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Preface

These notes on mathematical models from population genetics reflect the 16 h of
lectures that I delivered in St Flour in July 2009. Other than minor corrections and
clarifications, they have changed very little in the year that has elapsed since then.
Although it was tempting to add more material, I concluded that not only would
this lead to unacceptable delays, but it would also be redundant. Whereas there are
few references of which I am aware that present the material covered here in a self-
contained way, there are now many texts that cover, for example, coalescent theory
in more detail.

The notes are intended for graduate students in mathematics. They aim to
introduce the reader to a range of mathematical models that have their origins in
theoretical population genetics. Some date right back to the origins of the sub-
ject and some were introduced in the last few years. All share a rich mathematical
structure. Research on the more recent models, notably the Λ -coalescents and their
spatial analogues, is progressing at a breathtaking speed and so it is impossible
to provide a comprehensive survey of what is known. Instead I have aimed to
explain some of the reasons that such models are interesting biologically and to
equip the reader with enough background to be able to browse the literature as it
appears.

There are many people to whom I owe thanks. My interest in population genetics
stems from a collaboration with Nick Barton (IST Austria and the University of
Edinburgh). Working with Nick over many years has been a privilege and a pleasure
and almost all the material covered here I first learned about through conversations
with him. I am grateful to Leif Döring, Bjarki Eldon, Bob Griffiths, Habib Saadi and
the many others who read and commented on parts of the manuscript. Special thanks
are due to Amandine Véber, who went through several iterations of the whole docu-
ment in tremendous detail and undoubtedly improved the notes beyond recognition.
I was fortunate to spend the first four months of 2009 visiting Université Paris Sud in
Orsay. My thanks go to everyone there, especially Yves Le Jan for making that pos-
sible. While I was in Orsay, Jean-François Le Gall persuaded me to give a masters
course as a dry run for (at least part of) this course. The experience was extremely
valuable and my thanks go to Jean-François and to the enthusiastic audience. Jean
Picard quietly ensured that everything at St Flour ran extremely smoothly and the
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participants were tremendous. I simply had a lot of fun. Finally, as always, I thank
Lionel, Charlotte and Matthew Mason for all their support and understanding.

Oxford, August 2010 Alison Etheridge
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Chapter 1
Introduction

The main purpose of theoretical population genetics is to understand the complex
patterns of genetic variation that we observe in the world around us. Its origins
can be traced to the pioneering work of Fisher, Haldane and Wright. Their con-
tributions were fundamental in establishing the Modern Evolutionary Synthesis,
in which Darwin’s theory of evolution by natural selection was finally reconciled
with Mendelian genetics. Darwin’s theory of evolution Darwin (1859) can be sim-
ply stated: “Heritable traits that increase reproductive success will become more
common in a population”. Thus, in order for natural selection to act, there must be
variation within a population and offspring must be similar to their parents. So to
fully understand evolution we need a mechanism whereby variation is created and
inherited. This is provided by Mendelian genetics Mendel (1866). Again the idea
can be simply stated. Traits are determined by genes. Each gene occurs in finitely
many different types that we call alleles and different alleles may produce different
traits. Offspring are similar to their parents because they inherit genes from their
parents. The difficulty is that Darwin had argued that evolution of complex, well-
adapted organisms depends on selection acting on a large number of slight variants
in a trait and much of Mendel’s work deliberately focused on discontinuous changes
in traits determined by a single gene.

The resolution lay in the foundations of theoretical population genetics. In 1918,
Fisher showed how correlations between relatives that had been measured by bio-
metricians could be explained by multiple Mendelian factors together with random,
non-genetic, influences. In the process he developed the statistical theory of anal-
ysis of variance. He went on to show that Mendelian genetics was consistent with
the idea of evolution by natural selection. Thus, if traits depend on multiple genes,
each making a small contribution, the apparently discontinuous nature of Mendelian
inheritance is reconciled with continuous variation and gradual evolution. Starting in
1924, Haldane published a series of papers that provide a detailed theoretical analy-
sis of how differences in survival or reproduction due to one or two Mendelian genes
would affect a population. He used examples like the evolution of the peppered

A. Etheridge, Some Mathematical Models from Population Genetics, Lecture Notes
in Mathematics 2012, DOI 10.1007/978-3-642-16632-7 1,
c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

moth to show that natural selection could act extremely fast.1 In a series of papers
starting in 1922, Wright quantified the way in which the random process of re-
production in a finite population would lead to changes in allele frequency and
examined how this random genetic drift interacted with selection, mutation and
migration. He introduced the notion of an adaptive landscape in which natural
selection would drive a population towards a local maximum, but genetic drift could
push the population away from such a peak paving the way for natural selection to
push it towards a different peak. Through this mechanism the population explores
the evolutionary landscape. Mathematical modelling played a crucial rôle in the
work of all three men.

Of course many details remained (and indeed remain) unclear. For example, what
is the relative importance of mutation, selection, random drift and population subdi-
vision for the genetic variation observed today? Fisher emphasised gradual changes
in a single large population due to selection acting on small variants, Haldane placed
more importance on strong selection acting on single genes and Wright argued that
adaptation would be most effective in a population that was subdivided into many
small subpopulations in his shifting balance theory.

At the time of the evolutionary synthesis, genetic variability could not be ob-
served directly. Early work was restricted to genes that happened to be detectable
in an observable way, but over the subsequent fifty years things changed dramat-
ically. In 1953, armed with key physical evidence obtained by Rosalind Franklin
and Maurice Wilkins, Watson and Crick showed that DNA forms a double helix in
which one sequence of bases pairs with the complementary sequence.2 Over the
next decade it was established how DNA codes for proteins through the genetic
code. Beginning in the mid-1960s scientists began to study genetic variation at the
scale of DNA, RNA3 and proteins. Studies revealed an unexpectedly high level of
variation within species. It was also possible to compare the evolution of the same
protein across different species. By comparing species that diverged from one an-
other at a known time, it was found that any given protein had evolved at a steady
rate, even if it was evolving in very different organisms. In other words, there is a
molecular clock. In 1968, Kimura famously (and controversially) argued that there

1 The peppered moth was originally predominantly light-coloured, providing camouflage on the
lichen coloured trees on which it rests. As a result of pollution the lichens died out and the trees
became blackened by soot, making the light coloured moths vulnerable to predation, and dark-
coloured moths flourished. With improving environmental conditions, light coloured moths have
once again become common.
2 DNA stands for deoxyribonucleic acid. The four bases are A (adenine), T (thymine), C (cytosine)
and G (guanine) and A bonds to T and C to G.
3 RNA is similar to DNA. It consists of a chain of nucleotides. Messenger RNA (mRNA) carries
information from DNA to the ribosome where proteins are synthesised. The coding sequence of the
mRNA determines the amino acid sequence in the protein that is produced. Every three nucleotides
(a codon) code for one amino acid. This genetic code has redundancy, but no ambiguity. The
43 = 64 different triplets code for 20 different amino acids and a stop codon.

Like DNA, RNA can carry genetic information. For example RNA viruses have genomes com-
posed of RNA.



1 Introduction 3

is too much genetic variation in species for more than a small fraction to be subject
to natural selection. He also argued that the molecular clock was best explained by
the steady accumulation of mutations that have no effect on fitness. Others, by con-
trast, were emphasising the rôle of selection in explaining even very small changes
in phenotype. The theory remains controversial. It is simply not known what propor-
tion of differences between individuals or species are maintained by selection, but
Kimura’s theory provides a valuable ‘null’ model against which data can be tested.

If we are to assess the relative importance of mutation, selection, drift, spatial
structure and so on, then the first step is to distill our understanding of how these
processes operate into a workable mathematical model whose predictions can be
compared to data. Even now we don’t know exactly how genes combine to influ-
ence a whole organism or what maintains the variation in those genes. But with
advances in molecular biology, a wealth of data is available and mathematicians
have a key rôle to play. Over the last three decades, in parallel with advances in
DNA sequencing technology, new mathematical models have been introduced fo-
cusing on the genealogy (that is the ancestral history) of a random sample of genes
from a population. These ‘coalescent’ models have a rich and beautiful mathemat-
ical structure and in addition to providing the necessary tools for the interpretation
of genetic data they have become a popular playground for mathematicians.

In these lectures we will introduce and study some models (both old and new) that
have their origins in theoretical population genetics. We will try to minimise the use
of biological jargon, but we end this section with a note on terminology. The ‘atom’
of genetics is the single base pair or nucleotide. It is often referred to as a site.
The term locus is used to refer in a general way to a location in the genome. It may
refer to anything from a few hundred bases to a long stretch of DNA containing
several genes. Whereas in classical Mendelian genetics a gene was a single well-
defined unit, it is now loosely defined as a stretch of DNA that includes sequences
that code for a protein (or a functional RNA molecule) and regulatory sequences.
The genes are organised on chromosomes and, for mathematical convenience, we
shall consider chromosomes to be linear. An excellent introduction to the underlying
biology is Barton et al. (2007).



Chapter 2
Mutation and Random Genetic Drift

2.1 The Wright–Fisher Model and the Kingman Coalescent

Evolution is a random process. Random events enter in many ways, from errors in
copying genetic material to small and large scale environmental changes, but the
most basic source of randomness that we must understand is due to reproduction
in a finite population leading to random genetic drift. The simplest model of ran-
dom genetic drift was developed independently by Sewall Wright and R.A. Fisher
and is known as the Wright–Fisher model. We consider a population in which every
individual is equally likely to mate with every other and in which all individuals
experience the same conditions. Such a population is called panmictic. We also sup-
pose that the population is neutral (everyone has an equal chance of reproductive
success). Most species are either haploid meaning that they have a single copy of
each chromosome (for example, most bacteria), or diploid meaning that they have
two copies of each chromosome (for example, humans). We suppose that the pop-
ulation is haploid, so that each individual has exactly one parent. Although in a
diploid population individuals have two parents, each gene can be traced to a sin-
gle parental gene in the previous generation and so it is customary in this setting to
model the genes in a diploid population of size N as a haploid population of size
2N.1 As we shall see in Sect. 5.6, this device fails once we are interested in tracing
several genes at the same time.

Definition 2.1 (The neutral Wright–Fisher model). The neutral Wright–Fisher
model for a panmictic, haploid population of constant size N is described as fol-
lows. The population of N genes evolves in discrete generations. Generation (t +1)
is formed from generation t by choosing N genes uniformly at random with replace-
ment. That is, each gene in generation (t + 1) chooses its parent independently at
random from those present in generation t.

1 In fact we are assuming that the population is hermaphrodite here – so there are no separate
sexes – and we are allowing a small chance of self-fertilisation. For a population subdivided into
Nm males and Nf females we can still use the same model, but with an effective population size
4NmNf /(Nm +Nf ) replacing N, see Example 2.9.

A. Etheridge, Some Mathematical Models from Population Genetics, Lecture Notes
in Mathematics 2012, DOI 10.1007/978-3-642-16632-7 2,
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6 2 Mutation and Random Genetic Drift

From this definition it is an elementary matter to work out the genealogical trees
that relate individuals in a sample from the population. Suppose first that we take a
sample of size two. The probability that these two individuals share a common par-
ent in the previous generation is 1/N. If they do not, then the probability that their
parents had a common parent is 1/N, and so on. In other words, the time to the most
recent common ancestor (MRCA) of the two individuals in the sample has a geo-
metric distribution with success probability 1/N. (The probability that their most
recent common ancestor was T generations in the past is pqT−1 where p = 1/N and
q = 1− p.) In particular, the expected number of generations back to their MRCA
is N. Now typically we are interested in large populations, where our rather crude
models have some hope of having something meaningful to say. Then it makes sense
to measure time in units of size N and in those units the time to the MRCA of a sam-
ple of size two is approximately exponentially distributed with parameter one. More
generally, consider a sample of size k≥ 2. The probability of three (or more) individ-
uals from the sample sharing a common parent is O(1/N2) and similarly the chance
that two separate pairs of individuals are ‘siblings’ is O(1/N2). This means that the
time we must wait before we see such an event is O(N2) generations. But before this
happens (with probability tending to one as N→ ∞) all our ancestral lineages will
have coalesced through pairwise coalescence events (each of which occurs within
O(N) generations). Thus the time (in units of size N) before the present at which
we first see a ‘merger’ of lineages ancestral to our sample is approximately exponen-
tially distributed with rate

(k
2

)
and, when that merger takes place, it affects exactly

two lineages chosen uniformly at random from the
(k

2

)
pairs available. After that we

just trace the remaining
(k−1

2

)
pairs of lineages and the same picture holds.

Remark 2.2. Since we are dealing with a haploid population, each individual has
only one parent and the genealogical trees get smaller as we go backwards in time,
in contrast to our usual understanding of family trees (for a diploid population)
which grow as we trace backwards in time. We’ll return to this point in Sect. 2.7.

We shall loosely refer to the system of coalescing lineages that we have just
described as Kingman’s coalescent, but let us give a more formal definition. If we
label individuals in our sample {1,2, . . . ,k}, then our process of coalescing lineages
defines a continuous time Markov process, {πt}t≥0, on the equivalence relations on
[k] = {1,2, . . . ,k}. Each equivalence class of πt corresponds to an ancestor alive at
time t before the present. It consists of the labels of all individuals in our sample
descended from that ancestor.

Definition 2.3 (Kingman coalescent). A k-coalescent is a continuous time Markov
chain on Ek, the space of equivalence relations on [k], with transition rates qξ ,η
(ξ ,η ∈ Ek) given by

qξ ,η =
{

1 if η is obtained by coalescing two of the equivalence classes of ξ ,
0 otherwise.

The Kingman coalescent on N is a process of equivalence relations on N with the
property that, for each k, its restriction to [k] is a k-coalescent. By convention, we
take the initial condition to be the trivial partition into singletons.
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Remark 2.4 (Consistency). If we take a (k + l)-coalescent and restrict it to [k], then
we obtain a k-coalescent. In particular, if we take a sample of size k + l from the
population and restrict the genealogical trees relating the full sample to a randomly
chosen subsample of size k, then we arrive at the same trees as if we had just taken
a smaller sample in the first place. This sampling consistency is an essential part of
the interpretation of the model.

Existence of the k-coalescent is clear (it is a finite state space Markov chain with
bounded rates). The consistency allowed Kingman (1982) to pass to a projective
limit.

Remark 2.5 (Terminology). In what follows we shall sometimes say that the geneal-
ogy of a sample (or population) of size k is determined by the Kingman coalescent.
By this we mean that it is given by a k-coalescent.

To obtain the Kingman coalescent, we measured time in units of population size
N and passed to an infinite population limit. Now let’s examine what happens when
we let N→∞ in our Wright–Fisher model. Suppose that the gene in question has two
alleles which we label a and A say. For now we suppose that an offspring inherits the
allelic type of its parent. We try to characterise the process, {pt}t≥0, which records
the proportion of a-alleles in the population at each time t ≥ 0. Notice that in the
prelimiting model, {pt}t≥0 is a discrete time Markov chain on a finite state space
with traps at 0 and 1.

Definition 2.6 (Fixation). If the proportion of one of the alleles in the population
is one, then we say that the allele has fixed. The probability that a becomes fixed is
its fixation probability.

To characterise the distribution of {pt}t≥0, we consider how E[u(pt)] changes with
time for sufficiently nice functions u : [0,1]→ R. In the rescaling that we took to
obtain the Kingman coalescent, the model evolves at time intervals of length 1/N.
Evidently, if a proportion p of the population is of type a in the current generation,
then the expected number of type a individuals in the next generation is N p and the
variance of that number is N pq (where q = 1− p). Thus the mean allele frequency
remains the same and the variance is pq/N. Moreover E[ (p1/N− p)k

∣
∣ p0 = p] =

O(1/N2) for all k≥ 3. Now the evolution of the process is homogeneous in time, so
it is enough to consider what happens close to time zero. Using Taylor’s Theorem,
we obtain

d
dt

E [u(pt)| p0 = p]
∣
∣
∣
∣
t=0
≈

{
E
[

u(p1/N)
∣
∣ p0 = p

]−u(p)
}

1/N

= N

{
u′(p)E[ (p1/N− p)

∣
∣ p0 = p]

+
1
2

u′′(p)E[ (p1/N− p)2
∣
∣ p0 = p]+O

(
1

N2

)}

=
1
2

p(1− p)u′′(p)+O

(
1
N

)
.
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Thus, in the limit as N → ∞, if the process of allele frequencies converges to a
well-defined stochastic process, then we expect that

d
dt

E [u(pt)| p0 = p]
∣
∣
∣
∣
t=0

=
1
2

p(1− p)u′′(p). (2.1)

That is, we expect that in the limit, the distribution of the allele frequencies is gov-
erned by the solution to the Wright–Fisher stochastic differential equation:

d pt =
√

pt(1− pt)dWt , (2.2)

where {Wt}t≥0 is a standard Brownian motion.
What we have shown is that, at least for large populations evolving according

to the neutral Wright–Fisher model, if we measure time in units of N generations,
then the distribution of allele frequencies should be approximately governed by the
partial differential equation (2.1), and the genealogy of a sample from the popula-
tion should be well-approximated by the Kingman coalescent. Notice that it is the
random genetic drift, that is the random change in allele frequencies caused by the
random variation in individual reproduction, that causes coalescence of ancestral
lineages as we trace backwards in time.

In reality, a variety of factors affect the rate of genetic drift and these are often
summarised by using an effective population size.

Definition 2.7 (Effective population size). The effective population size Ne of a
population is the size of the Wright–Fisher population that would give the same rate
of random drift.

Remark 2.8. In fact this definition is incomplete as there are several ways to define
the rate of genetic drift and they do not necessarily yield the same expression for the
effective population size. For the Wright–Fisher model for a population of size N,
we have the following three properties:

1. The maximum nonunit eigenvalue of the transition matrix is 1−1/N.
2. The probability that two genes taken at random are descendants of the same

parent is 1/N.
3. Writing p(t) for the proportion of a-alleles in generation t and var(p(t)) for the

corresponding variance, given p(t), var(p(t + 1)) = p(t)(1− p(t))/N.

One can try to find an Ne corresponding to any of these properties, and this leads to
eigenvalue effective population size, inbreeding effective population size and vari-
ance effective population size. Ewens (1982) discusses this in more detail. Nordborg
and Krone (2002) define the coalescent effective size as the amount by which time
must be rescaled in order to recover the Kingman coalescent as the genealogy in
the limit as population size tends to infinity. Such an effective size may not exist,
but there are strong arguments for not defining an effective population size in set-
tings where one cannot (asymptotically) reduce to Kingman’s coalescent. This is
discussed further in Sjödin et al. (2005).

For a diploid population, modelled as a haploid population of size 2N, the corre-
sponding quantity will be 2Ne.
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Example 2.9 (Populations that are subdivided into males and females). Suppose
that a diploid population is subdivided into Nm males and Nf females, then

Ne =
4NmNf

Nm + Nf
. (2.3)

To see why, take a sample of two genes from the current generation. Each sits in a
diploid individual and has probability 1/2 of being inherited from the father of that
individual and 1/2 of being inherited from the mother.2 If they are both inherited
from fathers, which happens with probability 1/4, then they have probability 1/2Nm

of being descended from the same gene, and similarly, if both are inherited from a
female they came from the same parental gene with probability 1/2Nf . Thus the
chance of coalescence in the previous generation is

1
4

1
2Nm

+
1
4

1
2Nf

=
Nm + Nf

8NmNf
=

1
2Ne

with Ne given by (2.3).
What we have derived here is the inbreeding effective population size, but the

methods of Sect. 6.3 can be used to show that in this example this corresponds to
the coalescent effective population size (see Nordborg and Krone (2002) for more
details.) ��

So how does (2.2) do as a model? Of course it is too simplistic to apply to
most naturally occurring populations, but we can compare it to experimental data.
Buri (1956) reports an experiment on populations of Drosophila melanogaster. Just
over one hundred populations were propagated, each from eight males and eight
females. The experiment measures the frequency of an allele of a gene that slightly
alters the eye colour (without affecting fitness or reproductive success of the car-
rier). We’ll denote it by a. He reports the change in the variance in allele frequency
across the different populations with time. All populations are started with exactly
half a and half A (which in this context just means ‘not a’) alleles. The variance
starts at zero (all populations have the same frequencies) and then grows because of
the random genetic drift until it reaches a maximum when each population consists
either entirely of a-alleles or entirely of A-alleles.

We write vt for the variance in allele frequency across populations at time t in
our rescaled time units, vt = E[p2

t ]−E[pt ]2. Using (2.1) and the Markov property of
{p(t)}t≥0 we have that

d
dt

E[pt ] = 0,
d
dt

E[p2
t ] = E[pt(1− pt)] and

d
dt

E[pt(1− pt)] =−E[pt(1− pt)].

2 We are ignoring the possibility that we have sampled two distinct genes from the same individual.
If this happens, then in the previous generation the ancestral lineages were necessarily in different
individuals (the mother and father) and so correcting for this makes negligible difference to the
inbreeding effective population size.
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Combining these gives that vt ≈ p0(1 − p0)(1 − exp(−t)). Writing Vt for the
variance after t generations (in other words changing back to ‘real’ time units) this
becomes

Vt ≈ p0(1− p0)(1− exp(−t/2N)).

The 2N is because Drosophila are diploid and in this case N = 16.3 The theoretical
prediction for the rate of increase in the variance turns out to be not very accurate,
but it becomes good when instead of substituting the actual population size, one
substitutes a smaller, effective, population size. Buri reports a best fit of Ne = 11.5.
Buri’s data and the theoretical predictions for Ne = 16 and Ne = 11.5 are plotted in
the graph in Fig. 2.1.

Remark 2.10 (Large populations). The population size N = 16 does not perhaps
seem particularly large. However, calculating directly with the Wright–Fisher model
gives a variance after t generations of

p0(1− p0)
(

1− 1
N

)t

.
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Fig. 2.1 Testing Wright’s model of genetic drift. The graph shows experimental results of
Buri (1956) based on just over 100 populations of Drosophila melanogaster, each propagated from
8 males and 8 females. Variance in allele frequency is plotted against time (in generations). Circles
are data points, the dotted line is the theoretical prediction for Ne = 16 and the solid line is the
theoretical prediction with Ne = 11.5

3 Although the population was subdivided into males and females, the experiment maintained equal
numbers of males and females so that the effective population size Ne = 4NmNf /(Nm + Nf ) = N
(see Example 2.9).
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Hence at the end of the experiment (after 19 generations) we are using exp(−19/32)
as an approximation to (1−1/32)19, giving a relative error of less that 1%.

But why did we need to use an effective population size here? At first sight
Buri’s populations appear to satisfy the assumptions of the Wright–Fisher model:
they are panmictic and constant size, generation times are discrete and the allele un-
der consideration does not affect fitness. In fact it is the Wright–Fisher reproduction
mechanism itself that is at fault. It forces the variance of the offspring of a single
individual to be (1− 1/N), but this does not reflect the true offspring distribution
in the population. To see how offspring variance feeds into the effective population
size we must consider a slightly more general model.

2.2 The Cannings Model

First a definition.

Definition 2.11 (Exchangeable random vector). A random vector (ν1, . . . ,νN)
is said to be exchangeable if its law is invariant under any permutation of the
coordinates. That is,

(ν1, . . . ,νN) d= (νπ(1), . . . ,νπ(N))

for any permutation π = (π(1), . . . ,π(N)) of {1, . . . ,N}.
Definition 2.12 (Neutral Cannings Model). Consider a panmictic, haploid popu-
lation of constant size N. Labelling the individuals in generation t by {1, . . . ,N}, in
a neutral Cannings model, generation t + 1 is determined by an exchangeable ran-
dom vector (ν1(t), . . . ,νN(t)) with ∑N

k=1 νk(t) = N. Here, νk(t) denotes the number
of children of the kth individual and the vectors {(ν1(t), . . . ,νN(t))}t∈N are assumed
to be independent and identically distributed.

Notice that, mathematically, neutrality is captured by exchangeability.
The Wright–Fisher model is the special case of the Cannings model in which

(ν1(t), . . . ,νN(t)) has the multinomial distribution with N trials and equal weights.
Let’s examine the genealogy of a sample from a large population evolving ac-

cording to a more general Cannings model. Let cN denote the probability that two
individuals chosen at random from some generation have a common parent in the
previous generation. Then (dropping the argument t)

cN =
E[ν1(ν1−1)]

N−1
.

To see this, condition on the vector (ν1,ν2, . . . ,νN) that determines the division
of offspring into families. The chance that two offspring (sampled at random and
without replacement) both fall among the ν1 individuals that make up the first
family is just ν1(ν1− 1)/N(N− 1). Now average over the distribution of the vec-
tor (ν1,ν2, . . . ,νN). This gives the probability that both offspring are in the first
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family. Using exchangeability, the probability that they both belong to the same
family (but any one of the N available) is just N times this probability, that is
E[ν1(ν1−1)/(N−1)] as required. (For the Wright–Fisher model, cN = 1/N.) The
time until the MRCA of a random sample of size two from the population will be
geometric with success probability cN . This will determine the right time scaling to
get convergence to a nontrivial limit as N→∞. We are going to assume that cN→ 0
as N → ∞. Now consider a sample of size three. The chance that they all have a
common parent is

E[ν1(ν1−1)(ν1−2)]
(N−1)(N−2)

.

Thus, if we measure time in units of 1/cN, provided that

E[ν1(ν1−1)(ν1−2)]
N2cN

→ 0 as N→ ∞, (2.4)

in the limit as N → ∞ we will only ever see pairwise mergers. In fact it turns
out Möhle (2000) that the condition in (2.4) guarantees both that cN → 0 and that

E [ν1(ν−1)ν2(ν2−1)]
N2cN

→ 0 as N→ ∞,

so that, measuring time in units of 1/cN , asymptotically we will not see simultane-
ous mergers of two different pairs of ancestral lineages. In the limit as N → ∞ we
recover Kingman’s coalescent.

Lemma 2.13. If we sample k individuals from a population evolving according to
the neutral Cannings model of Definition 2.12 and if the condition (2.4) is satisfied,
then for large N, when measured in time units of 1/cN generations, the genealogy
of the sample is approximately a k-coalescent.

Similar calculations to those that we did for the Wright–Fisher model show that,
again measuring time in units of 1/cN generations and under assumption (2.4),
the distribution of allele frequencies for a sufficiently large population evolving
according to the Cannings model will be governed (approximately) by the partial
differential equation (2.1). The only difference from the Wright–Fisher setting is
that now when we wish to compare to data we must remember that cN is (approx-
imately) var(ν1)/N, where var denotes variance. In our previous language, the
effective population size is Ne = N/var(ν1). In particular, the greater the variance
in offspring number, the smaller the effective population size and the faster the rate
of random drift.

Remark 2.14 (Robustness of Kingman’s coalescent). In passing to an infinite
population limit, we aim to find an approximation that reflects the key features
of our population (in this case that it is neutral, panmictic and of constant size),
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but which is insensitive to the fine details of the prelimiting model. As we can
already see, the Kingman coalescent approximates a wide variety of local structures
and it is this robustness that makes it such a powerful tool. Forwards in time we
have taken a diffusion approximation, approximating the Wright–Fisher model by a
Wright–Fisher diffusion. The importance of diffusion approximations in population
genetics can be traced to the seminal work of Feller (1951).

2.3 Selfing

In footnote 1 we remarked that in considering a haploid population of size 2N
in place of a diploid population of size N, since each individual samples its two
parents independently with replacement, we are allowing a small probability of self-
fertilisation. For that model, the probability of self-fertilisation is very small (for
large populations), but for many plant populations a significant proportion of off-
spring are produced through self-fertilisation, or selfing. What effect does this have
on the genealogy of a sample from such a population?

We consider a population of N diploid individuals. Let us write s for the expected
fraction of offspring to be produced by selfing (in which case both genes in the
offspring are sampled from the same parent) and 1− s for the expected fraction
to be produced by random mating. To understand what is happening we trace the
history of two ancestral lineages. At any time in the past they can be in one of three
states:

1. Two lineages in distinct individuals;
2. two lineages in the same individual;
3. coalesced.

Suppose that the two lineages are in distinct individuals. They will remain in this
state for a geometrically distributed number of generations with parameter 1/N.
At that time, with probability 1/2 they are derived from the same parental chromo-
some and they coalesce and with probability 1/2 they move to the second state, two
lineages in the same individual. If this individual was produced by selfing, which
happens with probability s + O(1/N),4 then with probability 1/2 the lineages are
derived from the same parental chromosome, and so they coalesce, and with prob-
ability 1/2 they are derived from different parental chromosomes and they remain
in state 2. Thus two lineages in state 2 remain there for a geometrically distributed
number of generations with parameter

s
2

+ 1− s+O

(
1
N

)

at which time the lineages coalesce with probability

4 The O(1/N) correction in these calculations is because random mating carries a small probability
of selfing.
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s/2
s/2 +(1− s)

+O

(
1
N

)
≈ s

2− s
,

otherwise the system returns to the first state. In particular, we only stay in the
second state for O(1) generations.

If we measure time in units of N generations and let N→∞, then the second state
becomes instantaneous. If the process starts in this state, then it instantaneously
coalesces (with probability s/(2− s)) or else moves to the first state. Similarly a
proportion s/(2− s) of transitions from the first state to the second state will be
followed by an instantaneous coalescence while the rest will be followed by instan-
taneous return to the first state. The overall rate of transition from the first to the
third state (in rescaled time) is then

1
2

+
1
2

s
2− s

=
1

2− s
.

To see this, the first term corresponds to the (rescaled) rate at which two lineages in
distinct individuals sample the same parental chromosome, the second is the rate at
which they sample different chromosomes within the same individual – that is move
to the now instantaneous state 2 – multiplied by the probability that they exit state
2 through coalescence. Alternatively, by measuring time in units of (2− s)N, a pair
of lineages waits an exponentially distributed amount of time with parameter one
before coalescing.

This argument can be extended to arbitrary finite samples from the population.
It is tedious because we must keep track of many possible states. The argument
above is from Nordborg and Donnelly (1997). A rigorous mathematical proof (using
the techniques of Sect. 6.3) can be found in Möhle (1998). We have the following
result.

Lemma 2.15. In a diploid population as above in which a portion s of offspring are
produced by selfing and the remainder by random mating, as the population size N
tends to infinity, the genealogy of a sample is determined by a Kingman coalescent
in which each pair of lineages coalesces at rate 2Ne where the effective population
size Ne = 2−s

2 N.

2.4 Adding Mutations

A mutation is formally defined as a “heritable change in the genetic material (DNA
or RNA) of an organism”. Mutations occur in many forms, but for simplicity we
concentrate on point mutations which occur when there is a change from one base
pair to another at a single position in the DNA sequence. Because of the redundancy
in the genetic code some point mutations do not lead to a change in the sequence
of amino acids. These are called synonymous mutations. Mutations are the ultimate
source of all genetic variation; without them there would be no evolution. Although
mutation rates are relatively slow, the mixing of mutations from different lineages
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that results from genetic recombination (see Sect. 5.6) rapidly leads to an enormous
number of combinations on which natural selection can act. Mutation rates vary
according to the type of mutation, the location on the genome and the organism
involved, with the highest rates being in viruses.5

Typically in our models we assume a constant probability μ per individual per
generation of a mutation at a given base or more generally at a given locus. If
we follow a particular ancestral lineage in our population, then we must wait a
geometrically distributed number of generations (with mean 1/μ) until we see a
mutation. Assuming that 2Neμ , that is the mutation rate multiplied by the effec-
tive population size, is of order one, this will, in rescaled time, be approximately
exponential. Moreover, under this condition, the probability that we see both a co-
alescence and a mutation in our sample in a single generation is O(1/N2

e ). So just
as in our derivation of the Kingman coalescent, we see that if there are currently k
lineages ancestral to our sample, the time (in rescaled units) we must trace back un-
til we see some event is (approximately) the minimum of k independent exponential
random variables each with parameter 2Neμ and an independent exponential ran-
dom variable with parameter

(k
2

)
. Another way to say this is we can add mutations

to Kingman’s coalescent by simply superposing a Poisson process of mutations on
the ancestral lineages. Notice that in order to ensure that the types in the sample are
consistent with the pattern of mutations stemming from such a Poisson process, a
type must first be assigned to the MRCA and then we work our way back through
the coalescent tree assigning types to ancestral lineages. This is illustrated by exam-
ple in Fig. 2.2. There are several important models of mutation. Perhaps the simplest
is the parent-independent mutation model.

1 2 3 4 5

Fig. 2.2 Adding mutations to the Kingman coalescent. Mutations are added to the Kingman
coalescent by throwing down an independent Poisson process of mutations on each branch. In
order to ensure that the types in the sample are consistent with the pattern of mutations, one must
first assign a type to the MRCA and then work back through the tree. In this example, we have
used ‘×’ to denote a mutation on a branch of the coalescent tree. Notice that here the individuals
labelled 1 and 2 in the sample must have the same type

5 See Fig. 12.23 in Barton et al. (2007). Rates shown there vary from O(10−4) per base pair per
generation in RNA viruses like HIV to O(10−10) or O(10−11) in organisms like humans and mice.
By contrast, there is a relatively uniform rate of mutation per genome per replication across diverse
organisms.
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Definition 2.16 (Parent independent mutation). In the parent-independent muta-
tion model, a gene is assumed to occur in one of a finite number of types. Mutations
occur at a constant rate per individual, independent of the current type of the indi-
vidual. The type created by the mutation event is chosen according to a probability
distribution which is also independent of the type of the parent.

More generally one can allow the probability of mutation to different types to
depend on the current state of an individual, in which case the type of a lineage
is governed by a Markov chain on the space of possible types.

Definition 2.17 (Infinitely many alleles model). In the infinitely many alleles
model, every time a mutation occurs, it is to a new allele, never seen before in
the population.

The infinitely many alleles model can be seen as the limit of the parent-independent
mutation model when the number of alleles tends to infinity. It is useful in providing
a link between the classical notion of probability of identity and the coalescent.
In the infinitely many alleles model, two genes will be identical (that is they will
have the same allelic state) if there has been no mutation since their MRCA. If their
MRCA occurred T generations in the past, and the mutation rate per individual per
generation is μ , then we see that this has probability (1− μ)2T ≈ e−2μ̃τ , where
τ = T/Ne is the time to the MRCA in the coalescent timescale and μ̃ = Neμ is
the scaled mutation rate. Averaging out over the distribution of τ , the probability
of identity is E[exp(−2μ̃τ)], that is the Laplace transform of the distribution of the
time, τ , to the MRCA.

Remark 2.18 (Mutation rates and nucleotide diversity). Since the expected num-
ber of generations since the MRCA of two genes sampled at random from a diploid
population (under Kingman’s coalescent) is 2Ne, on average we expect them to dif-
fer by 4Neμ mutations per base pair. This can be counted directly if we are dealing
with DNA sequences. The proportion of nucleotides that differ between two ran-
domly chosen sequences is called the nucleotide diversity and is usually denoted
by π . The crucial parameter 4Neμ is denoted by θ . Notice then that if we measure
time in units of 2Ne generations (as is usual for the Kingman coalescent for a diploid
population) then the rate at which we see mutations falling on each ancestral lineage
is θ/2. This explains the choice of scaling for the mutation rate in much of what fol-
lows. We shall use the same notation when μ is no longer the mutation rate per base
pair, but rather the mutation rate for a locus or a whole gene.

If we sample a single nucleotide at random then with high probability all
individuals in our sample will be identical. (A locus is usually defined to be poly-
morphic if the frequency of the most common type is less than 0.99. In humans,
the chance of heterozygosity at a randomly chosen nucleotide is about 0.0008.
In Drosophila it is an order of magnitude bigger, but still only about 1%, Lynch and
Conery (2003), Fig. 1.) If the rate of mutation does not vary too greatly between
bases then this justifies the so-called infinitely many sites model in which each
time we see a polymorphic site in our sample we assume that it is due to a unique
mutation.
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Definition 2.19 (Infinitely many sites model). In the infinitely many sites model,
every time a mutation occurs on a lineage it is at a new position on the DNA
sequence.

It is sometimes convenient to model the genome as continuous, for example as [0,1],
in which case we suppose that each new mutation occurs at a position chosen ac-
cording to an independent uniformly distributed random variable on [0,1].

Notice that whereas in the infinitely many alleles model individuals only carry
information about the most recent mutation on their ancestral lineage, in the in-
finitely many sites model they retain information about all mutations experienced
by their ancestors.

2.5 Inferring Genealogies From Data

The genealogy of a sample from a population contains a great deal of information,
but we cannot observe it directly. Instead we try to infer it from the pattern of mu-
tations in the sample. We assume the infinitely many sites mutation model. Once
a mutation occurs, it will be carried by all descendants of that individual and from
this we can reconstruct at least partial information about the genealogical trees.
If we suppose, for simplicity, that we know which is the ancestral type at each lo-
cus, then we can construct the so-called gene tree. The gene tree has mutations
as its vertices. Figure 2.3 shows how this works in an example. Although a given
pattern of mutations may be consistent with several different coalescent trees, if it
is compatible with this model then it will be consistent with an essentially unique
gene tree. The gene tree is unique up to permutations of labels along single lineages
(for example 1 and 2 in the example in Fig. 2.3). However, there may be many
different corresponding coalescent trees with mutation. For example, the gene tree
in Fig. 2.3 is compatible with the coalescent tree of Fig. 2.4. It is also compatible
with the coalescent in which b and c coalesce before a and b. More generally, if
there are insufficient mutations then coalescent trees with many different topologies

1 2 3 4 5 6 7

a

b

c

e

d 5

3

4
7

6

2

1

Fig. 2.3 Reconstructing a gene tree. The picture on the left represents a possible pattern of
mutations in a sample of size 5. We suppose for simplicity that we know which is the ancestral
type at each locus, so that an ‘×’ in the picture indicates that an individual carries a mutation at
that locus. On the right is a gene tree compatible with this pattern
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Fig. 2.4 Gene trees and coalescent trees. A given gene tree may be compatible with more than
one coalescent tree. The coalescent tree on the right is compatible with the gene tree on the left.
It would also be compatible with one in which b and c coalesce before a and b

may be compatible with a gene tree. (As an extreme example suppose that there
were just one mutation shared by all but one individual in the sample.)

There are simple conditions to check that data is compatible with this model
and efficient algorithms for reconstructing the gene trees. If the ancestral type is
not known, then an unrooted tree is constructed. To recover a rooted tree one can
compare to a more distantly related sequence (called an outgroup).

This procedure tells us something about the shape of the genealogical tree, but
nothing about the lengths of the edges. However, since mutations are assumed to fall
at an (approximately) exponential rate, some information about the time represented
by an edge is available from the number of mutations occurring there. For much
more on ancestral inference from gene trees we refer to Griffiths (2002). In practice,
of course, things are not quite this simple. There are two principal problems. The
first is convergence: if a site is evolving quickly, or if two sequences in our sample
are very distantly related, then the same mutation may occur twice. The second is
recombination, which we’ll describe in more detail in Sect. 5.6. The result of recom-
bination is that different stretches of our DNA sequence have different genealogies.

2.6 Some Properties of Kingman’s Coalescent

We now return to Kingman’s coalescent and record some of its elementary proper-
ties (and some of their consequences).

Lemma 2.20. Let Wk denote the time to the most recent common ancestor of a
sample of k genes whose genealogy is determined by Kingman’s coalescent. Then

E[Wk] = 2

(
1− 1

k

)
.

Proof. Since Wk = Tk +Tk−1+ · · ·+T2 where Ti is exponentially distributed with rate( i
2

)
we have
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E[Wk] =
k

∑
i=2

2
i(i−1)

= 2
k

∑
i=2

[
1

i−1
− 1

i

]

= 2

(
1− 1

k

)
.

��
Thus the mean time to the MRCA of the whole population (k infinite) is only

twice that for a sample of size two. The picture is that for a large sample, as we
trace backwards in time, we see a burst of quick coalescence followed by a long
period with just a few ancestors. As a result, adding more and more individuals to
our sample adds surprisingly little information. Moreover, since, in ‘real’ time, the
standard deviation of the time when there are exactly two ancestral lineages is Ne

generations (or twice that for a diploid population), the tree is always highly variable
irrespective of the sample size. Figure 2.5 is a simulation of the Kingman coalescent
for a sample of size 1,000.

Fig. 2.5 Simulation of the Kingman coalescent. The picture is a single realisation in a simulation
(courtesy of Bob Griffiths) of a Kingman coalescent for a sample of size 1,000. Notice the initial
period of very rapid coalescence. For a large proportion of the time back to the MRCA, only two
or three ancestral lineages remain
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Lemma 2.21. Let L(k) denote the total length of the genealogical tree relating a
sample of size k. Under the Kingman coalescent, L(k)/2 is distributed as the maxi-
mum of (k−1) independent exponential random variables. In particular,

1
2

L(k)− logk
d−→ X as k→ ∞,

where X has a Gumbel distribution with density exp(−x− e−x).

Proof. The length of the tree here is measured until the time of the MRCA of the
sample. Notice that if E is an exponentially distributed random variable with pa-
rameter one, then for γ > 0, writing Xγ = E/γ , we have P[Xγ > t] = P[E > γt] =
exp(−γt), so that Xγ is exponentially distributed with parameter γ .

Now, in this notation, for each 2≤ j ≤ k, the portion of L(k) corresponding to the
time when there are exactly j ancestral lineages is jX( j

2)
and the random variables

X( j
2)

are independent for different j. Thus

L(k) =
k

∑
j=2

jX( j
2)

=
k

∑
j=2

j
( j

2

)E j

=
k

∑
j=2

2
j−1

E j,

where the E j are independent exponentially distributed random variables with pa-
rameter one. From this

1
2

L(k) =
k−1

∑
i=1

1
i

Ei+1 =
k−1

∑
i=1

Xi =
k−2

∑
j=1

Xk− j−1, (2.5)

where the random variables Xi are independent exponential random variables with
parameter i.

Now suppose that we have k−1 independent exponential random variables, each
with parameter one, and arrange them in increasing order, E(1) < E(2) < · · · <
E(k−1). Then E(1) has an exponential distribution with parameter (k−1) and, as a re-
sult of the lack of memory property of the exponential distribution, for 1≤ j≤ k−2,
E( j+1)−E( j) has an exponential distribution with parameter k− j−1. Thus the right
hand side of (2.5) is distributed exactly as the maximum of k−1 independent expo-
nentially distributed random variables, each with parameter one.

In particular,

P

[
1
2

L(k) < x

]
= (P[E1 < x])k−1 =

(
1− e−x)k−1

,
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and so

P

[
1
2

L(k)− logk < x

]
=

(
1− e−(x+logk)

)k−1
for x >− logk

=
(

1− 1
k

e−x
)k−1

→ exp(−e−x) as k→ ∞.

��
Remark 2.22. Although L(k) has mean 2logk, the variance, var(L(k)), is bounded
as k→ ∞.

Conditional on L(k), under the infinitely many sites model, the number of mutations
that we see in our sample is Poisson with parameter θL(k)/2 (recall Remark 2.18).
Each site at which we see a mutation is called a segregating site or SNP (single nu-
cleotide polymorphism). Writing S(k) for the number of segregating sites, we see that

2S(k)−θL(k)
√

2θL(k)

is asymptotically normally distributed with mean zero and variance one. Thus if we
know the asymptotic distribution of L(k) we can deduce the asymptotic distribution
of S(k).

Definition 2.23 (Watterson’s estimator). Watterson proposed the following esti-
mator for the mutation rate:

θ̂ =
2S(k)

E[L(k)]
=

S(k)

∑k−1
i=1

1
i

.

As a result of Lemma 2.21 we see that Watterson’s estimator is asymptotically
normal. However, since L(k) grows like logk, in practice the convergence is
extremely slow.

2.7 Genealogies and Pedigrees

We have seen that under our neutral population models, in finite time everyone in
our population traces back to a single common ancestor. It follows immediately
(by symmetry) that if an allele starts with frequency p0 in the population, and there
is no mutation, then the probability that it is eventually fixed (that is, carried by
everyone) is just p0. As a special case, the probability that a particular gene present
in a single individual now will leave descendants in the indefinite future is 1/N.
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On the other hand, if we trace back family trees in a diploid population, then each
individual has two parents, four grandparents and so on and, in a finite population,
we quickly exhaust the population. Of course, in practice the ancestors are not all
unique, but nonetheless we expect a significant proportion of the population to be
included somewhere in our family tree. We shall refer to this family tree as the
pedigree of the individual.

The following lemma illustrates the fact that if we trace far enough back in time,
most individuals in the ancestral population will be in the pedigree of a given indi-
vidual now.

Lemma 2.24. Suppose that in a large diploid (but for simplicity hermaphrodite)
population of size N, evolving in discrete generations, each individual chooses two
parents uniformly at random from the previous generation. Then the probability that
a randomly chosen individual from the population t generations in the past is in the
pedigree of a given individual in the current population converges to about 0.8 as
t→ ∞.

Idea of Proof. First note that since N is large, the random number of descendants
left by a single individual is approximately Poisson with parameter two (being, if
we ignore the possibility of an individual choosing the same parent twice, Binomial
with 2N trials and success probability 1/N). Let P(t) be the probability that an
individual alive t generations ago does not belong to the pedigree of our chosen
individual. Then, since none of that individual’s descendants can be in the pedigree,
we have P(t + 1)≈ exp(−2 + 2P(t)).6

The equation p = exp(−2 + 2p) can be solved (at least numerically). To see
this, we first rearrange to obtain (−2p)exp(−2p) =−2exp(−2). Now the equation
z = W (z)exp(W (z)) defines the Lambert W function, also known as the product
log function. In general it is multivalued, but for z ∈ (−1/e,0) there are just two
branches and choosing the one with W (z)≥−1 gives a unique solution. This yields
p =−W (−2e−2)/2 which is close to 0.2. ��

The same calculation tells us that the 80% of individuals that are in the pedi-
gree of our chosen individual are actually in the pedigree of everyone in the current
population. The conclusion is that although most of us will have descendants alive
into the indefinite future, a particular gene is highly unlikely to be transmitted.

In fact much finer results than these are known. Chang (1999) shows that if we go
back ∼ log2 N generations7 then we can expect to see an individual in the popula-
tion who is ancestral to every present-day individual. Tracing back ∼ 1.77log2 N
generations all those individuals who are ancestors will be ancestors of every
present-day individual.

6 Here we are supposing that the probability of being in the pedigree is independent for each of
the Poisson number of individuals. Although not quite true, the idea is that this probability is
determined while the family trees of descendants of the different individuals are still small, before
the dependence becomes important. We refer to Chang (1999) for a rigorous proof.
7 We are using the notation f (N)∼ g(N) to mean f (N)/g(N)→ 1 as N→ ∞.
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Remark 2.25. In Baird et al. (2003) a branching process model is considered which
traces the pedigree descendants of an individual forwards in time in a diploid
population and asks whether that individual contributes any genetic material to the
population t generations into the future. The genome is represented by the interval
[0,1]. As a result of recombination (see Sect. 5.6), each offspring inherits, with equal
probability, either the block [0,U ] or the block [U,1] of genome from the ‘pedigree
parent’, with the complement coming from the other parent (assumed unrelated).
The random variable U is uniformly distributed on [0,1] and is independent for
each offspring. Whereas the probability of transmission of a particular gene in such
a branching process model is O(1/t) (corresponding to the probability that a criti-
cal branching process survives until time t) if one asks whether some material from
a block of genome has been transmitted, the rate of decay of survival probability
is much slower (of O(1/ logt)). This effect is akin to the birthday problem, since
we are just asking that some block be transmitted, we are not specifying a particu-
lar block.

2.8 The Moran Model

We now return to the main theme of this chapter, random genetic drift, and intro-
duce a second important model, the Moran model (due to Moran (1958)). Although
less popular with biologists than the Wright–Fisher model, mathematically it is of-
ten more convenient. For example, in a population divided into two allelic types (as
in Sect. 2.1), the frequency of the a-allele is governed by a birth and death process
which greatly simplifies its analysis. Moreover, as we shall see, the genealogy of
a sample from a population evolving according to a Moran model is exactly deter-
mined by Kingman’s coalescent.

There are two essential differences between the Wright–Fisher model and the
Moran model:

1. Whereas the Wright–Fisher model evolves in discrete generations, in the Moran
model generations overlap.

2. In the Wright–Fisher model an individual can have up to N offspring, but in the
Moran model an individual always has zero or two offspring.

Definition 2.26 (The neutral Moran model). A population of N genes evolves ac-
cording to the Moran model if at exponential rate

(N
2

)
a pair of genes is sampled

uniformly at random from the population, one dies and the other splits in two.

Remark 2.27. There is no agreement in the literature as to how to choose the rate at
which pairs of individuals are chosen, this choice is convenient as it means that the
genealogy of the population is determined by Kingman’s coalescent, with no need
for a further time change. With this choice of parameters, therefore, we can com-
pare the predictions of the Moran model to those of the Wright–Fisher or Cannings
models in the coalescent timescale. However, some care is needed in interpreting
the model in ‘real’ time units.
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Remark 2.28. The embedded discrete time Markov jump chain is a Cannings model
in which the vector (ν1(t), . . . ,νN(t)) is uniformly distributed on all the permuta-
tions of (2,0,1,1, . . . ,1).

A more formal way to describe the model is as follows. We suppose that individuals
in our population at time zero are labelled 1, . . . ,N. Associated to each pair of labels
(i, j) is an independent rate one Poisson process that we denote by π(i, j). Since
there are only a finite number of these, the points of distinct π(i, j)’s are distinct. At a
point of the Poisson process π(i, j), the individuals (genes) currently labelled (i, j) are
involved in a reproduction event in which one dies and the other reproduces (with
equal probabilities). The two offspring adopt the labels i and j. This is represented
graphically in Fig. 2.6.

We can recover the ancestry of a sample by tracing backwards in time. If an
ancestral line is at the tip of an arrow, then it coalesces with that at the root. If it
is at the root it will be unaffected. For the population of Fig. 2.6 this is illustrated
in Fig. 2.7. It is not hard to convince oneself that the genealogical trees relating
individuals in a random sample are then precisely those generated by Kingman’s
coalescent. For example, follow a sample of size two backwards in time. The labels
of the two individuals will change with time, let’s call them (i(t), j(t)) say, but
because of the lack of memory property of the exponential distribution, the time
until we see an arrow joining the pair (i(t), j(t)) is still going to be exponential
parameter one; if a label changes before coalescence, we simply piece together the
random time before the label change with the remaining random time after the label
change until we see coalescence. In particular then we see that, for large populations,
from the point of view of the genealogy of a sample it makes little difference whether
we consider a Wright–Fisher model or a Moran model.

Remark 2.29 (Adding mutations). We should like to add mutations to the Moran
model in such a way that we can readily make comparisons with the Wright–Fisher
model. For this reason, we separate the processes of mutation and reproduction so

time

1

2

3

5

6

4

Fig. 2.6 Graphical representation of the Moran model. We draw an arrow between the lines
labelled (i, j) at each point of π(i, j). The arrow i→ j indicates that i reproduced and j died, i← j
indicates that j reproduced and i died
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Fig. 2.7 Genealogies under the Moran model. The picture on the right shows the genealogical
trees relating individuals in the population on the left, tracing back from time t to time 0

that mutations fall on the genealogical tree relating individuals in the sample accord-
ing to a Poisson process, just as in Sect. 2.4. Since we are already in the timescale of
the Kingman coalescent (c.f. Remark 2.27), it is natural to suppose that each indi-
vidual accumulates mutations at a constant rate (irrespective of population size).
In order to incorporate a range of different mutation models, we model this by
supposing that in between reproduction events, the type of each individual, inde-
pendently, evolves according to a mutation process (typically, but not necessarily, a
finite state space Markov chain).

2.9 The Site Frequency Spectrum

In this section we exploit the relationship with the Moran model to continue our
investigation of the Kingman coalescent.

The simplest statistic for a sample under the infinitely many sites mutation model
is the number of segregating sites, whose distribution we discussed in Sect. 2.6, but
one can also ask for more detailed information.

Definition 2.30 (Site frequency spectrum). For a sample of size k under the in-
finitely many sites mutation model, write Mj(k) for the number of sites at which
exactly j individuals carry a mutation. The vector (M1(k),M2(k), . . . ,Mk(k)) is
called the site frequency spectrum of the sample.

This is illustrated in Fig. 2.8.

Lemma 2.31. Suppose that the genealogy of a sample is determined by the King-
man coalescent and that mutations occur at rate θ/2 along each ancestral lineage.
Under the infinitely many sites mutation model we have

E[Mj(k)] =
θ
j
. (2.6)
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Fig. 2.8 The site frequency spectrum. In the example depicted here there are seven mutations,
four of which are singletons, one occurs three times and two appear twice. (We are assuming that
we know the ancestral type at each locus.) The site frequency spectrum is (4,2,1,0,0)

Proof of Lemma 2.31. We use the relationship between the Kingman coalescent and
the Moran model. We emphasise that the ‘population’ in the Moran model below is
not that from which we have sampled. It will have size k, the number of individuals
in the sample. Suppose that a mutation arose at time−t (that is t before the present)
and denote individuals in our sample carrying that mutation as type a. For the corre-
sponding Moran model (with population size k), we think of the mutation as arising
at time zero and of the sample as the whole population at time t.

From the point of view of the Moran model, the probability that we see j type
a individuals in the sample is the probability that a mutation arising on a single
individual at time zero is carried by j individuals at time t later. We write Xt for
the number of type a individuals at time t and p(t, i, j) = P[Xt = j|X0 = i]. In this
notation, the probability that there are exactly j type a individuals in the sample is
p(t,1, j).

Since, under the infinitely many sites model, each mutation occurs at a different
point on the genome and mutations occur at rate θ/2 per individual (and the popula-
tion size is k), the expected total number of sites at which we see a mutation carried
by exactly j individuals is just

E[Mj(k)] =
∫ ∞

0
k

θ
2

p(t,1, j)dt. (2.7)

Now G(i, j) ≡ ∫ ∞
0 p(t, i, j)dt is just the expected total time that the process {Xt}t≥0

spends in site j if it started from i and our next task is to calculate this.
Note that if Xs = i, then it moves to a new value at rate i(k− i) (which is just

the number of the
(k

2

)
ways of sampling a pair from the population in which the

two individuals sampled are of different types) and when it does move, it is equally
likely to move to i−1 or i+ 1. Let

Ti = inf{t > 0 : Xt = i}

denote the first hitting time of site i. Then since 0 is a trap for the process we have

G(1, j) = P[Tj < T0
∣
∣X0 = 1] ·G( j, j).
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Now, because it is just a timechange of a simple random walk, for 0≤ i≤ j,

P[T0 < Tj
∣
∣X0 = i] =

j− i
j

,

and similarly, for j ≤ l ≤ k,

P[Tk < Tj
∣∣X0 = l] =

l− j
k− j

.

Thus, partitioning on whether the first jump out of j is to j−1 or to j + 1, we find
that if it is currently at j, the probability that this is the last visit that Xt makes to j is

ρ =
1
2

1
j
+

1
2

1
k− j

=
1
2

k
j(k− j)

.

In other words, if we start from j, the number of visits to j (including the current
one) before either the allele is fixed in the population or it is lost is geometric with
parameter ρ . Each visit lasts an exponentially distributed time with mean 1

j(k− j) .
Thus

G(1, j) =
1
j
G( j, j) =

1
j

1
ρ

1
j(k− j)

=
2
k j

.

Substituting into (2.7) completes the proof. ��
Remark 2.32. The remarkable fact about this result is that the site frequency spec-
trum is almost independent of k. Increasing k only changes the allowed classes. The
sceptical reader can work directly and, by conditioning on the first event as one
traces backwards in time in the Kingman coalescent, check that the expected num-
ber of singletons is independent of k. This approach rapidly becomes tedious when
checking the corresponding result for the other terms in the spectrum.

2.10 The Lookdown Process

The consistency of the k-coalescents for different values of k ∈ N allows us to re-
cover all of them as projections of a single stochastic process, Kingman’s coalescent.
Since genealogical trees for the Moran model are precisely governed by the King-
man coalescent, it is reasonable to hope that we can also construct Moran models
corresponding to different population sizes as projections of a single stochastic pro-
cess. This is at the heart of the powerful Donnelly and Kurtz lookdown process.

To see how it works, we exploit the connection with the Kingman coalescent.
Suppose that the population at the present time is labelled {1,2, . . . ,N}. Recall that
the full description of the Kingman coalescent (or rather the N-coalescent) is as a
process taking values among the set of equivalence relations on {1,2, . . . ,N}, with
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each ancestral lineage corresponding to a single equivalence class. Now suppose
that we label each equivalence class by its smallest element. If blocks with labels
i < j coalesce, then after the coalescence the new block is necessarily labelled i.
In our graphical representation of the Moran model, this just dictates the direction
of the arrow corresponding to that coalescence event; it will always be the individual
with the smaller label that gave birth. Backwards in time, our process is equivalent
to one in which, as before, at the points of a rate one Poisson process π(i, j) arrows
are drawn joining the labels i and j, but now the arrows are always in the same
direction (upwards with our convention). The genealogies are still determined by
the Kingman coalescent, we have simply chosen a convenient labelling, and so in
particular they are precisely those of the Moran model. But what about forwards in
time? What we saw backwards in time was that choosing the direction of the arrows
corresponded to choosing a particular labelling of the population. If the distribution
of the population is exchangeable, that is it doesn’t depend on the labelling, then
forwards in time too we should not have changed the distribution in our population.
Our next task will be to check this, but first we need a formal definition.

Definition 2.33 (The N-particle lookdown process). The N-particle lookdown
process will be denoted by the vector (ζ1(t), . . . ,ζN(t)). Each index is thought of as
representing a ‘level’, with ζi(t) denoting the allelic type of the individual at level i
at time t. The evolution of the process is described as follows. The individual at level
k is equipped with an exponential clock with rate (k− 1), independent of all other
individuals. At the times determined by the corresponding Poisson process it selects
a level uniformly at random from {1,2, . . . ,k−1} and adopts the current type of the
individual at that level. The levels of the individuals involved in the event do not
change. In between lookdown events the type at each level evolves, independently,
according to the mutation process.

Remark 2.34. Because of our convention over the interpretation of arrows, it is
not at all clear from the above why one should call this the lookdown process.
The explanation is that at rate (k− 1) the kth individual ‘looks down’ to a level
chosen uniformly at random from those below and adopts the type of the individual
at that level.

To see that the lookdown process and the Moran model produce the same distri-
bution of types in the population, provided we start from an exchangeable initial
condition, we examine their infinitesimal generators. Recall the definition of the
generator of a continuous time Markov process.

Definition 2.35 (Generator of a continuous time Markov process). Let {Xt}t≥0

be a real-valued continuous time Markov process. For simplicity suppose that it is
time homogeneous. For a function f : R→R define

L f (x) = lim
δ t↓0

E[ f (Xδ t)− f (x)|X0 = x]
δ t
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if the limit exists. We’ll call the set D(L ) of functions for which the limit exists the
domain of L , and the operator L , acting on D(L ), the infinitesimal generator of
{Xt}t≥0.

If we know L , then we can write down a differential equation for the way
that E[ f (Xt)] evolves with time. If L f is defined for sufficiently many different
functions then this completely characterises the finite dimensional distributions of
{Xt}t≥0.

Let us write E for the space of possible allelic types for individuals in our
population. The Moran model for a population of size N is then simply a contin-
uous time Markov chain on EN and its infinitesimal generator, KN , evaluated on a
function f : EN → R, is given by

KN f (x1,x2, . . . ,xN) =
N

∑
i=1

Ai f (x1,x2, . . . ,xN)

+
1
2

N

∑
i=1

N

∑
j=1

[Φi j f (x1, . . . ,xN)− f (x1, . . . ,xN)] , (2.8)

where Φi j f (x1, . . . ,xN) is the function obtained from f by replacing x j by xi. The
operator Ai is the generator of the mutation process, A, acting on the ith coordinate.
(Recall that in the Moran model mutation was superposed as a Markov process
along lineages.)

The generator of the N-particle lookdown process, LN is given by

LN f (x1,x2, . . . ,xN) =
N

∑
i=1

Ai f (x1,x2, . . . ,xN)

+ ∑
1≤i< j≤N

[Φi j f (x1,x2 . . . ,xN)− f (x1,x2 . . . ,xN)] . (2.9)

Assuming that we start both processes from the same exchangeable initial condition,
we should like to show that the types (ζ1(t),ζ2(t), . . . ,ζN(t)) under the lookdown
model and the types (Z1(t),Z2(t), . . . ,ZN(t)), say, under the original Moran process
have the same distribution for each fixed t > 0, even though the processes are man-
ifestly different. Following Dawson (1993), we must check that the generators of
the two processes agree on symmetric functions. Observe first that any symmetric
function, f , satisfies

f (x1,x2, . . . ,xN) =
1

N! ∑
π

f
(
xπ(1),xπ(2), . . . ,xπ(N)

)
,

where the sum is over all permutations of {1,2, . . . ,N}. Substituting this expression
for f into (2.9), we recover (2.8). In other words, the generators of (ζ1,ζ2, . . . ,ζN)
and (Z1,Z2, . . . ,ZN) agree on symmetric functions as required. (We are implicitly
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assuming uniqueness of the distribution on symmetric functions corresponding to
this generator. It follows from duality with the N-coalescent, but we don’t allow that
to detain us here.)

The key observation now is that our Nth lookdown process is simply the first
N levels of the (N + k)th lookdown process for any k ≥ 1. The infinite lookdown
process can then be constructed as a projective limit.

Theorem 2.36 (Donnelly and Kurtz 1996). There is an infinite exchangeable par-
ticle system {Wi, i ∈ N} such that for each N,

(W1,W2, . . . ,WN) D= (ζ1,ζ2, . . . ,ζN) ,

where ζ1,ζ2, . . . ,ζN is the N-particle lookdown process.

Remark 2.37. In fact more is true. It is known that the sequence of empirical mea-
sures 1

N ∑N
i=1 δZi(t) converges to a Fleming–Viot superprocess as N → ∞. Donnelly

and Kurtz also show that

Y = lim
N→∞

1
N

N

∑
i=1

δWi ,

is a Fleming–Viot superprocess. A rapid introduction to Fleming–Viot superpro-
cesses and further references can be found, for example, in Etheridge (2000). Rather
than introduce the general Fleming–Viot superprocess, which takes its values among
probability measures on the type space E , in Sect. 2.11 we shall consider what this
limit looks like in the special case when E is a two-point set representing two alleles
a and A, in which case it is enough to specify the evolution of the proportion of type
a individuals in the population.

Since the genealogy of a sample of size k from the Moran model is a k-coalescent,
and since we’ve seen that the genealogy of the first k levels in the lookdown process
is also a k-coalescent, with this labelling we have a nice consistent way of sampling
from a Moran model of arbitrary size. The genealogy of the sample is that of the first
k levels in the lookdown process. The evolution of those levels does not depend on
the population size – because we only ever look ‘down’ we don’t see the population
size N at all.

2.11 A More Simplistic Limit

Instead of discussing general Fleming–Viot superprocesses (which would allow us
to consider essentially arbitrary type spaces) we now turn to identifying the limiting
model for allele frequencies when our population is subdivided into just two types
which, as usual, we label a and A. Just as in our discussion of the rescaled Wright–
Fisher model, we consider the proportion, pt , of individuals of type a at time t.

The only possible mutations are between the two types. We suppose that each
type a individual mutates to type A at rate ν1 and each type A individual mutates to
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type a at rate ν2. Recall that for the Moran model we are already in the timescale of
the Kingman coalescent and so we should think of νi = Nμi where μ1 and μ2 are
the true mutation rates.

Remark 2.38. The idea that we can mutate backwards and forwards between types
may seem at odds with our discussion of mutations in Sect. 2.4. Models of this
type were introduced long before biologists knew about, and had access to, DNA
sequences. Classically one might imagine a small number of alleles defined through
phenotype, for example colour. In modern terms one can justify the model by pool-
ing sequences into classes according to the corresponding phenotype.

The generator for the birth-death process of allele frequencies under the Moran
model for a population of size N is then

LN f (p) =
(

N
2

)
p(1− p)

(
f

(
p +

1
N

)
− f (p)

)

+
(

N
2

)
p(1− p)

(
f

(
p− 1

N

)
− f (p)

)

+Nν1 p

(
f

(
p− 1

N

)
− f (p)

)
+ Nν2(1− p)

(
f

(
p +

1
N

)
− f (p)

)
.

(2.10)

To see this, note that the reproduction events in the Moran model take place at
the points of a Poisson process with rate

(N
2

)
and at the time of such a transition

there will only be a change in allele frequencies if the two individuals chosen to be
involved in the reproduction event are of different allelic types. Thus, if the current
proportion of a alleles in the population is p, then

p �→ p +
1
N

with probability p(1− p),

p �→ p− 1
N

with probability p(1− p)

and there is no change with probability 1− 2p(1− p). The chance that we see a
reproduction event in a time interval of length δ t is

(
N
2

)
δ t +O((δ t)2)

and the probability of seeing more than one transition is O((δ t)2). For mutation
events, at total rate N pν1, one of the N p type a individuals will mutate to type
A, resulting in a reduction of p by 1/N and at total rate N(1− p)ν2 one of the
N(1− p) type A individuals will mutate to type a. Putting all this together gives that
for f : [0,1]→R and p = i/N for some i∈ {0,1, . . . ,N}, LN f (p) is given by (2.10).

To see what our population process will look like for large N we take f to
be three times continuously differentiable, and use Taylor’s Theorem to find an
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approximation for LN f . Thus

LN f (p) =
(

N
2

)
p(1− p)

(
f (p)+

1
N

f ′(p)+
1

2N2 f ′′(p)+O

(
1

N3

)
− f (p)

)

+
(

N
2

)
p(1− p)

(
f (p)− 1

N
f ′(p)+

1
2N2 f ′′(p)+O

(
1

N3

)
− f (p)

)

+N pν1

(
f (p)− 1

N
f ′(p)+O

(
1

N2

)
− f (p)

)

+N(1− p)ν2

(
f (p)+

1
N

f ′(p)+O

(
1

N2

)
− f (p)

)

=
1
2

p(1− p) f ′′(p)+ ((1− p)ν2− pν1) f ′(p)+O

(
1
N

)
.

We have proved the following.

Lemma 2.39. As N → ∞, the generator LN of the process of allele frequencies
under the neutral Moran model with mutation converges to L , the generator of the
Wright–Fisher diffusion with mutation, which is given by

L f (p) =
d
dt

E [ f (pt )|p0 = p]
∣
∣∣
∣
t=0

=
1
2

p(1− p) f ′′(p)+ (ν2− (ν1 + ν2)p) f ′(p).

(2.11)

Remark 2.40. Notice, in particular, that if we set ν1 = ν2 = 0 we obtain

L f (p) =
1
2

p(1− p) f ′′(p),

which is exactly the generator that we obtained in the large population limit from
our Wright–Fisher model. It is not hard to extend the work that we did there to
include mutations and recover the full generator (2.11).

What we have written down is the generator of a one-dimensional diffusion.
We should like to be able to use the convergence of generators that we have verified
to justify using the corresponding one-dimensional diffusion as an approximation
to the process of allele frequencies under the Moran, the Wright–Fisher and the
Cannings models (on suitable timescales). We defer the statement of a theorem that
provides that justification until Sect. 3.2. Evidently we also need to know that there
is a unique Markov process with generator (2.11) and that we can actually calculate
quantities of interest for it. Happily both are true.



Chapter 3
One Dimensional Diffusions

3.1 Diffusions

In this chapter we are going to remind ourselves of some useful facts about
one-dimensional diffusions. It is not an exhaustive study. Excellent references for
this material are Karlin and Taylor (1981) and Knight (1981). We start in a fairly
general setting.

Definition 3.1 (One-dimensional diffusion). A one-dimensional diffusion pro-
cess {Xt}t≥0 is a strong Markov process on R which traces out a continuous path as
time evolves.

At any instant in time, Xt is a continuous random variable but also any realisation of
{Xt}t≥0 is a continuous function of time. Its range need not be the whole of R and
indeed for the most part we’ll be interested in diffusions on (0,1) (possibly union
either or both of the endpoints {0,1}). For the time being let us take the state space
to be an interval (a,b) (possibly infinite), again possibly union one or both of the
endpoints {a,b}.1

Remark 3.2. In our discussion of diffusions, we shall generally use x to denote a
generic point in (a,b), but for consistency with our previous notation we shall use p
for points in (0,1) when discussing models for allele frequencies in genetics.

The generator of the diffusion takes the form

L f (x) =
1
2

σ2(x)
d2 f
dx2 (x)+ μ(x)

d f
dx

(x). (3.1)

Evidently for this to be defined f must be twice differentiable on (a,b). Depending
on the behaviour of the diffusion close to the boundaries of its domain, f may also
have to satisfy boundary conditions at a and b. We’ll specify these precisely in
Theorem 3.17, but for now assume that if we apply the generator to a function, f ,

1 We wish to include all accessible endpoints, defined in Definition 3.16, in the state space.

A. Etheridge, Some Mathematical Models from Population Genetics, Lecture Notes
in Mathematics 2012, DOI 10.1007/978-3-642-16632-7 3,
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then f is in the domain D(L ) of the generator L . To avoid pathologies, we make
the following assumptions:

1. For any compact interval I ⊂ (a,b), there exists ε > 0 such that σ2(x) > ε for all
x ∈ I.

2. The coefficients μ(x) and σ2(x) are continuous functions of x ∈ (a,b).

Note that (crucially for applications in genetics) we do allow σ2(x) to vanish at the
boundary points {a,b}.

Let us write ΔhX(t) = Xt+h−Xt , then taking f1(x) = x in the generator (and using
the Markov property) we see that

L f1(Xt) = lim
h↓0

1
h

E[ΔhX(t)|Xt ] = μ(Xt)

and so

E[ΔhX(t)|Xt ] = hμ(Xt)+ o(h) as h ↓ 0. (3.2)

Now observe that we can write (Xt+h−Xt)2 = X2
t+h−X2

t − 2Xt(Xt+h−Xt) and so,
taking f2(x) = x2,

L f2(Xt)−2XtL f1(Xt) = lim
h↓0

1
h

E[ (ΔhX(t))2
∣
∣Xt ] = σ2(Xt),

which yields

E[ (ΔhX(t))2
∣
∣Xt ] = hσ2(Xt)+ o(h) as h ↓ 0. (3.3)

This motivates the following terminology.

Definition 3.3 (Infinitesimal drift and variance). The coefficients μ(x) and
σ2(x) are called the (infinitesimal) drift and variance of the diffusion {Xt}t≥0.

In fact, if a strong Markov process {Xt}t≥0 is càdlàg (that is its paths are right
continuous with left limits) and satisfies (3.2), (3.3) and the additional condition

lim
h↓0

1
h

E [ |ΔhX(t)|p|Xt = x] = 0 for some p > 2,

where the convergence is uniform in (x,t) on compact subsets of (a,b)×R+,
then {Xt}t≥0 is necessarily a diffusion (see Karlin and Taylor (1981), Sect. 15.1,
Lemma 1.1).

The canonical example of a one-dimensional diffusion is one-dimensional
Brownian motion which has generator

LB f (x) =
1
2

d2 f
dx2 (x).
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It has transition density function

p(t,x,y) =
1√
2πt

exp

(
− (x− y)2

2t

)
.

In other words, if {Wt}t≥0 denotes Brownian motion then

P[Wt ∈ A|X0 = x]≡ Px[Wt ∈ A] =
∫

A

1√
2πt

exp

(
− (x− y)2

2t

)
dy

for any subset A⊆ R.
Brownian motion can be thought of as a building block from which other one-

dimensional diffusions are constructed. One approach is to observe that the diffusion
corresponding to the generator L of (3.1) can be expressed as the solution of
a stochastic differential equation driven by Brownian motion (with appropriate
boundary conditions)

dXt = μ(Xt)dt + σ(Xt)dWt . (3.4)

Remark 3.4 (Mathematical drift versus genetic drift). We have already encoun-
tered the Wright–Fisher diffusion several times, corresponding to the solution of the
stochastic differential equation

d pt = (ν2(1− pt)−ν1 pt)dt +
√

pt(1− pt)dWt .

It is an unfortunate accident of history that the standard terminology for the
stochastic term (driven by Brownian motion) is genetic drift, whereas to a mathe-
matician it is the deterministic mutation term that corresponds to drift.

We can see from (3.4) and Itô’s Lemma that

f (Xt )−
∫ t

0
L f (Xs)ds (3.5)

is a martingale for all f ∈D(L ). Stroock and Varadhan (1979) use this martingale
property as a way of characterising the Markov process associated with a given gen-
erator. Solving the corresponding martingale problem requires all the expressions
in (3.5) to be martingales.

Definition 3.5. We shall say that the martingale problem for μ , σ is well-posed
if for each x ∈ (a,b) there is a unique probability measure Px on the continuous
functions from [0,1] to R (with the σ -field generated by the coordinate maps) such
that P[X0 = x] = 1 and the quantities in (3.5) are martingales.

We refer to Stroock and Varadhan (1979) for a thorough introduction to martingale
problems. In particular, the martingale problem for a diffusion process on R is cer-
tainly well-posed if μ and σ2 are bounded measurable functions with σ2 uniformly
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strictly positive. (This last condition is violated by the Wright–Fisher diffusion, but
it turns out that the martingale problem is nonetheless well-posed, see Sect. 3.2 for
references.)

Our approach to constructing one-dimensional diffusions from Brownian motion
will not be via stochastic differential equations or martingale problems, but rather
through the theory of speed and scale. Before introducing that, let’s fill a gap that
we left at the end of Chap. 2.

3.2 Convergence to Diffusions

In the case where the martingale problem of Definition 3.5 is well-posed, Stroock
and Varadhan (1979) provide elementary criteria for convergence of discrete or con-
tinuous time Markov chains to a diffusion, which we record in Theorem 3.6 below.
We follow Sect. 8.7 of Durrett (1996) which treats discrete and continuous time
together. We need some notation. Suppose that we have a series of discrete time
Markov chains, {Y h

nh}n∈N say, indexed by h and taking values in Sh ⊆ R, with
the chain with index h jumping at time intervals of length h. Write

P[Y h
(n+1)h ∈ A|Y h

nh = x] = Πh(x,A), for x ∈ Sh,A⊂ R.

(When we write A⊆R we implicitly assume that A is a Borel subset of R.) We define
Xh

t = Y h
h[t/h], where [u] denotes the integer part of u ∈ R. In other words we extend

Y h to all times t ≥ 0 by setting it to be constant on time intervals [nh,(n + 1)h).
Now suppose that we have continuous time chains {Xh

t }t≥0 taking values in
Sh ⊆ R. In place of the sequence of transition probabilities Πh for the discrete time
chain, we have a sequence of transition rates:

d
dt

P[Xh
t ∈ A|Xh

0 = x]
∣
∣∣
∣
t=0

= Qh(x,A), for x ∈ Sh,A⊂ R,x /∈ A.

We assume that for any compact set K,

sup
x∈K

Qh(x,R) < ∞. (3.6)

Let us write

Kh(x,dy) =
{ 1

h Πh(x,dy) in discrete time
Qh(x,dy) in continuous time

and define

(σ2)h(x) =
∫

|y−x|≤1
(y− x)2Kh(x,dy),
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μh(x) =
∫

|y−x|≤1
(y− x)Kh(x,dy),

Δ h
ε (x) = Kh(x,B(x,ε)c),

where B(x,ε) = (x− ε,x + ε).

Theorem 3.6. Suppose that μ and σ are continuous coefficients for which the mar-
tingale problem for L of (3.1) is well-posed. In continuous time we assume (3.6).
Suppose further that for each R < ∞ and ε > 0

1.
lim
h↓0

sup
x∈Sh,|x|≤R

|μh(x)− μ(x)|= 0,

2.
lim
h↓0

sup
x∈Sh,|x|≤R

|(σ2)h(x)−σ2(x)|= 0,

3.
lim
h↓0

sup
x∈Sh,|x|≤R

Δ h
ε (x) = 0.

If Xh
0 = xh → x then we have {Xh

t }t≥0 ⇒ {Xt}t≥0, the solution of the martin-
gale problem with X0 = x. (Here ⇒ denotes convergence in the sense of finite-
dimensional distributions.)

This is a special case of Theorem 8.7.1 of Durrett (1996) which in turn is based upon
Chap. 11 of Stroock and Varadhan (1979). The first two conditions of the Theorem
ensure that infinitesimal drift and variance of the sequence of Markov chains con-
verge (uniformly on compact sets) to the right thing, while the third rules out jumps
in the limit.

Of course it remains to check that the martingale problem is well-posed for
our Wright–Fisher diffusion. That result is really due to Feller (1951) (although
he didn’t use this language). It can be found in Ethier and Kurtz (1986) who con-
sider convergence of a Wright–Fisher model (with possibly more than two alleles)
to the Wright–Fisher diffusion in their Chap. 10. They invoke much more powerful
weak convergence results that are beyond our scope here.

Remark 3.7. This sort of convergence is enough to justify using our limiting
Wright–Fisher diffusion to approximate things like time to fixation and fixation
probabilities. However, if we are really interested in the genealogies of popula-
tions, then we need more. For our Moran models, the Donnelly–Kurtz lookdown
construction gave us a much stronger result, namely the joint convergence of the
forwards in time model for the evolution of the population and the (backwards in
time) genealogical trees relating individuals in that population. In general we must
be careful. It is possible to arrive at the same diffusion for allele frequencies from
many different individual based models for our population, and it is not always the
case that the genealogies converge to the same limit (see Taylor (2009) for some
examples).
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3.3 Speed and Scale

A nice feature of one dimensional diffusions is that many quantities can be
calculated explicitly. This is because (except at certain singular points which will
only ever be at a or b under our conditions) all one-dimensional diffusions can
be transformed into Brownian motion first by a change of space variable (through
the so-called scale function) and then a timechange (through what is known as the
speed measure).

To see how this works, we first investigate what happens to a diffusion when
we change the timescale. Suppose that a diffusion {Zt}t≥0 has generator LZ , with
infinitesimal drift μZ(x) and infinitesimal variance σ2

Z (x). We define a new process
{Yt}t≥0 by Yt = Zτ(t) where

τ(t) =
∫ t

0
β (Ys)ds,

for some function β (x) which we assume to be bounded, continuous and strictly
positive. So if Y0 = Z0, then the increment of Yt over an infinitesimal time inter-
val (0,dt) is that of Zt over the interval (0,dτ(t)) = (0,β (Y0)dt). In our previous
notation,

E[ΔhY (0)|Y0 = y] = β (Y0)hμZ(Z0)+ o(h) = β (y)μZ(y)h + o(h),

and

E[(ΔhY (0))2|Y0 = y] = β (Y0)hσ2
Z(Z0)+ o(h) = β (y)σ2

Z (y)h + o(h).

In other words,
LY f (x) = β (x)LZ f (x).

In the simplest example, β is a constant and we are simply changing our time units
in a spatially homogeneous way. In general, the rate of our ‘clock’ depends upon
where we are in space. We are now in a position to understand speed and scale.
Let {Xt}t≥0 be governed by the generator (3.1). Suppose now that S(x) is a strictly
increasing function on (a,b) and consider the new process Zt = S(Xt). Then the
generator LZ of Z can be calculated as

LZ f (x) =
d
dt

E [ f (Zt )|Z0 = x]
∣
∣
∣
∣
t=0

=
d
dt

E [ f (S(Xt))|S(X0) = x]
∣
∣∣
∣
t=0

= LX( f ◦ S)(S−1(x))

=
1
2

σ2(S−1(x))
d2

dx2 ( f ◦ S)(S−1(x))+ μ(S−1(x))
d
dx

( f ◦ S)(S−1(x))
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=
1
2

σ2(S−1(x))
{

(S′(S−1(x)))2 d2 f
dx2 (x)+ S′′(S−1(x))

d f
dx

(x)
}

+μ(S−1(x))S′(S−1(x))
d f
dx

(x)

=
1
2

σ2(S−1(x))S′(S−1(x))2 d2 f
dx2 (x)+L S(S−1(x))

d f
dx

(x). (3.7)

Now if we can find a strictly increasing function S that satisfies L S ≡ 0, then the
drift term (in the mathematical sense) in (3.7) will vanish and so Zt will just be a
time change of Brownian motion on the interval (S(a),S(b)). Such an S is provided
by the scale function of the diffusion.

Definition 3.8 (Scale function). For a diffusion Xt on (a,b) with drift μ and
variance σ2, the scale function is defined by

S(x) =
∫ x

x0

exp

(
−
∫ y

η

2μ(z)
σ2(z)

dz

)
dy,

where x0, η are points fixed (arbitrarily) in (a,b).

Definition 3.9 (Natural scale). We shall say that a diffusion is in natural scale if
S(x) can be taken to be linear.

The scale change Xt �→ S(Xt) resulted in a timechanged Brownian motion on
(S(a),S(b)). The change of time required to transform this into standard Brownian
motion is dictated by the speed measure.

Definition 3.10 (Speed measure). The function m(ξ ) = 1
σ 2(ξ )S′(ξ ) is the density of

the speed measure or just the speed density of the process Xt . We write

M(x) =
∫ x

x0

m(ξ )dξ .

Remark 3.11. The function m plays the rôle of β before. Naively, looking at (3.7),
we might expect to timechange via β (ξ ) = 1/(σ2(ξ )S′(ξ )2). However, notice that

∫ x

x0

m(ξ )dξ =
∫ S(x)

S(x0)
m(S−1(y))

1
S′(S−1(y))

dy =
∫ S(x)

S(x0)

1

σ2(S−1(y))
(
S′(S−1(y))

)2 dy.

The additional S′(y) in the generator (3.7) has been absorbed in the change of
coordinates since our time change is applied to S(Xt) on (S(a),S(b)), not to Xt itself.

In summary, we have the following.

Lemma 3.12. Denoting the scale function and the speed measure by S and M
respectively we have

L f =
1
2

1
dM/dS

d2 f
dS2 =

1
2

d
dM

(
d f
dS

)
.
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Proof.

1
2

d
dM

(
d f
dS

)
=

1
2

1
dM/dx

d
dx

(
1

dS/dx
d f
dx

)

=
1
2

σ2(x)S′(x)
d
dx

(
1

S′(x)
d f
dx

)

=
1
2

σ2(x)
d2 f
dx2 −

1
2

σ2(x)S′(x)
S′′(x)

(S′(x))2

d f
dx

=
1
2

σ2(x)
d2 f
dx2 + μ(x)

d f
dx

(since S solves L S = 0) as required. ��

3.4 Hitting Probabilities and Feller’s Boundary Classification

Before going further, let’s see how we might apply this. Suppose that a diffusion
process on (0,1) represents the frequency of an allele, a say, in a population and
that zero and one are traps for the process. One question that we should like to
answer is “What is the probability that the a-allele is eventually lost from the
population?” In other words, what is the probability that the diffusion hits zero be-
fore one? To prove a general result we need first to be able to answer this question
for Brownian motion.

Lemma 3.13. Let {Wt}t≥0 be standard Brownian motion on the line. For each
y ∈ R, let Ty denote the random time at which it hits y for the first time. Then for
a < x < b,

P[Ta < Tb|W0 = x] =
b− x
b−a

.

Sketch of Proof. Let u(x) = P[Ta < Tb|W0 = x] and assume that P[Ta∧Tb < h|W0 =
x] = o(h) as h→ 0. If we suppose that u is sufficiently smooth, then, using the
Markov property,

u(x) = E [u(Wh)|W0 = x]+ o(h)

= E

[
u(x)+ (Wh− x)u′(x)+

1
2
(Wh− x)2u′′(x)

]
+ o(h)

= u(x)+
1
2

hu′′(x)+ o(h).
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Subtracting u(x) from each side, dividing by h and letting h tend to zero, we obtain
u′′(x) = 0. We also have the boundary conditions u(a) = 1 and u(b) = 0. This is
easily solved to give

u(x) =
b− x
b−a

as required. ��
Of course this reflects the corresponding result for simple random walk that we

used in the proof of Lemma 2.31. In general we can reduce the corresponding ques-
tion for {Xt}t≥0 to solution of the equation L u(x) = 0 with u(a) = 1 and u(b) = 0,
but in fact we have already done all the work we need. We have the following result.

Lemma 3.14 (Hitting probabilities). Let {Xt}t≥0 be a one-dimensional diffusion
on (a,b) with infinitesimal drift μ(x) and variance σ2(x) satisfying the conditions
above. If a < a0 < x < b0 < b then writing Ty for the first time at which Xt = y,

P[Ta0 < Tb0 |X0 = x] =
S(b0)−S(x)
S(b0)−S(a0)

, (3.8)

where S is the scale function for the diffusion.

Remark 3.15. Our definition of the scale function, S, depended upon arbitrary
choices of η and x0, but η cancels in the ratio and x0 in the difference, so that
the expression on the right hand side of (3.8) is well-defined.

Proof. Evidently it is enough to consider the corresponding hitting probabilities for
the process Zt = S(Xt), where S is the scale function. The process {Zt}t≥0 is a time
changed Brownian motion, but since we only care about where not when the process
exits the interval (S(a0),S(b0)), then we need only determine the hitting probabili-
ties for Brownian motion and the result follows immediately from Lemma 3.13. ��

Before continuing to calculate quantities of interest, we fill in a gap left earlier
when we failed to completely specify the domain of the generators of our one-
dimensional diffusions. Whether or not functions in the domain must satisfy bound-
ary conditions at a and b is determined by the nature of those boundaries from the
perspective of the diffusion. More precisely, we have the following classification.

Definition 3.16 (Feller’s boundary classification). For a one-dimensional diffu-
sion on the interval with endpoints a, b (with a < b), define

u(x) =
∫ x

x0

MdS, v(x) =
∫ x

x0

SdM,

where S is the scale function of Definition 3.8 and M the speed measure of
Definition 3.10. The boundary b is said to be
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regular if u(b) < ∞ and v(b) < ∞
exit if u(b) < ∞ and v(b) = ∞
entrance if u(b) = ∞ and v(b) < ∞
natural if u(b) = ∞ and v(b) = ∞

with symmetric definitions at a.
Regular and exit boundaries are said to be accessible while entrance and natural

boundaries are called inaccessible.

Theorem 3.17. If neither a nor b is regular, the domain of the generator (3.1) is the
continuous functions f on [a,b] which are twice continuously differentiable on the
interior and for which

1. if a and b are inaccessible there are no further conditions,
2. if b (resp. a) is an exit boundary, then

limx→b L f (x) = 0

(resp. limx→a L f (x) = 0) .

If b (resp. a) is a regular boundary, then for each fixed q ∈ [0,1] there is a Feller
semigroup corresponding to the generator (3.1) with domain as above plus the
additional condition

q limx→b L f (x) = (1−q) limx→b
1

S′(x)
f ′(x) (3.9)

(
resp. q limx→a L f (x) =−(1−q) limx→a

1
S′(x)

f ′(x)
)

.

For a more careful discussion see Ethier and Kurtz (1986), Chap. 8.

Remark 3.18. For each fixed q ∈ [0,1], condition (3.9) is enough to specify the
boundary behaviour of the diffusion at a regular boundary uniquely. It is easy to
check that the Wright–Fisher diffusion with mutation with generator (2.11) has a
regular boundary at 0 (resp. 1) if ν2 ∈ (0, 1

2 ) (resp. if ν1 ∈ (0, 1
2 )), but the condi-

tion (3.9) is in fact the same for all q > 0.

3.5 Green’s Functions

Lemma 3.14 tells us the probability that we exit (a,b) for the first time through a,
but can we glean some information about how long we must wait for {Xt}t≥0 to exit
the interval (a,b) (either through a or b) or, more generally, writing T ∗ for the first
exit time of (a,b), can we say anything about E[

∫ T ∗
0 g(Xs)ds|X0 = x]? (Putting g = 1

gives the mean exit time.) Let us write
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w(x) = E

[∫ T ∗

0
g(Xs)ds|X0 = x

]

and we’ll derive the differential equation satisfied by w.
Suppose for simplicity that g is Lipschitz continuous on (a,b) with Lipschitz

constant K. First note that w(a) = w(b) = 0. Now consider a small interval of time
of length h. We’re going to split the integral into the contribution up to time h and
after time h. Because {Xt}t≥0 is a Markov process,

E

[∫ T ∗

h
g(Xs)ds|Xh = z

]
= E

[∫ T ∗

0
g(Xs)ds|X0 = z

]
= w(z)

and so for a < x < b

w(x)≈ E

[∫ h

0
g(Xs)ds|X0 = x

]
+E [w(Xh)|X0 = x] . (3.10)

The ‘≈’ here is because we have ignored the possibility that h > T ∗. Since g is
Lipschitz continuous, we have the approximation

∣
∣
∣
∣E
[∫ h

0
g(Xs)ds|X0 = x

]
−hg(x)

∣
∣
∣
∣= E

[∣∣
∣
∣

∫ h

0
g(Xs)ds−hg(x)

∣
∣
∣
∣ |X0 = x

]

≤ E

[∫ h

0
K|Xs− x|ds|X0 = x

]
≤ K

∫ h

0

√
E [ |Xs− x|2|X0 = x] = O(h3/2).

Now substitute this estimate in (3.10), subtract w(x) from both sides, divide by h
and let h ↓ 0 to obtain

μ(x)w′(x)+
1
2

σ2(x)w′′(x) =−g(x), w(a) = 0 = w(b). (3.11)

Let us now turn to solving this equation. Using Lemma 3.12 with w = f ,

L w(x) =
1
2

1
m(x)

d
dx

(
1

S′(x)
w′(x)

)

and so we have
d
dx

(
1

S′(x)
w′(x)

)
=−2g(x)m(x),

whence
1

S′(x)
w′(x) =−2

∫ x

a
g(ξ )m(ξ )dξ + β

where β is a constant. Multiplying by S′(x) and integrating gives

w(x) =−2
∫ x

a
S′(ξ )

∫ ξ

a
g(η)m(η)dηdξ + β (S(x)−S(a))+ α
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for constants α , β . Since w(a) = 0, we immediately have that α = 0. Reversing the
order of integration,

w(x) = −2
∫ x

a

∫ x

η
S′(ξ )dξ g(η)m(η)dη + β (S(x)−S(a))

= −2
∫ x

a
(S(x)−S(η))g(η)m(η)dη + β (S(x)−S(a))

and w(b) = 0 now gives

β =
2

S(b)−S(a)

∫ b

a
(S(b)−S(η))g(η)m(η)dη .

Finally then

w(x) =
2

S(b)−S(a)

{
(S(x)−S(a))

∫ b

a
(S(b)−S(η))g(η)m(η)dη

−(S(b)−S(a))
∫ x

a
(S(x)−S(η))g(η)m(η)dη

}

=
2

S(b)−S(a)

{
(S(x)−S(a))

∫ b

x
(S(b)−S(η))g(η)m(η)dη

+(S(b)−S(x))
∫ x

a
(S(η)−S(a))g(η)m(η)dη

}

where the last line is obtained by splitting the first integral into
∫ b

a =
∫ b

x +
∫ x

a .

Theorem 3.19. For a continuous function g,

E

[∫ T∗

0
g(Xs)ds|X0 = x

]
=
∫ b

a
G(x,ξ )g(ξ )dξ ,

where for a < x < b we have

G(x,ξ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
(S(x)−S(a))
(S(b)−S(a))

(S(b)−S(ξ ))m(ξ ), for x < ξ < b

2
(S(b)−S(x))
(S(b)−S(a))

(S(ξ )−S(a))m(ξ ), for a < ξ < x,

with S the scale function given in Definition 3.8 and m(ξ ) = 1
σ 2(ξ )S′(ξ ) , the density

of the speed measure.
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Definition 3.20. The function G(x,ξ ) is called the Green’s function of the process
{Xt}t≥0.

By taking g to approximate 1(x1,x2) we see that
∫ x2

x1
G(x,ξ )dξ is the mean time spent

by the process in (x1,x2) before exiting (a,b) if initially X0 = x. Sometimes, the
Green’s function is called the sojourn density.

Example 3.21. Consider the Wright–Fisher diffusion with generator

L f (p) =
1
2

p(1− p) f ′′(p).

Notice that since it has no drift term (μ = 0) it is already in natural scale, S(p) = p
(up to an arbitrary additive constant). What about E[T ∗]?

Using Theorem 3.19 with g = 1 we have

Ep[T ∗] = E

[∫ T∗

0
1ds

∣∣
∣
∣X0 = p

]
=
∫ 1

0
G(p,ξ )dξ

= 2
∫ 1

p
p(1− ξ )

1
ξ (1− ξ )

dξ + 2
∫ p

0
(1− p)ξ

1
ξ (1− ξ )

dξ

= 2p
∫ 1

p

1
ξ

dξ + 2(1− p)
∫ p

0

1
1− ξ

dξ

= −2{p log p +(1− p) log(1− p)} .
�

This suggests that in our Moran model, at least if the population is large, if the
current proportion of a-alleles is p, the time until either the a-allele or the A-allele
is fixed in the population should have mean approximately

−2{p log p +(1− p) log(1− p)} . (3.12)

In fact by conditioning on whether the proportion of a-alleles increases or decreases
at the first reproduction event, one obtains a recurrence relation for the number of
jumps until the Moran process first hits either zero or one. This recurrence rela-
tion can be solved explicitly and since jumps occur at independent exponentially
distributed times with mean 1/

(N
2

)
, it is easy to verify that (3.12) is indeed a good

approximation. For the Wright–Fisher model, in its original timescale, there is no
explicit expression for the expected time to fixation, t(p). However, since changes
in p over a single generation are typically small, one can expand t(p) in a Taylor
series, in just the same way as we did to derive equation (2.1), and thus verify that
for a large population,

p(1− p)t ′′(p) =−2N, t(0) = 0 = t(1).
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This is readily solved to give

t(p) =−2N {p log p +(1− p) log(1− p)} ,

as predicted by our diffusion approximation. (Recall that our Moran model is al-
ready in the diffusive timescale, whereas the Wright–Fisher model is not, accounting
for the extra factor of N.)

3.6 Stationary Distributions and Reversibility

Before moving on to models in which a gene is allowed to have more than two
alleles, we consider one last quantity for our one-dimensional diffusions. First a
general definition.

Definition 3.22 (Stationary distribution). Let {Xt}t≥0 be a Markov process on
the space E . A stationary distribution for {Xt}t≥0 is a probability distribution ψ on
E such that if X0 has distribution ψ , then Xt has distribution ψ for all t ≥ 0.

In particular this definition tells us that if ψ is a stationary distribution for {Xt}t≥0,
then

d
dt

E [ f (Xt)|X0 ∼ ψ ] = 0,

where we have used X0∼ψ to indicate that X0 is distributed according to ψ . In other
words

d
dt

∫

E
E [ f (Xt)|X0 = x]ψ(dx) = 0.

Evaluating the time derivative at t = 0 gives

∫

E
L f (x)ψ(dx) = 0.

Sometimes this allows us to find an explicit expression for ψ(dx). Let {Xt}t≥0 be
a one-dimensional diffusion on (a,b) with generator given by (3.1). We’re going to
suppose that there is a stationary distribution which is absolutely continuous with
respect to Lebesgue measure. Let us abuse notation a little by using ψ(x) to de-
note the density of ψ(dx) on (a,b). Then, integrating by parts, we have that for all
f ∈D(L ),

0 =
∫ b

a

{
1
2

σ2(x)
d2 f
dx2 (x)+ μ(x)

d f
dx

(x)
}

ψ(x)dx

=
∫ b

a
f (x)

{
1
2

d2

dx2

(
σ2(x)ψ(x)

)− d
dx

(μ(x)ψ(x))
}

dx + boundary terms.
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This equation must hold for all f in the domain of L and so, in particular, choosing
f and f ′ to vanish on the boundary,

1
2

d2

dx2

(
σ2(x)ψ(x)

)− d
dx

(μ(x)ψ(x)) = 0 for x ∈ (a,b). (3.13)

Integrating once gives

1
2

d
dx

(
σ2(x)ψ(x)

)− μ(x)ψ(x) = C1,

for some constant C1 and then using S′(x) as an integrating factor we obtain

d
dy

(
S′(y)σ2(y)ψ(y)

)
= C1S′(y),

from which

ψ(x) = C1
S(x)

S′(x)σ2(x)
+C2

1
S′(x)σ2(x)

= m(x) [C1S(x)+C2] .

If we can arrange constants so that ψ ≥ 0 and

∫ b

a
ψ(ξ )dξ = 1

then the stationary distribution exists and has density ψ . In particular, if
∫ b

a m(y)
dy < ∞, then taking C1 = 0,

ψ(x) =
m(x)

∫ b
a m(y)dy

(3.14)

is the density of a stationary distribution for the diffusion.
We know from the theory of Markov chains that uniqueness of the stationary

measure of a chain requires irreducibility. The corresponding condition here is
regularity.

Definition 3.23. For a one dimensional diffusion process on the interval I, let us
write

Hy = inf{t > 0 : Xt = y}.
The diffusion is said to be regular if for all x ∈ I0 (the interior of I) and all y ∈ I
(including finite endpoints) Px[Hy < ∞] > 0.

Theorem 3.24 (Watanabe and Motoo 1958). A regular diffusion in natural scale
with no absorbing boundary points has a stationary distribution if and only if the
speed measure is finite and then it is given by (3.14).

Under these conditions there is also an ergodic theorem.
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Example 3.25. Recall the generator of the Wright–Fisher diffusion with mutation,

L f (p) =
1
2

p(1− p)
d2 f
d p2 +

(
ν2(1− p)−ν1p

)d f
d p

.

What is the stationary distribution?

For this diffusion

S′(p) = exp

(
−
∫ p

p0

2μ(z)
σ2(z)

dz

)

= exp

(
−
∫ p

p0

2ν2(1− z)−2ν1z
z(1− z)

dz

)

= C exp(−2ν2 log p−2ν1 log(1− p))

= Cp−2ν2(1− p)−2ν1,

where the value of the constant C depends on p0. In this case we have

m(p) =
1

σ2(p)S′(p)
= Cp2ν2−1(1− p)2ν1−1.

Now
∫ 1

0
m(p)d p =

∫ 1

0
Cp2ν2−1(1− p)2ν1−1d p = C

Γ (2ν1)Γ (2ν2)
Γ (2(ν1 + ν2)

(where Γ is Euler’s Gamma function) and so the stationary distribution is just

ψ(p) =
Γ (2(ν1 + ν2))
Γ (2ν1)Γ (2ν2)

p2ν2−1(1− p)2ν1−1. (3.15)

Ethier and Kurtz (1986), Chap. 10, Lemma 2.1 gives a direct proof of uniqueness of
this stationary distribution. �

The stationary distribution gives us some understanding of the longterm balance
between the competing forces of mutation (which maintains genetic diversity) and
genetic drift (which removes variation from the population). Figure 3.1 shows the
density of the stationary distribution of the Wright–Fisher diffusion with mutation
for a variety of parameters. When 2ν1 and 2ν2 are both bigger than 1, the stationary
distribution is peaked around its mean, but when they are both less than one it has
singularities at {0,1}. Of course, if there is no mutation, then the process eventually
becomes trapped in 0 and 1.

One can also calculate simple summary statistics.

Definition 3.26. The gene diversity or heterozygosity, H, is the probability that two
randomly chosen genes are of different allelic types.



3.6 Stationary Distributions and Reversibility 49

0.0 0.2 0.4 0.6 0.8 1.0

4
3

2
1

x

Fig. 3.1 Stationary distribution of the Wright–Fisher diffusion. The graphs plot the density ψ ,
given by (3.15) for: 2ν1 = 2ν2 = 0.2 (solid line), 2ν1 = 2ν2 = 1.5 (dashed line), 2ν1 = 0.5,2ν2 =
1.3 (dotted line) and 2ν1 = 0.7,2ν2 = 0.2 (alternating dashes and dots)

If the allele frequency, P say, is at stationarity under the Wright–Fisher diffusion
with mutation, then

H = E[2P(1−P)] =
∫ 1

0
2p(1− p)ψ(p)d p

= 2
∫ 1

0
p2ν2(1− p)2ν1d p

Γ (2(ν1 + ν2))
Γ (2ν1)Γ (2ν2)

= 2
Γ (2ν1 + 1)Γ (2ν2 + 1)

Γ (2ν1 + 2ν2 + 2)
Γ (2(ν1 + ν2))
Γ (2ν1)Γ (2ν2)

=
2 ·2ν1 ·2ν2

(2ν1 + 2ν2)(2ν1 + 2ν2 + 1)

=
4ν1ν2

(ν1 + ν2)(2(ν1 + ν2)+ 1)
.

Now in ‘real’ units, ν1 = Nμ1 and ν2 = Nμ2 (or 2Neμ1 and 2Neμ2 for a diploid
population) and so

H =
2μ1μ2

(μ1 + μ2)(μ1 + μ2 + 1
2N )

.

Notice in particular that gene diversity increases with population size. For a larger
population the force of genetic drift is weaker.
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Finally let us demonstrate one very powerful technique that is often applied in
settings where the speed measure is a stationary distribution. The idea is familiar
from the study of discrete time and space Markov chains.

Definition 3.27. A discrete time and space Markov chain with transition probabil-
ities p(i, j) is said to be reversible with respect to the stationary measure π if it
satisfies the detailed balance equation:

π(i)p(i, j) = π( j)p( j, i)

for all i and j in the state space.

For such chains we can say things about events backwards in time by considering
the forwards in time transition probabilities. The analogue of the detailed balance
equation for a one-dimensional diffusion is

ψ(x)p(t,x,y) = ψ(y)p(t,y,x) for all x,y, t.

Now multiplying by arbitrary functions f (x) and g(y) in the domain of the generator
of the diffusion we obtain

∫
ψ(x) f (x)

(∫
p(t,x,y)g(y)dy

)
dx =

∫
ψ(y)g(y)

(∫
p(t,y,x) f (x)dx

)
dy.

Now observe that the inner integrals are

E[g(Xt)|X0 = x] and E[ f (Xt )|X0 = y]

and differentiate with respect to t at t = 0 to obtain

∫
f (x)L g(x)ψ(x)dx =

∫
L f (y)g(y)ψ(y)dy. (3.16)

Definition 3.28. If the identity (3.16) is satisfied for all f and g, then ψ is called
a reversible stationary distribution and we say that the diffusion is reversible with
respect to ψ .

Now suppose that the stationary distribution of the diffusion is given by ψ(x) =
m(x)/

∫
m(y)dy. Then choosing f and g to vanish at the boundary of the domain to

force the boundary terms to vanish when we integrate by parts (twice), we obtain

∫ b

a
f (x)L g(x)m(x)dx =

1
2

∫ b

a
f (x)

1
m(x)

d
dx

(
1

S′(x)
dg
dx

)
m(x)dx

=
1
2

∫ b

a

d
dx

(
1

S′(x)
d f
dx

)
g(x)dx
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=
1
2

∫ b

a

1
m(x)

d
dx

(
1

S′(x)
d f
dx

)
g(x)m(x)dx

=
∫ b

a
L f (x)g(x)m(x)dx,

so this is indeed a reversible stationary distribution.

Example 3.29 (Which allele is the oldest?). Suppose that a population consists of
two allelic types, a and A. We assume that one of the two alleles arose through
mutation onto a background consisting entirely of the other type, since when there
have been no further mutations. If the a-allele is currently at frequency p, what is
the probability that it is the older allele?

The usual way to handle questions like this is to think of the model as one arising
in the limit of very low mutation rates. If mutation rates are low then the process of
allele frequencies consists of a sequence of excursions away from the boundaries.
The a-allele is the oldest if as we trace backwards in time the allele frequency hits
the boundary point 1 before it hits 0. Reversing with respect to the speed measure
we see that this probability is the same as the probability that we hit 1 before 0
forwards in time. And (using Lemma 3.14) this in turn, as the mutation rates tend to
zero, converges to the current frequency of the a-allele, that is p. For more details
see, for example, Watterson (1977). �



Chapter 4
More than Two Types

4.1 Multi-Dimensional Diffusion Models

So far we have considered only a very special case in which our population is
classified into just two types. The frequencies are then characterised by a one-
dimensional diffusion and one dimensional diffusions are, at least in principle,
relatively straightforward to study. More generally, suppose that our population is
classified into K different types. We’re not going to develop the general theory of
multidimensional diffusions, but let’s see what happens in a special case.

Our starting point is a K-allele version of the Wright–Fisher model. The pop-
ulation configuration at any time can be described by a vector (X1,X2, . . . ,XK)
where Xi is the number of genes of allelic type Ai and we assume that X1 + · · ·+
XK = N. (Although only K − 1 components are necessary to specify the vector
(X1,X2, . . . ,XK), it is sometimes convenient to retain all K.)

In the simplest case when all the alleles are selectively neutral and there is no
mutation, we have

P[Yi genes of type Ai at t + 1, i = 1, . . . ,K|Xj genes of type A j at t, j = 1, . . . ,K]

=
N!

Y1!Y2! · · ·YK!
ψY1

1 ψY2
2 · · ·ψYK

K

where ψi = Xi
N and ∑K

i=1 Yi = N (the probability is zero if this last condition is not
satisfied).

We write pi(t) = Xi(t)/N and consider the increment δ pi = pi(t +1)− pi(t). By
‘pooling’ all the alleles A j for j �= i into a single class (‘not Ai’), we recover the
Wright–Fisher model for two alleles for which we already checked that

E[δ pi] = 0, var(δ pi) =
1
N

pi(1− pi) and E[(δ pi)k] = O(
1

N2 ) ∀k≥ 3.

To complete the picture we need the covariances, that is we must calculate, for i �= j,

E[δ piδ p j] =
1

N2 E
[
(Xi(t + 1)−Xi(t))(Xj(t + 1)−Xj(t))

∣∣Ft
]

=
1

N2 E
[

Xi(t + 1)Xj(t + 1)
∣
∣Ft

]− pi(t)p j(t). (4.1)

A. Etheridge, Some Mathematical Models from Population Genetics, Lecture Notes
in Mathematics 2012, DOI 10.1007/978-3-642-16632-7 4,
c© Springer-Verlag Berlin Heidelberg 2011
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Here Ft denotes all information about the process up until time t (more formally,
it is the natural σ -field associated with {Xs}s≤t). In the calculations below we write
Et for the corresponding conditional expectation. Now

Et [Xi(t + 1)Xj(t + 1)]

=
1
2

{
Et [(Xi(t + 1)+ Xj(t + 1))2]−Et [Xi(t + 1)2]−Et [Xj(t + 1)2]

}

and again ‘pooling’ genes of type Ai and A j we reduce to a calculation for the
binomial distribution, Bin(N, p), for which we know

E[X2] = N p(1− p)+ N2p2.

This gives

Et [Xi(t + 1)Xj(t + 1)] =
1
2

{
N(pi + p j)(1− (pi + p j))+ N2(pi + p j)2

−N pi(1− pi)−N2 p2
i −N p j(1− p j)−N2 p2

j

}

= −N pi p j + N2 pip j

and substituting in (4.1) we obtain

E[δ piδ p j] =− 1
N

pi p j.

Now, just as in the two allele case, if we consider functions f (p1, . . . , pK−1) (note
that pK = 1−∑K−1

j=1 p j) and rescale time so that the inter-generation time is 1/N
and let N → ∞, then we can use Taylor’s Theorem to identify the generator of the
limiting model. This gives

L f (p1, . . . , pK−1) =
1
2

K−1

∑
i=1

pi(1− pi)
∂ 2 f

∂ p2
i

− ∑
1≤i< j≤K−1

pi p j
∂ 2 f

∂ pi∂ p j
.

We can also add a mutation step. We did not do this explicitly in the two-allele
Wright–Fisher model so let’s be more explicit here. The idea is that for each off-
spring in each generation there is a small probability that it will not inherit the type
of its parent, but rather it will mutate to another type. Suppose that with probabil-
ity ui j the offspring of a type Ai individual will (independently of one another) be
type A j. We will now have

E[δ pi] =−∑
j �=i

ui j pi + ∑
j �=i

u jip j.

If we assume, as we did before, that mutation rates are very low (on the order of
inverse population size), then writing βi j = Nui j we have
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E[δ pi] =
1
N

{

−pi ∑
j

βi j +∑
j

p jβ ji

}

.

The correction to E[(δ pi)2] is of O(1/N2). This gives the following lemma.

Lemma 4.1 (Multi-allele Wright–Fisher diffusion with mutation). The genera-
tor of the K-allele Wright–Fisher diffusion with mutation is

1
2

K−1

∑
i=1

pi(1− pi)
∂ 2 f

∂ p2
i

− ∑
1≤i< j≤K−1

pi p j
∂ 2 f

∂ pi∂ p j
+

K−1

∑
i=1

(

−pi ∑
j

βi j +∑
j

p jβ ji

)
∂ f
∂ pi

.

If each ui j > 0 for i �= j then the joint frequency of A1, . . . ,AK−1 has a stationary
distribution, but in general no closed form is known. It is known in the special case
of symmetric parent-independent mutation.

Lemma 4.2. Suppose that

ui j =
u

K−1

so that the total mutation probability per gene per generation is u and it is equally
likely to be a mutation to each of the other types. Then the corresponding K-allele
Wright–Fisher diffusion with mutation has a stationary distribution with density

ψ(p1, . . . , pK−1) =
Γ (Kε)
(Γ (ε))K (p1 · · · pK)ε−1 (4.2)

where ε = 2Nu
K−1 and pK = 1− p1− . . .− pK−1.

Proof. First note that in this case

−pi ∑
j

βi j +∑
j

p jβ ji =
Nu

K−1
(1−K pi).

Writing ψ(p1, . . . , pK−1) for the density of the stationary distribution and integrating
by parts, exactly as we did to obtain (3.13) for the two-allele case, we find

1
2

K−1

∑
i=1

∂ 2

∂ p2
i

(pi(1−pi)ψ(p1, . . . pK−1))− ∑
1≤i< j≤K−1

∂ 2

∂ pi∂ p j
(pi p jψ(p1, . . . , pK−1))

−
K−1

∑
i=1

∂
∂ pi

(
Nu

K−1
(1−K pi)ψ(p1, . . . , pK−1)

)
=0.

(4.3)

It is elementary (if tedious) to check that the expression in (4.2) solves this equation.
��
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Notice that when K = 2, (4.3) becomes

0 =−1
2

d
d p

(μ(1−2p) f (p))+
1
2

d2

d p2 (p(1− p) f (p))

where μ = 2Nu and (4.2) becomes

f (p) =
Γ (2μ)
(Γ (μ))2 (p(1− p))μ−1

which is precisely the solution we found in (3.15), since in this notation 2ν1 =
2ν2 = μ .

In the 2-allele case we calculated the heterozygosity

H =
4ν1ν2

(ν1 + ν2)(2(ν1 + ν2)+ 1)
.

Substituting ν1 = ν2 = Nu gives

H =
2Nu

4Nu + 1
.

Writing θ = 2Nu this gives

H =
θ

2θ + 1
.

Remark 4.3. This is the magic θ of Remark 2.18 but with 2 in place of 4 here
because we have taken limits in a haploid population. To recover our previous θ we
set N = 2Ne.

The expected homozygosity, F , which is the chance that a random sample of two
genes is of the same allelic type is

F = 1−H =
θ + 1

2θ + 1
.

For the K-allele model,

F =
K

∑
i=1

E[p2
i ] = K

∫ 1

0
p2 pε−1(1− p)(K−1)ε−1 Γ (Kε)

Γ (ε)Γ ((K−1)ε)
d p

= K
Γ ((K−1)ε)Γ (ε + 2)

Γ (Kε + 2)
Γ (Kε)

Γ (ε)Γ ((K−1)ε)

=
KΓ (ε + 2)

Γ (ε)
Γ (Kε)

Γ (Kε + 2)
=

ε + 1
Kε + 1
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and substituting ε = θ/(K−1) gives

F =
θ + K−1

Kθ + K−1
. (4.4)

Definition 4.4. The density (4.2) is called the Dirichlet distribution. It is usual to
rearrange it and consider the sequence of allele frequencies in decreasing order:

p(1) ≥ p(2) ≥ ·· · ≥ p(K) ≥ 0,

that is we look at the order statistics of p1, . . . , pK . Their joint distribution is

f (p(1), . . . , p(K)) =
K!Γ (Kε)

Γ (ε)K

(
p(1) . . . p(K)

)ε−1
.

Recall that the mutation model that led to this distribution was the symmetric parent-
independent mutation model in which each individual mutates at the same rate to a
type chosen uniformly from {1, . . . ,K}. If K→ ∞ this becomes the infinitely many
alleles model (Definition 2.17). It is natural to ask whether we can find an analogue
of the Dirichlet distribution for the stationary distribution of allele frequencies in the
infinitely many alleles model. The answer, due to Kingman (1975, 1977), is yes.

4.2 The Poisson–Dirichlet and GEM Distributions

Kingman showed that, for every j ≥ 1, the distribution of the first j order statistics
of the Dirichlet distribution converges as K→ ∞ and called the corresponding lim-
iting distribution the Poisson–Dirichlet distribution. In this section we shall try to
understand why such a limit should exist. Direct manipulation of the Dirichlet distri-
bution is difficult because of the linear dependence between the variables. However,
it turns out that it can be represented in terms of independent Γ -random variables as
follows.

Lemma 4.5. Let Y1, . . . ,YK be independent positive random variables with proba-
bility density function

gε(y) =
yε−1e−y

Γ (ε)
.

Then writing Y = Y1 + · · ·+ YK, the vector p with components pi = Yi
Y has the

Dirichlet distribution and Y has a Γ -distribution with parameter Kε . Moreover,
p is independent of Y .

Proof. The proof of this claim is a simple change of variables,

(y1, . . . ,yK) �→ (p1, . . . , pK−1,y).
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In an obvious notation, yi = piy (and pK = 1 − ∑K−1
i=1 pi). Since the Yi are

independent,

f(p1,...,pK−1,Y )(p1, . . . , pK−1,y) = f(Y1,...,YK)(p1y, . . . , pky)
∣
∣
∣
∣

∂ (y1, . . . ,yk)
∂ (p1, . . . , pK−1,y)

∣
∣
∣
∣

=
K

∏
i=1

(piy)ε−1e−piy

Γ (ε)

∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣

y · · · p1

y p2
. . .

y
−y −y · · · −y pK

∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣

=
1

Γ (ε)K (p1 . . . pK)ε−1yKε−Ke−y× yK−1
K

∑
i=1

pi

=
Γ (Kε)
Γ (ε)K (p1 · · · pK)ε−1 1

Γ (Kε)
e−yyKε−1

as required. ��
We now use this to find a representation of the Poisson–Dirichlet distribution (and
in the process see why the name is natural). To do so we need a spatial analogue of
the probability generating function of elementary probability.

Definition 4.6 (Probability generating functional). For a (possibly random) num-
ber of random points {Yi}i∈I with each Yi ∈ (0,∞) (say) we define the probability
generating functional of {Yi}i∈I by

G(ξ ) = E

[
∏
i∈I

ξ (Yi)
]

for any function ξ : [0,∞)→ R for which the expectation exists.

If I is random, then we recover the probability generating function of I by choosing
ξ to be constant.

Now choose the Yi’s to be independent Gamma random variables with parameter
ε and consider the generating functional of Y1, . . . ,YK . By independence,

GK(ξ ) =
[∫ ∞

0
ξ (u)

uε−1e−u

Γ (ε)
du

]K

.

Recall from (4.2) that ε = 2Nu/(K− 1) and θ = 2Nu so that Kε → θ as K → ∞.
Now rewrite the term in square brackets using

∫ ∞

0

uε−1e−u

Γ (ε)
du = 1 and

ε
Γ (ε + 1)

=
1

Γ (ε)
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to obtain that

GK(ε) =
[

1− ε
∫ ∞

0
(1− ξ (u))

uε−1

Γ (ε + 1)
e−udu

]K

→ exp

(
−θ

∫ ∞

0
(1− ξ (u))u−1e−udu

)
as K→ ∞.

The right hand side is the probability generating functional of a Poisson point pro-
cess with intensity θe−u/u, so in the limit as K→ ∞ the number of points in each
interval (a,b)⊆ (0,∞) is Poisson distributed with mean

∫ b
a (θe−u/u)du.

Now write Y(1) ≥Y(2) ≥ ·· · for the ordered points and Y = Y(1) +Y(2) + · · · . Since
Kε → θ as K→ ∞, Y has a Gamma distribution with parameter θ .

Definition 4.7. The points p(i) = Y(i)/Y have the Poisson–Dirichlet distribution.

The finite dimensional distributions of the p(i) are complicated, but those of the Y(i)
are relatively straightforward. The density function of Y(i) is

θe−y

y
[θE1(y)]i−1

(i−1)!
e−θE1(y), for y > 0,

where E1(y) =
∫ ∞

y (e−u/u)du. Thus, for example, since p(i) is independent of Y (just
as in Lemma 4.5)

E[Y(i)] = E[p(i)Y ] = E[p(i)]E[Y ] = θE[p(i)]

gives

E[p(i)] =
θ i−1

(i−1)!

∫ ∞

0
e−y[E1(y)]i−1e−θE1(y)dy

which can be evaluated numerically.
In the Dirichlet distribution with K allelic types, the probability that there are

alleles with frequencies in (p1, p1 + d p1), . . . ,(pr, pr + d pr) is

(K
r

) Γ (Kε)
Γ (ε)rΓ ((K−r)ε) (p1 · · · pr)ε−1

(
1−∑r

1 pi
)ε(K−r)−1

d p1 . . .d pr

→ θ r(p1 · · · pr)−1
(
1−∑r

1 pi
)θ−1

d p1 . . .d pr as K→ ∞. (4.5)

In particular, taking r = 1, the probability that there is an allele with frequency in
(p, p + d p) under the limiting Poisson–Dirichlet distribution is h(p)d p where

h(p) = θ p−1(1− p)θ−1.

Definition 4.8. The function h(p) = θ p−1(1 − p)θ−1 is called the frequency
spectrum of {p(i)}.
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The frequency spectrum allows us to calculate expressions of the form

E

[
∞

∑
1

f (p(i))

]

=
∫ 1

0
f (p)h(p)d p

(provided this is finite). For example, taking f (p(i)) = p2
(i) we calculate the expected

homozygosity

F =
∫ 1

0
p2θ p−1(1− p)θ−1d p =

1
1 + θ

.

This is consistent with (4.4) as K → ∞. Similarly, the expected number of alleles
with frequencies in (a,b) is

E

[
∞

∑
1

1(a,b)(p(i))

]

=
∫ b

a
θ p−1(1− p)θ−1d p,

and so on. This is the same θ cropping up again and again in our calculations.
The Poisson–Dirichlet distribution is not all that user-friendly, but remarkably a

distribution obtained from it by ‘size-biased’ sampling is extremely elegant.

Example 4.9. Suppose that a gene is sampled at random from the population. What
is the distribution of the frequency of alleles of the same type as the sampled
individual?

The probability that the sampled allele has frequency in [p, p+d p) is the probability
that there is an allele with frequency in [p, p + d p) and we choose it which is just

p · θ
p
(1− p)θ−1d p = θ (1− p)θ−1d p.

Now suppose that we remove all the individuals of this type and sample again from
the remaining population. The chance that our new allele is at relative frequency r is
just calculated by Bayes’ rule. Let us write P1 for the frequency of the first individual
sampled and P2 for the relative frequency of the second class. Then

P [P2 ∈ [r,r + dr)|P1 ∈ [p, p + d p)]

=
P[∃ class with rel. freq ∈ [r,r + dr) and sample from it and P1 ∈ [p, p + d p)]

P[P1 ∈ [p, p + d p)]

=
θ 2

r(1−p)p(1− p− r(1− p))θ−1pr“d(r(1− p))”d p

θ (1− p)θ−1d p
= θ (1− r)θ−1dr,

where we have used (4.5) in the last line. In other words, P2 has the same distribution
as P1. We can repeat this procedure and we find that the frequencies of the alleles
picked in this way in our original population are
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P1,P2(1−P1),P3(1−P2)(1−P1), . . . (4.6)

where the Pi are independent identically distributed random variables with density
θ (1− p)θ−1, 0 < p < 1.

Definition 4.10 (GEM distribution). The sequence of random variables in (4.6)
are said to follow the GEM distribution after Griffiths, Engen and McCloskey (see
Ewens (2004)).

All alleles in the population are eventually lost by the joint process of mutation
and random drift and the probability that an allele at frequency p lives the longest
of all current alleles is just p, so the GEM distribution can be thought of as allele
frequencies when alleles are ordered according to their future persistence in the
population. Reversibility arguments allow us to conclude that we have the same
distribution if we order alleles by their age.

4.3 Ewens Sampling Formula

We now turn to one of the most famous results from mathematical population ge-
netics. We continue to assume the infinitely many alleles model.

Definition 4.11 (Allele frequency spectrum). In a sample of size n, for 1≤ j ≤ n
write α( j) for the number of alleles that occur exactly j times in our sample. The
vector (α(1), . . . ,α(n)) is called the allele frequency spectrum.

This is illustrated in an example in Fig. 4.1.

Not represented in
sample

Fig. 4.1 The allele frequency spectrum. In this example, five mutations fall on the genealogical
tree. Under the infinitely many alleles model, one of these mutations is not represented in the sam-
ple. The ancestral lineage of one individual has not experienced any mutations since the MRCA.
In the notation of Definition 4.11, α(1) = 3, α(2) = 2, α(3) = α(4) = · · ·= α(7) = 0 and so the
allele frequency spectrum is (3,2,0,0,0,0,0)
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Theorem 4.12 (Ewens sampling formula, Ewens 1972). If the genealogy of our
sample is determined by Kingman’s coalescent, then under the infinitely many alle-
les model with mutation rate θ/2 (in the coalescent timescale)

P
[
(α( j))1≤ j≤n = (a j)1≤ j≤n

]
=

n!θ k

a1! · · ·an!1a12a2 · · ·nanθ(n)
, (4.7)

where ∑n
j=1 a j = k is the number of distinct alleles in the sample, ∑n

j=1 ja j = n and
θ(n) = θ (θ + 1) · · ·(θ + n−1).

Proof. There are many elegant derivations of this result (see, for example,
Berestycki (2009) for one based on the ‘Chinese Restaurant process’). Here we
work directly with the Poisson–Dirichlet distribution.

First we show that if we take a sample of size n, then the probability that it falls
into k distinct allelic types labelled 1,2, . . . ,k, say, with ni individuals of type i for
each i is

n!θ k

n1 · · ·nkθ (θ + 1) · · ·(θ + n−1)
. (4.8)

To see this, recall that under the Poisson–Dirichlet distribution, the probability that
there are points in (p1, p1 + d p1), . . . ,(pk, pk + d pk) is

θ k(p1 · · · pk)−1

(

1−
k

∑
1

pi

)θ−1

d p1 . . .d pk.

Given that such points exist, the probability that we see n1, . . . ,nk copies of the
corresponding alleles is the number of ways of assigning the n individuals in our
sample to k classes of sizes n1,n2, . . . ,nk times the probability that the first n1 are
from class 1, the next n2 from class 2 and so on. Combining these observations and
integrating out over all choices of p1, . . . , pk gives

n!
n1! · · ·nk!

∫

∑ pi≤1
pn1

1 · · · pnk
k θ k(p1 · · · pk)−1

(

1−
k

∑
1

pi

)θ−1

d p1 . . .d pk

=
n!

n1! · · ·nk!
θ k

∫
pn1−1

1 · · · pnk−1
k

(

1−
k

∑
1

pi

)θ−1

d p1 . . .d pk

=
n!

n1! · · ·nk!
θ k Γ (n1) · · ·Γ (nk)Γ (θ )

Γ (n + θ )

=
n!θ k

n1 · · ·nk

1
θ (θ + 1) · · ·(θ + n−1)

as required.
Now to obtain the corresponding probability for the allelic partition (α( j))1≤ j≤n,

we evaluate this for a vector (n1, . . . ,nk) for which ni = j exactly a j times and
multiply by
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1
a1! · · ·an!

,

that is the number of ways of assigning the class sizes to k types divided by k!
(because we don’t care about the labels attached to types), to obtain

P[(α( j))1≤ j≤n = (a j)1≤ j≤n] =
1

a1! · · ·an!
n!θ k

n1 · · ·nk

1
θ (θ + 1) · · ·(θ + n−1)

=
n!θ k

a1! · · ·an!
1

∏k
j=1 ja j

1
θ(n)

where the last line follows because ni is equal to j exactly a j times. ��
Remark 4.13. This formula has some remarkable properties. Most importantly, note
that if we condition on the number of distinct alleles in the sample being k, the
distribution of (α(1), . . . ,α(n)) is independent of θ :

P

[

(α( j))1≤ j≤n = (a j)1≤ j≤n
∣
∣

n

∑
j=1

α( j) = k

]

=

n!θ k

a1! · · ·an!
1

∏n
j=1 ja j θ(n)

∑(b j):∑b j=k
n!θ k

b1! · · ·bn!
1

∏n
j=1 jb j θ(n)

=
1

Cn, j

n!
a1! · · ·an!∏ ja j

,

where the constant Cn, j depends only on n and j. Thus it is possible to test the
neutral theory – so the goodness of fit of the Kingman coalescent – without making
any assumptions about Ne or θ .

This remark tells us that the number K of distinct allelic classes in our sample of
size n is a sufficient statistic for θ , so how can we use K to estimate θ?

Lemma 4.14. For a sample of size n, let K be the number of distinct alleles. Then

E[K] = 1 + θ
n

∑
j=2

1
j + θ −1

, var(K) = θ
n

∑
j=2

j−1
( j + θ −1)2 .

In particular,

E[K]∼ θ logn, var(K)∼ θ logn as n→ ∞.

Remark 4.15. This suggests

θ̂ =
K

logn
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as an estimator for θ , but like Watterson’s estimator (which was based on the
infinitely many sites model), because E[K] grows only like logn, convergence of
θ̂ to θ is extremely slow.

Proof of Lemma 4.14. Consider the coalescent with mutation. As we trace back-
wards in time we think of ancestral lineages as being lost by mutation or by
coalescence and K is then the number lost by mutation. Write

Xj =
{

1 if the (n− j + 1)th lineage to be lost is lost by mutation
0 otherwise.

With this convention, Xj records whether the transition from j to j− 1 ancestral
lineages is by mutation (Xj = 1) or coalescence (Xj = 0). Then

P[Xj = 1] =
jθ/2

( j
2

)
+ jθ/2

=
θ

j + θ −1
,

and so

E[K] =
n

∑
j=2

E[Xj] =
n

∑
j=2

θ
j + θ −1

and (since the Xj are independent)

var(K) =
n

∑
j=2

var(Xi) =
n

∑
j=2

θ ( j−1)
( j + θ −1)2 .

�



Chapter 5
Selection

5.1 Genetic Diversity

In Remark 2.18 we introduced the notion of nucleotide diversity – the proportion of
nucleotides that differ between two randomly chosen sequences. Its expected value
is θ = 4Neμ (for a diploid population) where μ is the mutation probability per base
pair per individual per generation and Ne is the effective population size. The mu-
tation rate can be estimated directly (or from the divergence between species with
a known divergence time) and this gives an estimate of Ne (Barton et al. (2007),
p.426). This approach yields Ne ∼ 106 for Drosophila melanogaster, far lower than
the actual (census) population size or indeed than the population size is likely to
have been in the past. Moreover, although genetic variation is certainly higher in
more abundant organisms, the relationship is rather weak. For example there’s only
about a factor of ten difference between Drosophila melanogaster and humans.
Abundant species have much less genetic diversity than expected from the neutral
theory, something else is going on.

Two explanations are generally put forward for why extremely abundant species
like the bacteria E. coli or the fruitfly don’t show correspondingly high levels of
genetic diversity. One is population bottlenecks in which from time to time the
population size is dramatically reduced (and then usually rather rapidly restored).
Another is natural selection. Our aim in this chapter is to develop some of the
mathematical tools necessary for studying these two effects. We primarily focus
on selection.

5.2 Wright–Fisher Model with Selection

We are now going to consider populations in which individuals carrying different
alleles have different fitnesses.

Definition 5.1. The fitness of an individual is the number of offspring that it leaves
after one generation.

A. Etheridge, Some Mathematical Models from Population Genetics, Lecture Notes
in Mathematics 2012, DOI 10.1007/978-3-642-16632-7 5,
c© Springer-Verlag Berlin Heidelberg 2011
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The fitness of a gene is the number of copies it leaves after one generation.
The fitness of an allele is the average fitness of genes of that allelic type.

To model the evolution of the population forwards in time we extend the Wright–
Fisher model to include selection.

Definition 5.2 (Wright–Fisher model with selection). In a panmictic, haploid
population of constant size N, suppose that individuals are divided into two allelic
types that we denote by a and A. If generation t consists of k individuals of type a
and N− k of type A then, according to the Wright–Fisher model with selection, the
generation at time t +1 is formed by sampling independently with replacement with

P[a sampled] =
k(1 + s)

k(1 + s)+ N− k
, P[A sampled] =

N− k
k(1 + s)+ N− k

. (5.1)

The parameter s is called selection coefficient. We say that a,A have relative fitness
1 + s : 1.

• If s > 0, a is said to be beneficial
• If s < 0, a is said to be deleterious

One way to think about the Wright–Fisher model is that each individual in gener-
ation t produces an effectively infinite pool of potential offspring, with proportions
of different types dictated by (5.1), from which generation (t + 1) is sampled.

We can also add mutation to this model. Suppose that during the reproductive
step each type a individual from the pool mutates to A with probability μ1 and each
type A individual mutates to a with probability μ2. Then the proportion of potential
offspring which are type a after both selection and mutation is

ψk =
k(1 + s)(1− μ1)
k(1 + s)+ N− k

+
(N− k)μ2

k(1 + s)+ N− k
. (5.2)

Definition 5.3 (Wright–Fisher Model with selection and mutation). If there are
k individuals of type a in generation t (and N−k of type A), then under the Wright–
Fisher model with selection and mutation, the number of type a individuals in
generation (t + 1) is Bin(N,ψk) distributed where ψk is given by (5.2).

Evidently it is going to be extremely complicated to calculate anything explicitly
for these models and so we pass to a diffusion approximation. As usual, time will
be measured in units of N generations and we consider the proportion of type a
individuals in the population. To obtain a non-trivial limit, we suppose that

α = Ns, ν1 = Nμ1, ν2 = Nμ2. (5.3)

Remark 5.4. It would be more usual to use the notation σ = Ns, but since σ was
our notation for the variance of a one-dimensional diffusion we do not follow that
convention.



5.2 Wright–Fisher Model with Selection 67

Lemma 5.5. As N → ∞, the rescaled Wright–Fisher model converges to the
one-dimensional diffusion with infinitesimal drift

μ(p) = α p(1− p)−ν1p + ν2(1− p),

and infinitesimal variance
σ2(p) = p(1− p).

Proof. Let δt = 1
N be the time between two generations (in rescaled time). As in the

neutral case,

E[(p1/N− p)k|p0 = p] = O

(
1

N2

)
for all k ≥ 3.

We must identify the infinitesimal mean and variance. If the current proportion of a
alleles is p, the current number of type a individuals is k ≡ N p. We have

E[(p1/N− p)|p0 = p] =
1
N

(Nψk− k)

and substituting

Nψk− k =
Nk(1 + α

N )

N + αk
N

(
1− ν1

N

)
+

N(N− k)
N + αk

N

ν2

N
− k

=
1

N + αk
N

(
Nk

(
1 +

α
N

)(
1− ν1

N

)
+(N− k)ν2− kN− αk2

N

)
,

=
N

N + αk
N

(
αk
N
− ν1k

N
+ ν2− ν2k

N
−α

k2

N2 −α
ν1k
N2

)
,

= α p−ν1 p + ν2−ν2 p−α p2 +O

(
1
N

)
,

= α p(1− p)−ν1p + ν2(1− p)+O

(
1
N

)
.

The infinitesimal variance is easier. Since ψk = k/N +O(1/N),

E
[
(p1/N− p)2|p0 = p

]
=

1
N2 Nψk(1−ψk)+O

(
1

N2

)
,

=
1
N

p(1− p)+O

(
1

N2

)
.

��
Definition 5.6. We call the limiting diffusion in Lemma 5.5 the weak selection limit
of the Wright–Fisher model with selection and mutation.
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We can now use our knowledge of one-dimensional diffusions to explore this model.
For example:

Lemma 5.7 (Fixation probabilities). Suppose that there is no mutation (ν1 = ν2

= 0). If the initial proportion of a-alleles is p0, the probability p f ix(p0) that the
a-allele eventually fixes in the population (that is the diffusion is absorbed in p≡ 1)
is

p f ix(p0) =

⎧
⎨

⎩

1− exp(−2α p0)
1− exp(−2α)

if α �= 0,

p0 if α = 0.

(5.4)

Proof. Using Lemma 3.14, for α �= 0

p f ix(p0) =
S(p0)−S(0)
S(1)−S(0)

=

∫ p0

0
exp

(
−
∫ y

η

2μ(z)
σ2(z)

dz

)
dy

∫ 1

0
exp

(
−
∫ y

η

2μ(z)
σ2(z)

dz

)
dy

=

∫ p0

0
exp(−2αy)dy

∫ 1

0
exp(−2αy)dy

=
1− exp(−2α p0)
1− exp(−2α)

.

For α = 0 the diffusion is already in natural scale and the result follows from
Lemma 3.13. ��

If a selected allele arises through mutation in an otherwise neutral haploid popu-
lation then its initial frequency is just 1/N and so, as a particular case of this lemma,

p f ix

(
1
N

)
=

1− exp(−2α/N)
1− exp(−2α)

=
1− exp(−2s)

1− exp(−2Ns)
. (5.5)

Let’s consider some special cases:

1. Deleterious alleles: s < 0. If |s| � 1 and N|s| � 1, p f ix(1/N)≈ 2|s|exp(−2N|s|).
The fixation probability of a deleterious allele is exponentially small and it de-
creases with increasing population size.

2. Beneficial alleles: s > 0, s� 1, Ns� 1, then p f ix(1/N)≈ 2s, almost independent
of population size.

3. Nearly neutral alleles: if N|s| � 1, then a is nearly neutral and p f ix(1/N)≈ 1/N.
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In summary:

• Most alleles (beneficial or deleterious) are lost.
• Deleterious mutations are more likely to fix in small populations.
• Fitness differences that are too small to be measured in a laboratory (|s| � 1)

can still play an important rôle in evolution (if N|s| � 1).

5.3 Selection in a Diploid Population

We have considered only so-called genic selection. There are many other more
complex forms of selection. For example in diploid populations the fitness of an
individual will typically depend on the combination of alleles that it carries at a
particular locus. In this section we investigate how this affects the weak selection
limit.

Suppose that an effectively infinite pool of gametes (cells containing one copy
of each chromosome, see Sect. 5.6) fuse at random into diploid juveniles on which
selection acts (for example selecting for different viabilities). From these juveniles
we sample the adults that produce gametes for the next generation. As an example,
suppose that we assign juvenile fitnesses as follows:

genotype relative fitness
aa 1 + s
aA 1 + hs
AA 1

Definition 5.8. In this scheme, s is the selection coefficient of the aa homozygote
and h is called the degree of dominance or the heterozygous effect.

For simplicity, we ignore mutation (it could be added just as before). If the propor-
tion of a-alleles among the current population of gametes is p, then the juveniles
have proportions

paa = p2, paA = 2p(1− p), pAA = (1− p)2

and the new generation of adults (a finite number) will be sampled from a pool of
juveniles with frequencies

paa(adult) =
p2(1 + s)

w
, paA(adult) =

2p(1− p)(1 + hs)
w

,

and pAA(adult) =
(1− p)2

w
,
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where

w = p2(1 + s)+ 2p(1− p)(1 +hs)+(1− p)2 = 1 + sp2 + 2hsp(1− p).

If the population size is finite, the resulting frequencies in the adult population are
random. Denoting them Paa(adult), PaA(adult) and PAA(adult), the new generation
of gametes has frequency p′ of a-alleles where

p′ = Paa(adult)+
1
2

PaA(adult).

As before we suppose that the selection coefficient s is O(1/N) and then note that

E[p′ − p] =
p2(1 + s)+ p(1− p)(1 + hs)

w
− p

=
1

1 + sp2 + 2hsp(1− p)
{

p2(1 + s)+ p(1− p)(1 +hs)
}− p

=
(

p + sp2 + hsp(1− p)
)(

1− sp2−2hsp(1− p)
)− p +O(s2)

= sp2 + hsp(1− p)− sp3−2hsp2(1− p)+O(s2)
= sp(1− p){h + p(1−2h)}+O(s2).

We now write α = Ns and see that the drift in the diffusion that we obtain in the
weak-selection limit will be

μ(p) = α p(1− p)
(
h + p(1−2h)

)
.

If h = 1/2 then we obtain α p(1− p)/2. (Note that this fits with the haploid case
we considered before – with the parametrisation in our diploid model, the selective
advantage of a is s/2, accounting for the additional factor of 2.) The variance turns
out to be unchanged.

For this form of selection we see that the strength (and direction) of selection is
frequency dependent. If the heterozygote is fitter than either homozygote, a situation
known as overdominance, then selection works to maintain genetic variation. The
classic example of this is sickle cell anaemia. When the heterozygote is less fit, we
have underdominance. In the weak selection limit we can analyse the diffusion just
as before.

5.4 The Ancestral Selection Graph

So far we have looked at the effect of selection in our forwards in time models. The
next thing that we would like to understand is the effect of selection on genealogies.
For the weak selection that we’ve looked at so far one can work with something
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called the ancestral selection graph due to Neuhauser and Krone (1997), Krone and
Neuhauser (1997). To understand how it works, it is convenient to think about a
Moran model for the way that the population evolves forwards in time.

Definition 5.9 (Moran model with selection). In the Moran model for a haploid
population of size N, at rate

(N
2

)
a pair of individuals is selected at random, one dies,

the other reproduces. To incorporate selection, at an additional rate
(N

2

)
s a pair of

individuals is picked at random. Without loss of generality suppose that the a-allele
is beneficial (otherwise interchange the labels a and A). At these ‘potential selective
events’, if the chosen individuals are both of the same allelic type then nothing
happens; if one is a and the other is A, then the individual of type A dies and that of
type a reproduces (splits in two).

Remark 5.10. The parameter s plays the role of the selection coefficient that we had
before and will be O(1/N) in our weak selection limit. There are many other ways to
modify the neutral Moran model to incorporate selection. Here we have increased
the rate of reproduction events. One could equally assume that the reproduction
rate does not change, but if a pair consisting of one a and one A is chosen for
reproduction, then with probability (1+ s)/2 it is the type a that reproduces and the
A that dies. The weak selection limit as N→ ∞ will be the same for both models.

Mutations are added as a Poisson process along the lineages, exactly as in the neutral
case (see Remark 2.29). Recall that we are already in the coalescent timescale and
so these will occur at the rescaled rates ν1 and ν2 of (5.3).

Lemma 5.11. Suppose that α = Ns. As N → ∞, the Moran model with selection
and mutation converges to the same diffusion as the rescaled Wright–Fisher model
with selection and mutation.

Proof. For a fixed N, the generator of the Moran model with selection is given by

LN f (p) =
(

N
2

)
p(1− p)

(
f (p +

1
N

)− f (p)
)

+
(

N
2

)
p(1− p)

(
f (p− 1

N
)− f (p)

)

+Nν1 p

(
f (p− 1

N
)− f (p)

)
+ Nν2(1− p)

(
f (p +

1
N

)− f (p)
)

+2s

(
N
2

)
p(1− p)

(
f (p +

1
N

)− f (p)
)

. (5.6)

This is just the generator corresponding to the neutral Moran model with muta-
tion plus an extra term corresponding to the selection.We take f to be three times
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Fig. 5.1 Graphical representation of the Moran model with selection. The graphical represen-
tation mirrors that for the neutral model, but now additional ‘double-headed’ arrows, corresponding
to ‘potential selective events’, are added to the picture. In order to decide the outcome of such an
event, we need to know the types of the individuals at both ends of the arrow, immediately before-
hand. On the right we see the branching and coalescing tree that tracks all ‘potential ancestors’ of
individuals in our sample. We need to know the types of the individuals labelled 3 and 5 in order
to determine which is the true ancestor of the individual labelled B

continuously differentiable. By Taylor’s theorem, the last term on the right hand side
of (5.6) is equal to α p(1− p) f ′(p)+O(1/N). Thus, as N −→∞, LN f (p) converges
to L f (p) where

L f (p) =
1
2

p(1− p) f ′′(p)+ (ν2− (ν1 + ν2)p) f ′(p)+ α p(1− p) f ′(p). (5.7)

��
To understand the genealogy, we turn to the graphical representation of the

Moran model, depicted in Fig. 5.1. This time we see two sorts of arrows. The ‘neu-
tral’ arrows that we saw before are equally likely to point up or down. For such
arrows (in the forwards in time Moran model) the individual at the ‘tip’ is replaced
by a copy of the individual at the tail. But we also see double headed arrows corre-
sponding to potential selective events. To resolve the outcome of a potential selective
event corresponding to such an arrow we must know the types (before the event) of
the individuals at both ends.

As we trace backwards in time, we see coalescence of ancestral lineages
according to Kingman’s coalescent exactly as before, but now we cannot resolve
the double headed arrows. Instead, we trace both potential ancestors backwards
in time. In this way we arrive at a branching and coalescing graph. It branches at
potential selective events that hit a lineage already in the graph and it coalesces at
the neutral events that hit two lineages in the graph. If eventually we get back to a
single ancestral lineage, and if we can assign a type to that individual, then we can
work our way back through the graph, deciding what actually took place at each
potential selective event, and extract the coalescent tree that is the true genealogy
of the sample. This will be best seen in an example, but first, for this procedure to
work, we need to know that the graph will eventually collapse to a single lineage.
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Now each individual is in N− 1 pairs, each of which is hit by a potential selective
event at rate s = α/N. So as N → ∞, each ancestral lineage will branch at rate α .
On the other hand, each pair of lineages in the graph coalesces at rate 1. Writing Lt

for the number of ‘potential ancestral lineages’, we see that {Lt}t≥0 is a continuous
time Markov chain with transition rates

k �→ k + 1 at rate αk,
k �→ k−1 at rate

(k
2

)
.

Because the rate of decrease of the number of lineages is quadratic in k, whereas
the rate of increase is only linear, in a finite (with probability one) random time the
number of lineages in the graph will hit one for the first time. This single lineage
corresponds to the ultimate common ancestor.

Definition 5.12. The graph traced out by the system of branching and coalescing
lineages described above, stopped when the number of lineages hits one for the first
time, is called the ancestral selection graph.

Note that the ultimate ancestor may have lived a very long time before the most
recent common ancestor of our sample. To extract the true genealogy of the sample
we must attach a type to the ultimate ancestor. If mutation rates between the two
types are strictly positive (Krone and Neuhauser assume symmetric) then there is a
stationary distribution for the Wright–Fisher diffusion that describes the frequency
of types in the population. Indeed, in this particular case, the density m of the speed
measure is given by

m(x) = Ce2αxx2ν2−1(1− x)2ν1−1,

where C is a constant. In particular,

∫ 1

0
m(x)dx < ∞.

Therefore

ψ(x)dx =
m(x)

∫ 1
0 m(y)dy

dx

is a stationary measure for the diffusion. To decide the type of the ultimate ancestor,
we sample from the stationary distribution and then work back through the tree to
establish the genealogy of the sample. The promised example is in Fig. 5.2.

The problem with this approach is that unless α is very small, there is a huge
proliferation of lineages and simulation of the ancestral selection graph becomes
prohibitively computationally expensive. There are ways to improve this somewhat,
but instead we consider a different approach. This approach will also allow us to
move away from the assumption that our sample is random so that we will be able
to describe the genealogy of a sample in which the types of individuals are known
(see Etheridge and Griffiths (2009) for another approach, more akin to the ancestral
selection graph, which also allows us to specify types in the sample). To understand
the approach we return briefly to the basic Kingman coalescent.
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Fig. 5.2 Resolving the genealogy from the ancestral selection graph. For a particular realisa-
tion of the ancestral selection graph for a sample of size 4 we show the effect of assigning different
types to the ultimate ancestor. The favoured allele is a. Thick lines represent the true genealogy.
In this example the topology of the tree depends on the choice of type for the ultimate ancestor.
Here the ultimate ancestor and the MRCA were the same (for both choices of type), but if we
consider the subsample of {1,2}, then when the ultimate ancestor is type a, the MRCA is the same
as the ultimate ancestor, but when the ultimate ancestor is type A the MRCA is more recent than
the ultimate ancestor

5.5 Adding Structure to the Coalescent

We are going to proceed in two stages. One of the assumptions that we made in
deriving Kingman’s coalescent was that population size was constant. Our first task
is to relax that assumption. Two key observations led us to the Kingman coalescent:

1. The probability that two individuals have a common parent is 1/N (and genera-
tions evolve independently);

2. for large N, the probability that three or more lineages merge in a single event
or that two distinct pairs of individuals come together in a single generation is
O(1/N2).

Suppose that the population size is always large. We are going to measure it in units
of size M (for example, M could be the current population size) and we shall also
use M to rescale time. Write NM(t) for the population size t generations before the
present. The chance that two lineages have not coalesced by time t is

t

∏
s=1

(
1− 1

NM(s)

)
= exp

(
t

∑
s=1

log

(
1− 1

NM(s)

))
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≈ exp

(

−
t

∑
s=1

1
NM(s)

)

, for NM(s) large.

Now suppose that the rescaled and timechanged process 1
M NM(Ms) → ρ(s), as

M→ ∞, for some ‘nice’ continuous function ρ . Then the probability that two lin-
eages have not coalesced by time Mt is

exp

(

−
Mt

∑
s=1

1
N(s)

)

≈ exp

(

−
Mt

∑
s=1

1
Mρ(s/M)

)

≈ exp

(
−
∫ t

0

1
ρ(s)

ds

)
.

Exactly as in the derivation of Kingman’s coalescent, at least provided ρ(s) > 0, we
have that the probability of more than two lineages coalescing in a single genera-
tion or of coalescence of more than one pair of lineages in a single generation is
O(1/M2).

Lemma 5.13. In the setting described above, as M→∞, if we measure time in units
of size M, the number of lineages ancestral to a sample from the population alive at
time t before the present converges to a pure death process with

k �→ k−1 at instantaneous rate
1

ρ(t)

(
k
2

)
.

In other words, the genealogy of a sample is determined by a timechange of
Kingman’s coalescent. This works even when {ρ(s)}s≥0 is stochastic, for example
a diffusion (see Kaj and Krone (2003)). So we can relax our assumption of constant
population size and still have a manageable coalescent model.

For our second extension we move away from the assumption of a panmictic pop-
ulation (in which every offspring is equally likely to choose any parent) and consider
a subdivided population. Since we are interested in populations subject to selection,
let us suppose that the population is subdivided into two allelic types labelled a and
A subject to weak selection and mutation. Recall the Wright–Fisher model with se-
lection and mutation of Definition 5.3: if there are currently k type a alleles, then
the next generation is sampled from an infinite pool of potential offspring of which
a proportion

ψk =
k(1 + s)(1− μ1)
k(1 + s)+ N− k

+
(N− k)μ2

k(1 + s)+ N− k

are of type a and the remainder are type A. Recall also, from the proof of Lemma 5.5,
that

ψk =
k
N

+O

(
1
N

)
.
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We now suppose that we sample n1 individuals of type a and n2 individuals of type
A from among the offspring. We write p = k/N. Of the type a ‘potential offspring’
a proportion

μ2(1− p)
p(1 + s)(1− μ1)+ μ2(1− p)

=
ν2(1− p)

N p
+O

(
1

N2

)

arises (through mutation) from A parents. Similarly a proportion

ν1 p
N(1− p)

+O

(
1

N2

)

of the type A pool of potential offspring arises (through mutation) from type a par-
ents. Since μ1 and μ2 are O(1/N), the probability that two ancestral lineages both
arose through mutation (from either the same or different parents) in a single gener-
ation is O(1/N2). The chance that two of the n1 type a individuals have a common
parent is (

n1

2

)
1

N p
+O

(
1

N2

)
.

To see this, observe that in order to have a common parent, either neither arose
through mutation or both did, and as noted above we can ignore the latter possibility
and assume that they both arose from a type a parent. In the same way, the chance
that two of the n2 type A offspring share a common parent is

(
n2

2

)
1

N(1− p)
+ O

(
1

N2

)
.

Since a type a and a type A offspring can only have a common parent if one of them
arose through mutation, we see that this has probability O(1/N2).

Let us suppose that we knew the frequency p(t) of type a parents in generation t
before the present for each t and write ρ(t) = p([Nt]+ 1). Measuring time in units
of N generations, up to an error of order O(1/N), a lineage ancestral to our sample
that is currently of type a will jump to type A at instantaneous rate

ν2(1−ρ(t))
ρ(t)

(at rescaled time t). Similarly a single type A lineage will jump to type a at (approx-
imately) instantaneous rate

ν1ρ(t)
1−ρ(t)

.

Each pair of lineages that are currently type a will coalesce at instantaneous rate
1/ρ(t) (again up to an error of order O(1/N)) and similarly two type A lineages
coalesce at instantaneous rate 1/(1−ρ(t)). Up to an error of order O(1/N), these
are the only events that we see.
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The difficulty now is to specify p(t) and consequently ρ(t). If the mutation rates
μ1 and μ2 are strictly positive, then (since it is an irreducible aperiodic finite state
space Markov chain) the Wright–Fisher model has a stationary distribution, but it
is not a reversible stationary distribution and neither is it known explicitly, and so it
is not possible to simply reverse the process with respect to the stationary measure.
However, there is an explicit expression for the stationary distribution of the limit-
ing Wright–Fisher diffusion and it is reasonable to guess that the reversed process
converges to the time-reversal of the diffusion. A proof of joint convergence of the
reversed Wright–Fisher model and the process describing the ancestral lineages of
a sample from the population is going to be difficult, but if instead of the Wright–
Fisher model one takes the Moran model with mutation and selection, then things
are much simpler. The process of allele frequencies in the Moran model is just a
birth and death process with a reversible stationary distribution and so convergence
to the time-reversed diffusion is just a corollary of the convergence of the forwards
in time model. Barton et al. (2004) show joint convergence of the time-reversed
process of allele frequencies and the corresponding genealogies in a more general
setting, essentially making rigorous the work of Darden et al. (1989). Consequently
we have the following alternative to the ancestral selection graph.

Theorem 5.14 (Coalescent in a random background). Measuring time in units
of N generations, the distribution of the genealogy of a sample of n1 type a individ-
uals and n2 type A individuals from a population undergoing weak genic selection
and mutation can be obtained as follows. Let ρ(t) be the time-reversal of the weak
selection limit of Lemma 5.5 and write n1(t), n2(t) for the number of ancestral lin-
eages of type a and of type A respectively at time t (that is [Nt] generations) before
the present. As N→∞, conditional on ρ(t), the process of ancestral lineages evolves
as follows:

• n1 �→ n1−1 at instantaneous rate 1
ρ(t)

(n1
2

)

• n2 �→ n2−1 at instantaneous rate 1
(1−ρ(t))

(n2
2

)

•
{

n1 �→ n1−1
n2 �→ n2 + 1

at instantaneous rate n1ν2
(1−ρ(t))

ρ(t)

•
{

n1 �→ n1 + 1
n2 �→ n2−1

at instantaneous rate n2ν1
ρ(t)

(1−ρ(t)) .

This approach has two advantages over the ancestral selection graph. First, we
can specify the types of individuals in our sample. Second, the method is numer-
ically practical even for strong selection. Changing the selection coefficient only
changes the path ρ(t).

5.6 Selective Sweeps

So far we have concentrated on the case where the rates of mutation between the
two allelic types are both strictly positive. However, in applications, it is important
to be able to remove this assumption. In particular, there is considerable interest in
selective sweeps.
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Definition 5.15. Suppose that an advantageous allele arising in an otherwise neutral
population increases in frequency until the whole population carries it. Then it is
said to have undergone a selective sweep.

We assume that there is no ‘back-mutation’ from the favoured to the less favoured
type. There is no longer a reversible stationary distribution, but generally we are
interested in the genealogy during the timecourse of the sweep and for that ρ(t)
can be specified by reversal with respect to the speed measure and conditioning on
the backwards in time frequency of the selectively favoured a alleles hitting zero
before one. This trick of reversing with respect to the speed measure goes back to
Kimura. Mathematically it can be seen as reversing our previous model, with strictly
positive mutation rates, and then taking a limit as mutation rates tend to zero (c.f.
Example 3.29). This results in the equation

dρ(t) =−αρ(t)(1−ρ(t))coth(α(1−ρ(t)))dt +
√

ρ(t)(1−ρ(t))dWt (5.8)

where {Wt}t≥0 is a standard Brownian motion. Suppose that we sample from the
population at the time of completion of the sweep. Since the population is then all
of type a, and there is no mutation, our ancestral lineages necessarily correspond
exclusively to type a individuals and the genealogy is as in Lemma 5.13 with ρ(t)
determined by (5.8).

The difficulty is that typically we don’t know which loci on the genome are un-
dergoing selection and indeed that is what we’d like to find out. Moreover, if an
allele at a particular locus is fixed, there is no variability in a sample from that lo-
cus from which to infer genealogical relationships. To identify loci that have been
subject to selection, one looks at sites that are known (or at least believed) to be
neutral. If the pattern of variation at such a site is not what we’d expect under the
neutral model then we suspect that something else is happening at another locus on
the same chromosome. In diploid populations we can even say that it has to be at a
‘nearby’ locus. To see why we need a little more biology.

In a diploid population, such as our own, in which chromosomes are carried in
pairs (leaving aside the X and Y chromosomes) it is not the case that chromosomes
are passed down as indivisible blocks. Although we inherit one of each pair from
our mother and one from our father, the chromosome that I passed down to my
daughter is not an exact copy of one of my chromosomes. Instead it is a mosaı̈c of
my two chromosomes. This is due to a process called recombination. The simplest
sort of recombination is a so-called crossover event. The cartoon in Fig. 5.3 gives an
idea of what is going on. During reproduction each parent produces a large number
of germ cells, each carrying a copy of both the chromosomes in the pair. During
meiosis the genome of a diploid germ cell undergoes DNA replication followed by
two rounds of division which results in four haploid cells or gametes. Each of these
contains just one complete set of chromosomes. During this process the pairs of
chromosomes can randomly exchange segments of genetic information as in our
cartoon. Thus all four combinations, AC, AD, BC and BD can be represented among
the gametes produced by this parent.Two gametes, one chosen at random from each
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Fig. 5.3 Recombination. This cartoon represents a ‘crossover event’. A neutral allele that was
associated with an A at the selected locus in the parental chromosome can be passed on to the
offspring in association with B

parent, fuse to form an offspring. In particular, as a result of such crossover events,
a neutral allele that was associated with an A at the selected locus in the parental
chromosome can be passed on to the offspring in association with B.

Now think of the population at the neutral locus as being subdivided into back-
grounds a and A. As we trace backwards in time we see coalescence within each
background exactly as before, but now a lineage can move between backgrounds
not due to mutation, but due to recombination. We suppose that the probability that
a gamete resulted from a crossover event is R. We can proceed by analogy with
the arguments that lead to Theorem 5.14. Whereas a mutation of a type A to a type
a individual occurred with probability μ2 per generation, a crossover event affects
a type A individual with probability R. However, this crossover will only result in
a change of type at the selected locus if it happens in association with a chromo-
some carrying type a at the selected locus and, since we formed our diploid through
a random fusion of gametes, this happens with probability p. Thus we must take Rp
in place of μ2. Similarly, in place of μ1 we take R(1− p). Thus, tracing backwards
in time, the probability that a lineage that is currently associated with a type a allele
at the selected locus arose through recombination with an individual in background
A is

Rp(1− p)
p

= R(1− p).

Similarly, the probability that a lineage currently in background A arose through
recombination with an individual in background a is

Rp(1− p)
1− p

= Rp.
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Recombination rates are low and so writing r = NR and mimicking what we did
for the model with mutation we see that, denoting the number of lineages ancestral
to the sample that are currently associated with the selectively favoured a-allele by
n1, and the number associated with the A-allele by n2, ancestral lineages evolve as
follows:

• n1 �→ n1−1 at instantaneous rate 1
ρ(t)

(n1
2

)

• n2 �→ n2−1 at instantaneous rate 1
(1−ρ(t))

(n2
2

)

•
{

n1 �→ n1−1
n2 �→ n2 + 1

at instantaneous rate n1r(1−ρ(t))

•
{

n1 �→ n1 + 1
n2 �→ n2−1

at instantaneous rate n2rρ(t).

A typical genealogy is illustrated in Fig. 5.4. If selection is strong, then the time-
course of the sweep is of order O(logα/α) = O(log(Ns)/(Ns)) units of time (in the
coalescent scaling). If we are to see a non-trivial pattern of variation at the neutral lo-
cus, then the scaled recombination rate, r, between the selected and the neutral locus
must be O(α/ logα). Here, by non-trivial we mean that the presence of the sweep
affects the pattern of variation, but is not felt so strongly that there is no variation at
all at the neutral locus. With a rate of this order, a given ancestral lineage has strictly

Frequency a alleles

T

1/N

0

Caught by sweep
Escape sweep

Slow coalescence

Fast coalescence

0

Time for
sweep

Coalescent 
time

1

Fig. 5.4 The effect of a selective sweep on the genealogy at a linked neutral locus. The bold
curve depicts the frequency of the favoured allele as it sweeps to fixation. Lineages in the selected
background coalesce quickly at times close to the beginning of the sweep, leading to a characteris-
tic ‘star shaped’ genealogy. Lineages that recombine into the unfavoured background are unlikely
to coalesce, favouring singletons (neutral alleles that are represented only once) in the sample
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positive probability of recombining during the course of the sweep. On the other
hand, during most of the sweep the frequency of a alleles is either very close to 0 or
very close to 1. As a result it is very rare to see a lineage move out of background
a and later move back into a since, by the time a lineage has recombined into the A
background, the a-alleles are scarce and so even if the lineage experiences a recom-
bination event it will not be in association with a type a individual. Moreover, it is
rare to see coalescence of two lineages in background A since, by the time two lin-
eages have moved to background A, the frequency 1−ρ(t) of A-individuals is O(1)
and so the rate of coalescence within the A background is slow (O(1)) compared to
the duration of the sweep.

Let us suppose that every individual in the population at the time of the origin of
the sweep has a different type at the neutral locus. Then the above heuristics tell us
that a typical pattern of types in our sample will be one large family, derived from
the chromosome on which the favoured mutation originally arose, and a number of
singletons (corresponding to lineages which recombine out of background a during
the sweep). In Fig. 5.4, the individuals that are caught by the sweep form a single
family while those that escape the sweep are singletons. This pattern is regarded as
a ‘signature’ of a selective sweep. One can check that the probability of seeing a
pattern different from this is O(1/ log(Ns)). More refined results can be found in
Durrett and Schweinsberg (2004), Schweinsberg and Durrett (2005) and Etheridge
et al. (2006). See also Barton (1998).

We have assumed that we are sampling from the neutral locus at the time of fix-
ation of the favoured allele. In practice this is never the case. The signature of
selection at the neutral locus will be masked by a period of Kingman coalescence
of lineages as we trace back from the present to the time of completion of the sweep.

We have established the shape of the genealogical trees relating a sample from
the neutral locus, but what’s happening to allele frequencies of the neutral locus
forwards in time? Figure 5.5 provides a cartoon. The allele at the neutral locus on the
chromosome on which the favourable allele originally arose will receive a ‘boost’
in frequency which we have denoted by u.

neutral hitchhikers

time

frequency

1

1/N

u

selected locus

T

Fig. 5.5 Genetic hitchhiking. During a selective sweep, allele frequencies can become distorted
at linked neutral loci. In particular, the neutral allele carried by the chromosome on which the
favoured mutation originally arose receives a boost in frequency, denoted here by u
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Definition 5.16. We call this boost in frequency at the neutral locus genetic
hitchhiking.

Given the random value u, according to the approximation above, if there are n
ancestral lineages at time T (the time of fixation of the favourable allele), then as
we trace back through the sweep a Bin(n,u)-distributed set of them will coalesce to
trace back to the founder of the sweep and the remainder will be unaffected during
the sweep.

Because we are considering very rapid sweeps (corresponding to Ns� 1), there
will rarely be sufficient mutations to resolve the details of the genealogy during the
sweep and so it is equivalent to think of the sweep as leading to an instantaneous
coalescence of a binomial number of lineages. If we think of a neutral site as being
affected by a series of such selective sweeps, then the genealogy there will be rep-
resented as a coalescent with multiple mergers, see Remark 5.25. (In this context,
‘multiple’ means more than two.) Such coalescents are our next topic.

5.7 Coalescents with Multiple Mergers

The processes now known as Λ -coalescents were introduced independently by
Donnelly and Kurtz (1999), Pitman (1999) and Sagitov (1999). Like Kingman’s
coalescent they take their values among partitions of N and their laws can be pre-
scribed by specifying the restriction to partitions of [k] = {1,2, . . . ,k} for each k∈N.

Definition 5.17 (Λ -coalescent). A Λ -coalescent, {π(t)}t≥0, is a Markov process
taking its values among partitions of N with the property that for each k, the restric-
tion to [k], {πk(t)}t≥0, is also a Markov process and if there are currently n blocks
in πk(t) then each transition involving j of the blocks merging into one happens at
rate βn, j (which is independent of k) and these are the only possible transitions.

Generally π(0) is taken to be the partition all of whose blocks are singletons. For our
purposes the Λ -coalescent describes the ancestry of a population whose individuals
are labelled by N. Each block in the partition at time t corresponds to a single ances-
tor at time t before the present with the elements of the block being the descendants
of that ancestor. Whereas for the Kingman coalescent the only transitions are merg-
ers of pairs of blocks, for the Λ -coalescent there can be mergers of three or more
blocks. The key point is that the conditions in Definition 5.17 ensure the sampling
consistency that we saw for the Kingman coalescent in Remark 2.4: the coalescent
obtained by taking a sample of size k1 and then restricting to a subsample of size
k2 < k1 has the same distribution as the coalescent obtained by simply starting from
a sample of size k2.

If such a process is to exist, the parameters {βn, j,2 ≤ j ≤ n} cannot be chosen
arbitrarily.
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Theorem 5.18 (Pitman 1999). The Λ -coalescent of Definition 5.17 exists if and
only if there is a finite measure Λ on [0,1] for which

βn, j =
∫

[0,1]
u j−2(1−u)n− jΛ(du). (5.9)

Remark 5.19 (Recovering Kingman’s coalescent). Notice that if Λ = δ0, the point
mass on zero, then βn, j vanishes unless j = 2 (corresponding to two blocks, or ances-
tral lineages, merging), in which case it is one, so we recover Kingman’s coalescent.

More generally one can consider coalescents with simultaneous multiple colli-
sions. Such coalescents were obtained as the limit of the ancestral processes of prop-
erly scaled population models (in much the same way as the Kingman coalescent
arises as the rescaled ancestral process corresponding to the Wright–Fisher model)
by Möhle and Sagitov (2001). They were able to identify all coalescents arising as
limits of genealogies of populations with exchangeable reproduction mechanisms.
Schweinsberg (2000) independently obtained the same class of coalescents (without
a passage to the limit) and characterised the possible rates of mergers of ancestral
lineages in terms of a single measure Ξ on the infinite simplex

Δ =

{

(x1,x2, . . .) : x1 ≥ x2 ≥ . . .≥ 0,
∞

∑
i=1

xi ≤ 1

}

.

The resulting coalescents are now known as Ξ -coalescents.

Definition 5.20 (Ξ -coalescent). Let Ξ be a finite measure on Δ and write Ξ = Ξ0+
aδ0 where Ξ0 has no atom at zero. The Ξ -coalescent (with measure Ξ ) is a process
{π(t)}t≥0 taking values among partitions on N with the property that for each k, the
restriction to partitions of [k] is also a Markov process. Let ζ be a partition with n
blocks and let η be a partition obtained by merging disjoint groups of blocks of ζ .
If there are k1, . . . ,kr blocks in each group, where ki ≥ 2 for i = 1, . . . ,r, so that η
has n−∑r

i=1 ki + r blocks, then writing s = n−∑r
i=1 ki, the rate of transition from ζ

to η is

∫

Δ

⎛

⎝
s

∑
l=0

∑
i1 �=i2 �=...�=ir+l

(
s
l

)
xk1

i1
· · ·xkr

ir
xir+1 · · ·xir+l

(

1−
∞

∑
j=1

x j

)s−l
⎞

⎠ Ξ0(dx)
∑∞

j=1 x2
j

+a1{r=1,k1=2}, (5.10)

and these are the only possible transitions.

The rates (5.10) will be explained in Remark 5.22. For most of what follows we
shall restrict our attention to Λ -coalescents, not least because this greatly simpli-
fies notation, but it should be clear that many ideas carry over to this more general
setting.
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The Λ -coalescent specifies the genealogy of a sample from a forwards in time
population model introduced by Bertoin and Le Gall (2003) that we shall call the
Λ -Fleming-Viot process. This model is implicit in Donnelly and Kurtz (1999). See
also Birkner et al. (2005) and Berestycki et al. (2007) for explicit simultaneous
constructions of the Λ -Fleming-Viot process and its genealogical trees for certain
classes of measure Λ .

The Λ -Fleming-Viot process takes its values among probability measures on
[0,1]. We will describe it in terms of its generator, R, acting on functions of the form

G(ρ) =
∫

f (x1, . . . ,xn)ρ(dxn) . . .ρ(dx1), (5.11)

where n ∈ N and f : [0,1]n → R is measurable and bounded. First we need some
notation. If x = (x1, . . . ,xn) ∈ [0,1]n and J ⊆ {1, . . . ,n} we write

xJ
i = xminJ if i ∈ J, and xJ

i = xi if i /∈ J, i = 1, . . . ,n. (5.12)

In words, for each coordinate whose index is in J, we substitute the value of the
coordinate with the lowest index from J.

Definition 5.21 (Λ -Fleming-Viot process). Let Λ be a finite measure on [0,1]. The
Λ -Fleming-Viot process has generator

RG(ρ) = ∑
J⊆{1,...,n},|J|≥2

βn,|J|
∫ (

f (xJ
1, . . . ,x

J
n)− f (x1, . . . ,xn)

)
ρ(dxn) . . .ρ(dx1),

(5.13)

where βn, j is defined in (5.9). When Λ({0}) = 0 (so there is no Kingman compo-
nent), this can also be written

RG(ρ) =
∫

(0,1]

∫

[0,1]

(
G
(
(1−u)ρ + uδk

)−G(ρ)
)

ρ(dk)u−2Λ(du). (5.14)

The Λ -Fleming-Viot process is most easily understood in the case Λ({0}) = 0. In
that case one can think of it as follows. The population at time t is described by a
probability measure ρ(t) on the type space [0,1]. Take a Poisson point process on
R+× (0,1] with intensity measure dt⊗ u−2Λ(du) which picks times and sizes of
jumps for our population process. At a jump time t with corresponding jump size u,
a proportion u of the population is killed and replaced by offspring of an individual
chosen at random from ρ(t−). Thus

ρ(t) = (1−u)ρ(t−)+ uδx

where x ∈ [0,1] is chosen according to ρ(t−). The duality with the Λ -coalescent is
evident. To construct the genealogy of a sample from such a population, suppose
that there are currently k ancestral lineages. We trace backwards in time until we
first encounter a point of our Poisson process. Suppose that the jump size that this
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specifies is u. Then for each lineage, independently, we flip a coin which shows
heads with probability u. All lineages with a head merge into a common ancestor
and the process continues.

Remark 5.22 (Poissonian construction of Ξ -coalescents.). A Poisson construction
also allows us to understand the rates (5.10) in the Ξ -coalescent. Suppose that a = 0
and take a Poisson point process, Π , on [0,∞)×Δ with intensity

dt⊗ Ξ0(dx)
∑∞

i=1 x2
i

.

If (t,x) ∈ Π , then tracing backwards in time, each block of the partition (equiva-
lently each ancestral lineage) alive immediately before the event, independently of
the others, chooses colour i with probability xi and stays the same colour with prob-
ability 1−∑∞

i=1 xi. During the coalescence event, blocks of the same colour merge.
To understand the rate in (5.10), notice that a block is not changed during the

event if either it didn’t change colour, or if it was the only block to choose a partic-
ular colour. The ‘l’ in the formula corresponds to the blocks that are not involved
in the merger, but were nonetheless coloured, and the coefficient

(s
l

)
gives the num-

ber of ways of choosing those blocks. If there are l such blocks then r + l different
colours were chosen by at least one block (leading to the sum over i1 �= . . . �= ir+l).
For each choice of colours and for each m = 1, . . . ,r, the term xkm

im
is the probability

that km blocks are coloured im and merge. Finally, (1−∑∞
i=1 xi)s−l is the probability

that none of the remaining s− l blocks is coloured.

Perhaps the most extensively studied class of Λ -coalescents arise when the mea-
sure Λ is a Beta-measure.

Definition 5.23 (Beta-coalescents). The special class of Λ -coalescents for which

Λ(dx) =
1

Γ (2−α)Γ (α)
x1−α(1− x)α−1dx, α ∈ (0,2),

are called the Beta-coalescents.

For each fixed α ∈ (0,2), the corresponding Λ -Fleming-Viot process arises as a
timechange of the process which records proportions of different types in a pop-
ulation evolving according to an α-stable branching process in which individuals
inherit the type of their parent (see Birkner et al. (2005) ). This renders them
particularly amenable to analytic study. For 1 ≤ α < 2, they were obtained by
Schweinsberg (2003) from populations in which individual offspring distributions
have heavy tails. To see how this works, suppose that in a population of size N
each individual (independently) produces a random number of juvenile offspring
according to a distribution ψ . Density-dependent population regulation operates so
that exactly N juveniles, sampled at random, survive to maturity. We assume that
the mean number m of juveniles produced by each individual is greater than one so
that as N→ ∞ the probability that there are greater than N juveniles from which to
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select the next generation tends to one. We are really looking at a Cannings model.
Writing X for the number of juvenile offspring of a given parent, suppose that

P[X > k]∼ C
kα as k→ ∞

for a suitable constant C and for α > 0. Let us write ν1 for the number of these
juveniles that survive to maturity and

cN =
E[ν1(ν1−1)]

N−1
.

This is precisely the quantity cN of Sect. 2.2. Since ν1 is certainly no more than
min(X ,N), E[ν2

1 ]≤E[min(X ,N)2] from which cN is at most O(N1−α). In particular,
for α > 1, cN → 0 as N→ ∞. For α ≥ 2 the conditions of Lemma 2.13 are satisfied
and we recover a Kingman coalescent. For 1 < α < 2, the condition (2.4) fails.
However, writing ν2 for the number of mature offspring of a second individual, it is
easy to check that

E[ν1(ν1−1)ν2(ν2−1)]
N2cN

→ 0 as N→ ∞. (5.15)

This guarantees that in times of O(1/cN) generations, we do not see simultane-
ous mergers of two different pairs of ancestral lineages, so that we can expect a
Λ -coalescent in the limit as N→ ∞. To a good approximation, for this range of α ,
we can ignore the possibility of seeing more than one very large family (of size
O(N)) in a single generation. In the generations when we do see a large family, we
can expect the remaining N− 1 parents to produce a total of about m(N− 1) juve-
niles. Conditional on a large family, whose size we denote by X , in order to see a
jump of size u in the types of juveniles, we need

X
X +(N−1)m

≥ u.

Now conditioning on there being a large family we find

P

[
X

X +(N−1)m
≥ u

∣
∣
∣
∣X ≥ εN

]

= P

[
X ≥ (N−1)m

u
1−u

∣∣
∣
∣X ≥ εN

]
∼C′

(1−u)α

uα ,

(for a suitable constant C′) and the right hand side is (up to a constant) the Beta-
measure of [u,1].

The case α = 1 requires a different argument, for which we refer to Schweinsberg
(2003). When 0 < α < 1 we no longer have that cn→ 0. Moreover, condition (5.15)
fails and in the limit we obtain a coalescent with simultaneous multiple mergers,
that is, a Ξ -coalescent.
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Remark 5.24. Notice that the existence of the Λ -Fleming-Viot process
corresponding to a Beta-measure as above with 1 < α < 2 is slightly delicate. It
depends upon cancellation of small ‘upwards’ and ‘downwards’ jumps. To see this,
suppose that the population is divided into a and A alleles and that the current fre-
quency of a-alleles is p. Then the generator acting on a function g(p) takes the form

Rg(p) =
∫ 1

0

(
p{g(p + u(1− p))−g(p)}

+(1− p){g(p(1−u))−g(p)}) 1
u2 u1−α(1−u)α−1du

with the first term in the integrand corresponding to ‘upwards’ jumps and the sec-
ond to ‘downwards’ jumps. Expanding g in a Taylor series, we see that the terms of
order 1 and u cancel, leaving an integrand of order u2 to counteract the 1/u2 in the
Λ -measure. We return to this point in Remark 6.19.

Remark 5.25 (Gillespie’s pseudohitchhiking model). A basic observation, which
we already made at the beginning of Chap. 5 and to which we shall return in
Sect. 6.5, is that genetic diversity is orders of magnitude lower than expected from
census numbers and genetic drift alone. One factor that may contribute to this is
repeated selective sweeps. Gillespie proposed a model in which advantageous mu-
tations arise in a population according to a Poisson arrival process. He supposes that
selection is strong so that for those favourable mutations that become established,
not only is fixation essentially certain, but also the corresponding selective sweeps
are very rapid and can be viewed as (almost) instantaneous. Moreover (because such
strongly selected mutations should be rare) sweeps corresponding to different mu-
tations are assumed not to overlap. He examines the effect on a linked neutral locus
of such repeated substitutions. In this pseudohitchhiking model, the genealogy of
a sample from the neutral locus can be approximated by a Λ -coalescent in which
dt⊗ u−2Λ(du) is determined by the rate of substitutions (that is selective sweeps)
and the distribution of the random variable u, introduced above Definition 5.16, that
quantifies the ‘hitchhiking effect’ for each sweep. A more accurate approximation
for large sample sizes is provided by a Ξ -coalescent (see Durrett and Schweinsberg
(2005)).

The mathematical theory of Λ -coalescents is developing extremely quickly. Here
we have barely scratched the surface. For a nice survey we refer to Berestycki
(2009). In biology, both Λ and Ξ -coalescents have attracted interest as models
for the genealogies of samples from certain marine organisms, in which the dis-
tribution of offspring number among individuals is highly skewed, see for example
Eldon and Wakeley (2006), Sargsyan and Wakeley (2008). An inference method for
Λ -coalescents is presented in Birkner and Blath (2008).

A population evolving according to the Λ -Fleming-Viot process forms a single
mating unit, but real populations are spatially structured. For example they may
be subdivided into discrete locations or distributed over a one or two-dimensional
continuum. It is to spatial structure that we now turn our attention.



Chapter 6
Spatial Structure

6.1 Subdivided Populations and the Structured Coalescent

Most models of spatially structured populations have the same basic format. The
population is assumed to be subdivided into demes, which one can think of as
‘islands’ of population. The demes sit at the vertices of a graph and interaction
between the subpopulations in different demes is through migration (or more accu-
rately exchange) of individuals along the edges of the graph. The most elementary
example is Wright’s island model. This is how he introduced it in (Wright (1943)):

The simplest model is that in which the total population is assumed to be divided into
subgroups, each breeding at random within itself, except for a certain proportion of migrants
drawn at random from the whole. Since this situation is likely to be approximated in a group
of islands, we shall refer to it as the island model.

This corresponds to taking islands at the vertices of a complete graph. More gen-
erally one chooses the graph to caricature the spatial environment in which the
population evolves. For example populations evolving in a two-dimensional spatial
continuum are often approximated by taking the demes to sit at the vertices of Z

2.
To get a feel for the effect that this will have on the genealogical trees for the

population we first take a very simple example. Consider a population that is di-
vided into just two demes with migration between the two. This simple model also
arises as a model for a single population divided into two genetic types which are in
approximate equilibrium in the population, but in which there is mutation between
types. The Wright–Fisher model is adapted to this setting as follows:

Definition 6.1 (Wright–Fisher model with migration). A population of size N is
structured into two demes, 1 and 2 with population sizes N1 = Nω1 in deme 1 and
N2 = Nω2 in deme 2. Each subpopulation reproduces (independently) according
to the neutral Wright–Fisher model except that now, after each reproduction step,
a proportion of the population in each deme is exchanged. In other words μ1N1

individuals migrate from deme one to deme two and μ2N2 go the other way. In order
to maintain constant population size in each deme, we take μ1N1 = μ2N2.

We can establish the genealogy of a sample from such a population exactly as
in Sect. 5.5. Here things are easier because the population size in each deme is

A. Etheridge, Some Mathematical Models from Population Genetics, Lecture Notes
in Mathematics 2012, DOI 10.1007/978-3-642-16632-7 6,
c© Springer-Verlag Berlin Heidelberg 2011
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constant. Because the individuals in a given deme are indistinguishable from one
another, the probability that an individual in deme 1 had a parent in deme 2 is just
the proportion of individuals in deme 1 after the migration step that had parents
in deme 2, namely μ2N2/N1 = μ2ω2/ω1. Similarly, the probability that an indi-
vidual in deme 2 had a parent in deme 1 is μ1ω1/ω2. To obtain a diffusion limit
we suppose that μi = νi/N where N = N1 + N2 is the total population size and we
measure time in units of size N. Since the chance of a migration event and a coales-
cence event both affecting our ancestral lineages in a single generation is O(1/N2),
in the diffusion timescale we only see coalescences between lineages in the same
deme. Our time unit is the total population size, as opposed to the population size in
one of the demes, so each pair of lineages currently in deme i, coalesces at instanta-
neous rate 1/ωi. We are implicitly assuming that Nωi is large so that we never see
multiple mergers. The genealogical trees for this model can then be described by a
structured (Kingman) coalescent. As we trace backwards in time

• Ancestral lineages migrate from deme one to deme two at rate ν2ω2/ω1 and from
deme two to deme one at rate ν1ω1/ω2.

• Any pair of lineages currently in deme i coalesces at instantaneous rate 1/ωi.

Remark 6.2. Notice that the rate of migration of ancestral lineages is weighted
by the ratio of the population size in the two demes, just as in Sect. 5.5, so that
backwards in time the migration mechanism is biased towards the more populous
deme, and, again as in Sect. 5.5, the rate of coalescence within a deme depends on
population size there. The analogous result will hold for more general structured
populations.

Here we have fixed the total population size in each deme so that different ances-
tral lineages evolve independently. If we allowed the population size in each deme
to fluctuate randomly, then this would no longer be the case. Loosely, knowing that
one lineage jumps to a deme tells us that the population size there is probably larger
and so other lineages are more likely to jump there too.

Just as we passed to a diffusion approximation from the Wright–Fisher model
for a panmictic population, we can also pass to a diffusion approximation for the
structured Wright–Fisher model. We assume that the population size in each deme
is large enough that the Wright–Fisher diffusion provides a good approximation for
the effect of the random resampling due to reproduction. This leads to Kimura’s
stepping stone model (Kimura (1953)).

Definition 6.3 (Kimura’s stepping stone model). We suppose that a population
that is distributed across a collection of demes indexed by some set I is also subdi-
vided into two allelic types labelled a and A. The proportion of a-alleles in deme i
at time t is denoted by pi(t). Under Kimura’s stepping stone model:

d pi = ∑
j

m ji(p j− pi)dt +
√

1
Ne

pi(1− pi)dWi. (6.1)
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Here mi j reflects migration between demes and satisfies

∑
j �=i

mi j = ∑
j �=i

m ji (6.2)

(in order to maintain constant population size in each deme). The parameter Ne is the
(effective) population size in each deme and the {Wi}i∈I are independent standard
Brownian motions.

In other words we have a system of interacting Wright–Fisher diffusions. To under-
stand the first term on the right hand side of (6.1), note that type a individuals arrive
in deme i at total rate Ne ∑ j m ji p j and leave at total rate Ne ∑ j mij pi and observe that
by (6.2)

∑
j

m ji p j−∑
j

mi j pi = ∑
j

m ji p j−∑
j

m ji pi = ∑
j

m ji(p j− pi).

Remark 6.4. We can more generally take Ne(i) for the effective population size in
deme i, reflecting different population sizes in different demes, but then since we are
assuming that the population size in each deme is maintained we must assume that

Ne(i)∑
j �=i

mi j = ∑
j �=i

Ne( j)m ji,

and the first term in (6.1) becomes

∑
j

Ne( j)
Ne(i)

m ji(p j− pi).

Lemma 6.5. For a population evolving according to (6.1), the genealogical trees
relating a finite sample consisting of ni individuals from deme i for each i ∈ I are
traced out by the system of coalescing random walks whose evolution is described
as follows:

• For each i ∈ I, ni �→ ni−1 at instantaneous rate 1
Ne

(ni
2

)
.

• For each i, j ∈ I with i �= j,

{
ni �→ ni−1
n j �→ n j + 1

at instantaneous rate nim ji.

6.2 Duality

In this section we outline another connection between the stepping stone model and
the structured coalescent of Lemma 6.5. This is through a powerful technique called
the method of duality. To illustrate the strengths (and limitations) of the approach,
we are going to extend the stepping stone model slightly to incorporate selection.



92 6 Spatial Structure

Definition 6.6 (Kimura’s stepping stone model with selection). We suppose that
a population that is distributed across a collection of demes indexed by some set
I is also subdivided into two allelic types labelled a and A. The proportion of
a-alleles in deme i at time t is denoted by pi(t). Under Kimura’s stepping stone
model with selection

d pi = ∑
j

m ji(p j− pi)dt + α pi(1− pi)dt +
√

1
Ne

pi(1− pi)dWi. (6.3)

Here again mi j reflects migration between demes and satisfies

∑
j �=i

mi j = ∑
j �=i

m ji

(in order to maintain constant population size in each deme). The Ne is the (effective)
population size in each deme and the {Wi}i∈I are independent standard Brownian
motions.

The idea of duality is simple. We should like to express the distribution of the
process p = (pi)i∈I that we are actually interested in, in our case allele frequencies
in different demes, in terms of another (simpler) random variable, n, that may take
values in a completely different state space. The aim is to find a function f for which
the following relationship holds:

d
du

E
[

f
(

p(u),n(t−u)
)]

= 0, 0≤ u≤ t, (6.4)

so that

E
[

f
(

p(t),n(0)
)]

= E
[

f
(

p(0),n(t)
)]

.

If, as the second argument of f (p,n) varies, this provides a wide enough class of
functions, then this is enough to characterise the distribution of p. In particular,
existence of a dual process is often used to prove uniqueness (in distribution)
of the original process. A good reference is Ethier and Kurtz (1986), see also
Etheridge (2000).

It is usually far from evident how to identify a suitable function f , but many
models that arise in genetics have moment duals. These provide expressions for the
moments and mixed moments of the process,

E

[
∏
i∈I

pni
i

]
,

where n = (ni)i∈I is a vector with non-negative integer entries, a finite number of
which are non-zero. In our dual process we are going to think of ni as representing
a number of ‘particles’ in deme i. The function f is defined by

f (p,n) = pn ≡∏
i∈I

pni
i
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and our aim is to find dynamics for the process n(t) that guarantee that (6.4) is
satisfied. The first step is to calculate d pn with n held fixed. Writing ei for the vector
consisting entirely of 0s except for a 1 in the ith position,

d
(

pn) = ∑
i

ni p
n−ei

[

∑
j

m ji (p j− pi)+ α pi (1− pi)

]

dt

+ ∑
i

1
2Ne

ni (ni−1) pn−2ei pi (1− pi)dt +∑
i

(. . .)dWi.

Notice that, because we take the expectation in (6.4), we don’t care about the exact
form of the martingale term. Rearranging,

d
(

pn) = ∑
i

ni ∑
j

m ji
(

pn+e j−ei− pn)dt +∑
i

niα
(

pn− pn+ei
)

dt

+ ∑
i

1
2Ne

ni (ni−1)
(

pn−ei− pn)dt +∑
i

(. . .)dWi. (6.5)

Our task is to identify dynamics for n(t) that ensure that (6.4) holds. To do this,
we now think of evaluating d pn with p held fixed. Notice that since we evaluate
n at time t − u in (6.4) we pick up an extra minus sign. To cancel the first term
in (6.5), particles should migrate according to the time reversal of the random walk
that governed the forwards in time evolution of the individuals in our biological
population. To cancel the second term we assume that α ≤ 0. Note that there is no
loss of generality in doing so because if we consider 1− p in place of p, that is we
look at the proportion of A alleles instead of a alleles, the only effect on (6.6) is to
switch the sign of α . If α < 0, then the second term will be cancelled by assuming
that particles in the dual give birth (split in two) at rate−α . Finally, to deal with the
last term, we suppose that at instantaneous rate 1/Ne each pair of particles currently
in deme i coalesces to form a single particle.

We have recovered a spatial version of the ancestral selection graph.

Lemma 6.7. Suppose that p(t) evolves according to the Kimura stepping stone
model with selection of Definition 6.6 with α < 0 and that the process n, taking
values in Z

I
+ (that is vectors indexed by I with non-negative integer components)

and with n(0) having only finitely many non-zero components, evolves as follows:

• ni �→ ni + 1 at rate −αni

•
{

ni �→ ni−1
n j �→ n j + 1

at rate nim ji

• ni �→ ni−1 at rate 1
2Ne

ni (ni−1).

Then we have the duality relationship

E

[
p(t)n(0)

]
= E

[
p(0)n(t)

]
.



94 6 Spatial Structure

It is easy to explain this result probabilistically. Calculating E[p(t)n(0)] is equivalent
to asking what is the probability that in a sample consisting of ni(0) individuals
from deme i for each i ∈ I, all individuals are of type a. Just as in the ancestral
selection graph of Definition 5.12, the process n(t) traces all ‘potential’ ancestors.
The migration and coalescence is what we expect from tracing ancestral lineages
of individuals in the sample. The branching of course reflects selection. It is most
easily understood in terms of the Moran model with selection of Definition 5.9.
The extra ‘potential’ selective events in the Moran model take place at rate |α|.
Here (in contrast to Definition 5.9) we are assuming that A has a selective advantage
and so if we are to emerge with a type a individual from such a selective event, it
must be that both individuals sampled at the event were type a. This happens with
probability p2, hence the branch in the structured coalescent dual – we must check
the ancestry of both potential parents at such an event.

Remark 6.8. Although the process {n(t)}t≥0 has an interpretation in terms of the
genealogy of a sample from the population, it is important to remember that the
duality relation (6.4) is not enough to guarantee this, c.f. Remark 3.7.

Let’s use this duality to try to make some qualitative statements about the long-
time behaviour of a population evolving in a two-dimensional habitat. We take
I = Z

2 and suppose that migration corresponds to the discrete Laplacian (that is
mi j = 1/4 if i and j are neighbours and zero otherwise). We consider two separate
cases.

First suppose α < 0 and to avoid special cases suppose that 0 < pi(0) < 1 for all
i ∈ Z

2. Let’s calculate
E

[
p(t)n(0)

]
as t→ ∞,

for a non-trivial n(0). In the dual process of branching and coalescing random walks,
branches take place all the time, whereas particles only coalesce when they are in
the same site, and the random walk is dispersing them across Z

2, so we expect the
number of particles to eventually grow without bound. Irrespective of n(0) then,

E

[
p(t)n(0)

]
= E

[
p(0)n(t)

]
→ 0 as t→ ∞.

Asymptotically, all individuals in our sample will be of type A. This of course makes
sense biologically because the type A individuals have a selective advantage.

Now suppose that α = 0 so that both alleles are selectively neutral. First we
calculate E [pi(t)p j(t)] as t → ∞. To do this, we start the dual process from one
particle in site i and one in site j at time zero and see what happens as t → ∞. Now
there are no branches any more, just migration and coalescence. The distance be-
tween the two particles follows a two-dimensional random walk. Eventually they
will come together. When that happens, there is some chance that they will coa-
lesce before they move apart. If they don’t coalesce, eventually they will come back
together and once again they will have some chance of coalescence. And so on. In fi-
nite time they will coalesce. Then there will just be a single individual exploring Z

2.
The same argument applies for any n(0) (with finitely many non-zero components).
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Eventually, there will just be a single individual exploring Z
2. Thus

E

[
p(t)n(0)

]
→ p as t→ ∞,

where p is a constant determined by the average initial proportion of a alleles in the
population at time zero. How can this happen? Well, only if

p(t)
f dd−−→

{
1 with probability p
0 with probability 1− p

as t→ ∞,

where 1 is the vector all of whose entries are 1 and 0 is the vector consisting entirely
of 0s and the convergence is in the sense of finite dimensional distributions. So even
though neither type has a selective advantage, for large times we expect our sam-
ple to consist entirely of a or entirely of A alleles. In the non-spatial setting, since
the Wright–Fisher diffusion with no selection or mutation is in the natural scale,
the probability that the a allele fixes is its initial frequency (see Lemma 3.14). In the
spatial setting, which allele we see in our sample is determined by p.

6.3 Collapse of Structure

Having established the genealogical trees relating individuals in a sample from a
subdivided population one can look for the effect of structure on simple summary
statistics of the coalescent trees. Perhaps the best known result is the following.

Lemma 6.9. Suppose that a population evolves according to Wright’s island model
with D demes and population size N in each deme. Then the mean coalescence time
of two ancestral lineages sampled from within the same island is equal to that of two
lineages sampled from a panmictic population of size DN independent of the rate of
migration between islands.

Remark 6.10. In fact this result can be extended. For a surprisingly wide range
of models of subdivided populations, the mean coalescence time of a sample of
two lineages from within a single subpopulation will be equal to that of two
individuals sampled from a panmictic population of the same total size, irrespec-
tive of the detailed pattern of migration. Conditions to guarantee this can be found
in Wilkinson-Herbots (2003).

Proof of Lemma 6.9. Let us write T11 for the mean time to coalescence of two
lineages sampled at random from within the same island and T12 for the mean time
to coalescence of two lineages sampled from different islands. Suppose that the rate
of migration of each lineage is m. We condition on the first event to hit the two
sampled lineages. If they are in the same island then this can be a migration or
a coalescence and happens at exponential rate 2m + 1/N. If they are in different
islands then the event is necessarily a migration. It occurs at rate 2m and it can leave
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the lineages in different islands (with probability (D− 2)/(D− 1) since only one
of the D− 1 possible targets contains the other lineage) or the same island (with
probability 1/(D−1)). This leads to the linear equations

T11 =
1

1
N + 2m

+
2m

1
N + 2m

T12,

T12 =
1

2m
+

D−2
D−1

T12 +
1

D−1
T11.

Solving these we obtain
T11 = ND

as required. ��
We can also solve for T12 to obtain

T12 =
D−1

2m
+ ND.

This quantity, by contrast, does depend on the migration rate, but if m→ ∞ then
T12 → ND and the mean time to coalescence behaves as for a panmictic popula-
tion even if we sample from different demes. One can take this further. Bahlo and
Griffiths (2001) find an explicit expression for the Laplace transform of the distri-
bution of the time to the most recent common ancestor of a sample of size two and
from this show that, as m→ ∞, the whole distribution of the time to the MRCA
converges to that of a sample of size two from a panmictic population.

It is natural to ask whether this extends to the genealogical tree of a larger
sample from the population. The answer, it turns out, is yes. This is part of a much
wider phenomenon in which, because migration and coalescence are happening on
different timescales, we see a ‘collapse’ of structure in the structured coalescent.
Nordborg and Krone (2002) summarise the situation beautifully. Here we shall
just skim the surface. We consider a population that is subdivided into different
states. These could be demes as before or, more generally, age classes, genetic types
and so on. If ‘migration’ (which could be through ageing or mutation for exam-
ple) between some groups of states is happening on a much faster timescale than
coalescence, then the structure associated with those groups collapses and each is
replaced, through some sort of averaging procedure, by a single ‘metastate’. We
already saw an effect like this is Sect. 2.3. When the entire structure collapses, we
recover the Kingman coalescent with an effective population size, but one can also
recover a structured coalescent in the limit. (We shall see something analogous
to this in Sect. 6.5.) To illustrate collapse of structure we consider a very simple
example.

Example 6.11. Suppose that our population, which evolves in discrete generations,
is divided into two demes with sizes N1 = a1N and N2 = a2N. In each generation,
ancestral lineages migrate between demes with strictly positive probabilities β12

and β21 and we write (γ1,γ2) for the stationary distribution of the corresponding
random walk. In contrast to Definition 6.1, we do not suppose that βi j is O(1/N).
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Coalescence within demes is with probability 1/Ni = 1/(Nai) in deme i in each
generation. Measuring time in units of N generations, the genealogy of a sam-
ple from the population converges to a Kingman coalescent in which if there are
currently k ancestral lineages, a pair chosen at random will coalesce at rate c

(k
2

)

where

c =
2

∑
i=1

1
ai

γ 2
i .

We verify this result only when starting from two ancestral lineages and refer
to Nordborg and Krone (2002) for a more general result. In this case we can record
the possible states of the process of ancestral lineages as

{(1,0),(0,1),(2,0),(1,1),(0,2)}.

Ignoring terms of O(1/N2), the backwards in time transition matrix of the process
of ancestral lineages can be written as

ΠN = A +
1
N

B

where the matrix A corresponds to migration of ancestral lineages and the matrix B
to coalescence within demes. The key result is the following Lemma which can be
found in Möhle (1998).

Lemma 6.12. Let t,K ≥ 0 be fixed and let (cN)N∈N be a sequence of positive
real numbers with limN→∞ cN = 0. Further let A = (ai j) be a matrix with ‖A‖ ≡
maxi ∑ j |ai j|=1 such that P = limn→∞ An exists. Then

lim
N→∞

sup
‖B‖≤K

‖(A + cNB)[t/cN ]− (P+ cNB)[t/cN ]‖= 0.

If (BN)N∈N is a matrix sequence such that G = limN→∞ PBNP exists, then

lim
N→∞

(A + cNBN)[t/cN ] = P− I + etG ∀t > 0.

This generalises the familiar identity limN→∞(I+A/N)N = eA. An easy consequence
of this is the following useful theorem.

Theorem 6.13 (Möhle 1998). Let XN = {XN(r)}r∈N0 be a sequence of time homo-
geneous Markov chains on a probability space (Ω ,F ,P) with the same finite state
space S and let ΠN denote the transition matrix of XN. Assume that the following
conditions are satisfied.

1. A = limN→∞ ΠN exists and ΠN �= A for all sufficiently large N.
2. P = limn→∞ An exists.
3. G = limN→∞ PBNP exists, where BN = (ΠN−A)/cN and cN = ‖ΠN−A‖ for all

N ∈N.
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If the sequence of initial probability measures PXN(0) converges weakly to some
probability measure μ , then the finite dimensional distributions of the process
{XN([t/cN ])}t≥0 converge to those of a continuous time Markov process (Xt)t≥0

with initial distribution X0
d= μ , transition matrix Π(t) = P− I + etG, t > 0, and

infinitesimal generator G.

Remark 6.14. This is a special case of a general class of results in perturbation
theory which are discussed, for example, in Ethier and Kurtz (1986), Chap. 1,
Sect. 7.

Since P is a projection, that is P2 = P, we have that

P− I + etG = PetG = etGP.

(To see this expand etG, and hence the left hand side, as a series and note from
the definition of G that PG = G = GP.) This tells us that the limiting process is
obtained by first projecting, using P, onto the stationary distribution of the ‘fast
process’ governed by A and then applying the generator G.

In our example,

P =

⎛

⎜
⎜
⎜⎜
⎜
⎝

γ1 γ2 0 0 0
γ1 γ2 0 0 0
0 0 γ2

1 2γ1γ2 γ2
2

0 0 γ2
1 2γ1γ2 γ2

2
0 0 γ2

1 2γ1γ2 γ2
2

⎞

⎟
⎟
⎟⎟
⎟
⎠

,

cN = 1
N and

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
1
a1

0 − 1
a1

0 0

0 0 0 0 0
0 1

a2
0 0 − 1

a2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We can then calculate G as

PBP =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0

cγ1 cγ2 −cγ2
1 −2cγ1γ2 −cγ2

2
cγ1 cγ2 −cγ2

1 −2cγ1γ2 −cγ2
2

cγ1 cγ2 −cγ2
1 −2cγ1γ2 −cγ2

2

⎞

⎟
⎟
⎟
⎟⎟
⎠

,

with

c =
γ2

1

a1
+

γ2
2

a2
.

We can collapse states according to the number of lineages to see that we have recov-
ered exactly the Kingman coalescent (up to the time change by c). The assignment
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of demes to lineages is just by independent sampling according to the stationary
distribution of the random walk. ��

In this example, with a fixed and finite number of demes, the result is not really
surprising. On the time scale of the coalescence, at any given instant the random
walks have probability about γ2

1 of both being in deme 1 in which case they have
instantaneous coalescence rate 1/a1 and they have probability about γ2

2 of both be-
ing in deme 2 in which case they coalesce at instantaneous rate 1/a2. When we
look at larger numbers of lineages, convergence to the coalescent hinges on the ex-
changeability of lineages. Ancestral lineages have ‘forgotten’ all about their starting
point by the time we see a coalescence event, and so it is equally likely to be any
pair of lineages that coalesce. For a general spatial model, we cannot expect this
exchangeability for the ancestral lineages of an arbitrary sample. Lineages sampled
close together are more likely to coalesce first. However, if coalescence times are
long enough, then the lineages have time to ‘mix’. Zähle et al. (2005) consider a
stepping stone model on a large two-dimensional torus in Z

2. They show that if in-
dividuals are sampled uniformly from the torus, then as the side of the torus tends
to infinity the genealogy does indeed converge to a Kingman coalescent (with an
appropriate effective population size). We shall describe a close analogue of their
result in Sect. 6.5.

Collapse of structure can also be seen in island models with large numbers of
demes. This is demonstrated in a series of papers by Wakeley and coworkers (e.g.,
Wakeley (2001), Wakeley and Aliacar (2001)). In contrast to the setting of Nordborg
and Krone (2002), the population size, N, in each deme is assumed to be fixed and
finite, but the number, D, of demes grows without bound. While within the same
deme each pair of lineages coalesces at rate 1/N, but migration between demes
at a rate of O(1) sends each lineage to a new deme chosen uniformly at random
from the D− 1 available. If the sample size is much smaller than the number of
demes, then the chance of landing on a deme that is already occupied by another
ancestral lineage is O(1/D). For large D the history of a sample can then be di-
vided into two phases. During the first scattering phase, which is O(1) generations
long, lineages within the same deme will experience a mixture of coalescence and
migration to unoccupied demes, until there is at most one lineage in each deme.
Never again during the history of the sample will we see more than two lineages in
a single deme. During the second collecting phase, which is O(D) generations long,
lineages migrate between demes with the possibility of coalescence only when they
are in the same deme. Measuring time in units of D generations, we have a tractable
ancestral process in which the scattering phase is instantaneous (corresponding to
the projection P of Remark 6.14) and the collecting phase is a Kingman coalescent.

6.4 Evolution in a Spatial Continuum and the Pain in the Torus

So far we have concentrated on subdivided populations, but, in reality, many biolog-
ical populations evolve in a spatial continuum. Wright (1943) and Malécot (1948)
considered populations evolving in R

1 and R
2. They make similar assumptions.
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Malécot, for example, assumes that (I) individuals are distributed randomly with
constant expected density everywhere in space; (II) each individual, independently,
produces a Poisson number of offspring with mean one; and (III) each offspring mi-
grates independently, with the displacements being drawn from some distribution
m(x), for example a normal distribution. However, as Felsenstein (1975) observed,
these assumptions are inconsistent. A population evolving according to (II) and (III)
violates (I). In fact, if it is distributed over all of R

1 or R
2 it develops larger and

larger clumps separated by greater and greater distances. This is not overcome by
working on a torus as then the population dies out. Counteracting this, for example
by conditioning the total population size to be a constant N does not overcome the
problem of clumping. Felsenstein dubs these problems ‘the pain in the torus’.

Backwards in time, both Wright and Malécot assume that the probability that two
individuals have a common parent in the previous generation is a function of their
separation (determined by convolving two copies of the distribution m(x)) and that
if they did not have a common parent their parents’ positions are determined by
independent copies of m(x). Evidently this (backwards in time) description of the
genealogy is not consistent with their forwards in time model for the evolution of
the population.1 So can we find consistent forwards and backwards in time models?
In view of the success of the stepping stone model it is natural to use that as a starting
point and to try to replace the system of interacting stochastic (ordinary) differential
equations by a single stochastic partial differential equation. In one spatial dimen-
sion this can be achieved by applying the diffusive rescaling to the stepping stone
model (so that the random walk governing migration of individuals converges to
Brownian motion). This results in the limiting equation

d p =
1
2

Δ pdt +
√

γ p(1− p)dW, (6.6)

where W is now a space-time white noise. This was proved by Shiga (1988), who
also established convergence of the system of coalescing random walks that de-
scribe the genealogy in the stepping stone model to a system of Brownian motions
that coalesce at a rate determined by the local time that they spend together. This
generalises work of Nagylaki (1978; 1978) who derived, under the same rescaling,
an equation for the correlations between allele frequencies at different locations.
In two dimensions Nagylaki showed that the rescaling fails. The equations for
the correlations ‘blow up’ on scales comparable with the distance moved by a
single gene over a single generation. Correspondingly, (6.6) has no solution; the
white noise is ‘too rough’. (See Walsh (1986) for an introduction to stochastic par-
tial differential equations.) Moreover, if one applies the diffusive rescaling to the
stepping stone model then one recovers a deterministic heat equation. It is easy to
see why by thinking about the genealogical process of coalescing random walks.

1 Wright and Malécot thought about probability of identity in allelic state under an infinitely many
alleles mutation model rather than genealogies, but as we saw in Sect. 2.4 the two notions are
closely related.
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Under the diffusive rescaling the random walks converge to Brownian motions,
but two independent Brownian motions evolving in R

2 never meet and so we lose
the coalescence. The coalescence is what reflects the noise term (which in turn
models the randomness of reproduction) and so with no coalescence we cannot
expect any noise.

Remark 6.15. If one modifies (6.6) by replacing the white noise W by a suitable
‘coloured’ noise, obtained for example by convolving W with a function from
L2(Rd), then the new equation does have a solution. Although at first sight this
equation looks natural, it is not, as one might hope, what one obtains by taking a
rescaling limit of an individual based model in which parents are chosen from a
neighbourhood (rather than the same location). Indeed it is not clear how to obtain
it as the limit of any individual based model.

Alternatively, instead of modifying the forwards in time stepping stone model, one
can try to modify the corresponding (backwards in time) structured coalescent.
An obvious approach is to assume that the genealogical trees can be constructed
from Brownian motions which coalesce at an instantaneous rate given by a func-
tion of their separation. The position of the common ancestor is generally taken
to be the midpoint between the two lineages immediately before the coalescence
event (although other distributions are of course possible). However, this process of
coalescence violates the consistency of Remark 2.4. To see this, take the tree cor-
responding to a sample of size k and consider a subtree of size two. Whenever one
of these two ancestral lineages is involved in a coalescence event in the full tree
it will jump. We would not see this jump if we modelled the tree relating just two
individuals directly. Furthermore, there is no corresponding forwards in time model
for the evolution of the population.

Wright and Malécot assume an infinitely many alleles mutation model in which,
in each generation, each offspring (independently) has a new allelic type with some
fixed probability. They find an expression for the probability that two individuals,
sampled at distance x apart, have the same allelic type. Although based on in-
consistent assumptions, the formula provides an astonishingly good fit to the two-
dimensional stepping stone model. This can be seen for example in Fig. 1 of Barton
et al. (2002). That paper shows that under certain conditions the Wright–Malécot
formula can be extended to continuum population models which incorporate lo-
cal structure. Over all but very small scales, the resulting probability of identity
can be written as a function of three parameters: the effective dispersal rate, the
neighbourhood size and the local scale. The difficulty is that there is a shortage of
explicit models for which the assumptions underlying this result can be verified and
the effective parameters established. Moreover, the formula only applies to samples
of size two.

Neighbourhood size is the product of the effective dispersal rate (that is the vari-
ance of the Gaussian distribution from which an individual’s parent is drawn) and
the local population density and gives some measure of how many individuals ‘inter-
act’ in a given generation. Although the Wright–Malécot formula could in principle
be extended to larger samples of well-separated genes, if neighbourhood size is
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small, multiple coalescences of ancestral lineages could become significant. This
observation turned out to be key in writing down a new model which addresses
some of the problems identified above.

6.5 The Spatial Λ -Fleming–Viot Process

Recently, in joint work with Nick Barton, we proposed a new framework for
modelling populations evolving in a spatial continuum and this will be our final
topic. Not only does the proposed framework address some of the issues raised
above, including allowing for small neighbourhood size, but it also allows us to ex-
plicitly incorporate large-scale extinction-colonisation events into the dynamics of
the population. The motivation for this is the basic observation that we made at the
beginning of Chap. 5:

Genetic diversity is orders of magnitude lower than expected from census population size
and genetic drift.

While selection certainly plays a rôle in reducing genetic diversity, it is plausible that
most of the reduction that we observe relative to the ‘null’ model of neutral evolution
and Kingman’s coalescent is due to large scale fluctuations in which the movement
and reproductive success of many individuals are correlated. For example climate
change has caused extreme extinction and recolonisation events that dominate the
demographic history of humans and other species. The new framework provides
mathematical models through which to assess the importance of such events relative
to some of the other forces that shape genetic diversity.

For simplicity we describe only a particular instance of our approach which can
be thought of as a spatial Λ -Fleming–Viot process with genealogical trees deter-
mined by a corresponding spatial Λ -coalescent. In this setting, after an extinction
event a region is recolonised by the descendants of a single individual. In many set-
tings it would be natural to take a Poisson number of colonists, say, and then the
corresponding coalescent model would be a spatial Ξ -coalescent.

The starting point is an individual based model. The resolution of Felsenstein’s
‘pain in the torus’ is that reproduction events (including the large-scale extinction-
recolonisation events) are based on a Poisson point process in space. The rate at
which a given region of space is affected by such an event does not grow with local
population density and this prevents clumping.

Definition 6.16 (Individual based model). We suppose that the population is ini-
tially distributed as a Poisson point process in R

d (with d = 2 being the most
interesting case). Let λ be a fixed positive constant, μ(dr) be a measure on (0,∞)
and, for each r > 0, let νr(du) be a probability measure on [0,1] such that

∫ ∞

0

∫ 1

0
urd(1 + rd)νr(du)μ(dr) < ∞. (6.7)



6.5 The Spatial Λ -Fleming–Viot Process 103

Write ξ (dr,du) = μ(dr)νr(du). The dynamics of the population are as follows:

1. Let Π be a Poisson Point Process on R+×R
d×R+× (0,1] with rate dt⊗dx⊗

ξ (dr,du).
2. If (t,x,r,u) is a point of Π , then at time t throw down a ball Br(x) of radius r and

centre x in R
d .

3. If the ball is empty do nothing. If not:

a. Choose an individual at random from those in Br(x);
b. for each individual in Br(x), independently flip a coin which shows heads with

probability u and kill all those individuals with a head;
c. throw down individuals with the same type as the selected individual (who

may now be dead) according to an independent Poisson Point Process with
intensity uλ 1Br(x)dx.

Regions of space can, and do, become empty in this model, but, because the neigh-
bourhoods affected by different events overlap, an empty region can subsequently
be recolonised. Berestycki et al. (2009) show that there is a critical value of λ above
which the process survives and below which it dies out. They also check that under
condition (6.7) the process described in Definition 6.16 actually exists.

The difficulty with this model is that it is not easy to write down explicitly the
genealogical trees relating individuals in a sample from the population. An ancestor
is necessarily in a non-empty patch of space and knowing that a region is non-
empty gives information about the rate at which it is hit by reproduction events as
one traces back in time, but it is hard to find explicit expressions for this effect.
We overcome this difficulty by letting λ → ∞ so that there are no empty regions of
space. At first sight it looks as though we are thereby losing the possibility of small
neighbourhood size, but in fact this is not so: by retaining the same reproduction
mechanism, in which each individual hit by a reproduction event has probability u
of being killed, we retain the signature of finite neighbourhood size. In particular,
we can still see multiple coalescences of ancestral lineages.

Remark 6.17. An alternative model of this type, considered in Barton et al. (2010),
has a slightly modified reproduction mechanism. It is again based on a spatial
Poisson process, but now if an event is centred on the point x, then an individual at y
is killed with probability u(x,y), where u(x,y) is a Gaussian kernel centred on x say.
A parent is selected by taking a weighted sample from the population immediately
before the event, in which individuals are weighted according to their distance from
x according to a (possibly different) Gaussian distribution. Offspring, of the same
type as the parent, are distributed according to a Poisson point process with intensity
λ u(x,y). The resulting population model has a Poisson distribution with intensity λ
as its stationary distribution.

Let us now describe the limiting model a little more precisely. We suppose that each
individual in our population has a type taken from a set K (for example K = [0,1])
and a location in a space E . For illustration, here we continue to take E = R

d .
To each point x ∈ E and at each time t, the limiting process assigns a probability
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measure, ρ(t,x) on K. The idea is that the type of an individual sampled from the
point x at time t has distribution ρ(t,x). The reproduction mechanism mirrors that
for our discrete time model.

Definition 6.18 (Spatial Λ -Fleming–Viot process). The spatial Λ -Fleming–Viot
process, denoted {ρ(t,x, ·),x ∈ R

d ,t ≥ 0}, specifies a probability measure on the
type space K for every t ≥ 0 and every x ∈R

d . With the notation of Definition 6.16,
the dynamics of the process are as follows. At every point (t,x,r,u) of the Poisson
point process Π we select a point z at random from Br(x) and a type k at random
according to ρ(t−,z, ·). For all y ∈ Br(x),

ρ(t,y, ·) = (1−u)ρ(t−,y, ·)+ uδk.

Of course we must impose restrictions on the intensity measure if our process is
to exist. To see what these should be, consider first the evolution of the probabil-
ity measure ρ(t,x, ·) defining the distribution of types at the point x. This measure
experiences a jump affecting a proportion y ∈ A⊆ [0,1] of individuals at x at rate

∫

(0,∞)

∫

A
Cdrdνr(du)μ(dr),

where Cd is the volume of the unit ball in R
d . By analogy with the Λ -Fleming–Viot

process, we should like

Λ̃(du) =
∫

(0,∞)
u2rdνr(du)μ(dr) (6.8)

to define a finite measure on [0,1]. In fact, we require a bit more:

Λ(du) =
∫

(0,∞)
urdνr(du)μ(dr) (6.9)

must define a finite measure on [0,1].

Remark 6.19. Recall from Remark 5.24 that the existence of Λ -coalescents for
which the analogue of (6.8) is satisfied, but not that of (6.9), relies on some can-
cellation of positive and negative jumps. Our need for the stronger condition in
the spatial setting reflects the fact that the existence of overlapping neighbourhoods
destroys that cancellation.

Of course it is not enough to consider a single point. It has to be possible to ‘fit
together’ the type distributions at different sites in a consistent way and the simplest
way to guarantee that we can do this is to ensure the existence of a nice dual process
describing, for each n ∈ N, the distribution of lineages ancestral to a sample of size
n from the population. Suppose then that a population evolves according to this
model and consider the (backwards in time) dynamics of a single ancestral lineage.
It evolves in a series of jumps with intensity
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dt⊗
∫

(|x|/2,∞)

∫

[0,1]

Lr(x)
Cdrd uνr(du)μ(dr)dx

on R+×R
d where Lr(x) is the volume of Br(0)∩Br(x). If we want this to give a

well-defined Lévy process, then we require

∫

Rd
(1∧|x|2)

(∫

(|x|/2,∞)

∫

[0,1]

Lr(x)
Cdrd uνr(du)μ(dr)

)
dx < ∞. (6.10)

Consider now lineages currently at separation y ∈R
d . They will coalesce if they are

both involved in a replacement event which happens at instantaneous rate

∫

(|y|/2,∞)
Lr(y)

(∫

[0,1]
u2νr(du)

)
μ(dr). (6.11)

Under condition (6.9), the expressions in (6.10) and (6.11) are both automatically
finite. Of course if two ancestral lineages do coalesce, then their common parent
is located at a point selected at random from the ball involved in the reproduction
event. Conceptually, this is readily extended to multiple lineages (where we will see
multiple mergers). Notice that conditional on not having coalesced, the locations of
ancestral lineages are not independent of one another. This is entirely analogous to
the dependence between ancestral lineages in the coalescent for a continuous (finite)
linear population suggested by Wilkins and Wakeley (2002) (see Wilkins (2004) for
a two-dimensional analogue).

Remark 6.20 (Spatial Λ -coalescent). Evidently the dual process of ancestral lin-
eages is a spatial version of the Λ -coalescent. However, we emphasise that it differs
from that studied by Limic and Sturm (2006).

Recall from Sect. 6.3 that the work of Zähle et al. (2005) shows that it makes sense
to define a coalescent effective population size (see Remark 2.8) for a uniform sam-
ple from a population evolving according to the stepping stone model on a large
torus in Z

2. It is natural to ask whether an analogous result holds here and, if so,
what the effect of large scale extinction-recolonisation events is on that effective
population size. This question is addressed by Barton et al. (2010) and we finish
with a description of their result.

Let T(L) denote the torus of side L in R
2. Suppose that there are two types of

event:

1. Small events affecting bounded regions;
2. large events affecting regions of diameter O(Lα), for some 0≤ α ≤ 1.

The idea is that small events reflect ‘ordinary’ reproduction, whereas large events
model large-scale extinction-recolonisation events. We assume that each ancestral
lineage is hit by a small event at rate O(1), but by a large event at rate O(1/ρ(L))
where ρ(L)→ ∞ as L→ ∞. We then sample uniformly at random from the whole
of T(L) and ask what happens to the genealogy as L→ ∞?

A precise statement can be found in the paper, but here is an outline of the result.
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Theorem 6.21 (Barton et al. 2010).

1. Suppose that α < 1. On a suitable timescale the genealogy converges to a
Kingman coalescent (with an effective parameter). Depending on ρ(L), the ef-
fective population size that determines the timescale can depend on both large
and small scale events.

2. Suppose that α = 1. There are three cases:

a. ρ(L) ≈ L2. On timescale ρ(L), the coalescent converges to a spatial
Λ -coalescent in which lineages follow independent Brownian motions in
between coalescence events.

b. ρ(L) ≈ L2 logL. On timescale ρ(L), the coalescent converges to a (non-
spatial) Λ -coalescent in which multiple mergers are due to large events and
there can also be a Kingman component reflecting coalescence due to small
events.

c. ρ(L) � L2 logL. On a timescale L2 logL, the coalescent converges to the
Kingman coalescent.

If there are no large events, then in many ways the model looks like a two-
dimensional stepping stone model and so, in view of the results of Zähle
et al. (2005), it is no surprise to recover the Kingman coalescent. From a biological
perspective, what is interesting is the large effect that even rare extinction-
recolonisation events can have on the effective population size.

Since for α = 1 large scale events cover a non-negligible fraction of the torus,
a mathematically much richer picture emerges. If they happen too frequently, then
they can affect multiple lineages while the location of those lineages is still corre-
lated with their starting points. If ρ(L)≈ L2 logL, the positions of ancestral lineages
have homogenised over the torus by the time a large event arrives, but lineages have
not necessarily yet all coalesced due to small events. Finally, if large events are too
rare, then lineages have all coalesced due to small events before we see a large event
and so their effect is lost.

6.6 More General Models

One of the attractions of the approach to modelling outlined above is its flexibility.
Although we have presented only the simplest form of the spatial Λ -Fleming–
Viot process, it can readily be modified to incorporate more realistic biological
assumptions. For example, it would be natural to allow for multiple founders after an
extinction-recolonisation event and there is no reason to suppose that they are cho-
sen uniformly from the region affected by the event. Equally, we can incorporate
selection, recombination, spatial motion of individuals not linked to reproduction
and so on.

From a mathematical perspective, even the simplest model reveals a rich struc-
ture. For example, by considering a population subdivided into two types, a and A
say, with a sufficiently ‘sparse’, just as for the voter model, if events affect only
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balls of bounded radius then other than in one spatial dimension one can recover a
cluster of superBrownian motion as a rescaling limit for the distribution of a-alleles.
By incorporating selection and rescaling suitably, one can obtain the (deterministic)
Fisher-KPP equation as a limiting description of allele frequencies. In one dimen-
sion one can also recover the stochastic partial differential equation

d p =
1
2

Δ pdt + sp(1− p)dt +
√

ε p(1− p)dW, (6.12)

where W is space-time white noise. This equation is the focus of a great deal of
current research, but in higher dimensions, which are more biologically relevant, it
has no solution. By basing reproduction on regions instead of individuals, we have
a natural alternative to (6.12), which makes sense in arbitrary spatial dimensions,
from which (6.12) can be recovered as a limit in one spatial dimension, and which
arises in a natural way as a limit of an individual based model.
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Equations Driven by Rough Paths, Ecole d’Été de Proba-
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Contemporary Mathematical Statistical Physics. Editor:
R. Kotecký (2009)
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A. Mikelić, N. Siedow, Mathematical Models in the
Manufacturing of Glass. Cetraro, Italy 2008. Editor:
A. Fasano (2011)
Vol. 2011: B. Andrews, C. Hopper, The Ricci Flow in Rie-
mannian Geometry (2011)
Vol. 2012: A. Etheridge, Some Mathematical Models
from Population Genetics. École d’Été de Probabilités de
Saint-Flour XXXIX-2009 (2011)

Recent Reprints and New Editions

Vol. 1702: J. Ma, J. Yong, Forward-Backward Stochas-
tic Differential Equations and their Applications. 1999 –
Corr. 3rd printing (2007)
Vol. 830: J.A. Green, Polynomial Representations of GLn,
with an Appendix on Schensted Correspondence and Lit-
telmann Paths by K. Erdmann, J.A. Green and M. Schoker
1980 – 2nd corr. and augmented edition (2007)
Vol. 1693: S. Simons, From Hahn-Banach to Monotonic-
ity (Minimax and Monotonicity 1998) – 2nd exp. edition
(2008)
Vol. 470: R.E. Bowen, Equilibrium States and the Ergodic
Theory of Anosov Diffeomorphisms. With a preface by
D. Ruelle. Edited by J.-R. Chazottes. 1975 – 2nd rev.
edition (2008)
Vol. 523: S.A. Albeverio, R.J. Høegh-Krohn, S. Maz-
zucchi, Mathematical Theory of Feynman Path Integral.
1976 – 2nd corr. and enlarged edition (2008)
Vol. 1764: A. Cannas da Silva, Lectures on Symplectic
Geometry 2001 – Corr. 2nd printing (2008)

˜



LECTURE NOTES IN MATHEMATICS 123
Edited by J.-M. Morel, F. Takens, B. Teissier, P.K. Maini

Editorial Policy (for the publication of monographs)

1. Lecture Notes aim to report new developments in all areas of mathematics and their
applications - quickly, informally and at a high level. Mathematical texts analysing new
developments in modelling and numerical simulation are welcome.

Monograph manuscripts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related work
by other people. They may be based on specialised lecture courses. Furthermore, the
manuscripts should provide sufficient motivation, examples and applications. This clearly
distinguishes Lecture Notes from journal articles or technical reports which normally are
very concise. Articles intended for a journal but too long to be accepted by most journals,
usually do not have this “lecture notes” character. For similar reasons it is unusual for
doctoral theses to be accepted for the Lecture Notes series, though habilitation theses may
be appropriate.

2. Manuscripts should be submitted either online at www.editorialmanager.com/lnm to
Springer’s mathematics editorial in Heidelberg, or to one of the series editors. In general,
manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet
be reached on the basis of the first 2 reports, further referees may be contacted: The author
will be informed of this. A final decision to publish can be made only on the basis of the
complete manuscript, however a refereeing process leading to a preliminary decision can
be based on a pre-final or incomplete manuscript. The strict minimum amount of material
that will be considered should include a detailed outline describing the planned contents
of each chapter, a bibliography and several sample chapters.

Authors should be aware that incomplete or insufficiently close to final manuscripts
almost always result in longer refereeing times and nevertheless unclear referees’ recom-
mendations, making further refereeing of a final draft necessary.

Authors should also be aware that parallel submission of their manuscript to another
publisher while under consideration for LNM will in general lead to immediate rejection.

3. Manuscripts should in general be submitted in English. Final manuscripts should contain
at least 100 pages of mathematical text and should always include

– a table of contents;
– an informative introduction, with adequate motivation and perhaps some historical re-

marks: it should be accessible to a reader not intimately familiar with the topic treated;
– a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form (print
form is still preferred by most referees), in the latter case preferably as pdf- or zipped
ps-files. Lecture Notes volumes are, as a rule, printed digitally from the authors’ files.
To ensure best results, authors are asked to use the LaTeX2e style files available from
Springer’s web-server at:

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/svmultt1/ (for summer schools/tutorials).
Additional technical instructions, if necessary, are available on request from:
lnm@springer.com.



4. Careful preparation of the manuscripts will help keep production time short besides en-
suring satisfactory appearance of the finished book in print and online. After acceptance
of the manuscript authors will be asked to prepare the final LaTeX source files and also
the corresponding dvi-, pdf- or zipped ps-file. The LaTeX source files are essential for
producing the full-text online version of the book (see
http://www.springerlink.com/openurl.asp?genre=journal&issn=0075-8434 for the exist-
ing online volumes of LNM).

The actual production of a Lecture Notes volume takes approximately 12 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled
to a discount of 33.3% on the price of Springer books purchased for their personal use, if
ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract.
Springer-Verlag secures the copyright for each volume. Authors are free to reuse material
contained in their LNM volumes in later publications: a brief written (or e-mail) request
for formal permission is sufficient.

Addresses:
Professor J.-M. Morel, CMLA,
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