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Foreword

It is estimated that hunger is currently affecting one out of every seven people on
planet Earth. Projections show that unless the world community is prepared to un-
dertake intensive and sustained remedial action over a long-term, there could still be
almost 700 million people chronically undernourished by the year 2010, with over
300 million in sub-Saharan Africa alone. Agriculture and its associated industries
are primary sources of food and a major employment sector in most developing
countries.

Climate change, and increasing climate variability, as well as other global environ-
mental issues such as land degradation, loss of biological diversity and stratospheric
ozone depletion, threaten our ability to meet the basic human needs in adequate food,
water and energy, safe shelter and a healthy environment. To address these challenges,
it is important to integrate the issues of climate variability and climate change into
resource use and development decisions. Decreasing the vulnerability of agriculture
to natural climate variability through a more informed choice of policies, practices
and technologies will, in many cases, reduce its long-term vulnerability to climate
change. For example, the introduction of seasonal climate forecasts into management
decisions can reduce the vulnerability of agriculture to floods and droughts caused
by the El Niño-Southern Oscillation (ENSO) phenomena.

In order to address the challenges facing sustainable agricultural development,
the World Meteorological Organization (WMO) gives priority to the timely and
effective implementation of some of the activities of its World Climate Programme,
in particular the Agricultural Meteorology Programme and the Climate Information
and Prediction Services (CLIPS) project, to ensure that progress made in the
seasonal to interannual climate prediction is translated into field applications to
ensure food security. In this regard, the Commission for Agricultural Meteorology
(CAgM) of WMO has recommended that weather and climate forecasts should be
increasingly tailored towards the requirements of agriculture in order that farmers
can make their decisions with greater confidence.

The Climate Prediction and Agriculture (CLIMAG) interdisciplinary project was
established in 1998 with the goal to demonstrate the practical utility of climate fore-
casts in agricultural decision-making. CLIMAG builds on the advances made in sev-
eral areas especially in the science of climate forecasting, downscaling large area climate
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forecasts to local applications, integration of climate forecasts in operational crop
models to develop alternative scenarios for operational decision making, and capac-
ity building at the local level in all these areas. Needless to say, there are numerous
challenges in all these areas.

The use of climate information and prediction products in planning agricultural
activities has become very useful in some parts of the globe especially developing
countries, as was demonstrated by the CLIMAG pilot projects carried out in South
Asia and West Africa over the past four years.

Furthermore, the Global Change System for Analysis, Research and Training
(START) initiated the Advanced Training Institute on Climatic Variability and Food
Security in July 2002 to equip young professionals from developing country with
expertise in agriculture and food security to apply advances in climate prediction
to their home institutions’ ongoing efforts to address climate-sensitive aspects of
agricultural production, food insecurity and rural poverty. Following this training
institute, seed grants were provided with funding from the Lucille-Packard Foun-
dation for follow-up project work on aspects of climate and food security in
14 countries.

It is with this background that, WMO, START and the International Research
Institute for Climate and Society (IRI) organized an “International Workshop on
Climate Prediction and Agriculture – Advances and Challenges” from 11 to 13 May
2005 at WMO in Geneva, Switzerland. The main objective of this workshop was to
review advances in the application of seasonal climate prediction in agriculture
over the past 5 years, and identify challenges to be addressed in the next 5–10 years
to further enhance operational use of climate prediction in agriculture in devel-
oping countries.

Prior to the International Workshop, participants in the David and Lucille
Packard Foundation-funded project on climate variability and food security were
convened at a “Synthesis Workshop of the Advanced Institute on Climatic Vari-
ability and Food Security” from 9 to 10 May 2005 at WMO in Geneva to present
their results, share their experiences, and synthesize lessons learned. The work-
shop was made possible through generous support from the Packard Foundation,
the Asian Pacific Network (APN), the Inter-American Institute for Global Change
Research (IAI), the National Oceanic and Atmospheric Administration/Office of
Global Programs (NOAA/OGP), the Netherlands Ministry of Foreign Affairs
(DGIS), the International START Secretariat (START), the World Meteorological
Organization (WMO), and the International Research Institute for Climate and
Society (IRI).

This volume, which brings together the papers presented at the International
Workshop and the Synthesis Workshop, presents a good synthesis of the advances
made so far in seasonal climate predictions and their applications for management
and decision-making in agriculture, and identifies the challenges to be addressed in
the next 5 to 10 years to further enhance operational applications of climate predic-
tions in agriculture, especially in the developing countries.
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We hope that this volume will serve as a major source of information to all ser-
vices, agencies and organizations at national, regional and global level involved in
promoting operational applications of climate predictions in agriculture.

(M. Jarraud)
Secretary-General

World Meteorological Organization

(Roland Fuchs)
Director

International START Secretariat

(Steve Zebiak)
Director General

The International Research Institute for Climate and Society



Preface

The Climate Prediction and Agriculture (CLIMAG) project started ten years ago under
the auspices of the Global Change System for Analysis, Research and Training (START),
the World Climate Research Programme (WCRP), the International Geosphere-Bio-
sphere Programme (IGBP) and the International Human Dimensions Programme of
Global Environmental Change (IHDP) was based on the increasing capacity to model
crop growth and yield coupled with the improving ability of meteorologists to pro-
vide short- and medium-term weather forecasts. The CLIMAG Task Force, appointed
by the START Scientific Steering Committee, developed a dynamic strategic plan which
formed the basis for the First International Workshop on CLIMAG which was held
from 27 to 29 September 1999 at WMO in Geneva.

The First International Workshop on CLIMAG considered a number of important
issues relating to climate prediction applications in agriculture including capabilities
in long-term weather forecasting for agricultural production, down-scaling, scaling-
up crop models for climate prediction applications, use of weather generators in crop
modeling, economic impacts of shifts in ENSO event frequency and strengths and
economic value of climate forecasts for agricultural systems.

Much work has been done on various issues related to CLIMAG since September
1999 when the First International Workshop on CLIMAG was held. The International
Research Institute on Climate Prediction (IRI) was engaged in many of the activities
envisaged under the original CLIMAG work plan. Regional CLIMAG demonstration
projects in South Asia and West Africa made considerable progress. A number of
research projects were organized under the David and Lucille Packard Foundation-
funded project on climate variability and food security. The AIACC project of START
is supporting a number of regional projects dealing with assessment of adaptations
to climate change impacts on the agriculture sector. NOAA-OGP has supported a
number of other individual research projects.

The goal of the START, WMO and the International Research Institute for Climate
and Society (IRI) sponsored “International Workshop on Climate Prediction and
Agriculture – Advances and Challenges” held at WMO, Geneva from 11 to 13 May 2005
was to review the advances made so far in seasonal climate predictions and their
applications for management and decision-making in agriculture and identify the
challenges to be addressed in the next 5 to 10 years to further enhance operational
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applications of climate predictions in agriculture, especially in the developing coun-
tries. Specific objectives of the workshop were:

� to summarize/synthesize the current status of seasonal climate predictions and
their applications to small holder agriculture in different parts of the world (with
emphasis on advances since the 1999 CLIMAG workshop);

� to identify the ways and means to promote the more active use of seasonal to inter-
annual climate forecasts in agricultural planning and operations for the benefit of
smallholder agriculture and rural livelihoods in developing countries;

� to develop an effective strategy for the communication and coordination of
climate applications to a broader network of users at all levels i.e. agricultural
education and research, agricultural extension and farming community (with some
emphasis on the Consultative Group on International Agricultural Research
(CGIAR));

� to discuss the ways of promoting regional agrometeorological research in order to
provide an improved understanding of the interactions between climate processes
and their complex linkages with agricultural production and food security.

Altogether there were 15 sessions (including the opening and closing session) in
the workshop during which 18 invited papers were presented addressing the different
specific objectives of the workshop. All the participants in the workshop were en-
gaged in discussions on these papers and developed several useful recommendations
for all organizations involved in promoting climate prediction and applications in
agriculture, in particular in the developing countries.

Nine of the invited papers are appearing in a special supplement of Climate
Research journal and a summary of all these papers is given in the first chapter of this
volume. This volume includes eight other invited papers presented at the workshop
as well as 18 papers presented by the participants in the David and Lucille Packard
Foundation-funded project on climate variability and food security at the “Synthesis
Workshop of the Advanced Institute on Climatic Variability and Food Security” held
prior to the International Workshop describing the national case studies on CLIMAG.

As editors of this volume, we would like to thank all the authors for their efforts
and for their cooperation in bringing out this volume in time. We are most grateful
to Mr. M. Jarraud, the Secretary-General of WMO, Dr. Roland Fuchs, Director of the
International START Secretariat and Dr. Steve Zebiak, Director General of The Inter-
national Research Institute for Climate and Society for their continuous support and
encouragement.

Mannava V. K. Sivakumar
James Hansen
Editors
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Chapter 1

Climate Prediction and Agriculture:
Summary and the Way Forward

M. V. K. Sivakumar  ·  J. Hansen

1.1
Introduction

Agricultural production is highly dependent on weather, climate and water availabil-
ity, and is adversely affected by weather- and climate-related disasters. Failure of rains
and occurrence of natural disasters such as floods and droughts could lead to crop
failures, food insecurity, famine, loss of property and life, mass migration, and nega-
tive national economic growth. Hence agricultural communities around the world have
always looked for ways and means to cope with the climate variability including the
use of various traditional indicators to predict the seasonal climate behavior.

In past two decades, significant advances have been made in the science and appli-
cations of seasonal climate forecasting. The principal scientific basis of seasonal fore-
casting is founded on the premise that lower-boundary forcing, which evolves on a
slower timescale than that of the weather systems themselves, can give rise to signifi-
cant predictability of atmospheric developments. These boundary conditions include
sea surface temperature (SST), sea-ice cover and temperature, land-surface tempera-
ture and albedo, soil moisture and snow cover, although they are not all believed to be
generally of equal importance. Climate variations, also called anomalies, are differ-
ences in the state of the climate system from normal conditions (averaged over many
years, usually a 30-year period) for that time of the year. The strongest evidence for
long-term predictability comes largely from the influence of persistent SST anomalies on
the atmospheric circulation which, in turn, induces seasonal climate anomalies.

The Climate Prediction and Agriculture (CLIMAG) is an interdisciplinary program
of research that builds on the advances made in several areas especially in the science
of climate forecasting, downscaling large area climate forecasts to local applications,
integration of climate forecasts in operational crop models to develop alternative sce-
narios for operational decision-making to minimize the impacts of climate risks and
maximize the benefits to farming community, and capacity building at the local level
in all these areas. Needless to say, there are numerous challenges in all these areas.

The CLIMAG project initiated after the International Workshop on CLIMAG held
in Geneva in September 1999 (Sivakumar 2000) was based on the premise that advan-
tage should be taken of current data bases, increasing climate knowledge and improved
prediction capabilities to facilitate the development of relevant climate information
and prediction products for applications in agriculture to reduce the negative impacts
due to climate variations and to enhance planning activities based on the developing
capacity of climate science. To review advances in application of seasonal climate pre-
diction in agriculture over the past 5 years, and identify challenges to be addressed in
the next 5–10 years to further enhance operational use of climate prediction in agri-
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culture in developing countries, the Global Change System for Analysis, Research and
Training (START), the World Meteorological Organization (WMO) and the Interna-
tional Research Institute for Climate and Society (IRI) organized an “International
Workshop on Climate Prediction and Agriculture – Advances and Challenges” from
11 to 13 May 2005 at WMO in Geneva, Switzerland. Nine invited papers (Doblas-Reyes
et al. 2006; Hansen et al. 2006; Msangi et al. 2006; Meinke et al. 2006; Roncoli 2006;
Rubas et al. 2006; Sivakumar 2006; Thornton 2006; Vogel and O’Brien 2006) presented
at this International Workshop were published in a special supplement of Climate Re-
search journal (Hansen and Sivakumar 2006). This chapter presents a short summary,
based primarily upon these nine papers, of the progress made so far in CLIMAG re-
search, and suggests a way forward.

1.2
Predicting Climate Fluctuations and Agricultural Impacts

The key weather variables for crop prediction are rainfall, temperature and solar ra-
diation, with humidity and wind speed playing also a role. As Doblas-Reyes et al. (2006)
explained, seasonal climate forecasts are able to provide insight into the future climate
evolution on timescales of seasons and longer because slowly-evolving variability in
the oceans significantly influences variations in weather statistics. The climate fore-
cast community is now capable of providing an end-to-end multi-scale (in space and
time) integrated prediction system that provides skilful, useful predictions of variables
with socio-economic interest.

Seasonal forecasts can be produced using mathematical models of the climate sys-
tem. A wide range of forecast methods, both empirical-statistical techniques and dy-
namical methods, are employed in climate forecasting at regional and national levels
(WMO 2003). Operational empirical-statistical methods, based on statistical links
between current observations and weather conditions some time in the future, include
analysis of general circulation patterns; analogue methods; time series, correlation,
discriminant and canonical correlation analyses; multiple linear regression; optimal
climate normals; and analysis of climatic anomalies associated with ENSO events.
Dynamical methods (used principally in major international climate prediction cen-
ters) are model-based, using atmospheric GCMs in a two-tiered prediction system, or
dynamically coupled atmosphere-ocean GCMs. These dynamical forecast models – an
extension of the numerical methods used to predict the weather a few days ahead –
are based on systems of equations that predict the evolution of the global climate sys-
tem in response to initial atmospheric conditions, and boundary forcing from the
underlying ocean and land surfaces.

Doblas-Reyes et al. (2006) emphasize the importance of a fully probabilistic
approach during all the stages of the forecasting process. Predictions of the climate
system evolution in seasonal timescales suffer mainly from two sources of uncertainty:
initial condition and structural model uncertainty (Doblas-Reyes et al. 2006). To
address the first source of uncertainty, forecast models are run many times from slightly
different initial conditions, consistent with the error to estimate the effect of this initial-
condition uncertainty. One way to represent model uncertainty is to incorporate, within
the ensemble, independently derived models, resulting in a multi-model ensemble
system (Palmer et al. 2004). Hagedorn et al. (2005) and Doblas-Reyes et al. (2005)
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showed that the DEMETER multi-model ensemble system, made up with 7 European
coupled models, is intrinsically more useful and more skilful than forecasts from any
one (e.g. national) model. “Forecast assimilation” deals with statistically combining
multiple dynamical and statistical forecasts to maximize the content information
(Stephenson et al. 2005).

For agriculture, climate forecasts must be interpreted in terms of production out-
comes at the scale of decisions if farmers and other agricultural decision-makers are
to benefit. Interest in linking seasonal climate forecasts from general circulation models
(GCMs) with crop models is motivated by: (a) the need for information that is directly
relevant to decisions, (b) use for ex ante assessment of potential benefits to enhance
credibility and support targeting, and (c) support for fostering and guiding manage-
ment responses to advance climate information (Hansen 2005).

At the time of the inaugural CLIMAG workshop in 1999, nearly all quantitative ef-
forts to translate seasonal forecasts into agricultural terms and assess the value of
management responses have used categorical indices of ENSO to select historic ana-
log years as inputs to crop models. Interest in incorporating forecasts based on dy-
namic climate models were slowed by concerns about the difference in spatial and
temporal scale of GCMs and crop models, and the dynamic, nonlinear, often non-
monotonic relationship between meteorological variables and crop response. However,
the past five years have seen increasing interest and some methodological advances
in using dynamic climate model output as input to process-level crop models, syn-
thetic daily weather or daily climate model output to drive the crop model; statistical
transfer functions trained on crop model predictions run with historic weather data;
and variations on the analog method that include weather classification, hidden
Markov models and probability-weighted historic analogs (Hansen et al. 2006).

Several avenues are likely to enhance the quality of forecasts of agricultural im-
pacts of climate variations over the next five to ten years. First, dynamically coupling
crop models within climate models will support refined two-way interaction between
the atmosphere and agricultural land use. Second, remote sensing and proliferation
of spatial environmental databases provide substantial opportunities to expand the
use and enhance the quality and resolution of climate-based crop forecasts. Finally,
climate-based crop forecasts will benefit from climate research in the emerging area
of “weather within climate.”

1.3
Effectiveness of Seasonal Forecasts and Climate Risk Management

Climatic shocks directly impact household economies, but also often aggravate other
stresses, such as disease burden (e.g. HIV/AIDS) (Tango International 2005). Vogel and
O’Brien (2006) argue that climate forecast information treated in isolation (e.g. in
‘stand alone’ climate outlook forums) and disseminated in a traditional, linear fash-
ion from producer to user, ignores the broader, complex social context in which such
information is embedded. The needs of users, the role of culture and the complex in-
teractions of traditional knowledge systems and ‘external climate information’ require
better understanding and articulation. According to Vogel and O’Brien (2006), preoc-
cupation with dissemination issues often distracts the focus from the contextual situ-
ations in which these tools are embedded. The contextual environment in which end
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users operate and use information is not neutral and egalitarian. End users, including
farmers, usually operate in an environment of considerable uncertainty, reacting to
and coping with multiple stressors and risks whose impacts are not always clear or
predictable.

The way one interprets the linkages between climate, agriculture and food security
fundamentally shapes the ways in which forecasts are usually ‘framed’, disseminated
and eventually used. Recent investigations of the progress and outcomes of the Vul-
nerability Assessment Committees, established in 2002 in six countries to examine the
food crisis in the Southern African region, have shown that measures of food gaps are
not effective ways of capturing the causes of food insecurity in the region but that a
wider, livelihoods-based perspective is required (Tango International 2005).

According to Vogel and O’Brien (2006), there is currently a disconnection between
the climate information enterprise (e.g. modeling, forecast production, design, user-
assessments, user needs and constraints to the uptake of forecast products) and the
linkages and interplay with those operating in formal institutions (e.g. Departments
of Agriculture, Water Affairs, Social Welfare, etc.) as well as informal institutions
(e.g. welfare organizations, church groups, NGOs, humanitarian organizations, etc.).
Hence greater attention needs to be given to what infrastructural and institutional
advances are necessary to facilitate the use of forecast information within the liveli-
hood strategies prevailing in a given region.

Cash and Buizer (2005) proposed that salience (the perceived relevance of the in-
formation), credibility (the perceived technical quality of the information) and legiti-
macy (the perceived objectivity of the process by which the information is shared)
have a critical impact on how decision-makers accept and use information. From case
studies from Australia, India and Brazil, Meinke et al. (2006) illustrate the influence
that salience, credibility and legitimacy have on the degree to which end users em-
brace and apply what the climate science community has to offer, and how the nature
of interactions with end users can either foster or damage these elements.

Meinke et al. (2006) illustrate salience in the context of efforts to reorient climate
science to the questions that are relevant to Australian drought policy. Australian
drought policy is focused on enhancing the self-reliance of farmers to manage climate
risk. Self-reliance is intertwined with the vulnerability and resilience of the livelihoods
of rural communities. Policy is largely powerless to influence the physical exposure
of production systems to climate variability, but can enhance the resilience of rural
livelihoods by influencing the diversity of assets and income sources from which ru-
ral livelihoods are derived, and flexibility to switch between them (Ellis 2000). Past
scientific inputs to Australia’s drought policy have focused on physical measures
(e.g. variability in rainfall, soil water analysis and plant growth) of the extent to which
rural communities are exposed to climate variability. These inputs are now expand-
ing to include the human, social, natural, physical and financial assets from which re-
silient rural livelihoods are derived, and which policy can influence.

Credibility is discussed from the perspective of smallholder farmers in India. Ex-
perience with villages in southern India shows that intensive and costly interaction
between researchers and rural communities can build the credibility of climate infor-
mation. In this instance, the creation of credibility through stakeholder engagement
bore the “seeds for its own destruction” by creating demand without a sustainable in-
stitutional mechanism to meet that demand beyond the life of the pilot project.
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A well-documented case study from northeast Brazil illustrates the importance and
fragility of legitimacy. The State of Ceará’s Meteorology and Hydrology Service
(FUNCEME) actively provides climate and related information to water resource man-
agers and the region’s agricultural community. The state government initiated a pro-
gram, Hora de Plantar (Time to Sow), to distribute hybrid seed to smallholder farmers
at the time when soil moisture conditions were supposedly adequate to ensure a good
crop. Although the program was successful in some seasons, a perception that the pro-
gram often distributed seeds too late to take advantage of early rain and, more impor-
tantly, disempowered farmers by transferring control of the decision-making process
to government officials (Lemos 2003), weakened the legitimacy of both Hora de Plan-
tar and FUNCEME. FUNCEME has recently made an effort to rebuild legitimacy by
distancing itself from Hora de Plantar, implementing participatory activities with the
agricultural sector, and producing their seasonal forecasts in collaboration with the
International Research Institute for Climate and Society (IRI) and other international
agencies that are independent of regional political interests.

1.4
Economics of Climate Forecast Applications

Rubas et al. (2006) presented a discussion on four methodologies economists use to
model the decision-making process: decision theory, general equilibrium modeling,
game theory, and mechanism design theory and suggested that climate forecast issues
are ripe for more innovative and rigorous studies that can lead to theoretical advances
in the economics of information as well as advances in climate sciences.

The most widely used form of decision theory assumes that preferences among risky
alternatives can be described by maximizing net payoffs. The value of climate fore-
casts is the expected difference between the net payoffs when the forecasts are used to
make optimal decisions, and the net payoffs when decisions are made optimally us-
ing only prior knowledge.

Game theory recognizes that the choices of individuals are interlinked. Unlike
decision theory, in game theory, researchers must account for interactions between
decision-makers and the combined effect their decisions may have on each other’s
payoffs.

General equilibrium modeling attempts to account for all decision-makers, all pos-
sible decisions, and their impacts on the market prices of all relevant commodities.
Studies have used general equilibrium concepts to develop simpler partial equilibrium
models, sector models, and trade models of particular crops to examine the effects of
climate forecast use (Chen and McCarl 2000; Chen et al. 2002).

Decision theory, game theory, and general equilibrium modeling vary in the num-
ber of decision-makers and decisions modeled, but all assume that the rules of the
process are fixed. In mechanism design, the rules players operate under become part
of the process. In climate forecast applications, the goal is to find the set of market
and institutional rules that maximize the net benefits associated with climate fore-
cast use.

Rubas et al. (2006) explained that decision-making using climate forecasts has gen-
erally been treated by the social sciences as an applied issue and not as an issue that
can be used to advance theory. She argued that combining research on technology



6 M. V. K. Sivakumar  ·  J. Hansen

adoption, climate forecasts, and the economics of information would allow research-
ers to combine cutting-edge issues from different disciplines. Economic thinking ap-
plied to climate applications has already: (a) contributed to our understanding of how
to incorporate uncertain information into decision-making, (b) proven to be a good
bridge between the physical and social sciences and decision-makers, by translating
climate-sensitive biophysical information into viable resource allocation choices, and
(c) revealed the conditions under which decision-makers can benefit from climate
information.

1.5
Assessing Adoption and Benefit

Ex ante impact assessment seeks to assess the potential outcomes of an innovation in
advance of its adoption, while ex post assessment seeks to assess actual outcomes fol-
lowing adoption. The continually evolving tools of ex ante and ex post impact assess-
ment, developed to assess the likely adoption and value of agricultural technology and
innovation in general, are relevant to applications of climate forecasts. However, sev-
eral characteristics of climate forecasts make assessment of their impacts particularly
challenging. Forecasts are inherently probabilistic, and assessing their likely credibil-
ity to potential end-users over time is difficult (Ziervogel et al. 2005). In addition to
long-term production impacts, they are likely to influence risk in a manner that is dif-
ficult to anticipate fully. Finally, if many producers in a region act on forecasts, im-
pacts on commodity prices may be considerable.

Ex ante impact assessment serves the two-fold purpose of providing evidence to
mobilize resources for a new innovation, and insight to inform targeting (Thornton
2006). Thornton argues that no single method is suitable for dealing with all situa-
tions, and calls for combining a range of quantitative and quantitative methods in-
cluding: economic surplus methods, cost-benefit analysis, various forms of mathematical
programming, econometric methods (treated in Alston et al. 1995), non-market valu-
ation methods (Haab and McConnell 2002), integrated assessment, spatial analysis
(including poverty mapping) (Hentschel et al. 2000), household and community stud-
ies involving formal and informal surveys, market studies, participatory technology
development (Douthwaite et al. 2004), and a wide range of hard and soft simulation
models (Thornton et al. 2003) are available.

Climate forecast impacts have to be assessed both in time (to account for the sto-
chastic nature of climate and probabilistic nature of forecasts) and space (to account
for market impacts of climate fluctuation and forecast use). Assessment should also
identify the institutional and policy support that is likely to be required in a region,
and estimate the costs of providing this support.

In contrast to ex ante approach, an ex post analysis would base its valuation on the
observed actions of the economic agent and how he responded to the realized envi-
ronmental shock or climate outcome. There are few, if any, regions in the developing
world where rural communities have had access to operational climate information
and support tailored to their needs, for sufficient time to allow ex post assessment of
use and benefits. Msangi et al. (2006) argue that understanding current use of ex post
impact assessment methodology for evaluation of agricultural research investments
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will enable advocates of climate applications to collect baseline information and pre-
pare to provide credible evidence of uptake and benefit as it occurs. Their survey high-
lights the use of econometric approach and economic surplus methods. As the
econometric approach requires large amounts of data, which are not usually available,
the economic surplus approach has been much more widely applied (Maredia et al.
2000).

Since the climate forecast predictions as well as the climate outcomes themselves
are stochastic in nature, a more structurally-based model that models the agent’s be-
liefs and how they change with information, would be able to account for this uncer-
tainty more explicitly, and even capture the agent’s attitudes toward uncertainty and
risk. The structural behavioral analyses represent the state-of-the-art in behavioral
modeling, and have the best chance of overcoming the confounding influences that
could bias the valuation of climate information in ex post analyses. Structural estima-
tion also allows the researcher to investigate the preferences of the decision-maker
and to examine the role that risk-aversion plays in their actions.

1.6
Building on Farmers’ Knowledge

Roncoli (2006) reviews ethnographic and participatory research methods, which in-
volve intensive interaction with farmers or other stakeholders, that complement the
quantitative economic research and assessment methods described in the preceding
sections. This research provides rich insights into the cognitive and cultural landscape
in which farmers’ understanding of climate and climate information is grounded, and
the decision-making process and environment that defines options, constraints, and
outcomes.

Taxonomies, seasonal calendars, and ranking matrices of climate events have helped
researchers to identify salient attributes that structure people’s perceptions and ex-
periences of climate (Orlove 2004; Ziervogel and Calder 2003), and highlight discrep-
ancies between the ways farmers think about climate and the ways forecasts are
formulated. For example, the seasonally averaged timeframe and regional scale typi-
cal of operational climate forecasts do not match farmers’ concern with short-term,
localized events (Hansen et al. 2004) or the duration and distribution of rainfall within
the growing season (Roncoli et al. 2004). Narrowing this gap will necessitate bringing
scientists’ own cultural models into the analytical focus to understand how they shape
the research agenda.

Ethnographic methods have shown that farmers around the world have a diverse
repertoire of shared and specialized forecasting knowledge based on environmental
observations and ritual practices. Field data show that farmers do not generally rely
on a single indicator, but rather combine signs that arise at different times from vari-
ous sources (Roncoli et al. 2002; Luseno et al. 2003). Although a dearth of long-term
data series for local indicators, such as wild plants or insects, has hampered efforts to
assess the validity of indigenous forecasts, innovative cross-disciplinary research, draw-
ing from ethnographic, agronomic and atmospheric data, has established that Andean
farmers’ rainfall predictions based on the visibility of particular stars have a natural
explanation and some skill (Orlove et al. 2002).
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Risk communication research indicates that people’s grasp of probability is often
imperfect, as personal experience and communication practices can lead to cognitive
biases. Yet interactive exercises during fieldwork and workshops have shown that farm-
ers’ ability to interpret probability and use forecasts in decision-making can improve
with interaction and experience (Patt 2001). Field research has also shown that farm-
ers’ expectations and assessments of accuracy may differ for traditional and scientific
forecasts (Nelson and Finan 2000).

The role of climate forecasts in rural livelihoods hinges on household vulnerabil-
ity to climate risk. While quantitative methods make it possible to measure and com-
pare levels of vulnerability, qualitative approaches provide valuable insights into subtler
dimensions of vulnerability. In-depth interviewing and participant observation has
revealed how gender, ethnicity, and caste can limit access and use of climate forecasts
among African farmers (Roncoli et al. 2004). By combining participatory methods with
quantitative surveys and agent-based modeling, a study among farmers in Southern
Africa showed that, while wealthy households realized greater yield gains, climate fore-
casts benefited poor farmers the most by reducing the likelihood of food shortage
(Ziervogel et al. 2005).

1.7
Way Forward

In his review of the current status and future challenges for climate prediction appli-
cations in agriculture, Sivakumar (2006) proposed several priorities to advance the
use of forecasts for climate risk management in agriculture in the near future.

1.7.1
Improve the Accuracy of Prediction Models

Because the behavior of the atmosphere is chaotic, results from even well performing
models can diverge, or develop increasing uncertainty at longer time ranges. Good
science and support tools are fundamental prerequisites for ensuring a higher per-
centage of adoption of climate forecasts by farmers. As Doblas-Reyes et al. (2006) ex-
plained, several avenues are likely to enhance the quality of forecasts of agricultural
impacts of climate variations over the next five to ten years. First, dynamically cou-
pling crop models within climate models will support refined two-way interaction
between the atmosphere and agricultural land use. Resulting predictions will continue
to require calibration for the foreseeable future. Second, remote sensing and prolif-
eration of spatial environmental databases provide substantial opportunities to ex-
pand the use and enhance the quality and resolution of climate-based crop forecasts.
Third, empirical evaluation across a range of crops and locations will help establish
the robustness and relative merits of alternative approaches. The fourth area where
we expect to see significant progress is in advancing consistent methods for assessing
the uncertainties associated with climate-based crop forecasts. Finally, climate-based
crop forecasts will benefit from climate research in the emerging area of “weather
within climate.”
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1.7.2
Generate Quantitative Evidence of the Usefulness of Forecasts

Although there have been several case studies on the application of climate forecasts
for better managing risks under a variable climate, wider and more consistent appli-
cations of the forecasts can only be promoted when more quantitative evidence can
be generated about the usefulness of climate forecasts. Current research on climate
forecast applications needs to focus more on impact assessment of climate forecasts
through the development of new tools to assist in the evaluation of impacts of climate
forecasts (Thorton 2006). These include the specification of comprehensive behavioral
frameworks that go beyond current notions of risk theory, so that impacts on food
security, reduction of vulnerability, and increases in household adaptive capacity can
be addressed. A third area is in the development of hybrid approaches that combine
the quantitative with the qualitative, the top-down with the bottom-up, and the socio-
economic with the biophysical aspects. A fourth area is to make the process of impact
assessment as participatory as possible.

1.7.3
Give Greater Priority to Extension and Communication

Hansen (2002) argued that sustained use of climate prediction to improve decisions
depends on adequate communication. Proper communication of information implies
that the user is receptive to “proper” channels i.e. sources that they already know and
trust. Hence agricultural extension agencies must be involved from an early stage since
they are in regular contact with farmers. Another aspect of the “proper” information
is related to the communication process of translating the probabilistic forecasts into
easily understandable language for the farmers. Improper interpretation of the prob-
abilities can lead to loss of trust and exposing farmers to unnecessary risks. Appro-
priate and beneficial production decisions are often related to timing and hence the
communication of climate forecast information also must also be made in a timely
manner.

1.7.4
Respond to Users’ Needs and Involve Them More Actively

The use of climate forecasts requires that right audience receives and correctly inter-
prets the right information at the right time, in a form that can be applied to the deci-
sion problem(s). Understanding who the potential clients are, what characterizes them,
how they are linked to relevant and appropriate institutions, how information flows
between the major actors in the system – these are questions that can be answered
with solid baseline information, and improvements in spatial and non-spatial data-
bases will help greatly in more effective targeting of potential forecast users (Thorton
2006). Forecasts are only useful if they are skillful, timely and relevant to actions, which
potential users can incorporate into production decisions to improve potential out-
comes (Stern and Easterling 1999). Roncoli (2006) advocates the use of ethnographic
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and participatory methods to provide a roadmap through the intricacies of climate
information processing and agricultural decision-making and to help enhance the role
that climate forecasts can play in improving rural livelihoods. Ethnography must go
beyond portrayals of culture as a static configuration of categories and norms uni-
formly shared across society, to account for social diversity and cultural change. It also
needs to extend its scope to elucidate the workings of culture in scientific circles as
well as in rural communities. Likewise, participatory research should go beyond the
deployment of a fixed repertoire of tools and techniques. It needs to examine the partici-
pation process itself through ethnographic and sociolinguistic analysis of group dy-
namics, including the interactions between farmers and scientists. It has been demonstrated
that when stakeholders are well informed about the utility of climate prediction infor-
mation and when they are more directly involved in testing the benefits of such infor-
mation, they tend to offer more direct support for climate prediction applications.

1.7.5
Learn From Non-Adoption Situations

As Rubas et al. (2006) explained, improved climate forecasts are relatively new, so there
has been little research on the adoption path over time or the optimal levels of adoption.
It is important that when efforts are made to promote adoption by rural communities,
plans for studying the reasons for non-adoption are built into the project implementa-
tion framework. Reasons for the adoption or otherwise of new technologies can be iden-
tified through farmer surveys, model-based analysis of farming systems, and through
studying farmer motivations and behavior. Combining research on technology adop-
tion, climate forecasts, and the economics of information would allow researchers to
combine cutting-edge issues from different disciplines. Such research could build on
the important survey studies on the use of climate forecasts by decision-makers.

1.7.6
Create Better Institutional and Policy Environment

As Rubas et al. (2006) explained, climate information in isolation has relatively little
value beyond basic science unless it is integrated into managerial and policy processes.
This requires an integrated research program that robustly interacts with and identi-
fies the needs and environment in which decision-makers function. One of the major
challenges to promotion of climate forecast applications in most of the economic sec-
tors at the national level is the lack of a clear national climate agenda. Absence of ap-
propriate policy documents leads to problems such as lack of a clear guidance as to
which institutions have the main responsibility to produce and distribute climate prod-
ucts, inadequate research capacity and lack of a critical mass to deal with the key cli-
mate issues.

An important policy implication is that climate information and forecasts can be
combined with research from other physical and social sciences to mitigate natural
disasters by helping financial institutions, development agencies, and insurance cor-
porations better identify resiliency strategies that enhance development and reduce
risk. Climate change is another area that can benefit from seasonal forecast research.
There is increasing recognition that economic analysis of climate change must occur
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at a finer spatial scale. Research on climate forecasts as an adaptation strategy for cli-
mate change holds great promise. Education in general as well as education on using
climate forecasts is closely related to this issue and provides yet another place to look
for research that can be combined with climate forecast research to advance the eco-
nomics of information and lead to a better understanding of the decision to adopt
climate forecasts (Rubas et al. 2006).

1.7.7
Derive Economic Benefit through Applications to Trade and Storage

According to Hallstrom (2001), trade and storage are especially important instruments for
responding to agricultural production shocks caused by climate variation. Trade can miti-
gate the negative impacts of a climatic disturbance in a given location by allowing demands
to be met by production that took place elsewhere. Similarly, storage allows demands
at one point in time to be met by production that occurred at an earlier point in time.

1.8
Conclusions

Considerable advances have been made in the past decade in our collective understand-
ing of climate variability and its prediction in relation to the agricultural sector and
scientific capacity in this field. There is a clear need to further refine and promote the
adoption of current climate prediction tools. It is equally important to identify the
impediments to further use and adoption of current prediction products.

There is a need to further improve the models to enhance the skill in predicting
smaller fluctuations which often concern the users at the field level. The issue of
downscaling current predictions to facilitate more accurate local applications contin-
ues to be a challenge. Active collaboration between climate forecasters, agrometeorologists,
agricultural research and extension agencies in developing appropriate products for
the user community is essential.
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Chapter 2

Climate Downscaling: Assessment of the Added Values
Using Regional Climate Models

L. Sun  ·  M. N. Ward

2.1
Introduction

The science and practice of seasonal climate forecasts have progressed significantly
in the last couple of decades (Carson 1998; Goddard et al. 2001; Palmer and Anderson
1994). It has been demonstrated that seasonal forecasts are skillful in many regions,
particularly in the tropics (Goddard et al. 2003; Gong et al. 2003; Stockdale et al. 1998).
General circulation models (GCMs) have been employed in seasonal climate forecast-
ing at various centers (Derome et al. 2001; Frederiksen et al. 2001; Mason et al. 1999;
O’Lenic 1994; Ward et al. 1993). Due to computational constraints, GCMs typically are
run at relatively coarse spatial resolutions generally greater than 2.0° for both latitude
and longitude. The direct result of the poor spatial resolution of GCMs is a serious
mismatch of spatial scale between the available climate forecasts and the scale of in-
terest to most climate forecast users. Some applications also require climate forecasts
with higher temporal resolution. Most crop models, for example, require daily weather
input. GCM outputs are available as the required daily values, but GCM daily precipi-
tation shows very low daily variability and many high errors compared to observa-
tions (Mearns et al. 1990).

Climate downscaling is a critical component linking prediction to application. In
recent years, increasing attention has been given to the dynamical downscaling prob-
lem; that is, a relatively high resolution regional climate model (RCM) is driven by a
low resolution global climate model. The hypothesis behind the use of high-resolu-
tion RCMs is that they can provide meaningful small-scale features over a limited re-
gion at affordable computational cost compared to high-resolution GCMs.

Since Dickinson et al. (1989) and Giorgi (1990) first demonstrated that RCMs could
be used for climate study, RCMs have been extensively tested for climate downscaling
over many regions of the world (Fennessy and Shukla 2000; Giorgi and Marinucci 1991;
Hong et al. 1999; Kanamitsu and Juang 1994; Nobre et al. 2001; Roads 2000; Seth and
Rojas 2003; Sun et al. 1999a,b; Takle et al. 1999). Many issues concerning the use of
nested RCMs as a climate downscaling technique have received considerable atten-
tion, such as, spatial resolution difference between the driving data and the nested
model (Denis et al. 2003; Nobre et al. 2001), domain choice (Landman et al. 2005; Seth
and Giorgi 1998), model spin-up (Anthes et al. 1989; Giorgi and Mearns 1999), update
frequency of the driving data (Juang and Kanamitsu 1994), quality of the driving data
(Miguez-Macho et al. 2004), horizontal and vertical interpolation errors (Bielli and
Laprise 2006), physical parameterization consistence (Giorgi and Mearns 1999), climate
draft or systematic errors (Roads and Chen 2000), etc.



L. Sun  ·  M. N. Ward16

It is not the purpose of this chapter to provide a review of the current status of cli-
mate dynamical downscaling. Rather, the primary objective of this chapter is to as-
sess the added values of climate dynamical downscaling at seasonal time scale.
Section 2.2 focuses on improved spatial patterns and climatologies. Section 2.3 dis-
cusses the climate predictability at smaller spatial and temporal scales, Sect. 2.4 evalu-
ates dynamical downscaling forecasts, and Sect. 2.5 raises some further issues for
improvement of the climate dynamical downscaling.

2.2
Smaller Spatial Scales

Smaller spatial scale features developed in regional models are attributed to four types
of sources: (1) the surface forcing, (2) the nonlinearities presented in the atmospheric
dynamical equations, (3) hydrodynamic instabilities, and (4) the noise generated at
the lateral boundaries and model errors. A better representation of small scale forcings
such as topography and other surface heterogeneities (type 1) contributes to the in-
crease of details in high-resolution simulations. The nonlinear dynamics (type 2) also
play an important role. Internal atmospheric dynamics exhibits a nonlinear downscale
cascade by stirring and stretching the flow, and this phenomenon would occur even
in the absence of surface forcings. Shear and buoyancy in the flow can also, through
hydrodynamic instabilities (type 3), produce mesoscale features without the help of
surface forcings. The high resolution used by RCMs allows for a better representation
of these three types of sources, in addition to the increased accuracy of the numerical
scheme employed to solve the governing equations of the climate system. However,
the noise introduced at the lateral boundaries and the model errors (type 4) may con-
taminate the simulations and forecasts.

Typical spectral distributions of the global model and the regional model are shown
in Fig. 2.1 (Chen et al. 1999). After a relatively flat planetary wave portion of the ki-
netic energy spectrum, the global model shows a rapid drop-off with the –3 power law
of geostrophic motion (Phillips 1963). Because of the strong artificial small-scale dif-
fusion, an even more rapid drop-off occurs near the end of the global model resolu-
tion (i.e. T62 in this case) due to the strong small-scale diffusive damping in the model.
The kinetic energy spectrum of the regional model is projected to the global zonal
wave number. The regional model simulation with higher resolution continues to fol-
low the –3 power drop-off until the end of the regional model resolution (i.e. wave 300 in
this case), when another diffusion induced rapid drop-off occurs. The added value of the
regional model in this case is that it can resolve the waves with wave numbers 30–300.

Over lands, denser grid spacing in regional models obviously improves the resolu-
tion of the terrain, and better represents the land use (type 1 of the sources). The sur-
face forcing is thought to be the one that RCMs exploit the most because of heterogeneity
of the land surface. An example is shown in Fig. 2.2. The climatology of precipitation
over Kenya for observations is compared with that from an ensemble of three GCM
runs at T42 spectral truncation (approximately 2.8 degrees resolution) and a nested
regional model at 80 km and 20 km resolution, respectively. The GCM is the ECHAM
GCM developed at Max Planck Institute for Meteorology (MPI, Roeckner et al. 1996),
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and the regional model is the regional spectral model (RSM) developed at National
Centers for Environmental Prediction (NCEP) (Juang and Kanamitsu 1994). The ob-
servations are interpolated to 20 km × 20 km grids using 453 station data. The GCM
cannot resolve the observed local precipitation maxima around Lake Victoria and over
Kenya highland. The regional model at 80 km resolution can “see” Lake Victoria
(i.e. 15 grids on Lake Victoria), and produces the local precipitation maximum around
the lake. But it fails to generate the local precipitation maximum over Kenya highland
because the horizontal gradient of the terrain at 80 km resolution is not strong enough.
The regional model at 20 km resolution represented Lake Victoria well with more than
200 grids, and raises the height of Kenya highland by approximately 2 000 meters
higher compared to the GCM, thus significantly increases the horizontal gradient of
the terrain relative to the GCM. As expected, it is able to generate the two observed
local precipitation maxima.

Over oceans, denser grid spacing in regional models mainly exploits the types 2
and 3 of the sources (list in first paragraph of this section). A typical tropical cyclone
in the regional model and the global model are illustrated in Figs. 2.3 and 2.4, respec-
tively. The GCM resolution is about 280 km and the regional model resolution is 50 km.
Higher resolution leads to a much finer representation of the 850 hPa vorticity in the
regional model compared to the driving GCM. The maximum vorticity near the cen-
ter of the storm is much higher than that of the driving GCM. The maximum wind
speed is higher in the regional model, and there is a clear minimum near the center of
the storm, an attempt by the regional model to produce the storm’s “eye.” Precipita-
tion and humidity values are also higher in the regional model, and there appears to
be a rain band that is not present in the GCM simulation. Therefore, the high-resolu-

Fig. 2.1. Regional (dashed line)
and global (thin solid line)
model kinetic energy (KE)
spectra for January 1993. The
global model spectral are only
averaged over the latitude
bands covering the regional
domain, while the regional
spectra are projected over to
the global with respect to global
zonal wavenumber (actually
m + 1 so that the m = 0 can be
included on this logarithmic
plot). The thick solid line repre-
sents a theoretically predicted
energy cascade curve (Chen
et al. 1999)
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tion regional model gives a representation of the tropical cyclone that is much more
similar to the reality than that obtained by a coarse global model.

To date, it is widely accepted that dynamical downscaling improves spatial patterns
and climatologies as compared to the coarse resolution GCMs.

Fig. 2.2. October-November-December precipitation averaged for 1970–1995; a observation; b ECHAM
GCM ensemble mean; c ensemble mean of the ECHAM-RSM first nesting (resolution of 80 km);
d ensemble mean of ECHAM-RSM double nesting (resolution of 20 km). The precipitation unit is
mm day–1
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Fig. 2.3. Typical fields of a tropical cyclone in the regional model; a vorticity at 850 hPa (×10–4 s–1); b wind
speed at 1000 hPa (m s–1); c precipitation (mm per 6 hours); d specific humidity at 850 hPa (g kg–1) at
14 June 1994 00:00 GMT (Camargo et al. 2007)

2.3
Predictability at Smaller Spatial and Temporal Scales

Dynamical downscaling has been performed in many regions (e.g. Castro et al. 2005;
Misra et al. 2003; Roads et al. 2003; Sun et al. 1999a,b). Most of these investigations are
case studies (e.g. simulations of wet and dry years or warm and cold years). To an-
swer the question of whether predictability of climate systems is improved by dynami-
cal downscaling is to use multiple GCMs with multiple ensembles and force multiple
regional models (Leung et al. 2003). This task exceeds our current computational lim-
its, and has not been accomplished for any regions yet. An attempt is made to shed
light on this by the 30-year multiple ensembles of one GCM, the ECHAM4.5 GCM (T42),
and one RCM, the RSM, with resolution of 60 km for northeast Brazil (the Nordeste)
(Sun et al. 2005). The primary objectives are to find out: (1) whether the finer spatial
scale information produced in the regional model is skillful, or is it just ‘noise’ on top
of the large-scale signal? and (2) whether the temporal character of variability is skillful
in the regional model?

A spatial scale separation technique is applied to analyze the added value of the
RCM compared with the GCM. The observed and RCM simulated precipitation is
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upscaled to the GCM resolution (i.e. about 2.8 degrees). This is done by using running
average over 5 × 5 RCM gridpoints. The upscaled precipitation is treated as the large-
scale component, and the precipitation difference between the total field and the large-
scale component is treated as the local component. There is no local scale component
in the GCM simulations. The local scale component accounts for a small portion of
total precipitation climatology (e.g. about 15% averaged over Ceará, Brazil). However,
it significantly contributes to the total precipitation variability. The standard devia-
tion of the observed local scale component is roughly one-half of that of the observed
total precipitation. The RCM has the ability in producing variability of the local com-
ponent. It can generate about one-half of the observed variations of the local scale
component of precipitation in Ceará.

The physical climate anomaly signal in both RCM simulations and observed pre-
cipitation data tend to be contaminated by noise, particularly for the local scale com-
ponent. In order to separate the signal from the noise, both observed and RCM
simulated local scale component of precipitation are filtered by retaining only the lead-
ing empirical orthogonal function (EOF). Figures 2.5 and 2.6 illustrate the observed
and simulated leading EOF patterns, as well as the corresponding principal compo-
nents, respectively. Compared with the observed leading eigenvector (EOF1), the RCM

Fig. 2.4. Typical fields of a tropical cyclone in the global model; a vorticity at 850 hPa (×10–4 s–1); b wind
speed at 1 000 hPa (m s–1); c precipitation (mm per 6 hours); d specific humidity at 850 hPa (g kg–1) at
14 June 1994 oo:00 GMT (Camargo et al. 2007)
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Fig. 2.5. The leading EOF patterns for local scale component of precipitation for the period February-
March-April 1971–2000 in Ceará; a observation; b NCEP RSM simulation. The contours show the
actual eigenvector values multiplied by 10. Contour interval is 0.5 (Sun et al. 2005)

captures the general patterns of the observations: positive amplitude along the coastal
areas and southern Ceará, and negative amplitude in central Ceará. The leading EOF
of the observation explains about 17% of the total variance, while the explained vari-
ance for the leading EOF of the RSM is much higher (47%). As shown in Fig. 2.6, the
time series of the leading EOF between the observations and RSM simulations are in
good agreement, with a correlation coefficient of r = 0.44.

Predictability of local scale component can also be revealed by ensemble mean
contingency tables. Contingency tables for coastal, central and southern Ceará are given
in Table 2.1. They indicate that the regional model has reasonable skill for the local
scale rainfall. For instance, it is 5 of 10 years when the RCM indicated below-normal
(above-normal) local scale rainfall and the location was observed to receive below-
normal (above-normal) local scale rainfall in the coastal Ceará.

An aspect of precipitation variability that is important for climate impact assess-
ments is the distribution of daily precipitation through the season, which can be as
important, or even more important, than the seasonal average precipitation. Studies
that concern weather analysis in climate models are relatively few. Previous studies
indicated errors of too high and too low daily variability of precipitation in GCMs
(Mearns et al. 1990). GCMs missed important aspects of the ENSO signal in seasonal
statistics of daily precipitation although they are capable of capturing the ENSO sig-
nal in seasonal averaged precipitation (Gershunov and Barnett 1998). The analysis of
daily precipitation in GCMs is probably of limited value, given the crude horizontal
resolution (e.g. the GCM cannot resolve important topographic influences on precipi-
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Fig. 2.6. Time series of the leading EOF mode for local scale component of precipitation (Sun et al. 2005)

Table 2.1. Ensemble mean con-
tingency tables for FMA season;
a coastal Ceará; b central Ceará;
c southern Ceará. Categories of
model ensemble mean are
listed across rows and observed
categories are listed down col-
umns
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tation, nor synoptic scale precipitation processes) and the crude parameterizations
of precipitation. However, the model parameterization schemes are steadily improv-
ing, and regional models have relatively fine horizontal resolutions. This mitigates some
of the limitations of GCMs, and examination of daily precipitation may prove more
fruitful. Over northeast Brazil, the RSM shows reasonable skill in producing the
interannual variability of daily precipitation intensity distribution (Sun et al. 2005).
The RSM has measurable skill in capturing the variability of dry spells as well. Sun et al.
(2007) defined a drought index (D) to measure the severity of drought conditions.

(2.1)

where n is the total number of dry spells during the season, Li is the length of the ith
dry spell in days. A dry spell is defined as three or more consecutive days with daily
precipitation of less than 2 mm.

W = 1 if Li < 10

W = 5 if Li ≥ 10

The weight (W) is a function of the length of dry spells. Calibration has been done
to obtain the optimum values of the weight. A strong weight (W) is given to dry spells
longer than 9 days because of the severe damage to crop yields in this region.

The regional model simulates the observed drought index well (Fig. 2.7). Exami-
nation of the relationship between the seasonal mean precipitation and the drought
index indicates that, (1) the drought index is closely associated with the seasonal mean
precipitation only when the drought index is extremely high or low (i.e. the drought
index is at least one standard deviation higher or lower than the average), and (2) the
drought index is essentially not correlated to the seasonal mean precipitation when
the drought index variance is less than one standard deviation. Thus, the drought in-
dex can not be derived from the seasonal mean precipitation, and can be treated as an
independent variable except for the years with extreme anomalies.

The interannual variability for the drought index is higher than that for the sea-
sonal mean precipitation. The standard deviation-to-mean ratio is 40% (43%) for
observed (RCM simulated) seasonal mean precipitation, and 77% (66%) for observed
(RCM simulated) drought index. This higher variability provides further evidence of the
meaningfulness of the drought index as compared to the seasonal total precipitation.

2.4
Dynamical Downscaling Forecasts

Nested RCMs provide an essential component of the model hierarchy. They enable the
predictability of regional climate processes to be studied in much greater spatial de-
tail, and provide a means to make downscaled seasonal climate predictions for appli-
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cations. Dynamical downscaling of GCM climate forecasts has been performed in sev-
eral regions (Diez et al. 2005; Druyan et al. 2002; Fennessy and Shukla 2000; Murphy
1999; Sun et al. 2006; Syktus et al. 2003). Most of them are experimental forecasts. To
our knowledge, the first and the only operational climate dynamical downscaling pre-
diction system is the one developed for northeast Brazil (Sun et al. 2006). Operational
downscaling forecasts have been issued for northeast Brazil since December 2001. The
NCEP RSM with a resolution of 60 km and ECHAM4.5 GCM (T42) are the core of this
prediction system. This is a two-tiered prediction system. SST forecasts are produced
first, which then serve as the lower boundary condition forcing for the ECHAM4.5
GCM-NCEP RSM nested system.

Two SST scenarios are predicted. The first SST scenario is to persist the observed
SST anomalies from the most recently completed calendar month and add them to
the observed seasonal cycle. Dynamical predictions using persisted SST anomalies are
run only one season into the future. The second SST scenario is the predicted SST
anomalies for the upcoming six months. A mix of dynamical and statistical models
has been used to construct the SST predictions, varying by tropical ocean basins, and
damped persistence with 3 months e-folding time has been used for the extratropical
oceans.

Dynamically downscaled forecasts during 2002–2004 have been validated using the
ranked probability skill score (RPSS). The overall rainfall forecast skill is positive over
a majority of the Nordeste. Forecast skill varies with seasons. The forecast skill is gen-
erally higher for March-April-May (MAM) and AMJ seasons than JFM and FMA sea-
sons (Fig. 2.8).

To examine the added value of the RSM forecasts, skill comparison between the
downscaled forecasts and the driving global model forecasts was performed. The
ECHAM4.5 GCM probability forecasts were generated using the same methods as the

Fig. 2.7. Observed (solid line) and RSM simulated (dashed line) drought index for the season of
February-March-April in the rainfed agriculture region of Ceará. The temporal correlation between them
is 0.74 (Sun et al. 2007)
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RSM forecasts. The ECHAM4.5 GCM probabilistic forecasts were linearly interpolated
onto RSM grids in order to calculate the RPSS using the high-resolution observations. The
GCM forecast scores were aggregated for the whole Nordeste. As shown in Table 2.2, the

Fig. 2.8. Geographical distributions of RPSS (%) averaged for the one-month lead forecasts during
2002–2004; a all season mean; b JFM season; c FMA season; d MAM season; e AMJ season
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scores of the RSM forecasts are higher than those of the driving GCM forecasts for most
seasons, implying that the smaller spatial scale rainfall generated by the RSM is skillful.

Skill scores are based on 12 forecasts. Thus, the results here may be subject to high
sampling variability. More reliable skill should be obtained using large forecast
samples.

The dynamical downscaling prediction system for northeast Brazil continuously
evolves, reflecting continued improvement. A new forecast product, the weather in-
dex was issued in January 2005. The weather index uses the daily rainfall time series
to measure the severity of drought and flooding conditions. It has been successfully
demonstrated that crop yields in the rainfed agriculture region are highly related to
the weather index, and the downscaling prediction system is skillful to predict this
index (Sun et al. 2007). The NCAR CCM3 and the CSU Regional Atmospheric Model-
ing System (RAMS) will also be added to this downscaling forecast system, and multi-
model ensembling methods will be implemented to consolidate the downscaling
forecasts in 2006.

2.5
Future Directions

2.5.1
Improved Model Physics and Parameterizations

Parameterization schemes are based on a spectral gap between the scales being pa-
rameterized and those being resolved on the model grid. Therefore, all parameteriza-
tion schemes are model resolution dependent. However, parameterizations in most
regional models are the same as those used in GCMs. These may not be an adequately
representation of physics processes in the regional models and may result in incor-
rect model climatologies and climate drift, which offset the effect of high resolu-
tion of the regional model. For instance, the assumption that convective response
rapidly to changes in a large-scale, slowly evolving circulation is appropriate for con-
vection parameterizations in GCMs, but it is probably inappropriate for simulations
of most mesoscale convective systems in regional models, with 10–50 km grid spac-
ings (Frank and Cohen 1987). Arriving at more general mixing schemes that can cope
with the wide range of model resolution is a key problem of relevance to dynamical
downscaling.

Table 2.2. Skill comparison between one-month lead RSM forecasts and the driving ECHAM GCM fore-
casts. The RPSS (%) is aggregated for the Nordeste region
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2.5.2
Land Initialization

Traditionally, the land conditions in regional models are initialized by the driving GCM
land conditions using an interpolation scheme. However, the coarse resolution GCM
and the fine resolution RCM “see” the land differently due to the heterogeneity of the
land surface. This kind of initialization introduces erroneous land surface forcings to
the region model. This is as important a limitation on dynamical downscaling as model
flaws. The primary problem lies in the land because of the heterogeneity of the land
and very limited observations. A major advancement now being proposed is in situ
monitoring and generating fine resolution land reanalysis data. Because the land con-
tains the “memory” for time scales longer than a few weeks, land initialization is of
fundamental importance in improving dynamical downscaling at seasonal time scale.

2.5.3
Nesting Strategy

For the traditional one-way nesting method, the full large-scale circulation fields from
the GCM are provided to the regional model with an interval of 3–12 hours. Errors in
the large-scale circulations of the driving GCM are transmitted to the nested RCM,
which often results in poor simulations or forecasts of the RCM. For instance, the
ECHAM GCM produces a strong divergence bias in the lower troposphere over East
Africa. When the traditional nesting method is used, this GCM bias suppresses the
convection development in the RCM, and results in a dry bias for the RCM rainfall
prediction. To reduce the errors in the driving large-scale fields, an anomaly nesting
method has been introduced. This nesting method is based on the premise that sys-
tematic errors can be eliminated by replacing the driving GCM climatology with the
observed climatology. A case study of dynamical downscaling of seasonal climate over
South America reveals that the substantial gains are realized through anomaly nesting
(Misra and Kanamitsu 2004). More tests on this method are needed. Reduction of errors
in the driving GCM fields can significantly improve the regional model performance.

2.5.4
Downscaling Forecasts – Linking Prediction and Application

Current forecast products generally lack the spatial, temporal and element specificity
that users seek for their particular decision-making needs – forecasts are generally
made for 3-month seasons, large regions over 1 000 km in width, and mean tempera-
ture and precipitation totals only. Dynamical downscaling shows potential to improve
climate forecasts towards users’ need. Development of downscaling forecasts system,
particularly for developing regions, helps with the design of policies to reduce the cli-
mate vulnerability of the most needed populations.
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Chapter 3

Development of a Combined Crop and Climate
Forecasting System for Seasonal to Decadal Predictions

T. Wheeler  ·  A. Challinor  ·  T. Osborne  ·  J. Slingo

3.1
Rationale

Seasonal and decadal prediction of crop productivity requires simulation of climate
and its impact on crops ahead of time. Numerical models can provide such forecasts
by using the output from a climate model as input to a crop simulation model. This
modeling approach presents a number of challenges that will affect the skill of pre-
diction of the crop forecast. Perhaps the most important of these is: at what scale (both
spatial and temporal) should information pass between climate and crop models? This
chapter examines this question and other issues concerned with the development of
a combined crop and climate forecasting system.

3.2
Numerical Crop and Climate Models

The discipline of crop simulation modeling has advanced rapidly in the last 30 years
or so. The complexity of the modeling approach varies from empirical relationships
that describe how a few variables affect crop yield, to more process-based equations
of some of the underlying chemical and physical processes. Crop simulation models
attempt to provide the equations which describe plant physiology and how these pro-
cesses are affected by genotype, environment and farm management practices. A num-
ber of broad types of simulation models have developed. For example, SUCROS and
related models (Bouman et al. 1996), the IBSNAT models (Uehara and Tsuji 1993), and
the APSIM model (McCown et al. 1996). All these crop simulation models have one
thing in common; they require climate information as an input.

Crop simulation models use a rather limited set of climate variables from those
output by numerical climate models. Surface temperature is used in the simulation of
the rate of crop development, and for the rate of various growth processes such as leaf
expansion, photosynthesis and respiration. Calculations of crop water requirements
use precipitation and variables that determine evaporative demand such as relative
humidity, wind speed and incoming solar radiation. The latter is also required for sub-
models of photosynthesis, where these are present. The most common time resolu-
tion needed of climate variables is daily, with some crop models requiring diurnal
patterns of temperature.

General circulation models (GCMs) are three-dimensional representations of the
global atmosphere. Such models simulate the weather and climate over the globe by
integrating equations which determine the dynamical flows within the atmosphere
and the evolution of its physical state. GCM simulations are often used to understand
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global climate and how it may change under various scenarios, most commonly chang-
ing CO2 concentrations. While GCM output is commonly diagnosed at monthly or
yearly timescales, the models actually operate over much shorter time steps in order
to resolve the processes which determine the local weather events which go on to de-
fine a region’s climate. Commonly this time step is less than an hour in order to re-
solve the diurnal variations in atmospheric variables such as temperature and humidity.
Current limitations to computing power restrict the spatial resolution of GCMs to a
grid point spacing of approximately 100–200 km. Processes which operate on spatial
scales smaller than this (convection, for example) are parameterized.

3.3
Combining Crop and Climate Models

The spatial and temporal scales of numerical climate and crop simulation models are
not the same. General circulation models operate on grid sizes of about 200 km, but
crop simulation models are designed to use information on climate, soil parameters
and management practices at the scale of a field. Crop simulation models operate on
daily time-steps and use some seasonal information. GCMs include processes resolved
at a range of time-steps, but daily output is not always archived. This mismatch in the
spatial and temporal scales of climate model output and crop model input needs to
be resolved in order to reduce the uncertainties of seasonal crop forecasts.

A number of approaches to improving the skill of seasonal crop forecasts have been
proposed (see review by Hansen et al. 2006). One of these has involved the develop-
ment of a combined crop and climate forecasting system (Challinor et al. 2003). A
number of discrete stages in the development of a combined crop and climate fore-
casting system have been defined (Fig. 3.1). The first is the definition of the spatial scale
of relationships between crop productivity and climate using observations. Crop mod-
els that use climate information as input implicitly assume that there is a strong rela-
tionship between climate and crop growth, development and yield. Variability in
large-scale climate processes such as the Southern Oscillation has been correlated with
yields of four crops in Australia (Nicholls 1985) and with maize in Zimbabwe (Cane
et al. 1994). Analyses of historical crop data show that the variability in yields due to
climate differs with location, from a small climate signal in the temperate UK wheat

Fig. 3.1. The stages of develop-
ment of a combined crop and
climate forecasting systems
(redrawn from Challinor et al.
2003)
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crop (Landau et al. 1998) to more than half the variability of the major crops growing
in India attributed to monsoon rainfall (Krishna Kumar 2004). Challinor et al. (2003)
examined the spatial scale of the relationship between crops and climate. They found
a coherent spatial and temporal pattern between the yield of groundnuts and seasonal
rainfall across India for 1966–1990 on the scale of subdivisions (irregular polygons of
about 130–480 km). Furthermore, this pattern was closely correlated with the smaller-
scale pattern of crop yields at a district level (an average linear scale of 98 km), and
with the 850 hPa large-scale circulation pattern. These large-scale correlations between
crop productivity and climate therefore established the basis for combining GCM
output directly with crop model output in that region (Challinor et al. 2003).

The simulation of crop productivity over a large area needs some simplification of
the crop simulation process. A complete set of field-scale inputs will not be readily
available over areas of countries and regions, and the grid size will encompass spatial
heterogeneity in parameters that describe soils, crop genotype and management prac-
tices. Reduced-form crop models (for example, Brooks et al. 2001) and statistical models
(such as Landau et al. 2000; Baez-Gonzalez et al. 2005) have been developed, and shown
to have predictive skill over large areas. Challinor et al. (2004) sought to maintain a
process-based approach in a large area crop model in order to simulate the effects on
the crop of short time-step events such as intra-seasonal variability in rainfall, and
high temperatures. They proposed a general large area model (GLAM) for annual crops
and demonstrated good forecasting skill of the model in a hindcast of the groundnut
crop aggregated to all India for 1966–1990.

There is increasing evidence from crop experiments that short-term climate events
of only a few days duration can severely impact crop productivity if they coincide with
a sensitive phase of crop growth. One example is the occurrence of high temperatures
near to the time of crop flowering (Wheeler et al. 2000; Fig. 3.2). The nature of crop
response when these climate thresholds are exceeded will be a vital part of the impact
of climate change on crop productivity in some regions (Wheeler et al. 1996; Vara
Prasad et al. 2002). Therefore, successful prediction of crop productivity by large area
crop models on both seasonal and decadal timescales needs robust simulations of the

Fig. 3.2. The effect of a 1-day
high temperature event on the
fruit/seed set of groundnut
plants grown in controlled envi-
ronments (redrawn from Vara
Prasad et al. 2001)
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effects of short-term variability in climate on the crop. The high temperature response
shown in Fig. 3.2 has been incorporated into GLAM to give a GLAM-HTS (high tem-
perature stress) model version (Challinor et al. 2005c). A similar response of rice to
high temperature is also represented in the ORYZA crop model (Matthews et al.1995).
Such models open up opportunities to examine how short-term, sub-seasonal vari-
ability in temperature will affect crop productivity.

Rainfall distribution within a growing season can affect crop productivity indepen-
dent of the seasonal mean. For example, two years with similar rainfall amounts of
394 mm (1975) and 389 mm (1981) during the growing season of groundnut crops in
Gujarat, India, are shown in Fig. 3.3. Rainfall in 1975 was evenly spread throughout the
season and a yield of 1 360 kg ha–1 was attained (Fig. 3.3a). In 1981, there was a break
in the monsoon rains during part of the period of grain filling of the crop (55–80 days
after planting, Fig. 3.3b). Observed yields were reduced by 34% to 901 kg ha–1. The
GLAM crop model simulated a 20% drop in yield in 1981 compared with 1975 (Challinor
et al. 2004). Thus, the impact of sub-seasonal variation in rainfall on crop yield was
reproduced by the large area crop model.

3.4
Consideration of the Forecast Skill of a
Combined Crop-Climate Modeling System

An intermediate step between using climate observations and GCM output for crop
forecasting is the use of climate reanalysis data. Reanalysis data are the output of GCMs
with weather data assimilated into the climate model. They can be viewed as the most
accurate description of the weather at resolutions typical of a GCM, and hence repre-
sent an upper limit to the forecast skill of a combined climate/impacts modeling sys-
tem (Challinor et al. 2003). Challinor et al. (2005a) used the European Centre for
Medium Range Weather Forecasting forty-year reanalysis as input to the GLAM crop
model run for India. The crop model simulated the correlations between monthly
(ERA40) weather and yields in regions where the climate signal was strong. Bias cor-
rection of crop yields improved predictions in grid cells in which the sub-seasonal
distribution of rainfall in ERA40 was well matched to rainfall observations. However,
the skill of crop prediction in areas where ERA40 did not capture either the mean
or seasonal cycle in rainfall was poor, even after bias-correction (Challinor et al. 2005a).
Thus, the good prediction of sub-seasonal variability in climate by the climate
model, and the ability to capture the impacts of sub-seasonal variability in the crop
model are both vital to skilful predictions by a combined crop-climate modeling
system.

Most crop simulation models are deterministic. That is, one set of model inputs is
used to derive a single set of outputs. However, climate on seasonal timescales is in-
herently unpredictable. The output of multi-model weather ensembles can represent
some of the unpredictability and provide probabilistic output (for example, the
DEMETER ensembles, Palmer et al. 2004). For crop simulation studies, Challinor et al.
(2005b) used output from each of the 63 DEMETER ensemble members as input to
the GLAM crop model to simulate the yield of groundnut in western India. The out-
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put of the crop model simulations was therefore a probability distribution of crop yields
in a single year rather than a single mean value. Considering one year as an example,
the mean model prediction for 1998 in Gujarat, India, was 713 kg ha–1. This was close
to the observed yield of 773 kg ha–1. However, the crop model output also provides a
probability distribution about this mean, from which it is clear that there was a non-
zero probability of very good and very poor yields in the seasonal crop forecast
(Fig. 3.4). The probabilistic hindcasts showed good skill in the prediction of crop fail-
ure (defined as a yield threshold of, for example, 400 kg ha–1, Challinor et al. 2005b).
Cantelaube and Terres (2005) produced probabilistic forecasts of wheat yields in
Europe using the output of the DEMETER ensembles with the WOFOST crop model.
They concluded that reliable predictions of yield could be obtained earlier in the sea-
son with the DEMETER forecasts compared with a current operational system. Thus,
there seems to be a lot of potential for the probabilistic forecasting of crop yields.

3.5
An Integrated Approach to Climate-Crop Modeling

The traditional approach to crop simulation has used a one-way flow of information
from climate model output to crop model input. However, it is increasingly recognized

Fig. 3.3. The sub-seasonal distribution of rainfall for 1975 (top) and 1981 (bottom) in Gujarat, India from
the time of sowing of the groundnut crop
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that land surface vegetation affects climate (for example, Cox et al. 1999; Pitman et al.
1993; Osborne et al. 2004). Crops comprise about 12% of the land surface vegetation
(Ramankutty and Foley 1998). They can modify their own environment through the
water cycle and surface temperatures. Therefore, decadal forecasts of crop productiv-
ity used in climate change impact assessments may need to consider the interaction
of crops and climate over these longer timescales. This can be achieved by integrating
the biological and physical modeling through working on common spatial scales and
fully coupling crop and climate models.

Crop growth and development routines from GLAM were incorporated into the land
surface scheme of a GCM (Osborne et al. 2005). In the new crop-climate model, crops
grow in accordance with the simulated environment (soil and atmospheric states) of
the climate model while at the same time altering the land surface characteristics
important for the determination of surface energy balance such as albedo and sur-
face roughness (Fig. 3.5). When forced with observed variations in sea surface tem-
perature, the coupled model’s crop growing seasons and final yields were in good
agreement with observations. However, the ability of the model to accurately recreate
observed crop production is closely linked to the ability of the climate model to rec-
reate observed weather and climate patterns.

Coupling a crop model to a GCM may potentially reduce the uncertainty of crop
simulations by capturing the effect of cropped areas on climate and through using GCM
output directly. However, it is difficult to precisely test the effects of coupling a crop
model to a GCM because the coupled (online) and separate (offline) models cannot
easily be run in a comparable manner. Nevertheless, we attempted a preliminary com-
parison of crop yield simulations by on- and offline crop models. The yield of ground-
nut crops across India (30 grid cells) was simulated for 1979–1989 using GLAM (offline;
Challinor et al. 2004) and GLAM-MOSES (online; Osborne et al. 2007) and the output
compared with observed yields. For this, the on- and offline runs were designed to be
as similar to each other as possible. However, it is important to note that there were
still some differences in model data inputs and model set-up that are characteristic of
the two different approaches and so were not altered (Table 3.1). So, our comparison

Fig. 3.4. Probabilistic crop yield
forecast using the DEMETER
multi-model ensemble for the
groundnut crop grown in
Gujarat, India in 1998. The solid
and dashed vertical lines are the
model average and observed
yield, respectively
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comprises the effect of coupling crop growth to the atmosphere and the differences
shown in Table 3.1.

The hindcast by the online model simulated the interannual variability in the ob-
servations reasonably well (Fig. 3.6a), in accordance with the longer time series
hindcast reported by Challinor et al. (2004). The mean yield predicted by the online
crop model was less (on average by 17%) than the offline model. The variability in the

Table 3.1. Summary of the differences between the on- and offline simulations of groundnut yield across
India

Fig. 3.5. Schematic illustration of the simultaneous coupling of the atmospheric state, precipitation, soil
moisture content, crop growth and surface fluxes within the crop-climate model of Osborne et al. (2007).
Blue and red arrows represent latent and sensible heat fluxes, respectively
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online simulations was similar to that in the observed data, with the exception of the
high observed yield in 1988 which was not captured. A further hindcast by the online
model was generated by removing those grid cells excluded by the crop mask (but
where in reality there was some groundnut grown) from the calculation of the all-In-
dia weighted mean yield. This change brought the mean response simulated by the
online model much closer to the offline simulations and the observations, and repro-
duced the high yield of 1988 (Fig. 3.6b).

Fig. 3.6. Hindcast of groundnut yields across India; a from the on- and offline crop models; b from the
online model without the crop mask and offline crop model. Observations are from national yield sta-
tistics of India
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3.6
Conclusions

Successful seasonal and decadal prediction of crop productivity requires skilful fore-
casts of climate and its impacts on crops. One approach is to combine climate and crop
modeling at a common, large scale in order to exploit crop-climate relationships that
are observed at a scale close to that of GCM output. Such a combined climate-crop
modeling system provided hindcasts of country-scale crop yields with reasonable fore-
cast skill. Furthermore, the combined modeling system allowed the use of climate re-
analysis and probabilistic GCM output in crop productivity applications. Such research
is now leading to a fully coupled crop-climate model that captures the two-way inter-
actions between crops and climate. The use of large area crop simulation models both
on- and offline with numerical climate models should aid progress towards improved
seasonal and decadal forecasts of crop productivity.
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Chapter 4

Delivering Climate Forecast Products to Farmers:
Ex Post Assessment of Impacts of Climate Information
on Corn Production Systems in Isabela, Philippines

F. P. Lansigan  ·  W. L. de los Santos  ·  J. Hansen

4.1
Introduction

Corn production is the principal source of family income for about 24 million Filipi-
nos. Isabela Province, located in one of the most depressed regions in northern Phil-
ippines, is considered the top corn-producing province in the country contributing
17% or 536 353 tons of the total yellow corn production in the country. Corn is grown
rainfed in Isabela. Monocropping of corn is predominantly practiced in Isabela and
there are two cropping seasons per year – wet season cropping from May to August
and dry season cropping from November to February. In 2003, a total of 146 965 hect-
ares were planted to yellow corn in the province. In the same year, average yield of
yellow corn was 3.65 tons per hectare (t ha–1) which was comparatively higher than
the national yellow corn yield average of 3.03 t ha–1. Most of the corn type being pro-
duced in the province is yellow corn which comprised 95% of the total corn produced
in the province (Lansigan et al. 2001). Yellow corn is primarily used as animal feed in-
gredient especially for poultry and swine.

Climate in the agricultural region of Isabela has historically no pronounced dry or
wet seasons – relatively dry in the first half of the year and wet during the second half.
Average rainfall is 1 844 mm per year, mean temperature is 29 °C and mean relative
humidity is 66%. In general, the climate in the vast plains of Isabela is suitable to corn
production. However, in 1998, drought devastated 110 996 hectares of corn field in
Isabela incurring a production loss of about 219 000 metric tons of corn (BAS 2001).
The Philippines is visited by an average of 20 typhoons per year from 1948 to 2000
(PAGASA 2001). The months of July, August, and September have the most frequent
typhoon occurrence in the country (Kintanar 1984). Experts have observed that ty-
phoon development in the Philippines has been erratic and almost unpredictable with
strongly varying movement and structure (Tacio 2000).

In recent years, improvements in our understanding of the interactions between
the atmosphere and its underlying sea and land surfaces, advances in modeling the
global climate system, and the substantial investment in monitoring the tropical oceans
helped provide a degree of predictability of climate fluctuations at a seasonal lead time
in many parts of the world (Hansen 2002). This has allowed critical agricultural deci-
sions to be made in crop production to minimize negative impacts of, or maximize
the benefits from the expected climatic conditions (Gadgil et al. 2002). Thus, this chap-
ter seeks to examine the agronomic and economic impacts of advanced climate infor-
mation on corn production systems in Isabela Province, Philippines as affected by
planting date decision.
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4.2
Methods

4.2.1
Determining Planting Dates Recommendation
for Corn Farmers in Isabela, Philippines

As part of the objective of the case study, crop performance and yields obtained using
two planting dates were compared to demonstrate the importance of using the climate
forecast, i.e. planting date determined and rationalized by considering the advanced
seasonal climate information versus the farmer’s choice of planting date. Analysis of
seasonal climate forecasts and the use of the historical data on normal precipitation
alone suggested that the planting date could not be determined exactly. Thus, an al-
ternative practical approach was to use the available historical rainfall data combined
with statistical analysis to determine the distribution of the end of rainfall occurrence
and to validate the planting date using crop simulation. The 42-year monthly rainfall
data of Isabela were classified into El Niño, La Niña or neutral years leading to the clas-
sification of the October 2003–January 2004 corn cropping season as El Niño, La Niña
or as neutral season. The historical end of the rainfall occurrence for the October–
January cropping season for the grouped years was also determined. Planting date was
determined such that the critical stage of corn growth should be synchronized with
the period when there is adequate soil moisture so that crop yield will not be signifi-
cantly affected or reduced. It has been reported that water stress or moisture deficit
from tasseling/reproductive stage to maturity is the most critical stage of corn growth
which significantly reduced corn yield (Shaw and Thom 1951; Coligado et al. 1963;
Papadakis 1966; Classen and Shaw 1970; and Sys et al. 1993). This critical period is about
55 days after planting. Thus, the recommended planting date was obtained by deter-
mining the date such that the critical crop growth stage will not coincide with the
period of moisture stress (i.e. about 55 days before end of rainfall occurrence). For both
Naguilian and Benito Soliven, the recommended planting date is 21 October 2003.
However, planting date for Benito Soliven was moved to 27 October 2003 due to tech-
nical tribulations. Unlike in Naguilian, farmers in Benito Soliven prepare their land
manually (i.e. using animal-drawn plow) that requires longer number of days. Tractors
are not used in this area due to its rolling terrain. Each planting date was further validated
to be optimal for each site by crop simulation modeling using CERES-Maize model by
simulating crop yields with the specified dates of planting as model input data.

4.2.2
Field Implementation

Six (6) corn farmers with a farm size of at least two hectares each were selected as
case study cooperators. Three (3) farm sites were established in different villages/com-
munities in the town of Benito Soliven. The municipality of Benito Soliven is located
at 16°55' N longitude and 121°60' E latitude. It is about 98 meters above sea level
(Fig. 4.1). Corn in this area is produced on rolling terrain and being located in an el-
evated area compared to the rest of the corn production sites in the province, Benito
Soliven’s climate-related concern is mainly drought occurrence.
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The other three (3) farm sites are located in different communities/villages in the
town of Naguilian, Isabela Province. Naguilian is located at 17°60' N longitude and
121°50' E latitude. It is about 38 meters above sea level. Naguilian is situated along the
Cagayan River, the biggest river system in northern Philippines. The town’s major
weather-related concern is flood occurrence.

Each of the farms identified was divided into two main plots with timing of planting as
the treatment, and each experimental unit measuring 2 500 m2 with two replications. One
plot was planted based upon the recommended planting period derived from the use of
climate forecast products combined with the use of statistical analysis of long-term his-
torical weather data of the province. The other plot was planted based on the farmer’s choice
of planting date. Most corn farmers in Isabela province base their choice of planting dates
on the actions of neighboring farmer leaders in the vicinity. Plots owned by same farmer
(i.e. with different planting dates) were managed by the same farmer employing similar
cultural practices. This was closely monitored by the project staff who lived in the area.

The choice of planting date is the sole recommended modification from established
farmer’s practice. Since the experimental cropping season is towards the dry season,
the main consideration in the choice of planting date is the assurance of moisture
availability during the tasseling or reproductive stage in corn production. In the trop-
ics, this is approximately 55 days after planting.

4.2.3
Data Gathering

The case study throughout the cropping season was closely monitored and farm ac-
tivities were duly recorded to control possible sources of variation other than the plant-
ing dates. Yield and income generated were determined at harvest time. Actual farmer’s
income based on the prevailing price of corn during harvest time was also determined.

Fig. 4.1. Location of the munici-
palities of Naguilian and Benito
Soliven in Isabela Province,
Philippines
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4.3
Results

4.3.1
Farmers-Cooperators’ Background

Naguilian Farmer No. 1: Mr. Arturo Marfil is 52 years old, has reached collegiate-level
of education and has four hectares of farm land solely devoted to corn. He obtains 40%
of his farm capital from private lenders/traders. He owns a hand tractor and corn sheller
which facilitate easier land preparation and shelling. On the side, Mr. Marfil raises poul-
try, swine, cattle and freshwater fish to supplement his farm income.

Naguilian Farmer No. 2: Mr. Felipe Ignacio, Jr. is 49 years old, has reached high school-
level education and has 28 years of corn farming experience. He grows corn on three
and half out of his four hectares of farm land. His wife also assists in his farming ac-
tivities. He derives 90% of his farm capital from private lenders/traders.

Naguilian Farmer No. 3: Mrs. Herminia Accad is 64 years old and a retired elementary
school teacher. She has 20 years of farming experience. She solely manages her 2.3 hec-
tares of corn farm and hires local farm hands to perform the necessary field operations.
She derives about 30% of her farm capital from local lenders/traders.

Benito Soliven Farmer No. 1: Mr. Miguelito Santos is 44 years old, has an agricultural
engineering degree from a local university and has 24 years of corn farming experi-
ence. Mr. Santos works for the local government and hires local farm workers to do the
day-to-day farm operations. Mr. Santos allocates 2 hectares out of his 4 hectares of farm
land to corn production. He obtains 20% of his farm capital needs from private lend-
ers/traders. He traditionally plants corn in November for the dry season cropping and
May for the wet season cropping.

Benito Soliven Farmer No. 2: Mr. Edmund Gauiran is 27 years old, has a university de-
gree and also works for the local government. Just like Mr. Santos, Mr. Gauiran obtains
20% of his farming capital from private lenders/traders. He hires local farm workers to
till his 2 hectares of corn plantation.

Benito Soliven Farmer No. 3: Mrs. Esmenia Aquino is 65 years old and has 35 years of
corn farming experience. She completed elementary education. Mrs Aquino owns seven
hectares of farm land and allots four hectares of her property to corn production. She
also hires local farm workers for her crop operations. Corn production is her primary
source of income. She utilizes her own funds to finance her farm operations.

4.3.2
Corn Yields

The choice of planting date is an important decision especially in rainfed, annual crop
production system like corn. The planting period, which lasts 30–90 days according
to climatic zone and date of onset of rains, is the most critical part of the farming sea-



45CHAPTER 4  ·  Delivering Climate Forecast Products to Farmers: Ex Post Assessment of Climate Information

son (Ingram et al. 2002). The difference in planting date during this study ranged from
3 days to 39 days (Table 4.1). The yield and income variation based on differences in
planting date are shown in Figs. 4.2 and 4.3. There is an appreciable difference in the
levels of corn yields and farm net income in the two sites with distinctly different el-
evations and agro-environment. Overall, crop yields in the low elevation, flood-prone
corn areas in Naguilian are relatively higher that those in the high-elevation, drought-
prone corn areas of Benito Soliven.

As shown in Fig. 4.2, the yield in corn areas that followed a planting date based on
climate forecast was higher in five out of six farms that participated in the study. This
overall yield advantage is about 18% compared to farms with planting dates based on
farmer’s choice. In the lower elevation areas of Naguilian, areas with planting date based
on climate forecast have 11% better yield compared to areas planted following farmer’s
choice of planting date. Yield in areas that utilized advanced climate information was
25% higher than the overall community yields average. The general trend was similar
in the higher elevation and drought-prone municipality of Benito Soliven. Climate
forecast-based planting resulted to 12% better yield than areas planted based on indi-
vidual farmer’s choices and 13% better yield than the general community yield aver-
age. For Mrs. Herminia Accad (Farmer No. 3) in Naguilian, Isabela, a difference of three
days in the choice of planting date resulted to a decrease in yield by 13% or about 770 ki-
lograms of corn yield per hectare.

4.3.3
Income from Corn Production

In terms of farm income, areas in Naguilian that utilized advanced climate informa-
tion have 18% more income on a per hectare basis compared to farms that depended
on individual farmer’s choice of planting dates (Fig. 4.3). Income differences based on
choice of planting dates ranged from 7.2 to 27% in Naguilian, Isabela. In Benito Soliven,
the income advantage resulting from the application of the recommended planting
dates based on climate forecast was about 32% on a per hectare basis. Income differ-
ences of participating Benito Soliven farmers ranged from 4.3 to 65.7%. The huge 65.7%

Table 4.1. Planting dates based on climate forecast products and farmers’ choice of dates of planting
corn in Isabela Province, Philippines
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difference in the per hectare income of Mr. Edmund Gauiran (Farmer No. 2) of Benito
Soliven was brought about by the 29.4% yield advantage and the better price of corn
grains when the harvest from area planted using climate forecast was sold in the local
trading center.

4.4
Conclusions

For rainfed corn production systems in Isabela, Philippines, the recommended plant-
ing date for the location can be estimated by determining the historical end of the
rainfall occurrence based on available climate data, and deducting from this period
about 55 days to avoid water stress during the critical period of the reproductive stage
from flowering until the end of grain formation. During wet season cropping, how-
ever, the use of advanced climate information to determine the recommended plant-
ing date may not be useful and practical as the crop will not experience significant
water stress throughout its growing period since there is adequate soil moisture avail-
able. This excludes the fact that the wet season is also characterized by atmospheric
disturbances due to typhoons with strong winds and heavy rainfall which may destroy
the crops.

Fig. 4.2. Corn yields at
Naguilian and Benito Soliven,
Isabela, Philippines as affected
by planting dates
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Field research results have demonstrated that corn farms which used climate informa-
tion to base the planting date obtained higher crop yields and higher net income com-
pared to areas which were planted based on farmers’ decision of planting date. Farms which
used advanced climate information-based planting date had a generally higher yield than
the average level in the entire village. These results had shown that using advanced cli-
mate information in farm-level climate-related decisions in corn production system can
lead to increased yield and farm income and can minimize risks due to climate variability.
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Chapter 5

Seasonal Predictions and Monitoring for Sahel Region

G. Maracchi  ·  V. Capecchi  ·  A. Crisci  ·  F. Piani

5.1
Introduction

Although seasonal forecast applications are still in an early stage of development there
is now enough collective experience from research efforts around the world to induce
some meaningful considerations.

In particular, for West Africa, whose economy is mainly dependent on agricultural
sector, the possibility of having seasonal predictions for farm level and food early
warning system applications is very useful. Due in part to its interdisciplinary nature,
the literature on agricultural applications of seasonal forecasts is scattered. A few col-
lected works (Sivakumar 2000; IRI 2000) cover efforts across countries.

Concerning meteorological seasonal predictions in the following pages, some of
the main methods and data over the world are summarized:

� At the Hadley Centre of UK Met Office outlooks for temperature and rainfall up to
6 months ahead for all regions of the globe, updated shortly after the middle of each
month are available. These forecasts are based on an empirical model using multi-
ple linear regression (MLR) and linear discriminant analysis (LDA) and using as
input sea surface temperature anomalies (SSTAs) representing interhemispheric
contrast, and tropical Atlantic and El Niño-Southern Oscillation (ENSO) signals
(Folland et al. 1991).

� At the Climate Prediction Center (CPC) at NCEP a canonical correlation analysis is
conducted for the African continent using quasi-global SST data for the area 40° S
to 60° N (Barnston et al.1996).

� At the Prediction Group of the Colorado State University an empirical method is
developed using as inputs previous Sahel precipitation, tropical North and South
Atlantic SSTs, Pacific SSTs and Quasi-Biennial Oscillation (QBO) (Landsea et al. 1993).

Concerning Numerical methods, studies are going on at the following centers:

� United Kingdom Met Office: an ensemble of runs by UKMO’s Third Generation
Coupled Ocean-Atmosphere GCM (HadAM3) are used with forced SSTAs assumed
to be persistent through the forecast period.

� European Centre for Medium-Range Weather Forecasting (ECMWF): a fully coupled
ocean-atmosphere model produces global predictions each month for precipitation
and rainfall. Atmospheric and land surface conditions come from ECMWF opera-
tional systems. Other oceanic thermal input data come from established observa-
tion networks (Stockdale et al. 1998).
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� International Research Institute for Climate Prediction (IRI) at Columbia Univer-
sity: a multi-ensemble approach using different AGCMs generates global forecasts;
Pacific SSTA forecast (from the NCEP model) and other SSTAs from statistical tech-
niques are used. Much information can be found at http://iri.ldgo.columbia.edu/
climate/forecast/.

Obviously skills for these long-range predictions are substantially lower than for
the more familiar shorter-range predictions; predictive skill and detailed comparisons
between the numerical methods and statistical ones are rare (Goddard et al. 2001). For
West Africa, the seasonal rainfall forecasting skill of statistical methods (in particular
the Climate Prediction Center method using CCA) is notable (CLIVAR 1998) and is
largely due to the persistence of successive rainfall anomalies.

Anyway Goddard et al. (2001) point out that different techniques have different
performances according to the region of interest and that end user interactions play a
part. For this reason, regional climate outlook forums are needed to keep in touch
policy makers, funding agencies, and users of climate information. Basically the role
of climate forum is to discuss the current state of the global and regional climate, to
produce a consensus seasonal forecast in the region in question and to develop a miti-
gation plan based on the seasonal outlook.

5.2
Data and Methods

The choice of the Institute of Biometeorology for the seasonal predictions is an ana-
logue statistical approach for aggregated monthly rainfall precipitation in the Sahel
region on the basis of “similarity” conditions of the sea surface temperature in three
areas in the world defined as: Niño 3 (5° S–5° N; 150–90° W), Guinea Gulf (10° S–5° N;
20° W–10° E) and Indian Ocean (5° S–15° N; 60–90° E). Areas chosen for the study are
shown in Fig. 5.1.

The theoretical analysis of the method and the justification of the predictors can
be found in the work of Vizy and Cook (2001) where the sensitivity of precipitation
over West Africa is studied using a GCM and in the work of Giannini et al. (2003) who
presented the evidence that Sahel rainfall interannual variability is due to the response
of the West African monsoon to oceanic forcing and is amplified by land-atmosphere
interactions.

In the analogue method each month of every year of the time series taken into ac-
count is characterized by six variables: three sea surface temperature standardized
anomalies (SSTAs) and their respective tendencies (namely “change rates”, CRs); the
SST values come from the Reynolds dataset used to feed NCEP/NCAR models
(Reynolds and Smith 1994). In computing the SSTAs the standardization is obtained
from the current SST values through subtraction of the 1979–2003 SST average and
division by 1979–2003 SST standard deviation (the so called z-score); the CRs are de-
fined as the difference between the standardized current SSTAs and those of the pre-
vious month. Then the method is based on the minimization of the Euclidean distance
between the esa-vectors defining each month of the time series to find the most simi-
lar year (namely analogue) and assign the values observed in the analogue year to the
forecast rainfall field. In formula we find:
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where each Pi is chosen in the domain of the predictors.
Once the best analogue year is found the precipitation anomaly, absolute values and

in percentage, are then computed, compared with the 1979–2003 climatological mean;
the dataset used is the Global Precipitation Climatology Project (Xie et al. 2003).

5.3
Results

The method became operative in the summer of 2004 and at the moment trials are
ongoing for the hindcast of rainy seasons in Sahel for the period 1979–2003. Due to
the specific dynamical behavior of the West African monsoon this simple analogue
characterization is able to catch main features of rainfall precipitation patterns dur-
ing the summer period. The validation of the model, through analysis of forecast skills
in terms of probability of detection (POD) and false alarm rate (FAR) in predicting
years above and below the normal, shows encouraging results. The operative result of
seasonal predictions at the Institute of Biometeorology is issued, on the dedicated
website http://www.ibimet.cnr.it/Case/sahel/products_01.php, every month and the tem-
poral validity is for the following three months.

In semi-arid tropical climates with clear wet and dry seasons and pronounced
interannual variability such as in the Sahel, the date of the start of the wet season, the
onset, is a critical factor in deciding when to plant crops. Reliable information on the

Fig. 5.1. Areas chosen for the computation of SSTAs and CRs (see text for definition)
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onset of the rainy season, one month or more ahead, would be very helpful for farm-
ers and decision-makers. Many studies have been carried out on the start of wet sea-
son in climatological studies of the average start date, but few attempts have been made
to make a seasonal forecast of the start of the current rainy season. One of the most
recent technique, among the others, to estimate the start and the cessation of the rainy
season in West Africa using surface data is proposed by Omotosho (1992) and
Omotosho et al. (2000).

According to Sultan and Janicot (2001), the dynamics of the West African monsoon
is divided in two phases: the preonset and the onset. The former occurs in late spring
when the Intertropical Convergence Zone (ITCZ) establishes itself at 5° N, climatologi-
cally at 14 May and the latter occurs when the ITCZ abruptly shifts northward, clima-
tologically at 24 June. So the ITCZ moves from 5 to 10° N, where it stays for the whole
month of August and this is when the rainfall declines in the Guinea Gulf and increases
in the South Sahel.

For the identification of the rainy season’s onset the Institute of Biometeorology
has followed and developed the idea first proposed by Fasullo and Webster (2003)
concerning the identification of the start and end of the rainy season in India due to
the Indian monsoon dynamics. Basically the method takes into account the vertical
integrated moisture transport, say VIMT, defined as:

where q is the specific humidity in units of g kg–1, U is the wind vector in units of m s–1,
p is the pressure in units of mb, and g is the gravitational acceleration in units of m s–2.

The dataset used is the NCEP/DOE-reanalysis2 (Kalnay et al. 1996). The vertical
integral is limited to the first 1 500 meters (up to 850 mb level) since during the rainy
season and in the area of interest most of the moisture is confined below this level as
shown in Fig. 5.2 (zonally averaged).

Following Fasullo and Webster (2003), the time series X of VIMT in the area of in-
terest is normalized by the climatological annual cycle through the transformation:

where X
–

 is the normalized time series (1979 → 2002) and χ are the values of the cli-
matological annual cycle.

The so constructed monsoonal index HOWI (Hydrological Onset and Withdrawal
Index) is based on the hydrological cycle and is

� associated with the establishment of the large-scale processes that drive the monsoon
circulation,

� relatively insensitive to individual synoptic disturbance and bogus monsoon onset,
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� based on fields that experience large and rapid variability during the monsoon on-
set and withdrawal,

� based on fields that have been well observed over an extended period.

Because the index is normalized, we can evaluate the definition that the time of the
year when the index exceeds and falls below, respectively, the fixed threshold of 0, marks
the pre-onset of the rainy season and the retreat of monsoon. For the pre-onset the
constraint imposed is that the HOWI must increase at least during the five days prior
to when it exceeds 0 and for the withdrawal the constraint is that the HOWI must be
lower than the threshold 0 for the following ten days.

Normalizing the rain using the GPCP dataset we can see evidence that the date iden-
tified via HOWI method anticipates the rain onset (when normalized rain exceeds ½
of its climatological value) of about 7 weeks in the southern part of West Africa and
of about 6 weeks in the Sahel region (latitude = 10–15° N, longitude = 10° W–10° E). In
general the time lag between the pre-onset of HOWI and the onset of rain decreases
with increasing latitude and it makes the HOWI a valuable predictor for the onset on
the monsoon season. Since the withdrawal of the monsoon is more rapid than the onset,
the time lag between the date in which HOWI < 0 and the normalized rain <½ is close
to zero. The joint dynamics of climatological HOWI and climatological normalized
rain profile in the Sahel region and in North Sahel region (latitude = 15–20° N,
longitude = 10° W–10° E) is illustrated in Figs. 5.3 and 5.4.

Table 5.1 below shows a summary of the predictive power and use of the HOWI in-
dex in West African monsoon area (latitude = 5°–20° N, longitude = 10° W–10° E), Sahel
region and North Sahel region.

5.4
Conclusions

It seems clear that the skill of seasonal forecasting methods could be enhanced by the
provision of improved input data and, improved model of interactions between

Fig. 5.2. Specific humidity lati-
tude/height profile for the pe-
riod July-August-September
averaged over the longi-
tude = (–10°, 10°)
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Fig. 5.3. Joint behavior of HOWI
profile and normalized rain
profile in Sahel region

Fig. 5.4. Joint behavior of HOWI
profile and normalized rain
profile in North Sahel region

Table 5.1. Summary of the predictive power and use of HOWI
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atmosphere and ocean. For Africa in particular, more reliable predictions could come
with better observational networks both on land and at sea. Dynamical modeling re-
quires a fuller understanding of the relevant oceanic, land-based and atmospheric
processes (from local to global scale) which bear on seasonal climate, before models
can be constructed to replicate these processes. At the moment these processes are not
as well understood as they are for many extratropical regions. For understanding the
factors involved in interannual variability, it seems that great efforts should be move
towards the following topics:

� Development of methods, both numerical or empirical, for the predictions of local SSTs,
� A better understanding of teleconnection between Indian, Atlantic and Pacific oceans

(including ENSO signal) with the beginning and development of West African
monsoon,

� A better understanding of influence of synoptic/sub-synoptic factors (like African
Easterly Waves and Madden-Julian Oscillation) on the intra-seasonal variability

� An improved understanding of the hydrological cycle with focus on the land/veg-
etation feedbacks, the relationship with antecedent rainfall and the role of dust and
aerosols,

� An improved network of gauges, remote sensing of rainfall estimates and upper air
observations in order to better monitor the high frequency signal of West African
monsoon that has a relevant impact on seasonal variability.
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Chapter 6

Institutionalizing Climate Forecast Applications
for Agriculture
A. R. Subbiah  ·  R. Selvaraju

6.1
Introduction

The potential value of seasonal climate forecasts is demonstrated by research studies,
which are centered on individual projects (Phillips et al. 2002). Several climate appli-
cation projects are discontinued by the scientists after signifying the practical value
and potential applications. The apparent reasons for discontinuation are financial
constraints, changing institutional mandates, personal motivation towards other ar-
eas of research and disabling institutional policies. Scientific community is deficient
in accessibility to influence the policy to institutionalize the forecasting systems, al-
though policy recognizes the importance of climate forecasts during extreme climate
events. In this context, bridging the gap that exists between research, policy and users
to facilitate generation and use of climate forecasts was recognized as a challenge
(Maria et al. 2002). The sustained operational use or institutionalization of climate
forecasts is also constrained by distinct subcultures, institutional attributes of the key
players like meteorologists, application scientists and extension personnel. As a result,
the key players are very different actors bound by distinct sets of goals and mandates.
Differences in disciplinary culture and perspective tend to reinforce the institutional
separation (Hansen 2002). Apart from these fundamental ‘cultures’, there are distinct,
prominent and motivational factors that influence the sustained generation and use
of seasonal climate forecasts. In this chapter, other justifiable factors responsible for
institutionalization are discussed with example from Indonesia.

6.2
Institutional Proclivity and Evolution

The institutional proclivity is referred in the context of readiness of the institutions
to absorb the new technology available through recent scientific research. The readi-
ness to absorb the forecast technology and further development depends on past ex-
periences of climate related impacts and risk management. Institutions, which pass
through a risk management mandate in different context, readily accept and incorpo-
rate another emerging risk management strategy. Changes in institutional policies and
mandates towards new emerging risks and related motivating factors and needs also
influence the proclivity. For example, the Directorate of Crop Protection in Indonesia
at the national level was created in 1972 with a mandate to monitor and control pest
problems in agriculture. In mid-1980s, there was a considerable shift in mandate; fo-
cus on monitoring of flood and drought as a secondary function. In early and mid-
1990s, introduction of Integrated Pest Management (IPM) practices and pest resistant
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varieties led to significant reduction of pest menace. The IPM schools played a sig-
nificant role at district level to ensure the lateral seepage of the IPM technology across
the villages. After El Niño 1997, the impacts of climate variability on crop production
became a major concern.

The institutional set up, which was primarily evolved to monitor pests, provided
an opportunity to internalize climate risk management activities within the existing
mandate. Though El Niño during 1991 was prominent in terms of rice area affected
(Fig. 6.1), institutional transformation had taken place only after 1997 due to availability
of El Niño-Southern Oscillation (ENSO) based prediction technology.

Recognizing the importance of pro-active climate risk management the Ministry
of Agriculture (MoA) has included climate risk management within Pest Analysis and
Disaster Division under Directorate of Food Crops Protection from 2001. Later in 2005,
a separate division named the Climate Analysis and Mitigation was formed (ADPC
2006). Initially, the division is entrusted with collection, collation, analysis of long-
term climate data and real time drought monitoring. At the district level, the IPM
schools were converted into Climate Field Schools (CFS) to match the emerging needs.
The farmer field school facilitates practical and field-based learning.

Similarly, Bureau of Meteorology and Geophysics (BMG) of Indonesia was evolved
to provide forecast information for transport sector like shipping and civil aviation.
In late 1970s, demand for forecast for natural disaster risk management was realized.
In 1990s, a series of El Niño impacts diverted attention of climate scientists to gener-
ate reliable seasonal forecasts. Availability of usable El Niño forecasts was recognized
after 1997 and subsequently there was a growing interest in BMG to address the needs
of agriculture and water resource sectors at local level. An inter-agency scientific fo-
rum comprising of scientists from BMG, National Agency on Aviation and Space
(LAPAN) and Research and Development Department of MoA was initiated. District
level science and policy forum was formed to foster development of localized fore-
casts and to integrate climate risk management in district policy. Recognizing the

Fig. 6.1. Rice area affected by
climate risks in Indonesia
from 1988 to 2002
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institutional changes in agriculture and needs at district level, BMG has readily initi-
ated a replication process in several districts of the country based on the vulnerabil-
ity and climate predictability.

6.3
Role of Demonstration Studies in Institutionalization

Generally, demonstration studies in climate forecast application are targeting vulner-
able areas, which tend to ensure receptivity, participation and commitment of local
institutions and community in climate risk management. As beneficial use of climate
forecasts depends on high level of human vulnerability, climate predictability and
decision capacity (Hansen 2002), demonstration studies automatically target areas
satisfying the above criteria. A demonstration study also tries to generate localized
climate information, understanding the decision profiles and needs of the farmers. A
demonstration study implemented by Asian Disaster Preparedness Centre (ADPC) in
collaboration with International Research Institute for Climate and Society (IRI) has
followed a well organized sequential process that include: (i) understanding climate
variability and impact at local level (ii) farmers need perception, (iii) enabling elements
in decision-making environment favoring climate forecast uptake, (iv) assessing in-
stitutions generating reliable and usable forecast products, (v) ensuring partnership
development, (vi) processing and delivery of localized information, (vii) demonstration
of potential value, (viii) policy advocacy and (ix) replication. A demonstration project
on climate forecast application in Indramayu district of central Java had motivated
the farmers to actively participate in climate field schools and use the climate fore-
casts to decide about planting method during wet season (Boer 2004).

The lessons learned from the demonstration project have motivated the national
partners to expand the project into a national program. In this case, the organized
institutional set up is already in place and the demonstration project has just facili-
tated the institutional linkages at various levels. Institutionalization at national level
requires formal arrangement of relevant institutions and their linkages to provide
forecast information and a range of other forms of support and policies that foster
the provision and use of climate forecasts. It has been recognized that the institutional
arrangements play a key role in determining the outcome of climate-related risks
(Kirshen and Flitcroft 2000).

6.4
Enabling Local Institutions

Local informal institutions such as agricultural support services (e.g. input supply,
agricultural cooperatives, regulated markets, etc.) often take an active role in influ-
encing decisions by promoting new technology. These enabling institutions need to
possess important characters like egalitarian, autonomous, self-relient and democratic
to advance sustainable use of climate information. There are many formal institutions
at the district levels viz. agriculture, irrigation, public works, planning, budget, trade
and commerce, and public health that need to come together and pro-actively decide
necessary actions based on climate forecasts. Sustained use of forecasts at local level
depends on the coordination of formal, informal organizations and active support from
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village development committees, common interest groups and input supply and agri-
cultural cooperatives. The current climate forecast application initiatives in Indramayu,
Indonesia hold a promise to bring an institutional set up to strengthen support ser-
vices to manage climate risks. The lesson learned from the initiative was that the dis-
trict planning agency had internalized the benefits and is interested to use climate
forecasts for district development planning.

6.5
Conclusions

An effective information flow system from forecasters to agricultural organizations
and farmers is feasible within the recently evolved institutional system. However, tar-
geted forecast application can be enhanced through developing an end-to-end insti-
tutional feedback mechanism (Fig. 6.2). Such applications require significant capacity
building efforts at various levels to generate, interpret, translate and communicate
usable forecast products.

The effectiveness of institutional features, including organizational structures, poli-
cies and supporting instruments like legislation, financial instruments, budget, tech-
nology, and partnerships are the attributes that determine the sustained use of
forecasts. The demonstration study in Indonesia showed that the bonding of various
institutions based on their mandates and norms of solidarity and reciprocity are key
elements in strengthening partnerships. As understanding and partnerships grow,
these institutions will respond to the emerging challenges and reorient their policies
and mandates to accommodate new seasonal climate forecast products. As a result, a
growing network with increased capability to manage risk provides a foundation for
much greater integration of climate forecasts into decision-making facilitated by en-
abling institutions.

Fig. 6.2. End-to-end institutional system to facilitate the flow of climate information from national to
district and local/community levels
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7.1
Introduction

Climate variability creates risk in rainfed farming. Risk in turn discourages investment
by farmers, governments and development agencies. For instance, in dry regions re-
current droughts debilitate and destabilize poor, agricultural-based societies, and con-
tribute to land degradation by reducing vegetative cover and water supplies. Drought
triggers the exploitation of diminishing resources in order to survive (Cooper 2004).
Climate change caused by global warming is likely to increase the frequency of cli-
matic extremes in the future and result in changes in cropping practices and patterns
over time and space.

If climate variability could be predicted in advance, it would help societies prepare
for and cope with the resultant shocks. As well, since drought is a trigger for desertifi-
cation, better drought prediction and monitoring could help prevent land degrada-
tion. This chapter first identifies some key institutional mechanisms of the Consultative
Group on International Agricultural Research (CGIAR) for carrying out research to
use climatic information in improving agriculture. It then reviews efforts through these
CGIAR institutional mechanisms and individual center efforts on climate prediction
and adaptation to climate variability, indicating some research highlights and future
directions. The CGIAR center’s strengths and weaknesses in climate-related work and
synergies for potential partnerships are identified, principally with the national agri-
cultural research systems (NARS) and advanced research institutes (ARIs).

7.2
CGIAR Inter-Center Initiatives

The ‘Oasis’ partnership is the CGIAR’s initiative to provide research support to the
United Nations Convention to Combat Desertification. Oasis engages seven CGIAR
centers, many NARS, UN agencies (UNEP, UNDP, FAO), civil society organizations
(IUCN, WWF), NGOs, and ARIs.

Oasis catalyzes innovative research-for-development partnerships among agricul-
tural and meteorological institutions, and with agricultural stakeholders in the pub-
lic and private sectors. Oasis is currently studying local methods and indicators of
drought and desertification, and coping methods, as well as science-generated indi-
cators and new or improved adaptation strategies.

The Desert Margins Program (DMP) is a collaborative effort among nine African
countries that include the margins of the deserts that encircle sub-Saharan Africa:
Botswana, Burkina Faso, Kenya, Mali, Namibia, Niger, Senegal, South Africa and Zim-
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babwe. Rainfall is low and unreliable in these countries. The goal of the DMP is to help
these countries arrest land degradation through more sustainable practices and sys-
tems that improve livelihoods. The DMP pursues this goal through partnership-based
research-for-development activities, demonstration to farmers, and capacity building.

The DMP countries are assisted by five CGIAR centers: ICRAF, ICRISAT, IFDC, ILRI
and TSBF-CIAT. In addition, three advanced research institutes from the developed
world contribute their expertise in specific areas (CEH, CIRAD and IRD). Regional
networks (ASARECA, CORAF, and SADC-FANR) and non-governmental organizations
are also core participants.

The DMP is currently executing a major GEF/UNEP project to arrest land degrada-
tion, with particular emphasis on indigenous knowledge. This includes local methods and
indicators of drought prediction, as well as indicators of drought, and coping methods.

The Virtual Academy for the Semi-Arid Tropics (VASAT) is positioned as a coali-
tion of sources to promote knowledge-sharing in South Asia and sub-Saharan Africa.
The coalition membership, which is non-formal, ranges from IARCs and NARS to
community-based or rural NGOs. Activities presently take place in both West and
Central Africa as well as in South Asia. Lead partners include the Desert Margins Pro-
gram, along with the ICT/Knowledge Management program of the CGIAR. The Com-
monwealth of Learning, an inter-governmental organization that promotes non-formal
learning, is a key advisor.

VASAT aims to develop climate literacy and drought preparedness among rural
communities, development workers, service providers, policy makers, and other stra-
tegic sectors through the integrated use of information and communication technol-
ogy (ICT), open distance learning, and other communication media. It will also
communicate information on climatic trends like monsoon behavior and methods of
drought management for community mobilization and disaster preparedness.

7.3
Getting a Grip on Variability

Early CGIAR center work by Virmani et al.(1982) documented climatic trends in different
regions in India and analyzed their implications for agriculture. This was followed by
Sivakumar’s seminal work in West Africa (Sivakumar 1988) on predicting variability
in the length of the growing season and in soil water content to support crop growth.
More recently, this baseline information was used to simulate crop yields in response
to different climatic scenarios, e.g. Matthew et al. (1995) and Virmani and Shurpali
(1999). In addition, microclimatology work was undertaken to forecast disease and
pest incidence such as in Anantapur region, India (Virmani and Shurpali 1999). A third
step was to relate these models to economic consequences, and generate policy and
technology recommendations (e.g. Harris and Robinson 2001; Shapiro et al. 1993).

7.4
Improving Analytical Tools for Monitoring Drought and Desertification

A dearth of effective, practical tools for assessing and monitoring drought has con-
strained the fight against desertification. Oasis is fostering the use of quantitative and
analytical methods for direct measurements of ecological processes such as evapo-



65CHAPTER 7  ·  Climate Applications and Agriculture: CGIAR Efforts, Capacities and Partner Opportunities

transpiration from inexpensive, frequently-sampled satellite data (Rosema 1993). These
remote sensing analyses are combined with on-the-ground participatory assessments
of community perceptions and valuations of drought and degradation. Combined with
an understanding of ocean-atmosphere interactions, these tools will significantly
strengthen the capacities of communities, nations and regions to develop drought and
desertification predicting and coping strategies and tools.

7.5
Predicting Seasonal Rainfall

Historically, there has been a tendency in agricultural research to assume that drought is
an unknowable risk. But new understanding of ocean-atmosphere interactions has led to
increasingly powerful predictive models for seasonal climatic trends. Columbia University’s
International Research Institute for Climate Prediction is a leader in this area. They use
predicted global sea surface temperatures (SSTs) to drive a suite of atmospheric general
circulation models (GCMs). Statistical corrections and optimal combinations of GCMs
improve these predictions. By downscaling with dynamic regional climate models
(RCMs) and statistical methods, the resolution of these predictions is increased (Hansen
and Indeje 2004; Indeje et al. 2000). They have been remarkably accurate, for example in
the retrospective prediction of the July-to-September rainfall in the West African Sahel
over recent decades, including prediction of the drought years of 1972, 1983, 1987, and
1997. ICRISAT and its partners have also found this method promising in tests in India.

7.6
Predicting Climate Change and Its Consequences

Addressing a much longer time frame, some CGIAR centers are attempting to apply
climate modeling to estimate the future impacts of global warming. CIAT and ILRI used a
model called MarkSim, which uses data sources from thousands of weather stations world-
wide to predict that tropical maize production could decline by 10% by the year 2055
due to global warming (Jones and Thornton 2003). They point out that 10% is merely
an average; some areas could suffer much larger losses, with the poorest people being
hit the hardest because they are the most dependent on maize as their staple food.

7.7
Effects of Climate Variability on Agriculture

7.7.1
Effects on Crops

CGIAR centers have attempted to adapt crops to variable environments through plant
breeding. The largest impacts have been achieved by shortening plant growth dura-
tion so that the crop can be harvested before rains cease, i.e. avoiding drought. A more
difficult challenge has been to breed traits that enable crops to tolerate drought. Maize
in Southern Africa (Bänzinger et al. 2000), pigeonpea in India (Bantilan and
Parthasarathy 1998) and barley in the Middle East (Ceccarelli et al. 2004) are just three
of many drought-related breeding successes that could be cited.
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However, uniformly early-maturing varieties may cause farmers to miss the oppor-
tunity posed by the occasional longer, wetter season. Using the mathematical program-
ming method known as ‘Discrete Stochastic Sequential Programming’ (DSSP),
intra-seasonal adaptive decision-making by farmers was modeled at three sites in Niger
to understand livelihood strategies that mitigate the impacts of drought and improve
incomes (Shapiro et al.1993). The results lead INRAN, the NARS of Niger, and EARO,
the NARS of Ethiopia, to change their breeding strategies to target a range of matu-
rity periods, so that some varieties could always do well despite annual variability in
length of the growing season.

7.7.2
Crop-Environment Interactions

The interaction of crop genetics with the environment is also critical in reducing
vulnerability to drought. In the Sahel, experts have concluded that nutrient deficien-
cies are an even greater constraint than low rainfall (Bationo et al. 1998; Breman 1992).
Breman (1992) notes that natural vegetation in the 450 mm annual rainfall zone of the
Sahel utilizes only 15% of the incident precipitation. The remainder is either lost to
evaporation, as runoff or remains in the root zone unutilized. When soil fertility is
improved, water use by vegetation can increase to 50% and productivity can increase
fivefold, greatly lifting the carrying capacity of the land.

Phosphorus deficiency in the Sahel, for example, renders millet more susceptible
to drought; research by ICRISAT and IFDC has found that the application of phos-
phorus increases plant vigor noticeably, resulting in higher yields and greater drought
tolerance, as well as drought avoidance (by causing the plants to mature 1–2 weeks
earlier).

7.7.3
Effects on Pests

As crops adapt to climatic change, so will pests. Climate change will favor invasive pests
adapted to the new conditions that may devastate the native crops that were never bred
to resist them. Periodic episodes of climate change due to the El Niño phenomenon
provide a living example of what may happen. In Peru’s Cañete Valley, the El Niño
episode of 1997–1998 caused temperatures to increase by 3–5 °C and triggered torren-
tial rainfall. This combination coincided with the first discovery of an aggressive new
variant of the white fly pest, Bemisia tabaci and also the invasion of a species not found
there before, Bemisia afer (CIP 2001). These species became established and remained
even after the El Niño ended, plaguing the important sweet potato and other crops
there. This example shows that reinvigorated efforts in integrated pest management
and crop resistance breeding will be required to keep up with global climate change.

7.7.4
How Climate Variability Affects People

One particular climate applications gap to which the CGIAR and its partners have tried
to respond in recent years has been in helping to find ways to improve sharing of cli-
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mate information, technologies, and knowledge with farmers. These efforts have three
aspects, first gaining a better understanding of how farmers perceive and respond to
climatic risks; second, developing new policy instruments like appropriate drought
insurance for poor farmers to help them cope; and third, using new information and
communication technologies to share better climate information, recommendations,
and policies with farmers.

7.8
Farmer Perceptions of Drought

A recent Oasis study in Burkina Faso (Slegers et al. 2004) found that farmers’ percep-
tions of drought differ significantly from those of research institutions. Farmers are
more focused on the agricultural and local-context effects of drought (crop stress, lo-
cal variations in stress) whereas researchers tend to concentrate on the regional and
meteorological aspects (regional rainfall and temperature patterns, soil erosion and
impoverishment). To be more relevant, researchers need to translate their macro-level
observations into micro-level recommendations that can help farmers reduce their
vulnerability under the particular conditions of their own plots.

7.9
Livestock and Drought

ILRI and ASARECA, with USAID support, conducted a survey of 663 households in-
vestigating coping mechanisms of pure-pastoralists and agro-pastoralists, during the
1995–1997 drought and 1997–1998 El Niño rains (floods) in Ethiopia, Kenya, Tanzania
and Uganda (Ndikumana et al. 2002). The DMP conducted a similar enquiry in Kenya
(Anonymous 2004). The majority of respondents among four tribes in dry areas of
Kenya were aware of traditional signs that they felt had predictive power for weather,
vegetation and soil conditions. Systems analysis revealed a number of opportunities
to help herders improve their preparation and coping strategies.

If droughts could be foreseen longer in advance, herdsmen could reduce herd size
in an orderly way, avoiding panic sales. Cooperative action among herders could avoid
them being exploited by middlemen e.g. in panic sales of livestock that depress mar-
kets and strip the herders of their capital assets. Coordinated downsizing and rebuild-
ing of herds could reduce market squeezes and gluts. Better health care for animals
during droughts could increase survival rates. Better range management and the cre-
ation of fodder banks could ease the dry-season feed constraint.

7.10
Drought Insurance to Help Land Users Manage Climatic Variability

Climatic variation is an age-old risk of farming. Its consequences are severe and can
wipe out livelihoods. This risk may increase as global warming increases the frequency
and intensity of climatic extremes.

A conventional way of mitigating risk is the use of insurance. However, conventional
approaches to insurance bear high costs and may even create perverse incentives. For
example, government relief aid tends to favor wealthier individuals who took greater
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risks (and therefore suffered greater losses) by cropping or grazing livestock herds in
drought-prone areas, for example. This form of insurance is high-cost and encourages
even riskier behavior in the future.

An alternative being developed at IFPRI is private-sector insurance tied to objec-
tive, easily-monitored weather indicators such as rainfall levels (Skees et al. 1999).
Farmers buy policies based on the size of their farm operation (or their judgment), so
that larger risk-takers pay appropriately more to insure larger operations. If rainfall,
for example falls below the pre-set minimum for a season, the insurance claim becomes
valid. Insurance companies are able to accurately predict the risk and therefore calcu-
late an appropriate premium, since there is a wealth of historical rainfall data avail-
able for most areas of the world. This approach would shift the insurance burden from
the public to the private sector, and make it more efficient and equitable.

7.11
Information Technology for Knowledge-Sharing

VASAT uses the Internet, radio and other electronic means to prepare dryland farm-
ers for drought and to help cope with it when it occurs. A hub-and-spokes model is
followed (PANTLEG 1999). A central village with road access and electricity serves as
an Internet or radio transmission point to reach surrounding hamlets. Receiving sys-
tems in the hamlets may be solar or battery-powered, or simply use personal radios.
Village moderators in each hamlet consult with residents to gather their information
needs and relay them to the hub, which collects the needed information and trans-
mits it back to the hamlets, expressing it in the local language and displaying it through
simple media such as bullhorns and chalkboards (and over the radio).

This telecenter/radio platform can also be used for conveying learning modules,
gathering and relaying drought warning information, government assistance programs,
market prices, and many other valuable types of information.

7.12
Conclusions: Future Climate Applications in CGIAR Centers and
Partnership Opportunities

Since early efforts, little further work has been done by the CGIAR in modeling for
climate prediction. The CGIAR has judged it does not have comparative advantage to
pursue this type of work that is being done by ARIs like IRI. However, because of its
location in developing countries, the CGIAR has a comparative advantage to continue
to help partners in developing crop yield simulation models with ARI partners, mak-
ing use of available weather and climate predictions. There are also continuing op-
portunities for the CGIAR to play a leading role in using these weather driven models
to develop adaptive agronomic recommendations and do ground-truthing of these rec-
ommendations through field trials, both scientist and farmer managed, with NARS
partners. CGIAR centers can also continue to make strong efforts in combining geo-
graphical information systems and climate simulation modeling with particular em-
phasis on the agricultural consequences of climatic variability, especially global
warming.



69CHAPTER 7  ·  Climate Applications and Agriculture: CGIAR Efforts, Capacities and Partner Opportunities

The CGIAR, meanwhile, has made little progress in combining crop simulation and
bio-economic optimization modeling to develop adaptive technology recommenda-
tions. Opportunities for partnerships in this area exist with North American and Eu-
ropean universities such as Purdue University and Wageningen University, and with
ARIs such as IRI.

The local consequences of global warming are difficult to predict; some areas may
get drier and hotter, others wetter and cooler (Parry 2002). Therefore the centers are
developing a range of scenarios so that countries can prepare for whatever they may
encounter. As time goes on, these scenarios can be refined to match observed trends
and narrow the response options to fewer, more likely alternatives. Partnership op-
portunities will exist in the linking of biological to economic criteria in these models,
a major current challenge already starting to be tackled by some centers. Such bio-
economic modeling is essential because decision-makers tend to rely most heavily on
economic valuations. The agro-biodiversity costs of climate change, for example, could
include higher food prices and less reliable food supplies (e.g. if major food-produc-
ing regions decline) (Rosegrant et al. 2002). Decreasing water supplies in some areas
could raise the costs of irrigation (or make it unfeasible) while floods and droughts
could create major costs in different sectors of the economy.

Since global warming appears inevitable, much CGIAR research will continue to
be geared towards reducing vulnerability by adapting crops, land use systems and
policies to likely scenarios. This involves work in plant breeding, integrated pest man-
agement, natural resource management, socio-economics and policy, and related topics
that can be done with both NARS and ARIs.

The CGIAR can also lead (as currently exemplified by CIAT and ILRI) in the use of
long-term climate prediction to analyze expected changes in cropping patterns over
time, those due not only to climatic factors but also those due to changes in biotic
stresses such as pests and disease.

Lastly, the CGIAR is looking for partners in its efforts to find ways to improve the
sharing of climate information, technologies, and knowledge with farmers.

There is thus ample opportunity for the CGIAR to work with those who are devel-
oping better climate applications to improve agricultural productivity and reduce cli-
matic risk.
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Chapter 8

Institutional Capacity Building in
Developing Countries through
Regional Climate Outlook Forums (RCOFs) Process
K. A. Konneh

8.1
Introduction

Climate affects the lives of all living beings on earth. Every system is vulnerable to cli-
mate, and the impact of climate extremes can cause devastating damage to people and
their economies and environment. This vulnerability, however, varies from region to
region, and is a function of many factors, such as the geographic location, resiliency,
capacities (economic, technical and financial), social capital, political environment,
and livelihood security.

Developing countries have the least technical and financial capacities to cope with
the impacts of climate variability. This situation predisposes them to greater vulner-
ability to climate risks than the industrialized and developed countries, which pos-
sess adequate capabilities and resilience to cope with climate variability. Most countries
in Africa, especially those in the sub-Saharan Africa (SSA), are characterized by di-
verse livelihood security systems such as pastoral, rainfed agriculture, and cash crops.
Developing countries largely depend on precipitation for the productivity of these
systems. The developing countries’ reliance on natural resources such as precipitation
for economic development and livelihood security makes these countries extremely
susceptible to seasonal to interannual climate variability. The relatively poor econo-
mies and weak institutional infrastructures of these regions further compound the
problem. According to the IPCC Third Assessment Report (McCarthy et al. 2001), the
global average surface temperature increased in the last century, and it will continue
to rise in the current and future centuries. This environmental dynamic will, however,
vary by region, and will be accompanied by significant changes in precipitation, sea
level rise and frequency and intensity of extreme events such as droughts, hurricanes
and floods. These changes will affect all regions, but the developing regions such as
Africa, Latin America and the Caribbean, Southeast Asia and the South Pacific with
the least technical and economic capabilities to plan, respond and adapt, will be the
hardest hit by the impacts of climate variability and change.

Developing countries, therefore, need to be given the opportunity to take advan-
tage of the recent advances in climate science and technology, which would assist them
in reducing their vulnerability to climate variability and change. Such technology can
also increase their resilience and develop sustainable strategies to effectively adapt and
cope with climate variability and change. The vulnerability of developing countries is
further compounded by their predominant dependence on agriculture, a system whose
fate is intricately tied with availability of sufficient soil moisture during the produc-
tion season. Knowledge of the coming rainfall seasons is, therefore, critical for farm-
ers. This information would help farmers to modify farm management decisions that
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would help reduce their ex-post production losses, such as crop yields. In the devel-
oping countries, agriculture is the main driver of their economies and can contribute
an estimated 75–80% to the gross domestic products (GDPs) of these countries. Un-
fortunately, this sector is notoriously vulnerable to climate variability due to its de-
pendence on precipitation, a variable that is likely to influence crop or livestock
products.

Understanding the dynamics of climate variability and the role of climate variabil-
ity in human affairs, and using the understanding as a basis for highly interdiscipli-
nary, problem focused research that results in new information and options for
decision-makers struggling to manage climate risks, such as droughts and floods,
should be a priority. This is especially true for those developing countries that are dis-
proportionately more vulnerable, and have the least capacity to respond to climate
risks. The research efforts would, therefore, require involvement of many players, es-
pecially from the developed nations of the U.S. and Europe. The developed countries
have cutting edge technologies such as seasonal climate forecasting that the develop-
ing countries can access through international research collaboration. This chapter
highlights institutional and scientific advances and challenges of capacity building that
have emerged out of the COF process. The chapter also identifies the main regional
and international partners and collaborators, including their roles in the regional and
national institutional capacity building, that has emanated form the Climate Outlook
Forums (COF) process.

8.2
Origin of the COFs

In 1995, a select group of scientists from the U.S. and elsewhere, including countries of
Africa, convened a small meeting in Washington D.C. to explore the possibility of pro-
viding the developing countries the opportunity to benefit from advances/research in
climate science (seasonal forecasting) to reduce their vulnerability to climate risks such
as droughts, floods, tropical cyclones, forest fires, etc. This meeting was followed by a
workshop: “Reducing Climate Related Vulnerability in the Southern African Region”
(NOAA-OGP Report, 1996). One of the recommendations of this workshop was to find
a way to help developing countries understand the role of climate variability, and to
use this knowledge to help reduce their vulnerability to climate risks through the use
of seasonal climate forecast information. Climate experts and policy makers who par-
ticipated in the workshop recommended the COF process as an appropriate vehicle
to provide not only climate information, but also capacity building to apply and uti-
lize the information.

8.3
COF and Associated Institutional Synergies

COF is a coordinated and collaborative effort of NOAA and a range of partners, such
as the USAID-OFDA, the World Bank, the World Meteorological Organization
(WMO), etc., designed to give decision-makers in climate sensitive sectors such
as agriculture, water resources, guidance on the status of the approaching rainfall
season. The use of this guidance would help to reduce the impacts of climate risks.
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The COF processes have now evolved into a well-defined international procedure for
the annual preparation, dissemination, and verification of research based seasonal rain-
fall forecasts for developing regions such as Africa. Decision-makers in these regions
have used the forecasts in the various climate sensitive sectors for strategic manage-
ment decision, such as decisions on type of farm management practices based on a
given seasonal forecast. The COFs have improved institutional capacities, promoted
regional cooperation and integration, especially among the National Meteorological
and Hydrological services (NMHSs), policy makers and the user communities in the
developing regions. This cooperation has contributed to creating institutional build-
ing blocks, both at regional and community levels, for effective response and plan-
ning to reduce the impacts of hydro-meteorological disasters such as droughts and
floods.

The COF process brings together many regional and international scientists, policy
and decision-makers, non-governmental organizations (NGOs), public sector institu-
tions and intermediaries of information communication, such as the media and ex-
tension. Participating institutions in the process are: WMO, IRI, NGOs, NMH, donors
(NOAA, USAID-OFDA, World Bank), universities, research institutions, UK Meteoro-
logical Office, the U.S. National Center for Environmental Prediction-Center for Cli-
mate Prediction (NCEP-CPC), Inter-American Institutions for Global Change Research
(IAI) in Latin America and the Caribbean, the Asian Disaster Preparedness Center
(ADPC) and the Famine Early Warning System Network (FEWS NET). The bringing
together of multidisciplinary groups such as policy makers and scientists in a forum
process has contributed to useful dialogues, discussion of the forecast information,
and creation of an effective feedback loop between the information producers and
users. From the inception of the COF process its products have, therefore, been the
most credible and legitimate source of climate information to decision-makers for
climate-related decision-making.

8.4
Capacity Building of the
National Meteorological and Hydrological Services (NMHSs)

The COF process involves training of the NMHS staff in the different regions of Af-
rica, Latin America and the Caribbean, Southeast Asia and the South Pacific. The train-
ing focuses on the understanding of the dynamics of climate variability as influenced
by major climate forcing such as El Niño-Southern Oscillation, the Pacific Decadal
Oscillation, and the Indian and Atlantic Oceans. In the pre-COF era, the NMHS had
very little or no knowledge of using the ocean-atmosphere dynamics to forecast cli-
mate three months in advance. In other words, these institutions in developing regions
did not have knowledge of seasonal to internal climate forecasting. Instead, they typi-
cally limited their forecasting efforts to predicting three to five day weather reports. A
pre-forum capacity building component of NMHS staff is an integral part of the COF
process. This component has improved the institutional capacity of the NMHS staff
from doing simple statistical modeling to dynamical modeling, a more sophisticated
scientific method that better captures the chaotic nature of the climate system. The
collaboration and partnership between the regional and international institutions such
as the IRI, the regional WMO specialized centers, the U.S. NCEP/CPC-African Desk,
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have contributed to the advanced institutional capacity of the NMHSs in developing
countries. From the recommendations of the COF process, the USAID-OFDA and WMO
provided support for a dynamical modeling laboratory at the Inter-Governmental
Authority on Development’s (IGAD) Center for Climate Predictions and Application
Center (ICPAC), formally known as the Drought Monitoring Center (DMC) Nairobi.
This positive synergy has contributed to dynamical modeling capability of the regional
NMHSs staff in the Greater Horn of Africa (GHA) commonly known as Eastern Africa.

8.5
Capacity Building of Users of Climate Information

Providing skilled climate information does not guarantee the use and application of
information by the users (Jones et al. 2000; Walker et al. 2001; Philips and Orlove 2003;
Patt et al. 2005; Emmer et al. 2003). There are numerous barriers to the use of the in-
formation. Some of these are communicating the information, and providing the right
type of information for the user. These important gaps between the information pro-
viders and users will be filled through appropriate training of the users to understand
the language of the information and further research by the providers of the infor-
mation to perceive a holistic decision context of the users (Hansen et al. 2004).

In addition to providing seasonal climate outlooks, users’ capacity building has been
an integral part of the COF process. Water resources managers have received training
in factoring climate information into water resources management (GHA Workshop, 2002).

Food security and agriculture sector managers received training in downloading
probability forecast for agricultural applications (GHACOF 2003).

In the Southern African Development Community (SADC) region, the livestock
industry is a major livelihood system and a major contributor to the economies of the
region. In 2004, part of the COF process for the region was an institutional capacity
training of livestock mangers to factor climate information in the management of the
livestock industry (SADC Livestock Workshop, 2004).

8.6
Capacity Building of Journalist Institutions

The 2000 Global Review of Regional Climate Outlook Forums identified an inadequate
participation of the media in developing countries to communicate climate informa-
tion. This may be a major impediment to effective use and application of climate in-
formation in these countries (Basher et al. 2000). Reacting to this recommendation
from 2001 to date, NOAA and partners have supported a number of climate and me-
dia training workshops as part of the COF process, especially in the African region.
The first regional media-climate training was held in Dar Es Salaam, Tanzania in 2001.
This training brought together 30 journalists and 20 operational forecasters in an in-
teractive forum in which forecasters trained journalists in the fundamentals of sea-
sonal forecasting, interpreting the language of forecasting, and the role of media
institutions in communicating climate information (Media workshop, Tanzania 2001).

Similar institutional capacity building activities have been implemented in the
African region for journalists and editors (Luganda 2003; Dlamini 2002; Ogallo 2004;
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Islam 2003). The institutional capacity building of the media experts has resulted in a
greater collaboration between the media and the operational forecasters and has led
to enhanced communication and interpretation of the technical language of the prob-
ability forecast. Additionally, the training and collaboration between operational fore-
casters and the media has resulted in establishing media networks of climate journalists
in both the GHA and the SADC sub-regions. These networks are now engaged in spe-
cialized reporting on hydro-meteorological disasters such as droughts and floods
(SARCOF8 2004; GHACOF 2003).

8.7
Improving Regional and National Scientific and
Climate Research Capability

Pilot application projects are outgrowths of the COF process. These projects are de-
signed to develop new methodologies or enhance existing ones to apply climate in-
formation, assess the communication of climate information and identify impediments
to effective utilization of climate information. NOAA and partners have supported
regional and national institutional and individual scientists from operational forecast-
ing institutions (NMHSs), the agriculture and food security sector, research institu-
tions and universities. These scientists have conducted exploratory and pilot research
to address critical climate related issues such as disaster management, drought and
food security and hydropower resource management. Some of the regional scientists
are now working with international institutions such as the IRI to upgrade some of
the pilot projects into operational mode (Oludhe 2001; Mhita et al. 2003; Githeko and
Ndegwa 2001; Walker et al. 2001). The institutional capacity building activities, how-
ever, face critical technical and institutional challenges, which interested partners need
to address to enhance and sustain existing trade-offs, and create new ones.

8.8
Institutional Challenges

Most important of the challenges is the sustainability of the process in the long run.
From the inception of the capacity building activities, international donor organiza-
tions such as NOAA, USAID-OFDA, the World Bank and WMO, have provided the fund-
ing. Up to now, there is no concrete strategy for other options at local or regional level
to take full responsibility of the process, especially the COF process. This challenge
threatens the future continuity of the COF process and its associated capacity build-
ing activities. The future fate of the capacity building activities is not clear, espe-
cially if the current donors cease funding, and there are no alternative options to
take up the funding responsibility. COF is an endangered species under the current
circumstances and it needs help to save and sustain its life. Another institutional chal-
lenge is mainstreaming of the COF products into routine regional and national devel-
opment planning activities. This can influence users’ perception, trust and confidence
in the information, which, in turn, are linked to the quality and skill of the product.
This is a technical issue, which would be resolved by addressing critical technical chal-
lenges.
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8.9
Technical Challenges

COF products are still general. Some questions are still unanswered:

� Is it appropriate to plant at all, based on the given seasonal forecast scenario?
� Which kinds of crops and varieties will be suited for a specific season and for a spe-

cific location?
� When should farmers plant? and what is the optimum planting density based on the

nature of the upcoming season?

The users’ knowledge of the uncertainties of the probability forecast is still low. The
providers of the information need to make further efforts to help decision-makers
better understand the uncertainty of the information. The language of the current
forecast is too technical and not user friendly. These factors impede the mainstreaming
of the information into decision-making and routine regional and national develop-
ment planning activities.

8.10
Conclusions and Recommendations

In conclusion, the associated COF processes (capacity building activities) have estab-
lished a regional mechanism through pilot projects to demonstrate place-based op-
portunities and challenges of applying seasonal forecast for disaster reduction in the
region. Additionally, the capacity building effort has resulted in a well-recognized in-
ternational framework, the Climate Outlook Forums, which generate and disseminate
experimental forecasts for disaster reduction in the region. This framework is now the
most credible and legitimate source of climate information decision-makers utilize
to plan and respond to hydro-meteorological disasters in the region. Some of the
emerging institutions such as the networks of climate journalists (Network of GHA
Climate Journalists and the Southern African Development Community (SADC) Cli-
mate Journalists) have resulted in improved reporting of climate information, improved
collaboration and understanding between the media institutions and the operational
forecasters in the GHA and SADC sub-regions. Some journalists in these sub-regions
now engage in specialized reporting and work with operational forecasters on a con-
tinuous basis to monitor and report on indicators of any emerging climate related
extremes instead of waiting to report disasters.

In spite of the positive spin-offs of the COF process as outlined in the previous sec-
tions, the future of the process and its institutional capacity building activities is not
bright, if all players, such the policy makers and scientists, do not resolve the existing
institutional and technical challenges facing the process. The responsibility squarely
lies on regional governments and interstate institutions in developing regions that
benefit from the COF process. Non-governmental organizations (NGOs), the World
Food Program (WFP) and humanitarian institutions that benefit from seasonal fore-
casts should integrate the cost of capacity building activities into their regular devel-
opment program as a requirement driver in order to justify budgeting for COFs and
related activities.
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Chapter 9

Use of ENSO-Driven Climatic Information for
Optimum Irrigation under Drought Conditions:
Preliminary Assessment Based on Model Results
for the Maipo River Basin, Chile
F. J. Meza

9.1
Introduction

Water is a fundamental resource to ensure agricultural productivity. Access to hydro-
logical resources to supplement rainfall during the growing season is seen as one of
the key issues for food security. For this reason, the development of agricultural sys-
tems in arid and semi-arid regions has been closely linked to the scientific and tech-
nological advances in irrigation engineering.

When water is not a limiting resource, crops can achieve high levels of productiv-
ity because the absorption of nutrients is carried out normally and the stomata are
fully open, allowing gas exchange (i.e. water vapor and carbon dioxide) in an adequate
manner. However, when crops are experiencing water deficits, several regulatory
mechanisms take place resulting in a reduction of dry matter assimilation, mainly
because the resistance to gas exchange is increased due to stomata closure, and the
absorption of mineral nutrients is affected. Given the strong relationship between water
transpired and dry matter accumulation, irrigation seeks to provide crops with timely
water supply and in the quantities needed so that physiological stress is minimized
and crops can express their yield potential (Chang 1968; Norero 1999). Two important
conditions support the operation of irrigation systems in such conditions: (1) the cor-
rect estimation of crop evapotranspiration and (2) access to sufficient water resources
so that the agricultural water demand can be effectively met.

The problem of irrigation management is far more complex in situations where
there is a deficit in water supply. In this case, resource constraints redefine the situa-
tion, and the decision-maker seeks to reach the maximum feasible productivity of the
agricultural system, particularly when several crops are competing for the limited re-
source, which is a traditional resource allocation problem. Decision theory states that
an optimum allocation of resources is achieved when the decision-maker knows the
consequences associated with all possible combinations of alternatives and states of
the variable. Because climate is one of the main factors that generates uncertainty re-
garding final yields and given the interdependence of irrigation allocation decisions
throughout the growing season, access to reliable information (i.e. climate forecasts)
can generate additional economic benefits, being a tool for irrigation management.

This work illustrates the potential use of climate forecasts based on El Niño phe-
nomenon for irrigation operation under limiting water supply conditions in central
Chile, a region that has shown a significant ENSO footprint in its climatic regime. Using
a methodological framework that combines stochastic modeling of meteorological
variables conditioned on El Niño phases, a simple soil-crop algorithm, and a math-
ematical programming model, the value of climatic information is assessed. Section 9.2



F. J. Meza80

summarizes the impacts of El Niño phenomenon on the climate of central Chile and
the effects of climate variability on agricultural systems. Section 9.3 describes the
methodological framework used to evaluate the potential additional economic ben-
efits associated with ENSO forecasts for a case study in central Chile. Finally, Sect. 9.4
presents the results of the case study and the main conclusions of the work.

9.2
Climate Variability and Agricultural Systems

According to Oram (1989), agriculture represents one of the most weather dependent
productive sectors. In addition to that, it is also the largest consumer of water resources
due to the extensive surface that crops utilize during their development. Rosegrant et al.
(2000) identify climate variability and the growing competition for water among eco-
nomic sectors as two key issues that a modern society has to face when designing ef-
ficient water allocation policies.

Given the sensitivity of agricultural systems, in situations where timely and skill-
ful climate forecasts are available, such information could be of great value as long as
the system shows a response to the climatic signal and there are alternatives that can
be targeted to the forecast resulting in different optimal strategies of water resources
management.

One of the most simple but useful forecast system corresponds to the use of cli-
matic signals. These can be identified, monitored, and used as a forecasting tool in
order to estimate possible scenarios of weather sensitive systems. This is the case of
El Niño-Southern Oscillation phenomenon which has been described as a factor that
can explain an important fraction of climate variability in several parts of the world
(Walker 1923; Ropelewski and Halper 1996). As other parts of the world, the climatic
regime of central Chile is exposed to important fluctuations that, up to some extent,
can be associated with El Niño phenomenon. In central Chile, changes in the precipi-
tation regime have been studied and associated with the Southern Oscillation Index
(SOI), which points to a tendency to observe anomalously dry conditions during the
positive phase of the Southern Oscillation (La Niña phase) (Rubin 1955; Pittock 1980a).
In addition to that, precipitation is likely to be abundant during the Niño years, corre-
sponding to the negative phase of the SOI (Quinn and Neal 1982).

Temperature changes have also been studied by Pittock (1980b) stating that there
are warm temperature anomalies in conditions where sea surface temperatures are
above the mean (El Niño years). Rosenblüth et al. (1997) showed that there is a nega-
tive correlation between mean temperatures and the Southern Oscillation Index with
a tendency to be warmer during the negative phase of SOI (corresponding to El Niño
years) and colder when La Niña is present (positive phase of SOI).

Daily meteorological variables have also been studied conditioned on El Niño
phases. Maximum, minimum and dew point temperatures as well as wind speed were
analyzed by Meza et al. (2003). They concluded that the influence of El Niño phenom-
enon is not as marked as in the case of precipitation. However, the precipitation re-
gime does affect other meteorological variables because there are differences between
days with and without precipitation. It was later demonstrated by Meza (2005) that
El Niño does have an influence on reference evapotranspiration in central Chile be-
coming a phenomenon that would represent an important tool for water resources
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management. It was found that agricultural water demands can be up to 20% higher
during La Niña years.

Several studies show how climatic information derived from ENSO forecasts can
be used to accurately estimate yield outcomes and crop water demands. Yield responses
as a function of ENSO phases are illustrated for several crops and agricultural sys-
tems (Phillips et al. 1998; Podestá et al. 1999). It has been also shown that the use of
climate forecasts can bring additional economic benefits because the decision-maker
can target specific management strategies to the future forecasted events (i.e. there is
an economic value in climate forecasts). Examples of such work are found in Adams
et al. (1995), Messina et al. (1999), and Hammer et al. (2001). For central Chile the value
of ENSO-driven climate forecast has been estimated for perfect and imperfect knowl-
edge of future El Niño phases for different crops and agricultural systems (Meza et al.
2003).

A straight forward way to analyze the response of crops to climatic variability
throughout water use (and therefore irrigation) can be done by looking at the water
use efficiency factor, defined as biomass generated per unit of water transpired. To
represent this situation, Doorenbos and Kassam (1979) define a Ky coefficient, which
is known as yield response to water factor. The general equation proposed is:

(9.1)

Here, Ya is the actual yield of the crop (kg ha–1), Ym corresponds to the maximum
yield (kg ha–1), ETa is the actual crop evapotranspiration (mm), and ETc the potential
crop evapotranspiration (mm). A Ky value less than one means that the crop shows
less sensitivity to water restrictions, whereas a Ky value higher than one implies that
the crop is highly susceptive to water stress. Even though it is a useful relationship for
irrigation planning, there are some ambiguities in applying this method for optimum
water allocation. The authors do not consider successive and different levels of water
stress which may occur in reality. It is not clear whether the method has to be applied
in multiplicative form (i.e. the effect of the stress in one stage is carried to the follow-
ing stage) or taking the minimum value of all stress stages.

Jensen (1968) proposed a mathematical relationship that is easier to apply and con-
siders the effects of individual non equal levels of water stress over crop yield. The
Jensen model is:

(9.2)

where λi is the stress sensitivity index for each developmental stage i (i = 1, …, N). For
each crop i = 1 corresponds to the vegetative phase, i = 2 is the flowering phase, i = 3 is
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the fruit development phase, and i = 4 represents the harvest phase. The variable j rep-
resents the number of days in each phase i.

Note that, under drought conditions, decisions made on early stages regarding to
the amount of water allocated may affect final yield, either by restricting the rate of
actual evapotranspiration in the current period and/or affecting the future ones be-
cause they determine the soil water content that will be available in subsequent peri-
ods. For this reason information regarding future water demands (ETc) may be useful
to define an optimum irrigation management.

9.3
Methodological Framework

Although, El Niño phenomenon mainly affects the precipitation regime of central
Chile, the study is carried out considering crops that are grown during the austral
spring and summer (October to March). Being a Mediterranean climate, only the ef-
fects of ENSO on atmospheric water demands are considered. Following the defini-
tion of El Niño given by Trenberth (1997), daily meteorological records for the period
1976 to 2003 at the location of Pudahuel (33.27° S) were classified in the different phases
of El Niño. A “weather generator” conditioned on El Niño phases (Wilks and Wilby
1999) was fitted and used to generate synthetic series of daily meteorological variables
that were combined to generate estimates of reference evapotranspiration using Pen-
man-Monteith formula (Monteith and Unsworth 1990), more details of the weather
generator algorithm can be found in Meza (2005).

The soil unit selected corresponds to the Maipo soil with the following characteristics:
1.2 m depth, 34.8% sand, 21.2% clay, bulk density equal to 1.3 g cm–3, and a water holding
capacity of 80 mm. Due to the lack of information about saturated hydraulic conductiv-
ity, water flow in the soil was simulated at a daily time step using a tipping bucket approach.

A farming system composed by 1 ha of tomato, 1 ha of watermelon, and 1 ha of po-
tato is used in this example. The problem corresponds to an optimal allocation of lim-
ited water resources among the different crops with the general objective of
maximizing the net benefits of the farm.

It is assumed here that all crops have the same growing period with sowing date
set to 1 October, and with an extension of 182 days (exactly six months). The yield at
the end of the growing season is simulated by the Jensen’s model (Eq. 9.2). Each crop
is grown in the same type of soil with maximum water holding capacity of 80 mm and
initial water content of 50 mm.

For simplification it is assumed that water for irrigation (Ql in mm) is available in
fixed and known amounts and can be applied as a discrete variable to each crop irri-
gated (0, 5, 10, …, X). The irrigation is made on fixed dates with a frequency of 10 days
and without the possibility to store it for subsequent periods. In this way there are
18 times 3 possible irrigation amounts represented by Xl,k (l dates and k crops). Since
the Doorenbos and Kassam work contains information about the Ky factor for several
crops that are relevant to this study, it is necessary to adapt their method into a sim-
pler one like the Jensen’s model. The solution to this problem is presented by Kipkorir
and Raes (2002) transforming the Ky factor into the Jensen’s sensitivity index (λ) as:

λ = 0.2757Ky
3 – 0.1351Ky

2 + 0.8761Ky – 0.0187 (9.3)



83CHAPTER 9  ·  Use of ENSO-Driven Climatic Information for Optimum Irrigation under Drought Conditions

The nonlinear mathematical model is represented as:

(9.4)

For each irrigation moment, the constraints of the system are represented by the
following equation:

(9.5)

The parameters used in this example are presented in Table 9.1 and the mean val-
ues of reference evapotranspiration are presented in Table 9.2. Note the differences
between the sensitivity of different crops to water stress and the mean values of crop
potential evapotranspiration between El Niño phases.

In the absence of information a farmer will select an irrigation strategy based on
the expected value of crop evapotranspiration (i.e. the weighted average of ETc across
all El Niño phases) and water availability, creating a Ωc function as:

(9.6)

To estimate the potential use of El Niño-driven climate forecasts, it is necessary to
compare the performance of the farmer described above with one that has some in-
formation about the future possible states of ETc. This farmer will choose an irriga-
tion strategy conditioned on the expected value of crop potential evapotranspiration
under the correspondent El Niño scenario and water availability (Ωe under El Niño
events, Ωn under normal events, and Ωa under La Niña events). These functions are
represented by:

(9.7)

with o = e, n, a following the notation described above.
It is assumed here that El Niño conditions for the whole growing season are known

at the beginning, in that sense it represents a case of perfect information about El Niño
phases, although there is uncertainty about crop evapotranspiration within each phase.
Under maximization criteria if the irrigation strategies selected in Eqs. 9.6 and 9.7 do
differ, the information about future El Niño conditions has a potential economic value
(i.e. there is an economic incentive for the farmer to use climate forecasts based on
El Niño events). The relative frequencies of the phases of El Niño for the growing sea-
son considered here are: P(e) = 0.33; P(n) = 0.41; P(a) = 0.26.
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Using approximate moments analysis, the expected value of the use of ENSO in-
formation (EVI) in this optimum irrigation problem is calculated as:

(9.8)

Table 9.1. Parameters used in
the mathematical programming
model for each crop

Table 9.2. Mean values of crop potential evapotranspiration (ETc in mm.) for the different phases of
El Niño. T = Tomato, P = Potato, W = Watermelon
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9.4
Results and Discussion

Different levels of water availability, expressed as equivalent millimeters of water, were
included in this study to represent a wide variety of situations, ranging from no defi-
cit (Q = 175 mm) to severe water scarcity (Q = 25 mm). As a first approximation EVI
was assessed considering a farmer that bases his allocation only on expected mean
values of crop potential evapotranspiration and does not measure the real values of
the variable in the current and previous periods. In that case no further revision of
the allocation strategy is possible. Clearly, the value of information received at the
beginning of the growing season has more value for this farmer than for a decision-
maker that updates the knowledge of the system with actual measurements. Figure 9.1
presents the results of EVI disaggregated for each phase of El Niño. EVI is present in
all phases of El Niño when available water for irrigation has a value between 25 and
175 mm, reflecting that an allocation using ENSO-driven climate forecasts has a po-
tential use. The weighted average of EVI values ranges from 35 to 200 U.S. dollars de-
pending on the magnitude of the constraint. When available water is higher than
175 mm, the total satisfaction of crop requirements is achieved (i.e. an unconstrained
maximization is observed) and, irrigation is therefore the simple management of the
soil water budget. On the other hand, when available water is below 25 mm, no differ-
ences in water allocation strategies are found because the decision-maker is forced to
irrigate the crop with maximum marginal productivity.

It is also possible to estimate the EVI for a decision-maker that revises his alloca-
tion strategy incorporating the realization of previous and observed values of crop
evapotranspiration. For this farmer it is possible to correct the wrong estimates of ETc

with real values. In this case the value of information derived from future conditions
of El Niño is reduced. However due to the time dependence of previous decisions and
their effect on final yield, EVI is never equal to zero. This feature can be observed look-
ing at the evolution of the objective function of the decision-maker that allocates wa-

Fig. 9.1. Expected value of information (U.S. dollars) for different levels of available water and El Niño
phases in the growing period
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ter using El Niño forecasts and the one that bases his decision on historical ETc val-
ues. Figure 9.2 shows this situation for a situation where available water was 55 mm.
Because perfect knowledge of El Niño phases is assumed, the objective function us-
ing El Niño forecasts does not change with time. During La Niña years (Fig. 9.2a) EVI
decreases as a consequence of a revised optimization. As time progresses much of the
final outcome is already determined, and the corrections made in water allocation
reduce the relevance of climate forecasts. For normal years (Fig. 9.2b) the situation is
different, since ETc in these years is higher than the climatological average, the misin-
terpretation of future ETc values is carried out, and even though some adjustment can
be made, EVI remains close to the initial values.

Fig. 9.2. Objective function of a decision-maker that allocates water using El Niño-driven climate fore-
casts (straight line) and a decision-maker that uses climatological values but updates the objective func-
tion considerng observed ETc values (line with triangles); a results for La Niña years; b results for nor-
mal years
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Given the results obtained in this work, it is concluded that: (1) In locations where
ENSO signal has an effect on water demands (for instance central Chile) there is an
economic potential for the use of climate forecasts on water resources allocation at
the farm level, (2) The expected value of information is not a monotonic function be-
cause when water is very scarce allocation decisions are limited, (3) In some situations
wrong estimations of future ETc conditions can be corrected but the time dependence
nature of the system makes advisable to incorporate information as a tool for irriga-
tion management.

The results of this work correspond to a preliminary assessment of EVI. The re-
sults strongly depend on yield model representations. In this case Jensen’s model only
represents yield variability as a consequence of a difference between actual and po-
tential evapotranspiration and the same final outcome would be achieved in all El Niño
phases if water was not a limiting factor. The use of more sophisticated weather driven
crop simulation models, as a tool to refine yield forecasts, will probably produce bet-
ter estimates of the consequences, and allow the decision-maker to capture a higher
proportion of the additional economic benefits associated to climate information.
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Chapter 10

Towards the Development of a Spatial Decision Support
System (SDSS) for the Application of Climate Forecasts
in Uruguayan Rice Production Sector
A. Roel  ·  W. E. Baethgen

10.1
Introduction

Recent scientific advancements are improving the ability to predict some major ele-
ments of climate variability, in advance of the crop-growing season. In selected regions
of the world, climate anomalies are linked to the onset and intensity of a warm or cold
event of the El Niño-Southern Oscillation (ENSO) phenomenon. Southeast of South
America is within the regions of influence of this phenomenon (Ropelewski and
Halpert 1989). Hence seasonal weather and climate fluctuations have significant eco-
nomical impacts on the agricultural production sector of this region.

More recent studies conducted in southeastern South America revealed the exist-
ence of a near symmetry between impacts of El Niño and La Niña on precipitation as
well as on non-irrigated crop productivity. Positive rainfall anomalies prevail in El Niño
years, and negative rainfall anomalies prevail in La Niña years, during the austral spring
and/or summer months (Baethgen 1997; Baethgen and Giménez 2002).

While there has been much written about impacts of climate variability, there has
been relatively little done in relation to applying knowledge of inherently imprecise
climate predictions to modify actions ahead of likely impacts, i.e. applications of cli-
mate predictions. Although forecasts make predictions of climate variable behaviors
for large regions of the world, these regions are not uniform. Hence in many situa-
tions in some areas of these regions forecast recommendations were suitable while in
others they were not. A pilot project was then proposed to evolve a system for the effective
application of a seasonal climate forecast, which can address the natural spatial vari-
ability in growing conditions that control productivity in a rice ecosystem in Uruguay.

Therefore the objectives of this study were: (1) evaluate ENSO effects on Uruguayan
rice production; (2) evaluate the capability of crop simulation models in recreating
the observed yield spatial variability; and (3) simulate rice yield spatial variability
under different seasonal forecast scenarios: El Niño, La Niña and neutral years.

10.2
Materials and Methods

In this study, the relationship between ENSO 3.4 average total sea surface tempera-
tures (SST) anomalies in October, November and December (OND) and rice yield have
been analyzed to evaluate ENSO effects on Uruguayan rice production. Yield data were
obtained from the Uruguayan Rice Growers Association (ACA). Yields for any given
year were expressed as the relative difference between the observed yield for that year
and the yield predicted by the regression model (Eq. 10.1):
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RYD = (Yld(n) – PYld(n)) · 100 / PYld(n) (10.1)

where, RYD = relative yield deviation expressed in (%), Yld(n) = observed crop yield
for year n, and PYld(n) = yield predicted by regression model for year n.

SST anomalies were obtained from the Climate Prediction Center of NOAA. The
anomalies were calculated relative to the period 1950–2003 and aggregated into three-
month period means. Rice is normally planted during October–November and har-
vested during the end of March through May. Therefore any possible relationships
found during OND may have significant forecasting applications for this crop.

The study was conducted at a 12 ha rice field located at El Paso de la Laguna Ex-
perimental Unit of the National Institute of Agricultural Research (INIA), Uruguay.
The cultivar used was El Paso 144 and the planting date was 7–8 November 2002. Seed-
ing rate was 190 kg ha–1. Rice was direct seeded on dry soil. Fertilizer applications were:
170 kg ha–1 15-35-15 (N-P-K) at planting followed by 50 kg ha–1 of urea at flooding time
(30 days after emergence) and 50 kg ha–1 of urea at panicle initiation.

Ten locations were selected in this 12 ha rice field in which recording data loggers
(Hobo H8 Pro) were fitted. These loggers have an internal temperature sensor that
measures ambient air temperature, in this situation representative of canopy tempera-
ture, and an external sensor that was used to measure water temperature. The loggers
were attached to stakes placed vertically in the field, with the external sensors placed
approximately 0.05 m below field water level. As the rice grew, the internal sensors were
moved upward along the stake so that they were always near the top of the canopy.
Water and canopy temperatures were measured hourly throughout the growing sea-
son. Data logger locations were georeferenced using a back-pack differential global
positioning systems (DGPS) receiver (Trimble AG 132).

Daily rainfall, temperature and solar radiation data were obtained from the
Agrometeorological Weather Station located at El Paso de la Laguna Experimental Unit
of the INIA for the period 1973–2003.

At harvest, yield, yield components, and percent blanking were recorded in the vicin-
ity of each sensor. Sensors were removed before harvest. A sample plot (2.5 m × 3.5 m)
was harvested with an experimental plot combine at each sensor location. Yields stan-
dardized to 14% moisture content were measured. Interpolated yield maps of the field
were created using a geographic information system (Arcview, ESRI, Redlands, CA). Yield
data from each of the ten locations were spatially interpolated to a fixed 5 m × 5 m grid
using inverse distance weighted interpolation with power 2 and number of neighbors 12.

Soil samples were extracted at three different depths: 0–10 cm, 10–20 cm and
20–30 cm at the same locations where sensors were installed. Yield was predicted at
each sensor locations using the DSSAT v3.5 CERES-Rice model.

10.3
Results and Discussion

10.3.1
ENSO Effects on Uruguayan Rice Production

The fact that rice is irrigated under Uruguayan conditions theoretically should ame-
liorate ENSO effects on this crop productivity. Straightforward reasoning will indi-
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cate that for an irrigated crop like rice, ENSO phases can have opposite effects than in
non-irrigated ones.

Figure 10.1 shows national rice yield average evolution in the last 31 growing sea-
sons (1972–2003). In order to analyze ENSO impacts on rice production the probabi-
listic impact of ENSO phases on the distribution shifts of crop yields were studied
using the same approach as the one used by Baethgen. The detrended national yield
crop average data from 1973 to 2003 were divided into quartiles and any given value
was defined as being “high” if it was greater than the third quartile (upper 75% of the
data), “low” if it was less than the first quartile (lower 25%), and “normal” if its value
fell between the first and the third quartile (central 50% of the data). By this way the
range of average yield values that corresponded to each quartile were determined.
Using these values the shift in the distribution of crop yields were studied for the
different ENSO phases (El Niño, La Niña and neutral). The IRI classification of
El Niño, neutral and La Niña years was used (http://iri.columbia.edu/climate/ENSO/
enso.html).

Table 10.1 shows the classification of the series of years according to ENSO phases.
This analysis showed that the distribution of national relative yield differences (RYD)
varied with ENSO phases (Fig. 10.2). For example, the frequency of high rice yield differ-
ences was more than two times higher in La Niña years than in neutral years. On the other
hand in El Niño years the chances of having high yields were zero. In summary this fig-
ure clearly shows that in La Niña years the chance of having high yields increased with
respect to the neutral years, while in El Niño years this chance strictly does not exist.

10.3.2
Spatial Variability

The DSSAT v3.5 rice model requires information about: weather (temperature and solar
radiation), soil variables, genetic coefficients and crop management. Crop manage-

Fig. 10.1. National rice yield (1972–2002)
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ment and genetic coefficients were uniform for the field since the same cultivar and
management practices were applied throughout the studied field. In order to assess
the capability of the model in recreating the observed rice yield spatial variability, three
different simulations were carried out at each sensor location:

Simulation 1. Weather information (temperature and solar radiation) was extracted
from the agrometeorological weather station located at INIA. Soil information was gath-
ered from the soil analyses data that come from the samples extracted at each sensor
location. In these simulations all locations have the same weather data but differ in the
soil variables data.

Simulation 2. Same as above, but the temperature from the weather station was substi-
tuted with each canopy temperature’s data registered at each sensor locations. In these
simulations each location had its own temperature and soil data and shared the solar
radiation data extracted from the weather station.

Table 10.1. El Niño, La Niña
and neutral years

Fig. 10.2. National rice yield
distribution and ENSO phases
(1972–2003)
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Simulation 3. Same as Simulation 2, but temperature from the weather station, was sub-
stituted with each water temperature data registered at each sensor locations.

Table 10.2 displays the correlation values between observed and simulated yields
for all three simulations. Figure 10.3 displays the observed and interpolated predicted
yield values for all simulations. In these figures, it can be observed that the crop simu-
lation model was able to capture satisfactorily the spatial variability that was measured
in the field. It is important to highlight in these figures that the actual observed spa-
tial variation in yield ranges from 5 000 to 7 100 kg ha–1 (2 100 kg), while the predicted
ones vary in general from 4 000–5 250 kg ha–1. This indicates that the model tends to
underestimate productivity under these conditions and that the observed spatial vari-
ability was indeed larger that what was predicted. The reason for this underprediction
should be further investigated.

Table 10.2. Correlation be-
tween observed and predicted
yield values

Fig. 10.3. Observed and predicted yield spatial variability for simulations 1–3
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10.3.3
Temporal Variability

In order to achieve this, the average simulated yields of the 10 selected locations in
the field were compared with the country’s national rice yield average evolution in
the last 16 growing seasons (1987–1988 to 2002–2003) (Fig. 10.4). For each growing
season, the national rice yield average is determined by a large number of environ-
mental situations (i.e. planting dates, fertilization, soils, cultivars, etc.). Differences
among growing seasons are caused in part by the differences in the “average” climatic
conditions of each growing season. In other words, each growing season can be clas-
sified as good or bad from the climatic point of view. The goal of this section of the
study was to test if the model was able to capture those good, fair and bad years.

Overall the DSSAT v3.5 CERES-Rice model was able to capture satisfactorily rice
yield temporal variability. The model was able to simulate higher or lower production
levels in “good” or “bad” growing seasons. The only exceptions of the latter are in the
1990–1991 and 1998–1999 growing seasons when the model determined average yields
for the field for these years were lower than in the previous seasons (1989–1990 and
1997–1998) when the national yield averages actually increased during these years with
respect to the previous ones.

10.3.4
Spatiotemporal Variability

The model was run, in each of the ten selected locations in the field using the weather
data from a series of years (1972–2003) to characterize the spatiotemporal variability.
The same soil data, management practices (planting date, seeding rate, fertilization,
etc.) and genetic data (El Paso 144) that were used in the studied field for 2002–2003
growing season were applied at each of the ten locations through out all of these years.
Specific attention was given to evaluating if different regions within the studied field
would react differentially to a given climatic data. Simulated yield data from each of
the ten locations and for each 31 growing seasons were spatially interpolated in order
to generate yield maps for each growing seasons. Figure 10.5 shows the set of yield maps

Fig. 10.4. National vs. simulated
yields
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from the 1972–1973 through the 2002–2003 growing seasons. In order to be able to dis-
play the yield range variability along these 31 growing seasons with a common leg-
end, the whole data set of yield outcomes were and divided into quartiles. These
quartiles defined the range of variability of the different yield classes displayed in
Fig. 10.5.

Figure 10.5 also categorizes each growing season according to ENSO conditions
(El Niño, La Niña and neutral conditions, Table 10.1). This figure shows that in all the
growing seasons in which some part of the field presented production levels that fell
in the lowest yield class (2 968–3 819 kg ha–1, red color), those years corresponded to
El Niño years (1986–1987, 1987–1988 and 1990–1991). Conversely in all the years classi-
fied as La Niña, the yield variation of the field tended to be in the highest yield classes
(green and blue) with the exception of the 1998–1999 and 1974–1975 growing seasons.
These results coincide with the previous ones suggesting that La Niña year’s climatic
conditions are better for rice production.

10.4
Conclusions

The availability of new technologies like yield monitors, yield mapping software, GPS,
satellite and aerial images and GIS has made possible to measure crop growing con-
ditions as well as grain yield within a field at a very high spatial resolution, allowing
very fine and precise description of the spatial variability (Roel and Plant 2004). A
number of research groups around the globe are seeking to apply seasonal climate
forecasts to improve management of food production systems and security of farmer
livelihood in the face of climatic risk. One of the tools frequently employed by these
efforts is dynamic crop simulation models (Hansen 2000). In this study we integrate
this tool with the mentioned advancements regarding the capability of a precise de-
scription of yield spatial variability. We consider that this integration may increase
the possibility to evaluate the application of seasonal climate forecasts at a regional
scale. This integration will allow to study if in fact regions within the scale at which
climate prediction model output are given, react uniformly to different climatic con-
ditions. Consequently, evaluations can be made as to whether uniform recommenda-
tions can be made from a given forecast or if certain areas within the scale of the
forecast should be treated differently.

This study showed that the distribution of national rice yield averages varied with
ENSO phases (Fig. 10.2). The frequency of high national rice yields average was more
than two times higher in La Niña years than in neutral years. The study conducted in
the 12 ha rice field showed that this field presented certain yield spatial pattern with
high yielding areas at the north and center portion of the field and a low yielding ar-
eas at the south portion of the field. The DSSAT v3.5 CERES-Rice model showed to be
able to capture satisfactorily rice yield variability at the spatial and temporal levels.
When the model was run spatially, at the different locations within the field and tem-
porally along the different growing seasons, the same pattern of low yield spatial varia-
tion can be observed in the southern part of the field. Overall, this suggests that there
is no interaction between temporal and spatial effects, there were no climatic condi-
tions (temporal variability) that can make that the south portion of the field achieve a
higher yield than the northern portion.
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Fig. 10.5. Yield spatial variability; red years correspond to El Niño, blue years correspond to La Niña
and black years to neutral conditions
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The chief difficulty in linking climate forecasts scenarios with crop simulation
models is the substantial mismatch between the forecast output spatial and temporal
scales and crop simulation model input requirements. This study was able to demon-
strate that for this rice field although we were able to characterize its yield spatial vari-
ability very precisely this pattern of spatial variability did not change with different
climatic conditions. Therefore, yield spatial variability within this field seems to be
regulated by factors related to the soil and not with the climatic conditions. Conse-
quently, at the scale of this field forecast output scale did not constitute a problem. We
believe that the approach used in this study can be implemented at a larger spatial
scale to evaluate at which level of spatial resolution forecast output scale starts to be-
come a problem.
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Chapter 11

Assessing the Use of Seasonal Climate Forecasts
to Support Farmers in the Andean Highlands
G. A. Baigorria

11.1
Introduction

Andean farmers plant their fields before and during the initial months of the rainy
season, avoiding planting all of their fields on a specific date or with the same crop.
This traditional technique reduces climatic risks that occur as a result of the high
interannual climate variability and also assures a minimum production for self-con-
sumption during years of poor production. Farmers make decisions according to their
expectation and based on previous experiences of risk and they have developed their
own systems for weather and seasonal climate forecasting based on meteorological
and astronomical phenomena as well as biological behavior of wild species (Baigorria
2005). However, in comparison to other Andean areas, studies in La Encañada and
Tambomayo show that these indicators are more related to short-term decision-mak-
ing such as when to apply agro-chemicals, than what, when, where and how to plant
and crop. Although formal weather and seasonal climate forecasts are available from
the Peruvian National Service of Meteorology and Hydrology, these are used only in a
few cases, due to the inadequate spatial resolution and the lack of training to inter-
pret them properly. Similarly, but at a different level, the extension offices provide gen-
eral-purpose recommendations without using these forecasts.

In the present case study, the translation of a seasonal climate forecast from global
circulation models into a map with the optimal planting dates for different crops was
performed. This required downscaling of the forecasts and applying crop growth simu-
lation models to evaluate the impact of expected seasonal-climate conditions and crop
management on crop yields. These models increased the value of the seasonal climate
forecasts, making available this kind of information in appropriate agricultural terms
to stakeholders not deeply involved in climatology.

11.2
Data and Methods

11.2.1
Study Area

The present case study was performed in the Andean Highlands of Peru in the water-
sheds of La Encañada and Tambomayo, Cajamarca (Fig. 11.1).

The 165 km2 total area ranges in altitude from 2 950 to 4 000 m above sea level (a.s.l.).
According to the soil taxonomy (USDA-NRCS 1998), soils are classified as Entisols,
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Inceptisols and Mollisols. Production systems are mainly based on natural and im-
proved pastures and crops, basically Andean roots and tubers such as potato, oca (Oxa-
lis tuberosa), ulluco (Ullucus tuberosus) and maca (Lepidium meyenii), as well as grains
like barley and wheat (Tapia 1995). Agriculture is marginal and it is located on steep
hillsides up to 65% slope (Romero and Stroosnijder 2001). Annual income per ha ranges
from U.S.$400 to U.S.$3 200 (Valdivia 2002) and per capita income is usually less than
U.S.$1 per day (Baigorria et al. 2002). According to Peruvian government statistics,
despite the presence of gold mine explorations in the area, Cajamarca is considered
one of the most economically depressed areas in Peru.

Three weather stations are located in the study area: La Toma (7°3.72' S; 78°16.92' W;
3 590 m a.s.l.), Usnio (7°5.34' S; 78°18.96' W; 3 260 m a.s.l.) and Manzanas (7°7.08' S;
78°18.60' W; 3 020 m a.s.l.) with an historical record of 10, 22 and 10 years respectively.
According to Tapia (1995), these three weather stations divide the watersheds into three
agroclimatic zones (ACZ) denominated as highlands, hillside and valley respectively.

11.2.2
Field Survey

Eight participative stakeholder workshops involving 339 farmers were held several
months before the incoming cropping season (September 2003–May 2004). The goal
was to obtain detailed information about usual farm management practices includ-

Fig. 11.1. Location map of La Encañada and Tambomayo watersheds
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ing crops, N-fertilization ranges and planting dates as well as plans for the next crop-
ping season. The workshops were performed in different areas according to the ham-
let boundaries as well as the varied access to infrastructure and natural resources.
Baigorria (2005) described other relevant information concerning local weather and
seasonal climate forecast indicators currently in use by farmers, factors influencing
crop decisions and the current use of formal forecast by decision-makers.

11.2.3
Sea Surface Temperature Data

Two different kinds of SST data were used in the study in order to: first, calibrate and
validate the downscaling models and second, to downscale the seasonal climate fore-
cast.

11.2.3.1
Monthly Historical Records

Time series of observed SST maps (pixel size of 2° latitude by 2° longitude) provided
by the National Center for Atmospheric Research and the University Corporation for
Atmospheric Research (NCAR-UCAR) were used to develop the downscaling models.

11.2.3.2
Seasonal Climate Forecasts

Monthly forecast maps of SSTs for a three-month moving average with a pixel size of
2° latitude by 1.5° longitude were used as inputs in the application of the downscaling
models. Data were provided by the Environmental Modeling Center - National Oce-
anic and Atmospheric Administration (EMC-NOAA).

11.2.4
Spatial and Temporal Downscaling

Several steps were performed to finally obtain the daily forecast values of minimum
and maximum temperature, rainfall and incoming solar radiation. These steps involve:
first, both spatial and temporal downscaling from three-month moving average SST
forecast to monthly forecast of the meteorological variables at weather station level;
and second, at this level, temporal disaggregation from monthly to daily values.

11.2.4.1
Development Validation and Application of Downscaling Models

Because historical records and forecasts of SSTs have different spatial resolutions and
temporal step intervals, a process to standardize the data was performed. Forecast maps
were re-sampled to a pixel size of 2° latitude by 2° longitude using a weighted distance
interpolation method (Isaaks and Srivastava 1989) and the observed SST were tem-
porally aggregated as a three-month moving average series. Using the software
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CLIMLAB2000 (Tourre 2000), the monthly time-series of minimum and maximum
temperatures, and rainfall from each weather station were correlated with each pixel
from the observed three-month average SST maps. The results were monthly maps of
correlation indexes between SST and weather conditions with a three month lag
(i.e. SST in July–September vs. maximum temperature in October). Areas with simi-
lar correlation indexes were selected visually from each correlation map, and all the
values belonging to this area were averaged giving as a result only one value of SST
representing the area. All of these average values fed a stepwise multiple regression
analysis (a = 0.05) against monthly values of minimum and maximum temperatures,
and rainfall. Two-third of the historical records were used to develop the downscaling
models, while the remaining data were used for validation.

After evaluating the downscaling models performance during validation, the algo-
rithms obtained from the multiple regression analysis were fed with the monthly three-
month moving average forecasts. Finally, monthly forecast of the three meteorological
variables at each weather station were obtained.

11.2.4.2
Daily Disaggregation of Monthly Forecast

Because the crop models used in this research needed daily data, a weather generator
WGEN (Richardson and Wright 1984) was used to downscale the monthly forecasts.
To reduce the uncertainty produced by the effect of statistically simulating weather
from seasonal-climate (e.g. frost or rainfall frequencies), 99 realizations of WGEN
yielded 99 files of daily data. Afterwards, incoming solar radiation was estimated by
the Bristow and Campbell (1984) model, previously calibrated and validated for the
region by Baigorria et al. (2004).

11.2.5
Geospatial Modeling

GIS and Biophysical Modeling Laboratory – GABP-Lab (Baigorria et al. 2001) spatially
integrates the capabilities of geographical information systems and several process-
based crop models involved in the Decision Support System for Agrotechnology Trans-
fer – DSSAT (Jones et al. 1998). The crop models used in the present study were
SUBSTOR-Potato (Ritchie et al. 1995) and CERES-Cereal model (Singh et al. 1991) pre-
viously calibrated to the Andean conditions (Bowen et al. 1999; Quiroz et al. 2003;
Stoorvogel et al. 2004).

Using the 99 weather files generated by WGEN, 99 realizations of potato, wheat and
barley were performed under each of the different management strategies given as a
result of the field surveys, for each pixel in the map. For each pixel and each manage-
ment strategy, the average and the standard deviation from the 99 realizations were
calculated, giving as a result, optimal planting date maps for each crop as well as risk
maps associated to each management strategy alternative. Risk maps were presented
as maps of percentage of coefficient of variation, dividing the standard deviation by
the average. The maps were printed and disseminated among the farmers of
La Encañada and Tambomayo.
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11.3
Results and Discussion

11.3.1
Field Survey

Farmers from La Encañada and Tambomayo watersheds mainly distribute their crops in
two seasons based on the availability of rainfall. Table 11.1 summarizes the crop and man-
agement strategies identified as a result of the eight participative stakeholder workshops.

These management strategies were used as input in the realizations of GABP-Lab,
thus generating yield forecast maps to the entire possible combinations: crop × planting
date × N-fertilization rate.

11.3.2
Spatial and Temporal Downscaling

Figure 11.2 shows the performance of the downscaling models at the time of calibra-
tion. According to the multiple regression models, minimum and maximum tempera-
tures, as well as rainfall, were expected to be close to normal conditions during this cropping
season. This prediction was confirmed by the seasonal climate forecast made in Decem-
ber 2003 (during the study) by the International Research Institute of Climate Prediction.

Fig. 11.2. Monthly coefficient of determination for the three weather stations La Toma, Usnio and
Manzanas; a maximum temperature; b minimum temperature; c rainfall

Table 11.1. Identified manage-
ment scenarios for the
upcoming wet cropping season
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During the validation process, the residuals (difference between forecasted and
observed data) were analyzed to detect patterns in the errors. Figure 11.3 shows the
tercile probabilities of the residuals using the remainder one-third of the years of the

Fig. 11.3. Tercile probabilities of the residuals at the time of validation during warm phase of ENSO (a,
c, and e) and the cold phase of ENSO (b, d, and f) respectively. Variables correspond to (a, b) maximum
temperature, (c, d) minimum temperature, and (e, f) rainfall
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historical record. Because of a heterogeneous distribution of the residuals, these val-
ues were disaggregated according to the phases of El Niño and the Southern Oscilla-
tion Index (ENSO) in order to analyze the ENSO-phase effects in the performance of
the downscaling models. This analysis suggested that the developed multiple regres-
sion models are quite appropriate for normal years, however, the models underesti-
mate the maximum temperature during the El Niño phase and overestimate during
the La Niña phase. In the case of minimum temperature, the tercile probabilities show
that residuals are well distributed during El Niño; however, during La Niña the tercile
probabilities of the residuals demonstrate a large noise in the predicted values. In the
case of rainfall, results show that during El Niño the multiple regression models pro-
duce the largest noise.

It is necessary to explore multiple regression models in a more dynamic way and
based on a physical explanation of the involved process. Results obtained in the pre-
sented research using a more empirical approach of the multiple regression models
indicate the necessity of in-depth analysis, whether to generate multiple regression
models in general climatic terms as the presented here or multiple regression models
to normal conditions and to each specific extreme meteorological event. Regional
numerical climate models involving physical explanation can better represent a total
variety of meteorological behavior of an entire area.

The downscaling process presented here is based on the forecasted monthly aver-
ages values of the three meteorological variables. However, the corresponding vari-
ability during a specific month, characterized by weather generators as the standard
deviation, rainfall distribution scale parameter and the probability of dry-wet se-
quences (Richardson and Wright 1984) were applied without variation. Romero and
Baigorria (2005) demonstrated that the variability of rainfall in La Encañada and
Tambomayo watersheds is affected seriously during El Niño and La Niña events.
Thus, new approaches in weather generators conditioning variability based on ENSO-
phase can decrease the uncertainty during the temporal downscaling (Grondona et al.
2000). Because close-to-normal conditions were predicted, this approach was not
applied.

11.3.3
Geospatial Modeling

Yield forecast maps under different scenarios of crop production (Fig. 11.4) support
farmers to interpret the effects of the formal seasonal climate forecast on their lands
under their own different previously planned crop management options. Risk maps
(Fig. 11.5) support farmers with quantitative information about the risk of each crop
management scenario under the seasonal climate forecasted conditions. Thus, both
low-yield fields and high-yield fields can be related to a low or high percent of coeffi-
cient of variation. Farmers with the highest economic portfolios can rent lands with
better response to N-fertilization and lower risk. High-yield fields with a high risk
typically have investments of valuable crops and N-fertilization, according to the risk
preferences or risk aversion of the owners. However, in low-yield fields, often related
to marginal areas or natural pastures opened as new crop-field, yield forecasts sup-
port the poorest farmers to make better investments of the low resources they have in
an attempt to assure food security.
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Fig. 11.4. Optimal planting date maps of potato, wheat and barley under high and low N-fertilization
levels; a potato – high N; b potato – low N; c wheat – high N; d wheat – low N; e barley – high N;
f barley – low N
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With the resulting maps on hand, the next step was to make them available to the
farmers. After a training process, farmers understood how to use the maps (same as
presented in Figs. 11.4 and 11.5), and they began to interpret the yield forecast in the
areas corresponding to their own fields to analyze the feasibility of the information
and more rapidly incorporate the information into their own conceptual models. The
first observed response from farmers at the time of information dissemination was a
desire to increase the percentage of planting area within the optimal proposed plant-
ing date, attempting to take advantage of the yield forecast. However, the farmers never
wanted to risk the entire planting area, neither in a single planting date nor for only
one crop. Also notable was that only a small percentage of farmers considered chang-
ing the pre-determined crop, despite the fact that the information was disseminated
one month before the first evaluated planting-date. In this way, adoption of the find-
ings by farmers would finally depend on the destination of their harvest products,
which varies according to the hamlet, crop, economic portfolio and farmer’s risk pref-
erences and aversions. However, best crop yields are not necessarily related to the high-

Fig. 11.5. Maps of percentage
of coefficient of variation of
potato yield under different
levels of N fertilization; a high;
b low
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est profits, especially in hamlets that depend more on markets. Thus, the use of this
information is to translate forecasts to support decision-making and not to make the
actual decision.

The key point of this study is the possibility of linking the time-dimension, domi-
nated by climate during a cropping season, with the spatial-dimension, dominated by
soils and microclimates. Another key point is the possibility of translating global sea-
sonal climate forecasts derived from temperature anomalies in °C to crop production
in t ha–1; from science language to farm language. The interdisciplinary approach pre-
sented here provides support to allow better tactical decisions to be made under dif-
ferent land use management scenarios performed by farmers. However, farmers need
time to incorporate the new information in their decision frameworks.

Farmers already have experienced the use of seasonal climate forecasts by using
ancestral knowledge. However, sometimes their local indicators predict a totally op-
posite behavior of the next season-climate than that predicted by the scientific com-
munity. Two possible explanations exist: (i) errors in the forecasting models; and/or
(ii) decreasing accuracy of the local indicators due to externalities, as for instance cli-
mate change, new access to irrigation systems (Quiroz et al. 2003) or pollution. Fore-
casting models are improved year-by-year while local indicators will adapt to the new
conditions at a slower pace. Therefore, it is important that local forecasters keep up
and learn to read the national and regional forecasts instead of only relying on the
local indicators. Translated seasonal yield forecast information must be taken as one
of the many components of the system and not as sole source of information. Feed-
back from stakeholders on the research and scales are as important as knowing how
to incorporate risk into the decision-making framework.

Availability of more detailed spatial information of climate, soil and topography,
in combination with tools with a more quantitative and mechanistic approach pro-
vides the possibility to make a deep and complex analysis similar to the real world
situation, describing the maximum spatial and temporal variability in complex ter-
rains such as the Andean Highlands. Higher levels of complexity can be reached in
the analysis, including more variables within the distinct scenarios. These variables
can include cultivars into each crop (i.e. native potatoes, winter wheat, short photo-
period cultivars, etc.), irrigation systems, crop rotation, etc. In the same way, disag-
gregation of some generalizations of information, such as the ACZ, in higher spatial
resolutions and for each of the different variables (Baigorria 2005), still can make more
robust the spatial and temporal analysis. However, it is important to take into account
the necessity of more intensive calculations to perform the process.

The possibility to analyze high-resolution maps allows different stakeholders to
better make decisions, for example, from investing in N-fertilization at farmer level to
decreasing taxes in N-fertilizer at political level (Crissman et al. 1998). The pixel-par-
cel analysis supports the strategic decision-making of a farmer, drawing the actual
versus potential harvest of different crops, effectively reducing the uncertainty of the
next climatic season effects on the crops. This valuable information, together with
market prices, seed availability, information of plagues and diseases, and economical
portfolios, as the main but not unique factors, constitute the total framework for the
final decisions made by the stakeholders at different spatial and temporal levels.
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11.4
Conclusions

It was demonstrated that the seasonal climate forecast of SST at global scales can be
downscaled to watershed levels using empirical relations. The performance of the
empirical models is affected by extreme meteorological events like ENSO; however,
this gave us a clue as to how this extra information can be incorporated into the
downscaling models. Uncertainties related to temporal downscaling from month to
days can be partially tackled by including many realizations in the analysis, thus pro-
ducing a probability distribution instead of only one value. It is of importance in car-
rying out an in-depth analysis of the uncertainty produced by the use of weather
generators in temporal disaggregation.

The translation of the seasonal climate forecast must be performed in order to al-
low farmers, as well as other stakeholders at different levels, to better understand how
to incorporate this information into their decision-making process. Optimal planting
dates and coefficient of variation maps were well understood by farmers and govern-
mental institutions in the area.
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Chapter 12

Application of Seasonal Climate Forecasts for
Sustainable Agricultural Production in
Telangana Subdivision of Andhra Pradesh, India
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12.1
Introduction

Substantial advances in the efforts to model planetary weather systems, and resulting
improvements to general circulation models (GCMs), have led to better predictability
of the climate fluctuations, especially 1 to 6 months in advance (Delecluse et al. 1998).
Pioneers in generation and distribution of seasonal climate forecasts include the IRI
and NOAA. Wise utilization of this information by the farmers and policy makers can
contribute substantially towards achieving sustainability in agricultural production.
Notwithstanding constant endeavors to improve the living standards of the develop-
ing countries like India, which ranks second in the population in the world, particu-
lar challenges still remain unattended in the arena of securing sustainable food
production. In this context, it is worthwhile to explore and apply climate forecasts for
strategic decision-making in agriculture and related areas, especially in the semi-arid
regions, which are characterized by high interannual variability in rainfall and conse-
quent uncertainty in water availability for rainfed farming operations.

If farmers are to apply seasonal climate forecasts to improve decision-making, they
must first translate forecasts into production and economic outcomes associated with
alternative management strategies at the spatial scale of impacts and decisions. Lo-
cally-adapted and tested crop simulation models allow one to quickly explore the pro-
duction outcomes of a range of management alternatives under a range of forecast
climatic conditions (Hansen and Indeje 2004; Jones et al. 2000). However, the differ-
ence in spatial and temporal scales of dynamic seasonal climate prediction and crop
simulation models presents a substantial challenge to using crop simulation to antici-
pate crop response to predicted climate variations. Extracting and applying informa-
tion about within-season variability for crop model applications remains a more
difficult challenge than downscaling in space. Several approaches for linking crop simu-
lation models with seasonal climate forecasts have been proposed by research work-
ers. One of the process based approaches to linking climate prediction to agricultural
models is to aggregate bias-corrected climate model output into seasonal or sub-sea-
sonal (e.g. monthly) averages, then disaggregate to produce daily time series with fre-
quency variability that is consistent with the long-term daily record, and low-frequency
variations that represent the seasonal or sub-seasonal forecasts. Temporal disaggre-
gation involves the use of some form of stochastic weather generator approach to con-
strain the generated daily sequences to match predicted monthly or seasonal means
or other statistical properties.
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Sorghum, rice, maize and castor based cropping systems are predominant in
Telangana subdivision. The total seasonal rainfall has no relevance in agricultural plan-
ning but its distribution has a major value. In the absence of advance information on
the rainfall pattern, farmers plan their agricultural operations based on their experi-
ence and knowledge of the past climate. In the rainfed agricultural scenario of
Telangana subdivision, dominated by the monsoon climate, the main concerns
(Ramana Rao 1988) are: large variations in the dates of commencement of rainy sea-
son, variations in total seasonal rainfall received, prolonged dry spells within the rainy
season, high intensity rainfall due to cyclones, depressions, etc., resulting in flood dam-
age to the crop, and variations in the cessation date of the rainy season. Hence, early
warnings based on seasonal rainfall forecasts can help farmers to adjust crop man-
agement strategies to minimize impacts of malevolent climate and maximize benefits
of benevolent climate.

In addition, there is a need for multi-institutional collaboration in the region for the
use of seasonal climate forecasts in analysing suitable crop management strategies, and
their acceptance by the farmers and policy makers. The existing network of 107 Agro-
meteorological Advisory Service Units of National Centre for Medium Range Weather
Forecasting (NCMRWF), which is already working towards the dissemination of farm
weather advisories in Telangana subdivision, can be used towards achieving the common
goal of developing crop management strategies based on seasonal climate forecasts.

This chapter addresses the application of seasonal precipitation forecasts to the
management of rainfed agricultural systems in Telengana subdivision of India with
the following objectives:

a Maximize crop yield through application of seasonal climate forecast in agriculture
for two selected locations,

b Generate seasonal rainfall hindcasts for the two locations,
c Select sowing window for selected crops,
d Determining plant population density, and
e Contingent planning (find alternative option when monsoon is delayed).

12.2
Methods

12.2.1
Description of Key Sites

After a detailed survey of the study area and interactions with the farmers, two con-
trasting sites in Telangana subdivision were selected. These sites are in two agroclimatic
zones of Telengana subdivision i.e. North Telangana (assured rainfall region) agro-
climatic zone and South Telengana (low rainfall region) agroclimatic zone.

12.2.1.1
North Telangana Agroclimatic Zone

North Telengana zone receives an annual rainfall of 900–1 050 mm, out of which south-
west monsoon contributes 780–950 mm. The maximum temperature of the zone ranges
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between 30–37 °C and minimum temperature ranges from 21–25 °C during southwest
monsoon season. In this zone, Karimnagar district (longitude 79°09' E, latitude
18°26' N) was selected. This district has a population of 3.04 millions with total geo-
graphical area of 11 800 km2. The source of irrigation is well and canal (Sri Ram Sagar
project) with double cropped area and rice-rice and maize-groundnut based cropping
system.

12.2.1.2
South Telangana Agroclimatic Zone

South Telangana agroclimatic zone receives an annual rainfall of 750–870 mm (south-
west monsoon rainfall: 550–700 mm). The maximum temperature of the zone ranges
between 28–34 °C and minimum temperature ranges from 22–23 °C during southwest
monsoon season. In this agroclimatic zone, Mahabubnagar district was selected, which
has a population of 3.51 millions with total geographical area of 18 432 km2. The dis-
trict is drought prone and agriculture is mainly rainfed. The major crops/cropping
systems are Sorghum-Fallow and Castor-Fallow.

12.2.2
Data

12.2.2.1
Weather

The historical daily weather data were collected from the Regional Agricultural Re-
search Station, Jagtial in Karimnagar district for 1989–2002 and Palem, in Mahabubnagar
district, which are nearer to the test sites. Rajendranagar center has long-term weather
data (1971–2002), which are used as proxy data for Palem. Solar radiation was calcu-
lated from bright sunshine hours. District-wise historical annual and monthly rain-
fall data for Karimnagar and Mahabubnagar over the past 40 years were collected for
analysis.

12.2.2.2
Soil

The predominant soil type of Karimnagar district is medium to deep black soils
(vertisols) with clay sub soils and red sandy soils (Chalkas) with 90 cm depth. The pre-
dominant soil types of Mahabubnagar district are sandy (Dubba) and sandy loam (red
chalka) soils with low water holding capacity with 80 cm depth.

12.2.3
GCM Predictor Selection and Rainfall Hindcasts

Climate forecast fields for rainfall were taken from the GCMs viz. ECHAM, GSCF, CCM,
COLA, NCEP with approximately 2.5–3° horizontal resolution, with 18–20 vertical levels.
Output from simulations that the International Research Institute for Climate Predic-
tion (http://iri.columbia.edu) provided for the present study was used.
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The coarse spatial resolution of current GCMs often leads to systematic shifts in
the location of spatial rainfall patterns that reduce their prediction skill. Since the large-
scale features that the GCM can predict affect local climate variations, it is possible to
use this information to improve prediction of local climate variability (Benestad 2001).
Model correction is necessary to account for shifts in regional rainfall anomaly pat-
terns that result from the influence of local factors that the coarse resolution of GCMs
cannot capture, such as, steep orography, vegetation contrasts and land-water contrasts.
The use of statistical relationships, estimated over some past period, between observed
climatic predictand fields and hindcast GCM output fields, is known as model output
statistics (MOS). When the predictand is at a higher spatial resolution than the GCM
output, the approach is known as MOS downscaling, or statistical downscaling. One
common approach to MOS correction or downscaling uses principal component analy-
sis applied to identify the leading modes of variability of the GCM output fields, and
sometimes the predictand spatial fields (Heyen et al. 1996; Kidson and Thompson 1998).
The geographical domain associated with GCM output fields for principal component
(PC) analysis is 66–90° E and 5–30° N. Each PC pattern represents a predictor field
with high spatial resolution and spatial coherence, yet without the risk of over-fitting
the empirical model. These can then be related to the predictors by regression.

In this study, IRI provided time series of PCs, using which rainfall hindcasts for
selected locations were made. After the estimation of the rainfall hindcast for differ-
ent months/season for the years 1989–1998 for Jagtial and 1971–1998 for Rajendranagar,
the correlation was drawn between the observed and hindcast rainfall. Correlation
measures the matched variances between two time series.

12.2.4
Stochastic Disaggregation of Monthly Rainfall

A stochastic weather generator that is modified to allow it to generate synthetic daily
weather sequences was used such that the monthly climatic means exactly match
specified targets. The underlying stochastic generator is described in Hansen and
Mavromatis (2001). It is an adaptation of the WGEN weather generator of Richardson
(1985). For each hindcast year we generated 10 stochastic realizations of daily weather
whose monthly totals match June to September monthly totals predicted from the
principal components.

12.2.5
Crop Simulation and CERES Models

Crop yields were simulated using CERES models for crops under study. The CERES
(Crop Estimation through Resource and Environment Synthesis) model is a process
oriented dynamic crop growth model, which predicts status of crop on real time basis
as a function of exogenous parameters. The CERES models for rice, sorghum and maize
crops, used in the present study are available in DSSAT v3.5 (Hoogenboom et al. 1999).
It is a daily time-step model that simulates grain yield and growth components of dif-
ferent varieties in a given agroclimatic condition. These models have been already
validated for a wide range of climates all over the world and are independent of loca-
tion and soil type encountered.
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Study by Saseendran et al. (1998, 2000) using CERES-Rice v3.5 showed that the
model is capable predicting of grain yield and phenological development of the crop
in the climatic condition of Andhra Pradesh and Kerala in India with reasonable ac-
curacy. The errors in grain yield prediction by the model are 7.9%, 8.3% and 5.7% re-
spectively for Sambamahsuri, Rajavadlu and Tellahamsa in Andhra Pradesh. Reddy
(1992) used CERES-Maize model to predict the silking and maturity dates and yield
for cv. Ganga Safed-2 in Gujarat climatic condition. CERES-Sorghum v3.5 model was
also validated for cv. CSH-1 under Maharashtra climatic condition in India for its vari-
ous subroutines viz. phenology, growth, water balance and nitrogen balance by
Varshneya and Karande (1999), and the growth and yield were successfully predicted
by model in the rainy season.

12.2.6
Management Strategies Considered

The management strategies considered for the different crops are given below. These
management practices are similar to those, which are followed by the farmers at study
sites.

12.2.6.1
Rice

Genetic coefficients for two cultivars, which are popularly grown in the state, are re-
quired for describing the various aspects of performance of a particular genotype in
the model. The rice crop varieties used in the present study are Sambamahsuri and
IR-64. The Sambamahsuri is a long duration (145 to 150 days) variety having an aver-
age simulated yield level of 6 712 kg ha–1. IR-64 is a short duration (115–120 days) vari-
ety and simulated yield level is 5 623 kg ha–1. The values of the genetic coefficients for
the cv. Sambamahsuri (Saseendran et al. 2000) and IR-64 are presented in Table 12.1.
The same crop management practices were followed in simulation experiments with
different sowing dates. The planting date considered for simulation of crop cultivars
IR-64 and Sambamahsuri was 26 July. Plant population at the time of planting was
33 plants m–2 with the row spacing of 15 cm and planting depth of 5 cm. The nitrogen
fertilizer was applied in three split doses of 40 kg each in the form of urea. The dates
of fertilizer application were 28 July, 27 August and 1 October. The field was kept al-
ways under 2 cm of water.

12.2.6.2
Maize

Maize is generally grown as rainfed crop during rainy (Kharif) season in Andhra
Pradesh. The maize cultivar used in the present study is ProAgro hybrid. The genetic
coefficients for the cv. ProAgro was derived on the basis of cv. Ganga Safed-2, for which
these values were available (Reddy 1992). The genetic coefficients along with values
for cv. ProAgro were presented in Table 12.2. The farmers at the project site practiced
sowing of the crop, when the accumulated rainfall is 75 mm after the onset of the
monsoon. The planting window was taken from 2 June to 20 July with lowermost soil
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water as 90% and uppermost soil water as 100%. Plant population at the time of emer-
gence was maintained with 8 plants m–2 with the row spacing of 35 cm and planting depth
of 6 cm. The nitrogen fertilizer was applied in three equal split doses of a 40 kg ha–1

in the form of urea i.e. at the time of sowing, 25 days after sowing (DAS), and 55 DAS.

12.2.6.3
Sorghum

Sorghum is an extensively grown rainfed crop in Andhra Pradesh, used as food, and
fodder. The sorghum crop cultivar CSH-5 used in the present study is a medium dura-
tion cultivar (90–105 days), commonly grown by the farmers of Andhra Pradesh. The
genetic coefficients for the cv. CSH-5 calculated by Varshneya and Karande (1999) are
presented in Table 12.3. The farmers at the project site practiced sowing the crop, when
the accumulated rainfall is 75 mm after the onset of the monsoon. The planting win-
dow was taken 1 June to 15 August with lowermost soil water as 70% and uppermost
soil water as 100%. Plant population at the time of emergence was 18 plants m–2 with

Table 12.1. Genetic coefficients used in the CERES-Rice simulation model
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Table 12.2. Genetic coefficients used in the CERES-Maize simulation model

Table 12.3. Genetic coefficients used in the CERES-Sorghum simulation model
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a row spacing of 45 cm and a planting depth of 5 cm. The nitrogen fertilizer was applied
in the form of urea in two equal split doses of 40 kg ha–1 each as basal and after 30 DAS.

12.3
Results and Discussion

12.3.1
Rainfall and Crop Yield Analysis

In order to work out the influence of rainfall variability on yield fluctuations for rice
and maize in Karimnagar and sorghum in Mahabubnagar, the linear trend was fitted
in the yield to remove the impact of hybrids and technological improvement. The yield
deviation from the trend line was calculated for both the districts. The yield and rain-
fall deviations were compared and plotted in Figs. 12.1 and 12.2 for rice and maize in

Fig. 12.1. Rainfall deviation and yield deviations for rice in Karimnagar district

Fig. 12.2. Rainfall and yield deviations for maize in Karimnagar district
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Karimnagar district respectively and in Fig. 12.3 for sorghum in Mahabubnagar
district.

In Karimnagar district, the rainfall was found to have a significant influence on yield
of rice and maize. In case of rice, the trend in rainfall and yield deviation was almost
similar except in few years, while in case of maize, the trend was similar up to 1992
and thereafter yield increased during the period 1993–1997 (Fig. 12.2). In Mahabubnagar
district, the sorghum crop showed a similar trend except during early nineties. Though
maize and sorghum crops were cultivated as rainfed, the positive yield deviation dur-
ing the last decade is attributed to varietal/technological advancements and even dis-
tribution of rainfall including low rainfall years.

The rainfall data of forty years (1963–2002) were analyzed to workout the variabil-
ity in mean values of decadal rainfall and its coefficient of variation at different sta-
tions. Two major periods were considered (i) thirty years (1963–1992) and (ii) recent
decade (1993–2002). The results presented in Fig. 12.4 show that there was a decreas-
ing trend in rainfall in the recent decade for the months of June, July and for the whole
monsoon season. The month of July is more crucial from the agriculture point of view
as most of the rainfed crops are being sown and paddy transplanting is also taken-up
during this month.

Coefficient of variation of mean monthly rainfall data for 1963–1982 and 1983–2002
and presented in Fig. 12.5 shows that in the Mahabubnagar district there is an increas-

Fig. 12.3. Rainfall and yield deviations for sorghum in Mahabubnagar district

Fig. 12.4. Mean decadal
(1993–2002) rainfall (mm) over
three decadal mean (1963–1992)
rainfall for Karimnagar district
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ing trend in variability in the months of June and July and for the rainy season.
Karimnagar district showed a slight decreasing trend in the month of June whereas,
in July and for the rainy season there was an increasing trend.

12.3.2
Hindcast of Rainfall

Time series data on X1 and X2 for all five GCMs were used to estimate rainfall hindcast
for the years 1989–1998 at Jagtial and 1971–1998 at Rajendranagar. Forecasts for the
individual months of June, July, August, September and October and for different combi-
nations of months were generated keeping in view the farmer’s preference for a shorter
duration forecasts (Table 12.4). Of all the models tested for Rajendranagar, ECHAM was
found to give a better forecast (Table 12.4, Fig. 12.6). Correlation studies revealed that the

Fig. 12.5. Coefficient of variation (%) of rainfall during June, July and for the rainy season in Karimnagar
and Mahabubnagar districts

Table 12.4. Correlation coefficients between observed and predicted rainfall using different climate
models for Rajendranagar
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highest significant correlation exists between observed and predicted rainfall when
the August and September months put together were used with ECHAM model.

Similar work was also done for Jagtial (Karimnagar). At Jagtial the COLA model
gave a better correlation for the season, whereas for the individual months (July, Au-
gust, and September), the ECHAM model gave a better correlation (Table 12.5, Fig. 12.7).

Fig. 12.6. Relationship between observed and predicted rainfall using ECHAM model for different
months at Rajendranagar
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12.3.3
Crop Yield Simulation with Actual and Hindcast Rainfall

12.3.3.1
Optimum Transplanting Time for Rice

Simulation results of grain yield of rice cv. IR-64 and Sambaamahsuri for 12 different
dates of transplanting revealed that the rice yield is higher for cv. IR-64, when trans-
planted on 26 July as compared to other transplanting dates and for cv. Sambamahsuri,
higher yield was obtained when transplanted on 19 July.

12.3.3.2
Crop Model Output with Hindcast Weather

Rice
The ten realizations of weather data conditioned on sub-seasonal (monthly) rainfall
hindcasts made from each GCMs were generated and crop yield was simulated with
generated weather for each realization with the same management practices as with
the observed weather data for cv. IR-64 and Sambamahsuri. Further average of yield
from 10 realizations for each year was worked out. Comparisons of yield based on
hindcast and observed weather are shown in Figs. 12.8 and 12.9.

Maize
Comparison of the grain yield of maize simulated by the model with the hindcast and
observed weather data for cv. ProAgro. Figure 12.10 shows that grain yield simulated
with NCEP generated weather has the same trend as that of observed weather.

Table 12.5. Correlation coefficients between observed and predicted rainfall using different climate
models for Jagtial
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Fig. 12.7. Relationship between observed and predicted rainfall for Jagtial using; a COLA model;
b ECHAM model for different months
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Sorghum
The grain yield comparisons for the sorghum crop (Fig. 12.11)indicate that ECHAM
model predictions were closer to the observed yield data in few years and also within
the same trend.

Fig. 12.8. Comparison of simulated rice yield (cv. IR-64) with observed and hindcast weather
data

Fig. 12.9. Comparison of simulated rice yield (cv. Sambamahsuri rice) with observed and hindcast
weather data
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12.3.4
Farmers Perceptions

Awareness programs were conducted periodically during monsoon season of year 2003
on seasonal climate forecasts for the farmers of both the key sites. The main aim of

Fig. 12.10. Comparison of simulated maize yield (cv. ProAgro maize) with observed and hindcast
weather data

Fig. 12.11. Comparison of simulated sorghum yield (cv. CSH-5) with observed and hindcast weather data
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this exercise was to elicit farmers’ views on the use of climate forecasts in their crop-
ping strategies and the farmer’s requirements. Farmers mentioned about the weekly
medium range forecasts based AAS activities and long range forecasts (LRF) of India
Meteorological Department given in the beginning of monsoon season. They expressed
that they are unable to make use of LRF in their crop planning. Farmers were informed
about the efforts being made to generate seasonal climate forecasts (SCF) for Indian
region by leading international centers viz. IRI and their limitations. Interactions with
the farmers brought out their following needs about weather and climate forecast:

� Start of rainy season (i.e. monsoon onset)
� End of rainy season
� Break in monsoon
� Extreme weather events
� Preferred monthly/fortnightly forecast

During the subsequent meetings, the farmers were educated on the use of SCFs and
their limitations. In short-term planning of agriculture operations the importance of
medium range forecasts was explained during these interactions. The farmers expressed
satisfaction to a certain extent on the use of agro-advisory services based on medium
range weather forecasts. The farmers suggested to increase the lead-time with 10–15 days.
Further they felt the need to integrate the seasonal/long range climate forecasts with agro-
advisory services. They suggested that this integration will help to select the right crop
and the right variety based on seasonal climate forecasts and mid-season corrections like
intercultural operations, supplemental irrigation, etc. using medium range forecasts.

The views of the farmers from two agroclimatic zones were also taken during ex-
tensive tours. The requirements differ between the zones. Low rainfall zone farmers
are interested in correct forecast of sowing rains that is very critical. High rainfall zone
farmers are interested in knowing the quantum of rainfall required to get the tanks
filled up and subsequent release for paddy transplantation.

12.4
Conclusions

Results of this study showed that ECHAM model has generated a better rainfall
hindcast at seasonal/sub-seasonal scale for Rajendranagar (a proxy station for Palem).
For Jagtial COLA model gives better correlation between hindcast and observed rain-
fall at seasonal scale whereas for individual months ECHAM produced better hindcasts.
Awareness was created amongst the farmers, researchers and planners about utility
and limitations of seasonal climate forecast for application in agriculture through
group meeting during monsoon season 2003 was created. Farmers preferred fortnightly
and monthly instead of seasonal forecasts for better decision-making in agricultural
operations and desired for integration of ERP along with existing AAS.
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Chapter 13

Localized Climate Forecasting System: Seasonal Climate
and Weather Prediction for Farm-Level Decision-Making
R. Rengalakshmi

13.1
Introduction

Recent developments in weather and seasonal rainfall prediction have increased the
accuracy and reliability of forecasts of the Indian monsoon. Despite these advances,
availability and access to location-specific forecasts to take proper decisions at the farm
level is very limited. Traditionally farmers in India have been using a set of indicators
that have varied levels of dependability for rainfall prediction and have evolved sev-
eral coping strategies and mechanisms.

The M. S. Swaminathan Research Foundation (MSSRF), based at Chennai, India
initiated a project on “Establishing decentralized climate forecasting system at the vil-
lage level” to create and enhance farmer’s capacity to use locale-specific seasonal rain-
fall and weather forecasting in collaboration with Reddiyarchatram Seed Growers
Association (RSGA), a farmers association at Kannivadi in Dindigul district of Tamil
Nadu state, India. The main goal of the project is to create an access and enhance farm-
ers’ capacity to use location specific seasonal climate and weather predictions to im-
prove their livelihoods. The major objectives are to study the seasonal climate
variations and chronicle the farmer’s traditional coping strategies and knowledge. The
study also aims at evolving a methodology for downscaling with appropriate institu-
tional linkages and converting the generic data into location-specific, medium term,
inter- and intra-seasonal climate and weather forecasts. Probabilistic seasonal climate
and weather forecast information is translated into appropriate farmer friendly ver-
sions for its practical use in crop management.

13.2
Study Area

Reddiyarchatram block is a semi-arid region located in Dindigul district of Tamil Nadu,
India, covering a geographical area of 280 km2. More than 80% of the households in
the district depend on agriculture. Important planting seasons are June–July and Oc-
tober–November for both the irrigated and rainfed crops, in addition to the summer
irrigated crop. The mean annual rainfall is 845.6 mm. Rainfall in the region is charac-
terized by a large variation between seasons. Though the area benefits both from the
northeast monsoon (October–December) and the southwest monsoon (June–Septem-
ber), maximum percentage (52.5%) of rainfall is received during the northeast mon-
soon and nearly 25.8% of the total annual rainfall is received during the southwest
monsoon. The area receives only 5.4% of the total annual rainfall during January and
February and nearly 16.3% during the summer seasons between March and May. The
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total area under cultivation is 24 624 ha which includes both dry and irrigated lands.
Approximately 29 600 households are involved in agriculture and more than 50% of
the households are small and marginal farmers. Sorghum, small millets, grain legumes,
cotton and chickpea are the major annual crops cultivated under rainfed conditions.
Cotton, maize, flower crops, vegetables, gherkins, sugarcane, annual moringa, paddy,
onion, etc. are the most important annual crops grown in this region. The major source
of irrigation is underground water through wells followed by small tanks and reservoirs.

13.3
Methodology

The study was initiated during October 2002 to March 2004 in five villages where Vil-
lage Knowledge Centers (VKCs) are functioning. The computer based Village Knowl-
edge Centers with Internet connection provides static information about the
agronomical practices of the different crops cultivated in the region and the dynamic
information like price details of the main agricultural produce from different mar-
kets, availability of inputs, farmers entitlements, etc. A set of VKCs are operating in
the region connected with a ‘hub’ in the center and the ‘hub’ is the nodal point, which
receives the generic information and adds value by converting it to local specific in-
formation. The local community manages the VKCs; access is ensured to all irrespec-
tive of caste, class, gender and age. Need based content creation is being regularly done
on the basis of the feed back from the local women and men farmers. The local village
people have been trained in the management of modern information and communi-
cation technologies including networking.

In each village, traditional knowledge system on weather and climate forecast was
studied through conventional survey using questionnaire, anthropological tools such
as participant observation, and participatory developmental tools such as Venn dia-
gram and Focus Group Discussions (FGD). The traditional weather and seasonal rain-
fall predictors were studied among the selected sample households through
questionnaires. Anthropological tools such as open-ended interviews were used to
study the metaphors, folklore and proverbs that gave a better perspective on the tra-
ditional knowledge. A series of Participatory Rural Appraisals (PRAs) were organized
in representative villages in the block that focused on the social system, existing natural
resources, agricultural seasons and rainfall patterns and also on the prevailing pat-
tern and system of information flow. The needs, constraints and coping strategies on
weather and climate of farmers and agricultural laborers were assessed through FGD
and these views were triangulated through informal discussion with knowledgeable
men and women farmers.

MSSRF facilitated linkages to get the scientific forecast between hub of the VKCs
and National Centre for Medium Range Weather Forecast (NCMRWF) for medium
range weather forecast and the Tamil Nadu Agricultural University (TNAU) for sea-
sonal rainfall forecast. The hub center manages a ‘B’ observatory; animators were
trained in observatory management with the technical support of TNAU. They regu-
larly record the local weather parameters (maximum and minimum temperature, soil
temperature at different depths, sunshine hours, wind direction and velocity, evapo-
ration rate, relative humidity) according to the norms of Indian Meteorological De-
partment in the prescribed format and communicate the same to NCMRWF twice a
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week through electronic mail. In turn NCMRWF provide weather forecast twice a week
to the hub center on cloud cover, precipitation, temperature, wind direction and wind
velocity. Similarly, linkages were established to receive the seasonal rainfall forecast
from TNAU.

The hub center receives the forecast and converts the generic information received
from these two institutions into location-specific farmer friendly language (for example
if the wind direction is 100°, it is communicated to the particular village in their local
parlance) and disseminates the information to farmers and agricultural laborers
through VKC, bulletin boards and local newspaper to the farmers.

Initially MSSRF trained the animators to convert the generic information into
farmer friendly versions. The information is being communicated to other VKCs
through fax mode and can be accessible through multimedia folders using Internet.
The messages are communicated to nearby villages by the VKCs through bulletin
boards that are located in 15 different villages. A Focus Group Discussion was carried
out in each of the villages with the men and women to communicate the forecast. Ini-
tially we explained the method by which the scientific forecasts were generated and
its attributes to the farmers. The probabilistic nature of the seasonal rain forecast was
explained to the farmers, and simple locally familiar games were organized to clearly
explain the concept of probability. Then using the climatological data analysis ‘prob-
ability of exceedance’ graph was generated to explain the relationship between rain-
fall amount (forecast) and probability. Attempts are being made only to communicate
the forecast information to the people instead of giving follow-up advisories. It allows
the farmer to take their own decisions, because under the varied cropping pattern and
rainfed situations, farmers take decisions based on the event of rainfall and follow
dynamic strategies instead of a single strategy as most of the forecasters recommend.
The entire process is institutionalized through these VKCs.

13.4
Results and Discussion

Understanding people’s perceptions and knowledge of weather and climate is critical
for effective communication of scientific forecasts. The knowledge is learned and iden-
tified by farmers within a cultural context and the knowledge base follows a specific
language, belief and process. The local men and women members assess, predict and
interpret by locally observed variables and experiences using combinations of plants,
animals, insects, and meteorological and astronomical indicators. Farmers use differ-
ent kinds of traditional knowledge for rainfall prediction based on their observation
with different types of phenomena like wind movement, lightening, animal behaviors,
birds movement, halos/rings around the moon and the shape and position of the moon
on 3rd to 5th day from the formation, etc. This type of knowledge provides a frame-
work to explain the relationships between particular events in the climate and farm-
ing. Farmers use different types of predictors (based on environmental and biological
criteria) in combination to take critical farming decisions and to decide on adaptive
measures. The knowledge is evolved by locally defined conditions and needs, in other
words this knowledge is context specific.

Men and women have different kinds of knowledge and use it for different pur-
poses. Similarly village elders are more knowledgeable and are able to use more indi-
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cators with greater understanding of the reliability of various indicators. The older
men and women were able to provide more than 12 indicators with different lead times,
whereas the middle aged (25 to 35 years) persons could provide only 3–4 indicators.
Farmers as well as agricultural laborers have their own indicators that are based on
their need and interaction. Also, farmers are able to provide more indicators than the
agricultural laborers. The variations in the indigenous knowledge in a community are
based on age, gender, caste, class and literacy.

The indicators clearly show that this indigenous knowledge on seasonal rainfall and
weather is qualitative in nature. Weather predictions are used to take short-term deci-
sions both in the irrigated and rainfed systems. It helps the small and marginal farm-
ers to plan various agronomic practices more effectively especially at the time of
sowing, weeding, spraying of chemicals and harvesting and post harvest operations.
However, farmers use seasonal rainfall predictions to prepare themselves for anoma-
lies related to rainfall. For example it helps to decide the cropping pattern for that sea-
son, if the rainfall is normal, they can go for high value crops like maize with high
yielding varieties, otherwise if it is below normal they can plan for short duration
drought resistant pulses and small millets. Farmers have been using different strate-
gies to adapt and cope up with uncertain weather and climate based on their experi-
ence and acquired knowledge from previous generation. The important decisions are
selection of cropping system, mobilizing seed, fertilizer and application, decisions on
sowing (early or late), land and bed preparations, mid season corrections such as re-
ducing population/providing irrigation. Similar to the seasonal forecast, weather fore-
cast is being useful for the small and marginal farmers to plan the agronomic practices
more effectively especially at the time of sowing, weeding, spraying of chemicals and
harvesting and post harvest operations.

In the Focus Group Discussion farmers expressed that the increasing variability in
rainfall have reduced the farmers’ confidence in their own predictors and hence they
are increasingly looking for scientific forecasts. They expressed the variability in terms
of more water deficit years, late onset of rains and premature end of rains, and irregu-
lar distribution in time and space. Climatological analysis of the inter annual variability
using 20 years of annual rainfall in this region indicated that the variability was about
36% and across the seasons the variability in terms of CV is high during the south-
west monsoon season (71.6%) followed by the northeast monsoon season (52.2%).
Hence, the challenge and necessity is to provide reliable forecasts through appropri-
ate methods based on the needs of the farmers.

During 2003 and 2004 winters, monsoon rainfall amount was predicted and com-
municated to the farmers. Based on the two years experience, farmers indicated that
it is very difficult to take decisions in the farm based on this forecast information. In-
stead, it might help them to prepare against anomalies in the future, provided the fore-
casts are accurate over years. Though farmers are listening and carefully monitoring
the correlations, they expressed that they need time to observe the effectiveness of
scientific forecasts over seasons or years. Based on the request of the farmers, four
rainfall measuring devices were installed in different villages in this region and the
rainfall was carefully recorded by the Knowledge centers.

Farmers expressed that their traditional practice follows dynamic strategies based
on the event of rainfall, which is completely different from following a single strategy
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based on one prediction before the crop cultivation. They expressed that their exist-
ing strategies are more practical, evolved locally over years through trial and error
considering the available natural resources. Thus the forecasts of a single rainfall
amount do not support taking any short-term (e.g. like crop variety or plant popula-
tion per unit area) or long-term decisions (like cropping system: monocropping or
mixed cropping, etc.). Another important issue is that the probabilistic mode of the
total amount of rainfall does not support farmers’ need in terms of time of onset of
rainfall and its distribution. It is one of the significant variables requested by the farm-
ers to make decisions on initial agricultural activities, which may help to reduce the
risk. Though farmers could understand the probabilistic nature of the rainfall over
season, they expressed that it is very difficult to operationalize it, since it is not pro-
viding confidence (moral support) to the farmers, instead it indicates the lack of cer-
tainty and based on this they could not take major decisions. Also the two years
experience indicates that learning takes time (observation over time/seasons) and the
use has to do with familiarity.

With regard to the medium range weather forecasts, attempts are being made only
to communicate the forecast to the people instead of giving follow-up advisories based
on the forecasts. It allows the farmer to take decisions based on his/her field condi-
tions. This is because under local situations, due to the heterogeneous nature of the
field and crop conditions farmers take decisions based on the event and they have been
following dynamic strategies instead of a single strategy which the forecasters recom-
mend. A survey was organized to know the impact of the forecast information and
nearly 66% of the farmers expressed that they have used it for taking farm manage-
ment decisions. Around 72% of the farmers expressed the need for receiving forecasts
at a much longer lead time interval, mostly 10 to 15 days.

13.5
Preliminary Conclusions

The study clearly brought out the importance of the vast traditional knowledge of the
farmers on rainfall prediction and their understanding of its reliability through their
observation, experience and practice in the field. The social stratification influences
the evolution and management of knowledge. Understanding the local people’s per-
ceptions on rainfall prediction is necessary to communicate the scientific forecasts,
since it is learned and identified by farmers within a cultural context and the knowl-
edge base follows the specific language, belief and process. Intensive participatory
dialogue between the scientific knowledge providers and user group’s helps to define
the strategies for using the forecasts in combination with traditional knowledge and
skills. The project helped us to understand that, to develop a decentralized forecast-
ing system at the village level needs a participatory approach to mobilize the farmers
around the technology. On the other hand, access, availability of infrastructure, skill
and expertise are crucial to develop reliable region-specific scientific forecasts to serve
the farming societies. Farmers may not heavily rely on scientific forecasts until the fore-
casts have proven its reliability. At this phase due to the limited experience and observa-
tion it is difficult to derive any conclusion. It helps us to set the system and in the process
slowly build up the farmers’ understanding and confidence in scientific forecasts.
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Chapter 14

Use of Sea Surface Temperature for Predicting
Optimum Planting Window for Potato at
Pengalengan, West Java, Indonesia
R. Boer  ·  I. Wahab

14.1
Introduction

Pengalengan is the main potato production center in the Bandung district of Indone-
sia. About 76% of potato production of this district comes from Pengalengan, while
contribution of Bandung to total production of West Java was about 60%. A signifi-
cant reduction in the production in this subdistrict will have a great influence on po-
tato supply in the region. Farmers at Pengalengan plant potato almost throughout the
year. They divided the planting season into three seasons, i.e. Porekat (January–April),
Ceboran (May–July) and Wuku (September–December). The area planted to potato
in Ceboran is much lower than in other two seasons as it is the dry season and farm-
ers normally use paddy fields or lands close to water sources or irrigation facilities.
Farmers plant their dry lands with potato only in the Wuku and Porekat seasons. Thus
planting dry lands commences after the onset of wet season (normally early Septem-
ber).

Many studies indicated that ENSO affects rainfall characteristics in various forms
(Soerjadi 1984; USDA 1984; ADPC 2000; Yoshino et al. 2000; Kirono and Partridge
2002). First, during El Niño years, end of the dry season occurs later than normal, while
during La Niña years it occurs earlier. Second, the onset of the wet season is later than
normal during El Niño and advanced during La Niña years. Third, during El Niño years
a significant reduction of dry season rainfall could be expected and a significant in-
crease during La Niña years. Fourth, long dry spells occur during the monsoon pe-
riod, particularly in eastern Indonesia.

At Pengalengan, during the El Niño years false rains sometimes occur in early Sep-
tember and this normally prompts farmers to start planting. Farmers who start plant-
ing early September while the onset of rainy season delayed to October or November
would have crop failure or get low yields due to poor emergence. On the other hand,
farmers who delay their planting up to November due late onset of rainy season may
also have low yields as the seeds they used would have lost their viability. According
to farmers, seeds still have good viability if they are stored not more than three months.
Thus farmers who used the seeds produced in Porekat season for the late Wuku sea-
son may not get good yields. These results suggest that farmers used the information
on the onset of rainy season at least for two purposes (Boer et al. 2004). First is to de-
termine the suitable planting time for Wuku season. Second is to define the suitable
time for planting at Ceboran season for seed production used in the coming Wuku
season. Therefore a method for predicting optimum planting window based on ENSO
forecasts needs to be developed. This chapter describes the methodology for deter-
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mining optimum planting windows for potato planted in dryland using sea surface
temperature information prior to the planting season.

14.2
Methodology

Determination of optimum planting windows for potato planted in the drylands at
Pengalengan follows a number of steps. The first step is to evaluate the strength of
relationship between sea surface temperatures and rainfall variability at Pengalengan.
The second is to collect potato yield data throughout the season for validating the crop
simulation model (DSSAT). The third is to simulate potato yield data using historical
climatic data under different planting times throughout the year. The fourth is to carry
out curve fitting for yield data against planting date for each year of simulation. The
fifth is to determine the planting time that gives maximum yield from the fitted curve
for each year of simulation (called optimum planting time). The sixth is to determine
optimum planting windows from the distribution of optimum planting times. The
seventh is to develop equation for determining optimum planting time from sea sur-
face temperature prior to planting season.

The strength of the relationship between sea surface temperatures and rainfall vari-
ability at Pengalengan was assessed using CLIMLAB (Tanco and Berri 1999) based on
monthly rainfall data for 11 stations with length of record of more than 20 years. This
analysis was done to ensure that rainfall variability at Pengalengan was significantly
affected by sea surface temperature phenomena that occur in the Pacific and Indian
oceans. SOI (Southern Oscillation Index) and DMI (Indian Dipole Mode Index) were
used to represent conditions that occur in the Pacific and Indian Ocean respectively.
Indian Dipole Mode is similar to El Niño where a warm pool in the Indian Ocean moves
eastward in a cycle of 3 to 7 years (Saji et al. 1999). Indian Dipole Mode Index is
defined as the difference in SST anomaly between the tropical western Indian Ocean
(50–70° E, 10° S–10° N) and the tropical southeastern Indian Ocean (90–110° E,
10° S–equator).

Data on potato yield were collected from 28 farmers that planted their crops in the
period between June 2002 and February 2003. Planting time and crop management
practices used by the sample farmers were recorded. Physical and chemical proper-
ties of soils were also analyzed. These data were used as inputs for the crop simula-
tion model and the observed yield data were then used to validate the crop simulation
model. The DSSAT potato model was run using 20 years observed daily rainfall data
(1982–2001) under no irrigation at different planting times (started from 1 January with
15 days interval) with 10 management practices which were defined based on the tech-
nology practices used by farmers. Furthermore, Fourier regression was used to de-
velop curves to fit seasonal pattern of the potato yield. The equation so fitted is as
follows:

(14.1)

where a0, bk and ck are regression coefficients, k = 1, 2, …, n is harmonic number,
t' = 2πt / 365, t = 1, 2, …, 365 is Julian day and Yt is yield of potato at planting time of t.
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The coefficient a0 represents the annual mean of yield. The maximum yield can be
estimated from a0 + maximum value of Ct, where

(14.2)

The number of Fourier regressions developed was 200 equations (20 years of cli-
matic data × 10 management practices). The distribution of optimum planting times
was developed and used to define the optimum planting window. Finally, the equa-
tion to estimate optimum planting time from SOI and DMI prior to planting season
was developed. This equation could then be used to predict optimum planting win-
dows under different SOI and DMI condition.

14.3
Results and Discussion

The results of analysis suggested that rainfall variability at Pengalengan is strongly
affected by global phenomena occurring in the Pacific (represented by SOI) and In-
dian Oceans (represented by DMI). May to August rainfall (called as Ceboran season)
for most of the stations was significantly related with sea surface temperature in the
Pacific Ocean, while September to December seasonal rainfall (called Wuku season)
for some of stations was also significantly related with sea surface temperature in the
Pacific Ocean and also with Indian Ocean. Further analysis showed that the July–Oc-
tober anomaly rainfall (ARJ–O) of all stations was significantly correlated with May–
June SOI and DMI. The form of relationship can be written in the following equation:

ARJ–O = a + b(SOIM–J) + c(SOI · DMI)M–J (14.3)

The R2 of the equations ranged between 22 and 56% with mean of about 37% and
the values of coefficients b and c are all equal or more than 0 (Boer and Faqih 2004).
This means that if the SOI is negative (indicating El Niño) and DMI is also negative
(sea surface temperature in the region of 90–110° E/10° S–equator, near Indonesia is
higher than that of 50–70° E/10° S–10° N), the (SOI × DMI) value will be positive. This
means that a negative DMI will counteract the reducing effect of El Niño on rainfall.
This finding is in agreement with previous studies (Yamagata et al. 2001; Kumar et al.
1999).

The crop simulation model was also able to mimic the real system. The simulated
yields followed the observed yields well (Fig. 14.1a). The correlation between the ob-
served and the simulated yield was about 0.86 (Fig. 14.1b). This suggests that the simu-
lation model is able to capture the impact of crop management and climate variability
on potato yield. Based on means of 200 simulated yields (20 years of climatic
data × 10 management practices), it was found that under no irrigation, the crop would
produce higher yield if it were planted in Wuku season (Fig. 14.2). Furthermore from
the 200 fitting curves (Eqs. 14.1 and 14.2) the planting dates which give maximum yields
were defined and distribution of the optimum planting was then developed as shown
by Fig. 14.3a. It is clearly shown that the optimum planting window for potato at
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Fig. 14.1. a Comparison be-
tween observed and simulated
yield; b relationship between
observed and simulated yield
from DSSAT

Fig. 14.2 Mean yields of potato crops from the 10 management practices across 20 years of simulation
(1982–2001)
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Pengalengan is between 11 September and 10 November and the maximum yields are
mostly more than 20 t ha–1 (Fig. 14.3b). The minimum yields where farmers will have
the break event point was 10 t ha–1 (price of potato per kilogram was about Rp 2 000
and production cost was Rp 20 000 000 ha–1.

As SOI and DMI have a significant impacts on rainfall variability, and rainfall vari-
ability has a significant impact on yields variability, the SOI and DMI can be used to
define optimum planting time (OPT). The results of this analysis suggested that the
optimum planting time for Wuku could be predicted from mean July–August SOI and
DMI. The form of the equation is the same as the equation that related July–October
anomaly rainfall with SOI/DMI, i.e.:

OPTW = 272 + 0.843(SOIJA) – 1.57(SOI · DMI)JA; R2 = 19% (14.4)

This suggests that when El Niño occurs (SOI negative) but DMI is also strongly
negative, the onset of rainy season may not be delayed and therefore planting early in
the Wuku season should have no risk. But if the DMI is strongly positive, then plant-
ing early in the Wuku season (early September) is not suggested (Fig. 14.4). This ap-

Fig. 14.3. a Distribution of opti-
mum planting time; b potato
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proach can also be used to estimate the expected yield of potato planted in Wuku sea-
son from July–August SOI and DMI as demonstrated by Boer et al. (2004).
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Chapter 15

Climate Forecast for Better Water Management
in Agriculture: A Case Study for Southern India
R. Selvaraju  ·  H. Meinke  ·  J. Hansen

15.1
Introduction

Groundwater, the most assured widely available source of irrigation water, influences
India’s industrial and agricultural growth (Rao et al. 1996). About 12.5% of India’s an-
nual precipitation percolates into the groundwater, where it is protected from evapo-
transpiration. Demand for water by the agricultural, domestic and industrial sectors
has increased considerably over the years, resulting in unsustainable exploitation of
groundwater resources. The number of wells has increased from 7.78 to 9.98 million
(dug out), 2.13 to 4.77 million (shallow tube) and 33.3 to 49.1 million (deep tube) over
the last 10 years. Continuous cropping reduces potential recharge by reducing down-
ward flux of rainfall (O’Connell et al. 1995). Although vast, India’s groundwater re-
sources are not inexhaustible, as evidenced by continuous decline in groundwater levels
in regions such as the Coimbatore district in western Tamil Nadu.

Efforts to ensure effective use and augmentation of water resources have not pro-
duced the intended results. Frequently farmers are forced to abandon crops mid-sea-
son due to lack of water, resulting in economic hardship. Management techniques that
account for climatic variability and optimize the use of scarce groundwater resources
would help to alleviate such hardship. The aim of the study is to assess the impact of
ENSO-related climate variability on rainfall, groundwater resources and irrigation re-
quirements, and to explore the impact that using such knowledge might have on irri-
gated crop production systems in the semi-arid western agroclimatic zone of Tamil
Nadu.

15.2
Description of the Study Area

For this study we selected the Coimbatore district (10°12' to 11°24' N, 76°39' to 77°30' E)
of Tamil Nadu State in southern India. Of the district’s 746 800 hectares, 43% is culti-
vated. The region’s climate is classified as hot semi-arid. The dominant soils are red
(alfisols) and black (vertisols). Lack of irrigation water results in 20% of arable land
left fallow in any year. The major irrigated crops in this region are maize, rice, pulses,
sugarcane, turmeric and banana (Fig. 15.1). Banana, sugarcane and turmeric are the
long duration (–10 months to one year) crops in this region. Vegetables are also grown
and sold in daily markets to provide cash flow. Recently maize gained additional im-
portance as poultry feed, which is also sold in local markets. Both maize and vegetables
are grown during summer monsoon (June–September) season as well as from Decem-
ber to May if sufficient irrigation water is available.
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Groundwater from 94 271 open wells is the dominant source of irrigation. Bore wells
are often dug to depths of more than 200 meters. The district has 77 small to medium
tanks, most of which are poorly maintained. Significant groundwater recharge occurs
during winter monsoon (October–December), which contributes 47% of the total an-
nual rainfall. Farm-level storage structures like check dams, tanks and percolation
ponds fill during the wet season providing sufficient opportunity time for infiltration
and recharge. On average the summer monsoon (June–September) contributes only
33% to the total annual rainfall, and thus recharge during the season is relatively low.

15.3
Farm and Farmers Characteristics

In two villages (Malayapallayam and Kanur pudur) we conducted detailed surveys of
farmers (n = 60) to elucidate their specific information needs, ascertain their degree
of vulnerability and document prevailing socio-economic conditions. For this we used
semi-structured questionnaires and participative methods such as focus group inter-
views. We also conducted an independent survey with 37 farmers in Kootapalli village
to assess the impact of climate variability on income inequality at the farm household level.
For a quantitative assessment of income inequality we used the Gini coefficient (G).

Fig. 15.1. Schematic of the irrigated crop production systems in Cimbatore district, Tamil Nadu, India
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where n is the number of observations, y refers to the series of total incomes, and r
refers to the series of corresponding ranks. The Gini coefficient of ith source of in-
come, Gi, can be expressed as

where yi and ri refer to the series of incomes from the ith source and corresponding
ranks, respectively.

The average size of the farm household in the study region is 4.6. The average cul-
tivable land area per farm is 2.2 hectares, with 68.2% of the land dedicated to cash crops,
18.2% to food crops and 13.6% to forage crops. On average, each farm household owns
a pair of cows and a buffalo.

The average annual income (n = 60) from farm households across the study region
is Rs 57 600. The data show that cash crops account for 52.9% of mean per capita house-
hold income; food and forage contribute 9.7%; livestock contributes 14%; while
off-farm activities account for 23.5%.

We worked out the source income weight which describes relative contribution from
various sources to the total farm income (Table 15.1). The results indicated that the
source income weight for livestock increased from 0.22 in a normal year to 0.23 in a
drought year. Similarly, source income weight for non-farm increased from 0.21 in a

Table 15.1. Decomposition of income inequality in smallholder households (n = 37) using Gini coeffi-
cient for two contrasting years characterized by normal and drought years
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normal year to 0.25 in a drought year. During drought years, contributions to the total
from both livestock and non-farm activities increase compared to field crops like ba-
nana and turmeric. Thus, farmers rely more on livestock and non-farm activities dur-
ing drought than major filed crops. The source Gini coefficients for cash crops like
banana and vegetables are highest, indicating that the cash crops are the major source
of income inequality among the smallholder farmers.

15.4
ENSO Response Analysis

We used water level records (1997–2002) from 47 control bore wells throughout the
Coimbatore district to map the spatiotemporal variability (including possible ENSO
influences) of groundwater levels. ENSO phases were categorized based on 5-month
running means of spatially-averaged SST anomalies in the Niñ0 3.4 region of the
tropical Pacific (Sittel 1994). A year was considered as ‘warm’ (El Niño) if SST
anomalies were >0.5 °C, and ‘cold’ (La Niña) if <–0.5 °C for at least six months, in-
cluding October–December (Trenberth 1997). Climate data for the past 43 years
(1961–2003) for the representative location (Coimbatore, 11° N and 77° E) were used
for ENSO response analysis.

The monthly reference crop evapotranspiration was calculated using the FAO Pen-
man-Monteith equation as described by Smith (2000). The relationship for reference
crop evapotranspiration is as follows

where ET0 = reference crop evapotranspiration (mm day–1), Rn = net radiation at the
crop surface (MJ m–2 day–1), G = soil heat flux (MJ m–2 day–1), T = average air tempera-
ture (°C), U2 = wind speed measured at 2 m height (m s–1), (ea–ed) = vapor pressure
deficit (kPa), ∆ = slope of the vapor pressure curve (kPa °C–1), γ = psychrometric con-
stant (kPa °C–1), and 900 = conversion factor.

Crop evapotranspiration for banana, maize and short duration vegetables was cal-
culated using a series of recommended crop coefficient values (Kc) to determine ETcrop

from reference evapotranspiration (ET0), as follows:

ETc = KcET0

Monthly irrigation requirements conditioned by ENSO phases for all the crops were
calculated assuming 75% of the mean rainfall as effective rainfall. The soil type con-
sidered for the calculation of irrigation requirements was an alfisol with a total water
holding capacity of 140 mm per meter depth. At the start of each simulation, the ini-
tial soil moisture content was assumed to equal 50% of the total water holding capac-
ity of the soil profile.
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15.5
Spatiotemporal Variability in Water Table Levels

We obseved considerable variation in water levels (meters from the surface). In about
40% of the total area in the district, the water table was lower than 15 meters. Gener-
ally, the water table is lowest during the March–May pre-monsoon period, due to a
lack of recharge and the use of groundwater for irrigation during the dry season.
Monsoonal recharge during winter (December–January) causes the water tables to rise,
in spite of substantial withdrawals for irrigation.

The observed variation in groundwater levels across the district is associated with
interannual rainfall variability. Figure 15.2 illustrates the spatial pattern of water tables
in the Coimbatore district in two contrasting years. Due to high rainfall, the Decem-
ber water table was substantially shallower in 1998 than in 2002. The total rainfall re-
ceived during summer and winter monsoon seasons of 1998 (2002) was 567 mm
(385 mm). The years 1998 and 2002 are classified as La Niña and El Niño, respectively.

15.6
ENSO, Rainfall and PET

Some of the observed rainfall variability in the study region is associated with the ENSO
phenomenon. Our rainfall analysis showed that on average, summer monsoon (June–
September) rainfall was 18% lower during warm than during cold ENSO years
(Table 15.2). Conversely, mean winter monsoon (October–December) rainfall was 40%
greater during warm than during cold ENSO years (Fig. 15.3a), leading to increased

Fig. 15.2. Spatial variation in groundwater table depth (m below the surface) in December during an
illustrative high (1998) and low (2002) rainfall year, Coimbatore district, Tamil Nadu, India
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groundwater recharge. In seasons of low summer monsoon rainfall during warm ENSO
years, potential evapotranspiration increased by 0.8 mm day–1 (Fig. 15.3b), indicating
higher irrigation requirement. Calculated October–December potential evapotrans-
piration did not vary significantly among the ENSO phases.

15.7
Crop Evapotranspiration and Irrigation Requirement

15.7.1
Maize

We calculated the crop evapotranspiration (ETc) and irrigation requirement for a maize
crop grown during the summer monsoon (June–September; kharif) in the study re-
gion. The calculations were based on a 120-day maize cultivar grown under irrigation
in a medium-deep alfisol with available water holding capacity of 140 mm. The crop-
ping season starts during the first week of June and ends during the last week of Sep-
tember. Average climatic parameters from warm, cold and neutral ENSO years were
used for calculating irrigation requirement. Consistent with local practices, 50 mm of
irrigation were assumed whenever the available soil moisture fell below 50% of ca-
pacity.

Fig. 15.3. Average monthly rainfall (a) at Coimbatore and potential evapotranspiration (PET) (b) in
different ENSO phases

Table 15.2. Water balance com-
ponents for irrigated maize
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During warm phases calculated crop evapotranspiration increased on average by
14% resulting in a need for increased irrigation (Table 15.2). Reduced rainfall combined
with enhanced evapotranspiration is likely to reduce or even prevent groundwater re-
charge. Groundwater recharge is not only a consequence of rainfall, but is also associ-
ated with water storage in local water harvesting structures like tanks and percolation
ponds.

Decadal (10 days) irrigation requirements for a 120-day maize crop increase dur-
ing warm ENSO years (Fig. 15.4). Therefore, insufficient groundwater recharge is
more likely to limit the area under irrigated maize in warm ENSO years. Informa-
tion about ENSO influence on water requirements and potential groundwater re-
charge could prove useful for improving crop selection and irrigation management
decisions during the dry season (February–May) following the winter monsoon.
Advance knowledge of likely shortfalls in water availability would enable farmers
to reduce their risk exposure by scaling back their investments in irrigated crops.
During the summer monsoon, preparing for supplemental irrigation could further
reduce the risk of crop failure in warm ENSO years. Modifications of agronomic
practices based on anticipated climate conditions offer some scope for risk reduc-
tion and increasing groundwater recharge (Jolly et al. 1989) in semi-arid environ-
ments.

15.7.2
Cropping Systems

In an attempt to quantify the crop evapotranspiration and irrigation requirement, we
examined the major irrigated cropping systems of the region. Specifically, we investi-
gated the water and irrigation requirements for banana, summer maize (June–Sep-
tember), first vegetable crop (June–August), winter maize (December–April) and a
second vegetable crop (March–May). Monthly irrigation requirement was calculated
assuming an effective rainfall of 75% with an irrigation efficiency of 70%.

Our calculations show that maximum total crop evapotranspiration and irrigation
requirements occur during March and August (Fig. 15.5). During August critical stages

Fig. 15.4. Decadal water re-
quirement of irrigated maize
(120 days duration) under vari-
ous ENSO phases
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of water requirement coincide both for summer monsoon maize and vegetables.
The long-duration banana is also in the late development/bunching stage requir-
ing maximum water. Considerable variation in crop evapotranspiration and irri-
gation requirement was evident across the ENSO phases (Table 15.3). The total
annual crop evapotranspiration under the warm ENSO phase was 11% greater than
during the cold phase. Average annual irrigation requirement for the cropping sys-
tems in warm ENSO years was 16% greater than in cold ENSO years. Irrespective
of the ENSO phase, bananas account for about 42–43% of the total annual evapo-
transpiration, and consume 40% of the total irrigation requirement for all the
crops.

15.7.3
Crop Area Decisions Based on ENSO Phases

In order to maximize farm gross margins, we constructed a linear programming model
that identifies optimum allocation of land area subject to land and water availability
constraints under each of the three ENSO phases. The model is formulated as:

Fig. 15.5. Monthly crop
evapotranspiration and irriga-
tion requirement (mm) under
ENSO phases; a warm; b cold;
c neutral
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such that

and

Xj ≥ 0 for all j = 1 to n

where

� Xj = level of the jth farm activity, such as the area of banana cultivation, for all j = 1
to n, where n denotes the number of possible activities (five in our case study);

� Cj = the forecasted gross margin of a unit of the jth activity (e.g. Rupees per hectare);

Table 15.3. Evapotranspiration (mm) and irrigation water requirement (mm) of crops for southern
peninsular India
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� aij = the quantity of the jth resource (e.g. land area and water availability on monthly
basis) required to produce one unit of the jth activity, for all i = 1 to m, where m de-
notes the number of resources; and

� bi = the amount of the ith resource available (e.g. land area and water availability).

The aim of the optimization is to find the land allocation (defined by a set of activ-
ity levels Xj, j = 1 to n) that has largest possible total gross margin Y, without violating
any of the fixed resource constraints.

Variable costs, cost of cultivation, yields and prices of banana, maize and vegetables
used in the linear programming model were collected from a sample of 37 farmers.
Monthly irrigation water requirements (m3 ha–1, Fig. 15.6) and farm-level water avail-
ability (m3, Fig. 15.7) across all ENSO phases were estimated by the model. The water
requirement of 1 ha banana was on average 17.0% higher during warm ENSO phase
(14 110 m3) than during the cold phase (12 059 m3).

Farm-level water availability was measured in a case study farm with 3 hectares of
land. During 2003, daily water discharge from all sources was measured using a parshall
flume at the delivery point near the water source. Water availability for the warm and

Fig. 15.6. Monthly irrigation
requirement of crops (banana,
vegetable-1, summer maize,
vegetable-2 and winter maize)
considered in the water alloca-
tion and crop area decision;
a warm; b cold; c neutral
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cold ENSO phases was estimated by applying the percent increase or decrease in av-
erage rainfall associated with the particular ENSO phase to the measured 2003 water
discharge. The resulting estimate of annual water availability was 15 816 m3 in warm
ENSO years, and 14 600 m3 in cold ENSO years. The higher water availability in warm
ENSO years was due to above-average rainfall during October, November and Decem-
ber. However, June to September water availability was highest in cold ENSO years.

The linear programming model assumes that farmers are indifferent to risk and
select farm plans based solely on their economic performance. The model also accounts
for constraints such as irrigation requirements.  For this case study we assumed that
the total land available for irrigation is 3 ha.

The model predicted considerable shifts in land allocation to various crops depend-
ing on ENSO phases (Fig. 15.8). However, market price scenarios did not influence
optimal land allocation among the ENSO phases. Based on the optimal solution, a risk
neutral farmer would reduce the total area under irrigation to 0.63 ha in a warm ENSO
year, and increase the irrigated area to 0.91 ha in a cold ENSO year. ENSO phase could
also influence the area dedicated to banana substantially. Maximizing gross margin
would only be possible if about 0.50 ha of land area was allotted to banana. The total
expected gross margin in a 3 ha farm from irrigated crops is Rs 48 109, Rs 63 536 and
Rs 56 418 under warm, cold and neutral ENSO phases, respectively (Fig. 15.9). The
greater area under irrigation during cold ENSO year is due to comparatively higher
farm-level water availability resulting from increased rainfall and reduced crop evapo-
transpiration.

15.8
Conclusions

Interannual rainfall variability exerts considerable influence on water resources.
Groundwater resources in southern India are exploited in order to buffer production
systems in this part of the semi-arid tropics against such variability. The use of ex-

Fig. 15.7. Farm-level water
availability under various
ENSO phases
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Fig. 15.8. Area under irrigation
for various crops conditioned
by ENSO phases and price sce-
narios; a high price; b medium
price; c low price

ploitation of groundwater for irrigation has been an effective means of coping with
the region’s highly variable climate, but now appears that this resource use has reached
unsustainably high levels. Opportunities exist to better manage these water resources
through appropriate use of climate information, resulting in improved economic per-
formance within a more sustainable production system.

Our results demonstrate that there is opportunity to use information about ENSO
and its influence on rainfall and groundwater recharge to better manage irrigated crop
production systems, despite the rather modest prediction scill from observed ENSO
phases. There may be opportunity to improve ENSO predictions before the onset of
the summer monsoon through ensemble SST forecasting. There is also a need to fur-
ther advance methods for using climate information, and to develop effective exten-
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sion programs to support this type of application, which build on the success of re-
gional and village-level stakeholder meetings conducted as part of this work.
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Chapter 16

Linking Corn Production, Climate Information
and Farm-Level Decision-Making:
A Case Study in Isabela, Philippines
W. L. de los Santos  ·  F. P. Lansigan  ·  J. Hansen

16.1
Introduction

Corn is the second most important crop in the Philippines in terms of total area planted
and overall value next only to rice. Yellow corn is the most important corn type in the
Philippines, and is primarily used as feed especially for poultry and swine. In 2003,
more than 844 885 ha of agricultural land in the Philippines were planted to yellow
corn.

Isabela is the top corn-producing province in the Philippines contributing 17% or
536 353 tons of the country’s total yellow corn production in 2003. It is located in the
northeast region of the country and is about 10 hours drive north of Manila. Corn is
grown rainfed in lowland, upland, and even in riverine or flood-plain areas along the
Cagayan River in Isabela. Monocropping of corn is predominantly practiced in Isabela,
and there are two cropping seasons per year – wet season cropping from May to Au-
gust and dry season cropping from November to February. A total of 146 965 ha were
planted to yellow corn in the province in 2003. Average yield of yellow corn was
3.65 tons per hectare (t ha–1) in 2003 which was comparatively higher than the national
yellow corn yield average of 3.03 t ha–1. Most of the corn type being produced in the
province is yellow corn which accounted for 95% of the total corn produced in the
province (Lansigan et al. 2001).

The climate in the agricultural region of Isabela has historically no pronounced dry
or wet seasons but relatively dry in the first half of the year and wet during the second
half. Average rainfall is 1 844 mm per year, mean temperature is 29 °C and relative hu-
midity is 66% (PAGASA 2000). In general, the climate and the vast plains of Isabela
are suitable for corn production.

Improvements in our understanding of interactions between the atmosphere and
its underlying sea and land surfaces, advances in modeling the global climate system,
and the substantial investment in monitoring the tropical oceans now provide a de-
gree of predictability of climate fluctuations at a seasonal lead time in many parts of
the world (Hansen 2002). Climate information influenced corn production activities
and decisions. Through time, corn farmers have developed management practices and
adaptation measures to cope up with climate variability. This chapter examines the
perception of corn farmers and of the agricultural extension workers on the links
between corn production, climate forecast information, and farm-level decision-mak-
ing in two different corn agro-environments in the Isabela province of northern
Philippines.
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16.2
Methodology

16.2.1
Case Study Sites

Isabela province is located in the northernmost part of the Philippines (Fig. 16.1). Two
corn-producing municipalities were identified for the case study representing differ-
ent agro-environments, namely: (1) the lowland corn areas in the low-lying, flood-
prone areas in the town of Naguilian; and (2) the upland corn areas in the nearby
mountainous municipality of Benito Soliven. The two towns are located about 15 ki-
lometers apart. Naguilian (121°50' E latitude and 17°60' N longitude, elevation 40 m)
has low-lying corn-growing areas located near the Cagayan River – one of the most
important rivers in northern Philippines. It has a land area of 170 km2 and a current
population of 26 131. On the other hand, Benito Soliven (121°60' E latitude and 17°00' N
longitude, elevation 98 m) is a mountainous corn-growing municipality. It has a land
area of about 187 km2 and a population of 22 146.

Fig. 16.1. Map showing the location of the municipalities of Naguilian and Benito Soliven in Isabela
Province, Philippines
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16.2.2
Data Collection

A number of activities and decisions in corn production are influenced by available
climate information in the area. These include the date of land preparation and plant-
ing, choice of corn cultivars to grow, scheduling of applications of fertilizer and irri-
gation water, and harvesting. A necessary step in promoting agricultural use of climate
information, or in assessing its value, is to gauge user perceptions concerning the use
of that information (Stern and Easterling 1999). Thus, to assess the perceptions of corn
farmers in Isabela province on the links between corn production, climate forecast
information, and farm level decision-making, a survey involving 60 farmers (30 from
each municipality) and 40 agricultural extension workers was performed from No-
vember to December 2003. The study used personal interviews, and a structured sur-
vey questionnaire to interview corn farmers and local agricultural officers and
extension workers.

16.3
Results and Discussion

A typical corn farmer surveyed in Isabela, Philippines is male, 43 years old, has received
high school education, and has about 18 years of corn farming experience. He owns
about 2 hectares of relatively flat, agricultural lands that is solely planted to corn. An
unpaved feeder road connects his production site to the market. On the average, his
farm is about 6 km away from the nearest market and about 7.6 km away from the
nearest Department of Agriculture extension office. On the other hand, a typical agri-
cultural extension worker or agent interviewed during the survey in the province is
40 years of age, has received a university or college degree, and has 14 years of experi-
ence in agricultural extension work.

According to the farmers surveyed, corn is primarily grown in Isabela province
because of its existing market, lower manpower requirement compared to other crops,
and general suitability to the area. Corn farmers raise yellow hybrid corn twice a year.
The average corn yield is 4 330 kg ha–1 during wet season cropping (May–August), and
4 719 kg ha–1 during dry season cropping (October–January).

16.3.1
The Impact of Climate Variability on Corn Production

Countries in Southeast Asia and the Pacific region, together with Australia, experience
the highest rainfall variability in the world (Nicholls 1997). El Niño events are mani-
fested in the Philippine local climate by drier than normal weather conditions which
could last for one or more seasons, causing dry spells or even drought in many parts
of the country. These dry weather conditions are caused by suppressed tropical cy-
clone activity in the western equatorial Pacific, weak monsoon activity characterized
by “breaks”, and the delayed onset of or early termination of monsoon rains (PCARRD
1999). In agriculture, shortage of water has caused serious damage to farmlands. The
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Philippine Crop Insurance Corporation (PCIC) reported that claims of losses for rice
in the Philippines in 1997 amounted to U.S.$280 000 while corn claims amounted to
U.S.$480 000.

Compared with the El Niño event, which is characterized by unusually warm ocean
temperatures in the equatorial Pacific region, La Niña is characterized by unusually
cold ocean temperatures the equatorial Pacific region. This condition brings greater
than normal amounts of cloudiness and rains over the warm waters of the western
Pacific including the Philippines. During the last half century, there have been about
10 to 11 weak and strong El Niño events which has brought adverse socio-economic
impacts in the Philippines. The 1982–1983 El Niño event caused about U.S.$500 million
damages to the Philippines as compared to the U.S.$13 billion global damage.

In northeastern Philippines, Dammay (2003) reported that weather disturbances
in the form of flooding and drought are the primary contributors to corn production
losses. Based on farmers’ reports during the past crop years, typhoon damage can cause
a 70% yield loss while flood occurrence can wipe out an entire corn crop. Drought
can result in a 50–70% yield loss. However, for the farmers surveyed in Isabela prov-
ince, the 1997–1998 El Niño occurrence resulted in an average yield loss of 1 276 kg ha–1

of corn harvested representing about 27% of the seasonal corn yield per hectare.
The survey also showed an average loss of 700 kg ha–1 of corn during the succeeding
1998–1999 La Niña event which represents about 16% yield loss – a lower level of dam-
age compared to the earlier drought period.

In the Asia-Pacific region, El Niño event is often associated with clear skies and
droughts, while La Niña episode is related to overcast skies and flooding (Centeno et al.
2000). As regards the El Niño and corn production, majority of corn farmers surveyed
in Isabela have a negative view of its effects on corn production as shown in Table 16.1.
However, during La Niña, the topography of the corn-growing municipality has a sig-
nificant effect on the perception of the farmers interviewed with regard to their views
on the effects of La Niña on corn production. Farmers of Benito Soliven – a moun-
tainous municipality, viewed La Niña favorably since it brought adequate moisture –
thus greater yield to its rainfed production system. On the other hand, majority of
farmers from Naguilian, a lower elevation municipality that is flood-prone during ty-
phoon seasons, took the negative view when it comes to La Niña occurrence.

Table 16.1. Farmers’ perception on the effect of El Niño and La Niña events on corn production in
Isabela, Philippines
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These survey results are also consistent with the general pattern of observations
from Isabela corn farmers during the 1997–1998 El Niño event and the succeeding
1998–1999 La Niña episode. During the 1997–1998 El Niño period, actual data in Isabela
province showed that it lost 218 983 metric tons of corn valued at U.S.$36 million due
to drought. During the succeeding 1998–1999 La Niña episode, typhoons and flash
floods destroyed 10 738 hectares of corn incurring a production loss of 10 976 metric
tons (Lansigan et al. 2001).

16.3.2
Climate-Related Information Currently Accessible in Isabela

Table 16.2 shows the sources of climate-related information among agricultural exten-
sion workers and corn farmers in Isabela province. Among government agricultural
extension workers, the primary source of climate-related information is the Philip-
pine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA)
– the government meteorological agency. This is followed by television and radio, print
media (e.g. newspapers), and fellow extension agents. All Philippine agricultural ex-
tension workers and agents received university or college degrees which suggest their
“comfort in accessing” meteorological bulletins. This is not the case for farmers – a
majority of whom did not have university- or college-level education. Farmers derive
their climate-related information from mass media – mainly from radio and televi-
sion broadcasts, and also from their fellow farmers. This situation makes it critical for
climate and agriculture policy makers to focus on the commonality among agricul-
tural workers – both extension agents and farmers- which is the importance of radio
and television as a means for effective dissemination of climate information and fore-
casts.

16.3.3
Impact of Seasonal Climate Forecast Information on Decision-Making

Blench (1999) reported that forecasts are only relevant to producers that conform to
the following profile: large and specialized operations, high in resources like educa-
tion, and dependent on rainfall. In the case of Isabela, forecasts were important since
the corn production system is generally rainfed. Besides the relatively rich and edu-

Table 16.2. Sources of climate-related information among agricultural extension workers and corn farm-
ers in Isabela, Philippines
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cated farmers, even farmers with small to large crop hectarage, and of different aca-
demic backgrounds have signified their need for climate forecasts aside from the rela-
tively rich and educated farmers.

The survey also noted that all farmers interviewed were not willing to change crop
species even with advanced climate information. What they were willing to modify
include the choice of corn cultivars to grow, planting date, and time of fertilizer appli-
cation. Capital, the cost of farm inputs, the previous season’s price of corn grains and
their perceived seasonal climate outlook have equal influence on Isabela corn farm-
ers’ production decisions.

16.3.4
Forecast Information of Greatest Value to Corn Production

Table 16.3 shows that agricultural extension workers view the onset of the rainy sea-
son, duration of rainy days, rainfall distribution, and drought and typhoon occurrence
as equally important climate information that they would like to request to be made
available to them. On the other hand, farmers’ most requested information is the du-
ration of rainy days. This information is important in scheduling land preparation and
planting. While the Philippines experiences, on the average, about 20 typhoons annu-
ally and Isabela is along the typhoon belt, there was very little need for typhoon-re-
lated information since it is considered a regular occurrence in Isabela (PAGASA 2000).
Farmers and extension workers are quite satisfied with the advance typhoon warn-
ings and advisories of PAGASA. However, majority of the extension agents and all of
the farmers interviewed would like a lead time of at least 1–2 weeks for their advanced
climate-related information to be significantly useful in corn production. This lead
time is seen as an adequate enough period to adopt or make the needed adjustments
or decisions on corn production-related activities such as planting and fertilizer ap-
plication.

16.3.5
Effective Medium for Communicating Climate Forecast Information

Communicating uncertainty in climate forecasts is one of the major challenges in
bringing forecast information to end users (Phillips et al. 2000). This is further com-
plicated by regional dialects, many of which are limited in expression of abstract con-
cepts which are often associated with climate prediction and forecasts. Climate forecast
information containing relevant information leading to improved production decisions
must reach the end users – the corn farmers, well in advance so that a farm-level deci-
sion can still be made. Both educated farmers (those who receive high school educa-
tion and above) and less-educated farmers (those who have received elementary
education only) have indicated their preference to receive climate forecast informa-
tion primarily through mass media followed by personal contacts with extension
agents. For policy makers, mass media, especially television and radio can be a cost-
effective means of communicating climate-related information (Table 16.4). However,
translating imperfect ENSO-related climate forecasts into information useful for im-
proved farm-level decision-making remains a challenge that needs to be addressed.
Climate forecast information should be translated to layman’s terms as farmers and
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the extension workers often perceive these forecasts as absolute values and do not in-
terpret the information in probabilistic sense. This presents an important consider-
ation in implementing intervention strategy for farmers and extension workers to
better appreciate and increase awareness of the value of climate forecasts to corn pro-
duction.

16.4
Summary and Conclusions

El Niño event and the drought it brings is viewed by majority of Isabela corn farmers
to have a far greater negative effect on their production system compared with La Niña
episode since most of the corn areas are rainfed. For the farmers surveyed in Isabela
province, the 1997–1998 El Niño occurrence resulted in an average yield loss of
1 276 kg ha–1 of corn representing about 27% of the seasonal corn yield per hectare.
The survey also showed an average loss of 700 kilograms of corn per hectare during
the succeeding 1998–1999 La Niña event which represents about 16% yield loss. Farm-
ers growing corn in mountainous communities such as in the municipality of Benito
Soliven view La Niña occurrence as something beneficial to corn production consid-
ering their rainfed production system. Meanwhile, farmers in low-lying communities
such as in Naguilian look at La Niña as something negative that can bring with it floods
that can destroy their crops.

Agricultural extension agents derive their climate-related information primarily
from the national meteorological agency (PAGASA) while farmers rely on television

Table 16.3. Type of climate-related information requested by agricultural extension workers and corn
farmers in Isabela, Philippines

Table 16.4. Corn farmers’ perception on effective medium of delivery of climate-related information
in Isabela, Philippines
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and radio for their advanced climate/weather information. Extension agents were not
the main source of climate-related information for farmers. All farmers interviewed
were not willing to change crop species even with advanced climate information. How-
ever, they were willing to modify only the choice of corn cultivars to grow, planting
date, and time of fertilizer application.

Capital, the cost of farm inputs, the previous season’s price of corn grains and their
perceived seasonal climate outlook have equal influence on Isabela farmers’ corn pro-
duction decisions. Moreover, farmers’ most requested information to be made avail-
able is the duration of rainy days. Both agricultural extension agents and farmers
agreed on 1–2 weeks as the most ideal lead time for the delivery of climate forecast
information. Television and radio broadcasts were the preferred medium for the de-
livery of climate forecast information. However, translating imperfect ENSO-related
climate forecasts into information useful for improved farm-level decision-making
remains a challenge that needs to be addressed. There is a need to translate the cli-
mate information and forecasts in terms of what the corn stakeholders can interpret
and use correctly to guide decision-making in corn production system.

Acknowledgements

This research has been supported by START and the David and Lucille Packard Foun-
dation.

References

Blench R (1999) Seasonal climate forecasting: who can use it and how should it be disseminated?
Overseas Development Institute, London, UK (Natural Resource Perspectives 47, available at
http://www.odi.org.uk/nrp/47.html)

Centeno HS, Dawe DD, Hammer G, Sheehy J (2000) Impacts of ENSO on rice yields in Asia. In: IRI (ed)
Procedings of the International Forum on Climate Prediction, Agriculture and Development,
26-28 April 2000, Palisades, New York. International Research Institute for Climate Prediction (IRI),
Palisades, New York, USA

Dammay RR (2003) Farmers’ perception on corn production losses in Cagayan. BSc thesis, University
of the Philippines, Los Baños

Hansen J (2002) Applying seasonal climate prediction to agricultural production. Agr Syst 74:305–307
Lansigan FP, de los Santos WL, Perez RE, Fabellar MT (2001) The corn profile of Isabela. Yield Gap

Analysis Project 2001. UPLB-DA-BAR Publication, Los Baños, Laguna, Philippines
Nicholls N (1997) Increased Australian wheat yield due to recent climate trends. Nature 387:484–485
PAGASA (Philippine Atmospheric, Geophysical, and Astronomical Services Administration) (2000)

Climate of the Philippines. Quezon City, Philippines
PCARRD (Philippine Council for Agriculture, Forestry and Natural Resources Research and Develop-

ment) (1999) The fiery fury of El Niño: a compendium of IEC materials on El Niño. PCARRD-DOST,
Los Baños, Laguna, Philippines

Phillips J, Unganai L, Makauzde E (2000) Changes in crop management response to the seasonal cli-
mate forecast in Zimbabwe during a La Niña year. In: IRI (ed) Procedings of the International Fo-
rum on Climate Prediction, Agriculture and Development, 26-28 April 2000, Palisades, New York.
International Research Institute for Climate Prediction (IRI), Palisades, New York, USA, pp 213–216

Stern PC, Easterling WE (eds) (1999) Making climate forecasts matter. National Academy Press, Wash-
ington, DC, USA



Chapter 17

Use of ENSO-Based Seasonal Rainfall Forecasting for
Informed Cropping Decisions by Farmers
in the SAT India
V. Nageswara Rao  ·  P. Singh  ·  J. Hansen  ·  T. Giridhara Krishna  ·  S. K. Krishna Murthy

17.1
Introduction

Dryland agriculture in India is practiced on 97 million ha of the cultivated area that
supports 40% of the human population and 60% of livestock population by produc-
ing 44% of the food and fodder requirements. Even if India can achieve the full po-
tential of irrigation in 139.5 million ha, still 75 million ha drylands would continue to
depend on rainfall from southwest (SW) and northeast (NE) monsoons, characterized
by high rainfall variability that cause most of production uncertainties. Thus dryland
agriculture continues to play a crucial role in India’s food security. However, produc-
tivity gains have been relatively insignificant and risk-averse dryland farmers have to
improve agricultural productivity with suitable management options and matching
application of farm inputs to maximize crop productivity and income, while minimiz-
ing crop failure and input losses against uncertainties of seasonal weather to feed the
booming population.

17.2
Advances in Seasonal Climate Forecasting

Sir Walker’s early pioneering efforts in making long range forecasting of monsoon
rainfall in India, led to several concepts on teleconnection and statistical relations in
the field of climate forecasting especially the El Niño-Southern Oscillation (ENSO).
Shukla and Paolino (1983) studied relations of Southern Oscillation on possibility of
long range forecasting of Indian summer monsoon rainfall. Ropelewski and Halpert
(1987, 1996) established better correlation of Pacific Ocean sea surface temperatures (SSTs)
compared to Indian Ocean SSTs with rainfall variability in Indian subcontinent which
also indicated the skill of October-November-December (OND) seasonal rainfall pre-
diction in southern India. Both these efforts were focused on understanding the ENSO
dynamics on slowly varying equatorial ocean temperatures, and established relationships
to their manifestations on changing atmosphere and observed climate variability.

Virmani et al. (1982) estimated seasonal rainfall probabilities using statistical
models for many locations in the semi-arid India. Gadgil et al. (1999) identified stronger
relationship between El Niño years and rainfall in Anantapur compared to all-India
summer monsoon rainfall from their analyses on seasonal rainfall from 1911–1998.
Stone et al. (2000) demonstrated statistical methods to generate rainfall probabilities
of climate forecasts from general circulation model (GCM)-derived southern oscilla-
tion index (SOI) phases that are useful inputs for agricultural simulations to derive
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management decision options. Predictability of climate at regional scale presents an
opportunity to identify feasible alternatives to mitigate the climate risks, improve
productivity and food security.

17.3
Advances in Crop Modeling

Comprehensive systems simulation models can simulate the dynamic processes of crop
growth and development capturing their dynamic and nonlinear interactions with
environmental variables. Agricultural Production Systems sIMulator (APSIM) (Mc Cown
et al. 1996) is a cropping systems model suite, which was developed and validated across
several environments, especially, in the semi-arid tropics. Hammer et al. (1996) ana-
lyzed the skill of seasonal climate forecasting in the management of wheat crop with
fixed and tactical decisions of applying N in a highly variable climate to increase profit
and minimize risk. Gadgil et al. (1999), through their simulation work on “Farming
Strategies for a Variable Climate”, anticipated considerable impact of seasonal rain-
fall forecasting on farm-level decisions of peanut growers in Anantapur using DSSAT.
Carberry et al. (2000) demonstrated through a simulation case study that SOI contrib-
uted skill in improving crop management decisions over two-year rotations in Aus-
tralia. Using APSIM simulation analyses, Nageswara Rao et al. (2004) showed that
intercropping of peanut with short duration (SD) pigeonpea can minimize the risk of crop
failure, and verified this concept for two years in farmers’ fields in several villages of
Anantapur during the period 1999–2002. APSIM model has been successfully used for
climate forecast based agricultural/crop management options across several countries
including, India (Gadgil et al. 2002) and Australia (Carberry et al. 2000; Meinke and
Hochman 2000; Nelson et al. 2002) to deal with crop systems/management options un-
der varying environmental conditions without much limitations for data requirements.
Recent advances in the predictability of seasonal climate and wider adaptability of crop-
ping systems models to simulate crop yields based on seasonal climate forecasts, would
provide opportunities for farmers to discuss several management options, before opt-
ing for a suitable crop management decision based on their available resources.

17.4
Overall Objective

The overall objective of this study was to identify the skill of seasonal climate fore-
casts for the region and the value forecast skill for management decisions to minimizing
the risk of climate variability on cropping systems’ productivity.

17.5
Specific Objectives

1. To identify the ENSO relationship with seasonal rainfall and crop yields in the scarce
rainfall zone of Andhra Pradesh, India.

2. To explore the potential value of seasonal rainfall forecasting for a range of improved
cropping decisions.
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17.6
Study Area

We consider studying the potential of climate applications in Kurnool and Anantapur
in the scarce rainfall of zone of Andhra Pradesh state in the southern peninsular In-
dia (Fig. 17.1) as farmers in these districts are mostly dependant on dryland agricul-
tural incomes for their livelihoods and are often affected by crop losses and low
incomes due to climate variability.

Kurnool district receives an annual rainfall of ≈640 mm, ranging from 548 to
668 mm among different agro ecological situations, with a high coefficient of varia-
tion indicative of a high climate variability leading to uncertainties in crop produc-
tion. Total rainfall in the crop season is received during two monsoon seasons (bi-model
distribution): southwest (SW) monsoon during June-July-August-September (JJAS)
and northeast (NE) monsoon during October-November-December (OND). Early sea-
son droughts during SW monsoon often result in first crop failure in this region. Year-
to-year rainfall variability (Fig. 17.2, top panel), at the onset of southwest monsoon
results in fluctuation in area sown and production of kharif sorghum and mungari
cotton (Gossypium hirsutum sp.). Rainfall anomalies during NE monsoon (OND) pe-

Fig. 17.1. Study area and loca-
tion of project villages in
Kurnool and Anantapur dis-
tricts of Andhra Pradesh, India
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riod (Fig. 17.2, middle panel) influence area and production of chickpea and post-rainy
sorghum, causing uncertainties of farm-income to resource-poor farmers. Soils in the
Kurnool district are largely Vertisols or Vertic inceptisols with varying soil depth rang-
ing from 90 to 150 cm with high clay or clay loamy calcareous soils. These soils can
hold plant available soil water (PASW) ranging from 150–240 mm and possess high
moisture retention capacities to support post rainy season drought tolerant crops like
sorghum, sunflower, chickpea, and safflower are generally grown on stored soil mois-
ture.

Normal rainfall for Anantapur district is low at 564 mm, with rainfall variability
ranges from 493 to 593 mm among different agro-ecological situations. Anantapur
normally receives 60% of rainfall from SW monsoon (JJAS), 27% NE monsoon (OND)
(a bi-model distribution), and seasonal anomalies especially in SW monsoon (Fig. 17.3,
middle panel) influence the productivity of main crop peanut. Length of crop grow-
ing season is generally limited between 100 and 135 days by low rainfall and shallow
Alfisols. Hence Anantapur typically represents the problems of dry land farming sys-
tems in the semi-arid to arid regions. Therefore, it was decided to determine the value
of forecast skill for the region to convince stakeholders to utilize seasonal forecasts
for crop management decisions.

17.7
Approach

17.7.1
Climate Analyses and Seasonal Prediction

Analyses were carried out to understand the relationships between ENSO and seasonal
rainfall variability in the scarce rainfall region, especially with reference to Nandyala
as well as Anantapur station weather observations. Records of historical rainfall of
Nandyala (1950–2000) and Anantapur (1950–2000) were correlated with sea surface
temperatures of the Niño 3.4 region (equatorial Pacific region between 120–170° W and
5° N–5° S as in Fig. 17.4) since 1950–2000.

We used three-month running-mean values of SST departures in the Niño 3.4 re-
gions based on a set of improved homogeneous historical SST analyses (Extended
Reconstructed SST-ERSST.v2, Smith and Reynolds 2003). National Oceanic and Atmo-
spheric Administration’s (NOAA) official operational definitions of El Niño and
La Niña are as follows. El Niño is a phenomenon in the equatorial Pacific Ocean
characterized by a positive sea surface temperature departure from normal (for the
1971–2000 base period) in the Niño 3.4 region greater than or equal in magnitude to
0.5 °C averaged over three consecutive months. La Niña is described as a phenomenon
in the equatorial Pacific Ocean characterized by a negative sea surface temperature
departure from normal (for the 1971–2000 base period) in the Niño 3.4 region greater
than or equal in magnitude to 0.5 °C averaged over three consecutive months. As per
these definitions of El Niño and La Niña, years were categorized as given in Table 17.1.

SW monsoon and NE monsoon rainfall for individual years as influenced by ENSO
phase were also presented in Fig. 17.5ab, for both stations to visualize the signal for
ENSO phase over two seasons in each year with circle indicating El Niño event, and
triangle indicating La Niña.
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Fig. 17.2. Observed rainfall anomalies of annual, SW monsoon and NE monsoon periods since 1937 at
RARS, Nandyala

Fig. 17.3. Observed rainfall anomalies of annual, SW monsoon and NE monsoon periods since 1962 at
ARS, Anantapur
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Based on ENSO phase, seasonal rainfall (JJAS and OND) was segregated for all years
and the distribution of rainfall for each station is shown in box plots (Figs. 17.6 and
17.7) during three phases for Anantapur and Nandyala from 1950–2001.

Ropelewski and Halpert (1996) quantified global precipitation distributions in re-
lation to Southern Oscillation (SO) and observed shifts in the percentiles of rainfall
for the Indian subcontinent; with dry seasonal conditions during warm SSTs (low SOI)
in the Pacific, and wetter seasonal conditions with cold SSTs (high SOI). Although ENSO
is not the only factor influencing monsoon precipitations over the Indian subconti-
nent (Hastenrath 1987; Shukla and Mooley 1987), the close relationship between the
SW monsoon rainfall and the ENSO phases are clearly seen (Fig. 17.6) in case of
Anantapur. La Niña years’ median (50%) rainfall is well over total rainfall received
(<400 mm) in that of any El Niño year, and more than 75% percentile of normal years.
Median difference in rainfall is around 150 mm between El Niño and La Niña events
which is crucial in any agricultural situation. While OND rainfall for Anantapur is low,
El Niño and neutral years especially have a higher probability to receive more rainfall
compared to the cold events.

Fig. 17.4. Niño regions on the equatorial pacific as Niño 4 (light gray), Niño 3 (dark gray), Niño 3.4 (in-
tersecting light and dark gray) and Niño 1+2 (empty box) regions

Table 17.1. Year-wise categorization of ENSO phases from 1950 to 2002 based on NOAA’s definition of
El Niño and La Niña
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In case of Nandyala (Fig. 17.7), La Niña years receive higher rainfall with a median
<725 mm and approximately 900 mm can be expected in 25% percentile years, while
during the El Niño and neutral years, the median remains same, just below 500 mm.
In winter months (OND), the median rainfall remains nearly at 100 mm with all phases,
but the shift is towards higher rainfall in La Niña years as compared to neutral phase.

17.7.2
Crop Yield Variability in Response to ENSO Phases

Mungari cotton, kharif sorghum; peanut/pigeonpea intercrop systems have been the
major crops cultivated in Kurnool during the SW monsoon season. Sunflower, chickpea
and post rainy season sorghum are the major sequential crops grown during post rainy
(NE monsoon) season. We analyzed the distribution of crop yields for each ENSO phase.

Crop yields were grouped based on the categorization of ENSO phases (Table 17.1)
since 1950 to 2002. These yields were calculated from observed crop production in each

Fig. 17.5. a JJAS and OND
seasonal rainfall distribution of
Nandyala as affected by ENSO
phase categories from 1950 to
2001; b JJAS and OND seasonal
rainfall distribution of
Anantapur as affected by ENSO
phase categories from 1963 to
2001
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district. This analysis provides inferences on the performance and likely adaptability
of a crop once the ENSO phase is known, based on historically observed yields in dif-
ferent ENSO phases.

Box plots of crop yield distribution in different ENSO phases (El Niño, La Niña,
neutral) indicate yield distribution of 25th percentile from bottom of the box (light
gray) and 75th percentile to the top of the box (dark gray), with a circle connected by
horizontal line in the middle of the box representing median (50th percentile) of the
crop yields time series. Bottom whisker cap indicates 10th and top whisker indicates

Fig. 17.6. Seasonal rainfall distribution of Anantapur as affected by ENSO phase categories from 1963
to 2001

Fig. 17.7. Seasonal rainfall distribution of Nandyala as affected by ENSO phase categories from 1963
to 2001
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95th percentile of yield distribution. Horizontal lines with star or circle away from box
plots are out-liers in the data representing a skewed distribution (Figs. 17.6 and 17.7).

In Kurnool, kharif sorghum median yield is above (0.75 t ha–1) during La Niña years,
and distribution of sorghum yield in this phase ranged from 0.25 to 1.5 t ha–1 indicat-
ing that good rainfall distribution leads to higher yields in 50% of years and that sor-
ghum yield in neutral years is also good compared to El Niño years (Fig. 17.8). Hence
sorghum can be a rainy season crop option except in El Niño years. Contrary to ex-
pectations, mungari cotton yielded better in El Niño years compared to neutral or
La Niña years, and can be a suitable crop option in El Niño years (Fig. 17.9). Peanut
and pigeonpea intercrop system is an obvious choice in light soil areas of Kurnool
during La Niña phase as the median yield for both the crops is conspicuously higher
and yield addition in this phase is >250 kg ha–1 (Fig. 17.10ab). Chickpea and rabi sor-
ghum have been two alternate crops for farmers of Kurnool as a sequential post rainy
season crop, and both crops have different suitability options. While Chickpea yields
were higher in El Niño years, its performance in La Niña is also consistently better than
in neutral years (Fig. 17.11a). As opposed to this, sorghum median yields were higher
and is a suitable option for this region in La Niña conditions (Fig. 17.11b).

Fig. 17.8. Rainy season sor-
ghum yield as affected by rain-
fall in ENSO phases during
1950–2001 in Kurnool

Fig. 17.9. Mungari cotton yield
as affected by rainfall in ENSO
phases during 1950–2001 in
Kurnool
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For Anantapur, ENSO phase wise crop yield analysis indicates that peanut/pigeonpea
intercrop system (Fig. 17.12ab) additive performance would be higher in La Niña years
(>0.9 t ha–1), but in neutral and El Niño years its median yields are low (<0.7 t ha–1)
and remain below district mean yields (Fig. 17.12).

17.7.3
Farmers’ Decision Options

Discussions with farmers of Kurnool and Anantapur were initiated with rapid appraisal
survey jointly conducted by us in collaboration with the Regional Agriculture Research
Station (RARS) scientists. These discussions with farmers were mainly aimed at un-
derstanding their perceptions on climate variability, seasonal rainfall dependent crop-
ping management options, and availability and use of rainfall forecast information.
Summary of key decisions which some of the farmers proposed to take based on the
forecast information are listed in Table 17.2.

Fig. 17.10. a Peanut yield with
intercrop as affected by rainfall in
ENSO phases during 1950–2001
in Kurnool; b intercrop
pigeonpea yield as affected by
rainfall in ENSO phases during
1950–2001 in Kurnool
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17.7.4
Simulations of Cropping Systems

APSIM (Mc Cown et al. 1996), a cropping systems simulator capable of simulating sev-
eral crops and cropping systems grown as sequential and intercrop systems in the
project region, as well as “what if ” management scenario analyses was used in this
study. Daily-observed weather data from 1963 to 1998 for Anantapur, and from 1984 to
1998 for Nandyala were used for simulation input. Data sets available from experiments
at RARS Nandyala, and ARS, Anantapur were used for cultivar parameterization to
simulate crops. Cropping systems scenarios were simulated using observed daily
weather data for all years as well as ENSO phase based analog years (Table 17.1) daily
data to compare probable production estimates and the value of ENSO based seasonal
forecasts was estimated to assess risks of loss/gain associated with cropping system
in different phases. We could not use any optimization algorithm except arriving at
the maximum mean of crop yield.

Fig. 17.11. a Chickpea yield as
affected by rainfall in ENSO
phases during 1950–2001 in
Kurnool; b post-rainy sorghum
as affected by rainfall in ENSO
phases during 1950–2001 in
Kurnool
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Fig. 17.12. a Peanut yield in
intercrop as affected by
rainfall in ENSO phases during
1950–2001 in Anantapur;
b intercrop pigeonpea yield as
affected by rainfall in ENSO
phases during 1950–2001 in
Anantapur

Table 17.2. Key issues in forecast that may lead farmers’ decision options in Anantapur and Kurnool as
against traditional/risk-averse decision cropping systems
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Cropping systems scenarios include yield estimates of traditional practice of single
crop systems for all seasons and optimized ENSO phase forecast based crop produc-
tion estimates. Conceptualization of these system scenarios is based on the farmers’
survey results as preferred and adoptable decision depending on seasonal forecast and
soil conditions (Table 17.2) for Kurnool and Anantapur.

17.7.5
Simulation Scenarios of Baseline Management

We could simulate yield estimate of rainy season sorghum and sequential chickpea
system in hindcast for all years as well as ENSO phase forecast considering analog years,
with sowing opportunity triggered between 15 and 25 June, when 5 days accumulated
rainfall exceeded 60 mm or extractable soil water was greater than 65 mm in the wet
sowing zone of the soil for Kurnool region. Farmers usually apply two bags of fertil-
izer per acre in different N-P-K grades (18-46-0, 20-20-0, 17-17-17, 28-28-0), giving a
nutrient application (kg ha–1) ranging from 42.5–70 N, 42.5–115 P2O5 and 42.5 K2O.
However, in simulations, we considered application of 80 kg N ha–1 during La Niña and
40 kg N ha–1 during El Niño and ENSO neutral for both the crop seasons as the opti-
mal practice compared to baseline simulation of single crop kharif sorghum with
40 kg N ha–1 application for all year.

In Anantapur, a sole crop peanut is traditionally grown by risk-averse farmers
which is sown any time, but mostly from the 3rd week of July to 2nd week of Au-
gust, with a fertilizer application at 20 kg N ha–1 and this was considered as a
baseline management simulation. We simulated peanut/medium duration
pigeonpea cropping system with sowing triggered between 25 June and 21 July, and
planting at a wide row ratio of 7:1 as the optimal management during the La Niña
seasons. Peanut/medium duration pigeonpea intercrop was generally recom-
mended for farmers to suit longer cropping season, and ICRISAT promoted pea-
nut/short duration pigeonpea intercrop system as suitable for short seasons after
carrying out systems analysis for Anantapur. During El Niño and ENSO neutral
years, sowing opportunities were triggered between 15 July and 15 August with
peanut/short duration pigeonpea intercrop system, at 3:1 to 7:1 row ratios under
Anantapur conditions. Simulations were carried out with these intercrop systems
using 40 kg N ha–1 application using observed weather for the ENSO phase ana-
log years.

17.7.6
Value of Seasonal Forecasting Skill

The value of ENSO phase forecasting skill for crop management options was calcu-
lated for each ENSO phase with appropriate cropping system and management op-
tions. The potential value of optimal use of ENSO phase forecast is evaluated as the
mean difference between the returns for optimal cropping system management for
each ENSO phase in the time series and returns to all weather optimal cropping sys-
tem management (Hansen et al. 2001). Inputs like seed and fertilizer cost, crop output
prices and fixed costs are considered at the rates prevailing during March 2003, the
end of crop season. Results are shown in Tables 17.3 and 17.4.
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17.8
Results and Discussion

ENSO phases have a considerable influence on the seasonal rainfall of Kurnool and
Anantapur districts in the scarce rainfall zone of Andhra Pradesh, India. All La Niña
phases produced higher rainfall than normal rainfall in both districts in the ensuing
monsoon season, and lower rainfall during following monsoon season in all El Niño
phases in both districts but for two years in Kurnool (Fig. 17.5a.). Historical crop yields
of rainy season sorghum, peanut/pigeonpea intercrops were positively affected by the
La Niña phase seasons, indicating that good rainfall distribution leads to higher yields
in 50% of the years. Sorghum yield in neutral years is also higher compared to El Niño

Table 17.3. Estimated crop yields and value of ENSO phase information for peanut/pigeonpea intercrop sys-
tem management as compared to all weather optimal sole peanut during 1963–1998 in Anantapur region

Table 17.4. Estimated crop yields and value of ENSO phase information for sorghum + chickpea crop
management as compared to all weather optimal sole chickpea during 1963–1998 in Kurnool region
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years (Fig. 17.8). Hence sorghum can be a rainy season crop option except in El Niño
years. Contrary to expectations, mungari cotton yielded better in El Niño years com-
pared to neutral or La Niña years. Cotton is a deep rooted and long duration crop with
standing moisture stress and solar radiation may the factor favoring in El Niño phases,
and it can be a suitable crop option in El Niño years (Fig. 17.9). Peanut and pigeonpea
intercrop system is an obvious choice in the light soil areas of Kurnool and Anantapur
during the La Niña phase as the median yield for both the crops is conspicuously higher
and the yield increase in this phase was >250 kg ha–1 (Figs. 17.10 and 17.12). While
chickpea yields were higher in El Niño years, its performance in La Niña was also con-
sistently better than in neutral years (Fig. 17.11a). For Anantapur, ENSO phase wise crop
yield analysis indicates that the additive performance of peanut/pigeonpea intercrop
system (Fig. 17.12ab) would be higher in La Niña years (>0.9 t ha–1), but low (<0.7 t ha–1)
during neutral and El Niño years (Fig. 17.12). Value of ENSO phase forecasting skill
(Tables 17.3 and 17.4) has been higher in La Niña phase in both districts at Rs 7 564 for
peanut median duration pigeonpea in Anantapur and Rs 5 600 for sorghum + chickpea
sequential systems in Kurnool. During the El Niño phase, forecasting has the lowest
value since optimal crop management with low input applications resulted in low yields
as it was limited by moisture availability.

17.9
Conclusions

Through the identification of the relationship between ENSO phase based on extended
reconstructed SSTs and seasonal observed weather for a small and agriculturally ho-
mogeneous region, the utility of climate forecasts in agricultural decision-making
options has been established for a scarce rainfall region in Andhra Pradesh, India. Since
ENSO phase analyses is the simplest method for identifying the forecast skill for the
region, we used this study as a preliminary approach to sensitize farmers for seasonal
climate forecast based crop management options evaluation. However the optimal crop
management options presented in the study are limited and several other cropping
options need to be explored.
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Chapter 18

Application of Climate Prediction for Rice Production
in the Mekong River Delta (Vietnam)
Nguyen T. Hien Thuan  ·  Luong V. Viet  ·  Nguyen T. Phuong  ·  Le T. X. Lan  ·  Nguyen D. Phu

18.1
Introduction

The Mekong River Delta (MRD) is the largest rice producing area and one of the
most densely populated areas of Vietnam. However, farming is very risky because
it is climate dependant. The variation of climate from year to year leads to a
considerable variability in crop production. Water deficiency and water excess asso-
ciated with seasonal climate variability have a significant consequence on rice
production.

To secure food production in the region, it is therefore necessary to assist the farm-
ing system with seasonal climate information available from various sources. Prelimi-
nary research findings showed that there is a significant influence of ENSO phenomena
on climate parameters in Vietnam (Nguyen and Ngo 2002). Bearing this in mind, this
pilot study was undertaken with the following objectives: (1) to examine the relation-
ship between ENSO indices and rainfall and temperature in the MRD, (2) to set up a
demonstrative climate forecast communication to commune levels, (3) to use crop
simulation to assist decision-makers.

Case studies in Long An province were conducted for the dissemination of climate
forecasts and rice crop simulation. Long An province is located in the MRD, with the
growing area of about 482 000 ha, of which more than 433 000 ha are under rice pad-
dies. The main agricultural crops include rice (the main crop), sugarcane and peanut,
which are secondary crops in the rice-based cropping system. The strong dependence
of agriculture on the weather creates a large variability in crop yields. Also, climate
variation can bring about a significant change in cropping patterns. Depending on
water availability, there can be up to 2 to 3 rice crops annually. Significant parts of the
province are in marginally low land, which can be affected by saline water from the
sea in March–April (the dry season) and by flood in September–October (the rainy
season). It is very important to have reliable seasonal forecasting in order to help farm-
ers arrange the cropping patterns and timing so that they can make the full use of early
rains and avoid early flooding.

Two communes of Long An province were selected as each is affected by a specific
climate related condition. These are Thanh Phu commune of Ben Luc district, which
represents salinity affected areas in the early stage of the rainy season (May–June) and
Tan Lap commune of Tan Thanh district, which is affected by annual flooding during
high water season (September–November).
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18.2
Data and Methodology

For studying the effects of ENSO, data on monthly rainfall and temperature were col-
lected from 18 meteorological stations in the Mekong River Delta (Fig. 18.1). ENSO
indices including SSTA Niño 3+4 region and SOI were downloaded from the website
of the Climate Prediction Center (CPC) of NOAA.

Climate forecasts were prepared and disseminated to 52 farmers of the two selected
communes and to 20 officials and extension workers of Long An province during April
to October 2003, prior to the onset of the rainy season, until the end of the summer-
autumn crop season. The forecasts consisted of both climate information and hydro-
logic conditions as required by users.

Two field surveys were carried out to identify the specific needs on climate fore-
cast information, and to evaluate the use and effectiveness of the forecasts.

DSSAT v3.5 software (Hoogenboom et al. 1999) was used for rice crop simulation
for the selected sites in Long An province (Ben Luc and Tan Thanh districts). The fol-
lowing inputs were made for the model simulation.

Fig. 18.1. Meteorological stations in the MRD (stars) and Long An province (dark shaded)
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18.2.1
Weather Data

Daily rainfall, maximum temperature, minimum temperatures and sunshine duration
data were obtained from two meteorological stations in the selected districts (Moc Hoa
station in Tan Thanh district and Tan An station in Ben Luc district), for the period of
1978–2003. As the model requires solar radiation data for input files, the observed sun-
shine duration data were converted into solar radiation values using WeatherMan soft-
ware provided in the package of DSSAT v3.5.

18.2.2
Crop Data

The rice crop varieties used in the study were VND 95-20 (at Tan Thanh district) with
growing season length of 90–95 days and IR-64 (at Ben Luc district) with growing
season length of 95–100 days. Both are short growing duration varieties. The crop
management practices were those adapted in the field with fertilizer amounts, water
depths and different planting dates.

18.2.3
Soil Data

The predominant type of soil in Tan Thanh district is gray acid sulfate soil with clay
and sandy sub soils, having a depth of 140 cm. The predominant soil in Ben Luc dis-
trict is slightly saline alluvial soil having a depth of 160 cm.

18.3
Results

18.3.1
Relationship between ENSO Indices and Temperature and Rainfall

The analysis has shown the impacts of ENSO on rainfall and temperature in the MRD.
These effects are different depending on calendar months. The highest correlation
coefficients are in the range of 0.5–0.7 between ENSO indices and temperature during
March through to June. For rainfall, the correlation coefficients are lower than those of
temperature. The highest correlation coefficients are in the range of 0.4–0.6 between ENSO
indices and rainfall during March through May (Fig. 18.2). The lag time of 2–3 months for
temperature and of 4–5 months for rainfall gives the highest correlation coefficients.

18.3.2
Field Surveys

The results of the first survey showed the need for weather and climate forecasting
mainly at critical points of the rice growing seasons: the onset of the rainy season, the
occurrence of dry spells during the rainy season, the salinity conditions at the end of
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the dry season and beginning of the rainy season and flood and inundation events.
The lead-time required is one and three months in supplementation to the existing
10-day outlooks issued regularly by the Southern Regional HydroMet Center, SRHMC
(located in Ho Chi Minh City). In addition, farmers expressed their desire to have the
forecast of hydrological conditions in the forecasting bulletins. This is quite common
here as their agricultural practices are affected very much by flow regime. The find-
ings from the survey helped design suitable hydrometeorological forecasts, which in-
clude both climate outlook (for 1 month and 3 months) and hydrological conditions
forecasts (for water level and salinity of several stations in the areas).

The results of the second survey showed that the climate forecasts based upon the
results of the first survey were extremely useful for both farmers and agricultural
workers. Farmers used the rainfall forecasts for defining the sowing dates and the
harvest time. The three-month forecasts are very important for extension workers in
guiding and defining farming schedules for local areas. The forecasts were used in
farming arrangement, including time for sowing, fertilizer spraying, irrigation and
selection of storage methods.

Fig. 18.2. Correlation coefficients between Niño 3.4 SSTA (left) and SOI (right) with temperature (above)
and rainfall (below), averaged for the MRD. Y-axis denotes calendar months from January (1) through
December (12), x-axis denotes lag time in month
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18.3.3
Forecast Information for Dissemination to Farmers

The communication between the forecasting centers and end users is shown in Fig. 18.3.
The forecasts were firstly made at the Regional Forecasting Center (RFC) located

in Ho Chi Minh City. Then forecasts were sent to Long An Provincial Forecasting Center
(LA PFC). The latter was responsible to finalize the bulletin and distribute the fore-
casts to related agencies and farmers in the province after adjusting the forecasts based
on local conditions and requirements. This is the first time probabilistic forecasts were
introduced to farmers. The possibilities and limitations of the seasonal forecasts were
explained during meetings; however it was indicated that the users would prefer de-
terministic forecasts.

18.3.4
Crop Simulation

CERES-Rice model of DSSAT v3.5 software was used to simulate crop yield in Ben Luc
and Tan Thanh districts (Long An province). In practice, different planting dates are
applied at the locations, so the simulation was adjusted to reflect those planting dates.

Fig. 18.3. Communication of
forecasts between forecasting
centers and users
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The simulation results allowed us to define the optimum planting dates for the selected
locations. For Tan Thanh district, the optimum planting date is around the first 10 days
of April. For Ben Luc district, the optimum planting date is the first 10 days of May
(Fig. 18.4). If planting occurred earlier or later than these planting dates, there is a
possibility that a considerable decrease of the yield due to the water situation (short-
age at the beginning or inundation at the end of growing period) may result.

The implementation of the project has established close cooperation between cli-
mate researchers, hydrometeorological operational forecasters in the regional and
provincial levels, agricultural staff from Long An Department of Agriculture and Ru-
ral Development and staff from Long An Agricultural Extension Center. The project
activities relating to rice production in the areas have received an enthusiastic involve-
ment of local people (extension workers and farmers of Long An province).

18.4
Conclusions

Although the project has made some achievements, there are still some aspects that
need to be considered and improved. They are as follows:

� The forecast accuracy, especially in the longer term needs to be improved. It is sug-
gested that further studies on the relationship between ENSO phenomena and cli-
mate variables over the Mekong River Delta be undertaken in more detail so that
the findings can be used to assist operational forecasting work.

� Improve forecast-distribution procedures of operational agencies to provide the best
possible benefits of climate information for users.

In order to exploit the full benefits of the research results it is proposed to conduct
a study on the effects of ENSO and climate change on water resources and the coastal
zone of the Mekong River Delta.

Fig. 18.4. Simulated yields vs. observed yields at different planting dates The simulation was made with
the actual weather data and crop inputs of the summer-autumn rice crop in 2003
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Chapter 19

Climate Prediction and Agriculture:
What Is Different about Sudano-Sahelian West Africa?
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19.1
Introduction

Recurrent drought conditions that prevailed in the Sahel region of West Africa during
the 1970s and 1980s have seriously challenged the resiliency of ecosystems and the
adaptive capacity of human societies (IPCC 2001). This has triggered increased atten-
tion from the scientific community, resulting in a significant augmentation in climate-
related publications and allowing for a better understanding of the complex regional
and local climates.

Of prime importance is an improved appraisal of the variable nature of rainfall.
When Hulme (2001) states that there is no such thing as ‘normal’ (mean) rainfall in
the Sahel, he alludes to one of the most fundamental characteristics of the West Afri-
can climate: its ‘normality’ is to be variable over a range of timescales. We first review
the causes of this unique variability, then discuss its implications in terms of the pre-
requisites for beneficial use of forecasts (Hansen 2002), and the way forward in Sudano-
Sahelian smallholder agriculture. Emphasis is put on the legacy of varietal adaptation
as a powerful strategy for managing the stochasticity in climate – and further exploiting
it in improved breeding programs, in parallel with rejuvenated early agrometeorological
crop yield assessments.

19.2
The Context: Distinctive Climate Variability

19.2.1
A Variety of Forcings

A unique combination of external and internal forcings makes West Africa one of the
most climatically sensitive regions of the world (Zeng 2003), and probably one of the
most challenging to decipher, interpret and model (Jenkins et al. 2002) due to the su-
perposition of numerous competing variability modes. Variability in rainfall results
from location and astronomic forcings, which determine the seasonality of climate;
oceanic-atmospheric large-scale forcings, which condition regional circulation and
determine the season’s potential; synoptic and sub-synoptic features, which control
actual weather patterns and determine the realization of the season (Lister and
Palutikof 2001). Interactions between these determinants are further complicated by
land surface conditions which act as ‘after-burners’ of the regional climate engine
(Traoré 2004).



P. C. S. Traoré  ·  M. Kouressy  ·  M. Vaksmann  ·  R. Tabo  ·  I. Maikano  ·  S. B. Traoré  ·  P. Cooper190

19.2.1.1
Ocean and SST Forcings

There is still controversy over how SST and coupled ocean-atmosphere phenomena
affect West Africa’s climate. ENSO is known to influence the global summer monsoon
system from China to West Africa through the Walker and Hadley circulations (Quan
et al. 2003), but teleconnections with West African rainfall are less clear cut than for
other regions of Africa (Nicholson and Kim 1997). More research on the modulating
role of Atlantic SST variability (Camberlin et al. 2001; Janicot and Harzallah 1998) could
help address the lack of consensus over ENSO’s influence, drawn from apparent con-
tradictory findings obtained over different timescales (Rowell 2001; Mason and
Goddard 2001). There is growing agreement that Sahelian drought is not associated
with a unique SST anomaly pattern, and that it results from the combined influences
of the global SST anomaly field and interconnected individual oceanic contribution
patterns (Folland et al. 1986; Giannini et al. 2003).

19.2.1.2
Synoptic Features

Similarly, current understanding of African convection remains deficient (CLIVAR
1999). African Easterly Waves (Cook 1999) provide a sound framework to explain the
formation of squall lines and mesoscale convective systems through convective feed-
back loops on meteorological medium-range timescales (Landsea et al. 1999). They
appear to be the key mechanism behind precipitation patterns during the core of the
rainy season (Gu and Adler 2004) where the number of individual events explains most
of rainfall variability (D’Amato and Lebel 1998; Le Barbé and Lebel 1997), but account
for only a proportion of seasonal rainfall on the ground (Taleb and Druyan 2003).
Further investigations are needed to understand processes that link synoptic events
to regional and global circulation (e.g. MJO, Matthews 2004), tropospheric jets
(Nicholson and Grist 2003), and land surface conditions (Fontaine and Philippon
2000).

19.2.1.3
Land Surface Forcings

It has long been suggested that degraded vegetation cover would result in decreased
evapotranspiration, reduced precipitation and eventually further degraded cover, ini-
tiating an albedo-precipitation feedback cycle (Charney 1975). The lagged response
of vegetation cover and soil moisture, which amplify low-frequency oceanic forcings
(Giannini et al. 2003; Ward 1998) and buffer out high-frequency ‘noise’ appear required
to closely simulate rainfall variations (Zeng et al. 1999). This conclusion should be no
surprise owing to the unrivalled tropical landmass of northern Africa, but the transi-
tion from research on land-atmosphere modeling (Goutorbe et al. 1997; Dolman et al.
1997), causative mechanisms of climate change (Long and Entekhabi 2000; Xue et al.
2004) onto the operational implementation of dynamics land surface schemes in cli-
mate models remains incomplete in spite of the rapidly growing array of remote sens-
ing observations.
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19.2.2
The Problem: A Notoriously Unpredictable Growing Season

19.2.2.1
From Rainfall Variability to Predictability: The Skill Issue

Meanwhile, regional climate prediction skill at various time scales remains modest
(IPCC 2001). Contrasting SRES ensemble simulations for seasonal rainfall over South-
ern Africa (forecasting a likely decrease) and the West African hinterland (poorly speci-
fied forecast) further suggest that variability and predictability do not necessarily go
hand in hand. Models’ knowledge base originally tuned to maximize performance over
the Pacific region on interannual timescales (CLIVAR 1999) and relying on a subset of
mostly oceanic and atmospheric predictors works satisfactorily when ENSO wields a
dominant control over regional climate (even when interannual variability is highest:
Southern Africa) but fails when the distribution of forcings is widespread (e.g. West
Africa). Sometimes simple statistical methods outperform dynamical models con-
strained by poor initialization of regional soil moisture and lack of dynamically pre-
scribed vegetation (Garric et al. 2002). Low local skill levels dominate in spite of an
understandable urge to demonstrate the value of seasonal forecasts through more at-
tractive scores at the aggregate level. For example, ‘high degrees of skill’ for the JAS
period (IRI 2005) should be carefully interpreted in terms of scale-compatible appli-
cations (such as large watershed management), because any space-time downscaling
will irremediably result in a loss of skill as suggested by Gong et al. (2003). The inabil-
ity of dynamic models to correctly reproduce the succession of sub-grid scale convec-
tive events severely limits their applicability in hydrology (Lebel et al. 2000) and even
more so in smallholder agriculture.

19.2.2.2
From Climate to Agriculture: Limited Predictand Relevance

The scale mismatch issue becomes more challenging indeed when agricultural appli-
cations are at stake. In Sudano-Sahelian West Africa, proper understanding of intra-
seasonal variability patterns is of critical importance because of the highly unstable
onset of the rainy season and the frequence of dry spells (Ati et al. 2002; Dodd and
Jolliffe 2001; Omotosho et al. 2000; Ward et al. 1999). The length of the growing pe-
riod (LGP) is mainly a function of the date of the first rains (Sivakumar 1988), which
is delayed with latitude and varies widely from year to year (Fig. 19.1a). This impor-
tant relationship basically results from the independence between the onset and end
dates of the rainy season (Fig. 19.1bc). The ability to predict seasonal rainfall is then
relatively less important, with the exception of the northernmost desert margins, where
LGP is ‘invariably’ very short and water availability – as opposed to water distribution
– becomes the central issue (Ingram et al. 2002). In that marginal agricultural envi-
ronment running from southern Mauritania to northern Burkina Faso, southern Niger
and central Chad, there might be scope for the application of selected seasonal fore-
casts (e.g. JAS rainfall), for which reasonable skill is observed with short lead times
(Neil Ward, IRI, New York, personal communication). However southwards across
Sahelian, Sudanian and northern Guinean agro-ecologies, the relationship between
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3-monthly rainfall, soil water regimes and plant growth patterns is less clear cut: the
relevance of seasonal products for agricultural applications therefore decreases.

19.2.2.3
Prospects for Temporal Downscaling: Disciplinary Divergences

Important ongoing work in the framework of the Multidisciplinary Analysis of the
African Monsoon project (AMMA 2005) indicates that any potential application of
downscaled seasonal forecasts will need to overcome a persistent dichotomy between
climatologists and agriculturalists when it comes to farm decision-making advisories.
The former advocate later sowing dates synchronous with an abrupt northward shift
of the ICTZ, which they connect to monsoon onset, as opposed to the pre-onset (Sul-

Fig. 19.1. a Duration of rainy season as a function of onset date in julian days for Sikasso (northern
Guinea zone, 11°21' N) and Mopti (Sahelian zone, 14°31' N); normal period: 1971–2000; b relationship
between onset and end dates for Sikasso; average end date is highlighted by continuous line with ±2 stand-
ard deviations (dashed lines); average end: 6 October, standard deviation: 12.0 days; average onset: 23 May,
standard deviation: 12.9 days; c relationship between onset and end dates for Mopti; average end date is
highlighted by continuous line with ±2 standard deviations (dashed lines); average end: 10 September,
standard deviation: 12.2 days; average onset: 15 July, standard deviation: 11.9 days
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tan and Janicot 2003). The latter insist that the risk linked to delayed sowing (N leach-
ing, lower radiation and temperatures, rainfall aggressivity on younger shoots, water-
logging, pest pressure and mostly competition from weeds) is considerably larger than
the risk, associated with farmer earlier planting strategies, of losing 2–3 kg ha–1 of seeds
(Vaksmann et al. 2005). Many of the biotic and abiotic stresses that impact final yield are
not taken into account by water balance models (Sultan et al. 2005) and could explain
these divergent views of what could be a safe ‘agronomic’ start to the cropping season.

19.2.3
What are the Options in the Face of Climate Variability?

19.2.3.1
Applicability of Response Farming

“Response farming springs from research on rainfall behavior and its predictability
in a ‘cropping systems design’ project in Kenya […]” (Stewart 1988). In and of itself,
this introductory sentence summarizes the tight association between climate forecast-
ing (rainfall predictability) and “opportunity cropping” tactics (ibid.) promoted by
response farming (RF). The fact that RF originated in a region characterized by a vul-
nerable population associated with a high rainfall variability and a fair level of ENSO-
based predictability (Kenya) is likely not a product of chance and has probably
contributed to a worldwide success story of pilot applications of seasonal climate fore-
casting in agriculture with Kenya (and notably the Machakos District) a popular bench-
mark area throughout the years (Rao and Okwach 2005; Hansen and Indeje 2004). In
any case, the potential usefulness of seasonal forecasting should be embedded in a
down-to-earth assessment of current practices and possibilities. In the Sudano-
Sahelian region, considering such options as shifting crop mixes and response farm-
ing tends to assume far-fetched levels of farmer flexibility in a socio-economic context
still marked by risk-adverse, conservative practices, and might thus be unrealistic
(Abou Berthé, personal communication). This is not to say that vulnerability deprives
farmers of responsiveness, rather that they will deliberately take the risk to respond
to those signals that are unequivocal, and likely ignore those which are uncertain. This
dichotomy was demonstrated in year 2000, when an unequivocal decrease in purchase
prices by the cotton parastatal prompted a nationwide farmer strike with widespread
changes in crop mixes in southern Mali. While illustrating clear independence from
political power by non-subsidized farmers (contrary to developed countries), this does
not imply that the same cotton farmers would be willing to risk their food security by
responding to a seasonal forecast which, constrastingly, is largely uncertain.

Traditional climate risk management practices by Sudano-Sahelian farmers include
direct sowing, low planting densities, distribution of early and late maturing types
throughout the landscape and spreading sowing dates (Ouattara et al. 1998). Potential
innovations include contour ridge tillage cultivation, cover plants and mulching, zaï.
Several of these have the potential to concurrently reduce climate risk and increase
productivity (De Rouw 2004) in a ‘conventional’ response farming framework, pro-
vided reliable climate information is available. A large component of farmers man-
agement strategies however resides out of the response farming realm as it relates to
specific adaptation traits engraved inside plant genetic resources.
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19.2.3.2
Legacy from the Field: Plant Traits Encapsulate Variability Management

Traditional handling of plant genetic resources condenses most aspects of adaptation
to climatic variability in subsistence agriculture and is known to contribute funda-
mentally to the development of sound production systems (WMO 2003). It is today
slated for intense, conflicting questioning at the nexus of agricultural intensification
processes, intervention policies and advances in biotechnology – before development
and growth of agricultural income allow for a wider spectrum of response farming
options. In continental West Africa, photoperiod (PP) sensitivity is required to best
fit crop cycle to the probable duration of the season and is one example of the critical
ingredients of environmental adaptation. It allows for grouped flowering at the end
of the rainy season for a wide range of planting dates (Traoré et al. 2000) and is present
in staple cereals (Mahalakshmi and Bidinger 1985) and other crops (Brink et al. 2000)
with some of the highest recorded sensitivity levels worldwide. It helps minimize grain
mold, insect and bird damage that affect early maturing varieties, and avoid incom-
plete grain filling, a problem for late maturing varieties faced with water shortage at
the end of season (Cochemé and Franquin 1967; Curtis 1968; Kassam and Andrews
1975). Tillering is yet another example of unique adaptation trait, controlling the par-
titioning of biomass across plant organs.

It is tempting to make a parallel between contrasting levels of climate predictabil-
ity and apparently marked differences in PP sensitivities observed between crops of
West Africa and Southern Africa. It could be hypothesized that higher predictability
of the length of growing period (LGP) in Southern Africa would favor the selection of
a number of fixed maturity groups, best suited to the expected duration of the crop-
ping season. Conversely, uncertainty associated with LGP in continental West Africa
would logically tend to eliminate PP-insensitive material. Further investigation will
show whether landrace PP sensitivity can be trusted as a good indicator of climate
unpredictability.

19.3
Forecasts for Smallholder Food Security: Which Way Forward?

19.3.1
Where Do We Stand Now?

A few exploratory studies have confirmed Sudano-Sahelian farmers’ expected inter-
est in climate forecasts, and the determinants of potential response strategies (Ingram
et al. 2002; Roncoli et al. 2004). Conclusions substantiate farmers’ understanding of
uncertainty, risk and opportunities associated with the use of predictions, but also
highlight the inadequacy of forecasts which (regardless of skill) do not fulfill their need
for estimates of season onset and end dates, time distribution and total amount of
rainfall (in decreasing order of priority). Interestingly enough, these studies do not
mention the widespread use of PP-sensitive cereals as one central, ingenious and so-
phisticated strategy to ensure food security even in the most erratic of seasons (Na-
tional Research Council 1996), and how that practice would interact (or interfere) with
the prospective use of seasonal forecasts. This contrasts with the increasing number
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of promising applications elsewhere, even though most successful cases are confined
to regions facing open oceans and displaying high predictability levels such as Aus-
tralia, Argentina, Florida, Kenya or Southern Africa (Hammer et al. 2001). The diffi-
cult challenges of seasonal predictability and agricultural resilience in Sudano-Sahelian
West Africa might also explain the local dominance of health-related applications in
the Africa Regional Program implemented by IRI and its partners.

19.3.2
Develop Dynamic Land Surface Schemes in Climate Models (Long-Term)

However distant from smallholders livelihoods (and agricultural research) this pri-
ority may appear, abundant literature points to the need to improve the representa-
tion of land forcing in climate models, if higher predictability of local and regional
climates is to be attained. The implementation of this consensual effort has possibly
been delayed by the lack of extensive satellite time series but is quickly picking up as
the climate science community now strongly acknowledges the role of ‘new and/or
better existing observational networks as the drivers of model improvement and thus
of improved climate anomaly predictions’ (Grassl 2005). Differing results by Wang et al.
(2004) and Crucifix et al. (2005) on the impact of vegetation dynamics on rainfall vari-
ability (‘memory’ or ‘after-burner’ effect) provide encouraging signs that significant
progress is underway, with important breakthroughs possible in the coming years.

19.3.3
Adapt Crop Models (Short-Term)

A more immediate prerequisite to the successful identification of profitable tactical
management decisions based on seasonal forecasts is that crop simulation models must
first be able to effectively reproduce the characteristics of local cropping systems
(Phillips et al. 1998). This presents difficult challenges for a range of models available
for use in West Africa, because of such peculiarities as surface crusting, low planting
densities and heterogenous canopies, etc. Critical advances were however made, e.g. in
the adaptation of PP response in the CERES-Sorghum and -Millet modules of the
DSSAT-Century cropping systems model. In its original form, a linear photothermal
response resulted in underestimates of crop cycle duration for late-maturing landraces
(Fig. 19.2a). A threshold-hyperbolic function was shown to simulate cycle duration
(Fig. 19.2b) for both PP-sensitive and PP-insensitive material (Folliard et al. 2004). This
work allowed to revisit the popular, but incorrect photothermal approach widely used in
modeling crop development (Robertson 1973). Other ongoing work seeks to improve
models poor ability to simulate yield components because of flaws in the timing of stem
elongation (occurring after panicle initiation in CERES) and the inadequate partition-
ing of assimilates resulting in inflated harvest indices for Sudano-Sahelian landraces.

19.3.4
Apply GIS and Crop Models to Target Breeding Strategies (Medium-Term)

A popular misconception argues that landrace rusticity traits related to development
(e.g. photoperiod sensitivity) and growth (e.g. tillering) are incompatible with pro-
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ductivity traits. This simply is not the case, and the preservation of stability is a cen-
tral paradigm in breeding for productivity (Dingkuhn et al. 2005). Photoperiod sen-
sitivity is positively correlated with productivity as it allows for longer vegetative
phases, increased production of biomass (Reyniers et al. 1998) and augmentation of
yield components such as seed number per panicle (Vaksmann et al. 1998). Major dwarf
genes can be mobilized to shorten stems and augment harvest indices in photoperiod
sensitive sorghum (Kouressy et al. 1998). Tillering is compatible with high yields
(Lafarge et al. 2002) and helps early stand development and rapid canopy closure to
limit weed invasion and soil erosion. Figure 19.3 illustrates the potential use of mod-
els and GIS to investigate genotype × environmental interactions in a spatially explicit
manner over the CILSS region of West Africa. Here, a large amount of learning from
indigenous knowledge, mechanistic crop modeling and sensitivity analyses is synthe-
sized to map varietal adaptation based on a phenological criterion which seeks to align
(as do farmers and plants) flowering dates on the end of rains – instead of relying on
the misleading average (‘normal’) length of growing season (LGP). Next steps for im-
proved targeting of breeding programs will involve higher level mapping to represent

Fig. 19.2. Days to anthesis com-
puted over a sample size of 146
from planting date experiments
conducted between 1992 and
2003 in six locations (Cinzana,
Koporo-Pen, Katibougou,
Samanko, Sikasso, Sotuba) cov-
ering a latitudinal gradient in
Mali. Participating sorghum
and millet varieties: CSM219,
CSM388, Jebana, M9D3,
Nazongala, Sanioba-03,
Sanioba-B, Surukuku, W33,
Wasulu. PP response;
a cumulative linear (CERES
original), R2 = 0.37, RMSE = 25.7;
b threshold hyperbolic
(Folliard et al. 2004), R2 = 0.88,
RMSE = 11.6
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Fig. 19.3. Varietal adaptation maps for cultivars CSM335 (a) and CSM63 (b) and for the 1971–2000 pe-
riod (continental CILSS countries). Here, adaptation is defined based on phenology, i.e. when the aver-
age flowering date occurs 20 (±10) days before end of season. End of season occurs when a moving 10-
day average of daily rainfall drops below the ETP line (~end of humid period, adapted from Cochemé
and Franquin 1967). The two planting periods, optimal (shortly after onset of humid period) and de-
layed, reflect the traditional spread of sowing dates. The adaptation strip for early-maturing, non-PP
sensitive CSM63 is thinner than that of late-maturing, PP-sensitive CSM335 on any given date. It rapidly
migrates southwards for delayed sowing, with relatively small latitudinal overlap for a 15-day delay, in
contrast to CSM335. CSM63 can be seen as a variety of large geographic adaptation if, and only if, there
is a shift in sowing dates. CSM335 demonstrates both large temporal adaptation (small latitudinal shift,
large overlap) and large geographic coverage. PP-insensitive germplasm (like CSM63) is more likely to
benefit from improved climate forecasts, but PP-sensitive cultivars could remain very competitive
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the larger spectrum of abiotic, biotic, and socio-economic constraints to varietal
adaptation.

19.3.5
Revisit Early Crop Yield Assessment Techniques (Medium-Term)

The suggestion to incorporate rusticity traits in breeding strategies as a way to tem-
porarily or durably ‘hard-code’ variability management should not be seen as a pessimis-
tic attempt to downplay potential tactical uses of seasonal forecasts in Sudano-Sahelian
agriculture or (even worse!) underrate the critical importance of agroclimatic risk
analyses. Rather, we believe that before forecasting skill and smallholder endowment
improve, there is room for a parallel and renewed effort in the agrometeorological early
estimation of crop production. A much larger array of data sources (from climate
models and remote sensing), finer understanding of crop growth and development
(from process-based models) and stochastic data assimilation (DA) techniques now
allow a more operational ‘invigoration’ of probabilistic agroclimatology by looking at
‘weather within climate’ (Hansen et al. 2005) in the context of facilitating investment
in rainfed agriculture (Cooper et al. 2005). Predictability at intermediate intra-seasonal
(~20–60 day) timescales has been somehow neglected in favor of more fashionable
seasonal products, but holds promise in the short term as it will benefit from enhanced
representation of continental forcings (Céron 2004) and ongoing projects such as
AMMA (2005). Experimental hybrid monthly forecasts are routinely published by
ECMWF since October 2004 with the objective to bridge the gap between extended
weather and seasonal timescales, a priority focus area from a climate science perspec-
tive (Grassl 2005). Figure 19.4 proposes a schematic procedure to improve final model
yield estimates using such in-season rainfall forecasts and bi-weekly satellite biomass
observations (from ASTER) in a sequential DA framework. Sequential DA is
computationally more efficient than variational DA recently tested for crop yield esti-
mation (Guérif and Duke 2000; Bach and Mauser 2003). It can accommodate a wider
range of uncertainty as Monte Carlo ensemble generation allows for any statistical form
of time/space correlation in error structure (Crow and Wood 2003), and can propa-
gate the full probabilistic climate information into yield estimates along with mea-
surement and model uncertainties (Jones et al. 2006). It is better suited for near-real
time applications oriented towards the prediction of future system states that is key
to early warning systems.

19.4
Conclusions

In 2003 we started a START-funded project entitled ‘Bytes for Bites: Translating Climate
Forecasts into Enhanced Food Security for the Sahel’ carried by a sense of ‘environ-
mental urgency’ (Raynaut et al. 1997). Little did we realize then that Sudano-Sahelian
farmers (and their crops) still are, in many ways, experts in resilience (Batterbury and
Warren 2001; National Research Council 1996) and that our early assumption of hu-
man vulnerability could be challenged by generations of trusted kinship networks
(Roncoli et al. 2001) and sophisticated practices including the selective management
of plant genetic resources.
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A thorough review of current knowledge on regional climate revealed that in
Sudano-Sahelian West Africa, climate predictability remains limited and very likely
constrains the beneficial use of current forecasts in the region. This problematic set-
ting combines with a context of low endowment of smallscale farmers and still defi-
cient information systems to hamper decision capacity at multiple scales by reducing
the array of options available to take advantage of developing seasonal forecasting
opportunities.

With this, the successful application of seasonal forecasts in Sudano-Sahelian small-
holder agriculture appears today premature, contrasting with several other regions
of Africa and the world, some even close (Adiku and Stone 1995) with more immedi-
ate potential.

This will change over the next decade, as progress on the implementation of retro-
active land-atmosphere interactions in dynamic climate models yields tolerable un-
certainty levels for uptake by Sudano-Sahelian farmers, and production systems

Fig. 19.4. Schematic representation of a data assimilation procedure to improve final model yield esti-
mates using in-season rainfall forecasts and satellite biomass observations. At T = 0, a crop model
(mechanistic or empirical) is initialized with an ensemble of equally likely conditions (using a Monte
Carlo technique). The model is then propagated forward in time with each realization of the ensemble.
When estimates of system states (e.g. biomass), model parameters (crop type, sowing date, …) or bound-
ary conditions (cumulative rainfall) become available an Ensemble Kalman Filter (EnKF) updates these
and the measures of uncertainty thereof. EnKF has improved early estimates of system states in physi-
cal oceanography, meteorology, air pollution monitoring, hydrological streamflow forecasting, petro-
leum engineering, fish stock assessment, and more recently carbon sequestration studies (Jones et al.
2006)
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intensify under growing population pressure, increase in sedentary agriculture and
fallow reduction. Meanwhile, a range of preparatory activities can be pursued with ben-
efits in the shorter term: the ongoing adaptation of crop models to simulate local crops
and farming systems (Folliard et al. 2004), their coupling with GIS technologies to
target regional breeding programs (Soumaré et al. 2005), and a ‘rejuvenation’ of early
agrometeorological crop yield assessment techniques using the latest stochastic data
assimilation approaches within the rapidly expanding spectrum of data sources
(Traoré 2005). The latter offers timely prospects for the use of within-season, inter-
mediate timescale forecasts in operational early warning systems and, possibly, selec-
tive response farming by Sudano-Sahelian smallholders. In a few years, progress
achieved on these fronts will combine with improved predictability of climate vari-
ability trends to investigate agricultural impacts of global and regional change, and
specifically the sustainability of existing and alternate patterns of adaptation
(Sivakumar et al. 2005).
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Chapter 20

Can ENSO Help in Agricultural Decision-Making in Ghana?

S. G. K. Adiku  ·  F. D. Mawunya  ·  J. W. Jones  ·  M. Yangyouru

20.1
Introduction

Rainfall variability has become a major agricultural issue in sub-Saharan Africa, es-
pecially since crop production is mainly rainfed. Irrigation technologies are expen-
sive and their implementation is slow. Many researchers now believe that some
understanding of the causes of rainfall variability would lead to measures that could
be used to investigate reduction in total rainfall and/or drought effects.

There is now ample evidence that rainfall in many parts of Africa can be linked to
global circulation phenomenon. Ogallo (1988) has shown that rainfall in Kenya is in-
fluenced by the Southern Oscillation Index (SOI). West African rainfall especially in
Sahel has been known to be linked to sea surface temperature (SST) in the Pacific
(Hulme et al. 1992). To be useful for agricultural decision-making, four conditions must
be met: (1) sufficient correlations must exist between global circulation phenomena
and local rainfall (2) evidence that indeed crop yields differ for the different ENSO
phases (3) forecast period must have sufficient lead time before the cropping season
commences and (4) ability to translate forecasts into management decisions (e.g. crop
choice, planting date, fertilizer application, etc.).

Out of the four issues, it is only in case (1) that there is evidence of research progress
in Ghana. Opoku-Ankomah and Cordrey (1994) showed a significant correlation be-
tween simultaneous Atlantic SSTs and rainfall in many parts of Ghana. With the view
of forecasting seasonal rainfall, Adiku and Stone (1995), in another study, investigated
the relationship between the SOI phase established in April and seasonal rainfall (April
to July) and obtained a significant correlation for some sites located along the south-
ern coasts of Ghana. However, April-based SOI does not provide sufficient lead time
for effective agricultural planning.

Research efforts must now be directed towards establishing relationships between
Global Circulation Indices and seasonal rainfall in Ghana having appreciable lead time
of at least three months. Some studies by Adiku (2003) seem to suggest that the Octo-
ber-November-December (OND) SSTs in the Niño 3 Pacific region popularly referred
to as ENSO may offer a possibility for seasonal rainfall forecasting in southern Ghana
with an appreciable lead time.

In this study, we explore further this relationship with a view to identify zones where
the forecast skills are significant. We also aim at demonstrating, using coupled
climate/crop modeling, that the OND ENSO phase affects the yields of peanut and
maize at some localities. Finally, we propose a working scheme to operationalize ENSO
for agricultural planning.
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20.2
Materials and Methods

20.2.1
Sites

Nine sites (Axim, Accra, Ada, Akatsi, Akuse, Kpandu, Kumasi, Yendi and Wa) in differ-
ent climatic zones of Ghana were selected. The first five sites lie near the southern
coastline of Ghana. Kpandu lies in the savanna-forest transition, Kumasi lies in the
semi-decidous tropical rain forest located in the middle belt of Ghana. Yendi and
Wa lie within the interior savanna in northern Ghana. Except for Yendi and Wa where
rainfall is unimodal (May to October), all the other sites experience bimodal rainfall
with the major season from April to July and the minor season from September to
November.

20.2.2
Data Sources and Analysis

Daily rainfall records for the various sites were obtained from the Meteorological Ser-
vices Department, Accra, Ghana while the OND SSTs (1960 to 2000) were downloaded
from the International Research Institute for Climate Prediction website. The rainfall
years were sorted into three ENSO phases namely El Niño, La Niña and neutral years
according to Japan Meteorological Agency (JMA). Rainfall records for seven out of the
nine sites namely: Axim, Accra, Ada, Akuse, Kumasi, Yendi and Wa covered the period
1961 to 1990. This period involved eight La Niña and El Niño events each and fourteen
neutral events; Kpandu (1964 to 1990) also involved eight La Niña and El Niño events
each and eleven neutral years while Akatsi (1976 to 2000 excluding 1991) involved five
La Niña, seven El Niño and twelve neutral events.

For each site the seasonal rainfall for each year was sorted according to the ENSO
phase. For sites within the south of Ghana, only the major season was considered. Using
Box and Whisker plots (not shown) the median rainfall was determined for each ENSO
phase. Thereafter, the seasonal rainfall at each site was correlated with the OND Niño 3
SST anomalies.

20.2.2.1
Simulation of Peanut and Maize Yields

The CROPGRO-Peanut and DSSAT-Maize models (Boote et al. 1998) were used to simu-
late the long-term yields of peanut and maize at Akatsi. The peanut model was previ-
ously calibrated and validated for the coastal savanna zones by Adiku et al. (2001). The
maize model was validated in 2003 using data from an ongoing study on maize-based
cropping system at Kpeve located in the southeastern ecological zone of Ghana. Soil
input data for the crop models were obtained for Akatsi from previous studies at Akatsi
(Adiku et al. 2001). Weather input data were obtained from the Meteorological Ser-
vices Department, Accra as noted above. As the data did not include solar radiation,
sunshine hours were converted to solar radiation according to the Angstrom formula
(FAO 1998):
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where: Rs = solar or shortwave radiation (MJ m–2 d–1); n = actual duration of sunshine
(hours); N = maximum possible duration of sunshine or daylight hours (hours);
n/N = relative sunshine duration; Ra = extraterrestrial radiation (MJ m–2 d–1); as,
bs = Angstrom values; as + bs = fraction of extraterrestrial radiation reaching the earth
on clear days.

The values of as and bs were set at 0.25 and 0.50 respectively according to FAO (1988).
The yields of peanut and maize were simulated for each of the 24 years at Akatsi
(1976–2000) using three planting dates (PD): Julian day 73 (i.e. 14 March, as early plant-
ing date), 97 (i.e. 7 April, as intermediate planting date) and 120 (i.e. 30 April, as late
planting date). At the beginning of each simulation, moisture content of the top 30 cm
of the soil profile was set to field capacity. The planting density for peanut was set at
13 plants m–2 and that for maize was 6 plants m–2. These conform to the densities com-
monly found in farmers’ fields. For maize, nitrogen application was varied between
0 kg N ha–1 (control), 60 kg N ha–1 (recommended rate) and 120 kg N ha–1 (high ap-
plication rate).

The simulated peanut and maize yields were sorted according to ENSO phases,
ranked from smallest to the largest and the cumulative relative frequencies determined.
Probability or cumulative distribution functions (CDFs) were constructed for each
planting date for the various ENSO phases. Preference for a given planting date was
based on the stochastic dominance concept (Anderson et al. 1977). From a pair-wise
comparison of the CDFs of any two cropping strategies, the strategy whose CDF lies
to the right is considered preferred (more is preferred to less). Maize yield increases
with respect to increased applied nitrogen formed the basis for the choice of nitrogen
fertilizer rate.

20.3
Results and Discussion

20.3.1
Rainfall Analyses

Table 20.1 shows the median rainfall for all sites according to ENSO phases as well as
the correlation coefficients between rainfall and OND SST anomalies in the Niño 3
Pacific region. Out of the six sites located in the southern part of Ghana, ENSO-sea-
sonal rainfall correlation was highly significant at two sites namely Axim and Akatsi
and significant at Kpandu. At Axim there is as much as 500 mm difference between
La Niña and El Niño events, 183.8 mm at Akatsi and 102.0 mm at Kpandu. The corre-
lation coefficients at the other two southern sites of Accra and Akuse did not show a
significant correlation but the La Niña-El Niño rainfall differences of 169.3 mm and
182.4 mm respectively were higher than the 102.0 mm observed for Kpandu where there
was a significant correlation. This might be suggestive of an appreciable ENSO influ-
ence at most of the sites in the south of Ghana. ENSO influence appears weak in the
middle belt of Ghana as shown by the data for Kumasi. The correlation coefficient of
r = –0.32 was not significant and the observed La Niña-El Niño rainfall difference of
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75 mm was smaller than that for the other sites. Out of the two northern Ghana sites,
a highly significant correlation was observed for Yendi but not significant at Wa in
spite of a fairly high La Niña-El Niño seasonal rainfall difference of 102.6 mm.

20.3.1.1
ENSO Effect on Simulated Peanut Yield

The results of peanut yield simulation for Akatsi are shown in Fig. 20.1. The CDFs for
the planting dates were not clearly separated from each other. However, the interme-
diate planting date (PD2) resulted in the highest median yields for Kpedevi under all
ENSO phases. At the same planting date however, median Kpedevi yields varied ac-
cording to ENSO scenarios. Median yields of about 1 300, 1 650 and 1 700 kg ha–1 were
observed for El Niño, normal (or neutral) and La Niña conditions respectively
(Fig. 20.1a–c). This trend is similar to that of rainfall noted earlier for Akatsi. In the
case of Goronga, the CDFs for the planting dates again were not clearly separated par-
ticularly under El Niño conditions. However, PD1 resulted in the highest median yield
of about 1 600 kg ha–1 for the El Niño phase. PD1 again produced the maximum yield
of about 2 500 kg ha–1 under La Niña conditions while the best yield of 2 600 kg ha–1

was obtained at PD2 for the neutral phase (Fig. 20.1d–f). As for Kpedevi, given the same
planting date, Goronga yields varied with ENSO phase. At PD1 for example, 1 600, 2 500
and 2 400 kg ha–1 yields were observed for El Niño, La Niña and neutral events respec-
tively. El Niño median yield was at least 800 kg ha–1 less than those of La Niña and
neutral phases.

Table 20.1. Median seasonal rainfall (mm) and their OND SST anomaly correlation coefficients
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Seasonal rainfall for El Niño phase was observed to be appreciably lower than those
for La Niña and neutral phases. The La Niña-El Niño rainfall difference was 182.4 mm
and that for neutral-El Niño was 164.3 mm. This vast difference in moisture availabil-
ity accounted for the appreciable yield reduction during El Niño seasons. La Niña and
neutral phases had high (and fairly close) seasonal rainfalls with the La Niña-neutral
rainfall difference being only 18.1 mm hence the similarity in yields.

Fig. 20.1. Cumulative distribution functions of simulated peanut yields at Akatsi under varying plant-
ing dates and ENSO conditions; a 7 El Niño years; b 5 La Niña years; c 12 normal years; d 7 El Niño years;
e 5 La Niña years; f 12 normal years
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20.3.1.2
Simulated Maize Yields

ENSO effect on simulated maize yields at Akatsi under varying planting dates and
nitrogen fertilizer application rates is shown in Table 20.2. As noted for peanut, maxi-
mum mean maize yields (in boldface) occurred at varying planting dates for the vari-
ous treatments. Also, at any given planting date and fertilizer rate, yields varied
according to the ENSO phases. Fertilizer application generally resulted in increased
output under all ENSO phases and at all planting dates. However, in all cases, increas-
ing applied nitrogen rate from 0 to 60 kg N ha–1 resulted in higher percent yield in-
creases than for 60 to 120 kg N ha–1. For example at PD1, a yield increase of 305.6%
resulted from 0 to 60 kg N ha–1 increment compared with only 3.2% for 60 to
120 kg N ha–1 under El Niño conditions. For La Niña, the yield increase was 384.9%
compared with 22.1%, and for neutral 367.7% compared with 23.4%. Thus for fertil-
ized maize production at Akatsi, early planting with a nitrogen fertilizer rate of
60 kg N ha–1 gave the most profitable yield returns for all ENSO phases. Without fer-
tilizer application, late planting showed best yield for El Niño years, early planting for
La Niña and intermediate planting date for neutral seasons.

20.4
General Discussion

The lingering question is how to use ENSO phenomenon in agricultural planning in
Ghana. As indicated earlier, one challenge is to establish that significant correlation
exists between the ENSO phase and rainfall. Our limited analysis shows that indeed a
significant correlation of seasonal rainfall with the pre-season ENSO phase with at
least a 3-month lead time could be attained at some sites, but not all. How then do we
improve the correlation skills? Given that Ghana’s rainfall is also influenced by the At-
lantic SSTs (Opoku-Ankomah and Cordrey 1994), further research may attempt to
combine Atlantic and Pacific SSTs in seasonal rainfall forecast in Ghana. Using crop
simulation modeling, we have also shown that indeed, peanut and maize yields at Akatsi
can be clearly partitioned between the ENSO phases. Further, cropping strategies could
be designed to exploit the forecast information. For example, early planting supported
by modest fertilizer input would lead to significant higher yields in maize than any
other strategy (Table 20.2). Without fertilizer input, however, late planting gave the best
yields for El Niño. The final issue of concern is how to communicate ENSO informa-
tion to end users (Extension Officers and farmers). This may require surveys of farm-
ers’ understanding of weather issues, weather schools, stakeholder meetings and actual
field experiments to demonstrate the validity of ENSO-based cropping strategies. This
aspect remains unexplored and research focus should be extended to such areas.

20.5
Conclusions

This study has investigated the effect of ENSO on seasonal rainfall amounts at nine
farming sites in Ghana. Out of six sites in the south, there was a strong ENSO influ-
ence on seasonal rainfall at three sites namely Axim, Akatsi and Kpandu. In the middle
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belt, ENSO influence was weak as observed for Kumasi. Seasonal rainfall at one out of
the two northern sites (Yendi) showed strong ENSO dependence while at Wa, ENSO
influence was not significant.

Simulation of peanut and maize under varying ENSO phases and planting dates
showed that the intermediate planting date was best for Kpedevi irrespective of the
ENSO phase. Under El Niño and La Niña early planting date was best for Goronga while
the intermediate planting date was the preferred date under neutral conditions. The
study suggests that ENSO-based seasonal forecast could be beneficial to agricultural
planning at the farming zones considered.
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Chapter 21

Application of Seasonal Climate Forecasts to Predict
Regional Scale Crop Yields in South Africa

T. G. Lumsden  ·  R. E. Schulze

21.1
Introduction

South Africa experiences a high interannual variability of rainfall which, in a region
with abundant solar radiation, is the main determinant of year-to-year variations in
crop yields. The coefficient of variation of annual rainfall ranges from less than 20%
to about 40% across the country’s arable area (Schulze 1997). As a result maize, which
is the country’s staple food, exhibits a coefficient of variation in annual yields rang-
ing from less than 15% to over 60% (Schulze 2003). The variability in crop production
has implications for food security in the country, particularly at household level
amongst resource-poor farmers, whose livelihoods are heavily dependent on agri-
culture.

Seasonal climate forecasts are available for South Africa, the main source of opera-
tional forecasts being the South African Weather Service (SAWS). Although seasonal
climate forecasts are being applied ever-increasingly in agriculture to aid in climate
sensitive decision-making, efforts to do so are confined mainly to commercial agri-
culture. These efforts are to be encouraged and supported, since commercial agricul-
ture is an important economic activity in the country and is the key to national and
regional food security (du Toit et al. 1999). However, relatively little research is con-
ducted to support the application of climate forecasts in decision-making in the small-
scale/subsistence agriculture sector, where farmers are particularly vulnerable to the
vagaries of climate.

The usefulness of climate forecasts for applications in agriculture can be enhanced
if the forecasts are translated into agricultural outlooks, where the information is tar-
geted for decision-making. Translation of climate forecasts into agricultural outlooks
can be facilitated through the generation of crop yield forecasts using crop simula-
tion models. This approach has the benefit of accounting for factors which affect crop
growth that would not be represented in climate forecasts alone, such as antecedent
soil moisture conditions and crop management practices.

Given the context described above, a desktop research project (Lumsden and Schulze
2004) was undertaken with the following objectives: (1) to research methodologies
required to produce crop yield forecasts for small-scale/subsistence agriculture in
South Africa, (2) to evaluate the quality (accuracy) of crop yield forecasts produced
using the above methodologies, (3) to assess the potential to apply the crop yield fore-
casts to improve crop management decisions, (4) to make recommendations for fur-
ther development of the products of the research and, using insights gained in the
project, to make broader recommendations on future research and operational needs.
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In this chapter the methodology developed to produce crop yield forecasts will be
presented. The results shown will focus on the assessment of the potential to improve
crop management decisions, given a crop yield forecast. Key recommendations ema-
nating from the project will be discussed.

21.2
Study Area and Methodology

21.2.1
Crop Yield Model
Maize, being the country’s staple food, was selected as the crop for which yield fore-
casts would be produced. The CERES-Maize (v3) growth simulation model (Tsuji et al.
1994) was used to simulate maize yield as it is well suited to account for the influence
of crop management practices on yields.

21.2.2
Study Area

Maize yield forecasts were developed across various climatic regions of South Africa,
where these regions were represented by selected Quaternary Catchments (QC). A QC
is the smallest (fourth level) catchment subdivision used in general water resources
planning in South Africa, and may be considered to be a relatively homogeneous natu-
ral response unit. The QCs, which generally range in area from 100 to 600 km2, also
represent a convenient scale for generating crop yield forecasts, as associated data-
bases of climate and soil information to facilitate the production of the forecasts, are
available at this scale. Fifteen QCs were selected for consideration in the study, these
catchments being in poverty stricken former “homeland” regions where small-scale/
subsistence farming is practiced and where household food security is lacking. The
location of the QCs within South Africa is shown in Fig. 21.1.

The QCs represent a range in rainfall regimes and allow the yield forecasting meth-
odology to be tested under a variety of conditions. Mean annual precipitation in the
catchments varies from 330 mm to 910 mm, with the wetter areas being in the east and
the drier areas in the west. The 15 selected catchments fall within the summer rainfall
region of the country in areas where it is climatically feasible to grow maize (Schulze
2003).

21.2.3
Climate Forecasts and Downscaling

Several sources of operational climate forecasts, disseminated by both local and in-
ternational institutions, were considered for use in this study. As a number of historical
seasons were to be used in developing and testing the yield forecasting methodology,
an archive of previously disseminated forecasts was required. The suitability of the
forecasts was assessed in terms of several potentially limiting factors, these being, the
lead time (seasonal), the number of historical seasons archived and the availability of
corresponding observed daily data for use in forecast downscaling and verification.



215CHAPTER 21  ·  Seasonal Climate Forecasts to Predict Regional Scale Crop Yields in South Africa

The most suitable set of seasonal climate forecasts found was that produced by
Landman and Klopper (1998) for the 1981/1982 to 1995/1996 seasons. These forecasts
of seasonal rainfall were produced in an exercise to validate the statistical rainfall model
used by SAWS in its operational forecasts. This model was developed using canonical
correlation analysis, a regression-based technique considered to be at the top of the
regression modeling hierarchy (Barnett and Preisendorfer 1987). The predictand in
the model is December to March (summer) rainfall and the predictors are sea surface
temperature anomalies from the global oceans between 45° N and 45° S for each of the
four preceding three-month seasons (Landman and Klopper 1998). For large parts of
the country, the December to March period forms a major portion of the annual rain-
fall (Tyson 1986; Schulze 1997). The rainfall model has not changed significantly since
the study of Landman and Klopper (1998), apart from ongoing refinements. However,
the format in which the forecasts are presented has changed from deterministic (single
possible outcome) to probabilistic (three possible outcomes) format. Although the use
of probabilistic forecasts is now generally encouraged in applications research (because
it conveys associated risk), it was considered appropriate to use the deterministic fore-
casts published in Landman and Klopper (1998), as a relatively large number of sea-
sons (15) were represented. For only three of these seasons (1993/1994 to 1995/1996),
corresponding observed daily rainfall data were not readily available for use in this
study. The rainfall forecasts were categorical in that rainfall was forecast to be either
below normal, near normal or above normal. The rainfall forecasts were made for six
regions of relatively homogenous (summer) rainfall distribution, these regions cov-
ering most of the country. The regions were originally defined by Mason (1998) and
then updated by Landman and Klopper (1998). The observed categorical rainfall for
each region and forecast period was determined by Landman and Klopper (1998).

Fig. 21.1. Quaternary catchments selected for the generation of maize yield forecasts
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The rainfall forecasts required both spatial and temporal downscaling in order to
develop rainfall inputs to the CERES-Maize model. In the spatial domain, the rainfall
forecasts needed to be downscaled from relatively large rainfall regions to QC scale,
while in the temporal domain, they required downscaling from categorical rainfall for
four month periods to daily rainfall values. Different methods of downscaling the rain-
fall forecasts were considered. The analogue season downscaling technique was se-
lected as it is a relatively simple and robust technique in which the authors had previous
experience in applying (Hallowes et al. 1999; Lumsden et al. 1999). The data/informa-
tion required to apply this technique were available, whereas this was not the case for
some other methods (e.g. applying a stochastic rainfall generator). The procedure
adopted for downscaling rainfall forecasts (for the 1981/1982 to 1992/1993 seasons) was
as follows: The categorical rainfall forecasts for a particular rainfall region were as-
sumed to apply to each of the catchments falling within that region, i.e. an above nor-
mal forecast for the rainfall region implied an above normal forecast for each of the
catchments in that region. The seasonal (December to March) forecasts for a catch-
ment were then downscaled to daily values of rainfall by selecting all historical sea-
sons in that catchment’s rainfall record that represented the forecast concerned, i.e. if
the forecast for a season was for above-normal rainfall, then all historical seasons ex-
periencing above-normal rainfall were selected to represent the rainfall record for that
season. For each catchment, a single rainfall station having a rainfall record represen-
tative of the catchment, had previously been selected. Above normal, near normal and
below normal classes of rainfall corresponded to the upper, middle and lower terciles,
respectively, of the long-term probability distribution of seasonal (December to March)
rainfall. For each catchment, thirty seasons (1950/1951 to 1979/1980) of observed rain-
fall were extracted from the QC climate database to serve as analogues to represent
the above normal, near normal and below normal rainfall terciles. Data were extracted
for this period as it allowed for an equal number of seasons to represent each tercile,
i.e. ten seasons per tercile. Only seasons prior to the first season forecasted (1981/1982)
were considered for use as analogue seasons. When preparing CERES-Maize climate
input files to represent a seasonal forecast, ten individual climate files were created,
each of these corresponding to a different analogue season. This implied that there
were multiple yield outcomes for a season, which could then be considered a forecast
yield distribution.

21.2.4
Crop Yield Simulations Performed

Nine different crop management strategies were represented in the crop yield simu-
lations performed. These strategies consisted of all combinations of 3 different plant-
ing dates and 3 different plant populations. The choice of planting date and plant
population for a season are important management decisions that can be altered rela-
tively easily in response to a seasonal climate forecast to potentially improve yields
for that season. The plant populations considered were categorized as either low
(15 000 plants ha–1), medium (25 000 plants ha–1) or high (35 000 plants ha–1), and were
applied to all catchments. The planting dates considered for the various catchments
were categorized as either early, average or late. The average planting date for a catch-
ment was set to be equivalent to the long-term climatically optimum planting date for
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that catchment, as determined by Schulze (2003). The respective early and late plant-
ing dates for the catchment were then set to be one month before and one month after
the average date. The early, average and late planting dates for the various catchments
are shown in Fig. 21.2.

The potential for crop yield forecasts to improve crop management decisions was
assessed over the 1981/1982 to 1992/1993 seasons by comparing: (1) the yield that would
have been obtained if crop management strategies were selected according to yield
forecasts, i.e. the yield of the forecast selected strategy, versus (2) the yield that would
have been obtained if management strategies were selected according to long-term
yield performance, i.e. the yield of the long-term strategy. It was assumed that in the
absence of a yield forecast, a farmer would have selected his crop management strat-
egy based on the long-term yield performance of the different strategies. In a particular
catchment, the long-term strategy was the same for each of the 12 seasons considered,
while the forecast selected strategy varied for the different seasons. The forecast se-
lected and long-term strategies were compared on a seasonal basis, with the yields
being simulated by CERES-Maize using the observed daily rainfall record for the sea-
son concerned. If the forecast selected strategy outperformed the long-term strategy,
then it is assumed the farmer would have benefited from crop yield forecasts, provided
he/she heeded them.

Before the above comparisons could be made, the forecast selected and long-term
strategies had to be identified for each season. Yield forecasts were produced using
the appropriate analogue rainfall season records identified previously during the
downscaling of the SAWS rainfall forecasts. To identify the forecast selected strategy
for a season, the medians of the forecast yield distributions of the 9 crop management
strategies simulated were compared, and the highest yielding strategy identified. Simi-

Fig. 21.2. Planting dates used in maize yield simulations
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larly, to identify the long-term strategy, the medians of the long-term yield distribu-
tions (derived from historical yield simulations for the 1950/1951 to 1979/1980 seasons)
of the 9 strategies, were compared, and the highest yielding strategy identified.

21.2.5
Crop Model Inputs

The date of generating yield forecasts was set to be one month prior to planting. This
was assumed to be the minimum lead time required to be able to alter management
decisions in response to a forecast, and is possibly also a convenient lead time for re-
gional scale planning. As the rainfall forecasts used in maize yield forecasting were
valid for the period from December to March (inclusive), there were periods before
and after this period for which rainfall data were required in order to simulate yields
in the various QCs, but for which no observed rainfall data would have been available
at the time of making a forecast (in an operational context). It was thus necessary to
consider ways of filling these periods with representative rainfall data. While 3-month
categorical forecasts were produced by Landman for September to November and
November to January, these forecasts were shown to have low accuracy and were not
available for all seasons required (Hallowes 2002). It was thus decided that the ana-
logue seasons used to represent the December to March period would also be assumed
to be representative of the entire growing season, and for the one month period prior
to planting.

Daily inputs for the other climate variables required by the CERES-Maize model,
namely maximum temperature, minimum temperature and solar radiation were de-
rived from monthly mean data (Schulze 1997) translated into daily values by a Fourier
Analysis. Daily observations of these variables were not readily available at QC level.

As chemical fertilizers are generally too expensive for small-scale/subsistence farm-
ers, the application of manure as a substitute was used in the crop yield simulations.
A manure application rate of 4 000 kg ha–1 and a nitrogen content of 1.13% were as-
sumed for all crop management strategies, based on information in van Averbeke and
Yoganathan (1997). The 9 management strategies were represented as individual treat-
ments in the “Experimental Details” input file utilized by CERES-Maize. A medium
season-length dryland maize cultivar, PAN 6479, was used in all maize yield simula-
tions as it is recommended for planting throughout the summer maize growing re-
gions of the country (Pannar 2006). The model simulations were started on 1 June of
each season, with observed climate data being used up to the date of forecast to ini-
tialize the soil water and nutrient balances.

As the focus of this study was on adapting crop management practices to seasonal
climate variability for different climatic regions in the country, it was decided that a
single common soil type would be assumed for all the catchments. This ensured that
the analysis of simulation results was not obscured by the influence of different soil
types, but was focussed on the interaction between climate and management. A me-
dium textured sandy loam soil with a depth of 0.6 m was assumed for all catchments.
A shallow soil depth was selected as this was deemed typical of small-scale/subsis-
tence agriculture in South Africa.
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21.3
Results

The frequency with which forecast selected strategies outperformed long-term strat-
egies, and vice versa, over the 1981/1982 to 1992/1993 seasons is presented in Fig. 21.3
for each catchment. The frequency with which the two selected strategies performed
equally well, is also shown. The provinces in which the catchments are located are
shown at the top of the figure to indicate geographic locality.

The frequency with which forecast selected strategies performed better than long-
term strategies ranged from 0 to 75% across the different catchments. The outcome
whereby forecast selected strategies performed better than long-term strategies was
the most frequently occurring outcome in three catchments, these being located in
KwaZulu-Natal province. In contrast, the outcome whereby long-term strategies per-
formed better than forecast selected strategies was the most frequently occurring
outcome in two catchments in Mpumalanga province. In the remaining 10 catchments,
the outcome whereby forecast selected and long-term strategies performed equally
well, was the most frequently occurring outcome or, alternatively, was equal in pro-
portion to the outcome of long-term strategies performing better.

Figure 21.3 indicates the frequency with which a certain strategy performs better
than another, but does not give any indication of the extent to which its yields are
higher. This was assessed in Fig. 21.4 for cases where the forecast selected strategies
yielded more than the long-term strategies. The maximum, mean and minimum dif-
ferences in yield between the two strategies, over the 12 seasons of simulation, are plot-
ted in the graph for the relevant catchments. The mean differences in yield are also
shown in brackets as a percentage, with the relevant number of data points indicated

Fig. 21.3. Frequency with which different crop management strategies performed better over the
1981/1982 to 1992/1993 seasons
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below. The provinces in which the catchments are located are again shown at the top
of the figure. Figure 21.4 shows that the mean differences in yield for the catchments
in KwaZulu-Natal (where forecast selected strategies performed better than long-term
strategies most frequently) ranged from 28 to 505%. The mean yield difference for
catchment W22J, when expressed as a percentage (505%), is inflated as a result of two
seasons of crop failure when applying the long-term crop management strategy in this
catchment. Nevertheless, the mean yield difference, when expressed in kg ha–1 (670),
has the same order of magnitude as the other KwaZulu-Natal catchments, and the fore-
cast selected crop management strategy can be concluded to have performed appre-
ciably better than the long-term strategy in this province. The yield differences in the
other provinces are also appreciable, although it should be borne in mind that there
were considerably fewer occurrences of the forecast selected management strategy
outperforming the long-term strategy (cf. Fig. 21.3).

21.4
Discussion and Recommendations

The usefulness of the crop yield forecasts, as defined by their potential to improve crop
management decisions, varied across the catchments assessed, with the greatest fore-
cast usefulness being detected in KwaZulu-Natal province. The gains in yield derived
from applying yield forecasts in this province were also shown to be appreciable.

Ideally, climate forecasts should be available for the entire growing season when
generating crop yield forecasts. In this study, rainfall forecasts were only available for
the December to March period, while many of the crops simulated were growing out-
side of this period, thus requiring assumptions to be made about the rainfall in these
periods. The yield forecasting methodology needs to incorporate current climate fore-

Fig. 21.4. Differences in yields obtained from forecast selected and long-term strategies (cases where
forecast selected strategies yield more than long-term strategies) over the 1981/1982 to 1992/1993 seasons
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cast formats (terciles with associated probabilities), and the usefulness of the result-
ing yield forecasts needs to be assessed. If there are an insufficient number of forecast
seasons for this analysis, as was the case in this study, an historical set of climate fore-
casts could be generated retrospectively. The incorporation of general circulation
model (GCM) derived climate forecasts in the yield forecasting methodology also needs
to be assessed, as these are becoming more readily available for South Africa. GCM
derived climate forecasts may have advantages over forecasts derived from statistical
climate models. For example, the finer spatial and temporal scale of modeling in GCMs
produces information in a format more suited to application in crop yield models.

Crop forecasts were only produced for maize in the current study. Forecasts could
be produced for other crops, which would then allow for crop selection to be included
in crop management recommendations. Crop management strategies giving rise to
the highest maize yield were selected in the study. In practice, a small-scale/subsis-
tence farmer’s objective may not be to maximize yield, but rather to minimize risk. To
minimize risk, a farmer could avoid adopting strategies that give rise to a wide range
in yields under different seasonal climate conditions, thus minimizing the impact of
a forecast being wrong. Farmers apply a variety of management practices to spread
the risk of a particular strategy failing. As confidence in the forecasts grows, forecast
selected strategies could be applied more extensively.

In practice, many factors influence a farmer’s crop management decisions. It is rec-
ommended that the application of crop yield forecast information in crop manage-
ment decisions be assessed in more detailed case studies where these factors can be
taken into account. Field data would need to be collected to ensure that the crop model
inputs, including the representation of crop management strategies, is realistic. Ob-
served data would also be needed to verify forecast accuracy and usefulness. Greater
collaboration with stakeholders would be required to facilitate these case studies. A
research project has been proposed involving a number of organizations and individu-
als, where case studies will be implemented at identified sites in various provinces.

Lumsden and Schulze (2004) reviewed forecast information needs and forecast
application constraints in South Africa. These needs include improved forecast quality,
more extensive forecast verification, more relevant forecasts to users, forecast dissemi-
nation improvements and capacity building. Apart from these deficiencies in the avail-
able forecast information, farmers may also be constrained in their ability to respond to
forecasts owing to a lack of resources such as draft power, healthy labor in HIV/AIDS af-
fected communities, credit, water, land, fertilizers and favorable markets. The impact of
these constraints on forecast application could be better understood in the case studies
planned above. Efforts to improve the resources available to farmers need continued at-
tention.

Based on the findings of the Lumsden and Schulze (2004) study, which included a
review to determine what forecast information is currently available for South Africa,
three potential applications of crop yield forecasts to small-scale/subsistence agricul-
ture were identified for further research and implementation in the country. These
applications, which have varying scales and functions, are outlined in Table 21.1.

An example of regional planning where crop yield forecasts might be applied is the
coordination of aid to farmers. For regional planning, magisterial districts were sug-
gested in Table 21.1 as an alternative to QCs as the scale at which forecasts could be
produced. Although QCs are a convenient scale at which to produce forecasts because
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of the associated agroclimatic databases available, this scale of forecasting may not be
convenient for users. A single typical soil profile and a generic crop management strat-
egy would be used as the influence of different soils and management strategies are
of less importance for this application. According to Vogel (2000), the application of
forecast information in regional planning may be the most feasible application of fore-
casts if the constraints faced by farmers in altering their crop management strategies
in response to a forecast, are found to be too great. The production and dissemination
of crop yield forecasts for regional planning is believed to be the most achievable of
the forecast applications identified in Table 21.1.

For the forecast application targeted at regional crop management recommenda-
tions, magisterial districts were again suggested as an alternative to QCs as the scale
at which forecasts could be produced, for the same reasons discussed above. A matrix
of soil types, soil depths and crop management strategies would be represented in these
forecasts in an attempt to represent the range of conditions occurring in the region.
The regional crop management strategies would be focussed on management prac-
tices less subject to local effects, for example, planting dates and crop type selection.
The crop yield forecasts produced in the current study would fit into this category of
forecast applications. The Directorate of Agricultural Risk Management in the National
Department of Agriculture (NDA-ARM) periodically disseminates regional agricul-
tural advisories to farmers via extension services. At present the advisories include
simple crop management recommendations based on climate forecasts and reports
on current conditions from field workers. Crop yield forecasts like those produced in
this study could be used as an additional source of quantitative information in for-
mulating these advisories (Archer, personal communication in 2003; Walker, personal
communication in 2003; Lumsden and Schulze 2004).

For the forecast application targeted at local crop management recommendations,
agricultural extension centers/offices are suggested as possible sites for forecasting
because the relevant extension officers would be familiar with the conditions prevail-
ing at these centers. Alternatively, representative farms in the extension districts could
be identified for yield forecasting, as farmers might find it easier to relate the condi-

Table 21.1. Potential applications of crop yield forecasts to small-scale/subsistence agriculture identi-
fied for further research and implementation in South Africa (Lumsden and Schulze 2004)
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tions on these farms to their own farms. The actual soil type and depth would be rep-
resented in the forecasts, as would crop management practices that are specific to the
area. At this scale of application it might be possible to begin tailoring the recom-
mended management responses to suit the typical livelihoods of households found in
the area. The detailed case studies proposed previously would fit into this category of
forecast application. While recommendations at this scale would be more applicable
to farmers, a greater degree of downscaling of the climate forecast information would
be required, which may limit the usefulness of the resulting yield forecasts. If the case
studies prove successful, the sites studied could become demonstration sites showing
the value of applying forecast information in decision-making. The widespread pro-
duction of crop yield forecasts at this scale would be a longer term goal because of the
research and resources required.
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Chapter 22

Climate Information for Food Security:
Responding to User’s Climate Information Needs

M. Waiswa  ·  P. Mulamba  ·  P. Isabirye

22.1
Introduction

Ensuring household food security in a rainfed agricultural livelihood requires avail-
ability of climate information regarding onset of seasonal rains allowing for timely
preparation for planting. Due to increased irregularity of the onset, amount and length
of seasonal rains, the prediction of onset of seasonal rains at sufficient lead times is
increasingly becoming a very critical issue for farmers. Currently climate scientists
are able to use sea surface temperatures as scientific indicators, to forecast rainfall
amounts of above normal, normal and below normal averaged over a period of three
months. Whereas this type of information is important, the primary climate informa-
tion need of the farmers is knowing in advance the expected onset of seasonal rains.
As a coping mechanism, farmers attempt to use their traditional indicators, particu-
larly local winds and temperatures, to forecast this important climate element. How-
ever, identification, validation and improvement of these indicators had not been done.
As a synergy to the farmers practice, records of winds, temperature and rainfall from
the existing synoptic weather stations can be used to study these relationships on sci-
entific basis. Although analysis of pentad rainfall totals of records from some of the
existing weather stations have been done indicating onset of seasonal rains on aver-
age basis, practically these seasonal rains set in at different periods of each year. Cur-
rently there is no availability of models to predict the different periods when the rains
can set in.

Therefore this study identifies details of how farmers traditionally use local tem-
peratures and winds to forecast onset of first rains; validate the indigenous rainfall
indicators for onset of first rains; and develop statistical models for forecasting of first
rains. Identification of usage was achieved through conducting individual and group
surveys of farmers in eastern (Tororo), Lake Victoria basin (Jinja), central (Wakiso)
and western (Masindi) Uganda. Validation of indigenous rainfall indicators is based
on the climate data from synoptic weather stations in the four regions. Model devel-
opment was achieved by statistical linear regression of validated temperature and wind
indicators with rainfall onset dates formatted in pentads.

22.2
Methodology

The research study needed two types of data. The first was the indigenous meteoro-
logical knowledge of farmers. In order to capture these data, a field survey was con-
ducted using a questionnaire that interviewers used to ask farmers about their
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knowledge related to local meteorological issues. The second type of data consisted
of historical meteorological data acquired from the weather stations within the sur-
vey areas.

22.2.1
Survey Sites

The geographical coordinates of the sites (Table 22.1) indicate that all the survey ar-
eas are located north of the equator, Masindi being the farthest from the equator
(Fig. 22.1).

22.2.2
Field Surveys

Field surveys where conducted in Masindi, Wakiso, Jinja and Tororo districts. The
choice of districts was mainly due to the presence of operational weather stations with
long-term historical data namely Masindi, Namulonge, Jinja and Tororo respectively.
Secondly the surrounding farming communities had some fair indigenous meteoro-
logical knowledge. An area collaborator working in the field of agriculture and resid-
ing in the districts was identified for each district. These collaborators had the role in
assisting the research team in identifying research assistants and farmers to partici-
pate in the survey.

The research team developed a questionnaire as a survey instrument. The ques-
tionnaire was pre-tested in Jinja district after which corrections were made for the
survey. A workshop of two days was conducted in Jinja for the research assistants who
were identified to participate in the research study. The workshop was intended to
enrich the research assistants with basic knowledge on both scientific and farmers’
meteorological knowledge as well as reviewing the questionnaire.

The field surveys were conducted during the dry season months of January and
February 2003. About 60 farmers in Masindi and Wakiso districts were interviewed.
In Jinja and Tororo Districts 90 and 80 farmers, respectively were interviewed. The
area collaborator for each place identified the participants with preference to elderly
ones. Each survey took three days, and the interview was conducted in local languages.
While interviewing the research assistant translated the questions in English into the
local language. The responses in the local language where then translated to English.
This was achieved through selecting research assistants who either worked or resided
in the survey areas.

After the field surveys the answers in the questionnaires were computerized. Data
entry operators were contracted to enter the data using Microsoft Excel software, fol-
lowing a designed format. The data were then coded for statistical analysis using the
SPSS software. In order to harmonize the local words used in the survey areas with
what was recorded in English, the survey areas where revisited to get further explana-
tions from farmers. After the analysis hypothesis were derived from the findings re-
lated to how farmers use local atmospheric indicators to forecast the onset of the 1st wet
seasonal rains.
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22.2.3
Weather Station Data

In order to test the statistical validity of the knowledge and experience of how farm-
ers use atmospheric indicators to forecast rains, records of local atmospheric condi-
tions were needed. In this study data collected at the weather stations Masindi,
Namulonge, Jinja, and Tororo belonging to the Uganda Department of Meteorology
were used.

Daily weather data on precipitation, temperatures and winds were observed by
meteorological observers at each of the stations and recorded on paper forms. The
records are then sent to the headquarters of the meteorology department in Kampala
where they are stored in the archive. In some stations a copy of the records is usually
kept at the weather station.

Table 22.1. Geographical posi-
tion of the survey sites

Fig. 22.1. Survey district sites
are shown on the map of
Uganda
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The meteorological data set considered for this study included the period 1960 to
2003. Although some rainfall data were available in electronic medium, the majority
of the data needed data entry, especially temperatures and winds. Daily temperatures,
winds and rainfall data were entered using Excel spreadsheet software. Analysis of the
computerized data revealed many gaps especially during the years 1975 to 1989. This
was basically due to the number of civil wars which Uganda has gone through during
those years. In light of the above problem, there was no continuous data set from 1960
to 2000.

Although the standard data set recommended for statistical analysis is 30 years
(1960–2000), in this study a minimum of 10 years of recent continuous data set was
considered. Therefore specific criteria were set as to how the limited data could be used
for analysis. First the data set for analysis and development of a model should be for
recent years from 1989 to 2003, since this should fairly reflect the recent climate. Due
to the nonstationarity of meteorological observations, Nicholls (1984) highlights the
need to use recent data to derive forecast equations. Secondly in order to get signifi-
cant relationships, high cut off values of correlation of r = ±0.63 (P < 0.05) and r = ±0.76
(P < 0.01) were set as shown in Table 22.2.

Using excel software, the daily rainfall data for each station was smoothed using
Pascal’s 5-point coefficient weights. Based on the criteria in Table 22.3, the INSTAT
software was used to determine the different historical onset dates for the first rains.
The daily maximum temperatures for each station were smoothed using a 5-point
coefficient weights. The smoothed data were then processed into 5-day average tem-

Table 22.2. Significant correla-
tions values

Table 22.3. Criteria for deter-
mining the date onset of rains
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perature values. The arrays of onset dates were then correlated with the arrays of
maximum and minimum temperature average values. Since the objective of the study
was to identify within which period of the dry season is the maximum temperatures
related to onset dates, the correlations were run from the dry period of November up
to February. Once periods of maximum temperature significantly related to rainy sea-
son onset were identified, regression analysis was performed to develop predictive
models for each site.

22.3
Results

The findings in this study were outlined district per district, first reporting on the
survey findings followed by statistical analysis.

22.3.1
Characteristics of Survey Areas

Local expertise on indigenous knowledge may be influenced by a person’s livelihood,
gender, age and education. As regards to gender, in each of the sites, more men than
women participated in the survey (Table 22.4). The percentage of men ranged from
73% in Namulonge to 81% in Tororo. The women ranged from 19% in Tororo to 27%
in Namulonge.

Elderly people are assumed to be the custodians of indigenous knowledge and hence
a majority of elderly people were included in the survey. The percentage of respon-
dents over 40 years of age ranged from 55% in Jinja to 89% in Namulonge (Table 22.4).

22.3.2
Crop and Livestock Production Systems

Table 22.5 reveals that cereal crops were the main crops grown in each of the survey,
sites. Masindi, Wakiso and Jinja have perennial crops like coffee. Most of the crops like
maize, cassava, beans, bananas, and millet double as both cash and food crops. Rains
influence cereal crops, which implies that both household food supply and income are
affected by the performance of the seasonal rains. The rankings were done with re-
spect to major crop in the region.

Table 22.4. Percentage of gender representation and age range of respondents
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22.3.3
Rainfall Seasons in the Survey Areas

In general the rainfall patterns experienced in all four of the sites is bimodal
i.e. they experience two rainfall seasons and two dry seasons. Figure 22.2 indicates
the average monthly rainfall for each site. The light gray color indicates months
with rainfall amount below 100 mm. The dark gray color indicates months with
rainfall amounts above 100 mm, which is considered as wet months. On average,
the first rains stretch in March to May and the second rains from September to
November. Basalirwa et al. (1993) findings reveals the sites Masindi and Tororo have
different climate zones while Jinja and Wakiso are the same climate zones. As such
at each site there are differences in terms of onset dates, rainfall amounts and
duration. For example Fig. 22.2 reveals that Masindi has shorter duration of the
first rains compared to the rest of the sites and Tororo has more seasonal rainfall
amounts.

22.3.4
Production Problems

From the major production problems at the four study sites (Table 22.6), it can be seen
that climate risks rank as one of the five major problems faced at all the four sites. At
Tororo, climate issues rank as the number one production problem while at the rest of
the three sites, climate issues follow pests and diseases.

Table 22.5. Main cash crops and food crops for each site
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Fig. 22.2. Average monthly rainfall (mm) at; a Masindi; b Namulonge; c Jinja; d Tororo
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The major climate issues affecting the farmers include droughts, floods and hail-
storms, erratic rains and delayed onset of rains. These affect the farming activities like
harvesting, planting, grazing, plowing, weeding, watering, etc.

22.3.5
Indigenous Rainfall Indicators

Farmers have developed different approaches in responding problems related to rain-
fall.

22.3.5.1
Determining the Right Planting Time

The main criteria farmers in these regions use to determine the right time for plant-
ing their crops are rainfall onset followed by the calendar months (Table 22.7). At the
onset of the rains, the farmers, wait for at least 2–3 showers then they consider plant-
ing their seeds. However the onset of rains should be within the expected months for
planting. For example for this region, the showers should begin, in the months of late
February or early March.

Other criteria include winds blowing westwards, rising temperatures and develop-
ment of cloud cover.

22.3.5.2
Major Rainfall Indicators Farmers Use to Forecast Onset of First Rains

The main five rainfall indicators farmers use to forecast rains are winds, temperatures,
clouds, birds and trees (see Table 22.8). The winds, temperatures and clouds are com-
mon atmospheric elements observed by both meteorologists and farmers. However
unlike the farmers who keep the records in their minds, the meteorologists observe
and keep the records on different mediums like paper and computer, which can felici-
tate follow up analysis.

Table 22.6. Major production problems at each site
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Table 22.7. Farmers indicators of right planting time in different regions

Table 22.8. Major rainfall indicators used by farmers to forecast onset of first rains



M. Waiswa  ·  P. Mulamba  ·  P. Isabirye234

Although, farmers have a range of local indicators, there are specific indicators that
are regarded as more reliable than others. Table 22.9 reveals that the most reliable in-
dicators are temperatures, winds, clouds and birds.

22.3.5.3
Forecasts of Rains by Farmers

Table 22.10 reveals that the majority of farmers find it easier to forecast the first rains
than the 2nd seasonal rains. This is contrary to meteorologists who find it easier to
forecast 2nd rains than 1st rains.

The ability of farmers being able to forecast 1st rains could provide scientific clues
to meteorologists to forecast the rains better.

Table 22.9. Reliable indicators
used by farmers to forecast
onset of rains

Table 22.10. Percentage of
farmers forecasting the first
and second seasonal rains
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22.3.5.4
Local Wind Systems

Farmers have a range of names they give to the winds they observe in their region.
The names are based on direction of the winds, place of origin and speed. For example
in Wakiso the wind locally known as Walusi, blows southwards from a hill called Walusi.
Another type of wind in Wakiso is Kikunguta associated with a high speed of wind.
This indicates that farmers are observant of subtle details of wind dynamic and may
relate to their use as rainfall indicators

22.3.5.5
Time of Appearance of Wind Indicators

Most often the winds used for rainfall forecasts exhibit themselves in the month of
February followed by March (Table 22.11). At times the winds appear in December and
January. This means that these indicators can be used to forecast onset of first rains
using mainly February winds and sometimes as early as December and January winds.

22.3.5.6
Operational Use of the Winds

The operational use of the wind indicators is based mainly on the change of wind di-
rection. During dry season the wind blow in a particular direction and as the season
is about to begin, the wind direction changes. Results show that directionality noted
by respondents could be almost any combination. The direction and speed of winds
are important features farmers use to forecast seasonal rains. During the January–March
dry season, the winds usually blow strongly westwards. As the seasonal rains are ap-
proaching, the winds change direction, and blow eastwards. Winds blowing eastwards
are heavily linked with the onset of seasonal rains. The above farmers’ observations
are consistent with findings by Camberlin and Wairoto (1997) and Okoola (1999). As
such observing the time of the year when the winds change direction from blowing
westwards to eastwards of the region could be used to forecast ahead of time when
seasonal rains may start.

In addition to winds, farmers experience different temperature conditions in their place.
These conditions have their local names as shown in the Appendix (Tables A22.1–A22.4).
The names of the local temperature conditions are associated with the humidity, time

Table 22.11. Percentage occur-
rence of winds
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of temperature increase and decrease. As shown in Table 22.12 below, the majority of
farmers use the increase in temperatures during a dry season as signals for early on-
set of first rains. In Masindi, there is a clear indication that increase in temperature
indicates early onset while a temperature decrease indicates late onset of first rains.
The same indication is reflected in Wakiso, Jinja and Tororo sites. However apart from
Masindi, which associates a clear decrease in temperatures with late onset, at the rest
of the sites no such association was seen.

The occurrence of these temperature conditions is mainly in the month of Febru-
ary followed by March (Table 22.13). This suggests that the temperature conditions in
February could be used to forecast onset of first rains. Though the farmers use Febru-
ary temperatures to forecast first rains a week ahead, there is potential for application
of this predictor in the month of January.

22.3.5.7
Lead Time at which Farmers Make Forecasts of Onset of First Rains

The survey indicated a wide range of lead-times at which farmers can forecast onset
of first rains. Table 22.14 shows that the majority of farmers in Masindi, Wakiso and
Tororo can forecast rains 1–2 weeks ahead. However at Jinja, the majority of farmers
can forecast rains 3–4 weeks ahead.

Table 22.12. Percentage of farmers who use different temperature conditions to forecast onset of first rains

Table 22.13. Monthly occur-
rence of temperature condi-
tions described by farmers

Table 22.14. Percentage lead-
time at which farmers forecast
onset of first rains
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22.3.5.8
Current Use and Accuracy of the Rainfall Indicators

Even though there is a range of rainfall indicators, the majority of farmers use mainly
1–2 indicators. A few of them can use up to three rainfall indicators (Table 22.15)

Although the farmers use these indicators, they also experience conflicting results.
As indicated in Table 22.16, between 25–56% of the farmers experience conflicting re-
sults from the forecasts made using the rainfall indicators.

The farmers’ experience of conflicts in their forecasts could be an opportunity to
build confidence in scientific rainfall forecasts since they also face the same problem.

22.3.5.9
Farmers‘ Needs for Meteorological Information

Although meteorologists have made considerable advances in producing climate forecasts,
these products mainly provide information on rainfall levels for the season. This prod-
uct is important to the farmers, however according to Table 22.17, knowing when the rains
will start is the most important climate information needed by the farmers (end users).

The climate information needs of farmers should guide the approaches meteorolo-
gist should take to serve farmers better. At the moment the service clearly follows a
top-down approach yet the recently recommended approach in rural development is
bottom-up. In a bottom-up approach the end users are involved and are asked to spell
out their information needs. It is also the current notion in rural development that to
serve the rural people better, improvements are needed on what they know and do.
Table 22.17 clearly indicates that among the sample population, farmer’s primary con-
cern is to know when to plant. Interestingly, they also want assistance in forecasting
rainfall, which the meteorological services are well positioned to do.

Table 22.15. Percentage
number of rainfall indicators
used by farmers at a time

Table 22.16. Percentage of
farmers experiencing conflict-
ing results in forecasting rains
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22.4
Summary Findings for Wakiso Survey

The findings confirm that the first important climate information needed by the farm-
ers is when the seasonal rains will start. For this purpose, farmers look for local atmo-
spheric conditions such as temperatures and winds. With reference to this, two
hypotheses were derived as described below:

� The direction and speed of winds provide signals as to when the wet season is likely
to start.

� The increase in local temperatures during the dry season signals when the wet sea-
son is likely to start.

While the hypotheses above are based on farmer’s knowledge, their validity can be
statistically validated and improved, using the very methods of scientific climate fore-
casting. However statistical validation requires records of weather observation made
objectively. As such based on the technology used at most weather station, analysis
of wind direction and force, observations had a high subjective element in reading
using the Beaufort scale. However temperatures are read from thermometers, hence
these readings are very objective. Therefore statistical validation was based on tem-
peratures.

22.5
Statistical Validation of Farmers’ Knowledge

22.5.1
Onset Dates of 1st Wet Season

Analysis of onset dates for the 1st seasonal rains for each site, indicate that the aver-
age onset dates are 70, 64, 63, and 57 for Masindi, Namulonge, Jinja and Tororo respec-
tively. However the rains may set in as early as mid month of February (Julian day 45)
and as late as end of month of March (Table 22.18).

One of the hypotheses derived from the farmers’ knowledge is, that increase of tem-
peratures during a dry season signals the onset of first rains approximately within a

Table 22.17. Services de-
manded by farmers from mete-
orologists
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week’s time. As such maximum temperatures during a dry season are related to the
timing of onset of seasonal rains.

Figure 22.3 reveals the positive rise of the maximum temperatures for Masindi,
Wakiso, Jinja and Tororo from the month of November to a higher value by end of
February when the rains usually start. This confirms with the farmers experience of
observing increase in temperatures as a signal to when the rains are about to start.

The relationship between the maximum temperatures and onset of rainfall can be
used to develop models to forecast when the seasonal rains could start. This requires
identifying the significant periods during the dry season when the relationship is
strong.

22.5.2
Correlation of Rainfall Onset Dates with Maximum Temperatures

There is a statistical variation between the relationship of dry season maximum tem-
peratures and onset dates. There are periods when the relationship is significantly
strong and periods when the relationships are weak. To show the persistence of the
relationship between the two variances for each times series (1991–2000, 1992–2001,
1993–2002 and 1994–2003) the different times series have been included in the graphs.

Figure 22.4a reveals that for Masindi the relationship between the maximum tem-
peratures for months December up to February is positive with onset date of first rains.
The pattern of the relationship is the same for all the three series. The strong positive

Table 22.18. Average onset
dates for the first seasonal rains

Fig. 22.3. Time series of 5-day average maximum temperatures for all sites based on data from 1989–
2000 (December–January)
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Fig. 22.4. Correlation values between maximum temperatures and rainfall onset dates for; a Masindi;
b Namulonge; c Jinja; d Tororo
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correlation is between the Julian days 354 and 360. The strongest correlation is r = +0.93
on day 356.

As for Namulonge the relationship during the month of November is negative, which
gradually changes to a positive relationship by late February (Fig. 22.4b). A signifi-
cant relationship is shown during the days 306 to 322 with particular highly strong
negative relationship for Julian days 316–320.

Though the farmers can use the February temperatures to forecast the rains, an-
other opportunity exists during the month of November. The strong relationship dur-
ing this month suggests that the maximum temperatures for the month can be used
to forecast the onset of 1st wet rains three months ahead.

In the case of Jinja, the relationship is generally negative during the months of
December, which gradually changes to positive one by the end of February (Fig. 22.4c).

The onset dates based on a rain day threshold of 2.45 mm, show a relationship with
maximum temperatures during the months of November to February. However
during the month of November the relationship is negative, which gradually changes
to a positive relationship by late February. A significant relationship is shown during
the days 306 to 322 with particular highly strong negative relationship for Julian
days 316–320.

At Tororo, the onset dates based on a rain day threshold of 2.45 mm, show a rela-
tionship with maximum temperatures during the months of November to February.
The relationship is generally positive during the months of November and February
(Fig. 22.4d). Significant relationship is shown during the 1st week of January with par-
ticular highly strong positive relationship for Julian day 5.

Though the farmers can use the February temperatures to forecast the rains, an-
other opportunity exists at the beginning of the month of January. The strong rela-
tionship during this month suggests that the maximum temperatures for the month
can be used to forecast the onset of 1st wet rains ahead of two months.

22.6
Regression Models Derived from the Relationships

22.6.1
Masindi District

Based on the rain day threshold of 2.45 mm, there is highly strong relationship
(r = +0.93) between 5-day average maximum temperatures centered on Julian day 356
and onset dates for the first rains (Table 22.19).

A linear equation from this relationship was derived as 356y = 16.297x – 393.673
(Fig. 22.5a) Using the 5-day average maximum temperatures centered on Julian day 356,
the above equation could be used to forecast the onset date of the first rains 2 months
ahead.

22.6.2
Wakiso District

The relationship of average maximum temperatures and onset dates based on rain day
threshold of 2.45 mm is highly strong centered on Julian day 319. The correlation value
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Table 22.19. Details of regression models derived for different survey sites
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of the relationship is r = –0.91 (Table 22.19). From this relationship, a forecasting model
was derived as shown in Fig. 22.5b.

The linear equation derived from the graph in Fig. 22.5b is 319y = –0.425x + 353.115.
The predicted onset date based on 5-day average maximum temperatures was cen-

tered on Julian day 319. Using this forecasting model, the start date of the first rains
can be forecasted 3 months ahead.

22.6.3
Jinja District

Based on the rain day threshold of 4.95 mm, there is highly strong relationship
(r = +0.75) between 5-day average maximum temperatures centered on Julian day 307
and first rains onset dates (Table 22.19).

Fig. 22.5. Linear forecasting models for; a Masindi; b Namulonge; c Jinja; d Tororo (temperature data
in °C)
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A linear equation from the relationship above was derived 307y = 12.149x – 274.021
(Fig. 22.5c). Using the 5-day average maximum temperatures centered on Julian day 307,
the above equation could be used to forecast the onset date of the first rains ahead of
3 months.

22.6.4
Tororo District

The relationship of average maximum temperatures and onset dates based on rain day
threshold of 2.45 mm is highly strong centered on Julian day 7. The correlation value
of the relationship is r = +0.72 (Table 22.19). From this relationship, a forecasting model
was derived as shown in Fig. 22.5d.

The linear equation derived from the graph in Fig. 22.5d is 7y = 3.889x – 62.967.
While 7y represents a predicted on set date based on 5-day average maximum tem-
peratures centered on Julian day 7. Using this forecasting model, the start date of the
first rains can be forecasted months ahead.

22.7
Discussion

The above results indicate common linkages between indigenous and scientific knowl-
edge systems on climate observation. In either knowledge systems, there is practice
of observing the atmospheric environment for the purpose of forecasting weather and
climatic events. The practice of farmers suggests a strong need for climate forecasts
to solve their agricultural production problems. Such findings are in line with studies
by Roncoli et al. (2001) and Onyewotu (2000).

22.7.1
Weather and Climate Knowledge Systems

Although there are common linkages in both the climate knowledge systems, there
are also noted differences among them. These differences are centered on the range
and interval of observations, documentation, and forecasting methods. While the farm-
ers have a holistic observation of the local environment indicators they observe, the
meteorologists have selective but larger geographic observations. For example among
the range of environmental indicators farmers observe, the scientists observe only
temperatures, winds, clouds and precipitation. Meteorologists also have a set time in-
terval to make the observations. The documentation system is another point of con-
cern. Though the farmers observe a wide range of environment indicators, their
observations are mainly recorded in their memory. However scientists keep historical
records of the observations for deeper study. The results revealed that farmers are able
to forecast the first rains easier than the second wet season. This is an interesting is-
sue because scientists forecast the second rains easier than the first rains. The differ-
ences highlighted above indicate the opportunities meteorologists can use to develop
better forecasts.



245CHAPTER 22  ·  Climate Information for Food Security: Responding to User’s Climate Information Needs

22.7.2
Outputs from Knowledge-Sharing

The common and different practices of observing environmental indicators by both
farmers and meteorologists, for the purpose of forecasting seasonal rains form a good
platform to produce needed climate information for end users. Through this study the
farmers’ indigenous climate practices, knowledge gaps, and farmers priority climate
information needs are revealed. The scientific reasons for the ability of farmers to fore-
cast the first rains better than the second rains need investigation. However sugges-
tions may include the following. Farmers regard the first rains as the major rainfall
season, when they produce most crops. As such there is always a lot of agriculture plan-
ning and production expectations. Secondly the dry season following the first rains is
pronounced and longer than the dry season following the second rains. Therefore
during the pronounced and longer dry season, rainfall indicators become well estab-
lished for the farmers to easily relate them with seasonal rains. Steady winds in Uganda
(Jameson 1970) are experienced at the height of the dry season in February. Thirdly,
the variability of the first rains may be less than the second rains enabling farmers to
master its developments. The influence of climate change to differences in degree of
variability of both wet seasons could also be investigated.

Meteorologists forecast the second rains in Uganda easier than the first rains prob-
ably due to the following. The statistical models used by meteorologists are produced
from global climate circulatory system, which are more pronounced during the sec-
ond part of the year. Additionally the models are developed to detect extremes from
the normal conditions. Therefore the forecasting models are more efficient to fore-
cast the second rains, which are more variable than the first rains.

22.7.3
Farmers’ Use of Local Forecasts

Although a basic seasonal rainfall forecast should indicate the onset time, rainfall
amount and duration of the expected season, results from this study indicate that the
majority of farmers use the environment indicators to forecast onset while the me-
teorologist basically forecast rainfall amount. Harmonizing the two climate forecasts
could provide a better climate information package for the farmers. Interestingly,
whereas the farmers can forecast the onset of first rains wet season with a lag period,
additional results indicate that the majority of them wait for the rains to actually start
to determine the right planting time. They wait for the rains to continue for at least
2–3 days. Others wait to experience the rains in the traditional planting calendar
months of March. There could be various reasons for this scenario of which may include
the following. First the lag period between when the farmers can use the indicators to
forecast the onset of the rains and when the rains actually do happen is very short.
For example use of increasing ambient night temperatures as signal that seasonal rains
are about to start gives a short period. The correlation graphs of maximum tempera-
tures and onset dates confirm this with strong relationships at the end of February
when the season usually begins. Secondly although the farmers can forecast the onset
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of the rains, during the dry season the land is dry and hard to cultivate. So farmers
wait for the rains to wet the soils to plough and plant. The third reason could be that
although they can forecast the rains, but due to the increasing irregularity of seasonal
rains, and climate change they may not be confident with their forecasts. Hence they
wait for the rains to start then they plant.

22.8
Conclusions

The above study reveals, the common practices that farmers and meteorologist use in
observing atmospheric conditions in pursuit of forecasting seasonal rains for crop
production. There are differences in the way both farmers and meteorologists observe
and develop climate scenarios that each group can forecast. The farmer’s practice of
forecasting rains using their rainfall indicators highlights the importance of climate
forecasts to them to ensure food security. The challenges farmers experience in pro-
ducing and using climate forecasts is a development activity which is very critical to
be addressed by the meteorologists. Through studying the indigenous climate knowl-
edge systems, meteorologists can identify the priority climate information needed by
farmers. Considering the farmer’s priority climate information needs, and interest in
improving their own local forecasts, a new paradigm of work from meteorologists is
needed (Engel 1997) learning to incorporate the multiple rationalities of stakehold-
ers, rather than promoting linear, exclusive and one-dimensional ways of thinking.

Donnelly (1998) points out that recent developments focus on capacity and insti-
tutional building. Since farmers use there indigenous knowledge at the local level as
the basis for decisions pertaining to food security, understanding the farmers prac-
tice in forecasting seasonal rains may help meteorologists improve their services to
the end users. As such building on indigenous knowledge (Gorjestani 2000) can be
particularly effective in helping to reach the poor since indigenous knowledge is of-
ten the only asset they control, and certainly one with which they are very familiar.
The development of forecasting models from this study confirms with the extension
approach of helping farmers based on what they have and know.
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Improving Applications in Agriculture of
ENSO-Based Seasonal Rainfall Forecasts
Considering Atlantic Ocean Surface Temperatures
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23.1
Introduction

Climate uncertainties, derived from annual climatic variability, often lead to conser-
vative crop management strategies that sacrifice some productivity to reduce the risk
of losses in bad years. The availability of ENSO-based climate forecasts has led many
to believe that such forecasts may benefit decision-making in agriculture. The fore-
casting capability may allow the mitigation of negative effects of ENSO-related cli-
mate variability as well as taking advantage of favorable conditions (Stern and
Easterling 1999).

Benefits of using ENSO-based climate forecasts have been demonstrated in South
America. Changing crop mix (Messina et al. 1999) or crop management options were
proposed as adaptive measures to cope with climatic variability (Magrin et al. 2000;
Jones et al. 2000). However, the large inconsistency of the precipitation signal within
ENSO phases led to considerable overlap in yields and net returns for the various ENSO
phases (Ferreira et al. 2001), decreasing the potential usefulness of the forecasts
(Magrin and Travasso 2001; Podestá et al. 2002).

But ENSO is not the unique source of climatic variability in southeastern South
America. Evidence of the influence of South Atlantic Ocean (SAO) on precipitation
was presented for Uruguay and south Brazil by Díaz et al. (1998). Barros et al. (2000)
signaled the influence of the South Atlantic Convergence Zone (SACZ) on midsum-
mer interannual variability of the low-level circulation and precipitation in subtropi-
cal South America. Recently Berri and Bertossa (2004) reported that the Atlantic Ocean
influences seasonal precipitation over the northwestern and southeastern parts of
southern central South America.

Furthermore, in previous works significant relationships were found between SAO
SST anomalies and crop yields or precipitation anomalies in the Pampas region of
Argentina. In comparison to ENSO or SSTs from the Pacific, SAO SSTs presented a
stronger signal on crop yields in the southern part of the region, especially for maize
(Travasso et al. 2003a,b).

These antecedents encourage the consideration of SAO SST anomalies as a way to
improve climate forecasting and decision-making in agriculture.

The aim of the present work was to explore the capability of considering SAO by
itself and in conjunction with ENSO phases to optimize maize agronomic manage-
ment practices and, to assess the additional economic value of including SAO infor-
mation in an ENSO-based seasonal forecast.
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23.2
Methods

A location placed in the southeastern part of the Argentina’s Pampas region, Azul (lati-
tude 36.8° S, long 59.9° W), was selected as case study. Daily climatic data for maxi-
mum and minimum temperature, precipitation and solar radiation were available since
1931 from the National Meteorological Service.

CERES-Maize model included in DSSAT v3.5 (Tsuji et al. 1994) was used to exam-
ine the benefits of tailoring crop production decisions to different types of climate
forecasts. The model had been previously calibrated and validated in the region with
estimation errors for yield predictions lower than 10% at the field level (Travasso and
Magrin 2001).

Different types of climate forecasts were used based on: (a) ENSO phases (neutral,
El Niño and La Niña) following the Japan Meteorological Agency classification,
(b) three monthly (November-December-January) rainfall categories, and (c) South
Atlantic Ocean SST anomalies (SAO).

Smoothing techniques (Cleveland et al. 1988) were used for isolating the low fre-
quency variability in monthly precipitation record. Then, the anomalies (difference
between observed and smoothed values) were classified in terciles obtaining three
rainfall categories: wet (upper tercile), normal and dry (lower tercile).

South Atlantic Ocean SST anomalies (SAO) (0–20° S, 30° W–10° E) were obtained from
the NOAA website. SAO values corresponding to August and September, which are sig-
nificantly related to maize yield in this location (Travasso et al. 2003a) were used. SAO
anomalies were classified in quartiles and 3 categories were used: warm (wSAO = upper
quartile), neutral (between probability of 75 and 25%) and cold (cSAO = lower quartile).

Model runs were done for the period 1931–2002 considering the soil series predomi-
nant for Azul (Typic Argiudoll) and the most frequent farm management: planting
on 30 October with a plant density of 7 plants m–2, and a nitrogen fertilizer rate of
60 kg N ha–1. These runs were taken as the baseline data and corresponded to expected
yields when climate forecast is not considered. The crop’s gross margin was calculated
according to the prices presented in Table 23.1.

Optimal management options for each climate forecast method were obtained by
varying planting dates (15-day intervals starting at 15 October) and nitrogen doses
(0, 20, 40, 60, 80, 100, 120 kg N ha–1). The best option for each extreme phase (El Niño,
La Niña, wet, dry, wSAO and cSAO) was defined as the one producing the highest gross
margin. For the years classified as neutral or normal the management practices were
always the same (typical farm management) assuming that those years, farmers would
not use climate forecasts in their decision-making.

The economic value of climate forecast was calculated as the difference in gross
margin between the best management option for each forecast and the typical man-
agement without considering forecast.

23.3
Results

The cumulative probability for grain yields under the typical farmer management for
the different climate predictions methods (precipitation terciles, ENSO, and SAO
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anomalies) are presented in Fig. 23.1. The best method allowing to discriminate among
yield categories was “precipitation terciles” (i.e. assuming a “perfect” forecast). The use
of “ENSO phases” was useful only in 50% of the years, while “SAO anomalies” clearly
separated the highest yields.

This result suggests that maize yields are likely to be driven not only by the influ-
ence of ENSO phases but also by South Atlantic Ocean conditions. Figure 23.2 shows
the relationship between maize yields and SAO temperature anomalies. Upper quartile
SAO anomalies were consistently associated with mean or high yield levels, with only
one exception. It is important to emphasize that our results suggest that even under
La Niña or neutral years, high or normal maize yields could be expected if SAO anoma-
lies in August and September are higher than normal. However, with normal or low
SAO anomalies yield behavior was erratic.

ENSO phases were combined with SAO anomalies in an attempt to improve yield
predictions. In Fig. 23.3 maize yields were regrouped as La Niña (all La Niña years
except those with warm SAO anomalies), neutral (all neutral years except those with
warm SAO anomalies) and a third group including El Niño years plus warm SAO years.
Because this combination seems to be a better approach to separate yields categories,
we decided to consider it as a fourth climate forecasting method.

Optimal management options, grain yields and gross margins for each one of the
considered climate forecast are summarized in Table 23.2. Expected yields in Azul av-
eraged 7.70, 8.48, 8.18, 8.02 and 8.39 t ha–1 for most common farmer management and
management optimized by rainfall terciles, ENSO, SAO and ENSO + wSAO, respectively.
For gross margin these figures were 140, 172, 155, 147, and 162 U.S.$ ha–1.

Optimal crop management options for less favorable years (La Niña, Dry) resulted
in later planting dates and lower N rates. For more favorable years (El Niño, Wet and
wSAO) higher N rates was a better option, although the optimal planting date differed
among methods (Table 23.2). These differences in optimal crop management evidenced
between El Niño and Warm SAO could be attributed to differences in their signal on
precipitation. During El Niño years rainfall tends to be higher than normal in Novem-
ber-December (Barros et al. 1996; Magrin et al. 1998), while Warm SAO episodes are

Table 23.1. Prices considered
for gross margin calculation
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Fig. 23.1. Cumulative probabil-
ity for simulated grain yields
for each weather category

positively correlated with October–February precipitations (Travasso et al. 2003b).
Because maize crops are highly sensitive to water shortage during the pre-flowering
period, for planting dates in mid October (like in El Niño years) water availability will
be crucial during December, but late planting dates (wSAO) will be more dependant
on January rainfall. As shown in Fig. 23.4 precipitation anomalies in Azul tended to
be higher in January during the wSAO years.

The economic value (EV) of forecast (Table 23.3) was obviously the best when con-
sidering precipitation terciles (22.9%). The EV for individual ENSO phases (10.5%) or
SAO anomalies (5%) was considerably lower. However using ENSO forecast and tak-
ing into account warm SAO anomalies during August and September could signifi-
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cantly increase the incomes (15.9%). It is important to note that in dry years the EV
attained 90% while in the wet years it ranged between 15 and 30% (Fig. 23.5).

Variability in precipitation within an ENSO phase is one of the most important
obstacles for forecast’s adoption. For example, if dry conditions are expected during a
given ENSO event but do not materialize (as happened in 1999–2000 in the western
Pampas), cold events will not appear to be very salient or memorable. (Podestá et al.
2002). In this particular year, classified as La Niña according to Pacific conditions, SAO
temperatures were significantly higher than normal and, as mentioned above, warm
SAO is associated with positive rain/yield anomalies in the southern Pampas. Precipi-
tation in December, January and February in Azul was 25.0, 9.0 and 134.0 mm over
the mean values.

Therefore combining both approaches (ENSO + SAO) could be promising for im-
proving the applications of ENSO-based seasonal forecasts in agriculture.

Fig. 23.2. Relationship between
simulated maize yield and
South Atlantic Ocean surface
temperature anomalies

Fig. 23.3. Cumulative probability
for simulated grain yields for
ENSO + warm SAO forecast
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Table 23.2. Optimal management options and expected outcomes for different climate forecasts

Table 23.3. Absolute and relative value of optimal use of various types of perfect seasonal forecast for
maize management in Azul
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Fig. 23.4. Precipitation anoma-
lies during December, January
and February for; a El Niño
years; b warm SAO years

Fig. 23.5. Predicted yields and
economic value of ENSO-SAO
climate forecast
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23.4
Conclusions

Upper quartile SAO anomalies in August and September were consistently associated
with mean or high maize yield levels, even under La Niña or neutral years. Comple-
menting ENSO phases with wSAO led to increase the economic value of ENSO-based
climate forecast by 5.4%.

Differences in optimal planting date between El Niño and wSAO years can be at-
tributed to differences in rainfall distribution. Results obtained could contribute to
improve the applications of ENSO-based seasonal forecasts.
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24.1
Introduction

Global climate change will lead to shifts in climate behavior and could cause severe
impacts on ecosystems in the next decades (IPCC 2001). In particular, climate change
will have significant effects on agricultural production. Negative climate-change im-
pacts on agriculture could be avoided or reduced significantly by taking appropriate
decisions, which can be based on the available crop-growth simulation models, as well
as on forecasts and climate scenarios (Adams et al. 1998; Hoogenboom 2000).

There are several climate modeling tools currently available. For the long-term (de-
cades) assessments, global circulation models (GCMs) compute several scenarios of
the future climate behavior, which have been considered adequate, although those
scenarios must be downscaled to smaller areas for practical applications. For short-
term, seasonal-forecasts according to El Niño-Southern Oscillation (ENSO) and North
Atlantic Oscillation (NAO) behaviors, as well as other sources of climate variability,
are also available (Doblas-Reyes et al. 2006). These scenarios and forecasts can be
downscaled by weather generators, regional climate models and other methods, to
reflect local climatic conditions (Wilby and Wigley 2001). Besides, mechanistic crop-
growth simulation models can effectively estimate crop yields, as well as yield risk,
under any climate conditions (Hoogenboom 2000).

There are many reports of agricultural global-change impact-assessments based
on simulation modeling. Tubiello and Ewert (2002) summarize more than 100 such
assessments, made worldwide. Likewise, Alexandrov (2002) provided a large review
of model applications in Europe. However, most of those research results remain still
as theoretical assessments and they have not led to successful agricultural decision-
making applications.

The producers of climate-forecasts, downscaling techniques and crop-growth mod-
els are often not aware about the actual needs of small and medium agricultural en-
terprises and they may not know what mitigation strategies these farmers can
undertake to adapt to global climate change consequences. Moreover, the reliable ag-
ricultural decisions depend on many local issues that are beyond the higher level re-
searcher context. On the other hand, farmers usually do not know how to interpret
the management implications of presently-available climate forecasts, usually written
in a probabilistic language.

Nevertheless, current research results on climate-change impacts on agriculture can
be relatively easily introduced for local decision-making, if the relevant institutions
and people are involved. Likewise, as pointed out by Hansen (2002), engaging relevant
institutions in all phases of agricultural climate-impact assessments is crucial for the
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long-term success of these assessments. For example, the significant climate-forecast
applications in agricultural decision-making, as done in Australia (Hammer et al. 2001)
and in the U.S. (Jagtap et al. 2002), have been achieved only by the joint effort of high-
level researchers and technicians from agricultural extension services (Meinke et al.
2001; Hansen 2002).

Experts and researchers at well-known research centers in Europe and other places
(referred hereafter as “developers”) have established a significant know-how and pro-
duced relevant tools for such climate-impacts studies. But practical experts at local
agricultural research centers as well as agricultural advisers (referred hereafter as
“users”) who should apply these tools for agricultural decision-making, are often not
aware about the availability of such tools or their access to such tools is quite limited
due to several reasons, as financial issues or lack of user-friendly design of tools.

A connection is needed between the “developers” and “users”, to improve decision-
making by better implementing this know-how and model tools. Furthermore, feed-
back from the end-users to the developers is a prerequisite for improving these tools
for their practical use e.g. by providing background information, setting up the ac-
tual input data needs, fitting time and spatial scales as required by specific applica-
tions and other similar issues.

In that context AGRIDEMA, a new Specific Support Action (SSA), has been funded
by the EU Sixth Framework Program from January 2005 to June 2007. AGRIDEMA
comprises researchers from Spain, Austria and Bulgaria. The SSA aims to promote a
research network, linking European developers with the potential users of their re-
search results.

Mediterranean countries could face the highest negative consequences of global
warming within Europe, through water-shortage and crop-water requirements incre-
ments (Olesen and Bindi 2002). Besides, since climate-change and extreme events ef-
fects could be more serious in countries with less-developed agriculture (IPCC 2001),
the EU associated countries from central and eastern Europe, with relative reduced
technological capacities, would be more affected than northern-European countries.
Therefore, AGRIDEMA will focus on southern, central and eastern Europe, as well as
on the countries of the Mediterranean area.

24.2
AGRIDEMA Description

AGRIDEMA comprises the following specific objectives:

1. To identify European experts who developed, improved and tested simulating tools
such as GCMs, seasonal forecasts, regional downscaling techniques and agricultural-
impact simulation models and invite them to participate in the SSA proposal activi-
ties for implementing their tools and know-how.

2. To identify and undertake appropriate SSA activities with potential users of the
modeling tools. They must be related to agricultural decision-making and to climate-
risk assessments and located in central, eastern and southern Europe, as well as in
the countries of the Mediterranean area. These users will learn and become familiar
with the techniques, their needs for applying these tools will be identified and feed-
back will be provided to the developers.
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3. To conduct short courses, where the invited developers will present the important
aspects of their developed or validated tools to the invited users coming from cen-
tral, eastern and southern Europe, as well as from the Mediterranean countries.

4. To perform pilot collaborations between developers and users from central, eastern
and southern Europe, as well as from the Mediterranean countries, under the super-
vision of the SSA. Direct collaborations, out of SSA consortium supervision, would
be welcome as well.

5. To disseminate the results obtained and to build up a wider consortium, comprising
both, the developers of the simulating tools and the potential users of such tools
(e.g. experts from regional agricultural-oriented research centers, advisers and farm-
ers).

According to these objectives, several tasks or “work packages” were included in
AGRIDEMA. The tasks can be seen in Fig. 24.1 and several reports have been sched-
uled as well. Three of these reports will be in public domain and will refer to the “State
of Art” of climate and crop-growth modeling tools concerning their practical appli-
cations to agricultural decision-making, under climate change conditions.

As can be seen from the AGRIDEMA specific objectives and the corresponding tasks,
contacts will be made with developers of both climate and crop-growth modeling tools.
Invitations to join AGRIDEMA will be sent to well known European centers, where
GCM outputs, seasonal forecasts, downscaling techniques and crop-growth simula-
tion models are available. As a result of these contacts, short-courses and demonstra-
tions will be arranged with those developers interested in applying their developed
tools. AGRIDEMA would bring to model developers a good opportunity to introduce
their models in a wide community of potential users. A final report comprising all the
final agreements with developers will be written by the SSA partners.

Fig. 24.1. AGRIDEMA work
packages and general schedule
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An AGRIDEMA participation call will be launched among the potential users. Since
there is a geographical complementarity between the participating institutions, the
Spanish Coordinator will seek possible participants for SSA-activities from southern
Europe and the Mediterranean countries, whereas the Austrian and Bulgarian part-
ners will do the same concerning the potential participants from central and eastern
Europe, respectively.

The requisites of expected AGRIDEMA users are:

a To be able to communicate in English and to be able to work with data management
software (Windows, Excel, etc.).

b To be involved with local agricultural decision-making, advising and farming in the
regions of southeast, southwest and middle Europe including non-European Medi-
terranean countries.

c To be aware of the potential benefits of agricultural decision modeling tools, be able
to identify which agricultural management options should be change and how to
optimize management and reduce climate risks in local agricultural production.

d To make available data for the training course and for the potential SSA pilot assess-
ments (crop growth and yields, meteorological variables, soil properties, irrigation
and crop management scheduling, etc.).

Additionally, users conducting PhD studies in the same subjects of AGRIDEMA
activities will receive a special consideration for participating in the project.

The AGRIDEMA partners must write a final report about their effort in contacting
the users. The report will point out which users were finally selected and why. Since
this would be probably the first European attempt for encompassing developers and
users, concerning agricultural climate-change impact assessments, the report will serve
as a guide for future efforts in identifying potential users of the European tools avail-
able for such assessments.

Several users will be selected among the course participants in order to conduct
“pilot assessments”. The content, objectives, goals of the pilot assessments have to be
judged by the SSA partners under the agreement of the developers and users. The
content of the pilot assessment should cover the topic of the AGRIDEMA project and
to be problem-oriented. Assessments addressed to evaluate extreme-event risks in
agriculture, using the climate and crop-growth modeling tools, are particularly en-
couraged. The AGRIDEMA pilot assessments should evaluate irrigation, land use or
crop-management options under local conditions, which could be useful (or not) in
case of climate risks. Furthermore, pilot assessments will point out the advantages or
constraints of the modeling tools applied, the improvement needed as well as poten-
tial benefits of the results obtained for agricultural decision-making.

The results obtained through AGRIDEMA should be disseminated as much as pos-
sible. An SSA-related web will be created, where the results obtained will be posted to
provide access to the international audience and a discussion forum will be opened
through the web, promoting contacts between developers and users in the framework
of a European network.

AGRIDEMA comprises also an international workshop, to be held in Spain, where
the SSA results will be presented. All the institutions directly involved in the SSA ac-
tivities will participate in the workshop. Furthermore, other relevant institutions in-
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volved in developing agricultural decision-making under global-change conditions will
be invited to attend the workshop. A European network, concerning the development
and regular use of modeling tools, as a way to provide successful agricultural deci-
sion-making under global-change conditions, will be launched during the workshop.
The state-of-the-art research will be presented in the workshop and priorities for fu-
ture research will be identified.

Through the network modeling tools in agricultural decision-making will be in-
troduced to a wide non-scientific but stakeholder audience. The goal is to show to these
institutions and associations how the modeling tools can help in taking appropriate
decisions to mitigate the agricultural climate-risks.

24.3
AGRIDEMA Current Status

According to the AGRIDEMA timetable, the partners are involved in their first task,
i.e. contacting developers, although some users have already been contacted. Several
developers or sponsors of remarkable climate and crop-growth modeling tools have
been already contacted. Many of them participated in AGRIDEMA activities and gave
lectures in the courses held in Vienna, from 21 November to 2 December 2005. Posi-
tive answers to AGRIDEMA invitations have been received from the DEMETER multi-
model ensemble (Doblas-Reyes et al. 2006); the LARS-WG weather generator (Semenov
and Barrow 2002) and the WOFOST crop-growth model (Van Ittersum et al. 2003)
groups; among others. Besides, European sponsors of DSSAT (Jones et al. 2003) and
CROPSYST (Stockle et al. 2003) models were in Vienna. Several other climate and crop-
growth model developers are scheduled to be contacted. The final list of developers
participating in AGRIDEMA activities is now ready.

Potential user institutions interested in attending the AGRIDEMA courses and even-
tually conduct “pilot assessments” have been identified. Institutions from Spain, Italy,
Greece, Morocco and Egypt are already being evaluated as potential AGRIDEMA users.

Despite the possibility of being directly involved in AGRIDEMA activities from both
developer and user sides, the SSA partners encourage all the potentially interested
people to contact us. AGRIDEMA is an attempt to reduce the gap between people in-
volved in climate and crop-growth modeling efforts and their potential users. It is a
right step to make available the current modeling tools to assist in local agricultural
decision-making, which is consistent with the CLIMAG goals.
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25.1
Introduction

Disease forecasting has become an established component of quantitative epidemiol-
ogy. The mathematics of disease dynamics is the core of several disease forecast mod-
els that have been developed in the last four decades. However, many models have not
lived up to the expectations that they would play a major role and lead to a better dis-
ease management. Amongst the reasons, the presumption of a disease forecast model
is that it makes projections of major events in disease development and most present
forecast models do not (Seem 2001). An exciting development in this area is the pos-
sibility to use weather forecasts as input into disease models and consequently output
true disease forecasts. As weather forecasts improve together with more accurate esti-
mations of micro environmental variables useful for plant disease models, as such
precipitation and leaf wetness duration, it will be possible to provide seasonal esti-
mates of disease likelihood and forecast outbreaks. This is especially interesting for
field crops for the reason that unnecessary sprays has a significant impact on produc-
tion costs, and no timely applications may result in inadequate control.

The present work illustrates an approach towards that direction by the use of novel
programming languages and technology for the development of a web-based proto-
type for model implementation and delivery. The case study is FHB, a disease of great
concern for wheat production worldwide as well as for southern Brazilian wheat ar-
eas. Despite all research done for many years, the control of this disease is still chal-
lenging given its complex nature (McMullen et al. 1997) and some factors as dose rate,
application timing and spray quality for adequate coverage of the spike tissues are key
in fungicide efficacy for a good control (Reis 1986; Picinini and Fernandes 2001). FHB
forecast models are considered an important tool for the decision-making, allowing
producers to timely and effectively apply fungicides in conjunction with other con-
trol strategies (McMullen et al. 1997; Xu 2003). Different approaches for modeling this
disease are found in the literature and comprehensive information on several FHB
models has been reviewed (Del Ponte et al. 2004).

Critical knowledge on the epidemiology of a disease needs to be available in devel-
oping a decision support system. The epidemiology of FHB has been studied in south-
ern Brazil since late 1980s. Climatic conditions are most suitable in that region, and
disease has a periodical occurrence. The distinct climate conditions observed along
the years have helped in identifying the main factors affecting regional epidemics. A
mechanistic process-based simulation model, named GIBSIM, has been developed and
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improved along the years with previous knowledge and a series of local studies on the
interaction of pathogen, host dynamics, and the environment. The model has been
validated with epidemic cases observed in Passo Fundo location, Brazil. The data has
been collected on experimental plots in 5-years and distinct planting dates each year.
The accumulated risk infection index simulated by the model explained 93% of varia-
tion in disease severity (Del Ponte et al. 2005). In this work, GIBSIM model is the core
of a web-based prototype system designed to gather site-specific and forecast weather
data and deliver true-forecasts for FHB for one location in southern Brazil.

25.2
Material and Methods

The web application, called GibSimWeb was developed based on the Model-View-
Controller (MVC) design pattern. The model part is the business logic; the view pre-
sents images and data on WebPages; and the controller determines the overall flow of
the application (Fig. 25.1). The server programs are: weather data management server
(WDMS), database server (DBS), disease forecasting model server (DFMS), and web

Fig. 25.1. Architecture of the web application designed for gathering and storing actual and forecast
weather data to run a simulation model to forecast risk of Fusarium head blight of wheat. The server
programs are: weather data management server (WDMS), database server (DBS), disease forecasting
model server (DFMS), and web server (WS)
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server (WS). WDMS consists of a module for weather data retrieval from automated
weather stations located at remote sites. Data is updated at 10 minutes interval. In ad-
dition, forecast data, living on the INPE (National Institute for Space Research) data-
bases is retrieved by FTP protocol. PostgreSQL is the core of DBS and stores weather
data, as well the identifiers for weather station and run-time parameters such as cul-
tivar, planting date, previous crop, etc. DBS is interfaced with WDMS and DFMS using
a Java API, and with WS using an SQL module in a JSP script engine. WS retrieves in-
formation from DBS upon request by users through a client-side (web-browser) in-
terface. In addition, it provides a simple request form for defining the run-time
parameters. The output is displayed either in textual or graphical format by using a
server-side plotting script. The system is also set to deliver simulation output to cell
phones and PDA. Besides the option of defining a weather station in the database, the
system allows users to input their own weather data, such as precipitation, tempera-
ture, relative humidity, etc. customizing the results for site-specific conditions.

The system uses either hourly or daily weather data from DBS, and DFMS produces
daily risk infection index by using near real-time and anticipated risks by combining
historical data with 7-day weather forecast. During the simulation, each sub-model uses
data from WDMS. The daily output is a risk infection index calculated based on daily
outputs from each sub-model. The forecast risk combines both historical and 7-days
forecast of hourly weather data, generated by the ETA model using a grid of
40 km× 40 km. Since the model accounts for the effect of wheat development to esti-
mate disease severity, the simulation starts on the day the first heads emerge in the
field. At any time since then, actual as well as future weekly accumulated risk index is
estimated. Once an accumulated risk level of concern is projected and the simulation
is at the critical time for control, the model warns that fungicides may be needed.

25.3
Results and Discussion

The preliminary runs of GibSimWeb prototype showed that the system successfully
collected hourly weather data including solar radiation, temperature, precipitation and
relative humidity from Embrapa’s automatic weather station and forecast data from
INPE servers, and stored them in the DBS. After defining the location, heading date,
and cultivar, the prototype is set to present the results in the webpage in a tabular
(Fig. 25.2), graphical (Fig. 25.3) and report format (Fig. 25.4). The table shows model
output and weather variables. The graph shows the daily increase of infection index,
and some environmental variables. Infection indices and related risk are computed in
a daily basis since first day of the simulation and the anticipated risk take into account
actual and forecast data. The report is a summary and interpretation of the risk of
outbreaks, that may be used to base decision-making. The reports are sent to emails
and cell phone provided by registered users who set a specific date for heading and
the system runs automatically on a daily basis using pre-set parameters. Numerical
infection index is converted to 4 categorical levels (no, low, moderate and high epi-
demic risk) that will base decision-making on fungicide application, along with other
factors. The GibSimWeb URL is http://inf.upf.br:8080/gib/GibSimWeb.jsp.
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The prototype proved functional and can be easily extended to other locations
where automatic weather stations are available with the capability to send data to DBS
using the same protocol. In addition, the system may contain modules to allow a user
to set weather retrieval from his own on-site automatic station directly to the DBS or
from there to his computer and access a local database, besides retrieving forecast data
from INPE. Therefore, the user may run the model for his location from any computer
or mobile device accessing the web. The user will have the option to either make his

Fig. 25.2. Computer screen showing model inputs and simulation results
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data public or private. This would be an alternative to computerized weather stations
that are more costly.

A tactical utility of the web application for the management of FHB is the poten-
tial to improve disease control by allowing timely fungicide applications. When a high
risk of outbreaks is anticipated, application of fungicides soon after infections, if
weather permits, would help improve fungicide efficacy with a curative effect. Besides
that, once weather data are available for several locations in a region, the model can
be used to assess spatial variability of regional epidemic. Once long-term historical
weather dataset is available for several locations in a production region, the model can
be used to map climatic suitability for the epidemics. Effects of planting dates and crop
rotations could be evaluated without the need of local experimentation. This system
may also be used to hindcast past scenarios to test the accuracy of the system.

The modularity of the system allows the implementation of other disease models
especially those requiring more complex data such as hourly weather information and
leaf wetness duration. The disease simulator may be easily layered with crop models
such as the CERES-Wheat from the Decision Support System for Agrotechnology
Transfer (DSSAT) suite, using phenological data output by the latter (Ritchie et al. 1998).
Fernandes et al. (2004), linked process-based models to assess the potential impact of
climate change in the epidemics of Fusarium head blight in wheat growing regions in
southern Brazil, Uruguay and Argentina.

Fig. 25.3. Computer screen showing model output in graphical format
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26.1
Introduction

The Southeast Climate Consortium was initiated in 2001 as a regional expansion of
the Florida Consortium. The Florida Consortium of Universities (FLC), consisting of
the University of Miami, the University of Florida, and Florida State University was
formed in 1996 and was funded by the U.S. National Oceanic and Atmospheric Ad-
ministration-Office of Global Programs (NOAA-OGP) as a pilot Climate Applications
Project. Following the establishment of the Regional Integrated Sciences and Assess-
ment (RISA) program, the FLC became the first RISA east of the Mississippi. Initial
research concentrated on the use of seasonal-to-interannual climate forecasts for the
agricultural sector in Argentina. This focus was shifted to Florida in 1998. Following
the success of the FLC in Florida, the University of Georgia was invited to join the
consortium in 2001 and as a result the Southeast Climate Consortium (SECC) was
formed. In 2002, Auburn University and the University of Alabama at Huntsville joined
the SECC.

The SECC currently encompasses the three southeastern states of the USA, includ-
ing Florida, Georgia, and Alabama. The climate of the region is complex and varied,
and ranges from tropical in southern Florida to more temperate in the Florida pan-
handle, Alabama and Georgia. For instance, the annual average temperature in Geor-
gia for 2004 ranged from 14 °C in the Georgia mountains to 20 °C in South Georgia.
The El Niño-Southern Oscillation (ENSO) phases have a strong impact on the
interannual climate variability in the region. El Niño typically results in a wetter win-
ter and spring and a cooler winter, while La Niña typically brings a drier fall and win-
ter, with a warmer winter for the entire region and a cooler summer, especially in
northern Alabama and Georgia.

Agriculture and its associated agribusiness is the dominant economic sector. In
Georgia alone the farm gate value for 2003 was more than U.S.$9 859 million. Agricul-
ture in the region is very diverse and includes poultry and eggs, livestock and aquac-
ulture, and forages and row crops. The latter includes a wide range of crops such as
the traditional row crops, e.g. maize, soybean, peanut, wheat, and cotton; vegetables
and small fruits, e.g. strawberries, blueberries, and peaches; tropical fruit crops,
e.g. citrus, as well as the emerging green industry with nurseries and turf grass. Long
growing seasons allow for more than one crop to be grown during a year, especially
for the shorter duration crops, such as fruits and vegetables. A crop rotation that in-
cludes multiple vegetables with staggered planting dates or wheat planted in the fall
and harvested in June, followed by a late planted soybean are part of this varied crop-
ping system.
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Due to the variable weather and climate, irrigated cropping systems are very com-
mon, especially in Florida and Georgia. Close to 1.5 million acres were irrigated in
Georgia alone in 2004. This allows farmers to mitigate potential droughts, such as the
severe droughts that occurred in the late 1990s. As a result, the availability of water for
agriculture has become an important issue due to the competition for the water needs
among the public sector, especially the rapidly growing and expanding cities such as
Atlanta, industry, agriculture and the need to maintain minimum water levels in
streams and rivers for wildlife protection. Many of the rivers originate in Georgia and
flow into eastern Alabama and the Florida panhandle. During the last two years of
the drought, farmers located in the Flint River Basin in Georgia were paid not to irri-
gate their crops to guarantee minimum water flows into Florida. There is currently
pending litigation between the states of Alabama, Florida and Georgia with respect to
water allocation, sometimes referred to as the “water war.” Although stakeholders, in-
cluding farmers, growers, producers and others in the agricultural sector, are some-
what familiar with weather-based information and tools, there is a definite need to
provide more long-term information that is climate based and that can be used for
strategic planning and decision-making, including long-term issues associated with
drought and mitigation.

26.2
Methodology

The SECC combines expertise in atmospheric and oceanic sciences, agronomic sci-
ences, systems analysis, decision support systems, and economic and social sciences.
This provides a sound scientific basis to study climate and climate variability in the
southeastern USA, to study the impact of climate and climate variability on agricul-
ture and water resource management, to develop impact analysis and decision tools
for stakeholders, and to assess stakeholder and clientele response and to obtain feed-
back for tool and information improvement.

Key to the approach of the SECC is to develop a close link between research and
extension. This is facilitated by the land-grant system that includes the University of
Florida, the University of Georgia, and Auburn University. In the USA these universi-
ties traditionally have had agricultural research and extension as their primary respon-
sibility through the Agricultural Experiment Stations and Cooperative Extension
Service (CES). In each state the CES has an extensive network of county coordinators
and agents whose main role is to disseminate information to local farmers and growers.
The county agents have established a close working relationship with these local farm-
ers and developed their trust. The SECC is planning to train the county agents on
climate and climate variability, the impact on agriculture, and the use of the web-based
tools. The Office of the State Climatologist in each state also plays a key role in infor-
mation dissemination, especially the preparation of climate outlooks and news releases.

Based on the initial feedback obtained from farmers, climate information is being
developed at a local level, rather than at a regional level. The smallest scale at which
currently information is being obtained is at the county level, with 67 counties each
in Alabama and Florida and 159 in Georgia. Daily weather data have been obtained
from the National Climatic Data Center (NCDC), which maintains the archives for the
Cooperative Weather Observation Network, operated by the National Weather Service
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(NWS). The weather records that are available include daily maximum and minimum
temperature and precipitation. For most stations at least a 40- or 50-year record ex-
ists. Procedures have also been developed to generate solar radiation, based on the daily
temperature and precipitation data. One weather station with the longest and most
complete record is being assigned to each county. For counties where there is no local
weather station, the closest weather station is being selected.

The decision support tools that are being developed are based on the crop simula-
tion models of the Decision Support System for Agrotechnology Transfer (DSSAT).
The main model is the Cropping System Model (CSM), which includes the grain le-
gume model CROPGRO for soybean and peanut and the grain cereal model CERES
for maize and wheat. A model for cotton is also being developed and experiments have
been conducted for initial model evaluation. To establish model credibility, crop growth
and development data have been collected in farmers’ field for peanut, maize, and cot-
ton. The state-wide variety trials are being used for determining the cultivar coeffi-
cients of the most common varieties.

26.3
Information Dissemination

A special website has been established for dissemination of climate information,
crop management tools, and associated decision support systems. The website,
www.AgClimate.org, allows for easy and rapid updating of information, such as cli-
mate outlooks and forecasts. One of the main tools is the climate tool. It includes a
summary of the daily weather data base, described earlier. Once a user has selected
his or her county, a monthly bar chart can be selected for each weather variable,
e.g. maximum and minimum temperature, and rainfall. Based on the current ENSO
phase or the ENSO phase selected by the user, different monthly means or totals are
presented as well as deviations from normal. In addition, the monthly data for the
previous five years can be displayed, as farmers normally have a clear memory of the
past, especially with respect to extreme events. Options also exist to show cumulative
probability functions and probability distribution functions for rainfall and tempera-
ture. An example is shown in Fig. 26.1 for Mitchell County, Georgia for average rain-
fall and deviation for El Niño; please note that the units are in English units.

The second tool is the yield risk tool, based on a summary of crop model simula-
tions that have been run previously and have been stored in the database associated
with AgClimate. The first crop for which extensive information has been developed is
peanut, as it is one of main row crops in all three states and has been evaluated exten-
sively with local data. In addition to the local weather data, the three dominant agri-
cultural soil series have been identified for each county. The general and surface
characteristics as well as horizon details are obtained from electronic databases of the
United States Department of Agriculture (USDA) Natural Resource Conservation Ser-
vice (NRCS). The crop model is being run for all available weather years and three soil
types for each county and a range of planting dates at weekly intervals that span the
normal management practices of the region. The yield and yield components as simu-
lated by the CSM model are stored in the AgClimate database. This provides quick and
easy access to a summary of the simulated data for users, as it takes a significant amount
of computer time to conduct these runs interactively. Similar to the climate tool, the
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user selects his or her county and one or more planting dates. The expected mean yield
for each ENSO phase can then be displayed or the mean yield for the period of record.
Due to the interannual weather variability the simulated yield is different for each year,
Therefore, the yield can also be displayed as cumulative probability distribution func-
tions or density histograms to account for the risks associated with each management
selection or planting option. The yield tool is currently being populated for all peanut
producing counties of the three states. An example for peanut for Mitchell County,
Georgia, is shown in Fig. 26.2. Other crops that can be selected include tomato for south
Florida and potato for the main potato producing county in Florida. Both crops were
included based on prior activities of the FLC. Due to the wide range of crops, includ-
ing those crops for which no computer models are available, some generic tools are
also being developed, such as chilling hours and degree days with a range of base tem-
peratures or threshold values.

Fig. 26.1. Climate tool: average rainfall and deviation for the El Niño phase for Mitchell County, Georgia
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Initial introduction for the concept of the AgClimate was conducted in small-group
meetings with county agents and extension specialists. Due to the positive response
and feedback, a commercial company was contracted for a professional implementa-
tion of the research prototypes that were developed. The design of the website by this
company has been rather generic and has allowed for easy modification and updat-
ing by personnel of the SECC, rather than having to rely on professional programmers.
In addition, the design of AgClimate can also be easily migrated to other regions and/or
counties as long as the underlying database is populated. Due to the fact that county
agents are not very familiar with the concept of climate and its applicability in agri-
culture, several workshops have been held during the winter of 2005. AgClimate was
also presented to two panels consisting of local farmers and extension personnel from
Alabama and Georgia. Based on participation of the SECC team in the Georgia Pea-
nut County Agent Training Workshops, we found that the county agents seem to need

Fig. 26.2. Yield risk tool: average yield for peanut for the neutral phase for Mitchell County, Georgia
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an outlook of the expected local climate during the coming three to six months and a
very clear prescription for associated management decisions with respect to which
crop and cultivar to plant, when to plant and when to conduct pest, disease and weed
management.

26.4
Evaluation and Impact Assessment

Weather and weather forecasts are part of the daily operation of farmers and produc-
ers. They can easily relate this information to the decisions they make, such as plant-
ing, irrigation management and pesticide applications. Although farmers are very
much aware of extended droughts and the impact on their overall farming system, they
do not always relate this to climate. The same applies to county and extension agents.
The SECC, therefore, has implemented an evaluation and impact assessment team that
will relay the needs and requests from stakeholders to the research team and develop
a strong link between research and extension. It is expected that this team will also
conduct user surveys and obtain feedback for impact assessment and evaluation of
the usefulness of the climate-based tools and information. An initial survey was de-
veloped to evaluate how county agents perceive climate and its associated impact on
crop production. This survey will be implemented on a state-by-state basis as our ex-
tension and outreach program develops. It was posted in December 2004, for the county
agents in Florida and will be posted in May 2005 for the county agents in Georgia. This
survey will be followed up with small-group meetings and personal interviews with
county agents and producers.
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Climate Prediction and Agriculture:
Lessons Learned and Future Challenges from an
Agricultural Development Perspective

J. R. Anderson

27.1
Introduction

This opportunity to react to contemporary work on climate prediction in agriculture
is a welcome one for someone who occasionally and mainly youthfully dabbled in the
influence of climate in agriculture (e.g. Anderson 1970, 1979, 1981, 1985, 1991; Ander-
son and Dillon 1988a; Anderson and Hardaker 1973; Anderson and Hazell 1989), who
was excited at the prospects for informative predictions (e.g. Byerlee and Anderson
1969, 1982; Anderson and Dillon 1992) but who has long since been far too remote from
the action. Accordingly, to jump across the decades of progress, the point of depar-
ture taken here is the opening keynote address by Sivakumar (2006), in which the state
of the art is succinctly summarized, albeit in a way that emphasizes the possibilities
in a guardedly positively manner. Intriguingly, and seemingly properly in the view of
this observer, he uses cautious words such as “could help” when charting the situa-
tions where climate forecasting efforts are intended to assist farmers and other agri-
cultural managers in their decisions in the face of climatic uncertainty.

27.2
Need for the Assessment of the Value of Climate Forecasts

Workshop participants dealt variously with a variety of interrelated phenomena where
sometimes use of terms was less cautious, particularly when skipping among “weather,
climate, climate change, etc.”, where timescales are surely critical but open to opinion
or interpretation. The paper of Meinke et al. (2006) was helpful in sorting out these
semantics and thus spares such an attempt here, which had it been broached would
have been heavily influenced by the recent work of Zillman et al. (2005). Suffice it to
say that “forecast” and “prediction” cover many interpretations, such as: categoric vs.
probabilistic; concrete/specific vs. descriptive; etc. so it is not too surprising that ana-
lysts and users are often talking at cross purposes. Indeed, such a use happens regu-
larly in other related fields such as analysis of “risk”, “uncertainty”, “variability”,
“vulnerability” – again, semantic issues for another time and place (e.g. Anderson et al.
1987; Hardaker et al. 2004).

The latter works just cited deal with measuring forecast value from what is usually
referred to as a Bayesian perspective. In this view, information as encapsulated in some
type of climate forecast has value when it can influence behavior/decisions. Such in-
formation usually also has a cost. So, whether it has positive net value is an empirical
question that can be posed both before the forecast is issued, and after (ex ante and ex
post). Evidence on this question has been sparse in this Workshop, although it would
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seem that it should be a key item. One might be tempted to ask in the same vein, “Has
CLIMAG been worth the investment in and around it?” The answer is not immedi-
ately obvious.

To return briefly to the Bayesian approach to forecasting in an uncertain world (in
the spirit of Hardaker et al. 2004): prior probabilities attached to possible states of nature
represent uncertainty held before a forecast; forecast information is captured in likeli-
hood probabilities; posterior probabilities come from combining these and can serve
as the updated weights to use in decision analysis. Such revision cycles can be treated
sequentially, i.e. dynamically, in what constitutes an ongoing learning approach. But
such an approach needs to be teamed up with models that represent production deci-
sions about inputs and outputs, such as introduced by Msangi et al. (2006), as Eq. 27.1:

Qt = ƒ(Xt, Zt, Kt, Ut) (27.1)

where Q is typically multi-enterprise agricultural output, X is conventional inputs
(e.g. land, labor, capital, conventional inputs such as fertilizer), Z is unconventional
inputs (e.g. infrastructure), K is technical knowledge (e.g. R&D investment), and U is
uncontrollable factors (e.g. weather). It is the fact of interaction between the X and
the Z variables that gives probabilistic information on the Zs its potential value
(e.g. Byerlee and Anderson 1969). Such production models are often estimated prag-
matically, almost by definition simplistically and frequently badly but without some
such, little can be done to bring climate forecast information explicitly into decision
analysis and valuation of worth.

Estimation, whether done via econometrics, programming, or other methods (such
as ad hoc simulation models built around crop growth models), is inherently demand-
ing (e.g. Dillon and Anderson 1990): of conceptualization, including dynamics and
participatory insights; of data, especially in LDCs; of estimational skills; of optimiza-
tion skills; and last but not least, of interpretation skills. The work must also encom-
pass modeling of behavioral factors, which adds to the challenge. For instance,
representing risk and lifestyle preferences is a non-trivial step, although it seems rea-
sonable to routinely allow for some degree of risk-aversion (Hardaker et al. (2004)
argue for modest levels only). The ability of farmers to adjust should also usually be
explicitly accounted, so part of the estimational challenge is to model the possible con-
straints to adjustment in response to emerging information. Farmers and others are
all swimming in the stormy seas of risk, with or without formal climate forecasts. Are
such forecasts a marginal part of the picture? This is a good question that can be an-
swered only by careful empirical analysis. Needless to say, given the range of phenom-
ena that must be modeled, a wide range of disciplinary skills is necessarily involved
in such demanding research work.

Viewing climatic forecasting work as a particular type of research endeavor natu-
rally raises the question of whether investment in it will be blessed with the same sort
of typically high returns that have characterized more conventional agricultural re-
search such as that related to crop improvement and productivity enhancement more
generally (e.g. Alston et al. 2000). From the Sivakumar (2006) overview and the ma-
terial presented at this workshop, it seems the evidence is not yet available to reach a
solid conclusion on this, especially given the evident scarcity of formal accounting of
the costs of climate prediction work. So, in the meantime, it seems analysts need to
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strive to provide cogent evaluative evidence that can serve in part to deal with the
implicit “competition” for funding that arises from mainstream agricultural research.
Of course, some of the “conventional” research products that will have potentially high
payoffs in responding to climate predictions present particular new evaluation tasks
(e.g. appropriately valuing novel short-cycle cultivars that can “escape” or others that
can better “endure” some droughts).

27.3
Climate Predictions and Risk Management

Research themes beyond the usual purview of conventional agricultural research are
also necessarily involved in understanding the broad context in which climate pre-
diction research takes place. At the risk of stating the obvious, there is clearly a need
to better understand the mechanisms that diverse rural communities use for: manag-
ing risk, e.g. borrowing finance, selling assets, choosing technologies, etc.; coping
with risk, e.g. calling on friends an relatives in times of need; shifting from risk,
e.g. migrating, on a temporary or permanent basis, and so on – a field too large to delve
into here (but see e.g. Anderson and Roumasset 1996; Anderson 2003). Agro-meteo-
rologists may not have spent much time grappling with rural financial systems, fu-
tures markets, etc. but maybe they will have to do so increasingly? Or perhaps they
may elect to work in more engaged manners with research workers who do focus on
such themes?

Finally, to return to the title of this brief perspective, some policy dimensions per-
taining to climate prediction work should be noted, inevitably reflecting efforts past
(e.g. Anderson et al. 1987; Anderson and Dillon 1988b) and more recent (e.g. Anderson
and Hazell 1997; Anderson 2000, 2003). As climate predictions inherently serve to
modify the environment in which farmer choice is made, good policy making should
logically be founded on good understanding of farmer risk management more gener-
ally, since climate is just one of the risks in that environment. In some countries un-
certainty about property rights (especially land) may be of profoundly greater
significance than climate outcomes, especially which it comes to on-farm or within-
supply-chain investment decisions. Other enabling aspects such as private sector de-
velopment (PSD) naturally impinge on decisions more generally, in what are
increasingly alluded to as investment climate limitations. The world has largely en-
tered an era where novel financial instruments (such as warehouse receipts, forward
contracts, etc. largely provided or managed by private suppliers) can be used for more
effective risk management, whether risks arise from the natural environment such as
climate or from the economic and political environment (e.g. Larson et al. 2004).

One aspect of PSD of direct consequence for climate prediction is the state of de-
velopment of the insurance industry in areas that are targeted by climate predictors.
There are many contemporary developments in this industry that expand the oppor-
tunities open to risk managers along the whole chain from plot to plate. In particular,
new products based on index insurance are becoming increasingly available, such as
rainfall insurance (e.g. Hess 2004; Hess and Syroka 2005). Given the dependence of
such instruments on the timely availability of reliable meteorological data, this pro-
vides a natural point of intersection between the climate forecasting community and
the agricultural risk management community.
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27.4
Climate Policy and Climate Predictions

Other communities are also relevant as climate forecasters reach out to their diverse
clients. Those who plan emergency policy and intervention are members of one such
group, and it seems that implementation of improved safety nets is something of a
growth industry around the developing world, and is one that needs to be informed
by the fruits of research on climate forecasting. Climate policy making is still usually
something of an infant industry but is surely one that should be closely linked with
climate research. So, the agenda for climate predictors is large, diverse and challeng-
ing (including the closer attention to monitoring and evaluation that Sivakumar called
for at the outset of this workshop), and would-be predictors are to be enthusiastically
assigned every good wish for success as they emerge from a honeymoon phase for
what should ultimately be socially valuable contributions to the future of agriculture
and humanity on which it depends.
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Chapter 28

Conclusions and Recommendations

M. V. K. Sivakumar  ·  J. Hansen

28.1
Conclusions

Participants in the workshop concluded that:

1. Over the past decade there were some developments that enhanced our knowledge
of climate prediction applications in agriculture. These include the following:
– There has been increasing collaboration between climate and agricultural

scientiests towards effective use of climate forecasts.
– There has been quite a significant improvement in climate prediction models at

the global level, especially with regard to prediction skill, understanding of proc-
esses, assimilation of data and methods to process output. Atlantic and Indian
ocean components of the models have become more important.

– Agricultural research has advanced knowledge and methodology, including simu-
lation modeling, required to use climate information effectively.

2. Currently, end users of climate predictions encounter difficulties in understanding
the terminology and formats that climate institutions use to delivering forecast and
other information, especially the nature of uncertainty. Users are not familiar with
the distinction between weather and climate forecasts.

3. Intermediaries (e.g. agricultural extension agents) have limited understanding in
using climate forecasts for applications in agricultural decision-making.

4. There are limited curriculum resources and training opportunities on the application
of weather and climate (forecast) information at all levels, including applied researchers,
extension intermediaries, policy makers, and for training trainers at the university level.

5. Local institutional (e.g. capacity of extension services to use agriculture simulation
tools) capacity to support climate applications at the farm level is variable but gen-
erally inadequate.

28.2
Recommendations

28.2.1
Science

General

1. Promote collaboration among scientists from the relevant climate and agricultural
disciplines.
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2. In applications, take advantages of potential cross-sector synergies between climate,
agriculture and food security, water and human health.

3. Improve the capacity of agricultural and climate scientists to understand and ex-
ploit relevant information available on the World Wide Web. Promote workshops to
train people on how to mine and interpret such data.

4. Enhance the ability of the community to integrate the output of Global Circulation
Models (GCMs) with environmental monitoring based on remote sensing.

5. Stimulate research on linkages between models:
– How crop models can incorporate GCM outputs and remote sensing information.
– How GCMs can incorporate crop model outputs.

6. Promote greater involvement with all relevant stakeholders to better understand the
decision problems and processes, and develop decision tools.

7. Identify “hotspots” for climate applications based on a global assessment of vulner-
able regions where forecasts skills are high and capacity exists to use climate infor-
mation to manage risk.

8. Expand economic analyses of the benefits of climate prediction applications.

Climate

9. Include soil moisture (through satellite observations) to improve the predictions of
climate forecast models.

10.Develop common measures of forecast skill and quality to allow robust compari-
sons among different forecast systems.

11. Conduct research to develop user-oriented verification systems of the forecasts (in-
clude statistical, mathematical, and economic sciences to address this issue).

12. Since GCM outputs contain more information than is currently being released, as-
sess the potential use of GCM outputs to predict the onset of rainfall season for re-
gions where this subject is an important issue. Climate centers should include
experienced evaluators who are familiar with the characteristics of the region tar-
geted to help interpret and evaluate GCM outputs beyond the seasonal climatic means
that are routinely released.

13. Address the issues of downscaling, GCM uncertainty and available observations,
especially in developing countries.

14.Enhance capacity building on operational meteorology in different regions of the world.
15. Expand the scope of the seasonal climate prediction and incorporate the whole spec-

trum of climate variability (from intra-seasonal to climate change issues).
16.Promote linkages between climate modelers and local meteorologists to develop

sound empirical forecast models.

Agriculture

17. Develop specific modeling tools for analyses at different spatial scales.
18. Improve the current crop simulation models and incorporate more physiologically

based processes in order to make them more robust.
19.Develop procedures for updating crop model parameters on a regular basis (espe-

cially genetic coefficients).
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20. Promote establishment of regional networks for standardized crop observations.
21. Move economic analyses beyond a focus on single crops toward modeling cropping

systems, integrated crop-livestock systems and whole farm modeling.
22. Through the International Consortium for Agricultural Systems Applications

(ICASA), promote a globally-coordinated initiative in crop modeling and systems
analyses for model improvement, model comparison and capacity building.

28.2.2
Capacity Building, Network Development and Institutional Partnership

Increasing farmers prosperity through better use of climate science and associated
applications must consider the following aspects:

– Capacity building for climate producers, intermediaries and users (farmers).
– Development of networking among stakeholders.
– Strengthening the institutional partnerships.

Capacity Building

23. Given that the science of climate forecasting and applications is relatively recent, it
is important to undertake capacity building activities at all levels from climate fore-
casting to national agricultural research systems to intermediaries to the farm level,
especially in developing countries.

24. The focus of capacity building activities for different levels of stakeholders should
be formulated according to their needs through an end-to-end capacity building
approach involving all stakeholders in the process in order to ensure effective feed
back from users to climate producers. Hence training should be organized for:
– Producers of climate information – to produce climate information products in

a form that is simple and easy to understand.
– Agriculture scientists in research agencies and universities – to support climate

forecast applications and develop recommendations for effective farm-level ad-
aptation strategies to climate risk.

– Communication agencies (e.g. media) – in broadcasting climate forecast infor-
mation in such a way as to assist the user communities in formulating appropri-
ate actions.

– Extension workers and community-based organizations – to deliver climate fore-
cast application technologies to end-users (e.g. farmers) and assist them in us-
ing the technologies.

25. Given that climate application is generally not included in the curricula of agri-
cultural universities, the Agricultural Meteorology Division and the Education
and Training Department of WMO should review this issue and work with agri-
cultural universities to include climate forecast modules in their academic curricu-
lum.

26. There is a need to train national agencies in climate prediction applications in ag-
riculture, so they can share the knowledge with extension agents or other interme-
diaries, and with for policy makers to increase their awareness of climate applications
in agriculture.
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Networking and Institutional Partnership

27. Strengthen networking and institutional partnership through:
– Linking all relevant national organizations to form strong partnerships with each

other and with the global programs initiated by United Nations Agencies, such
as WMO and FAO; and International Organizations such as CGIAR, IRI, START;
and Regional Organizations such as ACMAD and AGRHYMET.

– Establishing a web-based network among national, regional and international
organizations and agencies that can facilitate development of end-to-end sys-
tems for applying climate forecasts in the agriculture sector and, policies to ad-
dress current and future climate risks.

– Linking individuals who work actively in the area of climate forecast applica-
tion in agriculture through an informal web-based network and other means that
will help them further develop their capacity to support climate applications in
agriculture in the broadest sense (including technical, socio-economic and in-
stitutional aspects), and access information on advancing of climate application
technologies, funding sources, data, tools, and periodical meeting/conferences
on climate applications.

– Including representatives from the scientific community who work in the con-
cerned area on a Steering Committee for the proposed networks.

28. Document success stories, failures and lessons through case studies to demonstrate
the real value of climate information to agricultural communities and scale up from
case studies to regional and global scales.

Climate Outlook Forums (COFs)

29. Adopt a holistic approach to COFs including different sectors such as agriculture,
hydrology, health as well as media.

30. Explore alternative ways of conducting regional COFs with more active participa-
tion of stakeholders.

31. Improve COF systems (terms, applications) by establishing a consortium (farmers,
researchers, etc.), to seek funds to conduct future regional COFs.

28.2.3
Other Recommendations

32. Develop a common language for the dialogue between climate information produc-
ers and end-users.

33. Streamline communication systems for delivery of climate information to end-users.
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sustainability  69, 75, 109, 111, 200
swine  41, 157

–, feed  157
Switzerland  2, 13, 56, 77, 201, 203, 263, 282
synergy  63, 74, 225, 286

T

Tambomayo (Peru)  99–100, 102–103, 105, 109
–, watershed  99–100, 102–103, 105, 109

Tamil Nadu (India)  129
target breeding strategies  195
taxes  108
taxonomy  7, 99, 110

–, soil  99, 110
teacher  44
Telangana subdivision (India), agricultural

production  111–112
teleconnection  55, 165, 190, 200
television  161–163
Tellahamsa (India)  115
temporal

–, downscaling  101, 192
–, variability  94

test  27, 36, 65, 94, 113, 227, 269
testing  10, 127, 180
The Philippines  41–43, 46–48, 87, 157–158,

160–164
–, typhoon development  41

thermometer  238
threshold  33, 35, 53, 195–196, 201, 241, 243–244,

276
time

–, of emergence  116
–, of fertilizer application  164
–, of sowing  35, 116, 132

tolerance, drought  69
tomato  82, 276
topography  16
Tororo (Uganda)  225–227, 229–231, 236, 238–241,

243–244
trade models  5
traditional

–, coping strategies  129
–, knowledge  3, 130–131, 133, 246

trainer  285
training  2, 47, 87, 140, 155, 277
translation  99, 109
transplantation, paddy  126
transplanting  119
tree  232
tropical

–, climate, semi-arid  201
–, cyclone  17, 19–20, 28, 72, 159
–, fruit crops  273
–, ocean

–, basins  24
–, monitoring  41, 157

–, rain forest  206
tropics  15, 43, 155, 166, 202, 282
troposphere  27, 190, 246
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typhoon  41, 46, 160–162
–, belt  162
–, development in the Philippines  41

U

Uganda (Africa)  77, 225, 227–228, 245–246
–, civil wars  228

ulluco  100
Ullucus tuberosus  100
unimodal  206
United

–, Nations Convention to Combat
Desertification  63

–, States Department of Agriculture (USDA)
99, 110, 135, 141

unpredictability  34, 41, 194
urea  90, 116, 118
urgency  198
Uruguay  89–90, 97, 249, 256, 269

–, rice production  89–90
Uruguayan Rice Growers Association (ACA)  89
USA  11, 13, 56, 70, 77, 109–110, 126, 134, 141,

155, 164, 179, 201–203, 211–212, 224, 256, 271,
273–274, 282–283

USDA  see United States Department of
Agriculture

user  3–4, 6, 9, 11, 15, 27, 50, 57, 73–76, 133, 159,
162, 182, 185–186, 210, 222, 237, 245, 260–263,
267–268, 275, 277, 279, 285–287

Usnio (Peru)  100, 103
utility  10, 126, 179, 269, 283
utilization  75, 111

V

valuation  6–7, 65, 69, 280
value

–, climate forecasts  279
–, climatic information  79

vapor  79, 146, 202
–, water  79, 202

variability
–, spatial  91
–, spatiotemporal  146
–, temporal  94
–, water tabel level  147

variety  85, 105, 115, 126, 133, 197, 221, 275, 279
VASAT  see Virtual Academy for the Semi-Arid

Tropics
vegetable  130, 144, 146, 149, 152, 273
vegetation  36, 55, 63, 66, 114, 190–191

–, cover  63, 190
–, land surface  36

vegetative  48, 63, 81, 196
–, phase  81, 196

vehicle  155
vein  280
velocity  131
Venn diagram  130
verification  73, 77, 214, 286

vertical integrated moisture transport (VIMT)  52
vertisols  168
Vietnam  181, 187

–, climate parameters  181
village  4, 43, 58, 60, 68, 129–134, 144, 155,

166–167
–, knowledge centers (VKCs)  130
–, moderators  68

VIMT  see vertical integrated moisture
transport

Virtual Academy for the Semi-Arid Tropics
(VASAT)  64, 68

VKCs  see village knowledge centers
vulnerability  4, 9, 13, 72, 198, 223

–, human  198
–, reduction  9

W

Wa (Ghana)  206
Wakiso (Uganda)  225–226, 229, 235–236,

238–239, 241
Walker and Hadley circulations  190
warming, global  63, 67–69, 260
warning  49, 112, 162, 198, 200
water

–, availability  1, 83, 85, 111, 144, 150–153,
181, 252

–, balance  115, 193
–, competition  80
–, deficit  79
–, holding capacity  82, 146
–, management in agriculture  143
–, resources management  74, 80–81
–, stress  42, 46, 81, 83
–, supply  63, 69
–, table  144, 147
–, temperature  90
–, transpired  79, 81
–, vapor  79, 202

watermelon  82
watershed  100, 103, 105, 109–110, 144, 191

–, La Encañada (Peru)  99–100, 102–103, 105,
109–110

–, management  191
–, Tambomayo (Peru)  99–100, 102–103, 105,

109
weather

–, -related disasters  1
–, fluctuations  89
–, generator  102, 105, 109–110, 114, 263–264,

259
–, LARS-WG  263
–, stochastic  114, 264
–, WGEN  102, 110, 114

–, index  26
WeatherMan  183
weed  193, 196, 277
weeding  132, 232
West Africa  49–56, 65, 69–70, 189–191, 194–195,

200–205
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–, climate  190
West African

–, monsoon  50–53, 55, 201, 203
–, area  53

–, Sahel  55, 65
West Java  135, 140
wet season  41, 44, 46, 51, 59, 135, 157, 159, 201,

226, 238, 244–245
WFP  see World Food Program
WGEN weather generator  102, 110, 114
wheat  32, 35, 39–40, 100, 102, 106, 108, 110, 164,

166, 179, 265–267, 269, 271, 273, 275
–, CERES model  275
–, crop, UK  33
–, winter  39, 108

white fly pest  66
wind  2, 17, 19–20, 52, 80, 131, 146, 225, 227–228,

232, 234–235, 238, 244–246
–, speed  2, 17, 19–20, 80, 146, 235, 238

winter
–, maize  149
–, wheat  39, 108

WMO  see World Meteorological Organization
WOFOST model  35, 263
women  130–131, 229
worker  44, 64, 159, 161–163, 182, 184, 186, 281
World

–, Bank  73, 75, 246, 283
–, Food Program (WFP)  76
–, Meteorological Organization (WMO)  2,

13, 28, 56, 73, 75, 194, 203, 263, 282, 288
Wuku season (Indonesia)  135, 137, 139

Y

yellow corn  41, 157
Yendi (Ghana)  206, 208, 211
yield

–, crop  23, 31, 34–36, 39, 42, 45, 68, 70, 72,
87–88, 90–91, 107, 112, 122, 166, 171–172,
175, 178, 181, 185, 189, 198, 200, 203, 205,
213–223, 249, 256, 259

–, forecast  36, 39, 87, 103, 105, 107, 213–214,
217–218, 220–223
–, maps  105

–, forecasting  39, 214, 218, 220
–, grain  39, 95, 114–115, 122, 124, 250–253,

282
–, maize, forecasting  39, 218
–, mapping software  95
–, rice  91–92, 94–95, 124
–, spatial variability  93, 95, 97

Z

zaï  193
zonal wave number, global  16
zone

–, agroclimatic (ACZ)  100, 108, 126
–, North Telangana (India)  112
–, South Telangana (India)  113

–, high rainfall  126
–, Intertropical Convergence (ITCZ)  56
–, low rainfall  126
–, South Atlantic Convergence (SACZ)  249
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