�0.7� 2.1x0.5 y�1.7)� 3(�0.75x�1.5 y0.3� 1.5x�0.5 y�0.7)
� 21x0.5y�1.7� 9x�0.5 y�0.7� 2.25x�1.5 y0.3� 0

since x and y� 0, and a positive number x raised to a negative power �n equals 1/xn, which is also
positive. With 
H̄2 
� 0, 
H̄ 
 is negative definite, and U is maximized.

12.24. Maximize utility u � x0.25 y0.4 subject to the budget constraint 2x� 8y � 104, as in Problem
12.23.

a) U � x0.25 y0.4��(104� 2x� 8y)
Ux � 0.25x�0.75 y0.4� 2� � 0 Uy � 0.4x0.25 y�0.6� 8� � 0

U� � 104� 2x� 8y � 0

Solving simultaneously, x̄ � 20, ȳ� 8, and �̄ � 0.03.

b)

H̄ 
 � �

�0.1875x�1.75 y0.4

0.1x�0.75 y�0.6

2

0.1x�0.75 y�0.6

�0.24x0.25 y�1.6

8

2
8
0 �

Expanding along the third row,


H̄2 
 � 2(0.8x�0.75 y�0.6� 0.48x0.25 y�1.6)� 8(�1.5x�1.75 y0.4� 0.2x�0.75 y�0.6)
� 0.96x0.25 y�1.6� 3.2x�0.75 y�0.6� 12x�1.75 y0.4� 0

Thus, 
H̄ 
 is negative definite, and U is maximized.
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12.25. Minimize costs c� 3x� 4y subject to the constraint 2xy � 337.5, using the techniques of
Problem 12.21(a) and (b). (c) Discuss the relationship between this solution and that for
Problem 12.19.

a) C � 3x� 4y��(337.5� 2xy)

Cx � 3� 2�y � 0 � �
1.5
y

(12.13)

Cy � 4� 2�x � 0 � �
2
x

(12.14)

C� � 337.5� 2xy � 0 (12.15)

Equate �’s in (12.13) and (12.14).

1.5
y
�

2
x

y � 0.75x

Substitute in (12.15).

337.5 � 2x(0.75x) � 1.5x2

x2 � 225 x̄ � 15

Thus, ȳ � 11.25 and �̄ � 0.133.

b) With Cxx � 0, Cyy� 0, and Cxy� Cyx � �2� and from the constraint 2xy � 337.5, gx� 2y, and
gy � 2x,


H̄ 
 � �
0

�2�
2y

�2�
0

2x

2y

2x

0�

H̄2 
 � �(�2�)(�4xy)� 2y(�4x�) � �16�xy. With �̄, x̄, ȳ� 0, 
H̄2 
� 0. Hence 
H̄ 
 is positive
definite, and C is minimized.

c) This problem and Problem 12.19 are the same, except that the objective functions and constraints are
reversed. In Problem 12.19, the objective function u � 2xy was maximized subject to the constraint
3x� 4y � 90; in this problem the objective function c � 3x� 4y was minimized subject to the
constraint 2xy � 337.5. Therefore, one may maximize utility subject to a budget constraint or
minimize the cost of achieving a given level of utility.

12.26. Minimize the cost of 434 units of production for a firm when Q� 10K0.7 L0.1 and PK � 28,
PL� 10 by (a) finding the critical values and (b) using the bordered Hessian. (c) Check the
answer with that of Problem 6.41(b).

a) The objective function is c � 28K� 10L, and the constraint is 10K0.7L0.1 � 434. Thus,

C �

CK �

CL �

C� �

28K� 10L��(434� 10K0.7 L0.1)
28� 7�K�0.3 L0.1� 0
10��K0.7L�0.9 � 0
434� 10K0.7 L0.1� 0

(12.16)
(12.17)
(12.18)

Rearranging and dividing (12.16) by (12.17) to eliminate �,

28
10
�

7�K�0.3 L0.1

�K0.7 L�0.9

2.8 �
7L

K
K � 2.5L
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Substituting in (12.18) and using a calculator,

434 � 10(2.5)0.7 L0.7 L0.1 434 � 19L0.8

L̄ � (22.8)1/0.8 � (22.8)1.25 � 50

Thus, K̄� 125 and �̄ � 11.5.

b) With CKK � 2.1�K�1.3 L0.1, CLL � 0.9�K0.7 L�1.9, and CKL � �0.7�K�0.3 L�0.9 � CLK and from the
constraint gK � 7K�0.3 L0.1 and gL� K0.7L�0.9,


H̄ 
 � �
2.1�K�1.3 L0.1

�0.7�K�0.3 L�0.9

7K�0.3 L0.1

�0.7�K�0.3 L�0.9

0.9�K0.7L�1.9

K0.7 L�0.9

7K�0.3 L0.1

K0.7L�0.9

0 �
Expanding along the third row,


H̄2 
 � 7K�0.3 L0.1(�0.7�K 0.4 L�1.8� 6.3�K 0.4 L�1.8)�K0.7 L�0.9(2.1�K�0.6 L�0.8� 4.9�K�0.6 L�0.8)
� �49�K0.1 L�1.7� 7�K0.1 L�1.7 � �56�K0.1 L�1.7

With K, L, �� 0, 
H̄2 
� 0; 
H̄ 
 is positive definite, and C is minimized.

c) The answers are identical with those in Problem 6.41(b), but note the difference in the work involved
when the linear function is selected as the objective function and not the constraint. See also the
bordered Hessian for Problem 6.41(b), which is calculated in Problem 12.27(c).

12.27. Use the bordered Hessian to check the second-order conditions for (a) Example 7 of Chapter
6, (b) Problem 6.41(a), and (c) Problem 6.41(b).

a)

H̄ 
 � �

16
�1

1

�1
24
1

1
1
0 �


H̄2 
 � 1(�1� 24)� 1(16� 1) � �42. With 
H̄2 
� 0, 
H̄ 
 is positive definite and C is minimized.

b) 
H̄ 
 � �
�0.21K�1.7 L0.5

0.15K�0.7 L�0.5

6

0.15K�0.7 L�0.5

�0.25K0.3 L�1.5

2

6
2
0 �


H̄2 
 � 6(0.30K�0.7 L�0.5� 1.5K0.3 L�1.5)� 2(�0.42K�1.7 L0.5� 0.9K�0.7 L�0.5)
� 9K0.3 L�1.5� 3.6K�0.7 L�0.5� 0.84K�1.7 L0.5� 0

With 
H̄2 
� 0, 
H̄ 
 is negative definite, and Q is maximized.

c) 
H̄ 
 � �
�2.1K�1.3 L0.1

0.7K�0.3 L�0.9

28

0.7K�0.3 L�0.9

�0.9K0.7 L�1.9

10

28
10
0 �


H̄2 
 � 28(7K�0.3 L�0.9� 25.2K0.7 L�1.9)� 10(�21K�1.3 L0.1� 19.6K�0.3 L�0.9)
� 705.6K0.7 L�1.9� 392K�0.3 L�0.9� 210K�1.3 L0.1� 0

With 
H̄2 
� 0, 
H̄ 
 is negative definite, and Q is maximized.

12.28. Use the bordered Hessian to check the second-order conditions in Problem 5.12(c), where
4xyz2 was optimized subject to the constraint x� y� z� 56; the first-order conditions were
Fx � 4yz2�� � 0, Fy� 4xz2�� � 0, and Fz� 8xyz�� � 0; and the critical values were
x̄� 14, ȳ� 14, and z̄� 28.
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Take the second partial derivatives of F and the first partials of the constraint, and set up the bordered
Hessian, as follows:


H̄ 
 � �
0
gx

gy

gz

gx

Fxx

Fyx

Fzx

gy

Fxy

Fyy

Fzy

gz

Fxz

Fyz

Fzz

� � �
0
1
1
1

1
0

4z2

8yz

1
4z2

0
8xz

1
8yz

8xz

8xy
�

Start with 
H̄2 
, the 3� 3 submatrix in the upper left-hand corner.


H̄2 
 � 0� 1(�4z2)� 1(4z2) � 8z2� 0

Next evaluate 
H̄3 
, which here equals 
H̄ 
. Expanding along the first row,


H̄3 
 � 0� 1 �
1
1
1

4z2

0
8xz

8yz

8xz

8xy � � 1 �
1
1
1

0
4z2

8yz

8yz

8xz

8xy � � 1 �
1
1
1

0
4z2

8yz

4z2

0
8xz �


H̄3 
 � �1[1(0� 8xz · 8xz)� 4z2(8xy� 8xz)� 8yz(8yz� 0)]
� 1[1(4z2 · 8xy� 8yz · 8xz)� 0� 8yz(8yz� 4z2)]
�1[1(4z2 · 8xz� 0)� 0� 4z2(8yz� 4z2)]


H̄3 
 � �1(�64x2 z2� 32xyz2� 32xz3� 64xyz2)� 1(32xyz2� 64xyz2� 64y2 z2� 32yz3)
�1(32xz3� 32yz3� 16z4)


H̄3 
 � 16z4� 64xz3� 64yz3� 64xyz2� 64x2 z2� 64y2 z2

Evaluated at x̄ � 14, ȳ � 14, z̄� 28,


H̄3 
 � �19,668,992� 0

With 
H̄2 
� 0 and 
H̄3 
� 0, 
H̄ 
 is negative definite and the function is maximized.

INPUT-OUTPUT ANALYSIS

12.29. Determine the total demand for industries 1, 2, and 3, given the matrix of technical coefficients
A and the final demand vector B below.

A� �
Output industry
1

0.2
0.4
0.3

2
0.3
0.1
0.5

3
0.2
0.3
0.2

�
1
2
3

Input
industry

B� �
150
200
210

�
From (12.3), the total demand vector is X � (I�A)�1B, where

I�A � �
0.8

�0.4
�0.3

�0.3
0.9

�0.5

�0.2
�0.3

0.8�
Taking the inverse of I�A,

(I�A)�1 �
1

0.239 �
0.57 0.34 0.27
0.41 0.58 0.32
0.47 0.49 0.60�

Substituting in X � (I�A)�1 B,

X �
1

0.239 �
0.57 0.34 0.27
0.41 0.58 0.32
0.47 0.49 0.60��

150
200
210� �

1
0.239 �

210.2
244.7
294.5� � �

879.50
1023.85
1232.22� � �

x1

x2

x3
�
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12.30. Determine the new level of total demand X2 for Problem 12.29 if final demand increases by 40
in industry 1, 20 in industry 2, and 25 in industry 3.

	X � (I�A)�1	B

	X �
1

0.239 �
0.57 0.34 0.27
0.41 0.58 0.32
0.47 0.49 0.60��

40
20
25� �

1
0.239 �

36.35
36.00
43.60� � �

152.09
150.63
182.43�

X2 � X1�	X � �
879.50

1023.85
1232.22�� �

152.09
150.63
182.43� � �

1031.59
1174.48
1414.65�

12.31. Determine the total demand for industries 1, 2, and 3, given the matrix of technical coefficients
A and the final demand vector B below.

A� �
Output industry
1

0.4
0.2
0.2

2
0.3
0.2
0.4

3
0.1
0.3
0.2

�
1
2
3

Input
industry

B� �
140
220
180

�
X � (I�A)�1 B

where I�A � �
0.6

�0.2
�0.2

�0.3
0.8

�0.4

�0.1
�0.3

0.8�
and the inverse

(I�A)�1 �
1

0.222 �
0.52 0.28 0.17
0.22 0.46 0.20
0.24 0.30 0.42�

Thus, X �
1

0.222 �
0.52 0.28 0.17
0.22 0.46 0.20
0.24 0.30 0.42��

140
220
180�� �

743.24
756.76
789.19� � �

x1

x2

x3
�

12.32. Determine the new total demand X2 if final demand increases by 30 for industry 1 and decreases
by 15 and 35 for industries 2 and 3, respectively, in Problem 12.31.

	X � (I�A)�1	B

	X �
1

0.222 �
0.52 0.28 0.17
0.22 0.46 0.20
0.24 0.30 0.42��

30
�15
�35� �

1
0.222 �

5.45
�7.30
�12.00� � �

24.55
�32.88
�54.05�

X2 � X1�	X � �
743.24
756.76
789.19�� �

24.55
�32.88
�54.05� � �

767.79
723.88
735.14�
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12.33. Given the interindustry transaction demand table in millions of dollars below, find the matrix
of technical coefficients.

Sector of Destination

Sector of Origin Steel Coal Iron Auto
Final

Demand
Total

Demand

Steel
Coal
Iron
Auto
Value added
Gross production

80
200
220
60
40

600

20
50

110
140
280
600

110
90
30

160
10

400

230
120
40

240
370

1000

160
140

0
400

600
600
400

1000

The technical coefficient aij expresses the number of units or dollars of input i requiredtoproduceoneunit
or one dollar of product j. Thus a11 � the percentage of steel in one dollar of steel, a21� the percentage of coal
in one dollar of steel, a31� the percentage of iron in one dollar of steel, and a41 � the percentage of autos in
one dollar of steel. To find the technical coefficients, simply divide every element in each column by the value
of gross production at the bottom of the column, omitting value added. Thus,

A � �
80–––
600
200–––
600
220–––
600
60–––
600

20–––
600
50–––
600
110–––
600
140–––
600

110–––
400
90–––
400
30–––
400
160–––
400

230––––
1000
120––––
1000
40––––

1000
240––––
1000

� � �
0.133 0.033 0.275 0.23
0.333 0.083 0.225 0.12
0.367 0.183 0.075 0.04
0.10 0.233 0.40 0.24

�
12.34. Check the matrix of technical coefficients A in Problem 12.33.

To check matrix A, multiply it by the column vector of total demand X. The product should equal the
intermediate demand which is total demand X� final demand B. Allow for slight errors due to rounding.

AX � �
0.133 0.033 0.275 0.23
0.333 0.083 0.225 0.12
0.367 0.183 0.075 0.04
0.10 0.233 0.40 0.24

��
600
600
400

1000
� � �

439.6
459.6
400
599.8

�
X�B � �

600
600
400

1000
�� �

160
140

0
400

� � �
440
460
400
600

�
12.35. Given the interindustry transaction demand table below, (a) find the matrix of technical

coefficients and (b) check your answer.

Sector of
Destination

Sector of Origin 1 2 3
Final

Demand
Total

Demand

1
2
3

Value added
Gross production

20
50
40
30

140

60
10
30
50

150

10
80
20
20

130

50
10
40

140
150
130
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a) A � �
20–––
140
50–––
140
40–––
140

60–––
150
10–––
150
30–––
150

10–––
130
80–––
130
20–––
130

� � �
0.143
0.357
0.286

0.4
0.067
0.2

0.077
0.615
0.154�

b) AX � �
0.143
0.357
0.286

0.4
0.067
0.2

0.077
0.615
0.154��

140
150
130� � �

90
140
90�

X�B � �
140
150
130�� �

50
10
40� � �

90
140
90�

12.36. Find the new level of total demand in Problem 12.35 if in year 2 final demand is 70 in industry
1, 25 in industry 2, and 50 in industry 3.

X � (I�A)�1 B

where I�A � �
0.857

�0.357
�0.286

�0.4
0.933

�0.2

�0.077
�0.615

0.846� and (I�A)�1�
1

0.354 �
0.666 0.354 0.318
0.478 0.703 0.555
0.338 0.286 0.657�

Thus, X �
1

0.354 �
0.666 0.354 0.318
0.478 0.703 0.555
0.338 0.286 0.657��

70
25
50� �

1
0.354 �

71.37
78.79
63.66� � �

201.61
222.57
179.83�

12.37. Having found the inverse of I�A, use it to check the accuracy of the matrix of coefficients
derived in Problem 12.35; i.e., check to see if (I�A)�1 B� X.

(I�A)�1 B �
1

0.354 �
0.666 0.354 0.318
0.478 0.703 0.555
0.338 0.286 0.657��

50
10
40� �

1
0.354 �

49.56
53.13
46.04� � �

140
150
130�

12.38. Assume in Problem 12.35 that value added is composed entirely of the primary input labor.
How much labor would be necessary to obtain the final demand (a) in Problem 12.35 and (b)
in Problem 12.36? (c) If the amount of labor available in the economy is 100, is the output mix
feasible?

a) To get the technical coefficient of labor aLj in Problem 12.35, simply divide the value added in each
column by the gross production. Thus, aL1�

30–––
140 � 0.214, aL2 �

50–––
150 � 0.333, and aL3�

20–––
130 � 0.154. The

amount of labor needed to meet the final demand will then equal the row of technical coefficients for
labor times the column vector of total demand, since labor must also be used to produce the
intermediate products. Thus,

L1 � [0.214 0.333 0.154] �
140
150
130� � 99.93

b) L2 � [0.214 0.333 0.154] �
201.61
222.57
179.83�� 144.95

c) Final demand in Problem 12.35 is feasable since 99.93� 100. Final demand in Problem 12.36 is not
feasible since society does not have sufficient labor resources to produce it.
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12.39. Check the accuracy of the technical coefficients found in Problem 12.38.

Having found the technical coefficients of labor for Problem 12.35, where value added was due totally
to labor inputs, the accuracy of the technical coefficients can be easily checked. Since each dollar of output
must be completely accounted for in terms of inputs, simply add each column of technical coefficients to
be sure it equals 1.

1 2 3

1
2
3

Value added (labor)

0.143
0.357
0.286
0.214
1.000

0.4
0.067
0.2
0.333
1.000

0.077
0.615
0.154
0.154
1.000

EIGENVALUES, EIGENVECTORS

12.40. Use eigenvalues (characteristic roots, latent roots) to determine sign definiteness for

A� �10 3
3 4�

To find the characteristic roots of A, the determinant of the characteristic matrix A� cI must equal
zero. Thus,


A� cI 
 � � 10� c

3
3

4� c � � 0

40� c2� 14c� 9 � 0 c2� 14c� 31 � 0

Using the quadratic formula,

c �
14��196� 4(31)

2
�

14� 8.485
2

c1 � 11.2425 c2 � 2.7575

With both characteristic roots positive, A is positive definite.

12.41. Redo Problem 12.40, given

A� ��4 �2
�2 �6�


A� cI 
 � � �4� c

�2
�2
�6� c � � 0

24� c2� 10c� 4 � 0 c2� 10c� 20 � 0

c �
�10��100� 4(20)

2
�
�10� 4.4721

2

c1 �
�5.5279

2
� �2.764 c2 �

�14.4721
2

� �7.236

With both characteristic roots negative, A is negative definite.
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12.42. Redo Problem 12.40, given

A� �6 2
2 2�


A� cI 
 � � 6� c

2
2

2� c � � 0

12� c2� 8c� 4 � 0 c2� 8c� 8 � 0

c �
8��64� 4(8)

2
�

8� 5.66
2

c1 � 1.17 c2 � 6.83

A is positive definite.

12.43. Redo Problem 12.40, given

A� �
4 6 3
0 2 5
0 1 3

�

A� cI 
 � �

4� c

0
0

6
2� c

1

3
5

3� c � � 0

Expanding along the first column,


A� cI 
 � (4� c) [(2� c)(3� c)� 5] � 0 (12.19)

�c3� 9c2� 21c� 4 � 0 (12.20)

To solve (12.20), we may use a standard formula for finding cube roots or note that (12.20) will equal zero
if in (12.19)

4� c � 0 or (2� c)(3� c)� 5 � 0

Thus, the characteristic roots are

4� c � 0 (2� c)(3� c)� 5 � 0
c1 � 4 c2� 5c� 1 � 0

c �
5��25� 4

2
�

5� 4.58
2

c2� 4.79 c3� 0.21

With all three characteristic roots positive, A is positive definite.

12.44. Redo Problem 12.40, given

A� �
6

13
5

1
4
1

0
0
9
�


A� cI 
 � �
6� c

13
5

1
4� c

1

0
0

9� c � � 0

Expanding along the third column,


A� cI 
 � (9� c)[(6� c)(4� c)� 13] � 0 (12.21)

�c3� 19c2� 101c� 99 � 0 (12.22)
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which will equal zero if in (12.21)

9� c � 0 or (6� c)(4� c)� 13 � 0

Thus, c1 � 9 c2� 10c� 11 � 0

c �
10��100� 4(11)

2
�

10� 7.48
2

c2 � 8.74 c3� 1.26

With all latent roots positive, A is positive definite.

12.45. Redo Problem 12.40, given

A� �
�5

0
4

1
�2

2

2
0
�3

�

A� cI 
 � �

�5� c

0
4

1
�2� c

2

2
0

�3� c� � 0

Expanding along the second row,


A� cI 
 � (�2� c)[(�5� c)(�3� c)� 8] � 0

Thus, �2� c

c1

� 0 or (�5� c)(�3� c)� 8 � 0
� �2 c2� 8c� 7 � 0

(c� 7)(c� 1) � 0
c2 � �7 c3� �1

With all latent roots negative, A is negative definite.

12.46. Given A� �6
6

6
�3�

Find (a) the characteristic roots and (b) the characteristic vectors.

a) 
A� cI 
 � � 6� c

6
6

�3� c � � 0

�18� c2� 3c� 36 � 0
c2� 3c� 54 � 0

(c� 9)(c� 6) � 0
c1 � 9 c2 � �6

With one root positive and the other negative, A is sign indefinite.

b) Using c1 � 9 for the first characteristic vector V1,

�6� 9
6

6
�3� 9� �

v1

v2
� � � �3

6
6

�12� �
v1

v2
� � 0

v1 � 2v2

Normalizing, as in Example 9,

(2v2)2� v2
2� 1

5v2
2� 1

v2 ��0.2 v1 � 2v2 � 2�0.2
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Thus, V1 � � 2�0.2
�0.2 �

Using c2 � �6 for the second characteristic vector,

� 6� (�6)
6

6
�3� (�6)� �

v1

v2
� � �12

6
6
3 ��

v1

v2
� � 0

v2� �2v1

Normalizing,

v1
2� (�2v1)2� 1

5v1
2� 1

v1 ��0.2 v2 � �2v1 � �2�0.2

Thus, V2 � � �0.2
�2�0.2�

12.47. Redo Problem 12.46, given A� �6
3

3
�2�

a) 
A� cI 
 � � 6� c

3
3

�2� c � � 0

c2� 4c� 21 � 0
c1 � 7 c2 � �3

With c1� 0 and c2� 0, A is sign indefinite.

b) Using c1 � 7 to form the first characteristic vector,

�6� 7
3

3
�2� 7 � �

v1

v2
� � � �1

3
3

�9� �
v1

v2
� � 0

v1 � 3v2

Normalizing, (3v2)2� v2
2 � 1

9v2
2� v2

2 � 1
10v2

2 � 1

v2 ��0.1 and v1� 3v2� 3�0.1

Thus, V1 � � 3�0.1
�0.1�

Using c2 � �3,

� 6� (�3)
3

3
�2� (�3) � �

v1

v2
� � � 9

3
3
1� �

v1

v2
� � 0

v2� �3v1

Normalizing, v1
2� (�3v1)2 � 1

10v1
2 � 1

v1 ��0.1 and v2 � �3v1 � �3�0.1

Thus, V2 � � �0.1
�3�0.1�
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CHAPTER 13

Comparative
Statics and

Concave
Programming

13.1 INTRODUCTION TO COMPARATIVE STATICS

Comparative-static analysis, more commonly known as comparative statics, compares the different
equilibrium values of the endogenous variables resulting from changes in the values of the exogenous
variables and parameters in the model. Comparative statics allows economists to estimate such things
as the responsiveness of consumer demand to a projected excise tax, tariff, or subsidy; the effect on
national income of a change in investment, government spending, or the interest rate; and the likely
price of a commodity given some change in weather conditions, price of inputs, or availability of
transportation. Comparative statics essentially involves finding the appropriate derivative, as we saw
earlier in Section 6.2.

13.2 COMPARATIVE STATICS WITH ONE ENDOGENOUS VARIABLE

Comparative statics can be used both with specific and general functions. Example 1 provides a
specific function illustration; Example 2 demonstrates the method with a general function. In the case
of specific functions the prerequisite derivatives can be derived from either explicit or implicit
functions. In the case of general functions, implicit functions must be used. Whenever there is more
than one independent variable (Problem 13.2), partial derivatives are the appropriate derivatives and
are found in a similar fashion (Problem 13.3).

EXAMPLE 1. Assume the demand QD and supply QS of a commodity are given by specific functions, here
expressed in terms of parameters.

QD � m� nP� kY m, n, k� 0
QS � a� bP a, b� 0
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where P � price and Y � consumers’ income. The equilibrium condition is

QD � QS

Substituting from above and solving for the equilibrium price level P*, we have

m� nP� kY � a� bP (13.1)

m� a� kY � (b� n)P

P* �
m� a� kY

b� n
(13.2)

Using comparative statics we can now determine how the equilibrium level of the endogenous variable P* will
change for a change in the single exogenous variable (Y) or any of the five parameters (a, b, m,n, k), should the
latter be of interest. Comparative-static analysis simply involves taking the desired derivative and determining its
sign. To gauge the responsiveness of the equilibrium price to changes in income, we have from the explicit function
(13.2),

dP*
dY

�
k

b� n
� 0 (13.3)

This means that an increase in consumers’ income in this model will lead to an increase in the equilibrium price
of the good. If the values of the parameters are known, as in Problem 13.1, the specific size of the price increase
can also be estimated.

Comparative statics can be applied equally well to implicit functions. By moving everything to the left in
(13.1), so that QD�QS � 0, or excess demand equals zero, we can derive the implicit function F for the
equilibrium condition:

F � m� nP� kY� a� bP � 0 (13.4)

Then the implicit function rule (Section 5.10) can be employed to find the desired comparative-static derivative.
Assuming Fp� 0,

dP*
dY

� �
FY

FP

where from (13.4), FY � k and FP � � (n� b). Substituting and simplifying, we have

dP*
dY

� �
k

�(n� b)
�

k

b� n
� 0

Comparative statics can also be used to estimate the effect on P* of a change in any of the parameters
(m, n, k, a, b), but since these merely represent intercepts and slopes in demand and supply analysis, such as we
have above, they generally have little practical relevance for economics. In other instances, however, such as
income determination models (Problem 13.3), the parameters will frequently have economic significance and may
warrant comparative-static derivatives of their own.

EXAMPLE 2. Now assume a general model in which the supply and demand of a commodity are given solely
by general functions:

Demand � D(P, Y) Dp� 0, DY� 0,

Supply � S(P) SP� 0

The equilibrium price level P* can be found where demand equals supply:

D(P, Y) � S(P)

or equivalently where excess demand equals zero,

D(P, Y)� S(P) � 0 (13.5)
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With general functions, only implicit forms such as (13.5) are helpful in finding the comparative-static derivatives.
Assuming FP� 0,

dP*
dY

� �
FY

FP

where from (13.5), FY � DY and FP � DP� SP. Substituting,

dP*
dY

� �
DY

DP� SP

From theory, we always expect SP� 0. If the good is a normal good, then DY� 0 and DP� 0.
Substituting above, we have in the case of a normal good

dP*
dY

� �
(�)

(�)� (�)
� 0

If the good is an inferior good but not a Giffen good, then DY� 0 and DP� 0 so that dP*/dY� 0; and if the good
is a Giffen good, then DY� 0 and DP� 0 and the sign of the derivative will be indeterminate and depend on the
sign of the denominator. See Problems 13.1 to 13.7.

13.3 COMPARATIVE STATICS WITH MORE THAN ONE ENDOGENOUS VARIABLE

In a model with more than one endogenous variable, comparative statics requires that there be a
unique equilibrium condition for each of the endogenous variables. A system of n endogenous
variables must have n equilibrium conditions. Measuring the effect of a particular exogenous variable
on any or all of the endogenous variables involves taking the total derivative of each of the equilibrium
conditions with respect to the particular exogenous variable and solving simultaneously for each of the
desired partial derivatives. If the functions have continuous derivatives and the Jacobian consisting of
the partial derivatives of all the functions with respect to the endogenous variables does not equal zero,
then from the implicit function theorem the optimal values of the endogenous variables can be
expressed as functions of the exogenous variables, as outlined in Problem 13.8, and the comparative-
static derivatives can be estimated with the help of Cramer’s rule, as demonstrated in Example 3 below.
The method is also illustrated in terms of a typical economic problem in Example 4.

EXAMPLE 3. For simplicity of exposition, assume a model with only two endogenous variables and two
exogenous variables, expressed in terms of implicit general functions in which the endogenous variables are listed
first, followed by the exogenous variables, with a semicolon separating the former from the latter. The model can
be easily expanded to any number of endogenous variables (n) and any number of exogenous variables (m), where
n need not equal m.

F 1(y1, y2; x1, x2) � 0
F 2(y1, y2; x1, x2) � 0

To find the comparative-static partial derivatives of the system with respect to one of the independent
variables, say x1, we take the total derivative (Section 5.9) of both functions with respect to x1.

�F 1

�y1

·
�y1

�x1

�
�F 1

�y2

·
�y2

�x1

�
�F 1

�x1

� 0

�F 2

�y1

·
�y1

�x1

�
�F 2

�y2

·
�y2

�x1

�
�F 2

�x1

� 0

When evaluated at the equilibrium point, which is also frequently indicated by a bar, all the partial derivatives will
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have fixed values and so can be expressed in matrix notation. Moving the partial derivatives of both functions with
respect to x1 to the right, we have

�
�F 1

�y1

�F 2

�y1

�F 1

�y2

�F 2

�y2

� �
�ȳ1

�x1

�ȳ2

�x1

� � ���
�F 1

�x1

�F 2

�x1

�
JX � B

If both functions have continuous first and second derivatives and the Jacobian 
J 
, consisting of all the first-order
partial derivatives of both functions (Fi) with respect to both endogenous variables (yj), does not equal zero,


J 
 �
�F 1

�y1

·
�F 2

�y2

�
�F 2

�y1

·
�F 1

�y2

� 0,

then by making use of the implicit function theorem we can express the optimal values of the endogenous values
as implicit functions of the exogenous variables and solve for the desired comparative-static derivatives in X using
Cramer’s rule. Specifically, assuming 
J 
� 0,

�ȳi

�x1

�

Ji 


J 


(13.6)

Thus, to solve for the first derivative, �ȳ1/�x1, we form a new matrix 
J1 
 by replacing the first column of J with
the column vector B and then substitute it above in (13.6).

�ȳ1

�x1
�


J1 


J 

�

�

�

�F 1

�x1

�F 2

�x1

�F 1

�y2

�F 2

�y2
�

� � �F
1

�x1

·
�F 2

�y2

�
�F 2

�x1

·
�F 1

�y2
�

�F 1

�y1

�F 2

�y1

�F 1

�y2

�F 2

�y2

�F 1

�y1

·
�F 2

�y2

�
�F 2

�y1

·
�F 1

�y2

Similarly,

�ȳ2

�x1

�

J2 


J 

�

�F 1

�y1

�F 2

�y1

�

�

�F 1

�x1

�F 2

�x1
�

� � �F
1

�y1
·
�F 2

�x1
�
�F 2

�y1
·
�F 1

�x1
�

�F 1

�y1

�F 2

�y1

�F 1

�y2

�F 2

�y2

�F 1

�y1
·
�F 2

�y2
�
�F 2

�y1
·
�F 1

�y2

The partials with respect to x2 are found in like fashion, after starting with the total derivatives of both
functions with respect to x2. See Problem 13.9.

EXAMPLE 4. Assume that equilibrium in the goods and services market (IS curve) and the money market (LM
curve) are given, respectively, by

F 1(Y, i; C0, M0, P) � Y�C0�C(Y, i) � 0 0�CY� 1, Ci� 0 (13.7)

F 2(Y, i; C0, M0, P) � L(Y, i)�M0/P � 0 LY� 0, Li� 0 (13.8)

where L(Y, i) � the demand for money, M0 � the supply of money, C0 � autonomous consumption, and P � the
price level, which makes M0/P the supply of real rather than nominal money. For simplicity, we will hold P
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constant. The effect on the equilibrium levels of Y and i of a change in C0 using comparative statics is
demonstrated below.

a) Take the total derivative of the equilibrium conditions, (13.7) and (13.8), with respect to the desired
exogenous variable, here C0.

�Y
�C0

� 1� �CY ·
�Y
�C0

�� �Ci ·
�i
�C0

� � 0

�LY ·
�Y
�C0

� ��Li ·
�i
�C0

� � 0

b) Rearranging and setting in matrix form,

�1�CY

LY

�Ci

Li
� �

�Ȳ
�C0

�ī

�C0

� � �1
0 �

JX � B

c) Then check to make sure the Jacobian 
J 
� 0 so the implicit function theorem holds.


J 
 � (1�CY)Li�Ci LY

Applying the signs, 
J 
 � (�)(�)� (�)(�) � (�)� 0

Therefore, 
J 
� 0.

d) Solve for the first derivative, �Ȳ/�C0 by forming a new matrix 
J1 
 in which the first column of J is
replaced with the column vector B and substituted in (13.6).


J1 
 � � 1
0
�Ci

Li
� � Li

Thus,
�Ȳ
�C0

�

J1 


J 


�
Li

(1�CY)Li�Ci LY

�
(�)
(�)

� 0

An increase in autonomous consumption C0 will lead to an increase in the equilibrium level of
income.

e) Solve for the second derivative, �ī/�C0 by forming 
J2 
 in which the second column of J is replaced with
the column vector B and substituted in (13.6).


J2 
 � � 1�CY

LY

1
0 � � �LY

and
�ī
�C0

�

J2 


J 


�
�LY

(1�CY)Li�Ci LY

�
�(�)
(�)

� 0

An increase in C0 will also lead to an increase in the equilibrium level of interest. The effect on Ȳ and
ī of a change in M0 is treated in Problem 13.10. See also Problems 13.8 to 13.18.

13.4 COMPARATIVE STATICS FOR OPTIMIZATION PROBLEMS

In addition to their general interest in the effects of changes in exogenous variables on the
equilibrium values of their models, economists frequently also want to study the effects of changes in
exogenous variables on the solution values of optimization problems. This is done by applying
comparative-static techniques to the first-order conditions from which the initial optimal values are
determined. Since first-order conditions involve first-order derivatives, comparative-static analysis of
optimization problems, as we shall see, is intimately tied up with second-order derivatives and Hessian
determinants. The methodology is set forth in Example 5.
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EXAMPLE 5. A price-taking firm has a strictly concave production function Q(K, L). Given P � output price,
r � rental rate of capital, and w � wage, its profit function is

� � PQ(K, L)� rK�wL

If we take the derivatives, ��/�K and ��/�L, for the first-order optimization conditions, and express them as
implicit functions, we have

F 1(K, L; r, w, P) � PQK(K̄, L̄)� r � 0
F2(K, L; r, w, P) � PQL(K̄, L̄)�w � 0

where the bars indicate that the first derivatives QK and QL are evaluated at the optimal values of the profit
function. From these first-order conditions we can determine the effects of a change in the exogenous variables
(r, w) on the optimal values of the endogenous variables (K̄, L̄) by use of comparative statics as follows:

a) Take the total derivatives of the first-order conditions with respect to either of the exogenous variables
and set them in the now familiar matrix form. Starting with the rental rate of capital r and noting that
each of the first derivatives QK and QL is a function of both K and L, we have

�
�F 1

�K
�F 2

�K

�F 1

�L
�F 2

�L
� �
�K̄

�r
�L̄

�r
� � ���

�F 1

�r
�F 2

�r
�

or specifically, �PQKK

PQLK

PQKL

PQLL
� �
�K̄

�r
�L̄

�r
� � �1

0 �

JX � B


J 
 � P2(QKK QLL�QLK QKL)

Provided the second-order sufficient conditions, as expressed within the parentheses above, are met,

J 
� 0. Here we observe that when finding the comparative-static derivatives from the first derivatives
of the first-order optimization conditions, 
J 
 � 
H 
, the Hessian (Section 12.2). For optimization of a
(2� 2) system, we also recall 
H 
� 0.

b) Since 
J 
 � 
H 
� 0, and assuming continuous first and second derivatives, the conditions of the implicit
function theorem are met and we can use Cramer’s rule to find the desired derivatives.

�K̄
�r
�


J1 


J 

�

�

J 


1
0

PQKL

PQLL
�
�

PQLL

P2(QKK QLL�QKL QLK)
� 0

where �K̄/�r� 0 because we are assuming strictly concave production functions, which means QLL� 0,
QKK� 0, and QKK QLL�QKLQLK over the entire domain of the function. We also know from
microtheory that a profit-maximizing firm will only produce where the marginal productivity of inputs
(QL, QK) is declining. Hence at the optimal level of production, QLL� 0 and QKK� 0. Similarly, we
can find

�L̄
�r
�


J2 


J 

�

�

J 


PQKK

PQLK

1
0 �
�

�PQLK

P2(QKK QLL�QKL QLK)

To be able to sign this comparative-static derivative, we need to know the sign of the cross partial QLK,
which is the effect of a change in capital on the marginal productivity of labor QL. If we assume it is
positive, which is likely, an increase in the interest rate will cause a decrease in the use of labor due to
the negative sign in the numerator. For the effects of a change in wage w on K̄, L̄, see Problem 13.19.
See also Problems 13.20 to 13.24.
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13.5 COMPARATIVE STATICS USED IN CONSTRAINED OPTIMIZATION

Comparative-static analysis can also be applied to constrained optimization problems. In
constrained optimization, the Lagrangian multiplier is an endogenous variable and in comparative-
static analysis it is evaluated at its optimal value (�̄). If the second-order sufficient condition is satisfied,
the bordered Hessian 
H̄ 
 may be positive or negative, depending on the type of optimization, but it
will never equal zero. If 
H̄ 
� 0, the Jacobian will not equal zero since 
J 
� 
H̄ 
, as seen in Example
6. When 
J 
� 0 and assuming continuous first and second derivatives, we know from the implicit
function theorem that the optimal values of the endogenous variables can be expressed as implicit
functions of the exogenous variables and the desired comparative-static derivatives found by means
of Cramer’s rule. An illustration is provided in Example 6.

EXAMPLE 6. Assume a firm operating in perfectly competitive input and output markets wants to maximize its
output q(K, L) subject to a given budgetary constraint

rK�wL � B

The Lagrangian function to be maximized is

Q � q(K, L)��(B� rK�wL)

and the three first-order derivatives (�Q/�K, �Q/�L, �Q/��) representing the first-order conditions can be
expressed as the following implicit functions:

F 1(K̄, L̄, �̄; r, w, B) � QK(K̄, L̄)� r�̄ � 0
F 2(K̄, L̄, �̄; r, w, B) � QL(K̄, L̄)�w�̄ � 0
F 3(K̄, L̄, �̄; r, w, B) � B� rK̄�wL̄ � 0

From these first-order conditions for constrained optimization, assuming continuous derivatives and satisfaction
of the second-order sufficient condition, we can determine the effects of a change in any of the exogenous
variables (r, w, B) on the optimal values of the three endogenous variables (K̄, L̄, �̄) with comparative-static
analysis.

To find the effect of a change in the budget B on the optimal values of the endogenous variables, we take the
total derivative of each of the three functions with respect to B.

�
�F 1

�K̄

�F 2

�K̄

�F 3

�K̄

�F 1

�L̄

�F 2

�L̄

�F 3

�L̄

�F 1

��̄

�F 2

��̄

�F 3

��̄

� �
�K̄
�B

�L̄
�B

��̄

�B

� � �
�

�

�

�F 1

�B

�F 2

�B

�F 3

�B

�
or specifically, �

QKK

QLK

�r

QKL

QLL

�w

�r

�w

0 � �
�K̄
�B

�L̄
�B

��̄

�B

� � �
0
0
�1 �


J 
 � QKK(�w2)�QKL(�rw)� r(rQLL�wQLK)


J 
 � �w2 QKK� rwQKL� r2 QLL� rwQLK� 0

since 
J 
 � 
H̄ 
 (Section 12.5) and, if the second-order sufficient condition is met, 
H̄ 
� 0 for constrained
maximization. Since profit-maximizing firms in perfect competition operate only in the area of decreasing
marginal productivity of inputs (QKK, QLL� 0), the second-order condition will be fulfilled whenever K and L are
complements (QKL, QLK� 0) and will depend on the relative strength of the direct and cross partials when K and
L are substitutes (QKL, QLK� 0).
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With 
J 
 � 
H̄ 
� 0, and assuming continuous first- and second-order derivatives, we can now use Cramer’s
rule to find the desired derivatives.

1.
�K̄
�B
�


J1 


J 


�

�

J 


0
0
�1

QKL

QLL

�w

�r

�w

0 �
�

wQKL� rQLL


J 


�K̄/�B� 0 when K and L are complements and indeterminate when K and L are substitutes.

2.
�L̄

�B
�


J2 


J 


�

�

J 


QKK

QLK

�r

0
0
�1

�r

�w

0 �
�

rQLK�wQKK


J 


�L̄/�B� 0 when K and L are complements and indeterminate when K and L are substitutes.

3.
��̄

�B
�


J3 


J 


�

�

J 


QKK

QLK

�r

QKL

QLL

�w

0
0
�1�

�
�1(QKK QLL�QKL QLK)


J 


��̄/�B is indeterminate. See also Problems 13.25 to 13.29.

13.6 THE ENVELOPE THEOREM

The envelope theorem enables us to measure the effect of a change in any of the exogenous
variables on the optimal value of the objective function by merely taking the derivative of the
Lagrangian function with respect to the desired exogenous variable and evaluating the derivative at
the values of the optimal solution. The rationale is set forth in Example 7 and an illustration is offered
in Example 8. The envelope theorem also provides the rationale for our earlier description of the
Lagrange multiplier as an approximation of the marginal effect on the optimized value of the objective
function due to a small change in the constant of the constraint (Section 5.6). One important
implication of the envelope theorem for subsequent work in concave programming is that if �̄ � 0 at
the point at which the function is optimized, the constraint must be nonbinding. Conversely, if the
constraint is nonbinding, �̄ � 0.

EXAMPLE 7. Assume one wishes to maximize the function

z(x, y; a, b)

subject to f(x, y; a, b)

The Lagrangian function is

Z(x,y, �; a, b) � z(x, y; a, b)��f(x, y; a, b)

and the first-order conditions are

Zx � zx(x̄, ȳ; a, b)� �̄fx(x̄, ȳ; a, b) � 0
Zy � zy(x̄, ȳ; a, b)� �̄fy(x̄, ȳ; a, b) � 0
Z� � f(x̄, ȳ; a, b) � 0

If we assume all the functions have continuous first- and second-order derivatives and if


J 
 � �
zxx� �̄fxx

zyx� �̄fyx

fx

zxy� �̄fxy

zyy� �̄fyy

fy

fx

fy

0 � � 0
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we know from the implicit function theorem that we can express the optimal values of the endogenous variables
as functions of the exogenous variables.

Z(x̄, ȳ, �̄; a, b) � z[x̄(a, b), ȳ(a, b); a, b]��̄(a, b) f [x̄(a, b), ȳ(a, b); a, b]

The objective function, when evaluated at the values of the optimal solution, is known as the indirect objective
function.

z̄(a, b) � z[x̄(a, b), ȳ(a, b); a, b] � z(a, b)

The envelope theorem states that the partial derivative of the indirect objective function with respect to any
one of the exogenous variables, say b, equals the partial derivative of the Lagrangian function with respect to the
same exogenous variable. To prove the envelope theorem, then, we need to show

�z̄

�b
�
�Z

�b

Making use of the chain rule to take the derivative of the indirect objective function, and recalling that it is
always evaluated at the optimal solution, we have

�z̄
�b
� zx

�x̄
�b
� zy

�ȳ
�b
� zb

Then substituting zx � ��̄fx, zy� ��̄fy from the first two first-order conditions,

�z̄

�b
� ��̄ � fx

�x̄

�b
� fy

�ȳ

�b � � zb (13.9)

Also from the third first-order condition, we know

f [x̄(a, b), ȳ(a, b), a, b] � 0

Taking the derivative with respect to b and rearranging,

fx

�x̄

�b
� fy

�ȳ

�b
� � fb

Then substituting � fb in (13.9) and rearranging,

�z̄
�b
� (zb��̄fb) �

�Z
�b

Q.E.D.

The derivative of the Lagrangian function with respect to a specific exogenous variable, when evaluated at the
optimal values of the problem, is a reliable measure of the effect of that exogenous variable on the optimal value
of the objective function.

EXAMPLE 8. Assume a utility maximization problem subject to a budget constraint:

maximize u(x, y) subject to px x� py y � B

If there are continuous first and second derivatives and the Jacobian determinant consisting of the derivatives of
the first-order conditions with respect to the endogenous variables does not equal zero (or vanish), then the
Lagrangian function can be written

U(x̄, ȳ, �̄; px, py, B) � u(x̄, ȳ)� �̄(B� px x̄� py ȳ)

and the indirect objective function is

V(x̄, ȳ; px, py, B) � u[x̄(px, py, B), ȳ(px, py, B)]
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Then using the envelope theorem to estimate the effect on the optimal value of the objective function of a change
in any of the three exogenous variables, we have

a)
�V
�px

�
�U
�px

� ��̄x̄

b)
�V
�py

�
�U
�py

� ��̄ȳ

c)
�V
�B
�
�U
�B
� �̄

In (c), �̄ can be called the marginal utility of money, i.e., the extra utility the consumer would derive from a small
change in his or her budget or income. Notice that with the budget constraint (B) appearing only in the constraint,
the derivative comes more easily from the Lagrangian function. In (a) and (b), assuming positive utility for income
from (c), a change in the price of the good will have a negative impact weighted by the quantity of the good
consumed when utility is being maximized. In both cases, with prices appearing only in the constraint, the
derivatives once again come more readily from the Lagrangian function. See also Problems 13.30 to 13.32.

13.7 CONCAVE PROGRAMMING AND INEQUALITY CONSTRAINTS

In the classical method for constrained optimization seen thus far, the constraints have always
been strict equalities. Some economic problems call for weak inequality constraints, however, as when
individuals want to maximize utility subject to spending not more than x dollars or business seeks to
minimize costs subject to producing no less than x units of output. Concave programming, so called
because the objective and constraint functions are all assumed to be concave, is a form of nonlinear
programming designed to optimize functions subject to inequality constraints. Convex functions are by
no means excluded, however, because the negative of a convex function is concave. Typically set up
in the format of a maximization problem, concave programming can nevertheless also minimize a
function by maximizing the negative of that function.

Given an optimization problem subject to an inequality constraint with the following differenti-
able concave objective and constraint functions,

maximize f(x1, x2) subject to g(x1, x2)� 0 x1, x2� 0

and the corresponding Lagrangian function,

F(x1, x2, �) � f(x1, x2)��g(x1, x2)

the first-order necessary and sufficient conditions for maximization, called the Kuhn-Tucker conditions,
are

1. a)
�F
�xi
� fi(x̄1, x̄2)��̄gi(x̄1, x̄2)� 0

b) xi� 0

c) x̄i
�F
�xi
� 0, i � 1, 2

2. a)
�F
��
� g(x̄1, x̄2)� 0

b) �̄� 0

c) �̄
�F
��
� 0

where the conditions in (c) are called the complementary-slackness conditions, meaning that
both x̄ and f �(x̄) cannot simultaneously both be nonzero. Since a linear function is concave and
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convex, though not strictly concave or strictly convex, a concave-programming problem
consisting solely of linear functions that meet the Kuhn-Tucker conditions will always satisfy
the necessary and sufficient conditions for a maximum.

Note: (1) condition 1(a) requires that the Lagrangian function be maximized with respect to x1 and
x2, while condition 2(a) calls for the Lagrangian to be minimized with respect to �. This means concave
programming is designed to seek out a saddle point in the Lagrangian function in order to optimize
the objective function subject to an inequality constraint.

(2) in the Kuhn-Tucker conditions the constraint is always expressed as greater than or equal to
zero. This means that unlike equality constraints set equal to zero, where it makes no difference
whether you subtract the constant from the variables in the constraint or the variables from the
constant, the order of subtraction is important in concave programming (see Problem 13.33).

The rationale for the tripartite conditions (a)–(c) can be found in Example 9 and a demonstration
of the basic maximization method is offered in Example 10. For minimization, see Problem 13.34. For
multiple constraints, see Problem 13.39. For other applications, see Problems 13.33 to 13.42.

EXAMPLE 9. Consider a single-variable function for which we seek a local maximum in the first quadrant where
x� 0. Three scenarios are possible, each with slightly different conditions, as seen in Fig. 13-1.

a) For the maximum at F, an interior solution,

f �(x) � 0 and x� 0

b) For the maximum at G, a boundary solution,

f �(x) � 0 and x � 0

c) For the maximum at H or J, both boundary solutions,

f �(x)� 0 and x � 0

All the possibilities for a maximum in the first quadrant can be summarized more succinctly,
however, as

f �(x)� 0 x� 0 and xf �(x) � 0

which we recognize as part of the Kuhn-Tucker conditions. Note that the conditions automatically
exclude a point like K in (a) which is not a maximum, because f �(K)� 0.

EXAMPLE 10. A consumer wishing to maximize utility while spending no more than a predetermined budget
faces the following concave-programming problem,

maximize u(x, y) subject to B� px x� py y� 0 x, y� 0
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and Lagrangian function,

U � u(x, y)��(B� px x� py y)

Using the Kuhn-Tucker conditions, the Lagrangian function is first maximized with respect to the choice variables
x and y and the related conditions checked.

1. a)
�U

�x
� ux� �̄px� 0

�U

�y
� uy��̄py� 0

b) x̄� 0 ȳ� 0

c) x̄(ux��̄px) � 0 ȳ(uy� �̄py) � 0

Then the Lagrangian is minimized with respect to the constraint variable � and the related conditions
checked.

2. a)
�U

��
� B� px x̄� py ȳ� 0

b) �̄ � 0

c) �̄(B� px x̄� py ȳ) � 0

This leaves three categories of solutions that are nontrivial: (a) x̄, ȳ� 0, (b) x̄ � 0, ȳ� 0, and (c) x̄� 0,
ȳ � 0. We deal with the first two below and leave the third to you as a private exercise.

a) First scenario. If x̄, ȳ� 0, then from 1(c),

ux� �̄px� 0 uy��̄py � 0

Therefore, �̄ �
ux

px

�̄ �
uy

py

(13.10)

With px, py� 0, and assuming nonsatiation of the consumer, i.e., ux, uy� 0,

�̄� 0

If �̄� 0, then from 2(c),

B� px x̄� py ȳ � 0

and the budget constraint holds as an exact equality, not a weak inequality. This means the optimal point,
x̄, ȳ, will lie somewhere on the budget line, and not below it.

By reconfiguring (13.10), we can also see

ux

uy

�
px

py

Since ux/uy � the slope of the indifference curve and px/py� the slope of the budget line, whenever both
x̄, ȳ� 0, the indifference curve will be tangent to the budget line at the point of optimization and we have
an interior solution. With the budget constraint functioning as an exact equality, this first scenario, in
which both x̄, ȳ� 0, exactly parallels the classical constrained optimization problem, as seen in Fig.
13-2(a).

b) Second scenario. If x̄ � 0, ȳ� 0, then from 1(c),

ux� �̄px� 0 uy��̄py � 0

and
ux

px

� �̄ �̄ �
uy

py

(13.11)

Assuming px, py, ux, uy� 0, then �̄ � 0. From 2(c), therefore, the budget constraint holds as an exact
equality, not a weak inequality, even though only one variable is greater than zero and the other equals
zero. This means that once again the optimal point, x̄, ȳ, will lie on the budget line, and not below it.
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Substituting �̄ � uy/py from the equality on the right in (13.11) for �̄ in the inequality on the left in
(13.11), we have

ux

px

�
uy

py

or
ux

uy

�
px

py

This means that along the budget line the indifference curves are everywhere flatter than the budget line,
leading to a corner solution in the upper left, as seen in Fig. 13-2(b). At the corner solution, the slope
of the highest indifference curve that just touches the budget line may be flatter than or equal to the slope
of the budget line.

Solved Problems

COMPARATIVE STATICS WITH ONE EXOGENOUS VARIABLE

13.1. Given the model from Example 1,

QD �m� nP� kY m, n, k� 0
QS � a� bP a, b� 0

and now assuming we know the value of income and the parameters where

Y� 100, m� 60, n � 2, k � 0.1, a � 10, and b � 0.5

(a) find the equilibrium price and quantity, (b) use comparative statics to estimate the effect on
the equilibrium price P* of a $1 change in income, and (c) confirm the comparative statics
results by reestimating the equilibrium price.

a) QD � QS

60� 2P� 0.1(100) �
�2.5P �

P* �

10� 0.5P

�60
24 Q* � 22

b) From (13.3),
dP*
dY

�
k

b� n
� 0

Substituting k � 0.1, b � 0.5, n � 2,

dP*
dY

�
0.1

0.5� 2
� 0.04

296 COMPARATIVE STATICS AND CONCAVE PROGRAMMING [CHAP. 13

Fig. 13-2

(a)

y

y

xx0

(b)

y

x0

(0, y)



A $1 increase in income can be expected to cause a 4¢ increase in the equilibrium price of the
commodity.

c) Reestimating the equilibrium equation for Y � 101,

60� 2P� 0.1(101) �
�2.5P �

P* �

10� 0.5P

�60.1
24.04 Q.E.D.

13.2. Assume QD�m� nP� cPc� sPs m, n, c, s� 0
QS� a� bP� iPi a, b, i� 0

where P � price of the good, Pc� price of a complement, Ps � price of a substitute, and
Pi � price of an input. (a) Find the equilibrium price P*. (b) Find the comparative-static
derivatives resulting from a change in Pc and Pi. (c) Find the implicit function for the
equilibrium condition and (d) from it derive the comparative-static derivative for a change
in Ps.

a) The equilibrium condition is

m� nP� cPc� sPs � a� bP� iPi (13.12)

m� a� cPc� sPs� iPi � (b� n)P

P* �
m� a� cPc� sPs� iPi

b� n

b) Whenever there is more than one independent variable, we have to work in terms of partial
derivatives which will keep the other independent variables constant.

�P*
�Pc

�
�c

b� n
�P*
�Pi

�
i

b� n

c) From (13.12),

m� nP� cPc� sPs� a� bP� iPi � 0

d)
�P*
�Ps

� �
FPs

FP

�
s

b� n

13.3. Assume a two-sector income determination model where consumption depends on income and
investment is autonomous, so that

C� bY, I � I0, 0� b� 1

and equilibrium occurs where Y� C� I. (a) Solve for the equilibrium level of income Y*
explicitly. (b) Use comparative statics to estimate the effect on Y* of a change in autonomous
investment I0. (c) Find the same comparative-static derivative from the implicit function. (d)
Evaluate the effect on Y* of a change in the marginal propensity to consume b explicitly and
(e) implicitly.

a) Y � C� I

Substituting, Y � bY� I0 (13.13)

Y� bY � I0

Y* �
I0

1� b
(13.14)
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b) The effect on Y* of a change in autonomous investment I0 is

dY*
dI0

�
1

1� b
� 0

since 0� b� 1.

c) Moving everything to the left in (13.13), we obtain the implicit function,

Y� bY� I0� 0 (13.15)

From the implicit function rule, always under the usual assumptions,

dY*
dI0

� �
FI0

FY

where FI0
� �1 and FY � 1� b. So,

dY*
dI0

� �
�1

1� b
�

1
1� b

� 0

d) If we treat the marginal propensity to consume b as an exogenous variable instead of as a parameter,
we have a function of more than one independent variable and must find the partial derivative, which
will hold I0 constant. First applying the quotient rule on the explicit function in (13.14),

�Y*
�b

�
I0

(1� b)2

Substituting from (13.14) where Y* � I0/(1� b), we have

�Y*
�b

�
Y*

(1� b)

e) Next using the implicit function rule on (13.15) when evaluated at Y*,

�Y*
�b

� �
Fb

FY

�
Y*

1� b

Though seemingly difficult at first, implicit functions are frequently faster and easier to work with in
the long run. See Problems 13.5 to 13.6.

13.4. From (a) the explicit and (b) the implicit function, find the effect on the profit-maximizing level
of output of a per-unit tax t placed on a monopoly with total revenue and total cost
functions:

TR �mQ� nQ2, TC� kQ m, n, k� 0

a) Profit � for the monopoly is

� � mQ� nQ2� kQ� tQ

d�

dQ
� m� 2nQ� k� t � 0 (13.16)

Q* �
m� k� t

2n
profit-maximizing level of output

Then from the explicit function above, the comparative-static derivative estimating the effect on Q*
of a change in the per-unit tax t is

dQ*
dt
� �

1
2n
� 0
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b) From (13.16), the implicit function for the optimum condition is

m� 2nQ*� k� t � 0

By the implicit function rule,

dQ*
dt
� �

Ft

FQ*
� �

1
2n
� 0

13.5. Assume a two-sector income determination model expressed in general functions:

C� C(Y), I � I0

with equilibrium when Y� C� I. (a) Determine the implicit function for the equilibrium level
of income Y*. (b) Estimate the effect on Y* of a change in autonomous investment I0.

a) Y�C(Y*)� I0 � 0

b)
dY*
dI0

� �
FI0

FY*

�
1

1�CY*

13.6. In the model of Problem 6.4 we found the equilibrium condition and explicit function for the
equilibrium level of income Ȳ derived from it were, respectively,

Y� C0� bY� bT0� btY� I0�G0 (13.17)

and Ȳ �
1

1� b� bt
(C0� bT0� I0�G0)

We also found, after considerable simplification, the comparative-static derivative for the effect
on the equilibrium level of income Ȳ of a change in the tax rate t was

�Ȳ
�t
�

�bȲ
1� b� bt

(a) Find the implicit function for the equilibrium condition in (13.17) and (b) from it derive the
same derivative �Ȳ/�t to convince yourself of the convenience of working with implicit
functions.

a) From (13.17), the implicit function for the equilibrium condition is

Ȳ�C0� bȲ� bT0� btȲ� I0�G0 � 0

b) From the implicit function rule,

�Ȳ

�t
� �

Ft

FȲ

�
�bȲ

1� b� bt

13.7. In Problems 6.7 and 6.8 we found the equilibrium condition and explicit function for the
equilibrium level of income derived from it were, respectively,

Y� C0� b(Y�T0� tY)� I0�G0�X0�Z0� z(Y�T0� tY) (13.18)

Ȳ �
1

1� b� bt� z� zt
(C0� bT0� I0�G0�X0�Z0� zT0)
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We also found, after considerable simplification, the comparative-static derivative for the effect
on Ȳ of a change in the marginal propensity to import z was

�Ȳ
�z
�

�Ȳd

1� b� bt� z� zt

(a) Find the implicit function for the equilibrium condition in (13.18) and (b) from it derive the
same derivative �Ȳ/�z to see once again the convenience of working with implicit functions.

a) From (13.18), the implicit function for the equilibrium condition is

Ȳ�C0� b(Ȳ�T0� tȲ)� I0�G0�X0�Z0� z(Ȳ�T0� tȲ)

b) From the implicit function rule,

�Ȳ
�z
� �

Fz

FY–
� �

Ȳ�T0� tȲ
1� b� bt� z� zt

�
�Ȳd

1� b� bt� z� zt

COMPARATIVE STATICS WITH MORE THAN ONE ENDOGENOUS VARIABLE

13.8. Set forth the implicit function theorem.

Given the set of simultaneous equations,

f 1(y1, y2, . . ., yn; x1, x2, . . ., xm) � 0
f 2(y1,y2, . . ., yn; x1, x2, . . ., xm) � 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
f n(y1, y2, . . ., yn; x1, x2, . . ., xm) � 0

if all the above functions in f have continuous partial derivatives with respect to all the x and y variables,
and if at a point (y10, y20, . . ., yn0; x10, x20, . . ., xm0), the Jacobian consisting of the partial derivatives of all
the functions fi with respect to all of the dependent variables yi is nonzero, as indicated below:


J 
 �

�f 1

�y1

�f 2

�y1

· · ·
�f n

�y1

�f 1

�y2

�f 2

�y2

· · ·
�fn

�y2

· · ·

· · ·

· · ·

· · ·

�f 1

�yn

�f 2

�yn

· · ·
�f n

�yn

� 0

then there exists an m-dimensional neighborhood N in which the variables y1, y2, . . ., yn are implicit
functions of the variables x1, x2, . . ., xm in the form

y10 � f 1(x10, x20, . . ., xm0)
y20 � f 2(x10, x20, . . ., xm0)
· · · · · · · · · · · · · · · · · · · · · · ·
yn0 � f n(x10, x20, . . ., xm0)

The implicit functions, f 1, f 2, . . ., fn, are continuous and have continuous partial derivatives with
respect to all the independent variables. Derivation of the comparative-static derivatives is explained
in Example 3.

13.9. Working with the model from Example 3 in which

F 1(y1, y2; x1, x2) � 0
F 2(y1, y2; x1, x2) � 0

find the comparative-static partial derivatives of the system with respect to x2.
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Taking the total derivative of both functions with respect to x2,

�F 1

�y1

·
�y1

�x2

�
�F 1

�y2

·
�y2

�x2

�
�F 1

�x2

� 0

�F 2

�y1

·
�y1

�x2

�
�F 2

�y2

·
�y2

�x2

�
�F 2

�x2

� 0

Moving the partials of the functions with respect to x2 to the right, we have

�
�F 1

�y1

�F 2

�y1

�F 1

�y2

�F 2

�y2

� �
�y1

�x2

�y2

�x2

� � ���
�F 1

�x2

�F 2

�x2

�
JX � B

where 
J 
 �
�F 1

�y1

·
�F 2

�y2

�
�F 2

�y1

·
�F 1

�y2

� 0

To solve for the first derivative, �y1/�x2, form a new matrix 
J1 
, replacing the first column of J with the
column vector B and substitute in (13.6).

�y1

�x2

�

J1 


J 

�

�

�

�F 1

�x2

�F 2

�x2

�F 1

�y2

�F 2

�y2
�

� � �F
1

�x2

·
�F 2

�y2

�
�F 2

�x2

·
�F 1

�y2
�

�F 1

�y1

�F 2

�y1

�F 1

�y2

�F 2

�y2

�F 1

�y1

·
�F 2

�y2

·
�F 2

�y1

·
�F 1

�y2

Similarly,
�y2

�x2

�

J2 


J 

�

�F 1

�y1

�F 2

�y1

�

�

�F 1

�x2

�F 2

�x2
�

� � �F
1

�y1

·
�F 2

�x2

�
�F 2

�y1

·
�F 1

�x2
�

�F 1

�y1

�F 2

�y1

�F 1

�y2

�F 2

�y2

�F 1

�y1
·
�F 2

�y2
·
�F 2

�y1
·
�F 1

�y2

13.10. Assume the model from Example 4,

Y�C0�C(Y, i) � 0 0�CY� 1, Ci� 0
L(Y, i)�M0/P � 0 LY� 0, Li� 0

and use comparative-static analysis to find the effect on the equilibrium levels of Y and i of a
change in the money supply M0, recalling that P is constant.

Taking the total derivatives with respect to M0,

�Y
�M0

� �CY ·
�Y
�M0

� � �Ci ·
�i
�M0

� � 0

�LY ·
�Y

�M0
� � �Li ·

�i

�M0
� � 1

P
� 0
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and setting them in matrix form,

�1�CY

LY

�Ci

Li
� �

�Ȳ

�M0

�ī

�M0

� � � 0
1/P�

JX � B

where 
J 
 � (1�CY)Li�Ci LY


J 
 � (�)(�)� (�)(�) � (�)� 0

We then solve for the first derivative, �Ȳ/�M0 by forming the new matrix 
J1 
.


J1 
 � � 0
1/P

�Ci

Li
� � Ci

P

and
�Ȳ
�M0

�

J1 


J 

�

Ci

P[(1�CY)Li�Ci LY]
�

(�)
(�)

� 0

An increase in the money supply M0 will cause the equilibrium level of income to increase. For �ī/�M0,


J2 
 � � 1�CY

LY

0
1/P � � 1�CY

P

and
�ī
�M0

�

J2 


J 

�

1�CY

P[(1�CY)Li�Ci LY]
�

(�)
(�)

� 0

An increase in M0 will cause the equilibrium interest rate to fall.

13.11. Working with a system of three simultaneous equations similar to Problem 6.4,

Y� C� I0�G0 C� C0� b(Y�T) T � T0� tY

(a) Express the system of equations as both general and specific implicit functions. (b) Use the
simultaneous equations approach to comparative statics to find the Jacobian for both the
general functions and the specific functions. (c) Express in matrix form the total derivatives of
both the general and the specific functions with respect to G0. Then find and sign (d) �Ȳ/�G0,
(e) �C̄/�G0, and ( f) �T̄/�G0.

a) F 1(Y, C, T; C0, I0, G0, T0, b, t) � Y�C� I0�G0 � 0
F 2(Y, C, T; C0, I0, G0, T0, b, t) � C�C0� b(Y�T) � 0
F 3(Y, C, T; C0, I0, G0, T0, b, t) � T�T0� tY � 0

b) The Jacobian consists of the partial derivatives of all the equations with respect to all the endogenous
or dependent variables.


J 
 �

�F 1

�Y
�F 2

�Y

�F 3

�Y

�F 1

�C
�F 2

�C

�F 3

�C

�F 1

�T
�F 2

�T

�F 3

�T

�

1
�b

�t

�1
1
0

0
b

1

Expanding along the first row,


J 
 � 1(1)� (�1)(�b� bt) � 1� b� bt� 0
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c) Taking the total derivatives of the general functions with respect to G0, setting them in the now
familiar matrix form, and using bars over the endogenous variables to indicate that they are to be
evaluated at the point of equilibrium in the model, we have

�
�F 1

�Y
�F 2

�Y
�F 3

�Y

�F 1

�C
�F 2

�C
�F 3

�C

�F 1

�T
�F 2

�T
�F 3

�T

� �
�Ȳ

�G0

�C̄

�G0

�T̄

�G0

� � �
�

�

�

�F 1

�G0

�F 2

�G0

�F 3

�G0

�
The same derivatives in terms of the specific functions are

�
1
�b

�t

�1
1
0

0
b

1 � �
�Ȳ

�G0

�C̄

�G0

�T̄

�G0

� � �
1
0
0 � (13.19)

JX � B

where the signs in the B matrix change as the matrix is moved to the right of the equal sign.

d) To find �Ȳ/�G0, the a11 element in the X matrix in (13.19), we create a new matrix 
J1 
 by substituting
B in the first column of J and using (13.6).

�Ȳ

�G0

�

J1 


J 

�

�

J 


1
0
0

�1
1
0

0
b

1 �
�

1
1� b� bt

� 0

e) To find �C̄/�G0, the a21 element in the X matrix in (13.19), we create 
J2 
 by substituting B in the
second column of J and using (13.6).

�C̄
�G0

�

J2 


J 

�

�

J 


1
�b

�t

1
0
0

0
b

1 �
�

b(1� t)
1� b� bt

� 0

f) To find �T̄/�G0, the a31 element in the X matrix in (13.19), we create 
J3 
 by substituting B in the third
column of J and using (13.6).

�T̄

�G0

�

J3 


J 

�

�

J 


1
�b

�t

�1
1
0

1
0
0 �

�
1

1� b� bt
� 0

13.12. Using the previous model in Problem 13.11, where the original Jacobian 
J 
 will remain the
same, (a) express in matrix form the total derivatives of both the general and the specific
functions with respect to T0. Then find and sign (b) �Ȳ/�T0, (c) �C̄/�T0, and (d) �T̄/�T0.
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a) In matrix form, the total derivatives of the general functions with respect to T0 are

�
�F 1

�Y
�F 2

�Y
�F 3

�Y

�F 1

�C
�F 2

�C
�F 3

�C

�F 1

�T
�F 2

�T
�F 3

�T

� �
�Ȳ

�T0

�C̄

�T0

�T̄

�T0

� � �
�

�

�

�F 1

�T0

�F 2

�T0

�F 3

�T0

�
The same derivatives in terms of the specific function are

�
1
�b

�t

�1
1
0

0
b

1 � �
�Ȳ

�T0

�C̄
�T0

�T̄
�T0

� � �
0
0
1 �

b) To find �Ȳ/�T0, the a11 element in the X matrix, create 
J1 
 by substituting B in the first column of J
and using (13.6).

�Ȳ

�T0

�

J1 


J 

�

�

J 


0
0
1

�1
1
0

0
b

1 �
�

�b

1� b� bt
� 0

c) For �C̄/�T0, the a21 element in the X matrix, create 
J2 
 by substituting B in the second column
of J.

�C̄
�T0

�

J2 


J 

�

�

J 


1
�b

�t

0
0
1

0
b

1 �
�

�b

1� b� bt
� 0

d) For �T̄/�T0, substitute B in the third column of J and use (13.6).

�T̄
�T0

�

J3 


J 

�

�

J 


1
�b

�t

�1
1
0

0
0
1 �

�
1� b

1� b� bt
� 0

13.13. Retaining the same model from Problem 13.11, (a) express in matrix form the total derivatives
of both the general and the specific functions with respect to the tax rate t. Then find and sign
(b) �Ȳ/�t, (c) �C̄/�t, and (d) �T̄/�t.

a) The total derivatives of the general functions with respect to t are

�
�F 1

�Y

�F 2

�Y

�F 3

�Y

�F 1

�C

�F 2

�C

�F 3

�C

�F 1

�T

�F 2

�T

�F 3

�T

� �
�Ȳ
�t

�C̄

�t

�T̄

�t

� � �
�

�

�

�F 1

�t

�F 2

�t

�F 3

�t

�
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The same derivatives in terms of the specific functions are

�
1
�b

�t

�1
1
0

0
b

1 � �
�Ȳ

�t
�C̄

�t
�T̄

�t

� � �
0
0
Ȳ �

b) For �Ȳ/�t,

�Ȳ
�t
�


J1 


J 

�

�

J 


0
0
Ȳ

�1
1
0

0
b

1 �
�

�bȲ

1� b� bt
� 0

c) For �C̄/�t,

�C̄

�t
�


J2 


J 

�

�

J 


1
�b

�t

0
0
Ȳ

0
b

1 �
�

�bȲ

1� b� bt
� 0

d) For �T̄/�t,

�T̄
�t
�


J3 


J 

�

�

J 


1
�b

�t

�1
1
0

0
0
Ȳ �

�
(1� b)Ȳ

1� b� bt
� 0

13.14. Given the income determination model

Y� C� I0�G0�X0�Z C� C0� bY Z� Z0� zY

where X � exports, Z� imports, and a zero subscript indicates an exogenously fixed variable,
(a) express the system of equations as both general and specific implicit functions. (b) Express
in matrix form the total derivatives of both the general and the specific functions with respect
to exports X0. Then find and sign (c), �Ȳ/�X0, (d) �C̄/�X0, and (e) �Z̄/�X0.

a) F1(Y, C, Z; C0, I0, G0, X0, Z0, b, z) � Y�C� I0�G0�X0�Z � 0
F 2(Y, C, Z; C0, I0 G0, X0, Z0, b, z) � C�C0� bY � 0
F 3(Y, C, Z; C0, I0, G0, X0, Z0, b, z) � Z�Z0� zY � 0

b) �
�F 1

�Y

�F 2

�Y

�F 3

�Y

�F 1

�C

�F 2

�C

�F 3

�C

�F 1

�Z

�F 2

�Z

�F 3

�Z

� �
�Ȳ

�X0

�C̄
�X0

�Z̄
�X0

� � �
�

�

�

�F 1

�X0

�F 2

�X0

�F 3

�X0

�
�

1
�b

�Z

�1
1
0

1
0
1 � �

�Ȳ

�X0

�C̄
�X0

�Z̄

�X0

� � �
1
0
0 �


J 
 � 1� b� z� 0
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c) For �Ȳ/�X0,

�Ȳ

�X0

�

J1 


J 

�

�

J 


1
0
0

�1
1
0

1
0
1 �

�
1

1� b� z
� 0

d) For �C̄/�X0,

�C̄
�X0

�

J2 


J 

�

�

J 


1
�b

�z

1
0
0

1
0
1 �

�
b

1� b� z
� 0

e) For �Z̄/�X0,

�Z̄
�X0

�

J3 


J 

�

�

J 


1
�b

�z

�1
1
0

1
0
0 �

�
z

1� b� z
� 0

13.15. Using the model from Problem 13.14, (a) express in matrix form the total derivatives of the
specific functions with respect to the marginal propensity to consume b. Then find and sign (b)
�Ȳ/�b, (c) �C̄/�b, and (d) �Z̄/�b.

a) �
1
�b

�z

�1
1
0

1
0
1 � �

�Ȳ
�b

�C̄
�b

�Z̄
�b

� � �
0
Ȳ

0 �

b)
�Ȳ
�b
�


J1 


J 

�

�

J 


0
Ȳ

0

�1
1
0

1
0
1 �

�
Ȳ

1� b� z
� 0

c)
�C̄
�b
�


J2 


J 

�

�

J 


1
�b

�z

0
Ȳ

0

1
0
1 �

�
(1� z)Ȳ

1� b� z
� 0

d)
�Z̄
�b
�


J3 


J 

�

�

J 


1
�b

�z

�1
1
0

0
Ȳ

0�
�

zȲ

1� b� z
� 0

13.16. Continuing with the model from Problem 13.14, (a) express in matrix form the total derivatives
of the specific functions with respect to the marginal propensity to import z. Then find and sign
(b) �Ȳ/�z, (c) �C̄/�z, and (d) �Z̄/�z.

a) �
1
�b

�z

�1
1
0

1
0
1 � �

�Ȳ
�z

�C̄

�z

�Z̄

�z

� � �
0
0
Ȳ�
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b) For �Ȳ/�z,

�Ȳ

�z
�


J1 


J 

�

�

J 


0
0
Ȳ

�1
1
0

1
0
1 �

�
�Ȳ

1� b� z
� 0

c) For �C̄/�z,

�C̄

�z
�


J2 


J 

�

�

J 


1
�b

�z

0
0
Ȳ

1
0
1 �

�
�bȲ

1� b� z
� 0

d) For �Z̄/�z,

�Z̄
�z
�


J3 


J 

�

�

J 


1
�b

�z

�1
1
0

0
0
Ȳ�

�
(1� b)Ȳ

1� b� z
� 0

13.17. Having introduced the foreign trade market to the goods market in our national income model,
let us now combine them with the money market. Assume

The goods market: I �
S �

I(i)
S(Y, i)

(Ii� 0)
(0� SY� 1; Si� 0)

The foreign trade market: Z�
X �

Z(Y, i)
X0

0�ZY� 1; Zi� 0

and the money market: MD �

MS �

L(Y, i)
M0

LY� 0, Li� 0

where Z� imports, S � savings, X0 � autonomous exports, MD � demand for money, MS�
supply of money, and all the other symbols are familiar. (a) Express the equilibrium conditions
for the combined goods market and the money market. (b) Express the equilibrium conditions
as general and specific implicit functions. (c) Express in matrix form the total derivatives of
these functions with respect to M0. Find and sign (d) the Jacobian, (e) �Ȳ/�M0, and ( f)
�ī/�M0.

a) The combined goods market is in equilibrium when injections equal leakages:

I(i)�X0 � S(Y, i)�Z(Y, i)

The money market is in equilibrium when the demand for money equals the money supply:

L(Y, i) �M0

b) F 1(Y, i; M0, X0) � I(i)�X0� S(Y, i)�Z(Y, i)
F 2(Y, i; M0, X0) � L(Y, i)�M0

c)

�
�F 1

�Y
�F 2

�Y

�F 1

�i
�F 2

�i
� �

�Ȳ

�M0

�ī

�M0

�� ���
�F 1

�M0

�F 2

�M0

�
��SY�ZY

LY

Ii� Si�Zi

Li
� �

�Ȳ

�M0

�ī

�M0

� � �0
1 �

JX � B
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d) 
J 
 � Li(�SY�ZY)�LY(Ii� Si�Zi)� 0

e) Using Cramer’s rule for �Ȳ/�M0,

�Ȳ

�M0
�


J1 


J 

�

�

J 


0
1

Ii� Si�Zi

Li
�
�

�(Ii� Si�Zi)
Li(�SY�ZY)�LY(Ii� Si�Zi)

� 0

f) For �ī/�M0,

�ī
�M0

�

J2 


J 

�

�

J 


�SY�ZY

LY

0
1 �
�

�(SY�ZY)
Li(�SY�ZY)�LY(Ii� Si�Zi)

� 0

13.18. Using the model in Problem 13.17, (a) express in matrix form the total derivatives of the specific
functions with respect to exports X0. Then find and sign (b) �Ȳ/�X0 and (c) �ī/�X0.

a) ��SY�ZY

LY

Ii� Si�Zi

Li
� �

�Ȳ

�X0

�ī

�X0

� � � �1
0 �

b) For �Ȳ/�X0,

�Ȳ

�X0

�

J1 


J 

�

�

J 


�1
0

Ii� Si�Zi

Li
�
�

�Li

Li(�SY�ZY)�LY(Ii� Si�Zi)
� 0

c) For �ī/�X0,

�ī
�X0

�

J2 


J 

�

�

J 


�SY�ZY

LY

�1
0 �

�
LY

Li(�SY�ZY)�LY(Ii� Si�Zi)
� 0

COMPARATIVE STATIC ANALYSIS IN OPTIMIZATION PROBLEMS

13.19. Returning to the model in Example 5, where the first-order conditions were

F 1(K, L; r, w, P) � PQK(K̄, L̄)� r � 0
F 2(K, L; r, w, P) � PQL(K̄, L̄)�w� 0

(a) express the total derivatives of the functions with respect to the wage w in matrix form. Then
find and sign (b) �K̄/�w and (c) �L̄/�w.

a) �PQKK

PQLK

PQKL

PQLL
� �
�K̄
�w

�L̄
�w

� � �0
1 �


J 
 � P2(QKK QLL�QLK QKL)� 0

b) For �K̄/�w,

�K̄

�w
�


J1 


J 

�

�

J 


0
1

PQKL

PQLL
�
�

�PQKL

P2(QKK QLL�QKLQLK)

Without specific knowledge of the sign of the cross partial QKL, it is impossible to sign the derivative.
Assuming the marginal productivity of capital will increase for an increase in labor, QKL� 0 and
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�K̄/�w� 0, meaning that the optimal level of capital will likely fall in response to an increase in
wage.

c) For �L̄/�w,

�L̄
�w
�


J2 


J 

�

�

J 


PQKK

PQLK

0
1 �
�

PQKK

P2(QKK QLL�QKLQLK)
� 0

The optimal level of labor will decrease for an increase in wage since QKK� 0.

13.20. Staying with the model in Example 5, where the first-order conditions were

F 1(K, L; r, w, P) � PQK(K̄, L̄)� r � 0
F 2(K, L; r, w, P) � PQL(K̄, L̄)�w� 0

(a) express the total derivatives of the functions with respect to the commodity price P in matrix
form. Then find and sign (b) �K̄/�P and (c) �L̄/�P.

a) �PQKK

PQLK

PQKL

PQLL
� �
�K̄
�P

�L̄
�P

� � ��QK

�QL
�

b) For �K̄/�P,

�K̄
�P
�


J1 


J 

�

�

J 


�QK

�QL

PQKL

PQLL
�
�

P(�QK QLL�QL QKL)
P2(QKK QLL�QKLQLK)

�
(QL QKL�QK QLL)

P(QKK QLL�QKLQLK)

Since QK �MPK� 0, QL �MPL� 0, QLL� 0 for maximization, and 
J 
� 0 in the denominator, the
sign depends completely on the cross partial QKL. If K and L are complements, so that an increased
use of one input will lead to an increase in the MP of the other input, QKL� 0 and the
comparative-static derivative �K̄/�P� 0. If QKL� 0, the sign of �K̄/�P is indeterminate.

c) For �L̄/�P,

�L̄
�P
�


J2 


J 

�

�

J 


PQKK

PQLK

�QK

�QL
�
�

P(�QL QKK�QK QLK)
P2(QKK QLL�QKLQLK)

�
(QK QLK�QL QKK)

P(QKK QLL�QKLQLK)

and the sign will depend on the cross partial QLK, exactly as in (b).

13.21. Assume now a firm seeks to optimize the discounted value of its profit function,

� � P0 Q(X, Y)e�rt�Px X�Py Y

where the first derivatives of the first-order conditions, ��/�X and ��/�Y, when expressed as
implicit functions, are

F 1(X, Y; P0, Px, Py, r, t) � P0 Qx(X̄, Ȳ)e�rt�Px � 0
F 2(X, Y; P0, Px, Py, r, t) � P0 Qy(X̄, Ȳ)e�rt�Py � 0

(a) Express the total derivatives of the functions with respect to P0 in matrix form, recalling that
r and t are constants. Then find and sign (b) the Jacobian, (c) �X̄/�P0 and (d) �Ȳ/�P0.

a) �P0 Qxxe�rt

P0 Qyxe�rt

P0 Qxy e�rt

P0 Qyy e�rt � �
�X̄

�P0

�Ȳ

�P0

� � ��Qxe�rt

�Qye�rt�
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b) 
J 
 � P0
2 e�2rt(Qxx Qyy�Qyx Qxy)� 0

With P0
2 e�2rt� 0 and (QxxQyy�Qyx Qxy)� 0 from the second-order sufficient condition, 
J 
� 0.

c) For �X̄/�P0,

�X̄

�P0

�

J1 


J 

�

�

J 


�Qx e�rt

�Qy e�rt

P0Qxy e�rt

P0Qyy e�rt �
�

P0 e�2rt(Qy Qxy�Qx Qyy)
P0

2e�2rt(Qxx Qyy�Qyx Qxy)
�

(Qy Qxy�Qx Qyy)
P0(Qxx Qyy�QyxQxy)

As in Problem 13.20(b), the sign will depend on the cross partial Qxy.

d) For �Ȳ/�P0,

�Ȳ
�P0

�

J2 


J 

�

�

J 


P0 Qxxe�rt

P0 Qyxe�rt

�Qx e�rt

�Qy e�rt �
�

P0 e�2rt(Qx Qyx�Qy Qxx)
P0

2e�2rt(Qxx Qyy�Qyx Qxy)
�

(Qx Qyx�Qy Qxx)
P0(Qxx Qyy�QyxQxy)

13.22. Using the same model in Problem 13.21, (a) express the total derivatives of the functions with
respect to time t in matrix form. Then find and sign (b) �X̄/�t and (c) �Ȳ/�t.

a) �P0 Qxx e�rt

P0 Qyx e�rt

P0Qxy e�rt

P0Qyy e�rt � �
�X̄
�t

�Ȳ
�t

� � �rP0 Qx e�rt

rP0 Qy e�rt�

b)
�X̄

�t
�


J1 


J 

�

�

J 


rP0 Qxe�rt

rP0 Qye�rt

P0 Qxy e�rt

P0 Qyy e�rt �
�

rP0
2 e�2rt(Qx Qyy�Qy Qxy)

P0
2 e�2rt(Qxx Qyy�Qyx Qxy)

�
r(Qx Qyy�Qy Qxy)
(Qxx Qyy�QyxQxy)

c)
�Ȳ
�t
�


J2 


J 

�

�

J 


P0 Qxxe�rt

P0 Qyxe�rt

rP0Qx e�rt

rP0 Qy e�rt �
�

rP0
2 e�2rt(Qy Qxx�Qx Qyx)

P0
2 e�2rt(Qxx Qyy�Qyx Qxy)

�
r(Qy Qxx�Qx Qyx)
(Qxx Qyy�QyxQxy)

In both cases, if the cross partials are positive, the comparative-static derivatives will be negative and
if the cross partials are negative, the comparative-static derivatives will be indeterminate.

13.23. Assume the production function in Example 5 is specified as a Cobb-Douglas function with
decreasing returns to scale (Section 6.9), so that the competitive firm’s profit function is

� � PAK�L�� rK�wL

and the first derivatives ��/�K and ��/�L from the first-order conditions are

F 1(K, L; r, w, P, A,�,�) � �PAK��1 L�� r � 0
F 2(K, L; r, w, P, A,�,�) � �PAK�L��1�w� 0

(a) Express the total derivatives of the functions with respect to the wage w in matrix form.
Then find and sign (b) the Jacobian, (c) �K̄/�w, and (d) �L̄/�w.

a) ��(�� 1)PAK��2 L�

��PAK��1 L��1

��PAK��1 L��1

�(�� 1)PAK�L��2� �
�K̄
�w

�L̄

�w
� � �0

1 �

b) 
J 
 � �(�� 1)PAK��2 L� · �(�� 1)PAK�L��2� (��PAK��1 L��1)2


J 
 � ��(1����)P2 A2 K 2��2L2��2� 0
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since 
J 
 � 
H 
 and 
H 
 � 
H2 
� 0 in unconstrained optimization problems. This condition implies
that a profit-maximizing firm in perfect competition operates under decreasing returns to scale since

J 
� 0 requires (���)� 1.

c) For �K̄/�w,

�K̄
�w
�


J1 


J 

�

�

J 


0
1

��PAK��1L��1

�(�� 1)PAK�L��2 �
�
���PAK��1 L��1


J 

� 0

since the numerator, independent of the negative sign, is unambiguously positive and the
denominator is positive, the comparative-static derivative �K̄/�w is unquestionably negative. An
increase in the wage will decrease the demand for capital. Through further simplification, if desired,
we can also see

�K̄

�w
�

���PAK��1 L��1

��(1����)P2 A2 K 2��2 L2��2 �
�KL

(1����)TR
� 0

d) For �L̄/�w,

�L̄

�w
�


J2 


J 

�

�

J 


�(�� 1)PAK��2L�

��PAK��1 L��1

0
1 �
�
�(�� 1)PAK��2L�


J 

� 0

since �� 1, making (�� 1)� 0. An increase in the wage will lead to a reduction in the optimal level
of labor used. Through further simplification, we can also see

�L̄

�w
�

�(�� 1)PAK��2L�

��(1����)P2 A2 K 2��2 L2��2 �
�(1��)L2

(1����)TR
� 0

13.24. Working with the same model in Problem 13.23, (a) express the total derivatives of the
functions with respect to output price P in matrix form. Then find and sign (b) �K̄/�P and (c)
�L̄/�P.

a) ��(�� 1)PAK��2 L�

��PAK��1 L��1

��PAK��1 L��1

�(�� 1)PAK�L��2� �
�K̄
�P

�L̄
�P

� � ���AK��1 L�

��AK�L��1�

b) For �K̄/�P,

�K̄

�P
�


J1 


J 

�

�

J 


��AK��1 L�

��AK�L��1

��PAK��1L��1

�(�� 1)PAK�L��2 �
�

��PA2 K 2��1 L2��2

��(1����)P2 A2 K 2��2 L2��2

�K̄

�P
�

K

(1����)P
� 0

c) For �L̄/�P,

�L̄

�P
�


J2 


J 

�

�

J 


�(�� 1)PAK��1 L�

��PAK��1L��1

��AK��1 L�

��AK�L��1 �
�

��PA2 K 2��2 L2��1

��(1����)P2 A2 K 2��2 L2��2

�L̄

�P
�

L

(1����)P
� 0
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COMPARATIVE STATICS IN CONSTRAINED OPTIMIZATION

13.25. A consumer wants to maximize utility u(a, b) subject to the constraint pa a� pb b � Y, a
constant. Given the Lagrangian function

U � u(a, b)��(Y� pa a� pb b)

and assuming the second-order sufficient condition is met so that 
H̄ 
� 
J 
� 0, the endogenous
variables in the first-order conditions can be expressed as implicit functions of the exogenous
variables, such that

F 1(a, b, �; pa, pb, Y) � Ua��pa � 0
F 2(a, b, �; pa, pb, Y) � Ub��pb � 0 (13.20)
F 3(a, b, �; pa, pb, Y) � Y� pa a� pb b � 0

(a) Express the total derivatives of the functions with respect to pa in matrix form and (b) find
�ā/�pa.

a) �
Uaa

Uba

�pa

Uab

Ubb

�pb

�pa

�pb

0 � �
�ā

�pa

�b̄

�pa

��̄

�pa

� � �
�̄

0
ā �


J 
 � �pa
2 Ubb� pa pb Uab� pa pb Uba� pb

2 Uaa� 0

since 
J 
 � 
H̄ 
� 0 from the second-order sufficient condition for constrained maximization. But
theory leaves unspecified the signs of the individual second partials.

b) For �ā/�pa,

�ā
�pa

�

J1 


J 

�

�

J 


�̄

0
ā

Uab

Ubb

�pb

�pa

�pb

0 �
�

ā(pa Ubb� pb Uab)��̄pb
2


J 

(13.21)

where the sign is indeterminate because the signs of the second partials are unknown.

13.26. Working with the same model in Problem 13.25, (a) express the total derivatives of the
functions with respect to pb in matrix form and (b) find �b̄/�pb.

a) �
Uaa

Uba

�pa

Uab

Ubb

�pb

�pa

�pb

0 � �
�ā

�pb

�b̄

�pb

��̄

�pb

� � �
0
�̄

b̄ �
b) For �b̄/�pb,

�b̄

�pb

�

J2 


J 

�

�

J 


Uaa

Uba

�pa

0
�̄

b̄

�pa

�pb

0 �
�

b̄(pb Uaa� paUba)��̄pa
2


J 

(13.22)

which is also indeterminate.
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13.27. Continuing with the same model in Problem 13.25, (a) express the total derivatives of the
functions with respect to Y in matrix form and find (b) �ā/�Y and (c) �b̄/�Y.

a) �
Uaa

Uba

�pa

Uab

Ubb

�pb

�pa

�pb

0 � �
�ā
�Y

�b̄
�Y

��̄

�Y

� � �
0
0
�1 �

b) For �ā/�Y,

�ā

�Y
�


J1 


J 

�

�

J 


0
0
�1

Uab

Ubb

�pb

�pa

�pb

0 �
�
�(paUbb� pb Uab)


J 

(13.23)

which cannot be signed from the mathematics but can be signed from the economics. If a is a normal
good, �ā/�Y� 0; if a is a weakly inferior good, �ā/�Y � 0; and if a is a strictly inferior good,
�ā/�Y� 0.

c) For �b̄/�Y,

�b̄
�Y
�


J2 


J 

�

�

J 


Uaa

Uba

�pa

0
0
�1

�pa

�pb

0 �
�
�(pb Uaa� pa Uba)


J 

(13.24)

which can also be signed according to the nature of the good, as in (b) above.

13.28. Derive the Slutsky equation for the effect of a change in pa on the optimal quantity of the good
demanded ā and determine the sign of the comparative-static derivative �ā/�pa from the
information gained in Problems 13.25 to 13.27.

From (13.21), with slight rearrangement,

�ā

�pa

� �
�̄pb

2


J 

�

ā(pa Ubb� pb Uab)

J 


(13.25)

But from (13.23),
�ā

�Y
�
�(pa Ubb�Pb Uab)


J 


Substituting ��ā/�Y in (13.25), we get the Slutsky equation for ā, where the first term on the right is the
substitution effect and the second term is the income effect.

�ā

�pa

� �
�̄pb

2


J 

� ā � �ā�Y �

Substitution effect Income effect

Since 
J 
 � 
H̄ 
� 0 for constrained maximization and from (13.20),

�̄ �
Ua

pa

�
MUa

pa

� 0

the substitution effect in the first term is unambiguously negative. The income effect in the second term
will depend on the nature of the good. For a normal good, �ā/�Y� 0 and the income effect above will be
negative, making �ā/�pa� 0. For a weakly inferior good, �ā/�Y � 0, and �ā/�pa� 0. For a strictly inferior
good, �ā/�Y� 0 and the sign of �ā/�pa will depend on the relative magnitude of the different effects. If the
income effect overwhelms the substitution effect, as in the case of a Giffen good, �ā/�pa� 0 and the
demand curve will be positively sloped.
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13.29. Derive the Slutsky equation for the effect of a change in pb on the optimal quantity of the good
demanded b̄ and determine the sign of the comparative-static derivative �b̄/�pb.

From (13.22),
�b̄

�pb

� �
�̄pa

2


J 

�

b̄(pb Uaa� pa Uba)

J 


But from (13.24),
�b̄

�Y
�
�(pb Uaa� pa Uba)


J 


Substituting above,
�b̄

�pb

� �
�̄pa

2


J 

� b̄ � �b̄�Y�

where the substitution effect in the first term on the right is unquestionably negative and the income effect
in the second term will depend on the nature of the good, as in Problem 13.28.

THE ENVELOPE THEOREM

13.30. A firm in perfect competition with the production function Q� f(K, L) and a production limit
of Q0 seeks to maximize profit

� � PQ� rK�wL

Assuming conditions are satisfied for the implicit function theorem, the Lagrangian function
and the indirect objective function can be written, respectively,

�(K, L, Q, �; r, w, P, Q0) � PQ(r, w, P, Q0)� rK(r, w, P, Q0)�wL(r, w, P, Q0)
��[Q0� f(K, L)]

�̄(K̄, L̄, Q̄; r, w, P, Q0) � PQ̄(r, w, P, Q0)� rK̄(r, w, P, Q0)�wL̄(r, w, P, Q0)

Use the envelope theorem to find and comment on the changes in the indirect objective
function signified by (a) ��̄/�r, (b) ��̄/�w, (c) ��̄/�P, (d) ��̄/�Q0.

a)
��̄

�r
�
��

�r
� �K̄(r, w, P, Q0)

b)
��̄

�w
�
��

�w
� �L̄(r, w, P, Q0)

Differentiating the profit function with respect to input prices gives the firm’s demand for inputs.
Notice here where input prices (r, w) appear in the objective function and not in the constraint, the
desired derivatives can be readily found from either function.

c)
��̄

�P
�
��

�P
� Q̄(r, w, P, Q0)

Differentiating the profit function with respect to output prices gives the firm’s supply function. Since
output price (P) appears only in the objective function, the derivative can once again easily be found
from either function.

d)
��̄

�Q0
�
��

�Q0
� �̄

Differentiating the profit function with respect to an output constraint gives the marginal value of
relaxing that constraint, i.e., the extra profit the firm could earn if it could increase output by one unit.
Notice here where the output limit (Q0) appears only in the constraint, the derivative can be derived
more quickly and readily from the Lagrangian function.
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13.31. A consumer wants to minimize the cost of attaining a specific level of utility:

c� px x� py y subject to u(x, y) � U0

If the implicit function theorem conditions are fulfilled, the Lagrangian and indirect object
functions are

C(x, y, �; px, py, U0) � px x(px, py,U0)� py y(px, py, U0)��[U0� u(x, y)]
c̄(x̄, ȳ; px, py, U0) � px x̄(px, py, U0)� py ȳ(px, py, U0)

Use the envelope theorem to find and comment on the changes in the indirect objective
function signified by (a) �c̄/�px, (b) �c̄/�py, (c) �c̄/�U0.

a)
�c̄

�px

�
�C

�px

� x̄(px, py, U0)

b)
�c̄

�py

�
�C

�py

� ȳ(px, py, U0)

In both cases, a change in the price of a good has a positive effect on the cost that is weighted by the
amount of the good consumed. Since prices appear only in the objective function and not the
constraint, the desired derivatives can be easily taken from either function.

c)
�c̄

�U0

�
�C

�U0

� �̄

Here �̄ measures the marginal cost of changing the given level of utility. Since the utility limit U0

appears only in the constraint, the derivative is more easily found from the Lagrangian function.

13.32. Assume the model in Example 7 is a function with only a single exogenous variable a. Show that
at the optimal solution the total derivative of the Lagrangian function with respect to a is equal
to the partial derivative of the same Lagrangian function with respect to a.

The new Lagrangian function and first-order conditions are

Z(x, y, �; a) � z[x(a), y(a); a]��(a) f [x(a), y(a); a]
Zx � zx(x̄, ȳ; a)��̄fx(x̄, ȳ; a) � 0
Zy � zy(x̄, ȳ; a)��̄fy(x̄, ȳ; a) � 0
Z� � f(x̄, ȳ; a) � 0

Taking the total derivative of the original Lagrangian function with respect to a,

dZ

da
� (zx� �̄fx)

dx̄

da
� (zy��̄fy)

dȳ

da
� f

d�̄

da
� (za��̄fa)

But from the first-order conditions,

zx��̄fx � 0, zy� �̄fy� 0, and f � 0

so the first three terms cancel and the total derivative of the function with respect to the exogenous
variable a ends up equal to the partial derivative of the function with respect to the exogenous
variable a:

dZ

da
� (za��̄fa) �

�Z

�a

This suggests we can find the total effect of a change in a single exogenous variable on the optimal value
of the Lagrangian function by simply taking the partial derivative of the Lagrangian function with respect
to that exogenous variable.
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CONCAVE PROGRAMMING

13.33. Given the typical format for constrained optimization of general functions below,

(a) maximize f(x, y) subject to g(x, y)�B
(b) minimize f(x, y) subject to g(x, y)�B

express them in suitable form for concave programming and write out the Lagrangians.

a) For less than or equal to constraints in maximization problems, subtract the variables in the constraint
from the constant of the constraint.

Maximize f(x, y) subject to B� g(x, y)� 0 x̄, ȳ� 0
Max F � f(x, y)��[B� g(x, y)]

b) For minimization, multiply the objective function by �1 to make it negative and then maximize the
negative of the original function. For the corresponding greater than or equal to constraints in
minimization problems, subtract the constant of the constraint from the variables in the constraint.

Maximize� f(x, y) subject to g(x, y)�B� 0 x̄, ȳ� 0
Max F � �f(x, y)��[g(x, y)�B]

13.34. Assume a firm with the production function Q(K, L) and operating in a purely competitive
market for inputs wishes to minimize cost while producing no less than a specific amount of
output, given by

minimize c� rK�wL subject to Q(K, L)�Q0

(a) Express the problem in concave-programming format, (b) write out the Lagrangian
function, and (c) solve the problem.

a) Multiplying the objective function by �1 to make it negative and maximizing it,

Maximize �rK�wL subject to Q(K, L)�Q0� 0 K, L� 0

b) Maximize C � �rK�wL��[Q(K, L)�Q0]

c) Applying the Kuhn-Tucker conditions, we first maximize the Lagrangian function with respect to the
choice variables K and L and check the related conditions.

1. a)
�C
�K
� �r��̄QK� 0

�C
�L
� �w��̄QL� 0

b)

c)

K̄� 0

K̄(�r��̄QK) � 0

L̄� 0

L̄(�w� �̄QL) � 0

We then minimize the Lagrangian with respect to the constraint variable � and check the related
conditions.

2. a)

b)
c)

�C

��

�̄� 0
�̄[Q(K̄, L̄)�Q0] � 0

� Q(K̄, L̄)�Q0� 0

Assuming production depends on both inputs, K̄, L̄� 0, the two expressions within the parentheses
in 1(c) have to be equalities.

�r� �̄QK � 0 �w� �̄QL � 0

Rearranging, we see

�̄ �
r

QK

�
w

QL

� 0 (13.26)
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since input prices r, w� 0 and marginal productivities QK, QL� 0. With �̄ � 0, from 2(c) the budget
constraint binds as an equality, with

Q(K̄, L̄) � Q0

Rearranging (13.26), we have an interior solution with the isoquant tangent to the isocost line,

QL

QK

�
w

r

13.35. Maximize profits

� � 64x� 2x2� 96y� 4y2� 13

subject to the production constraint

x� y� 20

We first set up the Lagrangian function

� � 64x� 2x2� 96y� 4y2� 13��(20� x� y)

and set down the Kuhn-Tucker conditions.

1. a) �x � 64� 4x̄��̄� 0 �y � 96� 8ȳ��̄� 0
b) x̄� 0 ȳ� 0
c) x̄(64� 4x̄� �̄) � 0 ȳ(96� 8ȳ� �̄) � 0

2. a) �� � 20� x̄� ȳ� 0
b) �̄ � 0
c) �̄(20� x̄� ȳ) � 0

We then test the Kuhn-Tucker conditions methodically.

1. Check the possibility that �̄ � 0 or �̄ � 0.
If �̄ � 0, then from 1(a),

64� 4x̄� 0 96� 8ȳ� 0

Therefore, 4x̄ � 64 8ȳ� 96

x̄� 16 ȳ� 12

But this violates the initial constraint since x̄� ȳ � 28� 20. Hence �̄ � 0 and from 2(b) we conclude
�̄� 0.

2. If �̄� 0, from 2(c), the constraint holds as an equality, with

20� x̄� ȳ � 0

3. Next check to see if either of the choice variables x̄ or ȳ can equal zero.

a) If x̄ � 0, ȳ � 20 and the second condition in 1(c) is violated.

20[96� 8(20)� (�̄ � 0)]� 0

b) If ȳ � 0, x̄ � 20 and the first condition in 1(c) is violated.

20[64� 4(20)� (�̄ � 0)]� 0

So neither choice variable can equal zero and from 1(b),

if x̄� 0, x̄� 0 and if ȳ� 0, ȳ� 0
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4. If x̄, ȳ, �̄ � 0, then from 1(c) and 2(c), the following equalities hold,

64� 4x̄� �̄ � 0
96� 8ȳ� �̄ � 0

20� x̄� ȳ � 0

Setting them down in matrix form,

�
�4
0
�1

0
�8
�1

�1
�1
0 � �

x̄

ȳ
�̄
� � �

�64
�96
�20 �

and solving by Cramer’s rule where 
A 
 � 12, 
A1 
 � 128, 
A2 
 � 112, and 
A3 
 � 256, we get the
solution:

x̄� 10.67, ȳ � 9.33, and �̄ � 21.33

which we know to be optimal because none of the Kuhn-Tucker conditions is violated. With �̄ � 21.33,
a unit increase in the constant of the production constraint will cause profits to increase by
approximately 21.33.

13.36. Maximize the profit function in Problem 13.35,

� � 64x� 2x2� 96y� 4y2� 13

subject to the new production constraint

x� y� 36

The Lagrangian function and the Kuhn-Tucker conditions are

� � 64x� 2x2� 96y� 4y2� 13��(36� x� y)

1. a) �x � 64� 4x̄� �̄� 0 �y � 96� 8ȳ� �̄� 0

b) x̄� 0 ȳ� 0

c) x̄(64� 4x̄��̄) � 0 ȳ(96� 8ȳ��̄) � 0

2. a) �� � 36� x̄� ȳ� 0

b) �̄ � 0

c) �̄(36� x̄� ȳ) � 0

We then check the Kuhn-Tucker conditions systematically.

1. Test the possibility of �̄ � 0 or �̄� 0.
If �̄ � 0, then from 1(a),

64� 4x̄� 0 96� 8ȳ� 0

Therefore, x̄� 16 ȳ� 12

Since x̄� ȳ � 28� 36, no condition is violated. Therefore, it is possible that �̄ � 0 or �̄ � 0.

2. Now check to see if either of the choice variables x̄ or ȳ can equal zero.

a) If x̄ � 0, ȳ � 36, and the second condition in 1(c) is violated.

36[96� 8(36)� (�̄ � 0)]� 0

b) If ȳ � 0, x̄ � 36, and the first condition in 1(c) is violated.

36[64� 4(36)� (�̄ � 0)]� 0

Therefore, neither choice variable can equal zero and from 1(b),

x̄� 0 and ȳ� 0
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3. Check the solutions when (a) �̄ � 0 and (b) �̄ � 0.

a) If �̄, x̄, ȳ� 0, then from the Kuhn-Tucker conditions listed under (c),

64� 4x̄��̄ � 0
96� 8ȳ��̄ � 0

36� x� ȳ � 0

In matrix form,

�
�4
0
�1

0
�8
�1

�1
�1
0 � �

x̄

ȳ
�̄
� � �

�64
�96
�36 �

Using Cramer’s rule where 
A 
 � 12, 
A1 
 � 256, 
A2 
 � 176, and 
A3 
 � �256, we get

x̄ � 21.33, ȳ � 14.67, and �̄ � �21.33

which cannot be optimal because �̄� 0 in violation of 2(b) of the Kuhn-Tucker conditions. With �̄ � 0,
from 2(c), the constraint is a strict equality and decreasing the level of output will increase the level
of profit.

b) If �̄ � 0 and x̄, ȳ� 0, then from 1(c),

64� 4x̄ � 0, x̄ � 16
96� 8ȳ � 0, ȳ � 12

This gives us the optimal solution, x̄ � 16, ȳ � 12, and �̄ � 0, which we know is optimal because it
violates none of the Kuhn-Tucker conditions. With �̄ � 0, the constraint is nonbinding as we see from
the optimal solution x̄� ȳ � 28� 36.

13.37. Minimize cost c� 5x2� 80x� y2� 32y

subject to x� y� 30

Multiplying the objective function by �1 and setting up the Lagrangian, we have

Max C � �5x2� 80x� y2� 32y��(x� y� 30)

where the Kuhn-Tucker conditions are,

1. a) Cx � �10x̄� 80� �̄� 0 Cy � �2ȳ� 32� �̄� 0

b) x̄� 0 ȳ� 0
c) x̄(�10x̄� 80� �̄) � 0 ȳ(�2ȳ� 32� �̄) � 0

2. a) C� � x̄� ȳ� 30� 0

b) �̄ � 0

c) �̄(x̄� ȳ� 30) � 0

1. Check the possibility of �̄ � 0.
If �̄ � 0, then from 1(a),

�10x̄� 80� 0 �2ȳ� 32� 0

Therefore, x̄� 8 ȳ� 16

But this is a violation because x̄� ȳ� 24 fails to satisfy the initial constraint x̄� ȳ� 30. So �̄ � 0.

2. Check to see if x̄ or ȳ can equal zero.
From 1(a), if x̄ � 0, �̄��80, and if ȳ � 0, �̄ ��32, both of which violate the nonnegativity

constraint on variables. So x̄, ȳ� 0.
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3. Now check the Kuhn-Tucker conditions when x̄, ȳ� 0 and �̄� 0. If �̄ � 0 and x̄, ȳ� 0, all the first
partials are strict equalities and we have

�
�10

0
1

0
�2
1

1
1
0 � �

x̄
ȳ

�̄
� � �

�80
�32
30 �

where 
A 
 � 12, 
A1 
 � 109, 
A2 
 � 252, and 
A3 
 � 440, giving the optimal solution, which violates
none of the Kuhn-Tucker conditions:

x̄ � 9, ȳ � 21, �̄ � 36.67

13.38. Minimize the same function as above,

5x2� 80x� y2� 32y

subject to a new constraint,

x� y� 20

The Lagrangian function and Kuhn-Tucker conditions are,

Max C � �5x2� 80x� y2� 32y��(x� y� 20)

1. a) Cx � �10x̄� 80� �̄� 0 Cy � �2ȳ� 32� �̄� 0

b) x̄� 0 ȳ� 0

c) x̄(�10x̄� 80� �̄) � 0 ȳ(�2ȳ� 32� �̄) � 0

2. a) C� � x̄� ȳ� 20� 0

b) �̄ � 0

c) �̄(x̄� ȳ� 20) � 0

1. Check the possibility of �̄ � 0.
If �̄ � 0, then from 1(a),

�10x̄� 80� 0 �2ȳ� 32� 0

Therefore, x̄� 8 ȳ� 16

This violates no constraint because x̄� ȳ� 24 satisfies x̄� ȳ� 20. So �̄ � 0 or �̄ � 0.

2. By the same reasoning as in step 2 above, we can show x̄, ȳ� 0.

3. So we are left with two possibilities, depending on whether �̄ � 0, or �̄ � 0.

a) If �̄ � 0 and x̄, ȳ� 0, all the derivatives are strict equalities and we have

�
�10

0
1

0
�2
1

1
1
0 � �

x̄

ȳ

�̄
� � �

�80
�32
20 �

With 
A 
 � 12, 
A1 
 � 88, 
A2 
 � 152, and 
A3 
 � �80, the solution is

x̄ � 7.33, ȳ� 12.67, �̄ � �6.67

Since �̄ is negative, condition 2(b) is violated and the solution is nonoptimal. The solution
suggests we can reduce the cost by increasing output.

b) If �̄ � 0 and x̄, ȳ� 0, from 1(c),

�10x̄� 80 � 0 �2ȳ� 32 � 0

x̄ � 8 ȳ � 16
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This satisfies the new constraint x� y� 20 and violates none of the Kuhn-Tucker conditions, so
the optimal solution is

x̄ � 8, ȳ � 16, �̄ � 0

With �̄ � 0, the constraint is nonbinding. The firm can minimize costs while exceeding its
production quota.

13.39. Maximize the utility function,

u � xy

subject to the following budget and dietary constraints,

3x� 4y� 144 budget constraint
5x� 2y� 120 dietary constraint

The Lagrangian function and Kuhn-Tucker conditions are

Max U � xy��1(144� 3x� 4y)��2(120� 5x� 2y)

1. a) Ux � ȳ� 3�̄1� 5�̄2� 0 Uy � x̄� 4�̄1� 2�̄2� 0

b) x̄� 0 ȳ� 0

c) x̄(ȳ� 3�̄1� 5�̄2) � 0 ȳ(x̄� 4�̄1� 2�̄2) � 0

2. a) U�1
� 144� 3x̄� 4ȳ� 0 U�2

� 120� 5x̄� 2ȳ� 0

b) �̄1� 0 �̄2� 0

c) �̄1(144� 3x̄� 4ȳ) � 0 �̄2(120� 5x̄� 2ȳ) � 0

Given the nature of the objective function, we assume neither of the choice variables, x̄, ȳ, can equal
zero. Otherwise the utility function, u � xy � 0. If x̄, ȳ� 0, from 1(c),

ȳ� 3�1� 5�2� 0
x̄� 4�1� 2�2� 0

Noting that the MUx � ux � ȳ, MUy � uy� x̄, and assuming MU’s� 0, both �’s cannot equal zero, so
at least one of the constraints must be binding. This leaves us with three possibilities: (a) �̄1� 0,
�̄2 � 0, (b) �̄1 � 0, �̄2� 0, and (c) �̄1� 0, �̄2� 0. We examine each in turn.

a) �̄1� 0, �̄2 � 0, x̄, ȳ� 0. From the 1(c) and 2(c) conditions we have four equalities, three of which still
call for solution.

ȳ� 3�̄1� 5�̄2� 0
x̄� 4�̄1� 2�̄2� 0

144� 3x̄� 4ȳ � 0
�̄2� 0

Putting the latter in matrix form,

�
0
1
�3

1
0
�4

�3
�4
0 � �

x̄
ȳ

�̄1
� � �

0
0

�144 �
and solving by Cramer’s rule, where 
A 
 � 24, 
A1 
 � 576, 
A2 
 � 432, and 
A3 
 � 144, we have

x̄ � 24, ȳ � 18, �̄1 � 6

But checking the answer for internal consistency, we find

U�2
� 120� 5(24)� 2(18) � �36� 0

This is clearly a violation of the Kuhn-Tucker conditions which require �U/��i� 0 and hence the
solution is not optimal.
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b) �̄1 � 0, �̄2� 0, x̄, ȳ� 0. From 1(c) and 2(c), we have four equalities, three of which must still be
solved.

ȳ� 3�̄1� 5�̄2 � 0
x̄� 4�̄1� 2�̄2 � 0

�̄1� 0
120� 5x̄� 2ȳ � 0

Setting the latter in matrix form and solving by Cramer’s rule,

�
0
1
�5

1
0
�2

�5
�2
0 � �

x̄

ȳ

�̄2
� � �

0
0

�120 �
we have 
A 
 � 20, 
A1 
 � 240, 
A2 
 � 600, and 
A3 
 � 120, and

x̄� 12, ȳ � 30, �̄2 � 6

But checking for internal consistency once again, we find

U�1
� 144� 3(12)� 4(30) � �12� 0

This violates the Kuhn-Tucker conditions and so the solution cannot be optimal.

c) �̄1� 0, �̄2� 0, x̄, ȳ� 0. From 1(c) and 2(c), all four derivatives are strict equalities which we set down
immediately in matrix form.

�
0
1
�3
�5

1
0
�4
�2

�3
�4
0
0

�5
�2
0
0
� �

x̄

ȳ
�̄1

�̄2

� � �
0
0

�144
�120

�
From Cramer’s rule, where 
A 
 � 196, 
A1 
 � 2688, 
A2 
 � 5040, 
A3 
 � 240, and 
A4 
 � 864, we find
the optimal solution, which violates none of the conditions:

x̄ � 13.71, ȳ � 25.71, �̄1� 1.22, �̄2 � 4.41

13.40. Confirm the results of Problem 13.39 with (a) a graph and (b) explain what the graph
illustrates.

a) See Fig. 13-3.
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b) At point A, x̄ � 24, ȳ � 18, the income constraint is exactly fulfilled, but the dietary constraint is
violated. Hence A cannot be optimal. At point B, x̄ � 12, ȳ� 30, the dietary constraint is exactly
fulfilled, but the income constraint is violated. Hence B cannot be optimal. At point C, x̄ � 13.71,
ȳ � 25.71, and both the income constraint and the dietary constraint are binding with no Kuhn-Tucker
condition violated. Hence C is optimal and note that it occurs exactly at the intersection of the two
constraints.

13.41. Following a fair-rate-of-return policy, regulators of natural monopolies, such as utility com-
panies, restrict profits to a certain fixed proportion of the capital employed. The policy, however,
leads to a distortion of inputs on the part of regulated industries that has been termed the
Averch-Johnson effect. Assuming a firm wishes to maximize profits

�(K, L) � E(K, L)� rK�wL

subject to the fair-rate-of-return constraint,

E(K, L)�wL�mK

where E� earnings and EK, EL� 0, EKK, ELL� 0, and EKKELL�EKL ELK, r � cost of capital,
w� wage, m�maximum rate of return on capital, and m� r� 0, use concave programming to
demonstrate the possibility of a distorting effect predicted by Averch-Johnson.

The Lagrangian function and the Kuhn-Tucker conditions are

�(K, L) � E(K, L)� rK�wL��[mK�E(K, L)�wL]

1. a) �K � EK� r��̄m��̄EK� 0 �L � EL�w��̄EL� �̄w� 0
b) K̄� 0 L̄� 0

c) K̄(EK� r��̄m��̄EK) � 0 L̄(EL�w��̄EL� �̄w) � 0

2. a) �� � mK̄�wL̄�E(K̄, L̄)� 0

b) �̄ � 0

c) �̄[mK̄�wL̄�E(K̄, L̄)] � 0

Making the common sense assumption that K̄, L̄� 0, adding and subtracting �̄r within the parentheses
of the equation on the left in 1(c), and rearranging we have,

(1� �̄)(EK� r)��̄(m� r) � 0 (13.27)

(1��̄)(EL�w) � 0 (13.28)

mK̄�wL̄�E(K̄, L̄)� 0

�̄[mK̄�wL̄�E(K̄, L̄)] � 0

If �̄ � 1 in (13.27), m� r � 0 and this would contradict the assumption that the maximum
allowable rate of return is greater than the cost of capital m� r. So �̄ � 1. But if �̄ � 1, from
(13.27),

EK � r�
�̄(m� r)
(1��̄)

(13.29)

and from (13.28),

EL � w (13.30)

Dividing (13.29) by (13.30),

EK

EL

�

r� � �̄(m� r)
(1��̄) �
w

�
r

w
�
�̄(m� r)
(1� �̄)w

(13.31)
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If �̄ � 0, the constraint is not binding and we have the unregulated optimum,

EK

EL

�
r

w

where EK �MRPK and EL �MRPL. Dividing numerator and denominator on the left by the
common output price, the above expression is equivalent to the familiar,

MPK

MPL

�
r

w

But if �̄ � 0 and the constraint is binding, regulation interferes with the economically optimal solution
in which the ratio of marginal products exactly equals the ratio of respective prices. Thus if �̄ � 0,
there will be a distorting effect on the profit-maximizing level of output.

13.42. (a) Specify the direction of the distortion the Averch-Johnson effect predicts and (b)
demonstrate the conditions necessary to verify it in terms of the previous model.

a) The Averch-Johnson effect predicts the distortion will lead to a higher K/L ratio than in an
unregulated market. If more than the optimal amount of capital is used, the marginal productivity of
capital will be diminished and the result predicted by the Averch-Johnson effect will be

MPK

MPL

�
r

w

b) In terms of (13.31), the bias towards greater than optimal capital intensity will be true whenever

�̄(m� r)
(1� �̄)w

� 0 (13.32)

Since we know r� 0, w� 0, and by the assumption from common practice, m� r� 0, (13.32) will be
positive whenever �̄ � 1. To determine the sign of �̄, we revert to comparative-static techniques.

Having determined that x̄, ȳ, �̄ � 0, we know that all three partial derivatives in the Kuhn-Tucker
conditions must hold as equalities:

(1� �̄)EK� r��̄m � 0
(1� �̄)(EL�w) � 0

mK̄�wL̄�E(K̄, L̄) � 0

These equations are the same as the first-order conditions we would obtain if we had maximized the
original function subject to the equality constraint:

Max�(K, L) � E(K, L)� rK�wL

subject to E(K, L)�wL � mK

The second-order conditions for maximization require that the Bordered Hessian be positive:


 H̄ 
 �
(1��̄)EKK

(1��̄)ELK

m�EK

(1��̄)EKL

(1��̄)ELL

w�EL

m�EK

w�EL

0
� 0

Expanding along the third row,


H 
 � (m�EK)[(w�EL)(1��̄)EKL� (m�EK)(1��̄)ELL]
� (w�EL)[(w�EL)(1� �̄)EKK� (m�EK)(1��̄)ELK]

Since w � EL at the optimum, all the (w�EL) terms � 0, leaving


H̄ 
 � �(m�EK)2(1� �̄)ELL
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For 
H 
� 0,

(1��̄)ELL� 0

Since ELL� 0 from our earlier assumption of strict concavity, it follows that

�̄ � 1

With �̄ � 1, (13.32)� 0 and from (13.31),

MPK

MPL

�
r

w
Q.E.D.
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CHAPTER 14

Integral Calculus:
The Indefinite

Integral

14.1 INTEGRATION

Chapters 3 to 6 were devoted to differential calculus, which measures the rate of change of
functions. Differentiation, we learned, is the process of finding the derivative F�(x) of a function F(x).
Frequently in economics, however, we know the rate of change of a function F�(x) and want to find
the original function. Reversing the process of differentiation and finding the original function from
the derivative is called integration, or antidifferentiation. The original function F(x) is called the
integral, or antiderivative, of F�(x).

EXAMPLE 1. Letting f(x) � F�(x) for simplicity, the antiderivative of f(x) is expressed mathematically as


 f(x) dx � F(x)� c

Here the left-hand side of the equation is read, ‘‘the indefinite integral of f of x with respect to x.’’ The symbol �
is an integral sign, f(x) is the integrand, and c is the constant of integration, which is explained in Example 3.

14.2 RULES OF INTEGRATION

The following rules of integration are obtained by reversing the corresponding rules of
differentiation. Their accuracy is easily checked, since the derivative of the integral must equal the
integrand. Each rule is illustrated in Example 2 and Problems 14.1 to 14.6.

Rule 1. The integral of a constant k is


 k dx � kx� c
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Rule 2. The integral of 1, written simply as dx, not 1 dx, is


 dx � x� c

Rule 3. The integral of a power function xn, where n��1, is given by the power rule:


xn dx �
1

n� 1
xn�1� c n��1

Rule 4. The integral of x�1 (or 1/x) is


 x�1 dx � ln x� c x� 0

The condition x� 0 is added because only positive numbers have logarithms. For negative numbers,


 x�1 dx � ln 
x 
� c x� 0

Rule 5. The integral of an exponential function is


 akx dx �
akx

k ln a
� c

Rule 6. The integral of a natural exponential function is


 ekx dx �
ekx

k
� c since ln e� 1

Rule 7. The integral of a constant times a function equals the constant times the integral of the
function.


 kf(x) dx � k
 f(x) dx

Rule 8. The integral of the sum or difference of two or more functions equals the sum or difference
of their integrals.


 [ f(x)� g(x)] dx � 
 f(x) dx�
 g(x) dx

Rule 9. The integral of the negative of a function equals the negative of the integral of that
function.


� f(x) dx ��
 f(x) dx

EXAMPLE 2. The rules of integration are illustrated below. Check each answer on your own by making sure that
the derivative of the integral equals the integrand.

i) 
 3 dx � 3x� c (Rule 1)

ii) 
 x2 dx �
1

2� 1
x2�1� c �

1
3

x3� c (Rule 3)
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iii) 
 5x4 dx � 5 
 x4 dx (Rule 7)

� 5 �1
5

x5� c1 � (Rule 3)

� x5� c

where c1 and c are arbitrary constants and 5c1 � c. Since c is an arbitrary constant, it can be ignored in the
preliminary calculation and included only in the final solution.

iv) 
 (3x3� x� 1) dx � 3 
 x3 dx�
 x dx�
 dx (Rules 7, 8, and 9)

� 3(1–
4x

4)� 1–
2x

2� x� c (Rules 2 and 3)

� 3–
4x

4� 1–
2x

2� x� c

v) 
 3x�1 dx � 3 
 x�1 dx (Rule 7)

� 3 ln 
x 
� c (Rule 4)

vi) 
 23x dx �
23x

3 ln 2
� c (Rule 5)

vii) 
 9e�3x dx �
9e�3x

�3
� c (Rule 6)

� �3e�3x� c

EXAMPLE 3. Functions which differ by only a constant have the same derivative. The function F(x) � 2x� k
has the same derivative, F�(x) � f(x) � 2, for any infinite number of possible values for k. If the process is
reversed, it is clear that �2 dx must be the antiderivative or indefinite integral for an infinite number of functions
differing from each other by only a constant. The constant of integration c thus represents the value of any
constant which was part of the primitive function but precluded from the derivative by the rules of
differentiation.

The graph of an indefinite integral � f(x) dx � F(x)� c, where c is unspecified, is a family of curves parallel
in the sense that the slope of the tangent to any of them at x is f(x). Specifying c specifies the curve; changing c
shifts the curve. This is illustrated in Fig. 14-1 for the indefinite integral � 2 dx � 2x� c where c � �7, �3, 1, and
5, respectively. If c � 0, the curve begins at the origin.
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14.3 INITIAL CONDITIONS AND BOUNDARY CONDITIONS

In many problems an initial condition (y� y0 when x � 0) or a boundary condition (y � y0 when
x � x0) is given which uniquely determines the constant of integration. By permitting a unique
determination of c, the initial or boundary condition singles out a specific curve from the family of
curves illustrated in Example 3 and Problems 14.3 to 14.5.

EXAMPLE 4. Given the boundary condition y � 11 when x � 3, the integral y � � 2 dx is evaluated as
follows:

y � 
 2 dx � 2x� c

Substituting y � 11 when x � 3,

11 � 2(3)� c c � 5

Therefore, y � 2x� 5. Note that even though c is specified, � 2 dx remains an indefinite integral because x is
unspecified. Thus, the integral 2x� 5 can assume an infinite number of possible values.

14.4 INTEGRATION BY SUBSTITUTION

Integration of a product or quotient of two differentiable functions of x, such as


 12x2(x3� 2) dx

cannot be done directly by using the simple rules above. However, if the integrand can be expressed
as a constant multiple of another function u and its derivative du/dx, integration by substitution is
possible. By expressing the integrand f(x) as a function of u and its derivative du/dx and integrating
with respect to x,


 f(x) dx � 
 �u
du
dx� dx


 f(x) dx � 
 u du � F(u)� c

The substitution method reverses the operation of the chain rule and the generalized power function
rule in differential calculus. See Examples 5 and 6 and Problems 14.7 to 14.18.

EXAMPLE 5. The substitution method is used below to determine the indefinite integral


 12x2(x3� 2) dx

1. Be sure that the integrand can be converted to a product of another function u and its derivative du/dx
times a constant multiple. (a) Let u equal the function in which the independent variable is raised to the
higher power in terms of absolute value; here let u � x3� 2. (b) Take the derivative of u; du/dx � 3x2. (c)
Solve algebraically for dx; dx � du/3x2. (d) Then substitute u for x3� 2 and du/3x2 for dx in the original
integrand:


 12x2(x3� 2) dx � 
 12x2 · u ·
du

3x2 � 
 4u du � 4
 u du

where 4 is a constant multiple of u.

2. Integrate with respect to u, using Rule 3 and ignoring c in the first step of the calculation.

4
 u du � 4(1–
2u2) � 2u2� c
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3. Convert back to the terms of the original problem by substituting x3� 2 for u.


 12x2(x3� 2) dx � 2u2� c � 2(x3� 2)2� c

4. Check the answer by differentiating with the generalized power function rule or chain rule.

d

dx
[2(x3� 2)2� c] � 4(x3� 2)(3x2) � 12x2(x3� 2)

See also Problems 14.7 to 14.18.

EXAMPLE 6. Determine the integral � 4x(x� 1)3 dx.
Let u � x� 1. Then du/dx � 1 and dx � du/1 � du. Substitute u � x� 1 and dx � du in the original

integrand.


 4x(x� 1)3 dx � 
 4xu3 du � 4
 xu3 du

Since x is a variable multiple which cannot be factored out, the original integrand cannot be transformed to a
constant multiple of u du/dx. Hence the substitution method is ineffectual. Integration by parts (Section 14.5) may
be helpful.

14.5 INTEGRATION BY PARTS

If an integrand is a product or quotient of differentiable functions of x and cannot be expressed
as a constant multiple of u du/dx, integration by parts is frequently useful. The method is derived by
reversing the process of differentiating a product. From the product rule in Section 3.7.5,

d
dx

[ f(x) g(x)]� f(x) g�(x)� g(x) f �(x)

Taking the integral of the derivative gives

f(x) g(x) � 
 f(x) g�(x) dx�
 g(x) f �(x) dx

Then solving algebraically for the first integral on the right-hand side,


 f(x)g�(x) dx � f(x)g(x)�
 g(x) f �(x) dx (14.1)

See Examples 7 and 8 and Problems 14.19 to 14.24.
For more complicated functions, integration tables are generally used. Integration tables provide

formulas for the integrals of as many as 500 different functions, and they can be found in mathematical
handbooks.

EXAMPLE 7. Integration by parts is used below to determine


 4x(x� 1)3 dx

1. Separate the integrand into two parts amenable to the formula in (14.1). As a general rule, consider first
the simpler function for f(x) and the more complicated function for g�(x). By letting f(x) � 4x and
g�(x) � (x� 1)3, then f �(x) � 4 and g(x) � � (x� 1)3 dx, which can be integrated by using the simple
power rule (Rule 3):

g(x) � 
 (x� 1)3 dx � 1–
4(x� 1)4� c1
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2. Substitute the values for f(x), f �(x), and g(x) in (14.1); and note that g�(x) is not used in the formula.


 4x(x� 1)3 dx � f(x) · g(x)�
 [g(x) · f �(x)] dx

� 4x[1–
4(x� 1)4� c

1
]�
 [1–

4(x� 1)4� c1](4) dx

� x(x� 1)4� 4c1x�
 [(x� 1)4� 4c1] dx

3. Use Rule 3 to compute the final integral and substitute.


 4x(x� 1)3 dx � x(x� 1)4� 4c1 x� 1–
5(x� 1)5� 4c1 x� c

� x(x� 1)4� 1–
5(x� 1)5� c

Note that the c1 term does not appear in the final solution. Since this is common to integration by
parts, c1 will henceforth be assumed equal to 0 and not formally included in future problem solving.

4. Check the answer by letting y(x) � x(x� 1)4� 1–
5(x� 1)5� c and using the product and generalized power

function rules.

y�(x) � [x · 4(x� 1)3� (x� 1)4 · 1]� (x� 1)4 � 4x(x� 1)3

EXAMPLE 8. The integral � 2xex dx is determined as follows:
Let f(x) � 2x and g�(x) � ex; then f �(x) � 2, and by Rule 6, g(x) � � ex dx � ex. Substitute in (14.1).


 2xex dx � f(x) · g(x)�
 g(x) · f �(x) dx

� 2x · ex�
 ex · 2 dx � 2xex� 2
 ex dx

Apply Rule 6 again and remember the constant of integration.


 2xex dx � 2xex� 2ex� c

Then let y(x) � 2xex� 2ex� c and check the answer.

y�(x) � 2x · ex� ex · 2� 2ex � 2xex

14.6 ECONOMIC APPLICATIONS

Net investment I is defined as the rate of change in capital stock formation K over time t. If the
process of capital formation is continuous over time, I(t) � dK(t)/dt � K �(t). From the rate of
investment, the level of capital stock can be estimated. Capital stock is the integral with respect to time
of net investment:

Kt� 
 I(t) dt � K(t)� c� K(t)�K0

where c� the initial capital stock K0.
Similarly, the integral can be used to estimate total cost from marginal cost. Since marginal cost

is the change in total cost from an incremental change in output, MC� dTC/dQ, and only variable
costs change with the level of output

TC� 
MC dQ� VC� c� VC�FC
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since c� the fixed or initial cost FC. Economic analysis which traces the time path of variables or
attempts to determine whether variables will converge toward equilibrium over time is called
dynamics. For similar applications, see Example 9 and Problems 14.25 to 14.35.

EXAMPLE 9. The rate of net investment is given by I(t) � 140t3/4, and the initial stock of capital at t � 0 is 150.
Determining the function for capital K, the time path K(t),

K � 
 140t3/4 dt � 140
 t3/4 dt

By the power rule,

K � 140(4–
7t7/4)� c � 80t7/4� c

But c � K0 � 150. Therefore, K � 80t7/4� 150.

Solved Problems

INDEFINITE INTEGRALS

14.1. Determine the following integrals. Check the answers on your own by making sure that the
derivative of the integral equals the integrand.

a) 
 3.5 dx


 3.5 dx � 3.5x� c (Rule 1)

b) 
� 1–
2 dx


 � 1–
2 dx � �
 1–

2 dx � � 1–
2x� c (Rules 1 and 9)

c) 
 dx


 dx � x� c (Rule 2)

d) 
 x5 dx


 x5 dx � 1–
6x

6� c (Rule 3)

e) 
 4x3 dx


 4x3 dx � 4
 x3 dx (Rule 7)

� 4(1–
4x

4)� c � x4� c (Rule 3)

f) 
 x2/3 dx


 x2/3 dx � 3–
5x

5/3� c (Rule 3)

g) 
 x�1/5 dx


 x�1/5 dx � 5–
4x

4/5� c (Rule 3)
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h) 
 4x�2 dx


 4x�2 dx � �4x�1� c � �
4
x
� c (Rule 3)

i) 
 x�5/2 dx


 x�5/2 dx � �
2
3

x�3/2� c �
�2

3�x3
� c (Rule 3)

14.2. Redo Problem 14.1 for each of the following:

a) 
 dx
x


 dx

x
� 
 1

x
dx � ln 
x 
� c (Rule 4)

b) 
 5x�1 dx


 5x�1 dx � 5 ln 
x 
� c (Rules 7 and 4)

c) 
 1
3x

dx


 1
3x

dx �
1
3 
 1

x
dx �

1
3

ln 
x 
� c (Rules 7 and 4)

d) 
�x dx


�x dx � 
 x1/2 dx � 2–
3x

3/2� c (Rule 3)

e) 
 dx
x4


 dx

x4 �
 x�4 dx � �
1
3

x�3� c (Rule 3)

f) 
 dx
3

�x


 dx
3�x
� 
 x�1/3 dx �

3
2

x2/3� c (Rule 3)

g) 
 (5x3� 2x2� 3x) dx


 (5x3� 2x2� 3x) dx � 5 
 x3 dx� 2 
 x2 dx� 3 
 x dx (Rules 7 and 8)

� 5(1–
4x

4)� 2(1–
3x

3)� 3(1–
2x

2)� c (Rule 3)

� 5–
4x4� 2–

3x
3� 3–

2x
2� c
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h) 
 (2x6� 3x4) dx


 (2x6� 3x4) dx � 2–
7x7� 3–

5x5� c (Rules 3, 7, 8, and 9)

14.3. Find the integral for y� � (x1/2� 3x�1/2) dx, given the initial condition y � 0 when x � 0.

y � 
 (x1/2� 3x�1/2) dx � 2–
3x3/2� 6x1/2� c

Substituting the initial condition y � 0 when x � 0 above, c � 0. Hence, y � 2–
3x3/2� 6x1/2.

14.4. Find the integral for y� � (2x5� 3x�1/4) dx, given the initial condition y � 6 when x � 0.

y � 
 (2x5� 3x�1/4) dx � 1–
3x6� 4x3/4� c

Substituting y � 6 and x � 0, c � 6. Thus, y � 1–
3x6� 4x3/4� 6.

14.5. Find the integral for y� � (10x4� 3) dx, given the boundary condition y � 21 when x � 1.

y � 
 (10x4� 3) dx � 2x5� 3x� c

Substituting y � 21 and x � 1, 21 � 2(1)5� 3(1)� c c � 22

y � 2x5� 3x� 22

14.6. Redo Problem 14.1 for each of the following:

a) 
 24x dx b) 
8x dx


 24x dx �
24x

4 ln 2
� c (Rule 5) 
 8x dx �

8x

ln 8
� c

c) 
 e5x dx d) 
 16e�4x dx


 e5x dx �
e5x

5
� c (Rule 6) 
 16e�4x dx �

16e�4x

�4
� c � �4e�4x� c

� 1–
5e5x� c

e) 
 (6e3x� 8e�2x) dx


 (6e3x� 8e�2x) dx �
6e3x

3
�

8e�2x

�2
� c � 2e3x� 4e�2x� c

INTEGRATION BY SUBSTITUTION

14.7. Determine the following integral, using the substitution method. Check the answer on your
own. Given � 10x(x2� 3)4 dx.
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Let u � x2� 3. Then du/dx � 2x and dx � du/2x. Substituting in the original integrand to reduce it to
a function of u du/dx,


 10x(x2� 3)4 dx � 
 10xu4 du

2x
� 5 
 u4 du

Integrating by the power rule, 5
 u4 du � 5(1–
5u5) � u5� c

Substituting u � x2� 3, � 10x(x2� 3)4 dx � u5� c � (x2� 3)5� c

14.8. Redo Problem 14.7, given � x4(2x5� 5)4 dx.

Let u � 2x5� 5, du/dx � 10x4, and dx � du/10x4. Substituting in the original integrand,


 x4(2x5� 5)4 dx � 
 x4 u4 du

10x4 �
1
10
 u4 du

Integrating,
1
10 
 u4 du �

1
10 �

1
5

u5 � � 1
50

u5� c

Substituting, 
 x4(2x5� 5)4 dx �
1
50

u5� c �
1
50

(2x5� 5)5� c

14.9. Redo Problem 14.7, given � (x� 9)7/4 dx.

Let u � x� 9. Then du/dx � 1 and dx � du. Substituting,


 (x� 9)7/4 dx �
 u7/4 du

Integrating, 
 u7/4 du �
4
11

u11/4� c

Substituting, 
 (x� 9)7/4 dx �
4
11

(x� 9)11/4� c

Whenever du/dx � 1, the power rule can be used immediately for integration by substitution.

14.10. Redo Problem 14.7, given � (6x� 11)�5 dx.

Let u � 6x� 11. Then du/dx � 6 and dx � du/6. Substituting,


 (6x� 11)�5 dx � 
 u�5 du

6
�

1
6 
 u�5 du

Integrating,
1
6 
 u�5 du �

1
6 �

1
�4

u�4 � � � 1
24

u�4� c

Substituting, 
 (6x� 11)�5 dx � � 1––
24(6x� 11)�4� c

Notice that here du/dx � 6� 1, and the power rule cannot be used directly.

14.11. Redo Problem 14.7, given


 x2

(4x3� 7)2 dx


 x2

(4x3� 7)2 dx � 
 x2(4x3� 7)�2 dx
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Let u � 4x3� 7, du/dx � 12x2, and dx � du/12x2. Substituting,


 x2 u�2 du

12x2 �
1
12
 u�2 du

Integrating,
1
12 
 u�2 du � �

1
12

u�1� c

Substituting, 
 x2

(4x3� 7)2 dx � �
1

12(4x3� 7)
� c

14.12. Redo Problem 14.7, given


 6x2� 4x� 10
(x3� x2� 5x)3 dx

Let u � x3� x2� 5x. Then du/dx � 3x2� 2x� 5 and dx � du/(3x2� 2x� 5). Substituting,


 (6x2� 4x� 10)u�3 du

3x2� 2x� 5
� 2 
 u�3 du

Integrating, 2
 u�3 du � �u�2� c

Substituting, 
 6x2� 4x� 10
(x3� x2� 5x)3 dx � �

1
(x3� x2� 5x)2� c

14.13. Redo Problem 14.7, given


 dx
9x� 5


 dx

9x� 5
� 
 (9x� 5)�1 dx

Let u � 9x� 5, du/dx � 9, and dx � du/9. Substituting,


 u�1 du

9
�

1
9 
 u�1 du

Integrating with Rule 4, 1–
9 � u�1 du � 1–

9 ln 
u 
� c. Since u may be �0, and only positive numbers have logs,
always use the absolute value of u. See Rule 4. Substituting,


 dx

9x� 5
�

1
9

ln 
9x� 5 
� c

14.14. Redo Problem 14.7, given


 3x2� 2
4x3� 8x

dx

Let u � 4x3� 8x, du/dx � 12x2� 8, and dx � du/(12x2� 8). Substituting,


 (3x2� 2)u�1 du

12x2� 8
�

1
4 
 u�1 du

Integrating,
1
4 
 u�1 du �

1
4

ln 
u 
� c
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Substituting, 
 3x2� 2
4x3� 8x

dx �
1
4

ln 
4x3� 8x 
� c

14.15. Use the substitution method to find the integral for � x3 ex4
dx. Check your answer.

Let u � x4. Then du/dx � 4x3 and dx � du/4x3. Substituting, and noting that u is now an exponent,


 x3 eu du

4x3 �
1
4 
 eu du

Integrating with Rule 6,
1
4 
 eu du �

1
4

eu� c

Substituting, 
 x3 ex4 dx �
1
4

ex4
� c

14.16. Redo Problem 14.15, given � 24xe3x2
dx.

Let u � 3x2, du/dx � 6x, and dx � du/6x. Substituting,


 24xeu du

6x
� 4
 eu du

Integrating, 4
 eu du � 4eu� c

Substituting, 
 24xe3x2
dx � 4e3x2

� c

14.17. Redo Problem 14.15, given � 14e2x�7 dx.

Let u � 2x� 7; then du/dx � 2 and dx � du/2. Substituting,


 14eu du

2
� 7
 eu du � 7eu� c

Substituting, 
 14e2x�7 dx � 7e2x�7� c

14.18. Redo Problem 14.15, given � 5xe5x2�3 dx.

Let u � 5x2� 3, du/dx � 10x, and dx � du/10x. Substituting,


 5xeu du

10x
�

1
2 
 eu du

Integrating,
1
2 
 eu du �

1
2

eu� c

Substituting, 
 5xe5x2�3 dx �
1
2

e5x2�3� c

INTEGRATION BY PARTS

14.19. Use integration by parts to evaluate the following integral. Keep in the habit of checking your
answers. Given � 15x(x� 4)3/2 dx.
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Let f(x) � 15x, then f �(x) � 15. Let g�(x) � (x� 4)3/2, then g(x) � � (x� 4)3/2 dx � 2–
5(x� 4)5/2. Sub-

stituting in (14.1),


 15x(x� 4)3/2 dx � f(x)g(x)�
 g(x) f �(x) dx

� 15x [2–
5(x� 4)5/2]�
 2–

5(x� 4)5/2 15 dx � 6x(x� 4)5/2� 6
 (x� 4)5/2 dx

Evaluating the remaining integral,


 15x(x� 4)3/2 dx � 6x(x� 4)5/2� 12––
7 (x� 4)7/2� c

14.20. Redo Problem 14.19, given


 2x
(x� 8)3 dx

Let f(x) � 2x, f �(x) � 2, and g�(x) � (x� 8)�3; then g(x) � � (x� 8)�3 dx � �1–
2(x� 8)�2. Substituting

in (14.1),


 2x

(x� 8)3 dx � 2x �� 1
2

(x� 8)�2� �
� 1
2

(x� 8)�2 2 dx � �x(x� 8)�2�
 (x� 8)�2 dx

Integrating for the last time,


 2x

(x� 8)3 dx � �x(x� 8)�2� (x� 8)�1� c �
�x

(x� 8)2�
1

x� 8
� c

14.21. Redo Problem 14.19, given


 5x
(x� 1)2 dx

Let f(x) � 5x, f �(x) � 5, and g�(x) � (x� 1)�2; then g(x) � � (x� 1)�2 dx � �(x� 1)�1. Substituting
in (14.1),


 5x

(x� 1)2 dx � 5x[�(x� 1)�1]�
� (x� 1)�1 5 dx � �5x(x� 1)�1� 5
 (x� 1)�1 dx

Integrating again,


 5x

(x� 1)2 dx � �5x(x� 1)�1� 5 ln 
x� 1 
� c �
�5x

x� 1
� 5 ln 
x� 1 
� c

14.22. Redo Problem 14.19, given � 6xex�7 dx.

Let f(x) � 6x, f �(x) � 6, g�(x) � ex�7, and g(x) � � ex�7 dx � ex�7. Using (14.1),


 6xex�7 dx � 6xex�7�
 ex�7 6 dx � 6xex�7� 6
ex�7 dx

Integrating again,


 6xex�7 dx � 6xex�7� 6ex�7� c
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14.23. Use integration by parts to evaluate � 16xe�(x�9) dx.

Let f(x) � 16x, f �(x) � 16, g�(x) � e�(x�9), and g(x) � � e�(x�9) dx � �e�(x�9). Using (14.1),


 16xe�(x�9) dx � �16xe�(x�9)�
� e�(x�9) 16 dx � �16xe�(x�9)� 16
 e�(x�9) dx

Integrating once more,


 16xe�(x�9) dx � �16xe�(x�9)� 16e�(x�9)� c

14.24. Redo Problem 14.23, given � x2 e2x dx.

Let f(x) � x2, f �(x) � 2x, g�(x) � e2x, and g(x) � � e2x dx � 1–
2e2x. Substituting in (14.1).


 x2 e2x dx � x2(1–
2e2x)�
 1–

2e2x(2x) dx � 1–
2x2e2x�
 xe2x dx (14.2)

Using parts again for the remaining integral, f(x) � x, f �(x) � 1, g�(x) � e2x, and g(x) � � e2x dx � 1–
2e2x.

Using (14.1),


 xe2x dx � x(1–
2e2x)�
 1–

2e2x dx � 1–
2xe2x� 1–

2(
1–
2e2x)

Finally, substituting in (14.2),


 x2 e2x dx � 1–
2x2 e2x� 1–

2xe2x� 1–
4e2x� c

ECONOMIC APPLICATIONS

14.25. The rate of net investment is I � 40t3/5, and capital stock at t � 0 is 75. Find the capital
function K.

K � 
 I dt � 
 40t3/5 dt � 40(5–
8t8/5)� c � 25t8/5� c

Substituting t � 0 and K � 75,

75 � 0� c c � 75

Thus, K � 25t8/5� 75.

14.26. The rate of net investment is I � 60t1/3, and capital stock at t � 1 is 85. Find K.

K � 
 60t1/3 dt � 45t4/3� c

At t � 1 and K � 85,

85 � 45(1)� c c � 40

Thus, K � 45t4/3� 40.

14.27. Marginal cost is given by MC� dTC/dQ� 25� 30Q� 9Q2. Fixed cost is 55. Find the (a) total
cost, (b) average cost, and (c) variable cost functions.

a) TC � 
MC dQ � 
 (25� 30Q� 9Q2) dQ � 25Q� 15Q2� 3Q3� c

With FC � 55, at Q � 0, TC � FC � 55. Thus, c � FC � 55 and TC � 25Q� 15Q2� 3Q3� 55.
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b) AC �
TC
Q
� 25� 15Q� 3Q2�

55
Q

c) VC � TC�FC � 25Q� 15Q2� 3Q3

14.28. Given MC� dTC/dQ� 32� 18Q� 12Q2, FC� 43. Find the (a) TC, (b) AC, and (c) VC
functions.

a) TC � 
MC dQ � 
 (32� 18Q� 12Q2) dQ � 32Q� 9Q2� 4Q3� c

At Q � 0, TC � FC � 43, TC � 32Q� 9Q2� 4Q3� 43.

b) AC �
TC
Q
� 32� 9Q� 4Q2�

43
Q

c) VC � TC�FC � 32Q� 9Q2� 4Q3

14.29. Marginal revenue is given by MR � dTR/dQ� 60� 2Q� 2Q2. Find (a) the TR function and
(b) the demand function P � f(Q).

a) TR � 
MR dQ � 
 (60� 2Q� 2Q2) dQ � 60Q�Q2� 2–
3Q3� c

At Q � 0, TR � 0. Therefore c � 0. Thus, TR � 60Q�Q2� 2–
3Q

3.

b) TR � PQ. Therefore, P � TR/Q, which is the same as saying that the demand function and the
average revenue function are identical. Thus, P � AR � TR/Q � 60�Q� 2–

3Q2.

14.30. Find (a) the total revenue function and (b) the demand function, given

MR � 84� 4Q�Q2

a) TR � 
MR dQ � 
 (84� 4Q�Q2) dQ � 84Q� 2Q2� 1–
3Q3� c

At Q � 0, TR � 0. Therefore c � 0. Thus, TR � 84Q� 2Q2� 1–
3Q3.

b) P � AR �
TR
Q
� 84� 2Q�

1
3

Q2

14.31. With C� f(Y), the marginal propensity to consume is given by MPC� dC/dY� f �(Y). If the
MPC� 0.8 and consumption is 40 when income is zero, find the consumption function.

C � 
 f �(Y) dY � 
 0.8 dY � 0.8Y� c

At Y � 0, C � 40. Thus, c � 40 and C � 0.8Y� 40.

14.32. Given dC/dY� 0.6� 0.1/
3

�Y�MPC and C� 45 when Y� 0. Find the consumption
function.

C � 
 �0.6�
0.1

3�Y� dY � 
 (0.6� 0.1Y�1/3) dY � 0.6Y� 0.15Y2/3� c

At Y � 0, C � 45. Thus, C � 0.6Y� 0.15Y2/3� 45.
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14.33. The marginal propensity to save is given by dS/dY� 0.5� 0.2Y�1/2. There is dissaving of 3.5
when income is 25, that is, S ��3.5 when Y� 25. Find the savings function.

S � 
 (0.5� 0.2Y�1/2) dY � 0.5Y� 0.4Y 1/2� c

At Y � 25, S � �3.5.

�3.5 � 0.5(25)� 0.4(�25)� c c � �14

Thus, S � 0.5Y� 0.4Y 1/2� 14.

14.34. Given MC� dTC/dQ� 12e0.5Q and FC� 36. Find the total cost.

TC � 
 12e0.5Q dQ � 12
1

0.5
e0.5Q� c � 24e0.5Q� c

With FC � 36, TC � 36 when Q � 0. Substituting, 36 � 24e0.5(0)� c. Since e0 � 1, 36 � 24� c, and c � 12.
Thus, TC � 24e0.5Q� 12. Notice that c does not always equal FC.

14.35. Given MC� 16e0.4Q and FC� 100. Find TC.

TC � 
 16e0.4Q dQ � 16 � 1
0.4 � e0.4Q� c � 40e0.4Q� c

At Q � 0, TC � 100.

100 � 40e0� c c � 60

Thus, TC � 40e0.4Q� 60.
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CHAPTER 15

Integral Calculus:
The Definite

Integral

15.1 AREA UNDER A CURVE

There is no geometric formula for the area under an irregularly shaped curve, such as y � f(x)
between x � a and x � b in Fig. 15-1(a). If the interval [a, b] is divided into n subintervals [x1, x2],
[x2, x3], etc., and rectangles are constructed such that the height of each is equal to the smallest value
of the function in the subinterval, as in Fig. 15-1(b), then the sum of the areas of the rectangles
�n

i�1 f(xi)	xi, called a Riemann sum, will approximate, but underestimate, the actual area under the
curve. The smaller the subintervals (the smaller the 	xi), the more rectangles are created and the closer
the combined area of the rectangles �n

i�1 f(xi)	xi approaches the actual area under the curve. If
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the number of subintervals is increased so that n →�, each subinterval becomes infinitesimal
(	xi � dxi � dx) and the area A under the curve can be expressed mathematically as

A � lim
n→�

n�
i�1

f(xi)	xi

15.2 THE DEFINITE INTEGRAL

The area under a graph of a continuous function such as that in Fig. 15-1 from a to b (a� b)
can be expressed more succinctly as the definite integral of f(x) over the interval a to b. Put
mathematically,

b

a

f(x) dx � lim
n→�

n�
i�1

f(xi)	xi

Here the left-hand side is read, ‘‘the integral from a to b of f of x dx.’’ Here a is called the lower limit
of integration and b the upper limit of integration. Unlike the indefinite integral which is a set of
functions containing all the antiderivatives of f(x), as explained in Example 3 of Chapter 14, the
definite integral is a real number which can be evaluated by using the fundamental theorem of calculus
(Section 15.3).

15.3 THE FUNDAMENTAL THEOREM OF CALCULUS

The fundamental theorem of calculus states that the numerical value of the definite integral of a
continuous function f(x) over the interval from a to b is given by the indefinite integral F(x)� c
evaluated at the upper limit of integration b, minus the same indefinite integral F(x)� c evaluated at
the lower limit of integration a. Since c is common to both, the constant of integration is eliminated
in subtraction. Expressed mathematically,

b

a

f(x) dx � F(x)�
b

a

� F(b)�F(a)

where the symbol 
ba, ]b
a, or [ · · · ]

b
a indicates that b and a are to be substituted successively for x. See

Examples 1 and 2 and Problems 15.1 to 15.10.

EXAMPLE 1. The definite integrals given below

(1)
4


1

10x dx (2)
3


1

(4x3� 6x) dx

are evaluated as follows:

1)
4


1

10x dx � 5x2 �
4

1

� 5(4)2� 5(1)2 � 75

2)
3


1

(4x3� 6x) dx � [x4� 3x2]3
1 � [(3)4� 3(3)2]� [(1)4� 3(1)2] � 108� 4 � 104

EXAMPLE 2. The definite integral is used below to determine the area under the curve in Fig. 15-2 over the
interval 0 to 20 as follows:

A �
20


0

1–
2x dx � 1–

4x2 �
20

0

� 1–
4(20)2� 1–

4(0)2 � 100
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The answer can be checked by using the geometric formula A � 1–
2xy:

A � 1–
2xy � 1–

2(20)(10) � 100

15.4 PROPERTIES OF DEFINITE INTEGRALS

1. Reversing the order of the limits changes the sign of the definite integral.
b


a

f(x) dx ��
a


b

f(x) dx (15.1)

2. If the upper limit of integration equals the lower limit of integration, the value of the definite
integral is zero.

a

a

f(x) dx � F(a)�F(a) � 0 (15.2)

3. The definite integral can be expressed as the sum of component subintegrals.
c


a

f(x) dx �
b


a

f(x) dx�
c


b

f(x) dx a� b� c (15.3)

4. The sum or difference of two definite integrals with identical limits of integration is equal to
the definite integral of the sum or difference of the two functions.

b

a

f(x) dx�
b


a

g(x) dx �
b


a

[ f(x)� g(x)] dx (15.4)

5. The definite integral of a constant times a function is equal to the constant times the definite
integral of the function.

b

a

kf(x) dx � k
b


a

f(x) dx (15.5)

See Example 3 and Problems 15.11 to 15.14.
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EXAMPLE 3. To illustrate a sampling of the properties presented above, the following definite integrals are
evaluated:

1.
3


1

2x3 dx � �
1


3

2x3 dx

3

1

2x3 dx � 1–
2x4 �

3

1

� 1–
2(3)4� 1–

2(1)4� 40

Checking this answer,
1


3

2x3 dx � 1–
2x4 �

1

3

� 1–
2(1)4� 1–

2(3)4 � �40

2.
5


5

(2x� 3) dx � 0

Checking this answer,

5

5

(2x� 3) dx � [x2� 3x]5
5 � [(5)2� 3(5)]� [(5)2� 3(5)] � 0

3.
4


0

6x dx �
3


0

6x dx�
4


3

6x dx

4

0

6x dx � 3x2 �
4

0

� 3(4)2� 3(0)2� 48

3

0

6x dx � 3x2 �
3

0

� 3(3)2� 3(0)2� 27

4

3

6x dx � 3x2 �
4

3

� 3(4)2� 3(3)2� 21

Checking this answer, 48 � 27� 21

15.5 AREA BETWEEN CURVES

The area of a region between two or more curves can be evaluated by applying the properties of
definite integrals outlined above. The procedure is demonstrated in Example 4 and treated in
Problems 15.15 to 15.18.

EXAMPLE 4. Using the properties of integrals, the area of the region between two functions such as
y1 � 3x2� 6x� 8 and y2 � �2x2� 4x� 1 from x � 0 to x � 2 is found in the following way:

a) Draw a rough sketch of the graph of the functions and shade in the desired area as in Fig. 15-3.
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b) Note the relationship between the curves. Since y1 lies above y2, the desired region is simply the area
under y1 minus the area under y2 between x � 0 and x � 2. Hence,

A �
2


0

(3x2� 6x� 8) dx�
2


0

(�2x2� 4x� 1) dx

From (15.4), A �
2


0

[(3x2� 6x� 8)� (�2x2� 4x� 1)] dx

�
2


0

(5x2� 10x� 7) dx

� (5–
3x3� 5x2� 7x) 
20 � 71–

3� 0 � 71–
3

15.6 IMPROPER INTEGRALS

The area under some curves that extend infinitely far along the x axis, as in Fig. 15-4(a), may be
estimated with the help of improper integrals. A definite integral with infinity for either an upper or
lower limit of integration is called an improper integral.

�

a

f(x) dx and
b

��

f(x) dx

are improper integrals because � is not a number and cannot be substituted for x in F(x). They can,
however, be defined as the limits of other integrals, as shown below.

�

a

f(x) dx � lim
b→�

b

a

f(x) dx and
b

��

f(x) dx � lim
a→��

b

a

f(x) dx

If the limit in either case exists, the improper integral is said to converge. The integral has a definite
value, and the area under the curve can be evaluated. If the limit does not exist, the improper integral
diverges and is meaningless. See Example 5 and Problems 15.19 to 15.25.

EXAMPLE 5. The improper integrals given below

(a)
�


1

3
x2 dx (b)

�

1

6
x

dx

are sketched in Fig. 15-4(a) and (b) and evaluated as follows:

a)
�


1

3
x2 dx � lim

b→�

b

1

3
x2 dx � lim

b→� ��3
x �

b

1

� lim
b→� ��3

b
�

(�3)
1 � � lim

b→� ��3
b
� 3� � 3
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because as b →�, �3/b → 0. Hence the improper integral is convergent and the area under the curve in
Fig. 15-4(a) equals 3.

b)
�


1

6
x

dx � lim
b→�

b

1

6
x

dx

� lim
b→�

[6 ln 
x 
]b
1 � lim

b→�
[6 ln 
b 
� 6 ln 
1 
]

� lim
b→�

[6 ln 
b 
] since ln 
1 
 � 0

As b →�, 6 ln 
b 
 →�. The improper integral diverges and has no definite value. The area under the curve
in Fig. 15-4(b) cannot be computed even though the graph is deceptively similar to the one in (a).

15.7 L’HÔPITAL’S RULE

If the limit of a function f(x) � g(x)/h(x) as x → a cannot be evaluated, such as (1) when both
numerator and denominator approach zero, giving rise to the indeterminate form 0/0, or (2) when both
numerator and denominator approach infinity, giving rise to the indeterminate form �/�, L’Hôpital’s
rule can often be helpful. L’Hôpital’s rule states:

lim
x→a

g(x)
h(x)

� lim
x→a

g�(x)
h�(x)

(15.6)

It is illustrated in Example 6 and Problem 15.26.

EXAMPLE 6. The limits of the functions given below are found as follows, using L’Hôpital’s rule. Note that
numerator and denominator are differentiated separately, not as a quotient.

(a) lim
x→4

x� 4
16� x2 (b) lim

x→�

6x� 2
7x� 4

a) As x → 4, x� 4 and 16� x2 → 0. Using (15.6), therefore, and differentiating numerator and denominator
separately,

lim
x→4

x� 4
16� x2 � lim

x→4

1
�2x

� �
1
8

b) As x →�, both 6x� 2 and 7x� 4 →�. Using (15.6),

lim
x→�

6x� 2
7x� 4

� lim
x→�

6
7
�

6
7

15.8 CONSUMERS’ AND PRODUCERS’ SURPLUS

A demand function P1 � f1(Q), as in Fig. 15-5(a), represents the different prices consumers are
willing to pay for different quantities of a good. If equilibrium in the market is at (Q0, P0), then the
consumers who would be willing to pay more than P0 benefit. Total benefit to consumers is represented
by the shaded area and is called consumers’ surplus. Mathematically,

Consumers’ surplus�
Q0


0

f1(Q) dQ�Q0 P0 (15.7)

A supply function P2 � f2(Q), as in Fig. 15-5(b), represents the prices at which different quantities
of a good will be supplied. If market equilibrium occurs at (Q0, P0), the producers who would supply
at a lower price than P0 benefit. Total gain to producers is called producers’ surplus and is designated
by the shaded area. Mathematically,

Producers’ surplus �Q0 P0�
Q0


0

f2(Q) dQ (15.8)

See Example 7 and Problems 15.27 to 15.31.
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EXAMPLE 7. Given the demand function P � 42� 5Q�Q2. Assuming that the equilibrium price is 6, the
consumers’ surplus is evaluated as follows:

At P0 � 6, 42� 5Q�Q2 � 6
36� 5Q�Q2 � 0

(Q� 9)(�Q� 4) � 0

So Q0 � 4, because Q � �9 is not feasible. Substituting in (15.7),

Consumers’ surplus �

�

�

4

0

(42� 5Q�Q2) dQ� (4)(6)

[42Q� 2.5Q2� 1–
3Q3]4

0� 24
(168� 40� 211–

3)� 0� 24 � 822–
3

15.9 THE DEFINITE INTEGRAL AND PROBABILITY

The probability P that an event will occur can be measured by the corresponding area under a
probability density function. A probability density or frequency function is a continuous function f(x)
such that:

1. f(x)� 0. Probability cannot be negative.
2. ��

��
f(x) dx � 1. The probability of the event occurring over the entire range of x is 1.

3. P(a� x� b) � �b

a
f(x) dx. The probability of the value of x falling within the interval [a, b] is

the value of the definite integral from a to b.

See Example 8 and Problems 15.32 and 15.33.

EXAMPLE 8. The time in minutes between cars passing on a highway is given by the frequency function
f(t) � 2e�2t for t� 0. The probability of a car passing in 0.25 minute is calculated as follows:

P �
0.25


0

2e�2t dt � �e�2t �
0.25

0

� �e�0.5� (�e0) � �0.606531� 1 � 0.393469
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Solved Problems

DEFINITE INTEGRALS

15.1. Evaluate the following definite integrals:

a)
6


0

5x dx

6

0

5x dx � 2.5x2 �
6

0

� 2.5(6)2� 2.5(0)2 � 90

b)
10


1

3x2 dx

10

1

3x2 dx � x3 �
10

1

� (10)3� (1)3 � 999

c)
64


1

x�2/3 dx

64

1

x�2/3 dx � 3x1/3 �
64

1

� 3
3�64� 3

3�1 � 9

d)
3


1

(x3� x� 6) dx

3

1

(x3� x� 6) dx � (1–
4x

4� 1–
2x

2� 6x)�
3

1

� 1–
4(3)4� 1–

2(3)2� 6(3)� [1–
4(1)4� 1–

2(1)2� 6(1)] � 36

e)
4


1

(x�1/2� 3x1/2) dx

4

1

(x�1/2� 3x1/2) dx � (2x1/2� 2x3/2) �
4

1

� 2�4� 2�43� (2�1� 2�13) � 16

f)
3


0

4e2x dx

3

0

4e2x dx � 2e2x �
3

0

� 2(e2(3)� e2(0))

� 2(403.4� 1) � 804.8

g)
10


0

2e�2x dx

10

0

2e�2x dx � �e�2x �
10

0

� �e�2(10)� (�e�2(0)) � �e�20� e0 � 1

SUBSTITUTION METHOD

15.2. Use the substitution method to integrate the following definite integral:
3


0

8x(2x2� 3) dx
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Let u � 2x2� 3. Then du/dx � 4x and dx � du/4x. Ignore the limits of integration for the moment,
and treat the integral as an indefinite integral. Substituting in the original integrand,


 8x(2x2� 3) dx � 
 8xu
du

4x
� 2 
 u du

Integrating with respect to u,

2
 u du � 2�u2

2 � � c � u2� c (15.9)

Finally, by substituting u � 2x2� 3 in (15.9) and recalling that c will drop out in the integration, the definite
integral can be written in terms of x, incorporating the original limits:

3

0

8x(2x2� 3) dx � (2x2� 3)2 �
3

0

� [2(3)2� 3]2� [2(0)2� 3]2 � 441� 9 � 432

Because in the original substitution u� x but 2x2� 3, the limits of integration in terms of x will differ
from the limits of integration in terms of u. The limits can be expressed in terms of u, if so desired. Since
we have set u � 2x2� 3 and x ranges from 0 to 3, the limits in terms of u are u � 2(3)2� 3 � 21 and
u � 2(0)2� 3 � 3. Using these limits with the integral expressed in terms of u, as in (15.9),

2
21


3

u du � u2 �
21

3

� 441� 9 � 432

15.3. Redo Problem 15.2, given �2

1
x2(x3� 5)2 dx.

Let u � x3� 5, du/dx � 3x2, and dx � du/3x2. Substituting independently of the limits,


 x2(x3� 5)2 dx � 
 x2 u2 du

3x2�
1
3 
 u2 du

Integrating with respect to u and ignoring the constant,

1–
3 
 u2 du � 1–

3(
1–
3u3) � 1–

9u3

Substituting u � x3� 5 and incorporating the limits for x,

2

1

x2(x3� 5)2 dx � [1–
9(x3� 5)3]2

1

� 1–
9[(2)3� 5]3� 1–

9[(1)3� 5]3 � 1–
9(27)� 1–

9(�64) � 10.11

Since u � x3� 5 and the limits for x are x � 1 and x � 2, by substitution the limits for u are
u � (1)3� 5 � �4 and u � (2)3� 5 � 3. Incorporating these limits for the integral with respect to u,

1–
3

3

�4

u2 du � [1–
9u3]3

�4�
1–
9(3)3� 1–

9(�4)3 � 10.11

15.4. Redo Problem 15.2, given
2


0

3x2

(x3� 1)2 dx

Let u � x3� 1. Then du/dx � 3x2 and dx � du/3x2. Substituting,


 3x2

(x3� 1)2 dx � 
 3x2u�2 du

3x2 � 
 u�2 du
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Integrating with respect to u and ignoring the constant,


 u�2 du � �u�1

Substituting u � x3� 1 with the original limits,

2

0

3x2

(x3� 1)2 dx � �(x3� 1)�1 �
2

0

�
�1

23� 1
�

�1
03� 1

� �
1
9
� 1 �

8
9

With u � x3� 1, and the limits of x ranging from 0 to 2, the limits of u are u � (0)3� 1 � 1 and
u � (2)3� 1 � 9. Thus,

9

1

u�2 du � �u�1 �
9

1

� (�1–
9)� (�1–

1) �
8–
9

15.5. Integrate the following definite integral by means of the substitution method:
3


0

6x
x2� 1

dx

Let u � x2� 1, du/dx � 2x, and dx � du/2x. Substituting,


 6x

x2� 1
dx �
 6xu�1 du

2x
� 3 
 u�1 du

Integrating with respect to u,

3
 u�1 du � 3 ln 
u 


Substituting u � x2� 1,

3

0

6x

x2� 1
dx � 3 ln 
x2� 1 
 �

3

0

� 3 ln 
32� 1 
� 3 ln 
02� 1 
 � 3 ln 10� 3 ln 1
� 3 ln 10 � 6.9078Since ln 1 � 0,

The limits of u are u � (0)2� 1 � 1 and u � (3)2� 1 � 10. Integrating with respect to u,

3
10


1

u�1 du � 3 ln 
u 
 �
10

1

� 3 ln 10� 3 ln 1 � 3 ln 10 � 6.9078

15.6. Redo Problem 15.5, given �2

1
4xex2�2 dx.

Let u � x2� 2. Then du/dx � 2x and dx � du/2x. Substituting,


 4xex2�2 dx � 
 4xeu du

2x
� 2 
 eu du

Integrating with respect to u and ignoring the constant,

2
 eu du � 2eu

Substituting u � x2� 2,

2

1

4xex2�2 dx � 2ex2�2 �
2

1

� 2(e(2)2�2� e(1)2�2) � 2(e6� e3)

� 2(403.43� 20.09) � 766.68
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With u � x2� 2, the limits of u are u � (1)2� 2 � 3 and u � (2)2� 2 � 6.

2
6


3

eu du � 2eu �
6

3

� 2(e6� e3) � 766.68

15.7. Redo Problem 15.5, given �1

0
3x2 e2x3�1 dx.

Let u � 2x3� 1, du/dx � 6x2, and dx � du/6x2. Substituting,


 3x2 e2x3�1 dx �
 3x2 eu du

6x2�
1
2 
 eu du

Integrating with respect to u,

1–
2 
 eu du � 1–

2eu

Substituting u � 2x3� 1,

1

0

3x2 e2x3�1 dx � 1–
2e2x3�1 �

1

0

� 1–
2(e3� e1) � 1–

2(20.086� 2.718) � 8.684

With u � 2x3� 1, the limits of u are u � 2(0)3� 1 � 1 and u � 2(1)3� 1 � 3. Thus

1–
2

3

1

eu du � 1–
2eu �

3

1

� 1–
2(e3� e1) � 8.68

INTEGRATION BY PARTS

15.8. Integrate the following definite integral, using the method of integration by parts:

5

2

3x
(x� 1)2 dx

Let f(x) � 3x; then f �(x) � 3. Let g�(x) � (x� 1)�2; then g(x) � � (x� 1)�2 dx � �(x� 1)�1. Sub-
stituting in (14.1),


 3x

(x� 1)2 dx � 3x[�(x� 1)�1]�
� (x� 1)�1 3 dx

� �3x(x� 1)�1� 3
 (x� 1)�1 dx

Integrating and ignoring the constant,


 3x

(x� 1)2 dx � �3x(x� 1)�1� 3 ln 
x� 1 


Applying the limits,

5

2

3x

(x� 1)2 dx � [�3x(x� 1)�1� 3 ln 
x� 1 
 ]5
2

� �� 3(5)
5� 1

� 3 ln 
5� 1 
 � � �� 3(2)
2� 1

� 3 ln 
2� 1 
 �
� �5–

2� 3 ln 6� 2� 3 ln 3
� 3(ln 6� ln 3)� 1–

2 � 3(1.7918� 1.0986)� 0.5 � 1.5796
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15.9. Redo Problem 15.8, given
3


1

4x
(x� 2)3 dx

Let f(x) � 4x, f �(x) � 4, g�(x) � (x� 2)�3, and g(x) � � (x� 2)�3 dx � �1–
2(x� 2)�2. Substituting in

(14.1),


 4x

(x� 2)3 dx � 4x �� 1
2

(x� 2)�2� �
� 1
2

(x� 2)�2 4 dx

� �2x(x� 2)�2� 2
 (x� 2)�2 dx

Integrating,


 4x

(x� 2)3 dx � �2x(x� 2)�2� 2(x� 2)�1

Applying the limits,

3

1

4x

(x� 2)3 dx � [�2x(x� 2)�2� 2(x� 2)�1]3
1

� [�2(3)(3� 2)�2� 2(3� 2)�1]� [�2(1)(1� 2)�2� 2(1� 2)�1]
� � 6––

25�
2–
5�

2–
9�

2–
3 �

56–––
225

15.10. Redo Problem 15.8, given �3

1
5xex�2 dx.

Let f (x) � 5x, f �(x) � 5, g�(x) � ex�2, and g(x) � � ex�2 dx � ex�2. Applying (14.1),


 5xex�2 dx � 5xex�2�
 ex�2 5 dx � 5xex�2� 5
 ex�2 dx

Integrating,


 5xex�2 dx � 5xex�2� 5ex�2

Applying the limits,

3

1

5xex�2 dx � [5xex�2� 5ex�2]3
1 � (15e5� 5e5)� (5e3� 5e3) � 10e5 � 10(148.4) � 1484

PROPERTIES OF DEFINITE INTEGRALS

15.11. Show �4

�4
(8x3� 9x2) dx � �0

�4
(8x3� 9x2) dx� �4

0
(8x3� 9x2) dx.

4

�4

(8x3� 9x2) dx � 2x4� 3x3 �
4

�4

� 704� 320 � 384

0

�4

(8x3� 9x2) dx � 2x4� 3x3 �
0

�4

� 0� 320 � �320

4

0

(8x3� 9x2) dx � 2x4� 3x3 �
4

0

� 704� 0 � 704

Checking this answer, �320� 704 � 384
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15.12. Show �16

0
(x�1/2� 3x) dx � �4

0
(x�1/2� 3x) dx� �9

4
(x�1/2� 3x) dx� �16

9
(x�1/2� 3x) dx.

16

0

(x�1/2� 3x) dx � 2x1/2� 1.5x2 �
16

0

� 392� 0 � 392

4

0

(x�1/2� 3x) dx � 2x1/2� 1.5x2 �
4

0

� 28� 0 � 28

9

4

(x�1/2� 3x) dx � 2x1/2� 1.5x2 �
9

4

� 127.5� 28 � 99.5

16

9

(x�1/2� 3x) dx � 2x1/2� 1.5x2 �
16

9

� 392� 127.5 � 264.5

Checking this answer, 28� 99.5� 264.5 � 392

15.13. Show
3


0

6x
x2� 1

dx �
1


0

6x
x2� 1

dx�
2


1

6x
x2� 1

dx�
3


2

6x
x2� 1

dx

From Problem 15.5,

3

0

6x

x2� 1
dx � 3 ln 
x2� 1 
 �

3

0

� 3 ln 10

1

0

6x

x2� 1
dx � 3 ln 
x2� 1 
 �

1

0

� 3 ln 2� 0 � 3 ln 2

2

1

6x

x2� 1
dx � 3 ln 
x2� 1 
 �

2

1

� 3 ln 5� 3 ln 2

3

2

6x

x2� 1
dx � 3 ln 
x2� 1 
 �

3

2

� 3 ln 10� 3 ln 5

Checking this answer, 3 ln 2� 3 ln 5� 3 ln 2� 3 ln 10� 3 ln 5 � 3 ln 10

15.14. Show �3

1
5xex�2 dx � �2

1
5xex�2 dx� �3

2
5xex�2 dx.

From Problem 15.10,

3

1

5xex�2 dx � [5xex�2� 5ex�2]3
1 � 10e5

2

1

5xex�2 dx � [5xex�2� 5ex�2]2
1 � (10e4� 5e4)� (5e3� 5e3) � 5e4

3

2

5xex�2 dx � [5xex�2� 5ex�2]3
2 � (15e5� 5e5)� (10e4� 5e4) � 10e5� 5e4

Checking this answer, 5e4� 10e5� 5e4 � 10e5

AREA BETWEEN CURVES

15.15. (a) Draw the graphs of the following functions, and (b) evaluate the area between the curves
over the stated interval:

y1 � 7� x and y2 � 4x� x2 from x � 1 to x � 4

a) See Fig. 15-6.

b) From Fig. 15-6, the desired region is the area under the curve specified by y1 � 7� x from x � 1 to
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x � 4 minus the area under the curve specified by y2 � 4x� x2 from x � 1 to x � 4. Using the
properties of definite integrals,

A �

�

�

4

1

[1–
3x

3� 2.5x2� 7x]4
1

[1–
3(4)3� 2.5(4)2� 7(4)]� [1–

3(1)3� 2.5(1)2� 7(1)] � 4.5

(7� x) dx�
4


1

(4x� x2) dx �
4


1

(x2� 5x� 7) dx

15.16. Redo Problem 15.15, given

y1 � 6� x and y2 � 4 from x � 0 to x � 5

Notice the shift in the relative positions of the curves at the point of intersection.

a) See Fig. 15-7.

b) From Fig. 15-7, the desired area is the area between y1 � 6� x and y2 � 4 from x � 0 to x � 2 plus
the area between y2� 4 and y1 � 6� x from x � 2 to x � 5. Mathematically,

A �
2


0

[(6� x)� 4] dx�
5


2

[4� (6� x)] dx

�
2


0

(2� x) dx�
5


2

(x� 2) dx

� [2x� 1–
2x

2]2
0� [1–

2x2� 2x]5
2 � 2� 0� 2.5� (�2) � 6.5

15.17. Redo Problem 15.15, given

y1 � x2� 4x� 8 and y2 � 2x from x � 0 to x � 3

a) See Fig. 15-8.

b) A �
2


0

[(x2� 4x� 8)� 2x] dx�
3


2

[2x� (x2� 4x� 8)] dx

�
2


0

(x2� 6x� 8) dx�
3


2

(�x2� 6x� 8) dx

� [1–
3x

3� 3x2� 8x]2
0� [�1–

3x3� 3x2� 8x]3
2 � 71–

3

15.18. Redo Problem 15.15, given

y1 � x2� 4x� 12 and y2 � x2 from x � 0 to x � 4

a) See Fig. 15-9.
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b) A �
3


0

[(x2� 4x� 12)� x2] dx�
4


3

[x2� (x2� 4x� 12)] dx

�
3


0

(12� 4x) dx�
4


3

(4x� 12) dx

� [12x� 2x2]3
0� [2x2� 12x]4

3� 20

IMPROPER INTEGRALS AND L’HÔPITAL’S RULE

15.19. (a) Specify why the integral given below is improper and (b) test for convergence. Evaluate
where possible.

�

1

2x
(x2� 1)2 dx

a) This is an example of an improper integral because the upper limit of integration is infinite.

b)
�


1

2x

(x2� 1)2 dx � lim
b→�

b

1

2x

(x2� 1)2 dx

Let u � x2� 1, du/dx � 2x, and dx � du/2x. Substituting,


 2x

(x2� 1)2 dx � 
 2xu�2 du

2x
� 
 u�2 du

Integrating with respect to u and ignoring the constant,


 u�2 du � �u�1

Substituting u � x2� 1 and incorporating the limits of x,

�

1

2x

(x2� 1)2 dx � lim
b→�

b

1

2x

(x2� 1)2 dx � �(x2� 1)�1 �
b

1

�
�1

b2� 1
�

1
(1)2� 1

�
1
2
�

1
b2� 1

As b →�, 1/(b2� 1) → 0. The integral converges and has a value of 1–
2..
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15.20. Redo Problem 15.19, given
�


1

dx
x� 7

a) This is an improper integral because one of its limits of integration is infinite.

b)
�


1

dx

x� 7
� lim

b→�

b

1

dx

x� 7
� ln 
x� 7 
 �

b

1

� ln 
b� 7 
� ln 
1� 7 


As b →�, ln 
b� 7 
 →�. The integral diverges and is meaningless.

15.21. Redo Problem 15.19, given �0

��
e3x dx.

a) The lower limit is infinite.

b)
0

��

e3x dx � lim
a→��

0

a

e3x dx � 1–
3e3x �

0

a

� 1–
3e3(0)� 1–

3e3a � 1–
3�

1–
3e3a

As a →��, 1–
3e3a → 0. The integral converges and has a value of 1–

3.

15.22. (a) Specify why the integral given below is improper and (b) test for convergence. Evaluate
where possible:

0

��

(5� x)�2 dx

a) The lower limit is infinite.

b)
0

��

(5� x)�2 dx � lim
a→��

0

a

(5� x)�2 dx

Let u � 5� x, du/dx � �1, and dx � �du. Substituting,


 (5� x)�2 dx � 
 u�2(�du) � �
 u�2 du

Integrating with respect to u,

�
 u�2 du � u�1

Substituting u � 5� x and incorporating the limits of x,

0

��

(5� x)�2 dx � lim
a→��

0

a

(5� x)�2 dx � (5� x)�1 �
0

a

�
1

5� 0
�

1
5� a

�
1
5
�

1
5� a

As a →��, 1/(5� a) → 0. The integral converges and equals 1–
5.

15.23. Redo Problem 15.22, given �0

��
2xex dx.

a) The lower limit is infinite.

b)
0

��

2xex dx � lim
a→��

0

a

2xex dx
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Using integration by parts, let f(x) � 2x, f �(x) � 2, g�(x) � ex, and g(x) � � ex dx � ex. Substituting in
(14.1),


 2xex dx � 2xex�
 ex 2 dx

Integrating once again,


 2xex dx � 2xex� 2ex

Incorporating the limits,

0

��

2xex dx �

� [2(0)e0� 2e0]� (2aea� 2ea)
� �2� 2aea� 2ea since e0 � 1

lim
a→��

0

a

2xex dx � (2xex� 2ex)�
0

a

As a →��, ea → 0. Therefore the integral converges and has a value of �2.

15.24. Redo Problem 15.22, given
6


0

dx
x� 6

a) This is also an improper integral because, as x approaches 6 from the left (x → 6�), the integrand
→��.

b)
6


0

dx

x� 6
�

� ln 
b� 6 
� ln 
0� 6 


lim
b→6

b

0

dx

x� 6
� ln 
x� 6 
 �

b

0

As b → 6�, 
b� 6 
 → 0 and ln 0 is undefined. Therefore, the integral diverges and is meaningless.

15.25. Redo Problem 15.22, given �8

0
(8� x)�1/2 dx.

a) As x → 8�, the integrand approaches infinity.

b)
8


0

(8� x)�1/2 dx �

� (�2�8� b)� (�2�8� 0) � 2�8� 2�8� b

lim
b→8

b

0

(8� x)�1/2 dx � �2(8� x)1/2 �
b

0

As b → 8�, �2�8� b → 0. The integral converges and has a value of 2�8 � 4�2.

15.26. Use L’Hôpital’s rule to evaluate the following limits:

a) lim
x→�

5x� 9
ex

As x →�, both 5x� 9 and ex tend to �, giving rise to the indeterminate form �/�. Using (15.6),
therefore, and differentiating numerator and denominator separately,

lim
x→�

5x� 9
ex � lim

x→�

5
ex �

5
�
� 0

b) lim
x→�

1� e1/x

1/x
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As x →�, 1� e1/x and 1/x → 0. Using (15.6), therefore, and recalling that 1/x � x�1,

lim
x→�

1� e1/x

1/x
� lim

x→�

�(�1/x2)e1/x

�1/x2

Simplifying algebraically,

lim
x→�

1� e1/x

1/x
� lim

x→�
(�e1/x) � �e0 � �1

c) lim
x→�

ln 2x
e5x

As x →�, ln 2x and e5x →�. Again using (15.6),

lim
x→�

ln 2x

e5x � lim
x→�

1/x
5e5x�

0
�
� 0 since

0
�

is not an indeterminate form.

d) lim
x→�

6x3� 7
3x2� 9

lim
x→�

6x3� 7
3x2� 9

� lim
x→�

18x2

6x
� lim

x→�
3x � �

e) lim
x→�

3x2� 7x
4x2� 21

lim
x→�

3x2� 7x

4x2� 21
� lim

x→�

6x� 7
8x

Whenever application of L’Hôpital’s rule gives rise to a new quotient whose limit is also an
indeterminate form, L’Hôpital’s rule must be applied again. Thus,

lim
x→�

6x� 7
8x

� lim
x→�

6
8
�

3
4

See Problem 3.4(c).

f) lim
x→�

8x3� 5x2� 13x
2x3� 7x2� 18x

Using L’Hôpital’s rule repeatedly,

lim
x→�

8x3� 5x2� 13x

2x3� 7x2� 18x
�

�

lim
x→�
lim
x→�

24x2� 10x� 13
6x2� 14x� 18

4–
1

8–
2 � 4

� lim
x→�

48x� 10
12x� 14

CONSUMERS’ AND PRODUCERS’ SURPLUS

15.27. Given the demand function P � 45� 0.5Q, find the consumers’ surplus CS when P0 � 32.5 and
Q0 � 25.

Using (15.7),

CS �

�

25

0

[45(25)� 0.25(25)2]� 0� 812.5 � 156.25

(45� 0.5Q) dQ� (32.5)(25) � [45Q� 0.25Q2]0
25� 812.5
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15.28. Given the supply function P � (Q� 3)2, find the producers’ surplus PS at P0� 81 and
Q0 � 6.

From (15.8),

PS �

�

(81)(6)�

486� [1–
3(6� 3)3� 1–

3(0� 3)3] � 252

6

0

(Q� 3)2 dQ � 486� [1–
3(Q� 3)3]6

0

15.29. Given the demand function Pd � 25�Q2 and the supply function Ps � 2Q� 1. Assuming pure
competition, find (a) the consumers’ surplus and (b) the producers’ surplus.

For market equilibrium, s � d. Thus,

2Q� 1 � 25�Q2 Q2� 2Q� 24 � 0
(Q� 6) (Q� 4) � 0 Q0� 4 P0 � 9

since Q0 cannot equal �6.

a) CS �

�

4

0

[25(4)� 1–
3(4)3]� 0� 36 � 42.67

(25�Q2) dQ� (9) (4) � [25Q� 1–
3Q

3]4
0� 36

b) PS �

�

(9) (4)�

36� [Q2�Q]4
0 � 16

4

0

(2Q� 1) dQ

15.30. Given the demand function Pd � 113�Q2 and the supply function Ps� (Q� 1)2 under pure
competition, find (a) CS and (b) PS.

Multiplying the supply function out and equating supply and demand,

Q2� 2Q� 1 � 113�Q2 2(Q2�Q� 56) � 0
(Q� 8) (Q� 7) � 0 Q0 � 7 P0 � 64

a) CS �
7


0

(113�Q2) dQ� (64) (7) � [113Q� 1–
3Q

3]7
0� 448 � 228.67

b) PS � (64) (7)�
7


0

(Q� 1)2 dQ � 448� [1–
3(Q� 1)3]0

7 � 448� (170.67� 0.33) � 277.67

15.31. Under a monopoly, the quantity sold and market price are determined by the demand function.
If the demand function for a profit-maximizing monopolist is P � 274�Q2 and MC� 4� 3Q,
find the consumers’ surplus.

Given P � 274�Q2,

TR � PQ � (274�Q2)Q � 274Q�Q3

and MR �
dTR
dQ

� 274� 3Q2

The monopolist maximizes profit at MR �MC. Thus,

274� 3Q2 � 4� 3Q 3(Q2�Q� 90) � 0
(Q� 10) (Q� 9) � 0 Q0 � 9 P0 � 193

and CS �
9


0

(274�Q2) dQ� (193) (9) � [274Q� 1–
3Q

3]9
0� 1737 � 486
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FREQUENCY FUNCTIONS AND PROBABILITY

15.32. The probability in minutes of being waited on in a large chain restaurant is given by the
frequency function f(t) � 4––

81t3 for 0� t� 3. What is the probability of being waited on between
1 and 2 minutes?

P �
2


1

4––
81t3 dt � 1––

81t4 �
2

1

� 1––
81(16)� 1––

81(1) � 0.1852

15.33. The proportion of assignments completed within a given day is described by the probability
density function f(x) � 12(x2� x3) for 0� x� 1. What is the probability that (a) 50 percent or
less of the assignments will be completed within the day and (b) 50 percent or more will be
completed?

a) Pa �
0.5


0

12(x2� x3) dx � 12 �x3

3
�

x4

4 �
0.5

0

� 12 � �0.125
3
�

0.0625
4 � � 0� � 0.3125

b) Pb �
1


0.5

12(x2� x3) dx � 12 �x3

3
�

x4

4 �
1

0.5

� 12 � �1
3
�

1
4 � � �0.125

3
�

0.0625
4 � � � 0.6875

As expected, Pa�Pb � 0.3125� 0.6875 � 1.

OTHER ECONOMIC APPLICATIONS

15.34. Given I(t) � 9t1/2, find the level of capital formation in (a) 8 years and (b) for the fifth through
the eighth years (interval [4, 8]).

a) K �
8


0

9t1/2 dt � 6t3/2 �
8

0

� 6(8)3/2� 0 � 96�2 � 135.76

b) K �
8


4

9t1/2 dt � 6t3/2 �
8

4

� 6(8)3/2� 6(4)3/2� 135.76� 48 � 87.76
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CHAPTER 16

First-Order
Differential

Equations

16.1 DEFINITIONS AND CONCEPTS

A differential equation is an equation which expresses an explicit or implicit relationship between
a function y � f(t) and one or more of its derivatives or differentials. Examples of differential
equations include

dy
dt
� 5t� 9 y� � 12y and y
� 2y�� 19 � 0

Equations involving a single independent variable, such as those above, are called ordinary differential
equations. The solution or integral of a differential equation is any equation, without derivative or
differential, that is defined over an interval and satisfies the differential equation for all the values of
the independent variable(s) in the interval. See Example 1.

The order of a differential equation is the order of the highest derivative in the equation. The
degree of a differential equation is the highest power to which the derivative of highest order is raised.
See Example 2 and Problem 16.1.

EXAMPLE 1. To solve the differential equation y
(t) � 7 for all the functions y(t) which satisfy the equation,
simply integrate both sides of the equation to find the integrals.

y�(t) � 
 7 dt � 7t� c1

y(t) � 
 (7t� c1)dt � 3.5t2� c1 t� c

This is called a general solution which indicates that when c is unspecified, a differential equation has an infinite
number of possible solutions. If c can be specified, the differential equation has a particular or definite solution
which alone of all possible solutions is relevant.
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EXAMPLE 2. The order and degree of differential equations are shown below.

1.
dy

dt
� 2x� 6 first-order, first-degree

2. �dy

dt �
4

� 5t5 � 0 first-order, fourth-degree

3.
d2 y

dt2 � �dy

dt �
3

� x2 � 0 second-order, first-degree

4. �d2 y

dt2 �
7

� �d3 y

dt3 �
5

� 75y third-order, fifth-degree

16.2 GENERAL FORMULA FOR FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS

For a first-order linear differential equation, dy/dt and y must be of the first degree, and no product
y(dy/dt) may occur. For such an equation

dy
dt
� vy � z

where v and z may be constants or functions of time, the formula for a general solution is

y(t) � e��v dt �A�
 ze�v dt dt� (16.1)

where A is an arbitrary constant. A solution is composed of two parts: e��v dt A is called the
complementary function, and e��v dt � ze�v dt dt is called the particular integral. The particular integral yp

equals the intertemporal equilibrium level of y(t); the complementary function yc represents the
deviation from the equilibrium. For y(t) to be dynamically stable, yc must approach zero as t approaches
infinity (that is, k in ekt must be negative). The solution of a differential equation can always be checked
by differentiation. See Examples 3 to 5, Problems 16.2 to 16.12, and Problem 20.33.

EXAMPLE 3. The general solution for the differential equation dy/dt� 4y � 12 is calculated as follows. Since
v � 4 and z � 12, substituting in (16.1) gives

y(t) � e�� 4 dt�A�
 12e� 4 dt dt�
From Section 14.2, � 4 dt � 4t� c. When (16.1) is used, c is always ignored and subsumed under A. Thus,

y(t) � e�4t�A�
 12e4t dt� (16.2)

Integrating the remaining integral gives � 12e4t dt � 3e4t� c. Ignoring the constant again and substituting in
(16.2),

y(t) � e�4t(A� 3e4t) � Ae�4t� 3 (16.3)

since e�4t e4t � e0 � 1. As t → �, yc � Ae�4t → 0 and y(t) approaches yp � 3, the intertemporal equilibrium level.
y(t) is dynamically stable.

To check this answer, which is a general solution because A has not been specified, start by taking the
derivative of (16.3).

dy

dt
� �4Ae�4t
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From the original problem,

dy

dt
� 4y � 12

dy

dt
� 12� 4y

Substituting y � Ae�4t� 3 from (16.3),

dy

dt
� 12� 4(Ae�4t� 3) � �4Ae�4t

EXAMPLE 4. Given dy/dt� 3t2 y � t2 where v � 3t2 and z � t2. To find the general solution, first substitute in
(16.1),

y(t) � e�� 3t2 dt�A�
 t2 e� 3t2 dt dt� (16.4)

Integrating the exponents, � 3t2 dt � t3. Substituting in (16.4),

y(t) � e�t3�A�
 t2 et3 dt� (16.5)

Integrating the remaining integral in (16.5) calls for the substitution method. Letting u � t3, du/dt � 3t2, and
dt � du/3t2,


 t2 et3 dt � 
 t2 eu du

3t2 �
1
3
 eu du �

1
3

eu �
1
3

et3

Finally, substituting in (16.5),

y(t) � e�t3(A� 1–
3e

t3) � Ae�t3� 1–
3 (16.6)

As t → �, yc� Ae�t3 → 0 and y(t) approaches 1–
3. The equilibrium is dynamically stable.

Differentiating (16.6) to check the general solution, dy/dt � �3t2 Ae�t3. From the original problem,

dy

dt
� 3t2 y � t2 dy

dt
� t2� 3t2 y

Substituting y from (16.6),

dy

dt
� t2� 3t2�Ae�t3�

1
3 � � �3t2 Ae�t3

EXAMPLE 5. Suppose that y(0) � 1 in Example 4. The definite solution is calculated as follows: From (16.6),
y � Ae�t3� 1–

3. At t � 0, y(0) � 1. Hence, 1 � A� 1–
3 since e0 � 1, and A � 2–

3. Substituting A � 2–
3 in (16.6), the definite

solution is y � 2–
3e
�t3� 1–

3.

16.3 EXACT DIFFERENTIAL EQUATIONS AND PARTIAL INTEGRATION

Given a function of more than one independent variable, such as F(y, t) where M� �F/�y and
N � �F/�t, the total differential is written

dF(y, t) �M dy�N dt (16.7)

Since F is a function of more than one independent variable, M and N are partial derivatives and
Equation (16.7) is called a partial differential equation. If the differential is set equal to zero, so that
M dy�N dt � 0, it is called an exact differential equation because the left side exactly equals the
differential of the primitive function F(y, t). For an exact differential equation, �M/�t must equal
�N/�y, that is, �2 F/(�t�y) � �2 F/(�y�t). For proof of this proposition, see Problem 16.49.

Solution of an exact differential equation calls for successive integration with respect to one
independent variable at a time while holding constant the other independent variable(s). The
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procedure, called partial integration, reverses the process of partial differentiation. See Example 6 and
Problems 16.13 to 16.17.

EXAMPLE 6. Solve the exact nonlinear differential equation

(6yt� 9y2) dy� (3y2� 8t) dt � 0 (16.8)

1. Test to see if it is an exact differential equation. Here M � 6yt� 9y2 and N � 3y2� 8t. Thus, �M/�t � 6y
and �N/�y � 6y. If �M/�t� �N/�y, it is not an exact differential equation.

2. Since M � �F/�y is a partial derivative, integrate M partially with respect to y by treating t as a constant,
and add a new function Z(t) for any additive terms of t which would have been eliminated by the original
differentiation with respect to y. Note that �y replaces dy in partial integration.

F(y, t) � 
 (6yt� 9y2) �y�Z(t) � 3y2 t� 3y3�Z(t) (16.9)

This gives the original function except for the unknown additive terms of t, Z(t).
3. Differentiate (16.9) with respect to t to find �F/�t (earlier called N). Thus,

�F

�t
� 3y2�Z�(t) (16.10)

Since �F/�t � N and N � 3y2� 8t from (16.8), substitute �F/�t � 3y2� 8t in (16.10).

3y2� 8t � 3y2�Z�(t) Z�(t) � 8t

4. Next integrate Z�(t) with respect to t to find the missing t terms.

Z(t) � 
 Z�(t) dt � 
 8t dt � 4t2 (16.11)

5. Substitute (16.11) in (16.9), and add a constant of integration.

F(y, t) � 3y2 t� 3y3� 4t2� c

This is easily checked by differentiation.

16.4 INTEGRATING FACTORS

Not all differential equations are exact. However, some can be made exact by means of an
integrating factor. This is a multiplier which permits the equation to be integrated. See Example 7 and
Problems 16.18 to 16.22.

EXAMPLE 7. Testing the nonlinear differential equation 5yt dy� (5y2� 8t) dt � 0 reveals that it is not exact.
With M � 5yt and N � 5y2� 8t, �M/�t � 5y� �N/�y � 10y. Multiplying by an integrating factor of t, however,
makes it exact: 5yt2 dy� (5y2 t� 8t2) dt � 0. Now �M/�t � 10yt � �N/�y, and the equation can be solved by the
procedure outlined above. See Problem 16.22.

To check the answer to a problem in which an integrating factor was used, take the total differential of the
answer and then divide by the integrating factor.

16.5 RULES FOR THE INTEGRATING FACTOR

Two rules will help to find the integrating factor for a nonlinear first-order differential equation,
if such a factor exists. Assuming �M/�t� �N/�y,

Rule 1. If
1
N ��M�t � �N�y �� f(y) alone, then e� f (y) dy is an integrating factor.
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Rule 2. If
1
M � �N�y � �M�t � � g(t) alone, then e� g(t) dt is an integrating factor.

See Example 8 and Problems 16.23 to 16.28.

EXAMPLE 8. To illustrate the rules above, find the integrating factor given in Example 7, where

5yt dy� (5y2� 8t) dt � 0 M � 5yt N � 5y2� 8t
�M

�t
� 5y�

�N

�y
� 10y

Applying Rule 1,
1

5y2� 8t
(5y� 10y) �

�5y

5y2� 8t

which is not a function of y alone and will not supply an integrating factor for the equation. Applying Rule 2,

1
5yt

(10y� 5y) �
5y

5yt
�

1
t

which is a function of t alone. The integrating factor, therefore, is e� (1/t) dt � e ln t � t.

16.6 SEPARATION OF VARIABLES

Solution of nonlinear first-order first-degree differential equations is complex. (A first-order
first-degree differential equation is one in which the highest derivative is the first derivative dy/dt and
that derivative is raised to a power of 1. It is nonlinear if it contains a product of y and dy/dt, or y raised
to a power other than 1.) If the equation is exact or can be rendered exact by an integrating factor,
the procedure outlined in Example 6 can be used. If, however, the equation can be written in the form
of separated variables such that R(y) dy� S(t) dt � 0, where R and S, respectively, are functions of y
and t alone, the equation can be solved simply by ordinary integration. The procedure is illustrated in
Examples 9 and 10 and Problems 16.29 to 16.37.

EXAMPLE 9. The following calculations illustrate the separation of variables procedure to solve the nonlinear
differential equation

dy

dt
� y2 t (16.12)

First, separating the variables by rearranging terms,

dy

y2 � t dt

where R � 1/y2 and S � t. Then integrating both sides,


 y�2 dy � 
 t dt

�y�1� c1 �
t2

2
� c2

�
1
y
�

t2� 2c2� 2c1

2

Letting c � 2c2� 2c1, y �
�2

t2� c
(16.13)

Since the constant of integration is arbitrary until it is evaluated to obtain a particular solution, it will be
treated generally and not specifically in the initial steps of the solution. ec and ln c can also be used to express the
constant.
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This solution can be checked as follows: Taking the derivatives of y � �2(t2� c)�1 by the generalized power
function rule,

dy

dt
� (�1)(�2)(t2� c)�2 (2t) �

4t

(t2� c)2

From (16.12), dy/dt � y2 t. Substituting into (16.12) from (16.13),

dy

dt
� � �2

t2� c �
2

t �
4t

(t2� c)2

EXAMPLE 10. Given the nonlinear differential equation

t2 dy� y3 dt � 0 (16.14)

where M� f(y) and N� f(t). But multiplying (16.14) by 1/(t2 y3) to separate the variables gives

1
y3 dy�

1
t2 dt � 0 (16.14a)

Integrating the separated variables,


 y�3 dy�
 t�2 dt � �1–
2 y�2� t�1� c

and F(y, t) � �1–
2 y�2� t�1� c

� �
1

2y2�
1
t
� c

For complicated functions, the answer is frequently left in this form. It can be checked by differentiating and
comparing with (16.14a), which can be reduced to (16.14) through multiplication by y3 t2. For other forms in which
an answer can be expressed, see Problems 16.20 to 16.22 and 16.29 to 16.35.

16.7 ECONOMIC APPLICATIONS

Differential equations serve many functions in economics. They are used to determine the
conditions for dynamic stability in microeconomic models of market equilibria and to trace the time
path of growth under various conditions in macroeconomics. Given the growth rate of a function,
differential equations enable the economist to find the function whose growth is described; from point
elasticity, they enable the economist to estimate the demand function (see Example 11 and Problems
16.38 to 16.47). In Section 14.6 they were used to estimate capital functions from investment functions
and total cost and total revenue functions from marginal cost and marginal revenue functions.

EXAMPLE 11. Given the demand function Qd � c� bP and the supply function Qs � g� hP, the equilibrium
price is

P̄�
c� g

h� b
(16.15)

Assume that the rate of change of price in the market dP/dt is a positive linear function of excess demand Qd�Qs

such that

dP

dt
� m(Qd�Qs) m � a constant� 0 (16.16)

The conditions for dynamic price stability in the market [i.e., under what conditions P(t) will converge to P̄ as
t → �] can be calculated as shown below.
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Substituting the given parameters for Qd and Qs in (16.16),

dP

dt
� m[(c� bP)� (g� hP)] � m(c� bP� g� hP)

Rearranging to fit the general format of Section 16.2, dP/dt�m(h� b)P � m(c� g). Letting v � m(h� b) and
z � m(c� g), and using (16.1),

P(t) � e�� v dt�A�
 ze� v dt dt� � e�vt�A�
 zevt dt�
� e�vt�A�

zevt

v � � Ae�vt�
z

v
(16.17)

At t � 0, P(0) � A� z/v and A � P(0)� z/v.
Substituting in (16.17),

P(t) � �P(0)�
z

v � e�vt�
z

v

Finally, replacing v � m(h� b) and z � m(c� g),

P(t) � �P(0)�
c� g

h� b � e�m(h�b)t�
c� g

h� b

and making use of (16.15), the time path is

P(t) � [P(0)� P̄]e�m(h�b)t� P̄ (16.18)

Since P(0), P̄, m� 0, the first term on the right-hand side will converge toward zero as t → �, and thus P(t) will
converge toward P̄ only if h� b� 0. For normal cases where demand is negatively sloped (b� 0) and supply is
positively sloped (h� 0), the dynamic stability condition is assured. Markets with positively sloped demand
functions or negatively sloped supply functions will also be dynamically stable as long as h� b.

16.8 PHASE DIAGRAMS FOR DIFFERENTIAL EQUATIONS

Many nonlinear differential equations cannot be solved explicitly as functions of time. Phase
diagrams, however, offer qualitative information about the stability of equations that is helpful in
determining whether the equations will converge to an intertemporal (steady-state) equilibrium or not.
A phase diagram of a differential equation depicts the derivative which we now express as y· for
simplicity of notation as a function of y. The steady-state solution is easily identified on a phase
diagram as any point at which the graph crosses the horizontal axis, because at that point y· � 0 and
the function is not changing. For some equations there may be more than one intersection and hence
more than one solution.

Diagrammatically, the stability of the steady-state solution(s) is indicated by the arrows of motion.
The arrows of motion will point to the right (indicating y is increasing) any time the graph of y· is above
the horizontal axis (indicating y· � 0) and to the left (indicating y is decreasing) any time the graph of
y· is below the horizontal axis (indicating y· � 0). If the arrows of motion point towards a steady-state
solution, the solution is stable; if the arrows of motion point away from a steady-state solution, the
solution is unstable.

Mathematically, the slope of the phase diagram as it passes through a steady-state equilibrium
point tells us if the equilibrium point is stable or not. When evaluated at a steady-state equilibrium
point,

if
dy·

dy
� 0, the equilibrium is stable

if
dy·

dy
� 0, the point is unstable
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Phase diagrams are illustrated in Example 12. The derivative test for stability is used in Example 13.
See also Problems 16.48 to 16.50.

EXAMPLE 12. Given the nonlinear differential equation

y· � 8y� 2y2

a phase diagram can be constructed and employed in six easy steps.

1. The intertemporal or steady-state solution(s), where there is no pressure for change, is found by setting
y· � 0 and solving algebraically.

y· � 8y� 2y2 � 0
2y(4� y) � 0

ȳ� 0 ȳ � 4 steady-state solutions

The phase diagram will pass through the horizontal axis at y � 0, y � 4.
2. Since the function passes through the horizontal axis twice, it has one turning point. We next determine

whether that point is a maximum or minimum.

dy·

dy
� 8� 4y � 0 y � 2 is a critical value

d2 y·

dy2 � �4� 0 concave, relative maximum

3. A rough, but accurate, sketch of the phase diagram can then easily be drawn. See Fig. 16-1.

4. The arrows of motion complete the graph. As explained above, where the graph lies above the horizontal
axis, y· � 0 and the arrows must point to the right; where the graph lies below the horizontal axis, y· � 0
and the arrows must point to the left.

5. The stability of the steady-state equilibrium points can now be read from the graph. Since the arrows of
motion point away from the first intertemporal equilibrium ȳ1 � 0, ȳ1 is an unstable equilibrium. With the
arrows of motion pointing toward the second intertemporal equilibrium ȳ2 � 4, ȳ2 is a stable equi-
librium.

6. The slope of the phase diagram at the steady-state solutions can also be used to test stability
independently of the arrows of motion. Since the slope of the phase diagram is positive at ȳ1 � 0, we can
conclude ȳ1 is an unstable equilibrium. Since the slope of the phase diagram is negative at ȳ2 � 4, we
know ȳ2 must be stable.

EXAMPLE 13. Without even resorting to a phase diagram, we can use the simple first-derivative evaluated at
the intertemporal equilibrium level(s) to determine the stability of differential equations. Given y· � 8y� 2y2,

dy·

dy
� 8� 4y
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Evaluated at the steady-state levels, ȳ1� 0 and ȳ2 � 4,

dy·

dy
(0) � 8� 4(0) � 8� 0

dy·

dy
(4) � 8� 4(4) � �8� 0

ȳ1 � 0 is unstable ȳ2 � 4 is stable

Solved Problems

ORDER AND DEGREE

16.1. Specify the order and degree of the following differential equations:

a)
d2 y
dx2 � �dy

dx�
3

� 12x b)
dy
dx
� 3x2

c) �d3 y
dx3 �

4

� �d2 y
dx2 �

6

� 4� y d) �d2 y
dx2 �

3

�
d4 y
dx4 � 75y � 0

e)
d3 y
dx3 � x2 y�d2 y

dx2 �� 4y4 � 0

(a) Second order, first degree; (b) first order, first degree; (c) third order, fourth degree; (d) fourth order,
first degree; (e) third order, first degree.

FIRST-ORDER FIRST-DEGREE LINEAR DIFFERENTIAL EQUATIONS

16.2. (a) Use the formula for a general solution to solve the following equation. (b) Check your
answer.

dy
dt
� 5y � 0 (16.19)

a) Here v � 5 and z � 0. Substituting in (16.1),

y(t) � e�� 5 dt �A�
 0e� 5 dt dt�
Integrating the exponents, � 5 dt � 5t� c, where c can be ignored because it is subsumed under A.
Thus, y(t) � e�5t(A� � 0 dt). And � 0 dt � k, a constant, which can also be subsumed under A.
Hence,

y(t) � e�5t A � Ae�5t (16.20)

b) Taking the derivative of (16.20), dy/dt � �5Ae�5t. From (16.19), dy/dt � �5y. Substituting y from
(16.20),

dy

dt
� �5(Ae�5t) � �5Ae�5t

16.3. Redo Problem 16.2, given

dy
dt
� 3y y(0) � 2 (16.21)
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a) Rearranging to obtain the general format,

dy

dt
� 3y � 0

Here v � �3 and z � 0. Substituting in (16.1),

y(t) � e���3 dt�A�
 0e��3 dt dt�
Substituting �� 3 dt � �3t, y(t) � e3t(A� � 0 dt) � Ae3t. At t � 0, y � 2. Thus, 2 � Ae3(0), A � 2.
Substituting,

y(t) � 2e3t (16.22)

b) Taking the derivative of (16.22), dy/dt � 6e3t. From (16.21), dy/dt � 3y. Substituting y from (16.22),
dy/dt � 3(2e3t) � 6e3t.

16.4. Redo Problem 16.2, given

dy
dt
� 15 (16.23)

a) Here v � 0 and z � 15. Thus,

y(t) � e�� 0 dt�A�
 15e� 0 dt dt�
where � 0 dt � k, a constant. Substituting and recalling that ek is also a constant,

y(t) � e�k�A�
 15ek dt�
� e�k(A� 15tek) � Ae�k� 15t � 15t�A (16.24)

where A is an arbitrary constant equal to Ae�k or simply c. Whenever the derivative is equal to a
constant, simply integrate as in Example 1.

b) Taking the derivative of (16.24), dy/dt � 15. From (16.23), dy/dt � 15.

16.5. Redo Problem 16.2, given

dy

dt
� 6y � 18 (16.25)

a) Here v � �6, z � 18, and ��6 dt � �6t. Substituting in (16.1),

y(t) � e6t�A�
 18e�6t dt�
where � 18e�6t dt � �3e�6t. Thus,

y(t) � e6t(A� 3e�6t) � Ae6t� 3 (16.26)

b) Taking the derivative of (16.26), dy/dt � 6Ae6t. From (16.25), dy/dt � 18� 6y. Substituting y from
(16.26), dy/dt � 18� 6(Ae6t� 3) � 6Ae6t.

16.6. Redo Problem 16.2, given

dy
dt
� 4y ��20 y(0) � 10 (16.27)
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a) Here v � 4, z � �20, and � 4 dt � 4t. Thus,

y(t) � e�4t�A�
�20e4t dt�
where ��20e4t dt � �5e4t. Substituting, y(t) � e�4t(A� 5e4t) � Ae�4t� 5. At t � 0, y � 10. Thus,
10 � Ae�4(0)� 5, and A � 15. Substituting,

y(t) � 15e�4t� 5 � 5(3e�4t� 1) (16.28)

b) The derivative of (16.28) is dy/dt � �60e�4t. From (16.27), dy/dt � �20� 4y. Substituting from
(16.28) for y, dy/dt � �20� 4(15e�4t� 5) � �60e�4t.

16.7. Redo Problem 16.2, given

dy
dt
� 4ty � 6t (16.29)

a) v � 4t, z � 6t, and � 4t dt � 2t2. Thus,

y(t) � e�2t2�A�
 6te2t2 dt� (16.30)

Using the substitution method for the remaining integral, let u � 2t2, du/dt � 4t, and dt � du/4t.
Thus,


6te2t2 dt � 
 6teu du

4t
� 1.5
 eu du � 1.5e2t2

Substituting back in (16.30),

y(t) � e�2t2(A� 1.5e2t2) � Ae�2t2� 1.5 (16.31)

b) The derivative of (16.31) is dy/dt � �4tAe�2t2. From (16.29), dy/dt � 6t� 4ty. Substituting from
(16.31), dy/dt � 6t� 4t(Ae�2t2� 1.5) � �4tAe�2t2.

16.8. (a) Solve the equation below using the formula for a general solution. (b) Check your
answer.

2
dy
dt
� 2t2 y � 9t2 y(0) ��2.5 (16.32)

a) Dividing through by 2, dy/dt� t2 y � 4.5t2. Thus, v � �t2, z � 4.5t2, and �� t2 dt � �1–
3t

3. Substituting,

y(t) � e(1/3)t3�A�
 4.5t2 e�(1/3)t3 dt� (16.33)

Let u � �1–
3t

3, du/dt � �t2, and dt � �du/t2. Thus,


 4.5t2 e�(1/3)t3 dt � 
 4.5t2 eu du

�t 2 � �4.5
 eu du � �4.5e�(1/3)t3

Substituting in (16.33),

y(t) � e(1/3)t3(A� 4.5e�(1/3)t3) � Ae(1/3)t3� 4.5

At t � 0, �2.5 � A� 4.5; A � 2. Thus,

y(t) � 2e(1/3)t3� 4.5 (16.34)

b) Taking the derivative of (16.34), dy/dt � 2t2 e(1/3)t3. From (16.32), dy/dt � 4.5t2� t2 y. Substituting from
(16.34), dy/dt � 4.5t2� t2(2e(1/3)t3� 4.5) � 2t2 e(1/3)t3.
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16.9. Redo Problem 16.8, given

dy
dt
� 2ty � et2 (16.35)

a) v � �2t, z � et2, and �� 2t dt � �t2. Thus,

y(t) � et2�A�
 et2 e�t2 dt�� et2�A�
 e0 dt�
where e0 � 1 and � 1 dt � t. Substituting back,

y(t) � et2(A� t) (16.36)

b) The derivative of (16.36), by the product rule, is dy/dt � 2tet2(A� t)� et2(1) � 2tAet2� 2t2 et2� et2.
From (16.35), dy/dt � et2� 2ty. Substituting from (16.36),

dy

dt
� et2� 2t [et2(A� t)] � et2� 2tAet2� 2t2 et2

16.10. Redo Problem 16.8, given

dy
dt
� 3y � 6t y(0) �

1
3

(16.37)

a) v � 3, z � 6t, and � 3 dt � 3t. Then,

y(t) � e�3t�A�
 6te3t dt� (16.38)

Using integration by parts for the remaining integral, let f(t) � 6t, then f �(t) � 6; let g�(t) � e3t, then
g(t) � � e3t dt � 1–

3e
3t. Substituting in (14.1),


 6te3t dt � 6t(1–
3e

3t)�
 1–
3e

3t 6 dt

� 2te3t� 2
 e3t dt � 2te3t� 2–
3e

3t

Substituting back in (16.38),

y(t) � e�3t(A� 2te3t� 2–
3e

3t) � Ae�3t� 2t� 2–
3

At t � 0, 1–
3 � Ae�3(0)� 2(0)� 2–

3; A � 1. Thus,

y(t) � e�3t� 2t� 2–
3 (16.39)

b) Taking the derivative of (16.39), dy/dt � �3e�3t� 2. From (16.37), dy/dt � 6t� 3y. Substituting
(16.39) directly above, dy/dt � 6t� 3(e�3t� 2t� 2–

3) � �3e�3t� 2.

16.11. Redo Problem 16.8, given

dy
dt
�

y
t
� 0 y(3) � 12 (16.40)

a) v � �1/t, z � 0, and ��(1/t) dt � �ln t. Thus,

y(t) � eln t�A�
 0 dt� � At

since eln t � t. At t � 3, 12 � A(3); A � 4. Thus,

y(t) � 4t (16.41)
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b) The derivative of (16.41) is dy/dt � 4. From (16.40), dy/dt � y/t. Substituting from (16.41),
dy/dt � 4t/t � 4.

16.12. Redo Problem 16.8, given

dy
dt
��y y(3) � 20 (16.42)

a) With rearranging, dy/dt� y � 0. Therefore, v � 1, z � 0, and � 1 dt � t. Thus,

y(t) � e�t�A�
 0 dt� � Ae�t

At t � 3, 20 � Ae�3; 20 � A(0.05), so A � 400. Thus,

y(t) � 400e�t (16.43)

b) Taking the derivative of (16.43), dy/dt � �400e�t. From (16.42), dy/dt � �y. Substituting from
(16.43), dy/dt � �(400e�t) � �400e�t.

EXACT DIFFERENTIAL EQUATIONS AND PARTIAL INTEGRATION

16.13. Solve the following exact differential equation. Check the answer on your own.

(4y� 8t2) dy� (16yt� 3) dt � 0

As outlined in Example 6,

1. Check to see if it is an exact differential equation. Letting M � 4y� 8t2 and N � 16yt� 3,
�M/�t � 16t � �N/�y.

2. Integrate M partially with respect to y and add Z(t) to get F(y, t).

F(y, t) � 
 (4y� 8t2) �y�Z(t) � 2y2� 8t2 y�Z(t) (16.44)

3. Differentiate F(y, t) partially with respect to t and equate with N above.

�F

�t
� 16ty�Z�(t)

But �F/�t � N � 16yt� 3, so

16ty�Z�(t) � 16yt� 3 Z�(t) � �3

4. Integrate Z�(t) with respect to t to get Z(t).

Z(t) � 
 Z�(t) dt � 
� 3 dt � �3t (16.45)

5. Substitute (16.45) in (16.44) and add a constant of integration.

F(y, t) � 2y2� 8t2 y� 3t� c

16.14. Redo Problem 16.13, given (12y� 7t� 6) dy� (7y� 4t� 9) dt � 0.

1. �M/�t � 7 � �N/�y.

2. F(y, t) � 
 (12y� 7t� 6) �y�Z(t) � 6y2� 7yt� 6y�Z(t)

3. �F/�t � 7y�Z�(t). But �F/�t � N � 7y� 4t� 9, so

7y�Z�(t) � 7y� 4t� 9 Z�(t) � 4t� 9
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4. Z(t) � 
 (4t� 9) dt � 2t2� 9t

5. F(y, t) � 6y2� 7yt� 6y� 2t2� 9t� c

16.15. Redo Problem 16.13, given (12y2 t2� 10y) dy� (8y3 t) dt � 0.

1. �M/�t � 24y2 t � �N/�y.

2. F(y, t) � 
 (12y2 t2� 10y) �y�Z(t) � 4y3 t2� 5y2�Z(t)

3. �F/�t � 8y3 t�Z�(t). But N � 8y3 t, so

8y3 t � 8y3 t�Z�(t) Z�(t) � 0

4. Z(t) � � 0 dt � k, which will be subsumed under c.

5. F(y, t) � 4y3 t2� 5y2� c

16.16. Redo Problem 16.13, given 8tyy� � �(3t2� 4y2).

By rearranging,

8ty dy � �(3t2� 4y2) dt 8ty dy� (3t2� 4y2) dt � 0

1. �M/�t � 8y � �N/�y.

2. F(y, t) � 
 8ty �y�Z(t) � 4ty2�Z(t)

3. �F/�t � 4y2�Z�(t). But �F/�t � N � 3t2� 4y2, so

4y2�Z�(t) � 3t2� 4y2 Z�(t) � 3t2

4. Z(t) � 
 3t2 dt � t3

5. F(y, t) � t3� 4ty2� c

16.17. Redo Problem 16.13, given 60ty2 y� � �(12t3� 20y3).

By rearranging, 60ty2 dy� (12t3� 20y3) dt � 0

1. �M/�t � 60y2 � �N/�y.

2. F(y, t) � 
 60ty2 �y�Z(t) � 20ty3�Z(t)

3. �F/�t � 20y3�Z�(t). But �F/�t � N � 12t3� 20y3, so

20y3�Z�(t) � 12t3� 20y3 Z�(t) � 12t3

4. Z(t) � 
 12t3 dt � 3t4

5. F(y, t) � 3t4� 20ty3� c

INTEGRATING FACTORS

16.18. Use the integrating factors provided in parentheses to solve the following differential equation.
Check the answer on your own (remember to divide by the integrating factor after taking the
total differential of the answer).

6t dy� 12y dt � 0 (t)
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1. �M/�t � 6� �N/�y � 12. But multiplying by the integrating factor t,

6t2 dy� 12yt dt � 0

where �M/�t � 12t � �N/�y. Continuing with the new function,

2. F(y, t) � 
 6t2 �y�Z(t) � 6t2 y�Z(t)

3. �F/�t � 12ty�Z�(t). But �F/�t � N � 12ty, so Z�(t) � 0.

4. Z(t) � � 0 dt � k, which will be subsumed under the c below.

5. F(y, t) � 6t2 y� c

16.19. Redo Problem 16.18, given

t2 dy� 3yt dt � 0 (t)

1. �M/�t � 2t� �N/�y � 3t. But multiplying by t,

t3 dy� 3yt2 dt � 0

where �M/�t � 3t2 � �N/�y.

2. F(y, t) � 
 t3 �y�Z(t) � t3y�Z(t)

3. �F/�t � 3t2 y�Z�(t). But �F/�t � N � 3t2 y, so Z�(t) � 0 and F(y, t) � t3y� c.

16.20. Redo Problem 16.18, given

dy
dt
�

y
t � 1

ty �
Rearranging, t dy � y dt t dy� y dt � 0

1. �M/�t � 1� �N/�y � �1. Multiplying by 1/(ty),

dy

y
�

dt

t
� 0

where �M/�t � 0 � �N/�y, since neither function contains the variable with respect to which it is
being partially differentiated.

2. F(y, t) � 
 1
y
�y�Z(t) � ln y�Z(t)

3. �F/�t � Z�(t). But �F/�t � N � �1/t, so Z�(t) � �1/t.

4. Z(t) � 
 � 1
t

dt � �ln t

5. F(y, t) � ln y� ln t� c which can be expressed in different ways. Since c is an arbitrary constant,
we can write ln y� ln t � c. Making use of the laws of logs (Section 7.3), ln y� ln t � ln (y/t). Thus,
ln (y/t) � c. Finally, expressing each side of the equation as exponents of e, and recalling that
eln x� x,

eln (y/t) � ec

y

t
� ec or y � tec

For other treatments of c, see Problems 16.29 to 16.37.
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16.21. Redo Problem 16.18, given

4t dy� (16y� t2) dt � 0 (t3)

1. �M/�t � 4� �N/�y � 16. Multiplying by t3, 4t4 dy� (16t3 y� t5) dt � 0 where �M/�t� 16t3�
�N/�y.

2. F(y, t) � 
 4t4 �y�Z(t) � 4t4 y�Z(t)

3. �F/�t � 16t3 y�Z�(t). But �F/�t � N � 16t3 y� t5, so

16t3 y�Z�(t) � 16t3 y� t5 Z�(t) � �t5

4. Z(t) � 
�t5 dt � �1–
6t

6

5. F(y, t) � 4t4 y� 1–
6t

6� c � 24t4y� t6� c

or 24t4 y� t6� c

16.22. Redo Problem 16.18, given

5yt dy� (5y2� 8t) dt � 0 (t)

1. �M/�t � 5y� �N/�y � 10y. Multiplying by t, as in Example 7, 5yt2 dy� (5y2 t� 8t2) dt � 0 where
�M/�t � 10yt � �N/�y.

2. F(y, t) � 
 5yt2 �y�Z(t) � 2.5y2 t2�Z(t)

3. �F/�t � 5y2 t�Z�(t). But �F/�t � N � 5y2 t� 8t2, so

5y2 t�Z�(t) � 5y2 t� 8t2 Z�(t) � 8t2

4. Z(t) � 
 8t2 dt � 8–
3t3

5. F(y, t) � 2.5y2 t2� 8–
3t

3� c � 7.5y2 t2� 8t3� c

FINDING THE INTEGRATING FACTOR

16.23. (a) Find the integrating factor for the differential equation given below, and (b) solve the
equation, using the five steps from Example 6.

(7y� 4t2) dy� 4ty dt � 0 (16.46)

a) �M/�t � 8t� �N/�y � 4t. Applying Rule 1 from Section 16.5, since M � 7y� 4t2 and N � 4ty,

1
4ty

(8t� 4t) �
4t

4ty
�

1
y
� f(y) alone

Thus the integrating factor is

e� (1/y) dy � eln y� y

b) Multiplying (16.46) by the integrating factor y, (7y2� 4yt2) dy� 4ty2 dt � 0.

1. �M/�t � 8yt � �N/�y. Thus,

2. F(y, t) � 
 (7y2� 4yt2) �y�Z(t) � 7–
3y3� 2y2 t2�Z(t)

3.
�F

�t
� 4y2 t�Z�(t)

377FIRST-ORDER DIFFERENTIAL EQUATIONSCHAP. 16]



4. �F/�t � N � 4y2 t, so Z�(t) � 0 and Z(t) is a constant. Thus,

5. F(y, t) � 7–
3y3� 2y2 t2� c � 7y3� 6y2 t2� c

16.24. Redo Problem 16.23, given

y3 t dy� 1–
2y4 dt � 0 (16.47)

a) �M/�t � y3� �N/�y � 2y3. Applying Rule 1,

1
1–
2y4 (y3� 2y3) �

2
y4 (�y3) � �

2
y
� f(y) alone

Thus, e��2y�1 dy � e�2 ln y � eln y�2
� y�2

b) Multiplying (16.47) by y�2, yt dy� 1–
2y2 dt � 0.

1. �M/�t � y � �N/�y. Thus,

2. F(y, t) � 
 yt �y�Z(t) � 1–
2y2 t�Z(t)

3.
�F

�t
�

1
2

y2�Z�(t)

4. �F/�t � N � 1–
2y2, so Z�(t) � 0, and Z(t) is a constant. Thus,

5. F(y, t) � 1–
2y2 t� c

16.25. Redo Problem 16.23, given

4t dy� (16y� t2) dt � 0 (16.48)

a) M � 4t, N � 16y� t2, and �M/�t � 4� �N/�y � 16. Applying Rule 1,

1
16y� t2 (4� 16) �

�12
16y� t2� f(y) alone

Applying Rule 2,

1
4t

(16� 4) �
3
t
� g(t) alone

Thus, e� 3t�1 dt � e3 ln t � eln t3 � t3

b) Multiplying (16.48) by t3, 4t4 dy� (16yt3� t5) dt � 0 which was solved in Problem 16.21.

16.26. Redo Problem 16.23, given

t2 dy� 3yt dt � 0 (16.49)

a) Here M � t2, N � 3yt, and �M/�t � 2t� �N/�y � 3t. Applying Rule 1,

1
3yt

(2t� 3t) �
�t

3yt
�
�1
3y
� f(y) alone

Thus, e� (�1/3y) dy � e�(1/3) ln y � eln y�1/3
� y�1/3

Consequently, y�1/3 is an integrating factor for the equation, although in Problem 16.19 t was given
as an integrating factor. Let us check y�1/3 first.

b) Multiplying (16.49) by y�1/3, t2 y�1/3 dy� 3ty2/3 dt � 0.

1. �M/�t � 2ty�1/3 � �N/�y. Thus,
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2. F(y, t) � 
 t2 y�1/3 �y�Z(t) � 1.5t2 y2/3�Z(t)

3.
�F

�t
� 3ty2/3�Z�(t)

4. �F/�t � N � 3ty2/3, so Z�(t) � 0 and Z(t) is a constant. Hence,

5. F1(y, t) � 1.5t2 y2/3� c (16.50)

Here F1 is used to distinguish this function from the function F2 below.

16.27. Test to see if t is a possible integrating factor in Problem 16.26.

Applying Rule 2 to the original equation,

1
t2 (3t� 2t) �

t

t2 �
1
t

Thus, e� (1/t) dt � eln t � t

Hence t is also a possible integrating factor, as demonstrated in Problem 16.19, where the solution was
F2(y, t) � t3 y� c. This differs from (16.50) but is equally correct, as you can check on your own.

16.28. Redo Problem 16.23, given

(y� t) dy� dt � 0 (16.51)

a) M � y� t, N � �1, and �M/�t � �1� �N/�y � 0. Applying Rule 1,

1
�1

(�1� 0) � 1 � f(y) alone

Thus, e� 1 dy � ey

b) Multiplying (16.51) by ey,

(y� t)ey dy� ey dt � 0 (16.52)

1. �M/�t � �ey � �N/�y. Thus.

2. F(y, t) � 
 (y� t)ey �y�Z(t) (16.53)

which requires integration by parts. Let

f(y) � y� t f �(y) � 1 g�(y) � ey g(y) � 
 ey dy � ey

Substituting in (14.1),


 (y� t)ey �y � (y� t)ey�
 ey 1dy � (y� t)ey� ey

Substituting in (16.53), F(y, t) � (y� t)ey� ey�Z(t).

3.
�F

�t
� �ey�Z�(t)

4. �F/�t � N � �ey in (16.52), so Z�(t) � 0 and Z(t) is a constant. Thus,

5. F(y, t) � (y� t)ey� ey� c or (y� 1)ey� tey� c
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SEPARATION OF VARIABLES

16.29. Solve the following differential equation, using the procedure for separating variables described
in Section 16.6.

dy
dt
�
�5t

y

Separating the variables,

y dy � �5t dt y dy� 5t dt � 0

Integrating each term separately,

y2

2
�

5t2

2
� c1

y2� 5t2�

Letting c � 2c1, y2� 5t2�

2c1

c

16.30. Redo Problem 16.29, given

a)
dy
dt
�

t5

y4 b) t2 dy� y2 dt � 0

y4 dy� t5 dt � 0
dy

y2 �
dt

t2 � 0

Integrating,
y5

5
�

t6

6
� c1 Integrating, �

1
y
�

1
t
� c

6y5� 5t6� 30c1 y� t � cty

Letting c � 30c1, 6y5� 5t6� c

16.31. Redo Problem 16.29, given t dy� y dt � 0.

dy
y
�

dt
t
� 0

Integrating, ln y� ln t � ln c (an arbitrary constant)

By the rule of logs, ln yt � ln c yt � c

16.32. Use separation of variables to solve the following differential equation.

dy
dt
��y

Separating the variables,
dy

y
� �dt

Integrating both sides and using ln c for the constant of integration,

ln y � �t� ln c

Then playing with the constant of integration for ultimate simplicity of the solution,

ln y� ln c � �t

ln
y

c
� �t
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Setting both sides as exponents of e,

y

c
� e�t

y � ce�t

16.33. Redo Problem 16.32, given

dy
dt
� b� ay

Separating the variables and then multiplying both sides by �1,

dy

b� ay
� dt

dy

ay� b
� �dt

Integrating both sides and being creative once again with the constant of integration,

1
a

ln(ay� b) � �t�
1
a

ln c

Multiplying both sides by a and rearranging,

ln (ay� b) � �at� ln c

ln � ay� b

c � � �at

ay� b

c
� e�at

ay� b � ce�at

y � Ce�at�
b

a
where C �

c

a

16.34. Redo Problem 16.32, given (t� 5) dy� (y� 9) dt � 0.

dy
y� 9

�
dt

t� 5
� 0

Integrating, ln (y� 9)� ln (t� 5) � ln c

By the rule of logs, ln
y� 9
t� 5

� ln c

y� 9
t� 5

� c or y� 9 � c(t� 5)

16.35. Using the procedure for separating variables, solve the differential equation dy � 3t2 y dt.

dy
y
� 3t2 dt � 0

Integrating, ln y� t3 � ln c
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Expressing each side of the equation as an exponent of e,

eln y�t3 �

eln y e�t3 �

ye�t3 �

y �

eln c

eln c

c

cet3

16.36. Redo Problem 16.35, given y2(t3� 1) dy� t2(y3� 5) dt � 0.

y2

y3� 5
dy�

t2

t3� 1
dt � 0

Integrating by substitution,
1–
3 ln (y3� 5)� 1–

3 ln (t3� 1) � ln c

ln [(y3� 5)(t3� 1)] � ln c (y3� 5)(t3� 1) � c

16.37. Redo Problem 16.35, given

3 dy�
t

t2� 1
dt � 0

Integrating, 3y� 1–
2 ln (t2� 1) � c

Setting the left-hand side as an exponent of e and ignoring c, because, as an arbitrary constant, it can be
expressed equally well as c or ec,

e3y�(1/2) ln (t2�1) � c

e3y eln (t2�1)1/2
� c e3y(t2� 1)1/2� c

USE OF DIFFERENTIAL EQUATIONS IN ECONOMICS

16.38. Find the demand function Q� f(P) if point elasticity � is �1 for all P� 0.

� �
dQ
dP

P
Q
��1

dQ
dP
��

Q
P

Separating the variables,

dQ

Q
�

dP

P
� 0

Integrating, ln Q� ln P � ln c

QP � c Q �
c

P

16.39. Find the demand function Q� f(P) if � � �k, a constant.

� �
dQ
dP

P
Q
��k

dQ
dP
��

kQ
P

Separating the variables,

dQ

Q
�

k

P
dP � 0

ln Q� k ln P � c

QPk � c Q � cP�k
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16.40. Find the demand function Q� f(P) if � � �(5P� 2P2)/Q and Q� 500 when P � 10.

� �
dQ
dP

P
Q
�
�(5P� 2P2)

Q

dQ
dP
�
�(5P� 2P2)

Q
Q
P
��(5� 2P)

Separating the variables,

dQ� (5� 2P) dP � 0

Integrating, Q� 5P�P2 � c Q � �P2� 5P� c

At P � 10 and Q � 500,

500 � �100� 50� c c � 650

Thus, Q � 650� 5P�P2.

16.41. Derive the formula P � P(0)eit for the total value of an initial sum of money P(0) set out for
t years at interest rate i, when i is compounded continuously.

If i is compounded continuously,

dP

dt
� iP

Separating the variables,

dP

P
� i dt � 0

Integrating, ln P� it � c

Setting the left-hand side as an exponent of e,

eln P�it � c

Pe�it � c P � ceit

At t � 0, P � P(0). Thus P(0) � ce0, c � P(0), and P � P(0)eit.

16.42. Determine the stability condition for a two-sector income determination model in which Ĉ, Î,
Ŷ are deviations of consumption, investment, and income, respectively, from their equilibrium
values Ce, Ie, Ye. That is, Ĉ� C(t)�Ce, etc., where Ĉ is read ‘‘C hat.’’ Income changes at a rate
proportional to excess demand C� I�Y, and

Ĉ(t) � gŶ(t) Î(t) � bŶ(t)
dŶ(t)

dt
� a(Ĉ� Î� Ŷ) 0� a, b, g� 1

Substituting the first two equations in the third,

dŶ

dt
� a(g� b� 1) Ŷ

Separating the variables and then integrating,

dŶ

Ŷ
� a(g� b� 1) dt

ln Ŷ � a(g� b� 1) t� c

eln Ŷ� ea(g�b�1)t�c
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Letting the constant ec � c,

Ŷ � cea(g�b�1)t

At t � 0, Ŷ � Y(0)�Ye � c. Substituting above, Ŷ � [Y(0)�Ye]ea(g�b�1)t. Since Ŷ � Y(t)�Ye,
Y(t) � Ye� Ŷ. Thus,

Y(t) � Ye� [Y(0)�Ye]ea(g�b�1)t

As t → �, Y(t) → Ye only if g� b� 1. The sum of the marginal propensity to consume g and the
marginal propensity to invest b must be less than 1.

16.43. In Example 11 we found P(t) � [P(0)� P̄]e�m(h�b)t� P̄. (a) Explain the time path if (1) the
initial price P(0) � P̄, (2) P(0)� P̄, and (3) P(0)� P̄. (b) Graph your findings.

a) 1) If the initial price equals the equilibrium price, P(0) � P̄, the first term on the right disappears
and P(t) � P̄. The time path is a horizontal line, and adjustment is immediate. See Fig. 16-2.

2) If P(0)� P̄, the first term on the right is positive. Thus P(t)� P̄ and P(t) approaches P̄ from above
as t → � and the first term on the right → 0.

3) If P(0)� P̄, the first term on the right is negative. And P(t)� P̄ and approaches it from below as
t → � and the first term → 0.

b) See Fig. 16-2.

16.44. A change in the rate of investment will affect both aggregate demand and the productive
capability of an economy. The Domar model seeks to find the time path along which an
economy can grow while maintaining full utilization of its productive capacity. If the marginal
propensity to save s and the marginal capital-output ratio k are constant, find the investment
function needed for the desired growth.

The change in aggregate demand is equal to the change in investment times the multiplier 1/s,

dY

dt
�

1
s

dI

dt
(16.54)

The change in productive capacity is equal to the change in the capital stock times the reciprocal of the
marginal capital-output ratio,

dQ

dt
�

1
k

dK

dt
�

1
k

I since
dK

dt
� I (16.55)

Equating (16.54) and (16.55) for fully utilized capacity,

1
s

dI

dt
�

1
k

I
1
s

dI �
1
k

I dt
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Separating the variables,

dI

I
�

s

k
dt � 0

Integrating, ln I�
s

k
t � c

Ie�(s/k)t � c I � ce(s/k)t

At t � 0, I(0) � c, and I � I(0)e(s/k)t.
Investment must grow at a constant rate determined by s/k: the savings rate divided by the

capital-output ratio.

16.45. The Solow model examines equilibrium growth paths with full employment of both capital and
labor. Based on the assumptions that

1. Output is a linearly homogeneous function of capital and labor exhibiting constant
returns to scale,

Y� f(K, L) (16.56)

2. A constant proportion s of output is saved and invested,

dK
dt

� K
·
� sY (16.57)

3. The supply of labor is growing at a constant rate r,

L� L0 ert (16.58)

derive the differential equation in terms of the single variable K/L, which serves as the basis of
the model.

Substituting Y from (16.56) in (16.57),

dK

dt
� sf(K, L) (16.59)

Substituting L from (16.58) in (16.59),

dK

dt
� sf(K, L0 ert) (16.60)

This is the time path capital formation (dK/dt) must follow for full employment of a growing labor force.
Preparing to convert to a function of K/L, let z � K/L, then K � zL. Making use of (16.58),

K � zL0 ert (16.61)

Taking the derivative of (16.61) and using the product rule since z is a function of t,

dK

dt
� z(rL0 ert)�L0ert dz

dt
� �zr�

dz

dt � L0ert (16.62)

Equating (16.60) and (16.62),

sf(K, L0 ert) � �zr�
dz

dt � L0ert (16.63)

Since the left-hand side of (16.63) is a linearly homogeneous production function, we may divide both
inputs by L0 ert and multiply the function itself by L0 ert without changing its value. Thus,

sf(K, L0ert) � sL0 ert f � K

L0 ert , 1� (16.64)
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Substituting (16.64) in (16.63) and dividing both sides by L0 ert

sf � K

L0 ert , 1� � zr�
dz

dt
(16.65)

Finally, substituting z for K/L0 ert and subtracting zr from both sides,

dz

dt
� sf(z, 1)� zr (16.66)

which is a differential equation in terms of the single variable z and two parameters r and s, where z � K/L,
r � the rate of growth of the labor force, and s � the savings rate.

16.46. Assume that the demand for money is for transaction purposes only. Thus,

Md � kP(t)Q (16.67)

where k is constant, P is the price level, and Q is real output. Assume Ms �Md and is
exogenously determined by monetary authorities. If inflation or the rate of change of prices is
proportional to excess demand for goods in society and, from Walras’ law, an excess demand
for goods is the same thing as an excess supply of money, so that

dP(t)
dt

� b(Ms�Md) (16.68)

find the stability conditions, when real output Q is constant.

Substituting (16.67) in (16.68),

dP(t)
dt

� bMs� bkP(t)Q (16.69)

If we let P̂ � P(t)�Pe (16.70)

where P̂ is the deviation of prices from the equilibrium price level Pe, then taking the derivative of
(16.70),

dP̂

dt
�

dP(t)
dt

�
dPe

dt

But in equilibrium dPe/dt � 0. Hence,

dP̂

dt
�

dP(t)
dt

(16.71)

Substituting in (16.69),

dP̂

dt
� bMs� bkP(t)Q (16.72)

In equilibrium, Ms �Md � kPe Q. Hence Ms� kPeQ � 0 and b(Ms� kPe Q) � 0. Subtracting this from
(16.72),

dP̂

dt
� bMs� bkP(t)Q� bMs� bkPe Q � �bkQ[P(t)�Pe] � �bkQP̂ (16.73)

which is a differential equation. Separating the variables,

dP̂

P̂
� �bkQ dt

Integrating, ln P̂ � �bkQt� c, P̂ � Ae�bkQt, where ec � A.
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Since b, k, Q� 0, P̂ → 0 as t → �, and the system is stable. To find the time path P(t) from P̂, see the
conclusion of Problem 16.42, where Y(t) was derived from Ŷ.

16.47. If the expectation of inflation is a positive function of the present rate of inflation

�dP(t)
dt �

E
� h

dP(t)
dt

(16.74)

and the expectation of inflation reduces people’s desire to hold money, so that

Md � kP(t)Q� g �dP(t)
dt �

E
(16.75)

check the stability conditions, assuming that the rate of inflation is proportional to the excess
supply of money as in (16.68).

Substituting (16.74) in (16.75),

Md � kP(t)Q� gh
dP(t)

dt
(16.76)

Substituting (16.76) in (16.68),

dP(t)
dt

� bMs� b �kP(t)Q� gh
dP(t)

dt �
By a process similar to the steps involving (16.70) to (16.73),

dP̂

dt
� bMs� bkP(t)Q� bgh

dP(t)
dt

� bMs� bkPe Q � �bkQP̂� bgh
dP(t)

dt
(16.77)

Substituting (16.71) for dP(t)/dt in (16.77),

dP̂

dt
� �bkQP̂� bgh

dP̂

dt
�
�bkQP̂

1� bgh

Separating the variables,

dP̂

P̂
�
�bkQ

1� bgh
dt

Integrating, ln P̂ � �bkQt/(1� bgh)

P̂ � Ae�bkQt/(1�bgh)

Since b, k, Q� 0, P̂ → 0 as t → �, if bgh� 1. Hence even if h is greater than 1, meaning people expect
inflation to accelerate, the economy need not be unstable, as long as b and g are sufficiently small.

PHASE DIAGRAMS FOR DIFFERENTIAL EQUATIONS

16.48. (a) Construct a phase diagram for the following nonlinear differential equation and test the
dynamic stability using (b) the arrows of motion, (c) the slope of the phase line, and (d) the
derivative test.

y· � 3y2� 18y

a) By setting y· � 0, we find the intertemporal equilibrium solution(s) where the phase diagram crosses
the horizontal axis.

3y(y� 6) � 0
ȳ1 � 0 ȳ2 � 6

387FIRST-ORDER DIFFERENTIAL EQUATIONSCHAP. 16]



We then find the critical value and whether it represents a maximum or minimum.

dy·

dy
� 6y� 18 � 0 y � 3 critical value

d2 y·

dy2 � 6� 0 relative minimum

Armed with this information, we can then draw a rough but accurate sketch of the graph, as in
Fig. 16-3.

b) Above the horizontal axis, where y· � 0, the arrows of motion point to the right; below the horizontal
axis, y· � 0 and the arrows of motion point to the left. Since the arrows of motion point towards ȳ1� 0
and away from ȳ2 � 6, ȳ1 is stable and ȳ2 is unstable.

c) With the slope of the phase diagram negative as it passes through ȳ1� 0, we know ȳ1 must be stable.
With a positive slope at ȳ2� 6, ȳ2 must be unstable.

d) Taking the derivative of the equation, independently of the graph, and evaluating it at the critical
values, we see

dy·

dy
� 6y� 18

dy·

dy
(0) � 6(0)� 18 � �18� 0 ȳ1 � 0 is stable

dy·

dy
(6) � 6(6)� 18 � 18� 0 ȳ2� 6 is unstable

16.49. Repeat the exercise in Problem 16.48 for

y· ��y2� 6y� 5

a) Setting y· � 0, (y� 1)(�y� 5) � 0
ȳ1 � 1 ȳ2 � 5

Optimizing,
dy·

dy
� �2y� 6 � 0

y � 3 critical value

d2 y·

dy2 � �2� 0 relative maximum

Then sketching the graph, as in Fig. 16-4.
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b) Since the arrows of motions point away from ȳ1 � 1 and towards ȳ2� 5, ȳ1 is unstable while ȳ2 is a
stable intertemporal equilibrium.

c) The positive slope at ȳ1 � 1 and the negative slope at ȳ2� 5 indicate that ȳ1 is an unstable equilibrium
and ȳ2 is a stable equilibrium.

d)
dy·

dy
� �2y� 6

dy·

dy
(1) � �2(1)� 6 � 4� 0 ȳ1 � 1 is unstable

dy·

dy
(5) � �2(5)� 6 � �4� 0 ȳ2 � 5 is stable

16.50. Repeat Problem 16.49, given

y· � y2� 10y� 16

a) (y� 2)(y� 8) � 0

ȳ1 � 2 ȳ2 � 8

dy·

dy
� 2y� 10 � 0 y � 5 critical value

d2 y·

dy2 � 2� 0 relative minimum

Then sketching the graph, as in Fig. 16.5.
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b) Since the arrows of motion point towards ȳ1 � 2 and away from ȳ2 � 8, ȳ1 is stable while ȳ2 is an
unstable intertemporal equilibrium.

c) The negative slope at ȳ1 � 2 and the positive slope at ȳ2 � 8 indicate that ȳ1 is a stable equilibrium
and ȳ2 is an unstable equilibrium.

d)
dy·

dy
� 2y� 10

dy·

dy
(2) � 2(2)� 10 � �6� 0 ȳ1� 2 is stable

dy·

dy
(8) � 2(8)� 10 � 6� 0 ȳ2 � 8 is unstable
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CHAPTER 17

First-Order
Difference
Equations

17.1 DEFINITIONS AND CONCEPTS

A difference equation expresses a relationship between a dependent variable and a lagged
independent variable (or variables) which changes at discrete intervals of time, for example,
It � f(Yt�1), where I and Y are measured at the end of each year. The order of a difference equation
is determined by the greatest number of periods lagged. A first-order difference equation expresses a
time lag of one period; a second-order, two periods; etc. The change in y as t changes from t to t� 1
is called the first difference of y. It is written

	y
	t
� 	yt � yt�1� yt (17.1)

where 	 is an operator replacing d/dt that is used to measure continuous change in differential
equations. The solution of a difference equation defines y for every value of t and does not contain a
difference expression. See Examples 1 and 2.

EXAMPLE 1. Each of the following is a difference equation of the order indicated.

It �

Qs �

yt�3� 9yt�2� 2yt�1� 6yt� 8 order 3
	yt �

a(Yt�1�Yt�2)
a� bPt�1

5yt

order 2
order 1

order 1

Substituting from (17.1) for 	yt above,

yt�1� yt � 5yt yt�1� 6yt order 1

EXAMPLE 2. Given that the initial value of y is y0, in the difference equation

yt�1� byt (17.2)
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a solution is found as follows. By successive substitutions of t � 0, 1, 2, 3, etc. in (17.2),

y1� by0

y2� by1 � b(by0) � b2 y0

y3 � by2� b(b2y0) � b3 y0

y4 � by3� b(b3y0) � b4 y0

Thus, for any period t,

yt � bt y0

This method is called the iterative method. Since y0 is a constant, notice the crucial role b plays in determining
values for y as t changes.

17.2 GENERAL FORMULA FOR FIRST-ORDER LINEAR DIFFERENCE EQUATIONS

Given a first-order difference equation which is linear (i.e., all the variables are raised to the first
power and there are no cross products),

yt � byt�1� a (17.3)

where b and a are constants, the general formula for a definite solution is

yt � �y0�
a

1� b �bt�
a

1� b
when b� 1 (17.4)

yt � y0� at when b � 1 (17.4a)

If no initial condition is given, an arbitrary constant A is used for y0� a/(1� b) in (17.4) and for y0 in
(17.4a). This is called a general solution. See Example 3 and Problems 17.1 to 17.13.

EXAMPLE 3. Consider the difference equation yt � �7yt�1� 16 and y0 � 5. In the equation, b � �7 and a � 16.
Since b� 1, it is solved by using (17.4), as follows:

yt � �5�
16

1� 7 � (�7)t�
16

1� 7
� 3(�7)t� 2 (17.5)

To check the answer, substitute t � 0 and t � 1 in (17.5).

y0� 3(�7)0� 2 � 5 since (�7)0� 1
y1� 3(�7)1� 2 � �19

Substituting y1 � �19 for yt and y0 � 5 for yt�1 in the original equation,

�19 � �7(5)� 16 � �35� 16

17.3 STABILITY CONDITIONS

Equation (17.4) can be expressed in the general form

yt� Abt� c (17.6)

where A � y0� a/(1� b) and c� a/(1� b). Here Abt is called the complementary function and c is the
particular solution. The particular solution expresses the intertemporal equilibrium level of y; the
complementary function represents the deviations from that equilibrium. Equation (17.6) will be
dynamically stable, therefore, only if the complementary function Abt → 0, as t → �. All depends on
the base b. Assuming A � 1 and c� 0 for the moment, the exponential expression bt will generate
seven different time paths depending on the value of b, as illustrated in Example 4. As seen there, if

b 
� 1, the time path will explode and move farther and farther away from equilibrium; if 
b 
� 1, the
time path will be damped and move toward equilibrium. If b� 0, the time path will oscillate between
positive and negative values; if b� 0, the time path will be nonoscillating. If A� 1, the value of the
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multiplicative constant will scale up or down the magnitude of bt, but will not change the basic pattern
of movement. If A ��1, a mirror image of the time path of bt with respect to the horizontal axis will
be produced. If c� 0, the vertical intercept of the graph is affected, and the graph shifts up or down
accordingly. See Examples 4 and 5 and Problems 17.1 to 17.13.

EXAMPLE 4. In the equation yt � bt, b can range from �� to �. Seven different time paths can be generated,
each of which is explained below and graphed in Fig. 17-1.

1. If b� 1, bt increases at an increasing rate as t increases, thus moving farther and farther away from
the horizontal axis. This is illustrated in Fig. 17-1(a), which is a step function representing changes at
discrete intervals of time, not a continuous function. Assume b � 3. Then as t goes from 0 to 4, bt � 1,
3, 9, 27, 81.

2. If b � 1, bt � 1 for all values of t. This is represented by a horizontal line in Fig. 17-1(b).
3. If 0� b� 1, then b is a positive fraction and bt decreases as t increases, drawing closer and closer to the

horizontal axis, but always remaining positive, as illustrated in Fig. 17-1(c). Assume b � 1–
3. Then as t goes

from 0 to 4, bt � 1, 1–
3,

1–
9,

1–-
27,

1––
81.

4. If b � 0, then bt� 0 for all values of t. See Fig. 17-1(d).
5. If �1� b� 0, then b is a negative fraction; bt will alternate in sign and draw closer and closer to the

horizontal axis as t increases. See Fig. 17-1(e). Assume b � �1–
3. Then as t goes from 0 to 4, bt� 1, �1–

3,
1–
9,

� 1––
27,

1––
81.
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6. If b � �1, then bt oscillates between �1 and �1. See Fig. 17-1( f).
7. If b��1, then bt will oscillate and move farther and farther away from the horizontal axis, as illustrated

in Fig. 17-1(g). Assume b � �3. Then bt � 1, �3, 9, �27, 81, as t goes from 0 to 4.

In short, if 
b 
� 1

b 
� 1

b� 0
b� 0

the time path explodes
the time path converges
the time path is nonoscillating
the time path oscillates

EXAMPLE 5. In the equation yt � 6(�1–
4)

t� 6, since b � �1–
4� 0, the time path oscillates. Since 
b 
� 1, the time

path converges.
When yt � 5(6)t� 9 and b � 6� 0, there is no oscillation. With 
b 
� 1, the time path explodes.

17.4 LAGGED INCOME DETERMINATION MODEL

In the simple income determination model of Section 2.3 there were no lags. Now assume that
consumption is a function of the previous period’s income, so that

Ct � C0� cYt�1 Yt � Ct� It

where It � I0. Thus, Yt � C0� cYt�1� I0. Rearranging terms to conform with (17.3),

Yt � cYt�1�C0� I0 (17.7)

where b � c and a � C0� I0. Substituting these values in (17.4), since the marginal propensity to
consume c cannot equal 1, and assuming Yt � Y0 at t � 0,

Yt � �Y0�
C0� I0

1� c � (c)t�
C0� I0

1� c
(17.8)

The stability of the time path thus depends on c. Since 0�MPC� 1, 
c 
� 1 and the time path will
converge. Since c� 0, there will be no oscillations. The equilibrium is stable, and as t → �,
Yt → (C0� I0)/(1� c), which is the intertemporal equilibrium level of income. See Example 6 and
Problems 17.14 to 17.20.

EXAMPLE 6. Given Yt � Ct� It, Ct � 200� 0.9Yt�1, It � 100, and Y0 � 4500. Solving for Yt,

Yt� 200� 0.9Yt�1� 100 � 0.9Yt�1� 300 (17.9)

Using (17.4),

Yt� �4500�
300

1� 0.9 � (0.9)t�
300

1� 0.9
� 1500(0.9)t� 3000 (17.10)

With 
0.9 
� 1, the time path converges; with 0.9� 0, there is no oscillation. Thus, Yt is dynamically stable. As
t → �, the first term on the right-hand side goes to zero, and Yt approaches the intertemporal equilibrium level
of income: 300/(1� 0.9) � 3000.

To check this answer, let t � 0 and t � 1 in (17.10). Thus,

Y0 � 1500(0.9)0� 3000 � 4500
Y1 � 1500(0.9)1� 3000 � 4350

Substituting Y1 � 4350 for Yt and Y0 � 4500 for Yt�1 in (17.9),

4350� 0.9(4500) � 300
4350� 4050 � 300
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17.5 THE COBWEB MODEL

For many products, such as agricultural commodities, which are planted a year before marketing,
current supply depends on last year’s prices. This poses interesting stability questions. If

Qdt � c� bPt and Qst � g� hPt�1

in equilibrium, c� bPt � g� hPt�1 (17.11)

bPt � hPt�1� g� c (17.12)

Dividing (17.12) by b to conform to (17.3),

Pt �
h
b

Pt�1�
g� c

b

Since b� 0 and h� 0 under normal demand and supply conditions, h/b� 1. Using (17.4),

Pt � �P0�
(g� c)/b
1� h/b ��h

b�
t

�
(g� c)/b
1� h/b

� �P0�
g� c
b� h��

h
b�

t

�
g� c
b� h

(17.13)

When the model is in equilibrium, Pt � Pt�1. Substituting Pe for Pt and Pt�1 in (17.11)

Pe�
g� c
b� h

(17.13a)

Substituting in (17.13),

Pt� (P0�Pe) �h
b�

t

�Pe

With an ordinary negative demand function and positive supply function, b� 0 and h� 0.
Therefore, h/b� 0 and the time path will oscillate.

If 
h 
� 
b 
, 
h/b 
� 1, and the time path Pt explodes.
If 
h 
� 
b 
, h/b ��1, and the time oscillates uniformly.
If 
h 
� 
b 
, 
h/b 
� 1, and the time path converges, and Pt approaches Pe.

In short, when Q� f(P) in supply-and-demand analysis, as is common in mathematics, the supply
curve must be flatter than the demand curve for stability. See Example 7 and Problems 17.21 to 17.25.
But if P � f(Q), as is typical in economics, the reverse is true. The demand curve must be flatter, or
more elastic, than the supply curve if the model is to be stable.

EXAMPLE 7. Given Qdt � 86� 0.8Pt and Qst � �10� 0.2Pt�1, the market price Pt for any time period and the
equilibrium price Pe can be found as follows. Equating demand and supply,

86� 0.8Pt� �10� 0.2Pt�1 �0.8Pt � 0.2Pt�1� 96

Dividing through by �0.8 to conform to (17.3), Pt � �0.25Pt�1� 120. Using (17.4),

Pt� �P0�
120

1� 0.25 � (�0.25)t�
120

1� 0.25
� (P0� 96)(�0.25)t� 96

which can be checked by substituting the appropriate values in (17.13). From (17.13a), Pe � (�10� 86)/
(�0.8� 0.2) � (�96)/(�1) � 96.

With the base b � �0.25, which is negative and less than 1, the time path oscillates and converges. The
equilibrium is stable, and Pt will converge to Pe � 96 as t → �.
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17.6 THE HARROD MODEL

The Harrod model attempts to explain the dynamics of growth in the economy. It assumes

St � sYt

where s is a constant equal to both the MPS and APS. It also assumes the acceleration principle, i.e.,
investment is proportional to the rate of change of national income over time.

It � a(Yt�Yt�1)

where a is a constant equal to both the marginal and average capital-output ratios. In equilibrium,
It � St. Therefore,

a(Yt�Yt�1) � sYt (a� s)Yt � aYt�1

Dividing through by a� s to conform to (17.3), Yt � [a/(a� s)]Yt�1. Using (17.4) since a/(a� s)� 1,

Yt � (Y0� 0) � a
a� s�

t

� 0 � � a
a� s�

t

Y0 (17.14)

The stability of the time path thus depends on a/(a� s). Since a � the capital-output ratio, which is
normally larger than 1, and since s �MPS which is larger than 0 and less than 1, the base a/(a� s) will
be larger than 0 and usually larger than 1. Therefore, Yt is explosive but nonoscillating. Income will
expand indefinitely, which means it has no bounds. See Examples 8 and 9 and Problems 17.26 and
17.27. For other economic applications, see Problems 17.28 to 17.30.

EXAMPLE 8. The warranted rate of growth (i.e., the path the economy must follow to have equilibrium between
saving and investment each year) can be found as follows in the Harrod model.

From (17.14) Yt increases indefinitely. Income in one period is a/(a� s) times the income of the previous
period.

Y1 � � a

a� s � Y0 (17.15)

The rate of growth G between the periods is defined as

G �
Y1�Y0

Y0

Substituting from (17.15),

G �
[a/(a� s)]Y0�Y0

Y0

�
[a/(a� s)� 1]Y0

Y0

�
a

a� s
� 1 �

a

a� s
�

a� s

a� s
�

s

a� s

The warranted rate of growth, therefore, is

Gw �
s

a� s
(17.16)

EXAMPLE 9. Assume that the marginal propensity to save in the Harrod model above is 0.12 and the
capital-output ratio is 2.12. To find Yt from (17.14),

Yt � � 2.12
2.12� 0.12 �

t

Y0 � (1.06)t Y0

The warranted rate of growth, from (17.16), is

Gw �
0.12

2.12� 0.12
�

0.12
2
� 0.06
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17.7 PHASE DIAGRAMS FOR DIFFERENCE EQUATIONS

While linear difference equations can be solved explicitly, nonlinear difference equations in
general cannot. Important information about stability conditions, however, can once again be gleaned
from phase diagrams. A phase diagram of a difference equation depicts yt as a function of yt�1. If we
restrict the diagram to the first quadrant for economic reasons so all the variables will be nonnegative,
a 45
 line from the origin will capture all the possible steady-state equilibrium points where yt � yt�1.
Consequently, any point at which the phase diagram intersects the 45
 line will indicate an
intertemporal equilibrium solution. The stability of a solution can be tested diagrammatically
(Example 10) and mathematically (Example 11). Mathematically, the test depends on the following
criteria for the first derivative of the phase line when it is evaluated at a steady-state point.

1. If � dyt

dyt�1
(ȳ) � � 1, ȳ is locally stable. If � dyt

dyt�1
(ȳ) � � 1, ȳ is locally unstable.

2. If
dyt

dyt�1
(ȳ)� 0, no oscillation. If

dyt

dyt�1
(ȳ)� 0, oscillation.

EXAMPLE 10. Given a nonlinear difference equation, such as

yt � y0.5
t�1 ��yt�1

we can construct a phase diagram in a few easy steps.

1. Find the steady-state solution(s), where yt � yt�1, by setting both yt and yt�1 � ȳ and solving algebraically
for ȳ.

ȳ �

ȳ0.5� ȳ �

ȳ0.5

0

ȳ � ȳ0.5

ȳ
� 1� � ȳ(ȳ�0.5� 1) � 0

ȳ1 � 0 ȳ2� 1 steady-state solutions

The phase diagram must intersect the 45
 line at ȳ1� 0 and ȳ2 � 1.
2. Take the first-derivative to see if the slope is positive or negative.

dyt

dyt�1
� 0.5yt�1

�0.5 �
0.5

�yt�1

� 0

Assuming yt, yt�1� 0, the phase diagram must be positively sloped.
3. Take the second derivative to see if the phase line is concave or convex.

d2yt

dy2
t�1

� �0.25yt�1
�1.5 � �0.25yt�1

�3/2 �
�0.25

�y3
t�1

� 0 concave

4. Draw a rough sketch of the graph, as in Fig. 17-2.
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45˚ line: yt = yt–1 (Slope = 1)

1

Phase line



5. To analyze the phase diagram for stability conditions, we pick an arbitrary value for yt�1, say yt�1 � 0.25,
and in a repeated sequence of steps (shown as dotted arrows) move up vertically to the phase diagram,
then across horizontally to the 45
 line, to see if the process converges to an equilibrium point or diverges
from an equilibrium point. Here, starting from a value 0� yt�1� 1, the process converges towards ȳ2� 1
and diverges from ȳ1 � 0. We conclude, therefore, that starting from a value 0� yt�1� 1, ȳ2 � 1 is a
locally stable equilibrium and ȳ1 � 0 is locally unstable.

We next pick a value yt�1� 1, here yt�1� 2, and repeat the process. From the pattern of dotted
arrows that emerges, we conclude that starting from a value yt�1� 1, ȳ2 � 1 is also locally stable when
approached from a value �1.

EXAMPLE 11. Here we confirm the results of the phase diagram test with the simple calculus test described
above. Assuming once again, yt � y0.5

t�1,

dyt

dyt�1

� 0.5yt�1
�0.5

Evaluated in absolute value at ȳ2 � 1,


0.5(1)�0.5 
 � � 0.5

�1 � � 0.5� 1 locally stable.

Evaluated simply as ȳ2 � 1,

0.5(1)�0.5 �
0.5

�1
� 0.5� 0 no oscillation.

Evaluated at ȳ1 � 0, the derivative is undefined but approaches infinity as yt�1 → 0. Therefore, ȳ1 � 0 is locally
unstable. See Problems 17.31 to 17.33.

Solved Problems

USE OF GENERAL FORMULA FOR FIRST-ORDER LINEAR DIFFERENCE EQUATIONS

17.1. (a) Solve the difference equation given below; (b) check your answer, using t � 0 and t � 1; and
(c) comment on the nature of the time path.

yt � 6yt�1

a) Here b � 6 and a � 0. Using (17.4) for all cases in which b� 1,

yt � (y0� 0)(6)t� 0 � y0(6)t � A(6)t (17.17)

where A, as a more generally used unspecified constant, replaces y0.

b) Estimating (17.17) at t � 0 and t � 1,

y0 � A(6)0 � A y1� A(6) � 6A

Substituting y0 � A for yt�1 and y1 � 6A for yt in the original problems, 6A � 6(A).

c) With the base b � 6 in (17.17) positive and greater than 1, that is, b� 0 and 
b 
� 1, the time path is
nonoscillating and explosive.

17.2. Redo Problem 17.1 for yt �
1–
8yt�1.

a) Using (17.4),

yt � (y0� 0)(1–
8)

t� 0 � y0(
1–
8)

t � A(1–
8)

t
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b) At t � 0, y0 � A(1–
8)

0� A. At t � 1, y1 � A(1–
8) �

1–
8A. Substituting y0 � A for yt�1 and y1 �

1–
8A for yt in

the original equation, 1–
8A �

1–
8(A).

c) With b � 1–
8, b� 0 and 
b 
� 1. The time path is nonoscillating and converging.

17.3. Redo Problem 17.1, given yt ��
1–
4yt�1� 60 and y0 � 8.

a) yt � �8�
60

1� 1–
4
� �� 1

4 �
t

�
60

1� 1–
4
� �40 �� 1

4 �
t

� 48

b) At t � 0, y0� �40(�1–
4)

0� 48 � 8. At t � 1, y1 � �40(�1–
4)� 48 � 58. Substituting in the original

equation, 58 � �1–
4(8)� 60 � 58.

c) With b � �1–
4, b� 0 and 
b 
� 1. The time path oscillates and converges.

17.4. Redo Problem 17.1, given xt� 3xt�1� 8 � 0 and x0 � 16.

a) Rearranging to conform with (17.3),

xt � �3xt�1� 8

Thus, b � �3 and a � �8. Substituting in (17.4),

xt � �16�
8

1� 3 �(�3)t�
8

1� 3
� 18(�3)t� 2

b) At t � 0, x0� 18(�3)0� 2 � 16. At t � 1, x1� 18(�3)� 2 � �56. Substituting in the original,
�56� 3(16)� 8 � 0.

c) With b � �3, b� 0 and 
b 
� 1. The time path oscillates and explodes.

17.5. Redo Problem 17.1, given yt� yt�1� 17.

a) Rearranging, yt � yt�1� 17. Here b � 1. Using (17.4a), therefore, yt � y0� 17t � A� 17t.

b) At t � 0, y0 � A. At t � 1, y1 � A� 17. Substituting in the original, A� 17�A � 17.

c) Here b � 1. Thus b� 0 and yt will not oscillate. But with 
b 
 � 1, 1 
b 
 1. This presents a special
case. With a� 0, unless y0� A � 0, the time path is divergent because the complementary function
A does not approach 0 as t → �. Thus, yt approaches A� at, and not the particular solution, at, itself.
For b � 1 and a � 0, see Problem 17.17.

17.6. Redo Problem 17.1, given gt � gt�1� 25 and g0� 40.

a) Using (17.4a), gt � 40� 25t.

b) At t � 0, g0 � 40. At t � 1, gt � 15. Substituting in the original, 15 � 40� 25.

c) With b � 1, a� 0 and A � g0� 0. The time path is nonoscillatory and divergent.

17.7. Redo Problem 17.1, given 2yt � yt�1� 18.

a) Dividing through by 2 to conform to (17.3) and then using (17.4),

yt �
1
2

yt�1� 9 � �y0�
9

1� 1–
2
� �1

2 �
t

�
9

1� 1–
2
� A �1

2 �
t

� 18

where A is an arbitrary constant for y0� 18.

b) At t � 0, y0 � A� 18. At t � 1, y1�
1–
2A� 18. Substituting in the original, 2(1–

2A� 18) � A� 18� 18;
A� 36 � A� 36.

c) With b � 1–
2, b� 0 and 
b 
� 1. So yt is nonoscillating and convergent.
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17.8. (a) Solve the following difference equation; (b) check the answer, using t � 0 and t � 1; and
(c) comment on the nature of the time path.

5yt� 2yt�1� 140 � 0 y0� 30

a) Dividing by 5, rearranging terms, and using (17.4),

yt � �0.4yt�1� 28 � �30�
28

1� 0.4 � (�0.4)t�
28

1� 0.4
� 10(�0.4)t� 20

b) At t � 0, y0� 30. At t � 1, y1 � 16. Substituting in the original, 5(16)� 2(30)� 140 � 0.

c) With b � �0.4, b� 0 and 
b 
� 1. So yt oscillates and converges.

17.9. Redo Problem 17.8, given xt�1 � 4xt� 36.

a) Shifting the time periods back one period to conform with (17.3), xt � 4xt�1� 36. Using (17.4) and
allowing A to replace x0� a/(1� b) as in Problem 17.7.

xt � A(4)t�
36

1� 4
� A(4)t� 12

b) At t � 0, x0� A� 12. At t � 1, x1 � 4A� 12. Substituting x1� 4A� 12 for xt�1 and x0 � A� 12 for
xt in the original equation, 4A� 12 � 4(A� 12)� 36; 4A� 12 � 4A� 12.

c) With b � 4, b� 0 and 
b 
� 1. So xt does not oscillate but it explodes.

17.10. Redo Problem 17.8, given yt�5� 2yt�4� 57 � 0 and y0 � 11.

a) Moving the time periods back 5 periods, rearranging terms, and using (17.4),

yt � �2yt�1� 57 � �11�
57

1� 2 �(�2)t�
57

1� 2
� 30(�2)t� 19

b) At t � 0, y0� 11. At t � 1, y1 � �79. Substituting y1 for yt�5 and y0 for yt�4 in the original equation,
�79� 2(11)� 57 � 0.

c) With b � �2, b� 0 and 
b 
� 1. yt oscillates and explodes.

17.11. Redo Problem 17.8, given 8yt�2� 2yt�3 � 120 and y0� 28.

a) Divide through by 8, shift the time periods ahead by 2, and rearrange terms.

yt �
1
4

yt�1� 15 � �28�
15

1� 1–
4
� �1

4 �
t

�
15

1� 1–
4
� 8 �1

4 �
t

� 20

b) At t � 0, y0� 28. At t � 1, y1 � 22. Substitute y1 for yt�2 and y0 for yt�3.

8(22)� 2(28) � 120 120 � 120

c) With b � 1–
4, b� 0 and 
b 
� 1. So yt is nonoscillating and convergent.

17.12. Redo Problem 17.8, given 	gt � 14.

a) Substituting (17.1) for 	gt,

gt�1� gt � 14 (17.18)

Set the time periods back 1 and rearrange terms.

gt � gt�1� 14

Using (17.4a), gt � g0� 14t � A� 14t.
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b) At t � 0, g0� A. At t � 1, g1� A� 14. Substituting g1 for gt�1 and g0 for gt in (17.18),
A� 14�A � 14.

c) With b � 1, gt is nonoscillatory. If A� 0, gt is divergent.

17.13. Redo Problem 17.8, given 	yt � yt� 13 and y0� 45.

a) Substituting from (17.1), moving the time periods back 1, and rearranging terms,

yt � 2yt�1� 13 (17.19)

Using (17.4), yt � �45�
13

1� 2 � (2)t�
13

1� 2
� 58(2)t� 13

b) At t � 0, y0 � 45. At t � 1, y1 � 103. Substituting in (17.19), 103 � 2(45)� 13; 103 � 103.

c) With b � 2, b� 0 and 
b 
� 1. Thus yt is nonoscillatory and explosive.

LAGGED INCOME DETERMINATION MODELS

17.14. Given the data below, (a) find the time path of national income Yt; (b) check your answer, using
t � 0 and t � 1; and (c) comment on the stability of the time path.

Ct � 90� 0.8Yt�1 It � 50 Y0 � 1200

a) In equilibrium, Yt � Ct� It. Thus,

Yt� 90� 0.8Yt�1� 50 � 0.8Yt�1� 140 (17.20)

Using (17.4), Yt � �1200�
140

1� 0.8 � (0.8)t�
140

1� 0.8
� 500(0.8)t� 700

b) Y0 � 1200; Y1� 1100. Substituting in (17.20),

1100 � 0.8(1200)� 140 1100 � 1100

c) With b � 0.8, b� 0 and 
b 
� 1. The time path Yt is nonoscillating and convergent. Yt converges to the
equilibrium level of income 700.

17.15. Redo Problem 17.14, given Ct � 200� 0.75Yt�1, It � 50� 0.15Yt�1, and Y0 � 3000.

a) Yt� 200� 0.75Yt�1� 50� 0.15Yt�1 � 0.9Yt�1� 250

Using (17.4), Yt � �3000�
250

1� 0.9 � (0.9)t�
250

1� 0.9
� 500(0.9)t� 2500

b) Y0 � 3000; Y1� 2950. Substituting above, 2950 � 0.9(3000)� 250; 2950 � 2950.

c) With b � 0.9, the time path Yt is nonoscillatory and converges toward 2500.

17.16. Redo Problem 17.14, given Ct � 300� 0.87Yt�1, It � 150� 0.13Yt�1, and Y0� 6000.

a) Yt � 300� 0.87Yt�1� 150� 0.13Yt�1� Yt�1� 450 (17.21)

Using (17.4a), Yt � 6000� 450t.

b) Y0 � 6000; Y1� 6450. Substituting in (17.21) above, 6450 � 6000� 450.

c) With b � 1 and A� 0, the time path Yt is nonoscillatory but divergent. See Problem 17.5.
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17.17. Redo Problem 17.14, given Ct � 0.92Yt�1, It � 0.08Yt�1, and Y0 � 4000.

a) Yt � 0.92Yt�1� 0.08Yt�1 � Yt�1

Using (17.4a), Yt � 4000� 0 � 4000.

b) Y0 � 4000 � Y1.

c) When b � 1 and a � 0, Yt is a stationary path.

17.18. Redo Problem 17.14, given Ct � 400� 0.6Yt� 0.35Yt�1, It � 240� 0.15Yt�1, and Y0 � 7000.

a) Yt � 400� 0.6Yt� 0.35Yt�1� 240� 0.15Yt�1 0.4Yt � 0.5Yt�1� 640

Divide through by 0.4 and then use (17.4).

Yt � 1.25Yt�1� 1600 � �7000�
1600

1� 1.25 � (1.25)t�
1600

1� 1.25
� 13,400(1.25)t� 6400

b) Y0 � 7000; Y1 � 10,350. Substituting in the initial equation,

10,350 � 400� 0.6(10,350)� 0.35(7000)� 240� 0.15(7000) � 10,350

c) With b � 1.25, the time path Yt is nonoscillatory and explosive.

17.19. Redo Problem 17.14, given Ct � 300� 0.5Yt� 0.4Yt�1, It � 200� 0.2Yt�1, and Y0 � 6500.

a) Yt � 300� 0.5Yt� 0.4Yt�1� 200� 0.2Yt�1 0.5Yt � 0.6Yt�1� 500

Dividing through by 0.5 and then using (17.4),

Yt � 1.2Yt�1� 1000 � �6500�
1000

1� 1.2 � (1.2)t�
1000

1� 1.2
� 11,500(1.2)t� 5000

b) Y0 � 6500; Y1 � 8800. Substituting in the initial equation,

8800 � 300� 0.5(8800)� 0.4(6500)� 200� 0.2(6500) � 8800

c) With b � 1.2, Yt is nonoscillatory and explosive.

17.20. Redo Problem 17.14, given Ct � 200� 0.5Yt, It � 3(Yt�Yt�1), and Y0 � 10,000.

a) Yt � 200� 0.5Yt� 3(Yt�Yt�1) �2.5Yt � �3Yt�1� 200

Dividing through by �2.5 and then using (17.4),

Yt � 1.2Yt�1� 80 � �10,000�
80

1� 1.2 �(1.2)t�
80

1� 1.2
� 9600(1.2)t� 400

b) Y0 � 10,000; Y1 � 11,920. Substituting in the initial equation,

11,920 � 200� 0.5(11,920)� 3(11,920� 10,000) � 11,920

c) With b � 1.2, the time path Yt explodes but does not oscillate.

THE COBWEB MODEL

17.21. For the data given below, determine (a) the market price Pt in any time period, (b) the
equilibrium price Pe, and (c) the stability of the time path.

Qdt� 180� 0.75Pt Qst ��30� 0.3Pt�1 P0 � 220
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a) Equating demand and supply,

180� 0.75Pt� �30� 0.3Pt�1 (17.22)
� 0.75Pt� 0.3Pt�1� 210

Dividing through by �0.75 and using (17.4),

Pt � �0.4Pt�1� 280 � �220�
280

1� 0.4 � (�0.4)t�
280

1� 0.4
� 20(�0.4)t� 200 (17.23)

b) If the market is in equilibrium, Pt� Pt�1. Substituting Pe for Pt and Pt�1 in (17.22),

180� 0.75Pe� �30� 0.3Pe Pe � 200

which is the second term on the right-hand side of (17.23).

c) With b � �0.4, the time path Pt will oscillate and converge.

17.22. Check the answer to Problem 17.21(a), using t � 0 and t � 1.

From (17.23), P0 � 20(�0.4)0� 200 � 220 and P1 � 20(�0.4)� 200 � 192. Substituting P1 for Pt

and P0 for Pt�1 in (17.22),

180� 0.75(192) � �30� 0.3(220)
36 � 36

17.23. Redo Problem 17.21, given Qdt � 160� 0.8Pt, Qst ��20� 0.4Pt�1, and P0 � 153.

a) 160� 0.8Pt� �20� 0.4Pt�1 (17.24)
� 0.8Pt� 0.4Pt�1� 180

Dividing through by �0.8 and using (17.4),

Pt � �0.5Pt�1� 225 � �153�
225

1� 0.5 � (�0.5)t�
225

1� 0.5
� 3(�0.5)t� 150 (17.25)

b) As shown in Problem 17.21(b), Pe � 150. See also Section 17.5.

c) With b � �0.5, Pt oscillates and converges toward 150.

17.24. Check the answer to Problem 17.23(a), using t � 0 and t � 1.

From (17.25), P0 � 3(�0.5)0� 150 � 153 and P1� 3(�0.5)� 150 � 148.5. Substituting in (17.24),

160� 0.8(148.5) � �20� 0.4(153)
41.2 � 41.2

17.25. Redo Problem 17.21, given Qdt � 220� 0.4Pt, Qst ��30� 0.6Pt�1, and P0 � 254.

a) 220� 0.4Pt� �30� 0.6Pt�1

�0.4Pt � 0.6Pt�1� 250

Dividing through by �0.4 and then using (17.4),

Pt � �1.5Pt�1� 625 � �254�
625

1� 1.5 � (�1.5)t�
625

1� 1.5
� 4(�1.5)t� 250

b) Pe� 250

c) With b � �1.5, Pt oscillates and explodes.
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THE HARROD GROWTH MODEL

17.26. For the following data, find (a) the level of income Yt for any period and (b) the warranted rate
of growth.

It � 2.66(Yt�Yt�1) St � 0.16Yt Y0 � 9000

a) In equilibrium,

2.66(Yt�Yt�1) � 0.16Yt 2.5Yt � 2.66Yt�1

Dividing through by 2.5 and then using (17.4),

Yt� 1.064Yt�1 � (9000� 0)(1.064)t� 0 � 9000(1.064)t

b) From (17.16), Gw � 0.16/(2.66� 0.16) � 0.064.

17.27. Redo Problem 17.26, given It � 4.2(Yt�Yt�1), St � 0.2Yt, and Y0 � 5600.

a) 4.2(Yt�Yt�1) �
4Yt �

Yt �

0.2Yt

4.2Yt�1

1.05Yt�1

Using (17.4), Yt � 5600(1.05)t.

b) Gw �
0.2

4.2� 0.2
� 0.05

OTHER ECONOMIC APPLICATIONS

17.28. Derive the formula for the value Pt of an initial amount of money P0 deposited at i interest for
t years when compounded annually.

When interest is compounded annually,

Pt�1 � Pt� iPt � (1� i)Pt

Moving the time periods back one to conform with (17.3),

Pt � (1� i)Pt�1

Using (17.4) since i� 0, Pt � (P0� 0)(1� i)t� 0 � P0(1� i)t

17.29. Assume that Qdt � c� zPt, Qst � g� hPt, and

Pt�1 � Pt� a(Qst�Qdt) (17.26)

i.e., price is no longer determined by a market-clearing mechanism but by the level of inventory
Qst�Qdt. Assume, too, that a� 0 since a buildup in inventory (Qst�Qdt) will tend to reduce
price and a depletion of inventory (Qst�Qdt) will cause prices to rise. (a) Find the price Pt for
any period and (b) comment on the stability conditions of the time path.

a) Substituting Qst and Qdt in (17.26),

Pt�1 � Pt� a(g� hPt� c� zPt)
� [1� a(h� z)]Pt� a(g� c) � [1� a(z� h)]Pt� a(g� c)

Shifting the time periods back 1 to conform to (17.3) and using (17.4),

Pt� �P0�
a(g� c)

1� [1� a(z� h)] � [1� a(z� h)]t�
a(g� c)

1� [1� a(z� h)]

� �P0�
g� c

z� h� [1� a(z� h)]t�
g� c

z� h
(17.27)
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Substituting as in (17.13a),
Pt � (P0�Pe)[1� a(z� h)]t�Pe (17.28)

b) The stability of the time path depends on b � 1� a(z� h). Since a� 0 and under normal conditions
z� 0 and h� 0, a(z� h)� 0. Thus,

If 0� 
a(z� h) 
� 1,
If a(z� h) � �1,
If �2� a(z� h)��1,
If a(z� h) � �2,
If a(z� h)��2,

0� b� 1;
b � 0;

�1� b� 0;
b � �1;
b��1;

Pt converges and is nonoscillatory.
Pt remains in equilibrium (Pt � P0).
Pt converges with oscillation.
uniform oscillation takes place.
Pt oscillates and explodes.

17.30. Given the following data, (a) find the price Pt for any time period; (b) check the answer, using
t � 0 and t � 1; and (c) comment on the stability conditions.

Qdt � 120� 0.5Pt Qst ��30� 0.3Pt Pt�1� Pt� 0.2(Qst�Qdt) P0 � 200

a) Substituting, Pt�1� Pt� 0.2(�30� 0.3Pt� 120� 0.5Pt) � 0.84Pt� 30

Shifting time periods back 1 and using (17.4),

Pt � 0.84Pt�1� 30 � �200�
30

1� 0.84 � (0.84)t�
30

1� 0.84
� 12.5(0.84)t� 187.5

b) P0 � 200; P1� 198. Substituting in the first equation of the solution, 198 � 200� 0.2[�30�
0.3(200)� 120� 0.5(200)] � 198.

c) With b � 0.84, Pt converges without oscillation toward 187.5.

PHASE DIAGRAMS FOR DIFFERENCE EQUATIONS

17.31. (a) Construct a phase diagram for the nonlinear difference equation below, (b) use it to test for
dynamic stability, and (c) confirm your results with the derivative test.

yt � y3
t�1

a) Setting yt � yt�1 � ȳ for the intertemporal equilibrium solution,
ȳ � ȳ3

ȳ(1� ȳ2) � 0
ȳ1 � 0 ȳ2 � 1 intertemporal equilibrium levels

The phase diagram will intersect the 45
 line at y � 0 and y � 1. We next take the first and second
derivative to determine the slope and concavity of the phase line.

dyt

dyt�1
� 3y2

t�1� 0 positive slope

d2 yt

dy2
t�1

� 6yt�1� 0 convex

With the above information we then draw a rough sketch of the graph, as in Fig. 17-3.
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b) Starting from a value of yt � 0.75 and following the series of moves indicated by the dotted arrows
we see the function converges to ȳ1 � 0 and diverges from ȳ2 � 1. From a starting point of yt � 1.5,
the function also diverges from ȳ2 � 1. We conclude, therefore, that ȳ2 � 1 is an unstable equilibrium
when approached from either side and ȳ1� 0 is a stable equilibrium when approached from a positive
value.

c) Independently of the phase diagram, we can also test the stability conditions by taking the first
derivative of the equation and evaluating it at the steady-state solutions.

dyt

dyt�1

� 3y2
t�1

� dyt

dyt�1

(0) � � 3(0) � 0� 1 locally stable

� dyt

dyt�1

(1) � � 
3 
� 1 locally unstable

With the derivative positive at ȳ1� 0 and ȳ2 � 1, there is no oscillation.

17.32. Repeat the steps in Problem 17.31 for the nonlinear difference equation,

yt � yt�1
�0.25 �

1

�4 yt�1

a) Setting yt � yt�1 � ȳ, and substituting above,

ȳ � ȳ�0.25

ȳ� ȳ�0.25 � 0
ȳ(1� ȳ�1.25) � 0

ȳ � 0 ȳ � 1

Since ȳ � 0 is undefined at ȳ�1.25, there is only one intertemporal equilibrium, ȳ � 1. Taking the
derivatives,

dyt

dyt�1
� �0.25yt�1

�1.25 �
�0.25
y1.25

t�1
� 0 negative slope

d2 yt

dy2
t�1
� 0.3125yt�1

�2.25� 0 convex

We can then sketch the graph, as in Fig. 17-4.

b) Starting at a value less than 1, say yt�1� 0.75, the function oscillates between values larger and
smaller than one but converges to ȳ � 1. If we start at a value larger than 1, we also get the same
results.
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c) Working simply with the derivative and evaluating it in absolute value at the steady-state equilibrium
solution, we have

dyt

dyt�1

� �0.25yt�1
�1.25

� dyt

dyt�1

(1) � � 
�0.25(1) 
� 1 locally stable

dyt

dyt�1

(1) � �0.25(1)� 0 oscillation

17.33. Redo Problem 17.31 for the equation

yt � yt�1
�1.5

a) The intertemporal equilibrium solution is again ȳ � 1.

dyt

dyt�1

� �1.5yt�1
�2.5� 0 negative slope

d2 yt

dy2
t�1

� 3.75yt�1
�3.5� 0 convex

See Fig. 17-5.

b) Starting at a value less than 1, say yt�1 � 0.7, the function oscillates between values larger and smaller
than one and ultimately diverges from ȳ� 1.

c) Working solely with the first derivative of the function,

� dyt

dyt�1

(1) � � 
�1.5 
� 1 locally unstable

dyt

dyt�1

(1) � �1.5� 0 oscillation
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CHAPTER 18

Second-Order
Differential

Equations and
Difference
Equations

18.1 SECOND-ORDER DIFFERENTIAL EQUATIONS

Second-order differential equations require separate solutions for the complementary function yc

and the particular integral yp. The general solution is the sum of the two: y(t) � yc� yp. Given the
second-order linear differential equation

y
(t)� b1 y�(t)� b2 y(t) � a (18.1)

where b1, b2, and a are constants, the particular integral will be

yp �
a
b2

b2� 0 (18.2)

yp �
a
b1

t b2 � 0 b1� 0 (18.2a)

yp �
a
2

t2 b1 � b2 � 0 (18.2b)

The complementary function is

yc� y1� y2 (18.3)
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where y1� A1 er1t (18.3a)
y2� A2 er2t (18.3b)

and r1, r2 �
�b1��b1

2� 4b2

2
(18.4)

Here, A1 and A2 are arbitrary constants, and b1
2� 4b2. r1 and r2 are referred to as characteristic roots,

and (18.4) is the solution to the characteristic or auxiliary equation: r2� b1 r� b2 � 0. See Examples 1
to 4 and Problems 18.1 to 18.11, 20.9, 20.10, 20.13, 20.14 and 20.16 to 20.20.

EXAMPLE 1. The particular integral for each of the following equations

(1) y
(t)� 5y�(t)� 4y(t) � 2 (2) y
(t)� 3y�(t) � 12 (3) y
(t) � 16

is found as shown below.

For (1), using (18.2),
For (2), using (18.2a),
For (3), using (18.2b),

yp �
2–
4 �

1–
2

yp �
12––
3 t � 4t

yp �
16––
2 t2 � 8t2

(18.5)
(18.5a)
(18.5b)

EXAMPLE 2. The complementary functions for equations (1) and (2) in Example 1 are calculated below.
Equation (3) will be treated in Example 9.

For (1), from (18.4),

r1, r2 �
�5��(�5)2� 4(4)

2
�

5�3
2
� 1, 4

Substituting in (18.3a) and (18.3b), and finally in (18.3),

yc � A1 et�A2 e4t (18.6)

For (2), r1, r2�
�3��(3)2� 4(0)

2
�
�3�3

2
� 0, �3

Thus, yc � A1 e0�A2 e�3t � A1�A2 e�3t (18.6a)

EXAMPLE 3. The general solution of a differential equation is composed of the complementary function and
the particular integral (Section 16.2), that is, y(t) � yc� yp. As applied to the equations in Example 1,

For (1), from (18.6) and (18.5),
For (2), from (18.6a) and (18.5a),

y(t) � A1 et�A2 e4t� 1–
2 (18.7)

y(t) � A1�A2 e�3t� 4t (18.7a)

EXAMPLE 4. The definite solution for (1) in Example 3 is calculated below. Assume y(0) � 51–
2 and

y�(0) � 11.
From (18.7),

y(t) � A1 et�A2 e4t� 1–
2 (18.8)

Thus, y�(t) � A1 et� 4A2 e4t (18.8a)

Evaluating (18.8) and (18.8a) at t � 0, and setting y(0) � 51–
2 and y�(0) � 11 from the initial conditions,

y(0) � A1e0�A2e4(0)� 1–
2 � 51–

2 thus A1�A2� 5
y�(0) � A1e0� 4A2 e4(0) � 11 thus A1� 4A2� 11

Solving simultaneously, A1 � 3 and A2� 2. Substituting in (18.7),

y(t) � 3et� 2e4t� 1–
2 (18.9)

To check this solution, from (18.9),

y(t) � 3et� 2e4t� 1–
2
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Thus, y�(t) � 3et� 8e4t y
(t) � 3et� 32e4t

Substituting in the original equation [(1) in Example 1],

(3et� 32e4t)� 5(3et� 8e4t)� 4(3et� 2e4t� 1–
2) � 2

18.2 SECOND-ORDER DIFFERENCE EQUATIONS

The general solution of a second-order difference equation is composed of a complementary
function and a particular solution: y(t) � yc� yp. Given the second-order linear difference equation

yt� b1 yt�1� b2 yt�2 � a (18.10)

where b1, b2, and a are constants, the particular solution is

yp�
a

1� b1� b2
b1� b2��1 (18.11)

yp�
a

2� b1
t b1� b2 ��1 b1��2 (18.11a)

yp�
a
2

t2 b1� b2 ��1 b1 ��2 (18.11b)

The complementary function is

yc� A1 rt
1�A2 rt

2 (18.12)

where A1 and A2 are arbitrary constants and the characteristic roots r1 and r2 are found by using (18.4),
assuming b1

2� 4b2. See Examples 5 to 8 and Problems 18.12 to 18.20.

EXAMPLE 5. The particular solution for each of the following equations:

1) yt� 10yt�1� 16yt�2 � 14 2) yt� 6yt�1� 5yt�2 � 12 3) yt� 2yt�1� yt�2� 8

is found as shown below.

For (1), using (18.11), yp �
14

1� 10� 16
� 2 (18.13)

For (2), using (18.11a), yp �
12

2� 6
t � �3t (18.13a)

For (3), using (18.11b), yp �
8–
2t2 � 4t2 (18.13b)

EXAMPLE 6. From Example 5, the complementary functions for (1) and (2) are calculated below. For (3), see
Example 9.

For (1), using (18.4) and then substituting in (18.12),

r1, r2 �
10��100� 4(16)

2
�

10� 6
2

� 2, 8

Thus, yc � A1(2)t�A2(8)t (18.14)

For (2), r1, r2 �
6��36� 4(5)

2
�

6� 4
2
� 1, 5

Thus, yc � A1(1)t�A2(5)t� A1�A2(5)t (18.14a)
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EXAMPLE 7. The general solutions for (1) and (2) from Example 5 are calculated below.
For (1), y(t) � yc� yp. From (18.14) and (18.13),

y(t) � A1(2)t�A2(8)t� 2 (18.15)

For (2), from (18.14a) and (18.13a),

y(t) � A1�A2(5)t� 3t (18.15a)

EXAMPLE 8. Given y(0) � 10 and y(1) � 36, the definite solution for (1) in Example 7 is calculated as follows:
Letting t � 0 and t � 1 successively in (18.15),

y(0) � A1(2)0�A2(8)0� 2 � A1�A2� 2 y(1) � A1(2)�A2(8)� 2 � 2A1� 8A2� 2

Setting y(0) � 10 and y(1) � 36 from the initial conditions,

A1� A2� 2 � 10
2A1� 8A2� 2 � 36

Solving simultaneously, A1 � 5 and A2� 3. Finally, substituting in (18.15),

y(t) � 5(2)t� 3(8)t� 2 (18.16)

This answer is checked by evaluating (18.16) at t � 0, t � 1, and t � 2,

y(0) � 5� 3� 2 � 10 y(1) � 10� 24� 2 � 36 y(2) � 20� 192� 2 � 214

Substituting y(2) for yt, y(1) for yt�1, and y(0) for yt�2 in yt� 10yt�1� 16yt�2 � 14 of Equation (1) in Example 5,
214� 10(36)� 16(10) � 14.

18.3 CHARACTERISTIC ROOTS

A characteristic equation can have three different types of roots.

1. Distinct real roots. If b1
2� 4b2, the square root in (18.4) will be a real number, and r1 and r2 will

be distinct real numbers as in (18.6) and (18.6a).
2. Repeated real roots. If b1

2 � 4b2, the square root in (18.4) will vanish, and r1 and r2 will equal
the same real number. In the case of repeated real roots, the formulas for yc in (18.3) and
(18.12) must be changed to

yc� A1 ert�A2 tert (18.17)
yc� A1 rt�A2 trt (18.18)

3. Complex roots. If b1
2� 4b2, (18.4) contains the square root of a negative number, which is

called an imaginary number. In this case r1 and r2 are complex numbers. A complex number
contains a real part and an imaginary part; for example, (12� i) where i ���1.

[As a simple test to check your answers when using (18.4), assuming the coefficient of the y
(t) term is 1,
r1� r2 must equal �b1; r1� r2 must equal b2.]

EXAMPLE 9. The complementary function for Equation (3) in Example 1, where y
(t) � 16, is found as follows:
From (18.4),

r1, r2 �
0��0� 4(0)

2
� 0

Using (18.17) since r1 � r2 � 0, which is a case of repeated real roots, yc � A1 e0�A2 te0� A1�A2 t.
In Equation (3) of Example 5, yt� 2yt�1� yt�2 � 8. Solving for the complementary function, from (18.4),

r1, r2 �
2��4� 4(1)

2
�

2� 0
2
� 1

Using (18.18) because r1� r2 � 1, yc � A1(1)t�A2 t(1)t � A1�A2 t.
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18.4 CONJUGATE COMPLEX NUMBERS

If b1
2� 4b2 in (18.4), factoring out ��1 gives

r1, r2 �
�b1���1 �4b2� b1

2

2
�
�b1� i�4b2� b1

2

2

Put more succinctly, r1, r2 � g� hi

where g ��1–
2b1 and h � 1–

2�4b2� b1
2 (18.19)

g� hi are called conjugate complex numbers because they always appear together. Substituting
(18.19) in (18.3) and (18.12) to find yc for cases of complex roots,

yc� A1 e(g�hi)t�A2 e(g�hi)t � egt(A1 ehit�A2 e�hit) (18.20)
yc� A1(g� hi)t�A2(g� hi)t (18.21)

See Example 10 and Problems 18.28 to 18.35, 20.11 and 20.12.

EXAMPLE 10. The complementary function for y
(t)� 2y�(t)� 5y(t) � 18 is calculated as shown below. Using
(18.19) since b1

2� 4b2,

g � �1–
2(2) � �1 h � 1–

2�4(5)� (2)2 � 1–
2(4) � 2

Thus, r1, r2 � �1� 2i. Substituting in (18.20), yc � e�t(A1 e2it�A2 e�2it).

18.5 TRIGONOMETRIC FUNCTIONS

Trigonometric functions are often used in connection with complex numbers. Given the angle ! in
Fig. 18-1, which is at the center of a circle of radius k and measured counterclockwise, the trigono-
metric functions of ! are

sine (sin) ! �

tangent (tan) ! �

secant (sec) ! �

h
k
h
g
k
g

cosine (cos) ! �

cotangent (cot) ! �

cosecant (csc) ! �

g
k
g
h
k
h
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The signs of the trigonometric functions in each of the four quadrants are

�

�

�

�

�

�

�

�

�

�

�

�
sin, csc cos, sec tan, cot

The angle ! is frequently measured in radians. Since there are 2� radians in a circle, 1
 � �/180
radian. Thus 360
 � 2� radians, 180
 � � radians, 90
 � �/2 radians, and 45
 � �/4 radians.

EXAMPLE 11. If the radius OL in Fig. 18-1 starts at A and moves counterclockwise 360
, sin ! � h/k goes from
0 at A, to 1 at B, to 0 at C, to �1 at D, and back to 0 at A. Cosine ! � g/k goes from 1 at A, to 0 at B, to �1 at
C, to 0 at D, and back to 1 at A. This is summarized in Table 18-1 and graphed in Fig. 18-2. Notice that both
functions are periodic with a period of 2� (i.e., they repeat themselves every 360
 or 2� radians). Both have an
amplitude of fluctuation of 1 and differ only in phase or location of their peaks.

Table 18-1

Degrees 0 90 180 270 360

Radians 0
�
–
2

�
3
–
2
� 2�

sin ! 0 1 0 �1 0

cos ! 1 0 �1 0 1

18.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Given that u is a differentiable function of x,

1)
d

dx
(sin u) � cos u

du
dx

2)
d

dx
(cos u) ��sin u

du
dx

3)
d

dx
(tan u) � sec2 u

du
dx

4)
d
dx

(cot u) ��csc2 u
du
dx

5)
d
dx

(sec u) � sec u tan u
du
dx

6)
d
dx

(csc u) ��csc u cot u
du
dx

See Example 12 and Problems 18.21 to 18.27.
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EXAMPLE 12. The derivatives for the trigonometric functions

1) y � sin (3x2� 6) 2) y � 4 cos 2x 3) y � (1� tan x)2

are calculated as follows:

1)
dy

dx
� 6x cos (3x2� 6) 2)

dy

dx
� �8 sin 2x 3)

dy

dx
� 2(1� tan x)(sec2 x) � 2 sec2 x(1� tan x)

18.7 TRANSFORMATION OF IMAGINARY AND COMPLEX NUMBERS

Three rules are helpful in transforming imaginary and complex numbers to trigonometric
functions.

1. g and h in Fig. 18-1, which are Cartesian coordinates, can be expressed in terms of ! and k,
which are called polar coordinates, by the simple formula

g � k cos ! h � k sin ! k� 0

Thus for the conjugate complex number (g� hi),

g� hi � k cos !� ik sin ! � k(cos !� i sin !) (18.22)

2. By what are called Euler relations,

e�i! � cos !� i sin ! (18.23)

Thus, by substituting (18.23) in (18.22) we can also express (g� hi) as

g� hi � ke�i! (18.23a)

3. From (18.23a), raising a conjugate complex number to the nth power means

(g� hi)n � (ke�i!)n� kn e�in! (18.24)

Or, by making use of (18.23) and noting that n! replaces !, we have De Moivre’s theorem:

(g� hi)n � kn(cos n!� i sin n!) (18.25)

See Examples 13 to 15 and Problems 18.28 to 18.35, 20.11 and 20.12.

EXAMPLE 13. The value of the imaginary exponential function e2i� is found as follows. Using (18.23), where
! � 2�,

e2i� � cos 2�� i sin 2�

From Table 18-1, cos 2� � 1 and sin 2� � 0. Thus, e2i� � 1� i(0) � 1.

EXAMPLE 14. The imaginary exponential expressions in (18.20) and (18.21) are transformed to trigonometric
functions as shown below.

From (18.20), yc � egt(A1 ehit�A2 e�hit). Using (18.23) where ! � ht,

yc � egt[A1(cos ht� i sin ht)�A2(cos ht� i sin ht)]
� egt[(A1�A2) cos ht� (A1�A2) i sin ht]
� egt(B1 cos ht�B2 sin ht) (18.26)

where B1 � A1�A2 and B2 � (A1�A2) i.
From (18.21), yc � A1(g� hi)t�A2(g� hi)t. Using (18.25) and substituting t for n,

yc � A1 kt(cos t!� i sin t!)�A2 kt(cos t!� i sin t!)
� kt[(A1�A2) cos t!� (A1�A2) i sin t!]
� kt(B1 cos t!�B2 sin t!) (18.27)

where B1 � A1�A2 and B2 � (A1�A2)i.
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EXAMPLE 15. The time paths of (18.26) and (18.27) are evaluated as follows: Examining each term in
(18.26),

1. Here B1 cos ht is a cosine function of t, as in Fig. 18-2, with period 2�/h instead of 2� and amplitude of
the multiplicative constant B1 instead of 1.

2. Likewise B2 sin ht is a sine function of t with period 2�/h and amplitude of B2.
3. With the first two terms constantly fluctuating, stability depends on egt.

If g� 0, egt gets increasingly larger as t increases. This increases the amplitude and leads to explosive
fluctuations of yc, precluding convergence.
If g � 0, egt � 1 and yc displays uniform fluctuations determined by the sine and cosine functions. This
also precludes convergence.
If g� 0, egt approaches zero as t increases. This diminishes the amplitude, produces damped
fluctuations, and leads to convergence. See Fig. 18-3.

Since (18.27) concerns a difference equation in which t can only change at discrete intervals, yc is a step
function rather than a continuous function (see Fig. 17-1). Like (18.26), it will fluctuate, and stability will depend
on kt. If 
k 
� 1, yc will converge. See Problems 18.8 to 18.11, 18.18 to 18.20, and 18.31 to 18.35.

18.8 STABILITY CONDITIONS

For a second-order linear differential equation with distinct or repeated real roots, both roots
must be negative for convergence. If one of the roots is positive, the exponential term with the
positive root approaches infinity as t approaches infinity, thereby precluding convergence. See
Problems 18.8 to 18.11. In the case of complex roots, g in egt of (18.26) must be negative, as illustrated
in Example 15.

For a second-order linear difference equation with distinct or repeated real roots, the root with the
largest absolute value is called the dominant root because it dominates the time path. For convergence,
the absolute value of the dominant root must be less than 1. See Problems 18.18 to 18.20. In the case
of complex roots, the absolute value of k in (18.27) must be less than 1, as explained in Example 15.
For economic applications, see Problems 18.36 and 18.37.
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Solved Problems

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

Distinct Real Roots

18.1. For the following equation, find (a) the particular integral yp, (b) the complementary function
yc, and (c) the general solution y(t).

y
(t)� 9y�(t)� 14y(t) � 7

a) Using (18.2), yp �
7––
14 �

1–
2.

b) Using (18.4),

r1, r2 �
�9��81� 4(14)

2
�
�9� 5

2
� �2, �7

Substituting in (18.3), yc � A1 e�2t�A2 e�7t.

c) y(t) � yc� yp � A1 e�2t�A2 e�7t� 1–
2 (18.28)

18.2. Redo Problem 18.1, given y
(t)� 12y�(t)� 20y(t) ��100.

a) From (18.2), yp � �
100–––
20 � �5.

b) From (18.4),

r1, r2�
12��144� 4(20)

2
�

12� 8
2

� 2, 10

Thus, yc � A1 e2t�A2 e10t.

c) y(t) � yc� yp � A1 e2t�A2 e10t� 5 (18.29)

18.3. Redo Problem 18.1, given y
(t)� 4y�(t)� 5y(t) � 35.

a) From (18.2), yp �
35
�5

� �7.

b) From (18.4)

r1, r2�
4��16� 4(�5)

2
�

4� 6
2
� 5, �1

Thus, yc � A1 e5t�A2 e�t

c) y(t) � A1e5t�A2 e�t� 7 (18.30)

18.4. Redo Problem 18.1, given y
(t)� 7y�(t) � 28.

a) Using (18.2a), yp �
28––
7 t � 4t.

b) From (18.4),

r1, r2�
�7��49� 4(0)

2
�
�7� 7

2
� 0, �7

Thus, yc � A1 e(0)t�A2 e�7t � A1�A2 e�7t

c) y(t) � A1�A2 e�7t� 4t (18.31)
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18.5. Redo Problem 18.1, given y
(t)� 1–
2y�(t) � 13.

a) From (18.2a), yp �
13
�1–

2
t � �26t.

b) r1, r2 �
1–
2��1–

4� 4(0)
2

�
1–
2�

1–
2

2
� 0, 1–

2

Thus, yc � A1�A2 e(1/2)t

c) y(t) � A1�A2 e(1/2)t� 26t (18.32)

Repeated Real Roots

18.6. Find (a) the particular integral yp, (b) the complementary function yc, and (c) the general
solution y(t), given y
(t)� 12y�(t)� 36y(t) � 108.

a) yp �
108–––
36 � 3

b) r1, r2 �
12��144� 4(36)

2
�

12� 0
2

� 6

Using (18.17) since r1 � r2� 6, yc� A1 e6t�A2 te6t.

c) y(t) � A1e6t�A2 te6t� 3 (18.33)

18.7. Redo Problem 18.6, given y
(t)� y�(t)� 1–
4y(t) � 9.

a) yp �
9
1–
4
� 36

b) r1, r2 �
�1��1� 4(1–

4)
2

�
�1� 0

2
��

1
2

Using (18.17) since r1 � r2� �
1–
2, yc � A1e�(1/2)t�A2 te�(1/2)t

c) y(t) � A1 e�(1/2)t�A2 te�(1/2)t� 36 (18.34)

DEFINITE SOLUTIONS AND STABILITY CONDITIONS

18.8. Find (a) the definite solution for the following equation, (b) check your answer, and (c)
comment on the dynamic stability of the time path, given y
(t)� 9y�(t)� 14y(t) � 7, y(0) ��21–

2,
and y�(0) � 31.

a) From (18.28),

y(t) � A1 e�2t�A2 e�7t� 1–
2 (18.35)

Thus, y�(t) � �2A1 e�2t� 7A2 e�7t (18.35a)

Evaluating (18.35) and (18.35a) at t � 0,

y(0) � A1�A2�
1–
2 y�(0) � �2A1� 7A2

Setting y(0) � �21–
2 and y�(0) � 31 from the initial conditions,

A1� A2�
1–
2 � �21–

2

�2A1� 7A2 � 31

Solving simultaneously, A1� 2 and A2 � �5, which when substituted in (18.35) gives

y(t) � 2e�2t� 5e�7t� 1–
2 (18.36)
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b) From (18.36), y(t) � 2e�2t� 5e�7t� 1–
2. Thus,

y�(t) � �4e�2t� 35e�7t y
(t) � 8e�2t� 245e�7t

Substituting these values in the original problem, where y
� 9y�(t)� 14y(t) � 7,

8e�2t� 245e�7t� 9(�4e�2t� 35e�7t)� 14(2e�2t� 5e�7t� 1–
2) � 7

c) With both characteristic roots negative, (18.36) will approach 1–
2 as t → �. Therefore y(t) is convergent.

Any time both characteristic roots are negative, the time path will converge.

18.9. Redo Problem 18.8, given y
(t)� 4y�(t)� 5y(t) � 35, y(0) � 5, and y�(0) � 6.

a) From (18.30),

y(t) � A1 e5t�A2 e�t� 7 (18.37)

Thus, y�(t) � 5A1 e5t�A2 e�t (18.37a)

Evaluating (18.37) and (18.37a) at t � 0 and setting them equal to the initial conditions where y(0) � 5
and y�(0) � 6,

y(0) � A1�A2� 7 � 5 thus A1�A2 � 12
y�(0) � 5A1�A2 � 6

Solving simultaneously, A1� 3 and A2 � 9, which when substituted in (18.37) gives

y(t) � 3e5t� 9e�t� 7 (18.38)

b) From (18.38), y(t) � 3e5t� 9e�t� 7. Thus, y�(t) � 15e5t� 9e�t and y
(t) � 75e5t� 9e�t.
Substituting these values in the original problem, where y
(t)� 4y�(t)� 5y(t) � 35,

75e5t� 9e�t� 4(15e5t� 9e�t)� 5(3e5t� 9e�t� 7) � 35

c) With one characteristic root positive and the other negative, the time path is divergent. The positive
root dominates the negative root independently of their relative absolute values because as t → �, the
positive root → � and the negative root → 0.

18.10. Redo Problem 18.8, given y
(t)� 1–
2y�(t) � 13, y(0) � 17, and y�(0) ��191–

2.

a) From (18.32),

y(t) � A1�A2 e(1/2)t� 26t (18.39)

Thus, y�(t) � 1–
2A2 e(1/2)t� 26 (18.39a)

Evaluating (18.39) and (18.39a) at t � 0 and setting them equal to the initial conditions,

y(0) � A1�A2 � 17
y�(0) � 1–

2A2� 26 � �191–
2 A2 � 13

With A2 � 13, A1 � 4. Substituting in (18.39) and rearranging terms,

y(t) � 13e(1/2)t� 26t� 4 (18.40)

b) From (18.40), y(t) � 13e(1/2)t� 26t� 4. Thus,

y�(t) � 6.5e(1/2)t� 26 y
(t) � 3.25e(1/2)t

Substituting these values in the original equation,

3.25e(1/2)t� 1–
2(6.5e(1/2)t� 26) � 13

c) With both characteristic roots positive, the time path will diverge.
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18.11. Redo Problem 18.8, given y
(t)� y�(t)� 1–
4y(t) � 9, y(0) � 30, and y�(0) � 15.

a) From (18.34),

y(t) � A1 e�(1/2)t�A2 te�(1/2)t� 36 (18.41)

Using the product rule for the derivative of the second term,

y�(t) � �1–
2A1 e�(1/2)t� 1–

2A2te�(1/2)t�A2 e�(1/2)t (18.41a)

Evaluating (18.41) and (18.41a) at t � 0 and equating to the initial conditions,

y(0) � A1� 36 � 30 A1 � �6
y�(0) � �1–

2A1�A2 � 15

With A1 � �6, A2 � 12. Substituting in (18.41),

y(t) � 12te�(1/2)t� 6e�(1/2)t� 36 (18.42)

b) From (18.42), y(t) � 12te�(1/2)t� 6e�(1/2)t� 36. By the product rule,

y�(t) � �6te�(1/2)t� 12e�(1/2)t� 3e�(1/2)t

y
(t) � 3te�(1/2)t� 6e�(1/2)t� 6e�(1/2)t� 1.5e�(1/2)t � 3te�(1/2)t� 13.5e�(1/2)t

Substituting in the original equation,

(3te�(1/2)t� 13.5e�(1/2)t)� (�6te�(1/2)t� 15e�(1/2)t)� 1–
4(12te�(1/2)t� 6e�(1/2)t� 36) � 9

c) With the repeated characteristic roots negative, the time path will converge since tert follows basically
the same time path as ert.

SECOND-ORDER LINEAR DIFFERENCE EQUATIONS

Distinct Real Roots

18.12. Find (a) the particular solution, (b) the complementary function, and (c) the general solution,
given yt� 7yt�1� 6yt�2� 42.

a) From (18.11), yp �
42

1� 7� 6
� 3

b) From (18.4), r1, r2 �
�7��49� 4(6)

2
�
�7� 5

2
� �1, �6

From (18.12), yc� A1(�1)t�A2(�6)t

c) y(t) � yc� yp � A1(�1)t�A2(�6)t� 3 (18.43)

18.13. Redo Problem 18.12, given yt� 12yt�1� 11yt�2� 6.

a) From (18.11), yp �
6

1� 12� 11
�

1
4

b) r1, r2�
�12��144� 4(11)

2
�
�12� 10

2
� �1, �11

Thus, yc� A1(�1)t�A2(�11)t

c) y(t) � A1(�1)t�A2(�11)t� 1–
4 (18.44)
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18.14. Redo Problem 18.12, given yt�2� 11yt�1� 10yt� 27.

a) Shifting the time periods back 2 to conform with (18.10), yt� 11yt�1� 10yt�2� 27. Then from
(18.11a),

yp �
27

2� 11
t � �3t

b) r1, r2 �
11��121� 4(10)

2
�

11� 9
2

� 1, 10

yc � A1�A2(10)t

c) y(t) � A1�A2(10)t� 3t (18.45)

18.15. Redo Problem 18.12, given yt� 7yt�1� 8yt�2 � 45.

a) From (18.11a), yp �
45

2� 7
t � 5t

b) r1, r2 �
�7��49� 4(�8)

2
�
�7� 9

2
� 1, �8

yc � A1�A2(�8)t

c) y(t) � A1�A2(�8)t� 5t (18.46)

Repeated Real Roots

18.16. Redo Problem 18.12, given yt� 10yt�1� 25yt�2� 8.

a) yp �
8

1� 10� 25
�

1
2

b) r1, r2 �
10��100� 4(25)

2
�

10� 0
2

� 5

Using (18.18) because r1 � r2 � 5, yc � A1(5)t�A2 t(5)t.

c) y(t) � A1(5)t�A2 t(5)t� 1–
2 (18.47)

18.17. Redo Problem 18.12, given yt� 14yt�1� 49yt�2� 128.

a) yp �
128

1� 14� 49
� 2

b) r1, r2 �
�14��196� 4(49)

2
�
�14� 0

2
� �7

From (18.18), yc � A1(�7)t�A2 t(�7)t.

c) y(t) � A1(�7)t�A2 t(�7)t� 2 (18.48)

DEFINITE SOLUTIONS AND STABILITY CONDITIONS

18.18. (a) Find the definite solution, (b) check the answer, and (c) comment on dynamic stability, given
yt� 7yt�1� 6yt�2� 42, y(0) � 16, and y(1) ��35.

a) From (18.43), y(t) � A1(�1)t�A2(�6)t� 3 (18.49)

Letting t � 0 and t � 1 successively in (18.49) and making use of the initial conditions,

y(0) � A1�A2� 3 � 16 y(1) � �A1� 6A2� 3 � �35
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Solving simultaneously, A1� 8 and A2 � 5. Substituting in (18.49),

y(t) � 8(�1)t� 5(�6)t� 3 (18.50)

b) Evaluating (18.50) at t � 0, t � 1, and t � 2 to check this answer,

y(0) � 8� 5� 3 � 16 y(1) � �8� 30� 3 � �35 y(2) � 8� 180� 3 � 191

Substituting in the initial equation with

y(2) � yt y(1) � yt�1 y(0) � yt�2 191� 7(�35)� 6(16) � 42

c) The characteristic roots are�1 and�6. The characteristic root with the largest absolute value is called
the dominant root because it dominates the time path. For convergence, the absolute value of the
dominant root must be less than 1. Since 
 �6 
� 1, the time path is divergent.

18.19. (a) Find the definite solution and (b) comment on dynamic stability, given

yt�2� 11yt�1� 10yt � 27 y(0) � 2 y(1) � 53

a) From (18.45), y(t) � A1�A2(10)t� 3t (18.51)

Letting t � 0 and t � 1, and using the initial conditions,

y(0) � A1�A2 � 2 y(1) � A1� 10A2� 3 � 53

Solving simultaneously, A1� �4 and A2� 6. Substituting in (18.51),

y(t) � 6(10)t� 3t� 4

b) The time path is divergent because the dominant root 10 is greater than 1.

18.20. Redo Problem 18.19, given yt� 10yt�1� 25yt�2� 8, y(0) � 1, and y(1) � 5.

a) From (18.47),

y(t) � A1(5)t�A2 t(5)t� 1–
2 (18.52)

Letting t � 0 and t � 1, and using the initial conditions,

y(0) � A1�
1–
2 � 1 A1�

1–
2

y(1) � 5A1� 5A2�
1–
2 � 5

With A1 �
1–
2, A2 �

2–
5. Substituting in (18.52),

y(t) � 1–
2(5)t� 2–

5t(5)t� 1–
2 (18.53)

b) Convergence in the case of repeated real roots likewise depends on 
r 
� 1 since the effect of rt

dominates the effect of t in the second term A2 trt. Here with r � 5� 1, the time path is divergent.

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

18.21. Find the first-order derivative for the following trigonometric functions. Note that they are also
called circular functions or sinusoidal functions.

a) y� sin 7x b) y � cos (5x� 2)

dy

dx
� 7 cos 7x

dy

dx
� �5 sin (5x� 2)

c) y� tan 11x d) y � csc (8x� 3)

dy

dx
� 11 sec2 11x

dy

dx
� �8[csc (8x� 3) cot (8x� 3)]
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e) y� sin (3� x2) f) y � sin (5� x)2

dy

dx
� �2x cos (3� x2)

dy

dx
� �2(5� x) cos (5� x)2 (chain rule)

18.22. Redo Problem 18.21, given y � x2 tan x.

By the product rule,
dy

dx
� x2 (sec2 x)� (tan x)(2x) � x2 sec2 x� 2x tan x

18.23. Redo Problem 18.21, given y � x3 sin x.

dy

dx
� x3 (cos x)� (sin x)(3x2) � x3 cos x� 3x2 sin x

18.24. Redo Problem 18.21, given y � (1� cos x)2.

By the chain rule,
dy

dx
� 2(1� cos x)(�sin x) � (�2 sin x)(1� cos x)

18.25. Redo Problem 18.21, given y � (sin x� cos x)2.

dy

dx
� 2(sin x� cos x)(cos x� sin x) � 2(cos2 x� sin2 x)

18.26. Redo Problem 18.21, given y � sin2 5x, where sin2 5x � (sin 5x)2.

By the chain rule,
dy

dx
� 2 sin 5x cos 5x(5) � 10 sin 5x cos 5x

18.27. Redo Problem 18.21, given y � csc2 12x.

dy

dx
� (2 csc 12x)[�csc 12x cot 12x(12)] � �24 csc2 12x cot 12x

COMPLEX ROOTS IN SECOND-ORDER DIFFERENTIAL EQUATIONS

18.28. Find (a) the particular integral, (b) the complementary function, and (c) the general solution,
given the second-order linear differential equation y
(t)� 2y�(t)� 10y(t) � 80.

a) From (18.2), yp �
8–
1

0–
0 � 8

b) Using (18.19) since b1
2� 4b2, that is, (2)2� 4(10),

g � �1–
2(2) � �1 h � 1–

2 �4(10)� (2)2 � 3

Thus, r1, r2 � �1� 3i. Substituting g and h in (18.26),

yc � e�t(B1 cos 3t�B2 sin 3t)

c) y(t) � yc� yp � e�t(B1 cos 3t�B2 sin 3t)� 8 (18.54)

18.29. Redo Problem 18.28, given y
(t)� 6y�(t)� 25y(t) � 150.

a) yp �
150–––
25 � 6

b) From (18.19), g � �1–
2(�6) � 3 and h � 1–

2 �4(25)� (�6)2 � 4. Substituting in (18.26),

yc � e3t(B1 cos 4t�B2 sin 4t)

c) y(t) � e3t(B1 cos 4t�B2 sin 4t)� 6 (18.55)
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18.30. Redo Problem 18.28, given y
(t)� 4y�(t)� 40y(t) � 10.

a) yp �
1–
4

0–
0 �

1–
4

b) From (18.19), g � �2 and h � 1–
2 �160� 16 � 6. Thus, yc � e�2t(B1 cos 6t�B2 sin 6t).

c) y(t) � e�2t(B1 cos 6t�B2 sin 6t)� 1–
4 (18.56)

18.31. (a) Find the definite solution for the following data. (b) Comment on the dynamic stability.

y
(t)� 2y�(t)� 10y(t) � 80 y(0) � 10 y�(0) � 13

a) From (18.54), y(t) � e�t(B1 cos 3t�B2 sin 3t)� 8 (18.57)

By the product rule,

y�(t) � e�t(�3B1 sin 3t� 3B2 cos 3t)� (B1 cos 3t�B2 sin 3t)(�e�t)
� e�t(3B2 cos 3t� 3B1 sin 3t)� e�t(B1 cos 3t�B2 sin 3t) (18.57a)

Evaluating (18.57) and (18.57a) at t � 0 and equating them to the initial conditions,

y(0) � e0(B1 cos 0�B2 sin 0)� 8 � 10

From Table 18-1, cos 0 � 1 and sin 0 � 0. Thus,

y(0) � B1� 0� 8 � 10 B1 � 2

Similarly, y�(0) � e0(3B2 cos 0� 3B1 sin 0)� e0(B1 cos 0�B2 sin 0) � 13.

y�(0) � 3B2�B1 � 13

Since B1 � 2 from above, B2 � 5. Finally, substituting in (18.57),

y(t) � e�t(2 cos 3t� 5 sin 3t)� 8

b) With g � �1, the time path converges, as it does in Fig. 18-3 (see Example 15).

18.32. Redo Problem 18.31, given y
(t)� 6y�(t)� 25y(t) � 150, y(0) � 13, and y�(0) � 25.

a) From (18.55), y(t) � e3t(B1 cos 4t�B2 sin 4t)� 6 (18.58)

Thus, y�(t) � e3t(�4B1 sin 4t� 4B2 cos 4t)� 3e3t(B1 cos 4t�B2 sin 4t) (18.58a)

Evaluating (18.58) and (18.58a) at t � 0 and equating them to the initial conditions,

y(0) � e0(B1 cos 0�B2 sin 0)� 6 � 13
y(0) � B1� 0� 6 � 13 B1 � 7

and y�(0) � e0(�4B1 sin 0� 4B2 cos 0)� 3e0(B1 cos 0�B2 sin 0).

y�(0) � 4B2� 3B1 � 25 B2 � 1

Substituting in (18.58), y(t) � e3t(7 cos 4t� sin 4t)� 6.

b) With g � 3, the time path is divergent.

18.33. Redo Problem 18.31, given y
(t)� 4y�(t)� 40y(t) � 10, y(0) � 1–
2, and y�(0) � 21–

2.

a) From (18.56), y(t) � e�2t=(B1cos 6t�B2 sin 6t)� 1–
4 (18.59)

Thus, y�(t) � e�2t(�6B1 sin 6t� 6B2 cos 6t)� 2e�2t(B1 cos 6t�B2 sin 6t) (18.59a)
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Evaluating (18.59) and (18.59a) at t � 0 and equating them to the initial conditions,

y(0) � B1�
1–
4 �

1–
2 B1 �

1–
4

y�(0) � 6B2� 2B1 � 21–
2 B2 �

1–
2

Thus, y(t) � e�2t(1–
4 cos 6t� 1–

2 sin 6t)� 1–
4 �

1–
4e�2t(cos 6t� 2 sin 6t)� 1–

4.

b) With g � �2, the time path is convergent.

COMPLEX ROOTS IN SECOND-ORDER DIFFERENCE EQUATIONS

18.34. Find (a) the particular solution, (b) the complementary function, (c) the general solution, and
(d) the definite solution. (e) Comment on the dynamic stability of the following second-order
linear difference equation:

yt� 4yt�2� 15 y(0) � 12 y(1) � 11

a) From (18.11), yp �
15

1� 0� 4
� 3

b) From (18.19), g � �1–
2(0) � 0 and h � 1–

2 �4(4)� 0 � 2. For second-order difference equations we now
need k and !. Applying the Pythagorean theorem to Fig. 18-1,

k2 � g2� h2 k ��g2� h2

Substituting with the parameters of (18.19) for greater generality,

k � 	b1
2� 4b2� b1

2

4
��b2 (18.60)

Thus, k ��4 � 2. From the definitions of Section 18.5,

sin ! �
h

k
cos ! �

g

k
(18.61)

Substituting the values from the present problem,

sin ! � 2–
2 � 1 cos ! � 0–

2 � 0

From Table 18-1, the angle with sin ! � 1 and cos ! � 0 is �/2. Thus, ! � �/2. Substituting in
(18.27),

yc� 2t �B1 cos ��2 t� �B2 sin ��2 t��
c) y(t) � 2t �B1 cos ��2 t� �B2 sin ��2 t�� � 3 (18.62)

d) Using Table 18-1 to evaluate (18.62) at t � 0 and t � 1 from the initial conditions,

y(0) � (B1� 0)� 3 � 12 B1 � 9
y(1) � 2(0�B2)� 3 � 11 B2 � 4

Thus, y(t) � 2t �9 cos
�

2
t� 4 sin

�

2
t� � 3

e) With k � 2, the time path is divergent, as explained in Example 15.

18.35. Redo Problem 18.34, given yt� 2yt�2 � 24, y(0) � 11, and y(1) � 18.

a) From (18.11), yp �
24

1� 0� 2
� 8
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b) From (18.60), k ��b2 ��2. From (18.19)

g � �1–
2(0) � 0 h � 1–

2 �4(2)� 0 ��2

From (18.61), sin ! �
�2

�2
� 1 cos ! � 0

From Table 18-1, ! � �/2. Substituting in (18.27),

yc � (�2)t �B1 cos ��2 t� �B2 sin ��2 t��
c)

y(t) � (�2)t �B1 cos ��2 t� �B2 sin ��2 t�� � 8 (18.63)

d) y(0) � B1� 8 � 11 B1 � 3
y(1) ��2B2� 8 � 18 B2 � 7.07

Thus, y(t) � (�2)t �3 cos
�

2
t� 7.07 sin

�

2
t� � 8

e) With k ��2� 1, the time path is divergent.

ECONOMIC APPLICATIONS

18.36. In many markets supply and demand are influenced by current prices and price trends (i.e.,
whether prices are rising or falling and whether they are rising or falling at an increasing or
decreasing rate). The economist, therefore, needs to know the current price P(t), the first
derivative dP(t)/dt, and the second derivative d2 P(t)/dt2. Assume

Qs � c1�w1 P� u1 P�� v1 P
 Qd� c2�w2 P� u2 P�� v2 P
 (18.64)

Comment on the dynamic stability of the market if price clears the market at each point in
time.

In equilibrium, Qs � Qd. Therefore,

c1�w1 P� u1 P�� v1 P
 � c2�w2 P� u2 P�� v2 P


(v1� v2)P
� (u1� u2)P�� (w1�w2)P � �(c1� c2)

Letting v � v1� v2, u � u1� u2, w � w1�w2, c � c1� c2, and dividing through by v to conform to
(18.1),

P
�
u

v
P��

w

v
P � �

c

v
(18.65)

Using (18.2) to find the particular integral, which will be the intertemporal equilibrium price P̄,

P̄ � Pp �
�c/v
w/v

� �
c

w

Since c � c1� c2 and w � w1�w2 where under ordinary supply conditions, c1� 0, w1� 0, and under
ordinary demand conditions, c2� 0, w2� 0, �c/w� 0, as is necessary for P̄. Using (18.4) to find the
characteristic roots for the complementary function,

r1, r2 �
�u/v��(u/v)2� 4w/v

2
(18.66)

which can assume three different types of solutions, depending on the specification of w, u, and v:

1. If (u/v)2� 4w/v, r1 and r2 will be distinct real roots solvable in terms of (18.66); and
P(t) � A1 er1t�A2 er2t� c/w.
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2. If (u/v)2� 4w/v, r1 and r2 will be repeated real roots. Thus, (18.66) reduces to �(u/v)/2 or �u/2v.
Then from (18.17), P(t) � A1e�(u/2v)t�A2 te�(u/2v)t� c/w.

3. If (u/v)2� 4w/v, r1 and r2 will be complex roots and from (18.26), P(t) � egt(B1 cos ht�
B2 sin ht)� c/w, where from (18.19), g � �u/(2v) and h � 1–

2 �4w/v� (u/v)2.

Specification of w, u, v depends on expectations. If people are bothered by inflationary psychology
and expect prices to keep rising, u2 in (18.64) will be positive; if they expect prices to ultimately fall and
hold off buying because of that expectation, u2 will be negative; and so forth.

18.37. In a model similar to Samuelson’s interaction model between the multiplier and the accelerator,
assume

Yt � Ct� It�Gt (18.67)
Ct � C0� cYt�1 (18.68)
It � I0�w(Ct�Ct�1) (18.69)

where 0� c� 1, w� 0, and Gt �G0. (a) Find the time path Y(t) of national income and (b)
comment on the stability conditions.

a) Substituting (18.68) in (18.69),

It� I0� cw(Yt�1�Yt�2) (18.70)

Substituting Gt � G0, (18.70), and (18.68) into (18.67), and then rearranging to conform with
(18.10),

Yt � C0� cYt�1� I0� cw(Yt�1�Yt�2)�G0

Yt� c(1�w)Yt�1� cwYt�2� C0� I0�G0 (18.71)

Using (18.11) for the particular solution,

Yp �
C0� I0�G0

1� c(1�w)� cw
�

C0� I0�G0

1� c

which is the intertemporal equilibrium level of income Ȳ. Using (18.4) to find the characteristic roots
for the complementary function,

r1, r2 �
c(1�w)��[�c(1�w)]2� 4cw

2
(18.72)

which can assume three different types of solutions depending on the values assigned to c and w:

1. If c2(1�w)2� 4cw, or equivalently, if c(1�w)2� 4w, r1 and r2 will be distinct real roots
solvable in terms of (18.72) and

Y(t) � A1r1
t �A2r2

t �
C0� I0�G0

1� c

2. If c(1�w)2 � 4w, r1 and r2 will be repeated real roots, and from (18.72) and (18.18),

Y(t) � A1�1
2

c(1�w) �
t

�A2 t �1
2

c(1�w)�
t

�
C0� I0�G0

1� c

3. If c(1�w)2� 4w, r1 and r2 will be complex roots; from (18.27),

Y(t) � kt(B1 cos t!�B2 sin t!)�
C0� I0�G0

1� c

where from (18.60), k ��cw, and from (18.61) ! must be such that

sin ! �
h

k
cos ! �

g

k

where from (18.19), g � 1–
2c(1�w) and h � 1–

2 �4cw� c2(1�w)2.
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b) For stability in the model under all possible initial conditions, the necessary and sufficient conditions
are (1) c� 1 and (2) cw� 1. Since c �MPC with respect to the previous year’s income, c will be less
than 1; for cw� 1, the product of the MPC and the marginal capital-output ratio must also be less than
1. If the characteristic roots are conjugate complex, the time path will oscillate.
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CHAPTER 19

Simultaneous
Differential and

Difference
Equations

19.1 MATRIX SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS, PART 1

Assume a system of n first-order, autonomous, linear differential equations in which no derivative
is a function of another derivative and which we limit here to n � 2 for notational simplicity.

Autonomous simply means all aij and bi are constant.

ẏ1 � a11 y1� a12 y2� b1

ẏ2 � a21 y1� a22 y2� b2
(19.1)

Expressed in matrix form,

� ẏ1

ẏ2
� � �a11

a21

a12

a22
��y1

y2
�� �b1

b2
�

or Ẏ �AY�B

The complete solution to such a system will consist of n equations, each in turn composed of (1) a
complementary solution yc and (2) a particular solution yp.

1. a) From our earlier work with single differential equations, we can expect the complemen-
tary solution of the system of equations, given distinct real roots, to take the general
form,

yc�

n�
i�1

ki Ci erit � k1 C1 er1t� k2 C2 er2t (19.2)

where ki� a scalar or constant, Ci � (2� 1) column vector of constants called an
eigenvector, and ri � a scalar called the characteristic root. See Section 12.8.
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b) As demonstrated in Problem 19.13, the characteristic roots, also called eigenvalues, can be
found by solving the quadratic equation

ri�
Tr(A)��[Tr(A)]2� 4 
A 


2
(19.3)

where 
A 
� determinant of A, Tr(A) � trace of A, and Tr(A) � � of all the elements on
the principal diagonal of A. Here where A� (2� 2),

Tr(A) � a11� a22

c) As explained in Problem 19.12, the solution of the system of simultaneous equations
requires that

(A� ri I)Ci � 0 (19.4)

where (A� ri I) � �a11

a21

a12

a22�� ri �1 0
0 1� � �a11� ri

a21

a12

a22� ri
�

ri is a scalar, and I is an identity matrix, here I2. Equation (19.4) is called the eigenvalue
problem. The eigenvectors are found by solving (19.4) for Ci. To preclude trivial, i.e.,
null-vector, solutions for Ci, the matrix (A� ri I) must be constrained to be singular.

2. The particular integral, yp, is simply the intertemporal or steady-state solution. As
demonstrated in Problem 19.14,

yp� Ȳ ��A�1 B (19.5)

where A�1 � the inverse of A and B� the column of constants.
The stability of the model depends on the characteristic roots.

If all ri� 0, the model is dynamically stable.
If all ri� 0, the model is dynamically unstable.

If the ri are of different signs, the solution is at a saddle-point equilibrium and the model is
unstable, except along the saddle path. See Section 19.5 and Examples 10 and 12.

EXAMPLE 1. Solve the following system of first-order, autonomous, linear differential equations,

ẏ1 � 5y1� 0.5y2� 12 y1(0) � 12
ẏ2 � �2y1� 5y2� 24 y2(0) � 4

1. Convert them to matrices for ease of computation.

� ẏ1

ẏ2
� � � 5

�2
�0.5

5 � �y1

y2
� � ��12

�24 �
Ẏ � AY�B

2. Then find the complementary functions. From (19.2), assuming distinct real roots,

yc � k1 C1 er1 t� k2 C2 er2 t

But from (19.3), the characteristic roots are

r1, r2 �
Tr(A)��[Tr(A)]2� 4 
A 


2

where Tr(A) � a11� a22 � 5� 5 � 10

and 
A 
 � 25� 1 � 24
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Substituting,

r1, r2 �
10��(10)2� 4(24)

2
�

10� 2
2

r1 � 4 r2 � 6 characteristic roots or eigenvalues

3. We next find the eigenvectors. Using (19.4) and recalling (A� ri I) is singular,

(A� ri I)Ci � 0

where (A� ri I)Ci � � a11� ri

a21

a12

a22� ri
� � c1

c2
� � 0

a) Substituting first for r1 � 4,

�5� 4
�2

�0.5
5� 4 � �

c1

c2
� � � 1

�2
�0.5

1 � � c1

c2
�� 0

Then, by simple multiplication of row by column, we have

c1� 0.5c2 � 0 c1 � 0.5c2

�2c1� c2 � 0 c1 � 0.5c2

Since (A� ri I) is constrained to be singular, there will always be linear dependence between the
equations and we can work with either one. With linear dependence, there is also an infinite number
of eigenvectors that will satisfy the equation. We can normalize the equation by choosing a vector
whose length is unity, i.e., c1

2� c2
2 � 1, which is called the Euclidian distance condition, or we can

simply pick any arbitrary value for one element while maintaining the relationship between elements.
Opting for the latter, let c1 � 1.

If c1 � 1, then c2 �
1

0.5
� 2

Thus, the eigenvector C1 corresponding to r1 � 4 is

C1 � � c1

c2
� � �1

2 �
and the first elements of the complementary function of the general solution are

y1
c � k1 �1

2 � e4t � � k1 e4t

2k1 e4t �
b) Substituting next for r2 � 6,

�5� 6
�2

�0.5
5� 6 � �

c1

c2
� � ��1

�2
�0.5
�1 � � c1

c2
� � 0

Multiplying row by column,

�c1� 0.5c2 � 0 c1 � �0.5c2

�2c1� c2 � 0 c1 � �0.5c2

If c1� 1, then c2 �
1
�0.5

� �2

Thus, the eigenvector C2 corresponding to r2 � 6 is

C2 � � c1

c2
� � � 1

�2 �
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and the second elements of the complementary function of the general solution are

yc
2 � k2 � 1

�2 � e6t � � k2 e6t

�2k2 e6t �
Putting them together for the complete complementary solution to the system,

y1(t) � k1 e4t� k2 e6t

y2(t) � 2k1 e4t� 2k2 e6t

4. Now we find the intertemporal or steady-state solutions for yp. From (19.5),

yp � Ȳ � �A�1 B

where B � ��12
�24 � , A � � 5

�2
�0.5

5 � , 
A 
 � 25� 1 � 24,

the cofactor matrix is C � � 5
0.5

2
5 � , the adjoint matrix is Adj. A � C� � �5

2
0.5
5 � ,

and the inverse is A�1 �
1
24�

5
2

0.5
5 �

Substituting in (19.5),

Ȳ � �
1
24 �5

2
0.5
5 � ��12

�24 �
Multiplying row by column,

Ȳ � � ȳ1

ȳ2
� � 1

24 � 72
144 � � �3

6 �
Thus the complete general solution, y(t) � yc� yp, is

y1(t) � k1 e4t� k2 e6t� 3
(19.6)

y2(t) � 2k1 e4t� 2k2 e6t� 6

With r1 � 4� 0 and r2 � 6� 0, the equilibrium is unstable. See also Problems 19.1 to 19.3.

EXAMPLE 2. To find the definite solution for Example 1, we simply employ the initial conditions, y1(0) � 12,
y2(0) � 4. When (19.6) is evaluated at t � 0, we have

y1(0) � k1� k2� 3 � 12
y2(0) � 2k1� 2k2� 6 � 4

Solved simultaneously, k1 � 4 k2 � 5

Substituting in (19.6), we have the definite solution,

y1(t) � 4e4t� 5e6t� 3
y2(t) � 8e4t� 10e6t� 6

which remains dynamically unstable because of the positive roots.

19.2 MATRIX SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS, PART 2

Assume a system of n first-order, autonomous, linear differential equations in which one or more
derivatives is a function of another derivative, and which we limit here to n � 2 simply for notational
simplicity,

a11 ẏ1� a12 ẏ2� a13 y1� a14 y2� b1

a21 ẏ1� a22 ẏ2� a23 y1� a24 y2� b2
(19.7)
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In matrix form,

�a11 a12

a21 a22��
ẏ1

ẏ2� � �a13 a14

a23 a24��
y1

y2�� �b1

b2�
A1 Ẏ �A2 Y�B

The general solution y(t) will consist of a complementary function yc and a particular integral or
solution yp. As in previous examples, for distinct real roots we can expect the complementary function
to assume the general form

yc� k1 C1 er1t� k2 C2 er2t (19.8)

As explained in Problems 19.15 to 19.16, the eigenvalue problem here is

(A2� ri A1)Ci � 0 (19.9)

where (A2� ri A1) � �a13 a14

a23 a24
�� ri �a11 a12

a21 a22
� � �a13� a11 ri a14� a12 ri

a23� a21 ri a24� a22 ri
�

The characteristic equation is


A2� ri A1 
� 0 (19.10)

the particular integral is

Ȳ ��A2
�1 B (19.11)

and the stability conditions are the same as in Section 19.1.

EXAMPLE 3. Solve the following system of first-order, autonomous, nonlinear differential equations.

ẏ1 � �3y1� 1.5y2� 2.5ẏ2� 2.4 y1(0) � 14
ẏ2 � 2y1� 5y2� 16 y2(0) � 15.4

1. First rearrange the equations to conform with (19.7) and set them in matrix form,

�1
0

2.5
1 � � ẏ1

ẏ2
� � ��3

2
1.5
�5 � �

y1

y2
� � � 2.4

16 �
2. Assuming distinct real roots, find the complementary function.

yc � k1 C1 er1 t� k2C2 er2 t

a) Start with the characteristic equation to find the characteristic roots. From (19.10),


A2� ri A1 
 � 0

b) Substituting and dropping the i subscript for simplicity,


A2� rA1 
 � � ��3
2

1.5
�5 � � r �1

0
2.5
1 � � � ��3� r

2
1.5� 2.5r

�5� r � � 0

(�3� r)(�5� r)� 2(1.5� 2.5r) � 0
r2� 13r� 12 � 0

r1� �1 r2 � �12 characteristic roots

3. Find the eigenvectors, Ci. From (19.9),

(A2� ri A1)Ci � 0

where (A2� ri A1)Ci � ��3� ri

2
1.5� 2.5ri

�5� ri
� � c1

c2
�
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a) Substituting first for r1 � �1,

��3� (�1)
2

1.5� 2.5(�1)
�5� (�1) � � c1

c2
� � ��2

2
4
�4 � �

c1

c2
� � 0

By simple matrix multiplication,

�2c1� 4c2 � 0 c1 � 2c2

2c1� 4c2 � 0 c1 � 2c2

If we let c1 � 2, c2� 1. Thus,

C1 � � c1

c2
� � �2

1 �
and the first elements of the general complementary function for r1� �1 are

yc
1� k1�2

1 � e�t � � 2k1

k1
� e�t

b) Now substituting for r2 � �12,

��3� (�12)
2

1.5� 2.5(�12)
�5� (�12) � � c1

c2
� � �9

2
31.5

7 � � c1

c2
� � 0

Multiplying row by column,

9c1� 31.5c2 � 0 c1 � �3.5c2

2c1� 7c2 � 0 c1 � �3.5c2

Letting c1 � �3.5, c2 � 1. So,

C2 � � c1

c2
� � ��3.5

1 �
and the second elements of the complementary function for r2 � �12 are

yc
2 � k2 ��3.5

1 � e�12t � ��3.5k2

k2
� e�12t

Adding the two together, the complementary functions are

y1(t) � 2k1 e�t� 3.5k2 e�12t

y2(t) � k1e�t� k2e�12t
(19.12)

4. Find the particular integral yp which is simply the intertemporal equilibrium Ȳ. From (19.11),

Ȳ � �A2
�1 B

where B � �2.4
16 � , A2 � ��3

2
1.5
�5 � , 
A2 
 � 15� 3 � 12

the cofactor matrix is C � � �5
�1.5

�2
�3� , the adjoint matrix is Adj. A � C� � ��5

�2
�1.5
�3 �

and the inverse is A2
�1 �

1
12�
�5
�2

�1.5
�3 �

Substituting in (19.11),

Ȳ � � ȳ1

ȳ2
� � � 1

12�
�5
�2

�1.5
�3 � � 2.4

16 � � � 3
4.4�
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5. By adding the particular integrals or steady-state solutions to the complementary function in (19.12), we
derive the complete general solution.

y1(t) � 2k1 e�t� 3.5k2 e�12t� 3
y2(t) � k1 e�t� k2 e�12t� 4.4

(19.13)

With r1 � �1� 0, r2 � �12� 0, the system of equations is dynamically stable. See also Problems 19.4
to 19.6.

EXAMPLE 4. To find the definite solution for Example 3, we simply employ the initial conditions, y1(0) � 14,
y2(0) � 15.4. When (19.13) is evaluated at t � 0, we have

y1(0) � 2k1� 3.5k2� 3 � 14
y2(0) � k1� k2� 4.4 � 15.4

Solved simultaneously, k1 � 9 k2 � 2

Substituting in (19.13) for the definite solution,

y1(t) � 18e�t� 7e�12t� 3
y2(t) � 9e�t� 2e�12t� 4.4

19.3 MATRIX SOLUTION OF SIMULTANEOUS DIFFERENCE EQUATIONS, PART 1

Assume a system of n linear first-order difference equations in which no difference is a function
of another difference, the coefficients are constants, and we again set n � 2 for notational simplicity.

xt � a11 xt�1� a12 yt�1� b1

yt � a21 xt�1� a22 yt�1� b2

In matrix form,

�xt

yt
� � �a11 a12

a21 a22
��xt�1

yt�1
�� �b1

b2
�

Letting Yt � �xt

yt
� , Yt�1� �xt�1

yt�1
� , B� �b1

b2
� , and A� the coefficient matrix, we have

Yt �AYt�1�B (19.14)

The complete solution will consist of n equations, each in turn composed of the complementary
solution yc and the particular solution yp. Based on our earlier work with single difference equations
and assuming distinct real roots, we can expect the complementary function will take the general
form,

yc�

n�
i�1

ki Ci ri
t� k1 C1 r1

t� k2 C2 r2
t (19.15)

As demonstrated in Problem 19.17, the eigenvalue problem breaks down to

(A� ri I)Ci � 0 (19.16)

By similar steps to the demonstrations in Problems 19.13 to 19.14, it can be shown that the
characteristic equation is


A� ri I 
� 0

where the characteristic roots can be found with (19.3), and the particular solution is

yp � (I�A)�1 B (19.17)
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The stability conditions require that each of the n roots be less than 1 in absolute value for dynamic
stability. If even one root is greater than 1 in absolute value, it will dominate the other(s) and the time
path will be divergent.

EXAMPLE 5. Solve the following system of first-order linear difference equations,

xt � �4xt�1� yt�1� 12 x0 � 16

yt � 2xt�1� 3yt�1� 6 y0 � 8
(19.18)

1. Set them in matrix form,

� xt

yt
� � ��4

2
1
�3 � �

xt�1

yt�1
� � � 12

6 �
Yt � AYt�1�B

2. We next find the complementary functions. Assuming a case of distinct real roots,

yc � k1C1 r1
t� k2 C2 r2

t

and the characteristic roots are

r1, r2 �
Tr(A)��[Tr(A)]2� 4 
A 


2

where Tr(A) � �4� 3 � �7 and 
A 
 � 12� 2 � 10

Substituting,

r1, r2 �
�7��(�7)2� 4(10) 


2
�
�7� 3

2

r1 � �2 r2 � �5 characteristic roots or eigenvalues

3. We then find the eigenvectors. Using (19.16) and recalling (A� ri I) is singular,

(A� ri I)Ci� � a11� ri

a21

a12

a22� ri
� � c1

c2
� � 0

a) Substituting first for r1 � �2,

��4� (�2)
2

1
�3� (�2) � �

c1

c2
� � ��2

2
1
�1 � �

c1

c2
� � 0

Then by multiplying row by column, we find

�2c1� c2 � 0 c2 � 2c1

2c1� c2 � 0 c2 � 2c1

Letting c1 � 1, c2 � 2

Hence the eigenvector corresponding to r1 � �2 is

C1 � �1
2 �

and the ai1 elements of the complementary function are

k1 �1
2 � (�2)t � � k1(�2)t

2k1(�2)t �
b) Then substituting for r2 � �5,

��4� (�5)
2

1
�3� (�5) � �

c1

c2
� � �1 1

2 2� �
c1

c2
� � 0
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Multiplying row by column,

c1� c2 � 0 c2 � �c1

2c1� 2c2 � 0 c2 � �c1

If c1� 1, c2� �1

The eigenvector for r2 � �5 is

C2� � 1
�1 �

and the ai2 elements of the complementary function are

k2 � 1
�1 � (�5)t � � k2(�5)t

�k2(�5)t�
Combining the two for the general complementary function, we have

xc � k1(�2)t� k2(�5)t

yc � 2k1(�2)t� k2(�5)t

4. Now we find the particular solution for the steady-state solutions x̄, ȳ. From (19.17),

yp � (I�A)�1 B

where (I�A) � �1 0
0 1� � ��4

2
1
�3 � � � 5

�2
�1
4 �

Following a series of steps similar to those in Example 3,

yp � � x̄

ȳ � � 1
18 �4 1

2 5� �
12
6 � � �3

3�
This makes the complete general solution,

xt � k1(�2)t� k2(�5)t� 3
yt � 2k1(�2)t� k2(�5)t� 3

With 
�2 
� 1 and 
�5 
� 1, the time path is divergent. See also Problems 19.7 to 19.8.

EXAMPLE 6. For the specific solution, we need only employ the initial conditions. Given x0 � 16, y0 � 8, at
t � 0, the general functions reduce to

k1� k2� 3 � 16
2k1� k2� 3 � 8

Solving simultaneously, k1 � 6, k2 � 7

By simple substitution, we then find the specific solution,

xt� 6(�2)t� 7(�5)t� 3

yt� 12(�2)t� 7(�5)t� 3
(19.19)

To check the answer, substitute t � 1 and t � 0 in (19.19).

x1� 6(�2)1� 7(�5)1� 3 � �44 x0 � 6(�2)0� 7(�5)0� 3 � 16
y1 � 12(�2)1� 7(�5)1� 3 � 14 y0 � 12(�2)0� 7(�5)0� 3 � 8

Then go back to (19.18) and substitute x1, y1 for xt and yt, and x0, y0 � for xt�1 and yt�1.

�44 � �4(16)� 8� 12 � �44
14 � 2(16)� 3(8)� 6 � 14
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19.4 MATRIX SOLUTION OF SIMULTANEOUS DIFFERENCE EQUATIONS, PART 2

Assume a system of n linear first-order difference equations in which one or more differences is
a function of another difference, the coefficients are constant, and we again set n � 2 for notational
simplicity.

a11 xt� a12 yt � a13 xt�1� a14 yt�1� b1

a21 xt� a22 yt � a23 xt�1� a24 yt�1� b2
(19.20)

or �a11 a12

a21 a22
��xt

yt
� � �a13 a14

a23 a24
��xt�1

yt�1
�� �b1

b2
�

A1 Yt �A2 Yt�1�B

From previous sections we can expect the general solution yt will consist of a complementary
function yc and a particular solution yp, where the complementary function for distinct real roots will
take the general form

yc� k1 C1(r1)t� k2 C2(r2)t

As demonstrated in Problems 19.18 to 19.19, the eigenvalue problem here reduces to

(A2� ri A1)Ci � 0 (19.21)

where (A2� ri A1) � �a13 a14

a23 a24
�� ri �a11 a12

a21 a22
� � �a13� a11 ri a14� a12 ri

a23� a21 ri a24� a22 ri
�

and the particular integral is

Ȳ � (A1�A2)�1 B (19.22)

The stability conditions remain the same as in Section 19.3.

EXAMPLE 7. Solve the following system of linear first-order difference equations.

xt � 4xt�1� 2yt�1� yt� 10 x0 � 20

yt � 3xt�1� 6yt�1� 4 y0 � 3
(19.23)

1. Rearrange to conform with (19.20) and set in matrix form.

�1
0

�1
1 � � xt

yt
� � �4

3
�2
6 � �xt�1

yt�1
� � ��10

�4 �
A1 Yt � A2 Yt�1�B

2. For the complementary function, begin with the characteristic equation derived from (19.21)


A2� ri A1 
 � 0

and substitute the parameters of the problem,


A2� ri A1 
 � � 4� r

3
�2� r

6� r � � 0

(4� r)(6� r)� 3(�2� r)
r2� 13r� 30

� 0
� 0

r1 � 3 r2 � 10

3. Find the nontrivial solutions for the eigenvectors Ci. From (19.21),

(A2� ri A1)Ci � 0
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where (A2� ri A1)Ci � � 4� r

3
�2� r

6� r � � c1

c2
�

a) Substituting for r1� 3,

�4� 3
3

�2� 3
6� 3 � � c1

c2
� � �1 1

3 3� �
c1

c2
� � 0

Multiplying row by column,

c1� c2 � 0 c1 � �c2

3c1� 3c2 � 0 c1 � �c2

If c1� 1, c2� �1, the eigenvector is

C1� � 1
�1 �

making the ai1 elements of the complementary function for r1 � 3,

k1 � 1
�1 � (3)t � � k1(3)t

�k1(3)t�
b) For r2 � 10,

� 4� 10
3

�2� 10
6� 10 � � c1

c2
� � ��6

3
8
�4 � �

c1

c2
� � 0

By matrix multiplication,

�6c1� 8c2 � 0 c2 � 0.75c1

3c1� 4c2 � 0 c2 � 0.75c1

Letting c1 � 1, c2 � 0.75, the corresponding eigenvector becomes

C1� � 1
0.75�

and the ai2 elements of the complementary function for r2 � 10 is

k2 � 1
0.75� (10)t � � k2(10)t

0.75k2(10)t �
Combining the two, the complete complementary function becomes

xc � k1(3)t� k2(10)t

yc � �k1(3)t� 0.75k2(10)t
(19.24)

4. Now find the particular or steady-state solution yp � Ȳ. From (19.22),

Ȳ� (A1�A2)�1 B

where A1�A2 � �1
0
�1
1 � � �4

3
�2
6 � � ��3

�3
1
�5 �

Hence Ȳ � � x̄
ȳ � �

1
18 ��5

3
�1
�3 � �

�10
�4 � � � 3

�1 �
5. The complete general solution, y0 � yc� yp, then becomes

xt� k1(3)t� k2(10)t� 3

yt� �k1(3)t� 0.75k2(10)t� 1
(19.25)

Since r1 � 3, r2� 10� 
1 
, the system of equations is dynamically unstable. See also Problems 19.9 to
19.10.
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EXAMPLE 8. The specific solution is found with the help of the initial conditions. With x0 � 20 and y0 � 3, at
t � 0, (19.24) reduces to

k1� k2� 3 � 20
�k1� 0.75k2� 1 � 3

Solving simultaneously, k1 � 5, k2 � 12

and by substituting into (19.25), we come to the definite solution,

xt � 5(3)t� 12(10)t� 3

yt � �5(3)t� 9(10)t� 1
(19.26)

To check the answer, substitute t � 1 and t � 0 in (19.26).

x1 � 5(3)� 12(10)� 3 � 138 x0 � 5� 12� 3 � 20
y1 � �5(3)� 9(10)� 1 � 74 y0 � �5� 9� 1 � 3

Then substitute x1, y1 for xt and yt, and x0, y0� for xt�1 and yt�1 back in (19.23).

138 � 4(20)� 2(3)� 74� 10 � 138
74 � 3(20)� 6(3)� 4 � 74

19.5 STABILITY AND PHASE DIAGRAMS FOR SIMULTANEOUS DIFFERENTIAL
EQUATIONS

Given a system of linear autonomous differential equations, the intertemporal equilibrium level
will be asymptotically stable, i.e., y(t) will converge to ȳ as t →�, if and only if all the characteristic
roots are negative. In the case of complex roots, the real part must be negative. If all the roots are
positive, the system will be unstable. A saddle-point equilibrium, in which roots assume different signs,
will generally be unstable. If, however, the initial conditions for y1 and y2 satisfy the condition

y2 � �r1� a11

a12
� (y1� ȳ1)� ȳ2

where r1 � the negative root, we have what is called a saddle path, and y1(t) and y2(t) will converge to
their intertemporal equilibrium level (see Example 10).

A phase diagram for a system of two differential equations, linear or nonlinear, graphs y2 on the
vertical axis and y1 on the horizontal axis. The y1, y2 plane is called the phase plane. Construction of
a phase diagram is easiest explained in terms of an example.

EXAMPLE 9. Given the system of linear autonomous differential equations,

ẏ1 � �4y1� 16
ẏ2 � �5y2� 15

a phase diagram is used below to test the stability of the model. Since neither variable is a function of the other
variable in this simple model, each equation can be graphed separately.

1. Find the intertemporal equilibrium level, ȳ1, i.e., the locus of points at which ẏ1 � 0.

ẏ1 � �4y1� 16 � 0 ȳ1 � 4

The graph of ȳ1� 4, a vertical line at y1 � 4, is called the y1 isocline. The y1 isocline divides the phase
plane into two regions called isosectors, one to the left of the y1 isocline and one to the right.

2. Find the intertemporal equilibrium level, ȳ2, i.e., the locus of points at which ẏ2 � 0.

ẏ2 � �5y2� 15 � 0 ȳ2 � 3
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The graph of ȳ2� 3 is a horizontal line at y2 � 3, called the y2 isocline. The y2 isocline divides the phase
plane into two isosectors, one above the y2 isocline and the other below it. See Fig. 19-1.

The intersection of the isoclines demarcates the intertemporal equilibrium level,

(ȳ1, ȳ2) � (4, 3)

3. Determine the motion around the y1 isocline, using arrows of horizontal motion.

a) To the left of the y1 isocline, y1� 4. b) To the right of the y1 isocline, y1� 4.

By substituting these values successively in ẏ1 � �4y1� 16, we see

If y1� 4, ẏ1� 0, and there will be
motion to right

If y1� 4, ẏ1� 0, and there will be
motion to left.

4. Determine the motion around the y2 isocline, using arrows of vertical motion.

a) Above the y2 isocline, y2� 3. b) Below the y2 isocline, y2� 3.

Substitution of these values successively in ẏ2 � �5y2� 15, shows

If y2� 3, ẏ2� 0, and the motion
will be downward.

If y2� 3, ẏ2� 0, and the motion
will be upward.

The resulting arrows of motion in Fig. 19-1, all pointing to the intertemporal equilibrium, suggest the
system of equations is convergent. Nevertheless, trajectory paths should be drawn because the arrows by
themselves can be deceiving, as seen in Fig. 19-2. Starting from an arbitrary point, such as (3, 2) in the
southwest quadrant, or any point in any quadrant, we can see that the dynamics of the model will lead
to the steady-state solution (4, 3). Hence the time path converges to the steady-state solution, making that
solution stable.

Since the equations are linear, the answer can be checked using the techniques of Chapter 16 or 19,
getting

y1(t) � k1 e�4t� 4
y2(t) � k2 e�5t� 3

With both characteristic roots negative, the system must be stable.
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EXAMPLE 10. A phase diagram is constructed in Fig. 19-2 and used below to test the dynamic stability of a
saddle point equilibrium for the system of equations,

ẏ1 � 2y2� 6
ẏ2 � 8y1� 16

1. Find the y1 isocline on which ẏ1 � 0.

ẏ1 � 2y2� 6 � 0 ȳ2� 3

Here the y1 isocline is a horizontal line at ȳ2 � 3.

2. Find the y2 isocline on which ẏ2 � 0.

ẏ2� 8y1� 16 ȳ1 � 2

The y2 isocline is a vertical line at ȳ1� 2. See Fig. 19-2.

3. Determine the motion around the y1 isocline, using arrows of horizontal motion.

a) Above the y1 isocline, y2� 3. b) Below the y1 isocline, y2� 3.

Substitution of these values successively in ẏ1 � 2y2� 6, shows

If y2� 3, ẏ1� 0, and the arrows of motion
point to the right.

If y2� 3, ẏ1� 0, and the arrows of motion
point to the left.

4. Determine the motion around the y2 isocline, using arrows of vertical motion.

a) To the left of the y2 isocline, y1� 2. b) To the right of the y2 isocline, y1� 2.

By substituting these values successively in ẏ2 � 8y1� 16, we see

If y1� 2, ẏ2� 0, and there will be motion
downward.

If y1� 2, ẏ2� 0, and there will be motion
upward.

Despite appearances in Fig. 19-2, the system is unstable even in the northwest and southeast
quadrants. As explained in Example 11, we can show by simply drawing trajectories that the time paths
diverge in all four quadrants, whether we start at point a, b, c, or d.

EXAMPLE 11. The instability in the model in Fig. 19-2 is made evident by drawing a trajectory from any of the
quadrants. We do two, one from a and one from b, and leave the other two for you as a practice exercise. In each
case the path of the trajectory is best described in four steps.

1. Departure from point a.
a) The trajectory moves in a southeasterly direction.
b) But as the time path approaches the y1 isocline where ẏ1 � 0, the y1 motion eastward slows down

while the y2 motion southward continues unabated.
c) At the y1 isocline, ẏ1 � 0. Consequently, the trajectory must cross the y1 isocline vertically.
d) Below the y1 isocline, the arrows of motion point in a southwesterly direction, taking the time path

away from the equilibrium and hence indicating an unstable equilibrium.

2. Departure from point b.
a) The trajectory once again moves in a southeasterly direction.
b) But as the time path approaches the y2 isocline where ẏ2 � 0, the y2 motion southward ebbs while

the y1 motion eastward continues unaffected.
c) Since ẏ2 � 0 at the y2 isocline, the time path must cross the y2 isocline horizontally.
d) To the right of the y2 isocline, the arrows of motion point in a northeasterly direction, taking the time

path away from the equilibrium and belying the appearance of a stable equilibrium.

EXAMPLE 12. The dotted line in Fig. 19-2 is a saddle path. Only if the initial conditions fall on the saddle path
will the steady-state equilibrium prove to be stable. The equation for the saddle path is

y2 � � r1� a11

a12
� (y1� ȳ1)� ȳ2
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where we already know all but r1, the negative root. From the original equations,


A 
 � � a11 a12

a21 a22
� � � 0 2

8 0 � � �16

Any time 
A 
� 0, we have a saddle-point equilibrium. Substituting in (19.3),

ri �
Tr(A)��[Tr(A)]2� 4 
A 


2

r1, r2�
0��0� 4(�16)

2
� �4, 4

Then substituting in the saddle-path equation above,

y2� ��4� 0
2 � (y1� 2)� 3

y2 � 7� 2y1 saddle path

Note that the intertemporal equilibrium (2, 3) falls on the saddle path. Only if the initial conditions satisfy the
saddle-path condition will the intertemporal equilibrium be stable.

Solved Problems

SIMULTANEOUS DIFFERENTIAL EQUATIONS

19.1. Solve the following system of first-order, autonomous, linear differential equations,

ẏ1 ��8y1� 5y2� 4 y1(0) � 7
ẏ2 � 3.25y1� 4y2� 22 y2(0) � 21.5

1. Putting them in matrix form for ease of computation,

� ẏ1

ẏ2
� � � �8

3.25
5
�4 � �

y1

y2
� � � 4

22�
Ẏ � AY�B

2. Then find the complementary functions. Assuming distinct real roots,

yc � k1 C1 er1 t� k2 C2 er2 t

where r1, r2 �
Tr(A)��[Tr(A)]2� 4 
A 


2

Tr(A) � �12, and 
A 
 � 15.75.

r1, r2 �
�12��(12)2� 4(15.75)

2
�
�12� 9

2

r1 � �1.5 r2 � �10.5

3. Next we find the eigenvectors Ci from

(A� ri I)Ci � � a11� ri

a21

a12

a22� ri
� � c1

c2
� � 0
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a) For r1 � �1.5,

��8� (�1.5)
3.25

5
�4� (�1.5) � �

c1

c2
� � ��6.5

3.25
5
�2.5� �

c1

c2
� � 0

By simple multiplication of row by column,

�6.5c1� 5c2 � 0 c2 � 1.3c1

3.25c1� 2.5c2 � 0 c2 � 1.3c1

If c1 � 1, then c2 � 1.3. Thus, the eigenvector C1 corresponding to r1 � �1.5 is

C1 � � c1

c2
� � � 1

1.3 �
and the first elements of the complementary function of the general solution are

yc
1 � k1 � 1

1.3 � e�1.5t � � k1 e�1.5t

1.3k1 e�1.5t �
b) Substituting next for r2� �10.5,

��8� (�10.5)
3.25

5
�4� (�10.5)� �

c1

c2
� � � 2.5

3.25
5

6.5 � �
c1

c2
� � 0

Then simply multiplying the first row by the column, since the final results will always be the same
due to the singularity of the (A� ri I) matrix

2.5c1� 5c2 � 0 c1 � �2c2

If c2 � 1, then c1 � �2; the eigenvector C2 for r2 � �10.5 is

C2 � � c1

c2
� � ��2

1 �
and the second elements of the general complementary function are

yc
2 � k2 ��2

1 � e�10.5t � ��2k2 e�10.5t

k2 e�10.5t �
This makes the complete complementary solution,

y1(t) � k1 e�1.5t� 2k2e�10.5t

y2(t) � 1.3k1 e�1.5t� k2 e�10.5t

4. Now find the intertemporal equilibrium solutions for yp,

yp � Ȳ � �A�1B

where A � ��8
3.25

5
�4� , C � ��4

�5
�3.25
�8 � , Adj. A � � �4

�3.25
�5
�8� , A�1�

1
15.75 �

�4
�3.25

�5
�8�

Substituting above,

Ȳ � � ȳ1

ȳ2
� � � 1

15.75 � �4
�3.25

�5
�8� �

4
22� � � 8

12�
Thus the complete general solution, y(t) � yc� yp, is

y1(t) � k1 e�1.5t� 2k2e�10.5t� 8

y2(t) � 1.3k1e�1.5t� k2 e�10.5t� 12
(19.27)
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5. To find the definite solution, simply evaluate the above equations at t � 0 and use the initial conditions,
y1(0) � 7, y2(0) � 21.5.

y1(0) � k1� 2k2� 8 � 7
y2(0) � 1.3k1� k2� 12 � 21.5

Solved simultaneously, k1� 5 k2 � 3

Substituting in (19.27),

y1(t) � 5e�1.5t� 6e�10.5t� 8
y2(t) � 6.5e�1.5t� 3e�10.5t� 12

With r1 � �1.5� 0, r2 � �10.5� 0, the equilibrium is dynamically stable.

19.2. Solve the following system of differential equations,

ẏ1 � 2y2� 6 y1(0) � 1
ẏ2 � 8y1� 16 y2(0) � 4

1. In matrix form,

� ẏ1

ẏ2
� � �0 2

8 0� �
y1

y2
� � � �6

�16 �
Ẏ � AY�B

2. Finding the characteristic roots,

r1, r2 �
Tr(A)��[Tr(A)]2� 4 
A 


2

r1, r2 �
0��(0)2� 4(�16)

2
�
�8
2

r1� �4 r2 � 4

3. Now determine the eigenvectors.

a) For r1 � �4,

�0� (�4)
8

2
0� (�4)� �

c1

c2
� � �4 2

8 4� �
c1

c2
� � 0

4c1� 2c2 � 0 c2� �2c1

If c1 � 1, then c2 � �2, and the first elements of the complementary function are

yc
1 � k1 � 1

�2� e�4t � � k1e�4t

�2k1 e�4t �
b) For r1 � 4,

�0� 4
8

2
0� 4 � �

c1

c2
� � ��4

8
2
�4� �

c1

c2
� � 0

�4c1� 2c2 � 0 c2 � 2c1

If c1 � 1, then c2 � 2, and the second elements of the complementary function are

yc
2 � k2 � 1

2 � e4t � � k2 e4t

2k2 e4t �

444 SIMULTANEOUS DIFFERENTIAL AND DIFFERENCE EQUATIONS [CHAP. 19



This means the general complementary functions are

y1(t) � k1 e�4t� k2 e4t

y2(t) � �2k1 e�4t� 2k2 e4t

4. For the steady-state solutions yp,

yp � Ȳ � �A�1B

Ȳ � � ȳ1

ȳ2
� � � 1

�16 � 0
�8

�2
0 � � �6

�16 � � �2
3 �

Thus the complete general solution, y(t) � yc� yp, is

y1(t) � k1 e�4t� k2 e4t� 2

y2(t) � �2k1 e�4t� 2k2 e4t� 3
(19.28)

5. We then find the definite solution from the initial conditions, y1(0) � 1, y2(0) � 4.

y1(0) � k1� k2� 2 � 1
y2(0) � �2k1� 2k2� 3 � 4

Solved simultaneously, k1 � �0.75 k2 � �0.25

Substituting in (19.28), we have the final solution.

y1(t) � �0.75e�4t� 0.25e4t� 2
y2(t) � 1.5e�4t� 0.5k2e4t� 3

With r1 � �4� 0 and r2 � 4� 0, we have a saddle-point solution. Saddle-point solutions are
generally unstable unless the initial conditions fall on the saddle path:

y2 � � r1� a11

a12
� (y1� ȳ1)� ȳ2

Substituting, y2 �

y2 �

�
7� 2y1

�4� 0
2 � (y1� 2)� 3

This is the equation for the saddle path, which was graphed in Fig. 19-2 of Example 10. Substituting
the initial conditoins, y1(0) � 1, y2(0) � 4, we see

4� 7� 2(1) � 5

Since the initial conditions do not fall on the saddle path, the system is unstable.

19.3. Solve the following system of equations.

ẏ1 � 4y1� 7y2� 3 y1(0) � 7
ẏ2 � y1� 2y2� 4 y2(0) � 10

1. Converting to matrices,

� ẏ1

ẏ2
� � �4

1
7
�2� �

y1

y2
� � �31

4 �
Ẏ � AY�B

2. The characteristic roots are

r1,r2 �
2��(2)2� 4(�15)

2
�

2� 8
2

r1 � �3 r2� 5
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3. The eigenvector for r1 � �3,

�4� (�3)
1

7
�2� (�3) � �

c1

c2
� � �7 7

1 1� �
c1

c2
� � 0

7c1� 7c2 � 0 c1 � �c2

If c2 � 1, then c1 � �1, and

yc
1 � k1 ��1

1 � e�3t � ��k1 e�3t

k1 e�3t �
For r2� 5,

�4� 5
1

7
�2� 5� �

c1

c2
� � ��1

1
7
�7� �

c1

c2
� � 0

�c1� 7c2 � 0 c1 � 7c2

If c2 � 1, then c1 � 7, and

yc
2 � k2 �7

1 � e5t � �7k2 e5t

k2 e5t �
The general complementary functions are

y1(t) � �k1e�3t� 7k2 e5t

y2(t) � k1 e�3t� k2e5t

4. The steady-state solutions yp are

yp � Ȳ � �A�1B

Ȳ � � ȳ1

ȳ2
� � � 1

�15 ��2
�1

�7
4 � �31

4 � � ��6
�1�

and the complete general solution is

y1(t) � �k1 e�3t� 7k2 e5t� 6

y2(t) � k1 e�3t� k2 e5t� 1
(19.29)

5. The definite solution, given y1(0) � 7, y2(0) � 10, is

y1(0) � �k1� 7k2� 6 � 7
y2(0) � k1� k2� 1 � 10

k1� 8 k2 � 3

Substituting in (19.29) for the final solution,

y1(t) � �8e�3t� 21e5t� 6
y2(t) � 8e�3t� 3e5t� 1

With r1� �3� 0 and r2 � 5� 0, we again have a saddle-point solution which will be unstable
unless the initial conditions fulfill the saddle-path equation:

y2 � � r1� a11

a12
� (y1� ȳ1)� ȳ2

Substituting, y2 �

y2 �

�
�7� y1

�3� 4
7 � [y1� (�6)]� (�1)

Employing the initial conditions, y1(0) � 7, y2(0) � 10,

10��7� (7) � �14
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Since the initial conditions do not satisfy the saddle-path equation, the system of equations is
unstable.

19.4. Solve the following system of nonlinear, autonomous, first-order differential equations in which
one or more derivative is a function of another derivative.

ẏ1 � 4y1� y2� 6 y1(0) � 9
ẏ2 � 8y1� 5y2� ẏ1� 6 y2(0) � 10

1. Rearranging the equations to conform with (19.7) and setting them in matrix form,

�1 0
1 1� �

ẏ1

ẏ2
� � �4 1

8 5� �
y1

y2
� � � 6

�6�
A1 Ẏ � A2 Y�B

2. Find the characteristic roots from the characteristic equation,


A2� ri A1 
 � 0

where, dropping the i subscript for simplicity,


A2� rA1 
 � � �4 1
8 5� � r �1 0

1 1� � � � 4� r

8� r

1
5� r � � 0

r2� 8r� 12 � 0

r1� 2 r2 � 6

3. Find the eigenvectors Ci where

(A2� ri A1)Ci � 0

and (A2� ri A1)Ci � �4� ri

8� ri

1
5� ri

� � c1

c2
�

Substituting for r1 � 2,

�4� 2
8� 2

1
5� 2 � �

c1

c2
� � �2 1

6 3� �
c1

c2
� � 0

2c1� c2 � 0 c2� �2c1

If c1 � 1, c2 � �2, and

yc
1 � k1 � 1

�2� e2t � � k1

�2k1
� e2t

Now substituting for r2 � 6,

�4� 6
8� 6

1
5� 6 � �

c1

c2
� � ��2

2
1
�1� �

c1

c2
� � 0

�2c1� c2 � 0 c2 � 2c1

If c1 � 1, c2 � 2, and

yc
2 � k2 � 1

2 � e6t � � k2

2k2
� e6t

Adding the two components of the complementary functions,

y1(t) � k1 e2t� k2 e6t

y2(t) � �2k1 e2t� 2k2 e6t
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4. For the particular integral yp,

Ȳ � �A2
�1 B

where B � � 6
�6� , A2 � �4 1

8 5� , 
A2 
 � 20� 8 � 12, and A2
�1�

1
12 � 5

�8
�1
4 � .

Substituting,

Ȳ � � ȳ1

ȳ2
� � � 1

12 � 5
�8

�1
4 � � 6

�6� � ��3
6 �

Adding the particular integrals to the complementary functions,

y1(t) � k1 e2t� k2 e6t� 3

y2(t) � �2k1e2t� 2k2 e6t� 6
(19.30)

5. For the definite solution, set t � 0 in (19.30) and use y1(0) � 9, y2(0) � 10.

y1(0) � k1� k2� 3 � 9
y2(0) � �2k1� 2k2� 6 � 10

k1� 5 k2 � 7

Then substituting back in (19.30),

y1(t) � 5e2t� 7e6t� 3
y2(t) � �10e2t� 14e6t� 6

With r1 � 2� 0 and r2 � 6� 0, the system of equations will be dynamically unstable.

19.5. Solve the following system of differential equations.

ẏ1��y1� 4y2� 0.5ẏ2� 1 y1(0) � 4.5
ẏ2� 4y1� 2y2� 10 y2(0) � 16

1. Rearranging and setting in matrix form,

�1
0

0.5
1 � � ẏ1

ẏ2
� � ��1

4
4
�2� �

y1

y2
� � � �1

�10 �
A1 Ẏ � A2 Y�B

2. From the characteristic equation,


A2� rA1 
 � ��1� r

4
4� 0.5r

�2� r � � 0

we find the characteristic roots,

r2� 5r� 14 � 0

r1 � �7 r2� 2

3. We next find the eigenvectors Ci from the eigenvalue problem,

(A2� ri A1)Ci � ��1� r

4
4� 0.5r

�2� r � � c1

c2
� � 0

Substituting for r1 � �7,

��1� (�7)
4

4� 0.5(�7)
�2� (�7) � � c1

c2
� � �6

4
7.5
5 � � c1

c2
� � 0

6c1� 7.5c2 � 0 c1� �1.25c2
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If c2 � 1, c1 � �1.25, and

yc
1 � k1 ��1.25

1 � e�7t � ��1.25k1 e�7t

k1 e�7t �
Substituting for r1 � 2,

��1� 2
4

4� 0.5(2)
�2� 2 � � c1

c2
� � ��3

4
3
�4� �

c1

c2
� � 0

�3c1� 3c2 � 0 c1 � c2

If c2 � 1, c1 � 1, and

yc
2 � k2 � 1

1 � e2t � �k2e2t

k2e2t �
This makes the complete general complementary functions,

y1(t) � �1.25k1 e�7t� k2 e2t

y2(t) � k1 e�7t� k2 e2t

4. Finding the particular integral Ȳ � �A2
�1B,

where A2 � ��1
4

4
�2� , A2

�1 �
1
�14 ��2 �4

�4 �1� , and

Ȳ � � ȳ1

ȳ2
� � 1

14 ��2 �4
�4 �1� �

�1
�10 � � �3

1 �
By adding the particular integrals to the complementary functions, we get

y1(t) � �1.25k1 e�7t� k2 e2t� 3

y2(t) � k1 e�7t� k2 e2t� 1
(19.31)

5. For the definite solution, we set t � 0 in (19.31) and use y1(0) � 4.5, y2(0) � 16.

y1(0) � �1.25k1� k2� 3 � 4.5
y2(0) � k1� k2� 1 � 16

k1� 6 k2 � 9

Finally, substituting in (19.31),

y1(t) � �7.5e�7t� 9e2t� 3
y2(t) � 6e�7t� 9e2t� 1

With characteristic roots of different signs, we have a saddle-point equilibrium which will be unstable
unless the initial conditions happen to coincide with a point on the saddle path.

19.6. Solve the following.

ẏ1 ��3y1� y2� 0.5ẏ2� 5 y1(0) � 22.2
ẏ2 ��2y1� 4y2� ẏ1� 10 y2(0) � 3.9

1. In matrix form,

�1
1

0.5
1 � � ẏ1

ẏ2
� � ��3

�2
�1
�4� �

y1

y2
� � � 5

10�
A1 Ẏ � A2 Y�B
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2. The characteristic equation is


A2� rA1 
 � ��3� r

�2� r

�1� 0.5r

�4� r � � 0

0.5r2� 5r� 10 � 0

Multiplying by 2 and using the quadratic formula, the characteristic roots are

r1 � �7.235 r2 � �2.765

3. The eigenvector for r1 � �7.235 is

��3� (�7.235)
�2� (�7.235)

�1� 0.5(�7.235)
�4� (�7.235) � � c1

c2
� � �4.235 2.6175

5.235 3.235 � � c1

c2
� � 0

4.235c1� 2.6175c2 � 0 c2 ��1.62c1

If c1 � 1, c2 � �1.62, and

yc
1 � k1 � 1

�1.62 � e�7.235t � � k1 e�7.235t

�1.62k1e�7.235t �
For r2� �2.765,

��3� (�2.765)
�2� (�2.765)

�1� 0.5(�2.765)
�4� (�2.765) � � c1

c2
� � ��0.235 0.3825

0.765 �1.235� �
c1

c2
� � 0

�0.235c1� 0.3825c2� 0 c1 � 1.62c2

If c2 � 1, c1 � 1.62, and

yc
2 � k2 �1.62

1 � e�2.765t � �1.62k2 e�2.765t

k2 e�2.765t �
The complete complementary function, then, is

y1(t) � k1 e�7.235t� 1.62k2 e�2.765t

y2(t) � �1.62k1 e�7.235t� k2 e�2.765t

4. The particular integral Ȳ � �A2
�1B is

Ȳ � � ȳ1

ȳ2
� � � 1

10 ��4
2

1
�3� �

5
10� � � 1

2 �
and the general solution is

y1(t) � k1e�7.235t� 1.62k2 e�2.765t� 1

y2(t) � �1.62k1 e�7.235t� k2 e�2.765t� 2
(19.32)

5. Using y1(0) � 22.2, y2(0) � 3.9 to solve for k1 and k2,

k1� 1.62k2� 1 � 22.2
�1.62k1� k2� 2 � 3.9

k1� 5 k2 � 10

Substituting in (19.32) for the definite solution,

y1(t) � 5e�7.235t� 16.2e�2.765t� 1
y2(t) � �8.1e�7.235t� 10e�2.765t� 2

With both characteristic roots negative, the intertemporal equilibrium is stable.
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SIMULTANEOUS DIFFERENCE EQUATIONS

19.7. Solve the following system of first-order linear difference equations in which no difference is
a function of another difference.

xt � 0.4xt�1� 0.6yt�1� 6 x0 � 14
yt � 0.1xt�1� 0.3yt�1� 5 y0 � 23

1. Setting them in matrix form,

� xt

yt
� � �0.4 0.6

0.1 0.3 � �
xt�1

yt�1
� � � 6

5 �
Yt � AYt�1�B

2. Using (19.3) on the characteristic equation 
A� ri I 
 � 0, find the characteristic roots.

r1, r2 �
0.7��(0.7)2� 4(0.06)

2
�

0.7� 0.5
2

r1 � 0.6 r2 � 0.1

3. The eigenvector for r1 � 0.6 is

� 0.4� 0.6
0.1

0.6
0.3� 0.6 � �

c1

c2
� � ��0.2

0.1
0.6
�0.3� �

c1

c2
� � 0

�0.2c1� 0.6c2 � 0 c1 � 3c2

If c2 � 1, c1 � 3, and we have

k1 � 3
1 � (0.6)t � � 3k1(0.6)t

k1(0.6)t �
For r2� 0.1,

� 0.4� 0.1
0.1

0.6
0.3� 0.1 � �

c1

c2
� � �0.3 0.6

0.1 0.2 � �
c1

c2
� � 0

0.3c1� 0.6c2 � 0 c1 � �2c2

If c2 � 1, c1 � �2, and

k2 ��2
1 � (0.1)t� ��2k2(0.1)t

k2(0.1)t �
Combining the two for the general complementary functions,

xc � 3k1(0.6)t� 2k2(0.1)t

yc � k1(0.6)t� k2(0.1)t

4. For the particular solution,

yp � (I�A)�1B

where (I�A) � �1 0
0 1� � �0.4 0.6

0.1 0.3 � � � 0.6
�0.1

�0.6
0.7 �

and yp � � x̄
ȳ� �

1
0.36 �0.7 0.6

0.1 0.6 � �
6
5 � � �20

10�
This makes the complete general solution,

xt � 3k1(0.6)t� 2k2(0.1)t� 20

yt � k1(0.6)t� k2(0.1)t� 10
(19.33)
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5. Employing the initial conditions, x0 � 14, y0 � 23, (19.33) reduces to

3k1� 2k2� 20 � 14
k1� k2� 10 � 23

Solved simultaneously, k1 � 4, k2 � 9

Substituting in (19.33),

xt � 12(0.6)t� 18k2(0.1)t� 20
yt � 4(0.6)t� 9(0.1)t� 10

With 
0.6 
� 1 and 
0.1 
� 1, the time path is convergent. With both roots positive, there will be no
oscillation.

19.8. Solve the following system of first-order linear difference equations.

xt ��0.6xt�1� 0.1yt�1� 9 x0 � 7.02
yt � 0.5xt�1� 0.2yt�1� 42 y0 � 57.34

1. In matrix form,

� xt

yt
� � ��0.6

0.5
0.1
�0.2� �

xt�1

yt�1
� � � 9

42�
Yt � AYt�1�B

2. The characteristic roots are

r1, r2 �
�0.8��(�0.8)2� 4(0.07) 


2
�
�0.8� 0.6

2

r1 � �0.1 r2 � �0.7

3. The eigenvector for r1 � �0.1 is

��0.6� (�0.1)
0.5

0.1
�0.2� (�0.1) � �

c1

c2
� � ��0.5

0.5
0.1
�0.1� �

c1

c2
� � 0

�0.5c1� 0.1c2 � 0 c2 � 5c1

If c1 � 1, c2 � 5, and

k1 � 1
5 � (�0.1)t� � k1(�0.1)t

5k1(�0.1)t �
For r2� �0.7,

��0.6� (�0.7)
0.5

0.1
�0.2� (�0.7) � �

c1

c2
� � �0.1 0.1

0.5 0.5 � �
c1

c2
� � 0

0.1c1� 0.1c2 � 0 c1 � �c2

If c2 � 1, c1 � �1, and

k2 ��1
1 � (�0.7)t� ��k2(�0.7)t

k2(�0.7)t �
This makes the general complementary functions,

xc � k1(�0.1)t� k2(�0.7)t

yc � 5k1(�0.1)t� k2(�0.7)t
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4. For the particular solution,

yp � (I�A)�1B

where (I�A) � �1 0
0 1� � ��0.6 0.1

0.5 �0.2� � � 1.6
�0.5

�0.1
1.2 �

and yp � � x̄

ȳ� �
1

1.87 �1.2 0.1
0.5 1.6 � �

9
42 � � � 8.02

38.34 �
This makes the complete general solution,

xt� k1(�0.1)t� k2(�0.7)t� 8.02

yt� 5k1(�0.1)t� k2(�0.7)t� 38.34
(19.34)

5. Using x0 � 7.02, y0 � 57.34, (19.34) reduces to

k1� k2� 8.02 � 7.02
5k1� k2� 38.34 � 57.34

Solved simultaneously, k1 � 3, k2 � 4

Substituting in (19.34),

xt � 3(�0.1)t� 4(�0.7)t� 8.02
yt � 15(�0.1)t� 4(�0.7)t� 38.34

With both characteristic roots in absolute value less than 1, the system of equations will approach a
stable intertemporal equilibrium solution. With the roots negative, there will be oscillation.

19.9. Solve the following system of first-order linear difference equations in which one difference is
a function of another difference.

xt��0.7xt�1� 0.4yt�1� 40 x0� 24
yt ��0.575xt�1� 0.5yt�1� xt� 6 y0��32

1. Rearranging and setting in matrix form,

�1 0
1 1� �

xt

yt
� � � �0.7 �0.4

�0.575 �0.5 � �
xt�1

yt�1
� � �40

6 �
A1Yt � A2 Yt�1�B

2. We then find the characteristic roots from the characteristic equation,


A2� ri A1 
 � 0

� �0.7 �0.4
�0.575 �0.5 � � ri �1 0

1 1� � � �0.7� ri

�0.575� ri

�0.4
�0.5� ri

� � 0

r2� 0.8r� 0.12 � 0

r1 � �0.6 r2 � �0.2

3. The eigenvector for r1 � �0.6 is

� �0.7� (�0.6)
�0.575� (�0.6)

�0.4
�0.5� (�0.6) � �

c1

c2
� � ��0.1

0.025
�0.4
0.1 � � c1

c2
� � 0

�0.1c1� 0.4c2 � 0 c1 � �4c2

If c2 � 1, c1 � �4 and the eigenvector is

k1 ��4
1 � (�0.6)t � ��4k1(�0.6)t

k1(�0.6)t �
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For r2� �0.2,

� �0.7� (�0.2)
�0.575� (�0.2)

�0.4
�0.5� (�0.2) � �

c1

c2
� � � �0.5

�0.375
�0.4
0.3 � � c1

c2
� � 0

�0.5c1� 0.4c2 � 0 c2 � �1.25c1

If c1 � 1, c2 � �1.25, and the eigenvector for r2� �0.2 is

k2 � 1
�1.25� (�0.2)t � � k2(�0.2)t

�1.25k2(�0.2)t�
Adding the two eigenvectors, the complementary functions are

xc � �4k1(�0.6)t� k2(�0.2)t

yc � k1(�0.6)t� 1.25k2(�0.2)t

4. For the particular solution yp � Ȳ,

Ȳ � (A1�A2)�1B

where (A1�A2) � �1 0
1 1� � � �0.7 �0.4

�0.575 �0.5 � � � 1.7 0.4
1.575 1.5 �

and Ȳ � � x̄
ȳ � � 1

1.92 � 1.5
�1.575

�0.4
1.7 � �40

6 � � � 30
�27.5 �

Adding yc and yp, the complete general solution is

xt � �4k1(�0.6)t� k2(�0.2)t� 30

yt � k1(�0.6)t� 1.25k2(�0.2)t� 27.5
(19.35)

5. Finally, we apply the initial conditions, x0 � 24 and y0 � �32, to (19.35),

�4k1� k2� 30 � 24
k1� 1.25k2� 27.5 � �32

k1� 3 k2 � 6

and substitute these values back in (19.35) for the definite solution.

xt � �12(�0.6)t� 6(�0.2)t� 30
yt � 3(�0.6)t� 7.5(�0.2)t� 27.5

With both characteristic roots less than 1 in absolute value, the solution is stable.

19.10. Solve the following system of first-order linear difference equations.

xt � 0.6xt�1� 0.85yt�1� yt� 15 x0 � 27
yt � 0.2xt�1� 0.4yt�1� 6 y0 � 38

1. In matrix form,

�1 1
0 1� �

xt

yt
� � �0.6 0.85

0.2 0.4 � �xt�1

yt�1
� � �15

6 �
A1Yt � A2 Yt�1�B

2. For the characteristic roots, 
A2� ri A1 
 � 0.

�0.6 0.85
0.2 0.4 � � ri �1 1

0 1� � �0.6� ri

0.2
0.85� ri

0.4� ri
� � 0

r2� 0.8r� 0.07 � 0

r1 � 0.7 r2 � 0.1
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3. For r1� 0.7,

� 0.6� 0.7
0.2

0.85� 0.7
0.4� 0.7 � � c1

c2
� � ��0.1

0.2
0.15
�0.3� �

c1

c2
� � 0

�0.1c1� 0.15c2 � 0 c1 � 1.5c2

If c2 � 1, c1 � 1.5 and the eigenvector is

k1 �1.5
1 � (0.7)t � � 1.5k1(0.7)t

k1(0.7)t �
For r2� 0.1,

� 0.6� 0.1
0.2

0.85� 0.1
0.4� 0.1 � � c1

c2
� � �0.5 0.75

0.2 0.3 � � c1

c2
� � 0

0.5c1� 0.75c2 � 0 c1 � �1.5c2

If c2 � 1, c1 � �1.5 and the eigenvector is

k2 ��1.5
1 � (0.1)t � ��1.5k2(0.1)t

k2(0.1)t �
4. For the particular solution,

Ȳ � (A1�A2)�1B

Here (A1�A2) � �1 1
0 1� � �0.6 0.85

0.2 0.4 � � � 0.4
�0.2

0.15
0.6 �

and Ȳ� � x̄

ȳ � � 1
0.27 �0.6

0.2
�0.15

0.4 � �15
6 � � �30

20�
Adding yc and yp,

xt� 1.5k1(0.7)t� 1.5k2(0.1)t� 30

yt� k1(0.7)t� k2(0.1)t� 20
(19.36)

5. For the definite solution, we apply x0 � 27 and y0 � 38 to (19.36),

1.5k1� 1.5k2� 30 � 27
k1� k2� 20 � 38

k1� 8 k2 � 10

Substituting back in (19.36),

xt � 12(0.7)t� 15(0.1)t� 30
yt � 8(0.7)t� 10(0.1)t� 20

With both characteristic roots less than 1 in absolute value, the solution is stable.

PHASE DIAGRAMS FOR SIMULTANEOUS DIFFERENTIAL EQUATIONS

19.11. Use a phase diagram to test the stability of the system of equations,

ẏ1 � 3y1� 18
ẏ2 ��2y2� 16

1. Determine the steady-state solutions ȳi where ẏi � 0 to find the isoclines.

ẏ1 � 3y1� 18 � 0 ẏ2 � �2y2� 16 � 0
ȳ1 � 6 the y1 isocline ȳ2 � 8 the y2 isocline
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As seen in Fig. 19-3, the intersection of the isoclines demarcates the intertemporal equilibrium level,
(ȳ1, ȳ2) � (6, 8).

2. Determine the motion around the y1 isocline using arrows of horizontal motion.

a) To the left of the y1 isocline, y1� 6. b) To the right of the y1 isocline, y1� 6.

Substituting these values successively in ẏ1 � 3y1� 18, we see

If y1� 6, ẏ1� 0, and there will be
motion to the left.

If y1� 6, ẏ1� 0, and there will be
motion to the right.

3. Determine the motion around the y2 isocline, using arrows of vertical motion.

a) Above the y2 isocline, y2� 8. b) Below the y2 isocline, y2� 8.

Substitution of these values successively in ẏ2� �2y2� 16 shows

If y2� 8, ẏ2� 0, and the motion
will be downward.

If y2� 8, ẏ2� 0, and the motion
will be upward.

The resulting arrows of motion in Fig. 19-3, all pointing away from the intertemporal equilibrium,
suggest the system of equations is divergent. Drawing trajectory paths to be sure confirms that the
system is indeed divergent.

Proofs and Demonstrations

19.12. Given � ẏ1

ẏ2
� � �a11 a12

a21 a22
��y1

y2
�� �b1

b2
�

or Ẏ �AY�B (19.37)

show in terms of Section 19.1 and Example 1 that

(A� ri I)Ci � 0

Starting with the homogeneous form of the system of equations in which B � 0, or a null vector, and
assuming distinct real roots, we can expect the solution to be in the form

Y � ki Ci eri t (19.38)

where ki � a scalar, Ci � (2� 1) column vector of constants, and ri � a scalar. Taking the derivative of
(19.38) with respect to t, we have

Ẏ � ri ki Ci erit (19.39)
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Substituting (19.38) and (19.39) in the homogeneous form of (19.37) where B � 0,

ri ki Ci erit � Aki Ci erit

Canceling the common ki and erit terms, we have

ri Ci � ACi

ACi� ri Ci � 0

Factoring out Ci and recalling that A is a (2� 2) matrix while ri is a scalar, we multiply ri by a (2� 2)
identity matrix I2, or simply I, to get

(A� ri I)Ci � 0 Q.E.D. (19.40)

19.13. Continuing with the model in Problem 19.12,

show that r1, r2 �
Tr(A)��[Tr(A)]2� 4 
A 


2

If (A� ri I) is nonsingular in (19.40), meaning it contains no linear dependence, then Ci must be a null
column vector, making the solution trivial. To find a nontrivial solution, (A� ri I) must be singular. A
necessary condition for a nontrivial solution (Ci� 0), then, is that the determinant


A� ri I 
 � 0 (19.41)

where equation (19.41) is called the characteristic equation or characteristic polynomial for matrix A.
Dropping the subscript for simplicity and substituting from above, we have

� a11� r

a21

a12

a22� r � � 0

a11 a22� a11r� a22r� r2� a12 a21� 0

Rearranging, r2� (a11� a22)r� (a11 a22� a12 a21) � 0

Or, using matrix notion,

r2�Tr(A)r� 
A 
 � 0

which is a quadratic equation that can be solved for r with the quadratic formula,

r1, r2 �
Tr(A)��[Tr(A)]2� 4 
A 


2
Q.E.D.

19.14. Continuing with the model in Problem 19.13, show that the particular integral or solution is

yp� Ȳ ��A�1 B (19.42)

The particular integral is simply the intertemporal or steady-state solution Ȳ. To find the steady-state
solution, we simply set the column vector of derivatives equal to zero such that Ẏ � 0. When Ẏ � 0, there
is no change and Y � Ȳ. Substituting in (19.37),

Ẏ �
AȲ �

Ȳ �

AȲ�B � 0
�B
�A�1 B Q.E.D.

19.15. Given �a11 a12

a21 a22
�� ẏ1

ẏ2
� � �a13 a14

a23 a24
��y1

y2
�� �b1

b2
�

or A1 Ẏ �A2 Y�B (19.43)
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show in terms of Section 19.2 and Example 3 that to find the complementary function, one must
solve the specific eigenvalue problem

(A2� ri A1)Ci � 0

Starting with the homogeneous form of (19.43) in which B � 0, or a null vector, and assuming distinct
real roots, we can expect the solution and its derivative to take the forms

Y � ki Ci erit Ẏ � ri ki Ci erit (19.44)

Substituting from (19.44) into the homogeneous form of (19.43) where B � 0,

A1 ri ki Ci erit� A2 ki Ci erit

Canceling the common ki and erit terms, we have

A1 ri Ci� A2 Ci

(A2� ri A1)Ci� 0 Q.E.D.

19.16. In terms of the model in Problem 19.15, show that the particular integral is

yp� Ȳ ��A2
�1 B (19.45)

The particular integral is the steady-state solution Ȳ when Ẏ � 0. Substituting in (19.43),

A1Ẏ �
A2Ȳ �

Ȳ �

A2 Ȳ�B � 0
�B
�A2

�1 B Q.E.D.

19.17. Given �xt

yt
� � �a11 a12

a21 a22
��xt�1

yt�1
�� �b1

b2
�

or Yt �AYt�1�B (19.46)

show in terms of Section 19.3 and Example 5 that the eigenvalue problem for a system of
simultaneous first-order linear difference equations when no difference is a function of another
difference is

(A� ri I)Ci � 0

Starting with the homogeneous form of the system of equations in which B � 0, and assuming a case
of distinct real roots, from what we know of individual difference equations, we can expect that

Yt � ki Ci(ri)t and Yt�1 � ki Ci(ri)t�1 (19.47)

where ki and ri are scalars, and Ci � (2� 1) column vector of constants. Substituting in (19.46) when B � 0,
we have

ki Ci(ri)t � Aki Ci(ri)t�1

Canceling the common ki terms and rearranging,

ACi(ri)t�1�Ci(ri)t � 0

Evaluated at t � 1,

(A� ri I)Ci � 0 Q.E.D.

19.18. Given �a11 a12

a21 a22
�� xt

yt
� � �a13 a14

a23 a24
��xt�1

yt�1
�� �b1

b2
�

A1 Yt �A2 Yt�1�B (19.48)
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show in terms of Section 19.4 and Example 9 that for a system of simultaneous first-order linear
difference equations when one or more differences is a function of another difference the
eigenvalue problem is

(A2� ri A1)Ci � 0

From earlier work, assuming distinct real roots, we can anticipate

Yt � ki Ci(ri)t and Yt�1� ki Ci(ri)t�1 (19.49)

Substituting in the homogeneous form of (19.48) where B � 0, we have

A1 ki Ci(ri)t � A2 ki Ci(ri)t�1

A2 Ci(ri)t�1�A1 Ci(ri)t � 0

Evaluated at t � 1,

(A2� ri A1)Ci � 0 Q.E.D.

19.19. Remaining with the same model as in Problem 19.18, show that the particular solution is

yp � Ȳ� (A1�A2)�1 B (19.50)

For the particular or steady-state solution,

xt � xt�1 � x̄ and yt � yt�1� ȳ

In matrix notation, Yt � Yt�1 � Ȳ

Substituting in (19.48),

A1 Ȳ � A2 Ȳ�B

Solving for Ȳ,

Ȳ� (A1�A2)�1 B Q.E.D.
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CHAPTER 20

The Calculus
of Variations

20.1 DYNAMIC OPTIMIZATION

In the static optimization problems studied in Chapters 4 and 5, we sought a point or points that
would maximize or minimize a given function at a particular point or period of time. Given a function
y � y(x), the first-order condition for an optimal point x* is simply y�(x*) � 0. In dynamic optimization
we seek a curve x*(t) which will maximize or minimize a given integral expression. The integral to be
optimized typically defines the area under a curve F which is a function of the independent variable
t, the function x(t), and its derivative dx/dt. In brief, assuming a time period from t0 � 0 to t1 � T and
using x· for the derivative dx/dt, we seek to maximize or minimize

T

0

F[t, x(t), x·(t)] dt (20.1)

where F is assumed continuous for t, x(t), and x·(t) and to have continuous partial derivatives with
respect to x and x· . An integral such as (20.1) which assumes a numerical value for each of the class
of functions x(t) is called a functional. A curve that maximizes or minimizes the value of a functional
is called an extremal. Acceptable candidates for an extremal are the class of functions x(t) which are
continuously differentiable on the defined interval and which typically satisfy some fixed endpoint
conditions. In our work with extremals, we start with the classical approach, called the calculus of
variations, pioneered by Isaac Newton and James and John Bernoulli toward the end of the
seventeenth century.

EXAMPLE 1. A firm wishing to maximize profits � from time t0 � 0 to t1 � T finds that demand for its product
depends on not only the price p of the product but also the rate of change of the price with respect to time dp/dt.
By assuming that costs are fixed and that both p and dp/dt are functions of time, and employing p· for dp/dt, the
firm’s objective can be expressed mathematically as

max
T


0

�[t, p(t), p·(t)] dt

A second firm has found that its total cost C depends on the level of production x(t) and the rate of change
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of production dx/dt � x· , due to start-up and tapering-off costs. Assuming that the firm wishes to minimize costs
and that x and x· are functions of time, the firm’s objective might be written

min
t1


t0

C[t, x(t), x·(t)] dt

subject to x(t0) � x0 and x(t1) � x1

These initial and terminal constraints are known as endpoint conditions.

20.2 DISTANCE BETWEEN TWO POINTS ON A PLANE

The length S of any nonlinear curve connecting two points on a plane, such as the curve connecting
the points (t0, x0) and (t1, x1) in Fig. 20-1(a), can be approximated mathematically as follows. Subdivide
the curve mentally into subintervals, as in Fig. 20-1(b), and recall from the Pythagorean theorem that
the square of the length of the hypotenuse of a right triangle equals the sum of the squares of the
lengths of the other two sides. Accordingly, the length of an individual subsegment ds is

(ds)2 � (dt)2� (dx)2

Simplifying mathematically,

ds ��(dt)2� (dx)2

Dividing, then multiplying, both sides by �(dt)2, or simply dt,

ds
dt
� 	1� �dx

dt �
2

ds � 	1� �dx
dt �

2

dt

or, using the more compact symbol,

ds ��1� (x·)2 dt

from which the length of the total curve S from t0 to t1 can be estimated by simple integration
to get

S �
t1


t0

�1� (x·)2 dt

See Problems 20.1 to 20.3.
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20.3 EULER’S EQUATION: THE NECESSARY CONDITION FOR DYNAMIC
OPTIMIZATION

For a curve X* � x*(t) connecting points (t0, x0) and (t1, x1) to be an extremal for (i.e., to optimize)
a functional

t1

t0

F[t, x(t), x·(t)] dt

the necessary condition, called Euler’s equation, is

�F
�x
�

d
dt � �F�x· � (20.2a)

Although it is the equivalent of the first-order necessary conditions in static optimization, Euler’s
equation is actually a second-order differential equation which can perhaps be more easily understood
in terms of slightly different notation. Using subscripts to denote partial derivatives and listing the
arguments of the derivatives, which are themselves functions, we can express Euler’s equation in
(20.2a) as

Fx(t, x, x·) �
d
dt

[Fx· (t, x, x·)] (20.2b)

Then using the chain rule to take the derivative of Fx· with respect to t and omitting the arguments for
simplicity, we get

Fx� Fx·t�Fx·x(x·)�Fx·x· (ẍ) (20.2c)

where ẍ � d2 x/dt2.
Proof that Euler’s equation is a necessary condition for an extremal in dynamic optimization is

offered in Example 2. See also Problems 20.26 to 20.33.

EXAMPLE 2. To prove that Euler’s equation in (20.2a) is a necessary condition for an extremal, let X* � x*(t)
be the curve connecting points (t0, x0) and (t1, x1) in Fig. 20-2 which optimizes the functional (i.e., posits the
optimizing function for)

t1

t0

F[t, x(t), x·(t)] dt (20.3)

Let X̂ � x*(t)�mh(t) be a neighboring curve joining these points, where m is an arbitrary constant and h(t) is
an arbitrary function. In order for the curve X̂ to also pass through the points (t0, x0) and (t1, x1), that is, for X̂ to
also satisfy the endpoint conditions, it is necessary that

h(t0) � 0 and h(t1) � 0 (20.4)

By holding both x*(t) and h(t) fixed, the value of the integral becomes a function of m alone and can be
written

g(m) �
t1


t0

F[t, x*(t)�mh(t), x·*(t)�mh·(t)] dt (20.5)

462 THE CALCULUS OF VARIATIONS [CHAP. 20

Fig. 20-2



Since x*(t) by definition optimizes the functional in (20.3), the function g(m) in (20.5) can be optimized only when
m � 0 and

dg

dm �
m�0

� 0
(20.6)

To differentiate under the integral sign in (20.5), we use Leibnitz’s rule which states that given

g(m) �
t1


t0

f(t, m) dt

where t0 and t1 are differentiable functions of m,

dg

dm
�

t1

t0

�F

�m
dt� f(t1, m)

�t1

�m
� f(t0, m)

�t0

�m
(20.7)

Since the boundaries of integration t0 and t1 are fixed in the present example, �t0/�m � �t1/�m� 0, and we have
to consider only the first term in Leibnitz’s rule. Applying the chain rule to (20.5) to find �F/�m, because F is a
function of x and x· , which in turn are functions of m, and substituting in (20.7), we have

dg

dm
�

t1

t0

� �F�x
�(x*�mh)

�m
�
�F

�x·
�(x·*�mh·)

�m � dt

With �(x*�mh)/�m � h and �(x·*�mh·)/�m � h· , and using (20.6),

dg

dm �
m�0

�
t1


t0

� �F�x h(t)�
�F

�x·
h·(t)� dt � 0 (20.8)

Leaving the first term in the brackets in (20.8) untouched and integrating the second term by means of parts,

dg

dm �
m�0

�
t1


t0

�F

�x
h(t) dt� � �F�x· h(t)�

t1

t0

�
t1


t0

d

dt � �F�x· � h(t) dt � 0

With h(t0) � h(t1) � 0 from (20.4), the second term above drops out. Combining the other two terms and
rearranging,

dg

dm �
m�0

�
t1


t0

� �F�x �
d

dt � �F�x· �� h(t) dt � 0 (20.9)

Since h(t) is an arbitrary function that need not equal zero, it follows that a necessary condition for an extremal
is that the integrand within the brackets equal zero, namely,

�F

�x
�

d

dt �
�F

�x· � � 0 or
�F

�x
�

d

dt � �F�x· �
which is Euler’s equation. See also Problems 20.26 to 20.33.

20.4 FINDING CANDIDATES FOR EXTREMALS

Finding candidates for extremals to maximize or minimize a given integral subject to fixed
endpoint conditions in dynamic optimization problems is facilitated by the following five steps:

1. Let the integrand equal F. Normally F� F(t, x, x·).
2. Take the partial derivatives of F with respect to x and x· to find �F/�x � Fx and �F/�x· � Fx·.
3. Substitute in Euler’s equation from (20.2a) or (20.2b).
4. Take the derivative with respect to t of Fx·, recalling that the chain rule may be necessary

because Fx· can be a function of t, x, and x· , and x and x· are functions of t.
5. If there are no derivative terms (x· or ẍ), solve immediately for x; if there are x· or ẍ terms,

integrate until all the derivatives are gone and then solve for x.
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Illustrations of this technique are provided in Examples 3 and 4 and Problems 20.4 to
20.18.

EXAMPLE 3. Given
T


0
(6x2 e3t� 4tx·) dt

the functional is optimized by using the procedure outlined in Section 20.4 and the notation from (20.2a), as
follows:

1. Let F � 6x2 e3t� 4tx·

2. Then
�F

�x
� 12xe3t and

�F

�x·
� 4t

3. Substituting in Euler’s equation from (20.2a),

12xe3t �
d

dt
(4t)

4. But d(4t)/dt � 4. Substituting above,

12xe3t � 4
5. Solving for x directly since there are no x· or ẍ terms, and expressing the solution as x(t),

x(t) � 1–
3e
�3t

This satisfies the necessary condition for dynamic optimization, which only makes the solution a candidate
for an extremal. The sufficiency conditions, which follow in Section 20.5, must also be applied.

EXAMPLE 4. The functional

2

0

(4x· 2� 12xt� 5t) dt

subject to x(0) � 1 x(2) � 4

is optimized as above, but now with the notation from (20.2b).

1. Let F � 4x· 2� 12xt� 5t

2. Then Fx � 12t and Fx· � 8x·

3. Substituting in Euler’s equation from (20.2b),

12t �
d

dt
(8x· )

4. Recalling that x· �
dx

dt
and that

d

dt �
dx

dt � �
d2 x

dt2 � ẍ,

12t � 8ẍ

5. Since an ẍ term remains, integrate both sides of the equation successively twice, using only one constant
of integration term at each step.


 12t dt � 
 8ẍ dt

6t2� c1 � 8x·

Integrating again,


 (6t2� c1) dt � 
 8x· dt

2t3� c1 t� c2 � 8x
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Solving for x,

x(t) �
1
4

t3�
c1

8
t�

c2

8

Applying the boundary conditions,

x(0) �
c2

8
� 1 c2 � 8

x(2) � 1–
4(2)3� 1–

8(2)c1� 1 � 4 c1 � 4

Substituting, x(t) � 1–
4t

3� 1–
2t� 1

20.5 THE SUFFICIENCY CONDITIONS FOR THE CALCULUS OF VARIATIONS

Assuming the necessary conditions for an extremal are satisfied,

1. If the functional F[t, x(t), x· (t)] is jointly concave in x(t), x· (t), then the necessary conditions are
sufficient for a maximum.

2. If the functional F[t, x(t), x· (t)] is jointly convex in x(t), x· (t), the necessary conditions are
sufficient for a minimum.

Joint concavity and convexity are easily determined in terms of the sign definiteness of the quadratic
form of the second derivatives of the functional. Given the discriminant,


D 
� �Fxx

Fx·x

Fxx·

Fx·x·
�

1. a) If 
D1 
� Fxx� 0 and 
D2 
� 
D 
� 0, 
D 
 is negative definite and F is strictly concave,
making the extremal a global maximum.

b) If 
D1 
� Fxx�
· 0 and 
D2 
� 
D 
� 0, when tested for all possible orderings of the

variables, 
D 
 is negative semidefinite and F is simply concave, which is sufficient for a
local maximum.

2. a) If 
D1 
� Fxx� 0 and 
D2 
� 
D 
� 0, 
D 
 is positive definite and F is strictly convex,
making the extremal a global minimum.

b) If 
D1 
� Fxx� 0 and 
D2 
� 
D 
� 0, when tested for all possible orderings of the
variables, 
D 
 is positive semidefinite and F is simply convex, which is sufficient for a local
minimum. See Example 5 and Problems 20.4 to 20.18.

EXAMPLE 5. The sufficiency conditions are illustrated below for Example 3 where the functional was
F � 6x2 e3t� 4tx· , Fx � 12xe3t, and Fx· � 4t.


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � � 12e3t

0
0
0 �


D1
1 
 � 12e3t� 0 
D1

2 
 � 0


D1 
 fails to meet the positive definite criteria for a global minimum, but may prove to be positive semidefinite
for a local minimum if the discriminant for the reversed order of variables is also positive semidefinite.


D2 
 � �Fx·x·

Fxx·

Fx·x

Fxx
� � � 0

0
0

12e3t �

D2

1 
 � 0, 
D2
2 
 � 0

With 
D1 
� 0 and 
D2 
� 0 for both possible orderings of variables, 
D 
 is positive semidefinite, which is sufficient
to establish that the functional is at a local minimum. The sufficiency conditions for Example 4 test out in a
perfectly analogous fashion.

465THE CALCULUS OF VARIATIONSCHAP. 20]



20.6 DYNAMIC OPTIMIZATION SUBJECT TO FUNCTIONAL CONSTRAINTS

To find an extremal that maximizes or minimizes a given integral
T


0

F[t, x(t), x· (t)] dt (20.10)

under a constraint that keeps the integral
T


0

G[t, x(t), x· (t)] dt � k (20.11)

where k is a constant, the Lagrangian multiplier method may be used. Multiply the constraint in
(20.11) by �, and add it to the objective function from (20.10) to form the Lagrangian function:

T

0

(F��G) dt (20.12)

The necessary, but not sufficient, condition to have an extremal for dynamic optimization is the Euler
equation

�H
�x
�

d
dt ��H�x· � where H� F��G (20.13)

See Example 6 and Problem 20.25.

EXAMPLE 6. Constrained optimization of functionals is commonly used in problems to determine a curve with
a given perimeter that encloses the largest area. Such problems are called isoperimetric problems and are usually
expressed in the functional notation of y(x) rather than x(t). Adjusting for this notation, to find the curve Y of
given length k which encloses a maximum area A, where

A �
1
2 
 (xy· � y) dx

and the length of the curve is
x1


x0

�1� y· 2 dx � k

set up the Lagrangian function, as explained in Section 20.6.

x1

x0

[1–
2(xy· � y)���1� y· 2] dx (20.14)

Letting H equal the integrand in (20.14), the Euler equation is
�H

�y
�

d

dx � �H�y· �
where from (20.14),

�H

�y
� �

1
2

and
�H

�y·
�

1
2

x�
�y·

�1� y· 2

Substituting in Euler’s equation,

�
1
2
�

d

dx �1
2

x�
�y·

�1� y· 2 �
�

1
2
�

1
2
�

d

dx � �y·

�1� y· 2�
�1 �

d

dx � �y·

�1� y·2 �
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Integrating both sides directly and rearranging,

�y·

�1� y·2
� �(x� c1)

Squaring both sides of the equation and solving algebraically for y· ,

�2y· 2 � (x� c1)2 (1� y· 2)
�2 y· 2� (x� c1)2y· 2 � (x� c1)2

y· 2 �
(x� c1)2

�2� (x� c1)2

y· � �
x� c1

��2� (x� c1)2

Integrating both sides, using integration by substitution on the right, gives,

y� c2 � ���2� (x� c1)2

which, by squaring both sides and rearranging, can be expressed as a circle

(x� c1)2� (y� c2)2 � �2

where c1, c2, and � are determined by x0, x1, and k.

20.7 VARIATIONAL NOTATION

A special symbol " is used in the calculus of variations which has properties similar to the
differential d in differential calculus.

Given a function F[t, x(t), x·(t)] and considering t as constant, let

	F� F[t, x(t)�mh(t), x·(t)�mh·(t)]�F[t, x(t), x·(t)] (20.15)

where m is an arbitrary constant, h(t) is an arbitrary function as in Example 2, and the arguments are
frequently omitted for succinctness. Using the Taylor expansion which approximates a function such
as x(t) by taking successive derivatives and summing them in ordered sequence to get

x(t) � x(t0)� x·(t0)(t� t0)�
ẍ(t0)(t� t0)2

2!
� · · ·

we have

F(t, x�mh, x· �mh·) � F(t, x, x·)�
�F
�x

mh�
�F
�x·

mh· � · · · (20.16)

Substituting (20.16) in (20.15) and subtracting as indicated,

	F�
�F
�x

mh�
�F
�x·

mh· � · · · (20.17)

where the sum of the first two terms in (20.17) is called the variation of F and is denoted by "F.
Thus,

"F�
�F
�x

mh�
�F
�x·

mh· (20.18)

From (20.18) it is readily seen that if F� x, by substituting x for F, we have

"x �mh (20.19)
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Similarly, if F� x·

"x· �mh· (20.20)

Hence an alternative expression for (20.18) is

"F�
�F
�x
"x�

�F
�x·
"x· (20.21)

and the necessary condition for finding an extremal in dynamic optimization can aslso be expressed
as

"
t1


t0

F[t, x(t), x·(t)] dt � 0

For proof, see Problems 20.34 and 20.35.

20.8 APPLICATIONS TO ECONOMICS

A firm wishes to minimize the present value at discount rate i of an order of N units to be
delivered at time t1. The firm’s costs consist of production costs a[x·(t)]2 and inventory costs bx(t),
where a and b are positive constants; x(t) is the accumulated inventory by time t; the rate of change
of inventory is the production rate x·(t), where x·(t)� 0; and ax·(t) is the per unit cost of production.
Assuming x(t0) � 0 and the firm wishes to achieve x(t1) � N, in terms of the calculus of variations
the firm must

min
t1


t0

e�it(ax·2� bx) dt

subject to x(t0) � 0 x(t1) � N

To find a candidate for the extremal that will minimize the firm’s cost, let

F[t, x(t), x·(t)]� e�it(ax· 2� bx)

then Fx � be�it and Fx· � 2ae�it x·

Substituting in Euler’s equation from (20.2b),

be�it �
d
dt

(2ae�it x·)

Using the product rule and the chain rule to take the derivative on the right since x· is a function of
t, we have

be�it � 2ae�it(ẍ)� x·(�i2ae�it)
� 2ae�it ẍ� 2aie�it x·

Canceling the e�it terms and rearranging to solve for ẍ,

ẍ(t)� ix·(t) �
b
2a

(20.22)

With ẍ(t) � ix·(t)� b/(2a) from (20.22) and x·(t)� 0 by assumption, ẍ(t) in (20.22) must be positive,
indicating that the firm should maintain a strictly increasing rate of production over time.

Equation (20.22) is a second-order linear differential equation which can be solved with the
method outlined in Section 18.1. Using Equation (18.2a) to find the particular integral, since in terms
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of (18.1) b1 ��i, b2 � 0, and a � b/2a, and adjusting the functional notation from y� y(t) to x � x(t),
we have

xp �
b/2a
�i

t ��
b

2ai
t

Using (18.4) to find r1 and r2 for the complementary function,

r1, r2 �
�(�i)��(�i)2� 4(0)

2
�

i� i
2

r1 � i r2 � 0

Substituting in (18.3) to find xc and adding to xp,

x(t) � A1 eit�A2�
b

2ai
t (20.23)

Letting t0 � 0 and t1 � T, from the boundary conditions we have

x(0) � A1�A2� 0 A2 ��A1

x(T) � A1 eiT� (�A1)�
b

2ai
T � N

Solving x(T) for A1,

A1(eiT� 1) � N�
b

2ai
T

A1�
N� [b/(2ai)]T

eiT� 1
(20.24)

Finally, substituting in (20.23), and recalling that A2 ��A1, we have as a candidate for an extremal:

x(t) � �N� [b/(2ai)]T
eiT� 1 � eit� �N� [b/(2ai)]T

eiT� 1 �� b
2ai

t

x(t) � �N�
b

2ai
T � eit� 1

eiT� 1
�

b
2ai

t 0� t�T

Then testing the sufficiency conditions, where Fx � be�it and Fx· � 2ae�it x,


D1 
� �Fxx

Fx·x

Fxx·

Fx·x·
� � �0

0
0

2ae�it �

D1

1 
� 0 
D1
2 
� 0


D2 
� �Fx·x·

Fxx·

Fx·x

Fxx
� � �2ae�it

0
0
0�


D2
1 
� 2ae�it� 0 
D2

2 
� 0

With the discriminant of the quadratic form of the second-order derivatives of the functional positive
semidefinite when tested for both orderings of the variables, the sufficiency condition for a local
minimum is met. For further economic applications, see Problems 20.19 to 20.24.
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Solved Problems

DISTANCE BETWEEN TWO POINTS ON A PLANE

20.1. Minimize the length of a curve S connecting the points (t0, x0) and (t1, x1) in Fig. 20-1 from
Section 20.2, i.e.,

min
t1


t0

�1� x· 2 dt

subject to x(t0) � x0 x(t1) � x1

Using the procedure outlined in Section 20.4 to find a candidate for an extremal to minimize the
functional,

1. Let F ��1� x· 2 � (1� x· 2)1/2

2. Take the partial derivatives Fx and Fx·, noting that there is no x term in F, only an x· term, and that
the chain rule or generalized power function rule is necessary for Fx·.

Fx � 0 Fx· �
1
2

(1� x· 2)�1/2 · 2x· �
x·

�1� x· 2

3. Substitute in Euler’s equation.

0 �
d

dt � x·

�1� x· 2 �
4. Since there are no variables on the left-hand side, integrate both sides immediately with respect

to t. Integrating the derivative on the right-hand side will produce the original function. With
� 0 dt � c, a constant, we have

c �
x·

�1� x· 2

Squaring both sides and rearranging to solve for x· ,

c2(1� x· 2) � x· 2

c2 � x· 2� c2 ẋ2� (1� c2)x· 2

x· � 	 c2

1� c2 � k1 a constant

5. With an x· term remaining, integrate again to get

x(t) � k1 t� k2 (20.25)

6. With only one variable x· in the functional, the sufficiency conditions of concavity or convexity can
be determined solely by the sign of the second derivative. From Fx· � x·(1� x· 2)�1/2, we have by the
product rule,

Fx·x· �

Fx·x· �

Fx·x· �

(1� x· 2)�1/2� x· 2(1� x· 2)�3/2

(1� x· 2)�3/2 [(1� ẋ2)� x· 2]

(1� x·2)�3/2 �
1

�(1� x· 2)3

Since the square root of a distance can never be negative, Fẋẋ� 0. The functional is convex and
the sufficiency conditions for a minimum are satisfied.

Note the solution in (20.25) is linear, indicating that the shortest distance between two points
is a straight line. The parameters k1 (slope) and k2 (vertical intercept) are uniquely determined
by the boundary conditions, as is illustrated in Problem 20.2.
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20.2. Minimize
2


0

�1� x· 2 dt

subject to x(0) � 3 x(2) � 8

From (20.25), x(t) � k1 t� k2

Applying the boundary conditions,

x(0) � k1(0)� k2 � 3 k2 � 3
x(2) � k1(2)� 3 � 8 k1 � 2.5

Substituting,

x(t) � 2.5t� 3

20.3. (a) Estimate the distance between the points (t0, x0) and (t1, x1) from Problem 20.2, using the
functional; (b) draw a graph and check your answer geometrically.

a) Given
2


0

�1� x· 2 dt and x(t) � 2.5t� 3

by taking the derivative x·(t) � 2.5 and substituting, we have

2

0

�1� (2.5)2 dt �
2


0

�7.25 dt ��7.25t �
2

0

� 2.69258(2)� 2.69258(0) � 5.385

b) Applying the Pythagorean theorem to Fig. 20-3,

x2 �

x �

52� 22

�29 � 5.385

FINDING CANDIDATES FOR EXTREMALS

20.4. Optimize
t1


t0

(2x·2� 42xt� 11t) dt

subject to x(t0) � x0 x(t1) � x1

Using the now familiar six steps to find a candidate for an extremal,

1. F � 2x· 2� 42xt� 11t

2. Fx � �42t Fx· � 4x·
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3. Substituting in Euler’s equation,

�42t �
d

dt
(4x·)

�42t � 4ẍ

4. Integrating both sides to eliminate the ẍ term and using only one constant of integration term at
each step throughout,

�21t2� c1 � 4x·

Integrating again to eliminate the x· term,

�7t3� c1 t� c2 � 4x

5. Solving for x,

x(t) � �1.75t3� 0.25c1 t� 0.25c2

6. Testing the sufficiency conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � � 0

0
0
4 �


D1
1 
 � 0 
D1

2 
 � 0


D2 
 � �Fx·x·

Fxx·

Fx·x

Fxx
� � � 4

0
0
0 �


D2
1 
 � 4� 0 
D2

2 
 � 0

The discriminant of the second-order derivatives of the functional is positive semidefinite when
tested for both orderings of the variables, which satisfies the sufficiency condition for a local
minimum.

20.5. Optimize
t1


t0

(x· 2� 60t3 x) dt

subject to x(t0) � x0 x(t1) � x1

1. F � x· 2� 60t3 x

2. Fx � 60t3 Fx· � 2x·

3. Substituting in Euler’s equation,

60t3 �
d

dt
(2x·)

60t3 � 2ẍ

4. Integrating both sides and combining constants of integration for each step,

15t4� c1� 2x·

Integrating again and solving for x,

3t5� c1 t� c2 � 2x

5. x(t) � 1.5t5� 0.5c1 t� 0.5c2

6. The sufficiency conditions, when tested as in step 6 of the previous problem, reveal the functional
is at a local minimum.
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20.6. Optimize
1


0

(13t� 3x· 2� 36xt) dt

subject to x(0) � 2 x(1) � 4

1. F � 13t� 3x· 2� 36xt

2. Fx � 36t Fx· � �6x·

3. 36t �
d

dt
(�6x·)

36t � �6ẍ

4. Integrating both sides twice but using only one constant of integration each time,

18t2� c1� �6x·

6t3� c1 t� c2 � �6x

5. x(t) � �t3�
c1

6
t�

c2

6

Applying the initial conditions,

x(0) � �
c2

6
� 2 c2 � �12

x(1) � �1�
c1

6
� 2 � 4 c1 � �18

Then substituting above,

x(t) � �t3� 3t� 2

6. Finally, testing the sufficiency conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � � 0

0
0

�6 �

D1

1 
 � 0 
D1
2 
 � 0


D2 
 � �Fx·x·

Fxx·

Fx·x

Fxx
� � ��6

0
0
0 �


D2
1 
 � �6� 0 
D2

2 
 � 0

When tested for both orderings of the variables, the discriminant of the second-order derivatives
is negative semidefinite. This fulfills the sufficiency conditions for a local maximum.

20.7. Optimize
t1


t0

(3x2 e5t� 4t3 x·) dt

subject to x(t0) � x0 x(t1) � x1

1. F � 3x2 e5t� 4t3 x·

2. Fx � 6xe5t Fx· � 4t3
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3. Substituting in Euler’s equation,

6xe5t �
d

dt
(4t3)

4. 6xe5t � 12t2

5. With no x· terms left, simply solve for x algebraically.

x(t) � 2t2 e�5t

6. Checking the sufficiency conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � � 6e5t

0
0
0 �


D1
1 
 � 6e5t� 0 
D1

2 
 � 0


D2 
 � �Fx·x·

Fxx·

Fx·x

Fxx
� � � 0

0
0

6e5t �

D2

1 
 � 0 
D2
2 
 � 0

For both orderings of the variables, the discriminant of the second-order derivatives is positive
semidefinite, fulfilling the sufficiency condition for a local minimum.

20.8. Optimize
t1


t0

3x·2

8t3 dt

subject to x(t0) � x0 x(t1) � x1

1. F �
3x· 2

8t3

2. Fx � 0 Fx· �
6x·

8t3 �
3x·

4t3

3. Substituting in Euler’s equation,

0 �
d

dt �
3x·

4t3 �
4. With Fx� 0, integrate immediately.

c1 �
3x·

4t3

3x· � 4c1 t3

With an x· still remaining, integrate again.

3x � c1 t4� c2

5. x(t) �
c1

3
t4�

c2

3

� k1 t4� k2 where k1 �
c1

3
k2 �

c2

3

6. When tested, as above, the sufficiency conditions reveal a local minimum.

20.9. Optimize
t1


t0

(5t2 x· � 4x2e�0.7t
) dt
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subject to x(t0) � x0 x(t1) � x1

1. F � 5t2 x· � 4x2e�0.7t

2. Fx� �8xe�0.7t Fx· � 5t2

3. �8xe�0.7t �
d

dt
(5t2) � 10t

�8xe�0.7t � 10t

4. With no derivative term remaining and no need to integrate, we solve directly for x.

5. x(t) � �1.25te0.7t

6. Testing the sufficiency conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � ��8e�0.7t

0
0
0 �


D1
1 
 � �8e�0.7t� 0 
D1

2 
 � 0


D2 
 � �Fx·x·

Fxx·

Fx·x

Fxx
� � � 0

0
0

�8e�0.7t �

D2

1 
 � 0 
D2
2 
 � 0

With both orderings of the variables, 
D 
 is negative semidefinite, making F concave and fulfilling
the sufficiency condition for a local maximum.

20.10. Optimize
t1


t0

(7t2� 2x·2 t) dt

subject to x(t0) � x0 x(t1) � x1

1. F � 7t2� 2x· 2 t

2. Fx � 0 Fx· � 4x· t

3. 0 �
d

dt
(4x· t)

4. Integrating immediately,

c1 � 4x· t x· �
c1

4t

Integrating again,

x �
c1

4
ln t� c2

5. x(t) � k1 ln t� k2 where k1 �
c1

4
k2 � c2

6. The sufficiency conditions for a relative minimum are satisfied.

20.11. Optimize
t1


t0

(15x2� 132x� 19xx· � 12x· 2) dt

subject to x(t0) � x0 x(t1) � x1

1. F � 15x2� 132x� 19xx· � 12x· 2
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2. Fx� 30x� 132� 19x· Fx· � 19x� 24x·

3. 30x� 132� 19x· �
d

dt
(19x� 24x·)

4. 30x� 132� 19x· � 19x· � 24ẍ

Solving algebraically,

ẍ� 1.25x � �5.5 (20.26)

5. Equation (20.26) is a second-order differential equation which can be solved with the techniques
of Section 18.1. Using Equation (18.2) to find the particular integral xp, where b1 � 0, b2 � �1.25,
and a � �5.5,

xp �
a

b2
�
�5.5
�1.25

� 4.4

Then using (18.4) to find the characteristic roots,

r
1
, r2 �

0��0� 4(�1.25)
2

� ��1.25

and substituting in (18.3) to find the complementary function xc,

xc � A1e�1.25t�A2 e��1.25t

Finally, by adding xc and xp, we have

x(t) � A1e�1.25t�A2 e��1.25t� 4.4

6. Checking the sufficiency conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � � 30

19
19
24 �


D1
1 
 � 30� 0 
D1

2 
 � 359� 0

With 
D1 
� 0 and 
D2 
� 0, 
D 
 is positive definite, which means F is strictly convex and we have
an absolute minimum. There is no need to test in reverse order with 
D2 
.

20.12. Optimize
1


0

(�16x2� 144x� 11xx· � 4x·2) dt

subject to x(0) � 8 x(1) � 8.6

1. F � �16x2� 144x� 11xx· � 4x· 2

2. Fx� �32x� 144� 11x· Fx· � 11x� 8x·

3. �32x� 144� 11x· �
d

dt
(11x� 8x·)

�32x� 144� 11x· � 11x· � 8ẍ

Simplifying and rearranging to conform with (18.1),

ẍ� 4x � �18

4. From (18.2), the particular integral is

xp �
�18
�4

� 4.5
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From (18.4), the characteristic roots are

r1, r2 �
0��0� 4(�4)

2

r1 � 2 r2 � �2

Thus, x(t) � A1 e2t�A2 e�2t� 4.5

Applying the initial conditions, x(0) � 8, x(1) � 8.6,

x(0) � A1�A2� 4.5 � 8
x(1) � 7.3891A1� 0.1353A2� 4.5 � 8.6

Solving simultaneously, A1� 0.5, A2 � 3

5. Substituting, x(t) � 0.5e2t� 3e�2t� 4.5

6. Applying the sufficiency conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � ��32

11
11
�8 �


D1
1 
 � �32� 0 
D1

2 
 � 135� 0

Since 
D1 
� 0 and 
D2 
� 0, 
D 
 is negative definite. F is strictly concave and there is an absolute
maximum. Hence 
D2 
 need not be tested.

20.13. Optimize
t1


t0

(16x2� 9xx· � 8x· 2) dt

subject to x(t0) � x0 x(t1) � x1

1. F � 16x2� 9xx· � 8x· 2

2. Fx � 32x� 9x· Fx· � 9x� 16x·

3. 32x� 9x· �
d

dt
(9x� 16x·)

4. 32x� 9x· � 9x· � 16ẍ

ẍ� 2x � 0

5. Using (18.2) where b
1
� 0, b2� �2, and a � 0 to find xp,

xp �
a

b2

�
0
�2
� 0

Using (18.4) to find r1 and r2,

r1, r2 �
���4(�2)

2
� ��2

and substituting in (18.3) to find xc,

xc � A1 e�2t�A2 e��2t

Then since xp � 0,
x(t) � xc� A1e�2t�A2e��2t

6. Sufficiency conditions reveal an absolute minimum.
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20.14. Optimize
t1


t0

(7x·2� 4xx· � 63x2) dt

subject to x(t0) � x0 x(t1) � x1

1. F � 7x· 2� 4xx· � 63x2

2. Fx � 4x· � 126x Fx· � 14x· � 4x

3. 4x· � 126x �
d

dt
(14x· � 4x)

4. 4x· � 126x � 14ẍ� 4x·

ẍ� 9x � 0

where in terms of (18.1), b1 � 0, b2� 9, and a � 0.

5. Using (18.2) for xp, xp �
0
9
� 0

Using (18.19) since b1
2� 4b2, r1, r2 � g� hi

where g � �1–
2b1� �

1–
2(0) � 0 h � 1–

2�4b2� b1
2� 1–

2�36 � 3

and r1, r2� 0� 3i � �3i

Substituting in (18.26),

xc � B1 cos 3t�B2 sin 3t

With xp � 0,

x(t) � B1 cos 3t�B2 sin 3t

6. Sufficiency conditions indicate an absolute minimum.

20.15. Optimize
t1


t0

(5x2� 27x� 8xx· � x· 2) dt

subject to x(t0) � x0 x(t1) � x1

1. F � 5x2� 27x� 8xx· � x· 2

2. Fx � 10x� 27� 8x· Fx· � �8x� 2x·

3. 10x� 27� 8x· �
d

dt
(�8x� 2x·)

4. 10x� 27� 8x· � �8x· � 2ẍ

ẍ� 5x � �13.5

5. Using (18.2), xp �
�13.5

5
� �2.7

Using (18.19), g � �1–
2(0) � 0 h � 1–

2�4(5) ��5

r1, r2 � 0��5i � ��5i

Substituting in (18.26),

xc� B1 cos �5t�B2 sin �5t

and x(t) � B1 cos �5t�B2 sin �5t� 2.7
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6. For the second-order conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � � 10

�8
�8
�2 �


D1
1 
 � 10� 0 
D1

2 
 � �84� 0

With 
D2 
� 0, 
D 
 fails the test both for concavity and convexity. F is neither maximized nor
minimized. It is at a saddle point.

20.16. Optimize
t1


t0

e0.12t(5x· 2� 18x) dt

subject to x(t0) � x0 x(t1) � x1

1. F � e0.12t(5x·2� 18x)

2. Fx � �18e0.12t Fx· � 10x·e0.12t

3. �18e0.12t �
d

dt
(10x·e0.12t)

4. Using the product rule,

�18e0.12t � 10x·(0.12e0.12t)� e0.12t(10ẍ)

Canceling the e0.12t terms and rearranging algebraically,

ẍ� 0.12x· � �1.8

5. Using (18.2a) and (18.4),

xp � ��1.8
0.12 � t � �15t

r1, r2 �
�0.12��(0.122� 0)

2
� �0.12, 0

xc � A1 e�0.12t�A2

and x(t) � A1 e�0.12t�A2� 15t

6. Checking the sufficiency conditions,


D1 
 � �Fxx

Fx·x

Fxx·

Fx·x·
� � � 0

0
0

10e0.12t �

D1

1 
 � 0 
D1
2 
 � 0


D2 
 � �Fx·x·

Fxx·

Fx·x

Fxx
� � � 10e0.12t

0
0
0 �


D2
1 
 � 10e0.12t� 0 
D2

2 
 � 0


D 
 is positive semidefinite, F is convex, and we have a local minimum.

20.17. Optimize
t1


t0

e�0.05t(4x· 2� 15x) dt

subject to x(t0) � x0 x(t1) � x1

1. F � e�0.05t(4x·2� 15x)

2. Fx � 15e�0.05t Fx· � 8x·e�0.05t
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3. 15e�0.05t �
d

dt
(8x·e�0.05t)

4. 15e�0.05t � 8x·(�0.05e�0.05t)� e�0.05t(8ẍ)

Canceling the e�0.05t terms and rearranging,

ẍ� 0.05x· � 1.875

5. Using (18.2a) and (18.4),

xp � � 1.875
�0.05 � t � �37.5t

r1, r2 �
�(�0.05)��(�0.05)2� 0

2
� 0.05, 0

xc � A1 e0.05t�A2

and x(t) � A1 e0.05t�A2� 37.5t

6. The sufficiency conditions indicate a local minimum.

20.18. Find the curve connecting (t0, x0) and (t1, x1) which will generate the surface of minimal area
when revolved around the t axis, as in Fig. 20.4. That is,

Minimize 2�
t1


t0

x(1� x· 2)1/2 dt

subject to x(t0) � x0 x(t1) � x1

1. F � x(1� x· 2)1/2

2. Using the chain rule for Fx·,

Fx � (1� x· 2)1/2 Fx· � xx·(1� x· 2)�1/2

3. (1� x·2)1/2 �
d

dt
[xx·(1� x· 2)�1/2]

4. Using the product rule and the chain rule,

(1� x· 2)1/2� xx· [�1–
2(1� x· 2)�3/2 · 2x· ẍ]� (1� x· 2)�1/2(xẍ� x·x·)

� �xx·2 ẍ(1� x· 2)�3/2� (xẍ� x· 2)(1� x· 2)�1/2
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Multiplying both sides by (1� x· 2)3/2,

(1� x· 2)2 �

1� 2x· 2� x· 4 �

ẍ�
x· 2

x
�

�xx· 2 ẍ� (xẍ� x· 2)(1� x· 2)
�xx· 2 ẍ� xẍ� x· 2� xx· 2 ẍ� x· 4

1
x

(20.27)

5. Let x· � u � dx/dt, then

ẍ � u· �
du

dt
�

du

dx
·
dx

dt
�

du

dx
· u � u

du

dx

Substituting in (20.27),

u
du

dx
�

u2

x
�

1
x

Separating the variables and integrating,

u
du

dx
�

1
x

(1� u2)


 u

1� u2 du � 
 1
x

dx

1–
2 ln (1� u2)� c1� ln x

Solving for u,

eln�1�u2�c1 � eln x

c2�1� u2� x

where c2 � ec1. Squaring both sides and rearranging algebraically,

1� u2 �
x2

c2
2

u �
�x2� c2

2

c2

�
dx

dt

Separating variables again and integrating,


 dx

�x2� c2
2

� 
 dt

c2

(20.28)

Using integral tables for the left-hand side,

ln (x��x2� c2
2) �

t� c3

c2

(20.29)

or by applying trigonometric substitution directly to (20.28),

cosh�1 x

c2

�
t� c3

c2

x(t) � c2 cosh
t� c3

c2

(20.30)

The curve in (20.30) is called a catenary from the Latin word for chain because it depicts the
shape a chain would assume if hung from points (t0, x0) and (t1, x1). The constants c2 and c3 can
be found from either (20.29) or (20.30) by using the initial conditions x(t0) � x0 and x(t1) � x1.
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ECONOMIC APPLICATIONS

20.19. The demand for a monopolist’s product in terms of the number of units x(t) she or he can sell
depends on both the price p(t) of the good and the rate of change of price p· (t):

x(t) � ap(t)� bp· (t)� c (20.31)

Production costs z(x) at rate of production x are

z(x) �mx2� nx� k (20.32)

Assuming p(0) � p0 and the desired price at time T is p(T) � p1, find the pricing policy to
maximize profits over 0� t�T. That is,

Maximize
T


0

[p(t)x(t)� z(x)] dt

Substituting from (20.31) and (20.32),

T

0

[p(t)x(t)� z(x)] dt �

T

0

[p(ap� bp· � c)� (mx2� nx� k)] dt

Substituting from (20.31) again,

T

0

[p(t)x(t)� z(x)] dt �

T

0

[ap2� bpp· � cp�m(ap� bp· � c)2� n(ap� bp· � c)� k] dt

�
T


0

(ap2� bpp· � cp�ma2 p2�mabpp· �macp�mabpp· �mb2 p· 2

�mbcp· �macp�mbcp· �mc2� nap� nbp· � nc� k) dt

�
T


0
[a(1�ma)p2� (c� 2mac� na)p� (b� 2mab)pp·

� (2mbc� nb)p· �mb2 p·2�mc2� nc� k] dt (20.33)

Letting F � the integrand in (20.33),

Fp � 2a(1�ma)p� c� 2mac� na� (b� 2mab)p·

and Fp· � (b� 2mab)p� 2mbc� nb� 2mb2 p·

Using the Euler equation,

2a(1�ma)p� c� 2mac� na� (b� 2mab)p· �
d

dt
[(b� 2mab)p� 2mbc� nb� 2mb2 p· ]

2a(1�ma)p� c� 2mac� na� (b� 2mab)p· � (b� 2mab)p· � 2mb2 p̈

Rearranging algebraically,

2mb2 p̈� 2a(1�ma)p � 2mac� na� c

p̈� � a(1�ma)
mb2 �p �

2mac� na� c

2mb2

Using (18.2) and (18.4),

pp �
(2mac� na� c)/(2mb2)

a(1�ma)(mb2)
�

2mac� na� c

2a(1�ma)

r1, r2 �
0��0� 4a(1�ma)/(mb2)

2
� � 	a(ma� 1)

mb2
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Thus,

p(t) � A1 exp � 	a(ma� 1)
mb2 � t�A2 exp� � 	a(ma� 1)

mb2 � t�
2mac� na� c

2a(1�ma)

If a� 0 and m� 0, as one would expect from economic theory, independently of the sign for b,
�a(ma� 1)/(mb2)� 0 and the time path p(t) will have distinct real roots of equal magnitude and opposite
signs.

Note: This is a classic case that has appeared in one form or another in the economic literature over
the decades.

20.20. Maximize the stream of instantaneous utility U(t) from the flow of consumption C(t) where

C(t)
↓

Flow of consumption

�

�

G[K(t)]
↓

production

�

�

K· (t)
↓

investment
(20.34)

and the endpoints are fixed at K(0) � K0, K(T) � KT . That is,

Maximize
T


0

U[C(t)] dt �
T


0

U{G[K(t)]�K· (t)} dt

subject to K(0) � K0 K(T) � KT

Letting F � U{G[K(t)]�K· (t)}, U � � dU/dC, and G� � dG/dK,

FK � U�[C(t)]G�[K(t)] FK· � �U�[(C(t)]

Substituting in Euler’s equation,

U�[C(t)]G�[K(t)] �
d

dt
{�U�[C(t)]}

� �U
[C(t)] · C
·

where, upon using the chain rule on (20.34),

C· �
dC

dt
� G�[K(t)] · K·

� K̈

Substituting above,

U�[C(t)]G�[K(t)] � �U
[C(t)] · (G�[K(t)] · K·
� K̈)

The Euler equation thus yields a second-order ordinary differential equation, the solution of which
maximizes the given extremal.

20.21. Maximize the discounted stream of utility from consumption C(t) over 0� t�T, that is,

Maximize
T


0

{e�it U[C(t)]} dt (20.35)

where C(t) �G[K(t)]�K· (t)� bK(t), 0� b� 1, G[K(t)] is the rate of production, K· (t)� bK(t)
is investment, and b is a constant rate of capital depreciation.

Substituting in (20.35), we seek to maximize

T

0

(e�it U{G [K(t)]�K· (t)� bK(t)} dt

With F � e�it U{G[K(t)]�K· (t)� bK(t)}
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and letting U� � dU/dC and G� � dG/dK, while retaining K·
� dK/dt,

FK � e�it U�{G[K(t)]�K· (t)� bK(t)} · {G�[K(t)]� b}
FK· � �e�it U�{G[K(t)]�K· (t)� bK(t)}

Substituting in Euler’s equation and simplifying notation,

e�it[U� · (G�� b)] �
d

dt
(�e�it U�) (20.36)

Using the product and chain rules for the derivative on the right,

e�it[U� · (G�� b)] � �e�it U
 · (G�K·
� K̈� bK· )�U�ie�it

and canceling the e�it terms,

U� · (G�� b) � �U
 · (G�K·
� K̈� bK· )�U�i

With U{G[K(t)]} unspecified, we cannot proceed further. Going back to (20.36) and using general notation
for the derivative on the right, however, we see that

e�it[U� · (G�� b)] � �e�it d

dt
(U�)�U�(ie�it)

Canceling the e�it terms and rearranging,

d

dt
(U�) � U�i�U� · (G�� b)

d(U�)/dt

U�
� i� b�G�

where the term on the left, the rate of change of the marginal utility, equals the discount rate plus the
depreciation rate minus the marginal product of capital. In brief, if we consider the term on the left as
capital gains, the optimal time path suggests that if capital gains are greater than the discount rate plus the
depreciation rate minus the marginal product of capital, then more capital and hence more consumption
should be forthcoming. If it is less, capital accumulation and consumption should be scaled back.

20.22. Maximize the discounted stream of utility from consumption C(t) over 0� t�T, that is,

Maximize
T


0

e�it U[C(t)] dt (20.37)

given (a) U[C(t)]� [C(t)]n where 0� n� 1

(b) C(t)
↓

Flow of consumption

�

�

G[K(t)]
↓

production

�

�

I(t)
↓

investment

where G[K(t)]� aK(t), a linear production function with a� 0 and

(c) I(t) � K· (t)�B� bK(t) 0� b� 1 B� 0

derived from

K· (t)
↓

	 in K stock

�

�

I(t)
↓

investment

�

�

[B� bK(t)]
↓

linear depreciation

Substituting in (20.37), we wish to maximize

T

0

e�it[aK(t)�K· (t)�B� bK(t)]n dt
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which by rearranging and omitting the arguments for simplicity becomes

T

0

e�it(mK�K·
�B)n dt

where m � a� b. Letting F � e�it(mK�K·
�B)n,

FK � mne�it(mK�K·
�B)n�1 FK· � �ne�it(mK�K·

�B)n�1

Using Euler’s equation,

mne�it(mK�K·
�B)n�1 �

d

dt
[�ne�it(mK�K·

�B)n�1]

Using the product rule and the chain rule on the right,

mne�it(mK�K·
�B)n�1 � �ne�it(n� 1)(mK�K·

�B)n�2 (mK·
� K̈)� (mK�K·

�B)n�1 (ine�it)

Dividing both sides by ne�it(mK�K·
�B)n�1,

m � �(n� 1)(mK�K·
�B)�1 (mK·

� K̈)� i

m� i �
(1� n)(mK·

� K̈)
mK�K·

�B

Cross-multiplying and simplifying,

(1� n)K̈� (i�mn� 2m)K·
� (m2� im)K � (m� i)B

K̈�
i�mn� 2m

1� n
K·
�

m2� im

1� n
K �

m� i

1� n
B (20.38)

Letting

Z1 �
i�mn� 2m

1� n
Z2�

m2� im

1� n
Z3�

m� i

1� n
B

Kp �
Z3

Z2
�

B(m� i)/(1� n)
(m2� im)/(1� n)

�
(m� i)B

m(m� i)
�

1
m

B

where m � a� b, a is the marginal product of capital (dG/dK � a), and b is the constant rate of
depreciation.

Kc� A1 er1t�A2er2t

where r1, r2 �
�Z1��Z2

1� 4Z2

2

and A1 and A2 can be computed from the boundary conditions.

20.23. Maximize
T


0

e�it U[C(t)] dt

given the discount rate i � 0.12, the endpoints K(0) � 320 and K(5) � 480, and the utility
function U[C(t)]� [C(t)]0.5, where

C(t) �G[K(t)]� I(t)
G[K(t)]� 0.25K(t) I(t) � K·

� 60� 0.05K(t)

Substituting in the given functional, we seek to maximize

5

0

e�0.12t[0.25K(t)�K· (t)� 60� 0.05K(t)]0.5 dt
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Rearranging and omitting the arguments for simplicity,

5

0

e�0.12t(0.2K�K·
� 60)0.5 dt

Letting F � e�0.12t(0.2K�K·
� 60)0.5

and using the chain rule or the generalized power function rule,

FK � 0.1e�0.12t(0.2K�K·
� 60)�0.5 FK· � �0.5e�0.12t(0.2K�K·

� 60)�0.5

Substituting in Euler’s equation, then using the product rule and the chain rule,

0.1e�0.12t(0.2K�K·
� 60)�0.5 �

d

dt
[�0.5e�0.12t(0.2K�K·

� 60)�0.5]

� �0.5e�0.12t [�0.5(0.2K�K·
� 60)�1.5(0.2K·

� K̈)]

� (0.2K�K·
� 60)�0.5(0.06e�0.12t)

Dividing both sides by 0.5e�0.12t(0.2K�K·
� 60)�0.5 and rearranging,

0.2 �
0.5(0.2K·

� K̈)
0.2K�K·

� 60
� 0.12

0.08(0.2K�K·
� 60) � 0.1K·

� 0.5K̈

K̈� 0.36K·
� 0.032K � 9.6 (20.39)

Using (18.2) and (18.4)

Kp �
9.6

0.032
� 300

r1, r2 �
�(�0.36)��(�0.36)2� 4(0.032)

2
�

0.36��0.0016
2

r1 � 0.2 r2 � 0.16

Thus, K(t) � A1 e0.2t�A2 e0.16t� 300

Applying the endpoint conditions,

K(0) � A1�A2� 300 � 320 A2 � 20�A1

K(5) � A1 e0.2(5)� (20�A1)e0.16(5)� 300 � 480

A1(2.71828)� (20�A1)(2.22554) � 180

A1 � 274.97 � 275 A2 � 20� 275 � �255
Substituting,

K(t) � 275e0.2t� 255e0.16t� 300

20.24. Since Problem 20.23 is a specific application of Problem 20.22, check the accuracy of the answer
in Problem 20.23 by substituting the given values of a � 0.25, b � 0.05, B� 60, i � 0.12,
m� 0.2, and n � 0.5 in Equation (20.38) to make sure it yields the same answer as Equation
(20.39).

Substituting the specific values in (20.38),

K̈� � 0.12� (0.2)(0.5)� 2(0.2)
1� 0.5 � K·

� � (0.2)2� (0.12)(0.2)
1� 0.5 � K � �0.2� 0.12

1� 0.5 � 60

K̈� 0.36K·
� 0.032K � 9.6

On your own, check the values of r1, r2, Kc, and K(t) by substituting the specific values in the equations
immediately following (20.38) in Problem 20.19 and comparing them with the solutions found in Problem
20.20.
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CONSTRAINED OPTIMIZATION

20.25. Minimize
t1


t0

e�it(ax·2� bx) dt

subject to
t1


t0

x·(t) dt � N

where x(t0) � 0 and x(t1) � N

Setting up the Lagrangian function, as in Section 20.6,

t1

t0

[e�it(ax· 2� bx)��x· ] dt

Letting H equal the integrand, the Euler equation is

�H

�x
�

d

dt �
�H

�x· �
Taking the needed partial derivatives,

Hx� be�it Hx· � 2ax·e�it��

Substituting in Euler’s equation,

be�it �
d

dt
(2ax·e�it��)

Using the product and generalized power function rules,

be�it � �2aix·e�it� 2aẍe�it

Canceling the e�it terms and rearranging,

ẍ� ix· �
b

2a

which is identical to what we found in (20.22) without using constrained dynamic optimization. This is
another example of an isoperimetric problem, and it can be solved as it was in Section 20.8.

PROOFS AND DEMONSTRATIONS

20.26. In seeking an extremal for
t2


t0

F(t, x, x·) dt

show that Euler’s equation can also be expressed as

d
dt �F� x·

�F
�x· �� �F�t � 0 (20.40)

Taking the derivative with respect to t of each term within the parentheses and using the
chain rule,

dF

dt
�
�F

�t
�
�F

�x

dx

dt
�
�F

�x·
dx·

dt
�
�F

�t
�
�F

�x
x· �

�F

�x·
ẍ

d

dt �x·
�F

�x· � � x·
d

dt �
�F

�x· � �
�F

�x·
ẍ
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and substituting in (20.40),

�F

�t
�
�F

�x
x· �

�F

�x·
ẍ� �x·

d

dt �
�F

�x· � �
�F

�x·
ẍ� � �F�t � 0

x· � �F�x �
d

dt �
�F

�x· � � � 0

�F

�x
�

d

dt �
�F

�x· � or Fx �
d

dt
(Fx·)

20.27. Show that if F is not an explicit function of t, the Euler equation can be expressed as

F� x·
�F
�x·
� c a constant

If t is not an explicit argument of F, �F/�t � 0 and Equation (20.40) reduces to

d

dt �F� x·
�F

�x· � � 0

Integrating both sides with respect to t,

F� x·
�F

�x·
� c

20.28. (a) Show that if F� F(t, x·), with x not one of the arguments, the Euler equation reduces to

Fx· � c a constant

(b) Explain the significance.

a) With F � F(t, x·)

Fx � 0 Fx· � Fx·

Substituting in Euler’s equation,

0 �
d

dt
(Fx·)

Integrating both sides with respect to t,

Fx· � c (20.41)

b) Equation (20.41) is a first-order differential equation with arguments of t and x· alone which, when
solved, provides the desired extremal. See Problems 20.7 and 20.8.

20.29. (a) Show that if F� F(x·), that is, a function of x· alone, the Euler equatiuon reduces to

Fx·x· ẍ � 0

and (b) explain the significance.

a) Given F � F(x·)
Fx � 0 Fx· � Fx·

Using Euler’s equation,

0 �
d

dt
[Fx·(x·)] � Fx·x· ẍ (20.42)
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b) From (20.42), either ẍ � 0 or Fx·x· � 0. If ẍ � 0, integrating twice yields x(t) � c1 t� c2, which is linear.
If Fx·x· � 0, Fx· � c, a constant, which means that F is linear in x· . If F is linear in ẋ, the solution is trivial.
See Problems 20.30 and 20.31.

20.30. Find extremals for
t1


t0

e�3x·2
dt

subject to x(t0) � x0 x(t1) � x1

Fx � 0 Fx· ��6x·e�3x·2

0 �
d
dt

(�6x·e�3x·2
)

By the product rule,

0 � �6x·(�6x·e�3x·2
ẍ)� e�3x·2

(�6ẍ)
6ẍe�3x·2

(6x·2� 1) � 0 (20.43)
which is a nonlinear second-order differential equation, not easily solved. However, since ẍ in (20.43) must
equal zero for the equation to equal zero, from Problem 20.29 we know that the solution must be linear.
Thus,

x(t) � c1 t� c2

20.31. Find extremals for
t1


t0

(27� 5x·) dt

subject to x(t0) � x0 x(t1) � x1

Fx � 0 Fx· ��5

0 �
d
dt

(�5) � 0

The Euler equation is an identity which any admissible value of x satisfies trivially, as was indicated in
Problem 20.29. This becomes clear upon direct integration of the extremal in this problem:

t1

t0

(27� 5x·) dt � 27(t1� t0)� 5[x(t1)� x(t0)]

and any x satisfying the endpoint conditions yields the same value for this integrand.

20.32. (a) Show that if F� F(t, x), with x· not one of the arguments, the Euler equation reduces to

Fx � 0

(b) Explain the significance.

a) With F � F(t, x),

Fx� Fx Fx· � 0

Substituting in Euler’s equation,

Fx �
d

dt
(0) � 0
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b) When there is no x· term in F, the optimization problem is static and not dynamic. The condition for
optimization, therefore, is the same as that in static optimization, namely,

Fx � 0

20.33. Show that if application of Euler’s equation results in a second-order differential equation with
no x or t terms, the second-order differential equation can be converted to a first-order
differential equation and a solution found by means of equation (16.1). Demonstrate in terms
of Equation (20.22) from Section 20.8.

From Equation (20.22),

ẍ � ix· �
b

2a

Since there are no x or t terms in (20.22), it can be converted to a first-order linear differential equation
by letting

u � x· and u· � ẍ
Substituting in (20.22) above and rearranging,

u· � iu �
b

2a

which can be solved by means of the formula in (16.1). Letting v � �i and z � b/2a.

u � e��(�i) dt�A�
 b

2a
e�(�i) dt dt�

� eit �A�
 b

2a
e�it dt�

Taking the remaining integral,

u � eit �A� �� 1
i �

b

2a
e�it�

u � Aeit�
b

2ai

But u � x·(t) by definition, so we must integrate once again to find x(t). Replacing A with c1 for notational
consistency with ordinary integration,

x(t) �
c1

i
eit�

b

2ai
t� c2 (20.44)

Letting t0� 0 and t1 � T, from the boundary conditions we have

x(0) �
c1

i
� c2 � 0 c2 � �

c1

i

x(T) �
c1

i
eiT�

b

2ai
T� c2 � N

Substituting c2 � �c1/i in x(T) and solving for c1,

c1

i
eiT�

b

2ai
T�

c1

i
� N

c1

i
(eiT� 1) � N�

b

2ai
T

c1 �
i{N� [b/(2ai)]T }

eiT� 1
(20.45)
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Finally, substituting in (20.44) and noting that the i in (20.45) cancels out the i in the denominator of c1/i,
we have as a candidate for an extremal:

x(t) �
N� [b/(2ai)]T

eiT� 1
eit�

b

2ai
t�

N� [b/(2ai)]T

eiT� 1

� �N�
b

2ai
T � � eit� 1

eiT� 1 � �
b

2ai
t 0� t�T

Compare the work done here with the work done in Section 20.8, and note that conversion of a
second-order differential equation to a first-order differential equation before integrating does not
necessarily reduce the work involved in finding a solution.

VARIATIONAL NOTATION

20.34. Show that the operators " and d/dt are commutative, i.e., show that

" �dx
dt � � d

dt
("x)

From (20.19) and (20.20),

"x � mh and "x· � mh·

where m is an arbitrary constant and h is an arbitrary function h � h(t). Substituting dx/dt for x· above on
the right,

" �dx

dt � � mh·

Expressing h· as dh/dt and recalling that m is a constant,

" �dx

dt � �
d

dt
(mh)

Then substituting from (20.19),

" �dx

dt � �
d

dt
("x)

20.35. Given
t1


t0

F[t, x(t), x·(t)] dt

show that in terms of variational notation a necessary condition for an extremal is

"
t1


t0

F[t, x(t), x·(t)] dt � 0

Moving " within the integral sign,

t1

t0

"F[t, x(t), x·(t)] dt � 0

From (20.21),

t1

t0

� �F�x "x�
�F

�x·
"x· � dt � 0
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Substituting from (20.19) and (20.20) where

"x � mh "x· � mh·

t1

t0

� �F�x mh�
�F

�x·
mh· � dt � 0

Dividing by m, an arbitrary constant,

t1

t0

� �F�x h�
�F

�x·
h· � dt � 0 (20.46)

Equation (20.46) is identical to Equation (20.18) in the Euler equation proof from Example 2 and can be
concluded in the same manner.
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CHAPTER 21

Optimal Control
Theory

21.1 TERMINOLOGY

Optimal control theory is a mid-twentieth-century advance in the field of dynamic optimization
that can handle any problem the calculus of variations was designed for. More importantly, optimal
control theory is more powerful than the calculus of variations because it can manage some problems
the calculus of variations cannot, such as corner solutions, and other problems the calculus of
variations cannot handle readily, such as constraints on the derivatives of the functions being
sought.

In optimal control theory, the aim is to find the optimal time path for a control variable, which we
shall denote as y. The variable for which we previously sought an optimal time path in the calculus of
variations, known as a state variable, we shall continue to designate as x. State variables always have
equations of motion or transition set equal to ẋ. The goal of optimal control theory is to select a stream
of values over time for the control variable that will optimize the functional subject to the constraint
set on the state variable.

Optimal control theory problems involving continuous time, a finite time horizon, and fixed
endpoints are generally written:

Maximize J�
T


0

f [x(t), y(t), t] dt

subject to ẋ �
x(0) �

g[x(t), y(t), t]
x0 x(T) � xT

(21.1)

where J� the value of the functional to be optimized; y(t) � the control variable, so called because
its value is selected or controlled to optimize J; x(t) � the state variable, which changes over time
according to the differential equation set equal to ẋ in the constraint, and whose value is indirectly
determined by the control variable in the constraint; and t � time. The solution to an optimal control
problem demarcates the optimal dynamic time path for the control variable y(t).
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21.2 THE HAMILTONIAN AND THE NECESSARY CONDITIONS FOR
MAXIMIZATION IN OPTIMAL CONTROL THEORY

Dynamic optimization of a functional subject to a constraint on the state variable in optimal
control involves a Hamiltonian function H similar to the Lagrangian function in concave programming.
In terms of (21.1), the Hamiltonian is defined as

H[x(t), y(t), �(t), t]� f [x(t), y(t), t]��(t)g[x(t), y(t), t] (21.2)

where �(t) is called the costate variable. Similar to the Lagrangian multiplier, the costate variable �(t)
estimates the marginal value or shadow price of the associated state variable x(t). Working from (21.2),
formation of the Hamiltonian is easy. Simply take the integrand under the integral sign and add to it
the product of the costate variable �(t) times the constraint.

Assuming the Hamiltonian is differentiable in y and strictly concave so there is an interior solution
and not an endpoint solution, the necessary conditions for maximization are

1.
�H
�y
� 0

2. a)
��

�t
� �̇ � �

�H
�x

b)
�x
�t
� ẋ �

�H
��

3. a) x(0) � x0 b) x(T) � xT

The first two conditions are known as the maximum principle and the third is called the boundary
condition. The two equations of motion in the second condition are generally referred to as the
Hamiltonian system or the canonical system. For minimization, the objective functional can simply be
multiplied by �1, as in concave programming. If the solution does not involve an end point, �H/�y
need not equal zero in the first condition, but H must still be maximized with respect to y. See Chapter
13, Example 9, and Fig. 13-1(b)–(c), for clarification. We shall generally assume interior solutions.

EXAMPLE 1. The conditions in Section 21.2 are used below to solve the following optimal control problem:

Maximize

subject to

3

0

(4x� 5y2) dt

ẋ �

x(0) �
8y

2 x(3) � 117.2

A. From (21.1), set up the Hamiltonian.

H � 4x� 5y2��(8y)

B. Assuming an interior solution, apply the maximum principle.

1.
�H
�y
� 0

�H
�y
� �10y� 8� � 0

y � 0.8� (21.3)

2. a) �̇

�̇

� �

� �4

�H

�x

(21.4)

b) ẋ

ẋ

�

� 8y

�H

��
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But from (21.3), y � 0.8�. So,

ẋ � 8(0.8�) � 6.4� (21.5)

Having employed the maximum principle, we are left with two differential equations, which we now solve
for the state variables x(t) and the costate variable �(t).

By integrating (21.4) we find the costate variable.

�(t) � 
 �̇dt � 
�4 dt � �4t� c1 (21.6)

Substituting (21.6) in (21.5),

ẋ � 6.4(�4t� c1) � �25.6t� 6.4c1

Integrating,

x(t) � 
 (�25.6t� 6.4c1) dt

x(t) � �12.8t2� 6.4c1 t� c2 (21.7)

C. The boundary conditions can now be used to solve for the constants of integration. Applying x(0) � 2,
x(3) � 117.2 successively to (21.7),

x(0) � �12.8(0)2� 6.4c1(0)� c2� 2 c2 � 2

x(3) � �12.8(3)2� 6.4c1(3)� 2 � 117.2 c1 � 12

Then by substituting c1� 12 and c2 � 2 in (21.7) and (21.6), we have,

x(t) � �12.8t2� 76.8t� 2 state variable

�(t) � �4t� 12 costate variable

(21.8)

D. Lastly, we can find the final solution for the control variable y(t) in either of two ways.

1. From (21.3), y(t) � 0.8�, so

y(t) � 0.8(�4t� 12) � �3.2t� 9.6 control variable

2. Or taking the derivative of (21.8),

ẋ � �25.6t� 76.8

we substitute for ẋ in the equation of motion in the constraint,

ẋ �

�25.6t� 76.8 �
y(t) �

8y

8y

�3.2t� 9.6 control variable

Evaluated at the endpoints,

y(0) � �3.2(0)� 9.6 � 9.6
y(3) � �3.2(3)� 9.6 � 0

The optimal path of the control variable is linear starting at (0, 9.6) and ending at (3, 0), with a slope of
�3.2. For similar problems involving fixed endpoints, see also Problems 21.1 to 21.3.

21.3 SUFFICIENCY CONDITIONS FOR MAXIMIZATION IN OPTIMAL CONTROL

Assuming the maximum principle representing the necessary conditions for maximization in
optimal control is satisfied, the sufficiency conditions will be fulfilled if:

1. Both the objective functional f [x(t), y(t), t] and the constraint g[x(t), y(t), t] are differentiable
and jointly concave in x and y, and
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2. �(t)� 0, if the constraint is nonlinear in x or y. If the constraint is linear, � may assume
any sign.

Linear functions are always both concave and convex, but neither strictly concave or strictly convex.
For nonlinear functions, an easy test for joint concavity is the simple discriminant test. Given the
discriminant of the second-order derivatives of a function,

D� � fxx fxy

fyx fyy
�

a function will be strictly concave if the discriminant is negative definite,


D1 
� fxx� 0 and 
D2 
� 
D 
� 0

and simply concave if the discriminant is negative semidefinite,


D1 
� fxx� 0 and 
D2 
� 
D 
� 0

A negative definite discriminant indicates a global maximum and is, therefore, always sufficient for a
maximum. A negative semidefinite discriminant is indicative of a local maximum and is sufficient for
a maximum if the test is conducted for every possible ordering of the variables with similar results.

EXAMPLE 2. The sufficiency conditions for the problem in Example 1 are demonstrated below. Starting with
the objective functional which is nonlinear, we take the second derivatives and apply the discriminant test.

D � � fxx fxy

fyx fyy
� � � 0

0
0
�10 � where 
D1 
 � 0 and 
D2 
 � 
D 
 � 0

D fails the strict negative-definite criteria but proves to be negative semidefinite with 
D1 
� 0 and 
D2 
 � 
D 
� 0.
However, for the semidefinite test we must also test the variables in reverse order.

D � � fyy fyx

fxy fxx
� � ��10

0
0
0 � where 
D1 
 � �10 and 
D2 
 � 
D 
 � 0

With both discriminant tests negative semidefinite, the objective functional f is jointly concave in x and y. Since
the constraint is linear, it is also jointly concave and does not need testing. We can conclude, therefore, that the
functional is indeed maximized.

21.4 OPTIMAL CONTROL THEORY WITH A FREE ENDPOINT

The general format for an optimal control problem involving continuous time with a finite time
horizon and a free endpoint is

Maximize

subject to

J�

ẋ �
x(0) �

T

0

f [x(t), y(t), t] dt

g[x(t), y(t), t]
x0 x(T) free

(21.9)

where the upper limit of integration x(T) is free and unrestricted. Assuming an interior solution, the
first two conditions for maximization, comprising the maximum condition, remain the same but the
third or boundary condition changes:

1.
�H
�y
� 0

2. a)
��

�t
� �̇ � �

�H
�x

b)
�x
�t
� ẋ �

�H
��
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3. a) x(0) � x0 b) �(T) � 0

where the very last condition is called the transversality condition for a free endpoint. The
rationale for the transversality condition follows straightforward from what we learned in
concave programming. If the value of x at T is free to vary, the constraint must be nonbinding
and the shadow price � evaluated at T must equal 0, i.e., �(T) � 0. For problems involving free
endpoints, see Examples 3 to 4 and Problems 21.4 to 21.6.

EXAMPLE 3. The conditions in Section 21.4 are used below to solve the following optimal control problem with
a free endpoint:

Maximize

subject to

2

0

(3x� 2y2) dt

ẋ �

x(0) �
8y

5 x(2) free

A. From (21.1),

H � 3x� 2y2��(8y)

B. Assuming an interior solution and applying the maximum principle.

1.
�H

�y
� 0

�H

�y
� �4y� 8� � 0

y � 2� (21.10)

2. a) �̇

�̇

� �

� �3

�H
�x

(21.11)

b) ẋ

ẋ

�

� 8y

�H

��

But from (21.10), y � 2�. So,

ẋ � 8(2�) � 16� (21.12)

From the maximum principle, two differential equations emerge, which can now be solved for
the state variable x(t) and the costate variable �(t).

Integrating (21.11),

�(t) � 
 �̇dt � 
�3 dt � �3t� c1 (21.13)

Substituting (21.13) in (21.12),

ẋ � 16(�3t� c1) � �48t� 16c1

Integrating,

x(t) � �24t2� 16c1 t� c2 (21.14)

C. We now use the boundary conditions to specify the constants of integration.

1. Start with the transversality condition �(T) � 0 for a free endpoint. Here

�(2) � 0
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Substituting in (21.13),

�(2) � �3(2)� c1 � 0
c1 � 6

Therefore, �(t) � �3t� 6 costate variable (21.15)

2. Now substitute c1� 6 in (21.14),

x(t) � �24t2� 16(6)t� c2

x(t) � �24t2� 96t� c2

and apply the initial boundary condition, x(0) � 5.

x(0) � �24(0)2� 96(0)� c2 � 5 c2 � 5

So, x(t) � �24t2� 96t� 5 state variable (21.16)

D. The control variable y(t) can then be found in either of two ways.

1. From (21.10), y(t) � 2�. Substituting from (21.15) for the final solution,

y(t) � 2(�3t� 6) � �6t� 12 control variable (21.17)

2. Or take the derivative of (21.16),

ẋ � �48t� 96

and substitute in the equation of transition in the constraint,

ẋ �

�48t� 96 �
y(t) �

8y

8y

�6t� 12 control variable

Evaluated at the endpoints,

y(0) � �6(0)� 12 � 12
y(2) � �6(2)� 12 � 0

The optimal path of the control variable is linear starting at (0, 12) and ending at (2, 0), with a slope
of �6.

EXAMPLE 4. The sufficiency conditions for Example 3 are found in the same way as in Example 2. Taking the
second derivatives of the objective functional and applying the discriminant test,

D � � fxx fxy

fyx fyy
� � � 0

0
0
�4 � where 
D1 
 � 0 and 
D2 
 � 
D 
 � 0

D is not negative-definite but it is negative semidefinite with 
D1 
� 0 and 
D2 
 � 
D 
� 0. For the semidefinite test,
however, we must test the variables in reverse order.

D � � fyy fyx

fxy fxx
� � ��4

0
0
0 � where 
D1 
 � �4 and 
D2 
 � 
D 
 � 0

With both discriminants negative semidefinite, the objective functional f is jointly concave in x and y. The
constraint is linear and so needs no testing. The functional is maximized.

21.5 INEQUALITY CONSTRAINTS IN THE ENDPOINTS

If the terminal value of the state variable is subject to an inequality constraint, x(T)� xmin,
the optimal value x*(T) may be chosen freely as long as it does not violate the value set by the
constraint xmin. If x*(T)� xmin, the constraint is nonbinding and the problem reduces to a free endpoint
problem. So

�(T) � 0 when x*(T)� xmin
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If x*(T)� xmin, the constraint is binding and the optimal solution will involve setting x(T) � xmin,
which is equivalent to a fixed-end problem with

�(T)� 0 when x*(T) � xmin

For conciseness, the endpoint conditions are sometimes reduced to a single statement analogous to the
Kuhn-Tucker condition,

�(T)� 0 x(T)� xmin [x(T)� xmin]�(T) � 0

In practice, solving problems with inequality constraints on the endpoints is straightforward. First
solve the problem as if it were a free endpoint problem. If the optimal value of the state variable is
greater than the minimum required by the endpoint condition, i.e., if x*(T)� xmin, the correct solution
has been found. If x*(T)� xmin, set the terminal endpoint equal to the value of the constraint,
x(T) � xmin, and solve as a fixed endpoint problem. The method is illustrated in Examples 5 and 6 and
further explained and developed in Example 7 and Problems 21.7 to 21.10.

EXAMPLE 5.

Maximize

subject to

2

0

(3x� 2y2) dt

ẋ �

x(0) �
8y

5 x(2)� 95

To solve an optimal control problem involving an inequality constraint, solve it first as an unconstrained
problem with a free endpoint. This we did in Example 3 where we found the state variable in (21.16) to be

x(t) � �24t2� 96t� 5

Evaluating (21.16) at x � 2, the terminal endpoint, we have

x(2) � 101� 95

Since the free endpoint solution satisfies the terminal endpoint constraint x(T)� 95, the constraint is not binding
and we have indeed found the proper solution. From (21.17) in Example 3,

y(t) � �6t� 12

EXAMPLE 6. Redo the same problem in Example 5 with the new boundary conditions,

x(0) � 5 x(2)� 133

A. From Example 5 we know that the value for the state variable when optimized under free endpoint
conditions is

x(2) � 101� 133

which fails to meet the new endpoint constraints. This means the constraint is binding and we have now
to optimize the functional as a fixed endpoint problem with the value of the constraint as the terminal
endpoint,

x(0) � 5 x(2) � 133

B. The first two steps remain the same as when we solved the problem as a free endpoint in Example 3.
Employing the maximum principle, we found:

in (21.10),
in (21.11),
in (21.12),
in (21.13),
in (21.14),

y �
�̇ �

ẋ �
�(t) �
x(t) �

2�
�3
16�
�3t� c1

�24t2� 16c1 t� c2

Now we continue on with the new boundary conditions for a fixed endpoint.
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C. Applying x(0) � 5 and x(2) � 133 successively in (21.14), we have

x(0) � �24(0)2� 16c1(0)� c2� 5 c2� 5
x(2) � �24(2)2� 16c1(2)� 5 � 133 c1� 7

Then, substituting c1 � 7, c2 � 5 in (21.13) and (21.14), we derive

�(t) � �3t� 7 costate variable
x(t) � �24t2� 112t� 5 state variable

D. The control variable can be found in either of the two familiar ways.We opt once again for the first. From
(21.10),

y(t) � 2� � 2(�3t� 7) � �6t� 14 control variable

EXAMPLE 7. With an inequality constraint as a terminal endpoint, in accord with the rules of Section 21.5, we
first optimize the Hamiltonian subject to a free endpoint. With a free endpoint, we set �(T) � 0, allowing the
marginal value of the state variable to be taken down to zero. This, in effect, means that as long as the minimum
value set by the constraint is met, the state variable is no longer of any value to us. Our interest in the state variable
does not extend beyond time T.

Most variables have value, however, and our interest generally extends beyond some narrowly limited time
horizon. In such cases we will not treat the state variable as a free good by permitting its marginal value to be
reduced to zero. We will rather require some minimum value of the state variable to be preserved for use beyond
time T. This means maximizing the Hamiltonian subject to a fixed endpoint determined by the minimum value
of the constraint. In such cases, �(T)� 0, the constraint is binding, and we will not use as much of the state variable
as we would if it were a free good.

21.6 THE CURRENT-VALUED HAMILTONIAN

Optimal control problems frequently involve discounting, such as

Maximize

subject to

J�

ẋ �
x(0) �

T

0

e��t f [x(t), y(t), t] dt

g[x(t), y(t), t]
x0 x(T) free

The Hamiltonian for the discounted or present value follows the familiar format

H� e��t f [x(t), y(t), t]��(t)g[x(t), y(t), t]

but the presence of the discount factor e��t complicates the derivatives in the necessary conditions. If
we let #(t) � �(t)e�t, however, we can form a new, ‘‘current-valued’’ Hamiltonian

Hc�He�t � f [x(t), y(t), t]�#(t)g[x(t), y(t), t] (21.18)

which is generally easier to solve and requires only two adjustments to the previous set of necessary
conditions. Converting condition 2(a) from Section 21.2 to correspond to the current-valued
Hamiltonian, we have

�̇ � �
�H
�x
��

�Hc

�x
e��t

Taking the derivative of �(t) � #(t)e��t, we have

�̇ � #̇e��t��#e��t
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Equating the �̇’s, canceling the common e��t terms, and rearranging, we derive the adjusted condition
for 2(a):

#̇ � �#�
�Hc

�x

The second adjustment involves substituting �(t) � #(t)e��t in the boundary conditions. The transver-
sality condition for a free endpoint then changes from �(T) � 0 to the equivalent #(T)e��t� 0.

In short, given the current-valued Hamiltonian in (21.18) and assuming an interior solution, the
necessary conditions for optimization are

1.
�Hc

�y
� 0

2. a)
�#

�t
� #̇ � �#�

�Hc

�x
b)

�x
�t
� ẋ �

�Hc

�#

3. a) x(0) � x0 b) #(T)e��t � 0

If the solution does not involve an end point, �Hc/�y need not equal zero in the first condition, but Hc

must still be maximized with respect to y. With Hc�He�t, the value of y that will maximize Hc will also
maximize H since e�t is treated as a constant when maximizing with respect to y. The sufficiency
conditions of Section 21.3 remain the same, as shown in Example 9. Maximization of a current-valued
Hamiltonian is demonstrated in Examples 8 to 9 and followed up in Problems 21.11 to 21.12.

EXAMPLE 8.

Maximize

subject to

2

0

e�0.02t(x� 3x2� 2y2) dt

ẋ �

x(0) �
y� 0.5x

93.91 x(2) free

A. Set up the current-valued Hamiltonian.

Hc � x� 3x2� 2y2�#(y� 0.5x)

B. Assuming an interior solution, apply the modified maximum principle.

1.
�Hc

�y
� 0

�Hc

�y
� �4y�# � 0

y � 0.25# (21.19)

2. a) #̇

#̇

� 0.02#� (1� 6x� 0.5#)
� 0.52#� 6x� 1 (21.20)

b) ẋ �
�Hc

�#
� y� 0.5x

Substituting from (21.19),

ẋ � 0.25#� 0.5x (21.21)

Arranging the two simultaneous first-order differential equations from (21.20) and (21.21) in matrix form
and solving with the techniques from Section 19.3,

� #̇ẋ � � �0.52
0.25

6
�0.5� �

#

x � � ��1
0 �
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or Ẏ � AY�B

The characteristic equation is


A� rI 
 � � 0.52� r

0.25
6

�0.5� r � � 0

From (19.3), the characteristic roots are,

r1, r2 �
0.02��(0.02)2� 4(�1.76)

2

r1 � 1.3367 r2 � �1.3167

For r1 � 1.3367, the eigenvector is

� 0.52� 1.3367
0.25

6
�0.5� 1.3367� �

c1

c2
� � ��0.8167

0.25
6

�1.8367 � �
c1

c2
� � 0

�0.8167c1� 6c2 � 0 c1 � 7.3466c2

y1
c� � 7.3466

1 � k1 e1.3367t

For r2 � �1.3167, the eigenvector is

� 0.52� 1.3167
0.25

6
�0.5� 1.3167� �

c1

c2
� � � 1.8367

0.25
6

0.8167 � � c1

c2
� � 0

1.8367c1� 6c2 � 0 c1 � �3.2667c2

y2
c� ��3.2667

1 � k2 e�1.3167t

From (19.5), the particular solution is

Ȳ � �A�1 B

Ȳ � � #̄x̄ � � � � 1
�1.76 � �

�0.5
�0.25

�6
0.52� �

�1
0 � � � 0.28

0.14�
Adding the complementary and particular solutions, we have

#(t) � 7.3466k1 e1.3667t� 3.2667k2 e�1.3167t� 0.28 (21.22)

x(t) � k1 e1.3667t� k2 e�1.3167t� 0.14 (21.23)

C. Next we apply the boundary conditions.

1. From the transversality condition for the free endpoint, #(T)e��t � 0, we have at T � 2,

#(2)e�0.02(2) � 0

Substituting for #(2),

(7.3466k1e1.3667(2)� 3.2667k2 e�1.3167(2)� 0.28)e�0.04 � 0

113.0282k1� 0.2350k2� 0.2690 � 0 (21.24)

2. Evaluating x(t) at x(0) � 93.91,

k1� k2� 0.14 � 93.91 (21.25)

Solving (21.24) and (21.25) simultaneously,

k1� 0.2 k2 � 93.57
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Then substituting k1 � 0.2, k2 � 93.57 in (21.22) and (21.23), we get

#(t) � 1.4693e1.3667t� 305.6651e�1.3167t� 0.28 costate variable
x(t) � 0.2e1.3667t� 93.57e�1.3167t� 0.14 state variable

D. The solution for the control variable can now be found in either of the two usual ways. We choose the
easier. From (21.19), y(t) � 0.25#. Substituting from the costate variable above,

y(t) � 0.3673e1.3667t� 76.4163�1.3167t� 0.07 control variable

EXAMPLE 9. The sufficiency conditions follow the usual rules.

D � � fxx fxy

fyx fyy
� � ��6

0
0
�4 �

With 
D1 
 � �6� 0, and 
D2 
 � 24� 0, D is negative definite, making f strictly concave in both x and y. With g
linear in x and y, the sufficiency condition for a global maximum is fulfilled.

Solved Problems

FIXED ENDPOINTS

21.1. Maximize

subject to

2

0

(6x� 4y2) dt

ẋ �
x(0) �

16y
24 x(2) � 408

A. The Hamiltonian is

H � 6x� 4y2��(16y)

B. The necessary conditions from the maximum principle are

1.
�H
�y
� �8y� 16� � 0

y � 2� (21.26)

2. a) �̇ � �
�H
�x
� �6 (21.27)

b) ẋ �
�H
��
� 16y

From (21.26), ẋ � 16(2�) � 32� (21.28)

Integrating (21.27), �(t) � �6t� c1 (21.29)

Substituting in (21.28) and then integrating,

ẋ � 32(�6t� c1) � �192t� 32c1

x(t) � �96t2� 32c1 t� c2 (21.30)

C. Applying the boundary conditions, x(0) � 24, x(2) � 408,

x(0) � c2 � 24 c2 � 24
x(2) � �96(2)2� 32c1(2)� 24 � 408 c1 � 12
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Substituting c1� 12 and c2 � 24 in (21.29) and (21.30),

�(t) � �6t� 12 costate variable (21.31)

x(t) � �96t2� 384t� 24 state variable (21.32)

D. For the control variable solution, we then either substitute (21.31) into (21.26),

y(t) � 2� � 2(�6t� 12) � �12t� 24 control variable

or take the derivative of (21.32) and substitute it in the constraint ẋ � 16y.

ẋ � �192t� 384 � 16y

y(t) � �12t� 24 control variable

E. The sufficiency conditions are met in analogous fashion to Example 2.

21.2. Maximize

subject to

1

0

(5x� 3y� 2y2) dt

ẋ �
x(0) �

6y
7 x(1) � 70

A. The Hamiltonian is

H � 5x� 3y� 2y2��(6y)

B. The necessary conditions from the maximum principle are

1.
�H
�y
� 3� 4y� 6� � 0

y � 0.75� 1.5� (21.33)

2. a) �̇ � �
�H

�x
� �5 (21.34)

b) ẋ �
�H
��
� 6y

From (21.33), ẋ � 6(0.75� 1.5�) � 4.5� 9� (21.35)

Integrating (21.34), �(t) � �5t� c1 (21.36)

Substituting in (21.35) and then integrating,

ẋ � 4.5� 9(�5t� c1) � 4.5� 45t� 9c1

x(t) � 4.5t� 22.5t2� 9c1 t� c2 (21.37)

C. Applying the boundary conditions, x(0) � 7, x(1) � 70,

x(0) � c2 � 7 c2 � 7
x(1) � 4.5� 22.5� 9c1� 7 � 70 c1 � 9

Substituting c1� 9 and c2 � 7 in (21.36) and (21.37),

�(t) � �5t� 9 costate variable (21.38)

x(t) � �22.5t2� 85.5t� 7 state variable (21.39)

D. For the final solution, we then simply substitute (21.38) into (21.33),

y(t) � 0.75� 1.5(�5t� 9) � �7.5t� 14.25 control variable

E. The sufficiency conditions are once again similar to Example 2.
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21.3. Maximize

subject to

5

0

(�8x� y2) dt

ẋ �
x(0) �

0.2y
3 x(5) � 5.6

A. H � �8x� y2��(0.2y)

B. 1.
�H
�y
� �2y� 0.2�

y � 0.1� (21.40)

2. a) �̇ � �
�H

�x
� �(�8) � 8 (21.41)

b) ẋ �
�H

��
� 0.2y

From (21.40), ẋ � 0.2(0.1�) � 0.02� (21.42)

Integrating (21.41), �(t) � 8t� c1 (21.43)

Substituting in (21.42) and then integrating,

ẋ � 0.02(8t� c1) � 0.16t� 0.02c1

x(t) � 0.08t2� 0.02c1 t� c2 (21.44)

C. Applying the boundary conditions, x(0) � 3, x(5) � 5.6,

x(0) � c2 � 3 c2 � 3
x(5) � 0.08(5)2� 0.02c1(5)� 3 � 5.6 c1 � 6

Substituting c1 � 6 and c2 � 3 in (21.43) and (21.44),

�(t) � 8t� 6 costate variable (21.45)

x(t) � 0.08t2� 0.12t� 3 state variable (21.46)

D. Substituting (21.45) into (21.40) for the final solution,

y(t) � 0.1� � 0.8t� 0.6 control variable

or taking the derivative of (21.46) and substituting it in the constraint ẋ � 0.2y,

ẋ � 0.16t� 0.12 � 0.2y

y(t) � 0.8t� 0.6 control variable

FREE ENDPOINTS

21.4. Maximize

subject to

4

0

(8x� 10y2) dt

ẋ �
x(0) �

24y
7 x(4) free

A. H � 8x� 10y2��(24y)

B. 1.
�H
�y
� �20y� 24� � 0

y � 1.2� (21.47)

2. a) �̇ � �
�H

�x
� �(8) � �8 (21.48)

505OPTIMAL CONTROL THEORYCHAP. 21]



b) ẋ �
�H
��
� 24y

From (21.47), ẋ � 24(1.2�) � 28.8� (21.49)

Integrating (21.48), �(t) � �8t� c1

Substituting in (21.49), ẋ � 28.8(�8t� c1) � �230.4t� 28.8c1

and then integrating, x(t) � �115.2t2� 28.8c1 t� c2 (21.50)

C. We now apply the transversality condition �(4) � 0.

�(4) � �8(4)� c1 � 0 c1 � 32

Therefore, �(t) � �8t� 32 costate variable (21.51)

Next we substitute c1� 32 in (21.50) and apply the initial condition x(0) � 7.

So,

x(t) �
x(0) �
x(t) �

�115.2t2� 921.6t� c2

0� 0� c2� 7 c2 � 7
�115.2t2� 921.6t� 7 state variable

D. Then substituting (21.51) in (21.47), we have the final solution,

y(t) � 1.2(�8t� 32) � �9.6t� 38.4 control variable

E. The sufficiency conditions are easily confirmed as in Example 2.

21.5. Maximize

subject to

3

0

(2x� 18y� 3y2) dt

ẋ �
x(0) �

12y� 7
5 x(3) free

A. H � 2x� 18y� 3y2��(12y� 7)

B. 1.
�H
�y
� 18� 6y� 12� � 0

y � 3� 2� (21.52)

2. a) �̇ � �
�H

�x
� �(2) � �2 (21.53)

b) ẋ �
�H

��
� 12y� 7

From (21.52), ẋ � 12(3� 2�)� 7 � 43� 24� (21.54)

Integrating (21.53), �(t) � �2t� c1

Substituting in (21.54), ẋ � 43� 24(�2t� c1) � 43� 48t� 24c1

and then integrating, x(t) � 43t� 24t2� 24c1 t� c2 (21.55)

C. We now resort to the transversality condition �(3) � 0.

�(3) � �2(3)� c1 � 0 c1 � 6

Therefore, �(t) � �2t� 6 costate variable (21.56)

Next we substitute c1� 6 in (21.55) and apply the initial condition x(0) � 5.
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So,

x(t) �
x(0) �
x(t) �

�24t2� 187t� c2

0� 0� c2 � 5 c2 � 5
�24t2� 187t� 5 state variable

D. Then substituting (21.56) in (21.52), we have the final solution,

y(t) � 3� 2(�2t� 6) � �4t� 15 control variable

E. The sufficiency conditions once again follow Example 2.

21.6. Maximize

subject to

1

0

(4y� y2� x� 2x2) dt

ẋ �
x(0) �

x� y
6.15 x(1) free

A. H � 4y� y2� x� 2x2��(x� y)

B. 1.
�H

�y
� 4� 2y�� � 0

y � 2� 0.5� (21.57)

2. a) �̇ � �
�H

�x
� �(�1� 4x��) � 1� 4x��

b) ẋ �
�H

��
� x� y

From y in (21.57), ẋ � x� 2� 0.5�

In matrix form,

� �̇ẋ � � ��1
0.5

4
1 � �

�

x � � � 1
2 �

Y � AX�B

Using (19.3) for the characteristic roots,

r1, r2 �
0��0� 4(�3)

2
�
�3.464

2
� �1.732

The eigenvector corresponding to r1 � 1.732 is


A� rI 
 � ��1� 1.732
0.5

4
1� 1.732� �

c1

c2
� � ��2.732

0.5
4

�0.732� �
c1

c2
� � 0

�2.732c1� 4c2 � 0 c1 � 1.464c2

yc
1� �1.464

1 � k1e1.732t

The eigenvector corresponding to r2 � �1.732 is


A� rI 
 � ��1� 1.732
0.5

4
1� 1.732� �

c1

c2
� � �0.732

0.5
4

2.732 � �
c1

c2
� � 0

0.732c1� 4c2 � 0 c1 � �5.464c2

yc
2� ��5.464

1 � k2 e�1.732t
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For the particular solution, Ȳ � �A�1 B.

Ȳ � � �̄x̄ � � � � 1
�3� �

1
�0.5

�4
�1� �

1
2 � � ��2.33

�0.83�
Combining the complementary and particular solutions,

�(t) � 1.464k1 e1.732t� 5.464k2 e�1.732t� 2.33 (21.58)

x(t) � k1 e1.732t� k2 e�1.732t� 0.83 (21.59)

C. Applying the transversality condition for a free endpoint �(1) � 0,

�(1) � 8.2744k1� 0.9667k2� 2.33 � 0

From the initial condition x(0) � 6.15,

x(0) � k1� k2� 0.83 � 6.15

Solved simultaneously, k1 � 0.98, k2 � 5.95

Substituting in (21.58) and (21.59),

�(t) � 1.4347e1.732t� 32.511e�1.732t� 2.33 costate variable (21.60)

x(t) � 0.98e1.732t� 5.95e�1.732t� 0.83 state variable (21.61)

D. Finally, substituting (21.60) in (21.57), we find the solution.

y(t) � 0.7174e1.732t� 16.256e�1.732t� 0.835

E. For the sufficiency conditions, with f � 4y� y2� x� 2x2, fx � �1� 4x, and fy � 4� 2y, we have

D � � fxx fxy

fyx fyy
� � ��4

0
0
�2 �


D1 
 � �4� 0 
D2 
 � 8� 0

Therefore, D is negative-definite and f is strictly concave. With the constraint (x� y) linear and hence
also concave, the sufficiency conditions for a global maximization in optimal control theory are
satisfied.

INEQUALITY CONSTRAINTS

21.7. Maximize

subject to

4

0

(8x� 10y2) dt

ẋ �
x(0) �

24y
7 x(4)� 2000

1. For inequality constraints, we always start with a free endpoint. This problem was previously solved
as a free endpoint in Problem 21.4 where we found

�(t) �
x(t) �
y(t) �

�8t� 32
�115.2t2� 921.6t� 7
1.2(�8t� 32) � �9.6t� 38.4

costate variable
state variable
control variable

Evaluating the state variable at t � 4, we have

x(4) � 1850.2� 2000 a constraint violation

2. Faced with a constraint violation, we have to redo the problem with a new fixed terminal endpoint:

x(0) � 7 x(4) � 2000
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Solution of this new problem follows along exactly the same as in Problem 21.4 until the end of part
B where we found

�(t) � �8t� c1

x(t) � �115.2t2� 28.8c1 t� c2

Now instead of the transversality condition, we apply each of the boundary conditions.

x(0) � �115.2t2� 28.8c1 t� c2� 7 c2 � 7

Substituting c2 � 7 in the terminal boundary and solving,

x(4) � �115.2t2� 28.8c1 t� 7 � 2000 c1 � 33.3

This gives us

�(t) �
x(t) �

�8t� 33.3
�115.2t2� 959.04t� 7

costate variable
state variable

Then for the final solution, from (21.46) we have

y(t) � 1.2(�8t� 33.3) � �9.6t� 39.96 control variable

21.8. Maximize

subject to

1

0

(5x� 3y� 2y2) dt

ẋ �
x(0) �

6y
7 x(1)� 70

1. For an inequality constraint, we always start with a free terminal endpoint. Here we can build on the
work already done in solving this problem under fixed endpoint conditions in Problem 21.2. There we
found in (21.36) and (21.37),

�(t) �
x(t) �

�5t� c1

4.5t� 22.5t2� 9c1 t� c2

Now applying the transversality condition �(T) � 0,

�(1) � �5� c1 � 0 c1 � 5

and then substituting c1 � 5 and solving for the initial condition,

x(0) � 4.5t� 22.5t2� 45t� c2 � 7 c2 � 7

This leads to, �(t) �
x(t) �

�5t� 5
�22.5t2� 49.5t� 7

costate variable
state variable

Then from y � 0.75� 1.5� in (21.33), the solution is,

y(t) � �7.5t� 8.25 control variable

To see if the solution is acceptable, we evaluate the state variable at t � 1.

x(1) � �22.5t2� 49.5t� 7 � 34� 70 constraint violation

2. With the terminal constraint violated, we must now rework the problem with a fixed endpoint
x(1) � 70. We did this earlier in Problem 21.2 where we found

�(t) �
x(t) �
y(t) �

�5t� 9
�22.5t2� 85.5t� 7
�7.5t� 14.25

costate variable
state variable
control variable

To determine if the control variable is an acceptable solution, we evaluate the state variable at the
terminal endpoint and see that it fulfills the constraint.

x(1) � �22.5t2� 85.5t� 7 � 70
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21.9. Maximize

subject to

1

0

(4y� y2� x� 2x2) dt

ẋ �
x(0) �

x� y
6.15 x(1)� 5

We have already optimized this function subject to free endpoint conditions in Problem 21.6. There
we found,

�(t) �
x(t) �
y(t) �

1.4347e1.732t� 32.784e�1.732t� 2.33
0.98e1.732t� 6e�1.732t� 0.83
0.7174e1.732t� 16.392e�1.732t� 0.835

costate variable
state variable
control variable

Evaluating the state variable at the terminal endpoint, we have

x(1) � 0.98e1.732t� 6e�1.732t� 0.83 � 5.7705� 5

Since the endpoint constraint is satisfied, we have found the solution to the problem.

21.10. Redo Problem 21.9 with a new set of endpoint constraints,

x(0) � 6.15 x(1)� 8

From Problem 21.9 we know the free endpoint solution fails to meet the new terminal endpoint
constraint x(1)� 8. We must optimize under fixed endpoint conditions, therefore, by setting x(1) � 8.

Starting from (21.55) and (21.56) where we found

�(t) �
x(t) �

1.464k1 e1.732t� 5.464k2 e�1.732t� 2.33
k1 e1.732t� k2 e�1.732t� 0.83

we apply the endpoint conditions where we have

at x(0) � 6.15,
at x(1) � 8,

k1

5.6519k1

�

�

k2

0.1769k2

� 0.83 � 6.15
� 0.83 � 8

When solved simultaneously,

k1 � 1.3873 k2� 5.5927

Substituting in (21.55) and (21.56) repeated immediately above,

�(t) �
x(t) �

2.0310e1.732t� 30.5585e�1.732t� 2.33
1.3873e1.732t� 5.5927e�1.732t� 0.83

costate variable
state variable

Then from y � 2� 0.5� in (21.54), we derive the solution,

y(t) � 1.0155e1.732t� 15.2793e�1.732t� 0.835 control variable

Finally, to be sure the solution is acceptable, we evaluate the state variable at t � 1,

x(1) � 1.3873e1.732t� 5.5927e�1.732t� 0.83 � 8

and see that it satisfies the terminal endpoint constraint.

CURRENT-VALUED HAMILTONIANS

21.11. Maximize

subject to

3

0

e�0.05t(xy� x2� y2) dt

ẋ �
x(0) �

x� y
134.35 x(3) free

A. Setting up the current-valued Hamiltonian,

Hc � xy� x2� y2�#(x� y)
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B. Assuming an interior solution, we first apply the modified maximum principle.

1.
�Hc

�y
� x� 2y�# � 0

y � 0.5(x�#) (21.59)

2. a) #̇ � �#�
�Hc

�x
#̇

#̇

� 0.05#� (y� 2x�#)
� �0.95#� 2x� y

Using (21.59), #̇

#̇

� �0.95#� 2x� 0.5(x�#)
� �1.45#� 1.5x

b) ẋ �
�Hc

�#
� x� y

From (21.59), ẋ � 1.5x� 0.5#

In matrix form,

� #̇ẋ � � ��1.45
0.5

1.5
1.5 � �

#

x � � � 0
0 �

The characteristic equation is


A� rI 
 � ��1.45� r

0.5
1.5

1.5� r � � 0

and from (19.3), the characteristic roots are

r1, r2 �
0.05��(0.05)2� 4(�2.925)

2

r1� 1.7354 r2 � �1.6855

For r1� 1.7354, the eigenvector is

��1.45� 1.7354
0.5

1.5
1.5� 1.7354� �

c1

c2
� � ��3.1854

0.5
1.5

�0.2354� �
c1

c2
� � 0

�3.1854c1� 1.5c2 � 0 c2 � 2.1236c1

yc
1 � � 1

2.1326 � k1e1.7354t

For r2� �1.6855, the eigenvector is

��1.45� 1.6855
0.5

1.5
1.5� 1.6855� �

c1

c2
� � � 0.2355

0.5
1.5

3.1855� �
c1

c2
� � 0

0.2355c1� 1.5c2 � 0 c1 � �6.3694c2

yc
2 � ��6.3694

1 � k2 e�1.6855t

With B � 0 in Ȳ � �A�1 B, Ȳ � � #̄x̄ � � � 0
0 �

Adding the complementary functions for the general solution, we have

#(t) � k1e1.7354t� 6.3694k2 e�1.6855t (21.60)

x(t) � 2.1236k1 e1.7354t� k2 e�1.6855t (21.61)
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C. Next we apply the transversality condition for the free endpoint, #(T)e��t� 0,

#(3)e�0.05(3) � (k1 e1.7354(3)� 6.3694k2 e�1.6855(3))e�0.15 � 0

156.9928k1� 0.0349k2 � 0 (21.62)

and evaluate x(t) at x(0) � 134.25,

x(0) � 2.1236k1� k2� 134.25 (21.63)

Solving (21.62) and (21.63) simultaneously,

k1 � 0.03 k2 � 134.1819

Then substituting k1 � 0.03, k2 � 134.1819 in (21.60) and (21.61), we find

#(t) �
x(t) �

0.03e1.7354t� 854.6582e�1.6855t

0.0637e1.7354t� 134.1819e�1.6855t

costate variable
state variable

D. From (21.59), y(t) � 0.5(x�#). Substituting from above,

y(t) � 0.04685e1.7354t� 360.2381�1.6855t control variable

E. For the sufficiency conditions,

D � � fxx fxy

fyx fyy
� � ��2

1
1
�2 �

With 
D1 
 � �2� 0, and 
D2 
 � 3� 0, D is negative-definite, making f strictly concave in both x and
y. With g linear in x and y, the sufficiency condition for a global maximum is fulfilled.

21.12. Maximize

subject to

1

0

e�0.08t(10x� 4y� xy� 2x2� 0.5y2) dt

ẋ �
x(0) �

x� 2y
88.52 x(1) free

A. Hc � 10x� 4y� xy� 2x2� 0.5y2�#(x� 2y)

B. Assuming an interior solution,

1.
�Hc

�y
� 4� x� y� 2# � 0

y � x� 2#� 4 (21.64)

2. a) #̇ � �#�
�Hc

�x

#̇

#̇

� 0.08#� (y� 4x�#� 10)
� �0.92#� 4x� y� 10

Substituting for y from (21.64)

#̇ � �2.92#� 3x� 14

b) ẋ �
�Hc

�#
� x� 2y

From (21.64), ẋ � 4#� 3x� 8

In matrix form,

� #̇ẋ � � ��2.92
4

3
3 � �#x � � ��14

8 �

512 OPTIMAL CONTROL THEORY [CHAP. 21



where the characteristic equation is


A� rI 
 � ��2.92� r

4
3

3� r � � 0

and the characteristic roots are

r1, r2 �
0.08��(0.08)2� 4(�20.76)

2

r1� 4.5965 r2 � �4.5165

The eigenvector for r1 � 4.5965 is

��2.92� 4.5965
4

3
3� 4.5965� �

c1

c2
� � ��7.5165

4
3

�1.5965� �
c1

c2
� � 0

�7.5165c1� 3c2 � 0 c2 � 2.5055c1

yc
1 � � 1

2.5055 � k1e4.5965t

The eigenvector for r2 � �4.5165 is

��2.92� 4.5165
4

3
3� 4.5165� �

c1

c2
� � � 1.5965

4
3

7.5165� �
c1

c2
� � 0

1.5965c1� 3c2 � 0 c1� �1.8791c2

yc
2 � ��1.8791

1 � k2 e�4.5165t

For the particular solutions, Ȳ � �A�1 B.

Ȳ� � #̄x̄ � � � � 1
�20.76� �

3
�4

�3
�2.92� �

�14
8 � � ��3.1792

1.5723 �
Combining the complementary functions and particular solutions for the general solution,

#(t) � k1 e4.5965t� 1.8791k2 e�4.5165t� 3.1792 (21.65)

x(t) � 2.5055k1 e4.5965t� k2 e�4.5165t� 1.5723 (21.66)

C. Applying the transversality condition for the free endpoint, #(T)e��t � 0,

#(1)e�0.08(1) � (k1e4.5965(1)� 1.8791k2 e�4.5165(1)� 3.1792)e�0.08 � 0

91.5147k1� 0.0189k2� 2.9348 � 0 (21.67)

and evaluating x(t) at x(0) � 88.52,

x(0) � 2.5055k1� k2� 1.5723 � 88.52 (21.68)

Solving (21.67) and (21.68) simultaneously,

k1 � 0.05 k2 � 86.8230

Then substituting these values in (21.65) and (21.66), we find

#(t) �
x(t) �

0.05e4.5965t� 163.1491e�4.5165t� 3.1792
0.1253e4.5965t� 86.8230e�4.5165t� 1.5723

costate variable
state variable

D. From (21.64), y(t) � x� 2#� 4. Substituting for x and # from above,

y(t) � 0.2253e4.5965t� 239.4752�4.5165t� 0.7861 control variable
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E. For the sufficiency conditons,

D � � fxx fxy

fyx fyy
� � ��4

1
1
�1 �


D1 
 � �4� 0, and 
D2 
 � 3� 0. D is negative-definite and f is strictly concave in both x and y. Since
the constraint is linear in x and y, the sufficiency condition for a global maximum is satisfied.
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Abscissa, 21p
Acceleration principle, 396
Addition of matrices, 200–201, 208–209p
Address, 200, 207–208p
Adjoint matrix, 228
Aggregation, 15
Amplitude of fluctuation, 413
Antiderivative (see Integral)
Antidifferentiation (see Integration)
Area:

between curves, 345–346, 354–356p
under a curve, 342–343
of revolution, 480p

Argument of function, 5
Arrows of Motion, 368
Associative law, 204–205, 219–222p
Autonomous Equation, 428
Auxiliary equation, 408–409, 457p
Average concepts, 63–64, 72–74p

relationship to total and marginal concepts,
63–64, 72–74p, 80–81p

Averch-Johnson effect, 323–325p

Bordered Hessian, 258–259, 271–276p,
evaluation of (4� 4), 275–276p

Boundary condition, 329, 404
Budget:

constraint, 115
line, 19p

Calculus:
fundamental theorem of, 343–344
of variations, 460
(See also Differentiation; Integration)

Canonical system, 494
Cartesian coordinate, 414
Catenary, 481
CES production function, 118–119, 136–137p
Chain rule, 39, 48–49p
Change:

incremental, 112–113, 133–134p
Characteristic equation, 408–409, 457p
Characteristic matrix, 261
Characteristic polynomial, 457p
Characteristic root,

in differential and difference equations, 409–411,
416–421p, 428–439, 442–455p

Characteristic root (Cont.):
and sign-definiteness of quadratic form, 260–261,

280–283p
Cobb-Douglas function, 116–118, 135–137p

derivation of C-D demand function, 179–180
logarithmic transformation of, 150

Cobweb model, 395, 402–403p
Coefficient, 2

technical, 259
Coefficient matrix, 206
Cofactor, 226, 238–240p
Cofactor matrix, 228–229, 242–248p
Column, 200
Column vector, 200
Commutative law, 204–205, 216–219p
Comparative static:

analysis, 110–111, 120–126p, 284–288, 296–308p
derivatives, 110–111, 120–122p
in constrained optimization, 290–291, 312–314p
in optimization problems, 288–289, 308–311p

Complementary function, 363, 392, 409
Complementary-slackness conditions, 293–294
Complex number, 411–412

transformation of, 414–415
Complex root, 411, 422–425p
Composite-function rule, 38, 48–49p
Compounding interest, 160–161, 165–166p
Concave programming, 293–296, 316–323p
Concavity, 58–59, 64–66p

joint, 465–466
strict, 59

Conformability of matrices, 202, 210p
Conjugate complex number, 412
Constant of integration, 326
Constant elasticity of substitution, 118

production functions, 118–119, 136–137p
Constant function rule, 37, 43p
Constrained optimization, 87–89, 102–105p, 115,

130–134p
in calculus of variations, 466–467, 487p
of CES production function, 118–119,

136–137p
of Cobb-Douglas production function, 116–118,

135–136p
in optimal control theory, 493–496, 503–514p
and Lagrange multiplier, 87–89, 102–105p, 115,

130–134p

The letter p following a page number refers to a Problem.
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Demand:
analysis, 15, 23–27p
expressed in exponential functions, 190–191p
final, 259–260
for money, 16–17

DeMoivre’s theorem, 414
Dependence,

functional, 254–255, 262–267p
linear, 224–225, 231–233p

Dependent variable, 6
Depreciation, 160–161
Derivation of:

addition rule in differentiation, 56p
Cramer’s rule, 252–253p
Cobb-Douglas demand function, 179–180
Euler’s equation, 462–463
product rule, 57p
quotient rule, 57p

Derivative, 36
of composite function, 38, 48–49p
of constant function, 37, 43p
of exponential function, 173–174, 181p
of generalized power function, 38, 47–48p, 94p
higher-order, 39–40, 52–54p, 85, 96–97p
of an integral, 463
of linear function, 37, 43p
of logarithmic function, 174–175, 182–184p
notation, 36–37, 43–44p
partial, 82–85, 93–105p, 176, 187–188p

cross (mixed), 85, 96–97p
second-order, 85, 96–97p

of power function, 37, 43–44p, 93p
of product, 38, 44–45p 93p
of quotient, 38, 45–47p, 94p
rules of (see Differentiation rules),
of sums and differences, 38, 44p
total, 90–91, 106–107p
of trigonometric function, 413–414, 421–422p

Determinant, 224–226, 231–232p
Discriminant, 256, 264–265p
Hessian, 255–256, 265–271p

bordered, 258–259, 271–276p
Jacobian, 254–255, 262–263p
properties of, 227–228, 233–236p
vanishing, 224

Determinant test for:
sign–definiteness of quadratic form, 254–255,

264–265p
singular matrix, 224–225, 236–238p

Deviation from equilibrium, 363, 392, 409
Diagonal (principal), 220
Difference (first), 391
Difference equation:

and Cobweb model, 395, 402–403p
economic applications of, 404–405p, 425–427p
first–order, 391–392, 398–401p

Constraint:
budget, 115
in dynamic optimization, 466–467, 487p
endpoint, in calculus of variations, 461
inequality, 293–296, 316–325p
nonnegativity, 293
in static optimization, 87–89, 102–105p, 115,

130–134p
Consumers’ surplus, 347–348, 359–360p
Continuity, 33–34, 36, 41–43p

and differentiability, 36–37
Continuous growth, 162–163
Control variable, 493
Convergence:

in difference equations, 392–393, 398–401p, 415,
417–419p

in differential equations, 363–364, 368–370,
387–389p

in improper integrals, 346–347, 356–359p
Conversion, exponential-logarithmic, 162–163,

171p
Convexity, 58–59, 64–66p

strict, 59
Coordinate:

Cartesian, 414
polar, 414

Corner solution, 296
Cosecant function, 412

derivative of, 413–414, 421–422p
Cosine function, 412

derivative of, 413–414, 421–422p
Costate variable, 493
Cotangent function, 412

derivative of, 413–414, 421–422p
Cramer’s rule, 230–231, 248–253p

proof of, 252–253p
Critical point (value), 59
Cross elasticity of demand, 111–112, 126–127p
Cross partial derivative, 85, 96–97p
Current-valued Hamiltonian, 500–503, 510–514p
Curve:

area between, 345–346, 354–356p
area under, 342–343

Curvilinear function, slope of, 34–35
Cusp, 36

Decreasing function, 58, 64–66p
Defined (product of matrices), 203
Definite:

integral, 343, 349p
negative-, positive-, 256–257
semi-, 260–261
solution, 363, 392, 409

Deflation, 160
Degree, of differential equation, 362, 370p
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Difference equation (Cont):
and Harrod model, 396, 404p
and lagged income determination model, 394,

401–402p
second-order, 410–411, 419–420p, 424–425p

Difference quotient, 35
Differentiable function, 36
Differentiability, 36, 60
Differential, 89–90, 105–106p, 112–113, 122–126p

and incremental change, 112–113
partial, 90, 106p, 122–126p
total, 90, 105–106p

Differential equation, 362
economic applications of, 367–368, 382–387p
exact, 364–365, 374–375p
first-order linear, 363–365, 370–374p
and integrating factors, 364–365, 374–375p
nonlinear, 366–367, 380–382p
ordinary, 362
partial, 364
second-order, 408–410, 416–417p
and separation of variables, 366–367, 380–382p

Differentiation, 36
of exponential function, 173–174, 181p
implicit, 40, 54–56p
logarithmic, 177–178, 191–192p
of logarithmic function, 174–175, 183–184p
partial, 82–85, 93–105p, 176, 187–188p
total, 90–91, 106–107p
of trigonometric function, 413–414, 421–422p
(See also Differentiation rules and Derivative)

Differentiation rules, 37–39, 82–85
chain rule, 38, 48–49p
combination of rules, 49–52p, 94–95p
composite function rule, 38, 48–49p
constant function rule, 37, 43p
exponential function rule, 173–174, 181p

derivation of, 197p
function of a function rule, 38, 48–49p
generalized power function rule, 39, 47–48p
implicit function rule, 92, 107p
inverse function rule, 92, 107–108p
linear function rule, 37, 43p
logarithmic function rule, 174–175, 182–184p

derivation of, 196p
power function rule, 37, 43–44p
product rule, 38, 44–45p

derivation of, 57p
quotient rule, 38, 45–47p

derivation of, 57p
sum and difference rule, 38, 44p

derivation of, 56p
Dimension of matrix, 200, 207–208p
Diminishing returns, 116, 134p
Discounting, 162, 168–169p
Discrete growth, 162

Discriminant, 256, 264–265p
Discrimination, in pricing, 77–78p, 132–133p
Distance between two points on a plane, 461,

470–471p
Distribution parameter, 118
Distributive law, 204–205, 219–222p
Divergence, 346–347, 356–359p
Domain, 5
Domar model, 384–385p
Dominant root, 415
Dynamic optimization, 462–463, 471–481p

economic applications, 482–486p
under functional constraints, 466–467, 487p

Dynamic stability of equilibrium, 363, 391, 428

e, the number, 149
Effective rate of interest, 161–162
Efficiency parameter, 116
Eigenvalue (vector), 260–261, 280–283p, 409–411,

416–421p, 428–439, 442–445p
Eigenvalue problem, 429, 458–459p
Elasticity:

cross, 111–112, 127p
of demand, 126–127p
of income, 111–112, 126–127p
of price, 127p
of supply, 126–127

Elasticity of substitution, 118, 140–145p
of CES function, 118, 142–145p
of Cobb-Douglas function, 140–141p

Elements of a matrix, 200
Elimination method for solving simultaneous

equations, 4, 26p
Endogenous variable, 16
Endpoint condition, 461
Envelope theorem, 291–293, 314–316p
Equation, 3

auxiliary, 408–409, 457p
characteristic, 408–409
difference, 391–392, 398–401p
differential, 362–365, 370–374p
equilibrium, 15
in income determination models, 15–16, 27–30p
in IS–LM models, 16–17, 30–31p
linear, 3
quadratic, 3
of motion, 493
reduced form, 16, 27–30p
simultaneous, 4–5, 25–27p
solution of, 9–10p

using logarithms, 158–159p
in supply and demand analysis, 23–27p
of transition, 493

Equilibrium:
dynamic stability of, 363, 391, 428
inter-temporal, 363, 391, 428
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Function (Cont.):
optimization of, 60–63, 68–72p, 74–79p, 85–57,

98–102p, 113–115, 127–130p
periodic, 413
polynomial, 5
power, 5
primitive, 39
quadratic, 4–5, 10p, 13p, 256, 264–265p,

280–283p
rational, 5, 13p
sinusoidal, 421
smooth, 60
trigonometric, 412–413, 421–422p

Functional, 460
Functional dependence, 254–255, 262–263p
Fundamental theorem of calculus, 343

Generalized power function rule, 38, 47–48p, 94p
Giffen good, 286
Global maximum (minimum), 61
Goods:

complementary (substitute), 111–112
final (intermediate), 259–260

Graph, 6, 11–13p
of exponential function, 147, 150–152p
in income determination model, 21–23p
of linear function, 6, 17–23p
of logarithmic function, 147, 152–153p
of quadratic function, 13p
of rational function, 13p

Growth, 192–194p
continuous (discrete), 162–163
conversion factor for, 162–163, 171p
measures of, 178

Growth functions, exponential, 163–164, 169–179p
Growth rates:

estimation from data points, 163–164, 172p
per capita, 192p
warranted, 396

Hamiltonian, 494–495, 503–510p
current-valued, 500–503, 510–514p
system, 494

Harrod model, 396, 404p
Hessian, 255, 256, 265–271p

bordered, 258–259, 271–276p
Higher-order derivative, 39–40, 52–54p, 85, 96–97p
Homogeneity, 115–116, 134p

i, the number, 412
Idempotent matrix, 205
Identity matrix, 205–206
Image, mirror, 147, 152–153p
Imaginary number, 411–412

transformation of, 414–415

Equilibrium (Cont.):
steady-state, 363, 391, 428

Euclidian distance condition, 431
Euler equation, 414

proof of, 462–463
Euler relations, 414
Exact differential equation, 364–365, 374–375p
Exogenous variable, 16
Explicit function, 40
Exponent, rules of, 1, 7–8p, 148, 154–156p
Exponential function, 146, 150–151p, 160

base conversion of, 162–163, 170–171p
derivative of, 173–175, 181p
and discounting, 162, 168–169p
and growth, 163–164, 169–170p
and interest compounding, 160–161, 165–168p
integration of, 327, 337p
logarithmic solutions of, 149, 156–159p
natural, 149–150, 151–153p
and optimal timing, 179, 194–196p
optimization of, 176–177, 188–191p
relationship to logarithmic functions, 149–150,

156–159p
slope of, 185p

Extremal, 460
finding candidates for, 463–465, 471–481p

Extremum (relative), 60, 66–72p

Factoring, 3–4
Final demand, 259–260
First difference, 391
First-order condition, 60
Frequency functions and probability, 348, 361p
Free endpoint, 496–498, 505–508p
Function, 5, 10–11p

Cobb-Douglas, 116–118, 135–137p
complementary, 363, 392, 409
composite, 39, 48–49p
concave (convex), 58–59, 64–66p
constant, 37
constant elasticity of substitution (CES), 118
curvilinear, slope of, 34–35
decreasing (increasing), 58, 64–66p
differentiable, 60
explicit, 40
exponential, 146, 150–151p, 160
frequency, 348, 361p
of a function, 39, 48–49p
homogeneous, 115–116, 134p
implicit, 40, 54–56p, 92, 107p
inverse, 18p
linear, 5
logarithmic, 147
monotonic, 58
multivariable, 82, 110
objective, 87–88
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Implicit differentiation, 40, 54–56p, 92, 107p
Implicit function, 40

rule, 40, 54–56p, 92, 107p
theorem, 286, 300p

Improper integral, 346–347, 356–359p
and L’Hôpital’s rule, 347, 356–359p

Income determination model, 15–16
equations in, 27–30p
graphs in, 21–23p
lagged, 394, 401–402p

Income determination multiplier, 15–16, 27–30p,
120–126p

Income elasticity of demand, 111–112
Increasing function, 58, 64–66p
Indefinite integral, 326
Independence, 4
Independent variable, 6
Indirect objective function, 292
Inequality constraints, 293–296, 316–325p,

in endpoints, 498–500, 508–510p
Inferior good, 286
Inflection point, 60, 66–68p, 85–87, 98–102p
Initial condition, 329
Inner product, 202
Input–output analysis, 259–260, 276–280p
Integral, 326, 343

definite, 343, 349p
probability and, 348, 361p
properties of, 344–345, 353–354p

of differential equation, 362
improper, 346–347, 356–359p
indefinite, 326, 332–334p
particular, 363
sign, 326

Integral calculus, 326, 342
Integrand, 326
Integrating factor, 365–366, 375–379p
Integration, 326, 342

constant of, 326–328
and consumers’ and producers’ surplus, 347–348,

359–360p
economic applications of, 331–332, 339–341p,

359–361p
and initial conditions and boundary conditions,

329, 494
limits of, 343
partial, 364–366, 374–379p
by parts, 330–331, 337–339p, 352–353p
rules of, 326–328, 332–334p
by substitution, 329–330, 334–337p, 349–352p
tables, 330

Intercept (x–, y–), 6, 11–13p
Interest compounding, 160, 165–168p
Interest rate (effective, nominal), 161

and timing, 166–168p
Interior solution, 294

Intermediate good, 259
Intertemporal equilibrium level (solution), 363, 392
Inverse function, 18p

rule, 92, 107–108p
Inverse matrix, 228–229, 242–248p

and solution of linear–equation system, 229–230,
242–248p

IS-LM analysis, 16–17, 30–31p, 287–288p
Isocline, 339–342
Isocost (isoprofit) line, 14–15
Isoperimetric problem, 466–467
Isoquant, 79–80p, 139p
Isosector, 439–442
Iterative method, 392

Jacobian, 254–255, 262–263p
Joint concavity (convexity), 465–466

Kuhn-Tucker conditions, 293–294, 316–325p

Lag, 395
Lag matrix, 202
Lagrange multiplier, 87–89, 102–105p, 115,

130–134p
in calculus of variations, 466–467, 487p
and inequality constraints, 293–296, 316–325p
in optimal control theory, 493–496, 503–514p
and shadow prices, 89

Lagrangian function, 87–89, 102–105p, 115,
130–134p

Laplace expansion, 227, 241–243p
Latent root (vector), 260–261, 280–283p, 409–411,

416–421p, 428–439, 442–445p
Lead matrix, 202
Least common denominator (LCD), 9p
Leibnitz’s rule, 463
Leontief matrix, 260
L’Hôpital’s rule, 347, 356–359p
Like terms, 2
Limits, 32–33, 41–43p

lower (upper), 343
one-sided, 33
rules of, 32–33, 41–43p

Linear algebra, 199
commutative, associative, distributive laws,

204–205, 216–222p
expression of set of linear systems by, 206–207

Linear dependence, test for, 224–225, 236–238p
Linear equations:

solving with Cramer’s rule, 230–231, 248–253p
solving with the inverse matrix, 228–229,

242–248p
Linear function, 5
Linear function rule, 37, 43p
LM schedule, 16, 287–288p
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Minor, 226, 238–240p
principal, 255
bordered, 258

Mirror image, 147, 152–153p
Mixed partial derivative, 85, 96–97p
Modified maximum principle, 500–501
Monomial, 2
Monotonic function, 58
Multiplication of matrices, 202–204, 212–216p

scalar and vector, 201–202, 211–212p
Multiplier, 15–16, 110–111

autonomous expenditure, 16, 28p
autonomous (lump-sum) tax, 28p
balanced–budget, 121p
foreign–trade, 29–30p, 122p
government, 120–121p
proportional tax, 29p

Multivariate functions, 82, 110
optimization of, 85–87, 98–102p, 113–115,

127–130p

Natural exponential function, 149
conversion of, 153–154
derivative of, 173–174, 180–181p
graph of, 153p
optimization of, 176–177, 188–191p
slope of, 174–175
solution of, 149

Natural logarithmic function, 149
conversion of, 153–154
derivative of, 174–175, 183–184p
graph of, 153p
optimization of, 176–177, 188–191p
slope of, 174–175
solution of, 149

Negative definiteness, 256, 260–261, 264–265p,
280–282p

Negative semi-definiteness, 260–261, 264–265p,
280–282p

Nominal rate of interest, 161
Nonlinear programming, 293–296, 316–323p
Nonnegativity constraint, 293
Nonsingularity of matrices, 224–225, 236–238p
Nontrivial solutions, 429
Normal good, 286
Normalization, 261, 430
Null matrix, 205–206, 222p
Numbers:

complex, 411–412
conjugate, 411–412
imaginary, 411–412

Objective function, 87–88
Optimal control theory, 493

fixed endpoints, 494–495, 503–505p
free endpoints, 496–498, 505–508p

ln, 149–150
Logarithm, 147–148

conversion formulas, 162–163
natural, 149–150
properties of, 148, 154–156p

Logarithmic differentiation, 177–178, 191–192p
Logarithmic function, 147–148

conversion of, 174–175, 183–184p
derivative of, 191, 198–199p
optimization of, 176–177, 188–191p
relationship to exponential functions, 147
slope of, 185p

Logarithmic transformation, 150
Lower–triangular matrix, 236p

Marginal concepts, 62–63, 72–74p, 110, 119–120p
relationship to total and average concepts,

62–63, 72–74p, 110, 119–120p
Marginal product (MP), 110
Marginal rate of technical substitution (MRTS),

79–80p, 139p
Marginal utility of money, 133p
Matrix(ces), 200

addition and subtraction, 200–201, 208–209p
adjoint, 228
associative, commutative, distributive laws,

204–205, 216–222p
characteristic, 261
coefficient, 206
cofactor, 228–229, 242–248p
column vector, 200
conformability, 202, 210p
idempotent, 205
identity, 205–206
inverse, 228–229, 242–248p
lag, 202
lead, 202
Leontief, 260
multiplication, 202–204, 212–216p
nonsingular, 224, 236–238p
null, 205–206, 222p
rank of, 224–225, 232–233p
row vector, 200
singular, 222p, 224, 236–238p
square, 20
symmetric, 205
technical coefficients of, 260
transpose, 200, 207p
triangular, 228, 235–236p
unique properties of, 222–223p

Matrix algebra, (see Linear algebra)
Matrix inversion, 228–229, 242–248p
Maximum principle, 494

modified, 500–501
Maximization, (Minimization), (see Optimization)
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Optimal control theory (Cont.):
inequality constraints in endpoints, 498–500,

508–510p
Optimal timing, 179, 194–196p
Optimization, 60–63, 68–72p, 74–79p, 85–87,

98–102p, 113–115, 127–130p
constrained, 87–89, 102–105p, 115, 130–134p,

258–259, 271–276p
of CES production function, 118–119,

136–137p
of Cobb-Douglas production function,

116–118, 135–137p, 259, 275p
dynamic, 462–463, 471–486p

constrained, 466–467, 487p
of exponential functions, 176–177, 188–191p
of logarithmic functions, 176–177, 188–191p
of multivariable functions, 85–87, 98–102p,

113–115, 127–130p
Order:

of difference equation, 391
of differential equation, 362, 370p

Ordinate, 22p
Oscillation, 392–394
Output elasticity, 116

Parabola, 13p
Parameter

distribution, 116–118
efficiency, 116–118
substitution, 116–118

Partial derivative, 82–85, 93–105p, 176, 187–188p
cross (mixed), 85, 96–97p
exponential, 176, 187–188p
logarithmic, 176, 187–188p
second-order direct, 85, 96–97p, 102

Partial differentiation, 82–85, 93–105p, 176,
187–188p

rules of, 83–85, 93–97p
Partial differential, 90, 106p, 122–126p
Partial integration, 364–365, 374–379p
Particular integral, 363, 458p
Parts, integration by, 330–331, 337–339p, 352–353p
Per capita growth, 192p
Period, 413
Periodic function, 413
Phase, 413

diagram, 368–370, 397–398
in difference equation, 397–398, 405–407p
in differential equation, 368–370, 387–390p,

439–442, 455–459p
Phase plane, 439
Polar coordinate, 414
Polynomial, 2, 8–9p
Polynomial function, 5

continuity of, 34
limit of, 41p

Population growth, 162
Positive definiteness, 256, 260–261, 264–265p,

280–282p
Positive semi–definiteness, 260–261, 264–265p,

280–282p
Power function, 5

derivative of, 37, 43–44p
generalized, 38, 47–48p

Power function rule, 37, 43–44p
generalized, 38, 47–48p

Precautionary demand for money, 16–17
Present value, 162
Price, shadow, 89
Price discrimination, 77–78, 132–133p
Price elasticity, 127p
Primitive function, 39
Principal diagonal, 205
Principal minor, 255

bordered, 258
Probability, and definite integral, 348, 361p
Producers’ surplus, 347–348, 359–360p
Product rule, 38, 44–45p, 84

derivation of, 57p
Production function:

CES, 118–119, 136–137p
Cobb-Douglas, 116–118, 135–136p
elasticity of substitution of, 118, 140–145p
output elasticity of, 116
homogeneous, 115–116, 134p

Production isoquant, 79–80p, 139p
Proof of:

addition rule, 56p
Cramer’s rule, 252–253p
ex rule, 197p
eg(x) rule, 197p
Euler’s equation, 462–463
ln x rule, 196p
ln g(x) rule, 197p
Px/Py�MUx/MUy for optimization, 140p
product rule, 57p
properties of logarithms, 148, 154–156p
quotient rule, 57p

Pythagorean theorem, 461

Quadratic equation, 3
graph of, 13p
solution by:

factoring, 3–4
quadratic formula, 3–4, 10p, 26p

Quadratic formula, 3–4, 10p, 26p
Quadratic function, 4–5, 10p, 13p, 256, 264–265p

discriminant and sign–definiteness of, 256,
264–265p

Quotient rule, 38, 45–47p
derivation of, 57p
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Sine function, 412
derivative of, 413–414, 421–422p

Singular matrix, 224
test for, 224–225, 262–263p

Slope, 6, 11–13p
of curvilinear function, 34–35
of exponential function, 173–174, 185p
of linear function, 6, 11–13p
of logarithmic function, 174–175, 185p

Slope-intercept form, 7, 11–13p
Slutsky effect, 313–314p
Smooth function, 60
Solow model, 385–386p
Solution:

definite, 363, 392
general, 363, 392
particular, 363, 392
trivial, 429, 489p
vector, 206

Speculative demand for money, 16
Stability conditions:

Cobweb model, 395, 402–403p
difference equation, 391–398, 398–407p, 415,

420–421p
differential equation, 362–370, 370–390p, 415,

417–419p
State variables, 493
Steady-state solution, 368, 397
Strictly concave (convex), 58–59, 64–66p
Subintegral, 344–345
Substitution:

elasticity of, 118, 142–143p
integration by, 329–330, 334–337p
method for solving simultaneous equations, 4,

26p
Subtraction of matrices, 200–201, 209–210p
Successive-derivative test, 61–62, 67–72p
Sum and difference rule, 38, 44p

derivation of, 56p
Supply, elasticity of, 126–127p
Supply and demand analysis, 15, 23–27p
Surplus, consumers’, producers’, 347–348, 359–360p
Symmetric matrix, 205

Tables of integration, 330
Tangent function, 412

derivative of, 413–414, 421–422p
Tangent line, 34
Taylor expansion, 467
Technical coefficient, 259–260
Terms, 2
Time path, 384p, 392–393, 413, 415
Timing, optimal, 179, 194–196p
Total concepts, 63–64, 72–74p, 80–81p

relationship to marginal and average concepts,
63–64, 72–74p

Radian, 413
Range, 5
Rank, 224–225, 232–233p
Rate of change, 36
Rate of discount, 162, 168–169p
Rational function, 5,

continuity of, 34
graph of, 13p
limits of, 32–33

Reduced form equation, 16, 27–30p
Relative extremum, 59–60, 66–68p
Returns to scale, 116, 134p
Riemann sum, 342
Root:

characteristic, 260–261, 280–283p, 409–411,
416–421p, 428–439, 442–455p

complex, 411
distinct real, 411, 416–417p
dominant, 415
latent, 260–261, 280–283p, 409–411, 416–421p,

428–439, 442–455p
repeated real, 411, 417, 420p

Row, 200
Row vector, 200
Rules:

Cramer’s, 230–231, 248–253p
De Moivre’s, 414
of differentiation (see Differentiation rules)
of exponents, 1, 7–8p
for integrating factor, 365–366, 375–379p
of integration, 326–328, 322–334p
for inverse function, 92, 107–108p
L’Hôpital’s, 347, 356–359p
Leibnitz’s, 463
of limits, 32–33, 41–43p
of logarithms, 148, 154–156p

Saddle path, 429, 439
Saddle point, 87
Saddle point solution, 429
Samuelson model, 426p
Scalar, 206

multiplication, 201, 211p
Secant function, 412

derivative of, 413–414, 421–422p
Secant line, 35
Second-derivative test, 60
Second-order condition, 61
Semi-definiteness, 260–261
Shadow price, 89
Separation of variables, 366–367, 380–382p
Sign-definiteness of quadratic function, 256,

260–261, 264–265p, 280–282p
Simultaneous equations, 4–5, 25–27p

difference equations, 434–439, 451–455p
differential equations, 428–434, 442–450p
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Total derivative, 90–91, 106–107p
Total differential, 90, 105–106p
Trace, 429
Transaction demand for money, 16
Transformation,

of complex and imaginary numbers, 414–415
logarithmic, 150

Transpose matrix, 200
Transversality condition, 497
Triangular matrix, 228

lower (upper), 235p
Trigonometric function, 413–414

derivative of, 413–414, 421–422p

Upper-triangular matrix, 235p
Utility:

marginal, of money, 133p
optimization of, 133–134p

Value, critical, 59
of function, 5

Vanishing determinant, 224
Variable, 2

control, 493
costate, 493
dependent and independent, 6

Variable (Cont.):
endogenous and exogenous, 16
separated, 366–367, 380–382p
state, 493

Variation of F, 467
Variational notation, 467–468, 491–492p
Variations, the calculus of, 460
Vector:

characteristic, 260–261, 280–283p, 409–411,
416–421p, 428–439, 442–455p

column and row, 200
of constant terms, 229
eigen, 260–261, 280–283p, 409–411, 416–421p,

428–439, 442–455p
latent, 260–261, 280–283p, 409–411, 416–421p,

428–439, 442–455p
multiplication of, 201–202, 211–212p
solution, 206

Vertical line test, 10p

Warranted rate of growth, 396

Young’s Theorem, 85, 97p
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