

(Pages: 3)

14078

Name.....

Reg. No.....

FIFTH SEMESTER B.A./B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CUCBCSS-UG)

Mathematics

MAT 5B 06—ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 120 Marks

Part A

Answer all questions. Each question carries 1 mark.

- 1. The smallest non abelian group has ----- number of elements.
- 2. The order of the identity element in any group G is
- 3. State True or False. "Every abelian group is cyclic".
- 4. State True or False. "Every group of order 31 is cyclic".
- 5. Give an example of non-cyclic group with four elements.
- 6. The total number of subgroups of Z_{12} is —
- 7. What are the orbits of the identity permutation σ of a set A?
- 8. How many zero divisors are there for the field Z_7 ?
- 9. How many units are there for the field Z_7 ?
- 10. Give an example of integral domain which not a field.
- 11. State True or False. Z is a sub field of Q.
- 12. Write the number of generators of the group Z_5 under addition modulo 5.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any ten questions. Each question carries 4 marks.

- 13. Show that left and right cancellation holds in a group G.
- 14. Let G be a group and suppose that $a * b * c = e \forall a, b, c \in G$. Show that b * c * a = e.
- 15. Prove that a group G has exactly one idempotent element.
- 16. Can the identity element be a generator of a cyclic group?
- 17. Prove that every cyclic group is abelian.

18. Consider the group \mathbb{Z}_{12} , under the operation addition modulo 12. Find the order of the cyclic subgroup generated by $3 \in \mathbb{Z}_{12}$.

2

- 19. Show that the permutation (1, 4, 5, 6) (2, 3, 1, 5) is an even permutation.
- 20. What is the order of the cycle (1, 4, 5, 7) in S_8 ?
- 21. Find the partition of the group \mathbb{Z}_6 , under the operation addition modulo 6, into cosets of the subgroup $H = \{0, 3\}$.
- 22. Consider the rings $\langle \mathbb{Z}, +, \cdot \rangle$ and $\langle 2\mathbb{Z}, +, \cdot \rangle$. Verify whether the map $\phi: \mathbb{Z} \to 2\mathbb{Z}$ defined by $\phi(x) = 2x \forall x \in \mathbb{Z}$ is a ring homomorphism or not.
- 23. Find the number of generators of the cyclic group of order 8.
- 24. Solve the equation $x^2 5x + 6 = 0$ in \mathbb{Z}_{12} .
- 25. Consider the following two binary structures :
 - \mathbb{Z} , the set of integers with ordinary addition ; and (a)
 - $2\mathbb{Z} = \{2n | n \in \mathbb{Z}\}$ the set of even integers with ordinary addition.
 - (b) Show that the above two binary structures are isomorphic.
- 26. Let n be a positive integer. Give an example of a group containing n elements. $(10 \times 4 = 40 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 7 marks.

27. Let * be defined by Q⁺ by $a * b = \frac{ab}{2}$. Show that $(Q^+, *)$ is an abelian group.

- Let G be a group. For all $a, b \in G$, prove that $(a * b)^{-1} = b^{-1} * a^{-1}$.
- 29. Prove that a necessary and sufficient condition that a non-empty subset H of a group G is a subgroup of G is that $a \in H, b \in H \Rightarrow ab^{-1} \in H$.
- Show that the subgroups of $\mathbb Z$ under addition are precisely the groups $n\mathbb Z$ under addition 30.
- 31. Show that any permutation of a finite set of at least two elements is a product of
- 32. Show that a homomorphism ϕ of a group G is a one-to-one function if and only if Ker $\phi = \{e\}$.
- 33. Show that cancellation law holds in a ring R if and only if R has no zero divisors.

34. M₂ denotes the ring of all 2 × 2 matrices of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are rational

3

numbers. Is M2 a field ? Justify your answer.

35. Prove that any integral domain D can be enlarged to (or embedded in) a field F such that every element of F can be expressed as a quotient of two elements of D.

 $(6 \times 7 = 42 \text{ marks})$

Part D

Answer any **two** questions. Each question carries 13 marks.

36. Show that subgroup of a cyclic group is cyclic.

- 37. (a) Define the term orbit, cycle and transposition with respect to a permutation.
 - (b) Write the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{pmatrix}$ as product of disjoint cycles.
 - (c) Define even and odd permutation. Write (1, 4, 5, 6) (2, 1, 5) as a product of transpositions.
- 38. Show that in the ring \mathbb{Z}_n , the divisors of 0 are precisely those elements that are not relatively prime to n also show that \mathbb{Z}_p is a field.

 $(2 \times 13 = 26 \text{ marks})$

(Pages: 3)

Name.....

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CUCBCSS-UG)

Mathematics

MAT 5B 06-ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 120 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. Define a Group.

16 1

2. Fill in the blanks : The units in the ring of integers \mathbb{Z} are —

3. Write the order of the permutation (1, 2) (198) in S₉.

4. Give an example of a finite group of order 4 which is not cyclic.

5. Calculate the remainder obtained when 45^{72} is divided by 73.

6. Find the inverse of the product (7, 5) (2, 5, 7) in S₇. Is the inverse a cycle ?

7. What is the characteristic of the ring $\langle \mathbb{Z}_9, +_9, \times_9 \rangle$.

8. Give an example for an integral domain which is not a field.

9. What is the necessary condition for a homomorphism ϕ from a group G to G' to be injective.

10. Define normal subgroup of a group.

11. What is the index of A_n in S_n .

12. Define a cyclic group and give an example.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer at least **eight** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 48.

13. Write criteria to be checked to determine whether a function $\Phi: S \to S'$ is an isomorphism of a binary structure $\langle S, * \rangle$ with $\langle S', *' \rangle$.

14. Is \mathbb{Z}^+ a group under usual addition ? Establish your claim.

- 15. Solve: $x^2 1 = 0$ in the field \mathbb{Z}_p .
- 16. Show that every field is an integral domain.
- 17. Find the multiplicative inverse of 53 in \mathbb{Z}_{57} .
- 18. Construct group table for the Klein group. What is the order of every element in this group ?
- 19. Define kernel of a group homomorphism. Find the ker(ϕ) for $\phi : \mathbb{R} \to \mathbb{R}$ defined by $\phi(x) = 0$ for all $x \in \mathbb{R}$.
- 20. Define a ring. Give an example of a non-commutative ring.
- 21. Define center of a group and show that center of the symmetric group S_3 is the trivial group.
- 22. In any ring R, show that a.0 = 0 = 0.a and a.(-b) = -(a.b) for all a, b in R.
- 23. Show that for any group, its identity element and inverse of any element are unique.
- 24. Evaluate the product of (2, 3) and (3, 5) in $\mathbb{Z}_5 \times \mathbb{Z}_9$.
- 25. Show that $a^2 b^2 = (a b)(a + b)$ in a ring R if and only if R is commutative.
- 26. Define factor group and give an example.

 $(8 \times 6 = 48 \text{ marks})$

Section C

Answer at least **five** questions. Each question carries 9 marks. All questions can be attended. Overall Ceiling 45.

- 27. Show that the binary structure $\langle \mathbb{R}, + \rangle$ with operation the usual addition is isomorphic to the structure $\langle \mathbb{R}^+, \rangle$ where . is the usual multiplication.
- 28. (a) State and prove Lagrange's theorem ; and (b) Establish one of its corollary.
- 29. Show that the subset S of $M_n(\mathbb{R})$ consisting of all invertible $n \times n$ matrices under matrix multiplication is a group.
- **30.** Show that every permutation σ of a finite set is a product of disjoint cycles.

- 31. Let G and G' be groups and let $\phi: G \to G'$ be one to one function such that $\phi(xy) = \phi(x)\Phi(y)$ for all $x, y \in G$. Then prove that $\phi[G]$ is a subgroup of G' and ϕ provides an isomorphism of G with $\Phi[G]$.
- 32. Show that subgroup a cyclic group is cyclic.
- 33. Show that M is a maximal normal subgroup of G if and only if G/M is simple.
- 34. Show that the cancellation law in a ring R holds if and only if it has no zero divisors.
- 35. Find all solutions of the congruence $12x \equiv 27 \pmod{18}$.

 $(5 \times 9 = 45 \text{ marks})$

Section D

Answer any **one** question. The question carries 15 marks.

36. (a) Show that $|\langle a^s \rangle| = |\langle a^t \rangle|$ if and only if g.c.d (n, s) = g.c.d(n, t) where $n = |\langle a \rangle|$.

(b) Show that the only subgroups of \mathbb{Z} are the form $n\mathbb{Z}$ for $n \in \mathbb{Z}$.

37. State Cayley's theorem and give the proof in detail.

38. (a) Show that any two fields of quotients of an integral domain are isomorphic.

(b) Prove or disprove : Factor group of a cyclic group is cyclic.

 $(1 \times 15 = 15 \text{ marks})$

(Pages: 3)

		as b			
Nai	me.		 		

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCBCSS-UG)

Mathematics

MAT 5B 06—ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 120 Marks

Section A

Answer all the twelve questions. Each question carries 1 mark.

- 1. Fill in the blanks : The total number of commutative binary operations on a set of n elements is _____.
- 2. Fill in the blanks : The number of elements in the ring $M_2(\mathbb{Z}_3)$ is —
- 3. Fill in the blanks : The least value of n such that a group G of order n is non-abelian is
- 4. Define a group.
- 5. Give an example of a finite integral domain.
- 6. Define skew fields.
- 7. Calculate the order of the permutation $\mu = (1) (1 2) (1 3)$ in S₄.
- 8. Solve: -3x + 2 = 4 in the group $< \mathbb{Z}_6, +_6 > .$
- 9. Show that the identity element in a group is unique.
- 10. How many left cosets are there for $p\mathbb{Z}$ in \mathbb{Z} if p is a prime.
- 11. What is a Klein group?
- 12. Give a group theoretic definition of greatest common divisor of two positive integers.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any ten out of fourteen questions. Each question carries 4 marks.

- 13. If H is a finite non-empty subset of a group G, establish that H will be a subgroup if it is closed under the binary operation in G.
- 14. Show that a group is a finite group if it has finite number of subgroups.

- 15. Show that every cyclic group is abelian.
- 16. Find all group homomorphism from \mathbb{Z} into itself.
- 17. Let G be a group of order pq where p and q are primes. Show that every proper subgroup of G is cyclic.
- 18. Let S be a set and let f, g and h be functions mapping S into S. Prove that $f^*(g^*h) = (f^*g)^*h$ where the binary operation * is the function composition.
- 19. Is the union of two subgroups a subgroup ? Justify your claim.
- 20. Show that the coset multiplication given by (aH)(bH) = abH is a well defined operation when H is a normal subgroup of G.
- 21. Draw the subgroup diagram for \mathbb{Z}_{18} .
- 22. Show that any finite cyclic group of order n is isomorphic to \mathbb{Z}_n .
- 23. Find a group isomorphic to the Klein group other than the Klein group. Establish that it is so.
- 24. Give any necessary and sufficient condition for a ring R to have no zero divisors. Justify your claim.
- 25. Is Q, the set of rationals, the field of quotients for integers? Give reasons to establish your assertion or denial.
- 26. Show that factor group of a cyclic group is always abelian.

$(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** out of nine questions. Each question carries 7 marks.

- 27. Draw the group table for the dihedral group D_4 . Is D_4 a cyclic group ? Justify your claim.
- 28. Define kernal of a group homomorphism and show that it is a normal subgroup of the domain of the homomorphism.
- 29. Define order of an element in any group G. Show that in a finite group G, order of any element divides order of G.
- 30. Show that every permutation σ of a finite set is a product of disjoint cycles.
- 31. Prove or disprove : Every finite integral domain is a field.
- 32. Define the alternate group A_n . Show that it is a normal subgroup and find the group isomorphic to S_n/A_n .

- 33. Let G be a finite group in which for each positive integer m, the number of solutions of $x^m = e$ is at most m. Then show that G is cyclic.
- 34. If < R, + > is an abelian group, show that < R, +, . > is a ring if a.b is defined as 0 for all $a, b \in R$.
- 35. Prove in some detail that every field L containing an integral domain D contains the field of quotients of D.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** out of three questions. Each question carries 13 marks.

- 36. (a) If $\phi: G \to G'$ is a group homomorphism then show that $\phi[H] \leq G'$ whenever $H \leq G$.
 - (b) Find the index of the subgroup generated by $\sigma = (1, 5, 3, 4) (2, 3)$ in S₅.
- 37. (a) Prove that the converse of the Lagranges theorem need not be true.
 - (b) Express $\sigma = (1 \ 2 \ 3)(1 \ 3 \ 4)^2 \in S_4$ as a product of disjoint cycles.
- 38. (a) Define rings and ring homomorphisms. Show that the ring of real numbers and complex numbers are not isomorphic.
 - (b) Find all the units in the ring $\langle Z_{18}, +_{18}, \times_{18} \rangle$.

 $(2 \times 13 = 26 \text{ marks})$

(Pages: 3)

Reg. Nox.

Name

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)

MAT 5B 06-ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 120 Marks

Section A

Answer all the twelve questions. Each question carries 1 mark.

1. Define subgroup of a group.

2. Fill in the blanks : The units in the ring of integers \mathbb{Z} are ———

3. Write the order of the permutation (1, 2) (198) in S₉.

4. Give an example of a finite group of order 4 which is not cyclic.

5. Calculate the remainder obtained when 45^{72} is divided by 73.

6. Compute (1, 4) (7, 5) (2, 5, 7) in S₇.

7. What is the characteristic of the ring $\langle \mathbb{Z}_9, +_9, \times_9 \rangle$.

8. Give an example for an integral domain which is not a field.

- 9. What is the necessary condition for a homomorphism ϕ from a group G to G' to be injective.
- 10. Write two equivalent conditions for the subgroup of a group to be a normal subgroup.
- 11. What is the index of A_n in S_n .

12. Denne a cyclic group and give an example.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any ten out of fourteen questions. Each question carries 4 marks.

- 13. Let S be a set and let f, g and h be functions mapping S into S. Prove that (fog) oh = fo (goh).
- 14. Show that every group of prime order is abelian.

15. Draw the group table for S_3 .

- 16. Define * by $a * b = \frac{ab}{3}$ then show that Q⁺, the set of positive rationals, with operation * s a group.
- 17. Show that A_n is a normal subgroup of S_n and find a group to which S_n/A_n is isomorphic.
- 18. Define a field. Show that $(a + b)^2 = a^2 + 2ab + b^2$ in any field using the axioms of the field.
- 19. Give an example of non-commutative finite ring. Establish that it is so.
- 20. Give any necessary and sufficient condition for a ring R to have no zero divisors. Justify your claim.
- 21. Find a formula for identifying units in the ring of guassian integers $\{a+ib:a,b\in\mathbb{Z}\}$.
- 22. Write all the left cosets of $3\mathbb{Z}$ in \mathbb{Z} .
- 23. Show that factor group of a cyclic group is cyclic.
- 24. Solve : $x^2 = i$ in S₃ where *i* is the identity.
- 25. Define group homomorphism and state fundamental theorem of homomorphism.
- 26. Is Q, the set of rationals, the field of quotients for integers ? Justify your claim.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** out of nine questions. Each question carries 7 marks.

- 27. Show that the binary structure $\langle \mathbb{R}, + \rangle$ with operation the usual addition is isomorphic to the structure $\langle \mathbb{R}^+, \rangle$ where is the usual multiplication.
- 28. Define order of an element in any group G. Show that in a finite group G, order of any element divides order of G.
- 29. Show that the subset S of $M_n(\mathbb{R})$ consisting of all invertible $n \times n$ matrices under matrix multiplication is a group.
- 30. Show that every permutation σ of a finite set is a product of disjoint cycles.
- 31. Let G and G' be groups and let $\Phi : G \longrightarrow G'$ be one to one function such that $\Phi(xy) = \Phi(x) \Phi(y)$ for all $x, y \in G$. Then prove that $\Phi[G]$ is a subgroup of G' and Φ provides an isomorphism of G with $\Phi[G']$.
- 32. Show that every proper subgroup of a group G, with o(G) = pq where p and q are prime, is cyclic.
- 33. Solve the equation : $x^2 5x + 6 = 0$ completely in \mathbb{Z}_{12} .

Section D

Answer any **two** out of three questions. Each question carries 13 marks.

- 36. (a) Find the index of the subgroup generated by $\sigma = (1, 2, 5, 4) (2, 3)$ in S₅.
 - (b) Write all the subgroups of Z_{10} .
- 37. State and prove Cayley's theorem in detail.
- 38. (a) List all the units in the matrix ring $M_2(\mathbb{Z}_2)$.
 - (b) Show that every finite integral domain is a field.

 $(2 \times 13 = 26 \text{ marks})$

C 30800

(Pages : 2)

Mo	-	 · ·		
TAST	me	 	 	

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, NOVEMBER 2017

(UG-CCSS)

MM 5B 06-ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 30 Weightage

Part A

Answer all questions. Each question carries ¼ weightage.

- 1. The operation * defined on z by letting a * b = ab + 1. Determine whether * is associative.
- 2. Define an isomorphism of an algebric structure to another.
- 3. Give an example of an abelian group with 100 elements.
- 4. Find the order of the element -i in the group $u_4 = \{1, -1, i, -i\}$ with usual multiplication.
- 5. Symmetric group of *n* letters has ———— elements.
- 6. What is the order of the cycle (1, 4, 5, 7) in S_8 .
- 7. Define index of a subgroup H in a group G.
- 8. Compute the product (12) (6) in \mathbb{Z}_{24} .
- 9. Define a linear combination of the set $S = \{u_1, u_2, \dots u_n\}$.
- 10. Is the set of pure imaginary numbers with usual addition and multiplication a ring?
- 11. Define a ring homomorphism.
- 12. Describe all the units in the ring z_5 .

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B

Answer all questions. Each question carries 1 weightage.

- 13. Show that set of real numbers excluding -1 is a group under the operation * which is given by a * b = a + b + ab.
- 14. Prove that inverse of any element of a group is unique.
- 15. Show that Klein 4 group is not cyclic.

16. Express the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 6 & 2 & 1 & 4 \end{pmatrix}$ as a product of disjoint cycles.

17. Find the partition of z_6 into cosets of the subgroup H = {0, 3}.

- 18. Show that every subgroup of an abelian group is normal.
- 19. Prove that the set z_4 is a ring w.r.to addition modulo 4 and multiplication modulo 4.
- 20. Find all the units in z_{14} .
- 21. $S = \{P(x) \in P_n(x)/P(1) + P(3) = 0\}$ where $P_n(x)$ is the vector space of all polynomials of degree $\le n$. Show that S is a subspace of $P_n(x)$.

 $(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any **five** questions. Each question carries 2 weightage.

- 22. Prove that residue classes modulo 5 form a finite abelian group with respect to addition of residue classes.
- 23. Express $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$ as a product of disjoint cycles and as product of transpositions.
- 24. Find all the subgroups of z_{12} and draw the lattice diagram.
- 25. Show that product of two left cosets need not be a coset.
- 26. Let G be the group of non-zero complex numbers under multiplication and let n be a positive integer. Show that the mapping $\phi : G \to G$ defined by $\phi(z) = z^n$ is a homomorphism. What is the kernal of this homomorphism.
- 27. In the ring z_n , divisors of 0 are precisely those elements that are not relatively prime to n. Prove this statement.
- 28. Check whether the set $S = \{x-1, 2x^2 + x, x^3 + 1, 2x^3 3x\}$ of P_3 is linearly independent.

 $(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any **two** questions. Each question carries 4 weightage.

- 29. Let G be a cyclic group with generator a. If order of G is infinite then prove that G is isomorphic to (z, +). Also prove that if G has a finite order n, then G is isomorphic to (z_n, t_n) .
- 30. For $n \ge 2$, prove that the no. of even permutations in S_n is same as no. of add permutations in it.
- 31. Prove the following theorems :
 - (a) Every field is an integral domain.
 - (b) Every finite integral domain is a field.

 $(2 \times 4 = 8 \text{ weightage})$

C 30306

(Pages: 4)

s & Scianc	B Cox
Name	•••••••••••••••••••••••••••••••••••••••
Reg. No	

10 000

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS-UG)

Mathematics

MAT 5B 06-ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 120 Marks

Section A

Answer all the twelve questions. Each question carries 1 mark.

- 1. True or False : Every binary operation on a set consisting of a single element is both commutative and associative.,
- 2. Describe the isomorphism from $\langle \mathbb{Z}, + \rangle$ into $\langle n\mathbb{Z}, + \rangle$.
- 3. Find the order of the cyclic subgroup of \mathbb{Z}_4 generated by 3.
- 4. Determine whether the set of all invertible $n \times n$ real matrices with determinant -1 is a subgroup of GL (n, \mathbb{R}) .
- 5. Determine whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$ is a permutation of \mathbb{R} .
- 6. Write the orbits of the identity permutation, i on a set A
- 7. True or false : Every finite group contains an element of every order that divides the order of the group.
- 8. Find all orbits of the permutation $\sigma : \mathbb{Z} \to \mathbb{Z}$ where $\sigma(n) = n+1$.
- 9. Find all units in the ring \mathbb{Z}_4 .
- 10. Find the characteristics of the ring $\mathbb{Z}_3 \times 3\mathbb{Z}$.
- 11. How many solutions, does the equation $x^2 5x + 6 0$ have \mathbb{Z}_7 ?
- 12. Find the number of elements in the set $\{\sigma \in S_5 / \sigma(2) = 5\}$?

 $(12 \times 1 = 12 \text{ marks})$

Section **B**

Answer any **ten** out of fourteen questions. Each question carries 4 marks.

13. Define isomorphism of algebraic structures. Determine whether the function ϕ : < \mathbb{Q} , + > \rightarrow < \mathbb{Q} , + >

where $\phi(x) = \frac{x}{2}, x \in \mathbb{Q}$ is an isomorphism.

- 14. Define a group. Is the set \mathbb{Q}^+ of positive rational numbers under multiplication a group. Justify your answer ?
- 15. Let G be a group and a be a fixed element of G. Show that $H_a = \{x \in G : xa = ax\}$ is a subgroup of G.
- 16. Prove that an infinite cyclic group has exactly two generators.
- 17. Express the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$ as a product of disjoint cycles and then as a product of transpositions.
- 18. Find all generators of $\mathbb{Z}_6, \mathbb{Z}_8$ and \mathbb{Z}_{20} .
- 19. If A is any set and σ is a permutation of A, show that the relation '~' defined on A by $a \sim b$ if and only if $b = \sigma^n(a)$, for some $n \in \mathbb{Z}$, $a, b \in A$ is an equivalence relation.
- 20. Let H be a subgroup of a group G, and let $a \in G$. Define the left and right cosets of H containing a. Exhibit all left and right cosets of the subgroup $4\mathbb{Z}$ of $2\mathbb{Z}$.
- 21. Prove that a group homomorphism $\phi: G \to G'$ is a one-one map if and only if Ker $(\phi) = \{e\}$.
- 22. Define Ring. Give an example.

23. Find all solutions of the equation $x^3 - 2x^2 - 3x = 0$ in \mathbb{Z}_{12} .

- 24. Define characteristic of a ring. Find the characteristic of the ring $\mathbb{Z}_3 \times 3\mathbb{Z}$ and $\mathbb{Z}_3 \times \mathbb{Z}_4$.
- 25. Show that the intersection of two normal subgroups of a group is a normal subgroup.
- 26. If \mathbb{R} is a ring such that $a^2 = a \in \mathbb{R}$. Prove that \mathbb{R} is a commutative ring.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any **six** out of nine questions. Each question carries 7 marks.

- 27. Let G be a set consisting of ordered pairs (a, b) such that a, b are real and a ≠ 0. A binary operation
 * is defined on G by (a, b)*(c, d) = (ac, bc + d). Prove that G is a group under *. Is G abelian ? Justify.
- 28. Show that a nonempty subset H of a group G is a subgroup of G if and only if $ab^{-1} \in H, \forall a, b \in H$.
- 29. Let G and G' be groups and let $\phi: G \to G'$ be a one-one function such that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$. Prove that $\phi[G]$ is a subgroup of G' and ϕ is an isomorphism of G with $\phi[G]$.
- 30. Define abelian group. Prove that a group G is abelian if every element except the identity e is of order 2.
- 31. Show that the set of all permutations on three symbols forms a finite non-abelian group S_3 of order 6 with respect to permutation multiplication.
- 32. Let $\phi: G \to G'$ be a group homomorphism and let $H = \text{Ker}(\phi)$. For $a \in G$, prove that the set $\{x \in G \mid \phi(x) = \phi(a)\}$ is the left coset aH of H.
- 33. Show that $a^2 b^2 = (a + b)(a b)$ for all a, b in a ring \mathbb{R} if and only if \mathbb{R} is commutative.
- 34. Show that the characteristics of an integral domain D must be either 0 or a prime p.
- 35. Describe the field of quotients of an integral domain.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any **two** out of three questions. Each question carries 13 marks.

- 36. (a) Let H be a subgroup of a group G. For $a, b \in G$, let $a \sim b$ if and only if $ab^{-1} \in H$. Show that \sim is an equivalence relation on G. (6 marks)
 - (b) Prove that a subgroup H of a group G is normal in G if and only if each left coset of H in G is a right coset of H in G. (7 marks)

37. (a) Prove that no permutation in S_n can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions. (7 marks)

4

- (b) Prove that a subgroup of a cycle group is cyclic. (6 marks)
- 38. (a) Show that the order of an element of a finite group divides the order of the group.

(7 marks)

(b) Prove that every finite integral domain is a field.

(6 marks) [2 × 13 = 26 marks]