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Introduction

These Notes are an elementary introduction to the language of categories
and sheaves.

In Chapter 1 we recall some basic notions of linear algebra over a ring,
putting the emphasis on the operations: kernels and cokernels, products and
direct sums, Hom and tens, projective and inductive limits. We also study
with some details the Koszul complexes in this framework.

Chapter 2 is a very sketchy introduction to the language of categories
and functors, including the notion of derived functors. Many examples are
treated, in particular in relation with the categories Set of sets and Mod(A)
of A-modules.

In Chapter 3, we study abelian sheaves on topological spaces. We define
the cohomology of sheaves by using the derived functors of the functor of
global sections and show who to calculate this cohomology in some situation,
in particular on real or complex manifolds with the help of the De Rham and
Dolbeault complexes.
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Chapter 1

Linear algebra over a ring

We start by recalling some basic notions on sets and on modules over a (non
necessarily commutative) ring.

1.1 Sets and maps

The aim of this section is to fix some notations and to recall some elementary
constructions on sets.

If f : X −→ Y is a map from a set X to a set Y , we shall often say
that f is a morphism from X to Y . If f is bijective we shall say that f
is an isomorphism and write f : X ∼−→Y . If there exists an isomorphism
f : X ∼−→Y , we say that X and Y are isomorphic and write X ' Y .

We shall denote by HomSet(X, Y ), or simply Hom (X, Y ), the set of all
maps from X to Y . If g : Y −→ Z is another map, we can define the compo-
sition g ◦ f : X −→ Z. Hence, we get two maps:

g◦ : Hom (X, Y ) −→ Hom (X,Z),

◦f : Hom (Y, Z) −→ Hom (X,Z).

Notice that if X = {x} and Y = {y} are two sets with one element each,
then there exists a unique isomorphism X ∼−→Y . Of course, if X and Y are
finite sets with the same cardinal π > 1, X and Y are still isomorphic, but
the isomorphism is no more unique.

In the sequel we shall denote by ∅ the empty set and by {pt} a set with
one element. Note that for any set X, there is a unique map ∅ −→ X and a
unique map X −→ {pt}.

Let {Xi}i∈I be a family of sets indexed by a set I. The product of the

7



8 CHAPTER 1. LINEAR ALGEBRA OVER A RING

Xi’s, denoted
∏

i∈I Xi, or simply
∏

iXi, is the defined as∏
i

Xi = {{xi}i∈I ;xi ∈ Xi for all i ∈ I}.(1.1)

If I = {1, 2} one uses the notation X1×X2. If Xi = X for all i ∈ I, one uses
the notation XI . Note that

Hom (I,X) ' XI .(1.2)

For any set Y , there is a natural isomorphism

Hom (Y,
∏
i

Xi) ∼−→
∏
i

Hom (Y,Xi).(1.3)

For three sets I,X, Y , there are natural isomorphisms

Hom (I ×X, Y ) ' Hom (I,Hom (X, Y ))(1.4)

' Hom (X, Y )I .

If {Xi}i∈I is a family of sets indexed by a set I, one may also consider their
disjoint union, also called their coproduct. The coproduct of the Xi’s is
denoted

∐
i∈I Xi or

⊔
i∈I Xi or simply

⊔
iXi. If I = {1, 2} one uses the

notation X1 tX2. If Xi = X for all i ∈ I, one uses the notation X(I). Note
that

X × I ' X(I).(1.5)

For any set Y , there is a natural isomorphism

Hom (
∐
i

Xi, Y ) ∼−→
∏
i

Hom (Xi, Y ).(1.6)

Consider two sets X and Y and two maps f, g from X to Y . We write for
short f, g : X ⇒ Y . The kernel (or equalizer) of (f, g), denoted Ker(f, g), is
defined as

Ker(f, g) = {x ∈ X; f(x) = g(x)}.(1.7)

Note that for a set Z, one has

Hom (Z,Ker(f, g)) ' Ker(Hom (Z,X) ⇒ Hom (Z, Y )).(1.8)

Let us recall a few elementary definitions.
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• A relation R on a set X is a subset of X × X. One writes xRy if
(x, y) ∈ R.

• The opposite relation Rop is defined by xRopy if and only if yRx.

• A relation R is reflexive if it contains the diagonal, that is, xRx for all
x ∈ X.

• A relation R is symmetric if xRy implies yRx.

• A relation R is anti-symmetric if xRy and yRx implies x = y.

• A relation R is transitive if xRy and yRz implies xRz.

• A relation R is an equivalence relation if it is reflexive, symmetric and
transitive.

• A relationR is a pre-order if it is reflexive and transitive. If moreover it
is anti-symmetric, then one says that R is an order on X. A pre-order
is often denoted ≤. A set endowed with a pre-order is called a poset.

• Let (I,≤) be a poset. One says that (I,≤) is filtrant (one also says
“directed”) if I is non empty and for any i, j ∈ I there exists k with
i ≤ k and j ≤ k.

• Assume (I,≤) is a filtrant poset and let J ⊂ I be a subset. One says
that J is cofinal to I if for any i ∈ I there exists j ∈ J with i ≤ j.

If R is a relation on a set X, there is a smaller equivalence relation which
contains R. (Take the intersection of all subsets of X ×X which contain R
and which are equivalence relations.)

Let R be an equivalence relation on a set X. A subset S of X is saturated
if x ∈ S and xRy implies y ∈ S. A subset S of X is an equivalence class of
R if it is saturated, non empty, and x, y ∈ S implies xRy. One then defines
a new set X/R and a canonical map f : X −→ X/R as follows: the elements
of X/R are the equivalence classes of R and the map f associates to x ∈ X
the unique equivalence class S such that x ∈ S.

1.2 Modules and linear maps

All along these Notes, a ring A means an associative and unital ring, but A
is not necessarily commutative.
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All along these Notes, k denotes a commutative ring. Recall that a k-
algebra A is a ring endowed with a morphism of rings ϕ : k −→ A such that
the image of k is contained in the center of A (i.e., ϕ(x)a = aϕ(x) for any
x ∈ k and a ∈ A). Notice that a ring A is always a Z-algebra. If A is
commutative, then A is an A-algebra.

Since we do not assume A is commutative, we have to distinguish between
left and right structures. Unless otherwise specified, a module M over A
means a left A-module.

Let a ∈ A. We denote by a· the left action of a on A and by ·a the right
action.

Recall that an A-module M is an additive group (whose operations and
zero element are denoted +, 0) endowed with an external law A ×M −→ M
(denoted (a,m) 7→ a ·m or simply (a,m) 7→ am) satisfying:

(ab)m = a(bm)
(a+ b)m = am+ bm
a(m+m′) = am+ am′

1 ·m = m

where a, b ∈ A and m,m′ ∈M .
Note that M inherits a structure of a k-module via ϕ. In the sequel, if

there is no risk of confusion, we shall not write ϕ.
We denote by Aop the ring A with the opposite structure. Hence the

product ab in Aop is the product ba in A and an Aop-module is a right A-
module.

Note that if the ring A is a field (here, a field is always commutative),
then an A-module is nothing but a vector space.

Examples 1.2.1. (i) The first example of a ring is Z, the ring of integers.
Since a field is a ring, Q,R,C are rings. If A is a commutative ring, then
A[x1, . . . , xn], the ring of polynomials in n variables with coefficients in A, is
also a commutative ring. It is a sub-ring of A[[x1, . . . , xn]], the ring of formal
powers series with coefficients in A.
(ii) Let k be a field. Then for n > 1, the ring Mn(k) of square matrices of
rank n with entries in k is non commutative.
(iii) Let k be a field. The Weyl algebra in n variables, denoted Wn(k), is the
non commutative ring of polynomials in the variables xi, ∂j (1 ≤ i, j ≤ n)
with coefficients in k and relations :

[xi, xj] = 0, [∂i, ∂j] = 0, [∂j, xi] = δij

where [p, q] = pq − qp and δij is the Kronecker symbol.
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The Weyl algebra Wn(k) may be regarded as the ring of differential op-
erators with coefficients in k[x1, . . . , xn], and k[x1, . . . , xn] becomes a left
Wn(k)-module: xi acts by multiplication and ∂i is the derivation with re-
spect to xi. Indeed, an element P (x, ∂) of Wn(k) may be written uniquely
as a polynomial in ∂1, · · · , ∂n with coefficients in k[x1, . . . , xn]:

P (x, ∂) =
∑
|α|≤m

aα(x)∂α.

Here α = (α1, . . . , αn) ∈ Nn, |α| = α1 + · · · + αn, aα(x) ∈ k[x1, . . . , xn] and
∂α = ∂α1

1 · · · ∂αn
n .

A morphism f : M −→ N of A-modules is an A-linear map, i.e., f satisfies:{
f(m+m′) = f(m) + f(m′) m,m′ ∈M
f(am) = af(m) m ∈M,a ∈ A.

A morphism f is an isomorphism if there exists a morphism g : N −→ M
with f ◦ g = idN , g ◦ f = idM .

If f is bijective, it is easily checked that the inverse map f−1 : N → M
is itself A-linear. Hence f is an isomorphism if and only if f is A-linear and
bijective.

A submodule N of M is a subset N of M such that n, n′ ∈ N implies
n + n′ ∈ N and n ∈ N, a ∈ A implies an ∈ N . A submodule of the
A-module A is called an ideal of A. Note that if A is a field, it has no
non trivial ideal, i.e., its only ideals are {0} and A. If A = C[x], then
I = {P ∈ C[x];P (0) = 0} is a non trivial ideal.

If N is a submodule of M , it defines an equivalence relation mRm′ if
and only if m − m′ ∈ N . One easily checks that the quotient set M/R is
naturally endowed with a structure of a left A-module. This module is called
the quotient module and is denoted M/N .

Let f : M → N be a morphism of A-modules. One sets:

Ker f = {m ∈M ; f(m) = 0}
Im f = {n ∈ N ; there exists m ∈M, f(m) = n}.

These are submodules of M and N respectively, called the kernel and the
image of f , respectively. One also introduces the cokernel and the coimage
of f :

Coker f = N/ Im f, Coim f = M/Ker f.

Note that the natural morphism Coim f −→ Im f is an isomorphism.
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A family of elements {mi}i∈I of an A-module M is a system of generators
of M if any m ∈ M may be written as a finite sum m =

∑
i∈I aimi with

ai ∈ A. One says that M is of finite type, or is finitely generated, if it admits
a finite system of generators. This is equivalent to saying that there exists s
surjective linear map AN0�M , for some N0 ∈ N. If a system of generators
consists of a single element {m}, then one says that m is a generator of M .

Example 1.2.2. Let Wn(k) denote as above the Weyl algebra. Consider
the left Wn(k)-linear map Wn(k) −→ k[x1, . . . , xn], Wn(k) 3 P 7→ P (1) ∈
k[x1, . . . , xn]. This map is clearly surjective and its kernel is the left ideal
generated by (∂1, · · · , ∂n). Hence, one has the isomorphism of left Wn(k)-
modules:

Wn(k)/
∑
j

Wn(k)∂j ∼−→k[x1, . . . , xn].(1.9)

Of course, the polynomial 1 is a generator of the Wn(k)-module k[x1, . . . , xn],
but one easily check that if k has characteristic 0, then any non-zero poly-
nomial P (x) is a generator of k[x1, . . . , xn].

1.3 Operations on modules

Linear maps

Let M and N be two A-modules. Recall that an A-linear map f : M −→ N
is also called a morphism of A-modules. One denotes by HomA(M,N) the
set of A-linear maps f : M −→ N . This is clearly a k-module. In fact one
defines the action of k on HomA(M,N) by setting: (λf)(m) = λ(f(m)).
Hence (λf)(am) = λf(am) = λaf(m) = aλf(m) = a(λf(m)), and λf ∈
HomA(M,N).

There is a natural isomorphism HomA(A,M) 'M : to u ∈ HomA(A,M)
one associates u(1) and to m ∈ M one associates the linear map A −→
M,a 7→ am. More generally, if I is an ideal of A then HomA(A/I,M) '
{m ∈M ; Im = 0}.

Note that if A is a k-algebra and L ∈ Mod(k), M ∈ Mod(A), the
k-module Homk(L,M) is naturally endowed with a structure of a left A-
module. If N is a right A-module, then Homk(N,L) becomes a left A-
module.
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Products and direct sums

Let I be a set, and let {Mi}i∈I be a family of A-modules indexed by I. The
set
∏

iMi is naturally endowed with a structure of a left A-module by setting

{mi}i + {m′i}i = {mi +m′i}i,
a · {mi}i = {a ·mi}i.

For each j ∈ I there is a natural linear map πj :
∏

iMi −→ Mj, called the
j-th projection. It is given by {mi}i∈I 7→ mj.

The direct sum
⊕

iMi is the submodule of
∏

iMi whose elements are the
{mi}i’s such that mi = 0 for all but a finite number of i ∈ I. In particular, if
the set I is finite, the natural injection

⊕
iMi −→

∏
iMi is an isomorphism.

For each j ∈ I there is a natural linear map σj : Mj −→
⊕

iMi. It is given by
mj 7→ {mi}i∈I , where mi = 0 for i 6= j.

Tensor product

Consider a right A-module N , a left A-module M and a k-module L. Let us
say that a map f : N ×M −→ L is (A,k)-bilinear if f is additive with respect
to each of its arguments and satisfies f(na,m) = f(n, am) and f(nλ,m) =
λ(f(n,m)) for all (n,m) ∈ N ×M and a ∈ A, λ ∈ k.

Let us identify a set I to a subset of k(I) as follows: to i ∈ I, we associate
{lj}j∈I ∈ k(I) given by

lj =

{
1 if j = i,

0 if j 6= i.
(1.10)

The tensor product N ⊗A M is the k-module defined as the quotient of
k(N×M) by the submodule generated by the following elements (where n, n′ ∈
N,m,m′ ∈M,a ∈ A, λ ∈ k and N ×M is identified to a subset of k(N×M)):

(n+ n′,m)− (n,m)− (n′,m)
(n,m+m′)− (n,m)− (n,m′)
(na,m)− (n, am)
λ(n,m)− (nλ,m).

The image of (n,m) in N ⊗A M is denoted n ⊗ m. Hence an element of
N ⊗AM may be written (not uniquely!) as a finite sum

∑
j nj⊗mj, nj ∈ N ,

mj ∈M and: 
(n+ n′)⊗m = n⊗m+ n′ ⊗m
n⊗ (m+m′) = n⊗m+ n⊗m′
na⊗m = n⊗ am
λ(n⊗m) = nλ⊗m = n⊗ λm.
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Denote by β : N ×M −→ N ⊗A M the natural map which associates n ⊗m
to (n,m).

Proposition 1.3.1. The map β is (A,k)-bilinear and for any k-module L
and any (A,k)-bilinear map f : N ×M −→ L, the map f factorizes uniquely
through a k-linear map ϕ : N ⊗AM −→ L.

The proof is left to the reader.
Proposition 1.3.1 is visualized by the diagram:

N ×M

f
&&

β // N ⊗AM
ϕ

��
L.

Consider an A-linear map f : M −→ L. It defines a linear map idN ×f : N ×
M −→ N × L, hence a (A,k)-bilinear map N ×M −→ N ⊗A L, and finally a
k-linear map

idN ⊗f : N ⊗AM −→ N ⊗A L.

One constructs similarly g ⊗ idM associated to g : N −→ L.
There is are natural isomorphisms A⊗AM 'M and N ⊗A A ' N .
Denote by Bil(N×M,L) the k-module of (A,k)-bilinear maps from N×M

to L. One has the isomorphisms

Bil(N×M,L) ' Homk(N ⊗AM,L)(1.11)

' HomA(M,Homk(N,L))

' HomA(N,Homk(M,L)).

For L ∈ Mod(k) and M ∈ Mod(A), the k-module L ⊗k M is naturally
endowed with a structure of a left A-module. For M,N ∈ Mod(A) and
L ∈ Mod(k), we have the isomorphisms (whose verification is left to the
reader):

HomA(L⊗k N,M) ' HomA(N,Homk(L,M))(1.12)

' Homk(L,HomA(N,M)).

If A is commutative, there is an isomorphism: N ⊗A M ' M ⊗A N given
by n ⊗m 7→ m ⊗ n. Moreover, the tensor product is associative, that is, if
L,M,N are A-modules, there are natural isomorphisms L ⊗A (M ⊗A N) '
(L⊗AM)⊗A N . One simply writes L⊗AM ⊗A N .
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Inductive and projective limits

We shall study inductive and projective limits in a very special situation,
sufficient for our purpose.

Definition 1.3.2. Let I be an poset. A projective system β indexed by I
with values in Mod(A), denoted β : Iop −→ Mod(A), is the data

for any i ∈ I of an A-module Mi,
for any pair i ≤ j of an A-linear map vij : Mj −→Mi

these data satisfying
vii = idMi

for any i ∈ I and vij ◦ vjk = vik for any i ≤ j ≤ k.

The projective limit of β, denoted lim←−
i

Mi (or simply lim←−Mi if there is no risk

of confusion) is the A-module given by:

lim←−
i

Mi = {x = {xi}i∈I ∈
∏
i

Mi;uij(xj) = xi for any i ≤ j}.

Hence, lim←−Mi is a submodule of
∏

iMi and there are natural linear maps
πj : lim←−

i

Mi −→Mj.

Definition 1.3.3. Let I be a poset. An inductive system α indexed by I
with values in Mod(A), denoted α : I −→ Mod(A), is the data

for any i ∈ I of an A-module Mi,
for any pair i ≤ j of an A-linear map uji : Mi −→Mj

these data satisfying
uii = idMi

for any i ∈ I and ukj ◦ uji = uki for any i ≤ j ≤ k.

Now we assume that I is filtrant. One defines the inducive limit of α, denoted
lim−→
i

Mi (or lim−→Mi if there is no risk of confusion), as follows. Consider the

submodule N of
⊕

i∈IMi given by:

N = {
∑
j∈J

xj, xj ∈Mj, J finite; there exists k ≥ J with
∑

j∈J ukj(xj) = 0}.

(Here, we identify Mj to a submodule of
⊕

i∈IMi, in other words, we do not
write the symbols σj.) Then

lim−→
i

Mi =
⊕
i∈I

Mi/N.
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Hence, lim−→Mi is a quotient module of
⊕

iMi and there are natural linear
maps σj : Mj −→ lim−→

i

Mi.

The filtrant inductive limit lim−→
i

Mi (together with the maps σj, j ∈ I is
characterized by the two properties

• if x ∈Mj and σj(x) = 0, then there exists k ≥ j such that ukj(x) = 0,

• for any y ∈ lim−→
i

Mi there exists j ∈ I and x ∈Mj such that y = σj(x).

Consider the set
⊔
iMi and the relation on this set Mi 3 xi ∼ xj ∈ Mj if

there exists k ∈ I, k ≥ i, k ≥ j and uki(xi) = ukj(xj). It follows easily from
the fact that I is filtrant that ∼ is an equivalence relation and one checks
that

lim−→
i

Mi '
⊔
i

Mi/ ∼ .

Example 1.3.4. Assume that for any i ≤ j, the map uji : Mi −→ Mj is
injective, Then, identifying Mi to a submodule of Mj by this map, we have
lim−→
i

Mi '
⋃
iMi.

The next result is obvious.

Proposition 1.3.5. Let I be a filtrant poset and let J ⊂ I be a cofinal subset.
Then the natural linear map lim−→

j∈J
Mj −→ lim−→

i∈I
Mi is an isomorphism.

Example 1.3.6. Denote by k[x]≤n the submodule of k[x] consisting of poly-
nomials of degree ≤ n.

(a) For i ≤ j, denote by uji : k[x]≤i −→ k[x]≤j the canonical injection. Then

lim−→
n

k[x]≤n ∼−→k[x].

(b) For i ≤ j, denote by vij : k[x]≤j −→ k[x]≤i the canonical projection. Then

k[[x]] ∼−→ lim←−
n

k[x]≤n.

(Recall that k[[x]] denotes the module of formal series with coefficients
in k.)

Example 1.3.7. Let X be a topological space and denote by C0(X) the C-
vector space of C-valued continuous functions on X. Let Xn be an increasing
sequence of open subsets of X satisfying

⋃
nXn = X. For p ≥ n we define

the linear map vnp : C0(Xp) −→ C0(Xn) as the restriction map which, to a
continuous function defined on Xp, associates its restriction to Xn. Then

C0(X) ∼−→ lim←−
n

C0(Xn).
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Example 1.3.8. Let X be a topological space and let Z be a closed subset.
Consider the poset (J,≤) of open neighborhoods of Z, ordered by inclusion.
Let (I,≤) := (J,≤op), the set J with the opposite order. Since U, V ∈ I
implies U ∩ V ∈ I, the poset (I,≤) is filtrant. One sets

C0
X(Z) = lim−→

U∈I
C0(U),

where the map C0(U) −→ C0(V ) (U ≤ V in I, that is, V ⊂ U) is again
the restriction map. One calls an element of C0

X(Z) a germ of continuous
function on Z. Hence, a germ of continuous function on Z is represented by
a pair (U, f) where U is an open neighborhood of Z and f ∈ C0(U), with
the relation that (U, f) and (V, g) define the same germ on Z if there exists
an open neighborhood W of Z with W ⊂ U ∩ V and f |W = g|W .

This example is particularly important when Z = {x} for some x ∈ X.
It gives the notion of the germ of a function at a point x ∈ X.

1.4 Complexes and cohomology

Complexes

Definition 1.4.1. (a) A complex of A-modules (M
•
, d
•
) is a sequence of

A-modules {Mn}n∈Z and linear maps {dnM : Mn −→Mn+1}n∈Z satisfying

dnM ◦ dn−1
M = 0 for all n ∈ Z.(1.13)

(Note that this condition means that Im dn−1
M ⊂ Ker dnM for all n ∈ Z).

(b) A morphism of complexes f
•

: M
• −→ N

•
is the data of morphisms

fn : Mn −→ Nn satisfying fn+1 ◦ dnM = dnN ◦ fn for all n.

One often writes dn instead of dnM and one visualizes a complex as:

· · · −→Mn−1 dn−1

−−−→Mn dn−→Mn+1 −→ · · · .(1.14)

A morphism of complexes f
•

: M
• −→ N

•
is visualized by a commutative

diagram:

· · · //Mn

fn

��

dnM //Mn+1

fn+1

��

// · · ·

· · · // Nn
dnN // Nn+1 // · · ·

(1.15)
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• One defines naturally the direct sum of two complexes.

• A complex is bounded (resp. bounded below, bounded above) if Mn =
0 for |n| >> 0 (resp. n << 0, n >> 0).

• One also encouters complexes which are only defined for n ∈ [a, b]
where a ≤ b are integers:

M
•

:=Ma −→ · · · −→M b.

In this case one identifies M
•

with the complex extended by 0:

M
•

:= · · · −→ 0 −→Ma −→ · · · −→M b −→ 0 · · · .

• In particular, one identifies a module M to a complex “concentrated in
degree 0”:

M
•

:= · · · −→ 0 −→M −→ 0 −→ · · · .

• Consider modules and linear maps M ′ f−→ M
g−→ M ′′. This sequence is

a complex if g ◦ f = 0, that is, if Im f ⊂ Ker g. One says that this
sequence is exact if Im f = Ker g.

• More generally, a sequence of morphisms Xp dp−→ · · · −→ Xn with di+1 ◦
di = 0 for all i ∈ [p, n − 1] is exact if Im di ∼−→Ker di+1 for all i ∈
[p, n− 1].

• A short exact sequence is an exact sequence 0 −→ X ′
f−→ X

g−→ X ′′ −→ 0.
Hence, this is a complex such that Im f = Ker g, f is injective and g is
surjective.

Example 1.4.2. Recall that an A-module M is finitely generated if there

exists an exact sequence AN0
f−→ M −→ 0. let us denote by N the kernel of

f . This is an A-module. Assume that N is itself finitely generated. Hence
there exists an exact sequence AN1 −→ N −→ 0 from which we deduce an exact
sequence

AN1 −→ AN0 −→M −→ 0.

In this case, one says that M is of finite presentation.
Note that if A is left Noetherian, any finitely generated A-module is of

finite presentation. (In fact, this property can be taken as a definition of
being Noetherian.) In such a case, one constructs inductively a “finite free
resolution” of M :

· · · −→ ANr −→ · · · −→ AN1 −→ AN0 −→M −→ 0.
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Shift functor

Let C be an additive category, let X ∈ C(C) and let p ∈ Z. One defines the
shifted complex X[p] by: {

(X[p])n = Xn+p

dnX[p] = (−1)pdn+p
X

Definition 1.4.3. Consider a complex (M
•
, d
•
). The n-th group of coho-

mology of M
•

is the A-module Hn(M
•
) := Ker dn/ Im dn−1.

In particular a complex (M
•
, d
•
) is exact if and only if Hn(M

•
) ' 0 for

all n ∈ Z. Also note that Hn(M
•
) [p] = Hn+p(M

•
).

A morphism of complexes f
•

: M
• −→ N

•
induces for all morphisms for

all n (we keep the same notation fn to denote these morphisms)

fn : Ker dnM −→ Ker dnM , fn : Im dn−1
M −→ Im dn−1

N

hence morphisms

fn : Hn(M
•
) −→ Hn(N

•
).

Split exact sequences

Proposition 1.4.4. Let

0 −→M ′ f−→M
g−→M ′′ −→ 0(1.16)

be a short exact sequence in Mod(A). Then the conditions (a) to (e) are
equivalent.

(a) there exists h : M ′′ −→M such that g ◦ h = idM ′′.

(b) there exists k : M −→M ′ such that k ◦ f = idM ′.

(c) there exists ϕ = (k, g) and ψ = (f + h) such that X
ϕ−→ M ′ ⊕M ′′ and

M ′ ⊕M ′′ ψ−→M are isomorphisms inverse to each other.

(d) The complex (1.16) is isomorphic to the complex 0 −→M ′ −→M ′⊕M ′′ −→
M ′′ −→ 0.

Proof. (a) ⇒ (c). Since g = g ◦ h ◦ g, we get g ◦ (idM −h ◦ g) = 0, which
implies that idM −h ◦ g factors through Ker g, that is, through M ′. Hence,
there exists k : M −→M ′ such that idM −h ◦ g = f ◦ k.
(b) ⇒ (c) is proved similarly.
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(c)⇒ (a). Since g ◦ f = 0, we find g = g ◦h ◦ g, that is (g ◦h− idX′′) ◦ g = 0.
Since g is an epimorphism, this implies g ◦ h− idM ′′ = 0.
(c) ⇒ (b) is proved similarly.
(d) is obvious by (c). q.e.d.

Definition 1.4.5. In the above situation, one says that the exact sequence
splits, or that the sequence is split exact.

Example 1.4.6. (i) If k is a field, all exact sequences in Mod(k) split.

(ii) The exact sequence of Z-modules

0 −→ Z ·2−→ Z −→ Z/2Z −→ 0

does not split.

Exactness of limits

Consider a family of exact sequences of A-modules

M ′
i −→Mi −→M ′′

i(1.17)

indexed by a set I.

Proposition 1.4.7. The sequences below are exact:⊕
i

M ′
i −→

⊕
i

Mi −→
⊕
i

M ′′
i(1.18) ∏

i

M ′
i −→

∏
i

Mi −→
∏
i

M ′′
i .(1.19)

The proof is obvious and left to the reader.
One often translates Proposition 1.4.7 by saying that direct sums and

products are exact functors on A-modules.
One defines in an obvious way the notions of a projective or inductive

system of complexes.

Proposition 1.4.8. Consider a projective system of exact sequences

0 −→M ′
i

fi−→Mi
gi−→M ′′

i(1.20)

indexed by a poset I. Then the sequence

0 −→ lim←−
i

M ′
i

f−→ lim←−
i

Mi
g−→ lim←−

i

M ′′
i(1.21)

is exact.
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One often translates Proposition 1.4.8 by saying that projective limits are
left exact functors on A-modules.

Proof. (i) Recall that lim←−Mi is a submodule of
∏

iMi and similarly with M ′
i

instead of Mi. On the other hand,
∏

iM
′
i is a submodule of

∏
iMi. It follows

that lim←−M
′
i is a submodule of lim←−Mi. hence, f is injective.

(ii) Let x = {xi}i ∈ lim←−
i

Mi with g(x) = 0. Then gi(xi) = 0 for all i and

by the exactness of (1.19), there exists a unique y = {yi}i ∈
∏

iM
′
i with

fi(yi) = xi. One checks immediately that y ∈ lim←−
i

M ′
i . Hence, x = f(y).

q.e.d.

One shall be aware the exactness of the sequence 0 −→M ′
i −→Mi −→M ′′

i −→ 0
does not imply the exactness of the sequence 0 −→ lim←−

i

M ′
i −→ lim←−

i

Mi −→
lim←−
i

M ′′
i −→ 0.

Example 1.4.9. Consider the k-algebra A := k[x] over a field k. Denote
by I = A · x the ideal generated by x. Notice that A/In+1 ' k[x]≤n, where
k[x]≤n denotes the k-vector space consisting of polynomials of degree ≤ n.
For p ≤ n denote by vpn : A/In�A/Ip the natural epimorphisms. They
define a projective system of A-modules. We have seen that

lim←−
n

A/In ' k[[x]],

the ring of formal series with coefficients in k. On the other hand, for p ≤ n
the monomorphisms In�Ip define a projective system of A-modules and one
has

lim←−
n

In ' 0.

Now consider the projective system of exact sequences of A-modules

0 −→ In −→ A −→ A/In −→ 0.

By taking the projective limit of these exact sequences one gets the sequence
0 −→ 0 −→ k[x] −→ k[[x]] −→ 0 which is no more exact.

There is a nice criterion, known as the Mittag-Leffler condition (see [9]),
which makes that the projective limit of exact sequences remains exact.

Proposition 1.4.10. Let 0 −→ {M ′
n}

fn−→ {Mn}
gn−→ {M ′′

n} −→ 0 be a projective
system of exact sequences of A-modules indexed by N. Assume that for each
n, the map M ′

n+1 −→M ′
n is surjective. Then the sequence

0 −→ lim←−
n

M ′
n

f−→ lim←−
n

Mn
g−→ lim←−

n

M ′′
n −→ 0

is exact.
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Proof. Let us denote for short by vp the morphisms Mp −→Mp−1 which define
the projective system {Mp}, and similarly for v′p, v

′′
p . Let {x′′p}p ∈ lim←−

n

M ′′
n .

Hence x′′p ∈M ′′
p , and v′′p(x′′p) = x′′p−1.

We shall first show that vn : g−1
n (x′′n) −→ g−1

n−1(x′′n−1) is surjective. Let
xn−1 ∈ g−1

n−1(x′′n−1). Take xn ∈ g−1
n (x′′n). Then gn−1(vn(xn) − xn−1)) =

0. Hence vn(xn) − xn−1 = fn−1(x′n−1). By the hypothesis fn−1(x′n−1) =
fn−1(v′n(x′n)) for some x′n and thus vn(xn − fn(x′n)) = xn−1.

Then we can choose xn ∈ g−1
n (x′′n) inductively such that vn(xn) = xn−1.

q.e.d.

Proposition 1.4.11. Consider an inductive system of exact sequences

0 −→M ′
i

fi−→Mi
gi−→M ′′

i −→ 0(1.22)

indexed by a filtrant poset I. Then the sequence

0 −→ lim−→
i

M ′
i

f−→ lim−→
i

Mi
g−→ lim−→

i

M ′′
i −→ 0(1.23)

is exact.

One often translates Proposition 1.4.11 by saying that filtrant inductive
limits are left exact functors on A-modules.

Proof. (i) The fact that the sequence

lim−→
i

M ′
i −→ lim−→

i

Mi −→ lim−→
i

M ′′
i −→ 0

is exact is proved similarly as in Proposition 1.4.8.
(ii) Let us prove that the map f is injective. Consider a finite sequence
{x′j}j∈J with x′j ∈ M ′

j satisfying f(
∑

j x
′
j) = 0 in lim−→Mi. Since f(

∑
j x
′
j) =∑

j f(x′j), there exists k with k ≥ j for all j ∈ J such that
∑

j f(x′j) = 0 in
Mk. Therefore, fk(

∑
j x
′
j) = 0 in Mk and since fk is injective,

∑
j x
′
j = 0 in

M ′
k and

∑
j x
′
j = 0 in lim−→

i

M ′
i . q.e.d.

1.5 Koszul complexes

If L is a finite free k-module of rank n, one denotes by
∧j L the k-module

consisting of j-multilinear alternate forms on the dual space L∗ and calls it
the j-th exterior power of L. (Recall that L∗ = Homk(L, k).)

Note that
∧1 L ' L and

∧n L ' k. One sets
∧0 L = k.
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If (e1, . . . , en) is a basis of L and I = {i1 < · · · < ij} ⊂ {1, . . . , n}, one
sets

eI = ei1 ∧ · · · ∧ eij .

For a subset I ⊂ {1, . . . , n}, one denotes by |I| its cardinal. Recall that:

j∧
L is free with basis {ei1 ∧ · · · ∧ eij ; 1 ≤ i1 < i2 < · · · < ij ≤ n}.

If i1, . . . , im belong to the set (1, . . . , n), one defines ei1∧· · ·∧eim by reducing
to the case where i1 < · · · < ij, using the convention ei ∧ ej = −ej ∧ ei.

Let M be an A-module and let ϕ = (ϕ1, . . . , ϕn) be n endomorphisms of
M over A which commute with one another:

[ϕi, ϕj] = 0, 1 ≤ i, j ≤ n.

(Recall the notation [a, b] := ab − ba.) Set M (j) = M ⊗
∧j kn. Hence

M (0) = M and M (n) ' M . Denote by (e1, . . . , en) the canonical basis of kn.
Hence, any element of M (j) may be written uniquely as a sum

m =
∑
|I|=j

mI ⊗ eI .

One defines d ∈ HomA(M (j),M (j+1)) by:

d(m⊗ eI) =
n∑
i=1

ϕi(m)⊗ ei ∧ eI

and extending d by linearity. Using the commutativity of the ϕi’s one checks
easily that d ◦ d = 0. Hence we get a complex:

K
•
(M,ϕ) : 0 −→M (0) d−→ · · · −→M (n) −→ 0.(1.24)

Definition 1.5.1. The complex K
•
(M,ϕ) in (1.24) in which M (0) is in

degree 0 is called the Koszul complex of M (associated with the sequence
ϕ = (ϕ1, . . . , ϕn)).

When n = 1, the cohomology of this complex gives the kernel and cokernel
of ϕ1. More generally,

H0(K
•
(M,ϕ)) ' Kerϕ1 ∩ . . . ∩Kerϕn,

Hn(K
•
(M,ϕ)) ' M/(ϕ1(M) + · · ·+ ϕn(M)).

Set ϕ′ = {ϕ1, . . . , ϕn−1} and denote by d′ the differential in K
•
(M,ϕ′). Then

ϕn defines a morphism

ϕ̃n : K
•
(M,ϕ′) −→ K

•
(M,ϕ′)(1.25)
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Main theorem

Theorem 1.5.2. There exists a long exact sequence

· · · −→ Hj(K
•
(M,ϕ′))

ϕn−→ Hj(K
•
(M,ϕ′)) −→ Hj+1(K

•
(M,ϕ)) −→ · · ·(1.26)

Proof. Let us set for short

Zj(ϕ) = Ker(dj : M ⊗
j∧

kn −→M ⊗
j+1∧

kn),

Bj(ϕ) = Im(dj−1 : M ⊗
j−1∧

kn −→M ⊗
j∧

kn),

Hj(ϕ) :=Hj(K
•
(M,ϕ)) = Zj(ϕ)/Bj(ϕ),

and define similarly Zj(ϕ′), Bj(ϕ′) and Hj(ϕ′). We shall construct an exact
sequence

· · · −→ Hj(ϕ′)
ϕn−→ Hj(ϕ′)

∧en−−→ Hj+1(ϕ)
∨en−−→ Hj+1(ϕ′)

ϕn−→ Hj+1(ϕ′) −→ · · · .

(i) Construction of ∧en. Let a ∈ Zj(ϕ′). We set ∧en(a) = a ∧ en. We have
∧en(d′b) = d(b ∧ en). Hence ∧en : Hj(ϕ′) −→ Hj+1(ϕ) is well defined.

(ii) Construction of ∨en. Let a =
∑

I aIeI ∈ Zj(ϕ). We set ∨en(a) =
∑

I a
′
IeI

where a′I = aI if n /∈ I and a′I = 0 otherwise. We have ∨en(db) = d′(∨en(b)).
Hence ∨en : Hj+1(ϕ) −→ Hj+1(ϕ′) is well defined.

(iii) ∧en◦ϕn = 0. Indeed, let a ∈ Zj(ϕ′). Since d′a = 0, we have ϕn(a)∧en =
ϕn(a) ∧ en + d′a = da.

(iv) ϕn ◦ ∨en = 0. Let a ∈ Zj+1(ϕ). Let us write a = a′ + a′′en. Then
∨en(a) = a′. We have 0 = da = d′a′+ϕn(a′)∧ en + d′a′′ ∧ en. Hence d′a′ = 0
and ϕn(a′) = d′a′′.

(v) Ker(∧en) = Imϕn. Let a ∈ Zj(ϕ′) and assume that a ∧ en = db. Set
b = b′ + b′′ ∧ en. Then a ∧ en = d′b′ + d′b′′ ∧ en + ϕn(b′) ∧ en. Therefore,
d′b′ = 0 and d′b′′ + ϕn(b′) = a, that is, a− d′b′′ = ϕn(b′).

(vi) Kerϕn = Im(∨en). Let a ∈ Zj+1(ϕ′) and assume that ϕn(a) = d′b.
Setting c = a+b∧en, we have ∨en(c) = a and dc = d′a+ϕn(a)∧en+d′b∧en =
0.

(vii) Ker(∨en) = Im(∧en). Let a ∈ Zj+1(ϕ) and assume that ∨en(a) = d′b.
Set a = a′ + a′′ ∧ en. Then a′ = d′b and a− a′′ ∧ en = d′b = db− ϕn(b) ∧ en.
Therefore a− (a′′ + ϕn(b)) ∧ en = db. q.e.d.

Definition 1.5.3. (i) If for each j, 1 ≤ j ≤ n, ϕj is injective as an endo-
morphism of M/(ϕ1(M) + · · · + ϕj−1(M)), one says (ϕ1, . . . , ϕn) is a
regular sequence.



1.5. KOSZUL COMPLEXES 25

(ii) If for each j, 1 ≤ j ≤ n, ϕj is surjective as an endomorphism of Kerϕ1∩
. . . ∩Kerϕj−1, one says (ϕ1, . . . , ϕn) is a coregular sequence.

Corollary 1.5.4. (i) Assume (ϕ1, . . . , ϕn) is a regular sequence. Then
Hj(K

•
(M,ϕ)) ' 0 for j 6= n.

(ii) Assume (ϕ1, . . . , ϕn) is a coregular sequence. Then Hj(K
•
(M,ϕ)) ' 0

for j 6= 0.

Proof. Assume for example that (ϕ1, . . . , ϕn) is a regular sequence, and let us
argue by induction on n. The cohomology of K

•
(M,ϕ′) is thus concentrated

in degree n − 1 and is isomorphic to M/(ϕ1(M) + · · · + ϕn−1(M)). By the
hypothesis, ϕn is injective on this group, and Corollary 1.5.4 follows. q.e.d.

Second proof. Let us give a direct proof of the Corollary in case n = 2 for
coregular sequences. Hence we consider the complex:

0 −→M
d−→M ×M d−→M −→ 0

where d(x) = (ϕ1(x), ϕ2(x)), d(y, z) = ϕ2(y) − ϕ1(z) and we assume ϕ1 is
surjective on M , ϕ2 is surjective on Kerϕ1.

Let (y, z) ∈ M ×M with ϕ2(y) = ϕ1(z). We look for x ∈ M solution
of ϕ1(x) = y, ϕ2(x) = z. First choose x′ ∈ M with ϕ1(x′) = y. Then
ϕ2 ◦ϕ1(x′) = ϕ2(y) = ϕ1(z) = ϕ1 ◦ϕ2(x′). Thus ϕ1(z−ϕ2(x′)) = 0 and there
exists t ∈M with ϕ1(t) = 0, ϕ2(t) = z−ϕ2(x′). Hence y = ϕ1(t+x′), z =
ϕ2(t+ x′) and x = t+ x′ is a solution to our problem. q.e.d.

Example 1.5.5. Let k be a field of characteristic 0 and set for short On :=
k[x1, . . . , xn].
(i) Denote by xi· the multiplication by xi in On. We get the Koszul complex:

0 −→ O(0)
n

d−→ · · · −→ O(n)
n −→ 0

where:

d(
∑
I

aI ⊗ eI) =
n∑
j=1

∑
I

xj · aI ⊗ ej ∧ eI .

The sequence (x1·, . . . , xn·) is a regular sequence in On, considered as an On-
module. Hence the Koszul complex K

•
(On, (x1·, . . . , xn·)) is exact except in

degree n where its cohomology is isomorphic to k.

(ii) Denote by ∂i the partial derivation with respect to xi. This is a k-linear
map on the k-vector space On. We get the Koszul complex

0 −→ O(0)
n

d−→ · · · d−→ O(n)
n −→ 0
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where:

d(
∑
I

aI ⊗ eI) =
n∑
j=1

∑
I

∂j(aI)⊗ ej ∧ eI .

The sequence (∂1·, . . . , ∂n·) is a coregular sequence, and the above complex
is exact except in degree 0 where its cohomology is isomorphic to k. Writing
dxj instead of ej, we recognize the “de Rham complex”.

(iii) Set for short Wn := Wn(k) and denote by · ∂j the multiplication on the
right by ∂j on Wn. These are linear maps on Wn considered as a left Wn-
module. We get a Koszul complex K

•
(Wn, (· ∂1, . . . , · ∂n))

0 −→ W (0)
n

d−→ · · · d−→ W (n)
n −→ 0

where:

d(
∑
I

aI ⊗ eI) =
n∑
j=1

∑
I

aI · ∂j ⊗ ej ∧ eI .

The sequence (·∂1, . . . , ·∂n) is clearly a regular sequence. Hence the Koszul
complex is exact except in degree n where its cohomology is isomorphic to
Wn/(

∑
jWn · ∂j) ' On.

(iv) Denote by ∂j · the multiplication on the left by ∂j on Wn. These are linear
maps on Wn considered as a right Wn-module. We get a Koszul complex
K
•
(Wn, (∂1 ·, . . . , ∂n ·))

0 −→ W (0)
n

d−→ · · · d−→ W (n)
n −→ 0

where:

d(
∑
I

aI ⊗ eI) =
n∑
j=1

∑
I

∂j · aI ⊗ ej ∧ eI .

We have seen that any element P of Wn may be written uniquely as a polyno-
mial P (x, ∂) =

∑
|α|≤m aα(x)∂α. Any such a polynomial may also be written

uniquely as P (x, ∂) =
∑
|α|≤m ∂

αbα(x).

It follows that the sequence (∂1·, . . . , ∂n·) is again a regular sequence.
Hence the Koszul complex K

•
(Wn, (∂1 ·, . . . , ∂n ·)) is exact except in de-

gree n where its cohomology is isomorphic to the right Wn-module Ωn :=
Wn/(

∑
jWn · ∂j).
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Co-Koszul complexes

One may also encounter co-Koszul complexes. For I = (i1, . . . , ik), introduce

ejbeI =

{
0 if j 6∈ {i1, . . . , ik}
(−1)l+1eIl̂ := (−1)l+1ei1 ∧ . . . ∧ êil ∧ . . . ∧ eik if eil = ej

where ei1∧ . . .∧ êil∧ . . .∧eik means that eil should be omitted in ei1∧ . . .∧eik .
Define δ by:

δ(m⊗ eI) =
n∑
j=1

ϕj(m)ejbeI .

Here again one checks easily that δ ◦ δ = 0, and we get the complex:

K • (M,ϕ) : 0 −→M (n) δ−→ · · · −→M (0) −→ 0,(1.27)

Definition 1.5.6. The complex K • (M,ϕ) in (1.5.7) in which M (n) is in
degree 0 is called the co-Koszul complex of M (associated with the sequence
ϕ = (ϕ1, . . . , ϕn)).

Proposition 1.5.7. The Koszul complex (1.24) and the co-Koszul com-
plex (1.27) (in which M (n) is in degree 0) are isomorphic.

Proof. Consider the isomorphism
∧j kn '

∧n−j kn which associates εIm⊗eÎ
to m⊗eI , where Î = (1, . . . , n)\ I and εI is the signature of the permutation

which sends (1, . . . , n) to I t Î (any i ∈ I is smaller than any j ∈ Î). Then,
up to a sign, ∗ interchanges d and δ. q.e.d.

Proposition 1.5.8. Let (a1, . . . , an) be n elements of A which commute with
one another, that is, [ai, aj] = 0, 1 ≤ i, j ≤ n. Let M be an A-module. Then
the aj’s define right or left endomorphisms of A and we have

K
•
(A, (a1·, . . . , an·))⊗AM ' K

•
(M, (a1·, . . . , an·)),

HomA(K
•
(A, (·a1, . . . , ·an)),M) ' K • (M, (a1·, . . . , an·)) [n]

' K
•
(M, (a1·, . . . , an·)) [n].

The verification is left to the reader.

Exercises to Chapter 1

Exercise 1.1. Let I be a (non necessarily finite) set and (Xi)i∈I a family of
sets indexed by I.
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(i) Construct the natural map
∐

i HomSet(Y,Xi) −→ HomSet(Y,
∐

iXi) and
prove that this map is injective but is not surjective in general. (Hint: use
Y = ∅.).
(iii) Construct the natural map

∐
i HomSet(Xi, Y ) −→ HomSet(

∏
iXi, Y ) and

prove that this map is neither injective nor surjective in general. (Hint: for
the injectivity, use Y = pt.)

Exercise 1.2. Let M be an A-module and denote by I the ordered set of
all finitely generated submodules of M . Hence, for N,L ∈ I, N ≤ L if and
only if N ⊂ L.
(i) Prove that I is filtrant.
(ii) Calculate lim−→

N∈I
N .

(iii) Calculate lim−→
N∈I

M/N .

Exercise 1.3. We follow the notations of Example 1.3.6. Prove that the
natural map

lim−→
n

Homk(k[x]≤n,k[x]) −→ Homk(k[x],k[x])

is injective but not surjective.

Exercise 1.4. Let A = W2(k) be the Weyl algebra in two variables. Con-
struct the Koszul complex associated to ϕ1 = ·x1, ϕ2 = ·∂2 and calculate its
cohomology.

Exercise 1.5. Let k be a field, A = k[x, y] and consider the A-module
M =

⊕
i≥1 k[x]ti, where the action of x ∈ A is the usual one and the action

of y ∈ A is defined by y · xntj+1 = xntj for j ≥ 1, y · xnt = 0. Define the
endomorphisms of M , ϕ1(m) = x · m and ϕ2(m) = y · m. Calculate the
cohomology of the Kozsul complex K

•
(M,ϕ).



Chapter 2

The language of categories

In this chapter we introduce some basic notions of category theory which are
of constant use in various fields of Mathematics, without spending too much
time on this language.
Some references: [4, 5, 8, 14, 15, 16, 18, 19].

2.1 Categories

Definition 2.1.1. A category C consists of:

(i) a set Ob(C) whose elements are called the objects of C,

(ii) for each X, Y ∈ Ob(C), a set HomC(X, Y ) whose elements are called
the morphisms from X to Y ,

(iii) for any X, Y, Z ∈ Ob(C), a map, called the composition, HomC(X, Y )×
HomC(Y, Z) −→ HomC(X,Z), and denoted (f, g) 7→ g ◦ f ,

these data satisfying:

(a) ◦ is associative,

(b) for each X ∈ Ob(C), there exists idX ∈ Hom (X,X) such that for all
f ∈ HomC(X, Y ) and g ∈ HomC(Y,X), f ◦ idX = f , idX ◦g = g.

Remark 2.1.2. There are some set-theoretical dangers, illustrated in Re-
mark 2.1.10, and one should mention in which “universe” we are working.

We do not give in these Notes the definition of a universe, only recalling
that a universe U is a set (a very big one) stable by many operations and
containing N.

29
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Although we skip this point, when taking products, direct sums or, more
generally, limits, we should mention that these limits are indexed by “small”
categories.

Notation 2.1.3. One often writes X ∈ C instead of X ∈ Ob(C) and f : X −→
Y (or else f : Y ←− X) instead of f ∈ HomC(X, Y ). One calls X the source
and Y the target of f .

A morphism f : X −→ Y is an isomorphism if there exists g : X ←− Y such
that f ◦ g = idY and g ◦ f = idX . In such a case, one writes f : X ∼−→Y or
simply X ' Y . Of course g is unique, and one also denotes it by f−1.

A morphism f : X −→ Y is a monomorphism (resp. an epimorphism) if
for any morphisms g1 and g2, f ◦ g1 = f ◦ g2 (resp. g1 ◦ f = g2 ◦ f) implies
g1 = g2. One sometimes writes f : X�Y or else X ↪→ Y (resp. f : X�Y )
to denote a monomorphism (resp. an epimorphism).

Two morphisms f and g are parallel if they have the same sources and
targets, visualized by f, g : X ⇒ Y .

One introduces the opposite category Cop:

Ob(Cop) = Ob(C), HomCop(X, Y ) = HomC(Y,X),

the identity morphisms and the composition of morphisms being the obvious
ones.

A category C ′ is a subcategory of C, denoted C ′ ⊂ C, if: Ob(C ′) ⊂ Ob(C),
HomC′(X, Y ) ⊂ HomC(X, Y ) for any X, Y ∈ C ′, the composition ◦ in C ′ is
induced by the composition in C and the identity morphisms in C ′ are induced
by those in C. One says that C ′ is a full subcategory if for all X, Y ∈ C ′,
HomC′(X, Y ) = HomC(X, Y ).

A category is discrete if the only morphisms are the identity morphisms.
Note that a set is naturally identified with a discrete category.

A category C is finite if the family of all morphisms in C (hence, in par-
ticular, the family of objects) is a finite set.

A category C is a groupoid if all morphisms are isomorphisms.

Examples 2.1.4. (i) Set is the category of sets and maps (in a given uni-
verse), Setf is the full subcategory consisting of finite sets.
(ii) Rel is defined by: Ob(Rel) = Ob(Set) and HomRel(X, Y ) = P(X×Y ),
the set of subsets of X × Y. The composition law is defined as follows. For
f : X −→ Y and g : Y −→ Z, g ◦ f is the set

{(x, z) ∈ X × Z; there exists y ∈ Y with (x, y) ∈ f, (y, z) ∈ g}.

Of course, idX = ∆ ⊂ X ×X, the diagonal of X ×X.
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(iii) Let A be a ring. The category of left A-modules and A-linear maps is
denoted Mod(A). In particular Mod(Z) is the category of abelian groups.

We shall often use the notations Ab instead of Mod(Z) and HomA( • , • )
instead of HomMod(A)( • , • ).

One denotes by Modf(A) the full subcategory of Mod(A) consisting of
finitely generated A-modules.
(iv) One associates to a pre-ordered set (I,≤) a category, still denoted by I
for short, as follows. Ob(I) = I, and the set of morphisms from i to j has a
single element if i ≤ j, and is empty otherwise. Note that Iop is the category
associated with I endowed with the opposite order.
(v) We denote by Top the category of topological spaces and continuous
maps.
(vi) We shall often represent by the diagram • −→ • the category which
consists of two objects, say {a, b}, and one morphism a −→ b other than ida
and idb. We denote this category by Arr.
(vii) We represent by • //// • the category with two objects, say {a, b},
and two parallel morphisms a⇒ b other than ida and idb.
(viii) Let G be a group. We may attach to it the groupoid G with one object,
say {a} and morphisms HomG(a, a) = G.
(ix) Let X be a topological space locally arcwise connected. We attach to it

a category X̃ as follows: Ob(X̃) = X and for x, y ∈ X, a morphism f : x −→ y
is a path form x to y.

Definition 2.1.5. (i) An object P ∈ C is called initial if for all X ∈ C,
HomC(P,X) ' {pt}. One often denotes by ∅C an initial object in C.

(ii) One says that P is terminal if P is initial in Cop, i.e., for all X ∈ C,
HomC(X,P ) ' {pt}. One often denotes by ptC a terminal object in C.

(iii) One says that P is a zero-object if it is both initial and terminal. In such
a case, one often denotes it by 0. If C has a zero object, for any objects
X, Y ∈ C, the morphism obtained as the composition X −→ 0 −→ Y is
still denoted by 0: X −→ Y .

Note that initial (resp. terminal) objects are unique up to unique isomor-
phisms.

Examples 2.1.6. (i) In the category Set, ∅ is initial and {pt} is terminal.
(ii) The zero module 0 is a zero-object in Mod(A).
(iii) The category associated with the ordered set (Z,≤) has neither initial
nor terminal object.
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Products and coproducts

Let C be a category and consider a family {Xi}i∈I of objects of C indexed by
a set I.

Definition 2.1.7. (a) The product of the family {Xi}i∈I , if it exists, is the
data of an object Z ∈ C together with morphisms πi : Z −→ Xi (i ∈ I)
such that, for any Y ∈ C, the natural morphism

HomC(Y, Z) −→
∏
i

HomC(Y,Xi)

given by (f : Y −→ Z) 7→ {πi ◦ f : Y −→ Xi}i∈I is an isomorphism.

(b) If (Z, {πi}i∈I) exists, it is unique up to unique isomorphism (see below)
and Z is denoted by

∏
iXi.

(c) In case I has two elements, say I = {1, 2}, one simply denotes this object
by X1 ×X2. In case Xi = X for all i ∈ I, one writes: XI :=

∏
iXi.

Let us prove the unicity of (Z, {πi}i∈I). Consider the category A defined
as follows.

• the objects Ỹ are the families Ỹ = {fi : Y −→ Xi}i∈I with Y ∈ C,

• given two objects Ỹ = {fi : Y −→ Xi}i and W̃ = {gi : W −→ Xi}i, a

morphism ũ : Ỹ −→ W̃ is a morphism u : Y −→ W such that fi = gi ◦ u
for all i.

Then (Z, {πi}i∈I) is a terminal object in A.
The coproduct in C is the product in Cop. Hence:

Definition 2.1.8. (a) The coproduct of the family {Xi}i∈I , if it exists, is
the data of an object Z ∈ C together with morphisms σi : Xi −→ Z (i ∈ I)
such such that, for any Y ∈ C, the natural morphism

HomC(Z, Y ) −→
∏
i

HomC(Xi, Y )

given by (f : Z −→ Y ) 7→ {f ◦ σi : Xi −→ Y }i∈I is an isomorphism.

(b) If (Z, {σi}i) exists, it is unique up to unique isomorphism and it is de-
noted by

∐
iXi.

(c) In case I has two elements, say I = {1, 2}, one simply denotes this object
by X1 tX2. In case Xi = X for all i ∈ I, one writes: X(I) :=

∐
iXi.
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By this definition, the product or the coproduct exist if and only if one
has the isomorphisms, functorial with respect to Y ∈ C:

HomC(Y,
∏
i

Xi) '
∏
i

HomC(Y,Xi),(2.1)

HomC(
∐
i

Xi, Y ) '
∏
i

HomC(Xi, Y ).(2.2)

The isomorphism (2.1) may be translated as follows. Given an object Y and
a family of morphisms fi : Y −→ Xi, this family factorizes uniquely through∏

iXi. This is visualized by the diagram

Xi

Y

fi

55

fj
))

//
∏

kXk

πi

;;

πj

##
Xj.

The isomorphism (2.2) may be translated as follows. Given an object Y and
a family of morphisms fi : Xi −→ Y , this family factorizes uniquely through∐

iXi. This is visualized by the diagram

Xi

fi

))
σi ##∐

kXk
// Y.

Xj

σj
<<

fj

55

Example 2.1.9. (i) The category Set admits products and the two defini-
tions (that given in (1.1) and that given in Definition 2.1.7) coincide.
(ii) The category Set admits coproducts namely, the disjoint union.
(iii) Let A be a ring. The category Mod(A) admits products, as defined in
§ 1.2. The category Mod(A) also admits coproducts, which are the direct
sums defined in § 1.2. and are denoted

⊕
.

(iv) Let X be a set and denote by X the category of subsets of X. (The set
X is ordered by inclusion, hence defines a category.) For S1, S2 ∈ X, their
product in the category X is their intersection and their coproduct is their
union.



34 CHAPTER 2. THE LANGUAGE OF CATEGORIES

Remark 2.1.10. In these notes, we have skipped problems related to ques-
tions of cardinality and universes but this is dangerous. In particular, when
taking products or coproducts. Let us give an example.

Let C be a category which admits products and assume there exist X, Y ∈
C such that HomC(X, Y ) has more than one element. Set M = Mor(C),
where Mor(C) denotes the set of all morphisms in C, and let π = card(M),
the cardinal of the set M . We have HomC(X, Y

M) ' HomC(X, Y )M and
therefore card(HomC(X, Y

M) ≥ 2π. On the other hand, HomC(X, Y
M) ⊂

Mor(C) which implies card(HomC(X, Y
M) ≤ π.

The “contradiction” comes from the fact that C does not admit products
indexed by such a big set as Mor(C). (The remark was found in [5].)

2.2 Functors

Definition 2.2.1. Let C and C ′ be two categories. A functor F : C −→ C ′
consists of a map F : Ob(C) −→ Ob(C ′) and for all X, Y ∈ C, of a map still
denoted by F : HomC(X, Y ) −→ HomC′(F (X), F (Y )) such that

F (idX) = idF (X), F (f ◦ g) = F (f) ◦ F (g).

A contravariant functor from C to C ′ is a functor from Cop to C ′. In other
words, it satisfies F (g ◦ f) = F (f) ◦ F (g). If one wishes to put the emphasis
on the fact that a functor is not contravariant, one says it is covariant.

One denotes by op : C −→ Cop the contravariant functor, associated with
idCop .

Examples 2.2.2. Let A be a k-algebra and let N be a right A-module.
Then N ⊗A • : Mod(A) −→ Mod(k) is a functor. Clearly, the functor N ⊗A •

commutes with direct sums, that is,

N ⊗A (
⊕
i

Mi) '
⊕
i

(N ⊗AMi),

and similarly for the functor • ⊗AM .
(ii) Let I be a set. The map {Mi}i∈I 7→

∏
i∈IMi defines a functor from

(Mod(A))I to Mod(A).
(iii) Let I be a poset. An inductive system of A-modules indexed by I
(see § 1.3) is nothing but a functor I −→ Mod(A) and a projective system is
a functor Iop −→ Mod(A).

Definition 2.2.3. Let F : C −→ C ′ be a functor.
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(i) One says that F is faithful (resp. full, resp. fully faithful) if for X, Y ∈ C
HomC(X, Y ) −→ HomC′(F (X), F (Y )) is injective (resp. surjective, resp.
bijective).

(ii) One says that F is essentially surjective if for each Y ∈ C ′ there exists
X ∈ C and an isomorphism F (X) ' Y .

(iii) One says that F is conservative if any morphism f : X −→ Y in C is an
isomorphism as soon as F (f) is an isomorphism.

Clearly, a fully faithful functor is conservative (see Exercise 2.2).

Examples 2.2.4. (i) Let C be a category and let X ∈ C. Then HomC(X, • )
is a functor from C to Set and HomC( • , X) is a functor from Cop to Set.
(ii) The forgetful functor for : Mod(A) −→ Set associates to an A-module M
the set M , and to a linear map f the map f . The functor for is faithful and
conservative but not fully faithful.
(iii) The forgetful functor for : Top −→ Set (defined similarly as in (ii)) is
faithful. It is neither fully faithful nor conservative.
(iv) The forgetful functor for : Set −→ Rel is faithful and conservative.

The Yoneda lemma

Let X ∈ C. Then X defines a functor

hC(X) : Cop −→ Set Y 7→ HomC(Y,X)

and we get a functor

hC : C −→ Fct(Cop,Set), X 7→ hC(X).(2.3)

We state without proof the main result of category theory:

Theorem 2.2.5. (The Yoneda lemma) The functor hC in (2.3) is fully faith-
ful.

Bifunctors

One defines in an obvious way the product of two categories C1 and C2 by
setting

Ob(C1 × C2) = Ob(C1)×Ob(C2),

HomC1×C2((X1, X2), (Y1, Y2)) = HomC1(X1, Y1)× HomC2(X2, Y2).

A bifunctor F : C1 × C2 −→ C ′ is a functor on the product category.

Examples 2.2.6. (i) HomC( • , • ) : Cop × C −→ Set is a bifunctor.
(ii) If A is a k-algebra, HomA( • , • ) : Mod(A)op ×Mod(A) −→ Mod(k) and
• ⊗A • : Mod(Aop)×Mod(A) −→ Mod(k) are bifunctors.
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Morphisms of functors

Definition 2.2.7. Let F1, F2 are two functors from C to C ′. A morphism of
functors θ : F1 −→ F2 is the data for all X ∈ C of a morphism θ(X) : F1(X) −→
F2(X) such that for all f : X −→ Y , the diagram below commutes:

F1(X)

F1(f)

��

θ(X) // F2(X)

F2(f)

��
F1(Y )

θ(Y ) // F2(Y )

Notation 2.2.8. We denote by Fct(C, C ′) the category of functors from C to
C ′.

Let I be a set. Then CI ' Fct(I, C) where the set I is considered as a
discrete category.

Examples 2.2.9. Let k be a field and consider the functor

∗ : Mod(k)op −→ Mod(k),

V 7→ V ∗ = Homk(V,k).

Then there is a morphism of functors id −→ ∗ ◦ ∗ in Fct(Mod(k),Mod(k)).
(ii) We shall encounter morphisms of functors when considering pairs of ad-
joint functors (see (2.7)).

In particular we have the notion of an isomorphism of categories. A
functor F : C −→ C ′ is an isomorphism of categories if there exists G : C ′ −→ C
such that: G ◦ F = idC and F ◦ G = idC′ . In particular, for all X ∈ C,
G ◦ F (X) = X. In practice, such a situation rarely occurs and is not really
interesting. There is a weaker notion that we introduce below.

Definition 2.2.10. A functor F : C −→ C ′ is an equivalence of categories if
there exists G : C ′ −→ C such that: G ◦ F is isomorphic to idC and F ◦ G is
isomorphic to idC′ .

We shall not give the proof of the following important result below.

Theorem 2.2.11. The functor F : C −→ C ′ is an equivalence of categories if
and only if F is fully faithful and essentially surjective.

If two categories are equivalent, all results and concepts in one of them
have their counterparts in the other one. This is why this notion of equiva-
lence of categories plays an important role in Mathematics.
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Examples 2.2.12. (i) Let k be a field and let C denote the category defined
by Ob(C) = N and HomC(n,m) = Mm,n(k), the space of matrices of type
(m,n) with entries in a field k (the composition being the usual composition
of matrices). Define the functor F : C −→ Modf (k) as follows. To n ∈ N,
F (n) associates kn ∈ Modf (k) and to a matrix of type (m,n), F associates
the induced linear map from kn to km. Clearly F is fully faithful, and since
any finite dimensional vector space admits a basis, it is isomorphic to kn for
some n, hence F is essentially surjective. In conclusion, F is an equivalence
of categories.
(ii) let C and C ′ be two categories. There is an equivalence

Fct(C, C ′)op ' Fct(Cop, (C ′)op).(2.4)

(iii) Let I, J and C be categories. There are equivalences

Fct(I × J, C) ' Fct(J,Fct(I, C)) ' Fct(I,Fct(J, C)).(2.5)

Adjoint functors

Definition 2.2.13. Let F : C −→ C ′ and G : C ′ −→ C be two functors. One
says that (F,G) is a pair of adjoint functors or that F is a left adjoint to G,
or that G is a right adjoint to F if there exists an isomorphism of bifunctors:

HomC′(F ( • ), • ) ' HomC( • , G( • ))(2.6)

If G is an adjoint to F , then G is unique up to isomorphism. In fact,
G(Y ) is a representative of the functor X 7→ HomC(F (X), Y ).

The isomorphism (2.6) gives the isomorphisms

HomC′(F ◦G( • ), • ) ' HomC(G( • ), G( • )),

HomC′(F ( • ), F ( • )) ' HomC( • , G ◦ F ( • )).

In particular, we have morphisms X −→ G ◦ F (X), functorial in X ∈ C, and
morphisms F ◦ G(Y ) −→ Y , functorial in Y ∈ C ′. In other words, we have
morphisms of functors

F ◦G −→ idC′ , idC −→ G ◦ F.(2.7)

Examples 2.2.14. (i) Let X ∈ Set. Using the bijection (1.4), we get that
the functor HomSet(X, • ) : Set −→ Set is right adjoint to the functor • ×X.
(ii) Let A be a k-algebra and let L ∈ Mod(k). Using the first isomorphism
in (1.12), we get that the functor Homk(L, • ) : Mod(A) to Mod(A) is right
adjoint to the functor • ⊗k L.
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(iii) Let A be a k-algebra. Using the isomorphisms in (1.12) with N = A,
we get that the functor for : Mod(A) −→ Mod(k) which, to an A-module
associates the underlying k-module, is right adjoint to the functor A ⊗k
• : Mod(k) −→ Mod(A) (extension of scalars).

2.3 Additive and abelian categories

Additive categories

Definition 2.3.1. A category C is additive if it satisfies conditions (i)-(v)
below:

(i) for any X, Y ∈ C, HomC(X, Y ) ∈ Ab,

(ii) the composition law ◦ is bilinear,

(iii) there exists a zero object in C,

(iv) the category C admits finite coproducts,

(v) the category C admits finite products.

Note that HomC(X, Y ) 6= ∅ since it is a group and for all X ∈ C,
HomC(X, 0) = HomC(0, X) = 0. (The morphism 0 should not be confused
with the object 0.)

Notation 2.3.2. If X and Y are two objects of C, one denotes by X ⊕ Y
(instead of XtY ) their coproduct, and calls it their direct sum. One denotes
as usual by X × Y their product. This change of notations is motivated by
the fact that if A is a ring, the forgetful functor Mod(A) −→ Set does not
commute with coproducts.

One easily proves that if C satisfies the axioms (i)-(ii)-(iii), then the con-
ditions (iv) and (v) are equivalent and moreover the objects X ⊕ Y and
X × Y are isomorphic. Setting Z = X ⊕ Y ' X × Y there exist morphisms
morphisms i1 : X −→ Z, i2 : Y −→ Z, p1 : Z −→ X and p2 : Z −→ Y satisfying

p1 ◦ i1 = idX , p1 ◦ i2 = 0

p2 ◦ i2 = idY , p2 ◦ i1 = 0,

i1 ◦ p1 + i2 ◦ p2 = idZ .

Example 2.3.3. (i) If A is a ring, Mod(A) and Modf(A) are additive cate-
gories.
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(ii) Ban, the category of C-Banach spaces and linear continuous maps is
additive.
(iii) If C is additive, then Cop is additive.
(iv) Let I be category. If C is additive, the category Fct(I, C) of functors
from I to C, is additive.
(v) If C and C ′ are additive, then C × C ′ is additive.

Let F : C −→ C ′ be a functor of additive categories. One says that F is
additive if for X, Y ∈ C, HomC(X, Y ) −→ HomC′(F (X), F (Y )) is a morphism
of groups. We shall not prove here the following result.

Proposition 2.3.4. Let F : C −→ C ′ be a functor of additive categories. Then
F is additive if and only if it commutes with direct sums, that is, for X and
Y in C:

F (0) ' 0

F (X ⊕ Y ) ' F (X)⊕ F (Y ).

Unless otherwise specified, functors between additive categories will be
assumed to be additive.
Generalization. Let k be a commutative ring. One defines the notion of
a k-additive category by assuming that for X and Y in C, HomC(X, Y ) is a
k-module and the composition is k-bilinear.

Complexes in additive categories

The notions of complexes introduced in § 1.4 extend to additive categories.
Let C denote an additive category. A complex (X

•
, d
•
X) in C is a sequence

of objects Xn and morphisms dn (n ∈ Z):

· · · −→ Xn−1 dn−1

−−−→ Xn dn−→ Xn+1 −→ · · ·

such that dn ◦ dn−1 = 0 for all n ∈ Z.
A morphism of complexes is visualized by a commutative diagram similar

to (1.15):

· · · // Xn

fn

��

dnX // Xn+1

fn+1

��

// · · ·

· · · // Y n
dnY // Y n+1 // · · ·

(2.8)

One defines naturally the direct sum of two complexes and we get a new
additive category, the category C(C) of complexes in C.
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A complex is bounded (resp. bounded below, bounded above) if Xn = 0
for |n| >> 0 (resp. n << 0, n >> 0). One denotes by C∗(C)(∗ = b,+,−)
the full additive subcategory of C(C) consisting of bounded complexes (resp.
bounded below, bounded above).

One considers C as a full subcategory of Cb(C) by identifying an object
X ∈ C with the complex X

•
“concentrated in degree 0”:

X
•

:= · · · −→ 0 −→ X −→ 0 −→ · · ·

where X stands in degree 0.

Definition 2.3.5. let (X
•
, d
•
X) be a complex in C. For r ∈ Z, one defines

the shifted comnplex (X
•
[r], d

•
X[r]) by setting

(X
•
[r])i = X i+r, diX[r] = (−1)rdi+rX .

Kernels and cokernels

Let C be an additive category and consider a morphism f : X0 −→ X1 in C.

Definition 2.3.6. The kernel of f , if it exists, is the data of an object
Ker(f) ∈ C together with a morphism h : Ker(f) −→ X0 such that, for any
Y ∈ C and any morphism u : Y −→ X0 satisfying f ◦ u = 0, the the natural
morphism

HomC(Y,Ker(f)) −→ Ker(HomC(Y,X0)
f◦−→ HomC(Y,X1)(2.9)

is an isomorphism.

The terminology Ker(f) is justified by the next result.

Lemma 2.3.7. If (Ker(f), h) exists, it is unique up to unique isomorphism.

Proof. Let C denote the category defined as follows.

• The objects of C are the pairs (Y, u) where u : Y −→ X0 satisfies f◦u = 0,

• a morphism w : (Y, u) −→ (Y ′, u′) in C is a morphism v : Y −→ Y ′ such
that u′ ◦ w = u.

Then (Ker(f), h) is a terminal object in C. q.e.d.



2.3. ADDITIVE AND ABELIAN CATEGORIES 41

The isomorphism (2.9) may be translated as follows. Given an objet Y and a
morphism u : Y −→ X0 such that f ◦ u = 0, the morphism u factors uniquely
through Ker(f). This is visualized by the diagram

Ker(f) h // X0
f // X1

Y

cc
u

OO ==

Lemma 2.3.8. Let (Ker(f), h) be the kernel of f . Then h is a monomor-
phism.

Proof. Consider a pair of parallel arrows a, b : Z ⇒ Ker(f) such that h ◦ a =
h ◦ b. Then h ◦ (a− b) = 0 and in particular, f ◦ h ◦ (a− b) = 0. Therefore
h ◦ (a− b) factors uniquely through Ker(f). The unicity implies a− b = 0.
q.e.d.

The cokernel in C is the kernel in Cop. Hence:

Definition 2.3.9. The cokernel of f , if it exists, is the data of an object
Coker(f) ∈ C together with a morphism k : X1 −→ Coker(f) such that, for
any Y ∈ C and any morphism w : X1 −→ Y satisfying w ◦ f = 0, the the
natural morphism

HomC(Coker(f), Y ) −→ Ker(HomC(X0, Y )
◦f−→ HomC(X1, Y )(2.10)

is an isomorphism.

If (Coker(f), k) exists, it is unique up to unique isomorphism.
If (Coker(f), k) exists then k is an epimorphism.
The isomorphism (2.10) may be translated as follows. Given an objet Y

and a morphism v : X1 −→ Y such that v ◦ f = v ◦ g, the morphism v factors
uniquely through Coker(f). This is visualized by diagram:

X0

!!

f // X1

v

��

k // Coker(f)

zz
Y

Example 2.3.10. (i) Let A be a ring. The category Mod(A) admits kernels
and cokernels. As already mentioned, the kernel of a linear map f : M −→ N
is the A-module f−1(0) and the cokernel is the quotient module M/ Im f .
(ii) Assume that A is not Noetherian, that is, there exists an ideal I of A
which is not finitely generated. Then A and A/I belong to Modf(A) but the
natural map A −→ A/I does not have a kernel in Modf(A).
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Let C be an additive category which admits kernels and cokernels. Let
f : X −→ Y be a morphism in C. One defines:

Coim f := Cokerh, where h : Ker f −→ X

Im f := Ker k, where k : Y −→ Coker f.

Consider the diagram:

Ker f h // X
f //

s

��

Y
k // Coker f

Coim f

f̃
::

u // Im f

OO

Since f ◦h = 0, f factors uniquely through f̃ , and k ◦f factors through k ◦ f̃ .
Since k ◦ f = k ◦ f̃ ◦ s = 0 and s is an epimorphism, we get that k ◦ f̃ = 0.
Hence f̃ factors through Ker k = Im f . We have thus constructed a canonical
morphism:

Coim f
u−→ Im f.(2.11)

Examples 2.3.11. (i) For a ring A and a morphism f in Mod(A), (2.11) is
an isomorphism.

(ii) The category Ban admits kernels and cokernels. If f : X −→ Y is a
morphism of Banach spaces, define Ker f = f−1(0) and Coker f = Y/Im f
where Im f denotes the closure of the space Im f . It is well-known that there
exist continuous linear maps f : X −→ Y which are injective, with dense and
non closed image. For such an f , Ker f = Coker f = 0 although f is not an
isomorphism. Thus Coim f ' X and Im f ' Y . Hence, the morphism (2.11)
is not an isomorphism.

Definition 2.3.12. Let C be an additive category. One says that C is abelian
if:

(i) any f : X −→ Y admits a kernel and a cokernel,

(ii) for any morphism f in C, the natural morphism Coim f −→ Im f is an
isomorphism.

In an abelian category, a morphism f is a monomorphism (resp. an epi-
morphism) if and only if Ker f ' 0 (resp. Coker f ' 0). If f is both a
monomorphism and an epimorphism, then it is an isomorphism.
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Examples 2.3.13. (i) If A is a ring, Mod(A) is an abelian category. If A is
Noetherian, then Modf(A) is abelian.
(ii) The category Ban admits kernels and cokernels but is not abelian. (See
Examples 2.3.11 (ii).)
(iii) If C is abelian, then Cop is abelian. (Recall that for a morhism f : X −→
Y in C, Ker f op ' Coker f , where f op : Y −→ X is the morphism in Cop

associated with f .)
(iv) If C is abelian, then the categories of complexes C∗(C) (∗ = ub, b,+,−)
are abelian. For example, if f : X −→ Y is a morphism in C(C), the complex
Z defined by Zn = Ker(fn : Xn −→ Y n), with differential induced by those of
X, will be a kernel for f , and similarly for Coker f .
(v) Let I be category. Then if C is abelian, the category Fct(I, C) of functors
from I to C, is abelian. If F,G : I −→ C are two functors and ϕ : F −→
G is a morphism of functors, the functor Kerϕ is given by Kerϕ(X) =
Ker(F (X) −→ G(X)) and similarly with Cokerϕ. Then the natural morphism
Coimϕ −→ Imϕ is an isomorphism.
(vi) If C and C ′ are abelian, then C × C ′ is abelian.

Consider a complex in an abelian category: X ′
f−→ X

g−→ X ′′. Since
g ◦ f = 0, the morphism g factorizes as

Im f −→ Ker g.(2.12)

Definition 2.3.14. (i) One says that a complex X ′
f−→ X

g−→ X ′′ is exact
if Im f ∼−→Ker g.

(ii) More generally, a sequence of morphisms Xp dp−→ · · · −→ Xn with di+1 ◦
di = 0 for all i ∈ [p, n−1] is exact if Im di ∼−→Ker di+1 for all i ∈ [p, n−1].

(iii) A short exact sequence is an exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0

Any morphism f : X −→ Y may be decomposed into short exact sequences:

0 −→ Ker f −→ X −→ Coim f −→ 0,

0 −→ Im f −→ Y −→ Coker f −→ 0,

with Coim f ' Im f .

Proposition 2.3.15. Let

0 −→ X ′
f−→ X

g−→ X ′′ −→ 0(2.13)

be a short exact sequence in C. Then the conditions (a) to (e) are equivalent.
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(a) there exists h : X ′′ −→ X such that g ◦ h = idX′′.

(b) there exists k : X −→ X ′ such that k ◦ f = idX′.

(c) there exists ϕ = (k, g) and ψ = (f + h) such that X
ϕ−→ X ′ ⊕ X ′′ and

X ′ ⊕X ′′ ψ−→ X are isomorphisms inverse to each other.

(d) The complex (2.13) is isomorphic to the complex 0 −→ X ′ −→ X ′ ⊕X ′′ −→
X ′′ −→ 0.

The proof is the same as that of Proposition 1.4.4.

Definition 2.3.16. As in the case of modules, in the above situation, one
says that the exact sequence splits, or that the sequence is split exact.

Note that an additive functor of abelian categories sends split exact se-
quences into split exact sequences.

Cohomology

The cohomology objects of a complex in an abelian category are defined
similarly as in § 1.4.

Consider a complex (X
•
, d
•
) in C, that is, an object of C(C). Recall

from (2.12) that there are natural morphisms

Im dn−1 −→ Ker dn.(2.14)

The n-th group of cohomology of X
•

is the object of C given by

Hn(X
•
) := Coker(Im dn−1 −→ Ker dn) = Ker dn/ Im dn−1.

One says that a complex is exact in degree n if Hn(X
•
) ' 0 and that a

complex is exact if it is exact in all degrees.

Long exact sequence associated with a short exact sequence

Theorem 2.3.17. Let 0 −→ X ′
• f−→ X

• g−→ X ′′
• −→ 0 be an exact sequence in

C(C). Then there exists a long sequence

· · · δ
i

−→ H i(X ′
•
)
Hi(f)−−−→ H i(X

•
)
Hi(g)−−−→ H i(X ′′

•
)
δi+1

−−→ H i+1(X ′) −→ · · · .(2.15)

We shall only give the proof when C = Mod(A).
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Sketch of proof. Let us represent the exact sequence of the statement as a
double complex :

�� �� ��
0 // X ′i−1 f i−1

//

di−1
X′
��

X i−1 gi−1
//

di−1
X
��

X ′′i−1 //

di−1
X′′
��

0

0 // X ′i
f i //

��

X i gi //

��

X ′′i //

��

0

(2.16)

Hence, in this double complex, the rows are exact and the columns are the
complexes X ′

•
, X

•
and X ′′

•
. The morphisms f and g define for each i a

sequence

H i(X ′)
Hi(f)−−−→ H i(X)

Hi(g)−−−→ H i(X ′′)

and one easily checks that this sequence is exact.
Let us explain how to construct the maps δi. Let x′′i−1 ∈ X ′′i−1 with

d′′x′′i−1 = 0 which represents an element of H i−1(X ′′
•
). Since the rows of

the diagram (2.16) are exact, there exists xi−1 with g(xi−1) = x′′i−1. Then
gi ◦ di−1

X (xi−1) = 0 and it follow that there exists x′i ∈ X ′i with f i(x′i = xi

and d′x′i = 0. Then the class of x′i ∈ H i(X ′
•
) will depend only on the class

of x′′i−1 ∈ H i−1(X ′′
•
) and the maps δi’s so constructed will have the required

properties. q.e.d.

2.4 Exact functors

Let F : C −→ C ′ be an additive functor of abelian categories and let f : X −→ Y

be a morphism in C. Recall that we have an exact sequence Ker(f)
h−→ X

f−→
Y . Since F is a functor, F (f) ◦ F (h) = 0 and it follows that the morphism
F (Ker(f)) −→ F (X) factorizes through Ker(F (f)):

F (Ker(f))

ww
F (h)

��
0

$$
Ker(F (f)) // F (X)

F (f)
// Y.

(2.17)

In other words, there is a natural morphism

F (Ker(f)) −→ Ker(F (f)).(2.18)
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Similarly, there exists a natural morphism

Coker(F (f)) −→ F (Coker(f)).(2.19)

Remark 2.4.1. In general, the morphisms in (2.17) and (2.19) are not iso-
morphisms (see Example 2.4.5). In particular, an additive functor of abelian
categories F : C −→ C ′ does not send exact sequences to exact sequences. How-
ever, F being additive, it sends split exact sequences to split exact sequences.

Definition 2.4.2. Let F : C −→ C ′ be a functor of abelian categories. One
says that:

(i) F is left exact if it commutes kernels, that is, for any morphism f : X −→
Y , F (Ker(f)) ∼−→Ker(F (f)),

(ii) F is right exact if it commutes with cokernels, that is, for any morphism
f : X −→ Y , Coker(F (f)) ∼−→F (Coker(f).

(iii) F is exact if it is both left and right exact.

Lemma 2.4.3. Consider an additive functor F : C −→ C ′.

(a) The conditions below are equivalent:

(i) F is left exact,

(ii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ in C, the sequence
0 −→ F (X ′) −→ F (X) −→ F (X ′′) is exact in C ′,

(iii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C, the sequence
0 −→ F (X ′) −→ F (X) −→ F (X ′′) is exact in C ′.

(b) The conditions below are equivalent:

(i) F is exact,

(ii) for any exact sequence X ′ −→ X −→ X ′′ in C, the sequence F (X ′) −→
F (X) −→ F (X ′′) is exact in C ′,

(iii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C, the sequence
0 −→ F (X ′) −→ F (X) −→ F (X ′′) −→ 0 is exact in C ′.

There is a similar result to (a) for right exact functors.

Proof. The proof is left as an exercise. q.e.d.

Proposition 2.4.4. (i) The functor HomC : Cop × C −→ Mod(Z) is left ex-
act with respect to each of its arguments.
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(ii) Consider a pair of functors C
F // C ′
G
oo and assume (F,G) are adjoint.

Then F is right exact and G is left exact.

(iii) Let I be a category and let i ∈ I. The functor Fct(I, C) −→ C, F 7→ F (i)
is exact.

(iv) Let A be a ring and let I be a set. The two functors
∏

and
⊕

from
Mod(A)I to Mod(A) are exact.

(v) Let A be a ring and I a poset. The functor lim←− from Fct(Iop,Mod(A))
to Mod(A) is left exact.

(vi) Let A be a ring and let I a be filtrant poset. The functor lim−→ from
Fct(I,Mod(A)) to Mod(A) is exact.

Proof. (i) follows from (2.9) and (2.10).
(ii) Let us prove that G is left exact. Let f : V −→ W be a morphism in C ′
and let X ∈ C. Then

HomC(X,G(Ker f)) ' HomC(F (X),Ker f)

' Ker HomC(F (X), f)

' Ker HomC(X,G(f)) ' HomC(X,KerG(f)).

To conclude, we apply Theorem 2.2.5.
The proof that F is right exact follows by reversing the arrows.

(iii) is obvious and left as an exercise.
(iv) is Proposition 1.4.7.
(v) is Proposition 1.4.8.
(vi) is Proposition 1.4.11. q.e.d.

Note that it follows from Example 1.4.9 that the functor lim←− is not right
exact.

Example 2.4.5. Let A be a ring and let N be a right A-module. Since the
functor N ⊗A • admits a right adjoint, it is right exact. Let us show that
the functors HomA( • , • ) and N ⊗A • are not exact in general. In the sequel,
we choose A = k[x], with k a field, and we consider the exact sequence of
A-modules:

0 −→ A
·x−→ A −→ A/Ax −→ 0,(2.20)

where ·x means multiplication by x.
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(i) Apply the functor HomA( • , A) to the exact sequence (2.20). We get the
sequence:

0 −→ HomA(A/Ax,A) −→ A
x·−→ A −→ 0

which is not exact since x· is not surjective. On the other hand, since x· is
injective and HomA( • , A) is left exact, we find that HomA(A/Ax,A) = 0.
(ii) Apply HomA(A/Ax, • ) to the exact sequence (2.20). We get the se-
quence:

0 −→ HomA(A/Ax,A) −→ HomA(A/Ax,A) −→ HomA(A/Ax,A/Ax) −→ 0.

Since HomA(A/Ax,A) = 0 and HomA(A/Ax,A/Ax) 6= 0, this sequence is
not exact.
(iii) Apply • ⊗A A/Ax to the exact sequence (2.20). We get the sequence:

0 −→ A/Ax
x·−→ A/Ax −→ A/xA⊗A A/Ax −→ 0.

Multiplication by x is 0 on A/Ax. Hence this sequence is the same as:

0 −→ A/Ax
0−→ A/Ax −→ A/Ax⊗A A/Ax −→ 0

which shows that A/Ax⊗A A/Ax ' A/Ax and moreover that this sequence
is not exact.
(iv) Notice that the functor HomA( • , A) being additive, it sends split exact
sequences to split exact sequences. This shows that (2.20) does not split.

Injective and projective objects

Definition 2.4.6. Let C be an abelian category.

(i) An object I ∈ C is injective if the functor HomC( • , I) : Cop −→ Mod(Z)
is exact.

(ii) An object P ∈ C is projective if the functor HomC(P, • ) : C −→ Mod(Z)
is exact.

Hence, I is injective in C if and only if I is projective in Cop.

Example 2.4.7. Let A be a ring. Then free A-modules are projective objects
in the category Mod(A). (See Exercise 2.8.)

Injective objects are useful, thanks to the next result.
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Lemma 2.4.8. Consider the diagram of solid arrows in which the row is
exact:

0 // Y
f //

h
��

X

g
~~

I

(2.21)

and assume that I is injective. Then the doted arrow may be completed
making the diagram commutative.

Proof. Let us apply the exact functor HomC( • , I) to the sequence 0 −→ Y −→
X. We get that the map HomC(X, I)

◦f−→ HomC(Y, I) is surjective. Therefore,
there exists g ∈ HomC(X, I) such that g ◦ f = h. q.e.d.

Proposition 2.4.9. Consider an exact sequence 0 −→ X ′
f−→ X

g−→ X ′′ −→ 0
and assume that X ′ is injective. Then the sequence splits.

Of course there is a similar result when assuming X ′′ is projective.

Proof. By Lemma 2.4.8 applied with Y = I = X ′ and h = idX′ , we get a
morphism h : X −→ X ′ such that h◦f = idX′ . Then apply Proposition 2.3.15.

q.e.d.

Corollary 2.4.10. Let C and C ′ be abelian categories and let F : C −→ C ′ be
an additive functor. Consider an exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in
C and assume that X ′ is injective. Then the sequence 0 −→ F (X ′) −→ F (X) −→
F (X ′′) −→ 0 is exact.

2.5 Derived functor

In this section we explain the construction of the derived functor of a left
exact functor and give its main properties, without proofs.

Let C be an abelian category and denote by I the additive category of
injective objects of C.

Definition 2.5.1. One says that C admits enough injective objects if for any
X ∈ C there exists I0 ∈ I and an exact sequence 0 −→ X −→ I0.

Assume that C admits enough injective objects and denote by Z1 the
cokernel of the morphism X −→ I0. There exists I1 ∈ I and an exact sequence
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0 −→ Z1 −→ I1. By composing the morphisms I) −→ Z1 and Z1 −→ I1 we get
an exact sequence

0 −→ X −→ I0 −→ I1

and by iterating this construction we get a long exact sequence

0 −→ X −→ I0 −→ I1 −→ · · · −→ In −→ · · ·

in which all Ij’s are injective objects.
Denote by I

•
the complex

I
•

:= 0 −→ I0 −→ I1 −→ · · · −→ In −→ · · ·

One says that I
•

is an injective complex and that X is quasi-isomorphic to
I•, or, for short, that X is qis to I

•
or that X −→ I• is a qis.

Let X, Y ∈ C and let X −→ I
•

and Y −→ J
•

be two qis, with I
•

and
J
•

injective compelexes. One shows that if f : X −→ Y is a morphism in C,
then there exists a morphism of complexes f

•
: I

•
X −→ I

•
Y making the diagram

below commutative:

0 // X

f

��

// I0 //

f0

��

I1 //

f1

��

· · · // In //

fn

��

· · ·

0 // Y // J0 // J1 // · · · // Jn // · · · .

(2.22)

Let F : C −→ C ′ be a left exact functor of abelian categories and assume that
C admits enough injective objects.

Definition 2.5.2. Let j ∈ Z. The j-th derived functor of F is defined as
follows.

(i) For X ∈ C, choose an injective complex I
•
X and a qis X −→ I•X . One

sets RjF (X) = Hj(F (I
•
X)).

(ii) For a morphism f : X −→ Y , choose a morphism f
•

: I
•
X −→ I

•
Y making

the diagram 2.22 commutative and set RjF (f) = Hj(F (f
•
)).

One can prove that,

(i) up to isomorphism, RjF (X) depends only of X and not of the choice
of the injective resolution I

•
X ,

(ii) if g• is another morphism making the diagram (2.22) commutative, the
morphisms Hj(F (f •)) and Hj(F (g•)) are be the same.
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One deduces that there exists a well-defined functor RjF : C −→ C ′ such that,
for any X and any qis X −→ I• where I• is an injective complex, RjF (X) is
isomorphic to Hj(F (I

•
)).

By its construction, we have:

• RjF is an additive functor from C to C ′,

• RjF (X) ' 0 for j < 0 since IjX = 0 for j < 0,

• R0F (X) ' F (X) since F being left exact, it commutes with kernels,

• RjF (X) ' 0 for j 6= 0 if F is exact,

• RjF (X) ' 0 for j 6= 0 if X is injective, by the construction of RjF (X).

Definition 2.5.3. An object X of C such that RjF (X) ' 0 for all j > 0 is
called F -acyclic.

Hence, injective objects are F -acyclic for all left exact functors F .

Theorem 2.5.4. Let 0 −→ X ′
f−→ X

g−→ X ′′ −→ 0 be an exact sequence in C.
Then there exists a long exact sequence:

0 −→ F (X ′) −→ F (X) −→ · · · −→ RkF (X ′) −→ RkF (X) −→ RkF (X ′′) −→ · · ·

Sketch of the proof. One constructs an exact sequence of complexes 0 −→
X ′

• −→ X
• −→ X ′′

• −→ 0 whose objects are injective and this sequence is

quasi-isomorphic to the sequence 0 −→ X ′
f−→ X

g−→ X ′′ −→ 0 in C(C). Since
the objects X ′j are injective, we get a short exact sequence in C(C ′):

0 −→ F (X ′
•
) −→ F (X

•
) −→ F (X ′′

•
) −→ 0

Then one applies Theorem 2.3.17. q.e.d.

Definition 2.5.5. Let J be a full additive subcategory of C. One says that
J is F -injective if:

(i) for any X ∈ C there exists J0 ∈ J and an exact sequence 0 −→ X −→ J0.

(ii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with X ′ ∈ J , X ∈
J , then X ′′ ∈ J ,

(iii) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C with X ′ ∈ J , the
sequence 0 −→ F (X ′) −→ F (X) −→ F (X ′′) −→ 0 is exact.
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By considering Cop, one obtains the notion of an F -projective subcategory,
F being right exact.

Theorem 2.5.6. Assume J is F -injective and contains the category IC of
injective objects. Let X ∈ C and let 0 −→ X −→ Y

•
be a resolution of X

with Y
• ∈ C+(J ). Then for each n, there is an isomorphism RnF (X) '

Hn(F (Y
•
)).

In other words, in order to calculate the derived functors RnF (X), it is
enough to replace X with resolution by F -injective objects.

The Ext and Tor groups

Assume that C has enough injectives and let Y ∈ C. The j-th right de-
rived functor of the left exact functor HomC(Y, • ) : C −→ Mod(Z) is denoted

Extj
C
(Y, • ). Hence,

Extj
C
(Y,X) ' Hj(HomC(Y, I

•
X)),

where I
•
X is an injective resolution of X.

If C has enough projectives, one can also define the j-th right derived
functor of the left exact functor HomC( • , X) : Cop −→ Mod(Z). One denotes

it again by Extj
C
( • , X). Hence,

Extj
C
(Y,X) ' Hj(HomC(P

•
Y , X)),

where P
•
Y is an projective resolution of Y .

When C admits both enough injective and projective resolutions, these
two constructions coincide. In other words, there are isomorphisms

Hj(HomC(Y, I
•
X)),' Hj(HomC(P

•
Y , X)).

let N ∈ Mod(Aop). The left derived functor of the right exact N ⊗A • ,

denoted TorAj (N, • ) is calculated as follows. Let M ∈ Mod(A). Choose a
projective resolution P

•
M of M . Then

TorAj (N,M) ' H−j(N ⊗A P
•
M).

In fact, it is enough to take flat (see Exercise 2.8) resolutions instead of
projective ones.

One can also calculate TorAj (N,M) by choosing a projective resolution
P
•
N of N . In fact, one has the isomorphism

H−j(P
•
N ⊗AM) ' H−j(N ⊗A P

•
M).
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Example 2.5.7. Let k be a field and let A = k[x1, . . . , xn]. We identify k
with the A-module A/(A ·x1 + · · ·+A ·xn). By Example 1.5.5, there is a qis
K•(A, (x1, . . . , xn)) [n] −→ k. Since the components of this Koszul complex
are free A-modules, we get:

Extj
A

(k, A) ' Hj(HomA(K•(A, (x1, . . . , xn)) [n], A))

' K•(A, (x1, . . . , xn)),

where the second isomorphism follows from Proposition 1.5.8. Therefore,
Extj

A
(k, A) is zero for j 6= n and is isomorphic to k for j = n.

Example 2.5.8. We follow the notations of Example 1.5.5 and we shall

calculate the groups TorWn
j (Ωn,On). We have seen that there is a qis

K
•
(Wn, (∂1 ·, . . . , ∂n ·))[n] −→ Ωn.

Since the components of this Koszul complex are free Wn-modules, we get
by Proposition 1.5.8:

TorWn
j (Ωn,On) ' H−j(K

•
(Wn, (∂1 ·, . . . , ∂n ·))[n]⊗Wn

On)

' H−j(K
•
(On, (∂1 ·, . . . , ∂n ·))[n]).

We find the De Rham complex of On shifted by n. Therefore TorWn
j (Ωn,On)

is zero for j 6= n and is isomorphic to k for j = n.

Exercises to Chapter 2

Exercise 2.1. Prove that the categories Set and Setop are not equivalent
and similarly with the categories Setf and (Setf )op.
(Hint: if F : Set −→ Setop were such an equivalence, then F (∅) ' {pt} and
F ({pt}) ' ∅. Now compare HomSet({pt}, X) and HomSetop(F ({pt}), F (X))
when X is a set with two elements.)

Exercise 2.2. Let F : C −→ C ′ be a faithful functor and let f be a morphism
in C. Prove that if F (f) is a monomorphism (resp. an epimorphism), then f
is a monomorphism (resp. an epimorphism).

Exercise 2.3. Let F : C −→ C ′ and G : C ′ −→ C ′′ be two functors.
(i) Prove that if G ◦ F is faithful, then F is faithful.
(ii) Prove that if G ◦ F is fully faithful and G is faithful, then F is fully
faithful.
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Exercise 2.4. (i) Is the natural functor Set −→ Rel: full, faithful, fully
faithful, conservative?

(ii) Prove that the category Rel of relations is equivalent to its opposite
category.

Exercise 2.5. (i) Prove that in the category Set, a morphism f is a mono-
morphism (resp. an epimorphism) if and only if it is injective (resp. surjec-
tive).

(ii) Prove that in the category of rings, the morphism Z −→ Q is an epimor-
phism.

(iii) In the category Top, give an example of a morphism which is both a
monomorphism and an epimorphism and which is not an isomorphism.

Exercise 2.6. Let C be a category. We denote by idC : C −→ C the identity
functor of C and by End (idC) the set of endomorphisms of the identity functor
idC : C −→ C, that is, End (idC) = Hom Fct(C,C)(idC, idC). Prove that the

composition law on End (idC) is commutative.

Exercise 2.7. Consider two complexes in an abelian category C: X ′1 −→
X1 −→ X ′′1 and X ′2 −→ X2 −→ X ′′2 . Prove that the two sequences are exact if
and only if the sequence X ′1 ⊕X ′2 −→ X1 ⊕X2 −→ X ′′1 ⊕X ′′2 is exact.

Exercise 2.8. (i) Prove that a free module is projective.

(ii) Prove that a module P is projective if and only if it is a direct summand
of a free module (i.e., there exists a module K such that P ⊕K is free).

(iii) An A-module M is flat if the functor • ⊗A M is exact. (One defines
similarly flat right A-modules.) Deduce from (ii) that projective modules are
flat.

(iv) Prove that a filtrant inductive limit of flat modules is flat.

Exercise 2.9. If M is a Z-module, set M∨ = HomZ(M,Q/Z).

(i) Prove that Q/Z is injective in Mod(Z).

(ii) Prove that the map HomZ(M,N) −→ HomZ(N∨,M∨) is injective for any
M,N ∈ Mod(Z).

(iii) Prove that if P is a right projective A-module, then P∨ is left A-injective.

(iv) Let M be an A-module. Prove that there exists an injective A-module
I and a monomorphism M −→ I.

(Hint: (iii) Use formula (1.12). (iv) Prove that M 7→ M∨∨ is an injective
map using (ii), and replace M with M∨∨.)
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Exercise 2.10. Let C be an abelian category and consider a commutative
diagram of complexes

0

��

0

��

0

��
0 // X ′0 //

��

X0
//

��

X ′′0

��
0 // X ′1 //

��

X1
//

��

X ′′1

��
0 // X ′2 // X2

// X ′′2

Assume that all rows are exact as well as the second and third column. Prove
that all columns are exact.
(Hint: assume C = Mod(A) for a ring A.)

Exercise 2.11. We follow the notations of Examples 1.5.5 and 2.5.8. Cal-
culate Extj

Wn
(On,On).

Exercise 2.12. We follow the notations of Examples 1.5.5 and 2.5.8 and
recall Exercise 1.4. Set B1 = W2/(W2 ·x1 +W2 · ∂2) and B2 = W2/(W2 ·x2 +
W2 · ∂1). Calculate Extj

W2
(B1, B2).
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Chapter 3

Sheaves

In this chapter we expose basic sheaf theory in the framework of topological
spaces.
Recall that all along these Notes, k denotes a commutative unital ring.
Some references: [7, 11, 13, 18].

3.1 Presheaves

Let X be a topological space. The family of open subsets of X is ordered by
inclusion. We denote by OpX the associated category. Hence:

HomOpX
(U, V ) =

{
{pt} if U ⊂ V,

∅ otherwise.

Note that the category OpX admits a terminal object, namely X, and finite
products, namely U × V = U ∩ V .

Definition 3.1.1. One sets PSh(kX) := Fct((OpX)op,Mod(k)) and calls an
object of this category a presheaf of k-modules, or simply a presheaf. In
other words, a presheaf on X is a functor from (OpX)op to Mod(k).

Hence, a presheaf F on X associates to each open subset U ⊂ X a k-
module F (U), and to an open inclusion V ⊂ U , a linear map ρV U : F (U) −→
F (V ), such that for each open inclusions W ⊂ V ⊂ U , one has:

ρUU = idU , ρWU = ρWV ◦ ρV U .

A morphism of presheaves ϕ : F −→ G is thus the data for any open set U of
a linear map ϕ(U) : F (U) −→ G(U) such that for any open inclusion V ⊂ U ,

57
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the diagram below commutes:

F (U)
ϕ(U) //

��

G(U)

��
F (V )

ϕ(V ) // G(V )

The category PSh(kX) inherits of most of the properties of the category
Mod(k). In particular it is abelian. For example, if F and G are two
presheaves, the presheaf U 7→ F (U) ⊕ G(U) is the direct sum of F and G
in PSh(kX). If ϕ : F −→ G is a morphism of presheaves, then (Kerϕ)(U) '
Kerϕ(U) and (Cokerϕ)(U) ' Cokerϕ(U) where ϕ(U) : F (U) −→ G(U).
Hence, a complex F ′ −→ F −→ F ′′ is exact in the category PSh(kX) if
and only if, for any U ∈ OpX , the sequence F ′(U) −→ F (U) −→ F ′′(U) is
exact in the category Mod(k). In particular, for U ∈ OpX , the functor
PSh(kX) −→ Mod(k), F 7→ F (U) is exact by Proposition 2.4.4.

Notation 3.1.2. (i) One calls the morphisms ρV U , the restriction mor-
phisms. If s ∈ F (U), one better writes s|V instead of ρV U(s) and calls
s|V the restriction of s to V .
(ii) One denotes by F |U the presheaf on U defined by V 7→ F (V ), V open in
U and calls F |U the restriction of F to U .

Hence, we have the functor

( • )|U : PSh(kX) −→ PSh(kU), F 7→ F |U .

Clearly, this functor is exact.

Examples 3.1.3. (i) Let M ∈ Mod(k). The correspondence U 7→ M is a
presheaf, called the constant presheaf on X with fiber M . For example, if
M = C, one gets the presheaf of C-valued constant functions on X.
(ii) Let C0(U) denote the C-vector space of C-valued continuous functions on
U . Then U 7→ C0(U) (with the usual restriction morphisms) is a presheaf of
C-vector spaces, denoted C0

X .

Definition 3.1.4. Let x ∈ X, and let Ix denote the poset consisting of open
neighborhoods of x. Since U, V ∈ Ix implies U ∩ V ∈ Ix, the poset Iop

x is
filtrant. We consider Ix as a full subcategory of OpX .

For a presheaf F on X, one sets:

Fx = lim−→
U∈Iopx

F (U).(3.1)

One calls Fx the stalk of F at x.
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Let x ∈ U and let s ∈ F (U). The image sx ∈ Fx of s is called the germ
of s at x. Note that any sx ∈ Fx is represented by a section s ∈ F (U) for
some open neighborhood U of x, and for s ∈ F (U), t ∈ F (V ), sx = tx means
that there exists an open neighborhood W of x with W ⊂ U ∩ V such that
ρWU(s) = ρWV (t). (See Example 1.3.8.)

Proposition 3.1.5. The functor F 7→ Fx from PSh(kX) to Mod(k) is exact.

Proof. The functor F 7→ Fx is the composition

PSh(kX) = Fct(Opop
X ,Mod(k)) −→ Fct(Iop

x ,Mod(k)) −→ Mod(k).

The first functor associates to a presheaf F its restriction to the category Iop
x .

It is clearly exact. Since the poset Iop
x is filtrant, the functor lim−→ is exact.

q.e.d.

3.2 Sheaves

Notation 3.2.1. For a family U := {Ui}i∈I of open subsets of X indexed by
a set I, one sets Uij = Ui ∩ Uj, Uijk = Ui ∩ Uj ∩ Uk, etc.

One says that U is an open covering of U if
⋃
i Ui = U .

Let F be a presheaf on X and consider the two conditions below.

S1 For any open subset U ⊂ X, any open covering U =
⋃
i Ui, any s ∈

F (U) satisfying s|Ui
= 0 for all i, one has s = 0.

S2 For any open subset U ⊂ X, any open covering U =
⋃
i Ui, any family

{si ∈ F (Ui), i ∈ I} satisfying si|Uij
= sj|Uij

for all i, j, there exists
s ∈ F (U) with s|Ui

= si for all i.

Definition 3.2.2. (i) One says that F is separated if it satisfies S1. One
says that F is a sheaf if it satisfies S1 and S2.

(ii) One denotes by Mod(kX) the full k-additive subcategory of PSh(corX)
whose objects are sheaves and by ιX : Mod(kX) −→ PSh(kX) the for-
getful functor.

(iii) One writes HomkX
( • , • ) instead of HomMod(kX)( • , • ).

• If F is a sheaf of k-modules, then F (∅) = 0.

• If {Ui}i∈I is a family of disjoint open subsets and F is a sheaf, then
F (
⊔
i Ui) =

∏
i F (Ui).
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• If F is a sheaf on X, then its restriction F |U to an open subset U is a
sheaf.

Notation 3.2.3. Let F be a sheaf of k-modules on X.
(i) One defines its support, denoted by suppF , as the complementary of the
union of all open subsets U of X such that F |U = 0. Note that F |X\suppF = 0.
(ii) Let s ∈ F (U). One can define its support, denoted by supp s, as the
complementary of the union of all open subsets U of X such that s|U = 0.

The next result is extremely useful. It says that to check that a morphism
of sheaves is an isomorphism, it is enough to do it at each stalk.

Proposition 3.2.4. Let ϕ : F −→ G be a morphism of sheaves.

(i) ϕ is a monomorphism of presheaves if and only if, for all x ∈ X,
ϕx : Fx −→ Gx is injective.

(ii) ϕ is an isomorphism if and only if, for all x ∈ X, ϕx : Fx −→ Gx is an
isomorphism.

Proof. (i) The condition is necessary by Proposition 3.1.5. Assume now ϕx
is injective for all x ∈ X and let us prove that ϕ : F (U) −→ G(U) is injective.
Let s ∈ F (U) with ϕ(s) = 0. Then (ϕ(s))x = 0 = ϕx(sx), and ϕx being
injective, we find sx = 0 for all x ∈ U . This implies that there exists an open
covering U = ∪iUi, with s|Ui

= 0, and by S1, s = 0.
(ii) The condition is clearly necessary. Assume now ϕx is an isomorphism
for all x ∈ X and let us prove that ϕ : F (U) −→ G(U) is surjective. Let
t ∈ G(U). There exists an open covering U = ∪iUi and si ∈ F (Ui) such that
t|Ui

= ϕ(si).
Then, ϕ(si)|Ui∩Uj

= ϕ(sj)|Ui∩Uj
, hence by (i), si|Ui∩Uj

= sj|Ui∩Uj
and by

S2, there exists s ∈ F (U) with s|Ui
= si. Since ϕ(s)|Ui

= t|Ui
, we have

ϕ(s) = t, by S1. q.e.d.

Examples 3.2.5. (i) The presheaf C0
X is a sheaf.

(ii) Let M ∈ Mod(k). The presheaf of locally constant functions on X with
values in M is a sheaf, called the constant sheaf with stalk M and denoted
MX . Note that the constant presheaf with stalk M is not a sheaf except if
M = 0.

(iii) More generally, let S be a closed subset of X. One defines the constant
sheaf MS with stalk M on S as the sheaf of functions which are locally
constant on S with values in M and are 0 on X \S. When S = {x} for some
x ∈ X, the sheaf M{x} is called the sky-skrapper sheaf at x with stalk M .
Hence, Γ(U ;M{x}) is isomorphic to M or 0 according wether x ∈ U or not.
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(iv) On a real manifold X of class C∞, we have the sheaf C∞X of complex

valued functions of class C∞ and the sheaves C∞,(p)X of p-forms with coefficients
in C∞. These sheaves are also denoted Ωp

X (hence, Ω0
X = C∞X ).

(v) On a complex manifold X, we have the sheaf OX of holomorphic func-
tions, and the sheaves Ωp

X of holomorphic p-forms with coefficients in OX .
(hence, Ω0

X = OX).

(vi) On a topological space X, the presheaf U 7→ C0,b
X (U) of continuous

bounded functions is not a sheaf in general. To be bounded is not a local
property and axiom S2 is not satisfied.

(vii) Let X = C, and denote by z the holomorphic coordinate. The holomor-
phic derivation ∂

∂z
is a morphism from OX to OX . Consider the presheaf:

F : U 7→ O(U)/
∂

∂z
O(U),

that is, the presheaf Coker( ∂
∂z

: OX −→ OX). For U an open disk, F (U) = 0
since the equation ∂

∂z
f = g is always solvable. However, if U = C \ {0},

F (U) 6= 0. Hence the presheaf F does not satisfy axiom S1.

Consider the forgetful functor

ιX : Mod(kX) −→ PSh(kX)(3.2)

which, to a sheaf F associates the underlying presheaf. When there is no
risk of confusion, we shall often omit the symbol ιX . In other words, we shall
identify a sheaf and the underlying presheaf.

We shall admit the next result.

Theorem 3.2.6. The forgetful functor ιX in (3.2) admits a left adjoint

a : Mod(kX) −→ PSh(kX).(3.3)

More precisely, one has the isomorphism, functorial with respect to F ∈
PSh(kX) and G ∈ Mod(corX)

(3.4) Hom PSh(kX)(F, ιXG) ' HomkX
(F a, G).

Moreover (3.4) defines a morphism of presheaves θ : F −→ F a and θx : Fx −→
F a
x is an isomorphism for all x ∈ X.

Note that if F is locally 0, then F a = 0. If F is a sheaf, then θ : F −→ F a

is an isomorphism.
If F is a presheaf on X, the sheaf F a is called the sheaf associated with

F .
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Remark 3.2.7. Assume that the presheaf F is separated, that is, satisfies S1.
Then the morphism of presheaves θ : F −→ F a is a monomorphism. Indeed,
if s ∈ F (U) satisfied θ(s) = 0, this implies that sx = 0 for all x ∈ U and F
being separated, s = 0.

Example 3.2.8. Let M ∈ Mod(k). Then the sheaf associated with the
constant presheaf U 7→ M is the sheaf MX of M -valued locally constant
functions.

Theorem 3.2.9. (a) The category Mod(kX) is abelian and the functor ιX :
Mod(kX) −→ PSh(kX) is fully faithful and left exact.

(b) The functor a : PSh(kX) −→ Mod(kX) in (3.3) is exact.

Proof. (a)-(i) Recall that the functor ιX is fully faithful by the definition of
the category Mod(kX).

(a)-(ii) Let ϕ : F −→ G be a morphism of sheaves and let ιXϕ : ιXF −→ ιXG
denote the underlying morphism of presheaves. Set K := Ker ιXϕ. Hence, K
is the presheaf U 7→ Ker(ϕ(U) : (F (U) −→ G(U)). Since F is separated, K
is separated. Let U =

⋃
i Ui be an open covering of an open subset U of X

and let {si ∈ K(Ui), i ∈ I} satisfying si|Uij
= sj|Uij

for all i, j. There exists
s ∈ F (U) with s|Ui

= si for all i. Since ϕ(si) = 0 for all i and G is a sheaf,
ϕ(s) = 0, hence s ∈ K(U).

We have thus proved that Ker ιXϕ is a sheaf. Let us prove that Ker ιXϕ
is the kernel of ϕ. Consider a morphism of sheaves ψ : H −→ F such that
ϕ◦ψ = 0. The morphism ψ factorizes uniquely through the presheaf Ker ιXϕ,
that is, through K and it follows that K is the kernel of ϕ in Mod(kX).

(a)-(iii) Set L := Coker ιXϕ. Hence, L is the presheaf U 7→ Coker(ϕ(U))
where ϕ(U) is the map F (U) −→ G(U) associated to ϕ. Consider a morphism
of sheaves ψ : G −→ H such that ψ ◦ ϕ = 0. The morphism ψ factorizes
uniquely to the presheaf L and it follows from Theorem 3.2.6 that ψ extends
uniquely to a morphism of sheaves La −→ H. Therefore, the sheaf La is the
cokernel of ϕ in Mod(kX).

(a)-(iv) It follows from (a)-(ii) and (a)-(iii) that for x ∈ X, the germ (Kerϕ)x
of the kernel of ϕ is the kernel of ϕx : Fx −→ Gx and similarly, the germ
(Cokerϕ)x of the cokernel of ϕ is the cokernel of ϕx : Fx −→ Gx. It follows
that a similar result holds for the image and coimage, and therefore the map
(Coimϕ)x −→ (Imϕ)x is an isomorphism for all x. Hence, Coimϕ −→ Imϕ is
an isomorphism by Proposition 3.2.4.

(b)-(i) Let us show that a commutes with kernels.
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The commutative diagram

0 // Kerϕ // F //

��

G

��
0 // Ker(ϕa) // F a // Ga

defines the morphism Kerϕ −→ Kerϕa, hence, the morphism ψ : (Kerϕ)a −→
Kerϕa. Since the functor F 7→ Fx commutes both with Ker and with a, ψx
is an isomorphism for all x and ψ is an isomorphism by Proposition 3.2.4.

(b)-(ii) Since a is left adjoint to ιX , it is right exact. q.e.d.

Recall that the functor F 7→ F a commutes with the functors of restriction
F 7→ F |U , as well as with the functor F 7→ Fx.

Proposition 3.2.10. (i) Let ϕ : F −→ G be a morphism of sheaves and
let x ∈ X. Then (Kerϕ)x ' Kerϕx and (Cokerϕ)x ' Cokerϕx. In
particular the functor F 7→ Fx, from Mod(kX) to Mod(k) is exact.

(ii) Let F ′
ϕ−→ F

ψ−→ F ′′ be a complex of sheaves. Then this complex is exact

if and only if for any x ∈ X, the complex F ′x
ϕx−→ Fx

ψx−→ F ′′x is exact.

Proof. (i) The result is true in the category of presheaves. Since ιX Kerϕ '
Ker ιXϕ and Cokerϕ ' (Coker ιXϕ)a, the result follows.
(ii) By Proposition 3.2.4, Imϕ ' Kerψ if and only if (Imϕ)x ' (Kerψ)x for
all x ∈ X. Hence the result follows from (i). q.e.d.

By this statement, the complex of sheaves above is exact if and only if for
each section s ∈ F (U) defined in an open neighborhood U of x and satisfying
ψ(s) = 0, there exists another open neighborhood V of x with V ⊂ U and a
section t ∈ F ′(V ) such that ϕ(t) = s|V .

On the other hand, a complex of sheaves 0 −→ F ′ −→ F −→ F ′′ is exact if
and only if it is exact as a complex of presheaves, that is, if and only if, for
any U ∈ OpX , the sequence 0 −→ F ′(U) −→ F (U) −→ F ′′(U) is exact.

Examples 3.2.11. Let X be a real manifold of dimension n. The (aug-
mented) de Rham complex is

(3.5) 0 −→ CX −→ C∞,(0)
X

d−→ · · · −→ C∞,(n)
X −→ 0

where d is the differential. This complex of sheaves is exact.
(ii) Let X be a complex manifold of dimension n. The (augmented) holo-
morphic de Rham complex is

(3.6) 0 −→ CX −→ Ω0
X

d−→ · · · −→ Ωn
X −→ 0

where d is the holomorphic differential. This complex of sheaves is exact.
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Definition 3.2.12. Let U ∈ OpX . We denote by Γ(U ; • ) : Mod(kX) −→
Mod(k) the functor F 7→ F (U).

Proposition 3.2.13. The functor Γ(U ; • ) is left exact.

Proof. The functor Γ(U ; • ) is the composition

Mod(kX)
ιX−→ PSh(kX)

λU−→ Mod(k),

where λU is the functor F 7→ F (U). Since ιX is left exact and λU is exact,
the result follows. q.e.d.

The functor Γ(U ; • ) is not exact in general. Indeed, consider Example 3.2.5
(v). Recall that X = C, z is a holomorphic coordinate and U = X \ {0}.
Then the sequence of sheaves 0 −→ CX −→ OX

∂z−→ OX −→ 0 is exact. Applying
the functor Γ(U ; • ), the sequence one obtains is no more exact.

3.3 Hom and ⊗
Definition 3.3.1. Let F,G ∈ PSh(kX). One denotes by Hom PSh(kX)(F,G)

or simply Hom (F,G) the presheaf on X, U 7→ Hom PSh(kU )(F |U , G|U) and
calls it the “internal hom” of F and G.

Proposition 3.3.2. Let F,G ∈ Mod(kX). Then the presheaf Hom (F,G) is
a sheaf.

We shall skip the proof.
The functor HomkX

( • , • ) being left exact, it follows that

Hom ( • , • ) : Mod(kX)op ×Mod(kX) −→ Mod(kX)

is left exact with respect of each of its arguments. Note that

HomkX
( • , • ) ' Γ(X; • ) ◦ Hom ( • , • ).

Since a morphism: ϕ : F −→ G defines a k-linear map Fx −→ Gx, we get a
natural morphism (Hom (F,G))x −→ Hom (Fx, Gx). In general, this map is
neither injective nor surjective.

Definition 3.3.3. Let F,G ∈ Mod(kX).

(i) One denotes by F
psh
⊗G the presheaf on X, U 7→ F (U)⊗k G(U).
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(ii) One denotes by F ⊗kX
G the sheaf associated with the presheaf F

psh
⊗G

and calls it the tensor product of F and G. If there is no risk of
confusion, one writes F ⊗G instead of F ⊗kX

G.

The functor

• ⊗ • : Mod(kX)×Mod(kX) −→ Mod(kX)

is the composition of the right exact functor
psh
⊗ and the exact functor a. This

functor is thus right exact and if k is a field, it is exact. Note that for x ∈ X
and U ∈ OpX :

(i) (F ⊗G)x ' Fx ⊗Gx,

(ii) Hom (F,G)|U ' Hom (F |U , G|U),

(iii) Hom (kX , F ) ' F ,

(iv) kX ⊗F ' F .

Example 3.3.4. Let C∞X denote as above the sheaf of real valued C∞-
functions on a real manifold X. If V is a finite R-dimensional vector space
(e.g., V = C), then the sheaf of V -valued C∞-functions is nothing but
C∞X ⊗RX

VX .

3.4 Locally constant and locally free sheaves

Locally constant sheaves

Definition 3.4.1. (i) Let M be a k-module. Recall that the sheaf MX is
the sheaf of locally constant M -valued functions on X. It is also the
sheaf associated with the constant presheaf U 7→M .

(ii) A sheaf F on X is constant if it is isomorphic to a sheaf MX , for some
M ∈ Mod(k).

(iii) A sheaf F on X is locally constant if there exists an open covering
X =

⋃
i Ui such that F |Ui

is a constant sheaf of Ui.

Recall that a morphism of sheaves which is locally an isomorphism is
an isomorphism of sheaves. However, given two sheaves F and G, it may
exist an open covering {Ui}i∈I of X and isomorphisms F |Ui

∼−→G|Ui
for all

i ∈ I, although these isomorphisms are not induced by a globally defined
isomorphism F −→ G.
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Example 3.4.2. Consider X = R and consider the C-valued function t 7→
exp(t), that we simply denote by exp(t). Consider the sheaf CX · exp(t)
consisting of functions which are locally a constant multiple of exp(t). Clearly
CX ·exp(t) is isomorphic to the constant sheaf CX , hence, is a constant sheaf.
Note that this sheaf may also be defined by the exact sequence

0 −→ CX · exp(t) −→ C∞X
P−→ C∞X −→ 0

where P is the differential operator
∂

∂t
− 1.

Examples 3.4.3. (i) If X is not connected it is easy to construct locally
constant sheaves which are not constant. Indeed, let X = U1 t U2 be a
covering by two non-empty open subsets, with U1∩U2 = ∅. Let M ∈ Mod(k)
with M 6= 0. Then the sheaf which is 0 on U1 and MU2 on U2 is locally
constant and not constant.
(ii) Let X = C \ {0} with holomorphic coordinate z and consider the differ-
ential operator P = z ∂

∂z
− α, where α ∈ C \ Z. Let us denote by Kα the

kernel of P acting on OX .
Let U be an open disk in X centered at z0, and let A(z) denote a primitive

of α/z in U . We have a commutative diagram of sheaves on U :

OX
exp(−A(z))

��

z ∂
∂z
−α

// OX
1
z

exp(−A(z))
��

OX
∂
∂z // OX

Therefore, one gets an isomorphism of sheaves Kα|U ∼−→CX |U , which shows
that Kα is locally constant, of rank one.

On the other hand, f ∈ O(X) and Pf = 0 implies f = 0. Hence
Γ(X;Kα) = 0, and Kα is a locally constant sheaf of rank one on C \ {0}
which is not constant.

Locally free sheaves

A sheaf of k-algebras (or, equivalently, a kX-algebra) A on X is a sheaf of
k-modules such that for each U ⊂ X, A(U) is endowed with a structure of
a k-algebra, and the operations (addition, multiplication) commute to the
restriction morphisms. A sheaf of Z-algebras is simply called a sheaf of rings.
If A is a sheaf of rings, one defines in an obvious way the notion of a sheaf
F of (left) A-modules (or simply, an A-module) as follows: for each open set
U ⊂ X, F (U) is an A(U)-module and the action of A(U) on F (U) commutes
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to the restriction morphisms. One also naturally defines the notion of an A-
linear morphism of A-modules. Hence we have defined the category Mod(A)
of A-modules.

Examples 3.4.4. (i) Let A be a k-algebra. The constant sheaf AX is a sheaf
of k-algebras.
(ii) On a topological space, the sheaf C0

X is a CX-algebra. If X is open in Rn,
the sheaf C∞X is a CX-algebra. The sheaf DbX is a C∞X -module.
(iii) If X is open in Cn, the sheaf OX is a CX-algebra.

The category Mod(A) is clearly an additive subcategory of Mod(kX).
Moreover, if ϕ : F −→ G is a morphism of A-modules, then Kerϕ and Cokerϕ
will be A-modules. One checks easily that the category Mod(A) is abelian,
and the natural functor Mod(A) −→ Mod(kX) is exact and faithful (but not
fully faithful). Now consider a sheaf of rings A.

Definition 3.4.5. (i) A sheaf L of A-modules is locally free of rank r
(resp. of finite rank) if there exists an open covering X = ∪iUi such
that L|Ui

is isomorphic to a direct sum of r copies (resp. to a finite
direct sum) of A|Ui

.

(ii) A locally free sheaf of rank one is called an invertible sheaf.

Gluing sheaves

Let X be a topological space, and let U = {Ui}i∈I be an open covering of X.
One sets Uij = Ui ∩ Uj, Uijk = Uij ∩ Uk. First, consider a sheaf F on X, set
Fi = F |Ui

, θi : F |Ui
∼−→Fi, θji = θj ◦ θ−1

i . Then clearly:

(3.7)
θii = id on Ui,

θij ◦ θjk = θik on Uijk.

}
The family of isomorphisms {θij} satisfying conditions (3.7) is called a 1-
cocycle. Let us show that one can reconstruct F from the data of a 1-cocycle.

Theorem 3.4.6. Let U = {Ui}i∈I be an open covering of X and let Fi be
a sheaf on Ui. Assume to be given for each pair (i, j) an isomorphism of
sheaves θji : Fi|Uij

∼−→Fj|Uij
, these isomorphisms satisfying the conditions

(3.7).
Then there exists a sheaf F on X and for each i isomorphisms θi :

F |Ui
∼−→Fi such that θj = θji ◦ θi. Moreover, (F, {θi}i∈I) is unique up to

unique isomorphism.

This result is out of the scope of the course and we shall not prove it here.
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Remark 3.4.7. (i) If the Fi’s are locally constant, then F is locally constant.
(ii) In the situation of Theorem 3.4.6, if A is a sheaf of k-algebras on X and if
all Fi’s are sheaves of A|Ui

modules and the isomorphisms θji are A|Uij
-linear,

the sheaf F constructed in Theorem 3.4.6 will be naturally endowed with a
structure of a sheaf of A-modules.

Example 3.4.8. Assume k is a field, and recall that k× denote the multi-
plicative group k \ {0}. Let X = S1 be the 1-sphere, and consider a covering
of X by two open connected intervals U1 and U2. Let U±12 denote the two
connected components of U1 ∩ U2. Let α ∈ k×. One defines a locally con-
stant sheaf Lα on X of rank one over k by gluing kU1 and kU2 as follows. Let
θε : kU1|Uε

12
−→ kU2|Uε

12
(ε = ±) be defined by θ+ = 1, θ− = α.

Assume that k = C. One can give a more intuitive description of the
sheaf Lα as follows. Let us identify S1 with [0, 1]/ ∼, where ∼ is the relation
which identifies 0 and 1. Choose β ∈ C with exp(2iπβ) = α. If β /∈ Z, the
function θ 7→ exp(2iπβθ) is not well defined on S1 since it does not take the
same value at 0 and at 1. However, the sheaf CX · exp(2iπβθ) of functions
which are a constant multiple of the function exp(2iπβθ) is well-defined on
each of the intervals U1 and U2, hence is well defined on S1, although it does
not have any global section.

Example 3.4.9. Consider an n-dimensional real manifold X of class C∞, and
let {Xi, fi} be an atlas, that is, the Xi are open subsets of X and fi : Xi

∼−→Ui
is a C∞-isomorphism with an open subset Ui of Rn. Let U i

ij = fi(Xij) and
denote by fji the map

(3.8) fji = fj|Xij
◦ f−1

i |U i
ij

: U i
ij −→ U j

ij.

The maps fji are called the transition functions. They are isomorphisms of
class C∞. Denote by Jf the Jacobian matrix of a map f : Rn ⊃ U −→ V ⊂
Rn. Using the formula Jg◦f (x) = Jg(f(x)) ◦ Jf (x), one gets that the locally
constant function on Xij defined as the sign of the Jacobian determinant
det Jfji of the fji’s is a 1-cocycle. It defines a sheaf locally isomorphic to ZX
called the orientation sheaf on X and denoted by orX .

Remark 3.4.10. In the situation of Theorem 3.4.6, if A is a sheaf of k-
algebras on X and if all Fi’s are sheaves of A|Ui

modules and the isomor-
phisms θji are A|Uij

-linear, the sheaf F constructed in Theorem 3.4.6 will be
naturally endowed with a structure of a sheaf of A-modules.

Example 3.4.11. (i) Let X = P1(C), the Riemann sphere. Then ΩX := Ω1
X

is locally free of rank one over OX . Since Γ(X; ΩX) = 0, this sheaf is not
globally free.
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(ii) Consider the covering of X by the two open sets U1 = C, U2 = X \ {0}.
One can glue OX |U1 and OX |U2 on U1 ∩ U2 by using the isomorphism f 7→
zpf (p ∈ Z). One gets a locally free sheaf of rank one. For p 6= 0 this sheaf
is not free.

3.5 Flabby sheaves and soft sheaves

.

Flabby sheaves

Definition 3.5.1. On a topological space X, an object F ∈ Mod(kX) is
flabby if for any open subset U of X the restriction map Γ(X;F ) −→ Γ(U ;F )
is surjective.

Of course, If F is flabby and U is open in X, then F |U is flabby on U .

Proposition 3.5.2. Let 0 −→ F ′
α−→ F

β−→ F ′′ −→ 0 be an exact sequence of
sheaves, and assume F ′ is flabby. Then the sequence

0 −→ Γ(X;F ′)
α−→ Γ(X;F )

β−→ Γ(X;F ′′) −→ 0

is exact.

Proof. Let s′′ ∈ Γ(X;F ′′) and let σ = {(U ; s); U open in X, s ∈ Γ(U ;F ),
β(s) = s′′|U}. Then σ is naturally inductively ordered. Let (U ; s) be a
maximal element, and assume U 6= X.

Let x ∈ X \ U , let V be an open neighborhood of x and let t ∈ Γ(U ;F )
such that β(t) = s′′|V . Such a pair (V ; t) exists since β : Fx −→ F ′′x is
surjective. On U ∩ V , s− t ∈ Γ(U ∩ V ;F ′). Let r ∈ Γ(X;F ′) which extends
s−t. Then s−(t+r) = 0 on U∩V , hence there exists a section s̃ ∈ Γ(U∪V ;F )
with s̃|U = s, s̃|V = t+ r, and β(s̃) = s′′. This is a contradiction. q.e.d.

Proposition 3.5.3. Let X =
⋃
i∈I Ui be an open covering of X and let

F ∈ Mod(kX). Assume that F |Ui
is flabby for all i ∈ I. Then F is flabby.

In other words, flabbyness is a local property.

Proof. Let U be an open subset of X and let s ∈ F (U). Let us prove that s
extends to a global section of F . Let S be the family of pairs (t, V ) such that
V is open and contains U and t|U = s. We order S as follows:(t, V ) ≤ (t′, V ′)
if V ⊂ V ′ and t′|V = t. Then S is inductively ordered. Therefore, there exists
a maximal element (t, V ). Let us show that V = X. Otherwise, there exists
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x ∈ X \ V and an i ∈ I such that x ∈ Ui. Then t|Ui∩V ∈ F (Ui ∩ V ) extends
to a section ti ∈ F (Ui). Since ti|Ui∩V = t|Ui∩V , the section t extends to a
section on V ∪ Ui which contredicts the fact that V is maximal. q.e.d.

Proposition 3.5.4. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of
sheaves. Assume F ′ and F are flabby. Then F ′′ is flabby.

Proof. Let U be an open subset of X and consider the diagram:

Γ(X;F )

α

��

// Γ(X;F ′′)

γ

��

// 0

Γ(U ;F )
β // Γ(U ;F ′′) // 0

Then α is surjective since F is flabby and β is surjective since F ′ is flabby,
in view of the preceding proposition. This implies γ is surjective, hence F ′′

is flabby. q.e.d.

Soft sheaves

In this subsection all spaces are assumed to be locally compact. For a com-
pact subset K of X we set

F (K) = Γ(K;F ) := lim−→
K⊂U

Γ(U ;F ).

Definition 3.5.5. Assume X is locally compact. A sheaf F on X is soft if
for any compact subset K of X, the map Γ(X;F ) −→ Γ(K;F ) is onto.

Of course, If F is soft and U is open in X, then F |U is soft on U .

Proposition 3.5.6. Assume X is locally compact and let F ∈ Mod(kX) be
soft. Let K1 and K2 be two compact subsets of X and set for short K12 =
K1 ∩K2. Then the sequence

0 −→ F (K1 ∪K2)
α−→ F (K1)⊕ F (K2)

β−→ F (K1 ∩K2) −→ 0(3.9)

is exact. Here α(u) = (u|K1 , u|K2) and β(v1, v2) = v1|K12 − v2|K12.

Proof. We have to prove that β is surjective. Since any s ∈ F (K1 ∩ K2)
extends as a section s̃ ∈ F (X), we may choose s1 = s̃|K1 and s2 = 0. q.e.d.

Lemma 3.5.7. Assume X is locally compact. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0
be an exact sequence of sheaves and assume F ′ is soft. Let K be a compact
subset of X. Then the sequence below is exact:

0 −→ Γ(K;F ′)
α−→ Γ(K;F )

β−→ Γ(K;F ′′) −→ 0.
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Proof. Let {Ki}ni=1 be a finite covering of K by compact subsets such that
there exist si ∈ Γ(Ki;F ) with β(si) = s′′|Ki

. We argue by induction on n,
and reduce the proof to the case n = 2. Then s1|K1∩K2 − s2|K1∩K2 belongs
to Γ(K1 ∩K2;F ′). We extend this element to s′ ∈ Γ(X;F ′) and replace s2

by s2 + s′. Hence there exists t ∈ Γ(K1 ∪ K2;F ) with β(t) = s′′ and the
induction proceeds. q.e.d.

Proposition 3.5.8. Assume X is locally compact and countable at infinity.
Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of sheaves and assume that
F ′ is soft. Then the sequence below is exact.

0 −→ Γ(X;F ′)
α−→ Γ(X;F )

β−→ Γ(X;F ′′) −→ 0.

Proof. Let {Kn}n∈N be an increasing sequence of compact subsets of X, with
X = ∪nKn and Kn contained in the interior of Kn+1. By Lemma 3.5.7 the
sequences

0 −→ Γ(Kn;F ′) −→ Γ(Kn;F ) −→ Γ(Kn;F ′′) −→ 0

are all exact. Moreover the morphisms Γ(Kn+1;F ′) −→ Γ(Kn;F ′) are all
surjective since F ′ is soft. Hence the sequence obtained by taking the projec-
tive limit will remain exact by Proposition 1.4.10. This completes the proof
since for any sheaf G, G(X) ' lim←−

K

G(K), where K ranges over the family of
compact subsets of X. q.e.d.

Proposition 3.5.9. . Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of
sheaves, and assume F ′ and F are c-soft. Then F ′′ is soft.

The proof is similar to that of Proposition 3.5.4.

Proposition 3.5.10. Assume X is locally compact and countable at infinity.
Let X =

⋃
i∈I Ui be an open covering of X and let F ∈ Mod(kX). Assume

that F |Ui
is soft for all i ∈ I. Then F is soft.

In other words, to be soft is a local property.

Proof. The proof is similar to that of Proposition 3.5.3. q.e.d.

Example 3.5.11. (i) On a locally compact space X, any sheaf of C0
X-

modules is soft.
(ii) Let X be a real manifold of class C∞, let K be a compact subset of X
and U an open neighborhood of K in X. By the existence of “partition of
unity”, there exists a real C∞-function ϕ with compact support contained
in U and which is identically 1 in a neighborhood of K. It follows that any
sheaf of C∞X -modules is soft.
(iii) Flabby sheaves are soft.
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3.6 Cohomology of sheaves

We shall admit here that the category Mod(kX) of sheaves of k-modules on
X admits enough injective objects and moreover that injective sheaves are
flabby. Hence, we may derive any left exact functor defined on this category.

Definition 3.6.1. Let F ∈ Mod(kX) and let U be an open subset of X.
One sets

Hj(U ;F ) :=RjΓ(U ; • )(F ).

In other words, Hj(U ;F ) is the j-th derived functor of the functor Γ(U ; • )
calculated at F .

Recall that the groups Hj(U ;F ) are calculated as follows. Choose an
injective resolution of F :

0 −→ F −→ F 0 −→ F 1 −→ · · ·

and denote by F
•

the complex

F
•

:= 0 −→ F 0 −→ F 1 −→ · · ·

Then

Hj(U ;F ) ' Hj(Γ(U ;F
•
).

Moreover, it follows from the results of § 3.5 and Theorem 2.5.6 that we may
replace the injective resolution by a flabby resolution, or, when X is locally
compact and countable at infinity, by a soft resolution.

Cousin problem and Mayer-Vietoris sequence

Consider two open subsets U1 and U2 of X and set for short U12 := U1 ∩ U2.
The Cousin problem, which was first formulated for holomorphic functions
on the complex line, is translated as follows for a sheaf F on X:

given s ∈ F (U12), can we write s as s = s1|U12 − s2|U12 with
si ∈ F (Ui) (i = 1, 2).

Consider the exact sequence

0 −→ F (U1 ∪ U2)
a−→ F (U1)⊕ F (U2)

b−→ F (U12)

in which a(s) = (s|U1 , s|U2) and b((s1, s2)) = s1|U12−s2|U12 . Hence the Cousin
problem is that of the surjectivity of the map b. The answer is given by the
long exact sequence below.
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Theorem 3.6.2. The Mayer-Vietoris long exact sequence. There exists a
long exact sequence

0 −→ F (U1 ∪ U2)
a−→ F (U1)⊕ F (U2)

b−→ F (U12) −→ H1U1 ∪ U2;F )
−→ H1(U1;F )⊕H1(U2;F ) −→ H1(U12;F ) −→ · · · .

(3.10)

Proof. If F is injective, the map b is surjective. It follows that if F • is a
complex of injective sheaves, the sequence of complexes

0 −→ F
•
(U1 ∪ U2)

a−→ F
•
(U1)⊕ F • (U2)

b−→ F
•
(U12) −→ 0

is exact. Now choose a complex of injective sheaves F • and a qis F −→ F
•
.

Since Hj(V ;F ) ' Hj(Γ(V ;F
•
)) for any open set V , the result follows from

Theorem 2.3.17 . q.e.d.

De Rham cohomology

Let X be a real C∞-manifold of dimension n (this implies in particular that
X is locally compact and countable at infinity). If n > 0, the sheaf CX is
not acyclic for the functor Γ(X; ·) in general. In fact consider two connected
open subsets U1 and U2 such that U1 ∩ U2 has two connected components,
V1 and V2. The sequence:

0 −→ Γ(U1 ∪ U2;CX) −→ Γ(U1;CX)⊕ Γ(U2;CX) −→ Γ(U1 ∩ U2;CX) −→ 0

is not exact since the locally constant function ϕ = 1 on V1, ϕ = 2 on V2

may not be decomposed as ϕ = ϕ1 − ϕ2, with ϕj constant on Uj. By the
Mayer-Vietoris long exact sequence, this implies:

H1(U1 ∪ U2;CX) 6= 0.

On the other hand, we have seen in Example 3.5.11 that any sheaf of
C∞X -modules is soft.

Denote by C∞,(p)X or else, Ωp
X , the sheaf on X of differential forms of

degree p with C∞X coefficients. These sheaves are soft and in particular Γ(X; ·)
acyclic.

Consider the complex of sheaves on X:

DRX := 0 −→ Ω0
X

d−→ · · · −→ Ωn
X −→ 0.

We call it the De Rham complex on X with C∞ coefficients.
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Lemma 3.6.3. (The Poincaré lemma.) Let I = (]0, 1[)n be the unit open
cube in Rn. The complex below is exact.

0 −→ C −→ C∞,(0)(I)
d−→ · · · −→ C∞,(n)(I) −→ 0.

Proof. Consider the Koszul complex K•(M,ϕ) over the ring C, where M =
C∞(I) and ϕ = (∂1, . . . , ∂n) (with ∂j = ∂

∂xj
). This complex is nothing but

the complex:

0 −→ C∞,(0)(I)
d−→ · · · −→ C∞,(n)(I) −→ 0.

Clearly H0(K•(M,ϕ)) ' C, and it is enough to prove that the sequence
(∂1, . . . , ∂n) is coregular. Let Mj+1 = Ker(∂1) ∩ · · · ∩ Ker(∂j). This is the
space of C∞-functions on I constant with respect to the variables x1, . . . , xj.
Clearly, ∂j+1 is surjective on this space. q.e.d.

Lemma 3.6.3 implies:

Lemma 3.6.4. Let X be a C∞-manifold of dimension n. Then the natural
morphism CX −→ DRX is a quasi-isomorphism.

Corollary 3.6.5. (The de Rham theorem.) Let X be a C∞-manifold of
dimension n. Then Hj(X;CX) is isomorphic to Hj(Γ(X; DRX)).

Note that this result in particular implies that Hj(Γ(X; DRX)) is a topo-
logical invariant of X.

Cohomology of complex manifolds

Assume now that X is a complex manifold of complex dimension n, and let
XR be the real underlying manifold. The real differential d splits as ∂ + ∂̄,
and one denotes by C∞,(p,q)X the sheaf of C∞ forms of type (p, q) with respect
to ∂, ∂̄. Consider the complex, called the Dolbeault complex (or also the
Dolbeault-Grothendieck complex):

DBX := 0 −→ C∞(0,0)
X

∂̄−→ · · · −→ C∞,(0,n)
X .

The complex Poincaré lemma (that we shall not proved here) is formulated
as:

Lemma 3.6.6. Let X be a complex manifold. Then the natural morphism
OX −→ DBX is a quasi-isomorphism.

Since the sheaves C∞,(p,q)X are soft, it follows that we have isomorphisms

Hj(X;OX) ∼−→Hj(Γ(X; DBX)).(3.11)

In other words, the Dolbeault complex is a tool to calculate the cohomology
of the sheaf OX .
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Exercises to Chapter 3

Exercise 3.1. Prove that the category Mod(kX) admits direct sums and
products (indexed by small sets).

Exercise 3.2. Let F ∈ Mod(kX). Define F̃ ∈ Mod(kX) by F̃ =
⊕

x∈X F{x}.
(Here, F{x} ∈ Mod(kX) and the direct sum is calculated in Mod(kX), not in

PSh(kX).) Prove that Fx and (F̃ )x are isomorphic for all x ∈ X, although

F and F̃ are not isomorphic in general.

Exercise 3.3. Assume k is a field, and let L be a locally constant sheaf
of rank one over kX (hence, L is locally isomorphic to the sheaf kX). Set
L∗ = Hom (L,kX).
(i) Prove the isomorphisms L∗ ⊗L ∼−→kX and kX ∼−→Hom (L,L).
(ii) Assume that k is a field, X is connected and Γ(X;L) 6= 0. Prove that
L ' kX . (Hint: Γ(X;L) ' Γ(X;Hom (kX , L).)

Exercise 3.4. Let M,N ∈ Mod(k). Prove that

(i) (M ⊗N)X 'MX ⊗NX ,

(ii) (Hom (M,N))X ' HomkX
(MX , NX).

Exercise 3.5. let X = U1 ∪ U2 be a covering of X by two open sets. Let F
be a sheaf on X and assume that:

(i) U12 = U1 ∩ U2 is connected and non empty,

(ii) F |Ui
(i = 1, 2) is a constant sheaf.

Prove that F is a constant sheaf.

Exercise 3.6. Let I denote the interval [0, 1]. Let F be a locally constant
sheaf on I. Prove that F is a constant sheaf.

Exercise 3.7. Let X be a discrete topological space. Prove that any sheaf
on X is flabby.

Exercise 3.8. We denote here by X the complex line C and we shall admit
that, although it is not soft, the sheaf OX satisfies the Cousin property on
any open subset U of X.

(i) Let ω be an open subset of R, and let U1 ⊂ U2 be two open subsets of C
containing ω as a closed subset. Prove that the natural map



76 CHAPTER 3. SHEAVES

O(U2 \ ω)/O(U2) −→ O(U1 \ ω)/O(U1) is an isomorphism. One denotes by
B(ω) this quotient.
(ii) Construct the restriction morphisms to get the presheaf ω −→ B(ω) and
prove that this presheaf is a sheaf. (This is the sheaf BR of Sato’s hyperfunc-
tions on R.)
(iii) Prove that the restriction maps B(R) −→ B(ω) (ω open in R) are surjec-
tive, that is, the sheaf BR is flabby.
(iv) Let Ω an open subset of C and let P =

∑m
j=1 aj(z)( ∂

∂z
)j be a holomor-

phic differential operator (the coefficients are holomorphic in Ω). Recall the
Cauchy theorem which asserts that if Ω is simply connected and if am(z) does
not vanish on Ω, then P acting on O(Ω) is surjective. Prove that if ω is an
open subset of R and if P is a non identically zero holomorphic differential
operator defined in a connected open neighborhood of ω, then P acting on
B(ω) is surjective.
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