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PREFACE

Forest mensuration is one of the most fundamental disciplines within forest
and related sciences. It deals with the measurement of trees and stands and
the analysis of the resultant information. During the early days of sustained
forest management simple measurement and estimation methods and with the
analysis of inventory and research data were available. The middle of last cen-
tury, however, witnessed a worldwide increase in the need for more quanti-
tative information about trees and stands. This generated the need for more
sophisticated methods to obtain and analyze forest data. This development was
followed by a phenomenal explosion of information.

During the past decades there has been fruitful cooperation between the
Institute of Forest Inventory and Forest Growth, formerly “Institute of Forest
Management and Forest Yield Sciences” of the University of Göttingen,
Germany and the Faculty of Forestry of the University of Stellenbosch, South
Africa. This book is one of the results of this fruitful cooperation between these
institutions.

The first edition of this book was published in 1997 by Cuvilliers in
Göttingen. It was completely revised and supplemented with a presentation
and review of recently developed tools and methods to measure and analyze
forestry-related data. The purpose of this book is to provide information about
the subject for those readers who are involved in this category of quantitative
methods. Since the middle of last century the increased availability of personal
computers, and software and the consensus that statistical methods are indis-
pensable for estimating tree and stand parameters and for testing statistical
hypotheses, had a considerable impact on the progress of forest mensuration as
a research and management tool.
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viii Preface

It has been written for forestry students and for practical foresters, and does
not presuppose a more than elementary knowledge of mathematics and statis-
tics. However, because of the notable influence of statistics on forest mensu-
ration methods and techniques, and the crucial role of sampling techniques,
it reviews and evaluates elementary statistical concepts. At the same time it
was thought to be imperative to discuss spatial structure and diversity and to
add a chapter on conventional and digital remote sensing. Numerous practical
examples have been included in this edition. They are thought to be particul-
arly useful for university and college students. Additional information about
specific topics has been added for the benefit of the advanced reader and was
written in italics.

Forest mensuration as a scientific tool originated in Europe and has always
played an important role in the practice of forest management. In addition
to conventional terrestrial methods, quantitative remote-sensing techniques
form an integral part of the forest mensuration curriculum at the University
of Göttingen. Countries in the southern hemisphere can derive considerable
benefits from this longtime experience. Conversely, short-rotation plantation
forestry in the southern hemisphere and more particularly in South Africa acted
as a stimulus for the application of statistics and other quantitative methods as
a decision-making tool.

The Authors are greatly indebted to Mrs. J. Wirkner for proofreading the
English text of the first edition, Mrs. S. Rüdiger for the technical drawings and
graphs, and Mr. W. Tambour for his illustrations. We would furthermore like to
sincerely thank Mr. Th. Beisch and Mr. H. Heydecke for their constant support
in electronic data-processing matters, as well as Mrs. F.J.A. Allwright, who
assisted with the correspondence and EDP in Stellenbosch.

The authors gratefully acknowledge the inclusion of research data from
various sources, more particularly from the Faculties of Forestry at the
Universities of Göttingen and Stellenbosch respectively and those obtained
from Professor Prodan in Freiburg and Dr. Forrest in Australia could be incor-
porated into the current edition. They gratefully acknowledge permission
from Professor Dr. H.C.H. Kramer and Professor Dr. A. Akca, the authors of
“Waldmesskunde,” to include numerous drawings from this book. And finally
our sincere thanks are due to Springer and Editors of the book series who made
the publication of this edition possible.

Anthonie van Laar
Stellenbosch, South Africa
Alparslan Akça
Göttingen, Germany

May 2007



SUMMARY

The management of forests and tree plantations requires a quantitative esti-
mate of the current and future volume and biomass of timber and by-products,
at national, regional, and local levels. Such information is also needed for
forest-policy decisions. Forest and forestry research requires a great deal of
additional information, for example about the density of forests and stands,
diversity, spatial distribution of trees within stands, the size and size distribu-
tion of trees within stands, and the expected growth of trees and stands. For-
est mensuration is the discipline which deals with these topics. During recent
years, considerable progress has been made to develop methods for measuring
tree and stand characteristics, but also in instrumentation and in the statistical
analysis of forest mensurational information. Sampling, based on inferential
statistics, plays a dominant role in forest mensuration and forest inventory, pri-
marily because of the high cost of collecting and processing field data. Mod-
ern sampling methods make it possible to find an optimum sampling strategy
which produces sufficiently accurate estimates at the lowest cost. Quantitative
information is primarily obtained by ground surveys, aerial photographs, and
satellite imagery are increasingly applied to obtain basic information about the
spatial distribution of forests, possibly also to classify these forests according
to specified categories and to supplement ground surveys.

In this book the authors, who are emeritus professors at the Universities of
Stellenbosch and Göttingen in South Africa and Germany respectively, summa-
rize and review currently used forest mensuration and forest inventory methods.
A large number of worked examples have been added, primarily for the benefit
of undergraduate and postgraduate students.
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Chapter 1

INTRODUCTION

Tree growth results from a sequence of physiological processes, consisting of
the formation of new cells, cell enlargement, and cell differentiation. Tree phy-
siology deals with the study of these processes and has made a major contri-
bution towards a better understanding of the causal relationship between the
production of dry matter and many influential interacting variables.

The science of forest growth and yield emphasizes the construction of
models describing the relationship between growth parameters and influential
predictor variables, and is based on forest botany, ecology, climatology, and
soil science. It makes extensive use of forest mensurational techniques and
inferential statistics to model tree and forest growth. To a large extent, these
studies are of a phenological nature, indispensable to the forest manager in
observing and quantifying growth phenomena in relation to time, site, genetic
factors, and stand treatment.

Forest mensuration provides the methods and tools to conduct such stud-
ies. It concentrates primarily on the quantitative assessment of tree and stand
characteristics at a given point in time during the life of the tree and stand,
and provides the data required for efficient forest management. In line with the
North American literature, the authors of this book contend that a discussion of
empirical and analytical growth models, because of their technical nature, falls
within the discipline of forest mensuration. It is not the purpose of this book to
discuss advances in process models.

In conclusion, forest mensuration deals with the technical aspects of tree
and forest stand measurements, such as:
• Measurement of tree and stand variables, e.g., diameter, height, basal area,

bark parameters, and volume of standing and felled trees
• Determination of form and age of trees and forest stands
• Determination of the volume of standing and felled trees
• Measurements of the live crown and quantity of foliage

1
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• Estimation of biomass and biomass components of individual trees and
stands

• Estimation of the total and merchantable stand volume and its size class dis-
tribution

• Estimation of the diameter, basal area, height, and volume growth of single
trees and forest stands

• Estimation of the damages to and the quality of individual trees and forest
stands

In addition, it has to deal with the development of models for the construction
of tree volume, taper and biomass functions, the construction of stand tables,
as well as the development of growth and yield models.

Traditionally, terrestrial methods have been used to measure tree and stand
variables. More recently, large-scale aerial photography has been applied suc-
cessfully to replace some of the methods used in conventional ground surveys
and it is for this reason that remote sensing methods have been incorporated
in this book. In a broader sense, forest mensuration also deals with the estima-
tion of volume and growth of large forest tracts, for example, in regional and
national forest inventories, which are needed as a basis for forest policy deci-
sions. This implies the application of modern sampling concepts and sampling
methods, which make it possible to draw inferences about the relevant popula-
tions. Since so many excellent text books about forest inventory are available
already, this book will not deal in detail with the methodology of regional and
national forest inventories.

A surplus of wood and a limited demand for forest products occurred during
the early Middle Ages; therefore, there was no direct need to measure the grow-
ing stock at periodic intervals. Towards the end of the Middle Ages, however,
the increasing demand for timber necessitated some form of yield regulation.
Felling concessions were very much limited to designated areas and replaced
single-tree forest exploitation. In Central Europe, the early decades of the 18th
century witnessed an increased involvement in a more scientific approach to
forest measurements. Attempts were made to classify trees and forests accord-
ing to their dimensions and their usefulness to the local population, although
no exact measurements were carried out. During the first half of the 18th cen-
tury, foresters made a beginning to improve the customary ocular methods for
estimating standing timber. In France Duhamel Du Monceau (1764) initiated
dendrometry as an independent scientific discipline and in Germany, Oettelt
(1765) issued descriptions for the determination of the volume of felled trees
and stacked wood. The last decades of the 18th century and the entire 19th cen-
tury witnessed a relatively rapid development of forest mensurational methods.
Hennert (1791) developed xylometric methods to determine the volume of tree
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sections by measuring the amount of water displaced by the timber. Hennert
also introduced sampling as a device to assess the volume of entire stands.
Paulsen (1795) developed the first stem form theory and constructed the first
yield tables. Cotta (1804) introduced the caliper and constructed the first vol-
ume tables. These early developments paved the way to a scientific basis for
forest management and forest yield studies.

During the 20th century, there has been an emphasis on the construction and
further development of better and more reliable instruments. In recent years,
electronic devices for measuring tree dimensions and ring widths have been
developed. At the same time, the application of more sophisticated sampling
methods made it possible to obtain better and unbiased estimates at lower cost.
In 1948, Bitterlich introduced the revolutionary angle count concept, initially
to estimate the basal area per hectare. Some years later, Grosenbaugh (1952,
1958) redefined Bitterlich’s variable radius method as Sampling Proportional
to Size.

After early and largely unsuccessful attempts to use medium-scale aer-
ial photographs for forest surveys, Bickford et al. (1963) introduced a two-
phase sampling procedure, which combined information from a large sample
of photo-plots with that obtained from a subsample of plots, which were remea-
sured with conventional terrestrial methods. During the last decades, large-
scale color photography was introduced for forest mensurational studies, with
emphasis on the measurement of the effect of stresses on needle losses and dis-
coloration. During this period also, satellite images were used for a variety of
purposes, but primarily to classify forests according to forest type and to mea-
sure or to estimate the areas covered by forest. High resolution satellite imagery,
together with digital data processing, opened a new era in forest mensuration
on a global scale.

The rapid development of electronic data processing and the increasing
availability of powerful microcomputers has been of immense importance
for mathematical and statistical advances in forest mensuration, particularly
because of the inherent possibility of data storage and high-speed processing of
quantitative information. Peripheral equipment and computer software to carry
out stem analysis was developed and widened the practical usefulness of stem
analysis (Johann 1977; Nagel and Athari 1982).

In Central Europe, the concept forest mensuration (“Holzmesskunde”) is
synonymous with dendrometry and stand measurements. It covers primar-
ily the methods for measuring trees and stands, whereas the concept forest
inventory (“Waldinventur”) although being based on dendrometrical methods,
deals with estimations and inferences of the volume and growth of larger
tracts. Tischendorf’s Lehrbuch der Holzmassenermittlung, Prodan’s classic
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Holzmesskunde, Akça and Kramer’s Waldmesslehre, Pardés’s Dendrometrie,
and Anuchin’s Forest Mensuration were structured in line with these ideas. In
North America, Bruce and Schumacher’s classic Forest Mensuration, Spurr’s
Forest Inventory, Meyer’s Forest Measurements, Husch, Miller, and Beers’s
Forest Mensuration, and Avery and Burkhart’s Forest Measurements com-
bined forest mensuration with inferential statistics, sometimes with modeling,
although the emphasis on statistics and modeling varied.



Chapter 2

STATISTICAL PREREQUISITES

1 INTRODUCTION

Forest mensuration deals with the measurement of trees and stands. They are
mathematical variables representing different physical entities, and statistical
variables with a probability distribution. Processing information about these
variables requires the application of statistics and computer technology.

Some characteristics are continuous variables, which implies that they can
theoretically take on infinitely many values. The diameter of the bole, for exam-
ple, may be measured in millimetres but continuity implies that a further sub-
division can continue indefinitely, although it makes no sense to measure the
diameter in 1/10 mm. Discrete variables can assume a countable number of
values. The number of trees within fixed-radius sample plots, the number of
branches within a tree and the number of needles within a branch are discrete
variables.

The aggregate of individuals (trees, stands forests), for which information
is required, is denoted as population. In management inventories, information
is required about the single compartment, in regional and national forest inven-
tories the population is defined as the forest in its entirety, although it may
be stratified on the basis of tree species or species groups, age class and site
quality. The population is described by parameters, which are fixed quantities,
not subject to variation. They may be size parameters, for example, the mean
diameter or mean height of a stand, but also parameters of the diameter distri-
bution, those of functions, which describe the relationship between diameter
and height, between diameter and stem volume, etc. The concept population
refers to a certain point in time. The parameters of a regression equation, which
predicts the mean annual increment of a given species from site variables,
may change because of tree breeding which produces hybrids or clones with
a higher growth potential. Similarly, the mean annual volume increment of all
10-year-old Eucalyptus stands within a region is influenced by climatic cycles,
new silvicultural techniques, etc.

5
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Because of the high cost involved, it is impractical to measure all trees
within a stand or all stands within a forest. Forest mensuration relies heavily
on sampling procedures to obtain quantitative information about the resources
at reasonable cost. A sample is defined as the subset of actual measurements
within a given population. It is a random sample if each sampling unit has the
same chance of being included into the sample. In forest inventories, the n plots
or individual trees, which constitute the sample, are measured without replacing
these sampling units after being drawn. Since this implies that a given sam-
pling unit cannot be drawn more than once, the relevant population, contrary,
for example, to controlled experiments, is finite. The construction of volume,
taper, biomass functions and the development of growth models assumes that
sampling, which is required to estimate the parameters of the model, can con-
tinue indefinitely. Conceptually, this population represents an infinite universe.
It ignores the fact that climatic cycles or a permanent change of the physical
environment of the trees may have a profound effect on the coefficients of a
given equation.

2 SCALES AND UNITS OF MEASUREMENT

2.1 Scales of measurement

Different scales of measurement may be used for measuring tree and stand
characteristics.
• The nominal scale, used for attributes, represents the weakest scale of mea-

surement. The observation is assigned to one out of k discrete categories.
Species, provenance, forest type and soil type, for example, are discrete vari-
ables which cannot be arranged in a certain order.

• The next-strongest ordinal scale is a ranking scale characterized by ordered
categories and is used for ranked variables (discrete categorical variables)
The scale is characterized by classes of different but unknown width. Forest
soils, for example, could be categorized as poor, medium or good, the vital-
ity of trees as healthy, sick, dying or dead, social tree classes as dominant,
co-dominant, dominated and suppressed.

• Almost all forest mensurational characteristics, such as diameter, height,
basal area, volume and increments, are continuous variables, measured on
a metric scale.

• The metric scale is sometimes subdivided into an interval scale, without a
natural zero-point and a ratio scale, which assumes the existence of a natural
zero-point. Temperature represents the classical example of a variable which
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is measured on an interval scale when expressed in degrees centigrade or
Fahrenheit and on a ratio scale when measured in degrees Kelvin.

• In many cases, the ranking scale is converted into a metric scale by assigning
numerical values to the class midpoints. Forest soils, for example, might be
measured on the basis of soil depth or moisture-storage capacity or by some
linear combination of these variables, with different weights being assigned
to each of them.

2.2 Units of measurement

Quantitative variables are measured either in the metric or in the English sys-
tem. The latter was originally used in Great Britain, in countries of the British
Commonwealth and in the USA, but many countries within the Commonwealth
have converted to the metric system. The most important linear, square, cubic
and weight measures in the metric system and their equivalent in the English,
Russian and Japanese system are presented in Appendix D.

Data representing continuous variables should be recorded with an appro-
priate number of significant digits. This number is obtained by counting the
number of digits between the first nonzero number on the left and the last digit
on the right. A tree diameter with a recorded diameter of 56 cm has two signif-
icant digits and implies that the tree has a diameter anywhere between 55.499
and 56.5 cm. A record of 56.4 cm implies that the diameter has some value
between 55.349 and 56.45 cm. In consequence, when diameters are recorded
in centimetres, no digits should be written to the right of the decimal point
and when recording the diameter in millimetres, there should not be more
than one digit to the right of the decimal point. Reproducing the data with too
many significant digits gives misleading information and suggests a precision
which was not achieved. However, when tree diameters (in centimetres) and
tree heights (in metres) are recorded with one digit to the right of the decimal
point, it is justified to record the sample mean with an additional digit to the
right of the decimal point.

3 GRAPHICAL PRESENTATION OF DATA

A graphical display and interpretation of survey and research data is useful for
different purposes:
• For the forest manager, a graph may be more persuasive than a summary of

the results derived from a fitted model.



8 Statistical Prerequisites

• It is frequently necessary to calculate confidence and prediction intervals for
the true mean of a variable. This calculation is usually based on the assump-
tion of a normal distribution. Confidence and prediction intervals, however,
are sensitive to deviations from normality. In consequence, it is necessary to
verify whether or not the assumption of normality is satisfied. This can be
done either with the aid of histograms or stem-and-leaf plots, but alterna-
tively, by using a statistical package, which provides estimates of the stan-
dardized coefficients of skewness and kurtosis.

The histogram and frequency polygon are usually based on grouped data rep-
resenting either continuous or discrete variables. In histograms the frequencies
are represented by equally wide columns, with heights which are proportional
to the observed frequencies, in frequency polygons the frequencies are plotted
on the y-axis and connected by straight lines. Both serve as a clue for the distri-
bution function to be fitted. The observed frequency distribution, based on such
grouped data, is also useful to estimate probabilities, for example,

P(a < x < b) or P(x > b)

where a and b are selected points of a given diameter distribution. The selec-
tion of an appropriate class width is important for the construction of a his-
togram, which reflects the distribution adequately. Too few classes obscure the
true shape of the distribution curve, whereas too many classes induce excessive
variability amongst the class frequencies. A rule of thumb is to draw a sample,
which is sufficiently large to ensure that 10–12 classes are generated. Sturges
(1926) proposed the following function to serve as a guideline

k = 1 + 1.444 ln N

where N = number of observations and k = number of classes. For N = 50,
the number of classes should be between 6 and 7, for N = 100 between 7
and 8, whereas 9 classes are adequate for N = 250. To reconstruct the diameter
distribution of a stand it is impractical to define classes with fractions of 1 cm as
class widths. One-centimetre classes are normally used to obtain the frequency
table, but 1 mm classes are required for research purposes, whereas a width of
2 or 4 cm is adequate for management inventories.

Example 2.1 The breast height diameters of 253 trees in a Pinus radiata
stand are given in Appendix B. The trees were measured in millimetres and
grouped in 1 and 4 cm diameter classes. The frequency polygons based on these
class widths are shown in Figure 2-1.

In recent years, stem-and-leaf plots have become increasingly popular, par-
ticularly for small samples. The observations are summarized by a number of
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Figure 2-1. Frequency polygons for the diameter distribution in Pinus radiata of Appen-
dix B.

vertical lines representing the data in a condensed form. The data are split into
one part representing the stem and a second part, which is denoted as leaf. The
first item on a line is usually expressed by the digit to the left of the decimal
point and is labelled as starting part, the additional information is shown in the
leaf, above the stem.

Example 2.2 The first 50 diameters were used to obtain a stem-and-leaf dis-
play. The numbers to the right of the decimal point have been entered in the
sequence in which they were recorded

3
7 1 1
3 6 5 5 5

5 1 6 1 2 8 7 3 3 4
2 4 3 6 7 4 2 4 5 0 3 0 5 0 1
7 4 4 0 0 0 3 8 5 5 0 5 9 5 0 0

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

4 DESCRIPTIVE STATISTICS

The parameters of a distribution are used for inferential as well as descriptive
purposes. They can be stored in the memory of a computer, to be retrieved
for specific purposes. They are categorized as location, dispersion and shape
parameters, which are estimated by sampling unless the entire population was
measured. In a complete stand enumeration, for example, no sampling errors
are involved in determining the mean-stand diameter. Different symbols are
used for the population and sample respectively.
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The arithmetic mean is a location statistic, estimated from:

x̄ =

n∑

i=1
xi

n
where n = sample size. When all individuals of the population of size N have
been measured the sample mean x̄ in the above formula is replaced by the
population mean µx and sample size n by N . The sample mean provides an
unbiased estimate of the population mean µx , if the sample was drawn at ran-
dom and no instrument or other errors were involved. To remove the effect of
extreme observations, some statistical packages provide the option of estimat-
ing the trimmed mean, by excluding data above and below a specific cut-off
point.

The median (xM ), which partitions the frequency distribution into two equal
halves, is a useful descriptive statistic in excessively asymmetric distributions,
since it ensures that 50% of the sample data are located above and below the
median, respectively. The sample median is calculated as follows:

xM = xL +

( k∑
n j

)

/2 −∑
nx=xL

fxM

· w

where

xL = lower limit of the class containing the median
k∑

j=1
n j = total frequency

�nx=xL = cumulative frequency below x = xL

fxM = number of observations in the class containing the median

w = class width

The geometric mean of a sample of size n is defined as follows:

xG = n
√

x1 · x2 . . . . . . xn

and is calculated as the antilog of the mean of the logarithm of the n observa-
tions:

xG = e(
∑

ln xi)/n

Percentiles (xP) are location statistics indicating the value of x in the ordered
set of data, associated with p per cent (0 < p < 100) of them being smaller



Descriptive Statistics 11

than the pth percentile. The median, for example, represents the 50th percentile
of the distribution. Percentiles are useful descriptive statistics when the real
distribution function is unknown. The mode of a distribution is found as the
midpoint of the class with the highest frequency. A more accurate formula is:

Mode = dl + fM − fM−1

2 fM − fM−1 − fM+1
· w

where dl = lower limit of the diameter class with the highest frequency and
w = class width.

The variance of the population is defined as the mean of the squared devia-
tion of the variable x from the population mean:

σ2 =

N∑

i=1
(xi − µ)2

N
where N = population size. The formulae for the sample variance, calculated
from ungrouped and grouped observations respectively, are:

s2(ungrouped) =

n∑

i=1
(xi − x)2

n − 1
; s2(grouped) =

k∑

j=1
f j
(
x j − x

)2

∑
f j − 1

The corresponding working formulae are:

s2(ungrouped)=

n∑

i=1
x2

i −

( n∑

i=1
xi

)2

n
n − 1

s2(grouped)=

k∑

j=1
f j x2

j −

(
k∑

j=1
f j x j

)2

k∑

j=1
f j

k∑

j=1
f j − 1

where k = number of classes. The sample variance s2 represents an unbi-
ased estimate of the population variance σ2, if the sample was drawn at ran-
dom. The standard deviations σ and s are defined as the square root of the
population and sample variance, respectively. The coefficient of variation is
obtained by expressing the standard deviation s as a percentage of the sample
mean:

sx (%) = 100
s
x



12 Statistical Prerequisites

The range is defined as the difference between the largest and smallest
observation:

Range = xmax −xmin and the interquartile range as the difference between
the 75th and the 25th percentile of the distribution:

I nterquartile range = x75 − x25 In order to obtain the percentiles for
grouped data, we assume a uniform distribution of the observations within each
class.

Example 2.2 Descriptive statistics are to be calculated for the observed
diameters, measured in millimetres in the Pinus radiata stand of Appendix B.
The sample mean, sample variance, standard deviation and coefficient of vari-
ation are:

x̄ = 21.8 s2
x = 24.60 sx = 4.96 sx (%) = 22.8

Trimming the sample, with the 10th and 90th percentile of the distribution as
lower and upper limit gives:

x̄ = 21.9 cm s2
x = 10.35 cm2 sx = ±3.22 cm sx (%) = 14.6

The lowest and highest recorded diameters are 7.9 and 34.8 cm, respectively.
The range calculated from the ungrouped data is therefore 26.9 cm. When based
on 1 cm diameter classes, the range is 35.5−7.5 = 28.0 cm. The 25th and 75th
percentile of the diameter distribution, based on ungrouped data are 18.9 and
25.2, respectively. Hence, the interquartile range is 6.3 cm. The median of the
distribution is 22.0 cm. When calculated for grouped data with 1 cm diameter
classes, we obtain:

dM = 21.5 + 126.5 − 119
20

· 1 = 21.9 cm

The standardized skewness and kurtosis are −0.23 and 0.27 and do not indicate
a non-normal diameter distribution.

The mean and variance are useful numerical expressions for the location
and dispersion of a distribution. The distribution of the subject variable, for a
given population mean and variance, can then be recovered by using the table
of the normal distribution. When based on sampling, however, the distribution
reflects the expected and not the true distribution. In a practical application, the
proportion of trees within a stand, which fall within a specified-height class, can
be determined, if the total number of trees or the number of trees per hectare
is known and the mean and variance are either estimated by sampling or from
regression equations with influential independent variables as predictors. This
remains an approximation, because the true mean and variance are unknown.
In many instances, more particularly in diameter distributions, the frequency
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curve is drawn out to the right because of thinning from below, which remove
trees in the lower tail of the distribution, or it is skewed to the left, because of
selection thinning which remove the dominants within a stand.

5 PROBABILITY DISTRIBUTIONS

The probability distribution of a variable x is a function or rule, which defines
the probabilities P(x = xi ) for discrete variables and P(a < xi < b) for
continuous variables. The present chapter deals with some distributions which
play a role in inferential statistics. Others, used to describe the size distribution
of tree characteristics within tree populations, are discussed in Chapter 5.

5.1 Normal distribution

The normal distribution is uniquely defined by its mean µ variance σ2. The
normal curve is symmetric and bell shaped, has two inflection points and inter-
sects the abscissa at positive and negative infinity. If the observed values of such
a variable were represented by histograms of ever decreasing class width, the
step function, which characterizes the histogram of this frequency distribution,
would gradually approach a smooth normal curve with infinitely many classes.
The density function

f
(

x; µ, σ2
)

= 1

σ
√

2π
e
−1/2

[ x − µ

σ

]

2

gives the ordinates of f (x) for different values of x . Each normal curve is
defined by its specific mean and variance. For inferential purposes, for example,
to calculate the limits of the interval containing 90% of the values of the subject
variable, it is necessary to express x as a deviation from the population mean,
with standard deviation as unit of measurement. The variable:

z = x − µ

σ

is called the unit normal variate z and has a normal distribution with zero mean
and unit variance. Plotting the cumulative distribution F(x) as a function of x
or F(z) as a function of z produces a sigmoid curve, extending between pos-
itive and negative infinity. The probability P(z < zi ), which is found as the
antiderivative of the density function, has been tabulated for z values between
−3 and +3. The table can be found in any elementary textbook on statistics
and shows, for example, that 68.27% of the z-values fall between −1 and +1,
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Figure 2-2. Fitted normal distribution.

whereas 95.45% are located between −2 and +2 and 99.73% fall between
−3 and +3. It implies that about 68.3% of the observations of the distribu-
tion of x lie within the interval µ ± σ, whereas 95.4% lie within the interval
µ ± 2σ and 99.7% within the interval µ ± 3σ. To some extent, this property
can be used to test for normality. For example, if less than 2.5% of the data are
smaller than µ− 2σ and more than 2.5% are greater than µ+ 2σ, there is some
evidence of an extended right tail. However, there are more efficient methods
to tests for normality, for example, the Shapiro–Wilk test and the test based on
the distribution of Fisher’s g statistics.

The distribution of many tree characteristics within a given population, for
example, that of crown length, breast height diameter, tree height, sapwood
area, root and leaf biomass within an even-aged stand can frequently be approx-
imated as a normal distribution (Figure 2-2). The model assumes that random
factors have an additive effect on the subject variable and specifies that the
distribution of the variable consists of many independent, but not necessarily
normal distributions. In biological populations, perfectly normal distributions
seldom occur, if ever. When the effect of random factors is multiplicative, the
variable x follows the lognormal distribution, in which case the transformed
variable, ln(x), has a normal distribution. The asymmetry, which is apparent
in the frequency curve or histogram of the experimental data of a lognormal
distributed variable, is then eliminated by a logarithmic transformation of the
subject variable.

Example 2.3 A normal distribution was fitted to the data set of 253 tree dia-
meters of Appendix B. The unit’s normal deviate was calculated for the lower
and upper limit of each 2 cm diameter class (Table 2-1). For the diameter class
with a class midpoint of 11 cm, their values are:
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Table 2-1. Observed and fitted frequencies based on the assumption of a normal distribution

dbh nobs nfit dbh nobs nfit

7 2 0.6 23 41 39.4
9 5 1.5 25 29 32.8

11 1 3.9 27 29 23.5
13 7 8.6 29 17 14.1
15 18 16.1 31 3 7.5
17 19 25.5 33 1 3.3
19 37 34.6 35 3 1.4
21 41 39.9 37 − 0.4

z1 = 10 − 21.79
4.96

= −2.377 P (z < −2.377) = 0.0087

z2 = 12 − 21.79
4.96

= −1.974 P (z < −1.974) = 0.0242

The expected number of trees in this class is:

n f it = 253 · (0.0242 − 0.0087) ∼= 4

5.2 Binomial distribution

Suppose that a survey is carried out to estimate the probability of a tree being
alive for k number of months after stand establishment. The proportion of living
plants within a random sample of size n is determined at the preselected point
in time. The number of plants alive follows the binomial distribution, if the
events are independent, i.e., if the probability of a given tree being alive is
statistically independent of the status of its neighbor. The assumption of an
infinite population is approximately satisfied if the population is large. When
the proportion of trees alive is known for a given population, and equal to p,
the probability that a sample of size n, with the trees being “replaced” after
their selection, contains x living trees (0 ≤ x :< n) is given by the distribution
function

f (x; n, p) =
(

n
p

)

px (1 − p)n−x where :
(

n
p

)

= n!
p! (n − p)!

The sample estimate p̂ estimates the population proportion p. Either exact
tables are used to obtain confidence intervals for the parameter p, or the bino-
mial distribution is approximated as a normal distribution. The asymmetric step
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function, which characterizes a specific binomial distribution, converges to the
normal distribution as p tends to 0.5 and sample size tends to infinity. The
approximation is justified if either np or n(1 − p) is greater than 15.

In case of contagion, i.e., when the occurrence of the event in question
influences the probability of a second occurrence and a given tree is more likely
to be dead if its neighbour is dead, other distribution functions, for example, the
negative binomial or the Neyman distribution, should be fitted (Figure 2-3).

Example 2.4 The trees in a 5-year-old Pinus radiata plantation are classified
as alive or dead, respectively. The true proportion of trees alive (= p) is 0.85.
We assume a random spatial distribution of mortality and calculate the proba-
bility of a 3 × 3 rows plot containing 0, 1, . . . , 9 trees alive. The probabilities
are obtained by substituting x = 0, 1, . . ., 9 into the above formula:

P (n = 9) = 0.859 = 0.232

P (n = 8) = 9 · 0.858 · 0.15 = 0.368

P (n = 7) = 36 · 0.857 · 0.152 = 0.260

· · · · · · · · · · · · · ·
P (n = 0) = 0.159 = 0.000 . . .

5.3 Poisson distribution

The Poisson distribution represents the limiting case of the binomial distribu-
tion which occurs:
• If one of the two events occurs rarely (p → 0)
• If a large sample is drawn (n → ∞, so that M = n · p is finite)
• If the assumption of independence is not violated
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Table 2-2. Observed and fitted frequencies based
on the assumption of a Poisson distribution

No. of trees No. of plots
(= x) Observed Fitted

0 1045 1039
1 61 73
2 9 3

The probability of the event occurring x times is given by the function:

P (x, µ) = µx

x ! e−µ

Example 2.5 The number of trees of the species Ocotea bullata in 200 m2

sample plots in the indigenous forests of the Cape Province of South Africa
was counted in 1115 sample plots (Table 2-2). The sample mean is:

x̄ = 0 · 1045 + 1 · 61 + 2 · 9
1115

= 0.07085

The expected number of plots containing 0, 1, 2, 3, . . . trees is determined by
multiplying the probabilities obtained from the Poisson function by the total
number of trees.

5.4 Distribution of χ2

When random samples of size n are drawn from a normal distribution, the
statistic

χ2 =
n∑

i=1

(
xi − µ

σ

)2

follows the χ2 distribution with n degrees of freedom, whereas

χ2 =
n∑

i=1

(
xi − x

σ

)2

has a χ2 distribution with n − 1 degrees of freedom.
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Applications of the χ2 distribution:
• The trees within a mixed stand are classified according to species and their

social class. Sample trees are selected at random and cross-classified into an
r × c contingency table. The test hypothesis is: species and social class are
statistically independent

• Suppose that n trees are selected at random in a mixed forest, which contains
three species. The χ2 distribution is applied to test the hypothesis that these
species occur in a specified ratio, for example 1:3:2

5.5 Distribution of student’s t

The t-distribution, which is closely linked with the normal distribution, is emi-
nently important for many inferential purposes, for example, to calculate a
confidence interval for the estimated mean of a distribution, if the true vari-
ance is unknown and the sample relatively small (s. Chapter 10) and for testing
hypotheses. The statistic t is defined as follows:

t = x − µ

sx

Each t-distribution is uniquely defined by the number of degrees of freedom
(df). The latter is found by subtracting the number of parameters involved from
the number of sampling observations: df = n − 1. The t-distribution for differ-
ent degrees of freedom is shown in Figure 2-4.

The sample variance s2 estimates the population variance σ 2. With increas-
ing sample size, the sample variance converges to the population variance and
the t-distribution tends to the distribution of the unit normal variate z. The two
distributions are identical for infinite degrees of freedom.
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Applications of the t-distribution
• Suppose that it is required to establish whether a new make of a hypsome-

ter, when properly used to reduce operator-bias, gives unbiased estimates of
the tree height. A random sample of n trees is selected and the tree heights
are measured from two opposite directions. Their mean estimates the true
height. The sample trees are felled and their true length is measured with a
tape. The test hypothesis is that the mean of the differences between the true
and observed heights is zero. Sampling generates a population of differences
between observed and true heights. Assuming that this population has a nor-
mal distribution, the mean of the differences is divided by the standard error
of the mean and compared with the two-sided t-values for n − 1 degrees of
freedom

• The breast height diameter of n randomly selected trees is measured with
a tree fork as well as a caliper. The measurements are made from random
directions. In this situation, the true diameter is unknown and it not feasible
to test for instrument-bias. The hypothesis of a zero difference between the
means, however, is testable. The calculation of the test statistic is identical
with that in the previous example

• In a clonal study, it is required to test the hypothesis that the mean wood
density of clone A does not differ from clone B. Two random samples are
drawn from stands of a given age and site index. However, there may be
contributory factors which influence wood density, in addition to age and
site index. For this reason, it is necessary to select k stands of each clone
and n trees within each stand. The t-test for independent sampling serves
to test the differences between the clone means. The appropriate t-value is
obtained by dividing the difference between the means by its standard error,
with the mean square for error being calculated as a pooled within-stands
mean square. The t-statistic follows the t-distribution with 2n − 2 degrees of
freedom if the assumption of variance homogeneity holds true.

• In a study of the effect of drought on radial growths, the hypothesis is tested
that tree size and severity of stresses, measured in terms of estimated needle
loss are unrelated. The study is based on measurements within a single stand.
Assuming a linear relationship between the two variables, the test hypothesis
is that the true value of the regression coefficient is zero. The observed para-
meter estimate is divided by its standard error to produce a t-value, which
has n-2 degrees of freedom. Alternatively and equivalently, the test hypothe-
sis could have been formulated that the population correlation coefficient is
zero

• If the test hypothesis in the previous case is rejected, the t-distribution is used
to calculate a confidence interval for the parameter(s) of the equation
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• In a multiple regression situation, site index is estimated from five site vari-
ables, which have been selected as being statistically significant predictor
variables. A confidence interval is calculated for each of the five regres-
sion coefficients, in which case (1 − α)100% of the intervals, generated by
repeated sampling, contain the true parameter

6 ESTIMATION

Methods and procedures in inferential statistics deal with two important inter-
related topics which have different objectives:
• Estimating parameters
• Testing hypotheses

6.1 Bias, precision and accuracy

Suppose that the mean height of 20 trees is estimated by sampling, with n = 5.
The number of distinct samples of size 5 is given by

(
20
5

)

= 20!
5!15! = 15504

The sample mean produces an unbiased estimate of the population mean, if the
mean of the 15504 sample means is equal to the population mean. Random
sampling ensures unbiasedness, but only if no instrument or operator bias is
involved. Instrument bias includes instrument errors such as using a worn dia-
meter tape to measure tree diameters, faulty hypsometer or a caliper with the
movable arm not being at a right angle to the fixed beam. Operator bias occurs
when over- or underestimating the number of trees, which are counted “in”
when applying Bitterlich’s method, when measuring the tree heights from a sin-
gle direction, on sites with a prevailing wind direction and the distance between
operator and the tree is not adjusted when measuring tree heights on slopes.

Methodology-related errors, for example rounding-off the observed heights
and diameters in upward or downward direction, using ratio estimators when
regression estimators are more appropriate (Chapter 10), failure to adjust the
variance in sampling without replacement in finite populations (Chapter 10),
estimating the tree volume or tree biomass from a regression equation with log-
transformed diameter as the independent variable and log-transformed volume
or weight as the dependent variable (Chapter 7 and 8), assigning unit weight in a
regression analysis, for example, with volume (or weight) as the target variable
and d2h as the predictor, when there is evidence of variance heterogeneity.
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Other sources of bias may be involved as well, for example, applying a cer-
tain growth model to trees of different genetic material or in stands of different
silviculture. In growth modeling, the expected yield at the end of the rotation,
or at any other point in time, is usually estimated from age, site index and stand
density. Because of the effect of external and frequently unknown factors, how-
ever, the growth model may be valid and produce unbiased estimates in certain
regions, but not in others. Furthermore, an incorrect model may have been used
if too few influential variables were included as predictor variables.

The objective of a forest inventory is primarily to obtain estimates for popu-
lation aggregates, for example, the total or merchantable volume of a compart-
ment or a group of compartments, or to forecast growth per unit area. Possible
sources for obtaining biased estimates are discussed in different chapters of this
book. In general, bias should be avoided or minimized, although there are sit-
uations where biased estimates of population parameters are closer to the true
values.

Precision is synonymous with repeatability and expresses the closeness of
the measurements to their mean. Precision is conveniently measured by sample
variance and coefficient of variation. Such estimates, however, are sensitive to
sample size and outliers in the data space.

Accuracy combines bias and precision and expresses the closeness of the
observed measurements to their true values. Unbiasedness, combined with high
precision, produces accurate estimates. Using a worn diameter tape with a 2%
systematic deviation between the observed and true diameter produces inaccu-
rate estimates of the diameter, although repeated measurements on the same
tree vary moderately. Measuring the same tree from a single random direction
(in millimetres) with a caliper manufactured from suitable material may pro-
duce unbiased estimates, but repeated measurements on the same tree at the
same position reveal a much greater variability, because of the irregular cross
section of the bole (see Figure 2-5).

Bias Zero bias

→ Low accuracy → Medium accuracy

Low precision Low precision

Medium bias Zero bias

→ Medium accuracy → High accuracy

High precision High precision

Figure 2-5. Relationships between bias, accuracy and precision.
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6.2 Estimators

Because of the necessity to apply sampling in order to obtain information about
the tree and stand variables and their distribution at reasonable cost, the esti-
mation of relevant parameters plays a dominant role in forest mensuration. The
sample mean and its variance estimate the population mean and variance. They
are expressed in a single figure and called point estimators. Repeating the sam-
pling procedure under the same conditions produces different estimates. The
performance of the estimator is measured by the closeness of the estimates,
which result from repeated sampling. This in turn, is partly controlled by sam-
ple size, partly by other largely unknown factors. In studies of the relationship
between site and growth, for example, the amount of unexplained variability
is frequently unacceptably high because the model does not include influential
predictor variables. This in turn, has an adverse effect on the quality and the
practical usefulness of the model.

Since point estimates do not provide information about their variability in
repeated sampling, a confidence interval for the parameter has to be calculated.
The expected variability of the point estimates is controlled by its variance and
sample size. A confidence interval is associated with a quantifiable uncertainty
that the interval will indeed contain the parameter. The confidence coefficient
(1 − α) implies that (1 − α)% of the intervals, obtained by repeated sampling,
contain the population parameter. The confidence coefficient (1−α) is the com-
pliment of α, the two-sided level of significance in hypothesis testing. The table
of the t-distribution is consulted to obtain a confidence interval for the popula-
tion mean, but assumes a normal distribution of the subject variable. However,
with increasing sample size, the distribution of sample means converges to the
normal distribution, reliable estimates of the confidence interval are obtained
unless such estimates are based on small samples from extremely skewed dis-
tributions. Cochran (1953) proposed the rule:

n ≥ 25g2
1

where g1 = Fisher’s standardized measure of skewness
For discrete variables which follow the binomial distribution, the large-

sample approximation of confidence intervals is also based on the model of the
normal distribution. The normal approximation is permissible for large sam-
ples, if the population proportion does not differ too much from 0.5. Some
authors apply the crude rule to prescribe that np as well as n(1 − p) are
greater than 15. For proportions below and above 0.3, however, a larger sample
should be drawn to ensure reliable confidence intervals for the population mean.
The χ2-distribution is used to obtain a confidence interval for the population



Estimation 23

variance of continuous distributions. Their reliability is not seriously affected
by sample size, unless they are based on excessively small samples.

Example 2.6 The following sample of size 20 was drawn at random from a
population of tree diameters within a given stand:

53.6 46.0 48.2 38.8 32.6 50.0 33.8 44.5 46.1 49.5
44.1 50.0 48.0 57.1 41.7 48.1 47.8 42.5 47.6 41.6

The assumption is that the subject variable has a normal distribution. The sam-
ple mean and variance are 45.58 and 35.6, respectively. In order to obtain the
95% confidence interval for the population mean, we require the 97.5th per-
centile of the t-distribution with 19 degrees of freedom: t0.05;19 = 2.093.
Ignoring the correction for the finite population (see Chapter 10), the confi-
dence interval is as follows:

45.58 ± 2.093

√
35.6
20

; 44.25 − 46.91

It ensures a 95% chance that the calculated interval contains the parameter in
repeated random sampling from the same population. In the present case, the
population mean is known to be 47.38 and is indeed located within the cal-
culated interval. The same sampling observations are used to calculate a 95%
confidence interval for the population variance σ 2. The confidence interval is
as follows:

(n − 1) · s2

χ2
0.025;19 d f

< σ 2 <
(n − 1) · s2

χ2
0.975;19 d f

; 42.42 − 48.74

6.3 Estimating accuracy

In many situations, it is necessary to test the accuracy of a model against new
data, not used to estimate the parameters of the model, for example to test
the accuracy of an existing tree volume equation, in order to decide whether
or not to update the volume function. In other cases, it might be necessary
to evaluate a new measuring technique, for example, to test a new instru-
ment for measuring upper-stem diameters. Freese (1960) approached this
research question as a hypothesis testing problem and suggested to proceed as
follows:
• Specify the required accuracy
• Determine the accuracy attained by the model
• Apply a method to test whether the required accuracy was achieved
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The observed values in a sample of size n are compared with those being con-
sidered as being “true” values. When testing the accuracy of a tree volume table
or a stand level growth equation, for example, observed values will be com-
pared with those from the volume table or growth model, respectively. When
testing a new instrument for measuring upper stem diameters, the true value is
obtained by measuring this diameter accurately, for example, by climbing the
tree to reach the point of measurement. The standard procedure for determining
sample size prescribes that a specified maximum error of E units will not be
exceeded with a probability greater than 1% or 5%, or any other selected prob-
ability. The squared maximum error is found as the product of the appropriate
unit normal variate z, with z = 1.96 for (1 − α) = 0.95 and z = 2.576 for
(1 − α) = 0.99. The requirement will be met if:

s2
x ≤ E

z2
1/2α

The conventional

χ2 =
n∑

i=1

(xi − µi )
2

σ 2

with µi being the “true” value of the i th sampling unit and σ 2 representing the
required accuracy in terms of variance, has a χ2-distribution with n degrees of
freedom. In order to decide whether or not a new technique or a new model
meets the specified accuracy, the value σ 2 in the above formula is replaced by
E/z2

1/2α . A high value of χ2 would indicate that the new technique or model is
not sufficiently accurate. This may be due to bias, to lack of precision or both.
In order to remove the effect of bias, defined as the mean of the differences
between the estimated and observed values of x , it was suggested to introduce
the modified χ2-formula

χ2 =
n∑

i=1

(xi − µi )
2 − Bias2

σ 2

which is approximately χ2-distributed, with n − 1 degrees of freedom. The
bias is estimated from the mean deviation of the observed values from model
predictions.

Example 2.7 The stem diameter of 10 trees was measured with a diameter
tape and caliper respectively. The tape was assumed to represent a nearly error-
free measurement. In both instances the diameter was measured in millimetres.
The caliper was used with a single measurement per tree, which was obtained
from a random direction. The measurement error can therefore be expected
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to be substantial. The (fictitious) data for tape (y1) and caliper (y2) and the
observed differences (d) are as follows:

Diameter

y1 22.5 26.3 19.5 19.8 23.7 26.3 21.5 28.3 26.2 30.1
y2 22.1 26.9 19.0 19.4 24.1 24.9 22.3 26.9 27.3 31.6
d +0.4 −0.6 +0.5 +0.4 −0.4 +1.4 −0.8 +1.4 −1.1 −1.5

A maximum error of 9 mm is tolerated, with a specified probability of 5% that
the error will be exceeded. The hypothesized variance is:

σ 2 = 0.92

1.962 = 0.211

and

χ2 = 9.11
0.211

= 43.2, with 9 degrees of freedom (χ2
0.05 = 16.9)

The estimated bias is
∑

d/n = 0.11 cm and the adjusted χ2 is

χ2
adj. = 9.11 − 10 · 0.112

0.211
= 42.7

In conclusion, the caliper measurements fail to produce the specified accuracy.

7 REGRESSION AND CORRELATION ANALYSIS

7.1 Simple linear regression

Many forest mensuration studies require the estimation of a dependent variable
y from a single predictor variable x , for example, to estimate tree height from
diameter at breast height, wood density from tree age, timber yield per hectare
from spacing. In spite of the remarkable progress in computerized processing of
forest mensuration data, it remains essential to prepare a graph, with the depen-
dent variable being plotted over the predictor variable, to establish whether the
relationship is linear and explore a suitable transformation of scales in instances
of nonlinearity. The modern computer packages such as EXCEL are eminently
suited for this purpose.

The two-parameter simple regression equation is based on the model

yi = b0 + b1xi + ei

with x and y representing the predictor and target variable respectively. In case
of nonlinearity, they are replaced by a function of x and y. Alternatively a
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Figure 2-6. Partition of deviations from the mean in regression analysis.

second-degree equation is fitted or an intrinsically nonlinear model is used.
The coefficient b0 expresses the intercept, i.e., the value of y for x = 0 and b1
represents the slope of the regression line, i.e., increase or decrease of y per unit
increase of x . The residual ei is the deviation between the i th observation of y
(for x = xi ) and the regression estimate. The two coefficients are calculated
by least squares analysis which ensures that the sum of the squared deviations
from the fitted regression line is minimized. See Figure 2-6.

Computer programs are available to estimate the two parameters of the
model, together with confidence intervals and to draw inferences about pre-
dicted y values.

7.2 Correlation analysis

In many situations there is no clear distinction between predictor and target
variable, but it is necessary to know whether two variables, x1 and x2 are
related. The correlation coefficient r((|r | ≤ 1) which assumes a linear rela-
tionship between the two variables can be tested for its statistical significance.
The computer program for regression will also provide information about the
correlation coefficient and its confidence interval.

7.3 Multiple regression analysis

Normally more than one predictor variable is used to estimate the target vari-
able. The basic principle which underlies regression analysis with one predic-
tor variable is retained, but extended to k predictor variables. The computer
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program for multiple regressions also provides various options to determine the
“best” model. It will also estimate the multiple correlation coefficient between
y and the group of k predictors. In multiple regression the k predictors are
usually continuous variables, but in many cases it is necessary to regress the
target variable on one or more than one continuous variables but in addition
on a nominal variable, for example to regress tree height on bark thickness at
50% of the height, for k number of different species. An analysis of covari-
ance, with the aid of dummy variables, is then necessary to decide whether
tree height is significantly related to bark thickness in presence of species as a
discrete predictor variable. A comprehensive discussion of multiple regression
and covariance analysis falls outside the scope of this book. Several textbooks
are available which deal with such models and fitting procedures (Draper and
Smith 1981; Ott 1988; Kleinbaum and Kupper 1978). Practical examples of
multiple regression will be provided in later chapters.

7.4 Nonlinear regression

The standard simple or multiple regression model deals with those situations
where the equation can be linearized either by a transformation of variables or
by the addition of functions of the predictor variables. There are many cases,
more particularly in growth modeling, where the equation is not be lineariz-
able, for example y = b1(1 + b2 exp(b3x)b4 . Computer programs, for example
PROC NLIN in the SAS system provide algorithms to obtain least squares para-
meter estimates for such equations. The program requires that the user specifies
the model and provides initial estimates of the parameters. The program then
searches for a vector of parameter estimates which produces the smallest sum
of squared residuals.

8 MOVING AVERAGE

The moving average defines a new variable y as a linear combination of p
consecutive observations of the time series or those of observations which are
sequential in space

y1 = a1x1 + a2x2 + . . . . . . . ak xk

with a1 = a2 = . . . . ak = 1/k. The first element of the new time series with
k = 4 therefore is

y1 = (x1 + x2 + x3 + x4)/4
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The second element is obtained by deleting x1 and adding xk + 1:

y2 = (x2 + x3 + x4 + x5)/4

The new time series contains (n − k + 1) observations. The method of mov-
ing averages induces a smoothening of the time series by removing short-term
fluctuations. The smoothening process is more severe when the means are cal-
culated for large k, but at the same time the occurrence of meaningful fluctu-
ations may not be detected when too many observations are used to calculate
a mean. A moving average, based on low values for k, removes short-term
fluctuations and is called a low-pass filter, whereas a large value of k removes
long-term fluctuations and is described as a high-pass filter. In some cases, the
time series is characterized by oscillations with a constant period, for exam-
ple, when measuring the radial increment of single trees at hourly intervals.
This type of oscillation is completely removed by selecting k = 24. In other
cases, the oscillations contain irregular elements and the calculation of moving
averages merely smooths the time series.

9 SMOOTHENING BY FITTING EQUATIONS

In a study of the impact of stresses on radial growth, it might be appropriate to
fit a negative exponential or another model to filter the age effect. In other cases,
a polynomial or a spline function is fitted to the observed ring widths. The next
step will then be to determine the differences or the percentage deviations from
the trend curve. This procedure converts the time series of observed y-values
into a times sequence of deviations, which can be tested for serial correlations.

The sequence of deviations shows a cyclical pattern. They could possibly
be removed by fitting a polynomial including higher powers of age, but there is
no biological explanation for such a model.

Example 2.8 Sample plots consisting of 2×2 rows of trees were established
along a transect in a Pinus radiata stand, with no buffer zone between adjoining
plots. Moving averages with k = 3 and k = 5 were calculated to smooth the
data (Figure 2-7) and to detect a possible pattern. The resultant stand density
pattern can be ascribed to soil variability within the stand.

Example 2.9 The annual diameter for a 144 year beech tree was regressed
on age. The following equation was fitted:

dbh = 45.566
(

1 − e−0.00972 age
)0.87939
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Plotting the deviations from the trend curve over age (Figure 2-8) indicates that
the time series was not successfully converted into a stationary time series.

10 FREEHAND FITTING

Due to the worldwide phenomenal expansion of computer technology, the use
of graphical methods to explore the relationship between variables, relevant to
forestry, has been drastically reduced. If, however, the infrastructure for elec-
tronic data processing is not available, a graphical method may be more suc-
cessful either to fit a curve and to obtain estimates. It is particularly useful when
biological variables are involved, for which no suitable statistical model can be
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found and expert knowledge about the nature of the relationship is available. In
the past is has been successfully applied for data sets:
• With dbh or age as predictor variable and either tree height, volume or bio-

mass as target variable
• With dbh or relative vertical position along the bole of the tree as predictor

and bark thickness as dependent variable
• With age as predictor variable and mean height, top height or other stand

characteristics as dependent variable
The following method for graphically fitting is usually successful:

1. The observations of the independent variable are arranged in ascend-
ing order and the data are subsequently subdivided into k classes with
approximately the same number of observations in each class. The num-
ber of observations in each class should not be less than 5 and the number
of classes also should preferably not be less than 5. More accurate esti-
mates are obtained by increasing the number of classes to approximately
10–12.

2. The arithmetic mean of the dependent and independent variable are cal-
culated in each class.

3. The class means of the dependent variable are plotted over the mean of
the independent variable and a freehand curve is drawn and eventually
adjusted to ensure that the mean deviation is zero. This required expert
knowledge of the form of the relationship.

Example 2.10 The observed dbh and heights of the trees in Appendix C
serve to illustrate the graphical method. The data set contains 55 observations
which were sorted for increasing dbh. They were subsequently subdivided into
5 classes with 11 observations within each class. The class means are given
below:

Diameter class Class midpoint
dbh (cm) height (m)

1 10.4 10.8
2 16.2 14.5
3 19.6 15.9
4 22.3 17.3
5 27.3 18.6
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Figure 2-9. Graphically fitted height curve.

The mean heights are plotted over mean dbh and observations which are identi-
fied as outliers are removed before calculating the means (Figure 2-9). A curve
is fitted and possibly adjusted to ensure that the mean deviation from the curve
is zero.



Chapter 3

INSTRUMENTS

1 DIAMETER-MEASURING INSTRUMENTS

1.1 Calipers

The caliper consists of a fixed arm mounted perpendicularly to a graduated
beam and a movable arm, parallel to the former and sliding along the fixed
beam (Figure 3-1).

The caliper is used to measure stem diameters on felled trees and the over
bark breast height diameter of standing trees. In order to minimize instrument
errors, a rigid construction of the caliper is imperative. The early wooden
calipers were subject to wear and tear, steel calipers are rigid and reliable
but heavy and uncomfortable during cold weather. Aluminum calipers have
increased in popularity, but they should be regularly checked for their accuracy
and, if necessary, calibrated at least once annually. In general, calipers have to
meet the following quality specifications:

1. The graduated beam must be perfectly straight, of sufficient length for
measuring large-dimension and sturdy trees. To eliminate recording
errors the graduations should be clearly visible.

2. The movable and fixed arm should run exactly parallel, two arms of the
caliper should be located on a plain. If the movable arm is not at a right
angle to the fixed beam (Figure 3-2), the resultant systematic positive
error is dependent upon the angle of deviation (α) and the diameter of
the tree.

3. The point of measurement is consistently incorrectly positioned. The
resultant operator bias is two-sided. In research plots, the error may be
negligible by permanently marking the breast height position.

4. The graduated beam is not held at an angle of 90◦ to the stem. For an
angle of deviation of α degrees, the observed diameter is approximately
equal to d(1 − tan(α)/2) and the percentage error is equal to 50(tan(α).

33
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Figure 3-1. Caliper.

Figure 3-2. Incorrect angle of the movable arm.

The corresponding error in the estimated basal area is approximately
twice as high.

5. The operator sometimes tends to exert too much pressure during mea-
suring, in which case a systematic, negative operator-bias is introduced.

6. On slopes, a positive bias is likely to occur by not consistently measuring
from the uphill position.
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7. On terrain with a heavy and tough ground vegetation of grasses and
other plants, the point of measurement is usually located above its true
position, in which case a negative bias is introduced. A similar situation
may arise during winter, if the ground is covered by snow. In Continuous
Forest Inventories, the measuring point is usually permanently marked,
partly to establish whether or not a particular tree was measured at the
previous occasion. It has the additional advantage of reducing random
or systematic errors associated with inaccurately positioning the tape or
caliper.

When using calipers for remeasuring permanent sample plots, they should be
checked regularly for the occurrence of instrument-related errors. In forest
inventories, they are to be calibrated annually. Calipers used to measure
research plots require a 1 mm graduation. Those with a 1, 2 or 4 cm graduation
are adequate and more practicable for management, regional, and national
forest inventories. The diameters are marked on the graduated beam, and show
the midpoint of the diameter class. When using self-rounding calipers, these
midpoints are always printed at the lowest point of the diameter class.

1.2 Biltmore stick

The Biltmore stick is occasionally used to obtain quick and rough estimates of
the mean diameter of standing trees, but its use is restricted to North America.
It consists of a graduated rule, which is held against the stem at breast height. It
is usually calibrated for a distance of 25 in. between the operator and the tree.
The observer aligns the zero mark of the stick with the left edge of the stem
and at this point reads off the diameter. The calibration formula for a distance
of 60 cm is

distance from zero point = d

√
60

60 + d
.

The tree fork consists of two fixed arms, mounted on a handle at a certain
angle between the arms. The diameter is read out on the graduated arm, at
the contact point with the stem. In order to avoid an excessive length of the
instrument, forks are constructed with different fixed angles between the arms,
for example, an angle of 60◦ for young and medium-aged trees, with a diameter
below 30 cm. An angle of 90◦ should be used for mature stands, with a mean
diameter above 30 cm. For an angle of 60◦, the stem diameter is 1.154 times
the recorded distance between the contact point and the zero mark, for an angle
of 90◦, the tree diameter equals twice this distance.
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1.3 Diameter tapes

Before the beginning of the 19th century, European foresters used diameter
tapes to measure the diameter of felled roundwood. They were gradually
replaced by the more convenient caliper. The tape is graduated on both sides,
with the linear scale on one side giving the true circumference of the tree,
whereas on the other side it is scaled to give the corresponding diameter. The
earlier steel tapes were gradually replaced by those manufactured from weave
material, reinforced with wire.

The diameter tape produces slightly biased estimates, if the stem cross
section is not exactly circular. The following sources of errors have been noted:
• Systematic errors occur when the measuring position is consistently located

above or below 1.30 m.
• The tape is slanted around the tree and sags on one side, in which case a

positively biased estimate is obtained. The error increases with the size of
the tree and may be substantial for large-sized trees, when it is inconvenient
for the operator to verify the position of the tape on the backside of the tree.

• Excessive pressure induces a negative operator bias. In general the resultant
bias remains within acceptable limits.

• The occurrence of loose bark, for example, in Eucalyptus plantations gen-
erates a positive error unless these bark sections are removed prior to
measurement.

The diameter tape is usually considered to produce an almost error-free esti-
mate of the tree diameter. Because of the smaller random error involved
in successive tape measurements on the same tree, the diameter increment
is also obtained free of bias and more accurately, compared with caliper
measurements.

Some studies have been carried out to compare the two instruments. Kennel
(1959) reported on the accuracy of diameter tape and caliper in estimating
the tree basal area. The caliper produced estimates with a mean difference of
2.14% below that obtained with the diameter tape, which indicated a positive
instrument-bias for the diameter tape.

1.4 Permanent diameter tapes

Hall (1944) introduced the vernier tree-growth band to measure short-term
growth responses at breast height. It consisted of an aluminum band, which was
held in place by a coil spring. The band was graduated in inches and 1/10inches
and fitted with a vernier to permit more accurate readings. Aluminum has the
advantage of being light and easy to work with, but has a relatively high factor
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Figure 3-3. Permanent diameter tape.

Figure 3-4. Wheeler’s pentaprism.

of expansion when exposed to the sun in outdoor conditions. The permanent
band is widely used in growth studies in Germany. When graduating in cen-
timeters and millimeters, the use of a vernier is not necessary (see Figure 3-3).

Other devices to measure short-term radial growth responses are discussed
in section 6.

1.5 Wheeler’s pentaprism

Wheeler’s pentaprism (Figure 3-4) consists of a fixed and a movable pen-
taprism, which is mounted on or moves along a graduated beam. After sighting
the point of measurement on the upper stem, the movable prism is adjusted
in such a way that the right side of the stem coincides with its left, which is
directly viewed. Up to a measuring height of 15 m, the measurement error lies
between 0.5 and 1.2 cm (Avery et al. 1983). Van Laar (1984) investigated the
accuracy of upper stem measurements obtained with Wheeler’s pentaprism and
the Finnish optical caliper. The latter produced the best results.
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1.6 Finnish parabolic caliper

The Finnish parabolic caliper is used to measure the stem diameter at those
positions on the stem, which cannot be reached from the ground. In Finland,
Germany, and Switzerland, for example, they are used to measure the stem
diameter at 6 or 7 m above the base of the tree. The latter serves as an addi-
tional predictor variable to estimate tree volumes from volume functions with
three predictor variables. The instrument consists of a parabolically curved arm
with a 1 cm graduation, which is mounted on a hand-held 5–7 m aluminum
pole. In order to improve visibility, the diameter class limits enclose 1 cm wide
strips of different colors. During measuring the straight section of the caliper
is in contact with the stem. In order to eliminate a positive operator-bias, the
operator stands exactly vertically underneath the caliper arm. In comparison
with the standard type of calipers, diameters are measured less accurately, but
it is feasible to classify the stem diameter in classes of 1 cm. (Figure 3-5).

Figure 3-5. Finnish caliper.
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1.7 Barr and stroud optical dendrometer

The Barr and Stroud optical dendrometer, which is no longer manufactured, has
been used extensively in conjunction with Grosenbaugh’s 3P sampling and has
a confirmed accuracy of 2.5 mm for upper stem diameters below 25 cm. The
instrument is a split-image magnifying rangefinder and is used primarily to
measure upper diameters. However, it can also be used to measure tree heights
and distances. The readings obtained with the dendrometer are transformed,
either by using tables or with the aid of a computer program. The dendrometer
is still used in 3P sampling.

2 RELASCOPES AND PRISMS

The principle of Bitterlich’s method, based on angle count sampling, is dis-
cussed in Chapter 10. All instruments in this group have in common that the
angle subtended between the sampling point and the stem at breast height is
evaluated.

2.1 Angle gauges

The early angle gauges consisted of a 50 cm or 1 m long hand-held stick, with
a metal blade 1 cm wide for the 50 cm stick and 2 cm for the 1 m stick being
mounted on one side. The trees surrounding the sampling point were sighted at
breast height in a 360◦ sweep. The tree is counted if it subtends an angle which
exceeds the critical angle of the instrument.

2.2 Kramer’s dendrometer

The multipurpose instrument incorporates the basic principle of the measuring
blade, which is 1 cm wide (Figure 3-5) and generates such an angle that each
tree counted corresponds with 1 m2 basal area per hectare, i.e., it represents a
basal area factor (BAF) of 1. When using a width of either 2 or 4 cm (“op” or
“mn” in Figure 3-6), the corresponding BAF are 2 and 4, respectively. The den-
drometer is held vertically at a distance of 50 cm to determine the basal area per
hectare. The right edge is equipped with a scale for measuring heights, which is
similar to the Vorkampff–Laue hypsometer. The observer seeks a position where
the top and base of the scale (k and h in Figure 3-5) exactly covers the tree and
measures the height of the point on the stem which superimposes the mark i
on the instrument. Tree height can be calculated by multiplying the distance
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Figure 3-6. Kramer’s dendrometer.

from i on the tree to tree base by 10. The scale on the left edge indicates the
position on the stem, which corresponds with one-fourth of the stem volume.
The printed table is based on form heights and used to estimate stand volumes.

2.3 Bitterlich’s mirror relascope

The mirror relascope (Figure 3-7) is a small hand-held instrument, which can
be used for a variety of purposes:
• Estimation of the basal area per hectare
• Optical distance measurements, adjusted for slope
• Measurement of tree height either for distances of 15, 20, 25, and 30 m or for

arbitrary distances
• Measurement of upper-stem diameter, from fixed distances
• Combined height and diameter measurements
• Estimation of relative form heights, to determine absolute form heights, fac-

tors, and the volume of the standing tree
• Measurement of slopes
• Estimation of Hirata’s stand mean height, based on vertical point sampling
The instrument is based on the principle of a drum pendulum, which is released
when measurements are made. The relascope is equipped with a peephole to
be used for viewing the object of measurement and lateral windows to admit
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Figure 3-7. Mirror relascope.

light. The instrument is usually held with the right hand, and the left hand may
be used to give the instrument extra support and the middle fingers to press
the button. Alternatively, the mirror relascope can be mounted on a tripod or
monopod, in order to reduce erratic movements of the instrument during view-
ing, although this restricts the freedom of movement of the operator. The drum
pendulum is equipped with a number of measuring bands, which are mounted
on roller bearings to ensure that the pendulum is in a vertical position during
the measurements. The pendulum wheel is provided with a brake to dampen
the movements of the pendulum. A built-in lens projects the magnified mea-
suring bands onto a mirror. The image is visible in the lower half of the field
of vision, with a horizontal line separating the lower from the upper half of the
field of vision, which is used to view the object. The width of the measuring
bands is adjusted for slope. The adjustment factor is equal to the cosine of the
angle of slope. This property is used when measuring upper-stem diameters
and when evaluating stems at breast height on sloping terrain. The lower half-
field of vision, which reveals a number of white and black bands, is shown in
Figure 3-7.∗∗∗

The “count” bands 1 and 2, which correspond with Zb1 and Zb2 in Figure
3-6, are used to estimate the basal area per hectare for the BAFs 1 and 2 in
the metric system. Adding the two white and black bands on the right of Zb1
gives band 4 (Zb4 in Figure 3-6) to estimate the BAF of 4. The distance bands
Ds15, Ds20, Ds25, and DS30 are required for optical distance measurements
with the aid of a 2 m vertical staff and correspond with horizontal distances of
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15, 20, 25, and 30 m from the object. The tangent scale Ts is used for height
measurements, for combined diameter and height measurements and to deter-
mine Hirata’s stand height. They are located to the left of Zb1, (20 m scale),
and between Zb2 and Zb4 (25 m and 30 m scale).
• Estimating the basal area per hectare at breast height

In a 360◦ sweep, the number of trees is counted with an apparent diameter,
which exceeds one of the selected “count” bands. The number of trees
counted gives the estimated basal area in square meter per hectare if band 1
is used, multiplied by 2 and by 4 when using band 2 and 4, respectively.

• Distance measurements with the aid of a horizontal staff
Band Zb4 is to be used for measuring horizontal distances. A staff of a fixed
length, for example, 80 cm is held against the tree, in a horizontal position.
The operator locates the point where band Zb4 exactly covers the 80 cm staff.
The distance is found as the product 0.80∗25 = 20 m.

• Distance measurements with the aid of vertical staff
The distance bands Ds 15 to Ds 30 are used in combination with a vertical
2 m staff to determine one of the fixed distances of 15, 20, 25 or 30 m (See
Figure 3-7). Before determining the exact distance, the latter is estimated
ocularly, ignoring slope. Releasing the pendulum, the relascope is pointed at
the halfway point of the horizontal staff and arrested in this position, in order
to adjust for slope. The relascope is subsequently rotated counterclockwise at
an angle of 90◦. The operator moves forward and backward in order to ensure
that the lower terminal point of the vertical staff coincides with the lower
edge of band 2 and the upper terminal point of the vertical staff coincides
with the appropriate distance band.

• Measuring tree height
The tangent scales are used in combination with the distance bands. The tan-
gent scales are provided for each of the horizontal distances 20, 25, and 30 m.
The 30 m scale can be used for the measuring distance 15 m by multiplying
the recorded tree heights by 0.5. The height scale for 20 m is found at the far
left of the instrument (Ts20), whereas Ts25 and Ts30 are located between
ZB4 and ZB2.

• Estimating an upper-stem diameter
Band Zb1 and the adjoining Zb4 are used to measure an upper diameter.
Band Zb1 and Zb4 correspond with a ratio object width: horizontal distance
of 1:50 and 1:200, respectively. The relascope unit is defined as the band
width Zb4, so that count-band Zb1 contains 4 and ZB4 contains 8 relascope
units. For a horizontal distance of 10 m, one relascope unit corresponds with
a width of 5 cm of the object. When measuring upper diameters from a fixed
horizontal distance, the diameter is measured in relascope units and then
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Figure 3-8. Distance measurement with the aid of a vertical staff.

converted to obtain the estimated diameter. For example, when 6.3 relascope
units are measured at a distance of 10 m, the estimated upper diameter is
31.5 cm (see Figure 3-8).

2.4 Wide-scale mirror relascope

At a later stage, Bitterlich constructed the wide-scale mirror relascope for
measuring upper diameters of large trees and to apply the relascope technique
to estimate the basal area per hectare for large BAF (see Figure 3-9). The
instrument is equipped with slope scales for degrees (G) and percentage (P),
respectively, with four narrow black–white bands to measure upper diame-
ters and to estimate the basal area per hectare for low basal-area factors, with a
white band 1 (Zb1), which corresponds with BAF = 1 and distance factor 50 as
well as with five black and five white bands, which correspond with BAF = 1.
The zero mark is located at the right edge of the Zb1 band. Those units, which
are completely covered by the tree to the left and right, are counted and con-
verted into basal area per hectare by using the appropriate conversion factors
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Figure 3-9. Measuring an upper-stem diameter.
(Horizontal distance = 10 m, Relaskop units (Ru) = 12.4, Diameter = 5 cm · 13.5

for those at the left and right of the zero mark, respectively. The instrument is
also suitable for measuring distances and upper-stem diameters.

2.5 Bitterlich’s telerelascope

The telerelascope represents a vastly improved version of Bitterlich’s mirror
relascope, primarily to estimate upper-stem diameters and their corresponding
heights above the base of the tree, from arbitrary sighting distances. The fol-
lowing steps are required:
• The instrument is mounted on a tripod, either with a movie head adapter

or with a micrometer head with a fixed avallactical point, i.e., with a fixed
sighting-angle vertex.

• The left edge of the tree and that of a white band, which corresponds with one
tachymetric unit are aligned. The number of tachymetric units is determined
in 1/10 units. This gives the upper-stem diameter in tachymetric units.
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• A second reading is made on a horizontal base rod, positioned aside the tree
on which as many full tachymetric units as possible are read out. The reading
on the base rod, divided by the number of full units, gives the base reading,
which is multiplied by the number of tachymetric units obtained for the upper
stem diameter.

• The reading obtained on the base rod gives the horizontal distance in meters.
• The left graduation on the instrument is used to obtain percentage readings

for the position of the upper diameter and that of the base rod. The alge-
braic difference is multiplied by the base reading and gives the height above
ground level of the upper diameter.

Sterba (1976) summarized errors involved in the estimation of stem volume
with the aid of the telerelascope. Instrument errors were associated with move-
ments of the vertex of the sighting angle, which affected the estimation of the
operator to tree distance. The distance errors varied between 0.5% and 1% and
necessitated upper-stem diameter adjustments between 1% and 2%, whereas
height estimates should be adjusted upward by 20–40 cm. The volume esti-
mates were furthermore associated with errors due to the formulae being used.
An upward adjustment of 3–5% was required to remove this source of bias.

2.6 Prisms

The prism is a thin wedge made of glass or plastic, which deflects the incom-
ing rays through an angle that is constant for a given prism. Deflection causes
displacement of the tree when viewed through the prism, the amount of dis-
placement being dependent on the diopter strength of the prism, which in turn
is a function of the angle between the two surfaces of the prism. A strength
of one diopter is the equivalent of a displacement of 1 unit per 100 units dis-
tance. The displacement of the image produces a critical angle, similar to that
established by the relascope. When the left edge of the stem, viewed through
the prism, is aligned with the right edge of the stem, viewed over the prism, the
corresponding stem diameter is 1/100 of the distance to the tree, for a prism
with a diopter strength of one. During a 360◦ sweep with the sampling point as
center, the line between the two surfaces of the prism is held vertically above
the sampling point and should remain in this position. Trees which are dis-
placed less than the apparent diameter are counted, those which are displaced
fall outside the imaginary plot and are not counted (see Figure 3-10). The bor-
derline trees, i.e., those trees for which the amount of displacement is equal
to the apparent diameter, should be checked by measuring the stem diameter
and distance from sampling point. Because of the amount of time involved in
checking, it is customary to assign a count of one-half to each borderline tree,



46 Instruments

Figure 3-10. Decision on counting a tree with a wedge prism.

although this might produce operator-bias. On a sloping terrain, the number of
trees counted produces a biased estimate of the basal area, since slope distance
instead of horizontal distance is observed. Corrections are necessary for slopes
of more than 10◦. The basal-area estimate, corrected for slope is calculated as
follows:

Gha = BAF · n
cos α

where n = tree count, α = angle of slope. In order to calibrate the prism, a
target of known width, between 30 cm and 1 m is set up. The observer moves
towards and away from the target until the image seen through the prism and
the right side of the stem viewed over the prism are exactly aligned. The dis-
tance between the observer and the target in measured with a tape. Because of
measurement errors, the calibration exercise should be repeated three or four
times. The BAF is calculated from

BAF = 10000

1 + 4 (L/w)2

where L = distance in meters and w = width of target in meters. The
more expensively calibrated prisms, however, eliminate the necessity of field
calibrations.
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3 TREE HEIGHT

3.1 Telescopic poles

The telescopic poles, manufactured from aluminum or fiberglass are con-
veniently used to measure the height of young trees, up to 15 m. The pole
sections, of constant length but decreasing diameter, are connected with a
coupling device. The top of the coupled-pole sections is positioned at the
same height as the top of the tree with the exact height being read out on the
lowest-pole section. When care is taken to eliminate or at least reduce paral-
lax between the telescopic pole and the apex of the tree, tree heights can be
determined accurately. It is impractical to use poles with a total length of more
than 15 m.

3.2 Hypsometers

The standard practice is to measure tree heights with hypsometers. The conven-
tional hypsometers are classified according to the principle of their construc-
tion. The Blume–Leiss, Suunto, and Haga hyposometer and the Abney level
are based on trigonometric relationships, the Christen, Merritt, Chapman, and
Vorkampff–Laue hypsometer have a geometric basis.

3.3 Hypsometer according to the trigonometric principle

Hypsometers based on the trigonometric principle measure, from eye level, the
vertical angles between the baseline and the top and base of the tree, respec-
tively (Figure 3-11). The tree height is obtained from measurements of the angle
subtended by the top and base of the tree with the horizontal:

h = e(tan α1 − tan α2)

The sign of the angle α is positive if the aim is located above eye level and neg-
ative, if not (Figure 3-11). The instruments differ in respect of the presence or
absence of built-in range-finders to determine the horizontal distance between
the tree and the operator. The type 7 Blume–Leiss hypsometer has a single
pointer, which can be locked in the desired position and is not equipped with a
built-in range-finder (Figure 3-12).

The Abney level consists of a 10 cm square sighting-tube, with a mirror
inside a rotatable level indicator, ensuring that a horizontal position of the tube
can be maintained during measuring. After sighting the top of the tree, the
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Figure 3-11. Trigonometric principle.

Figure 3-12. Measuring uphill.

vertical angle subtended with the horizontal tube is read out on an arc under-
neath the latter. This is repeated for the base of the tree. The graduation of the
arc is given either in degrees or in percentages. Trigonometric tables are used
for readings in degrees. In the case of percentages, the latter are multiplied by
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Figure 3-13. Blume–Leiss hypsometer.

Figure 3-14. Abney-level.

the horizontal distance to obtain the height above the baseline. The results are
added if eye level is located above the base of the tree and subtracted, if not.

The basic constructional principle of the Haga altimeter is similar to that
of the Blume–Leiss hypsometer and the Abney level, but the optical measure-
ment of distances differs slightly from the Blume–Leiss (Figures 3-13–3-15).
Fixed scales for distances of 15, 20, 25, and 30 m are provided and shown
separately by rotating a knob, which serves to select a specific scale. This elim-
inates the risk of reading on an incorrectly selected scale. The instrument is also
equipped with a scale to obtain a vertical angle expressed as a percentage, with
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Figure 3-15. Haga hypsometer.

Figure 3-16. Suunto clinometer.

a range extending between −40% and +50%. Hence, it gives the tree height
as a percent of the baseline distance. The Haga hypsometer replaces the multi-
range target of the Blume–Leiss with a tape, which is provided with a fixed and
a detachable target blade, which correspond to fixed distances.

The Suunto clinometer is a small, hand-held, compact instrument, equipped
with a freely movable scale card, which is surrounded by a damping liquid
and supported by a bearing assembly (Figure 3-16). The instrument has two
built-in scales to obtain tree heights for fixed distances of 15 and 20 m. When
measuring tree heights from a distance of 30 and 40 m respectively, the readings
obtained with the 15 and 20 m scales, respectively are doubled. A third scale
within the instrument serves to measure slopes as percentages. The table on
the back of the instrument converts percentages to degrees. The slope of the
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terrain can be measured in degrees, by using the 20 m scale and sighting a point
at eye level. The optical measurement of the distance to the tree is similar to
that for the Blume–Leiss, but the operation of the instrument differs slightly
from it. When looking through the lens, the top of the tree is sighted with one
eye and the scale is simultaneously read with the other eye. This is repeated
for the base of the tree. A nomogram on the back of the instrument is used to
correct tree heights for a sloping terrain. The instrument has the advantage of
dampening the movement of the pointer during sighting. Its main disadvantage
is the necessity to aim at the top or base of the tree and simultaneously obtain a
reading on the scale of the instrument.

The errors involved in height measurements are partly of a random nature,
for example, because the pointer moves during sighting, or when measuring
leaning trees (assuming that there is no dominating direction of lean), or
because the top of the tree is obscured in dense stands. Other sources induce
systematic errors, for example, when the baseline distance is not corrected for
slope. In addition, operator-bias may occur. Two error sources associated with
leaning and round-topped hardwoods, respectively are particularly important.
A positive error occurs when the tree leans towards the operator, a negative
error when it leans away from the operator. A nearly error-free estimate for
tree height is obtained by averaging the heights recorded from two opposite
directions. Alternatively, the height may be measured at an angle of 90◦ with
the direction of the lean. The resultant error is then equal to h (1 − cos α).
Grosenbaugh (1980) emphasized the occurrence of biased height estimates
when the degree of lean is greater than 8◦.

3.4 Baseline slope correction

The Blume–Leiss hypsometer is equipped with a table, which gives the correc-
tion factors for uphill measurements (Figure 3-17). For example, for a baseline
slope of 25◦, and a measured tree height of 30.6 m, the correction factor is
0.18 and the measurement error is 30.6 · 0.18 = 5.5 m. The adjusted height is
30.6 − 5.5 = 25.1 m. Alternatively, it is calculated as 30.6 · cos2 25 = 25.1 m.

Measurements errors, associated with round-topped trees tend to be posi-
tive. Their magnitude depends upon the shape of the crown and decreases with
increasing distance between the operator and the tree.

In dense, unthinned or lightly thinned stands, or when light conditions are
poor, it may be disadvantageous to measure tree heights from a fixed distance
from the tree. In such situations the instruments are used at variable distances,
from such measuring positions where the top of the tree is visible.
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Figure 3-17. Height correction of trees on slopes (measuring baseline slope).

The scale of the instrument allows for accurately reading slopes in 1/10
degrees. The instrument is operated as follows. A pole is placed against the
tree. The vertical angles with the top of the tree, the top of the pole and the base
of the tree are measured (see Figure 3-18). The relevant angles are α3, α2, and
α1. When calculating the height, the algebraic sign is taken into account similar
to other instruments in this group.

h = L · (tan α3 − tan α1)

tan α2 − tan α1
= L · (p3 − p1)

p2 − p1

where L = pole length, pi = inclination (in percent).

Example 3.1

α1 = −10.7◦ p1 = −18.9%

α2 = −3.5◦ p2 = −6.1%

α3 = 45.3◦ p3 = 101.1%

L = 4 m
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Figure 3-18. Measuring tree height with a vertical staff.

Figure 3-19. System Johann.

h = 4 · (tan 45.3 − tan (−10.7))

tan (−3.5) − tan (−10.7)
=37.5 m h = 4 · (101.1 − (−18.9))

−6.1 − (−18.9)
=37.5 m

The System Johann uses a vertical staff with a variable size (Figure 3-19),
provided with a scale, which is equipped with one target blade in a fixed posi-
tion and a second freely movable one, which can be locked at any position.
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The target staff has to be used in combination with an optical range-finder. It
serves to find the horizontal distance to the tree. This depends on the distance
between the target blades and the angle of the optical range-finder. The mea-
surements are carried out by two persons. The operator determines the position
from which the top and base of the tree are clearly visible. The second person
holds the pole against the tree, taking care to hold it in a vertical position. The
target blades on this pole must be clearly visible. For measuring the horizon-
tal distance, the operator uses the optical range-finder, while the second person
moves the lower blade into a position where the upper target blade of the vir-
tual image coincides with the lower blade of the real image. The movable target
blade is then locked in its correct position and the distance between this blade
and the upper blade is read. Two angles are measured, the vertical angle with
a point halfway between the target blades and the vertical angle to the top of
the tree. The constant K (see Figure 3-19) is added. The height of the tree is
calculated as follows:

h = A · C · cos2 α1 · (tan α2 − tan α1) + K

where

h = height in meters

A = distance between the target blades

C = 1/3 for Blume–Leiss and Suunto

α1 = vertical angle with the point halfway between the. target blades

α2 = vertical angle with the top of the tree

K = height above ground of the point halfway between the blades

The constant K is equal to (1.3 – A/200) if the upper target blade on the pole
coincides with breast height. Either a programmable pocket calculator or tables
are used to obtain tree height. The instrument produces sufficiently accurate
estimates, no fixed distance between the operator and the tree is prescribed
and no corrections for slope are required. It is ideal for measuring heights in
dense research plots. However, the user needs an assistant for operating the pole
with its adjustable target blade and the two angles involved must be measured
accurately. Furthermore, the height is calculated and not directly read on the
instrument.

3.5 Hypsometer according to the geometrical principle

Hypsometers derived from geometric relationships are based on the similarity
of triangles. The Christen hypsometer consists of a folding blade with a fixed
length of 30 cm, which isequipped with a nonlinear scale. A pole with a fixed
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Figure 3-20. Christen hypsometer.

length of 4 m is held against the tree. The operator moves towards and away
from the tree to obtain a position where the top of the pole, the top of the
tree and the base of the tree are visible. The height is then read at point d of
Figure 3-20. Because of the similarity of the triangles ABC and Abc and that
of the triangles ABD and Abd, we have

BC
bc

= AB
Ab

and
BC
bd

= AB
Ab

It follows, that

BC = B D · bc
Ab

and, for BD = 4 m and bc = 0.3 m we have: h = 1.2
bc

With increasing height, the scale distance, per unit increase in height, decreases.
The instrument is compact and cheap to manufacture. Tree heights can be mea-
sured quickly because no distance measurements are required and a single read-
ing produces the estimated tree height. Its disadvantage is the necessity to cover
the entire tree during measuring. Additionally, due to the nonlinear scale, the
accuracy decreases with increasing tree height. To some extent, this can be
overcome by increasing the fixed length of the instrument.

The Chapman hypsometer is based on the same geometric principle, but
uses a fixed point on the scale, for example, at 3 cm from the zero mark, as well
as a fixed length of the pole, for example, 3 m. The height of the tree is read
out on the scale. The Vorkampff–Laue hypsometer is based on a fixed length
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of the staff and a fixed mark on the scale. The tree height is read out on the
pole along the tree. The Merritt hypsometer does not require a pole to be held
against the tree. The operator stands at a given distance from the tree and holds
the instrument at a fixed reach distance.

4 BLUME–LEISS RANGE-TRACER DRUM

The Blume–Leiss range-tracer drum has been constructed by the Institute
of Forest Management at Göttingen, Germany (Figure 3-21). It is used in
combination with the Blume–Leiss, Suunto, or Haga hypsometer to optically
determine the boundaries of plots with a radius of 17.84 m and 12.62 m,
corresponding with a plot area of 0.1 and 0.05 ha, respectively. On slopes, it
automatically adjusts for the slope effect on recorded height. The operator
releases the adjustment screw (I) of the lower drum and slides it down the pipe
until the marked position of the required plot radius has been reached. There-
after, the operator releases the adjustment screw (II) and slides the upper pipe

Figure 3-21. Range-tracer drum.
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until the appropriate mark on the upper scale has been reached. The maximum
slope is used for each adjustment setting. The range-tracer drum is set up in a
vertical position in the center of the circular sample plot. To trace the border
of the plot, the white strips of the upper and lower drums are brought into
coincidence with the aid of the distance measuring device of the Blume–Leiss
or Suunto clinometers.

5 TREE CROWN AND FOLIAGE

Johansson (1985) examined the accuracy of the estimation of crown canopy
with the vertical tube method. A 20 cm long and 1 cm wide hand-held tube is
mounted on a universal joint to ensure a vertical position during measuring.
Cross wires are mounted at the upper end and a mirror at the lower end. At
each sample point, the number of measuring points covered by sky is recorded
and estimates the “crown-free projection.”

A crown mirror to project the tree crown onto a horizontal surface was
constructed at the Institute of Forest Management and Yield sciences of the
University of Göttingen. A mirror is attached to the lower-notched section of a
hollow cylinder, at an angle of 45◦ to the cylinder. Cross wires are mounted in
the upper and lower sections of the cylinder, above the mirror. A handle keeps
the cylinder in a vertical position. A marker-release device is attached to the
bottom of the cylinder, below the mirror. It is triggered by a button located
on one side of the cylinder. During viewing, the center of the mirror should
be held at eye level. The position of the cross wires is forced to coincide with the
position of the projected edge of the crown. The marker released by pushing the
button, drops to the ground. The crown radius is found as the distance between
the center of the stem and the ground position of the marker.

6 SHORT-TERM RADIAL GROWTH RESPONSES

Reineke (1932) introduced a precision dendrometer for measuring short-term
growth responses, which was subsequently improved by Daubenmire (1945).
The tips of three wooden screws are driven into the stem, to a depth of 1 cm.
The heads form a plane, which remains in a fixed position on the stem. A
dial gauge is fastened onto a platform, which is held against the screw heads.
The dial registers 0.001in. distance. Only one dial gauge is required to measure
the growth of a large number of trees. Furthermore, it is not necessary to make
use of wooden or copper screws, which are in a more permanent position and
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damage the cambium and xylem. Stimulated cambial activity around the screws
also tends to produce positively biased readings. Bormann et al. (1962) com-
pared the dial gauge dendrometer with vernier bands to estimate the weekly
radial growth of eastern white pine. The two instruments produced similar
growth patterns, but ring bands were inefficient in recording stem shrinkage.
Although dendrometers has a high mechanical precision, the measurement of
growth on a single point sometimes produces more erratic estimates than ring
bands. In studies to explain short-term diameter growth reactions in terms of
weather conditions with the dial gauge dendrometer, Kern (1961) stated the
necessity of distinguishing between fluctuations due to swelling and shrinkage
of the stems and real growth.

Auchmoody (1976) examined the accuracy of growth estimates obtained
from vernier bands, which were compared with approximately error-free mea-
surements and found that nearly unbiased estimates were obtained whenever
the diameter growth was more than 1.25 cm. Fritts et al. (1955) designed a
dendrograph, which was a greatly improved version of a similar instrument,
used by McDougal, which had a magnification of 22. The frame of reference
was identical with Daubenmire’s dendrometer platform. The Fritts dendrograph
had a 100-fold magnification, with the readings being recorded on a 7-day rain-
gauge clock. A similar dendrograph was used for measuring the daily radial
growth of Pinus radiata (van Laar 1966). Dendrographs are more expensive
than dendrometers, but have the advantage of being able to record radial growth
and shrinkage during a 24 h period. It was found however, that a large propor-
tion of the radial increment, recorded during a period of rainfall, is primarily
attributable to swelling of the bark. It is also possible that real growth during
dry spells is clouded by shrinkage. By installing instruments on trees, cut at
a height of 2 m, radial changes of the severed stem section can be recorded
and the growth records on the living trees can be corrected for swelling and
shrinkage of the bark. Kinerson (1973) constructed a transducer which con-
verts the magnitude of applied stimulus into a proportional electrical signal.
The instrument contains a linear-motion potentiometer, which is fixed to a band
of a nickel-steel alloy.

7 INCREMENT CORES

The Swedish increment borer consists of a handle, a hollow cutting bit and an
extractor, which is pressed into the cutting bit. The core is extracted after a
sharp turn of the extractor. The following measurement errors occur.
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• Errors due to deformation and more particularly to compression of the cores.
• Positively biased measurements due to an incorrect off-center boring

direction. This is sometimes unavoidable due to the center of the cross
section not coinciding with the pith.

• Negative bias due to shrinkage of the cores between the time of extraction
and measuring.

Cole (1977) recommended storing increment cores in plastic straws sealed
with cellulose-acetate tape, thereby providing protection against shrinkage for
several days, but freezing the straws is recommended if storage time exceeds
3 days. Liu (1986) developed a geometric model off-center increment cores,
to be used to rectify radii. Hall et al. (1984) designed a portable power-driven
increment borer, constructed from a 58 cc gasoline chainsaw, which produced
sufficient power for extracting samples from trees up to a diameter of 80 cm.
Johann (1977) describes the two types of the System Digitalpositiometer, man-
ufactured by the Austrian firm Kutschenreuter, suitable for measuring incre-
ment cores and stem cross sections, respectively.

8 BARK THICKNESS

The Swedish bark gauge is used to measure the bark thickness on standing
trees. It consists of a semicircular chisel, which is forced into the xylem and
extracted. The bark thickness is read out on a graduated scale on the chisel.
The assumption is that the instrument will not be driven into the sapwood, but
this may be difficult for species with hard barks. A penetration of the sapwood,
overestimates the bark thickness.

9 RECENT DEVELOPMENTS
IN INSTRUMENTATION

A measuring device which uses polar coordinates and consists of an x ,y, ρ

coordinate measuring table and has an accuracy of 1/1000 mm and 1/100◦,
in addition to a turntable for stem discs, two optical systems with CCD video
camera and computer, as well as processing equipment, was developed by
researchers in the of Section Forest Biometry at the University of Göttingen
(Taube et al. 1992). Although being a multipurpose instrument, it is used
primarily to measure ring widths, either on stem discs or on photographs.

Bräker et al. (1992) introduced an instrument for measuring ring widths,
similar to Eklunds device, but with the advantage that no adjustment of
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the position of the increment core is necessary. Lega (1992) introduced the
dendrochronograph SMIL 3, which can be used to measure ring widths on stem
discs up to a diameter of 1 m as well as on increment cores. The instrument has
a confirmed accuracy of 0.01 mm and is equipped with a telegoniometer which
eliminates those measurement errors associated with an inclination of the rings
at the point of measurement.

Roth et al. (1992) developed the computer package ARISA (Automated Ring
Sequence Analysis) based on digital image processing and pattern recognition.
It enables the user to simultaneously measure a large number of radials on stem
cross sections, which in turn reduces the standard error of the estimated means.
The technique is thought to be particularly useful in analyzing disturbed ring
patterns.

9.1 Laser dendrometer LEDHA

The Zeiss range finder is a new instrument, with a weight of 2.2 kg, which
operates on the basis of travel-time measurements of laser pulses by diffuse
backscattering of such pulses. The instrument is suitable for stationary as well
as mobile applications and has a storage capacity of 4000 measured values,
which are delivered to a printer or personal computer. It has the capacity to
measure azimuths, distances, vertical angles, and heights and was developed
and marketed by the optical firm Zeiss.

The laser dendrometer was developed for specific applications in the prac-
tice of forestry. The incorporation of modern laser technology permits the user
to measure and store data such as distance, tree height, slope, azimuth and
diameter. The device resembles a pair of binoculars, with the optical and elec-
trical unit parts being enclosed in a sturdy housing, to which the four push-
button controls – two of them operated through the oculars, the other two for
program selection and “measuring” are attached (see Figure 3-22). Tree num-
bers (between 1 and 999) and tree species (numerical code between 1 and 99)
can be entered digitally and then stored for each subject tree. Distance and the
magnetic azimuth of a tree can be either specified in reference to the actual
point of measurement or to its site. Tree height measurements are performed
by locating the relevant points (an arbitrary point on the tree trunk for distance
measurements, others at the base and top of the tree for recording the angle of
slope). The stem diameter is determined optically with the aid of a graduated
scale. All values can be stored either directly or they can be digitally transmitted
to the system. The stored data can be transferred to a PC via a connecting cable
or can be printed.
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Figure 3-22. Laser dendrometer (a) and graduated dial in the right ocular, for angle-count
sampling and diameter measurements (b). 1. Push-button control for entering tree species; 2.
Push-button control for entering tree number; 3. Push-button control for program selection
4. Push-button control for “measurement”; 5. Visor mark; 6. Scale for angle-count sampling:
1:50; 7. Optical-diameter scale, 0–100 cm, accuracy ±1 cm (verified for a distance of 20 m
to the object)

Table 3-1. Unit functions of laser dendrometers

Model LEDHA 100 LEM 300W LEDHA Geo

Enter tree species + + +
Enter tree number + + +
Distance, direct + + +
Distance, reduced − + +
3-point tree height + + +
2-point tree height − + +
Angle of slope − + +
Azimuth + − +
Diameter − − +

At present, three models of the instrument are available. The LEDHA 100
is primarily suited for dendrometric records on individual trees or in sampling
studies for forest inventories, whereas the LEM 300W is provided with excel-
lent geodetic menus. The third model, LEDHA Geo, is a combination of the
LEHDA 100 and LEM 300W. The units’ functions are depicted in Table. 3-1.
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9.2 Criterion 400 laser dendrometer

The dendrometer incorporates a ranging facility which makes use of laser tech-
nology to determine the distance between the instrument and the object. When
coupled with a telescopic sight and a graduated reticle, it allows the measure-
ment of tree diameters from a remote position. The dendrometer consists of a
laser-range sensor, a fluid-tilt sensor, and a fluxgate compass. The entire data
capture process is conveniently carried out by a single operator, since the Cri-
terion stores data, which are downloaded to a computer or similar data storage
device.

9.3 Digital hypsometer forestor vertex

The Swedish Forestor Vertex is a new measuring instrument used to determine
distances, heights, and angles (Figure 3-23). The unit is based on the ultra-
sonic determination of distance, as well as the measurement of angle slope.
It calculates the object’s height from both measured values. The instrument
is comprised of two components: the actual measuring device and the ultra-
sonic transponder, DME 201. The Forestor Vertex can also be used without the
transponder. In that case, the distance to the measured object must be entered
by hand.

If there is a natural source for ultrasonic waves during measuring, distances
cannot be measured with the Vertex. In consequence it is not possible to mea-
sure tree heights, especially in tropical natural forests, with some species of the
fauna-emitting ultrasonic waves.

Figure 3-23. Digital hypsometer Forestor Vertex.
(the hypsometer (left) and the transponder)



Chapter 4

SINGLE-TREE MEASUREMENTS

1 MEASUREMENTS ON STANDING TREES

Age, diameter, basal area, total and merchantable height, total and merchantable
volume, stem form, bark thickness and growth are important single-tree
characteristics, which generate information about the growing stock of stands.
They may include other tree characteristics, such as species, crown form,
branchiness and damage caused by insects and pathogens.

1.1 Age

The age of a tree is defined as the period of time which elapsed since germi-
nation and in some cases, especially in commercial forestry, since the time of
planting. On trees with recognizable annual layers of wood, age can be deter-
mined either by felling the tree, counting the number of annual rings at stump
height and adding the estimated period of time the tree requires to reach stump
height, or by counting the number of rings on increment cores extracted at
breast height or lower, with the aid of an increment borer, and adding the esti-
mated number of years required to reach this point of extraction, or by counting
the number of internodes, whenever identifiable, for example in poplars and
some uninodal conifers.

False rings are formed when a dry spell during the growing season induces
the formation of latewood and is followed by a period of high rainfall, which
is conducive to the formation of earlywood. On stem discs false rings can be
identified more easily than on increment cores (see Chapter 9, section 2.2). The
age is overestimated when false rings are incorrectly identified as true annual
growth layers. In exceptional cases, for example under extremely dry weather
conditions or on damaged trees, no distinct growth layers may be visible, and
the age is underestimated. The estimation of the age of mature trees, obtained
from ring counts on increment cores, is usually difficult and inaccurate because

63
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of off-center boring and the presence of false rings. On the other hand, in many
instances, missing rings can occur either due to senescence or because of the
effect of environmental pollution or pathogens stresses. In order to eliminate
these error sources, it is necessary to synchronize the annual ring series simi-
larly cross-dating in dendrochronological studies (see Chapter 9, Example 9.1
and Figure 9-3).

1.2 Diameter and basal area

In nursery and regeneration studies, the diameter of a plant is always measured
at its base and is described as collar diameter. In forest stands, tree diameter
usually refers to the over bark diameter at a fixed distance from the base of the
tree. In most countries, the point of measurement is located at 1.30 m above
ground level, but a height of 4.5 ft(= 1.37 m) is used in the USA and a height
of 1.2 m in Japan and Korea. The relevant diameter is described as breast height
diameter. Throughout this book, the International Union of Forestry Research
Organizations (IUFRO) recommendation to use the symbol d for breast height
diameter is applied in equations, the notation dbh is occasionally used in the
text. In addition the following symbols are used:
• The subscripted diameters do.b. and du.b. refer to the over and under bark

breast height diameter, respectively
• The subscript i added to the lower case letter di denotes the over or under

bark stem diameter at a height of i m above the base of the tree
• The subscript i% is used to indicate a point of measurement at i% of the tree

height above the base of the tree
The following rules for measuring breast height diameter were formally
adopted by IUFRO:
• On slopes, the diameter is measured on the uphill side of the tree
• In tropical forests, the zero reference mark is located at some point above

the buttress of the tree to eliminate the variability caused by excessive butt
swell. In absence of fixed rules, the exact position varies with operators and
regions, but in many cases the point of measurement is located well above
1.3 m.

• In the case of irregular stem cross sections, for example, due to protruding
branch stumps, two diameters are measured, at a cm above and below the
correct position respectively. The average of the two readings estimates the
true diameter

• In the Austrian National Forest Inventory, the rules for measuring diameters
have been modified for crooked stems.
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Figure 4-1. Locating breast height.

• The rules, although formally adopted by member institutes of IUFRO, are not
universally applied. Bruce (1980) summarized commonly used definitions
for the base of the tree:
• An average derived from measurements at different points around the tree
• The base of the tree is synonymous with root collar
• The measuring position is located on the uphill side
• The measuring position is located 4.15 cm beneath stump height

Figure 4-1 illustrates the rules applied in Germany and some other European
countries. They make provision for trees growing on slopes, for trees with irreg-
ular bole shapes at breast height, for leaning and forked trees and for trees with
excessive butt swell.

The basal area of a tree is defined as the cross-sectional area of the stem,
either at breast height or at a specified height above the base of the tree. It is
either derived from the tree diameter, measured with a caliper, or from the stem
circumference measured with a tape. In both cases, the calculation assumes a
circular shape of the cross section of the stem. An elliptical cross section occurs
occasionally:

1. In regions with a prevailing wind direction either during the growing
season or throughout the year. It may induce an elliptical cross section
of the crown with the longest axis coinciding with the dominant wind
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direction. The radial increment along the perimeter of the stem and cor-
responding crown radius are correlated, possibly because of the impact
of the eccentricity of the live crown on the transport of photosynthate.

2. It occurs on steep slopes, since the longest axis of the cross section tends
to coincide with the direction of slope.

3. When trees are planted in a rectangular spacing pattern, with a large
distance between and a much shorter distance within the rows. The effect
of this spacing pattern should not be exaggerated. In Eucalyptus grandis
Bredenkamp (1982) did not detect a statistically significant effect of such
planting patterns on the ratio of the stem diameter in the direction of the
planting rows over that at an angle of 90◦. Similar results were obtained
in Germany (Akça 1995).

The cross-sectional area is usually calculated as the area of the circle, which
corresponds with the recorded stem diameter. On elliptical stem cross sections,
the resultant error may be reduced by measuring the stem diameter from two
directions, one in the direction of the longest axis of the ellipse and the other at
an angle of 90◦ to the former.

Several studies have been undertaken to examine the accuracy of breast
height diameter measurements. Kennel (1959) compared the basal area esti-
mates of single trees, obtained from tape and caliper measurements. The former
were about 2% above those obtained with the caliper. The standard deviation
of the sampled diameter distribution was not affected by obtaining two caliper
readings, at an angle of 90◦ to one another. Gregoire et al. (1990) investi-
gated the accuracy of basal area estimates on stem discs. The average error,
based on a single-tape measurement, was +3.1%, that based on two caliper
measurements at an angle of 90◦ to one another was −2.5%. Noncircularity
had a profound effect on the observed bias. The positive bias associated with
calipers and tapes produced biased growth estimates, if the trees were mea-
sured with calipers on the first and with tapes on the second occasion. Chacko
(1961) compared cross-sectional area estimates for individual trees, based on
a single randomly selected diameter, on the average of the largest diameter and
a second one at an angle of 90◦ to the former, on the geometric mean of a ran-
domly selected diameter and a second one at an angle of 90◦ to the first one
and on the average of the smallest diameter and a second one at an angle
of 90◦. All four estimators produced positively biased estimates of the cross-
sectional area.

Matern (1956) characterized out-of-roundness of stem cross sections in
terms of convex deficit and isoperimetric deficit. When a diameter tape is tightly
wrapped around a tree with an irregular stem form, it encloses an area which
is denoted as its convex closure. The measured circumference is always smaller
than the true circumference and the true cross-sectional area is smaller than
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the estimated area. The difference is called convex deficit. An isoperimetric
deficit occurs when a convex closure is not a circle, but can be described by
mathematical functions. When the corresponding area is calculated as a cir-
cle, but derived from the circumference, the true area is overestimated because
the circle represents the geometric figure with the smallest circumference for a
given area and conversely, with the largest area for a given circumference. The
difference was described as isoperimetric deficit. Müller (1958) investigated
the effect of the isoperimetric deficit on the estimated basal area, Biging et al.
(1988) that of eccentricity on the basal area and basal area increment, with
estimates being obtained from one diameter measurement on each cross section
and from the mean of two measurements at an angle of 90◦. The commonly
used estimators usually overestimated the basal area. When using a single-
diameter measurement, the length of the minor axis of the ellipse produced a
more accurate estimate of the cross-sectional area. Goetz et al. (1987) tested
four photographic techniques to measure the cross-sectional areas of stem discs
on standard prints. For slow-growing species, black-and-white enlarged prints
of black-and-white photographs of unplaned discs produced the best results.

1.3 Tree height

Tree height is required to determine the site class or site index of a stand and to
estimate the volume of standing trees. Total tree height is defined as the distance
between the top and base of the tree, measured along a perpendicular, dropped
from the top (see Figure 4-2).

Figure 4-2. Defining tree height.
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In the case of perfectly straight stems of exactly vertical trees, tree height
and stem length are identical. The merchantable height uses an upper point
of measurement, which coincides with the limit of merchantability. The latter
depends primarily upon the minimum over bark or under bark stem diameter,
which may vary from country to country.

1.4 Stem form

The following methods may be applied to either determine or estimate age-
related form changes:
• Measurement of a series of upper-stem diameters – at different points in time

– with the aid of Bitterlich’s telerelascope, the Barr and Stroud dendrometer
or other recently developed electronic instruments

• Measurement of dbh, height and a single upper-stem diameter in combination
with a function, which predicts the breast height form factor. The measure-
ments are to be carried out at different points in time within the rotation
period. The Finnish caliper is a useful instrument to measure upper-stem
diameters up to a height of 7 m above ground (Rhody et al. 1984).

• Measurements on representative trees selected for stem analysis. The present
and past under bark diameters at different distances from the top of the tree
serve to reconstruct the form factor or form quotient k years ago or to fit an
equation with age as independent and a form variable as target variable.

• Taper functions are used to predict upper-stem diameters as a function of dbh
and height. They produce estimates of dbh and height-related form changes,
but give no information about age-related changes, since the effect of site
and stand density on dbh and height is ignored

1.4.1 Stem profile and taper

The stem profile of a tree describes the decrease of the over or under bark stem
diameter with increasing height above the base of the tree. The stem curve of a
specific tree is obtained by plotting the height at i m above ground over the cor-
responding diameter, for different positions along the stem. In taper modeling,
however, these variables are scaled by dividing the stem diameter at i m by dbh
and the corresponding height by total tree height (Figure 4-3). Others express
the point of measurement in terms of the absolute or relative distance from the
top of the tree.

To describe the stem curve by mathematical functions, the bole is some-
times subdivided into a lower, a central and an upper section. The solid,
represented by the lower section, up to a height of approximately 10% of the
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Figure 4-3. Stem profile.

tree height, resembles a truncated neiloid, the central section is a truncated
quadratic paraboloid. The upper section is either approximated as a cone or
as a quadratic paraboloid. Although this general pattern is apparent in open-
grown as well as in stand-grown trees, the stem profile of the individual tree
is affected by its social position within the stand as well as site, silvicultural
treatments, such as stand density, planting espacement and fertilizer, and by
genetic parameters.

Taper is defined as the rate of decrease of the diameter of the bole per
unit increase in height above the base of the tree. For practical purposes, it
is expressed in centimeter per meter stem length, usually for the stem section
between breast height and the merchantable upper diameter. This definition
assumes a conical stem profile within this stem section and ignores the nonlin-
ear rate of decrease of the diameter within the individual stem. Taper is closely
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related to the growing space available to the individual tree and is extremely
high for solitaries. Competition amongst trees reduces the rate of diameter
growth, but has a negligible effect on height growth, with the exception of over-
crowded stands. A relatively high rate of decrease can, therefore, be expected
in widely spaced and heavily thinned stands. Taper is also affected by the appli-
cation of fertilizers, which tend to stimulate radial growth in the upper part of
the stem section, but below the base of the live crown, more severely than in
the lower stem section.

1.4.2 Stem form theories

Around the end of last century, several forest scientists proposed theories to
explain the characteristic form of trees. Metzger (1894) hypothesized that the
shape of the stem is controlled by lateral pressures, which are centered at a
fixed focal point within the live crown. The stem was thought to be a beam
of uniform resistance within the stem section extending between butt swell
and this focal point. In that case, the assumption of a cubic paraboloid holds
true. Metzger’s hypothesis assumed that the relationship between stem diame-
ter and height above ground can be expressed by the equation d3 = b0 + b1h.
Hohenadl (1923) suggested that crown weight rather than wind-controlled lat-
eral pressure was the dominant factor controlling stem form. Jaccard (1912)
proposed the water conduction theory, which stated that the growth distribu-
tion within the stem is controlled by the physiological necessity of water con-
duction. Larson (1963) formulated the hormonal theory, which emphasized the
role of growth regulators for the growth distribution within the tree. There is no
convincing evidence that any of the proposed theories explains the form of the
stem satisfactorily.

Gray (1956) conducted empirical studies and concluded that the require-
ments for strength, formulated by Metzger, and expressed by a cubic paraboloid
were unnecessarily stringent and produced a tree with a greater resistance
against lateral forces than required by the root system, possibly because the
roots are embedded in relatively weak material. The author proposed the
quadratic paraboloid d2 = b0 + b1h which has 20% less volume than a
cubic paraboloid and was considered to satisfy the strength requirements
of the tree. Newnham (1962, 1965), who compared the stem form of open-
grown with that of close-grown trees of various species, found that the form
of open-grown trees resembled a cone, but occasionally it was neiloid-like.
The author’s studies confirmed the suitability of Gray’s model of a quadratic
paraboloid to describe the stem form of conifers in British Columbia. The
coefficient b1 was not affected by age and site index and could be satis-
factorily interpreted in terms of its relationship with the combined variable
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d2/h. Burkhart et al. (1985) fitted quadratic as well as cubic paraboloids to
loblolly pine. In most trees, the model of a quadratic paraboloid produced a
close fit.

Some trials under controlled conditions have been conducted to obtain a
better understanding of stem form changes, due to crown characteristics and
silvicultural treatments. In a pruning trial in loblolly pine, Labyak et al. (1954)
regressed the cross-sectional area growth at nine points along the stem on
branch characteristics. Those variables, which expressed the amount of foliage
above the point of measurement, were highly significant predictor variables. To
some extent, these studies supported the contention that the development of the
tree form is controlled by strength requirements of the main stem, as well as by
physiological responses.

1.4.3 Form factors and form quotients

The form factor of a tree or stem is defined as stem volume, expressed as a
proportion of the volume of a cylinder of the same height, with a diameter
equal to the stem diameter at the selected reference point:

f = stem volume
cylinder volume

The different reference points being used, produce different types of form fac-
tors: The absolute form factor is based on the diameter at the base of the tree
as a reference point, the false or breast height form factor (f) locates this point
at 1.3 m above the base of the tree and the true form factor (λ), which is also
known as Hohenadl’s form factor, is based on a reference point which coincides
with a height of 10% of the tree height above ground.

Because of the erratic distribution of radial growth within the annual ring
in the lower stem section, due to butt swell, the absolute form factor is seldom
if ever used. The breast height form factor is conveniently used for compu-
tational purposes, for example, to estimate the stem volume from tree basal
area, tree height and form factor. The true form factor has the advantage of
more appropriately reflecting the average taper of the stem, but necessitates
the measurement of the stem diameter at the 10% reference point. The latter
cannot be reached with a caliper or tape, if the tree is higher than 17–18 m,
and then requires the measurement of the tree height. In Germany, tree vol-
ume is expressed either as the total tree volume or as the merchantable volume,
up to a fixed upper-stem diameter of 7 cm over bark, both including branch
volume. Alternatively, tree volume is expressed as either the total or the utiliz-
able volume of the bole. The corresponding false form factors express the ratio
between these volumes and that of a cylinder with breast height as the reference
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point. Furthermore, the volume may either represent the over or under bark vol-
ume. The total tree volume, including branches, is of considerable interest and
increasing importance when trees are grown for the production of wood for
energy.

The form quotient of a tree is similarly controlled by the rate of decrease in
the stem diameter and is expressed by a single number. The false form quotient
is defined as follows:

q0.5h = d0.5h

d
A fixed reference point of 5 m above the base of the tree in the numerator was
used by Mitscherlich (1942), to construct tables for estimating the merchantable
tree form factor from the form quotient:

qM = d5

d
The true form quotient

η0.5h = d0.5h

d0.1h

can be applied to estimate the true form factor. Krenn et al. (1944) related the
true form factor to the true form quotient d1/2h/d0.1h:

λ = −0.038 + 0.777.
d0.5h

d0.1h

Hohenadl’s form quotient (qH) is defined as

qH = dbh
d0.1h

is greater than one for trees with a height of less than 13 m. Because breast
height diameter is measured at a fixed and d0.1h at a variable height, this form
quotient is influenced by age. Hohenadl’s form quotient, however, is useful for
converting the true form factor of a tree into its false form factor. Girard (1939)
introduced the form quotient:

qG = du(17.3 ft)
do.b.

.100

The upper diameter is measured at 17.3 ft and coincides with the position of
the thin end of the bottom log, with 1 ft being added to adjust for stump height
and 0.3 ft to allow for log trimming. It was used as a predictor variable for
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the construction of volume tables and assumed that there is little variation in
the taper above the first log of trees with the same breast height diameter and
merchantable height. Jonson (1910, 1913) proposed the function

yi = b1
log (b2 + xi − 2.5)

b2

with yi = diameter at the i th percentage distance from the top of the tree,
xi = percentage distance of the point of measurement from the top of the tree.

Behre (1923) examined the validity of Jonson’s formula for describing the
stem taper and proposed the equation

yi = xi

b0 + b1xi

Trees were grouped in form classes, defined by the diameter at 50% of the
height above breast height, divided by dbh. The parameter estimates were har-
monized to remove inconsistencies amongst the taper curves.

Example 4.1 The following bole diameters were measured on a Pinus pat-
ula tree with a dbh of 45.6 cm, a height of 27.4 m and a total stem volume of
1.782 m3:

Height Diameter Height Diameter Height Diameter Height Diameter
(m) (cm) (m) (cm) (m) (cm) (m) (cm)

0.3 50.0 6.0 37.7 14.0 30.3 22.0 16.1
1.3 45.6 8.0 35.9 16.0 28.3 24.0 8.7
2.0 43.4 10.0 34.6 18.0 25.6 26.0 3.7
4.0 38.8 12.0 33.0 20.0 21.9 27.4 0.0

The diameters at different relative heights were obtained by interpolation in
order to calculate the true form quotients (TFQ) less than.

i = 10% i = 30% i = 50% i = 70% i = 90%

di % 40.2 35.8 30.7 23.5 7.05
TFQ 1 0.89 0.76 0.58 0.18
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The false form quotient for d50% as upper-stem diameter is 30.7/45.6 = 0.673.
The form quotient with d10% as numerator is 40.2/45.6 = 0.882. The false and
true form factors are:

f1.3(false form factor) = 1.782
π
4 · 0.4562 · 27.4

= 0.398

λ0.1(true form factor) = 1.782
π
4 · 0.4022 · 27.4

= 0.512

1.4.4 Stem profile functions

Ormerod (1973) proposed a power function to describe the profile of stem
sections

di = (A − B) ·
(

t
T

)r

+ B

where A, B = top and bottom diameter of a given stem section, t = distance
between a given point P and the top of the stem section, di = stem diameter
at point P , T = length of stem section and r = exponent. The author also
developed the diameter-point method for modeling the stem profile (Ormerod
1986). The method emphasized the prediction of diameter and height at the two
inflection points of the stem form curve, which acted as joins and demarcated
the three resultant stem sections. The stem profile between two consecutive
points was described by simple functions based on the location of these critical
points, which were arbitrarily set at 20% and 65% of the height. A third point,
located between the previous two, was selected and, together with the joins,
they were used to calculate the coefficients of a simple one-parameter taper
function for each of the sections. The submodel was used to predict the three
diameters within a stem section. Behre’s (1923) hyperbolic function

di = (A − B)t
T − s(T − t)

+ B

where A, B = end diameters, t = distance from the thin end of the stem section
and T = section length, was applied to estimate intermediate diameters. When
d is known for given t , the equation can be solved for s. The section volumes
are then calculated by integration.

In 1973, Ormerod introduced the following taper equation for estimating
the upper-stem diameter:

di = d
(

h − hi

h − 1.30

)b1
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Figure 4-4. Stem profiles, generated by Ormerod’s model.

The coefficient b1 is a stem form parameter which can be estimated by ordinary
least squares. The equation is written as y = b1x with x = (h −hi )/(h −1.30),
y = di/d and fitted to observed data. A value of 1 for b1 generates a conical
stem form, a value of 0.5 produces a quadratic paraboloid and values above
1 produce neiloidal solids. Based on the above formula, the stem profile of a
tree with a dbh of 30 cm, a height of 25 m, and b1 values of 0.8, 1.0 and 1.2,
respectively, are shown in Figure 4-4.

Reed et al. (1985) fitted Ormerod’s (1973) taper function to sample trees
and proposed the following estimator:

b1 = 1 −
(

h
d

− 30
)

/120

The coefficient values 30 and 120 were introduced as fixed quantities, based on
observed p-values and their relationship with the ratio h/d.

In recent years, a considerable amount of research has been carried out to
develop taper functions, which make it possible to reconstruct the stem profile
of a tree of given dbh and height. They are dealt with in Chapter 6.

1.5 Tree volume

The volume of the individual standing trees is usually obtained from the
equation

v = 1/4πd2 · h · f

and is usually estimated from equations either with dbh or dbh and height or
from dbh, height and an upper-stem diameter as predictor variables (Chapter 7).
The volume estimates obtained from these equations or volume tables represent
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averages. Pressler’s critical height and Tor Jonson’s form point method have
been applied to provide direct estimates.

In the early days of forest mensuration, it was suggested to determine the
point along the stem where its diameter was 50% of dbh (Pressler 1865). The
resultant volume formula was based on the approximation of the two stem sec-
tions below and above this point of measurement as a paraboloid and cone,
respectively. Bitterlich (1959) recommended the application of this method,
with Pressler’s critical point being measured with the mirror relascope or with
the telerelascope. Jonson (1928) introduced the concept of form point, which
represents the center of wind resistance and is located at the center of grav-
ity of the tree crown. The relative height above ground for this form point was
used as a predictor variable to estimate the form class for different diameter
classes within a stand. It can be seen as a substitute for the absolute form
quotient. In dense stands, however, the inaccessibility of the form point within
the live crown presents insurmountable problems. The concept was abandoned
in favor of more efficient estimators for stem volume. Schöpfer (1976) recom-
mended to measure two stem diameters, located at breast height and 50% of the
tree height, respectively. The shape of the upper stem section is represented by
a paraboloid and its volume is estimated accordingly. The volume of the central
section may be estimated with Smalian’s formula, whereas the butt section
might be approximated as a cylinder. Alternatively, Bitterlich’s telerelascope
may be used to estimate upper-stem diameters and the Smalian formula applied
for each stem section separately, but this method is too costly for general use.

1.5.1 Importance and centroid sampling

Gregoire et al. (1986) introduced importance sampling to obtain unbiased esti-
mates of the tree volumes, based on a single-diameter measurement at a given
point on the stem. The latter is selected at random, proportional to the esti-
mated volume distribution within the stem, which is determined with the aid of
a proxy taper function. The resultant volume is a biased estimate of the total
or merchantable stem volume. In order to obtain an unbiased estimate, it is
adjusted by a factor, which is calculated as the ratio of the observed over the
estimated cross-sectional area at the point of measurement. The estimator is

v I = v pr ·

n∑

i=1

gi

gi(pr)

n
Where

v I = importance sampling estimator

gi = true (measured) basal area at height i
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gi(pr) = proxy basal area at height i

N = sample size

Wiant et al. (1992) wrote a program in BASIC for determining the point of
measurement on the bole for importance as well as for centroid sampling. The
former requires the selection of a random number between 0 and 1, drawn from
a uniform distribution. The assumption that the bole can be approximated as a
second-degree paraboloid is introduced to generate the proxy function, whereas
a value of 0.5 generates the centroid estimator. The BASIC program consists
of two subprograms, one with stump height, merchantable and total height
as input variables. It is used to determine the sampling position for importance
as well as centroid sampling, the other using the same input variables, but with
the addition of dbh, double bark thickness and sampling method (importance
versus centroid) as inputs. For reasons of simplicity, Ormerod’s taper function
was used as proxy function.

Studies carried out by Wiant et al. (1989) showed that the dendrometry
required to obtain estimates of the same accuracy as that obtained with three-
P sampling can be reduced by as much as 96%. Later studies by Wood et al.
(1990) showed that the best results are obtained when the point of measurement
coincides with the centroid of the bole, i.e., with the point on the stem, which
divides the stem into two sections of equal volume. The latter occurs at a height
of 30% of the total tree height above the base of the tree. This paved the way
for a specific version of importance sampling, which was denoted as centroid
sampling. The formula for this estimator is identical to that of importance sam-
pling, but is based on a fixed value of 0.5 instead of a random number between
0 and 1. This is in line with Van Deusen et al. (1987) who defined centroid sam-
pling as importance sampling at a fixed point on the stem, which reflects the
expected position, resulting from repeated sampling. Because of sampling pro-
portional to size, the majority of the points of measurement used in importance
sampling are located in the lower part of the stem. Wood et al. (1992) noted
two advantages of centroid sampling. No measurements are required within
the upper part of the crown with its poor visibility and tree-to-tree predictions
are more consistent. Centroid sampling has the disadvantage of not producing
unbiased estimates of stem volume, but the above studies carried out by Wood
and Wiant showed that the magnitude of bias is negligible. The position of the
centroid, however, is not estimated accurately, if a poor proxy function is used.
In importance sampling, a poor proxy function has an adverse effect on the
precision of the estimates, but the mean is not affected by the quality of this
function.

In control-variate sampling, the proxy function is used to model the stem
volume. Diameter measurements at points along the bole, selected with the aid
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of a certain probability density function are required to estimate the difference
between the true volume and the volume, obtained from the proxy taper func-
tion. The estimator is

vCV = v pr. + h1 − h2

n

n∑(
gi − gi(pr.)

)

where h1 and h2 refer to the section of the bole for which the volume is esti-
mated, for example, h1 = total or merchantable height, h2 = stump height.
Hence, contrary to importance sampling, which is based on a multiplicative
adjustment of the proxy volume, the control-variate estimator is based on addi-
tive adjustments.

Wiant et al. (1995) compared the centroid method with the Newton, Huber,
Bruce and Smalain formula to estimate the volume of butt logs and evalu-
ated the results in terms of bias and tolerance intervals. Valentine et al. (1995)
compared importance sampling with control-variate sampling to estimate the
bole volume or that of parts of the stem, for example, between stump height
and merchantable height. Kleinn (1995) compared importance sampling with
control-variate sampling to estimate the volume of single-standing trees, based
on single as well as multiple measurements along the stem and different taper
proxy functions.

1.6 Bark thickness

Bark is usually a waste product, sometimes a utilizable by-product and occa-
sionally, a main product with timber as by-product. Black wattle plantations
in South Africa and South America, for example, are planted primarily for
the production of tannins, extracted from the bark. The thickness of the bark
is a genetic characteristic and for a given species or provenance is related to
age, diameter and site. It can be determined accurately by felling the tree and
extracting a cross section for further measurements with a ruler.

Bark thickness is frequently converted into a bark factor. Meyer (1942)
assumed a linear relationship between the over and under bark diameter within
a given stand, which implies a linear relationship between bark thickness and
dbh, and defined the bark factor k as k = du.b./do.b., Zöhrer et al. (1973) used
its inverse. A ratio of means estimator is normally used to estimate k.

In Swedish studies, a regression estimator for bark thickness was proposed,
with relative diameter at a given point above the base of the tree as predictor
variable, habitat and site index as covariates. (Johnson et al. 1987). Swedish
studies, however, indicated that a regression estimator with logtransformed
bark thickness as dependent and logtransformed diameter as predictor variable
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produces better results (Oestlin 1963). In similar studies, Johnson et al. (1987)
proposed an equation for estimating relative bark thickness (RBT) at height i
from site index (SI), a dummy variable representing habitat (H) and the rel-
ative diameter at height i (RDi ). The prediction equation used H, SI, H.SI,
RDi .H , SI.RDi and H.RDi .SI as predictor variables. In addition, a non-
linear three-parameter model, based on Grosenbaugh’s equation, was tested.
Deetlefs (1957) introduced bark thickness to estimate the bark weight of black
wattle. The prediction equation, with bark thickness at height i being expressed
as a ratio over dbh, was as follows:

w = b ·
(π

2

)
· BTi

di
· d2

1.3 · h

where w = bark weight and b = parameter of the equation. Schönau (1970)
developed an equation to estimate the timber yield of black wattle per hectare
from bark weight, mean bark thickness at breast height, mean dbh and mean
height. Bark thickness was related to latitude, site index mean dbh.

Example 4.2 The following regression equation was fitted to predict the
under bark diameter of P. patula from the over bark diameter and upper height:

du.b. =− 1.694 + 0.9724do.b. − 0.000686d2
o.b. + 0.2021hu − 0.00653h2

u + 0.00156do.b.hu

The equation is used to determine the estimated bark thickness at various
heights above ground (Figure 4-5).
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Figure 4-5. Relationship between diameter over bark, upper height and bark thickness.
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1.7 Tree crown and foliage

Crown characteristics are useful to predict growth responses in spacing, thin-
ning and fertilizer trials and to relate growth to soil moisture availability. They
are frequently required for growth modeling with tree growth being estimated
from crown and other tree characteristics. These studies emphasize the close
relationship between the size of the crown and the amount of photosyntheti-
cally active foliage. The general crown morphology of a spruce tree and the
calculation of crown parameters is illustrated in Figure 4-6. The crown radius
is defined as the distance between the center of the bole and the outer edge of
the crown, usually measured at the position of maximum width. Crown width is
usually defined as twice the radius. In many species, the outer edge can be iden-
tified accurately, in others, for example, in Eucalyptus and in Southern pines
such as P. patula and P. elliottii this may prove more difficult. To facilitate the
determination of the crown diameter, a crown mirror may be used to project the
crown onto the ground.

The increase in crown radius with increasing tree age is primarily controlled
by competition from neighboring trees. In dense stands, crown excentricity is
quite high, because of unequal competition from surrounding trees. For this rea-
son, the crown radius is usually measured from 4 or more than four directions.

Figure 4-6. Crown morphology of Picea abies (Burger 1939).
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Huber 1987 measured the crown radius from 8 instead of 4 directions. Röhle
et. al. (1985) evaluated the accuracy of the estimation of the horizontal crown
projection of the single tree, based on the measurement of 32, 16, 8, 4 and 2
radii per tree, and for different assumptions concerning the spatial distribu-
tion of trees within the stand. Between 4 and 8 radii per tree were sufficient to
estimate the crown projection for the entire stand, whereas between 8 and 16
radii per tree were required to obtain reliable estimates for individual trees.
The same author compared the accuracy of crown projection estimates, result-
ing from plumb-line projections and from subjective, visually controlled pro-
jections, respectively (Röhle 1986). The latter tended to produce inaccurate
estimates.

For mapping of crown projections, the crown radius is measured from ran-
dom directions and recorded as polar coordinates (Figure 4-7).

In growth studies, many researchers prefer to use live crown length instead
of crown diameter to represent the tree crown. On standing trees, it is conve-
niently measured with the hypsometer.

In crown studies of six coniferous species, Biging et al. (1990) defined
the live crown length as the distance between the apex of the tree and the base

Figure 4-7. Mapping of horizontal crown projections.
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of the live crown, whereas similar studies in Germany specify that the base of
the live crown should coincide with the whorl which contains at least three
live branches. In other studies, the base of the live crown was defined halfway
between the first whorl with one or more than one live branch and the whorl
with at least four live branches (van Laar 1969, 1972).

In such growth studies, crown length is normally expressed as a crown ratio,
i.e., as the length of the live crown length calculated as a per cent of the total
tree height. It has been found to be a function of dbh, height, stand density and
age. Dyer (1987) proposed the following regression equation for estimating the
crown ratio (CR) of loblolly pine:

C R = 1 − e
(
(b0+b1/A)· d

h

)

Crown ratio decreases with age, whereas the variable d/h controls the effect
of crown ratio on taper. Holdaway (1986) developed a model for predict-
ing the crown ratio from tree and stand variables. At tree level, dbh was the
most suitable measure of the competitive status of the subject tree. The final
model was

C R = b1

(
1

1 + b2G

)

+ b3

(
1 − e−b4d

)

where G = basal area per hectare and d = diameter of the subject tree.
The coefficient b1 estimates the crown ratio in the case of complete absence of
competition, b2 measures the rate of decrease of the crown ratio with increasing
competition. The effect of competition, at stand level, was expressed by the
quantity b1/(1 + b2G).

Crown surface area (CSA) is defined as the outer surface area of the live
crown. Normally, it is assumed that the crown of conifers can be represented
either as a cone or as a paraboloid. The crown surface, based on the assumption
of a paraboloid, is calculated as follows:

C S A = πCW
12C L2

(

4C L2 + 1
4

CW 2
)3/2

where C L = crown length and CW = crown width. The calculation of the
surface area based on the formula for a paraboloid, assumes that the maximum
crown width is found at the base of the live crown. A more accurate estimate of
the crown surface area is obtained by measuring the crown radius on different
points along felled sample trees (Dong et al. 1985). The crown surface area
expresses the area of photosynthetically active needles, although the rate of
photosynthesis per unit leaf area is affected by the position within the crown
and is higher for the light crown than for the shaded crown section. In studies
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to assess the effect of pollution stresses on growth, volume growth per unit
crown surface area is a useful target variable (Kramer 1986).

Crown volume is calculated from crown radius and crown length. It is less
suitable to predict growth than crown surface area since, the inner core of
the crown does not contain photosynthetically active foliage. Crown biomass
expresses the sum of the biomass of branches and foliage and is a useful tree
characteristic, which is closely related to the total photosynthesis of the tree,
particularly when the live crown is partitioned into sections expressing the
degree of shading.

1.8 Leaf surface area, leaf weight and sapwood area

Leaf surface area is an important parameter in physiological studies because
of its close relationship with photosynthesis. Waring et al. (1980) examined the
relationship between leaf area and the rate of volume growth of single trees.
The latter was obtained from estimates of the leaf surface area per unit leaf bio-
mass and from the estimated leaf biomass per unit sapwood area. The observed
ratio, basal area growth to sapwood area, was consistent with that of volume
production to leaf area. Vose (1988) modeled the leaf area distribution within
the live crown of loblolly pine with the aid of the two-parameter Weibull distri-
bution. The following function was used:

y = T L A

(
α
(
depth(α−1) · e−(depth/β)α

)

βα

)

where y = projected leaf area, T L A = total leaf area m2/tree, depth =
depth within the live crown and α, β = Weibull parameters. Several methods
have been developed to determine the surface area of fascicles and the leaf area
of the single tree. Beets (1977) compared four methods to obtain the fascicle
surface area of P. radiata. The most accurate estimates were obtained from a
function; which used the square root of the fascicle volume and its length in
addition to a shape coefficient. Davies et al. (1980) investigated and described
the glass bead method by which needles were coated with glass balls in a flu-
idized bed. Swank et al. (1974) compared three methods for estimating the
fascicle surface area in eastern white pine: diameter-based stratified two-phase
sampling, ratio-of-means estimator, and a regression estimator, both obtained
in two-phase sampling. Stratified two-phase sampling produced the best results.

Partially due to the high cost of direct measurements, models have been
constructed to estimate leaf area from other characteristics. Johnson (1984)
proposed a method for estimating the total surface area of pine needles, which
required the measurement of the volume of the needle sample, displaced after
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immersion in water, the cumulative needle length and the number of needles
per fascicle. The needle surface area was calculated from

A = 2l
(

1 + π

n

)
·
√

vn
πl

where v = needle volume, l = cumulative needle length and n = number
of needles per fascicle. Wood (1971) investigated the solid shape of 1-year-old
fascicles of P. radiata. Based on the approximation as a cylinder, formulae were
derived to express the surface area of single needles as well as for 2-, 3-, 4- and
5-needled fascicle types as a function of needle width and length. Ohmart et al.
(1986) applied the following equation for estimating the needle surface area of
P. radiata from needle weight:

ln(S A) = b0 + b1(age) + b2 ln(weight) + b3(DC)

where S A = surface area and DC = depth in canopy. Bacon et al. (1986)
developed equations for hardwood species to predict leaf area from basal area.
Shelton et al. (1984) measured the fascicle area in seven loblolly pine stands
of different ages. Fascicle samples of two fascicle ages were obtained from
the upper and lower canopy, respectively. Log fascicle area was subsequently
regressed on log fascicle weight. The fascicle surface area:fascicle weight ratio
was greatest for currently produced needles in the lower canopy and highest for
the older fascicles in the upper canopy.

The surface area of a fascicle, the total leaf surface of a tree and the leaf area
index (LAI), defined as the leaf surface area per hectare, expressed as a propor-
tion of the corresponding ground area, are closely related with the production
of photosynthate. The leaf surface is also closely correlated with the sapwood
area of the single tree and, for this reason, many studies use the sapwood area
to substitute leaf area or other characteristics. Long et al. (1988) investigated
the relationship between leaf area (LA) of lodgepole pine and breast height sap-
wood area (SA) as well as distance from breast height (DIST) to the center of
the live crown as predictors

L A = b1S Ab2 DI ST b3

A possible effect of stand density and site index was accounted for by their
correlation with sapwood area. Studies by Kendall et al. (1978), which were
carried out in four tree species, indicated that sapwood area estimates crown
biomass better than breast height diameter. Long et al. (1981) found the sap-
wood cross-sectional area at any point along the bole to be linearly related to
the amount of foliage above this point. In large trees, however, the sapwood
area, which is required for the supply of water to the transpiring foliage, is
insufficient to provide the necessary mechanical support for the stem. Sapwood



Volume, Log Classes and Weight of Felled Trees 85

and heartwood together however determine stem form in response to the need
for mechanical support. Albrektson (1984) applied destructive sampling pro-
cedures to obtain foliage mass and sapwood basal area in 153 Scots pine trees
from 16 stands in Sweden, and applied regression analysis with foliage weight
as the dependent and mean annual ring width in the sapwood zone as the pre-
dictor variable. The within-stand correlations were high, but there were sub-
stantial differences amongst the regression coefficients of different stands. In
Abies balsamea and Picea rubens, Marchand (1984) found evidence of a lin-
ear relationship between sapwood area at breast height, as well as immediately
below the live crown and the projected leaf area, as well as foliage mass. Paine
et al. (1990) examined the regression of foliage surface area on sapwood area as
a follow-up of studies, which showed that the ratio basal area growth to the sap-
wood cross-sectional area was an indicator for tree vigor. Blanche et al. (1985)
found a linear relationship between the sapwood area and leaf area of loblolly
pine. Replacing sapwood area at breast height by that at the base of the live
crown improved the predictive ability of the equation. Sampling studies dur-
ing May and August, indicated that the highest correlation coincides with the
time of the highest leaf biomass production. Dean et al. (1986) found a linear
relationship between the sapwood area at the base of the live crown and leaf
area of P. contorta. The influence of the development stage (saplings versus
mature trees) on the slope of the regression line could be removed by regress-
ing log (sapwood area) on log (leaf area × distance between cross section and
the crown center).

2 VOLUME, LOG CLASSES AND WEIGHT
OF FELLED TREES

When no volume tables are available, the total or merchantable volume has to
be measured on felled trees, in order to estimate the volume of the mean tree
within a given stand or to estimate the stem volume for each diameter class
separately. Such direct measurements may also be necessary when regional
volume tables tend to produce biased volume estimates. In general, however,
measurements on felled trees are necessary to construct volume tables and to
estimate the parameters of tree volume equations. Weight measurements are a
common practice for measuring the quantity of roundwood, utilized as mining
timber, pulpwood and for manufacturing chipboard and other similar products.
In these cases, the sales price expresses the price per tone as the unit of weight.
In other instances, the timber is sold on the basis of its roundwood volume, but
the air- or oven-dry weight is measured and subsequently converted to volume.
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2.1 Volume

2.1.1 Roundwood volume

The xylometer, which can be used to measure the volume of logs, is a tank filled
with water, equipped with a gauge that determines the change of the water level
inside the tank. The single log is submerged, with the calibrated gauge being
used to read off the volume of displaced water. Xylometer measurements pro-
duce accurate estimates of log volumes, although the estimates are not com-
pletely unbiased, as some water is absorbed by the log. The main drawbacks
are the necessity to build a sufficiently large mobile tank and the high cost of
transport.

Planimeter measurements are an acceptable alternative for these direct mea-
surements. The cross-sectional area at a given point of measurement of i m
above the base of the tree is plotted over the point of measurement. The area
under the stem curve is determined with a planimeter and multiplied by an
appropriate scale factor to obtain the tree volume.

A less accurate, but more cost-efficient method, is to subdivide the stem into
sections, usually of a fixed length, for example, 1 m for trees below 12 and 2 m
for those more than 12 m high. Each of the sections is envisaged as a truncated
cone with the volume being obtained by multiplying the cross-sectional area
at the midpoint, by the length of the section. The stem volume is obtained by
adding the volume of the top section to the sum of the volumes of the equally
long sections

v = π

4
· l ·

(
d2

1 + d2
2 + . . . d2

i . + . . . . . . . . + d2
k

)
+ π

4
· lt · d2

t

where di = diameter at the midpoint of the i th section, l = section length,
dt = diameter at the midpoint of the top section, lt = length of top section
(Figure 4-8).

Alternatively, the stem is subdivided into sections of equal relative lengths.
Hohenadl (1936) recommended sections of one-fifth the stem length. A further

Figure 4-8. Sectionwise measurements on felled trees.
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subdivision may be necessary for the lowest section, because it resembles a
truncated neiloid, in which case the estimate is negatively biased. Either this
subdivision, or the application of the Simony formula may be worthwhile for
high-priced timber, e.g., used for veneering.

For practical purposes, these tedious measurements are unnecessarily
costly. Formulae have been suggested and are widely applied to estimate
the total and merchantable volume of felled trees from a limited number of
diameter measurements:

Huber v = gml

Smalian v = gu + gl

2
· l

Newton v = gu + 4gm + gl

6
· l

Hossfeld v = 3g1/3 + gl

4
· l

Simony v = 2g1/4 − gm + 2g3/4

4
· l

Hohenadl v = g0.1 + g0.3 + g0.5 + g0.7 + g0.9

5
· l

With

gm = cross-sectional area at the midpoint,
g1, gu = cross-sectional area at the lower and upper end,
G1/3, g1/4, g3/4 = cross-sectional area at 1/3rd, 1/4th, 3/4th of the stem and
G0.1, g0.3, . . . , g0.9 = cross-sectional area at 10%, 30%, . . . , 90% of the total

length.

Bruce (1982) compared volume estimates of butt logs obtained from measure-
ments at both ends, from measurements at the midpoint and at the small end as
well as some intermediate point. The best volume equation was

v = 0.00007854 · L ·
(

0.25 · DL2 + 0.75 · DS2
)

where L = length of butt log in meters, DL = diameter at thin end in cm and
DS = diameter at large end in centimeters. Grosenbaugh (1952) proposed the
following equation to estimate the volume of butt logs

v = 0.00007854 · DL2 ·
(

DS · DL+ (DL − DS)2 /k
)

with k = 2 for a paraboloid, k = 3 for a cone and k = 4 for a subneiloid. Bruce
(1987) combined Grosenbaugh’s formula for estimating the butt-log volume
with Baisiger’s modification and proposed the formula

v = 0.00007854 · DL2 · L ·
(

DS/DL + c ·
(

1 − (DS − DL)2
))
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with c = −0.96. Anuchin (1970) compared the estimates of the Huber,
Smalian, Simpson and Gosfeld formulae, applied to single-stem sections
with their true values obtained from xylometer measurements. In pines, the
mean deviation varied between −1.2% for the Huber formula and +0.3% for
the Smalian formula. Deviations of the same magnitude could be expected for
the Hohenadl formula. The errors associated with the latter tended to be nega-
tive for the upper and lower section, but the bias for the entire tree was below
−2%. The Huber, Smalian and Newton formulae produce unbiased estimates,
if the stem represents a cylinder, a quadratic or a truncated paraboloid (Akça
et al. 1982). The Huber formula produces a negative error for the cone and
neiloid, the expected errors being 25% and 30%, respectively. For these solids,
the Smalian formula is positively biased and has the additional disadvantage of
being affected by butt swell. Biging (1988) compared the Huber, Smalian and
Newton formulae with estimates obtained from fitted cubic splines to deter-
mine the log volumes of the entire tree. Taper functions were used to simulate
the form of trees. The results were subsequently used to determine bias asso-
ciated with the three formula. The Newton formula, for example, produced
almost unbiased estimates, if the stem taper could be described by the taper
equation

du/dbh = b1 + b2 ln(1 − (h/H)1/3)(1 − exp(−b1/b2)).

2.1.2 Volume of stacked wood

Pulpwood and firewood is either sold on a weight basis or as stacked wood. If
sold as stacked wood, the volume of the pile is determined and a conversion
factor applied to adjust for the free space between the roundwood logs. In the
USA, the standard cord has a size of 8 × 4 × 4 ft, the volume being 3.624 m3,
but firewood cut to lengths less than 4 ft is sold as short cord, pulpwood with a
length greater than 4 ft as long cord. In Germany, the “Raummeter” or “stère”
was defined as a 1×1×1 m pile of stacked wood. The conversion factor depends
upon the straightness and length of the logs and for conifers it is higher than
for hardwoods. When timber is sold as pulpwood (under bark), a conversion
factor of 0.80 is appropriate, in the case of firewood, which is recovered from
wood not meeting the quality standards for sawlogs, a conversion factor of 0.70
(over bark) is more appropriate. A factor between 0.68 and 0.70 for converting
the standard cord to cubic volume is common in the USA (Avery et al. 1988).
The quality of the stacking operation has to meet certain quality specifications.
In Europe, a required stack height of 4% above the prescribed height of 1 m is
frequently specified.
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2.2 Log rules, grades and classes

2.2.1 Log rules

A board foot is the equivalent of the cubic volume of a 1 in. × 1 × 1 ft board.
It contains 144 cu in. of timber and is the equivalent of 12 bd ft (broad feet).
The North American log rule, is a table or formula, which gives the estimated
volume of logs of specified diameters and lengths (Husch et al. 1982). The
majority of these rules estimate the volume in board feet of timber.

The construction of a board feet log rule is hampered by a number of fac-
tors. The dimensions of the timber recovered from the sawlogs vary, different
equipment is used by operators with varying skill, and sawing prescriptions
differ. It is therefore necessary to distinguish between the log scale, recovered
from the log rule and the mill tally, which shows the actual recovery. An over-
run occurs when the mill tally exceeds the log scale, an underrun when the
opposite takes place. The construction of a mill-tally log rule requires the mea-
surement of the yield actually recovered from logs of different diameters and
lengths. The resultant rule, which is derived by regression analysis, is valid for
a specific mill or group of mills.

Diagram log rules assume that logs have a cylindrical shape. A circle is
drawn with a diameter equal to that at the thin end of the log. The recover-
able boards are drawn within this circle, but the width of the sawkerf and the
expected amount of shrinkage are taken into account. The board foot content
is determined for each thin-end log diameter class and the estimates are multi-
plied by the ratio of log lengths to obtain the board foot content for other log
lengths.

The widely used Scribner rule belongs to the group of diagram log rules.
It also assumes a cylindrical shape of the logs, is standardized for 1 in. thick
timber, with a 1/4 in. allowance for sawkerf and shrinkage. It produces an
approximately 30% overrun for logs under 14 in. (Husch et al. 1982). The
following equation, developed by Bruce et al. (1950) produces smoothed esti-
mates of the board-foot volume with sawlog diameter and sawlog length as
predictors:

v =
(

0.79d2 − 2d − 4
)

· L
16

The Doyle rule

v =
[

1
4

(d − 4)2
]

· L
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is easy to apply but produces an underrun for large logs. The International
log rule starts with a straightforward calculation of the board-foot content of a
4 ft long cylindrical log. For each 1 in. thick board, an allowance of 1/8 in. for
sawkerf and 1/16 in. for shrinkage is made. The board-feet content of this log is
then equal to 0.226d . A further allowance equal to 0.71d for slabs and edgings
is also subtracted. Hence

v = 0.226 · d2 − 0.71 · d

Allowing a taper of 1/2 in. per 4 ft log section, this formula was expanded to
obtain estimates for the board-foot content of longer logs.

2.2.2 Log grades

General rules and guidelines for a qualitative grading of logs exist in many
countries. The US Forest Products Laboratory Hardwood Log Grading Sys-
tem distinguishes between factory class, construction class, local-use class and
veneer class. The factory class is subdivided into the categories F1, F2 and F3,
according to the diameter and length of the logs, and provides a further subdivi-
sion of the categories F1 and F2. The softwood log grading systems distinguish
between veneer and sawlog class. Additional grading criteria are applied, which
are determined by defects, log diameter and length, sweep and cull (Husch et al.
1982).

2.2.3 Log classes

In Germany, there are two main systems which provide a size-related grading
of long-length logs (“Langholz”), with only one system being used in a given
region. The first classification is based on the mid-diameter of the logs and
produces the classes L0–L6, with a further subdivision within the classes L1, L2
and L3 (Table 4-1). The Heilbronner classification is based on minimum length
and diameter of the logs. In addition, the long-length timber with an under bark
diameter below 14 cm at 1 m above the thick end, is subdivided into 11 size-
related subclasses. Stacked wood is classified into seven size-related subclasses.
The timber is independently classified according to the four qualitative classes
A, B, C, and D, which indicate the occurrence of wood defects.

In South Africa, the timber products are classified as sawtimber, poles and
pulpwood. For sawlogs, the diameter and length specification based on the class
midpoints is given in Table 4-2. The matrix of dimensions in the table defines
the sawlog classes. For veneer and construction timber, there is no formalized
specification for quality-based grading of logs, but the number of knots and
ring width patterns are of decisive importance for qualifying as veneer timber.
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Table 4-1. Grading long-length logs and Heilbronner grading in Germany

Long-length logs Heilbronner classes

Class dm,u.b. (cm) Class Minimum length (m) Minimum top diameter (cm)

L0 <10 H1 8 10
L1a 10–14 H2 10 12
L1b 15–19 H3 12 14
L2a 20–24 H4 14 17
L2b 25–29 H5 16 22
L3a 30–34 H6 18 30
L3b 35–39
L4 40–49
L5 50–59
L6 >59

Table 4-2. South African sawlog classification

Length Diameter at thin end, under bark(cm)

13.5 15 17 19 21 23 25 27 29 31 33 35 37

2.7
3.0 Class a Class b1 Class c1 Class d1
3.3

3.6
3.9
4.2 Class b2 Class c2 Class d2
4.5
≥4.8

2.3 Weight

It is easier to determine the weight of a quantity of small roundwood than to
measure its volume. Pulp yield is a function of timber weight, rather than of tim-
ber volume. The volume over weight ratio, however, is partly dependent on the
period of time between harvesting and weighing, as well as upon the weather
conditions during this period. The length of this period, however, can be con-
trolled by mutual agreement between buyer and seller. Bearing in mind that it
is cheaper to determine the weight, the recorded weight can also be used to
convert weight into volume. This is occasionally done for small-sized sawlogs,
which are sold on a volume basis.
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The green density of the timber is the sum of basic density and moisture
content. The basic density expresses the ratio weight of oven-dried timber (in
grams) over green volume (in cubic centimeters), the green density is obtained
as the ratio green weight over green volume. The moisture content is expressed
as the difference between green and oven-dry weight, expressed as a percent of
oven-dry weight.

The green density varies with regions, with species, stem diameter and
season and is different for different trees within a given stand. In the USA,
equations were derived, which estimate the green weight from log volume in
board feet, for different log rules (Row et al. 1966). Markstrom et al. (1982)
derived empirical equations to estimate the cubic foot wood volume, the oven
dry weight of wood and that of bark from the total green weight of wood and
bark. In Germany, conversion factors are used to convert the weight of oven
dry and air-dry timber into cubic volume.

In South Africa, the ICFR conducted a study to assess the advantage and
feasibility of using volume instead of weight as the unit of measurement of
small dimension debarked roundwood logs for the mining industry (Coetzee
1984). The density of the roundwood sold is, usually expressed as mass in
kilogram per unit volume in cubic meters. Delivery of wood on the basis of
weight is inaccurate because of the varying water content of the logs. The min-
ing timber industry requires that the logs with a thin end under bark diameter
between 8 and 20 cm are air-dried for a period of 6 weeks. The corresponding
standard conversion factor is 1.47 m3/ton, which is the equivalent of a den-
sity of 680 kg/m3. A survey, however, showed that this ratio varied between
1.35 and 1.53 m3/ton. A 10% variation in density was recorded in Eucalyptus
grandis and a 16% variation in Acacia mearnsii, whereas a 17.5% variation
of the basic density of Pinus radiata was found in New Zealand (Cown et al.
1982). Studies in South Africa (Coetzee 1984) as well as those conducted in
other countries, indicated differences between species, although the variabil-
ity within species tended to be greater. A density gradient within the individual
tree has been found in South African studies, with the oven-dry density of Euca-
lyptus nitens increasing from an average of 665.3 kg/m3 at a height of 2.4 m,
to 706.9 kg/m3 at a height of 19.5 m. These conclusions contra-indicated the
studies of southern pines in the USA (Zobel 1982). Studies by Frederick et al.
(1982) furthermore revealed an increasing density with increasing age.

The moisture content is defined as the difference between mass before dry-
ing and oven dry mass, expressed as a proportion of mass before drying. South
African studies of Eucalyptus grandis showed a decrease in moisture con-
tent from 83.7 immediately after felling to 23.1% after 28 weeks air-drying
(Schönau 1975). The reduction in moisture content of debarked logs of Pine
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species is also considerably faster than in undebarked logs (Stöhr 1983), and
there is a significant effect of age as well as drying method on the drying rate.

Conventional methods based on the measurement of diameter and length of
logs have been compared with others based on measurements on the stack face.
Measurements on 1 m2 grids using a photographic method with polaroid-type
cameras showed no significant differences.



Chapter 5

MEASUREMENT OF STANDS

1 INTRODUCTION

The forest stand is defined as a group of trees occupying a specific area, which
is sufficiently uniform in species composition, age arrangement, and condition
as to be distinguishable from the forest on adjoining areas. It represents the unit
for which one and the same silvicultural treatment is prescribed. Quantitative
information about stands or compartments, therefore, relates directly to silvi-
cultural and management decisions. Stand measurements provide information
about:
• Age
• Diameter distribution, mean, and other parameters of the diameter distri-

bution
• Height distribution, relationship between diameter and height, mean and top

heights
• Stand density
• Diversity and spatial structure
• Volume and biomass
• Site index, site class, or yield class
• Present and future growth
• Stand quality and vitality
• Yield
• Damages
and possibly other relevant stand characteristics and site parameters.

2 AGE

The age of an even-aged stand is usually defined as age from germination,
although this rule is not universally adopted. In Great Britain, for example,
stand age, as recorded in yield tables reflects the length of time since planting.

95
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In consequence, the reported age is lower than the true age of the trees. In the
northern hemisphere, the resultant difference is of the order of magnitude of
1–2 years, depending upon the age of the plants at the time of stand establish-
ment. In uneven-aged stands various definitions for age have been proposed.
If the stand consists of an upper storey of even-aged trees, and a similarly
even-aged but younger lower storey, the two age classes might be weighted,
for example, by assigning a weight to each age class proportional to volume
(Anuchin 1970). If the stand consists of several identifiable clusters of even-
aged trees, weights might be assigned proportional to the area occupied by
these clusters (Kramer et al. 1982).

A = f1 · a1 + f2 · a2 + · · · + fk · ak
∑

f

where

A = mean age

fi = area occupied by the i th age class

ai = age class i

k = number of age classes

Information about stand age is usually obtained from management plans, but
a direct determination either by counting the number of annual rings on incre-
ment cores, extracted from standing trees, or from ring counts on stem cross
sections, obtained from felled trees, are required when no management plans
or other sources of information are available. Because of off-center boring and
the possibility of false or missing rings, which can be identified on stem cross
sections, but less easily on increment cores, stem analysis produces ring counts
which are more reliable than those obtained from increment cores. Both meth-
ods fail when no distinct annual rings are discernible. In young stands of conifer
the stand the age can also be determined by counting annual internodes on
selected sampling trees.

3 MEAN DIAMETER

3.1 Arithmetic mean diameter

The arithmetic mean diameter of a stand is

µd =

N∑

1
di

N
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and is usually estimated by sampling

d̄ =

n∑

i=1
di

n
.

It gives an unbiased estimate of the population mean, if the assumption of
random sampling is satisfied. Normally the population is identified by the
forest stand from which the sample was taken and in experiments by the
sample plot on which the treatment was applied. The arithmetic mean is
appropriate for certain types of experimental studies, for example, single-tree
short-term fertilizer experiments, pruning trials, and species as well as progeny
trials, primarily to measure the responses of the trees to the experimental
treatments during the first years after stand establishment. It is less useful
for management inventories because it does not represent the tree with the
mean basal area or mean volume and is affected by the method and degree of
thinning.

3.2 Quadratic mean diameter

The quadratic mean diameter of the stand represents the tree with the mean
basal area. The estimator is

dq =

√
√
√
√
√

n∑

i=1
d2

i

n

In the case of grouped data, with ni trees in the i th class is calculated from

dq =

√
√
√
√
√
√
√
√

k∑

i=1
ni d2

i

k∑

i=1
ni

It represents a slightly negatively biased estimate of the diameter of the tree
with the mean volume. The mean stand diameter recorded in yield tables and
used as a target variable in growth modeling, is always calculated as quadratic
mean diameter. The relationship between d and dq is

dq =
√

d
2 + s2

d

Weise (1880) introduced a rule of thumb for estimating the quadratic mean
diameter and proposed the 60th percentile of the ordered set of diameters.
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The quadratic mean is usually assumed to represent the tree with the mean
volume, although a small negative bias is involved (Essed 1957).

Example 5.1 The arithmetic and quadratic mean diameter of the observed
diameters in Appendix B are as follows

d = 18.0 + 26.9 + · · · + 23.8
253

= 21.8 cm dq =
√

18.02 + 26.92 + · · · + 23.82

253
= 22.3 cm

or

d2
q = d

2 + s2
d , d2

q = 21.82 + 4.972 = 499.74, dq = 22.3 cm,

3.3 Basal area central diameter

The calculation of the basal area central diameter (dmg) requires an estimate
of the median of the ordered set of basal areas, which partitions the dataset
into two subsets with equal total basal areas. It is defined as the median of
the distribution. Compared to the quadratic mean diameter, it is less severely
affected by suppressed trees and by the thinning method, but its calculation is
more time-consuming and requires a computer program. Normally, the ordered
set of basal areas is derived from the tally sheet of diameters, which is con-
verted into a table with the cumulative basal areas for the upper class limits of
the diameter distribution. The basal area central diameter for a given diameter
distribution is obtained from

dmg = du + w ·
[

G/2 −∑
ni · gi

gk

]

Where

W = class width

Du = lower limit of the kth diameter class, containing the basal area

central tree
∑

ni gi = accumulated basal area below the lower limit of the kth

diameter

gk = basal area of the kth diameter class

G = total basal area

Alternatively, the cumulative squared diameters could be entered into this table.
The basal area central diameter is approximately represented by the 70th per-
centile of the ordered set of tree diameters. In some regions within Germany,
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the height of the tree with the basal area central diameter is used to derive the
site class of a stand from existing yield tables and to calculate the stand volume
with the aid of the form height method.

Example 5.2 The diameters (measured in millimeters) of all 253 trees in
Pinus radiata in a sample plot with a size of 0.3750 ha were grouped in 1 cm
diameter classes. The original data are given in Appendix B and those for the
grouped diameters in Table 5-1.

The stand characteristics for ungrouped data are:

n = 253 d̄ = 21.8 cm, dq = 22.4 cm, sd = 4.96 cm, dM = 22.0 cm

For the basal area central tree we have
28∑

1

(ni · d2
i ) = 126992

1
2

28∑

1

(ni · d2
i ) = 63496

The cumulative sum of squared diameters for the lower and upper limit of the
24 cm diameter class are 57167 and 70415, respectively. The required mean
diameter is located within this class.

dmg = 23.5 + 1 · 63496 − 57167
70415 − 57167

= 23.98 cm ∼= 24.0 cm

Weise’s rule of thumb for the 60th percentile gives dW = 23.0 cm. The
quadratic mean diameter of the 100 thickest trees per hectare is d100 = 27.9 cm.

4 DIAMETER DISTRIBUTIONS

The diameter distribution of a stand is required to construct stand tables, to
estimate the total or merchantable stand volume, and to estimate the volume of
the wide range of products, which are recovered from a stand of a given mean
diameter and mean height.

The unimodal diameter distribution, which is frequently observed in young
even-aged stands before the first thinning, can be approximated as a normal
distribution, but deviations from normality occur occasionally (Gates et al.
1983). With increasing stand age, the distribution tends to become increasingly
skewed, partly because of mortality in the lower tree strata, partly because of
thinnings from below, which remove the dominated trees or crown thinning
(thinning from above), which remove dominating and codominating trees.
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4.1 Weibull distribution

The Weibull distribution was initially developed to describe the lifetime dis-
tribution of systems under stress, consisting of a large number of components,
each with its own lifetime distribution. Although this is the basic philosophy
which underlies the Weibull distribution, the function has been successfully
used for modeling diameter distributions in even-aged stands, and for decreas-
ing diameter distributions in all-aged forests, although no systems under stress
are necessarily involved.

4.1.1 Three-parameter distribution

The density function of the three-parameter Weibull function is

f (x; α, β, γ ) = γ

β

⎧
⎪⎨

⎪⎩

(
x − α

β

)γ−1

e
−
( x − α

β

)γ⎫
⎪⎬

⎪⎭

Where

α = location parameter, expressing the lower bound

β = scale parameter (β < 0)

γ = shape parameter (γ > 0)

Distribution curves for different values of the shape parameter γ are shown in
Figure 5-1.
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alpha = 0, beta = 3, gamma = 0.5

alpha = 0, beta = 3, gamma = 2

alpha = 0, beta = 8, gamma = 9

Figure 5-1. Weibull distributions for specified parameters.
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Integrating the density function generates the cumulative distribution func-
tion

f (x) = 1 − e
−
( x − α

β

)γ

The log likelihood function of the three-parameter Weibull distribution

log(n) = (γ − 1)

n∑
log(x − α) − n(γ − 1) log

γ

β
−

n∑(
x − α

β

)γ

(Rennols et al. 1985) is differentiated with respect to α, β, and γ , respectively.
The resultant three equations are solved iteratively to obtain estimates for these
unknown parameters.

4.1.2 Two-parameter Weibull distribution

The density function of the two-parameter version with no location parameter is

f (x, β, γ ) = γ

β

[
x
β

]γ−1

e−(x/β)γ

To fit the distribution, the variable x is expressed as a deviation from xmin . The
maximum likelihood function for the two-parameter function is obtained by
solving the following equations by trial and error to estimate γ

∑
fi xc

i ln xi
∑

fi xc
i

− 1
c

=
∑

fi ln xi
∑

ni

The iterations are discontinued as soon as the defined convergence criterion has
been met. The parameter β is estimated from

b =
(∑

fi xc
i∑

fi

)1/c

.

The function is less flexible than the three-parameter version, but is preferred
when a more parsimonious model is required.

Example 5.3 Both versions of the Weibull distribution were fitted to the
dataset of Appendix B, after grouping the diameters in 1 cm classes. The para-
meter estimates and χ2 were:

Distribution A B c χ2 χ2α = 0 · 05
Two-parameter – 23.72 3.92 30.4 21.03
Three-parameter 0 23.77 4.66 18.9 21.03
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The observed and expected frequencies in the first and last two classes were
pooled to ensure that no expected class frequency was below (Figure 5-2 and
Table 5-2). The lower value of χ2 for the three-parameter version confirms the
superior performance of this function.

4.1.3 Percentile estimators

Estimates of the parameters a and b can be obtained from selected points
of the distribution, for example, the 17th and the 97th percentile (p17, p97),
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Figure 5-2. Fitted two- and three-parameter Weibull distributions.

Table 5-2. Fitted two- and three-parameter Weibull distribution

Dbh (cm) Two-parameter Three-parameter

fobs ffit χ2 ffit χ2

7 2 3.31 0.52 1.58 0.11
9 5 4.87 0.00 2.86 1.60

11 1 8.49 6.61 5.82 3.99
13 7 13.17 2.89 10.32 1.07
15 18 18.59 0.02 16.40 0.16
17 19 24.08 1.07 23.57 0.89
19 37 28.69 2.41 30.63 1.32
21 41 31.39 2.94 35.77 0.76
23 41 31.38 2.95 37.07 0.42
25 29 28.43 0.01 33.50 0.60
27 29 23.13 1.49 25.81 0.39
29 17 16.70 0.01 16.51 0.01
31 3 10.57 5.42 8.50 3.56
33 1 5.78 3.95 3.40 1.69
35 3 2.69 0.15 1.27 2.36
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although such estimates are less efficient than maximum likelihood estimators
and require a larger sample (Dubey 1967). The sample estimate of the para-
meter γ is obtained from

c = ln(− ln(1 − p17)) − ln(− ln(1 − p97))

ln x p17 − ln x p97

where x p17 and x p97 are the diameters which correspond with p17 and p97. The
parameter b is estimated from

b = e(w · ln x1+(1−w) · ln x2)

where

w = 1 − ln(− ln(1 − p17))

ln[− ln(1 − p17)] − ln[− ln(1 − p97)]
Numerous authors applied the two- and three-parameter Weibull distribu-
tion. Zarnoch et al. (1985) compared percentile estimators of the three-
parameter Weibull distribution, proposed by Zanakis (1985) with maximum
likelihood estimators, which were obtained with the routine FITTER, written
by Bailey (1974). Sample bias, sample variance and mean squared error, the
latter combining bias and variance, were evaluated for computer-simulated
Weibull distributions. The studies indicated the superiority of maximum like-
lihood over percentile estimators. Shiver (1988) who conducted simulation
studies to determine the sample size which is required to estimate the three
parameters of the Weibull distribution, based on the percentile, the maximum
likelihood, and the modified moments method, respectively, reached a similar
conclusion. Furthermore the largest reduction in variance, bias, and mean
square error was recorded if the sample size increased from 30 to 50, which
implies that a sample size of not less than 50 is required to obtain satisfacto-
rily accurate estimates of the Weibull parameters. Comparisons with the beta
distribution (Burkhart et al. 1974), in loblolly pine, indicated that the Weibull
function was superior and produced a closer fit. Dippel (1988) fitted the two-
and three-parameter Weibull function to distributions recorded in mixed beech-
larch stands, for each species separately. Saborowski (1994) investigated the
minimum sample size, which is required to estimate the three parameters of
the Weibull distribution. The assumption was that the trees are measured in
clusters with a maximum cluster size not greater than 12. Based on five case
studies for which the real distribution was known, simulation studies indicated
that a sample with n = 80 could generally be expected to produce satisfactory
results.
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Zanakis (1979) proposed the following percentile estimator for the location
parameter a of the three-parameter Weibull distribution:

a = (x1x2 − x2
2)

(x1 + xn − 2x2)

The scale parameter β was estimated from

b = −a + x0.63n

and the shape parameter γ from

c = ln(ln(1 − pk)/ ln(1 − pi ))

ln((xnpk − 1)/(xnpi − 1))

with pi = 0.167 and pk = 0.974.
Cao et al. (1984) applied a segmented distribution approach for model-

ing diameter distributions. The cumulative Weibull distribution F(x) was fitted
to segments, in such a manner that the jth cumulative distribution F(x j ) was
monotone nondecreasing, continuous. In addition, F(x j ) as well as its deriva-
tive f (x j ), were required to be continuous at the joins. A modified form of the
cumulative Weibull function was necessary, with two additional parameters,
which are described as scale parameters of the probability distribution. They
were adjusted when no convergence could be reached. The 0th, 25th, 50th,
75th, and 100th percentile points were selected as joint points. The goodness of
fit was compared with the conventional three-parameter Weibull distribution.
In unthinned stands, the segmented approach did not perform better than the
three-parameter function fitted with conventional algorithms, but in thinned
plantations it produced a closer fit. Because of its greater flexibility, the seg-
mented approach was thought to be advantageous in stands with an irregular
diameter distribution, generated by thinning, although the computations are
more tedious and the location of the joint points remains uncertain.

Ek et al. (1975) developed a method to obtain the parameter estimates a and
b of the Weibull distribution for a specified quadratic mean diameter, which was
based of the assumption that the parameter γ is known. The expected value of
the quadratic mean is

E(d2) = b2
√

b2
(
�2

1 − �2
)+ E

(
d2
)

The estimates for a and b were obtained from

a = − b
�1

�2

√
b2
(
�2

1 − �2
)+ E

(
d2
)

b = − a
�1

�2
+
√

a2

�2
2

(
�2

1 − �2

)
+ E

(
d2)

�2
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The equations are solved iteratively, with initial estimates being obtained from
the general shape of the density curve. There is no explicit solution for the
parameter γ . The authors proposed a procedure for estimating c, when a and
b are known. McTague et al. (1987) presented a method to estimate the three
parameters of the Weibull distribution from its 10th and 63rd percentile, com-
patible with a basal area projection model. The 10th and 63rd percentile were
predicted from equations with age, stand density, and site index as independent
variables, with unthinned versus thinned stands being introduced as a dummy
variable. The Weibull parameter a was estimated from an equation with d10 ,
stand density and site index as predictor variables; b was estimated from the
equation b = d63 − a; the 90th percentile was estimated from an equation
with d63, d10; site index and age as predictors and the Weibull parameter c was
obtained from an equation with the estimated d90, and the parameter estimates
for a and b as independent variables.

4.2 Beta distribution

Fitting a beta distribution requires a transformation of the variable x

y = x − a
b − a

where a, b = lower and upper bound of the distribution. It converts the distrib-
ution into the standard beta distribution. The density function of y is

f (y; α, β) = yα−1 · (1 − y)β−1

B · (α, β)

with α and β representing the two parameters of the function and

B(α, β) = �(α) · �(β)

�(α + β)

being obtained from the gamma functions �(α) and �(β). Density curves for
different values of α and β are shown in Figure 5-3.

Estimates for α and β are obtained from the sample mean and sample vari-
ance of y, with β being a function of the mean and variance of y

�
β =

k

s2
y · (1 + k)2

1 + k

where k = x̄
1 − x̄

and α is estimated as follows: α̂ = β̂ · k
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Figure 5-3. Beta distributions for specified parameters.

Table 5-3. Observed and fitted diameter distribution

dbh nobs nfit dbh nobs nfit

8.5 6 0.18 22.5 37 36.82
10.5 1 2.69 24.5 37 34.06
12.5 4 8.33 26.5 29 28.01
14.5 12 16.09 28.5 21 19.79
16.5 22 24.33 30.5 5 11.11
18.5 29 31.38 32.5 2 4.01
20.5 45 35.84 34.5 3 0.34

χ2 = 1.58, 7 degrees of freedom

Example 5.4 The beta distribution is fitted to the previous dataset (Table 5-3
and Figure 5-4)

In forestry, the beta distribution has been applied to model diameter distribu-
tions in Picea abies (Zöhrer 1969), Fagus silvatica (Kennel 1972), and P. taeda
(Burkhart et al. 1974), in tropical forests (Zöhrer 1969), and in old-field slash
pine plantations (Clutter et al. 1965). In order to construct stand tables, the
distribution is fitted and the parameter estimates are regressed on stand charac-
teristics.

4.3 Gamma distribution

The density function of the gamma distribution is as follows:

f (x) =
[

�(β+1)
x̄

]β+1

�(β + 1)
xβe

−
[

β+1
x̄

]
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Figure 5-4. Fitted beta distribution.

To obtain the densities for different values of x , we calculate the gamma func-
tion �(x)

�(x) = x · (x − 1) · (x − 2) · · · · · �(y)

The gamma function �(y) for 1 < y < 2 is calculated from the approximation

�(y) = 1 − 0.57710(y − 1) + 0.9858(y − 1)2 − 0.8764(y − 1)3

+ 0.8328(y − 1)4 − 0.5685(y − 1)5 + 0.2548(y − 1)6

− 0.05150(y − 1)7

The parameter β is estimated from mean and variance

β̂ = x̄2

s2
x

− 1

The calculated densities are multiplied by the ratio total frequency/sum of
densities.

Example 5.5 The gamma distribution is fitted to the data of Appendix B.
The parameter estimates are

α̂ = 16.97 β̂ = 0.7788

The fitted frequencies are shown in Table 5-4 and Figure 5-5.
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Table 5-4. Fitted gamma distribution

dbh (cm) nobs nfit dbh (cm) nobs nfit

<9.6 6 0.5 22.4–24.0 32 27.5
9.6–11.2 1 1.7 24.0–25.6 25 23.0
11.2–12.8 4 4.6 25.6–27.2 26 18.0
12.8–14.4 6 9.7 27.2–28.8 14 13.2
14.4–16.0 16 16.4 28.8–30.4 10 9.3
16.0–17.6 14 23.2 30.4–32.0 3 6.2
17.6–19.2 23 28.5 32.0–33.6 1 4.2
19.2–20.8 38 31.0 33.6–35.2 3 2.4
20.8–22.4 31 30.5 >35.2 – 3.3
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Figure 5-5. Fitted gamma distribution.

4.4 Johnson’s SB distribution

Johnson (1949) introduced the four parameter SB distribution with the follow-
ing density function:

f (x) =
(

δ√
2π

)(
λ

(x − ε)(ε + λ − x)

)

e

⎡

⎣−1
2

(

γ+δ ln

( x − ε

ε + λ − x

))2
⎤

⎦

The parameters γ represents the skewness with δ expressing the degree of
peakedness of the distribution. They are calculated as follows

γ̂ = − f
s f

�
δ = 1

s f
where f =

k∑

i=1
fi

k
and s f =

√
√
√
√
√
√
√
√

k∑

i=1
fi

k
k∑

i=1

(
fi − f

)2
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with k = number of classes and

fi =
k∑

i=1

fi log
xi − ξ

ξ + λ − xi
where ξ = lower limit and λ = range.

The function is flexible and provides a satisfactory fit if the distribution of the
subject variable indicates skewness and kurtosis. It has no closed form and
requires a translation of the distribution of the unit normal variate. When a
variable x has an SB distribution then

z = γ + δ ln
((

(x − ε)

ε + λ − x

))

follows the distribution of the unit normal variate (0, 1).

Example 5.6 Johnson’s SB distribution is fitted to the data of Appendix B
(Table 5-5 and Figure 5-6). The parameter estimates are:

ξ̂ = 6.0 λ̂ = 30.0
�
γ = 3.101 · 10−9 �

δ = 4.573 · 10−4

Table 5-5. Observed and fitted frequencies, Johnson’s SB
distribution

dbh (cm) nobs nfi dbh (cm) nobs nfi

7 2 3.2 23 41 24.8
9 5 9.1 25 29 23.4

11 1 14.0 27 29 21.2
13 7 18.1 29 17 18.1
15 18 21.2 31 3 14.0
17 19 23.4 33 1 9.1
19 37 24.8 35 3 3.2
21 41 25.2 – –
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Figure 5-6. Observed values and fitted Johnson SB distribution.
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4.5 Decreasing distributions

Decreasing distributions occur in all-aged natural forests. The properties of
inverse J-shaped diameter distributions in natural forests of coniferous tree
species in France was studied by de Liocourt (1898), who hypothesized that
the ratio of the number of trees in successive diameter classes was constant
within a given forest and typifies this forest, but varied for different forests.
The underlying model is

Ni = eb0+b1 · di

where Ni = number of tree per hectare in the i th diameter class with class
midpoint di . Alternatively this equation is written as

Ni = k · e−a·di

which is known as the negative exponential function, with k = exp(b0) and
a = −b1. For d = di and d = di+1 we obtain

Ni = k · e−a·di

Ni+1 = k · e−a·(di+1)

Hence

q = Ni

Ni+1
= ea

can be determined by regression analysis.
In earlier studies, Meyer et al. (1943, 1951) expanded the Liourt law and

introduced the concept of balanced diameter distribution, defined as that dis-
tribution which generates a sustainable yield. A given distribution is balanced
if the relationship between ln(N) and dbh is linear, whereas a nonlinear trend
indicates that the distribution is unbalanced. In many all-aged natural forests,
however, the relationship between ln(N) and dbh reveals nonlinear trends
(ZÖhrer et al. 1973). LEAK (1964) investigated unbalanced distributions in
natural hardwood stands in USA and characterized these distributions through
a linearization of the relationship between q and dbh by using 4 in. instead of 2
in. diameter classes. Moser (1976) presented an alternative method to specify
an inverse J-shaped diameter distribution, which was based on Schumacher’s
tree area equation

T ree area = b0 + b1d + b2d2
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and on Brender’s formula (Brender 1973) to derive m from a specified basal
area G. It is

m = G

0.005454
n∑

i=1

(
d2

i qi−1
)

Expressing density (e.g., in terms of basal area) as a function of dbh and N/ha
produces an equation to estimate k from density and to reconstruct the diameter
distribution for a given value of q

k = density
n∑

i=1

(
b1 + b2 · d + b3 · d2

)
e−di (ln q)/w·

k = density

n∑

i=1

(
b1 + b2 · d + b3 · d2

) · e
−di

ln q
w

Chevrou (1990) introduced the truncated Liocourt law to be used in all-aged
forests. It is described by the negative exponential function with

k = N · (q − 1) · qd0−1

where w = class width and d0 = midpoint of the lowest recorded diameter
class. The relationship between the coefficients k and a is

k = N . w. a,

where N = number of trees per hectare and w = class width. The arithmetic
mean diameter is equal to the reciprocal value of a (Zeide 1984). The relation-
ship between k and a is, therefore, dependent upon the relationship between
trees per hectare and mean diameter. Assuming that the latter can be expressed
by Reineke’s function and assuming unit class width we obtain

k = a · eb0+b1·ln(d)

This contradicts Meyer’s assumption of a linear relationship between k and a
(Meyer et al. 1943).

Example 5.7 The equation N = exp(b0 + b1d)(→ ln(N ) = b0 + b1d)

was fitted to sample plot data in an all-aged P. abies stand in the forest district
Wolfach (data by courtesy of Prof. M. Prodan). The parameter estimates were
b0 = 5.291, b1 = −0.06096. In this particular case, the model failed to produce
a satisfactory fit, with negative residuals in the lower and upper diameter range
and positive residuals in the center.

The ratio of expected successive class frequencies N j/N j+1 plotted over dbh
(Figures 5-7 and 5-8) seems to confirm that the distribution is balanced.
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4.6 Other approaches

Bliss et al. (1964) fitted the lognormal distribution to diameter distributions in
even-aged Pinus elliottii stands. The function, which implies that the logtrans-
formed variable follows the normal distribution, was suitable to account for
the observed skewness of these distributions. In general, however, other distri-
bution functions are preferred for even-aged stands.

Borders et al. (1987) fitted diameter distributions based on the percentiles of
the diameter distribution, obtained from stand tables. The method was based on
the assumption of a uniform diameter distribution within the individual diame-
ter classes. A system of 12 equations was developed to estimate the percentiles.
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The “driver” percentile d65 was a function of the quadratic mean diameter and
stand age. Stand treatment, i.e., thinned versus unthinned stands, was intro-
duced as a dummy variable. Bailey et al. (1981) developed diameter distribu-
tion models for slash pine plantations, based on the three-parameter Weibull
distribution. Because of the relationship between the parameters and the per-
centiles of the distributions, equations were fitted to predict the 24th, 63rd, and
93rd percentile for unthinned and thinned stands. The model predicting the
24th percentile of unthinned stands used age, ln(N) and ln(SI) as predictors, the
63rd percentile was estimated from ln(A), 1/SI and 1/N, whereas ln(H), 1/N and
1/SI were used to predict the 93rd percentile. Similar models were developed
for thinned stands. The Weibull parameter c was estimated from an equation
with all three percentiles as predictors, b was estimated from an equation with
(d63 − d24) and c as independent variables, whereas a was obtained from an
equation with d24, b, and c as independent variables.

5 STAND TABLES

5.1 Introduction

The stand table gives the expected number of stems per unit area in each diame-
ter class within a given stand. It may also reflect the average distribution for all
age classes together, independently of site index, in which case the expected
stem numbers are summarized per height class. A stock table gives similar
information but expressed in terms of volume.

A stand table, based on the sampled diameter distribution, may be con-
structed for an individual stand. When applied to the metric measurement sys-
tem, 2 cm wide diameter classes are usually adequate, but the stand tables for
conifers of the British Forestry Commission are based on 5 cm wide classes,
a class width of 4 cm is customary for working plans in German forestry. It is
desirable that the stand table contains at least 10 diameter classes. In young
and medium age stands, information about the diameter distribution is sacri-
ficed when selecting a class width of more than 3 cm.

5.2 Parameter prediction and parameter recovery

In order to be useful in the practice of forest management, stand tables should
reflect the effect of all influential variables on the parameters of the diameter
distribution.
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• The parameter prediction method fits distributions (Weibull, beta, gamma)
and relates the parameter estimates to stand characteristics, possibly with
the addition of influential variables, for example, to account for the effect of
thinnings.

• The parameter recovery method recovers the parameters of the distribution
from the moments of a given distribution from actual or estimated stand
attributes.

A considerable amount of research has been done to develop algorithms for a
parameter recovery method for the three-parameter Weibull distribution. Burk
et al. (1984) presented the following procedure:
• Estimate the first, second, and third noncentral moment of the Weibull dis-

tribution, for example, from equations with stand attributes (age, site index,
stand density) as predictor variables

• The estimation requires a series of iterations since

�k = �

(

1 + k
c

)

• Use this relationship to solve the following equation for c:

µ′
3 = b3

(
�3 − 3�1�2 + 2�3

1

)
+ 3µ′

1µ
′
2 − 2

(
µ′

1
)3

• Calculate the parameter b of the Weibull distribution from

b =
√
√
√
√µ′

2 − (
µ′

1
)2

�2 − �2
1

• The parameter a is calculated as follows:

a = µ′
1 − b�1

Pienaar et al. (1988) developed a stand table projection method, based on the
relationship between age and the relative size of the i th surviving tree. The
latter was defined as the basal area of this tree divided by the basal area of
the mean tree. The initial hypothesis of this ratio being constant over time was
rejected and required the estimation of the parameter b of the function

g2i

g1i
=
{

g1i

ḡ1

}(A2/A1)
b

Estimates for b were obtained from permanent sample plots. The projected
basal area of a tree in the i th diameter class (i = 1, . . ., k) was then obtained
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from

g2i = G2 ·
(

g1i

ḡ1

)a

· ni
k∑

i=1

[(
g1i

ḡ1

)a

· ni

]

with

a =
(

A2

A1

)b

In order to project the stand table, the Clutter and Jones (1980) survival func-
tion, as well as a projection equation for basal area

ln g2 = ln g1 + b1 ·
(

1
A2

− 1
A1

)

+ b2 · (ln h2 − ln h1) + b3 · (ln N2 − ln N1)

+ b4 ·
(

ln
N2

A2
− ln

N1

A1

)

+ b5 ·
(

ln
h2

A2
− ln

h1

A1

)

and height

ln h2 = ln h1 − b1 ·
(

1
A2

− 1
A1

)

were fitted.

6 STAND HEIGHT

The stand height is required to determine the site index of a stand, to calculate
the stand volume, to predict the future growth from stand characteristics, and
to represent a target variable in provenance, progeny, and species trials and
silvicultural experiments.

6.1 Mean height

The mean stand height is a useful target variable for the early analysis and
evaluation of silvicultural trials and tree breeding experiments. Provenance and
species trials usually require that a large number of treatments are tested in
an experiment. The mean height of a stand can be calculated as the arithmetic
mean of a sample of tree heights, but alternatively by regressing tree height
on dbh.

The arithmetic mean height of a stand is calculated as follows

µh =

N∑

1
hi

N
.
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and is usually estimated by sampling

h̄ =

n∑

1
hi

n
.

Regression estimators however, are preferred, for example, the regression
height of the tree with the arithmetic (hd̄) or quadratic mean diameter (hdq ) or
basal area central diameter (hdM ) as predictor.

In forest inventories the mean height of the stand is required to estimate
the volume of the tree with the quadratic mean diameter. In case of sampling
the mean height is estimated for each plot separately. For practical reasons and
because of cost considerations, it is usually assumed that the height curves of
the individual sample plots coincide, i.e., the height curves are thought to have
a common intercept and shape. In consequence, the observed heights and the
corresponding diameters are pooled and a single height curve is fitted to the
data of the individual compartment or for the single forest stand. The sam-
pling error of the volume estimates will be underestimated if the dbh–height
relationship within a given stand or stratum is affected by site differences. The
calculated confidence intervals for the total volume also will tend to be under-
estimated by pooling data because between-plots variability of the parameters
of the dbh–height regression is ignored. In silvicultural and tree breeding trials
it is commonly accepted that diameter and height growth are response variables
in their own right and respond differently to experimental treatments. For prac-
tical reasons again the dbh–height data of the replicates of a given treatment
are pooled, a single height curve is fitted and the mean height of each plot is
obtained as the regression height of the tree with the quadratic mean diameter
of a given replicate.

Lorey (1878) introduced a weighted mean height, with the individual trees
being weighted proportional to their basal area. The computational procedure
is as follows:
• The diameters are grouped in classes
• The total basal area (gi ) is calculated for each diameter class
• The dbh–height regression equation is used to obtain the estimated tree

height for the midpoint of each diameter class. The mean height is calcu-
lated as a weighted mean, with a weight of gi (i = 1, . . . , k) being assigned
to each estimated height

hL = g1h1 + g2h2 + · · · + gkhk

g1 + g2 + · · · + gkhk
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Where

ni = number of trees in the i th diameter class,

gi = corresponding basal area for the class midpoint, and

hi = regression height for the class midpoint.

Lorey’s mean height necessitates the grouping of the observed diameters in
classes of equal number of trees or of equal basal area. The mean height is
calculated from

hL = h1 + h2 + h3 + h4 + h5

5
with h1, . . . , h5 = the regression height of the tree with the mean basal area in
each of the five classes.

The German yield tables, constructed by Schwappach and Wiedemann were
based on Lorey’s mean height (Schober 1987), but those constructed more
recently (Assmann and Franz 1965; Bergel 1985) are based on the regression
height of the quadratic mean diameter.

6.2 Top height

The mean height is needed to estimate the stand volume but, being calculated
as the regression height of the tree with the mean dbh, it is sensitive to thinnings
from below or from above (section 4). Thinnings from below, for example,
emphasize the removal of dominated and suppressed trees, with a mean diame-
ter substantially below that of the stand before thinning. In consequence, there
is an arithmetic shift in the mean diameter of the remaining stand, due to thin-
nings from below or above. Modern yield tables give the estimated mean height
for different site classes and ages, but in addition, the estimated top height of
the stand, which is less sensitive to thinnings and more suitable for predicting
the site index. The following measures for top height have been proposed for
growth modeling and for constructing yield tables:
• Hart (1928) defined the top height of the stand as the arithmetic mean of the

100 tallest trees per hectare. In order to remove bias due to a fertility gradient
within a sample plot, the population was subdivided into blocks with a size
of 10 × 10 m, and the tallest tree in each block was measured. In a 40 × 40 m
research plot, this would require a subdivision in 16 blocks, and the mea-
surement of the 16 tallest trees. The top height is defined as the regression
height of the mean diameter of the 100 thickest trees per hectare, i.e., as
the regression height of the quadratic mean diameter of the 16 thickest trees
within a 40×40 m sample plot. In Great Britain, Hummel (1953) introduced
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the regression height of the mean diameter of the 100 thickest trees per acre
as a measure for top height. Both definitions assume that the tallest trees
are uniformly distributed within a given area. Because of site variability, this
is not necessarily true and the highest trees may occur in clusters within a
given sample plot. Furthermore, the mean height of the 100 thickest trees per
hectare is always less than the mean of the 100 tallest trees. In Germany the
top height is defined as the regression height of quadratic mean diameters of
the 100 or 200 thickest trees per hectare.

• Dietrich (1923) introduced the mean height of the dominating trees, defined
as those belonging to Kraft’s classes 1 and 2, Etter (1949) those belonging to
classes 1, 2, and 3 as a quantitative expression for “biological top height.”

• Swedish mensurationists proposed to define top height or maximum height
as the regression height of the tree with a dbh equal to the arithmetic mean of
the diameter distribution plus 3 times the standard deviation (Nåslund 1935).

• In Germany, Weise (1880) introduced the regression height of the quadratic
mean diameter of the 20% thickest trees as top height.

• When using aerial photographs to estimate the stand volume per hectare from
height and crown cover, top height is sometimes defined as the mean of the k
tallest trees per photo-plot, for example; with k = 3. On aerial photographs;
the tallest trees can be identified more easily than trees representing the mean
height.

Top height is less sensitive to an arithmetic shift of the mean diameter; due
to thinning than mean height. The tallest trees are found in the dominant tree
stratum; which is biologically of greater importance than other social classes,
more particularly to measure site productivity. In general, the 20% thickest trees
at a higher age originate from the category of the 20% thickest trees at a younger
age, although some trees move to lower crown strata and others move in upward
direction. There is a consensus of opinion that top height is useful for growth
predictions. Trees with a height equal to the top height of the stand are usually
selected for stem analysis to reconstruct the growth of forest stands.

In order to estimate the top height of a stand, when defined as the regression
height of the tree with a quadratic mean diameter of the 100 thickest trees (dt )

per hectare, a prediction equation is required to estimate dt from dq with trees
per hectare being introduced as a second predictor variable. Top height (ht )

could be obtained from the stand height curve or from a fitted equation.

Example 5.8 Permanent sample plots in P. radiata were used to examine the
relationship between dt and dq (Figure 5-9). It was found that stem number has
a statistically significant effect on the regression equation

dt = 4.21 + 1.087 · dq − 0.00129 · N
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Figure 5-9. Relationship between mean diameter of 100 thickest trees and quadratic mean
stand diameter.

In order to remove the effect of N /ha, a regression equation was fitted with N /ha
as the dependent and dq as the independent variable. The resultant regression
estimates for N /ha were inserted into the above equation (see Figure 5-1). The
mean diameter of the 100 thickest trees increases by 1.09 cm per cm increase
of dq , but decreases by 1.29 cm for an increase of stand density of 1000 trees
per hectare.

Example 5.9 Sample plot data in P. radiata were used to examine the rela-
tionship between mean height (hm) and top height (ht ). A second-degree equa-
tion was fitted with top height as dependent, hm , h2

m , and N /ha as predictor
variables. The quadratic term was statistically significant in presence of the
linear term but, contrary to German studies (Kramer 1962), trees per hectare
were not significant, primarily because of the uniform thinning regime in South
African P. radiata plantations, which are managed to produce sawtimber. The
improvement of R2, due to h2

m was almost negligible, with R2 increasing from
0.989 to 0.990, but Mallows’ CP was 7.2 for the linear model and 3.0 for the
three-parameter model. The regression equation is

ht = 0.270 + 1.0158 · hm − 0.001881 · h2
m

Example 5.10 The diameter distribution of Appendix B is used to calculate
the regression height of the tree with the arithmetic and quadratic mean diame-
ter, the median, the diameter of the tree with the mean volume, the central area
basal area tree, the mean derived from the Weise rule, for the quadratic mean
of the 100 thickest trees per hectare (d100), and those of the 10th and 90th per-
centile of the diameter distribution. The calculations are based on the prediction
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equations, which performed satisfactorily in this specific stand. Equation (a) has
an upper asymptote with the estimated height converging to exp(b0) as d → ∞.
Equation (b) is monotone increasing for all values of dbh.

(a) ln(h) = b0 + b1

d

(b) h = b0 + b1 ln(d)

Mean diameter dbh (cm) Estimated
mean
height

Eq. (a) (m) Eq. (b) (m)

d 21.8 hd̄ 16.9 16.9
dq 22.4 hdq 17.1 17.1
dM 22.0 hM 17.0 17.0
dv 22.5 hv 17.2 17.1
dmg 24.0 hmg 17.7 17.5
d100 27.9 hd100 19.0 18.5
dWeise 23.0 hWeise 17.4 17.3
d10% 15.5 h10% 14.1 14.3
d90% 28.0 h90% 19.0 18.5∗

The differences between the height estimates based on Eq. (a) and (b) are
almost negligible for central values, but substantial for top height.

6.3 Fitting height curves

The relationship between diameter and height within an even-aged stand is
curvilinear but nonlinearity is not always detectable, for example, because the
sample was too small to detect lack of fit of the linear model or due to exces-
sive random variability of tree heights within a given diameter class, which is
sometimes caused by inaccurate height measurements. Many nonlinear regres-
sion models, the majority being linearizable by a transformation of variables,
have been proposed to fit a stand height curve. The fitted curve should sat-
isfy certain requirements. The function should be monotone increasing with
increasing dbh. In practice, it does not eliminate the use of a second-degree
equation (h = b0 + b1d + b2d2), although the resultant height curve has a
maximum value. Its location is found by equating the first derivative of the
equation to zero and solving the resultant equation for d
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Table 5-6. Functions for fitting height curves in practice

(1) h = 1.3 + d2

b0 + b1 · d + b2 · d2 (6) ln(h) = b0 + b1 · ln(d)

(2) h = b0 + b1 · d + b2 · d2 (7) ln (h) = b0 + b1 · 1
d

(3) h − 1.3 = b1 · d + b2 · d2 (8) h − 1.37 = b1 ·
(

1 − e−bd
2
)

(4) h = b0 + b1 ln (d) (9) h = b1 ·
(

1 − e−b2·d
)

(5)
1√

(h − 1.3)
= b0 + b1 · 1

d
(10) h = b1 ·

[
db2

b3 + db2

]b3

hmax = −2
b1

b2

The maximum, however, must be located outside the observed range of
diameters.

A variety of functions has been proposed to fit height curves. The equations
in Table 5-6 have been proposed and applied in practice.

Equation (1), which was introduced by Prodan (1944), produces a satisfac-
tory fit for the all-aged selection forests in Germany and has an inflection point.
Equation (2) has a maximum for d = −b1/2b2. Equation (3) is a second-degree
equation without the intercept parameter b0. The model forces the height curve
through the point d = 0 for h = 1.3. Equation (5) has similar properties. The
equivalent equation, which is used to obtain the estimated heights is as follows:

h = 1.3 +
(

1
b0 + b1 · ln d

)2

Equation (5) can be generalized by replacing
√

h − 1.3 with the transformed
height k√h − 1.3, is characterized by an inflection point and has asymptotic
properties. Equations (6) and (7) are monotone increasing with increasing
dbh. Equations (8) and (9) are identical to Mitscherlich’s growth function
(Chapter 9). They have asymptotic properties but no inflection point. The
following functions might be more flexible:

h = b1 ·
(

1 − b2e−b3·d
)

h = b1 ·
(

1 − e−b3·(d−c)
)

with c being a constant. Equation (5) was introduced by Petterson (1955) and is
favored by German forest mensurationists. It has asymptotic properties and an
inflection point. Several authors compared the performance of different func-
tions (Michailoff 1943; Schmidt 1967; Brewer et al. 1985; van Laar 1986).
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Example 5.11 The dbh and height of 53 trees in a P. radiata stand (Appen-
dix C) were used to fit a height curve. The fitted equations are:

(1) h = d2

1.624 + 0.59 · d + 0.033 · d2 + 1.3 (6) h = e1.0993 + 0.5584 · ln(d)

(2) h = 2.44 + 0.93 · d − 0.012 · d2 (7) h = e3.258-9.2486·(1/d)

(3) h = 1.04 · d − 0.015 · d2 + 1.3 (8) h = 23.505 · (1 − e−0.0588d)+ 1.3

(4) h = −8.4 + 8.215 · ln(d) (9) h = 23.505 · (1 − e0.0588·d)

(5) h =
⎛

⎜
⎝

1

0.187 + 1.44 · 1
d

⎞

⎟
⎠

2

+ 1.3 (10) h = 437 ·
[

d0.02

−1.021 + d0.02

]−1.021

Figure 5-10 shows the fitted height curves for Equations (2), (4), and (7).

Bias, expressed by the mean deviations between the observed and estimated
heights and the sum of squared deviations between the observed and estimated
heights were as follows:

Equation
∑(

h − ĥ
)

n

∑(
h − ĥ

)2

n

Equation h − ĥ
∑(

h − ĥ
)2

n
(1) 0.0001 1.189 (6) 0.0070 1.280
(2) −0.0000 1.211 (7) −0.0061 1.250
(3) −0.0179 1.232 (8) 0.0044 1.197
(4) −0.0000 1.188 (9) −0.0017 1.194
(5) −0.0014 1.190 (10) −0.0016 1.211
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Figure 5-10. Fitted height curves.
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6.4 Precision of height estimates

The regression analysis estimates the parameters of the regression equation and
calculates the mean square error of the regression equation. The latter expresses
that component of the total sum of squares, not explained by the regression of
height on dbh. It can be used to determine the precision of the estimated mean
height and to calculate confidence limits for the true mean height. This assumes
that the target variable has not been transformed, which occurs, for example, if
log (h) instead of h has been regressed on dbh or on a function of dbh or if any
other height transformation has been applied. The positive and negative devi-
ations of the measured heights from the regression curve are associated with
biological factors, for example, leaning trees, broken tops, diseases, but also
competition amongst trees and in addition are due to random errors of height
measurements. In many instances, it is necessary to report on the precision of
the regression estimate, either for the mean height of the stand or for each of
the specified diameter classes. In Germany the standard deviation expressed as
a percent of the mean height varies between 5% for Norway spruce, pine, and
fir to 8% for beech and Douglas fir (Assmann 1957; van Tuyll et al. 1981).

Example 5.12 The previous dataset is used to calculate conditional confi-
dence limits for the population mean, i.e., confidence limits for given diam-
eters. The mean, the lower 0.95 confidence limit (lcl) and upper limit (ucl)
for the mean height, corresponding with the 10th, 50th, and 90th percentile
of the diameter distribution of Appendix C, were calculated for the regression
equations:

h = b0 + b1 · ln(d) (4)

ln(h) = b0 + b1 ·
(

1
d

)

(7)

The transformation of the dependent variable in Eq. (7) requires the calculation
of confidence limits on the logarithmic scale and their retransformation.

Breast height diameter
15.5 cm 22.0 cm 28.0 cm

Eq. (4) Eq. (7) Eq. (4) Eq. (7) Eq. (4) Eq. (7)

Height estimates, lower (lcl) and upper (ucl) confidence limits
Mean 14.1 14.3 17.0 17.0 19.0 18.5
lcl∗ 13.7 14.0 16.6 16.5 18.5 18.0
ucl∗ 14.5 14.7 17.4 17.4 19.6 19.1
∗lcl = lower confidence limit, ucl = upper confidence limit
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Figure 5-11. Lower and upper 0.95 confidence limits, second-degree equation.

The 0.95 confidence limits for the population mean, based on the fitted
second-degree equation are shown in Figure 5-11.

6.5 The standardized height curve

The standard procedure in stand inventories, fitting a height curve for each
stand separately, produces unbiased estimates of the mean height of the stand.
It is generally accepted that at least 20–25 heights should be measured in each
stand to obtain sufficiently accurate estimates. The basic idea of standardized
height curves was introduced by German forest mensurationists, its purpose
being to rationalize the field work required for forest inventories (Wiedemann
1936; Lang 1938). Tables were constructed, which indicated how much should
be added to or subtracted from the observed mean height to estimate the mean
height, if the diameter deviates a specific number of units of 1 (or 2) cm from the
mean. In order to use these tables, it was necessary to estimate the mean diam-
eter by conventional methods and to measure a limited number of tree heights,
around the quadratic mean diameter. This method, however, was improved by
more efficient approaches. Many studies indicated that the location and shape
of the height curve changes with increasing age, but is also related to site and
differs for different tree species. In other words, if it were possible to develop
models, which incorporate such stand variables into the regression model, more
efficient estimates of the mean height could be obtained. For growth monitoring
in permanent sample plots and for growth modeling, for example, it might be
advantageous, to pool the height measurements of successive remeasurements
and relate the parameters of the function being used to age. When the nature of
this relationship is known, age is introduced as an additional predictor variable



126 Measurement of Stands

and a single equation is fitted to the sequence of remeasured plots (Sadiq et al.
1983; Pollanschütz 1974; van Laar 1986).

Hui et al. (1993) applied the function

h = 1.3 + b0db1

to describe the relationship between dbh and height and used a log–log trans-
formation to estimate the two parameters from top height. EK et al. (1984)
introduced basal area per hectare and site index as additional predictor vari-
ables to model the dbh–height relationship. Zakrewski et al. (1988) fitted the
function in its unlinearized form

ln (h) = b0 + b1
1
d

h = eb0+b1/d

and regressed b0 and b1 on the quadratic mean diameter and stand mean
height, respectively.

Gaffrey (1988) developed a model based on Michailoff’s function (Michailoff,
1943):

h = 1.3 + (hm − 1.3) e[a1(1−dq/d)+a2(1/dq−1/d)]

Pienaar (1991) introduced the equation:

h = b1ht

(
1 − b2e−b3(d/dq)

)b4

Nagel (1991) compared standardized height curves, derived from the Petterson
function with those based on Sloboda’s function (Sloboda et al. (1993)):

h = 1.3 + (hm − 1.3) e(b0(1−d/dq))eb1(d/dq−1/d)

The Petterson function implies the existence of an inflection point, which is a
function of b0 and b1

dinfl. = b1

b0
It can be shown that

b0 =
1 + dinfl

d
3
√

(h − 1.3)

Thus

b1 = b0dinfl.

and

hi = (b0 + b1/di )
3 + 1.3

Based on these considerations, the construction of a system of standardized
height curves should be preceded by a sampling study to estimate b1 from age.
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7 STAND VOLUME

Stand volume is the most important stand characteristic in stand inventories. It
is a function of the number of trees, basal area, mean height, and the individual
or the average form of the trees and may be expressed in terms of:
• Either stem or total tree volume
• Either total or merchantable volume
• Either over or under bark volume
The stand volume is usually estimated from the diameter and height of the mean
tree, but sometimes for each diameter class separately.

7.1 Standard tree volume tables and functions

Two-entry tree volume tables give the estimated volume for specified diame-
ter and height strata, whereas the corresponding volume functions use dbh and
height as predictor variables. The use of a two-entry volume table assumes that
the form factor of trees of a certain species, for a given dbh and height, is not
affected by external factors, for example, provenance, site, and stand treatment.
The commonly applied mean tree method in stand inventories requires the esti-
mation of the quadratic mean diameter and its regression height. This mean
diameter is usually obtained by sampling, unless the diameter distribution of
the stand is determined by a complete enumeration. In both cases, the mean
height is calculated from the dbh–height regression equation or read off from
the height curve. The resultant volume estimate does not provide information
about the volume distribution in terms of size classes. When this additional
information is required, either standardized height curves, which reflect the
average shape and location of the height curve, can be used to estimate mean
height for each diameter class separately, or the parameters of the dbh–height
equation are estimated for each compartment separately. The tree volume equa-
tion is subsequently used to estimate the average tree volume in each diameter
class.

The majority of the existing volume tables in the metric system of mea-
surement give the estimated volume for 1 cm diameter classes and 1 m height
classes, whereas 1 in. classes for diameter and 1 ft classes for height are cus-
tomary in the English system. A bold underlining within the table serves to
demarcate which diameter–height strata were represented in the sample used
for the construction of the table. Theoretically, the table should not be applied
outside these boundaries, but in practice this may be unavoidable. One major
disadvantage of using the volume table is the necessity to interpolate in order
to avoid rounding-off errors.
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Example 5.13 The following equation was fitted to a sample of 302 Euca-
lyptus grandis trees:

v(m3) = exp(−11.021 + 1.764 ln(d) + 1.433 ln(h))

where v = volume in cubic meters, d = dbh in centimeters and h = height in
meters. The regression estimate for the volume of a tree with a dbh of 22.4 cm
and a height of 21.4 m is 0.318 m3. Rounding off to d = 22 cm and h = 21.0 m
gives an estimated volume of 0.300 m3, i.e., it produces a rounding-off error
of −5.7%. Linear interpolation between 22.0 and 23.0 cm and between 21 and
22 m gives an estimated volume of 0.318 m3.

7.2 Volume estimation with form height and volume series

Based on form factors, derived from German tree volume tables (Grundner and
Schwappach 1942) and heights, obtained from Wiedemann’s (1936) standard-
ized height curves. Laer (1936) developed the concept of form height series
to estimate stand volume. The form height of a tree was defined as the prod-
uct of tree height and form factor, the form height of a stand as the average
form factor multiplied by the mean height of the stand. Tables, which disclosed
the estimated stand form height as a function of the mean height of the stand,
were constructed for different tree species. For a mean height of 14 m, the form
height (which is usually expressed in meters) varies between 5.6 m for beech
and 7.3 m for fir, for a mean height of 20 m it varies between 8.9 m for ash and
10.5 m for fir, and at 26 m between 13.8 m (oak) and 10.6 m (birch). The form
height of a given diameter class is multiplied by its basal area to obtain the esti-
mated volume in this diameter class. The method, although now obsolete, has
a moderate advantage over the conventional two-entry tree volume table, since
height measurements can be restricted to the subpopulation of trees around the
basal area central tree. A rough estimate of the diameter of the basal area cen-
tral tree can be obtained from the 70th percentile of the ordered set of diameters
with its height being estimated by sampling.

The volume series method, introduced by Spiecker (1948), is closely related
to the form height series method. It prescribes the calculation of the diameter of
the basal area central tree, approximated by the 70th percentile of the ordered
set of diameters. Its height is estimated by sampling. Similar to von Laer’s
form height series, Spiecker’s volume series estimate the average stem vol-
ume per diameter class. The mean diameter and mean height of a given stand
are required as entries to a table, indicating which volume series is to be used
for that particular stand. These volume series were constructed in the form of
subtables, with a number being assigned to each of them, which reflected the
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relative volume. The volume estimates for volume series 50, for example, were
exactly 50% of those for volume series 100. In 1951, the form height method
was combined with the volume series approach. Since then, the diameter of
the basal area central tree and its regression height are calculated to read off a
common number, which is used to either enter the volume or the form height
tables.

Example 5.14 The diameter of the basal area central tree in a P. abies stand is
24 cm and its regression height is 22 m. The auxiliary table indicates that series
67 of the Laer–Spiecker table is to be used to estimate the volume per diameter
class. The relevant information derived from this series is summarized below:

dbh (cm) Stem
volume (m3)

Form
height

dbh (cm) Stem
volume (m3)

Form
height (m)

12 0.02 3.6 28 0.55 12.3
16 0.10 8.9 32 0.77 12.5
20 0.22 10.9 36 1.03 12.7
24 0.37 11.8 – − −

This information is sufficient to calculate the stem volume in 4 cm classes.

7.3 Stand volume tables and functions

The accuracy of stand volume tables, giving the estimated stand volume per
hectare as a function of stand basal area and mean height, was investigated by
Stoate (1945) and Spurr (1952). The “Australian” formula

V = b0 + b1G + b2hq + b3G · hq

where V = volume per hectare, G = basal area per hectare, hm = mean
height was originally proposed by Stoate and applied in P. radiata plantations
in Australia (Cromer et al. 1956). The combined variable equation

ln (V ) = b0 + b1 ln
(
G · hq

)

was recommended by Spurr (1952), but some revealed evidence of nonlinear-
ity in the lower domain of the predictor variable. Rondeux (1985) developed an
equation to estimate the volume per hectare for Norway spruce from a regres-
sion equation with basal area per hectare, dominant height, and their linear
interaction as predictor variables. The more parsimonious version of this model
with basal area multiplied by height as the independent variable, required the
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estimation of the basal area per hectare by point sampling. It was suggested that
the resultant equation should be used primarily to obtain quick estimates of the
stand volume.

Example 5.15 The following equation was fitted to sample plots in planta-
tions of P. radiata. The resultant equation is

V = −17.62 + 2.376 · G + 1.1068 · hm + 0.256 · G · hm

with R2 = 0.993. The equations

V = −16.260 + 3.608 · G − 31.7546 · ln (G) + 32.648 · ln (hm) + 0.2456 · hm · G

and

V = −24.290 + 2.935 · G − 23.053 · ln (G) + 27.4435 · ln (ht ) + 0.0.2482 · ht · G

performed equally well, with R2 = 0.993 for both models and C P = 7.8 and
6.1, respectively. In terms of Mallows’ CP, the model with top height being
used to represent one of the predictor variables, is superior in predicting stand
volume.

7.4 Estimation with yield tables

Yield tables of a given tree species provide an estimate of volume and growth
per hectare as a function of age, site class, and a “normal” stocking density. In
general, such tables represent the average growth pattern within large regions.
Sometimes they were constructed for different degrees and methods of thin-
ning and for different yield levels (Assmann and Franz 1963; Bergel 1985).
The following information must be available to estimate the stand volume from
stand volume yield tables:
• Stand age
• Mean or top height
• Stocking density in terms of basal area per hectare
• The area occupied by the individual species (if the table is used for estimates

in mixed stands)
In order to obtain the estimated stand volume, the site class or site index is esti-
mated from age and mean or top height. The tabulated volume is multiplied by
stocking density, the latter being calculated as the ratio of the observed over the
“normal” basal area, reflected by the yield table. To a large extent, the accuracy
of the stand volume estimation with yield tables depends upon the accuracy of
the estimation of age, mean height, stocking density and – in the case of mixed
stands – the ground area occupied by the single tree species. The method is
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primarily used for low-intensity surveys, for example, with the basal area per
hectare being measured with the relascope method and the stand height esti-
mated by measuring sample trees with a dbh around the estimated mean stand
diameter. The estimates may be subject to operator-bias.

Example 5.16 We assume that a mixed stand consists of 86-year-old beech
and 86-year-old maple trees. The estimated mean height is 25 and 27 m and
the corresponding site classes are II and I, respectively. The basal area per
hectare estimates, obtained by field measurements, are 25.1 and 4.3 m2/ha,
respectively, the estimated mixture (in terms of basal area per hectare) is 85%
beech and 15% maple. The volume estimates, obtained from the appropriate
yield tables, are 295 and 61 m3/ha, respectively.

7.5 Volume estimation from felled sample trees

The diameter distribution and mean height of the stand is obtained by sam-
pling, but the stem form factor is either obtained from tables or the form factor
is estimated from regression equations, with diameter and height as indepen-
dent variables. The determination of the stem form factor by measuring felled
sample trees is justified if the true stem form is expected to differ substantially
from the tabulated values (e.g., because of genetic differences), or if such tables
are not available. The latter may the case in developing countries with a young
forestry history. In European forestry, the estimation of stand volume based on
sample tree measurements has a long tradition. Draudt (1860), Kopezky (1899),
Gehrhardt (1909), and others proposed sampling methods and developed meth-
ods and algorithms to estimate the volume of stands, based on felled sample
trees. In Central Europe, these methods have lost their popularity, in spite of
more accurate volume estimates, in part because of the prohibitively high mea-
suring cost. Recently developed instruments for measuring upper-stem diam-
eters, however, which can be carried out conveniently and accurately, is one
of the reasons for a renewed interest in the measurement of one or more than
one upper diameter on standing trees. This can be combined with modern sam-
pling methods to estimate the stand volume on small tracts (Pelz 1980). The
following methods may be used:
• Selection of sample trees at random, which ensures an equal chance for each

tree to be included in the sample. A strict application of this rule may be
impractical because it necessitates drawing up a list of sampling units and
identifying each sampling unit.

• Quasi-random selection of sample trees, together with the constraint that they
are spatially uniformly distributed within the stand
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• Selection of sample trees with a probability proportional to prediction, with
either basal area or volume used as a size variable. The method, which is
known as 3-P sampling, has been found to be more efficient than the previ-
ously discussed method.

The stand volume may be obtained as follows:
1. The selected n sample trees are felled, their dbh and volume are deter-

mined by sectionwise measurements. Alternatively, the volume of the
sample trees is determined on the standing tree. Tree volume is regressed
on basal area or squared diameter. An equation is usually fitted with
unit weight being assigned to each tree, but since the variance about
the regression line increases with tree size, it is appropriate to assign
weights, for example

wi = 1/(di )orwi = 1/(di2)

2. Alternatively, the regression equation log(v) = b0 + b1 log(d) is fit-
ted to the data. The logarithmic transformation tends to remove het-
eroscedasticity and no weighting procedures are required. The volume
estimates are slightly biased, but this bias may be removed by apply-
ing Baskerville’s adjustment factor (see Chapter 8). The model provides
an adequate fit, but contrary to the previous model, it has the disadvan-
tage that confidence intervals are obtained on a logarithmic scale, which
implies that confidence limits have to be retransformed.

3. Sample trees are selected with a mean diameter approximately equal
to the estimated quadratic mean stand diameter. Their mean volume is
subsequently multiplied by the ratio R∗

R∗ = d̄2
1/d̄2

2

where d̄2 = quadratic mean diameter of the sample trees

d̄1 = quadratic mean diameter of the forest stand.

In consequence, a two-phase sampling procedure is required:
• When sample trees across the range of diameters are selected and measured.

Fixed-radius plots are established to determine the diameter distribution of
the stand.

• When sample trees of the mean stand diameter are measured, the fixed radius
plots serve to estimate the quadratic mean stand diameter and the number of
trees per hectare.

Different methods for estimating the stand volume can be combined. For exam-
ple, the basal area may be measured by a complete enumeration or estimated by
sampling in fixed sample plots or through angle count sampling. The resultant
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Table 5-7. DBH and volume of sample trees

dbh (cm) Volume (m3) dbh (cm) Volume (m3) dbh (cm) Volume (m3)

8.1 0.02014 24.8 0.35083 20.6 0.19331
10.1 0.03788 33.7 0.69915 20.5 0.23411
14.0 0.09449 25.0 0.34556 22.0 0.26746
15.5 0.10862 9.5 0.02928 28.0 0.46018
18.3 0.16887 12.5 0.06130 30.7 0.56222
21.2 0.22831 15.0 0.11218 23.0 0.28261
22.2 0.26578 17.2 0.13001 – –

information may be used in combination with volume and form height tables,
volume tariffs, and yield tables.

Example 5.17 Suppose that no volume table or volume equation was avail-
able to estimate the stand volume of the sample plot data of Appendix B.
Twenty sample trees, which were uniformly distributed over diameter classes,
were felled and their volume determined by sectionwise measurement. The
resultant volumes are given in Table 5-7. The observed volumes are regressed
on squared dbh

vest = −0.0389 + 0.00063095 · d2.

The quadratic mean diameter of the 20 sample trees is 22.95 cm, that of the
sample plot is 22.38 cm. The regression estimate of the tree volume for dq =
22.38 is 0.2771 m3 and represents an almost unbiased estimate of the mean
volume. In fact, the estimated volume is slightly higher because the quadratic
mean diameter underestimates the diameter of the tree with the mean volume.

7.6 Critical height sampling

The basic concept was introduced by Kitamura (1962). The critical height is
defined as the distance between the base of the tree and a second point, where
the stem diameter subtends a certain angle to the sampling point. The latter is
equal to the horizontal sighting angle, which corresponds to a given basal area
factor, with the vertical being erected at the sampling point. The stand volume
per hectare is expressed as the product of the basal area factor (BAF) and the
sum of the critical heights:

V = B AF ·
∑

hc
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In practice, the critical height is measured for those trees which fall within the
variable-radius sample plot and are counted “in,” since they are located inside
the imaginary plot (Chapter 10). For most species, the “critical point” on the
bole, which corresponds to the critical height, is located within the live crown
and not clearly visible. It has been suggested to obtain an indirect estimate of
the critical height, for example, with the aid of taper functions, although the use
of such functions may give biased estimates when applied to specific stands.

8 SPATIAL DISTRIBUTION OF TREES

8.1 Tests of randomness

A random spatial distribution of trees may occur in natural forests, in which
case the number of individuals within sample plots of a fixed size has a Poisson
distribution. In many instances, and more particularly in mixed forests which
originated from natural regeneration, certain species occur in clumps, for exam-
ple, because of the proximity of parent trees, because of site differences within
the stand or due to competing undergrowth. For several reasons it may be neces-
sary to model the spatial distribution, to test the hypothesis of a random distrib-
ution, and to calculate an index which expresses the degree of nonrandomness.
If species occur in clumps, which in turn may have a Poisson distribution, the
distribution is called contagious. The contagion is positive if the occurrence of
a tree of a certain species within a given quadrate, induces an increased prob-
ability of the occurrence of a second tree within the same quadrate. In plant
communities, a negative contagion occurs less frequently. It would mean that
the occurrence of a tree of a certain species reduces the probability of a second
occurrence. The spatial distribution of individuals within populations with a
positive contagion can frequently be described either by the negative binomial
or by the Neymann distribution.

The hypothesis of a random distribution is to be tested either with the χ2 or
with the likelihood-ratio test for goodness of fit. The likelihood-ratio test is usu-
ally preferred and is compulsory when fitting loglinear models. In both cases,
the test statistic has a χ2 distribution with (k−1− p) degrees of freedom, where
k = number of classes and p = number of parameters of the distribution. In
the case of a Poisson distribution, the observed χ2 value is therefore associated
with (k−2) degrees of freedom, since this is a one-parameter distribution. How-
ever, since no expected frequencies are allowed to be smaller than one, it may be
necessary to combine adjacent classes. This grouping of classes has an adverse
effect on the power of the test. If, for example, the number of classes is 7 and
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the frequencies in the last 3 classes are pooled, the observed χ2 is associated
with three degrees of freedom. With so few degrees of freedom, it is unlikely
to detect a nonrandom underlying distribution. Alternatively, a Poisson, a neg-
ative binomial and a Neyman distribution are fitted to the observed data and χ2

is calculated for each distribution fitted. The associated probability P expresses
the probability of obtaining a larger χ2, if Ho is true. If the Neyman distribu-
tion produces a P-value in excess of that which is calculated for the other two
distributions, this distribution produces a superior fit, although it does not dis-
prove that the hypothesis of a random distribution was wrong. Alternatively, the
following statistic, which quantifies the degree of nonrandomness, is calculated

R = s2

x
which is equal to 1, if the hypothesis of a Poisson distribution holds true. The
ratio variance over mean is a useful numerical expression to express the degree
of aggregation, although it cannot be used to test the hypothesis of a random
distribution. Other tests have been developed by ecologists and botanists. Pielou
(1959) proposed the index

α = NhaW

where Nha = estimated plant density and W = distance between a random
point and the nearest plant. Large values of α indicate aggregation, small values
occur in a uniform distribution. In a spatially random distribution, the expected
value of α is

E (α) = n − 1
n

where n = number of quadrates. The quantity 2nα is a χ2 variate with 2n
degrees of freedom and serves to test the hypothesis of randomness.

Morisita (1957) introduced the following formula to calculate plant density
in populations with a nonrandom spatial distribution of individuals:

Nha = n

π ·
n∑

i=1
r2

where n = number of sampling points and r = distance between individu-
als and sampling point. Zeide (1985) showed that the expected mean distance
between a point and the sample trees, which falls inside an angle count sample
plot, is a function of mean diameter and basal area factor:

E (r) = d

3
√

B AF
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When selecting a dominant tree as plot center, the mean of the observed dis-
tances will tend to exceed its expected value, because the dominant tree sup-
presses surrounding trees belonging to a lower social stratum. The opposite
holds true for suppressed trees selected as plot center. The difference between
the observed and expected mean distance, r̄ therefore, measures the degree of
spatial nonrandomness.

Clark et al. (1954) basic their statistical test of the distribution of the
distance r between an individual tree and its nearest neighbor. Their mean,
r̄observed = ∑

r/N , in a spatially random distribution of trees has an expected
value of r̄expected = 1/2

√
ρ with ρ = number of plants per unit area. The ratio

r̄observed/r̄expected varies between 0 (maximum aggregation) and 1 (random
distribution). The ratio

z = r̄observed − r̄expected

σr̄expected

with

σr̄expected = 0.26136
√

samplesize · ρ

follows the distribution of the unit normal variate. The hypothesis of a random
distribution is rejected if z exceeds the specified level of significance.

Holgate (1965) introduced the ratio

R = ys

yt

where ys , yt = distance between a random point and the sth and the t th indi-
vidual respectively. In randomly distributed populations the expected value of
R is

E (R) =
√

s (t − s)
t2 (t + 1)

The variate R is approximately normally distributed (0, 1), unless s/t is near
to 0 or 1.

Hopkins (1954) introduced the coefficient of aggregation

A =
n∑

P2/n
n∑

I 2/n
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where P = distance between a random point and the nearest individual and
I = distance between a random individual and its nearest neighbor. In random
distributions, the two distance measures are equal.

Payandeh (1970) compared five methods for measuring the degree of
nonrandomness based on data from five forest types, and redistributed pop-
ulations, which simulated semi-random, random, semi-uniform, and uniform
distributions. The quadrate method, which necessitates the layout of a random
number of sample plots to calculate the ratio variance: mean, performed best,
but plot size affected the outcome. Using the distance between a random point
and the nearest neighbor was the next-best method and was not affected by plot
size.

8.2 Spatial structure

It is now generally accepted that the extent of horizontal and vertical het-
erogeneity of stand structures has a impact on their ecological stability. This
explains the increasing emphasis on the quantification of spatial structures of
forest stands, primarily to determine habitats and species diversity. The spa-
tial structure can be quantified in terms of spatial distribution, species diversity,
and variability of tree dimensions. The indices are either distance-independent
or distance-dependent. The latter quantify either species mingling and differ-
entiation, or they describe forest structure at stand level or represent functions
which incorporate distance measures with the aid of pair correlation functions.
Pommerening (2003) discussed the merits of the following indices
• The Clark and Evans aggregation index as described in the previous section.
• The single-tree contagion index, proposed by Gadow et al. (1998) quantifies

the degree of regularity of the spatial distribution of the trees and requires a
specification of the number of neighbors involved in the calculation of the
index. For a group of n neighbors and a perfectly regular spatial distribution,
the standard angle is 360/n degrees. For example, for n = 4, the standard
angle is 90◦ and the sum of the two angles α, β(α ≤ β) which are shared by
two neighbors is 360◦. The contagion index is defined as the proportion of
angles smaller than the standard angle and is calculated as follows:

• Wi =
n∑

j=1
wi j , with wi j = 1 if the angle α is smaller than the standard

angle
• It is either obtained by comparing the observed with the expected angle

by visual inspection or by making use of a stand map with the known
coordinates of each tree.
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• The distance-independent Shannon index (Shannon et al. 1949) describes
species mingling as the extent of mixture when a stand consists of two
species and is distance-dependent.

Reference tree Species of nearest neighbor
Species A Species B Total

No of trees

Species A A B M
Species B C D N
Total R S N

• The segregation index is defined

S = 1 − N · (b + c)
m · s. + b · r

• The single-tree mingling index M quantifies the proportion of the 3 nearest
neighbors which do not belong to the species of the reference tree.

• Gadow and Füldner (1992, 1995) introduced a simple diameter differentia-
tion index for pairwise comparison

T Dn = 1 − DB Hi

DB Hj
where

N = ordered position of the neighbor tree
DB Hi = diameter of the thinner tree
DB Hj = diameter of the thicker tree.

• The following diameter differentiation index was introduced by Pommeren-
ing (2003)

T = 1 − min
(
DB Hi , DB Hj

)

max
(
DB Hi , DB Hj

)

• The pair correlation function which incorporates all possible intertree dis-
tances.

Three indices were compared to test diversity, in terms of crown cover and
leaf biomass with watershed being used as an additional discrete variable. The
general form of the index was

� =
s∑

i=1

πi R (πi )

with s = total number of species, πi = proportion abundance of the i th species
and R (πi ) = measure of rarity of the i th species. The index � was calculated
for species count, the Shannon index and the Simpson index
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Species count �count =
∑

πi (πi/1 − πi )

Shannon index �Shannon = −
∑

πi ln πi

Simpson index �Simpson =
∑

πi (1 − πi )

Five plant life-forms were defined as independent variables. A principal com-
ponents transformation, together with an orthogonal rotation of the axes was
applied to obtain meaningful uncorrelated predictor variables. The first and
third principal component being subsequently used to estimate the three diver-
sity indices. Together they explained more than 98% of the variation. For all
three diversity indices an equation with the first and third principal component
as continuous and a two-level watershed variable as a discrete predictor were
fitted.

8.3 Structural diversity

The structural diversity of a stand is defined as the diversity of trees within
stands and can be indicative of overall biodiversity (Staudhammer et al. 2001).
Forest stands with a large number of tree species and highly variable tree sizes
are characterized by high biodiversity and this in turn has a positive impact on
the stability of forest ecosystems. Biodiversity indices have been developed to
quantify the degree of diversity, which are based on the distribution of individ-
uals by species. The Shannon–Weaver index (Shannon et al. 1949) is based on
the probability that a randomly selected individual belongs to a specific species.
The index is defined as

H ′ = −
S∑

i=1

pi ln pi

with pi = proportion of the i th species, S = number of species involved.
Because of the effect of a varying tree size on the index, modified indices were
introduced. Specific variables were correlated with the proportion of individual
trees of a given species such as number of individuals, basal area, stems per
hectare, and foliar cover. If all proportions are equal, Shannon’s index is equal
to the number of species. Habitat heterogeneity was introduced to account for
varying tree sizes (Orloci 1970; Freemark et al. 1986)

H H = −
r∑

i=1

c∑

j=1

xi j ln
(
xi j/x̄i

)
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where c = number of plots, r = number of classes, and xi j = proportion
of individuals in the i th class within the j th plot. The index was calculated
for different tree and stand level variables or was derived from stand variables
alone (Lähde 1999). In all instances, continuous variables were grouped into
classes to calculate proportions.

Staudthammer et al. (1999) extended Shannon’s index and emphasized
the necessity to quantify horizontal as well as vertical diversity. The post hoc
method was based on proportion basal area, height, and species by dbh class.
The mean of the three values was calculated to define the modified Shannon
index. The combination method was based on the proportional basal area in
each dbh/height/species class. The observed proportions were averaged to pro-
duce a single index value. In addition a structural index based on R2 index was
defined by the departure of the observed dbh, height, and species distribution
from a theoretical maximum, i.e., from a uniform distribution. Furthermore a
structure index was derived from the difference between the empirical basal
area distribution and the univariate uniform distribution. The empirical variance
was calculated as follows

S2 =

n∑

i=1

[
wi (xi − x̄)2]

n∑

i=1
wi

with x = diameter, height, wi = weight of the i th observation proportional to
basal area per hectare and the variance of the hypothesized uniform distribu-
tion is

S2
u = (b − a)2

12
The extensions of the Shannon index performed satisfactorily, with the post
hoc method giving more information about the overall diversity. Diameter and
height, however, had to be grouped in classes for calculating proportions.

9 STAND DENSITY

9.1 Area-related indices

The degree of stocking of a stand expresses the current stocking, usually in
terms of basal area, but expressed as a percentage of the basal area which is
considered “normal” for a stand of a given species, age, site index, thinning
regime, and possibly for a given yield level. It does not adequately measure
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the biological stand density. The latter should reflect the degree of competition
between trees within the biogroup and is a useful predictor variable in growth
and yield modeling.

The stand density index introduced by Reineke (1933), although frequently
identified as an index for density, falls within the category of stocking indices.
The method is as follows:
• The number of trees per hectare and mean diameter is determined in tem-

porary plots, which are established at randomly selected locations in stands
representing a wide range of sites

• The following regression equation is fitted:

ln (Nha) = b0 + b1 ln
(
dq
)

• An arbitrarily selected mean diameter (dI ), for example, dI = 40 cm serves
as the reference diameter. The regression equation is used to estimate the
expected number of trees in a stand for the index diameter.

• The stand density index (SDI) of a new stand, is found by sampling to esti-
mate the mean diameter (di ) and the number of trees per hectare (Ni ), for
example, in each of n sample plots

• The stand density index is calculated for each sample plot by

SDIi = exp 
ln Ni + b1 · (ln(dI − ln di )�
exp (b0 + b1 · ln dI )

• The resultant index values are averaged. Alternatively, the data of n plots
are pooled and a single index value determined for the pooled observations,
although this produces a slightly biased estimate of the stand density index.

• Reineke’s stand density concept is based on the assumption that the line
which expresses the relationship between the logtransformed number of trees
per hectare and the logtransformed mean diameter may be located above or
below the reference line. However, since the expected number of trees at
some point in time either in the past or in the future is to be calculated, the
method assumes a constant slope of the regression line.

• The parameters of the basic equation depend on management objectives,
more specifically, whether the forest is either managed for the production
of pulpwood or for sawtimber. It is therefore a stocking guide rather than an
index of competition. However, when applied to unthinned natural forests, it
represents a biological stand parameter.

Conventional fixed-radius sample plots, as well as variable-radius sample plots,
provide unbiased estimates of the number of trees and basal area per hectare.
Both variables are used to numerically express stand density, but they fail to
measure the degree of competition for growing space amongst trees within the
biogroup, unless age and site index are specified. In growth modeling, the num-
ber of trees per hectare as a predictor variable in growth models is less suitable
than basal area for representing stand density, since it ignores tree size.
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Figure 5-12. Reineke’s reference curve for Pinus radiata.

Example 5.18 Sample plot data in P. radiata were used to fit the follow-
ing equation with ln(dq) and ln(N ) as independent and dependent variables,
respectively (Figure 5-12):

ln(N ) = 10.076 − 1.1728. ln(dq)

The equation generates the reference curve, with the key diameter being arbi-
trarily fixed at dI = 40 cm. The corresponding stem number is

Nkey = exp [10.076 − 1.1728 · ln(40)] = 314

The model could be improved by the addition of a quadratic term. The latter was
significant in the presence of ln(dq) with R2 increasing from 0.727 to 0.738.
The equation is

ln (N ) = 7.344 + 0.591 · ln (dm) − 0.2794 · (ln (dm))2

The expected stem number for dq = 40 cm is 305 instead of 314. Suppose that
the SDI of a specific stand with dq = 28, N = 644 has to be determined. Then

b0 = ln 644 − 0.591. ln 28 − 0.2794. (ln 28)2

The expected stem number for dq = 40 then is

N = exp [7.601 + 0.591 · ln 40] − 0.2794 · [ln 40]2

Thus SDI = 395/305 = 1.30
Hart (1928) introduced the S% to express stand density

S% = a
ht

· 100
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where a = mean distance between trees and ht = top height. The calculation
of the mean distance is based on the assumption of a square lattice, i.e., an
unthinned plantation forest, a square spacing, and zero mortality, in which case

a (m) = 100√
Nha

Hart’s index is an artifact, which ignores the spatial distribution of the trees and
the diameter distribution of the stand. Nevertheless, it remains a simple and
useful index, which incorporates plant density as well as height.

Example 5.19 The stand density of even-aged forests in Central Europe
is notably higher than that observed in the plantation forests of fast-growing
species in the southern hemisphere; grown to produce sawtimber. The manage-
ment of these plantations is characterized by a severe first thinning and a more
moderate regime at a later age. In consequence, the relationship between age
and S% index in these plantations can be expected to differ substantially from
those in Central Europe. The following equation was fitted to the P. radiata
dataset:

S% = 19.59 − 62.367 · 1
age

+ 914.24 ·
(

1
age

)2

with R2 = 0.974 (see Figure 5-13). The relationship between age and S% index
for site class 40 of the Assmann–Franz yield table for Norway spruce is shown
in Figure 5-14. The two diagrams illustrate the different thinning regimes in
South Africa and Germany, respectively. P. radiata plantations in South Africa
are based on a planting espacement of 2.7 × 2.7 m and an early first thinning,
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Figure 5-13. Relationship between S% and age, Pinus radiata, South Africa.
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Figure 5-14. Relationship between S% and age, Pinus abies, Assmann and Franz (1963).

which reduces the number of trees per hectare from 1200 to 650, whereas the
Assmann–Franz yield table is based on an initial density of 4500 trees per
hectare and a first moderate thinning between 20 and 25 years.

Krajicek et al. (1961) introduced the concepts maximum crown area (MCA)
and crown competition factor (CCF). The maximum crown area, defined as the
maximum size of the projected crown area, was determined for free-growing
trees and calculated from their crown width. Since crown width is a linear
function of dbh, the relationship between MCA and dbh can be expressed by
a second-degree equation

MC A = b0 + b1 · d + b2 · d2

The crown competition factor was defined as the sum of the MCA values per
hectare (in square meters) divided by 10000

CC F =

N∑

i=1

(
b0 + b1 · d + b2 · d2)

10000
Vezina (1962) examined the usefulness of the CCF index for expressing stand
density, but found the index to be poorly correlated with other measures, such
as basal area per hectare and Reineke’s stand density index.

Chisman et al. (1940) introduced the tree-area-ratio model, which assumes
that the relationship between the area occupied by the individual trees and its
dbh can be expressed by a second-degree equation

Tree area = b0 + b1d + b2d2

The data which are required to estimate the parameters were obtained from
measurements in temporary sample plots with

∑
d and

∑
d2 being converted
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to their equivalents per hectare. They were introduced as predictor variables
into a multiple regression equation with the target variable being equal to 1
for all n sample plots. The tree area equation assumes that the ground area is
fully utilized and ignores the possible existence of unutilized or underutilized
gaps. The assumption is, furthermore, that the growing space of a single tree is
uniformly utilized by the root system.

The previously described stand density indices refer to the stand in its
entirety, but do not take cognizance of density variations within the stand. Point
density estimators have been proposed, which quantify the density around a
given subject tree or around a given point within the stand. Spurr (1962) intro-
duced an estimator, based on the angle subtended by the tree sighted from the
sampling point. For a one-tree plot, the largest angle corresponds to the largest
ratio dbh to distance (D). The basal area per hectare, based on the one-tree
plot is

Gha = 1
4

·
[

d1

D1

]2

where

G = basal area (m2/ha)

d1 = diameter (cm)

D1 = distance (m) between the sampling point and the tree with
the largest angle.

This basal area is to be multiplied by an adjustment factor 0.5, since one-half
the basal area is thought to fall outside the plot boundaries. Hence

Gha = 1
4

· 0.5 ·
[

d1

D1

]2

The basal area per hectare for a plot containing two trees, which subtend the
largest and next-largest angle, was obtained by adding the basal area per hectare
of the first to half that of the second tree. The n-tree density estimator, expressed
in basal area per hectare is then given by the formula

Gha = 0.25 ·
0.5 ·

(
d1

D1

)2

+ 1.5 ·
(

d2

D2

)2

+ · · · (n − 0.5) ·
(

dn

Dn

)2

n
In order to quantify competition between individual trees within stands of Pinus
radiata, van Laar (1973) proposed an extended version of Spurr’s index, which
assigned different weights to the n potential competitors. The trees surrounding
the subject tree were arranged in a descending order of the angle subtended
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with the subject tree. The basal area per hectare was estimated from the mea-
surements for the first tree, the mean of the first and second tree, the mean of
the first, second, and third tree, etc. The index values were calculated for n = 1
to n = 9 and generated nine competition indices, which were subsequently
regressed on the diameter growth of the subject tree, with tree height being
used as covariate. In unthinned sample plots, the coefficient of determination
increased from n = 1 to n = 7, but such a trend was not apparent in moderately
and heavily thinned plots.

Brown (1965) linked the point density concept with the area potentially
available for the individual tree. After preparing a stand map, lines were drawn
which connected the subject tree with its neighbors. They were bisected with the
line segments being proportional to stem diameter. Lines, drawn at an angle of
90◦ to those bisected, formed the boundaries of the area which was available
to the subject tree.

Seymour et al. (1987) proposed a stocking index based on the crown compe-
tition factor concept. The starting point was the allometric relationship between
stem volume (vs) and the crown volume (vc)

vs = k0v
b1
c

where b0 = coe f f icient , which is related to foliar efficiency. The (assumed
circular) vertical crown projection area (CPA) is a function of the crown radius
so that

vc = k2 · C P A · h

where k2 = shape coefficient. Based on Schumacher’s logarithmic equation
for predicting the stem volume from dbh and height, it was shown that dbh
could be estimated from CPA and height

d = b0 · C P Ab1 · hb2

This equation was fitted to eastern White pine and inverted in order to express
CPA as a function of dbh and height. Assuming that the ground area is fully
covered by the live crowns, it was possible to estimate that value of CPA, which
is required to grow trees of a certain dbh. However, since the geometry of the
tree crown inhibits an unrestricted increase of the crown radius, there were
upper limits for the CPA needed to obtain a given diameter.

9.2 Distance-related indices

Estimators based on distance measurements were introduced by plant ecolo-
gists. Although not necessarily producing unbiased estimates of plant density
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in plant communities with a nonrandom spatial distribution, such estimators
are useful for ecological sampling studies. The quadrant method, as used in
plant ecology, prescribes that the distance between a randomly selected point
and the nearest neighbor is determined in each of the four quadrants with the
sampling point as the center (Greig-Smith 1964). Alternatively, the distance to
the nearest tree is replaced by that to the i th nearest tree. Diggle (1978) pro-
posed an estimator, which combines the distance between a random point and
the nearest individual with that of a randomly selected individual to the nearest
neighbor. The estimator was recommended when there was statistical evidence
of a nonrandom spatial pattern. Batcheler (1971) introduced an index, which
incorporates the distance between a random point and its nearest neighbor as
well as that between this individual and its nearest neighbor An estimator for
density was also developed for truncated samples (Batcheler 1973)

density = n

π · (r2
1+, · · · , r2

n + (N − n) · R2
) .

where

N = number of sample points

R1, . . ., rn = distance to the 1st, . . ., nth individual

R = truncation distance

n = number of sample points with a distance smaller than R.



Chapter 6

TAPER TABLES AND FUNCTIONS

1 TAPER TABLES

Forest managers require information about the diameter of the bole at fixed
distances from the base of the tree, for example, to predict the recovery of
sawlogs of different diameter and length or the yield of poles of varying dimen-
sions, for trees of different dbh and height. Taper tables are usually based on
dbh and height as table entries. Those which give the estimated upper diameter,
expressed as a percent of dbh, are sometimes described as “false taper” tables,
since their information about the real shape of the stem is obscured by giving
estimates for the diameter at fixed instead of relative distances from the base
of the tree. The tables are; nevertheless, useful for reconstructing the stem pro-
file of trees of different sizes. Such tables were already constructed by Behre
(1923), those for different species were developed by Mitscherlich (1939), for
Picea abies by Zimmerle (1949), and recently by Bergel (1981).

“True taper” tables give the predicted diameters at fixed relative heights
above the base of the tree, expressed as a fraction of the stem diameter at 10%
of the height also use dbh and height as table entries and. They are useful in
examining and comparing the stem profile of trees of different species and sizes.
In order to reconstruct the stem profile of a tree of given dimensions, the relative
diameters at different relative heights are to be multiplied by dbh and total
height, respectively.

The construction of true taper tables requires the following procedure:
• Felling of a representative sample of trees, selected from a wide range of tree

diameters, heights, ages, and site classes
• Tree measurements, including dbho.b., tree height, stem diameter (either

over- or under-bark), at predefined positions along the bole, for example at
5%, 10%, 15%, . . . , 95% of the tree height

• Fitting of regression equations with di% (under or over bark) as the target
variable and d10%,u.b. or d10%,o.b. as predictors

149
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• A regression analysis with the parameter estimates of these equations as the
target variable and the position of the point of measurement on the bole as
the independent variable. Its purpose is to harmonize the regression curves
obtained in previous steps, i.e., to smoothen the parameter estimates.

• Böckmann (1990) used the stem diameter at intervals of 1/10 of the tree
height, with the lowest point of measurement being located at 1/20 of the
height. A sixth-degree polynomial with stem diameter at the i th position
as the dependent and dbh as predictor variable was fitted with the resultant
parameter estimates being regressed on relative height above ground

• Fitting an equation to estimate d10%,u.b. or d10%,o.b. from dbho.b with tree
height as additional predictor variable

• Construction of a taper table, based on parameter estimates obtained in pre-
vious steps

Example 6.1 Measurements on 25 Pinus patula sample trees are used to
demonstrate the construction of a taper table. Linear equations were fitted with
stem diameters at 20%, 30%, . . . , 90% as the dependent and that at 10% of
the tree height as the independent variable. The regression statistics were as
follows:

Target variable b0 b1 R2

d0.2 −0.480 0.938 0.988
d0.3 −1.565 0.925 0.984
d0.4 −1.611 0.854 0.971
d0.5 −1.793 0.786 0.960
d0.6 −2.174 0.721 0.900
d0.7 −1.914 0.598 0.847
d0.8 −0.925 0.407 0.698
d0.9 0.236 0.172 0.667

The accuracy of predicting upper-stem diameters from the diameter at 10% of
the height decreases significantly with increasing height above ground of the
target variable. The relationship between the coefficients b0 and b1 and relative
height above the base of the tree is shown in Figure 6-1 and can be expressed
by the following equations:

b0 = 2.169 − 16.3386 · hrel + 15.602 · h2
rel

b1 = 0.835 + 0.7803 · hrel − 1.6601 · h2
rel
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Figure 6-1. Relationship between parameter estimates and relative height.

In order to construct a taper table with dbh and height as table entries, a regres-
sion equation is required to predict d0.1 from dbh and height. A stepwise screen-
ing of variables produced the following equation:

d0.1 = −0.912 + 1.140 · d − 0.00747d · h

It was used to estimate d0.1 for any combination of dbh and height, although
the latter should not fall outside the range of dbh and height, represented by
the sample. For d = 25 cm and h = 20 m, the estimated d0.1 is 23.85 cm.
The previous set of equations is subsequently used to estimate the diameter at
different heights above ground.

The regression equations can be applied to calculate true form quotients,
possibly after harmonizing the regression lines, by assuming a nonlinear rela-
tionship between b1 and upper stem position hu , for example

b1 = c0 + c1 · hu + c2 · h2
u

and a linear relationship between b0 and hu .

2 STEM PROFILE MODELS

2.1 Introduction

In many countries, more particularly in the USA, Canada, New Zealand, and
Australia, forest mensurational research has developed in a different direction
and moved away from the classical approach of predicting form quotients for
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the construction of taper tables. There has been an increasing emphasis on
the development of models and equations, which describe the variable rate of
decrease of the stem diameter between the base and the top of the tree. In order
to obtain a model which is valid for trees of different size, equations which
express this rate of decrease might be fitted to each sample tree separately.
Thereafter, their parameters are regressed on tree characteristics, for example
on dbh and height, with the resultant equations being used to reconstruct the
stem form of a given tree, but also to estimate its merchantable height and upper
diameter. Similar to the previous taper tables, stem measurements at different
positions along the stem are obtained by destructive sampling, based on a rep-
resentative sample of trees across the entire range of tree ages, tree sizes, and
site indices. In exceptional cases, taper functions were developed from mea-
surements on standing trees (James et al. 1984).

In general, however, the sample tree measurements are pooled with the
upper diameter and upper height expressed as a fraction of dbh and tree height
respectively. In consequence, the relative instead of actual upper diameters and
heights are entered into the database. Pooling nevertheless implies that the total
sample consists of a number of subsamples, one for each sample tree. The
assumption of uncorrelated residuals is thereby violated. A similar situation
occurs in growth modeling with multiple measurements in permanent sample
plots.

In recent years, researchers emphasized the benefits of developing taper
equations which are compatible with stem volume equations. Integrating the
taper function produces an equation with total or merchantable volume as the
dependent and dbh, as well as height as independent variable. The parameters
of the volume equations which are compatible with the taper equations are not
estimated independently by least-squares procedures. To ensure compatibility,
they are derived from those of the taper function, for which least-squares esti-
mates were obtained. A volume function, however, which is compatible with a
taper function, does not usually give the best estimates of stem volume. Con-
versely, stem taper estimates will tend to be biased by deriving taper functions
which are compatible with volume functions derived by least-squares analysis.

2.2 Taper functions

Taper functions were developed by Newberry (1986), Kozak et al. (1969),
Demaerschalk et al. (1977), and others.
Newberry et al. (1986)
The coefficient b0, multiplied by diameter, expresses stem taper, whereas b1
explained the shape of the stem. The estimation proceeded in two stages.
In stage 1, the coefficients b0 and b1 were estimated from single-tree data,
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ordinary least squares was applied in stage 2 to estimate the parameters of
two equations with dbh, height, height to live crown, crown ratio, and age as
predictors and b0 as well as b1 as target variables.
Kozak et al. (1988)
Variable-exponent taper function, with dI = diameter at the inflection point
of the stem curve, hI = corresponding height above ground. The prediction
model to estimate the exponent C from the ratios hi/h and d/h was

C = b0 + b1 · Z + b2 · Z2 + b3/Z + b4 · ln (Z + 0.001)

+ b5 · √
Z + b6 · ez + b7 · (d/h)

where Z = hi/h. Breast height diameter under bark was estimated from do.b.

du·b· = ao · da1
o·b · ado·b

2

and back substituted into the previous prediction equation. The equation is lin-
earizable by a logarithmic transformation of the variables and its parameters are
found by ordinary least-squares procedures. The equation has three important
properties: di = 0 for hi/h = 1, di = du.b. when hi/h = p and a change of
direction where hi/h = p (Table 6-1).
Perez et al. (1990)
A more parsimonious form of Kozak’s variable-form taper function

di = b0 · db1 · bd2 · xc

with x = hi/h. Kozak’s model was superior in terms of total squared error,
whereas estimates obtained from Perez’s model were less biased.
Biging (1984)
Taper equation was derived from a model resembling the integral form of the
Chapman–Richards growth function. Constraining the function to obtain the
estimate di = 0 for hi = h gives

di = d ·
[

b1 + b2 · ln
(

1 − hi

h

)] 1
m ·
[

1 − e
−b1
b2

]

The estimated diameter for hi = 0 (i.e., for the base of the tree) is equal to b1d,
which implies that the coefficient b1 can be interpreted as a ratio

b1 = d0

d
where d0 = diameter at the base of the tree. Fitting this equation to sample
tree data in Douglas fir, produced the estimate 1/m = 0.334. In order to obtain
an integrable function, m was to be an integer and 1/m was therefore fixed
at 1/3. The volume function, obtained by integration, was compatible with the
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Table 6-1. Selected taper equations

Author Equation

Newberry et al. (1986) di = b0d
(

h − hi
h − 1.3

)b1

Kozak et al. (1969)
d2

i
d2 = b1 ·

(
hi
h

− 1
)

+ b2 ·
(

h2
i

h2 − 1

)

Kozak et al. (1988) y = xc

x =
1−
√

hI
h

1−√
p , y = dI

d
and p = 100 · hI

h

Perez et al. (1990) di = b0 · db1 · b2
d · xc

Biging (1984) di = d ·
[

b1 + b2 · ln
(

1 − hi
h

)] 1
m ·
[

1 − e
−b1
b2

]

Demaerschalk (1973) di = b1 · db2 · (h − hi )
b3

hb4

Riemer et al. (1995) rhi = b0 + (r1.3 − b0)
exp (b1 · (1.3 − hi )) − exp

(
b1(1.3−h)

)

1 − exp (b1 · (1.3 − h))

−b0
exp (b2 · (1.3 − hi )) − exp (b2 · (1.3 − h))

1 − exp (b2 · (1.3 − h))

Reed (1984) di = b1 · db2 · (h − hi )
b3

hb4

(Eq.(1))
v = a1 · da2 · ha3

(Eq.(2))

a1 = cb2
1

2b3 + 1
, a2 = 2 · b2 and a3 = 2 · b3 + 1 − 2 · b4

taper equation and contained dbh and height as predictor variables, with its
coefficients being a function of the parameters of the taper equation.
Brink et al. (1986)
The version of the Weibull function, proposed by Yang et al. (1978), Eq. (1),
with r = stem radius at height h was used for modeling. A 90◦ clockwise
rotation of the coordinate axes was implemented by expressing the stem radius
at height h as the deviation between the observed stem radius at this position
and either the diameter at the stem base or dbh as reference diameter. Selecting
the diameter at the base of the stem as reference diameter, forces the fitted taper
curve through the observed stem radius at this position. Equation (2) with b0
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and b1 represent a scale and shape parameter respectively and b2 representing
the upper asymptote for height. The model however failed to produce a zero
estimate for the stem diameter at the top of the tree.
Riemer et al. (1995)
Improved Brink et al. model through conditioning their function, such that the
estimated bole diameter is zero at the tip of the tree and is equal to dbh at a
height of 1.3 m. The parameter b0 represents common asymptote of the decay
function, b1 = parameter expressing stem curvature in the lower part of the
bole and b2 = parameter expressing stem curvature in the upper part of the
bole.
Reed et al. (1984)
Compatible stem taper and volume ratio equations for the constant form factor
function, the combined variable equation as well as Schumacher’s and Honer’s
equations. The authors presented a taper function, a tree volume equation, a
volume ratio function (characterized by the upper stem height hu) and the vol-
ume ratio function (defined by the upper diameter du), compatible with the vol-
ume model. Demaerschalk’s model (Eq. (1)) is compatible with Schumacher’s
function (Eq. (2))

Example 6.2 The Newberry–Ormerod model was modified by including a
quadratic term and fitted to the taper data of P . patula (Appendix B) (Figure
6-2). The regression equation is

y = exp (−0.0482 + 0.72126 · x1 − 0.02417 · x2)

where x1 = ln [(h − hi) / (h − 1.3)] , x2 = (ln [(h − hi) / (h − 1.3)])2

and y = di/d.

Example 6.3 The Riemer–Gadow model was applied to a single tree from
the previous dataset. The deviations between the observed and estimated upper
diameters are shown in Figure 6-3.
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Figure 6-2. Residuals for modified Ormerod model.
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Figure 6-3. Fitted Riemer–Gadow model.
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Figure 6-4. Stem profile based on Demaerschalk’s 1973 model.

Example 6.4 The Demaerschalk (1973) model was fitted to the data of
Appendix B. The regression coefficients were

b1 = −0.262 b2 = 0.8628 b3 = 0.7389 b4 = −0.4809

with R2 = 0.946. The stem profile for dbh = 35 and h = 30 is shown in
Figure 6-4.

2.3 Polynomials and segmented polynomials

Because of the general shape of the stem, many researchers investigated the
usefulness of polynomials. Madsen (1983) described the stem profile of P. abies
with a fourth-degree polynomial as

x = ln
(

hu

h
+ 0.1

)

and y = du

d
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The estimates of the five parameters of the model were subsequently regressed
on mean stand diameter and height. The intercept for example was a linear
function of h2, d2, 1/h and 1/d.

Goulding et al. (1976) developed compatible taper equations for Pinus radi-
ata, based on a polynomial of the fifth degree as starting point

di
2 = ν

k · h

(

b1 ·
(

l
h

)

+ b2 ·
(

l
h

)2

+ · · · + b5 ·
(

l
h

)5
)

with l = h − hu

h
and k = π

40000
(metric system)

To ensure compatibility, the following constraint is imposed
5∑

i=1

bi

i + 1
= 1

and the equation to be fitted by least squares was

di
2kh
v

− 2l
h

= b2
∗
[

3
(

l
h

)2

− 2l
h

]

+ b3
∗
[

4
(

l
h

)3

− 2l
h

]

+ b4
∗
[

5
(

l
h

)4

− 2l
h

]

+ b5
∗
[

6
(

l
h

)5

− 2l
h

]

The coefficients of the two equations are related:

b1 = 2
(
1 − (

b2
∗ + b3

∗ + b4
∗ + b5

∗)) , b2 = 3b2
∗, b3 = 4b3

∗, b4 = 5b4
∗,

b5 = 6b5
∗

Example 6.5 The Goulding model was fitted to the previously used dataset.
The deviations between observed and estimated upper-stem diameters as a
function of hu/h are shown in Figure 6-5.

Gordon (1983) modified Goulding’s stem profile equations and found that
a superior fit was obtained by the addition of a higher order term to the model.
The predictor variables z2,, z5, and z16 where z = (h–hi )/h, performed better
than other combinations of predictor variables and produced negligible bias in
the estimation of upper-stem diameters, although the amount of bias tended to
increase slightly with increasing height above the base of the tree. Allen (1991)
fitted a polynomial taper equation for Pinus caribaea, which represented an
improved and more flexible version of the model presented by Real et al. (1988).
The latter was as follows:

y = b1

(
z3 − z2

)
+ b2

(
z8 − z2

)
+ b3

(
z40 − z2

)
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Figure 6-5. Residuals for fitted Goulding’s stem profile equation.

where

z = h − hu

h − 1.3
, y = du

d

The modified model, introduced by Allen was as follows:

y = b1 ·
(

z f (dbh,h) − z2
)

+ b2 ·
(

z5 − z2
)

+ b3 ·
(

z8 − z2
)

+ b4 ·
(

z40 − z2
)

and provided a superior fit in the upper section of the bole.
In general, a single taper equation fails to describe the stem profile in the

lower- and upper-stem section accurately. The basic idea to fit polynomials
to different segments of the bole was introduced by Max et al. (1976). Four
models to describe the stem taper were compared. Model 1 was identical to
Kozak’s 1969 quadratic taper model, model 2 was based on the method of seg-
mented polynomials with two quadratic functions and a single join, model 3
consisted of a quadratic model for the lower- as well as upper-stem section and
a linear model for the middle section, model 4 used quadratic functions for all
3 sections.

y = b1 · z + b2 · z2 − b3 · (z − a1)
2+ + b4 · (z − a2)+2

with

z = 1 − hi

h
, y = di

2

d2

and

(z − a1)+ = 1 if z ≥ a1 and (z − a1)+ = 0, if not

(z − a2)+ = 1 if z ≥ a2 and (z − a2)+ = 0, if not
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Figure 6-6. Residuals for fitted Max–Burkhart’s model.

A subsample of the research data, not used for fitting, served to validate the
model and thereafter, added to the dataset for refitting. The position of the joins
may be fixed, in which case the equation has four paremeters, or they may
be estimated by fitting the above equation as a six-parameter model. A prac-
tical example of fitting the four-parameter Max–Burkhart model was given in
Chapter 2. The residuals for this model for the presently used dataset are shown
in Figure 6-6.

Valenti (1986) applied the Max–Burkhart three-segment polynomial, rewrote
the equation in the following modified form:

du
2 = d2

(
b1z + b2z2 + b3(z − a1)

2+ + b4(z − a2)
2+
)

and introduced crown ratio (CR) as an additional variable. The resultant final
equation with a single join was:

d2
u = d2

((
c0 + c1

C R

)
z +

(
c2 + c3

C R

)2
z2 + c4(z − a1)

2+
)

with (z−a1) = 1 i f (z−a1) ≥ 0 and (z−a1) = 0, if not. The addition of crown
ratio to the two-segment polynomial, however, produced biased estimates in
the middle- and upper-stem section. Burkhart et al. (1985) incorporated crown
ratio as an additional predictor into the three-segment taper equation but did
not find evidence of the joins being related to crown ratio.

Gordon (1983) fitted a taper function, which produced the equation

di
2 = ν

kh
(
b1z + b2z2 + b3z3 + b4z p

)

with the restriction 5 < p < 41. The function was similar to the taper function
developed by Goulding et al. (1976).
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Parresol et al. (1987) examined a segmented polynomial consisting of two
joint cubic–cubic polynomials

di
2

d
= z2 (b1 + b2z) + (z − a)2+ [b3 + (z + 2a)]

where

D = diameter at 10% of the height

Z = ((h–hu)/h)2

(z–a)+ = 1 i f z ≥ a and

(z–a)+ = 0 i f not

Zakrewski et al. (1988) conditioned the parameter b3 of the Max–Burkhart
six-parameter segmented profile model, to ensure that the predicted and
observed diameter at breast height is equal. The conditioned parameter is
substituted back into the original equation and produced a six-parameter
model with a transformed set of predictor variables, which simultaneously
estimated the parameters of two submodels. A further refinement is to simulta-
neously condition the parameter b1 of the Max–Burkhart model for dbh and its
parameter b2 for an upper-stem diameter measurement.

Saborowski et al. (1981) applied cubic splines with subsequent smoothing
and joins at 1.3, 7 m, and the top of the tree. Tietze et al. (1979) applied locally
fitted spline functions in the construction of stem profile functions. Czaplewski
(1989) suggested scatter plots with the empirical rate of change of taper on
the ordinate axis and the relative position of the point of measurement on the
abscissa. This could serve, to locate the joins, which are required for segmented
polynomials. Clark et al. (1991) introduced a segmented stem-profile model
with dbh, diameter at 17.3 ft. and tree height as predictor variables. The stem
was subdivided into 4 sections, the butt log extending to breast height, the lower
stem located between breast height and 17.3 ft (Girard’s form class), the middle
stem between 17.3 ft and 40–70% of the height from the top and the upper stem
located above this point. Different equations were fitted to these sections. The
Max–Burkhart segmented approach was used for the sections of the middle
and upper stem, with a linear segment for the upper section and a quadratic
equation for the lower section. Conditioning ensured continuity at the joins.

Several authors explored the merits of principal components transforma-
tions. Newcomer et al. (1984) performed a principal components analysis on
the following logtransformed-tree variables: dbh, d5,24m , the largest diameter
and a second diameter, at an angle of 90◦ to the previous one, height, height to
live crown, and crown depth. The first principal component represented a com-
pound size variable, whereas the second one was highly loaded by crown depth.
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The minor principal component represented the logarithmic contrast between
d5,24m and breast height diameter. Liu et al. (1978) applied principal com-
ponents transformation to the diameter measurements at 14 positions along
the stems of Pinus elliottii. The first principal component explained more than
99% of the total variance. The elements of the eigenvector associated with the
dominant eigenvalue, plotted over the corresponding position of the diameter
variable, produced a curve which resembled the shape of the tree. A regres-
sion equation with various powers of the upper height was fitted and applied
to predict taper. Real et al. (1989) performed principal components analysis on
the stem profiles of felled Douglas fir trees and simulated stem profiles, repre-
senting a cone, a paraboloid, and a neiloid, respectively. The stem profile was
described by the stem diameter at 3%, 5%, 10%, 20%, . . . . , 90% of the tree
height. The resultant 11 variables were subjected to a principal components
transformation, which showed that the first principal component represented
98% of the total variance within the group of simulated trees and 95.4% within
the group of felled trees. It was interpreted as being a variable associated with
the average tree form.

Czaplewski et al. (1990) examined the amount of bias in profile models,
associated with retransformations. An unbiased profile model, with the ratio
di/dbh as the target variable, produced positively biased estimates of log vol-
umes. For the same reason, the use of (di/dbh)2 produced unbiased estimates
for basal area, but biased estimates for taper. Stem diameters were underesti-
mated by 0.2–2.1%. The amount of bias, obtained from the second term of a
Taylor series expansion remained high, unless heteroscedasticity was properly
accounted for. Bias, associated with retransformation of the target variable,
was greatest near the position of the merchantable top diameter.



Chapter 7

TREE VOLUME TABLES AND EQUATIONS

1 INTRODUCTION

Tree volume tables, which give the average volume of single trees of given
dimensions, have been used ever since the early 19th century. They provide
estimates for:
• Either the stem volume or the tree volume, including branches
• Either the stem or total tree volume or the merchantable volume
• Either the over or the under bark volume
The early German tree volume tables estimated the total tree volume, i.e., the
volume of bole and branches, above the traditional 7 cm diameter limit of mer-
chantability. Most volume tables, however, exclude branch volume unless such
tables are constructed to estimate the volume of trees utilized for the production
of energy. The modern trend is to construct volume tables for the estimation of
the total stem volume and to develop functions, which give the merchantable
stem volume, usually for variable upper-diameter limits.

Volume tables and equations can be classified according to the number of
entries to the table and predictor variables of the volume function:
• The single-entry volume table has its origin in the méthode du contrôle,

which was developed towards the end of 19th century for the all-aged
forests in France and adopted for the management of the mixed uneven-
aged forests of Switzerland. The method preceded the modern concept of
the Continuous Forest Inventory, and prescribed a complete stand enumer-
ation. All trees above a fixed minimum diameter were marked at breast
height and remeasured on successive occasions. The volume estimates were
based on local or regional tables, which were denoted as tariffs, with dbh
being used as the entry to the table. They were sometimes constructed
for each main species separately, sometimes for species groups. The tar-
iffs produced volume estimates in sylve units. Theoretically, the sylve is

163



164 Tree Volume Tables and Equations

equal to 1 m3 roundwood, but when applied to specific stands, the stand
volume expressed in sylve units may differ from the actual volume. The
deviations were primarily due to site factors, which influenced the h/d ratio.
To obtain more accurate estimates, these tariffs were gradually replaced
by multiple single-entry tables, each of them characterized by a tariff
number

• The standard volume table uses both dbh and height as table entries. The
multispecies Bavarian tables were based on an excessively large number of
field measurements of the volume of felled trees, which formed the basis
of the tree volume tables constructed by Grundner and Schwappach (1942).
Although being useful for forest inventories within large regions, specific
silvicultural systems or sites differences within subregions prescribed the
construction of similar tables for these subregions, for example, those pro-
duced by Zimmerle (1949) for Norway spruce and other species in the Black
Forest. The two-entry volume table, although easy to apply in practice,
assumes that the variability of the tree form factor is sufficiently explained
by dbh and height

• Several studies, however, indicated that the addition of a third predictor
variable, for example, height above ground of the base of the live crown
(Nåsslund 1947) or stem diameter at 30% of the tree height (Pollanschütz
1965) or at a height of 7 m (Schmidt et al. 1971) reduces the amount of
unexplained variation and makes it possible to estimate the tree volume
more accurately. Stem form studies in Finland showed that a single two-
entry volume table produced biased volume estimates for Scots pine in
North and South Finland, respectively. The incorporation of an upper-
stem diameter and the resultant three-entry volume table was necessary
to obtain unbiased volume estimates for each of these regions. Alterna-
tively, two or more standard volume tables might have been constructed for
Scots pine, for example, one for the northern and a second for the southern
part of the country. Mensurational studies in Germany (Akça 1996), how-
ever, indicated that the additional measurement of an upper-stem diameter
did not significantly improve the accuracy of volume estimates in hard-
woods.

Tree volume tables are useful when no computer facilities are available, but
volume functions are preferred because the estimated parameters can be stored
in the memory of a computer and retrieved whenever necessary.
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2 VOLUME EQUATIONS WITH ONE PREDICTOR
VARIABLE

2.1 Simple tariff functions

The earliest equations for estimating the tree volume from dbh were developed
in France, at the onset of this century. Algan’s (1901) tarif rapide was based
on a hypothesized relationship between tree volume, its dbh, and its assumed
volume of a 45-year-old tree. Similarly tarif lent was proposed by Schaeffer
(1949). The early tariffs, developed by Huffel (1919), were constructed with
graphic methods. The more recent single-entry volume tables are invariably
based on regression analysis with either log (dbh) as the independent and log
(volume) as dependent variable or with volume as dependent and squared dbh
as predictor variable. Regression analysis is preferred for several reasons. It
eliminates the necessity to read off the estimated volume from a graph or to
interpolate in a table, for a given model and fitting procedure, the results are
unique and confidence limits can be calculated for the conditional population
mean, i.e., for the mean volume, for given dbh. More importantly, the parame-
ters of the equation can be stored in the memory of a computer and retrieved
for volume calculations.
Meyer (1953) introduced an equation based on the model

ln(νi ) = b0 + b1 ln(di ) + ei

Ordinary unweighted least squares assumes that the residuals εi are indepen-
dently and normally distributed. The model is also based on the condition of
homoscedasticity, i.e., it assumes that s2

ln(ν) is independent of the expected
value of ln (ν). It is generally accepted that s2

ν increases with increasing
tree size, but to a large extent, the logarithmic transformation eliminates het-
eroscedasticity. The logarithmic transformation, however, produces negatively
biased estimates of the tree volume. Baskerville’s correction factor (Chapter 8)
can be applied to correct for bias.

The function used by Hummel (1955) and others, is based on the Kopezky–
Gehrhardt volume line (Kopezky 1899), which assumes a linear relationship
between tree cross-sectional area at breast height and stem volume. This is
equivalent with the model

ν = b0 + b1d2

with the same assumptions about the distribution of residuals. The func-
tion produces unbiased estimates of the stem volume, but the assumption
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of homoscedasticity does not usually hold true and requires weighting, e.g.,
wi = 1/di or wi = 1/(di )

2. Hoffmann (1982) used the following function:

ν = eb0+b1 ln(d)+b2(ln(d))2

to construct a volume tariff table for tree species in Switzerland. A non-linear
algorithm was used to estimate the parameters, which minimized the sum of
weighted squared deviations

n∑

i=1

wi
(
νi − νi(est)

)2

Example 7.1 Tree volume data of Eucalyptus grandis, obtained by courtesy
of the Institute for Commercial Forestry Research (ICFR), were used to test
regression models for predicting tree volume of the over 5 cm diameter. Due
to rounding-off errors, which occurred in some cases, dbh was expressed in
units of 10 cm, height in units of 10 m. The following equations were tested to
construct a tariff function with dbh as the predictor variable:

1. ln(ν) = b0 + b1 ln(d)

2. ν = b0 + b1d + b2d2

3. ν = b0 + b1d + b2d2, wi = 1/(d2
i )

The resultant R2-values were 0.943, 0.927 and 0.943, respectively. The means
of the squared deviations between the observed and estimated volumes were
310.3, 310.4 and 301.4 for equations 1, 2 and 3, respectively. In consequence,
there is no evidence of one model performing any better than the two others.
The fitted regression curves for models (1) and (3) are shown in Figure 7-1.

0

50

100

150

200

250

300

350

400

vo
lu

m
e 

(d
m

^ 3
)

8 10 12 14 16 18 20 22 24

dbh (cm)

Figure 7-1. Fitted volume equation with a single predictor variable.
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2.2 The incorporation of height into the tariff function

The single-entry volume table assumes that the parameters of the regression
equation are not related to age, site, and stand treatment or genetic factors. It
is generally accepted, however, that this simplification tends to produce biased
estimates of the stand volume, whenever the tables or functions are applied to
individual stands. Three methods, which retained the basic idea of tariffs were
introduced to obtain more accurate volume estimates.

2.2.1 Hummel’s method

Hummel (1955) constructed a set of volume lines, representing the relationship
between basal area and stem volume for trees over 4 in. diameter:

ν = b0 + b1g

The common intercept on the abscissa was 0.087 ft2. On this assumption, the
volume-basal area equation was rewritten as follows:

ν = b1(g − 0.087)

The tariff number (TN) was defined as the volume (in cubicfeet) of a tree with
a basal area of 1 ft2.

T N = b1(1 − 0, 087)

Hence:

b1 = T N
0.913

For a known tariff number, the tree volume is then given by:

ν = T N
0.913

(g − 0.087)

A field-sampling procedure was applied to decide which tariff to use in specific
cases. Sample trees of known dbh were felled and their volume determined
with one of the conventional formulae for sectionwise diameter measurements.
After plotting the tree volumes over basal area, in a preprinted diagram, which
showed the relationship between basal area and volume for the standard set of
tariffs, the appropriate tariff number TN was determined for each sample tree.
They were subsequently averaged to obtain the tariff to be used for a given
population of trees. The procedure, although producing unbiased estimates, is
obviously time-consuming and costly.
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2.2.2 Stoffels’ method

Stoffels (1953), who was influenced by earlier research in Germany, proposed a
different approach, based on the allometric relationship between diameter and
volume:

ln(ν) = b0 + b1 ln(d)

It was assumed that b1 is not influenced by stand characteristics; whereas b0 is
related to the quadratic mean diameter and the mean height of the stand:

ln(b0) = c0 + c1 ln(ν) + c2 ln
(
h
)

The parameter estimates were obtained by sampling. Random samples of n1
trees were drawn from each of n2 stands. A representative sample of n1 trees
in the each of the n2 subsamples was felled and their volume determined with
one of the conventional formulae, for example with the aid of Hohenadl’s five-
sections method, or otherwise. The logtransformed stem volume was regressed
on log (dbh), for each subsample separately. A regression equation was fitted
with the resultant n2 parameter estimates of b0 as dependent and mean diam-
eter as well as mean height as independent variables. The common regression
coefficient b1 was estimated as the weighted mean of the n2 estimates of b1.
The resultant equation was:

ln (νi ) = c0 + c1 ln
(
d
)+ c2 ln

(
h
)+ b1 ln (di )

Alternatively, an equation ln ν = b0 + b1 ln(d) with the constraint b1 = 2.21
may be fitted to the data of each stand, with the resultant b0-values being
regressed on mean dbh and height. In order to apply this method, it is neces-
sary to estimate the mean diameter and mean height of the stand. This method
of stand volume estimation might be slightly more cost-efficient than the con-
ventional method of measuring the heights of n randomly selected trees within a
given stand and using a two-entry volume table. The advantage of the modified
tariff method is to be found in the smaller sample, which is needed to estimate
the mean height of the stand, since height measurements can be restricted to
trees between the 40th and 60th percentile of the diameter distribution.

2.2.3 Brister’s method

Brister et al. (1985) proposed a tariff system for loblolly pine, along lines sim-
ilar to those followed by Stoffels. It used tree diameter to predict stem volume
with the mean diameter and mean height of the dominants being introduced
as covariates. The tariffs were linked with Hummel’s volume-basal area line.
Sample trees in 36 study stands of loblolly pine were felled and measured to
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establish the volume-basal area line. The subsequent analysis did not indi-
cate the existence of a common x-intercept. Two volume models were examined.
Model 1 was:

ν = adbh
c

where hm expressed stand height. A non-linear least-squares algorithm, with
weights assigned inversely proportional to d2, was applied to estimate the para-
meters. The parameters of the second model:

ln(ν) = b0 + b1 ln(d) + b2 ln
(
h
)

were estimated by ordinary least squares. The next step was to fit the following
model to the data of each stand separately:

ln(h) = c0 + c1 ln(d) + c2 ln
(
h
)+ c3 ln

(
d
)

It was substituted back into the previous equation and produced the tariff equa-
tion:

ln(ν) = d0 + d1 ln(d) + d2 ln
(
h
)+ d3 ln

(
d
)

For a basal area of 1 f t2, the volume is equal to the TN and with ht = corre-
sponding height

ln(ν) = c0 + c1 ln(ν) + c2 ln(T N ).

The TN was obtained from the equation

T N = b1h
b2d

b3

In order to construct volume tariffs for Picea mariana, Ung (1990) carried out
stem analysis on 4 or 5 trees each in 26 localities. After first fitting an equation
based on the classical allometric relationship between dbh and volume, the
following more suitable prediction equation was introduced

νi =
(

b0 + b1
h

d

)

db2
i

where d and h represent the mean diameter and mean height of the stand,
respectively, and di = breast height diameter of the ith sample tree.

When several species, for example, a group of Eucalyptus species are
involved for constructing one or more volume functions, the usual procedure is
to apply ordinary least squares to each of them, although it might be possible
to combine some of them with the aid of dummy variables. In order to develop
a volume function for 3 species, the additive species effect could be accounted
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for by two dummy variables: Z1 = Z2 = 0 if species A, Z1 = 1, Z2 = 0 if
species B and Z1 = 0, Z2 = 1 if species C.

Alternatively, a specific model is used for all species involved and a Stein
estimator is obtained for the parameters, which reduces the total sum of
squared error and “shrinks” the parameter vector. Green et al. (1984) applied
this method in the construction of volume functions based on the constant form
factor function ν = b(d2h) for 18 hardwood species. Using available data
material, the Stein rule, based on unweighted and weighted least squares was
compared with ordinary and weighted least squares. The results were evalu-
ated in terms of bias and precision of the estimated volumes and indicated that
the weighted Stein rule was superior in terms of total squared error.

3 EQUATIONS WITH TWO PREDICTOR
VARIABLES

3.1 Graphic methods

During the period which preceded the widespread application of computers,
alignment charts were frequently used as a graphic tool to estimate the tree
volume from dbh and height. These graphic substitutes for tables were proposed
by Bruce (1919) and have the advantage of avoiding interpolation when two-
entry volume tables are used. Because of the widespread availability of personal
computers, alignment charts are obsolete.

The conventional standard tree volume tables are based on dbh and tree
height as table entries. Graves (1914) proposed graphic techniques, similar to
those applied by Grundner and Schwappach (1942) to construct two-entry tree
volume tables:
• The sample trees were subdivided into height strata. A scatter diagram was

prepared within each stratum, with stem volume being plotted over dbh or
basal area.

• A free-hand curve for the non-linear relationship between volume and dbh
or a free-hand straight line for the linear relationship between volume and
basal area was drawn, with the constraint that the average deviation from the
free-hand curve, within each of preselected domains of the predictor variable
was zero.

• The resultant set of curves or lines was harmonized to remove inconsistencies
and irregularities among the free-hand curves. This harmonization procedure
remained largely subjective and the resultant set of curves was not uniquely
defined.
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These time-consuming graphic methods of construction were gradually aban-
doned in favor of regression methods, with parameter estimates being obtained
from a multiple-regression equation to be fitted by ordinary or weighted least
squares.

3.2 Regression equations

Schumacher et al. (1933) introduced the equation

ν = b0db1 hb2

which was linearized by a logarithmic transformation of the dependent and
predictor variables. The resultant equation

ln(ν) = a0 + a1 ln(d) + a2 ln(h)

assumes that the residuals are normally distributed with constant variance. Sim-
ilar to the equations with a single variable, the volume estimates are slightly
biased because of the logarithmic transformation of the target variable. For this
reason, some authors prefer to use a non-linear algorithm to estimate the para-
meters, together with some weighting procedure.
Other non-linear equations, some of them being linearizable, were proposed:
• Deadman et al. (1979) modified the Schumacher–Hall volume equation, with

ln(h) being replaced by ln(h2/(h − 1.4))
• Lockow (1977) proposed equations with ln(v), as well as ln(form factor) as

dependent and functions of ln(d) and ln(h) as predictor variables
• Scott (1981) introduced the 6-parameter equation

ν = b0 + b1db2 + b3db4 hb5 .

• Ernst et al. (1984) compared functions to estimate stem volume. A model
which used d2, h, d2 and dh3 as predictor variables provided the best fit in
terms of R2 and mean-square residuals. Recovery, defined as the volume

lumber produced, was estimated from the fitted non-linear equation

recovery = b1hb2 + b3db4 hb5 + b6 I · db7 + b8 I · db9 hb10

with I = dummy variable for presence versus absence of defects
• Böckmann et al. (1990) proposed a five-parameter non-linear model for pre-

dicting the total stem volume for Tilia species

ν = b1

(
b2d2h + b3dh + b4h

)b5

A large number of models, which are linear in their parameters, have been
proposed with d, d2, h, h2 and interaction terms as predictor variables, volume
as the dependent variable.
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Author Predictor variables Author Predictor variables

Spurr (1952) d2d2h Nåslund (1940) d2, d2h, dh2, h2

Stoate (1945) d2, h, d2h Dwight d · h, h, d2, d2h
Quebec d, d2, h, dh, d2h Berry d2h, (d2h)2

Bruce (1974) h, d/h, d, dh, 1/h Myburgh d2h, h, d, dh, d2, d/h
Tremblay (1976) d, h, dh, d2h Ernst (1984) d2h, d2, d3

Barnard (1973) d2h Myers (1972) d, d2, dh, d2h, d2h2

Murphy (1968) d, d2, dh, d2h, Eriksson (1973) (1) d2, dh, d2h, d2h2, d2h, dh2

h2, dh2, d2h2 (2) d2, d2h, d2h2, dh, dh2
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Figure 7-2. Relationship between residuals and dbh.

Example 7.2 A regression equation with d, d2, h and d2h as predictor vari-
ables and the volume of trees over 5 cm diameter as target variables is fitted
to a sample of 303 tree volumes of Eucalyptus grandis. Figure 7-2 shows the
deviations between the observed and estimated volume, plotted over dbh.

There is no evidence of a trend within the observed range of diameters, which
indicates that the function being used produces unbiased estimates of tree vol-
ume. Figure 7-3, however, confirms heteroscedasticity and this in turn justifies
weighting inversely proportional to the observed variance.
The histogram of studentized residuals (Figure 7-4), based on unit weight being
assigned, reveals a symmetric but leptocurtic distribution, i.e., the degree of
peakedness exceeds that of the normal distribution.

Example 7.3 The data in Example 7.1 are used to test the performance of
models with dbh, height and other variables generated by dbh and height, such
as quadratic terms and interactions. The forward, backward, stepwise and R2

procedures were used to select the best subset of variables from a model with
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the following potential predictor variables: d, h, d2, h2, d2h, dh2, d2h2, d/h.
The following variables were retained at the 0.05 level of significance:

1. Forward d, d2, d2h2

2. Backward d, d2, d2h, d/h
3. Stepwise d, d2, d2h2

All three R2 values were 0.972. The mean-squared deviation between observed
and estimated volumes was 115.4, 114.7, and 115.4, respectively. The
RSQUARE screening procedure produced as “best” four-variable model an
equation with d, d2, h and d2h as independent variables, with R2 = 0.973.
The partial regression coefficients were affected by weighting inversely pro-
portional to d2, but weighting did not improve the overall fit. The model
with ln(d) and ln(h) as the independent and ln(ν) as the dependent variable
produced R2 = 0.979, whereas the mean of the squared deviations was 119.9.
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These evaluations of Example 7.3 show that variability is an inherent char-
acteristic of the population, for which a volume equation is to be constructed.
Using dbh as a predictor variable produced R2 = 0.943. It increased to 0.973 by
including height as an additional predictor. The different selection procedures
produced equations, which performed almost equally well. Even the model
which used all potential predictor variables, with R2 = 0.973, did not per-
form better than models with fewer predictor variables. In this specific case, it
is doubtful whether it was justified to use more than two independent variables.
The “best” model with two predictors used h2 and dh2 to predict stem volume,
with R2 = 0.972. Models with few independent variables are usually preferred
above others and the additional advantage of using a model with few predic-
tor variables is the suppression of variance inflation. The regression model with
d, d2, h and d2, for example, produced a correlation matrix with the highest and
lowest eigenvalue being 4.896 and 0.0000421, respectively. The ratio of these
eigenvalues is 116294, which indicates severe multicollinearity and variance
inflation. This in turn produces large confidence intervals for the partial regres-
sion coefficients, although this does not necessarily imply that poor estimates
are obtained with such equations.

The results of the evaluation are different when other criteria, for example,
Mallows’ CP index is used as selection criterion. In terms of CP, the model
with four predictor variables (h, d2h, dh2, and d2h2) was the best performer
with CP = 5.0.

In some cases (Spurr 1952; Barnard 1973), the combined variable d2h has
been used to estimate tree volume. Fitting the regression line through the ori-
gin implies a constant form factor. The equation which includes the intercept
parameter provides a greater flexibility and makes provision for a tree-size-
dependent form factor. In order to illustrate the implications, we fit the equation
ν = b0 + b1(d2h), with unit weight, as well as wi = 1/(d2

i ), respectively. The
results are as follows:

Unit weight: ν = 5.884 + 29.326 d2h

Weighted: ν = 3.913 + 29.712 d2h.

Many of these volume functions use tree diameter, tree height and transfor-
mation variables as predictor variables. An alternative method, although rarely
applied in practice, is the equation proposed by Sadiq et al. (1983) to estimate
the tree volume from dbh and age. The model used the interaction variable
age · d3 and age · d4 as predictor variables.

In those cases where tree volume tables are constructed for a large number
of tree species, the question arises whether and how several species can be
combined and the data pooled to obtain a single equation for a given group of
species. When few species are involved, dummy variables might be introduced
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to represent these species. Leech et al. (1991) introduced a novel approach and
applied principal coordinate analysis as an aid for aggregating tree species in
the construction of volume tables in Myanmar. Although 110 tree species were
involved, the core group consisted of 27 species. For each species, a weighted
multiple regression analysis was carried out with dbh and higher powers of
dbh as independent variables. This produced 11 prediction equations. In order
to assign the other 83 species to one of these groups, a distance measure was
defined and used in principal coordinate analysis.

Morton et al. (1990) compared the following functions for the construc-
tion of two-entry volume tables: Honer’s 1965 weighted volume function with
w = 1/(d2h)2, Schumacher’s 1933 unweighted logarithmic equation, Spurr’s
unweighted 1952 equation with d2h as predictor variable, Spurr’s weighted
1952 equation with w = 1/(d2h)2, the Quebec unweighted equation with
d, d2, h, dh and d2h as predictor variables, and its weighted version with
w = 1/(d2h)2. It was found that Schumacher’s model and the Quebec equa-
tions performed marginally better than the others. Roebbelen et al. (1981)
compared Dwight’s modified equation with d, h, d2 and d2h as independent
variables to Berry’s equation based on d2h and (d2h)2 as predictors and the
product-form equation with P2 and d.P as independent variables (P = decrease
in diameter per unit increase in height above ground). Freese’s test criterion,
which was used to evaluate the models, indicated that the product-form equa-
tion outperformed the other models. Bruce et al. (1974) used a model with
d, 1/h2, d/h2 and d/h to predict the form factor of second-growth Douglas fir,
if h > 3.5 m.

Stoate (1945) proposed the function

ν = b0 + b1g + b2h + b3gh

where g = tree cross-sectional area at breast height. The equation is usu-
ally referred to as the Australian equation and is more flexible than Barnard’s
model. Equivalently, the following equation could be used:

ν = b0 + b1d2 + b2h + b3d2h

4 EQUATIONS WITH MORE THAN TWO
PREDICTOR VARIABLES

Volume equations, with dbh and height as predictor variables, assume that the
form of the tree is sufficiently controlled by diameter and height. In order to
obtain more accurate tree volume estimates, various authors proposed the inclu-
sion of a third variable, for example, an upper-stem diameter.
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• Smalley (1973) proposed an equation with d, d2, d3, h, dh, d2h, h/d,

ln(d2h), hc and (h − hc)/h as predictors, where hc = height above
ground of the base of the live crown.

• Eriksson (1973) developed a volume equation for alder, with d2, d2h, d2hc,

dh, h and d3 as independent variables.
• Pollanschütz (1965) introduced a model for estimating the form factor of

Norway spruce:

F = b0 + b1
d0.3h

d
+ b2

H
d2

The model simultaneously removed heteroscedasticity and eliminated bias
associated with the use of two-entry tables on specific sites or within specific
regions. Multiplying both sides of the equation by d2h produces the prediction
equation for stem volume.
• The Swiss National Continuous Forest Inventory, based on the regular

remeasurement of permanent sample plots, uses volume functions with dbh,
height and d7 as independent variables.

• Rustagi et al. (1990) introduced the model

ν = b1 + b2d2h + b3d2h0.67·d

which incorporates the height at which the diameter is two-thirds of the
breast height diameter as an additional and useful predictor variable. To
some extent, it takes cognizance of the variability of the stem form of trees
with a given dbh and height. In a follow-up study, Rustagi et al. (1991) com-
pared the performance of tree volume equations with dbh and an upper height,
defined as that relative height where the diameter is equal to a fixed fraction
of breast height diameter as the predictor variable. A comparison between
equations based on the fractions 0.5, 0.67 and 0.75 indicated that those
models which used h0.5 d., h0.67d and h0.75 d performed better than other
models.
• Wagner (1982) proposed a volume function with logtransformed volume

as dependent, logtransformed dbh, height and diameter at 30% of the tree
height as predictor variables.

• Nåslund (1947) developed the tree volume equation

ν = b1d2 + b2d2h + b3dh2 + b4d2hc + b5dh BT

where hc = height above ground at the base of the live crown and BT = bark
thickness.
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• Hann (1987) examined the suitability of the following equations in predict-
ing stem volume from dbh, height and crown ratio:

ν

d2h
= b0

d2h
+ b1e

b2
CR
h

ln(ν) = b1 + b2 ln(H) + b3 ln (D) + b4

(
CR
h

)

Example 7.4 Tree volume data were used to fit volume equations with the
upper-stem diameter at one-third of the tree height as an additional predic-
tor variable. The following models were tested with a stepwise screening of
variables:

ln(ν) = f(ln(d), ln(h), ln(d33%))

ν = f(d, h, d33%, d2, h2, d2
33%, dh, d2h, dh2, d.d33%, h.d33%).

The resultant logarithmic equation was:

ln(ν) = −10.249 + 1.2475 ln(d) + 0.64353 ln(h) + 0.64353 ln(d33%).

The linear model produced the following equation:

ν = 0.476 − 0.0210 h − 0.057038 d33% + 0.0028137 h.d33%

It is of interest to note that dbh was non-significant in the presence of the more
influential upper-stem diameter at one-third of the tree height. The logarithmic
volume equation based on dbh and height as predictors was:

ln(ν) = −10.387 + 2.0089 ln(d) + 1.04156 ln(h)

5 MERCHANTABLE VOLUME

For forest managers, information about the merchantable stand volume is of
greater importance than total volume. The early German tree volume tables
were based on a fixed minimum upper diameter of 7 cm over bark. The mod-
ern trend, however, is to construct tables and functions for a variable upper
diameter.
• In a volume study on Douglas fir, Hann et al. (1987) distinguished between

the stem volume above and below breast height. The volume of the stem sec-
tion below breast height was obtained with a conventional formula, whereas
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the following prediction equation performed satisfactorily for the above
breast height stem section:

ν

d2h
= b1eb2(C R/h)

(
h
d

)b3

The prediction equation is a weighted regression model, with wi = 1/(di
2h).

• Burkhart (1977) and other authors used the equation

ν − νm

ν
= b0db1

m db2

to estimate the stem volume up to a specific upper diameter dm . The equation
was linearized to estimate its parameters by ordinary least squares.

Example 7.5 The Burkhart model was applied in estimating the mer-
chantable volume ratio as a function of dbh and upper diameter with the
10 cm limit being used as the cut-off point (see Figure 7-5).

• Newberry et al. (1989) developed equations to estimate the merchantable
volume over the ratio to total volume, based on geometric solids. Parameter-
free, as well as parameterized equations with differently defined basal
diameters, were proposed. The parameterized equation based on dbh as
basal diameter was:

R = 1 − b0

(
di

d

)b2
(

h − hi

h − hst

)b2

where hst = height of stump diameter, di = diameter limit for merchantability,
hi = corresponding height above ground and (h − hst ) = total height minus
stump height.
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Figure 7-5. Residuals for Burkhart equation fitted to Pinus patula.
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• Cao et al. (1980) evaluated two approaches to estimate the merchantable vol-
ume for a given upper diameter or height, one being obtained from volume
ratio models, the second by integrating taper equations to obtain the vol-
ume of stem segments. In addition to existing volume ratio models and taper
functions, new models were introduced, tested and compared in terms of
their performance in estimating merchantable volumes and taper. Bias, mean
absolute difference and standard deviation of the differences were used as
criteria. The Max–Burkhart model was superior for estimating taper, but the
model is not compatible. A segmented compatible polynomial model

d2k h/ν − 2z = b1(3z2 − 2z) + b2(z − a1)
2 I1 + b3(z − a2)

2 I2

with z = (h − hu)/h, I = 1, if z < ai , I = 0, if not and k = 0.00007854
(English system) performed satisfactorily in estimating the merchantable vol-
ume for a specified upper-stem diameter. CAO also tested the following modi-
fied Burkhart model:

νm

ν
= 1 + b1

(h − hu)b2

hb3

The model performed well in estimating the merchantable volume for specified
merchantable heights.
• Amateis et al. (1986) developed a ratio approach to predict merchantable vol-

ume per unit area total yield (Vt ), mean diameter (dq), number of surviving
trees (N ), merchantable top diameter (du) and threshold dbh limit (dthr .):

Vm = Vt e
b1(du/dq )b2+b3 N b4

(
dthr.
dq

)b5

In order to provide an estimate of total yield, a model was used with log yield
as target variable and those generated by age, top height, trees per unit area and
basal area as predictors. The prediction model was improved by the incorpora-
tion of a sub-model to estimate the number of trees per hectare above a given
merchantability limit from the total number of trees, basal area and (du/d):

Nmer. = Ntot.e
−b1Gb2

(
dmer.

d

)b3

• Alemdag (1988) fitted a number of equations, using either a relative mer-
chantable diameter (group 1) or a relative merchantable height (group 2), as
the predictor variable to estimate the merchantable volume ratio K . In group
1 the equation

K = 1 + b1

(
du

d

)b2
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performed slightly better than other models tested, with R2 being equal to
0.907. The equation

K = e

(

b1

(
1− hu

h

)b2
)

represented the best model in group 2, with R2 being equal to 0.976. The cor-
responding compatible taper equation, which performed best was:

du = d

⎛

⎝e
c1

(
1− hu

h

)c2

− 1
b1

⎞

⎠

1/b2

The coefficients of these equations were derived from fitted equations, with K
as the dependent and either du/d or hu/h as the predictor variable.
• Turnbull et al. (1965) proposed an equation with a single predictor variable

to estimate the ratio of the total to the merchantable volume:
νt

νm
= b1 + b2e−b3d

Example 7.6 The Turnbull equation was applied to the previously used data
set. The resultant equation was

νt

νm
= b1 + b2e−b3d (see Figure 7-6).

• Strub et al. (1986) developed a model to predict the merchantability of indi-
vidual loblolly pine trees of given dbh with stand age, mean height of the
dominants and trees per hectare as predictor variables. The proportion of
merchantable trees within the selected plots, being zero for dbh < 7.55 in.,
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Figure 7-6. Residuals for fitted Turnbull equation.
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increases exponentially with dbh and has an upper asymptote of 1. The resul-
tant prediction equation is:

y = 1 − ea(7.55−d) f or d 〉 7.55 in.

y = 0 f or d s 7.55 in.

where y = probability that a tree with a diameter di is merchantable and b =
parameter of the equation. Further investigations produced the three-parameter
logistic model

y =
(
1 − eβ1(7.55−d)

)

1 + eβ2+β3h

for d > 7.55 in. = 0 and for d < 7.55 in.
• Honer (1967) proposed a second-degree equation to estimate the mer-

chantable volume ratio νm/ν

νm

ν
= b0 + b1x + b2x2

where

x = du

dst

(

1 − hst

h

)

with du = upper diameter, dst = stump diameter, hst = stump height
• Matney et al. (1982) developed equations to estimate the merchantable vol-

ume ratios and merchantable heights, assuming that the total volume for a
given dbh and height is known. Various powers of the ratio of merchantable
top diameter to dbh, merchantable ratio of merchantable to total volume
as a function of tree height, total volume and dbh were used as predictor
variables.

• Mctague et al. (1987) developed and tested equations to simultaneously esti-
mate the total and merchantable volume of loblolly pine as a function of dbh,
height and minimum diameter for merchantability:

νm = a0da1 ha2 + a3

(
2d4

m

d2 − d5
m

d3

)

· (h − 1, 3) + a4

(
2d4

m

d2 + d5
m

d3 − d3
m

d

)

· (h − 1, 3)

The function predicts total stem volume for dmer = 0. The coefficients of the
equation were estimated with the restriction

a4 = −
(

3 · 0, 0000785 + 7a3

8

)

to ensure that the taper function, which is compatible with the volume function
predicts a merchantable height of 1.3 m when the upper-stem diameter dm is
equal to the breast height diameter.



Chapter 8

TREE AND STAND BIOMASS

1 INTRODUCTION

Until recently, forest mensuration has emphasized the estimation of the total
and utilizable volume rather than weight, partly because timber is usually sold
on a volume basis and partly because the volume of standing trees can be esti-
mated more easily than their weight. In many countries and regions there is an
increasing need to express the productivity of forests in terms of weight, more
particularly in those plantation forests which are managed for the production
of pulpwood and mining timber or when by-products, for example bark for
the production of tannins, are involved. A similar situation arises when trees
are planted or natural forests are managed to produce wood for energy, since
mass rather than volume is a yardstick to quantify the production of wood for
energy. Other reasons for the increased interest in forest biomass, initiated in
the early 1960s, was the necessity to measure biological productivity in terms
of dry weight of the organic matter, and the oil crisis, which induced a greater
emphasis on the utilization of wood as a renewable natural resource.

Because of these developments, the need arose to develop sampling meth-
ods and to construct functions and tables which give the estimated oven-dry
biomass of trees as a function either of dbh, or dbh as well as height. Whenever
the tree is converted into cellulose products, the oven-dry weight of its mer-
chantable part expresses its value more adequately then its green weight. For
this reason biomass tables were constructed, which give the average oven-dry
instead of green weight as a function of one or more than one tree characteristic.

The first extensive sampling studies to estimate the weight of the above-
ground tree components were carried out much earlier, primarily because of the
necessity to measure the biological productivity of tree species. These studies,
undertaken in Pinus strobus in Switzerland (Burger 1929), were followed by
similar studies in Larix decidua (Burger 1945) and Picea abies (Burger 1953).
Concurrently, ecologists and physiologists became increasingly interested in
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this research direction and made a contribution towards the development of
more efficient sampling methods to estimate the quantity of foliage, either
expressed in terms of their oven-dry mass or in terms of the leaf surface area
per hectare. The latter was converted into the leaf-area index, defined as the
ratio of leaf-surface area over ground area. Studies conducted by Kittredge
(1944) and Ovington (1957) emphasized their importance within the frame-
work of ecological research. Studies in Danish beech forests, conducted by
Møller (1946), which were preceded by those carried out by Boysen–Jensen
(1932), were primarily undertaken to establish the relationship between degree,
as well as kind of thinning and yield in terms of mass instead of volume. They
had a considerable impact on thinning research in Europe and the USA. The
studies were also conducive for the initiation of sampling studies for the con-
struction of biomass tables and functions.

An evaluation of the extensive world literature about this subject shows that
the majority of the sampling studies estimate the oven-dry weight of each bio-
mass component separately. In many of these studies, root biomass is ignored,
probably because of the prohibitively high cost of estimating root biomass suf-
ficiently accurately. The estimation of biomass components in relation to tree
size requires that they are oven-dried separately. The drying temperature is nor-
mally around 70◦ C, but in Pinus radiata, Forrest (1968) recorded a 2% weight
loss by increasing the temperature from 70◦ C to 105◦ C. In Picea mariana a
weight loss of 3% was observed by increasing the drying temperature from
65◦ C to 103◦ C (Barney et al. 1978).

2 BIOMASS COMPONENTS

The total aboveground green weight of young trees is conveniently measured
by felling sample trees and weighing the entire tree. This method, which was
applied by Young et al. (1976), ensures that no sampling errors are involved to
determine the green weight of the entire tree. This is feasible for young trees
but prohibitively expensive for mature trees. Methods were therefore developed
to estimate biomass by sampling. The following notes serve as a general guide-
line for sampling. In practical situations it is usually necessary to modify the
proposed procedure.

2.1 Branches

Two-stage sampling is an efficient method to estimate the branchwood weight
of the single tree. The diameter at the base of the branch (preferably at a
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fixed distance of 4 or 5 cm from the main stem) is measured on all branches.
A subsample of branches is drawn at random to estimate either the green or the
oven-dry branchwood weight of the single branch. The observed weights are
subsequently regressed on branch diameter or branch basal area.

In biomass studies in Pinus radiata, branch length was a statistically sig-
nificant additional predictor variable but the moderate increase in R2 did
not justify its inclusion into the prediction equation (van Laar 1973). Other
researchers included branch position to improve the prediction model.

The estimated weights per tree are subsequently regressed on dbh or on dbh
as well as height to obtain a regression estimator for this biomass component for
the entire stand. A direct measurement of the oven-dry weight eliminates the
necessity to convert the green weight into the oven-dry weight. For practical
reasons it is sometimes preferred to measure the branchwood weight as green
weight. In that case, a subsample of branches of known green weight is drawn
and oven-dried to estimate the ratio oven-dry over green weight. In P. radiata
this ratio was about 0.45 for live and 0.80 for dead branches (Satoo 1982).
In consequence, the conversion of green into oven-dry weight should be carried
out for live and dead branches separately.

2.2 Foliage

In young trees all leaves or needles are removed from the tree, dried and
weighed, but sampling is required when mature trees are involved. The needles
or leaves, for example, from a 25% random sample of branches, are removed
and their green or oven-dry weight is determined and recorded for each branch
separately. For reasons of cost-efficiency the same branches will be used for
measuring the branch-wood and foliage weight. The foliage weight may be
measured as green weight, in which case subsampling is required to convert
green weight into oven-dry weight. In regions with hot dry summers and wet
winters, the ratio green weight to oven-dry weight shows a seasonal trend.
Ratio estimates obtained during summer cannot be used when sampling con-
tinues during winter. The regression model used to estimate the branch-wood
weight from branch diameter can also be used to estimate leaf weight.

2.3 Stemwood weight

Sampling usually proceeds in two stages. In stage 1 the volume of the felled
sample tree is determined by measuring the diameter at the midpoint of 1 m
sections, with Smalian’s formula being used to obtain the volume of each stem
section. This produces an estimate of the stem volume, although it may be



186 Tree and Stand Biomass

negatively biased if too few stem sections are used. In stage 2 wood discs of a
predetermined thickness are extracted, preferably at the midpoint or else at the
thin end of each stem section. Since the disc volume is proportional to the vol-
ume of the stem section, this method implies self-weighting and their volume,
as well as green weight is determined. A subsample is drawn for drying and to
convert green weight into oven-dry weight. The use of a single-conversion fac-
tor erroneously assumes that the dry weight over green weight ratio is unrelated
to the position within the stem. This simplification could produce biased esti-
mates, since the ratio tends to decrease with increasing height above the base
of the tree. In many regions this ratio might also reveal a seasonal trend.

2.4 Bark weight

The previously described sampling procedure is repeated to estimate the oven-
dry bark weight. It can be combined with the measurement of stemwood weight
by measuring the bark thickness of each stem disc from four directions under
an angle of 90◦, or by removing the bark from each disc to measure its weight.
Alternatively bark-thickness functions, such as those constructed by Deetlefs
(1957), can be used to estimate the bark volume which is subsequently multi-
plied by a single oven-dry/green-weight ratio. This method will be applied if
prediction errors associated with bark thickness equations are negligible.

2.5 Root weight

The estimation of the weight of roots requires a complete excavation of the root
system, which in practice is virtually impossible. Some kind of subsampling
may be necessary to estimate the weight of the root sections which remain in
the soil. The green weight of all roots together is determined and a subsample
is drawn to convert green weight into dry weight.

The above sampling methods serve as general guidelines but are modified
in specific situations. In a biomass study in Pinus radiata, carried out by Forrest
(1969), the breast height diameter and height of all trees within a given sample
plot were measured. After grouping the trees in five-diameter classes, two trees
were selected at random from each class. The oven-dry weight of each bole was
determined in its entirety. Discs were cut and their bark removed to estimate the
ratio bark to total weight. Foliage and branch weight were obtained by drying
and weighing all branches and needles. This was done for each age stratum
separately. Spank (1982) conducted sampling studies to estimate the crown
and needle biomass of Pinus sylvestris. Samples were taken to estimate the
needle biomass from the biomass of the branchlets. The crown and branchlet
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biomass per tree were regressed on tree diameter and tree height, with a log-
arithmic transformation of the dependent and predictor variables. Ranasinghe
et al. (1991) conducted biomass studies on two sites in Eucalyptus camaldu-
lensis plantations of different ages. The mean tree within each sample plot was
felled to determine the green weight of the leaves, large branches, bole, bark,
and roots. Subsamples were dried at 70◦ during 48 h to estimate the conversion
factor from green to oven-dry weight.

2.6 Pooling of data

The construction of general biomass tables and equations requires a large sam-
ple representing the entire range of tree sizes, ages, sites, and silvicultural treat-
ments. It is feasible to rationalize the previously described sampling procedures
by pooling some observations obtained from single trees. In order to estimate
the ratio oven-dry/green weight of branchwood, foliage, stem wood, and bark,
for example, it can be expected that the between-trees and within-trees vari-
ability of these ratios, within a given stand, might be of the same order of mag-
nitude. Pooling the ratios observed for single trees seems justified but might
produce slightly biased estimates of the biomass of trees in different stands, for
example because of the effect of site. When regressing tree biomass estimates
on dbh and other tree characteristics, the assumption of uncorrelated residuals
will then be violated, although not necessarily seriously.

2.7 Randomized branch and importance sampling

In order to eliminate the necessity to determine the weight of the entire tree,
Valentine et al. (1984) compared randomized branch sampling (RBS) with the
closely related importance sampling (IS), which is based on an earlier concept,
introduced by Jessen (1955), to obtain estimates for the aboveground biomass
of individual trees. RBS selects a path, which is defined as a series of connected
branch segments or internodes. Within the context of RBS a branch is defined
as the entire stem system which develops either from a terminal or from a lateral
bud. A segment is defined as a part of a branch between two successive intern-
odes. In RBS no distinction is made between main stem and branch. The first
segment extends between the base of the tree and the first node. At this point
the diameter and length of the two branches (the diameter of the branch and that
of the main stem) are measured. A selection probability which is proportional
to d2l is calculated. with l being the length of the segment between the node
and the tip of the branch and main stem respectively. If the two selection prob-
abilities are 0.30 and 0.70 respectively and a random number is drawn which
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is greater than 0.70, the second branch is selected. Its associated probability of
selection is equal to 0.70. When three branches (segments) occur at the first
node, with selection probabilities of 0.20, 0.35, and 0.45 and a random num-
ber equal of 0.60 is drawn, the second branch will be selected with a selection
probability of 0.35, since 0.60 > (0.20+0.35). After having selected the third,
and possibly last branch, for example with a conditional probability of 0.45, the
latter is weighed and the unconditional probability of selection is obtained by
multiplying conditional probabilities 1∗0.70∗0.35∗0.45 = 0.1103. The weight
is divided by 1/0.1103 to obtain the estimated weight of the entire tree.

Importance sampling is a related method which eliminates the necessity to
determine the weight of heavy segments of a path. Weighing is limited to a
single stem disc within each path. The procedure starts with the measurement
of the diameter at various points along the bole. These are used to estimate
the timber volume of the path. A random number is drawn from a uniform
distribution which extends between 0 and 1. In order to determine the position
of sampling it is multiplied by the estimated volume. The weight is determined
and converted into weight per unit thickness of the disc. This value is multiplied
by an expansion factor to obtain the estimated total weight.

3 TREE-LEVEL REGRESSION MODELS

Several models have been proposed and used to estimate the aboveground bio-
mass components and the total tree biomass from tree characteristics. Many
models are based on the assumed allometric relation between biomass (y) and
the tree or branch characteristic (x)

ln y = b0 + b1 ln x

Allometry deals with the relationship between the relationship between the
growth rates of two organs of an individual. The assumption that the relative
growth rate of x is a fixed proportion of that of y can be stated as follows:

1
y

· dy
dt

= k · 1
x

dx
dt

where k represents a proportionality coefficient. The terms of the equation can
be rearranged as follows:

dy
dt

= y
x

· k · dx
dt

which represents a differential equation. It has been shown (Batscheler 1975)
that the solution of this equation is:

y = c.xk
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or

ln y = ln c + k ln x

Although the allometric model produces a satisfactory fit, the resultant esti-
mates are biased. Several formulae have been proposed to correct for bias.
Baskerville (1972) approximated the regression estimate corrected for bias as
follows:

yadj. = eln bo+b1 ln x+M Serror/2

where M Serror = mean square for error, obtained from the regression analysis
with the transformed variables. Using Baskerville’s correction for bias, Wiant
et al. (1979) estimated bias as follows:

Bias = eM Serror/2−1

eM Serror/2

A more complex correction formula was presented by Finney (1941). Yandle
(1981) compared Finney’s estimator with Baskerville’s function. For small sam-
ples and a large-error mean square, Baskerville’s function performed better
than Finney’s estimator. This was confirmed in similar studies carried out by
Lee (1982). Snowdon (1991) proposed to multiply the estimate obtained from
the log–log regression of biomass on dbh by a correction factor C, obtained
from the observed and estimated biomass of the n sampling units. In a later
simulation study Snowdon (1992) compared this method with the ratio of mean
methods, based on basal area as auxiliary variable. This was done for simple
random sampling, for sampling with selection probability proportional to size
(PPS) and for sampling with selection PPS for the first sampling unit being
drawn and at random for the others. The estimates obtained by combining PPS
sampling with the simple ratio method of adjustment produced highly biased
results.

One disadvantage of the log–log model is that the sum of the estimated
biomass components differs from the regression estimate obtained from the
equation with total biomass as dependent variable. A second problem is the
estimation of confidence intervals. Meyer (1944) suggested to adjust the vari-
ance formula

s2
y = ey2+M Serror/2

and to use the corrected variance for obtaining confidence intervals for the esti-
mated biomass.

Campbell et al. (1985) examined the allometric relationship between tree
biomass and breast height diameter (model 1) and that between tree bio-
mass and the combined variable d2h (model 2). An analysis of covariance
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for model 1, with region as additional variable and dbh as covariate, did not
indicate significant differences amongst intercepts but those between slopes
were significant, whereas the analysis based on model 2 disclosed significant
differences amongst slopes. It was suggested that the d/h ratio might be a use-
ful additional variable for predicting the biomass of trees growing in different
regions, but the study did not disclose which of the two models performed
better.

Ruark et al. (1987) introduced the concept VAR (variable allometric rela-
tionship) for estimating the tree biomass from a tree-size characteristic x. It was
hypothesized that the allometric ratio b1 of the equation

y = b0xb1

is a function of x. The proposed equation

y = b0xb1eb2x

is linearizable and produces the equation

ln y = c0 + c1 ln x + c2x

The model performed satisfactorily if the relationship between x and y differs
for different ages of the organism. For some biomass components it produced a
significantly better fit than the constant allometric model. Geron et al. (1988)
tested the usefulness of Ruark’s variable allometric ratios for predicting the
foliar biomass of different tree species. In Populus tremuloides, it compensated
the negative bias associated with the constant allometric ratio model, which
overpredicted foliage biomass in the lower and upper ends of the diameter dis-
tribution. In a study with a similar objective, Crow (1980) compared the per-
formance of the allometric model ln y = b0 + b1 ln x with others, for example:

w = b0db1

w = b0db1 hb2

combined with different weighting functions. The weighted nonlinear equations
and the allometric model performed equally well. Clark (1990) predicted bio-
mass components of planted southern pines from models which used either d2

or d2h, or d2h4 (h4 = height to 4 in. top) or sawlog merchantable height
as predictor and log(biomass) as target variable. Schlaegel (1982) estimated
biomass components of Acer negundo from fitted regression equations with
d2h as predictor variable. In order to ensure homoscedasticity, the data were
weighted inversely proportional to d2h. Payandeh (1981) discussed regression
models for biomass prediction equations
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W = b0 + b1d (1)

W = b0db1 (2)

W = eb0+b1 ln d (3)

W = b0 + b1d2 + b2h + b3d2h (4)

W = b0db1 hb2 (5)

The performance of the models was based on an index of fit, which is identi-
cal with R2 in models with no constraints on the parameter b0. The models 1
and 2 performed equally well and were superior to the others. In biomass stud-
ies, based on a sample of size 38, which were carried out in the beech forests
of Romania, Decei (1981) used a second-degree equation to estimate various
aboveground biomass components as well as root biomass from breast height
diameter.

Landis et al. (1975) regressed bole, stem bark, branchwood, and foliage
biomass, as well as the total aboveground biomass on breast height diameter.
The equation W = b0 + b1d2 was preferred before those with logtransformed-
dependent and predictor variables, because of nonnormality of the distribution
of residuals, generated by this transformation. Mitchell et al. (1981) developed
regression equations with stem, branch, and foliage dry weight of conifers as
target variables and dbh as predictor, after weighting the sampling observa-
tions proportional to the inverse of dbh. Apparently there was no evidence of
a nonlinear relationship between dbh and weight. In South African Eucalyptus
plantations, Schönau et al. (1981) regressed the biomass components on the
squared dbh.

Alemdag et al. (1981) tested the performance of four equations for estimat-
ing stemwood, stem bark, live branches, twigs, leaves, and the total biomass
of some hardwood species. One model used d2, h and d2h as regressors, and
contained an intercept, a second equation used the same predictor variables
but with zero-intercept, a third function was based on d2h as predictor (with
intercept), and the last one represented the concurrent zero-intercept model.
The first and last model performed equally well in terms of R2.

Madgwick (1984) investigated the amount of bias when estimating the
aboveground biomass per unit area with the basal area ratio method, the
unweighted regression of biomass on squared diameter approach and the log–
log regression of biomass on dbh. Five different adjustment factors to correct
estimates, based on the allometric model tended to produce biased estimates.
The best results were obtained with the basal area ratio method, which is a
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ratio of means estimator, requiring the multiplication of the observed biomass
of the n sample trees by the ratio of plot basal area over sample trees basal
area.

Snowdon (1986) conducted simulation studies to devise a sampling strat-
egy for estimating the biomass of crown components of individual trees
of Pinus radiata. The efficiency of simple random sampling was compared
with various versions of stratified random sampling and ratio estimators.
Not surprisingly, stratified random sampling produced better results than
simple random sampling. In a subsequent regression analysis branch posi-
tion and branch diameter were used as predictor variables and branch-
wood biomass as target variable. Both independent variables were entered
as a linear, quadratic, and cubic term, together with the linear interaction
term.

4 ADDITIVITY OF BIOMASS COMPONENTS

Kozak (1970) proposed to fit identical models for estimating the total tree bio-
mass and biomass components, in order to ensure additivity of biomass com-
ponents, which implies that the sum of these estimates is equal to that obtained
from the total-biomass equation. However, the question arises whether different
subsets of independent variables should be used to estimate different biomass
components. Krumlik (1974) compared several models for predicting biomass
components. Linear models with d2h as predictor variable were suitable to esti-
mate stem biomass, d2h∗crown width to estimate the biomass of big branches,
basal area was more suitable to predict bark biomass, d∗crown length for esti-
mating the twig and foliage biomass. Models based on the same predictor-
variables, but with a logtransformed-dependent variable, were also tested and
performed satisfactorily.

Example 8.1 Regression equations were fitted to data from a biomass study
in P. radiata (Forrest 1969). The equations to predict total biomass are shown
in Table 8-1.
The adjusted R2-values based on stepwise elimination of variables and the
corresponding values of �(w − west)

2 and the associated ranks are given in
Table 8-2.
The two criteria being used produce different ranks. Model (2) is superior in
terms of R2 but is of rank 3 when expressed in terms of total squared error.
Models (3) and (4) with d and d2 as predictors perform well in terms of sum
of squared deviations but correspond with ranks 3 and 4 when expressed in
terms of R2. Models (5) and (6) are the poorest performers independently of
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Table 8-1. Regression models for predicting biomass in P. radiata

Eq. Dependent variable Predictor variable Weight

(1) ln(mass) ln(d) unit weight
(2) Predictor ln(d), ln(h) unit weight
(3) mass d, d2 unit weight
(4) mass d, d2 wi = 1/d2

(5) mass d2h unit weight
(6) mass d2h wi = 1/d2

Table 8-2. Regression statistics and ranks for predicting total biomass

Eq. R2 Rank �(w − west)
2 Rank Eq. R2 Rank �(w − west)

2 Rank

(1) 0.978 2 33.18 4 (4) 0.977 3 26.59 1
(2) 0.979 1 30.64 3 (5) 0.909 6 59.66 5
(3) 0.960 4 26.62 2 (6) 0.949 5 60.78 6

Table 8-3. Regression statistics for predicting stem biomass

Eq. R2 Rank �(w − west)
2 Rank Eq. R2 Rank �(w − west)

2 Rank

(1) 0.954 2 14.84 6 (4) 0.950 3 9.01 3
(2) 0.968 1 10.52 5 (5) 0.899 6 8.65 2
(3) 0.905 5 8.19 1 (6) 0.949 4 9.97 4

the criterium being used. Weighting produces the best results when using R2 as
criterium, but not necessarily when the performance of the model is based on
total squared error.

4.1 Stem biomass

The same data set was also used to compare and test the same set of regressor
variables. The results are given in Table 8-3.

The criterium being used has a considerable impact on the ranking results.
Eq. (1) was the best performer when based on R2 but performed poorly when
total squared error was used as quality criterium. The weighted models (4) and
(6) were superior to unweighted equations, when based on R2 but the opposite
was true when total squared error was used as criterium for goodness of fit.
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4.2 Branch and needle biomass

The previous models were applied to estimate the sum of branch and leaf bio-
mass. The results are shown in Table 8-4.
Models (5) and (6) were the poorest performers, independently of the criterium
being used. Eqs. (1) and (2) were superior in terms of R2 but Eq. (1) did not
perform well in terms of total squared error. The weighted models (4) and (6)
were superior to unweighted models (3) and (5), when based on R2 but not
when based on total squared error was used as criterium.

4.3 Root biomass

The regression statistics for predicting root biomass are given in Table 8-5.
The evaluation of the root biomass models reveals the same inconsistency as
that observed for other biomass components and shows similar trends. Eqs. (4)
and (6) are superior to Eqs. (3) and (5) when assessed in terms of R2 but weight-
ing had no influence on the total squared error. Model (6) was the poorest per-
former in terms of R2 but the best model when based on total squared error.

The criteria R2 and total-squared error present an overall evaluation of the
goodness of fit. Additional information about the performance of the models is
obtained by calculating the observed and estimated biomass within the lower,
middle, and upper range of diameters. In the present case the calculations were
carried out for the trees below the 10th and above the 90th percentile of the
diameter distribution and for 10 trees around the median. In the present case

Table 8-4. Regression statistics for predicting the sum of branch and needle biomass

Eq. R2 Rank �(w − west)
2 Rank Eq. R2 Rank �(w − west)

2 Rank

(1) 0.944 2 13.61 4 (4) 0.941 3 13.55 3
(2) 0.946 1 13.08 1 (5) 0.807 6 30.35 5
(3) 0.916 4 13.40 2 (6) 0.879 5 30.64 6

Table 8-5. Regression statistics for predicting root biomass

Eq. R2 Rank �(w − west)
2 Rank Eq. R2 Rank �(w − west)

2 Rank

(1) 0.919 3 2.91 4 (4) 0.922 2 2.79 2
(2) 0.923 1 2.80 3 (5) 0.829 6 3.47 5
(3) 0.866 5 2.75 1 (6) 0.904 4 3.48 6
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these calculations were carried out for each of the four biomass components,
with estimates being obtained from the equations

total biomass = exp(a0 + a1 ln(d) + a2 ln(h)) (1)

total biomass = b0 + b1d + b2d2(weights proportional to 1/d2) (2)

stem biomass = exp(a0 + a1 ln(d) + a2 ln(h)) (3)

stem biomass = b0 + b1d + b2d2(weights proportional to 1/d2) (4)

branches + foliage = exp(a0 + a1 ln(d) + a2 ln(h)) (5)

branches + foliage = b0 + b1d + b2d2(weights proportional to 1/d2) (6)

root biomass = exp(a0 + a1 ln(d) + a2 ln(h)) (7)

root biomass = b0 + b1d + b2d2(weighting proportional to 1/d2) (8)

The results are given in Table 8-6.
In addition to the above 6 models (Example 8.1), an equation was tested

with ln(biomass) as well as ln(stem biomass), and ln(leaves + branches) as
dependent, ln(d), ln(h), and ln(crown volume) as predictors. To predict total
biomass, crown volume was significant in presence of ln(d), but ln(h) was non-
significant. R2 however increased only marginally from 0.979 to 0.980 when
ln(h) was replaced by ln(crown volume). The addition of crown volume did not
improve the accuracy of the prediction of stem biomass and that of branch +
leaf biomass and in both cases dropped out as predictor variable. The estima-
tion of ln(root biomass) from ln(d), ln(h) and ln(C L) produced an R2 of 0.928.
In this case crown dimension improved the precision of root-biomass estimates.

Additivity

In order to illustrate nonadditivity of biomass estimates for the logarithmic
model equations were fitted with ln(biomass) as dependent and ln(d) as well as

Table 8-6. Estimates in the lower, middle, and upper ranges

Biomass component
Total Stem Fol. + branches Root

Middle range Eq. (1) 96.7 106.5 106.9 94.5
Eq. (2) 98.3 103.0 105.9 97.2

Upper range Eq. (1) 117.6 107.6 109.7 116.6
Eq. (2) 94.3 96.7 98.6 99.7

Lower range Eq. (1) 101.6 94.2 97.1 99.6
Eq. (2) 102.6 104.7 44.1 43.4
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Table 8-7. Regression coefficients for equations to predict the biomass components stem,
leaves, and branches

Component Logarithmic model (1) Linear model (2)
b0 b1 b2 c0 c1

Stems −3.598 2.156 0.5147 3.758 0.01206
Leaves −4.968 2.542 0.2265 −0.056 0.00575
Branches −4.686 3.148 −0.4425 −0.812 0.00975

ln(h) predictor variables and biomass as dependent and d2h as predictor vari-
able. The calculations were carried out for stem, foliage, and for live branches
as dependent variables. The parameter estimates are given in Table 8-7.

5 DUMMY-VARIABLES FOR TREE SPECIES

Jacobs et al. (1980) developed prediction equations for ten tree species. In order
to harmonize tree biomass tables dummy-variables were introduced which rep-
resented biomass components, based on stem-biomass categories demarcated
by specified top diameters. The regression analysis did not give evidence of
nonparalellism, but the relationship between the intercept parameter and top
diameter could be expressed by a second-degree equation. Crow et al. (1980)
applied a two-variable linear model, with a logtransformed-dependent variable
and a logtransformed (d2h) as predictor variable, to estimate the biomass of
tropical forest trees and found that habitat as dummy-variable was not influ-
ential in presence of dbh as predictor variable. In sampling studies conducted
by Brown et al. (1989) however, equations for estimating the total aboveground
biomass of tropical trees were developed, with a model using dbh and d2 as pre-
dictor variables. This model was used for trees from the dry life zone whereas
an equation with ln(d2h∗SG) with SG = specific gravity for trees was applied
to those growing in the dry life zone.

The objective of many sampling studies has been to estimate biomass com-
ponents such as branch weight and needle weight. Hepp et al. (1982) developed
branch, tree, and stand level equations to estimate the branch and needle weight
of loblolly pine. The branch model was

ln Wbr = b0 + b1 ln di + b2 ln h · hi + b3 ln A
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where hi = branch height is aboveground, di = branch basal diameter,
h = tree height and A = age. The tree model was

ln Wcr = b0 + b1d + b2 ln CR

where Wcr = crown weight and CR = crown ratio. The stand level model was

ln W = b0 + b1 A + b2 ln G

where W = weight per hectare and G = basal area per hectare
Madgwick et al. (1974) applied the following equation for predicting branch

weight

ln W = b0 + b1 ln d2l + b2 RH + b3 RH2

with l = branch length, RH = relative height above ground of the sample
branch, W = branch weight. Branch weight estimates in different crown sec-
tions, however, were not unbiased. Ek (1979) proposed a model for estimating
branch and foliage weight as a function of branch diameter at 25 mm from the
stem. Starting point for the model development was the allometric relationship
between branch diameter and the target variable. Several models which took
cognizance of the effect of height aboveground level of the i th branch and of
spacing, the latter either expressed in terms of distance between the trees or
by the height over dbh ratio, were tested for their predictive ability. The rela-
tive height aboveground was less influential than spacing in predicting branch
biomass, but the variable which expressed branch position was significant in
presence of the spacing variable. The following model was more suitable to
estimate foliage mass

y = b1db2
i (h − hi )

b3

but the addition of a spacing variable served no useful purpose. The analysis
suggested the possibility of pooling data from stands of different ages and spac-
ings. Piene (1983) established a close linear relationship between needle length
and weight per 1000 needles, as well as between-needle density (expressed as
the number of needles per centimeter shoot length) as dependent and the recip-
rocal of needle length as predictor variable. The relevant regression equations
were combined to estimate the needle biomass for a branch with estimation of
needle biomass required the measurement of shoot lengths, needle length, and
needle density. The author determined sampling positions within the shoot and
within the crown, which should produce unbiased estimates.

Several studies were undertaken to compare the efficiency of different sam-
pling methods. Attiwill et al. (1968) compared four methods to estimate the
biomass per unit area



198 Tree and Stand Biomass

• From the average of four weight measurements of trees with a dbh equal to
the mean stand diameter.

• From the average weight of four trees in each of five dbh classes, to be mul-
tiplied by the stem number in these classes.

• From weight estimates obtained from regression equations based on a sample
of size 20.

• From the expected weight of the tree with the mean dbh, to be estimated
from the regression equation and to be multiplied by the number of trees.

Since the third method was assumed to produce the most accurate estimates,
those based on the others were compared with this method. The negative bias
was −8.5%, −3.1%, and −11.6% for the first, second, and fourth method
respectively. Williams et al. (1991) investigated the relationship between
site index and biomass production within four drainage classes in even-aged
spruce–fir stands in Maine. Stand age and site index were used as predictor
variables for biomass production per hectare. The regression model was

y = b0 + b1 A + b2SI · A2 + b3SI · A3

It was found however that site index was a poor predictor for biomass yield.

6 RATIO ESTIMATORS AND CLUSTER SAMPLING

The purpose of the previously described sampling procedures is to obtain the
most accurate estimate of the biomass components at the lowest possible cost.
The ultimate goal of sampling for biomass, however, is to obtain estimates per
unit area. If a random sample of n trees is selected from a population con-
taining N trees, the sample mean, i.e., the mean of the n biomass estimates,
multiplied by the ratio N/n, represents un unbiased estimate of the population
total. This assumes that no measurement bias is involved in the determination
of the biomass components and that sampling for biomass, within the selected
sample trees, produces unbiased biomass estimates per sample tree. However,
for given fixed cost, a more efficient estimate can be obtained by making use
of ratio estimators (Chapter 10) than would be possible by simple random sam-
pling. It requires the measurement of an auxiliary variable x , which can be mea-
sured quickly and cheaply. The assumption is that the relationship between the
target variable y and this variable x can be expressed by the equation y = b.x ,
which represents a zero intercept regression equation and implies that y = 0
for x = 0. In order to be useful the population total for the ancillary variable
must be known. For practical reasons the latter will be measured in sample
plots with biomass being calculated for each plot. The biomass of the stand is
obtained by multiplying the mean plot biomass by an expansion factor. Cunia
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(1981) suggested the ancillary variable x = d2h. This means that all diameters
within a given population should be measured and a height curve fitted to obtain
the estimated heights for given dbh. Alternatively basal area, which is equiv-
alent with squared dbh could be used as auxiliary variable. In both instances
the assumption of a zero intercept of the regression line which reflects the rela-
tionship between basal area and biomass does not hold true, since tree biomass
tends to a value which is equal to the expected biomass of a tree which is 1.3 m
high as breast height basal area tends to zero.

In cluster sampling groups of trees, usually all those within a given sample
plot, are selected at random, their biomass is determined either by a complete
measurement or possibly by subsampling and the tree biomass (or biomass
component) for the cluster total represents the subject variable. This method
ensures that the residuals of the model are distributed independently. In biomass
studies based on linear regression methods, Briggs et al. (1982) investigated the
implications of cluster sampling. Because of heteroscedasticity ordinary least
squares estimates were replaced by weighted least squares estimates and the
dependent and predictor variables expressed the sample totals for each clus-
ter. The efficiency of cluster sampling was investigated by Cunia et al. (1980,
1981). The ratio of means produced the best, the mean of ratios estimator the
poorest estimates. Kotimaki et al. (1981) compared various auxiliary variables
within the framework of cluster sampling to estimate biomass components.
Snowdon (1992) conducted simulation studies in which three sampling strate-
gies were involved
• Simple random sampling
• Sampling with probability of a given sample proportional to the sum of the

sizes
• Sampling with probability of selecting each tree proportional to its size
These strategies were combined with two ratio estimators. RATIO1 was a ratio
of means estimator, with cross-sectional area as auxiliary variable, RATIO2
defined the auxiliary variable as db1 , where b1 represented the regression coef-
ficient of the log–log regression of biomass on dbh. The results were evaluated
in terms of precision as well as accuracy. RATIO1 tended to perform better
when estimating total stem biomass, RATIO2 was superior to estimate other
biomass components, but invariably PPS sampling outperformed other strate-
gies in terms of precision as well as accuracy, usually in combination with
RATIO2. The average bias was highest by combining the simple ratio estima-
tor with PPS sampling.



Chapter 9

GROWTH AND YIELD

1 DEFINITIONS

Growth is a biological process, which applies to the organism in its entirety,
including all tree components (stem, branches, roots, foliage). Increment
expresses the observed growth of the organism during a given period of time
and normally applies to the tree and stand variables diameter, basal area,
height, volume, and biomass. Yield is defined as the harvested or harvestable
accumulated increment per unit area.

The current annual increment is defined as that between year k and k+1, the
periodic annual increment as the increment between year k and k + a(a > 1),
divided by a and the total increment at year k is defined as the sum of the annual
increments. When applied to stands these estimates include the trees removed
by intermediate fellings and those resulting from mortality.

The mean annual volume increment (MAI) of a stand is defined as total
increment divided by age. We distinguish between
• M AIt = M AI at t years
• M AImax = maximum MAI,
• M AIra = M AI at rotation age.
M AI100 and M AImax are used in Germany and some other countries and are
interpreted as the absolute site index.

In continuous inventories of commercial forests all trees within a given sam-
pling unit are measured from a certain minimum diameter of a cm. In Germany
this minimum diameter is 7 cm, in other cases it may be lower, for example 5 cm
in plantations managed for pulpwood production. A minimum of 12–14 cm
was applied in the early continuous forest inventory ( méthode du contrôle) in
Switzerland. In tropical nature forest the minimum diameter a is usually 10 cm.
In that case, some trees thinner than a cm at occasion A will exceed this diame-
ter at occasion B. The volume or biomass of these trees is called ingrowth. The
stand growth estimate therefore is positively biased by ingrowth. The ingrowth

201



202 Growth and Yield

trees can be identified if the coordinates of all trees, measured at occasion A,
are known. This is feasible in experimental plots, in continuous inventories with
permanent plots and in regularly spaced plantation forests but in other cases this
will be prohibitively expensive. The total increment should include fellings and
mortality during the growth period. If not, the estimate is negatively biased.

2 THE GROWTH OF SINGLE TREES

2.1 Growth parameters

2.1.1 Diameter and basal area

The diameter growth of the single tree is usually calculated as the difference
between the diameter measured at the beginning and the end of a given period:

id = d2 − d1

Both measurements are affected by measurement errors. When expressing the
standard deviation as a percent of the actual increment, the rate of growth can
therefore be expected to be estimated more accurately by extending the length
of the period between successive measurements. The standard deviation of a
diameter measurement is partially controlled by the instrument being used.
It can be reduced by using a tape instead of calliper, by measuring the diam-
eter in millimeter instead of centimeter, by measuring the diameter from two
directions, under an angle of 90◦ to one another and by marking the point of
measurement in such a way that it is identifiable when remeasuring the tree.

2.1.2 Height

The estimation of the height increment of a single tree, by repeated measure-
ments, is inaccurate because of the relatively large measurement error. In young
trees of a uninodal species, the measurement error can be reduced substan-
tially by measuring the height increment during the past k years with the aid
of telescopic poles. When trees are felled for complete stem analysis, it may
be possible to measure the length of the annual shoot of uninodal conifers and
that of poplars. When direct measurements of growth are not feasible, growth
estimates should be obtained by modelling height growth or by sampling meth-
ods, which are combined with sampling procedures to estimate the volume per
hectare.

Height growth may also be estimated by stem analysis, although the esti-
mates tend to be biased. Suppose, for example, that stem discs are extracted at
1 m distances from the base of a 27-year-old tree with 15 and 14 annual rings
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being counted at a height of 9 and 10 m, respectively. The actual tree height at
12 years in that case is between 9 and 10 m. Dyer (1987) compared the accuracy
of different methods to estimate the true height at different ages. The following
formula, proposed by Carmean (1972), produced the best estimates

hi j = hi + hi+1 − hi

2 (ri − ri+1)
+ ( j − 1)

[
hi+1 − hi

ri − ri+1

]

where

hi = height at the i th cross section

ti j = age of the tree associated with j th inner ring at the i th cross
section

= n − ri + j

hi j = estimated height at age ti j .

The method assumes that the annual height growth within a given stem
section is constant and the crosscut – on the average – occurs in the middle of a
given year’s height growth. A different method to avoid or minimize this error
in estimating height growth is to measure the length of internodes on felled
trees (section 2.2).

2.1.3 Stem volume

Several methods may be used to estimate the volume growth of single trees.
Stem analysis is an efficient, but time-consuming method to reconstruct the
volume growth of the single tree since planting or germination and more gen-
erally during the past k years. An alternative method is the extraction of incre-
ment cores with an increment borer, to determine the diameter increment in
centimeter or expressed as a percentage. The latter is doubled to obtain the
approximate the basal area increment percentage. The unknown height incre-
ment percent is usually obtained from growth models or from yield tables and
added to the basal area increment percent. In Switzerland, the volume of per-
manently marked sample trees is estimated from an equation with dbh, an upper
stem diameter, and tree height as predictor variables.

2.2 Stem analysis

Stem analysis has been applied as a forest mensurational tool since the second
half of 19th century. Its objective is to reconstruct the growth of individual trees
by determining the annual diameter, basal area, height, and volume growth.
Stem analysis involves the following measurements.
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• The over-bark dbh and total tree height of selected and subsequently felled
sample trees.

• The length of annual internodes on felled sample trees.
• Ring measurements on stem discs extracted at the base of the tree, at breast

height, and at regularly spaced distances from the base of the tree. The num-
ber of rings on each stem disc is counted and the annual diameter increment
measured accurately, usually from at least four directions. These observa-
tions are subsequently used to estimate the height of the tree at successive
ages, the latter being obtained from ring counts on the extracted stem discs
at different heights above the ground

The ring width measurements serve to estimate the annual diameter and basal
area growth at breast height and at other stem positions, whereas ring counts
are required to reconstruct the height development of the sample trees. The
above information is subsequently summarized to obtain the estimated volume
growth, the true form factor, and the h/d ratio.

Stem analyses is applied to estimate growth in temporary sample plots,
which are measured once only. The height development of a given stand, for
example, may be estimated by pooling the growth data of sample trees from
the dominant crown stratum. Information about the estimated diameter and vol-
ume growth of the sample trees is used advantageously to test hypotheses about
the effect of thinning, fertilizer, pruning, meteorological variables, and environ-
mental stresses on tree growth. The observed changes in the h/d ratio may be
useful to assess changes in the competitive status of the sample trees within
the stand. In addition, stem analysis is used in growth studies of uneven-aged
mixed stands (Kramer 1994).

Example 9.1 Species: Picea abies. Age: 48 years. After felling the sample
tree, the length of internodes starting from the top of the tree was measured and
ring counts were carried out at a height of 0.3 m, at breast height and at 2 m
distances from breast height. Stem discs, with a thickness varying between 3
and 10 cm, were cut at the midpoint of each section and at the base of the tree.
The tree number, compass direction of the points of measurement, aspects of
the site and height above ground of each disc were recorded. The discs were
planed to obtain more accurate estimates of the diameter growth. They were
transported to the laboratory and ring widths were measured with a digital
measuring instrument for annual ring widths, in this case with the Digitalposi-
tiometer, designed by Johann (1977). The tree age was obtained by adding the
estimated number of years which the tree requires to reach a height of 0.3 m,
in the present example 4 years. Ring widths were measured at four positions at
an angle of 90◦ to one another, with the first measuring point being positioned
at an angle of 22.5◦ to the largest diameter (Siostrzonek 1958). The number of
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rings at 0.3 m was 44, the estimated tree age 48 years. The rings were marked
at age 45, and thereafter at 5-year intervals. In consequence, the resultant
diameter measurements reflect the under-bark diameter at 48, 45, 40, 35, . . .
years, at 0.3, 1.3, 3.3, 5.3, . . . m above the base of the tree (see Figure 9-1).

Figure 9-1. Stem discs of a 48-year old Norway spruce tree.
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Table 9-1. Summary of diameter and height records

Disc No. of Disc height Under-bark diameter(cm) at age
No. rings (m)

. 5 10 15 20 25 30 35 40 45 48
1 44 0.3 0.8 4.10 8.81 12.44 14.05 15.56 17.10 18.45 19.64 19.94
2 40 1.3 1.30 7.44 11.54 13.41 14.95 16.30 17.44 18.37 18.57
3 38 3.3 4.76 9.20 11.35 13.33 14.83 15.93 16.75 16.90
4 35 5.3 1.47 6.55 9.26 11.75 13.56 14.83 15.70 15.80
5 31 7.3 2.55 6.19 9.49 12.40 13.72 14.75 14.85
6 28 9.3 3.50 7.47 10.57 12.60 13.85 14.35
7 24 11.3 0.59 4.84 8.48 11.10 12.72 13.20
8 20 13.3 1.23 4.81 8.32 10.61 11.30
9 15 15.3 1.12 5.36 8.47 9.55
10 11 17.3 1.93 5.77 7.30
11 7 19.3 2.31 4.35

Table 9-1 gives the mean diameter at different ages for discs extracted at
0.3, 1.3, . . . 19.3 m above the base of the tree and the number of rings counted
at each position.

All relevant information about the diameter increment at different heights
above the ground and the height developments of the sample tree were sub-
sequently obtained. The under-bark volume at different ages is obtained from
Table 9-1 and summarized in Figure 9-2.

ν = 2 (g1 + g2 + · · · + gn−1) + 1
3

gnltop

where l = length of top section. The calculation of the volume of the top
section is based on the assumption that the latter is a cone. The cross-sectional
area of the cone base is located 1 m above the midpoint of the last 2 m section.
The breast height form factor is calculated from the estimated stem volume,
tree height, and basal area at breast height. The resultant estimates are found
in Table 9-2. Much useful information can be obtained from such tables. The
h/d ratio (with height expressed in meters, dbh in centimeters), for example,
increased from 81 at 15 years, to 112 at 45 years.

The absolute and relative 5-year diameter increment (the latter expressed as
a percent of the increment at breast height) is given in Table 9-3.

In many instances, missing rings occur within the ring series, either due
to senescence or because of the effect of stresses (environmental pollu-
tion, pathogens) on radial growth. In order to eliminate this error source,
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Figure 9-2. Stem profile and height at different ages.

it is necessary to synchronize the ring series; similar to cross-dating in
dendrochronological and dendroclimatological studies. Either the observed
ring widths of a given tree are compared optically with a standard ring width
series (Figure 9-3), which is based on a study of the impact of year-to-year
variations of climatic parameters on ring width, for example, the rainfall
during the growing season, or the individual series within a given stand are
compared by visual examination.

The standard series represents an error-free image of the average ring width
pattern, observed for a number of sample trees within a given region, recorded
during a sequence of years. Because of macroclimatic differences, the standard
series must be constructed for each climatic region separately. It is useful to
additionally compare ring width patterns in the lower part of the bole with those
in the upper part, since missing rings are unlikely to occur in the upper bole
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Table 9-3. Absolute and relative diameter growth at different heights

Diameter growth for 5-year period

H (m) 15–20 20–25 25–30 30–35 35–40 40–45
(cm) (%) (cm) (%) (cm) (%) (cm) (%) (cm) (%) (cm) (%)

0.3 3.63 86 1.61 86 1.51 98 1.54 114 1.35 118 1.19 128
1.3 4.10 100 1.87 100 1.54 100 1.35 100 1.14 100 0.93 100
3.3 4.44 108 2.15 115 1.98 129 1.50 111 1.10 96 0.82 88
5.3 5.08 124 2.71 145 2.49 162 1.81 134 1.27 111 0.87 94
7.3 3.64 1.95 3.30 214 2.55 189 1.68 147 1.03 111
9.3 3.97 258 3.10 230 2.03 178 1.25 134

11.3 4.25 276 3.64 270 2.62 230 1.62 174
13.3 3.58 265 3.51 308 2.29 246
15.3 4.24 372 3.11 334
17.3 3.84 413
19.3

section (Athari 1980). Modern measuring devices make provision for digital
storage of the observed ring widths on magnetic tape or diskettes. The data
are subsequently analyzed with a computer program and may be reproduced
graphically (Figure 9-4).

Alternatively, estimates for the rate of diameter growth are obtained from
increment cores. In both cases, however, instruments for mass-processing of
wood samples, such as the Austrian “Digitalpositiometer” should be available.

2.3 Single-tree models

Equations and models to estimate the growth of single trees within even-
aged stands are usually subdivided into distance-dependent and distance-
independent models.

2.3.1 Distance-dependent models

Distance to and size of the trees, which surround the subject tree, are impor-
tant building stones for growth models in this category. The size of the subject
tree is assumed to be proportional to its growing space, whereas the distance
to and size of surrounding trees determines the amount of overlap amongst the
individual two-dimensional growing spaces of the subject tree and its competi-
tors. Opie (1968) introduced the concept “zone of overlap,” which quantifies
the basal area density of the trees which fall within the zone of influence of
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Figure 9-3. Synchronization of the ring series.

the subject tree. Gillespie et al. (1986) constructed a growth model for indi-
vidual trees of Pinus strobus to quantify the effect of competition and crown
class on postthinning growth, with prethinning initial diameter as covariate.
Crown class as well as prethinning diameter were introduced as dummy vari-
ables and Opies’s “zone of influence” index was used as competition index.
Bella (1971) proposed a competition model, based on influence zones. Hegyi
(1974) introduced an index of competition, based on the hypothesis that trees
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Figure 9-4. Stem profile and heights. (From a computer program by Nagel and Athari 1982.)

outside the influence zone (which does not assumed to extend beyond the edge
of the crown), may well induce competitive stresses upon the subject tree. This
assumption is reasonable, because of the possible effect of trees further away
from the subject tree with no crown overlap. The following competition index
(CI) was introduced in managed P. banksiana stands

C I =
n∑

i=1

[
di/d j

Di j

]

where d j = dbh of the subject tree, di = dbh of a competitor, and Di j =
distance between the subject tree and the competitor.
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Pretsch (1992) developed a growth model for single trees in mixed stands
in Germany and introduced a three-dimensional concept to describe and quan-
tify the crown development of individual trees. Competition amongst trees was
described in terms of lateral restrictions and shading. The model required infor-
mation concerning the crown diameter of the single tree under ideal conditions,
with no growth restrictions associated with competition. Only those competi-
tors, which belonged to the same social stratum as the subject tree, were used
to determine the lateral restriction. One coefficient (ε) measured lateral growth
restriction based on a three-dimensional crown model. For a given subject tree
the restriction was assumed to occur within a circle with a radius equal to the
maximum radius under conditions of free growth. The live crown of the com-
petitor was assumed to either have a conical or a more spherical shape. To deter-
mine the amount of shading, which represented the second structural parameter,
a light cone was established for each subject tree, with its apex being located
at 70% of the tree height and with an opening angle of 60◦. A neighboring tree
was identified as competitor if it intruded into the light cone. A dot count sam-
ple served to determine the number of times the crown space of the subject tree
was intruded by a competitor. The model allowed for more than one competitor
intruding at a given point within the live crown and expressed this number as
a fraction of the total number of dots. The resultant parameter (Φ) determined
the magnitude of shading. The structural parameters were used to predict height
growth, lateral crown growth, the age-related change in the position of the base
of the live crown, basal area increment, and mortality. The updated tree dimen-
sions were subsequently used for the second simulation run. The model was
subsequently incorporated into the growth model SILVA 1, which simulates
the expected growth of stands

Daniels (1976) modified Hegyi’s index, by redefining N such that competi-
tors were selected on the basis of their size and distance from the subject tree.
In addition three new indices were introduced. Physiological considerations
played a role in the competition index proposed by Ek et al. (1974); Adlard
(1974) used the growing space available to the individual tree which was iden-
tical with Brown’s growing space concept (Brown 1965) as index of competition
in growth studies in East Africa. Faber (1991) developed a distance-dependent
growth model, which consisted of a number of submodels. Eriksson (1976) com-
pared competition models in a study to assess the effect of cleaning operations
on the rate of diameter growth, for example the sum of the basal areas of over-
lapping competitors, the unweighted and weighted area of overlapping com-
petition zones and others. Brand (1986) examined and compared competition
indices to quantify brush competition in young Douglas fir stands. Daniels et al.
(1986) compared the usefulness of various competition indices for predicting



Site Class and Site Index 213

the diameter and basal area growth of individual loblolly pine trees. Tome et al.
(1989) examined distance-dependent competition indices to predict the growth
of individual trees and introduced modified versions of the existing distance-
weighted size ratio and the area overlap indices.

2.3.2 Distance-independent models

These models predict the growth of individual trees based on information
obtained from different sources, with the exclusion of distance variables. The
predictor variables may represent stand-level variables, variables describing
the growth potential of the individual tree or a combination of both variables.

In studies to predict plantation mortality, Glover et al. (1979), defined a
competition index, which was calculated as the basal area of the subject tree,
divided by the total basal area of the trees within the sample plot. Lorimer
(1983) introduced a competition index, defined as the sum of the diameters of
trees which surround the subject trees, divided by the diameter of the latter.
Hamilton (1970) regressed the volume increment of individual trees of Picea
sitchensis on dbh, crown projection, crown surface area, and basal area per
hectare. Alder (1979) introduced a distance-independent tree model for pines
in East Africa. Hix et al. (1990) introduced competition measures to evaluate
the effect of competition on the height growth of hardwoods on contrasting sites
in Wisconsin.

3 SITE CLASS AND SITE INDEX

3.1 Introduction

The concept site index is crucially important to construct yield tables and
growth models. The site index of a stand is a mensurational statistic which is
used as an easily accessible variable expressing the combined effect of those
edaphic and climatic characteristics which have an impact on growth and yield
of a given tree species. These site–growth correlation studies relate site vari-
ables to site index based on a statistical model which explains the relationship
between site and site index. Because of the interactions amongst site variables,
the impact of a single variable should not be assessed in isolation but only in
presence of the other potentially influential variables. The analysis shows which
site variables are statistically significant and should be retained and which sub-
set of variables is most useful to explain growth patterns. Nevertheless, even
under almost ideal research conditions, it remains highly uncertain whether the
resultant model includes all influential variables. The model may furthermore
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include site variables, which are significantly correlated with growth, but are
not readily available. Forest managers prefer parsimonious models, which are
useful to take decisions about the selection of species, suitable for specific sites,
and about management alternatives. In order to be useful for management and
silviculture, the model should be based on accessible predictor variables. The
mean temperature during the growing season, for instance, may be an influ-
ential predictor variable, is frequently available for the individual plantation
or forest district but seldom for the individual sample plot. In tree plantations
of short rotation Eucalyptus species, tree breeding has a profound effect on
the yield and growth of single-clone plantations. In addition the site index
of a given stand is affected by the introduction of new silvicultural regimes,
more particularly by better soil preparation, improved nursery material, site-
related fertilization, and more adequate planting techniques. This implies that
the effect of site variables on growth is confounded with and obscured by
silvicultural methods.

Research and practical experience in the northern countries of Europe, more
particularly in Finland, has indicated that the site may be adequately described
in terms of dominant features of the lesser vegetation. This more qualitative
approach produced forest types, which were shown to be closely related to site
productivity. In Central Europe this approach was less successful, primarily
because of the greater complexity of the forest environment.

The early German yield tables produced estimates about stand characteris-
tics at different ages for different site classes. The latter were defined by a set of
curves reflecting the relationship between age and mean height of the stand and
were denoted as site class I, II, . . . , etc. The site classes in Wiedemann’s yield
tables (Wiedemann 1936), are of unequal class width in terms of mean height as
well as mean annual volume increment. The more recently constructed tables,
for example, the Assmann–Franz yield table for P. abies in Bavaria (Assmann
and Franz 1963) express site class in terms of the top height at the age of 100
years, but expressed in MAI at this reference age. The yield tables of the British
Forestry Commission (Hamiltion and Chistie 1971) are based on the age–top
height relationship but the site classes are identified by the mean annual volume
increment at the age of its culmination.

In the USA and many other countries the site index of a stand is defined as
the mean height of the dominants and codominants (Husch et al. 1982; Avery
et al. 1983), for a predefined reference age. In principle this requires the iden-
tification of the social status of the single trees within the stand and introduces
an element of uncertainty and subjectivity. In Germany, site index is defined as
the regression height of the quadratic mean diameter of the 100 thickest trees
per hectare at a reference age which is usually 100 years. The British yield
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tables are based on the regression height of the 100 thickest trees per acre at a
reference age of 50. A much lower reference age is used for fast-growing pine
plantations in South Africa, for example, 20 years for Pines, 10 years for black
wattle, and 8 years for Eucalypts.

In young stands the estimation of the expected height of the dominants at
reference age is inaccurate since silvicultural regimes and weather conditions
during the first years after planting are more influential than the potential pro-
ductivity of the site. Many studies of the effect of site on growth revealed that
the growth intercept, defined as the total length of a fixed number of internodes,
usually measured from the first internode above breast height, is more closely
correlated with environmental variables than site index (Wakeley et al. 1958;
Ferree et al. 1958; Day et al. 1960; Oliver 1972). In studies of the relation-
ship between site and site index, Brown et al. (1981) modified the conventional
intercept method by correlating site factors with the 5-year height growth, from
the age of 2 years with age at breast height as reference point. The response
equation for height was

ln h = b0 + b1

(
1
A

)

+ b2(int) + b3 Z

where Z = site variable and int = growth intercept.

3.2 Site index curves

Prior to the advent of electronic data processing, graphical methods were gener-
ally applied to construct site index curves. They are still used when no adequate
computer facilities are available. The procedure is as follows
• Temporary sample plots are established in each of the N stands, selected for

sampling. The stands should be representative for the entire range of sites
and age classes. In consequence it requires a prestratification of the popu-
lation based on site productivity and age. To eliminate bias, the age class
distribution of the sample plots should be approximately the same on all
sites. The quadratic mean diameter of the 100 thickest trees per unit area is
estimated from the diameter distribution, the top height is obtained from the
fitted height curve. Alternatively, age–height data are obtained from period-
ically remeasured permanent sample plots. Such datasets, however, violate
the basic assumption of statistical independence, since each sample plot is
represented by a sequence of plot measurements.

• A freehand curve is fitted to the distribution of top heights, plotted over age.
It is denoted as the index, reference, or guide curves and used to generate
a family of site index curves. If necessary the freehand curve is adjusted to
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satisfy the condition of a zero mean deviation from the fitted curve in each
of k age classes.

• A set of anamorphic site index curves is generated on the basis of an assumed
proportionality. For example, if an index age of 20 years is selected for fast-
growing plantations, and the height–age curve gives an expected height of
21 m at 20 years, the site index curve for site index SI = SI (i) is obtained
by multiplying the heights at age A(i) by SI(i)/20. The resultant family of
site index curves is of identical shape and assumes that the height of a given
stand, with increasing age, remains p% above or below the guide curve. It is
an artifact which seldom reflects the real-life situation in forests. When fitting
a regression curve through the data points, for example with ln(height) as
dependent and reciprocal age as predictor variable, the slope of the regression
line is not affected by multiplying each observed height by a factor q. Only
the intercept would decrease or increase by the amount ln(q). By virtue of
the definition of the shape of a curve all members of a family of anamorphic
site index curves have the same shape. The introduction of an age-dependent
value for q would generate a curve with a different value for the intercept b0
and the slope b1. In consequence, this modification generates a polymorphic
family of site index curves.

• To obtain a set of polymorphic site index curves, Bruce and Scumacher
(1950) suggested to group the data in age classes, to determine the coeffi-
cient of variation (CV) in each age class and to plot CV over age. If a linear
or nonlinear trend is apparent, the constant proportionality coefficient, which
forms the basis for the construction of the anamorphic family of site index
curves, is multiplied by

Kl = sl(%)

sk(%)

where si (%) = coefficient of variation at i years and sk(%) = coefficient of
variation at age k. This modification was the first step towards the construction
of polymorphic site index curves, which hypothesizes that each site has its own
family of site index curves. A further improvement of the Bruce–Schumacher
method would be to fit a weighted regression equation with CV and age as
target- and predictor variable, respectively, and to use the resultant regression
estimates to determine Kl .

The current trend is to apply stem analysis for the construction of polymor-
phic site index curves. Curtis (1964) discussed the merits of the stem analysis
approach which leads to a realistic assessment of the potential site productivity,
because so much more information is recovered about the past growth of indi-
vidual trees. Stem analysis also allows for the construction of polymorphic site
index curves if the height at index age has been recorded for each sample tree.
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The selection of a suitable reference age is problematic. A reference age
slightly below the normal rotation age is a good choice. However, when a rota-
tion age of 5 years is imposed in forests managed to produce timber for energy,
10 years for the production of pulpwood and 25 years for the production of saw-
timber, no single index age is simultaneously optimal for all three categories.
It might then be necessary to use a reference age of 5 years for the first category
and a common age of 15 years for the second and third group.

3.3 Site index equations

The construction of a set of site index equations requires one or more than
one equation which estimates stand height from age. A simple equation was
presented by Schumacher (1939)

ln h = b0 + b1

(
1
A

)

but has the restriction that the underlying model assumes that height increases
monotonely with increasing age and excludes the existence of an inflection
point. In consequence, it can be used to model the age–height relationship
beyond the age at which the inflection point occurs. The yield table for Norway
spruce in North Germany (Wiedemann 1936) indicates an inflection point
which occurs at approximately 30 years, the Bavarian tables (Assmann and
Franz 1963) show an inflection point between 20 and 25 years. In fast-growing
plantations of Eucalyptus grandis the highest current height growth is recorded
during the first year after planting (van Laar 1961), in Acacia mearnsii it occurs
before the third year after planting (Schönau 1969).

The Schumacher equation estimates stand height from age. Substituting the
index age AI gives

ln SI = b0 + b1

(
1
AI

)

The resultant site index equation expresses the site index of a given stand as a
function of its height h j and age A j

SI = exp
(

ln h j + b1

(
1
AI

− 1
A j

))

The prediction equation is inverted to construct a set of site index curves

h j = exp
(

ln SI + b1

(
1
A j

− 1
AI

))
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Figure 9-5. Fitted age–height curves for Pinus radiata.

In E. grandis, Schönau (1976) added the quadratic term 1/(A2) to remove bias
in the younger age classes, in which case the site index equation is as follows

SI = exp

[(

ln h + b1

(
1
AI

− 1
A

)

+ b2

(
1
A2

l
− 1

A2

))]

Example 9.2 The unmodified and a modified Schumacher age–height
equation and a nonlinear model were fitted to sample plot data in P. radi-
ata (Figure 9-5). Mean height instead of top height was used as target variable,
in order to be consistent with the conventional mean height of dominants being
used in South African sawtimber plantations.

The nonlinear model produces a better fit in the lower age classes but a
poorer fit in the upper range of stand ages. The addition of a quadratic term to
the basic Schumacher model failed to produce a better fit. The application of
the nonlinear model would imply to define site classes in terms of asymptotic
height (Figure 9-6).

Many linear and nonlinear models have been tested for their performance
(Almeida et al. 1989; Brewer et al. 1985; Carmean 1972; Farrar 1973). The
study carried out by Carmean indicated that intrinsically nonlinear models
were more flexible and performed better than models which were linear in their
parameters. Several authors applied Chapman–Richards equation to fit age–
height curves. Brickell (1968) introduced the constraint b4 = 1/(1 − m) = 1
into the four-parameter equation

h = b1

(
1 − b2e−b3 A

)b4
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Figure 9-6. Unmodified Schumacher model, fitted to Pinus radiata.

Ek (1971a,b) developed a function for site index modelling, which produces a
sigmoidal growth curve with double asymptotic property and produces a set of
polymorphic site index curves

h = b1SI b2
(

1 − eb3 A
)b4 SI b5

The model is an extension of the Chapman–Richards equation and implies that
the coefficient b1 which expresses the upper asymptote for stand height and b4
in Brickell’s equation, being related to the location of the inflection point, are
a function of site index. The inverse of the function, with site index as target
variable was used to predict the site index of a given stand from its age and
mean or top height.

Lundgren et al. (1970) introduced the model

h = b1SI
(

1 − eb2 A
)b3

which represents an extension of the Chapman–Richards model, with its para-
meter b1 being a function of site index. Hägglund (1973, 1974) constructed site
index curves for Picea abies and Pinus silvestris in Sweden, based on remea-
sured permanent sample plots, with height above breast height replacing total
height.

hi j − 1.3 = b1i

(
1 − e−b2i ti j

) 1
1−m
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where

hi j = height of the ith plot at age j

ti j = corresponding age

To obtain polymorphic site index curves, the coefficients b2 and m were
regressed on age

m = d0 + d1 Ad2
i

Graney et al. (1973) used the three-parameter Chapman–Richards equation

h = b1

(
1 − e−b2 A

)b3

with b1 and b2 being a linear function of site index. Burkhart et al. (1977)
applied this model to predict the stand height of Pinus radiata from age. The
equation was furthermore conditioned to ensure that the predicted height at ref-
erence age was equal to site index. The resultant two-parameter equation was

hi = SI
(

1 − eb1 SI ·Aref
)b2

(
1 − eb1 SI ∗ Ai

)b2

Payandeh (1974) applied the model

h = b1SI
(

1 − eb2 A
)b3

and assumed that the upper asymptote was a function of site index, Ek’s
(1971a,b) extension

h = b1SI b2
(

1 − eb3 A
)b4 SI b5

which additionally assumes that the parameter m of the Chapman–Richards
model is a function of site index.

Lyle et al. (1975) used the following five-parameter function to predict
height from site index (SI) and age and to construct a set of polymorphic site
index curves, derived from the three-parameter Chapman–Richards equation

h = b1

(
1 − e−b2 A

)b3

by assuming that b1 as well as b2 are a linear function of site index. The resul-
tant equation

h = (b0 + b1SI )
(

1 − e−(b2+b3 SI ) A
)b4+b5 SI

which is a modified Graney–Burkhart equation. Alder (1975) fitted the follow-
ing six-parameter function to estimate height from site index and age for tree
species in East Africa
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h = b0

(
1 − eb1 SI

) (
1 − eb2 A

)b3
b4−b5/SI

Alder (1975) fitted the following equation for tree species in East Africa

h = b0

(
1 − eb1 SI

) (
1 − eb2 A

)b3
b4−b5/SI

Example 9.3 In many cases it is useful to convert site index curves derived
from existing yield tables into a single regression equation. Wiedemann’s yield
table for P. abies in Germany is based on site index curves which were fitted by
graphical methods. Fitting the Schumacher equation

ln (ht ) = b0 + b1 ln
(

1
A

)

to the recorded heights for site classes 1, 2, 3, and 4, with a mean height of 21,
25, 29.3, and 33.3 m at age 100 produced the following parameter estimates:

Site index b0 b1
21.0 −68.36
25.0 −58.15
29.3 −51.64
33.3 −44.51

Third-degree polynomials with site index as target variable and b0 as well as
b1 as predictors were fitted. The resultant set of site index curves is given in
Figure 9-7.
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4 THE GROWTH OF STANDS

Growth is a biological process, yield quantifies the volume (or weight) of the
whole stand or that of a single tree, which is potentially available at the time of
harvesting. This differentiation between growth and yield is in line with the for-
est mensurational terminology used in North America (Husch et al. 1982; Avery
et al. 1983). The merchantable yield quantifies the volume (or weight) of the
merchantable part of the trees, which varies with the product being recovered
from the tree. Accurate estimates of the growth stands are of crucial importance
for decision-making in forest management, but the ultimate goal of growth
modelling is the estimation of the expected final yield at the time of harvesting
and of the intermediate total or merchantable yields during the rotation.

In order to obtain a biologically meaningful estimate for growth, the vol-
ume should reflect the total, rather than merchantable stand volume, although
the latter is required for management inventories. The construction of volume
ratio models, which convert total volume into the merchantable volume, was
discussed in Chapter 7. German yield tables reflect the average current and
cumulative growth as well as mean annual increment as growing stock vol-
ume. They usually refer to the merchantable yield of an upper diameter limit of
7 cm over bark. However, when used to draw up working plans, these estimates
are multiplied by a reduction factor, which adjusts for the average losses due
to timber defects and gaps within the stand, caused by wind damage and other
factors. Practical experience has shown that such losses are of the magnitude of
10–15% of the recorded growth and yield.

4.1 Estimating stand growth based on actual
measurements

4.1.1 Complete enumerations in continuous forest inventories

The basic principle of continuous forest inventories was introduced during the
last decade of the 19th century, for the management of all-aged selection forests
in France (Algan 1901; Biolley 1922). All trees within the forest, above a cer-
tain lower diameter limit, were permanently marked and remeasured at 10-year
intervals, with single-entry local volume tables (Chapter 7) used in estimating
the tree and stand volume. Because of the high cost involved, complete enumer-
ations have been abandoned in favor of modern CFI systems, which are based
on sampling methods (Chapter 10).

4.1.2 Permanent sample plots in continuous forest inventories

Periodically remeasured sample plots, established within the framework of con-
tinuous forest inventories, produce unbiased estimates of the growth for the
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forest in its entirety during the period of measurement, if the condition of a
random layout has been satisfied. When this method is applied to estimate the
rate of growth of the single stand, the estimate is usually unreliable because of
the low sampling fraction within a given stand.

4.1.3 Increment cores

The estimation of the growth of stands, based on the measurement of incre-
ment cores, is time-consuming and requires a large sample, because radial
growth is measured on one stem position only. For Central and Northern
European species, growth can be measured accurately by using instruments
which provide optical magnification. In plantations of fast-growing pines in
South Africa and other countries in the southern hemisphere, the boundary
between earlywood and latewood is less distinct because growth is not com-
pletely discontinued during winter. Under these circumstances, the method
cannot be recommended when a high accuracy is specified. The measurements
on increment cores, when extracted from trees representing the entire diameter
distribution, are used to obtain regression estimators either for the diameter
growth of trees within each diameter class or to estimate the diameter growth
of the mean tree. The growth measurements are to be adjusted for a different
bark thickness at the beginning and end of the period. In order to estimate
volume growth, either the location of the height curve k years ago must be esti-
mated from standardized height curves or from appropriate site index curves.
The usual assumption is that the number of trees per hectare during the growth
period ofk years did not change. The diameter distribution as well as number
of trees are to be estimated by sampling.

4.1.4 Yield tables

Yield tables reflect the “normal” development of stands in terms of number of
trees per hectare, as well as basal area and volume per hectare as a function
of age, for different site indices or site classes. Their construction is based on
standard silvicultural practices, more particularly in terms of stocking. It may
be necessary to adjust the yield table estimates for volume growth, in order to
account for an observed stocking, which is far below the tabulated density, for
example, by multiplying the estimates by an adjustment factor, which is cal-
culated as the estimated stand basal area per hectare (obtained by sampling),
divided by the tabulated basal area. Such adjustment factors, however, tend
to underestimate the rate of volume growth. The first yield tables were con-
structed in Germany around the end of the 18th century (Kramer 1988). They
were empirical tables, partly based on temporary sample plots, partly on forest
inventory data and they estimated the expected yield at the end of the rota-
tion. Several regional tables were constructed during the 19th century, but real
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progress was made after the establishment of the German Union of Forestry
Research Institutes, in 1872, and the prescribed of methods of construction.

At the beginning of the 20th century, Eichhorn (1904) introduced the
function

yield = f (hm)

where hm = mean height.
In Germany it is widely known as the “general yield level.” (Kramer 1988).

Eichhorn’s law states that yield – for a given stand treatment – is a function
of stand height only. The modern yield tables is invariably based on two basic
relations, defined by Assmann (1970)

h = f (A) (1)

yield = f (A) (2)

where h = stand height and A = stand age. Initially, stand height was defined
as Lorey’s mean height (section 5.6) or as the regression height of the tree with
the quadratic mean diameter, but because of the effect of stand density, it was
replaced by top height, which is less sensitive to stand treatment. Eichhorn’s
law has been incorporated into the construction of yield tables for Norway
spruce in Southern Germany, for the main tree species in the Netherlands and
for the yield tables of the Forestry Commission in Great Britain.

Extensive growth studies in Norway spruce in southern Germany, however,
indicated the necessity of a further differentiation between a lower, a medium,
and an upper yield level within each site quality class (Figure 9-8).
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Figure 9-8. Yield levels for Norway spruce in Southern Germany.
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This generated the concept “special yield level.” In consequence the para-
meters of the function yield = f (stand height) are identical for all site quality
classes but for a given site quality class they differ for different yield levels.
A similar difference has been noted for E. grandis in the Eastern Transvaal and
Zululand regions of South Africa.

The British yield tables of the Forestry Commission distinguish between the
concepts General Yield Class (GYC) and Local Yield Class (LYC). The GYC
is based on the age–top height relationship but contrary to the German tables
the classes are identified by the mean annual volume increment at the age of
maximum mean annual volume increment.

A review and evaluation of the methods being used in the construction of
yield tables falls outside the scope of this book. The majority of these tables
is based on data, obtained from remeasured sample plots, for example, those
constructed by Schwappach (1902), Wiedemann (1936, 1942), Wiedemann
and Schober (1957), Assmann and Franz (1963, 1972), Hamilton and Christie
(1971), Jansen, Sevenster, and Faber (1996) and several others. Schwappach,
however, used inventory plots as well as remeasured sample plots to construct
the tables and some tables, for example, those constructed by Schmidt (1971)
for P. abies in the Upper Pfalz were based on inventory data. For the con-
struction of these tables it is generally required that the research plots are fully
stocked and the generally accepted thinning regime has been applied through-
out the research period. In case of unthinned stands of short-rotation crops,
for example, in stands which are managed for the production of pulpwood,
wood for energy and industrial wood, the yield tables are normally based on
the currently applied silvicultural practice to produce growth and yield esti-
mates at rotation age. The first step is invariably to construct a set of site index
curves, which reflect the expected development of stand height as a function
of site index. The relationship between yield and height is subsequently estab-
lished for each site quality class separately and other relevant relationships are
established for each site quality class separately.

The modern yield tables and functions are invariably based on statistical
growth and yield functions, with their parameters being estimated with the
aid of modern electronic data processing. The empirical model is a regression
model which predicts the volume or yield per unit area from relevant stand char-
acteristics, for example age, site index, and stand density. Transformations may
be required to obtain a model which is linear in its parameters and interaction
variables may be added to obtain a better fit. The addition of variables which
are generated from the three basic variables age, site index, and stand den-
sity will tend to induce multicollinearity, inflated standard errors of the regres-
sion coefficients and possibly overfitting. The contribution of each predictor
variable to the regression sum of squares is therefore tested for its significance,
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for example, by stepwise fitting, forward and backward procedures. It has been
found that the empirical model will produce a vector of parameter estimates
which fits the current data satisfactorily but may not be suitable for a second
independent dataset (Bredenkamp 1988). The analytical model on the contrary
is based on a certain knowledge of the growth process in its entirety. The mod-
eller formulates a hypothesis about the behavior of model components and fits
an equation based on the hypothesis.

It is necessary to distinguish between prediction and projection models.
The previously mentioned empirical model predicts yield as a function of sta-
tistically significant independent variables. The model, however, can be con-
verted into a projection model, which estimates the expected growth per annum
between age A1 and A2. Clutter (1963) introduced the basic idea of compati-
bility of growth and yield models and fitted the yield equation

ln (V ) = b0 + b1SI + b2 ln B A + b3 A−1

with SI = site index, B A = basal area, A = age, and V = volume per unit
area. Differentiation with respect to age produced a growth equation with recip-
rocal basal area, basal area growth, and squared reciprocal age as predictors.
An additional equation was required to estimate basal area growth. A follow-
up study, presented a prediction equation for volume yield (Eqs. (1) and (2))
and a projection equation for basal area (Eq. (3))

ln V1 = b0 + b1SI + b2 A−1
1 + b3 ln B A1 (1)

ln V2 = b0 + b1SI + b2 A−1
2 + b3 ln B A2 (2)

ln B A2 = [A1/A2] ln B A1 + a1 [1 − A1/A2] + a2 [1 − A1/A2] SI (3)

Equation (1) was fitted to the data. The parameter estimates were used to esti-
mate the stand volume at age 1 and 2. Equation 3 estimated the basal area at
age 2 and was used to replace the basal area at age 2 in Eq. (2) by a regres-
sion estimate obtained from Eq. (3). Basal area and/or volume projection equa-
tions were also developed by Pienaar (1979), Chang (1987), and Amateis et al.
(1986). Other projection equations were subsequently developed for stands
of E. grandis (Harrison 1991, 1993; Pienaar et al. 1986).

4.2 Stand table projection

Several studies have been undertaken to project the current stand table at age k
as starting point. Pienaar et al. (1988) proposed a projection equation for total
basal area which required an equation to predict survival and a second one to
project total basal area. The relative size of the single tree was defined as its
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basal area expressed a proportion of the basal area of the mean tree. The proce-
dure was based on the expected change in time of the relative tree size. Initially
it was hypothesized that the change of relative tree size is constant over time.
It was tested in South African long-term spacing trials in P. elliotti stands. The
model was acceptable for short-term projections but when applied to longer
growth periods, it could be shown that the relative size of the trees with a dia-
meter below the mean diameter decreased, whereas that of the dominant trees
increased over time. This revised hypothesis was incorporated into the stand
table projection model. Nepal et al. (1992) developed an algorithm for project-
ing stand tables, which was based on the parameter recovery method to estimate
the parameters of the Weibull distribution, which was developed in an earlier
study (Cao et al 1982). The parameters were recovered from the mean as well
as quadratic mean diameter at breast height and from the minimum diameter
at breast height. In a later study, Cao et al. (1999) developed a new method
which required an estimate of survival rates and the location of mortality, to
estimate diameter growth for each diameter class. The projected diameters are
adjusted to ensure consistency between future mean diameter and stand basal
area. Trincado et al. (2003) evaluated these methods for projecting the stand
table of E. nitens in Chile. Both methods were suitable for projecting the stand
table, but the method proposed by Nepal, produced marginally better results
than that proposed by Cao.

4.3 Recent developments

Pretzsch (1992) developed a stand-level model which consists of a number of
submodels. The height growth submodel estimates the potential height growth
which is subsequently adjusted to account for the effect of competition on
height growth. Similarly the age-related change in crown diameter is esti-
mated from the potential growth of the tree crown, adjusted with the aid of
competition-related variables. Other submodels deal with the age-dependent
shift of the position of the height above ground of the live crown, the effect of
crown surface area, tree basal area at the beginning of the growth period, local
light conditions and management-related changes in light conditions. They are
combined to estimate the diameter increment. Models were also developed to
quantify the effect of mortality. In Germany the models SILVA 1 and more
recently SILVA 2 are now widely used to simulate the growth of pure and
mixed stands, which are based on the single-tree models. If no information is
available about the coordinates and crown dimensions of all single trees within
the sample plot, the program STRUGEN provides estimates of the structure
parameters as initial values for a simulation run.



Chapter 10

SAMPLING FOR FOREST INVENTORIES

1 INTRODUCTION

The objective of forest inventories is to obtain qualitative and quantitative infor-
mation about forest resources and their physical environment, at a specified
point in time and at reasonable cost. Its main goal is to report on the status quo
of the forest: areas, volume, and volume distribution in terms of size classes,
but also on the expected changes (growth, vitality, mortality). Because of the
increasing multiple use of forest resources during recent years, its scope has
been enlarged and may include information about the potential of the forest for
wildlife, recreation, and other uses. Forest inventories may therefore be classi-
fied as follows:
• National and regional forest inventories, which form the basis for forest

policy decisions and long-term planning of the forest industry in its entirety
• Management inventories which are required for management decisions and

more particularly for the construction of working plans
• Inventories for the appraisal of stumpage value
• Surveys required for planning logging operations
• Multiresource inventories, for example, those required for land-use manage-

ment, wildlife and recreation
• Inventories to assess and estimate the impact of pollution on vitality and

growth of trees and forests
Each of these categories requires specific information and prescribes a spec-
ified accuracy. A stand inventory to assess the timber value requires accurate
estimates of the growing stock and, to a lesser extent, this applies also to a stand
inventory for planning logging or thinning operations. For a survey undertaken
to estimate the forestry potential of a region, however, it may be more important
to estimate site productivity than stand volume per unit area. National forest
surveys are carried out to provide a basis for forest policy decisions.

229
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The reasons for sampling in forest inventories are:
1. A total enumeration of large forest tracts is not feasible and prohibitively

expensive
2. Complete tree measurement implies destructive sampling which, for

example, is implemented in stem analysis, but cannot be carried out on
a large scale

3. Sampling is advantageous for updating forest inventories at reasonable
cost

4. Sampling makes it possible to obtain more accurate information for
selected sampling units

The sample consists of n sampling units on which tree, stand, or site character-
istics are counted, estimated, or measured. It is drawn from the population and
represents the aggregate of sampling units for which information is required.
In a regeneration survey, the population may be defined as the aggregate of
trees higher than 10 cm, in a management inventory as the aggregate of trees
with a diameter exceeding a defined threshold value, which is usually related
to merchantability.

During the early days of forest inventory, sample plots were frequently laid
out subjectively. The enumeration team decided how and where to establish
those plots considered to represent “average” conditions. In practice, this pro-
cedure tended to overestimate the volume per hectare. Subjective sampling was
gradually replaced by probability sampling. This requires a subdivision of the
population into N non-overlapping sampling units, covering the entire forest or
the part of the forest being sampled. The condition of “non-overlapping sam-
pling units,” however, is not satisfied in angle count sampling and the condi-
tion of a 100% cover of the sampling units is violated when circular instead
of square sample plots are established. A probability of selection is assigned
to each of the sampling units within the population. A single probability of
1/N implies that each of the N sampling units has the same chance of being
included into the sample. However, it is frequently advantageous to apply a
different strategy, for example, selection probability proportional to size (PPS).

An important objective of sampling is to obtain information of a given accu-
racy, i.e., a specified precision together with negligible bias at the lowest cost
or the highest accuracy at given cost. In many instances, the required preci-
sion and the risk of exceeding the acceptable maximum error are specified. It is
then necessary to estimate the total cost of the field survey, prior to sampling,
in order to preempt cost overruns. Most commonly, either volume or growth
per unit area represents the target variable. In that case, the cost of the field
survey – for a given accuracy – is controlled primarily by stand parameters
(species mixture, even-aged or uneven-aged stands, mortality due to stresses
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and calamities, etc.). In mixed forests, the variability of the volume per hectare
among plots of a given size tends to be larger than in single-species forests and
in natural forests it exceeds that in even-aged plantations. This has a profound
impact on the variability of the target variable.

In those instances where the total cost are specified prior to sampling, a deci-
sion must be made as to which sampling method is likely to produce the most
accurate estimate of the target variable. It should be realized, however, that the
cost of a poor estimate, due to such rigid cost constraints, should be added to
the actual cost of the survey. Inventory reports, which state the achieved accu-
racy, invariably assume that areas are determined error-free. This assumption
is seldom satisfied. Forest maps may require updating to obtain nearly error-
free stand areas. Such information is frequently obtained from existing, recent
aerial photographs, in which case the quality of this information depends upon
the quality and scale of the aerial photograph. An inventory produces quan-
titative information about the growing stock and its rate of change per unit
area. Reports on such inventories give information about volume and expected
growth, expressed per unit area and for the stand as well as forest in its entirety.
In many countries, it is feasible to obtain reliable area information from exist-
ing aerial photographs but, particularly in developing countries, the information
may be outdated. In such instances, reports on the accuracy of timber estimates
should be scrutinized carefully.
The inventory cost per unit area varies considerably and is influenced by:
• The type of information required (volume, density and diversity, size distri-

bution, growth, mortality, etc.)
• The specified maximum error of the estimates
• The probability that this error will be exceeded
• The variability of the subject variable
• The size of the population or stratum
• The degree of stratification
• The shape of the forest tract being sampled
• Accessibility of the forest, topographic, and terrain features
• The extent of information available prior to the survey
• The availability of trained field staff
• The available time
The majority of forest inventories specifies the accuracy required either for the
entire population or for predefined strata. The size of the stratum for which
information is to be obtained, with a specified maximum error, is an important
factor, which influences the sampling fraction and thereby the inventory cost
per unit area. In management inventories, for example, the compartment serves
as a unit of forest management. In order to make management decisions on final
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and intermediate fellings, as well as pruning and other tending operations and
for harvest scheduling, the forest manager requires reliable information for each
compartment, more particularly about volume, growth, and other stand char-
acteristics. The associated inventory cost, however, may be excessively high,
unless the specified accuracy requirements are adjusted drastically to reduce
the cost of sampling. Alternatively, single compartments should be combined
with others to generate subpopulations sufficiently large to allow the applica-
tion of scientific sampling methods. Prior to World War II, working plans for
the all-aged selection forests in Switzerland and France were usually based on
a complete enumeration of all trees above a fixed threshold diameter, for exam-
ple, 14 cm. This practice has been abandoned due to the prohibitively high cost.
Because of these cost and time constraints, scientific sampling methods were
developed to obtain information with the optimum cost–benefit ratio. Many of
these sampling techniques were developed by researchers in other disciplines,
for example in the social sciences, and adapted to meet the requirements spec-
ified by decision-makers in forestry.

1.1 Sampling units

The sampling unit is defined as the smallest unit on which the target variable
is obtained. The individual tree is suitable as a sampling unit for estimating
the population mean of tree characteristics such as diameter, height, and vol-
ume or in studies of the effect of environmental pollution on vitality. In case of
selection without replacement, it implies that the total number of possible sam-
pling units is equal to the size of the population, although the latter is usually
unknown. The majority of forest inventories, however, deal with the estimation
of volume and growth per unit area and for the population in its entirety. It is
difficult to determine the expansion factor for converting volume per tree into
volume per hectare, since the measurement of the growing space of the individ-
ual tree is inaccurate and may well be biased. The trees are therefore usually
measured in clusters, more particularly in stand inventories for estimating the
volume and growth per unit area.

2 PLOT SAMPLING

2.1 Plot shape

In practice, the sample plots are most often of circular, square, or rectangular
shape. The sample strip is a specially shaped rectangular, which is particularly
useful in inaccessible forests.
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A sample tree is considered to fall inside a plot of given boundaries, if the
center of the bole, at the base of the tree, falls inside the plot. In consequence,
each sample plot contains edge trees, with a growing space which is partly
located outside the plot boundaries. A circular plot shape has two advantages
over other plot shapes:
• It represents the geometric shape with the smallest perimeter for a given plot

size. It tends to produce less borderline trees than plots of the same size, but
different shape.

• In stands without undergrowth, the plot boundaries can be conveniently
located with the aid of optical devices, for example; with the optical Blume-
Leiss or Suunto and an ultrasonic or laser (Vertex or Ledha) range-finder

In plantation forests, it is convenient to establish rectangular plots, with the
longest side coinciding with the direction of the planting rows. The two longest
sides are positioned halfway between two adjoining rows. It remains imperative
to determine the shortest side of the rectangle (in addition to the longest one),
instead of relying on the recorded planting espacement, because the actual dis-
tance between the planting rows may vary within a given stand. In cases of
excessive differences between the row distances, the layout of square or rec-
tangular plots should be abandoned in favor of circular plots. In many tropical
forests, however, it is more convenient to lay out square or rectangular plots or
sample strips, the extreme version of the rectangular plot. They can be cleared
prior to measuring the dbh and height of the trees within the plot boundaries
and are therefore more efficient than other shapes. The much greater number
of edge trees, due to the unfavorable plot shape, may induce systematic errors.
Sampling studies in Indonesia have indicated that either square or rectangu-
lar plots, established within systematically or randomly distributed sampling
lines within the population, are more cost-efficient than a total enumeration of
sample strips. They reduced sampling cost without sacrificing accuracy (Akça
1996).

2.2 Plot size

The variability of the study variable, e.g., volume (converted into volume
per hectare or acre), tends to decrease with increasing plot size and this in
turn reduces the sample size required to obtain a predefined precision of the
estimated population mean or total, but the coefficient of variation tends to
decrease curvilinearly with increasing plot size. At the same time, however,
measurement as well as travel time between plots increases and this again
reduces the greater efficiency of large plots. In consequence, it is necessary to
determine the optimal plot size and to devise a sampling strategy which either
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produces the highest accuracy for a given cost or the lowest cost for a given
accuracy.

In relatively homogeneous plantation forests, however, the coefficient of
variation is less severely affected by plot size than in natural forests. Sampling
studies in South African Pinus radiata plantations (van Laar 1981) showed a
decrease of measuring time per unit area with decreasing plot size, but in this
particular study, only borderline trees were checked whether they were located
inside or outside the plot boundaries. The opposite was found in sampling stud-
ies in Germany (Akça et al. 1986), where the measurement of distances was
not limited to borderline trees. In the case of random sampling, the location
of the plots is determined prior to sampling, for example on maps or aerial
photographs. In consequence, time is needed to locate the sampling points.
In addition, travel time for moving from one plot to the next, although not
strictly proportional to the number of plots, tends to increase with increasing
number of plots. It is therefore necessary to estimate the optimum plot size,
which produces the best results at the lowest cost.

For a given sampling intensity, the required number of plots decreases pro-
portionally to plot size. In order to estimate the volume of a stand with an area
of 15 hectares, a sampling intensity of 5%, and sample plots with a radius of 7,
10, and 13 m, respectively, the required number of sample plots is

R = 7 m : n = 7500/154.0 ≈ 49

R = 10 m : n = 7500/314.3 ≈ 24

R = 13 m : n = 7500/531.2 ≈ 14

The optimum plot size is also related to forest type, stand structure, site, and
genetic parameters. Inventories of multispecies tropical forests with a low den-
sity of commercially utilizable trees, require large plots, whereas small plots
are adequate in clonal plantations. To some extent, the selection of an appropri-
ate plot size is also determined by terrain and vegetation features, which affect
the traveling time component. Moving from one plot to the next one in inac-
cessible forests with heavy undergrowth is time-consuming. Larger plots may
therefore be more efficient than small plots, particularly when the undergrowth
has to be removed prior to measuring. Plot size also affects the sampling cost
per unit area, which increases with decreasing plot area. In consequence, it is
necessary to determine:
• Either the optimum plot size which will produce the highest precision for a

given cost (if there is a cost constraint), or
• A plot size which gives the lowest cost for a given precision (when the pre-

cision specification prevails), or
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• A plot size which is associated with the lowest value of variance multiplied
by cost

Smith (1938) and O’Regan et al. (1966) proposed the formula

s2
y = k · x−c

where x = plot size (in hectares), s2
y = variance of the target variable (basal

area, volume, number of trees, etc.), expressed per hectare, and k, c(k, c > 0)

representing the coefficients of the equation. Sampling studies are required to
express c as a function of age, site index, and forest composition. In Germany,
the coefficient c varies between 0.3 and 0.7 and, in many cases, is close to 0.5.
However, it can be expected that k and c are inversely related.

Freese (1961) used Smith’s formula to derive the relationship between the
ratio of the squared coefficients of variation and the square root of the inverse
ratio of the plot sizes (PS):

s2
2(%) = s2

1(%) ·
√

P S1

P S2

O’Regan et al. (1966) simulated forests, based on randomly distributed circular
plots of a fixed size. A quadratic equation with log (variance) as dependent, plot
size, and squared plot size as independent variables was fitted. The following
budget function was proposed

ctot. = c1·
√

n · tract area + c2n + c2 Ntree

where c1 = walking cost per unit distance, c2 = cost of establishing a plot,
c3 = cost of measurement per tree,

√
n.tract area = approximated minimum

travel distance between randomly distributed points, n = sample size and
Ntr = average number of trees measured at a sampling point. The introduction
of the component

√
n.tract area was due to sampling studies by Jessen (1942),

reported by Sukathme (1954), which indicated that the minimum travel distance
between random sampling positions is proportional to

√
n.

Zeide (1980) presented a method to determine the optimum plot size which
minimizes the total time (= T ) involved in the field work of a forest inventory,
and necessary to meet the specified accuracy. For a given sample size n, the
total time requirement is

T = n (ttr. + tm)

where tm = measuring time and ttr = travel time. The required sample size
is obtained from the conventional formula

n = s2 (%)
t2

E2
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where E = maximum allowable error (in %), t = t1/2α,(n−1) and sy(%) =
coe f f icient of variation. The latter is related to and can be estimated from
plot size (PS)

sy (%) = b0 P Sb1

The formula for estimating the travel time was based on systematic sampling,
with the sample centers arranged in a square lattice. In that case, the total
travel time for a given tract is

ttr. =
√

T A
T S

√
n

where TA = total area and TS = travel speed. After some manipulation, it is
shown that the relationship between total time T and plot size is as follows:

T = k√
P S

(
a · P S1/4 + b · P S3/4

)

where

k = s2
y (%)

√
P S · t2

1/2α

E2

and

a =
√

T A
k · T S

The coefficient b is described as a proportionality constant, but in fact is deter-
mined by sampling and regression analysis, with measuring time tm as a depen-
dent and plot size as an independent variable

tm = b · P Sc

with b and c estimated after linearizing the relationship between m and PS.
It was then shown that:

P Sopt =
(a

b

)2

Lang et al. (1971) compared the plot sizes 10×20 m, 10×40 m, and 20×40 m
for estimating the density of the rich tropical forests in the Panama Canal
Zone. The 10 × 20 m size required the lowest sampling intensity. Sampling
intensity required to meet specifications increased with the increasing degree
of species aggregation. A 60–70% sampling fraction was needed for 10 × 20 m
plots. In Central Europe, and more particularly in Germany, plot sizes for for-
est inventories vary between 0.01 and 0.10 ha with plot areas of 0.01, 0.02,
and 0.03 ha being used in young, dense stands and plots of 0.05 ha and more
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Figure 10-1. Concentric circular sample plots.

in mature, thinned stands. The rule of thumb, that the individual sample plot
should contain 15–20 trees, is widely adopted.

2.2.1 Concentric sample plots

Concentric circular plots have been successfully used in the inventory of all-
aged forests. Three circles with different radii and the same center are super-
imposed (Figure 10-1). All trees with a dbh of more than 7 cm are measured
within the inner plot, those with a dbh of more than 20 cm within the second-
smallest circular plot and the trees with a dbh of more than 40 cm within the
outer circular plot. Volumes and confidence intervals have to be calculated for
each of the tree size categories separately.

The basic principle of plots of different sizes can obviously be applied if
square or rectangular plots are laid out.

Prodan (1968) introduced the six-tree sample plot for estimating the basal
area, volume, and number of trees per unit area. The distance between ran-
domly or systematically positioned sampling points and the sixth nearest tree is
measured, together with their diameters. The basal area of the six-tree sample
plot is estimated as follows:

G
(

m2/ha
)

= 2500
r2

6

( 5∑

i=1

d2
i + 1

2
d2

6

)

where di (i = 1, . . . , 5) = diameter (cm) of the i th nearest tree and r6 =
distance (m) to the sixth nearest tree. The six-tree sampling method is a mean
ratio estimator but the estimate is not unbiased (Figure 10-2).
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Figure 10-2. Prodan’s six-trees sampling method.

2.3 Plots on stand boundaries

Trees along the stand and forest boundary usually grow faster than those grow-
ing in the inner stand, primarily because edge trees are less severely exposed to
inter-tree competition. On the other hand, trees near the wind-exposed edge of
a stand develop a different stem and crown form, which is not necessarily con-
ducive to growth and may reduce the rate of height growth. Unbiased volume
estimates for a given stand are obtained only if the trees on the stand boundary
are correctly represented.

2.3.1 Relocating of plots

When sample plots are established at random, the sample plot is sometimes par-
tially located outside the stand. The sample plot center may then be relocated by
moving the plot center away from the edge. This method produces a substantial
systematic error, especially in small stands with irregular boundaries, particu-
larly if the stand structure along the boundary differs from the rest. The basic
principle of random (and systematic) sampling requires that a sample plot will
be established at the selected position, if the randomly selected location of the
plot center falls inside the stand. The area of the plot section falling within the
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stand must be determined and recorded, together with its tree diameters. The
determination of the true plot size can be time-consuming and the calculations
required to estimate the mean diameter or volume and their standard errors are
more complex when dealing with sample units of varying sizes. In such situa-
tions, the population mean must be estimated as a regression or ratio estimator.
Due to the increased field work and the complexity of the calculations involved,
this method is not usually preferred.

2.3.2 Mirage method

The second method of dealing with plots falling on the stand boundary is known
as the mirage method and produces unbiased estimates of the population para-
meters (Schmid 1969). The field application of this method is simple and the
calculations are identical to those for sample plots of equal sizes. Figure 10-3
illustrates the method for circular sample plots. After locating the plot center,
all trees falling within the sample plot are measured, together with the distance
between the plot center and the edge of the stand. A “mirror” plot center is
located outside the stand, at the same distance from the edge. The trees within
the “mirror” plot are measured, those falling in the shaded section of the cir-
cular plot are measured twice. When it is not technically possible to establish
a “miraged” plot center directly outside the stand, the method can be imple-
mented by relocating the mirror plot (Figure 10-3).

The mirage method produces unbiased estimates, because the probability of
a sample point within the boundary zone, falling inside the stand with a center
located outside the stand, is equal to the probability of falling outside the stand
with the plot the center being located inside the stand. The unbiasedness of the
mirage method was shown by Gregoire (1982).

Figure 10-3. Mirage method.
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2.4 Slope Correction

In forest inventories, stand and plot areas are expressed in terms of their area,
projected on the horizontal plane. The number of trees, basal area, volume, and
growth estimates are adjusted accordingly. It is therefore necessary to convert
the plot size into its equivalent on the horizontal plane. The circular plot, estab-
lished on a slope at an angle of α degrees, when projected on a horizontal plane
(Figure 10-4), generates an ellipse with its longest and shortest axis being rs
and rh = rs · cos α, respectively. The area of this ellipse is

ah = π · r2
s · cos α = as · cos α

as = ground area on the slope

ah = projected area on the horizontal plane

rs = radius of circular plot measured on the slope and longest axis
of the ellipse respectively.

Slope is frequently measured as a percentage and then requires conversion
to degrees. For example, when a circular plot with an area of 0.05 ha is estab-
lished on a slope with an angle of 45%, the corresponding angle α is equal to
tan−1(0.45) = 24.23◦ and the correction factor is 0.912.

Figure 10-4. Slope correction.
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The application of a single correction factor, based on the average slope for
a given compartment, produces slightly biased estimates of the stand volume if
volume per unit hectare and angle of slope are correlated. A more accurate and
efficient adjustment for slope can be implemented by laying out a circular plot
with a radius which has been corrected for slope. In that case, the horizontal
plot area is identical to the corrected plot size.

re = r√
cos α

where

re = Enlarged radius of the circular plot

r = Plot radius projected onto horizontal plane

α = angle of slope

When established with the aid of the Blume-Leiss measuring cylinders, the cor-
rection for slope of circular plots can be carried out optically by increasing the
distance between the two cylinders. In the case of square or rectangular sam-
ple plots, the four sides of the square or rectangle have to be corrected due
to their angles β1 and β2 with the horizontal plane, and their lengths multi-
plied by 1/cos β1 and 1/cos β2, respectively. The square or rectangular plots,
however, should preferably be established in such a way that two sides are par-
allel to the direction of the slope, in which case only one side is corrected for
slope.

3 POINT SAMPLING

3.1 Basic principles

The theory and technique of point sampling, which is also known as angle count
sampling, plotless sampling, Bitterlich’s method, and relascope sampling, and
is widely recognized as a breakthrough in forest mensuration. It was devel-
oped by the Austrian forester Bitterlich, in 1948. In its original version, it was
designed to estimate the basal area per hectare. Grosenbaugh (1963) extended
the basic principle of point sampling and redefined the method as PPS sam-
pling. Point sampling estimates stand parameters from sample plots with imag-
inary plot boundaries. A critical angle is introduced, which defines the ratio
between the diameter of a tree and its distance from the sampling point. For
each of the trees, surrounding the sampling point, a decision is made whether
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Figure 10-5. Tallying of trees in point sampling.

it is “in” or “out,” i.e., whether it falls inside or outside the plot with its imagi-
nary boundaries. The number of trees counted “in” is used to predict the stand
parameter. A tree is “in” if it exceeds the critical angle being used. Plot centers
are selected by any conventional sampling method. A device with a fixed angle
of view is used to sight the surrounding trees at breast height, in a 360◦ sweep.
All trees with an apparent dbh, which exceeds the angle of viewing, are tallied
“in” (Figure 10-5). The basal area per unit area is obtained by multiplying this
number of trees by a basal area factor (BAF), which is a function of the critical
angle.

In order to illustrate the basic principle underlying point sampling, we con-
sider a rod with a length of c units, with a cross-arm or blade with a width of 1
unit, attached at a right angle to the rod. If unit width is used for the cross-arm,
the critical angle α, is obtained from the ratio of 1:c. For each tree with a dbh
of di cm only one distance ri exists, for which the ratio d : R is equal to 1:c.
At this distance, the two lines of sight are tangent to the stem at breast height
(Figure 10-6).

We have
di

ri
= 1

e
and thus ri = c · di
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Figure 10-6. Basic principle of point sampling (ri = the limiting plot radius for the tree with
dbh = di and α = viewing angle for c and diameter di ). Tree 1 is a borderline tree, tree 2 is
“in,” and tree 3 is “out.”

and the corresponding plot area is

Area = π · c2 · d2
i

The total basal area of all ni trees with dbh = di is

Gi = ni · π

4
· d2

i

and is converted into basal area per unit area

Gi (m2/ha) = ni · 2500
c2

where Gi = basal area per hectare of all trees with a dbh of di cm. This rela-
tionship holds true for any diameter and therefore, the total basal area per unit
hectare is

G = B AF.N

where

B AF = Basal Area Factor = 2500/c2

N = total number of trees counted (= Σni )
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The plot radius factor c is calculated as follows:

c = 50√
B AF

The resultant c values for different basal area factors are given below:

BAF (m2/ha) 1 2 3 4

Value of c 50.0 35.4 28.9 25.0

The c values are not entirely correct, since a given tree is not a flat object with
a width of di units, but it gives a sufficiently accurate approximation and is
adequate for forest inventories. The derivation of the critical angle α is shown
in Figure 10-7.
Calculation of the critical angle α:

We have sin
α

2
= di/2

ri
and ri = di

2 · sin
α

2

The corresponding ground area is A = π · r2 = π
d2

i

4
(

sin
α

2

)2

and Gi
(
m2/ha

) = 104 ·
ni ·

π

4
·d2

i

π·
d2

i

4 ·
(

sin
α

2

)2

= 104 · ni ·
(

sin
α

2

)2

and the total basal area per hectare is given by

Gha = 104 ·
(

sin
α

2

)2 ·
k∑

i=1

ni

Figure 10-7. Critical angle α.
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Table 10-1. Basal Area Factors, corresponding plot radius factors and angle sizes, for the
metric system

BAF (m2/ha) 1 2 3 4
Critical angle (◦) 1.146 1.621 1.985 2.292
Plot radius factor 49.997 35.351 28.863 24.995

and

Gha = B AF ·
k∑

i=1

ni whereB AF = 104 ·
(

sin
α

2

)
.

Hence

sin
α

2
=

√
B AF
100

The results are given in Table 10-1.
For B AF = 1 m2/ha, a tree with a diameter of exactly 30 cm, located at a

distance of exactly 50 ·0.30 = 15.00 m is evaluated as a borderline tree. Unless
the distance between the sampling point and the tree, as well as its diameter are
measured, it remains uncertain whether it falls inside or outside the plot. One
way to deal with this problem is to assign a numerical value of 1/2 instead of 1
to this borderline tree.

The general formula for estimating the basal area per hectare at the selected
location of the center of the imaginary plot may be generalized to estimate
other stand characteristics per unit area, for example, tree volume per hectare.
The general formula is

y = BAF ·
n∑ yi

gi

where yi = stand characteristic measured on the i th tree, e.g., basal area,
volume or number of trees, gi = basal area of the tree counted “in,” y =
G/ha, V/ha, or N /ha. The resultant formulae are

Basal area per hectare : Gha = BAF
n∑ gi

gi
= BAF · n

Volume per hectare : Vha = B AF
n∑ νi

gi

Number of trees per hectare : Nha = B AF
n∑ 1

gi

Sukwong et al. (1971) compared the precision of fixed-radius and variable-
radius plots for basal area estimates using spatial distribution models to gen-
erate artificial forests. The logtransformed coefficient of variation was a linear
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function of the logtransformed number of trees per hectare. The following rela-
tionship was established:

s2
y (%)fixed radius

s2
y (%)variable radius

= b0 N b1

The coefficient of variation for fixed radius plots was consistently greater than
the variable-radius coefficient of variation, if the number of trees sampled was
the same for both methods.

3.2 Choice of basal area factor

A decrease in the basal area factor produces a proportional increase in the aver-
age number of sample trees counted “in.” In consequence, a smaller sample is
required to obtain a predefined precision. However, the number of borderline
trees increases, whereas its checking, because of the greater distance between
the sampling point and the subject tree, is more time-consuming. The opti-
mum basal area factor depends on the stand structure, but the ultimate choice is
usually based on practical experience and general guidelines. In Europe, BAF
values of 1 m2/ha in low density stands and 2 or 4 m2/ha in high-density stands
are normally used, whereas basal area factors of 5 and 10 ft2/acre are common
in North America. Husch et al. (1982) recommended relating the BAF to be
used to the number of trees counted “in”

B AF = 0, 4046(estimated basal area per hectare)
n

where n = predefined average number of trees to be counted at a given sam-
ple point. In European forestry, satisfactory results have been obtained with n
varying between 6 and 16, whereas n = 10 has given good results in North
America.

3.3 Nonsampling errors

Theoretically, point sampling produces unbiased estimates of the basal area
per hectare. However, several other error sources, which have an impact on
precision and bias, play a role.
• Instruments

The instruments used must be regularly checked and calibrated if necessary,
prior to the beginning of the field work. This includes checking and cor-
recting the viewing angle and checking the ratio 1/c for a given basal area
factor.
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• Sampling position
The sampling position must be located objectively, i.e., concurring with a
rigidly controlled sampling plan. Although observers tend to select sampling
points away from large trees, underbrush, or hanging branches, because they
obstruct viewing, this method might induce bias and should be avoided. The
same holds true for the practice of temporarily moving away from the sam-
pling point to evaluate hidden trees.

• Instrument position
The instrument used should be positioned vertically above the sampling
point, which implies that the position of the vertex of the generated angle
must be correct. Most point sampling devices make provision that the vertex
point is located at eye level. In the case of a wedge prism, the vertex of
the viewing angle is located on the surface of the prism, which is therefore,
positioned vertically above the sampling point (Figure 10-8).
An important source of bias also occurs when the instrument is not posi-

tioned perpendicularly to the line of sight. The rotation in the vertical plane, at
an angle of 90◦ to the line of sight, for example, reduces the critical angle, and
induces an overestimate of tree count.
• Incorrect decisions in checking borderline trees

Strictly speaking, borderline trees cannot occur, since a given tree either
exceeds the critical angle or not. A tree is classified as a borderline tree, if
the distance between the sampling point and the stem center is about equal to
the tree diameter, multiplied by the plot radius factor. Field checking to elim-
inate an incorrect decision error due to borderline trees, is time-consuming.
In practice, borderline trees are not checked but counted as half the unit
value. It is generally assumed that the errors involved are of a random nature
and their expected value zero. Experience and careful execution of the field

Figure 10-8. Correct methods of positioning the dendrometer and wedge prism.
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work are necessary to avoid or minimize systematic errors. In order to imple-
ment the checking procedure, the dbh of the borderline tree and its distance
from the sampling point must be measured. Suppose they are 43 cm and
22.5 m, respectively, and a mirror relascope with B AF = 1 m2/ha, i.e.,
c = 50 is used. The limiting distance of 0.43 · 50 = 21.5 m is exceeded
and the subject tree is “out.”

• Hidden trees and double counting
Hidden trees can represent the most important source of bias in high-density
stands or in stands with heavy undergrowth. Although hidden, they belong
to the population and have to be evaluated. If the line of sight is obstructed
by other trees or underbrush, the observer moves temporarily away from
the sampling point, but the viewing distance must not be affected. In some
cases, precautionary measures are necessary to avoid double-counting. Ini-
tially evaluated subject trees are sometimes recounted when the 360◦ sweep
has been completed. For this reason, the first tree counted at a given sampling
point should be marked.

• Neglecting slope corrections
A negative bias in basal area estimates occurs when instruments, such as the
originally introduced dendrometer without a device for automatic correction
for slope, are used. In this case, a slope correction must be made at each
sample point. The best way to obtain an unbiased estimate is the arithmetical
correction after sampling:

Gi = B AF · ni

cos αi

were
G = corrected basal area (m2/ha) at the i th sampling point
ni = number of trees tallied at the sampling point
αi = angle of slope at the i th sampling point

On slopes of less than 10%, the slope correction can be ignored because the
correction of the basal area is then less than 1% (Table 10-2).

Suppose that B AF = 4 m2/ha and 7.5 trees are counted. The slope of the
sampling unit, measured with a Suunto clinometer is 60%. The corrected basal
area per hectare is 47.5. sec (60◦) = 35.1 m2.
• Neglecting boundary-overlap correction

Boundary overlap in point sampling occurs when a section of the imagi-
nary plot extends beyond the boundary of the forest stand. Ignoring overlap
may cause considerable bias in small stands with a large perimeter:area ratio.
The mirage method for boundary-overlap correction may then be applied to
obtain an unbiased estimate. A second sampling point is selected outside
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Table 10-2. Correction factors for slope

Slope (α) Correction factor (1/ cos α) Slope (%) Correction factor
(1/ cos α)

5 1.00 10 1.00
10 1.02 20 1.02
15 1.04 30 1.04
20 1.06 40 1.08
25 1.10 50 1.12
30 1.15 60 1.17
35 1.22 70 1.22
40 1.31 80 1.28
45 1.41 90 1.35
50 1.56 100 1.41

the forest stand and a partial sweep within the sampled stand, is carried out
to count trees, which were evaluated in the first sweep. The mirage method
should be applied in all cases where the distance between the sampling point
and the stand boundary is less than the limiting radius for the largest tree
diameters within the boundary zone.

3.4 Efficiency of point sampling

Husch (1955) compared the efficiency of the BAF values 2 1/2, 10, and 40 and
found a BAF of 40 to be more efficient than the others. Clutter (1957) found
that BAF values of 20 and 40, in terms of degree of unbiasedness, performed
better than BAF values of 5 and 10. Wiant et al. (1984) concluded that BAF-
values of 5 and 10 produced underestimates of the basal area per hectare. In
order to ensure a sufficient number of trees, counted “in,” different BAF values
may be used for point sampling within a given population. Schreuder et al.
(1981) evaluated bias resulting from varying the basal area factor within a given
population. It was of the magnitude of 10% and more. The authors proposed
applying cluster sampling, with the same BAF applied within a given cluster,
but different basal area factors for different clusters.

Oderwald (1981) compared plot sampling with point sampling in random,
clumped and systematic forests represented by squared lattices. The Poisson
function applies when the pattern is random, the negative binomial distribution
describes clumped spatial distributions. Point sampling produced the most pre-
cise basal area estimates in random and clumped populations, plot sampling
performed better in systematic forests.
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Gambill et al. (1985) applied the basic idea proposed by Zeide (1980) to
optimize plot size and developed a method for determining the optimum basal
area factor. The time needed for a single measurement is given by the sum of
travel and measurement time. The required sample size was estimated with the
aid of the standard formula.

n =
(

sy(%) · t
E

)2

The relationship between log (sy(%)) and log (BAF) is linear, but the para-
meters of the regression equation

sy(%) = b0 B AFb1

vary according to inventory conditions. The authors proposed using the para-
meter estimate b1 to estimate the coefficient of variation sy(%), corresponding
with Q, but the coefficient of variation sy j (%) for B AFj must be known or is
estimated:

syi (%) = sy j (%)
B AFb1

i

B AFb1
j

This approach makes it possible to estimate the sample size required to meet the
specified precision. The estimated mean travel time between successive sam-
pling positions within the population, which is a function of sampling intensity
and travel rate, must still be added. The optimum fixed-radius plot sizes vary
between 200 and 800 m2, the optimum BAF between 6 and 72 in the English
system.

Iles et al. (1988) investigated the amount of bias, which results from chang-
ing the basal area factor during sampling within a given population, for
example, when too few trees are counted. In general, a change of BAF changes
the basal area proportionally, but not when the number of trees counted drops
below the acceptable minimum. Since doubling the basal area factor in such
cases means that the stand is resampled in a partially denser sector, this
method will produce positively biased estimates. The same author investi-
gated the necessity of checking the 5–15 borderline trees, which needed to
be evaluated (Iles 1988). It was found that about 75% of the borderline trees
were correctly classified as “in” or “out,” whereas the errors classifying the
remaining 25% were two-directional.

Ulbricht (1986) evaluated the cost-efficiency of a stand inventory for vari-
able radius plots and different BAF values. Based on data from two Picea abies
stands, Akça et al. (1986) investigated the efficiency of 0.01 and 0.1 ha fixed-
radius sample plots and variable radius plots with BAF values varying between
2 and 10, to determine the optimum plot size. Palley et al. (1961) showed that
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point sampling in random as well as systematic sampling with a random start
produces an unbiased estimate of the basal area per hectare. The introduction
of the ratio of volume to basal area for trees, which are counted “in” produces
an unbiased estimate of the volume per hectare. The method, proposed by Bell
et al. (1957) for determining the ratio volume to basal area within a subsample
of the angle count trees, produced an almost negligible bias in volume esti-
mates. Barrett et al. (1966) compared point with line sampling in terms of bias
and variance of the estimated basal area. Edge bias was approximately 5% for
point sampling and 3% for line sampling. Depending upon the critical angle,
the coefficient of variation for point sampling, as well as line sampling, var-
ied between 40% for a critical angle of 104.18 min and 60% for an angle of
180.46 min.

4 SIMPLE RANDOM SAMPLING

Suppose that a 10 ha forest stand is subdivided into 40 sampling units of 50 ×
50 m. Three sampling units are selected and measured to estimate the volume
and other stand characteristics. This procedure generates 40!/(3!37!) = 9880
possibilities for selecting a sample of size 3 (section 2.6.1). Simple random
sampling requires that each of these combinations has the same chance of being
selected. The method guarantees that no selection bias is involved. In practice,
selection bias occurs quite frequently. In order to prepare a height curve for a
given stand, the field team, for example, will possibly tend to exclude exces-
sively leaning trees and trees with broken tops and in other instances might
avoid inaccessible locations.

In the above case, field sampling is preceded by a subdivision of the target
population into N sampling units. It requires a list of these units, with each of
them identified by a number between 1 and 40. A table of random numbers, or
a random numbers generator, is subsequently used to draw the three sampling
units. In such inventories each sampling unit is not allowed to occur more than
once in a given sample. The method is described assampling without replace-
ment. This procedure does not violate the basic concept of random sampling,
but the method requires an adjustment of the variance formulae. The sample
size cannot exceed N and the i th sampling unit in the population cannot occur
more than once in a given sample. The probability of the i th sampling unit being
drawn first is 1/40. A second sampling unit is drawn at random. The probability
of the j th unit being included is 1/39, since this element is drawn from a popu-
lation which contains N − 1 sampling units. For the third sampling unit drawn,
the probability of the kth unit being selected is 1/38. The sampling units are
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drawn consecutively, but independently. The probability of the joint occurrence
of the i th, j th, and kth sampling unit is 1/40 1/39 1/38 = 0.00001687, but in
sampling with replacement, this probability would be (1/40)3 = 0.00001525.
For large populations and a small sampling fraction, the difference between
sampling with and without replacement is negligible.

In order to obtain an unbiased estimate of the variance of the population
of sample means, based on sampling without replacement, the variance of the
sample mean is multiplied by the correction factor for the finite population
f = (1 − n/N ). The ratio n/N is denoted as the sampling fraction, the ratio
N/n as the expansion factor. The target population may contain the aggre-
gate of tree heights, breast height diameters, or single-tree volumes within a
given stand, with the individual tree serving as the sampling unit. In such cases,
the size of the population is probably unknown, since its determination would
require a stem count. On the other hand, when ten 20 × 20 m sample plots are
established, for example, to estimate the total volume of the trees within a 50 ha
compartment, the population contains (approximately) 1250 sampling units, the
sampling fraction is 0.008 and the expansion factor is 125. A sample with the
same number of sampling units, but based on plots with an area of 200 m2, gen-
erates a population containing 2500 sampling units and the sampling fraction
and expansion factor are 0.004 and 250, respectively.

When sample plots are established at random and measured to determine
the plot volume, the mean of these volumes, multiplied by the expansion factor
stand area: plot area, estimates the total stand volume. The estimate is unbiased
if the sample was drawn at random and no other sources of bias were involved.
It does not necessarily imply that the sample mean and sample sum produce
reliable information about the true population mean or total. For practical pur-
poses, the information derived from sampling may be useless, either because
the sample was too small or due to excessive variability. A random selection of
sampling units, however, makes it possible to draw conclusions about the qual-
ity of the information obtained by sampling. The application of the statistical
theory to study the sampling distribution of the inventory data, assumes that the
sample means are independently and normally distributed. Unless plot size is
excessively small, this assumption is usually approximately satisfied, although
confidence intervals are inevitably distorted, if the assumption of a normal dis-
tribution is not satisfied.

The sample of size n also provides an unbiased estimate of the population
variance. It should be emphasized that this variance is defined as the expected
value of the squared deviation of an observed value from the population mean.
Establishing plots of different sizes generates populations with different vari-
ances. In consequence, it makes no sense to compare variances which were
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obtained from sampling the same stand with different plot sizes, unless these
variances are multiplied by an expansion factor to estimate the variance of the
population aggregate or when they are converted into their equivalents per unit
area.

Usually, sampling based on individual trees as sampling units and sampling
based on either fixed-or variable-radius sample plots, serve a different purpose.
The individual tree is a useful sampling unit for estimating the mean wood
density or the mean vitality of trees within a stand, for example. Sampling for
forest inventories, however, is usually undertaken to estimate physical entities
such as basal area, number of trees, and volume on a per hectare basis. When a
random sample of n single trees is used to estimate the stand volume, the sum
of the volumes, multiplied by the expansion factor N/n provides an unbiased
estimate of the total volume, but the precision of this estimate is low unless a
large sample has been drawn. A more accurate estimate will be obtained, if the
volume of a single tree is multiplied by the expansion factor stand area:tree area
to estimate the stand volume. The resultant variance of the population aggregate
would certainly be substantially lower, but it is difficult, if not impossible, to
determine the tree area of the individual tree. The same problem arises in small
sample plots. The difficulty of determining the area occupied by all 25 trees in
a sample plot with a size of 1/20 ha is usually overlooked and this total tree area
is invariably equated with the size of the sample plot. The determination of the
areas occupied by edge trees in a sample plot is technically impossible without
destructive sampling, since the extent of the root system is to be assessed. It is
even more difficult in tree breeding experiments, where the single sampling unit
may consist of a row of six trees, with one or two of them dying during the first
5 years. In that case, the expansion factor to be used in estimating the volume
per hectare from the remaining 4 or 5 trees is inaccurate and may not reflect the
true area occupied by the remaining trees.

In management inventories the assumption of a random selection of sam-
pling units is sometimes violated
• The need of drawing up a list of all sampling units, of necessity identified by

their location within the population may have been overlooked.
• The estimation of stand volume requires independent estimates of the mean

height of each sample plot. The usual procedure, however, is to draw a ran-
dom sample of trees within a given compartment, to measure their heights
and to fit a single height curve. Theoretically, the assumption of indepen-
dent volume estimates is violated, since the relationship between diameter
and height may well be affected by site quality differences within a given
compartment and, in that case, should not be estimated from pooled data.
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The standard procedures for calculating stand characteristics and their vari-
ances furthermore assume that diameter and height, as well as other stand char-
acteristics, are measured without measurement-bias being involved. The error
calculation furthermore assumes that errors associated with the volume func-
tion being used, are negligible and can be ignored.

The sample mean (y), derived from simple random sampling

y =
∑

yi

n
is a consistent estimate of the population mean, i.e., it converges to the popula-
tion mean with increasing n and is equal to this mean if n = N and the sample
units are selected without replacement. The sample mean represents a point
estimate of the population mean µ, the sample total Ŷ is a point estimate of the
population total Y . The standard error of the sample mean, based on sampling
without replacement is

sy = sy√
n

·
√

1 − n
N

=
√

SSyy

n · (n − 1)
·
(

1 − n
N

)

where SSyy = ∑
y2 − (

∑
y)2

n
The estimated population total is

Ŷ = N y

Its standard error is

sŶ = Nsy .

When preparing working plans, it is often useful to calculate the mean volume
per hectare and a (1 − α) confidence interval for this estimate. This requires
multiplying the sample mean and its standard error by the expansion factor q:

q = 10000

plot size in m2

The calculation of a confidence interval assumes a normal distribution of the
subject variable. In the case of skewed distributions, the observed relative fre-
quency of the exceeded confidence limits is always greater than the stated prob-
ability. Independent of the degree of skewness and kurtosis of a distribution, the
sample means, obtained from nonnormal distributions, converge to a normal
distribution with increasing sample size. This is known as the central limit the-
orem and it has a considerable impact on inferences in satisfying the assumption
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of normally distributed sample means. The (1 − α) confidence interval for the
population mean and total are found as follows:

Population mean : y ± tα,(n−1) · sy

Population total : Ŷ ± tα,(n−1) · sŶ

The quality of information derived from forest inventories is partly controlled
by the sampling fraction. Forest managers require information on the accu-
racy of these estimates. The information is imperative, for example, where the
amount of timber to be delivered to the saw or pulp mill is to be estimated. In
other instances, accuracy assessments are needed for forest management plans
and to prepare logging operations.

Although the forest manager is primarily interested in estimates of the total
volume and volume per hectare, it may be necessary to calculate a confidence
interval for other stand parameters, for example, the mean stand diameter. In
the case of fixed-or variable-radius sample plots, the mean diameter is obtained
from clusters of trees instead of randomly selected individual sample trees.
In consequence, the distribution of the mean diameters of the n sample plots,
instead of the diameters of single trees, should be used to calculate a confi-
dence interval for the mean stand diameter. A weighting procedure may be
necessary, due to unequal tree numbers in these sample plots. The number of
degrees of freedom is equal to the number of clusters (= plots) minus 1. In
this situation, the central limit theorem also ensures that these mean diame-
ters are approximately normally distributed. The mean height and its confi-
dence interval are based on regression analysis. The standard deviation of the
n observed tree heights is, therefore, replaced by the standard deviation of the
regression.

Example 10.1 A compartment with an area of 6 ha is surveyed by simple
random sampling. The size of the sampling units is 0.01 ha and sample size is
25, hence N = 600. The plot volumes in cubic meters are:

1.6 3.8 1.6 1.5 3.5

5.7 1.2 1.5 3.3 4.8
3.6 6.0 1.1 4.7 6.2
1.2 7.5 1.6 6.6 1.7
6.8 3.5 4.1 3.4 1.5
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The mean and total volume and their standard errors are:

n = 25; y = 3.52 m3/0.01 ha; Ŷ = 600 · 3.52 = 2112 m3;
�y = 88.0; �y2 = 410.68

SSyy = 410.68 − 88.02

25
= 100.92; s2

y = 100.92
24

= 4.205

sy =
√

4.205
25

·
(

1 − 25
600

)

= ±0.4015; sŶ = 600 · 0.4015 = ±240.9 m3

and the corresponding confident intervals are:

95% C.I. for µy(per plot) : 3.52 ± 2.064 · 0.4015 ⇒ 2.69 4.35 m3

95% C.I. for µy(per hectare) : 3.52 ± 2.064 · 0.4015 ⇒ 269 435 m3

95% C.I. for aggregate : 2112 ± 2.064 · 240.9 ⇒ 1615 2609 m3

4.1 Sample size

Sampling based on scientific methods requires a precalculation of the sample
size, before conducting the field survey. The estimate should ensure that a given
maximum error will not be exceeded with a specified probability equal to or less
than (1 − α). The selection of a 90% probability implies a risk of 1 in 10 that
the specification will not be achieved, a 99% probability is associated with a
risk of 1 in 100. Suppose that the mean volume per hectare is to be estimated
with an error not in excess of E units. The maximum error, for an associated
probability of 0.95, and based on sampling without replacement is as follows:

Population mean: E = tα · sy√
n

·
√

1 − n
N

Population total: E = tα · N · sy√
n

·
√

1 − n
N

In practice, it may be more useful to express the maximum error in terms of a
percentage of the true, but unknown volume, per hectare. This implies that the
standard deviation sy in the equations for sampling mean should be replaced by
the coefficient of variation sy(%):

E% = tα · sy(%)√
n

·
√

1 − n
N
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Furthermore, if the variance of the population is known, the formulae reads as
follows

Population mean: E = zα/2 · σy√
n

·
√

1 − n
N

Population total: E = zα/2 · N · σy√
n

·
√

1 − n
N

where z = unit normal variate. Since the true variance is usually unknown, the
sample variance replaces the population variance and the t-statistic replaces
the unit normal variate. The above equation must be solved by trial and error.
An estimate for σ 2 may be available from previous surveys or can be obtained
by sampling. In that case, the sampling procedure is carried out in two stages.
The stage 1 sample serves primarily to estimate σ 2, which is necessary to deter-
mine the required sample size. If the stage 1 sample, because of cost constraints
might contain few observations, the population variance σ 2 is estimated inac-
curately. Confidence intervals for the population variance based on sampling
are notoriously wide. To illustrate the dilemma, we consider a dataset consist-
ing of the basal areas, measured on four 12 × 12 m sample plots in a P. radiata
plantation. The observed basal areas were 0.771 m2, 0.488 m2, 0.911 m2, and
1.183 m2, respectively. The sample variance is 0.2514 and limits of the 0.90
confidence interval for the population variance is obtained from the equation

s2
y

χ2
0.05,4

< σ 2 <
s2

y

χ2
0.95,4

with χ2
0.05,4 df = 9.49 and χ2

0.95,4 df = 0.71. The resultant limits are

0.026 < σ 2 < 0.354.

The confidence limits are obviously too wide to be useful for a determination
of the required sample size. Alternatively, it may be possible to recover the
coefficient of variation from past inventories and to fit a regression equation
with age, site index, species, and management regime as independent variables
and the coefficient of variation as the target variable.

The formula for the maximum error E as a function of sample variance,
confidence coefficient, and sample size

E = tα,n−1

√
s2

n

is solved for n

n =
[
tα,n−1

s
E

]2
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Adjusting the formula for the finite population gives

n = 1
E2

t2
α,n−1

+ 1
N

The standard deviation is replaced by the coefficient of variation when the max-
imum allowable error is defined in terms of a percentage.

Stauffer (1982) improved the commonly used iterative procedure for esti-
mating sample size in unrestricted random sampling, since the latter does not
always converge to the population mean. The formula for the required sample
size

n = t2
α

(
sy%
E%

)2

where E , expressed as a percentage of the mean, is rewritten as follows:

n
t2 =

(
sy%
E%

)2

The expression on the left-hand side is evaluated for a series of ascending values
of n, until convergence has been reached and n/t2 = (sy%/E%)2.

Example 10.2 Sample plots were established in a compartment of 15 ha.
The size of the sample plots was 0.04 ha, hence N = 375. From previous,
inventories it was known that the coefficient of variation of the plot volumes
was about 32%. It was required that there were to be a less than 1:20 chance
of the error exceeding 10% (probability of risk). As a first approximation,
we assume n = 25. The associated number of degrees of freedom is 24 and
t0.05(two tailed) = 2.064. Hence

n = 2, 0642322

102 = 44

Since t0.05(43d f ) = 2.021, the estimated sample size is adjusted accordingly

n = 2.0212 · 322

102 = 42

Two or three iterations are usually sufficient to reach convergence. The resultant
estimate is inevitably conservative because of sampling without replacement.
Adjusted for the finite population, the required sample size is approximately 38.

The formula for calculating sample size may be simplified by inserting
a t value of 2 into the above equation. This approximation is acceptable,
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if a 5% probability to exceed the maximum error is specified and sample size
is greater than 30.

Random sampling, although being a prerequisite to obtain unbiased esti-
mates of the population mean and total and their variance, does not guarantee
that the estimate is indeed unbiased. Bias may be associated with the following
sources
• Instrument errors (see Chapter 3)
• Operator bias, for example, when there is a tendency to either include or

exclude trees growing on plot boundaries
• Bias associated with the method used to estimate parameters, for example,

by using the arithmetic mean diameter to estimate the diameter of the tree
with the mean volume

• Applying ridge regression instead of ordinary least squares to estimate the
parameter vector, or calculating an unweighted mean in those cases where
weighting is more appropriate

Possible sources of bias should be identified, but at the same time the implica-
tions of reducing or completely eliminating bias should be considered. Some
sampling methods, for example, produce slightly biased estimates, but are pre-
ferred to others because of a higher precision or lower cost.

Yandle et al. (1981) noted the fundamental difference between the basic
principle of simple random sampling and fixed-radius circular plot sampling.
Simple random sampling requires a subdivision of the forest into N mutually
exclusive, equally large plots and assumes that any part of the forest is located
within one of the sampling units. However, when the forest is subdivided into
mutually exclusive circular plots, 21% of the forest area is excluded, i.e., is not
located within this population of circular plots. The authors concluded that “the
definition of the population as non-overlapping circular plots is not satisfactory,
either when sampling is to be with randomly located plots or when plot centers
are placed on a systematic grid with a random start.” It was suggested that plots
must be allowed to overlap, as in point sampling.

5 ERROR PROPAGATION

In many sampling studies, the subject estimate (z̄) is defined as the sum, differ-
ence, product, or ratio of two or more estimates, x̄ and ȳ, or it is defined as a
linear combination of x̄ and ȳ : ·z̄ = c1 x̄ + c2 ȳ : z̄ = c1 x̄ + c2 ȳ. In such cases,
the variance of z̄ is a function of the variances of x̄ and ȳ.
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Equation Variance
1. z̄ = x̄ + ȳ s2

z̄ = s2
x̄ + s2

ȳ + 2sxy

2. z̄ = c1 x̄ + c2 ȳ s2
z̄ = c2

1s2
x̄ + c2

2s2
ȳ + 2c1c2sxy

3. z̄ = x̄ − ȳ s2
z̄ = s2

x̄ + s2
ȳ − 2sxy

4. z̄ = x̄ · ȳ s2
z̄ = ȳ2s2

x̄ + x̄2s2
ȳ + 2 · x̄ · ȳ · sxy

5. z̄ = x̄
ȳ

s2
z̄ = z̄2

[
s2

x̄

x̄2 + s2
ȳ

ȳ2 − 2sxy

x̄ · ȳ

]

6. z̄ = c · x̄ · ȳ s2
z̄ = c2(ȳ2s2

x̄ + x̄2s2
ȳ + 2 · x̄ · ȳ · sxy)

where

c, c1, c2 = Constants

s2
x̄ , s2

ȳ = Variances of x̄ and ȳ

s2
x̄ =

∑
x2 −

(∑
y
)2

n
n(n − 1)

and s2
ȳ =

∑
y2 −

(∑
y
)2

n
n(n − 1)

sxy = Covariance between x̄ and ȳ

sxy =
∑

xy −
∑

x
∑

y
n

n(n − 1)
or sxy = r · sx̄ sȳ

when x̄ and ȳ are

when x̄ and ȳ are independent ⇒ sxy = 0.

Case (1) and (2) arise in a sampling study, for example, to estimate the tree bio-
mass defined as the sum of the biomass of crown and bole. The estimates are
usually obtained by matched sampling, with both biomass components deter-
mined on a sample of n trees from the population. Case (3) occurs in a similar
sampling study for estimating the difference between the above- and below-
ground tree biomass and in continuous inventories to estimate changes. Case (4)
arises when calculating the variance of the estimated volume of logs obtained
by measuring the cross-sectional area at the log midpoint and its length. Case
(5) is a ratio of means estimator and occurs, e.g., when the mean volume is
estimated from the estimated total volume and estimated total area. In cases (4)
and (5) the variance of z̄ could also be obtained as follows:

(sz̄%)2 = (sx̄ %)2 + (
sȳ%

)2
,

but only if x̄ and ȳ are independent.
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The above formulae apply when a given variable represents a linear combi-
nation of other variables or is defined as a ratio or product. Other, more complex
situations occur in forest inventories.

Example 10.3 Sample plot measurements in a mixed forest, consisting of
species A and B, produced the following plot volumes:

Plots 1 2 3 4 5 6 7 8 9 10

Species A 35 27 41 43 32 38 39 31 38 36
Species B 36 40 31 28 45 41 38 44 41 47
Species A + B 71 67 72 71 77 79 77 75 79 83

The mean and total plot volume and their standard errors are:
Based on error propagation formula

ν̄A = 36 m3/plot,

ν̄B = 39.1 m3/plot, ν̄total = 75.1 m3/plot; ·s2
ν̄A

= 2.38 · (m3/plot)2,

·s2
ν̄B

= 3.65(m3/plot)2,

sĀB̄ =−1.856, s2
ν̄total

= 2.38+3.65+2 · (−1.856) = 2.32(m3/plot)2

sν̄total = ±1.51 m3/plot

s2
A = 23.78; s2

B = 36.54; sAB = −18.56;
s2
ν(tot) = 23.78 + 36.54 − 2 · 18.56 = 23.2; sν(tot) = 4.81

Based on total volumes

ν̄total = 75.1 m3/plot, s2
ν̄total

= 2.32(m3/plot)2, sν̄total = ±1.51 m3/plot

Example 10.4 Sample plot measurements in a beech stand produced a vol-
ume estimate of 320 m3/ha. The standard error of the estimated volumes was
15 m3/ha. The estimated compartment area was 10.0 ha, with a standard error
of 0.02% (0.2 ha). The estimated total volume is 3200 m3. Defining volume and
area as variables x and y, with z = x · y, we obtain an estimated total volume
of 3200 m3. The standard error in % is

sv̄ (%) =
√

0.22

102 + 152

3202 = 5
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Cunia (1965) summarized the error sources in timber volume inventories and
their consequences:
• Sampling error
• Error associated with the volume function
• Measurement errors
Gertner (1990) analyzed each of these error sources in greater detail and
in many publications, emphasized a shortcoming dealing with the precision
obtained in a forest inventory. The latter is usually evaluated in terms of the
standard deviation of the mean volume, which expresses sampling error but
ignores errors due to sources previously mentioned by Cunia (1965). To rem-
edy this situation, the author presented a method for estimating the total error
and its three components. The variance associated with the regression estimate
for a model which is linear in its parameters was estimated with conventional
formulae for linear regression. When using a function which is nonlinear in its
parameters, the error is approximated with the aid of a Taylor series expansion
about the parameter vector b, which is truncated after the first term. In order
to evaluate the effect of measurement errors, it is assumed that the observed
attribute is the sum of its true value and a component, associated with the
error of measurement, which is a normally distributed variate. The variance of
the mean volume per hectare is calculated as the sum of the variances asso-
ciated with sampling error, the error of the regression function, and measure-
ment errors of the variables in question. In addition, it contains a component
expressing the squared bias. Assuming unbiased measurements of the variables
involved (dbh, height), the mean square for sampling error as well as the total
error decreased curvilinearly with the number of plots being measured. The
assumption of a 2% bias in diameter measurements, however, induced a dra-
matic increase in the mean square for total error.

6 STRATIFIED RANDOM SAMPLING

6.1 Basic principles

The purpose of stratification is to group sampling units on the basis of homo-
geneity of the target variable. In order to generate homogeneous strata, the vari-
ables used to stratify the population (site quality, age, stand composition, stand
treatment) should be closely related to the quantity being measured. In many
instances, particularly in the inventories of large forest areas aerial photographs
are used as a basis for stratification, while it is sometimes feasible to stratify
on the basis of soil differences, identifiable on soil maps. In other situations,
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a random sample of a given size, possibly proportional to the size of the com-
partment, is drawn from all compartments within a plantation or forest district.
In that case, the population might be poststratified on the basis of tree species
(or forest type) as well as age, or on the basis of species and height classes.

Assuming that the strata and their sizes are known prior to sampling, a ran-
dom sample is drawn within each of the L strata. They represent subpopu-
lations, assumed to be more homogeneous than the parent population. The
sample mean of the j th stratum is

ȳ j =

n j∑

i=1
y ji

n j

where

y ji = measurement on the i th sampling unit in the j th stratum

n j = sample size in stratum j

and the estimated population mean and total are as follows:

ȳstr =

L∑

j=1
N j · ȳ j

N1 + ÷ · · ÷ NL
=

L∑

j=1
N j · ȳ j

N
Ŷ = N · ȳstr

where

L = number of strata

N j = size of the j th stratum

N = population size

The mean of the stratified population is therefore calculated as a weighted mean
of the stratum means with weights assigned in proportion to stratum sizes. The
estimated variance of the j th stratum is

s2
j =

n j∑

i=1

(
y ji − ȳ j

)2

n j − 1

and the variance of the j-stratum mean, corrected for the finite population, is

s2
ȳ j

= s2
j

n j
·
(

1 − n j

N j

)
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If required, the standard error of a stratum mean and total might be used to
calculate a confidence interval either for the mean and aggregate of the j th
stratum. An unbiased estimate of the variance of the population aggregate is
obtained by adding the variances of the estimated stratum aggregates. The
covariances are zero, since the L strata are sampled independently. It can be
shown that the variance of the stratified population mean and total can be esti-
mated from

s2
ȳstr

= 1
N 2 ·

L∑

j=1

[
N 2

j

n j
· s2

j ·
(

1 − n j

N j

)]

or s2
ȳstr

= 1
N 2

L∑

j=1

[

· N j

n j
s2

j (N j − n j )

]

s2
Ŷ

=
L∑

j=1

[
N 2

j

n j
· s2

j ·
(

1 − n j

N j

)]

or s2
str = 1

N 2

L∑

j=1

[

· N j

n j
s2

j (N j − n j )

]

The formulae can be simplified, if the strata were sampled proportional to stra-
tum size.

Example 10.5 Fixed-radius 0.1 ha sample plots were laid out in a compart-
ment with an area of 60 ha, subdivided into three age strata. The stratum areas
were 18.4, 17.6, and 24.0 ha, respectively. The observed plot volumes in cubic
meters were

Stratum n y
j

1 8 44 37 31 38 28 40 33 40
2 7 13 16 17 20 15 15 20
3 10 59 55 57 65 56 65 58 44 44 50

Stratum N j n j ȳ j SSy s
2
j s j sȳ

j

1 184 8 36.38 197.9 28.27 5.32 1.88
2 176 7 16.57 41.7 6.95 2.64 1.00
3 240 10 55.30 496.1 55.12 7.42 2.35

ȳstr = 184 · 36.38 + 176 · 16.57 + 240 · 55.30
600

= 38.14 m3/0.1 ha

Ŷ = 600 · 38.14 = 22884 m3
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The variance of the mean is

s2
ȳstr

= 1
6002 ·

[
184
8

· 28.27 · (184 − 8) + 176
7

· 6.95 · (176 − 7)

+ 240
10

· 55.12 · (240 − 10)

]

= 1.245

sȳstr = 1.115; s2
Ŷ

= 448200; sŶ = 669.5 m3

The (1−α) confidence interval for the population mean and total are as follows:

ȳstr ± tα,
∑

(n j −1) · sȳstr 38.14 ± 2.074 · 1.115 : 35.86 40.41

Ŷ ± tα,
∑

(n j −1) · · · · sŶ 22884 ± 2.074 · 669.477 : 21496 24272

The efficiency of stratified random sampling can be assessed by estimating the
variance from the pooled data obtained from the L strata. It gives a reliable
estimate of the variance of an unrestricted random sample in the case of pro-
portional allocation. Cochran (1977) introduced the more correct estimate

s2
ȳsrs

= N − n
n (N − 1)

·
⎡

⎣ 1
N

L∑

j=1

Nj

nj

nj∑

i=1

y2
ji − ȳ2

str + s2
ȳstr

⎤

⎦

This formula applies in case of a nonproportional allocation.

Example 10.5 (continued)
In the present example the variance estimate obtained by pooling is

s2
y =

L∑

j=1

n j∑

i=1

(
yi j − ȳ

)2

24
= 290

and

sȳsrs ≈
√

290
25

·
(

1 − 25
600

)

= 3.334

Applying the correct formula gives

sȳsrs =

√
√
√
√
√
√

⎛

⎜
⎝

184
8

· 10783 + 176
7

· 1964 + 240
10

· 31077

600
− 38.142 + 1.245

⎞

⎟
⎠ ·

(
600 − 25
599 · 25

)

= 3.31 m3/0.1 ha

The standard error of the mean of the stratified population is 1.115. The ratio
of the squared standard errors is 9 to 1. In consequence, a ninefold increase of
the sample size is required to match the precision of stratified random sampling.
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6.2 Allocation methods

6.2.1 Proportional allocation

The simplest rule is to allocate the n sampling units proportional to the size of
the strata

nh = n
Nh

N
which is rounded off to the nearest integer.
The required total sample size is

n =

L∑

j=1

N j

N
· s2

j

s2
ȳstr

(sampling with replacement) or

n =

L∑

j=1

N j

N
· s2

j

s2
ȳstr

+
L∑

j=1

N j · s2
j

N 2

(sampling without replacement)

Proportional allocation is appropriate if the stratum variances are equal and
is furthermore applied when no prior knowledge is available on the variances
within the L strata.

6.2.2 Optimum allocation

There are frequently significant differences between the variances of the plot
volumes observed in the L strata. In that case, the optimum allocation rule
performs better than proportional allocation. It represents an optimum strategy,
i.e., it minimizes the variance of the estimated population mean and total for
the total sample size to be fixed. The allocation rule is

nh = Nhsh
L
�Nhsh

Total sample size is

n =

(
L∑

j=1

N j

N
· s j

)2

s2
ȳstr

(sampling with replacement)
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or

n =

(
L∑

j=1
N j · s j

)2

N 2 · s2
ȳstr

+
L∑

j=1

(
N j · s2

j

) (sampling without replacement)

6.2.3 Optimum allocation with variable sampling cost

This modified allocation rule is an improvement over the previous one, and
should be applied if the sampling cost per sampling unit varies across strata.
Certain parts of the forest, for example, may be more easily accessible than
others, in which case the enumeration cost per sampling unit are lower.
The following rule produces the highest precision for fixed total sampling
cost:

n j =
(
N j · s j

)
/
√c j

L∑

j=1

((
N j · s j

)
/
√c j

)
· n

The required total sample size is

n =

L∑

j=1

(
N j

N
· s j · √c j

)

·
L∑

j=1

N j

N
·s j

√c j

s2
ȳstr

(sampling with replacement)

or

n =

L∑

j=1

(
N j
N · s j · √c j

)
·

L∑

j=1

N j
N ·s j√c j

s2
ȳstr

+
(

L∑

j=1

N j
N · s2

j

)

/N

(sampling without replacement)

where c j = the cost per sampling unit in the j th stratum.

Example 10.6 The total sample size for the data in Example 5 is 25. Propor-
tional allocation gives the following estimates:

n1 = 184
600

· 25 ∼= 8, n2 = 176
600

· 25 ∼= 7, n3 = 240
600

· 25 ∼= 10
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The optimum allocation rule gives

n1 = 184 · 5.32
184 · 5.32 + 176 · 2.64 + 240 · 7.42

· 25 ∼= 7

n2 = 176 · 2.64
184 · 5.32 + 176 · 2.64 + 240 · 7.42

· 25 ∼= 4

n3 = 240 · 9.63
184 · 5.32 + 176 · 2.64 + 240 · 7.42

· 25 ∼= 14

Assuming c1 = 8, c2 = 10, and c3 = 6, optimum allocation with variable
sample cost gives

n1 = 184 · 5.32/
√

8
(

184 · 5.32√
8

+ 176 · 2.64√
10

+ 240 · 7.42√
6

) · 25 ∼= 7

n2 = 176 · 2.64/
√

10
(

184 · 5.32√
8

+ 176 · 2.64√
10

+ 240 · 7.42√
6

) · 25 ∼= 3

n3 = 240 · 7.42/
√

6
(

184.
5.32√

8
+ 176.

2.64√
10

+ 240.
7.42√

6

) .25 ∼= 15

The optimum allocation with variable cost requires a smaller sample in strata 1
and 2 and a larger sample in stratum 3.

6.3 Poststratification

The conventional formulae for estimating the mean and its variance of a
stratified population assume that the subdivision of this population into
homogeneous strata is carried out prior to the selection of sampling units.
In certain situations, however, this may be either impossible or prohibitively
time-consuming. When stratifying a population on the basis of forest types,
for example, it is frequently possible to define the strata and to obtain their
area from aerial photographs. In that case, the population ratio N j/N is known
for each of the L strata, but it may not be feasible to draw the sample before
conducting the field survey. In such cases, it is more efficient to poststratify
the population, i.e., to allocate the sampling units on the basis of quantitative
or qualitative information obtained from the sample. It implies that each sam-
pling unit is allocated to one of the strata, but only after completing the field
work. The sample mean of the j th stratum is obtained from the formula, which
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is identical to that applied in calculating the estimated population mean of a
prestratified population with proportional allocation:

ȳp.str =
L∑

j=1

Wj · ȳj

We note that the true value of W j = N j/N is assumed to be known. The
variance of the mean is obtained from the following formula:

s2
ȳp.str

= N − n
n · N

L∑

J=1

(
N j

N
· σ 2

j

)

+ 1
n2

L∑

j=1

(
N − N j

N
· σ 2

j

)

The first term expresses the variance of the estimated mean based on pro-
portional allocation. The second term, which has the effect of increasing the
calculated variance, is due to the nonproportional distribution of n j . For com-
putational purposes, the stratum variances are estimated from the sample.

Example 10.7 The data in Example 10.5 are used to illustrate the effect
of poststratification on the variance of the mean. In order to use this dataset,
the above formula, which applies to proportional allocation, was modified to
account for nonproportional allocation in this example.

The resultant estimates of the variance components were

N − n
n · N

·
L∑

j=1

(
N j

N
· s2

j

)

= 1.25565

N − n
n2 · (N − 1)

·
L∑

j=1

(
N − N j

N
· s2

j

)

= 0.08844.

The variance and the standard error of the mean were

s2
ȳpstr

= 1.34409 1.34778 and sȳpstr = ±1.16 m3/0.1 ha

For comparison: sȳsrs = ±3.31 m3/0.1 ha; and sȳstr = ±1.12 m3/0.1 ha

6.4 Block Sampling

Block sampling is sometimes defined as a modified version of stratified random
sampling. Instead of pre- or post-stratifying the population on the basis of uni-
formity and homogeneity of the forest within the strata, block sampling subdi-
vides the population into equally large blocks, which are statistically equivalent
with strata. It can be expected that the block means differ significantly, since
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sampling units which are located far apart, will tend to be less alike than those
located nearer to one another, for example, because of a one or two-directional
trend. In that case, the subdivision into blocks, which are sampled at random
and independently, is slightly more efficient than unrestricted random sampling,
although less efficient than stratified random sampling, because of the rigid lay-
out of blocks. In the case of approximately equal large blocks, and equal sam-
ple sizes within blocks, the sampling fractions are approximately the same for
all blocks. The estimated population mean is found as the mean of the block
means and the variance calculations are identical to those for stratified sam-
pling. However, assuming that there are no significant differences between the
stratum variances, the variance formula can be somewhat simplified by pooling
the data from the L blocks.

The variance of the mean can be estimated by

s2
ȳbl

=

L∑

j=1

n j∑

i=1
x2

j i −

L∑

J=1

( n j∑

i=1
x ji

)2

n j

n · (n − L)
·
(

1 − n
N

)

Example 10.8 The previously described P. radiata stand is used to illustrate
block sampling. After rigidly subdividing the stand into 6 blocks, a random
sample of size 5, representing a sampling fraction of 0.10, is drawn within each
block. The sampling units consist of 4 × 4 rows of trees. The observed basal
areas are given in Table 10-3.

ȳbl = 10.059
30

= 0.3353 m2

s2
ȳbl

=
3.792879 − 16.860419

5
30 · 24

= 0.0005844 and sȳbl = 0.024 m2

Table 10-3. Observed basal areas of 4 × 4 row plots

Block Basal Area (m2) Mean

1 0.291 0.408 0.253 0.274 0.185 0.282
2 0.291 0.365 0.238 0.463 0.483 0.368
3 0.155 0.351 0.300 0.096 0.281 0.237
4 0.577 0.137 0.252 0.225 0.431 0.324
5 0.274 0.359 0.403 0.347 0.363 0.349
6 0.406 0.370 0.450 0.429 0.602 0.451
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The estimated population mean in example 8 is 0.3353 m2 and its standard error
is 0.024 m2. In order to evaluate the efficiency of the arbitrary subdivision into
blocks, an analysis of variance was calculated to test the difference between
block means. The resultant mean square within blocks was 0.0118, the calcu-
lated F value for testing differences between block means was 1.52, with 5
and 24 degrees of freedom and indicated that the differences between block
means were nonsignificant. Ignoring the subdivision into blocks and pooling
the data produces a variance estimate of 0.0144 and a standard error of 0.022.
It confirmed that the error variance could not be reduced by blocking. Due to
the loss of degrees of freedom, block sampling does not perform better than
unrestricted random sampling, unless there are significant differences between
block means. This occurs if there is a linear or nonlinear trend across the pop-
ulation to be sampled, for example, when sampling a stand located on a slope,
with shallow soil in the upper and a much deeper soil in the lower section of
the stand. In the present example, block sizes were equal, but block sampling
can also be applied to unequal stratum sizes, which are likely to occur in the
practice of forest inventories.

7 REGRESSION AND RATIO ESTIMATORS

7.1 Regression estimators

Suppose that the volume of a stand is to be estimated by felling and sectionwise
measurement of sample trees. The mean dbh of the stand is known from a recent
complete stand enumeration. The tree basal area, which is closely and linearly
correlated with tree volume, is introduced as an auxiliary variable to obtain a
higher precision for the estimated total stand volume. The estimator is

yreg = ȳ + b (µx − x̄)

which is equivalent with the equation

yreg = a + bx

Hence

ȳreg = ȳ + b (µx − x̄) or ȳreg = a + bµx

where µx and x̄ = population and sample mean of x , respectively. The sample
is drawn at random, but without replacement, in which case the standard error
of this estimate is approximately
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sȳreg = N − n
N

M Serror

(
1
n

+ (x̄ − µx )
2

SSxx

)

SSxx =
n∑

i=1

x2
i −

( n∑

i=1
xi

)2

n

In large samples, the quantity (x − µx )
2/SSxx can be ignored. Cochran (1977)

introduced an approximation based on sampling without replacement in finite
populations

s2
ȳreg

=
1 − n

N
n

s2
y

(
1 − r2

)

where r = correlation coefficient between x and y.

Example 10.9 A complete enumeration of a 2.7 ha beech stand was carried
out to determine the quadratic mean stand diameter. The number of trees and
quadratic mean diameter were 1523 and 23.2 cm respectively. A random sample
of 15 trees was felled and their volume determined by sectionwise diameter
measurements (Table 10-4).

y = −0.103 + 0.00118 · x, where x = d2 and y = volume

r = 0.983; s2
y.x = 0.01672

13
= 0.001286; SSxx = 344975.6

s2
ȳreg

= 0.001292 ·
(

1
15

+ (565.83 − 538.24)2

344975.6

)

· 1523 − 15
1523

= 0.0000881

sȳreg = ±0.009 m3/tree

Table 10-4. DBH and tree volume (m3) of sample trees

dbh (cm) Volume (m3) dbh (cm) Volume (m3) dbh (cm) Volume (m3)

17.2 0.235 27.7 0.770 20.5 0.445
25.2 0.690 28.5 0.880 22.0 0.444
25.3 0.635 20.4 0.331 22.4 0.524
26.4 0.692 24.2 0.553 23.6 0.530
27.6 0.820 18.5 0.324 23.9 0.608
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Based on Cochrans’s formulae (Cochran 1977) we obtain

s2
y = 0.03561 and s2

ȳ = 0.002374

s2
ȳreg

= 1523 − 15
1523 · 15

0.03561 · (1 − 0.9832) = 0.0000792 → sȳreg

= ± 0.009 m3/tree

Q =
s2

ȳreg

s2
ȳ

= 0.037 or
1
Q

= 26.9 ȳrs = v̄ = 8.482
15

= 0.565

x̄ = (
dq
)2 =

∑
(d2)

n
= 8487.46

15
= 565.83 (sample); . . . µx = 23.22

= 538.24 (population)

ȳreg = 0.565 + 0.00118 · (538.24 − 565.83) = 0.532 m3/tree or

ȳreg = − 0.103 + 0.00118 · 538.24 = 0.532 m3/tree

v̄reg = 0.532 ± 0.09 m3/tree

The ratio Q of the variance of regression estimate over that of the SRS esti-
mate is always smaller than 1. The regression estimator therefore, reduces the
standard error of the estimated population mean. The gain is substantial if x
and y are closely and linearly correlated. In example 10.9, the ratio (1/Q) is
26.9. In simple, i.e., in unrestricted random sampling (SRS), a sample size of
404 (=15·26.9) would have been necessary to match the precision of the regres-
sion estimator. The regression estimate, however, is biased if the assumption of
a linear relationship between x and y is not satisfied.

7.2 Ratio estimators

The previously discussed regression model assumes that x and y are linearly
related, with the regression line, which does not necessarily pass through the
origin. Assuming that y = 0 for x = 0, it is appropriate to fit the zero-intercept
equation y = bx . Schumacher et al. (1954), for example, conducted a sam-
pling study in a nursery to estimate the number of plantable seedlings from
the total number of seedlings in seedbeds. Assuming that the variance of y is
independent of x , the least squares estimate of the parameter β is

b =
n∑

xy
n∑

x2
.
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The variance of the regression coefficient b is

s2
b = M Serror

∑
x2 with M Serror =

∑
(y − bx)2

n − 1

The (1 − α) confidence interval for β is

b ± t1/2α,n−1sb

Assigning a weight of 1/xi to the i th observation generates the ratio of means
estimator

�
Rrm = �n y

�nx
= ȳ

x̄
with variance

s2
�
Rrm

= N − n
nN x̄2 ·

[

s2
y + �

R
2 · s2

x − 2
�
R · syx

]

= 1 − f
nx̄2

[

s2
y + �

R
2 · s2

x − 2
�
R · syx

]

where f = n/N (Cochran 1977). The estimated population total is
�
Y mr = X R̂rm

and because of the relationship
�
Y mr = N X R̂rm , the estimated variance for the

population total is

s2
Ŷ rm

= N 2

n
· (1 − f ) ·

[
s2

y + R̂2 · s2
x − 2R̂ · syx

]

The ratio of means estimator is slightly biased, but the magnitude of bias
decreases with increasing n (Hansen et al. 1953; Cochran 1977; de Vries
1986).

Assuming that the regression line y = bx passes through the origin, but the
variance of y is proportional to x2, a weight proportional to 1/x2

i is assigned to
the i th observation. Minimizing the sum of weighted residuals gives the mean
of ratios estimator

Rmr =
∑ yi

xi
n

=
∑

ri

n

The resultant variance of Ŷ is

s2
Ŷ mr

= X2 s2
r

n

(
1 − n

N

)
where X =

N∑

i=1

xi

and

s2
r =

n∑

i=1
(ri − r̄)2

n − 1
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Table 10-5. Squared dbh and crown volume of sample trees

dbh2 vcr dbh2 vcr dbh2 vcr dbh2 vcr

343.8 6.1 534.2 36.3 1124.1 57.7 1024.3 87.2
382.5 9.4 570.1 28.1 619.6 34.8 1073.6 88.6
392.5 31.0 684.4 59.8 853.2 61.7 1356.4 90.9
412.9 19.9 838.4 61.9 976.1 81.1 1394.1 139.9
522.6 31.4 883.2 56.7 976.1 61.2 1413.2 46.0
477.2 43.4 1057.0 58.8 992.0 54.8 – –

However, the estimator is biased. Several authors reported on its erratic behav-
ior (Cunia 1981; Van Hensbergen 1994).

Example 10.10 The diameter, crown width, crown diameter at the base of the
light crown (cw) and the length of the light crown (cl) of 23 trees in a 4.7 ha P.
radiata stand, with a total of 2524 trees, were measured to estimate the volume
of the light crown (vcr ). The latter was calculated by assuming a conical shape
of the light crown:

vcr. = π

12
cw2 · cl

The population mean of the auxiliary variable d2 was 28.12 (=789.61).

The calculation of the ratio of means estimator is as follows:
∑

x = 18901.4; x̄ = 821.8;
∑

y = 1246.7; ȳ = 54.21

∑
xy = 1203786; R̂rm = 54.21

821.8
= 0.066;

X̂ = 2524 · 28.12 = 1992976

s2
x = 112856; s2

y = 910.6; syx = S Pxy

n − 1
= 8144.6

Ŷ = 1992976 · 0.066 = 131536 m3
(
= 27986 m3/ha

)

s2
�
Rrm

= 1
821.82

(
1 − 23/2524

23

)

·
(

910.6 + 0.0662 · 112858

− 2 · 0.066 · 8144.6
)

= 0.0000210

s2
�
R

= 25242 · 2524 − 23
2524.23

·
[
910.6 + 0.0662 · 112858 − 2 · 0.066 · 8144.6

]

= 90582160

sŷ = 9517.47
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For the data in the previous example, the mean of ratio estimators and its stan-
dard error are

R̂mr = 0.0638; s2
R = 0.00044; sR = 0.021; X = 1992976

(
= 2524 · 28.12

)

s2
Ŷmrr

= 1992976 · 0.00044
23

·
(

2501
2524

)

= 37.779; s�
Y mr

= 6.15

In an attempt to overcome bias associated with ratio of means and means of
ratio estimators, Hartley et al. (1954) suggested the following estimator for the
population total

ŷ = X R + n (N − 1)

n − 1
(ȳ − Rx̄)

where X = population total for x and Rrmb = ratio of means. Mickey (1959)
proposed dividing the sample into g groups of size m, with n = mg. The esti-
mator for the population total is

ŷ = xr̂g + (N − n + m) · g · (ȳ − rg x̄
)

with

r̄g =
g∑

r j

g

and

r j = nȳ − mȳ j

nx̄ − mx̄ j

8 DOUBLE SAMPLING (TWO-PHASE SAMPLING)

8.1 Double sampling for regression estimators

The regression and ratio estimators assume that the population mean and total
of the auxiliary variable are known. This situation arises if the mean height
of a research plot is to be estimated, with the auxiliary variable dbh measured
on each tree within a given plot. In many cases however, the population mean
of x is unknown, for example, when estimating the mean height of the entire
stand. However, in this case also, dbh is a useful auxiliary variable, which can
be measured cheaply and quickly in a large sample of n1 trees drawn at random
and height measurements restricted to a subsample of size n2. The equation

y = b0 + b1x
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is fitted to the subsample and produces an unbiased estimate for tree height for
given dbh.

An unbiased estimate for the population mean of y is obtained from

ȳds = ȳ + b (x̄1 − x̄2) or

ȳds = b0 + b1 x̄1

where x̄1 = sample mean for main sample, x̄2 = sample mean for subsample.
The variance of the regression estimator of the population mean is

syreg = s2
y

1 − r2
xy

n2
+ r2 s2

y

n1
− s2

y

N
= s2

y ·
(

1 − r2

n2
+ r2

n1
− 1

N

)

and assumes that the population size is approximately known. For r = 0, we get

s2
ȳds

= s2
y ·
(

1
n2

− 1
N

)

= s2
y

n2
·
(

1 − n2

N

)

which is identical to the formula for unrestricted random sampling with
replacement.

Example 10.11 The data in Example 10.9 are used to illustrate double sam-
pling with regression estimates. We assume the mean of the squared diameters,
obtained from a random sample of size 299, was 542.89 cm2. The total number
of trees was 1523, the estimated quadratic mean diameter and the mean of the
squared diameters, based on the subsample, were 23.8 cm and 565.83 cm2, the
variance of the observed volumes was 0.03561 and r = 0.983.

Hence ȳds = −0.103 + 0.00118 · 542.89 ∼= 0.538 m3/tree

s2
ȳds

= 0.03561 ·
[

1 − 0.9832

15
+ 0.9832

299
− 1

1523

]

= 0.0001717
(

m3/tree
)2

sȳds = ± 0.013 m3/tree

If the present data had been generated by an unrestricted random sample, the
variance of the mean would have been 0.03561/15 = 0.002374. The regression
estimator produced a variance of 0.0000881 and the variance estimate based on
double sampling is 0.0001717. The latter represents a considerable improve-
ment over simple random sampling, but exceeds that obtained with the regres-
sion estimator because of the unknown population mean of the quadratic mean
diameter.

The data in the previous example, with N = 1523 and n2 = 50 may be
used to illustrate the effect of the correlation coefficient between the auxiliary
variable y and the subject variable x as well as the effect of the size of the
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Figure 10-9. Effect of r and size of the primary sample on the variance of the mean.

initial sample on the variance of the double-sampling estimator for the mean.
The calculations are carried out for the observed r = 0.938 and for r = 0.5
and r = 0.7, respectively. The results are shown in Figure 10-9.

The previous formulae apply for large n1 and n2. Cochran (1977) derived
the more accurate formula representing a hybrid between conditional and aver-
age variance

s2
ȳds.

= s2
y.x

[
1
n

+ (x̄2 − x̄1)
2

∑
(x2 − x̄2)

2

]

+ s2
y − s2

y.x

n2
− s2

y

N

Double sampling can be extended to more than one auxiliary variable to be
measured in phase 1, especially when using aerial photographs in phase 1. The
variance formula is modified accordingly

s2
ȳds.

= s2
y · (1 − R2)

n2
·
[

1 + n1 − n2

n2
· k

n2 − k − 2

]

+ R2 · s2
y

n1
− s2

y

N

where R = multiple correlation coefficient, k = number of auxiliary variables
(khan et al. 1967). However, this approach is not effective when then number
of auxiliary variables is less then 3.

Double sampling finds useful applications in forest inventories since aer-
ial photographs are available to obtain quick and inexpensive estimates of the
auxiliary variable. A large number of photoplots is established either at random
or in a square lattice. The auxiliary variable or variables are measured on all
photoplots. A random subsample of size n2 is drawn from the main sample and
measured on the ground. In general, two-phase sampling is efficient only if the
auxiliary variables and the subject variable y are closely correlated. In this par-
ticular example, there may be practical problems, for example, in relocating the
photoplots on the ground. If there is no complete overlap of photo-and ground
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plots, the two estimates may be poorly correlated and two-phase sampling will
not be more cost-efficient than simple random sampling.

8.1.1 Optimum allocation

The measuring costs have to be taken into account, upon deciding how many
sampling units will be measured in phase 1 and how many in phase 2. The total
cost of sampling is

C = n1c1 + n2c2

where c1 = cost per unit of phase 1 sample and c2 = cost per unit of the phase 2
sample of the subject variable y. For the fixed total cost C , the optimum values
of n1 is

n1 = C

c1 + c2

√
1 − r2

r2 · c1

c2

For a specified maximum error of the mean, the size of the phase 1 sample is
obtained from

n1 = s2
y

s2
ȳds

·
((

c2

c1
· r2 ·

(
1 − r2

))0.5

+ r2

)

Let

Q =
((

c2

c1
· r2 ·

(
1 − r2

))0.5

+ r2

)

The effect of cost ratio and r on Q which expresses the ratio of the variance
of the mean obtained by regression analysis to that obtained from random sam-
pling is shown in Figure 10-10. In both cases n2 is obtained from

n2 = n1 ·
√

1 − r2

r2 .
c1

c2

Example 10.12 If the total sampling cost in the previous example is fixed at
1000 units and c1 and c2 are 5 and 25 units, respectively, the optimum values
of n1 and n2 are

n1 = 1000

5 + 25 ·
√

1 − 0.9832

0.9832 · 5
25

∼= 141; n2 = 141 ·
√

1 − 0.9832

0.9832 · 5
25

∼= 12
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Figure 10-10. Influence of cost ratio and correlation coefficient on Q.

Specifying a variance of the mean of 0.0002 units, the optimum size of the
initial sample is

n1 = 0.0356
0.0002

·
(

25
5

· 0.9832 ·
(

1 − 0.9832
)

+ 0.9832
)

∼= 201;

n2 = 201 ·
√

1 − 0.9832

0.9832 · 5
25

∼= 17

8.2 Double sampling for stratification

Prestratification assumes that the relative sizes of the strata are known. In many
situations however, this assumption is not satisfied. In such cases, an initial ran-
dom sample of size n∗ is drawn to stratify the population. The subject variable
is measured on a random subsample of size n∗. Hence, w j = n∗

j/n. This double
sampling for stratification strategy requires a large initial sample, which can be
measured cheaply, for example with the aid of aerial photographs and the lay-
out and measurement of photoplots. The mean of the stratified population is
estimated from

ȳstr,ds =
j=L∑

j=1

w j ȳ j
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and its variance from

s2
ȳds.

= N − 1
N

·
L∑

j=1

[(
n∗

j − 1

n∗

)

−
(

n j − 1
N − 1

)]

· w j s2
j

n j

+ N − n∗

N · (n∗ − 1)
·

L∑

j=1

[

w j

(
ȳ−

j ȳd

)2
]

Example 10.13 The data in Example 10.5 are used to illustrate the calcula-
tion of mean and variance. The initial random sample contained 100 sampling
units. The number of units belonging to stratum 1, 2, and 3 was 32, 28 and 40,
respectively and the resultant estimated population proportions were 0.32, 0.28,
and 0.40, respectively. Contrary to prestratification, the real proportions were
unknown. As previously, the subsample was of size 25, of which 8, 7 and 10
sampling units were drawn from stratum 1, 2 and 3, respectively. The statistics
required for the calculation of the mean and variance were:

n∗
j n j w j s2

j ȳ j ȳds

32 8 0.32 28.27 36.38 38.14
28 7 0.28 6.95 16.57 38.14
40 10 0.40 55.12 55.30 38.14

A weight of n∗
j/n is assigned to each of the stratum means obtained from the

subsample. The resultant estimated population mean remains the same and is
38.14, but the revised variance of the mean is 5.554, whereas this variance,
obtained in Example 10.5 was 1.245. The much greater variance is due to the
unknown population proportions of the three strata.

8.3 Double sampling for ratio estimators

The ratio estimator assumes that the population total X for the auxiliary vari-
able x is known. In double sampling for ratio estimation, the population mean
X is estimated from the initial sample of size n1. A subsample n2 is drawn to
calculate the ratio estimator Rrm . The ratio estimate for the population mean of
y is

ȳdsrm = �
Rrm · x̄1 = ȳ

x̄2
· x̄1

with variance

s2
ȳdsrm

= s2
y − 2 · Rrm · sxy + R2

rm · s2
x

n2
+ 2 · Rrm · sxy + R2

rm · s2
x

n1
− s2

y

N
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Figure 10-11. Effect of size of primary sample on variance.

Example 10.14 The data in Example 10.10 are used to illustrate double sam-
pling for ratio estimation. We have

Rrm = 0.066; s2
y = 910.6; s2

x = 112865; sxy = 8144.6; n1 = 100; n2 = 23

s2
ȳdsrm

= 910.6 − 2 · 0.066 · 8144.6 − 0.0662 · 112865
23

+ 2 · 0.066 · 8144.6 − 0.0662 · 1128656
100

− 910.6
2524

s2
ȳdsrm

= 19.70

The variance of the mean based, on the assumption of a simple random sample
of the same size is

s2
ȳsrs

= 910.6
23

= 39.59

Double sampling reduced the variance by 50%. The effect of the size of the
initial sample on the variance is shown in Figure 10-11.

9 CLUSTER SAMPLING

9.1 Definitions

Because of the relatively low sampling fractions, which typify forest invento-
ries, the amount of time needed to travel from one sampling unit to the next is
considerable, when compared with measuring time. In the case of unrestricted
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or stratified random sampling, it is necessary to mark the randomly selected
locations of the plot centers on a stand map or aerial photograph. Thereafter,
they are relocated in the field and either fixed-radius or angle-count estimates of
the subject variable are made. In tropical forests with difficult access, even more
time is needed to relocate the plot centers. For this reason, the measurement
of sampling units in clusters may be more efficient. The following designs,
which are known as satellite designs, illustrate cluster sampling in forest
inventories:
• The US Forest Service (USDA For. Serv., 1968) introduced the ten-point

cluster in combination with angle count sampling and a basal area factor of
approximately 8.6. The sampling points were located at the corner points of
10 equilateral triangles, with 21 ft long sides.

• Loetsch (1957) introduced the camp unit system for a forest inventory in
Thailand. The recording units consisted of 0.05 ha plots located at the four
corners of a 400 × 400 m2 tract. The tracts were combined in units, posi-
tioned along the perimeter of a circle and 7 units were positioned with the
camp as survey center. The design was described as a triple satellite system
(Figure 10-12).

• The Swedish and German national forest inventories are also based on the
tract system, with a systematic spatial distribution of the tracts on survey

Figure 10-12. Camp unit system of the forest inventory in Thailand.
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Figure 10-13. Satellite system for the forest inventory in East Kalimantan.

lines running east-west. Similar designs are used for the forest inventory in
Finland and Austria.

• The six-tree sample, introduced by Prodan (1968) and the n-tree sample,
introduced by Trisl (1998) for estimating peeling damage in Germany can
also be interpreted as small-cluster samples.

• The design, developed for a forest inventory in East Kalimantan (Soeyitno
1989) is shown in Figure 10-13.

9.2 Estimators

We assume that the population consists of N clusters of which n clusters are
selected at random. Each selected cluster contains M subunits, on which the
subject variable is measured. The following notation is introduced:

YL , ȳL = total and mean of the M observations in the i th cluster

Y, ȳ = estimated population total and mean

σ 2
b = variance between clusters

σ 2
w = variance within clusters
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The unbiased estimator for the population mean µy is given by

y =
n∑ M∑

yi j

nM
.

The sample estimator

s2
w =

n∑(
yi j − ȳi

)2

n · (M − 1)

represents an unbiased estimator of the variance within clusters, whereas

s2
b =

n∑(
yi − y

)2

n − 1

estimates the variance between clusters. The sample estimate of the variance
among subunits, ignoring clusters, is

s2 =
n∑ M∑(

yi j − y
)2

n (M − 1)

The variance of the overall mean is

σ 2¯̄y = σ 2
b

n
and is estimated from

s2¯̄y = s2
b
n

In order to quantify the efficiency of cluster sampling, the between-clusters
variance may be written as follows

σ 2
b = s2 [1 + (M − 1)rI ]

M
where rI = intracluster correlation coefficient, expressing the correlation
between the elements of pairs of sampling units within clusters, averaged over
the N clusters. The variance s2 ignores clusters and, to some extent, represents
an estimate resulting from simple random sampling. Since the variance of the
mean of the n clusters is estimated as s2

b/n and the variance of the mean of the
nM observations (ignoring clusters) is estimated from s2/nM , we get

s2
ycl

= s2
yrs

[1 + (M − 1)rI ]
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It can be seen that
(

s2
ycl

/s2
yrs

)
> 1

if rI is positive. In that case, cluster sampling is less efficient than simple ran-
dom sampling, although it may be more cost-efficient since less travel time is
involved. A simple cost function (Som 1976) with a total fixed cost is

M =
√

c1

c2

(
1 − rI

rI

)

where c1 = cost per cluster, mainly for traveling, c2 = cost of measuring a
subunit. For example, for c1/c2 = 10 and rI = 0.15, we get M = 7.5. The
value of M increases proportionally to the square root of the cost ratio c1/c2
(see Figure 10-14).

Example 10.15 To illustrate single-stage cluster sampling, the dbh of all
five trees within each of 10 sample plots which were systematically distributed
within a given P. radiata stand, was measured. The data were as follows:

Plots
1 2 3 4 5 6 7 8 9 10

dbh (cm)

20.3 24.1 19.5 23.6 26.5 19.5 19.8 22.4 23.2 21.1
18.0 18.7 22.5 24.0 23.5 23.7 20.1 26.0 22.5 14.1
29.0 22.0 22.1 18.0 28.1 21.5 21.0 26.5 20.0 19.8
19.4 23.6 24.3 21.8 25.7 33.1 22.0 21.8 24.0 20.5
17.6 23.0 18.3 19.7 26.0 22.9 14.0 25.2 27.1 24.5
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The analysis of variance is as follows:

Source Sum of squares df Mean square

Between clusters 199.0808 9 22.1201
Within clusters 417.5120 40 10.4378

The between-clusters mean square estimates σ 2
w + 5σ 2

b . In consequence, the
estimated variance between clusters is 2.336 and is considerably less that the
within-clusters variance of 10.438. The estimated variance, ignoring clusters,
is 616.5928/49 = 12.584. The estimated intraclass correlation coefficient is

rI =
5 · 2.336
12.584

− 1

5 − 1
= −0.018

10 MULTISTAGE SAMPLING

In multistage sampling, the sampling units are selected in a hierarchical order.
The population is partitioned into primary units, which in turn are subdivided
into secondary units, the latter into tertiary units, etc. An important property
of multistage sampling is the random selection of sampling units in each stage.
We consider the following sampling problem. Suppose that the mean site
index of P. radiata grown in different countries and regions is to be estimated.
Three regions are selected at random from a total of ten, with four plantations
(primary sampling units) selected at random in each region and ten stands
(secondary sampling units) within each plantation.

10.1 Two-stage sampling

In two-stage sampling, n primary units are drawn from a population of N units.
In the case of equal cluster sizes, each of the N primary units is subdivided into
M secondary units with m units drawn at random within each primary unit. The
sampling fractions are n/N for the primary and m/M for the secondary units.
The total size of the sample is mn and the overall sampling fraction is mn/MN.
Unbiased estimates of the population mean and total are

y =
m∑ n∑

yi j

mn
Y = M N y

An analysis of variance, which partitions the total sum of squared deviations
from the overall mean into components associated with variability amongst the
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primary units and variability between secondary units within primary units,
is required to estimate the variances involved.

Source Sum of squares df Mean square

Total
m∑ n∑(

yi j − y
)2

mn − 1

Primary units m
n∑(

ȳ j − y
)2

n − 1
SSpu.

(n1 − 1)

Secondary units
n∑
( m∑(

yi j − ȳ j
)2
)

N(m − 1)
SSsu.

n(m − 1)

In sampling from an infinite population, the expected values of the mean
squares between primary units and between secondary units within primary
units are

between primary units σ 2
w + mσ 2

b

between secondary units σ 2
w

where

σ 2
b = variance amongst primary units

σ 2
W = variance amongst secondary units

The variance of the overall mean

σ 2
ȳ = mσ 2

b + σ 2
w

mn
= σ 2

b
n

+ σ 2
w

mn
is to be adjusted for the finite population

s2¯̄y = f1 · s2
b
n

+ f1 · (1 − f2) · s2
w

nm
(Cochran 1977)

Example 10.16 The mean of a population consisting of 2000 primary units
and 100 secondary units per primary unit is estimated by two-stage sampling
with n = 10 and m = 2

Primary unit Data Sum Primary unit Data Sum
1 49, 34 83 6 5, 6 11
2 12, 21 33 7 37, 50 87
3 6, 16 22 8 28, 40 68
4 27, 27 54 9 23, 30 53
5 8, 7 15 10 42, 51 93
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n∑ m∑
yi j = 519;

( n∑ m∑
yi j

)2

nm
= 13 468.05; sstotal = 4 644.95

SSb = 832 + · · · 932

2
− 13 468.05 = 4219.54; M Sb = 4219.54

9
= 468.8

SSW = 4 644.95 − 4 219.45 = 415.5; M SW = 425.5
10

= 42.55

The quantity M Sw estimates the variance amongst secondary units within
primary units, M Sb estimates σ 2

w + 2σ 2
b . Hence

s2
b = 468.8 − 42.55

2
= 213.12

The observed mean is 519/20 = 25.95 and its variance is

s2¯̄y = 990/1 000
10

· 468.8 + 0.001
90

100
· 42.55 = 46.44, s ¯̄y = 6.81

The 0.95 confidence interval for ¯̄y is 25.95 ± 2.23 · 6.81 : ′10.76 41.14.
The standard error of the estimated population total is

sŶ = N Ms ¯̄y = 200 000 · 6.01 = 1 362 000

and the 0.95 confidence interval for Ŷ is

5190 000 ± 2.23 · 1 362 000 2152740 8227260

10.1.1 Optimum allocation

The allocation of sampling units requires prior knowledge of the variance
amongst primary and secondary units, respectively. In exceptional cases, such
estimates can be derived from external sources, for example, from sampling
studies in similar populations. In theory, estimates could be obtained by first
sampling the population to obtain useful estimates of these variances in order
to be able to apply the allocation rule and to decide on the required sample size,
but this is seldom feasible or considered worthwhile. Two cost components are
involved
• Sampling cost per primary unit (c1)
• Sampling cost per secondary unit (c2)

The cost element c1 represents the cost of traveling from one primary unit to the
second, whereas c2 gives the cost of measuring the secondary unit. Other cost
elements, such as traveling to reach the location of the population to be sampled
during a given working day, as well as social expenses should be added to the



290 Sampling for Forest Inventories

cost for the inventory in its entirety. The optimum allocation rule prescribes the
number of primary sampling units to be measured:

m =
√

σ 2
w

σ 2
b

· c1

c2

The number of primary units is given by

n =
σ 2

b + σ 2
w

m
[

s2
¯̄y + 1

N
·
(

σ 2
b + σ 2

w

M

)] with s2
¯̄y being specified.

Example 10.17 For the data in Example 10.16, we assume: c1 = 220, c2 =
15. Hence

m =
√

213.12
468.8

+ 220
15

∼= 3

The estimated sample mean is 51.9. It is required that the maximum error
should not exceed 5% of the mean, with a stated probability of 0.95. The t
value to be multiplied by the standard error depends upon the degrees of free-
dom and is approximately 2. Hence, since

t · s ¯̄y = 2.60

the standard error of the mean should not be greater than 1.30. The required
number of primary units is

n =
468.8 + 213.12

3

2.60 + 1
2000

·
(

468.8 + 213.12
100

) ∼= 190

10.2 Three-stage sampling

The basic principle of two-stage sampling may be extended to multistage sam-
pling. When three stages are involved, n primary units are drawn at random
from a population of N units, m secondary units from a population of M sub-
units per primary unit and k tertiary units from a population of K units per
secondary unit. The total sample size is nmk and represents a sampling frac-
tion of nmk/NMK. The following examples illustrate potential applications of
three-stage sampling:
• In a national forest inventory, a given area is covered by N satellite images,

from which a sample of size n is drawn at random. Suppose that medium-
scale aerial photography of a 1:12000 scale provides aerial coverage of each
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of the n selected primary units. The next step is to select at random m pho-
tographs within each of these satellites images and k sample plots within
each of the m selected photographs per satellite image. They are measured
by conventional ground methods.

In a study to estimate the mean nitrogen content of the foliage of trees within
a given stand, a primary sample of n trees is drawn at random from a popu-
lation of N units, a subsample of m branches is selected from a population
of M branches in each tree and a subsubsample of k leaves within each of
these branches, from a population of K leaves in each branch. We assume
that N , M , and K are known, and each tree has the same number of branches
and each branch the same number of leaves per branch. The resultant sample
fractions are

Trees f1 = n/N

Branches f2 = m/M

Leaves f3 = k/K

Obviously, the assumption of an equal population size of branches within
each tree and of leaves within branches and that of known N , M , and K is an
oversimplification.

The analysis of variance partitions the total variance into three components.
One component expresses variability amongst trees, a second quantifies the
variability amongst branches within trees, and a third is associated with the
variability amongst leaves within branches. The mean squares estimate the fol-
lowing quantities:

E(M S)

Between trees σ 2
l + k · σ 2

br + m · k · σ 2
tr

Between branches (within trees) σ 2
l + k · σ 2

br
Between leaves (within branches) σ 2

l

Where σ 2
tr = variance among trees, σ 2

br = variance among branches (within
trees) and σ 2

l = variance among leaves (within branches). The variance of the
population mean, corrected for the finite population is

s2¯̄y =
(

1
nmk

)2 [
(1 − f1) · s2

tr + f1 · (1 − f2) · s2
br + (1 − f3) · f1 · f2 · s2

l

]
.

The decision of how to distribute the sample amongst stands, trees and
branches, however, is also affected by cost considerations.

Example 10.18 A sampling study was carried out in P. radiata to esti-
mate the mean needle dry weight of branches of a given basal diameter of
2.5 cm. Two stands were selected within a given forest district, with three trees
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Table 10-6. Observed needle dry weights (g)

Stand A Stand B

Branch Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 6 Tree 7 Tree 8

1 91.6 162.5 88.7 248.0 110.9 96.0 98.2 104.6
2 127.7 240.3 162.8 281.0 124.1 117.5 100.3 123.7
3 120.0 163.0 217.6 303.3 117.7 76.8 167.3 77.6
4 176.0 229.7 227.0 278.0 154.2 195.2 93.8 202.4
5 171.4 212.3 222.4 310.7 135.6 156.1 88.2 321.0
6 223.0 171.2 252.7 420.2 166.8 169.3 91.8 258.1
7 181.0 300.2 227.6 321.3 252.3 217.8 172.7 236.1

selected within each stand and seven branches within each tree. The sampling
observations are given in Table 10-6.

The analysis of variance produces the following mean squares:
Between stands M S = 64810.8

Between trees (within stands) M S = 17726.8

Between branches (within trees) M S = 3154.9

The expected values of the relevant mean squares are:
Branches σ 2

b ; Trees σ 2
b + 7σ 2

tr ; Stands σ 2
b + 7σ 2

tr + 28σ 2
st

The estimated variances are

σ̂ 2
br = 3154, 9 σ̂ 2

tr = 2081.692 σ̂ 2
st = 1681.6

The overall mean is 184.95. The variance and standard error of the estimated
mean are:

s2
ȳ = 3154.94

56
+ 2081.69

8
+ 1681.6

2
= 1157.3

sȳ = 34.02

The 0.95 confidence interval for the population mean is:

y ± t0.025,48 df · sy; 184.95 ± 2.011 · 34.02; 116.5 253.4

11 STRIP SAMPLING

In tropical forests, strip sampling is a simple and therefore a favored inventory
design. It does not necessarily represent the best method because of the dispro-
portion between the sampled area and accuracy. Randomly or systematically
distributed sample strips with a width of 5, 10, or 20 m are established and all
trees either on one or both sides of a line. The layout of these strips is more
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efficient and less time-consuming that the establishment of square or circular
sample plots. Usually strip lengths differ, the area of strips varies accordingly
and ratio estimators are appropriate for calculating the mean and variance.

The mean of the target variable z and its variance are

z = y
x

=

n∑

1
yi

n∑

1
xi

s2
z = z2 · 1 − f

n · (n − 1)

⎡

⎢
⎢
⎣

n∑

1
y2

i

y2 +

n∑

1
x2

i

x2 − 2 ·

n∑

1
(xi · yi )

x · y

⎤

⎥
⎥
⎦

With

yi = observed or measured target variable on the i th strip

xi = strip size in m2

f = Sampling fraction (f = n/N)

n = Sample size (number of strips).

Example 10.19 Four rows were selected at random from a population con-
sisting of 31 strips.. The results are given below

Strip no. Row no Strip volume yi (m3) Area xi (ha)

1 21 531.2 2.3
2 25 448.8 2.0
3 14 568.0 2.5
3 16 566.0 2.4

Sum 2114.0 9.2

The estimated mean volume is:

z = 528.5
2.3

= 2114.0
9.2

= 229.8 m3/ha

and its variance is

s2
z = 229.82 ·

1 − 9.2
60.0

4 · (4 − 1)
·
[

1126574.88
528.52 + 21.3

2.32 − 2 · 4897.76
528.5 · 2.3

]

= 5.01 (m3/ha)2

z = 229.8 m3/ha sz = 2.24 m3/ha
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An alternative estimate of the mean and variance is given below

x =

n∑

i=1
(wi · xi )

n∑

i=1
wi

s2
x = s2

x
n∑

i=1
wi

· (1 − f )

with

wi = weight of the i th strip (area in ha)

xi = strip volume per hectare

F = sampling percent.

f =

n∑

i=1
wi

W
with W = total size of the population in hectares

s2
x = Variance amongst strips

s2
x =

n∑

i=1
(wi (xi − x)2)

n − 1

Example 10.20 (Data from Example 10.19)

Strip No. Row No Strip Strip area Volume xi − x wi (xi − x)2

Volume w
2
i · xi wi xi

(m3) (ha) (m3/ha)

1 21 531.2 2.3 231.0 1.4 4.508
2 25 448.8 2.0 224.4 −5.2 54.080
3 14 568.0 2.5 227.2 −2.4 14.400
4 16 566.0 2.4 235.8 6.2 92.256
Sum 2114.0 9.2 – – 165.244

The estimated mean volume is:

x = 2114.0
9.2

= 229.8 m3/ha
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with variance:

s2
x = 165.244

4 − 1
= 55.0813 (m3/ha)2, s2

x = 55.0813
9.2

= 5.9871 (m3/ha)2,

sx = 2.45 m3/ha

In both cases all trees on the selected strips were measured. The random lay-
out of strips, however, could be combined with a systematical sample of plots
within each strip. Each strip mean represents a single observation.

Example 10.21 Five systematically distributed 0.1 ha sampling units were
selected in each of the four strips from the previous example The observed
volumes were:

Strip 1: 27.2 26.0 27.2 12.8 22.4 23.10
Strip 2: 30.4 26.8 30.4 12.8 22.4 24.56
Strip 3: 32.0 22.4 23.2 12.8 11.2 20.32
Strip 4: 26.8 30.4 26.6 11.2 12.8 21.56

The overall mean is 22.39 m3/plot, with a standard error of 0.85 m3/plot. The
corresponding values per hectare are 224 and 8.5 m3, respectively.

12 SAMPLING WITH UNEQUAL SELECTION
PROBABILITIES

In simple random sampling with replacement, each unit within the population
has the same chance of being selected. This would be appropriate in a sampling
study where n stands are selected from a population of N stands, with approx-
imately equal stand volumes. In forest inventories with stands of unequal size
and a varying volume per hectare serving as primary units, this assumption is
seldom satisfied. In such cases, sampling with PPS or probability proportional
to prediction (PPP) produces a more efficient estimate of the population mean
and population total.

12.1 List sampling (PPS sampling)

Single-stage list or PPS sampling requires a list of the N sampling units in
the population, is also referred to as priori list sampling (Loetsch 1971). If the
forest consists of N stands, and the total sample size is fixed at n, the following
procedure is applied.
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Table 10-7. List of sampling units and volume estimates

No Area (ha) V (m3/ha) Cum. Area
(ha)

Cum. V
(m3)

V1(ha)
(Area)

V2(ha)
(Volume)

Ratio 1 Ratio 2

1 2 3 4 5 6 7 8 9
1 7.3 110 7.3 803 – – – –
2 16.2 80 23.5 2099 – 85 – 1.063
3 11.5 270 35.0 5204 – –
4 17.3 130 52.3 7453 135 – 1.038
5 6.4 240 58.7 8989 – –
6 16.3 170 75.0 11760 185 185 1.088 1.088
7 22.1 60 97.1 13086 – –
8 12.3 130 109.4 14685 – –
9 18.1 80 127.5 16133 – –
10 13.5 210 141.0 16968 – –
11 7.1 270 148.1 20885 – –
12 15.8 130 163.9 22939 – –
13 12.4 250 176.3 27279 234 – 0.936
14 6.8 80 183.1 27823 – 87 1.088
15 14.3 150 197.4 29968 – –
16 12.0 120 209.4 31408 – –
17 11.7 280 221.1 34684 – –
18 17.3 160 238.4 37452 – –
19 8.9 250 247.3 39677 293 – 1.172
20 11.1 310 258.4 43118 – 336 1.084
21 5.8 70 264.2 43524 – –
22 3.7 140 267.9 44042 126 – 0.900
23 12.5 190 280.4 46417 – –
24 16.4 60 296.8 47401 – –
25 13.5 220 310.3 50371 – 255

• A list of either stand areas or quick ocular estimates of the stand volumes
x1, x2, . . ., xN is drawn up (column 3 in Table 10-7). Compiling of a list of
stand areas (column 2, in Table 10-7) is simpler and less expensive than a
list containing ocular volume estimates. However, the efficiency of list sam-
pling is greater when stand volumes, instead of areas, are estimated, since
the former is more closely correlated with the real volume.

• A number ni , which is proportional to the size of the auxiliary variable x , is
assigned to each sampling unit (column 3). The number ni , divided by

∑
ni ,

is equivalent to the probability of including the i th element of the population
into the sample.

• The list is augmented with a column containing the accumulated total
∑

ni
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• (column 4).
• A random number between 1 and

∑
ni is drawn. The j th sampling unit

(stand) is included into the sample, if the selected random number falls
within the group of numbers assigned to the j th stand. For example,

∑
ni =

50371 m3 and the numbers 27280–27823 are allocated to stand no. 14. The
probability of its selection is 544/50371 = 0.0108. It should be noted that
the sample is selected with replacement. In consequence, a given stand may
be selected more than once.

• The selected stands are either completely enumerated or their volume is esti-
mated by subsampling. They are considered to represent the (approximately)
true volumes.

• A column containing the true volumes y1,yn is added to the table (column 5)
• The ratio of true volume over ocular estimate is calculated for each of the n

stands of the sample

R =

n∑

L=1

yL

xL

n
• In this equation, xL represents either the stand area or a rough estimate of the

stand volume. The estimator for the population total is:

ŷ =
N∑

xL R

• This is equivalent to Cochran’s estimator

ŷ =

n∑

L=1

yL

pL

n
since pL = xL

∑N x

• The variance estimator for Ŷ is:

s2
Y =

n∑(
R − R

)2

n · (n − 1)

Example 10.22 In a hypothetical situation, the list consists of 25 stands with
known areas for which rough estimates of the volumes per hectare are available
(column 3 in Table 10-7). Columns 6 and 7 give the accurate estimates for
stands selected on the basis of stand area and volume, respectively.

The resultant sample statistics are
R1 = 1.027 R2 = 1.096
sR1 = 0.111 sR2 = 0.037
sR1

= 0.050 sR2
= 0.016

The estimated population volumes are 51731 and 55206 m3, respectively.
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12.2 3P sampling

Sampling with PPP is sometimes referred to as posteriori list sampling (Loetsch
1971) because the list is not drawn up prior to, but during sampling. Grosen-
baugh (1963) developed the theory and introduced the method for conducting
timber sales surveys. The 3P sampling method requires that each sampling unit
in the population, for example, each single tree, is visited twice. The first visit is
necessary to obtain a rough estimate of the size variable (in terms of volume or
value) and to assign a number to each sampling unit. The probability of select-
ing a given sampling unit is proportional to the estimated size, i.e., the decision
whether or not to include a given sampling unit into the sample depends upon its
size. The second visit is required to measure the selected elements accurately,
for example, by using a dendrometer. In consequence, the estimate obtained
prior to sampling is used to assign a value and acts as an auxiliary variable,
which is needed to decide whether or not to include a given tree. The sampling
procedure is as follows:
• Select an integer L , which controls the sampling intensity. The value of L

is estimated from a rough estimate of the population total X∗ = ∑
(yi ) and

from the required sample size n

L = X∗/n

• After visiting the i th sampling unit and estimating its size (= xi ), a random
number nR between 1 and L is drawn from a random integer dispenser

• The i th sampling unit is included into the sample and measured accurately,
if nR < xi . When not, only xi will be recorded

• After examining each sampling unit in the population, the population size
N , as well as xi , for L = 1, . . . , N are known and n sampling units are
measured accurately

• The estimated population total is

∧
Y = q

N∑

i=1

xi

where

q = 1
n

n∑

i=1

(
yi

xi

)

• The variance of q is

s2
q =

n∑

i=1
(q − q)2

n · (n − 1)
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and the sample variance of the estimated population total Ŷ is

s2
∧
Y

=
( N∑

i=1

xi

)2

· s2
q ·
(

1 − n
N

)

Example 10.23 The following data represent a hypothetical example, with an
auxiliary variable x measured on each sampling unit in a population consisting
of 15 trees. The estimated sample total is 85 and the required sample size is
n = 5. Hence, L = 85/5 = 17. Random numbers (N R) between 1 and 17
were generated and those trees for which N R < xi were included.

Tree xi N R yi qi

1 5 13 – –
2 3 5 – –
3 4 2 4.5 1.125
4 6 13 – –
5 7 7 7.2 1.029
6 8 9 – –
7 5 14 – –
8 4 1 3.8 0.950
9 6 2 6.3 1.050
10 9 13 – –
11 2 4 – –
12 5 5 5.6 1.120
13 4 15 – –
14 6 8 – –
15 6 9 – –

Total 80 – – 5.274

q = 1.0548 ; Ŷ = 1.0548 · 80 = 84.4;
15∑

i=1

qi = 5.274 ;
15∑

i=1

q2
i = 5.5839

s2
q = 0.001044 ; s2

Ŷ
= 802 · 0.001044 ·

(

1 − 5
15

)

= 4.4544; sŶ = 2.1

The advantages of 3P sampling are
• The list of sampling elements is compiled during sampling. There is no need

to draw up this list prior to sampling. The elements of the population are
visited once only.

• The auxiliary variable x is used as a decision aid and not to predict the target
variable.
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13 SYSTEMATIC SAMPLING

In systematic sampling, the sampling units are not selected at random, but,
according to a rigid scheme. For small populations, the systematic sample tends
to be more representative than random sampling, since it implies the subdivi-
sion of the population into blocks, with each block represented by a single
sampling unit. The main advantage of systematic sampling in forest inventories
is the simplicity of its implementation in the field. The main disadvantages are
• Strictly speaking the systematic sample is a cluster of nonrandomly selected

sampling units and therefore represents a sample of size 1. In consequence it
is not possible to estimate of the population variance. For practical reasons,
however, the data obtained by systematic sampling are analyzed with those
formulae which apply to random sampling. This is justified if the individual
units are uncorrelated or no spatial trend is apparent.

• Sampling units on the stand edge tend to be avoided, in which case estimates
of the population mean are negatively biased.

• For a single systematic sample, available formulas for estimating the
variance of a mean, require knowledge of distributional patterns of the
population.

In order to draw a systematic sample of size n from a given population, num-
bers between 1 and N are allocated to the N sampling units of the population,
for example, by superimposing a grid upon the stand map and numbering the
units, consistent with a systematic pattern. A random number nr between 1
and k is drawn to locate the first sampling unit. The second unit corresponds
to the number (nr + k), the third to (nr + 2k), etc. The constant k represents
the sampling interval. For example, if the 5th unit in the first row of sampling
units is selected at random and the sampling interval is 10, the second unit to be
included into the sample is the 15th unit within the first row. The total number
of sampling units within a row, however, is seldom a multiple of k. In conse-
quence, the location of sampling units is continued on the r th row after the first
one. Because of irregular stand boundaries also, the number of sampling units
within rows varies.

A systematic sample based on a square lattice implies k = r , but it may
be more convenient to choose a shorter interval within and a longer interval
between rows. Systematic sampling can also be applied when sampling units
are separated in time, for example, to measure labor productivity of logging
within a working day. The first measurement might then be made at a random
point in time during the first hour, the second measurement one hour later, etc.
In this instance, systematic sampling may produce biased estimates, because of
a time-related periodicity in labor productivity. A similar situation could arise
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in a stand inventory, with a nonrandom spatial distribution of the volume per
unit area, although this is less likely to occur. The following notes are relevant
for the field application of systematic sampling:
• Systematic sampling can be interpreted as stratified random sampling with n

strata and k sampling units per stratum (Cochran 1977).
• Several studies indicate an increase of the relative precision of systematic

sampling with increasing sampling intensity.
• Systematic sampling with multiple random starts resembles cluster sam-

pling with sample means and sample variances determined for each clus-
ter separately. The estimated within-cluster variances, however, are biased
upward. Shiue (1960) showed that systematic sampling with a single random
start produces unbiased estimates of the population mean, if the population
is a random forest. It also produces unbiased estimates of the population
variance.

• A systematic sample is more effective than random sampling in removing
a linear trend of the recorded volumes per unit area. If such a trend occurs,
it produces a more precise estimate of the target variable than that obtained
by other designs (Madow et al. 1944). In the case of a periodic trend, the
systematic sample either over- or underestimates the mean, if the location of
the sample plots coincides with the turning point of the trend curve.

• More serious is the positively biased estimates of the variance, which occurs
in the case of spatial correlation (Saborowski 1991). The spatial distribu-
tion of plot volume per unit area, within a given population, is essentially
of a nonrandom nature. However, the extent of the bias varies and there is
no simple method of correcting for bias. Because of the positive systematic
errors, the results of systematic sampling, measured in terms of precision,
are always superior to those predicted from variance estimates.

When systematic sampling is redefined as stratified random sampling with n
strata and k sampling units per stratum, it might, in certain situations, be feasi-
ble to draw more than one sampling unit from each of the strata. The variance
of the population, ignoring strata, is σ2, those between and within strata are σ2

b
and σ2

w, respectively. Thus

σ2 = σ2
h + σ2

w

with σ2
b being the variance of the sample means. When two sampling units are

selected within each stratum, the between-strata variance can be expressed in
terms of the intraclass correlation coefficient rI

σ2
b = σ2

n (1 + (n − 1) rI )
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with σ2
b = σ2/n, if the intraclass correlation coefficient, expressing the degree

of association amongst the two sampling units within the strata is zero. The
variance of the mean of a systematic sample is as follows:

s2
y = s2

w ·
(

N − n
N

)

·
[

1 +
(

(n − 1) /rI

n

)]

In forest inventories, a perfect subdivision of the population into blocks is sel-
dom feasible because of the irregular stand boundaries. In practice, lines are
drawn onto the stand map and sampling units within these strips are positioned
at equal distances. Sometimes, the variance is calculated from successive sam-
pling units within strips. When, for example, the sampling observations on the
first line are x11, x12, x13, and x14, the variance estimate, derived from x11 and
x12 is

s2
(1) =

[

x11 − 1
2

(x11 + x12)

]2

+
[

x12 − 1
2

(x11 + x12)

]2

= 1
2

(x11 − x12)
2

A second estimate is obtained from x12 and x13 and a third from x13 and x14,
etc. These three estimates are averaged. The complete variance formula of suc-
cessive differences is

s2
ysy

=

k∑

j=1

n j∑

i=1
(xi j − x(i+1) j )

2

2n ·
k∑

j=1
(n j − 1)

·
(

1 − n
N

)

where
k = number of rows

n j = number of sample units in row j

Example 10.24 Sample plots consisting of 3 × 3 rows were established in a
square lattice in a P. radiata. The plot basal areas are given in Table 10-8.

Table 10-8. Plot basal areas in square centimeters

Row 1 589.2 442.9 487.2 589.2 442.9 487.2
Row 2 393.7 460.3 366.8 515.2 535.2 608.6
Row 3 320.0 816.1 537.6 478.8 849.6 699.0
Row 4 532.0 908.5 542.0 592.6 521.0 587.3
Row 5 385.9 714.9 466.4 786.4 669.3 412.1
Row 6 459.9 659.6 479.3 221.8 541.0 516.8
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The variance, based on the erroneous assumption of random sampling,
results in s2 = 21770. The variance estimated from pairs of adjoining plots is:

s2 =[(589.2 − 442.9)2/2 + (442.9 − 487.2)2/2 + . . . , (487.2 − 608.6)2/2

+ (659.6 − 459.9)2/2]/35 = 21885

Calculating the variance from blocks of four observations produces the follow-
ing estimates for the first block of four observations:

s2 = [(589.22 + 442.92 + 393.72 + 460.32) − 1886.12/4]/3 = 5604.9

The average of the 9 variance estimates is 22789.
The variance of the estimated mean according to the formula of successive

differences is:

s2
ysy

=
[
(589.2 − 442.9)2 + (442.9 − 487.2)2 + · · · + (442.9 − 498.7)2

+ (393.7 − 460.3)2 + · · · +(541.0 − 516.8)2
]
/(2 · 36 · 30) = 679.17

The standard error of the estimated mean is 26.1 cm2.

14 SAMPLING PROPORTIONS

14.1 Simple random sampling

Many sampling studies deal with qualitative characteristics. They are discrete
variables, which are not measured on a metric scale. In some situations, the
trees are classified instead of measured, for example, as dead or alive, sick
or healthy, species A or species B. In other instances, the variables are mea-
sured on an ordinal scale, for example, when trees are classified on the basis
of the estimated needle loss, or on the basis of their social class within the
stand as dominating, dominated, and suppressed, etc. When two classes are
involved, and the population is sampled with replacement of the sampling units,
the subject variable follows the binomial distribution, with a mean of p and a
variance of p(1 − p)/n, where p = true proportion and n = sample size.
When expressed in terms of the sample sum, the mean and variance are np and
np(1 − p), respectively.

In the case of a binomial distribution of the subject variable, the number of
sample elements (y) belonging to class 1, is counted in a random sample of
size n and expressed as an observed proportion

p̂ = y/n.
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The (1 − α) confidence limits for the population proportion are

p̂ ± z1/2α

√
p (1 − p)

n
Sampling with replacement of the sampling units generates a binomial distribu-
tion, if the assumption of statistically independent outcomes of sampling holds
true. Sampling without replacement generates a hypergeometric distribution
with

µ = p

σ 2
p = p (1 − p)

n
· N − n

N − 1

The large-sample approximation of the hypergeometric distribution as a normal
distribution produces the following estimate for the confidence interval for p:

p ± z1/2α

√
σ 2

p

When p is near to 0 or 1, the normal approximation is valid only for large n
and N .

Example 10.25 In a sampling trial to estimate the proportion of trees,
affected by environmental pollution, within a given stand, large-scale pho-
tographs were used to evaluate the vitality of 100 trees, which were selected
randomly, but without replacement, from a population containing an estimated
4000 trees. Twenty-one trees were classified as sick. The sample estimate
p = 0.21 represents an unbiased estimate of the population proportion p and

s2
p = 0.21 · 0.79

100
· 3900

3999
= 0.00162 sp = 0.040

estimate the variance and standard error, respectively. The large-sample approx-
imation of the 0.95 confidence limits for the true proportion gives the following
results:

0.210 ± 1.96 · 0.040 ⇒ 0.1316 0.2884

The approximation as a binomial distribution produces a variance estimate of
0.00166 instead of 0.00162.

14.1.1 Sample size for proportions

The (1 − α) confidence interval for a population proportion, ignoring the
correction for the finite population, is given by

p ± z1/2α

√
p (1 − p)

n
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Hence

E = z1/2α

√
p (1 − p)

n

is to be solved for n

n = p(1 − p)

(
z1/2α

)2

E2

In order to apply this formula, the population proportion p is replaced by a
prior estimate of the true proportion. If the latter is completely unknown, sam-
pling should be carried out in two stages. The stage 1 sample serves to obtain a
preliminary estimate of p, which will be used in calculating the required sample
size.

Example 10.26 The afforested area in a region is estimated by dot sampling
on a satellite image. Existing records indicate that this area is approximately
15% of the total land area. It is required that the maximum error shall not exceed
10% of the estimated proportion, with a probability of 0.99. Hence

n = 0.15 · 0.85 · 2.5762

0.0152 = 3760

An incorrect prior estimate of p has a profound effect on the required sample
size. The product p(1 − p) increases from 0 for p = 0 to 0.25 for p = 0.5. In
consequence, if sampling produces an estimate of p substantially greater than
the assumed 0.15, the calculation of the required sample size underestimates n
and vice versa.

14.2 Cluster sampling

In estimating proportion, the cost of locating sample units is usually very high
in relation to the cost of observing certain attributes in sample units. Therefore
in practice, simple random sampling is seldom used to estimate proportions.
Cluster sampling with equal as well as unequal sizes is a useful alternative to
simple random sampling.

Due to a possible correlation between the observations on individual sam-
pling units within the cluster, this sample design is generally less efficient than
simple random sampling. In cluster sampling, however, the time required to
select and locate the units is reduced substantially by grouping sampling units.
Expressed per unit cost the method may therefore produce more accurate esti-
mates of the target variable than simple random sampling.
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14.2.1 Equal cluster sizes

In case of large clusters with at least 100 units of equal size within each clus-
ter, which is the case when k-tree sampling is applied, the sample mean and
variance can be obtained from the standard formulae for continuous variables.

The mean proportion is calculated as a mean of ratio estimator

p =
∑

pi

n
Where

pi = yi

k
yi = number individuals having the characteristics within cluster or plot

k = total number of the individuals within in clusters or plots

n = number of clusters

and the variance of estimated mean proportion is

sp =
∑

p2
i − (

∑
pi)

2

n
n(n − 1)

Example 10.27 (equal cluster sizes) The proportion of healthy plants in
a forest nursery is to be estimated. Ten clusters, each containing 100 plants
(k = 100), were selected at random. The data are given in Table 10-9.

p =
∑

pi

n
= 901/100

10
= 0.901

∑
pi = 9.01

∑
p2

i = 8.1293

s2
p = 0.000012544 sp = 0.011

The (1 − α) confidence interval for the mean proportion, for α = 0.05 is

p ± t1/2α,n−1sp : 0.901 ± 2.262 · 0.011 : 0.876 0.926

Table 10-9. Number of healthy plants

Cluster No. Number of healthy plants Cluster No. Number of healthy plants

1 92 6 89
2 97 7 88
3 87 8 91
4 85 9 94
5 90 10 88

Total 901
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If proportions occur either greater than 0.80 or smaller than 0.20, it is advis-
able to apply a square root transformation to the data and to retransform the
calculated means and confidence limits.

14.2.2 Clusters of unequal size

When applying fixed-radius sample plots for sampling, the total number of
individuals can be expected to vary. In consequence, a weighting procedure
is required to calculate the mean. In such cases, the ratio-of-means should be
calculated.

p = y
x

=
∑

yi
∑

xi

where

xi = total number of individuals in the i th cluster

yi = number of individuals in the ith cluster possessing the attribute.

The estimated variance is

s2
p = 1

x2 · s2
y + p2 · s2

x − 2psyx

n

(
1 − n

N

)

Where

s2
x , s2

y = variance of x and y, respectively

syx = covariance between x and y

n = sample size.

Example 10.28 (unequal cluster sizes) The proportion of ash trees in a
mixed stand consisting of the common beech and ash, is to be estimated. The
variables x and y refer to the total number of trees and the number of ash trees
on fixed area plots (Table 10-10).

Table 10-10. Number of total and ash trees on fixed area plots

Plot No. Total number of Number of ash Plot No. Total number of Number of ash
trees (xi ) trees (yi ) trees (xi ) trees (yi )

1 16 1 7 20 2
2 15 3 8 15 1
3 22 3 9 19 1
4 18 2 10 21 2
5 15 – Total 186 19
6 25 4 Mean 18.6 1.9
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p = 1.9
18.6

= 0.1022; s2
x =

3566 − 1862

10
9

= 11.8222; s2
y =

49 − 182

10
9

= 1.4333

syx =
∑

xy −
∑

x
∑

y
n

n − 1
=

379 − 186 · 18
10

9
= 2.8444

s2
p = 1

18.62
1.4333 + 0.10222 · 11.8222 − 2 · 0.1022 · 2.8444

9
= 0.000313260

sp = ± ·0.0177

The 0.95 confidence interval is

0.102 ± ·2.262 · 0.0177 → 0.102 ± 0.040

15 ESTIMATING CHANGES

Four methods are available for estimating and monitoring changes, more par-
ticularly to estimate the rate of growth:
• Estimating growth from temporary sample plots, which are measured once

only, with independent random samples drawn on successive occasions.
• Estimating growth from permanent sample plots, which are remeasured at

regular time intervals.
• Estimating growth based on subsamples representing measurements of

permanent sample plots on successive occasions.
• Sampling with partial replacement (SPR) of sample plots. A number of

sample plots is established on the first occasion and are partially remeasured
on the second, whereas the abandoned plots are replaced by new units.

15.1 Independent and matched sampling

The measurements of temporary sample plots to estimate changes is recom-
mended when permanent plots on successive occasions are poorly correlated,
for example, because of thinnings being carried out during the growth period,
or because of excessive mortality or due to high ingrowths. In case of tempo-
rary sample plots the covariance between successive measurements is zero and
the variance of the estimated growth is

s2
(y2−y1)

= s2
y1

+ s2
y2
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The (1 − α) confidence interval for the true growth is

(
y2 − y1

)± t1/2α,n1+n2−2 ·
√

s2
y1

n1
+ s2

y2

n2

Matched sampling, which occurs when monitoring growth in permanent sample
plots, reduces the variance of the estimated growth if y1 and y2 are closely
and positively correlated. The variance of the estimated growth obtained by
matched sampling is

s2
(y2−y1)

= s2
y1

+ s2
y2

− 2cov
(
y1, ŷ2

)

and the confidence limits for the true growth, based on a sample of size n is

(
y2 − y1

)± t1/2α,n−1

√
s2

y2−y1

n
The number of degrees of freedom is reduced from 2(n − 1) to (n − 1). Due
to the higher associated tvalues, it produces a wider confidence interval, i.e.,
a less precise estimate of the population parameter, if successive measurements
were uncorrelated. The difference between t1/2α, 2(n − 1) and t1/2α, (n − 1)

is substantial for small, but negligible for large samples. The cost per sampling
unit, however, is higher than in temporary plots, because of the necessity to
relocate the plots.

15.2 Sampling with partial replacement (SPR)

This method was introduced by Cochran (1953), the underlying theory was fur-
ther developed by Ware and Cunia (1962) and the application in forest inven-
tories was highlighted by Bickford et al. (1963). Cochran (1953) considered a
sampling problem, whereby the population is sampled on occasions 1 and 2.
A random sample of n sampling units is measured on occasion 1, with m plots
selected for remeasurement on occasion 2. The remaining u = n − m units
are discarded and new sampling units selected and measured. The mean of the
u unmatched sampling units on occasion 2 estimates the mean of this part of
the sample, whereas a regression estimator is used to estimate the mean of the
matched part obtained from measurements on occasion 2. The m observations
of y on occasion 2 are regressed on those of occasion 1 and the regression
coefficient b1 is used to adjust the sample mean on occasion 2

y2m(adj.) = y2m + b1 (y1 − y1m)

with

y1 = occasion 1 sample mean of the complete sample

y1m = occasion 2 mean of the subsample.
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The variances of the unmatched and matched portions on occasion 2 are iden-
tical to those for simple random and double sampling respectively. Their recip-
rocal variances are used to assign weights w1 and w2 to the two estimates:

wu = 1
us2

2

wm = 1
s2

2
(
1 − r2

)
/m + r2s2

2/n
y2 = wu y2u + wm y2m

with

s2
y2

= s2
2

[
n − ur2

n2 − u2 p2

]

(Cochran 1953; de Vries 1986)
Cochran showed that 30–40% of the first set of sampling units should be

used for remeasurements, if the cost per sampling units are the same for occa-
sions 1 and 2 and the total number of sampling units is fixed prior to sampling.
Fewer plots should be selected for remeasurement when the costs per sampling
unit on occasion 2 are higher than on occasion 1. At least 40 plots are required
to estimate the correlation coefficient. Ware et al. (1962) derived the following
formula for estimating the number of remeasured plots, which ignores double
sampling:

m = n

√

1 − r2

r2 ·
[√

c1

c2
−
√

1 − r2
]

The advantage of continuous forest inventory with partial replacement is the
greater precision of current estimates of the target variable and the flexibility
in sampling design. Sampling with partial replacement is always at least as
efficient as sampling based on fixed remeasured sample plots, and usually more
efficient (Cunia 1964).

The method “sampling with partial replacement” (SPR) differentiates
between three groups of sample plots at occasions A and B respectively:

1. permanent sample plots, which are measured at both occasions
2. temporary plots which are measured only at the beginning of the period
3. temporary plots which are selected and measured at the end of the period

The third group replaces the sample plots of group 2. In case of a third occa-
sion inventory, however, they could be partly incorporated as permanent sam-
ple plots. The permanent sample plots are used to regress the volume at the
end of the period on that of the beginning. The relevant regression equation
is subsequently applied to estimate the volume of those plots which were not
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remeasured. They are combined with the new set of plots and their volumes.
This makes it possible to estimate the volume of the initial plots at the beginning
and end of the period, some of them being measured directly others obtained
by regression. The volumes, volume changes and the increment can therefore
be derived from the pooled data of permanent and temporary plots.

Temporary Permanent Temporary
plots plots plots

Occasion A n1t n p → n1 = n1t + n p
Occasion B n p n2t → n2 = n2t + n p

The mean at occasion B is estimated from

x2 = a
(
x1t − x1p

)+ bx2p + (1 − b) x2t

with

a = r · sx2p

sx1p

· n p · n1t

n1 · n2 − n1t · n2t · r2 and b = n p · n1t

n1 · n2 − n1t · n2t · r2

Where

x1t = mean volume of temporary plots at occasion A

x1p = mean volume of permanent plots at occasion A

x2p = mean volume of permanent plots at occasion B

x2t = mean volume of temporary plots at occasion B

r = correlation coefficient between plot volumes at occasions A
and B, respectively (permanent plots)

s x1p = standard deviation of permanent plots at occasions A and B
s x2p

The variance of the estimated means is as follows

s2
x2

= a2 · s2
x1p

·
(

1
n1t

+ 1
n p

)

+ s2
x2p

·
(

b2

n p
+ 1 − b

n2t

)2

− 2a · b · r · sx1p · sx2p

n p

The volume change is obtained from

∆x12 = A · x2p − B · x1p + (1 − A) x2t − (1 − B) · x1t

with

A = n p · (b12 · n2t + n1)

n1 · n2 − n1t · n2t · r2 and B = n p · (b21 · n1t + n2)

n1 · n2 − n1t · n2t · r2

b12 = r · sx1p

sx2p

and b21 = r · sx2p

sx1p
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Example 10.29 The volume change of a forest stand is to be estimated for a
period of 5 years. Five 0.1 ha sample plots were measured in 1985 and remea-
sured in 1990. In 1990 a subset of five temporary plots, measured in 1985, were
replaced by five new temporary plots. Plot volumes were converted to volume
per hectare. They are summarized below.

Plot no. V1985(m3/ha) V1990(m3/ha) ∆V (m3/ha)

1 318 – –
2 216 – –
3 300 – –
4 275 – –
5 254 – –
6 246 282 36
7 199 231 32
8 295 324 29
9 205 230 25
10 274 301 27
11 – 352 –
12 – 247 –
13 – 340 –
14 – 301 –
15 – 290 –

n1 = 10, n2 = 10, n p = 5, n1t = 5, n2t = 5r = 0.995

x1p = 243.8 m3/ha s2
x1p

= 1762.7(m3/ha)22 sx1p = 41.9845m3/ha
x1t = 272.6 m3/ha s2

x1t
= 1591.8(m3/ha)2 sx1t = 39.8974 m3/ha

x2p = 273.6 m3/ha s2
x2p

= 1769.3(m3/0.1ha)22 sx2p = 42.0630 m3/ha

x2t = 306.0 m3/ha s2
x2t

= 17.585
(
m3/0.1ha

)2 sx2t = 41.9345 m3/ha

a = 0.995 · 42.0630
41.9845

· 5 · 5
10 · 10 − 5 · 5 · 0.9952 = 0.3312

b = 5 · 5
10 · 10 − 5 · 5 · 0.9952 = 0.3322
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The “best”estimate for the mean volume (x2) at the end of the period
(1990) is:

x2 = 0.3312 · (272.6 − 243.8) + 0.3322 · 273.6 + (1 − 0.3322) · 306.0
= 304.8 m3/ha

s2
x2

= 0.33122 · 1762.7 ·
(

1
5

+ 1
5

)

+ 1769.3 ·
(

0.3322
5

+ 1 − 0.3322
5

)2

− 2 · 0.3312 · 0.3322 · 0.995 · 41.9845 · 42.0630
5

= 70.7514(m3/ha)2

sx2 = 8.4 m3/ha

x2 = 304.8 m3/ha and sx = 8.4 m3/ha

b12 = 0.995 · 41.9845
42.0630

= 0.9931, b21 = 0.995 · 42.0630
41.9845

= 0.9969

A = 5 · (0.9931 · 5 + 10)

10 · 10 − 5 · 5 · 0.9952 = 0.9944, B = 5 · (0.9969 · 5 + 10)

10 · 10 − 5 · 5 · 0.9952 = 0.9957,

The “best” estimate for the mean volume change is

∆x12 = 0.9944 · 273.6 − 0.9957 · 243.8 + (1 − 0.9957) · 272.6

∆x12 = 29.9 m3/ha

The variance of the estimated mean volume change is obtained from

s2
∆X !′′

= 0.99442 · 1769.3 + 0.99572 · 1762.7
5

− 2 · 0.9944 · 0.9957 · 0.995 · 1762.70.5 · 1769.30.5

5

+ (1 − 0.9957)2 · 1762.7
5

+ (1 − 0.9944)2 · 1769.3
5

= 3.5148(m3/ha)2

s∆x12 = 1.87 m3/ha

∆x12 = 9.9 m3/ha with standard with standard error = 1.9 m3/ha (∼= 6.3%)

The SPR method combines the advantages of permanent and temporary sample
plots. The flexibility of the design increases by removing some of the occasion
A sample plots and the addition of new plots, thereby making it possible to
modify the sampling design in line with a changed forestry situation in terms
of age classes and tree species. The danger of the number of permanent sample
plots becoming too small to adequately represent the population, can be avoided
by adding sample plots at successive occasions. By replacing existing plots by
new ones at the next occasion, the set of sample plots will remain representative
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for a long period of time. The varying accuracy which is obtained for certain
subpopulations was a disadvantage of the permanent sample plots design.

In case of using the subset of new sample plots, which was added at occa-
sion B, as permanent sample plots at occasion C, the trees within these plots
should be permanently identifiable and remeasured. This, however, has an
adverse effect on the cost of the inventory. For a given set of sample plots,
which are measured at the beginning and end of the period between successive
inventories, the sampling method which is based on permanent sample plots,
without the addition of temporary plots, produces more accurate information
about volume changes. In addition the final sample, which is generated by a
combination of permanent and temporary plots may no longer be representative
for the population in its entirety.

The third method of subsampling is closely related to SPR sampling.
The second-occasion data are used to continue subsampling. A subsample is
selected from the first-occasion permanent sample plots and only these plots
are measured. To estimate changes this subsample is considered to repre-
sent permanent sample plots, the remaining first-occasion plots as temporary
plots. Volume, volume changes, and growth on the second occasion could
be obtained as regression estimates. The method is not suitable to estimate
long-term changes in a series of successive inventories, because toe few data
will available to produce accurate estimates of changes. It may be suitable in
intermediate inventories, for example to estimate the quantity and distribution
of the wood mass resulting from wind damage or other natural disasters.

16 LINE INTERSECT SAMPLING

Line intersect sampling, based on Buffon’s needle problem (Buffon 1777), is
a sampling technique in its own right and has been applied in the following
situations:
• Estimation of logging waste (Warren et al. 1964)
• Sampling for fuel volume (Brown 1971; van Wagner 1968)
• Sampling for biomass in arid regions
• Estimation of the area of wooded strips in Kansas (Hansen 1985)
• Estimation of the length of roads (Matern 1964)
• Estimation of the length of hedges in the French national forest inventory

(Chevrou 1973)
• Estimating the length of boundaries between ecosystems (Hildebrandt 1975)
The theory underlying line intersect sampling for those sampling elements
which are either linear or circular was developed by de Vries (1973, 1974,
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1979), although the basic problem was recognized and formulated by Buffon.
A thin needle of length li is placed on a flat area with a width of W and a length
of L units, located within an area of irregular shape and size A. Parallel lines
with a length of L units are drawn, one of them passing through the center.
It is assumed and required that the needle length li is less than the distance
between two adjacent lines. The probability that the j th needle intersects the
center line is a function of the needle length, the length of the sampling line,
and the orientation of the needle. The latter is assumed to be a random variable,
with a uniform distribution, within a domain extending between 0 and 180◦.
The probability of intersection (de Vries 1986) is

pi = 2L · li
π A

In the case of a fixed orientation at an angle of α degrees to the sampling line,
this probability is to be multiplied by sin(α). Hansen (1985) applied line inter-
sect sampling to estimate the area of wooded strips in Kansas. A systematic
sample of 57 counties was laid out,with one township selected at random from
each county. A cross-hatched grid was placed over the photo mosaic of the
townships, whereafter the intersections with wooded strips were counted to
obtain the value of the auxiliary variable x and the total length of all wooded
strips (= x). There followed an exact measurement of the total length of all
wooded strips (= y). The ratio of means estimator was used to estimate the
total length of wooded strips

L̂ = y
x

· X

where X = total number of intersections in the entire state, obtained by
counting.



Chapter 11

REMOTE SENSING IN FOREST MENSURATION

1 INTRODUCTION

The first attempts to introduce aerial photographs as a remote-sensing tool
in forestry were made in 1887. An airborne balloon was used as a photo-
graphic platform to produce photographs of forests in the vicinity of Berlin.
The objective was to examine the possibility of preparing forest maps from
aerial photographs and, in addition, to classify and describe the forest on the
basis of a visual examination of the photographs. Aerial photography from
aircraft was introduced during World War II, primarily for military purposes. It
stimulated rapid technical developments in aerial photography and photogram-
metry, which in turn induced applications in other fields, for example, in the
exploration of natural resources. Since then aerial photographs have been
increasingly used to rationalize mapping operations, but in addition, they are
widely used to facilitate orientation in the forest and to stratify the forest.

The subsequent technical advances in photography widened the scope of
aerial photography. The quality of the photographs improved gradually, partly
because more advanced aerial cameras and high-quality lenses were developed,
partly because of the increasing availability of aerial films of higher resolution.
Recently, the development of nonphotographic sensors, the application of digi-
tal photogrammetry and the widespread use of geographic information systems
have widened the scope and usefulness of remote-sensing technology for map-
ping and for the classification of forests. In recent years, satellite imagery has
been integrated successfully with the inventory of large forest tracts, sometimes
in combination with double sampling.

Technical progress with regard to the integration of aerial photo interpre-
tation with forest mensurational and forest inventory sampling techniques has
been less spectacular. Aerial photographs, however, are routinely used in the
inventory of large forest tracts in North America, Scandinavia, and tropical
forests, primarily in combination with two-phase sampling. The phase 1 sample

317
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served measure quantitative characteristics of the forest on aerial photographs
and phase 2 involved the selection of a subsample. The latter was remeasured
by conventional ground surveying. In many other countries, the usefulness of
aerial photographs for forest inventories remains a controversial issue. It has
been found and is generally accepted that the extraction of forest mensura-
tional data from aerial photographs in the closed forests of Central Europe has
certain limitations. Recent German studies, however, produced evidence that
photo measurements with the aid of modern digital technology provide den-
drometric information of nearly the same accuracy as that obtained by con-
ventional ground surveying. At the same time, this information is obtained at
lower cost since less traveling is involved and many more sampling units can
be measured per unit time. In forests of average management intensity, the aer-
ial photograph, in combination with ground surveying, is therefore useful in
estimating the site index, the stand density, and the stand volume of individual
forest stands. In addition, a forest specialist can extract that information from
aerial photographs, which cannot be easily obtained by ground surveying, or
it can be obtained only at greater cost, such as the estimation of the extent of
stresses in forests.

Satellite imagery is increasingly used for mapping and classification of
forests, and has been found to be indispensable for such operations in large
forest tracts in remote and inaccessible regions. Concurrently, computers and
software were developed to manage and analyze the vast amount of digital
information obtained from satellite images of ever-increasing resolution. In
consequence, the forest manager is now able to obtain a considerable amount of
forestry-relevant information of higher quality at substantially lower cost than
previously obtained by conventional ground surveying.

The applications of aerial photographs in forestry, prior to the early
1960s, have been reviewed by Loetsch et al. (1964), Huss et al. (1984), and
Hildebrandt (1996). The authors summarized advances in modern remote-
sensing technology and analogue methods of photo interpretation. The present
chapter discusses the applications of photogrammetry in forest mensuration:
acquisition of dendrometric tree, stand information, and the use of remote
sensors in forest inventories.

2 FUNDAMENTALS OF AERIAL PHOTOGRAPHY

Aerial photographs taken from an aircraft represent a perspective view of
the area beneath the aircraft. All light rays are projected through the perspec-
tive center, i.e., through the center of the camera lens, to form an image of the
photographic film. A photograph is called vertical if the camera axis has been
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pointed vertically down and oblique when tilted to a predetermined angle to the
vertical. Prior to World War II, oblique photographs were extensively used for
mapping large tracts, since they cover a larger area. However, all vertical aerial
photographs are slightly tilted, due to airplane movements during exposure.
This tilt, however, should not exceed 3–4◦ in either direction.

The scale of the photograph is a function of the focal length of the camera
lens and flying height:

scale = focal length (m)

flying height (m) above ground

Alternatively it is defined as:

scale = distance between objects on aerial photo
ground distance

For example, for a focal length of 15 cm and a flying height of 1500 m
the scale of the photograph is 1:10000. A distance of 100 m on the ground is
recorded as a distance of 1 cm on the aerial photo. In consequence, a single
23 × 23 cm photograph covers an area of 529 ha although, because of overlap,
the effective area is much smaller. Scale variations within a given aerial photo-
graph are due to elevation differences in hilly country and camera tilt, those
between adjoining photographs within a flight line are, in addition, caused by
variations in flying height (see Figure 11-1). The principal point of an aerial

Figure 11-1. Geometry of the aerial photograph.
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photograph represents the geometric center of the photograph. It is identified by
connecting the opposite fiducial marks on the edge of the photo by (penciled)
lines and determining the point of intersection. The photographic position of
the principal point is required for stereoscopic viewing. The nadir is defined as
the point where a vertical line from the ground up, which passes through the
center of the camera lens intersects the plane of the photograph. In the case
of perfectly vertical photographs, the principal point coincides with the nadir.
Radial displacement of an image results primarily from changes in ground ele-
vation and is described as topographic displacement. It occurs radially in an
outward direction from the nadir. Displacement due to camera tilt takes place
radially outward from the vanishing point.

Radial displacement should be explained in terms of the perspective view
of a camera lens, which points down vertically. A tree exactly beneath the cam-
era is viewed in its correct position. In absence of image displacement, the
characteristic shape of the crown cannot be identified. However, the image of
the same tree, if it were located near the edge of the photograph, will be dis-
placed. The amount of displacement of the top of the tree differs from that of
its base. This phenomenon is of essential importance for object recognition and
to measure heights. The real reason for this displacement is scale variation due
to elevation differences (in this case, that between the top and base of the tree,
respectively).

Vertical photographs are taken along a series of parallel flight lines so that
each object within the study area is photographed from two adjacent positions
of the aircraft along the flight line. The overlapping part of a photograph is
called endlap and the area covered by each of two adjoining photographs form-
ing a stereopair is referred to as the stereoscopic overlap area, which can be
viewed stereoscopically. The amount of overlap varies between 55% and 65%.
In order to ensure that all objects between adjoining flight lines are properly
exposed to the aerial camera, a lateral sidelap is prescribed. It is dependent on
topographic conditions and navigation supports and varies between 15% and
25% (Figure 11-2).

Example 11.1

Flight planning

Total area (At ) = 7500 ha

Scale of aerial photographs (1/mph) = 1 : 10000, aerial photo scale
figure (mph) = 10000

Size of aerial photographs (s′) = 23 cm · 23 cm (9 inch · 9 inch)

Endlap = 60% (p = 0.60), sidelap = 15% (q = 0.15)
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Figure 11-2. Endlap and sidelap in vertical aerial photography.

Size of aerial photographs on the ground (s = s′ · mb) = 2300 m

Area covered by a single aerial photograph (Aph = s2 =
(s′ · mph)

2 = 5290000 m2 = 529 ha

Stereoscopic model area of a stereopair (Asm = s(1 − p)) =
3174000 m2 = 317.4 ha

New stereoscopic area (An = s2 ·(1− p)(1−q)) = 1798600 m2 =
179.86 ha

Required number of aerial photographs (n = At/An) ∼= 42

Parallax is defined as the apparent displacement of the position of the image
of an object and is associated with the basic principle of central projection in
photography. The amount of displacement of an object differs on the two adja-
cent photographs of a stereopair, because of a shift in the position of the point
of observation. Within each of the parallel flight strips required to cover the
study area, the aerial photographs are so spaced that the image of each object
on the ground appears on each of the two adjoining photographs within the
flight strip. The absolute stereoscopic parallax, or x-parallax, is defined as the
distances between the images of a given point measured on the two oriented
photographs of the stereopair. Projected on the line of flight, these distances
correspond to the sum of distances between images of the point and the prin-
cipal points on both photographs. The apparent displacement of the top and
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base of an object, for example a tree, are determined and the parallax of the
top differs from that of the base. The parallax difference (�p or �x) between
the top and base of the tree can be used to calculate the height as a function
of the parallax difference, flying height related to the base of the object and
the photographic base. The latter is obtained by averaging the distance between
the principal points and their conjugates on the two adjoining photographs.
Parallax measurements require stereoscopic viewing of those adjacent photo-
graphs on which the object can be located. The line of flight is reconstructed
on each photograph of the stereopair by connecting the principal point on each
photograph with its conjugate principal point, i.e., with the image of the other
photograph of the stereopair (Figure 11-3).

The two resultant straight lines are properly oriented to form a single com-
mon line, which reflects the flight direction during exposure. For stereoscopic
viewing, the two photographs are separated along the common line to such an
extent that a fused image of selected points on the photos is obtained. The air
base is defined as the distance between the principal point and its conjugate,
measured on one of the photos of the stereomodel.

(1) Determination of the principal points M1 and M2
(2) Determination of the conjugate principal points M1′ and M2′
(3) Relative orientation of the stereopair under a pocket stereoscope
(4) Orientation of the stereopair under a mirror stereoscope

Figure 11-3. Relative orientation of the stereo pair.



Dendrometric Data 323

3 DENDROMETRIC DATA

On aerial photographs the majority of dendrometric characteristics cannot
be measured directly. They are derived from relationships between photo and
dendrometric variables. The accuracy depends upon:
• The reliability of the assessment of photogrammetric characteristics and

quantitative information from photo interpretation
• The correlation between the aerial dendrometric variables and the “true”

values obtained by ground surveys

3.1 Tree height

One of the most important dendrometric variables, which can be directly mea-
sured from aerial photographs, is the tree height. Tree heights may be derived
from:
• Radial displacement of images on single photographs (Figure 11-4)
• Shadow length of individual trees measured on single photographs

(Figure 11-5)

Figure 11-4. Measuring radial displacement.
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Figure 11-5. Measuring shadow length.

• Parallax differences measured on stereopairs of photographs, with a stereo-
scope equipped with a micrometer wedge or stereomicrometer

• Stereoscopic measurements on aerial photographs with either analogue or
digital plotters

The determination of tree heights by measuring the radial displacement and
shadow length of the object has severe limitations. Displacement is usually too
small to obtain accurate estimates and can be measured only near the edges of
a stand on photographs taken from a low altitude. The shadow-length method
also has its limitations and is feasible only in stands of low-stand density.
The shadow-length method requires a calculation of the sun’s elevation, which
is a function of its angle of declination on the day of photography, the latitude of
the location of the object and the angle between the true north and the direction
of the shadow. The limitations of the shadow-length method for estimating tree
height are:

(1) The possible occurrence of a hot spot within the photograph, which
is apparent if topographic displacement of the tree matches its shadow.
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In tropical regions, it occurs throughout the year, in the temperate zone
during summer, around midday.

(2) Shadow-length measurements of trees in the inner part of the stand
are inaccurate, if not impossible. In practice, these measurements are
obtained at the edge of the stand. In certain cases, the sample of tree
heights obtained along the edge of the stand is not representative for the
stand in its entirety.

(3) The shadow of a given tree growing uphill is shorter, that of a downhill
tree is longer than the shadow of the same tree on horizontal terrain.
Depending upon the season of photography, the tree height estimates are
either positively or negatively biased.

(4) Trees leaning away from the sun cast longer shadows than those leaning
towards the sun.

(5) Shadow lengths are shortened by undergrowth and, in northern regions,
by snow.

Nash (1949) reported standard errors of the estimated heights of approximately
0.65 m within the 10 m height category, Nyyssonen (1955) noted standard
errors of the same size as those obtained by parallax measurements.

In conclusion, a stereoscopic measurement with analogue or digital plot-
ters produces the best results in terms of cost as well as accuracy. It requires
overlapping stereopairs of photographs (60%).

3.1.1 Measuring parallax differences

A stereomicrometer, consisting of two glass plates with two small marks etched
onto its surface is placed over the stereopair (Figure 11-6). One of the two
marks is stationary, the other is allowed to move towards or away from the
first one.
• The two marks are viewed under a mirror stereoscope, with the mobile mark

being shifted until it is fused into a single stereoscopic mark.

Figure 11-6. Stereomicrometer.
(1: Measuring marks 2: Millimeter scale 3: Micrometer scale)
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• By moving the two marks closer together, the parallax increases and the
fused image appears to float at a higher elevation. If they are moved in
opposite directions, thereby increasing the distance between the two marks,
the parallax is reduced. In consequence, a changing parallax influences the
apparent elevation of the fused image, which is also called the floating mark
or stereoscopic mark.

• The floating mark is positioned at the top and base of the tree.
• The stereoscopic parallax is measured on the millimeter and micrometer

scale of the stereomicrometer (Figure 11-6). The parallax difference between
the top and base of the tree is obtained by subtracting the two recorded
values.

• The tree height is obtained from the following equation:

h = hg · �p
b + �p

where

�h = tree height

hg = flying height above the base of the tree

�p = parallax difference between the top and base (= p1 − p2)

b = photographic base at the position of the base of the tree
(Figure 11-7)

Example 11.2 The height of a tree is to be estimated by measuring the simple
parallax with a mirror stereoscope. Flying height (hg) and air base are 950 m
and 83.4 mm, respectively. The parallax for the top and base of the tree are
11.53 and 7.98 mm, respectively. The resultant parallax difference is 2.55 mm.
Hence:

h = 95 · 2.55
83.4 + 2.55

= 28.2 m

with flying height expressed in meters, air base and parallax difference in
millimeters.

Flying height and photo base refer to the position of the base of the tree.
This is acceptable for measurements on stereopairs on flat terrain. In areas with
significant topographic relief, it is necessary to determine the flying height with
reference to the principal point of the left photograph and the photo base on the
right photograph (Figure 11-8).
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Figure 11-7. Geometric relationships to determine tree height from stereoscopic parallax.

Figure 11-8. Geometric relationships between the stereopair and tree height in areas of
significant topographic relief.
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Tree height is obtained from the following formula:

h = h0 (�p1 − �p2)

b + �p1 + �p2 + �p1 · �p2

b

∼= h0 (�p1 − �p2)

b + �p1 + �p2

where h0 = flying height above the plane of reference or above the principal
point of the left photo of the stereopair, �p1 = parallax difference between
the principal point of the left photo and the top of the tree, �p2 = parallax
difference between the principal point of the left photo and the base of the tree,
b = photo base measured on the right photo of the stereopair

Example 11.3 The observed parallax differences between the top and base
of the tree and the principal point on the left photo are 4.78 mm and 2.23 mm,
respectively. The photo base measured with a ruler on the right photo is
81.5 mm, the flying height measured on the left photo is 940 m. Hence:

h ∼= 940 · (4.78 − 2.23)

81.5 + 4.78 + 2.23
= 27.1 m

Parallax differences may also be measured on stereomodels using simple
wedge instruments, which have no mobile parts. The parallax wedge consists
of two diverging rows of dots printed on a transparent overlay with the distance
between matching dots increasing by a constant amount. In order to measure
the height of a tree, the overlay is superimposed over the relevant position on
the photo and viewed with a stereoscope. A mirror stereoscope might be used,
but a pocket stereoscope is usually adequate to obtain sufficiently accurate
readings. When viewing the object under the stereoscope, some of the rows
are fused stereoscopically and appear as a single row of dots rising within the
stereoscopic model. The tree height may be determined by obtaining readings
of the apparent elevation of the top and base of the tree. The fused dots occu-
pying the same position as the top and base of the tree are recorded. The two
readings are subsequently multiplied by a constant to obtain the estimated tree
height. In North America, wedge instruments are frequently used in field work,
in combination with pocket stereoscopes and small-size aerial photos. Viewing
aerial photographs of normal size under laboratory conditions, with the aid of
more powerful stereoscopes, however, is more convenient and produces more
accurate results.

Several studies were carried out to determine the accuracy of tree height
measurements by simple parallax measurements. Schultz (1970) and Akça
et al. (1971) reviewed the nature and extent of the error sources involved.
When using a mirror stereoscope together with a stereomicrometer, the mean
error on medium-scale photographs, varying between 1:10000 and 1:15000,
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is 1 – 1.5 m. Stellingwerf (1962) reported a standard error of 1.2 m for tree
height estimates on aerial photographs of a 1:10000 scale.

3.1.2 Analogue and digital photogrammetric methods

Tree heights are preferably measured with either analogue, digital (analytical
or softcopy) plotting devices. Analogue instruments establish the relationship
between the aerial photograph and terrestrial coordinate systems by recon-
structing the perspective bundles with the aid of optical, mechanical or optical-
mechanical devices, either equipped with space rods or by optical projection or
both. Analytical plotters provide the link between the image and ground coor-
dinates. The basic configuration of the analytical plotter consists of three main
functional components: the optical-mechanical stereo viewer, main and ancil-
lary computers, and peripheral equipment such as printers, plotters. The stereo
viewer usually consists of a binocular viewing system, two stages for support-
ing the stereopair of photographs, control devices for moving the stages and/or
the optical systems and the illumination systems for the aerial photo. The binoc-
ular system is of high quality and usually fitted with a zoom lens, which allows
comfortable plotting. The interior, relative, and absolute orientation will be car-
ried out accurately and with considerable speed. The photogrammetric use of
the system requires the application of programs, which create the stereomodel
and use the latter to produce digital information. Modern softcopy digital plot-
ting devices are based on digital pictures in pixel format. The softcopy plotters
consist of several software modules and a powerful computer without any opti-
cal or optical-mechanical projection devices. The interior, relative, and absolute
orientation parameters of aerial photos for creating the stereomodel is calcu-
lated with the aid of special modules and the stereomodel of digital pictures is
viewed, for example, with the aid, of electro-optical shutters.

Focal length, size of the photo, and magnitude of lens distortions are factors
which restrict the use of conventional analogue photogrammetric plotters.
In addition, the required relative and absolute interior orientation is time con-
suming. The use of analytical or softcopy plotters are not restricted by the
above factors. Its computer calculates corrections in real time, which are also
implemented in real time. The time required to run the three orientation phases
of a given stereopair is less than that required with analogue instruments. The
analytical and softcopy plotters allow the operator to read, record, and store
coordinates in any coordinate system. In addition, the analytical and softcopy
plotter have the capability of recalling stored data with the aid of the computer.
The orientation data for the stereomodel, i.e., the coordinates of single trees
or sample plots, can be stored. The correct stereomodel can be retrieved at a
later point in time and reproduced exactly. It is therefore possible to relocate
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the previously used trees or plots in the stereomodel. This feature is useful in
monitoring changes in tree and stand characteristics such as tree height, crown
dimension, and stand density. (Figure 11-9, Akça et al. 1995).

Furthermore the softcopy plotters could be used for classification and plot-
ting of satellite images and in addition they serve as geographic information
systems. They could be considered as total station of remote sensing (Akça and
Radberger, 2000).

Analogue photogrammetric instruments are still used in topographic map-
ping and in the practice of forestry, but they are gradually being replaced by
the digital analytical and softcopy plotter because of the previously mentioned
advantage of this category of devices.

The measurement of tree heights with analogue plotting instruments may
be difficult, if the base of the tree has to be identified in dense forest stands.
It may then be impossible to find a ground point with the same elevation as that
of the base point. This represents the most important error source. The analyt-
ical and softcopy assessment may be useful to solve this technical problem.
In the stereomodel the coordinates x , y, and the elevation z of a visible ground
point, as near as possible to the subject tree, have to be measured digitally.
A regression model z = f (x, y) based on information from the immediate
surroundings of the sample tree is fitted. The fitted equation is used to estimate
the elevation of the tree base (Zb) from the coordinates (xt , yt ) of the top of the
tree (Figure 11-10). The concurrent computer program calculates the estimated
height. In softcopy plotting, also, the elevation of the base of trees could be
derived from a digital terrain model.

In comparison with the parallax method, tree heights are estimated more
accurately when analogue or digital plotters are used, because of the more

Figure 11-9. Mapping of tree crowns in the fertilizer trial Hilchenbach/Germany. (Hoffmann
2001.)
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Figure 11-10. Regression surface and elevation of the base of the tree. (Akça 1989.)

accurate orientation of the stereo pair and the superior optical viewing of
the stereomodel or viewing with the electro-optical shutters. The mean error
of the photogrammetric height measurement, on photos of a medium-scale
between 1:5000 and 1:15000 varies between 0.5 and 1.0 m. Akça (1973) and
Hildebrandt (1996) reported a mean error of approximately 1 m on aerial pho-
tos with a scale varying between 1:5000 and 1:15000, if a mirror stereoscope
equipped with stereometer is used and a mean error of 0.3 m when using a
more powerful device. When measuring heights with a simple stereometer, the
measurement errors, in 80–85% of the cases, are less than 1.5 m.

For many purposes, e.g., for estimating stand volume and for growth mod-
eling and yield forecasting, stand height is a more important characteristic than
the height of individual trees. The following error sources are involved:
• Inaccurate identification of the base of the trees
• Because of the limited resolution of the photographic film and paper and also

dependent upon the photo scale, the real apex of the tree may not be depicted
on the aerial photographs. This in turn produces a negatively biased estimate
of the height of the selected sample trees

• A random sample of trees selected to estimate the mean height of the stand
produces an unbiased estimate of the arithmetic mean height of the stand
and, therefore, underestimates the height of the tree with the quadratic mean
diameter
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• In practice, suppressed trees are unlikely to be selected for measuring and
this in turn tends to produce a positively biased estimate of the mean height

The compound effect of these error sources is likely to be a negatively biased
estimate of tree height. Selecting sample trees from the 20–30 tallest trees
within a stand, or measuring the k tallest trees within a sample plot, how-
ever, tends to reduce the magnitude of bias and is usually thought to produce
a fairly reliable estimate of the top height of the stand. A subsample of trees,
measured by conventional ground surveying and by photogrammetric meth-
ods, could eventually be used to fit a regression equation with the latter as the
predictor and the former as the target variable. A standard error of the pho-
togrammetric measured mean or top height varying between 0.7 and 0.8 m by
using medium-scale aerial photographs has been reported (Akça 1983).

In conifers up to medium age, a stereophotogrammetric measurement of
tree height of necessity tends to produce negatively biased estimates, since the
tip of the tree cannot be identified because of the limited resolution of aerial
photographs. In these cases the point of measurement coincides with the first
whorl below the tip of the tree. It has been found that different operators con-
sistently select the same point of measurement. In old conifer stands with no
recognizable terminal shoot as well as in stands of broad-leafed tree species,
it may be impossible to clearly identify the tip of the tree. Different opera-
tors, therefore, tend to select different points of measurement. However, a more
important stumbling block is the identification of the base of the tree. To over-
come this problem, the measuring mark is usually fixed at a visible point as
near as possible to the tree to be measured, if possible on the contour line of the
subject tree. By using an analytical or softcopy plotter, the elevation of the tree
base can be obtained by establishing a regression surface (see Figure 11-10) or
it can be directly gathered from a digital terrain model by using softcopy plotter.

3.2 Number of tree crowns

Due to overlapping, overshadowing, and clumped crowns, the number of
crowns per unit area, counted on aerial photographs inevitably underestimates
the actual true number of trees per unit area, with the exception of widely
spaced plantation forests (Figure 11-11).

The dominating and codominating trees within a stand, which constitute
Kraft’s crown classes 1 and 2, are usually visible and therefore, countable with-
out systematic errors. Those belonging to Kraft’s class 3 are partly visible,
whereas the majority of trees belonging to classes 4 and 5 are not resolved and
can not be counted (Table 11-1). The social classes 4 and 5, however, represent
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Figure 11-11. Crown canopy (a), overshadowing (b), and clumping of tree crowns (c).

Table 11-1. Observed and recovered number of trees (Akça 1979)

Treatment Tree class No. of trees On aerial photgraphs
(Kraft) Recovered Not recovered

1 56 56 –
2 76 76 –

Unthinned 3 68 60 8
4 + 5 86 25 61
Total 286 217 69

1 44 44 –
2 42 42 –

Row thinning 3 32 30 2
4 + 5 78 33 45
Total 196 149 47

a small portion of the total stand volume. For this reason, the recoverable num-
ber of crowns and stand volume are more closely correlated than the actual tree
number and volume, both expressed per unit area (Tandon 1974).

The difference between the observed number or crowns and the real number
of trees per unit area, as well as the variance of these differences, are related to
photo scale, resolution of film and paper, stand age, stand structure, and stand
density. In hardwoods, the differences and their variance tend to be greater than
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in conifers (Spurr 1952; Tandon 1974). Regression analysis, in combination
with subsampling, may then be applied to correct for bias (Spellmann 1984).
Aerial photographs of medium-scale, varying between 1:10000 and 1:15000
are adequate to obtain estimates of acceptable accuracy.

3.3 Crown closure

The crown closure of a forest stand is determined by expressing the area of
the crown, projected on a horizontal plane, as a fraction of the total ground
area of these trees. On aerial photographs, it is determined as the relative area
covered by tree crowns. Crown closure and stocking density represent differ-
ent concepts, since the former represents an absolute measure, and the latter
is dependent upon management practices and objectives. There is, however,
a statistical relationship between crown closure and stand density, the latter
expressing the degree to which the site is utilized by the trees. The relationship
is influenced by site and silvicultural parameters such as stand treatment, and
differs for different regions. Crown closure represents the most frequently used
aerial stand parameter being used for stand volume estimations. In addition,
it may serve as stratification criteria in the inventories of large forest tracts
and is a useful characteristic when evaluating the necessity of intermediate
thinnings.

In comparison with terrestrial methods, the estimation of crown closure
on aerial photos is easier, less subjective and more accurate. Some training
and experience is required to estimate crown closure ocularly on stereopairs
of aerial photos viewed under a stereoscope. Alternatively, single photographs
may be used to estimate crown closure.

More accurate results are obtained by making use of a crown-density scale,
which is obtained either by cutting out small sections of existing photographs
of known crown closure or by preparing a set of drawings of increasing crown
closure (Figure 11-12). The recorded average error varies between 10% and
20% of the true crown closure.

The ocular estimation of crown closure may be improved by making use of
a transparent dot grid device (Figure 11-13), to be placed on the aerial photo,
either on single photographs or on stereopairs. In this case, the number of dots
falling on tree crowns is counted and expressed as a proportion of the total
number of dots.

Crown closure may be estimated more accurately by photogrammetric
plotting of tree crowns with the aid of an analogue or analytical instrument.

Due to the nature and pattern of shadows and because of the perspec-
tive view associated with aerial photographs, the lower part of the crowns of
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Figure 11-12. Crown closure diagram.

Figure 11-13. Dot grid to estimate crown closure.

dominants and a large section of those of the dominated trees, can neither
be detected nor plotted in a stereomodel. This produces negatively biased
estimates (Figure 11-14).

Klier (1969) proposed a method based on the angle count procedure, with
BAF = 100, for estimating crown closure on single photographs, which is
similar to the terrestrial version of the angle count method (Figure 11-15). Each
tree falling inside the sample plot with imaginary boundaries is counted and
represents a 1% crown closure. In order to facilitate counting, a stereoscopic
angle-count-measuring device has been developed (Denstorf 1981).
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Figure 11-14. Crown maps prepared from photo measurements and terrestrial surveys.

Figure 11-15. Angle count wedge, count factor 100.
(a) Single photograph
(b) Stereopair of photographs

3.4 Crown dimensions

It is technically possible to measure crown width, crown-projection area, and
crown length on aerial photographs. The lateral crown-surface area and crown
volume are based on certain geometric models, which reflect the shape and
form of the tree crown. Usually, these measurements express the dimensions
of the visible light crown. (see Figure 4-6). The resolution and visibility of
small branches and irregular crown perimeters are dependent upon the scale of
the photo. Due to inadequate resolution, the estimates are usually negatively
biased (Figure 11-16).

A close correlation exists between crown diameter and stem characteristics
such as dbh (Figure 11-17). Breast height diameter and photogrammetrically
measured crown diameter are closely correlated. In Pinus silvestris, Perlewitz
(1970) found a correlation coefficient of 0.9 and a standard deviation of the
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Figure 11-16. Photographic resolution and image-limitation of the crown of conifers.

Figure 11-17. Relationship between crown diameter and dbh in a 34-year-old Norway spruce
stand, from 1:2000 scale aerial photograph.

regression of 2.5 cm. Klier (1970) emphasized the influence of scale, image
quality, species, and species mixture. The influence of method and degree of
thinning was analyzed by Akça (1979). The close relationship between these
variables motivated Moessner (1959); Sayn-Wittgenstein et al. 1967 and other
researchers to construct tree aerial volume tables with crown diameter as the
table entry. Regression equations may be fitted to estimate dbh from crown
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diameter. In consequence, it is feasible to construct an aerial tree volume func-
tion or table with crown width as the predictor variable.

Crown widths can be easily measured from single aerial photographs or
stereomodels by using crown wedges or crown-diameter scales and magnifying
glasses or stereoscopes. On single photographs, the crown width of trees near
the edge of the stand should be measured at a right angle to the radial line,
which connects the principal point of the photo to the center of the image of the
subject tree. Due to radial displacement, these tree crowns are imaged obliquely
on aerial photographs. Measurements taken along the radial lines produce posi-
tively biased measures of the crown width. In general, the measurement error
does not exceed 10% of the true value.

Nash (1949) and Nyyssonen (1955) found standard errors of 0.6 m, Worley
et al. (1955) obtained standard errors between 0.9 and 1.2 m on photographs in
scale of 1:12000. Ilvessalo (1950) and other authors noted that the photogram-
metrically measured crown diameter tends to underestimate the true crown
diameter. Hildebrandt (1996) recovered the dbh distribution of beech stands
from the observed distribution of crown widths (Figure 11-18).

The crown projection area can be estimated with the aid of a transparent dot
grid. After superimposing the transparency onto the photograph, the number
of dots falling within the crown is counted and multiplied by the area repre-
sented by each dot. Alternatively, an analogue or analytical plotter is used to
prepare a crown map, thereafter the area covered by tree crowns is measured or
calculated. The measurement error is fixed at 5%.

Crown lengths can be measured on the stereoscopic model by analogue or
digital plotting. Crown surface area and crown volume are a function of crown
width and length and are useful variables in forest mensuration and growth
studies. The relationship between crown surface area and basal area increment
of single trees is shown in Figure 11-19.

Figure 11-18. Crown diameter and dbh distribution in beech stands. (Hildebrandt 1969.)
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Figure 11-19. Relationship between photogrammetrically determined crown surface area
and basal area increment.

3.5 Age

Stand age classes can be estimated from a regression equation with photogram-
metrically determined stand height and crown size as predictor variables.
Because of the inherent uncertainties, a given stand is usually assigned to
one of 20-year-age classes or natural development stages. Studies in Germany
(Akça 1996) indicated that the age class of a stand can be estimated from photo
measurements of its stage of development.

3.6 Profile of the stand’s growing space

The vertical profile of the growing space of a forest stand is useful in estimating
the growing stock of a stand. Its measurement was introduced by Hugershoff
(1933) and Neumann (1933), but the method was abandoned because of the dif-
ficulty to determine these profiles with analogue instruments. The development
of modern digital and analytical plotters, however, facilitated the construction
of profiles (see Figure 11-20). There is an increasing interest in the reconstruc-
tion of growing space profiles, particularly because of unsatisfactory resolution,
which is evident in young stands. In such cases, growing space profiles are used
to estimate mean and top height.
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Figure 11-20. Vertical profiles in pine stands, obtained with digital plotters, on 1:6000 aerial
photographs (a) young, fully closed stand; (b) closed mature stand; (c) open mature stand.

Figure 11-21. Vertical stand profile: height estimates

h pr = photogrammetrically measured mean height of the profile

hg = estimated height of the tree with the mean basal area

hsp = mean height of dominants

The mean height of the vertical stand profile does not produce a reliable and
unbiased estimate of the mean height of the stand, since the mean height of the
profile measures the height of the dominants (Figure 11-21). An unbiased esti-
mate of the mean height of the stand may be obtained from a fitted regression
equation with profile height as the predictor and true stand mean height as the
target variable.
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4 ESTIMATION OF STAND VOLUME

The estimation of stand volume, based on photographic interpretation and pho-
togrammetric measurements, requires either the interpretation or measurement
of dendrometric variables either on single photographs or on stereopairs and a
regression equation with these variables as predictors and stand volume as the
target variable. The accuracy of the resultant stand volume estimates depends
largely upon the accuracy of the measurement of these predictor variables and
the performance of the model (expressed by the coefficient of determination).
Aerial stand volume inventory methods may be classified on the basis of the
variables being used (Figure 11-22).

The stereogram method is based on a visual inspection and comparison
between the photographic image of the stand of interest and that of a stand
with known volume per hectare (measured by ground surveying). A series of
such stereograms representing different stand volume classes, obtained from
one and the same photo source, is merged. Photogrammetric and photographic
information about the image of the stand, such as grey tone, texture, pattern,
crown closure, and stand height is evaluated to allocate the stand to one of the
categories of the stereogram assembly. The method is useful for reconnaissance
surveys, but the volume estimates have to be adjusted with the aid of terrestrial
sampling methods.

Aerial tree and stand volume tables are common in North America.
Table 11-2 exemplifies such a stand volume table for even-aged Douglas

Figure 11-22. Schematic summary of methods of stand volume estimation.
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Table 11-2. Aerial stand volume table (Pope 1962)

Stand height Crown closure (%)

(feet) 15 25 35 45 55 65 75 85 95
50 1 3 4 5 5 4 3 1 −
60 2 5 7 8 8 8 6 4 −
70 4 8 10 12 13 12 11 8 4
80 6 11 14 17 18 18 16 14 10
90 8 14 19 22 23 24 23 20 16
100 10 18 23 28 30 31 30 28 24
110 13 22 29 34 37 39 39 37 34
120 16 26 34 41 46 48 49 48 44
130 19 31 41 49 54 58 60 59 56
140 22 36 48 57 64 69 72 72 70
150 25 41 55 66 75 81 85 86 85
160 29 47 63 76 86 94 99 101 101
170 33 53 71 86 98 107 114 118 118
180 37 60 80 97 111 122 130 135 137
190 41 67 89 108 125 138 148 154 158
200 46 74 99 121 139 154 166 174 179
210 50 82 109 134 154 172 185 196 202
220 55 90 120 147 170 190 206 218 226
230 60 98 132 161 187 209 228 242 252
240 66 106 143 176 205 230 250 267 279
250 71 116 156 192 223 251 274 293 308
260 77 125 168 208 242 273 299 320 337

fir in the Pacific Northwest. (Pope 1950, 1962) recommended the construction
of aerial stand volume tables based on stand height, crown closure, and crown
diameter as independent variables. This idea was implemented by Gingrich et
al. (1955) and Moessner (1960). Meyer (1961) constructed aerial stand vol-
ume tables based on mean height and crown closure as independent variables.
Stellingwerf et al. (1977) constructed aerial stand volume tables based upon
crown closure as independent variable and table entry. In an earlier study
(Stellingwerf 1973) it was suggested the use of terrestrially measured control
plots to reduce bias associated with aerial volume tables. The aerial tree volume
table gives the estimated tree volume as a function of tree variables measured
by photogrammetric methods, primarily tree height and crown width, the latter
as a substitute for stem diameter. The method gives satisfactory results in open
stands, since the dimensions of the single tree must be identified. The stand
volume is obtained after the additional estimation of the number of trees per
hectare. In stands of high density, such as those prevailing in the European
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and tropical forests, however, the aerial stand volume table produces more
accurate estimates of the stand volume, since mean height and crown closure
are highly significant influential variables in estimating the stand volume per
hectare. The single-entry stand volume table, with total or mean stand height
as the table entry, gives satisfactory results in fully stocked stands on uniform
sites. Two-entry stand volume tables perform better in forests of highly variable
stand density, with crown closure being a useful additional predictor variable
in stands of normal stocking, number of crowns per unit area in forests of low
stocking. In order to obtain more accurate stand volume estimates, separate
tables may be constructed for predefined age and site index categories.

Alternatively, conventional yield tables constructed for specific species and
based on a common stand treatment regime, may be used to estimate the vol-
ume of stands of known age, with either photogrammetrically measured mean
height or top height being used to determine the site index (Haselhuhn 1983).
A different method, which requires the determination of the stand profile, was
proposed by Neumann (1933) and Hugershoff (1983). It is obtained as follows:

R = a · D

where R = growing space of the stand, a = area of the profile, and D = dis-
tance between profiles. The actual growing space of a specific stand is obtained
by multiplying the calculated growing space by a stocking index, obtained by
ground surveys or from conventional yield tables. The method produces satis-
factory results in even-aged dense forest stands.

Although the above methods were developed and may be applied to esti-
mate the stand volume, there is an increasing emphasis on two-phase sampling
with regression estimators (see sections 10.61 and 10.71). A large number of
plots are established and measured on the aerial photographs to obtain quick
and rough estimates of the volume per unit area, based on variables such as
crown closure, stand height and number of trees per hectare. A subsample of
plots is selected at random from the primary sample of photo plots and mea-
sured by conventional terrestrial methods. Several authors reported satisfactory
results obtained by regression sampling (Schade 1980; Zindel 1983; Spellmann
1984; Akça et al. 1993). The following models have been used in mensurational
studies:

Target variable Predictor variables Predictor variables
Volume per hectare hd , A hd , hd

2, cc
hm, A cc . hd

2

N N 2 cc, cc . hd , cc . hd
2

hd , cc



344 Remote Sensing in Forest Mensuration

where hd = mean height of dominants, cc = crown closure, N = number of
crowns, A = estimated age class

5 ESTIMATION OF VOLUME INCREMENT

German studies (Akça 1984; Akça et al. 1991) confirmed a close relationship
between crown projection area, as well as crown surface area and the basal
area increment of single trees. Based upon measurements in permanent sample
plots, a regression analysis with basal area increment as target variable, and
crown surface area as predictor revealed that R2 values were between 0.64 and
0.72 (Akça 1979, see Figure 11-19).

Two-phase sampling may also be applied to estimate the volume increment,
and in the case of intermediate thinnings, to estimate volume changes. Two
methods have been developed to estimate changes.
• Method 1 requires an independent estimation of the stand volume per hectare

at the beginning and the end of the period. In both instances, the aerial photo-
graph is used to measure ancillary variables, for example, the mean height of
the dominants, crown closure, crown mixture (phase 1 sample). A subsam-
ple of the photo plots (phase 2 sample) is used to determine the volume per
hectare by ground surveying. The mean volume is obtained as a regression
estimator. The difference between the estimates at the beginning and end of
the period estimates the volume change.

• Similar to the approach above, method 2 requires photo plots to measure the
ancillary variables. In phase 2, a subsample of photo plots is drawn and man-
aged as permanent sample plots, on which the volume at the beginning and
end of the period is determined. Similar to method 1, a regression estimator
is subsequently calculated to estimate volume changes.

• Permanent sample plots should be used in both methods to determine
changes and the photogrammetric stand parameters should be determined
with the aid of digital or analytical devices. Akça et al. (1991) regressed
volume increment on top height and crown closure, both obtained pho-
togrammetrically. The equation used stand height, crown closure and stand
height × · crown closure as predictor variables. The results are summarized
in Table 11-3.

In both cases, the standard error is 0.98 m3/ha. The difference between the
recorded means is due to sampling errors. The two-phase sampling proce-
dure used 40 ground plots and 150 photo plots, whereas the method based on
permanent plots required 185 ground plots. In this study, the cost ratio photo-
plots: permanent ground plots was 1:5. In that case, the total cost of two-phase
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Table 11-3. Estimation of stand volume in Norway spruce by two-phase sampling with
regression estimators and by sampling with permanent sample plots

Two-phase sampling Permanent sample plots

Current volume increment 12.62 m3/ha 13.96 m3/ha
Standard error 0.98 m3/ha 0.98 m3/ha
Sample size – –
Terrestrial 40 185
Aerial photographs 150 –

sampling is the equivalent of measuring 70 ground plots. In consequence the
two-phase design reduces the total cost by 60%.

Other sampling studies for estimating stand volume increment were carried
out by de Gier et al. (1988), de Gier (1989), and Stellingwerf (1973).
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Appendix A

Symbols

N , n = population, sample size
σ 2, s2 = population, sample variance
Sx̄ , Sȳ = conditional or standard error of the sample mean of x, y
σ2

X = variance of the population total of X
s2

X = estimated variance of the population total of X
sX = standard error of the estimated population total of X
s2

y(x=xi )
= conditional sample variance of y for x = xi

r2, R2 = simple, multiple coefficient of determination
R2

adj = adjusted coefficient of determination
r, R = simple, multiple correlation coefficient
rI = intraclass correlation coefficent
s2

y.x = sample variance adjusted for regression
t = Student’s t-statistic
F = Snedecor’s F-statistic
z = unit normal variate
g1 = skewness
g2 = kurtosis
E = allowable error
CP = Mallows’ CP index
LA = leaf surface area
LAI = leaf area index
BT = bark thickness
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MAI = mean annual increment
CW = crown width
CL = crown length
CR = crown ratio
f = false form factor
λ = true form factor
g = tree basal area
Gha = basal area per hectare
q0.5h = false form quotient
η0.5h = true form quotient
qM,q5 = Mitscherlich’s form quotient
qH = Hohenadl’s form quotient
qG = Girard’s form quotient
d, dbh = diameter at 1.3 m
Nha = number of trees per hectare
d = arithmetic mean diameter
dq = quadratic mean diameter
dmg = diameter of the central basal area tree
dν = diameter of the tree with the mean volume
hm = mean height
hL = Lorey’s mean height
ht = top height
hc = Kitamura’s critical height
SDI = stand density index
S% = S% index of the stand
dw = Weise’s mean diameter
CCF = crown competition factor
MCA = maximum crown area
CPA = crown projection area
SI = site index

Greek letters

A α Alpha H η Eta N ν Nu T τ Tau
B β Beta � θ Theta Ξ ξ Xi Y υ Upsilon
� γ Gamma I ι Iota O o Omicron � ζ Phi
� δ Delta K κ Kappa � π Pi X χ Chi
E ε Epsilon � λ Lambda P ρ Rho � ψ Psi
Z ζ Zeta M µ Mu � σ Sigma � ω Omega
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Appendix B

Diameter data of sampling trees

dbh dbh dbh dbh dbh dbh dbh dbh dbh dbh dbh
(cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)
18.0 22.5 23.7 22.0 20.1 25.5 17.2 18.9 22.2 19.0 22.8
26.9 22.5 21.1 25.7 22.3 21.5 20.0 22.1 12.3 26.3 20.5
17.0 24.0 20.1 16.0 23.0 21.1 22.0 22.4 8.6 16.0 15.5
19.0 17.1 20.6 14.7 23.5 22.8 23.5 16.0 14.3 22.3 23.1
27.5 19.4 22.6 23.5 22.5 18.1 25.8 20.4 20.5 24.2 29.3

21.8 28.0 25.2 13.6 18.5 21.4 30.0 27.0 28.1 16.5 20.7
29.1 24.3 16.6 20.1 18.2 22.3 15.9 28.0 12.5 26.2 12.1
20.3 23.5 19.7 26.5 25.3 20.0 7.9 29.2 15.7 18.6 26.0
29.0 20.2 21.9 26.6 26.5 23.0 9.7 18.9 9.1 24.4 19.7
17.6 29.4 24.0 25.0 24.1 13.6 18.1 20.6 22.5 28.5 23.8

25.0 18.7 23.0 25.0 24.5 27.2 26.1 23.7 17.1 18.8 20.3
16.3 19.6 23.5 18.0 28.5 18.0 17.1 29.2 24.0 25.1 22.0
26.5 16.4 19.3 24.8 20.5 26.4 8.0 28.0 20.7 34.8 34.3
15.4 25.5 23.0 20.0 21.0 25.7 27.2 27.0 21.2 19.7 28.0
19.3 22.8 21.5 21.4 18.0 15.1 24.3 26.1 8.5 27.2 26.3

24.3 22.5 22.4 28.6 16.4 27.5 17.0 19.1 24.3 19.7 17.2
27.0 14.7 27.8 24.0 20.3 20.6 19.0 28.8 27.2 27.2 14.0
25.3 19.3 29.5 26.6 14.6 25.2 20.8 22.1 24.7 19.7 20.0
19.7 22.1 20.0 21.4 20.0 13.7 30.0 16.0 18.3 21.1 22.0
14.2 15.5 24.7 19.2 24.0 29.0 30.8 21.0 11.6 26.1 17.6

15.4 23.0 18.7 20.6 25.2 31.2 19.1 26.1 22.5 28.7 24.3
21.4 21.5 23.1 17.8 23.5 21.6 18.2 9.4 20.2 32.0 16.0
21.2 25.5 24.9 21.7 15.9 19.6 28.8 20.0 32.2 34.7 23.8
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Appendix C

Sample tree data for fitting height curves

No. dbh h No dbh h No dbh h No dbh h
– (cm) (m) – (cm) (m) – (cm) (m) – (cm) (m)

1 11.4 9.6 15 17.7 15.8 29 22.2 17.8 43 28.0 19.6
2 11.0 11.5 16 18.2 14.0 30 22.3 17.5 44 20.5 15.8
3 12.5 12.1 17 18.3 13.6 31 22.4 17.8 45 20.5 18.4
4 14.0 15.1 18 18.3 16.4 32 22.8 15.8 46 7.9 9.8
5 14.3 11.6 19 18.3 16.6 33 22.9 16.1 47 8.6 9.8
6 14.5 12.3 20 20.1 14.7 34 23.0 17.6 48 9.1 9.5
7 15.0 15.8 21 20.3 17.1 35 23.1 17.1 49 10.1 11.0
8 15.5 14.4 22 20.3 17.8 36 23.2 14.9 50 31.5 20.1
9 16.2 16.3 23 20.6 14.5 37 23.9 17.1 51 30.7 19.9

10 16.5 14.3 24 20.7 16.2 38 24.8 19.0 52 33.6 20.6
11 16.5 15.3 25 21.2 16.6 39 25.0 18.3 53 8.1 8.0
12 17.0 14.3 26 21.5 17.4 40 26.0 17.9 64 9.5 9.2
13 17.2 14.0 27 21.7 17.7 41 26.4 19.4 55 12.0 13.0
14 17.2 15.0 28 22.0 18.3 42 27.5 17.8 – – –

Appendix D

Conversion factors for linear, square, cubic, and weight measures

English measures
Linear measures Square measures
1 inch (in.) 2.54 cm 1 sq in. 6.4516 cm2

1 foot (ft) 0.3048 m 1 sq ft 0.0929 m2

1 yard (yd) 0.9144 m 1 sq yd 0.8361 m2

1 mile (mi) 1609 m 1 sq mi 258.888 hectares (ha)
1 chain 20.1168 m 1 sq ft quarter girth (q.g.) 0.11893 m2

1 inch q.g. 3.234 cm 1 acre 0.4047 ha
1 inch true girth 0.8086 cm 1 sq ft (q.g.) per acre 0.2923 m2/ha

1 sq ft (true) per acre 0.2296 m2/ha
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English measures
Cubic measures Weight measures
1 cu in. 16.387 m3 1 ounce 28.35 g
1 cu ft 0.0283 m3 1 pound 453.6 g
1 cu yd 0.7645 m3 1 long ton 1016 kg
1 hoppus ft 0.0361 m3 1 short ton 907.2 kg
1 cord 3.6246 m3

1 hoppus ft per acre 0.0891 m3/ha
1 cu ft per acre 0.06997 m3/ha

Russian measures
Linear measures Square measures Cubic measures

1 linja 0.254 cm 1 q-djujim 6.4516 cm2 1 cu.djujm 16.387 cm3

1 djujm 2.54 cm 1 q-werschok 19.758 cm2 1 cu ft 28.317 dm3

1 werschok 4.445 cm 1 q-ft 929.030 cm2 1 cu aschin 0.3597 m3

1 Russ. Ft 30.48 cm 1 q-arschin 0.5058 m2 1 cu sashen 9.713 m3

1 arschin 71.12 cm 1 q-sashen 4.552 m2 1 Pt. standard 4.672 m3

1 sashen 213.34 cm 1 q-desjatine 1.0925 ha
1 werst 1066.8 m

Japanese measures
Linear measures Square measures Cubic measures

1 sun 3.030 cm 1 tsubo 3.3058 m2 1 sai 0.01815 m3

1 sasi 30.303 cm 1 tan 991.7 m2 1 ken 6.0105 m3

1yozjo 303.03 cm 1 cho 0.9917 ha
1 ri 3927.3 m
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Schumacher, F.X. (1939) A new growth curve and its application in timber yield studies.

J. Forestry 37: 819–820
Schumacher, F.X. and Hall, F.D.S. (1933) Logarithmic expression of timber-tree volume.

J. Agr. Res. 47 : 719–734
Schumacher, F.X. and Chapman, R.A. (1954) Sampling methods in forestry and range man-

agement. Bulletin 7, Duke University, North Carolina



372 Bibliography

Schumacher, F.X. and Coile, T.S. (1960) Growth and yield of natural stands of the southern
pine. Durham, 115 pp

Scott, C.T. (1981) Northeastern Forest Survey revised cubic-volume equations. USDA For.
Serv. Res. Note NE-304

Seymour, R.S. and Smith, D.M. (1987) A new stocking guide formulation applied to eastern
white pine. For. Sci. 33: 469–484

Shannon, C.E. and Weaver, W. (1949) The mathematical theory of communication. Univer-
sity of Illinosis Press, Illinois, 172 pp

Shafii, B., Moore, J.A. and Newberry, J.D. (1990) Individual-tree diameter growth mod-
els for quantifying within stand response to nitrogen fertilization. Can. J. For. Res. 20:
1149–1155

Shelton, M.G. and Switzer, G.L. (1984) Variation in the surface area relationships of loblolly
pine fascicles. For. Sci. 30: 355–363

Shiver, R.D. (1988) Sample size and estimation methods for the Weibull distribution in
unthinned and thinned pine plantation diameter distributions. For. Sci. 24(3): 809–814

Shiue, C. (1960) Systematic sampling with a random start. For. Sci. 6: 42–50
Siostrzonek, E. (1958) Radialzuwachs und Flächenzuwachs. Forstw. Cbl. 77(7/8): 237–254
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geometry of, 319
oblique, 319
vertical, 318–320

aerial photography
fundamentals of, 318–322

age, 43, 65, 139, 141, 235
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Abney level, 47
Blume Leiss, 47, 51
Haga, 47, 49
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analytical, 226, 329 , 332, 339, 344
angle count method, 335
angle gauges, 39

B

bark thickness, 59, 63, 78–79, 186
base

air, 322, 326
photographic base, 322, 326

beta distribution, 106–107
bias, 36, 24, 36, 45, 51, 59
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binomial distribution, 15–16, 22,
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biomass

additivity of components, 192
bark, 192
branches, 83, 184–185
components, 184, 192, 198, 260
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root, 184, 194
stand, 183–187
stem, 193, 195
total, 189, 195
tree, 189, 192, 199, 260

block sampling, 269–271
breast height (dbh), locating, 65

C

caliper, 19, 21, 33
Finnish, 38, 68

camp unit system, 283
cluster sampling, 199, 282, 305–308
competition index
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complete enumerations, 222
concentric sample plots, 237
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174, 189, 237, 254, 257,
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257, 304, 307
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crown
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336, 338
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344
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crown characteristics
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336–338, 342
length, 14, 81–83, 192, 336, 338
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surface area, 82–83, 213, 227,
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D

decreasing distribution, 111–113
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dendrometric data, 323–340

descriptive statistics, 9–13
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merchantable, 161, 179, 181, 222
upper, 39, 42–43, 45, 69, 72, 112,

131, 149, 152, 155, 163,
177–179, 181, 222

diameter tape, 20, 24, 26, 66
permanent, 36–37

digitalpositiometer, 59, 204, 209
distribution

χ2 (Chi square), 17–18
beta, 104, 106–108
binomial, 15–16, 22, 249,
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decreasing, 111–113
diameter, 99–114, 127, 131–132,

142, 168, 190, 194, 215, 223
gamma, 107–109
normal, 8, 12–15, 17–19, 22, 99,

113, 172, 252, 254, 304
poisson, 16–17, 134–135, 249
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double sampling
for ratio estimators, 281–282
for regression, 276–280
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Doyle rule, 89

E

edge bias, 251
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estimation of increment

basal area 67, 212, 339, 344
volume 344

estimators, 22, 104
maximum likelihood 104
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fitting height curves, 121–122
flying height, 319, 322, 326, 328
focal length, 319, 329
forest inventory

continuous, 35, 176, 201-202,
222, 260, 310

forest maps, 231, 317
form factor

absolute form factor, 71
false form factor, 71–72, 74,
true form factor, 71–72, 74, 204,

form height series, 128
form quotient, 68, 71–72, 74, 151

false form quotient, 72, 74
true form quotient, 72–73, 151

freehand fitting, 29–31

G

gamma distribution, 107–108
General Yield Class (GYC), 225
graphical presentation, 7–9
growing space, 141, 145
growth

diameter, 202, 255
single trees, 83, 202–203, 209,

212, 255
growth intercept, 215
growth models

empirical, 225–226
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Pretsch’s, 212

H

height
Lorey’s mean height, 118, 224
mean height, 116–119,
stand, 116–126
Swedish top height, 119
top height, 118–121

histogram, 8, 13–14, 172
Huber formula, 88
hypsometers, 47, 54

Abney, 47, 49
Blume-Leiss, 47, 49–51, 54,

56–57, 233, 241
Chapman, 55–56
Christen, 54–55
geometrical principle, 54-56
Haga altimeter, 47, 49, 50, 56
Suunto clinometer, 47, 50, 57
System Johann, 53

I

increment cores, 58–60, 63, 96, 203,
209, 223

index
CCF, 144
Reineke stand density, 144

indices
area-related, 140–146
distance-related, 146–147

influence zone, 210–211
intercept, 26, 122, 157, 167, 169,

174, 191, 198–199,
215–216, 273

isoperimetric deficit, 66–67

L

laser dendrometer
criterion 400, 62
LEDHA, 60–61

leaf, 83–85, 138, 184–185, 194–195
leaf area index, 84, 184
surface area, 83–85, 184
weight, 83–85

line intersect sampling, 314–315
list sampling, 295–296, 298
Local Yield Class, 225
log classes, 85–90
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lognormal distribution, 14, 113

M

maximum likelihood estimators, 104
mean
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116, 118–119

geometric, 10, 66
mean diameter, 96–99, 118–120,
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arithmetic mean, 96–97, 259
quadratic mean, 97–99, 105, 114,

117–120, 127, 132–133,
168, 214–215

mean tree method, 127
median, 10–12, 98
méthode du contrôle, 163, 201
mirage method, 239, 248–249
mirror relascope, 40–41, 43–44, 76

wide-scale, 43
model, 6, 7, 21, 24, 59
multistage sampling, 287–291

N

nadir point, 320
Newton formula, 88
Neymann distribution, 134
normal distribution, 13–15, 17–19, 22,
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kurtosis, 8, 12, 110, 254
skewness, 8, 12, 22, 109–110,
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O

orientation, 315, 322, 329, 331
absolute, 329
relative, 322, 329

P

parallax, 321–322, 324–328, 330
difference, 322, 324–326, 328
measuring, 325–326

percentiles, 10–12, 113–114
Petterson dbh-height function, 126
photo interpretation, 317–318, 323
photogrammetry, 317–318
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plot
on stand boundaries, 238–239
re-locating, 238–239
shape, 232–233
size, 233–237, 240

point sampling, 130, 241, 251
efficiency, 249
non-sampling error

borderline trees, 247, 250
hidden trees, 247, 248
instrument, 246
instrument position, 247
sampling position, 247
slope correction, 248

Poisson distribution, 16, 134, 135
population
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288, 291, 304

infinite, 15, 288
PPS–sampling, 241, 295
precision, 20, 24, 124, 234, 262, 301
precision of height estimates, 124
pre-stratification, 215, 281
principal point, 319, 322, 328, 338
prism, 45

R

radial displacement, 320, 323, 338
range, 12, 54, 110, 151

interquartile, 12
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range-tracer drum, 56
ratio estimators

mean of ratios, 199, 274
regression

adjusted R2, 192
coefficient, 19, 85, 156, 168, 196,

225, 274, 309
constraints, 168, 191
heteroscedasticity, 132, 161, 165,

172, 176, 199
homoscedasticity, 190
outliers, 21, 31
R-square procedure, 172
segmented polynomials, 158, 160
simple, 25
standard deviation, 255, 336
studentized residuals, 172
weighting, 171, 173, 190, 193,

259
regression analysis, 26, 89, 111, 165,

175, 196, 334
regression estimator, 20, 78, 117, 271,

277, 344
remote sensing, 2, 317–344

S

sample plots
6-tree, 237
circular, 57, 237, 239,293
concentric, 237

sample size
simple random sampling, 251,

259, 279, 286
stratified random sampling, 192,

262–269
sample trees

felled, 19, 33, 82, 131, 185, 204
sampling

centroid sampling, 77
control-variate, 77, 78

critical height, 133–134
importance, 76–78, 187–188
independent, 264, 270, 308–309,
strip, 292–295
with replacement, 252, 266–267,

277, 295, 303–304
without replacement, 252, 254,

256, 258, 266–267, 304
sampling fraction, 231, 236, 252, 255,

270, 282, 287, 290
Sampling Proportional to Size (SPS),

3, 77
sampling proportions, 303–308
sampling units, 189, 230, 232,

251–253, 262, 266, 268,
287, 289–290, 295–296,
298, 300–305, 309–310

sampling with partial replacement,
308–310

sapwood area, 83–85
sawlog classes, 90

Heilbronner classification, 90
scale, 6–7, 42–43, 49–57, 303–304,

319–320, 325–326
metric, 6–7, 303
nominal, 6
ordinal, 6, 303
ratio, 6–7

Scribner rule, 89
sectionwise measurements, 86, 132,

271
shadow length, 323–324
sidelap, 320–321
significant digits, 7
simple random sampling, 251, 254,

259, 295, 303, 305
sample size, 251, 254, 256–259,

265–267, 290, 293, 303–305
site index, 213–221, 225–226, 318,

343
anamorphic curves 216
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equations 217
polymorphic curves 216,

219–220
slope correction 240–241, 248

base line 51–54
Smalian formula, 76, 88
softcopy, 329–330
spatial distribution of trees, 134–140
SPR, 309–310, 313–314
stacked wood, 88, 90
stand density, 140–145
stand height

measurement error, 202, 331
stand table, 14–116
stand table projection, 226–227
stand volume, 127–134

estimation, 127–128, 130–131
growing space, 339, 341
regression estimators, 271–272,

276–277, 343
stereogram method , 341
volume tables, 129–130,

341–343
yield tables, 130, 133

stand volume table, 129, 341–343
stand’s growing space

profile of, 339
standard deviation, 11, 13, 119, 124,

179, 202, 255–256, 258
standardized height, curve 125–128
stem

form, 68, 70, 74–75, 131
volume, 71, 76, 85–86, 128, 165,

167, 174, 203–204
stem analysis, 203–204, 216
stem profile, 68–69

functions, 74–75,
taper, 68–69, 151–153

stem profile models, 151–161
stereo, 322, 329, 331
stereomicrometer, 325, 328

stereoscopic, 320, 322, 324, 326, 328
model area, 321
new area, 223
overlap area, 320

stratified random sampling, 192, 262
optimum allocation, 266, 267
proportional allocation, 266, 269

strip sampling, 292
Swedish bark gauge, 59
systematic sampling, 236, 300

T

taper functions, 68, 88, 152
taper tables, 149
tariff, 165, 167
tariff functions

simple, 165
telescopic poles, 47, 202
three-stage sampling, 290–292
time series, 27

cyclical pattern, 28
high-pass filter, 28
low-pass filter, 28
moving average, 28
signal, 40

tolerance, 78
total station, 330
transducer, 58
tree crowns

mapping, 330
number, 332

tree height, 42, 47, 53, 67, 323
measurement error, 202, 331

two-stage sampling, 184, 287–290

U

unbalanced distributions, 111
units of measurement, 7
universe

infinite, 6
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V

vanishing point, 320
variables

continuous, 5, 13, 27, 140, 306
discrete, 5, 8, 13, 22, 303
dummy, 27, 196
independent, 12, 106, 114, 131,

139, 168, 173–176, 192,
226, 235, 257, 342

variance
population, 11, 18, 23, 252, 257,

301
sample, 11, 18, 104, 257, 299

viewing angle, 243, 246
volume

merchantable, 177
roundwood, 86
stacked wood, 88

volume equations, 165, 175
volume function

graphic methods, 170
more than two predictor, 175

volume table (s)
single-entry, 163, 165, 167, 343
stand, 129, 341, 343
three-entry 164
two-entry (standard), 127, 164,

343
tree, 127, 163

W

Weibull distribution, 83, 101–106,
114, 227

computer routine FITTER, 104
location parameter, 101, 105
percentile estimators, 103
scale parameter, 101, 105
segmented distribution, 105
shape parameter, 101, 105

weight, 7, 79, 85, 91,174,
185–186

basic density, 92
dry weight, 85, 92, 186
green density, 92

Y

Yield Class
General, 225
Local, 225

yield tables, 3, 95, 118, 213, 223,
343

estimation, 130, 214

Z

Zeiss range finder, 60
zone of overlap, 209
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