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Preface

Back in 2004 while celebrating the twentieth anniversary of the discovery of time-
dependent density functional theory (TDDFT) we decided to take on the endeavor
of making TDDFT really accessible to all students and researchers. Although a
relatively young field, TDDFT was already beginning to rise as a method of choice
in Materials Science and Quantum Chemistry, for the description of spectroscopic
and non-equilibrium properties of both finite and extended systems. To this end,
we set up the Benasque TDDFT series of school and workshops, a 2 week
intensive meeting on TDDFT held every 2 years, nested in the beautiful Pyrenees.
The Benasque TDDFT meeting is now well-established as the key training event
and conference in the field. Now that we are facing the fifth edition of the event,
we felt it was timely to have a pedagogical edition of our original 2006 book on
TDDFT. The present volume is not a re-edition but a real new project that shares a
few parts with the old book, but that has far more focus on the fundamentals and
also includes new developments of the last few years of this rapidly-evolving field.
Thus we give it the title of ‘‘Fundamentals of Time-Dependent Density Functional
Theory’’.

A Little History

The first International School and Workshop on Time-Dependent Density Func-
tional Theory was hosted by the Benasque Center for Science, Spain from August
28th to September 12th, 2004. The aim of the School was to introduce theoretical,
practical, and numerical aspects of TDDFT to young graduate students, post-docs
and even older scientists who were envisaging a project for which TDDFT would
be the tool of choice. The School has an equal share of theoretical and practical
classes. This eases the learning of the techniques and provides the students with
the practical knowledge of the numerical aspects and difficulties, while at the same
time introducing them to well-established open source numerical codes (e.g.,
OCTOPUS, http://www.tddft.org/programs/octopus). The School is followed by a
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Workshop where talks are presented by leading scientists on their current research,
with a schedule designed for plenty of informal discussion. This introduces the
students to the forefront of TDDFT research and rounds out their training well. At
the end the participants should have sufficient working knowledge to pursue their
projects at their home institution. The outstanding success of the first School led to
the organization of another four events, held again in Benasque, from August 27th
to September 11th 2006; August 31st to September 15th 2008, January 2nd to 15th
2010, and January 4th to 17th 2012. Simultaneously, a similar sequence of events
happened on the other side of the Atlantic: From June 5–10 2004, a Summer
School on TDDFT was held in Santa Fe, USA. This event sparked the estab-
lishment of a series of Gordon Research Conferences on TDDFT which began in
2007.

A very tangible outcome of the two events in 2004 was the publication of a
Springer Lecture Notes book, [Time-Dependent Density-Functional Theory edited
by M. A. L. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E.K.U.
Gross, vol. 706 of Lecture Notes in Physics (Springer Verlag, Berlin, 2006)]. This
consists of contributions from speakers at the first Benasque School and Workshop
in 2004 as well as contributions from the Summer School in Santa Fe. The book
was the first comprehensive review of the field. It is now on the bookshelf of many
scientists and, perhaps more importantly, has been used by hundreds of students
and postdocs to enter the field of TDDFT. It was also the main reference used in
the later Benasque TDDFT Schools, helping over 250 students to be introduced to
the theory and its applications. However, TDDFT is a fast evolving field, and
much progress has been achieved in the past 5 years, which motivated us to
consider compiling a revised edition. After extensive discussions among ourselves,
with other scientists, and with many students of the last Benasque school, a set of
recommendations emerged, both for the book as a whole, and also for the indi-
vidual chapters. We concluded that we could take this opportunity not only to
update the book, but also to refocus it to be more coherent, fundamental, and
pedagogical (for the students), as well as to sometimes provide a different per-
spective on TDDFT. The result is the current volume you hold in your hands.
We hope you will enjoy and learn from it as much as we have enjoyed and learned
from putting it together.

A User’s Guide

Time-dependent density-functional theory is a rigorous reformulation of the non-
relativistic time-dependent quantum mechanics of many-body systems that places
the time-dependent one-body density of a many-body interacting system at center
stage. It is an extension of ground-state density functional theory, to which it is
similar in philosophy, but its formulation and functionals are very different, and
contain different physics. Today, the use of TDDFT is increasing in all areas where
interactions are important but the direct solution of the Schrödinger equation is too
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demanding. Indeed, we have witnessed exponential growth of the number of
articles published in this field, not unlike what occurred in ground-state density
functional theory twenty years ago. High-level scientific meetings focusing on
TDDFT have materialized; notably, aside from the Benasque School and Work-
shop, the Gordon Research Conferences in TDDFT, focused sessions and pre-
meeting tutorials on TDDFT at the American Physical Society and American
Chemical Society meetings, and CECAM workshops.

Despite tremendous effort focused over the years, a first-principles theoretical
and practical description of the interaction of molecules with time-dependent
electromagnetic fields is still a challenging problem. In fact, we are still lacking a
definitive and systematic methodology, capable of bridging the different spatial
and time scales that are relevant for the description of light-induced processes in
nanostructures, biomolecules and extended systems with predictive power. Due to
its unparalleled balance between the computational load that it requires and the
accuracy that it provides, TDDFT has repeatedly shown its usefulness in the last
decade when attempting this challenge. TDDFT is now a tool of choice to get quite
accurate and reliable predictions for excited-state properties in solid state physics,
chemistry and biophysics, both in the linear and non-linear regimes. It is routinely
used for the description of photo-absorption cross section of molecules and
nanostructures, electron-ion dynamics in the excited state triggered by either weak
or intense laser fields, van der Waals interactions, applications to biological sys-
tems (chromophores), transport phenomena, optical spectra of solids and low-
dimensional structures (such as nanotubes, polymers, surfaces, et cetera).

At the same time, however, there are important cases for which the functional
approximations in use today perform poorly. One of the major on-going challenges
is in the development of approximations of improved accuracy especially for
phenomena important in applications of urgent interest today, such as charge-
transfer processes and photo-dynamics in solar cell devices. To develop accurate
and reliable approximations, a solid understanding and appreciation of the fun-
damental theory, as well as recent developments in theory and applications, is
required. We hope this book will be useful in this regard.

In this book we focus largely on the fundamentals of the theory, but also in
setting direct links with the different experimental observables and tools.
We introduce all the basic concepts and build up in complexity all the way to the
open problems we are facing nowadays. This book is divided into six parts. Part I
presents an overview of the experimental spectroscopic techniques in use today
and puts in context the need for a theoretical framework capable of describing the
non-equilibrium dynamics of complex systems at different time and length scales.
Part II addresses all the basic theory and fundamentals of TDDFT. More advanced
concepts related to the construction of exchange-correlation functionals including
dispersion forces and open quantum systems are addressed in part III. The next
part addresses the realm of real-time TDDFT, namely the simulation in real-time
of the combined electron-ion dynamics of real systems, from non-equilibrium
excited state dynamics to molecular transport. Numerical details of the imple-
mentation of the theory discussed in the earlier sections are addressed in detail in
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part V, including new developments for massive parallel architectures and graphic
processing units (GPUs). Part VI places TDDFT in comparison with other related
theoretical frameworks developed over the years to address similar phenomena.

The Editors
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General

r A point in 3-D space, (r1, r2, r3)
t An instant in time
x Frequency (Fourier transform of time)
x Combined space and time coordinates (r, t)
f(r) f is a function of the variable r
f[n] f is a functional of the function n

DFT

E Ground-state total energy
Exc Ground-state exchange-correlation energy functional
exc Exchange-correlation energy per electron
n(r) Ground-state electronic density
q(r, r0) Ground-state electronic density matrix
ui(r) Ground-state Kohn-Sham wave-function
ei Ground-state Kohn-Sham eigenvalue
ni Occupation number of state i
A Quantum-mechanical action
n(r, t) TD electronic density
j(r,t) TD electronic current
v(r,t) TD electronic velocity
vKS(r, t) TD Kohn-Sham potential
vext(r, t) TD external potential
vH(r, t) TD Hartree potential
vxc(r, t) TD exchange-correlation potential
ui(r, t) TD Kohn-Sham single-particle wave-function
W(r1, r2, . . . , rN, t) Interacting many-body wave-function
U(r1, r2, . . . , rN, t) Kohn-Sham many-body Slater determinant
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l Chemical potential
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Part I
Theory and Experiment:

Why We Need TDDFT



Chapter 1
Short-Pulse Physics

Franck Lépine

1.1 Introduction

The last century has seen the development of coherent light sources that have
pushed our capability to probe properties of matter to a high level of sophistication.
Femtosecond (fs) laser technology has paved the way to what is known as
ultrafast science and led, in particular, to the mature field of femtochemistry (Hertel
and Radloff 2006). Concurrently, short pulses allowed to reach unprecedented
photo-excitation conditions in which the coherent absorption of a large number of
photons occurs, producing highly nonlinear phenomena. With the beginning of the
twenty-first century, this race has certainly not stopped and tremendous improve-
ments on light sources have allowed crossing the sub-femtosecond barrier. Nowa-
days, attosecond (as) pulses are routinely produced in several laboratories over the
world using table-top laser systems (Krausz and Ivanov 2009). The attosecond regime
is about to be reached by large infrastructures, the free electron lasers, that are dedi-
cated to the X-ray wavelength range with very high photon flux. From the funda-
mental research point of view, the motivations behind the developments of light
sources are obvious:

• Increase of the light intensity in order to have access to non-linear mechanisms at
any wavelength.

• Decrease of the laser pulse duration in order to investigate faster and faster
dynamics.

• Improved tunability to access wider range of states in photoexcitation (valence,
core excitation, etc.).
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It is fascinating that the current light sources have already reached a very broad
range of accessible wavelength, pulse duration and photon flux. In this short introduc-
tion we wish to emphasize recent experimental results that show the new possibilities
offered by these light sources. We will mainly focus our discussion on the physics
of gas phase isolated species. However, some of the experiments described in this
chapter have, or will have, equivalence in liquid or solid-state physics. With these
new experiments often come new challenges that experimentalists can propose to the
expertise of theoreticians, and TDDFT is certainly a promising tool to answer some
of these questions.

1.2 Spectroscopic Tools

In order to investigate the properties of matter with light pulses, experimentalists
have developed numerous spectroscopic tools that give access to meaningful observ-
ables. Historically the first spectroscopy techniques were absorption and emission
spectroscopy, which consist in the measurement of the yield of photon loss or emis-
sion, respectively. Nowadays, this technique remains useful, for instance, to study
nanoparticles. The optical response is of fundamental interest as it characterizes the
oscillator strength of optical dipolar (or multipolar) transitions. It has also found
applications in attosecond experiments for studying transient dynamics.

In contrast with “passive” spectroscopies in which the system remains intact
after the photoexcitation, experiments using short pulses make use of “active”
spectroscopy techniques where the system is ionized or fragmented and the emitted
particles are analyzed. This strategy is naturally relevant in the case of the interaction
with a short, intense pulse or with short wavelength light that usually induces ioniza-
tion and/or fragmentation mechanisms. As an example, photoelectron and photoion
spectroscopy are widely used in such experiments.

Due to its simple design, one of the most popular spectrometers is known as
velocity map imaging spectrometer, VMIS (Eppink and Parker 1997) (see Fig. 1.1).
In a VMIS experiment, the 3D momentum distribution of emitted charged parti-
cles is reconstructed from its 2D projection onto a position sensitive detector.
In a typical VMIS image, the radius is proportional to the velocity of the particle
while the angle represents the emission direction with respect to the laser polarization.
A color scale represents the number of particles collected. The angular integration
of the distribution corresponds to the kinetic energy spectrum of the emitted parti-
cles as it is measured in more traditional approaches (magnetic bottle, time-of-flight
spectrometer). More sophisticated techniques using coincidence or co-variance aim
at revealing the correlations between the particles and allow us to disentangle several
paths from a complex reaction (see for instance the COLTRIMS experiments (Dorner
et al. 2000)). At the same time, recent investigations have drawn a path to new spec-
troscopic tools in which, unlike traditional spectroscopy, a direct access to the shape
of molecular orbitals is possible. Finally, there has been a growing interest in control
strategies that permit the manipulation of molecular rotational and vibrational degrees
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Fig. 1.1 Schematic of a
velocity map imaging
spectrometer. The velocity
distribution of the particles is
measured on a position
sensitive detector. The radius
of the image is proportional
to the velocity vector of the
particles (Remetter et al.
2006)

of freedom. A very useful approach known as field free molecular alignment (Rouzée
et al. 2009) is based on the creation of a rotational wavepacket with a non-resonant
short laser pulse via stimulated Raman transitions. The wavepacket periodically
re-phases after the photoexcitation. These revivals correspond to a situation where a
macroscopic number of molecules are aligned with respect to the laboratory frame,
at a well-defined delay after the initial excitation pulse, determined by the rotational
constant of the molecule. This offers the opportunity to perform “molecular frame”
measurements, which brings detailed information on the physics of the molecule and
renders the analysis of the results considerably simpler.

1.3 Physics with Intense Short Laser Pulses

When the light intensity becomes high enough, many photons can be coherently
absorbed by the system up to the point where the electromagnetic force induced
by the light is comparable to the force that maintains electrons and nuclei together.
In general, atomic or molecular potentials can be described as “dressed” by the
electric field of the light. This has a crucial impact on the ionization and fragmentation
dynamics of the species (Posthumus 2004). In the following, we will mention several
important electronic mechanisms that are of primary importance in intense light
pulse physics. These mechanisms carry information on the electron dynamics as
well as on static properties of molecules. In general, when an electron is ionized
from an atom or a molecule, it remains driven by the strong light electric field.
During this interaction, the removed electron is accelerated by the time-dependent
electric field of incident light, leading to a variety of possible phenomena including
inelastic scattering, elastic scattering or recombination. If the electron eventually
reaches the continuum, a commonly occurring process is above threshold ionization
(ATI) whereas its recombination leads to photon emission. The conversion of the
fundamental light (typically in the near IR domain) that interacts with the atom to
high energy photons is known as high harmonic generation (HHG).
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Fig. 1.2 Typical ATI (a) and HHG (b) spectra showing the cut-off and plateau regions

1.3.1 Above Threshold Ionization

In the photon picture, the ATI (Agostini et al. 1979) corresponds to a situation where
an atomic system absorbs more photons than what is energetically needed to reach
the ionization threshold. A signature of the ATI process is the electron kinetic energy
spectrum (see Fig. 1.2), which exhibits individual peaks separated by the energy of
one photon. In a quantum mechanical picture, the ionization by an oscillating elec-
tric field leads to a situation where electronic wavepackets are periodically emitted.
There exists a number of possible electron paths that lead to a given final electron
momentum. Therefore, the time periodicity of the ionization mechanism leads to
interferences in momentum space and ATI is the result of this interference. This was
beautifully illustrated in a few cycle light experiments in which either one or two
light cycles allowed the ionization of an atom (Lindner et al. 2005). ATI patterns were
observed in the energy spectrum when two interfering wavepackets were produced
by the two light cycles. Traditionally, the ATI mechanism is characterized by the
Keldysh parameter γ that measures the ratio between tunneling timescale and the
timescale of the Coulomb barrier oscillations in the light electric field. A common
interpretation makes a distinction between a situation where γ > 1, which corre-
sponds to a multiphoton ionization, and a situation where γ < 1, that corresponds
to a quasi-static tunneling ionization. However, this transition is not strict and a
deeper interpretation was given by Ivanov et al. (2005) in terms of a non-adiabatic
mechanism leading to ionization.

After ejection, the electron still interacts with the field and is accelerated.
This acceleration induces a ponderomotive energy (UP). During the acceleration,
the electron can re-scatter on the atomic potential and gain additional energy. In the
electron kinetic energy spectrum this process appears at energies above the 2 × UP
cut-off and below 10 × UP. In molecules, variations of the total yield of scattered
electrons due to the molecular potential were observed (Cornagia 2008, 2009, 2010).
In general, it has been shown that such high energy electrons carry information on
the molecular structure, but the “know-how” to extract detailed information remains
in its infancy.
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Fig. 1.3 Electron velocity distribution measured for Xe atoms interacting with a strong far IR
laser pulse. The photoelectron angular distribution shows “spider-like” patterns that correspond to
holographic effects (Huismans et al. 2010)

There exist other manifestations of the wavepacket interferences in strong field
ionization. Whereas ATI is related to the one cycle periodicity of the laser field,
holographic patterns involving half cycle dynamics have been observed in the
photoelectron angular distribution (see Fig. 1.3). In a recent experiment at the far
infrared intracavity free electron laser (FELICE) (Huismans et al. 2010), the elec-
tron momentum distribution of ionized Xe atoms was recorded. At high light inten-
sity, complex electron angular distribution patterns appeared. This is understood as a
holographic pattern that is created within a single half cycle of the light: the electron
wavepacket is split into two parts, a first one that corresponds to direct ionization,
meaning that the electron directly reaches the continuum, while the other part of the
wavepacket is accelerated and scatters on the atomic potential. The two parts of the
wavepacket eventually interfere leading to oscillations in the photoelectron angular
distribution. In addition, scattering of the electron on the atomic potential creates
off-centered rings that appear as a direct manifestation of the electron dynamics.
The holographic pattern contains an “image” of the atomic potential and future theo-
retical work should teach us how to extract this image and how to extend this approach
to molecular systems.

1.3.2 High Harmonic Generation

While in the ATI process the electron reaches the continuum, it may also recombine
with the ionic core and emit high energy photons (see Fig. 1.2). The ionization, accel-
eration and recombination sequence is known as the 3-step model (Corkum 1993)
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and is our current framework to intuitively describe HHG. HHG is the key process
that allowed the development of sources of short XUV pulses and the design of
attosecond pulses (AP). XUV photons are typically obtained by the highly nonlinear
interaction between a standard 800 nm fs laser pulse and a gas jet. The timescale at
which the harmonic generation (i.e., recombination) occurs, lies in the attosecond
domain. Therefore the control of the HHG process leads to the synthesis of XUV
attosecond pulses and we will discuss later how these pulses are used in experiments.

On the way to control the production of APT, it was realized that XUV light emitted
in HHG contains information on the sample used for the generation. Nowadays,
there is a very active field of research in which information on molecular systems is
extracted from HHG. One of the most fascinating aspect is the so-called molecular
tomography (Itatani et al. 2004) experiment where the light properties allow for the
reconstruction of molecular orbitals. The method is based on the careful analysis of
the transition dipole moment of the recombination. HHG is performed with an intense
IR fs pulse interacting with an aligned molecular sample. The harmonic spectrum is
measured for different orientations of the molecule with respect to the polarization
of the IR fs pulse from which a 3D reconstruction of molecular orbitals is obtained.
Interestingly, in HHG the recombination mechanism can be considered as the reverse
photoionization mechanism that is described by the same transition matrix element.
However, there is a major difference since the electron + core remain coherent during
the whole recombination process. As a consequence, while the photoionization from
different orbitals would lead to an incoherent superposition of all the contributions,
in HHG these contributions interfere (Wörner et al. 2010).

The development of the strong field tomography technique meets major challenges
when increasingly complex molecules are investigated: the structure of the continuum
(Higuet et al. 2011), multielectron dynamics (Shiner et al. 2011), nuclear motion
and complex polyatomic molecular structures (Trallero-Herrero et al. 2009) show
direct signatures in the harmonic spectrum. Therefore, there is a need for theoretical
investigations that would reveal how the properties of the harmonics evolve in these
cases and whether tomographic reconstruction remains feasible.

1.4 Femtosecond Science

Time-resolved experiments using short laser pulses refer to experimental protocols
in which a first laser pulse prepares a non-stationary state and therefore initiates a
temporal evolution of a nuclear and/or electronic wavepacket. In order to map the
time-dependent mechanism of interest, the wavepacket is probed at several time
delays by a second laser pulse. This scheme has been widely used since the devel-
opment of ps/fs laser pulses. Nuclear dynamics in molecules have been extensively
investigated leading to the broad field of femtochemistry that has shed light on tran-
sition states, isomerisation, etc.

Abundant literature can be found on time-resolved electron spectrometry (Stolow
2003). A current trend concentrates on the use of short VUV (or XUV) light pulses
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and very promising results have been obtained using HHG sources or free electron
lasers. In contrast with multiphoton excitation induced by short intense pulses,
a single photon excitation permits to perform controlled experiments where well iden-
tified states are excited and probed. An example of this trend is given by Krikunova
et al. (2011) who investigated Auger decay in molecular iodine through fragmenta-
tion. Recent experiments in time-resolved photoelectron spectroscopy have shown
the possibility to directly observe changes in the molecular orbitals during dissocia-
tion (Wernet et al. 2009). In these experiments a first pulse, referred to as the pump,
initiates the dissociation of the molecule while a second pulse ionizes the molecule.
The kinetic energy spectrum of the removed electrons is measured. When the mole-
cule is bound, the electron spectrum characterizes the molecular orbitals. When the
atoms of the molecule part, the electron spectrum shows additional peaks character-
istic of the atomic orbitals. The time-dependent process shows the evolution from
molecular to atomic orbitals and therefore the breaking of the chemical bond.

In a recent paper, the Br2 molecule was studied, and single photon excitation at
395 nm (60 fs) was used to initiate the dissociation of the molecule (via the 1Πu

state). The dissociation was probed by a VUV pulse (23.5 eV, 120 fs) that ionizes the
molecule, and the electron kinetic energy spectrum was measured with a standard
magnetic bottle. A few 100 fs after the pump pulse, additional lines corresponding to
the 3p2, 1d2, 1s0 atomic states arise in the kinetic energy spectrum. This experiment
allows for a direct observation of chemical bond rearrangements via the time evolu-
tion of valence states. Even in this simple example, the theoretical description did not
offer a fully accurate description of the results. When more complex photophysical
reactions are explored in polyatomic molecules, the theoretical description will have
to deal with multidimensional energy surfaces, autoionizing states, etc.

1.5 Attosecond Science

While pump-probe experiments on the fs/ps timescale are widely used in the atomic
and molecular physics community, extension to the attosecond timescale is still
emerging (Scrinzi et al. 2006). So far, there is no equivalent experiment where an
attosecond pump is followed by an attosecond probe. However, with rapid instru-
mentation developments such experiment will be soon available. Until now, in all
attosecond physics experiments that use actual AP, the experimental protocol is based
on the utilization of an IR fs pulse that is synchronized with an attosecond pulse (or
a sequence of AP:APT). The key idea relies on the synchronization of the pulses
that is stable on the attosecond timescale, meaning that the time variation of the
fs light electric field is fixed with respect to the attosecond pulse. Two kinds of
experiments can be distinguished. The first one relies on the creation of a sequence
of AP that is intrinsically created via HHG from a multicycle fs pulse. Each attosecond
pulse occurs at the same periodic optimum of the IR laser field. It is experimentally
possible to change the phase between the APT and the IR field. In a second design,
a slightly more complex set-up makes possible to generate a single attosecond pulse
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Fig. 1.4 Electric field of a few cycle pulse for two different CEP (solid and dashed curve). The
pulse is synchronized with a single attosecond pulse (thin curve)

(SAE). It requires the use of a carrier envelope phase (CEP) stabilized pulse and the
so-called polarization gating technique that allows isolating a single recombination
event during the interaction with the IR pulse. Here again the attosecond pulse is
synchronized on the attosecond timescale with a short few-cycle pulse (typically a
7 fs pulse) (see Fig. 1.4). Therefore the time-resolution results from the well-defined
phase between the IR electric field and the attosecond pulse.

1.5.1 Electron Spectroscopy: RABBIT and Streaking

Several experimental protocols using the phase locked pulses described above have
been developed in order to access attosecond dynamics. Very fruitful approaches are
based on the measurement of the electron kinetic energy spectrum. In the following,
we will discuss the so-called streaking and RABBIT approaches that were initially
used for the characterization of the pulses themselves. In such experiments the
attosecond photoionization occurs at a certain phase of the IR field. The key idea of
a streaking measurement relies on the fact that the measured electron kinetic energy
depends on the instant of the creation of the electronic wavepacket in the IR field.
The streaking technique (Drescher et al. 2001) measures the acceleration of the elec-
tron by the electric field of the light. By changing the delay between the attosecond
pulse and the short fs IR pulse, the electron acquires different possible energies.
Therefore we observe variations of the maximum electron kinetic energy that maps
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Fig. 1.5 RABBIT scheme.
Electron energy peaks for
single XUV photon
absorption (long arrow) are
shown. Additional sidebands
appear (short arrow) when a
“dressing” IR field is added

the vector potential of the IR pulse. This can be used to characterize the laser pulse and
more recently to study relaxation of core electrons in atoms, molecules and surfaces.
In these experiments the streaking is used as a probe of the time dependent processes
induced by the attosecond XUV pump pulse.

Streaking experiments are possible with an APT as well and can serve for elec-
tron wavepacket reconstruction (Remetter et al. 2006). However, it is important to
point out that APT offers the possibility to obtain both high temporal and spec-
tral resolution, which is not directly attainable with the broad bandwidth SAE.
An APT consists of frequency combs formed by a combination of even harmonics of
the fundamental light. This is crucial for the RABBIT (reconstruction of attosecond
beating by interference of two-photon transitions) mechanism (Paul et al. 2001).
When an APT ionizes a sample, a series of peaks in the kinetic energy spectrum of
the electrons is measured. By adding an IR field, we observe additional peaks in the
spectrum (sidebands) at the energy of 1 XUV photon + 1 IR photon (see Fig. 1.5).
In fact, the oscillator strength leading to this signal is a coherent superposition of
several quantum paths where a single XUV photon is absorbed and several IR photons
are either absorbed or emitted. One has shown that the intensity of the sidebands
depends on the phase difference between the harmonics plus an additional phase
intrinsic of the ionized sample. By changing the delay between the APT and the IR
field, it is possible to recover these phases and reconstruct the train of pulses.

Phase measurements using attosecond electron spectroscopy has also led to a new
application for the determination of the time delay in photoelectron emission process
(Schultze et al. 2010). In a recent experiment, a delay of 20 as in the photoemission
from the 2s orbitals of Ne atoms was measured with respect to the emission from 2p
state. A careful study of the relation between emission time and phase has shown the
importance of the IR field, which induces an additional time delay in the measure-
ment (Klünder et al. 2011). In general, the direct measurement of the time that an
electron takes to reach ionization continuum is certainly a very powerful observ-
able to study electron correlation in atoms, molecules (Caillat et al. 2011), surfaces.
Again, thorough theoretical investigations are compulsory.
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1.5.2 Attosecond Transient Absorption

Contrary to attosecond electron spectroscopy, in attosecond transient absorption
spectroscopy, the attosecond pulse is used as a probe of the strong field mecha-
nisms that are induced by a strong IR fs pulse. During the interaction between an
atom or a molecule and a strong field, a coherent superposition of states is created.
The corresponding dynamics is probed on the attosecond timescale. Theses states
can be described in terms of the density matrix. In (Goulielmakis et al. 2010) the
authors measured density matrix elements corresponding to the krypton ionic states
produced in a strong field interaction. The population and the coherence of these
states is therefore determined, giving access to the full quantum mechanical elec-
tronic motion in Kr atoms. This approach will be pushed to investigate coherence
and electronic motion in molecular systems.

1.5.3 Ion Spectroscopy: Electron Localization
on the Attosecond Timescale

A pioneering experiment using an attosecond pump-probe arrangement was performed
on H2 and D2 molecules (Sansone et al. 2010), addressing a dissociative ionization
process. In this experiment a SAE was used to ionize a neutral diatomic molecule.
The attosecond wavepacket created during this process evolved on the dissociative
molecular energy surface. In a usual dissociation process the remaining charge has
an equal probability to localize on either nucleus. In this experiment a second CEP
controlled pulse is used to modify the molecular potential energy surfaces: the IR
pulse creates a time-dependent superposition of bound and dissociative states that
classically corresponds to an oscillatory motion of the electron from one nucleus
to the other. During the dissociation, the nuclei part up to the situation where the
remaining electron finally localizes on one of the two nuclei. The final localization
of the charge is controlled by the delay between the two pulses. The localization of
the particle is measured through the asymmetry with respect to the laser polarization
of the asymptotic velocity distribution of the final ion product (see Fig. 1.6). In addi-
tion, the attosecond photoexcitation can also lead to doubly excited states that relax
to dissociative states via autoionization. Therefore, this experiment addresses several
crucial fundamental questions: what is the typical timescale and how do multielec-
tronic states relax? How does non Born–Oppenheimer dynamics occur in molecules?
How does the interplay between nuclear and electronic degrees of freedom determine
the photophysical process? Importantly, it also shows that attosecond pulses can be
used to modify the final output of a photo-induced reaction by acting directly on the
electronic degrees of freedom. In this experiment, it is the charge localization that is
controlled after a single or multiple electron excitation.
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Fig. 1.6 Asymmetry of the D+ ion signal (from −0.3 to +0.3) created in the attosecond pump-
probe experiment. This asymmetry is monitored for all ion kinetic energies versus the delay between
the pulses (Sansone et al. 2010)

1.5.4 Control of Dissociative Ionization

Another important experiment was performed on the dissociative ionization of
diatomic molecules using a combination of attosecond pulse train and IR fs pulse
(Kelkensberg et al. 2011). In this experiment, it was possible to control the dissocia-
tive states of the molecule using mildly strong IR light. Modulation of the fragment
yield as well as the angular distribution of the ions where monitored for various ionic
states as a function of the delay between the APT and the IR fs pulse. The interpre-
tation of this result relies on a RABBIT-like excitation scheme in which electronic
states are coherently coupled by XUV + IR photons. Obviously, future experiments
will deal with more complex molecular systems. The excitation with a broad laser
pulse of a large system with a high density of electronic states will probably make the
task more challenging. However, it has been shown that such a control can already be
attained for simple (H2) or more complex multielectronic systems (O2). In this type
of experiments, future investigations will deal with the dynamics of electro-nuclear
wavepackets evolving on many dissociative channels.

1.6 Conclusions

The use of short light pulses to investigate the properties of matter is driving an intense
research activity. We have presented several examples of the work that is currently
performed in laboratories. Short pulses can be used to concentrate a large number of
photons, which induces non-linear mechanisms during the interaction with matter.
Our ability to control and shape these pulses makes it possible to investigate atoms,
molecules or solid state materials in extreme conditions. Current efforts are oriented
towards direct measurements of orbitals or molecular structure, and strong laser fields
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appear as very suitable tools for these investigations. Short pulses are also crucial for
time-resolved experiments, the use of short wavelengths offering new opportunities
in that respect. Probably one of the most fascinating developments concerns AP
that have pushed our understanding of photoinduced mechanisms to a very high
level of accuracy. It is expected that these tools will be further developed to study
complex systems. The most recent results obtained on molecules are also benchmark
cases where thorough theoretical descriptions are needed. The TDDFT formalism
has certainly an essential role to play in the development of this new area.



Chapter 2
Spectroscopy in the Frequency Domain

Simo Huotari

2.1 Introduction

In the same way as we can not visit a distant extrasolar planet to study its properties,
the atomic world lies beyond our direct reach. The human being is only capable of
handling objects of a certain size—both the very large and the very small are outside
of our immediate reach. In these cases we can only get information by sending
probes and receiving messengers. Since the atomic world is composed of elementary
particles, the natural probes and messengers are precisely elementary particles—
such as photons, electrons, neutrons and atoms. In this context, by a “spectrum”
we refer to an object’s response to a probe as a function of probe or messenger
energy (or energy loss). The experimental tool for the measurement of spectra is
spectroscopy. It just happens that each one of us is equipped with a pair of eyes that are
excellent visible-light spectrometers with a high energy resolution, extremely good
quantum efficiency, and a large dynamic range. To achieve similar characteristics
with man-made instruments turns out to be challenging. However, there are several
reasons to attempt this task, from the need for extending the energy range outside
the narrow region of visible light, to the convenience of using other particles besides
photons. This chapter describes a few experimental spectroscopic tools that may be
encountered by the user of TDDFT.

Spectroscopy is not just a tool to study the structure of atomic levels. It aims at
answering the question why a given sample behaves as it does, e.g., why it has a
certain color, or what is the driving mechanism behind possible phase transitions.
Unfortunately there is no universal spectroscopy for everything. Each probing tech-
nique has its own domain of application and its own unique characteristics, such as
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sensitivity either to the bulk or the surface, element specificity, and resolving power
in energy, momentum, time and space.

2.2 Probe–Electron Interaction

In a spectroscopy experiment one sends a probe, which then interacts with the system.
Mathematically this can be described by adding to the Hamiltonian the interaction
term Ĥint. This causes a transition from the initial state |i〉 to a final state |f〉, possibly
via intermediate states |n〉,where the states represent the total wave functions which
include the electron states (Ψi, Ψn and Ψf ,) and those of the probe. The transition
probability w is given by Fermi’s golden rule which, up to second order, reads

w = 2π

∣
∣
∣
∣
∣
〈Ψf |Ĥint|Ψi〉 +

∑

n

〈Ψf |Ĥint|Ψn〉〈Ψn|Ĥint|Ψi〉
Ei − En

∣
∣
∣
∣
∣

2

δ(Ef − Ei − ω). (2.1)

This is the starting point for practically all spectroscopies. The differences between
the various experimental techniques arise from the chosen Ĥint and the set of possible
Ψi and Ψf . For many applications, it is desirable that the probe wave function can be
separated from the one of the target system and that the interaction Ĥint is weak, so
that we are in the range of validity of the Born approximation.

Scattering experiments are usually alternatively quantified by a double differential
cross section (DDCS), which gives the probability of scattering of a particle with an
initial energy E1 into the solid angle element [Ω,Ω + dΩ] and into the range of
energies [E2, E2 + dE2].

2.2.1 Photon Probe

Imagine that a photon with energy ω1, wave vector k1, and a polarization state
ε1, described by the vector potential operator A, interacts with an electron with a
momentum operator k and an energy Ei. In the absence of an external electromagnetic
field, and in the non-relativistic case, the interaction is described by the Hamiltonian
(Blume 1985)

Ĥint = Ĥ (1)
int + Ĥ (2)

int + Ĥ (3)
int + Ĥ (4)

int (2.2)

with the following terms:

Ĥ (1)
int =

e2

2mc2 A2 (2.3a)

Ĥ (2)
int = −

e

mc
A · k (2.3b)
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Ĥ (3)
int = −

e

mc
σ · [∇ × A] (2.3c)

Ĥ (4)
int = −

e

2m2c2

e2

c2 σ .
[

Ȧ× A
]

, (2.3d)

where e and m are respectively the modulus of the charge and the mass of the electron,
c is the velocity of light in vacuum, and σ is the vector of Pauli matrices. The vector
potential A is linear in the creation and annihilation operators. This means that within
first order perturbation theory, Ĥ (1)

int and Ĥ (4)
int result in scattering (two photons are

involved; one in- and one out-going). On the other hand, Ĥ (2)
int and Ĥ (3)

int describe

absorption and emission (photon number changes by one). Ĥ (2)
int and Ĥ (3)

int gives

also rise to scattering in second order with a resonance denominator. Ĥ (3)
int and Ĥ (4)

int
involve the spin of the electron and thus give rise to, e.g., magnetic dichroism. For
most of the purposes of the discussion below these two terms will be neglected unless
otherwise stated.

Inelastic scattering of a photon (or any other elementary particle) with any
energy can be used to study excitations much lower in energy than the probing
particle’s initial energy. In the inelastic scattering process, the probe gives away an
amount of energy ω = ω1 − ω2 (using here the photon formalism) and momentum
q = k1 − k2 to the sample; k2 and ω2 are the wave vector and the energy of the
photon after the scattering process, respectively. Note that while the maximum energy
transfer is ω1, the maximum momentum transfer magnitude qmax = 2k1. Most
commonly these inelastic scattering spectroscopies are performed with electrons
(García de Abajo 2010), visible light (Raman scattering) (Devereaux and Hackl
2007), X-rays (Schülke 2007), and neutrons (Hippert et al. 2006).

The DDCS for photon scattering from terms Ĥ (1)
int and Ĥ (2)

int , in first and second
order, is

d2σ

dΩdω2
= r2

0

(
ω2

ω1

)
∣
∣
∣
∣
∣
〈Ψf |eiq·r |Ψi〉(ε1 · ε2)+ 1

m

∑

n

×
[

〈Ψf |ε2 · ke−ik2·r |Ψn〉〈Ψn|ε1 · keik1·r |Ψi〉
Ei − En + ω1 + iΓn

+ 〈Ψf |ε1 · keik1·r |Ψn〉〈Ψn|ε2 · ke−ik2·r |Ψi〉
Ei − En − ω2

]∣
∣
∣
∣
∣

2

δ(Ei − Ef + ω).
(2.4)

This is known as the Kramers–Heisenberg formula. The second term inside the
brackets depends strongly on ω1, and it only contributes significantly in the reso-
nance condition ω1 ≈ En − Ei. Indeed, it gives rise to resonant inelastic scattering.
The first term describes non-resonant inelastic scattering. It is often encountered in
the form

d2σ

dΩdω2
= r2

0

(
ω2

ω1

)

(ε1 · ε2)
2S(q, ω) (2.5a)
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S(q, ω) = − q2

4π2e2 Im
[

ε−1(q, ω)
]

, (2.5b)

defining the dynamic structure factor S(q, ω)which is in turn related to the imaginary
part of the inverse of the dielectric function ε(q, ω).

2.2.2 Electron–Electron Scattering

When an electron scatters from another electron, it is crucial that the probe can be
distinguished from the target. Thus, high-energy electrons are used as probes, with
wave functions that are nearly plane waves both before (eik1·r ) and after (eik2·r )
the scattering event. The scattering is mediated by the Coulomb interaction vee =
e2/|r − r i |, where r and r i are the positions of the probe and target electrons,
respectively. The transition probability is (Platzman and Wolff 1973) (still denoting
the energy transfer by ω)

w = 2π

(
4πe2

q2

)2 ∣
∣
∣〈Ψf |eiq·r |Ψi〉

∣
∣
∣

2
δ(Ei − Ef + ω) (2.6)

and in DDCS form

d2σ

dΩdω
= − 1

(πeq)2
Im

[

ε−1(q, ω)
]

. (2.7)

Note the similarity between (2.5a, b) and (2.7). The main difference between electron
and non-resonant photon scattering is in the kinematic prefactor, which for electrons
is relatively large and scales as q−2, whereas for photons it is smaller and scales as
q2.

2.2.3 Finite Momentum Transfers

In the case of X-ray and electron scattering, an important insight concerning the
transition operator encountered above is given by its expansion in a Taylor series,

eiq·r = 1+ iq · r + 1

2
(iq · r)2 + . . . (2.8)

As the unity operator does not induce transitions, the first important term is the dipole
operator q · r. For optical photons, for instance, it is the only prominent term since
the corresponding photon momentum q is very small and the higher order terms
become negligible. Also the photon absorption operator Ĥ (2)

int , even for X-rays, has
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the form of a dipole operator. Note, however, that electron and X-ray scattering do
not have to respect the dipole and optical limits, and q in (2.8) may be very large. For
useful applications using finite q for valence and non-dipole inner-shell excitations,
(see, e.g., Sternemann et al. 2005; Weissker et al. 2006; Balasubramanian et al. 2007,
2001; Huotari et al. 2010a; Sakko et al. 2010).

2.3 Properties to Study

2.3.1 Response Functions

Often there are several methods to study the same property of a given system, or
quantities measured by different techniques can be otherwise related to each other.
Below we consider certain well understood material-specific properties that can be
probed with more than one complementary technique.

The observable of many spectroscopies can be reduced to the dielectric func-
tion. It describes the response of a dielectric material to an alternating electric field,
as explained in detail in Chap. 3. We encountered this quantity already in (2.5b)
and (2.7),

ε(q, ω) = ε1(q, ω)+ i ε2(q, ω). (2.9)

The real part ε1(q, ω) gives the polarization induced by the field, and the imaginary
part ε2(q, ω) describes absorption. Other optical functions (sometimes heretically
called optical constants) can be deduced from the dielectric function. These include
the complex refractive index ν+ iκ, optical absorption coefficient α, and reflectance
R. They have the relations (dependence on q and ω dropped for simplicity)

ε1 = ν2 − κ2 ε2 = 2νκ α = 4πκω/c (2.10a)

ν =
[(√

ε2
1 + ε2

2 + ε1

)

/2

]1/2

R = (ν − 1)2 + κ2

(ν + 1)2 + κ2 (2.10b)

For instance, the absorption coefficient α is used when considering the transmittance
of a sample, which is described by the Beer–Lambert law,

I1 = I0e−αd , (2.11)

telling us that if the intensity of light is initially I0, it has decreased to a value I1 after
passing through a sample that has a thickness d. Inelastic scattering techniques, in
turn, measure the loss function, which we in fact already quietly introduced in (2.5b)
and (2.7),

L(q, ω) = −Im

[
1

ε(q, ω)

]

= − ε2(q, ω)
[ε1(q, ω)]2 + [ε2(q, ω)]2 . (2.12)

http://dx.doi.org/10.1007/978-3-642-23518-4_3
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The real and imaginary parts of the dielectric function can be retrieved from loss-
function measurements using the Kramers–Kronig relations,

Re
[

ε(q, ω)−1
]

= 1+ 1

π
P

∫
dω′

ω′ − ωIm
[

ε(q, ω)−1
]

(2.13a)

Im
[

ε(q, ω)−1
]

= − 1

π
P

∫
dω′

ω′ − ωRe
[

ε(q, ω)−1 − 1
]

, (2.13b)

where P denotes the Cauchy principal value of the integral. Optical spectroscopies
measure essentially the limit ε(0, ω) because the optical photon momentum is prac-
tically zero. This is not a limitation for electron and X-ray spectroscopies since in
those cases momenta can be very large—recall Sect. 2.2.3.

2.3.2 Typical Excitations

Excitations can be seen in the frequency-dependent linear response, and hence in the
density-density response function as discussed in Chap. 4. A few examples of excita-
tions that will be encountered in the applications of TDDFT are shown schematically
as a loss function spectrum in Fig. 2.1.

• The infrared (IR) range includes vibrational excitations (phonons), and can be
studied via IR absorption or high-resolution inelastic scattering techniques. For
electronic excitations, the typical example in this region is free-carrier (electrons
or holes) absorption. Electrical properties such as conductivity and carrier concen-
tration can be then studied.

• Spin excitations (magnons) (100–500 meV), studied typically by neutrons (Hippert
et al. 2006), due to the coupling of the magnetic moments of the neutron probe
and the target atom, or resonant inelastic X-ray scattering (Ament et al. 2011).

• Valence spectra including excitations across the band gap in semiconductors (up
to a few eV), excited by visible- or ultraviolet (UV) light absorption or Raman
scattering, are routinely studied with TDDFT (Albrecht et al. 1998) and are treated
in detail in this book.

• Collective plasmon modes [a few meV for ISB plasmons in semiconductor nano-
structures (Ullrich and Vignale 2001), or several eV in bulk condensed matter
(Weissker et al. 2006)]. Plasmons can also be seen in photoemission spectra as
satellite peaks due to extrinsic energy losses of measured photoelectrons.

• Inner-shell-electron excitations (�100 eV) (Stöhr 1992).
• Compton recoil scattering, that yields information on the ground-state momentum

density (Cooper et al. 2004).

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Fig. 2.1 a The spectrum of electromagnetic radiation in the regions of vibrational and electronic
excitations. b An excitation of an electron above the Fermi level EF in a photoabsorption process.
c The different excitations that can be revealed by the loss function. d An inelastic scattering
experiment, shown here for photons

2.4 Techniques

2.4.1 Ellipsometry

Ellipsometry (Fujiwara 2007; Tompkins and McGahan 1999) is a powerful tool for
measuring ε(0, ω) in solids, especially for surfaces and thin films. The true power of
ellipsometry is that both real and imaginary parts are obtained simultaneously and
independently, without the need to resort to Kramers–Kronig analysis. The readers
of this book will encounter examples of ellipsometric data in many of the following
chapters, e.g., the optical spectra of silicon of (Lautenschlager et al. 1987). The ellip-
sometric measurement analyzes the change of light polarization when it is reflected
by the sample surface or transmitted through the sample. The photon energies range
from IR to UV.

The name of the technique derives from the fact that the measured light is in
general elliptically polarized, and it is this degree of polarization that is determined
in the experiment. Namely, it measures the ratio of the reflectances of polarization
components perpendicular and parallel to the sample surface, denoted Rs and Rp,

respectively. This ratio is given usually as an amplitude and phase shift, denoted
tan(Ψ ) and Δ respectively, i.e., Rp/Rs = tan(Ψ )eiΔ.

A typical example of an ellipsometry measurement is a three-phase model of
an ambient—thin film—substrate ensemble. In this kind of system, ellipsometry can
measure the thickness and optical properties of the thin film, assuming the substrate’s
optical properties are well known in advance. On the other hand, the same model is
often used to study any substrate that has an oxide over-layer. The dielectric function
is not directly measured by the ellipsometry experiment. Its extraction from the
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measured data requires the use of certain computational models and it is not possible
to give the relation of the dielectric function and the measured quantity of Rp/Rs in
a closed form. Thanks to the advancements in computing power and the consequent
automatization and commercialization of ellipsometry instruments since the 1990s,
the technique has become rather popular.

2.4.2 Photoemission Spectroscopies

Photoemission spectroscopy (PES, or XPS for X-ray photoemission spectroscopy)
has a long and successful history. A good review on the subject is, e.g., Hüfner (2007).
Since Hertz discovered the photoelectric effect in 1887, Einstein was awarded the
Nobel Prize in 1921 for its explanation, and Kai Siegbahn in 1981 for its use as an
analytical tool. A large part of our current understanding of the electronic structure
of materials is due to photoemission spectroscopy. The relatively straightforward
interpretation of the measured results and their direct connection to the electronic
structure has provided a good basis for photoemission to become a standard research
tool.

In a photoemission experiment, a photon with energy ω1 impinges on a sample;
ω1 can belong to the UV range (produced with a discharge lamp) up to X-rays
(produced by a X-ray tube or a synchrotron). The photon gets absorbed (Ĥ (2)

int ) and
removes a photoelectron which can be detected and its kinetic energy EK measured
by an electrostatic analyzer. From the measurement of EK and the knowledge of the
photoelectron direction, the full photoelectron momentum vector k is obtained. The
original binding energy EB of the electron before emission can be obtained from
the photoelectric equation:

EK = ω1 − φ − |EB|, (2.14)

where the work function φ is the energy required for electrons to escape the material
surface, typically of the order of 4–5 eV for metals. Note that in the PES jargon, the
values for EB are usually taken to be positive, and EB = 0 at the Fermi energy Ef .

In a solid-state sample we have to consider both the valence band and core
levels. Due to higher resolving power in k and EB, valence-band studies are usually
done with UV-excitation ultra-violet photoemission spectroscopy (UPS) or very
low-energy X-rays. Core levels require X-ray excitation, because to access a given
EB requires naturally ω1 > EB + φ.

The final state of a photoemission process involves an electron removed completely
from the system, and the sample is left with a positive total charge. The hole left
behind interacts strongly with the rest of the sample, and thus the final state is in
fact quite complex. The description of PES can be first of all simplified by the so-
called sudden approximation, in which one assumes that the final state electron does
not interact anymore with the hole left behind or with the other electrons of the
sample. This makes it possible to factorize the photoelectron wave function from the
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Fig. 2.2 PES experiment. The measured PES as a function of the electron kinetic energy EK
corresponds to the occupied density of states N (EB) of the electron system

wave function of the system of the other N − 1 electrons. Furthermore, one usually
divides the photoemission process into three independent and sequential steps. This
is known as the three-step model (Hüfner 2007): (i) Excitation of the photoelectron
within the sample, i.e., the transition between the ground and an excited Bloch state

within the solid Ψ ki
i and Ψ

k f
f . If the photon momentum is neglected, they both share

the momentum ki = kf = k. This step is quantified by M k
f,i = 〈Ψ k

f |Ĥ (2)
int |Ψ k

i 〉.
(ii) Electron propagation to the surface. (iii) Escape from the surface to the vacuum.
The total PES intensity is then given by the product of probabilities for these indi-
vidual processes. All information on the electronic structure of the ground state is
contained in the step (i). Step (ii) depends on the mean free path of the electron in the
solid. The probability for step (iii) depends on EK and Ψ. The PES can be reduced
to (Hüfner 2007; Damascelli et al. 2003)

PES ∝
∑

f,i

∣
∣
∣M k

f,i

∣
∣
∣

2
A(k, E)δ

(

EK + E N−1
f − E N

i − ω1

)

, (2.15)

where A(k, E) = ∑

m |〈Ψ N−1
m |ĉk|Ψ N

i 〉|2 and ĉk is the destruction operator of an
electron of momentum k. The function A is called the spectral function and describes
the PES spectrum, since usually one considers the matrix elements M k

f,i to be constant
throughout the PES measurement. In the non-interacting-particle picture A(k, E)
reflects the occupied density of electron states by being a series of peaks located at
the single-particle orbitals with energies EB, schematically shown in Fig. 2.2. The
calculation of photoemission spectra is discussed more in detail in Chap. 3.

Angle-resolved PES (ARPES) (Damascelli et al. 2003) could as well be called
band-resolved PES. With a small kinetic energy of photoexcited valence electrons it
is possible to achieve a very high resolution in both their binding energy and initial
momentum, thus mapping effectively the occupied band structure E(k). ARPES is
a very powerful and a direct tool for studying the electronic structure of the surface

http://dx.doi.org/10.1007/978-3-642-23518-4_3
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of solids. Since the photon momentum can be neglected in the UV-range typically
used in ARPES, the electron momentum is conserved for the in-plane component
k|| = √2m EK sin θ.

Hard-X-ray PES (HAXPES) (Horiba et al. 2004; Panaccione et al. 2006) differs
from traditional UPS and XPS by using hard X-rays (ω1 � 5 keV). PES is usually
highly surface-sensitive and as such a great tool for studying the electronic structure of
the surfaces of solids. For gaining access to information on the bulk electronic states,
one can utilize the fact that the electron mean free path increases with increasing
kinetic energy when working in the X-ray region. Probing depth can be increased
to 15–20 nm with ω1 ≈ 6 keV, compared to 0.5–1 nm in UPS. The disadvantage is a
lower cross section and the requirement of a synchrotron laboratory as a light source.

Inverse photoemission (IPES) probes instead the unoccupied states. If an electron
with an initial kinetic energy EK impinges on the sample and fills an unoccupied
state with an energy Eunocc, a photon with an energy EK − Eunocc may be emitted
and detected. From the measurement of the IPES intensity as a function of the
photon energy, the density of unoccupied states can be deduced. The technique can
also be called Bremsstrahlung isochromate spectroscopy (BIS) especially if photons
are detected with a fixed energy EK − Eunocc and the energy of incident electrons
EK is varied. A typical example of a combination of PES and BIS is that of the
determination of the band gap of NiO (Sawatzky and Allen 1984).

2.4.3 Photon Absorption

Absorption spectroscopy measures how well a sample absorbs or transmits elec-
tromagnetic radiation at a given range of photon frequencies. Photoabsorption is a
result of the same Ĥ (2)

int as photoemission, but now the electron is not removed from
the sample. It is merely lifted to an unoccupied state above the Fermi level. The
electron stays within the vicinity of the created ion and feels the presence of the core
hole; the electron-hole interaction has thus to be explicitly included in any theoretical
description. When a sample absorbs a photon with energy ω1, an excitation with that
particular energy is created—the relevant energy ranges are depicted in Fig. 2.1a.
For experimentalists, the hugely different energy ranges mean different practicalities
and the measurement techniques vary greatly.

Circular dichroism (CD) (Berova et al. 1994) is an effect where the absorption
coefficient is different for left (−) and right (+) circularly polarized light. This is
typically observed in the optical response of chiral molecules, where the response to
the different circular polarization depends on the handedness of the molecule. In the
X-ray regime, an effect with a similar name (magnetic CD) is due to the interaction
Hamiltonian Ĥ (3)

int . It is used to probe the difference in the unoccupied electron states
bearing different spin, giving access to the orbital magnetic moment (Thole et al.
1992; Lovesey and Collins 1996). A CD measurement is very similar to a regular
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absorption measurement, and only differs in one way: the incident photon beam is
circularly polarized, and the transmitted intensity is measured for two different polar-
izations. The CD signal is then the relative difference of the transmitted intensities
for the two polarizations, (I+ − I−)/(I+ + I−).

Infrared absorption probes excitations in the meV-range. Many of them are vibra-
tional in character. IR spectroscopy is often used to identify molecules via their
well-characterized vibrational excitations. They are superimposed on the spectra
of low-lying electronic excitations such as magnetic excitations or electron exci-
tations in nanostructures that have energies in the sub-eV range. The majority of
IR absorption instruments are Fourier-transform spectrometers, which are able to
collect spectra over a wide energy range simultaneously. Complementary probes
for the same excitations in this energy range can be found within the Raman and
resonant-Raman spectroscopies and inelastic neutron spectroscopy.

UV-visible absorption (UV/Vis) covers typically excitations of 3d electrons in tran-
sition metals, important for studies of strongly correlated oxides, and band gaps in
semiconductors. Also many organic molecules also absorb light in the UV/Vis range.
Excitations in this regime may also be studied with inelastic X-ray and electron scat-
tering spectroscopies via the loss function.

X-ray absorption (XAS) (Stöhr 1992) is one of the most common X-ray spec-
troscopies and TDDFT has much to offer in this field (Brancato et al. 2008). The
largest difference between X-ray and optical absorption studies is that in XAS the
initial electron state is a dispersionless, narrow, and deeply bound core state. This
partly facilitates the analysis of the spectra since to a rather good approximation they
measure the unoccupied states directly, although always in the presence of the deep
core hole and broadened by the core hole lifetime. Even more importantly, XAS is
element specific due to the involvement of the core state, and can thus be used as an
accurate tool even in many otherwise complex systems. XAS is a quite recent addition
to the spectroscopy family since tunable X-ray sources have been recently introduced
with the advent of synchrotron radiation. Depending on the sample and the range
of X-ray energies, the experiments can be performed by measuring the ratio of the
transmitted and incident photon intensities, or indirectly, by observing consequent
processes such as secondary-particle yield (e.g., Auger processes or photoemission).
The fine structure of the spectra near the edge X-ray absorption near-edge structure
(XANES), yields information on the local electron density of unoccupied states at
the site of the absorbing atom, in the presence of the core hole. At increasingly larger
photon energies, the photoelectron has more kinetic energy and can probe also the
surrounding environment by scattering from the neighboring atoms. This gives rise
to extended X-ray absorption fine structure (EXAFS), which exhibits characteristic
oscillations due to the interference of the outgoing and backscattered photoelec-
tron wave functions. After expressing the oscillations as a function of the photo-
electron momentum, a Fourier transformation of the signal gives information on the
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neighboring atoms in a form of an effective pair distribution function (Rehr and
Albers 2000). Complementary probes to XAS can be found from inelastic scattering
of electrons and X-rays.

2.4.4 Inelastic Scattering

Originally V. Raman noted that it was possible to measure vibrational excitations,
which have energies that fall into the far-infrared regime, by observing character-
istic energy losses in the spectrum of visible light. For this finding he was awarded
the Nobel prize in 1930. The effect was immediately realized to be due to inelastic
light scattering. For light this is possible only in the particle picture (Nobel prize of
A. H. Compton 1927), and indeed inelastic scattering is a property of particles
(neutrons and electrons are canonical examples). An important difference to absorp-
tion is that inelastic scattering allows investigations of a possible q-dispersion of the
excitations.

Raman spectroscopy (Devereaux and Hackl 2007) is complementary to IR absorp-
tion, and is often used in the studies of vibrational and electronic excitations in
the meV-energy range in molecules and solids. Its flavor called resonant-Raman
spectroscopy allows to distinguish between charge-density, spin-density, and single-
particle excitations. In resonant Raman experiments, the energy of the incident photon
is tuned to a specific electron excitation (often to that of a band gap), and other low-
energy excitations coupled to the resonance gain spectral weight considerably. This
is especially useful in complex systems where certain classes of excitations can be
selectively studied.

Electron-energy loss spectroscopy (EELS) and electron microscopy
(García de Abajo 2010) are widely used and powerful tools to study the electronic
properties, especially of thin films and surfaces with a very high spatial resolution.
Due to the large electron-electron scattering cross section, the measurements are fast
and high resolving power is easy to achieve in all quantities: energy, momentum
transfer, and space—in particular, electrons are very easy to focus on nm-size spots
on the sample. There are several different types of electron spectroscopy. The trans-
mission electron microscope (TEM) uses high-energy electrons that are made to pass
through a thin (≤ 100 nm) sample film, or a gas. Measuring the energy loss of the
electrons measures essentially the loss function L(q, ω) as discussed in Sect. 2.3.
Inelastic electron scattering gives rise to cathodoluminescence (CL) (Ozawa 1990)
which can be measured and analyzed in the scanning electron microscope (SEM).
CL was also produced in the old-fashioned cathode-ray tubes, such as television sets
and computer monitors, before the flat-screen revolution. Just as PES, EELS can
be used in chemical analysis by measuring the core-electron excitations (Hitchcock
2000). This flavor of EELS is sometimes called energy-loss near edge spectroscopy
(ELNES), yielding similar information as XAS. EELS is a useful probe for both bulk
and surface excitations which are both typically present in the measured spectra. The
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large scattering cross section, especially at low q values, can sometimes be a disad-
vantage due to the large possibility for multiple scattering. This is well known in
solids (Bertoni and Verbeeck 2008; Stöger-Pollach 2008), but should also be care-
fully considered even in gases (Bradley et al. 2010).

Inelastic X-ray scattering spectroscopy (IXS) (Schülke 2007) can also be used to
study the loss function L(q, ω).Historically, the first observation of the IXS process
was the well-known Compton effect, where X-rays scattered off a sample suffer
a shift in wavelength, Δλ = h

mc (1 − cos 2θ); the scattering angle 2θ is the angle
between the incident and scattered photon. This effect is due to recoil scattering
from the electrons. The scattering electron is usually not at rest, and its ground-state
momentum gives an additional Doppler shift to the recoil photon. By measuring the
Compton-recoil IXS spectrum, the ground state initial momentum of the electron
can be deduced (Cooper et al. 2004; Huotari et al. 2010b). The Compton spectrum
can be obtained from L(q, ω) measured at large q. IXS studies of the loss function
at smaller values of q have recently advanced to the level of a standard tool due to
the fact that monochromatic and energy-tunable X-rays with high enough intensity
can only be produced by modern synchrotron radiation facilities. The difference
between IXS and EELS arises mostly from a much larger scattering probability in
EELS especially at small q. This has made EELS experiments often faster, and has for
a long time limited IXS to low-Z systems, where the large probing depth compensates
the low cross section. However, modern high-brilliance synchrotron radiation sources
have now made IXS experiments possible in all samples. IXS has the advantages of
(i) being bulk-sensitive, yielding access also to samples in environments impermeable
for electrons which scatter already at the surface of materials, and (ii) being able to
perform measurements for an almost unlimited range of momentum transfers, only
limited by qmax = 2k1. The ELNES counterpart for inner-shell excitations in IXS is
called X-ray Raman spectroscopy (XRS)—a name which describes well the inelastic
process but is not to be confused with optical Raman spectroscopy. Just as in the case
of resonant-Raman spectroscopy, it is possible to perform IXS in resonant conditions
in a resonant inelastic X-ray scattering (RIXS) spectroscopy experiment. In this case
ω1 ≈ Ei − En and the second term under the square in the DDCS (2.4) dominates
(Ament et al. 2011). Now the intermediate state Ψn corresponds to the final state
in XAS—i.e., a deep core hole and an extra electron in a previously unoccupied
valence state. The involvement of an intermediate state lifts off many selection rules
such as the dipole rule. RIXS is element specific due to the involvement of the core
hole, and thus used often in complex samples where the local electronic structure of
a specific element is studied. Typical applications are strongly correlated systems,
e.g., charge-transfer excitations in transition metal oxides (Schülke 2007).

Inelastic neutron spectroscopy (INS) (Hippert et al. 2006) is a widely used probe
for phonons and magnetic excitations (magnons), as well as crystal field excitations
within partially filled d or f electron shells. Phonons are excited in INS due to the
neutron-nucleus interaction and magnetic excitations due to the magnetic-moment
coupling of neutrons and atoms. The spectra are usually expressed in terms of the
dynamic structure factor S(q, ω). The nuclear scattering probability is represented
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by the scattering length b, which is not a monotonic function of the target atomic
number, and depends also on the isotope. INS is a well established tool for phonon
and magnon measurements, recently also complemented by IXS (Scopigno et al.
2005) and RIXS (Ament et al. 2011).

2.4.5 Non-linear Optics

Non-linear optics is thoroughly reviewed in Chap. 18. In this case the first Born
approximation does not apply, since the polarization caused by the probe is compa-
rable to the field of the probe itself. This may lead to rather unexpected phenomena,
such as high-harmonic generation which makes the sample to respond at multiples
of the initial probe frequency (Salières et al. 1999). These techniques constitute a
rapidly evolving field. Its latest additions are in the X-ray regime thanks to the advent
of X-ray free electron lasers, which could very well turn out to be the light sources
of the future for spectroscopists.

2.5 Summary

There is a large number of open questions in physics that spectroscopy could answer
in near future. Some of the most important ones relate to many-body effects, and
the lack of exact functionals to account for them. Especially strong electron-electron
interaction effects for instance are manifested in low-dimensional systems—i.e.,
in the nanoscale. The understanding of strongly correlated systems is one of the
forefront questions in the contemporary condensed matter physics and experimental
results are often difficult to interpret without an ab initio theoretical counterpart. Such
systems are often probed by resonant spectroscopies such as resonant inelastic X-ray
scattering, where the development of rigorous ab initio theories has been especially
slow. Also, the interpretation of the behavior of disordered matter such as glasses
and liquids has been more difficult than those of crystalline systems due to their lack
of periodicity.

Luckily spectroscopy is a large field that is developing on a fast pace. As is the case
generally in science, spectroscopic experiments and theory are in a constant dialogue.
Improvements in one always lead to a surge of advances in the other as a response.
Sometimes experimentalists discover new phenomena with no obvious theoretical
explanation, forcing the theorists to improve their techniques in the search for one. On
the other hand, theoretical predictions have been made for experimentally previously
unseen phenomena that have demanded a completely new level of accuracy from
experiments in order to be confirmed. In the twenty first century, our understanding of
physics will probably be revolutionized due to the advent of powerful new techniques
and light sources allowing novel spectroscopic studies in previously inaccessible time
and energy scales.

http://dx.doi.org/10.1007/978-3-642-23518-4_18


Chapter 3
The Microscopic Description of a Macroscopic
Experiment

Silvana Botti and Matteo Gatti

3.1 Introduction

The interaction between electromagnetic radiation (or particles) and matter creates
elementary excitations in an electronic system. On one hand, this leads to phenomena
(often complicated) that can be relevant in a variety of technological fields, including
electronics, energy production, chemistry and biology. On the other hand, there is
a fundamental interest in perturbing a material: the perturbation can indeed reveal
essential material properties that were not detectable in the ground state of the system.
To visualize this idea we can imagine a bell. In its ground state we cannot know what is
the sound that it will produce when it is hit by a hammer. By perturbing the system,
one can hear which is the characteristic frequency of the system, i.e. measure its
elementary excitations.

According to the experimental setup, one can get access to different excitation
properties. For example, in an experiment when an electron is added or removed,
it is possible to gain insight into elementary one-particle excitations, i.e. the quasi-
particles. When the number of electrons is conserved, the experiment will instead
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provide information on neutral excitations, such as excitons (electron-hole pairs) and
plasmons (coherent electron oscillations). In a similar way, thanks to the powerful
combination of state-of-the-art quantum-based theories and dedicated software in
continuous development, it is now possible to study electronic excitations in complex
materials. Within the many-body framework, to simulate a process involving one-
particle excitations one deals with quantities related to the one-particle Green’s func-
tion. In the case of neutral excitations the process can be described by response
functions, a particular class of two-particle Green’s functions.

A review of the different theoretical approaches and experimental techniques
is beyond the aim of this chapter. We will focus on two specific aspects. First, one
should keep in mind that while experiments usually measure macroscopic properties,
ab initio calculations yield microscopic functions that need to be processed to obtain
quantitative information comparable with measured spectra. In order to bridge the
gap between the microscopic and the macroscopic worlds, one needs appropriate
physical models that relate microscopic and macroscopic response functions. Second,
depending on the details of the physical problem under study, one has to choose
which theoretical approach and which level of approximation is more suitable for
calculating the microscopic response functions. Moreover, one has to be aware of
the fact that the accuracy and efficiency of calculations vary necessarily with the
theoretical framework employed.

3.2 Theoretical Spectroscopy

We learned from Chap. 2 that spectroscopies are ideal tools to investigate the elec-
tronic properties of extended and finite systems. What we commonly call “spectrum”
is the response of a sample to a perturbation, which can be produced by an external
electromagnetic field (photons) or by other particles (e.g. electrons, neutrons). This
response is measured and plotted as a function of the frequency (or equivalently of
the wavelength) of the incident particle.

By determining the energy (and possibly the wavevector and the spin) of the
incoming and outcoming particles, it is possible to extract important information
on the elementary excitations that were induced in the matter by the perturbation.
Here, we restrict our interest to electronic properties, and more in particular to exci-
tations involving valence electrons. The excitation energies will therefore be in the
interval which goes from infra-red to ultraviolet radiation (up to some tens of eV),
and which contains the visible portion of the electromagnetic spectrum. For such
photon energies, the wavelength of the incoming radiation is always much larger
than inter-atomic distances, which means that we can safely assume to be working
in the long-wavelength limit. Moreover, we will consider only the first-order (linear)
response, and we will not deal with strong-field interaction (e.g. intense lasers), nor
with magnetic materials.

Existing spectroscopy techniques are numerous and can be classified according
to different criteria. In Table 3.1. we summarize the characteristics of a selected set

http://dx.doi.org/10.1007/978-3-642-23518-4_2
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Table 3.1 The spectroscopy techniques discussed in this chapter can be classified according to the
probe used (‘in’), the particle collected after the interaction with the sample (‘out’), and the possible
change in the number N of electrons in the sample

In Out Number of e−

Direct photoemission photon electron N → N − 1
Inverse photoemission electron photon N → N + 1
Photoabsorption photon photon N → N
Electron energy loss electron electron N → N

of processes. They are classified according to the probe used (electromagnetic field,
electron, etc.), what is collected and measured after the interaction with the electronic
system (again, electromagnetic field, electron, etc.), and whether the number of elec-
trons in the system remains fixed, or if electrons are added or removed. The following
sections are devoted to an introduction to the phenomenology of these spectroscopies,
in order to specify which are the physical quantities that are measured, and that we
therefore want to calculate.

In Sect. 3.3 we give examples of experiments involving one-electron excitations,
i.e. in which an electron is added or removed from the system. In a photoemission
(PES) process the system of interacting electrons absorbs one photon with enough
energy to excite an electron (called photoelectron) above the vacuum level. The
missing electron leaves a hole in the system, which generally remains in an excited
state. The kinetic energy distribution of the photoelectron can be measured by the
analyser, yielding the photoemission spectrum. In the simple independent-particle
picture, photoemission spectra give an image of the density of the occupied electronic
states of the sample. Inverse photoemission can be considered as the time-reversal
process of photoemission: in this case the system absorbs an electron and a photon is
emitted, whose energy distribution can be related in the independent-particle picture
to the density of empty states. However, one should not forget that the sample is
a many-body system. In the many-body framework, one has rather to deal with
one-particle Green’s functions and spectral functions, in order to extract from them
physical quantities to compare with photoemission spectra.

In Sect. 3.4 we discuss two examples of processes involving neutral excitations:
optical absorption and electron energy loss. In an absorption experiment the incident
beam of light looses photons that are absorbed by the system. Their energy is used to
excite an electron from an occupied to an empty state: an electron-hole pair is then
created in the system. Instead, in electron energy-loss spectroscopy (EELS) exper-
iments an electron undergoes an inelastic scattering with the sample. The analyser
measures its energy loss and its deflection. Again, the energy lost by the incoming
electron has been used to induce excitations in the system. Response functions, a
particular class of two-particle Green’s functions, are the key quantities to explore
neutral excitations and will be presented in Sect. 3.5. From the theoretical point of
view, the frequency and wavevector dependent dielectric functions ε(q, ω) and its
inverse ε−1(q, ω) are the most natural quantities for the description of the neutral
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excitations of an extended system. In a non-isotropic medium such functions must
be replaced by tensors. Moreover, it should be emphasised that a electromagnetic
field is a transverse field (i.e. the field is perpendicular to the direction of propaga-
tion), while impinging electrons are associated to longitudinal fields (i.e. their field is
along the direction of propagation). This implies the existence of transverse (T) and
longitudinal (L) dielectric functions. In Sect. 3.6 we will finally show how dielectric
functions, inserted in appropriate semi-classical models, and through appropriate
averaging procedures, yield the frequency-dependent spectra to be compared with
experimental data. Atomic units will be used throughout the chapter.

3.3 Photoemission Spectra and Spectral Functions

At the heart of photoemission spectroscopy lays the photoelectric effect. Discovered
by Hertz in 1887, its experimental study was worth a Nobel prize for Lenard and its
theoretical explanation another Nobel prize for Einstein. An example of experimental
valence photoemission spectrum, taken from Guzzo et al. (2011), is displayed in
Fig. 3.1. In this section we will discuss how to calculate a quantity directly comparable
with such a spectrum starting from first principles. For a more general description of
photoemission spectroscopy we refer to Chap. 2 and to the many books and reviews
available in literature [e.g. (Hüfner 2003; Schattke and Van Hove 2003; Damascelli
et al. 2003; Almbladh and Hedin 1983)].

The simplest phenomenological interpretation of the photoemission process is
given by the so-called three-step model (Berglund and Spicer 1964), which describes
photoemission as a sequence of the actual excitation process, the transport of the
photoelectron to the crystal surface, and the escape into the vacuum. A better inter-
pretation is obtained in the one-step model (Schaich and Ashcroft 1970; Mahan
1970; Pendry 1976), where the three different steps are combined in a single
coherent process, described in terms of direct optical transitions between many-body
wavefunctions that obey appropriate boundary conditions at the surface of the solid.
The final state of the photoelectron is a time-reversed low-energy electron-diffraction
(LEED) state, which has a component consisting of a propagating plane-wave in
vacuum with a finite amplitude inside the crystal.

The measured data are the energy of the incoming photon and the kinetic energy of
the outcoming electron. In an angular-resolved experiment (ARPES) also the angle
of emission is detected, which allows the evaluation of the wavevector of the emitted
photoelectron. Moreover, using a Mott detector it is also possible to perform a spin
analysis.

When an electron is removed from an electronic system, the measured photocur-
rent Jk(ω) is given by the probability per unit time of emitting an electron with
momentum k when the sample is irradiated with photons of frequency ω. From
Fermi’s golden rule one obtains the relation (Almbladh and Hedin 1983;
Hedin 1999):

http://dx.doi.org/10.1007/978-3-642-23518-4_2
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Fig. 3.1 Experimental photoemission spectrum of bulk silicon, measured at the TEMPO beamline
at the Synchrotron SOLEIL with 800 eV photon energy. Besides the prominent quasiparticle peaks,
corresponding to the valence bands, multiple plasmon satellites at higher binding energies are clearly
visible. Figure from Guzzo (2011)

Jk(ω) =
∑

m

ξkmδ(Ek − Em − ω), (3.1)

where

ξkm = |〈N − 1,m; k|A · p+ p · A|N 〉|2 (3.2)

is a matrix element of the coupling to the photon field and |N 〉, |N − 1,m; k〉 are
many-body states. The perturbation induces a transition from the initial N-electron
ground state |N 〉 to the final state |N − 1,m; k〉. The final state is represented by a
system with the photoelectron with momentum k and the sample in the excited state
m with N −1 electrons. In order to assure the energy conservation, it is required that
the photon energy ω is equal to the kinetic energy of the photoelectron Ek minus the
electron removal energy, Em = E(N ) − E(N − 1,m). This reads ω = Ek − Em .

By knowing ω and measuring Ek, one can have access to the energy of the excited
state m.

In the sudden approximation, the photoelectron is completely decoupled from
the sample. One assumes that the photoelectron does not interact with the hole left
behind and does not affect the state of the (N − 1) electron system. Under such
hypothesis, the total photocurrent Jk(ω) can be rewritten as:

Jk(ω) =
∑

i

|ξki |2 Aii (Ek − ω), (3.3)
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where we have introduced the matrix elements of the spectral function Ai j (ω) (for
ω below the Fermi lever) and the creation and annihilation operators ĉ† and ĉ:

Ai j (ω) =
∑

m

〈

N
∣
∣
∣ĉ†

i

∣
∣
∣ N − 1,m

〉

〈N − 1,m|ĉ j |N 〉δ(ω − Em), (3.4)

and, moreover, we have assumed that there exists a one-particle basis in which the
diagonal elements of Ai j are the relevant terms. For each many-body state m, the
spectral function (3.4), defined rigorously as the imaginary part of the one-particle
Green’s function G, gives the probability to remove an electron from the ground
state |N 〉 and leave the system in the excited state |N − 1,m〉. The total intensity
of the photoemission spectrum is then the sum of the diagonal terms of spectral
function Aii , weighted by the photoemission matrix elements ξki . Therefore, when
the matrix elements are not zero, photoemission measurements give direct insight
into the spectral function A.

The matrix elements ξki describe the dependence of the spectra on the energy,
momentum and polarization of the incoming photon. However, a common approx-
imation is to neglect those matrix elements or, equivalently, to assume they are all
equal to a constant ξ̄ , which yields:

Jk(ω) = |ξ̄ |2
∑

i

Aii (Ek − ω). (3.5)

Hence, to a first approximation, the quantity that one needs to calculate to simulate
photoemission spectra is the trace of the spectral function (Gatti et al. 2007a).

In a simplified independent-particle picture, by measuring the kinetic energy of the
emitted electron, one would obtain directly the energy of the one-particle level that
the electron was occupying before being extracted from the sample. In this picture
the many-body wavefunctions are Slater determinants and the spectral function (3.4)
can be simplified to yield

Ai j (ω) = δi jδ(ω − Ei )θ(μ− ω). (3.6)

The total photocurrent

Jk(ω) = |ξ̄ |2
occ
∑

i

δ(Ek − ω − Ei ) (3.7)

turns out to be given by a series of delta peaks in correspondence to the energies Ei

of the one-particle Hamiltonian. The photoemission spectrum is hence described by
the density of occupied states:

DOS(Ek − ω) =
occ
∑

i

δ(Ek − ω − Ei ), (3.8)

evaluated at the energy Ek − ω.
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However, the real system is made of interacting electrons, and the distribution
of kinetic energies that one actually obtains is somewhat different from this ideal
picture. In fact, it is easy to understand that the emitted electron leaves a hole in the
electronic system. A hole is a depletion of negative charge, hence it carries a positive
charge which induces a relaxation of all the other electrons in order to screen it.
Therefore, the creation of a hole promotes an excited state in the system, with a
finite lifetime. This explains why in a photoemission spectrum one does not find a
delta-peak in correspondence to a particular one-particle binding energy.

If one wants to perform calculations beyond the independent-particle picture,
the many-body wavefunctions can then be seen as linear combinations of Slater
determinants. For each excited state m, there are many non-vanishing contributions
to the spectral function (3.4) that give rise to a more complex structure around the
energy Em . If in this more complex structure a main peak is still identifiable, then
one can associate this peak with a quasiparticle excitation.

More complex phenomena can actually happen when the electron is extracted
from the sample. In fact, the hole left in the system is itself a perturbation that can
induce additional excitations. For example, a plasmon can be additionally excited in
the system. In this case, the incoming photon energy is used to create more than one
excitation. This additional excitations will produce a peak in the photoemission spec-
trum at a higher binding energy and with a smaller intensity than the corresponding
quasiparticle peak, which reflects the smaller probability of a combination of events
and its larger energy cost. This kind of additional structures in a photoemission
spectrum is called a satellite and forms the incoherent part of the spectrum.

A clear example is given by the experimental spectrum of bulk silicon in Fig. 3.1.
The three prominent peaks at lower binding energy are the quasiparticle peaks that
correspond to the valence bands of silicon. Together with these peaks, we can see three
additional structures with decreasing intensities, located at distances from the quasi-
particle peaks equal to multiples of the plasmon energy of bulk silicon (around 16 eV).
They are plasmon replicas: satellites that are the signature of the additional simul-
taneous excitation of one, two and three plasmons, respectively. This is a striking
example that shows that photoemission spectroscopy is able to measure not only
one-particle-like excitations (the quasiparticles), but also collective excitations, like
plasmons (which can be directly measured in electron energy-loss spectroscopy, see
Sect. 3.4).

In the extreme case of strong-correlation effects in the system, the one-particle
nature of the excitation can be completely lost. In this case, in fact, it is no more
possible to distinguish quasiparticle peaks, as all excitations involved have an intrinsic
many-body character and the incoherent part of the spectrum dominates.

A spectral function for the metallic phase of VO2, calculated in the GW approxi-
mation (Hedin 1965), is shown in Fig. 3.2. In order to gain a deeper insight into the
nature of the structures of the spectral function, we can rewrite its matrix elements
(3.4) in terms of the self-energy Σ (Hedin 1999):

Aii (ω) = 1

π

|ImΣi i (ω)|
{ω − εi − [ReΣi i (ω)− vxci ]}2 + [ImΣi i (ω)]2

, (3.9)
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Fig. 3.2 Spectral function Aii (red solid line) relative to the top valence at k = Γ for the metallic
phase of VO2, calculated using the GW approximation. The corresponding Kohn–Sham eigenvalue,
calculated in the local-density approximation, is represented by the arrow. The real and imaginary
parts of the self-energy Σ are also shown (see the discussion in the text). The zero of the energy
axis is set at the GW Fermi energy.

where we have assumed that the self-energy is diagonal in the one-particle basis
chosen to represent the spectral function Vxci are the matrix elements of the xc
potential and εi are the Kohn–Sham eigenvalues. The self-energy is an essential
quantity in the Green’s function formalism. It represents, in fact, the effective non-
local and dynamical potential that the extra particle feels for the polarization that its
propagation induces and for the exchange effects, due to the fact that it is a fermion.
Analogously to the exchange-correlation potential vxc of density-functional theory
(DFT), the self-energy encompasses all the effects of exchange and correlation in
the system.

Equation 3.9 allows us to see that the quasiparticle peak in the spectral func-
tion shown in Fig. 3.2 is determined by the zero of ω − εi − [ReΣi i (ω) − vxc i ].
The width of the peak is given by the imaginary part of the self-energy: the quasi-
particle excitation has finite lifetime (which is the inverse of the width of the peak).
Additional structures, the satellites, are linked to structures of ImΣi i (ω) or to addi-
tional zeros of ω − εi − [ReΣi i (ω)− vxc i ], where also ImΣi i (ω) is not too large.
Note that a necessary requirement for the presence of satellites is the dynamical
nature ofΣ. In particular, in the case of VO2 shown in Fig. 3.2, we can see a satellite
in the spectral function due to a structure of ImΣi i (ω), which corresponds to the
additional excitation of a plasmon (Gatti 2007b). This situation is analogous to what
we have discussed for the experimental spectrum of silicon in Fig. 3.1. In a Kohn–
Sham calculation within DFT, the spectral function would reduce to a delta peak,
represented by the arrow in Fig. 3.2. The same would occur in the Hartree–Fock
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approximation, in which the self-energy is real and static. In Hartree–Fock, thanks to
Koopmans’ theorem (Koopmans 1934), the eigenvalues have a physical meaning as
approximate removal energies, contrary to the Kohn–Sham eigenvalues, for which
Koopmans’ theorem does not hold.

When one goes beyond the sudden approximation (Hedin 1998; Almbladh 2006)
and considers scattering processes of the photoelectron on its way out of the sample,
new features in the photoemission spectrum can appear. In this case one talks of
extrinsic losses, in contrast to the structures of the spectral function discussed so far,
and that are due to intrinsic losses.

Moreover, in order to restore a quantitative agreement between calculated and
measured spectra, one should keep in mind that it is essential to remove the assump-
tion that the photoemission matrix elements ξki are constant. In fact, measured spectra
generally show large variations in their profile according to the photon energy used
in the experiment (Papalazarou 2009).

Since the electron escape depth is of the order of 10–50 Å for kinetic
energies of 10–2000 eV (Zangwill 1988), photoemission is a surface sensitive
technique. Obtaining bulk information can be achieved by using atomically flat
and clean surfaces and by working at high photon energies [e.g. hard X-rays
(Panaccione 2006)], thereby increasing the electron escape depth. At the same time,
higher photon energies are in better agreement with the hypothesis of the sudden
approximation, as the photoelectron is emitted with a high kinetic energy, and there-
fore its removal process can be more safely considered as instantaneous. Neverthe-
less, angular-resolved experiments are performed at lower photon energies, where
the intrinsic momentum resolution is better (Damascelli 2003).

3.4 Microscopic Description of Neutral Excitations

The propagation of electromagnetic waves in dissipative media is described by
Maxwell’s equations (Jackson 1962), supplemented by appropriate constitutive equa-
tions. Optical phenomena (reflection, propagation, transmission) can be quantified
by a number of parameters that determine the properties of the medium at the macro-
scopic level. Microscopic (semiclassical) models and averaging procedures then
allow us to calculate these macroscopic parameters. In this section we focus on the
microscopic models, while the averaging procedure will be the subject of Sect. 3.6.

A photon impinging on a sample can be absorbed, reflected or transmitted. When
it is absorbed, its energy is used to create a neutral excitation in the system. In an
independent-particle picture, this can be represented by the promotion of a valence
electron from an occupied to an empty one-particle state, conserving its crystal
momentum k, since a photon in the energy range of interest can transfer only a
negligible momentum. In contrast with what happens in a photoemission experiment,
the excited electron remains inside the sample, and it cannot therefore be considered
decoupled from the other electrons.
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According to the semi-classical picture provided by the macroscopic Maxwell
equations (Jackson 1962), an electric field E polarized along the ê direction in a
dielectric medium propagates as a damped wave:

E(z, t) = E0 ê ei ωc (nz−ct) = E0 ê ei ωc (n1z−ct)e−
ω
c n2z, (3.10)

where n is the complex refractive index n = n1+ in2, and c is the velocity of light in
vacuum. As a consequence, also the intensity of the field is exponentially decaying:

I (z) = |E(z)|2 = E2
0e−2 ωc n2z . (3.11)

The absorption coefficient αabs is defined as the inverse of the distance where the
intensity of the field is reduced by 1/e:

αabs = 2ωn2

c
. (3.12)

Equivalently, we can introduce the concept of macroscopic complex dielectric func-
tion εM = ε1 + iε2 = n2.

The absorption coefficient can be easily rewritten in terms of the imaginary part
of the macroscopic dielectric function:

αabs = ωε2

cn1
. (3.13)

Since n1 can be usually assumed constant in the small frequency ranges of interest,
absorption spectra are usually expressed in terms of ε2(ω) = ImεM(ω).

Within the basic approximations, i.e. the independent-particle and the dipole
approximation, Fermi’s golden rule (Grosso 2000) gives the well-known expression
for the absorption spectrum in the linear regime, as a sum of one-particle independent
transitions:

εTT
2 (ω) = 8π2

Vω2

∑

vc

|〈ϕc|ê · p|ϕv〉|2δ(E j − Ei − ω), (3.14)

where p is the momentum operator, V is the unit cell volume, |ϕv,c〉 are one-particle
states (e.g. Kohn–Sham states) and Ei are one-particle energies (e.g. Kohn–Sham
energies). In (3.14) T stands for transverse, as the transitions from occupied to empty
states |ϕc〉 to |ϕv〉 are due to the interaction with a transverse electromagnetic plane
wave of frequency ω and polarization ê. In general one should consider different
polarization directions, which means that ε̂2 is a tensor. This tensor reduces to a
scalar quantity when the system is isotropic (cubic symmetry).

Note that in the simple case of a sum of independent one-particle transitions
the macroscopic dielectric function is simply the spatial average of the microscopic
dielectric function ε(r, r ′, t − t ′). This means that classical depolarization effects
(local-field effects) are not included in Eq. 3.14. We will go back to this problem,
related to spatial averaging, in the following section.
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Fig. 3.3 Imaginary part of the macroscopic dielectric function for LiF. Dots, experiment from
(Roessel 2005); dotted line, Bethe-Salpeter equation (BSE) calculation; solid line, TDDFT calcu-
lation using the dynamical model kernel derived from BSE. In the inset, RPA calculation using
quasiparticle energies. Figure from Botti (2005)

Local-field effects are not the only missing physical ingredient. In fact, the
independent-transition picture is often inadequate to capture the complex physics
of the many-body problem and, even if local-field effects are properly accounted
for, the quality of the calculated spectra still depends dramatically on the use of
more involved approximations to include electron-electron and electron-hole inter-
actions. Indeed, one should not forget that in an absorption experiment, contrary to
photoemission, the excited electron remains inside the system. It is essential then to
take into account the interaction between the electron and the hole that the excitation
of the electron leaves behind, the so-called excitonic effect. This can be done in
different frameworks that go beyond the independent-particle approximation, such
as many-body perturbation theory, or time-dependent density-functional theory.

We consider as an example a LiF crystal (Botti 2005), whose experimental
absorption spectrum (dots) is shown in Fig. 3.3. If one performs a calculation in the
independent-particle approximation, even after including local-field effects within
the random phase approximation (RPA) (inset), the worst disagreement concerns the
absence of the large excitonic peak at about 12.5 eV. In the framework of many-body
perturbation theory, it is possible to include two-quasiparticle effects by solving the
Bethe-Salpeter equation (BSE) (Salpeter 1951). In this way, one can reproduce the
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bound exciton peak (dotted-dashed curve). Alternatively, one can use, within time-
dependent density functional theory (TDDFT), model exchange-correlation kernels
derived from the Bethe-Salpeter equation (Botti 2007), which improve remarkably
the RPA results with a much smaller computational effort than the one required by
the solution of the Bethe-Salpeter equation.

Another example of neutral excitations comes from electron energy-loss
spectroscopy , where the probe is a high-energy electron which undergoes inelastic
scattering. As a consequence, it looses energy and has its path deflected. Both
the energy loss and the deflection angle can be measured. Inelastic interactions
can involve different energy ranges, depending on their origin: phonon excitations,
inter- or intra-band transitions, plasmon excitations, inner-shell ionizations, Auger
processes, etc. In the energy range that we consider (up to some tens of eV), the
excitations of the system that can be involved are either band transitions or plasmon
excitations.

We consider the rate by which a charged fast particle transfers energy and
momentum to a material. As long as the fractional changes of energy and momentum
of the fast electron are small, the electron can be considered as a classical point charge
moving with uniform velocity v in the medium. The probability that an impinging
electron of velocity v transfers in a unit time an energy dW and a momentum q to
the electronic system can be expressed by the energy-loss rate (Luth 2001):

dW

dt
= 1

(2π)3

∫

dω
∫

d3q
ω

q2 Im

{

− 1

εM(q, ω)

}

δ(ω + q · v). (3.15)

In (3.15) one assumes that the impinging electron is a classical particle: it can be
treated in a non-relativistic approximation and neglecting quantum indetermination
effects on its position. The energy-loss rate is then proportional to the loss function
L(q, ω):

L(q, ω) = −Im
{ 1

εM(q, ω)

}

= ε2(q, ω)

ε2
1(q, ω)+ ε2

2(q, ω)
. (3.16)

From Eq. 3.16 one can conclude that spectral features in EELS can be seen in the case
that either ε2 has a peak corresponding to some interband transition or ε2 is small and
ε1 = 0. The latter condition determines the frequencies of the collective plasmon
excitations. In energy-loss experiments one can therefore excite plasmons, that are
longitudinal excitations and that are not generally observed in optical spectroscopy,
since photons are a transverse perturbation. Note that the loss function (3.16) is also
the quantity measured in inelastic X-rays scattering (IXS) experiments.

An interesting situation can be found in the study of EELS for core states.
In fact, at high energies ε2(q, ω)→ 0 and ε1(q, ω)→ 1. This observation allows a
simplification of the loss function (3.16):

L(q, ω) = −Im
{ 1

εM(q, ω)

}

→ ε2(q, ω). (3.17)
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Using again the simple independent one-particle transition picture, Fermi’s golden
rule allows us to evaluate the imaginary part of the longitudinal dielectric function
as Grosso (2000):

εLL
2 (q, ω) = 8π2

Vq2

∑

i j

∣
∣
∣|〈ϕ j |eiq·r |ϕi 〉|

∣
∣
∣

2
δ(E j − Ei − ω), (3.18)

where LL means that we are evaluating the response to a longitudinal perturbation.
In this picture plasmon peaks in EELS are associated to coherent oscillations of
independent particles. Once again, the quality of the calculated spectra depends
dramatically on the possibility to go beyond the independent-particle description of
Eq. 3.18. For extended systems, EELS and IXS at small and large momentum transfer
are often well reproduced simply by including local-field effects, i.e. performing RPA
calculations or TDDFT calculations within the adiabatic local-density approximation
(TDLDA—Botti 2007). This is in contrast with the fact that TDLDA fails in the
calculation of optical (q = 0) spectra of non-metallic solids. To explain this failure,
the wrong asymptotic limit of the exchange-correlation kernel is crucial, while the
wrong behaviour of the exchange-correlation potential is less relevant (Botti 2007).

Note again that we defined two different microscopic dielectric functions, εLL
2 and

εTT
2 , specific for longitudinal and transverse perturbations, respectively. However,

since it holds (Del Sole 1993):

v = lim
q→0

1

q

[

Ĥ , eiq·r], (3.19)

it can be proved that in the long-wavelength limit longitudinal (3.18) and transverse
(3.14) dielectric functions of an isotropic system coincide:

εLL
M (ω) = εTT

M (ω). (3.20)

This is due to the invariance for q → 0 between the velocity gauge (transverse
perturbation A · v) and the length gauge (longitudinal perturbation E · r). When q
is non-vanishing and the system does not have cubic symmetry, this extreme simpli-
fication is no more valid, and one has to consider the general tensor.

3.5 Microscopic Response Beyond the Independent-Particle
Picture

We will now deal with the general problem of the determination of the microscopic
response of the system, beyond an independent-particle picture and Fermi’s golden
rules 3.14 and 3.18. In the following section we will then discuss how to relate
microscopic and macroscopic dielectric functions. Linear-response theory can be
applied to study the response of an electronic system to a small time-dependent
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perturbation V̂ext(t), such as the incoming electromagnetic field or the high-energy
electron which undergoes inelastic scattering that we discussed before. We consider
here a system described by the many-body Hamiltonian Ĥ , subjected to a time-
dependent external perturbation V̂ext(t). The total Hamiltonian becomes:

Ĥtot = Ĥ + V̂ext(t). (3.21)

For a sufficiently small perturbation, the response of the system can be expanded
into a Taylor series with respect to the perturbation. The linear coefficient linking
the response to the perturbation is the response function. In this context, the density-
density response function χ is defined as

δρ(r, t) =
∫

dt ′
∫

d3r ′χ(r, r ′, t − t ′)vext(r ′, t ′), (3.22)

where δρ is the first-order variation of the electron density and vext the external
perturbation. A response function is independent on the perturbation and depends
only on the system. The density-density response function is also called reducible
polarizability. The irreducible polarizability P can be defined in a similar way:

δρ(r, t) =
∫

dt ′
∫

d3r ′P(r, r ′, t − t ′)vtot(r ′, t ′), (3.23)

where vtot is the total classical potential. Hence, the irreducible polarizability P
describes the first-oder variation of the electron density with respect to the total
classical potential, which includes the polarization of the system.

In fact, as a consequence of the polarization of the system due to the applied
perturbation, the total potential becomes a sum of the external potential and the
induced potential: vtot(r, t) = vext(r, t)+ vind(r, t). The induced potential vind and
the induced density δρ are moreover related by vind = veeδρ (vee is the Coulomb
interaction). The basic quantity that gives information about the screening of the
system in linear response is the microscopic dielectric function, which relates the
total potential to the applied potential:

vtot(r, t) =
∫

dt ′
∫

d3r ′ε−1(r, r ′, t − t ′)vext(r ′, t ′). (3.24)

Remembering the definition of the density-density response function χ (3.22) we
can easily deduce that the microscopic dielectric function ε and χ are related by

ε−1(r, r ′, t− t ′) = δ(r− r ′)δ(t− t ′)+
∫

d3r ′′vee(r− r ′′)χ(r ′, r ′′, t− t ′). (3.25)

The microscopic dielectric function can also be related to the irreducible polariz-
ability:

ε(r, r ′, t − t ′) = δ(r − r ′)δ(t − t ′)−
∫

d3r ′′vee(r − r ′′)P(r ′′, r ′, t − t ′) (3.26)
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Moreover, the reducible and irreducible polarizabilities satisfy the Dyson equation

χ(r, r ′, t − t ′)= P(r, r ′, t − t ′)+
∫

d3r ′′
∫

d3r ′′′P(r, r ′′, t − t ′)vee

× (r ′′ − r ′′′)χ(r ′′′, r ′, t − t ′). (3.27)

The dielectric function is a quantity that is usually used to define the response
of an extended system. Similar quantities and formulas can, however, be obtained
also for finite systems. In the linear-response regime and dipole approximation, and
considering that in the range of frequencies of interest (optical frequencies) the
dimension of the system is much smaller than the radiation wavelength, the induced
density variation in the finite system is again proportional to the perturbing field as
defined by Eq. 3.22. For a dipole electric field along the direction z, the photoabsorp-
tion cross section along z, σzz, is

σzz(ω) = −4πω

c
Im

{∫

d3r
∫

d3r ′zχ(r, r ′, ω)z′
}

= 4πω

c
Im {αzz(ω)}, (3.28)

the above expression also serving as the definition of the dynamical polarizability α̂.
Like ε, the dynamical polarizability is in general a tensor and the photoabsorption
cross section σ can be written in the form:

σ(ω) = 4πω

3c
Im

{

Trα̂(ω)
}

. (3.29)

Another quantity that is often used for finite systems is the dipole strength function
S: σ(ω) = (2π2/c)S(ω).

In linear-response theory, in general, we deal with perturbations that couple a
time-dependent field F(t) to an observable of the system P̂:

V̂ext(t) =
∫

d3r1 F(r1, t)P̂(r1, t). (3.30)

Typically the perturbation is an electromagnetic field coupled with densities or
currents. In linear-response one assumes that variations δF of the field F are small.
From Kubo’s formula (Kubo 1957) the variation δ〈Ô(r1, t)〉 of an observable Ô is
then obtained by using first-order perturbation theory as:

δ〈Ô(r1, t)〉 =
∫

dt ′
∫

d3r2χOP(r1, r2, t − t ′)δF(r2, t ′), (3.31)

where

χOP(r1, r2, t − t ′) = −iθ(t − t ′)〈N |[Ô(r1, t), P̂(r2, t ′)]|N 〉

= δ〈Ô(r1, t)〉
δF(r2, t ′)

(3.32)
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is a (causal or retarded) response function and |N 〉 is the many-body ground-state
wavefunction. In fact, χOP is zero for t < t ′, because there cannot be any response
at a time t before a perturbation has occurred at a time t ′.

By inserting the completeness relation and taking the Fourier transform, the
response function can be written in the so-called Lehmann representation:

χOP(r1, r2, ω) = lim
η→0+

∑

m

[
Om(r1)P∗m(r2)

ω + E0 − Em + iη
− O∗m(r1)Pm(r2)

ω + Em − E0 + iη

]

, (3.33)

where

Om(r1) = 〈N |Ô(r1)|N ,m〉, (3.34)

(Pm is analogously defined) and η is a positive infinitesimal. The response function
has poles at the excitation energies±(E0−Em), corresponding to transitions between
the ground state |N 〉 and the many-body excited state |N ,m〉 of the unperturbed
Hamiltonian Ĥ . The first term in (3.22) is given by resonant transitions, the second
by antiresonant transitions. The form of (3.22) is valid for finite systems with discrete
eigenvalues. For extended systems, on the other hand, the spectrum is continuous,
and the sum in (3.22) turns into an integral that gives rise to a branch cut along
the real energy axis. The infinitely close-lying resonances thus merge into broad
structures that can be identified with elementary excitations, such as plasmons or
excitons. As these structures have a certain width, they are described by poles in the
complex plane with a real part (the energy of the excitation) and a finite imaginary
part (whose inverse is proportional to the excitation lifetime).

Since response functions represent the causal response of the system to external
perturbations, they must obey several analytic properties and sum rules. The response
function χOP(ω), continued in the complex plane is analytic for all Im{ω} > 0 in the
upper half-plane and has poles only in the lower half-plane. Using contour integration
in the complex plane, it is possible to obtain the Kramers-Kronig relations (Kramers
1927; Kronig 1926) that link the real and imaginary parts of χOP:

ReχOP(ω) = − 1

π

+∞∫

−∞
dω′ ImχOP(ω

′)
ω′ − ω , (3.35a)

ImχOP(ω) = − 1

π

+∞∫

−∞
dω′ ReχOP(ω

′)
ω′ − ω . (3.35b)

The density-density response function χ of Eq. 3.22 is an example of the more
general response function of Eq. 3.31. It can be written in the Lehmann representation

χ(r, r ′, ω) =
∑

j

[

ρ j (r)ρ∗j (r ′)
ω − E j + E0 + iη

− ρ∗j (r)ρ j (r ′)
ω + E j − E0 + iη

]

, (3.36)
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and it obeys the Kramers–Kronig relations Eq. 3.35. It is easy to see that the imaginary
part of χ has the form of a joint density of states weighted by matrix elements.

When we are interested in small perturbations induced by electromagnetic fields,
which can be represented by a scalar potential vext and a vector potential Aext,

besides defining density-density response functions, one has also to define density-
current, current-density and current-current response functions. We will see in the
next section that the macroscopic response of the system to a longitudinal (and
within some limitations also to a transverse) perturbation can be recast in terms of
the density-density response function χ alone.

Now that we have understood how to provide a microscopic description of
the (linear) response of the electronic system under perturbation, we are ready to
discuss how averaging procedures allow to extract the desired macroscopic physical
quantities.

3.6 Microscopic–Macroscopic Connection

For periodic systems, the most natural way to deal with spatial periodicity is to apply
a Fourier transform:

χGG′(q, ω) = χ(q+G, q + G′, ω)

=
∫

d3r
∫

d3r ′e−i(q+G)·rχ(r, r ′, ω)ei(q+G′)·r ′ ,
(3.37)

where G is a vector of the reciprocal lattice, while q is a vector in the first Brillouin
zone. Therefore, we rewrite the microscopic response function (3.25) in the reciprocal
space

ε−1
GG′(q, ω) = δGG′ + vee G(q)χGG′(q, ω). (3.38)

We are now in principle able to calculate a microscopic dielectric function.
However, what is measured in an experiment is usually a macroscopic quantity,
which involves averaging over regions of space that are large in comparison with the
interparticle separation, but small compared to the wavelength of the perturbation.
Special care is then necessary to bridge the gap between the microscopic and the
macroscopic worlds in the case of extended systems.

Moreover, we should not forget that we are dealing with different dielectric
functions, that are specific for transverse and longitudinal perturbations. For a non-
vanishing q and a non-cubic symmetry:

D(q, ω) =←→εM (q, ω)Etot(q, ω), (3.39)

where

D =
(

DL

DT

)

=
(

εLL
M εLT

M

εTL
M εTT

M

) (

EL

ET

)

.
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This means that in general, a purely longitudinal or purely transverse perturbation will
induce a longitudinal and a transverse response at the same time. Besides, transverse
and longitudinal components of the dielectric tensor are no more equal, and only
εLL

M (q, ω) can be easily calculated, as we will show below, while εTT
M (q, ω) obeys a

complicated expression (Del Sole 1984). Only the high symmetry of the system can
guarantee that a longitudinal (transverse) perturbation induces only a longitudinal
(transverse) response. This happens when off-diagonal elements of (3.6) are zero.
When the symmetry is lower, but still one is interested in the response in the long-
wavelength limit, it is always possible to use the fact that the components of the
dielectric tensor are analytic functions of q in the limit q → 0 and rewrite the
tensor along the principal axes of the crystal. Applying a longitudinal perturbation
along one of the principal axis induces only a longitudinal response. Of course, in
the long-wavelength limit this same expression gives also the transverse dielectric
function.

One can conclude that for perturbations with vanishing momentum transfer, the
longitudinal and transverse responses (measured respectively in EELS and absorption
experiments) coincide (see Eq. 3.20). There is no easy way to calculate the transverse
response if it does not coincide with the longitudinal one. In that case, the general
expression involves not only the density–density response function, but also current-
current response functions. In view of the above, we consider here only the simpler
longitudinal case. For a more general discussion the reader can refer to the work of
Del Sole and Fiorino (1984) and the review of Strinati (1988).

In order to compare with optical and EELS spectra, we want to determine the
longitudinal component of the macroscopic dielectric tensor (or possibly the three
components along the principal axis). The (longitudinal) microscopic dielectric func-
tion can be obtained by the density–density response functionχ by applying Eq. 3.38.
When the system is perturbed by an external scalar potential vext, the total potential
(sum of the external and the induced potential) felt by a test-charge is:

vtot(q + G, ω) =
∑

G′
ε−1

G,G′(q, ω)vext(q + G′, ω). (3.40)

The total potential in general has different wavevector components than the perturbing
potential for the presence of microscopic fluctuations induced by the inhomogeneities
of the material. The difference between the microscopic potentials and their macro-
scopic average are the already mentioned local-field effects.

To connect the microscopic and the macroscopic quantities one has to take a
spatial average over a distance that is large compared to the lattice parameters and
small compared to the wavelength of the external perturbation (Ehrenreich 1966).
Since the microscopic quantities are lattice periodic, this procedure is equivalent to
take the spatial average over a unit cell.

A microscopic potential v(r, ω) can be expanded in its Fourier components as:

v(r, ω) =
∑

qG

v(q + G, ω)ei(q+G)·r , (3.41)
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or:

v(r, ω) =
∑

q

eiq·r ∑

G

v(q + G, ω)eiG·r =
∑

q

eiq·rv(q, r, ω), (3.42)

where:

v(q, r, ω) =
∑

G

v(q + G, ω)eiG·r . (3.43)

v(q, r, ω) is periodic with respect to the Bravais lattice and hence is the quantity that
one has to average to get the corresponding macroscopic potential vM(q, ω):

vM(q, ω) = 1

V
∫

drv(q, r, ω). (3.44)

Inserting (3.43) in (3.44), one has:

vM(q, ω) =
∑

G

v(q + G, ω)
1

V
∫

d3reiG·r = v(q + 0, ω). (3.45)

Therefore the macroscopic averaged potential vM is given by G = 0 component of
the corresponding microscopic potential v.

In particular, in the standard spectroscopy experiments discussed in this chapter,
the external perturbing potential is a macroscopic quantity. For instance it can be the
electromagnetic field impinging on a sample that one can measure in an absorption
experiment. For Eq. 3.45 only the G = 0 component of vext(q + G, ω) is different
from 0. Therefore the macroscopic average vtot,M of the microscopic total potential
vtot in Eq. 3.40 is:

vtot,M(q, ω) = ε−1
G=0,G′=0(q, ω)vext(q, ω). (3.46)

Equation 3.46 is a relation between macroscopic potentials, so it defines the macro-
scopic inverse dielectric function ε−1

M : vtot,M = ε−1
M vext. In this way one obtains:

ε−1
M (q, ω) = ε−1

G=0,G′=0(q, ω). (3.47)

Therefore, the macroscopic dielectric function turns out to be defined as:

εM(q, ω) = 1

ε−1
G=0,G′=0(q, ω)

. (3.48)

This corresponds to the result found by Adler (1962) and Wiser (1963): the macro-
scopic dielectric function εM is the reciprocal of the head (i.e. the G = 0,G′ = 0
element) of the inverse of the microscopic dielectric function ε−1.
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It is important to note here that, since vtot is in general a microscopic quan-
tity, because it contains the microscopic fluctuations due to the polarization of the
medium, one could not obtain directly the macroscopic dielectric function εM from
the inverse of the relation (3.40):

vext(q + G, ω) =
∑

G′
εG,G′(q, ω)vtot(q + G′, ω). (3.49)

Since vext is macroscopic, (3.49) is just:

vext(q, ω) =
∑

G′
εG=0,G′(q, ω)vtot(q + G′, ω). (3.50)

Hence:

vext(q, ω) = εG=0,G′=0(q, ω)vtot,M(q, ω)+
∑

G′ 	=0

εG=0,G′(q, ω)vtot(q + G′, ω).

(3.51)
Since vext = εMvtot,M, one has that εM = εG=0,G′=0 only if the off-diagonal
terms (G′ 	= 0) are neglected in Eq. 3.51. These off-diagonal terms correspond
to the rapidly oscillating contributions to the microscopic total potential and are
responsible for the crystal local-field effects. In fact, from Eq. 3.48, one has that
εM = 1/ε−1

G=0,G′=0 = εG=0,G′=0 only if εG,G′ is diagonal, which corresponds to a
dielectric function in the real space that depends only on the distance between r and r ′.

It is possible to prove (Hanke 1978; Onida 2002) that εM can be directly obtained
using a modified density–density response function χ̄ :

εM(q, ω) = 1− vee G=0(q)χ̄G=0,G′=0(q, ω). (3.52)

Whereas the density-density response function χ satisfies the Dyson equation
(1.3.eq:chi-P) χ = P + Pveeχ, the modified response function χ̄ is obtained from

χ̄ = P + P v̄eeχ̄ , (3.53)

where the macroscopic component of v̄ee is set to zero: v̄eeG=0 = 0 and for all
the other components it holds v̄ee = vee. Neglecting local-field effects (NLF), the
macroscopic dielectric function is (see Eq. 3.51):

εNLF
M (q, ω) = εG=0,G′=0(q, ω) = 1− vee G=0(q)PG=0,G′=0(q, ω). (3.54)

Therefore, comparing (3.52) and (3.54), one can see that it is the microscopic part
of the Coulomb interaction v̄ that is responsible for the local-field effects. In fact,
setting v̄ = 0 in (3.53) would imply that χ̄ = P and hence εNLF

M = εM.

Local-field effects are tightly related to spatial inhomogeneities in the system.
Whenever a system is inhomogeneous, even if the external field is slowly varying,
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Fig. 3.4 Imaginary part of the dielectric function for a [110] Si nanowire, with a diameter of
2.2 nm. Calculations are performed for light polarized along (ε‖) and perpendicularly (ε⊥) to the
wire axis, starting from a DFT-LDA ground state and using the RPA approximation either including
local-field effects (with LFE) or neglecting them (without LFE). The result of a classical effective
medium theory (Maxwell-Garnett 1904) (which accounts for classical local-field effects) is shown
for comparison (grey lines). Figure from Bruneval (2005)

the induced charges can have rapid spatial variations. This means that the off-diagonal
elements of the dielectric function are important. Typical examples where local fields
play an important role (Botti 2007) are layered systems, nanotubes or nanowires, and
finite systems like nanoclusters, which represent themselves an inhomogeneity in the
vacuum space. Instead, bulk solids of sp semiconductors are often examples of homo-
geneous systems where local fields play a minor role. In Fig. 3.4 (Bruneval 2005) we
show the optical absorption of a Si nanowire with a diameter of 2.2 nm, calculated
including and neglecting local-field effects. By neglecting local-field effects one
obtains a similar optical absorption for the two components of the imaginary part of
the dielectric functions along and perpendicular to the wire axis (solid and dotted
lines). When local-field effects are included, no significant changes in the parallel
component (dashed line) are observed. In fact, the inhomogeneity of the nanowire
is pronounced in the direction perpendicular to the wire axis, which explains why it
turns out that ε⊥ (dash-dotted line) is extremely sensitive to the local-field effects:
the absorption is shifted to higher energies and the nanowire becomes transparent up
to 6–7 eV. This result can be better understood if we use the fact that, for large wires,
the ab initio calculations tend to reproduce the classical limit given by the effective-
medium theory (Maxwell-Garnett 1904), that accounts for the classical effects due
to the gathering of charges at the polarized surface of the wire.

These criteria to evaluate the importance of local-field effects actually apply only
for polarizable systems, where the initial and final states involved in a particular
transition are localized in a common spatial region (Aryasetiawan 1994). On the
contrary, even in strongly inhomogeneous systems, if the inhomogeneity is not very
polarizable, the induced potentials are small and consequently local fields are not so
important.
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Absorption and electron energy-loss experiments measure Im {εM} and

−Im
{

ε−1
M

}

, respectively. Once εG,G′ has been calculated, the spectra are obtained

from:

Abs(ω)=− lim
q→0

Im {εM(ω)} =− lim
q→0

Im

{

1

ε−1
G=0,G′=0(q, ω)

}

, (3.55a)

EELS(ω) = − lim
q→0

Im
{

ε−1
M (ω)

}

= − lim
q→0

Im
{

ε−1
G=0,G′=0(q, ω)

}

, (3.55b)

where, in particular, we considered EELS at vanishing momentum transfer. Equiva-
lently:

Abs(ω) = − lim
q→0

Im
{

vee G=0(q)χ̄G=0,G′=0(q, ω)
}

, (3.56a)

EELS(ω) = − lim
q→0

Im
{

vee G=0(q)χG=0,G′=0(q, ω)
}

. (3.56b)

The only difference between χ̄ and χ is the absence of the long-range term veeG=0
of the Coulomb interaction in the Dyson equation (3.53). Therefore veeG=0 is the
responsible for the difference between absorption and EELS spectra in solids (Sottile
2005). Bulk silicon absorbs in the energy range between 3–5 eV and the plasmon
resonance is at 16.8 eV. In finite systems, instead, the long-range term becomes
negligible. For this reason, when the limit q → 0 is assumed, EELS and absorption
mathematically coincide in finite systems.

3.7 Conclusions

In this chapter we have discussed how to model processes involving one-particle and
neutral excitations, such as photoemission, inverse photoemission, optical absorp-
tion and electron energy loss spectroscopies, in order to calculate spectra directly
comparable with experimental data.

We analyzed which physical approximations are involved in the microscopic
modeling of the interaction of radiation (or particles) and matter, and how they affect
the comparison with experimental spectra. When it is necessary to obtain macro-
scopic response functions from microscopic ones, a special care must be taken in
performing appropriate averaging procedures.

Only in the simple case of a cubic system and a vanishing wavevector the dielec-
tric function is a scalar quantity, otherwise we must consider a tensor that contains
components related to the response of the system to a longitudinal and transverse
perturbation. In the long-wavelength limit the longitudinal and transverse responses
coincide, which is essential to calculate optical absorption, as a simple expression in
terms of the density-density response function exists for the longitudinal component
of the dielectric tensor.
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Chapter 4
Introduction to TDDFT

Eberhard K. U. Gross and Neepa T. Maitra

4.1 Introduction

Correlated electron motion plays a significant role in the spectra described in the
previous chapters. Further, placing an atom, molecule or solid in a strong laser field
reveals fascinating non-perturbative phenomena, such as non-sequential multiple-
ionization (see Chap. 18), whose origins lie in the subtle ways electrons interact with
each other. The direct approach to treat these problems is to solve the (non-relativistic)
time-dependent Schrödinger equation for the many-electron wavefunction Ψ (t):

Ĥ(t)Ψ (t) = i
∂Ψ (t)

∂t
, Ĥ(t) = T̂ + V̂ee + V̂ext(t) (4.1)

for a given initial wavefunctionΨ (0).Here, the kinetic energy and electron–electron
repulsion, are, respectively:

T̂ = −1

2

N
∑

i=1

∇2
i , and V̂ee = 1

2

N
∑

i �= j

1

|r i − r j | , (4.2)

and the “external potential” represents the potential the electrons experience due to
the nuclear attraction and due to any field applied to the system (e.g. laser):
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V̂ext(t) =
N

∑

i=1

vext(r i , t). (4.3)

For example, vext(r i , t) can represent the Coulomb interaction of the electrons with
a set of nuclei, possibly moving along some classical path,

vext(r, t) = −
Nn∑

ν=1

Zν
|r − Rν(t)| , (4.4)

where Zν and Rν denote the charge and position of the nucleus ν, and Nn stands
for the total number of nuclei in the system. This may be useful to study, e.g.,
scattering experiments, chemical reactions, etc. Another example is the interaction
with external fields, e.g. for a system illuminated by a laser beam we can write, in
the dipole approximation,

vext(r, t) = E f (t) sin(ωt)r · α −
Nn∑

ν=1

Zν
|r − Rν | (4.5)

where α, ω and E are the polarization, the frequency and the amplitude of the laser,
respectively. The function f (t) is an envelope that describes the temporal shape of
the laser pulse. We use atomic units (e2 = � = m = 1) throughout this chapter; all
distances are in Bohr, energies in Hartrees (1 H = 27.21 eV = 627.5 kcal/mol), and
times in units of 2.419× 10−17 s.

Solving Eq. 4.1 is an exceedingly difficult task. Even putting aside
time-dependence, the problem of finding the ground-state scales exponentially with
the number of electrons. Moreover, Ψ contains far more information than one could
possibly need or even want. For example, consider storing the ground state of the
oxygen atom, and for simplicity, disregard spin. Then Ψ depends on 24 coordinates,
three for each of the eight electrons. Allowing ourselves a modest ten grid-points for
each coordinate, means that we need 1024 numbers to represent the wavefunction.
Assuming each number requires one byte to store, and that the capacity of a DVD is
1010 bytes, we see that 1014 DVD’s are required to store just the ground-state wave-
function of the oxygen atom, even on a coarse grid. Physically, we are instead inter-
ested in integrated quantities, such as one- or two-body probability-densities, which,
traditionally can be extracted from this foreboding Ψ. However, a method that could
yield such quantities directly, by-passing the need to calculate Ψ, would be highly
attractive. This is the idea of density-functional theories. In fact, in 1964, Hohen-
berg and Kohn (1964), proved that all observable properties of a static many-electron
system can be extracted exactly, in principle, from the one-body ground-state density
alone. Twenty years later, Runge and Gross extended this to time-dependent systems,
showing that all observable properties of a many-electron system, beginning in a
given initial stateΨ (0),may be extracted from the one-body time-dependent density
alone (Runge and Gross 1984). What has made (TD)DFT so incredibly successful is
the Kohn–Sham (KS) system: the density of the interacting many-electron system is
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obtained as the density of an auxiliary system of non-interacting fermions, living in
a one-body potential. The exponential scaling with system-size that the solution to
Eq. 4.1 requires is replaced in TDDFT by the much gentler N 3 or N 2 scaling
(depending on the implementation) (Marques 2006), opening the door to the quantum
mechanical study of much larger systems, from nanoscale devices to biomolecules.
(See Chaps. 19–21 for details on the numerical issues). Although the ground-state
and time-dependent theories have a similar flavor, and modus operandi, their proofs
and functionals are quite distinct.

Before we delve into the details of the fundamental theorems of TDDFT in the
next section, we make some historical notes. As early as 1933, Bloch proposed a time-
dependent Thomas–Fermi model (Bloch 1933). Ando (1977a, b), Peuckert (1978)
and Zangwill and Soven (1980a, 1980b) ran the first time-dependent KS calculations,
assuming a TDKS theorem exists. They treated the linear density response to a
time-dependent external potential as the response of non-interacting electrons to an
effective time-dependent potential. Ando calculated resonance energy and absorption
lineshapes for intersubband transitions on the surface of silicon, while Peuckert and
Zangwill and Soven studied rare-gas atoms. In analogy to ground-state KS theory, this
effective potential was assumed to contain an exchange-correlation part, vxc(r, t),
in addition to the time-dependent external and Hartree terms. Peuckert suggested an
iterative scheme for the calculation of vxc,while Ando, Zangwill and Soven adopted
the functional form of the static exchange-correlation potential in LDA. Significant
steps towards a rigorous foundation of TDDFT were taken by Deb and Ghosh (1982),
Ghosh and Deb (1982, 1983a, 1983b) for time-periodic potentials and by Bartolotti
(1981, 1982, 1984, 1987) for adiabatic processes. These authors formulated and
explored Hohenberg–Kohn and KS type theorems for the time-dependent density
for these cases. Modern TDDFT is based on the general formulation of Runge and
Gross (1984).

TDDFT is being used today in an ever-increasing range of applications to widely-
varying systems in chemistry, biology, solid-state physics, and materials science.
We end the introduction by classifying these into four areas. First, the vast majority of
TDDFT calculations today lie in spectroscopy (Chaps. 1–3 earlier), yielding response
and excitations of atoms, molecules and solids. The laser field applied to the system,
initially in its ground-state, is weak and perturbation theory applies. We need to know
only the exchange-correlation potential in the vicinity of the ground-state, and often
(but not always), formulations directly in frequency-domain are used (Chap. 7 and
later in this chapter). Overall, results for excitation energies tend to be fairly good
(few tenths of an eV error, typically) but depend significantly on the system and type
of excitation considered, e.g. the errors for long-range charge-transfer excitations
can be ten times as large. For solids, to obtain accurate optical absorption spectra
of insulators needs functionals more sophisticated than the simplest ones (ALDA),
however ALDA does very well for electron-energy-loss spectra. We shall return to
the general performance of TDDFT for spectra in Sect. 4.8.

The second class of applications is real-time dynamics in non-perturbative fields.
The applied electric field is comparable to, or greater than, the static electric field due
to the nuclei. Fascinating and subtle electron interaction effects can make the “single

http://dx.doi.org/10.1007/978-3-642-23518-4_19
http://dx.doi.org/10.1007/978-3-642-23518-4_21
http://dx.doi.org/10.1007/978-3-642-23518-4_1
http://dx.doi.org/10.1007/978-3-642-23518-4_3
http://dx.doi.org/10.1007/978-3-642-23518-4_7
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active electron” picture often used for these problems break down. For dynamics
in strong fields, it is pushing today’s computational limits for correlated wavefunc-
tion methods to go beyond one or two electrons in three-dimensions, so TDDFT is
particularly promising in this regime. However, the demands on the functionals
for accurate results can be challenging. Chapter 18 discusses many interesting
phenomena, that reveal fundamental properties of atoms and molecules. Also under
this umbrella are coupled electron-ion dynamics. For example, applying a laser
pulse to a molecule or cluster, drives both the electronic and nuclear system out
of equilibrium; generally their coupled motion is highly complicated, and various
approximation schemes to account for electronic-nuclear “back-reaction” have been
devised. Often in photochemical applications, the dynamics are treated beginning
on an excited potential energy surface; that is, the dynamics leading to the initial
electronic excitation is not explicitly treated but instead defines the initial state for
the subsequent field-free dynamics of the full correlated electron and ion system. We
refer the reader to Chaps. 14–16 for both formal and practical discussions on how to
treat this challenging problem.

The third class of applications returns to the ground-state: based on the fluctuation-
dissipation theorem, one can obtain an expression for the ground-state exchange-
correlation energy from a TDDFT response function, as is discussed in Chap. 22. Such
calculations are significantly more computationally demanding than usual ground-
state calculations but provide a natural methodology for some of the most difficult
challenges for ground-state approximations, in particular van der Waal’s forces. We
refer the reader to Chaps. 22 and 23 for a detailed discussion.

The fourth class of applications is related to viscous forces arising from electron-
electron interactions in very large finite systems, or extended systems such as solids.
Consider an initial non-equilibrium state in such a system, created, for example, by
a laser pulse that is then turned off. For a large enough system, electron interac-
tion subsequently relaxes the system to the ground-state, or to thermal equilibrium.
Relaxation induced by electron-interaction can be in principle exactly captured in
TDDFT, but for a theoretically consistent formulation, one should go beyond the
most commonly used approximations. A closely related approach is time-dependent
current-density functional theory (TDCDFT) (Sect. 4.4.4 and Chap. 24), where an
xc vector-potential provides the viscous force (D’Agosta and Vignale 2006; Ullrich
2006b). Dissipation phenomena studied so far, using either TDDFT or TDCDFT,
include energy loss in atomic collisions with metal clusters (Baer and Siam 2004),
the stopping power of ions in electron liquids (Nazarov et al. 2005; Hatcher 2008;
Nazarov 2007), spin-Coulomb drag (d’Amico and Ullaich 2006, 2010), and a hot
electron probing a molecular resonance at a surface (Gavnholt et al. 2009). Transport
through molecular devices (Chap. 17) is an important subgroup of these applications:
how a system evolves to a steady-state after a bias is applied (Stefanucci Almbhdh
2004a; Kurth et al. 2005, 2010; Khosravi et al. 2009; Stefanucci 2007; Koentopp
et al. 2008; Zheng 2010). In this problem, to account for coupling of electrons in
the molecular wire to a “bath” of electrons in the leads, or to account for coupling
to external phonon modes, one is led to the “open systems” analyses, reviewed in
Chaps. 10 and 11 (Gebauer and Car 2004a; Burke 2005; Yuen-Zhou et al. 2010;

http://dx.doi.org/10.1007/978-3-642-23518-4_18
http://dx.doi.org/10.1007/978-3-642-23518-4_14
http://dx.doi.org/10.1007/978-3-642-23518-4_16
http://dx.doi.org/10.1007/978-3-642-23518-4_22
http://dx.doi.org/10.1007/978-3-642-23518-4_22
http://dx.doi.org/10.1007/978-3-642-23518-4_23
http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_17
http://dx.doi.org/10.1007/978-3-642-23518-4_10
http://dx.doi.org/10.1007/978-3-642-23518-4_11
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Di Ventra D’Agosta 2007; Chen 2007; Appel and di ventra 2009). In Ullrich (2002b)
the linear response of weakly disordered systems was formulated, embracing both
extrinsic damping (interface roughness and charged impurities) as well as intrinsic
dissipation from electron interaction.

The present chapter is organized as follows. Section 4.2 presents the proof of the
fundamental theorem in TDDFT. Section 4.3 then presents the time-dependent KS
equations, the “performers” of TDDFT. In Sect. 4.4 we discuss several details of
the theory, which are somewhat technical but important if one scratches below the
surface. Section 4.5 derives the linear response formulation, and the matrix equations
which run the show for most of the applications today. Section 4.6 briefly presents the
equations for higher-order response, while Sect. 4.7 describes some of the approxi-
mations in use currently for the xc functional. Finally, Sect. 4.8 gives an overview of
the performance and challenges for the approximations today.

4.2 One-to-One Density-Potential Mapping

The central theorem of TDDFT (the Runge–Gross theorem) proves that there is a one-
to-one correspondence between the external (time-dependent) potential, vext(r, t),
and the electronic one-body density, n(r, t), for many-body systems evolving from
a fixed initial stateΨ0 (Runge and Gross 1984). The density n(r, t) is the probability
(normalized to the particle number N) of finding any one electron, of any spin σ, at
position r:

n(r, t) = N
∑

σ,σ2..σN

∫

d3r2 · · ·
∫

d3r N |Ψ (rσ, r2σ2 · · · r NσN , t)|2 (4.6)

The implications of this theorem are enormous: if we know only the time-dependent
density of a system, evolving from a given initial state, then this identifies the external
potential that produced this density. The external potential completely identifies the
Hamiltonian (the other terms given by Eq. 4.2 are determined from the fact that
we are dealing with electrons, with N being the integral of the density of Eq. 4.6
over r.) The time-dependent Schrödinger equation can then be solved, in principle,
and all properties of the system obtained. That is, for this given initial-state, the
electronic density, a function of just three spatial variables and time, determines all
other properties of the interacting many-electron system.

This remarkable statement is the analogue of the Hohenberg-Kohn theorem for
ground-state DFT, where the situation is somewhat simpler: the density-potential
map there holds only for the ground-state, so there is no time-dependence and no
dependence on the initial state. The Hohenberg-Kohn proof is based on the Rayleigh-
Ritz minimum principle for the energy. A straightforward extension to the time-
dependent domain is not possible since a minimum principle is not available in this
case.
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Instead, the proof for a 1–1 mapping between time-dependent potentials and
time-dependent densities is based on considering the quantum-mechanical equation
of motion for the current-density, for a Hamiltonian of the form of Eqs. 4.1–4.3.
The proof requires the potentials vext(r, t) to be time-analytic around the initial
time, i.e. that they equal their Taylor-series expansions in t around t = 0, for a finite
time interval:

vext(r, t) =
∞
∑

k=0

1

k!vext,k(r)tk . (4.7)

The aim is to show that two densities n(r, t) and n′(r, t) evolving from a common
initial stateΨ0 under the influence of the potentials vext(r, t) and v′ext(r, t) are always
different provided that the potentials differ by more than a purely time-dependent
function:

vext(r, t) �= v′ext(r, t)+ c(t). (4.8)

The above condition is a physical one, representing simply a gauge-freedom. A purely
time-dependent constant in the potential cannot alter the physics: if two potentials
differ only by a purely time-dependent function, their resulting wavefunctions differ
only by a purely time-dependent phase factor. Their resulting densities are iden-
tical. All variables that correspond to expectation values of Hermitian operators are
unaffected by such a purely time-dependent phase. There is an analogous condi-
tion in the ground-state proof of Hohenberg and Kohn. Equation 4.8 is equivalent
to the statement that for the expansion coefficients vext,k(r) and v′ext,k(r) [where,

as in Eq. 4.7, v′ext(r, t) =∑∞
k=0

1
k!v
′
ext,k(r)t

k ] there exists a smallest integer k ≥ 0
such that

vext,k(r)− v′ext,k(r) =
∂k

∂tk

[

vext(r, t)− v′ext(r, t)
]
∣
∣
∣
∣
t=0
�= const. (4.9)

The initial stateΨ0 need not be the ground-state or any stationary state of the initial
potential, which means that “sudden switching” is covered by the RG theorem. But
potentials that turn on adiabatically from t = −∞, are not, since they do not satisfy
Eq. 4.7 (see also Sect. 4.5.3).

The first step of the proof demonstrates that the current-densities

j(r, t) = 〈Ψ (t)| ĵ(r)|Ψ (t)〉 (4.10)

and

j ′(r, t) = 〈Ψ ′(t)| ĵ(r)|Ψ ′(t)〉 (4.11)

are different for different potentials vext and v′ext. Here,
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ĵ(r) = 1

2i

N
∑

i=1

[∇iδ(r − r i )+ δ(r − r i )∇i ] (4.12)

is the usual paramagnetic current-density operator. In the second step, use of the
continuity equation shows that the densities n and n′ are different. We now proceed
with the details.

Step 1 We apply the equation of motion for the expectation value of a general operator
Q̂(t),

∂

∂t
〈Ψ (t)|Q̂(t)|Ψ (t)〉 = 〈Ψ (t)|

(

∂ Q̂

∂t
− i[Q̂(t), Ĥ(t)]

)

|Ψ (t)〉, (4.13)

to the current densities:

∂

∂t
j(r, t) = ∂

∂t
〈Ψ (t)| ĵ(r)|Ψ (t)〉 = −i〈Ψ (t)|[ ĵ(r), Ĥ(t)]|Ψ (t)〉 (4.14a)

∂

∂t
j ′(r, t) = ∂

∂t
〈Ψ ′(t)| ĵ(r)|Ψ ′(t)〉 = −i〈Ψ ′(t)|[ ĵ(r), Ĥ ′(t)]|Ψ ′(t)〉, (4.14b)

and take their difference evaluated at the initial time. Since Ψ and Ψ ′ evolve from
the same initial state

Ψ (t = 0) = Ψ ′(t = 0) = Ψ0, (4.15)

and the corresponding Hamiltonians differ only in their external potentials, we have

∂

∂t

[

j(r, t)− j ′(r, t)
]
∣
∣
∣
∣
t=0
=− i〈Ψ0|[ ĵ(r), Ĥ(0)− Ĥ ′(0)]|Ψ0〉
= − n0(r)∇

[

vext(r, 0)− v′ext(r, 0)
]

(4.16)

where n0(r) is the initial density. Now, if the condition (4.9) is satisfied for k = 0 the
right-hand side of (4.16) cannot vanish identically and j and j ′ will become different
infinitesimally later than t = 0. If the smallest integer k for which Eq. 4.9 holds is
greater than zero, we use Eq. 4.13 (k + 1) times. That is, as for k = 0 above where
we used Q̂(t) = ĵ(r) in Eq. 4.13, for k = 1, we take Q̂(t) = −i[ ĵ(r), Ĥ(t)]; for
general k, Q̂(t) = (−i)k[[[ ĵ(r), Ĥ(t)], Ĥ(t)] . . . Ĥ(t)]k meaning there are k nested
commutators to take. After some algebra1:

(
∂

∂t

)k+1

[ j(r, t)− j ′(r, t)]
∣
∣
∣
∣
∣
t=0

= −n0(r)∇wk(r) �= 0 (4.17)

1 Note that Eq. 4.17 applies for all integers from 0 to this smallest k for which Eq. 4.9 holds, but
not for integers larger than this smallest k.
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with

wk(r) =
(
∂

∂t

)k

[vext(r, t)− v′ext(r, t)]
∣
∣
∣
∣
∣
t=0

. (4.18)

Once again, we conclude that infinitesimally later than the initial time,

j(r, t) �= j ′(r, t). (4.19)

This first step thus proves that the current-densities evolving from the same initial
state in two physically distinct potentials, will differ. That is, it proves a one-to-one
correspondence between current-densities and potentials, for a given initial-state.

Step 2 To prove the corresponding statement for the densities we use the continuity
equation

∂n(r, t)

∂t
= −∇ · j(r, t) (4.20)

to calculate the (k + 2)nd time-derivative of the density n(r, t) and likewise of the
density n′(r, t).Taking the difference of the two at the initial time t = 0 and inserting
Eq. 4.18 yields

(
∂

∂t

)k+2
[

n(r, t)− n′(r, t)
]

∣
∣
∣
∣
∣
t=0

= ∇ · [n0(r)∇wk(r)]. (4.21)

Now, if there was no divergence-operator on the r.h.s., our task would be complete,
showing that the densities n(r, t) and n′(r, t) will become different infinitesimally
later than t = 0. To show that the divergence does not render the r.h.s. zero, thus
allowing an escape from this conclusion, we consider the integral

∫

d3rn0(r)[∇wk(r)]2 = −
∫

d3rwk(r)∇ · [n0(r)∇wk(r)]

+
∮

dS · [n0(r)wk(r)∇wk(r)], (4.22)

where we have used Green’s theorem. For physically reasonable potentials (i.e. poten-
tials arising from normalizable external charge densities), the surface integral on the
right vanishes (Gross and Kohn 1990) (more details are given in Sect. 4.4.1). Since
the integrand on the left-hand side is strictly positive or zero, the first term on the
right must be strictly positive. That is,∇ ·[n0(r)∇wk(r)] cannot be zero everywhere.
This completes the proof of the theorem.

We have shown that densities evolving from the same initial wavefunction Ψ0
in different potentials must be different. Schematically, the Runge-Gross theorem
shows



4 Introduction to TDDFT 61

Ψ0 : vext
1−1←→ n. (4.23)

The backward arrow, that a given time-dependent density points to a single time-
dependent potential for a given initial state, has been proven above. The forward arrow
follows directly from the uniqueness of solutions to the time-dependent Schrödinger
equation.

Due to the one-to-one correspondence, for a given initial state, the time-dependent
density determines the potential up to a purely time-dependent constant. The wave-
function is therefore determined up to a purely-time-dependent phase, as discussed
at the beginning of this section, and so can be regarded as a functional of the density
and initial state:

Ψ (t) = e−iα(t)Ψ [n, Ψ0](t). (4.24)

As a consequence, the expectation value of any quantum mechanical Hermitian oper-
ator Q̂(t) is a unique functional of the density and initial state (and, not surprisingly,
the ambiguity in the phase cancels out):

Q[n, Ψ0](t) = 〈Ψ [n, Ψ0](t)|Q̂(t)|Ψ [n, Ψ0](t)〉. (4.25)

We also note that the particular form of the Coulomb interaction did not enter
into the proof. In fact, the proof applies not just to electrons, but to any system of
identical particles, interacting with any (but fixed) particle-interaction, and obeying
either fermionic or bosonic statistics.

In Sect. 4.4 we shall return to some details and extensions of the proof, but now
we proceed with how TDDFT operates in practice: the time-dependent Kohn–Sham
equations.

4.3 Time-Dependent Kohn–Sham Equations

Finding functionals directly in terms of the density can be rather difficult. In partic-
ular, it is not known how to write the kinetic energy as an explicit functional of the
density. The same problem occurs in ground-state DFT, where the search for accu-
rate kinetic-energy density-functionals is an active research area. Instead, like in the
ground-state theory, we turn to a non-interacting system of fermions called the Kohn–
Sham (KS) system, defined such that it exactly reproduces the density of the true
interacting system. A large part of the kinetic energy of the true system is obtained
directly as an orbital-functional, evaluating the usual kinetic energy operator on the
KS orbitals. (The rest, along with other many-electron effects, is contained in the
exchange-correlation potential.) All properties of the true system can be extracted
from the density of the KS system.

Because the 1–1 correspondence between time-dependent densities and time-
dependent potentials can be established for any given interaction V̂ee, in particular
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also for V̂ee ≡ 0, it applies to the KS system. Therefore the external potential
vKS[n;Φ0](r, t) of a non-interacting system reproducing a given density n(r, t),
starting in the initial state Φ0, is uniquely determined. The initial KS state Φ0 is
almost always chosen to be a single Slater determinant of single-particle spin-orbitals
ϕi (r, 0) (but need not be); the only condition on its choice is that it must be compatible
with the given density. That is, it must reproduce the initial density and also its first
time-derivative (from Eq. 4.20, see also Eqs. 4.29–4.30 shortly). However, the 1–1
correspondence only ensures the uniqueness of vKS[n;Φ0] but not its existence for
an arbitrary n(r, t). That is, the proof does not tell us whether a KS system exists
or not; this is called the non-interacting v-representability problem, similar to the
ground-state case. We return to this question later in Sect. 4.4.2, but for now we
assume that vKS exists for the time-dependent density of the interacting system of
interest. Under this assumption, the density of the interacting system can be obtained
from

n(r, t) =
N

∑

j=1

|ϕ j (r, t)|2 (4.26)

with orbitals ϕ j (r, t) satisfying the time-dependent KS equation

i
∂

∂t
ϕ j (r, t) =

[

−∇
2

2
+ vKS[n;Φ0](r, t)

]

ϕ j (r, t). (4.27)

Analogously to the ground-state case, vKS is decomposed into three terms:

vKS[n;Φ0](r, t) = vext[n;Ψ0](r, t)+
∫

d3r ′ n(r,
′ t)

|r − r ′| + vxc[n;Ψ0, Φ0](r, t),

(4.28)
where vext[n;Ψ0](r, t) is the external time-dependent field. The second term on
the right-hand side of Eq. 4.28 is the time-dependent Hartree potential, describing
the interaction of classical electronic charge distributions, while the third term is
the exchange-correlation (xc) potential which, in practice, has to be approximated.
Equation 4.28 defines the xc potential: it, added to the classical Hartree potential,
is the difference between the external potential that generates density n(r, t) in an
interacting system starting in initial stateΨ0 and the one-body potential that generates
this same density in a non-interacting system starting in initial state Φ0.

The functional-dependence of vext displayed in the first term on the r.h.s. of
Eq. 4.28 is not important in practice, since for real calculations, the external potential
is given by the physics at hand. Only the xc potential needs to be approximated in
practice, as a functional of the density, the true initial state and the KS initial state.
This functional is a very complex one: knowing it implies the solution of all time-
dependent Coulomb interacting problems.

As in the static case, the great advantage of the time-dependent KS scheme lies
in its computational simplicity compared to other methods such as time-dependent
configuration interaction (Errea et al. 1985; Reading and Ford 1987; Krause 2005;
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Krause 2007) or multi-configuration time-dependent Hartree–Fock (Zanghellini et
al. 2003; Kato and Kono 2004; Nest 2005; Meyer 1990; Caillat 2005). A TDKS
calculation proceeds as follows. An initial set of N orthonormal KS orbitals is chosen,
which must reproduce the exact density of the true initial state Ψ0 (given by the
problem) and its first time-derivative:

n(r, 0) =
N

∑

i=1

|ϕi (r, 0)|2 = N
∑

σ,σ2...σN

∫

d3r2 · · ·
∫

d3rN |Ψ0(x, x2 . . . xN )|2

(4.29)
(and we note there exist infinitely many Slater determinants that reproduce a given
density (Harriman 1981; Zumbach and Maschke 1983)), and

ṅ(r, 0) = −∇ · Im

N
∑

i=1

∑

σ

ϕ∗i (r, 0)∇ϕi (r, 0)

= −N∇ · Im
∑

σ,σ2...σN

∫

d3r2 · · ·
∫

d3rNΨ
∗
0 (x, x2 . . . xN )∇Ψ0(x, x2 . . . xN )

(4.30)
using notation x = (r, σ ). The TDKS equations (Eq. 4.27) then propagate these
initial orbitals, under the external potential given by the problem at hand, together
with the Hartree potential and an approximation for the xc potential in Eq. 4.28. In
Sect. 4.7 we shall discuss the approximations that are usually used here.

The choice of the KS initial state, and the fact that the KS potential depends on
this choice is a completely new feature of TDDFT without a ground-state analogue.
A discussion of the subtleties arising from initial-state dependence can be found
in Chap. 8. In practice, the theory would be much simpler if we could deal with
functionals of the density alone. For a large class of systems, namely those where
bothΨ0 andΦ0 are non-degenerate ground states, observables are indeed functionals
of the density alone. This is because any non-degenerate ground state is a unique
functional of its density n0(r) by virtue of the traditional Hohenberg–Kohn theorem
(Hohenberg and Kohn 1964). In particular, the initial KS orbitals are uniquely deter-
mined as well in this case. We emphasize this is often the case in practice; in particular
in the linear response regime, where spectra are calculated (see Sect. 4.5). This is
where the vast majority of applications of TDDFT lie today.

4.4 More Details and Extensions

We now discuss in more detail some important points that arose in the derivation of
the proof above. Several of these are discussed at further length in the subsequent
chapters.

http://dx.doi.org/10.1007/978-3-642-23518-4_8
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4.4.1 The Surface Condition

It is essential for Step 2 of the RG proof that the surface term
∮

dS · n0(r)wk(r)∇wk(r) (4.31)

appearing in Eq. 4.22 vanishes. Let us consider realistic physical potentials of the
form

vext(r, t) =
∫

d3r
next(r ′, t)

|r − r ′| (4.32)

where next(r, t) denotes normalizable charge-densities external to the electronic
system. A Taylor expansion in time of this expression shows that the coefficients
vext,k, and therefore wk fall off at least as 1/r asymptotically so that, for physical
initial densities, the surface integral vanishes (Gross and Kohn 1990). However, if
one allows more general potentials, the surface integral need not vanish: consider
fixing an initial stateΨ0 that leads to a certain asymptotic form of n0(r).Then one can
always find potentials which increase sufficiently steeply in the asymptotic region
such that the surface integral does not vanish. In (Xu and Rajagopal 1985; Dhara
and Ghosh 1987) several examples of this are discussed, where the r.h.s. of Eq. 4.21
can be zero even while the term inside the divergence is non-zero. These cases are
however largely unphysical, e.g. leading to an infinite potential energy per particle
near the initial time. It would be desirable to prove the one-to-one mapping under a
physical condition, such as finite energy expectation values.

An interesting case is that of extended periodic systems in a uniform electric
field, such as is often used to describe the bulk of a solid in a laser field. Repre-
senting the field by a scalar linear potential is not allowed because a linear potential
is not an operator on the Hilbert space of periodic functions. The periodic boundary
conditions may be conveniently modelled by placing the system on a ring. Let us
first consider a finite ring; for example, a system such as a nanowire with peri-
odic boundary conditions in one direction, and finite extent in the other dimensions.
Then an electric field going around the ring cannot be generated by a scalar poten-
tial: according to Faraday’s law, ∇ × E = −dB/dt. Such an electric field can
only be produced by a time-dependent magnetic field threading the center of the
ring. The situation for an infinite periodic system in a uniform field also requires
a vector potential if one wants the Hamiltonian to preserve periodicity. The vector
potential is purely time-dependent in this case, and leads to a uniform electric field
via E(t) = −(1/c)dA(t)/dt. Once again, TDDFT cannot be applied, even though
B = ∇ × A = 0.That is, for a finite ring with an electric field around the ring, there
is a real, physical magnetic field, while for the case of the infinite periodic system
there is no physical magnetic field, but a vector potential is required for mathe-
matical reasons. In either case, TDDFT does not apply (Maitra 2003). However,
fortunately, the theorems of TDDFT have been generalized to include vector poten-
tials (Ghosh and Deb 1988), leading to time-dependent current-density functional
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theory (TDCDFT) (Vignale and Kohn 1996), which will be discussed in detail in
Chap. 24. Moreover, if the optical response is instead obtained via the limit q → 0,
the problem can be formulated as a scalar field and TDDFT does apply. In this case,
the surface in the RG proof can be chosen as an integral multiple of q and the period-
icity of the system, and the surface term vanishes. Finally, note that a uniform field
does not usually pose any problem for any finite system, where the asymptotic decay
of the initial density in physical cases is fast enough to kill the surface integral.

4.4.2 Interacting and Non-interacting v-Representability

The RG proof presented above proves uniqueness of the potential that generates
a given density from a given initial state, but does not prove its existence. The
question of whether a given density comes from evolution in a scalar potential is called
v-representability, a subtle issue that arises also in the ground-state case (Dreizler
and Gross 1990). In both the ground-state and time-dependent theories, it is still an
open and difficult one. (See also Fig. 4.1.) Some discussion for the time-dependent
case can be found in (Kohl and Dreizler 1986; Ghosh and Deb 1988).

Perhaps more importantly, however, is the question of whether a density, known
to be generated in an interacting system, can be reproduced in a non-interacting one.
That is, given a time-dependent external potential and initial state, does a KS system
exist? This question is called “non-interacting v-representability” and was answered
under some well-defined conditions in (van Leeuwen 1999). A feature of this proof
is that it leads to the explicit construction of the KS potential. Chapter 9 covers this
in detail.

One condition is that the density is assumed to be time-analytic about the initial
time. The Runge-Gross proof only requires the potential to be time-analytic, but
that the density is also is an additional condition required for the non-interacting
v-representability proof of (van Leeuwen 1999). In fact, it is a much more restrictive
condition than that on the potential, as has been recently discussed in (Maitra 2010).
The entanglement of space and time in the time-dependent Schrödinger equation
means that spatial singularities (such as the Coulomb one) in the potential can lead
to non-analyticities in time in the wavefunction, and consequently the density, even
when the potential is time-analytic. Again, we stress that non time-analytic densities
are covered by the RG proof for the one-to-one density-potential mapping (Sect. 4.2).
Two different non-time-analytic densities will still differ in their formal time-Taylor
series at some order at some point in space, and this is all that is needed for the proof.

The other conditions needed for the KS-existence proof are much less severe. The
choice of the initial KS wavefunction is simply required to satisfy Eqs. 4.29 and 4.30
(and be well-behaved in having finite energy expectation values).

It is interesting to point out here that much less is known about non-interacting
v-representability in the ground-state theory.

http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_9
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Fig. 4.1 A cartoon to illustrate the RG mapping. The three outer ellipses contain possible density
evolutions, n(r, t), that arise from evolving the initial state labelling the ellipse in a one-body
potential vext; the potentials are different points contained in the central ellipse. Different symbols
label different n(r, t) and one may find the same n(r, t)may live in more than one ellipse. The RG
theorem says that no two lines from the same ellipse may point to the same vext in the central ellipse.
Lines emanating from two different outer ellipses may point to either different or same points in
the central one. If they come from identical symbols, they must point to different points (i.e. two
different initial states may give rise to the same density evolution in two different potentials). The
initial state labelling the lower ellipse has either a different initial density or current than the initial
states labelling the upper ellipses; hence no symbols inside overlap with those in the upper. However,
they may be generated from the same potential vext. Some densities, the open symbols, do not point
to any vext, representing the non-v-representable densities. Finally, if an analogous cartoon was
made for the KS system, whether all the symbols that are solid in the cartoon above, remain solid
in the KS cartoon, represents the question of non-interacting v-representability

4.4.3 A Variational Principle

It is important to realise that the TDKS equations do not follow from a variational
principle: as presented above, all that was needed was (i) the Runge-Gross proof that a
given density evolving from a fixedΨ0 points to a unique potential, for interacting and
non-interacting systems, and (ii) the assumption of non-interacting v-representability.

Nevertheless, it is interesting to ask whether a variational principle exists in
TDDFT. In the ground-state, the minimum energy principle meant that one need only
approximate the xc energy as a functional of the density, Exc[n], and then take its
functional derivative to find the ground-state potential: vGS

xc [n](r) = δExc[n]/δn(r).
Is there an analogue in the time-dependent case? Usually the action plays the
role of the energy in time-dependent quantum mechanics, but here the situation
is not as simple: if one could write vxc[n](r, t) = δAxc[n]/δn(r, t) for some xc
action functional Axc[n] (dropping initial-state dependence for simplicity for this
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argument), then we see that δvxc[n](r, t)/δn(r ′, t ′) = δ2 Axc[n]/δn(r, t)δn(r ′, t ′)
which is symmetric in t and t ′. However that would imply that density-changes at
later times t ′ > t would affect the xc potential at earlier times, i.e. causality would
be violated. This problem was first pointed out in (Gross et al. 1996). Chapter 9
discusses this problem, as well as its solution, at length. Indeed one can define an
action consistent with causality, on a Keldysh contour (van Leeuwen 1998), using
“Liouville space pathways” (Mukamel 2005) or using the usual real-time definition
but including boundary terms (Vignale 2008).

4.4.4 The Time-Dependent Current

Step 1 of the RG proof proved a one-to-one mapping between the external poten-
tial and the current-density, while the second step invoked continuity, with the help
of a surface condition, to prove the one-to-one density-potential mapping. In fact,
a one-to-one mapping between current-densities and vector potentials, a special
case of which is the class of scalar potentials, has been proven in later work (Xu
and Rajagopal 1985; Ng 1989; Ghosh and Deb 1988; Gross et al. 1996). But as
will be discussed in Chap. 24, even when the external potential is merely scalar,
there can be advantages to the time-dependent current-density functional theory
(TDCDFT) framework. Simpler functional approximations in terms of the time-
dependent current-density can be more accurate than those in terms of the density: in
particular, local functionals of the current-density correspond to non-local density-
functionals, important in the optical response of solids for example, and for polariz-
abilities of long-chain polymers.

In TDCDFT, the KS system is defined to reproduce the exact current-density
j(r, t) of the interacting system, but in TDDFT the KS current jKS(r, t) is not
generally equal to the true current. As both current densities satisfy the continuity
equation with the same density, i.e.

ṅ(r, t) = −∇ · j(r, t) = −∇ · jKS(r, t), (4.33)

we know immediately that the longitudinal parts of j and jKS must be identical.
However, they may differ by a rotational component:

j(r, t) = jKS(r, t)+ jxc(r, t) (4.34)

where

jxc(r, t) = ∇ × C(r, t) (4.35)

with some real function C(r, t). We also know for sure that
∫

d3r jxc(r, t) = 0 (4.36)

http://dx.doi.org/10.1007/978-3-642-23518-4_9
http://dx.doi.org/10.1007/978-3-642-23518-4_24
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because
∫

d3r j(r, t) = ∫

d3r r ṅ(r, t) and the KS system exactly reproduces the true
density.

The question of when the KS current equals the true current may equivalently
be posed in terms of v-representability of the current: Given a current gener-
ated by a scalar potential in an interacting system, is that current non-interacting
v-representable? That is, does a scalar potential exist in which a non-interacting
system would reproduce this interacting, v-representable current exactly? By Step
1 of the RG proof applied to non-interacting systems, if it does exist, it is unique,
and, since it also reproduces the exact density by the continuity equation, it is iden-
tical to the KS potential. There are two aspects to the question above. First, the
initial KS Slater determinant must reproduce the current-density of the true initial
state. Certainly in the case of initial ground-states, with zero initial current, such
a Slater determinant can be found (Harriman 1981; Zumbach and Maschke 1983),
but whether one can be always found for a general initial current is open. Assuming
an appropriate initial Slater determinant can be found, then we come to the second
aspect: can we find a scalar potential under which this Slater determinant evolves with
the same current-density as that of the true system? It was shown in (D’Agosta and
Vignale 2005) that the answer is, generally, no. (On the other hand, non-interacting A-
representability, in terms of TDCDFT, has been proven under certain time-analyticity
requirements on the current-density and the vector potentials (Vignale 2004)). In the
examples of (D’Agosta and Vignale 2005), even if no external magnetic field is
applied to the true interacting system, one still needs a magnetic field in a non-
interacting system for it to reproduce its current.

4.4.5 Beyond the Taylor-Expansion

The RG proof was derived for potentials that are time-analytic. It does not apply
to potentials that turn on, for example, like e−C/tn

with C > 0, n > 0, or t p with
p positive non-integer. Note that the first example is infinitely differentiable, with
vanishing derivatives at t = 0 while higher-order derivatives of the second type
diverge as t → 0+. This is however only a mild restriction, as most potentials are
turned on in a time-analytic fashion. Still, it begs the question of whether a proof
can be formulated that does apply to these more general cases. A hope would be
that such a proof would lead the way to a proof for non-interacting v-representability
without the additional, more restrictive, requirement needed in the existing proof that
the density is time-analytic (Sect. 4.4.2).

A trivial, but physically relevant, extension is to piecewise analytic potentials, for
example, turning a shaped laser field on for some time T and then off again. These
potentials are analytic in each of a finite number of intervals. The potential need not
have the same Taylor expansion in one interval as it does in another, so the points
where they join may be points of nonanalyticity. It is straightforward to extend the
RG proof given above to this case (Maitra et al. 2002b).
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There are three extensions of RG that go beyond the time-analyticity requirement
on the potential. The first two are in the linear response regime. In the earliest (Ng
and Singwi 1987), the short-time density response to “small” but arbitrary potentials
has been shown to be unique under two assumptions: that the system starts from a
stationary state (not necessarily the ground state) of the initial Hamiltonian and that
the corresponding linear density-response function is t-analytic. In the second (van
Leeuwen 2001), uniqueness of the linear density response, starting from the elec-
tronic ground-state, was proven for any Laplace-transformable (in time) potential.
As most physical potentials have finite Laplace transforms, this represents a signifi-
cant widening of the class of potentials for which a 1:1 mapping can be established
in the linear-response regime, from an initial ground state. This approach is further
discussed in Chap. 9, where also a third, completely new way to address this question
is presented via a global fixed-point proof: the one-to-one density-potential mapping
is demonstrated for the full non-linear problem, but only for the set of potentials that
have finite second-order spatial derivatives.

The difficulty in generalizing the RG proof beyond time-analytic potentials, was
discussed in Maitra et al. (2010), where the questions of the one-to-one density-
potential mapping and v-representability were reformulated in terms of uniqueness
and existence, respectively, of a particular time-dependent non-linear Schrödinger
equation (NLSE). The particular structure of the NLSE is not one that has been studied
before, and has, so far, not resulted in a general proof, although Chap. 9 discusses new
progress in this direction (Ruggenthaler 2011b). On a lattice, the NLSE reverts to a
system of nonlinear ordinary differential equations; this has been exploited in Tokatly
(2011b) to prove existence and uniqueness of a TDCDFT for lattice systems. The
framing of the fundamental theorems of time-dependent density-functional theories
in terms of well-posedness of a type of NLSE first appeared in Tokatly (2009) where
it arises naturally in Tokatly’s Lagrangian formulation of TD current-DFT, known as
TD-deformation functional theory (see Chap. 25). The traditional density-potential
mapping question is avoided in TD-deformation functional theory, where instead
this issue is hidden in the existence and uniqueness of a NLSE involving the metric
tensor defining the co-moving frame. Very recently the relation between the NLSE
of TDDFT and that of TD-deformation functional theory has been illuminated in
Tokatly (2011a).

4.4.6 Exact TDKS Scheme and its Predictivity

The RG theorem guarantees a rigorous one-to-one correspondence between time-
dependent densities and time-dependent external potentials. The one-to-one corre-
spondence holds both for fully interacting systems and for non-interacting particles.
Hence there are two unique potentials that correspond to a given time-dependent
density n(r, t): one potential, vext[n, Ψ0](r, t), that yields n(r, t) by propagating the
interacting TDSE with it with initial stateΨ0, and another potential, vKS[n, Φ0](r, t),
which yields the same density by propagating the non-interacting TDSE with the

http://dx.doi.org/10.1007/978-3-642-23518-4_9
http://dx.doi.org/10.1007/978-3-642-23518-4_9
http://dx.doi.org/10.1007/978-3-642-23518-4_25
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initial state Φ0:

vext[n, Ψ0](r, t)
1−1←→ n(r, t)

1−1←→ vKS[n, Φ0](r, t). (4.37)

In terms of these two rigorous mappings, the exact TD xc functional is defined as:

vxc[n;Ψ0, Φ0](r, t) ≡ vKS[n, Φ0](r, t)− vext[n, Ψ0](r, t)−
∫

d3r ′ n(r
′, t)

|r − r ′| .
(4.38)

In the past years, the exact xc potential Eq. 4.38 has been evaluated for a few (simple)
systems (Hessler et al. 2002; Rohringer et al. 2006; Tempel et al. 2009; Helbig et al.
2009; Thiele et al. 2008; Lein and Kummel 2005). The purpose of this exercise is to
assess the quality of approximate xc functionals by comparing them with the exact
xc potential (Eq. 4.38).

Normally, one has to deal with the following situation: We are given the external
potential vgiven

ext (r, t) and the initial many-body state Ψ0. This information specifies
the system to be treated. The goal is to calculate the time-dependent density from a
TDKS propagation. The question arises: can we do this, at least in principle, with
the exact xc functional, i.e. can we propagate the TDKS equation

i∂tϕ j (r, t) =
[−∇2

2
+ vgiven

ext (r, t)

+
∫

d3r ′ n(r
′, t)

|r − r ′| + vxc[n;Ψ0, Φ0](r, t)

]

ϕ j (r, t) (4.39)

with the exact xc potential given by Eq. 4.38? In particular, what is the initial potential
with which to start the propagation?

To answer this, we must understand how the functional-dependences in Eq. 4.38
look at the initial time. To this end, we differentiate the continuity equation Eq. 4.20
once with respect to time, and find (van Leeuwen 1999)

n̈(r, t) = ∇ · [n(r, t)∇vext(r, t)] − ∇ · a(r, t), (4.40)

where

a(r, t) = −i〈Ψ (t)|[ ĵ(r), T̂ + V̂ee]|Ψ (t)〉. (4.41)

At the initial time, Eq. 4.40 shows that as a functional of the density and initial state,
vext[n, Ψ0](r, t = 0) depends on n(r, 0), n̈(r, 0), and Ψ (0) (through Eq. 4.41).
Although n(r, 0) is determined by the given Ψ (0) [and so is ṅ(r, 0) ], n̈(r, 0) is not.
Since, at the initial time, we cannot evaluate the time-derivatives to the left [i.e. via
n(t), n(t − Δt), n(t − 2Δt)], the start of the propagation may appear problematic.
But, in fact, we are given the external potential by the problem at hand, as in usual
time-dependent quantum mechanics. Hence in Eq. 4.39 the initial external potential
is known, the Hartree potential is specified since the initial wavefunction determines
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the initial density, and the remaining question is: what is the functional dependence
of the initial xc potential? If, like vext, this depends on n̈, then we would have a
problem starting the TDKS propagation. Fortunately, it does not.

Applying Eq. 4.40 to the KS system, we replace vext with vKS in the first term on
the right, Ψ (t) with Φ(t) in Eq. 4.41 and put vee = 0 there to obtain:

n̈(r, t) = ∇ · [n(r, t)∇vKS(r, t)] − ∇ · aKS(r, t), (4.42)

where

aK S(r, t) = −i〈Φ(t)|[ ĵ(r), T̂ ]|Φ(t)〉. (4.43)

Subtracting Eq. 4.42 from 4.40 for the interacting system, we obtain

∇ ·
{

n(r, t)∇
[∫

d3r ′ n(r
′, t)

|r − r ′| + vxc(r, t)

]}

= ∇ · [aKS(r, t)− a(r, t)] . (4.44)

Evaluating this at t = 0, we see that vxc depends only on the initial states, Ψ (0) and
Φ(0). No second-derivative information is needed, and we can therefore propagate
forward.

Analysis of subsequent time-steps was done in Maitra et al. (2008) and showed
that at the kth time-step, vxc is determined by the initial states and by densities only at
previous times as expected from the RG proof. This shows explicitly that the TDKS
scheme is predictive.

4.4.7 TDDFT in Other Realms

A number of extensions of the time-dependent density functional formalism to phys-
ically different situations have been developed. In particular, for spin-polarized
systems (Liu and Vosko 1989): one can establish a one-to-one mapping between
scalar spin-dependent potentials and spin-densities, for an initial non-magnetic
ground state. Extension to multicomponent systems, such as electrons plus nuclei
can be found in Li and Tong (1986); Kreibich et al. (2004) and is further discussed
in Chap. 12, to external vector potentials (Ghosh and Deb 1988; Ng 1989) further
discussed in Chap. 24, and to open systems, accounting for coupling of the elec-
tronic system to its environment (Burke 2005c; Yuen-Zhou et al. 2010; Appel and
Di Ventra 2009; Di Ventra and D’Agosta 2007), covered in Chaps. 10 and 11. Other
extensions include time-dependent ensembles (Li and Li 1985), superconducting
systems (Wacker 1994), and a relativistic two-component formulation that includes
spin-orbit coupling (Wang 2005b; Peng et al. 2005; Romaniello and de Boeij 2007).

http://dx.doi.org/10.1007/978-3-642-23518-4_12
http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_10
http://dx.doi.org/10.1007/978-3-642-23518-4_11
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4.5 Frequency-Dependent Linear Response

In this section we derive an exact expression for the linear density response n1(r, ω)
of an N-electron system, initially in its ground-state, in terms of the Kohn–Sham
density-response and an exchange-correlation kernel. This relation lies at the basis
of TDDFT calculations of excitations and spectra, for which a variety of efficient
methods have been developed (see Chap. 7 and also (Marques 2006b)). In fact one of
these methods follows directly from the formalism already presented: simply perturb
the system at t = 0 with a weak electric field, and propagate the TDKS equations for
some time, obtaining the dipole of interest as a function of time. The Fourier transform
of that function to frequency-space yields precisely the optical absorption spectrum.
However, a formulation directly in frequency-space is theoretically enlightening
and practically useful. After deriving the fundamental linear response equation of
TDDFT in Sect. 4.5.1, we then derive a matrix formulation of this whose eigenvalues
and eigenvectors yield the exact excitation energies and oscillator strengths.

4.5.1 The Density–Density Response Function

In general response theory, a system of interacting particles begins in its ground-state,
and at t = 0 a perturbation is switched on. The total potential is given by

vext(r, t) = vext,0(r)+ δvext(r, t) (4.45a)

δvext(r, t) = 0 for t ≤ 0. (4.45b)

The response of any observable to δvext may be expressed as a Taylor series with
respect to δvext. In particular, for the density,

n(r, t) = nGS(r)+ n1(r, t)+ n2(r, t)+ . . . (4.46)

Linear response is concerned with the first-order term n1(r, t), while higher-order
response formalism treats the second, third and higher order terms (see Sect. 4.6).

Staying with standard response theory, n1 is computed from the density–density
linear response function χ as

n1(r, t) =
∫ ∞

0
dt ′

∫

d3r ′χ(rt, r ′t ′)δvext(r ′, t ′). (4.47)

where

χ(rt, r ′t ′) = δn(r, t)

δvext(r ′, t ′)

∣
∣
∣
∣
vext,0

(4.48)

http://dx.doi.org/10.1007/978-3-642-23518-4_7
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Ordinary time-dependent perturbation theory in the interaction picture defined with
respect to vext,0 yields (Wehrum and Hermeking 1974; Fetter and Walecka 1971)

χ(rt, r ′t ′) = −iθ(t − t ′)〈Ψ0|[n̂H0(r, t), n̂H0(r
′, t ′)]|Ψ0〉 (4.49)

where n̂H0 = eiH0t n̂(r)e−iH0t and θ(τ ) = 0(1) for τ < (>)0 is the step function.
The density operator is n̂(r) =∑N

i=1 δ(r − r̂ i ). (Note that the presence of the step-
function is a reflection of the fact that vext[n](r, t) is a causal functional, i.e. the
potential at time t only depends on the density at earlier times t ′ < t.) Inserting the
identity in the form of the completeness of interacting states,

∑

I |ΨI 〉〈ΨI | = 1̂, and
Fourier-transforming with respect to t − t ′ yields the “spectral decomposition” (also
called the “Lehmann representation”):

χ(r, r ′, ω) =
∑

I

[ 〈Ψ0|n̂(r)|ΨI 〉〈ΨI |n̂(r ′)|Ψ0〉
ω −ΩI + i0+

− 〈Ψ0|n̂(r ′)|ΨI 〉〈ΨI |n̂(r)|Ψ0〉
ω +ΩI + i0+

]

(4.50)
where the sum goes over all interacting excited states ΨI , of energy EI = E0+ΩI ,

with E0 being the exact ground-state energy of the interacting system. This interacting
response function χ is clearly very hard to calculate so we now turn to TDDFT to
see how it can be obtained via the noninteracting KS system.

First, the initial KS ground-state: For t ≤ 0, the system is in its ground-state and
we take the KS system also to be so. The initial density nGS(r) can be calculated
from the self-consistent solution of the ground state KS equations

[

−∇
2

2
+ vext,0(r)+

∫

d3r ′ nGS(r ′)
|r − r ′| + vxc[nGS](r)

]

ϕ
(0)
j (r) = ε jϕ

(0)
j (r) (4.51)

and

nGS(r) =
∑

lowest N

|ϕ(0)j (r)|2. (4.52)

Adopting the standard response formalism within the TDDFT framework,
we notice several things. Because the system begins in its ground-state, there is
no initial-state dependence (see Sect. 4.3), and we may write n(r, t) = n[vext](r, t).
Also, the initial potential vext,0 is a functional of the ground-state density nGS, so
the same happens to the response function χ = χ [nGS]. Since the time-dependent
KS Eqs. 4.26–4.28 provide a formally exact way of calculating the time-dependent
density, we can compute the exact density response n1(r, t) as the response of the
non-interacting KS system:

n1(r, t) =
∫ ∞

0
dt ′

∫

d3r ′χKS(rt, r ′t ′)δvKS(r ′, t ′), (4.53)

where δvKS is the effective time-dependent potential evaluated to first order in the
perturbing potential, and χKS(rt, r ′t ′) is the density–density response function of
non-interacting particles with unperturbed density nGS:
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χKS(rt, r ′t ′) = δn(r, t)

δvKS(r ′, t ′)

∣
∣
∣
∣
vKS[nGS]

(4.54)

Substituting in the KS orbitals ϕ(0)j (calculated from Eq. 4.51) into Eq. 4.50 we obtain
the Lehmann representation of the KS density-response function:

χKS(r, r ′, ω) = lim
η→0+

∑

k, j

( fk − f j )δσkσ j

ϕ
(0)∗
k (r)ϕ(0)j (r)ϕ

(0)∗
j (r ′)ϕ(0)k (r ′)

ω − (ε j − εk)+ iη
, (4.55)

where fk, f j are the usual Fermi occupation factors and σk denotes the spin orien-
tation of the kth orbital.

The KS density–density response function Eq. 4.55 has poles at the bare KS single-
particle orbital energy differences; these are not the poles of the true density–density
response function Eq. 4.50 which are the true excitation frequencies. Likewise, the
strengths of the poles (the numerators) are directly related to the optical absorption
intensities (oscillator strengths); those of the KS system are not those of the true
system. We now show how to obtain the true density-response from the KS system.
We define a time-dependent xc kernel fxc by the functional derivative of the xc
potential

fxc[nGS](rt, r ′t ′) = δvxc[n](r, t)

δn(r ′, t ′)

∣
∣
∣
∣
n=nGS

, (4.56)

evaluated at the initial ground state density nGS.Then, for a given δvext, the first-order
change in the TDKS potential is

δvKS(r, t) = δvext(r, t)+
∫

d3r ′ n1(r ′, t)

|r − r ′|
+

∫

d3t ′
∫

d3r ′ fxc[nGS](rt, r ′t ′)n1(r ′, t ′). (4.57)

Equation 4.57 together with Eq. 4.53 constitute an exact representation of the linear
density response (Petersilka 1996a, b). These equations were postulated (and used) in
Ando (1977a, b); Zangwill and Sovea (1980a, b); Gross and Kohn (1985) prior to their
rigorous derivation in Petersilka (1996a). That is, the exact linear density response
n1(r, t) of an interacting system can be written as the linear density response of
a non-interacting system to the effective perturbation δvKS(r, t). Expressing this
directly in terms of the density-response functions themselves, by substituting Eq.
4.57 into Eq. 4.53 and setting it equal to Eq. 4.47, we obtain the Dyson-like equation
for the interacting response function:
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χ [nGS](rt, r ′t ′) =χKS[nGS](rt, r ′t ′)

+
∫

dt1

∫

d3r1

∫

dt2

∫

d3r2χKS[nGS](rt, r1t1)

×
[
δ(t1 − t2)

|r1 − r2| + fxc[nGS](r1t1, r2t2)

]

χ [nGS](r2t2, r ′t ′).
(4.58)

This equation, although often translated into different forms (see next section), plays
the central role in TDDFT linear response calculations.

4.5.2 Excitation Energies and Oscillator Strengths
from a Matrix Equation

We now take time-frequency Fourier-transforms of Eqs. 4.56–4.58 to move towards a
formalism directly in frequency-space. The objective is to set up a framework which
directly yields excitation energies and oscillator strengths of the true system, but
extracted from the KS system. We write

χ(ω) = χKS(ω)+ χKS(ω) � fHxc(ω) � χ(ω) (4.59)

where we have introduced a few shorthands: First, we have defined the Hartree-xc
kernel:

fHxc(r, r ′, ω) = 1

|r − r ′| + fxc(r, r ′, ω). (4.60)

Note that fxc[nGS](r, r ′, ω) is the Fourier-transform of Eq. 4.56; the latter depends
only on the time difference (t − t ′), like the response functions, due to time-
translation invariance of the unperturbed system, allowing its frequency-domain
counterpart to depend only on one frequency variable. Second, we have dropped the
spatial indices and introduced the shorthand � to indicate integrals like χKS(ω) �

fHxc(ω) =
∫

d3r1χKS(r, r1, ω) fHxc(r1, r ′, ω) thinking of χ, χKS, fHxc etc as
infinite-dimensional matrices in r, r ′, each element of which is a function of ω.
Now, integrating both sides of Eq. 4.59 against δvext(r, ω), we obtain

[

1̂− χKS(ω) � fHxc(ω)
]

� n1(ω) = χKS(ω) � δvext(ω). (4.61)

The exact density-response n1(r, ω) has poles at the true excitation energies ΩI .

However, these are not identical with KS excitation energies εa − εi where the poles
ofχKS lie, i.e. the r.h.s. of Eq. 4.61 remains finite forω→ ΩI . Therefore, the integral
operator acting on n1 on the l.h.s. of Eq. 4.61 cannot be invertible for ω→ ΩI , as it
must cancel out a pole in n1 in order to create a finite r.h.s. The true excitation energies
ΩI are therefore precisely those frequencies where the eigenvalues of the integral
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operator on the left of Eq. 4.61,
[

1̂− χKS(ω) � fHxc(ω)
]

, vanish. Equivalently, the

eigenvalues λ(ω) of

χKS(ω) � fHxc(ω) � ξ(ω) = λ(ω)ξ(ω) (4.62)

satisfy λ(ΩI ) = 1.This condition rigorously determines the true excitation spectrum
of the interacting system.

For the remainder of this subsection, we will focus on the case of spin-saturated
systems: closed-shell singlet systems and their spin-singlet excitations, to avoid
carrying around too much notation. We shall return to the more general spin-
decomposed version of the equations in Sect. 4.5.4.

Before we continue to cast Eq. 4.62 into a matrix form from which excitation
energies and oscillator strengths may be conveniently extracted, we mention two very
useful approximations that can shed light on the workings of the response equation.
The idea is to expand all quantities in Eq. 4.62 around one particular KS energy
difference, ωq = εa − εi say, keeping only the lowest-order terms in the Laurent
expansions (Petersilka 1996a, b). This is justified for example, in the limit that the
KS excitation of interest is energetically far from the others and that the correction
to the KS excitation is small (Appel et al. 2003). This yields what is known as the
single-pole approximation (SPA), which, for spin-saturated systems, is:

Ω = ωq + 2Re

∫

d3r
∫

d3r ′Φ∗q (r) fHxc(r, r ′, ωq)Φq(r ′) (4.63)

where we have defined the transition density

Φq(r) = ϕ∗i (r)ϕa(r). (4.64)

This approximation is equivalent to neglecting couplings with all other excitations.
If also the pole at −ωq is kept (the backward transition), i.e.

χKS ≈ 2

[

Φ∗q (r ′)Φq(r)

ω − ωq + i0+
− Φq(r ′)Φ∗q (r)
ω + ωq + i0+

]

(4.65)

(where again the factor of 2 arises from assuming a spin-saturated system), then we
obtain the “small-matrix approximation”(SMA):

Ω2 = ω2
q + 4ωq

∫

d3r
∫

d3r ′Φq(r) fHxc(r, r ′,Ω)Φq(r ′) (4.66)

provided the KS orbitals are chosen to be real. Discussion on the validity of these
approximations and their use as tools to analyse full TDDFT spectra can be found
in Appel et al. (2003). Generalized frequency-dependent, or “dressed” versions of
these truncations have been used to derive approximations in certain cases, e.g. for
double-excitations (see Chap. 8).

http://dx.doi.org/10.1007/978-3-642-23518-4_8
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We return to finding a matrix formulation of Eq. 4.62 to yield exact excitations
and oscillator strengths; we follow the exposition of Grabo et al. (2000). For a single
KS transition from orbital i to a, we introduce the double-index q = (i, a), with
transition frequency

ωq = εa − εi (4.67)

and transition density as in Eq. 4.64. Let αq = fi − fa be the difference in their
ground-state occupation numbers (e.g. αq = 0 if both orbitals are occupied or if both
are unoccupied, αq = 2 if i is occupied while a unoccupied (a “forward” transition),
αq = −2 if a is occupied while i unoccupied (a “backward” transition)). Reinstating
the spatial dependence explicitly and defining

ζq(ω) =
∫

d3r ′
∫

d3r ′′Φ∗q (r ′) fHxc(r ′, r ′′, ω)ξ(r ′′, ω) (4.68)

we can recast Eq. 4.62 as

∑

q

αqΦq(r)

ω − ωq + i0+
ζq(ω) = λ(ω)ξ(r, ω). (4.69)

Solving this equation for ξ(r, ω), and reinserting the result on the r.h.s. of Eq. 4.68,
we obtain

∑

q

Mqq ′(ω)

ω − ωq ′ + i0+
ζq ′(ω) = λ(ω)ζq(ω) (4.70)

where we have introduced the matrix elements

Mqq ′(ω) = αq ′
∫

d3r
∫

d3r ′Φ∗q (r) fHxc(r, r ′, ω)Φq ′(r
′). (4.71)

Defining now βq = ζq(Ω)/(Ω − ωq), and using the condition that λ(Ω) = 1 at a
true excitation energy, we can write, at the true excitations:

∑

q ′

[

Mqq ′(Ω)+ ωqδqq ′
]

βq ′ = Ωβq . (4.72)

This eigenvalue problem rigorously determines the true excitation spectrum of
the interacting system. The matrix is infinite-dimensional, going over all single-
excitations of the KS system. In practice, it must be truncated. If only forward tran-
sitions are kept, this is known as the “Tamm–Dancoff” approximation.

The first matrix formulation of TDDFT linear response was derived in Casida
(1995, 1996) by considering the response of the KS density matrix. Commonly
known as “Casida’s equations”, these equations are similar in structure to TDHF,
and are what is coded in most of the electronic structure codes today. By considering
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the poles and residues of the frequency-dependent polarizability, in Casida (1995)
it was shown that the true frequencies ΩI and oscillator strengths can be obtained
from eigenvalues and eigenvectors of the following matrix equation:

RFI = Ω2
I FI , (4.73)

where

Rqq ′ = ω2
qδqq ′ + 4

√
ωqωq ′

∫

d3r
∫

d3r ′Φq(r) fHxc(r, r ′,ΩI )Φq ′(r
′) (4.74)

The oscillator strength of transition I in the interacting system, defined as

f I = 2

3
ΩI

(

|〈Ψ0|x̂ |ΨI 〉|2 + |〈Ψ0|ŷ|ΨI 〉|2 + |〈Ψ0|ẑ|ΨI 〉|2
)

(4.75)

can be obtained from the eigenvectors FI via

f I = 2

3

(

|xS
−1/2 FI |2 + |yS

−1/2 FI |2 + |zS−1/2 FI |2
)

/|FI |2 (4.76)

where Si j,kl = δi,kδ j,l/αqωq > 0 with q = (k, l) here.
The KS orbitals are chosen to be real in this formulation. Provided that real orbitals

are also used in the secular equation (4.72), Casida’s equations and Eq. 4.72 are easily
seen to be equivalent. The SPA and SMA approximations, Eqs. 4.63 and 4.66 derived
before, can be readily seen to result from keeping only the diagonal element in the
matrix M, or in matrix R: neglecting off-diagonal terms, we immediately obtain
Eq. 4.66. Assuming additionally that the correction to the bare KS transition is itself
small, we take a square-root of Eq. 4.66 keeping only the leading correction, and
find the single-pole-approximation Eq. 4.63.

The matrix equations are often re-written in the literature as
(

A B
B∗ A∗

)(

X
Y

)

= ω
(−1 0

0 1

)(

X
Y

)

(4.77)

where

Aia, jb = δi jδab(εa − εi )+ 2
∫

d3r
∫

d3r ′Φ∗q (r) fHxc(r, r ′)Φq ′(r
′) (4.78a)

Bia, jb = 2
∫

d3r
∫

d3r ′Φ∗q (r) fHxc(r, r ′)Φ−q ′(r
′), (4.78b)

which has the same structure as the eigenvalue problem resulting from time-
dependent Hartree–Fock theory (Bauernschmitt and Ahlrich 1996a). However, we
note that this form really only applies when an adiabatic approximation (see Sect. 4.7)
is made for the kernel (but complex orbitals may be used).

We note that TDDFT linear response equations can be shown to respect the
Thomas–Reiche–Kuhn sum-rule: the sum of the oscillator strengths equals the
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number of electrons in the system (see also Chap. 5). This of course is true for the KS
oscillator strengths as well as the linear-response-corrected ones. As mentioned
earlier, in the Tamm–Dancoff approximation, backward transitions are neglected,
e.g. the B-matrix in Eq. 4.77 is set to zero, with the resulting equations resem-
bling configuration-interaction singles (CIS) [see (Hirata 1999)]. In certain cases
the Tamm–Dancoff approximation turns out to be nearly as good as (or sometimes
“better” than (Casida et al. 2000, Hirata and Head-Gordon 1999)) full TDDFT, but
it violates the oscillator strength sum-rule.

To summarize so far:

(i) The matrix formulations (Eqs. 4.72 and 4.73) are valid only for discrete spectra
and hence are mostly used for finite systems, while the original Dyson-like
integral equation, Eq. 4.58, is usually solved when dealing with the continuous
spectra of extended systems. To obtain the continuous part of the spectra of
finite systems (e.g. resonance widths and positions), the Sternheimer approach,
described in Chap. 7 is often used.

(ii) To apply the TDDFT linear response formalism, there are evidently two ingre-
dients. First, one has to find the elements of the non-interacting KS density-
response function, i.e. use Eq. 4.51 to find all occupied and unoccupied KS
orbitals living in the ground-state KS potential vKS,0. An approximation is
needed there for the ground-state xc potential. Second, one has to apply the
xc kernel fxc,for which in practice approximations are also needed. The next
section discusses the kernel in a little more detail.

4.5.3 The xc Kernel

The central functional in linear response theory fxc is simpler than that in the full
theory, because instead of functionally depending on the density and its history as
well as the initial-states as vxc must, it depends only on the initial ground-state density.
The kernel can be obtained from the functional derivative, Eq. 4.56, but often a more
useful expression is to extract it from Eq. 4.58: one can isolate fxc in Eq. 4.58 by
applying the inverse response functions in the appropriate places, yielding

fxc[nGS](rt, r ′t ′) = χ−1
KS [nGS](rt, r ′t ′)− χ−1[nGS](rt, r ′t ′)− δ(t − t ′)

|r − r ′| , (4.79)

where χ−1
KS and χ−1 stand for the kernels of the corresponding inverse integral

operators.
Note that the existence of the inverse density-response operators on the set of

densities specified by Eqs. 4.45a–4.47 follows from Eq. 4.21 in the RG proof: the
right-hand side of Eq. 4.21 is linear in the difference between the potentials. Conse-
quently, the difference between n(r, t) and n′(r, t) is non-vanishing already in first
order of v(r, t)−v′(r, t).This result ensures the invertibility of linear response oper-
ators. The frequency-dependent response operators χ(r, r ′, ω) and χKS(r, r ′, ω), on

http://dx.doi.org/10.1007/978-3-642-23518-4_5
http://dx.doi.org/10.1007/978-3-642-23518-4_7
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the other hand, can be non-invertible at isolated frequencies (Mearns and Kohn 1987;
Gross and Deb 1988). Recently, the numerical difficulties that the vanishing eigen-
values of χKS(r, r ′, ω) cause for exact-exchange calculations of spectra have been
highlighted in (Hellgren and von Barth 2009). The non-invertibility means that one
can find a non-trivial (i.e. non-spatially constant) monochromatic perturbation that
yields a vanishing density response. This might appear at first sight to be a counter-
example to the density-potential mapping of the RG theorem, as it means that two
different perturbations may be found which have the same density evolution (at least
in linear response). However, this can only happen if the perturbation is truly mono-
chromatic, having been switched on adiabatically from t = −∞. If we instead think
of the perturbation being turned on infinitely-slowly from t = 0, it must have an
essential singularity in time: (e.g. v ∼ limη→0+ e−η/t+iωt ), i.e. the potential is not
time-analytic about t = 0, and so is a priori excluded from consideration by the RG
theorem.

Due to causality, fxc(rt, r ′t ′) vanishes for t ′ > t, i. e., fxc is not symmetric
with respect to an interchange of t with t ′. Consequently, fxc(rt, r ′t ′) cannot be a
second functional derivative δ2 Fxc[n]/δn(r, t)δn(r ′, t ′) (Wloka 1971), and the exact
vxc[n](r, t) cannot be a functional derivative, in contrast to the static case. (See also
earlier Sect. 4.4.3).

Known exact properties of the kernel are given in Chap. 5. These include symmetry
in exchange of r and r ′ and Kramers-Kronig relations for fxc(r, r ′, ω). These rela-
tions make evident that frequency-dependence goes hand-in-hand with fxc(r, r ′, ω)
carrying a non-zero imaginary part.

The manipulations leading to the Dyson-like equation can be followed also in
the ground-state Hohenberg-Kohn theory to yield static response equations. The
frequency-dependent interacting and non-interacting response functions are replaced
by the interacting and KS response functions to static perturbations, and the kernel
reduces to the second functional derivative of the xc energy. It follows that

lim
ω→0

fxc[nGS](r, r ′, ω) = f static
xc [nGS](r, r ′) = δ2 Exc[n]

δn(r)δn(r ′)

∣
∣
∣
∣
nGS

. (4.80)

The adiabatic approximation for the kernel used in almost all approximations today
takes fxc[nGS](r, r ′, ω) = f static

xc [nGS](r, r ′). We return to this in Sect. 4.7.
Finally, we note that here we have only dealt with the linear response to time-

dependent scalar fields at zero temperature. The corresponding formalism for systems
at finite temperature in thermal equilibrium was developed in Ng and Singwi (1987)
and Yang (1988). For the response to arbitrary electromagnetic fields, some early
developments were made in Ng (1989), and, more recently, in the context of TDCDFT
of the Vignale-Kohn functional, in van Faassen and de Baij (2004); Ullrich and Burke
(2004).

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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4.5.4 Spin-Decomposed Equations

The linear-response formalisms presented above focussed on closed-shell singlet
systems and their singlet excitations. To describe singlet-triplet splittings, linear
response based on the spin-TDDFT of Liu and Vosko (1989) must be used. We distin-
guish two situations: first is when the initial ground-state is closed-shell and non-
degenerate, and second when the initial state is an open-shell, degenerate, system.
Here we focus on the first case, where the equations given above are straightforward
to generalize, e.g. for the response of the spin-σ -density, we have

n1σ (r, ω) =
∑

σ ′

∫

d3r ′χσ,σ ′(r, r ′, ω)δvext,σ ′(r
′, ω) (4.81)

where vext,σ is the spin-dependent external potential and χσ,σ ′(r, r ′, ω) is the
spin-decomposed density–density response function. The fundamental Dyson-like
equation, Eq. 4.58, remains essentially the same, as do the matrix equations for
the excitation energies, only spin-decomposed, with the spin-dependent xc kernel
defined via

fxc,σσ ′ [n0↑, n0↓](rt, r ′t ′) = δvxc,σ [n↑, n↓](r, t)

δnσ ′(r ′, t ′)

∣
∣
∣
∣
n0↑n0↓

(4.82)

The exact equations, Eq. 4.72, generalize to:
∑

σ ′

∑

q ′

[

Mqσq ′σ ′(Ω)+ ωqσ δqq ′δσσ ′
]

βq ′,σ ′ = Ωβqσ (4.83)

with the obvious spin-generalized forms of the terms, e.g.

Mqσq ′σ ′(ω) = αq ′σ ′
∫

d3r
∫

d3r ′Φ∗qσ (r) fHxc,σσ ′(r, r ′, ω)Φq ′σ ′(r
′) (4.84)

with αqσ = fiσ − faσ and Φq,σ = ϕ∗iσ (r)ϕaσ (r).
For spin-unpolarized ground-states, there are only two independent combinations

of the spin-components of the xc kernel because the two parallel components are
equal and the two anti-parallel are equal:

fxc = 1

4

∑

σσ ′
fxc,σσ ′ = 1

2
( fxc,↑↑ + fxc,↑↓) (4.85a)

Gxc = 1

4

∑

σσ ′
fxc,σσ ′ = 1

2
( fxc,↑↑ − fxc,↑↓). (4.85b)

The spin-summed kernel, fxc in Eq. 4.85a, is exactly the xc kernel that appeared in the
previous section. For example, for the simplest approximation, adiabatic local spin-
density approximation (ALDA) (see more shortly in Sect. 4.7), for spin-unpolarized
ground-states
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f ALDA
xc [n](r, r ′) = δ(r − r ′) d2[nehom

xc (n)]
dn2

∣
∣
∣
∣
n=n(r)

(4.86a)

GALDA
xc [n](r, r ′) = δ(r − r ′)α

hom
xc (n(r))

n(r)
(4.86b)

where ehom
xc (n) is the xc energy per electron of a homogeneous electron gas of

density n, and αhom
xc is the xc contribution to its spin-stiffness. The latter measures

the curvature of the xc energy per electron of an electron gas with uniform density
n and relative spin-polarization m = (n↑ − n↓)/(n↑ + n↓), with respect to m, at
m = 0: αhom

xc (n) = δ2ehom
xc (n,m)/δm2

∣
∣
m=0 .

For closed-shell systems, there is no singlet-triplet splitting in the bare KS eigen-
value spectrum: every KS orbital eigenvalue is degenerate with respect to spin.
However, the levels spin-split when the xc kernel is applied. This happens even
at the level of the SPA applied to Eq. 4.83 (Petersilka 1996b; Grabo et al. 2000): one
finds the two frequencies

Ω1,2 = ωq +Re
{

Mp↑p↑ ± Mp↑p↓
}

. (4.87)

Using the explicit form of the matrix elements (Eq. 4.84) one finds, dropping the
spin-index of the KS transition density, the singlet and triplet excitation energies
within SPA,

Ωsinglet = ωq + 2Re
∫

d3r
∫

d3r ′Φ∗q (r)
[

1

|r − r ′| + fxc(r, r ′, ωq)

]

Φq(r ′)
(4.88a)

Ω triplet = ωq + 2Re
∫

d3r
∫

d3r ′Φ∗q (r)Gxc(r, r ′, ωq)Φq(r ′). (4.88b)

This result shows that the kernel Gxc represents xc effects for the linear response
of the frequency-dependent magnetization density m(r, ω) (Liu and Vosko 1989).
In this way, the SPA already gives rise to the singlet-triplet splitting in the excita-
tion spectrum. For unpolarized systems, the weight of the pole in the spin-summed
susceptibility (both for the Kohn–Sham and the physical systems) atΩ triplet is exactly
zero, indicating that these are the optically forbidden transitions to triplet states.

4.5.5 A Case Study: The He Atom

In this section, we take a break from the formal theory and show how TDDFT linear
response works on the simplest system of interacting electrons found in nature, the
helium atom.

Recall the two ingredients needed for the calculation: (i) the ground-state KS
potential, out of which the bare KS response is calculated, and (ii) the xc kernel.
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Fig. 4.2 Excitations in the Helium atom (from Petersilka (2000)): bare KS excitations out of the
exact He ground-state potential (left), followed by TDDFT with the ALDA kernel, exact-exchange
(TDOEP x-only) kernel, and self-interaction corrected LDA (TDOEP SIC) kernel, and finally the
exact (right)

In usual practice, this means two approximate functionals are needed. However
the helium atom is small enough that the essentially exact ground-state KS poten-
tial can be calculated in the following way. A highly-accurate wavefunction calcu-
lation can be performed for the ground-state, from which the density nGS(r) =
2

∫

d3r ′|ΨGS(r, r ′)|2 can be extracted. The corresponding KS system consists
of a doubly-occupied orbital, ϕ0(r) = √nGS(r)/2, so that the KS equation
Eq. 4.51 can easily be inverted to find the corresponding ground-state KS poten-
tial vKS(r) = ∇2ϕ0/(2ϕ0)+ ε0, where ε0 = −I, the exact ionization potential.

First, we demonstrate the effect of the xc kernel, by utilizing the essentially
exact ground-state KS potential, obtained by the above procedure beginning with
a quantum monte carlo calculation for the interacting wavefunction, performed by
Umrigar and Gonze (1994). The extreme left of Fig. 4.2 shows the bare KS excita-
tions ωq = εa−εi .We notice that these are already very close to the exact spectrum,
shown on the extreme right, and always lying in between the true singlet and triplet
energies (Savin et al. 1998). The middle three columns show the correction due to the
TDDFT xc kernel for which three approximations are shown. The first and simplest
is the ALDA of Eq. 4.86a and the other two are orbital-dependent approximations
which will be explained in Sect. 4.7. For now, we simply note that the bare KS
excitations are good zeroth order approximations to the true excitations, providing
an average over the singlet and triplet, while the approximate TDDFT corrections
provide a good approximation to their spin-splitting.
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Table 4.1 Singlet(s) and triplet (t) excitation energies of the helium atom (from Petersilka (2000)),
in atomic units

Transition Exact KS EXX LDASIC TDEXX TDLDASIC Exact

1s→ 2s 0.7460 0.7596 0.7838 0.7794 (s) 0.8039 (s) 0.7578 (s)
0.7345 (t) 0.7665 (t) 0.7285 (t)

1s→ 3s 0.8392 0.8533 0.8825 0.8591 (s) 0.8881 (s) 0.8425 (s)
0.8484 (t) 0.8789 (t) 0.8350 (t)

1s→ 4s 0.8688 0.8830 0.9130 0.8855 (s) 0.9154 (s) 0.8701 (s)
0.8812 (t) 0.9117 (t) 0.8672 (t)

1s→ 5s 0.8819 0.8961 0.9263 0.8974 (s) 0.9276 (s) 0.8825 (s)
0.8953 (t) 0.9257 (t) 0.8811 (t)

1s→ 6s 0.8888 0.9030 0.9333 0.9038 (s) 0.9341 (s) 0.8892 (s)
0.9026 (t) 0.9330 (t) 0.8883 (t)

1s→ 2p 0.7772 0.7905 0.8144 0.7981 (s) 0.8217 (s) 0.7799 (s)
0.7819 (t) 0.8139 (t) 0.7706 (t)

1s→ 3p 0.8476 0.8616 0.8906 0.8641 (s) 0.8930 (s) 0.8486 (s)
0.8592 (t) 0.8899 (t) 0.8456 (t)

1s→ 4p 0.8722 0.8864 0.9163 0.8875 (s) 0.9173 (s) 0.8727 (s)
0.8854 (t) 0.9159 (t) 0.8714 (t)

1s→ 5p 0.8836 0.8978 0.9280 0.8984 (s) 0.9285 (s) 0.8838 (s)
0.8973 (t) 0.9278(t) 0.8832 (t)

1s→ 6p 0.8898 0.9040 0.9343 0.9043 (s) 0.9346 (s) 0.8899 (s)
0.9037 (t) 0.9342 (t) 0.8895 (t)

The exact results are from the variational calculation of Kono (1984). The second column shows
the single-particle excitations obtained out of the exact KS potential, while the third and fourth
columns show those of the approximate EXX and LDASIC potentials. The fifth and sixth columns
then apply the respective xc kernels to get the TDDFT approximations

For most molecules of interest however, the exact ground-state KS potential is
not available. Using LDA or semi-local GGA’s can give results to within a few
tenths of an eV for low-lying excitations. However, for higher excitations, (semi)local
approximations run into problems because the LDA potential asympototically decays
exponentially instead of as −1/r as the exact potential does, so the higher lying
bound-states become unbound. There is no Rydberg series in LDA/GGA atoms.
For our simple helium atom, the situation is severe: none of the excitations are
bound in LDA, and GGA does not improve this unfortunate situation. Use of a
ground-state xc potential that goes as −1/r at long-range pulls these excitations
down from the continuum into the bound spectrum, and, as Table 4.1 shows, can
be quite accurate. The table shows results using the exact-exchange approximation
(EXX), and the self-interaction-corrected local density approximation (LDASIC);
both bare KS excitations as well as the TDDFT values (i.e. corrected by the kernel)
are shown. These approximations are discussed in detail in Sect. 4.7; to note for
now, is that the ground-state KS potential in all cases has the correct long-range
behavior. Notice also that the bare KS excitations are quite accurate; applying the
kernel (second step) provides a small correction.
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Fig. 4.3 The exact and LDA KS potentials for the He atom

Consider Fig. 4.3 which plots the true and LDA xc potentials for the case of
the helium atom; similar pictures hold for any atom. In the shaded valence region,
we notice that the LDA xc potential differs from the exact xc potential by nearly
a constant. This effect is related to the derivative discontinuity, and it was argued
in Perdew (1985) that this constant has a value (I + A)/2 where I is the ioniza-
tion potential and A the electron affinity. The fact that the LDA xc potential runs
almost parallel to the exact in this region, means that the valence orbitals are well-
approximated in LDA, while their orbital energies are almost uniformly shifted up.
This is why excitations, starting from the zeroth-order KS orbital energy differences
in the valence region are generally approximated well in LDA. However, the rapid
decay of vLDA

xc to the zero-asymptote means that the higher-excitation energies are
underestimated and eventually get squeezed into the continuum. (Unfortunately for
the case of the He atom, this happens to even the lowest excitations.)

The top panel of Fig. 4.4 illustrates two effects of the too rapid decay of the
LDA potential on the optical spectrum: (i) it pushes the valence levels up, so that
the ionization potential is too low; the onset of the LDA continuum is red-shifted
compared to the exact, and (ii) there is no Rydberg series in the LDA spectrum;
instead their oscillator strengths appear in the LDA continuum, but in fact are not
badly approximated (Wasserman et al. 2003). The reason for this accuracy is due to
the LDA and true xc potentials running nearly parallel in the valence region: the LDA
HOMO orbital, out of which the transitions are computed, very well-approximates
the true HOMO, while the LDA continuum state at energy E = ω + I LDA follows
very closely the exact continuum state at energy E = ω + I exact until a distance
large enough away from the nucleus that the integrand does not contribute due to the
decay of the HOMO. Noting that KS spectra are not true spectra, the lower panel
shows the TDDFT-corrected spectrum using ALDA for the xc kernel; although not
resolving the discrete part of the spectra, the overall oscillator strength envelope is
not bad. For a detailed discussion, we refer the reader to Wasserman et al. (2003).
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Fig. 4.4 Optical absorption
spectrum in the He atom
(from Wasserman et al.
(2003)). The top panel shows
the bare exact KS and LDA
KS spectra. The lower panel
shows the TDDFT ALDA
spectra (dashed line, from
Stener et al. (2001)), the
exact calculations from Kono
and Hattori (1984) and
experimental results from
Samson et al. (1994)
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The purpose of this case study was to illustrate the workings of TDDFT response
and investigate only the simplest functional on the simplest system. We note that
most molecules have many more lower-lying excited states so that GGA’s can do
a much better job for more excitations. We return to the question of functional
approximations in later sections throughout this book.

4.6 Higher-Order Response

Often the simplest way to calculate the non-linear response of a system to an
external perturbation is via time-propagation. But, like in the linear-response case,
it can be instructive to perform the non-linear response calculation directly in
frequency-space. The higher-order terms in Eq. 4.46 can be expressed in terms of
higher-order density–density response functions:

n2(x) = 1

2!
∫

dx ′
∫

dx ′′χ(2)(x, x ′, x ′′)δv(x ′)δv(x ′′) (4.89a)

n3(x) = 1

3!
∫

dx ′
∫

dx ′′
∫

dx ′′′χ(2)(x, x ′, x ′′, x ′′′)δv(x ′)δv(x ′′)δv(x ′′′)

. . .

(4.89b)

where we used the short-hand x = (r, t) and
∫

dx = ∫

d3r
∫

dt. For quadratic
response, the analogues of Eqs. 4.48 and 4.49 are
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χ(2)(x, x ′, x ′′) = δ2n(x)

δvext(x ′)δvext(x ′′)

∣
∣
∣
∣
nGS

=−
∑

P

θ(t − t ′)θ(t − t ′′)〈Ψ0|[[n̂H (x), n̂H (x
′)], n̂H (x

′′)]|Ψ0〉
(4.90)

where the sum goes over all permutations of x, x ′, x ′′.Clearly, the interacting higher-
order response functions are very difficult to calculate directly and instead we look to
extract them from the KS response functions and xc kernels. Manipulations similar
to those in the linear response case, but more complicated, lead to (Gross et al. 1996):

χ(2)(x, x ′, x ′′) =
∫

dy
∫

dy′χ(2)KS (x, y, y′) δvKS(y)

δv(x ′)

∣
∣
∣
∣
nGS

δvKS(y
′)

δv(x ′′)

∣
∣
∣
∣
nGS

+
∫

dyχKS(x, y)
∫

dy′
∫

dy′′kxc[nGS](y, y′, y′′)χ(y′, x ′)χ(y′′, x ′′)

+
∫

dyχKS(x, y)
∫

dy′ fHxc[nGS](y, y′)χ(2)(y′, x ′, x ′′).
(4.91)

Hereχ(2)KS = δ2n(x)/δvKS(x ′)δvKS(x ′′)
∣
∣
nGS

is the KS second-order density-response
function, and

kxc[nGS](rt, r ′t ′, r ′′t ′′) = δ2vxc[n](r, t)

δn(r ′, t ′)δn(r ′′, t ′′)

∣
∣
∣
∣
n=nGS

(4.92)

is the dynamical second-order xc kernel. In the adiabatic approximation,

kadia
xc [n](r, r ′, r ′′) = δ3 Exc[n]

δn(r)δn(r ′)δn(r ′′)
(4.93)

with Exc[n] a ground-state xc energy functional. Making Fourier-transforms with
respect to t − t ′ and t − t ′′, we arrive at the Dyson equation

n2(r, ω) =1

2

∫

dω′
∫

d3r1d3r2χ
(2)(r, r1, r2, ω, ω − ω′)δv(r1, ω)δv(r2, ω − ω′)

=1

2

∫

dω′
∫

d3r1d3r2

(

χ
(2)
KS (r, r1, r2, ω, ω − ω′)δvKS(r1, ω)δvKS(r2, ω − ω′)

+
∫

d3r3χKS(r, r1, ω)kxc(r1, r2, r3, ω, ω − ω′)n1(r2, ω
′)n1(r3, ω − ω′)

)

+
∫

d3r1d3r2χKS(r, r1, ω) fHxc(r1, r2, ω)n2(r2, ω)

(4.94)
Likewise, one may work out Dyson-like response equations for the higher-order

response functions, each time introducing a new higher-order xc kernel. These deter-
mine the frequency-dependent non-linear response. Sum-over-states expressions for
the non-interacting KS density-response functions up to third-order may be found
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in Senatore and Subbaswamy (1987). We also point to Chap. 7, where higher-order
response is discussed within a Sternheimer scheme.

Gross et al. (1996) pointed out a very interesting hierarchical structure that the
TDDFT response equations have. At any order i,

ni (ω) = Mi (ω)+ χKS(ω) � fHxc(ω) � ni (ω) (4.95)

where Mi depends on lower-order density-response (and response-functions up to
i th order). The last term on the right of Eq. 4.95 has the same structure for all orders.
If we define the operator

L(ω) = 1̂− χKS(ω) � fHxc(ω) (4.96)

then

L(ω) � ni (ω) = Mi (ω) (4.97)

so L(ω) plays a significant role in determining what new poles are generated from
electron-interaction effects in all orders of response (Elliott 2011).

4.7 Approximate Functionals

As noted earlier, the xc potential is a functional of the density, the initial true state,
and the initial KS state. The exact functional has “memory”, that is, it depends on
the history of the density as well as these two initial states. This is discussed to some
extent in Chap. 8. In fact these two sources of memory are intimately related, and often
the elusive initial-state dependence can be replaced by a type of history-dependence.
The xc kernel of linear response has simpler functional dependence, as it measures
xc effects around the initial ground-state only. Functionally it depends only on the
initial ground-state density, while memory-dependence appears as dependence on
frequency in the arguments of fxc.

It should be noted that when running response calculations, for formal consistency,
the same approximation should be used for the xc kernel as is used for the ground-
state potential, i.e. there must exist an approximate functional vapp

xc [n](r, t) such that
the initial potential vapp

xc [n](r, t = 0) is used in the KS ground-state calculation,
and such that f app

xc [n](r, r ′, t − t ′) = δvapp
xc [n](r, t)/δn(r ′, t ′) is used in the time-

dependent response part. If different functionals were used for each step, one has
left the framework of TDDFT response, since the calculation no longer is equivalent
to computing the time-dependent response to an external perturbation. Nevertheless,
this fact is often ignored in practical calculations.

We now will outline some of the different approximations people use today.

http://dx.doi.org/10.1007/978-3-642-23518-4_7
http://dx.doi.org/10.1007/978-3-642-23518-4_8
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4.7.1 Adiabatic Approximations: ALDA, AGGA, AB3LYP, etc.

Almost all functionals in use today have no memory-dependence whatsoever. They
are “adiabatic”, meaning that the density at time t is plugged into a ground-state
functional, i.e.

vadia
xc [n](r, t) = vGS

xc [n(t)](r). (4.98)

For the xc kernel, we retrieve the static kernel of Eq. 4.80

f adia
xc [nGS](rt, r ′t ′) = δvGS

xc [n(t)](r)
δn(r ′, t ′)

∣
∣
∣
∣
nGS

= δ(t − t ′) δ2 Exc[n]
δn(r)δn(r ′)

∣
∣
∣
∣
nGS

. (4.99)

If the external time-dependence is very slow (adiabatic) and the system begins in
a ground-state, this approximation is justified. But this is not the usual case. Even
if the density is reproducible by a system in its a ground-state, the wavefunction is
usually not, so this appears to be quite a severe approximation. Nevertheless adiabatic
approximations are the workhorse of the myriads of applications of TDDFT today,
and work pretty well for most cases (but not all). Why this is so is still somewhat
of an open question. Certainly adiabatic approximations trivially satisfy many exact
conditions related to memory-dependence, so perhaps this is one reason. This is
similar to the justification used for the success of LDA in the ground-state case, and
the subsequent development of generalized gradient approximations (GGA) based on
satisfaction of exact conditions. When considering excitation energies of systems, the
bare KS orbital energy differences themselves are reasonably good approximations
to the exact excitation energies. The kernel then just adds a small correction on top of
this good zeroth order estimate, and hence even the simplest approximation such as
an adiabatic one does a decent job. Many cases where the usual approximations fail,
such as excited states of multiple-excitation character, or certain types of electronic
quantum control problems, can be clearly understood to arise from lack of memory
in the adiabatic approximation.

The adiabatic local density approximation, or ALDA is the simplest possible
approximation in TDDFT. It is also often called TDLDA (for time-dependent LDA):

vALDA
xc [n](r, t) = vhom

xc (n(r, t)) = d

dn
[nehom

xc (n)]|n=n(r,t) (4.100)

where ehom
xc (n)) is the xc energy per particle of the homogeneous electron gas. The

corresponding xc kernel

f ALDA
xc [nGS](rt, r ′t ′) = δ(t − t ′)δ(r − r ′) d2

dn2 [nehom
xc (n)]|n=nGS(r) (4.101)

which is completely local in both space and time, and its Fourier-transform, Eq. 4.86a
is frequency-independent. Although it might appear justified only for slowly-varying
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systems in space and in time, it often gives reasonable results for systems far from
this limit. Adiabatic GGA’s and hybrid functionals are most commonly used for finite
systems; hybrids in particular for the higher-lying excitations where it is important
to catch the tail of the molecular potential.

4.7.2 Orbital Functionals

A natural way to break free of the difficulties in approximating functionals of the
density alone, and still stay within TDDFT, is to develop functionals of the KS
orbitals. The simplest functional of this kind is the exact-exchange functional, derived
from the action:

Ax[{φiα}] = −1

2

∑

σ

Nσ∑

i, j

∫ t

−∞
dt ′

∫

d3r

×
∫

d3r ′
ϕ∗iσ (r ′, t ′)ϕ jσ (r ′, t ′)ϕiσ (r, t ′)ϕ∗jσ (r, t ′)

|r − r ′| (4.102)

Note that for more general functionals, the action needs to be defined on the Keldysh
contour (van Leeuwen 1998) (see also Chap. 6). The exact exchange potential is then
given by

vx,σ [{φ jα}](r, t) = δAx[{φ jα}]
δnσ (r, t)

(4.103)

Orbital functionals are in fact implicit density functionals because orbitals are triv-
ially functionals of the single-particle KS potential, which, by the RG theorem, is a
functional of the density, ϕ j [vKS][n](r, t).The xc potential is given by the functional
derivative of the action with respect to the (spin-) density and the xc kernel is the
second functional derivative. The equation satisfied by the xc potential is usually
called the (time-dependent) Optimized Effective Potential (OEP) equation, and is
discussed in Chap. 6. The exact-exchange functional is local in time when viewed as
a functional of KS orbitals. However, viewed as an implicit functional of the density,
it is non-local in time. The second-functional derivative with respect to the density
then has a non-trivial dependence on t − t ′.

Invoking a Slater-type approximation in each functional derivative of Eq. 4.102,
(Petersilka 1996a, 1998) deduced,

f PGG
xσσ ′ (r, r′) = −δσσ ′ 1

|r − r′|
|∑k fkσ ϕkσ (r)ϕ∗kσ (r ′)

∣
∣2

nσ (r)nσ (r ′)
. (4.104)

Evidently, with this approximation, the non-trivial (t − t ′)-dependence of the exact
exchange-only kernel is not accounted for. However, it is clearly spatially non-local.
For one and two electrons, Eq. 4.104 is exact for exchange.

http://dx.doi.org/10.1007/978-3-642-23518-4_6
http://dx.doi.org/10.1007/978-3-642-23518-4_6
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The full numerical treatment of exact-exchange (TDEXX), including memory-
dependence, has recently seen some progress. In Görling (1997b), the exact x kernel
was derived from perturbation theory along the time-dependent adiabatic connection.
One scales the electron-electron interaction by λ, defining a Hamiltonian

Ĥλ = T̂ + λV̂ee + V̂ λ(t) (4.105)

such that the density nλ(r, t) = n(r, t) for any λ much like as is done in ground-
state DFT. The initial state Ψ λ

0 is chosen to reproduce the same initial density and

its first time-derivative, at any λ. For λ = 0, V̂ λ(t) = V̂KS(t) and for λ = 1,

V̂ λ(t) = V̂ext(t).Performing perturbation theory to first order in λ yields the TDEXX
potential and kernel, found in Görling (1997, 1998a, 1998b) while higher orders give
correlation functionals. Until very recently there was only limited use of this kernel
due to numerical instabilities (Shigeta et al. 2006). A series of papers reformulated
the problem in terms of response of the KS potential itself, avoiding the calcula-
tion of numerically prohibitive inverse response functions (Hesselmann et al. 2009;
Görling et al. 2010; Ipatov 2010), but needing a time-consuming frequency-iteration
for each excitation energy. Most recently, a very efficient method has been derived
that translates the problem onto a generalized eigenvalue problem (Hesselmann and
Görling 2011). Although the results of full exact-exchange calculations for excita-
tion energies are often numerically close to those of time-dependent Hartree–Fock
(Hesselmann and Görling 2011) in the cases so far studied, there is a fundamental
difference in the two methods: TDEXX operates with a local (multiplicative) poten-
tial, while that of time-dependent Hartree–Fock is non-local, i.e. an integral oper-
ator. Furthermore, the Hartree–Fock single-particle energy differences εH F

a − εH F
i

are usually too large and hence the Hartree–Fock kernel reduces the Hartree–Fock
energy difference, while εK S

a −εK S
i within EXX tend to be too small, so the x-kernel of

TDDFT has to increase the KS excitation energy. Beyond the linear response regime,
(Wijewardane and Ullrich 2008) computed nonlinear dynamics in semiconductor
wells within TDEXX.

Another class of orbital-dependent functionals are self-interaction-corrected (SIC)
functionals. An approximation at a similar level to Eq. 4.104 can be found in
Petersilka (2000).

4.7.3 Hydrodynamically Based Kernels

The first proposal to incorporate memory-dependence was that of Gross and Kohn
(1985), who suggested to use the frequency-dependent xc kernel of the homogeneous
electron gas in the sense of an LDA:

f LDA
xc [nGS](r, r ′, ω) = f hom

xc (nGS(r), |r − r ′|, ω). (4.106)

and furthermore that the response n1(r, ω) is slowly varying enough on the length-
scale of f hom

xc (nGS(r), |r− r ′|;ω) that only its uniform component contributes. That
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is, taking a spatial Fourier-transform with respect to r − r ′, we include only the
zeroth-Fourier component. This gives the Gross-Kohn kernel:

f GK
xc [nGS](r, r ′, ω) = δ(r − r ′) f hom

xc (nGS(r), q = 0, ω) (4.107)

where q is the spatial Fourier transform variable. One requires the knowledge of
the frequency-dependent response of a uniform electron gas, about which, indeed
many exact properties are known, and parametrizations, believed to be accurate, exist
(Conti 1999, 1997; Gross and Kohn 1985; Qian and Vignale- 2002, 2003). Chapter 24
discusses some of these.

Although the GK approximation has memory, it is completely local in space, a
property which turns out to violate exact conditions, such as the zero-force rule and
translational invariance (see Chaps. 5 and 24). Even ALDA does not violate these.
To go beyond the adiabatic approximation consistently, both spatial and temporal
non-locality must be included. This is perhaps not surprising in view of the fact that
the density that at time t is at location r was at an earlier time t ′ < t at a different
location, i.e. memory is carried along with the fluid element. The development of
memory-dependent functionals, often based on hydrodynamic schemes, is discussed
further in Chaps. 8 and 24. These include the Dobson–Bünner–Gross (Dobson et al.
1997; Vignale and Kohn 1996; Tokatly 2005a, b), and (Kurzweil and Baer 2004)
approaches. These are not commonly used; only the Vignale-Kohn functional has
seen a few applications.

4.8 General Performance and Challenges

As shown in Sect. 4.2, TDDFT is an exact reformulation of non-relativistic time-
dependent quantum mechanics. In principle, it yields exact electronic dynamics
and spectra. In practice, its accuracy is limited by the functional approximations
used. The simplest and computationally most efficient functional, ALDA, is local
in both space and time, and it is perhaps surprising that it works as well as it does.
We now discuss cases where it is essential to go beyond this simple approximation,
and, further, beyond its adiabatic cousins. We organize this section into three parts:
linear response in extended systems, linear response in finite systems, and real-time
dynamics beyond the perturbative regime.

4.8.1 Extended Systems

We first ask, how well does ALDA perform for the response of solids? In simple
metals, ALDA does well, and captures accurately the plasmon dispersion curves
(Quong and Eguilez 1993). In fact, the ordinary plasmon is captured reasonably
even by the Hartree potential alone, i.e. setting fxc = 0, which is called the RPA.
Applying f ALDA

xc improves the description of its dispersion and linewidth.

http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_5
http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_8
http://dx.doi.org/10.1007/978-3-642-23518-4_24
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The answer to the question above is rather more subtle for non-metallic systems.
ALDA does a good job for electron energy loss (EEL) spectra, both when the
impinging electron transfers finite momentum q and in the case of vanishing
momentum-transfer. The EEL spectrum measures the imaginary part of the inverse
dielectric function (see Chap. 3), which, in terms of the density-response function, is
given in Eq. 3.56a (Onida et al. 2002; Botti et al. 2007). The optical response, which
measures the imaginary part of the macroscopic dielectric function (see Chap. 3) is
also quite well predicted by ALDA (Weissker et al. 2006) for finite wavevector q.

However, for optical response in the limit of vanishing wavevector, q → 0,
ALDA performs poorly for non-metallic systems. There are two main problems:
(i) The onset of continuous absorption is typically underestimated, sometimes by as
much as 30–50%. This problem is due to the fact that the KS gap in LDA is much
smaller than the true gap. But even with the exact ground-state potential, there is very
strong evidence (Knorr and Godlay 1992; Grüning et al. 2006, Niquet and Gonze
2004) that the exact KS gap is typically smaller than the true gap. To open the gap,
the xc kernel must have an imaginary part (Giuliani and Vignale 2005). This follows
from the fundamental Dyson equation (4.59)2: We know that the imaginary part of
χKS(r, r ′, ω) = 0 forω inside the KS gap. Then, for an approximate fxc(r, r ′, ω) that
is real, taking the imaginary part of Eq. 4.59 forω inside the KS gap (0 < ω < EKS

g ),
yields

ImχKS(ω) = 0 −→
[

1̂−ReχKS(ω) � fHxc(ω)
]

� Imχ(ω) = 0. (4.108)

Following the analogous procedure for ω inside the true gap (0 < ω < Eg) , where
Imχ(r, r ′ω) = 0, yields

Imχ(ω) = 0 −→ ImχKS(ω) �
[

1̂+ fHxc(ω) �Reχ(ω)
]

= 0. (4.109)

In view of the fact that fHxc = χ−1
KS −χ−1, the expressions inside the square brackets

in (4.108) and (4.109) cannot vanish identically in the full interval 0 < ω < EKS
g

and 0 < ω < Eg, respectively. (The expressions may vanish at isolated frequencies
corresponding to collective excitations). Hence we must conclude that wherever
ImχKS(ω) = 0, then also Imχ(ω) = 0. That is, for frequencies inside the KS
gap, the true response is also zero. Likewise, wherever Imχ(ω) = 0, then also
ImχKS(ω) = 0. That is, for frequencies inside the true gap, the KS response is also
zero. Putting the two together implies that the KS system and the true system must
have the same gap when an approximation for fHxc is used that is purely real. This
is clearly a contradiction, implying that fHxc must have a non-vanishing imaginary
part. This, on the other hand, is equivalent to fxc having a frequency-dependence, as
mentioned in Sect. 4.5.3. Any adiabatic approximation however takes a kernel that
is the second density-functional-derivative of a ground-state energy functional, and
therefore is purely real. Further, as we shall shortly discuss, the kernel must have have

2 This argument is due largely to Giovanni Vignale.

http://dx.doi.org/10.1007/978-3-642-23518-4_3
http://dx.doi.org/10.1007/978-3-642-23518-4_3
http://dx.doi.org/10.1007/978-3-642-23518-4_3
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a long-ranged part, that goes as 1/q2 as q → 0, to get any non-vanishing correction
on the gap. ALDA, on the other hand, is local in space, and so constant in q.

(ii) The second main problem is that ALDA cannot yield any excitonic structure;
again, one needs a long-ranged 1/q2 part in the kernel to get any significant improve-
ment on RPA for optical response. To reproduce excitons, an imaginary part to fxc
is not required (Reining 2002).

Fundamentally, the long-ranged behaviour of fxc can be deduced from exact
conditions satisfied by the xc kernel, such as the zero-force theorem, that inextricably
link time-nonlocality and space-non-locality. This is shown explicitly in Chap. 24.
Lack of a long-ranged term in ALDA or AGGA for finite systems, or for EELs
spectra, is not as critical as for the case of extended systems, since its contribution
is much smaller there.

The need for this long-ranged behavior in the xc kernel is, interestingly, not a
consequence of the long-rangedness of the Coulomb interaction. A simple way to
see this is to consider the SPA Eq. 4.63 for a system of size L3, where, for the
extended system we consider L → ∞. The transition densities Φq scale as 1/L3,

so for a finite-ranged xc kernel, the xc-correction to the RPA value scales as 1/L3,

and so vanishes in the extended-system limit (Giuliani and Vignale 2005).
An alternate way of seeing the need for the long-ranged kernel, is to note that

the optical absorption measures the imaginary part of the macroscopic dielectric
function, which can be written in terms of a modified density-response function
(Botti et al. 2007) (and see Eqs. 3.51 and 3.55 in Chap. 3). Now χKS(q → 0) ∼ q2

for infinite systems, so if fxc is to have any significant non-vanishing effect on the
optical response, it must have a component that diverges as 1/q2 as q → 0.

Recent years have seen a tremendous effort to confront the problem of optical
response in solids by including spatially-non-local dependence. Exact-exchange
was shown in Kim and Görling (2002) to have apparent success in capturing the
exciton. However, it was shown later in Bruneval (2006) that if done carefully,
the excitonic structure predicted by exact-exchange is far too strong, essentially
collapsing the entire spectrum onto the exciton. The earlier calculation of Kim and
Görling (2002) fortuitously induced an effective screening of the interaction, since
the long wavelength contributions were cut off in those calculations. TDCDFT has
also been used (de Boeij 2001), with the motivation that local functionals of the
current-density contain non-local information of the density, and this is discussed
further in Chap. 24. Perhaps the most intense progress has been made in the devel-
opment of kernels derived from many-body perturbation theory (MBPT), leading
to what is now known as the “nanoquanta kernel”. The latter is deduced from the
Bethe-Salpeter approach of MBPT (Bruneval et al. 2005; Reining et al. 2002; Sottile
et al. 2003; Adragna et al. 2003; Marini et al. 2003b; Stubner et al. 2004; von Barth
et al. 2005). An important aspect is that the reference systems in the Bethe-Salpeter
approach and the TDDFT approach are completely different: KS excitation energies
and orbitals of the latter are not quasiparticle energies and wavefunctions that the
former builds on. From the point of view of MBPT, the TDDFT xc kernel may be
interpreted as having two roles: shifting the KS excitations to the quasiparticle ones

http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_3
http://dx.doi.org/10.1007/978-3-642-23518-4_3
http://dx.doi.org/10.1007/978-3-642-23518-4_3
http://dx.doi.org/10.1007/978-3-642-23518-4_24
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(so-called f (1)xc ,) and then accounting for the electron-hole interaction (so-called
f (2)xc ).
In practical uses of the nanoquanta kernel, explicit models for f (2)xc are used on
top of simply the quasiparticle energies (usually in GW approximation). We refer
the reader to Botti et al. (2007) and Onida et al. (2002).

4.8.2 Finite Systems

In linear response calculations of optical spectra, use of local or semi-local
functionals for low-lying excitations, or hybrid functionals for higher-lying ones,
within the adiabatic approximation for the xc kernel yields results that are typi-
cally considerably better than those from TDHF or configuration interaction singles
(CIS). These methods scale comparably to TDDFT, while the accuracy of TDDFT is,
in most cases, far superior.

Most quantum chemistry applications use the B3LYP hybrid functional (Becke
1993a, b). While excitation energies are typically good to within a few tenths of an
eV, structural properties fare much better (Furche 2002a; Elliott et al. 2009). For
example, bond-lengths of excited states are within 1%, dipole moments and vibra-
tional frequencies to within 5%. Chapter 16 discusses this more. Often the level of
accuracy has been particularly useful in explaining, for the first time, mechanisms of
processes in biologically and chemically relevant systems, e.g. the dual fluorescence
in dimethyl-amino-benzo-nitrile (Rappoport and Furche 2004), and chiral identifi-
cation of fullerenes (Furche 2002b).

In the following, we discuss several cases where the simplest approximations like
ALDA and AGGA, perform poorly.

To be able to describe Rydberg excitations, it is essential that the ground-state
potential out of which the bare KS excitations are computed has the correct −1/r
asymptotics. LDA and GGA do not have this feature, and as we have seen already in
our case study of the He atom, the Rydberg excitations were absent in LDA/GGA.
Solutions include exact-exchange methods, self-interaction corrected functionals,
and hybrids. Step-like features in the ground-state potential as well as spatial non-
locality in the xc kernel can also be essential: a well-known case is in the compu-
tation of polarizabilities of long-chain molecules (van Faassen 2002; van Gisbergen
1999b; Gritsenko 2000), and exact-exchange, as well as TDCDFT-methods have
been explored for this problem. A more challenging problem is that of molecular
dissociation: it is notoriously difficult to obtain accurate ground-state dissociation
curves, since self-interaction errors in the usual functionals leads to fractional charges
at large separation. As it dissociates, the exact ground-state potential for a molecule
composed of open-shell fragments such as LiH, develops step and peak features in the
bond-midpoint region (Perdew 1985; Gritsenko 1996; Helbig et al. 2009; Tempel et
al. 2009), missed in GGAs and hybrids alike, but crucial for a correct description. To
get even qualitatively correct excited state surfaces, frequency-dependence is crucial

http://dx.doi.org/10.1007/978-3-642-23518-4_16
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in the xc kernel (Maitra 2005b; Maitra and Tempel 2006a) (see also Chap. 8). The
essential problem is that the true wavefunction has wandered far from a single-Slater-
determinant, making the work of the ground-state exchange-correlation potential and
the kernel very difficult. Such cases of strong correlation are one of the major moti-
vators of time-dependent density-matrix functional theory, discussed in Chap. 26.

Another case where frequency-dependence is essential are states of double-
excitation character. We will defer a discussion of this to Chap. 8.

A notorious failure of the usual approximations for finite systems is for charge-
transfer excitations at large-separation (Dreuw 2003, 2004; Tozer 2003). To leading
order in 1/R, the exact answer for the lowest charge-transfer excitation frequency is:

ωexact
CT → I D − AA − 1/R (4.110)

where I D is the ionization energy of the donor, AA is the electron affinity of the
acceptor and −1/R is the first electrostatic correction between the now charged
species. Charge-transfer excitations calculated by TDDFT with the usual approxi-
mations however severely underestimate Eq. 4.110. Due to the exponentially small
overlap between orbitals on the donor and acceptor, located at different ends of
the molecule, fxc must diverge exponentially with their separation in order to
give any correction to the bare KS orbital energy difference (see e.g. Eq. 4.63).
Semilocal functional approximations for fxc give no correction, so their predic-
tion for charge-transfer excitations reduces to the KS orbital energy difference,
εa − εi = εL(acceptor)− εH (donor),where L, H subscripts indicate the KS LUMO
and HOMO, respectively. This is a severe underestimate to the true energy, because
the ionization potential is typically underestimated by the HOMO of the donor, due
to the lack of the −1/r asymptotics in approximate functionals (Sect. 4.5.5), while
the LUMO of the acceptor lacks the discontinuity contribution to the affinity. The
last few years have seen many methods to correct the underestimation of CT excita-
tions, e.g. (Autschbach 2009; Tawada et al. 2004; Vydrov 2006; Zhao and Truhlar
2006; Stein et al. 2009a; Hesselmann et al. 2009; Rohrdanz 2009); most modify
the ground-state functional to correct the approximate KS HOMO’s underestimation
of I using range-separated hybrids that effectively mix in some degree of Hartree–
Fock, and most, but not all (Stein et al. 2009a; Hesselmann et al. 2009) determine
this mixing via at least one empirical parameter. Fundamentally, staying within pure
DFT, both the discontinuity contribution to A and the −1/R tail in Eq. 4.110 come
from fHxc, which must exponentially diverge with fragment separation (Gritsenko
and Baerends 2004). Worse still, in the case of open-shell fragments, not covered by
most of the recent fixes, additionally the exact fxc is strongly frequency-dependent
(Maitra 2005b).

We briefly mention two other challenges, which are further discussed later in
this book. The difficulty that usual functionals have in capturing potential energy
surfaces near a conical intersection is discussed in Chap. 14. This poses a challenge
for coupled electron-dynamics using TDDFT, given that conical intersections are
a critical feature on the potential energy landscape, funneling nuclear wavepackets

http://dx.doi.org/10.1007/978-3-642-23518-4_8
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between surfaces. The second challenge is the Coulomb blockade phenomenon in
calculations of molecular transport. The critical need for functionals with a deriv-
ative discontinuity to describe this effect, and to obtain accurate conductances in
nanostructures, is further discussed in Chap. 17.

4.8.3 Non-perturbative Electron Dynamics

In Chap. 18 of this book, we shall come back to the fascinating world of strong-field
phenomena, several of which the usual approximations of TDDFT have had success
in describing, and some of which the usual approximations do not capture well.
Developments in attosecond laser science have opened up the possibility of elec-
tronic quantum control; recently the equations for quantum optimal control theory
within the TDKS framework have been established and this is described in Chap. 13.
Chaps. 14 and 15 discuss the difficult but extremely important question of coupling
electrons described via TDDFT to nuclear motion described classically, in schemes
such as Ehrenfest dynamics and surface-hopping. Here instead we discuss in general
terms the challenges approximations in TDDFT face for real-time dynamics.

However first, we show how useful a density-functional picture of electron
dynamics can be for a wide range of processes and questions, via the time-dependent
electron localization function (TDELF). With the advent of attosecond lasers, comes
the possibility of probing detailed mechanisms of electronic excitations and dynamics
in a given process. For example, in chemical reactions, can we obtain a picture of
bond-breaking and bond-forming? In Burnus (2005) it was shown how to generalize
the definition of the electron localization function (ELF) used to analyze bonding in
ground-state systems (Becke 1990), to time-dependent processes:

TDELF(r, t) = 1

1+ [

Dσ (r, t)/D0
σ (r, t)

]2 , (4.111)

with

Dσ (r, t) = τσ (r, t)− 1

4

|∇nσ (r, t)|2
nσ (r, t)

− j2
σ (r, t)

nσ (r, t)
(4.112)

where jσ is the magnitude of the KS current-density of spin σ, and τσ (r, t) =
∑Nσ

i=1 |∇ϕiσ (r, t)|2 is the KS kinetic energy-density of spin σ. In Eq. 4.111,

D0
σ (r, t) = τ hom

σ (nσ (r, t)) = 3
5 (6π

2)2/3n5/3
σ is the kinetic energy-density of the

uniform electron gas. Using ALDA to evaluate the TDELF, this function has been
useful for understanding time-resolved dynamics of chemical bonds in scattering
and excitation processes (Burnus et al. 2005; Castro et al. 2007); features such as
the temporal order of processes, and their time scales are revealed. As an example,
in Fig. 4.5 we reproduce snapshots of the TDELF for laser-induced excitation of the
π → π∗ transition in the acetylene molecule, studied in Burnus et al. (2005). Many

http://dx.doi.org/10.1007/978-3-642-23518-4_17
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98 E. K. U. Gross and N. T. Maitra

Fig. 4.5 Snapshots of the TDELF for the excitation of acetylene by a 17.5 eV laser pulse (from
Burnus (2005)), polarized along the molecular axis. The pulse had a total length of 7 fs, an intensity
of 1.2 ×1014W/cm2

interesting features can be observed from the TDELF. As the intensity of the laser
field increases, the system begins to oscillate, and ionization is visible in the time
slices at 1.2111 and 1.5692 fs. The figure clearly shows that after 3.5 fs, the transition
from the ground-state to the antibonding state is complete: the original single torus
signifying the triple bond in the ground-state has split into two separate tori, each
around one carbon atom.

General success for dynamics in strong fields has been slower than for linear
response applications. There are three main reasons. First, many of the observables
of interest are not simply related to the time-dependent one-body density, so that,
in addition to the approximation for the xc functional, a new ingredient is needed:
approximate “observable functionals” to extract the properties of interest from the
KS system. Sometimes these are simply the usual quantum mechanical operators
acting directly on the KS system, e.g. high-harmonic generation spectra are measured
by the dipole moment of the system,

∫

d3rn(r, ω)z. But if the observable is not
simply related to the density, such as ionization probabilities (Ullrich and Gross
1997; Petersilka and Gross 1999), or cross-sections in atomic collisions (Henkel et
al. 2009), in principle an observable functional is needed. Simply extracting double-
ionization probabilities and momentum-densities using the usual operators acting on
the KS wavefunction typically fails (Lappas and Van Leeuwen 1998; Wilken and
Bauer 2006; Wilken and Bauer 2007; Rajam et al. 2009).

Second, lack of memory dependence in the usual xc approximations has been
suggested to be often far more problematic than in the linear-response regime as is
discussed in Chap. 8. We must deal with the full xc potential vxc[n;Ψ0, Φ0](r, t),
instead of the simpler xc kernel. The exact functional depends on the history of
the density as well as on the initial state but almost all functionals used today
are adiabatic. Third, a particularly severe difficulty is encountered when a system
starting in a wavefunction dominated by a single Slater determinant evolves to a state

http://dx.doi.org/10.1007/978-3-642-23518-4_8
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that fundamentally needs at least two Slater determinants to describe it. This is the
time-dependent (TD) analog of ground-state static correlation, and arises in electronic
quantum control problems (Maitra et al. 2002b; Burke et al. 2005a), in ionization
(Rajam 2009), and in coupled electron-ion dynamics (Levine et al. 2006). The TD
KS system evolves the occupied orbitals under a one-body Hamiltonian, remaining
in a single Slater determinant: the KS one-body density matrix is always idempotent
(even with exact functionals), while, in contrast, that of the true system develops
eigenvalues (natural occupation numbers) far from zero or one in these applications
(Appel and Gross 2010). The exact xc potential and observable functionals conse-
quently develop complicated structure that is difficult to capture in approximations.
For example, in Rajam et al.(2009), a simple model of ionization in two-electron
systems showed that the momentum distribution computed directly from the exact
KS system contains spurious oscillations due to using a single, necessarily delo-
calized orbital, a non-classical description of the essentially classical two-electron
dynamics.



Chapter 5
Exact Conditions and Their Relevance
in TDDFT

Lucas O. Wagner, Zeng-hui Yang and Kieron Burke

5.1 Introduction

This chapter is devoted to exact conditions in time-dependent density functional
theory. Many conditions have been derived for the exact ground-state density func-
tional, and several have played crucial roles in the construction of popular approx-
imations. We believe that the reliability of the most fundamental approximation of
any density functional theory, the local density approximation (LDA), is due to the
exact conditions that it satisfies. Improved approximations should satisfy at least
those conditions that LDA satisfies, plus others. (Which others is part of the art of
functional approximation).

In the time-dependent case, as we shall see, the adiabatic LDA (ALDA) plays
the same role as LDA in the ground-state case, as it satisfies many exact conditions.
But we do not have a generally applicable improvement beyond ALDA that includes
nonlocality in time. For TDDFT, we have a surfeit of exact conditions, but that only
makes finding those that are useful to impose an even more demanding task.

Throughout this chapter, we give formulas for pure DFT for the sake of simplicity
(e.g. Exc[n]), but in practice spin DFT is used (e.g. Exc[n↑, n↓]). We use atomic
units everywhere (e2 = � = me = 1), so energies are in units of Hartrees and
distances are in Bohrs.
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5.2 Review of the Ground State

In ground-state DFT, the unknown exchange-correlation energy functional, Exc[n],
plays a crucial role. In fact, it is this energy that we typically wish to approximate
with some given level of accuracy and reliability, and not the density itself. Using
such an approximation in a modern Kohn–Sham ground-state DFT calculation, we
can calculate the total energy of any configuration of the nuclei of the system within
the Born–Oppenheimer approximation. In this way we can extract the bond lengths
and angles of molecules and deduce the lowest energy lattice structure of solids.
We can also extract forces in simulations, and vibrational frequencies and phonons
and bulk moduli. We can discover response properties to both external electric fields
and magnetic fields (using spin DFT). The accuracy of the self-consistent density is
irrelevant to most of these uses.

Given the central role of the energy, it makes sense to devote much effort to
its study as a density functional. Knowledge of its behavior in various limits can be
crucial to restraining and constructing accurate approximations, and to understanding
their limitations. This task is greatly simplified by the fact that the total ground-state
energy satisfies the variational principle. Many exact conditions use this in their
derivation.

In this section we will review some of the more prominent exact conditions. They
almost all concern the energy functional, which, as mentioned above, is crucial for
good KS-DFT calculations. We also refer the interested reader to Perdew and Kurth
(2003) for a thorough discussion. First, we will go over some of the formal definitions
in DFT.

5.2.1 Basic Definitions

The xc energy as a functional of the density is written as (Levy 1979; Lieb 1983)

Exc[n] = min
Ψ→n
〈Ψ |T̂ + V̂ee|Ψ 〉 − TKS[n] − EH[n], (5.1)

where Ψ is a correctly antisymmetrized electron wavefunction, the minimization of
the kinetic and electron–electron repulsion energies is done over all such wavefunc-
tions that yield the density n(r), TKS[n] is the minimum (non-interacting) kinetic
energy of a system with density n(r), and

EH[n] = 1

2

∫

d3r
∫

d3r ′ n(r)n(r
′)

|r − r ′| (5.2)

is the Hartree energy. The xc energy is usually split into an exchange piece, Ex, and
a correlation piece, Ec ≡ Exc− Ex. Exchange can be defined in a Hartree–Fock-like
way in terms of the KS spin orbitals ϕiσ (r):
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Ex[n] = −1

2

occ
∑

i, j,σ

∫

d3r
∫

d3r ′
ϕ∗iσ (r)ϕ∗jσ (r ′)ϕiσ (r ′)ϕ jσ (r)

|r − r ′| . (5.3)

To perform the self-consistent calculations in the non-interacting system, we need
the functional derivative of the xc energy,

vxc[n](r) = δExc[n]
δn(r)

. (5.4)

This is called the xc potential, and it is the essential part of the multiplicative KS
potential vKS[n](r).
Orbital-dependent functionals. Some functionals are most naturally expressed in
terms of the orbitals rather than the density. When varying the orbitals of these
functionals, nonlocal potentials are obtained. For example, varying ϕiσ in Eq. 5.3
leads to the nonlocal exchange term used in HF. There is a way to transform such
orbital-dependent functionals into local potentials as in Eq. 5.4. This procedure is
known as optimized effective potential (OEP) or optimized potential method (OPM)
and is computationally expensive (Kümmel and Kronik 2008). Using OEP for Ex
results in the exact exchange approximation (EXX) for Exc in KS-DFT. The Krieger,
Li, and Iafrate (KLI) approximation is a way to approximately solve EXX (Krieger
et al. 1992a). An in-depth discussion of orbital-dependent functionals is found in
Chap. 6.

Adiabatic connection. One can imagine smoothly connecting the interacting and
non-interacting systems by multiplying the electron–electron repulsion term by λ,
called the coupling-constant. Changing λ varies the strength of the interaction, and
if we simultaneously change the external potential to keep the density fixed, we
have a family of solutions for various interaction strengths. This makes all quantities
(besides the density) functions of λ. When λ = 0, one has the non-interacting
KS system, and when λ = 1, one has the fully interacting system. The following
coupling-constant relations hold (Perdew and Kurth 2003):

• xc energy λ dependence. Altering the coupling-constant is simply related to scaling
the density:

Eλxc[n] = λ2 Exc[n1/λ], (5.5)

where n1/λ(r) is the scaled density

nγ (r) ≡ γ 3n(γ r), (5.6)

with γ = 1/λ.
• Adiabatic connection formula. By using the Hellmann–Feynman theorem, one can

show:

Exc[n] =
1∫

0

dλ

λ
Uλ

xc[n], (5.7)

http://dx.doi.org/10.1007/978-3-642-23518-4_6
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where Uλ
xc is the potential contribution to exchange-correlation energy (Uxc =

Vee − EH) at coupling-constant λ.

5.2.2 Standard Approximations

Despite a plethora of approximations (Perdew et al. 2005), no present-day approxi-
mation satisfies all the conditions mentioned in this chapter, as seen in tests on bulk
solids and surfaces (Staroverov et al. 2004). With that the case, one must choose
which conditions to impose on a given approximate form. Non-empirical (ab initio)
approaches attempt to fix all parameters via exact conditions (Perdew et al. 1996a, b),
while good empirical approaches might include one or two parameters that are fit to
some data set (Becke 1988a; Lee et al. 1988; Becke 1993b).

There are two basic flavors of approximations: pure density functionals, which are
often designed to meet conditions on the uniform gas, and orbital-dependent func-
tionals (Grabo et al. 2000), which meet the finite-system conditions more naturally.
The most sophisticated approximations being developed today use both (Tao et al.
2003). For a good discussion on what approximation is the right tool for the job, see
Rappoport et al. (2009).

• LDA. The local density approximation is the bread and butter of DFT. It is the
simplest, being derived from conditions on the uniform gas (Kohn and Sham 1965).
Though it is too inaccurate for quantum chemistry (being off by about 1 eV or
30 kcal/mol), it is useful in solids and other bulk materials where the electrons
almost look like a uniform gas. There can be only one LDA.

• GGA. The generalized gradient approximation came from trial and error when
energies were allowed to depend on the gradient of the density. While more accurate
than the LDA (getting errors down to 5 or 6 kcal/mol), and thus useful for quantum
chemistry applications, there is no uniquely-defined GGA. BLYP is an empirical
GGA that was designed to minimize the error in a particular data set. PBE is a
non-empirical GGA designed to satisfy exact conditions.

• Hybrid. Hybrids have an exchange energy which is a mixture of GGA and HF,
which attempts to get the best of both worlds:

Ehyb
xc = EGGA

xc + a(Ex − EGGA
x ), (5.8)

where Ex is defined in (5.3). The parameter a was argued to be 0.25 for the
non-empirical PBE0, but is fitted for the empirical B3LYP.

5.2.3 Finite Systems

The following conditions are derived for finite systems, just as the Hohenberg–Kohn
theorem is. This list is by no means exhaustive; it is only meant to give an idea of
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some of the simpler and more useful conditions in ground-state DFT. As we will see,
many of these conditions have analogs in TDDFT.

• Signs of energy components. From the variational principle and other elementary
considerations, one can deduce

Exc[n] ≤ 0, Ec[n] ≤ 0, Ex[n] ≤ 0. (5.9)

• Zero xc force and torque theorem. The xc potential cannot exert a net force or
torque on the electrons (Levy and Perdew 1985):

∫

d3rn(r) ∇vxc(r) = 0 (5.10a)

∫

d3rn(r) r ×∇vxc(r) = 0. (5.10b)

• xc virial theorem.

Exc[n] + Tc[n] = −
∫

d3rn(r) r · ∇vxc(r), (5.11)

where Tc = T − TKS is the kinetic contribution to the correlation energy. The xc
virial theorem as well as the zero xc force and torque theorem are satisfied by all
sensible approximate functionals.

• Exchange scaling. By using the scaled density (5.6), one can easily show

Ex[nγ ] = γ Ex[n]. (5.12)

• Correlation scaling. The scaling of correlation is less simple than exchange, and
will depend on whether one is in the high density limit (γ large) or low density
limit (γ small) (Levy and Perdew 1985; Seidl et al. 2000):

Ec[nγ ] < γ Ec[n] (γ < 1) (5.13a)

Ec[nγ ] > γ Ec[n] (γ > 1). (5.13b)

It is also possible to derive the following results

Ec[nγ ] = E (2)c [n] + E (3)c [n]/γ + · · · (γ →∞) (5.14a)

Ec[nγ ] = γ B[n] + γ 3/2C[n] + · · · (γ → 0), (5.14b)

where E (2)c [n], E (3)c [n], B[n], and C[n] are all scale-invariant functionals. These
conditions are depicted in Fig. 5.1. Not all popular approximations satisfy these
conditions.
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Fig. 5.1 Scaling of the correlation energy in ground state DFT, as well as the various conditions
from Eq. 5.14a, b. The first two relations are illustrated with the dotted line. For γ < 1, the exact
curve (solid) must lie below this dotted line, and for γ > 1 the exact curve must lie above—in both
cases within the shaded region of the graph. The high density limit is shown with the dot-dashed
line, and the low density limit with the dashed line. It is believed that not only is Ec[nγ ]monotonic,
but also its derivative with respect to γ

• Self-interaction. For any one-electron system (Perdew and Zunger 1981),

Ex[n] = −EH[n], Ec = 0 (N = 1). (5.15)

• Lieb-Oxford bound. For any density (Lieb and Oxford 1981),

Exc[n] ≥ 2.273 ELDA
x [n]. (5.16)

In addition to conditions on Exc, we also know some exact conditions on the xc
potential and the KS eigenvalues.

• Asymptotic behavior of potential. Far from a Coulombic system

vxc(r)→−1/r (r →∞), (5.17)

and

εHOMO = −I, (5.18)

where εHOMO is the position of the highest occupied KS molecular orbital, and I
the ionization potential. These results are intimately related to the self-interaction
of one electron.

5.2.4 Extended Systems

The basic theorems of DFT (as discussed in the previous section) are proven for
finite quantum mechanical systems, with densities that decay exponentially at large
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distances from the center. Their extension to extended systems, even those as simple
as the uniform gas, requires careful thought. For ground-state properties, one can
usually take results directly to the extended limit without change, but not always.
For example, the high-density limit in Eq. 5.14a, b of the correlation energy for a
finite system is violated by a uniform gas. With these things in mind, we will now
discuss a set of conditions that involve the properties of the uniform or nearly uniform
electron gas.

• Uniform density. When the density is uniform, Exc = neunif
xc (n)V, where eunif

xc (n)
is the xc energy density per particle of a uniform electron gas of density n, and V
is the volume. This forms the basis of LDA.

• Slowly varying density. For slowly varying densities, Exc should recover the
gradient expansion approximation (GEA):

Exc[n]=
∫

d3rneunif
xc (n)+

∫

d3rnΔeGEA
xc (n,∇n)+ · · ·

= ELDA
xc [n] +ΔEGEA

xc [n] + · · · , (5.19)

whereΔeGEA
xc (n,∇n) is the leading correction to the LDA xc energy density for a

slowly varying electron gas (Langreth and Perdew 1980). However, the GEA was
found to give poor results and violate several important sum rules for the xc hole
when applied to other systems (Burke et al. 1998). Fixing those sum-rules led to
the development of ab initio GGAs. Though important in obtaining the energy for
the ground-state, the xc hole rules have not been used in TDDFT and therefore
will not be further discussed in this chapter.

• Linear response of uniform gas. Another generic limit is when a weak perturbation
is applied to a uniform gas, and the resulting change in energy is given by the static
response function, χ(q, ω = 0). This function is known from accurate quantum
Monte Carlo calculations (Moroni et al. 1995), and approximations can be tested
against it.

5.3 Overview for TDDFT

The time-dependent problem is more complex than the ground-state problem, making
the known exact conditions more difficult to classify. We make the basic distinction
between general time-dependent perturbations, of arbitrary strength, and weak fields,
where linear response applies. The former give conditions on vxc[n](r, t) for all time-
dependent densities, the latter yield conditions directly on the xc kernel, which is a
functional of the ground-state density alone. Of course, all of the former also yield
conditions in the special case of weak fields.

In the time-dependent problem, the energy does not play a central role. Formally,
the action plays an analogous role (see Chap. 9), but in practice, we never evaluate the
action in TDDFT calculations (and it is identically zero on the real time evolution).

http://dx.doi.org/10.1007/978-3-642-23518-4_9
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In TDDFT, our focus is truly the time-dependent density itself, and so, by extension,
the potential determining that density. Thus many of our conditions are in terms of
the potential.

Most pure density functionals for the ground-state problem produce poor approx-
imations for the details of the potential. Such approximations work well only for
quantities integrated over real space, such as the energy. Thus approximations that
work well for ground-state energies are sometimes very poor as adiabatic approxi-
mations in TDDFT. Their failure to satisfy Eq. 5.17 leads to large errors in the KS
energies of higher-lying orbitals (for example, consider the LDA potential for Helium
in Fig. 4.3 of Chap. 4, which falls off exponentially rather than as−1/r ), and (5.18)
is often violated by several eV.

In place of the energy, there are a variety of physical properties that people wish
to calculate. For example, quantum chemists are most often focused on the first few
low-lying excitations, which might be crucial for determining the photochemistry
of some biomolecule. Then the adiabatic generalization of standard ground-state
approximations is often sufficient. At the other extreme, people who study matter in
strong laser fields are often focused on ionization probabilities (see Chap. 18), and
there the violation of Eq. 5.18 makes explicit density approximations too crude, and
requires orbital-dependent approximations instead.

5.3.1 Definitions

In this section, we remind our readers of some of the basics from Chap. 4, the
building blocks from which the exact conditions in TDDFT are proved. In contrast
to the ground-state problem, the xc potential depends not only on the density but
on the initial wavefunction Ψ (0) and KS Slater determinant Φ(0), written symboli-
cally as vxc[n;Ψ (0),Φ(0)](r, t). This more complicated dependence comes about
because two different wavefunctions, which are chosen to have the same density
for all time, can come from completely different external potentials, which the xc
potential accounts for. We can get rid of this initial wavefunction dependence if we
start from a non-degenerate ground-state, where the wavefunction is a functional of
the density alone, via the Hohenberg–Kohn theorem (Hohenberg and Kohn 1964).
These things are further discussed in Chap. 8.

As the density evolves, the xc potential is determined not solely by the present
density n(r, t), but also by the history n(r, t ′) for 0 ≤ t ′ < t.However, it is useful to
break the xc potential up into two pieces, an adiabatic piece which only deals with the
present density, and a dynamic piece which incorporates the memory dependence:

vxc[n;Ψ (0),Φ(0)](r, t) = vadia
xc [n](r, t)+ vdyn

xc [n;Ψ (0),Φ(0)](r, t). (5.20)

The adiabatic piece of the potential,

vadia
xc [n](r, t) = δExc[n]

δn(r)

∣
∣
∣
∣
n(t)

, (5.21)

http://dx.doi.org/10.1007/978-3-642-23518-4_4#Fig3
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_18
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_8
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is the xc potential for electrons as if their instantaneous density were a ground state.
In the spirit of DFT, the dynamic piece is everything else.

In the linear response regime, small enough perturbations to the density will
continuously change the xc potential:

vxc[n + δn](r, t)− vxc[n](r, t) =
∫

dt ′
∫

d3r ′ fxc[n](rt, r ′t ′)δn(r ′, t ′), (5.22)

where fxc is the xc kernel, which can be written formally as the functional derivative:

fxc[n0](rt, r ′t ′) = δvxc[n](r, t)

δn(r ′, t ′)

∣
∣
∣
∣
n0

. (5.23)

The evaluation at n0 reminds us that fxc is used for the linear response of a density
variation away from a ground-state density n0.

Like the xc potential, the kernel can also be broken down into an adiabatic piece:

f adia
xc (rt, r ′t ′) = δ2 Exc[n]

δn(r)δn(r ′)

∣
∣
∣
∣
n(t)

δ(t − t ′), (5.24)

and a dynamic piece, which includes memory and everything else. The kernel is
often Fourier-transformed from position space in the relative coordinate (r − r ′) to
momentum space (with wave-vector q), from the relative time (t − t ′) to frequency
(ω) domain, or both. Some conditions are more naturally expressed in momentum
space and/or in the frequency domain. In the frequency domain, the adiabatic piece
can be written as

f adia
xc (r, r ′) = lim

ω→0
fxc(r, r ′;ω). (5.25)

The kernel is discussed in more detail in Chap. 4.

5.3.2 Approximations

As we go through the various exact conditions, we will discuss whether the simplest
approximations in present use satisfy them. We can divide all approximations into
two classes based on whether or not the approximation neglects the dynamic term of
Eq. 5.20; these classes are respectively adiabatic and non-adiabatic (i.e., memory)
approximations. In the adiabatic approximation, familiar ground-state functionals
(such as LDA, GGA, and hybrids) can produce xc potentials when one uses the
approximate Exc in Eq. 5.21. We mention two notable adiabatic approximations
now.

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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• ALDA. The prototype of all TDDFT approximations is the adiabatic local density
approximation, and it is the simplest pure density functional. The xc potential is
as simple as can be:

vALDA
xc [n](r, t) = d

[

neunif
xc (n)

]

dn

∣
∣
∣
∣
∣
n(r,t)

. (5.26)

In linear response, the ALDA kernel is

f ALDA
xc (rt, r ′t ′) = d2

[

neunif
xc (n)

]

dn2

∣
∣
∣
∣
∣
n(r,t)

δ(r − r ′)δ(t − t ′). (5.27)

Like its ground-state inspiration, ALDA satisfies important sum rules by virtue of
its simplicity, namely its locality in space and time. ALDA is commonly used in
many calculations, and is described further in Chap. 4.

• AA. In the ‘exact’ adiabatic approximation, we use the exact Exc in Eq. 5.21.
This approximation is the best that an adiabatic approximation can do, unless
there is some lucky cancellation of errors. Hessler et al. (2002) investigated AA
applied to a time-dependent Hooke’s atom system and found large errors in the
instantaneous correlation energy. For the double ionization of a model Helium
atom, Thiele et al. (2008) discovered that non-adiabatic effects were important
only for high-frequency fields.

A key aim of today’s methodological development is to build in correlation
memory effects. Any attempt to build in memory goes beyond the adiabatic approx-
imation, and thus belongs in the non-adiabatic class of approximations. The next
three approximations belong to this dynamic class.

• GK. The Gross–Kohn approximation is simply to use the local frequency-dependent
kernel of the uniform gas,

f GK
xc (r, r ′;ω) = δ(r − r ′) f unif

xc (n(r);ω), (5.28)

where

f unif
xc (n;ω) ≡ lim

q→0
f unif
xc (n; q, ω) (5.29)

is the response of the uniform electron gas with density n. GK was the first approx-
imation to go beyond the adiabatic approximation, but was found to violate trans-
lational invariance (see Sect. 5.4.6).

• VK. The Vignale–Kohn approximation sought to improve upon the shortcomings
of GK. The VK approximation is simply the gradient expansion in the current
density for a slowly-varying gas (see Chap. 24).

• EXX. Exact exchange, the orbital-dependent functional, is treated as an implicit
density functional (see Chap. 6). When treated this way, EXX has some memory
for more than two unpolarized electrons.

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_6
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With the exception of EXX, non-adiabatic approximations are usually limited to the
linear response regime and approximate the kernel, fxc. There is now a major push to
go beyond linear response for non-adiabatic approximations. The first such attempt
was a bootstrap approach of Dobson et al. (1997). More recent attempts are described
in Chap. 25 of this book and in Kurzweil and Baer (2004).

5.4 General Conditions

In this section, we discuss conditions that apply no matter how strong or how weak
the time-dependent potential is. They apply to anything: weak fields, strong laser
pulses, and everything in between. They apply also to the linear response regime,
yielding the more specific conditions discussed in Sect. 5.5.

5.4.1 Adiabatic Limit

One of the simplest exact conditions in TDDFT is the adiabatic limit. For any finite
system, or an extended system with a finite gap, the deviation from the instantaneous
ground-state during a perturbation (of arbitrary strength) can be made arbitrarily
small. This is the adiabatic theorem of quantum mechanics, which can be proven
by slowing down the time-evolution, i.e., if the perturbation is V (t), replacing it by
V (t/τ) and making τ sufficiently large.

Similarly, as the time-dependence becomes very slow (or equivalently, as the
frequency becomes small), for such systems the functionals reduce to their ground-
state counterparts:

vxc(r, t)→ vxc[n(t)](r), (τ →∞) (5.30)

where vxc[n](r) is the exact ground-state xc potential of density n(r).
By definition, any adiabatic approximation satisfies this theorem, and so does

EXX, by reducing to its ground-state analog for slow variations. On the other hand,
if an approximation to vxc(r, t) were devised that was not based on ground-state
DFT, this theorem can be used in reverse to define the corresponding ground-state
functional.

5.4.2 Equations of Motion

In this section, we discuss some elementary conditions that any reasonable TDDFT
approximation should satisfy. Because these conditions are satisfied by almost all
approximations, they are best applied to test the quality of propagation schemes.

http://dx.doi.org/10.1007/978-3-642-23518-4_25
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For a scheme that does not automatically satisfy a given condition, then a numerical
check of its error provides a test of the accuracy of the solution. A simple analog is
the check of the virial theorem in ground-state DFT in a finite basis.

These conditions are all found via a very simple procedure. They begin with some
operator that depends only on the time-dependent density, such as the total force on
the electrons. The equation of motion for the operator in both the interacting and
the KS systems are written down, and subtracted. Since the time-dependent density
is the same in both systems, the difference vanishes. Usually, the Hartree term also
separately satisfies the resulting equation, and so can be subtracted from both sides,
yielding a condition on the xc potential alone. This procedure is well-described in
the Chap. 24 for the zero xc force theorem.

Zero xc force and torque. These are very simple conditions saying that interaction
among the particles cannot generate a net force (Vignale 1995a, b):

∫

d3rn(r, t) ∇vxc(r, t) = 0 (5.31a)

∫

d3rn(r, t) r ×∇vxc(r, t) =
∫

d3r r × ∂ jxc(r, t)

∂t
, (5.31b)

where jxc(r, t) is the difference between the interacting current density and the
KS current density (van Leeuwen 2001). The second condition says that there is
no net xc torque, provided the KS and true current densities are identical. This is
not guaranteed in TDDFT (but is in TDCDFT), as discussed in Sect. 4.4.4 of Chap.
4. The exchange-only KLI approximation, though incredibly accurate for ground
state DFT, was found to violate the zero-force condition (Mundt et al. 2007). This is
because KLI is not a solution to an approximate variational problem, but instead an
approximate solution to the OEP equations. This means KLI also violates the virial
theorem (Fritsche and Yuan 1998), which we describe next.

xc power and virial. By applying the same methodology to the equation of motion
for the Hamiltonian, we find (Hessler et al. 1999):

∫

d3r
dn(r, t)

dt
vxc(r, t) = dExc

dt
. (5.32)

while another equation of motion yields the virial theorem, which intriguingly has
the exact same form as in the ground state, Eq. 5.11:

−
∫

d3rn(r, t)r · ∇vxc[n](r, t) = Exc[n](t)+ Tc[n](t). (5.33)

These conditions are so basic that they are trivially satisfied by any reasonable approx-
imation, including ALDA, AA, and EXX. Thus they are more useful as detailed
checks on a propagation scheme, as mentioned earlier. The correlation contribution
to Eq. 5.33 is very small, and makes for a very demanding test. But because the energy
does not play the same central role as in the ground-state problem (and the action
is not simply the time-integral of the energy—see Chap. 9), testing the propagation
scheme is all they are used for so far.

http://dx.doi.org/10.1007/978-3-642-23518-4_24
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_9
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5.4.3 Self-interaction

For any one-electron system,

vx(r, t) = −
∫

d3r ′ n(r, t)

|r − r ′| , vc(r, t) = 0 (N = 1) (5.34)

These conditions are automatically satisfied by EXX. These conditions are instanta-
neous in time, so any adiabatic approximation that satisfies the ground-state condi-
tions of Eq. 5.15 will also satisfy these time-dependent conditions, e.g. AA. On the
other hand, LDA violates self-interaction conditions in the ground-state, so ALDA
also violates these conditions in TDDFT.

5.4.4 Initial-State Dependence

There is a simple condition based on the principle that any instant along a given
density history can be regarded as the initial moment (Maitra et al. 2002b; Maitra
2005a). This follows very naturally from the fact that the Schrödinger equation is
first order in time. When applied to both interacting and non-interacting systems, we
find:

vxc[n;Ψ (t ′),Φ(t ′)](r, t) = vxc[n;Ψ (0),Φ(0)](r, t) for t > t ′, (5.35)

This is discussed in much detail in Chap. 8. Here we just mention that any adiabatic
approximation, by virtue of its lack of memory and lack of initial-state dependence,
automatically satisfies it. Interestingly, although EXX is instantaneous in the orbitals,
it has memory (and so initial-state dependence) as a density functional (when applied
to more than two unpolarized electrons).
This condition provides very difficult tests for any functional with memory. Consider
any two evolutions of an interacting system, whose wavefunctionsΨ andΨ ′ become
equal after some time, tc. This condition requires that the non-interacting systems
have identical xc potentials at that time and forever after, even though they had
different histories before then. This is illustrated in Fig. 5.2. An approximate func-
tional with memory is unlikely, in general, to produce such identical potentials.

5.4.5 Coupling-Constant Dependence

Because of the lack of a variational principle for the energy, there are no definite
results for various limits, as in Eq. 5.14a, b, nor is there a simple extension of the
adiabatic connection formula (5.7), though Görling proposed an analog for time-
dependent systems (Görling 1997). But there remains a simple connection between

http://dx.doi.org/10.1007/978-3-642-23518-4_8


114 L. O. Wagner et al.

Fig. 5.2 An illustration of
the condition based on initial
state dependence. The two
wavefunctions Ψ and Ψ ′
become equal at time tc, and
therefore the KS potentials
must become equal then and
forever after

scaling and the coupling-constant for the xc potential (Hessler et al. 1999). For
exchange, analogous to Eq. 5.12, the relation is linear:

vx[nγ ;Φγ (0)](rt) = γ vx[n;Φ(0)](γ r, γ 2t), (5.36)

where

Φγ (0) ≡ γ 3N/2Φ(γ r1, . . . , γ r N ; t = 0) (5.37)

is the normalized initial state of the Kohn–Sham system with coordinates scaled by
γ, and, for time-dependent densities,

nγ (r, t) ≡ γ 3n(γ r, γ 2t). (5.38)

Though there is no simple expression for correlation scaling, we can relate it to
the coupling-constant and find, analogous to Eq. 5.7:

vλc [n;Ψ (0),Φ(0)](r, t) = λ2vc[n1/λ;Ψ1/λ(0),Φ1/λ(0)](λr, λ2t), (5.39)

where Ψ1/λ(0) is the scaled initial state of the interacting system, defined as in
Eq. 5.37, replacing γ with 1/λ. For finite systems, it seems likely that taking the
limit λ→ 0 makes the exchange term dominant (just as in the ground-state) (Hessler
et al. 2002), but this has yet to be proven.

5.4.6 Translational Invariance

Consider a rigid boost X(t) of a system starting in its ground state at t = 0, with
X(0) = dX/dt (0) = 0. Then the xc potential of the boosted density will be that of
the unboosted density, evaluated at the boosted point, i.e.,

vxc[n′](r, t) = vxc[n](r − X(t), t), n′(r, t) = n(r − X(t), t). (5.40)
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This condition is universally valid (Vignale 1995a). The GK approximation was
found to violate this condition, which spurred on the development of the VK approx-
imation. The harmonic potential theorem, a special case of translational invariance,
is discussed in Chap. 24.

5.5 Linear Response

In the special case of linear response, all exchange-correlation information is
contained in the kernel fxc. Linear response is utilized in the great majority of
TDDFT calculations, and the methods involved are thoroughly discussed in Chap. 7.
As explained in Elliott et al. (2009), the chief use of linear response has been to
extract electronic excitations. In this section, we shall discuss the exact conditions
that pertain to fxc, regardless of how it is employed.

5.5.1 Consequences of General Conditions

Each of the conditions listed below for fxc can be derived from a general condition
in Sect. 5.4.

Adiabatic limit. For any finite system, the exact kernel satisfies:

lim
ω→0

fxc(r, r ′;ω) = δ2 Exc[n]
δn(r)δn(r ′)

, (5.41)

where Exc is the exact xc energy. Obviously, any adiabatic functional satisfies this,
with its corresponding ground-state approximation on the right.

Zero force and torque. The exact conditions on the potential of Sect. 5.4.2 also
yield conditions on fxc,when applied to an infinitesimal perturbation (see Chap. 24).
Taking functional derivatives of Eq. 5.31a, b yields (Giuliani and Vignale 2005):

∫

d3rn(r)∇ fxc(r, r ′;ω) = −∇′vxc(r ′) (5.42)

and
∫

d3rn(r)r ×∇ fxc(r, r ′;ω) = −r ′ × ∇′vxc(r ′), (5.43)

the latter assuming no xc transverse currents. Again, these are satisfied by ground-
state DFT with the static xc kernel, so they are automatically satisfied by any
adiabatic approximation. Similarly, in the absence of correlation, they hold for EXX.
The general conditions employing energies, Eqs. 5.32 and 5.33, do not yield simple
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conditions for the kernel, because the functional derivative of the exact time-
dependent xc energy is not the xc potential.

Self-interaction error. For one electron, functional differentiation of Eq. 5.34 yields:

fx(r, r ′;ω) = − 1

|r − r ′| , fc(r, r ′;ω) = 0 (N = 1). (5.44)

These conditions are trivially satisfied by EXX, but violated by the density functionals
ALDA, GK, and VK.

Initial-state dependence. The initial-state condition, Eq. 5.35, leads to very inter-
esting restrictions on fxc for arbitrary densities. But the information is given in terms
of initial-state dependence, which is very difficult to find.

Coupling-constant dependence. The exchange kernel scales linearly with coordi-
nates, as found by differentiating Eq. 5.36:

fx[nγ ](r, r ′, ω) = γ fx[n](γ r, γ r ′, ω/γ 2). (5.45)

A functional derivative and Fourier-transform of Eq. 5.39 yields (Lein et al. 2000b)

f λc [n](r, r ′, ω) = λ2 fc[n1/λ](λr, λr ′, ω/λ2). (5.46)

These conditions are trivial for EXX. They can be used to test the derivations of
correlation approximations in cases where the coupling-constant dependence can
be easily deduced. More often, they can be used to generate the coupling-constant
dependence when needed, such as in the adiabatic connection formula of Eq. 5.7.

A similar condition has also been derived for the coupling-constant dependence
of the vector potential in TDCDFT (Dion and Burke 2005).

5.5.2 Properties of the Kernel

The kernel has many additional properties that come from its definition and other
physical considerations.

Symmetry. Because the susceptibility is symmetric, so must also be the kernel:

fxc(r, r ′;ω) = fxc(r ′, r;ω). (5.47)

This innocuous looking condition is satisfied by any adiabatic approximation by
virtue of the kernel being the second derivative of an energy, and is obviously satisfied
by EXX.

Kramers–Kronig. The kernel fxc(r, r ′, ω) is an analytic function of ω in the upper
half of the complexω-plane and approaches a real function fxc(r, r ′;∞) forω→∞.
Therefore, defining the function
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Δ fxc(r, r ′, ω) = fxc(r, r ′, ω)− fxc(r, r ′;∞), (5.48)

we find

ReΔ fxc(r, r ′, ω) = P
∫

dω′

π

Im fxc(r, r ′, ω′)
ω′ − ω (5.49a)

Im fxc(r, r ′, ω) = −P
∫

dω′

π

ReΔ fxc(r, r ′, ω′)
ω′ − ω , (5.49b)

where P denotes the principle value of the integral. The kernel fxc(rt, r ′t ′) is real-
valued in the space and time domain, which leads to the condition in the frequency
domain,

fxc(r, r ′;ω) = f ∗xc(r, r ′; −ω). (5.50)

The simple lesson here is that any adiabatic kernel (no frequency dependence)
is purely real, and any kernel with memory has an imaginary part in the frequency
domain (or else is not sensible). Many of the failures of current TDDFT approxima-
tions, e.g. the fundamental gap of solids, are linked to the lack of an imaginary part of
the kernel (Giuliani and Vignale 2005). Because adiabatic approximations produce
real kernels, we see that memory is required to produce complex kernels. Hellgren
and von Barth (2009) showed that EXX has a complex kernel, since it has frequency-
dependence (for more than two electrons). Both GK and VK have complex kernels
satisfying the Kramers–Kronig conditions.

Adiabatic connection. A beautiful condition on the exact xc kernel is given simply
by the adiabatic connection formula for the ground-state correlation energy (see
Chap. 22)

− 1

2

∫

d3r
∫

d3r ′vee(r − r ′)

×
∞∫

0

dω

π

1∫

0

dλIm
[

χλ(r, r ′;ω)− χKS(r, r ′;ω)] = Ec. (5.51)

Combined with the Dyson-like equation of Chap. 4 for χλ as a function of χKS and
fxc, this is being used to generate new and useful approximations to the ground-state
correlation energy (Fuchs and Gonze 2002; Fuchs et al. 2005). Although computa-
tionally expensive, ways are being found to speed up the calculations (Eshuis et al.
2010).

Equation 5.51 provides an obvious exact condition on any approximate xc kernel
for any system. Thus every system for which the correlation energy is known can
be used to test approximations for fxc. Note that, e.g. using ALDA for the kernel
implicit in (5.51) does not yield the corresponding ELDA

xc , but rather a much more
sophisticated functional (Lein et al. 2000b). Even insertion of fx yields correlation
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contributions to all orders in Ec. And lastly, even the exact adiabatic approximation,
fxc[n0](r, r ′;ω = 0), does not yield the exact Exc[n0].
Functional derivatives. A TDDFT result ought to come from a TDDFT calculation,
but this is not always the case. By a TDDFT calculation, we mean the result of an
evolution of the TDKS equations of Chap. 4 with some approximation for the xc
potential that is a functional of the density. This implies that the xc kernel should be
the functional derivative of some xc potential, which also reduces to the ground-state
potential in the adiabatic limit. All the approximations discussed here satisfy this
rule. But calculations that intermix kernels with potentials in the solution of Casida’s
equations violate this condition, and will violate important underlying sum-rules,
such as S−2 in Eq. 5.55.

5.5.3 Excited States

The following conditions have to do with the challenges of obtaining excited states
in the linear response regime.

Infinite lifetimes of eigenstates. This may seem like an odd requirement. When
TDDFT is applied to calculate a transition to an excited state, the frequency should
be real. This is obviously true for ALDA and exact exchange, but not so clear when
memory approximations are used. As mentioned in Sect. 5.5.2, the Kramers–Kronig
relations mean that memory implies imaginary xc kernels, and these can yield imagi-
nary contributions to the transition frequencies. Such effects were seen in calculations
using the VK for atomic transitions (Ullrich and Burke 2004). Indeed, very long life-
times were found when VK was working well, and much shorter ones occurred when
VK was failing badly.

Single-pole approximation for exchange. This is another odd condition, in which
two wrongs make something right. Using Görling–Levy perturbation theory (Görling
and Levy 1993), one can calculate the exact exchange contributions to excited state
energies (Filippi et al. 1997; Zhang and Burke 2004). To recover these results using
TDDFT, one does not simply use fx, and solve the Dyson-like equations. Like with
Eq. 5.51, the infinite iteration yields contributions to all orders in the coupling-
constant.

However, the single-pole approximation truncates this series after one iteration,
and so drops all other orders. Thus the correct exact exchange results are recovered
in TDDFT from the SPA solution to the linear response equations, and not by a full
solution (Gonze and Scheffler 1999). This procedure can be extended to the next
order (Appel et al. 2003).

Double excitations and branch cuts. Maitra et al. (Maitra et al. 2004; Cave et al.
2004) argued that a strong ω-dependence in fxc allows double excitation solutions to
Casida’s equations, which effectively couples double excitations to single excitations.
Similarly, the second ionization of the He atom implies a branch cut in its fxc at the

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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frequency needed (Burke et al. 2005a). Under limited circumstances, this frequency
dependence can be estimated, but a generalization (Casida 2005) has been proposed.
It would be interesting to check its compliance with the conditions listed in this
chapter. A detailed discussion of double excitations can be found in Chap. 8.

Excitations in the adiabatic approximation. One misleading use of linear response
has been to test the quality of different approximations to the ground-state Exc.

For instance, Jacquemin et al. (2010a) calculated the excitation energies for approx-
imate Exc functionals within adiabatic TDDFT and compared them to experimental
values. However, even within AA—using the adiabatic approximation with the exact
Exc—the exact excitations would not be not obtained. Thus a good ground-state Exc
used in adiabatic linear response will not necessarily give good excitation energies.

Frequency sum-rules. In the limit that the wavelength of the incident light is much
greater than the scale of the system, the linear response function determines the
optical spectrum by Mahan and Subbaswamy (1990)

σ(ω) = 4πω

3c
Im

[∫

d3r
∫

d3r ′r · r ′χ(r, r ′, ω)
]

, (5.52)

where σ(ω) is the photoabsorption cross-section. In physics, the spectrum is usually
described by the dimensionless oscillator strength f (ω). In atomic units, f (ω) is
related to σ(ω) by (Friedrich 2006)

σ(ω) = 2π2

c
f (ω). (5.53)

The moments of the oscillator strength spectrum, Sn, are defined by

Sn =
∑

ν ∈ excited states

(Eν − E0)
n f (Eν − E0), (5.54)

where the sum over continuum states will turn into an integral. Eqs. 5.52 and
5.53 show that Sn is related to the linear response function. Using basic quantum
mechanics, Sn can be related to various general properties of the system, known
as oscillator strength sum rules (Bethe and Salpeter 1957; Fano and Cooper 1968;
Inokuti 1971); S0 is the usual Thomas–Reich–Kuhn sum rule. In atomic units, the
most used sum rules S−2 to S2 are

S−2 = α(ω = 0), S−1 = 2

3

〈∣
∣
∣
∣
∣

∑

j
r j

∣
∣
∣
∣
∣

2〉

0

, S0 = N

S1 = 2

3

〈∣
∣
∣
∣
∣

∑

j
p j

∣
∣
∣
∣
∣

2〉

0

, S2 = 4π

3

∑

A∈ nuclei

Z An(r = RA), (5.55)

where α(ω = 0) is the static polarizability, Z A is the charge of nucleus A and RA its
position. Sum rules for n > 2 do not converge due to the ω−7/2 asymptotic decay of
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f (ω→∞) (Rau and Fano 1967), and Sn<−2 are related to various other properties
of the system (Fano and Cooper 1968). For each sum rule, a new exact condition
can be found for the kernel. Within the exact adiabatic (AA) approximation, the S−2
sum rule will be equal to the polarizability α(ω = 0) of the real system, because
the AA kernel is correct for ω→ 0. By definition, the sums S0 and S2 for the exact
Kohn–Sham ground state are equal to their counterparts in the interacting system,
whereas the other sums are not. Since Sn is related to the linear response function,
these differences yield exact conditions on fxc, which connects the linear response
functions of the Kohn–Sham system and the real system.

Scattering theory and real-time propagation. A vastly under-appreciated exact
condition for TDDFT is the equivalence of time-dependent propagation and scat-
tering theory. This can be particularly important in understanding the relation between
bound and continuum states.

For example, much early work in TDDFT was performed by Yabana and Bertsch
(1996), propagating ALDA for atoms and molecules in weak electric fields. By
Fourier transformation of the time-dependent dipole moment, one can extract the
photoabsorption spectrum. The fruitfly of such calculations is benzene, with a large
π → π∗ transition at about 6.5 eV, accurately given by ALDA. But closer inspection
shows that the LDA ionization threshold is at about 5 eV, because the LDA xc potential
is not deep enough. Thus this transition is in the LDA continuum, yet its position and
area are given reasonably well by ALDA. This is no coincidence: ALDA describes
the time-dependent density and its propagation for moderate times very well. All
that has changed is the choice of a complete set of states onto which to project the
results!

By following this logic, Wasserman et al. (2003) could capture the effect of
Rydberg transitions using ALDA. However, ALDA puts many bound states in the
continuum due to the exponential fall-off of the KS-LDA potential (as mentioned
in Sect. 5.3). Thus the ionization potentials for the ALDA states are wrong, but the
oscillator strength in the LDA continuum accurately approximates that of the true
Rydberg transitions to the exact bound states. (However, it is not an exact condi-
tion that the KS oscillator strengths be correct, not even at the threshold where KS
captures the right energy (Yang et al. 2009).) For an illustration, see Fig. 4.4 in
Chap. 4 for the optical absorption for the helium atom. Using a trick due to Fano
(1935), Wasserman showed (Wasserman and Burke 2005) that the Rydberg transition
frequencies, could be extracted from ALDA. In van Faassen and Burke (2006a) it is
shown the accuracy of this calculation for He, Be, and Ne, whereas van Faassen and
Burke (2006b) shows the qualitative failure of ALDA for transitions to high angular
momentum eigenstates (starting at the d orbitals).

One can go further, and even consider true continuum states. In scattering theory,
the continuum states of the N + 1 particle system describe how a single electron
scatters from an N particle system. Wasserman (2005) and van Faassen et al. (2007)
developed methods to calculate scattering amplitudes and phase shifts based on
time-propagation within TDDFT. With a given approximation, one can calculate the
susceptibility of an atomic anion and deduce the scattering amplitude for an incident
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Fig. 5.3 Electrons on a ring.
A magnetic field B(t) is
turned on and steadily
increases in (b); the resulting
electric field E(r) is uniform
on a thin ring, accelerating
electrons around the ring,
producing the probability
current j(r, t). Note that in
both (a) and (b) the densities
are equal

(a) (b)

electron (Wasserman et al. 2005). Both these examples (the quantum defect and
scattering) can be connected in the same framework (van Faassen and Burke 2009),
and they illustrate that TDDFT fundamentally concerns time-propagation. Present-
day approximations yield promising results; simple approximations like ALDA often
yield accurate time-dependent densities, but their projection onto individual Kohn–
Sham eigenstates may appear far more complicated.

5.6 Extended Systems and Currents

As mentioned in Sect. 5.2.4, care must be taken when extending exact ground-state
DFT results to extended systems. This is even more so the case for TDDFT. The first
half of the Runge–Gross theorem (see Chap. 4) provides a one-to-one correspondence
between potentials and current densities, but a surface condition must be invoked
to produce the necessary correspondence with densities. Without this condition, it
can readily be seen that two periodic systems with completely different physics can
have the same density (Maitra et al. 2003), as in Fig. 5.3. With hindsight, this is very
suggestive that time-dependent functionals may contain a non-local dependence on
the details at a surface. As such, they are more amenable to local approximations in
the current rather than the density.

5.6.1 Gradient Expansion in the Current

As discussed elsewhere (Chap. 24) and first pointed out by Dobson (1994a), the
frequency-dependent LDA (GK approximation) violates the translational invariance
condition of Sect. 5.4.6. One can trace this failure back to the non-locality of the xc
functional in TDDFT. But, by going to a current formulation, everything once again
becomes reasonable. The gradient expansion in the current, for a slowly varying gas,
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was first derived by Vignale and Kohn (1996), and later simplified by Vignale et al.
(1997), and is discussed in much detail in the Chap. 24.

For our purposes, the most important point is that, by construction, VK satisfies
translational invariance. The frequency-dependence shuts off (it reduces to ALDA)
when the motion is a rigid translation, but turns on when there is a true (non-
translational) motion of the density (Vignale and Kohn 1996).

Any functional with memory should recover the VK gradient expansion in this
limit, or justify why it does not. However, the VK approximation is only the gradient
expansion, which for the ground-state was found to violate sum rules, as mentioned
in Sect. 5.2.4. It is therefore likely that there exists something like a generalized
gradient approximation, which is more accurate than VK.

5.6.2 Polarization of Solids

A decade ago, Gonze et al. (1995) pointed out that the periodic density in an insulating
solid in an electric field is insufficient to determine the periodic one-body potential,
in apparent violation of the Hohenberg–Kohn theorem (Hohenberg and Kohn 1964).
In fact, this effect appears straightforwardly in the static limit of TDCDFT, and
is even estimated by calculations using the VK approximation (van Faassen et al.
2003; Maitra et al. 2003). When translated back to TDDFT language, one finds a
1/q2 dependence in fxc, where q is the wavevector corresponding to r − r ′. This
requires fxc to have the same degree of nonlocality as the Hartree kernel, and this
is missed by any local or semilocal approximation, such as ALDA, but is built in
to EXX (Kim and Görling 2002) or AA. The need for a 1/q2 contribution in the
optical response of solids led to much development (Onida et al. 2002) for a kernel
that allows excitons (Reining et al. 2002; Sottile et al. 2007). Since the RG theorem
can be proven for solids in electric fields of nonzero q, one can extract the q → 0
(a constant E field) result at the end of the calculation (Maitra et al. 2003).

5.7 Summary

What lessons can we take away from this brief survey?

1. In the ground-state theory, the total xc energy is crucial for determining the energy
of the system, and many conditions are proven for that functional. This is not so for
TDDFT, for which only the time-dependent density matters. In the non-interacting
system, the KS potential, and specifically its xc component, is what counts.

2. Approximate functionals depending explicitly on the density have poor-quality
potentials, e.g. LDA and GGA. Thus successes in ground-state DFT do not trans-
late directly into successes in TDDFT. One of the greatest challenges is that the
potential is a far more sensitive functional of the density than vice versa. Though
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we have enumerated many conditions on the xc potential, it is important to deter-
mine which conditions significantly affect the density, including those aspects of
the density that are relevant to experimental measurements.

3. The adiabatic approximation satisfies many exact conditions by virtue of its lack of
memory. Inclusion of memory may lead to violations of conditions that adiabatic
approximations satisfy. This is reminiscent of the ground-state problem, where
the gradient expansion approximation violates several key sum rules respected by
the local approximation. Explicit imposition of those rules led to the development
of generalized gradient approximations.

As shown in several chapters in this book, many people are presently testing the
limits of our simple approximations, and very likely, these or other exact conditions
will provide guidance on how to go beyond them.



Chapter 6
Orbital Functionals

Stephan Kümmel

Orbital functionals have developed into powerful tools of modern TDDFT as they
allow to tackle two of the theory’s most notorious problems: By explicitly using the
orbitals, functionals that are free from electronic self-interaction and that incorpo-
rate particle number discontinuities in the ex-change–correlation potential can be
constructed. This chapter presents an overview of why orbital functionals are needed
and of the different ways in which they can be employed. The problem of electronic
self-interaction and the advantages and drawbacks of the Kohn–Sham and general-
ized Kohn–Sham way of using orbital functionals are addressed. The problem of the
time-dependent optimized effective potential is discussed in detail, and the chapter
closes by looking at a few examples of orbital functionals which have been success-
fully used in practice.

6.1 Why Orbital Functionals are Needed

An orbital functional is a functional expression, e.g., for the energy or the action,
that depends explicitly on a set of orbitals. Orbital functionals are one of the most
successful concepts of density functional theory. Nevertheless, a discussion of the
use of orbital functionals in TDDFT necessarily has to start on a sobering note:
If there would be no need for the use of orbital functionals, TDDFT would be more
fun to use in practice. Orbital functionals—at least the most commonly used ones
which incorporate exact exchange or parts of it—are computationally considerably
more expensive than semi-local functionals due to the many integral evaluations that
Fock exchange requires. Additional complications—which will be discussed in this
chapter—are associated with using such functionals in time-dependent Kohn–Sham
calculations. Given these complications it may be surprising that nevertheless, orbital
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functionals have become widely used in TDDFT. Their enormous success is based
on decisive strengths that in many cases outweigh the increased computational cost
and theoretical effort.

The advantages of orbital functionals have been demonstrated in many practical
problems, but they are also easily seen on the formal level. To this end let us assume
that we are staying within the realm of Kohn–Sham theory, i.e., our orbitals are
Kohn–Sham orbitals. The discussion of other choices is defered to Sect. 6.2. It is
well known (see Chaps. 4 and 5) that the unknown exact time-dependent exchange-
correlation potential of Kohn–Sham theory is fully non-local with respect to space
and time (Gross et al. 1996; Maitra et al. 2002b), i.e., vxc(r, t) depends not only
on the density at spacepoint r at time t, but on the density at all points r ′ in space
and at all times t ′ ≤ t. These nonlocalities are explicitly visible in calculations
that reconstruct the exact time-dependent vxc(r, t) (Thiele et al. 2008; Thiele and
Kümmel 2009). Yet, incorporating such nonlocalities into explicit density functionals
in a consistent manner is not easy at all. Kohn–Sham orbital functionals, on the other
hand, include nonlocalities in a very natural way as the Kohn–Sham orbitals are
nonlocal functionals of the density (Maitra et al. 2002b) (see Chap. 8).

This nonlocality is a straightforward consequence of the fact that the mapping
between orbitals and density is provided by solving the Kohn–Sham equations, which
is a nonlocal step. Thus, even a functional expression that is local or semilocal
with respect to its dependence on the Kohn–Sham orbitals is nonlocal with respect
to its dependence on the density. Whether the nonlocalities that are captured by a
given orbital dependent approximation for vxc are sufficient in the sense of capturing
relevant physics that the ultimate exact functional would represent of course depends
on the nature of the functional approximation.

Examples for functionals that are semilocal in the orbitals are the so called
meta-GGAs (Tao et al. 2003) which use the kinetic energy density calculated from
the orbitals, or self-interaction corrections based on iso-orbital indicators (Kümmel
and Perdew 2003a). Such functionals can be used for TDDFT calculations in a spirit
that one may call “adiabatic with respect to the orbitals”, i.e., in a time-dependent
Kohn–Sham (propagation) calculation, the instantaneous orbitals ϕi (r, t) are used
to calculate vxc(r, t). As stated above, such an approach is generally speaking non-
adiabatic with respect to the density as the ϕi (r, t)may depend on the entire history
of the density. However, experience so far seems to indicate that the non-localities
in meta-GGAs are not very pronounced. Such functionals will also not be discussed
further here as most TDDFT calculations using orbital functionals fall into the
different category of using expressions that are nonlocal in space with respect to
the orbitals. The most prominent examples of this category of functionals are the
ones that use exact Fock exchange or a fraction of it, e.g. hybrid functionals. Another
one are self interaction correction (SIC) approaches. Both will be discussed in this
chapter.

The main reason for why functionals incorporating exact exchange or a SIC have
become popular is because, so far, this is the only known practical way of reducing or
eliminating one-electron self interaction. The self-interaction problem, which is well
known as one of the fundamental problems in ground-state DFT (Perdew and Zunger
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1981; Kümmel and Kronik 2008), affects TDDFT as badly as it affects ground-state
functionals. There are at least two reasons for this.

The first is that the asymptotic behavior of the Kohn–Sham potential is important in
many TDDFT applications. Obvious examples are ionization processes or excitations
to Rydberg states. The asymptotics of the Kohn–Sham potential is directly related to
the self-interaction problem, as a vxc that is free from one-electron self interaction
will yield the correct−1/r asymptotics of the Kohn–Sham potential. This can be seen
from the following argument. At any given point in time, the Kohn–Sham potential
of a finite, electrically neutral N-electron system can be written as (Hartree atomic
units are used)

vKS(r, t) = vext(r, t)+
∫

d3r ′ n(r
′, t)− nN (r ′, t)

|r − r ′|
+

∫

d3r ′ nN (r ′, t)

|r − r ′| + vxc(r, t), (6.1)

where the contribution of the N-th orbital density nN = |ϕN |2 to the Hartree poten-
tial has been written down separately. For the sake of notational transparency we
here avoid a spin-dependent notation and assume a singly occupied highest orbital.
One-electron self-interaction freeness means that for any one-electron density the
total electron interaction must vanish, i.e., the correlation potential must be zero and
exchange must be pure self exchange canceling the Hartree self interaction. The third
term on the right-hand side of Eq. 6.1 is such a one-electron density contribution.
In the far asymptotic region |r| → ∞ only the monopole contribution from each
electrostatic term will remain, i.e., in this limit Eq. 6.1 becomes

vKS(r, t) = −N

r
+ N − 1

r
+ 1

r
+ vxc(r, t). (6.2)

For the sake of completeness one should note that the Kohn–Sham potential can go to
a non-vanishing asymptotic constant on nodal surfaces of the highest occupied orbital
(Della Sala and Görling 2002a, b; Kümmel and Perdew 2003b). If one considers the
asymptotic potential on such a surface, the corresponding constant has to be taken
into acccount in the asymptotics.

Let us assume that the total density is dominated by nN in the far asymptotic
region. This assumption will be discussed below. If it holds, then the third term on
the right-hand side of Eq. 6.2 represents the Hartree interaction of the density nN

with itself. This unphysical self-interaction should be canceled by vxc, and it is clear
from Eq. 6.2 that, therefore, vxc must fall of as −1/r. As a consequence of the first
two terms the total Kohn–Sham potential will then fall of as −1/r as well. This
finding is in line with the straightforward argument that the Kohn–Sham potential is
a one-particle potential, and one particle venturing out to infinity will feel the hole
it left behind, thus experiencing an attractive −1/r potential.

The above assumption is certainly fulfilled for ground-state densities of systems
with an odd number of electrons, as the asymptotic exponential decay of a ground-
state Kohn–Sham orbital is dominated by its eigenvalue (Kreibich et al. 1999).
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This leads to a natural ordering of the orbitals with the highest occupied one decaying
the slowest and thus asymptotically dominating the density. The far asymptotic region
is therefore an iso-electron region. For ground-state densities with an even number
of electrons, there may be two spin-orbitals having the same Kohn–Sham eigen-
value and therefore, the far-asymptotic region is an iso-orbital region (i.e., only one
orbital shape can be detected), but not an iso-electron region. Thus, the correlation
potential need not vanish. However, the Hartree self interaction must be canceled by
the Fock self exchange, and exchange does not couple electrons of opposite spin.
Consequently, an analogue of the above given argument holds for each spin channel
separately. Turning to the general time-dependent case we note that time-dependent
fields may destroy the initial orbital ordering. However, it still appears very likely—
in particular if orbitals can be identified with electrons—that one (spin) orbital will
asymptotically dominate the (spin) density. It need not be the one which was the
highest occupied one in the ground state, i.e., in the above argument nN may be
replaced by some other orbital density—but otherwise, the argument remains. Thus,
self-interaction and the asymptotics of the potential are directly related to each other.

The second reason why self-interaction is an important issue in TDDFT are
the so-called step structures in vxc that are related to particle number discontinu-
ities in vxc and derivative discontinuities in the exchange-correlation action func-
tional (Mundt and Kümmel 2005). One-electron self interaction and missing particle
number discontinuities and step structures are closely related problems (Perdew
1990). As electrons only come in integers, removing (or adding) an electron, i.e.,
distinguishing between a system of N electrons and two systems with N − 1 and 1
electrons, respectively, leads to a quantized change of certain properties. However, an
electron that interacts with itself is never really a single electron. Therefore, self inter-
action “smears out” the discrete interaction effects that are associated with removing
(or adding) a particle.

The existence of particle-number discontinuities in the ground-state vxc has long
been known (Perdew et al. 1982), and its enormous importance, e.g., in terms of the
band gap question, is well understood (Kümmel and Kronik 2008). More recently
it has been shown that similar discontinuities exist in TDDFT (Mundt and Kümmel
2005): As systems evolve continuously in time, the particle-number discontinuities
are inherited by the time-dependent vxc. These discontinuities are extremely impor-
tant. As discussed in detail in Sect. 6.3 they lead to step structures in the potential
which are decisive for the correct description of many electronic processes, and in
particular such ones in which (long-range) charge-transfer is involved. Examples for
such processes are charge-transfer excitations (Tozer 2003), correlated ionization
(Lein and Kümmel 2005), dissociation of a system into well separated subsystems
(Gritsenko and Baerends 1996; Tempel et al. 2009), or electronic transport (Toher
et al. 2005). Figure 6.1 shows a simple example of how such step structures may
look. It depicts snapshots taken at different times during the ionization process of
a lithium model atom which was subjected to an electric field pulling density to
the left, i.e., in -z direction [see (Mundt and Kümmel 2005) for details]. The figure
shows the exchange potential for the two up-spin electrons. The system was initially
(t = 0) in its ground state. Then a homogenous electrical field was linearly ramped up
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Fig. 6.1 A step structure building up in the exact exchange potential for one spin channel of a
model lithium atom as the 2s electron is ionized to the left and the 1s electron remains bound. t = 0
shows the initial ground-state potential, plots labeled t = 31, 71 and 111 depict the potential at
later times (in a.u.). t � 111 shows an extrapolated guess of how the potential will look at much
later times

over a time of 40 a.u. to a strength of 0.06 a.u., and then held constant. At this field
strength the 2s electron is ionized and the 1s electron remains bound. One can see
that initially the exchange potential looks very smooth, but as the 2s electron escapes
towards minus infinity a pronounced downward step in the potential builds up. This
step is a reflection of the particle number discontinuity of the exact exchange poten-
tial. Similar steps are also seen in the exact time-dependent correlation potential that
can be reconstructed from exact densities that are obtained by solving the correlated
Schrödinger equation (Lein and Kümmel 2005).

In Sect. 6.3 we will investigate the “mechanism” by which the Kohn–Sham poten-
tial of orbital functionals achieves such step structures and particle number discon-
tinuities. Before we do so, we however have to discuss some fundamental choices
that the user of an orbital functional faces.

6.2 Using Orbital Functionals in TDDFT: Some Choices
to Make

If one wants to use an orbital functional in an actual calculation one has to decide—
just as for any other TDDFT calculation—whether one may either use linear response
theory, or whether the excitation is nonlinear and beyond perturbation theory so that
one may need to solve the time-dependent equations by propagating the orbitals
in time (Marques et al. 2003; Mundt et al. 2007a). This decision depends on the
nature of the excitation, e.g., how large the applied external fields are. The second
choice one has to make is whether one would like to use—as we did in the previous
section—time-dependent Kohn–Sham theory, i.e., use one multiplicative potential
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vxc = δAxc
[{

ϕ j
}]

δn
(6.3)

for all orbitals [with Axc denoting the exchange-correlation action functional
(van Leeuwen 1998)], or whether one resorts to a time-dependent extension of the
ground-state generalized Kohn–Sham theory (Seidl et al. 1996) and uses orbital
specific potentials uxc i (r, t). The latter are defined in analogy to the ground-state
definition (Grabo et al. 2000; Kümmel and Perdew 2003b) by replacing Exc with a
suitably chosen action functional Axc, i.e.,

uxc i = 1

ϕ∗i

δAxc
[{

ϕ j
}]

δϕi
. (6.4)

The two different approaches—Kohn–Sham versus generalized Kohn–Sham—
are typically used in different situations. On the one hand, explicitly linearized
TDDFT calculations using exact Fock exchange, e.g., as part of hybrid functionals,
mostly [though not exclusively (Ipatov et al. 2010)] employ orbital specific potentials.
The first reason for this is that many quantum chemistry codes already had the linear-
response Hartree–Fock equations coded. The orbital specific approach was therefore
easy to implement. The second reason is that the exchange-correlation kernel fxc that
is needed in Kohn–Sham linear response theory is difficult to calculate for an orbital
functional. Even without looking at the details of how the kernel is calculated this
statement becomes understandable from Sect. 6.3. There it is shown that calculating
vxc, i.e., the first functional derivative defined in Eq. 6.3, is cumbersome and leads
to an involved integro-differential equation. It is thus quite plausible that taking a
further functional derivative to obtain fxc = δvxc/δn is even more complicated.

On the other hand, calculations that explicitly propagate the Kohn–Sham orbitals
in real time typically use the Kohn–Sham potential (Marques et al. 2003; Reinhard
and Suraud 2003; Chu 2005; Mundt et al. 2007a). Real time propagation is manda-
tory for non-perturbative processes and, due to the just mentioned complications in
calculating fxc, also a viable option for linear-response Kohn–Sham calculations
with orbital functionals (Marques et al. 2001; Mundt et al. 2007a).

There are pros and cons for both Kohn–Sham and generalized Kohn–Sham. One of
the major advantages of the Kohn–Sham approach is that the theoretical concepts of
its time-dependent version are well established. As the density [and initial conditions
(Gross et al. 1996), which are suppressed in the notation of this chapter for notational
clarity] determine the Kohn–Sham potential and as the same potential determines
all orbitals, the orbitals are themselves functionals of the density (see Chap. 4). This
is not the case for the generalized Kohn–Sham approach, where the mapping to one
potential is not possible as each orbital is subjected to a different potential. Concepts
such as the exchange-correlation kernel and the derivative discontinuity that are
helpful for understanding and interpreting results are well defined only in the Kohn–
Sham approach. This formal difference between the two approaches translates into
very noticeable differences in practical calculations, e.g., in terms of how well eigen-
value differences approximate excitation energies (Körzdörfer and Kümmel 2010).

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Yet, the generalized Kohn–Sham approach has a distinct advantage on the practical
side. Taking the functional derivative of Eq. 6.4 is all that is required for obtaining
the potentials. This is a straightforward calculation. Therefore, although formal argu-
ments about the generalized Kohn–Sham approach have so far been mostly restricted
to the ground-state context (Seidl et al. 1996), its linear-response version is in wide-
spread use especially for hybrid functionals.

The practical advantanges of the generalized Kohn–Sham approach become
obvious when one realizes that calculating the functional derivative in Eq. 6.3 is
not straightforward at all, because the functional dependence of the orbitals on the
density is well defined, but not explicitly known. Therefore, using the time-dependent
Kohn–Sham vxc for orbital functionals is a considerably more formidable task than
using the orbital-specific potentials uxci . The next section takes a closer look at this
problem.

6.3 The Time-Dependent Optimized Effective Potential

The equation for the time-dependent Kohn–Sham exchange-correlation potential
of an orbital functional is called the time-dependent optimized effective potential
(TDOEP) equation for historical reasons. The first derivation of this equation straight-
forwardly employed the chain rule for functional derivatives (Ullrich et al. 1995a).
A later second derivation employed the Keldysh time contour method to define an
action that avoids causality problems (van Leeuwen 1998). For the example of exact
exchange the action functional defined in this way is

Ax[n] = −1

2

Nσ∑

i, j=1
σ=↑,↓

∫

C

dτ t ′(τ )
∫

d3r
∫

d3r ′

ϕ∗iσ (r ′, τ )ϕ jσ (r ′, τ ) ϕiσ (r, τ )ϕ∗jσ (r, τ )
|r − r ′| , (6.5)

where τ is the Keldysh pseudotime,
∫

C denotes integration along the pseudotime
contour, and t ′(τ ) = dt/dτ. For a given action functional the exchange-correlation
potential vxc σ (r, t) for spin σ is defined as the functional derivative

vxc σ (r, t) = δAxc

δnσ (r, τ )

∣
∣
∣
∣
nσ (r,t)

. (6.6)

Evaluating this functional derivative after several steps (Ullrich et al. 1995a; van
Leeuwen 1998) yields the TDOEP equation for vxc σ (r, t):
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Nσ∑

j=1

i

�

∫

dt ′
∫

d3r ′
[

vxc σ (r ′, t ′)− uxc jσ (r ′, t ′)
]

ϕ∗jσ (r ′, t ′)ϕ jσ (r, t)

×
∞
∑

k=1

ϕ∗kσ (r, t)ϕkσ (r ′, t ′)θ(t − t ′)+ c.c. = 0 (6.7)

where uxc jσ (r, t) is defined by (cf. Eq. 6.4)

uxc jσ (r, t) = 1

ϕ∗jσ (r, t)

δAxc

δϕ jσ (r, τ )

∣
∣
∣
∣
∣
ϕ jσ (r,t)

. (6.8)

As the functional derivatives are taken at the orbitals and density in real time the
pseudotime does not show up in the final equations and they can be interpreted in
the usual way.

The TDOEP equation can be written more compactly by defining the so-called
orbital shifts

ξ jσ (r, t) = − i

�

∫

dt ′
∫

d3r ′
[

vxc σ (r ′, t ′)− u∗xc jσ (r
′, t ′)

]

ϕ jσ (r ′, t ′)

×
∞
∑

k=1
k 
= j

ϕ∗kσ (r ′, t ′)ϕkσ (r, t)θ(t − t ′) (6.9)

Using this definition, Eq. 6.7 takes the short form

Nσ∑

j=1

ξ∗jσ (r, t)ϕ jσ (r, t)+ c.c. = g(r, t), (6.10)

where

g(r, t) = i

�

Nσ∑

j=1

|ϕ jσ (r, t)|2
t∫

−∞
dt ′

[

ūxc jσ (t
′)− ū∗xc jσ (t

′)
]

(6.11)

and

ūxc jσ (t) =
∫

d3rϕ∗jσ (r, t)uxc jσ (r, t)ϕ jσ (r, t) (6.12)

is an orbital average. Frequently, Eq. 6.10 takes a yet simpler form because the func-
tion g(r, t) vanishes for functionals depending on {ϕiσ } only through the combination
ϕiσ (r, t)ϕ∗iσ (r ′, t) (Gross et al. 1996), a condition that is fulfilled by functionals such
as exact exchange.

The orbital shift ξ jσ (r, t) is orthogonal to ϕ jσ (r, t) and obeys the equation
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[

i�
∂

∂t
− ĤKS σ (r, t)

]

ξ jσ (r, t) =
{

vxc σ (r, t)− u∗xc jσ (r, t)

−
[

v̄xc jσ (t)− ū∗xc jσ (t)
]}

ϕ jσ (r, t), (6.13)

where the Kohn–Sham Hamiltonian ĤKS σ (r, t) as usually is

ĤKS σ (r, t) = − �
2

2m
∇2 + vext(r, t)+ vH(r, t)+ vxc σ (r, t) (6.14)

and

v̄xc jσ (t) =
∫

d3rϕ∗jσ (r, t)vxc σ (r, t)ϕ jσ (r, t) (6.15)

is another orbital average. Multiplying Eq. 6.10 by the Kohn–Sham potential and
using the time-dependent Kohn–Sham equations together with Eq. 6.13 yields another
form of the TDOEP equation:

vxc σ (r, t) = 1

2nσ (r, t)

Nσ∑

j=1

{ ∣
∣ϕ jσ (r, t)

∣
∣2 {

uxc jσ (r, t)+ [

v̄xc jσ (t)− ūxc jσ (t)
]}

− �
2

m
∇ ·

[

ξ∗jσ (r, t)∇ϕ jσ (r, t)
] }

+ c.c.− f (r, t), (6.16)

where

f (r, t) = 1

2nσ (r, t)

{
�

2

2m
∇2g(r, t)+i�

∂

∂t

Nσ∑

j=1

[

ξ∗jσ (r, t)ϕ jσ (r, t)−c.c.
]
}

. (6.17)

Now all expressions needed to discuss the TDOEP equation are available.
We start by first looking not at the full TDOEP equation but at an approximation

to it which has been used in most three dimensional propagation calculations so far
(Marques et al. 2001; Chu 2005; Ullrich et al. 2000b). It is called the TDKLI approx-
imation and is named after Krieger, Li, and Iafrate’s corresponding approximation
for the ground-state potential (Krieger et al. 1992b). In this approximation (which
becomes exact in the one-orbital case) the terms in the second line on the right-hand
side of Eq. 6.16 are omitted except for the complex conjugate. The remaining equa-
tion can readily be used in propagation schemes as all quantities on the right-hand
side can be computed from the orbitals at a given time t. The TDKLI approximation
is both ingeniously helpful and painfully misleading at the same time.

It is extremely helpful as it is computationally much easier than the full TDOEP,
yet captures many of its crucial properties. The TDKLI approximation for vxc
does show, e.g., particle number discontinuities and the related step-like structures.
Equation 6.16 is a good starting point for understanding the mechanism by which
the TDKLI (and TDOEP) achieve this.
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The particle number discontinuities are readily understandable by looking at the
first line of Eq. 6.16 at a fixed time t. We make use of the arguments about the orbital
ordering from Sect. 6.1, i.e., we assume a finite system and that one orbital density
which we denote by |ϕNσ σ |2 dominates the density for r →∞. Then the decaying
orbital densities |ϕ jσ |2 in the numerator will asymptotically suppress all terms except
the ones from the Nσ orbital. Consequently, the orbital-average constants in the
parenthesis on the right-hand side (first line) of Eq. 6.16 from the Nσ orbital will
dominate the potential together with the asymptotic behavior that the uxc Nσ σ term
has (which is, e.g., −1/r for exact exchange). To fulfill the requirement that the
potential vanish at infinity one therefore must choose v̄xc Nσ σ such that the parenthesis
vanishes, i.e.,

v̄xc Nσ σ = ūxc Nσ σ . (6.18)

This is always possible as it only amounts to adding a constant to the potential.
However, if one now adds a particle to the system, one more orbital appears in the
sum over orbitals in Eq. 6.16, and an additional constant term from these orbital’s
potential averages contributes. Thus, the potential jumps by a constant as soon as a
fractional occupation of a new orbital is added—even if the occupation is extremely
small. The same mechanism applies for the full TDOEP, but the magnitude of the
potential jump may be different due to the additional terms in the second line of
Eq. 6.16. This mechanism is in complete analogy to the ground-state case and detailed
discussions of it can be found in Krieger et al. (1992b), Kümmel and Kronik (2008).

Let us now look at a time-dependent situation where a system is initially in the
ground state and then some external time-dependent field is switched on that moves
the highest orbital density far away from the system. This happens, e.g., if an electrical
field that is strong enough to singly ionize the system is switched on in a real time
calculation. Note that in such a calculation the particle number does not change: The
highest orbital that is moved and the ionized core that remains behind still form one
electronic system with the original number of electrons.1 Therefore, one may think
that the particle number discontinuity mechanism is not relevant in practice. Yet,
think about how the spatial structure of vxc(r, t) changes as a function of time. To
make the argument as transparent as possible we assume an idealized situation in
which the initially highest occupied orbital is moved completely and all other N − 1
orbitals remain largely unaffected by the time-dependent field.

First consider the far asymptotic region. For very large r there is no qualitative
change in the structure of vxc because at any point in time during the ionization
process the density is dominated by the highest orbital and the argument made above
about the asymptotic form of the potential is always valid. However, now consider
the intermediate region of space at a given time t. We define the intermediate region
as all the points r that are so far away from the system’s center that the lower N − 1

1 Changes in particle number that may be due to numerical techniques such as absorbing bound-
aries are not relevant in this context because they do not represent physical changes of the particle
number, but are a consequence of the numerical limitation that in practical calculations the grid size
or basis set size is limited.
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orbitals have decayed, but which are also so close to the system’s center that at the
given time t the highest orbital which is being ionized has already moved out of this
region. Since the lower N − 1 orbitals more or less retained their ground-state shape
and since the highest orbital is much further away, the potential in the intermediate
region looks like the ground-state potential of an N − 1 electron system—except for
the fact that it tends to a non-zero constant! The non-zero constant is an unavoid-
able consequence of the orbital average terms on the right-hand side of Eq. 6.16.
We could only set one of them to zero via Eq. 6.18 as there is only one free constant
in a potential—and the one free constant was already used to enforce that the potential
decays to zero at infinity. Thus, vxc in the intermediate region goes to a constant and
only drops down again as one reaches the far asymptotic region in which the highest
orbital density is appreciable. In other words, a “downward step” occurs in vxc in the
region of space where the highest orbital starts to dominate the density. As the system
evolves, i.e., as we look at larger and larger times t, the intermediate region extends
further and further outward. As a consequence, the potential step moves further and
further outward as well. This is exactly the situation that is shown in Fig. 6.1.

One may now ask what the step structure has to do with the particle number
discontinuity. The answer is that they are not the same, but that they are very closely
related. Both are a consequence of the explicit sum over occupied orbitals and the
orbital average terms in Eq. 6.16. One can further relate one to the other by taking
the above described ionization process to the extreme limit that the highest orbital
density “reaches infinity”. Then, the step structure would also “reach infinity”. The
condition that vxc must be zero at infinity would then force us to shift down the whole
vxc by exactly the height of the step. One may argue that “reaching infinity” in the
above sense may be interpreted as being equivalent to taking the highest orbital away,
i.e., removing one electron. Thus, one may argue that the shift in vxc (i.e., the step
height) has the same magnitude as and basically is the particle number discontinuity.

However, in the above description we brushed under the carpet a subtlety that
comes in because we can hardly define in a precise way what we meant by “the
orbital reaches infinity” in the above argument. In reality no orbital will reach infinity
and, as said previously, the particle number in the propagation remains constant. The
particle number discontinuity in vxc, i.e., derivative discontinuity in Axc, is however
defined for particle number changes with all other variables kept fixed. This is not the
same situation as the above described ionization process, because the step structure in
vxc may be influenced by dynamical and non-adiabatic effects. Therefore, we cannot
exactly identify the step in vxc with the derivative discontinuity, although the two
are very closely related. The close relation has also been confirmed numerically in
calculations that reconstructed the exact time-dependent vxc(r, t) for an ionization
process (Lein and Kümmel 2005). There, vxc(r, t) developed a step of a height that
corresponded to the magnitude of the ground-state derivative discontinuity.

With the particle number discontinuity the TDKLI potential incorporates one of
the most complex properties of (TD)DFT. One may thus be tempted to believe that
the KLI approximation is perfect. Unfortunately, this is not the case. In fact, the
KLI approximation can be misleading because it accurately yields some properties
while it fails badly for others. A prominent example of a KLI failure is found in
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molecular chains. The KLI approximation for the exact exchange functional yields
quite accurate ground-state exchange energies for such systems, yet it badly over-
estimates their static polarizability and hyperpolarizability (Gritsenko et al. 2000;
Kümmel et al. 2004). With the static response already being seriously in error, one
can hardly hope that the dynamical response is well described. For the self-interaction
corrected LDA, i.e., another orbital functional (see Sect. 6.4), both the response prop-
erties and the ground-state structure are poorly described by a straightforward KLI
approximation (Körzdörfer et al. 2008). A further and quite fundamental shortcoming
of the KLI approximation is that the KLI potential is not a functional derivative and
violates the zero force theorem (Mundt and Kümmel 2007). The latter states that
the density-averaged force exerted by vxc must be zero (see Chap. 5). Violating this
condition can lead to serious errors in the dynamics as the spurious forces exerted
by vxc may lead to unphysical effects such as self-excitation (Mundt and Kümmel
2007). Therefore, despite its many good properties, the TDKLI approximation is not
a generally satisfactory option for the time-dependent use of orbital functionals.

A generally applicable scheme for solving the full TDOEP equation is thus highly
desirable. Unfortunately, to date the TDOEP equation has only been solved for
one-dimensional model systems (Wijewardane and Ullrich 2008). This solution is of
great conceptual importance, as it proves that the equation can be solved in a stable
numerical way. However, the scheme employed in Wijewardane and Ullrich (2008)
is numerically so involved that hopes are low that it can be used to calculate the
TDOEP for three dimensional molecules and solids.

Inspection of Eq. 6.16 suggests an idea for a generally applicable solution strategy.
When one propagates the Kohn–Sham orbitals according to the time-dependent
Kohn–Sham equations

i�
∂

∂t
ϕ jσ (r, t) = ĤKS σ (r, t)ϕ jσ (r, t), (6.19)

and the orbital shifts according to Eq. 6.13, one should be able to construct the
full TDOEP from Eq. 6.16 at each time step from the sets of the {ϕ j (r, t)} and
{ξ j (r, t)}. Such a scheme would be the time-dependent analogue of the successful
schemes which construct the ground-state OEP from the orbital shifts (Kümmel
and Perdew 2003a, b; Horowitz et al. 2006, Cinal and Holas 2007) and would be
readily applicable in three-dimensional problems. So far there has been one attempt
to obtain the TDOEP along these lines (Mundt and Kümmel 2006). Unfortunately,
it faced serious difficulties. The coupled numerical propagation of the ϕ j and ξ j as
described above was not generally stable, and it could not be cleared up whether this
was due to numerical issues or a fundamental problem.

One obvious difficulty with Eq. 6.16 is that the density appears in the denominator.
For a finite system the density will decay exponentially in the asymptotic region, i.e.,
a numerical evaluation of Eq. 6.16 runs into the problem of dividing by numbers very
close to zero. For the TDKLI approximation this problem is less severe because all
terms in the numerator are multiplied by the orbital densities, i.e., numerator and
denominator show similar decay behavior. The terms in the second line of Eq. 6.16
however do not benefit from such an effect, making the TDOEP more cumbersome

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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to evaluate. Similar problems have been observed in calculations of the ground-state
OEP, but can be sidestepped there by not using Eq. 6.16 for the construction of the
potential, but an error-correction scheme (Kümmel and Perdew 2003b). A similar
numerical trick for the time-dependent case is yet missing. Another uncertainty of
the TDOEP scheme rests in Eq. 6.17. It involves the imaginary part of the sum over
the orbitals and orbital shifts, whereas the TDOEP Eq. 6.10 defines its real part. In
the numerical scheme tested in Mundt and Kümmel (2006) the imaginary part was
set to zero. This is consistent with the other equations, but possibly not the only
choice. Finally, numerical tests revealed that numerical propagation of the ϕ j with
analytically obtained ξ j and the numerical propagation of the ξ j with analytically
obtained ϕ j were both stable. Thus, only the coupled equations of motion for orbitals
and orbital shifts were unstable, whereas each set of equations of motion separately
could readily be solved by numerical propagation.

We therefore have to conclude that a generally applicable solution scheme for the
TDOEP equation that would allow for obtaining the TDOEP for three-dimensional
systems is still missing. Developing such a scheme remains as one of the major
challenges in time-dependent Kohn–Sham theory.

6.4 A Few Examples

After having taken a close look at formal aspects of using orbital functionals in time-
dependent Kohn–Sham theory in the previous section, the final part of this chapter
is devoted to mentioning a few practical examples of situations in which orbital
functionals are successfully used.

Probably the most commonly used orbital functionals are the different hybrids
that mix a constant fraction of exact exchange with GGA exchange and correla-
tion. For many organic molecules linear-response TDDFT using the orbital-specific
Hartree–Fock potentials for the exact exchange part yield quite reliable photoab-
sorption spectra. The great drawback of standard hybrid functionals is that with the
typically used constant fraction of about 20% exact exchange long-range charge-
transfer excitations are severely underestimated. This can lead to serious problems
of interpretation when both valence and charge-transfer excitations are present (Stein
et al. 2009a).

Range-separated hybrid functionals, which use Fock exchange but split the
Coulomb interaction into two parts with the decomposition

1

|r − r ′| =
erf(γ |r − r ′|)
|r − r ′| + erfc(γ |r − r ′|)

|r − r ′| (6.20)

and a range separation parameter γ, are promising candidates for overcoming this
problem. For example, a non-empirical way of fixing γ by exploiting the ionization
potential theorem has been put forward in Stein et al. (2009a). With thus deter-
mined values of γ one obtains quite accurate values for charge-transfer excitations
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(Karolewski et al. 2011). The approach is not a panacea, though, as rather different
values for γ are needed depending on whether one aims at a reliable description of
ground-state binding energies or of charge-transfer excitations.

Exact exchange in Kohn–Sham TDDFT has been employed both in the explicitly
linearized form (Ipatov et al. 2010) and in propagation calculations (Marques et al.
2001). An improved description of, e.g., excitonic effects (Kim and Görling 2002)
has been reported, and naturally all problems related to one-electron self interaction
are greatly reduced by using pure exact exchange. However, Fock exchange without
correlation describes electronic binding only poorly, thus a correlation functional
that is compatible with exact exchange is needed if one wants a universal functional
that is useful for DFT and TDDFT.

The various time-dependent SIC schemes are examples for approaches that are
self-interaction free and include correlation contributions (Chu 2005; Ullrich et al.
2000b). They go back to the ground-state DFT idea of correcting a given energy
functional, e.g., LSDA, for self-interaction in an orbital-by-orbital fashion (Perdew
and Zunger 1981), i.e.,

uSIC
xc jσ [n↑, n↓] = vLSDA

xc σ [n↑, n↓] −
(

vH[|ϕ jσ |2] + vLSDA
xc σ [|ϕ jσ |2, 0]

)

. (6.21)

This approach can be extended to the time-domain by inserting the time-dependent
orbitals in Eq. 6.21. Various flavors of TD-SIC in both Kohn–Sham and generalized
Kohn–Sham variants have been developed, some with a particular focus on simpli-
fications that reduce accuracy but ease computations (Legrand et al. 2002).

An interesting aspect of the SIC approach is that it is not unitarily invariant. There-
fore, the usual OEP equation for the ground state has been replaced by a generalized
OEP equation (Körzdörfer et al. 2008). Extending this concept to the time-domain
and exploiting the unitary variance to stabilize the propagation scheme is a promising
approach for obtaining a time-dependent Kohn–Sham SIC scheme (Hofmann and
Kümmel 2009, unpublished). This may be a way to construct a functional that yields
reasonably accurate results for both ground-state energetics and charge-transfer exci-
tations.

In summary one can say that it will take further work to turn the relation between
orbital functionals and TDDFT into a perfectly happy marriage—but already now it
is certainly an exciting relationship.



Chapter 7
Response Functions in TDDFT: Concepts
and Implementation

David A. Strubbe, Lauri Lehtovaara, Angel Rubio, Miguel A. L. Marques
and Steven G. Louie

7.1 Introduction

Many physical properties of interest about solids and molecules can be considered as
the reaction of the system to an external perturbation, and can be expressed in terms
of response functions, in time or frequency and in real or reciprocal space. Response
functions in TDDFT can be calculated by a variety of methods. Time-propagation

D. A. Strubbe (B) · S. G. Louie
Department of Physics, University of California,
366 LeConte Hall MC 7300, Berkeley CA 94720-7300, USA
e-mail: dstrubbe@berkeley.edu

D. A. Strubbe · S. G. Louie
Materials Sciences Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley CA 94720, USA
e-mail: sglouie@berkeley.edu

M. A. L. Marques (B)· L. Lehtovaara
Laboratoire de Physique de la Matière Condensée et Nanostructures,
Université Claude Bernard Lyon 1 et CNRS,
43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
e-mail: miguel.marques@tddft.org
e-mail: lauri.lehtovaaral@iki.fi

A. Rubio (B)
Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre,
Departamento Física de Materiales, Universidad del País Vasco,
Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPC,
Avenida Tolosa 72, E-20018 San Sebastián, Spain
e-mail: angel.rubio@ehu.es

A. Rubio
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6,
14195 Berlin, Germany

M. A. L. Marques et al. (eds.), Fundamentals of Time-Dependent Density Functional 139
Theory, Lecture Notes in Physics 837, DOI: 10.1007/978-3-642-23518-4_7,
© Springer-Verlag Berlin Heidelberg 2012



140 D. A. Strubbe et al.

is a non-perturbative approach in the time domain, whose static analogue is the
method of finite differences. Other approaches are perturbative and are formulated
in the frequency domain. The Sternheimer equation solves for the variation of the
wavefunctions, the Dyson equation is used to solve directly for response functions,
and the Casida equation solves for the excited states via an expansion in an electron-
hole basis. These techniques can be used to study a range of different response
functions, including electric, magnetic, structural, and k · p perturbations. In this
chapter, we give an overview of the basic concepts behind response functions and
the methods that can be employed to efficiently compute the response properties
within TDDFT and the physical quantities that can be studied.

7.2 Response Functions

In this section, we will: (1) show how a response function maps an external field to
a physical observable, (2) discuss how a specific response function is connected to a
specific physical property, (3) link the fully interacting many-body density response
function with the Kohn–Sham (KS) density response function, and (4) describe how
the different orders of response functions form a hierarchy.

In spectroscopic experiments, an external field F(r, t) is applied to a sample. The
sample, which is a fully interacting many-electron system from the theoretical point
of view, responds to the external field. Then the response can be measured for some
physical observable P:

ΔP = ΔPF [F]. (7.1)

In general, the dependence of the functionalΔPF [F] on F is very complex, as it must
reproduce the response for a field of any strength and shape. However, if the external
field is weak, the response can be expanded as a power series with respect to the
field strength (Bernard and Callen 1959; Peterson 1967). The first-order response,
also called the linear response of the observable,

δP(1)(r, t) =
∫

dt ′
∫

d3r ′χ(1)P←F (r, r ′, t − t ′)δF (1)(r ′, t ′) (7.2)

is a convolution ofχ(1)P←F (r, r ′; t−t ′), the linear response function, and δF (1)(r ′; t ′),
the field expanded to first order in the field strength. The linear response function is
nonlocal in space and in time, but the above time convolution simplifies to a product
in frequency space:

δP(1)(r;ω) = χ(1)P←F (r, r ′, ω)δF (1)(r ′, ω). (7.3)

The linear response function χ(1)P←F (r, r ′, ω) depends only on a single frequency ω,
which is a consequence of the homogeneity of time.
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At every order in the field strength, each observable/field pair has its own response
function that is connected to a specific physical property. For example, the first-order
response of the dipole moment to a dipole electric field is the polarizability α = ∂μ

∂E ,
the second-order response of the same pair provides the hyperpolarizability, and the
first-order response of the magnetic moment to a homogeneous magnetic field is the
magnetic susceptibility.

7.2.1 Linear Density Response

Perhaps the most important response function, from the TDDFT point of view,
is the linear density response function χ(r, r ′, t − t ′) = χ

(1)
n←vext (r, r ′, t − t ′), as

introduced in Eq. 4.47, which gives the linear response of the density δn(1)(r, t)
to an external scalar potential δvext(r ′, t ′). If the density response function χ(r, r ′,
t − t ′) is obtained explicitly, it can then be used to calculate the first-order response
of all properties derivable from the density with respect to any scalar field (e.g.,
polarizability, magnetic susceptibility).

The fully interacting many-body response function can be obtained from the
corresponding Kohn–Sham system (Gross and Kohn 1985; Petersilka and Gross
1996) as described in Sect. 4.5.1. The Kohn–Sham system describes a non-interacting
system of electrons subject to an external potential vKS(r, t), which is the effective
Kohn–Sham potential. Therefore, the so-called linear Kohn–Sham (density) response
function measures how the density changes upon linear variation of the Kohn–Sham
potential vKS(r, t):

δn(r, t) =
∫

dt ′
∫

d3r ′χKS(r, r ′, t − t ′)δvKS(r ′, t ′). (7.4)

Note that, by virtue of the KS construction, the variation of the density δn(r, t)
is the same as in the fully interacting system. In addition to the external potential
vext(r, t), the effective Kohn–Sham potential has contributions from the Hartree and
the exchange-correlation potentials:

δvKS(r ′, t ′) = δvext(r ′, t ′)+ δvH[n](r ′, t ′)+ δvxc[n](r ′, t ′), (7.5)

where

δvH [n](r ′, t ′) =
∫

dt ′′
∫

d3r ′′ δ(t
′ − t ′′)
|r ′ − r ′′| δn(r

′′, t ′′). (7.6)

To calculate the variation of the exchange-correlation (xc) potential, one simply
employs the chain-rule for functional derivatives:

δvxc[n](r ′, t ′) =
∫

dt ′′
∫

d3r ′′ fxc[nGS](r ′, r ′′, t ′ − t ′′)δn(r ′′, t ′′). (7.7)

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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The exchange-correlation kernel

fxc[nGS](r ′, r ′′, t ′ − t ′′) = δvxc[n](r ′, t ′)
δn(r ′′, t ′′)

∣
∣
∣
∣
n=nGS

(7.8)

is the functional derivative of the exchange-correlation potential with respect to the
density at the ground-state density nGS. Note that the exchange-correlation kernel
fxc[nGS](r ′, r ′′, t ′−t ′′) is a functional of the ground-state density and can be evaluated
before any response calculation.

For the same external potential vext(r, t), the fully interacting and the Kohn–
Sham density responses must be the same. Therefore, we can set the right-hand-side
of Eq. 4.47 equal to the right-hand-side of Eq. 7.4, and use Eq. 4.47 once more to
replace δn in Eq. 7.7:

∫

dt ′
∫

d3r ′χ(r, r ′, t − t ′)δvext(r ′, t ′)

=
∫

dt ′
∫

d3r ′χKS(r, r ′, t − t ′)δvext(r ′, t ′)

+
∫

dt ′
∫

d3r ′χKS(r, r ′, t − t ′)

×
∫

dt ′′
∫

d3r ′′
[
δ(t ′ − t ′′)
|r ′ − r ′′| + fxc[nGS](r ′, r ′′, t ′ − t ′′)

]

×
∫

dt ′′′
∫

d3r ′′′χ(r ′′, r ′′′, t ′′ − t ′′′)δvext(r ′′′, t ′′′). (7.9)

As the density response function is an intrinsic property of the system, it cannot
depend on the detailed form of the external potential. The terms multiplying the
external potential vext(r, t)must be point-wise equal, from which we obtain a Dyson-
like equation for the density response function, which reads in frequency space
[writing out the integrals in Eq. 4.59]:

χ(r, r ′, ω) = χKS(r, r ′, ω)+
∫

d3r ′′
∫

d3r ′′′χKS(r, r ′′, ω)

×
[

1

|r ′′ − r ′′′| + fxc[nGS](r ′′, r ′′′, ω)
]

χ(r ′′′, r ′, ω). (7.10)

The Kohn–Sham density response function χKS(r, r ′, ω) is straightforward to obtain
from first-order perturbation theory and has poles at the Kohn–Sham energy differ-
ences. Writing separate sums for occupied and unoccupied orbitals:

χKS(r, r ′, ω) = lim
η→0+

∑

a,i

(ni−na)

[

ϕ∗i (r)ϕa(r)ϕi (r ′)ϕ∗a (r ′)
ω − (εa − εi )+ iη

− ϕi (r)ϕ∗a (r)ϕa(r ′)ϕ∗i (r ′)
ω − (εi − εa)+ iη

]

,

(7.11)

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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where ϕi (r) and ϕa(r) are occupied and unoccupied KS orbitals, respectively, and εi

and εa are the corresponding KS eigenvalues.1 The Eq. 7.10 can be formally written
as

χ = (1− χKS fHxc)
−1 χKS, (7.12)

where all terms on the right-hand-side are known from a ground-state Kohn–Sham
calculation. This equation can be used directly to calculate the fully interacting
density response function from a Kohn–Sham system (Hybertsen and Louie 1987).

Before introducing practical methods for calculating TDDFT response in Sect. 7.3,
we will briefly discuss higher-order responses.

7.2.2 Higher-Order Density Response

In linear response, a system interacts only once with the external field and only with
the field component which is first-order with respect to the field-strength parameter.
For example, the magnetic field changes the kinetic-energy operator in the following
way:

1

2

(

p̂ + λ
c

Â

)2

= 1

2
p̂2 + λ

2c
p̂ · Â + λ

2c
Â · p̂ + λ2

2c2 Â2, (7.13)

but only the terms p̂ · Â and Â · p̂ contribute to the linear response, because Â2 term
is second order with respect to the field strength parameter λ.

In second-order response, a system interacts twice with the linear component of
the external field, but in addition, it also interacts once with the quadratic component
of the external field δv(2)ext (e.g., Â2) if it exists. The second-order density response
equation reads

δn(2)(r, t) = 1

2

∫

dt ′
∫

dt ′′
∫

d3r ′
∫

d3r ′′χ(2)(r, t, r ′, t ′, r ′′, t ′′)δv(1)ext (r
′, t ′)δv(1)ext (r

′′, t ′′)

+
∫

dt ′
∫

d3r ′χ(1)(r, t, r ′, t ′)δv(2)ext (r
′, t ′). (7.14)

or in frequency space

δn(2)(r, ω) = 1

2

∫

dω′
∫

dω′′
∫

d3r ′
∫

d3r ′′δ(ω − (ω′ + ω′′))
× χ(2)(r, r ′, r ′′, ω, ω′, ω′′)δv(1)ext (r

′, ω′)δv(1)ext (r
′′, ω′′)

+
∫

d3r ′χ(1)(r, r ′, ω)δv(2)ext (r
′, ω), (7.15)

1 This is the causal KS response function. The time-ordered KS response function would have
−iη in the second term.
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where δ(ω − (ω′ + ω′′)) comes from the conservation of energy. The second-order
response function χ(2)(r, r ′, r ′′, ω, ω′, ω′′) mixes two frequencies (which can be
different, ω1 and ω2, or equal, ω1 = ±ω2) yielding a new frequency. For example,
if the field is monochromatic having only frequency ω1, the second-order response
generates second harmonics at frequency 2ω1, and optical rectification at frequency
ω = ω1 − ω1 = 0.

The second-order Kohn–Sham response is fairly straightforward to obtain (Gross
et al. 1996; Senatore and Subbaswamy 1987), and it reads2

δn(2)(r, t) = 1

2

∫

dt ′
∫

dt ′′
∫

d3r ′
∫

d3r ′′χ(2)KS (r, t, r ′, t ′, r ′′, t ′′)δv(1)ext (r
′, t ′)δv(1)ext (r

′′, t ′′)

+
∫

dt ′
∫

d3r ′χ(1)KS (r, t, r ′, t ′)δv(2)ext (r
′, t ′)

+ 1

2

∫

dt ′
∫

dt ′′
∫

dt ′′′
∫

d3r ′
∫

d3r ′′
∫

d3r ′′′χ(1)KS (r, t, r ′, t ′)

× kxc(r ′, t ′, r ′′, t ′′, r ′′′, t ′′′)δn(1)(r ′′, t ′′)δn(1)(r ′′′, t ′′′)

+
∫

dt ′
∫

dt ′′
∫

d3r ′
∫

d3r ′′χ(1)KS (r, t, r ′, t ′)

×
(
δ(t ′ − t ′′)
|r ′ − r ′′| + fxc(r ′, t ′, r ′′, t ′′)

)

δn(2)(r ′′, t ′′), (7.16)

where

kxc(r ′, t ′, r ′′, t ′′, r ′′′, t ′′′) = δ2vxc(r ′, t ′)
δn(r ′′, t ′′)δn(r ′′′, t ′′′)

|n=nGS . (7.17)

If χ(1) is already solved for, the 2nd-order response equation can then be obtained
by combining Eqs. 4.47, 7.16 and 7.14.

Higher-order responses are also straightforward to construct but become quickly
cumbersome. The response equations form a hierarchic structure where the ith-order
response requires the (i − 1)th- and lower-order responses. Note that all functional
derivatives of the xc potentials are evaluated at the ground-state density.

7.3 Methods for Calculating Response Functions

In this section, we will briefly describe three different methods to calculate response
from TDDFT: (i) time-propagation, (ii) Sternheimer, and (iii) Casida method.
The time-propagation method (Yabana and Bertsch 1999) simply propagates a system

2 Note this differs from (4.89a) in the last term: Equation 4.89a defined the nth-order response by
the terms in the density expansion proportional to n factors of δvext(r, t) = vext(r, t)− vext(r, 0).
Here, on the other hand, we define the nth-order response as being proportional to the nth-power of
the field strength.

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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under a given external field. The density response is obtained directly as the differ-
ence between the time-dependent density and the ground-state state density. As
the method is nonperturbative, all orders of response are included in the calcula-
tion, and therefore, specific orders must be numerically extracted. The Sternheimer
method (Sternheimer 1954; Baroni et al. 1987a; Gonze 1995a; Andrade et al. 2007)
solves for a specific order of the response for a specific field in frequency space
(i.e., it is a perturbative approach). The Sternheimer equations form a hierarchic struc-
ture, where higher-order responses can be calculated from lower-order responses. The
Casida method (Casida 1995), instead of finding the response, finds the poles and
residues of the first-order response function, which corresponds to finding the reso-
nant transitions of a system. Note that physically all these techniques are equivalent
as they are all based on Kohn–Sham DFT and are simply different ways to obtain the
same quantities. Often the choice between them is done purely on numerical argu-
ments, as each one is more adapted to certain numerical implementations (Marques
and Rubio 2006b).

We will show that the three methods are connected to each other in a simple
way. Since the purpose is to connect all these approaches, we will consider only
weak perturbations. For pedagogical reasons, we make the following simplifying
assumptions in the discussion below that can be easily generalized (see discussion at
the end of this section): (i) the exchange-correlation functional does not have memory,
i.e., we work within the adiabatic approximation, (ii) the system is spin-unpolarized,
(iii) we have no fractional occupations, and (iv) we use no k-point sampling, i.e., only
Γ -point or a non-periodic system, which allows us to use purely real (i.e., imaginary
part is zero) ground-state Kohn–Sham wavefunctions. Assumption (i) is in practice
not very restrictive, as a large majority of the functionals used in TDDFT are, indeed,
adiabatic. Assumptions (ii–iv) are valid, for example, for closed-shell molecules. In
any case it is fairly straightforward (but cumbersome) to remove the assumptions
from the derivation. We will return to this topic at the end of the section.

7.3.1 Time-Propagation Method

In the time-propagation approach, the time-dependent Kohn–Sham equations are
propagated in real-time, i.e., by solving the following nonlinear partial differential
equation

i
∂

∂t
ϕk(r, t) = ĤKS[n](r, t)ϕk(r, t), (7.18)

starting from time t = 0 with the initial condition ϕk(r, t = 0) = ϕ
(0)
k (r), where

ϕ
(0)
k (r) are the ground-state Kohn–Sham wavefunctions. Here, we already have

applied the adiabatic approximation by assuming that ĤKS[n](r, t) has a functional
dependence only on the instantaneous density n(r, t) instead of on its whole history.
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If no perturbation is applied to the system, the system remains in the ground-

state and the time-evolution of the KS wavefunctions is trivial: ϕk(t) = ϕ(0)e−iε(0)k t .
If we apply a weak time-dependent external perturbation with a given frequency ω,
the time-evolution becomes nontrivial because of the nonlinearity of the Kohn–Sham
Hamiltonian. A general form for a weak time-dependent external perturbation with
a given frequency ω is

vext(r, t) = λvcos
ext (r) cos(ωt)+ λvsin

ext(r) sin(ωt) (7.19)

or, rewriting in terms of the exponential

vext(r, t) = λv+ωext (r)e
+iωt + λv−ωext (r)e

−iωt , (7.20)

where λ is the strength of the perturbation. If we now insert this external potential to
the TDKS equation and propagate in time, we can obtain physical observables from
the time-dependent expectation values. For example, if we apply a weak delta pulse
of a dipole electric field3

vext(r, t) = −er · Kδ(t) = −er · K
1

2π

∞∫

−∞
dω exp(iωt), (7.21)

we simply replace the ground-state wavefunctions (eigenfunctions of the
Hamiltonian Ĥ (0)

KS ) by

ϕk(r, t = 0+) = exp

⎧

⎨

⎩
− i

�

0+∫

0−
dt
[

Ĥ (0)
KS (t)− er · Kδ(t)

]

⎫

⎬

⎭
ϕk(r, t = 0−)

= exp (ier · K/�) ϕk(r, t = 0−), (7.22)

and propagate the free oscillations in time. Then the time-dependent dipole moment

µ(t) = −e
∫

d3r rn(r, t) (7.23)

can be used to extract the dynamic polarizability tensor α(ω) . We Fourier-transform
to obtain4

αγ δ(ω) = 1

Kδ

∞∫

0

dt
[

μγ (t)− μγ (0−)
]

e−iωt +O(Kδ). (7.24)

3 Note that K has units of electric field times time.
4 Note that the integration begins from t = 0− instead of −∞, which basically corresponds to
adding a Heaviside function θ(t − 0−) inside the Fourier transform.
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The imaginary part of the diagonal component of the dynamic polarizability
I[αδδ(ω)] is proportional to the absorption spectrum. The above equation includes
an integral over infinite time. Obviously, infinite time-propagation is not possible in
practice, and we have to add an artificial lifetime to the equation by introducing a
decay e−ηt :

αγ δ(ω) = 1

Kδ

∞∫

0

dt
[

μγ (t)− μγ (0−)
]

e−Iωt e−ηt +O(Kδ). (7.25)

which corresponds to forcing all excitations to decay back to the ground state with
rate η.

Higher-order responses (e.g., hyperpolarizabilities) are automatically considered
in the calculation. However, if the field is chosen weak enough, they have negli-
gible contribution, as should be the case for a linear-response calculation. If the
perturbation strength is increased, the nonlinear contributions begin to increase: 2nd
order quadratically, 3rd order cubically, etc. In addition to the different scaling with
respect to the perturbation strength, higher-order responses appear at combinations
of existing frequencies, which will be discussed in the next section. To disentangle
the different contributions from the time propagation scheme is not always a well-
defined procedure.

7.3.2 Sternheimer Method

The time-propagation approach propagates the TDKS equations in real-time. If we
apply time-dependent perturbation theory and transform the equations to frequency
space, we obtain the Sternheimer method, which is also known as density-functional
perturbation theory, particularly in its static form (Baroni et al. 2001), and as “coupled
perturbed Kohn–Sham” in the quantum-chemistry literature.

As the time-dependent external perturbation was chosen weak, we can expand
the TD-KS states and the TD-KS-Hamiltonian as a power series with respect to the
perturbation strength λ. The perturbation expansion5 of the TD-KS states reads

ϕk(r, t) = ϕ(0)k (r, t)+ λϕ(1)k (r, t)+ λ2ϕ
(2)
k (r, t)+ ... (7.26)

where the zeroth-order response has trivial time-dependence ϕ
(0)
k (r, t)=

ϕ
(0)
k (r)e−iε(0)k t . The perturbation expansion of the TD-KS Hamiltonian reads

ĤKS(r, t) = Ĥ (0)
KS [n(0)](r, t)+ λv(1)ext (r, t)+ λĤ (1)

KS [n](r, t)

+ λ2v
(2)
ext (r, t)+ λ2 Ĥ (2)

KS [n](r, t)+ ... (7.27)

5 Note that this expansion is not a Taylor expansion.
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where Ĥ (0)
KS [n(0)](r) is the ground-state Hamiltonian. The Ĥ (k)

KS [n](r, t) are the kth-
order response Hamiltonians, i.e., kth derivatives of the Hamiltonian with respect
to the magnitude of the bare external perturbation.6 These response Hamiltonians
arise from the nonlinearity of the TD-KS Hamiltonian: the Hartree and exchange-
correlation potentials are affected too when the system is perturbed by the time-
dependent external potential vext(r, t).

The response Hamiltonians require the time-dependent density

n(r, t) =
∑

k

nk |ϕk(r, t)|2 = n(0)(r, t)+ λn(1)(r, t)+ λ2n(2)(r, t)+ ... (7.28)

Inserting the expansion for the KS wavefunctions

n(r, t) =
∑

k

nk

{

|ϕ(0)k (r, t)|2

+ λ
{[

ϕ
(0)
k (r, t)

]∗
ϕ(1)(r, t)+

[

ϕ
(1)
k (r, t)

]∗
ϕ(0)(r, t)

}

+ λ2
{[

ϕ
(2)
k (r, t)

]∗
ϕ(0)(r, t)+

[

ϕ
(0)
k (r, t)

]∗
ϕ(2)(r, t)+ |ϕ(1)k (r, t)|2

}

+ ...
}

(7.29)
where nk is the occupation of the kth KS-state.

Each response Hamiltonian Ĥ (k)
KS [n(r ′, t)](r, t) depends only on the response

densities n( j≤k)(r, t) which are of lower or equal order. For example, the zeroth-
order response Hamiltonian is just the ground-state KS-Hamiltonian, which depends
only on the ground-state density. The first-order response Hamiltonian

Ĥ (1)
KS [n](r, t) =

∫

d3r ′ fHxc

[

n(0)
]

(r, r ′)n(1)(r ′, t) (7.30)

has the first-order Hartree-exchange-correlation kernel fHxc
[

n(0)
]

(r, r ′), which
depends on the ground-state density n(0)(r), multiplied by the first-order density
response n(1)(r, t).

Now, by equating different orders of λ in the TD-KS equation, we obtain in zeroth
order

i
∂

∂t
ϕ
(0)
k (r, t) = Ĥ (0)

KS [n(0)](r)ϕ(0)k (r, t), (7.31)

in first order,

i
∂

∂t
ϕ
(1)
k (r, t) = Ĥ (0)

KS [n(0)](r)ϕ(1)k (r, t)

+
[

Ĥ (1)
KS [n](r, t)+ v(1)ext (r, t)

]

ϕ
(0)
k (r, t), (7.32)

6 Remember that we are working within the adiabatic approximation here, and therefore, the
TD-KS Hamiltonian has no memory.
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in second order,

i
∂

∂t
ϕ
(2)
k (r, t) = Ĥ (0)

KS [n(0)](r)ϕ(2)k (r, t)

+
[

Ĥ (1)
KS [n](r, t)+ v(1)ext (r, t)

]

ϕ
(1)
k (r, t)

+
[

Ĥ (2)
KS [n](r, t)+ v(2)ext (r, t)

]

ϕ
(0)
k (r, t), (7.33)

and so on. The equations form a hierarchy, where higher-order responses can be
calculated from the lower-order ones (Gonze and Vigneron 1989; Gonze 1995).

The above equations still depend on time in a non-trivial way (except the zeroth
order which is just the trivial time-propagation of the ground-state). Neverthe-
less, the only explicit time-dependence is in the time-dependent external potential.
If the potential has only one frequency, the linear response will also have only one
frequency. If the potential has two frequencies, the linear response has two. However,
the second-order response will have frequencies which are sums and differences of
the original frequencies. For example, in case of one frequency ω, the second-order
response has frequency ω − ω = 0 and frequency ω + ω = 2ω. Furthermore, in
the case of two frequencies ω1 and ω2, the second-order response has frequencies
0, 2ω1, 2ω2, ω1 + ω2, and |ω1 − ω2|. The 3rd-order mixes three frequencies, and
in addition to the frequencies of the field, it can also mix the frequencies generated
by the 2nd-order response. Each new order brings new mixed frequencies.

From this point onward, we assume that we have only a single frequency ω in the
external field:

v
(1)
ext (r, t) = v+ωext (r)e

+iωt + v−ωext (r)e
−iωt , (7.34)

or, if we choose to use a cosine field,

v
(1)
ext (r, t) = 1

2
vωext(r)e

+iωt + 1

2
vωext(r)e

−iωt = vωext(r) cos(ωt). (7.35)

A general first-order wavefunction in this case can be written as

ϕ(r, t) = e−iε(0)t−iλΔε(1)(t)

×
{

ϕ(0)(r)+ λ
[

ϕ
(1)
+ω(r)eiωt + ϕ(1)−ω(r)e−iωt

]}

+O(λ2),
(7.36)

whereϕω(r) are now time-independent, and we have included a time-dependent level
shift

Δε(1)[n](t) =
t∫

−∞
dt〈ϕ(0)|Ĥ (1)

KS [n](t)+ v(1)ext (t)|ϕ(0)〉. (7.37)

The first-order level shift Δε(1)(t) is a first order correction to the phase of the
zeroth-order wavefunction caused by the first-order Hamiltonian. By including it, we
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keep the first-order wavefunction ϕ(1)±ω orthogonal to the zeroth-order wavefunction

ϕ(0). Otherwise, ϕ(1)±ω would be time-dependent and include a time-dependent ϕ(0)

component in order to correct the phase (Langhoff et al. 1972).
From the wavefunction, we obtain the response densities. The zeroth-order density

is just the ground-state density

n(0)(r, t) =
∑

k

nk |ϕ(0)k (r)|2, (7.38)

and the first-order response density

n(1)(r, t) =
∑

k

nk

{[

ϕ
(0)
k (r)

]∗
ϕ
(1)
k,+ω(r)e

iωt +
[

ϕ
(0)
k (r)

]∗
ϕ
(1)
k,−ω(r)e

−iωt

+
[

ϕ
(1)
k,+ω(r)

]∗
ϕ
(0)
k (r)e−iωt +

[

ϕ
(1)
k,−ω(r)

]∗
ϕ
(0)
k (r)eiωt

}

=
∑

k

nk

{[

ϕ
(0)
k (r)

]∗
ϕ
(1)
k,+ω(r)+

[

ϕ
(1)
k,−ω(r)

]∗
ϕ
(0)
k (r)

}

eiωt + cc. (7.39)

is oscillating at the frequency ω as expected.
Next, we insert the guess wavefunction to the TDKS equation and expand it up

to first order. On the left-hand-side, we obtain

i
∂

∂t

[

ϕ
(0)
k (r)+ λϕ(1)k,+ω(r)e

iωt + λϕ(1)k,−ω(r)e
−iωt

]

e−iε(0)k t−iλΔε(1)k (t)

= e−iε(0)k t−iλΔε(1)k (t)
{[

ε
(0)
k + λ

∂

∂t
Δε

(1)
k (t)

]

ϕ
(0)
k (r)+ λ

(

−ω + ε(0)k

)

ϕ
(1)
k,+ω(r)e

iωt

+ λ
(

ω + ε(0)k

)

ϕ
(1)
k,−ω(r)e

−iωt
}

+O(λ2). (7.40)

On the right-hand-side, we obtain
{

Ĥ (0)
KS

[

n(0)
]

(r)ϕ(0)k (r)+ λĤ (0)
KS

[

n(0)
]

(r)
[

ϕ
(1)
k,+ω(r)e

iωt + ϕ(1)k,−ω(r)e
−iωt

]

+ λ
[∫

d3r ′ fHxc

[

n(0)
]

(r, r ′)n(1)(r ′, t)+ v(1)ext (r, t)

]

ϕ
(0)
k (r)

}

× e−iε(0)k t−iλΔε(1)k (t) +O(λ2). (7.41)

The first-order equation can now be written in matrix form by gathering terms

proportional to the resonant part eiωt−iε(0)k t−iλΔε(1)k (t) and to the anti-resonant part

e−iωt−iε(0)k t−iλΔε(1)k (t):
(

Ĥ (0)
KS − ε(0)k + ω 0

0 Ĥ (0)
KS − ε(0)k − ω

)(

ϕ
(1)
k,+ω
ϕ
(1)
k,−ω

)

= −
⎛

⎝

(

v
(1)
Hxc,+ω + v(1)ext,+ω − ε(1)k,+ω

)

ϕ
(0)
k

(

v
(1)
Hxc,−ω + v(1)ext,−ω − ε(1)k,−ω

)

ϕ
(0)
k

⎞

⎠ , (7.42)
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where

v
(1)
Hxc,±ωe±iωt =

∫

d3r ′ fHxc

[

n(0)
]

(r, r ′)n(1)±ω(r ′, t), (7.43)

n(1)±ω(r, t) =
∑

k

nk

{[

ϕ
(0)
k (r)

]∗
ϕ
(1)
k,±ω(r)+

[

ϕ
(1)
k,∓ω(r)

]∗
ϕ
(0)
k (r)

}

e±iωt , (7.44)

and ε(1)k,±ω is the Fourier transform of ∂
∂tΔε

(1)
k (t):

ε
(1)
k,±ω =

〈

ϕ
(0)
k |v(1)Hxc,±ω + v(1)ext,±ω|ϕ(0)k

〉

. (7.45)

In this form, the Sternheimer method looks like a set of linear equations, but in
reality it is a nonlinear set of equations as the right-hand side depends on the solution
through v(1)Hxc,±ω which depends on n(1)±ω and therefore on ϕ(1)k,±ω. The usual way is

to introduce a self-consistent field (SCF) iteration for the response density n(1)±ω, as
for the ground-state DFT problem. This is the essence of the Baroni–Gianozzi–Testa
method (Baroni et al. 1987a), originally used for static perturbations but equally
applicable to TDDFT (Andrade et al. 2007).

By projecting the Sternheimer equation onto the unperturbed wavefunctions, one
obtains the sum-over-states expression in second-order perturbation theory for the
wavefunction:

ϕ
(1)
k,ω =

∑

m �=k

|ϕ(0)m 〉
〈ϕ(0)m |Ĥ (1)

ω |ϕ(0)k 〉
ε
(0)
m − ε(0)k + ω

(7.46)

where Ĥ (1)
ω = v(1)Hxc,ω + v(1)ext,ω. Using the Sternheimer equation has the great advan-

tage that it avoids the need for explicit calculation of the unoccupied states that would
occur in this sum over states.

As with the time-propagation approach, we have to include an artificial lifetime.
Otherwise, (i) the matrix is singular whenω corresponds to the KS-eigenvalue differ-
ence εa − εi (an excitation in the independent particle picture), or (ii) the response
becomes infinite when ω corresponds to a resonance (an excitation in the interacting
picture). The former is simply a numerical issue, but the later one has physical
meaning and will be used to derive Casida’s equation in the next section. The artifi-
cial lifetime is introduced by multiplying the first-order wavefunction ϕ(1)k (r, t) and
the external potential vext(r, t) by a decay term e−ηt . In the first order, the matrix
equation then reads

(

Ĥ (0)
KS − ε(0)k + ω + iη 0

0 Ĥ (0)
KS − ε(0)k − ω + iη

)(

ϕ
(1)
k,+ω
ϕ
(1)
k,−ω

)

= −P̂c

⎛

⎝

(

v
(1)
Hxc,+ω + v(1)ext,+ω

)

ϕ
(0)
k

(

v
(1)
Hxc,−ω + v(1)ext,−ω

)

ϕ
(0)
k

⎞

⎠ (7.47)
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The matrix is no longer singular, and the resonances become Lorentzians with width
η instead of delta functions. We also added a projector to the unoccupied space
P̂c = 1 − P̂occ, which orthogonalizes the KS response wavefunctions with respect
to the occupied KS ground-state wavefunctions. The components of the response
wavefunctions in the occupied subspace are not needed because they cancel out in the
density response. The projector avoids solving for these (possibly large) components,
making the numerical solution more efficient and stable (Baroni et al. 2001; Andrade
ety al. 2007). It also simplifies the equation by removing the level shiftΔε(1)±ω. Finally,
after the self-consistent solution is found, the linear density response is directly
available from equation (7.44).

The Sternheimer equation is particularly suited to the calculation of higher-order
responses, because solution of only the first-order problem can actually give access
to up to third-order derivatives of the total energy (second-order response). In fact,
the variational principle can be used to show that the {φ(n)i }, the derivatives of order
n of the KS wavefunctions with respect to a perturbation, can be used to construct all
derivatives of the total energy up to order 2n + 1 (this is the famous 2n + 1 theorem
for DFT (Gonze and Vigneron 1989)).

Consider a bare external perturbation Ĥ (n)
bare and a total perturbation Ĥ (n), including

Hartree and exchange-correlation response (the “local fields” (Hybertsen and Louie
1987)). For n = 0, this theorem reduces to the familiar Hellman–Feynman Theorem,
used in calculation of forces from only ground-state quantities:

E (1) = ∂E

∂λ
=

occ
∑

i

〈ϕi |Ĥ (1)
bare|ϕi 〉 (7.48)

At n = 1, the expression for the second derivative (first-order response) is

E (2) =
occ
∑

i

[

〈ϕ(0)i |Ĥ (1)|ϕ(1)i 〉 + cc.+ 〈ϕ(0)i |Ĥ (2)
bare|ϕ(0)i 〉

]

(7.49)

and for the third derivative (second-order response) are

E(3) =
occ
∑

i

[

〈ϕ(1)i |Ĥ (1)|ϕ(1)i 〉 + 〈ϕ(1)i |ϕ(1)i 〉〈ϕ(0)i |Ĥ (1)|ϕ(0)i 〉

+ 〈ϕ(1)i |Ĥ (2)
bare|ϕ(0)i 〉 + cc.+ 〈ϕ(0)i |Ĥ (3)

bare|ϕ(0)i 〉
]

+ 1

6

∫

d3r
∫

d3r ′
∫

d3r ′′ δ3 E[n(0)]
δn(r)δn(r ′)δn(r ′′)n(1)(r)n(1)(r ′)n(1)(r ′′) (7.50)

where superscripts indicate the order of derivatives with respect to the perturbation
(Gonze and Vigneron 1989). The bare perturbation Ĥ (n)

bare is zero for n > 1 for electric
fields, but not in general. The third functional derivative here is the second-order
kernel Kxc.

Conveniently, it turns out even in these equations, only the projection of the
wavefunction derivatives onto the unoccupied subspace Pc ϕ

(1)
i are required for
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this formula (Debernardi and Baroni 1994), making the Sternheimer calculation
more efficient. With this formula for E (3), the Sternheimer approach allows efficient
access to phonon anharmonicities and nonlinear optical susceptibilities from solution
of the first-order Sternheimer equation. This is true even for mixed derivatives with
respect to perturbations in different directions or even entirely different perturbations.
To get even higher orders, one can use the hierarchy of Sternheimer equations to
solve for {ϕ(n)i } from results at lower orders (Gonze and Vigneron 1989; Gonze
1995), with a somewhat more complicated calculation. The 2n + 1 formulae for the
energy derivatives at higher orders are straightforward but increasingly lengthy. For
the time-dependent case, rather than total energies we use instead the action, or in
the frequency domain, the Floquet quasi-energy (Langhoff et al. 1972).

The 2n + 1 theorem actually also provides an alternate calculation approach
for ϕ(1) (Gonze 1995; Dal Corso et al. 1996; Gonze 1997; Baroni et al. 2001). The
formula for E (3) is variational with respect to ϕ(1), just as E is variational with respect
to ϕ(0), as stated in the standard variational theorem of quantum mechanics. As a
result, one can solve for ϕ(1) by direct minimization of the functional E (3)[{ϕ(1)i }].
This approach is formally equivalent to solution by self-consistency, and the choice
of technique is a question of numerical strategy.

7.3.3 Casida Method

From the Sternheimer method, we can continue to Casida’s equation by writing
the linear Sternheimer equation in the particle-hole basis, i.e., in the Kohn–Sham
orbital basis including unoccupied states. First, we write the first-order response
wavefunction as a linear combination of Kohn–Sham orbitals (i.e., sum-over-states
expansion)

ϕ
(1)
k (r) =

∑

a

c(k)a ϕ(0)a (r), (7.51)

where c(k)a is the projection of the response of kth occupied state onto the ath unper-
turbed KS state ϕ(0)a . These coefficients represent excitations from state k to state a.
As in Eq. 7.47, we are considering only the projection of ϕ(1)k (r) into the unoccupied
subspace, which will remove the level shift. We insert this linear combination into the
first-order equation and multiply it from the left by 〈ϕ(0)b |, i.e., take an inner product
with another basis function. The first-order TD-KS equation (7.42) now reads

∑

a

(

−ω + ε(0)k

)

δa,beiωt−iε(0)k t c(k,+ω)a +
∑

a

(

ω + ε(0)k

)

δa,be−iωt−iε(0)k t c(k,−ω)a

=
∑

a
ε
(0)
a δa,beiωt−iε(0)k t c(k,+ω)a +

∑

a
ε
(0)
a δa,beiωt−iε(0)k t c(k,−ω)a

+
〈

ϕ
(0)
b | fHxc[n(0)]n(1)(t)|ϕ(0)k

〉

e−iε(0)k t +
〈

ϕ
(0)
b |vext(t)|ϕ(0)k

〉

e−iε(0)k t . (7.52)
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Writing the equations in a basis allows us to remove the nonlinearity caused by
the Hartree-exchange-correlation kernel:
〈

ϕ
(0)
b | f̂Hxc

[

n(0)
]

n(1)(t)|ϕ(0)k

〉

e−iε(0)k t

=
∫

d3r
∫

d3r ′ fHxc

[

n(0)
]

(r, r ′)×
∑

k′
nk′
{{[

ϕ
(0)
k′ (r

′)
]∗
ϕ
(1)
k′,+ω(r

′)

+
[

ϕ
(1)
k′,−ω(r

′)
]∗
ϕ
(0)
k′ (r

′)
}

eiωt +
{[

ϕ
(0)
k′ (r

′)
]∗
ϕ
(1)
k′,−ω(r

′)

+
[

ϕ
(1)
k′,+ω(r

′)
]∗
ϕ
(0)
k′ (r

′)
}

e−iωt
}

ϕ
(0)
b (r)ϕ(0)k (r) (7.53)

Inserting the expansion for ϕ(1) in terms of the unoccupied KS eigenfunctions gives
〈

ϕ
(0)
b | fHxc

[

n(0)
]

n(1)(t)|ϕ(0)k

〉

e−iε(0)k t

=
∫

d3r
∫

d3r ′ fHxc

[

n(0)
]

(r, r ′)×
∑

k′,b′
nk′
{{

ϕ
(0)
k′ (r

′)c(k
′,+ω)

b′ ϕ
(0)
b′ (r

′)

+
[

c(k
′,−ω)

b′
]∗
ϕ
(0)
b′ (r

′)ϕ(0)k′ (r
′)
}

eiωt +
{

ϕ
(0)
k′ (r

′)c(k
′,−ω)

b′ ϕ
(0)
b′ (r

′)

+
[

c(k
′,+ω)

b′
]∗
ϕ
(0)
b′ (r

′)ϕ(0)k′ (r
′)
}

e−iωt
}

× ϕ(0)b (r)ϕ(0)k (r) (7.54)

This finally leads to
〈

ϕ
(0)
b | fHxc

[

n(0)
]

n(1)(t)|ϕ(0)k

〉

e−iε(0)k t

=
∑

k′,b′
nk′Kbk,b′k′ ×

{{

c(k
′,+ω)

b′ +
[

c(k
′,−ω)

b′
]∗}

eiωt +
{

c(k
′,−ω)

b′ +
[

c(k
′,+ω)

b′
]∗}

e−iωt
}

,

(7.55)
where

Kbk,b′k′ =
∫

d3r
∫

d3r ′ fHxc[n(0)](r, r ′)ϕ(0)k′ (r
′)ϕ(0)b′ (r

′)ϕ(0)b (r)ϕ(0)k (r) (7.56)

is the Hartree-exchange-correlation matrix element for interaction of excitations
b← k and b′ ← k′ (k and k′ are occupied orbitals, b and b′ unoccupied). This term
couples independent-particle excitations (KS-eigenvalue differences) to interacting-
particle excitations (TD-KS transition frequencies). Remember that we assumed the
KS orbitals to be real functions.

The matrix form of the Sternheimer equation in the particle-hole basis reads as
⎛

⎜
⎜
⎝

ΔE + ωI 0 −η 0
0 ΔE − ωI 0 −η
η 0 ΔE + ωI 0
0 η 0 ΔE − ωI

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

C (+ω,re)

C (−ω,re)

C (+ω,im)
C (−ω,im)

⎞

⎟
⎟
⎠

= −

⎛

⎜
⎜
⎝

K K 0 0
K K 0 0
0 0 K −K
0 0 −K K

⎞

⎟
⎟
⎠

N

⎛

⎜
⎜
⎝

C (+ω,re)

C (−ω,re)

C (+ω,im)
C (−ω,im)

⎞

⎟
⎟
⎠
− N 1/2

⎛

⎜
⎜
⎝

V+ω,re

V−ω,re

V+ω,im
V−ω,im

⎞

⎟
⎟
⎠
, (7.57)
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where real and imaginary parts have been separated,ΔEbk,b′k′ = δk,k′δb′,b′(εb− εk),

Nbk,b′k′ = δk,k′δb,b′nk′ , V±ωbk =〈ϕ(0)b |vext,±ω|ϕ(0)k 〉 and K is the above Hartree-
exchange-correlation kernel matrix. As one can easily see, the nonlinearity has been
eliminated, i.e., the above equation is a linear equation if the first term on the right-
hand side is moved to the left:

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

−ΔE −K −K η 0
K ΔE +K 0 −η
−η 0 −ΔE −K K
0 η −K ΔE +K

⎞

⎟
⎟
⎠
− ωI

⎤

⎥
⎥
⎦

×

⎛

⎜
⎜
⎝

B(+ω,re)

B(−ω,re)

B(+ω,im)
B(−ω,im)

⎞

⎟
⎟
⎠
= −N

⎛

⎜
⎜
⎝

−V+ω,re

V−ω,re

−V+ω,im
V−ω,im

⎞

⎟
⎟
⎠
, (7.58)

where K = N 1/2 K N 1/2, B = N 1/2C, and we have already modified it slightly for
convenience in the rest of the discussion.

In the limit when the lifetime parameter η goes to zero (i.e., infinite lifetime), the
matrix has singularities at certain frequencies. As we included the Hartree-exchange-
correlation kernel in the matrix, the response has poles only at the interacting reso-
nance frequencies, and not at the noninteracting resonance frequencies as Eq. 7.47
did. Therefore, we can find the interacting resonance frequencies in the limit η→ 0
by finding the singularities of the matrix.

The matrix is a 2× 2 block-diagonal system in the limit η→ 0, and the second
diagonal block is the transpose of the first one. The blocks have the same eigenvalues,
but the right and left eigenvectors of the blocks are swapped. We can focus on the
first block and find the eigenvalues of the following equation:

[(−ΔE −K −K
K ΔE +K

)

− ωI

](−B(+ω,re)

B(−ω,re)

)

= 0. (7.59)

We apply an unitary transformation Q = 1√
2

(

1 1
−1 1

)

, and multiply from left by

ΔE
1
2 to obtain

[(
0 ΔE

ΔE + 2ΔE
1
2 KΔE−12 0

)

− ωI

](

ΔE
1
2 [ B(+ω,re) + B(−ω,re)]

ΔE
1
2 [−B(+ω,re) + B(−ω,re)]

)

= 0.

(7.60)
The determinant of the matrix inside the square brackets can be easily calculated as
ΔE andωI are diagonal. Setting the determinant equal to zero gives us the eigenvalue
equation

ΔE2 + 2ΔE
1
2 KΔE

1
2 = ω2 I (7.61)

or, when we expand K = N
1
2 K N

1
2 ,
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ΔE2 + 2ΔE
1
2 N

1
2 K N

1
2ΔE

1
2 = ω2 I, (7.62)

which is the well-known Casida’s equation with one small difference: instead of
differences of occupation numbers (na−ni ), the actual occupation numbers appear.
This is a consequence of our assumption of integral occupations. The extension to
fractional occupations will be discussed in the next section.

The eigenvectors F of Casida’s equation, Eq. 7.62, can be used to extract the
strength of the response to the external field. After some algebra, for example, the
polarizability can be written as

αγ δ(ω) = μγ N
1
2ΔE

1
2
∑

k

Fk

(

ω2
k − ω2

)−1
F†

k ΔE
1
2 N

1
2μδ, (7.63)

where μδ is the dipole-moment operator in direction δ, with matrix elements in the
particle-hole basis μδ,ai = 〈ϕ(0)a |rδ|ϕ(0)i 〉.

7.3.4 Generalizations and Discussion

In this section, we will discuss what changes if we do not make the assumptions
of the beginning of the section. We start with the first assumption—the adiabatic
approximation. Without the adiabatic approximation, the exchange-correlation func-
tional has memory, i.e., the exchange-correlation functional depends on density at
all previous times. In principle, it is trivial for the time-propagation method. We only
have to store all previous densities and calculate the exchange-correlation potential
from these. In practice, this is a very demanding task and often impossible beyond
model systems.

In the Sternheimer method, memory will show up as a frequency dependence
of the exchange-correlation kernels. At first order, the kernel depends only on one
frequency, fxc[nGS](r, r ′, ω), but at higher orders it depends on multiple frequencies.
Again, if explicit forms of the frequency-dependent kernels are known, it is straight-
forward to include memory (in principle). However, a practical implementation might
not be easy and it will depend a lot on the actual form of the memory-dependence
in the functionals, which remains an important unresolved theoretical issue (see
Chap. 8).

In the case of the Casida method, the matrix becomes frequency-dependent
(Casida 1995), which means that the linear eigenvalue problem becomes a nonlinear
eigenvalue problem. A nonlinear eigenvalue problem is much harder to solve than a
linear eigenvalue problem (e.g., SCF iterations may be required).

If a system is spin-polarized, each spin has its own exchange-correlation poten-
tial vαxc and vβxc. The exchange-correlation kernel is replaced by three exchange-
correlation kernels f ααxc , f ββxc , and f αβxc (Casida 1995; Guan et al. 2000).

If a system has fractional occupation numbers, an excitation which happens from
one partially occupied state i to another partially occupied state j will have an opposite

http://dx.doi.org/10.1007/978-3-642-23518-4_8
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excitation (or de-excitation) from j to i. The expressions from perturbation theory now
contain the occupation difference ni − n j . The original presentation of the Casida
method (Casida 1995) shows this general case. The situation for the Sternheimer
method is significantly more complicated due to the question of what happens to
the projection onto the unoccupied subspace. A computational scheme has been
derived to solve the Sternheimer equation when the occupation function corresponds
to the thermal Fermi–Dirac distribution or one of the related smearing methods,
which is generally needed for reasonable convergence of the ground state of metals
with respect to k-point sampling (de Gironcoli 1995). Introduction of some extra
projectors into the Sternheimer equation allows the density response

n(1)(r) =
∑

i j

θ̃ (εF − εi )− θ̃
(

εF − ε j
)

εi − ε j
ϕ∗i (r)ϕ j (r)〈ϕ j |Ĥ (1)

bare|ϕi 〉 (7.64)

to be written in the same form as Eq. 7.44 for the zero-temperature (semiconducting)
case in which all states are full or empty, with the addition of terms corresponding
to variation of the occupations and Fermi level in general (Baroni et al. 2001).

Finally, if we use k-points, the ground-state KS wavefunctions become complex
and we cannot obtain the Casida’s equation (7.62). However, we can still obtain a
similar eigenvalue equation (Reining et al. 2002).

7.4 Applications of Linear Response

Having reviewed different methods of obtaining response functions, we will now
consider the different perturbations that can be studied and how their response func-
tions relate to physical quantities of interest. Electric, magnetic, structural, and k · p
perturbations, as well as mixed perturbations, are commonly used to extract both
static and dynamic response properties.

7.4.1 Response to Electric Perturbations

We will begin by considering electric perturbations, because they give access to
optical properties and account for the vast majority of applications of TDDFT. In
molecules, the basic quantity is the polarizability α, defined as the response of the
dipole to an electric field E , in the limit of zero applied field:

αi j (ω) = ∂μi,ω

∂E j,ω
= − ∂2 E

∂Ei,−ω∂E j,ω
(7.65)

where ω denotes the frequency of the electric field. The cross-section for optical
absorption (in the dipole approximation) can be calculated from the imaginary part:
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σi j (ω) = 4πω

c
Imαi j (ω) (7.66)

The static polarizability (which is purely real) is commonly calculated by finite
differences of applied field (Vila et al. 2010), and the dynamic polarizability can
be computed by time-propagation (Yabana and Bertsch 1996), typically via appli-
cation of an instantaneous pulsed electric field, which contains all frequencies. A
Fourier transformation of the resulting free oscillations of the dipole moments yields
the polarizability. The absorption spectrum is most often calculated by the Casida
method (Casida 1995; Jamorski et al. 1996), which was designed for this problem;
it calculates excited states, and a specific perturbation only enters in the calculation
of oscillator strengths. It can be difficult to converge the real part of the dynamic
polarizability below the optical gap in this method (Jamorski et al. 1996), in which
case it is more efficient to do the calculation via the Sternheimer equation (Andrade
et al. 2007). The electric field appears as a term E · r in the Hamiltonian, so the
perturbation used is ∂H/∂E = r. This is the response of the dipole moment to a
homogeneous electric field, which couples to the dipole, so these are called dipole–
dipole polarizabilities. Similar methodologies can be used for dipole–quadrupole
polarizabilities (response to a field gradient) and other multipoles (Bishop 1990).

For solids, typically the susceptibilityχ (polarizability per unit cell) and dielectric
function ε are used instead of the polarizability, related via

ε = 1+ 4πχ = 1+ 4π
α

V (7.67)

where V is the volume of the unit cell. The optical absorption is calculated just as
for finite systems. There is a significant complication in applying a uniform electric
field to a periodic system, because the operator r is not periodic. There are two
ways to solve the problem: the original solution is to consider spatially modulated
fields E (q) = E0eiq·r , which are periodic although not necessarily commensurate
with the cell periodicity. In this case, one can consider the q → 0 limit to obtain the
response to a homogeneous electric field, which is used in TDDFT calculations in the
sum-over-states (Hybertsen and Louie 1987; Levine and Allan 1989) and response-
function approaches commonly used for crystals (Olevano et al. 1999; Sagmeister
and Ambrosch-Draxl 2009). It is important to consider carefully the relation between
microscopic/macroscopic and transverse/longitudinal responses in this method (see
Chap. 3). Another solution is to use the quantum theory of polarization (Resta 1994;
Vanderbilt and Resta 2006) to write the operator as r = i ∂

∂k , which is periodic
(Gonze 1997a). The k-point derivatives are obtained by finite differences, or again
through perturbation theory. An equivalent approach is to calculate the polarization
within a basis of Wannier functions (Dal Corso and Mauri 1994). In either method,
we do not study the response of the dipole moment per unit cell, which is not a
well-defined quantity, and instead use the polarization. To apply finite homogeneous
electric fields in periodic systems, the electric–enthalpy approach can be used, in
which a term −μ · E is added to the total energy functional to be minimized (Souza
et al. 2002).

http://dx.doi.org/10.1007/978-3-642-23518-4_3
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Armed with the dielectric function or polarizability, one can calculate many inter-
esting properties. Inverting the dielectric matrix yields the loss function
Imε−1 (q, ω) , which describes the slowing of energetic electrons in a solid and
is measured in electron energy-loss spectroscopy experiments (Onida et al. 2002;
Marini et al. 2006a). Van der Waals interaction energies can be calculated too: the
Hamaker coefficients in the expansion

ΔE (R) = −
∞
∑

n=6

Cn

Rn
(7.68)

can be calculated from the Casimir–Polder relation as an integral over polarizabilities
evaluated as a function of imaginary frequency. For example, the dominant C6 term
for interaction of molecules A and B is given by

C AB
6 = 3

π

∞∫

0

duα(A) (iu) α(B) (iu) (7.69)

Higher-order terms involve higher-order multipole polarizabilities. These coeffi-
cients have been calculated by TDDFT with molecular polarizabilities from time-
propagation and Sternheimer methods, and surface susceptibilities from response
functions, to study molecule-molecule (Marques et al. 2007) and molecule-surface
interactions (Botti et al. 2008). Scaled interatomic C6 coefficients from TDDFT can
also be used to add Van der Waals interactions into DFT total energies as a post-
processing step (Tkatchenko and Scheffler 2009).

Dielectric response can also be considered not for uniform fields but rather for
point charges, giving ε

(

r, r ′, ω
)

from a perturbation 1/
∣
∣r − r ′

∣
∣ . Time-propagation

has been used to study the spatially resolved plasmon response of liquid water (Taver-
nelli 2006). This form of the dielectric function can also be used as input for many-
body perturbation theory via the GW approximation (Hedin and Lundqvist 1969) and
Bethe–Salpeter equation. Typically these calculations use the RPA dielectric func-
tion, which is equivalent to using only the Hartree response and setting the kernel
fxc = 0. However, as pointed out in the first practical implementation of this scheme
(Hybertsen and Louie 1986), using instead the TDDFT ε is an approximate way
of including the vertex Γ. This methodology has been used for quasiparticle and
optical calculations on organic molecules (Tiago and Chelikowsky 2005). Recently
progress has been made in replacing the expensive sums over states with solution of
the time-dependent Sternheimer equation (Giustino et al. 2010), which can be done
with RPA or including fxc.

Response to a related but more exotic perturbation can also be used to parame-
trize the DFT + U method, in which projectors on atomic-like orbitals are used to
emulate Coulomb repulsion and correct the energies of localized d- and f-orbitals
in strongly correlated materials (Anisimov et al. 1991). Ab initio values for U can
be calculated from the screened response to a localized potential αI PI , where PI

is an atomic-orbital projector, implemented via finite differences (Cococcioni and
Gironcoli 2005).
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Response to electric perturbations can be used to calculate nonlinear susceptibil-
ities, describing nonlinear optical properties such as second-harmonic generation,
optical rectification, and electrooptical effects (Shen 1984). The hyperpolarizability
β of a molecule and second-order susceptibility χ(2) of a solid are simply the deriv-
atives with respect to field of α and χ, the next order in the Taylor expansion of the
dipole moment:

μi (ω) = μi0 + αi j (ω) E j,ω + 1

2
βi jk (ω = ω1 + ω2) E j,ω1Ek,ω2 + ... (7.70)

though conventions can differ on what numerical factors may appear in this expansion
(Willetts et al. 1992). With the 2n+ 1 theorem, solution of the Sternheimer equation
can be used to calculate molecular hyperpolarizabilities (Andrade et al. 2007; Vila et
al. 2010) as well as the nonlinear susceptibilites of semiconductors with the quantum
theory of polarization (Dal Corso et al. 1996).

Finite differences are often also used to calculate static hyperpolarizabilities (Vila
et al. 2010), and time-propagation can be used for dynamic hyperpolarizabilities;
however, the advantage of being able to obtain the entire spectrum from a single calcu-
lation is lost, and separate calculations must be done for each set of input frequen-
cies (Takimoto et al. 2007). The response-function technique has also recently been
developed for χ(2) in the q → 0 limit, and applied to second-harmonic generation
in zincblende semiconductors (Hübener et al. 2010).

7.4.2 Response to Magnetic Perturbations

Magnetic response offers a significant additional challenge compared to electric
response because of the fact that the vector potential has to be formulated in a
particular choice of gauge, which causes particular complications when localized-
orbital bases or non-local pseudopotentials are used. The simplest quantity to consider
is the magnetic susceptibility, the analogue of the electric susceptibility. The coupling
in the Hamiltonian can be expressed with the vector potential A, field B = ∇ × A,
and spin magnetic moment gμB S (where μB is the Bohr magneton and S is the spin
angular momentum), as

Ĥ = 1

2

(

p+ 1

c
A
)2

+ v + gμB S · B

= Ĥ (0) + 1

2c
( p · A+ A · p)+ A2

2c2 + gμB S · B (7.71)

The three perturbations are respectively the orbital paramagnetic, orbital diamag-
netic, and spin paramagnetic contributions. Within the Coulomb gauge where
∇ · A = 0 and p and A commute, the linear coupling to A can also be written
in terms of the orbital angular momentum as 1

2c r × p · B = 1
2 L · B. In spin-

unpolarized systems, the spin susceptibility is zero, so just the orbital perturbation is
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needed. The Sternheimer equation has been used with this perturbation to calculate
static susceptibilities for boron fullerene molecules (Botti et al. 2009). There is actu-
ally the advantage, compared to electric perturbations, that the first-order response
of the density is required to be zero if the ground state has time-reversal symmetry,
which is the case in the absence of spin-polarization or magnetic fields, so that the
magnetic Sternheimer equation does not require self-consistency (Mauri and Louie
1996).

To compute magnetic susceptibilities in solids, we have the same problem as for
electric perturbations that the position operator is not periodic, which can similarly
be handled either by taking the q → 0 limit or by the quantum theory of polariza-
tion. The q → 0 approach has been used for susceptibilities in crystals (Mauri and
Louie 1996). It has also been used for chemical shifts in nuclear magnetic resonance
(NMR) (Mauri et al. 1996; Pickard and Mauri 2001), which are ratios between
the external field and the environment-dependent screened field at the position of
the nuclei. The g-tensor of electron paramagnetic resonance (EPR), describing the
direction-dependent spin susceptibility, has been calculated by a similar approach for
radicals and defects, including spin-orbit and hyperfine effects (Pickard and Mauri
2002). The J coupling between nuclear spins in NMR can also be computed by the
Sternheimer equation, via the magnetic field induced at one nucleus by the field of
another (Joyce et al. 2007). Susceptibilities can also be studied by applying finite
magnetic fields, but in the presence of non-local pseudopotentials the coupling in
the Hamiltonian generates additional terms beyond those above to satisfy gauge-
invariance, as can be handled with the ICL (Ismail-Beigi et al. 2001) or GIPAW
methods (Pickard and Mauri 2003). When using pseudopotentials, it is important
to note that core susceptibilities may be significant, unlike the electric case; they
may be computed from separate atomic calculations (Mauri and Louie 1996), or
handled via projector-augmented wave (PAW) methods (Pickard and Mauri 2001).
Gauge-invariance for magnetic fields in localized-orbital calculations also requires
special attention, and can be handled by the “gauge-including atomic orbitals” or
“individual gauge for localized orbitals” methods. The susceptibilities of interest
are usually static, and the NMR/EPR properties are treated as static since they are
measured at radio frequencies.

To study spin waves in metals, dynamical susceptibilities have been calculated
with the Sternheimer equation, where peaks in the spin susceptibility χ (q, ω) show
the magnon band structure (Savrasov 1998). Spinor wavefunctions are needed to
allow spin rotations. Another kind of magnetic response is the spin-triplet optical
excitation spectrum, inaccessible by electric perturbations which can only excite
singlets. Time-propagation techniques have been used to calculate triplet states by
applying an opposite kick to the up and down spins (Oliveira et al. 2008). A dynamic
response that combines electric and magnetic response is circular dichroism, also
known as optical rotation, in which a chiral molecule responds differently to left and
right circularly polarized light. The rotatory strength as a function of frequency can
be studied via the (orbital) magnetic moment induced by an electric field; the reverse
is possible but more complicated to implement. These properties have been calcu-
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lated for organic molecules with both time-propagation and Sternheimer approaches
(Yabana and Bertsch 1999; Varsano et al. 2009).

7.4.3 Response to Structural Perturbations

There is a rich field of study regarding the response to perturbation of ionic positions
and lattice parameters. Since it has been reviewed in great detail (Baroni et al. 2001),
and is mostly concerned with static properties, we will consider only briefly most
of these quantities and focus on those where TDDFT can be used. Forces on the
ions and stresses on the unit cell (the diagonal part of which is the pressure) can be
calculated via the Hellman–Feynman theorem, which is routinely done in static DFT
for use in structural relaxation. These forces can additionally be used for calculation
of dynamical matrices for vibrational properties by means of the frozen-phonon
method, in which finite ionic displacements are used. However, only phonons with
commensurate wavectors q can be calculated, and large supercells may be required.
Using the Sternheimer equation has the great advantage that dynamical matrices at
arbitrary q may be calculated with effort comparable to that for zone-center phonons
(Baroni et al. 2001). For displacement of ion α with potential vα in direction i, the
perturbation is ∂vα/∂Rαi .

The dynamical matrix is diagonalized to obtain phonon frequencies and eigenvec-
tors in the harmonic approximation. This information, as function of cell volume,
can also be used as input for the “quasi-harmonic approximation” which is used
for free energies and other thermodynamic information about solids (Wallace 1972;
Born and Huang 1954; Carrier et al. 2007). The phonon group velocities can be
computed directly as analytic derivatives from the phonon perturbation calculation
as well (Gonze and Vigneron 1989). Going beyond the harmonic approximation, the
2n + 1 theorem gives access to anharmonic properties from Sternheimer calcula-
tions (Baroni et al. 2001). Finite-difference calculations have been used to calculate
mechanical anharmonicity and electrical anharmonicity (second-order derivatives of
force and polarization with respect to ionic displacement) for ionic contributions to
the nonlinear susceptibility (Roman et al. 2006). Anharmonicities are needed for
phonon linewidths in crystals, as well as to obtain vibrational frequencies in the
presence of strong anharmonicity. Sternheimer phonon calculations also give the
induced self-consistent potential, which is used to calculate the electron-phonon
matrix elements between electronic states i and j and a phonon of wavevector q and
branch ν:

gi jν (k, q) =
〈

ϕi k+q | dĤ

dλqν
|ϕ j k

〉

(7.72)

With Wannier-function-based interpolation schemes, the electron-phonon coupling
has been used to calculate the superconducting properties of boron-doped diamond
(Giustino et al. 2007) and cuprates (Giustino et al. 2008).
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Phonons are generally calculated from static response, an adiabatic approximation
which is well justified when the phonon frequency is much less than the electronic
band gap. For metals however this condition is not satisfied, and the system may not
remain in the electronic ground state during phonon oscillation. Truly dynamical, or
non-adiabatic, phonon calculations have been done for doped graphene (Lazzeri and
Mauri 2006) and 2D intercalated compounds (Saitta et al. 2008), showing significant
corrections in these systems. A TDDFT sum-over-states perturbation expression is
used to find the dynamical matrix at a given frequency, and self-consistently iterated
until the input and output frequencies coincide.

Besides these lattice-dynamics methods, another method for vibrational calcula-
tions is molecular dynamics. The system is evolved in time at finite temperature, and
from the ionic trajectories, velocity autocorrelation functions are calculated, giving a
power spectrum of vibrations as a function of frequency (Allen and Tildesley 1989).
Such calculations can be done by empirical methods or ab initio MD, commonly in
the DFT-based Car-Parrinello scheme (Car and Parrinello 1985). In systems such as
liquids, the harmonic approximation fails completely and MD must be used to study
the vibrational modes (Putrino and Parrinello 2002) and infrared spectra (Silvestrelli
et al. 1997). Recently a new fast Ehrenfest dynamics method has been developed,
in which TDDFT is used to propagate the wavefunctions between timesteps. This
allows more efficient calculation of vibrational properties of large systems (Alonso
et al. 2008; Andrade et al. 2009); the method will be discussed in detail in Chap. 21.
TDDFT has also been used to study coherent excitation of phonons in Si by light,
propagating the electronic system in the presence of an oscillating applied field, and
analyzing the induced forces (Shinohara et al. 2010).

Bulk moduli and elastic constants can be calculated from the second derivative
of the total energy with respect to pressure or shear, with finite dif-ferences (Lam
and Cohen 1981) or the Sternheimer equation (Baroni et al. 1987b; Baroni et al.
2001). The strain perturbation involves a stretching of both the unit cell and the
wavefunctions, and takes the tensorial form (Nielsen and Martin 1985)

Ti j = pi p j − ri
∂vext

∂r j
(7.73)

It is somewhat complicated to implement since it is not lattice-periodic in this form,
but it can also be formulated in a lattice-periodic manner in terms of metric tensors
(Hamann et al. 2005). Second-order elastic coefficients and Grüneisen parameters
(variation of phonon frequencies with stress) can also be calculated from the 2n+ 1
theorem (Gonze and Vigneron 1989). The chain rule must be used to include ionic
as well as electronic contributions.

http://dx.doi.org/10.1007/978-3-642-23518-4_21
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7.4.4 Mixed Electric and Structural Response to Structural
Perturbations

Raman spectroscopy measures vibrational frequencies by the energy gained or lost
by a photon, and in the Placzek approximation the intensity of a vibrational peak
is proportional to the Raman tensor (Lazzeri and Mauri 2003), the derivative of the
polarizability with respect to ionic displacement:

∂3 E

∂Ei∂E j∂Rks
= ∂αi j

∂Rks
(7.74)

For solids, the susceptibility χ can be used instead. For off-resonant Raman, i.e.,
when the incident phonon is not resonant with an electronic excitation of the system,
the static polarizability is generally used. There are many ways the response to the
various perturbations could be calculated. Commonly finite differences are used for
ionic response, with dielectric tensor calculated from sum over states (Baroni and
Resta 1986b), finite differences (Roman et al. 2006), or the Sternheimer equation
(Umari et al. 2001). Anharmonic Raman spectra of ice have been calculated with
molecular dynamics by a Fourier transform of the autocorrelation function of the
dielectric tensor ε∞.

Purely perturbative methods have also been developed. In an earlier approach
applied to silica (Lazzeri and Mauri 2003), the tensor is written as

∂3 E

∂Ei∂E j∂Rks
=
∫

d3r
∂2ρ

∂Ei∂E j

dĤ

dRks
(7.75)

The first-order perturbations are calculated by the Sternheimer equation, and the
second-order electric derivatives of the density matrixρ are calculated via the second-
order derivatives of the wavefunctions from a self-consistent sum-over-states expres-
sion. The 2n + 1 theorem also makes it possible to do the computation from only
first-order ionic and electric derivatives (Veithen et al. 2005). To study resonant
Raman spectroscopy, dynamic polarizabilities must be used. This has been done in
TDDFT with the complex polarization propagator approach to study the variation of
the Raman spectrum with excitation energy for organic molecules (Mohammed et
al. 2009); this method uses a relaxation toward the ground state in the equations of
motion to broaden resonances and prevent divergences.

Another mixed response is Born effective charges, which can be used to calculate
LO-TO splitting (Ghosez et al. 1998), infrared spectra (Pasquarello and Car 1997),
and molecular dipole moments in liquids (Pasquarello and Resta 2003). They are
defined by

Z∗αi j =
∂2 E

∂Ei∂Rα j
= ∂μi

∂Rα j
= ∂Fα j

∂Ei
(7.76)

Born charges can be evaluated either as the response of the dipole moment (or polar-
ization) in response to ionic displacement, which is natural in the context of a phonon
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calculation, or from the forces induced by an electric field, from the Sternheimer
equation or finite differences (Gonze and Lee 1997).

A related quantity is the piezoelectric tensor γ, in which ionic displacement is
replaced by strain e:

γ ∗i jk =
∂2 E

∂Ei∂e jk
= ∂μi

∂e jk
= ∂Tjk

∂Ei
(7.77)

The strain perturbation is not lattice-periodic, so piezoelectric tensors are most easily
calculated by the stress T induced by an electric field (de Gironcoli et al. 1989). Both
electronic and ionic contributions must be included.

A quite different quantity is the non-adiabatic coupling, which is used in molec-
ular dynamics to govern the rate of hopping between the potential energy surfaces of
the ground and excited states (Tully 1990). Going beyond the Born–Oppenheimer
approximation, terms appear in the equation of motion containing 〈Φi |∂/∂Rα j |Φ j 〉
(first-order coupling) and 〈Φi |∂2/∂R2

α j |Φ j 〉 (second-order coupling) (Hirai and
Sugino 2009), with overlaps between many-body states i, j and their derivatives
with respect to ionic displacement. The Casida method can be used for first-order
non-adiabatic couplings, analogously to the calculation of oscillator strengths but
where the dipole operator is replaced with the ionic perturbation (Hu et al. 2007). A
time-propagation formula-tion has also been developed (Baer 2002) for the calcu-
lation. The second-order couplings cannot be calculated by these methods, but are
negligible in simple cases (Hirai and Sugino 2009).

7.4.5 Response to k · p Perturbations

Response to an infinitesimal shift of k-point in a solid, often referred to as k · p
perturbation theory, can be used to give various properties. These are by necessity
static, not dynamic. Since the perturbation is applied to an individual state rather
than to the whole system, it does not have an associated density response. With the
Hellman–Feynman theorem, band velocities can be calculated as

vi k = 1

�

∂εi k

∂k
= 1

�

〈

ui k|∂Hk

∂k
|ui k

〉

(7.78)

where ui k is the periodic part of the Bloch function and Hk is the effective Hamil-
tonian. The perturbation is

∂Hk

∂k
= −i∇k + k + [vpseudo, r

]

(7.79)

including a contribution from non-local pseudopotentials if they are used (Rohlfing
and Louie 2000). Second-order perturbation theory with a sum over states can simi-
larly give effective masses (Cardona and Pollak 1966; Yu and Cardona 1999), as
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frequently used in simple models of band structures and transport in semiconduc-
tors. k · p perturbation theory has also been used, in a finite-difference framework, for
q → 0 limits in GW (Hybertsen and Louie 1986) and Bethe–Salpeter (Rohlfing and
Louie 2000) calculations. Additionally, k· p perturbations can be used to compute the
∂/∂k derivatives which are used in response calculations with the quantum theory
of polarization (Olevano et al. 1999; Vanderbilt and Resta 2006). It is important,
however, to note that perturbation theory cannot be used to compute the polariza-
tion itself, because it does not represent a consistent choice of gauge throughout the
Brillouin zone (Resta 1994).



Chapter 8
Memory: History, Initial-State Dependence,
and Double-Excitations

Neepa T. Maitra

8.1 Introduction

In ground-state DFT, the fact that the xc potential is a functional of the density is a
direct consequence of the one-to-one mapping between ground-state densities and
potentials. In TDDFT, the one-to-one mapping is between densities and potentials for
a given initial state. This means that the potentials, most generally, are functionals
of the initial state of the system, as well as of the density; and, not just of the
instantaneous density, but of its entire history. These dependences are explicitly
displayed in Eq. 4.28. Of particular interest is the xc potential, as that is the quantity
that must be approximated. The Hartree potential has no memory, as the classical
Coulomb interaction depends on the instantaneous density only, but since both the
interacting and non-interacting mappings can depend on the initial state, the xc
potential must be a functional of both the initial states and the density.

We use the term memory to refer to the dependence on quantities at earlier times:
initial-state dependence and history-dependence of the density.

In a sense, memory arises because of the reduced nature of the density as a
basic variable: if the wave function of the system was known, there would be no
memory-dependence, since the wavefunction at time t contains the complete infor-
mation about the system at time t, from which we can determine any observable. The
density however traces out much of the information, desirably reducing the descrip-
tion involving 3N spatial variables plus time to a description using three variables plus
time. Analogously to the theories of open systems, from this tracing out of degrees
of freedom emerges memory dependence. In treating open systems bath degrees of
freedom are traced out to get a reduced description in terms of system variables only
(see Chaps. 10 and 11): the effect of the bath is embodied in an influence functional
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that is non-local in time. Much like in open system theory with a low-dimensional
bath, the TDDFT memory of early history persists at long times: time does not wash
it away (as it would if we were tracing out a bath of a continuous spectrum).

In linear response, e.g. calculating spectra, (Chaps. 4 and 7) the system starts in its
ground-state, which, by virtue of the Hohenberg–Kohn theorem, is itself a functional
of its own density, assuming it is non-degenerate. Initial-state dependence is not
explicitly needed in the functionals, provided that the functional space is reduced to
that where the initial state is a non-degenerate ground state. The exact xc kernel has
history-dependence, which translates into non-trivial frequency-dependence when a
time-frequency Fourier transform is done.

In an adiabatic approximation, as discussed in Chap. 4, memory-dependence is
completely neglected: the instantaneous density is input as a “ground-state” density
into a ground-state xc potential approximation. In fact, even before Runge and Gross
(RG) formally established their theory, adiabatic calculations of optical spectra were
performed, that plugged the instantaneous density into the LDA (Ando 1977a, b;
Zangwill and Soven 1980a, 1981); this is the ALDA, Eq. 4.100. The xc kernel in an
adiabatic approximation is proportional to a δ(t−t ′) (Eq. 4.86a), which, upon Fourier
transforming, yields a frequency-independent xc kernel. Since the inception of the
RG theorem, there have been attempts to develop functionals with some memory
dependence, with varying degrees of success and applicability. The earliest and
simplest is the Gross–Kohn approximation (GK) for the xc kernel (Gross and Kohn
1985, 1990). Considering densities that are slowly varying in space, GK bootstraps
the local density approximation to finite frequencies, i.e. the frequency-dependent
kernel is approximated via the homogeneous electron gas response at finite frequency
(Eq. 4.107), a spatially-local but time-nonlocal kernel. In the mid-nineties, it was
realized, however, that a theory that depends on the density non-locally in time must
also depend on it non-locally in space; otherwise, exact conditions, importantly
the harmonic potential theorem, are violated (Vignale 1995a; Dobson 1994a) (see
Chap. 24).

The idea that memory is locally carried by the electron “fluid”, in a Lagrangian
framework, was exploited by Dobson et al. (1997), who essentially applied the GK
approximation in a frame moving along with the local velocity of the electron fluid.
At about the same time, Vignale and Kohn showed that a theory local in space
and non-local in time is possible instead in terms of the current density (Vignale
and Kohn 1996; Vignale et al. 1997). Their functional has begun to be tested on
a variety of systems with mixed successes (see Chap. 24). A fully spatially- and
time-nonlocal hydrodynamic formulation using Landau Fermi-liquid theory was
presented in 2003 (Tokatly and Pankratov 2003—see Chap. 25). Tokatly (2005a,
b, 2007) further developed this, considering many-body dynamics in the co-moving
Lagrangian frame, leading to time-dependent deformation functional theory. In this
frame, xc is spatially local, and all complications, including memory, are contained in
Green’s deformation tensor characterizing the frame. A theory based on a Galilean-
invariant “memory action functional” has also been formulated (Kurzweil and Baer
2004). Noting that functionals of the instantaneous KS orbitals incorporate infinite
“KS memory” leads to another approach, e.g. time-dependent EXX displays memory
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effects near intersubband resonances in semiconductor quantum wells (Wijewardane
and Ullrich 2008). We note none of the functionals proposed so far incorporate initial-
state dependence, although orbital-dependent functionals do have memory of the KS
initial state.

Today, however, almost all applications of TDDFT utilize an adiabatic approxima-
tion, absolutely memory-less. Certainly, an adiabatic approximation will work well
if the system is slowly-varying enough that the system remains in a slowly-evolving
ground-state, but this is hardly the typical case in dynamics.

Most of the rest of this chapter investigates memory properties of the exact func-
tional, with general real-time dynamics and strong external fields in mind (Some
specific phenomena are discussed in Chap. 18). Cases where exact results are avail-
able indicate that memory-dependence can play a vital role. Understanding how
the exact functional behaves should prove a useful tool in constructing accurate
approximations. We discuss history-dependence in the next section, followed by
a section on initial-state dependence. We then show how these two sources of
memory-dependence are entangled, and discuss an exact condition relating the two
in Sect. 8.4. Implications of memory-dependence for quantum control type prob-
lems are then discussed. In the last section, we turn to the double-excitation problem
in linear response, and discuss the frequency-dependent kernel that captures them.
As in Chap. 4, atomic units are used throughout this chapter.

8.2 History Dependence: an Example

Consider a system in its ground state, assumed to be non-degenerate. As discussed
in the introduction, we may then put aside initial-state dependence, and ask how far
back does the system remember its past? How far back in time do observables at the
present depend on the density in the past?

A useful tool to study this question is a time-dependent problem with at least two
electrons, for which both the KS system and the interacting system are exactly, or
exactly numerically, solvable. Two electrons in a Mathieu oscillator provides a good
case (Hessler et al. 2002); the external potential has the form:

vext(r, t) = 1

2
k(t)r2, with k(t) = k̄ − ε cos(ωt), (8.1)

with k̄, ε, andω appropriately chosen constants. The static version is often called the
Hooke’s atom; a paradigm for studies of exchange and correlation in the ground state
(Taut 1993; Frydel et al. 2000), largely because, for some parameters, the interacting
problem can be solved analytically. For the exact interacting solution of the time-
dependent problem, transforming to center-of-mass and relative coordinates renders
the Hamiltonian separable. Due to the spherical symmetry, one needs only to solve
numerically two uncoupled one-dimensional time-dependent Schrödinger equations.
From the evolving wavefunction, beginning in the ground state, the exact evolving
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density is obtained. Now, the KS wavefunction involves just one doubly-occupied
spatial orbital, evolving in time. By requiring its density to yield half the density of
the interacting wavefunction for all time, one can invert the KS equation to obtain
the KS potential in terms of the evolving density (Hessler et al. 2002).

The exact interacting dynamics has the useful property that the evolving density
breathes in and out while retaining the same (near Gaussian) profile: at each time t,
it is essentially the density of a ground state of a certain Hooke’s atom of spring
constant keff . This spring constant is not equal to the actual spring constant in Eq. 8.1
at time t, except when the latter is modulated slowly enough such that the state remains
an instantaneous ground state. In the general case, the state is not a ground state, but,
at each instant in time, its density is that of a ground state of a Hooke’s atom of spring
constant keff(t). This property allows us to compare the exact calculation with that
of an exact adiabatic one in a relatively simple way.

Many interesting phenomena arise (Hessler et al. 2002); one typically finds signif-
icant differences between the adiabatic approximation and the exact KS case (except
for very slow modulations). For example, the instantaneous correlation energy can
become positive, which is impossible in any adiabatic approximation, since for
ground states Ec is tied down below zero by the variational principle.

We now show that the correlation potential displays severe non-locality in time
due to history dependence. It is convenient to define a type of density-weighted
correlation potential via (Hessler et al. 1999)

Ėc(t) =
∫

d3rvc(r, t) ṅ(r, t), (8.2)

where the dot represents a time derivative. If Ėc(t) depends not just on the density at
and near time t, but also on its earlier history, then vc(t)must too. That is, non-locality
in Ėc directly implies non-locality in the correlation potential vc(t). The top panel of
Fig. 8.1 plots the value of keff(t),which, as discussed earlier, completely identifies the
density profile. The density profiles within a time slice centered near t = 4.8 and one
centered near t = 28.9are almost the same, yet the values of Ėc(t) near those
times are significantly different. Other pairs of time-slices having this feature may
also be found. The density at times near t is not enough to specify vc(t) : in fact
the exact correlation potential vc(t) is a highly non-local-in-time functional of the
density, depending on its entire history. Any adiabatic approximation has no history
dependence and fails to capture this effect.

This example, together with other studies (Ullrich 2006b; Wijewardane and
Ullrich 2008) of dynamics in strong-fields (starting in a ground-state) suggest the
exact functional typically has strong memory-dependence. However, not always:
in strong-field double-ionization, for example, the xc potential appears not to be
significantly non-local in time in a wide range of cases, although this depends on
how the field is ramped on (Thiele et al. 2008). Likewise when a very high-frequency
intense field is turned on very very slowly (Baer 2009).
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Fig. 8.1 Non-locality in
time: the top panel shows
keff (t), middle panel Ėc,

bottom panel Ec. The
parameters in Eq. 8.1 are
k̄ = 0.25, ω = 0.75 and
ε = 0.1
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The instantaneous momentum-density in the Mathieu oscillator distinguishes
time-slices where the instantaneous density is the same (Rajam et al. 2009). This
suggests that memory-dependence is likely gentler in a theory that uses a joint
position-momentum density, or density-matrix, as basic variable.

8.3 Initial-State Dependence

For a given time-dependent density how does the potential that yields this density
depend on the choice of the initial wavefunction? Initial-state dependence has only
begun to be explored (Maitra and Burke 2001, 2002b; Holas and Balawender 2002);
unlike density-dependence, there is no precedent for initial-state dependence in
ground-state DFT. For example, there is no analogue of the adiabatic approxima-
tion that could be used as a starting point for investigations.

One may wonder whether initial-state dependence actually exists. That is, if we
constrain the density to evolve in a certain way, are the implicit constraints on the
initial state enough to completely determine it? If this were the case, then there would
be no initial-state dependence: knowing the history of the density would be enough
to determine the functionals. We shall argue shortly that this is in fact the case for
one electron, but not for more than one.

Let us first rephrase the question: consider a many-electron density n(r, t)
evolving in time under an external time-dependent potential vext(r, t).Can we obtain
the same density evolution by propagating a different initial state in a different
potential?

One electron case. Consider one electron, evolving with density n(r, t). Let the
electron’s wavefunction be ϕ(r, t), where n(r, t) = |ϕ(r, t)|2. An alternate candi-
date wavefunction ϕ̃(r, t) that evolves with identical density (in a different potential)
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must then be related to ϕ(r, t) by a (real) phase α(r, t) :
ϕ̃(r, t) = ϕ(r, t)eiα(r,t). (8.3)

The wavefunction at time t determines not just the density at time t but also its first
time-derivative through the continuity equation:

ṅ(r, t) = −∇ · j(r, t), (8.4)

where the current-density j(r, t) is determined from:

j(r, t) = i

2

[

ϕ(r, t)∇ϕ∗(r, t)− ϕ∗(r, t)∇ϕ(r, t)
]

. (8.5)

Because they evolve with the same density at all times, both ϕ(r, t) and ϕ̃(r, t) share
the same ṅ(r, t). From the continuity equation it follows that they have identical
longitudinal currents, so:

0 = ṅϕ(r, t)− ṅϕ̃(r, t) = ∇ · [n(r, t)∇α(r, t)], (8.6)

where on the right-hand side we have inserted the difference in the currents of ϕ̃ and
ϕ, calculated using Eq. 8.5. Now if we multiply Eq. 8.6 by α(r, t) and integrate over
all space, we obtain

0 =
∫

d3rα(r, t)∇ · [n(r, t)∇α(r, t)] = −
∫

d3rn(r, t)|∇α(r, t)|2 (8.7)

In the last step, we integrated by parts, taking the surface term
∫

S dσen · (αn∇α),
evaluated on a closed surface at infinity, to be zero. This will be true for any finite
system, where the density decays at infinity, while the potential remains finite (or, if
the potential grows, the density decays still faster).

Because the integrand in Eq. 8.7 cannot be negative anywhere, yet it integrates to
zero, the integrand must be identically zero. Thus ∇α(r, t) = 0 everywhere. This
is true even at nodes of the wavefunction, where n(r0, t) = 0 : if ∇α was zero
everywhere except at the nodes, then as a distribution it is equivalent to being zero
everywhere, unless it was a delta-function at the node—but in that case the potential
would be highly singular, and therefore unphysical. So, for physical potentials,α(r, t)
must be constant in space, i.e. the wavefunctions ϕ(r, t) and ϕ̃(r, t) differ only by
an irrelevant time-dependent phase. Thus, only one initial state (and one potential)
can give rise to a particular density: the evolving density is enough to completely
determine the potential and the initial states.

The vanishing of the surface term in Eq. 8.7 can be compared with the require-
ment on the potential in the Runge–Gross theorem, as discussed in Sect. 4.4.1.
In Maitra and Burke (2001), an example of a pathological initial state is given,

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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where the surface term does not vanish, even though the density decays exponen-
tially at large distances: the potential in which it lives plummets to minus infinity
at large distances, yielding wildly oscillatory behavior in the tails of the decaying
wavefunction, embodying infinite kinetic energy and momentum. Such unphysical
states are beyond consideration!

Many electrons. For many electrons, initial-state dependence is real and alive: one
can find two or more different initial-states which evolve with identical density for
all time in different external potentials.

A few simple examples of this are shown in Figs. 8.2 and 8.3. In Fig. 8.2, the
density (thick solid line) of two non-interacting electrons in one dimension in an
eigenstate (thin solid line) of the harmonic potential is considered (Maitra and Burke
2001; Holas and Balawender 2002). The two orbitals are the thin solid lines. If we
keep this potential constant, the density will remain constant. We then ask, can we
find another potential in which another non-interacting wavefunction evolves with
this same, constant density for all time? There are in fact an infinite number of them,
and one is shown here (dashed lines). The alternate potential was constructed using
van Leeuwen’s prescription (van Leeuwen 1999—see also Chap. 9), and is shown
here at the initial time. It is not constant in time: both the alternate potential and the
alternate orbitals evolve in time, in such a way as to keep the density constant at all
times.

The significance of this for TDDFT comes to light when we imagine the density as
the density of some interacting electronic system. For a KS calculation, we are free to
choose any initial KS state which has this initial density: that is, both the potentials
shown in the lower panel of Fig. 8.2, along with their respective orbitals, are fair
game. The difference between these two KS potentials is exactly the difference in
the xc potential, since the Hartree and external potentials are the same. So depending
on this choice, the xc potentials are very different. Any functional without initial-state
dependence would predict the same potential in both cases.

Figure 8.3 is another example of two different initial states that evolve with the
same density for all time. This example, again of two non-interacting electrons,
demonstrates that there is no one-to-one mapping between time-periodic densities of
Floquet states and time-periodic potentials (see Maitra and Burke 2002a). Consider
a periodically driven harmonic oscillator, containing two non-interacting electrons
in a spin-singlet occupying two distinct quasi-energy orbitals. One can show that the
density then periodically sloshes back and forth in the well. This is illustrated in the
top panels of Fig. 8.3. The middle panel of Fig. 8.3 shows a doubly-occupied Floquet
orbital (real and imaginary parts are the dashed lines) whose density (solid line)
evolves identically to the density of the Floquet state in the top panel. This orbital
sloshes back and forth in its potential, in a similar way to the orbitals of the driven
oscillator. The lowest panel shows the potentials: the solid is the periodically driven
harmonic potential corresponding to the Floquet state of the top panel, and the dashed
is the periodically driven potential corresponding to that of the middle panel. Now,
assuming there corresponds an interacting electron system whose density evolves
exactly as shown, then both the Floquet state in the top panel and the middle panel

http://dx.doi.org/10.1007/978-3-642-23518-4_9
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Fig. 8.2 An example of initial-state dependence for two non-interacting electrons: two different
wavefunctions may evolve with the same density in different potentials. In the top plot, the solid
lines are the two occupied orbitals of one wavefunction, which happens to be a stationary state of
the harmonic oscillator potential, shown in the lower plot as a solid line. The density is shown as
the thick solid line in the top figure. The dashed lines are the two orbitals of an alternative initial
wavefunction, that evolves with the same density in the potential which, at the initial time, is shown
as the dashed line in the lower figure

are possible KS wavefunctions, and both the solid and dashed potentials in the lower
panels are possible KS potentials; again, their difference (the sloshing “bump” in the
figure) is the difference in the xc potential.

Not only any adiabatic approximation, but any density-functional approximation
that lacks initial-state dependence—even with history-dependence—would incor-
rectly predict the same potential for all choices of KS initial states that propagate
with the same density. In the next section, we discuss how, in many cases, one can
eliminate the need for initial-state dependence altogether, by transforming it into a
history-dependence.

8.4 Memory: an Exact Condition

Part of what makes the memory dependence complex, is the intricate entanglement of
initial state and history effects. This has consequences even for initial ground states.
On the other hand, it allows the possibility for memory-dependence to be reduced to
history-dependence alone.

Consider an interacting system, beginning with wavefunction Ψ (0) at time 0, and
evolving in time, with density n(r, t). The xc potential at time t is determined by the
density at all previous times, the initial interacting wavefunction, and the choice of
the initial KS wavefunction Φ(0) for the KS calculation. Now say we can calculate
the interacting wavefunction at a later time t ′,where 0 < t ′ < t. Then, we may think
of t ′, as the “initial” time for the inputs into the functional arguments of vxc : that is,
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Fig. 8.3 Top left panel: the real and imaginary parts of the driven harmonic oscillator Floquet orbitals
ϕ(0)(x, 0) (solid) and ϕ(1)(x, 0) (dotted) at time = 0, together with their density (thick line). Middle
left panel: the real and imaginary parts of the alternative doubly-occupied Floquet orbital ϕ̃(x, 0)
(dashed), which has the same density shown (thick line). Bottom left panel: the two potentials, v is
the solid, and ṽ is dashed. The right hand side shows the same quantities at t = T/4

vxc
[

nt ′ , Ψ (t
′),Φ(t ′)

]

(r, t) = vxc [n, Ψ (0),Φ(0)] (r, t) for t > t ′. (8.8)

Here,Ψ (t ′) = Û (t ′)Ψ (0),where Û (t) is the unitary evolution operator, andΦ(t ′) =
ÛKS(t ′)Φ(0)where ÛKS(t ′) is the KS evolution operator. The subscript on the density
means that the density is undefined for times earlier than the subscript, and it equals
the evolving density n(r, t) for times t greater than the subscript.

Equation 8.8 displays the relation between the memory effects: any dependence of
the xc potential on the density at prior times may be transformed into an initial-state
dependence and vice versa.

Like other exact conditions (discussed in Chap. 5), Eq. 8.8 may be used as a test
for approximate functionals, but it is a very difficult condition to satisfy. For example,
any of the recent attempts to include history-dependence, while ignoring initial-state
dependence, must fail. If we restrict their application to systems beginning in the
ground state, then Eq. 8.8 still produces a strict test of such functionals: imagine an
exact time-dependent calculation beginning in the ground state of some system. Later,
when Ψ (t ′) is no longer a ground state, we evolve backwards in time in a different
external potential, that leads us back to a different ground state at a different initial
time. The history during the time before t ′ is different from the original history, but

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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the xc potential for all times greater than t ′ should be the same for both the original
evolution and the evolution along the alternative path. The extent to which these two
differ is a measure of the error in a given history-dependent approximation, even
applied only to initial ground states. Note that any adiabatic approximation ignoring
initial-state dependence (such as those in the introduction) produces no difference. By
ignoring both history dependence and initial-state dependence, the ALDA trivially
satisfies Eq. 8.8.

A technical note: although the RG theorem was proven only for time-analytic
potentials, i.e. those that equal their Taylor series expansions in t about the initial
time for a finite time interval (Runge and Gross 1984), it holds also for piecewise
analytic potentials, i.e. potentials analytic in each of a finite number of intervals
(Maitra and Burke 2002b). This means that alternative allowed “pseudo-prehistories”
can connect to the same wavefunction at some later time.

This raises the possibility of eliminating the initial-state dependence altogether: if
we can evolve an initial interacting wavefunction that is not a ground state, backwards
in time to a non-degenerate ground state, then the initial-state dependence may be
completely absorbed into a history-dependence along this pseudo-prehistory.

As discussed in Chap. 4, one may choose any initial KS state that reproduces the
density and divergence of the current of the interacting initial state (van Leeuwen
1999). In the procedure above, this choice is translated into the choice of which
ground state the interacting wavefunction Ψ (0) evolves back to, together with the
pseudo-prehistory of the density thus generated. One can imagine that for a given
wavefunction Ψ (0) there may be many paths which evolve back to some ground
state, each path generating a different pseudo-prehistory. Only for those which result
in the same KS wavefunction Φ(0) [and of course interacting wavefunction Ψ (0)]
will the xc potentials be identical after time 0.

In the linear response regime, the memory formula Eq. 8.8 yields an exact condi-
tion relating the xc kernel to initial-state variations (Maitra 2005a). We consider
applying Eq. 8.8 in the perturbative regime, with the initial states at time 0 (on the
right-hand-side) being ground-states. The initial states on the left-hand-side (i.e. the
states at t ′) are not ground-states. We wish to express deviations from the ground-state
values through functional derivatives with respect to the density and with respect to
the initial states. Because the initial state determines the initial density and its first
time-derivative, and puts constraints on higher-order time-derivatives of the density,
the definition of a partial derivative with respect to the initial state is not trivial:
what should be held fixed in the variation? The partial derivative with respect to the
density, holding the initial state fixed, is simpler; for example, for the external poten-
tial this is a generalized inverse susceptibility, generalized to initial states which are
not ground-states. Variations of the density at times greater than zero are included.
In order to define an initial-state derivative, one considers an extension of the func-
tionals to a higher space in which the initial-state variable and density variable are
independent: one drops and Eqs. 4.6 and 4.20. Then one can show that
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∑

α

∫

d3 r1
δvKS[nt ′ , Φt ′ ](r, t)

δϕt ′, α(r1)

∣
∣
∣
∣
(nGS,ΦGS[nGS])

δϕt ′, α(r1)

−
∫

d4x1· · ·
∫

d4xN
δvext[nt ′, Ψt ′ ](r, t)

δΨt ′(x1, . . ., xN )

∣
∣
∣
∣
(nGS,ΨGS[nGS])

δΨt ′(x1, . . ., xN )+ c.c.

=
∫

d3r1

t ′∫

0

dt1 fxc[nGS](r, r1, t − t1)δn(r1, t1), 0 < t ′ < t, (8.9)

where the variables xi = (r i , σi ) represent spatial and spin coordinates, δϕt ′, α =
δϕα(t ′) = ϕα(t ′)− ϕα,GS[nGS] represent the deviations at time t of the spin orbitals
of the KS Slater determinant away from the ground-state values and δΨ is simi-
larly the deviation of the interacting state away from its ground-state. This equation
demonstrates the entanglement of initial-state dependence and history-dependence
in the linear response regime: the expression for the xc kernel on the right is entirely
expressed in terms of initial-state dependence on the left.

8.5 Memory in Quantum Control Phenomena

In recent years there have been huge advances in the control of chemical reactions,
where nuclei are manipulated. The development of attosecond laser pulses opens
the door to the possibility of manipulating electronic processes as well. Chapter 13
derives the equations for quantum optimal control theory within the KS frame-
work. Here, instead, we present a couple of “gedanken” experiments to explore
how the exact KS picture of the controlled dynamics looks compared to the exact
true dynamics.

Let us say we are interested in driving a molecule from its ground state ΨGS in
potential vext,GS to its mth excited state Ψm . Let us say we are lucky enough to know
the external time-dependent field that achieves this after a time t̃ . The field is then
turned off at time t̃ so that the molecule remains in the excited eigenstate. We now
ask how this process is described in the corresponding KS system, i.e. what is the
KS potential? Initially, this is the ground-state potential vKS,0 whose ground-state
ΦKS has density nGS, the density of the interacting ground state of the molecule.
The first observation is that the KS potential after time t̃ does not typically return
to the initial KS potential, in contrast to the case of the interacting system. This is
because, by definition, the density of the KS state equals the interacting density at
all times; in particular, after time t̃ it is the density of the interacting excited state of
potential vext, 0, but this is not guaranteed to be the density of the KS excited state of
potential vKS, 0. Only the ground-state density of an interacting system is shared by
its KS counterpart, not the higher excited states; the final KS state of the molecule
will not typically be an eigenstate of vKS,0.

There are two possibilities for the KS potential after time t̃ . The first is that it
becomes static, and the static final density, call it ñ, is that of an eigenstate of it.

http://dx.doi.org/10.1007/978-3-642-23518-4_13
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From the above argument, the KS potential is however different from the initial, and
does not equal the ground-state KS counterpart of the interacting case. For example,
if we are exciting from the ground state of the helium atom to an excited state, the
external potential of the interacting system is both initially and finally −2/r. The
initial KS potential is the ground-state KS potential of helium, but the final is not;
the final KS eigenstate has the same density as the excited state of interest in helium.
Now we will argue that any adiabatic approximation, or indeed any potential that
is not ultranonlocal in time, is unlikely to do well. Consider a time t beyond t̃ . The
density for times near t is constant, so any semi-local approximation for the potential
will be any one of the potentials for which the density ñ is the density of some
eigenstate of it. In particular, for an adiabatic approximation, the potential is that
for which the excited state density ñ is the density of its ground state. There is no
way for an approximate semi-local KS system to know that it should be the potential
corresponding to the interacting system that has an mth excited state density of ñ.
This information is encoded in the early history of the density, from times 0 < t < t̃ :
the exact KS potential must be ultranonlocal in time, since, as time gets very large,
it never forgets the early history. Alternatively, taking the “initial” time to be t̃ in
the memory formula Eq. 8.8, this effect is an initial-state effect where the initial
interacting (and non-interacting state) is not a ground-state.

The other possibility is that the KS (and xc) potential never becomes constant: it
continues to change in time, with KS orbitals and orbital-densities changing in time
in such a way that the total KS density remains static and equal to ñ. It is clear that any
semi-local approximation will fail here, because for times beyond t̃, it will predict a
constant potential since the density is constant. The exact xc (and KS) potential will
be ultranonlocal in time; as time gets very large, one has to go way back in time, to
times less than t̃, in order to capture any time dependence in the density.

This extreme non-locality is very difficult for a density functional approximation
to capture: it may be that orbital functionals, which are implicit density functionals,
provide a promising approach. Even so, there are cases where TDDFT faces a formi-
dable challenge. Consider two electrons, beginning in a spin-singlet ground state
(e.g. the ground state of helium). Imagine now finding an optimal control field that
evolves the interacting state to a singlet singly-excited state (e.g. 1s2p of helium).
Now, the KS ground state is a single Slater determinant with a doubly-occupied spatial
orbital. This evolves under a one-body evolution operator, the KS Hamiltonian, so
must remain a single Slater determinant. But a single excitation is a double Slater
determinant, so can never be attained even with an orbital-dependent functional.
This is a time-dependent analogue of static correlation, where a single Slater deter-
minant is inadequate to describe a fundamentally multi-determinantal state (Maitra
et al. 2002b). The KS description of the state is so far from the true description, that
the exact xc potential and observable functionals consequently develop complicated
structure difficult to capture in approximations. The KS state is not an eigenstate of
the angular momentum operator, unlike that of the true state. If the overlap between
the initial and final states is targetted, the maximum that can be achieved is 0.5 (Burke
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Fig. 8.4 In the top panel is
the density (thick solid line)
of the two electron singlet
excited state (solid lines) of
the harmonic oscillator (solid
line in the lower panel). The
dashed line is the
doubly-occupied orbital
resulting from evolving the
singlet ground-state to a state
of the same density as the
excited state. The potential in
which this is an
eigenstate—the
ground-state—is shown as
the dashed line in the lower
panel
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et al. 2005a), while close to 0.98 is achieved for the true interacting problem (but see
also the last paragraph of this section).

A simplified model of this is shown in Fig. 8.4. Here the density of the first
excited state of two electrons in a harmonic oscillator, considered to be the final
KS potential, is shown. Attempting to evolve to this density from the ground state
of the harmonic oscillator, which is a doubly-occupied orbital, the best KS can do
is reach another doubly-occupied orbital (dashed), whose potential is shown in the
lower panel (dashed).

We note that such problems do not arise in linear response regime, where we do
not need to drive the system entirely into a single excited state: only perturbations
of the ground-state are needed which have a small, non-zero projection on to the
various excited states of the system.

It is very important to note that in the above examples the density is the target vari-
able; the time-dependent density is the observable which the KS system is constructed
to get exactly correct. However when quantum optimal control is performed directly
with the TDKS system, then it is of course possible, and in most cases, more natural,
instead to define the target variable directly related to the KS wavefunction. For
example, one might instead consider targeting the density of a KS excited state, or
an overlap with a KS excited state. The question is then whether the optimal field
found for the KS system also achieves a good outcome for the true system. In most
cases studied so far by A. Castro and E.K.U. Gross (personal communication), it
fortunately does. Even in the case where the maximum overlap with the target KS
state is as low as 0.5, it is quite possible that, with a clever choice of target functional,
the optimal field found from the KS evolution applied to the interacting system yields
a target overlap in the interacting system much closer to one.
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8.6 Memory Effects in Excitation Spectra

The vast majority of applications of TDDFT today are in the linear response regime.
Adiabatic approximations are used in the many successes here, but they are also the
reason behind many of its notorious failures. This section discusses one of these:
states of double-excitation character, for which frequency-dependence is essential to
capture.

First, we clarify what is meant by a double- or multiple-excitation. The term is
defined with respect to some single-particle picture, characterized by a set of single-
particle orbitals that are solutions to a one-body Hamiltonian, N of which are occupied
in the ground-state of this Hamiltonian. In TDDFT, this picture is naturally the KS
system. A single-excitation swaps one of these occupied orbitals for an unoccupied
orbital. A double-excitation instead swaps two occupied orbitals for two unoccupied
orbitals, so represents an excited state where two electrons are excited with respect
to the ground configuration. On the other hand, the true interacting eigenstates are
linear combinations of this ground-state and all excitations, including double, triple,
and higher (thinking of the determinants composed of the single-particle orbitals as
a complete set of N-electron states). When we speak of a double-excitation in the
true system, we mean it as a short-hand for a “state of double-excitation character”,
i.e. a state that has a significant fraction of a double-excitation with respect to a non-
interacting single-particle picture. Clearly, in different theories that have different
references (e.g. Hartree–Fock rather than KS), these fractions will differ.

Chapter 4 mentioned that often the KS excitations are themselves good zeroth-
order approximations to the true excitations, with the xc kernel contributing a small
enough correction that even the simplest adiabatic approximation does quite well.
But this argument cannot apply to double-excitations, since in linear response of
the KS system no double-excitations appear: to excite two electrons of a non-
interacting system two photons would be required, beyond linear response. Only
single-excitations of the KS system are available for an adiabatic kernel to mix.
Indeed, if we consider the linear response function (Eq. 4.50) applied to the KS
system, the numerator 〈ΦGS|n̂(r)|ΦI 〉 vanishes if ΦI and ΦGS differ by more than
one orbital since the one-body operator n̂(r) cannot connect states that differ by more
than one orbital. The true response function, on the other hand, retains poles at the
true excitations which are mixtures of single, double, and higher-electron-number
excitations, as the numerator 〈ΨGS|n̂(r)|ΨI 〉 remains finite due to the mixed nature
of both ΨGS and ΨI .Within the adiabatic approximation, χ therefore contains more
poles than χKS.

How does the exact kernel of TDDFT generate more poles, and capture states of
multiple-excitations? One must go beyond the adiabatic approximation (Tozer and
Handy 2000). In 2004, the exact frequency-dependence that is required when a double
excitation mixes with a single excitation was demonstrated, and an approximate
kernel based on this was derived (Maitra et al. 2004). We now discuss this.

A frequency-dependent kernel for double-excitations. Consider the simplest
model: a two-by-two excitation subspace consisting of one KS single excitation

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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ϕi → ϕu, of frequency ωq = εu − εi , and one double excitation (ΦD) energeti-
cally close. We assume all other excitations lie far from these two levels, so that for
frequencies close to ωq :

χKS(r, r ′, ω) = A(r, r ′, ω)
ω − ωq

(8.10)

where the numerator only weakly depends on the frequency: A(r, r ′, ω) =
ϕ∗i (r)ϕu(r)ϕi (r ′)ϕ∗u (r ′)+O(ω−ωq). The KS double-excitation does not contribute
to χKS from the argument above. Electron interaction mixes the KS single- and
double-excitations, such that the true states have the form:

Ψa = mΦD +
√

1− m2Φq and Ψb =
√

1− m2ΦD − mΦq (8.11)

where 0 < m < 1 is a parameter to represent the fraction of double- and single-
excitation character in the true interacting states. Inserting these into the expression
for the true response function, Eq. 4.50, we obtain

χ(r, r ′, ω) = A(r, r ′, ω)
(

1− m2

ω − ωa
+ m2

ω − ωb

)

, (8.12)

where ωa, ωb are the true interacting excitation frequencies. Notice that the two
interacting states share the oscillator strength of the KS single-excitation, in a ratio
determined by the fraction of how much single-excitation each carries. Within this
subspace, we then define a dressed (i.e. frequency-dependent) single-pole approxi-
mation (DSPA),

ω = ωq + 2[q| fHxc(ω)|q] (8.13)

where the kernel on the right is derived from Eqs. 8.10 and 8.12, using

fHxc(ω) = χ−1
KS (ω)− χ−1(ω). (8.14)

(c.f. the SPA in Eq. 4.63; the square bracket notation in Eq. 8.13 indicates the
doubleintegral of Eq. 4.63 but with the kernel evaluated at frequency ω, instead
of at ωq .)

Requiring that the DSPA recovers the exact frequencies ωa, ωb pins down the
matrix element of A−1(r, r ′, ω), and we find

2 [q| fHxc(ω)|q] = (ω̄ − ωq)+ ω̄
′ω̄ − ωaωb

(ω − ω̄′) , (8.15)

where ω̄′ = m2ωa + (1−m2)ωb and ω̄ = (1−m2)ωa +m2ωb. Equation 8.15 gives
the exact xc kernel matrix element for frequencies near the single and double of
interest; we illustrate how it generates two poles in χ from the one in χKS in Fig. 8.5.

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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χ  (ω)−1

χ−1(ω)s
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ω ωbq
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H xc

Fig. 8.5 Frequency-dependence near a double excitation (see text): near a single excitation,χ−1
KS (ω)

(upper dashed line) has one zero at the KS transition ωq , which an adiabatic kernel f A
Hxc shifts to

ω̄. Frequency-dependence of Eq. 8.15 renders two zeroes in the exact χ−1(ω) (solid line) at the
transition frequencies ωa, ωb of the true mixed single and double states

The first term is adiabatic, while the second is strongly non-adiabatic (Maitra et al.
2004).

Equation 8.15 motivated the following practical approximation for the dressed
kernel, when a single and double excitation lie near each other, in the limit of weak
interaction (direct coupling to the rest of the KS excitations is neglected). Essen-
tially one considers diagonalizing the many-body Hamiltonian in this two-by-two
KS subspace, and requires that the kernel reduces to the adiabatic one ( f A

xc) in the
limit that the single and double only weakly interact (see Maitra et al. 2004 for
details). One obtains:

2 [q| fxc(ω)|q] = 2
[

q| f A
xc(ωq)|q

]

+ |Hq D|2
ω − (HDD − H00)

(8.16)

where the Hamiltonian matrix elements in the dynamical correction (second term)
are those of the true interacting Hamiltonian, taken between the single (q) and double
(D) KS Slater determinants of interest, as indicated, and H00 is the expectation value
of the true Hamiltonian in the KS ground-state. The kernel is to be applied as an
a posteriori correction to a usual adiabatic calculation: first, one scans over the KS
orbital energies to see if the sum of two of their frequencies lies near a single excitation
frequency, and then applies this kernel just to that pair. If a double-excitation mixes
strongly with several single excitations, one performs the dressing Eq. 8.16 in a
matrix spanned by those singles (see Cave et al. 2004; Mazur and Włodarczyk 2009,
where this was done for polyenes).

Several alternate and more formal approaches have led essentially to Eq. 8.16.
Casida (2005) derived Eq. 8.16 from a superoperator formalism, as a polarization
propagator correction to adiabatic TDDFT. The Bethe–Salpeter equation (BSE)
with a dynamically screened Coulomb interaction was used to derive a frequency-
dependent kernel (Romaniello et al. 2009): here the frequency-dependence has two
origins, one from folding the four-point BSE into the two-point TDDFT equation [as
in the work on the optical response of solids, (e.g. Reining 2002; Gatti et al 2007a)],
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and the other (essential for double-excitations) from the frequency-dependence of
the BSE kernel. The resulting kernel however yielded additional unphysical poles,
attributed to the self-screening of GW. There are connections between this and
the superoperator formalism (see Huix-Rotllant 2011), where explicit expressions
for the kernel derived from algebraic diagrammatic construction with second-order
polarization-propagator applied to KS are given. The spatial-dependence of the kernel
was uncovered in an approach following more closely the original derivation but using
the common energy denominator approximation to account for the effect of entire
spectrum on the coupled single- and double-states (Gritsenko and Baerends 2009).

Where states of double-excitation character arise. In some systems, they lie even
amongst the lowest-energy states, but we will also argue that they underlie several
other failures of adiabatic TDDFT.

(i) In many conjugated molecules (e.g. polyenes), double-excitations infiltrate the
low-lying excitations, which are as a result notoriously difficult to calculate
(see Cave et al. 2004) for many references). For example, in butadiene, the
HOMO → (LUMO + 1) and (HOMO − 1) → LUMO excitations are near-
degenerate with a double-excitation of the HOMO to LUMO. If one runs an
adiabatic calculation and simply assigns the energies according to an expected
ordering, it may appear that one obtains a reasonable value for an expected state
of double-excitation character (Hsu et al. 2001), however upon examining the
make-up of the state, one will find it is instead a single-excitation (misplaced,
for example due to basis-set issues). Cave et al (2004) applied dressed TDDFT
to the dark 21 Ag state of butadiene and hexatriene, generalizing Eq. 8.16 to
the case of two single excitations mixing with a double, obtaining results close
to CASPT2. Linear polyenes were later studied in more detail (Mazur and
Włodarczyk 2009; Mazur et al. 2011), analyzing more fully aspects such as
self-consistent treatment of the kernel, and use of KS versus Hartree–Fock
orbitals in the dressing, and successfully computing excited-state geometries
with this dressed TDDFT. Dressed TDDFT was applied to low-lying excited
states of 28 organic molecules (Huix-Rotllant et al. 2011b).

(ii) It is well known that charge-transfer excitations between fragments at large sepa-
rations are severely underestimated with the usual approximations of TDDFT
(see Sect. 4.8.2). If we are interested in charge-transfer between two distant
open-shell species (e.g. LiH), the HOMO and LUMO are delocalized over the
whole molecule. This is the case for the exact ground-state KS potential, for
which a step appears in the bonding region that has exactly the size to re-align the
two atomic HOMOs, as well as for local or semi-local approximations (Tempel
et al. 2009). The HOMO–LUMO energy difference goes as the tunnel splitting,
vanishing as the molecule is pulled apart; therefore every excitation out of the
KS HOMO is near-degenerate with a double-excitation where a second elec-
tron goes from HOMO to LUMO (at almost zero KS cost). This yields a strong
frequency-dependence of the kernel near all excitations, charge-transfer and
local, for heteroatomic molecules composed of open-shell fragments at large
separation (Maitra 2005b; Maitra and Tempel 2006a).

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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(iii) Double-excitations dog accurate calculations of coupled electron-nuclear
dynamics (Levine et al. 2006): even when the vertical excitation does not contain
much double-excitation character, the propensity for curve-crossing requires
an accurate double-excitation description for accurate global potential energy
surfaces. That same paper highlighted the difficulties approximate TDDFT has
with obtaining conical intersections: in one example, the TDDFT dramatically
exaggerated the shape of the intersection, while in another, its dimensionality
was wrong, producing a seam rather than a point. Although the ground-state
surface is not described well here with the approximate functionals, double-
excitations are certainly relevant in the vicinity of conical intersections due to
the near-degeneracy (see also Chap. 14).

(iv) In the He atom, the lowest double-excitation (1s2 → 2s2) lies in the continuum,
appearing as a resonance in the continuous spectrum. Autoionizing resonances
that arise from bound core-valence single excitations are well-captured by the
adiabatic kernels of TDDFT (see e.g. Stener et al. 2007; Hellgren and von Barth
2009) but those arising from double-excitations require a frequency-dependent
kernel. An approximate kernel based on Fano’s degenerate perturbation theory
approach (Fano 1961) applied to the KS system can be derived (Krueger and
Maitra 2009).

8.7 Outlook

Memory profoundly affects the structure of exact functionals in TDDFT. Here we
have given some exact properties regarding initial-state dependence and history-
dependence, and explored some memory effects on exactly solvable systems. Strong
field dynamics is especially the regime where TDDFT may be the only feasible
approach, as wavefunction methods for more than a few interacting electrons become
prohibitively expensive. Yet it is in this regime that memory effects appear to be
significant. Memory also influences the accuracy of linear response calculations, and
we showed how a frequency-dependent kernel, derived from first principles, captures
states of double-excitation character, missing in the usual memory-less adiabatic
approximations. For TDDFT to be used for fully time-dependent phenomena as
confidently as DFT is used for ground-state problems, and to build on its reliability
for electronic spectra, further understanding and modeling of memory effects is
required, along with further developments of memory-dependent approximations.

http://dx.doi.org/10.1007/978-3-642-23518-4_14
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Chapter 9
Beyond the Runge–Gross Theorem

Michael Ruggenthaler and Robert van Leeuwen

9.1 Introduction

The Runge–Gross theorem (Runge and Gross 1984) states that for a given initial
state the time-dependent density is a unique functional of the external potential. Let
us elaborate a bit further on this point. Suppose we could solve the time-dependent
Schrödinger equation (TDSE) for a given many-body system, i.e. we specify an
initial state |Ψ0〉 at t = t0 and evolve the wavefunction in time using the Hamiltonian
Ĥ(t). Then, from the wave function, we can calculate the time-dependent density
n(r, t). We can then ask the question whether exactly the same density n(r, t) can
be reproduced by an external potential v′ext(r, t) in a system with a different given
initial state and a different two-particle interaction, and if so, whether this potential
is unique (modulo a purely time-dependent function). The answer to this question
is obviously of great importance for the construction of the time-dependent Kohn–
Sham equations. The Kohn–Sham system has no two-particle interaction and differs
in this respect from the fully interacting system. It has, in general, also a different
initial state. This state is usually a Slater determinant rather than a fully interacting
initial state. A time-dependent Kohn–Sham system therefore only exists if the ques-
tion posed above is answered affirmatively. Note that this is a v-representability
question (see Sect. 4.4.2 ): is a density belonging to an interacting system also nonin-
teracting v-representable? We will show in this chapter that, with some restrictions
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on the initial states, potentials and densities, this question can indeed be answered
affirmatively (van Leeuwen 1999, 2001; Giuliani and Vignale 2005; Ruggenthaler
and van Leeuwen 2011b). We stress that we demonstrate here that the interacting-v-
representable densities are also noninteracting-v-representable rather than aiming at
characterizing the set of v-representable densities. The latter question has inspired
much work in ground state density functional theory [for an extensive discussion see
van Leeuwen (2003)] and has only been answered satisfactorily for quantum lattice
systems (Chayes et al. 1985) and coarse grained approaches (Lammert 2010).

First we will introduce an extended version of the Runge–Gross theorem showing
that time-analytic densities are v-representable in a different system provided we have
an appropriate initial state. In the next paragraph using arguments from previous
derivations we give a Runge–Gross type theorem where one treats the temporal
restriction of the potentials for a spatial restriction. Then we show a one-to-one
correspondence between densities and potentials provided we start from the initial
state and have Laplace transformable switch-on potentials. Furthermore we will
present the main ideas of a fixed-point proof for TDDFT which guarantees bijectivity
of the density-potential mapping and v-representability of a broad class of potentials
and densities. Finally we address certain problems of the v-representability of the
quantum mechanical action and a recent elegant way to solve the resulting causality
paradox.

9.2 The Extended Runge–Gross Theorem: Different
Interactions and Initial States

We start by considering the Hamiltonian

Ĥ(t) = T̂ + V̂ext(t)+ V̂ee, (9.1)

where T̂ is the kinetic energy, V̂ext(t) the (in general time-dependent) external poten-
tial, and V̂ee the two-particle interaction. In second quantization the constituent terms
are, as usual, written as

T̂ = −1

2

∑

σ

∫

d3rψ̂†
σ (r)∇2ψ̂σ (r), (9.2a)

V̂ext(t) =
∑

σ

∫

d3rvext(r, t)ψ†
σ (r)ψ̂σ (r), (9.2b)

V̂ee = −1

2

∑

σσ ′

∫

d3r
∫

d3r ′vee
(|r − r ′|) ψ̂†

σ (r)ψ̂
†
σ ′(r
′)ψ̂σ ′(r ′)ψ̂σ (r). (9.2c)

where σ and σ ′ are spin variables. For the readers not used to second quantization
we note that the first few basic steps in this chapter can also be derived in first
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quantization. For details we refer to (Giuliani and Vignale 2005; Vignale 2004).
Good introductions to second quantization are found in Fetter and Walecka (1971)
and Runge (1991).

The two-particle potentialvee(|r−r ′|) in (9.2c) can be arbitrary, but will in practice
almost always be equal to the repulsive Coulomb potential. We then consider some
basic relations satisfied by the density and the current density. The time-dependent
density is given as the expectation value of the density operator

n̂(r) =
∑

σ

ψ̂†
σ (r)ψ̂σ (r), (9.3)

with the time-dependent many-body wavefunction, n(r, t) = 〈Ψ (t)|n̂(r)|Ψ (t)〉.
In the following we consider two continuity equations. If |Ψ (t)〉 is the state evolving
from |Ψ0〉 under the influence of Hamiltonian Ĥ(t) we have the usual continuity
equation

∂

∂t
n(r, t) = −i

〈

Ψ (t)
∣
∣
∣

[

n̂(r), Ĥ(t)
]∣
∣
∣Ψ (t)

〉

= −∇ · j(r, t), (9.4)

where the current operator is defined as

ĵ(r) = 1

2i

∑

σ

{

ψ̂†
σ (r)∇ψ̂σ (r)−

[

∇ψ̂†
σ (r)

]

ψ̂σ (r)
}

, (9.5)

and has expectation value j(r, t) = 〈Ψ (t)| ĵ(r)|Ψ (t)〉. This continuity equation
expresses, in a local form, the conservation of particle number. Using Gauss’ law,
the continuity equation says that the change of the number of particles within some
volume can simply be measured by calculating the flux of the current through the
surface of this volume.

As a next step, we can consider an analogous continuity equation for the current
itself. We have

∂

∂t
j(r, t) = −i

〈

Ψ (t)
∣
∣
∣

[

ĵ(r), Ĥ(t)
]∣
∣
∣Ψ (t)

〉

. (9.6)

If we work out the commutator in more detail, we find the expression (Martin 1959)

∂

∂t
jα(r, t) = −n(r, t)

∂

∂rα
vext(r, t)−

∑

β

∂

∂rβ
Tβα(r, t)− Vee α(r, t). (9.7)

Here we have defined the momentum-stress tensor T̂βα (part of the energy-momentum
tensor)

T̂βα(r) = 1

2

∑

σ

{
∂

∂rβ
ψ̂†
σ (r)

∂

∂rα
ψ̂σ (r) + ∂

∂rα
ψ̂†
σ (r)

∂

∂rβ
ψ̂σ (r)

−1

2

∂2

∂rβ∂rα

[

ψ̂†
σ (r)ψ̂σ (r)

]}

, (9.8)
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and the quantity V̂ee α as

V̂ee α(r) =
∑

σ,σ ′

∫

d3r ′ψ̂†
σ (r)ψ̂

†
σ ′(r
′) ∂
∂rα

vee(|r − r ′|)ψ̂σ ′(r ′)ψ̂σ (r). (9.9)

The expectation values that appear in (9.7) are defined as

Tβα(r, t) =
〈

Ψ (t)
∣
∣
∣T̂βα(r)

∣
∣
∣Ψ (t)

〉

(9.10a)

Vee α(r, t) =
〈

Ψ (t)
∣
∣
∣V̂ee α(r)

∣
∣
∣Ψ (t)

〉

. (9.10b)

The continuity equation (9.7) is a local quantum version of Newton’s third law.
Taking the divergence of (9.7) and using the continuity equation (9.4) we find

∂2

∂t2 n(r, t) = ∇ · [n(r, t)∇vext(r, t)]+ q(r, t), (9.11)

with q̂ and q(r, t) being defined as

q̂(r) =
∑

α,β

∂2

∂rβ∂rα
T̂βα(r)+

∑

α

∂

∂rα
V̂ee α(r), (9.12a)

q(r, t) = 〈

Ψ (t)|q̂(r)|Ψ (t)〉 . (9.12b)

Equation 9.11 will play a central role in our discussion of the relation between the
density and the potential. This is because it represents an equation which directly
relates the external potential and the electron density. From (9.11) we further see that
q(r, t) decays exponentially at infinity when n(r, t) does, unless vext(r, t) grows
exponentially at infinity. In the following we will, however, only consider finite
systems with external potentials that are bounded at infinity [for a discussion of the
set of allowed external potentials in TDDFT see Sect. 4.4.1 and in the case of ground
state DFT we refer to Lieb (1983) and van Leeuwen (2003)].

Let us now assume that we have solved the time-dependent Schrödinger equation
for the many-body system described by the Hamiltonian Ĥ(t) of (9.1) and initial
state |Ψ0〉 at t = t0. We have thus obtained a many-body wavefunction |Ψ (t)〉 and
density n(r, t). We further assume that n(r, t) is time-analytic at t = t0. For our
system, Eq. 9.11 is satisfied. We now consider a second system with Hamiltonian

Ĥ ′(t) = T̂ + V̂ ′ext(t)+ V̂ ′ee. (9.13)

The terms V̂ ′ext(t) and V̂ ′ee represent again the one- and two-body potentials.
We denote the initial state by |Ψ ′0〉 at t = t0 and the time-evolved state by |Ψ ′(t)〉.
The form of V̂ ′ee is assumed to be such that its expectation value and its derivatives
are finite. For the system described by the Hamiltonian Ĥ ′ we have an equation
analogous to (9.11).

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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∂2

∂t2 n′(r, t) = ∇ · [n′(r, t)∇v′ext(r, t)
]+ q ′(r, t), (9.14)

where q ′(r, t) is the expectation value

q ′(r, t) = 〈

Ψ ′(t)
∣
∣q̂ ′(r)

∣
∣Ψ ′(t)

〉

, (9.15)

for which we defined

q̂ ′ =
∑

β,α

∂2

∂rβ∂rα
T̂βα(r)+

∑

α

∂

∂rα
V̂ ′ee α(r). (9.16)

Our goal is now to choose v′ext in (9.14) so that n′(r, t) = n(r, t). We will do this
by constructing v′ext in such a way that for the k-th derivatives of the density at

t = t0 we have ∂k

∂tk n′(r, t)|t=t0 = ∂k

∂tk n(r, t)|t=t0 . First we need to discuss some
initial conditions. As a necessary condition for the potential v′ext to exist, we have to
require that the initial states |Ψ0〉 and |Ψ ′0〉 yield the same initial density, i.e.

n′(r, t0) = 〈Ψ ′0|n̂(r)|Ψ ′0〉 = 〈Ψ0|n̂(r)|Ψ0〉 = n(r, t0). (9.17)

We now note that the basic Eq. 9.11 is a second order differential equation in time
for n(r, t) and hence we need as additional requirement that ∂

∂t n′(r, t) = ∂
∂t n(r, t)

at t = t0. The first time-derivative of the densities are determined by the initial states
via the continuity equation (9.4):

∂

∂t
n′(r, t)

∣
∣
∣
t=t0
= 〈Ψ ′0|∇ · ĵ(r)|Ψ ′0〉 = 〈Ψ0|∇ · ĵ(r)|Ψ0〉 = ∂

∂t
n(r, t)

∣
∣
∣
t=t0

. (9.18)

This constraint also implies the weaker requirement that the initial state |Ψ ′0〉 must
be chosen such that the initial momenta P(t0) of both systems are the same:

P(t) =
∫

d3r j(r, t) =
∫

d3r r
∂

∂t
n(r, t). (9.19)

The equality of the last two terms in this equation follows directly from the continuity
equation (9.4) and the fact that we are dealing with finite systems for which, barring
pathological examples (van Leeuwen 2001, Maitra and Burke 2001(a,b)), currents
and densities are zero at infinity. For notational convenience we first introduce the
following notation for the k-th time-derivative at t = t0 of a function f:

f (k)(r) = ∂k

∂tk
f (r, t)

∣
∣
∣
t=t0

. (9.20)

Then our goal is to choose v′ext in such a way that n′(k) = n(k) for all k. Let us see
how we can use (9.14) to do this. If we first evaluate (9.14) at t = t0 we obtain, using
the notation of (9.20), the expression
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n′(2)(r) = ∇ ·
[

n′(0)(r)∇v′(0)ext (r)
]

+ q ′(0)(r). (9.21)

Since we want that n′(2) = n(2) and have chosen the initial state |Ψ ′0〉 in such a way

that n′(0) = n(0) we obtain the following determining equation for v′(0)ext :

∇ ·
[

n(0)(r)∇v′(0)ext (r)
]

= n(2)(r)− q ′(0)(r). (9.22)

The right hand side is determined since n(0) and n(2) are given and q ′(0) is calculated
from the given initial state |Ψ ′0〉 as q ′(0)(r) = 〈Ψ ′0|q̂ ′(r)|Ψ ′0〉. Equation 9.22 is of

Sturm–Liouville type and has a unique solution for v′(0)ext provided we specify a
boundary condition. For a thorough discussion of this Sturm–Liouville equation
see (Ruggenthaler et al. 2009; Penz and Ruggenthaler 2011). We will specify the
boundary condition that v′(0)ext (r) → 0 for r → ∞. With this boundary condition

we also fix the gauge of the potential. Having obtained v′(0)ext let us now go on to

determine v′(1)ext . To do this we differentiate (9.14) with respect to time and evaluate
the resulting expression in t = t0. Then we obtain the expression:

n′(3)(r) = ∇ ·
[

n′(0)(r)∇v′(1)ext (r)
]

+ ∇ ·
[

n′(1)(r)∇v′(0)ext (r)
]

+ q ′(1)(r). (9.23)

Since we want to determine v′(1)ext such that n′(3) = n(3) and the conditions on the
initial states are such that n′(0) = n(0) and n′(1) = n(1), we obtain the following
equation for v′(1)ext :

∇ ·
[

n(0)(r)∇v′(1)ext (r)
]

= n(3)(r)− q(1)(r)−∇ ·
[

n(1)(r)∇v′(0)ext (r)
]

. (9.24)

Now all quantities on the right hand side of (9.24) are known. The initial potential
v
′(1)
ext was already determined from (9.22) whereas the quantity q ′(1) can be calculated

from

q ′(1)(r) = ∂

∂t
q ′(r, t)

∣
∣
∣
t=t0
= −i

〈

Ψ ′0
∣
∣
∣

[

q̂ ′(r), Ĥ ′(t0)
]∣
∣
∣Ψ
′
0

〉

. (9.25)

From this expression we see that q ′(1) can be calculated from the knowledge of the
initial state and the initial potential v′(0)ext which occurs in Ĥ ′(t0). Therefore, Eq. 9.24

uniquely determines v′(1)ext (again with boundary conditions v′(1)ext → 0 for r →∞).
We note that in order to obtain (9.24) from (9.23) we indeed needed both conditions
of (9.17) and (9.18). It is now clear how our procedure can be extended. If we take
the k-th time-derivative of (9.14) we obtain the expression

n′(k+2)(r) = q ′(k)(r)+
k

∑

l=0

(

k
l

)

∇ ·
[

n′(k−l)(r)∇v′(l)ext (r)
]

. (9.26)
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Demanding that n′(k) = n(k) then yields

∇ · [n(0)(r)∇v′(k)ext (r)] = n(k+2)(r)− q ′(k)(r)−
k−1
∑

l=0

(

k
l

)

∇ · [n(k−l)(r)∇v′(l)ext (r)].
(9.27)

The right hand side of this equation is completely determined since it only involves
the potentials v′(l)ext for l = 1, . . . , k − 1 which were already determined. Similarly
the quantities q ′(k) can be calculated from multiple commutators of the operator
q̂ ′ and time-derivatives of the Hamiltonian Ĥ ′(t0) up to order k − 1 and therefore
only involves knowledge of the initial state and v′(l)ext for l = 1, . . . , k − 1. We can

therefore uniquely determine all functions v′(k)ext from (9.27) (again taking into account
the boundary conditions) and construct the potential v′ext(r, t) from its Taylor series
as

v′ext(r, t) =
∞
∑

k=0

1

k!v
′(k)
ext (r)(t − t0)

k . (9.28)

This determines v′ext(r, t) completely within the convergence radius of the Taylor
expansion. There is, of course, the possibility that the convergence radius is zero.
However, this would mean that v′ext(r, t) and hence n(r, t) and vext(r, t) are nonana-
lytic at t = t0. Since the density of our reference system was supposed to be analytic
we can disregard this possibility. If the convergence radius is non-zero but finite,
we can propagate |Ψ ′0〉 to |Ψ ′(t1)〉 until a finite time t1 > t0 within the convergence
radius and repeat the whole procedure above from t = t1 by regarding |Ψ ′(t1)〉 as the
initial state. This amounts to analytic continuation along the whole real time-axis and
the complete determination of v′ext(r, t) at all times. This completes the constructive
proof of v′ext(r, t).

Let us now summarize what we proved provided the densities and the potentials
are both time-analytic. We specify a given density n(r, t) obtained from a many-
particle system with Hamiltonian Ĥ and initial state |Ψ0〉. If one chooses an initial
state |Ψ ′0〉 of a second many-particle system with two-particle interaction V̂ ′ee in such
a way that it yields the correct initial density and initial time-derivative of the density,
then, for this system, there is a unique external potential v′ext(r, t) (determined up to
a purely time-dependent function c(t)) that reproduces the given density n(r, t) .

Let us now specify some special cases. If we take V̂ ′ee = 0 we can conclude that, for
a given initial state |Ψ ′0〉 = |Φ0〉with the correct initial density and initial time deriv-
ative of the density, there is a unique potential vKS(r, t) [modulo c(t)] for a nonin-
teracting system that produces the given density n(r, t) at all times. This solves the
noninteracting v-representability problem, provided we can find an initial state with
the required properties. If the many-body system described by the Hamiltonian Ĥ is
stationary for times t < t0, the initial state |Ψ0〉 at t0 leads to a density with zero time-
derivative at t = t0. In that case, a noninteracting state with the required initial density
and initial time-derivative of the density (namely zero) can be obtained via the so-
called Harriman construction (Harriman 1981; Lieb 1983). Therefore a Kohn–Sham
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potential always exists for this kind of switch-on processes. The additional question
whether this initial state can be chosen as a ground state of a noninteracting system
is equivalent to the currently unresolved noninteracting v-representability question
for stationary systems [Kohn 1983; Ullrich and Kohn 2002a; Dreizler and Gross
1990—for an extensive discussion see van Leeuwen (2003)].

We now take V̂ ′ee = V̂ee. We therefore consider two many-body systems with the
same two-particle interaction. Our proof then implies that for a given v-representable
density n(r, t) that corresponds to an initial state |Ψ0〉 and potential vext(r, t), and
for a given initial state |Ψ ′0〉 with the same initial density and initial time-derivative
of the density, we find that there is a unique external potential v′ext(r, t) [modulo
c(t)] that yields this given density n(r, t). The case |Ψ0〉 = |Ψ ′0〉 (in which the
constraints on the initial state |Ψ ′0〉 are trivially satisfied) corresponds to the well-
known Runge–Gross theorem (see Sect. 4.4). Our results in this section therefore
provide an extension of this important theorem with the additional assumption that
the density is time-analytic. As a final note we mention that the proof discussed here
has been extended in an elegant way by Vignale (2004) to time-dependent current-
density functional theory. In that work it is shown that currents from an interacting
system with some vector potential are also representable by a vector potential in a
noninteracting system. This is, however, not true anymore if one considers scalar
potentials. Interacting-v-representable currents are in general not noninteracting-v-
representable (D’Agosta and Vignale 2005). Further extensions of the presented proof
to open quantum systems (Yuen-Zhou et al. 2010) and to quantum electrodynamics
(Ruggenthaler et al. 2011a) have only recently been given.

9.3 Runge–Gross Theorem for Dipole Fields

From the above considerations a straightforward formulation of the Runge–Gross
theorem without any restrictions on the time-dependence can be found. The price one
has to pay is that the spatial form of the time-dependent part of the external potential
is restricted (Ruggenthaler et al. 2010). The most important example are the widely
employed dipole fields. Hence we consider the set of external potentials of the form

{vext(r, t) = v0(r)+ r · E(t)} , (9.29)

where v0(r) and E(t) are arbitrary functions with v0(r)→ 0 for r →∞ and we thus
have implicitly chosen a gauge, i.e. the arbitrary time-dependent constant is assumed
to be zero. Two systems differ only with respect to the external potentials vext(r, t)
and v′ext(r, t) and have the same initial state |Ψ0〉 at t = t0 and the same interaction.
We will now deduce under which conditions two different systems lead to the same
density. From (9.21) for the primed and unprimed system we can immediately deduce
the condition

∇ · [n(r, t0)∇
(

vext(r, t0)− v′ext(r, t0)
)] = 0. (9.30)

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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From similar considerations as in the original Runge–Gross proof for v0(r) and
v′0(r) we can conclude v′0(r) = v0(r), as for r → ∞ the two dipole parts have
to cancel each other. In a next step we notice from (9.19), that two systems with
the same density have to lead to the same expectation value of the momentum, i.e.
P(t)− P ′(t) = 0. Therefore also the force expectation values of both systems have
to be the same, i.e. F(t) − F′(t) = ∂

∂t

[

P(t)− P ′(t)
] = 0. From (9.7), which is

the local force equation, we can rewrite the force-expectation value in terms of the
density as

F(t) = −
∫

d3r n(r, t)∇vext(r, t) = −N E(t) . (9.31)

Here the internal forces are zero as they can be written as a divergence of a second
rank tensor (Tokatly 2005a) and N > 0 is the number of particles due to the integral
of the density (for further discussion see Sect. 5.4.2). In order for both systems to
have the same force expectation value we can conclude that they also need to have
E(t) = E′(t). Therefore the density uniquely determines the external potential and
we have a Runge–Gross theorem for dipole fields. The existence of a noninteracting
system producing the same density, however, needs due to the restriction on the
spatial form of the potential further investigations.

9.4 Invertibility of the Linear Density Response Function

In this section we will address the question if we can recover the potential variation
δvext(r, t) from a given density variation δn(r, t) that was produced by it. There is, of
course, an obvious non-uniqueness since both δvext(r, t) and δvext(r, t)+c(t),where
c(t) is an arbitrary time-dependent function, produce the same density variation.
However, this is simply a gauge of the potential and is easily taken care of. Thus, by
an inverse we will always mean an inverse modulo a purely time-dependent function
c(t) and by different potentials we will always mean that they differ more than a
gauge c(t).

From the work of Mearns and Kohn (1987) we know that different potentials can
yield the same density variations (see Sect. 4.5.3 for further details). However, in
their examples these potentials are always potentials that exist at all times, i.e. there
is no t0 such that δvext = 0 for times t < t0. On the other hand, we know from the
Runge–Gross proof that a potential δvext(r, t) (not purely time-dependent) that is
switched on at t = t0 and is analytic at t0 always causes a nonzero density variation
δn(r, t). In this proof, the first nonvanishing time-derivative of δn at t0 is found to
be linear in the corresponding derivative of δvext and therefore the linear response
function is invertible. Note that this conclusion holds even for an arbitrary initial state.
The conclusion is therefore true for linear response to an already time-dependent
system for which the linear response function depends on both t and t ′ separately,
rather than on the time-difference t − t ′. In the following we give an explicit proof

http://dx.doi.org/10.1007/978-3-642-23518-4_5
http://dx.doi.org/10.1007/978-3-642-23518-4_4


196 M. Ruggenthaler and R. van Leeuwen

for the invertibility of the linear response function for which the system is initially
in its ground state. However, we will relax the condition that δvext is an analytic
function in time, and we therefore allow for a larger class of external potentials than
assumed in the Runge–Gross theorem. For clarification we further mention that it
is sometimes assumed that the Dyson-type response equations of TDDFT are based
on an adiabatic switch-on of the potential at all times. This is, however, not the
case. The response functions can simply be derived by first order perturbation theory
on the TDSE using a sudden switch-on of the external time-dependent potential
(Fetter and Walecka 1971). The typical imaginary infinitesimals that occur in the
denominator of the response functions result from the Fourier-representation of the
causal Heaviside function (written as a complex contour integral) in the retarded
density response function rather than from an adiabatically switched-on potential.
The linear response equations of TDDFT are therefore in perfect agreement with a
sudden switch-on of the potential.

We consider a many-body system in its ground state. At t = 0 (since the system is
initially described by a time-independent Hamiltonian we can, without loss of gener-
ality, put the initial time t0 = 0) we switch on an external field δvext(r, t)which causes
a density response δn. We want to show that the linear response function is invert-
ible for these switch-on processes. From simple first order perturbation theory on the
TDSE we know that the linear density response is given by (Fetter and Walecka 1971)

δn(r1, t1) =
t1∫

0

dt2

∫

d3r2χR(r1t1, r2t2)δvext(r2, t2), (9.32)

where

χR(r1t1, r2t2) = −iθ(t1 − t2)
〈

Ψ0
∣
∣
[

Δn̂H (r1, t1),Δn̂H (r2, t2)
]∣
∣Ψ0

〉

, (9.33)

is the retarded density response function. Note that here, instead of the density oper-
ator n̂H (in the Heisenberg picture with respect to the ground state Hamiltonian Ĥ ),
we prefer to use the density fluctuation operatorΔn̂H = n̂H − 〈n̂H 〉 in the response
function, where we use that the commutator of the density operators is equal to the
commutator of the density fluctuation operators. Now we go over to a Lehmann
representation of the response function and we insert a complete set of eigenstates
of Ĥ :

δn(r1, t1) = i
∑

n

t1∫

0

dt2

∫

d3r2eiΩn(t1−t2) f ∗n (r1) fn(r2)δvext(r2, t2)+ c.c., (9.34)

where Ωn = En − EGS > 0 are the excitation energies of the unperturbed system
(we assume the ground state to be nondegenerate) and the functions fn are defined
as

fn(r) = 〈ΨGS|Δn̂(r)|Ψn〉. (9.35)
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The density response can then be rewritten as

δn(r1, t1) = i
∑

n

f ∗n (r1)

t1∫

0

dt2an(t2)e
iΩn(t1−t2) + c.c., (9.36)

where we defined

an(t) =
∫

d3r fn(r)δvext(r, t). (9.37)

Now note that the time integral in (9.36) has the form of a convolution. This means
that we can simplify this equation using Laplace transforms. The Laplace transform
and its deconvolution property are given by

L̂ f (s) =
∞∫

0

dte−st f (t), (9.38a)

L̂( f ∗ g)(s) = L̂ f (s)L̂g(s). (9.38b)

where the convolution product is defined as

( f ∗ g)(t) =
t∫

0

dτ f (τ )g(t − τ). (9.39)

If we now take the Laplace transform of δn in (9.36) we obtain the equation:

L̂(δn)(r1, s) = i
∑

n

f ∗n (r1)
1

s − iΩn
L̂an(s)+ c.c. (9.40)

If we multiply both sides with the Laplace transform L̂(δvext) of δvext and integrate
over r1 we obtain

∫

d3r1L̂(δvext)(r1, s)L̂(δn)(r1, s) = i
∑

n

1

s − iΩn
|L̂an(s)|2 + c.c.

= −2
∑

n

Ωn

s2 +Ω2
n
|L̂an(s)|2.

(9.41)

This is the basic relation that we use to prove invertibility. If we assume that δn = 0
then also L̂(δn) = 0 and we obtain

0 =
∑

n

Ωn

s2 +Ω2
n
|L̂an(s)|2. (9.42)
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However, since each prefactor of |L̂an|2 in the summation is positive the sum can
only be zero if L̂an = 0 for all n. This in its turn implies that an(t) must be zero for
all n. This means also that

∫

d3rΔn̂(r)δvext(r, t)|Ψ0〉 =
∑

n

|Ψn〉
∫

d3r
〈

Ψn|Δn̂(r)|Ψ0
〉

δvext(r, t)

=
∑

n

an(t)|Ψn〉 = 0.
(9.43)

Note that a0(t) is automatically zero since obviously 〈ΨGS|Δn̂(x)|ΨGS〉 = 0. If we
write out the above equation in first quantization again we have

N
∑

k=1

Δvext(rk, t)|ΨGS〉 = 0, (9.44)

where N is the number of electrons in the system and Δvext(r, t) is defined as

Δvext(r, t) = δvext(r, t)− 1

N

∫

d3rnGS(r)δvext(r, t), (9.45)

where nGS is the density of the unperturbed system. Now (9.44) immediately implies
thatΔvext = 0 and, since the second term on the right hand side of (9.45) is a purely
time-dependent function, we obtain

δvext(r, t) = c(t). (9.46)

We have therefore proven that only purely time-dependent potentials yield zero
density response. In other words, the response function is, modulo a trivial gauge,
invertible for switch-on processes. Note that the only restriction we put on the poten-
tial δvext(r, t) is that it is Laplace-transformable. This is a much weaker restriction
on the potential than the constraint that it be an analytic function at t = t0, as
required in the Runge–Gross proof. One should, however, be careful with what one
means with an inverse response function. The response function defines a mapping
χ : δVext → δN from the set of potential variations from a nondegenerate ground
state, which we call δVext, to the set of first order density variations δN that are
reproduced by it. We have shown that the inverse χ−1 : δN → δVext is well-defined
modulo a purely time-dependent function. However, there are density variations that
can never be produced by a finite potential variation and are therefore not in the set
δN .An example of such a density variation is one which is identically zero on some
finite volume.

Another consequence of the above analysis is the following. Suppose the linear
response kernel has eigenfunctions, i.e. there is a λ such that

∫

dt2

∫

d3r2χR(r1t1, r2t2)ζ(r2, t2) = λζ(r1, t1). (9.47)
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Laplace transforming this equation yields

∫

d3r2�(r1, r2, s)L̂ζ(r2, s) = λL̂ζ(r1, s), (9.48)

where � is the Laplace transform of χ explicitly given by

�(r1, r2, s) = i
∑

n

f ∗n (r1) fn(r2)

s − iΩn
+ c.c. (9.49)

Since� is a real Hermitian operator, its eigenvalues λ are real and its eigenfunctions
L̂ζ can be chosen to be real. Then ζ is real as well and (9.41) implies (if we take
δvext = ζ and δn = λζ )

λ

∫

d3r
[

L̂ζ(r, s)
]2
< 0, (9.50)

which implies λ < 0. We have therefore proven that if there are density variations
that are proportional to the applied potential, then this constant of proportionality
is negative. In other words, the eigenvalues of the density response function are
negative. In this derivation we made again explicit use of Laplace transforms and
therefore of the condition that ζ = 0 for t < 0. The work of Mearns and Kohn shows
that positive eigenvalues are possible when this restriction is not made. The same is
true when one considers response functions for excited states (Gaudoin and Burke
2004). We finally note that similar results are readily obtained for the static density
response function (van Leeuwen 2003) in which case the negative eigenvalues of the
response function are an immediate consequence of the Hohenberg–Kohn theorem.

Let us now see what our result implies. We considered the density n[vext] as a
functional of vext and established that the response kernel χ [vGS] = δn/δvext[vGS] is
invertible where vGS is the potential in the ground state and that δn/δvext[vGS] < 0
in the sense that its eigenvalues are all negative definite. We can now apply a funda-
mental theorem of calculus, the inverse function theorem. For functions of real
numbers the theorem states that if a continuous function y(x) is differentiable at
x0 and if dy/dx(x0) 	= 0 then locally there exists an inverse x(y) for y close enough
to y0, where y(x0) = y0. The theorem can be extended to functionals on function
spaces [to be precise Banach spaces, for details see Choquet-Bruhat et al. (1991)].
For our case, this theorem implies that if the functional n[vext] is differentiable at the
ground state potential vGS and the derivative χ [vGS] = δn/δvext[vGS] is an invertible
kernel then for potentials vext close enough to vGS (in Banach norm sense) the inverse
map vext[n] exists. Since we have shown that the linear response function χ [vGS]
is invertible this then proves the Runge–Gross theorem for Laplace transformable
switch-on potentials for systems initially in the ground state.



200 M. Ruggenthaler and R. van Leeuwen

9.5 Global Fixed-Point Proof of TDDFT

Here we reformulate and generalize the foundations of TDDFT. The central idea is to
restate the fundamental one-to-one correspondence between densities and potentials
as a global fixed-point question for potentials on a given time-interval. We prove
that the unique fixed point, i.e. the unique potential generating a given density, is
reached as the limiting point of an iterative procedure and show its convergence
under some conditions. Assuming the existence of a certain density response func-
tion χ̃ this approach avoids the usual restrictions of Taylor-expandability in time
of the Runge–Gross proof and its extension. Here we will further assume certain
smoothness properties of the potentials in space (finite second-oder spatial deriv-
atives) in order to keep the presentation as simple as possible. This restriction as
well as some others in the course of the presentation can be lifted at the expense
of further mathematical details (Ruggenthaler and van Leeuwen 2011b; Penz and
Ruggenthaler 2011). Before we outline the general proof we reinvestigate (9.11),
which is of fundamental importance to TDDFT

−∇ · [n[vext](r, t)∇vext(r, t)] = q[vext](r, t)− ∂2

∂t2 n[vext](r, t). (9.51)

Here we made the dependence on the external potential explicit. If we replace
n[vext](r, t) in (9.51) by a given density n subject to similar conditions as (9.17)
and (9.18) at time t0 with the initial state |Ψ0〉, i.e.

n(r, t0) =
〈

Ψ0|n̂(r)|Ψ0
〉

(9.52a)

∂

∂t
n(r, t0) = −

〈

Ψ0|∇ · ĵ(r)|Ψ0

〉

(9.52b)

where ĵ(r) is the current-density operator (9.5), then (9.51) becomes

−∇ · [n(r, t)∇vext(r, t)] = q[vext](r, t)− ∂2

∂t2 n(r, t). (9.53)

This is a nonlinear equation for vext which needs to be solved with specified boundary
conditions (this amounts to fixing a gauge for vext). If we propagate the TDSE with
initial state |Ψ0〉 and with a potential vext that is a solution to (9.53) then for this
potential clearly also the local force equation (9.51) will be satisfied with the same
initial conditions (9.52a, b). Subtracting (9.53) from (9.51) then yields the equation

∂2

∂t2 ñ(r, t)−∇ · [ñ(r, t)∇vext(r, t)
] = 0 (9.54)

for the density difference ñ(r, t) = n[vext](r, t) − n(r, t) with initial conditions
ñ(r, t0) = ∂

∂t ñ(r, t0) = 0. The unique solution of (9.54) with these initial conditions
is ñ(r, t) = 0 and hence n(r, t) = n[vext](r, t), i.e. the density in (9.53) is identical
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to the one that is obtained from time-propagation of the TDSE with the solution of
(9.53). By making different choices for the density n(r, t) in (9.53) we can deduce
some important consequences of this result. If we choose n(r, t) = n[uext](r, t) to
be the density obtained by time-propagation of the TDSE with potential uext and the
same initial state |Ψ0〉 then we must have n[uext](r, t) = n[vext](r, t) where vext
is a solution of (9.53). The uniqueness of a potential vext for a given density n (the
Runge–Gross theorem) is thus equivalent to the uniqueness of the solution of (9.53),
i.e. uext = vext. If we choose n(r, t) to be the density obtained by solving a TDSE for
a system with different two-particle interactions V̂ ′ee and with different initial state
|Ψ ′0〉 then the existence of a solution to (9.53) implies that the same density can be
reproduced by a potential vext in our system with interaction V̂ee and initial state |Ψ0〉,
i.e. it is v-representable in our system. For the special case V̂ee = 0 this amounts
to reproducing the density of an interacting system within a noninteracting system,
which is known as the Kohn–Sham construction and forms the basis of virtually all
applications of TDDFT. The key question, which is crucial for the whole foundation
of TDDFT, is thus whether a solution to (9.53) is unique and exists. As we have
seen from the previous considerations existence and uniqueness have indeed been
established under the restrictions that the potential vext is Taylor-expandable around
the initial time as well as the density. Here our main goal is to present a proof that
lifts these restrictions.

Before going into details we first give the main idea. For a potential v(0)ext (r, t)
and initial state |Ψ0〉 at time t0 we can propagate the TDSE in a given time interval
[t0, t1] and construct the function q[v(0)ext ](r, t) from (9.12b). This provides a mapping

P : v(0)ext 
→ q[v(0)ext ] (see Fig. 9.1). Let us fix a density n(r, t) subject to the conditions

(9.52a, b) in terms of the initial state |Ψ0〉.Then with the inhomogeneity q[v(0)ext ]− ∂2

∂t2 n

we can solve (9.53) for a new potential v(1)ext , i.e.

−∇ ·
[

n(r, t)∇v(1)ext (r, t)
]

= q
[

v
(0)
ext

]

(r, t)− ∂2

∂t2 n(r, t) (9.55)

with given boundary conditions (this amounts to fixing a gauge for v(1)ext ). This

provides us with a second map W : q
[

v
(0)
ext

]


→ v
(1)
ext (see Fig. 9.1). The combined

map

F
[

v
(0)
ext

]

= (W ◦ P)
[

v
(0)
ext

]

= v(1)ext (9.56)

maps our original potential v(0)ext to a new one v(1)ext . If for some potential vext we
have vext = F[vext], i.e. vext is a fixed point of the mapping F , then we satisfy
(9.53). Consequently, the question whether a solution to (9.53) exists and is unique
is equivalent to the question whether the mapping F has a unique fixed point. This
is exactly what we will prove in this section. Our proof is based on the following
inequality

∥
∥
∥F

[

v
(1)
ext

]

− F
[

v
(0)
ext

]∥
∥
∥
α
≤ a

∥
∥
∥v
(1)
ext − v(0)ext

∥
∥
∥
α
, (9.57)
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Fig. 9.1 The
potential–potential mapping
F of (9.56) as composition
of the mappings P and W

with a < 1 and where ‖ · ‖α is a norm dependent on a positive parameter α on the
space of potentials. Comparable norms are commonly used in the solution of initial-
value problems (Evans 2010). This inequality can be derived in two steps. In the
first step we prove that if two potentials are close in norm then also the observables
O[vext](t) calculated from them are close. In particular for Ô = q̂(r) we prove

∥
∥
∥q

[

v
(1)
ext

]

− q
[

v
(0)
ext

]∥
∥
∥
α
≤ C√

α

∥
∥
∥v
(1)
ext − v(0)ext

∥
∥
∥
α
, (9.58)

with C a positive constant. In the second step we prove that
∥
∥
∥F

[

v
(1)
ext

]

− F
[

v
(0)
ext

]∥
∥
∥
α
≤ D

∥
∥
∥q

[

v
(1)
ext

]

− q
[

v
(0)
ext

]∥
∥
∥
α

(9.59)

for a positive constant D. The combination of these two statements then yields (9.57)
where a = C D/

√
α and we can choose

√
α > C D. It remains to prove (9.58)

and (9.59). Before we do so, we point out conditions on the set of potentials and
densities. In order for the boundary value problem of mapping W to be well defined
(Ruggenthaler et al. 2009; Penz and Ruggenthaler 2011) we have to restrict our
considerations on an arbitrarily large but finite region V ⊂ R

3 with boundary ∂V.
The potentials are assumed to have finite second-order spatial derivatives, i.e. they
are generated by a Poisson equation −∇2vext(r, t) = 4πρext(r, t) from a finite
external charge distribution ρext that is only required to be piece-wise continuous
in the time-variable. This excludes the possibility of an external one-body potential
with a Coulombic singularity generated by a point charge but still includes potentials
generated by finite atomic nuclei (which are actually closer to the physical reality).
For such potentials the divergence of the force on the right hand side of (9.55) is finite.
The density n(r, t) in (9.55) is assumed to have a finite spatial derivative ∇n(r, t)

and finite second time-derivative ∂2

∂t2 n(r, t). These requirements make all terms in
(9.55) well-defined. Some of them (especially the exclusion of Coulombic potentials)
can be relaxed, however at the expense of an increase in mathematical technicalities
(Ruggenthaler and van Leeuwen 2011b; Penz and Ruggenthaler 2011). For the clarity
of our presentation we therefore restrict ourselves to these assumptions.

We start by deriving inequality (9.58) for the mapping P of Fig. 9.1. The main
ingredient is the fundamental theorem of calculus (Griffel 1985). Suppressing the
time-arguments we can write
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O
[

v
(1)
ext

]

− O
[

v
(0)
ext

]

=
1∫

0

dλ
dO

dξ

[

v
(0)
ext + ξ

(

v
(1)
ext − v(0)ext

)] ∣
∣
∣
ξ=λ, (9.60)

for any operator expectation value O[vext](t). In the case that we take Ô = q̂(r) this
equation yields

q
[

v
(1)
ext

]

(r, t)− q
[

v
(0)
ext

]

(r, t)

=
t∫

t0

dt ′
∫

V
d3r ′χ̃(rt, r ′t ′)

[

v
(1)
ext (r

′, t ′)− v(0)ext (r
′, t ′)

]

, (9.61)

where we defined

χ̃ (rt, r ′t ′) = −i

1∫

0

dλ
〈

Ψ0
∣
∣
[

q̂Hλ(r, t), n̂Hλ(r
′, t ′)

]∣
∣Ψ0

〉

(9.62)

and ÔHλ is the operator Ô in the Heisenberg representation with respect to Hamil-

tonian Ĥλ with potential vλext = v(0)ext+λ
(

v
(1)
ext − v(0)ext

)

.Equation 9.62 can be obtained

directly from the TDSE by evaluating the expectation value q
[

v
ξ
ext

]

(r, t) to first

order in ξ around λ which amounts to linear response theory (Fetter and Walecka
1971). Equation 9.61 is of the form

f (r, t) =
t∫

t0

dt ′
∫

V
d3r ′χ̃ (rt, r ′t ′)g(r ′, t ′) = (χg)(r, t). (9.63)

One can then derive that

‖ f (t)‖2 ≤ [C(t)]2
t∫

t0

dt ′‖g(t ′)‖2, (9.64)

where we defined the norm ‖ f (t)‖2 = ∫

V d3r f (r, t)2. In this expression the function
C(t) (the operator norm) is defined as

[C(t)]2 = sup
g 	=0

‖(χg)(t)‖2
∫ t

t0
dt ′‖g(t ′)‖2 (9.65)

Using a Cauchy–Schwarz inequality the function C(t) can be shown to satisfy

[C(t)]2 ≤ sup
t ′∈[t0,t]

∫

V
d3r

∫

V
d3r ′χ̃(rt, r ′t ′)2. (9.66)
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The integral on the right hand side of inequality (9.64) can be manipulated as follows

t∫

t0

dt ′‖g(t ′)‖2 =
t∫

t0

dt ′e−α(t ′−t0)eα(t
′−t0)‖g(t ′)‖2

≤ ‖g‖2α,t
t∫

t0

dt ′eα(t ′−t0) ≤ ‖g‖2α,t
eα(t−t0)

α

(9.67)

where α is an arbitrary positive number and where we defined

‖g‖2α,t = sup
t ′∈[t0,t]

{

‖g(t ′)‖2e−α(t ′−t0)
}

. (9.68)

With this result inequality (9.64) can be written as

‖ f ‖2α,t ≤
[C̃(t)]2
α
‖g‖2α,t (9.69)

where C̃(t) = supt ′∈[t0,t] C(t
′). We will consider functions on an arbitrarily large

but finite interval [t0, t1] with t1 > t0. If we define ‖ f ‖α = ‖ f ‖α,t1 and C = C̃(t1)
and apply this to (9.61) we obtain (9.58). This concludes the first part of the proof.
The discussion so far was related to the mapping P. Let us now discuss the second
mapping W.

We consider the Sturm–Liouville operator Q=−∇·[n∇]. By partial integration
we find for two external potentials v(0)ext and v(1)ext within the standard inner product

〈

v
(0)
ext

∣
∣Qv(1)ext

〉

−
〈

Qv(0)ext

∣
∣v
(1)
ext

〉

=
∫

∂V
dS · n(r, t)

[

v
(1)
ext (r, t)∇v(0)ext (r, t)− v(0)ext (r, t)∇v(1)ext (r, t)

]

.
(9.70)

Hence, in order for Q to be self-adjoint the boundary term has to vanish. If
n(r, t) ≥ ε > 0 in V we know that we find solutions to the general inhomogeneous
Sturm–Liouville problem (Ruggenthaler et al. 2009) with the boundary conditions
vext = 0 on ∂V,making Q a self-adjoint operator. We then have an orthonormal set of
eigenfunctions (Griffel 1985). If the density is zero at the boundary then a bounded-
ness condition at the edge singles out a unique set (a famous example is the Legendre
equation which would correspond to an operator Q with density n(x) = (1 − x2)

on [-1, 1] ). For an extensive discussion of these issues in the one-dimensional
case see (Bailey et al. 2001). In general we have a set of orthonormal eigenfunc-
tions {φi (r, t)} with Qφi = λiφi and positive eigenvalues 0 ≤ λ0 < λ1 ≤ · · · ,
since λi = 〈φi |Qφi 〉 = 〈∇φi |n∇φi 〉 ≥ 0. The eigenfunction to the eigenvalue
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zero is φ0 = c(t). If we now subtract (9.55) for v(1)ext = F
[

v
(0)
ext

]

from the one for

v
(2)
ext = F

[

v
(1)
ext

]

we obtain

−∇ ·
[

n(r, t)∇
(

v
(2)
ext (r, t)− v(1)ext (r, t)

)]

= q
[

v
(1)
ext

]

(r, t)−q
[

v
(0)
ext

]

(r, t). (9.71)

We can then expand v
(2)
ext − v(1)ext and ζ = q

[

v
(1)
ext

]

− q
[

v
(0)
ext

]

in terms of the

eigenfunctions of Q, i.e.
(

v
(2)
ext − v(1)ext

)

(r, t) = ∑∞
i=0 ui (t)φi (r, t) and ζ(r, t) =

∑∞
i=0 ζi (t)φi (r, t). Since ζ is a divergence

∫

V d3rζ(r, t) = 0 and therefore the
constant function φ0 does not contribute to the expansion. Likewise the gauge fixing
allows us to exclude φ0 from the expansion of v(2)ext − v(1)ext . Inserting the expansions
into (9.71) yields ui (t) = ζi (t)/λi (t) (λi (t) > 0) and

∥
∥
∥v
(2)
ext (t)− v(1)ext (t)

∥
∥
∥

2 =
∞
∑

i=1

∣
∣
∣
∣

ζi (t)

λi (t)

∣
∣
∣
∣

2

≤ 1

λ1(t)2

∞
∑

i=1

|ζi (t)|2

= 1

λ1(t)2

∥
∥
∥q

[

v
(1)
ext

]

(t)− q
[

v
(0)
ext

]

(t)
∥
∥
∥

2
.

(9.72)

If we now multiply (9.72) with e−α(t−t0) and take a maximum over the interval
[t0, t1] we arrive at (9.59) in which D2 = maxt∈[t0,t1]{λ1(t)−2}. This then together
with (9.58) establishes our main inequality (9.57).

This equation can now be used to prove the uniqueness of a solution to (9.53).
Suppose we would have two fixed-point solutions uext and vext, i.e. uext = F[uext]
and vext = F[vext]. Then by choosing

√
α = 2C D in (9.57) we find

‖vext − uext‖α = ‖F[vext] − F[uext]‖α ≤ 1

2
‖vext − uext‖α (9.73)

from which we conclude that uext = vext. Hence, if a solution to (9.53) exists then
it is unique. This conclusion is equivalent to the Runge–Gross theorem. It states
that a density n[vext](r, t) cannot be produced by another potential uext starting
from the same initial state. This is now proven without assumptions on the Taylor-
expandability in time of the potential. Suppose that the density of an interacting
system is representable in a noninteracting system then this theorem guarantees that
the effective potential producing the same density in this system is unique. This
establishes the uniqueness of a Kohn–Sham scheme.

Let us now address the existence of a solution to (9.53). We see from (9.65)
that the constant C = C(t1) in (9.58) is dependent on the response function χ̃

and hence via Eq. 9.61 on potentials v(0)ext and v(1)ext , i.e. C = C
[

v
(0)
ext , v

(1)
ext

]

. If a

constant Csup = sup
v
(0)
ext ,v

(1)
ext

C
[

v
(0)
ext , v

(1)
ext

]

exists when we range over all potentials

v
(0)
ext and v(1)ext then (9.57) with a = Csup D/

√
α and the choice

√
α > Csup D is

equivalent to the definition of a contractive mapping (Griffel 1985). Note that one
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can replace the assumption of the existence of a Csup by a less severe assump-

tion (Ruggenthaler and van Leeuwen 2011b). If we then let v(k)ext = Fk
[

v
(0)
ext

]

denote the k-fold application of the mapping F on a given initial potential v(0)ext then

(9.57) implies
∥
∥
∥v
(k+1)
ext − v(k)ext

∥
∥
∥
α
≤ ak

∥
∥
∥v
(1)
ext − v(0)ext

∥
∥
∥
α
. Therefore the v(k)ext are a

Cauchy series which converges to a unique vext, i.e. v(k)ext → vext for k → ∞.
This is known as the contraction mapping theorem (Griffel 1985) and proves exis-
tence of a unique solution to Eq. 9.53, i.e. showing v-representability of the given
density.

9.6 Consequences of v-Representability for the Quantum
Mechanical Action

The role that is played by the energy functional in stationary DFT is played by the
action functional in TDDFT. A correct form of the variational action principle for
densities appears naturally within the framework of Keldysh theory (Marques et al.
2006a). However, historically the first action within TDDFT was defined by Peuckert
(1978—who already made a connection to Keldysh theory) and later in the Runge–
Gross paper (Runge and Gross 1984). However, as was discovered later (Gross et
al. 1996; Burke and Gross 1998b) this form of the action and the usual variational
principle leads to paradoxical results. Rajagopal (1996) attempted to introduce an
action principle in TDDFT using the formalism of Jackiw and Kerman (1979) for
deriving time-ordered n-point functions in quantum field theory. However, due to
the time-ordering inherent in the work of Jackiw and Kerman the basic variable of
Ragagopal’s formalism is not the time-dependent density but a transition element of
the density operator between a wavefunction evolving from the past and a wavefunc-
tion evolving from the future to a certain time t. Moreover, the action functional in
this formalism suffers from the same difficulties as the action introduced by Runge
and Gross. In this section we will sketch these difficulties and show that they arise
due to a restriction of the variational freedom as a consequence of v-representability
constraints. For two other recent discussions of these points we refer to van Leeuwen
(2001) and Maitra et al. (2002). Finally we will introduce another resolution of
these difficulties (Vignale 2008) using not the Keldysh formalism but modifying the
variational principle.

We start with the following time-dependent action functional

A[Ψ ] =
t1∫

t0

dt

〈

Ψ |i ∂
∂t
− Ĥ(t)|Ψ

〉

. (9.74)

The usual approach is to require the action to be stationary under variations δΨ that
satisfy δΨ (t0) = δΨ (t1) = 0. We then find after a partial integration
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δA =
t1∫

t0

dt

〈

δΨ |i ∂
∂t
− Ĥ(t)|Ψ

〉

+ c.c.+ i〈Ψ |δΨ 〉∣∣t1
t0
. (9.75)

With the boundary conditions and the fact that the real and imaginary part of δΨ can
be varied independently we obtain the result that

[

i
∂

∂t
− Ĥ(t)

] ∣
∣
∣Ψ

〉

= 0, (9.76)

which is just the time-dependent Schrödinger equation. We see that the variational
requirement δA = 0, together with the boundary conditions is equivalent to the
time-dependent Schrödinger equation.

A different derivation (Löwdin and Mukherjee 1972) which does not put any
constraints on the variations at the endpoints of the time interval is the following. We
consider again a first order change in the action due to changes in the wavefunction
and require that the action is stationary. We have the general relation

0 = δA =
t1∫

t0

dt

〈

δΨ

∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
Ψ

〉

+
t1∫

t0

dt

〈

Ψ

∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
δΨ

〉

. (9.77)

We now choose the variations δΨ = δΨ̃ and δΨ = iδΨ̃ where δΨ̃ is arbitrary.
We thus obtain

0 = δA =
t1∫

t0

dt

〈

δΨ̃

∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
Ψ

〉

+ i

t1∫

t0

dt

〈

Ψ

∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
δΨ̃

〉

(9.78a)

0 = δA = − i

t1∫

t0

dt

〈

δΨ̃

∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
Ψ

〉

+i

t1∫

t0

dt

〈

Ψ

∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
δΨ̃

〉

. (9.78b)

From (9.78a, b) we obtain

0 =
t1∫

t0

dt

〈

δΨ̃

∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
Ψ

〉

. (9.79)

Since this must be true for arbitrary δΨ̃ we again obtain the time-dependent
Schrödinger equation

[

i
∂

∂t
− Ĥ(t)

] ∣
∣
∣Ψ

〉

= 0. (9.80)

We did not need to put any boundary conditions on the variations at all. We only
required that if δΨ̃ is an allowed variation that then also iδΨ̃ is an allowed variation.
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Let us now derive and discuss the problems with the variational principle when
one attempts to construct a time-dependent density-functional theory. The obvious
definition of a density functional would be (Runge and Gross 1984)

A[n] =
t1∫

t0

dt

〈

Ψ [n]
∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
Ψ [n]

〉

, (9.81)

where |Ψ [n]〉 is a wavefunction which yields the density n(r, t) and evolves from
a given initial state |Ψ0〉 with initial density n0(r). By the Runge–Gross theorem
the wavefunction is determined up to a phase factor. In order to define the action
uniquely we have to make a choice for this phase factor. An obvious choice would
be to choose the |Ψ [n]〉 that evolves in the external potential vext(r, t) that vanishes
at infinity and yields the density n(r, t). This corresponds to choosing a particular
kind of gauge. There are of course many more phase conventions possible. We can
then rewrite the action functional (9.81) as

A[n] = A0[n] −
t1∫

t0

dt
∫

d3rvext(r, t) n(r, t), (9.82)

where the internal action is defined by

A0[n] =
t1∫

t0

dt

〈

Ψ [n]
∣
∣
∣
∣
i
∂

∂t
− T̂ − V̂ee

∣
∣
∣
∣
Ψ [n]

〉

. (9.83)

If we now make the action functional stationary, i.e. δA = 0, with respect to the
density we immediately find

vext(r, t) = δA0[n]
δn(r, t)

. (9.84)

This implies that

δvext(r, t)

δn(r ′, t ′)
= δ2 A0[n]
δn(r, t)δn(r ′, t ′)

. (9.85)

However, this equation is wrong as the left hand side is causal, i.e. it is nonzero
only for t > t ′, and the right hand side is symmetric with respect to t and t ′.
This finding was termed the causality paradox. Note that this problem arises for all
possible forms of the action functional with the usual variational principle in real
time, as the symmetry of the second functional derivative and the causality of the
potential variations are independent of the form of the functional itself. Where does
this causality paradox come from? Suppose we avoid the phase problem in the first
place by defining a functional of the external potential rather than the density
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A[v] =
t1∫

t0

dt

〈

Ψ [v]
∣
∣
∣
∣
i
∂

∂t
− Ĥ(t)

∣
∣
∣
∣
Ψ [v]

〉

. (9.86)

Note that the potential v in the argument of the action is only used to parametrize
the set of wavefunctions used in the action principle. This potential v is therefore
not the same as the external potential in the Hamiltonian Ĥ(t) of (9.86) as this
Hamiltonian is fixed. The state |Ψ [v]〉 is a state that evolves from a given initial state
|Ψ0〉 by solution of a time-dependent Schrödinger equation with potential v as its
external potential. As the potential obviously defines |Ψ [v]〉 uniquely, including its
phase, the action is well-defined. The question is now whether one can recover the
time-dependent Schrödinger equation by making the action stationary with respect
to potential variations δv. It is readily seen that this is not the case. The reason for
this is that all variations δΨ of the wavefunction must now be caused by potential
variations δv which lead to variations over a restricted set of wavefunctions. In other
words, the variations δΨ must be v-representable. For instance, when deriving the
Schrödinger equation from the variational principle one can not assume the boundary
conditions δΨ (t0) = δΨ (t1) = 0. Since the time-dependent Schrödinger equation
is first order in time, the variation δΨ (t) at times t > t0 is completely determined by
the boundary condition for δΨ (t0). We are thus no longer free to specify a second
boundary condition at a later time t1. Moreover, we are not allowed to treat the
real and imaginary part of δΨ as independent variations since both are determined
simultaneously by the potential variation δv. This means that the first derivation
of the TDSE that we presented in this section can not be carried out. It is readily
seen that also the second derivation based on Eqs. 9.78a, b fails. If δΨ is a variation
generated by some δV̂ (t) = ∫

d3r n̂(r)δv(r, t), then δΨ satisfies
[

i
∂

∂t
− Ĥv(t)

] ∣
∣
∣δΨ

〉

= δV̂ (t)|Ψ 〉, (9.87)

where Ĥv is a Hamiltonian with potential v and we neglected terms of higher order.
Multiplication by the imaginary number “i” yields that the variation iδΨ must be
generated by potential iδv. This potential variation is however imaginary and there-
fore not an allowed variation since all potential variations must be real. We therefore
conclude that TDDFT can not be based on the usual variational principle.

A recent reformulation of the variational principle in TDDFT was given by Vignale
(2008). From the above considerations we know that we are not allowed to pose the
second boundary condition δΨ (t1) = 0 if we vary with respect to the density or the
potential, respectively. Hence, in (9.75) we are no longer allowed to ignore the upper
boundary term and have in terms of the density

δA[n] = i〈Ψ [n](t1)|δΨ [n](t1)〉. (9.88)

In this approach the action functional is not stationary but its variation is equal to
some density functional taking care of the upper boundary term. The functional
derivative of the above equation together with (9.82) and (9.84) leads to
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vext(r, t) = δA0[n]
δn(r, t)

− i

〈

Ψ [n](t1)
∣
∣
∣
∣

δΨ [n](t1)
δn(r, t)

〉

. (9.89)

As shown in Vignale (2008) the additional boundary term is real and the dependence
on the arbitrary upper limit t1 is canceled. Actually, both terms on the right hand
side of (9.89) have a noncausal dependence on n(r ′, t ′) for t ′ > t which, however,
is canceled exactly by the other term if combined. If we now calculate the redefined
equation analogous to (9.85) we find

δvext(r, t)

δn(r ′, t ′)
= δ2 A0[n]
δn(r, t)δn(r ′, t ′)

− i

〈

Ψ [n](t1)
∣
∣
∣
∣

δ2Ψ [n](t1)
δn(r, t)δn(r ′, t ′)

〉

− i

〈
δΨ [n](t1)
δn(r ′, t ′)

∣
∣
∣
∣

δΨ [n](t1)
δn(r, t)

〉

.

(9.90)
The first two terms on the right hand side are symmetric while the third term is
antisymmetric. If we then subtract from (9.90) the same equation with (r, t) and
(r ′, t ′) interchanged and note that due to causality and the convention t > t ′ the term
δvext(r ′, t ′)/δn(r, t) = 0, we arrive at

δvext(r, t)

δn(r ′, t ′)
= 2Im

〈
δΨ [n](t1)
δn(r ′, t ′)

∣
∣
∣
∣

δΨ [n](t1)
δn(r, t)

〉

. (9.91)

We note, that the right hand side has the structure of a Berry curvature. How the refor-
mulated variational principle works in detail has been analyzed further in the same
work (Vignale 2008) in terms of a simple example which can be solved exactly. This
variational approach hence solves the causality paradox in real time. A solution of the
paradox on the Keldysh time-contour (van Leeuwen 1998, 2001) is given in Chap. 3
of Marques et al. (2006a). There it is discussed how an extended type of action func-
tional can be used as a basis from which the time-dependent Kohn–Sham equations
can be derived. This has the immediate advantage that the action functional can then
be directly related to the elegant formalism of nonequilibrium Green function theory
which offers a systematic way of constructing time-dependent density functionals.
Some examples of such functionals can be found in reference von Barth et al. (2005).
With hindsight it is interesting to see that already the work of Peuckert (1978), which
is one of the very first papers in TDDFT, makes a connection to Keldysh Green func-
tions, and in fact several of his results (such as the adiabatic connection formula) are
perfectly valid when interpreted in terms of the action formalism.

http://dx.doi.org/10.1007/978-3-642-23518-4_3


Chapter 10
Open Quantum Systems: Density Matrix
Formalism and Applications

David G. Tempel, Joel Yuen-Zhou and Alán Aspuru-Guzik

10.1 Introduction

In its original formulation, TDDFT addresses the isolated dynamics of electronic
systems evolving unitarily (Runge and Gross 1984). However, there exist many
situations in which the electronic degrees of freedom are not isolated, but must
be treated as a subsystem imbedded in a much larger thermal bath. The theory
of open quantum systems (OQS) deals with precisely this situation, in which the
bath exchanges energy and momentum with the system, but particle number is
typically conserved. Several important examples include vibrational relaxation of
molecules in liquids or impurities in a solid matrix, coupling to a photon bath in
cavity quantum electrodynamics, photo-absorption of chromophores in a protein
environment, electron–phonon coupling in single-molecule transport and exciton
and energy transfer nanomaterials. Even with simple system–bath models, describing
the reduced dynamics of many correlated electrons is computationally intractable.
Therefore, applying TDDFT to OQS (OQS–TDDFT) offers a practical approach to
the many-body open-systems problem.
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The formal development of the theory of OQS begins with the full unitary
dynamics of the coupled system and bath, described by the Von Neumann equa-
tion for the density operator

dρ̂(t)

dt
= −i[Ĥ(t), ρ̂(t)]. (10.1)

Here,

Ĥ(t) = ĤS(t)+ α ĤSB + ĤB (10.2)

is the full Hamiltonian for the coupled system and bath and

ĤS(t) = −1

2

N
∑

i=1

∇2
i +

N
∑

i< j

vee(ri , r j )+
∑

i

vext(ri , t) (10.3)

is the Hamiltonian of the electronic system of interest in an external potential
vext(r, t). This potential generally consists of a static external potential due to the
nuclei and an external driving field coupled to the system such as a laser field. For
an interacting electronic system, vee(r, r′) = 1/|r − r′| is the two-body Coulomb
repulsion. The system–bath coupling, ĤSB, acts in the combined Hilbert space of
the system and bath and so it couples the two subsystems. Typically, for a single
dissipation channel, the system–bath coupling is taken to have a bilinear form,

ĤSB = −Ŝ ⊗ B̂, (10.4)

where B̂ is an operator in the bath Hilbert space which generally couples to a local

one-body operator Ŝ =
[
∑N

i=1 ŝ(p̂i , r̂i )
]

in the system Hilbert space. Implicit in

OQS is a weak interaction between the system and bath, so that one can treat the
system–bath coupling perturbatively by introducing the small parameter α as in
Eq. 10.2. ĤB is the Hamiltonian of the bath, whose spectrum will typically consist
of a dense set of bosonic modes such as photons or phonons. The density of states
of ĤB determines the structure of reservoir correlation functions, whose time-scale
in turn determines the reduced system dynamics.

The goal of the theory of open quantum systems is to arrive at a reduced descrip-
tion of the dynamics of the electronic system alone, by integrating out the bosonic
modes of the bath. In this way, one arrives at the quantum master equation, which
describes the non-unitary evolution of the reduced system in the presence of its
environment. In the next section, we derive the many-electron quantum master equa-
tion and discuss common approximations used to treat the system–bath interactions.
We then formulate the master equation approach to TDDFT rigorously, by estab-
lishing a van Leeuwen construction for OQS. Next, we turn to a practical Kohn–Sham
(KS) scheme for dissipative real-time dynamics and finally discuss the linear response
version of OQS–TDDFT, giving access to environmentally broadened absorption
spectra.
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10.2 The Generalized Quantum Master Equation

We begin this section by deriving the formally exact many-electron quantum master
equation using the Nakajima–Zwanzig projection operator formalism (Nakajima
1958; Zwanzig 1960, 2001). Using projection operators, the master equation can
be systematically derived from first principles starting from the microscopic Hamil-
tonian in Eq. 10.2 (i.e. without phenomenological parameters). This is particularly
amenable to TDDFT, in which the electronic degrees of freedom are treated using
first principles as well. We will then discuss the Born–Markov approximation and
the widely used Lindblad (1976) master equation.

10.2.1 Derivation of the Quantum Master Equation Using
the Nakajima–Zwanzig Projection Operator Formalism

Our starting point is Eq. 10.1 for the evolution of the full density operator of the
coupled system and bath,

dρ̂(t)

dt
= −i[Ĥ(t), ρ̂(t)] ≡ −iL̆(t)ρ̂(t), (10.5)

where L̆(t) is the Liouvillian superoperator for the full evolution defined by Eq. 10.5.
It may be separated into a sum of Liouvillian superoperators as

L̆(t) = L̆S(t)+ L̆SB + L̆B, (10.6)

where each term acts as a commutator on the density matrix with its respective part of
the Hamiltonian. Our goal is to derive an equation of motion for the reduced density
operator of the electronic system,

ρ̂S(t) = TrB{ρ̂(t)}, (10.7)

defined by tracing the full density operator over the bath degrees of freedom. To
achieve this formally, we introduce the projection superoperators P̆ and Q̆. The
operator P̆ is defined by projecting the full density operator onto a product of the
system density operator with the equilibrium density operator of the bath,

P̆ ρ̂(t) = ρ̂eq
B ρ̂S(t). (10.8)

Q̆ = 1 − P̆ projects on the complement space. In this sense, P̆ projects onto the
degrees of freedom of the electronic system we are interested in, while Q̆ projects
onto irrelevant degrees of freedom describing the bath dynamics.
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Using these projection operators, Eq. 10.5 can be written formally as two coupled
equations:

d

dt
P̆ ρ̂(t) = −iP̆ L̆ρ̂(t) = −iP̆ L̆ P̆ ρ̂(t)− iP̆ L̆ Q̆ρ̂(t) (10.9a)

d

dt
Q̆ρ̂(t) = −iQ̆ L̆ρ̂(t) = −iQ̆ L̆ P̆ ρ̂(t)− iQ̆ L̆ Q̆ρ̂(t). (10.9b)

If Eq. 10.9b is integrated and substituted into Eq. 10.9a, one obtains

d

dt
P̆ ρ̂(t) =− iP̆ L̆ P̆ ρ̂(t)−

t∫

0

dτ P̆ L̆e
−i

t∫

τ

dτ ′ Q̆ L̆(τ ′)
Q̆ L̆ P̆ ρ̂(τ )

− iP̆ L̆e
−i

t∫

0
dτ Q̆ L̆(τ )

Q̆ρ̂(0). (10.10)

By performing a partial trace of both sides of Eq. 10.10 over the bath degrees of
freedom, one arrives at the formally exact quantum master equation

dρ̂S(t)

dt
= −i[ĤS(t), ρ̂S(t)] +

t∫

0

dt ′ K̆ (t, τ )ρ̂S(τ )+Ξ(t). (10.11)

Here,

K̆ (t, τ ) = TrB

⎧

⎨

⎩
P̆ L̆e

−i
t∫

τ

dτ ′ Q̆ L̆(τ ′)
Q̆ L̆ρ̂eq

B

⎫

⎬

⎭
(10.12)

is the memory kernel.

Ξ(t) = TrB

⎧

⎨

⎩
−iP̆ L̆e

−i
t∫

0
dτ Q̆ L̆(τ )

Q̆ρ̂(0)

⎫

⎬

⎭
(10.13)

arises from initial correlations between the system and its environment (Meier and
Tannor 1999). Equation 10.11 is still formally exact, as ρ̂S(t) yields the exact expecta-
tion value of any operator depending on the electronic degrees of freedom. In practice,
approximations to the memory kernel and initial correlation term are needed.

10.2.2 The Markov Approximation

One often invokes the Markov approximation, in which the memory kernel is local
in time and the initial correlations vanish, i.e.
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t∫

0

dt ′ K̆ (t, t ′)ρ̂S(t
′) = D̆ρ̂S(t) (10.14)

and
Ξ(t) = 0. (10.15)

The Markov approximation is valid when τS � τB is satisfied, where τS is the time-
scale for the system to relax to thermal equilibrium and τB is the longest correlation
time of the bath (Breuer and Petruccione 2002). Roughly speaking, the memory of the
bath is neglected because the bath decorrelates from itself before the system has had
a chance to evolve appreciably (Van Kampen 1992). The time-scale τS is inversely
related to the magnitude of the system–bath coupling, and so a weak interaction
between the electrons and the environment is implicit in this condition as well. The
Lindblad form of the Markovian master equation,

D̆ρ̂S(t) = Ŝρ̂S(t)Ŝ
† − 1

2
Ŝ† Ŝρ̂S(t)− 1

2
ρ̂S(t)Ŝ

† Ŝ, (10.16)

is constructed to guarantee positivity of the density matrix. This is desirable, since the
populations of any physically sensible density matrix should remain positive during
the evolution. The Lindblad equation is also trace preserving, which guarantees that
the density matrix remains normalized as the system evolves. In the Lindblad equa-
tion, in addition to the Markov approximation, one performs second-order perturba-
tion theory in the system–bath interaction (Eq. 10.4). These two approximations in
tandem are referred to collectively as the Born–Markov approximation.

So far our discussion has focused on a system of interacting electrons coupled to
a bath. We now turn to the formulation of OQS–TDDFT.

10.3 Rigorous Foundations of OQS–TDDFT

In order to formally establish an OQS–TDDFT starting from the many-body quantum
master equation in Eq. 10.11, we must first establish the open-systems version of the
van Leeuwen (1999) construction (see Chap. 9). This proves a one-to-one mapping
between densities and potentials for non-unitary dynamics, as well as the existence
of several different KS schemes (Yuen-Zhou et al. 2010, 2009).

10.3.1 The OQS–TDDFT van Leeuwen Construction

Our starting point is the master equation of Eq. 10.11, which evolves under the
many-electron Hamiltonian in Eq. 10.3. We may now state a theorem concerning the
construction of an auxiliary system.

http://dx.doi.org/10.1007/978-3-642-23518-4_9
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Theorem Let the original system be described by the density matrix ρ̂S(t), which
starting as ρ̂S(0) evolves according to Eq. 10.11. Consider an auxiliary system asso-
ciated with the density matrix ρ̂′S(t) and initial state ρ̂′S(0), which is governed by the
master equation

dρ̂′S(t)
dt
= −i[Ĥ ′S(t), ρ̂′S(t ′)] +

t∫

0

dt ′ K̆ ′(t, t ′)ρ̂′S(t ′)+Ξ ′(t) (10.17)

and with K̆ ′(t, t ′) and Ξ ′(t) fixed. Here,

Ĥ ′S(t) = −
1

2

N
∑

i=1

∇2
i +

N
∑

i< j

v′ee(r i , r j )+
∑

i

v′ext(r i , t), (10.18)

is the Hamiltonian of an auxiliary system with a different two-particle interaction
v′ee(r, r ′).Under conditions discussed below, there exists a unique external potential
v′ext(r, t) which drives the system in such a way that the particle densities in the
original and the auxiliary systems are the same, i.e. 〈n̂(r)〉′ = 〈n̂(r)〉 is satisfied for
all times, where 〈n̂(r)〉 ≡ (Tr){ρ̂S(t)n̂(r)}.
Proof The method we use closely parallels the van Leeuwen (1999) construction
given for unitary evolution (see Chap. 9). By using Eq. 10.11 we can find an equation
of motion for the second derivative of the particle density of the original system.
This is done by first deriving the equation of motion for the particle density

∂〈n̂(r)〉t
∂t

= −∇ · 〈 ĵ(r)〉t + Tr

⎧

⎨

⎩
n̂(r)

⎡

⎣

t∫

0

dt ′ K̆ (t, t ′)ρ̂S(t
′)+Ξ(t)

⎤

⎦

⎫

⎬

⎭
, (10.19)

as well as for the current density,

∂〈 ĵ(r)〉t
∂t

= −〈n̂(r)〉t
m
∇vext(r, t)+D(r, t)+ F(r, t)

m
+ G(r, t). (10.20)

We then differentiate both sides of Eq. 10.19 with respect to time and use Eq. 10.20
to eliminate the current. One thus arrives at,

∂2〈n̂(r)〉t
∂t2 = ∇ · {〈n̂(r)〉t∇vext(r, t)/m

−D(r, t)−F(r, t)/m − G(r, t)} + J (r, t), (10.21)

subject to the initial conditions

〈n̂(r)〉′t=0 = 〈n̂(r)〉t=0, (10.22a)

http://dx.doi.org/10.1007/978-3-642-23518-4_9
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∂〈n̂(r)〉′t
∂t

∣
∣
∣
∣
t=0
= ∂〈n̂(r)〉t

∂t

∣
∣
∣
∣
t=0

, (10.22b)

i.e. we demand that the densities and their first derivatives be the same at the
initial time. In Eq. 10.21, each term has a clear physical interpretation. The quantity
∇vext(r, t) is proportional to the external electric field acting on the system,

D(r, t) = −1

4

∑

α,β

β̂
∂

∂α

〈
∑

i

{v̂iα, {v̂iβ, δ(r − r̂ i )}}
〉

(10.23)

is the divergence of the stress tensor, where α, β = x, y, z label Cartesian indices,
and

F(r, t) = −
〈
∑

i

δ(r − r̂ i )
∑

j 	=i

∇r i vee(r i − r j )

〉

(10.24)

is the internal force density caused by the pairwise potential. In addition to these
quantities which arise in usual TDDFT, we have defined two new quantities,

G(r, t) = Tr

⎧

⎨

⎩
ĵ(r)

⎡

⎣

t∫

0

dt ′ K̆ (t, t ′)ρ̂S(t
′)+Ξ(t)

⎤

⎦

⎫

⎬

⎭
(10.25a)

J (r, t) = Tr

⎧

⎨

⎩
n̂(r)

⎡

⎣

t∫

0

dt ′ K̆ (t, t ′)ρ̂S(t
′)+Ξ(t)

⎤

⎦

⎫

⎬

⎭
, (10.25b)

which are unique to OQS–TDDFT and arise from forces induced by the bath.
We can now repeat the same procedure in the primed system, to arrive at the equa-

tion of motion for the second derivative of the density in terms of primed quantities,

∂2〈n̂(r)〉′t
∂t2 =∇ · {〈n̂(r)〉′t∇v′ext(r, t)/m

−D′(r, t)−F ′(r, t)/m − G′(r, t)} + J ′(r, t). (10.26)

If we subtract Eq. 10.21 from Eq. 10.26 and demand that 〈n̂(r)〉′t = 〈n̂(r)〉t ,we arrive
at the equation

−∇ ·
[ 〈n̂(r)〉t

m
∇(Δv′ext(r, t))

]

=− ∇ ·
[

D′(r, t)+ F ′(r, t)

m
+ G ′(r, t)

]

+ J ′(r, t)

+∇ ·
[

D(r, t)+ F (r, t)

m
+ G(r, t)

]

− J (r, t),

(10.27)
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where we have defined 
v′ext(r, t) ≡ v′ext(r, t) − vext(r, t). We now expand both
sides of Eq. 10.27 in a Taylor series with respect to time to arrive at

−∇ · [n0(r)∇v′ext l (r)
] =− ∇ · [n0(r)∇vext l (r)

]− ∇ · [mD′l (r)+F ′
l (r)+ mG ′l (r)

]

+ mJ ′l (r, t)+∇ · [mDl (r)+F l (r)+ mGl (r)
]− mJl (r, t)

+∇ ·
l

∑

k=1

nk(r)∇
[

Δv′ext l−k(r)
]

. (10.28)

The left-hand side of Eq. 10.28 contains Taylor coefficients of v′ext(r, t) of order l,
while the right-hand side depends only on Taylor coefficients of v′ext(r, t) of order
k < l and known quantities. Equation 10.28 can therefore be regarded as a unique
recursion relation for constructing the Taylor coefficients of the auxiliary potential
v′ext(r, t),once a suitable boundary condition is specified. We assume thatv′ext l(r)→
0 sufficiently quickly as |r| → ∞ for all l as in usual TDDFT. A more detailed
discussion of this boundary condition is given in Chap. 4.

Several different KS schemes are now evident. If one sets v′ee(r, r ′) = 0, but
keeps the system open by setting K̆ ′(t) = K̆ KS(t) andΞ ′(t) = ΞKS(t), the auxiliary
system is a non-interacting, but open KS system. This is similar to the construction
used in (Burke et al. 2005c), but encompasses the non-Markovian case as well.
However, one may also choose v′ee(r, r ′) = 0 and K̆ ′(t) = Ξ ′(t) = 0, whereby the
density of the original open system is reproduced with a closed (unitarily evolving)
and non-interacting KS system.

The OQS–TDDFT version of the Runge–Gross theorem, which is proven by
setting v′ee(r, r ′) = vee(r, r ′), K̆ ′(t) = K̆ (t) and Ξ ′(t) = Ξ(t) in Eq. 10.28,
requires only that the potential be time-analytic as in usual TDDFT. However, once
one considers an auxiliary system with a different electron–electron interaction
and/or system–bath coupling, all quantities appearing in Eq. 10.28 must be time-
analytic, including the density, memory kernel and initial correlation terms in both
the primed and unprimed systems. As discussed in Chap. 4 and (Maitra et al. 2010),
it is possible for time-analytic potentials to generate densities that are not time-
analytic. It seems plausible that a similar situation could arise in OQS–TDDFT,
where certain potentials, initial states or memory kernels could produce densities
that are not time-analytic and so the OQS–TDDFT van Leeuwen theorem might not
hold. However, this still needs to be investigated more extensively. Also, as stated,
the theorem assumes that the memory kernel and initial correlations do not depend
on the external potential. In fact, this restriction is not essential as discussed in detail
in (Yuen-Zhou et al. 2010).

10.3.2 The Double Adiabatic Connection

The content of our proof is conveniently summarized by parametrizing the auxiliary
system’s master equation with two coupling constants λ and β as,

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Fig. 10.1 The relevant
points on the double
adiabatic connection square
are: (1,1): The original
interacting OQS; (1,0): The
non-interacting yet open
Kohn–Sham scheme; (0,0):
The non-interacting and
closed Kohn–Sham scheme

d

dt
ρ̂′S(λ, β, t) =− i[Ĥ ′S(λ, β, t), ρ̂′S(λ, β, t)]

+ β
⎧

⎨

⎩

t∫

0

dτ K̆ ′(t, τ ; λ)ρ̂′S(λ, β, τ )+Ξ ′(t; λ)
⎫

⎬

⎭
, (10.29)

where

Ĥ ′S(λ, β, t) = −1

2

N
∑

i=1

∇2
i + λ

N
∑

i< j

vee(r i , r j )+
∑

i

v′ext(λ, β, r i , t). (10.30)

Here, λ scales the electron–electron interaction and lies in the range 0 � λ � 1.
When λ = 1,we have a fully interacting system, while when λ = 0 we have a system
of non-interacting electrons. The memory kernel and initial correlations are functions
of λ as well. Similarly, β scales the non-unitary terms in the master equation and
lies in the range 0 � β � 1. When β = 1, we have a fully open system while
when β = 0 the system evolves unitarily. The simple linear parameterization of
Eq. 10.29 in terms of β is not unique, and one could consider a more complicated
parameterization where K̆ ′ and Ξ ′ depend on β as well.

The theorem of Sect. 10.3.1 guarantees the existence and uniqueness of a potential
v′ext(λ, β, r, t) for all λ and β, which drives the auxiliary system in such a way that
the true density is obtained independent of the values of λ and β. This can be viewed
as a two-dimensional extension of the usual electron–electron adiabatic connection
in closed-systems TDDFT (Görling 1997b). It is depicted graphically in Fig. 10.1.
At the coordinate (1,1), we have the original fully interacting and open system,
while at the coordinate (0,0) we have the non-interacting and closed KS scheme.
Defining K̆ ′(λ = 0) ≡ K̆ KS and Ξ ′(λ = 0) ≡ ΞKS as the memory kernel and
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initial correlations of an open system of non-interacting electrons, we see that the
point (1,0) describes the open KS scheme. In the remainder of the chapter, we will
focus on the points (0,0) and (1,0). However, our proof shows that any coordinate
lying within the double adiabatic connection square represents a viable KS scheme.
As in DFT and TDDFT, the double adiabatic connection provides a powerful tool
for deriving exact conditions on OQS–TDDFT functionals and is currently being
explored in more detail.

10.4 Simulating Real-Time Dissipative Dynamics with a
Unitarily Evolving Kohn–Sham System

In the previous section, we saw that it is possible to take the KS system to be a
non-interacting system evolving unitarily under a time-dependent driving field that
will reproduce the density of the original interacting OQS. In this scheme, the KS
potential v′ext can be partitioned as

v′ext = vext + vH + vxc + vbath. (10.31)

Here, vext is the original external potential acting on the real system. The electron–
electron interaction is replaced by the sum of a Hartree term

vH =
∫

d3r ′ 〈n̂(r
′)〉t

|r − r ′| , (10.32)

and a standard approximation to the exchange-correlation (xc) potential vxc, such
as an adiabatic functional (Furche and Ahlrichs 2002a). Finally, vbath is a new term
which represents a driving field that mimics the interactions of the system with
the bath. This KS scheme places electron–electron and system–bath interactions on
the same footing, so real-time TDDFT computer codes could in principle be easily
modified to include the dissipative effects of an environment (Castro et al. 2006). Such
a scheme is computationally desirable, since one would only need to propagate N
orbital equations for an N-electron system as in usual TDDFT. This is in contrast to a
density matrix approach, where one would need to propagate M2−1 equations for the
elements of the density matrix, with M being the (in principle infinite) dimensionality
of the Hilbert space.

In usual TDDFT, the KS potential is a functional of the density and therefore the
KS equations can be regarded as nonlinear Schrödinger equations (NLSE). In OQS,
equations of motion for systems coupled to heat baths are often described by Langevin
equations, where frictional forces are introduced through velocity-dependent poten-
tials (Stokes law) (Zwanzig 2001). These frictional forces also give rise to a nonlinear
Schrödinger equation, since velocity-dependent potentials can be regarded as func-
tionals of the current or of time-derivatives of the density. Therefore, the search for
approximations to vbath could start by investigating work already done in the field
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of dissipative nonlinear Schrödinger equations (Kostin 1972, 1975; Bolivar 1998;
Haas 2010) and time-dependent self consistent field (TD-SCF) methods (Makri and
Miller 1987, López-López and Nest 2010, Martinazzo et al. 2006). In this section, we
describe a simple Markovian bath functional (MBF) inspired by a NLSE suggested
by Kostin (1972).

Consider a single particle in one dimension whose evolution is given by the NLSE,

i
∂ψ

∂t
= Hψ, (10.33)

where

H = p2

2m
+ vext + vbath, (10.34)

and p andvext are the momentum of the particle and the external potential respectively.
The dissipative potential is chosen to have the form

vbath(z, t) = λ

2i
ln

[
ψ(z, t)

ψ∗(z, t)

]

. (10.35)

This NLSE has the very interesting property that it satisfies the zero-temperature
Langevin equation for the expectation values of the particle’s position and momentum.
i.e.

〈ż〉 = 〈p〉
M
, (10.36a)

〈 ṗ〉 = −
〈
∂vext(z, t)

∂z

〉

− λ〈p〉. (10.36b)

Interestingly, vbath in Eq. 10.35 can be written as a functional of the density and
current as

vbath[〈n̂(z′)〉t , 〈 ĵ(z′)〉t ] = λ
z∫

−∞
dz′ 〈 ĵ(z

′)〉t
〈n̂(z′)〉t . (10.37)

This identification is very appealing, since the frictional force is proportional to the
space integral of the velocity field of the particle, 〈 ĵ(z′)〉t/〈n̂(z′)〉t . Furthermore, the
friction coefficient λ can be derived from a microscopic model of harmonic bath
modes (Zwanzig 2001; Nitzan 2006; Tuckerman 2010). Note that vbath at a given
time only depends on the momentum of the particle at the same instant, implying
that this NLSE is Markovian. This situation can be obtained in the limit where the
dynamics of the bath can be described as white noise (Peskin and Steinberg1998).

Although the discussion above has been given for a single particle, we can heuris-
tically propose Eq. 10.37 as a MBF for TDDFT. In practice, we can re-express vbath in
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terms of the orbitals of a time-dependent single Slater determinant KS wavefunction
(orbital-dependent functional),

ΦKS(t) = 1√
N !det[ϕi (z j , t)] (10.38)

as

vbath(z, t) = λ
z∫

−∞
dz′

∑

i |ϕi (z′, t)|2∇αi (z′, t)
∑

i |ϕi (z′, t)|2 , (10.39)

where αi (z′, t) is the phase of the ith orbital. The extension of the functional to more
dimensions follows analogously, although the limits of integration must be studied
with care. In the higher dimensional case, the Kohn–Sham current may differ from
the physical current by a purely transverse term and one must resort to a formulation
in terms of vector potentials using TDCDFT (see Chap. 24). Equation 10.39 is easy to
implement in a real-time propagation, and has been implemented for a model Helium
system interacting with a heat bath (Yuen-Zhou et al. 2010). Non-Markovian exten-
sions, as well as functionals where several timescales of relaxation and dephasing
exist, are currently under development.

Neuhauser and Lopata (2008) have recently reported an important result, which
could also be considered a MBF in our formalism. Their functional is inspired by
an optimal control approach, where they demand that the energy in the KS system
decays monotonically. They show that

vbath[〈 ĵ(z′)〉t ] =
∫

dz′a(z′)∂〈 ĵ(z
′)〉t

∂t
ĵ(z) (10.40)

achieves such goal. This functional couples the time-derivative of the current-density
to the current operator with a spatially dependent proportionality constant a(z′).Their
studies of a jellium cluster also show numerical robustness and provide a practical
scheme to include dissipation in a real-time KS calculation.

10.5 OQS–TDDFT in the Linear Response Regime Using
the Open Kohn–Sham Scheme

In addition to real-time dynamics, one can also consider OQS–TDDFT in the linear
response regime, which gives access to environmentally broadened spectra (Tempel
et al. 2011a). The starting point is the density–density response function of an inter-
acting OQS evolving according to Eq. 10.11:

χ(r, r ′;ω) = TrS

{

n̂(r)
1

ω + L̆S − iK̆ (ω)

[

ρ̂n
S(r
′, 0)+Ξ(ω)]

}

, (10.41)

http://dx.doi.org/10.1007/978-3-642-23518-4_24
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where

ρ̂n
S(r, 0) = TrR

{[n̂(r), ρ̂eq]} (10.42)

is the commutator of the particle density operator with the full equilibrium density
matrix of the combined system and reservoir, traced over the reservoir degrees of
freedom. From Eq. 10.41, one sees that the primary effect of the bath is to introduce
a frequency-dependent self-energy K̆ (ω), which shifts the poles of the response
function into the complex plane. In the absence of coupling to the bath, the poles of
Eq. 10.41 would lie at the excitation frequencies of the isolated system, which are
the eigenvalues of L̆S. The real part of K̆ (ω) can be interpreted as an excited-state
lifetime while the imaginary part is a Lamb shift of the energy.

In order to access the poles of the many-body response function in Eq. 10.41, one
introduces an auxiliary open, but non-interacting KS system with a density–density
response function given by

χKS(r, r ′, ω) = TrS

{

n̂(r)
1

ω + L̆KS − iK̆ KS(ω)
([n̂(r ′), ρ̂KS

S (0)] +ΞKS(ω))

}

.

(10.43)
Here, L̆KS is the Liouvillian for the ground or equilibrium-state Kohn–Sham–Mermin
Hamiltonian (Kohn and Sham 1965) and ρ̂KS

S (0) is the corresponding KS density
matrix. K̆ KS(ω) is a KS self-energy which describes coupling of non-interacting
electrons to the environment. It is chosen to be a one-body superoperator and
easily constructed in terms of KS orbitals and eigenvalues of L̆ks . As mentioned
in Sect. 10.3, the existence and uniqueness of such a KS system is guaranteed by
setting K̆ ′ = K̆ KS, Ξ ′ = ΞKS and v′ee(r, r ′) = 0 in the OQS–TDDFT van Leeuwen
construction. For this scheme, we partition the potential as

v′ext = vext + vH + vopen
xc , (10.44)

where vopen
xc not only accounts for electron–electron interaction within the system,

but must also correct for the difference between K̆ KS and K̆ in the system–bath inter-
action. This scheme is better suited to response theory than the closed Kohn–Sham
scheme discussed in Sect. 10.4, since relaxation and dephasing is already accounted
for in the KS system through K̆ KS. The unknown (OQS–TDDFT) exchange-
correlation functional only needs to correct the relaxation and dephasing in the KS
system to that of the interacting system, rather than needing to explicitly account for
the entire effect of the environment.

Reminiscent of usual TDDFT, Eqs. 10.41 and 10.43 are related by the Dyson-like
equation

χ(r, r ′, ω) =χKS(r, r ′, ω)+
∫

d3 y
∫

d3 y′χKS(r, y, ω)
{

1

| y − y′| + f open
xc [neq, K̆ , K̆ KS]( y, y′, ω)

}

× χ( y′, r ′, ω),
(10.45)
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where

f open
xc [neq, K̆ , K̆ KS](r, r ′, ω) = δv

open
xc (r, ω)
δn(r ′, ω)

∣
∣
∣
∣
n=neq

(10.46)

is the OQS–TDDFT exchange correlation kernel. It is a functional of the equilibrium
density as well as the memory kernel in both the interacting and Kohn–Sham systems.
For Markovian environments, it is straightforward to reformulate Eq. 10.45 as a
Casida-type equation (Casida 1996),

{

ω2 − Ω̄(ω)
}

F = 0, (10.47)

where the frequency-dependent operator Ω̄(ω) can be expressed in a basis of Kohn–
Sham-Mermin orbitals as

Ω̄i jkl(ω)= δikδ jl

{

(ωKS
lk +ΔKS

kl )
2 + (Γ KS

kl )
2 − 2iωΓ KS

kl

}

+ 4
√

( fi − f j )(ω
KS
j i +ΔKS

i j )Ki jkl(ω)

√

( fk − fl)(ω
KS
lk +ΔKS

kl ).

(10.48)
Here, Γ KS

kl and ΔKS
kl arise from matrix elements of the real and imaginary parts of

K̆ KS, respectively.

Ki jkl(ω) =
∫

d3r
∫

d3r ′ϕ∗i (r)ϕ∗j (r)

×
{

1

|r − r ′| + f open
xc [neq, K̆ , K̆ KS](r, r ′, ω)

}

ϕk(r ′)ϕl(r ′) (10.49)

are matrix elements of the OQS Hartree-exchange-correlation kernel. Equation 10.48
is a non-hermitian and explicitly frequency-dependent operator yielding complex
eigenvalues. The real part of the eigenvalues are interpreted as excitation energies
while the imaginary parts give the linewidths. Since the KS system is open, the
bare KS spectrum is already broadened at zeroth-order. f open

xc has the task of not
only shifting the location of the bare KS absorption peaks to that of the interacting
system, but it must also correct the linewidths.

As a simple example, we solved the OQS Casida equations in Eq. 10.47 to obtain
the absorption spectrum of a C2+ cation interacting with the modes of the electro-
magnetic field in vacuum, giving rise to radiative natural linewidths. The electro-
magnetic field acts as a photon bath, while the C2+ cation can be treated as an OQS
in our formalism (Cohen-Tannoudji 2004). As a crude first approximation, we used
an adiabatic functional (ATDDFT) for f open

xc in Eq. 10.48, and solved Eq. 10.47 for
the three lowest dipole allowed transitions (2s → 2p, 3p, 4p). The local density
approximation (LDA) with the modified Perdew–Zunger (PZ) parametrization was
used for the groundstate functional as well as the adiabatic exchange-correlation
kernel. From Fig. 10.2, we see that the adiabatic functional places the location of
the absorption peaks in essentially the correct place as in usual TDDFT, but leaves
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Fig. 10.2 Absorption Spectrum of C2+ including the three lowest dipole allowed transitions. The
curves shown are: a The bare Kohn–Sham spectrum (green-dashed). b The spectrum obtained
by solving Eq. 10.47 with an adiabatic exchange-correlation kernel (blue). c The numerically exact
spectrum obtained using experimental data (red-dashed). For visualization, all linewidths have been
scaled by a factor of c3 since the radiative lifetime in vacuum is extremely small

the linewidths unchanged relative to their bare KS value. To correct the linewidths,
one needs a frequency-dependent bath functional yielding additional broadening.
Such a functional with the correct frequency-dependence to first-order in Görling–
Levy perturbation theory (Görling and Levy 1993; Görling 1998a) was discussed in
(Tempel et al. 2011a) for the 2s → 2p transition. The frequency-dependent kernel
matrix element in Eq. 10.49 was found to be

K bath
2s2p,2s2p(ω) = −

i

2(ε2s − ε2p)

(

ω + iΓ KS
2p,2s

) (

Γ 1
2p,2s

)

, (10.50)

where Γ KS
2p,2s is the bare KS linewidth and Γ 1

2p,2s is a correction derived from first-
order Görling–Levy perturbation theory. In Fig. 10.3, we see that including Eq. 10.50
when solving the OQS Casida equations yields a large correction to the linewidth,
although the oscillator strength is unchanged. To correct the oscillator strength as
well, one needs higher-order corrections. A similar formalism can be used to capture
line broadening due to vibrational relaxation in molecules and electron–phonon scat-
tering and is currently being explored.

10.6 Positivity of the Lindblad Master Equation
for Time-Dependent Hamiltonians

The Lindblad form of the master equation ensures preservation of trace and posi-
tivity throughout the time-evolution. However, in the usual formulation, one assumes
that both the system Hamiltonian and jump operators are time-indepdendent.
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Fig. 10.3 The curves shown are: a The correction to the bare Kohn–Sham linewidth using the
frequency-dependent bath functional to first-order in GL perturbation theory (Eq. 10.50) (green).
b The spectrum obtained by solving Eq. 10.47 with an adiabatic exchange-correlation kernel (blue-
dashed). c The numerically exact spectrum obtained using experimental data (red-dashed). All
linewidths are scaled by a factor of c3

In this section we prove that the Lindblad equation maintains positivity and is trace
preserving, even if the Hamiltonian and jump operators are time-dependent.

Let us begin by generalizing Eq. 10.16 to include N dissipation operators, which
may be time-dependent as well as an explicitly time-dependent Hamiltonian:

dρ̂S

dt
=− i[ĤS(t), ρ̂S(t)] +

N
∑

i=1

Ŝi (t)ρ̂S(t)Ŝ
†
i (t)−

1

2
Ŝ†

i (t)Ŝi (t)ρ̂S(t)

− 1

2
ρ̂S(t)Ŝ

†
i (t)Ŝi (t). (10.51)

We now show that this master equation preserves the positivity and trace of the
density matrix under its evolution, irrespective of the time-dependence of Ĥ and Ŝi .

To verify this, we expand ρ̂S(t +Δt) for small Δt :

ρ̂S(t +Δt) = ρ̂S(t)+ ∂ρ̂S

∂t
Δt + O(Δt2)

≈
N
∑

i=0

Mi (Δt)ρ̂S(t)Mi (Δt)†. (10.52)

Using Eq. 10.51, we can define the so-called Kraus operators Mi (Δt) by:

M0(Δt) = I +
(

−iĤ − 1

2

N
∑

i=1

Ŝ†
i Ŝi

)

Δt, (10.53)

http://dx.doi.org/10.1007/978-3-642-23518-4_9
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and

Mi (Δt) ≡ Ŝi
√
Δt, (10.54)

for i > 0. An important property of the Kraus operators is that they satisfy

N
∑

i=0

Mi (Δt)† Mi (Δt) = I, (10.55)

as can be easily checked from Eqs. 10.53 and 10.54 . Notice that, in general, Mi (Δt)
are time dependent if Ŝi are as well.

Let us write ρ̂S(t) = ∑

j p j |ξ j (t)〉〈ξ j (t)|, where {|ξi (t)〉} is the basis that diag-
onalizes ρ̂S(t) at each instant in time and p j ≥ 0 for all j. Notice that up to O(Δt),

ρ̂S(t +Δt) =
∑

j

N
∑

i=0

p j
[

Mi (Δt)|ξ j (t)〉
] [〈ξ j (t)|Mi (Δt)†

]

, (10.56)

which shows that ρ̂S(t +Δt) is positive semidefinite if ρ̂S(t) is. The preservation of
the trace can also be readily shown, i.e.

Tr{ρ̂S(t +Δt)} = Tr

{
N
∑

i=0

Mi (Δt)ρ̂S(t)Mi (Δt)+
}

= Tr{ρ̂S(t)}. (10.57)

The proofs above are an adaptation of the discussion of the Lindblad equation in
the textbook by Schumacher and Westmoreland1(2010).

For completeness, we now introduce the concept of a semigroup. Consider the
integrated form of the equation of motion for ρ̂S(t) in the form of a dynamical map,
ρ̂S(t) = Φt,0ρ̂S(0),whereΦt,0 is a dynamical map that propagates the density matrix
from the initial time 0 to the final time t. The semigroup property is expressed as the
following identity for the composition map (Breuer and Petruccione 2002):

Φs,0Φt,0 = Φs+t,0. (10.58)

Notice that, on the one hand, the semigroup property will not be satisfied in general
for time-dependent Ĥ or Ŝi .On the other hand, for the case where both types of oper-
ators are time-independent, it can be shown that the Liouvillian L̆ is the most general
form of the generator of a quantum dynamical semigroup, with the dynamical map
being the exponential map:Φs,0 = eL̆s (Gorini et al. 1976). However, it is clear from
the above discussion that although the semigroup property may not hold, neither posi-
tivity nor trace-preservation are contingent upon the time-independence of Ĥ or Ŝi .

1 The authors discuss the derivation of the Lindblad equation as the generator of a completely
positive map.
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10.7 Comparison of OQS–TDDFT in the Stochastic Schrödinger
Equation and Master Equation Approaches

The next chapter presents a different approach to OQS–TDDFT based on the method
of stochastic Schrödinger equations (SSE) rather than master equations. In this
section, we briefly give an overview of the connection between the two approaches.

It is well known that if ĤS does not depend on the state of the system, Eq. 10.51
can be “unraveled” as the evolution of an ensemble of Stochastic Schrödinger Equa-
tions which reconstructs the density matrix upon appropriate manipulation of the
calculated trajectories [see Chap. 7 and (Dalibard et al. 1992; Diosi 1986)]. Hence,
under these circumstances the SSE yields the same density matrix dynamics as the
Lindblad equation. There are several interesting features of the SSE, such as its lower
numerical cost (Breuer et al. 1997) as well as the novel conceptual insights it provides
based on the theory of weak measurements, and more importantly, the monitoring
of single quantum systems (Plenio 1998).

When considering OQS–TDDFT, the Kohn–Sham (KS) potential is a functional of
the ensemble-averaged density. In this case, a KS-SSE will still yield an unraveling of
the KS master equation, provided the numerical propagation of the SSE is performed
carefully as explained in Chap. 11.

The numerical KS-SSE scheme which unravels the KS master equation proceeds
by constructing the KS potential as a functional of the ensemble-averaged density,
〈n̂(r, t)〉 and then using the same KS potential for each stochastic trajectory. In this
way, one arrives at a closed equation of motion for the statistical operator, since
the KS Hamiltonian depends only on ensemble averaged quantities and is therefore
not a stochastic field. Such a numerical scheme would proceed by propagating all
the SSE trajectories in the ensemble simultaneously, at each time-step computing
the ensemble-averaged 〈n̂(r, t)〉 and from this density constructing the KS potential
to be used in the next time step. This is the KS-SSE scheme presented in the next
chapter and is perfectly consistent with the master equation approach presented in
this chapter.

The reader should, however, be aware of a KS-SSE propagation scheme presented
by Di Ventra and coworkers, which differs from that discussed here and in Chap. 11
(D’Agosta and Ventra 2008). In the scheme of DiVentra and coworkers, one uses a
different KS potential for each trajectory and then performs the ensemble averaging
afterwards. Such a scheme does not yield a closed equation of motion for the statistical
operator, since in this case the KS potential is a stochastic field. To highlight the
differences between DiVentra and coworkers’ KS-SSE scheme and the one presented
in this book, it is useful to recognize an analogy between OQS–TDDFT which
describes non-equilibrium behavior and static DFT of systems in equilibrium at a
finite temperature as formulated by Kohn, Sham and Mermin (KSM) (Kohn and Sham
1965; Mermin 1965). In the static equilibrium case, one also considers a density
matrix representing an ensemble of different microstates. However, in the usual
KSM formulation of DFT one considers a single Kohn–Sham potential which is a
functional of the ensemble averaged density. This is analogous to the master equation

http://dx.doi.org/10.1007/978-3-642-23518-4_7
http://dx.doi.org/10.1007/978-3-642-23518-4_7
http://dx.doi.org/10.1007/978-3-642-23518-4_11
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formalism presented in this chapter and its KS-SSE unraveling presented in the next
chapter. One does not construct different Kohn–Sham potentials corresponding to
different microstates of the system, which would be analogous the KS-SSE method
of ensemble averaging proposed in the literature by DiVentra and coworkers.

10.8 Conclusions and Outlook

We have discussed the formal foundations of OQS–TDDFT in the density matrix
representation starting from a many-electron quantum master equation and estab-
lished a van Leeuwen construction which allows for a variety of different Kohn–Sham
schemes.

The first scheme we discussed uses a non-interacting and closed (unitarily
evolving) Kohn–Sham system to reproduce the dynamics of an interacting OQS.
With suitable functionals, this scheme is remarkably useful for dissipative real-
time dynamics, since it can be easily implemented in existing real-time codes.
We presented the simple yet practical Markovian bath functional, which has shown
promising results for a model Helium system (Yuen-Zhou et al. 2010). Future research
will focus on understanding exact conditions with the goal of developing more sophis-
ticated functionals. In (Tempel et al. 2011b), a systematic study of the exact OQS–
TDDFT functional was carried out for a one-electron model OQS. The exact func-
tional was shown to have memory dependence (Maitra and Burke 2001) and share
some features with existing dissipation functionals in time-dependent current DFT
(TDCDFT) (Vignale and Kohn 1996; Vignale et al. 1997; Ullrich and Vignale 2002).
However, in OQS–TDDFT dissipation arises from coupling to a dense bosonic bath,
which differs from TDCDFT where dissipation arises as an intrinsic feature of the
interacting electron liquid.

The second scheme we discussed uses an open KS system to calculate broadened
absorption spectra in linear response TDDFT. By using an open KS system, the bare
KS spectrum is already broadened, while the OQS–TDDFT exchange-correlation
kernel generates additional line broadening and shifts. The development of more
sophisticated frequency-dependent functionals to capture additional broadening and
asymmetric lineshapes due to non-Markovian effects is currently being explored as
well.

In the next chapter, an alternative formulation of OQS–TDDFT based on stochastic
wavefunctions rather than density matrices will be presented.



Chapter 11
Open Quantum Systems: A Stochastic
Perspective

Heiko Appel

11.1 Introduction

Time-dependent density-functional theory (TDDFT) provides an efficient approach
for the study of excited state properties as well as the real-time dynamics of
many-particle systems (Marques et al. 2006a). The original formulation of TDDFT
was designed to treat the unitary time-evolution of a closed quantum system with a
fixed number of particles (Runge and Gross 1984). On the other hand, most experi-
mental situations have in common that the respective system of interest is coupled to
some surrounding which influences it in a non-negligible way. Already a single atom
in vacuum can not be regarded as completely isolated, since the atom is embedded
in the surrounding photon field. This results in, for example, spontaneous emission
which can not be described by the original TDDFT approach. Other examples where
the coupling to the surrounding plays a prominent role include hot electron relaxation
in bulk systems and surfaces after laser irradiation, thermalization due to electron–
phonon coupling, decoherence in pump–probe experiments, exciton propagation and
relaxation in biological chromophores, vibrational relaxation in nanomaterials and
molecular systems.

Even if we were able to prepare a perfectly isolated quantum system, we would
need to regard a measurement of the system as bringing the system into contact with
an environment, i.e. the measurement apparatus itself constitutes an environment.
Such a measurement can be regarded as a non-unitary projection of the system
state onto states of the observables. This results in a relative loss of information and
increase of entropy in the system. As a consequence, the time-evolution of our system
of interest on time-scales of a laboratory experiment can no longer be regarded as
unitary.
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Given all these aspects which are ubiquitous in real-world experiments, it would
therefore be desirable to extend the range of applicability of TDDFT also to situations
where environment induced dissipation and decoherence play an important role for
the dynamical evolution of the system. In recent years, several attempts have been
made to also consider open quantum systems in a density-functional formalism.
A TDDFT approach based on a Kohn–Sham master equation was pioneered by
Burke et al. (2005c) and in recent work this has been pursued by the group of
Aspuru-Guzik (Yuen-Zhou et al. 2009; Tempel et al. 2011a; Tempel and Aspuru-
Guzik 2011b). This group also proposed a description of open quantum systems in
terms of a unitarily evolving closed Kohn–Sham system (Yuen-Zhou et al. 2009,
2010). A computational TDDFT study of a dissipative molecular device has been
performed by Chen and collaborators (Zheng et al. 2007). The authors justified
their approach by proposing a time-dependent extension of the holographic electron
density theorem for ground states (Riess and Münch 1981). Friction in TDDFT real-
time propagations was considered by Neuhauser and Lopata (2008) and an analogy
to system-bath studies was drawn. An alternative approach to treat open quantum
systems in TDDFT has been developed by Di Ventra and D’Agosta (2007; D’Agosta
and Di Ventra 2008) and Appel and Di Ventra (2009, 2011) and is based on stochastic
Kohn–Sham equations.

In the present chapter we will give a brief overview of this stochastic density
functional approach to open quantum systems. The material of the present text is
organized as follows. We start in Sect. 11.2 with some general remarks on choices
for the partitioning of a physical scenario into the system of interest and the envi-
ronment and discuss typical physical assumptions which are frequently employed
in open quantum system theories. In Sect. 11.3, we illustrate how to integrate out
the bath degrees of freedom directly in terms of wavefunctions. In general, this
leads to a non-Markovian stochastic Schrödinger equation for the system dynamics.
In order to illustrate the relation between different stochastic Schrödinger equations
and quantum master equations, we show in Sect. 11.4 how to derive the Lindblad
master equation from the stochastic Schrödinger equation in the Born–Markov limit.
This example also illuminates the possible starting points that can be used for a
TDDFT approach to open quantum systems. In Sect. 11.5, we introduce the formal
aspects of stochastic current density functional theory. We discuss numerical aspects
for a solution of the stochastic time-dependent Kohn–Sham (TDKS) equations and
show some examples for an application of stochastic current DFT to molecular
systems. Finally, we conclude the chapter with a summary and outlook for future
prospects of TDDFT for open quantum systems.
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11.2 General Remarks on Open Quantum Systems

11.2.1 Partitioning into System and Environment

As motivated in the introduction, we have to face a situation where our system of
interest is coupled to a typically much larger quantum system which we regard as
the environment (or bath). To describe such a situation quantum mechanically, let us
consider the total Hamiltonian for the combined system and bath and their mutual
interaction in the form

Ĥ(t) = ĤS(t)⊗ ÎB + ÎS ⊗ ĤB + α ĤSB, (11.1)

where ĤS(t) denotes the system Hamiltonian, ĤB describes the bath degrees of
freedom and ÎS, ÎB denote unit operators in the respective system and bath manifolds.
In general, we allow for time-dependent system Hamiltonians, ĤS(t), which e.g.
can include the interaction with external electromagnetic fields. To lowest order, the
interaction between the two subsystems is typically assumed to have the following
bilinear form

ĤSB =
m

∑

j=1

Ŝ j ⊗ B̂ j , (11.2)

which connects the system and the bath with a coupling strength α. This bilinear
expression covers the most common types of baths. As an example, photon and
phonon baths have such interaction terms when they are coupled to fermionic degrees
of freedom (e.g. Fröhlich interaction in the case of a phonon bath). In general, one can
consider m different types of baths coupled to the system, each describing different
relaxation channels.

Clearly, the partitioning of the total Hamiltonian in Eq. 11.1 is not unique.
Depending on the physical situation, different partitionings of Ĥ(t) might be of
interest. For instance, if we aim at describing dissipation and dephasing during the
dynamics of a molecule on a surface, we could include the electronic and ionic
degrees of the molecule as well as the electronic structure of the surface in the
system Hamiltonian ĤS(t). The ionic degrees of freedom of the surface and the
corresponding bulk would then constitute one possible choice for the bath, i.e. would
represent a phonon bath which provides relaxation channels for the electronic exci-
tations in the system. On the other hand, for reasons of simplicity and computational
cost, we could also include the ionic degrees of freedom of the molecule in the
bath. This is of course less flexible when, for example, conformational changes of
the molecule are of interest. In that case, the first form of the partitioning would
be more appropriate but also more difficult for an explicit treatment. This simple
example already shows that a predictive theory for open quantum systems not only
relies on the description of the electronic many-body effects in the subsystem S alone
(e.g. within a TDDFT approach), but importantly also requires as input a microscopic
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picture of the relevant decoherence and dissipation channels. Even if we could solve
the effective system dynamics exactly, we would still need to rely on the knowledge
of thermodynamic properties of the bath, the form of bath-correlation functions and
the microscopic form of the system-bath interaction. It is precisely these macroscopic
thermodynamic properties of the bath, the bath-correlation functions, and the micro-
scopic form of the system-bath interaction term, ĤSB, that determine the relaxation
rates for the dynamics of the system. Therefore, we have to keep in mind that both
an effective description of the system dynamics as well as a given partitioning of the
total Hamiltonian enter in a theory for open quantum systems.

11.2.2 Physical Assumptions

In principle, in order to describe a bath with true thermodynamic properties, e.g. with
Poincaré recurrence times pushed to infinity, an infinite amount of degrees of freedom
in the bath is required. This implies that we can not simulate the dynamics of the full
Hamiltonian Ĥ(t) on a finite computer.1 The goal of open quantum system theories
is therefore to find an effective description for the dynamics of the system degrees of
freedom only. In order to reach this goal, there are several physical assumptions that
typically enter a description of systems coupled to external environments. In general,
the interaction between the system and the bath is assumed to be weak. It is therefore
possible to treat the system-bath coupling perturbatively in the coupling constant α.
The bath is generally modelled as a large set of bosonic modes with a dense energy
spectrum. Typical examples of such environments include, as mentioned above, a
photon bath or a phonon bath coupled to the system. Since we do not know the
microscopic state of all the infinitely many degrees of freedom of the environment, in
general only macroscopic thermodynamic properties of the bath, like e.g. temperature
or pressure are known. In the most common case, one assumes that the bath is
in thermal equilibrium at a given temperature T. A further assumption that enters
most open quantum system descriptions is that the system and bath are initially
uncorrelated. This allows one to work with factorized initial states but it may be a
severe assumption for some cases.

11.3 Stochastic Schrödinger Equations

In this section, we aim at finding an effective description for the dynamics of the
system S in the presence of the bath. The common textbook way of integrating
out the bath degrees of freedom is performed by “tracing” the statistical operator

1 This also implies that it is difficult to establish exact reference systems for interacting Fermions
coupled to an environment. Analytical solutions are available only for very simple system-bath
models.
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ρ̂ (N-body density matrix for mixed states) of the combined system and bath
over all bath degrees of freedom, i.e. one considers the following partial trace
ρ̂S = TrB{ρ̂}, where ρ̂S is called the reduced statistical operator of the system S
(Breuer and Petruccione 2002; Weiss 2007). One can then find approximate equa-
tions of motion, so-called quantum master equations, for this reduced statistical oper-
ator ρ̂S. A frequently used method to derive approximate quantum master equations
is the Nakajima–Zwanzig projection operator technique (Nakajima 1958; Zwanzig
1960), cf. also Chap. 10 in the present volume. Although many different forms for
approximate master equations can be derived with such approaches, they often share
the problem that the reduced density matrix ρ̂S does not maintain positivity when
evolved with approximate master equations. A loss of positivity implies that the
eigenvalues of ρ̂S, which describe occupation probabilities, can become negative.
This precludes a statistical interpretation of physical observables and renders the
approximate time-evolution of the density matrix unphysical. The loss of positivity
is a known problem for, e.g. the Redfield equations or also for the Caldeira–Leggett
equation (Suarez et al. 1992). In some cases, slippage factors for the initial conditions
can be employed to curtail the problem (Gaspard and Nagaoka 1999a).

In the present section, we summarize an alternative approach that has been devel-
oped over the last few decades by Diosi (1988), Dalibard et al. (1992), Zoller and
Gardiner et al. (Dum et al. 1992a, b; Gardiner et al. 1992) as well as Carmichael et
al. (1989). In this approach, instead of using the density matrix, the bath degrees of
freedom are integrated out directly at the level of the wavefunction. As will be illus-
trated, this provides an alternative route to describe open quantum systems entirely
in terms of wavefunctions. The advantage of this approach is that one directly works
with a statistical ensemble of state vectors which ensures by construction that posi-
tivity is maintained throughout the time-evolution of the system. We will briefly
recall here the basic steps of this wavefunction based approach before we turn our
attention in Sect. 11.5 to a density-functional formulation.

As discussed in Sect. 11.2, we start with the total Hamiltonian for system and bath
and their mutual interaction as given by (11.1). Since the combined set of system S
and bath B can be regarded as a closed quantum system, it follows a unitary time
evolution given by the time-dependent Schrödinger equation

i
d

dt
|Ψ (t)〉 = Ĥ(t)|Ψ (t)〉. (11.3)

As a first step towards an effective equation of motion for the system S, we
consider the many-body eigenstates of the bath Hamiltonian resulting from the static
Schrödinger equation of the bath

ĤBΨB,n(xB) = εnΨB,n(xB). (11.4)

Since the eigenstates,ΨB,n(xB), of the Hermitian Hamiltonian, ĤB, form a complete
orthonormal set, we can expand the total wavefunction in this time-independent basis

http://dx.doi.org/10.1007/978-3-642-23518-4_10
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of bath eigenmodes2

Ψ (xS, xB; t) =
∑

q

ΨS,q(xS; t)ΨB,q(xB). (11.5)

This gives rise to expansion coefficients ΨS,q(xS; t), which depend on the system
coordinates and on time. Let us consider in the following a representative coefficient,
ΨS,q(xS; t). The square |ΨS,q(xS; t)|2 of such a coefficient describes the amplitude
for finding the system in bath mode q. In order to project on a given bath mode, we
define the following Feshbach projection operators (Feshbach 1958; Nordholm and
Rice 1975)

P̂q = ÎS ⊗ |ΨB,q〉〈ΨB,q |,
Q̂q = ÎS ⊗

∑

p �=q

|ΨB,p〉〈ΨB,p|. (11.6)

By applying these projection operators to the time-dependent Schrödinger equation
of the combined system, Eq. 11.3, we arrive at

i∂t P̂qΨ (t) = P̂q Ĥ P̂qΨ (t)+ P̂q Ĥ Q̂qΨ (t),

i∂t Q̂qΨ (t) = Q̂q Ĥ Q̂qΨ (t)+ Q̂q Ĥ P̂qΨ (t).
(11.7)

Solving formally for the second equation and inserting the result back into the first
equation yields an effective Schrödinger equation projected on the system manifold

i∂t P̂qΨ (t) = P̂q Ĥ P̂q P̂qΨ (t)+
Source Term

︷ ︸︸ ︷

P̂q Ĥ Q̂qe−iQ̂q Ĥ Q̂q t Q̂qΨ (0)

−i

t∫

0

P̂q Ĥ Q̂qeiQ̂q Ĥ Q̂q (t−τ) Q̂q Ĥ P̂q P̂qΨ (τ) dτ

︸ ︷︷ ︸

Memory Term

.
(11.8)

So far, no approximations have been made. This equation is still fully coherent
and describes the time-evolution of a representative system wave function, ΨS(t) =
P̂qΨ (t), in the presence of the bath. The source term takes the initial conditions
into account, whereas the memory term records the past history of the interaction
between system and bath.

We emphasize that Eq. 11.8 has a formal similarity to the quantum transport
formulation of Kurth et al. (2005), which is also discussed in the present volume (see
Chap. 17). However, there are also notable physical differences. In the work of Kurth
and Stefanucci, the projection operators project onto real-space regions (lead and

2 One could also consider a mixed state of the overall system as the initial state. In the present
discussion, this changes only the weights of the states in the statistical ensemble at the initial time.

http://dx.doi.org/10.1007/978-3-642-23518-4_17
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device regions) and in addition, the bath is fermionic since it refers to the electronic
degrees of freedom in the leads. Hence, in the quantum transport formulation, not only
momentum and energy transfer have to be taken into account, but also an exchange
of particles. This exchange of particles implies that the projected wavefunction (e.g.
in the central device region) is in general not normalized. In contrast, in the present
chapter, we consider only bosonic baths, so that energy and momentum can be
transfered, but particle number is conserved.

The effective Schrödinger equation, Eq. 11.8, for the system degrees of freedom
is still a many-body equation and, due to the many-body operators in the source and
memory terms, is quite involved to solve in practice. It is therefore common to intro-
duce at this point several approximations which all rest on physical assumptions for
the interaction between the system and the bath and the macroscopic thermodynamic
properties of the bath. As discussed in Sect. 11.2.2, we assume that the bath has a
dense energy spectrum and always remains in thermal equilibrium. Since the phases
of all the bath degrees of freedom (in principle infinitely many) are not known, we
perform a random-phase approximation.3 Furthermore, it is assumed that the inter-
action between the system and the bath is weak so that a perturbative expansion up
to second order in the coupling constant α is sufficiently accurate (Born approxi-
mation). With these assumptions, the fully coherent Eq. 11.8 can be turned into a
non-Markovian stochastic Schrödinger equation of the form (Gaspard and Nagaoka
1999b)

i∂tΨS(t) =ĤSΨS(t)+ α
∑

q

lq(t)ŜqΨS(t)

− iα2
∑

pq

t∫

0

C pq(t − τ)Ŝ†
pe−iĤS(t−τ) ŜqΨS(τ ) dτ +O(α3),

(11.9)

where C pq(t − τ) are bath correlation functions. In this equation, the source term of
Eq. 11.8 appears as stochastic forcing term, where lq(t) denotes a stochastic process
with zero ensemble average lq(t) = 0, and correlation functions

l p(t)lq(t ′) = 0, (11.10a)

l∗p(t)lq(t ′) = C pq(t − t ′), (11.10b)

where l denotes the statistical average of l. Due to the memory integral, Eq. 11.9
is still rather involved to solve. Typically, the Markov approximation is invoked at
this point. This amounts to assuming a δ-correlated bath, which in terms of the bath
correlation functions takes the form

l∗p(t)lq(t ′) ∝ δpqδ(t − t ′). (11.11)

3 The physical content of this approximation becomes clear in the next chapter, where we consider
the derivation of the Lindblad equation from the stochastic Schrödinger equation.
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Physically, this means that the relaxation timescales inside the bath are much faster
than the relaxation timescales in the system. As a result, the bath retains no memory
and behaves always the same way as seen from the system perspective. Finally, we
arrive with these assumptions at the Born–Markov limit of the stochastic Schrödinger
equation

i∂tΨS(t) = ĤSΨS(t)+α
∑

q

lq(t)ŜqΨS(t)− iα2

2

∑

q

Ŝ†
q ŜqΨS(t)+O(α3). (11.12)

We note, in passing, that the Markov approximation has been performed here mainly
since it is a reasonable approximation for many types of environments. In addition,
the equations become much more tractable computationally in the Markov limit.
If this approximation is physically too severe for the considered application, e.g. if
the timescales of the system are comparable to the typical timescales of the bath,
we have to resort to the more involved solution of the non-Markovian stochastic
Schrödinger equation in Eq. 11.9.

The second term on the rhs of Eq. 11.12 describes the fluctuations induced by
the presence of the bath and the third term is responsible for dissipation. Both terms
are not independent of each other, but are connected by a fluctuation–dissipation
relation which ensures that the norm of the wavefunction is preserved on average
(Van Kampen 1992).

For a given and fixed initial state, the solution of the stochastic Schrödinger equa-
tion for different stochastic processes, lq(t), results in different stochastic trajecto-
ries in the Hilbert space of the system. These solutions form a statistical ensemble,
{|ΨS j 〉}, and are usually termed stochastic realizations. The ensemble, {|ΨS j 〉},
describes the properties of the subsystem, S, in the presence of the bath. To see
this, consider an expectation value of some system observable ÔS. Using Eq. 11.5
and the orthonormality of the bath eigenstates, we have

〈Ψ (xS, xB, t)|ÔS|Ψ (xS, xB, t)〉 =
∑

n

〈ΨS,n(xS, t)|ÔS|ΨS,n(xS, t)〉 (11.13)

and by normalizing the functions, ΨS,n(xS, t), according to

Ψ̃S,n(xS, t) = ΨS,n(xS, t)/
√

pn(t), (11.14)

where

pn(t) = 〈ΨS,n(xS, t)|ΨS,n(xS, t)〉, (11.15)

we can define the following statistical operator

ρ̂S =
∑

pn(t)|Ψ̃S,n(xS, t)〉〈Ψ̃S,n(xS, t)|
= |Ψ̃S(t)〉〈Ψ̃S(t)|,

(11.16)
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and immediately recognize that the average (11.13) can be rewritten as

〈Ψ (xS, xB, t)|ÔS|Ψ (xS, xB, t)〉 = Tr{ρ̂S ÔS}. (11.17)

Because of the interaction with the bath, the system, S, is necessarily in a mixture of
states. This mixture is defined by the macrostate

{pn(t), |Ψ̃Sn(xS, t)〉}. (11.18)

We emphasize, at this point, that not only first-order moments of observables can be
computed from the macrostate {pn(t), |Ψ̃Sn(xS, t)〉}. Since we have the full statistical
ensemble at hand, we can also directly compute higher-order moments or cumulants
of the distribution for any observable. Situations where the full statistical ensemble
turns out to be useful include, for example, the calculation of shot noise which
arises from the autocorrelation function of the current operator. In addition, working
directly with wavefunctions in the statistical ensemble has the distinct advantage that
we always deal with physical states. The average in Eq. 11.16 thus always maintains
positivity by construction.

11.4 Derivation of Master Equations from Stochastic
Schrödinger Equations

In classical statistical systems, a trajectory approach is based on Langevin equa-
tions and describes, for example, the Brownian motion of a particle in a thermal
surrounding. The corresponding time-evolution of the probability distribution is
given by the Fokker–Planck equation and can be obtained from the Langevin trajec-
tories by averaging over a statistical ensemble of trajectories. The quantum case can
be viewed similarly. The stochastic Schrödinger equation describes the motion of
particles embedded in a surrounding in terms of stochastic trajectories for the state
vectors in the Hilbert space of the system. Similar to the Fokker–Planck equation
in the classical case, the quantum master equation then describes the probability
distribution for these stochastic state vector “trajectories”.

To illustrate this relation in the quantum case, let us consider the derivation of
the Lindblad master equation from the stochastic Schrödinger equation in the Born–
Markov limit. This exemplifies for which cases we can actually arrive at a closed
equation of motion for the statistical operator and for which cases this is not possible
using statistical averages.

For notational convenience, let us denote in the following by |ψ〉 a single member
of the statistical ensemble, {|ψ〉 j }, and with an overline the statistical average over
this ensemble. If we denote the stochastic integral for the stochastic process l(t) by

W (t) =
t∫

0

dt ′ l(t ′) (11.19)
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and observe that W(t) is a Wiener process (Van Kampen 1992), we can write the
differential increment of the stochastic Schrödinger equation (11.12) for a single
bath operator Ŝ in the form 4

d|ΨS〉 =
[

−iĤS|ΨS〉 − 1

2
Ŝ† Ŝ|ΨS〉

]

dt − iŜ|ΨS〉dW. (11.20)

Using Ito stochastic calculus, let us now consider the following differential

d|ΨS〉〈ΨS| = (d|ΨS〉)〈ΨS| + |ΨS〉(d〈ΨS|)+ (d|ΨS〉)(d〈ΨS|). (11.21)

Note, that unlike in normal calculus, we also have to keep the third term in the
product rule above, since a statistical average over the Wiener increment dW †dW is
proportional to dt. This will cause terms quadratic in dW to contribute to first order
in dt. By inserting Eq. 11.20 and its Hermitian conjugate into Eq. 11.21 we find

d|ΨS〉〈ΨS| = −
(

iŜ|ΨS〉〈ΨS |dW + h.c.
)

− i
[

ĤS, |ΨS〉〈ΨS|
]

dt

− 1

2

{

Ŝ† Ŝ, |ΨS〉〈ΨS|
}

dt + Ŝ|ΨS〉〈ΨS|Ŝ†dW †dW

+
(

Ŝ|ΨS〉〈ΨS|ĤSdW dt + h.c.
)

+
(

i

2
Ŝ|ΨS〉〈ΨS|Ŝ† ŜdW dt + h.c.

)

+ ĤS|ΨS〉〈ΨS|ĤSdt2 + 1

4
Ŝ† Ŝ|ΨS〉〈ΨS|Ŝ† Ŝdt2 + i

2

{

ĤS, |ΨS〉〈ΨS|Ŝ† Ŝ
}

dt2.

(11.22)
In order to construct the statistical operator from the state vectors, we perform in the
next step the statistical average over all members of the stochastic ensemble, i.e.

dρ̂S = d|ΨS〉〈ΨS|. (11.23)

Taking the properties dW = 0 and dW †dW = dt of the stochastic process l(t) into
account, we notice that only the second, third and fourth term on the rhs of Eq. 11.22
contribute to first order in dt and we arrive at

dρ̂S = −i
[

ĤS, |ΨS〉〈ΨS|
]

dt − 1

2

{

Ŝ† Ŝ, |ΨS〉〈ΨS|
}

dt + Ŝ|ΨS〉〈ΨS|Ŝ†dt + O(dt2).

(11.24)
Only if the Hamiltonian ĤS of the system and the bath operator Ŝ do not explicitely
depend on the state vectors or similarly do not depend on some external stochastic
field [like they would for the case when a stochastic thermostat for the nuclei is
employed (Bussi et al. 2007)], we have

[

ĤS, |ΨS〉〈ΨS|
]

=
[

ĤS, |ΨS〉〈ΨS|
]

(11.25a)

4 To simplify the notation, the coupling parameter α has been absorbed in Ŝ in the following
discussion.
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{

Ŝ† Ŝ, |ΨS〉〈ΨS|
}

=
{

Ŝ† Ŝ, |ΨS〉〈ΨS|
}

(11.25b)

Ŝ|ΨS〉〈ΨS|Ŝ† = Ŝ|ΨS〉〈ΨS|Ŝ† (11.25c)

and only in that case Eq. 11.24 can be written in the form

d

dt
ρ̂S = −i

[

ĤS, ρ̂S

]

− 1

2

{

Ŝ† Ŝ, ρ̂S

}

+ Ŝρ̂S Ŝ†, (11.26)

which is the well-known master equation in the Born–Markov limit. Furthermore, if
we consider the limit where the bath operators and the Hamiltonian do not depend
on time, this is the prominent Lindblad master equation (Lindblad 1976; Gardiner
1985; Breuer and Petruccione 2002; Weiss 2007).5

If, on the other hand, the Hamiltonian does depend on the state vectors we have

ĤS[|ΨS〉] �= ĤS[|ΨS〉], (11.27)

or if the Hamiltonian or the bath operators depend explicitly on some stochastic
field, we have to stay with Eq. 11.24 and perform explicit averages over stochastic
Hamiltonians. In summary, this implies that we do not necessarily have a closed
equation of motion for the statistical operator ρ̂S at hand. Only if we can prove that
the Hamiltonian depends exclusively on averages over the state vectors (like e.g. the
ensemble averaged N-body density ρS = |ΨS〉〈ΨS|,) we can use Eq. 11.25a and only
in that case we arrive at a closed equation of motion for the statistical operator ρ̂S.

A similar situation already arises for classical statistical systems. If, for example,
the Langevin equation depends on internal degrees of freedom of the system, such as
the velocity of a Brownian particle, then there is no closed Fokker–Planck equation
which describes the probability distribution for that case. We have to stay with the
Langevin trajectories and perform averages over an ensemble of such trajectories.

11.5 Stochastic Current Density Functional Theory

11.5.1 Formal Aspects of Stochastic Current Density Functional
Theory

The stochastic Schrödinger equations, Eqs. 11.9 and 11.12, provide an approximate
way (Born and Born–Markov limit respectively) of integrating out all the bath degrees

5 Let us emphasize at this point that the Lindblad theorem (Lindblad 1976) guarantees a semigroup
property for ρ̂S which ensures completely positive evolution (i.e. all probabilities computed from ρ̂S
stay positive). However, this semigroup property can only be established in the Lindblad framework
if the Hamiltonian does not depend on time. The Lindblad theorem is therefore not useful in TDDFT
since the Hamiltonian is generally time-dependent due to the dependence on the time-evolving
density.From this derivation, we can also see that in the Markov limit the physical content of
the random-phase approximation, that we introduced in the previous section, leads to a form of
fluctuation and dissipation which is exactly equivalent to the Lindblad equation.
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of freedom. However, we are still left with the many-body problem of the system
Hamiltonian, ĤS, itself. The operator, ĤS, so far still contains the full electron–
electron interaction term, and it is desirable to find an effective way to describe
exchange and correlation effects within the system S. In the present section we will
comment on how to construct a time-dependent current density functional approach
based on the interacting many-electron stochastic Schrödinger equation in Eq. 11.12.
Using a stochastic approach for the open system problem in terms of wavefunctions
has several advantages. The derivation of the stochastic Schrödinger equation remains
valid for time-dependent system Hamiltonians, and it does not rely on a semigroup
property. As illustrated in the previous section, the positivity of the density matrix
(11.16) is ensured since we average only over physical states, i.e. the probabili-
ties obtained from (11.16) remain always positive. Hence, this approach is a sound
starting point to formulate a TDDFT approach for open quantum systems.

Stochastic time-dependent current DFT rests on the following basic theorem,
which establishes a one-to-one mapping between the statistically averaged current
density j(r, t) and the vector potential A(r, t) acting on the system.

Theorem For fixed dissipation (bath operators Ŝ j ), two-body interaction vee(r, r ′)
and fixed initial states, there is, under reasonable physical assumptions, a one-to-
one mapping between the open-system current density j(r, t) and the external vector
potential A(r, t).

For details on the proof of the theorem, we refer to Di Ventra and D’Agosta (2007).
The one-to-one mapping, which is established by the proof, allows us to introduce a
non-interacting auxiliary stochastic Kohn–Sham system

d
∣
∣
∣Φ

KS
S

〉

=
(

− iĤK S − 1

2

∑

j

Ŝ†
j Ŝ j

) ∣
∣
∣Ψ

KS
S

〉

dt − i
∑

j

Ŝ j

∣
∣
∣Ψ

KS
S

〉

dW, (11.28)

which is coupled to the environment and evolves with an effective vector potential
Aeff(r, t) and yields the same statistically averaged current density j(r, t) as the
interacting many-electron system. As in normal time-dependent current DFT we
have to assume non-interacting A-representability. It is important to realize that this
Kohn–Sham equation is in general still a many-body equation, since the bath oper-
ators Ŝ j are not necessarily single-particle operators. Only if we assume that the
system-bath interaction can be expressed in terms of single-particle bath operators
we can formulate Eq. 11.28 as a set of single-particle stochastic Kohn–Sham equa-
tions. We will assume for the following that this is a reasonably good approximation.
We also emphasize that the basic variable of this stochastic Kohn–Sham scheme is the
ensemble averaged current density j(r, t).Due to the ensemble average this current
density is not stochastic anymore. Since the one-to-one mapping in the theorem is
established for the variable j(r, t), the exact TDKS potential is a functional of this
ensemble averaged current density (and initial states, etc.). Provided no external
stochastic fields are considered and no loss of information occurs due to approxi-
mations in the functional, the Hamiltonian of the stochastic Kohn–Sham system is
therefore also not stochastic and the very same Hamiltonian is used for all stochastic
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realizations in the statistical ensemble. The stochastic nature of the Kohn–Sham
orbitals arises in this case only because of the coupling to the bath. In other words,
the first two terms in (11.28) are deterministic and only the third term is stochastic
due to the stochastic process dW. If on the other hand there is a loss of information
present due to an approximate reduced, or traced description of the electronic degrees
of freedom or the system is exposed to external stochastic potentials, we have a situ-
ation which requires to consider an ensemble of different stochastic Hamiltonians.

11.5.2 Practical Aspects of a Stochastic Simulation: Quantum
Jump Algorithm

A common way of solving a stochastic Schrödinger equation of the form of Eq. 11.28
relies on adapted integration schemes, like, for example, modified Runge–Kutta
methods (Kloeden and Platen 1992; Breuer and Petruccione 2002). Although elemen-
tary in their form, they turn out not to be the most stable choice for systems with a
large number of states or for very long integration periods in time, as e.g. the case
when timescales up to several picoseconds have to be reached with electronic time
steps of a few attoseconds. An alternative to sample the stochastic process given
in Eq. 11.28 consists in a piecewise deterministic evolution of the system which
is alternating with interactions with the bath (Breuer and Petruccione 2002). Since
only a deterministic time-evolution is required as an ingredient for such an approach,
the known propagation algorithms employed in closed quantum system simulations
(Castro et al. 2004a) can be used readily. In the following, we briefly illustrate the
basic concept of this so-called quantum jump algorithm.

Consider the deterministic time-evolution given by the following norm-preserving
non-linear Schrödinger equation

d

dt
ϕ j (t) = −i

(

ĤS + i

2
||Ŝψ ||2

)

ϕ j (t), (11.29)

where the non-Hermitian Hamiltonian, ĤS, is given by

ĤS = ĤS − i

2
Ŝ† Ŝ. (11.30)

The main idea of the algorithm is to propagate the physical states of interest with
Eq. 11.29 and to introduce the fluctuations, due to the interaction with the bath oper-
ator Ŝ, in terms of instantaneous jumps of the wavefunction according to

ϕ j (t
+
k ) =

Ŝϕ j (t
−
k )

||Ŝϕ j (t
−
k )||

. (11.31)

The waiting times between two successive jumps at times tk and tk+1 are drawn from
a waiting-time distribution. It can be shown (Breuer and Petruccione 2002), that this
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distribution can be sampled with a Monte-Carlo procedure by propagating auxiliary
states ξ aux

j with the non-Hermitian Hamiltonian in Eq. 11.30. The action of the bath
operator, Eq. 11.31, is taking place when the norm of the auxiliary state ξ aux

j drops
below a uniform random number, ηk ∈ [0, 1].
In summary, the algorithm works as follows:

1. Draw a uniform random number, ηk ∈ [0, 1], for the Kohn–Sham Slater
determinant

2. Propagate N auxiliary orbitals, ξ aux
j , under the non-Hermitian dynamics

i∂tξ
aux
j =

[

ĤKS − i

2
Ŝ† Ŝ

]

ξ aux
j , j = 1 . . . N

3. Propagate the orbitals, ϕKS
j with j = 1 . . . N , of the Kohn–Sham system with a

norm-conserving dynamics according to

i∂tϕ
KS
j =

[

ĤKS − i

2
Ŝ† Ŝ + i||ŜψKS

j ||2
]

ϕKS
j

4. If the norm of the Slater determinant formed with auxiliary orbitals drops below
the drawn random number ηk, act with the bath operator on the Kohn–Sham
orbitals and update the auxiliary orbitals

||Det{ξ aux
j (t−k )}|| ≤ ηk →

{

ϕKS
j (t+k ) = ŜϕKS

j (t−k )/||ŜϕKS
j (t−k )||

ξ aux
j (t+k ) = ϕKS

j (t+k )

5. Go to step 1.

In Fig. 11.1, we illustrate the piecewise deterministic time-evolution that is gener-
ated by this algorithm. By averaging over an ensemble of trajectories that arise from
this Monte-Carlo sampling, we can then compute at any point in time, according
to Eq. 11.17, expectation values for physical observables of interest. We recall here,
that a single trajectory should not be used for a probabilistic interpretation. In order
to perform averages, we always have to consider a statistical ensemble of states.

11.5.3 Stochastic Quantum Molecular Dynamics

The original formulation of stochastic time-dependent current DFT (Di Ventra
and D’Agosta 2007) was restricted to electronic degrees of freedom only, without
allowing for ionic motion. This covers situations where the ionic motion is consid-
ered as part of the bath, e.g. a purely electronic system coupled to a phonon bath.
However, there are many situations where one would like to treat some of the ionic
degrees of freedom explicitly. As mentioned in the introduction, an example of such
a situation is the study of molecules on surfaces. In this case one would like to
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Fig. 11.1 Schematic illustration of the quantum jump algorithm that is employed for the simulation
of the stochastic process associated with the stochastic Kohn–Sham equations. The time evolution
of the Kohn–Sham state vector (lower track) is punctuated by “quantum jumps” at which the
wavefunction changes discontinuously in time. The points in time where the jumps appear are
determined by a waiting-time distribution which is sampled with the help of an auxiliary propagation
(upper track)

include the ionic motion of the molecule in the Hamiltonian of the system, whereas
the ionic motion of the surface atoms provide a dissipation and dephasing channel
which can be taken into account in terms of a phonon bath. Other examples, where
an explicit description of ionic motion is desirable, include chromophores embedded
in a protein environment or molecules solvated in a liquid environment. To account
for such situations, stochastic quantum molecular dynamics (MD) has been intro-
duced recently (Appel and Di Ventra 2009, 2011). This molecular dynamics scheme
is an extension of stochastic time-dependent current DFT, which allows one, in prin-
ciple, to include quantum nuclei in the system Hamiltonian. Unlike standard MD
approaches, like Born–Oppenheimer MD, Car–Parrinello MD, or Ehrenfest MD,
which always consider a closed quantum system for the electrons, this stochastic
quantum MD approach allows to couple both the electronic and the ionic degrees of
freedom to a thermal bath.

Let us consider this approach in the limit of classical nuclei. In Fig. 11.2, we
illustrate the dynamics of a neon dimer with soft-Coulomb interaction (Su and Eberly
1991) that is coupled to a thermal bath and compare to a standard TDDFT/Ehrenfest
propagation. In both cases the time-dependent adiabadic LDA was used for the
exchange-correlation functional. As initial state of the dimer we use in both cases the
same stretched configuration for the ionic coordinates. The time evolution shows that
the vibrational oscillations of the dimer continue indefinitely in the closed quantum
system case (left panel), since no energy dissipation takes place. On the other hand,
in the open quantum system case (right panel), energy is dissipated into the thermal
environment and we observe a damping of the ionic vibrations (Appel and Di Ventra
2011). Note that we have not used a thermostat for the classical ions here. Instead, the
damping of the ionic motion arises due to the coupling of the electrons to the thermal
bath. In other words, the Ehrenfest forces, that electrons exert on the classical ions,
differ qualitatively between standard closed-system Ehrenfest TDDFT and stochastic
quantum molecular dynamics. This simple example shows that the environment has
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Fig. 11.2 Both panels show the atomic positions of a Neon dimer with soft-Coulomb interaction as
function of time. In both cases, the same stretched configuration of the dimer has been used as initial
condition. Left panel: normal TDDFT/Ehrenfest propagation for a closed quantum system. Right
panel: Open quantum system simulation using stochastic quantum molecular dynamics for a bath
temperature of 290 K. A relaxation time of τ = 300 fs has been used for the stochastic quantum
molecular dynamics simulation and 100 stochastic trajectories have been used for the statistical
average

a non-negligible effect on the system dynamics and that electronic dissipation and
dephasing can play an important role for the dynamics of molecules embedded in
some surrounding.

11.6 Open Questions in TDDFT for Open Quantum
Systems and Outlook

In summary, we presented a basic introduction to the concepts of stochastic current
density functional theory. We have illustrated how to trace out the bath degrees of
freedom directly in terms of wavefunctions. In general, this leads to a non-Markovian
stochastic Schrödinger equation which still contains the electron–electron interaction
for the system degrees of freedom. Based on such a stochastic many-body equation
which takes the bath interaction into account we have then shown how to establish
a stochastic current density functional theory. We have discussed numerical aspects
for the solution of the stochastic Kohn–Sham equations and an application of the
recently introduced stochastic quantum molecular dynamics has been provided.

The description of open quantum systems in terms of time-dependent density
functional approaches still has to be regarded as a very young field of research. Basic
theorems have been proposed for the quantum master and stochastic approaches.
A few applications indicate the potential of the theories and the questions that can be
answered. Examples include relaxation in quantum transport (Burke et al. 2005c),
broadening of molecular spectra (Tempel et al. 2011a) or quantum MD of electrons
and ions coupled to an environment (Appel and Di Ventra 2009, 2011).

In TDDFT for open quantum systems many questions remain open and provide
a large and exciting field for future studies. Most prominent is the development of
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functionals. So far, in both the quantum master and stochastic TDKS approaches,
primarily standard functionals from closed quantum system TDDFT have been
employed, most notably the adiabatic local density approximation. So far, orbital
functionals and extensions of the TDOEP integral equations (see Chap. 6) have not
been considered at all in the context of open quantum systems. At present, it is unclear
for most cases how the functionals in the respective approaches depend on the bath
operators/dissipation. The memory and initial state dependence in the density func-
tionals of open quantum systems most likely will also play a different role as in
closed system TDDFT, since the dynamics is irreversible and has dissipative decay
and decoherence contributions dictated by the bath. Another interesting route for
future research is optimal control of dissipative systems. How much of the dynamics
is still controllable when the system is connected to an environment? What is the
role of exchange and correlation within the system in this case?

We also have emphasized the importance of modelling the microscopic form
of the system-bath interaction and the properties of the bath (e.g. bath correlation
functions). Even if the exact functional would be available to describe the electron
exchange and correlation effects in the system, the starting point of an open quantum
system formulation still rests on a given partitioning of the total Hamiltonian of the
system and the bath and the corresponding microscopic form of their mutual inter-
action. So far, primarily model assumptions for this interaction have been employed.
For a predictive theory, it would be desirable to have a microscopic form of the
bath operators at hand. This would allow one to deduce relaxation rates from the
microscopic interaction between system and bath. One example along these lines
is a system coupled to a phonon bath. The relaxation rates for a system coupled to
such a bath would then be related to the electron–phonon coupling matrix elements.
Further work is required to reach such a predictive level with open quantum system
approaches in TDDFT.

http://dx.doi.org/10.1007/978-3-642-23518-4_6


Chapter 12
Multicomponent Density-Functional Theory

Robert van Leeuwen and Eberhard K. U. Gross

12.1 Introduction

The coupling between electronic and nuclear motion plays an essential role in a wide
range of physical phenomena. A few important research fields in which this is the
case are superconductivity in solids, quantum transport where one needs to take into
account couplings between electrons and phonons, the polaronic motion in polymer
chains, and the ionization-dissociation dynamics of molecules in strong laser fields.
Our goal is to set up a time-dependent multicomponent density-functional theory
(TDMCDFT) to provide a general framework to describe these diverse phenomena.
In TDMCDFT the electrons and nuclei are treated completely quantum mechanically
from the outset. The basic variables of the theory are the electron density n, which
will be defined in a body-fixed frame attached to the nuclear framework, and the
diagonal of the nuclear N-body density matrix Γ, which will depend on all nuclear
coordinates. The chapter is organized as follows: we start out by defining the coor-
dinate transformations to obtain a suitable Hamiltonian for defining our densities to
be used as basic variables in the theory. We then discuss the basic one-to-one corre-
spondence between TD potentials and TD densities, and subsequently, the resulting
TD Kohn–Sham equations, the action functional, and linear response theory. As an
example we discuss a diatomic molecule in a strong laser field.
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12.2 Fundamentals

We consider a system composed of Ne electrons with coordinates {r} and Nn nuclei
with masses M1 . . .MNn , charges Z1 . . . Z Nn , and coordinates denoted by {R}. By
convention, the subscripts “e” and “n” refer to electrons and nuclei, respectively,
and atomic units are employed throughout this chapter. In non-relativistic quantum
mechanics, the system described above is characterized by the Hamiltonian

Ĥ(t) = T̂n({R})+ V̂nn({R})+ Ûext, n({R}, t)+ T̂e({r})+ V̂ee({r})
+ Ûext, e({r}, t)+ V̂en({r}, {R}), (12.1)

where

T̂n = −1

2

Nn∑

α=1

∇2
α

Mα

and T̂e = −1

2

Ne∑

j=1

∇2
j (12.2)

denote the kinetic-energy operators of the nuclei and electrons, respectively,

V̂nn = 1

2

Nn∑

α,β=1
α �=β

ZαZβ
|Rα − Rβ | , V̂ee = 1

2

Ne∑

i, j=1
i �= j

1

|r i − r j | , (12.3)

and

V̂en = −
Ne∑

j=1

Nn∑

α=1

Zα
|r j − Rα| (12.4)

represent the interparticle Coulomb interactions. Truly external potentials repre-
senting, e.g., a laser pulse applied to the system, are contained in

Ûext, n(t) =
Nn∑

α=1

uext, n(Rα, t) (12.5a)

Ûext, e(t) =
Ne∑

j=1

uext, e(r j , t). (12.5b)

Defining electronic and nuclear single-particle densities conjugated to the true
external potentials (12.5a) and (12.5b), a multicomponent density-functional theory
(MCDFT) formalism can readily be formulated on the basis of the above
Hamiltonian (Capitani 2000; Gidopoulos 1998). However, as discussed in Kreibich
(2000), Kreibich and Gross (2001a), Kreibich et al. (2008), such a MCDFT is
not useful in practice because the single-particle densities necessarily reflect the
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symmetry of the true external potentials and are therefore not characteristic of the
internal properties of the system. In particular, for all isolated systems where the
external potentials (12.5a) and (12.5b) vanish, these densities are constant, as a
consequence of the translational invariance of the respective Hamiltonian. A suit-
able MCDFT is obtained by defining the densities with respect to internal coordinates
of the system (Kreibich and Gross 2001a; van Leeuwen 2004b). To this end, new
electronic coordinates are introduced according to

r ′j = R(α, β, γ ) (r j − RCMN
)

j = 1 . . . Ne, (12.6)

where the center-of-mass of the nuclei (CMN) is defined as

RCMN = 1

Mnuc

Nn∑

α=1

MαRα, where Mnuc =
Nn∑

α=1

Mα. (12.7)

The quantity R is a three-dimensional orthogonal matrix representing the Euler
rotations. The Euler angles (α, β, γ ) are functions of the nuclear coordinates {R} and
specify the orientation of the body-fixed coordinate frame. They can be determined
in various ways. One way is by requiring the inertial tensor of the nuclei to be
diagonal in the body-fixed frame. The conditions that the off-diagonal elements of
the inertia tensor are zero in terms of the rotated coordinates R(Rα − RCMN) then
give three determining equations for the three Euler angles in terms of the nuclear
coordinates {R} (Villars and Cooper 1970). A common alternative to determine the
orientation of the body-fixed system is provided by the so-called Eckart conditions
(Eckart 1935; Louck 1976; Bunker and Jensen 1998) [for recent reviews see (Sutcliffe
(2000) and Meyer 2002)] which are suitable to describe small vibrations in molecules
and phonons in solids (van Leeuwen 2004b). A general and very elegant discussion
on the various ways the body-fixed frame can be chosen is given in Littlejohn and
Reinsch (1997). In this work we will not make a specific choice, as our derivations are
independent of such choice. The most important point is that, by virtue of Eq. 12.6, the
electronic coordinates are defined with respect to a coordinate frame that is attached
to the nuclear framework and rotates as the nuclear framework rotates. The nuclear
coordinates themselves are not transformed any further at this point, i.e.,

R′α = Rα α = 1 . . . Nn. (12.8)

Of course, introducing internal nuclear coordinates is also desirable. However, the
choice of such coordinates depends strongly on the specific situation to be described:
If near-equilibrium situations in systems with well-defined geometries are consid-
ered, normal or—for a solid—phonon coordinates are most appropriate, whereas
fragmentation processes of molecules are better described in terms of Jacobi coor-
dinates (Meyer 2002; Schinke 1993). Therefore, to keep a high degree of flexibility,
the nuclear coordinates are left unchanged for the time being and are transformed to
internal coordinates only prior to actual applications of the final equations that we
will derive.
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As a result of the coordinate changes of Eq. 12.6, the Hamiltonian (12.1) trans-
forms into

Ĥ(t) = T̂n({R})+ V̂nn({R})+ Ûext, n({R}, t)+ T̂e({r ′})+ V̂ee({r ′})
+ T̂MPC({r ′}, {R})+ V̂en({r ′}, {R})+ Ûext, e({r ′}, {R}, t). (12.9)

Since we transformed to a noninertial coordinate frame a mass-polarization and
Coriolis (MPC) term

T̂MPC =
Nn∑

α=1

− 1

2Mα

⎡

⎣∇Rα +
Ne∑

j=1

∂ r ′j
∂Rα
∇r ′j

⎤

⎦

2

− T̂n({R}) (12.10)

appears. Obviously, this MPC term is not symmetric in the electronic and nuclear
coordinates. However, this was not expected since only the electrons refer to a nonin-
ertial coordinate frame, whereas the nuclei are still defined with respect to the inertial
frame. Therefore, all MPC terms arise solely from the electronic coordinates, repre-
senting fictitious forces due to the electronic motion in noninertial systems (for a
detailed form of these terms within the current coordinate transformation see van
Leeuwen (2004b)). The kinetic-energy operators T̂n and T̂e, the electron–electron
and nuclear–nuclear interactions, as well as the true external potential Ûext, n acting
on the nuclei are formally unchanged in Eq. 12.9 and therefore given in Eqs. 12.2 and
12.3 with the new coordinates replacing the old ones, whereas the electron–nuclear
interaction now reads

V̂en({r ′}, {R}) = −
Ne∑

j=1

Nn∑

α=1

Zα
∣
∣
∣r ′j −R(α, β, γ )(Rα − RCMN)

∣
∣
∣

. (12.11)

The quantity

R′′α = R(α, β, γ )(Rα − RCMN) (12.12)

that appears in Eq. 12.11 is a so-called shape coordinate (Littlejohn 1997; van
Leeuwen 2004b), i.e., it is invariant under rotations and translations of the nuclear
framework. This is, of course, precisely the purpose of introducing a body-fixed
frame: The attractive nuclear Coulomb potential (12.11) that the electrons in the
body-fixed frame experience is invariant under rotations or translations of the nuclear
framework. As a further consequence of the coordinate transformation (12.6), the
true external potential acting on the electrons now not only depends on the electronic
coordinates, but also on all the nuclear coordinates:

Ûext, e({r ′}, {R}, t) =
Ne∑

j=1

uext, e(R−1r ′j + RCMN, t). (12.13)

Therefore, in the chosen coordinate system, the electronic external potential is not
a one-body operator anymore, but acts as an effective interaction. Consequences of
this fact are discussed later.
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12.2.1 Definition of the Densities

As already mentioned above, it is not useful to define electronic and nuclear single-
particle densities in terms of the inertial coordinates r and R, since such densities
necessarily reflect the symmetry of the corresponding true external potentials, e.g.,
they are constant for vanishing external potentials. Instead, we use the diagonal of
the nuclear Nn-body density matrix

Γ ({R}, t) =
∑

{s},{σ }

∫

d3r ′1 · · ·
∫

d3r ′Ne

∣
∣Ψ{s}{σ }({R}, {r ′}, t)

∣
∣2 , (12.14)

and the electronic single-particle density referring to the body-fixed frame:

n(r ′, t) = Ne

∑

{s},{σ }

∫

d3 R′1 · · ·
∫

d3 R′Nn

×
∫

d3r ′1 · · ·
∫

d3r ′Ne−1

∣
∣Ψ{s}{σ }({R}, {r ′}, t)

∣
∣
2
. (12.15)

Here Ψ{s}{σ }({R}, {r ′}, t) represents the full solution of the TD Schrödinger equa-
tion with the Hamiltonian (12.9). The quantities {s} and {σ } denote the nuclear
and electronic spin coordinates. The electronic density (12.15) represents a condi-
tional density. It is proportional to the probability density of finding an electron at
postion r ′ as measured from the nuclear center-of-mass, given a certain orientation of
the nuclear framework. Therefore the electronic density calculated through (12.15)
reflects the internal symmetries of the system, e.g., the cylindrical symmetry of a
diatomic molecule, instead of the Galilean symmetry of the underlying space.

12.3 The Runge–Gross Theorem for Multicomponent Systems

In order to set up a density-functional framework, our next task is to prove the
analogue of the Runge–Gross theorem (Runge 1984) for multicomponent systems.
To this end, we slightly modify the Hamiltonian (12.9) to take the form

Ĥ(t) = T̂n({R})+ V̂nn({R})+ T̂e({r ′})+ V̂ee({r ′})
+ T̂MPC({r ′}, {R})+ V̂en({r ′}, {R})+ Ûext,e({r ′}, {R}, t)

+ V̂ext, n({R}, t)+ V̂ext, e({r ′}, t). (12.16)

The potentials V̂ext, n({R}, t) and V̂ext, e({r ′}, t), given by

V̂ext, n({R}, t) = vext, n({R}, t) and V̂ext, e({r ′}, t) =
Ne∑

j=1

vext, e(r ′j , t), (12.17)
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are potentials conjugate to the densities Γ ({R}, t) and n({r ′}, t) and are introduced
to provide the necessary mappings between potentials and densities. In the special
case V̂ext, n({R}, t) = Ûext, n({R}, t) and V̂ext, e({r ′}, t) = 0, the external potentials
reduce to those of the Hamiltonian (12.9). It is important to note that the potential
Ûext, e({r ′}, {R}, t) depends on both the electronic and nuclear coordinates and is
therefore treated as a fixed many-body term in Hamiltonian (12.16). The mass-
polarization and Coriolis terms in T̂MPC are complicated many-body operators. They
are treated here as additional electron–nuclear interactions which ultimately enter
the exchange-correlation functional. For Hamiltonians of the form (12.16) we can
apply the proof of the basic one-to-one correspondence along the same lines as Li and
Tong (1985). Two sets of densities

{

Γ ({R}, t), n(r ′, t)
}

and
{

Γ ′({R}, t), n′(r ′, t)
}

,

which evolve from a common initial stateΨ0 at t = t0 under the influence of two sets
of potentials

{

vext, n({R}, t), vext, e(r ′, t)
}

and
{

v′ext, n({R}, t), v′ext, e(r
′, t)

}

always
become different infinitesimally after t0 provided that at least one component of the
potentials differs by more than a purely time-dependent function:

vext, n({R}, t) �= v′ext, n({R}, t)+ C(t) or vext, e(r ′, t) �= v′ext, e(r
′, t)+ C(t).

(12.18)
Consequently a one-to-one mapping between time-dependent densities and external
potentials,

{

vext, n({R}, t), vext, e(r ′, t)
}↔ {

Γ ({R}, t), n(r ′, t)
}

(12.19)

is established for a given initial state Ψ0. We again stress that since the external
potential acting on the electrons Ûext, e({r ′}, {R}, t) in the body-fixed frame attains
the form of an electron–nuclear interaction, the one-to-one mapping is still function-
ally dependent on uext, e(r ′, {R}, t).

12.4 The Kohn–Sham Scheme for Multicomponent Systems

On the basis of the multicomponent Runge–Gross theorem we can set up the Kohn–
Sham equations. For this we consider an auxiliary system with Hamiltonian

ĤKS(t) = T̂n({R})+ T̂e({r ′})+ V̂KS, n({R}, t)+ V̂KS, e({r ′}, t), (12.20)

where we introduced the potentials

V̂KS, n({R}, t) = vKS, n({R}, t) and V̂KS, e({r ′}, t) =
Ne∑

j=1

vKS, e(r ′j , t). (12.21)

This represents a system in which the interelectronic interaction as well as the inter-
action between the nuclei and the electrons have been switched off. According to
the multicomponent Runge–Gross theorem there is at most one set of potentials
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{

V̂KS, n({R}, t), V̂KS, e({r ′}, t)
}

(up to a purely time-dependent function) that repro-

duces a given set of densities
{

Γ ({R}, t), n(r ′, t)
}

. The potentials determined in this
way are therefore functionals of the densities n and Γ and will henceforth be denoted
as the Kohn–Sham potentials for the multicomponent system. The corresponding
Hamiltonian of Eq. 12.20 will be denoted as the multicomponent Kohn–Sham Hamil-
tonian. In the Kohn–Sham Hamiltonian the electronic and nuclear motion have
become separated. If we therefore choose the initial Kohn–Sham wavefunctionΦKS, 0
to be a product of a nuclear and an electronic wavefunction then the time-dependent
Kohn–Sham wavefunction will also be such a product, i.e.,

ΦKS, {s}{σ }({R}, {r ′}, t) = Φe, {σ }({r ′}, t)Φn, {s}({R}, t) (12.22)

and the corresponding densities are given by

Γ ({R}, t) =
∑

{s}

∣
∣Φn, {s}({R}, t)

∣
∣2 (12.23a)

n(r ′, t) = Ne

∑

{σ }

∫

d3r ′1 · · ·
∫

d3r ′Ne−1

∣
∣Φe, {σ }({r ′}, t)

∣
∣2 . (12.23b)

The electronic and nuclear Kohn–Sham wavefunctions satisfy the equations
[

i
∂

∂t
− T̂n({R})− V̂KS, n[n, Γ ]({R}, t)

]

Φn, {s}({R}, t) = 0 (12.24a)

[

i
∂

∂t
− T̂e({r ′})− V̂KS, e[n, Γ ]({r ′}, t)

]

Φe, {σ }({r ′}, t) = 0. (12.24b)

Note that the potential V̂KS, n in the nuclear Kohn–Sham equation (12.24a) is an
Nn-body interaction, whereas the electronic Kohn–Sham potential V̂KS, e is a one-
body operator. Hence, by choosing the initial electronic Kohn–Sham wavefunction
as a Slater determinant consisting of orbitals ϕ j , the electronic Kohn–Sham equation
(12.24b) attains the usual form

{

i
∂

∂t
−

[

−1

2
∇′2 + vKS, e[n, Γ ](r ′, t)

]}

ϕ j (r ′, t) = 0 (12.25a)

n(r ′, t) =
Ne∑

j

|ϕ j (r ′, t)|2. (12.25b)

The nuclear equations (12.23a) and (12.24a), together with the electronic equations
(12.25a) and (12.25b), provide a formally exact scheme to calculate the electronic
density n and the Nn-body nuclear density Γ. For practical applications it remains
to obtain good approximations for the potentials vKS, n[n, Γ ] and vKS, e[n, Γ ].More
insight into this question is obtained from the multicomponent action functional to
be discussed in the next paragraph.
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12.5 The Multicomponent Action

We start by defining a multicomponent action functional

Ã[vext, e, vext, n] = i ln〈Ψ0|T̂C exp{−i
∫

C

dt Ĥ(t)}|Ψ0〉. (12.26)

The Hamiltonian in this expression is the one of Eq. 12.16. Furthermore Ψ0 is the
initial state of the system and T̂C denotes time-ordering along the Keldysh time
contour C running along the real time-axis from t0 to t and back to t0. The time-
dependent potentials vext,e and vext,n are correspondingly defined on this contour.
The case discussed here is for an initial pure state. In case the initial system is in
thermodynamic equilibrium the expectation value with respect toΨ0 can be replaced
by a thermodynamic trace and the contour can be extended to include a final vertical
stretch running from t0 to t0 − iβ, where β is the inverse temperature of the initial
ensemble. In that case the functional is closely related to the grand potential as is
extensively discussed in Chap. 5. The main property of the action (12.26) which is
important for multicomponent density-functional theory is that

δ Ã

δvext, e(r, t)
= n(r, t) and

δ Ã

δvext, n({R}, t)
= Γ ({R}, t). (12.27)

(From now on, for ease of notation, we will remove the prime from the electronic
coordinate.) We now do a Legendre transform to obtain a functional of n and Γ and
we define

A[n, Γ ] = − Ã[vext, e, vext, n] +
∫

C

dt
∫

d3rn(r, t)vext, e(r, t)

+
∫

C

dt
∫

d3 R1 · · ·
∫

d3 RNnΓ ({R}, t)vext, n({R}, t), (12.28)

where in this equation vext,e and vext,n (by virtue of the multicomponent Runge–
Gross theorem) are now regarded as functionals of n and Γ. From the chain rule of
differentiation we then easily obtain

δA

δn(r, t)
= vext, e(r, t) and

δA

δΓ ({R}, t)
= vext, n({R}, t). (12.29)

For the Hamiltonian ĤK S(t) of Eq. 12.20 we can now further define an action func-
tional analogous to Eq. 12.26

ÃKS[vKS, e, vKS, n] = i ln〈Φ0|T̂C exp{−i
∫

C

dtĤKS(t)}|Φ0〉 (12.30)

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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where Φ0 is the initial state of the auxiliary system. By a Legendre transform we
then obtain the functional AKS[n, Γ ].With A[n, Γ ] and AKS[n, Γ ]well-defined we
now can define the exchange-correlation part Axc[n, Γ ] of the action through the
equation

A[n, Γ ] = AKS[n, Γ ] − 1

2

∫

C

dt
∫

d3r1

∫

d3r2vee(r1, r2)n(r1, t)n(r2, t)

−
∫

C

dt
∫

d3r
∫

d3 R1 · · ·
∫

d3 RNn [ven(r, {R})

+ uext, e(r, {R}, t)
]× n(r, t)Γ ({R}, t)

−
∫

C

dt
∫

d3 R1 · · ·
∫

d3 RNnvnn({R})Γ ({R}, t)− Axc[n, Γ ],

(12.31)
where we subtracted the Hartree-like parts of the electron–electron and electron–
nuclear interaction and the internuclear repulsion, using the definitions

ven(r, {R}) = −
Nn∑

α=1

Zα
|r −R(R − RCMN)| (12.32a)

uext, e(r, {R}, t) = uext, e(R−1r + RCMN, t). (12.32b)

These Hartree terms are treated separately because they are expected to be the domi-
nant potential-energy contributions whereas the remainder, Axc[n, Γ ], is expected
to be smaller. No such dominant contributions arise from the mass-polarization and
Coriolis terms which are usually rather small. The contributions coming from T̂MPC
are therefore completely retained in Axc[n, Γ ].Differentiation of (12.31) with respect
to n and Γ then yields

vKS, e(r, t) = vext,e(r, t)+
∫

d3r ′vee(r, r ′)n(r ′, t)+
∫

d3 R1 · · ·

×
∫

d3 RNn

[

ven(r, {R})+ uext,e(r, {R}, t)
]

Γ ({R}, t)+ vxc,e(r, t),

(12.33)
and

vKS, n({R}, t) = vext, n({R}, t)+ vnn({R})
+

∫

d3r
[

ven(r, {R})+ uext, e(r, {R}, t)
]

× n(r, t)+ vxc, n({R}, t), (12.34)
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where we have defined the electronic and nuclear exchange-correlation potentials as

vxc, e(r, t) = δAxc[n, Γ ]
δn(r, t)

and vxc,n({R}, t) = δAxc[n, Γ ]
δΓ ({R}, t)

. (12.35)

The main question is now how to obtain explicit functionals for the exchange-
correlation potentials. One of the most promising ways of obtaining these may be
the development of orbital functionals as in the OEP approach. Such functionals can
be deduced by a diagrammatic expansion of the action functionals.

12.6 Linear Response and Multicomponent Systems

We will now consider the important case of linear response in the multicomponent
formalism. Such approach will, for instance, be very useful in weak field problems
such as electron–phonon coupling in solids. For convenience we first introduce the
notation i = (r i , ti ) and i = ({R}, ti ). Let us then define the set of response
functions:

χ12 =
⎛

⎝

χee(1, 2) χen(1, 2)

χne(1, 2) χnn(1, 2)

⎞

⎠ =

⎛

⎜
⎜
⎝

δn(1)

δve(2)

δn(1)

δvn(2)

δΓ (1)

δve(2)

δΓ (1)

δvn(2)

⎞

⎟
⎟
⎠
. (12.36)

Similarly for the Kohn–Sham system we have

χKS,12 =
⎛

⎝

χKS,ee(1, 2) 0

0 χKS,nn(1, 2)

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

δn(1)

δvKS,e(2)

δn(1)

δvKS,n(2)

δΓ (1)

δvKS,e(2)

δΓ (1)

δvKS,n(2)

⎞

⎟
⎟
⎟
⎠
, (12.37)

in which the mixed response functionsχKS,en = χKS, ne = 0 since in the Kohn–Sham
system the nuclear and electronic systems are decoupled. The two sets of response
functions are related by an equation that is very similar to that of ordinary TDDFT

χ12 = χKS,12 + χKS,13 · (v34 + f xc, 34) · χ42 (12.38)

where “·” denotes a matrix product and integration over the variables 3 and 4, respec-
tively. The matrices f xc and v are defined as

f xc,12 =
(

fxc,ee(1, 2) fxc,en(1, 2)

fxc,ne(1, 2) fxc,nn(1, 2)

)

=

⎛

⎜
⎜
⎝

δvxc,e(1)

δn(2)

δvxc,e(1)

δΓ (2)

δvxc,n(1)

δn(2)

δvxc,n(1)

δΓ (2)

⎞

⎟
⎟
⎠

(12.39a)
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v12 =
(

vee(1, 2) ven(1, 2)+ uext,e(1, 2)

ven(2, 1)+ uext,e(2, 1) 0

)

. (12.39b)

The Eq. 12.38 is the central equation of the multicomponent response theory and is
readily derived by application of the chain rule of differentiation. As an example we
calculate

χee(1, 2) = δn(1)

δve(2)

=
∫

d3
δn(1)

δvKS, e(3)

δvKS, e(3)

δvext, e(2)
+

∫

d3
δn(1)

δvKS, n(3)

δvKS, n(3)

δvext, e(2)

= δn(1)

δvKS, e(2)
+

∫

d3
δn(1)

δvKS, e(3)

δvHxc, e(3)

δvext, e(2)
, (12.40)

From which readily follows

χee(1, 2) = χKS, ee(1, 2)+
∫

d3χKS, ee(1, 3)

×
{∫

d4
δvHxc, e(3)

δn(4)
χee(4, 2)+

∫

d4
δvHxc, e(3)

δΓ (4)
χne(4, 2)

}

,

(12.41)
where vHxc, e = vKS, e − ve. We further have

δvHxc, e(3)

δn(4)
= vee(3, 4)+ fxc, ee(1, 2) (12.42a)

δvHxc, e(3)

δΓ (4)
= ven(3, 4)+ uext, e(3, 4)+ fxc, en(3, 4). (12.42b)

Inserting these expressions into (12.41) we have established one entry in the matrix
equation (12.38). The other entries can be verified analogously. We finally note that
Eq. 12.39b still contains the term uext, e,which is inconvenient in practice. However,
to calculate the linear response to the true external field we anyway need to expand
further in powers of uext, e. If we do this we obtain Eq. 12.38 with uext,e = 0 in
Eq. 12.39b and two additional equations for the response functions δn/δuext,e and
δΓ/δuext,e which will not be discussed here (Butriy et al. 2007). From the structure
of the linear response equation (12.38) it is readily seen that electronic Kohn–Sham
excitations (poles of χee,KS) and nuclear vibrational Kohn–Sham excitations (poles
of χnn,KS) will in general mix. The exchange-correlation kernels in f xc will then
have to provide the additional shift such that the true response functions in χ will
contain the true excitations of the coupled electron–nuclear system.
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12.7 Example

As an application of the formalism we discuss the case of a diatomic molecule in a
strong laser field. The Hamiltonian of this system in laboratory frame coordinates is
given by

Ĥ(t) = − 1

2M1
∇2

R1
− 1

2M2
∇2

R2
− 1

2

Ne∑

i=1

∇2
i + ven + vee + vnn + vlaser(t) (12.43)

where

vnn({R}) = Z1 Z2

|R1 − R2| (12.44a)

ven({r}, {R}) = −
Ne∑

i=1

{
Z1

|r i − R1| +
Z2

|r i − R2|
}

(12.44b)

vlaser({r}, {R}, t) =
{

Ne∑

i=1

r i − Z1 R1 − Z2 R2

}

· E(t) (12.44c)

and where E(t) represents the electric field of the laser.
We now have to perform a suitable body-fixed frame transformation to refer the

electron coordinates to a nuclear frame. For the diatomic molecule a natural choice
presents itself: we determine the Euler angles by the requirement that the internuclear
axis be parallel to the z-axis in the body-fixed frame, i.e., R(R) = Rez, where
R = R1 − R2 and R = |R|. For the special case of the diatomic molecule only two
Euler angles are needed to specify the rotation matrix R. From (12.6) and (12.7) we
see that the electron–nuclear interaction and the external laser field transform to

ven({r ′}, {R}) = −
Ne∑

i=1

{

Z1

|r ′i − M2
M1+M2

Rez |
+ Z2

|r ′i + M1
M1+M2

Rez |

}

(12.45a)

vlaser(t) =
{

Ne RCMN − Z1 R1 − Z2 R2 +
Ne∑

i=1

R−1r ′i

}

· E(t). (12.45b)

With these expressions the Kohn–Sham potentials of Eqs. 12.33 and 12.34 attain the
form

vKS, e(r, t) =
∫

d3r ′vee(r, r ′)n(r ′, t)+
∫

d3 R1 · · ·

×
∫

d3 RNn

[

ven(r, {R})+R−1r · E(t)
]

Γ ({R}, t)+ vxc, e(r, t)

(12.46)
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and

vKS, n({R}, t) = [Ne RCMN − Z1 R1 − Z2 R2] · E(t)+ vnn({R})
+

∫

d3r
[

ven(r, {R})+R−1 · E(t)
]

n(r, t)+ vxc, n({R}, t).

(12.47)
Since the rotation matrix R only depends on R, the nuclear Kohn–Sham potential
is readily seen to be separable in terms of the coordinates R and RCMN. The nuclear
Kohn–Sham wavefunction can then be written as

Φn, s1, s2(R1, R2, t) = Υ (RCMN, t)ξ(R, t)θ(s1, s2) (12.48)

where θ is a nuclear spin function of the nuclear spin coordinates s1 and s2 and Υ
and ξ satisfy the equations

{

i∂t −
[

− 1

Mnuc
∇2

RCMN + Qtot RCMN · E(t)
]}

Υ (RCMN, t) = 0 (12.49a)

{

i∂t −
[

− 1

2μ
∇2

R + v̄KS, n[n, Γ ](R, t)

]}

ξ(R, t) = 0, (12.49b)

where we defined the total nuclear mass Mnuc = M1 + M2, the total charge Qtot =
Ne − Z1 − Z2 and the reduced mass μ = M1 M2/(M1 + M2). The potential v̄KS, n
has the form

v̄KS, n(R, t) = [−qn R + d(R, t)] · E(t)+ Z1 Z2

R
−

∫

d3rn(r, t)

×
(

Z1

|r − M2
M1+M2

Rez |
+ Z2

|r + M1
M1+M2

Rez |

)

+ vxc, n(R, t),

(12.50)
where we have defined

qn = M2 Z1 − M1 Z2

M1 + M2
(12.51a)

d(R, t) = R−1
∫

d3rn(r, t)r. (12.51b)

We see that the nuclear center-of-mass motion has been decoupled from the nuclear
relative motion. The nuclear center-of-mass wavefunction corresponds to a so-called
Volkov plane wave. If it is normalized to a volume V then the nuclear density matrix
can be written as

Γ (R1, R2, t) = 1

V N (R, t), (12.52)
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Fig. 12.1 Time-evolution (in
units of optical cycles τ ) of
the nuclear density N (R, t)
obtained for a
one-dimensional model
H+2 -molecule in a
λ = 228 nm,
I = 5× 1013 W/cm2 laser
field from the exact solution,
the time-dependent Hartree
approximation and a
time-dependent correlated
variational approach

1 3 5 7 9 11 13 15

R

exact
Hartree
variational

t=5τ

t=10τ

t=15τ

t=20τ

t=25τ

where we defined the density of the relative nuclear “particle” as

N (R, t) = |ξ(R, t)|2. (12.53)

In terms of this quantity, the electronic Kohn–Sham potential (12.46) attains the form

vKS, e(r, t) = D−1r · E(t)+
∫

d3r ′ n(r
′, t)

|r − r ′| −
∫

d3 RN (R, t)

×
{

Z1

|r − M2
M1+M2

Rez |
+ Z2

|r + M1
M1+M2

Rez |

}

+ vxc,e(R, t),

(12.54)
where

D−1 =
∫

d3 RN (R, t)R−1 (12.55)

We have now completely defined the multicomponent Kohn–Sham equations for
a diatomic molecule in a laser field in the dipole approximation. The next task is to
develop appropriate functionals for the exchange-correlaton potentials, particularly
for the electron–nuclear correlation. The simplest approach is to treat the electron–
nuclear correlation in the Hartree approach where we put vxc, n = 0 in Eq. 12.50.
This approach has been tested (Kreibich et al. 2004) in a one-dimensional model
system for H+2 which is a suitable testcase since (1) it can be compared to the
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exact solution of the Schrödinger equation and (2) there are no electron–electron
correlations. When the model molecule is exposed to a strong laser field, the nuclear
density N (R, t) shows a time-dependence as shown in Fig. 12.1. In this plot we
can clearly see that the exact nuclear wavepacket splits, and part of the nuclear
wavepacket moves away and decribes a dissociating molecule. However, within the
Hartree approach to the electron–nuclear correlation, the nuclear wavepacket remains
sharply peaked around the molecular equilibrium bond distance. This means that
electron–nuclear correlation beyond the Hartree approximation is very important
[for a more extensive discussion see Kreibich and Gross (2001a) and Kreibich et
al. (2004)]. This is corroborated by the fact that a variational Ansatz for the time-
dependent wavefunction in terms of correlated orbitals (denoted as “variational” in
Fig. 12.1) does yield the qualitatively correct splitting of the nuclear wavepacket.

12.8 Conclusions

We showed how to set up a multicomponent density-functional scheme for general
systems of electrons and nuclei in time-dependent external fields. The basic quan-
tities in this theory are the electron density referred to a body-fixed frame and the
nuclear density matrix. Important for future applications will be the development
of functionals for electron–nuclear correlations. The first steps in this direction have
already been taken in the MCDFT for stationary systems (Kreibich and Gross 2001a;
Kreibich et al. 2004, 2008). The first application of the linear response approach of
the TDMCDFT formalism was published recently using the simple Hartree approxi-
mation for the electron–nuclear interaction (Butriy et al. 2007). The development of
improved functionals beyond this Hartree aproximation is an important goal for the
future. For completeness, we finally note that also another approach to constructing
a density functional theory for time-dependent systems of electrons and nuclei has
been developed on the basis of the equations of motion of mixed-electron nuclear
density matrices (Krishna 2009). This formalism allows also for the straightfor-
ward construction of semi-classical approximations. We are, however, not aware of
any applications of this formalism. We further like to mention some further recent
work on electron–proton functionals derived from the electron–proton pair density
(Chakraborty et al. 2009).



Chapter 13
Quantum Optimal Control

Alberto Castro and Eberhard K. U. Gross

13.1 Introduction

All applications of time-dependent density-functional theory (TDDFT) until now
have attempted to describe the response of many-electron systems to external fields.
Given its success in this task, it seems timely, therefore, to address the inverse
problem: given a prescribed goal (e.g., the transfer of electronic charge to a given
region in space, or the population of a given excited state), what is the external
perturbation that achieves this goal in an optimal way? This is the problem studied
by quantum optimal control theory (QOCT). The essentials of this theory make
no assumption on the nature of the quantum system whose behaviour is being engi-
neered, or on the particular methodology used to model the system. It must, therefore,
be complemented with a suitable model for describing the dynamics of the quantum
system. In this chapter, we describe how this model can be TDDFT.

QOCT (Shapiro and Brumer 2003; Rice and Zhao 2000; Werschnik and Gross
2007; Werschnik 2006; Brif et al. 2010; Rabitz 2009) provides the necessary tools to
theoretically design driving fields capable of controlling a quantum system towards
a given state or along a prescribed path in Hilbert space. This discipline has grown
steadily in the last two decades. The reason is that it is the most powerful theoretical
counterpart to the exponentially growing field of experimental quantum coherent
control. The key aspect for the success of this area is that the laser pulse creation and
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shaping techniques have improved impressively over the last decades (Weiner 2000),
and thus the area of experimental optimal control has become a well established field.
An outstanding number of possible technological applications are to be expected: the
quest for systems able to perform quantum computing (Tesch et al. 2001; Palao and
Kosoff 2002), the synthesis of design-molecules by laser-induced chemical reactions
(Laarmann et al. 2007), or the control of electron currents in molecular switches using
light (Geppert et al. 2004), to name a few examples, may benefit from these recent
advances.

The essential concepts of QOCT can be formulated for arbitary quantum systems,
that are to be described either via the wave function, the density matrix, or in some
cases the propagator of the process. Since the full quantum dynamics of interacting
particles cannot be treated exactly for more than a few degrees of freedom, the
application of QOCT, therefore, relies on the previous existence of a methodology
capable of constructing a sufficiently good model for the relevant process. In fact,
the solution of the necessary equations typically requires multiple propagations, both
forwards and backwards, for the system under study. We know that this is especially
challenging if this is a many-electron system. In fact, in most applications, few-level
simplifications and models are typically postulated when handling the QOCT equa-
tions. Unfortunately, these simplifications are not always accurate enough: strong
pulses naturally involve many electronic levels, and normally perturbative treatments
are not useful. Non-linear laser-matter interaction must sometimes be described
ab initio.

As it is shown elsewhere in this book, TDDFT is a viable alternative to computa-
tionally more expensive approaches based on the wave function for the description
of this type of processes. We are referring to many-electron systems irradiated with
femtosecond pulses, with intensities typically ranging from 1011 to 1015 Wcm−2, a
non-linear regime that nevertheless allows for a non-relativistic treatment. This may
lead to a number of interesting phenomena, e.g. above-threshold or tunnel ioniza-
tion, bond hardening or softening, high harmonic generation, photo-isomerization,
photo-fragmentation, Coulomb explosion, etc (Protopapas et al. 1997; Brabec and
Krausz 2000; Scrinzi et al. 2006).

It is therefore necessary to inscribe TDDFT into the general QOCT framework.
In this chapter, we describe the manner in which this inscription can be done. We
present here generalized equations, valid for non-collinear spin configurations as
well as providing detailed derivations of the key equations.

13.2 The Essential QOCT Equations

For the sake of completeness, we start by recalling the essential QOCT equations (by
which we mean those that provide the gradient or numerical derivative of the target
functional with respect to the control function). We do so for a generic quantum
system, before establishing the results for TDDFT in the next section. For alternative
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presentations of the following results, we refer the reader, for example, to (Peirce et
al. 1988; Tersigni et al. 1990; Serban et al. 2005).

We depart from a generic Schrödinger equation in the form:

ϕ̇(t) = −iĤ [u, t]ϕ(t), (13.1a)
ϕ(t0) = ϕ0, (13.1b)

where ϕ(t) is the state of the system at time t (that lives in the Hilbert space H),
and Ĥ [u, t] is the Hamiltonian, that dependes on some parameter u (or perhaps a
set of parameters) that we will call hereafter control. We wish to find the control u
that makes the evolution optimal in some manner. The goodness of the process is
encoded into a functional that depends on how the system evolves:

F : H0 × P → R (13.2a)
(ϕ, u)→ R, (13.2b)

The set H0
is defined in the following way: if we consider that the process occurs

in the time interval [0, T ], the possible evolutions of the sytem can be contained in
the space H = H×[0, T ]. However, we restrict the domain of F to those evolutions
whose initial condition is consistent with Eq. 13.1b:

H0 = {ϕ ∈ H such thatϕ(t0) = ϕ0}. (13.3)

The set P contains the allowed control parameters u. The explicit dependence of F
on the control u is typically due to the presence of a penalty function, whose role
is to avoid undesirable regions of the control search space (e.g., too high frequency
components of a laser pulse, unrealistical intensities, etc.). In many cases, the func-
tional F is split as:

F[ϕ, u] = J1[ϕ] + J2[u], (13.4)

where J1 is the real objective, and J2 is the penalty function. The objective may
depend on the full evolution of the system during the time interval [0, T ], and/or on
the state of the system at the final time T:

J1[ϕ] = J i
1[ϕ] + J f

1 [ϕ(T )], (13.5)

where the functional J i
1 depends on the full evolution of the system, whereas J f

1 is
a functional of the final state. In most cases, these functionals are expectation values
of some observable:

J i
1[ϕ] =

∫

dt〈ϕ(t)|Ôi (t)|ϕ(t)〉, (13.6a)

J f
1 [ϕ] =

∫

dt〈ϕ(T )|Ô f |ϕ(T )〉. (13.6b)
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The specification of a particular control u determines the evolution of the system;
in mathematical terms, we have a mapping:

ϕ : P → H0
(13.7a)

u → ϕ[u]. (13.7b)

Therefore, the optimization problem can be formulated as the problem of finding the
extrema of the function G:

G[u] = F[ϕ[u], u]. (13.8)

There are many optimization algorithms capable of maximizing functions utilizing
solely the knowledge of the function values (“gradient-free algorithms”). We have
recently employed one of them in this context (Castro et al. 2009). However, QOCT
provides the solution to the problem of computing the gradient of G—or, properly
speaking, the functional derivative if u is a function.

The equations that we are seeking, therefore, are those that provide the gradient
of G, that will permit us to efficiently perform its optimization. We start by noting

that not all the elements of the domain H0
are possible evolution of the system: the

search for maxima of F must be constrained to the subset of solutions of Schrödinger’s
equation. This is achieved by introducing a Lagrangian functional in the form:

L[ϕ, λ, u] = −2Re

T∫

0

dt 〈λ(t)|ϕ̇(t)+ iĤ [u, t]ϕ(t)〉, (13.9)

and defining a new “total” functional as the sum of F and this new Lagrangian term:

J [ϕ, λ, u] = F[ϕ, u] + L[ϕ, λ, u]. (13.10)

Note that, for a possible evolution of the system ϕ[u], the Lagrangian function is
zero, and therefore J [ϕ[u], λ, u] = F[ϕ[u], u] = G[u]. And note that setting to
zero the functional derivative of J with respect to λ gives precisely Schrödinger’s
equation:

δ J [ϕ, λ, u]
δλ∗(x, t)

= −ϕ̇(x, t)− iĤ [u, t]ϕ(x, t) = 0. (13.11)

In other words, nullifying this functional derivative is equivalent to establishing the
map u → ϕ[u]. Analogously, a u → λ[u]mapping can be established by nullifying
the functional derivative of J with respect to ϕ:
δ J [ϕ, λ, u]
δϕ∗(x, t)

= λ̇(x, t)+ iĤ [u, t]λ(x, t)− δ(t − T )λ(x, t)+ δ J i
1

δϕ∗(x, t)

+ δ(t − T )
δ J f

1

δϕ∗(x, T )
. (13.12)
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The u → λ[u] mapping is thus established by prescribing the following equations
of motion:

λ̇(x, t) = −iĤ [u, t]λ(x, t)+ δ J i
1

δϕ∗(x, t)
, (13.13a)

λ(x, T ) = δ J f
1

δϕ∗(x, T )
. (13.13b)

Note that (i) if J i
1 is not zero (i.e. the target functional depends on the evolution

of the system during the time interval [0, T ], or as it is sometimes put, there is
a time dependent target), the equation of motion is an inhomogeneous Schrödinger
equation. If J i

1 is zero,λ follows the same Schrödinger equation as y; (ii) the boundary
condition given by Eq. 13.13b is given at time T. Therefore, Eq. 13.13a must be
propagated backwards.

Once we have prepared these ingredients, we may compute the gradient of G[u]
by utilizing the chain rule in the identity:

G[u] = J [ϕ[u], λ[u], u]. (13.14)

Since the functional derivatives of J with respect to ϕ and λ, applied at ϕ[u] and λ[u]
are zero, we are left with the expression:

∇uG[u] = ∇u J2[u] + 2Im

T∫

0

dt 〈λ[u](t)|∇u H [u, t]|ϕ[u](t)〉. (13.15)

Often, the controlling field is not specified by a discrete set of parameters, but
rather by a real function ε(t). For example, the Hamiltonian may be:

Ĥ [ε, t] = Ĥ0 + ε(t)V̂ . (13.16)

The search space, in this case, is the space of real continuous functions in [0, T ].
The function G is then a functional G = G[ε], and consequently the gradient of
Eq. 13.15 must then be replaced by a functional derivative with respect to ε, and the
result is:

δG

δε(t)
= δ J2

δε(t)
+ 2Im〈λ[ε](t)|V̂ |ϕ[ε](t)〉. (13.17)

Finally, let us give an example of a very common choice of penalty function: let
the Hamiltonian given by Eq. 13.16 be the one that describes an atom or molecule
irradiated by a laser pulse, whose temporal shape is determined by ε(t). The total
irradiated energy or fluence will be proportional to

∫ T
0 dt ε2(t), and it is usually

considered an undesired feature to require very high fluences. A natural choice for
the penalty functional is therefore:
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J2[ε] = −α
T∫

0

dt ε2(t), (13.18)

for α some positive weighting constant. The critical points of G in this case can then
easily found by substituting this expression in Eq. 13.17, and equating the functional
derivative to zero:

ε(t) = 1

α
Im〈λ[ε](t)|V̂ |ϕ[ε](t)〉. (13.19)

In this case, the simplest algorithm to find the optimum consists of the following steps:
(i) Propagate the Schrödinger equation 13.11 forward in time with some given initial
condition; (ii) Propagate the Schrödinger equation (13.13a) with the initial condition
(13.13b); (iii) From the solutions ϕ(t) and λ(t) of steps (i) and (ii), calculate a new
control field from Eq. 13.19 and then perform again steps (i) and (ii) using the new
control field, etc. This algorithm has been shown to be monotonically convergent
(Zhu et al. 1998; Ohtsuki et al. 2004; Serban et al. 2005).

13.3 Optimization for the TDKS System

In the previous section, we have summarized some of the fundamental aspects of
QOCT for a generic quantum system. Equation 13.15, or alternatively, Eq. 13.17,
permits to utilize some optimization algorithm that may lead to a satisfactory
maximum. The use of those equations, however, requires the solution of Eqs. 13.1a
and 13.1b, and Eqs. 13.13a and 13.13b which are forwards and backwards propa-
gation of Schrödinger’s equation for the process being studied. Depending on the
nature of the process and on the complexity of the model used to describe it, this task
may be anywhere from trivial to unfeasible. In particular, for many-electron systems,
an exact numerical solution is not possible, and thus TDDFT may be used to tackle
the problem.

At this point, let us recall that TDDFT is not a scheme that permits to solve
the Schrödinger equation in some approximate manner, but rather a methodology
aimed at bypassing the use of the many-electron wave function, and avoiding the
Schrödinger equation fulfilled by this wave function. The theory provides us with
a method to obtain the time-dependent electron density (by means of solving the
equations of the associated Kohn–Sham system), but the many electron wave func-
tion is not available. However, the previous description of the QOCT methodology
works directly with the wave function, and, in particular, it is assumed that the target
functional is defined in terms of this object, i.e. the objective is to find the control u
that maximizes a functional of the many-electron wave function,

Fint = Fint[Ψ, u]. (13.20)



13 Quantum Optimal Control 271

As usual, we allow for the possibility of an explicit dependence of the functional
on the control u in order to include, if necessary, a penalty function. The label “int”
means that this functional is defined in terms of the wave function of the interacting
system of electrons. Every observable, however, is known to be a functional of the
time-dependent density by virtue of the fundamental one-to-one correspondence of
TDDFT, and therefore, in principle it should be possible to find a functional of the
density F̃, such that:

Fint[Ψ, u] = F̃[n[Ψ ], u], (13.21)

where n[Ψ ] is the electronic density corresponding to the many-electron wave func-
tion Ψ (we consider hereafter a system of N electrons):

n[Ψ ](r, t) = 〈Ψ (t)|
N

∑

i=1

δ(r − r̂ i )|Ψ (t)〉, (13.22)

This is the object provided by TDDFT, and so we may substitute the problem of
formulating QOCT in terms of the real interacting system, by the formulation of the
optimization problem for the non-interacting system of electrons. The equations of
motion for the single-particle orbitals of this system, also known as time-dependent
Kohn–Sham equations, are:

i
∂

∂t
ϕi (rσ, t) =

[

−∇
2

2
+ V̂0 + vH[n(t)](r)+ V̂xc[nσσ ′(t)] + V̂ext[u]

]

ϕi (rσ, t)

(13.23)
with the (spin-) densities

nσσ ′(r, t) =
N

∑

i=1

ϕ∗i (rσ, t)ϕi (rσ ′, t), (13.24)

and

n(r, t) =
∑

σ

nσσ (r, t), (13.25)

for i = 1, . . . , N orbitals. The greek indexes σ, σ ′ run over the two spin configu-
rations, up and down. The densities are, by construction, equal to that of the real,
interacting system of electrons. V̂0 represents the internal, time independent fields—
usually a nuclear Coulomb potential Vn(r), and may include as well a spin-orbit
coupling term of the form σ ·∇Vn× α̂ (where σ is the vector of Pauli matrices). The
term

vh[n(t)](r) =
∫

d3r ′ n(r
′, t)

|r − r ′| (13.26)
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is the Hartree potential, and V̂xc[nσσ ′ ] is the exchange and correlation potential
operator, whose action is given by:

V̂xc[nσσ ′(t)]ϕi (rσ, t) =
∑

σ ′
vσσ

′
xc [nσσ ′(t)](r)ϕi (rσ ′, t). (13.27)

Note that, for the sake of generality, we allow a spin-resolved exchange and corre-
lation potential, that depends on the four spin components nσσ ′ (in many situations
more restricted dependences are assumed). However, we do assume here an adia-
batic approximation, i.e. vxc at each time t is a functional of the densities at that
time, nσσ ′(t). This restriction is non-essential for the derivations that follow, but the
availability of non-adiabatic functionals is very scarce, and adiabatic approximations
will result in simpler equations.

The last potential term, V̂ext, is the external time-dependent potential, which
is determined by the “control” u. In a typical case, this external potential is the
electric pulse created by a laser source in the dipole approximation, and u is
the real time-dependent function that determines its temporal shape (in this case,
V̂ext[u]ϕi (rσ, t) = u(t)r · α ϕi (rσ, t), where α is the polarization vector of the
pulse). We write it however in general operator form, since it can be a 2× 2 matrix
which may include both a time-dependent electric field as well as a Zeeman-coupled
magnetic field.

If we group the N single particle states into a vector ϕ(t), we can rewrite the
time-dependent Kohn–Sham equations in a matrix form:

iϕ̇(t) = Ĥ [nσσ ′(t), u, t]ϕ(t), (13.28)

where Ĥ [nσσ ′(t), u, t] = ĤKS[nσσ ′(t), u, t]I
N

and I
N

is the N-dimensional unit
matrix. With this notation we stress the fact that we have only one dynamical system—
and not N independent ones, since all ϕi are coupled. This coupling, however, comes
solely through the density, since the Hamilton matrix is diagonal.

The structure of these equations is slightly different from that of the generic case
presented in the previous section, and in consequence we cannot directly apply the
final results obtained there. First, note that now the system is not described by one
single wave function, but rather by the full group of Kohn–Sham orbitals. This does
not add a fundamental complication (in fact, the system may be regarded as described
by a single wave function—the Slater determinant composed of the N orbitals). But
more importantly, the TDKS equations are non-linear, since the Hamiltonian depends
on the density, which is computed from the wave functions that are to be propagated.
In consequence, we must follow carefully the derivation presented in the previous
section, modifying the steps that used the linearity of the usual Hamiltonians. This
is what we will do in the following.

The specification of the value of the control u, together with the initial conditions,
determines the solution orbitals: u → ϕ[u]. Our task is now the following: we wish
to find an external field—in the language of OCT, a control u—that induces some
given behaviour of the system, which can be mathematically formulated by stating
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that the induced dynamics maximizes some target functional F. Since we are using
TDDFT, this functional will be defined in terms of the Kohn–Sham orbitals, and will
possibly depend explicitly on the control u:

F = F[ϕ, u]. (13.29)

And since the orbitals depend on u as well, the goal of QOCT can be formulated as
finding the maximum of the function:

G[u] = F[ϕ[u], u]. (13.30)

As we have mentioned in the beginning of the section, the optimization of this
function will be equivalent to that of the initial, real problem posed in terms of
the interacting many electron system, if the functional Fint that constitutes the true
optimization target is in fact equal to a functional of the density alone:

Fint[Ψ, u] = F̃[n[Ψ ], u], (13.31)

and thus we may define our “Kohn–Sham” target as:

F[ϕ, u] = F̃[n[ϕ], u], (13.32)

thanks to the fundamental TDDFT identity n[ϕ] = n[Ψ ].
In the most general case, the functional F depends on ϕ at all times during the

process (we have a “time-dependent target”). In many cases, however, the goal is
the achievement of some target at a given time T that determines the end of the
propagation interval (we then have a “static target”). In both cases, the determination
of the value of the function G is obtained by performing the propagation of the system
with the field determined by the control u.

As it happened in the generic case, first we must note that searching for a maximum
of G is equivalent to a constrained search for F—constrained by the fact that the ϕ
orbitals must fulfill the time-dependent Kohn–Sham equations. In order to do so, we
introduce a new set of orbitals χ that act as Lagrange multipliers, and define a new
functional J by adding a Lagrangian term L to F:

J [ϕ, χ, u] = F[ϕ, u] + L[ϕ, χ, u], (13.33)

of the form

L[ϕ, χ, u] = −2
N

∑

j=1

Re

⎡

⎣

T∫

0

dt 〈χ j (t)|i d

dt
+ ĤKS[nσσ ′(t), u, t]|ϕ j (t)〉

⎤

⎦. (13.34)

Setting the functional derivatives of J with respect to theχ orbitals to zero, we retrieve
the time-dependent Kohn–Sham equations. In an analogous manner, we obtain a
set of solution χ[u] orbitals by taking functional derivatives with respect to ϕ—
remembering that the KS Hamiltonian depends on these orbitals, and in consequence,
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one must consider its functional derivatives. From the condition δ J/δϕ∗ = 0, we
obtain

iχ̇ (t) =
[

Ĥ
KS
[nσσ ′ [u](t), u, t] + K̂ [ϕ[u](t)]

]

χ(t)− i
δF

δϕ∗
, (13.35a)

χ(T ) = 0. (13.35b)

The presence of the non-diagonal operator matrix K̂ [ϕ[u](t)] is the main difference
with respect to the normal QOCT equations for a linear quantum system. Its origin
is the non-linear dependence of the Kohn–Sham Hamiltonian with respect to the
propagating orbitals. It is defined by:

K̂i j [ϕ[u](t)]ψ(rσ) = −2i
∑

σ ′
ϕi [u](rσ ′, t)× Im

×
⎡

⎣
∑

αβ

∫

d3r ′ψ∗(r ′α) f αβ,σσ
′

Hxc [nσσ ′ [u](t)](r, r ′)ϕ j [u](r ′β, t)

⎤

⎦, (13.36)

where f αβ,σσ
′

Hxc is the kernel of the Kohn–Sham Hamiltonian, defined as:

f αβ,σσ
′

Hxc [nσσ ′ ](r, r ′) = δαβδσσ ′

|r − r ′| +
δv
αβ
xc [nσσ ′ ](r)
δnσσ ′(r ′)

. (13.37)

If we now note that G[u] = J [ϕ[u], ϕ[u], u], we arrive to:

∇u G[u] = ∇u F[ϕ, u]
∣
∣
∣
ϕ=ϕ[u] + 2Im

⎡

⎣

N
∑

j=1

T∫

0

dt 〈χ j [u](t)|∇u V̂ext[u](t)|ϕ j [u](t)〉
⎤

⎦.

(13.38)
Several aspects deserve further discussion:

(i) Equation 13.35a represents a set of first-order differential equations, whose
solution, as it happened in the generic case, must be obtained by backwards
propagation, since the boundary condition, Eq. 13.35b is given at the end of
the propagation interval, T. Note that this propagation depends on the Kohn–
Sham orbitals ϕ[u]. Therefore, the numerical procedure consists of a forward
propagation to obtain ϕ[u], followed by a backwards propagation to obtain
χ [u].

(ii) These backwards equations are inhomogeneous, due to the presence of the last
term in Eq. 13.35a, the functional derivative of F with respect to ϕ.The reason is
that the previous Eqs 13.35a and 13.35b refer to a general “time-dependet target”
case, i.e. the target functional depends on the full evolution of the system. In
many cases of interest, however, the target functional F takes a “static” form,
which can be expressed as:
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J1[ϕ, u] = O[ϕ(T ), u], (13.39)

for some functional O whose argument is not the full evolution of the Kohn–
Sham system, but only its value at the end of the propagation. In this case,
the inhomogeneity in Eq. 13.35a vanishes, and instead we obtain a different
final-value condition:

χi [u](rσ, T ) = δO[ϕ[u], u]
δϕ∗i (rσ)

. (13.40)

(iii) The previous Eq. 13.38 assumes that u is a set of N parameters, u ∈ R
N that

determines the control function. As we discussed in the previous section, if
the control is in fact a time-dependent function ε(t), the gradient has to be
substituted by a functional derivative, and the result is:

δG

δε(t)
= δF[ϕ, ε]

δε(t)

∣
∣
∣
∣
ϕ=ϕ[ε]

+ 2Im

⎡

⎣

N
∑

j=1

〈χ j [ε](t)|D̂|ϕ j [ε](t)〉
⎤

⎦. (13.41)

We have assumed here that the external potential V̂ext is determined by the function
u by a linear relationship:

V̂ext[ε](t) = ε(t)D̂. (13.42)

This is the most usual case (D̂ would be the dipole operator, and ε(t) the amplitude
of an electric field), but of course it would be trivial to generalize this to other
possibilities.

The previous scheme permits therefore to control the Kohn–Sham system. It is
important to reflect on the original assumption given by Eq. 13.21, which permits to
identify this control with that of the real system of interest. Although the existence
of a density functional equivalent to the wave function functional is known to exist
in principle, we will not always have explicit knowledge of this density functional.
We do have this knowledge immediately, for example, if the target functional Fint is
given by the expectation value of some one-body local operator Â:

Fint[Ψ ] = 〈Ψ (T )| Â|Ψ (T )〉 =
∫

d3r n(r, T )a(r), (13.43)

where Â =∑N
i=1 a(r̂ i ). In this case, Eq. 13.40 is simply:

χi [u](rσ, T ) = a(r)ϕi [u](rσ, T ). (13.44)

Unfortunately, in some cases the situation is not that favourable. For example, a
very common control goal is the transition from an initial state to a target state. In
other words, the control operator Â is the projection operator onto the target state
Â = |Ψtarget〉〈Ψtarget|. We have no exact manner to substitute, in this case, the Fint



276 A. Castro and E. K. U. Gross

functional by a functional F̃ defined in terms of the density, and afterwards in terms
of the KS determinant. It can be approximated, however, by an expression in the
form:

F[ϕ] = |〈ϕ(T )|
∑

I

cI |ϕ I 〉|2, (13.45)

where ϕ(T ) is the TDKS determinant at time T, and we compute its overlap with a
linear combination of Slater determinants ϕ I , weighted with some coefficients cI .

These Slater determinants would be composed of occupied and unoccupied ground
state KS orbitals, ϕ I = det[ϕ I

1 , . . . , ϕ
I
N ]. In this case, Eq. 13.40 takes the form:

χi [u](rσ, T ) =
∑

I J

λI J (rσ)〈ϕ(T )|ϕ I 〉〈ϕ J |ϕ(T )〉, (13.46a)

λI J (rσ) = cI c∗J Tr{(M I )−1 Ai
I (rσ)}, (13.46b)

where M I
mn = 〈ϕm |ϕ I

n 〉 and Ai
I (rσ)mn = δmiϕ

I
n (rσ).

In conclusion, we have shown how TDDFT can be combined with QOCT, and
we have demonstrated how the resulting equations are numerically tractable. This
provides a scheme to perform QOCT calculations from first principles, in order to
obtain tailored function-specific laser pulses capable of controlling the electronic
state of atoms, molecules, or quantum dots. Most of the previous applications of
QOCT were targeted to control, with femto-second pulses, the motion of the nuclear
wave packet on one or few potential energy surfaces, which typically happens on
a time scale of hundreds of femtoseconds or picoseconds. The approach shown
here, on the other hand, is particularly suited to control the motion of the electronic
degrees of freedom which is governed by the sub-femto-second time scale. The
possibilities that are open thanks to this technique are numerous: shaping of the high
harmonic generation spectrum (i.e. quenching or increasing given harmonic orders),
selective excitation of electronic excited states that are otherwise difficult to reach
with conventional pulses, control of the electronic current in molecular junctions,
and many more.
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Chapter 14
Non-Born–Oppenheimer Dynamics
and Conical Intersections

Mark E. Casida, Bhaarathi Natarajan and Thierry Deutsch

14.1 Introduction

The area of excited state dynamics is receiving increasing attention for a number of
reasons, including the the importance of photochemical processes in basic energy
sciences, improved theoretical methods and the associated theoretical understanding
of photochemical processes, and the advent of femtosecond (and now attosecond)
spectroscopy allowing access to more detailed experimental information about photo-
chemical processes. Since photophysical and chemical processes are more complex
than thermal (i.e., ground state) processes, simulations quickly become expensive
and even unmanageable as the model system becomes increasingly realistic. With
its combination of simplicity and yet relatively good accuracy, TDDFT has been
finding an increasingly important role to play in this rapidly developing field. After
reviewing some basic ideas from photophysics and photochemistry, this chapter will
cover some of the strengths and weaknesses of TDDFT for modeling photoprocesses.
The emphasis will be on going beyond the Born–Oppenheimer approximation.

There are distinct differences between how solid-state physicists and chemical
physicists view photoprocesses. We believe that some of this is due to fundamental
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differences in the underlying phenomena being studied but that much is due to the
use of different approximations and the associated language. Ultimately anyone who
wants to work at the nanointerface between molecules and solids must come to terms
with these differences, but that is not our objective here. Instead we will adopt the
point of view of a chemical physicist (or physical chemist)—see, e.g. (Michl and
Bonačić-Koutecký 1990).

The usual way to think about molecular dynamics is in terms of the potential
energy surfaces that come out of the Born–Oppenheimer separation. In thermal
processes, vibrations are associated with small motions around potential energy
surface minima. Chemical reactions are usually described as going over passes (tran-
sition states) on these hypersurfaces as the system moves from one valley (reactants)
to another (products). Photoprocesses are much more complicated (see Fig. 14.1).
Traditionally they include not only process that begin by absorption of a photon, but
also any process involving electronically-excited states, such as chemiluminescence
(e.g., in fireflies and glow worms) where the initial excitation-energy is provided by a
chemical reaction. The Franck–Condon approximation tells us that the initial absorp-
tion of a photon will take us from one vibronic state to another without much change
of molecular geometry, thus defining a Franck–Condon region on the excited-state
potential energy surfaces. The molecule can return to the ground state by emit-
ting a photon of the initial wavelength or, depending upon vibronic coupling and
perturbations from surrounding molecules, the molecule may undergo radiationless
relaxation to a lower energy excited state before emitting or it may even decay all the
way to the ground state without emitting. If emission takes place from a long-lived
excited state of the same spin as the ground state, then we speak of fluorescence.
If emission takes place from an excited state with a different spin due to intersystem
crossing, then we speak of phosphorescence. If it is unsure whether the emission is
fluorescence or phosphorescence, then we just say the molecule luminesces. Because
of the large variety of de-excitation processes, excited molecules usually return too
quickly to their ground state for the molecular geometry to change much. We then
speak of a photophysical process because no chemical reaction has taken place.
Thus fluorescence is usually described as an excited molecule relaxing slightly to a
nearby minimum on the excited state potential energy surface where it is momen-
tarily trapped before it emits to the ground state. It follows that the photon emitted
during fluorescence is Stokes shifted to a lower energy than that of the photon initially
absorbed.

Photochemical reactions occur when the excited molecule decays to a new
minimum on the ground state surface, leading to a new chemical species (product.)
This may have positive value as a way for synthesizing new molecules or nega-
tive value because of photodegradation of materials or because of photochemically-
induced cancers. Either way the photochemical reaction must occur quickly enough
that it can compete with other decay processes. Photochemical reactions almost
always occur via photochemical funnels where excited state and ground-state
surfaces come together, either almost touching (avoided crossing) or crossing (conical
intersection.) These funnels play a role in photochemical reactions similar to transi-
tion states for thermal reactions. However it must be kept in mind that these funnels
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Fig. 14.1 Schematic representation of potential energy surfaces for photophysical and photochem-
ical processes: S0 ground singlet state; S1 lowest excited singlet state; T1 lowest triplet state; ABS
absorption; FLUO fluorescence; PHOS phosphorescence; ISX intersystem crossing; CX conical
intersection; TS transition state

may be far from the Franck–Condon region on the excited state potential energy
surface, either because there is an easy energetically-“downhill” process or because,
unless the absorption wavelength can be carefully tuned to a known vertical excitation
energy, the system will typically arrive in an electronically-excited state with excess
dynamical energy which can be used to move from one excited state potential energy
surface valley over a transition state to funnels in another basin of the excited state
potential energy surface. While conical intersections are forbidden in diatomic mole-
cules, they are now believed to be omnipresent in the photochemistry of polyatomic
molecules. Traditional simple models involve symmetry constraints which corre-
spond to a potential energy surface cut, typically revealing an avoided crossing rather
than the nearby conical intersection corresponding to a less symmetric geometry. A
particularly striking example is provided by experimental and theoretical evidence
that the fundamental photochemical reaction involved in vision passes through a
conical intersection (Polli et al. 2010). For these reasons, modern photochemical
modeling often involves some type of dynamics and, when this is not possible, at
least focuses on finding conical intersections that can explain the reaction.

While a single-reference electronic structure method may be adequate for
describing photophysical processes, the usual standard for describing photochemical
processes is a multireference electronic structure method such as the complete active
space self-consistent field (CASSCF) method. [See (Helgaker et al. 2000) for a review
of modern quantum chemical methods.] This is because the first approximation to
the wave function along a reaction pathway is as a linear combination of the wave
functions of the initial reactants and the final products. Since CASSCF is both compu-
tationally heavy and requires a high-level of user intervention, a simpler method such
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as TDDFT would be very much welcome. Early work in TDDFT in quantum chem-
istry foresaw increasing applications of TDDFT in photochemical modeling. For
example, avoided crossings between cross-sections of excited state potential energy
surfaces may be described with TDDFT because of the multireference-like nature of
TDDFT excited states (Casida 1998). However great attention must also be paid to
problems arising from the use of approximate functionals (Casida 2002). In particular,
the TDDFT Tamm-Dancoff approximation (TDA) (Hirata 1999) was found to give
improved shapes of excited-state potential energy surfaces (Casida 2000; Cordova et
al. 2007), albeit at the price of losing oscillator strength sum rules. A major advance
towards serious investigations of TDDFT for describing photoprocesses came with
the implementation of analytical derivatives for photochemical excited states in many
electronic structure programs [see Chap. 16 and (Van Caillie and Amos 1999, 2000;
Furche and Ahlrichs 2002a; Hutter 2003; Rappoport and Furche 2005; Doltsinis
and Kosov 2005; Scalmani et al. 2006).] This made it possible to relax excited state
geometries and to calculate Stokes shifts within the framework of TDDFT. In fact,
TDDFT has become a standard part of the photochemical modeler’s toolbox. It is
typically used for calculating absorption spectra and exploring excited state poten-
tial energy surfaces around the Franck–Condon region. TDDFT also serves as a
rapid way to gain the chemical information needed to carry out subsequent CASSCF
calculations. [See, e.g., (Diau et al. 2001a, b, 2002; Sølling et al. 2002; Diau and
Zewail 2003) for some combined femtosecond spectroscopy/theoretical studies of
photochemical reactions which make good use of TDDFT.] It would be nice to be
able to use a single method to model entire photochemical processes. The advent
of mixed TDDFT/classical surface-hopping Tully-type dynamics (Tapavicza et al.
2007; Werner et al. 2008; Tapavicza et al. 2008; Tavernelli et al. 2009a, c; Barbatti
et al. 2010) is giving us a way to extend the power of TDDFT to the exploration of
increasingly complicated photochemical processes.

The rest of this chapter is organized as follows: The next section reviews
non-Born–Oppenheimer phenomena from a wave-function point of view, with an
emphasis on mixed quantum/classical dynamics. This sets the stage for our discus-
sion of TDDFT for non-Born–Oppenheimer dynamics and conical intersections in
Sect. 14.3. We sum up in Sect. 14.4.

14.2 Wave-Function Theory

Most likely anyone who has made it this far into this chapter has seen the Born–
Oppenheimer approximation at least once, if not many times. However, it is relatively
rare to find good discussions that go beyond the Born–Oppenheimer approximation
(Doltsinis and Marx 2002; Cederbaum 2004). This section tries to do just this from a
wave-function point of view, in preparation for a discussion of TDDFT approaches to
the same problems in the following section. We first begin by reviewing (again!) the
Born–Oppenheimer approximation, but this time with the point of view of identifying
the missing terms. We then discuss mixed quantum/classical approximations, and end

http://dx.doi.org/10.1007/978-3-642-23518-4_16
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with a discussion of the pathway method and ways to find and characterize conical
intersections. (Mixed quantum/quantum and quantum/semiclassical methods are also
interesting, but have been judged beyond the scope of this chapter.) We shall use
Hartree atomic units (� = me = e = 1) throughout and adapt the convention in this
section that electronic states are labeled by small Latin letters, while nuclear degrees
of freedom are labeled by capital Latin letters.

14.2.1 Born–Oppenheimer Approximation and Beyond

As is well-known, the Born–Oppenheimer approximation relies on a separation of
time scales: Since electrons are so much lighter and so move so much faster than
nuclei, the electrons may be thought of as moving in the field of nuclei which are
“clamped” in place and the nuclei move in a field which is determined by the mean
field of the electrons. The Born–Oppenheimer approximation provides a precise
mathematical formulation of this physical picture. Our interest here is in where
the Born–Oppenheimer approximation breaks down and what terms are needed to
describe this breakdown.

Consider a molecule composed of M nuclei and N electrons. Denote the nuclear
coordinates by R̄ = (R1, R2, . . . , RM ) and electronic coordinates by
r̄ = (r1, r2, . . . , r N ). The full Hamiltonian, Ĥ(R̄, r̄) = T̂n(R̄) + Ĥe(r̄; R̄) +
Vnn(R̄), is the sum of an electronic Hamiltonian, Ĥe(r̄; R̄) = T̂e(r̄)+ Ven(r̄; R̄)+
Vee(r̄), with its electronic kinetic energy, T̂e, electron-nuclear attraction, Ven,

and electron–electron repulsion, Vee, with the missing nuclear terms—namely the
nuclear kinetic energy, T̂n, and the nuclear–nuclear repulsion, Vnn. Solving the time-
dependent Schrödinger equation,

Ĥ(R̄, r̄)Φ(R̄, x̄, t) = i
d

dt
Φ(R̄, x̄, t), (14.1)

is a formidable (N + M)-body problem. (x̄ denotes inclusion of electron spin.
We have decided to omit nuclear spin for simplicity. Note, however, that explicit
inclusion of nuclear spin can sometimes be important—for example, the properties
of ortho- and para-hydrogen.) That is why the Born–Oppenheimer expansion (which
is not yet the Born–Oppenheimer approximation!),

Φ(R̄, x̄, t) =
∑

j

Ψ j (x̄; R̄)χ j (R̄, t), (14.2)

is used, where the electronic wave functions are solutions of the time-independent
electronic problem in the field of clamped nuclei,

Ĥe(r̄; R̄)Ψ j (x̄; R̄) = Ee
j (R̄)Ψ j (x̄; R̄). (14.3)

Inserting the Born–Oppenheimer expansion (Eq. 14.2) into the full Schrödinger equa-
tion (Eq. 14.1), left multiplying by Ψ ∗i (x̄; R̄), and integrating over x̄ gives the time-
dependent Schrödinger equation for the nuclear degrees of freedom,



284 M. E. Casida et al.

[

T̂n(R̄)+ Vi (R̄)
]

χi (R̄, t)+
∑

j

V̂i, j (R̄)χ j (R̄, t) = i
∂

∂t
χi (R̄, t). (14.4)

Here, Vi (R̄) = Ee
i (R̄) + Vnn(R̄), is the adiabatic potential energy surface for the

i th electronic state. [Notice that this is a different use of the term “adiabatic” than in
the TDDFT “adiabatic approximation” for the exchange-correlation (xc) functional.]
The remaining part, V̂i, j (R̄), is the hopping term which couples the ith and jth poten-
tial energy surfaces together. It should be kept in mind that the Born–Oppenheimer
expansion (Eq. 14.2) is exact and hence so is Eq. 14.4. As is well known, the Born–
Oppenheimer approximation neglects the hopping terms,

[

T̂n(R̄)+ Vi (R̄)
]

χi (R̄, t) = i
∂

∂t
χi (R̄, t). (14.5)

We, on the other hand, are interested in precisely the terms neglected by the Born–
Oppenheimer approximation. The hopping term is given by

V̂i, j (R̄)χ j (R̄, t) = −
∑

I

1

2m I

[

G(I )
i, j (R̄)+ 2F(I )i, j (R̄) · ∇I

]

χ j (R̄, t), (14.6)

where,

G(I )
i, j (R̄) =

∫

d3 x̄1 · · ·
∫

d3 x̄NΨ
∗
i (x̄; R̄)

[

∇2
IΨ j (x̄; R̄)

]

= 〈i |∇2
I | j〉,

(14.7)

is the scalar coupling matrix and,

F(I )i, j (R̄) =
∫

d3 x̄1 · · ·
∫

d3 x̄NΨ
∗
i (x̄; R̄)

[∇IΨ j (x̄; R̄)
]

= 〈i |∇I | j〉,
(14.8)

is the derivative coupling matrix (Cederbaum 2004). Note that the derivative coupling
matrix is also often denoted d I

i, j and called the nonadiabatic coupling vector
(Doltsinis and Marx 2002). Here we have introduced a compact notation for some
complicated objects: Both the scalar and derivative coupling matrices are simulta-
neously a function of the nuclear coordinates, a matrix in the electronic degrees of
freedom, and a vector in the nuclear degrees of freedom, and a matrix in the elec-
tronic degrees of freedom. However the derivative coupling matrix is also a vector
in the three spatial coordinates of the Ith nucleus.

Interestingly the scalar coupling matrix and derivative coupling matrix are not
independent objects. Rather, making use of the resolution of the identity for the
electronic states, it is straightforward to show that,
∑

k

(

δi,k∇I + F(I )i,k (R̄)
)

·
(

δk, j∇I + F (I )k, j (R̄)
)

= ∇2
I + G(I )

i, j (R̄)+ 2F(I )i, j (R̄) · ∇I .

(14.9)
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We may then rewrite the time-dependent nuclear equation (14.4) as,

−
{

∑

I

1

2m I

[
∑

k

(

δi,k∇I + F(I )i,k (R̄)
)

·
(

δk, j∇I + F(I )k, j (R̄)
)
]}

χ j (R̄, t)

+ Vi (R̄)χi (R̄, t) = i
∂

∂t
χ j (R̄, t), (14.10)

which is known as the group Born–Oppenheimer equation (Cederbaum 2004).
Evidently this is an equation which can be solved within a truncated manifold of
a few electronic states in order to find fully quantum mechanical solutions beyond
the Born–Oppenheimer approximation.

More importantly for present purposes is that Eq. 14.10 brings out the importance
of the derivative coupling matrix. The derivative coupling matrix can be rewritten as,

F(I )i, j (R̄) =
〈i |

[

∇I Ĥe(R̄)
]

| j〉 − δi, j∇I Ee
i (R̄)

Ee
j (R̄)− Ee

i (R̄)
. (14.11)

Since this equation is basically a force-like term, divided by an energy difference, we
see that we can neglect coupling between adiabatic potential energy surfaces when
(i) the force on the nuclei is sufficiently small (i.e., the nuclei are not moving too
quickly) and (ii) when the energy difference between potential energy surfaces is
sufficiently large.

These conditions often break down in funnel regions of photochemical reactions.
There is then a tendency to follow diabatic surfaces, which may be defined rigorously
by a unitary transformation of electronic states (when it exists) to a new representation
satisfying the condition, F(I )i, j (R̄) ≈ 0. The advantage of the diabatic representation
(when it exists, which is not always the case) is that it eliminates the off-diagonal
elements of the derivative coupling matrix in the group Born–Oppenheimer equation
(Eq. 14.10), hence eliminating the need to describe surface hopping. At a more
intuitive level, the character of electronic states tends to be preserved along diabatic
surfaces because

〈

i |d j

dt

〉

= Ṙ · 〈i |∇ j〉 = Ṙ · Fi, j ≈ 0 (14.12)

in this representation. For this reason, it is usual to trace diabatic surfaces informally in
funnel regions by analyzing electronic state character, rather than seeking to minimize
the nonadiabatic coupling vector. Avoided crossings of adiabatic surfaces are then
described as due to configuration mixing of electronic configurations belonging to
different diabatic surfaces.
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14.2.2 Mixed Quantum/Classical Dynamics

Solving the fully quantum-mechanical dynamics problem of coupled electrons and
nuclei is a challenge for small molecules and intractable for larger molecules. Instead
it is usual to use mixed quantum/classical methods in which the nuclei are described
by Newtonian classical mechanics while the electrons are described by quantum
mechanics. Dividing any quantum system into two parts and then approximating
one using classical mechanics is the subject of on-going research (Kapral 2006).
In general, no rigorous derivation is possible and wave-function phase information
(e.g., the Berry phase) is lost which may be important in some instances. Nevertheless
mixed quantum/classical approximations are intuitive: Most nuclei (except perhaps
hydrogen) are heavy enough that tunneling and other quantum mechanical effects are
minor, so that classical dynamics is often an a priori reasonable first approximation.
Of course, rather than thinking of a single classical trajectory for the nuclear degree of
freedom, we must expect to think in terms of ensembles (or “swarms”) of trajectories
which are built to incorporate either finite temperature effects or to try to represent
quantum mechanical probability distributions or both. The purpose of this subsection
is to introduce some common mixed quantum/classical methods.

The most elementary mixed quantum/classical approximation is Ehrenfest
dynamics. According to Ehrenfest’s (1927) theorem Newton’s equations are satis-
fied for mean values in quantum systems, d〈r̂〉/dt = 〈 p̂〉/m and d〈 p̂〉/dt = −〈∇V 〉.
Identifying the position of the nuclei with their mean value, we can then write an
equation, m I R̈ I (t) = −∇I V (R̄(t)), whose physical interpretation is that the nuclei
are moving in the mean field of the electrons. Here

V (R̄(t)) = 〈Ψ (R̄, t)|Ĥe(R̄(t))|Ψ (R̄, t)〉 + Vnn(R̄(t)), (14.13)

where the electronic wave function is found by solving the time-dependent equation,

Ĥe(x̄, R̄(t))Ψ (x̄; R̄, t) = i
∂

∂t
Ψ (x̄; R̄, t). (14.14)

While Ehrenfest dynamics has been widely and often successfully applied, it suffers
from some important drawbacks. The first drawback is that the nuclei always move
on average potential energy surfaces, rather than adiabatic or diabatic surfaces, even
when far from funnel regions where the nuclei would be expected to move on the
surface of a single electronic state. While this is serious enough, since it suggests
errors in calculating branching ratios (i.e., relative yields of different products in
a photoreaction), a more serious drawback is a loss of microscopic reversibility.
That is, the temporal variation of the mean potential energy surface depends upon
past history and can easily be different for forward and reverse processes.

A very much improved scheme is the fewest switches method of Tully (1990)
(Hammes-Schiffer and Tully 1994). Here the nuclei move on well-defined adiabatic
potential energy surfaces,
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m I R̈ I (t) = −∇ I Vi (R̄(t)), (14.15)

and the electrons move in the field of the moving nuclei,

Ĥe(r̄; R̄(t))Ψ (x̄, t) = i
d

dt
Ψ (x̄, t). (14.16)

To determine the probability that a classical trajectory describing nuclear motion
hops from one electronic potential energy surface to another, we expand

Ψ (x̄, t) =
∑

m

Ψm(x̄; R̄(t))Cm(t), (14.17)

in solutions of the time-independent Schrödinger equation,

Ĥ(r̄; R̄(t))Ψm(x̄; R̄(t)) = Em(R̄(t))Ψm(x̄; R̄(t)). (14.18)

The probability of finding the system on surface m is then given by, Pm(t) = |Cm(t)|2.
The coefficients may be obtained in a dynamics calculation by integrating the first-
order equation,

Ċm(t) = −iEm(t)Cm(t)−
∑

n

〈

m|dn

dt

〉

Cn(t). (14.19)

A not unimportant detail is that the nonadiabatic coupling elements need not be
calculated explicitly, but instead can be calculated using the finite difference formula,

〈m(t +Δt/2)|ṅ(t +Δt/2)〉 = 〈m(t)|n(t +Δt)〉 − 〈m(t +Δt)|n(t)〉
2Δt

. (14.20)

In practice, it is also important to minimize the number of surface hops or switches in
order to keep the cost of the dynamics calculation manageable. [Tully also suggests
(p. 1066 of Ref. (Tully 1990)) that too rapid switching would lead to trajectories
behaving incorrectly as if they were on an average potential energy surface.] Tully
accomplished this by introducing his fewest-switches algorithm which is a type of
Monte Carlo procedure designed to correctly populate the different potential energy
surfaces with a minimum of surface hopping. Briefly, the probability of jumping
from surface m to surface n in the interval (t, t + Δt) is given by gm→n(t,Δt) =
Ṗm,n(t)Δt/Pm,m(t)where Pm,n(t) = Cm(t)C∗n (t).A random number ξ is generated
with uniform probability on the interval (0,1) and compared with gm→n(t,Δt). The
transition m → n occurs only if P(m−1)

n < ξ < P(m)n where P(m)n =∑

l=1,m Pn,l is
the sum of the transition probabilities for the first m states. Additional details of the
algorithm, beyond the scope of this chapter, involve readjustment of nuclear kinetic
energies and the fineness of the numerical integration grid for the electronic part of
the calculation with respect to that of the grid for the nuclear degrees of freedom.

It is occasionally useful to have a simpler theory for calculating the probability of
potential energy surface hops which depends only on the potential energy surfaces
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and not on the wave functions. Such a theory was suggested by Landau (1932) and
Zener (1932) (see also Wittig 2005). Their work predates the modern appreciation of
the importance of conical intersections and so focused on surface hopping at avoided
crossings. The Landau–Zener model assumes that surface hopping occurs only on
the surface where the two diabatic surfaces cross that give rise to the avoided crossing
where the surface hopping occurs. After some linearizations and an asymptotic limit,
it is possible to arrive at a very simple final formula,

P = exp

[

− π2ΔE2
adia

h(d|ΔEdia|/dt)

]

, (14.21)

for the probability of hopping between two potential energy surfaces. This formula
is to be applied at the point of closest approach of the two potential energy surfaces
where the energy difference is ΔEadia. However d|ΔEdia|/dt is evaluated as the
maximum of the rate of change of the adiabatic energy difference as the avoided
crossing is approached. While not intended to be applied to conical intersections, it
is still applicable in photodynamics calculations in the sense that trajectories rarely
go exactly through a conical intersection.

14.2.3 Pathway Method

Dynamics calculations provide a swarm of reaction trajectories. The “pathway
method” provides an alternative when dynamics calculations are too expensive or a
simplified picture is otherwise desired, say, for interpretational reasons. The pathway
method consists of mapping out minimum energy pathways between the initial
Franck–Condon points obtained by vertical excitations and excited-state minima
or conical intersections. Although analogous to the usual way of finding thermal
reaction paths, it is less likely to be a realistic representation of true photoprocesses
except in the limit of threshold excitation energies since excess energy is often enough
to open up alternative pathways over excited-state transition states. While the neces-
sary ingredients for the photochemical pathway method are similar to those for
thermal reactions, conical intersections are a new feature which is quite different
from a thermal transition state. This section provides a brief review for finding and
characterizing conical intersections.

The notion of a conical intersection arises from a relatively simple argument
(Yarkony 2001). The potential energy surface of a molecule with f internal degrees of
freedom is an f-dimensional hypersurface in an (f + 1)-dimensional space
(the extra dimension is the energy axis.) If two potential energy surfaces simply
cross “without seeing each other”, then the crossing space is characterized by the
constraint

Ei (R̄) = E j (R̄), (14.22)
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making the crossing space ( f − 1)-dimensional. However in quantum mechanics,
we also have the additional constraint,

Hi, j (R̄) = 0. (14.23)

This makes the crossing space ( f −2)-dimensional. This means that there will be two
independent directions in hyperspace in which the two potential energy surfaces will
separate. These two directions define a branching plane. Within the 3-dimensional
space defined by the energy and the branching plane, the conical intersection appears
to be a double cone (see Fig. 14.6 ), the point of which represents an entire ( f − 2)-
dimensional space. Of course, f = 1 for a diatomic and no conical intersection is
possible. This is the origin of the well-known avoided crossing rule for diatomics.
Here we are interested in larger molecules where the low dimensionality of the
branching space in comparison with the dimensionality of the parent hyperspace can
make the conical intersection hard to locate and characterize.

In the pathway method, the system simply goes energetically downhill until two
potential energy surfaces have the same energy (Eq. 14.22). The resultant intersec-
tion space must be analyzed and the branching plane extracted so that the surface
crossing region can be properly visualized and interpreted. In order to do so, let
us recall a result from elementary calculus. Imagine a trajectory, R̄(τ ), depending
upon some parameter τ within the conical intersection surface. Then ∇C(R̄) must
be perpendicular to the conical intersection for any constraint function C(R̄) = 0
because,

0 = dC(R̄(τ ))
dτ

= ∇C(R̄) · dR̄
dτ
. (14.24)

and we can always choose dR̄/dτ �= 0. Taking the gradient of Eq. 14.23 defines
the derivative coupling vector, f i, j = ∇Hi, j (R̄), while taking the gradient of
Eq. 14.22 defines the gradient difference vector, gi, j = ∇Ei (R̄)−∇E j (R̄).Together
the derivative coupling vector and gradient difference vector are referred to as the
branching vectors which characterize the branching plane. [Note that the derivative
coupling vector is essentially the numerator of the derivative coupling matrix expres-
sion given in Eq. 14.11. This confusion of nomenclature is unfortunate but present
in the literature.]

The condition that dR̄/dτ be perpendicular to the branching plane provides a
constraint for use in the exploration of the conical intersection hyperspace when
seeking the minimum energy conical intersection or the first-order saddle point
in conical intersection. In particular, there has been considerable effort devoted to
the problem of developing efficient algorithms for finding minimum energy points
within the conical intersection space (Koga and Morokuma 1985; Atchity et al.
1991; Ragazos et al. 1992; Yarkony 1996; Domcke and Stock 1997; Izzo and
Klessinger 2000). Furthermore, an automated systematic exploration method for
finding minimum energy conical intersections has very recently developed (Maeda
et al. 2009). First-order saddle points and the corresponding minimum energy path-
ways both within the conical intersection hypersurface may be useful reference points
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when mapping out a surface, and an optimization method was developed for such
high-energy points within the conical intersection hypersurface (Sicilia et al. 2008).
Some of the minimum energy conical intersection optimizers use the branching
plane conditions explicitly to keep the degeneracy of the two adiabatic states during
optimizations (Manaa and Yarkony 1993; Bearpark et al. 1994; Anglada and Bofill
1997), making explicit use of both the derivative coupling vector and gradient differ-
ence vector at every step. Most well-estabilished optimization algorithms assume
smoothness of the function to be optimized. Since the potential energy surface neces-
sarily has a discontinuous first derivative in the vicinity of a conical intersection, the
above-mentioned algorithms for finding minimum energy conical intersections have
required access to the gradient difference vector and derivative coupling vectors.
The gradient difference vector can easily be obtained from analytical gradients,
if available, or by numerical energy differentiation if analytical gradients are not
yet available. However ways for finding the derivative coupling vector are not yet
available for all methods since implementation of an analytical derivative method
is often regarded as a prerequisite (Ciminelli et al. 2004; Maeda et al. 2010). Some
approaches make use of a penalty function to get around the need to calculate the
derivative coupling vector and these have proven very useful for finding minimum
energy conical intersection regions without the need for the derivative coupling vector
(Levine et al. 2008). This is especially important for methods such as renormalized
coupled-cluster theories and TDDFT or free-energy methods for which the electronic
wave function is not completely defined, considerably complicating the problem of
how to calculate derivative coupling vector matrix elements. However, convergence
of penalty function methods is in general slower than methods which make explicit
use of the branching plane constraints, especially if tight optimization of the energy
difference, (Ei − E j ), is desired (Keal et al. 2007).

14.3 TDDFT

The last section discussed the basic theory of non-Born–Oppenheimer dynamics and
conical intersections from a wave-function point of view. We now wish to see to what
extent we can replace wave-function theory with what we hope will be a simpler DFT
approach. As usual in DFT, we seek both the guiding light of formal rigor and prag-
matic approximations that work. We will take a more or less historical approach to
presenting this material. In this section, upper case Latin indices designate electronic
states, while lower case Latin indices designate orbitals.

One of the early objectives of TDDFT was to allow simulations of the behavior
of atoms and clusters in intense laser fields, well beyond the linear-response regime
and too complex to be handled by comparable wave-function methods. The closely
related topic of ion-cluster collisions was studied early on using TDDFT in a very
simplified form (Yabana et al. 1998). The Ehrenfest method was the method of
choice for TDDFT simulations coupling electronic and nuclear degrees of freedom
in this area. The gradient of the potential (14.13) is calculated with the help of the
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Hellmann-Feynman theorem as,

∇ I V (R̄(t)) = 〈Φs(R̄, t)|∇ I Ĥs(R̄(t))|Φs(R̄, t)〉 +∇ I Vnn(R̄(t)). (14.25)

Note that the first integral on the right hand side only involves the (time-dependent)
charge density—at least in the usual TDDFT adiabatic approximation. Among the
notable work done with this approximation is early studies of the dynamics of sodium
clusters in intense laser fields (Calvayrac et al. 1998), the development of the time-
dependent electron localization function (Burnus et al. 2005), and (more recently) the
study of electron-ion dynamics in molecules under intense laser pulses [see Chap. 18
and (Kawashita et al. 2009).] Besides limitations associated with the TDDFT adia-
batic approximation, the TDDFT Ehrenfest method suffers from the same intrinsic
problems as its wave-function sibling—namely that it is implicitly based on an
average potential energy surface and so does not provide state-specific information,
and also suffers from problems with microscopic irreversibility.

To our knowledge, the first DFT dynamics on a well-defined excited state potential
energy surface was not based upon TDDFT but rather on the older multiplet sum
method of Ziegler et al. (1977) (Daul 1994). This was the work of restricted open-
shell Kohn–Sham (ROKS) formalism of Irmgard Frank et al. (1998) who carried
out Car-Parinello dynamics for the open-shell singlet excited state 1(i, a) using the
multiplet sum method energy expression,

Es = 2E
[

Φ
a↑
i↑

]

− E
[

Φ
a↑
i↓

]

, (14.26)

where Φaτ
iσ is the Kohn–Sham determinant with the iσ spin-orbital replaced with

the aτ spin-orbital. Such a formalism suffers from all the formal difficulties of the
multiplet sum method, namely that it is just a first-order estimate of the energy
using a symmetry-motivated zero-order guess for the excited state wave function
and assumes that DFT works best for states which are well-described by single
determinants. Nevertheless appropriate use of the multiplet sum method can yield
results similar to TDDFT. A recent application of this method is to the study of
the mechanism of the electrocyclic ring opening of diphenyloxirane (Friedrichs and
Frank 2009).

The implementation of TDDFT excited state derivatives in a wide variety of
programs not only means that excited state geometry optimizations may be imple-
mented, allowing the calculation of the Stokes shift between absorption and fluo-
rescence spectra, but that the pathway method can be implemented to search for
conical intersections in TDDFT. Unless nonadiabatic coupling matrix elements can
be calculated within TDDFT (vide infra), then a penalty method should be employed
as described in the previous section under the pathway method. This has been done
by Levine et al. (2006) using conventional TDDFT and by Minezawa and Gordon
(2009) using spin-flip TDDFT. We will come back to these calculations later in this
section.

The most recent approach to DFT dynamics on a well-defined excited state poten-
tial energy surface is Tully-type dynamics (Tully 1990; Hammes-Schiffer and Tully

http://dx.doi.org/10.1007/978-3-642-23518-4_18
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1994; Tully 1998a) applied within a mixed TDDFT/classical trajectory surface-
hopping approach. Surface-hopping probabilities can be calculated from potential
energy surfaces alone within the Landau–Zener method (Eq. 14.21), however a strict
application of Tully’s method requires nonadiabatic coupling matrix elements as
input. Thus a key problem to be addressed is how to calculate nonadiabatic coupling
matrix elements within TDDFT. Initial work by Craig, Duncan, and Prezhdo used a
simple approximation which neglected the xc-kernel (Craig et al. 2005). A further
approximation, commented on by Maitra (2006), has been made by Craig and
co-workers (Craig et al. 2005; Habenicht et al. 2006) who treated the electronic
states as determinants of Kohn–Sham orbitals which are propagated according to
the time-dependent Kohn–Sham equation. This means that neither the excitation
energies nor the associated forces could be considered to be accurate.

The first complete mixed TDDFT/classical trajectory surface-hopping photo-
dynamics method was proposed and implemented by Tapavicza, Tavernelli, and
Röthlisberger (Tapavicza et al. 2007) in a development version of the cpmd code.
It was proposed that the nonadiabatic coupling matrix elements be evaluated within
Casida’s ansatz (Casida 1995) which was originally intended to aid with the problem
of assigning excited states by considering a specific functional form for an approx-
imate excited state wave function. Note that numerical integration of Eq. 14.19 to
estimate the coefficients, Cm(t), for the true system of interacting electrons also
involves making assumptions about the initial interacting excited state. Casida’s
ansatz is a more logical choice for this than is a simple single determinant of
Kohn–Sham orbitals. For the TDA, the Casida ansatz takes the familiar form,
ΨI =∑

iaσ Φ
aσ
iσ Xiaσ .

In fact, matrix elements between ground and excited states may be calcu-
lated exactly in a Casida-like formalism because of the response theory nature of
Eq. 14.11 (Chernyak Mukamel 2000a, Hu 2007b, Send 2010). Test results show
reasonable accuracy for nonadiabatic coupling matrix elements as long as conical
intersections are not approached too closely (Baer 2002; Hu et al. 2007b; Tavernelli
2009c; Tavernelli et al. 2009a; Send and Furche 2010). One likely reason for this is
the divergence of Eq. 14.11 when EI = E J . Hu and Sugino attempted to further
improve the accuracy of nonadiabatic coupling matrix elements by using average
excitation energies (Hu Sugino 2007a). The problem of calculating nonadiabatic
coupling matrix elements between two excited states is an open problem in TDDFT,
though the ability to calculate excited state densities (Furche and Ahlrichs 2002a)
suggests that such matrix elements could be calculated from double response theory
using Eq. 14.11. The idea is that adding a second time-dependent electric field in
addition to the first perturbation which allows the extraction of excited state densi-
ties, should allow the extraction of the excited state absorption spectrum using linear
response theory in much the same way that this is presently done for the ground
state. To our knowledge, this has never yet been done. But were it to be done, the
extension to the derivative coupling matrix through Eq. 14.11 should be trivial.

Soon after the implementation of mixed TDDFT/classical trajectory surface-
hopping photodynamics in cpmd, a very similar method was implemented in
TurboMol and applied (Werner et al. 2008, Mirić et al. 2008, Barbatti et al. 2010).
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A version of TurboMol capable of doing mixed TDDFT/classical trajectory surface-
hopping photodynamics using analytic nonadiabatic coupling matrix elements (see
Chap. 16) has recently appeared (Send and Furche 2010) and has been used to
study the photochemistry of vitamin-D (Tapavicza 2010). Time-dependent density-
functional tight-binding may be regarded as the next step in a multiscale approach
to the photodynamics of larger systems. From this point of view, it is interesting
to note that mixed TDDFT-tight binding/classical trajectory surface-hopping photo-
dynamics is also a reality (Mitrić et al. 2009). Given the increasingly wide-spread
nature of implementations of mixed TDDFT/classical trajectory surface-hopping
photodynamics, we can only expect the method to be increasingly available to and
used by the global community of computational chemists.

Before going further, let us illustrate the state-of-the-art for TDDFT when applied
to non-Born–Oppenheimer dynamics and conical intersections. We will take the
example of the photochemical ring opening of oxirane (structure I in Fig. 14.2.)
While this is not the “sexy application” modeling of some biochemical photoprocess,
the photochemistry of oxiranes is not unimportant in synthetic photochemistry and,
above all, this is a molecule where it was felt that TDDFT “ought to work” (Cordova
et al. 2007). A first study showed that a main obstacle to photodynamics is the
presence of triplet and near singlet instabilities which lead to highly underesti-
mated and even imaginary excitation energies as funnel regions are approached.
This is illustrated in Fig. 14.3 for C2v ring opening. While the real photochemical
process involves asymmetric CO ring-opening rather than the symmetric C2v CC
ring-opening, results for the symmetric pathway have the advantage of being easier
to analyze. The figure shows that applying the TDA strongly attenuates the insta-
bility problem, putting most curves in the right energy range. Perhaps the best way
to understand this is to realize that, whereas time-dependent Hartree–Fock (TDHF),
is a nonvariational method and hence allows variational collapse of excited states,
TDA TDHF is the same as configuration interaction singles (CIS) which is varia-
tional. There is however still a cusp in the ground state curve as the ground state
configuration changes from σ 2 to (σ ∗)2. According to a traditional wave-function
picture, these two states, which are each double excitations relative to each other
should be included in configuration mixing in order to obtain a proper description
of the ground state potential energy surface in the funnel region [see Chap. 8 and
(Cordova et al. 2007; Huix-Rotllant et al. 2010).]

Figure 14.4 shows an example of mixed TDA TDPBE/classical trajectory surface-
hopping calculations for the photochemical ring-opening of oxirane with the initial
photoexcitation prepared in the 1(n, 3pz) state. Part (b) of the figure clearly shows
that more than one potential energy surface is populated after about 10 fs. The
Landau–Zener process is typical of the dominant physical process which involves
an excitation from the HOMO nonbonding lone pair on the oxygen initially to a 3pz

Rydberg orbital. As the reaction proceeds, the ring opens and the target Rydberg
orbital rapidly changes character to become a CO σ ∗ antibonding orbital (Fig. 14.5.)
Actual calculations were run on a swarm of 30 trajectories, confirming the mecha-
nism previously proposed Gomer–Noyes mechanism (Gomer and Noyes 1950) (Fig.
14.2), but also confirming other experimental by-products and giving unprecedented

http://dx.doi.org/10.1007/978-3-642-23518-4_16
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Fig. 14.2 Mechanism proposed by Gomer and Noyes in 1950 for the photochemical ring opening
of oxirane. Reprinted with permission from (Tapavicza et al. 2008). Copyright 2008, American
Institute of Physics

Fig. 14.3 Comparison of TDA TDLDA and diffusion Monte Carlo curves for C2v ring opening of
oxirane. Reprinted with permission from Cordova et al. (2007). Copyright 2007, American Institute
of Physics

state-specific reaction details such as the orbital description briefly described
above.

The oxirane photochemical ring-opening passes through a conical intersection,
providing a concrete example of a conical intersection to study with TDDFT. We
now return to the study by Levine, Ko, Quenneville, and Martinez of conical inter-
sections using conventional TDDFT Levine et al. (2006) who noted that strict conical
intersections are forbidden by the TDDFT adiabatic approximation for the simple
reason that there is no coupling matrix element (Eq. 14.23) to zero out between the
ground and excited states. Figure 14.6 shows a CASSCF conical intersection close
to the oxirane photochemical funnel. Also shown are the TDA TDDFT surfaces
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Fig. 14.4 a Cut of potential
energy surfaces along
reaction path of a
Landau–Zener (dashed line)
and a fewest-switches (solid
line) trajectory (black, S0;
blue, S1; green, S2; magenta,
S3.) Both trajectories were
started by excitation into the
1(n, 3pz) state, with the
same geometry and same
initial nuclear velocities. The
running states of the
Landau–Zener and the
fewest-switches trajectory
are indicated by the red
crosses and circles,
respectively. The geometries
of the Landau–Zener
trajectory are shown at time
a 0, b 10, and c 30 fs. b State
populations (black, S0; blue,
S1; green, S2; magenta, S3)
as a function of the
fewest-switches trajectory in
(a). Reprinted with
permission from Tapavicza
et al. (2008). Copyright
2008, American Institute of
Physics

calculated with the same CASSCF branching coordinates. Interestingly the CASSCF
and TDDFT conical intersections look remarkably similar. However closer examina-
tion shows that the TDDFT “conical intersection” is actually two intersecting cones
rather than a true conical intersection, confirming the observation of Levine et al.
This was analyzed in detail in Tapavicza et al. (2008) where it was concluded that
the problem is that we are encountering effective noninteracting v-representability.
True noninteracting v-representability means that there is no noninteracting system
whose ground state gives the ground state density of the interacting system. This
only means that there is some excited state of the noninteracting system with integer
occupation number which gives the ground state density of the interacting system.
What we call effective noninteracting v-representability is when the LUMO falls
below the HOMO (or, in the language of solid-state physics, there is a “hole below
the Fermi level”.) This is exactly what frequently happens in the funnel region.
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Fig. 14.5 Change of character of the active state along the reactive Landau–Zener trajectory, shown
in Fig. 14.1. Snapshots were taken at times a 2.6, b 7.4, c 12.2, and d 19.4 fs. For a and b, the
running state is characterized by a transition from the highest occupied molecular orbital (HOMO)
to the lowest unoccupied molecular orbital (LUMO) plus one (LUMO + 1), while for c and d it is
characterized by a HOMO–LUMO transition due to orbital crossing. Note that the HOMO remains
the same oxygen nonbonding orbital throughout the simulation. Reprinted with permission from
Tapavicza et al. (2008). Copyright 2008, American Institute of Physics

Fig. 14.6 Comparison of the S0 and S1 potential energy surfaces calculated using different methods
for the CASSCF branching coordinate space. Reproduced from Huix-Rotllant et al. (2010) by
permission of the PCCP Owner Societies

Spin-flip (SF) TDDFT (Slipchenko and Krylov 2003; Shao et al. 2003; Wang
and Ziegler 2004) offers one way to circumvent some of the problems of effective
noninteracting v-representability in funnel regions. This is because we can start from
the lowest triplet state which has fewer effective noninteracting v-representability
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Fig. 14.7 C2v potential
energy curves: full
calculation (solid lines),
two-orbital model (dashed
lines.) Reproduced from
Huix-Rotllant et al. (2010)
by permission of the PCCP
Owner Societies

problems and then use SFs to obtain both the ground state and a doubly-excited state
(see Chap. 8). Analytic derivatives are now available for some types of SF-TDDFT
(Seth et al. 2010). Figure 14.7 shows that SF-TDDFT works fairly well for treating
the avoided crossing in the C2v ring-opening pathway of oxirane. Minezawa and
Gordon also used SF-TDDFT to locate a conical intersection in ethylene (Minezawa
and Gordon 2009). However Huix-Rotllant, Natarajan, Ipatov, Wawire, Deutsch, and
Casida found that, although SF-TDDFT does give a true conical intersection in the
photochemical ring opening of oxirane, the funnel is significantly shifted from the
position of the CASSCF conical intersection (Huix-Rotllant 2010). The reason is
that the key funnel region involves an active space of over two orbitals which is too
large to be described accurately by SF-TDDFT.

There are other ways to try to build two- and higher-excitation character into a
DFT treatment of excited states. Let us mention here only multireference configu-
ration interaction (MRCI)/DFT (Grimme and Waletzke 1999), constrained density
functional theory-configuration interaction (CDFT-CI) (Wu et al. 2007), and mixed
TDDFT/many-body theory methods based upon the Bethe-Salpeter equation
(Romaniello 2009) or the related polarization propagator approach (Casida 2005; see
also: Huix-Rotllant, M. and M. E. Casida, “Formal Foundations of Dressed Time-
Dependent Density-Functional Theory for Many-Electron Excitations”, Condensed
Matter ArXiv, arxiv.org/abs/1008.1478) or the simpler dressed TDDFT approach
(Maitra et al. 2004; Cave et al. 2004; Gritsenko and Baerends 2009, Mazur and
Włodarczyk 2009, Mazur 2010, Huix-Rotllant et al. 2011) .

All of these may have the potential to improve the DFT-based description of
funnel regions in photochemical reactions. Here however we must be aware that
we may be in the process of building a theory which is less automatic and requires

http://dx.doi.org/10.1007/978-3-642-23518-4_16
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the high amount of user intervention typical of present day CASSCF calculations.
This is certainly the case with CDFT-CI which has already achieved some success
in describing conical intersections (Kaduk and Van Voorhis 2010).

14.4 Perspectives

Perhaps the essence of dynamics can be captured in a simple sentence: “You should
know from whence you are coming and to where you are going.” Of course this rather
deterministic statement must be interpreted differently in classical and quantum
mechanics. Here however we would like to think about its meaning in terms of
the development of DFT for applications in photoprocesses. Theoretical develop-
ments in this area have been remarkable in recent years, opening up the possibility
for a more detailed understanding of femtosecond (and now also attosecond) spec-
troscopy. In this chapter we have tried to discuss the past, the present, and a bit of
the future.

The past treated here has been the vast area of static investigation and dynamic
simulations of photophysical and photochemical processes. We have first described
more traditional wave-function techniques. We have also mentioned and made appro-
priate references to important work on early DFT work involving Ehrenfest TDDFT
and restricted open-shell Kohn–Sham DFT dynamics. Our emphasis has been on
photochemical processes involving several potential energy surfaces, partly because
of our own personal experiences, but also because photochemical processes start out
as photophysical processes in the Franck–Condon region and then rapidly become
more complicated to handle.

The present-day status of DFT photodynamics is perhaps best represented by
the recent availability of mixed TDDFT and TDDFTB/classical surface-hopping
dynamics codes as well as serious efforts to investigate and improve the quality
of the TDDFT description of photochemical funnel regions. First applications have
already shown the utility of this theory and we feel sure that other applications will
follow as programs are made broadly available to computational scientists. Finally
we have ended the last section with some speculations about the future concerning the
need for explicit double- and higher-excitations to correctly describe funnel regions.

As expected, we could not treat everything of relevance to the chapter title.
Roi Baer’s recent work indicating that Berry phase information is somehow included
in the ground-state charge density is most intriguing (Baer 2010a). Also on-going
work on multicomponent DFT capable of treating electrons and nuclei on more or
less the same footing (Kreibich and Gross 2001a, Kreibich et al. 2008) would seem
to open up new possibililties for developing useful non-Born–Oppenheimer approx-
imations within a DFT framework. We are sure that still other potentially relevant
work has been unfortunately omitted either because of space limitations or for other
reasons.
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Do we know where this field is going? Certainly non-Born–Oppenheimer photo-
dynamics using some form of DFT is currently a hot and rapidly evolving area.
Exactly what lies in store may not yet be clear, but what we do know is that we are
going to have fun getting there!



Chapter 15
On the Combination of TDDFT with Molecular
Dynamics: New Developments

José L. Alonso, Alberto Castro, Pablo Echenique and Angel Rubio

15.1 Introduction

In principle, we should not need the time-dependent extension of density-functional
theory (TDDFT) for excitations, and in particular for most equilibrium and non-
equilibrium molecular dynamics (MD) studies of closed systems: the theorem by
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Hohenberg and Kohn (1964) teaches us that for any observable that we wish to look
at (including observables dependent on excited states) there is a corresponding func-
tional of the ground-state density. Yet the unavailability of such magic functionals in
many cases (the theorem is a non-constructive existence result) demands the develop-
ment and use of the alternative exact reformulation of quantum mechanics provided
by TDDFT. This theory defines a convenient route to electronic excitations and to the
dynamics of a many-electron system subject to an arbitrary time-dependent pertur-
bation (discussed in previous chapters of this book, e.g., in Chap. 4). This is, in fact,
the main purpose of inscribing TDDFT in a MD framework—the inclusion of the
effect of electronic excited states in the dynamics. However, as we will show in this
chapter, it may not be the only use of TDDFT in this context.

The term “ab initio molecular dynamics” (AIMD) has been exclusively identified
in the past with the Car–Parrinello (CP) technique (Car and Parrinello 1985). This
method combines ground-state DFT with MD, providing an efficient reformulation of
ground-state Born-Oppenheimer MD (gsBOMD) (Marx and Hutter 2000). However,
the “AIMD" words have broader meaning, and should include all the possible MD
techniques that make use of a first principles approach to tackle the many-electron
problem. For example, Ehrenfest MD can also be one AIMD scheme if TDDFT is
used to propagate the electronic subsystem. This is the most common manner in
which TDDFT and MD have been combined in the past: as a means to study fast
out-of-equilibrium processes, typically intense laser irradiations or ionic collisions
(Saalmann and Schmidt 1996, 1998; Reinhard and Suraud1999; Kunert and Schmidt
2001; Castro et al. 2004b).

Nevertheless, there are other possibilities. In this chapter we review two recent
proposals: In Sect. 15.2, we show how TDDFT can be used to design efficient
gsBOMD algorithms (Alonso et al. 2008; Andrade et al. 2009), even if the elec-
tronic excited states are not relevant in this case. The work described in Sect. 15.3
addresses the problem of mixed quantum-classical systems at thermal equilibrium
(Alonso et al. 2010).

Atomic units are used throughout the document in order to get rid of constant
factors such as � or 1/4πε0.

15.2 Fast Ehrenfest Molecular Dynamics

In order to derive the quantum-classical MD known as Ehrenfest molecular dynamics
(EMD) from the time-dependent Schrödinger equation for a molecular system, one
starts with a separation ansatz for the wave function of the molecular system between
the electrons and the nuclei (Gerber et al. 1982), leading to the so-called time-
dependent self-consistent-field (TDSCF) equations (Tully 1998b; Bornemann et al.
1996). The next step is to approximate the nuclei as classical point particles via
short wave asymptotics or Wentzel–Kramers–Brillouin (WKB) approximation (Tully
1998b; Bornemann et al. 1996; Wentzel 1926). The resultant Ehrenfest MD scheme
is contained in the following system of coupled differential equations (Bornemann
et al. 1996):

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Mα

d2

dt2 Rα(t) = −〈Φ(t)|∇Rα Ĥe(R̄(t), t)|Φ(t)〉, (15.1)

i
d

dt
|Φ(t)〉 = Ĥe(R̄(t), t)|Φ(t)〉, (15.2)

whereΦ(t) is the state of the quantum subsystem (we will assume that this is a set of
N electrons), and {Rα}Mα=1 are the position coordinates of M classical particles (a set
of M nuclei of masses Mα and charges Zα).The quantum (or electronic) Hamiltonian
operator Ĥe(R̄, t) depends on these classical coordinates, and is usually given by:

Ĥe(R̄, t) =
N

∑

i=1

1

2
p̂2

i +
∑

i, j<i

1

|r̂ i − r̂ j | +
∑

β<α

ZαZβ
|Rα − Rβ |

−
∑

α,i

Zα
|Rα − r i | +

∑

i

ve
ext(r i , t)+

∑

α

vn
ext(Rα, t), (15.3)

where ve
ext and vn

ext are external potentials acting on the electrons and nuclei, respec-
tively (Echenique and Alonso 2007) (see also Chap. 14 for more about EMD).

Given this definition, one can show that Eq. 15.1 can be rewritten as:

Mα

d2

dt2 Rα(t) = −
∫

d3rn(r, t)∇Rαv0(r, R̄(t)), (15.4)

where

v0(r, R̄) = −
∑

α

Zα
|Rα − r| +

1

N

∑

α

vn
ext(Rα, t)+ 1

N

∑

β<α

ZαZβ
|Rα − Rβ | ; (15.5)

a result which is known as the “electrostatic force theorem" in the quantum chem-
istry literature (Levine 2000), and which is based in the fact that the gradient
∇Rα Ĥe(R̄(t), t) is a one-body local multiplicative operator (as far as the electrons
are concerned), i.e., it is a sum of one-electron operators whose action amounts to a
multiplication in real space (Eschrig 2003; Von Barth 2004).

Equation 15.4 shows that the knowledge of the time-dependent electronic density
n(r, t) suffices to obtain the nuclear movement. This fact is the basis for TDDFT-
based Ehrenfest MD (Ehrenfest-TDDFT): instead of solving Eq. 15.2, we solve the
corresponding time-dependent Kohn–Sham system, which provides n(r, t) (see also
Chap 4):

i
∂

∂t
ϕ j (r, t) = −1

2
∇2ϕ j (r, t)+ vKS[n](r, t)ϕ j (r, t), j = 1, . . . , N , (15.6)

being

vKS[n](r, t) =
∑

α

−Zα
|Rα(t)− r| + vH[n](r, t)+ vxc[n](r, t)+ ve

ext(r, t), (15.7)

http://dx.doi.org/10.1007/978-3-642-23518-4_14
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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and

n(r, t) = 2
N

∑

j=1

|ϕ j (r, t)|2, (15.8)

where vKS[n](r, t) is the time-dependent Kohn–Sham potential, and vH[n](r, t) and
vxc[n](r, t) are the Hartree and exchange-correlation potential, respectively. For
simplicity, we assume an even number of electrons in a spin-compensated configu-
ration, and omit initial-state dependence in the functionals.

The equations of motion for Ehrenfest-TDDFT (15.4, 15.6 and 15.8) can be
derived from the following Lagrangian (assuming an adiabatic approximation for
the exchange and correlation potential, as it is commonly done in practical imple-
mentations of TDDFT):

Lμ[ϕ, ϕ̇, R̄, ˙̄R] = μ i

2

∑

j

(〈ϕ j |ϕ̇ j 〉 − 〈ϕ̇ j |ϕ j 〉
)+

∑

α

1

2
Mα Ṙ

2
α − EKS[ϕ, R̄],

(15.9)
for μ = 1 (the reason for including this parameter μ will become clear in what
follows). We use a dot to denote time-derivatives.

The term EKS is the Kohn–Sham ground-state energy functional:

EKS[ϕ, R̄] = 2
∑

j

〈

ϕ j

∣
∣
∣
∣

p̂2

2

∣
∣
∣
∣
ϕ j

〉

−
∫

d3r
∑

α

Zα
|Rα − r|n(r)

+ 1

2

∫

d3rvH[n](r)n(r)+ Exc[n] +
∑

β<α

ZαZβ
|Rα − Rβ | . (15.10)

Note that, when the time-dependent orbitals are introduced into this expression (as it
is done in Ehrenfest-TDDFT), it becomes a functional of the Kohn–Sham orbitals at
each time, and only an implicit functional of the time-dependent density. Also, from
here on, we assume that there are no external potentials ve

ext and vn
ext, since they do

not add anything to the following discussion.
It is worth remarking now that Ehrenfest MD differs from gsBOMD, and it is

instructive to see in which way. We do so in the initial formulation of Eqs. 15.1 and
15.2 using the N-electron wavefunction for simplicity, i.e., we forget for a moment
the TDDFT formalism.

To illustrate the main concepts we start by projecting the Ehrenfest MD equa-
tions into the adiabatic basis, formed at each nuclear configuration by the set of
eigenfunctions of the electronic Hamiltonian:

Ĥe(R̄)|Ψm(R̄)〉 = Em(R̄)|Ψm(R̄)〉, (15.11a)

|Φ(t)〉 =
∑

m

cm(t)|Ψm(R̄(t))〉. (15.11b)
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The result is:

Mα

d2

dt2 Rα(t) =−
∑

m

|cm(t)|2∇Rα Em(R̄(t))

−
∑

mn

c∗m(t)cn(t)
[

Em(R̄(t))− En(R̄(t))
]

dmn
α (R̄(t)) (15.12)

and

i
d

dt
cm(t) = Em(R̄(t))cm(t)− i

∑

n

cn(t)

[
∑

α

Ṙα · dmn
α (R̄(t))

]

(15.13)

where the “non-adiabatic couplings" are defined as:

dmn
α (R̄) = 〈Ψm(R̄)|∇RαΨn(R̄)〉. (15.14)

If the nuclear velocities are small (compared to the electronic one), the last term
in Eq. 15.13 can be neglected, and if we assume that the electronic system starts from
the ground state (cm(0) = δm0), EMD reduces to gsBOMD:

Mα

d2

dt2 Rα(t) = ∇Rα E0(R̄(t)), (15.15a)

cm(t) = δm0. (15.15b)

Now, in order to integrate the gsBOMD equations, one can make use of ground-
state DFT, since the only necessary ingredient is the ground-state energy E0(R̄(t)).
One could thus precompute this hyper-surface, in order to propagate the nuclear
dynamics a posteriori, or else only compute the energies at the R̄ points visited
by the dynamics (a procedure normally known as “on-the-fly"). However, Car and
Parrinello (1985) proposed an alternative, based on the following Lagrangian:

LCP
λ [ϕ, ϕ̇, R̄, ˙̄R] = λ i

2

∑

j

〈ϕ̇ j |ϕ̇ j 〉 +
∑

α

1

2
Mα Ṙ

2
α

− EKS[ϕ, R̄] +
∑

i j

Λi j
(〈ϕi |ϕ j 〉 − δi j

)

. (15.16)

Note the presence of a fictional mass λ, and of a set of Lagrange multipliers Λi j

associated to the constraints that keep the KS orbitals orthonormal along the evolu-
tion. The Car–Parrinello (CP) equations that stem from this Lagrangian are, for the
nuclei,

Mα

d2

dt2 Rα(t) = −∇Rα EKS[ϕ(t), R̄(t))], (15.17)

while the electronic wavefunctions follow
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λϕ̈ j (r, t) = −1

2
∇2ϕ j (r, t)+ vKS[n](r, t)ϕ j (r, t)+

∑

k

Λ jkϕk(r, t), (15.18)

and finally, the orthogonality conditions

〈ϕi (t)|ϕ j (t)〉 = δi j . (15.19)

The first of these three sets of equations ensures that CP molecular dynamics
(CPMD) is (approximately) equivalent to gsBOMD if the KS orbitals stay close to
the ground-state ones; the second equation is an auxiliary, fictional electronic prop-
agation that enforces this proximity to the ground state for a certain range of values
of the “mass" λ; whereas the last equation demands the constant orthonormality of
the electronic orbitals. Another role of the fictional mass λ; is to accelerate the fake
electronic dynamics, and as a consequence to improve the numerical efficiency. This
efficiency (in addition to the success of DFT in the calculation of total energies with
chemical accuracy) has made CPMD the method of choice for performing ab initio
gsBOMD during the last decades.

When attempting simulations of very large systems, the calculations must be done
using the massive parallel architectures presently available, therefore one must ensure
a good scalability of the computational algorithms with respect to the number of
processors and the size of the systems (i.e., number of atoms). The CPMD technique
at a given point has to face the problem posed by the need of orthonormalization, as
required by Eq. 15.19. This is a very non-local process (regardless of the algorithm
used), and therefore very difficult to parallelize efficiently. Linear-scaling methods
and other approaches have been proposed recently (Kühne et al. 2007) to improve
the speed of the CP technique.

One possibility to circumvent the orthonormalization issue is to do Ehrenfest-
TDDFT (which automatically conserves the orthonormality) instead of CPMD, for
those cases in which the coupling to higher electronic excited states is weak, and
therefore Ehrenfest-TDDFT is almost equivalent to gsBOMD. This fact was first
realized by Theilhaber (1992). Unfortunately, the required time step for Ehrenfest-
TDDFT is very small (two to three orders of magnitude smaller than the CPMD
time-step), which makes it very inefficient computationally. The reason is that the
simulation must follow the real electronic motion, which is very fast (in contrast to
the fictional electronic motion used in CPMD). In (Alonso et al. 2008) and (Andrade
et al. 2009), however, it was shown how the time-step can be increased by modifying
the μ parameter in the definition of the Lagrangian function given in Eq. 15.9, which
for normal Ehrenfest dynamics should be μ = 1.

For any μ, the equations of motion derived from this Lagrangian function are:

iμ
∂

∂t
ϕ j (r, t) = −1

2
∇2ϕ j (r, t)+ vKS[n](r, t)ϕ j (r, t), (15.20a)

Mα

d2

dt2 Rα(t) = −∇Rα EKS[ϕ(t), R̄(t)]. (15.20b)
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The only difference with respect to Ehrenfest-TDDFT is the appearance of the μ
parameter multiplying the time-derivative of the time-dependent KS equations. The
most relevant features of this dynamics are:

1. The orthogonality of the time-dependent KS orbitals is automatically preserved
along the evolution, so that there is no need to perform any orthonormalization
procedure.

2. The “exact" total energy of the system, defined as

E = 1

2

∑

α

Mα Ṙ
2
α + EKS[ϕ, R̄], (15.21)

is also preserved along the evolution. Note that it is independent of μ and it coin-
cides with the same exact energy that is preserved along the gsBOMD evolution.
In contrast, the preserved energy in CPMD is given by:

ECP = E + 1

2
λ

∑

j

〈ϕ̇ j |ϕ̇ j 〉, (15.22)

where E, given by Eq. 15.21, is now time-dependent. It can be seen how the new
constant of motion ECP actually depends on λ, which is the fictional electronic
mass introduced in the CP formulation.

3. To illustrate the effect of μ in the coupled Eqs. 15.20a, b, let us use in (15.20a)
[but not in (15.20b), this is not a change of variables] t = μte,

iμ
∂ϕ j

∂t
= i

∂ϕ j

∂te
. (15.23)

The ‘new’ Eq. 15.20a can be seen as a standard Ehrenfest-TDDFT (μ = 1)
propagation in time te. Consequently, in the ‘old’ Eq. 15.20a, the maximum Δt
is Δt = μΔte, where Δte is the time-step needed in Ehrenfest-TDDFT (μ = 1).
Therefore, our method is μ times faster than standard Ehrenfest-TDDFT.

4. This dynamics has also the effect of scaling the TDDFT excitation energies by a
factor 1/μ. Hence, we may open or close the electronic gap by using a smaller or
larger than one value of μ. Obviously, if μ → 0, then the gap becomes infinite
and we retrieve the adiabatic (gsBOMD) regime.

5. Taking into account the two previous points and recalling that the purpose of this
modified Ehrenfest dynamics is to reproduce, albeit approximately, the gsBOMD
results, it becomes clear that there is a tradeoff affecting the optimal choice for the
value ofμ: low values (but still larger than one) will give physical accuracy, while
large values will produce a faster propagation. The optimal value is the maximum
value that still keeps the system near the adiabatic regime. It is reasonable to
expect that this value will be given by the ratio between the electronic gap and
the highest vibrational frequency of the nuclei. For many systems, like some
molecules or insulators, this ratio is large and we can expect large improvements
with respect to standard Ehrenfest MD. For other systems, like metals, this ratio
is small or zero and the new method will not work.
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(a) (b)

(c) (d)

Fig. 15.1 a Scheme of the benzene molecule array. b Single processor computational cost for
different system sizes. (Inset) Polynomial extrapolation for larger systems. c Parallel computational
cost for different system sizes. d Parallel scaling with respect to the number of processors for a
system of 480 atoms. In both cases, a mixed states-domain parallelization is used to maximize the
performance. This figure has been taken from Andrade et al. (2009), with permission by ACS

6. Regarding the scaling with the system size, the modified Ehrenfest dynamics
evidently inherits the main advantage of the original one: since propagation
preserves the orthonormality of the KS orbitals, it needs not be imposed and
the numerical cost is proportional to NW NC (with NW the number of orbitals and
NC the number of grid points or basis set coefficients). For CPMD, a reorthog-
onalization has to be done each time step, so the cost is proportional to N 2

W NC .

From these scaling properties, we can predict that for large enough systems the
Ehrenfest method will be less costly than CP. For smaller systems, however, this
gain will not compensate for the fact that the time-step, despite being increased
by the μ factor, will still need to be one or two orders of magnitude smaller than
the time-step utilized in CPMD.

Some numerical examples, performed with the octopus code (Marques et al.
2003; Castro et al. 2006), that give an idea of the performance of this modified
Ehrenfest dynamics were shown in (Alonso et al. 2008) and (Andrade et al. 2009). We
reproduce here one case: the vibrational spectrum of an artificial benzene crystal (see
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Fig. 15.1 ). Essentially, the calculations consist of the time-propagation of the system,
either with the standard CP technique or with the modified Ehrenfest dynamics,
for an interval of time departing from a Boltzmann distribution of velocities at a
given temperature. Then, the vibrational frequencies are obtained from the Fourier
transform of the velocity autocorrelation function.

Panels (b) and (c) display the serial and parallel computational cost, respectively,
of the two methods, defined as the computer time needed to propagate one atomic
unit of time. In the serial case, it can be seen how, for the system sizes studied, CP
is more efficient; a different scaling can already be guessed from the curve; indeed,
if these curves are extrapolated (inset), one can predict a crossing point where the
new Ehrenfest technique starts to be advantageous. This is more patent in the parallel
case, as can be seen in panel (c). Panel (d) displays the different scalability of the two
methods: for a fixed system size, the system is equally divided in a variable number
of processors, and the figure displays the different speed-ups obtained.

The key conclusion is that the lack of the orthonormalization step permits a new
efficient parallelization layer, on top of the usual ones that are commonly employed
in CPMD (domain decomposition, and Brillouin zone k-points): since the propa-
gation step is independent for each orbital, it is natural to parallelize the problem
by distributing the KS states among processors. Communication is only required
once per time-step to calculate quantities that depend on a sum over states: the time
dependent densities and the forces over the ions.

15.3 MD at Finite Electronic Temperature

The previous section has addressed algorithmic alternatives to the solution of the
gsBOMD Eqs. 15.15a, b. These represent the evolution of the classical nuclei, inter-
acting all-to-all through the potential E0(R̄). The resulting dynamics can be used to
calculate equilibrium averages at a given finite temperature, by assuming ergodicity
and computing time averages over a number of trajectories, once the system has been
appropriately coupled to a thermostat. The resulting marginal equilibrium density in
the nuclear positions space is, in the canonical ensemble:

pgsBO(R̄) = e−βE0(R̄)

∫

d3 R′1 · · ·
∫

d3 R′M e−βE0(R̄
′
)
, (15.24)

with β = 1/kBT, or β = 1/RT if per-mole units are used.
However, this scheme ignores completely the dynamics of the electrons, by

assuming that, even at a finite temperature, they are continuously tied to their ground
state. This assumption is legitimate if the electronic gap is large compared to kBT
at the temperature of interest. Indeed, in many physical, chemical or biological
processes the dynamical effects arising from the presence of low lying electronic
excited states have to be taken into account. For instance, in situations where the
hydrogen bond is weak, different states come close to each other and non-adiabatic
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proton transfer transitions become rather likely at normal temperature (May and
Kühne 2004). In these circumstances, the computation of ensemble averages cannot
be based on a model that assumes the nuclei moving on the ground-state BO surface.

In the DFT realm, the inclusion of electronic excited states in the dynamics is very
often done by working with partial occupation numbers to account for the electronic
excitations (Grumbach et al. 1994; Alavi et al. 1994, 1995; Marzari et al. 1997),
ideally making use of temperature-dependent exchange and correlation functionals
(Mermin 1965; Prodan 2010; Eschrig 2010). This scheme is however tied to DFT,
and is hindered by the difficulty of realistically approximating this functional. Other
alternative options are Ehrenfest dynamics and surface hopping (Tully 1990) (for
more on recent progress in non-adiabatic electronic dynamics in mixed quantum-
classical dynamics, see, for example, (Zhu et al. 2005)).

Recently, Alonso et al. (2010) have proposed a new alternative, which can make
use of the ability of TDDFT to compute electronic excited states. In the following,
we make a summary of the new technique.

In order to arrive to a general quantum-classical formalism, and to a suitable
expression for the quantum-classical equilibrium distribution that is considered to
be the correct one in the literature, it is preferable in this case to follow the partial
Wigner transformation route (Wigner 1932), as done by Kapral (1999) and Nielsen
(2001). Let us assume a quantum system of two particles of masses m and M (M > m)
living both in one dimension, whose canonical position and momentum operators
are (ẑ, p̂) and (Ẑ , P̂), respectively. The generalization to more particles and higher
dimension is straightforward. Given an operator Â, its partial Wigner transform ÂW
with respect to the large-mass coordinate is defined as:

ÂW(Z , P) = (2π)−1
∫

dz′eiPz′ 〈Z − z′/2| Â|Z + z′/2〉. (15.25)

The operator ÂW(Z , P) acts on the Hilbert space of the light particle, and depends
on the two real numbers (Z , P). It is possible to reformulate all quantum theory in
terms of these partial Wigner transforms; in particular, if the Hamiltonian for the two
particles is given by:

Ĥ = P̂2

2M
+ p̂2

2m
+ v(ẑ, Ẑ), (15.26)

its transformation is:

ĤW(Z , P) = P2

2M
+ p̂2

2m
+ v(ẑ, Z), (15.27)

i.e., one just has to substitute the quantum operators of the heavy particle by the real
numbers (Z , P).

If the state of the system is described by the density matrix ρ̂(t), its evolution will
be governed by von Neumann’s equation,
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d

dt
ρ̂(t) = −i

[

Ĥ , ρ̂(t)
]

, (15.28)

which can be cast into its partial Wigner-transformed form:

∂

∂t
ρ̂W = −i

(

ĤWeΛ/2iρ̂W − ρ̂WeΛ/2i ĤW

)

, (15.29)

where Λ is the “Poisson bracket operator",

Λ =
←−
∂

∂P

−→
∂

∂Z
−
←−
∂

∂Z

−→
∂

∂P
, (15.30)

and the arrows indicate the direction in which each derivative acts.
Note that up to now, this is an exact reformulation of quantum mechanics

(no classical or semiclassical limit has been taken). However, this is also a conve-
nient departure point to take the classical limit for the heavy particle. After an appro-
priate change of coordinates (Kapral 1999), if we retain only the first order terms in
η = (m/M)1/2, Eq. 15.29 is transformed into:

∂

∂t
ρ̂W = −i

[

ĤW, ρ̂W

]

+ 1

2

(

{ĤW, ρ̂W} − {ρ̂W, ĤW}
)

, (15.31)

where {·, ·} is the Poisson bracket with respect to the canonical conjugate coordinates
(Z , P),

{ĤW, ρ̂W} = ∂ ĤW

∂Z

∂ρ̂W

∂P
− ∂ ĤW

∂P

∂ρ̂W

∂Z
, (15.32)

and both ρ̂W and ĤW are functions of (Z , P).
The equilibrium density matrix in the partial Wigner representation at the classical

limit for the heavy particle, denoted by ρ̂eq
W should be stationary with respect to the

evolution at first order in η = (m/M)1/2 in Eq. 15.31. If we use this property and
expand the equilibrium density matrix in powers of η:

ρ̂
eq
W (Z , P) =

∞
∑

n=0

ηn ρ̂
eq (n)
W (Z , P), (15.33)

it can then be proved (Nielsen 2001) that the zero-th order term is given by:

ρ̂
eq (0)
W (Z , P) = 1

Z e−β ĤW(Z ,P), (15.34)

with

Z = TrQ

[∫

dZ
∫

dPe−β ĤW(Z ,P)
]

, (15.35)
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the symbol TrQ meaning trace over the quantum degrees of freedom.
Note that (15.34) corresponds, at fixed classical variables (Z , P), to the equilib-

rium density matrix for the electronic states. However, it is only an approximation
to the true quantum-classical equilibrium density matrix, since it is not a stationary
solution to the quantum-classical Liouvillian given in Eq. 15.31. This distribution
is often regarded, however, as the correct equilibrium distribution of the canonical
ensemble for a mixed quantum-classical system (Mauri et al. 1993; Parandekar and
Tolly 2005; Parandekar and Tully 2006; Schmidt et al. 2008, Bastida et al. 2007),
and the average of observables is computed as:

〈Ô(ẑ, p̂, Z , P)〉 = TrQ

∫

dZ
∫

dP Ô(ẑ, p̂, Z , P)ρ̂eq(0)
W (Z , P). (15.36)

As mentioned, the careful analysis described in (Kapral and Ciccotti 1999; Nielsen
and Martin 1985), shows that this is a first order approximation in the square root
of the quantum-classical mass ratio η = (m/M)1/2, and therefore an acceptable
approximation if this ratio is small.

In the remaining part of this chapter, and following (Alonso et al. 2010), we
will write a system of dynamic equations for the classical particles such that the
equilibrium distribution in the space of classical variables is in fact given by Eq. 15.34.
This is also a goal of surface hopping methods (Tully 1990), although it is not fully
achieved since these methods do not exactly yield this distribution (Schmidt et al.
2008). We will do this by deriving a temperature-dependent effective potential for
the classical variables, which differs from the ground-state potential energy surface
used in gsBOMD. It is straightforward, however, to write an equation that gives
the expression for the effective potential in terms of this potential energy surface
together with the BO surfaces corresponding to the excited states of the electronic
Hamiltonian. Despite this property, it is worth remarking that the approach described
here is based on the assumption that the full system of electrons and nuclei is in
thermal equilibrium at a given temperature, and not on the assumption that electrons
immediately follow the nuclear motion (i.e., the adiabatic approximation), which is
at the core of the BO scheme.

Let us assume that we are only interested in the average of observables that
depend explicitly only on the degrees of freedom of the heavy, classical particle,
A = A(Z , P). It is a matter of algebra [using Eqs. 15.34 and 15.36] to prove that
this average can be written as:

〈A(Z , P)〉 = 1

Z
∫

dZ
∫

dP A(Z , P)e−βHeff (Z ,P;β), (15.37)

where we have introduced an effective Hamiltonian Heff , defined as:

Heff(Z , P;β) = − 1

β
ln TrQe−βHW(Z ,P). (15.38)

The partition function Z can also be written in terms of the effective Hamiltonian:



15 On the Combination of TDDFT with Molecular Dynamics 313

Z =
∫

dZ
∫

dPe−βHeff (Z ,P;β), (15.39)

Hence, the quantum subsystem has been “integrated out", and does not appear
explicitly in the equations any more (of course, it has not disappeared, being hidden
in the definition of the effective Hamiltonian). In this way, the more complicated
quantum-classical calculations have been reduced to a simpler classical dynamics
with an appropriate effective Hamiltonian, which produces the same equilibrium
averages of classical observables (Eq. 15.37) as the one we would obtain using
Eq. 15.34 in 15.36, and hence incorporates the quantum back-reaction on the evolu-
tion of the classical variables, at least at the level of equilibrium properties.

In the case of a molecular system, the total (partially Wigner transformed) Hamil-
tonian reads:

Ĥ(R̄, P̄) = Tn( P̄)+ Ĥe(R̄), (15.40)

where R̄ denotes collectively all nuclear coordinates, P̄ all nuclear momenta, Tn( P̄)
is the total nuclear kinetic energy, and Ĥe(R̄) is the electronic Hamiltonian in
Eq. 15.3, that includes the electronic kinetic term and all the interactions. The effec-
tive Hamiltonian, defined in Eq. 15.38 in general, is in this case of a molecular system
given by:

Heff(R̄, P̄;β) = Tn( P̄)− 1

β
ln TrQe−β Ĥe(R̄)

= Tn( P̄)+ veff(R̄;β), (15.41)

where the last equality is a definition for the effective potential veff(R̄;β).
Now, making use of the adiabatic basis, defined in Eq. 15.11a as the set of all

eigenvectors of electronic Hamiltonian Ĥe(R̄), we can rewrite veff(R̄;β) as:

veff(R̄;β) = E0(R̄)− 1

β
ln

[

1+
∑

n>0

e−βEn0(R̄)

]

, (15.42)

where En0(R̄) = En(R̄) − E0(R̄). It is for the computation of these excitation
energies that TDDFT can be employed. The proposed dynamics would be, therefore,
based on TDDFT. Of course, any other many-electron technique can also be used.

This equation permits to see explicitly how the ground state energy E0 differs
from veff , and in consequence how a MD based on veff is going to differ from a
gsBOMD. In particular, notice that veff(R̄;β) ≤ E0(R̄), and compare the marginal
probability density in the gsBOMD case in Eq. 15.24 to the one produced using the
new dynamics:

peff(R̄) =

[

1+ ∑

n>0
e−βEn0(R̄)

]

e−βE0(R̄)

∫

d3 R′1 · · ·
∫

d3 R′M
[

1+ ∑

n>0
e−βEn0(R̄

′
)

]

e−βE0(R̄
′
)

. (15.43)



314 J. L. Alonso et al.

Finally, note that to the extent that nuclei do not have quantum behavior near
conical intersections or spin crossings (see Yarkony (1996) and also Chap. 14),
nothing prevents us to use this equation also in these cases.

The definition of the classical, effective Hamiltonian for the nuclear coordinates
in Eq. 15.41 allows us now to use any of the well-established techniques available for
computing canonical equilibrium averages in a classical system. Of course, since Heff
in Eq. 15.41 depends on T, any Monte Carlo or dynamical method must be performed
at the same T that Heff was computed in order to produce consistent results, given in
this case by the convenient expression (15.37). For example, we could use (classical)
Monte Carlo methods, or, if we want to perform MD simulations, we could propagate
the stochastic Langevin dynamics associated to the Hamiltonian (15.41):

MJ R̈J (t) = −∇Jveff(R̄(t);β)− MJγ ṘJ (t)+ MJ �Ξ(t), (15.44)

where �Ξ is a vector of stochastic fluctuations, obeying 〈Ξi (t)〉 = 0 and 〈Ξi (t1)Ξ j (t2)〉
= 2γ kBT δi jδ(t1 − t2) which relates the dissipation strength γ and the temperature
T to the fluctuations (fluctuation–dissipation theorem).

Indeed, it is well-known that this Langevin dynamics is equivalent to the Fokker–
Planck equation for the probability density W (R̄, P̄) in the classical phase space
(Van Kampen 2007):

∂W (R̄, P̄; t)
∂t

= {Heff(R̄, P̄;β),W (R̄, P̄; t)}
+ γ

∑

J

∂P J (P J + MkBT ∂P J )W (R̄, P̄; t). (15.45)

Any solution to Eq. 15.45 approaches at infinite time a distribution Weq(R̄, P̄)
such that ∂t Weq(R̄, P̄) = 0. This stationary solution is unique and equal to the Gibbs

distribution, Weq(R̄, P̄) = Z−1 e−βHeff (R̄, P̄;β) (Van Kampen 2007). Thus, the long-
time solutions of Eq. 15.45, and hence those of Eq. 15.44 reproduce the canonical
averages in Eq. 15.37. This property, which is also satisfied by other dynamics like
the one proposed by Nosé (1984, 1991) if the Heff in Eq. 15.41 is used, comes out
in a very natural way from the present formalism while it is yet unclear of other ab
initio MD candidates for going beyond gsBOMD (Mauri et al. 1993; Parandekar and
Tully 2005; Schmidt et al. 2008; Bastida et al. 2007).

When would this new MD scheme be useful? The approach introduced in this
section is particularly suited to the case of conical intersections or spin-crossing
(see Yarkony (1996) and also Chap. 14), since it does not assume that the electrons
or quantum variables immediately follow the nuclear motion, in contrast to any
adiabatic approach. Another interesting application pertains the debated issue of
quantum effects in proton transfer (Iyengar et al. 2008). It is a matter of current
debate to what extent protons behave “quantum-like" in biomolecular systems (e.g.
is there any trace of superposition, tunneling or entanglement in their behavior?).
Recently, McKenzie et al. (Bothma et al. 2010) have carefully examined the issue,
and concluded that “tunneling well below the barrier only occurs for temperatures

http://dx.doi.org/10.1007/978-3-642-23518-4_14
http://dx.doi.org/10.1007/978-3-642-23518-4_14


15 On the Combination of TDDFT with Molecular Dynamics 315

less than a temperature T0 which is determined by the curvature of the potential
energy surface at the top of the barrier." In consequence, the correct determination
of this curvature is of paramount importance.

The curvature predicted by the temperature-dependent effective potential intro-
duced here is smaller than the one corresponding to the ground state potential energy
surface, in the cases in which the quantum excited surfaces approach, at the barrier
top, the ground state one. Therefore, T0 would be smaller than that corresponding
to the ground state potential energy surface (see Eq. 8 in Bothma et al. (2010)), and
hence the conclusion in this reference “that quantum tunneling does not play a signif-
icant role in hydrogen transfer in enzymes" is reinforced by the results of the new
dynamics.



Chapter 16
Excited-State Properties and Dynamics

Dmitrij Rappoport and Jürg Hutter

Structures and dynamics of electronically excited states of molecules play a central
role in our understanding and modeling of molecular photophysics and photochem-
istry. Given the enormous success of density functional based methods for molecular
ground-state properties, it is desirable to have methods at our disposal for computing
excited-state forces and other first-order properties in the framework of DFT.

However, DFT is, with notable exceptions (Theophilou 1979; Levy and Nagy
1999; Görling 1999c; Frank et al. 1998; Filatov and Shaik 1999), essentially a ground-
state theory due to the density variational principle (Perdew and Kurth 2003). The
ground state (of a given spin and spatial symmetry) plays a unique role, distinct from
higher-lying electronic states in density functional based approaches, in contrast to
state-specific methods such as multi-configuration self-consistent field (MCSCF)
method and related theories. As a consequence, methods suitable for computing
ground-state properties cannot simply be carried over to properties of excited states.
Instead, excited-state first-order properties, e.g., gradients or dipole moments, have
to be expressed as sums of derivatives of excitation energies and the respective
ground-state first-order properties. Non-adiabatic coupling matrix elements between
the ground state and an electronic excited state formally involve derivatives of ground-
and excited-state wavefunctions and their derivation in the density functional frame-
work is not immediately obvious. However, as shown by Chernyak and Mukamel
(2000a) by using the off-diagonal analog of the Hellmann–Feynman theorem, they
can be expressed in terms of transition densities and are thus computable from
TDDFT linear response.
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The availability of excited-state gradients makes structure optimizations and
systematic investigations of excited-state potential energy surfaces possible in the
framework of TDDFT. Together with non-adiabatic coupling matrix elements, they
provide the necessary input quantities for performing excited-state dynamics simu-
lations.

16.1 Derivatives of Excited-State Energies in TDDFT

Electronic excitation energies are obtained in the framework of the TDDFT by solving
the matrix form of the TDDFT linear response equation (Casida’s equation), (4.77).
An equivalent formulation is given by the variational problem for the functional

G[X,Y, ω] =1

2

[

(X + Y )†(A + B)(X + Y )(X − Y )†(A − B)(X − Y )
]

+ ω
2

[

(X + Y )†(X − Y )+ (X − Y )†(X + Y )− 2
]

. (16.1)

Here, X, Y are the expansion coefficients of the transition or first-order response
density in terms of the ground-state KS orbitals,

ρ(1)(r, r ′) = 1

2

∑

iσaτ

(

Xiaσ ϕaτ (r)ϕiσ (r ′)+ Yiaσ ϕiσ (r)ϕaτ (r ′)
)

. (16.2)

The stationarity conditions for the functional G,

∂G

∂(X + Y )iaσ
=

∑

jbσ ′
(A + B)iaσ jbσ ′(X + Y ) jbσ ′ − ω(X − Y )iaσ = 0, (16.3a)

∂G

∂(X − Y )iaσ
=

∑

jbσ ′
(A − B)iaσ jbσ ′(X − Y ) jbσ ′ − ω(X + Y )iaσ = 0, (16.3b)

∂G

∂ω
=

∑

iaσ

(X + Y )iaσ (X − Y )iaσ − 1 = 0, (16.3c)

yield the original TDDFT linear response equation and the normalization condition
for the coefficients X, Y (Furche 2001; Furche and Ahlrichs 2002a; Hutter 2003).

In the following, we use the spin-orbital formulation and choose all spin orbitals
to be real. In keeping with the usual notation, i, j, . . . denote occupied KS orbitals,
a, b, . . . are virtual (unoccupied) orbitals, while p, q, . . . stand for general KS
orbitals. We denote the total number of KS orbitals as N. The spin indices σ, τ
can take the values (α, β). Generally, two types of excitations are distinguished:
spin-conserving excitations with σ = τ and spin-flip excitations, for which σ �= τ.

The matrices (A + B) and (A − B) are known as orbital rotation Hessians and
were first introduced in the framework of time-dependent Hartree–Fock (TDHF)

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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theory (Thouless 1972). The matrix elements of A and B were given in (4.78) for
pure TDDFT. Here, we use a generalized formulation, which allows us to interpolate
between pure TDDFT and TDHF,

(A + B)iaσ jbσ ′ = (Fabσ δi j − Fi jσ δab)δσσ ′

+ K H
iaσ jbσ ′ + K xc+

iaσ jbσ ′ − K HFX+
iaσ jbσ ′ , (16.4a)

(A − B)iaσ jbσ ′ = (Fabσ δi j − Fi jσ δab)δσσ ′ + K xc−
iaσ jbσ ′ − K HFX−

iaσ jbσ ′ . (16.4b)

Fpqσ denotes the KS matrix in the basis of ground-state KS orbitals and is diagonal
for canonical KS orbitals, Fpqσ = εpσ δpq .The matrix elements of the Hartree kernel
K H, the exchange-correlation kernels K xc±, and the nonlocal HF exchange kernels
K HFX± depend on the excitation type and the form of the approximate exchange-
correlation functional and are defined in Table 16.1. The original formulation of
TDDFT was given for spin-conserving excitations and pure density functionals (non-
hybrids), in which case only symmetric Hartree and xc kernels contribute (Casida
1995; Bauernschmitt and Ahlrichs 1996a),

K HFX± = K xc− = 0, (16.5)

and we recover (4.78).
Inclusion of nonlocal HF exchange in DFT has been pursued in various ways

for over 15 years. While the addition of nonlocal, orbital-dependent HF exchange
to xc potential is, strictly speaking, an extension of Hohenberg–Kohn DFT (Seidl et
al. 1996; Görling and Levy 1997a), the successes of the functionals constructed in
this way are indisputable. Global hybrids employ a linear combination of the local
xc potential and nonlocal HF exchange potential, controlled by the hybrid mixing
parameter cx (Becke 1993a, b). The global hybrid construction includes the limiting
cases of pure or non-hybrid TDDFT (cx = 0) and TDHF (cx = 1, K xc±

iaσ jbσ ′ = 0).
A more recent class of long-range corrected (LRC) functionals is based on a range
separation of electron repulsion (Stoll and Savin 1985; Savin 1996; Toulouse et al.
2005; Iikura et al. 2001; Tawada et al. 2004; Yanai et al. 2004; Vydrov and Scuseria
2006; Baer et al. 2010b),

1

|r − r ′| =
1− [cx + cLR erf(μ|r − r ′|)]

|r − r ′| + cx + cLR erf(μ|r − r ′|)
|r − r ′| , (16.6)

whereμ is the range separation parameter. The first term in (16.6) represents the short-
range electron repulsion, which is captured by a modified semilocal xc functional,
while the second term contributes to the nonlocal HF exchange kernels of (16.4a,
b) . Long-range corrected functionals remedy some of the problems in TDDFT and
have been employed for computing excitation energies (Tawada et al. 2004; Yanai
et al. 2004; Chai and Head-Gordon 2008) and excited-state gradients (Chiba et al.
2006; Nguyen et al. 2010b).

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Table 16.1 Interaction kernels for electron repulsion in (16.4a, b)

Interaction kernel Excitation type
Spin-conserving Spin-flip

Hartree kernel
K H

iaσ jbσ ′ 2(iaσ | jbσ ′) 0

xc kernels
K xc+

iaσ jbσ ′ 2 f xc
iaσ jbσ ′ 2 f xc,SF

iaσ jbσ ′
K xc−

iaσ jbσ ′ 0 (1− 2δσσ ′ )2 f xc,SF
iaσ jbσ ′

Nonlocal HF exchange kernels
Global hybrid functionals
K HFX±

iaσ jbσ ′ cxδσσ ′ [(abσ |i jσ)± ( jaσ |ibσ)] cx[δσσ ′ (abτ |i jσ)
± (1− δσσ ′ )( jaτ |ibσ)]

Long-range corrected (LRC) functionals
K HFX±

iaσ jbσ ′ δσσ ′ [(cx(abσ |i jσ)+ cLR(abσ |i jσ)LR)

± (cx( jaσ |ibσ)+ cLR( jaσ |ibσ)LR)]
. . .

See (16.4a, b) and subsequent text for details
Definitions:
(pqσ |rsσ ′) = ∫

d3r
∫

d3r ′ϕpσ (r)ϕqσ (r) 1
|r−r ′ |ϕrσ ′ (r ′)ϕsσ ′ (r ′)

(pqσ |rsσ ′)LR =
∫

d3r
∫

d3r ′ϕpσ (r)ϕqσ (r)
erf(μ|r−r ′ |)
|r−r ′ | ϕrσ ′ (r ′)ϕsσ ′ (r ′)

f xc
pqσrsσ ′ =

∫

d3r
∫

d3r ′ϕpσ (r)ϕqσ (r)
δ2 Exc

δnσ (r)δnσ ′ (r ′)
ϕrσ ′ (r ′)ϕsσ ′ (r ′)

f xc,SF
pqσrsσ ′ =

∫

d3rϕpσ (r)ϕqτ (r) 1
m(r)

δExc
δm(r) ϕrσ ′ (r)ϕsτ ′ (r) (σ �= τ, σ ′ �= τ ′)

m(r) = nα(r)− nβ(r)

Spin-flip excitations involve the change of the Sz spin vector component by ±1.
Besides applications in computing electronic excitations in open-shell systems, they
have been proposed as a tool for describing open-shell singlet molecules (biradicals)
using the corresponding triplet state as a reference (Shao et al. 2003). Exchange-
correlation interaction kernels for spin-flip excitations have been formulated in the
framework of noncollinear xc potentials (Wang and Ziegler 2004; Wang et al. 2005b;
Seth et al. 2010; Vahtras and Rinkevicius 2007; Rinkevicius et al. 2010).

For the purpose of computing derivatives of excitation energies we assume that
the ground-state KS problem and the TDDFT linear response equation have been
solved for a specific excitation with energy ω and transition densities (X + Y ) and
(X − Y ). In other words, the functional G and its derivatives are to be evaluated
at the stationary point (X,Y, ω). Excited-state properties are defined as derivatives
of excited-state energy with respect to an external perturbation. We will denote the
coupling strength parameter of the perturbation by ξ, and the corresponding deriva-
tives will be indicated by a superscript. In the following we will deal exclusively with
first-order properties, specifically with excited-state gradients (forces), i.e., first-order
derivatives of excited-state energies with respect to nuclear displacements. However,
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the formalism outlined here is also applicable to other one-electron perturbations,
e.g., external electric fields giving rise to excited-state dipole moments.

The dependence of the KS orbitals on the perturbation, e.g., the nuclear config-
uration, is taken into account by considering the Lagrangian (Furche and Ahlrichs
2002a; Hutter 2003)

L[X,Y, ω, ϕ, Z ,W ] = G[X,Y, ω]+
∑

iaσ

Ziaσ Fiaσ−
∑

rsσ
r≤s

Wrsσ (Srsσ−δrs), (16.7)

where Srsσ are overlap integrals of KS orbitals. The Lagrange multipliers Ziaσ

and Wrsσ provide N 2 constraints in the variation of G. They ensure that the KS
orbitals ϕpσ are solutions of the ground-state KS equations and remain orthonormal,
respectively, for ξ �= 0. The explicit inclusion of Lagrangian multipliers Z and W
simplifies the derivation since derivatives of the matrix elements (A + B)iaσ jbσ ′
and (A − B)iaσ jbσ ′ with respect to KS orbitals can be avoided from the beginning.
This approach is known in quantum chemistry as the Z-vector method (Handy and
Schaefer 1984; Helgaker and Jørgensen 1989) and is connected to the Dalgarno–
Sternheimer interchange theorem (Hirschfelder et al. 1964).

For almost all practical calculations, the KS orbitals are expressed as linear combi-
nations of basis functions

ϕpσ (r) =
∑

μpσ

Cμpσ φμ(r). (16.8)

From the stationarity of the Lagrangian with respect to the expansion coefficients
Cμpσ ,

δL

δCμpσ
= 0, (16.9)

we can derive a linear equation for the Lagrange multipliers Ziaσ (the Z-vector
equation)

∑

jbσ ′
(A + B)iaσ jbσ ′ Z jbσ ′ = −Riaσ . (16.10)

The right-hand side R of this equation takes the form

Riaσ =1

2

∑

b

{

(X + Y )ibσ H+abσ [X + Y ] + (X − Y )ibσ H−abσ [X − Y ]
}

− 1

2

∑

j

{

(X + Y ) jaσ H+j iσ [X + Y ] + (X − Y ) jaσ H−j iσ [X − Y ]
}

+ H+iaσ [T ] + 2
∑

jbσ ′kcσ ′′
gxc

iaσ jbσ ′kcσ ′′(X + Y ) jbσ ′(X + Y )kcσ ′′ .

(16.11)
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Here, the results of linear operators H+ and H− acting on a general vector V are
given by

H+pqσ [V ] =
∑

rsσ ′

(

K H
pqσrsσ ′ + K xc+

pqσrsσ ′ − K HFX+
pqσrsσ ′

)

Vrsσ ′ , (16.12a)

H−pqσ [V ] = −
∑

rsσ ′
K HFX−

pqσrsσ ′Vrsσ ′ , (16.12b)

and the matrix elements of K HFX±, K xc+ are of the spin-conserving type irrespective
of the considered excitation. The unrelaxed difference density matrix T reads

Ti jσ = −1

2

∑

a

[

(X + Y )iaσ (X + Y ) jaσ + (X − Y )iaσ (X − Y ) jaσ
]

, (16.13a)

Tabσ = 1

2

∑

i

[(X + Y )iaσ (X + Y )ibσ + (X − Y )iaσ (X − Y )ibσ ], (16.13b)

Tiaσ = Taiσ = 0. (16.13c)

The right-hand side of (16.10) also includes matrix elements of the third functional
derivative of the xc functional, which for spin-conserving excitations is of the form

gxc
σσ ′σ ′′(r, r ′, r ′′) = δ3 Exc

δnσ (r)δnσ ′(r ′)δnσ ′′(r ′′)
, (16.14)

while for spin-flip excitations it is given by

gxc,SF
σσ ′σ ′′(r, r ′, r ′′) = δσσ ′

[

− 1

n2
s (r)

δm(r)
δnσ ′′(r ′′)

δExc

δm(r)
+ 1

m(r)
δ2 Exc

δm(r)δnσ ′′(r ′′)

]

,

(16.15)
where m(r) = nα(r)− nβ(r) is the spin polarization density.

Once the Z-vector equation has been solved, the relaxed difference density matrix
P of the excitation is obtained by

P = T + Z , (16.16)

and the Lagrange multipliers W are calculated from

Wi jσ = 1

1+ δi j

{∑

a

ω[(X + Y )iaσ (X − Y ) jaσ + (X − Y )iaσ (X + Y ) jaσ ]

−
∑

a

εaσ [(X + Y )iaσ (X + Y ) jaσ + (X − Y )iaσ (X − Y ) jaσ ]

+ H+i jσ [P] + 2
∑

kcσ ′ldσ ′′
gxc

i jσkcσ ′ldσ ′′(X + Y )kcσ ′(X + Y )ldσ ′′
}

,

(16.17a)
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Wabσ = 1

1+ δab

{∑

i

ω[(X + Y )iaσ (X − Y )ibσ + (X − Y )iaσ (X + Y )ibσ ]

+
∑

i

εiσ [(X + Y )iaσ (X + Y )ibσ + (X − Y )iaσ (X − Y )ibσ ]
}

,

(16.17b)
and

Wiaσ = 1

2

∑

j

{(X + Y ) jaσ H+j iσ [X + Y ] + (X − Y ) jaσ H−j iσ [X − Y ]}

+ εiσ Ziaσ . (16.17c)

With the knowledge of Lagrange multipliers Z and W, first-order derivatives of exci-
tation energies may be computed by straightforward differentiation of the Lagrangian
L with respect to the coupling strength parameter ξ. By virtue of stationarity of L,
no derivatives of its variational parameters occur in the final expression. Therefore,
only Hellmann–Feynman terms and derivatives of basis functions with respect to the
perturbation contribute to the gradient, as indicated by superscript (ξ),

ωξ = Lξ =
∑

pqσ
F(ξ)pqσ Ppqσ −

∑

pqσ
S(ξ)pqσWpqσ

+ 1

2

∑

iaσ jbσ ′

(

K H(ξ)
iaσ jbσ ′ + K xc+(ξ)

iaσ jbσ ′ − K HFX+(ξ)
iaσ jbσ ′

)

(X + Y )iaσ (X + Y ) jbσ ′

+ 1

2

∑

iaσ jbσ ′

(

K xc−(ξ)
iaσ jbσ ′ − K HFX−(ξ)

iaσ jbσ ′
)

(X − Y )iaσ (X − Y ) jbσ ′ .

(16.18)

The resulting gradient expression includes derivative KS matrix elements F (ξ)pqσ and

derivatives of overlap integrals S(ξ)pqσ . Their evaluation is completely analogous to the
ground-state energy gradient (Pople et al. 1992), with density matrix P and energy-
weighted density matrix W given by (16.16) and (16.17a–c), respectively. In addition,
derivatives of interaction kernels give rise to further terms, which involve derivative
Coulomb integrals (iaσ | jbσ ′)(ξ) and derivatives of matrix elements of the xc kernel
f xc(ξ)
iaσ jbσ ′ (Furche and Ahlrichs 2002a).

16.2 Implementation of Excited-State Energy Derivatives

16.2.1 Atom-Centered Basis Sets

The most popular atom-centered basis sets include Gaussian-type (Davidson and
Feller 1987) and Slater-type basis sets (van Lenthe and Baerends 2003). The use
of Gaussian-type basis sets in molecular calculations makes efficient evaluation of
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matrix elements over basis functions possible. Several analytical integration schemes
exist for Coulomb integrals over Gaussian basis functions (Helgaker et al. 2000),
while matrix elements of exchange-correlation potential and its functional deriva-
tives can be efficiently computed by numerical quadrature (Becke 1988b; Treutler and
Ahlrichs 1995). The matrix element-driven implementation of excited-state energy
derivatives includes repeated transformations between the KS orbital representa-
tion, which is required in the matrix multiplication steps in (16.11), (16.13a–c), and
(16.17a–c), and the basis set representation, which enters the matrix element evalua-
tion (Furche and Rappoport 2005b). An analogous approach is employed to compute
the off-diagonal contributions to the matrix-vector products arising in the itera-
tive solution of the TDDFT linear response equation (Bauernschmitt and Ahlrichs
1996a; Chernyak et al. 2000b; Furche and Rappoport 2005b). In both cases, the simi-
larity to the Fock matrix construction of ground-state KS calculations (Weiss et al.
1993) makes efficient algorithms of ground-state DFT transferable to excited-state
calculations.

Atom-centered basis functions depend on the positions of the nuclei. Therefore,
the gradient expression (16.18) includes not only matrix elements of the perturba-
tion (Hellmann–Feynman terms) but also terms depending on derivatives of basis
functions, which are known as Pulay forces in quantum chemistry (Pulay 1987).
In the basis set representation, the gradient (16.18) can be expressed in terms of
derivative matrix elements and auxiliary one- and two-particle density matrices. For
spin-conserving excitations and global hybrid functionals, the gradient of the exci-
tation energy takes the following form (Furche and Ahlrichs 2002a):

ωξ = Lξ =
∑

μνσ

hξμν Pμνσ −
∑

μνσ

SξμνWμνσ +
∑

μνσ

v
xc(ξ)
μνσ Pμνσ

+
∑

μνσκλσ ′
(μν|κλ)ξΓμνσκλσ ′ +

∑

μνσκλσ ′
f xc(ξ)
μνσκλσ ′ (X + Y )μνσ (X + Y )κλσ ′ .

(16.19)
Here, indicesμ, ν, κ, λ denote basis functions. The contributing terms include deriv-
ative core Hamiltonian matrix elements hξμν, derivatives of overlap integrals Sξμν,

derivatives of matrix elements of xc potential vxc(ξ)
μνσ , and derivative Coulomb integrals

(μν|κλ)ξ . Their evaluation is analogous to the ground-state DFT energy gradient
(Pople et al. 1992) and can be combined with the latter. The effective two-particle
density matrix,

Γμνσκλσ ′ =Pμνσ Dκλσ ′ + (X + Y )μνσ (X + Y )κλσ ′ − 1

2
cxδσσ ′

(

Pμλσ Dκνσ ′

+ Pμκσ Dλνσ ′ + (X + Y )μλσ (X + Y )κνσ ′ + (X + Y )μκσ (X + Y )λνσ ′

− (X − Y )μλσ (X − Y )κνσ ′ + (X − Y )μκσ (X − Y )λνσ ′
)

,

(16.20)
separates into products of one-particle quantities, where Dμνσ = ∑

i CμiσCνiσ is
the ground-state KS density matrix.

Flexible Gaussian basis sets developed for ground states usually perform well in
excited-state calculations. The smallest recommendable basis sets are of split-valence
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quality and have polarization functions on all atoms except H, e.g., SV(P) (Schäfer
et al. 1992; Weigend and Ahlrichs 2005) or 6-31G* (Hariharan and Pople 1973;
Francl et al. 1982; Rassolov et al. 1998). Especially in larger systems, these basis
sets can give useful accuracy, however, excitation energies may be overestimated
by 0.2–0.5 eV for valence excitations. Triple-zeta valence basis sets with two sets
of polarization functions, e.g., cc-pVTZ (Dunning 1989; Woon and Dunning 1993;
Wilson et al. 1999) or TZVPP (Schäfer et al. 1994; Weigend and Ahlrichs 2005),
usually lead to basis set errors well below the functional error; larger basis sets
(Weigend et al. 2003; Dunning 1989; Woon and Dunning 1993; Wilson et al. 1999)
may be used to benchmark. Diffuse augmentation may be crucial for higher exci-
tations and Rydberg states. Diffuse augmentation schemes based on ground-state
optimization of anions (Kendall et al. 1992; Woon and Dunning 1993) and extrapo-
lation (Woon and Dunning 1994) have been developed. Property-optimized diffuse
augmented basis sets are derived from variational principle for static electric polar-
izabilities (Rappoport and Furche 2010).

16.2.2 Plane-Wave Basis Sets

Plane-wave basis sets are independent of the positions of the nuclei, and their conver-
gence towards the basis set limit is controlled by a single cutoff parameter. Plane-
wave codes are particularly efficient in the absence of nonlocal HF exchange, when
transition densities and excited-state difference densities can be expressed in the real
space as

nX+Y (r) =
∑

μνσ

(X + Y )μνσ φμ(r)φν(r), (16.21)

and analogously for T, Z, and P. Only Hellmann–Feynman terms contribute to the
gradient and (16.18) reduces to (Hutter 2003)

Lξ =
∑

μνσ

hξμν Pμνσ =
∫

d3rn P (r)
∂vext(r)
∂ξ

(16.22)

where n P is the relaxed difference density of the excitation.

16.2.3 Tamm–Dancoff Approximation

An often used approximation to TDDFT excitation energies is the Tamm–Dancoff
approximation (TDA) (Grimme 1996; Hirata and Head-Gordon 1999; Hutter 2003),
which amounts to restricting Yiaσ = 0 in the variation of the Lagrange functional L.
As a result, the TDDFT linear response equation reduces to the symmetric eigenvalue
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problem

AXTDA = ωTDA XTDA. (16.23)

While the TDA excitation energies are generally quite close to the full TDDFT excita-
tion energies, transition moments do not satisfy the common sum rules (Furche 2001)
and are generally less accurate than the full TDDFT transition moments. However,
even though the TDA is hardly less expensive than the full TDDFT treatment, it can
be more robust with respect to triplet instabilities (Číz̃ek and Paldus 1967, Bauern-
schmitt and Ahlrichs 1996b).

16.2.4 Resolution-of-the-Identity Approximation

The resolution-of-the-identity (RI-J) approximation is an efficient approximation to
the Hartree contributions in (16.4a, b) (16.12a, b) and (16.18) (Eichkorn et al. 1995,
Bauernschmitt et al. 1997). It is based on an expansion of transition densities and
difference densities in a basis of auxiliary atom-centered basis functions. The error
in the Hartree contribution is minimized by choosing the expansion coefficients with
respect to the Coulomb metric (Dunlap et al.1979; Eichkorn et al. 1995). In the
RI-J approximation, four-center Coulomb integrals can be completely avoided. The
evaluation of Hartree contributions in (16.4a, b), (16.12a, b) and (16.18) is instead
performed in three low-scaling steps and involves only three-center and two-center
Coulomb integrals.

The quality of the auxiliary basis sets is critical for the accuracy of the RI-J
approximation. Standard auxiliary basis sets developed for ground-state RI-J calcu-
lations (Eichkorn et al. 1995, 1997; Weigend 2006) are also sufficiently accurate
in excited-state calculations, although diffuse augmentation is sometimes necessary.
The errors introduced by the RI-J approximation are usually less than 10% of the
basis set errors for excitation energies (Bauernschmitt et al. 1997; Rappoport and
Furche 2005) and even less for excited-state structures and first-order properties
(Rappoport and Furche 2005).

16.3 Performance of TDDFT for Excited-State Energies
and their Derivatives

16.3.1 Singlet Excitations

Prediction of electronic excitation energies in molecular systems with good accu-
racy is among the greatest successes of TDDFT and continues to drive methodolog-
ical and algorithmic development. TDDFT has evolved into an established method
for simulations of optical spectra, and, increasingly, excited-state properties and
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dynamics. It provides a useful level of accuracy for many medium-size and large
molecular systems at a computational cost that is similar to that of ground-state DFT
calculations. Performance of TDDFT for electronic excitation energies and excited-
state properties has been the subject of several recent reviews (Grimme 2004; Rosa
et al. 2004; Dreuw and Head-Gordon 2005; Furche and Rappoport 2005b; Furche
and Burke 2005c; Elliott et al. 2009; Rappoport et al. 2009). In this section we give
an overview of the typical performance of TDDFT for electronic excitation energies
and excited-state properties, discuss some problem cases, and outline several new
developments.

Several benchmark studies on small and medium-size molecules have
demonstrated that average accuracy of 0.2–0.5 eV can be achieved with TDDFT
for vertical excitation energies of singlet valence excitations (Bauernschmitt and
Ahlrichs 1996a; Parac and Grimme 2002; Dierksen and Grimme 2004; Silva-Junior
et al. 2008; Jacquemin et al. 2009; Goerigk et al. 2009; Caricato et al. 2010). However,
the accuracy of vertical excitation energies remains markedly dependent on the type
of the approximate xc functional and kernel, and given the large number of available
approximations, the choice of the “best” functional might seem a daunting task. Fortu-
nately, the type of the approximate xc functional (LDA, GGA, global hybrid, LRC
functional) often gives a good indication of its performance for a particular class of
excitations. In Table 16.2 we show a statistical evaluation of vertical excitation ener-
gies for singlet valence excitations in small and medium-size organic molecules from
Jacquemin et al. (2009) and Goerigk et al. (2009). We consider some of the estab-
lished approximations for xc functionals that represent LDA, GGA, meta-GGA, and
global hybrid functionals. In addition, we include more recent developments such
as LRC functionals, and double hybrids (Grimme 2006; Goerigk et al. 2009). For
comparison, excitation energies from TDHF are given. Theoretical estimates from
Schreiber et al. (2008) obtained from high-level wave function methods serve as a
reference. Mean errors, mean unsigned errors, and root-mean-square (RMS) devia-
tions as well as largest positive and negative deviations from the reference are shown.

Vertical excitation energies are severely underestimated by the LDA, for which
deviations of up to 1 eV are not unusual. Gradient-corrected functionals such as
Becke–Perdew 1986 (BP86) (Becke 1988a; Perdew et al. 1986a) and PBE (Perdew et
al. 1996b) offer a modest improvement over LDA with respect to the mean unsigned
errors and to the width of the error distribution. In general, results obtained with
different GGA functionals are very similar to each other. The meta-GGA functional
of Tao, Perdew, Staroverov, and Scuseria (TPSS) (Tao et al. 2003) performs some-
what better than GGAs. Table 16.2 also illustrates the well-known tendency of TDHF
to overestimate vertical excitation energies of singlet valence excitations by about
1 eV on average. Global hybrid functionals interpolate between the overestimation of
TDHF and the underestimation of GGAs. It was found that global hybrid functionals
containing 20–25% nonlocal HF exchange such as B3LYP and PBE0 are quite accu-
rate for singlet valence excitations. On the other hand, global hybrids containing a
higher proportion of nonlocal HF exchange, such as Becke’s half-and-half hybrid
(BHLYP), tend to give too high vertical excitation energies.
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Table 16.2 Mean errors, mean unsigned errors, root-mean-square (RMS) deviations, and maximum
negative and positive deviations in electron volt from theoretical best estimates of vertical excitation
energies in 28 molecules (103 singlet valence excited states)

TDHF LDA BP86 PBE TPSS B3LYP

Mean 0.99 −0.48 −0.44 −0.45 −0.29 −0.08
Mean uns. 1.05 0.57 0.52 0.53 0.42 0.26
RMS dev. 1.23 0.68 0.62 0.64 0.51 0.32
Max neg. −0.61 −1.42 −1.36 −1.38 −1.17 −0.75
Max pos. 2.61 0.70 0.66 0.64 0.74 0.75

PBE0 BHLYP LC-ω PBE CAM-B3LYP B2PLYP
Mean 0.05 0.42 0.41 0.22 0.01
Mean uns. 0.24 0.49 0.46 0.31 0.19
RMS dev. 0.32 0.60 0.61 0.42 0.25
Max neg. −0.66 −0.56 −0.68 −0.64 −0.70
Max pos. 0.92 1.57 2.16 1.46 0.88

TDHF and TDDFT results for the following functionals are shown: LDA in Vosko-Wilk-Nusair
V parametrization (Vosko et al. 1980), GGA functionals BP86 (Becke 1988a; Perdew 1986a) and
PBE (Perdew et al. 1996b), TPSS meta-GGA functional (Tao et al. 2003), global hybrids B3LYP
(Becke 1993a, b), PBE0 (Perdew et al. 1996c), and BHLYP (Becke 1993b), LRC functionals LC-ω
PBE (Vydrov and Scuseria 2006; Vydrov et al. 2006b) and CAM-B3LYP (Yanai et al. 2004) and
double hybrid functional B2PLYP (Grimme 2006; Grimme and Neese 2007). The data are from
Jacquemin et al. (2009), Goerigk et al. (2009).

LRC functionals are represented by the LC-ω PBE functional of Scuseria and
co-workers (μ = 0.40 a.u.−1, α = 0, β = 1) (Vydrov and Scuseria 2006; Vydrov
et al. 2006b) and the Coulomb-attenuated B3LYP functional CAM-B3LYP (μ =
0.33 a.u.−1, α = 0.19, β = 0.46) (Yanai et al. 2004), cf. (16.6). The available results
indicate that LRC functionals show performance similar to global hybrids for singlet
π→π∗ and n→π∗ excitations (Silva-Junior et al. 2008; Jacquemin et al. 2009,
2007b). Considerable dependence of the results on the range separation parameter μ
was observed (Peach et al. 2006; Rohrdanz and Herbert 2008; Rohrdanz et al. 2009;
Wong et al. 2009).

Double hybrid functionals combine a GGA part, nonlocal HF exchange as well
as a nonlocal orbital-dependent correlation functional (Grimme 2006). The compu-
tational cost of double hybrid functionals is therefore higher than that of global
hybrids and corresponds to that of Møller–Plesset second-order perturbation theory
(MP2). An approximate procedure for computing excitation energies within the
double hybrid scheme was developed, in which the linear response is computed
using the GGA and nonlocal HF exchange kernels, while the nonlocal correlation
is added as a perturbative correction (Grimme and Neese 2007). Initial benchmark
studies using the double hybrid functional B2PLYP showed encouraging results,
which are somewhat better than those for global hybrids. For a detailed discussion,
we refer to Jacquemin et al. (2009), Goerigk et al. (2009).

Table 16.3 summarizes the performance of configuration interaction singles (CIS)
method, LDA, BP86 and PBE functionals of GGA type and the B3LYP global hybrid
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Table 16.3 Mean unsigned errors compared to experiment for adiabatic excitation energies, excited-
state bond distances, dipole moments, and vibrational frequencies with CIS, LDA in the Perdew–
Wang parameterization (Perdew and Wang 1992a), GGA functionals BP86 (Becke 1988a; Perdew
1986a) and PBE (Perdew et al. 1996b), and B3LYP global hybrid (Becke 1993a,b)

Property Exp. mean CIS LDA BP86 PBE B3LYP

34 ad. exc. energies (eV) 4.5 0.6a 0.3b 0.3 0.3 0.3
40 bond distances (pm) 142.2 3.5a 1.5b 1.3 1.3 1.3
10 dipole moments (D) 1.3 0.4a 0.1a 0.1 0.1 0.2
80 vib. frequencies (cm−1) 1258 169c 62b 49 49 61

The data are from (Furche and Ahlrichs 2002a)
a Excludes the 12Σ+ state of NO (instability)
b Excludes the 11 B1 state of CCl2 and the 12Σ+ state of NO (instabilities)
c Excludes the 12Σ+ state of NO (instability) and the ν13 (1a2) frequency of the 11 B2 state of
pyridine (saddle point)

for adiabatic excitation energies and excited-state bond distances, dipole moments,
and vibrational frequencies. The most striking observation is that structural parame-
ters and other properties of excited states are generally predicted with better accu-
racy than excitation energies (Furche and Ahlricks 2002a; Rappoport and Furche
2005). This is understandable since excited-state properties depend only on rela-
tive energies and thus benefit from significant error cancellation. As a consequence,
excited-state bond distances may be reproduced with an accuracy of 1–2 pm with
LDA, GGA, and global hybrids, which is comparable to the accuracy of ground-
state DFT. Another consequence of the error cancellation is that adiabatic excitation
energies are generally predicted with an accuracy similar to that of vertical excitation
energies. Similarly, excited-state energy differences are predicted with better accu-
racy than transition energies of excitations from the ground state (Silva-Junior et al.
2008). It should be noted, however, that the shapes of excited-state potential energy
surfaces may be considerably affected by the shortcomings of present approximate
TDDFT such as lack of double excitations or spurious charge-transfer states, see
below. Larger and less systematic errors or even qualitatively wrong results may be
obtained for adiabatic excitation energies and excited-state properties in these cases.

The performance of TDDFT for the calculation of transition moments and oscil-
lator strengths of dipole-allowed transitions was recently assessed in several bench-
mark studies (Miura et al. 2007; Silva-Junior et al. 2008; Caricato et al. 2011).
It was found that LDA and GGA functionals tend to underestimate oscillator strengths
compared to high-level wave function methods, while inclusion of nonlocal HF
exchange leads to some improvement. LRC functionals predict oscillator strengths
with fairly good accuracy.

16.3.2 Charge-Transfer Excitations in TDDFT

The accuracy of present TDDFT methodology is often sufficient for predicting elec-
tronic absorption spectra and properties of optically allowed excited states. However,
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detailed studies of electronic excited-state manifolds and the corresponding potential
energy surfaces reveal a number of drawbacks, which can be traced back to limitations
of the approximate xc potentials and kernels currently in use. Well-known problem
cases are charge-transfer excited states, Rydberg transitions, spin-forbidden excita-
tions, and excitations with considerable doubles character. Less obvious weaknesses
include the well-documented underestimation of excitation energies of La transitions
in polycyclic aromatic hydrocarbons (Grimme and Parac 2003; Parac and Grimme
2003; Wong and Hsieh 2010) or the erroneous chain length dependence of excitation
energies in cyanine dyes (Jacquemin et al. 2007a; Send et al. 2011). These short-
comings have spurred broad research activity aimed to understand their causes and
develop practicable solutions. In the following, we will briefly discuss some typical
problem cases and outline some proposed solutions. We also refer to Chap. 4 for
theoretical background.

The problem of long-range charge transfer (CT) is perhaps the most prominent
drawback of the present TDDFT methodology and has recently received a great
deal of attention. Excited states exhibiting complete or partial charge transfer are
frequently encountered in photochemical studies and play a central role in photo-
synthesis and organic photovoltaics. The amount of charge transfer often depends
on the molecular geometry and may increase upon structural relaxation in the
excited state. In fact, excited states such as twisted intramolecular charge-transfer
(TICT) states are essentially of valence type at the Franck–Condon region but gain
strong charge-transfer character at the excited-state energy minimum (Rettig 1986).
In TDDFT, excitation energies of CT states are commonly underestimated by a signif-
icant amount. Indeed, errors in excitation energies of CT states are often 1 eV or more
(Tozer et al. 1999; Peach et al. 2008). In some cases, the relative energies and thus
structures and properties of charge-transfer excited states may be predicted with satis-
factory accuracy (Rappoport and Furche 2004). However, CT errors of approximate
TDDFT often generate a number of spurious low-lying CT states, which may have
a profound effect on excited-state dynamics (Magyar and Tretiak 2007). The under-
estimation might even be strong enough to cause spurious crossings with ground-
state potential energy surfaces to appear (Kozak et al. 2010). Particularly striking
is the occurrence of spurious low-lying CT states in molecular aggregates. Instead
of following the −1/R dependence on the intermolecular distance R, the excitation
energies of CT states are grossly underestimated (Dreuw et al. 2003; Bernasconi et
al. 2003) and essentially distance-independent (Dreuw et al. 2003; Dreuw and Head-
Gordon 2004). This behavior has consequences for calculations of energy transfer
rates and Davydov splittings in dimers (Sagvolden et al. 2009). A useful diagnostic
for the CT character of a given excitation was proposed by Tozer and co-workers
(Peach et al. 2008). It is based on spatial overlap between the occupied and the virtual
orbitals involved in the excitation; values of the diagnostic close to zero indicate that
the excitation has significant CT or Rydberg character, while valence excitations
correspond to larger values of the diagnostic.

The failure of present approximate TDDFT to accurately describe long-range CT
excitations is attributed to the wrong asymptotic shape of ground-state xc potentials,
which leads to errors in orbital energies. Moreover, the essentially local character of

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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the non-hybrid xc kernels of (16.4a, b) has the consequence that their matrix elements
vanish at large separations between the donor and acceptor orbitals (Dreuw et al.
2003). We refer to Autschbach (2009) and Chap. 4 for a more in-depth discussion.
A host of different solutions for the CT problem in TDDFT has been proposed.
They range from asymptotic corrections to xc potentials (Tozer and Handy 1998;
Tozer et al. 1999) a posteriori energy corrections using methods exhibiting the correct
asymptotic behavior, such as CIS (Dreuw et al. 2003; Dreuw and Head-Gordon
2004), to introducing nonlocality in the xc kernel using the global hybrid or LRC
constructions (Tawada et al. 2004; Yanai et al. 2004; Vydrov and Scuseria 2006;
Baer et al. 2010b). Global hybrids were found to alleviate the CT problem, however,
a high percentage of about 50% of nonlocal HF exchange is required to obtain
satisfactory accuracy for CT states. This high proportion of HF exchange leads to
a strong overestimation of singlet valence excitation energies, cf. Table 16.2. LRC
functionals showed promise to systematically improve the description of CT excited-
states in TDDFT, and strong impetus for the development of LRC functionals came
from these applications. Several benchmark studies showed that LRC functionals
systematically increase excitation energies of CT states (Peach et al. 2006, 2008;
Plötner et al. 2010; Wong and Hsieh 2010). However, the choice of the optimal range-
separation parameter μ remains an open question; it was shown that the parameter
μ is strongly system-dependent and the requirements of ground-state calculations
and excitation energies with respect to its choice are inherently different (Peach et
al. 2006; Rohrdanz and Herbert 2008; Rohrdanz et al. 2009; Wong et al. 2009). A
variational procedure for finding the optimal value of the range-separation parameter
for a given excitation was developed and successfully applied to CT excitations (Stein
et al. 2009a, b). A combination of global exchange and LRC exchange was also
proposed for treating CT excitations (Rohrdanz et al. 2009).

16.3.3 Rydberg, Triplet Excitations and Excitations
with Doubles Character

The wrong asymptotic shape of semilocal xc potentials and the lack of derivative
discontinuity are responsible for systematic underestimation of Rydberg excitation
energies (Casida et al. 1998b; Tozer and Handy 1998; Della Sala and Görling 2002a,
b; Grüning et al. 2002; Caricato et al. 2010). Introduction of a nonlocal HF exchange
via the global hybrid scheme reduces the errors in excitation energies; however,
a much higher percentage of nonlocal HF exchange is typically required for Rydberg
excitations than for valence excitations (Caricato et al. 2010). LRC functionals
show slightly better performance than global hybrids (Peach et al. 2008). It should,
however, be noted that using special techniques, accurate Rydberg excitation ener-
gies may be computed even within the LDA (Wasserman and Burke 2005c). The
diffuse character of Rydberg excited states makes the use of augmented basis sets
absolutely necessary (Wiberg et al. 2002; Ciofini and Adamo 2007). In the absence

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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of diffuse basis functions, Rydberg excitations appear extremely blue-shifted or are
entirely absent from excitation spectra.

The accuracy of spin-forbidden excitations to triplet states has been recently
addressed in several benchmark studies (Silva-Junior et al. 2008; Jacquemin et al.
2010b). The excitation energies of triplet excitations are significantly underestimated
by LDA and GGA functionals; however, in contrast to singlet excitations, inclusion
of nonlocal HF exchange barely affects the quality of the results.

Excited-states with double-excitation character are often optically forbidden
(dark) but are assumed to play an important role in photochemical reactions.
Of particular interest are the dark 21 Ag states of polyenes (Hsu et al. 2001; Cave et al.
2004; Levine et al. 2006; Huix-Rotllant et al. 2011). Within adiabatic TDDFT, only
single excitations are obtained from linear response TDDFT calculations. Double
and higher excitations can only be described by introducing frequency dependence
into the xc kernel, see Chap. 8. However, is was observed that double excitations
are often strongly coupled to single excitations of similar energies. The absence of
this coupling in the adiabatic TDDFT has a profound effect on molecular electronic
excitation spectra. As was shown for the 21 Ag excited state of trans-butadiene, the
character of 21 Ag state predicted by TDDFT methods is qualitatively different from
that obtained by multi-reference wave function methods such as CASSCF (Levine
et al. 2006). A dressed TDDFT approach was developed for including the frequency
dependence for the model case of a double excitation coupled to an individual single
excitation, which showed promising results for dark states of polyenes (Maitra et
al. 2004; Cave et al. 2004). Several generalizations of this approach were recently
proposed (Gritsenko and Baerends 2009; Huix-Rotllant et al. 2011).

16.4 Non-Adiabatic Coupling Matrix Elements

In cases where the adiabatic approximation to the separation of nuclear and electronic
quantum effects fails, the non-adiabatic coupling vector or first-order nonadiabatic
coupling matrix elements (NACMEs),

d f i = 〈Ψi | ∂
∂ξ
Ψ f 〉, (16.24)

also called derivative coupling between the adiabatic states Ψi and Ψ f ,becomes the
central quantity linking the change of the electronic state with nuclear motion. The
variable ξ in Eq. 16.24 stands for a nuclear coordinate. Examples of nonadiabatic
effects include radiationless decay of electronically excited states by internal conver-
sion or through conical intersections, predissociation, and excitation energy transfer
(Domcke et al. 2004; Keal et al. 2007; Sagvolden et al. 2009).

In TDDFT the wavefunctions are not directly accessible and the calculation of
d f i has to be pursued via a time-dependent response approach. Similar to other
properties the coupling matrix elements are extracted from the time evolution of
observables. The theory of NACMEs in TDDFT was pioneered by Chernyak and

http://dx.doi.org/10.1007/978-3-642-23518-4_8
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Mukamel (2000a). In recent years several approaches ranging from finite differences
to approximate finite basis set response equations have been published (Baer 2002;
Billeter and Curioni 2005; Hu et al. 2007b, 2008, 2009; Tapavicza et al. 2007;
Tavernelli et al. 2009a, b, c). A complete derivation that includes also Pulay terms
following the gradient theory presented in Sect. 16.1 was given by Send and Furche
(2010). They derive an expression for first-order NACMEs from time-dependent
response theory by considering the time evolution of

Cξ (t) =
〈

Ψ (t) | ∂
∂ξ
Ψ (t)

〉

, (16.25)

under the influence of an external perturbation. First order couplings between the
ground state and an excited state n are extracted from residues of the first order
response of Cξ ,

dξn0 = −
∑

ia

(X − Y )nia〈ϕa(r) | ϕξi (r ′)〉, (16.26)

where ϕξi (r) is the derivative of KS orbital i with respect to an atomic coordinate.
Couplings between excited states may be calculated from nonlinear responses of Cξ

(Tavernelli et al. 2010a). The presence of the derivative of KS orbitals in Eq. 16.26
seems to imply that the coupled perturbed KS equations for all nuclear coordi-
nates have to be solved in order to calculate a complete coupling vector. This would
result in computational costs similar to second derivatives of the ground state energy.
However, Send and Furche (2010) were able to recast Eq. 16.26 into a form reminis-
cent of the ground state and excited state nuclear gradients

dξn0 =
∑

μνσ

hξμν Pn
μνσ −

∑

μνσ

SξμνW n
μνσ +

∑

μνσ

vxc(ξ)
μνσ Pn

μνσ

+
∑

μνσκλσ ′
(μν|κλ)ξΓ n

μνσκλσ ′ −
1

2

∑

μνσ

T ξμν (X − Y )nμνσ . (16.27)

In Eq. 16.27 we have made use of the following alternative definitions of the one-
and two-particle density matrices

Pn
iaσ = ω−1

n (X + Y )niaσ (16.28a)

W n
iaσ = εiσ Pn

iaσ +
1

2
(X − Y )niaσ (16.28b)

W n
i jσ =

1

1+ δi j
H+i jσ [Pn] (16.28c)

Γ n
μνσκλσ ′ = Pn

μνσ Pn
κλσ ′ −

1

2
cxδσσ ′

[

Pn
μλσ Dκνσ + Pn

νλσ Dκμσ
]

(16.28d)

T ξμν = 〈χξμ | χν〉 − 〈χμ | χξν 〉 (16.28e)
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where Dμνσ is an element of the ground state density matrix and ωn is the excitation
energy of state n.

16.5 Excited-State Dynamics

The Born–Oppenheimer separation between the motions of nuclei and electrons
is at the heart of most electronic structure calculations. This separation allows the
description of the dynamics of the nuclei with quantum or classical mechanics while
the electronic structure remains in an adiabatic eigenstate of the system. For systems
in the electronic ground state, the coupling of Newtonian dynamics with DFT has
become a very successful simulation method. Using a standard integration scheme,
Newton’s equations of motion are solved starting from an initial configuration. When
combined with DFT, this requires the solution of the KS equations and the calculation
of the first derivative with respect to atomic positions at each time step.

The method of adiabatic dynamics can easily be applied to other states than the
ground state. Having defined an excited state energy surface as the sum of the ground
state energy and an excitation energy from linear response within TDDFT, we only
need the nuclear forces to follow the system in time. Applying Newton’s equations
of motion restricts the dynamics to the initially chosen adiabatic state. However,
this restriction together with the neglect of the quantum mechanical behavior of the
nuclei often limits the scope of the simulations. Quantum effects such as tunneling,
interference and level quantization may be important for many systems. The single
state approximation will be much more severe for excited states than it is for the
ground state, and transitions between electronic states have to be taken into account
for most problems of interest. When such transitions occur, the forces experienced by
the nuclei may change drastically. This effect has to be properly incorporated into the
dynamics and is crucial for describing many dynamical effects like photochemistry,
electron transfer in molecules, or radiationless transitions (see Chap. 14).

In Chap. 14 advanced methods for excited-state dynamics are derived from the
non-relativistic time-dependent Schrödinger equation. If the total wavefunction at
each set of nuclear positions is expanded into the time-independent adiabatic elec-
tronic wavefunctions one find that the nuclear wavefunctions are solutions to the
following equation

i�
∂

∂t
χn(R̄, t) =

[

−
∑

α

1

2Mα

∇2
Rα + En(R̄)

]

χn(R, t)

−
∑

α

1

Mα

∑

m

[

dα(1)nm · ∇Rα +
1

2
dα(2)nm

]

χm(R̄, t), (16.29)

where En(R) is the adiabatic potential energy surface and dα(1)nm and dα(2)nm are the
first- and second-order nonadiabatic coupling vectors. Equation 16.29 is used in wave
packet dynamics and in connection with TDDFT response calculations uses the
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nuclear forces and NACMEs derived in the previous sections. The second-order
NACMEs are often either neglected or approximated using a resolution of the identity
method that allows to reduce second-order NACMEs to first-order NACMEs (Hirai
and Sugino 2009).

An alternative to wave package dynamics that replaces nuclear quantum dynamics
by a classical equation but retains the coupling between different adiabatic poten-
tial energy surfaces is Tully’s surface hopping (TSH) method (Tully and Preston
1971; Tully 1990). In this method a set of trajectories is propagated indepen-
dently according to Newton’s equation of motion. Nuclear quantum correlations are
neglected and transfer of amplitude between different potential energy surfaces is
achieved by a stochastic procedure (surface hopping). The time-dependent quantities
of interest are the complex-valued amplitudes Cn(t) that are propagated according
to (Tapavicza et al. 2007; Barbatti et al. 2007; Tavernelli et al. 2010b)

i�Ċm(t) =
∑

n

Cn(t)
[

Emδnm − i�
∑

α

Ṙα · dα(1)nm

]

. (16.30)

The classical trajectories of the nuclear positions are propagated adiabatically until a
switch to another adiabatic potential energy surface is initiated. In the fewest switches
algorithm (Tully 1990), the probability for a transition from state m to state n within
dt from time t is

gnm(t, dt) = −2

t+dt∫

t

dτ
1

|Cn(τ )|2 Re

[

Cm(τ )C
∗
n (τ )

∑

α

Ṙα · dα(1)nm (τ )

]

. (16.31)

A switch is initiated if and only if

∑

i≤m−1

gni < η <
∑

i≤m

gni , (16.32)

where η is a uniform random number in the interval [0, 1]. The combination of
surface hopping and TDDFT has been successfully applied to a series of problems
from photochemistry (Tapavicza et al. 2007, 2008; Aquino et al. 2009; Hirai and
Sugino 2009).

16.6 Solvation Effects and Coupling to Classical Force Fields

Many chemical reactions take place in condensed phase and therefore an accurate
theoretical description of solvent effects is of utmost importance in computational
quantum chemistry. Excited electronic states are generally more susceptible to envi-
ronment effects, specifically solvation. Effective solvation models in the framework
of the polarizable continuum model (PCM) have been applied to simulate bulk solva-
tion effects on structures and dynamics of electronically excited molecules in solution
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(Tomasi et al. 2005; Caricato et al. 2006; Scalmani et al. 2006; Mennucci et al. 2009).
Other applications to solvation effects in the excited state are using explicit solvent
models. One route to the simulation of large condensed systems is the combination of
electronic structure theory methods with empirical force fields. The idea behind this
combined quantum mechanics/molecular mechanics (QM/MM) (Sherwood 2000)
methods is to describe a part of the molecule/system quantum mechanically and the
rest within the empirical force field approach. In this QM/MM approach we can write
the total energy of the systems as

Etot = EQM + EMM + EQM−MM, (16.33)

where EQM is the energy of the QM part of the system, EMM the energy of the MM
system, and EQM–MM describes the coupling of the two parts. We will be concerned
here with the case where EQM is given by the TDDFT energy and we don’t have to
discuss EMM further. However, the coupling term EQM−MM has to be investigated.
The force field parameters, as well as van der Waals parameters were optimized to
describe the interaction of a ground state system. It is therefore important to ensure
that in the case of the description of excited states with TDDFT, the actual excitation
region is well separated from the QM–MM boundary. The important interaction
term in our case is the electrostatic interaction of the classical point charges with the
electronic charge density of the quantum system

Eel
QM−MM =

∑

I

∫

d3r
nQM(r)qI (R I )

|r − R I | . (16.34)

The sum in Eq. 16.34 runs over all point charges qI at position R I . If we now define
the charge density of the QM system as the derivative of the total energy with respect
to the external potential

nω(r) = ∂Eω
∂vext(r)

= n(r)+ n P (r), (16.35)

we see that it is the relaxed density that acts as the true charge density of the system
in the excited state. Replacing nQM(r) with nω(r) in the definition of Eel

QM−MM
also ensures that the calculation of the excitation energy and nuclear forces is still
consistent. If we add the interaction term to the Lagrangian (16.7) the additional
external potential from the classical point charges appears in the definition of A
(16.4a, b) and the KS matrix F. This coupling scheme has been applied in a series
of applications to spectroscopy in solution (Sulpizi et al. 2003, 2005).

The scheme outlined above, based on an interaction energy given by Eq. 16.34
applies also to other situations where a subsystem treated by TDDFT is embedded
into a charge density. A prominent case of such a method is the KS method
with constrained electron density embedding by Wesolowski and Warshel (1993).
An extension of this method for TDDFT has been formulated (Casida and Wesolowski
2004) and has been used to calculate the solvatochromic shift of excitation energies
for molecules in solution (Neugebauer et al. 2005).



Chapter 17
Electronic Transport

Stefan Kurth

17.1 Introduction

In this chapter we will tackle the problem of describing electron transport at the
nanoscale. Transport spectroscopy, i.e., the measurement of physical quantities
related to electron transport such as, e.g., the conductivity, provides an important
experimental tool to investigate mesoscale or nanoscale system. In recent years,
transport measurements through single molecules attached to two metallic leads
have become feasible. In fact, electronic devices based on single molecules form the
basis for the vision of a “molecular electronics” (Cuniberti et al. 2005).

In order to properly describe electron transport at the nanoscale, a quantum theory
of transport is of paramount importance. This theory should ideally be able to take
into account the atomistic details of the junction since transport properties of mole-
cules certainly depend strongly on the details of, e.g., the geometry of the junction
or the chemical bonding between molecule and metallic leads. Ground state DFT
(Hohenberg and Kohn 1964; Kohn and Sham 1965) provides a useful tool to describe
the atomistic details of a molecular junction with reasonable accuracy. Transport
properties, however, do not fall in the domain of ground-state DFT because transport
is a non-equilibrium phenomenon.
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At present, the standard methodology for atomistic modelling of electron trans-
port is based on a combination of non-equilibrium Green function theory (NEGF)
(Keldysh 1965) with DFT (Lang 1995; Di Ventra et al. 2000; Brandbyge et al.
2002; Evers et al. 2004; Koentopp et al. 2008). In this approach, transport is viewed
as a scattering problem: the device region (i.e., the molecule or nanostructure) is
coupled to two metallic leads at different chemical potentials and the electrons
are scattered from the self-consistent Kohn–Sham potential in the device region.
By construction, this approach is concerned with the steady state only, i.e., a constant,
time-independent current flowing as a consequence of the two leads being kept at
different chemical potentials.

Instead of directly aiming for the steady state, one may also adopt a time-dependent
point of view. Starting from the contacted lead-molecule-lead system initially in its
ground state (Cini 1980), one then drives the system out of equilibrium by applying
a bias in the leads and follows the time evolution of the system towards a steady
state (if this steady state is actually achieved). This approach faces the problem that
one essentially has to treat a macroscopic system (the leads coupled to the device),
although in the end one is interested in the transport properties of the nanoscale
device only.

Of course, also the transport problem is inherently a many-body problem of
interacting electrons. Therefore it is crucial to treat the electron-electron inter-
action properly. Not surprisingly, here we choose a TDDFT approach to deal
with the interaction. The locality of the KS potential is actually quite advanta-
geous when partitioning the system into left and right leads and central nanodevice
region.

In the steady-state limit, TDDFT has been shown to lead to an exchange-
correlation correction of the zero-bias conductance (Koentopp et al. 2006, Stefanucci
et al. 2007a) which, however, vanishes for the typical local and adiabatic approxi-
mation to the xc kernel. This correction is more easily accessible in a current-DFT
framework (Koentopp et al. 2006; Vignale and Di Ventra 2009).

In the present chapter we will review three TDDFT approaches to time-dependent
transport: (i) modelling the leads as large but finite system, (ii) using an embedding
technique to take into account the coupling of the nanodevice to semi-infinite leads
and (iii) a quantum kinetic approach which describes the coupling to an environment
via a master equation.

Of course, besides TDDFT there are also other approaches for time-dependent
transport through interacting nanodevices which, however, will not be covered here.
These include non-equilibrium many-body techniques propagating the
Kadanoff-Baym equations (Myöhänen et al. 2008; Myöhänen et al. 2009; von Friesen
et al. 2010), the time-dependent renormalization group (Branschädel et al. 2010;
Heidrich-Meisner et al. 2009), real-time path integral (Mühlbacher and Rabani 2008)
and Monte Carlo approaches (Werner et al. 2010).
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Fig. 17.1 Schematic sketch of the three different approaches to transport discussed in the text:
a the nanosystem or molecule attached to two large but finite leads is placed in an external electric
field; b the molecule is attached to two semi-infinite leads with applied biasΔw = wL −wR; c the
molecule plus a finite portion of the metallic leads are repeated periodically in a time-dependent
vector potential describing the applied external electric field

17.2 TDDFT Approaches to Transport

17.2.1 Finite Systems

A technical difficulty in the theoretical treatment of (time-dependent) electron trans-
port stems from the fact that one wants to describe a nanoscopic system coupled to
macroscopic leads. In fact, for non-interacting electrons it has been shown (Stefanucci
and Almbladh 2004b) that a system perturbed from its ground state by application
of a DC bias will evolve towards a steady state provided that the density of states
is a smooth function of energy which implies that the system lead-device-lead has
to be (infinitely) extended. Of course, this is a theoretical idealization since in the
real world the leads, though macroscopic, are still finite. It is therefore natural to
model the system by the device connected to large but finite leads (see Fig. 17.1a).
Of course, then one can at best achieve a quasi-steady current with a finite lifetime
which crucially depends on the system size. This finite-system approach has been
used in conjunction with TDDFT to model transport through nanoscale systems
(Bushong et al. 2005; Sai et al. 2007; Cheng et al. 2006; Evans et al. 2008; Evans
and Van Voorhis 2009; Evans et al. 2009).

In the approach of Di Ventra and coworkers (Bushong et al. 2005; Sai et al. 2007)
the (finite) system consists of two large reservoirs connected by a constriction with
cross section much smaller than the cross section of the reservoirs. Initially, the
system is exposed to an external potential of the form
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v(r) = v0 [Θ(z − z0)−Θ(−z − z0)] (17.1)

which mimicks the bias. Here,±z0 are in the right and left leads, respectively, which
bear a potential offset from the central constriction (located at z = 0). The initial state
is calculated from a standard self-consistent Kohn–Sham scheme in the presence of
the potential v(r) which induces a charge imbalance between left and right leads.
At time t = 0, the external potential v(r) is switched off and the system starts to
discharge across the constriction. The time evolution is followed with TDDFT using
the adiabatic LDA for exchange and correlation. The time-dependent current in
the middle of the junction is monitored and one can see how it evolves towards
a current plateau (interpreted as the steady state current) before the finite size of the
system leads to a decaying current due to reflections at the far ends of the leads. The
methodology has been validated for a tight-binding model of noninteracting electrons
(Bushong et al. 2005). It has then been applied with TDDFT for monoatomic gold
chains of various chain length (Bushong et al. 2005) as well as for the study of current
flow patterns in jellium model junctions (Sai et al. 2007) and two dimensional gold
leads connected through a single gold atom (Sai et al. 2007).

In Refs. (Cheng et al. 2006; Evans et al. 2008; Evans and Van Voorhis 2009;
Evans et al. 2009) a similar approach is taken. One difference is the use of Gaussian
basis functions in these works. Two different setups are used for the time-dependent
simulations. In one case, Löwdin atomic populations (Löwdin 1955) are used to build
the initial state (Cheng et al. 2006) with different chemical potentials in left and right
leads. This “bias” is switched off at t = 0 and the time evolution is calculated within
TDDFT. In the second case, the simulation starts from the ground state with a bias
being suddenly switched on at t = 0. One problem of this approach is the presence
of significant fluctuations in the resulting time-dependent currents. A steady-state
current is extracted by time-averaging the current over a time interval significantly
larger than the time step of the propagation. In (Evans and Van Voorhis 2009) where a
benzenedithiol attached to gold leads is studied, charge oscillations on the molecule
are found and the system appears not to evolve towards a steady state.

17.2.2 Infinite Systems via Embedding Technique

In this section we will describe an embedding approach to take into account semi-
infinite leads coupled to the central device, see Fig. 17.1b).

We write the time-dependent KS Hamiltonian of the coupled system left lead
(L)—central device (C)—right lead (R) in a localized basis as

ĤKS(t) =
⎛

⎝

ĤLL ĤLC ĤLR

ĤCL ĤCC ĤCR

ĤRL ĤRC ĤRR

⎞

⎠ (17.2)

where Ĥαα is the part of the Hamiltonian which describes the isolated region
α = L,C,R and Ĥαα′ (α �= α′) describes the coupling between the different regions.
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(In a grid representation, the Ĥαα′ (α �= α′) contain the off-diagonal parts of
the kinetic energy operator stemming from the discretization of the Laplacian, in
a tight-binding picture they contain the hopping matrix elements.) In general, the
Hamiltonian blocks Ĥαα′ are time-dependent but for notational convenience we here
do not write this time dependence explicitly.

The time-dependent KS equation for KS orbital ϕk reads

[

i∂t − Ĥks(t)
]

ϕk(t) = 0 (17.3)

where the KS orbital is ϕk(t) = (ϕk,L(t), ϕk,C(t), ϕk,R(t))T with ϕk,α(t) being the
projection of ϕk(t) onto region α. We now assume that the Hamiltonian blocks
coupling the left and right leads vanish identically,

ĤLR = 0 and ĤRL = 0. (17.4)

Then one can derive from Eq. 17.3 the following equation of motion for the KS orbital
projected onto the central region ϕk,C(t)

[

i∂t − ĤCC(t)
]

ϕk,C(t) =
t∫

0

dt ′Σ̂R
emb(t, t ′)ϕk,C(t

′)+
∑

α=L,R

ĤCαĜR
αα(t, 0)ϕk,α(0).

(17.5)

Here ĜR
αα(t, t ′) is the retarded Green function for lead α which satisfies the equation

of motion
(

i∂t − Ĥαα
)

ĜR
αα(t, t ′) = δ(t − t ′) (17.6)

with initial conditions ĜR
αα(t, t+) = 0 and ĜR

αα(t, t−) = −i.

Σ̂R
emb(t, t ′) =

∑

α=L,R

ĤCαĜR
αα(t, t ′)ĤαC (17.7)

is the embedding self energy. Equation 17.5 describes the time evolution of the KS
orbital ϕk,C(t) projected onto the central device in the presence of the leads. The first
term on the r.h.s. of this equation we call the memory term because it depends on the
history of ϕk,C(t). Physically, it describes how the KS electron leaving the device
region is scattered back from the leads. The second term on the r.h.s. of Eq. 17.5
depends on the the KS orbital projected on the leads at initial time t = 0. This term
we call the source term because it describes how the leads act as particle sources for
the central device.

We have suggested a practical algorithm to solve Eq. 17.5 (Kurth et al. 2005).
We work with a real-space or tight-binding representation of the KS Hamiltonian
or, in other words, our basis functions are completely localized on a given site (grid
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point). Since the KS potential is a local, multiplicative potential in real space, in this
basis the time dependence of the KS Hamiltonian (17.2) is restricted to the diagonal
elements of the matrix while all off-diagonal matrix elements are independent of
time. For convenience we assume that the time-dependent potential in the leads is
independent of position or site, i.e.,

Ĥαα(t) = Ĥαα(0)+ wα(t)1̂α (17.8)

where the time-dependent biaswα(t) in lead α (α = L,R) is an arbitrary, externally
controlled function of time with wα(0) = 0. Physically, this assumption describes
perfect metallic screening, i.e., any external electric field is completely screened
inside the lead at each instant of time. This allows for a significant simplification
in the calculation of the memory and source terms, mainly because the lead Green
function ĜR

αα(t, t ′) for the time-dependent case can trivially be related to that for
time-independent leads.

In order to solve Eq. 17.5, we also need to calculate the initial KS orbital ϕk(0).
In the general case, the (self-consistent) calculation of a scattering state for a system
without spatial periodicity is nontrivial. However, for the simple model systems
studied below, they can be obtained by standard means. The actual time propaga-
tion in our algorithm is performed with a modified version of the Crank-Nicholson
algorithm. For details on the implementation we refer the reader to the original work
(Kurth et al. 2005; Stefanucci et al. 2008a). The original algorithm has been gener-
alized to describe spin dynamics in quantum dots (Stefanucci et al. 2008b) and to
the case of superconducting leads (Stefanucci et al. 2010). An alternative but similar
algorithm to implement the transparent boundary conditions in transport has been
suggested in (Zheng et al. 2007).

In the following section we will discuss two applications of the formalism
described above to rather simple model systems. In both cases, the assumption that
the biased system evolves towards a steady state will turn out to be unjustified.
First we will consider non-interacting electrons and show that the presence of bound
states inhibits the evolution towards a steady current for a system under DC bias.
In the second case, we will show that a discontinuous TDDFT xc potential can have
a profound effect on the time evolution of a biased system and may lead not to
a steady state but to a dynamical state of correlation-induced density oscillations.
This dynamical state can be shown to be closely related to the Coulomb blockade
phenomenon.

Bound state oscillations. We consider an infinitely extended system of non-
interacting electrons. The system is partitioned into a nanodevice region connected
to two semi-infinite, metallic leads which is initially in its ground state and then
driven out of equilibrium by applying a DC bias. It is reasonable to expect that
the time-evolution of the system will eventually lead to the formation of a steady
state current. It has been show theoretically (Stefanucci and Almbladh 2004a, b)
that such a steady state is achieved if the local density of states in the device
region is a smooth function of energy. However, if the biased system supports
two or more bound states in the device region (i.e., the local density of states
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has delta peaks), a system of non-interacting electrons under a DC bias does not
evolve towards a steady state (Dhar and Sen 2006, Stefanucci 2007). Instead,
it can be shown that in the long-time limit the density consists of two contributions,
a steady-state contribution and a dynamical contribution which reads

ndyn(r, t) =
∑

b,b′
fb,b′ cos((ε∞b − ε∞b′ )t)ϕ∗b (r)ϕb′(r). (17.9)

Here,ϕb(r) and ε∞b are the bound states and eigenenergies of the biased Hamiltonian.
The coefficients fb,b′ can be shown to depend on the history of the system (Stefanucci
2007) and their diagonals fb,b may be interpreted as occupation numbers of bound
state ϕb(r) in the long-time limit (Khosravi et al. 2008, 2009).

We take a one-dimensional model system as an example. We start with electrons
in the ground state of a constant potential v (z) = 0 and the plane-wave eigenstates
are occupied up to the Fermi energy εF = 0.2 a.u. At time t = 0, we suddenly switch
on both a bias wL(t) = 0.05Θ(t) a.u. in the left lead (i.e. for z < −1 a.u.) and a
gate potential vgate(z, t) = vg(z)Θ(t) with vg(z) = −1.8 a.u. for |z| ≤ 1 a.u. and
zero otherwise. The biased Hamiltonian then has two bound states with energies
ε∞1 = −1.291 a.u. and ε∞2 = −0.114 a.u.

In Fig. 17.2 we show the modulus of the Fourier transform of the current I(t) for
0 ≤ t ≤ 500 a.u. at position z = 0. We recognize a number of well defined peaks
which can clearly be identified with characteristic transitions of the system. The main
peak occurs, as expected, at the transition frequency between the energy levels of
the Hamiltonian at t → ∞. In addition there are smaller peaks which correspond
to transitions from the two bound levels to the Fermi energy shifted by the bias in
the leads. A time-frequency analysis reveals (Khosravi et al. 2008) that only the
peak with the transition frequency ω = ε∞2 − ε∞1 corresponds to truly persistent
oscillations in the current. The transitions towards the continuum of the leads appear
only during a transient period after switch-on of the bias.

In the inset of Fig. 17.2 we also show the time-dependent current for the situation
described above with initial potential v (z). In addition, the time-dependent current is
shown for a different inital potential, v(z) = vg(z), chosen such that after switching
on the bias in the leads the potential landscape is exactly the same in both cases,
i.e., in both situations the biased Hamiltonian supports the same two bound states.
One can see that in the first case [v (z) = 0] the current oscillates with a rather large
amplitude. In the second case [v(z) = vg(z)], although not visible on the scale of
this plot, the current oscillates with the same frequency but with a much smaller
amplitude. This example shows explicitly the dependence of the coefficients fb,b′ in
Eq. 17.9 on the initial state of the system. A dependence on the history of the system
can also be observed when gate and/or bias are not switched on suddenly but smoothly
with a switching time Tg. Then the amplitude of the current oscillations depends on
Tg and the oscillations become small in the limit of slow switching (Khosravi et al.
2008).

Dynamical Coulomb blockade. In the present subsection we will show, again for a
simple model system, that also when the interaction is taken into account via TDDFT,
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Fig. 17.2 Modulus of the discrete Fourier transform of the current for a system of non-interacting
electrons in one dimension in the initial potential v(z) = 0. At t = 0, a bias wL = 0.05 a.u.
and a gate potential vg(z) are suddenly switched on. Here the gate potential is vg(z) = −1.8 a.u.
for |z| ≤ 1 a.u. and zero otherwise. The inset shows the time-dependent current for this situation
(dashed line) as well as for the case where the initial potential is v(z) = vg(z). At time t = 0 the
bias wL = 0.05 a.u. is suddenly switched such that the potential for times t > 0 is the same in both
cases

a biased system not always evolves towards a steady state. Here the crucial ingredient
is the use of an exchange-correlation functional which has a derivative discontinuity
at integer particle number. In static DFT, Perdew et al. (Perdew et al. 1982) have
established the existence of such a derivative discontinuity for the exact exchange-
correlation energy functional. In a TDDFT context, the derivative discontinuity has
been investigated in Refs. (Lein and Kümmel 2005; Mundt and Kümmel 2005)
(see also Chap. 6).

In the present section we will use an exchange-correlation potential which is a
local, but discontinuous function of the density. In certain parameter regimes, which
can be identified with the regime of Coulomb blockade, this discontinuity leads to
the biased system approaching a dynamical state of persistent density and current
oscillations in the long-time limit (Kurth et al. 2010).

We consider the model of a single interacting impurity connected to two tight-
binding leads of non-interacting electrons described by the Hamiltonian

Ĥ(t) = ĤC + ĤL(t)+ ĤR(t)+ ĤT . (17.10)

Here the Hamiltonian of the impurity with a Hubbard-like interaction reads

ĤC =
∑

σ=↑,↓
εCd̂†

σ d̂σ +Ud̂†
↑d̂↑d̂

†
↓d̂↓ (17.11)

http://dx.doi.org/10.1007/978-3-642-23518-4_6
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and d̂†
σ (d̂σ ) is the creation (annihilation) operator for an electron with spin σ at the

impurity. The Hamiltonian for lead α = L,R is

Ĥα(t) =
∞
∑

i=1

∑

σ

[εα + wα(t)]ĉ†
iσα ĉiσα −

∞
∑

i=1

∑

σ

(

vα ĉ†
iσα ĉi+1σα + H.c.

)

(17.12)

with the time-dependent biaswα(t) in lead α and ĉ†
iσα (ĉiσα) creates (annihilates) an

electron with spin σ at site i in lead α. Finally, the tunneling Hamiltonian connecting
the impurity site with the leads is given by

ĤT = −
∑

σ

∑

α=L,R

(

vlink d̂†
σ ĉ1σα + H.c.

)

. (17.13)

In a TDDFT framework, the interacting Hamiltonian (17.10) is mapped onto an
effective single-particle Hamiltonian. In a local and adiabatic approximation, the KS
Hamiltonian for the combined system reads Ĥks(t) = ĤKS

C (t)+∑

α=L,R Ĥα(t)+ ĤT
with the KS Hamiltonian for the impurity

ĤKS
C (t) =

∑

σ

vKS(n0(t))d̂
†
σ d̂σ (17.14)

where the KS potential

vKS(n0(t)) = ε0 + 1

2
Un0(t)+ vxc(n0(t)) (17.15)

depends only on the local density n0(t) at the impurity. For the xc potential we use
a modified version (Kurth et al. 2010; Kurth and Stefanucci 2011) of the Bethe-
ansatz LDA (BALDA) (Lima et al. 2003) and its adiabatic extension to TDDFT
(Verdozzi 2008). Just as the usual LDA is based on the xc energy per particle of
the uniform electron gas, the BALDA is based on the xc energy per site of the
uniform one-dimensional Hubbard model. This model contains two parameters: the
Hubbard interaction U present at each site and the hopping parameter v connecting
each pair of neighboring sites and the xc energy per site is given in terms of these
parameters (Lima et al. 2003). In our present model, however, the interaction is only
present at the impurity which is connected to the leads by the hopping parameter
vlink. Therefore we use a modification of the original BALDA by replacing v in
the original parametrization by vlink. The explicit form of the modified BALDA xc
potential then is

vxc(n) = Θ(1− n)v(<)xc (n)−Θ(n − 1)v(<)xc (2− n) (17.16)

where

v(<)xc (n) = −
1

2
Un − 2vlink

[

cos
(πn

2

)

− cos

(
πn

ξ

)]

. (17.17)
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The parameter ξ is given as solution of the equation

2ξ

π
sin(π/ξ) = 4

∞∫

0

dz
J0(z)J1(z)

z[1+ exp(U z/(2vlink))] (17.18)

where Ji=0,1(z) are Bessel functions. A very important property of the BALDA xc
potential is its discontinuity at half filling (Lima et al. 2002):

vxc(n = 1+)− vxc(n = 1−) = U − 4vlink cos

(
π

ξ

)

. (17.19)

We assume now that under application of a DC bias a steady state exists. Then, using
non-equilibrium Green’s functions techniques, one can derive a self-consistency
condition for the steady-state density n∞0 := n0(t →∞) at the impurity. Under the
additional assumption of the absence of localized (bound) states in the system, this
condition reads

n∞0 = 2
∑

α=L, R

εF+wα∫

−∞

dω

2π
Γ (ω − wα)|G(ω)|2 (17.20)

where εF is the Fermi energy of the contacted system in the ground state, wα (α =
L,R) is the constant bias applied in lead α and

G(ω) =
[

ω − vKS(n
∞
0 )−

∑

α=L,R

Σα(ω − wα)
]−1

. (17.21)

Σα(ω) = Λα(ω) − i
2Γα(ω) is the analytically known embedding self energy for

non-interacting tight-binding leads with real and imaginary partsΛα(ω) and Γα(ω),
respectively, and the total width function is Γ (ω) = ∑

α Γα(ω). Note that the KS
potential in Eq. 17.21 is the local and adiabatic KS potential of Eq. 17.15 evaluated
at the non-equilibrium steady-state density n∞0 .

Taking the discontinuity (17.19) of the BALDA xc potential seriously, one finds
that there are parameter values for which Eq. 17.20 does not have any solution.
Nevertheless, the steady-state analysis can still provide useful insight into the physical
nature of these situations if, instead of using the xc potential of Eq. 17.16, we use a
modified xc potential with a smoothened discontinuity (Kurth et al. 2010)

vxc(n) = f (n)v(<)xc (n)− [1− f (n)]v(<)xc (2− n) (17.22)

where f (n) = [exp((n − 1)/a) + 1]−1 with a smoothening parameter a. Such
a smoothening is also physically reasonable: while the exact xc potential for the
Hubbard model is certainly discontinuous, in our case the coupling of the impurity
to the leads introduces some broadening of the isolated impurity levels which are
expected to lead to a smoothened xc potential.
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Fig. 17.3 Left panel: steady state density at impurity as function of the appliied biaswL for different
values of vlink . Right panel: time evolution of the density at the impurity for vlink = 0.3 for different
biases in the Coulomb blockade regime. Inset: magnification for large times showing the density
oscillations around unity. The dotted straight line at unity serves as guide for the eye

The BALDA ground state densities at the impurity as function of the on-site energy
ε0 have been found (Kurth and Stefanucci 2011) to be in rather good agreement
with Quantum Monte Carlo results (Wang et al. 2008). In the left panel of Fig. 17.3
we show the steady-state densities as function of the applied bias wL in the left
lead for different values vlink of the hopping between leads and impurity. The other
parameters are εF = 1.5, εC = 2, εα = 0, and U = 2 (all energies given in units of
vL = vR = v). For the smoothening parameter we chose a = 10−4.As the coupling
vlink becomes smaller, a clear step of the steady-state density develops around unity.
The width of this step increases and approaches U in the limit vlink → 0. It reflects
the energy cost a second electron entering the impurity has to pay if the impurity
is already occupied by one electron. This is nothing but the Coulomb blockade
effect. We therefore conclude that the discontinuity in the xc potential is a necessary
ingredient for a DFT description of Coulomb blockade.

For a truly discontinuous xc potential, the steady state self-consistency condition
for certain parameter values does not have a solution. We have therefore looked at the
time evolution of systems in this parameter regime, the regime of Coulomb blockade
(i.e., the regime of the plateau in the steady-state density for the smoothened potential,
Fig. 17.3). We consider a system initially in its ground state. At t = 0, we suddenly
switch on a bias in the left lead and follow the time evolution of the system. The right
panel of Fig. 17.3 shows the time-dependent density at the impurity for vlink = 0.3
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and three different values forwL in the Coulomb blockade regime. After application
of the bias, the density rises from its initial value and seems to settle around the value
of unity, i.e., single occupancy of the impurity. However, closer inspection of the
time-dependent density at large times (see inset in right panel of Fig. 17.3) reveals
that the density shows oscillations around unity with rather small amplitude of the
order of 5× 10−3 and, in accordance with our analysis of the steady-state condition,
does not settle towards a steady state. This behaviour can be understood (Kurth et al.
2010; Kurth and Stefanucci 2011) in the following way: when the density is away
from the critical value of unity (where the discontinuity occurs), the KS potential
changes at the same rate as the density. On the other hand, when the density crosses
unity, the KS potential changes discontinuously (or very rapidly for the smoothened
potential). For instance, if the density at some instant in time crosses unity from
below, the potential suddenly jumps up by the discontinuity and tends to push the
density towards lower values. However, the rate of change of the density is limited by
the inertia of the electrons and for some time the density will continue to grow before
it decreases and eventually crosses the value unity from above. Now the potential
suddenly decreases and attracts more electrons but again the resulting change in the
density will not be immediate. In this way, the system eventually reaches a dynamical
state of oscillating density but never a steady state, establishing a dynamical picture
of Coulomb blockade as a sequence of charging and discharging of the impurity.

17.2.3 Quantum Kinetic Approach

In this final section, we would like to discuss another approach to time-dependent
transport which combines quantum kinetic theory with TDDFT (Gebauer and Car
2004a, b, 2005; Gebauer et al. 2005; Burke and Car 2005).

This approach is somewhat different from the ones discussed in the previous
sections in the sense that is concerned with the electronic system coupled to a bath,
typically the phononic degrees of freedom of the system. Similarly to Chap. 10,
we here discuss the theory of open systems (i.e., systems coupled to a bath) in
terms of master equations. Alternatively, open system can also be described with an
approach based on the stochastic Schrödinger equation (see Chap. 11).

We write the total (electronic + bath) Hamiltonian of the system as

Ĥtot = Ĥel + Ĥbath + Ĥcoup (17.23)

where Ĥel and Ĥbath are the Hamiltonians for the electrons and the bath, respec-
tively, while Ĥcoup describes the coupling between them. The density operator of the
combined system

Ŝtot(t) = |Ψ (t)〉〈Ψ (t)| (17.24)

satisfies the equation of motion

http://dx.doi.org/10.1007/978-3-642-23518-4_10
http://dx.doi.org/10.1007/978-3-642-23518-4_11
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d

dt
Ŝtot(t) = −i

[

Ĥtot, Ŝtot

]

. (17.25)

The reduced density operator for the electronic subsystem is defined by tracing out
the bath degrees of freedom

Ŝred(t) = Trbath

{

Ŝtot

}

. (17.26)

An equation of motion for the reduced density operator can then be derived under
two assumptions (Breuer and Petruccione 2002): (i) the coupling between electrons
and bath is assumed to be weak and therefore it is sufficient to treat Ĥcoup only up
to second order and (ii) the Markov approximation is justified, i.e., the time scale on
which the electronic system varies is large compared to the time scale over which
bath (phonon) correlation functions decay. Under these conditions, the equation of
motion for Ŝred(t) reads

d

dt
Ŝred(t) = −i

[

Ĥel, Ŝred(t)
]

+ C̆[Ŝred(t)] (17.27)

where C̆ is a superoperator whose explicit form depends on the bath (for a phonon
bath this form has been given in Refs. (Gebauer and Car 2004b; Burke and Car
2005)).

Similar to standard TDDFT, Burke and Car (Burke and Car 2005b) showed that,
given the electron-electron interaction, the superoperator C̆, and the initial reduced
density matrix Ŝred(0), two different time-dependent one-body potentials always lead
to different time-dependent densities. In a second step, they then mapped the problem
of interacting electrons in contact with a reservoir onto a problem of non-interacting
Kohn–Sham electrons also in contact with a reservoir with the same time-dependent
density as the interacting system. In practice, this leads to a KS version of the master
equation (17.27).

In the finite system approach to transport (Sect. 17.2.1), the boundary condi-
tion of vanishing wavefunctions at the boundaries of the simulation box are used.
In the infinite system approach via the embedding techniques (Sect. 17.2.2) open
(or transparent) boundary conditions are used. In contrast, in practical applications
of the KS master equation approach periodic boundary conditions are used (see
Fig. 17.1c): the central device together with a finite portion of the metallic leads
is repeated periodically which may also be viewed as a ring geometry. A spatially
constant electric field E is applied throughout the system by using a time-dependent,
spatially constant vector potential A = −cEt where c is the velocity of light. The
setup of the transport problem with periodic boundary conditions has the advantage
that it allows for the use of plane waves as computationally efficient basis set.

The presence of the external electric field throughout the system (ring) constantly
accelerates the electrons and prevents them from reaching a steady state. It is the task
of the collison term, i.e., the last term on the r.h.s. of Eq. 17.27 (or its KS analogue),
to dissipate the energy injected into the system by the presence of the electric field.
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The quantum kinetic approach to transport described here has been applied to
simple model systems (Gebauer and Car 2004a, 2004b, 2005) and to an atomistic
model of a self-assembled monolayer of benzene dithiolate molecules contacted
between two gold electrodes (Gebauer et al. 2005).

17.3 Conclusions

We have sketched three different TDDFT approaches to time-dependent transport:
(i) a finite system approach where the leads are mimicked by large but finite elec-
trodes; (ii) an approach describing an infinite system using an embedding technique to
implement the transparent boundary conditions and (iii) a quantum kinetic approach
solving a KS master equation for the electronic system in contact with a bath. The
explicitly time-dependent view on transport taken here naturally is not restricted to
the steady state which, in fact, in some situations is not achieved at all during the time
evolution. However, the natural target of study for these approaches are truly dynam-
ical phenomena in transport beyond the steady state. As we have seen, TDDFT can
help to gain physical insights into time-dependent transport even for model systems
but it is probably the only method which can become (or already is, to some extent)
practical for simulations of realistic systems.



Chapter 18
Atoms and Molecules in Strong Laser Fields

Carsten A. Ullrich and André D. Bandrauk

18.1 Introduction: New Light Sources for the Twenty-first
Century

The interactions of superstrong and ultrashort laser pulses with atoms and mole-
cules have been a subject of great interest over the past two decades, as reflected
in many books (Gavrila 1992; Piraux et al. 1993; Delone and Krainov 2000; Batani
et al. 2000; Brabec 2008; Mulser and Bauer 2010) and review articles (Mainfray and
Manus 1991; Freeman and Bucksbaum 1991; Burnett and Reed 1993; Protopapas
et al. 1997; Salières et al. 1999; Joachain et al. 2000; Brabec and Krausz 2000;
Dörner et al. 2002; Becker et al. 2002; Krausz and Ivanov 2009). The beginning of
the twenty-first century is witnessing the development of several large- and medium-
scale experimental facilities dedicated to the generation of laser light with unprece-
dented capabilities. The frequency spectrum covered by these new light sources
ranges from the infrared up to the extreme ultraviolet and soft x-ray [produced in
the FLASH free-electron laser facility at DESY (Richter et al. 2009)]. This calls for
the development of new theoretical and computational tools to simulate laser-matter
interactions at extreme conditions.
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Fig. 18.1 The attainable pulsed-laser peak intensity has increased by 12 orders of magnitude over
the last 40 years. Ultrashort pulses can be generated with durations of a few femtoseconds and, of
late, even down to the attosecond regime (Drescher et al. 2001; Paul et al. 2001; Hentschel et al.
2001)

In this chapter we review some of the phenomena taking place in the ultrafast and
ultrastrong regime; see also Chap. 1. This presents us with the opportunity to discuss
the successes and challenges of TDDFT, which were outlined earlier in Chap. 4, in
the context of specific applications.1

As shown in Fig. 18.1, attainable laser intensities have increased by 12 orders
of magnitude since the invention of the laser in 1960, as a result of a series of
technological advances. Today, petawatt pulses with focused intensities in excess of
1021 W/cm2 can be produced from both large-scale and lab-scale lasers. By compar-
ison, the atomic unit of intensity is I0 = 3.52× 1016 W/cm2, which, by the relation
I = cE2/8π, corresponds to an electric field strength E0 = e/a2

0 = 5.14×1011 V/m,
i.e. the electric field which an electron experiences in the 1s orbital of a hydrogen
atom. Thus, the forces produced by the laser field match and even exceed the Coulomb
forces that attract the electrons to the nucleus, or that bind the atoms together in a
molecule. For intensities above 1018 W/cm2 the electronic motion in the laser focus
becomes relativistic, and nonrelativistic TDDFT ceases to be applicable.

On the other hand, the minimum pulse lengths have dramatically decreased.
Whereas at the end of the twentieth century the focus was on femtosecond photo-
chemistry and photophysics, culminating with the 1999 Nobel Prize to
A. H. Zewail for “femtochemistry”, major efforts are now underway to develop and
apply attosecond optical pulses (Drescher et al. 2001; Paul et al. 2001; Hentschel et
al. 2001; Krausz and Ivanov 2009). Passing the attosecond frontier makes it possible
to image and to manipulate the dynamics of electrons on their natural inneratomic
time scales (Kienberger et al. 2002; Drescher et al. 2002; Kienberger et al. 2004;
Wickenhauser et al. 2005; Haessler et al. 2010), defined by the period of the 1s
hydrogen orbit, 24 attoseconds.

1 This chapter is an updated version of Ullrich and Bandrauk (2006c) with many additional
references and new examples in the area of direct double ionization of helium and molecular
strong-field processes.

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Fig. 18.2 Left: Sequential multiphoton ionization of Xe by 1 ps laser pulses of wavelength 585 nm
[reproduced from Perry et al. (1988)]. Right: Non-sequential double ionization of He by 160 fs laser
pulses of wavelength 780 nm [reproduced from Walker et al. (1994)]. In both panels, the full lines
follow from rate equation models including only sequential processes

18.2 Atoms in Strong Laser Fields: an Overview

18.2.1 Multiphoton Ionization

An intense laser pulse can ionize an atom even when the photon energy is much
smaller than the ionization potential. Figure 18.2 shows experimental data for the
number of xenon ions as a function of laser intensity, at a wavelength of 585 nm
and a pulse duration of 1 ps (Perry et al. 1988). At this wavelength, six photons
are necessary to ionize the Xe atom, whereas the ionization process leading from,
e.g. Xe+5 to Xe+6 requires already 34 photons. Notice that if a certain charge state
is reached, increasing the laser intensity by about 50% is enough to remove a further
electron, while the number of photons which should be absorbed at each step rapidly
grows with the degree of ionization. Recently, multiphoton ionization up to Xe+24

was observed (Yamakawa et al. 2004; DiChiara et al. 2010).
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Fig. 18.3 Schematic
representation of three
nonlinear phenomena of
atoms in intense laser fields
(L’Huillier 2002): sequential
and non-sequential
multiphoton ionization,
above-threshold ionization
(ATI), and high-harmonic
generation (HHG). A simple
interpretation is based on a
semiclassical recollision
model
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For relatively long pulse lengths and not too high intensities (L’Huillier et al.
1983; Perry et al. 1988), ionization proceeds via stepwise removal of the electrons.
Ionization yields such as shown in the left panel of Fig. 18.2 can be theoretically
explained by kinetic rate-equation models employing ionization rates obtained from
lowest-order perturbation theory. For each ion species, the ion yield rises very steeply
with intensity (∼I N , where N is the minimum number of photons required). At the
saturation intensity, a marked change appears in the slope of the curves, associated
with a depletion of an ion species when the ionization probability reaches unity.

For higher intensities (around 1015 W/cm2) and shorter pulses (around 100 fs),
this simple picture of multiphoton ionization becomes more complicated, and highly
correlated ionization mechanisms come into play (Dörner and Weber 2002). Since
the first observations in the early and mid-1990s (Fittinghoff et al. 1992; Walker et al.
1994; Larochelle et al. 1998), non-sequential double ionization of helium has been a
hot field of research. The right panel of Fig. 18.2 shows the famous “helium-knee”,
indicating an enhancement of the He2+ yield by several orders of magnitude over
what sequential ionization models would predict.

After a lot of initial controversy, the question of the non-sequential double
ionization mechanism has now been settled. Experimental observations such as
the measurement of recoil ion momentum (Weber et al. 2000; Moshammer et al.
2000), along with the suppression of the enhancement for elliptically polarized light
(Fittinghoff et al. 1992), find their explanation in a simple three-step recollision model
(Corkum 1993; Kulander et al. 1993; Lewenstein et al. 1994; Yudin and Ivanov 2001;
Liu et al. 2004). In the first (bound-free) step, an electron is set free from its parent
atom by tunnelling or (at higher intensities) over-the-barrier ionization. In the second
(free-free) step, the driving laser field dominates the electron dynamics, and the ionic
Coulomb force can be ignored. As the phase of the laser field reverses, the electron
is driven back to the atomic core. In the third step, the electron can then scatter off
the core and in the process knock out another electron, or produce harmonic gener-
ation through radiative recombination (see below). These processes are illustrated
schematically in Fig. 18.3.



18 Atoms and Molecules in Strong Laser Fields 355

Correlated multiple ionization is by no means limited to helium, but has been
observed in other rare-gas atoms as well. For instance, neon atoms in 25 fs laser
pulses show simultaneous emission of up to four photoelectrons due to recollision
(Rudenko et al. 2004).

At even higher intensities and at very high frequencies, theory predicts the
surprising phenomenon of stabilization against ionization (Pont et al. 1998, 1990;
Kulander et al. 1991a; Eberly and Kulander 1993; Bauer and Ceccherini 1999;
Gavrila 2002): as the laser intensity is increased, atomic ionization rates pass through
a maximum and then decrease. Experimental evidence of stabilization has been
reported for atomic Rydberg states (de Boer et al. 1993, 1994; van Druten et al.
1997).

18.2.2 Above-Threshold Ionization

Another highly nonlinear phenomenon known as above-threshold ionization (ATI)
(Becker et al. 2002) occurs when electrons absorb a large number of extra photons
in addition to those needed to overcome the ionization barrier.2 One detects a whole
sequence of equally spaced peaks in the kinetic-energy distribution of the photoelec-
trons (Agostini et al. 1979; Kruit et al. 1983), with energies n�ω − Ip −Up. Here,
Ip is the atomic ionization potential, and Up = e2E2/4mω2 is the ponderomotive
potential associated with the wiggle motion of a free electron in a laser field. Most of
the early work in the 1980s concentrated on the low-energy part of the ATI spectrum,
investigating the role of the ponderomotive potential, the AC-Stark shifted resonant
excited states, and the transition from multiphoton to tunnelling regime.

In the mid-1990s the experimental precision in recording photoelectron spectra
increased significantly, and it was found that ATI spectra extend over many tens
of eV, with a decrease for the first orders up to ∼2Up, followed by a large plateau
extending up to∼10Up (Paulus et al. 1994, 2001; Grasbon et al. 2003), see Fig. 18.4.
This can again be explained in the semiclassical recollision model, where electrons
are lifted into the continuum at some phase of the laser’s electric field and start from
the atom with zero velocity. The energy 2Up is the resulting classical maximum
kinetic energy for electrons leaving the atom without rescattering. Free electrons that
reencounter the ion and elastically rescatter may acquire a maximal classical energy
of 10Up. With linear polarization, electrons are generated along the polarization
direction. However, angular distributions may exhibit a much more complex off-axis
structure at the edge of the plateau (“scattering rings”), which can be explained as a
consequence of the rescattering of the electron wavepacket on the parent ion.

2 Strictly speaking, ATI belongs to the general class of multiphoton ionization phenomena.
However, in practice it is understood that “multiphoton ionization” refers to the counting of various
ionized states of atoms or molecules produced by the laser field, whereas ATI specifically refers to
the photoelectron spectra.
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Fig. 18.4 Left: ATI spectrum for argon, for various pulse lengths, at 800 nm and 0.8×1014 W/cm2

[reproduced from Grasbon et al. (2003)]. Right: HHG in rare-gas atoms driven by 1 ps laser pulses
of wavelength 1053 nm and intensity 1 × 1015 W/cm2 [reproduced from L’Huillier and Balcou
(1993)]

18.2.3 Harmonic Generation

When an atom interacts with a laser field, a dipole moment is induced which in
turn acts as a source of radiation. At high laser intensities, the atomic response
becomes extremely nonlinear. As a result, pronounced signals at multiples of the
driving frequency appear in the photoemission spectrum [high-harmonic generation
or HHG (Salières et al. 1999; Brabec and Krausz 2000)]. Because atoms have inver-
sion symmetry, only odd multiples of the driving frequency are emitted. In contrast
to the perturbative picture prevailing at weak laser fields, strong laser pulses can
yield a very large number of harmonics (McPherson et al. 1987; Ferray et al. 1988;
Li et al. 1989; L’Huillier et al. 1992; Sarukura et al. 1991; Miyazaki and Sakai 1992;
Wahlström et al. 1993; Kondo et al. 1994; L’Huillier and Balcou 1993; Macklin
et al. 1993).

Figure 18.4 shows experimental data on harmonic generation of rare-gas atoms
(L’Huillier and Balcou 1993), exhibiting the typical rapid decrease over the first
few harmonics followed by an extended plateau. The highest harmonic observed
here is the 135th harmonic of 1053 nm (which corresponds to 7.8 nm) with He as
target atom. We find that the width of the plateau decreases going from He to Xe,
while at the same time the absolute intensity of the observed harmonics becomes
larger. This behavior is linked to differences in the static polarizabilities of the target
atoms (Liang et al. 1994; Chin and Golovinski 1995). Harmonic orders of around
300 have been observed using ultrashort, high-intensity laser pulses, where the atoms
experience only a few laser cycles (Zhou et al. 1996; Spielmann et al. 1997; Schnürer
et al. 1998). Under these conditions, harmonic frequencies extend beyond 500 eV,
reaching into the water window with wavelengths around 2.7 Å.

Theoretically, the cutoff of the HHG plateaus is predicted to occur at
�ωc = Ip + 3.2Up, following the three-step recollision model (Corkum 1993).
Here, the ponderomotive potential Up refers to the saturation intensity of the respec-
tive atomic species, i.e. that intensity at which the atom gets ionized. This intensity is
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usually significantly lower than the peak intensity of the laser pulse. The data shown
in Fig. 18.4 is in excellent agreement with this simple rule (L’Huillier and Balcou
1993).

18.2.4 Theoretical Methods

There exists a large body of theoretical work devoted to the various aspects of
the nonlinear physics of atoms in strong fields, for a review see (Joachain et al.
2000). From the experimental phenomenology it is clear that perturbative and semi-
perturbative methods fail to capture the extremely high degree of nonlinearity, and
one must resort to non-perturbative theories. Many approaches, most prominently
Floquet (Chu and Telnov 2004) and R-matrix Floquet (Burke et al. 1990, 1991)
theories, are based on the assumption that the Hamiltonian of the atom-laser field
system is periodic in time. Although this is not true for a realistic laser pulse,
one can nevertheless incorporate some pulse shape effect into (R-matrix) Floquet
calculations, provided that the atom remains in a Floquet eigenstate that is adiabat-
ically connected to the initial state. Clearly, such an assumption can be expected to
break down for ultrashort, femtosecond pulses. The same is true for the many-body
S-matrix theory (Becker and Faisal 2005), which can be viewed as a low-frequency
approach.

In general, therefore, one needs to resort to a direct integration of the time-
dependent Schrödinger equation (TDSE). Since the pioneering work by Kulander
(1987), and Kulander et al. (1992, 1993), most activity focused on the hydrogen
atom, where the TDSE can be numerically solved without restrictions on large grids
(Cormier and Lambropoulos 1997; Tong and Chu 1997). This strategy becomes of
course tremendously involved for atoms having more than one electron; a propaga-
tion of the full two-electron wave function of helium in all three spatial dimensions
was carried out in Parker et al. (1996, 1998), using a massively parallel supercom-
puter. In general, however, the TDSE for two-electron systems can be solved only on
a restricted basis (Lambropoulos et al. 1998). As an alternative one can treat one- and
two-electron atoms and molecules as one-dimensional (1D) model systems, which
has been particularly useful to elucidate the mechanism of non-sequential multi-
photon ionization (Eberly et al. 1992; Bauer 1997; Lappas and van Leeuwen 1998;
Lein et al. 2000a; Dahlen and van Leeuwen 2001; Dahlen 2002).

All studies dealing with many-electron atoms in strong laser fields have made
use of more or less severe approximations to reduce the problem to a tractable size.
Most conspicuously, in the single-active electron (SAE) model (Kulander 1988;
Kulander et al. 1991b; Tang et al. 1991; Awasthi et al. 2008) the TDSE is solved for
only one “active” electron while the remaining electrons are frozen in their initial
configuration, their influence on the active electron being simulated by a static model
potential. This strategy successfully models the screening of the nuclear charge by
the inner electrons, but cannot describe collective effects arising from electronic
correlation.
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18.3 TDDFT for Atoms in Strong Laser Fields

The first TDDFT studies of atoms in strong laser fields were carried out in the
mid-1990s (Ullrich et al. 1995b, 1996; Ullrich and Gross 1997; Erhard and Gross
1997; Tong and Chu 1998), solving the TDKS equations for He, Be, and Ne atoms
in the presence of time-dependent potentials of the form

vlaser(r, t) = Ez f (t)sin(ωt), (18.1)

describing a laser field in the length gauge (Joachain et al. 2000). Here, E is the
electric-field amplitude, ω is the laser frequency, and f(t) is a function between 0 and
1 which describes the switching-on or pulse envelope of the laser.

We now discuss the Ne atom in intense laser fields of wavelength 248 nm in
some detail (Ullrich and Gross 1997). Due to the linear polarization of the laser
field, the rotational symmetry of the atom around the z-axis is preserved at all times.
It is thus appropriate to solve the TDKS equations using cylindrical coordinates.
For this example, the complete outer shell is propagated, consisting of 2s, 2p0 and
2p1 orbitals, each doubly occupied. Here, the 2p0 orbital is oriented along the laser
polarization axis, whereas the two 2p1 orbitals are perpendicular, and have thus an
identical time evolution. The inner 1s orbital is kept frozen in its initial state. The
TDKS equations are solved on a grid with a finite-difference representation, and
using the Crank-Nicholson algorithm for the time propagation. The calculations are
done in exchange-only, treated in ALDA and TDKLI (Ullrich et al. 1995a).

Under the influence of the intense driving field, the entire valence shell gets
strongly excited, and the KS orbitals acquire substantial continuum contributions.
To prevent electronic flux from being reflected back from the edges of the numerical
grid, absorbing boundary conditions are introduced in the form of a so-called mask
function (a complex potential would be an alternative). Over the course of time,
the norm of the KS orbitals N j (t) thus decreases, even though the time propagation
algorithm is unitary. This allows us to describe ionization in a straightforward manner,
by calculating the number of electrons remaining in a finite volume:

N j (t) =
∫

V
d3r |φ j (r, t)|2, N (t) =

∑

j

N j (t) =
∫

V
d3rn(r, t). (18.2)

Here, V refers to a volume centered about the nucleus which contains essen-
tially the entire wavefunction at t = t0. The total number of escaped electrons,
Nesc(t)= N0 − N (t),is thus a simple functional of the time-dependent density. The
left panel of Fig. 18.5 shows N2s(t), N2p0(t), and N2p1(t) for the Ne atom. As
expected, the 2s orbital is the least ionized of the three orbitals. The 2p0 and 2p1
orbital differ by about an order of magnitude in their degree of ionization, which is
a typical observation and due to the fact that the 2p0 orbital is oriented along the
polarization axis which makes it easier for the electrons to escape. The difference
between ALDA and TDKLI can be understood from the differences of the KS orbital
eigenvalues (the electrons are more weakly bound in LDA than in KLI).
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Fig. 18.5 Left: time-dependent norm N(t) of the Ne 2s, 2p0 and 2p1 orbitals, calculated with
TDKLI (full lines) and ALDA (dashed lines). The laser parameters are λ = 248 nm, I = 3 ×
1015 W/cm2, and a 10-cycle linear ramp switching-on. Right: Harmonic distributions for Ne at
I = 3× 1015 W/cm2 (top) and I = 5× 1015 W/cm2 (bottom). Experimental data from Sarukura
et al. (1991)

Another observable which is a straightforward density functional is the dipole
moment d(t) = ∫

d3r zn(r, t). The associated power spectrum, |d(ω)|2, yields the
contribution to the HHG spectrum of a single atom, which is proportional to the
experimentally observed HHG spectra to within a reasonable approximation [in
general, however, one needs to include propagation effects within the interaction
volume (Salières et al. 1999)]. The right panel of Fig. 18.5 shows the calculated
HHG spectra for Ne, at the two intensities I=3 and 5 × 1015 W/cm2. Comparison
with experimental data (Sarukura et al. 1991) taken with a laser pulse of peak inten-
sity 4×1017 W/cm2 shows that the observed HHG spectra must have been produced
at the rising edge of the pulse.

To connect with multiphoton ionization experiments, one needs to calculate the
probability of finding the atom in one of the possible charge states to which it
can ionize, P+n(t). In the context of TDDFT, this is a difficult problem and has
been extensively discussed in the literature (Lappas and van Leeuwen 1998; Dahlen
and van Leeuwen 2001; Dahlen 2002; Petersilka and Gross 1999; Ullrich 2000).
A rigorous definition of the P+n(t) involves the time-dependent many-body wave
function (Ullrich 2000a):
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P0(t) =
∫

V
d4x1 · · ·

∫

V
d4xN |Ψ (x1, . . . , xN , t)|2 (18.3a)

P+1(t) =
(

N
1

)∫

V

d4x1

∫

V
d4x2 · · ·

∫

V
d4xN |Ψ (x1, . . . , xN , t)|2 (18.3b)

and similarly for all other P+n, where V refers to the region outside the integration
volume V, and x denotes spatial and spin coordinates. In the case of a two-electron
system, one can rewrite these formulas by introducing the pair correlation function
g(r1, r2, t) = 2|Ψ (r1, r2, t)|2/n(r1, t)n(r2, t):

P0(t) = 1

2

∫

V
d3r1

∫

V
d3r2n(r1, t)n(r2, t)g(r1, r2, t) (18.4a)

P+1(t) =
∫

V
d3rn(r, t)−

∫

V
d3r1

∫

V
d3r2n(r1, t)n(r2, t)g(r1, r2, t) (18.4b)

P+2(t) = 1− P+1(t)− P0(t). (18.4c)

The task is thus twofold: one needs to find an accurate xc functional for the TDKS
equation, as well as an accurate expression for the pair correlation function. A
straightforward approximation is to set the latter equal to its x-only limit of 1/2,
which amounts to an independent-particle approximation. For a two-electron system
with a doubly occupied TDKS orbital, this gives

P0(t) = N (t)2, P+1(t) = 2N (t)[1− N (t)], P+2(t) = [1− N (t)]2, (18.5)

where N (t) = 1
2

∫

V d3rn(r, t). Figure 18.6 shows results for the Ne atom, where up
to Ne+4 ionic states are found. However, it turns out that the independent-particle
approximation for P+n(t) leads to significant errors for the non-sequential double
ionization probabilities (Lappas and van Leeuwen 1998; Dahlen and van Leeuwen
2001; Dahlen 2002), even if one uses the exact TDDFT orbital densities, as we
will demonstrate below for the case of a 1D H2 molecule. Attempts to improve this
situation by employing a local-density approximation for the pair correlation function
gc[n](r1, r2) met with little success (Petersilka and Gross 1999). This is indicative
of a sizable degree of “correlation” of the two-electron dynamics, in particular for the
case of longer wavelengths. At 248 nm, on the other hand, the independent-particle
approximation works much better (Dahlen 2002). Similar findings have been reported
by Bauer (1997), Bauer and Ceccherini (2001).

An important breakthrough in the TDDFT description of multiphoton ionization
was made by Lein and Kümmel (2005), who realized that the key property of the xc
potential is the discontinuity upon change of particle number (Mundt and Kümmel
2005; De Wijn et al. 2008). In the case of the helium atom, x-only theories fail to
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Fig. 18.6 Population of the
ionized states of Ne
(TDKLI), using the
independent-particle
approximation for P+n(t).
Laser: λ = 248 nm,
I = 5× 1015 W/cm2
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capture the enhancement of double ionization: the helium knee is purely due to corre-
lation effects. Lein and Kümmel proposed the following simple model correlation
potential with a discontinuity:

vc(z, t) = [s(t)− 1] [vH(z, t)+ vX(z, t)
]

, (18.6)

where s(t) is a step-like function of the number of bound electrons, depending on a
positive, sufficiently large constant C (e.g. C=50):

s(t) = 2/N (t)

1+ exp[C(2/N (t)− 2)]
. (18.7)

Initially, N = 2 so that s = 1 and the correlation potential vanishes. As the number
of bound electrons decreases and approaches 1, s(t) grows smoothly to s = 2 and
then suddenly jumps to zero as N(t) passes through 1. The correlation potential
then cancels out the Hartree plus exchange potentials, as it should for a single-
particle system. Using the correlation potential (18.6) and the simple, uncorrelated
ion probabilities (18.5) one indeed finds a plateau structure, as shown in the middle
panel of Fig. 18.7 . However, the knee is still too high; the remaining error lies with
the formulas to calculate the ion probabilities. Wilken and Bauer (2006) developed
a model expression for the pair correlation function in Eqs. 18.4a, b, c, using an
adiabatic approximation:

g =

⎧

⎪⎨

⎪⎩

−1

2
0 ≤ N ≤ 1

ρA(z, z′, t)

n A(z, t)n A(z′, t)
− 1

2
1 ≤ N ≤ 2,

(18.8)

where n A is an approximation for the density of the helium atom, using linear combi-
nations of ground-state densities, and ρA is a similar approximation for the pair
density. In this way, the helium knee is very well reproduced, as shown in the right-
hand panel of Fig. 18.7 .
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Fig. 18.7 Single and double ionization probabilities for a one-dimensional helium atom in a 780 nm
laser pulse. Left and middle: ion probabilities calculated with the uncorrelated expressions (18.5),
using the exact density and the density obtained from the Lein-Kümmel correlation potential (18.6),
compared to the exact ion probabilities following from the two-electron TDSE. Right: P2+ using
the pair correlation function (18.8). (Adapted from Wilken and Bauer, 2006)

Similar issues arise for the calculation of ATI spectra, which are rigorously defined
in terms of the many-body wavefunction and can therefore in principle be expressed
as functionals of n(r, t). In practice, however, all TDDFT approaches calculate the
kinetic-energy spectra associated with the KS single-particle orbitals (Pohl et al.
2000; Nguyen et al. 2004), despite the fact that the KS wave function has no strict
physical meaning. One obtains the kinetic energy distribution PKS(E) by recording
the KS orbitals ϕ j (r, t) over time at a point rb near the grid boundary and subsequent
Fourier transformation, so that

PKS(E) =
∑

j

|ϕ j (rb, E)|2. (18.9)

Alternatively (Vèniard et al. 2003), one can obtain PKS(E) by propagating the
TDKS equation for an additional Δt after the end of the laser pulse, and calcu-
lating the probability of finding an electron of energy E in the spatial region between
r± = Δt

√
2(E ±ΔE), where ΔE is the energy resolution.

18.4 Molecules in Strong Fields

18.4.1 Overview

The interaction of molecules with intense laser pulses introduces new challenges
due to the presence of the extra degrees of freedom of the nuclear motion, and the
associated additional time scales. The shortest nuclear motion period is that of the
proton, 10–15 fs, which is comparable to the ionization times at intensities of the order
of 1014 W/cm2 at wavelengths of 800–1064 nm. Thus, the nuclear motion should be
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treated on an equal footing with the radiative processes induced by intense laser fields,
in order to study the photochemical dynamics in the nonperturbative multiphoton
regime. This section summarizes a few highlights of the physics of molecules in
strong fields; more details can be found in recent review articles (Bandrauk and
Kono 2003; Marangos 2004). The topic of molecular alignment in strong fields has
been reviewed in Corkum et al. (1999) and Stapelfeldt and Seideman (2003).

The dressed-molecule representation (Bandrauk 1994a, b) has been a successful
approach at intensities below 1013 W/cm2 where ionization is negligible. Here,
resonant processes are pictured as crossings of “dressed” molecular potentials.
At higher intensities, the dynamics of photophysical processes can be conveniently
described using laser-induced molecular potentials (LIMPs). In the intensity range
1014–1015 W/cm2, rapid ionization starts to set in, accompanied by considerable
distortions of intermolecular potentials, creating LIMPs that can lead to bond soft-
ening via laser-induced avoided crossings. The molecular ions can also undergo
above-threshold dissociation, the equivalent of ATI in atoms.

Compared to atoms, molecules offer new perspectives of laser-induced electron
recollision (LIERC) with parent molecular ions, such as “diffraction” from more
than one nuclear center. This leads to a new molecular phenomenon, laser-induced
electron diffraction (LIED) (Zuo et al. 1996), a new tool for probing molecular
geometry changes on ultrashort time scales (Bandrauk and Chelkowski 2001; Itatani
et al. 2004). Much of the theoretical understanding of LIERC and LIED in molecules
is based on exact solutions of the TDSE for the one-electron H+2 and H++3 molecules
for static nuclei (Bandrauk and Chelkowski 2001, Itatani et al. 2004) as well as
moving nuclei (non-Born-Oppenheimer) (Bandrauk et al. 2003b).

For multielectron atoms, double ionization in intense laser fields is a highly corre-
lated process. As we discussed above, LIERC is a dominant mechanism for the
nonsequential steps, transforming sequential to double ionization at higher intensi-
ties. Molecules differ from atoms by the multicenter Coulomb nature of the electron
recollision process, leading to diffraction (Zuo and Bandrauk 1996b; Itatani et al.
2004) and even collision with neighboring ions (Bandrauk and Yu 1998, 1999). In
particular, at large internuclear distances, tunnelling ionization, which is the first step
in atomic LIERC, becomes more complicated as a consequence of charge transfer
and charge resonance effects, first predicted in Mulliken (1939) due to the existence
of excited ion-pair states (Martin and Hepburn 1997) which cross the ground state
at high intensities in both 1D (Kawata et al. 2000) and recent 3D (Harumiya et al.
2002) simulations of H2. Similar effects were found in 1D models of H+3 at high
intensities (Kawata et al. 2001).

The H2 molecule is the prototype model of the two-electron chemical bond with
bonding and anti-bonding molecular orbitals. Earlier 3D calculations of the nonlinear
response of H2 in an intense laser field were performed using a frozen core approx-
imation (Krause et al. 1991), and TDHF using finite-element basis sets (Yu and
Bandrauk 1995). Exact 1D (Kawata et al. 2001) and 3D (Harumiya et al. 2002)
TDSE numerical solutions of H2 were obtained on large finite grids at equilib-
rium and large intermolecular distances in order to confirm the universal molecular
phenomena of charge resonance enhanced ionization (CREI), first discovered in 3D
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Fig. 18.8 Schematic illustration of CREI in a diatomic molecule. For certain internuclear sepa-
rations above a critical Rc, the LUMO is raised above the inner barrier. Ionization proceeds via
radiative coupling between the HOMO 1σ− and LUMO 1σ+ (“essential” or “doorway” states)
(Bandrauk and Kono 2003a)

(Zuo and Bandrauk 1995) and 1D (Zuo and Bandrauk 1995, 1996b; Chelkowski and
Bandrauk 1995; Seideman et al. 1995) one-electron molecular model simulations. As
illustrated in Fig. 18.8 , an electron in a diatomic molecule experiences essentially a
double potential well, which becomes distorted in the presence of a laser field by the
gradient of the optical potential across the molecule. There exists a critical separation
between the two nuclei, Rc, at which the bound state in the upper well is raised to the
point that it barely sees any barrier to tunnel through into the second well and from
then on to ionization. As a result, for certain nuclear distances the ionization rate of
the molecule can be an order of magnitude higher than for the individual atoms.

A number of recent experiments have addressed the issue of sequential and
nonsequential ionization in diatomic molecules such as H2 (Alnaser et al. 2004b),
D2 (Sakai et al. 2003; Lègarè et al. 2003), O2, N2, NO, and I2 (Guo and Gibson
2001; Eremina et al. 2004; Alnaser et al. 2004a; Suzuki et al. 2004). These studies
have confirmed the validity of the CREI and LIERC mechanisms for multielectron
systems, and have explored the phenomenon of Coulomb explosion following rapid
ionization with few-cycle pulses, combined with a possible imaging of the fragments.
Other recent studies have focused on multiphoton ionization of larger, polyatomic
molecules (Markevitch et al. 2003, 2004).

18.4.2 A 1D Example: H2 with Fixed Nuclei

1D models have proven to be useful to recover the essential physics of laser-molecular
interactions at high intensities, i.e. tunneling ionization and laser control of the
ionized electron trajectory. For molecules such as H2 and H+3 in linear configu-
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ration, the arrangement of nuclei enhances refocusing of the ionized electron along
the internuclear axis (Bandrauk and Yu 1999; Kawata et al. 2001; Villeneuve et al.
1996).

For H2 with static nuclei, the 1D Born-Oppenheimer Hamiltonian for two elec-
trons with coordinates z1, z2 with respect to the center of mass of two protons situated
at positions ±R/2 is written as

Ĥ0 = −1

2

2
∑

i=1

[

∂2

∂z2
i

− 1
√

(zi ± R/2)2 + c

]

+ 1
√

(z1 − z2)2 + d
. (18.10)

The softening parameters c and d remove Coulomb singularities and allow the use of
high-order split-operator methods for solving the TDSE (Bandrauk and Shen 1993;
1994c). Propagating the TDSE with Ĥ0 (18.10) in imaginary time yields the ground
state electronic energies and molecular potentials; choosing c = 0.7 and d = 1.2375
reproduces accurately the first three electronic states of H2. The TDSE for H2 in an
intense laser field then becomes

i
∂Ψ (z1, z2, t)

∂t
=

[

Ĥ0 + v(z1, z2, t)
]

Ψ (z1, z2, t), (18.11)

where v(z1, z2, t) = −(z1 + z2)E(t) cos(ωt) is the dipolar (long wavelength) form
of the electron-laser interaction for a laser pulse of frequency ω and electric-field
envelope E(t).

We now discuss the ionization of the ground X1Σ+g state of H2 at laser wave-

length λ = 800 nm and intensities 1013 < I < 1015 W/cm2. Single and double
ionization probabilities, P+1 and P+2, are obtained by numerical integration of the
total two-electron probabilities |Ψ (z1, z2, t)|2, see Eqs. 18.3a, b, c, where the inte-
gration volume V is the region |zi | ≤ 6 a.u. The numerical integration procedure is
verified by projecting the total final wavefunction Ψ (z1, z2, T ) on complete sets of
field free bound and continuum states of H+2 (Pindzola et al. 1997). The grid is large
enough (|zi | ≤ 1000) to capture all of the first ionized electrons and identify double
ionization due to recollision processes.

Figure 18.9 shows a comparison of P+1 and P+2 obtained from the exact one-
electron density, but evaluated using the independent-particle expressions (18.5),
versus the exact results. The one-electron ionization probabilities, H2 → H+2 + e−,
and the sequential double ionization, H+2 → H++2 + e−, agree very well in both
methods. Both P+2 by density and exact integration show a knee (plateau) at the
saturation of the first ionization, I∼1015 W/cm2. The knee coincides with 100%
(P+1 = 1) of the first ionization. The exact double ionization P+2 is parallel to
P+1 at low intensities, confirming its source from recollision of the first electron
with the ion core. The efficiency of the double ionization through recollision is
P+2/P+1 ∼ 10−2. Notice that the ratio is underestimated at low intensities and
overestimated in the knee region from the exact one-electron density, thus confirming
the necessity of introducing the correlation factor in (18.4a, b).

Figure 18.10 compares TDEHF and ALDA versus the exact probabilities. In the
TDEHF method, one uses two different, non-orthogonal initial orbitals, 1σg and 1σ ′g,
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Fig. 18.10 Population of singly and doubly ionized states of 1D H2, λ = 800 nm, comparing
exact results and TDEHF (Adapted from Nguyen and Bandrauk, 2006)

which represent the propensity for electrons to be inequivalent in the ground state,
i.e. inner and outer electrons. This distinction becomes amplified upon ionization and
reflects better the physics than TDHF-like theories where both electrons are initially
equivalent. Figure 18.10 shows that TDEHF agrees fairly well with the exact P+1
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and P+2 below the knee. Some anomalies appear in the knee region where the first
electron has already ionized and cannot recollide. Similar effects take place in 1D
models of He (Dahlen and van Leeuwen 2001; Dahlen 2002). The ALDA single and
double ionization are grossly underestimated, reflecting the improper asymptotic
behavior of electronic wavefunction and ionization potential, as well as insufficient
screening.

18.4.3 TDDFT for Molecules in Strong Fields

Even in 1D, exact numerical calculations of strong-field molecular processes are
presently limited to at most two electrons plus moving nuclei. To describe the
dynamics of multielectron molecular systems without making the SAE approxima-
tion, TDDFT is unrivalled due to its computational simplicity. We will now review
some recent applications.

In Chu and Chu (2001a, b, 2004b), HHG and multiphoton ionization were studied
for various dimers with fixed nuclei in strong laser fields, using xc potentials with
the correct asymptotic behavior. The role of the binding energy and orientation of
individual molecular orbitals was explored, and a variety of correlation and inter-
ference effects between these orbitals in HHG spectra is discussed, as well as the
role of inner valence electrons in determining the total ionization. Along similar
lines, Dundas and Rost (Dundas and Rost 2005) used an all-electron, x-only ALDA
approach to investigate the suppression of single ionization in N2, O2, and F2 due to
destructive interference of outgoing electron waves from the ionized electron orbitals.
This again points to the insufficiency of the SAE model in describing multielectron
systems.

As an example, consider the ionization of CO2, a linear molecule whose highest
occupied molecular ground-state orbitals (1πu, 3σg, and 1πg) are shown in Fig. 18.11
(Fowe and Bandrauk 2009, 2010a, b). As long as the molecule is oriented parallel to
the field (θ = 0), the π -orbitals along the x and y direction are equivalent; for other
orientations, differences develop. Figure 18.11 compares the ionization of the mole-
cular TDKS orbitals for two different xc functionals, LDA and LB94 (van Leeuwen
and Baerends 1994). The latter has the correct asymptotics and yields excellent
ionization energies [see also Awasthi et al. (2008)]. In LDA, the electrons are too
weakly bound and ionize too easily. The main finding is that the ionization of indi-
vidual orbitals depends strongly on their orientation, and the highest orbital is not
necessarily the one that ionizes most rapidly. This is further illustrated in Fig. 18.12
using the TDELF. It can be seen that the dominant response comes in both cases
from the lone pair region of the molecule (1πu), but at θ = 90o the C-O bond region
(involving inner orbitals) is significantly affected as well.

Baer et al. (2003) considered ionization and HHG in benzene by short circularly-
polarized pulses, propagating 15 TDKS orbitals within ALDA on a 3D grid with
pseudopotentials. The interplay between bound-bound and bound-continuum
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Fig. 18.11 Right: the three highest occupied ground-state molecular orbitals of CO2. Left: orbital
population of CO2 subject to 800 nm laser pulses with 3.5×1014W/cm2, oriented at different angles
with respect to the field and calculated with adiabatic LDA and LB94 xc functionals. (Adapted from
Fowe and Bandrauk, 2010a)

transitions as well as multielectron dynamics was found to cause some unique features
in the HHG spectra, specific to the ring geometry of the molecule and the circularly
polarized light. Similar studies for circular carbon chains and nanotubes were carried
out in Liu et al. (2010).

Several TDDFT studies have explored the route leading from molecules to clus-
ters, e.g. using models based on chains of rare-gas atoms (Vèniard et al. 2002), or
small silver molecules with fixed nuclear positions (Nobusada and Yabana 2004).
A massively parallel TDKS calculation combining the dynamics of the highly excited
electron cloud with the (classical) motion of the nuclei was carried out by Calvayrac
et al. (Calvayrac et al. 1998), simulating the Coulomb explosion of a Na12 cluster.
A more recent study of two-color photoionization in Na4 and Na+4 clusters (Nguyen
et al. 2004) found counterintuitive asymmetries and unexpectedly large plateaus in
the ATI spectra.

The fully quantum mechanical, non-Born-Oppenheimer description of correlated
electron and nuclear dynamics is one of the biggest challenges for TDDFT (Kreibich
and Gross 2001a; Kreibich et al. 2001b, 2003, 2004; Butriy et al. 2007). A compar-
ison of different forms of the electron-nuclear wavefunctions of H+2 shows that a
simple Hartree mean-field approximation for the nuclear wavefunction is unable to
describe dissociation processes; much better results are achieved with a correlated
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Fig. 18.12 Snapshots of isosurfaces of the TDELF as the CO2 molecule evolves in the laser field
of Fig. 18.11 (Adapted from Fowe and Bandrauk, 2010b)

variational ansatz for the electron-nuclear wavefunction. This is in line with other
recent calculations for the ionization dynamics of multielectron systems based on
TDEHF approaches (Dahlen and van Leeuwen 2001; Dahlen 2002; Kitzler et al.
2004; Zanghellini et al. 2004, 2005).
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18.5 Conclusion and Perspectives

In this chapter, we have given a (by no means exhaustive) review of the rich phenom-
enology and the often counterintuitive effects of intense laser-matter interaction.
Experimental and theoretical research continues to move at a rapid pace towards
ever increasing intensities and decreasing pulse lengths, exploring new regimes of
electronic and nuclear dynamics. For example, Coulomb explosions of molecular
clusters, induced by table-top lasers, have been observed to trigger nuclear fusion
reactions (Ditmire et al. 1999). Another example: when an electron is suddenly
removed, the remaining xc hole is filled on a 50 attosecond time scale, which appears
to be a universal phenomenon (Breidbach and Cederbaum 2005). Thus, the nonlinear
dynamics of atoms and molecules in short, intense laser pulses provides many fasci-
nating and challenging opportunities for TDDFT.

The true power of TDDFT emerges when dealing with multielectron systems,
and there are many applications for ionization and harmonic generations of atoms
and molecules in strong laser pulses. However, it is clear that we need xc functionals
that do a better job in capturing highly correlated dynamical processes. Simple semi-
classical models give a good intuitive, and often quantitative, understanding of many
important strong-field phenomena, such as double photoionization via laser-induced
recollision. Unfortunately, these simple scenarios appear to be extremely hard to
capture with TDDFT using traditional xc functionals such as the ALDA. Progress in
this direction is likely to come through xc functionals that are orbital-based (TDOEP),
since these functionals exhibit discontinuities upon change of particle number. This
discontinuity is a crucial feature for a correct description of correlated ionization
processes (Lein and Kümmel 2005; Mundt and Kümmel 2005).

A particularly tough problem for TDDFT is the proper description of molec-
ular dissociation and of CREI processes that occur when molecules are stretched.
The fundamental reason for these difficulties is that in such situations the true
molecular state is described by two or more Slater determinants (because of near-
degeneracy, also known as static correlation), whereas TDDFT always works with
single Slater determinants. Thus, the xc functional has to carry a heavy extra burden,
as discussed in Chap. 8.

The problem of stretched H2 has recently been addressed with an xc orbital
functional based on the RPA (Fuchs et al. 2005). Another promising direction
is time-dependent density-matrix functional theory (Giesbertz et al. 2008, 2009)
(see Chap. 26). However, a full TDDFT formulation of coupled electron-nuclear
dynamics (with non-classical nuclei), although possible in principle (Butriy et al.
2007), has not yet become practical.

Finally, even if one solves the TDKS equations with extremely good xc func-
tionals, the problem remains that there are observables that are very hard to extract
from the density, such as ionization probabilities or ATI photoelectron spectra. Often,
the best one can do is to evaluate these observables using the TDKS orbitals, thus
committing one of the four “deadly sins” of TDDFT (Burke et al. 2005a). However,

http://dx.doi.org/10.1007/978-3-642-23518-4_8
http://dx.doi.org/10.1007/978-3-642-23518-4_26
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recent efforts (Rohringer et al. 2006; Wilken and Bauer 2007) to construct “read-
out functionals” beyond the independent-particle approximation show that there is
continuing progress towards new applications of TDDFT for strong fields.
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Chapter 19
The Liouville-Lanczos Approach to
Time-Dependent Density-Functional
(Perturbation) Theory

Stefano Baroni and Ralph Gebauer

Most current implementations of time-dependent density-functional theory are
designed to deal with the lowest-lying portion of the spectrum (often just a few
of the very first discrete lines) of systems consisting of up to a few tens of atoms.
We introduce a method that allows for the simulation of extended portions of the
spectrum of systems virtually of the same size as possibly treatable with state-of-art
ground-state DFT techniques.

19.1 Introduction

Current implementations of time-dependent (TD) density-functional theory (DFT)
(Runge and Gross 1984) fall into three broad categories. In the first, the TDDFT
charge susceptibility is obtained from the independent-electron susceptibility using
a Dyson-like linear equation (Gross and Kohn 1985; Petersilka et al. 1996a); in the
second, the poles of the susceptibility, which correspond to excitations energies, are
addressed as the eigenvalues of a suitable linear (super-) operator equation (Casida
1995; Petersilka et al. 1996a); finally, the full spectrum of a system can be obtained
by Fourier analyzing the time series generated by the expectation value of some
observable (such as, e.g., the dipole) calculated along the perturbed time evolution
of the TDDFT molecular orbitals (Yabana and Bertsch 1996; Marques et al. 2003;
Castro et al. 2006).
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The first approach allows for a straightforward conceptual juxtaposition of
TDDFT and many-body perturbation theory (MBPT) (Onida et al. 2002). Compu-
tationally much lighter than MBPT, this approach still requires the manipulation
(inversion, multiplication) of large matrices, which is hard to accomplish for large
systems or basis sets. Also, many unoccupied (virtual) eigenstates of the unperturbed
Kohn–Sham (KS) Hamiltonian need to be calculated, a task which again may become
critical for large systems or basis sets, as it is easily the case with plane waves or
real-space grids.

The second approach results in a non-Hermitian eigenvalue equation that has the
same structure as in the TD Hartree–Fock theory (Thouless 1960; McLachlan and
Ball 1964), and the dimension of the resulting matrix (the Liouvillian) is twice the
product of the number of occupied states with the number of virtual states. The calcu-
lation of a few eigenstates of such a large matrix can be accomplished using iterative
techniques (Stratmann et al. 1998), possibly in conjunction with the Tamm–Dancoff
approximation (TDA), which amounts to enforcing Hermiticity by neglecting the
anti-Hermitian component of the Liouvillian (Tamm 1945; Dancoff 1950; Hirata
and Head-Gordon 1999). Many existing molecular applications of TDDFT have
been performed within such a framework, which is probably near to optimal when a
small number of excited states is addressed. In a large system, however, the number
of quantum states in any given energy range grows with the system size. The number
of pseudo-discrete states in the continuum grows with the basis-set size even in a
small system. For these reasons, a method to model the absorption spectrum directly,
without calculating individual excited states, would be highly desirable.

The aforementioned third approach does provide such a method, where the TD
KS equations are solved in the time domain, and various susceptibilities can be
obtained by Fourier analyzing the linear response of the system to appropriate pertur-
bations. This scheme has the same numerical complexity as ground-state DFT iter-
ative methods, and it also gives easy access to nonlinear optical properties. Because
of this, real-time methods have recently gained popularity in conjunction with the
use of real-space grids (Marques et al. 2003). The main limitation here is that stable
integration of the TD KS equations requires a time step as small as 10−3, fs in typical
pseudopotential applications—which decreases as the number of grid points or plane
waves increases—resulting in rather long simulation runs.

Walker et al. (2006) and Rocca et al. (2008) introduced an alternative approach
to the calculation of optical spectra within TDDFT—named the Liouville-Lanczos
method—which keeps and enhances the advantages of the previous methods, yet
avoiding most of their drawbacks. By using a super-operator formulation of linearized
TDDFT, the dynamical polarizability of an interacting-electron system is first
represented as an off-diagonal matrix element of the resolvent of the Liouvillian
super-operator. One-electron operators and density matrices are treated using a repre-
sentation borrowed from time-independent density-functional perturbation theory
(DFPT) (Baroni et al. 1987a, Baroni et al. 2001), which permits to avoid the calcu-
lation of virtual KS orbitals. The resolvent of the Liouvillian is then evaluated using
a generalization of the recursion method by Haydock, Heine, and Kelly (Bullet
et al. 1980), based on the Lanczos bi-orthogonalization algorithm (see Chap. 7 of
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Saad (2003)). Each step of the Lanczos recursion essentially requires twice as many
operations as a single step of the iterative diagonalization of the unperturbed KS
Hamiltonian. Suitable extrapolation of the Lanczos coefficients (Rocca et al. 2008)
allows for a dramatic reduction of the number of Lanczos steps necessary to obtain
well converged spectra, bringing such number down to hundreds or a few thousands,
at worst, in typical plane-wave pseudopotential applications. The resulting numerical
workload is only a few times larger than that needed by a ground-state KS calculation
for a same system.

19.2 Statement of the Problem, Minimal Theoretical
Background, and Notation

In the dipole approximation, the response of molecular systems to electromagnetic
radiation is described by the dynamical polarizability tensor, αi j (ω),whose elements
are defined as the dipole moment linearly induced along the ith Cartesian direction
by a perturbing electric field of unit strength, polarized along the jth axis, and oscil-
lating at the frequency ω. The absorption coefficient is essentially the product of the
frequency times the imaginary part of the diagonal elements (or trace) of the polariz-
ability (Bassani and Altarelli 1983). We address here the dynamical polarizability of
a molecular system at clamped nuclei, and we use atomic (Hartree) units throughout:
� = 1; e = 1; me = 1.

The polarizability of a system of interacting electrons can be expressed as:

αi j (ω) = Tr
[

r̂i ρ̂
′
j (ω)

]

, (19.1)

where carets indicate quantum mechanical operators, r̂i is the ith component of the
dipole (or position) operator, ρ̂′j (ω) = ρ̂ j (ω)− ρ̂(0), is the response density matrix,
ρ̂ j (ω) being the one-electron density matrix of the system perturbed by an external
homogeneous electric field of unit strength polarized along the jth cartesian axis and
oscillating at frequency ω, and ρ̂(0) is its unperturbed counterpart. In TDDFT the
response density matrix can be expressed as the solution of the linearized quantum
Liouville equation (Walker et al. 2006; Rocca et al. 2008):

(ω − L̆) · ρ̂′j (ω) = [r̂ j , ρ̂
(0)], (19.2)

where L̆ is the TDDFT Liouvillian of the system, defined as:

L̆ · ρ̂′ =
[

Ĥ (0), ρ̂′
]

+
[

V̂ ′Hxc[ρ̂′], ρ̂(0)
]

, (19.3)

Ĥ (0) is the unperturbed KS Hamiltonian, V̂ ′Hxc[ρ̂′] is the linear correction to the
Hartree-plus-exchange-correlation (xc) potential, whose coordinate representation
reads:

v′Hxc(r, ω) =
∫

d3r ′
[

1

|r − r ′| + fxc(r, r ′, ω)
]

ρ′(r, r ′, ω), (19.4)
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and fxc is the so-called xc kernel (Gross and Kohn 1985) that, in the adiabatic DFT
approximation (Zangwill and Soven 1980a, Bauernschmitt and Ahlrichs 1996a), is
independent of ω. Traces of products of operators, such as in Eq. 19.1, have the same

algebra as scalar products in linear spaces, Tr
[

Â† B
]

= ( Â, B̂), and this property is

instrumental in expressing the polarizability as an off-diagonal matrix element of the
resolvent of the Liouvillian. By solving Eq. 19.2, we can express the polarizability
in Eq. 19.1 as

αi j (ω) = −
(

r̂i , (ω − L̆)−1 ·
[

r̂ j , ρ̂
(0)
])

, (19.5)

where ( Â, B̂) indicates the scalar product between operators Â and B̂, in the sense as
defined above. Of course, in order to give a well-defined meaning to Eq. 19.5, a well-
defined representation must be given to operators, super-operators (i.e., operators
acting on the linear space of quantum mechanical operators), and for scalar products
defined in this linear space. This will be done in Sect. 19.2.1.

19.2.1 Representation of the Response Density Matrix
and of Other Operators

The coordinate representation of the response density matrix is:

ρ′(r, r ′, ω) = 2
Nv∑

v=1

[

ϕ̃′v(r, ω)ϕ(0)∗v (r ′)+ ϕ(0)v (r)ϕ̃′∗v (r ′,−ω)
]

, (19.6)

where ϕ(0)v are unperturbed KS orbitals, ϕ̃′v(r, ω) = ϕv(r, ω)− ϕ(0)v (r) denotes the
Fourier transform of the first-order correction to the vth KS orbital, Nv = Ne/2 is
the number of occupied KS states (Ne being the number of electrons), and the factor
2 accounts for the spin degeneracy of KS states in a system that is assumed to be
non-magnetic.

As shown in Eq. 19.6, the response density matrix at any given frequency ω is
uniquely determined by the two sets of response orbitals {ϕ̃′v(r, ω)} and {ϕ̃′∗v (r,−ω)}.
Standard time-dependent perturbation theory indicates that each response orbital ϕ̃′v
can be chosen to be orthogonal to the KS occupied-state manifold. For this reason
the response density matrix of Eq. 19.6 has vanishing matrix elements between pairs

of occupied and virtual states, namely
〈

ϕ
(0)
c |ρ̂′|ϕ(0)c′

〉

=
〈

ϕ
(0)
v |ρ̂′|ϕ(0)v′

〉

= 0 ∀(v, v′)
and (c, c′), where v and v′ denotes generic occupied (valence) states and c and c′
generic virtual (conduction) states. This is to say that in the representation of the
unperturbed KS states (the KS representation) the response density matrix has the
block structure:

ρ̂′ →
(

0 ρ′vc
ρ′cv 0

)

. (19.7)
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Note that in the frequency domain the density matrix is not Hermitian. Being the
Fourier transform of a Hermitian operator, it satisfies the relation: ρ̂(ω)† = ρ̂(−ω).
The right-hand side of Eq. 19.2, [r̂ j , ρ̂

(0)], has a similar block structure in the KS
representation. Therefore, the effective dimension of the linear system, Eq. 19.2, is
2Nv(N − Nv), N being the size of the one-electron basis set. Unfortunately, this
representation does require the explicit knowledge of all the virtual KS orbitals,
whose calculation is generally avoided, or even impossible, in modern electronic-
structure methods, particularly when (very) large basis sets (such as plane waves or
real-space grids) are used.

Inspired by these considerations, we define the standard batch representation
(SBR) of the response density matrix as:

ρ̂′ SBR−−→
( {qv}
{pv}

)

, (19.8)

where {qv} and {pv} indicate the sets (batches) of orbitals:

qv(r) = 1

2

(

ϕ̃′v(r, ω)+ ϕ̃′∗v (r,−ω)
)

(19.9a)

pv(r) = 1

2

(

ϕ̃′v(r, ω)− ϕ̃′∗v (r,−ω)
)

. (19.9b)

The 45◦ rotation of the ϕ̃′ orbitals in Eq. 19.9 is introduced for further notational
convenience. According to Eq. 19.9 the most general response density matrix can
be represented in terms of two batches of Nv orbitals orthogonal to the manifold of
occupied KS states. This orthogonality condition can be enforced either implicitly, by
expressing each orbital as a linear combination of unoccupied KS states, or explicitly
by acting upon each of them with the projector over the virtual KS manifold, Q̂. The
first option would eventually lead to the KS representation of Eq. 19.7, which requires
the explicit calculation of virtual KS states. By expressing the virtual-state projector

as Q̂ = Î − P̂ (where Î is the identity operator and P̂ = ∑Nv
v=1

∣
∣
∣ϕ
(0)
v

〉 〈

ϕ
(0)
v

∣
∣
∣ is the

projector over the occupied-state KS manifold), instead, the second option allows
one to enforce the orthogonality condition without any explicit reference to any
virtual states, following a practice that was introduced in the framework of (time-
independent) DFPT (Baroni et al. 1987a). Note that for a time-reversal invariant
system, whose KS orbitals can be chosen to be real, the SBR of the response charge
density can be expressed in terms of the {qv} orbitals alone:

n′(r, ω) = 4
Nv∑

v=1

ϕ(0)v (r)qv(r). (19.10)

General one-particle quantum mechanical operators can be given a similar represen-
tation. The SBR of a general operator is defined as:

Â
SBR−−→

( {aq
v }
{a p
v }
)

= a, (19.11)



380 S. Baroni and R. Gebauer

where the orbitals aq
v (r) and a p

v (r) are defined as

aq
v (r) =

1

2

[

Q̂ Âϕ(0)v (r)+
(

Q̂ Â†ϕ(0)v (r)
)∗]

(19.12a)

a p
v (r) =

1

2

[

Q̂ Âϕ(0)v (r)−
(

Q̂ Â†ϕ(0)v (r)
)∗]

. (19.12b)

The {aq
v } and {a p

v } functions of Eqs. 19.12a, b will be referred to as the upper (or
q-like) and lower (or p-like) components of the SBR of the Â operator. If Â is a
Hermitian operator, then its SBR is given by

Â = Â† SBR−−→
( {Q̂ Âϕ(0)v }
{0}

)

, (19.13)

where we have assumed again that the ground-state orbitals ϕ(0)v are real because of
time-reversal invariance. Other operators appearing in Eq. 19.2 are represented as:

[

Ĥ (0), ρ̂′
]

SBR−−→
(

{(Ĥ (0) − ε(0)v )pv}
{(Ĥ (0) − ε(0)v )qv}

)

, (19.14a)

[

Â, ρ̂(0)
]

SBR−−→
( {0}
{Q̂ Âϕ(0)v }

)

, (19.14b)

where ε(0)v are unperturbed KS orbital energies. Clearly the SBR of a general operator
is incomplete because it misses the information contained in the matrix blocks that
vanish in the KS-state representation of the response density matrix, Eq. 19.7. It is
however sufficient to calculate traces of products of any operator with any response
density matrix having the block structure of Eq. 19.7. By using the SBR, the polar-
izability in Eq. 19.5 can be expressed as:

αi j (ω) = −
(

ri , (ω − L)−1 · y j

)

, (19.15)

where ri , y j , and L are the SBR representations of r̂i , [r̂ j , ρ̂
(0)], and of the Liou-

villian, respectively:

r̂i
SBR−−→

( {ri,v}
{0}

)

= ri (19.16a)

[

r̂ j , ρ̂
(0)
]

SBR−−→
( {0}
{r j,v}

)

= y j (19.16b)

L̆
SBR−−→

(

0 D̆
D̆ + 2K̆ 0

)

= L , (19.16c)



19 The Liouville-Lanczos Approach 381

the ri,v orbitals are defined as:

ri,v(r) = Q̂r̂iϕ
(0)
v (r), (19.17)

and the D̆ and K̆ super-operators are defined as:

D̆ · {uv(r)} =
{(

Ĥ (0) − ε(0)v
)

uv(r)
}

(19.18a)

K̆ · {uv(r)} =
{

4ϕ(0)v (r)
Nv∑

v′=1

∫

d3r ′ fxc(r, r ′)ϕ(0)
v′ (r

′)uv′(r ′)
}

. (19.18b)

Finally, the SBR of scalar products (traces of products of operators) reads:

Tr
(

Â† B̂
)

SBR−−→
Ne∑

v=1

(〈

aq
v |bq

v

〉+ 〈a p
v |bp

v

〉) = (a, b), (19.19)

where
({aq

v }, {a p
v }
)

,
({bq

v }, {bp
v }
)

are the SBRs of Â and B̂, respectively, and brackets
〈φ|ψ〉 indicate standard quantum-mechanical scalar products between one-electron
orbitals |φ〉 and |ψ〉. Note that, according to these definitions, the two vectors that
bracket the resolvent of the Liouvillian in Eqs. 19.5 and 19.15 are orthogonal because
the commutator of two Hermitian operators is anti-Hermitian and the trace of the
product of a Hermitian and an anti-Hermitian operator vanishes.

19.2.2 Dipole Operator in Periodic Boundary Conditions

In order to obtain the SBR of the dipole operator and of its commutator with the
unperturbed density matrix, Eqs. 19.16a, b, one needs to evaluate the orbitals in
Eq. 19.17. In periodic boundary conditions the position operator r̂i is ill defined,
since it is both non-periodic and not bound from below. As a consequence it is not
possible to compute the expectation value of r̂i on Bloch states. However in the
calculation of Q̂r̂iϕ

(0)
v only off-diagonal matrix elements of r̂i are required:

Q̂r̂iϕ
(0)
v =

∑

c

∣
∣
∣ϕ
(0)
c

〉 〈

ϕ(0)c

∣
∣
∣ r̂i

∣
∣
∣ϕ
(0)
v

〉

, (19.20)

which are well defined in periodic boundary conditions (Baldereschi and Tosatti
1978). Indeed, one has

〈ϕ(0)c |r̂i |ϕ(0)v 〉 =
1

ε
(0)
c − ε(0)v

〈ϕ(0)c |[Ĥ (0), r̂i ]|ϕ(0)v 〉 (19.21)

and, if the potential operator in the unperturbed Hamiltonian is purely local, then the
commutator in Eq. 19.21 is simply proportional to the momentum operator,
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[Ĥ (0), r̂i ] = − p̂i . (19.22)

When the potential acting on electrons has non-local contributions (which is the
case for the vast majority of pseudopotentials), an explicit correction due to those
non-local terms must be added to the momentum operator in Eq. 19.22 (Baroni and
Resta 1986a; Tobik and Dal Corso 2004).

In practice, the Liouville-Lanczos approach to TDDFT, as well as to DFPT, is
designed so as to avoid any explicit reference to virtual eigenpairs of the KS Hamil-
tonian, so that Eq. 19.21 cannot be used directly. However the relevant orbitals
Q̂r̂iϕ

(0)
v can be obtained by solving a set of linear systems, as proposed in Baroni et

al. (1987a) and thoroughly explained in Baroni et al. (2001).

19.3 Algorithm

According to the discussion in the previous section, any component of the polariz-
ability tensor can be expressed as an off-diagonal element of the resolvent of the
Liouvillian (super-) operator. At first sight, it may seem that the calculation of such
a matrix element, Eq. 19.15, would require the solution of a n × n linear system to
invert (ω − L) for each different value of the frequency ω, a daunting task as the
system size and/or the number of frequencies grow large. As an expedient alterna-
tive, the Liouville-Lanczos approach to TDDFT uses a generalization of the recursion
method by Haydock, Heine, and Kelly (Bullet et al. 1980), based on the Lanczos
bi-orthogonalization algorithm (LBOA) (Saad 2003, Chap. 7). The LBOA allows
for the bulk of the numerical work to be done once for all the frequencies, while
the linear system is inexpensively solved in an approximate representation where
the matrix to be inverted is both tridiagonal and of much smaller size (Walker et al.
2006; Rocca et al. 2008; Baroni et al. 2010).

19.3.1 Lanczos Bi-orthogonalization Algorithm

Given a pair of vectors, u1 and v1 normalized by the condition (u1, v1) = 1 (although
not strictly necessary, it is convenient to assume that both vectors coincide with y j

in the present case), the LBOA amounts to the following recursion:

γ 1v0 = β1u0 = 0 (19.23a)

v1 = u1 = y j (19.23b)

βl+1vl+1 = Lvl − αlvl − γ lvl−1 (19.23c)

γ l+1ul+1 = L	ul − αlul − βlul−1, (19.23d)



19 The Liouville-Lanczos Approach 383

where βl+1 and γ l+1 are scaling factors for the newly generated ul+1 and vl+1

vectors, chosen so as to enforce bi-normalization:

(ul+1, vl+1) = 1, (19.24)

and

αl = (ul , Lvl). (19.25)

Because of the special block structure of the Liouvillian, Eq. 19.16c, and of the
starting vector y j , Eq. 19.16b, all the α’s vanish: αl = 0; one also has |βl | = |γ l |.
In exact arithmetics, it is known that the two sequences of vectors generated by
the recursion in Eq. 19.23 are bi-orthogonal, i.e., (uk, vl) = δkl , where δkl is the
Kronecker symbol. The resulting algorithm is described in detail, e.g., in Chap. 7 of
Saad (2003). Let us now define mV = [v1, v2, . . . , vm] and mU = [u1, u2, . . . , um]
as the two n × m rectangular matrices whose columns are the elements of the bi-
orthogonal set of vectors generated by m steps of the LBOA, Eq. 19.23 (the left and
right iterates of the Lanczos recursion). The following Lanczos factorization holds
in terms of the quantities calculated from the LBOA:

LmV = mV mT + βm+1vm+1me	m, (19.26a)

L	m
U = mU mT	 + γm+1um+1me	m, (19.26b)

mU	mV = mI, (19.26c)

where mT is the m × m tridiagonal matrix made out of the LBOA coefficients,

mT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 γ 2 0
β2 0 γ 3

β3 0
. . .

. . .
. . . γm

0 βm 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (19.27)

mel is the l-th unit vector in an m-dimensional space, “	” indicates matrix transpo-
sition, and mI is the m × m unit matrix.

19.3.2 Calculation of the Polarizability

Let us now rewrite Eq. 19.26 as:

(ω − L)mV = mV (ω − mT )− βm+1vm+1 me	m . (19.28)
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By multiplying Eq. 19.28 by r	i (ω− L)−1 on the left and by (ω− TM )
−1 me1 on the

right, we obtain:

r	i (ω − L)−1 mV me1 = r	i mV (ω − mT )−1me1

+ βm+1r	i (ω − L)−1vm+1me	m(ω − mT )−1 me1.
(19.29)

Using (19.29) and taking the relation mV me1 = v1 = y j into account, Eq. 19.15 can
be cast into:

αi j (ω) = −
(mzi j ,

mw j (ω)
)+ εm(ω), (19.30)

where mzi j and mw j (ω) are m-dimensional arrays defined as

mzi j = mVjri (19.31)

and as the solution of the tridiagonal linear system:

(

ω − mTj
) mw j (ω) = me1, (19.32)

respectively,

εm(ω) = −βm+1
(

ri , (ω − L)−1vm+1
) (

mem, (ω − mT )−1me1

)

(19.33)

is the error made when truncating the Lanczos chain to its first m terms, and a j
suffix has been appended to the mT and mV arrays, so as to indicate that different
Lanczos chains are generated for different polarizations of the perturbing electric
field, r j . Note that the components of the mzi j array can be calculated on the fly at
each Lanczos iteration (i.e., without storing the Lanczos iterates) as:

zl
i j =

(

ri , v
l
j

)

=
Nv∑

v=1

〈

ri,v|vq,l
j,v

〉

, (19.34)

where the orbitals {ri,v} are defined as in Eq. 19.17, vq,l
j,v is the vth upper (q-like)

component of the l-th Lanczos right iterate generated from u1 = v1 = y j

(see Eq. 19.16b), and a j suffix has also been appended to vl for notational unifor-
mity. The size of the error term εm Eq. 19.33 generally decreases by increasing the
number m of steps in the Lanczos chain. A manageable number of Lanczos steps is
found to be sufficient to achieve the accuracy needed for spectroscopic applications,
as demonstrated by the numerical applications discussed in the following sections.

In practice, the algorithm outlined above is performed in two steps, for any given
external perturbation (such as, e.g., different polarizations j of the perturbing electric
field). The first, time consuming but frequency-independent, step consists in the
LBOA factorization, yielding the tridiagonal matrix mT and the mz array, whose
components are calculated on the fly at each Lanczos iteration using Eq. 19.34. The
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calculation of several response functions (such as, e.g., different components of the
molecular dipole, corresponding to different rows of the polarizability tensor) implies
the simultaneous calculation of different mz arrays. In the second, inexpensive, step,
the response functions are calculated from Eq. 19.30 upon solution of Eq. 19.32, for
any different frequency one is interested in.

19.3.3 Extrapolating the Lanczos Recursion

The components of the mz array in Eq. 19.30 decrease rather rapidly when the number
of iterations grows large, so that only a relatively small number of components have
to be explicitly calculated. A much larger number ofβ and γ coefficients is necessary,
however, to obtain well converged solutions of Eq. 19.32. Rocca et al. (2008) showed
that, for large iteration counts,β and γ oscillate around two distinct values for odd and
even counts, whose average roughly equals one fourth the width of the spectrum of
the Liouvillian (which extends from minus to plus the maximum excitation energy),
and whose difference is of the order of one half the Liouvillian gap (which extends
from minus to plus the minimum excitation energy). As an example, in Fig. 19.1 we
display the typical behavior of the elements of the mz array and of the Lanczos β
coefficients as functions of the Lanczos iteration count, in the case of a fullerene C60
molecule. The average value of the β’s for large iteration counts is roughly one half
the kinetic-energy cutoff for the plane-wave basis sets (30 Ry in this case), which in
turn is of the order of the maximum excitation energy. The difference between the
averages for odd and even counts is here 3.2 eV, to be compared with a calculated
optical gap of 3.5 eV.

These results can be understood in terms of an analogy with the continued-fraction
expansion of the local density of states (LDOS) for tight-binding Hamiltonians, a
problem that has been the main motivation for the development of recursion methods
and their application to electronic-structure theory in the seventies (Bullet et al. 1980).
In particular, Turchi et al. (1982) have shown that the coefficients of the continued-
fraction expansion of a connected LDOS asymptotically tend to a constant—which
equals one fourth of the band width—whereas they oscillate between two values
in the presence of a gap: in the latter case the average of the two limits equals one
fourth of the total band width, whereas their difference equals one half the energy gap.
Further details on the analogy between the spectral properties of TB Hamiltonians
and of the TDDFT Liouvillian in a plane-wave representation can be found in Rocca
et al. (2008).

The rapid decrease of the components of the mz array, together with the observed
asymptotic behavior of the coefficients of the tridiagonal matrix suggest an effective
strategy to enhance the accuracy of the Liouville-Lanczos TDDFT algorithm, by
extrapolating the results obtained from a relatively small number of iterations. Once m
Lanczos iterations are performed and the regime is attained where further components
of the z array are negligible and the β and γ coefficients display the typical bi-modal
behavior of Fig. 19.1, a (much) larger tridiagonal system is solved, where the missing
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Fig. 19.1 Upper panel: values of the components of the mz array (see Eq. 19.30 and below) as
functions of the Lanczos iteration count, as calculated for a fullerene C60 molecule, using ultra-
soft pseudopotentials and a plane-wave kinetic-energy cutoff of 30 Ry. Lower panel: values of the
calculated Lanczos β coefficients (see Eq. 19.27) coefficients for the same system

components of z are simply set to zero, whereas the missing values of α and β are set
to the average of the values which have been actually calculated. An example of the
efficiency of this procedure will be discussed in Sect. 19.5 in the case of an organic
dye molecule.

19.4 Optical Sum Rules

Optical susceptibilities satisfy many sum rules, the most fundamental of which is
probably the Thomas–Reiche–Kuhn (Thomas 1925; Kuhn 1925; Reiche and Thomas
1925) (or f-sum) rule, which relates the integral of the absorption coefficient of a
molecular system to the number of electrons contained in it. As observed in Sect.
19.2, the absorption coefficient is proportional to the product of the frequency times
the trace of the molecular polarizability, whose integral reads:

f =
∑

j


m
∞∫

0

dω α j j (ω)ω (19.35a)

= 3

2
Neπ, (19.35b)
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Ne being the number of electrons. Strictly speaking, the above equation only holds
when electrons are subject to a local external potential. A violation of the f-sum
rule should be expected when non-local (norm-conserving as well as ultra-soft)
pseudopotentials are used (see below).

A remarkable feature of the Liouville-Lanczos approach to TDDFT is that the
f-sum rule is satisfied exactly when truncating the Lanczos recursion to any number
of iterations. This fact is a slight generalization of a well known result connecting the
classical-moment and the Hermitian-Lanczos methods, and stating that the momenta
of the local density of states calculated from a Lanczos chain of N steps are exact up
to order 2N + 1 (Nex 1978).

To demonstrate this feature, let us start from Eq. 19.15. Using the spectral reso-
lution of the Liouvillian and the relation limε→0 
m 1/(x + iε) = −πδ(x), one
easily sees that:

f = π
∑

j

(

r j , L · y j
)

, (19.36)

where r j , y j , and L are defined in Eqs. 19.16a–c. We now use the tridiagonal
representation of the Liouvillian and the bi-orthogonality of the basis resulting from
the LBOA, Eqs. 19.26, initiated by u1 = v1 = y j , to obtain:

f = π
∑

j

∑

kl

(r j , v
k
j )(u

l
j , y j )T

kl
j

= π
∑

j

(r j , v
2
j )β

2
j .

(19.37)

Equation 19.37 already shows that, whatever the value of the f-sum is, it is indepen-
dent of the number of iterations used to perform the LBOA. In order to complete
the demonstration, we notice that, because of the special block structure of the Liou-
villian, Eq. 19.16c, and of the u and v arrays, Eqs. 19.16a, b, the matrix element in
Eq. 19.37 does not depend on interaction effects (embodied in the K̆ matrix in Eq.
19.16c) and it is therefore equal to the value it would have for independent electrons,
for which the f-sum rule holds.

The validity of the f-sum rule relies on the commutator between the Hamiltonian
and the dipole operator to be proportional to the momentum operator, Eq. 19.22,
which is only true when the external potential acting on the electrons is local. In the
presence of non-local (pseudo-) potentials, corrections to the f-sum rule are to be
expected.

Experience shows that these corrections are rather small, though slightly larger for
ultra-soft than for norm-conserving pseudo-potentials. For the case of the fullerene
C60 molecule, our Liouville-Lanczos TDDFPT formalism leads to a spectrum in
which the f-sum rule is extremely well satisfied (Δ f/ f ≈ 0.007) when norm-
conserving pseudopotentials as employed. In the case of ultra-soft pseudopotentials
the error is one order of magnitude larger (Δ f/ f ≈ 0.078) (Malcioglu et al. 2011).



388 S. Baroni and R. Gebauer

Fig. 19.2 Squaraine
molecule—the dye consists
of 63 atoms and 178
electrons. Carbon atoms are
shown in grey, oxygen in
dark grey, nitrogen in light
gray, and hydrogen in white

Fig. 19.3 Absorption
spectrum of the squaraine
dye. While the main
absorption peak (2.03 eV) is
converged already with 1000
iterations, reproducing the
features at higher energy
require no less than 2000
Lanczos iterations
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19.5 Application to an Organic Dye Molecule

Let us now illustrate the Liouville-Lanczos TDDFPT algorithm by applying it to the
computation of the optical spectrum of a squaraine organic dye molecule. Such dyes
have recently attracted considerable interest in the domain of organic photovoltaics,
due to their easily tunable optical properties, high extinction coefficients, abundant
availability and environmental benefits.

The squaraine molecule considered here is depicted in Fig. 19.2 . The molecule
is simulated in a cubic supercell of size 25 Å, using the PBE functional (Perdew
et al. 1996b) for both the ground-state computation and for the (adiabatic) TDDFT
calculations, while the interaction of the electrons with the ions is described by ultra-
soft pseudopotentials (Walker and Gebauer 2007). A plane-wave basis set is used
with a kinetic-energy cutoff of 25 Ry for the KS wavefunctions and of 260 Ry for the
charge density.

Figure 19.3 shows the optical absorption spectrum up to 5 eV, averaged over the
three cartesian directions. The spectrum is characterised by a strong peak at 2.03 eV,
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Fig. 19.4 Absorption
spectrum of the squaraine
dye. After 1700 iterations,
the spectrum is well
converged only for energies
lower than roughly 3.5 eV.
The extrapolation of the
coefficients allows one to
obtain a good spectrum over
a much larger energy range
with negligible additional
computational cost
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followed by several low intensity peaks at higher energies. In Fig. 19.3 it can be
clearly seen that by increasing the number of Lanczos steps the spectrum converges
up to higher energies. The main peak is already well represented with 1000 iterations,
while the second peak is converged only with 2000 iterations.

As discussed in Sect. 19.3.3, the convergence of the optical spectra can be accel-
erated by extrapolating the recursion coefficients. In the case of our dye molecule,
this behaviour is illustrated in Fig. 19.4. Using for example 1700 Lanczos iterations,
the spectrum calculated without extrapolation is clearly not converged for energies
larger than about 3.5 eV. Using the same 1700 Lanczos steps and extrapolating the
remaining coefficients up to 10,000, one obtains a spectrum that is very close to the
converged result.

19.6 Conclusions

Lanczos methods provide powerful tools to handle some of the hard numerical prob-
lems in the simulation of molecular and solid-state excited-state properties within
TDDFT. We believe that the resulting Lanczos-Liouville approach to TDDFT is close
to be numerically optimal if detailed information on individual excited states is not
required. Of course, no numerical advance can cope with the inadequacy of currently
available xc kernels to properly describe excitonic and charge-transfer effects in the
excited states. These effects can in principle be successfully addressed within many-
body perturbation theory, whose approach to neutral excitations (the Bethe–Salpeter
equation) has a structure which is very similar to that of linearized TDDFT. As a
matter of fact, a simplified version of the Bethe–Salpeter equation featuring a stati-
cally screened exchange kernel has been recently treated with success using a simple
extension of the approach presented here for TDDFT (Rocca et al. 2010).
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A computer code implementing the Liouville-Lanczos approach to TDDFT
described here is freely available within the Quantum Espresso distribution
(Giannozzi et al. 2009) and is thoroughly described in Malcioglu et al. (2011).



Chapter 20
The Projector Augmented Wave Method

Lauri Lehtovaara

20.1 Introduction

DFT and TDDFT calculations are computationally intensive, and therefore, many
different strategies are employed to reduce the computational burden. As the cost
of a (TD)DFT calculation depends heavily on the number of degrees of freedom
and active electrons, both should be minimized to speed up calculations while still
reproducing the chemical and physical properties of interest. This can be achieved
by either using the traditional pseudopotential approach (Pickett 1989; Phillips and
Kleinman 1959; Hamann et al. 1979; Troullier and Martins 1991; Vanderbilt 1990)
or the more recent projector-augmented wave (PAW) method (Blöchl 1994; Blöchl
et al. 2003; Kresse and Joubert 1999).

The external potential in the TD-KS equations includes the electron-nuclear
Coulomb attraction, which diverges to negative infinity at the nuclei. Consequently,
all-electron KS wavefunctions have rapid oscilations near the nuclei. However, chem-
istry happens in regions where atomic orbitals of different atoms overlap significantly,
i.e., away from the nuclei and close to the middle of bonds. Therefore, chemical prop-
erties do not directly depend on the shape of wavefunctions in the close vicinity of
nuclei. This allows us to replace rapidly oscillating wavefunctions by something
computationally less challenging, i.e., by something smoother, as long as the correct
behavior in the bonding region is reproduced. Moreover, deeply bound core states
can be “frozen” as they do not extend to the bonding region, i.e., they are chemically
inert.

In the pseudopotential approximation, the electron–nuclear and core–valence
interactions can be replaced by a single effective potential, called pseudopotential.
A pseudopotential is much smoother than the bare Coulomb potential and core
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electrons appear only through the pseudopotential. Smoothness of the “pseudized”
external potential leads to smooth pseudo wavefunctions, which are easier to
discretize and require less degrees of freedom. The pseudopotential approach leads
to tremendous savings in computational cost, especially in the case of uniform
discretizations (plane-waves and finite-difference real-space grids). Unfortunately,
pseudopotentials are nonlocal, and the Hohenberg–Kohn and Runge–Gross theorems
hold only for local external potentials.

An alternative to the pseudopotential approach is the projector augmented-wave
method. It is a powerful numerical framework that tries to combine the efficiency of
pseudopotential based methods with the accuracy of all-electron calculations. The
PAW method is in principle an all-electron, full-potential method, i.e., it provides
access to the all-electron Kohn–Sham wavefunction and it uses the full KS potential
calculated from the all-electron density. In practice, the core electrons are usually
frozen (i.e., frozen-core approximation), and a cutoff for the partial-wave expansion
is required. Even though PAW is an all-electron method, it is extremely efficient
with performance comparable to ultrasoft pseudopotentials and is considerably faster
than traditional approaches based on norm-conserving pseudopotentials. Actually,
pseudopotentials can be seen as approximation to the PAW method, which to some
extent justifies their use within (TD)DFT. The price to pay is that the PAW framework
leads to equations that are somewhat more involved, and to added complexity in its
numerical implementation.

In this chapter, we give a brief introduction to PAW, and on its use within TDDFT.
We start by describing how the PAW wavefunctions are formed from three different
components: (i) smooth pseudo wavefunctions, (ii) smooth atomic pseudo wave-
functions, and (iii) atomic all-electron wavefunctions. Then we show how operators
in the PAW method are defined. The rest of the chapter briefly reviews how PAW
method can be used for DFT and TDDFT.

20.2 The PAW Method

The PAW method divides space into two kind of regions: non-overlapping atomic
regions, called augmentation spheres, and an interstitial region. In the interstitial
region, Kohn–Sham wavefunctions are expected to be smooth and easily described
by an uniform discretization (e.g., an uniform grid or planewaves). The smooth
discretization spans also the atomic regions, but in addition each atomic region has
spherical augmentation functions called partial-waves. The total wavefunction ϕk(r)
is represented as a combination of (i) smooth pseudo wavefunction ϕ̃k(r), (ii) atomic
all-electron wavefunctions, ξa(ra, θa, φa) and (iii) atomic pseudo wavefunctions
ξ̃a(ra, θa, φa) (see Fig. 20.1):

ϕk(r) = ϕ̃k(r)+
atoms
∑

a

∑

nlm

ca
k,nlm

[

ξa
nlm(ra, θa, φa)− ξ̃a

nlm(ra, θa, φa)
]

. (20.1)
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= + -

Fig. 20.1 All-electron PAW wavefunction is equal to the pseudo wavefunction plus the atomic
all-electron wavefunction minus the atomic pseudo wavefunction

The atomic all-electron and pseudo wavefunctions are written as a linear combina-
tion of all-electron partial-waves ξa

nlm(ra, θa, φa) and pseudo partial-waves
ξ̃a

nlm(ra, θa, φa), respectively. Partial waves are radial functions centered at the
nuclear positions Ra multiplied by (real) spherical harmonics:

f (r − Ra) = f (ra)Ylm(θa, φa). (20.2)

This kind of functions can easily describe sharp oscillations of the all-electron wave-
function near a nucleus.

The purpose of the all-electron partial-waves is to add the all-electron wave-
function inside an augmentation sphere, whereas pseudo partial-waves cancel the
smooth pseudo wavefunction ϕ̃k(r) inside an augmentation sphere (see Fig. 20.1).
The all-electron partial-waves are obtained from an all-electron atomic calculation:
they are the part of the atomic all-electron wavefunctions that are inside an augmen-
tation sphere. Each valence state has its corresponding partial-wave but usually a few
unbound (or scattering) states are included in the calculation. The unbound states
allow more flexibility on the all-electron wavefunction. For example, a hydrogen
atom can be described with two s-type partial-waves and one p-type partial-wave.
The p-type partial-wave is included to allow the all-electron density to polarize.

Each all-electron partial-wave has its corresponding pseudo partial-wave of the
same symmetry (s, p, d, . . .). Its purpose is to cancel the corresponding part of
the smooth pseudo wavefunction ϕ̃(r) inside an augmentation sphere. The pseudo
partial-waves are obtained from an atomic calculation with a smooth artificial
potential. As the wavefunction and its gradient must be continuous, an all-electron
partial-wave and its pseudo partial-wave must have the same value and gradient at
the boundary of an augmentation sphere. The pseudo partial-waves must be smooth
so that they can be represented on the smooth discretization in addition to the atomic
discretization.

The coefficients ca
k,nlm remain to be determined. In the PAW method, this is done

by defining smooth functions p̃a
nlm(ra, θa, φa) = p̃a

nlm(r), called projectors, which
are localized inside augmentation spheres. The purpose of the projector p̃a

nlm(r) is to
define the coefficient ca

k,nlm from the part of the smooth pseudo wavefunction ϕ̃k(r)
which is inside the augmentation sphere a. Each partial-wave pair, ξa

nlm(ra, θa, φa)

and ξ̃a
nlm(ra, θa, φa), have their own projector p̃a

nlm(r). The projectors are defined
by requiring them to be orthonormal to the pseudo partial-waves
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〈 p̃a
nlm(ra, θa, φa)|ξ̃a′

n′l ′m′(ra, θa, φa)〉 = δa,a′δnlm,n′l ′m′ , (20.3)

and by requiring that the pseudo wavefunction ϕ̃k(r) is reproduced by the pseudo
partial-wave expansion

|ϕ̃k(r)〉 =
∑

a,nlm

|ξ̃a
nlm(ra, θa, φa)〉〈 p̃a

nlm(ra, θa, φa)|ϕ̃k(r)〉 (20.4)

inside the augmentation sphere. In the limit when ξ̃a
nlm(ra, θa, φa) forms a complete

set, the sum
∑

nlm

|ξ̃a
nlm(ra, θa, φa)〉〈 p̃a

nlm(ra, θa, φa)| (20.5)

is equal to an identity operator inside the augmentation sphere a, which we denote
by 1a . In practice, this holds only approximately as ξ̃a

nlm(ra, θa, φa) does not form a
complete set.

We multiply the pseudo wavefunction in Eq. 20.1 by the unity
1 = 1−∑

a 1a +∑

a 1a :

ϕk(r) =
(

1−
∑

a

1a

)

|ϕ̃k(r)〉

+
∑

a,nlm

|ξ̃a
nlm(ra, θa, φa)〉〈 p̃a

nlm(ra, θa, φa)|ϕ̃k(r)〉

+
∑

a,nlm

ca
k,nlm

[

ξa
nlm(ra, θa, φa)− ξ̃a

nlm(ra, θa, φa)
]

, (20.6)

where we used that
∑

nlm |ξ̃a
nlm(ra, θa, φa)〉〈 p̃a

nlm(ra, θa, φa)| = 1a . The terms
(1 −∑

a 1a)|ϕ̃k(r)〉 and
∑

a,nlm ca
k,nlmξ

a
nlm(ra, θa, φa) yield the all-electron wave-

function, therefore the terms including pseudo partial-waves must cancel:

∑

a,nlm

ca
k,nlm ξ̃

a
nlm(ra, θa, φa) =

∑

a,nlm

|ξ̃a
nlm(ra, θa, φa)〉〈 p̃a

nlm(ra, θa, φa)|ϕ̃k(r)〉,
(20.7)

and we obtain

ca
k,nlm = 〈 p̃a

nlm(ra, θa, φa)|ϕ̃k(r)〉. (20.8)

Finally, the total wavefunction can be written as a linear operator T̂ acting on the
pseudo wavefuction

ϕk(r) = T̂ ϕ̃k(r), (20.9)
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where

T̂ = 1+
∑

a,nlm

[

ξa
nlm(ra, θa, φa)− ξ̃a

nlm(ra, θa, φa)

]

〈 p̃a
nlm(r)|. (20.10)

At this point, a few remarks are in place. The augmentation spheres cannot overlap
in theory, but in practice, they can slightly overlap without significant changes in
results. Moreover, in practice, a small number of partial-waves are enough to satisfy
the above equations within required accuracy. For example, for a carbon atom,
in addition to the 1s (which is frozen), 2s and 2p, only one additional set of s,
p, and d type unbound partial-waves are included.

20.3 Operators

PAW pseudo operators can be simply derived from the all-electron operators:

〈ϕi | Â|ϕ j 〉 = 〈ϕ̃i |T̂ † ÂT̂ |ϕ̃ j 〉 = 〈ϕ̃i | Ã|ϕ̃ j 〉, (20.11)

where Â is the all-electron operator and Ã is the correponding PAW operator. The
algebra is lengthy, but straightforward, and yields for Ã = T̂ † ÂT̂ :

Ã = Â +
∑

a,nlm

∣
∣
∣ p̃a

nlm

〉 [〈

ξa
nlm

∣
∣
∣−

〈

ξ̃a
nlm |

]

Â[(1− 1a)+ 1a]

+
∑

a,nlm

[(1− 1†
a)+ 1†

a] Â
[∣
∣
∣ξ

a
nlm

〉

−
∣
∣
∣ξ̃

a
nlm

〉] 〈

p̃a
nlm

∣
∣
∣

+
∑

a,nlm

∣
∣
∣ p̃a

nlm

〉 [〈

ξa
nlm

∣
∣
∣−

〈

ξ̃a
nlm

∣
∣
∣

]

Â
∑

a′,n′l ′m′

[∣
∣
∣ξ

a′
n′l ′m′

〉

−
∣
∣
∣ξ̃

a′
n′l ′m′

〉] 〈

p̃a′
n′l ′m′

∣
∣
∣. (20.12)

If we now expand this expression, the cross-terms of type
〈

ξa
nlm

∣
∣
∣ Â

∣
∣
∣ξ̃a′

n′l ′m′
〉

cancel,

and we are left with the following expression:

Ã = Â +
∑
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∣
∣
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×
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∣
∣ξ

a′
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−
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∣
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∣. (20.13)
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For local (e.g., one-particle potential) and semi-local (e.g., kinetic energy) opera-
tors, only the first two terms remain as other terms cancel because bra and ket vectors
are never nonzero in the same point of space. For example, the density (i.e., operator
∑

k nk |r〉〈r|) reads

n(r) = ñ(r)+
∑

a

[

na(r)− ña(r)
]

. (2.14)

For some nonlocal operators, like the Coulomb interaction of the Hartree poten-
tial, a special trick can be used. A smooth function, called compensation charge
−Z̃ a(r, θ, φ), is added and removed (also known as “an intelligent zero”) inside
each augmentation sphere. The purpose of the compensation charge is to cancel all
multipole moments of the atomic density contributions na(r)− ña(r), and therefore,
the potential is zero outside augmentation spheres. The compensation charge is then
added to the pseudo charge density to restore the cancelled multipoles. (Note that
this is not an approximation.) The Hartree and nuclear-electron attraction potential
reads
∫

d3r ′
n(r ′)−∑

a Zaδ(r ′ − Ra)

|r − r ′| =
∫

d3r ′
ñ(r ′)−∑

a Z̃a(r ′)
|r − r ′|

+
∫

d3r ′ 1

|r − r ′|
∑

a

{

na(r ′a, θ ′a, φ′a)− Zaδ(r ′ − Ra)

−
[

ña(r ′a, θ ′a, φ′a)− Z̃ a(r ′a, θ ′a, φ′a]
]}

,

(20.15)
where Za is the charge of the nucleus a.

20.4 Ground-State Kohn–Sham Equation and Forces

The PAW method causes relatively small changes to an existing pseudopotential code.
The ground-state Kohn–Sham eigenvalue problem in the PAW method becomes a
generalized eigenvalue problem

H̃ ϕ̃k = ε̃k S̃ϕ̃k, (20.16)

where S̃ = T̂ †1̂T̂ is the overlap operator, which arises from the non-orthonormality
of the PAW discretization 〈ϕ̃i |ϕ̃ j 〉 �= 0, or actually from the S̃-orthonormality
〈ϕ̃i |S̃|ϕ̃ j 〉 = δi j . Also, the forces change as the partial-waves and projectors depend
on nuclear positions. The ground-state force becomes

Fa = − ∂E

∂Ra −
∑

k

∂E

∂|ϕ̃k〉
d|ϕ̃k〉
d Ra −

∑

k

∂E

∂〈ϕ̃k |
d〈ϕ̃k |
d Ra = −

∂E

∂Ra +
∑

k

nkεk〈ϕ̃k | d S̃

d Ra |ϕ̃k〉.
(20.17)
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20.4.1 Connection to Nonlocal Pseudopotentials

The PAW method can be used to derive the nonlocal pseudopotential scheme in a
well justified way (Kresse and Joubert 1999). If we make a Taylor expansion of some
density dependent operator B̂[n] (e.g., electronic energy) with respect to the density
at the density of a reference atom na

re f :

B̂a[na] = B̂a[na
ref ] + (na − na

ref)
∂ B̂a[na]
∂na

∣
∣
∣
∣
∣
na=na

ref

+O
(

(na − na
ref)

2
)

, (20.18)

and we keep only the zeroth and the first order terms, we get the ultrasoft pseudo
potential approach (for details, see Kresse and Joubert 1999).

20.5 Time-Dependent DFT

It is quite simple to derive the TD Schrödinger equations within the PAW formalism.
We start from the all-electron action principle and apply the PAW transformation
operator T̂

A[Ψ ] =
∫

dt〈Ψ (t)|i ∂
∂t
− Ĥ(t)|Ψ (t)〉 =

∫

dt〈Ψ̃ (t)|T̂ †
[

i
∂

∂t
− Ĥ(t)

]

T̂ |Ψ̃ (t)〉.
(20.19)

If the operator T̂ is time-independent, i.e., nuclei do not move, the equation reduces to

A[Ψ ] =
∫

dt〈Ψ̃ (t)|iS̃ ∂
∂t
− H̃(t)|Ψ̃ (t)〉, (20.20)

which corresponds to the following time-dependent Kohn–Sham equation

iS̃
∂

∂t
ϕ̃(t) = H̃KS(t)ϕ̃(t). (20.21)

If the nuclei move, for example, when modelling nonadiabatic electron-ion
dynamics with the Ehrenfest TDDFT, the PAW transformation operator T̂ is time-
dependent. The TDKS equations become (Qian et al. 2006)

T̂ †i
∂T̂
∂t
ϕ̃(t)+ iS̃

∂

∂t
ϕ̃(t) = H̃(t)ϕ̃(t) (20.22)

that implies

iS̃
∂

∂t
ϕ̃(t) = [H̃(t)+ P̃(t)]ϕ̃(t), (20.23)
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where

P̃(t) = −iT̂ † ∂T̂
∂t
= −i

∑

a

va(t) ·
(

T̂ †∇Ra T̂
)

(20.24)

and va(t) is the velocity of ion a. The forces are calculated within the Ehrenfest
scheme and taking into account that wavefunctions depend on atomic positions
(Di Ventra and Pantelides 2000b):

Fa = −i
d

dt

〈
∂

∂Ra

〉

(20.25)

which leads to

Fa = −1

〈Ψ |Ψ 〉
{〈

Ψ

∣
∣
∣
∣

∂H

∂Ra

∣
∣
∣
∣
Ψ

〉

+
〈
∂Ψ

∂Ra

∣
∣
∣
∣

H − i
∂

∂t

∣
∣
∣Ψ

〉

(20.26)

+
〈

Ψ

∣
∣
∣
∣

H + i
∂

∂t

∣
∣
∣
∣

∂Ψ

∂Ra

〉}

. (20.27)

20.5.1 Time-Propagation

The time-propagation approach for TDDFT has to deal with the overlap matrix S̃.
This basically corresponds to replacing the Hamiltonian H̃ [n](t)with S̃−1(t)H̃ [n](t)
in propagation methods. If the augmentation spheres are nonoverlapping, the overlap
matrix S̃ is block diagonal, and therefore, also its inverse S̃−1 is block diagonal. Each
block of the overlap matrix S̃ can be efficiently inverted via dense matrix algebra.
However, in the usual case that the augmentation spheres are slightly overlapping, the
inverse of overlap matrix S̃−1 becomes much denser, and its calculation and storage
becomes prohibitively expensive. This makes most of the propagation methods which
are usually employed in practical applications of TDDFT, unsuitable for PAW. This
is particularly true for polynomial expansions of split-operator methods. However,
the well-known Crank-Nicholson method

[

S̃ + i

2
H̃ [n](t +Δt/2)

]

ϕ(t +Δt) =
[

S̃ − i

2
H̃ [n](t +Δt/2)

]

ϕ(t), (20.28)

with a predictor-corrector step to handle nonlinearity of the Hamiltonian H̃ [n](t),
can be applied without an additional effort (Qian et al. 2006; Walter et al. 2008).
The inversion of the overlap matrix S̃ is incorporated in the inversion of the propa-
gator matrix S̃+ i

2 H̃ [n](t +Δt/2), and therefore does not add further complexities
or computational burden to the propagation. Note that the solution of Eq. 20.28
can be performed by efficient sparse linear solvers (e.g., the complex symmetric
conjugate gradient) which exhibit good scaling and efficiency in modern computer
architectures.
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20.5.2 Linear-Response TDDFT

The inclusion of the PAW formalism in linear-response TDDFT is fairly straightfor-
ward (Walter et al. 2008), but somewhat cumbersome. The overlap operator S̃ does
not appear in the Casida equation (see Chap. 7), as we are working in the Kohn–
Sham eigenvector basis and the eigenvectors are S̃-orthonormal. However, the PAW
corrections will appear in the Hartree and exchange-correlation kernel KHxc. If the
exchange-correlation functional is local or semilocal and frequency independent, the
all-electron xc kernel reads

fxc[n](r) = fxc[ñ](r)+
∑

a

[ fxc[na](r)− fxc[ña](r)]. (20.29)

The Hartree contribution KH to the Hartree and exchange-correlation kernel KHxc
reads

K H
i j,pq =

∫

d3r
∫

d3r ′n∗i j (r)
n pq(r ′)
|r − r ′| , (20.30)

where

ni j (r) = ϕ∗i (r)ϕ j (r) (20.31)

is the pair density. Its extension to the PAW formalism is slightly more involved, but
by using the same trick as with the Hartree potential for the ground-state, we can
again simplify it to pseudo and atomic terms:

K H
i j,pq =

∫

d3r
∫

d3r ′
[

ñi j (r)−
∑

a Z̃a
i j (r)

]∗ [

ñ pq (r ′)−∑

a Z̃a
pq (r

′)
]

|r − r ′|

+
∫

d3r
∫

d3r ′
∑

a

⎧
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⎪⎩

[na
i j (r)]∗na

pq (r
′)

|r − r ′|

−
[

ña
i j (r)− Z̃a

i j (r)
]∗ [

ña
pq (r

′)− Z̃a
pq (r

′)
]

|r − r ′|

⎫

⎪⎬

⎪⎭

. (20.32)

Again, many terms have cancelled due to fact that all multipole moments of the
atomic terms were forced to zero using the compensation charges Z̃ a

i j (r).

20.6 Applications

The first TDDFT implementation employing the PAW method appeared only recently
(Walter et al. 2008). The time-propagation and Casida approaches were demon-
strated for small molecules. Later, the time-propagation approach was applied to

http://dx.doi.org/10.1007/978-3-642-23518-4_7
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large ligand-protected metal nanoparticles (Kacprzak et al. 2009; Enkovaara et al.
2010), the largest of which was Au104(S–CH3)44 with ∼1700 active electrons. The
PAW method has also been applied to the calculation of optical properties of solids
(Gajdos et al. 2006; Ramos et al. 2008).



Chapter 21
Harnessing the Power of Graphic
Processing Units

Xavier Andrade and Luigi Genovese

21.1 Introduction

The continuous increment in the power of modern high-performance computing
(HPC) platforms has further stimulated the interest of the electronic structure calcula-
tions community for more computationally challenging studies. Systems which were
intractable only few years ago become now accessible with the advent of modern
machines. In the past few years, the possibility of using graphic processing units
(GPU) for scientific calculations has raised a lot of interest as alternative to current
calculations based on central processing units (CPU). A technology initially devel-
oped for home computers has rapidly evolved in the direction of a programmable
parallel streaming processor. The features of these devices, in particular the very
low price performance ratio, together with the relatively low energy consumption
per Flops (floating point operations per second), make them attractive platforms for
intensive scientific computations.
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In this chapter we address the usage of GPU architectures in DFT and TDDFT
computations. The objective is to give an overview on the problematic of porting
a code to a hybrid CPU/GPU platform, in general and in the particular case of the
KS picture for modelling electronic systems. We start by briefly discussing GPU
architecture and their special characteristics in comparison with CPUs. We then
move to the aspects of programming a GPU code. Next we present two applica-
tions of GPUs: ground-state DFT calculations in the BigDFT code (Genovese et al.
2008) and real-time TDDFT propagation in the octopus code (Marques et al. 2003;
Castro et al. 2006). Finally we discuss how GPUs could be used for other types of
TDDFT applications and formalisms.

21.2 Basic Concepts in GPU Architectures

In many aspects, GPUs are quite different from CPUs. Understanding the peculiarities
of their architecture is essential to plan the GPU port of a program and to write efficient
GPU code.

The first particularity of GPUs is that they are co-processors controlled exclusively
by a CPU (see Fig. 21.1). GPUs cannot be used alone and must have a CPU associated,
thus forming a so-called hybrid architecture. GPUs can only access data that lies in
its dedicated memory. Data must be explicitly copied by the programmer between
CPU memory and GPU memory. They are normally connected through a PCI Express
(PCIe) link, which has a relatively small bandwidth and high latency (see Table. 21.1)

GPUs are massively parallel processors, in a single chip they can include hundreds
of floating point execution units,1 while a multi-core CPU typically has around 32
floating point execution units (considering all cores). As a result, the theoretical
floating point throughput of a GPU is around one order of magnitude larger than the
one of a CPU (part of the difference is compensated by the CPU higher operating
frequency). Both processing units have approximately the same number of transistors
and consume an amount of power of the same order, so this difference is mainly
explained by the design strategy of each processor type, based on the tasks that each
one is targeted to perform. CPUs are designed to run complex programs as fast as
possible. GPUs, on the other hand, are designed to run simple programs in parallel
over a large amount of data, so they can dedicate most of its transistors to execution
units.

In a GPU, execution units are organised in groups that form a multiprocessor.
All the execution units in a multiprocessor share a control unit, so they perform the
same instruction at the same time.

To exploit the highly parallel nature of the processors, GPU programs use fine-
grained threads or tasks. These are intimately different from the CPU threads which
are typically used in parallel environments like OpenMP. In a GPU the strategy is to
have many more threads than execution units by assigning each thread a very small

1 For marketing reasons these execution units are sometimes called “cores”, although they are not
comparable to a CPU core.
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Fig. 21.1 A GPU associated
with a CPU

Table 21.1 Comparison of
typical data transfer
capabilities of a GPU, a CPU
and the PCI Express (PCIe)
link that connects them

Type Latency [ns] Bandwidth [Gb/s]

CPU memory 40 30
GPU memory 300 100
PCIe link 20000 8

amount of the work. As the GPU can switch threads without cost, it can hide the
latency of the operations of one thread by processing other threads while waiting.

Memory access is also particular to GPUs. CPUs only have one type of memory
and rely on caches to speed up the access to it. GPUs do not always have a cache2

but instead they have a fast local memory shared by all the execution units in a multi-
processor. This local or private memory must be explicitly used by the programmer
to store data that needs to be accessed frequently. Main memory access also need
to be done carefully. The memory bandwidth is higher than for a CPU but latency
is also higher, see Table 21.1. Moreover, to obtain maximum memory transfer rates,
the execution units in a multiprocessor must access sequential memory locations.

So we summarise the principal features of GPU computation:

• Due to the high latency of the communication, the programmer should try to limit
the data transfer between CPU and GPU as most as possible.

• Calculation workload is parallelised in many little chunks, which perform the same
kind of operations on different data.

• Data locality is of great importance to achieve good performance, since different
multiprocessors have different local memories.

• Memory access patterns should be as regular and homogeneous as possible.

21.3 GPU Programming

Given their special characteristics, GPUs cannot be programmed directly using tradi-
tional serial programming languages, so a special framework is needed. The CUDA
programming language of Nvidia was probably the first in the market and it is,

2 Fortunately for programmers, newer GPUs include a small cache. This makes GPU code opti-
misation much simpler.
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nowadays, the most advanced in terms of functionalities and maturity. Nonetheless,
being an architecture-specific language, the code is not portable and there is no
standard associated to it.

21.3.1 The OpenCL Language

To avoid the problem of having different GPU-programming frameworks specific to
each hardware a standard was proposed: the OpenCL specification (Munshi 2009).
Its ambition is to open a pathway toward cross-platform parallel computing, of which
hybrid CPU/GPU architectures are a first example. Its specifications are similar to the
present organisation of the CUDA language, but with some useful generalisations.

It must be pointed out that, while OpenCL code can be executed unchanged in
different platforms (a GPU, a CPU, or other OpenCL supported device), this does
not necessarily mean that the code optimised for one platform will run efficiently in
other platforms.

21.3.2 Evaluation of Benefits: Performance with Complex Codes

The peculiarities of GPU architecture are thus of paramount importance to deter-
mine if an application can have benefits from it. A GPU program will be ported
conveniently depending of the nature of its operations. An evaluation should be
performed to understand the trade-off between rewriting and speed-up. The situation
is even more complicated for a complex code with many operations, which may
work in a parallel environment. For this case, the evaluation of the benefits of using a
GPU-accelerated code must be performed at three different levels.

• Firstly, one has to evaluate the effective speed-up provided by the GPU code with
respect to the corresponding CPU routines which perform the same operations.
This is the “bare” speed-up.

• At the second level, the “complete” speed-up has to be evaluated; the perfor-
mances of the whole hybrid CPU/GPU code should be analysed with respect to
the pure CPU executions. Clearly, this result depends of the importance of the
ported routines in the context of the whole code [i.e., following Amdahl’s law
(Amdahl 1967)] and the additional cost of CPU/GPU copies.

• For a parallel code, there is still another step which has to be evaluated. This is the
behaviour of the hybrid code in a parallel environment. Indeed, for parallel runs
the picture is complicated by two things. The first one is that since GPUs can be
faster than CPUs, the relative cost of communication increases. The second issue
is that we might need to copy data between remote GPUs, actually increasing the
communication time.
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There are, however, some additional considerations to make. First of all, as with
all parallel systems, on a GPU the speed up depends on the size of the studied system.
In this context, GPUs might not provide shorter calculation times, but they could be
useful to study more complex systems in a similar time [as modelled by Gustafson’s
law (Gustafson 1988)]. In second place, a direct migration of a CPU code might not
be the best strategy to obtain an efficient GPU code. Sometimes restructuring the
calculation or even using different algorithms might be necessary to fully exploit the
GPU capabilities.

21.4 GPUs for DFT and TDDFT

The advantages offered by GPU programming are of great interest for physics and
chemistry calculations. A lot of scientific applications have been recently ported
on GPU, including, for example, molecular dynamics (Yang et al. 2007), quantum
Monte-Carlo (Anderson et al. 2007), and finite element methods (Göddeke et al.
2007). In the domain of electronic structure calculations, up to now, most efforts have
been done in the context of Quantum Chemistry for DFT (Yasuda 2008; Ufimtsev and
Martinez 2009) and Moller-Plesset (Vogt et al. 2008; Watson et al. 2010) methods.
Given the small size of the basis set, usually the amount of data to be transferred
to the GPU is limited and these implementations may benefit of the acceleration of
arithmetic operations.

The situation is less developed for the condensed matter physics community,
where systematic discretization schemes are used. In this case, the number of degrees
of freedom is order of magnitudes larger, and this implies that the amount of data to
be treated is large. This poses a problem for GPU computation as transferring data
into the GPU memory is more time-consuming, so care should be taken in managing
such operations.

In the next sections we illustrate two applications for GPUs in codes that use
systematic discretisation strategies. First the implementation of GPU acceleration in
the BigDFT code, where GPUs are used for ground-state DFT calculations based on
a wavelet basis set. Next, we discuss the GPU port of the octopus code to perform
real-time TDDFT calculations based on a real-space grid discretisation.

21.5 GPU Implementation in the BigDFT Code

The BigDFT code implements DFT calculations based on Daubechies wavelets basis
set (Daubechies 1992), it is distributed under GNU–GPL license and integrated in the
abinit (Gonze et al. 2002) software package. A separate, standalone version of this
code (including the hybrid version) is also available (Genovese et al. 2008). Thanks
to wavelet properties, this code shows high systematic convergence properties, very
good performance and an excellent parallel efficiency.
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21.5.1 The Code Structure: Preliminary CPU Investigation

Applying the Hamiltonian operator on the KS wave-function is only one of the
operations which are performed in a DFT code. In general, an optimisation iteration
of a KS wave-function is organised as follows:

1. Application of the Hamiltonian onto wave-functions,
2. Overlap matrix,
3. Preconditioning,
4. Wave-function update,
5. Orthogonalisation.

Any of these steps is associated to a different set of operations. Steps (2) and (4)
are essentially related to linear algebra routines (BLAS calls), whereas step (5) is in
general implemented via LAPACK routines. These routines can be accelerated using
GPU ported linear algebra libraries. The CUBLAS package developed by NVidia
can be easily linked to the code. Steps (1) and (3) are associated to the application of
different operators on the wave-functions, and from the viewpoint of GPU porting,
they have in general to be recoded.

The details of the BigDFT code are presented elsewhere (Genovese et al. 2008,
2009). Most of the operators which are associated to the KS Hamiltonian are compu-
tationally written as a combination of convolutions with short, separable filters. The
lowest level routine which will be ported on GPU is then a set of independent, one
dimensional convolutions.

21.5.2 GPU Convolution Routines and CUBLAS Linear Algebra

We have evaluated the performances of the GPU port of the 1D convolutions and
their 3D counterpart. For these evaluations, we used a computer with an Intel Xeon
Processor X5472 (3.0 GHz) and a NVidia Tesla S1070 card. The CPU version of
BigDFT is deeply optimised with optimal loop unrolling and compiler options.
The GPU code is compiled with the Intel Fortran compiler (version 10.1.011).
All benchmarks are performed with double precision floating point numbers. With
these options the magic filter convolutions run at about 3.4 GFlops.

The GPU versions of the one-dimensional convolutions are about one order of
magnitude faster than their CPU counterparts. Since these are the building blocks of
the 3D convolutions, this gain in performance is reflected also on the 3D operators.

Also the linear algebra operations can be executed on the card thanks to the
CUBLAS routines. We obtain speed-ups between a factor of 20 and 60 for double
precision calls to CUBLAS routines for a typical wave-function size of a BigDFT
run as a function of the number of orbitals. These results take into account the amount
of time needed for transferring data to and from the card.
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From these tests, we can see that both GPU-ported sections are orders of magnitude
faster than the corresponding CPU counterpart. We now discuss the performance of
the complete code.

21.5.3 Performance Evaluation of Hybrid Code

As a test system, we used the ZnO crystal, which has a wurtzite bulk-like structure.
Such system has a relatively high density of valence electrons so that the number of
orbitals is rather large even for a moderate number of atoms.

We performed two kinds of tests. The first is related to the behavior of the
GPU-accelerated code on a single machine. Results can be found in Fig. 21.2. It
can be seen that GPU acceleration contributes to a significant reduction of the over-
head of linear algebra operations and convolutions. Both CUDA and the more recent
OpenCL implementation of these convolutions are tested. By combining these accel-
erations with in-node MPI parallelisation, we may achieve a speed-up up to one
order of magnitude faster than the mono-core CPU run. The second test compares
the behavior of the hybrid code in a multi-node machine. We use the hybrid section of
the CCRT Titane machine, with Intel X5570 CPUs and Nvidia Tesla S1070 GPUs.
In this test we keep the size of the system fixed and increase the number of MPI
processes such as to decrease the number of orbitals per core. We then compare the
speed-up of each run with the hybrid code. The parallel efficiency of the code is
not particularly affected by the presence of the GPU. For this machine, the time-to-
solution speed-up is around three.

21.6 TDDFT on GPUs: Implementation in octopus

In this section we detail the approach implemented in the octopus code (Marques
et al. 2003, Castro et al. 2006) for TDDFT calculations on GPUs. octopus is a free
software package that implements several TDDFT formalisms. Real-time propaga-
tion is the most used method, due to its flexibility. So up to now we have focused our
efforts in this formalism.

The implementation is based on the idea of using blocks of KS orbitals.
We use the GPU to apply the KS Hamiltonian over these blocks, obtaining important
performance gains not only for time propagation but also for ground-state DFT and
Sternheimer calculations (Andrade et al. 2007). The scheme is also applied for code
optimisation on CPUs with vectorial floating units.

The GPU implementation is based on the OpenCL framework and it has been
tested on Nvidia and AMD implementations. However, for the moment the code has
only been optimized for Nvidia cards. The CPU vectorial code is designed for x86
CPUs with SSE2 instructions and the IBM Blue Gene/P architecture, using compiler
directives. The code is included in the current development version of octopus and
it will be included in the next release.
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Fig. 21.2 Performances of a run of the BigDFTcode for a 64 atoms ZnO system. Different accel-
eration strategies are compared with respect to the time spent for a sequential pure CPU run. Two
different platforms were used for this test; in the first run (top panel), an Intel X5550 quad-core is
associated to a Fermi S2070 card, with CUDA 3.2. Both CUDA and OpenCL (OCL) implemen-
tations are tested. In the bottom panel, the system have been tested with an increasing number of
processors (Intel X5570 2.93 GHz). The scaling efficiency of the calculation is also indicated. In
the right side of bottom panel, the same calculation has been done using one Tesla S1070 card per
CPU core, for both architectures
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(a)

(b)

Fig. 21.3 Example of memory layout for a block of four orbitals with five coefficients each: a
Standard memory layout where each orbital is contiguous in memory. b Optimum memory where
all the coefficients in a block are contiguous. The arrows indicate the relation of the position of the
first coefficient in both schemes

21.6.1 Working with Blocks of Kohn-Sham Orbitals

The key to obtain good performance in a GPU is to apply the same instructions over
several streams of independent data. In TDDFT, the operations to be performed to
each orbital are exactly the same and fully independent. In this way, we can obtain
these independent data-streams by working with a group of KS orbitals, that we call
a block. This idea is the central strategy for the GPU porting of octopus, but the
scheme is quite general. It does not depend on the type representation or basis set
used, as long as there are operations to be applied simultaneously to several orbitals.
It is general also in the sense that it can be a good code optimisation strategy not
only for GPUs, but also for CPUs.

For optimal execution, the number of orbitals in the block, or block size, needs to
be compatible (an exact divisor or multiple) with the number of execution units in
each multiprocessor of the GPU (typically 16, 32 or 64 in modern GPUs). So powers
of two are a good choice.3

Working with blocks of orbitals also allows to optimise memory accesses.
However, choosing an appropriate memory layout is crucial. The order used in
octopus, and many other DFT codes, is to store contiguously in memory each
orbital, as seen in Fig. 21.3a. This is not optimal since values for the same coeffi-
cient of different orbitals are scattered. The optimal memory arrangement is to have
all coefficients together, effectively transposing the order of the array, Fig. 21.3b.4

In this manner the GPU can maximise memory accesses since tasks read or write
sequential memory locations. The transposition is done by the GPU after copying
to GPU memory and undone before copying back to main memory. The cost of the
transposition is negligible in comparison with the cost of the copy.

3 This has the additional advantage that integer multiplications by the block size can be done using
the much faster bit shift operations.
4 Note that it is the block that is transposed with respect to the standard ordering, not the whole
set of orbitals.
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21.6.2 Application of the Kohn-Sham Hamiltonian

Since for real-time TDDFT the work to be done to each orbital is independent of
the other orbitals, we can apply simultaneously the KS Hamiltonian over a block of
orbitals. This is not always the case for ground-state DFT. In some algorithms, due
to orthogonality constraints the calculation of the ground-state orbitals is sequential.
There are, however, eigensolvers based on the idea of direct minimisation (Pulay
1980) that are suitable for this type of parallelism.

In octopus the orbitals are not always available in GPU memory, they must be
copied before the calculation, and the result copied back to main memory. Since
these copies are costly they are avoided as much as possible by keeping data in
GPU memory if the Hamiltonian is going to be applied again. For example, in real-
time TDDFT, for the application of the exponential of the Hamiltonian in the Taylor
approximation (Castro et al. 2004a) only the initial orbitals and the resulting ones
need to be copied, while the intermediate results are passed in GPU memory.

To fully apply the Hamiltonian using the GPU in a real space code we need to
calculate the action of the potential, and the kinetic energy operator. The kinetic
part is the most important one and is discussed in the next section. The local part
of the potential is in general very simple to apply, since in real space it is only a
multiplication of two arrays. The non-local part of the potential, that appears when
pseudo-potentials are used, is more interesting. In order to achieve a level of paral-
lelism suitable for the GPU, the projectors corresponding to all atoms must be applied
simultaneously.

21.6.3 The Kinetic Energy Operator in Real-Space

octopus is based on a real-space grid discretisation. The basis for this method is the
approximation of the Laplacian in the kinetic energy operator by high-order finite
differences (Chelikowsky et al. 1994). This is the most time-consuming part, so it is
essential to apply it as efficiently as possible. Memory access is a delicate issue in
finite difference operators, since each point is used several times. In octopus, the
order in which grid values are stored in memory is chosen such that points that are
neighbours are close. The result is that memory accesses have a good locality and
can profit from cache memory.

We can see how critical blocks are to realise the performance potential of the GPU
in Fig. 21.4a . It shows the throughput obtained in a GPU and a CPU for the Laplacian
for different block sizes. In the GPU, by using blocks we can obtain speed-ups of 5
with respect to the case of working with a single orbital. And, while for a block size
of 1 the GPU is only 1.4 times faster than a CPU, for a block size of 32 the GPU
is almost 4.5 times faster. Due to the limited cache size, increasing the block size
beyond 32 orbitals decreases the performance in both processors.
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Fig. 21.4 Comparison of the throughput of octopus for different block sizes. a Comparison of
the throughput of the Laplacian a Execution of a real-time propagation for a C60 molecule. GPU:
Nvidia GTX 480. CPU: Intel Core i7 975, 3.33 GHz running four threads

Copy to/from GPU memory: 30.3% Calculation of the KS potential: 14.1%

Other operations executed on the CPU: 5.3%

Operations executed on the GPU: 50.3%

Fig. 21.5 Breakdown of the execution of a real-time propagation of octopus of a C60 molecule.
Execution on a Nvidia GTX 480 GPU and a Core i7 975 CPU using four threads

21.6.4 Overall Performance Improvements

In Fig. 21.4b we present the throughput obtained for a real-time propagation with
octopus performed with a GPU and a CPU. For this case the GPU is three times
faster than the CPU. This represents a smaller speed-up than the one of the individual
components. There are two reasons for this. First, copies between CPU and GPU
memory consume a considerable amount of time. Second, the parts of the code that
are executed on the CPU limit the speed-up that can be obtained. In Fig. 21.5 we
show how the time is spent during the execution of octopus on a GPU. Roughly
half of the time is used executing GPU code, while 30% is spent in GPU/CPU copies.
The remaining 20% corresponds to tasks that are performed by the CPU.

21.7 Future Developments in TDDFT

Up to now most of the applications of GPU computing to electronic structure prob-
lems have been centred around ground state DFT methods. In many cases these
developments can be directly applied to TDDFT formalisms, specially for methods
based on the direct representation of the Hamiltonian instead of the spectral represen-
tation (in terms of unoccupied orbitals). There are, however, approaches in TDDFT
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that use different types of operations from ground state DFT, and whose application
to GPU computing must still be studied.

In the Casida linear response formalism (Casida 1996), the main operation to be
performed is the calculation of Coulomb integrals of the form

Ki jkl =
∫

d3r
∫

d3r ′
ϕ∗i (r)ϕ∗j (r)ϕk(r)ϕl(r)

|r − r ′| . (21.1)

When using Gaussian type orbitals, these integrals can be calculated in analytic
form. In this context, Ufimtsev and Martinez proposed a method to calculate the
analogous integrals that appear in HF using GPUs (Ufimtsev and Martinez 2009). A
key point of their approach is to re-order the integrals by the type of orbital, avoiding
branches that can degrade performance in GPU code. Up to now, their method is
only valid for s and p orbitals. This limits the applicability to TDDFT, since a proper
description of the excited states using Gaussian type orbitals requires higher angular
momentum components.

In other discretizations, the evaluation of Eq. 22.1 is done by calculating one of
the integrals as the solution of a Poisson equation. There exist many Poisson solvers
for different boundary conditions [see e.g. (Genovese et al. 2006, 2007)] that can be
applied to electronic structure problems. In other areas, some Poisson solvers have
already been applied using GPUs (Bolz et al. 2005, Shi et al. 2009, Jeschke et al.
2009, Grossauer and Thoman 2008).

For ground state DFT, a single Poisson solution is required per iteration. While
in a scheme like Casida (or HF), several Poisson solutions are required and they can
be calculated simultaneously. This gives the possibility of using a scheme of blocks
to exploit the parallelism of the GPU.

Another common approach for TDDFT, specially for periodic systems, is to
calculate the response functions using perturbation theory. This is usually done in a
plane wave basis [as, for example, the yambo code does (Marini et al. 2009)]. The
most time consuming operations in this type of calculations are fast Fourier trans-
forms and dense matrix linear algebra. These operations are common and standard
high-performance libraries exist or should be available soon for GPU architectures.
However, since these calculations require large quantities of memory, it is unlikely
that they can fit the whole data-set in the limited memory of a GPU. So, the main
challenge for these approaches will come from efficiently managing CPU/GPU copy
operations.

21.8 Conclusions

The process of porting a code to a hybrid CPU/GPU architecture requires some effort
to learn the GPU programming techniques and to write and optimise the GPU code.
This process however, should only affect routines that take care of well defined oper-
ations like the application of the Hamiltonian, the solution of the Poisson equation,
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or orthogonalisation. Once these “building blocks” are ported to a GPU architecture,
the different types of calculations that use them do not need to be modified if a proper
abstraction layer is used. High performance GPU libraries could be of great help in
the porting process.

Currently, one of the main challenges of writing an efficient GPU code is to deal
with the problem of copying data between main memory and GPU memory over a
relatively slow link. Unlike other previous GPU limitations, like single precision or
the lack of cache, it is not clear that this issue will be solved completely by GPU
vendors in the near future. While CPU chips will soon include a GPU that shares
the same memory, it will most likely correspond to a slow GPU not suitable for
HPC. Fast GPUs require higher memory bandwidths than what CPU memory can
provide, so in the foreseeable future they will still have their own memory banks.
However, we will see increments in the speed of the CPU/GPU link and perhaps
other improvements, like direct MPI access to GPU memory.

Programmable GPUs, and the tools to write programs for them, have only been
available for a short time. So only a few DFT or TDDFT GPU codes are available,
and the application to different types of calculations still needs to be investigated.
It is clear, though, that the use of hybrid CPU/GPU architectures is an efficient way
to harness high amounts of computing power and that is suitable for TDDFT. For
the two applications shown, the calculation time is reduced by around a factor of
three with respect to an optimised multi-core CPU calculation. This factor could
be increased still, since reported performances are far from the GPU theoretical
throughput and there are certainly many more optimisation opportunities left to
discover. In fact, larger speed-ups for GPU ports can be found in literature for other
applications. However, one should be aware that sometimes reported performance
gains are unrealistic5 and are based on comparisons of optimised GPU code with
poorly optimised CPU code.

The lower cost per GFlops for hybrid architectures will surely enhance their
diffusion in the near future. For example, in late 2010 already three out to the top
four fastest supercomputers are GPU based, including the number one (Stone and
Xin 2010). As GPUs are beginning to be integrated in HPC platforms, OpenCL
support might become a standard feature of scientific codes, as MPI parallelisation
is today. In fact, it is possible that GPUs will set the trend for high performance
computing. The combination of highly parallel processors and a standard framework
to write code for them, OpenCL, could well be the base for the future of numerically
intensive calculations, comprising not only GPUs but also CPUs and accelerator
boards. In fact, processor vendors like AMD, IBM or Intel already provide OpenCL
implementations for their CPUs. So the key issue behind the GPU “revolution” is the
development of in-chip parallel programming languages, that will allow engineers
to start putting more execution units in processors of any type, knowing that many
applications will be able to profit from them.

5 Unrealistic in the sense that the speed-up is larger than the theoretical GPU/CPU performance
ratio.
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Chapter 22
Dispersion (van der Waals) Forces and TDDFT

John F. Dobson

22.1 Introduction

By “dispersion forces” (Mahanty and Ninham 1976) we mean the attractive part
of the van der Waals (vdW) interaction that cannot be attributed to any permanent
electric multipoles. These ubiquitous forces are typically weaker than ionic and
covalent bonding forces, but are of longer range than the latter, typically decaying
algebraically rather than exponentially with separation. They are important in soft
condensed matter and in rare-gas chemistry, for example. We will work in the elec-
tromagnetically non-retarded [non-Casimir (Milton 2001)] limit, which means in
practice that we can treat interacting systems at separations from about a micron
down to full overlap of electronic clouds. We do not aim for a complete review
of vdW phenomena and theories, but will rather concentrate on approaches that
deal with dynamic electron density-density response functions, which in turn can
be calculated by TDDFT methods. In Sect. 22.2 we give simple physical arguments
that motivate the form of the dispersion interaction between small non-overlapping
systems, and in Sect. 22.3 we outline the simplest way to transfer this approach
to larger systems via pairwise summation. Section 22.4 discusses the perturbation
theoretic approach to dispersion forces. In Sect. 22.5 it is pointed out that both the
pairwise additive and low-order perturbative approaches can give poor results for
dispersion forces between highly polarizable, highly anisotropic systems, including
nanostructures of strong current interest. Examples from the literature since the last
edition of this book are included. Section 22.6 introduces the fluctuation dissipation
theorem including a first-principles derivation, and its use along with the adiabatic
connection formula (ACFD) to obtain groundstate xc energies. This Section includes
a detailed proof that ACFD applied to the bare KS response leads to the exact (DFT)
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exchange energy, correcting errors in the previous edition. Section 22.7 discusses the
direct random phase approximation (dRPA) as the simplest fully microscopic imple-
mentation of the ACFD approach, suitable for dispersion energy calculations beyond
the pair-summation approach. The substantial progress with this approach since the
previous edition is discussed. Section 22.8 discusses the latest non-DFT methods
of going beyond dRPA. Section 22.9 discusses some general difficulties in using a
non-zero kernel fxc go beyond the dRPA in calculating the xc energy, and includes
some as yet unpublished results. Section 22.10 discusses the use of direct approxi-
mations to the electronic response to obtain nonlocal vdW energies, including the
vdWDF.
A new unpublished approach is briefly discussed that goes beyond the pair summa-
tion format. Finally the chapter is summarized in Sect. 22.11

22.2 Simple Models of the vdW Interaction Between
Small Systems

22.2.1 Coupled-Fluctuation Picture

It is worthwhile to consider first a very simple picture of the vdW interaction between
neutral spherical atoms at separation R � b where b is an atomic size. [For more
detail see e.g. (Dobson et al. 2001) or (Langbein 1974)]. The Hartree field of a neutral
spherical atom decays exponentially with distance, and so the Hartree energy cannot
explain the algebraic decay of the vdW interaction. However the zero-point motions
of the electrons (or thermal motions where significant) can cause a temporary fluc-
tuating dipole moment d2 to arise on atom #2. The nonretarded Coulomb interaction
energy between this dipole, and another dipole of order α1d2 R−3 that it induces on
atom #1, has a nonzero average value that can be estimated (Dobson et al. 2001) as

E = −C6 R−6, C6 = K�ω0α1α2. (22.1)

Here α1 and α2 are the dipolar polarizabilities of the atoms. The “Hamaker constant”
C6 for this geometry contains a dimensionless constant K, not specifiable from the
above qualitative argument. The factor R−6 can be understood as arising from two
actions of the dipolar field, each proportional to R−3, showing that this approach
relates to second-order perturbation theory (PT).

22.2.2 Picture Based on the Static Correlation Hole: Failure
of LDA/GGA at Large Separations

The spontaneous dipole d2 invoked above would be implied if we had found an
electron at a position r on one side of atom #2. The induced dipolar distortion on
atom #1 then represents a very distant part of the correlation hole density nc(r ′|r)
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(Gunnarsson and Lundqvist 1976) due to discovery of the electron at r. The shape of
this hole is entirely determined by the shape of atom #1, and is thus quite unlike the
long-ranged part of the xc hole present in a uniform electron gas of density n(r). It is
therefore unsurprising that the local density approximation (LDA) misses the long-
ranged tail of the vdW interaction. In fact the LDA and the GGAs can only obtain the
vdW tail via the distortion of the density of each atom, a distortion that is predicted
by these theories to decay exponentially with separation of the two atoms, thus ruling
out the correct algebraic decay of the energy. The situation with GGA is less clear
when the densities of the interacting fragments overlap. If the principal attractive
correlation energy contribution comes from electrons near the overlap region, then
treating this region as part of a weakly nonuniform gas might be reasonable. In
keeping with this, various different GGAs can give qualitatively reasonable results
for vdW systems such as rare-gas dimers. The results are not consistent or reliable,
however (Perez-Jorda and Becke 1995; Zhang et al. 1997; Patton and Pederson 1997;
Patton et al. 1997) , though surprisingly good results near the energy minimum are
obtained (Perez-Jorda et al. 1999; Walsh 2005) with Hartree–Fock exchange plus
the Wilson-Levy functional (Wilson and Ivanov 1998; Wilson and Levy1990). Some
discussion is given in a review (Dobson et al. 2001).

22.2.3 Picture Based on Small Distortions
of the Groundstate Density

Instead of considering the energy directly, Feynman (1939) and Allen and Tozer
(2002) considered the small separation-dependent changes δn(r, R) in the ground-
state density n(r) of each fragment, caused by the inter-fragment Coulomb interaction
vee12. The Coulomb field acting at the nucleus of each fragment, created by δn(r, R)
as source, leads to a force which was identified as the vdW force, in the distant limit.
One can then obtain the correct result F = −∇R(−C6 R−6) in the widely-separated
limit, in agreement with (22.1). Such a result emerges, for example, if δn(r, R)
is calculated from a many-electron wavefunction correct to second order in vee12,

involving a double summation with two energy denominators. [The first-order wave-
function perturbation makes zero contribution to δn(r, R). ] By contrast, looking at
the total energy to second order in vee12 one already obtains the dispersion inter-
action with only a single summation and one energy denominator, a substantially
easier task of the same order as obtaining the first-order perturbed wavefunction.
From here on we restrict attention to approaches based directly on the energy.

22.2.4 Coupled-Plasmon Picture

Another simple way to obtain the R−6 interaction is to consider the coupled fluctu-
ating dipoles invoked above as forming a coupled plasmon mode of the two systems
(Langbein 1974). One solves coupled equations for the time-dependent density
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distortions on the two systems, leading to two normal modes (in- and out-of-phase
plasmons) of free vibration of the electrons. The R dependence of the sum of the
zero-point plasmon energies gives an energy of form−C6 R−6, in qualitative agree-
ment with the coupled-fluctuation approach described above, for the case of two
small separated systems [see e.g. (Dobson et al. 2005; Mahanty and Ninham 1976;
Langbein 1974)]. A strength of the coupled-plasmon approach is that it is not pertur-
bative, and is equally valid for large or small systems, even for metallic cases where
zero energy denominators could render PT suspect. The coupled-plasmon theory is
linked to the correlation-hole approach by the fluctuation-dissipation theorem to be
discussed starting from Sect. 22.6.2 below

22.3 The Simplest Models for vdW Energetics of Larger Systems

There is a large early literature [see e.g. (Mahanty and Ninham 1976)] calculating
forces between macroscopic bodies by adding R−6 energy contributions between
pairs of atoms, or pairs of volume elements. To describe close contacts or chem-
ical bonds, the small-R divergence has to be “saturated” or cut off and substituted
by another form for small R. The well-known “6–12” or Lennard-Jones potential
φ6−12(R) = −C6 R−6+C12 R−12 is an example used both in chemical and biological
situations, and also quite recently for graphitic structures. Typically the coefficients
C6 and C12 are fitted to experimental data, and may differ even between different
structures of the same (graphitic) type (Girifalco et al. 2000). Other saturation proce-
dures are currently used (Wu and Yang 2002; Grimme et al. 2010). Recent work has
provided a non-empirical way to achieve short-distance saturation (Dion et al. 2004)
that appears to be valid at least for small finite systems: see Sect. 22.10.2. We show
in Sect. 22.5 below, however, that the

∑
R−6 tail of fitted Lennard-Jones potentials

is not in principle correct for the asymptotic vdW interaction of an important class
of condensed matter systems. It is also difficult to see how a more recent fitting
scheme (von Lilienfeld et al. 2004) can deal with the severe non-additivity required.
These considerations reinforce the need to develop the seamless ACFD approach to
be described below in Sect. 22.6

22.4 Formal Perturbation Theory Approach

22.4.1 Casimir–Polder Formula: Second Order Perturbation
Theory for Two Finite Nonoverlapping Systems

A more precise result than (22.1) can be obtained by treating the inter-fragment
Coulomb interaction vee12 = e2/r12 in second-order PT. This is invalid when the
electrons on the two systems overlap, so that electrons in system 1 and system 2 cannot
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be treated as distinguishable. (A more complex vee12 PT, the symmetry adapted PT
[SAPT (Jeziorski et al. 1994)] is available in cases of overlap). Some doubts also
occur for infinite systems (see Sect. 22.5). With these caveats in mind, one can write
the interaction energy exactly to O(vee12)

2 in the following form (Longuet-Higgins
1965; Zaremba and Kohn 1976), frequently termed the Casimir–Polder formula in
the chemical literature:

E(2)12 = −
�

2π

∫

d3r1

∫

d3r ′1
∫

d3r2

∫

d3r ′2
e2

r12

e2

r ′12
×
∞∫

0

duχ1(r1, r ′1, iu)χ2(r2, r ′2, iu).

(22.2)
Here χ1 and χ2 are the density-density response functions (see Chap. 4) of the two
fragments separately (each treated in the complete absence of the other, but including
all interactions inside each fragment, and evaluated at imaginary frequency ω = iu).
The arguments r1 and r ′1 are positions inside the first fragment, while r2 and r ′2
are inside the second fragment. There are many equivalent forms (McWeeny 1989;
Zaremba and Kohn 1976) of the second-order perturbation energy. The form (22.2)
has been chosen for display here because it is useful in establishing connections
between different approaches to the dispersion interaction to be discussed below.

The charge-neutrality and constant-potential conditions

∫

d3r ′χ(r, r ′, iu) =
∫

d3rχ(r, r ′, iu) = 0 (22.3)

are automatically satisfied (Dobson et al. 1998; Dobson and Dinte 1996) if one
writes the density-density responses as the gradient of nonlocal dynamic polaris-
ability tensors α (Hunt 1983),

χ(r, r ′, iu) = −e−2∂ri∂r ′ jαi j (r, r ′, iu). (22.4)

Using integration by parts and defining ti j (r) = r−2(3rir j−δi j |r|2) one then obtains
from (22.2)

E (2) = − �

2π

∫

d3r1

∫

d3r2

∫

d3r ′1
∫

d3r ′2
3

∑

i jkl=1

tik(r12)t jl(r ′12)

× r−3
12 r ′−3

12

∫ ∞

0
duα(1)i j (r1, r ′1, iu)α(2)kl (r2, r ′2, iu). (22.5)

From (22.5) it is clear that the leading dependence of the dispersion energy E (2) is of
O(R−6) at large separations (as indicated by the simple arguments in Sect. 22.2
above), but that E (2) depends in general on the orientation of the two systems
as embodied in the angular dependence of the polarisability tensors α(1), α(2).
By writing r12 = R + x1 − x2, expanding ti j in powers of xi and x ′j , and assuming
isotropic dipole polarizabilities Ai j = δi j A(iu) for each system, (22.5) gives in
lowest order the following more familiar formula generalizing (22.1):

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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E (2) = −C6/R6, C6 = 3�

π

∫

du A(1)(iu)A(2)(iu). (22.6)

Higher terms in the multipolar expansion in powers of x1 and x2 give corrections to
(22.5) and (22.6) of order R−8, R−10 etc. (Jeziorski et al. 1994; Osinga et al. 1997).

For well-separated finite systems, (22.2) reduces the calculation of accurate vdW
interaction parameters to the calculation of sufficiently accurate dynamical density
response functions of the isolated components. The simplest case is that of two
atoms, but atomic polarizabilities are in fact notoriously difficult to treat via density
functional methods, because they involve extreme inhomogenity of the density.
Straightforward ALDA response calculations for atoms, based on LDA KS poten-
tials, lead to dimer C6 coefficients that are up to 20% too large for rare gases
(van Gisbergen et al. 1995) and 50% for the Be dimer. RPA response tends to under-
estimate C6. Part of the problems with ALDA come from the need for self-interaction
correction (Mahan and Subbaswamy 1990) perhaps both in the groundstate calcula-
tion and in the response (Pacheco and Ekardt 1992a, b; Pacheco and Ramalho 1997).
Use of the LB94 groundstate KS potential, which has the correct asymptotic behav-
iour, like SIC theories, leads to improved C6 and C8 vdW coefficients (Osinga et al.
1997).

Given the availability of accurate (if cumbersome) correlated quantum chemical
approaches for small vdW-bound systems, DFT response approaches to vdW
phenomena are probably most needed for larger systems. This situation is familiar
from conventional groundstate DFT. The exact response-based formula (22.2) is
nevertheless important here because it facilitates the testing of various response-
based TDDFT approaches to the vdW force.

Equation 22.2 should not be confused with Moeller-Plesset (MP) PT (Szabo and
Ostlund 1989). The latter goes systematically beyond the Hartree–Fock theory by
treating the entire bare electron-electron interaction vee as a perturbation. This is in
contrast to Eq. 22.2 in which the exact susceptibilities χ1 and χ2 contain the intra-
subsystem interactions vee11, vee22 in principle to all orders: only the inter-subsystem
interaction vee12 is treated perturbatively. Correspondingly, the separation-dependent
part of the second-order MP (MP2) energy is equivalent to (22.2) but with the bare
(Kohn–Sham or Hartree–Fock) responses χKS1, χKS2 on the right-hand side. On
the other hand, in MP2 and related approaches the overlapped case is not excluded.
There have been a number of approaches related to this idea (Engel and Bonetti
2001; Engel et al. 2000; Angyan 2005). Some used perturbation of Eq. 22.19 within
the ACFD (Lein et al. 1999) and so could include fxc directly.

22.4.2 vdW and Higher-Order Perturbation Theory

For non-overlapping electronic systems one can go further within PT with respect to
the inter-system Coulomb interactions veei j . In third order one finds an interaction
between three separated systems, which cannot be expressed as the pairwise sum of
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R−6 Hamaker terms such as (22.6). At large separations and spherical systems the
leading (dipolar) contribution to this third-order term has the Axilrod-Teller form
[see e.g. (Rapcewicz and Ashcroft 1991)] E (3)vdW

∼ C9 R−3
12 R−3

23 R−3
13 , where C9

contains some angular dependence. There are also corrections to the pair interaction
(22.5) and (22.6) from perturbation orders beyond 2 (Jeziorski et al. 1994). A recent
discussion from the RPA viewpoint is given in (Lu et al. 2010).

22.4.3 Symmetry-Adapted Perturbation Theory

The perturbative approach is also possible in the regime of electron charge overlap
provided that the exchange symmetry of the many-electron wavefunction is taken
into account via a projection operator technique. This has been developed to a very
high degree in the SAPT of Jeziorski et al. (1994). This approach should prob-
ably be considered the state of the art for vdW interactions where it is numerically
feasible, namely for molecular pairs of moderate size. Within SAPT the properties
of each subsystem can be treated at various levels up to full configuration interac-
tion. Some of the terms can be written in terms of density response functions of the
subsystems, and here TDDFT (ususally RPA or ALDA) has been put to good use
in reducing the numerical burden of SAPT calculations (Hesselmann et al. 2006;
Misquitta et al. 2005). A proper account of this approach would require may pages.
The present chapter will concentrate instead on methods suitable for macroscopic
and nano systems too large for the SAPT approach.

22.5 Nonuniversality of vdW Asymptotics in Layered
and Striated Systems

Unfortunately the finite-order perturbation approaches discussed in the previous
section, as well as

∑
R−6 formulas partly justified by this perturbative approach,

are questionable for many large solid-state systems of current technological interest
(Dobson et al. 2001, 2005). In highly anisotropic systems, the coefficient of the
R−6 interaction can be severely mis-estimated by pairwise additive theories (Kim
et al. 2006). The most severe cases, in the sense that the net interaction has a
non-conventional power law, are those where there is a zero electronic energy gap,
leading to zero energy denominators in PT. One example is the case of nanoscopically
thin metallic sheets, where by summing the zero point energies of coupled 2D plas-
mons, one obtains (Bostrom and Sernelius 2000; Dobson et al. 2001, 2005) an interac-
tion EvdW ∼ −C5/2 D−5/2 where D is the separation of two such layers. By contrast,
the

∑
R−6

i j approach gives EvdW ∼ −C4 D−4, which is necessarily much smaller at
large separations. For two parallel metallic nanotubes or nanowires of radius b sepa-
rated by distance D � 2b, the

∑
R−6

i j method gives EvdW ∼ −C5 D−5, whereas
the coupled plasmon approach (Chang et al. 1971; Dobson et al. 2001, 2005, 2006)
gives EvdW ∼ −Ca D−2 (ln(D/b))−3/2 , different by almost three powers of D.
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This has recently been confirmed by diffusion Monte Carlo calculations (Drummond
and Needs 2007). The important case of two graphene planes (zero-gap semicon-
ductors) was shown recently (Dobson et al. 2006) to give EvdW ∼ −C3 D−3 as
D→∞,whereas the

∑
R−6

i j approach gives EvdW ∼ −C4 D−4, the same result as
for 2D insulators (Rydberg et al. 2000). Unusual interactions have been predicted in
other geometries also (White and Dobson 2008; Misquitta et al. 2010; Gould et al.
2008; Gould et al. 2009; Dobson et al. 2009). A finite number of higher perturbation
terms (see Sect. 22.4.2), added to

∑
R−6

i j , do not lead to these unconventional power

laws. For graphite, the D−3 term is small near the equilibrium spacing (Lebegue et
al. 2010) but the non-additive physics is still important.

In the above cases where
∑

R−6
i j gives the wrong asymptotic power law, in addi-

tion to the zero energy gap there is an incomplete metallic screening because the
systems are nanoscopically small in at least one space dimension. Three-dimensional
metals (e.g. thick metallic plates) do not exhibit vdW power laws of unusual form
(Dzyaloshinskii et al. 1961; Dobson et al. 2001), and this seems to be associated with
complete metallic screening, leading to a finite polarizability at small frequency and
wavenumber (Dobson et al. 2006).

The above considerations apply to widely separated sub-systems. Recently,
evidence has also been given that standard theories [LDA/GGA/fitted Lennard-Jones
potentials (Charlier et al. 1994; Girifalco and Hodak 2002)] do not give reliable
answers for the energetics of layered metallic or semi-metallic systems near their
equilibrium spacing, either. This is despite the fact that the LDA predicts good equi-
librium geometries. For theoretical evidence, see (Dobson and Wang 2004), Fig. 4 of
(Jung et al. 2004), and (Rydberg et al. 2003; Hasegawa and Nishidate 2004; Tournus
et al. 2005; Marini et al. 2006b; Spanu et al. 2009; Lebegue et al. 2010). There
is experimental evidence also (Benedict et al. 1998; Zacharia et al. 2004). These
are technologically important systems (graphite and derivatives, fullerenes, boron
nitride), so these discrepancies are significant.

In principle, therefore, and especially for large solid-state systems, one would
like a theory of vdW forces that is not local nor perturbative and is “seamless”—that
is, it gives good results at all separations. Below we make the case that appropriate
theories can be constructed from the fluctuation-dissipation theorem along with a
density-density response function χ(r, r ′, ω) from TDDFT: indeed even the direct
random phase approximation (dRPA) version of χ (the case fxc = 0) can sometimes
give good results. We first present the necessary theory in some detail.

22.6 Correlation Energies From Response Functions:
the Fluctuation-Dissipation Theorem

The approach to be described here has antecedents in theories of the Lifshitz type
(Dzyaloshinskii et al. 1961) that included electromagnetic retardation but ultimately
approximated the response function of electrons in a local macroscopic fashion.
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That theory was mainly applied to bulk systems at macroscopic separation, and repre-
sented the response of the electrons through a spatially local but frequency-dependent
dielectric function obtained principally from experiment. Here we consider only
the electromagnetically non-retarded case but retain the full nonlocal microscopic
response functions of the electrons, permitting a “seamless” treatment at any separa-
tion where electromagnetic retardation is unimportant, right down to bonding with
overlap of the electronic clouds.

22.6.1 Basic Adiabatic Connection Fluctuation-Dissipation Theory

The exact adiabatic connection formula (ACF) for the combined Hartree, exchange
and correlation energy in the groundstate of an inhomogeneous many-electron system
follows from the Feynman-Hellmann theorem, and is (Langreth and Perdew 1975;
Gunnarsson and Lundqvist 1976)

EHxc = 1

2

1∫

0

dλ
∫

d3r
∫

d3r ′ e2

|r − r ′|n2λ(r, r ′). (22.7)

See also Sect. 5.2.1. A derivation of (22.7) is given in Gunnarsson and Lundqvist
(1976) starting from their Eq. 22.28, with our λ denoted “g”. In (22.7) n2λ(r, r ′)
is the pair density in the reduced-interaction many-electron groundstate |Ψλ〉 with
electron-electron coulomb potential λe2/r12 The probability of finding an electron
in a small volume d3r near r, and simultaneously another electron in d3r ′ near r ′, is
n2λ(r, r ′)d3rd3r ′.The λ integration restores the necessary kinetic correlation energy
arising from quantal zero-point motions, and is performed at constant groundstate
density n(r).An earlier approach to the vdW energy did not work at constant density
(Harris and Griffin 1975).

We now obtain a useful expression for the (spin-dependent) pair distribution,
ignoring spin-orbit coupling and assuming that each electron labelled “a” has a
definite spin projection σa = ±1/2. Introducing an operator r̂a for the position of
the ath electron, and remembering that the second electron found at r ′ cannot be the
same as the first one (a 	= b) we have

n2λ(rσ, r ′σ ′) = 〈Ψλ|
∑

a 	=b

δσσa δσ ′σbδ(r − r̂a)δ(r ′ − r̂b) |Ψλ〉 . (22.8)

Separating the a = b term, we arrive at

n2λ(rσ, r ′σ ′) = 〈Ψλ|
∑

all a,b

δσσa δσσbδ(r − r̂a)δ(r ′ − r̂b) |Ψλ〉

− δ(r − r ′)δσσ ′ 〈Ψλ|
∑

a

δσσa δ(r − r̂a) |Ψλ〉 (22.9)

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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which finally leads to

n2λ(rσ, r ′σ ′) = 〈Ψλ| n̂σ (r)n̂σ ′(r ′) |Ψλ〉 − δ(r − r ′)δσσ ′nσ (r). (22.10)

Here we used the electron spin density operator n̂σ (r) =∑

a δσσa δ(r − r̂a), whose
expectation value is the electron spin density,

〈

n̂σ (r)
〉 = nσ (r). We now also intro-

duce the spin density fluctuation operator

δn̂σ (r) = n̂σ (r)− nσ (r). (22.11)

(This operator corresponds to spontaneous density fluctuation processes such as that
invoked in Sect. 22.2.1, in which a density fluctuation away from the expectation
value n(r) produces dipole fields that initiate the vdW energy.)

Then, putting n̂ = n + δn̂ from (22.11) into (22.10) and noting that
〈Ψλ| δn̂σ (r) |Ψλ〉 = 0, we have from (22.10)

n2λ(rσ, r ′σ ′) = 〈Ψλ| δn̂σ (r)δnσ ′(r ′) |Ψλ〉 + nσ (r)nσ ′(r
′)− δ(r − r ′)δσσ ′nσ (r).

(22.12)
We can obtain the usual spin-independent formalism by summing over σ, σ ′:

n2λ(r, r ′) = 〈λ| δn̂(r)δn(r ′) |λ〉 + n(r)n(r ′)− δ(r − r ′)n(r). (22.13)

When the second term on the right side of (22.13) is put into the ACF (22.7) it
simply yields the Hartree energy. The other two terms of (22.13) thus yield the exact
xc energy:

Exc = 1

2

1∫

0

dλ
∫

d3r
∫

d3r ′ e2

|r − r ′|
[〈Ψλ| δn̂(r)δn(r ′) |Ψλ〉 − δ(r − r ′)n(r)

]

.

(22.14)
(The correlation term 〈Ψλ| δn̂(r)δn(r ′) |Ψλ〉 represents the fact that density fluctua-
tions at r ′ can be tied to (correlated with) fluctuations at r, just the kind of process
described in Sect. 22.2.1).

The idea now is that the correlations represented by the fluctuation term in (22.14)
are caused by interactions between the electrons, and the description of this physics
is rather subtle: IF a fluctuation occurs, it will cause some interaction energy beyond
the Hartree description. It is easier conceptually, and helpful in the construction
of approximation schemes, to relate this process to the interaction between the
non-random density changes caused when an small externally-controlled field is
applied. Thus we are led to introduce time-dependent density response theory, and we
have converted a tricky “IF” scenario into a conceptually simpler “WHEN” scenario.
The mathematical tool that justifies this shift in philosophy is the fluctuation-
dissipation theorem, described in sufficient generality (i.e. for two unequal operators)
in the book by Landau and Lifshitz (1969). For completeness we now give a simple
direct derivation of the frequency integrated, zero-temperature form of the theorem
needed here.
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Suppose that Â and B̂ [e.g., δn̂(r) and δn̂(r ′) ] are hermitian operators with zero
groundstate average, 〈 Â〉 = 〈B̂〉 = 0 where the expectation value is taken in the
groundstate of an interacting system with Hamiltonian Ĥ . In the presence of an
additional externally applied time-dependent “potential” δv exp(ut) coupling to Â,
the Hamiltonian is Ĥ − δv exp(ut) Â. Calculating the perturbed state |Ψ (t)〉 by stan-
dard first-order time-dependent perturbation methods, one finds that the expectation
of property B̂ at time t is of form 〈Ψ (t)| B̂ |Ψ (t)〉 = χB A(iu)δv exp(ut), where

χAB(iu)+ χB A(iu) = −2
∑

J

EI J

(

〈0| Â |J 〉 〈J | B̂ |0〉 + 〈0| B̂ |J 〉 〈J | Â |0〉
)

E2
I J + �2u2

Here |J 〉 is an eigenstate, and EI J = EI − E J is an eigen-energy difference, of
the interacting Hamiltonian Ĥ . The quantity χAB is the “AB response function”,
e.g. the electronic density-density response in the case at hand: see also Eq. 50 of
Chap. 4. Note that the use of a real external potential exp(ut) corresponds to the more
usual choice exp(−iωt) but with a positive imaginary frequency ω = iu. Using the
arctan integral

∞∫

0

du(E2
I J + �

2u2)−1 = π/(2�EI J ) (22.15)

we have

∞∫

0

du [χAB(iu)+ χB A(iu)] =− π
�

∑

J

(

〈0| Â |J 〉 〈J | B̂ |0〉 + 〈0| B̂ |J 〉 〈J | Â |0〉
)

=− π
�
〈0| Â B̂ + B̂ Â |0〉 . (22.16)

This is a frequency integrated, T = 0 K form of the very general fluctuation-
dissipation theorem (Callen 1951; Landau and Lifshitz 1969) (FDT). The FDT is
more usually quoted as a result at finite temperature and for a single frequency
lying just above the real axis, where lm(χAA) is known to represent energy absorp-
tion (“dissipation”). Applying (22.16) to the density fluctuation operators Â, B̂ =
δn̂(r), δn̂(r ′) from the spin-summed version of (22.11), and noting that the r and r ′
integrations can be interchanged, in (22.14) we have effectively

〈Ψλ| δn̂(r)δn̂(r ′) |Ψλ〉 = − �

π

∞∫

0

duχλ(r, r ′, iu) (22.17)

where the density-density response χλ is just that introduced in Chap. 4, applied to
the system with reduced coulomb interaction λe2/r12.

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4
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Combining (22.17) with (22.14) we obtain

Exc = 1

2

1∫

0

dλ
∫

d3r
∫

d3r ′ e2

|r − r ′|

×
⎡

⎣− �

π

∞∫

0

duχλ(r, r ′, iu)− δ(r − r ′)n(r)

⎤

⎦ . (22.18)

We will refer to the important exact result (22.18) as the ”ACFD” xc energy.
In TDDFT the linearized interacting density-density response, given by χλ =

χλ(r, r ′, ω), and the KS response χKS = χλ=0 are related by the Dyson-like
screening equation (Gross 1985)

χλ = χKS + χKS ∗ (λvee + fxcλ) ∗ χλ (22.19)

where stars represent convolution in (r, r ′) space and vee is the bare electron-electron
Coulomb potential (see Chap. 4). In practice, the inputs to (22.19) (namely χKS
and, in almost all existing approximations, fxc) can be computed from the ground-
state KS orbitals {ϕi }. In turn the {ϕi } are directly computable from the groundstate
KS potential vKS(r). Thus the ACFD energy is often best regarded as a functional
EACFD[vKS(r)] of the groundstate KS potential. In principle, one should introduce
a high level of self-consistency (the OEP level) by choosing vKS to minimize the
nonlocal functional (22.18), with the external potential fixed. In this sense, most
detailed calculations to date have been “post-functionals”: that is, they have computed
E[vLDA

KS ] rather than E[vOEP
KS ]. In Sect. 22.7.1 below we will argue that this does not

significantly affect the predictions of (22.18) for the distant vdW correlation energy,
at least in the case fxc = 0 (corresponding to the RPA). Thus the energy functionals
are not overly sensitive to the vKS used as input. On the other hand, if one uses
the Feynman approach described in Sect. 22.2.3 above, in which the vdW force is
calculated directly as a force on the nuclei, then the small selfconsistent changes in
vKS as a function of distance, calculated beyond the LDA, are crucial (Allen and
Tozer 2002).

22.6.2 Exact Exchange: a Strength of the ACFD Approach

In order for a theory to work well for interacting systems with overlap of electronic
clouds, it is essential that it accounts adequately for the Pauli exchange energy: indeed
the Hartree–Fock theory already describes many covalent bonds quite well. In fact
when the independent-electron (Kohn–Sham) response χKS = χλ= 0 is substituted

for χλ, (22.18) yields the exact nonlocal exchange energy EExact,DFT
x , defined in the

DFT sense. To show this explicitly we assume no spin-orbit coupling so that the

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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groundstate KS eigenfunctions ϕnσ (r) have a definite spin projection σ = + 1
2 or

− 1
2 . By applying a one-body potential dvσ ′(r ′) to electrons of spin projection σ ′ and

applying time-dependent PT to the occupied ( fnσ 	= 0) orbitals we obtain

χKS(rσ, r ′σ ′, iu) = δσσ ′
∑

nk

( fnσ − fkσ )
ϕ∗kσ (r ′)ϕnσ (r ′)ϕ∗nσ (r)ϕkσ (r)

εk − εn − i�u
, (22.20)

independent of λ. Then

χKS(rσ, r ′σ ′, iu)+ χKS(r ′σ ′, rσ, iu)

= δσσ ′
∑

nk

( fnσ − fkσ ) ϕ
∗
kσ (r

′)ϕnσ (r ′)ϕ∗nσ (r)ϕkσ (r)
2εnk

ε2
nk + (�u)2

(22.21)

where εnk = εn − εk is a KS eigenvalue difference, and the dummy indices n and k
were interchanged to combine the two contributions indicated on the left side. Then

− �

π

∫

du
[

χKS(rσ, r ′σ ′, iu)+ χKS(rσ, r ′σ ′, iu)
]

= δσσ ′
∑

nk

( fnσ − fkσ ) ϕ
∗
kσ (r

′)ϕnσ (r ′)ϕ∗nσ (r)ϕkσ (r)sign(εnk) (22.22)

where sign(ε) = 1 for ε > 0,−1 for ε < 0, and 0 for ε = 0. Now use the identity

fnσ − fkσ = fnσ (1− fkσ )− fkσ (1− fnσ ) (22.23)

which reminds us that, for fermions, transitions giving rise to a response can only
occur when one of the orbitals kσ, nσ is occupied and the other is empty. Furthermore
we assume that we have an integer number N of fermions at zero temperature with

fkσ =
{

1, εkσ < μ

0, εkσ > μ
. (22.24)

Also if there are any states with εkσ = μ we assume that they all have the same
occupation, either fkσ = 0 or fkσ = 1, so that fkσ − fnσ = 0 if εkσ = εnσ in every
case and the sum in (22.22) is restricted to εnσ 	= εkσ . (This may be problematic for
degenerate ground states). Then

fkσ (1− fnσ )sign(εkσ − εnσ ) = − fkσ (1− fnσ ) (22.25)

since fkσ (1 − fnσ ) is nonzero only when εkσ < μ < εnσ so that the sign function
is negative. Similarly fnσ (1− fkσ )sign(εkσ − εnσ ) = fnσ (1− fkσ ). Then

( fnσ − fkσ ) sign(εkσ − εnσ )

= fnσ (1− fkσ )sign(εkσ − εnσ )− fkσ (1− fnσ )sign(εkσ − εnσ )

= fnσ (1− fkσ )+ fkσ (1− fnσ )

= fnσ + fkσ − 2 fnσ fkσ .

(22.26)
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Putting (22.26) and (22.22) into the fluctuation dissipation theorem (22.16) we
find that the use of χKS in place of χ yields the xc part of the symmetrized pair
distribution as

〈0| δn̂σ (r)δnσ ′(r ′) |0〉 + 〈0| δn̂σ ′(r ′)δnσ (r) |0〉
= δσσ ′

∑

nk

( fnσ + fkσ − 2 fnσ fkσ ) ϕ
∗
kσ (r

′)ϕnσ (r ′)ϕ∗nσ (r)ϕkσ (r). (22.27)

Then from (22.12) and (22.26) the (symmetrized) total pair density is

1

2

[

n2(rσ, r ′σ ′)+ n2(r
′σ ′, rσ)

] = − δσσ ′δ(r − r ′)nσ (r)+ nσ (r)nσ ′ (r
′)

+ 1

2
δσσ ′

∑

nk

( fnσ + fkσ − 2 fnσ fkσ )

× ϕ∗kσ (r ′)ϕnσ (r ′)ϕ∗nσ (r)ϕkσ (r). (22.28)

By using the identities δ(r − r ′)nσ (r) = δ(r − r ′)
∑

n fnσ ϕ
∗
nσ (r)ϕnσ (r ′) and

δ(r − r ′) =∑

k ϕ
∗
kσ (r)ϕkσ (r ′) we arrive at

1

2

[

n2(rσ, r ′σ ′)+ n2(r ′σ ′, rσ)
]

=
∑

nk

fnσ ϕ
∗
nσ (r)ϕnσ (r) fkσ ϕ

∗
kσ ′(r

′)ϕkσ ′(r
′)

+ 1

2
δσσ ′

∑

nk

[( fnσ + fkσ − 2 fnσ fkσ )− ( fnσ + fkσ )]

× ϕ∗kσ (r ′)ϕnσ (r ′)ϕ∗nσ (r)ϕkσ (r). (22.29)

The δ(r − r ′)nσ (r) term was written twice and divided by 2, after interchanging
the dummy indices n and k, to obtain the −( fnσ + fkσ ) term of (22.29). We finally
obtain

1

2

[

n2(rσ, r ′σ ′)+ n2(r ′σ ′, rσ)
]

=
∑

nk

fnσ fkσ ′ϕ
∗
nσ (r)ϕkσ ′(r

′)
[

ϕ∗kσ ′(r
′)ϕnσ (r)− δσσ ′ϕnσ (r ′)ϕ∗kσ (r)

]

. (22.30)

Equation (22.30) gives the groundstate Hartree–Fock pair distribution calculated for
KS orbitals. Summing over σ and σ ′ and substituting into (22.7), noting that (22.30)
is independent of λ, we recover the electron-electron energy of Hartree–Fock form.
That is, using the Kohn–Sham response in the ACFD results in the exact DFT
exchange contribution to the electron-electron energy. This means that ACFD corre-
lation energies are suitable for adding to an exact exchange calculation, and indeed
correlation and exact Hartree–Fock exchange can be calculated together within the
ACFD, if desired.
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22.7 The xc Energy in the Direct Random Phase Approximation

The energy in the (d)RPA is defined by (22.18) and (22.19) with fxc set to zero.
It can also be obtained diagrammatically as the sum of rings of open bubbles within
a Feynman-diagram (Fetter and Walecka 1971) or coupled-cluster (Scuseria et al.
2008) approach. The RPA energy at T = 0 K is related to the sum of zero-point
energies of excitations (Mahanty and Ninham 1976; Furche 2008). This can some-
times lead to simple analytic evaluation of ERPA

c in cases of vdW attraction at large
separations, when the relevant excitations are simple plasmons [see e.g. (Mahanty
and Ninham 1976; Dobson et al. 2001, 2005)]. There are, however, cases where
plasmons do not provide an appropriate approach even for large solid state systems
(Dobson 2009b; Dobson et al. 2006).

While analytic solutions based on long-wavelength physics are sometimes avail-
able for large subsystem separations as just noted, microscopic numerical evaluation
of the RPA energy is required for inhomogeneous systems where subsystems overlap.
This is computationally expensive compared to (e.g.) GGAs. It has nevertheless been
carried out for jellium slab geometry (Dobson and Wang 1999; Jung et al. 2004) and
is now also feasible for molecules of up to 100 atoms (Eshuis et al. 2010; Furche
2002c, 2008). It is also feasible for periodic systems with modest-sized unit cells
(Miyake et al. 2002; Marini et al. 2006b; Harl and Kresse 2009; Lebegue et al.
2010; Harl et al. 2010). In particular, dRPA has given a good account of some of
the trickiest vdW bonding problems including the interlayer stretching energetics
of the laminar vdW-bound systems boron nitride (Marini et al. 2006b) and graphite
(Harl and Kresse 2009; Lebegue et al. 2010). It is especially demanding for graphite
because of the need for fine sampling of the Brillouin zone, associated with the semi-
metallic bandstructure of graphene. It is particularly pleasing that the dRPA works
so well for vdW crystals, despite the diseases of dRPA discussed two sections below.

22.7.1 Casimir–Polder Consistency: a Good Feature of the dRPA
for vdW Calculations in the Well Separated Limit

The simple physical arguments above show that the basic physics of the vdW inter-
action is present within the ACFD energy with mean-field-like approximations for
the response function. However it is not clear a priori why such an approach can
produce quantitative predictions of vdW energies. It was therefore reassuring to
find (Dobson 1994b) that the generalized Casimir–Polder formula (22.2) is exactly
true in the widely-separated limit of a seamless dimer ACFFD calculation, when the
dRPA approximation is used for all response functions. Any xc approximation for
which the dimer calculation reproduces (22.2) will here be called “Casimir–Polder
consistent”. It has been shown formally that the RPA correlation energy is Casimir–
Polder consistent.
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The proof (Dobson 1994b) involved a combined dimer system with direct pertur-
bation of the RPA version of the screening Eq. 22.19 with respect to the interaction
vee12 between monomers “1” and “2”. It was necessary to include (i) terms involving
first-order perturbation to the cross responseχλ12, but also (ii) terms involving second
order perturbation to the intra-system responses χ11 and χ22 [sometimes called
“spectator” terms (Langreth et al. 2005)]

After an integration with the coulomb potential as per the ACFD, both of these
terms yielded contributions of second order in vee12. The outcome was that the
asymptotic vdW interaction from the dimer RPA correlation energy is of form (22.2)
but with the individual responses of the isolated systems, naturally, replaced by their
RPA versions

ERPA(2)
12 ∼ − �

2π

∫

d3r1

∫

d3r ′1
∫

d3r2

∫

d3r ′2
e2

r12

e2

r ′12
∞∫

0

duχRPA
1 (r1, r ′1, iu)χRPA

2 (r2, r ′2, iu).

(22.31)

Thus the formula (22.2) is true within the seamless ACFD/RPA formalism for a
pair of widely separated systems. That is, the dRPA is Casimir–Polder consistent.
It is also possible to prove (22.31) by noting that the λ integration in (22.18) can
be done analytically for the dRPA case, yielding a logarithmic operator. This is
then expanded to second order to obtain (22.31). A recent analysis is given in
(Lu et al. 2010). This proof however sheds no light on the spectator terms, and
it will be suggested below that these spectator terms, together with the requirement
of Casimir–Polder consistency, may be the key to the choice of a suitable approximate
nonlocal dynamic xc kernel fxc for vdW correlation energies within the ACFD.

It is also worth noting that the proof of (22.31) in (Dobson 1994b) assumed
that the KS (independent-electron) responses χKS

1,1 , χ
KS
2,2 of the subsystems did not

vary with separation D, as D → ∞̇. This corresponds to the commonest way of
implementing the RPA correlation energy as a “post-functional”, that is, using χKS
deduced from the KS orbitals obtained from a groundstate LDA or GGA calculation.
Of couse, in a fully selfconsistent (OEP) RPA correlation energy calculation, one
would vary the groundstate KS potential vKS (and correspondinglyχKS), to minimize
the total nonlocal RPA energy. An estimate of the effect of the change in the KS
potential in the subsystems can be made as follows. Suppose that we start with the
selfconsistent OEP-RPA solution vOEP

KS as described above and make a small change
δvKS in the KS potential (e.g. toward the LDA post-functional value described above).
The change in RPA energy due to this change is of second order in δvKS because
the energy is minimized by vOEP

KS . If we assume that δvKS = O(D−p) as required to
produce the nuclear D−7 vdW force via the Feynman–Tozer approach described in
Sect. 22.2.3 above, then the (second-order) correction energy is of O(D−2p) and so
is negligible in the widely-separated limit, compared with the post-functional energy
(22.31). Of course the choice of groundstate orbitals is indeed very important at
closer separations, as verified e.g. in Toulouse et al. (2010).
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22.7.2 Problems with the dRPA

A serious deficiency of dRPA, apparent already in the uniform electron gas, is
that it greatly over-estimates the correlation hole at short range. Fortunately this
often largely cancels out when one forms energy differences between iso-electronic
configurations, for example dissociation energy curves or surface energies (Kurth
and Perdew 1999). Nevertheless for accurate work, even where differences are
involved, one should correct this, either via introduction of a suitable fxc or by
other means.

Another disadvantage of the dRPA response function is that it allows a spurious
dynamic self-interaction of a localized orbital, leading to a corresponding spurious
self-correlation contribution to the ACFD energy [see e.g. (Dobson et al. 2005;
Gruneis et al. 2009; Paier et al. 2010)]

In vdW applications, possibly even more important than correcting the dynamic
self-interaction is choosing a set of starting orbitals ϕn that come from a self-
interaction-free approximation to the groundstate KS potential. Because of orbital
self-interaction, LDA orbitals ϕLDA

n of highly localized systems tend to be too diffuse
and too polarizable, leading to an over-estimate of the RPA response and hence also
of the vdW interaction. For the dissociation energy curve E(D) of small molecules
where groundstate SIC is very important, the starting orbitals have indeed been found
to have a very strong effect: see for example the dRPA D(E) curves for He2 with
Hartree–Fock and PBE orbitals in Fig. 2 of (Toulouse et al. 2010). In principle, for
any given functional Exc[{ϕ}], one should construct the {ϕn} from the 1-body poten-
tial veff such that the total energy is minimized (optimized effective potential (OEP)
approach). This has mostly not been used to date for functionals of the RPA class
[but see (Kotani 1998)]. For solids, the use of vKS and {ϕn} from OEP seems to have
a less dramatic effect on dRPA energies than it does for small molecules (Harl et al.
2010). Most of the realistic RPA calculations for periodic systems have started from
GGA orbitals that have reasonably realistic diffusenesss because of the reasonable
SIC properties of the chosen GGA. Furthermore, for the delicate but technologically
significant case of the layered systems BN and graphite, the πz orbitals involved in
the layer-layer vdW interaction are already quite diffuse so that groundstate self-
interaction effects are relatively unimportant, which may partially account for the
success of the recent ACFD/RPA calculations.

Nevertheless there are certainly cases where use of the dRPA correlation energy is
quite disastrous, such as the dissociation energy curves E(D) of diatomic molecules
in the regime of bond-breaking atomic separations D ≈ D0. (Toulouse et al. 2010).
This seems to be due partly to inadequate SIC behavior of the dRPA when the degree
of localization is changing with D. It was also found that E(D) is very strongly
dependent on the starting orbitals in these cases.
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22.8 Beyond dRPA: Non-TDDFT Methods

The self-interaction error of dRPA can be removed via the ”RPAx”, also known as
”full RPA” [ACFD with time dependent Hartree–Fock response: see e.g. (Toulouse
et al. 2009)], though this carries a computational cost and has its own diseases.
The short-ranged failures of the dRPA correlation hole can be partly remedied by the
range separation approach in which different treatments are given to the short-ranged
and long-ranged components of the bare electron-electron potential vee (Toulouse
et al. 2009). Recently the second order screened exchange (SOSEX) approach
has been favored (Paier et al. 2010) for self-interaction correction of the dRPA.
This addresses both the orbital self-interaction problem and, to some extent, the
short range inadequacies of dRPA. It appears to provide a systematic improvement
to the dRPA results for lattice spacings and binding energies of crystals (Gruneis et al.
2009), and can make very substantial improvements to energetics of small molecules
(Paier et al. 2010).

The dRPA can be related (Scuseria et al. 2008) to the “doubles” contribution in
the coupled cluster expansion of quantum chemistry. For molecules the state of the
art is typically the CCSD(T) theory in which some of the triples terms of the cluster
expansion are also included. At present this approach is computationally out of reach
for large molecules and for most solids.

For small systems (Sorella et al. 2007), or large systems with especially simple
geometry (Drummond and Needs 2007; Spanu et al. 2009), the vdW energetics can be
calculated via the electron diffusion Monte Carlo approach, resulting in benchmark
numbers, provided that noise and size convergence issues of diffusion Monte Carlo
can be controlled.

The self-interaction error of dRPA can also be addressed in principle by including
a sufficiently realistic fxc in the TDDFT screening Eq. 22.19.

22.9 Beyond the dRPA: ACFD with a Nonzero xc Kernel

22.9.1 The Case of Two Small Distant Systems in the ACFD
with a Nonzero xc Kernel

The situation is not entirely simple when one uses a TDDFT response with a nonzero
kernel fxc within the ACFD energy (22.18), rather than the RPA response. Suppose
that one assumes (i) that the dynamic kernel fxc(r1, r2, ω) is zero when r1 and
r2 lie in different fragments, to second order in vee12 and (ii) that the presence of
the other fragment does not affect the value of fxc(r1, r ′1, ω) inside a given frag-
ment, again to second order in vee12—i.e., we neglect “spectator” effects in fxc.

(These assumptions are satisfied within the ALDA provided one uses a “post-
functional” approach in which the changes in density and χKS in each fragment,
beyond the isolated case, are ignored.) Then in fact one can show that the seamless



22 Dispersion (van der Waals) Forces and TDDFT 435

ACFD approach does not yield the perturbative result (22.2) in the well-separated
limit, there being an additional energy term involving ∂ fxc/∂λ. When used with
simple local approximations for fxc the additional term is non-vanishing. That is,
ACFD is not Casimir–Polder consistent when used with a non-zero local kernel fxc.

The solution to this dilemma may be that, when r and r ′ are both in system
1, fxc[n](r, r ′) contains a “spectator” contribution that depends on the response
function of the distant system 2. This dependence amounts to a highly nonlocal
dependence of fxc on the groundstate density n(r ′′). It arises from nonlocal screening
of internal vee lines of system 1 via polarization of system 2. This type of term
must be included in a seamless beyond-dRPA ACFD dimer calculation in order
for it to recover (22.2)—i.e., to obtain Casimir–Polder consistency. This could be a
useful guide to construction of approximate fxc functionals for use in ACFD energy
calculations for vdW-bonded systems.

22.9.2 Beyond the dRPA in the ACFD: Energy-Optimized
fxc Kernels

The standard non-memory approximation for fxc has been the ALDA (Zangwill and
Soven 1980a; Gross and Kohn 1985) given by

f ALDA
xc (r, r ′, ω) = δ(r − r ′)d2[nεhom

xc (n)]
dn2 . (22.32)

It is “optimized” for describing low-frequency, long-wavelength excitations in
near-homogeneous systems, and is therefore quite unsuitable for the calculation
of groundstate xc energies from Eqs. 22.18 and 22.19, because these formulae
effectively sample all of frequency and wavenumber space. For example, in a
uniform electron gas, f ALDA

xc (r, r ′, ω) leads to a very poor evaluation of the
correlation energy when substituted into (22.18) and (22.19), even exhibiting the
wrong sign at low densites (i.e., at high Wigner-Seitz radius rs) (Dobson and
Wang 2000).

The simplest way to remedy this is to find a local frequency-independent kernel
f en.opt
xc (λ, n) that does give the correct uniform-gas Exc when substituted into (22.18)

and (22.19). It turns out (Dobson and Wang 2000) that this requirement, applied for
every homogeneous density n, together with the scaling rule

fxc(λ, n) = λ−1
�

4e−2m−2 F(λ−1rs),
4π

3
r3

s a3
B = n−1 (22.33)

uniquely determines the dimensionless energy-optimized kernel f en.opt
xc (r).The opti-

mized kernel has to produce a magnitude of corrrelation energy lying between the (too
large) RPA value corresponding to fxc= 0 and the (too small) value corresponding
to the ALDA kernel. Unsurprisingly, then, fxc(rs) lies between zero and f ALDA

xc . A
parametrized form accurate for metallic densities is (Dobson and Wang 2000)
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f en.opt
xc (rs) = −0.5004(4)r2

s + 4.5365(3)× 10−3r3
s − 3.366(0)× 10−5r4

s . (22.34)

The theory is of course constrained to give accurate correlation energies for the
uniform gas. Its performance for a nonuniform gas has been tried in the context of
layered jellium (Dobson and Wang 2000) where it had little effect on the energy
differences required for a vdW energy calculation, compared with a pure RPA calcu-
lation. Other than this, there has been little direct testing of this kernel in other
systems.

The purely local (q-independent) character of the f en.opt
xc kernel results in a diver-

gent on-top hole (Dobson and Wang 2000, Furche and van Voorhis 2005), though this
is integrable in a correlation energy calculation. It can nevertheless cause numerical
difficulties in the solution of the screening Eq. 22.19, when a q-space algorithm is
used. For this reason, and to include some of the physical aspects of nonlocality, a
static but spatially nonlocal energy-optimized kernel was tried by (Jung et al. 2004).
They used the λ-scaling law

fxcλ(r1, r2;ω) = λ−1 f (0)xc (λ
−3ñ, λr12) (22.35)

where ñ(r1, r2) is an effective density taken in their applications to be [n(r1) +
n (r2)]/2 or

√
n(r1)n(r2), both leading to similar results. The form (22.35) (and

indeed the scaling in the Dobson-Wang scheme) is consistent with the frequency-
independent limit of the general scaling law derived in (Lein et al. 2000b). The
spatial nonlocality was assumed by Jung et al. (2004) to take a Hubbard-like form
fitted to the correlation energy of the 3D electron gas [see Fig. 2 of (Jung et al.
2004)]. With the nonlocal kernel of Jung et al the energy-versus separation curve of
two high-density jellium slabs was found to be very similar to the pure RPA result.
This energy-optimized kernel has also been tested (Garcia-Gonzalez et al. 2007) for
the correlation energy of jellium spheres, where it gave a systematic improvement
over dRPA.

It seems clear from Sect. 22.7.1 above that the local and quasi-local energy-
optimized kernels will not be Casimir–Polder consistent, so that for vdW situations
they may require supplementation with an additional term that is a very nonlocal
functional of the groundstate density, when used in a seamless vdW calculation.

22.9.3 Beyond the RPA in the ACFD: More Realistic Uniform-Gas
Based fxc Kernels

Over recent decades more realistic q- and/orω-dependent kernels have been obtained
for the uniform electron gas (Richardson and Ashcroft 1994; Corradini et al. 1998)
that rather accurately (Lein et al. 2000b) give εc for the 3D electron-gas, when
substituted into the ACFDT formulae (22.18) and (22.19). The static kernel of
Corradini et al. (1998) has been used with the ACFD under the appropriate λ scaling
formula (22.35) for layered nonuniform jellium systems (Pitarke and Perdew 2003;
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Jung et al. 2004). The surface energy results based on a single jellium slab were not
very different from the pure RPA nor from the LDA results. The vdW results for two
jellium layers were not very different from the energy-optimized schemes described
above, nor from the pure RPA calculation. There were some differences from the
LDA, and in one case (Jung et al. 2004) all the microscopic schemes including the
Corradini version did give about a 50% increase in binding energy of the slabs,
compared with an LDA energy calculation. The equilibrium separation D0 of the
slabs was quite similar in all of the fxc-corrected schemes and the LDA, but was
slightly smaller in the pure RPA energy calculation.

It should also be possible to graft the more sophisticated frequency-dependent
Richardson-Ashcroft uniform-gas kernel (Richardson and Ashcroft 1994) onto an
ACFD energy calculation for nonuniform systems, but that has not yet been done to
the author’s knowledge.

Another consideration not yet explored in the vdW context is the use of tensor
memory kernels such as that used in the Vignale-Kohn-Ullrich current-current
response formula (Vignale and Kohn 1996; Vignale et al. 1997; Conti and Vignale
1999). These kernels are based on the near-homogeneous gas with sinusoidal density
variation, and have been proposed (van Faassen et al. 2002) for the description of the
polarization response in 1D systems. This method obtains rather good polymer prop-
erties (see Chap. 24), and so should be a good candidate for seamless vdW energetics
of these systems.

Once again, any schemes based on the uniform gas may require supplementation
via a term with a highly nonlocal density dependence, if Casimir–Polder consistency
is to be achieved.

22.9.4 xc Kernels not Based on the Uniform Electron Gas

All of the xc kernels discussed above have been based on the uniform or near-uniform
electron gas, and grafted onto an ACFD energy calculation for a nonuniform system,
in a modified local-density manner. Kernels have also been developed that are based
specifically on the KS orbitals of the nonuniform system. Perhaps the simplest of
these is the kernel of Petersilka, Gossman and Gross (PGG) (Petersilka et al. 1996,
1998) which is a static, spatially nonlocal exchange-only kernel. It has been tested
(Fuchs and Gonze 2002) on the energetics of the Be-Be dimer, where it performed
somewhat similarly to the RPA for the binding energy, and better than the RPA for
the bond length. It did not perform as well as the energy optimized kernel (Jung et al.
2004) for the correlation energy of jellium spheres (Garcia-Gonzalez et al. 2007). The
PGG kernel is self-interaction free, which suggests that for small systems it might
out-perform the RPA when used with an appropriate SIC groundstate calculation.

The nonlocal kernel of Reining et al. (2002) is designed for finite-freqency
response of semiconductors, and may be relevant to vdW interactions between these
systems.

http://dx.doi.org/10.1007/978-3-642-23518-4_24
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A further possibility, similar in spirit to a system-specific fxc, is the use of
the inhomogeneous Singwi-Tosi-Land-Sjolander (ISTLS) formalism (Dobson et
al. 2002; Constantin et al. 2008) to generate χλ. The ISTLS formalism has been
shown (Dobson 2009a) to be equivalent to an adiabatic spatially nonlocal xc kernel
within time dependent current DFT. This scheme is free from orbital self-interaction.
To date no vdW calculations appear to have been performed in this way, however.

22.10 Density-Based Approximations for the Response
Functions in ACFD vdW Theory

The previous sections have explored corrections to the non-local dRPA correla-
tion energy via approximations to the xc kernel fxc that sample the groundstate
density n(r), leading to numerics that are at least as heavy as the dRPA itself.
In order to reduce the computational load one can also consider approximating the
KS response χKS or other responses χ directly in terms of n(r). This removes the
need for numerically intensive computations of χKS based on KS orbitals, as in dRPA
and its extensions.

22.10.1 Density-Based Approximations for the Non-overlapping
Regime

Consider first the result (22.5), in which the long-ranged effects of vee12 in (22.19)
have already been taken into account via PT. The remaining response functions
α1(r1 , r ′1, iu) and α2(r2 , r ′2, iu) can be approximated in a local fashion based on the
local fragment density, without losing the vdW tail. This leads to an approximation to
the second-order vdW energy of two small systems by a functional of their individual
groundstate electron densities n1(r1), n2(r2) :

E (2) ≈ − 3�e

2(4π)3/2m1/2

∫

1

d3r1

∫

2

d3r2
1

r6
12

√
n1n2√

n1 +√n2
(22.36)

Equation 22.36 is a highly nonlocal functional of the groundstate electron density n.
It was first obtained (Andersson et al. 1996), by considering some asymptotics,
starting from a semi-empirical plasmon-motivated form due to Rapcewicz and
Ashcroft (1991). Independently, (22.36) was derived straightforwardly (Dobson and
Dinte 1996) by a constrained local approximation for the response functions in (22.5).
In practice, (22.36) gives answers sometimes greatly too large because of the contri-
butions from the tails of the atomic densities, and it requires a cutoff in the spatial
integrations, based on gradients of n and described in detail in Andersson et al. (1996).
The answers are sensitive to this cutoff, but do provide results for C6 that are mostly
quite good for distant atom-atom interactions, and err in the worst cases by about
a factor of two. Given the relatively poor performance of the RPA and ALDA for
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atomic polarizabilities via (22.6), this kind of error does not look so bad. However,
one must also note the very simple and rather successful formulas in the chemistry
literature (Atkins and Friedman 1997), involving the electron affinity I and based
loosely on the arguments given in Sect. 22.2.1 above.

A related approach to the vdW interaction between atoms in molecules have
been given by Sato and Nakai (2009) .These approaches also involve a short-ranged
cutoff function to allow for a seamless calculation. Tkatchenko and Scheffler (2009)
have given a somewhat different approach based on the compression of atoms in
molecules, in which the volume compression of an atom within a molecule is used
to reduce the corresponding bare-atom polarizability.

22.10.2 “Seamless” Density-Based vdW Approximations
Valid into the Overlapped Regime

Within the ACFD, the essential nonlocality of the vdW energy arises from the long
range of the electron-electron interaction vee in the Dyson-like screening Eq. 22.19.
This fact is the key to obtaining density-based approximations that do not suppress
the tail of the vdW interaction. The approach of Dobson and Wang (1999) to the
general case, including overlap, was to evaluate the ACFD energy by approxi-
mating the “bare” (Kohn–Sham) response χKS in the screening Eq. 22.19, using the
groundstate density as input. The screening Eq. 22.19 is still solved numerically with
retention of the long-ranged character of the electron-electron interaction vee. The
quantity approximated from uniform-gas data is the polarizability α= (ε − 1)/4π
[somewhat as in the macroscopic Lifshitz approach (Dzyaloshinskii et al. 1961)]:
this choice conserves charge (Dobson and Dinte 1996), and it is evaluated at a mean
density chosen to ensure that the approximate χKS does not introduce unphysical
flow of electrons from one subsystem to the other, in the non-overlapping limit. This
approach was tested successfully (Dobson and Wang 1999; Dobson and Wang 2000)
for the vdW interaction of a pair of jellium slabs. Here comparison could be made
with an accurate numerical solution of the full ACFD equations at all separations
from the overlapping contact situation out to the asymptotic non-overlapping vdW
regime. The correct vdW-RPA interaction was obtained at large separations where
the usual LDA/GGA produces no interaction at all, and the RPA energies near the
equilibrium separation were reproduced somewhat better than in the LDA. The tests
were subsequently extended (Dobson and Wang 2000) to the inclusion of a local
fxc which turned out to make a negligible difference in the cases studied. This type
of approach has not yet been tried in other geometries because it is numerically
intensive. A related theory by Gould and Dobson is more tractable: see the next
Section.

The “vdW Density Functional” (vdWDF) (Dion et al. 2004; Langreth et al. 2005)
was derived starting from the ACFD. While it goes beyond the dRPA in principle, in
practice it embodies four distinct approximations/assumptions that render it hard to
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judge its accuracy a priori. It has the form of a sum of pairwise contributions from
space points rA and rB:

E ≈
∫

d3rA

∫

d3rBg(nA(rA),∇nA(rA); nB(rB),∇nB(rB); rA, rB), (22.37)

where n is the groundstate density and g ∝ |rA − rB|−6 as |rA − rB| → ∞.
The pairwise form of (22.37) results because the TDDFT coulomb screening
Eq. 22.19 has effectively been solved pertubatively via a second-order expansion of
an operator logarithm. This PT is not a direct perturbation in the bare Coulomb poten-
tial, so the theory performs much better for large systems than the well-known MP2
second-order theory, while nevertheless retaining a pairwise form. A good feature
of this approach is that it treats overlapped cases while also providing a vdW energy
“tail” of classic R−6 form at large distances, while remaining much more tractable
computationally than full RPA Ec calculations. When used with a specific semi-local
exchange energy approximation, the vdWDF is found to give very sensible energetics
for a wide range of vdW bound crystals and nanostructures [see e.g. (Dion et al.
2004; Langreth et al. 2005; Berland and Hyldgaard 2010)]. The binding energies are
quite good but equilibrium lattice constants are typically over-estimated by O(10%)
and the elastic constants are not reliable [see e.g. (Marini et al. 2006b; Lebegue
et al. 2010)]. Vydrov and van Voorhis (2009b, 2010a, 2010b) have started from the
vdWDF derivation and the form (22.37) but have further optimized various aspects,
using empirical fits where appropriate (see details in Chap. 23). As a result they obtain
significant improvement over the original vdWDF for the interaction between pairs of
molecules. The original authors have also recently fine-tuned their vdWDF functional
(Lee et al. 2010). The present author’s opinion is that, for large nanostructures, further
improvement beyond these developments may require a non-perturbative solution of
the TDDFT screening equation so that the restriction to the pairwise form (22.37) is
relaxed. Various situations [e.g. (Kim et al. 2006; Dobson et al. 2006)] require such
a non-pairwise-additive approach. A very recent step in this direction by Gould and
Dobson uses continuum mechanics (Gao et al. 2010) (see also Chap. 25) based on the
groundstate stress tensor, coupled with full solution of the Dyson-like RPA screening
equation within the ACFD. This gives a highly non-pairwise vdW energy functional.
It is computationally more tractable than the related functional of (Dobson and Wang
1999), but performs well for low-dimensional metals, in contrast to most simplified
approaches to ACFD.

22.11 Summary

The SAPT theory is probably the state of the art for vdW energy calculations of
molecular pairs of moderate size at all separations down to overlap, but is not feasible
for macroscopic systems. There the prediction of vdW energetics is still a contro-
versial area for highly anisotropic “soft” systems, especially those with small or

http://dx.doi.org/10.1007/978-3-642-23518-4_23
http://dx.doi.org/10.1007/978-3-642-23518-4_25
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zero energy gaps. For such systems, a conventional sum of pairwise atom-atom
contributions of R−6 form is sometimes inadequate to describe the vdW physics.
Even for such “difficult” systems the ACFD approach, based on various approxi-
mations for the density-density response χ or related quantities, appears to be very
promising. For fully macroscopic systems at macroscopic separations, the Lifshitz
theory is available. Its electromagnetically non-retarded form can be derived from
the ACFD by approximating the dielectric function locally using data for the bulk
system, and otherwise taking an RPA-like approach. For overlapped systems, density-
based approximation of the response in ACFD has yielded the “vdWDF.” It is
computationally convenient and yields sensible energies for a wide range of vdW-
interacting nanosystems. Lattice spacings and elastic constants are less satisfactory
in vdWDF, however, and a more accurate approach is desirable. In particular one
might wish to avoid approximating the solution of the Dyson-like Coulomb screening
equation of TDDFT, as it leads to a pairwise summation form of the vdW interaction.
A preliminary version of such an approach has now been given.

The direct RPA (ACFD with fxc = 0), applied without further approximation,
leads to very demanding numerical correlation energy calculations that yield vdW
terms, but these have now been carried out for systems of up to 100 atoms, and for
crystals with modest-sized unit cells. While it has some serious shortcomings for
the binding curves of small molecules, the dRPA based on GGA orbitals has given
very good results for the lattice spacing, elastic constants and binding energies of
vdW-bound periodic systems, mostly in agreement with experiment where available.
This success is probably due to the relative unimportance of dynamic self-interaction
in the diffuse outer p orbitals that give rise to the vdW interactions in the cases studied.
By contrast, the lack of self-interaction correction is disastrous in the dRPA dissoci-
ation curves of small molecules at intermediate bond lengths.

Various microscopic approaches such as SOSEX can be used to improve the
accuracy of dRPA, but are computationally demanding. In principle the remaining
deficiencies of the dRPA can alternatively be remedied by inclusion of a sufficiently
realistic xc kernel fxc in the Dyson-like screening equation of TDDFT, prior to
application of the FDT. fxc will have to be quite nonlocal, however, in order to
effect dynamic self interaction correction in the case of localized orbitals. It may
also have to be a highly nonlocal function of groundstate density n(r) in order to
achieve Casimir–Polder consistency. Some of the burden of these developments may
be removed via range-separation approaches. Much work needs to be done, but this
task should be possible starting from the relatively good success of the dRPA version
of the ACFDF theory for large systems.

For a more computationally tractable approach, one will also want to derive an
approximation that avoids construction of RPA-type response functions directly from
excited orbitals or their equivalent.



Chapter 23
Nonlocal Van Der Waals Density Functionals
Based on Local Response Models

Oleg A. Vydrov and Troy Van Voorhis

23.1 Introduction

As described in Chap. 22, dispersion interactions, also known as van der Waals
interactions, arise from long-range correlated fluctuations of the electron charge
density. The dispersion energy is thus a nonlocal component of the correlation energy.
In practical applications of Kohn–Sham DFT, the correlation energy is usually
approximated as a local or a semilocal density functional (Fiolhais et al. 2003).
(Semi)local functionals cannot in principle include the proper physics of long-
range dispersion interactions. Empirical dispersion corrections are quite popular
and reasonably successful (Grimme et al. 2010), but they typically entail a depar-
ture from pure DFT into the realm of classical force fields, and hence they fall
outside the scope of this book. The rigorous description of long-range van der Waals
interactions requires fully nonlocal treatment of correlation (Riley et al. 2010).
Unfortunately, the rigor usually comes at the cost of an explicit and cumbersome
dependence on both occupied and virtual orbitals. Within the framework of Kohn–
Sham DFT, substantial advances have been made in the development of orbital-
dependent nonlocal correlation functionals, exemplified by the random phase approx-
imation (RPA) and other closely related methods, usually derived via the adiabatic
connection/fluctuation-dissipation theorem, as described in Chap. 22, the RPA and
its variants have been successfully applied to weakly interacting systems (Eshuis
and Furche 2011; Schimka et al. 2010; Zhu et al. 2010; Nguyen and Galli 2010;
Janesko et al. 2009). The practical usefulness of these methods is limited by their
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high computational cost and by the lack of self-consistency in current implementa-
tions.

An elegant compromise between rigor and computational tractability has been
achieved in the recently introduced class of nonlocal correlation functionals that
treat the entire range of dispersion interactions in a general and seamless fashion, yet
include no explicit orbital dependence and use only the electron density as input
(Dion et al. 2004; Lee et al. 2010; Vydrov and Van Voorhis 2009a, b; 2010c).
These functionals are relatively computationally inexpensive and lend themselves to
efficient self-consistent implementations. This group of methods can be considered
as an extension of the asymptotic theories of Andersson et al. (1996), Dobson and
Dinte (1996). Since the long-range non-overlapping regime is the only limit where
dispersion interactions are unambiguously and uniquely defined, we will begin our
discussion by considering this asymptotic limit.

23.2 Long-Range Asymptote of Dispersion Interaction

23.2.1 Local Polarizability Formalism

The second-order dispersion interaction energy E (2) between two finite non-
overlapping systems was derived in Chap. 22 and expressed in terms of nonlocal
dynamic dipole polarizability tensors in (22.5). A tractable model for E (2) can be
obtained by adopting a local isotropic response approximation:

αi j (r, r ′, iu) = δi jα(r, iu)δ(r − r ′). (23.1)

Under this approximation, (22.5) transforms into

E (2) = −3�

π

∞∫

0

du
∫

A

d3r
∫

B

d3r ′α(r, iu)α(r ′, iu)

|r − r ′|6 , (23.2)

where A and B define the domains of the non-overlapping subsystems, and r ∈ A
while r ′ ∈ B. The local polarizability density α(r, iu) is connected to the experi-
mentally measurable average dynamic polarizability ᾱ(iu) via

ᾱ(iu) =
∫

d3rα(r, iu). (23.3)

The f-sum rule requires that, in the u → ∞ limit, ᾱ(iu) → Ne2/mu2, where N is
the number of electrons in the system. This constraint is usually imposed by writing
α(r, iu) in the following way:

α(r, iu) = e2

m

n(r)

ω2
0(r)+ u2

. (23.4)
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Since
∫

d3rn(r) = N , the f-sum rule is recovered by (23.4). Plugging (23.4) into
(23.2) and integrating over u, we arrive at

E (2) = −3�e4

2m2

∫

A

d3r
∫

B

d3r ′ n(r)n(r ′)
ω0(r)ω0(r ′)

[

ω0(r)+ ω0(r ′)
] |r − r ′|6 . (23.5)

When the distance between species A and B is large compared to the size of these
systems, |r − r ′|−6 in (23.5) can be taken out of the integral as R−6, leading to the
−C AB

6 R−6 form. Hence, (23.5) can be used for computing asymptotic van der Waals
C6 coefficients.

23.2.2 Practical Local Polarizability Models

Various local polarizability models differ substantially in how ω0 in (23.4) is
defined. In the Andersson, Langreth, and Lundqvist (ALL) model (Andersson
et al. 1996; Dobson and Dinte 1996), ω0(r) is taken to be equal to the local
plasma frequency: ω0(r) = ωp(r) =

√

4πn(r)e2/m. Thus the local polarizability
at r is determined entirely by the local electron density n(r) and modeled by the
long-wavelength dielectric response of the uniform electron gas (UEG) of density
n = n(r). The ALL energy expression was given in (22.36). Nesbet argued (Nesbet
1997) that for describing polarizability of a free atom it is more appropriate to use
ω0(r) = ωp(r)/

√
3, which makes the theory consistent with the classical Clausius-

Mossotti formula. Nesbet’s suggestion is corroborated by the fact that ω0 = ωp/
√

3
gives the correct polarizability for an isolated sphere of uniform electron density
(“jellium sphere”), whereas the ALL formula gives an incorrect result for this model
system. Regardless of the proportionality coefficient, using ω2

0(r) ∝ ω2
p(r) ∝ n(r)

in (23.4) leads to the inadequate treatment of static (u = 0) polarizability of an atom
or a molecule: in such a model, α(r, 0) is an r-independent and density-independent
constant and hence ᾱ(0) is determined entirely by the (arbitrary) choice of the inte-
gration limits in (23.3). A density-based prescription for a sharp integration cutoff
has been proposed (Rapcewicz and Ashcroft 1991; Andersson et al. 1996), but it is
not entirely satisfactory from either the numerical or formal point of view. Such an
integration cutoff discards density tail regions, reducing N in violation of the f-sum
rule.

The need for an explicit integration cutoff is obviated altogether ifω0(r) is defined
in such a way that n/ω2

0 → 0 in the density tails. In the more recent theories described
below, ω0 is constructed to satisfy this condition. Nonlocal van der Waals density
functionals (vdW-DFs) of Langreth and coworkers (Dion et al. 2004; Lee et al.
2010) and their variants (Vydrov and Van Voorhis 2009a) are essentially based on
the local polarizability approximation. In the long-range asymptotic limit, all of
these functionals reduce to the form of (23.5) with different choices of ω0(r), as
summarized in Table 23.1.

http://dx.doi.org/10.1007/978-3-642-23518-4_22
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Table 23.1 Definitions of ω0(r) in several methods

Model Definition of ω0 MAPE (%)

vdW-DF-04 9�

8πm

[

kF
(

1+ μs2
)− 4π

3e2 ε
LDA
c

]2
with μ = 0.09434 18.5

vdW-DF-10 same as in vdW-DF-04, but with μ = 0.20963 60.9

vdW-DF-09 �

3m k2
F

(

1+ μs2
)2

with μ = 0.22 10.4

VV09/10

√

ω2
p

3 + C �2

m2

∣
∣∇n

n

∣
∣
4

with C = 0.0089 10.7

The last column gives the mean absolute percentage error (MAPE) for a set of 34 C6 coefficients of
closed-shell species assembled in Table II of Vydrov and Van Voorhis (2010b). C6 were computed
using (23.5) with the correspondingω0.Computational details are given in Vydrov and Van Voorhis
(2010b)

The nonlocal correlation in vdW-DFs is more conveniently expressed not
in terms of ω0, but in terms of another quantity q0, which can be written as
q0(r) = kF(r)F(r), where kF(r) = [3π2n(r)]1/3 is the local Fermi wavevector
and F is an enhancement factor. In vdW-DF-04 (Dion et al. 2004) as well as in its
later re-parameterization vdW-DF-10 [termed vdW-DF2 in Lee et al. (2010)], q0 is
related to ω0 via

ω0(r) = 9�

8πm
q2

0 (r), (23.6)

whereas in vdW-DF-09 (Vydrov and Van Voorhis 2009a) this relation is slightly
different:

ω0(r) = �

3m
q2

0 (r). (23.7)

In practice, the enhancement factor F = q0/kF is required to circumvent the afore-
mentioned problem with static polarizability. In the u = 0 limit, the vdW-DF local
polarizability model behaves as

α(r, 0) ∝ n(r)

ω2
0(r)
∝ n(r)

k4
F(r)F

4(r)
∝ 1

n1/3(r)F4(r)
.

Using F = 1 would lead to α(r, 0) that is exponentially divergent (as n−1/3) in
the density tails. It is essential to use an F such that n1/3 F4 → ∞ in the density
tails. In all three versions of vdW-DF, this is accomplished by including into F a
term proportional to s2,where s = |∇n|/(2kFn) is a dimensionless density gradient.
In vdW-DF-09, a particularly simple choice was made: F = 1+μs2. Polarizabilities
resulting from (23.4) and C6 coefficients computed via (23.5) are very sensitive to the
value of μ—the coefficient of s2. Table 23.1 summarizes the mean errors of several
methods for a C6 benchmark set. The definition of ω0(r) in vdW-DF-10 is the same
as in vdW-DF-04 apart from the difference in the μ value, yet these two functionals
yield very different C6 coefficients. Among the methods included in Table 23.1,
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vdW-DF-10 is by far the worst performer: it underestimates C6 by a factor of 2.6 on
average. In vdW-DF-09, μ was fitted to yield accurate C6 coefficients (Vydrov and
Van Voorhis 2009a). As a result, vdW-DF-09 gives a respectably low mean error of
about 10% for a diverse C6 test set. Due to its good performance, the vdW-DF-09
local polarizability model was employed by Sato and Nakai as a basis for their
pairwise atom-atom dispersion correction (Sato and Nakai 2009).

All three versions of vdW-DF fail to give the proper C6 coefficients for jellium
spheres, yielding qualitatively incorrect dependence of C6 on the electron density.
Vydrov and Van Voorhis (VV) proposed (Vydrov and Van Voorhis 2009b; 2010b)
to define ω0(r) in such a way that in the uniform density limit ω0 = ωp/

√
3, giving

the correct result for jellium spheres. VV also argued that the local response in
nonuniform systems can be made more realistic by introducing a “local band gap”.
At the elementary level, the metallic UEG response function can be transformed into
that of a semiconductor with a band gap �ωg by subtracting ω2

g from ω2, where ω is
the perturbing field frequency. We are interested in imaginary frequencies ω = iu,
and hence u2 should be replaced by (ω2

g+u2) in (23.4). In the denominator of (23.4),

ω2
g can be absorbed into ω2

0, resulting in

ω2
0(r) =

ω2
p(r)

3
+ ω2

g(r). (23.8)

A suitable model for ωg(r) can be deduced by examining the typical shape of the
electron density n(r). In atoms, n(r) can be approximated as piecewise exponential.
In the density tails, the exact behavior (Levy et al. 1984) is known:

n(r) ∼ exp (−α|r|) , with α = 2

�

√
2m I , (23.9)

where I is the ionization potential. Generalizing the result of (23.9), we can define a
“local ionization potential” as

I (r) = �
2

8m

∣
∣
∣
∣

∇n(r)
n(r)

∣
∣
∣
∣

2

. (23.10)

Taking �ωg(r) ∝ I (r), we write

ω2
g(r) = C

�
2

m2

∣
∣
∣
∣

∇n(r)
n(r)

∣
∣
∣
∣

4

, (23.11)

where C is a parameter that can be adjusted such that (23.5) with ω0(r) of (23.8)
produces accurate van der Waals C6 coefficients for atoms and molecules (Vydrov
and Van Voorhis 2009b, 2010b). The optimal value of C = 0.0089 was obtained by
fitting to a training set [however, as discussed in Vydrov and Van Voorhis (2010c),
the fitted value of C can vary slightly, depending on the source of the input densities].
In the uniform density limit, ωg of (23.11) vanishes, and hence ω0 of (23.8) reduces
to ωp/

√
3.
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We have to mention that there exist a number of simple and accurate methods
for computing asymptotic dispersion coefficients of atoms and molecules using
the electron density and/or occupied orbitals as input (Becke and Johnson 2007;
Tkatchenko and Scheffler 2009). However, a much more challenging task is to devise
a theory that would not be limited to the asymptotic regime of non-overlapping
subsystems, but would treat the entire range of dispersion interactions in a seamless
fashion. The nonlocal van der Waals density functionals described in the next section
achieve this aim without a significant increase in computational complexity.

23.3 General and Seamless Nonlocal Van Der Waals
Density Functionals

23.3.1 Functional Form

In the growing family of van der Waals density functionals (Dion et al. 2004;
Lee et al. 2010; Vydrov and Van Voorhis 2009a, b; 2010c), the correlation energy is
divided into two contributions,

Ec = E0
c + Enl

c , (23.12)

with the larger fraction, E0
c , approximated by a (semi)local functional. The quantity

E0
c is typically chosen to give the exact UEG correlation energy in the uniform density

limit. The second piece in (23.12), Enl
c , is a fully nonlocal functional that includes

long-range dispersion interactions. Enl
c is designed to vanish for a uniform electron

density, such that double-counting in (23.12) is avoided at least in the UEG limit.
Approximations to Enl

c , described below, are written in the form

Enl
c =

�

2

∫

d3r
∫

d3r ′n(r)Φ(r, r ′)n(r ′). (23.13)

The correlation kernel Φ is symmetric, Φ(r, r ′) = Φ(r ′, r), and depends only on
∣
∣r − r ′

∣
∣ and charge densities and density gradients at r and r ′. Φ is designed in such

a way that in the
∣
∣r − r ′

∣
∣→∞ limit,

Φ →− 3e4

2m2ω0(r)ω0(r ′)
[

ω0(r)+ ω0(r ′)
] |r − r ′|6 , (23.14)

so that Enl
c tends to the asymptotic form of (23.5), with various choices ofω0 summa-

rized in Table 23.1. The extra factor of 1/2 in (23.13) as compared to (23.5) arises
because these formulas compute different things: (23.5) computes the interaction
energy between subsystems A and B, hence r ∈ A and r ′ ∈ B;whereas (23.13) gives
the nonlocal correlation energy, which includes inter- and intramolecular contribu-
tions, hence both r and r ′ integrals in (23.13) are over the entire space. The Enl

c
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functional of (23.13) has a very general and seamless form that requires neither
splitting the system into interacting fragments nor any kind of atomic partitioning.

23.3.2 vdW-DF-04 and its Variants

In the vdW-DF-04 theory (Dion et al. 2004), an expression forΦ(r, r ′)was obtained
using a second-order perturbation expansion and a number of other approximations
(see Sect. 22.10.2). The power series expansion used in the derivation of vdW-DFs
was recently analyzed in detail in Lu et al. (2010). The construction of vdW-DFs
hinges on a single function q0(r), which is paramount to the theory. As shown in
Sect. 23.2.2, ω0 ∝ q2

0 , and hence q0 controls the long-range asymptote of Φ via
(23.14). Furthermore, q0 also defines the length scale for “damping” of Φ at shorter
range, as elaborated below. In vdW-DF-04 (Dion et al. 2004), this function is defined
as

q0 = kF
(

1+ μs2)− 4π

3e2 ε
LDA
c , (23.15)

where μ = 0.09434 and εLDA
c is the LDA correlation energy density per electron.

In the recent re-parameterization, denoted vdW-DF-10 here but called vdW-DF2 in
(Lee et al. 2010), the same form for q0 is used, but with μ = 0.20963. Note that
Dion et al. (2004) and Lee et al. (2010) use a notation that is somewhat different from
ours, with Zab = −9μ. In vdW-DF-09 (Vydrov and Van Voorhis 2009a), a simpler
form for q0 was adopted:

q0 = kF(1+ μs2), (23.16)

where μ = 0.22 was adjusted to give accurate C6 coefficients, as discussed in
Sect. 23.2.2.

It is convenient to introduce two new variables that are sufficient to represent Φ
in vdW-DFs:

D = q0(r)+ q0(r ′)
2

∣
∣r − r ′

∣
∣ and δ =

∣
∣q0(r)− q0(r ′)

∣
∣

q0(r)+ q0(r ′)
.

The expression for Φ cannot be obtained in a closed form, but it can be computed
numerically for a given pair of D and δ. In practical applications, it is most efficient
to precompute Φ for a set of D and δ and compile a look-up table. The functional
vdW-DF-10 uses exactly the same Φ(D, δ) as in vdW-DF-04 [see the plot of Φ in
the Erratum to Dion et al. (2004)]. In vdW-DF-09, the shape of Φ(D, δ) is slightly
different (Vydrov and Van Voorhis 2009a). In these theories, the kernelΦ is negative
(attractive) at large and intermediate scaled distances D. For very large D values,
Φ reduces to the asymptotic form of (23.14). For small D values, Φ is positive, i.e.
repulsive. In the uniform density limit, δ = 0 and Φ has the useful property that

http://dx.doi.org/10.1007/978-3-642-23518-4_22
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4π

∞∫

0

D2Φ(D, 0) dD = 0,

making Enl
c vanish. In nonuniform systems, Enl

c is strictly nonnegative, meaning that
the positive short-range contribution outweighs the negative long-range part.

The earliest seamless functional of the form of (23.13), vdW-DF-04, gives reason-
able asymptotic C6 coefficients, as shown in Table 23.1. However, vdW-DF-04
strongly overestimates the magnitude of dispersion attraction near equilibrium inter-
monomer distances (Vydrov and Van Voorhis 2010a). By increasing the value of
μ in vdW-DF-10, the magnitude of dispersion interaction was attenuated at all
distances. This proved beneficial for equilibrium binding energies, but it led to severe
underestimation of C6 coefficients in vdW-DF-10. These results suggest that a more
flexible form ofΦ may be needed in order to accurately describe dispersion interac-
tions for the whole range of distances.

Several features of vdW-DFs pose inconveniences for numerical implementation:
as mentioned above, Φ is not expressible in a closed analytic form and has to be
numerically tabulated; in addition, Φ diverges to +∞ for

∣
∣r − r ′

∣
∣→ 0. Below we

describe the progress made in our group towards designing improved models for Φ,
that are more flexible and easily implementable.

23.3.3 VV09 and VV10

In the VV09 model (Vydrov and Van Voorhis 2009b), the correlation kernel is
written as

Φ = 3e4D(r, r ′)
2m2ω0(r)ω0(r ′)

[

ω0(r)+ ω0(r ′)
] |r − r ′|6 , (23.17)

with ω0 given by (23.8). In the above equation, D serves as a “damping function”.
A closed-form expression for D was constructed in Vydrov and Van Voorhis (2009b)
in such a way as to ensure that the VV09 formalism has the following desirable
features

• In the |r − r ′| → ∞ limit, D → −1, recovering the asymptotic form of
(23.14). With ω0 of (23.8), this method gives accurate C6 coefficients, as shown
in Table 23.1.

• In the |r − r ′| → 0 limit, Φ goes to a finite value.
• Enl

c vanishes in the uniform density limit.
• Enl

c has a realistic second-order gradient expansion in the slowly varying density
limit.

We do not give the detailed expression for D(r, r ′) here, because VV09 has been
superseded by a simpler yet more accurate model—VV10, described below.
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The main idea in the design of the VV10 model (Vydrov and Van Voorhis 2010c)
was to choose an analytic functional form that is as simple and intuitive as possible.
VV10 has the same long-range behavior as its precursor VV09, but the damping
mechanism of dispersion interactions at short range is greatly simplified. This simpli-
fication not only makes the VV10 model more efficient and computationally tractable,
but it also leads to improved performance.

In VV10 (Vydrov and Van Voorhis 2010c), the nonlocal correlation kernel in
written as

Φ = − 3e4

2m2gg′(g + g′)
(23.18)

with

g = ω0(r)
∣
∣r − r ′

∣
∣2 + κ(r) (23.19)

and similarly

g′ = ω0(r ′)
∣
∣r − r ′

∣
∣
2 + κ(r ′), (23.20)

where ω0 is defined in the same way as in VV09—see (23.8) and Table 23.1. In Eqs.
23.19 and 23.20, a new quantity was introduced:

κ(r) = b
v2

F(r)

ωp(r)
= 3b

ωp(r)

k2
s (r)

, (23.21)

where vF = �kF/m is the local Fermi velocity, ks =
√

3ωp/vF is the local Thomas–
Fermi screening wave vector, and b is an adjustable parameter that controls the
short-range damping of the asymptotic form of (23.14).

In the uniform density limit, (23.18) reduces to

Φuni = − 3e4

4m2

[

ωp√
3

r2 + b
v2

F

ωp

]−3

(23.22)

(with r = |r − r ′|) and (23.13) gives the following energy density per electron:

εuni
c = 2π�n

∞∫

0

r2Φunidr = −3π2
�e4n

32m2v3
F

[
3

b2

]3/4

= − e2

32a0

[
3

b2

]3/4

= −β, (23.23)

where a0 = �
2/me2 is the Bohr radius and β is a density-independent constant. It is

instructive to rewrite (23.22) in a different form:
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Φuni = − 9
√

3e4

4m2ω3
pr6

[

1+ 3
√

3b

(ksr)2

]−3

. (23.24)

The above equation shows that the r−6 asymptote is damped at short range on the
length scale given by ksr,which is the scaled distance relevant for correlation energy
(Perdew and Wang 1992b).

The definition of the VV10 density functional is finalized by writing

EVV10
c = Enl

c + βN =
∫

d3rn(r)
[

β + �

2

∫

d3r ′n(r ′)Φ(r, r ′)
]

, (23.25)

where β is determined by (23.23). By construction, EVV10
c of (23.25) vanishes in the

uniform density limit. An essential aspect of the VV10 formalism is the additional
flexibility introduced with the help of an adjustable parameter b which controls the
short-range behavior of the nonlocal correlation energy. When EVV10

c of (23.25) is
added as a correction to an existing xc functional, b is adjusted to attain a balanced
merging of interaction energy contributions at short and intermediate ranges (Vydrov
and Van Voorhis 2010c).

23.3.4 Implementation

One of the most attractive features of the orbital-independent functionals of the type
of (23.13) is that they enable self-consistent treatment of dispersion interactions
(Thonhauser et al. 2007; Gulans et al. 2009; Román-Pérez 2009; Vydrov et al.
2008; Vydrov and Van Voorhis 2010a). By contrast, practical applications of RPA
methods or force-field-like dispersion corrections are typically performed in a post-
self-consistent fashion, using densities and orbitals produced by a semilocal or a
hybrid functional. Self-consistency may not be important for computing binding
energy curves of weakly interacting complexes (Thonhauser et al. 2007), but for
a number of useful applications, such as gradient-based geometry optimizations, a
self-consistent implementation is required.

In the first self-consistent implementation of vdW-DF-04 (Thonhauser et al. 2007),
the nonlocal correlation potential vnl

c (r) = δEnl
c /δn(r) was evaluated on a numer-

ical real-space grid. Soon thereafter, we reported an implementation of vdW-DF-04
within a Gaussian basis set code (Vydrov et al. 2008). In our methodology, the
electron density is expressed in terms of atom-centered basis functions {χμ} as

n(r) =
∑

μν

Pμνχμ(r)χν(r), (23.26)

where Pμν are the density matrix elements. The self-consistent treatment is simplified
by the fact that we do not need to compute vnl

c (r) explicitly, but only need its matrix
elements—the derivatives of Enl

c with respect to Pμν :
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dEnl
c

dPμν
=

∫

d3rχμ(r)
δEnl

c

δn(r)
χν(r) =

〈

μ|vnl
c |ν

〉

. (23.27)

These matrix elements can be straightforwardly computed and used in the standard
formalism developed for semilocal functionals (Johnson et al. 1993). We utilized the
same approach in our self-consistent implementations of VV09 and VV10 (Vydrov
and Van Voorhis 2010a, c).

The double integration over the space variables in (23.13) is in practice eval-
uated as a double sum over a numerical grid. The nonlocal correlation kernels in
vdW-DFs diverge logarithmically for

∣
∣r − r ′

∣
∣→ 0. This divergence causes difficul-

ties in practical implementations. Omitting the singular r = r ′ terms in the double
sum leads to numerical instabilities, such as errors in the gradients with respect to
nuclear displacements. It also causes substantial grid superposition errors in binding
energies, if atom-centered quadrature grids are used. Implementational tricks have
been devised to deal with the singularity in the vdW-DF-04 kernel (Román-Pérez and
Soler 2009). In VV09 and VV10, the source of the problem is eliminated altogether,
since Φ is finite for

∣
∣r − r ′

∣
∣ = 0.

Even if implemented in the most straightforward fashion, functionals of the form
of (23.13) scale as N 2, meaning that when the system size is doubled, the compu-
tational cost quadruples. This scaling is rather modest as compared to correlated
wavefunction methods, for which the typical scaling is N 5 or higher. It has been
recently shown that with specially tailored numerical algorithms (Gulans et al. 2009;
Román-Pérez and Soler 2009) the scaling of the vdW-DF-04 nonlocal functional
can be further reduced below N 2. Unlike correlated wavefunction techniques that
require high-quality basis sets, nonlocal functionals of the type of (23.13) are rather
undemanding in terms of the basis set size. The correlation kernel in VV10 has a
particularly featureless and smooth analytic form with finiteΦ(r, r). Consequently,
VV10 is quite insensitive to the fineness of the numerical grid, so that even rather
coarse grids can be used for evaluating EVV10

c .

Self-consistent treatment of the energy functional is a prerequisite for computing
forces on nuclei. Within an atom-centered basis set implementation, the gradients
of the energy with respect to nuclear displacements contain not only the usual
Hellmann–Feynman terms, but also the so-called “Pulay forces” arising due to the
fact that the atom-centered basis functions as well as numerical quadrature grid points
move together with the nuclei. All these terms can be straightforwardly computed
(Vydrov and Van Voorhis 2008a; Vydrov et al. 2008). Since the energy gradients for
the nonlocal van der Waals functionals are readily available, structural optimizations
can be performed routinely and efficiently.

23.4 Dispersionless Correlation and Exchange Components

The term Enl
c of (23.13) accounts for a rather small part of correlation energy.

In practice, Enl
c is added as a correction to an existing xc functional. The E0

c compo-
nent in (23.12) is typically represented by the LDA correlation functional in the
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parameterization of Perdew and Wang (1992a) (used with vdW-DF-04, vdW-DF-10,
and VV09), or by a semilocal correlation functional, such as the generalized gradient
approximation of Perdew, Burke, and Ernzerhof (PBE) (Perdew et al. 1996b) used
in VV10.

A very nontrivial problem is the proper choice of the exchange model to be
used alongside the correlation functional of (23.12). For molecular complexes bound
predominantly by van der Waals interactions, Hartree–Fock theory provides adequate
representation of the repulsive wall (‘Pauli repulsion’). However, Hartree–Fock
exchange is unsuitable for pairing with LDA or GGA correlation functionals (used
for E0

c )—such combinations are known to perform poorly for many properties.
The so-called “long-range correction” (LRC) scheme preserves the Hartree–

Fock’s proper treatment of Pauli repulsion in van der Waals complexes, but also
describes covalent bonds well. In the LRC method, the Coulomb operator 1/r is
split into the long-range part erf(ωr)/r, treated by Hartree–Fock, and the short-range
counterpart erfc(ωr)/r, treated by a semilocal exchange functional. The LRC method
is quite versatile: with the proper adjustment of the range-separation parameter ω,
LRC exchange can be successfully used not only with LDA or GGA correlation
[see e.g. Vydrov and Scuseria (2006)], but also with fully nonlocal correlation func-
tionals. LRC exchange has been incorporated into a number of DFT methodologies
that aim at accurate description of van der Waals complexes (Kamiya et al. 2002;
Sato et al. 2007; Sato and Nakai 2009; Janesko et al. 2009; Zhu et al. 2010).

A more computationally affordable option is to employ a semilocal exchange
functional of GGA type. Unfortunately, most GGA approximations cannot properly
describe the Pauli repulsion in weakly interacting systems. Many GGA exchange
functionals even yield substantial spurious attraction in van der Waals complexes at
short range. When dispersion interactions are treated by a nonlocal correlation func-
tional Enl

c , double-counting should be avoided, hence the exchange functional must
not give any “pseudo-dispersion” binding. Comparative assessments of various semi-
local exchange approximations (Lacks and Gordon 1993; Kannemann and Becke
2009; Murray et al. 2009) showed that the PW86 exchange functional (Perdew
and Wang 1986) excels in the treatment of repulsive components of van der Waals
potentials. A refitted version of PW86 was recently proposed (Murray et al. 2009).
We denote this ‘refitted PW86’ as PW86R here.

vdW-DF-04 is known to be incompatible with accurate exchange functionals:
combinations of vdW-DF-04 with Hartree–Fock, LRC, or PW86R exchange produce
considerable overbinding of van der Waals complexes (Vydrov et al. 2008;
Vydrov and Van Voorhis 2010a). More reasonable binding energies are obtained
if vdW-DF-04 is paired with revPBE exchange (Zhang and Yang 1998), but this
combination tends to give too long equilibrium intermonomer distances (Langreth
et al. 2009). As shown in Klimeš et al. (2010), Cooper (2010), the performance
can be substantially improved by tailoring an exchange functional specially fitted to
be used alongside vdW-DF-04. The re-parameterized functional vdW-DF-10 works
rather well with PW86R exchange (Lee et al. 2010). The VV10 methodology can
be adapted for a particular exchange functional by fine-tuning the parameter b. For
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Table 23.2 Performance of several xc functionals for the binding energies of the S22 test set

Ex E0
c Enl

c ME MAE MAPE

revPBE LDA vdW-DF-04 −1.40 1.43 21.0
PW86R LDA vdW-DF-04 1.04 1.04 31.9
PW86R LDA VV09 −1.17 1.19 19.9
PW86R LDA vdW-DF-10 −0.92 0.94 14.7
PW86R PBE VV10a 0.16 0.31 4.4
LC-ωPBEb PBE VV10c 0.09 0.21 4.6

ME denotes mean signed error in kcal/mol, MAE—mean absolute error in kcal/mol, and MAPE—
mean absolute percentage error in %. Fixed molecular geometries from Jurečka et al. (2006) are
used. Reference binding energies are from Podeszwa et al. (2010). Computational details can be
found in Vydrov and Van Voorhis (2010a, 2010c)
a Using C = 0.0093 and b = 5.9. The βN term is included
b Long-range-corrected PBE with ω = 0.45 a−1

0
c Using C = 0.0089 and b = 6.3. The βN term is included

instance, using b = 5.9 renders VV10 correlation compatible with PW86R exchange
(Vydrov and Van Voorhis 2010c).

23.5 Benchmark Tests on Binding Energies

To give an idea about the accuracy of nonlocal van der Waals functionals for equilib-
rium binding energies, in Table 23.2 we summarize the error statistics for several xc
approximations that include an Enl

c model in combination with some typical exchange
(Ex) and semilocal correlation (E0

c ) functionals. Table 23.2 reports the errors for the
S22 benchmark test set (Jurečka et al. 2006; Podeszwa et al. 2010) that includes
22 molecular duplexes representing noncovalent interactions typical in biological
molecules, including hydrogen-bonded, dispersion-dominated, and mixed duplexes.
We define binding energies to be positive, hence a negative mean error (ME) in
Table 23.2 indicates an underbinding trend, while a positive ME means overbinding.
Table 23.2 clearly shows that the nonlocal functionals of the new generation,
vdW-DF-10 and VV10, are substantially more accurate than older models. Note that
the results reported in (Lee et al. 2010) for the same S22 set are somewhat different
from ours, because intermonomer separations were optimized in Lee et al. (2010),
whereas the results in Table 23.2 were obtained at fixed geometries from Jurečka
et al. (2006).

Applications of vdW-DF-04 to a broad range of molecular complexes and mate-
rials were recently reviewed in Langreth et al. (2009). Binding energy curves for
a number of weakly-interacting molecular complexes, computed with the newest
nonlocal functionals vdW-DF-10 and VV10 can be found in Lee et al. (2010), Vydrov
and Van Voorhis (2010c).
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23.6 Known Limitations and Avenues for Improvement

The nonlocal correlation formalism described in Sect. 23.3 has a number of limita-
tions and shortcomings. Further improvements and refinements of the methodology
are certainly possible and desirable.

Enl
c of the form of (23.13) accounts for two-body contributions to the disper-

sion energy, but neglects nonadditive many-body contributions, such as the Axilrod-
Teller-type three-body terms. These neglected contributions can be significant in
some cases, as argued in Lu et al. (2010). It is possible to derive an expression
for the Axilrod-Teller three-body correction within the local polarizability approx-
imation. However, such a term would scale as N 3 and would significantly increase
computational cost.

For non-overlapping fragments, Enl
c of (23.13) reduces to the second-order energy

E (2) of (23.5). Such a theory is inherently inadequate for describing interactions
between spatially extended metallic (or semimetallic) fragments of reduced dimen-
sionality at very large distances, e.g. between parallel metallic sheets or wires
(Dobson et al. 2006) (see Sect. 22.5).

The accuracy of the formalism at short and intermediate range depends not only
on the quality of the Enl

c model, but also on the choice of Ex and E0
c functionals.

The question of the proper choice of the exchange component has been actively
discussed (Murray et al. 2009; Klimeš et al. 2010; Cooper 2010). At the same time,
very little attention has been devoted to the choice of correlation functional used for
E0

c in (23.12). The terms ELDA
c and EPBE

c contribute sizably and rather unpredictably
to binding energies of van der Waals complexes near equilibrium intermonomer
separations. At present, it is not clear whether (and to what degree) these contributions
are valid or spurious.

Finally, (23.12) gives one particular prescription for splitting the correlation
energy into two parts. Other ways of dividing the correlation functional into
(semi)local and nonlocal contributions can be envisioned. Alternatively, the whole
of correlation energy may be treated by a nonlocal functional.

Notwithstanding their imperfections, modern nonlocal van der Waals density
functionals are already sufficiently accurate to provide useful predictions for a broad
variety of weakly interacting systems (Langreth et al. 2009; Lee et al. 2010; Vydrov
and Van Voorhis 2010c).

http://dx.doi.org/10.1007/978-3-642-23518-4_22


Chapter 24
Time-Dependent Current Density
Functional Theory

Giovanni Vignale

24.1 Introduction

The nonlocality of the exchange-correlation (xc) potential, i.e., the fact that the xc
potential at a certain position depends on the global distribution of the particles in
space, is the curse of density functional theory. It is mainly because of this fact
that, even after years of intensive studies, the exact form of the xc potential as a
functional of the density remains unknown. Nevertheless, it is true that many accurate
and useful results can be obtained from the use of an approximation—the local
density approximation (LDA)—which ignores the problem altogether. Apparently,
the nonlocal dependence of the Kohn–Sham orbitals on the density is sufficient in
many cases to give about the right quantum chemistry. Furthermore, a number of
successful strategies have been designed to go beyond the LDA when needed: in one
such approach (the generalized gradient approximation—GGA) one goes beyond
the LDA by including the dependence of the xc potential on the gradient of the
local density; in another approach, one expresses the xc potential as a functional of
the Kohn–Sham orbitals, and, finally, in the “meta-GGA” approach one fights the
problem by including additional local variables, such as the kinetic energy density.

In this chapter we are going to see that the nonlocality problem affects in a more
severe form the time-dependent density functional theory. This complication arises as
a consequence of memory. The xc potential at a time t (now) depends on the density at
earlier times t ′.But at these earlier times a small volume element of the system, which
is now located at r, was located at a different position r ′. Retardation in time thus
implies nonlocality in space. We will see that, when retardation is taken into account,
the local density approximation breaks down even in the limit of slowly varying
density. We will refer to this feature of the time-dependent theory as ultranonlocality,
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to distinguish it from the ordinary nonlocality, which becomes harmless in the limit
of slowly varying density. Furthermore, we will see that “ultranonlocality” is not
related to the presence of a long-range interaction between the particles, but, more
in depth, implies that the particle density is not a well-chosen variable (although,
in principle a legitimate one) for the description of effects that involve retardation
in time. It is also evident that the inclusion of additional variables might “cure” the
ultranonlocality: for example, by looking at the current density of an infinitesimal
volume element of the fluid at position r at a certain time we might be able to estimate
its position at an earlier time, and thus arrive at a local or quasi-local expression for
the retarded xc potential. These general ideas will be explored in some detail in the
following sections. We will see that the the introduction of the current density as a
basic variable does indeed cure the ultranonlocality in the linear response regime.
However, in the general nonlinear case, a consistent cure of the problem requires the
introduction of the deformation tensor, which is non-locally related to the current
density. The ensuing “deformation functional theory” will be the topic of the next
chapter.

24.2 First Hints of Ultranonlocality: the Harmonic
Potential Theorem

Historically the first hint of ultranonlocality in TDDFT came from the work of John
Dobson (1994a) on the collective dynamics of electrons in parabolic quantum wells.
Under the action of a uniform time-dependent electric field the electronic density in
the quantum well oscillates back and forth without changing its shape, i.e., one has
n(r, t) = nGS(r − r(t)) where nGS(r) is the ground-state density and r(t) is the
position of the center of mass of the electrons. The latter moves exactly as a single
classical particle of mass m and charge −e under the action of the external electric
field: this is the content of the “harmonic potential theorem” (HPT). It is easy to
see that the exact TDDFT satisfies the HPT for, according to the exact condition
(5.40), the xc potential created by the oscillating density nGS(r − r(t)) is given by
vxc(r, t) = vxc GS(r − r(t)), where vxc GS(r) is the xc potential in the ground-state.
In an accelerated frame of reference that moves together with the center of mass
of the system, the external electric field is cancelled by the inertial force, while the
xc potential has exactly the form that is needed to preserve the ground-state density
distribution.

Dobson observed that a naive application of the local density approximation,
including a local but retarded xc potential (Gross and Kohn 1985), leads to results
that are in conflict with the HPT. For example, one finds a density-dependent shift in
the frequency of the oscillatory motion of the center of mass, and this motion becomes
“damped”. The reason for this difficulty is that the local density approximation is
unable to distinguish between a situation in which the density variation is due to local
compression/rarefaction of the electron liquid (as in the case of a long-wavelength
plasmon) and the present one in which this variation is due to a global translation
of a system, without compression or rarefaction. The “obvious” choice of (Gross

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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and Kohn 1985) amounts to choosing the first option in both cases: this introduces
spurious dissipation in a situation in which there is no dissipation whatsoever.

From a mathematical point of view the link between ultranonlocality and the HPT
can be seen as follows (Vignale and Kohn 1998). First of all, we have just seen that
the satisfaction of the HPT in exact TDDFT is a direct consequence of the identity
(5.40) (Vignale 1995a). That identity is intimately related to the zero-force theorem,
Eq. 5.42 which in turn implies that the exact xc kernel of any system must satisfy the
equation

∫

d3r ′ fxc(r, r ′, ω)∇nGS(r ′) = ∇vxc GS(r) (24.1)

where nGS(r) and vxc GS(r) are the density and the xc potential in the ground-
state. Notice that the quantity on the right hand side of this equation is frequency-
independent, implying that the integral over r ′ on the left hand side must somehow
“wash out” the frequency dependence of the integrand. Now assume that fxc has a
finite range in the sense that the integral

∫

d3r ′ fxc(r, r ′, ω) (24.2)

is finite. Indeed, this condition is satisfied by the xc kernel of a strictly homogeneous
electron liquid, since it is known that the Fourier transform fxc(k, ω) of the homoge-
neous xc kernel has finite limit for k→ 0. Suppose now that nGS(r) is very slowly
varying on the scale of the range of fxc(r, r ′, ω). Then we can pull ∇nGS(r ′) out of
the integral of Eq. 24.1 and get

∇nGS(r)
∫

d3r ′ fxc(r, r ′, ω) = ∇vxc GS(r). (24.3)

In the limit that the density approaches uniformity, the integral on the left hand
of this expression ought to converge (if it converges at all) to the k → 0 limit of
the homogeneous electron gas kernel fxc(k, ω), which, as we have just stated, is a
function of frequency. Since the right hand side of the expression is still frequency-
independent we have arrived at a contradiction, which proves the fallacy of the initial
assumption, namely, the existence of the integral (24.2) in a weakly inhomogeneous
system. Indeed, the divergence of the integral (24.2) is the mathematical signature of
the ultranonlocality problem. Notice that, unlike ordinary nonlocality, this problem
is present in systems that are arbitrarily close to a homogeneous electron liquid.

24.3 TDDFT and Hydrodynamics

In hindsight one can easily understand why the description of many-body forces
as gradients of a density-dependent potential becomes inadequate as soon as one
attempts to go beyond the adiabatic approximation. In the classical theory of fluid

http://dx.doi.org/10.1007/978-3-642-23518-4_5
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motion, hydrodynamics, the adiabatic approximation amounts to assuming that the
fluid is, at every point in space, in a state of quasi equilibrium characterized by the
instantaneous values of density, velocity, and temperature. Then the local conserva-
tion laws of particle number and momentum lead to the equations

∂n(r, t)

∂t
= −∇ · j(r, t), continuity equation (24.4a)

m

(
∂

∂t
+ v · ∇

)

j(r, t) = F(r, t)−∇ p(r, t), Euler′s equation (24.4b)

where F(r, t) is the external volume force density, p(r, t) is the pressure, related to
the local density and temperature by the equation of state, and v(r, t)—the velocity
field—is defined as the ratio of the current density to the particle density, i.e.,
v(r, t) ≡ j(r,t)

n(r,t) . It should be noted that already at this level the equations of motion
for the density and the velocity are coupled. However, the force term−∇ p(r, t) can
be expressed as an instantaneous function of the density: from this point of view the
theory is analogous to TDDFT in the adiabatic local density approximation. Unfor-
tunately, Euler’s equation suffers from a major limitation, namely the viscosity of
the fluid is not taken into account. To include viscosity, one must go beyond the adia-
batic approximation. To do this, one must recognize that the local state of the fluid
deviates from quasi-equilibrium by an amount that is proportional to the gradients
of the velocity fields. When this deviation is taken into account, Euler’s equation
acquires an extra term and becomes the classical Navier-Stokes equation (Landau
and Lifshitz 1987)

m

(
∂

∂t
+ v · ∇

)

j(r, t) = F(r, t)− ∇ p(r, t)+∇ ·
↔
σ ′(r, t). (24.5)

The viscous stress tensor σ ′i j is given by

σ ′i j (r, t) = η
(
∂vi

∂r j
+ ∂v j

∂ri
− 2

3
∇ · vδi j

)

+ ζ∇ · vδi j , (24.6)

where the coefficients η and ζ are, respectively, the shear viscosity and the bulk
viscosity of the fluid. Its divergence,

[∇ ·
↔
σ ′]i =

∑

j

∂σ ′i j

∂r j
= η∇2vi +

(

ζ − 2

3
η

)

∇i (∇ · v) (24.7)

is the viscous force exerted on the volume element by the surrounding medium.
This force cannot be expressed as a local functional of the density. One might think
to express the current density (and hence the velocity) in terms of the density by
inverting the continuity equation (24.4a). But this cannot be done, because Eq. 24.4a
determines only the longitudinal component of the current density, jL, as opposed
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non-local

local

n Vxc

j Axc

non-local non-local

Fig. 24.1 Diagram showing the relation between current density functional theory and density
functional theory. The ultranonlocal relation between n and vxc is transformed into a local relation
between j and Axc by means of two non-local transformations from n to j and from vxc to Axc

to the full current density. Furthermore, jL(r) is a highly nonlocal functional of the
density, as can be seen from the explicit solution of Eq. 24.4a:

jL(r, t) =
∫

d3r ′ ∂n(r ′, t)

∂t
∇r

1

4π |r − r ′| . (24.8)

This is in a sense the crux of the ultranolocality problem in TDDFT and the reason
why, just as in classical hydrodynamics, it is better to describe exchange-correlation
effects in terms of the current density, rather than in terms of the density. The basic
idea is that the ultra-nonlocal relation between density and exchange-correlation
potential can be replaced, in the linear response regime, by a local relation between
current density and exchange-correlation vector potential, as shown schematically
in Fig. 24.1. The analogy with hydrodynamics also shows clearly why the current-
density description is unavoidable if one wants to go beyond the adiabatic approx-
imation by including dissipative effects, such as the viscosity of the electron fluid
while retaining a spatially-local dependence on the density. Viscous forces are natu-
rally expressed in terms of the gradients of the velocity field, and do not have a local
expression in terms of the density.

The path in front of us is now clear. In the next three sections we will develop
a time-dependent current-density functional theory (TDCDFT) in which the basic
variable is the current density and the ordinary xc potential is replaced by an xc vector
potential. We will see that in this theory the exchange-correlation force density has
the form of the contact force density of hydrodynamics, i.e., it is the divergence
of a stress tensor, and that this stress tensor can be safely approximated as a local
functional of the current density.

This theory will enable us to calculate not only the density but also the current
density from the single-particle orbitals of an effective Kohn–Sham theory. In order
to accomplish this we will have to generalize Eq. 24.6 by endowing the viscosity
constants η and ζ with both real and imaginary parts (the latter representing the
dynamical bulk and shear moduli of the liquid) and making them functions of the
frequency as well as the local particle density. In the next chapter it will be shown
how to bypass the Kohn–Sham equation, by constructing a closed equation of motion
for the current density in terms of a stress tensor, whose functional dependence on
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the current is, in principle, obtainable from the solution of a universal many-body
problem.

Our discussion will be mostly restricted to the linear response regime. By this we
mean that the time dependent density has the form

n(r, t) = nGS(r)+ n1(r)e−iωt + c.c. (24.9)

where nGS(r) is the ground-state (equilibrium) density, and n1(r)� nGS(r). It will
also be assumed that the frequency is high in the sense that ω � qvF and ω � kvF

where q−1 is the characteristic length scale for density variations in the ground-state,
k is the wave vector of the external field, and vF is the local Fermi velocity.

24.4 Current Density Functional Theory

In TDCDFT we consider a broader class of Hamiltonians than those considered in
the original Runge–Gross formulation, namely Hamiltonians of the form

H =
∑

i

{
1

2m

[(

pi + e

c
Ai

)2
]

+ vext,i

}

+ vee (24.10)

where Ai is the external vector potential evaluated at the position r i of the ith particle,
vext,i is the scalar potential at the position of the ith particle, and vee represents
the electron-electron interaction. The reason why this is a proper generalization of
the Runge–Gross (RG) Hamiltonian is that every scalar potential vext(r) can be
represented as a longitudinal vector potential Av(r) by choosing the latter as the
solution of the equation

e

c

∂Av(r, t)

∂t
= ∇vext(r, t). (24.11)

Of course, transverse vector potential represents different physics (magnetic fields).
It can be easily proved that for Hamiltonians of the form (24.10) the time-

dependent current density, together with the initial state, uniquely determine the
scalar and the vector potential, up to a gauge transformation that leaves the initial
state unchanged. A first proof of this generalized RG theorem was provided by
Ghosh and Dhara (1988), and later I found a simpler proof (Vignale 2004). There-
fore, following the usual arguments, one hopes to be able to construct, uniquely, a
Kohn–Sham Hamiltonian, ĤKS, that produces the correct current of the many-body
system (see Sect. 4.4.4). This Hamiltonian will have the form

HKS =
∑

i

{
1

2m

[(

pi + e

c
AKS,i

)2
]

+ vKS,i

}

(24.12)

and notice that the effective vector potential AKS will have in general longitudinal
and transverse components even though the original external vector potential A

http://dx.doi.org/10.1007/978-3-642-23518-4_4
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was purely longitudinal. This equation (unlike the Kohn–Sham equation of ordi-
nary TDDFT) determines in principle the whole current — not just the longitudinal
component of it. The particle density is, of course, an immediate by-product of the
longitudinal current.

So far goes the formalism. Now in order to find a concrete expression for AKS =
A + Axc we resort to linear response theory; namely we assume that we are close
enough to equilibrium that Axc can be approximated as a linear functional of the
current, with coefficients that depend on the equilibrium density. In other words we
assume that Axc has the form

Axc(r, ω) =
∫

d3r ′
↔
f xc(r, r ′, ω) · j(r ′, ω) (24.13)

where the tensor kernel
↔
f xc is a generalization of the scalar xc kernel of TDDFT. We

will discuss its structure in the next section. It must be borne in mind, however, that
after doing the linear response approximation on Axc, we lose control on the terms
proportional to A2

xc, which arise from the expansion of the kinetic energy operator
in the Kohn–Sham equation.

24.5 The xc Vector Potential for the Homogeneous
Electron Liquid

Let us first consider the tensor exchange-correlation kernel
↔
f xc(r, r ′, ω) in a homo-

geneous electron liquid of density n. Translational invariance makes
↔
f xc(r, r ′, ω) a

function of r − r ′ and we will therefore focus on its Fourier transform

↔
f xc(k, ω) =

∫

d3r
↔
f xc(r, ω)eik·r . (24.14)

Furthermore, we make use of rotational invariance to express the full kernel in terms
of just two independent scalar functions of k = |k|—the longitudinal component
fxc L(k, ω) and the transverse component fxc T(k, ω)—in the following manner:

[ ↔f xc(k, ω)]i j =
[

fxc L(k, ω)k̂i k̂ j + fxc T(k, ω)(δi j − k̂i k̂ j )
] ck2

eω2 , (24.15)

where k̂ is the unit vector in the direction of k. The factor ck2/eω2 is introduced here
as a matter of convenience, in order to make fxc L(k, ω) coincide with the xc kernel
of the ordinary density functional theory.

Given the kernels fxc L and fxc T it is easy to construct the linear response of the
homogeneous electron liquid to an external vector potential A(k, ω). As discussed
in the previous section, this is just the response of the non-interacting electron gas
(at the same density n) to the effective field A(k, ω)+ Axc(k, ω). (Once again, the
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Fig. 24.2 The imaginary and the real parts of fxc L(ω) (in units of �ωp/n) in a homogeneous
electron liquid at rs = 3. The short-dashed line (NCT) is the result of a mode-coupling calculation
(Conti et al. 1997). The long-dashed line (GK) (Gross and Kohn 1985) and the solid line (QV)
(Qian and Vignale 2002) are interpolation formulas based on exact limiting forms

“external” field A is assumed to include the Hartree potential AH(k, ω) = 4πe2 k̂/ω2

in three dimensions.)
The connection between the xc kernels and the linear response functions of the

electron liquid is the basis of the microscopic calculation of fxc L and fxc T (Conti
et al. 1997; Qian and Vignale 2002, 2003). These calculations are slightly too tech-
nical to be described here, but the following features should be noted:

(i) Both fxc L(k, ω) and fxc T(k, ω) tend to finite limits, denoted by fxc L(ω) and
fxc T(ω), when k → 0 at finite ω (this is a consequence of translational invari-
ance, as it implies that the electron liquid accelerates as a whole in response to
a uniform electric field)

(ii) The k = 0 kernels fxc L(ω) and fxc T(ω) have both real and imaginary parts.
The real parts have finite limiting values at ω = 0 and ω = ∞ and may have
either sign; the imaginary parts are negative at all frequencies and tend to zero
linearly for ω → 0 and as ω−d/2, where d is the dimension, for ω → ∞: the
coefficients of these asymptotic behaviors are known analytically.

Representative plots of the longitudinal kernel fxc L(ω) and of the transverse kernel
fxc T(ω) vs ω are shown in Figs. 24.2 and 24.3.

Let us now return to the full xc vector potential. Combining the longitudinal
and transverse components, and making use of the existence of the k → 0 limit of
fxc L(T)(k, ω) we see that up to order k2 the xc vector potential can be written as

e

c
Axc(k, ω) = [ fxc L(ω)k̂ · j − fxc T(ω)k̂ × (k̂ × j)] k

2

ω2 . (24.16)

From this we want to separate the adiabatic LDA contribution. Recall that in adiabatic
LDA the xc potential is just the xc component of the chemical potentialμxc evaluated
at the intantaneous local density n = nGS + n1ei(k·r−ωt) + c.c. Thus, in the linear



24 Time-dependent current density functional theory 465

ω/ωp

QV

ω/ωp

Re fxcT(ω)(hωp/n)(hωp/n)Im fxcT(ω)

rs=3 rs=3

QV

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 0 

NCT

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

NCT

5 54 43 32 21 1

Fig. 24.3 Same as the previous figure for the imaginary and real parts of fxc T(ω) at rs = 3

response approximation we have

vALDA
xc (k, ω) = μ′xc(nGS)n(k, ω) (24.17)

where the prime denotes a derivative with respect to n. Finally, let us use the continuity
equation n(k, ω) = k · j/ω to express n(k, ω) in terms of the current and recast
vALDA

xc as a longitudinal vector potential according to the formula

e

c
AALDA

xc (k, ω) = kvALDA
xc (k, ω)

ω
(24.18)

then we arrive at

e

c
Axc(k, ω) =e

c
AALDA

xc (k, ω)

+
{

[ fxc L(ω)− μ′xc]k̂ · j − fxc T(ω)k̂ × (k̂ × j)
} k2

ω2 . (24.19)

We are now very close to the promised hydrodynamic form. All that remains to be
done is to Fourier-transform the expression for Axc back to real space, keeping in
mind that under this transformation ik becomes the ∇ operator. It is also convenient
to focus on the force exerted by the vector potential on the volume element rather
than the vector potential itself: this is given by Fxc(k, ω) = −neExc(k, ω) =
−iωn e

c Axc(k, ω) (This is strictly speaking only the electric force. The magnetic
Lorentz force is neglected, being of higher order in both j and k). Thus, after some
straightforward algebra we arrive at the following expression for the force density:

Fxc(r, ω) = FALDA
xc (r, ω)−∇ · ↔σ xc(r, t) (24.20)

where

[ ↔σ xc(r, t)]i j = η̃
(
∂vi

∂r j
+ ∂v j

∂ri
− 2

d
∇ · vδi j

)

+ ζ̃∇ · vδi j . (24.21)
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Here η̃, ζ̃ are generalized viscosities which depend on density and frequency and
are related to the k → 0 limit of the xc kernel in the following manner:

η̃ = −n2

iω
fxc T(ω), (24.22a)

ζ̃ = −n2

iω

[

fxc L(ω)− 2(d − 1)

d
fxc T(ω)− μ′xc

]

. (24.22b)

Notice that, at variance with the original hydrodynamic viscosities of Eq. 24.6, the
generalized viscosities have both a real and an imaginary part:

η̃(ω) = η(ω)− Sxc(ω)

iω
(24.23a)

ζ̃ (ω) = ζ(ω)− Bdyn
xc (ω)

iω
, (24.23b)

where η, ζ, Sxc, and Bdyn
xc are all real quantities. Clearly η(ω) and ζ(ω) describe

the physical viscosity of the liquid. On the other hand, Sxc(ω) and Bdyn
xc (ω) describe

the elasticity of the electron liquid (Conti and Vignale 1999): they are identified as
the dynamical shear modulus and the dynamical bulk modulus, respectively (notice
that there is no static shear modulus in a liquid, hence the superscript “dyn” is
not needed for Sxc). These elastic constants are absent in hydrodynamics because
hydrodynamics deal with a collisional regime ωτ � 1 where frequent collisions
between the particles bring about local equilibrium (i.e., a spherical distribution of
the velocities) in a time that is short compared to the period of the oscillations. But
at finite frequency this condition may not be satisfied: the Fermi surface becomes
distorted (i.e., non-spherical) and there is a energy cost to pay for such a change in the
form of the velocity distribution. The elastic constants are precisely the stiffnesses
associated with this energy cost.

Based on the above discussion one could expect that Sxc and Bdyn
xc vanish in the

ω → 0 limit. This expectation is borne out for the dynamical bulk modulus, but,
surprising not for the shear modulus. The point is that in the regime we are considering
the system remains dynamical down to the lowest frequency - the inverse relaxation
time vanishing as T 2 when the temperature, T, tends to zero. Indeed, since the real
part of fxc T(ω) tends to a finite limit for ω → 0, while the imaginary part of this
quantity tends to zero in the same limit, it turns out that the shear modulus is the
dominant contribution to the xc field in the ω→ 0 limit. It is precisely this term that
makes all the difference between current-DFT and ordinary adiabatic LDA in the
calculation of the polarizability of long polymer chains. In any case the lesson to be
learned is that the ω→ 0 limit of the time-dependent current-DFT is not the same as
the adiabatic ALDA provided the limit is taken in such a way that local equilibrium
is not reached.
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24.6 The xc Vector Potential for the Inhomogeneous
Electron Liquid

The main result of the previous section, Eq. 24.20, is written so that it can imme-
diately be turned into a local density approximation for the xc electric field of an
inhomogeneous electron liquid through the replacement n→ nGS(r),where nGS(r)
is the ground-state density of the inhomogeneous liquid. Of course, the xc kernels
must also be evaluated at the local density. The correctness of this procedure is
confirmed by a careful study of the structure of the tensorial exchange-correlation
kernel in a weakly inhomogeneous electron liquid. This study was carried out by
Vignale and Kohn (VK) (1996) and is reviewed in (Vignale and Kohn 1998). In
1996 VK considered an electron liquid modulated by a charge-density wave of small
amplitude γ and small wave vector q. The wave vector k of the external field and q
were assumed to be small not only in comparison to the Fermi wave vector kF but
also in comparison to ω/vF (vF being the Fermi velocity). The second condition
ensures that the phase velocity of the density disturbance is higher than the Fermi
velocity, so that no form of static screening can occur. Under these assumptions, all

the components of the tensorial kernel
↔
f xc could be calculated, up to first order in

the amplitude of the charge density wave, and to second order in the wave vectors
k and q. The calculations were greatly facilitated by a set of sum rules which are
mathematically equivalent to the zero-force and zero-torque requirements discussed
earlier in the book. The result of the analysis was a rather complicated, but regular
expression for the various components of fxc in the limit of small k and q. Finally,
this expression could be rearranged [Vignale e al. 1997, Ullrich and Vignale 2002b]
in the elegant form

e

c
Axc(r, ω) = e

c
AALDA

xc (r, ω)− 1

iωnGS(r)
∇ · ↔σ xc(r, t), (24.24)

which is of course equivalent to Eq. 24.20.
Recently, gradient corrections to the xc kernels of the homogeneous electron gas

were worked out by Tao et al. (2007). Also, a more accurate expression for the
homogeneous fxc in the high-frequency (anti-adiabatic) limit was worked out by
Nazarov et al. (2010) in terms of the best available Monte Carlo calculations of the
static structure factor of the electron liquid. We refer the reader to the original papers
for the details of these rather technical calculations.

Because the occurrence of two spatial derivatives of the velocity field in the post-
ALDA term is dictated by general principles, Eq. 24.20, with the xc stress tensor
given by Eq. 24.21, is expected to remain valid even for large values of the velocity,
i.e., in the nonlinear regime, provided v and n are slowly varying. The argument
goes as follows. Suppose we tried to extend Eq. 24.20 into the nonlinear regime by
including terms of order v2.Because the stress tensor must depend on first derivatives
of v, such corrections would have to go as (∇v)2. But then the force density, given
by the derivative of the stress tensor, would have to involve at least three derivatives.
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Thus, for sufficiently small spatial variation of the density and velocity fields, the
nonlinear terms can be neglected.

Since the ALDA is an intrinsically nonlinear approximation, Vignale, Ullrich, and
Conti (1997) proposed that Eq. 24.20, written in the time domain, could provide an
appropriate description of both linear and nonlinear response properties. A nonlinear,
retarded expression for vxc,1 was also proposed by Dobson et al. (1997). The two
approximations coincide in “one-dimensional systems” (i.e., when one has a unidi-
rectional current density field that depends only on one coordinate), but differ in the
general case.

24.7 Irreversibility in TDCDFT

One of the attractive features of TDCDFT is that it allows us to study the time
evolution of isolated many-body systems, which evolve from non equilibrium initial
conditions under the action of a time-independent Hamiltonian. The initial state might
be, for example, the ground-state of the many-body Hamiltonian in the presence of
an external potential vext. At the initial time t = 0 the external potential is turned
off and we look at the subsequent evolution of the system. Strictly speaking, a finite
isolated system will never fully relax to its ground-state, for it has no way to get
rid of the extra energy. However, if the system is sufficiently large, the extra energy
will be distributed over an enormous number of microscopic degrees of freedom,
while individual collective variables, e.g. the particle density, relax to their ground-
state value. This physical picture implies that the density of the Kohn–Sham reference
system evolves irreversibly toward the ground-state value, whereas the wave function
of the Kohn–Sham system undergoes a unitary time-evolution, which shows no trace
of irreversibility. Evidently, this nearly paradoxical behavior can only occur if the
Kohn–Sham Hamiltonian includes a vector potential or some other effective potential
that produces the analogue of a classical viscous force: otherwise, the density will
keep oscillating back and forth forever around the ground-state solution. To see that
viscosity indeed drives the density to its equilibrium value, consider the quantity

E(t) = 〈ΦKS(t)|ĤKS(t)|ΦKS(t)〉 −
∫

d3rvHxc(r, t)n(r, t)+ EHxc[n(t)]. (24.25)

The first term in this expression is the expectation value of the Kohn–Sham Hamil-
tonian, HKS, in the Kohn–Sham wave function, |ΦKS〉. From this we subtract the part
of the energy that pertains to the scalar xc and Hartree potentials to obtain the kinetic
energy functional, and finally we add the ground-state Hartree and xc energy func-
tional. The final expression is the energy the system would have at time t, were it to
remain in the instantaneous ground-state. Now, making use of δ ĤKS/δAxc(r) = ĵ(r)
it is straightforward to show that

dE

dt
=

∫

d3r j(r, t) · dAxc(r, t)

dt
. (24.26)
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Equation (24.26) immediately allows us to identify dE/dt as the work done on the
system by the self-consistent xc vector potential. Substituting our expression (24.24)
for Axc in Eq. 24.26 we get

dE

dt
= −2

∫

d3rηTr

{

ω − 1

3
Tr{ω}

}2

−
∫

d3rζ(Tr{ω})2, (24.27)

where, ωi j = (∇iv j + ∇ jvi )/2. The negativity of dE(t)/dt follows from the fact
that the viscosity constants η and ζ are positive. Therefore E(t) is a monotoni-
cally decreasing function of time. Furthermore, it is possible to show that E(t) is
bounded from below by the ground-state energy of the corresponding system of
bosons (D’Agosta and Vignale 2006). Therefore dE(t)/dt must vanish in the limit
t →∞ and this can only happen if the velocity field, and hence the current density
vanishes everywhere. Finally, the vanishing of the current density implies, via the
continuity equation, the constancy of the density.

We conclude that the solution of the Kohn–Sham equation of TDCDFT has a time-
independent density in the limit of t → ∞. Such a time-independent density can
arise only if the Kohn–Sham system settles into one of its own eigenstates. While
we cannot rule out theoretically the possibility that this could still be an excited
eigenstate, it is natural to expect that the Kohn–Sham equation will settle in its own
ground-state, and thus lead to the ground-state density.



Chapter 25
Time-Dependent Deformation
Functional Theory

Ilya V. Tokatly

25.1 Introduction

Interpretation of most experimental results in condensed matter physics does not
require the knowledge of all microscopic details of complicated many-body dynamics.
Normally it is sufficient to know only a few reduced collective variables, such as the
density n(r, t) and/or the current j(r, t). Indeed, typically the behavior of a system is
controlled and probed by applying external electro-magnetic fields, while the density
and the current are the observables conjugated to the scalar vext(r, t) and the vector
A(r, t)potentials, respectively. TDDFT is perfectly adjusted to this observation as the
RG theorem (see Chap. 4) implies the possibility to exactly trace out irrelevant micro-
scopic degrees of freedom, and to formulate a closed theory that operates with only
one observable of interest—the density n(r, t). Similarly TDCDFT (see Chap. 24)
is a reduced theory which describes the behavior of the density n and the current j ,
formally ignoring the rest of microscopic dynamics. Obviously TDCDFT provides
us with a more general theoretical setup as it gives a direct access to the current
and allows to describe systems driven by transverse external fields. In the previous
chapter we have seen that in the linear response regime switching to TDCDFT also
solves the problem of ultranonlocality of nonadiabatic TDDFT. However beyond
the linear regime a more radical modification of the theory is required to cure the
ultranonlocality problem. The physical reason for the ultranonlocality is a convection
in the nonequilibrium electron fluid—the motion of infinitesimal volume elements
which in general retain memory on their trajectories. The theory, which allows us to
exactly treat the convective nonlocality is discussed in this chapter.
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25.2 Hydrodynamic Formulation of TDCDFT

Let us consider a system of N identical particles in the presence of time dependent
external scalar vext(r, t) and vector A(r, t) potentials. The corresponding many-body
wave function Ψ (r1, . . . , r N , t) is a solution to the time-dependent Schrödinger
equation

i∂tΨ (r1, . . . , r N , t) = ĤΨ (r1, . . . , r N , t) (25.1)

with the following Hamiltonian

H =
N

∑

j=1

[
1

2m
[i∇r j + A(r j , t)]2 + vext(r j , t)

]

+ 1

2

∑

j �=k

vee(|r j − rk |) (25.2)

where vee(|r − r ′|) is the interaction potential. For a given initial condition,

Ψ (r1, . . . , r N , 0) = Ψ0(r1, . . . , r N ), (25.3)

the dynamics of the system is completely specified by Eq. 25.1.
Usually the experimentally measurable response of the system to external probes

can be described in terms of reduced “collective” variables: the density of particles
n(r, t), and the density of current j(r, t)

n(r, t) = ρ(r, r, t), (25.4a)

j(r, t) = i

2m
lim

r ′→r
(∇r −∇r ′)ρ(r, r ′, t)− n

m
A(r, t), (25.4b)

where ρ(r, r ′, t) is the one particle reduced density matrix
The main idea of TDCDFT is to reduce, at the formally exact level, the problem

of calculation of the density and the current to solving a closed system of equations
which involve only n(r, t) and j(r, t). Below we describe a few equivalent ways to
formulate such a closed theory.

25.2.1 Local Conservation Laws and TDCDFT Hydrodynamics
in Eulerian Formulation

Using the microscopic definitions of Eqs. 25.4a and b, and the Schrödinger equation
(25.1) one can derive the following hydrodynamic equations of motion for the density
and the current

∂t n + ∂rμ jμ = 0, (25.5a)

m∂t jμ − [ j × B]μ − nEμ + ∂xνΠμν = 0 (25.5b)
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where E(r, t) and B(r, t) are electric and magnetic fields generated by the external
time-dependent scalar and vector potentials

E(r, t) = −∂t A(r, t)−∇vext(r, t), (25.6a)

B(r, t) = ∇ × A(r, t). (25.6b)

Equation 25.5a is the usual continuity equation, i.e., a local conservation law of the
number of particles. The equation of motion for the current, Eq. 25.5b, corresponds
to a local momentum conservation law (or a local force balance equation): the time
derivative of the current equals to a sum of the external and internal forces. Impor-
tantly, the local internal force (the last term in Eq. 25.5b) has a form of a divergence of
a second rank tensor, which implies a vanishing net internal force, in agreement with
Newton’s third law. The momentum flow tensor Πμν entering Eq. 25.5b contains
a kinetic and an interaction contributions (Puff and Gillis 1968; Tokatly 2005a),
Πμν = Πkin

μν + V ee
μν, which are expressed in terms of the many-body wave function

as follows

Πkin
μν (r) =

1

2m

[

lim
r ′→r

(P̂∗μ P̂ ′ν + P̂∗ν P̂ ′μ)ρ(r, r ′)− δμν
2
∇2n(r)

]

, (25.7a)

V ee
μν(r) = −

1

2

∫

d3r ′ r
′μr ′ν
r ′

∂vext(r ′)
∂r ′

1∫

0

dλG2(r + λr ′, r − (1− λ)r ′) (25.7b)

where P̂μ = −i∂rμ− Aμ(r, t) is the kinematic momentum operator, and G2(r, r ′, t)
is a two particle reduced density matrix

G2(r, r ′, t) = N (N−1)
∫

d3r3 · · ·
∫

d3rNΨ
∗(r, r ′, r3, . . . , r N , t)Ψ (r, r ′, r3, . . . , r N , t).

(25.8)
We note that the kinetic part Πkin

μν of momentum flow tensor is closely related to
the momentum-stress tensor Tμν introduced in Chap. 9, Eq. 9.10a, while the object
defined by Eq. 9.10b is a divergence of the interaction part V ee

μν of the momentum
flow tensor.

The existence of a closed theory for calculation of the density and the current
follows from the mapping theorem of TDCDFT (Ghosh and Dhara 1988; Vignale
2004) (see also Sect. 24.4), which states that the external potentials are unique
(modulo a gauge transformation) functionals of the initial state and the current
density, vext = vext[Ψ0, j ] and A = A[Ψ0, j ]. This implies that the many-body
wave function Ψ (t) and, therefore, any physical observable is also a functional of
Ψ0 and j . In particular, inserting the functionals A[Ψ0, j ] and Ψ = Ψ [Ψ0, j ] into
the definitions of Eqs. 25.7a and b we get the exact momentum flow tensor as a
unique functional of the initial wave function and the current Πμν = Πμν[Ψ0, j ].
This functional is universal in a sense that it does not explicitly contain the external
potentials, but is uniquely recovered from a given current and an initial state (in the
following for the sake of brevity we omit Ψ0 in the arguments of the functionals).

http://dx.doi.org/10.1007/978-3-642-23518-4_9
http://dx.doi.org/10.1007/978-3-642-23518-4_9
http://dx.doi.org/10.1007/978-3-642-23518-4_9
http://dx.doi.org/10.1007/978-3-642-23518-4_24


474 I. V. Tokatly

Substituting the functionalΠμν[ j ] into Eq. 25.5b we obtain a closed system of equa-
tions for n(r, t) and j(r, t). Hence from the system of Eqs. 25.5a, b we can in prin-
ciple determine the dynamics of the density of particles and the density of current
avoiding, at least formally, the explicit solution of the full many-body problem.
The closed system (25.5a, b) can be viewed as an exact quantum hydrodynamics.
TDCDFT in this form is analogous to the formulation of the static DFT in a form of
the direct Hohenberg–Kohn variational principle (Hohenberg and Kohn 1964).

A connection of TDCDFT hydrodynamics to the standard mechanics of fluids
(Landau and Lifshitz 1987) can be made more obvious if we switch the basic variable
from the current j to the velocity field v = j/n. It is also useful to extract from the
full momentum flow tensorΠμν its exactly known part—the flow of momentum due
to convective motion of the fluid, mnvμvν,

Πμν = mnvμvν + Pμν (25.9)

where Pμν is the stress tensor which is responsible for a local internal force related
to a relative motion of particles “inside” n small moving fluid element (see Sect. 25.3
for a more detailed discussion). Using the representation (25.9) and expressing all
currents in terms of the velocity field we transform equations of motion (25.5a, b) to
the standard “Navier–Stokes” form

(∂t + v · ∇)n + n∂xμvμ = 0, (25.10a)

m(∂t + v · ∇)vμ − [v × B]μ − Eμ + 1

n
∂xν Pμν[v] = 0. (25.10b)

Since the map (n, j) �→ (n, v) is one-to-one we are allowed to replace the functional
dependence of the stress tensor on the current by the functional dependence on the
velocity field, Pμν[ j ] �→ Pμν[v].

25.2.2 Kohn–Sham Construction in TDCDFT

Most practical applications of any DFT rely on the KS construction (Kohn and Sham
1965). In the time-dependent setting it can be introduced as follows (Tokatly and
Pankratov 2003; Tokatly 2005b). Let us consider a fictitious system of N noninter-
acting particles in the presence of an electromagnetic field generated by the external
4-potential (vext, A), and by some selfconsistent vector Axc and scalar
vHxc = vH + vxc potentials, where vH is the Hartree potential. The dynamics of
this system is described by N one-particle Schrödinger equations for KS orbitals
φ j (r, t), j = 1 . . . N

i∂tφ j = 1

2m
(i∂r + A+ Axc)2φ j + (vext + vHxc)φ j . (25.11)

Obviously, the density nKS and the velocity vKS of the KS system satisfy the conti-
nuity equation (25.10a) and the force balance equation of the form of Eq. 25.10b,
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but with the stress tensor Pμν, and the external Lorentz force being replaced, respec-
tively, by the kinetic stress tensor T KS

μν of the noninteracting KS particles, and by the
Lorentz force corresponding to the total effective 4-potential. From the requirement
that the KS density and current reproduce the density and the current in the real
interacting system we get the following equation connecting the xc potential to the
stress tensor functional

∂t Axc
μ − [v × (∇ × Axc)]μ + ∂rμvHxc = −1

n
∂rν Pxc

μν[v], (25.12)

where Pxc
μν[v] = Pμν[v] − T KS

μν [v] is the difference of the stress tensors in the inter-
acting and noninteracting KS systems. Equation 25.12 is the most general definition
of the xc potentials. For a given stress tensor functional (the right hand side) it defines
the xc 4-potential (vxc, Axc) up to a gauge transformation.

It is important to note that the KS construction is only an auxiliary device for
solving the general collective variable theory in a form of closed equations of
motion, Eqs. 25.5a, b (or, equivalently, Eqs. 25.10a, b for the basic variables: the
current/velocity and the density. This is similar to the static DFT where the KS
construction is merely a useful mathematical trick for transforming the fundamental
Hohenberg–Kohn variational principle to a system of differential equations for one-
particle orbitals.

25.2.3 TDCDFT Hydrodynamics in the Lagrangian Form

In general TDCDFT is a closed formalism to describe a convective motion of a
many-body system driven by external fields. Usually the convective motion is char-
acterized by the density of particles n(r, t) and the density of current j(r, t) or
a velocity field v(r, t). An alternative way to completely characterize the convec-
tive motion is commonly referred to as a Lagrangian description. Let us consider
the system as a collection of infinitesimal fluid elements (the so-called “materials”).
Every element can be uniquely labeled by a continuous variable ξ—its position at the
initial time t = 0. The Lagrangian description can be viewed as tracking the motion
of those infinitesimal elements of the fluid. In other words, the convective motion
is characterized by a (continuous) set of trajectories r(ξ , t), where the argument
ξ indicates the starting point of the trajectory (the unique label of the element). One
can show that the map v(r, t) �→ r(ξ , t) is unique and invertible.

For a given velocity v(r, t) the Lagrangian trajectory r(ξ , t) is solution to the
following Cauchy problem

∂t r(ξ , t) = v(r(ξ , t), t), r(ξ , 0) = ξ . (25.13)

Hence from the velocity field we uniquely construct a set of Lagrangian trajectories.
Every trajectory r(ξ , t) is specified by its initial point ξ ,which means that, given the
initial position ξ of a fluid element, we can always find its coordinate r = r(ξ , t) at
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any instant t, and, tracing the trajectory in the reverse order, from a given position
r at time t one uniquely recovers the initial point of the trajectory, ξ = ξ(r, t). In a
more formal language, the map ξ �→ r : r = r(ξ , t) is unique and invertible. This
fact allows us to recover the Eulerian variables, i.e., the velocity field and the density,
from given Lagrangian trajectories

v(r, t) =
[
∂ r(ξ , t)

∂t

]

ξ=ξ(r,t)
, n(r, t) =

[

n0(ξ)
√

g(ξ , t)

]

ξ=ξ(r,t)

, (25.14)

where ξ(r, t) is the inverse of r(ξ , t), n0(r) is the initial density, and
√

g(ξ , t) = J (ξ , t) = det(∂rμ/∂ξν) is the Jacobian of the transformation of coor-
dinates r → ξ . The first equality in (25.14) is a consequence of Eq. 25.13, while the
equation for n(r, t) can be easily checked by a direct substitution into the continuity
equation (25.10a). Hence the function r(ξ , t) indeed completely characterizes the
convective motion of a system.

The basic equation in the Lagrangian description of collective dynamics is the
equation of motion for a fluid element. This equation can be derived from the equa-
tion of motion for Eulerian velocity v(r, t), Eq. 25.10b, by making a transformation
of coordinates r → ξ , i.e., by considering the initial points ξ of Lagrangian trajec-
tories as independent spatial coordinates. Under this transformation the convective
derivative, ∂t+v ·∇ becomes simply ∂t so that the first term in Eq. 25.10b transforms
to m r̈(ξ , t), while the divergence of the stress tensor in the last term in Eq. 25.10b
becomes a covariant divergence in the space with metrics gμν(ξ , t) induced by the
transformation from r- to ξ -coordinates. Hence after the transformation of coordi-
nates we arrive at the following equation of motion for a fluid element

mr̈μ − Eμ(r, t)− [ṙ × B(r, t)]μ +
√

g

n0

∂ξα

∂rμ
D̂ν P̃να [r(ξ , t)] = 0, (25.15)

where P̃μν(ξ , t) is the original stress tensor Pαβ(r, t) transformed to the new coor-
dinates according to the standard rules (Dubrovin et al. 1984)

P̃μν(ξ , t) = ∂rα

∂ξμ

∂rβ

∂ξν
Pαβ(r(ξ , t), t). (25.16)

The D̂ operator in Eq. 25.15 stands for the covariant divergence

D̂ν P̃νμ =
1√
g
∂ξν
√

g P̃νμ −
1

2
P̃αβ∂ξμgαβ, (25.17)

and the metric tensor in the ξ -space of “initial positions” is defined as follows

gμν(ξ , t) = ∂rα

∂ξμ

∂rα

∂ξμ
; [gμν]−1 = gμν = ∂ξμ

∂rα
∂ξν

∂rα
. (25.18)
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The equation of motion (25.15) has to be solved with the initial conditions r(ξ , 0) = ξ

and ṙ(ξ , 0) = v0(ξ), where v0(r) is the initial velocity distribution calculated from
the initial many-body wave function of Eq. 25.3.

The first three terms in Eq. 25.15 correspond to a classical Newton equation for
a particle moving in the external electromagnetic field, while the last, the stress
term, takes care of all complicated quantum and many-body effects. Because of the
uniqueness and invertibility of the map v(r, t) �→ r(ξ , t) the transformed stress
tensor can be considered as a unique functional of the Lagrangian trajectories,
P̃μν = P̃μν[r(ξ , t)]. Hence Eq. 25.15 is a closed equation of motion that, at the
formally exact level, completely determines the collective dynamics of the system.
This is the basic equation of TDCDFT in the Lagrangian form.

On first sight the representation of TDCDFT hydrodynamics in the Lagrangian
form of Eq. 25.15 does not bring anything fundamentally new. This is indeed true if
one follows a route outlined in this section: starting from the traditional formulation
of the TDCDFT mapping theorem and via the Eulerian equation of motion for the
density and the current. However, in the next section we will see that using the ideas
of the Lagrangian description one can reformulate the whole theory in a constructive
way that also ends up with the equation of motion (25.15), but provides us with a
clear procedure for calculating the basic stress tensor functional. As an additional
benefit we get a complete solution of the ultranonlocality problem.

25.3 Time-Dependent Deformation Functional Theory

25.3.1 Many-Body Theory in a Co-moving Reference Frame

TDCDFT is a reduced theory aimed at describing only the convective motion of
the system without a detailed knowledge of the full dynamics of all microscopic
degrees of freedom. Therefore it is natural to separate the “convective” degrees of
freedom at the very beginning, i.e. at the level of the full many-body theory. The
Lagrangian description is perfectly suited for this purpose. Since in the Lagrangian
formalism the convective dynamics is characterized by the motion of fluid elements,
it can be easily separated from the microscopic dynamics of quantum particles by
transforming the many-body theory to a local noninertial reference frame moving
along the Lagrangian trajectories.

At the formal level one proceeds as follows. Consider a reference frame defined
by some (unspecified for the moment) velocity field v(r, t). By solving the Cauchy
problem of Eq. 25.13 with the above velocity in the right hand side we get the local
trajectories r(ξ , t) of the frame. The transformation of the theory to the new refer-
ence frame corresponds to a transformation of coordinates r j → ξ j , with r(ξ , t)
being the transformation function, i.e. r j = r(ξ j , t), in the many-body Schrödinger
equation (25.1). We emphasize that the same function r(ξ , t) is used to transform
the coordinates of each particle in the many-body system, which means that after the
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transformation each particle is seen from a local frame moving along the trajectory
r(ξ , t). It is convenient to define the many-body wave function Ψ̃ (ξ1, . . . , ξ N , t) in
the new frame as follows (Tokatly 2007)

Ψ̃ (ξ1, . . . , ξ N , t) =
N

∏

j=1

g
1
4 (ξ j , t)e−iScl(ξ j ,t)Ψ (r(ξ1, t), . . . , r(ξ N , t), t), (25.19)

where Scl(ξ , t) is the action of a particle moving along the trajectory r(ξ , t)

Scl(ξ , t) =
t∫

0

dt ′
[m

2
[ṙ(t ′)]2 + ṙ(t ′) · A(r(t ′), t ′)− vext(r(t ′), t ′)

]

. (25.20)

Equation 25.19 is a generalization of the transformation to a homogeneously acceler-
ated frame, which is used, for example, in the proofs of a harmonic potential theorem
(Dobson 1994a; Vignale 1995a). The exponential prefactor accounts for the phase

acquired due to the motion of the frame, while the factor
∏N

j=1 g
1
4 (ξ j , t) ensures

the standard normalization of the wave function 〈Ψ̃ |Ψ̃ 〉 = 1 under a non-volume-
preserving transformation of coordinates.

Performing a transformation of coordinates, r j → ξ j , in Eq. 25.1, and using
the definition (25.19) we obtain the many-body Schrödinger equation in the frame
moving with some velocity v(r, t)

i∂t Ψ̃ (ξ1, . . . , ξ N , t) = H̃ [gi j ,A]Ψ̃ (ξ1, . . . , ξ N , t). (25.21)

The Hamiltonian in the new frame takes the form

H̃ [gi j ,A] =
N

∑

j=1

g
− 1

4
j K̂ j,μ

√
g jg

μν
j

2m
K̂ j,νg

− 1
4

j +
1

2

∑

k �= j

vee(lξ kξ j ) (25.22)

where K̂ j,μ = −i∂ξμj
− Aμ(ξ j , t), gμνj = gμν(ξ j , t), and lξ kξ j is the distance

between jth and kth particles in the moving frame (the length of geodesic connecting
points ξ j and ξ k in the space with metric gμν (Dubrovin et al. 1984). An effective
vector potential A(ξ , t) in the Hamiltonian is defined as

Aμ = ∂xν

∂ξμ
ẋν + ∂xν

∂ξμ
Aν(r, t)− ∂ξμ Scl(ξ , t). (25.23)

Physically A(ξ , t) describes a combined action of the external and inertial forces
in a local noninertial frame. Since at t = 0 the moving frame coincides with the
laboratory one (this follows from the condition r(ξ , 0) = ξ ) the initial condition for
the transformed Schrödinger equation (25.21) is unchanged:

Ψ̃ (ξ1, . . . , ξ N , 0) = Ψ0(ξ1, . . . , ξ N ). (25.24)
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Equations 25.15–25.24 completely determine the dynamics of the quantum
N-particle system in an arbitrary local noninertial frame.

Since our aim is to reformulate the theory in a particular frame moving with a
physical flow (this frame is called co-moving, or Lagrangian) we need to impose
an additional local condition to specify the required frame. By definition, in the
co-moving frame the current density is zero everywhere and at all times, while the
density of particles stays stationary and equal to the initial density n0(ξ). Hence it
is natural to fix the frame by the requirement of zero transformed current density
j̃(ξ , t) = 0. Explicitly this condition reads

n0(ξ)A(ξ , t) = i

2
lim
ξ ′→ξ

(∇ξ −∇ξ ′)ρ̃(ξ , ξ
′, t) (25.25)

where ρ̃(ξ , ξ ′, t) is the one particle reduced density matrix calculated from the trans-
formed wave function

ρ(ξ , ξ ′, t) = N
∫

d3ξ2 · · ·
∫

d3ξNΨ
∗(ξ , ξ2, . . . , ξ N , t)Ψ (ξ ′, ξ2, . . . , ξ N , t).

(25.26)
The frame-fixing condition (25.25) simply states that in the co-moving frame a
“paramagnetic” current [the right hand side of (25.25)] is exactly cancelled by the
“diamagnetic” contribution [the left hand side of (25.25)].

The Schrödinger equation (25.21), the definition of the effective vector potential
(25.23), and the zero current condition (25.25) constitute a closed system of equations
that determine the dynamics of the many-body system in the co-moving reference
frame. In principle one can eliminate the effective vector potential by substituting
A(ξ , t) from Eq. 25.25 into Eqs. 25.23 and 25.21. The result is a system of two first
order (in time) differential equations for two functions: (i) the trajectory r(ξ , t)which
describes the convective motion on the system, and (ii) the transformed wave function
Ψ̃ (ξ1, . . . , ξ N , t) describing the rest of the microscopic degrees of freedom in the
frame moving with the convective flow. The equations have to be solved with the
initial conditions Eq. 25.24 for Ψ̃ (t) and r(ξ , 0) = ξ for the Lagrangian trajectory.

25.3.2 Emergence of TDDefFT: A Universal
Many-Body Problem

Let us discuss possible procedures for solving the system of Eqs. 25.21, 25.23 and
25.25, but first we rewrite it in a more physical and clear form.

Because Eq. 25.23 contains the classical action Scl(ξ , t) of Eq. 25.20, it is nonlocal
in time. This nonlocality can be removed by differentiating Eq. 25.23 with respect
to t. The time derivative of Eq. 25.23 takes the form

mr̈μ = Eμ(r, t)+ [ṙ × B(r, t)]μ + ∂ξ
ν

∂rμ
∂tAν, (25.27)
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which is exactly the classical Newtonian equation for a particle moving in the external
electromagnetic field and, in addition, in the “electric” field generated by the effective
vector potential A.

Comparing Eq. 25.27 with Eq. 25.15 we observe that these two equations become
identical if the time derivative of the effective vector potential is equal to the covariant
divergence of the stress tensor. To see that this is indeed the case we consider the
local force balance equation that follows from the many-body Schrödinger equation
(25.21) in the local noninertial frame. Apparently the force balance equation should
be of the general form of Eq. 25.5b, but with the usual divergence of the momentum
flow tensor replaced by a covariant divergence of the stress tensor in the ξ -space.
Namely,

∂t j̃μ − j̃ν(∂ξνAμ − ∂ξμAν)+ ñ∂tAμ +√gDν P̃νμ = 0. (25.28)

where the stress tensor in the space with metric gμν can be determined from the
following universal formula (Tokatly 2005a, 2007; Rogers and Rappe 2002)

P̃μν(ξ , t) = 2√
g

〈

Ψ̃

∣
∣
∣
∣

δ H̃ [gαβ,A]
δgμν(ξ , t)

∣
∣
∣
∣
Ψ̃

〉

≡ 〈Ψ̃ | ˆ̃Pμν[gαβ,A]|Ψ̃ 〉 (25.29)

with the Hamiltonian defined by Eq. 25.22. An explicit form of the stress tensor

operator ˆ̃Pμν entering Eq. 25.29 can be found, for example, in (Tokatly 2005a).

The important point is that ˆ̃Pμν[gαβ,A] is an explicitly known and local in time
functional of the metric tensor and the effective vector potential. Since in the
co-moving frame the transformed current density j̃ is zero, only the last two terms
survive in Eq. 25.28. Therefore in our frame of interest the force balance equation
reduces to the following identity

∂tAμ = −
√

g

n0
Dν P̃νμ. (25.30)

Inserting this identity into Eq. 25.27 we exactly recover the basic equation of hydro-
dynamics in the Lagrangian description, Eq. 25.15. The important progress is that
the stress tensor in this equation is now defined entirely in terms of the variables
entering the many-body problem in the co-moving frame. Hence we have trans-
formed Eq. 25.23 to a clear physical form by reducing it to the equation of motion
for the fluid elements.

Using Eqs. 25.27 and 25.30 we can write down the following final system of
equations describing the dynamics of the full many-body system

i∂t Ψ̃ (ξ1, . . . , ξ N , t) = H̃ [gμν,A]Ψ̃ (ξ1, . . . , ξ N , t) (25.31a)

A(ξ , t) = i

2n0(ξ)
lim
ξ ′→ξ

(∇ξ −∇ξ ′)ρ̃(ξ , ξ
′, t) (25.31b)

mr̈μ = Eμ(r, t)+[ṙ× B(r, t)]μ−
√

g

n0

∂ξα

∂rμ
Dν P̃να , (25.31c)
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where the Hamiltonian H̃ [gμν,A], the reduced density matrix ρ̃[Ψ̃ ](ξ , ξ ′, t), and the
stress tensor P̃μν[gαβ,A, Ψ̃ ] are defined after Eqs. 25.22, 25.26, and 25.29, respec-
tively. The metric tensor gμν(ξ , t) entering Eqs. 25.31a and 25.31c is related to the
Lagrangian trajectory via Eq. 25.18.

The system of Eqs. 25.31a, b, c is equivalent to the original many-body
Schrö-dinger equation (25.1). Everything we did to derive Eqs. (25.31a, b, c) from
Eq. 25.1 was an identical change of variables aimed at separating the “convective”
and the “relative” motions of quantum particles. However after this identical trans-
formation the structure of the many-body theory becomes quite remarkable. Now
the physical external fields enter only the equation of motion for the fluid elements,
Eq. 25.31c, while the many-body dynamics, which is governed by Eqs. 25.31a and b,
depends only on the fundamental geometric characteristic of the co-moving frame:
the metric tensor gμν(ξ , t). Equations 25.31a and b describe universal dynamics of N
particles driven by a given time-dependent metric and constrained by the requirement
of zero current density. By solving the universal many-body problem of Eqs. 25.31a
and b for a given metric of the form 25.18 we get the wave function Ψ̃ and the effective
vector potential A as universal functionals of the metric tensor: Ψ̃ = Ψ̃ [gμν] and
A = A[gμν]. Substitution of these functionals into Eq. 25.29 gives the universal
stress tensor functional P̃μν[gαβ ]. Thus Eq. 25.31c becomes a closed equation of
motion for fluid elements, which determines the Lagrangian trajectories of the
system. As all basic quantities are functionals of the metric tensor, which is exactly
the Green’s deformation tensor of the classical elasticity theory (Masson 1964), we
call this approach the time-dependent deformation functional theory (TDDefFT).

The solution of Eq. 25.31c with a known functional P̃μν[gαβ ](ξ , t) gives the
description of the convective motion in terms of the Lagrangian picture. Alterna-
tively we can transform P̃μν[gαβ ](ξ , t) to the laboratory frame to recover the tensor
Pμν[v](r, t),

Pμν[v](r, t) = ∂ξα

∂rμ
∂ξβ

∂rν
P̃αβ [gαβ(ξ(r, t), t)](ξ(r, t), t), (25.32)

which can be used either in the hydrodynamic formulation of Eqs. 25.5a, b or to
calculate the xc potentials for the KS formulation of TDCDFT, Eqs. 25.11, 25.12.
Finally, since in the laboratory frame the function ξ(r, t) (the initial point of the
trajectory that arrives to r at the time t) can be found from the equation

[∂t + v(r, t) · ∇]ξ(r, t) = 0, ξ(r, 0) = r (25.33)

the stress tensor determined by Eq. 25.32 is indeed a universal functional of the
Eulerian velocity v(r, t).

Therefore we recovered the full formal structure of the traditional TDCDFT, but
at the fundamentally new level of understanding. The main point is that in TDDefFT
formalism a closed theory of convective motion appears from a regular and conceptu-
ally clean procedure: it is simply a natural and regular step in solving the many-body
problem in the co-moving frame. Now we clearly understand where the universal
functionals entering the theory come from and why they are universal.
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25.4 Approximate Functionals from TDDefFT

The formalism of TDDefFT provides us with the following general recipe to
construct xc potentials entering the time-dependent KS equations (25.11). The exact
xc 4-potential (vxc, Axc) is determined by Eq. 25.12, where the xc stress tensor
Pxc
μν[v](r, t) in the laboratory frame is related to the xc stress tensor P̃xc

αβ [gμν](ξ , t)
in the Lagrangian frame as follows

Pxc
μν[v](r, t) = ∂ξα

∂rμ
∂ξβ

∂rν
P̃xc
αβ [gαβ(ξ(r, t), t)](ξ(r, t), t). (25.34)

Finally, the stress tensor P̃xc
αβ [gμν](ξ , t) is calculated from the solution of the universal

many-body problem (25.31a, b) for the interacting and noninteracting systems:

P̃xc
μν[gμν](ξ , t) = 2√

g

〈

Ψ̃

∣
∣
∣
∣

δ H̃ [gαβ,A]
δgμν(ξ , t)

∣
∣
∣
∣
Ψ̃

〉

− 2√
g

〈

Φ̃

∣
∣
∣
∣

δT̃ [gαβ,AKS]
δgμν(ξ , t)

∣
∣
∣
∣
Φ̃

〉

(25.35)
Here H̃ [gαβ,A] is defined by Eq. 25.22, T̃ [gαβ,AKS] is the Hamiltonian for nonin-
teracting system in the co-moving frame (the kinetic energy operator given by
the first term in (25.22)), A and AKS are the effective vector potentials entering
the interacting and the noninteracting universal problems, and Ψ̃ (t) and Φ̃(t) are the
solutions of the interacting and the noninteracting universal many-body problems,
respectively.

Clearly, the exact solution of the universal problem (25.31a, b) is at least as difficult
as the full solution of the original many-body Schrödinger equation. However, various
approximate solutions to Eqs. 25.31a and b can be used to construct approximate
universal xc functionals that satisfy a number of exact constraints and become exact
in certain limiting cases. The simplest and historically the first approximation is
a time-dependent local deformation approximation (TDLDefA), which has been
introduced in (Tokatly 2005b) and further analyzed in (Ullrich and Tokatly 2006a).
TDLDefA is a consistent time-dependent analog of LDA in the ground state DFT.
Formally this approximation is obtained by inserting into Eq. 25.35 the solutions of
the universal problem for a homogeneous electron gas driven by a homogeneous time-
dependent metric tensor gμν(t). Since a homogeneous deformation does not induce
any current, the effective vector potential vanishes, A = 0, and the wave function
becomes a local, but in general retarded functional of gμν(t). Therefore in TDLDefA
the stress tensor in the definition of the xc potential (25.12) is also a local functional
of the deformation tensor. Importantly, this approximation, being absolutely local
in terms of gμν(t), is free of the ultranonlocality problem . The reason is that in
TDLDefA the convective nonlocality is treated exactly via the dependence on the
Lagrangian coordinate ξ(r, t), which is obtained from the exact equation (25.33).

In the limit of small deformations the wave functions of the homogeneously
deformed uniform electron gas can be calculated using the linear response theory.
The corresponding linearized TDLDefA (Tokatly 2005b) exactly recovers the VK
approximation introduced in the previous chapter (see also [Vignale and Kohn 1996,
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Vignale et al. 1997, Vignale and Kohn 1998]). A connection to the VK approximation
can be easily understood from the exact Eq. 25.33. By solving Eq. 25.33 to the linear
order in velocity gradients we find

ξ(r, t) ≈ r −
∫ t

0
dt ′v(r, t ′), (25.36a)

gμν(r, t) ≈ δμν +
∫ t

0
dt ′[∂rμvν(r, t ′)+ ∂rν vμ(r, t ′)]. (25.36b)

Hence in this limit the Lagrangian coordinates and the deformation tensor become
local functionals of the velocity, which explains the ability of TDCDFT to cure the
ultranonlocality in the linear regime. However, in general, a consistent local descrip-
tion is only possible in terms of TDLDefA, that can be viewed as a nonlinear exten-
sion of VK approximation. At this point it is worth noting that the regime of small
deformations does not necessarily assume that the velocity/current itself is small.
The linearized form of the deformation tensor, Eq. 25.36b, and the corresponding
linearization of the stress tensor only require a smallness of the velocity gradients.
A bright example is provided by the harmonic potential theorem-type of motion
when the velocity v(t) is constant in space, and thus the system remains strictly
undeformed gμν(ξ , t) = δμν, while the absolute value of v(t) can be arbitrary large.
Therefore, there are situations when the linearized TDLDefA is valid well beyond
the limits of the formal linear response theory. Such a “semilinear” extension of VK
approximation has been proposed on phenomenological grounds by Vignale, Ulrich
and Conti (VUC) (Vignale et al. 1997). Later (Ullrich and Tokatly 2006) the xc func-
tional constructed by VUC has been formally derived as a small deformation limit
of TDLDefA.

Unfortunately, beyond the regime of small deformations a full solution of the
time-dependent universal problem, even for a homogeneous system, becomes very
difficult. Therefore some other simplifying assumptions are required. One of such
assumptions, which is valid in the case of very fast variations of the deformation
tensor, leads to a so called elastic approximation in TDDefFT. In the short-time limit
we can set A = AKS = 0, Ψ̃ (t) = ΨGS, and Φ̃(t) = ΦGS in Eq. 25.35, where ΨGS
andΦGS are the ground state wave functions for the interacting and the noninteracting
systems (we assume that the evolution starts from the ground state). Since the wave
functions ΨGS and ΦGS do not depend on the metric, the Eq. 25.35 for the xc stress
tensor simplifies as follows

P̃xc
μν[gμν](ξ , t) = 2√

g

δ Ẽxc[gαβ ]
δgμν(ξ , t)

, (25.37)

where Ẽxc[gαβ ] = 〈ΨGS|H̃ [gαβ ]|ΨGS〉 − 〈ΦGS|T̃ [gαβ ]|ΦGS〉 is the xc energy of
instantaneously deformed electron gas. Formally Eq. 25.37 is similar to the stress-
deformation relation in the classical elasticity theory with Ẽxc[gαβ ] being the elastic
deformation energy. The elastic approximation becomes exact in the limit of very
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fast variations of the deformation tensor, which corresponds to the antiadiabatic
regime of electron dynamics . By linearizing the general elastic xc potential one
obtains the exact antiadiabatic xc kernel f∞xc (r, r ′), which fully accounts for all
spatial nonlocalities (Nazarov et al. 2010). The practical implementation of the elastic
approximation requires, as an input, a knowledge of the ground state one particle
density matrix and the pair correlation functions of the inhomogeneous system of
interest. Using instead the density matrix and the pair corelation function of the
homogeneous electron gas we obtain the elastic TDLDefA (Tokatly 2005b, Ullrich
and Tokatly 2006). In the latter case, all we need is the usual xc energy exc(n) of the
homogeneous electron gas. Therefore the elastic TDLDefA requires the same input
as ALDA. However, both formally and physically, these two approximations are
essentially different. ALDA is a purely ad hoc construction which is hard to justify
formally. In fact, a partial success of ALDA still remains one of the most puzzling
features of TDDFT. In contrast to this, the formal limits of validity for TDLDefA are
well defined. It becomes essentially exact in the limit vF T/L � 1,where T and L are
the characteristic time and length scales of the dynamical process, and vF is a local
Fermi velocity (for a discussion of this condition in the context VK approximation
see Chap. 24).

Up to now we discussed the construction of xc potentials entering the KS equa-
tions. However the above approximations are also applicable to the hydrodynamic
formulation of TDCDFT. Foe example, the explicit elastic stress tensor

P̃el
μν[gμν](ξ , t) = 2√

g

δ

δgμν(ξ , t)
〈ΨGS|H̃ [gαβ ]|ΨGS〉, (25.38)

can be used directly in the Lagrangian hydrodynamics equation (25.15), or, after the
transformation (25.32), in the “Navier–Stokes” equation (25.10b). As a result we
obtain a closed quantum continuum mechanics. Explicit equations of the linearized
quantum continuum mechanics were derived in (Tao et al. 2009; Gao et al. 2010).
A great advantage of this theory is that the complexity of the equations does not
depend on the number of particles, which makes this theory promising for applica-
tions to large systems.

Therefore the formalism of TDDefFT allows us to regularly derive a variety of
approximations. However up to now only the elastic TDLDefA and the linearized
quantum continuum mechanics have been tested for model systems. Implementation
of the above approximations into the electronic structure codes and analysis of their
performance remain important problems for the nearest future.

http://dx.doi.org/10.1007/978-3-642-23518-4_24


Chapter 26
Time-Dependent Reduced Density Matrix
Functional Theory

Klaas J. H. Giesbertz, Oleg V. Gritsenko and Evert Jan Baerends

26.1 Introduction

In this chapter we will give an introduction into one-body reduced density matrix
functional theory (RDMFT). This is a rather new method to deal with the quantum
many-body problem. Especially the development of a time-dependent version,
TDRDMFT, is very recent. Therefore, there are many open questions and the
formalism has not crystalized yet into a standard form such as in (TD)DFT. Although
RDMFT has similarities with DFT, there are many more differences. This chapter is
too short for a full introduction into the wondrous world of RDMFT, but we hope to
give an idea what (TD)RDMFT might bring.

Although TDDFT has proven to be often a useful method to calculate response
properties and excitation energies, there are still a number of situations where TDDFT
with its current approximations fails badly. One failure which received much attention
is charge transfer excitations (Dreuw et al. 2003). Using the standard local approxi-
mations for the xc kernel like the ALDA, these excitations are generally predicted too
low and they lack the typical Coulombic 1/R behavior for increasing donor-acceptor
distance (see Sect. 4.8.2). The failure of the charge transfer excitations can easily be
attributed to the the fact that only the local density is used in the approximations to the
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functional. The charge transfer excitation is essentially non-local, since an electron
is excited from one region of the system to an other region. Therefore, two regions
are important and the approximation will need to depend non-locally on the density
to handle these excitations. Indeed, TDHF, which has a kernel connecting densities
at two different points in space, already performs much better for these excitations
(Dreuw et al. 2003). This led to a new hybrid functional which uses 100% exact
exchange at long distances (Yanai et al. 2004). Similar, it comes as no surprise that
the EXX functional also gives an improved description of charge transfer excitations
(Hesselmann et al. 2009).

Another important class of systems for which adiabatic TDDFT fails badly
are strongly correlated systems . Typical examples are Mott insulators and disso-
ciating molecules. These systems have in common that the description of the
ground-state is already problematic for DFT. The wave-function has an essential
multi-reference character (important contributions of multiple determinants), so the
single determinant wave-function of the Kohn-Sham (KS) system, even though it
may represent the electron density perfectly, is very poor as a wave-function. Of
course, the xc functional should make up for the bad description by the KS wave-
function, but our approximations are by no means up to this task. It is therefore not
surprising that also TDDFT with the current approximations fails badly for these
systems.

An example is provided with the comparison of the results of a (TD)DFT
calculation to exact potential energy surfaces from a full configuration interac-
tion calculation in Fig. 26.1. The excited potential energy surfaces for (TD)DFT
are obtained by adding the excitation energy from the TDDFT calculation to the
ground-state DFT energy. Around equilibrium distance (1.4 bohr) DFT does a good
job for the ground state. The 11Σ+g surface closely resembles the curve from
the exact calculation. However, at elongated distances (�3.5 bohr) the DFT (LDA
or GGA) surfaces start to deviate significantly from the exact potential energy
surfaces.

The performance of (TD)DFT for the excited states is much poorer. Only at very
short distances (1–1.5 bohr), the general trend of the excited potential energy surfaces
is allright, although the quantitative agreement (error of ca. 2.5 eV) is not particularly
good. However, at longer distances both excited surfaces predicted by (TD)DFT have
little resemblance with the exact surfaces. The 11Σ+u excitation energy actually goes
to zero in the dissociation limit, so it approaches the ground-state energy surface
from above. Therefore, this (TD)DFT calculation predicts that the H2 molecule would
immediately dissociate after an excitation to the 11Σ+u ,whereas the molecule should
remain bound according to the exact 11Σ+u surface. Although the excitation energy
to the 21Σ+g surface at least does not collapse to zero, its performance cannot be
considered to be much better. It has wrong behavior at short distance, being not only
too low but also missing the double minimum structure of the exact potential energy
surface. At longer distance it turns to higher energy than the exact surface and at still
larger distance it lacks the 1/R behavior. For more examples we refer to (Giesbertz
et al. 2009).
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Fig. 26.1 The 11Σ+g (ground-state), 11Σ+u and 21Σ+g potential energy surfaces of the hydrogen
molecule (H2) calculated in a cartesian aug-cc-pVTZ basis. The full lines show the results from
full configuration interaction and the dashed lines show the (TD)DFT results using the Becke 88 +
Perdew 86 functional and the adiabatic approximation

26.2 The One-Body Reduced Density Matrix

The problem of DFT is that it is very hard to describe the changing physics of electron
correlation along the bond breaking coordinate of a molecule with just the electron
density. The density is a rather structureless function of r, except for the cusps at the
nuclei. The problem is exemplified by the kinetic energy, which is one example of a
property that is very hard to obtain from an accurate density functional. It has been
very important for DFT to use the KS system to have some physically reasonable
approximation to the kinetic energy. The KS independent particle system reproduces
the density with only a single Slater determinant. However, strong correlation means
that multiple determinants become important in the wave-function. This means that
the KS system is not a physically useful starting point for property evaluations. The
approximate functionals and kernels will have to make up for the deficiencies in the
KS determinant as a wave-function. This places a too heavy burden on the existing,
rather poor, approximations to the true xc functional.

There are two different ways to deal with this problem. The first one is to try to
be very smart and invent some super-duper functional of the one-electron density
which can actually deal with strong correlations. The second approach is to make
life easier by not using only the density, but by using the additional information that
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is included in orbitals, for instance in the KS orbitals. This is the idea behind the
optimized effective potential methods (OEP) (see Chap. 6). This is still within the
density functional theory context, since the KS orbitals are implicit functionals of the
ground state density. Stepping beyond DFT proper, one can contemplate employing
the complete interacting one-body reduced density matrix (1RDM), or equivalently
the natural orbitals (NO) and NO occupation numbers. The feasibility of a 1RDM
functional theory has been provided by the extension of the Hohenberg-Kohn proof
for the unique relation between the density and the ground state wave-function to
such a one-to-one relation between 1RDM and ground state wave-function by Gilbert
(1975). The 1RDM is defined as

γ (x, x′, t) ≡ 〈Ψ |ψ̂†
H(x
′, t)ψ̂H(x, t)|Ψ 〉, (26.1)

where we used a combined space-spin coordinate, x = (r, σ ). The 1RDM has the
advantage over the density that any one-body property can be calculated from it.
For example the kinetic energy can be calculated directly from the 1RDM. In DFT
it is necessary to represent part of the kinetic energy in the exchange-correlation
functional, together with all the other exchange-correlation effects. This is no longer
needed with RDMFT. Another important feature comes from the spectral represen-
tation of the 1RDM

γ (x, x′, t) =
∑

k

nk(t)φk(x, t)φ∗k (x′, t). (26.2)

The eigenfunctions, φk(x, t), are called natural (spin) orbitals and the eigenvalues,
nk(t), the (natural) occupation numbers (Löwdin 1955). In accordance with their
name, the occupation numbers have to be positive and in the case of fermions cannot
be larger than one. The occupation numbers sum to the total number of electrons, N.

For spin-compensated systems (M = 0 or N↑ = N↓) the ↑↑-block and the ↓↓
block are necessarily equal, so often the spin-integrated 1RDM is used

γ (r, r ′, t) ≡
∑

σ

γ (rσ, r ′σ, t). (26.3)

The spin-integrated 1RDM can also be diagonalized and has the same properties
as the spin-dependent 1RDM. The only difference is that the NOs can contain two
electrons (up and down) instead of only one. This is reflected in the upper-bound of
the occupation numbers as 0 ≤ nk ≤ 2.

The fractional occupation numbers are important indicators of strong correlation.
Let us study the ground-state of H2 in more detail as an example. Expanding the wave-
function in NOs, only two determinants are important to give a good description of H2
dissociation. Since the singlet wave-function is already anti-symmetric (with respect
to permutation of electron coordinates) in the spin part, the spatial part is symmetric

Ψ (r1, r2) = cgσg(r1)σg(r2)+ cuσu(r1)σu(r2). (26.4)

http://dx.doi.org/10.1007/978-3-642-23518-4_6
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Fig. 26.2 The occupation numbers of the 1σg and 1σu NO of the ground-state (11Σ+g ) of the
hydrogen molecule (H2).

The occupation numbers of the 1RDM are simply related to the coefficients in the
wave-function expansion as nk = 2|ck |2, so the occupation numbers are clear indi-
cators which determinant is important. The occupation numbers for the ground state
of the H2 calculation are shown in Fig. 26.2. The wave-function (26.4) with only the
doubly occupied |(σg)

2| and |(σu)
2| determinants is well justified, since ng+nu ≈ 2.

At short distance (around equilibrium) only the |(σg)
2| determinant is important since

ng ≈ 2. However, at elongated bond-lengths, the |(σu)
2| determinant also becomes

important (ng ≈ nu ≈ 1 at 10 bohr). Since the KS system has only one determi-
nant, it is a poor wave-function. This should not be detrimental for application of
DFT if one would know the exact exchange-correlation functional. However, with
the approximate functionals that are generally used even the gross details of the
changing electron correlation, which are immediately apparent from the behavior of
the NO occupation numbers, are not captured. In adiabatic TDDFT, where not only
the first functional derivative of the exchange-correlation energy (the KS potential)
but also the second derivative (the exchange-correlation kernel) are important, the
problems are amplified, and understandably TDDFT fails in practice for cases of more
intricate electron correlation (Fig. 26.1). It appears that a theory that uses the much
more extensive information available in the orbitals and in the occupation numbers,
i.e. a theory that uses the 1RDM, might be an avenue to much higher accuracy.
For ground state problems this has proven to be the case (Rohr et al. 2008; Piris et
al. 2010b). In this chapter we investigate to what extent the same benefits can be
obtained with a time-dependent extension of RDMFT for the treatment of response
properties.

26.3 1RDM Functionals

Instead of using the 1RDM directly to approximate functionals, it is more common,
as noted above, to use the NOs and occupation numbers to build approximations.
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An example of a functional for which we do know both forms is the Hartree-Fock
(HF) functional. The HF electron-electron interaction energy EHF can be written as
an explicit 1RDM functional

EHF[γ ] ≡ 1

2

∫

d4x
∫

d4x ′
[

γ (x, x)γ (x′, x′)− |γ (x, x′)|2
]

vee(x, x′) . (26.5)

By inserting the spectral expansion for the 1RDM (26.2), one finds an equivalent
definition in terms of the NOs and occupation numbers

EHF[{φ, n}] ≡ 1

2

∑

rs

nr ns(wrssr − wrsrs), (26.6)

where the two-electron integrals are defined as

wklba ≡
∫

d4x1

∫

d4x2 φ
∗
k (x1)φ

∗
l (x2)vee(x1, x2)φb(x2)φa(x1). (26.7)

The only other functional for which an explicit 1RDM expression is known is the
Müller functional (1984), which is identical to the functional of Buijse (1991); Buijse
and Baerends (2002). The latter was inspired by electron correlation in two-electron
systems (see below). All the other functionals are only known in the NO representa-
tion. It is perfectly fine to define the functional in terms of the NOs and occupation
numbers and have no explicit 1RDM form. We only have to keep in mind that a
1RDM functional cannot depend on the phases of the NOs, since these are arbitrary,
the NOs being the eigenfunctions of a Hermitian kernel, the 1RDM.

The two-electron system takes a special role in RDMFT, since the wave-function
can be reconstructed almost completely from the 1RDM in a trivial manner. This
relation follows from the decomposition of the wave-function in NOs, first shown
by Löwdin and Shull(1956). This is actually a special case of the expansion of the
wave-function in eigenfunctions of the pRDM and (N − p)RDM derived by Carlson
and Keller (1961). In this section we will only show the simplest case: the singlet
two-body system.

Since the spin part of the singlet two-body wave-function is anti-symmetric, the
spatial part is symmetric under permutation. Therefore the expansion of the spatial
part of the wave-function in a basis of products of two one-electron functions (from
a complete one-electron basis) will involve a symmetric matrix of expansion coeffi-
cients, which can be diagonalized. So the wave-function can be written in the spectral
form

Ψ (r1, r2, t) =
∑

k

ck(t)ψk(r1, t)ψk(r2, t) , (26.8)

where the orbitals ψk are orthonormal and the squares of the coefficients sum to one
for the wave-function to be normalized. The corresponding spin-integrated 1RDM
can be calculated as
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γ (r, r ′, t) = 2
∫

d3r2Ψ (r, r2, t)Ψ ∗(r ′, r2, t) = 2
∑

k

|ck(t)|2ψk(r, t)ψ∗k (r ′, t),

(26.9)
since the orbitals ψk are orthonormal. We find that the eigenfunctions of the wave-
function are the NOs and that the eigenvalues of the wave-function are related to
the occupation numbers as nk(t) = 2|ck(t)|2. Therefore, given the NOs, φk, and
occupation numbers, nk(t), of a 1RDM corresponding to a singlet two-body system,
the corresponding wave-function can be expressed as

Ψ (r1, r2, t) =
∑

k

fk(t)

√

nk(t)

2
φk(r1, t)φk(r2, t), (26.10)

where fk(t) are phase-factors. Now the constrained search formulation (Levy 1979)
of the exact ground state functional for the interaction part of the energy will be

E[γ ] = min
Ψ→γ 〈Ψ |V̂ee|Ψ 〉 = 1

2
min{ f }

∑

r,s

fr f ∗s
√

nr nswrrss . (26.11)

In practice, this minimization over the phase-factors is rarely carried out. Usually only
the two highest occupied NOs give a significant contribution and f1 = +1, f2 = −1
(this sign choice can be shown to lead to a correlated electron movement). In most
known cases (e.g. the He iso-electronic series, and H2 at equilibrium) the higher fk

are also negative. It has only been shown that the dissociation of H2 requires, at very
elongated bond lengths, an alternating sign pattern (Cioslowski and Pernal 2006).
Since all the occupation numbers go to zero in that case, except for the first σg and
σu NO, keeping even in that case a negative sign for k > 2 hardly affects the energy.
Fixing the phases according to the above prescription, one can define a functional as

EPILS[{φ, n}] = 1

2

∑

r,s

fr f ∗s
√

nr nswrrss . (26.12)

This functional is not a proper 1RDM functional, since it depends on the phases
of the NOs. For example, multiplying an NO φs by i gives an additional minus
sign in the two-body energy expression. Therefore, this functional is named the
phase including Löwdin-Shull (PILS) functional, since it corresponds to the energy
expression obtained with the Löwdin-Shull expansion of the two-electron wave-
function.

It is possible to convert this functional into a proper DMFT functional, independent
of the NO phases, by simply swapping the stars between one r and one s NO in the
integral. The two-electron integral then becomes the normal exchange integral and
we obtain a functional we call the density matrix Löwdin-Shull (DMLS) functional

EDMLS = 1

2

∑

r,s

fr f ∗s
√

nr nswrsrs . (26.13)
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Note that, for the ground-state, changing the complex conjugation in the definition
usually does not matter, since one then varies only over real NOs. However, since
we have to work with complex NOs in time-dependent systems, we can expect the
difference between these functionals to show up.

26.4 The Equation of Motion

The basic equation for TDRDMFT will be the equation of motion of the 1RDM. Its
derivation is rather straightforward by using the equations of motion for the creation
and annihilation operators (Fetter and Walecka 1971)

i∂tγ (x1, x′1, t) = i〈Ψ |
(

∂t ψ̂
†
H(x
′
1, t)

)

ψ̂H(x1, t)+ ψ̂†
H(x
′
1, t)∂t ψ̂H(x1, t)|Ψ 〉

=
[

ĥ(x1, t)− ĥ(x′1, t)
]

γ (x1, x′1, t)

+
∫

d4x2
[

vee(x1, x2)− vee(x′1, x2)
]

Γ (x1x2, x2x′1, t), (26.14)

where ĥ(t) ≡ − 1
2∇2 + v̂ext(t) and we introduced the 2RDM

Γ (x1x2, x′2x′1, t) ≡ 〈Ψ |ψ̂†
H(x
′
1, t)ψ̂†

H(x
′
2, t)ψ̂H(x2, t)ψ̂H(x1, t)|Ψ 〉. (26.15)

The equation of motion of the 1RDM depends on the 2RDM, so we should also
propagate the 2RDM to solve the equation exactly. However, it is not hard to convince
oneself that the equation of motion of the 2RDM depends on the 3RDM and the
equation for the 3RDM depends on the 4RDM, etc. till we reach the complete N
RDM. This chain of equations for the RDMs is known as the Bogoliubov-Born-
Green-Kirkwood-Yvon hierarchy. The only way to use this hierarchy is to break the
chain at some suitable level. In the case of TDRDMFT we will use that the 2RDM
is a functional of the 1RDM, Γ [γ ], under certain conditions.

Often, the field operators are expanded in a basis, {χ} (which in practice has to
be finite) as

ψ̂H(x, t) =
∑

r

ĉr (t)χr (x). (26.16)

The 1RDM and 2RDM in the basis {χ} are now defined by explicit matrices

γka(t) = 〈Ψ |ĉ†
a(t)ĉk(t)|Ψ 〉, (26.17a)

Γklba(t) = 〈Ψ |ĉ†
a(t)ĉ

†
b(t)ĉl(t)ĉk(t)|Ψ 〉 (26.17b)

We can now also write the equation of motion for the 1RDM in terms of these
matrices by multiplying (26.14) by χ∗k (x) and χl(x′) and integrating over x and x′
to obtain
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i∂tγkl(t) =
∑

r

[

hkr (t)γrl(t)− γkr (t)hrl(t)
]+

[

W̃ †
kl [γ ](t)− W̃ †

kl [γ ](t)
]

, (26.18)

where we used hkl(t) = 〈χk |ĥ(t)|χl〉 and for the contraction of the two-electron
integrals with the 2RDM introduced the definition

W̃kl [γ ](t) ≡
∑

rst

Γkrst [γ ](t)wtsrl . (26.19)

Instead of using the stationary basis {χ}, we can also use the time-dependent NO
basis. The basis functions themselves will be time-dependent and the 1RDM in
the NO basis will be simply diagonal, γkl(t) = nk(t)δkl . Although not particularly
useful for practical calculations, the NO representation will be useful to explain some
properties of the adiabatic approximation. The equation of motion for the 1RDM in
NO basis, {φ(t)}, can be written as

i
{

ṅk(t)δkl + [nl(t)− nk(t)] 〈φk(t)|φ̇l(t)〉
}

= [nl(t)− nk(t)] hkl(t)+
[

W̃ †
kl(t)− W̃ †

kl(t)
]

. (26.20)

26.5 Response Equations

The central equations in TDRDMFT are, as in most applications of TDDFT, the
linear response equations. They can be used to calculate first order dynamic prop-
erties such as the polarizability, but also the excitation energies can be obtained as
the response function diverges at these energies (Fetter and Walecka 1971). One
starts with the time-independent (stationary) situation, where the NOs are solutions
of a time-independent Hamiltonian, ĥ. The starting 1RDM, γ (0), is stationary, so
∂tγ

(0) = 0. Although not necessary, we assume the stationary 1RDM to be repre-
sented in the basis of the initial NOs, so it is diagonal, γ (0)kl = nkδkl . Now we apply
an infinitesimal time-dependent potential, δvext(t), so the one-body Hamiltonian
becomes ĥ(t) = ĥ+δvext(t).Due to the change in the potential, also the 1RDM will
change, γ (t) = γ (0) + δγ (t) + δ(2)γ (t) + · · · . To calculate the linear response of
the 1RDM, δγ (t), we simply use the equation of motion of the 1RDM (26.18) and
retain only the first order terms

iδγ̇kl(t) = (nl − nk)δvkl(t)+
∑

r

[

hkrδγrl(t)− δγkr (t)hrl
]+ δ

[

W̃ †
kl(t)− W̃ †

kl(t)
]

.

(26.21)
To get an equation in δγ (t) only, we define the coupling matrix

Kkl,ba[γ (0)](t, t ′) ≡
δ
[

W̃ †
kl(t)− W̃kl(t)

]

δγab(t ′)

∣
∣
∣
∣
∣
∣
γ=γ (0)

. (26.22)
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The coupling matrix is the TDRDMFT analogue of the Hartree-exchange-correlation
kernel, fHxc, in TDDFT (see Sect. 4.5). The linear response equations can now be
expressed in terms of δvext(t) and δγ (t)

iδγ̇kl(t) = (nl − nk)δvkl(t)+
∑

r

[

hkrδγrl(t)− δγkr (t)hrl
]

+
∑

ab

∞∫

−∞
dt′Kkl,ba[γ (0)](t − t ′)δγab(t). (26.23)

Note that we wrote that the coupling matrix only depends on the time difference.
Because we use a stationary state as a reference, the response function depends only
on t − t ′, so also the coupling matrix only depends on t − t ′. We need this result,
since later on we will take the Fourier transform which facilitates the calculation of
frequency-dependent properties and excitation energies. Before taking the Fourier
transform, we will first introduce the adiabatic approximation, since this will elimi-
nate some parts in the linear response equations. The adiabatic approximation is made
in the same way as in TDDFT (see Sect. 4.7.1). The functionals are approximated to
be local in time and further approximated by their ground-state counterpart. In partic-
ular, the time-dependence of the coupling matrix becomes a simple delta-function

Kkl,ba[γ (0)](t − t ′) ≈ K GS
kl,ba[γ (0)]δ(t − t ′). (26.24)

The linear response equations in the adiabatic approximation can be expressed as

iδγ̇kl(t) = (nl − nk)δvkl(t)+
∑

ab

Akl,baδγab(t), (26.25)

where we used the definition

Akl,ba ≡ hkaδbl − δkahbl + K GS
kl,ba . (26.26)

Since the coupling matrix is now of such a simple form, it becomes useful to expand
the response equations using explicitly the real and imaginary parts of the matrix
elements of the response 1RDM and the perturbation. The perturbed 1RDM has to
remain Hermitian, so we have �e δγkl = �e δγlk and �m δγkl = −�m δγlk . Using
these symmetries, we can write

i∂t�e δγkl(t) = (nl − nk)i�m δvkl(t)+
∑

a>b

A−kl,ba i�m δγab(t), (26.27a)

i∂t i�m δγkl(t) = (nl − nk)�e δvkl(t)+
∑

a>b

A+kl,ba�e δγab(t)

+
∑

a

Akl,aaδna(t), (26.27b)

http://dx.doi.org/10.1007/978-3-642-23518-4_4
http://dx.doi.org/10.1007/978-3-642-23518-4_4


26 Time-Dependent Reduced Density Matrix Functional Theory 495

where we used A±kl,ba ≡ Akl,ba ± Akl,ab. To obtain the frequency-dependent linear
response equations, we simply have to take the Fourier transform. Since we have
simple linear equations, we can arrange them in a nice matrix form

⎛

⎝

ω1M A−M M 0
A+M M ω1M AMm

0 A−m M ω1m

⎞

⎠

⎛

⎝

δγ R(ω)

iδγ I (ω)

δn(ω)

⎞

⎠ =
⎛

⎝

Niδv I (ω)

NδvR(ω)

0

⎞

⎠ , (26.28)

where we used f R(ω) ≡ F [�e f ] (ω) and f I (ω) ≡ F [�m f ] (ω) as a short-hand
notation for the Fourier transform of the real and imaginary parts of the function
f (t) respectively and Nkl,ba ≡ (nl − nk)δkaδbl . The big matrix on the l.h.s. is
an (M,M,m) × (M,M,m) matrix, where m denotes the size of the basis set and
M = m(m − 1)/2 is the number of unique off-diagonal elements. Thus the first two
entries in the vectors only denote the unique off-diagonal elements and δn(ω) the
diagonal of the perturbation in the 1RDM. As an indication of which submatrices
of the matrices A and A± are meant, we used subscripts m and M (diagonal and
off-diagonal part respectively).

From the structure of the adiabatic frequency-dependent response equations
(26.28), one might already suspect a problem for adiabatic TDRDMFT. The response
should be symmetric for positive and negative frequencies, since it should not matter
if we go forward or backward in time. In particular, the excitation energies are
found at +ω and −ω with eigenvectors of the form real-part pm imaginary-part
(Giesbertz 2010). However, in the adiabatic response equations (26.28) we do not
have an even number of roots, there are more real elements than imaginary elements.
In fact one can show that the adiabatic response equations result in m zero excitations.
As discussed in Giesbertz et al. (2009) these m zero excitations are directly related
to the m δn response elements, which describe double excitations. Mathematically
this prevents a problem with the odd number of roots of (26.28), which could lead to
lack of symmetry between + and - ω solutions, since zero is the only number equal
to minus itself. But physically it means that the present formalism does not work for
the problem of the double excitations mentioned in the beginning. We might expect
TDRDMFT to do better, since the possibility to describe double excitations is explic-
itly built in with the presence of the δn response elements. We refer to (Giesbertz
et al. 2010b) for an extension of the TD1RDM method in order to deal with this
problem.

26.6 Excitations of H2

The problem of adiabatic TDRDMFT with the double excitations signaled in the
previous section, is rather fundamental. It can be shown that any pure 1RDM func-
tional in the adiabatic approximation will suffer from the problem that there is no
response in the occupation numbers (Pernal et al. 2007b; Appel 2007; Giesbertz et
al. 2009, 2010). This problem is intimately connected with the the fact that a genuine
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1RDM functional does not depend on the phases of the NOs. It can be remedied
by introducing functionals that do depend on the phases of the NOs. In this chapter
we will not deal with this extension of the theory, but we will restrict ourselves to a
demonstration of how important the step of using phase-including NO in the func-
tionals is. This can be done using the two functionals for the two-electron system we
have defined earlier. The DMLS functional of (26.13) is a genuine 1RDM functional.
It is perfect for the ground state energy, and only applies the complex conjugation to
the NOs in a different way than the Löwdin-Shull energy expression does. The PILS
functional of (26.12) is not a 1RDM functional but is an example of a functional with
the additional phase degrees of freedom included. Upon optimization of the phases,
this functional reproduces the total energy of the two-electron system, i.e. it is the
exact phase-including NO functional in this case.

In Fig. 26.3 we show the results of a linear response calculation for the excitation
energies. The starting NOs were simply obtained by performing a full configuration
interaction calculation and diagonalizing the 1RDM. For numerical stability reasons
we have not included the full set of δγ R/I

kl matrix elements, but we have restricted
the vector of response matrix elements δγkl to k ≤ 22, and no restriction on l.
Only the first three diagonal elements δγkk = δnk have been taken into account.
Loosely speaking, we include all “excitations” from the first 22 NOs (with the highest
occupation numbers) to all NOs, which is still the majority of the excitations. One
might have expected the DMLS functional to give very good results, or even the best,
since it is a proper 1RDM functional. However, nothing is farther from the truth. The
DMLS excitation energies make a real “spaghetti” of potential energy surfaces in
Fig. 26.3. On the other hand, the PILS functional gives practically the same results
as the exact calculation. It can actually be shown analytically that the PILS results in
this case should be equal to the exact ones (Giesbertz 2010). The slight discrepancy
in the fifth excitation is due to the limited excitation space used for the TDRDMFT
calculation. In particular we note that the problem of TDDFT that the first 1Σ+u
excitation goes to zero with increasing bond length has disappeared.

26.7 Further Reading

This chapter on (TD)RDMFT is too short to give an exhaustive introduction into the
theory. For the theoretical foundations of ground-state RDMFT apart from the refer-
ences in the text (Löwdin 1955; Carlson and Keller 1961; Gilbert 1975; Levy 1979)
also the work of Coleman (1963) (N-representability) is relevant. For the calcu-
lation of ionization energies, consult (Morrell et al. 1975; Pernal and Cioslowski
2005; Leiva and Piris 2006), for optimization of the ground-state consider (Cohen
and Baerends 2002; Staroverov and Scuseria 2002; Kollmar and Hes 2003; Pernal
2005; Cancès and Pernal 2008; Requist and Pankratov 2008; Piris and Ugalde
2009; Giesbertz and Baerends 2010). The first RDMFT functional was formu-
lated by Müller (1984). It has also been derived from attempts to describe both
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Fig. 26.3 Results for the calculation of the 1Σ+u excitation energies of H2 at varying bond distance
in a cartesian aug-cc-pVTZ basis. The thin lines show the first 14 excitations using the DMLS
functional. The exact results are shown by thick, straight lines. PILS results (thick, dashed lines)
are barely visible, since they almost exactly coincide with the exact results

the dynamic and the nondynamic correlation with an orbital based modeling of the
exchange-correlation hole (Buijse 1991; Buijse and Baerends 2002). The list of func-
tionals is too long to mention them all, but consider (Goedecker and Umrigar 1998;
Lopéz-Sandoval and Pastor 2000; Csányi and Arias 2000; Kollmar and Hes 2003;
Gritsenko et al. 2005; Sharma et al. 2008; Rohr et al. 2008; Piris et al. 2010a) for
some interesting ones. For more detailed information TDRDMFT consider (Pernal
et al. 2007; Appel 2007; Giesbertz et al. 2008, 2009, 2010; Giesbertz 2010).
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Baer, R., Neuhauser, D., Ždánská, P.R., Moiseyev, N.: Ionization and high-order harmonic
generation in aligned benzene by a short intense circularly polarized laser pulse. Phys. Rev. A
68, 043406-1–043406-8 (2003)

500 References

http://dx.doi.org/10.1016/


Baer, R., Siam, N.: Real-time study of the adiabatic energy loss in an atomic collision with a
metal cluster. J. Chem. Phys. 121, 6341–6346 (2004)

Baer, R.: Prevalence of the adiabatic exchange-correlation potential approximation in time-
dependent density functional theory. J. Mol. Struct. (THEOCHEM) 914, 19–21 (2009)

Baer, R.: Ground-state degeneracies leave recognizable topological scars in the electronic
density. Phys. Rev. Lett. 104, 073001-1–073001-4 (2010)

Baer, R., Livshits, E., Salzner, U.: Tuned range-separated hybrids in density functional theory.
Annu. Rev. Phys. Chem. 61, 85–109 (2010)

Bailey, P.B., Everitt, W.N., Zettl, A.: The SLEIGN2 Sturm-Liouville Code. ACM Trans. Math.
Software 21, 143–192 (2001)

Balasubramanian, M., Johnson, C.S., Cross, J.O., Seidler, G.T., Fister, T.T., Stern, E.A., Hamner,
C., Mariager, S.O.: Fine structure and chemical shifts in nonresonant inelastic x-ray scattering
from Li-intercalated graphite. Appl. Phys. Lett. 91, 031904-1–031904-3 (2001)

Baldereschi, A., Tosatti, E.: Mean-value point and dielectric properties of semiconductors and
insulators. Phys. Rev. B 17, 4710–4717 (1978)

Bandrauk, A.D., Shen, H.: Exponential split operator methods for solving coupled time-
dependent Schrödinger equations. J. Chem. Phys. 99, 1185–1193 (1993)

Bandrauk, A.D.: Molecules in Laser Fields. M. Dekker, New York (1994a)
Bandrauk, A.D.: Molecular multiphoton transitions Computational spectroscopy for perturbative

and non-perturbative regimes. Int. Rev. Phys. Chem. 13, 123–162 (1994b)
Bandrauk, A.D., Shen, H.: Exponential operator methods for coupled timedependent nonlinear

Schroedinger equations. J. Phys. A: Math. Gen. 27, 7147–7155 (1994)
Bandrauk, A.D., Yu, H.: High-order harmonic generation at long range in intense laser pulses.

J. Phys. B: At. Mol. Opt. Phys. 31, 4243–4255 (1998)
Bandrauk, A.D., Yu, H.: High-order harmonic generation by one- and two-electron molecular

ions with intense laser pulses. Phys. Rev. A 59, 539–548 (1999)
Bandrauk, A.D., Chelkowski, S.: Dynamic imaging of nuclear wave functions with ultrashort UV

laser pulses. Phys. Rev. Lett. 87, 273004-1–273004-4 (2001)
Bandrauk, A.D., Kono, H.: Molecules in intense laser fields: Nonlinear multiphoton spectroscopy

and near-femtosecond to sub-femtosecond (attosecond) dynamics. In: Lin, S.H., Villaeys,
A.A., Fujimura, Y. (eds.) Ad-vances in MultiPhoton Processes, Spectroscopy, vol. 15,
pp. 147–214. World Scientific, Singapore (2003)

Bandrauk, A.D., Chelkowski, S., Kawata, I.: Molecular above-threshold-ionization spectra: The
effect of moving nuclei. Phys. Rev. A 67, 013407-1–013407-13 (2003)

Bandrauk, A.D., Lu, H.Z.: Electron correlation and double ionization of a 1D H2 in an intense
laser field. J. Mod. Opt. 53, 35–44 (2006)

Barbatti, M., Granucci, G., Persico, M., Ruckenbauer, M., Vazdar, M., Eckert-Maksi, M.,
Lischka, H.: The on-the-fly surface-hopping program system Newton-X: Application to ab
initio simulation of the nonadiabatic photodynamics of benchmark systems. J Photochem.
Photobiol. A: Chem. 190, 228–240 (2007)

Barbatti, M., Pitner, J., Pederzoli, M., Werner, U., Mitrić, R., Bonačić-Koutecký, V., Lischka, H.:
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Baroni, S., Gebauer, R., Malcioğlu, O.B., Saad, Y., Umari, P., Xian, J.: Harnessing molecular
excited states with Lanczos chains, J. Phys.: Condens. Matter 22, 074204-1–074204-8 (2010)

Bartolotti, L.J.: Time-dependent extension of the Hohenberg-Kohn-Levy energy-density
functional. Phys. Rev. A 24, 1661–1667 (1981)

Bartolotti, L.J.: Time-dependent Kohn-Sham density-functional theory. Phys. Rev. A 26, 2243–
2244 (1982)

Bartolotti, L.J.: Variation-perturbation theory within a time-dependent Kohn Sham formalism:
An application to the determination of multipole polarizabilities, spectral sums, and
dispersion coefficients. J. Chem. Phys. 80, 5687–5695 (1984)

Bartolotti, L.J.: Velocity form of the Kohn-Sham frequency-dependent polarizability equations.
Phys. Rev. A 36, 4492–4493 (1987)

Bassani, F., Altarelli, M.: Interaction of radiation with condensed matter. In: Koch, E.-E. (ed.)
Handbook of Synchrotron Radiation, vol. 1(a), pp. 465–597. Amsterdam, North Holland (1983)

Bastida, A., Cruz, C., Zúñniga, J., Requena, A., Miguel, B.: The Ehrenfest method with quantum
corrections to simulate the relaxation of molecules in solution: Equilibrium and dynamics.
J. Chem. Phys. 126, 014503–014511 (2007)

Batani, D., Joachain C. J., Martellucci S., Chester A. J. (eds.): Atoms, solids, and plasmas in
super-intense laser fields. Kluwer Academic, New York (2000)

Bauer, D.: Two-dimensional, two-electron model atom in a laser pulse: Exact treatment, single-
active-electron analysis, time-dependent density-functional theory, classical calculations, and
nonsequential ionization. Phys. Rev. A 56, 3028–3039 (1997)

Bauer, D., Ceccherini, F.: Electron correlation versus stabilization: A two-electron model in an
intense laser pulse. Phys. Rev. A 60, 2301–2307 (1999)

Bauer, D., Ceccherini, F.: Time-dependent density functional theory applied to nonsequential
multiple ionization of Ne at 800 nm. Opt. Express 8, 377–382 (2001)

Bauernschmitt, R., Ahlrichs, R.: Treatment of electronic excitations within the adiabatic
approximation of time dependent density functional theory. Chem. Phys. Lett 256, 454–464
(1996a)

Bauernschmitt, R., Ahlrichs, R.: Stability analysis for solutions of the closed shell Kohn-Sham
equation. J. Chem. Phys. 104, 9047–9052 (1996b)

Bauernschmitt, R., Häser, M., Treutler, O., Ahlrichs, R.: Calculation of excitation energies within
time-dependent density functional theory using auxiliary basis set expansions. Chem. Phys.
Lett. 264, 573–578 (1997)

Bearpark, M.J., Robb, M.A., Schlegel, H.B.: Direct method for the location of the lowest energy
point on a potential surface crossing. Chem. Phys. Lett. 223, 269–274 (1994)

Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic
behavior. Phys. Rev. A 38, 3098–3100 (1988a)

Becke, A.D.: A multicenter numerical integration scheme for polyatomic molecules. J. Chem.
Phys. 88, 2547–2553 (1988b)

Becke, A.D., Edgecombe, K.E.: A simple measure of electron localization in atomic and
molecular systems. J. Chem. Phys. 92, 5397–5403 (1990)

Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys.
98, 1372–1377 (1993a)

Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem.
Phys. 98, 5648–5652 (1993b)

Becke, A.D., Johnson, E.R.: Exchange-hole dipole moment and the dispersion interaction
revisited. J. Chem. Phys. 127, 154108-1–154108-6 (2007)
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Jurečka, P., Sponer, J., Černý, J., Hobza, P.: Benchmark database of accurate (MP2 and CCSD(T)
complete basis set limit) interaction energies of small model complexes, DNA base pairs, and
amino acid pairs. Phys. Chem. Chem. Phys. 8, 1985–1993 (2006)

Kacprzak, K.A., Lehtovaara, L., Akola, J., Lopez-Acevedo, O., Häkkinen, H.: A density
functional investigation of thiolate-protected bimetal PdAu24 SRð Þz18 clusters: Doping the
superatom complex. Phys. Chem. Chem. Phys. 11, 7123–7129 (2009)

Kaduk, B., Van Voorhis, T.: Conical intersections using constrained density functional theory—
configuration interaction. J. Chem. Phys. 133, 061102-1–061102-4 (2010)

Kamiya, M., Tsuneda, T., Hirao, K.: A density functional study of van der Waals interactions.
J. Chem. Phys. 117, 6010–6015 (2002)

Kannemann, F.O., Becke, A.D.: van der Waals interactions in density-functional theory: Rare-gas
diatomics. J. Chem. Theory Comput. 5, 719–727 (2009)

522 References



Kapral, R., Ciccotti, G.: Mixed quantum-classical dynamics. J. Chem. Phys. 110, 8919–8929
(1999)

Kapral, R.: Progress in the theory of mixed quantum-classical dynamics. Annu. Rev. Phys. Chem.
57, 129–157 (2006)

Karolewski, A., Stein, T., Baer, R., Kümmel, S.: Tailoring the optical gap in lightharvesting
molecules. J. Chem. Phys. 134, 151101–151104 (2011)

Kato, T., Kono, H.: Time-dependent multiconfiguration theory for electronic dynamics of
molecules in an intense laser field. Chem. Phys. Lett. 392, 533–540 (2004)

Kawashita, Y., Nakatsukasa, T., Yabana, K.: Time-dependent density-functional theory
simulation for electronon dynamics in molecules under intense laser pulses. J. Phys. Condens.
Matter 21, 064222-1–064222-6 (2009)

Kawata, I., Kono, H., Fujimura, Y., Bandrauk, A.D.: Intense-laser-field-enhanced ionization of
two-electron molecules: Role of ionic states as doorway states. Phys. Rev. A 62, 031401-1–
031401-4 (2000)

Kawata, I., Kono, H., Bandrauk, A.D.: Mechanism of enhanced ionization of linear H3
þ in intense

laser fields. Phys. Rev. A 64, 043411-1–043411-15 (2001)
Keal, T.W., Koslowski, A., Thiel, W.: Comparison of algorithms for conical intersection

optimisation using semiempirical methods. Theor. Chem. Acc. 118, 837–844 (2007)
Keldysh, L.V.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20, 1018–1026

(1965)
Kelkensberg, F., Siu, W., Pérez-Torres, J.F., Morales, F., Gademan, G., Rouzée, A., Johnson, P.,

Lucchini, M., Calegari, F., Martín F., Vrakking, M.J.J.: Attosecond time-resolved electron
dynamics in the hydrogen molecule. Phys. Rev. Lett. 107, 043002-1–043002-4 (2011).

Kendall, R.A., Dunning Jr., T.H., Harrison, R.J.: Electron affinities of the first-row atoms
revisited. Systematic basis sets and wave functions. Chem. Phys. 96, 6796–6806 (1992)

Khosravi, E., Kurth, S., Stefanucci, G., Gross, E.K.U.: The role of bound states in time-dependent
quantum transport. Appl. Phys. A 93, 355–364 (2008)

Khosravi, E., Stefanucci, G., Kurth, S., Gross, E.K.U.: Bound states in time-dependent quantum
transport: Oscillations and memory effects in current and density. Phys. Chem. Chem. Phys.
11, 4535–4538 (2009)

Kienberger, R., Hentschel, M., Uiberacker, M., Spielmann, C., Kitzler, M., Scrinzi, A., Wieland,
M., Westerwalbesloh, T., Kleineberg, U., Heinzmann, U., Drescher, M., Krausz, F.: Steering
attosecond electron wave packets with light. Science 297, 1144–1148 (2002)

Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F.,
Scrinzi, A., Westerwalbesloh, T., Kleineberg, U., Heinzmann, U., Drescher, M., Krausz, F.:
Atomic transient recorder. Nature (London) 427, 817–821 (2004)

Kim, Y.-H., Görling, A.: Excitonic optical spectrum of emiconductors obtained by time-
dependent density-functional theory with the exact-exchange kernel. Phys. Rev. Lett. 89,
096402–096404 (2002)

Kim, H.Y., Sofo, J.O., Velegol, D., Cole, M.W., Lucas, A.A.: van der Waals forces between
nanoclusters: Importance of many-body effects. J. Chem. Phys. 124, 074504-1–074504-4
(2006)

Kitzler, M., Zanghellini, J., Jungreuthmayer, C., Smits, M., Scrinzi, A., Brabec, T.: Ionization
dynamics of extended multielectron systems. Phys. Rev. A 70, 041401-1–041401-4(R) (2004)

Klimeš, J., Bowler, D.R., Michaelides, A.: Chemical accuracy for the van der Waals density
functional. J. Phys. Condens. Matter 22, 022201-1–022201-5 (2010)

Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer,
Berlin (1992)

Klünder, K., Dahlström, J.M., Gisselbrecht, M., Fordell, T., Swoboda, M., Guénot, D., Johnsson,
P., Caillat, J., Mauritsson, J., Maquet, A., Ta, R., L’Huillier, A.: Probing single- photon
ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002-1–143002-4 (2011)

Knorr, W., Godby, R.W.: Investigating exact density-functional theory of a model semiconduc-
tor. Phys. Rev. Lett. 68, 639–641 (1992)

References 523



Koentopp, M., Burke, K., Evers, F.: Zero-bias molecular electronics: Exchangecorrelation
corrections to Landauers formula. Phys. Rev. B. 73, 121403-1–4(R) (2006)

Koentopp, M., Chang, C., Burke, K., Car, R.: Density functional calculations of nanoscale
conductance. J. Phys.: Condens. Matter 20, 083203-1–083203-21 (2008)

Koga, N., Morokuma, K.: Determination of the lowest energy point on the crossing seam between
two potential surfaces using the energy gradient. Chem. Phys. Lett. 119, 371–374 (1985)

Kohl, H., Dreizler, R.M.: Time-dependent density functional theory: Conceptual and practical
aspects. Phys. Rev. Lett. 56, 1993–1995 (1986)

Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys.
Rev. 140, A1133–A1138 (1965)

Kohn, W.: v-Representability and density functional theory. Phys. Rev. Lett. 51, 1596–1598
(1983)

Kollmar, C., Hes, B.A.: A new approach to matrix functional theory. J. Chem. Phys. 119, 4655–
4661 (2003)

Kondo, K., Tamida, T., Nabekawa, Y., Watanabe, S.: High-order harmonic generation and
ionization using ultrashort KrF and Ti:sapphire lasers. Phys. Rev. A 49, 3881–3889
(1994)

Kono, A., Hattori, S.: Accurate oscillator strengths for neutral helium. Phys. Rev. A 29, 2981–
2988 (1984)

Koopmans, T.: Über die Zuordnung vonWellenfunktionen und Eigenwerten zu den Einzelnen
Elektronen Eines Atoms. Physica 1, 104–113 (1934)

Körzdörfer, T., Kümmel, S., Mundt, M.: Self-interaction correction and the optimized effective
potential. J. Chem. Phys. 129, 014110-1–014110-12 (2008)

Körzdörfer, T., Kümmel, S.: Single-particle and quasiparticle interpretation of Kohn-Sham and
generalized Kohn-Sham eigenvalues for hybrid functionals. Phys. Rev. B 82, 155206-1–
155206-9 (2010)

Kostin, M.D.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)
Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–

151 (1975)
Kotani, T.: An optimized-effective-potential method for solids with exact exchange and random-

phase approximation correlation. J. Phys. Condens. Matt. 10, 9241–9261 (1998)
Kozak, C.R., Kistler, K.A., Lu, Z., Matsika, S.: Excited-state energies and electronic couplings of

DNA base dimers. J. Phys. Chem. B 114, 1674–1683 (2010)
Kramers, H.A.: La diffusion de la lumiere par les atomes. Atti Cong. Intern. Fisica, (Transactions

of Volta Centenary Congress) Como 2, 545–557 (1927)
Krause, J.L., Schafer, K.J., Kulander, K.C.: Optical harmonic generation in atomic and molecular

hydrogen. Chem. Phys. Lett. 178, 573–578 (1991)
Krause, P., Klamroth, T., Saalfrank, P.: Time-dependent configuration-interaction calculations of

laser-pulse-driven many-electron dynamics: Controlled dipole switching in lithium cyanide.
J. Chem. Phys. 123, 074105-1–074105-7 (2005)

Krause, P., Klamroth, T., Saalfrank, P.: Molecular response properties from explicitly time-
dependent configuration interaction methods. J. Chem. Phys. 127, 034107-1–034107-10
(2007)

Krausz, F., Ivanov, M.Yu.: Attosecond physics. Rev. Mod. Phys. 81, 163– 234 (2009)
Kreibich, T., Kurth, S., Grabo, T., Gross, E.K.U.: Asymptotic properties of the optimized

effective potential. Adv. Quantum. Chem. 33, 31–49 (1999)
Kreibich, T.: Multicomponent density-functional theory for molecules in strong laser fields. Ph.D.

Thesis, Universität Würzburg, Shaker-Verlag (2000)
Kreibich, T., Gross, E.K.U.: Multicomponent density-functional theory for electrons and nuclei.

Phys. Rev. Lett. 86, 2984–2987 (2001)
Kreibich, T., Lein, M., Engel, V., Gross, E.K.U.: Even-harmonic generation due to Beyond-Born-

Oppenheimer dynamics. Phys. Rev. Lett. 87, 103901-1–103901-4 (2001)

524 References



Kreibich, T., Gidopoulos, N.I., van Leeuwen, R., Gross, E.K.U.: Towards timedependent density-
functional theory for molecules in strong laser pulses. Prog. Theor. Chem. Phys. 14, 69–78
(2003) (Springer, Berlin)

Kreibich, T., van Leeuwen, R., Gross, E.K.U.: Time-dependent variational approach to molecules
in strong laser fields. Chem. Phys. 304, 183–202 (2004)

Kreibich, T., van Leeuwen, R., Gross, E.K.U.: Multicomponent density-functional theory for
electrons and nuclei. Phys. Rev. A 78, 022501-1–022501-22 (2008)

Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmentedwave method.
Phys. Rev. B 59, 1758–1775 (1999)

Krieger, J.B., Li, Y., Iafrate, G.J.: Systematic approximations to the optimized effective potential:
Application to orbital-density-functional theory. Phys. Rev. A 46, 5453–5458 (1992a)

Krieger, J.B., Li, Y., Iafrate, G.J.: Construction and application of an accurate local spin-
polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory. Phys. Rev.
A 45, 101–126 (1992b)

Krikunova, M., Maltezopoulos, T., Wessels, P., Schlie, M., Azima, A., Wieland, M., Drescher,
M.: Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and
near-infrared light pulses. J. Chem. Phys. 134, 024313-1–024313-7 (2011)

Krishna, V.: Time-dependent density-functional theory for nonadiabatic electronic dynamics.
Phys. Rev. Lett. 102, 053002-1–053002-4 (2009)

Kronig, R., de, L.: On the theory of the dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926)
Krueger, A.J., Maitra, N.T.: Autoionizing resonances in time-dependent density functional

theory. Phys. Chem. Chem. Phys. 11, 4655–4663 (2009)
Kruit, P., Kimman, J., Muller, H.G., van der Wiel, M.J.: Electron spectra from multiphoton

ionization of xenon at 1064, 532, and 355 nm. Phys. Rev. A 28, 248–255 (1983)
Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple

applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)
Kuhn, W.: Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien.

Z. Phys. 33, 408–412 (1925)
Kühne, T.D., Krack, M., Mohamed, F.R., Parrinello, M.: Efficient and accurate Car- Parrinello-

like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401-1–
066401-4 (2007)

Kulander, K.C.: Multiphoton ionization of hydrogen: A time-dependent theory. Phys. Rev. A 35,
445–447 (1987)

Kulander, K.C.: Time-dependent theory of multiphoton ionization of xenon. Phys. Rev. A 38,
778–787 (1988)

Kulander, K.C., Schafer, K.J., Krause, J.L.: Dynamic stabilization of hydrogen in an intense,
high-frequency, pulsed laser field. Phys. Rev. Lett. 66, 2601–2604 (1991a)

Kulander, K.C., Schafer, K.J., Krause, J.L.: Single active electron calculations of multiphoton
processes in krypton. Int. J. Quant. Chem. Symp. 25, 415–429 (1991b)

Kulander, K.C., Schafer, K.J., Krause, J.L.: Time-dependent studies of multiphoton processes. In:
Gavrila, M. (ed.) Atoms in Intense Laser Fields, pp. 247–300. Academic Press, Boston (1992)

Kulander, K.C., Schafer, K.J., Krause, J.L.: Dynamics of short-pulse excitation, ionization and
harmonic conversion. In: Piraux, B., L’Huillier, A., Rzazewski, K. (eds.) Super-Intense Laser-
Atom Physics. NATO ASI Series B316, pp. 95–110 (Plenum Press, New York) (1993)

Kümmel, S., Perdew, J.P.: Two avenues to self-interaction correction within Kohn-Sham theory:
Unitary invariance is the shortcut. Mol. Phys. 101, 1363–1368 (2003a)

Kümmel, S., Perdew, J.P.: Optimized effective potential made simple: Orbital functionals, orbital shifts,
and the exact Kohn-Sham exchange potential. Phys. Rev. B 68, 035103-1–035103-15 (2003b)

Kümmel, S., Kronik, L., Perdew, J.P.: Electrical response of molecular chains from density
functional theory. Phys. Rev. Lett. 93, 213002-1–213002-4 (2004)

Kümmel, S., Kronik, L.: Orbital-dependent density functionals: Theory and applications. Rev.
Mod. Phys. 80, 3–60 (2008)

References 525



Kunert, T., Schmidt, R.: Excitation and fragmentation mechanisms in ion-fullerene collisions.
Phys. Rev. Lett. 86, 5258–5261 (2001)

Kurth, S., Perdew, J.P.: Density-functional correction of rpa correlation, with results for jellium
surface energies. Phys. Rev. B 59, 10461–10468 (1999)

Kurth, S., Stefanucci, G., Almbladh, C.-O., Rubio, A., Gross, E.K.U.: Time-dependent quantum
transport: A practical scheme using density functional theory. Phys. Rev. B 72, 035308-1–
035308-13 (2005)

Kurth, S., Stefanucci, G., Khosravi, E., Verdozzi, C., Gross, E.K.U.: Dynamical Coulomb
blockade and the derivative discontinuity of time-dependent density functional theory. Phys.
Rev. Lett. 104, 236801-1–236801-4 (2010)

Kurth, S., Stefanucci, G.: Time-dependent bond-current functional theory for lattice Hamilto-
nians: Fundamental theorem and application to electron transport’’, Chem. Phys. (2011, in
press). Available online at http://dx.doi.org/10.1016/j.chemphys.2011.01.016

Kurzweil, Y., Baer, R.: Time-dependent exchange-correlation current density functionals with
memory. J. Chem. Phys. 121, 8731–8741 (2004)

Laarmann, T., Shchatsinin, I., Singh, P., Zhavoronkov, N., Gerhards, M., Schulz, C.P., Hertel,
I.V.: Coherent control of bond breaking in amino acid complexes with tailored femtosecond
pulses. J. Chem. Phys. 127, 201101-1–201101-4 (2007)

Lacks, D.J., Gordon, R.G.: Pair interactions of rare-gas atoms as a test of exchange energy-
density functionals in regions of large density gradients. Phys. Rev. A 47, 4681–4690 (1993)

Lam, P.K., Cohen, M.L.: Ab initio calculation of the static structural properties of Al. Phys. Rev.
B 24, 4224–4229 (1981)

Lambropoulos, P., Maragakis, P., Zhang, J.: Two-electron atoms in strong fields. Phys. Rep. 305,
203–293 (1998)

Lammert, P.E.: Well-behaved coarse-grained model of density-functional theory. Phys. Rev. A
82, 012109-1–012109-14 (2010)

Landau, L.D.: On the theory of transfer of energy at collisions II. Phys. Z. Sowjetunion 2, 46–51
(1932)

Landau, L.D., Lifshitz, E.: Statistical Physics. Addison-Wesley, Reading (1969)
Landau, L.D., Lifshitz, E.M.: Mechanics of Fluids, vol. 6 of Course of Theoretical Physics, 2nd

edn. Pergamon, New York (1987)
Lang, N.D.: Resistance of atomic wires. Phys. Rev B 52, 5335–5342 (1995)
Langbein, D.: Theory of van der Waals Attraction, vol. 72 of Springer Tracts in Modern Physics.

Springer, Berlin (1974)
Langhoff, P.W., Epstein, S.T., Karplus, M.: Aspects of time-dependent perturbation theory. Rev.

Mod. Phys. 44, 602–644 (1972)
Langreth, D.C., Perdew, J.P.: The exchange-correlation energy of a metallic surface. Sol. State

Commun. 17, 1425–1429 (1975)
Langreth, D.C., Perdew, J.P.: Theory of nonuniform electronic systems. I. Analysis of the

gradient approximation and a generalization that works. Phys. Rev. B 21, 5469–5493 (1980)
Langreth, D., Dion, M., Rydberg, H., Schröder, E., Hyldegaard, P., Lundqvist, B.I.: van der Waals

density functional theory with applications. Int. J. Quantum Chem. 101, 599–610 (2005)
Langreth, D.C., Lundqvist, B.I., Chakarova-Käck, S.D., Cooper, V.R., Dion, M., Hyldgaard, P.,

Kelkkanen, A., Kleis, J., Kong, L., Li, S., Moses, P.G., Murray, E., Puzder, A., Rydberg, H.,
Schröder, E., Thonhauser, T.: A density functional for sparse matter. J. Phys. Condens. Matter
21, 084203-1–084203-15 (2009)

Lappas, D., van Leeuwen, R.: Electron correlation effects in the double ionization of He. J. Phys.
B At. Mol. Opt. Phys. 31, L249–L256 (1998)

Larochelle, S., Talebpour, A., Chin, S.L.: Non-sequential multiple ionization of rare gas atoms in
a Ti:sapphire laser field. J. Phys. B At. Mol. Opt. Phys. 31, 1201–1214 (1998)

Lautenschlager, P., Garriga, M., Viña, L., Cardona, M.: Temperature dependence of the dielectric
function and interband critical points in silicon. Phys. Rev. B 36, 4821–4830 (1987)

526 References

http://dx.doi.org/10.1016/j.chemphys.2011.01.016


Lazzeri, M., Mauri, F.: First-principles calculation of vibrational raman spectra in large systems:
Signature of small rings in crystalline SiO2. Phys. Rev. Lett. 90, 036401-1–036401-4 (2003)

Lazzeri, M., Mauri, F.: Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev.
Lett. 97, 266407-1–266407-4 (2006)

Lebegue, S., Harl, J., Gould, T., Angyan, J.G., Kresse, G., Dobson, J.F.: Cohesive properties and
asymptotics of the dispersion interaction in graphite by the random phase approximation.
Phys. Rev. Lett. 105, 196401-1–196401-4 (2010)

Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into
a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

Lee, K., Murray, É.D., Kong, L., Lundqvist, B.I., Langreth, D.C.: Higher-accuracy van der Waals
density functional. Phys. Rev. B 82, 081101-1–081101-4 (2010)

Légaré, F., Litvinyuk, I.V., Dooley, P.W., Quéré, F., Bandrauk, A.D., Villeneuve, D.M., Corkum,
P.B.: Time-resolved double ionization with few cycle laser pulses. Phys. Rev. Lett. 91,
093002-1–093002-4 (2003)

Legrand, C., Suraud, E., Reinhard, P.-G.: Comparison of self-interaction-corrections for metal
clusters. J. Phys. B At. Mol. Opt. Phys. 35, 1115–1123 (2002)

Lein, M., Dobson, J.F., Gross, E.K.U.: Towards the description of van der Waals interactions in
density functional theory. J. Comp. Chem. 20, 12–22 (1999)

Lein, M., Gross, E.K.U., Engel, V.: Intense-field double ionization of Helium: Identifying the
mechanism. Phys. Rev. Lett. 85, 4707–4710 (2000a)

Lein, M., Gross, E.K.U., Perdew, J.P.: Electron correlation nergies from scaled exchange-
correlation kernels: Importance of spatial versus temporal nonlocality. Phys. Rev. B 61,
13431–13437 (2000b)

Lein, M., Kümmel, S.: Exact time-dependent exchange-correlation potential for strong-field
electron dynamics. Phys. Rev. Lett. 94, 143003-1–143003-4 (2005)

Leiva, P., Piris, M.: Calculation of vertical ionization potentials with the Piris natural orbital
functional. J. Mol. Struct. THEOCHEM 770, 45–49 (2006)

Levine, Z.H., Allan, D.C.: Linear optical response in silicon and germanium including self-
energy effects. Phys. Rev. Lett. 63, 1719–1722 (1989)

Levine, I.G.: Quantum Chemistry. Prentice-Hall, New Jersey (2000)
Levine, B.G., Ko, C., Quenneville, J., Martínez, T.J.: Conical intersections and double excitations

in time-dependent density functional theory. Mol. Phys. 104, 1039–1051 (2006)
Levine, B.G., Coe, J.D., Martínez, T.J.: Optimizing conical intersections without derivative

coupling vectors: Application to mutistate multireference second-order perturbation theory
(MS-CASPT2). J. Phys.Chem. B 112, 405–413 (2008)

Levy, M.: Universal variational functionals of electron densities, first order density matrices, and
natural-spinorbitals and solutions of the v-representability problem. Proc. Natl. Acad. Sci.
USA 76, 6062–6065 (1979)

Levy, M., Perdew, J.P., Sahni, V.: Exact differential equation for the density and ionization
energy of a many-particle system. Phys. Rev. A 30, 2745–2748 (1984)

Levy, M., Perdew, J.P.: Hellmann.Feynman, virial, and scaling requisites for the exact universal
density functionals. Shape of the correlation potential and diamagnetic susceptibility for
atoms. Phys. Rev. A 32, 2010–2021 (1985)

Levy, M., Nagy, Á.: Variational density-functional theory for an individual excited state. Phys.
Rev. Lett. 83, 4361–4364 (1999)

Lewenstein, M., Balcou, P., Yu Ivanov, M., L’Huillier, A., Corkum, P.: Theory of highharmonic
generation by low-frequency laser fields. Phys. Rev. A. 49, 2117–2132 (1994)

L’Huillier, A., Lompré, L.A., Mainfray, G., Manus, C.: Multiply charged ions induced by
multiphoton absorption in rare gases at 0.53 lm. Phys. Rev. A 27, 2503–2512 (1983)

L’Huillier, A., Lompré, L.A., Mainfray, G., Manus, C.: High-order harmonic generation in rare
gases. In: Gavrila, M. (ed.) Atoms in Intense Laser Fields, pp. 139–206. Academic Press,
Boston (1992)

References 527



L’Huillier, A., Balcou, P.: High-order harmonic generation in rare gases with a 1–ps 1053–nm
laser. Phys. Rev. Lett. 70, 774–777 (1993)

L’Huillier, A.: Atoms in strong laser fields. Europhys. News 33, 205–207 (2002)
Li, T., Tong, P.: Hohenberg-Kohn theorem for time-dependent ensembles. Phys. Rev. A 31,

1950–1951 (1985)
Li, T., Li, Y.: Kohn-Sham equation for time-dependent ensembles. Phys. Rev. A. 31, 3970–3971

(1985)
Li, T., Tong, P.: Time-dependent density-functional theory for multicomponent systems. Phys.

Rev. A 34, 529–532 (1986)
Li, X.F., L’Huillier, A., Ferray, M., Lompré, L.A., Mainfray, G.: Multiple-harmonic generation in

rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989)
Liang, Y., Augst, S., Chin, S.L., Beaudoin, Y., Chaker, M.: High harmonic generation in atomic

and diatomic molecular gases using intense picosecond laser pulses–a comparison. J. Phys.
B At. Mol. Opt. Phys. 27, 5119–5130 (1994)

Lieb, E.H., Oxford, S.: An improved lower bound on the indirect Coulomb energy. Int. J. Quant.
Chem. 19, 427–439 (1981)

Lieb, E.H.: Density functionals for coulomb systems. Int. J. Quant. Chem. 24, 243–277 (1983)
Lima, N.A., Oliveira, L.N., Capelle, K.: Density-functional study of the mott gap in the Hubbard

model. Europhys. Lett. 60, 601–607 (2002)
Lima, N.A., Silva, M.F., Oliveira, L.N., Capelle, K.: Density functionals not based on the electron

gas: Local-density approximation for a luttinger liquid. Phys. Rev. Lett. 90, 146402-1–
146402-4 (2003)

Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48,
119–130 (1976)

Lindner, F., Schätzel, M.G., Walther, H., Baltuška, A., Goulielmakis, E., Krausz, F., Milošević,
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Index

2n + 1 Theorem, 152

A
Above-threshold ionization, 6, 355
Absorption

coefficient, 38
spectroscopy, 4, 24

Action functional, 168, 206, 210
Adiabatic

approximation, 93, 110, 272, 284, 291,
294, 388

connection, 91, 103, 117, 210, 417
LDA, 89, 110, 176, 422
switching, 196

Adiabatic approximation
All-electron partial-waves, 393
Analytical derivatives, 282, 290
Antiadiabatic dynamics, 484
Asymptotic region, 106, 128, 419
Attosecond

spectroscopy, 3, 352
transient absorption, 12

Augmentation spheres, 395
Autoionizing resonance, 184
Avoided crossing, 280–282, 285, 288,

289, 297

B
Band-gap problem see derivative discontinuity
Basis sets

atom-centered, 323
Gaussians, 324
plane-waves, 350

wavelets , 405
Bath correlation functions, 237
Bath degrees of freedom, 213
Beer-Lambert law, 19
Berry phase, 286, 298
Bethe-ansatz LDA, 345
Bethe-Salpeter equation, 297
Binding energies, 455
Bogoliubov-Born-Green-Kirkwood-Yvon

hierarchy, 492
Born approximation, 237
Born-Markov limit, 213, 232
Born-Oppenheimer

approximation, 282–285
beyond, 279, 282, 290, 293, 299
dynamics see molecular dynamics, 302
expansion, 283
group equation, 285
separation, 280

Bound-state oscillations, 342
Branching

coordinates, 295
plane, 289, 290, 296
ratios, 286
vectors, 289

Bulk viscosity, 460

C
Car-Parrinello

dynamics, 371
Lagrangian, 305

Casida’s equation, 77, 153, 156, 224, 292, 412
Casimir-Polder formula, 421, 441
Causality, 67, 73
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C (cont.)
Charge resonance enhanced ionization, 363
Charge-transfer excitations, 96, 183, 330, 485
Classical limit, 310
Co-moving frame, 477, 479, 480
Coherent light sources, 3
Compensation charge, 396
Complete active space self-consistentfield,

281, 282, 294–298
Configuration interaction singles, 293
Conical intersections, 96, 184, 280–283,

288–295, 297, 298
Constrained density functional theory, 297,

298
Continuity equation, 189, 191, 460
Control of dissociative ionization
Convective derivative, 476
Coulomb blockade, 96, 344, 347

dynamical, 348
Coulomb explosion, 364
Coupled

perturbed Kohn-Sham, 147
plasmon picture, 419

Coupling constant
Covariant divergence, 476, 480
Crank-Nicholson algorithm, 358
Cross section, 16
Current DFT, 462

D
Deformation

functional theory, 458
tensor, 481

Density fluctuation operator, 196
Derivative coupling

matrix, 284, 285, 289
vector, 289, 290

Derivative discontinuity Band-gap Problem
Diatomic molecules, 260
Dielectric function, 19, 32, 38
Dipole approximation, 272
Dispersion forcesvander waals forces
Dissipative dynamics, 219
Dissociation energies, 455
Double

excitations, 118, 167, 293, 297, 298,
332, 495

hybrid functionals, 328
ionization, 354

Dressed TDDFT, 297
Dye molecules, 388
Dynamical polarizability, 43, 146, 377, 444
Dyson equation, 74, 196

E
Ehrenfest

dynamics, 286, 290, 291, 298, 302, 397
TDDFT, 304

Elastic approximation, 483
Elasticity

of the electron liquid, 466
theory, 481, 483

Electrocyclic ring opening, 291, 293, 294, 297
Electron energy-loss spectroscopy, 19, 40,

93, 159
Electron localization
Electron-phonon coupling, 258
Ellipsometry, 21
Embedding

self energy, 341
technique, 350

Energy-momentum tensor, 189
Equilibrium density matrix, 311
Eulerian

formulation, 472
variables, 476

Exact
exchange, 90, 91, 94, 95, 110, 126, 418
two-electron wavefunction, 491

Exchange-correlation
action functional see
kernel, 74, 177, 463
retarded, 458
vector potential, 464

Excitation energies
Excited-state

dynamics, 279, 318
energy gradient, 323
properties, 320

Excitons, 94
Extended systems, 381

polarization of

F
Femtosecond spectroscopy, 8, 279, 282,

298, 352
Fermi’s golden rule, 16
Finite leads, 338

Floquet theory, 173, 357
Fluctuation-dissipation theorem Adiabation
Fokker-Planck equation, 314
Force balance equation, 473, 474, 480
Franck-Condon

approximation, 280
point, 288
region, 280, 281, 298

Functional derivatives, 118
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G
Generalized Kohn-Sham, 125
Gradient difference vector, 289, 290
Graphic processing units, 401
Gross-Kohn kernel, 92, 110
Ground-state KS equations, 73, 396

H
Harmonic potential theorem, 458, 478, 483
Harriman construction, 193
Hartree-Fock functional, 293, 419
Helium

atom, 178
knee, 354, 361

High-harmonic generation, 7, 276
cutoff of plateau, 357

High-intensity laser see strong fields
High-performance computing, 401
Hohenberg-Kohn theorem, 54, 57, 199
Homogeneous electron gas, 107, 168, 459, 463
Hooke’s atom, 169
Hybrid functionals, 319, 327
Hydrodynamic kernels, 91
Hydrodynamics, 459, 472, 474, 475, 477

I
Inelastic scattering, 26
Initial-state dependence, 167–169, 171, 173,

175–177
Internal coordinates, 251
Ionization probabilities, 359
Irreversibility, 468
Ito stochastic calculus, 240

K
Keldysh formalism, 206, 210
Kinetic-energy spectrum, 362
Kramers-Kronig relations, 20, 116
Kraus operators, 226

L
L̈owdin-Shull functional, 491

Lagrangian, 321
description, 475, 476
formulation, 475, 477
frame, 479, 482
functional, 268
trajectory, 475–477, 479

Lanczos bi-orthogonalization
algorithm, 382

Landau-Zener model, 288, 292, 293,
295, 296

Langevin dynamics, 314
Laplace transform, 197–199
Laser-induced

electron diffraction, 363
electron recollision, 363
molecular potential, 363

Lehmann representation, 73, 74, 196
Lieb-Oxford bound, 106
Lindblad master equation, 213, 232
Linear response, 107, 195, 399, 462, 493
Liouville-Lanczos method, 376, 382
Liouvillian superoperator, 213, 376
Local-field effects, 39, 41, 46, 48
Long-range corrected functionals, 319, 327,

454

M
Macroscopic average, 45
Magnetic susceptibility, 160
Many-body perturbation theory, 376
Markov approximation, 237
Markovian bath functional, 221
Master equation, 349
Mathieu oscillator, 169
Memory see Non-locality in timeMetric tensor
Microscopic reversibility, 286
Mixed quantum-classical systems, 302
Mixed TDDFT/classical trajectorysurface-

hopping photodynamics, 282, 292,
293, 298

Molecular dissociation, 95
Molecular dynamics, 163, 302

finite temperature, 309
Momentum flow tensor, 473, 474, 480
Multicomponent

action functional, 256
Kohn-Sham equations, 255
linear response, 258, 259
Runge-Gross theorem, 172

Multiphoton ionization, 352
Multiplet sum method, 291
Multireference configuration interaction, 297

N
Nakajima-Zwanzig projection operator, 213,

235
Nanoquanta kernel, 94
Natural

occupation numbers, 488
orbitals, 488
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N (cont.)
Navier-Stokes equation, 484
Neutral excitations, 37
Non-adiabatic

coupling, 165, 335
coupling matrix/vector, 284, 285, 287,

291–293
phonons, 163

Non-dipole excitations, 19
Non-equilibrium Green’s functions, 210
Non-locality

in space, 457
in time, 479

Nonlinear optics, 3
Nonlocal correlation functionals, 448
Nuclear dynamics, 369

O
Objective function, 267
Octopus, 407
One-to-one mapping, 167, 173, 193, 254
Open quantum systems
Optical

absorption, 37
constants, 19

Optical response
of finite systems
of solids, 93

Optimal control, 265
Optimized effective potential, 90
Orbital

functionals, 103, 125, 258
shifts, 132

Oscillator strengths, 329

P
Pair correlation function, 360
Pathway method, 283, 288, 289, 291
Pauli repulsion, 454
Penalty function, 267
Periodic systems see Extended system, 64
Perturbation theory

density functional, 147, 379
symmetry adapted, 421
time-dependent, 147
time-independent, 196

Phase-including natural orbital, 496
Photoabsorption cross section, 43
Photochemical funnel, 280, 281, 285, 286,

293–298
Photoemission spectroscopy, 22, 32
Plasmon dispersion, 92

Poincaŕe recurrence times, 234
Poisson equation, 412
Polarizability, 157, 444
Polarization propagator, 297
Ponderomotive potential, 355
Potential energy surfaces

adiabatic, 284–286, 288, 290
diabatic, 285, 286, 288

Projector-augmented wave method, 391
Pseudopotentials, 391, 397
Pump-probe experiments, 9

Q
QM/MM method, 336
Quantum

control, 265
dynamics, 334
jump algorithm
kinetic approach
master equation, 232

R
Raman spectroscopy, 164
Random phase approximation, 418
Real-space grid, 410
Real-time propagation, 120, 145, 169, 270,

376, 398, 407
Recoil ion momentum, 354
Recollision model, 8, 354
Reconstruction of attosecond beatingby

interference of
two-photontransitions, 11

Reduced density matrix, 472, 473, 479
one body, 488
two body, 492

Response function, 140, 417
Restricted open-shell Kohn-Sham, 291
RI-J approximation, 326
Runge-Gross theorem, 176, 187, 194, 195,

198, 199, 206, 208, 218
Rydberg

excitations, 95, 331
series, 84
states, 293

S
Satellites, 35
Scalar coupling matrix, 284
Scaling

correlation, 105
exchange, 105
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Self-interaction, 106, 125, 126
Shape coordinates, 252
Shear viscosity, 460
Single-active electron model, 357
Single-pole approximation, 76, 78, 118, 181
Singlet-triplet splitting, 82–84
Small matrix approximation, 76, 78
Solvation effects
Spectral function, 34
Spin instabilities, 293
Spin-flip

excitations, 320
TDDFT, 291, 297

Split-operator method, 365
Squarine molecule, 388
Stabilization against ionization, 355
Static correlation, 370
Step structures, 128
Sternheimer method, 147
Stochastic

current density functional theory, 56
quantum molecular dynamics, 244
Schr̈odinger equation, 232, 237

Stokes shift, 280, 282, 291
Streaking measurements, 10
Strength function, 43
Stress tensor, 474–476, 480, 482
Strong fields, 3, 177, 184, 266
Strong-field tomography, 8
Strongly correlated systems, 486
Sum-over-states, 151, 153
Sum-rules, 119, 282, 386
Surface

hopping, 312, 335

T
Tamm-Dancoff approximation, 77, 79, 282,

292–294, 376
Target functional, 269
Taylor expansion, 64, 397
Thomas-Reiche-Kuhn sum-rule, 78
Time-dependent

current, 67, 194
current DFT, 67, 194, 461
deformation functional theory, 69
density, 171, 187
density-functional tight binding, 298

dipole moment, 146
electron localization function, 367

extended Hartree-Fock, 365
Hartree-Fock, 293

Kohn-Sham equations, 210
multicomponent DFT, 249
optimized effective potential, 131
RDMFT, 485
target, 273
transport

Translational invariance, 463
Triplet excitations, 332
Tully’s fewest switches, 282, 286, 287,

292, 295
Tunneling ionization, 364

U
Ultranonlocality problem, 457, 460, 471,

477, 482

V
V-representability, 187, 193, 194, 206,

295–297
Van der Waals

coefficients, 159
forces, 417, 444
seamless functionals, 443

van Leeuwen construction, 212
Variational principle, 206
Vector potential, 194
Velocity map imaging spectrometer, 4
Vignale-Kohn, 110
Virial theorem, 112
Viscous

forces, 56
stress tensor, 460

Volkov states, 261

W
Wave packet dynamics, 334
Wigner representation, 310

X
Z-vector method, 321
Zero

force theorem, 105, 112
torque theorem, 105, 112
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