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To the memory of my father, Geoffrey

à la mémoire de ma mère, Nicole



Preface to the English
edition

This book is a translation from the French Arithmétique originally pub-
lished by Calvage & Mounet. Apart from minor corrections and a couple
of examples added in Chap. 3, I have left the book unchanged. I wish to
thank all the people from Springer for showing interest and making this
new version possible. The book is already dedicated to my parents but
I cannot avoid thinking my father would have been very happy to see me
publish this book in English. Finally my heartiest thanks go to Sarah Carr,
who showed both enthusiasm and expertise in translating the text, she even
made me forgive her american spelling.
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Preface to the French
edition

Amis lecteurs qui ce livre lisez,
Despouillez vous de toute affection,

Et, le lisant ne vous scandalisez.
Il ne contient mal ny infection.

Vray est qu’icy peu de perfection
Vous apprendrez, si non en cas de rire :

Aultre argument ne peut mon cueur eslire.
Voyant le dueil qui vous mine et consomme,

Mieulx est de ris que de larmes escripre
Pour ce que rire est le propre de l’homme.

François Rabelais (Gargantua)

Arithmetic is certainly the oldest mathematical activity. The use of the
concept of a whole number, numeral systems and the operations of ad-
dition, multiplication and division can be found in all civilizations. The
invention of zero appears to have come from India. Traces of arithmetical
operations have been identified on bones dating back to the Paleolithic Era,
on Mesopotamian clay tablets, on Chinese turtle shells and on Egyptian
papyrus; the Incas, who did not—so it seems—have writing, did develop
an evolved numeral system based on knots in strings, called quipus.

In our times, number theory is a branch of mathematics which draws its
vitality from its rich history. We cite Pythagoras, Euclid, Diophantus,
Fermat, Euler, Lagrange, Legendre, Gauss, Abel, Jacobi, Dirichlet, Ga-
lois, Riemann, Hilbert, stopping here at the XIXth century. It is also
traditionally nourished through interactions with other domains, such as
algebra, algebraic geometry, topology, complex analysis, harmonic analy-
sis, etc. More recently, it has made a spectacular appearance in theoretical
computer science and in questions of communication, cryptography and
error-correcting codes.

The notion of a number has actually been progressively extended and en-
riched throughout history. All of the civilizations considered first the whole
numbers (with or without zero). Since the work of Dedekind and Peano
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x Preface to the French edition

at the end of the XIXth century, we consider the set of natural numbers,
traditionally denoted by N. Advances in logic, calculation techniques and
algebra then led us to add negative integers and obtain the set traditionally
denoted by Z and to introduce fractions (the Greeks spoke of proportions)
and obtain the set now denoted by Q. Very early on, the necessity of
considering even more extraordinary numbers, such as π (the proportion
of the circumference of a circle to its diameter) or

√
2 (the proportion of

the length of the diagonal of a square to one of its sides) appeared, but it
was only very much later that the notions of a real number and a complex
number were clarified. The set of real numbers is today denoted by R and
that of complex number by C. The latter were called imaginary numbers
for a long time. The two concepts—real and complex numbers—were only
rigorously defined in the XIXth century. The first rational approximations
of the number π—computed by Archimedes and others—can be viewed as
the first chapter in the history of Diophantine approximations. We will
cite one more development, even if it did not become what its inventor—
Hamilton—had wished it to become, but which has nevertheless proven
very useful: the quaternions, the set traditionally known as H.

Some other fundamental objects, known at least since the time of Euclid
and Pythagoras, are prime numbers, traditionally denoted with p—they
are so important that in number theory classes, we do not even bother to
specify that a number p is prime—and polynomial equations (constructed
using the laws of arithmetic and multiplication) or Diophantine equations.
“Fermat’s little theorem”, which we write today as ap ≡ a mod p, can be
considered to be a turning point in the history of number theory in the
XVIIth century. The great problem left by Fermat, somewhat accidentally,
to mathematicians of subsequent centuries also left its mark on history,
culminating in the solution given by Wiles (1995); it can be stated by
saying that if n � 3, then there are no non-zero integers x, y, z such that
xn + yn = zn. Interest in considering subfields and subrings, such as the
Gaussian integers, Z[i], or Kummer’s cyclotomic integers, Z[exp(2πi/n)],
came about little by little, and they were developed as a consequence of
the theory of algebraic numbers. Modern arithmetic—it could be more
prudent to say contemporary arithmetic—is also enriched by the study of
finite quotients such as the congruence rings Z/NZ and the finite fields Fq.
A result dating back to the XIXth century could be considered as a key
ingredient in these developments: the quadratic reciprocity law. Stated by
Legendre and proved by Gauss, it says that “if p and q are odd primes and
p or q is congruent to 1 modulo 4 (resp. p and q congruent to 3 modulo 4),
then p is a square modulo q if and only if q is (resp. is not) a square modulo
p”. In another direction, p-adic numbers, the set traditionally denoted by
Qp, were invented by Hensel at the end of the XIXth century; we can view
the fields Qp as ultrametric completions of the field of rationals Q.
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This book is naturally a mix of these various notions of numbers. It offers a
basic number theory course, followed by an initiation to some contemporary
research areas. It is written at the level of an advanced undergraduate
course fading into a first-year graduate course, including results which are
more advanced but which can be appreciated without having to rely on
“heavy” background knowledge. This book is thus divided into two parts
which have a gradually different tone.

a) The first part (Chaps. 1 to 4) corresponds to an advanced undergraduate
course. All of the statements given in this part are of course accompanied
by their proofs, with perhaps the exception of some results appearing at
the end of the chapters.

b) The second part (Chaps. 5 and 6 and the appendices) is of a higher level
and is relevant for the first year of graduate school. It contains an intro-
duction to elliptic curves and a chapter entitled “Developments and Open
Problems”, which introduces and brings together various themes oriented
toward ongoing mathematical research. Many of the statements about el-
liptic curves, often coming from courses given at l’Université Paris 7 and
the magistère de la rue d’Ulm, are proven, but the panorama proposed in
Chap. 6 contains more statements without proof or which are conjectural
than proven statements.

On this note, the first four chapters end with a copious list of exercises
of varying difficulty; some of them are direct applications of material from
the book and others, while not necessarily more difficult, require or develop
some aspect not found in the book.

Number theory is a multifaceted and flourishing subject. Every author/
number theorist is condemned to choose between the many themes of this
discipline. Our guiding principles in developing the present book were:

– the wish to give some idea of the very large variety of mathematics
useful for studying numbers;

– the “necessity” to look at deep and classical themes, such as Gauss
sums, Diophantine equations, the distribution of prime numbers and
the Riemann zeta function;

– the will to introduce the principle, “arithmetic plays a role in modern
applied mathematics”. Cryptography and error-correcting codes are
introduced and used as a motivation for concepts such as cyclotomic
polynomials and the cyclicity of (Z/pmZ)∗ and F∗

q ;

– the effort to include some recent proofs. The polynomial primality al-
gorithm (Agrawal-Kayal-Saxena, 2002) is presented, and its correctness
is proven in detail (moreover, the proof is on the level of an advanced
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undergraduate course!). The proof that we give of the prime number
theorem is essentially due to Newman (1980) and modified by Zagier
(1997);

– the desire to approach subjects of contemporary research: elliptic curves,
rational points on algebraic varieties, “zeta” and “L” functions, etc.;

– and obviously the incomparable beauty of arithmetic (everybody knows
that the others are all jealous of it).

The prerequisites for this text are very modest, at least for the first four
chapters: undergraduate algebra is assumed (linear algebra, abelian groups,
rings and divisibility), as well as a little topology of Rn for Chap. 3. In
addition to elementary real analysis, Chap. 4 is also based on the theory of
complex analysis (holomorphic functions, power series, the Cauchy formula,
the residue formula, the complex logarithm) of which we will give a brief
overview as a reminder. The first four sections on elliptic curves (Chap. 5)
are relatively elementary, even if the material is a little denser than before,
and use only simple properties of the projective plane outlined at the be-
ginning of Appendix B. The last section of Chap. 5 and all of Chap. 6 are
less accommodating and recall or allude to various more-advanced notions.

We will now finish with a brief description of the individual chapters, which
are largely independent of each other.

The 1st chapter, “Finite Structures”, provides a systematic study of the
congruence groups and rings Z/NZ and finite fields Fq, as well as their
groups of invertible elements (Z/NZ)∗ and F∗

q . We also confirm the ubiq-
uity of Gauss sums, studied first in their own right, then used to prove the
quadratic reciprocity law and to count the number of solutions of diagonal
equations over a finite field.

The 2nd chapter, “Applications: Algorithms, Primality and Factorization,
Codes”, begins with the study of the complexity of basic arithmetic oper-
ations (addition, multiplication, computation of the gcd, inversion modulo
N , exponentiation, calculations in finite fields). We then briefly introduce
the RSA system—the star of public key cryptography procedures—which
governs credit cards, internet transactions, etc. This is the motivation for
the core of this chapter: the study of algorithms which determine whether
an integer is prime or composite. The mathematical prerequisites are those
of Chap. 1, plus an elementary statement coming from analytic number
theory (which is proven in the first section of Chap. 4). We will also in-
troduce error-correcting codes—used in compact disc technology and the
transmission of data—which are another industrial application of number
theory and serve as a motivation for the study of the decomposition of
cyclotomic polynomials over a finite field.
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The 3rd chapter, “Algebra and Diophantine Equations”, is an initiation to
the study of some classical problems, such as which numbers are expressible
as the sum of (two, three or four) squares, integer solutions to Pell’s equa-
tion x2 − dy2 = 1 and integer solutions to Fermat’s equation xn + yn = zn

(done here for n = 3 and 4). We then move on to algebraic number the-
ory: number fields, rings of algebraic integers, decomposition of ideals into
prime ideals, the group of units and the finiteness of the ideal class group.
In addition to commutative algebra, the tools used are a little bit of the
geometry of numbers (lattices, Minkowski’s theorem) and Diophantine ap-
proximations (Dirichlet’s theorem and continued fractions).

The 4th chapter, “Analytic Number Theory”, is dedicated to the study of
the distribution of prime numbers; the two main theorems are the prime
number theorem: “the number of prime numbers smaller than x is asymp-
totically equivalent to x/ log x” and the theorem on arithmetic progressions:
“there are infinitely many prime numbers congruent to m modulo n when
m and n are relatively prime”. Apart from some elementary statements
(comparison of series and integrals, etc.), the fundamental tool that we use
is complex analysis. A brief summary of the necessary tools is included
in the chapter. This chapter also introduces a fundamental mathematical
object, the “Riemann zeta function”, and closes with an introduction to the
Riemann hypothesis, which is probably the most important open problem
in mathematics.

The 5th chapter, “Elliptic Curves”, is an introduction to the rich theory of
equations of the type y2 = x3 + ax + b. We will give you a little bit of
projective geometry and examine the group law on a cubic, the theory of
heights, notably the Néron-Tate height, before proving the Mordell-Weil
theorem: “the group of rational solutions of this equation is a finitely gen-
erated abelian group”. In the following section, we will prove (modulo a
result proved in Chap. 6) Siegel’s theorem, “the set of solutions where x
and y are integers is finite”. We will finish by connecting this to the theory
of elliptic functions and by formulating both the extraordinary theorem
of Wiles (1995), “Every elliptic curve defined over Q is modular”, and the
famous Birch & Swinnerton-Dyer conjecture, which relates the rank of the
group of rational solutions to the behavior at s = 1 of the Dirichlet series
associated to an elliptic curve.

The 6th chapter, “Developments and Open Problems”, goes back to some
of the subjects of the previous chapters, and pushes them to the level of
current research; in particular, each section contains at least one unsolved
problem. Of course, some statements must be given without proof, and the
prerequisites to read this chapter are more advanced, even though we did
make an effort to give all of the necessary definitions and some essential
ideas. The six themes that we chose for this chapter are:
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– the Weil conjectures, or the computation, which we already started
in Chap. 1, of the number of points on an algebraic variety over a
finite field. We obtain a precise description of the zeta function of a
variety over a finite field and, at the same time, a first glimpse of the
connections between arithmetic, geometry and topology;

– the conjectural dictionary, proposed by Serge Lang, between the qual-
itative properties of the set of rational points on an algebraic variety
over a number field and the geometric properties of the variety, as well
as the properties of the associated analytic complex variety. For al-
gebraic curves, this dictionary is a theorem and gives us the following
trichotomy of curves: curves of genus 0 (conics and the projective line),
curves of genus 1 (elliptic curves) and curves of genus � 2 (the others!);
however, very little is known for varieties of dimensions at least two;

– an introduction to p-adic numbers, with the goal determining when it
is appropriate to apply the “Hasse principle”, which, in its most elemen-
tary form, asks if an equation f(x1, . . . , xn) = 0 has an integral solution
whenever it has an integral solution modulo N for every integer N . A
key tool in this context, is “Hensel’s lemma”, which we can consider to
be an analogue of Newton’s method for finding real-valued solutions of
equations. We will also sketch the beginnings of the theory of adeles
and ideles: the global additive and multiplicative groups constructed
starting with the local fields Qp and R;

– a presentation of the fundamental results of Roth (1955) on rational
approximations of algebraic numbers and Baker (1966) on the tran-
scendence of linear combinations of logarithms of algebraic numbers.
We will then give the details of the proof of Thue’s theorem (a prede-
cessor to and weaker than Roth’s theorem) and the method of applying
Baker’s theorem to Diophantine equations. This provides an oppor-
tunity to carefully examine so-called “transcendence” methods and to
introduce the reader to problems of computational effectiveness;

– the “a, b, c” conjecture, which is a totally elementary statement and
whose proof would have some remarkable consequences, is briefly in-
troduced. Its connections to elliptic curve theory are also presented.
This allows us to elaborate on its possible links to the great theorem
of Wiles;

– zeta functions associated to algebraic varieties (the function associated
to an elliptic curve is described in detail in Chap. 5) are introduced,
as well as their connection to the theory of representations of groups.
Modular forms and Galois representations also make an appearance.
The end of this section touches the tip of the iceberg of Grothendieck’s
theory of motives and the Langlands program.
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Appendix A, entitled “Factorization”, follows up on the themes introduced
in Chap. 2, but relies on Chaps. 3 (number fields) and 5 (elliptic curves)
to describe two recent factorization algorithms for an integer N : Lenstra’s
algorithm (1986) which uses elliptic curves and an algorithm of Pollard,
Lenstra et al (1993) called the “number field sieve”. We will also briefly
discuss the problem of factoring polynomials over a finite field or Z.

Appendix B on “Elementary Projective Geometry” is an introduction to
algebraic projective geometry. Some elementary statements on lines, conics
and cubics are proven and used in Chap. 5 to construct the group law on
a projective plane cubic. We will also describe Hilbert’s Nullstellensatz in
detail and prove Bézout’s theorem: two projective plane curves of degrees
d1 and d2 with no common components intersect at exactly d1d2 points
(counted with appropriate multiplicities).

Appendix C, entitled “Galois Theory”, is an attempt to fill an intentionally-
made gap. We actually avoided relying on any Galois theory in this text
(except in the last section of Chap. 6) since it is either absent from the
classical university curriculum or taught in the first year of graduate school.
It is however such an important tool in modern number theory, that it
seemed to us to be necessary to include as a supplement, if only a brief
one. We will namely explain how Chebotarev’s theorem brings together
analytic number theory and Galois groups by generalizing the theorem on
arithmetic progressions. This appendix, in particular the description of
the concept of a Galois representation, is a prerequisite for reading the last
section of Chap. 6.

The bibliography is composed of two parts: the first one gives nine reference
books which can be read in parallel with this one, as well as commentaries
on them; the second part is a more copious list of references to original
articles and historical and more advanced books. In [28], you can find
a relatively complete overview of the history of number theory up to the
beginning of the XXth century. The reference [34] contains numerous open
but relatively elementary problems.

Many people were kind enough to take the time to read parts of this book
and then bring to my attention remarks on the content as well as the
editing. To that effect, I would first like to thank Dominique Bernardi for
his careful reading of the entire text. He thus saved the eyes of the happy
readers from many misprints and more than one mistake. If there are more
of them, only I can take responsibility for them. Olivier Bordellès, Nicolas
Ratazzi, Marie-France Vigneras and Michel Waldschmidt suggested some
improvements and pointed out some insufficiencies. I owe a large part of
Chap. 2 to numerous discussions with Sinnou David and Jean-François
Mestre. It would have been very difficult for me to complete this text
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without the encouragement and suggestions of Alberto Arabia and Rached
Mneimné. My mathematical and arithmetical education was nourished for
many years by Monday morning lectures by Jean-Pierre Serre at Collège
de France.

With this, I thank you all heartily.

Last but not least , this book would not exist without my students, whose
listening, reactions, moments of silence and questions often motivated and
reorientated me while I was teaching them in front of a blackboard smeared
with chalk, the beauties of arithmetic.
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Chapter 1

Finite Structures

“I hope good luck lies in odd numbers. Away! go.
They say there is divinity in odd numbers, either in nativity, chance or death. Away!”

William Shakespeare (The Merry Wives of Windsor)

In this chapter, the theory of congruences will lead into the study of the ring
Z/nZ for n � 2, as well as the group (Z/nZ)∗ of its invertible elements
with respect to multiplication. Furthermore, for every power of a prime
number, q = pf , there exists a unique finite field, up to isomorphism, of
cardinality q, denoted Fq. We will review the construction of these objects
and state their main properties. In the following sections, we expand on
some structures and applications, notably Gauss sums, Legendre and Jacobi
symbols and the number of solutions of congruences.

1. Review of Z/nZ, (Z/nZ)∗, Fq and F∗
q

The group Z is, up to isomorphism, the only group which is cyclic (gener-
ated by one element) and infinite. All of its subgroups are of the type mZ,
for m � 0. The set Z is also equipped with a multiplication which makes
it a commutative ring. In this ring, we have the notions of divisibility and
of GCD and LCM (greatest common divisor and least common multiple).
In the case of Z, the notion of an ideal coincides with that of a subgroup.
From this, we can easily deduce the following theorem.

1.1. Theorem. (Bézout’s lemma) Let m, n ∈ Z and let d be their GCD.
Then there exist u, v ∈ Z such that

d = um + vn.

Proof. The set H := mZ + nZ = {um + vn | u, v ∈ Z} is clearly a
subgroup, therefore it is of the form d′Z, and there exist u and v such that

M. Hindry, Arithmetics, Universitext,
DOI 10.1007/978-1-4471-2131-2_1,
© Springer-Verlag London Limited 2011
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2 1. Finite Structures

d′ = um+vn. Since d divides m and n, we see that d divides um+vn = d′.
But m and n are elements of H, so d′ divides m and n, and therefore d′

also divides d. It follows then that d = d′ (assuming both of them are
positive). �

The group Z/nZ is, up to isomorphism, the unique cyclic group with n
elements, i.e., generated by one element of order n. We will now study the
generators of this group.

1.2. Proposition. Let m ∈ Z and let m̄ denote its class in Z/nZ. The
following three properties are equivalent.

i) The element m̄ is a generator of Z/nZ.
ii) The integers m and n are relatively prime.
iii) The integer m is invertible modulo n, in other words, there exists m′ ∈

Z such that mm′ ≡ 1 mod n or equivalently m̄m̄′ = 1 ∈ Z/nZ.

Proof. If m̄ generates Z/nZ, then there exists m′ ∈ Z such that m′m̄ =
1 ∈ Z/nZ; hence mm′ ≡ 1 mod n, which means that m is invertible modulo
n. If mm′ ≡ 1 mod n, then mm′ = 1 + an, and therefore m is relatively
prime to n. If m is relatively prime to n, then by Bézout’s lemma, there
exist a and b such that am + bn = 1, hence am̄ = 1 ∈ Z/nZ, and therefore
m̄ generates Z/nZ. �

The group of invertible elements of the ring Z/nZ is therefore equal to

(Z/nZ)∗ = {m̄ ∈ Z/nZ | m is relatively prime to n}
= {generators of Z/nZ}.

1.3. Definition. We denote by φ(n) := card(Z/nZ)∗ the Euler totient of
the integer n.

By noticing that gcd(m, pr) = gcd(m, p), we can easily deduce that if p is
prime, φ(pr) = pr − pr−1 = (p − 1)pr−1. In general, to calculate φ(n), we
make use of the following classical lemma.

1.4. Proposition. (Chinese remainder theorem) Let m, n ∈ Z, and
suppose that m and n are relatively prime. Then the groups Z/mnZ and
Z/mZ × Z/nZ are naturally isomorphic. Furthermore, this isomorphism
is also a ring isomorphism and consequently induces an isomorphism of
(Z/mnZ)∗ and (Z/mZ)∗ × (Z/nZ)∗. In particular, φ(mn) = φ(m)φ(n).

Proof. Consider the map f : Z → Z/mZ× Z/nZ given by x �→ (xmod m,
xmod n). It is a group homomorphism with kernel lcm(m, n)Z, hence we
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have the injective map

f̂ : Z/ lcm(m, n)Z ↪→ Z/mZ× Z/nZ.

Since m and n are relatively prime, lcm(m, n) = mn, and by considering
the cardinalities the two groups, then homomorphism f̂ must be an iso-
morphism. For any rings A and B, we have (A × B)∗ = A∗ × B∗, hence
the second assertion. �

1.5. Remark. A function f : N∗ → C is generally known as an arithmetic
function. We say that an arithmetic function f : N∗ → C is multiplicative
(resp. completely multiplicative) if f(mn) = f(m)f(n) for all m, n which
are relatively prime (resp. for all m, n). Thus the Euler totient φ is multi-
plicative but not completely multiplicative; notice however that φ(mn) is
always greater than or equal to φ(m)φ(n).

The description of the subgroups of Z/nZ is fairly simple.

1.6. Proposition. For any integer d � 1 which divides n, there exists a
unique subgroup of Z/nZ of order d: namely, the cyclic subgroup generated
by the class of n/d in Z/nZ.

Proof. Assume n = dd′. The element x = d̄′ ∈ Z/nZ is therefore of order
d since obviously dx = 0, and if cx = 0, then n divides cd′, so d divides
c. Now let H be a subgroup of Z/nZ of order d. Let s be the canonical
surjection s : Z → Z/nZ. We know that s−1(H) = mZ is generated by
m, hence H is generated by m̄ ∈ Z/nZ. We then have dm̄ = 0, hence n
divides dm, and therefore d′ divides m, so the subgroup H is contained in
the subgroup generated by d̄′ and is therefore equal to this subgroup. �

An application of this proposition is the following formula (that we will use
further down):

n =
∑

d | n

φ(d). (1.1)

To see why this is true, we write Z/nZ as the disjoint union of sets, where
each set contains the elements of order d and d divides n. The number of
elements in each set is the number of generators of the unique subgroup
of order d, and since the latter is isomorphic to Z/dZ, the number of such
generators is φ(d).

A finite field k necessarily has finite characteristic equal to a prime num-
ber p and therefore contains Z/pZ = Fp (the homomorphism Z → k has
kernel nZ with n > 0, and since Z/nZ ↪→ k, n must be prime). The
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dimension of k, viewed as a vector space over Fp, is finite, say f , and
therefore card(k) = pf . We know that card(k∗) = pf − 1, so all of the
elements of k∗ satisfy xpf−1 = 1, and therefore all of the elements of k

satisfy xpf

= x. Conversely, we can construct a finite field with cardinality
pf as follows: we consider an extension K of Fp = Z/pZ in which the poly-
nomial P = Xpf −X splits completely into pf linear factors. We then set
k := {x ∈ K | P (x) = 0}. Since P ′(X) = −1, the roots of P are simple and
card(k) = deg(P ) = pf ; furthermore, k is a subfield of K because in char-
acteristic p, the “Frobenius map” given by φ(x) = xp is a homomorphism
of fields; the same holds true for φf . In other words we have:

(xy)p = xpyp and (x + y)p = xp + yp.

From general field theory, we know that the field k of order pf is unique,
up to isomorphism, and is denoted by Fpf . The following statement sum-
marizes these notions.

1.7. Theorem. Let p be a prime number, f � 1 and q = pf . There exists
a unique finite field, up to isomorphism, of order q. The elements of Fq

are the roots of the polynomial Xq −X ∈ Z/pZ[X].

1.8. Corollary.1 Let q = pf and Fq the field defined above. The subfields
of Fq are isomorphic to Fpd , where d divides f . Conversely, if d divides f ,
there exists a unique subfield of Fq isomorphic to Fpd : it is exactly the set
of elements which satisfy xpd

= x.

Proof. If Fp ⊂ k ⊂ Fq, then card(k) = pd with d = [k : Fp], and k ∼= Fpd .
Furthermore, f = [Fq : Fp] = [Fq : k][k : Fp], and therefore d divides f .
Conversely, if d divides f , f = ed, then every element (in an extension of
Fp) which satisfies xpd

= x also satisfies xpf

= xped

= x and is therefore in
Fq. These elements form a subfield isomorphic to Fpd . �

In practice, we construct the fields Fpf as follows: we choose an irreducible,
monic polynomial of degree f , say P ∈ Fp[X] (the existence of such a
polynomial is equivalent to the existence of an element α ∈ Fpf such that
Fpf = Fp(α) and is guaranteed by invoking, for example, Lemma 1-2.1
below) and we represent Fpf as Fp[X]/PFp[X]. An element of Fpf can be
seen as a polynomial of degree � f − 1 with coefficients in Z/pZ. Addition
is the obvious addition, and the multiplication rule is simply polynomial
multiplication, followed by taking the remainder gotten from the division

1This statement can be reinterpreted in terms of Galois theory (see Appendix C).
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algorithm. For example,

F4 = F2[X]/(X2 + X + 1)F2[X], F8 = F2[X]/(X3 + X + 1)F2[X],

F16 = F2[X]/(X4 + X3 + X2 + X + 1)F2[X].

2. The Group Structure of (Z/nZ)∗ and F∗
q

In order to describe the structure of these groups, we start by proving the
following lemma, which is interesting in and of itself.

2.1. Lemma. Let k be a field and G a finite subgroup of k∗. Then G is
cyclic. In particular, (Z/pZ)∗ or more generally F∗

q is cyclic.

Proof. Set n := card(G), and let ψ(d) be the number of elements of order
d in G. It is clear that n =

∑
d | n ψ(d). Let d be an integer which divides

n: either there are no elements of order d in G in which case ψ(d) = 0, or
there exists one which generates a cyclic subgroup H of order d. All of the
elements of H are solutions to the equation Xd = 1, but since k is a field,
such an equation has at most d roots in k; all of the elements of order d
are therefore in H, and there are φ(d) of them because H ∼= Z/dZ. Hence
ψ(d) is either zero or φ(d), but since n =

∑
d | n ψ(d) =

∑
d | n φ(d) (by

(1.1)), we see that ψ(d) = φ(d) for every d which divides n. In particular,
ψ(n) = φ(n) � 1, which implies that G is cyclic. �

From what we have seen, if n = pα1
1 · · · pαs

s , then

(Z/nZ)∗ ∼= (Z/pα1
1 Z)∗ × · · · × (Z/pαs

s Z)∗,

and in particular

φ(n) = φ(pα1
1 ) · · ·φ(pαs

s ) =
s∏

i=1

(
pαi

i − pαi−1
i

)
= n

s∏

i=1

(
1− 1

pi

)
· (1.2)

We will now describe the structure of the groups (Z/pαZ)∗.

2.2. Proposition. Let p be prime and α � 1.

i) If p is odd, then (Z/pαZ)∗ is cyclic.
ii) If p = 2 and α � 3, then (Z/2αZ)∗ ∼= Z/2α−2Z × Z/2Z, which is not

cyclic. However, (Z/2Z)∗ = {1} and (Z/4Z)∗ ∼= Z/2Z are cyclic.

Proof. If α = 1, we have seen that (Z/pZ)∗ = F∗
p is cyclic. When α > 1,

we use the element p + 1.
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2.3. Lemma. Let p be an odd prime. The class of p + 1 in (Z/pαZ)∗ has
order pα−1.

Proof. (of Lemma 1-2.3) We first prove the congruence

(p + 1)pk

≡ 1 + pk+1 mod pk+2

by induction. For k = 0, the congruence is trivial. For k = 1, we have
(p + 1)p ≡ 1 +

(
p
1

)
p +

(
p
2

)
p2 ≡ 1 + p2 + p3(p − 1)/2 mod p3, and the latter

is of course congruent to 1 + p2 if p is odd (notice however that 32 	≡
1 + 22 mod 23). Assume now that k � 1 and (p + 1)pk−1

= 1 + pk + apk+1.
Then (p+1)pk

=
(
1 + pk + apk+1

)p ≡ 1+p(pk+apk+1) ≡ 1+pk+1 mod pk+2

since 1 + 2k � k + 2. In particular, we see that (p + 1)pα−1 ≡ 1 mod pα,
but (p + 1)pα−2 ≡ 1 + pα−1 	≡ 1 mod pα, which implies that p + 1 has order
pα−1 in (Z/pαZ)∗. �

We can now finish the proof of the proposition for p odd. Let x ∈ Z
such that x modulo p generates (Z/pZ)∗, i.e., has order p− 1 in (Z/pZ)∗.
Therefore x̄ has order m(p− 1) in (Z/pαZ)∗, and hence y = x̄m has order
exactly p− 1 in (Z/pαZ)∗. The element u := y(p + 1) therefore has order
pα−1(p − 1) because pα−1 and p − 1 are relatively prime, which gives us
that u is a generator of (Z/pαZ)∗.

2.4. Lemma. Let α � 3. The class of 5 in (Z/2αZ)∗ has order 2α−2.
Furthermore, the class of −1 does not belong to the subgroup generated by
the class of 5.

Proof. (of Lemma 1-2.4) We first show by induction that

52k

≡ 1 + 2k+2 mod 2k+3.

The congruence is trivial for k = 0, and for k = 1 we check that 25 = 52 ≡
1+23 = 9 mod 24. Therefore, we can assume that 52k−1

= 1+2k+1+a2k+2.
Then 52k

= (1+2k+1 +a2k+2)2 = 1+2(2k+1 +a2k+2)+22(k+1)(1+2a)2 ≡
1+2k+2 mod 2k+3. In particular, 52α−2 ≡ 1 mod 2α, but 52α−3 ≡ 1+2α−1 	≡
1 mod 2α, so 5 has order 2α−2. For the second assertion, observe that for
every integer m, we have 5m ≡ 1 	≡ −1 mod 4. �

For the proof of the second part of the proposition, we can assume that α �
3 (actually, we see immediately how to calculate (Z/2Z)∗ and (Z/4Z)∗).
The class of 5 therefore generates a subgroup isomorphic to Z/2α−2Z, and
−1 generates a subgroup of order 2 not contained in the former. Therefore,
(Z/2αZ)∗ = 〈5〉 ⊕ 〈−1〉 ∼= Z/2α−2Z× Z/2Z.
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2.5. Remark. The quaternion subgroup H8 = {±1,±i,±j,±k} is a finite
subgroup of the multiplicative group of the division ring H but is not cyclic
(which does not contradict Lemma 1-2.1 because H is not commutative).

Applications. The previous statements allow us to find the number of
solutions to the equation xm = 1 in F∗

q or (Z/NZ)∗, as well as the number
of mth powers. This is true because in a cyclic group of order n, say
G = Z/nZ, the number of elements which satisfy mx = 0 is equal to
d := gcd(m, n): by making use of Bézout’s lemma, we can show that {x ∈
Z/nZ | mx = 0} is equal to {x ∈ Z/nZ | dx = 0}, and since d divides
n, the latter set is the cyclic subgroup of order d in Z/nZ. By applying
this to G = F∗

q or G = (Z/pαZ)∗, we get the first part of the following
proposition.

2.6. Proposition. Let m be an integer � 1.
1 ) We have the following formulas:

– card{x ∈ F∗
q | xm = 1} = gcd(m, q − 1);

– card{x ∈ (Z/pαZ)∗ | xm = 1} = gcd(m, (p− 1)pα−1) (for p odd).
2 ) More generally, if N = pα1

1 · · · pαr
r is odd,

card{x ∈ (Z/NZ)∗ | xm = 1} =
r∏

i=1

gcd(m, (pi − 1)pαi−1
i ).

Proof. The formulas in part 1) follow from the previous discussion and
from the fact that F∗

q and (Z/pαZ)∗ are cyclic. Formula 2) follows from
the previous formula and from the Chinese remainder theorem. This is
because for all x ∈ Z, xm ≡ 1 mod N is equivalent to xm ≡ 1 mod pαi

i for
1 � i � r. �

2.7. Remark. By considering the homomorphism x �→ xm, we can easily
see that

cardF∗m
q = card{x ∈ F∗

q | ∃y ∈ F∗
q , x = ym} =

q − 1
gcd(m, q − 1)

·

For example, if q is odd, we have (F∗
q : F∗2

q ) = 2.

3. Jacobi and Legendre Symbols
In this section, we mainly concentrate on the study of squares, i.e., the case
m = 2 of the preceding section.
We begin with a remark. The map x �→ x2 is an isomorphism from F2

to F2 or more generally from F2f to F2f ; in order to study squares, it is
therefore natural to assume p 	= 2, and that is what we do.
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3.1. Definition. We define the Legendre symbol for a ∈ Z and p 	= 2 as
follows:

(
a
p

)
:=

⎧
⎪⎨

⎪⎩

0 if a ≡ 0 mod p,

+1 if a is a non-zero square mod p,

−1 if a is not a square mod p.

3.2. Remark. It is clear that
(

a
p

)
only depends on a mod p, thus we will

continue to use the same notation whenever a ∈ Fp. If
(

a
p

)
= +1, we say

that a is a quadratic residue; if
(

a
p

)
= −1, we say that a is a quadratic

nonresidue.

3.3. Theorem. The Legendre symbol satisfies the following properties.

i) For any a, b ∈ Z, (
ab
p

)
=
(

a
p

)(
b
p

)
.

ii) For every a ∈ Z,
a(p−1)/2 ≡

(
a
p

)
mod p.

iii) For every p 	= 2,
( −1

p

)
= (−1)(p−1)/2 and

(
2
p

)
= (−1)(p

2−1)/8.

In particular, −1 is a square modulo p (resp. not a square) if p ≡
1 mod 4 (resp. p ≡ 3 mod 4), and 2 is a square modulo p (resp. not a
square) if p ≡ ±1 mod 8 (resp. p ≡ ±3 mod 8).

iv) (Quadratic reciprocity law) Let p and q be two distinct prime numbers.
Then we have

( q
p

)( p
q

)
= (−1)

(p−1)(q−1)

4 .

Proof. The multiplicativity in part i) is clear if p divides a or b, since then
the two terms are 0. If a, b ∈ F∗

p, the formula comes from the fact that
F∗

p/F
∗2
p is of order 2, so the product of the two quadratic nonresidues is a

quadratic residue.

To prove ii), we observe that since (a(p−1)/2)2 = ap−1 = 1, we always
have a(p−1)/2 = ±1, and by Proposition 1-2.6, the subgroup H of elements
satisfying a(p−1)/2 = 1 is of order (p− 1)/2. In addition, the set of squares
is a subgroup of order (p−1)/2. Furthermore, if a = b2, we can deduce that
a(p−1)/2 = bp−1 = 1, hence F∗2

p ⊂ H, and we have the desired equality.

The first part of iii) follows from equality ii). For the second part, we
introduce α, a root of X4 + 1 = 0; it is an 8th primitive root of unity in
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an algebraic extension of Fp, in other words α8 = 1 but α4 	= 1, which is
equivalent to α4 = −1 and also α2 = −α−2. If we set β := α + α−1, then
β2 = α2 + 2 + α−2 = 2; thus we see that 2 is a square in Fp if and only
if β ∈ Fp. We know that β ∈ Fp is equivalent to βp = β, so we want to
compute βp = αp + α−p. By using the fact that α8 = 1 and α4 = −1, we
see that if p ≡ ±1 mod 8, then βp = β so β ∈ Fp, whereas if p ≡ ±3 mod 8,
we have βp = −β and therefore β /∈ Fp. We will postpone the proof of the
quadratic reciprocity law iv) until the next section. �

3.4. Remark. To see where the choice of “β =
√

2” comes from, notice
that if ζ := exp(2πi/8) ∈ C, then ζ is an 8th root of unity and ζ =√

2
2

+ i

√
2

2
, so ζ + ζ−1 = ζ + ζ̄ =

√
2.

The Jacobi symbol is a generalization for odd N = pα1
1 · · · pαr

r and is given
by (

a
N

)
:=
(

a
p1

)α1

· · ·
(

a
pr

)αr

(1.3)

Its main properties are stated in the following lemma.

3.5. Lemma. For N, M odd:

i)
(

ab
N

)
=
(

a
N

)(
b
N

)
and

(
a
N

)
= 0 if and only if gcd(a, N) > 1;

ii)
( −1

N

)
= (−1)

N−1

2 and
(

2
N

)
= (−1)

N2−1

8 ;

iii)
(

M
N

)
= (−1)

(N−1)(M−1)

4

(
N
M

)
.

Proof. These formulas can be deduced from the analogous formulas for
prime numbers M and N . Statement i) is clearly true. To prove ii) and
iii), we write N = p1 · · · pr (with possible repetitions), so that

( −1
N

)
=

r∏

i=1

( −1
pi

)
= (−1)

Pr
i=1(pi−1)/2 = (−1)h,

with h being equal to the number of indices i where pi ≡ 3 mod 4. Further-
more, N ≡ 3h mod 4, hence N ≡ 3 mod 4 if h is odd and N ≡ 1 mod 4 if h

is even; thus we have N − 1
2

≡ h mod 2. Likewise,

(
2
N

)
=

r∏

i=1

(
2
pi

)
= (−1)

Pr
i=1(p

2
i−1)/8 = (−1)h,

where h is now the number of indices i with pi ≡ ±3 mod 8. In this case,
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we have N ≡ ±3h mod 8. Therefore, N2 − 1
8

≡ 9h − 1
8

≡ h mod 2, which
proves the second formula of ii).

In order to prove assertion iii), we write M = q1 · · · qs and N = p1 · · · pr

(with possible repetitions). If h (resp. k) is the number of indices i such

that pi ≡ 3 mod 4 (resp. qj ≡ 3 mod 4), then N − 1
2

is odd if h is odd

and N − 1
2

is even if h is even (resp. M − 1
2

is odd if k is odd and
M − 1

2
is even if k is even). In other words, N − 1

2
≡ h mod 2 and

M − 1
2

≡ k mod 2. We can deduce from this that

(
M
N

)
=

r∏

i=1

s∏

j=1

( qj

pi

)
=

r∏

i=1

s∏

j=1

(−1)(pi−1)(qj−1)/4
( pi

qj

)

= (−1)hk
(

N
M

)
= (−1)

(N−1)(M−1)

4

(
N
M

)
. �

Statement ii) is Jacobi’s reciprocity law. The two properties provide an
algorithm for calculating the Jacobi symbol. Pay attention however to the
fact that the Jacobi symbol does not characterize squares modulo N (if a

is relatively prime to N and a square modulo N , then
(

a
N

)
= 1, but the

converse is not true when N is not prime).

As a first application of the quadratic reciprocity law, we will prove that if
d is a square-free integer, the prime numbers which can be written in the
form p = x2 + dy2 satisfy certain congruences modulo 4d.

To be more precise, if d = εp1 · · · pk (where ε = ±1) and p = x2 +dy2, then
p does not divide y because if so p would also divide x, and we could then
conclude that p2 divides p. Therefore, we know that −d = (xy−1)2 mod p,
and if d is odd, then

1 =
( −d

p

)
= (−ε)

p−1

2 (−1)
Pk

i=1(pi−1)(p−1)/4
( p

p1

)
· · ·
( p

pk

)
.

We therefore obtain congruences for p modulo 4p1 · · · pk. If d is even, we

set p1 = 2 and separately calculate
(

2
p

)
= (−1)

p2−1

8 , thus obtaining
congruences for p modulo 8p2 · · · pk.

3.6. Example. If a prime number can be written as p = x2 − 6y2, with
x, y ∈ Z, then

(
6
p

)
= 1 and also 1 = (−1)(p

2−1)/8(−1)(p−1)/2
( p

3

)
, which

is equivalent to p ≡ 1 or 3 mod 8 and p ≡ 1 mod 3, or also to p ≡ −1
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or −3 mod 8 and p ≡ −1 mod 3. By the Chinese remainder theorem, we
can then conclude that p ≡ 1, 5, 19 or 23 mod 24. Thus there is no prime
number p ≡ 7, 11, 13 or 17 mod 24 which can be written p = x2 − 6y2.

4. Gauss Sums
Gauss sums are important in arithmetic; we are going to use them to give
a proof (due to Gauss of course) of the quadratic reciprocity law. In the
following section, we will use them to calculate the number of solutions
modulo p of a quadratic equation.

Observe that exp
(

2πia
p

)
only depends on a mod p, hence this expression

is well-defined for a ∈ Fp. We will use the following formulas, and leave
the proof of them as an instructive exercise.

∑

x∈Fp

(
x
p

)
=
∑

x∈F∗
p

(
x
p

)
= 0 and

n−1∑

x=0

exp
(

2πixy
n

)
=

{
n if n divides y,
0 if n does not divide y.

The first example of a Gauss sum that we will look at is the following,
where p is an odd prime and a is relatively prime to p:

τ(a) :=
p−1∑

x=0

exp
(

2πiax2

p

)
.

4.1. Proposition. The sums τ(a) satisfy the following formulas.

i) τ(a) =
(

a
p

)
τ(1).

ii) |τ(a)|2 = p.

iii) τ(1)2 =
( −1

p

)
p.

Proof. If a is a square, then aF∗2
p = F∗2

p hence τ(a) = τ(1). Let a be a
quadratic residue and b a quadratic nonresidue modulo p.

τ(a) + τ(b) =
p−1∑

x=0

exp
(

2πiax2

p

)
+

p−1∑

x=0

exp
(

2πibx2

p

)

= 2 + 2
∑

u∈aF∗2
p

exp
(

2πiu
p

)
+ 2

∑

u∈bF∗2
p

exp
(

2πiu
p

)

= 2
∑

u∈Fp

exp
(

2πiu
p

)
= 0.
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Hence we have τ(b) = −τ(a) = −τ(1), which proves i). For the second
formula, we can do the calculation in two ways:

∑p−1
a=1 |τ(a)|2 = (p −

1)|τ(1)|2 which is also equal to
p−1∑

a=1

∑

x,y∈Fp

exp
(

2πia(x2 − y2)
p

)
=

p−1∑

a=1

∑

u,v∈Fp

exp
(

2πiauv
p

)

=
p−1∑

a=1

p = p(p− 1),

and so we have formula ii). Finally, we know that τ(1) = τ(−1) =( −1
p

)
τ(1), hence τ(1)2 =

( −1
p

)
|τ(1)|2 =

( −1
p

)
p. �

4.2. Remark. Formula iii) allows us to deduce that if p ≡ 1 mod 4, then
τ(1) = ±√p, whereas if p ≡ 3 mod 4, τ(1) = ±i

√
p. We can actually show

(the proof is a little tricky, see Exercise 1-6.13) that it is always positive.
For example,

τ3(1) =
2∑

x=0

exp
(

2πix2

3

)
=1+2 exp

(
2πi
3

)
=1+2

(
− 1

2
+i

√
3

2

)
= i
√

3,

τ5(1) =
4∑

x=0

exp
(

2πix2

5

)
= 1 + 2 exp

(
2πi
5

)
+ 2 exp

( −2πi
5

)

= 1 + 4 cos
(

2π
5

)
= 1 + 4

(
− 1

4
+
√

5
4

)
=
√

5.

We can express the sums in another way by proving the following lemma.

4.3. Lemma. The following equality holds:

τ(a) =
∑

x∈Fp

(
x
p

)
exp

(
2πiax

p

)
=
∑

x∈F∗
p

(
x
p

)
exp

(
2πiax

p

)
.

Proof. Notice that 1 +
(

x
p

)
is equal to the number of solutions in Fp to

the equation y2 = x. This gives us:
∑

x∈Fp

(
x
p

)
exp

(
2πiax

p

)
=
∑

x∈Fp

(
1 +

(
x
p

))
exp

(
2πiax

p

)

=
∑

y∈Fp

exp
(

2πiay2

p

)
= τ(a),

as desired. �
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This leads into the first generalization. We define a character as a homo-
morphism χ : F∗

p → C∗. We generally refer to the constant function, equal
to 1, as a unitary character, a principal character or even a trivial character;
it is denoted by χ0. By convention, we extend each character to all of Fp

by χ(0) := 0 if χ 	= χ0 and χ0(0) = 1.
Therefore, for a relatively prime to p, we let

G(χ, a) =
∑

x∈Fp

χ(x) exp
(

2πiax
p

)
=
∑

x∈F∗
p

χ(x) exp
(

2πiax
p

)

and prove the following.

4.4. Proposition. The sums G(χ, a) satisfy the following formulas.

i) G(χ, a) = χ̄(a)G(χ, 1).
ii) |G(χ, a)|2 = p (if χ is not a trivial character).
iii) G(χ, 1) = χ(−1)G(χ̄, 1).

Proof. For the first formula, notice that χ(a) is a root of unity (since
χ(a)p−1 = χ(ap−1) = 1), and therefore χ(a−1) = χ(a)−1 = χ̄(a). This
yields

G(χ, a) =
∑

x∈F∗
p

χ(x) exp
(

2πiax
p

)

= χ(a−1)
∑

x∈F∗
p

χ(ax) exp
(

2πiax
p

)
= χ(a−1)G(χ, 1).

For the second formula,
∑p−1

a=1 |G(χ, a)|2 = (p − 1)|G(χ, 1)|2 and is also
equal to

p−1∑

a=1

∑

x,y∈Fp

χ(x)χ̄(y) exp
(

2πia(x− y)
p

)

=
p−1∑

a=0

∑

x,y∈Fp

χ(x)χ̄(y) exp
(

2πia(x− y)
p

)
−

∑

x,y∈Fp

χ(x)χ̄(y)

= p
∑

x∈Fp

χ(x)χ̄(x) = p(p− 1).

The last formula can be deduced from the equation:

G(χ, 1) = G(χ̄,−1) = χ(−1)G(χ̄, 1). �

To prove the quadratic reciprocity law, we will introduce the analogue
of these sums in finite characteristic. More precisely, if p and q are two



14 1. Finite Structures

distinct odd prime numbers, we choose a primitive pth root of unity, α, in
an extension of Fq; namely α is a root of the equation

αp−1 + αp−2 + · · ·+ α + 1 = 0.

We then define the “Gauss sum” in Fq(α) by

τ :=
∑

x∈Fp

(
x
p

)
αx

and prove the following lemma.

4.5. Lemma. Let τ be the element of Fq(α) as above. Then

1 ) τ2 =
( −1

p

)
p;

2 ) τ q−1 =
( q

p

)
∈ Fq(α).

Proof. We calculate

τ2 =
∑

x,y∈Fp

( xy
p

)
αx+y =

∑

u∈Fp

S(u)αu,

where S(u) :=
∑

x+y=u

( xy
p

)
=
∑

x∈Fp

(
x(u− x)

p

)
. For u = 0, we

have S(0) =
∑

x∈Fp

(
−x2

p

)
=
( −1

p

)
(p− 1). For u ∈ F∗

p, the sum S(u)

equals

∑

x∈Fp

(
x(u− x)

p

)
=
∑

x∈F∗
p

( −x2(1− ux−1)
p

)

=
( −1

p

) ∑

x∈F∗
p

(
1− ux−1

p

)

=
( −1

p

)
⎧
⎨

⎩
∑

y∈F∗
p

( y
p

)
− 1

⎫
⎬

⎭ ,

in other words, S(u) = −
( −1

p

)
. In fact, 1 − ux−1 takes all values in Fp

except 1, and the sum of the
( y

p

)
is zero. Therefore,

τ2 =
( −1

p

)
(p− 1−

p−1∑

u=1

αu) =
( −1

p

)
p.

For the second formula, since the characteristic is q which is odd, it follows
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that

τ q =
∑

x∈Fp

(
x
p

)q

αqx =
∑

x∈Fp

(
x
p

)
αqx =

( q
p

) ∑

x∈Fp

( qx
p

)
αqx =

( q
p

)
τ.

By using the fact that τ 	= 0, assertion 2) follows from assertion 1). �

Proof. (of the quadratic reciprocity law) We saw that if q does not di-

vide a ∈ Z, then a(q−1)/2 ≡
(

a
q

)
mod q. Therefore, by applying this to

a = p, we obtain the following equalities in Fq(α) by successively invoking
formulas 1) and 2) of the preceding lemma:

( p
q

)
= p(q−1)/2 =

(( −1
p

)
τ2
)(q−1)/2

= (−1)(p−1)(q−1)/4τ q−1 = (−1)(p−1)(q−1)/4
( q

p

)
.

This yields the following equality of signs, first in Fq, then in Z:
( p

q

)
= (−1)(p−1)(q−1)/4

( q
p

)
,

which finishes the proof. �

Other proofs of the quadratic reciprocity law are proposed in Exercises
1-6.13 and 2-7.14.

5. Applications to the Number of Solutions
of Equations

We will now explain another application of Gauss sums (and other elemen-
tary theorems) to finding the number of solutions of equations in Fq or
Z/NZ.

5.1. Theorem. (Chevalley-Warning) Let k = Fq be a finite field of
characteristic p. If P ∈ k[x1, . . . , xn] and deg(P ) < n, then

card{x ∈ kn | P (x) = 0} ≡ 0 mod p.

In particular, if P is homogeneous of degree d < n, then P has a nontrivial
zero (i.e., distinct from 0).

We will start by calculating the sum of values of a monomial.
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5.2. Lemma. Let xm := xm1
1 · · ·xmn

n be a monomial. Then
∑

x∈kn xm is
zero except when every mi is non-zero and divisible by (q−1). In particular,
this sum is zero as soon as m1 + · · ·+ mn < (q − 1)n.

Proof. Let us point out that since the polynomial “X0” is the constant
polynomial, it follows naturally that 00 = 1. The calculation

∑

x∈kn

xm =
∑

(x1,...,xn)∈kn

xm1
1 · · ·xmn

n =

(
∑

x1∈k

xm1
1

)
· · ·
(
∑

xn∈k

xmn
n

)

brings us back to the case of one variable. If m = 0, then
∑

y∈k y0 = q ·1k =
0. If m is not divisible by q− 1, take y0 to be a generator of k∗, so ym

0 	= 1,
and therefore, ∑

y∈k

ym =
∑

y∈k

(y0y)m = ym
0

∑

y∈k

ym

yields
∑

y∈k ym = 0. �

Proof. (of the Chevalley-Warning theorem) We can deduce from the lemma
that if Q ∈ k[x1, . . . , xn] and deg(Q) < (q − 1)n, then

∑
x∈kn P (x) = 0.

Now let P be the polynomial in the statement of the Chevalley-Warning
theorem. We will apply the previous result to Q = 1− P q−1. Notice that
deg(Q) = (q − 1) deg(P ) < (q − 1)n and that Q(x) = 1 if P (x) = 0, while
Q(x) = 0 if P (x) 	= 0 and x ∈ kn. It follows that in k, we have the
equality

0 =
∑

x∈kn

Q(x) =
∑

x∈kn

P (x)=0

1 = card{x ∈ kn | P (x) = 0}1k,

which completes the proof since k is of characteristic p, and hence m1k = 0
is equivalent to m ≡ 0 mod p. �

5.3. Definition. If Q(x) =
∑

1�i,j�n aijxixj is a quadratic form where
aij = aji, we say that it is nondegenerate if DQ := det(aij) 	= 0.

5.4. Remark. If we do not impose the symmetry condition aij = aji,
we can (if the characteristic of the field k is not equal to 2) replace Q by
Q′(x) =

∑
1�i,j�n bijxixj , where bij := 1

2
(aij + aji), in such a way that

for all x, we have Q(x) = Q′(x). In general, the study of quadratic forms
in characteristic 2 is more subtle, and we will therefore avoid it.

We start by showing that if the characteristic of the field k is not equal to
2, then we can replace Q by a diagonal form Q′(y) = a1y

2
1 + · · ·+any2

n. We
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write Q(x) = txAx where A is symmetric; if we introduce the symmetric
bilinear form B(x, y) = txAy, it follows that Q(x) = B(x, x) and B(x, y) =
1
2

(Q(x + y)−Q(x)−Q(y)). Let F be a vector subspace of kn, and let

F⊥ := {x ∈ kn | ∀y ∈ F, B(x, y) = 0}. Then we have dim F +dim F⊥ = n.
To see why this is true, we take a basis for F , e1, . . . , er, and let Φ(x) =
(B(e1, x), . . . , B(er, x)). The kernel of the linear map Φ : kn → kr is F⊥,
and its image is all of kr because if not there would exist a1, . . . , ar, all
non-zero such that 0 = a1B(e1, x) + · · · + arB(er, x) = B(a1e1 + · · · +
arer, x), which contradicts the hypothesis that B (or Q) is nondegenerate.
It therefore follows that n = dimKer Φ + dim ImΦ = dimF + dim F⊥.

We now prove by induction on n that there exists an orthogonal basis.
Choose e1 such that Q(e1) 	= 0, so kn = 〈e1〉 ⊕ 〈e1〉⊥, and we can proceed
inductively since dim〈e1〉⊥ = n− 1 and since the form remains nondegen-
erate when we restrict it to 〈e1〉⊥. Now, if e1, . . . , en is an orthogonal basis
such that Q(ei) = ai, and we denote by y1, . . . , yn the coordinates of the
vector (x1, . . . , xn) in the basis e1, . . . , en, we have that

Q(x1, . . . , xn) = Q(y1e1 + · · ·+ ynen) = a1y
2
1 + · · ·+ any2

n.

Let us point out that if we call the quadratic form on the right Q′ and
the change of basis matrix U , then DQ = det(U)2DQ′ . In particular, if we

work over Fp, then we have
(

DQ

p

)
=
(

DQ′

p

)
. This remark is used in

the proof of the following theorem.

5.5. Theorem. Let Q be a nondegenerate quadratic form in n variables
with coefficients in Fp (p 	= 2). Then

card {x ∈ (Fp)n | Q(x) = 0} = pn−1 + ε(p− 1)p
n

2
−1

,

where

ε =

⎧
⎪⎨

⎪⎩

0 if n is odd,(
(−1)n/2DQ

p

)
if n is even.

Proof. From the remarks before the statement of the theorem, we can
assume that the form Q is diagonal, in other words, Q(x) = a1x

2
1 + · · · +

anx2
n. Let N be the cardinality that we want to compute. We have
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pN =
p−1∑

a=0

∑

x∈Fn
p

exp
(

2πiaQ(x)
p

)

= pn +
p−1∑

a=1

∑

x∈Fn
p

exp
(

2πiaQ(x)
p

)

= pn +
p−1∑

a=1

∑

x1,...,xn∈Fp

exp
(

2πia(a1x
2
1 + · · ·+ anx2

n)
p

)

= pn +
p−1∑

a=1

n∏

j=1

∑

xj∈Fp

exp

(
2πiaajx

2
j

p

)
= pn +

p−1∑

a=1

n∏

j=1

τ(aaj)

= pn + τ(1)n
(

a1 · · · an
p

) p−1∑

a=1

(
a
p

)n

.

Now, a1 . . . an = DQ, and the sum
∑p−1

a=1

(
a
p

)n

is 0 (resp. p − 1) if n is

odd (resp. if n is even). It follows from this that Np = pn−1 if n is odd. If
n is even, observe that

τ(1)n =
(
τ(1)2

)n/2
=
( −1

p

)n/2

pn/2,

and we have the formula for Np. �

5.6. Remark. This statement gives us a much more precise formulation
of the Chevalley-Warning theorem in the case of quadratic forms. This
is obvious if the quadratic form is nondegenerate; we should add that a
degenerate form can be written, after a variable change, as Q(x1, . . . , xn) =
a1x

2
1+· · ·+arx

2
r with r < n and D′

Q := a1 . . . ar 	= 0. In this case, it follows
that

Np = pn−r

(
pr−1 + ε(p− 1)p

r

2
−1
)

= pn−1 + ε(p− 1)pn− r

2
−1

,

where now ε is zero if r is odd and is
( (−1)r/2D′

Q

p

)
if r is even.

We will now consider a quadratic form Q(x) =
∑

1�i,j�n aijxixj with in-
teger coefficients. If we want to count the number of solutions modulo N
where N is not necessarily prime, we can rely on the two following lemmas
(where the first is a variation of the Chinese remainder theorem).

5.7. Lemma. Let ψQ(N) := card {xmod N | Q(x) ≡ 0 mod N}. If M
and N are relatively prime, then ψQ(MN) = ψQ(M)ψQ(N).
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Proof. This is a corollary of the Chinese remainder theorem: Q(x) ≡
0 mod MN if and only if Q(x) ≡ 0 mod N and Q(x) ≡ 0 mod M , and
furthermore, each pair of congruence classes x ≡ a mod M , x ≡ b mod N
corresponds to a congruence class mod MN . �

This lemma reduces our case to counting the solutions modulo pm. This can
be done thanks to the following lemma, which is a special case of “Hensel’s
lemma”.

5.8. Lemma. Let p be an odd prime number which does not divide DQ.
We define the set of “nonsingular” solutions mod pm by

CQ(pm) := {xmod pm | Q(x) ≡ 0 mod pm and x 	≡ 0 mod p} .

Then we have the formula

cardCQ(pm) = p(m−1)(n−1) cardCQ(p)

= p(m−1)(n−1)

(
pn−1 − 1 + ε(p− 1)p

n

2
−1
)

.

Proof. The second equality is an immediate corollary of the first equality
and of the preceding theorem. We have an obvious map from CQ(pm+1)
to CQ(pm), which sends an n-tuple of integers modulo pm+1 to the same
n-tuple of integers modulo pm. It is enough to show that this map is
surjective and that each fiber has order pn−1 since we would then have
card CQ(pm+1) = pn−1 cardCQ(pm), and the lemma follows easily from
that. So let x0 be an n-tuple of integers such that Q(x0) ≡ 0 mod pm, or
such that Q(x) = pma0. We know that

Q(x0 + pmz) = Q(x0) + 2pmB(x0, z) + p2mQ(z)

≡ pm (a0 + 2B(x0, z)) mod pm+1,

which is zero modulo pm+1 if and only if

a0 + 2B(x0, z) ≡ 0 mod p.

Since x0 	≡ 0 mod p and B is a nondegenerate bilinear form, this last equa-
tion is the equation of an (affine) hyperplane in Fn

p ; there are therefore
exactly pn−1 solutions modulo p at z. �

Generalization. The calculation done on the quadrics can now be gener-
alized by considering, on the one hand, the solutions over Fq and, on the
other hand, forms of arbitrary degree (restricting to diagonal forms). We
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therefore consider solutions x = (x1, . . . , xn) ∈ Fn
q to the equation

a1x
d
1 + · · ·+ anxd

n = 0. (1.4)

It will be useful to provisionally introduce the trace and the norm, but we
will give a more general definition in Chap. 3 (Definition 3-4.8).

5.9. Definition. Let q = pm and x ∈ Fq. We define the trace (resp. the
norm) of Fq over Fp as

TrFq

Fp
x := x+xp + · · ·+xpm−1

and N
Fq

Fp
x := x1+p+···+pm−1

. (1.5)

One can easily check that these maps send Fq to Fp and that the trace
is Fp-linear (resp. the norm, multiplicative). We first use the trace to
construct an additive character: if q = pm and a ∈ Fq, we define it by and
denote it as

ψ(a) := exp

⎛

⎝
2πi TrFq

Fp
a

p

⎞

⎠ . (1.6)

Now we can generalize the calculation over Fp.

5.10. Lemma. Let b ∈ Fq. Then we have the formula

∑

a∈Fq

ψ(ab) =

{
q if b = 0,
0 if b 	= 0.

(1.7)

Proof. The formula is obviously true for b = 0. If b 	= 0, the map
a �→ TrFq

Fp
(ab) from Fq to Fp is Fp-linear and surjective. Therefore, ev-

ery element of Fp appears pm−1 times in the image of the trace, and hence∑
a∈Fq

ψ(ab) = pm−1
∑

x∈Fp
exp(2πix/p) = 0. �

Convention. The unitary character χ0 is defined by χ0(a) = 1 for every
a ∈ Fq.
If χ : F∗

q → C∗ is a character (i.e., a homomorphism), other than the
unitary character (over F∗

q), we extend it by χ(0) = 0.
We can therefore define the corresponding Gauss sums for a ∈ F∗

q .

G(χ, ψ, a) :=
∑

x∈Fq

χ(x)ψ(ax) and G(χ, ψ) := G(χ, ψ, 1). (1.8)

We then have a proposition analogous to Proposition 1-4.4 (and leave the
proof as an exercise).
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5.11. Proposition. We have the following formulas.

i) G(χ0, ψ, a) = 0,
ii) G(χ, ψ, a) := χ̄(a)G(χ, ψ),
iii) |G(χ, ψ)| = √

q (if χ 	= χ0).

Let us now come to the calculation of

N := card
{
(x1, . . . , xn) ∈ (Fq)n | F (x) := a1x

d
1 + · · ·+ anxd

n = 0
}

.

We first point out that

qN =
∑

a∈Fq

∑

x∈(Fq)n

ψ(aF (x))

= qn +
∑

a∈F∗
q

∑

x∈(Fq)n

ψ(aF (x))

= qn +
∑

a∈F∗
q

n∏

j=1

∑

y∈(Fq

ψ(aajy
d)

= qn +
∑

a∈F∗
q

n∏

j=1

T (d, aaj),

where we let T (d, a) :=
∑

y∈Fq
ψ(ayd). The key step in the calculation is

the following observation.

5.12. Lemma. If d′ = gcd(d, q − 1), then T (d, a) = T (d′, a). Suppose
d divides q − 1. If Gd denotes the set of the d characters χ which satisfy
χd = χ0, and we let G′

d := Gd \ {χ0}, then we have the equality

T (d, a) =
∑

χ∈G′
d

χ̄(a)G(χ, ψ). (1.9)

Proof. Let us point out that we must first understand the equality χd = χ0

as saying: ∀x ∈ F∗
q , χd(x) = χ0(x) = 1. This is because if χ ∈ G′

d, then
χ(0)d = 0 	= 1 = χ0(0). The first assertion is an immediate consequence of
the fact that F∗

q is cyclic of order q − 1, thus F∗d
q = F∗d′

q . We then check
that with the hypothesis that d divides q − 1, we have

∑

χ∈Gd

χ(x) =

⎧
⎪⎨

⎪⎩

d if x ∈ F∗d
q ,

1 if x = 0,

0 if not.
(1.10)
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We can then deduce that

T (d, a) =
∑

y∈Fq

ψ(ayd) =
∑

t∈Fq

∑

χ∈Gd

χ(t)ψ(at) =
∑

χ∈G′
d

χ̄(a)G(χ, ψ)

since G(χ0, ψ) = 0. �

5.13. Theorem. Let d divide q − 1, and let Sd be the set of n-tuples of
characters (χ1, . . . , χn) such that χj 	= χ0, χd

j = χ0 and χ1 · · ·χn = χ0.
Then the number of solutions of the equation a1x

d
1 + · · ·+anxd

n = 0 is equal
to

N = qn−1 +
q − 1

q

∑

(χ1,...,χn)∈Sd

χ̄1(a1) · · · χ̄n(an)G(χ1, ψ) · · ·G(χn, ψ).

(1.11)

Proof. Observe that
∑

a∈F∗
q
χ(a) equals q − 1 if χ = χ0 and equals zero if

χ 	= χ0. It follows from the previous calculations that

qN = qn +
∑

a∈F∗
q

n∏

j=1

T (d, aaj)

= qn +
∑

a∈F∗
q

∑

χ1,...,χn∈G′
d

n∏

j=1

χ̄j(aaj)G(χj , ψ)

= qn + (q − 1)
∑

(χ1,...,χn)∈Sd

n∏

j=1

χ̄j(aj)G(χj , ψ).�

5.14. Example. We can prove by induction or a direct calculation that
the cardinality of Sd equals

s(n, d) = 1
d

((d− 1)n + (−1)n(d− 1)) .

Therefore, N = qn−1 +(q−1)R where R is the sum of the |Sd| terms whose

absolute value equals q
n

2
−1. For d = 2 we find that s(n, d) is zero for n

odd and is 1 for n even; if n = 3, we find that s(3, d) = (d − 1)(d − 2).
For example, for a cubic equation a0x

3
0 + a1x

3
1 + a2x

3
2 = 0 over Fq where

q ≡ 1[3] and by letting χ be a character of order 3 (the other one being
χ2 = χ̄), we have

N = q2 − (q − 1) (α + ᾱ) ,

where α := −χ(a0a1a2)G(χ, ψ)3/q.

It is interesting to see how this number varies when we choose a tower of
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finite fields. A key result in this direction is the Davenport-Hasse theorem,
which connects the different Gauss sums.

5.15. Theorem. (Davenport-Hasse) Let Fq be a finite field and Fqm a
finite extension. We denote by Tr = TrFqm

Fq
and N = N

Fqm

Fq
the trace and

the norm. If χ is a character of F∗
q , we have the relation

−G(χ ◦N, ψ ◦ Tr) = (−G(χ, ψ))m
. (1.12)

Proof. See [5] (Chap. 11, Sect. 4) or Exercise 1-6.25. �

6. Exercises

6.1. Exercise. Show that in a commutative group, if the order of x1 is
d1, the order of x2 is d2 and d1 and d2 are relatively prime, then the order
of x1x2 is d1d2. Show also that in a cyclic group, if the order of x1 is d1

and the order of x2 is d2, then the order of the subgroup generated by x1

and x2 is equal to the LCM of d1 and d2.

6.2. Exercise. Prove that if the class of x ∈ Z generates (Z/p2Z)∗ then
it also generates (Z/pαZ)∗ (for odd p).

6.3. Exercise. Prove that if N is even and m is odd, the last formula of
Proposition 1-2.6 is also true. How should you change the formula when
both N and m even?

6.4. Exercise. Let K := Fqm and k := Fq. Prove that the maps N =
NK

k : K∗ → k∗ and Tr = TrK
k : K → k are surjective.

Prove that Ker N = F∗q−1
qm and that Ker Tr = {xq − x | x ∈ Fqm}.

6.5. Exercise. If b is the base of a numeral system, (i.e., an integer � 2),
every real number can be written as an expansion in base b:

a0, a1a2 . . . an . . . = a0 + a1b
−1 + · · ·+ anb−n + . . . ,

with a0 ∈ Z and 0 � ai � b− 1.

1) Prove that this expansion is unique, except for the case where an0 <
b − 1 and an = b − 1 for every n > n0, in which case a0, a1a2 . . . an . . . =
a0, a1a2 . . . (an0 + 1)000 . . . .

2) If a/c ∈ Q, show that the expansion of a/c in base b is ultimately periodic
(i.e., it is a repeating decimal) and interpret its period.



24 1. Finite Structures

6.6. Exercise. Use (n!)2+1 and (n!)2−1 to prove that there exist infinitely
many prime numbers congruent to 1 modulo 4 (resp. to −1 modulo 4).

Use 5(n!)2 − 1 to prove that there exist infinitely many prime number con-
gruent to −1 modulo 5. Use 2(n!)2 − 1 to show that there exist infinitely
many prime number congruent to −1 modulo 8.

6.7. Exercise. An integer N is said to be a Carmichael number if N is
not prime and aN−1 ≡ 1 mod N for every a relatively prime to N .

a) Show that N is a Carmichael number if and only if N is square-free and
for every prime factor p of N , p− 1 divides N − 1.

b) Show that if 6m+1, 12m+1 and 18m+1 are primes, then their product
is a Carmichael number (for example: N := 7·13·19).

6.8. Exercise. Let M := 21560 = 23 ·5 ·72 ·11, N := 21576 = 23 ·3 ·29 ·31
and G1 := (Z/MZ)∗, G2 := (Z/NZ)∗.

a) Do the groups G1 and G2 have the same order and are they isomorphic?

b) Calculate the exponent of the group G1, in other words the smallest
integer m � 1 such that if a is relatively prime to M , then am ≡ 1 mod M .

c) How many solutions are there to the equation x2 = 1 for x ∈ G1?

d) How many solutions are there to the equation x2 = −1 for x ∈ G1; same
question for x2 = 9?

6.9. Exercise. Let L := 11396 = 22 · 7 · 11 · 37, M := 16200 = 23 · 34 · 52

and N := 13176 = 23 ·33 ·61; and let G1 := (Z/LZ)∗, G2 := (Z/MZ)∗ and
G3 := (Z/NZ)∗.

a) Are the orders of the groups Gi equal and are the groups isomorphic?

b) Calculate the exponent Gi, in other words the smallest integer m � 1
such that if a is relatively prime to L (resp.M , N), then am ≡ 1 mod L
(resp. mod M , mod N).

c) How many solutions does the equation x2 = 1 have in G1, G2, G3?

d) How many solutions does the equation aL−1 = 1 have in G1; same
question for aN−1 = 1 in G3? (Notice that L− 1 = 11395 = 5 · 43 · 53 and
N − 1 = 52 ·17·31.)

6.10. Exercise. Calculate the number N(a, b, p) = N(a, b) of solutions
(x, y) ∈ (Fp)2 of the equation ax2 + by2 = 1.

Hint.– You could repeat the steps of Theorem 1-5.5 (or apply the theorem
to the conic ax2 + by2 − z2 = 0) for the equation ax2 + by2 = 0 and then
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finish from there. A generalization, as well as a different approach, is given
in the following exercise.

6.11. Exercise. (Jacobi sums, see [5]) Let p be odd and let χ1, . . . , χn :
F∗

p → C be characters. We define the Jacobi sum by

J(χ1, . . . , χn) :=
∑

x1+···+xn=1

χ1(x1) . . . χn(xn).

We also denote the principal (trivial) character by χ0.
1) Prove that Jacobi sums can be factored with the help of Gauss sums in
the following manner. If χj are all nontrivial and χ1 · · ·χn 	= χ0, then

J(χ1, . . . , χn) =
G(χ1) · · ·G(χn)

G(χ1 · · ·χn)
,

and in particular

|J(χ1, . . . , χn)| = p
n−1

2 .

2) Let Nd(u) := card
{
x ∈ Fp | xd = u

}
. If d′ = gcd(d, p − 1), prove that

Nd(u) = Nd′(u).
3) Suppose that d divides p− 1. Recall why the following formula holds:

Nd(u) =
∑

χ∈Gd

χ(u)

(where Gd is the set of characters such that χd = χ0).

4) Let N := card
{
x ∈ (Fp)n | a1x

d1 + · · ·+ anxdn
n = b

}
. Prove that

N =
∑

a·x=b

Nd1(x1) · · ·Ndn(xn),

where a · x = a1x1 + · · ·+ anxn. Deduce from this that the number N does
not change if we replace di by gcd(di, p− 1).
5) Keeping the same notation, if d1, . . . , dn divide p − 1 and b 	= 0, prove
that

N = pn−1 +
∑

(χ1,...,χn)∈S

χ1 · · ·χn(b)χ̄1(a1) · · · χ̄n(an)J(χ1, . . . , χn),

where S denotes the n-tuples of characters (χ1, . . . , χn) such that χj 	= χ0,
but χ

dj

j = χ0.

6.12. Exercise. We define a character as a homomorphism χ : (Z/nZ)∗ →
C∗ that we extend by convention to all of Z/nZ by χ(x) := 0 if x is non-
invertible. We say that χ is primitive if it does not come from a character
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modulo m, where m is a nontrivial divisor of n, in other words if we cannot
factor χ : (Z/nZ)∗ → (Z/mZ)∗ → C∗. Let

G(χ, a) =
∑

x∈Z/nZ

χ(x) exp
(

2πiax
n

)
=

∑

x∈(Z/nZ)∗

χ(x) exp
(

2πiax
n

)
.

Prove the following formulas where a is relatively prime to n and χ is
primitive modulo n.

i) G(χ, a) = χ̄(a)G(χ, 1).

ii) |G(χ, a)|2 = n.

iii) G(χ, 1) = χ(−1)G(χ̄, 1).

6.13. Exercise. In this exercise, you are asked study and calculate the
sums

G(N) :=
N−1∑

x=0

exp
(

2πix2

N

)
.

a) If N = 2M with M odd, prove that G(N) = 0 (divide the sum into the
terms from 0 to M − 1 and the terms from M to 2M − 1).

b) Let p be an odd prime. By decomposing x = y + pr−1z with y modulo
pr−1 and z modulo p, prove that G(pr) = pG(pr−2); conclude then that
G(p2r) = pr and G(p2r+1) = prG(p).

c) We introduce the function φ(x) := f(x) + f(x + 1) + · · ·+ f(x + N − 1),

where f(x) := exp
(

2πix2

N

)
on the interval [0, 1]. Let

φ̂m :=
∫ 1

0

φ(t) exp(−2πimt)dt

be the Fourier coefficient of φ. Check that

G(N) =
φ(0) + φ(1)

2
=
∑

n∈Z

φm .

d) From this, deduce the equality

G(N) = (1 + i−N )
∫ +∞

−∞
exp

(
2πiy2

N

)
dy = (1 + i−N )

√
NC,

and compute the constant C by choosing N = 1. Now conclude from this
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that

G(N) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
N if N ≡ 1 mod 4,

i
√

N if N ≡ 3 mod 4,

(1 + i)
√

N if N ≡ 0 mod 4,

0 if N ≡ 2 mod 4 .

e) We now introduce G(a, N) :=
∑N−1

x=0 exp
(

2πiax2

N

)
. Prove that

G(a, MN) = G(aM, N)G(aN, M) if gcd(M, N) = gcd(a, MN) = 1, then

that if N is odd, we have G(a, N) =
(

a
N

)
G(N). Conclude from this that

for M, N relatively prime and odd

G(MN) =
(

M
N

)(
N
M

)
G(M)G(N),

and deduce the quadratic reciprocity law from this formula and from the
previous question.

f) More generally, if gcd(2a, N) = 1, calculate the sum

G(a, b, c, N) :=
N−1∑

x=0

exp
(

2πi(ax2 + bx + c)
N

)
.

6.14. Exercise. 1) If p is prime and a ∈ Z, we let N(a, p) := card{(x,

y, z) ∈ F3
p | x2 + y2 + z2 ≡ a mod p}. If p is odd, prove that N(a, p) =

p2 +
( −a

p

)
p. What is N(a, 2) equal to?

2) Let p be an odd prime. Assuming that N(p, 7) = 42, calculate N(7, p).

3) Let p be a prime number such that p ≡ 3 mod 4. Calculate

M := card{(x, y, z) ∈ F3
p | x4 + y4 + z4 ≡ 1 mod p}.

6.15. Exercise. By a similar method, prove the following generaliza-
tion of the Chevalley-Warning theorem (Theorem 1-5.1). Let P1, . . . , Ps be
polynomials of degree d1, . . . , ds with d1 + · · ·+ ds < n. Prove that

card{x ∈ kn | P1(x) = · · · = Ps(x) = 0} ≡ 0 mod p.

In particular, if the polynomials are homogeneous, then they have a common
nontrivial zero.

6.16. Exercise. We consider the quadratic form given by

Q(x, y, z, t) = x2 − 2xy + 3y2 + 3z2 + 7t2.
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How many solutions does the equation Q(x, y, z, t) = 0 have modulo 5?
Same question modulo 7?

6.17. Exercise. We denote by Nm the number of solutions x, y ∈ F2m of
the equation y2 + y = x3. Prove that if m is odd, Nm = 2m, and that if m
is even, Nm = 2m − (−1)m/221+m/2.
Hint.– The case where m is even is more subtle. One way is to introduce
the sums R(a) =

∑
y∈F2m

ψ(a(y2 + y)) and S(a) =
∑

x∈F2m
ψ(ax3) and

conclude that Nm = 2m + 2−m
∑

a�=0 R(a)S(a). The sums S(a) can be
calculated as in the proof of Lemma 1-5.12, with the help of the Davenport-
Hasse relation (Theorem 1-5.15), and then show that R(a) = 0 except for
R(1) = 2m before finishing the proof.

6.18. Exercise. (Kloosterman sums) We define the following sum of
exponentials:

S(a, b, q) :=
∑

x∈(Z/qZ)∗

exp
(

2πi(ax + bx−1)
q

)
,

where, by convention, x−1 is an integer (modulo q) such that x−1x ≡

1 mod q. (Notice that, with this convention, exp
(

2πian−1

q

)
	=

exp
(

2πia
qn

)
.)

We will use the Weil inequality (see Chap. 6, Formula 6.11):

|S(a, b, p)| � 2
√

p,

which is valid for any odd prime number p which does not divide ab. We
denote by e(z) = exp(2πiz) and eq(z) = exp(2πiz/q) and also

∑

x mod q

=
∑

x∈Z/qZ

and
∑

x mod∗ q

=
∑

x∈(Z/qZ)∗

so that we can also write S(u, v, q) =
∑

x mod∗ q eq(ux + vx−1).

1) Prove that the absolute value of the sums S(a, b, q) with respect to the
“root mean square” is approximately √q, or to be more precise, that

∑

a,b mod q

|S(a, b, q)|2 = φ(q)q2.

Therefore, on average, the size of |S(a, b, q)| is
√

φ(q), or approximately√
q.

The point of this exercise is to fix an upper bound on the individual sums
by using the result due to Weil cited above.
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2) Prove that these sums can be factored and reduced to the case q = pm:
if q = q1q2 where gcd(q1, q2) = 1, a = q2a1 + q1a2 and b = q2b1 + q1b2, then

S(a, b, q) = S(a1, b1, q1)S(a2, b2, q2).

3) Prove that if a = pha0 and b = phb0, then

S(a, b, pm) =
∑

x mod∗ pm

e

(
a0x + b0x

−1

pm−h

)
= phS(a0, b0, p

m−h).

(Which implies that we can reduce to the case p 	 | gcd(a, b).)

4) Show that if m/2 � n < m and p does not divide y, then (y + pnz)−1 ≡
y−1 − pny−2z mod pm. Now suppose that m = 2n + 1 (or more generally
m � 3n) and that p never divides y. Show that (y + pnz)−1 ≡ y−1 −
pny−2z + p2ny−3z2 mod pm.

5) Prove that if m/2 � n < m and p does not divide gcd(a, b), then

|S(a, b, pm)| � Apn,

with A :=

{
4 if p = 2 and m− n � 3,

2 if not.

Hint.– Decompose the sum over xmod∗ pm into x = y+pnz, with y mod∗ pn

and z mod pm−n, and take A to be an upper bound for the number of solu-
tions to the congruence a− by−2 ≡ 0 mod pm−n.

6) Deduce from the previous calculation that S(a, b, pm) = 0 if m � 2 and
p divides a but not b or vice versa.

7) If p is odd and m even, prove that if gcd(p, a, b) = 1, then

|S(a, b, pm)| � 2pm/2.

Hint.– Using question 6), reduce to the case where a and b are invertible
modulo p, and apply the result from question 5) with n := m/2.

8) Let p be odd. Prove that
∣∣∣∣∣∣

∑

t mod pn+1

e

(
at2

p
+

ht

pn+1

)∣∣∣∣∣∣
=

{
pn+ 1

2 if pn divides h but not a,

0 if pn does not divide h .

Hint.– If pn divides h (and a 	≡ 0 mod p), we would bring in a Gauss sum,
if not, we would decompose the sum over t = r + ps with r mod p and
smod pn.

9) Let p 	= 2 be a prime which does not divide gcd(a, b) and let m be an odd
number. Prove that

|S(a, b, pm)| � 2pm/2.
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Hint.– If m = 2n + 1, write x = y + pnz with y mod∗ pn and z mod pn+1 in
the sum and use the preceding question.

10) From this, deduce the following theorem.

Theorem. (Weil, Estermann) The following estimates hold, where we
denote by ω(q) the number of distinct primes which divide q and by d(q)
the number of divisors of q.
i) If gcd(2ab, q) = 1 then

|S(a, b, q)| � 2ω(q)√q.

ii) In the general case, we have

|S(a, b, q)| � d(q) gcd(a, b, q)1/2q1/2.

6.19. Exercise. Let p be a prime number and F ∈ Z[X1, . . . , Xn] be a ho-

mogeneous polynomial; we denote by ∇F (x) =
(

∂F
∂X1

(x), . . . , ∂F
∂Xn

(x)
)

and assume moreover that ∇F (x) ≡ 0 mod p only if x ≡ 0 mod p (we say
that F is “smooth modulo p”). We define the following sum of exponentials

S(a, q) :=
∑

x mod q

exp
(

2πiaF (x)
q

)
,

where the sum is over x ∈ (Z/qZ)n and gcd(a, q) = 1.

1) Whenever q = q1q2 with gcd(q1, q2) = 1, find a1 and a2 such that

S(a, q) = S(a1, q1)S(a2, q2).

2) Check that F (y + pm−1z) ≡ F (y) + pm−1∇F (y) · z mod pm.

3) Let m � 2. By transforming the sum S(a, pm) over x = y + pm−1z into
a sum over y mod pm−1 and z mod p, prove that

S(a, pm) =

{
pn(d−1)S(a, pm−d) if m > d,

pn(m−1) if m � d .

4) By using Deligne’s upper bound, which says that whenever F is smooth
and of degree d where d is relatively prime to p, we have |S(a, p)| � Bn,dp

n/2

(see Chap. 6, (6.10)), prove the following upper bound

|S(a, q)| � Cω(q)q
n

„

1− 1

d

«

,

where ω(q) is the number of primes which divide q and where C is a constant
which only depends on F .
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6.20. Exercise. Let Np :=
∣∣{(x, y, z, t) ∈ (Fp)4 | ax4 + by4 + z2 + t2 = 0

}∣∣.
Assume also that ab 	= 0.

1) Prove that if p ≡ 3 mod 4, we have

Np =

{
p3 + p2 − p if ab ∈ F∗2

p ,

p3 − p2 + p if ab ∈ F∗
p \ F∗2

p .

2) Prove that if p ≡ 1 mod 4, we have

Np =

{
p3 + 3p2 − 3p if −a/b ∈ F∗4

p ,

p3 − p2 + p if −a/b ∈ F∗
p \ F∗4

p .

Hint. – By following the procedure in the proof of Theorem 1-5.13, show
that

pNp = p4 + (p− 1)
{(

ab
p

)
τ4 + τ2G(χ)G(χ̄)(χ(b/a) + χ(a/b))

}
,

where τ is the Gauss sum associated to the Legendre character (of order 2)
and χ is one of the characters of order 4 (the other one being χ̄).

3) Finish by finding Np if p = 2 or if ab = 0.

6.21. Exercise. We will now try to find integer solutions (x, y) of the
equation x2 + 15y2 = m, denoted (Em).

1) Let p be a prime number 	= 2, 3, 5. If p divides m, prove that either p

divides x and y and then p2 divides m, or
( −15

p

)
= 1.

2) Let p be a prime number 	= 2, 3, 5. Deduce from this that a necessary
condition for the equation (Ep) to have a solution is that p must belong to
certain congruence classes modulo 15, and specify these classes.

3) Does the equation x2 + 15y2 = 77077 have an integer valued solution
(notice that 77077 = 72 ·112 ·13)?

6.22. Exercise. In this exercise, you are asked to calculate, for each prime
number p 	= 2, 17, the number Np := card{(x, y, ) ∈ (Fp)2 | 2y2 = x4− 17}.

1) Calculate the numbers Lp := card{(x, y, z) | 2y2 = x2 − 17z2} and use
this to calculate Mp := card{(x, y, z) | 2y2 = x2 − 17}.
2) Whenever p ≡ 3 mod 4, prove that Np = Mp and, as a consequence, that

Np =

{
p + 1 if p ≡ 3 mod 8,

p− 1 if p ≡ 7 mod 8.
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3) As usual, let e(z) := exp(2πiz) and let

τ(a) :=
∑

x∈Fp

e
(
ax2/p

)
and ρ(a) :=

∑

x∈Fp

e
(
ax4/p

)
.

Prove that

Np = p + p−1

p−1∑

a=1

e(17a/p)τ(2a)ρ(−a).

From now on, we assume that p ≡ 1 mod 4. We introduce G = {χ0, χ1, χ2,
χ3}, the set of characters of F∗

p such that χ0(x) = 1 and χ4(x) = 1 for
x ∈ F∗

p. We extend them to Fp by the convention χ0(0) = 1 and χj(0) = 0

for j = 1, 2, 3. Suppose that χ1 is the Dirichlet character χ1(x) :=
(

x
p

)
.

We also introduce the associated Gauss sums:

G(χ, a) :=
∑

x∈Fp

χ(x) e(ax/p) and G(χ) := G(χ, a).

4) Recall why G(χ0, a) = 0, G(χ, a) = χ̄(a)G(χ) and also that if χ 	= χ0,
then |G(χ)| = √

p.

5) Prove the formula

ρ(a) = χ̄1(a)G(χ1) + χ̄2(a)G(χ2) + χ̄3(a)G(χ3).

6) Using this, find a formula for Np in terms of Gauss sums of the form

Np = p− ε0 +
τ(1)
p

(
ε1G(χ2)2 + ε2G(χ3)2

)
,

where |εi| = 1.

7) Conclude that Np � 1 for every p 	= 2, 17.

6.23. Exercise. In this exercise, we ask you to prove that the equation

2y2 = x4 − 17

has solutions modulo N for every N , but does not have any rational solu-
tions over Q.

1) Assume that there exist x = a/b and y = c/d, which are a solution to
the equation, with a, c ∈ Z, b, d ∈ N∗ and gcd(a, b) = gcd(c, d) = 1. Prove
that b4 divides d2 and that d2 divides 2b4 and deduce from this that d = b2

and 2c2 = a4 − 17b4.

2) Let p 	= 2 which divides c. Prove that p is a square modulo 17, and
deduce from this that c itself is a square modulo 17. Conclude then that 2
would be a fourth power, which is a contradiction.
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3) Let p 	= 2, 17. It was proven in the previous exercise (Exercise 1-6.22)
that there exist u, v ∈ F∗

p where 2u2 = v4 − 17. By using Lemma 1-5.8,
prove that the equation in question has solutions modulo pn for every n.

4) Prove that the equation also has solutions modulo 2n and modulo 17n,
by refining the previous argument. (You might want to use that 2 · 52 ≡
24 mod 17 and 34 − 17 ≡ 0 mod 26.)

5) Using the Chinese remainder theorem, conclude that the equation 2y2 =
x4 − 17 has solutions modulo N for every N .

6.24. Exercise. In this exercise, let e(x) := exp(2πix) and notice that
for x ∈ Fp, then the expression e(x/p) is well-defined. Let p be odd and let
Q1(x) = a1x

2
1 + · · ·+ anx2

n and Q2(x) = b1x
2
1 + · · ·+ bnx2

n be two quadratic
forms with coefficients in Fp. Assume that n is odd and that the following
condition is fulfilled.

For 1 � i < j � n, we have aibj − ajbi 	= 0. (∗)

We will calculate N := card{x ∈ Fn
p | Q1(x) = Q2(x) = 0}.

a) Prove that
∑

a,b∈Fp

∑
x∈Fn

p
e
(

aQ1(x) + bQ2(x)
p

)
= p2N , and deduce

from this the following formula:

N = pn−2 + p−2
∑

(a,b) �=(0,0)

∑

x∈Fn
p

e
(

aQ1(x) + bQ2(x)
p

)
,

where the sum is over nonzero pairs (a, b) ∈ F2
p.

b) Let τ :=
∑

x∈Fp
e(x2/p) and let Q(x) = c1x

2
1 + · · · + cnx2

n. Recall the
formula which gives

∑
x∈Fn

p
e(Q(x)/p) in terms of the ci and of the Gauss

sum τ , whenever c1 · · · cn 	= 0. Deduce that if c1 · · · cn−1 	= 0 but cn = 0,
then ∑

x∈Fn
p

e(Q(x)/p) =
( c1 · · · cn−1

p

)
τn−1p,

where
( ·

p

)
designates the Legendre symbol. Also, recall what the value of

τ2 is.

c) To lighten the notation, we let T (a, b) :=
∑

x∈Fn
p

e
(

aQ1(x) + bQ2(x)
p

)
.

Show that if (a, b) is not proportional to one of the (bi,−ai), then
∑

λ∈F∗
p

T (λa, λb) = 0.

Calculate this last sum for (a, b) = (bi,−ai).
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d) Let

Di =
∏

1�j�n,j �=i

(biaj − aibj) and εi =
(

Di
p

)
.

From the preceding arguments, deduce the formula

N = pn−2 + (p− 1)
( −1

p

)(n−1)/2
(

n∑

i=1

εi

)
p(n−3)/2.

6.25. Exercise. (Proof of the Davenport-Hasse formula, Theorem 1-5.15)
Let χ be a (nontrivial) character of F∗

q and let f ∈ Fq[X] be monic of degree
n, i.e., f(X) = Xn− a1X

n−1 + · · ·+(−1)nan. We set λ(f) = ψ(a1)χ(an).

Show that λ is multiplicative, i.e., that λ(fg) = λ(f)λ(g).

Prove that if N, Tr are the norm and trace of Fqm to Fq, then

G(χ ◦N, ψ ◦ Tr) =
∑

f,deg(f) |m
deg(f)λ(f)m/ deg(f),

where the sum is over the monic irreducible polynomials f in Fq[X] whose
degree divides m.

Prove the identity

1 + G(χ, ψ)T =
∑

f

λ(f)T deg(f) =
∏

g

(
1− λ(g)T deg(g)

)−1

,

where the sum is over the monic polynomials and the product over the
irreducible monic polynomials in Fq[X].

By taking the logarithmic derivative, deduce the Davenport-Hasse relation.

6.26. Exercise. Prove that for every N , the equation

3x3 + 4x3 + 5z3 = 0

has primitive solutions modulo N (i.e., such that gcd(x, y, z, N) = 1). Same
question for 5x3 + 22y3 + 2z3 = 0.



Chapter 2

Applications: Algorithms,
Primality and Factorization,
Codes

“Elle est retrouvée.
Quoi ? - L’Éternité.

C’est la mer allée
Avec le soleil.”

Arthur Rimbaud

This chapter describes some industrial applications of number theory, via
computer science. We succinctly describe the main algorithms as well as
their theoretical complexity or computation time. We use the notation
O(f(n)) to denote a function � Cf(n); furthermore, the unimportant—at
least from a theoretical point of view—constants which appear will be ig-
nored. In the following sections, we introduce the basics of cryptography
and of the “RSA” system, which motivates the study of primality tests and
factorization methods. We finish the chapter with an introduction to error-
correcting codes, which will lead us into the study of cyclotomic polynomials.

1. Basic Algorithms
Let n be an integer. Once we have chosen a base b � 2, we write n in base
b, in other words, with the digits ai ∈ [0, b− 1]:

n = a0 + a1b + · · ·+ arb
r = arar−1 . . . a1a0

b

, where ar 	= 0

(the two most standard base choices are b = 10 for usual decimal notation
and b = 2 for binary notation, which is especially well-adapted to computer
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programming). We will consider an operation on the digits to be a single
operation (or an operation which needs O(1) computation time). It is
natural to refer to the number of digits necessary in order to describe n,
in other words r + 1, as its complexity. Since we can see that br � arb

r <
n � br+1, we know that

r � log n

log b
< r + 1

and can therefore describe the complexity as proportional to log n. It is
clear that the manipulation of random numbers of size n requires at least
log n elementary operations. We consider, as much from a practical point of
view as from a theoretical one, an algorithm to be “good” if it is a polynomial
algorithm; that is to say, it uses O ((log n)κ) elementary operations. Con-
versely, we consider an exponential algorithm, meaning that its execution
time or required number of operations is greater than exp(κ log n) = nκ, to
be infeasible (for large n, of course).

Addition. In order to add two numbers m and n with at most r digits, we
must perform at most r additions of two digits and (possibly) carry a digit.
The cost is therefore O (log max(n, m)) = O(r). The number of operations
used in subtraction is similar.

Multiplication. In order to calculate n × m, where n and m are two
numbers with at most r digits (with the usual elementary school algorithm),
we must perform at most r2 elementary multiplications and r additions,
and possibly carry a digit, and therefore, the cost is O

(
(log max(n, m))2

)
=

O
(
r2
)
.

Remark. The addition algorithm is (up to constants) optimal, but some
more sophisticated methods (notably the “fast Fourier transform”) lets us
perform multiplications at a much better cost, for example in O

(
r(log r)2

)
.

See Exercises 2-7.3 and 2-7.4.

Division algorithm. Given a and b � 1, if we compute (q, r) such that
a = qb + r and 0 � r � b− 1 with (a variation of) the algorithm learned in
elementary school, we perform a number of elementary operations similar to
that of multiplication, i.e., O(log max(a, b)2). In order to give an example of
a turtle algorithm (do not use!), we could perform the following procedure.
We start by setting q0 = 0 and r0 = a. Then we have a = q0b+r0; if r0 < b,
we stop, and if not, we compute q1 = q0 + 1 and r1 = r0 − b in such a way
that a = q1b + r1, and we get the result by iteration and by stopping when
rn < b and a = qnb + rn. If a > b, we must perform approximately a/b
subtractions, therefore the cost is O((log a)× (a/b)) (which is exponential).

Euclidean algorithm. Given two integers, a and b, the goal is to compute
d := gcd(a, b) and (u, v) ∈ Z2 such au + bv = d (Bézout’s lemma). The
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principle is the following: we divide a by b, a = bq1 + r1; then divide b
by r1, b = r1q2 + r2, and in subsequent steps divide rn by rn+1, rn =
rn+1qn+2 + rn+2. Keep in mind that the sequence rn is strictly decreasing
and stops when rn+1 = 0, and therefore gcd(a, b) = rn. In fact,

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn, rn+1) = rn.

In order to compute (u, v), we could proceed as follows: we set u0 = 1,
u1 = 0, v0 = 0 and v1 = 1 and then recursively define un = un−2 − qnun−1

and vn = vn−2 − qnvn−1. One can immediately check by induction that
aun+bvn = rn. We will now estimate the maximal number of times we need
to use the division algorithm. We can assume that r0 = a � r1 = b and see
that rn = rn+1qn+2 + rn+2 � rn+1 + rn+2. If r0 > r1 > · · · > rn = d is the
sequence which gives the gcd, set di = rn−i. We then have di+2 � di+1+di.
Let α := (1 +

√
5)/2 be the positive root of X2 = X + 1; it follows that

di � αi. This is true because d0 = d � 1 = α0, d1 � d0 +1 � 2 � α1 and if
the inequality is true until i+1, we have di+2 � di+1+di � αi+1+αi = αi+2.
From this we conclude that a = dn � αn, and the number of steps is
bounded above by log(a)/ log(α) = O(log a). We should point out that
this argument implies that the longest computation happens when a and
b are terms in Fibonacci sequence (see Exercise 2-7.5). The total cost is
therefore O

(
log max{|a|, |b|}3

)
.

Computations in Z/NZ. The goal is to perform addition and multipli-
cation of two integers smaller than N , then to take the remainder gotten
from dividing by N in the division algorithm. In order to calculate the
inverse of a modulo N , we proceed as follows: if a is an integer, the Eu-
clidean algorithm tells us that either gcd(a, N) > 1—in which case a is not
invertible modulo N—or there exist u, v (gotten from the algorithm) such
that au + Nv = 1 and therefore the inverse of a is the class of u modulo
N . The cost is therefore the same as that of the Euclidean algorithm.

Exponentiation. In order to calculate am, we could of course calculate
a×a× · · ·×a, but this will force us to perform m − 1 multiplications; we
could do a lot better by performing the computation in O(log m) multipli-
cations. For example, if m = 2r we would carry out r multiplications. In
the general case, we write m in binary notation m = ε0 + ε12 + · · ·+ εr2r

and we would calculate

am =
((

(aεr )2 aεr−1

)2

aεr−2 · · ·
)2

aε0.

Or we could do the calculation in the other direction; the algorithm can be
defined iteratively. In order to do this, we start with the initial data chosen
to be (u, v, n) := (1, a, m) and we iterate as follows: if n is even, we replace
(u, v, n) by (u, v2, n/2) and if is n odd, we replace (u, v, n) by (uv, v2, (n−
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1)/2); we stop when n = 0, and we therefore have u = am. Since n is at
least divisible by 2 in each step, the number of steps r satisfies 2r � m, and
hence we must perform O(log m) multiplications. If we calculate mod N ,
we reduce each result mod N , and so in each step we multiply integers � N .
The total cost to compute am mod N is therefore O

(
log m(log N)2

)
.

Computations in Fq and F∗
q. We will assume that the finite field

Fq = Fpf is defined by an irreducible monic polynomial S(X) = Xf +
sf−1X

f−1 + · · · + s0 ∈ Fp[X] of degree f . We therefore identify Fq with
Fp[X]/SFp[X], which can be seen as the vector space over Fp with basis
1, x, x2, . . . , xf−1 with addition on the individual coordinates and multi-
plication defined by xi · xj = xi+j and xf = −sf−1x

f−1 − · · · − s0. An
element of Fq is therefore seen as an f -tuple of integers modulo p or as a
polynomial of degree � f − 1. To perform an addition, we must perform
f additions in Fp, so at a cost of O(f log p) = O(log q). To carry out a
multiplication, we take the product of two polynomials, or essentially f2

multiplications in Fp, then divide the result by S(X) using the division
algorithm, or essentially O(f) divisions and O(f2) multiplications in Fp.
The cost of a multiplication in Fq is therefore O(f2(log p)2)+O(f(log p)3).
Let us point out that this cost is still O((log q)3), but that if we choose
q = 2f for example, it is O(f2) = O((log q)2).

2. Cryptography, RSA
We are only interested here in one aspect of cryptography and in one system
of “public keys”, known as RSA from the name of its three inventors, Rivest,
Shamir and Adleman [61], and which is one of the most widely used.

Cryptography is the art (or science) of secret messages: we want to send
information so that only one other person, the recipient, can see it. A
related problem is to be able to identify with certainty the sender of the
message. We generally think that the only method is to use a “secret code”;
in fact the originality of “public key” cryptography comes precisely from
the fact that the code is not secret, but is known (for the most part) by
everybody! This is not only a mathematical curiosity, it is also the principle
governing credit cards, internet transactions, etc.

The general principle is the following. We call M the set of messages (in
practice we take M = [0, N − 1] or Z/NZ). Two people, A and B, who
wish to exchange messages in such a way that a third person, C, cannot
decipher them each choose bijections fA, fB : M → M . The set M (say
the integer N) is known to everybody, as well as fA and fB, however—and
this is the key idea—the inverse function f−1

A (resp. f−1
B ) is only known

by A (resp. by B). This does not mean of course that, knowing fA, it is
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theoretically impossible to compute f−1
A , but this calculation would be so

long, that it would be out of the question to carry out in a reasonable time
frame. We will later see how to construct such functions.

When A wants to send B a message m ∈ M (say an integer modulo N), he
or she simply sends m′ = fB ◦ f−1

A (m); remember that A knows fB (which
is public) and f−1

A (which only he or she knows). In order to decode this
message, B computes fA ◦ f−1

B (m′), which will give m; remember that
B knows fA (which is public) and f−1

B (which only he or she knows).
The system has two advantages: not only can C not decipher the message
without computing f−1

B (which we assume to be out of the question), but
B can be sure that it is A who sent the message since it must have been
encoded using f−1

A , which only A knows!

This procedure is a simplified form of the known methods under the name
of the Diffie-Hellman protocol (1976); its security relies on the choice of
the “one-way” functions f , in other words such that f is quick and easy to
compute, but f−1 is in practice impossible to determine. Many construc-
tions of functions have been suggested, but one of the most hardy and most
widely used, relies on the fact that if p and q are very large prime numbers
(say 100 or more digits), then their product N := pq can be calculated very
quickly (say 10,000 elementary operations), whereas if you only know N ,
it is an extremely long calculation to factor it, impossible in practice.

We now construct the functions fA of the RSA system. We choose two
very large prime numbers, p and q, compute N := pq and also choose a
medium-sized integer d which is relatively prime to φ(N) = (p− 1)(q − 1).
The public key is therefore (N, d); however, p and q are secret and we set,
for a any integer smaller than N ,

f(a) := ad mod N.

To decode a message, we calculate the inverse e of d modulo φ(N) and we
observe that

f−1(b) = be mod N,

since
(
ad
)e = aed ≡ a mod N , because aφ(N) ≡ 1 mod N .

2.1. Remarks. 1) There is one little constraint on the “message” a: it
should be relatively prime to N1. Nonetheless, observe that the proportion
of integers which are relatively prime to N is φ(N)/N = (1−1/p)(1−1/q);
so if p, q are for example � 1050, the proportion of integers which are not
relatively prime to N is � 2 · 10−50.

1If by mistake, a message a = pa′ was sent, we could certainly still decode it by
f(a)e = pdea′ed = peda′ = a, but C, or whoever else, would only have to compute
gcd(a, N) to discover p and crack the code!
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2) Once p, q and d have been chosen, the computation of N , φ(N) and e
is performed in polynomial time (fast); likewise, the operation a �→ f(a) is
just as fast as a �→ f−1(a) if we know e.

3) We can see, at least heuristically, that knowing the number e allows
us to factor N : if we write de − 1 = 2rM (with M odd), by computing
gcd(a2jM ± 1, N) for j = 1, 2, . . . and some values of a, we have a good
chance of quickly factoring N .

4) Therefore, if someone knows only the public key (N, d), they should a
priori factor N in order to compute φ(N) then e. In fact, the knowledge
of φ(N) is equivalent to that of p and q, because φ(N) = N − (p + q) + 1
(the knowledge of the product and the sum of two integers lets you easily
determine the integer pair).

This system gives rise to many problems, the solutions to which are more
or less satisfactory.

i) How do you construct (very) large prime numbers?
ii) What methods do we have for factoring an integer?
iii) How should you choose p and q in RSA that resist factorization meth-

ods?

Since it is clear from question iii) that the prime numbers should not be
too “special”, question i) is essentially equivalent to the following problem.

• (I) (Primality Test) Give a fast algorithm which determines whether a
number N is prime.

If we had access to such an algorithm P, we could in fact decide on the
size of the integer (for example N ∼ 1050), randomly choose an odd integer
N1 of this size, and test P(N1) then P(N1 +2), P(N1 +4) until we find a
prime number. By the theorems on the distribution of prime numbers, the
number of primes in an interval [N1, N1 +H] is approximately H/ log(N1);
so we expect to find a prime number in O(log(N1)) tries.

We will see that satisfactory answers to problem i) are available, but we
only know partial answers to the other questions.

3. Primality Test (I)
We consider an odd integer N and the problem of determining whether
N is prime. We denote by (M, N) the gcd of M and N . The letter p is
reserved for a number which we already know is prime. The first of all of
the primality tests, and in some sense the “grandfather”, is the following
lemma.
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3.1. Lemma. (Fermat) If N is prime and (a, N) = 1, then aN−1 ≡
1 mod N .

Proof. The group Z/NZ∗ has order N − 1 and the lemma follows from the
Lagrange’s theorem.2 �

This is a “good” test, in the sense that computing aN−1 mod N requires
O(log N) multiplications (under the condition of course that you use the
binary notation for N − 1). However, it is also a “bad” test, because there
are numbers, called Carmichael numbers, which satisfy the test without
being prime. We even know that there are infinitely many of them [11],
the smallest being 561 = 3 ·11 ·17. We can easily see that a number N

is a Carmichael number if and only if N is square-free and p − 1 divides
N−1 for every p which divides N . In general, we could introduce λ(N), the
exponent of the group (Z/NZ)∗, sometimes called the Carmichael function:
it is the smallest positive integer (in the sense of divisibility or the usual
order) such that for all a relatively prime to N , aλ(N) ≡ 1 mod N . By what
we have seen, we know that if N = pm1

1 · · · pmk

k is odd, we have

λ(N) = lcm
(
pm1−1
1 (p1 − 1), . . . , pmk−1

k (pk − 1)
)
. (2.1)

It is always true that λ(N) divides φ(N) and the equality holds if and only
if (Z/NZ)∗ is cyclic, i.e., if N = pα or 2pα or 4.

3.2. Lemma. (Euler3) If N is prime and (a, N) = 1, then

a
N−1

2 ≡
(

a
N

)
mod N.

Proof. This is simply a restatement of assertion ii) from Theorem 1-3.3.�

The Solovay-Strassen test is an algorithm which checks the congruences
given below for a randomly chosen a. This test is always polynomial (for
any value of a, we can always quickly calculate the Jacobi symbol thanks
to the quadratic reciprocity law, see Exercise 2-7.7) and is better than
Fermat’s test.

3.3. Lemma. Let H :=
{

a ∈ (Z/nZ)∗ | a
N−1

2 ≡
(

a
N

)
mod N

}
, then

H = (Z/nZ)∗ if and only if N is a prime number.
2To prove Fermat’s little theorem by using Lagrange’s theorem is obviously an

anachronism.
3Calling a statement which uses the Legendre or Jacobi symbol “Euler’s criterion” is

also an anachronism.
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Proof. We have seen that if N is prime, then H = (Z/nZ)∗. If p2 divides
N , there exists a of order p(p−1), and p does not divide N −1. Therefore,
aN−1 	= 1. If N = pp2 · · · pr with r � 2, choose (by the Chinese remainder
theorem) a ≡ 1 modulo p2, . . . , pr and which is not a square modulo p;

hence
(

a
N

)
= −1, but a(N−1)/2 ≡ 1 mod p2 · · · pr and thus a(N−1)/2 	≡

−1 mod N . �

Applications.

i) Probabilistic polynomial test. If N is composite then (Z/NZ∗ : H) � 2
and hence by randomly choosing a, we have at least a one in two chance
that a /∈ H. Hence if N successively passes k tests, we can say that it
is prime with a probability greater than 1− 2−k.

ii) Deterministic polynomial test (assuming GRH). Analytic theory has
provided a proof that if the Dirichlet L(χ, s) functions do not vanish
on Re(s) > 1/2 (generalized Riemann hypothesis, GRH), then for every
nontrivial character χ : (Z/NZ)∗ → C∗, there exists an a � 2(log N)2

such that χ(a) 	= 0, 1. We can deduce from this that if N were compos-
ite, there would exist a � 2(log N)2 which would not pass the Solovay-

Strassen test. If N = pm1
1 · · · pmk

k , we introduce f(a) := a
N−1

2

(
a
N

)

and
χi : (Z/NZ)∗

f→ (Z/NZ)∗ → (Z/pmi
i Z)∗ ↪→ C∗.

We see that H is the intersection of the kernels of χi. By trying all
of the a ∈ [2, 2(log N)2], we therefore get a primality certificate (i.e., a
proof of primality), under the condition that the Riemann hypothesis
is true.

We could improve the Solovay-Strassen test and algorithm.

3.4. Lemma. (Rabin-Miller) Let N be odd. Set N − 1 = 2sM , with M

odd. If N is prime and (a, N) = 1, then either aM ≡ 1 mod N or there
exists 0 � r � s− 1 such that a2rM ≡ −1 mod N .

Proof. The order of a modulo N is 2tM ′, where 0 � t � s and M ′ is an
odd integer which divides M . If t = 0, then aM ′

= 1 hence aM = 1. If
t � 1, then, since N is prime, a2t−1M ′

= −1, and therefore a2t−1M = −1.�

This test is better than Euler’s test, because, for one thing, if the pair a,
N passes the Rabin-Miller test, then it also must pass Euler’s test. Fur-
thermore, if N is composite, the proportion of a which pass the refined test
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is � 1/4 and often smaller than that. Of course there exists a probabilis-
tic polynomial version of the refined test and a deterministic polynomial
version, assuming that the Riemann hypothesis is true.

3.5. Remark. If N ≡ 3 mod 4, then “Rabin-Miller” is identical to
“Solovay-Strassen”, and even equivalent to a(N−1)/2 ≡ ±1 mod N . We know
that (N − 1)/2 is odd, and we can observe that if ε = ±1, then

(
ε
N

)
= ε,

and if a(N−1)/2 ≡ ±1 mod N , then

(
a
N

)
=

(
a · (a2)(N−3)/4

N

)
=
(

a(N−1)/2

N

)
= a(N−1)/2 mod N.

Proof. (“Rabin-Miller” > “Solovay-Strassen”, in the general case) Now, we
know that a(N−1)/2 = a2s−1M equals −1 mod N if r = s − 1 and equals
1 mod N in all of the other cases. Therefore, we need to compute

(
a
N

)
.

If aM ≡ 1 mod N , then
(

a
N

)
=
(

a
N

)M

=
(

aM

N

)
= 1, hence a

N−1

2 ≡
(

a
N

)
mod N . Now assume that a2rM ≡ −1 mod N . Let pi divide N and

write pi−1 = 2siMi. Then, since a2rM ≡ −1 mod pi, the order of a modulo
pi is of the form 2r+1Li (with Li odd). Therefore, modulo pi, we get

(
a
pi

)
≡ a(pi−1)/2 ≡ a2si−1Mi ≡

{
1 if si > r + 1,

−1 if si = r + 1 .

Now notice that r + 1 � si. Let h be the number of indices i such that
si = r + 1. Therefore, we have

(
a
N

)
= (−1)h. Modulo 2r+2, we have

N = 1 + 2sM =
∏

i pi =
∏

i(1 + 2si) ≡ 1 + h2r+1 mod 2r+2. In the

case where r < s − 1, h must be even, so that
(

a
N

)
= 1, and we get

a(N−1)/2 ≡ 1 mod N . In the case where r = s − 1, then h is odd and(
a
N

)
= −1 ≡ a(N−1)/2 mod N . �

We can summarize the previous discussion by introducing the following
sets:

G0 := (Z/NZ)∗,

G1 :=
{
a ∈ (Z/NZ)∗ | aN−1 ≡ 1 mod N

}
,

G2 :=
{
a ∈ (Z/NZ)∗ | a(N−1)/2 ≡ ±1 mod N

}
,

G3 :=
{

a ∈ (Z/NZ)∗ | a(N−1)/2 ≡
(

a
N

)
mod N

}
,
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S :=
{
a ∈ (Z/NZ)∗ | aM ≡ 1 mod N or ∃r ∈ [0, s− 1] such that

a2rM ≡ −1 mod N
}

.

We always have the inclusions S ⊂ G3 ⊂ G2 ⊂ G1 ⊂ G0, and these
are equalities if and only if N is prime, or also if and only if G3 = G0.
Furthermore, G1, G2 and G3 are subgroups, but in general S is not, even
though in the case N ≡ 3 mod 4 we have seen that G2 = G3 = S. In fact, S
is stable under inversion, and if a, b ∈ S do not satisfy the same congruence
or both aM = bM = 1, then ab ∈ S. But if a2rM = b2rM = −1, it could
happen that ab /∈ S. For example, if ε2 = 1 but ε 	= ±1 and if a2M =
−1 (which would force N ≡ 1 mod 4), then a ∈ S and aε ∈ S, because
(aε)2M = −1. However, (εa2)M = εMa2M = −ε 	= ±1 and (εa2)2M = 1,
hence εa2 /∈ S. By considering a �→

(
a
N

)
a(N−1)/2 from G2 to {±1}, we

see that (G2 : G3) = 1 or 2. We are now going to compute the cardinality
of the set S and, in particular, verify the following statement.

3.6. Proposition. Let N be an odd, composite number. If N 	= 9, then

|S|
|G0|

� 1
4
·

3.7. Definition. Let A, B be integers. We define

φ(A; B) = card
{
a ∈ (Z/AZ)∗ | aB ≡ 1 mod A

}
.

3.8. Lemma. Let t � 0 and N = 1 + 2sM = pα1
1 · · · pαk

k (with M odd).
We set pi − 1 = 2siMi, s′i = min(t, si) and ti := gcd(M, Mi). Then

φ(N, 2tM) = 2s′
1+···+s′

kt1 · · · tk.

Moreover, the cardinality of the set
{

a ∈ (Z/NZ)∗ | a2tM ≡ −1 mod N
}

is 0 if t � mini si, and equal to φ(N, 2tM) = 2tkt1 · · · tk if t < mini si.

Proof. We know that a2tM ≡ 1 mod N if and only if a2tM ≡ 1 mod p
αj

j for
j = 1, . . . , k. Now, the group (Z/p

αj

j Z)∗ is cyclic of order (pj − 1)pαj−1
j , so

the number of solutions is

gcd(2tM, (pj − 1)pαj−1
j ) = gcd(2tM, 2sj Mj) = 2min(t,sj)tj .

By the Chinese remainder theorem, the number of solutions modulo N
is therefore the product of these numbers, and hence we have proven the
first claim. For the second claim, we see right away that either there does
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not exist any solution, or there does exist a solution and therefore the set
of solutions is in bijection with the solutions of the previous congruence.
The congruence a2tM ≡ −1 mod p

αj

j is solvable if and only if 2t+1 divides
(pj − 1)pαj−1

j , in other words if and only if t + 1 � sj , hence we have the
desired result. �
Proof. (of Proposition 2-3.6) Assume that s1 � s2 � . . . � sk. By
decomposing the set S into S0 :=

{
a ∈ (Z/NZ)∗ | aM ≡ 1 mod N

}
and

Tj :=
{

a ∈ (Z/NZ)∗ | a2jM ≡ −1 mod N
}

for 0 � j � s1 − 1 and by ap-
plying Lemma 2-3.8 to each one of these sets, we have

card(S)= t1 · · · tk
(
1 + 1 + 2k + · · ·+ 2k(s1−1)

)
= t1 · · · tk

(
2ks1 + 2k − 2

2k − 1

)
.

The ratio of a ∈ G0 which pass the Rabin-Miller test is therefore

card(S)
card(G0)

= t1 · · · tk
M1 · · ·Mk

2−(s1+···+sk)

pα1−1
1 · · · pαk−1

k

(
2ks1 + 2k − 2

2k − 1

)
. (2.2)

If k = 1, the ratio is equal to t1

M1p
α1−1
1

� 1
pα1−1
1

, and is therefore � 1
5

,

except when N = 32 in which case we have |S|/|G0| = 1/3. If k � 2, we
can assume that α1 = · · · = αk = 1, if not, the ratio is � 1/pi, which in
practice we can assume to be arbitrarily small. If one of the Mi is different
from ti, then t1 . . . tk/M1 . . . Mk � 1/3. Furthermore,

2−s1−···−sk

(
2ks1 + 2k − 2

2k − 1

)
� 2−ks1 2k − 2

2k − 1
+ 1

2k − 1
� 21−k,

so the ratio is � 1/8 if k � 4 and � 1/4 if k = 3.

If k = 2 and if one of the Mi is distinct from all of the ti, then the ratio is
� 1/6. If k = 2 and M1 = t1 (i.e., M1 divides M) and M2 = t2 (i.e., M2

divides M), we see that M1 = M2, hence s1 < s2 (if not p1 = p2). We then

have that the ratio is � 2s1−s2 1 + 21−2s1

3
� 1 + 21−2s1

6
� 1

4
· �

3.9. Remark. By looking at the upper bounds above, we can prove that
the two “worst” cases are the following.

i) The number N is equal to pq with q = 2p − 1 and p ≡ 3 mod 4. For
example, N = 3 ·5, N = 7 ·13, etc. It follows that p = 1 + 2M1 and
q = 1 + 4M1 and N = (1 + 2M1)(1 + 4M1) = 1 + 2M1(3 + 4M1), hence
t1 = t2 = M1 = M2 and so

card(S)
card(G0)

= 1
4
·
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ii) The number N is equal to pqr = 1 + 2M , where p = 1 + 2M1, q =
1 + 2M2, r = 1 + 2M3 and Mi divides M . It follows from this that
the ratio is also 1/4. Take for example: N = 8911 = 7 ·19 ·67 (where
M1 = 3, M2 = 9, M3 = 33 and M = 4455 = 34 ·5·11).

4. Primality Test (II)
In this section we present the Agrawal-Kayal-Saxena algorithm [10], which
dates back to July 2002, and was introduced in their article “PRIMES is in
P”. It gives a primality test in polynomial time.

The original idea was to perform tests in Z[X]. For example, we easily see
that if N is prime, then (X − a)N ≡ XN − a mod N , but this test has the
major default of requiring the computation of N coefficients. That will just
not do!

4.1. Lemma. Let N be prime and h(X) ∈ Z[X] a polynomial of degree r.
Then

(X − a)N ≡ XN − a mod(N, h(X)).

Recall that in a ring, the notation a ≡ b mod I means that a− b belongs to
the ideal I and that (a1, . . . , am) is the notation used for the ideal generated
by a1, . . . , am. Thus the congruence in the lemma can be restated as: there
exists P, Q ∈ Z[X] such that (X−a)N − (XN −a) = NP (X)+h(X)Q(X).

It should be noted that if r is O((log N)k), then this test remains poly-
nomial. The problem is to choose pairs a, h(X) in such a way that they
detect non-primality. The solution proposed by Agrawal, Kayal and Sax-
ena is to choose h(X) = Xr − 1 with r being a “very well-chosen” prime,
in particular r = O((log N)k), and to prove that it is then sufficient to test
the a ∈ [1, L] with L = O(

√
r log N) in order to ensure that N is prime, or

possibly a prime power, which is not so bad.

The argument is essentially algebraic and combinatorial, but nevertheless
uses a result on the distribution of prime numbers, in fact a weak form
of the prime number theorem (see Chap. IV, (4.10)), which says that the
sum of the log p for p prime and smaller than x is � c1x for some constant
c1 > 0. We summarize what we are going to use in a lemma.

4.2. Lemma. Let Y > 1 and let N � 2 be an integer. There exists a
prime number r which satisfies the following two properties.

i) The order of N modulo r is at least Y .
ii) Furthermore, r = O

(
Y 2 log N

)
.
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Proof. Set A :=
∏

1�y�Y (Ny − 1). Let r be the smallest prime number
which does not divide A. Then for y � Y , we have Ny 	≡ 1 mod r, and hence
condition i). Moreover, every p < r divides A, whereas A � NY (Y +1)/2

and consequently

c1r �
∑

p<r

log p � log A � Y (Y + 1)
2

log N.

From this we have that r = O
(
Y 2 log N

)
. �

Remark. We could add that, since the order of N modulo r divides r − 1,
we necessarily have r > Y .

We will also use the following elementary combinatorial lemma.

4.3. Lemma. The cardinality of the set of monomials in L variables of
degree � k is

card {(m1, . . . , mL) | mi � 0 and m1 + · · ·+ mL � k} =
(

L + k

k

)
.

Furthermore, we have the estimate
(

L + k

k

)
� 2min(L,k).

Proof. The first formula is classical and can be proven, for example, by
induction (call the cardinality in question f(L, k), check that f(L, 0) = 1
and f(1, k) = k+1, and then prove that f(L, k) = f(L, k−1)+f(L−1, k)).
For the lower bound, observe that if k � L, then
(

L + k

k

)
=

(L + k)(L + k − 1) · · · (L + 2)(L + 1)
k(k − 1) · · · 2 · 1

=
k−1∏

i=0

(
L + k − i

k − i

)
�2k,

and if L � k, reverse the roles of L and k. �

Remark. We can often improve this inequality; for example, if 1 � k � L,
then

(
L+k

k

)
� 2k(L + 1)/2, and thus if L � 5, we have

(
L+k

k

)
� 2k+1.

We will now state a version of the main theorem of Agrawal-Kayal-Saxena.

4.4. Theorem. Let N � 2 and let r be a prime number satisfying:

i) no prime number � r divides N ;
ii) we have ord(N mod r) � (2 log N/ log 2)2 + 1;
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iii) for 1 � a � r − 1, we have

(X − a)N ≡ XN − a mod (N, Xr − 1) .

Then N is a prime power.

Remarks. In order to prove this theorem, we only assume that hypothesis
iii) is satisfied for 1 � a � L and we will see that we can take L smaller
than r− 1. By Lemma 2-4.2, we can choose r = O

(
(log N)5

)
such that ii)

is satisfied, and it would necessarily follow that r � (2 log N/ log 2)2 + 1.
Thus it is clear that the theorem implies that the following algorithm is
correct and polynomial.

ALGORITHM. [10] We put in N and the algorithm returns “Prime” or
“Composite”.

1) We check to see if N = ab where b � 2; if so, then N is “Composite”.
2) We try the prime numbers r = 2, 3 . . . . If r divides N , N is “Com-

posite”. If not, we check whether r is relatively prime Ny − 1 for
y = 1, 2, . . . , Y , where Y = �(2 log N/ log 2)2� + 1; if so we keep r and
go to the next step, if not we look for a larger r.

3) For a = 1, 2, 3, 4, . . . (stop at r − 1), we check whether (X − a)N 	≡
XN − a mod(N, Xr − 1). If so, then N is “Composite”, if not, we
proceed to a + 1.

4) If the algorithm keeps going until a = r − 1, then N is “Prime”.

Let us briefly discuss its complexity (without trying to optimize it). We
easily see that the longest step is step (3), which requires O(r log N) mul-
tiplications in the ring Z[X]/ (N, Xr − 1), where each one uses at most
O((r log N)2) elementary operations. We thus have O((r log N)3) in all.
If we add that r = O

(
(log N)5

)
, we obtain a complexity of at most

O
(
(log N)18

)
.

We now proceed to the proof of the theorem. Let p be a prime divisor of N .
We denote by d1 := ord(N mod r), d2 = ord(p mod r) and d := lcm(d1, d2).
It should be noted that d1 (resp. d2) is the order of the subgroup generated
by N (resp. by p) in (Z/rZ)∗ and that d is therefore the order of the
subgroup generated by N and p in (Z/rZ)∗. We then choose h(X) to be
an irreducible factor of Φr(X) := (Xr − 1)/(X − 1) in Fp[X]. Let us point
out, even if we do not need it, that deg(h) = d2 (see Theorem 2-6.2.8). We
will work in the field K := Fp[X]/(h(X)), which is a finite field (isomorphic
to Fpd2 ) and which we obtain by adding a primitive rth root of unity to
Fp. By construction, x := X mod h(X) is of order r in K∗. It is natural
to look at the subgroup G of K∗ generated by the classes of (X − a) for
1 � a � L. The heart of the proof consists of finding an upper and lower
bound for the order of G.
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4.5. Lemma. We have the lower bound

card(G) �
(

L + d− 1
d− 1

)
� 2min(L,d−1).

From the remark immediately following the combinatorial lemma (Lemma
2-4.3), we have for example that if 1 � d− 1 � L, then card(G) � 2d, and
if L � d, then card(G) � 2L+1.

Proof. In light of the combinatorial lemma mentioned above, it suffices to
show that the classes of elements,

∏

1�a�L

(X − a)ma , for ma � 0 and
L∑

a=1

ma � d− 1,

are all distinct in K. First of all, the a are distinct modulo p, because if
not, then p � L < r and we assumed that N was not divisible by any prime
number smaller than r, so p > r. Thus our polynomials are all distinct in
Fp[X]. Now we bring in the key point that if P =

∏
1�a�L(X − a)ma ,

then we have, on one hand, P (X)N ≡ P (XN )mod(N, Xr − 1), but also
P (X)p ≡ P (Xp)mod p, so the two congruences are valid mod(p, Xr − 1).
For m = N ipj , it therefore follows that

P (X)m ≡ P (Xm) mod(p, Xr − 1) or even mod(p, h(X)).

In fact, the set of m such that P (X)m ≡ P (Xm)mod(p, Xr − 1) is multi-
plicative (the fairly simple proof is given in detail in part ii) of 2-4.7 below).
Now let P and Q be two polynomials of the form given above (considered
in Fp[X]), and suppose that they are in the same class in K, i.e., suppose
P ≡ Q mod(p, h(X)). Let x be the class of X, which is an rth primitive
root of unity in K, and therefore

(P −Q)(xm) = 0, for m ∈ 〈N, p〉 ⊂ (Z/rZ)∗.

But we know that N and p generate a subgroup of order d in (Z/rZ)∗, thus
the polynomial P −Q has at least d roots, and since deg(P −Q) � d− 1,
we see that P = Q (first in Fp[X], then, if we want, in Z[X]). �

In order to find an upper bound for |G|, we choose a generator of G (it is
a subgroup of K∗ and is thus cyclic) and define the following set.

4.6. Definition. Let g be a generator of G. We define

I = Ig := {m ∈ N | g(X)m ≡ g(Xm) mod(Xr − 1, p)}.

The main properties of I are summarized in the following lemma.
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4.7. Lemma. The set I satisfies the following properties.

i) N and p are in I .
ii) I is multiplicative, i.e., if m1 and m2 ∈ I , then m1m2 ∈ I .
iii) If m1 and m2 ∈ I satisfy m1 ≡ m2 mod r, then m1 ≡ m2 mod card(G).

Proof. The first property has already been established. For ii), write

g(X)m1m2 = (g(X)m1)m2 ≡ (g(Xm1))m2 mod(p, Xr − 1),

and notice that since m2 ∈ I , we have g(Y )m2 ≡ g(Y m2)mod(p, Y r − 1).
Therefore, by substituting Y = Xm1 , we obtain

(g(Xm1))m2 = g(Xm1m2) + pQ1(Xm1) + (Xm1r − 1)Q2(Xm1)

≡ g(Xm1m2)mod(p, Xr − 1).

In order to prove iii), suppose that m1 and m2 ∈ Ig and that m2 = m1+kr,
where k � 0. It follows from this that

g(X)m2 ≡ g(Xm2) mod(Xr − 1, p) and thus mod(h(X), p);

hence g(X)m1+kr = g(Xm1+kr) in K. But Xm1+kr ≡ Xm1 mod(Xr − 1)
and therefore mod(h(X)). Thus we obtain the equality in K∗

g(X)m1g(X)kr = g(Xm1) = g(X)m1 ,

where the last equality comes from the hypothesis that m1 ∈ I . From
this, we of course have that g(X)kr = 1 ∈ K∗ and hence card(G) divides
kr = m2 −m1. �
Proof. (end of the proof of Theorem 2-4.4) In order to apply the lemma,
we use that N , p and hence all of the products of powers N ipj are in I .
Recall that these elements generate a subgroup of order d in (Z/rZ)∗. If
we set

E := {(i, j) ∈ N×N | 0 � i, j �
√

d},

then the cardinality of E is (�
√

d�+ 1)2 > d. By the pigeonhole principle4,
there are two elements N i1pj1 and N i2pj2 , which are congruent modulo r,
and such that (i1, j1) and (i2, j2) are distinct in E. These two elements
N i1pj1 and N i2pj2 are therefore congruent modulo card(G). First suppose
that N i1pj1 	= N i2pj2 , which implies that

card(G) � |N i1pj1 −N i2pj2 | � N2
√

d.

If we combine this upper bound with the lower bound gotten above, we see
that

min(L + 1, d) log 2 � (2
√

d) log N.

4The pigeonhole principle says that if we put n +1 pigeons into n boxes, at least one
of the boxes will contain at least two pigeons.
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We will prove that this inequality is impossible.

1) If we had L � d, we could deduce that
√

d � 2 log N/ log 2 or moreover
that d � (2 log N/ log 2)2. But this inequality is a contradiction since,
by construction, d � d1, and we assumed that d1 > (2 log N/ log 2)2.

2) Now if L < d, we deduce that (L + 1) log 2 � (2
√

d) log N , and since
d � r − 1, this would give us (L + 1) log 2 � 2

√
r − 1 log N .

It is therefore a sufficient condition that L � 2
√

r − 1 log N/ log 2 is large
enough in order to conclude that N i1pj1 = N i2pj2 . The choice L = r − 1
is suitable5 since then the desired equality would be equivalent to the
inequality

√
r − 1 � 2 log N/ log 2, which is where the hypothesis r �

(2 log N/ log 2)2 + 1 comes from. We finish the proof by pointing out that
the inequality N i1pj1 = N i2pj2 immediately implies that N = pα. �

4.8. Remark. One variation of this proof consists of abandoning the
constraint that r is a prime number; we choose a factor, h(X), of Φr ∈
Fp[X] where Φr is the rth cyclotomic polynomial (cf. Sect. 6 of this
chapter), and we could then omit every analytic estimate of the distribution
of prime numbers (see [33] for this version, as well as a finer estimate of
the complexity).

5. Factorization
We briefly consider, and necessarily very unsatisfactorily, the problem of
factorization: having established, by a primality test, that an integer N is
not prime, how could we go about factoring it? We start by pointing out
that the (complete) factorization problem is essentially equivalent to the
problem of finding one factor, because of course, by iterating this procedure,
we would achieve a complete factorization.

The naive factorization method consists of checking if 2 divides N , then if
3 divides N , etc. If N = pq where p and q are roughly of the same size, i.e.,
p ∼ q ∼

√
N , we see that we would need to perform O(

√
N) divisions before

arriving at a factorization of N . The naive algorithm is thus exponential.

There do exist more efficient algorithms. In fact, one of the best algorithms
known [49] (using elliptic curves) has a number of operations estimated by
exp(C

√
log p log log p), where p is the smallest prime factor of N . In the

case where N = pq where p ∼ q ∼
√

N , we therefore get an algorithm
with an order of complexity exp(C ′(log N)κ) (where κ < 1), which grows

5We point out however that we could take L = O(
√

r log N), which would allow us
to slightly improve the estimate of the complexity.
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less quickly than Nκ but more quickly than (log N)κ. We say that such an
algorithm is subexponential. Another algorithm [19] (“number field sieve”)
has a complexity on the order of exp

(
C(log N)1/3(log log N)2/3

)
. In 2006,

it was known in practice how to factor an integer with 100 digits in a couple
of hours, and by using many computers over many months, how to factor
an integer with 150 digits. But we still cannot factor, over the course of
a human lifetime, an RSA number, with say 300 digits. A surprising fact
is that the complexity of various algorithms (proven probabilistically or
heuristically) tends to take the form of a function (see [48]):

L(b, N) := exp
(
C(log N)b(log log N)1−b

)
.

The case b = 0, in other words (log N)C , corresponds to polynomial al-
gorithms, the case b = 1, in other words NC , corresponds to exponential
algorithms and the cases 0 < b < 1 correspond to subexponential algo-
rithms; the two algorithms cited above have a complexity estimated at
L(1/2, N) and L(1/3, N).
We are not going to present the most powerful algorithms right away, since
they use tools which surpass the level of this chapter; the algorithms which
use elliptic curves and the number field sieve are presented in Appendix A,
which is about factorization. For the moment, we will settle for describing
an algorithm which improves on the naive algorithm by providing an even
more efficient one.
From now on, we use the convention that the letter p is reserved for a factor
of N .
Pollard’s ρ algorithm. We proceed as follows. We choose a0 between 1
and N and we compute the sequence given by ai+1 = f(ai), where f(a) :=
a2 + 1 mod N . We then choose k “big enough, but not too big” and we
calculate gcd(a2k − ak, N), hoping that it is nontrivial; if that is the case,
we have found a factorization, if not, we try again with larger k. We
will explain below why, at least statistically, there exists k of size O(

√
p),

where p divides gcd(a2k − ak, N). Assuming that, we see that the average
complexity of the algorithm is O(

√
p), thus O( 4

√
N).

The analysis of the complexity is based on the hypothesis that the sequence
ai modulo p is sufficiently “random”, which has been satisfactorily confirmed
in practice. Now, the probability that r numbers modulo p chosen “at
random” are all distinct is6

Pr =
(
1− 1

p

)(
1− 2

p

)
· · ·
(
1− r − 1

p

)
� exp

(
− r(r − 1)

2p

)
.

If we take r on the order of √p, say r � 2
√

p, the probability that two

6Example. If n � 23, the probability that, among n people, two have the same
birthday is greater than 1/2.
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of the numbers are equal (modulo p) will be > 1/2, thus we have a good
chance to have two indices i < j < r such that ai ≡ aj mod p. Considering
the construction that follows, we would have ai+m ≡ aj+m mod p for every
m � 0, and in particular, by taking m = j − 2i and k = j − i, we would
have ak ≡ a2k mod p (see [22] for more details).

“Difference of squares” algorithm. The second algorithm, that we will
only sketch, is based on the fact that the number of elements a ∈ (Z/NZ)∗

such that a2 = 1 is at least equal to 4 if N has at least two distinct prime
factors. If we knew how to compute a square root in (Z/NZ)∗, say A (x),
with a fast algorithm A , then we could factor N like this: take a at random
and calculate b = A (a2). Then we of course have that a2 ≡ b2 mod N , or
even that N divides (a + b)(a − b). Now, there is (at least) a one in two
chance that ±a mod N is not the square root calculated by A and, in
this case, the calculation of gcd(N, a + b) or of gcd(N, a − b) would give
us a factorization. Unfortunately, or luckily, we do not know of any fast
algorithm A (it is even possible that one does not exist). One extension
of this idea is the following: instead of directly looking for an equality
a2 ≡ b2 mod N , we try to construct one. In order to do this, we randomly
take a close to

√
N , we reduce a2 modulo N (taking care to take the

representative in [−N/2, N/2]) and we try to factor it with small prime
numbers. In this way, we get a family of congruences a2

j ≡
∏

p∈S pnp,j .
We therefore look for a combination of these numbers which provides an
equality of the type

∏
i a2

i ≡
∏

j b2
j mod N (this is a linear algebra problem

over F2). This idea, presented very vaguely here, is expanded on in more
detail in Appendix A, when we describe the number field sieve algorithm.
Property quantified, this algorithm has an average (heuristic) complexity on
the order of L(1/2, N)—which is already remarkable, even if it is insufficient
for very large numbers.

Examples of precautions to take when choosing p and q for the
RSA method. We will only give some very elementary indications, since
the question is fairly complex, and in fact largely open.

1) The absolute value, |p − q|, must be large. We can see why by writing
q = p + δ where δ is much smaller than p. Since N = pq, then

√
N =

p
√

1 + δ/p ∼ p + δ/2 and we could find p with the “naive” algorithm in
O(δ) steps!

2) It must be that p− 1 (resp. q − 1) are not too smooth, in other words,
cannot be factored too quickly, for example the product of small prime
numbers. To see why this is true, choose C > 0, and let p1, . . . , pk be the
prime numbers smaller than C; the set S := {s = pm1

1 · · · pmk

k | s � N} has
cardinality O((log N)k), and we can therefore calculate gcd(as − 1, N) for
some values of a and s ∈ S in polynomial time. If p−1 ∈ S (in other words
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if p − 1 only has prime factors � C), then we have a very good chance of
being able to factor N .

3) A less obvious constraint is that it must be that the “secret” exponent
e is not too small. It is clear that if e = O(log N) for example, then by
trying O(log N) times, we will find e, but in fact it can be shown that you
must avoid having e� N1/4 (see Exercise 3-6.12 of Chap. IV).

These relatively trivial remarks could cast doubt the security of the RSA
system (see [17] for a more precise description of the catalogued attacks
on the RSA system). However, theoretical support for it is provided by
the following considerations. Let us call P the class of problems for which
there exists a polynomial algorithm (for example the problem of deciding
whether a number is prime is in P, by Agrawal-Kayal-Saxena). We can de-
fine a class NP, a priori much larger than P, which is the class of problems
for which there exists a polynomial verification (for example, the problem
of factorization of a number is clearly in NP, since if we are given a factor-
ization, we can verify it in polynomial time). However, the factorization
problem has a subexponential solution. The security of the RSA system
rests, from a theoretical point of view, on the hypothesis that the factor-
ization problem is not in P. In fact, it is a special case of a large problem
in complexity theory7:

Is it true that P 	= NP?

6. Error-Correcting Codes
We give a glimpse of another industrial application of algebra and arith-
metic: the construction of “error-correcting codes”, which can, to a certain
degree, reconstruct a message if its transmission was slightly defective. This
technique is for example needed to produce CD readers, to transmit images
by space probes, etc. If this introduction leaves you hungry to learn more,
I recommend Demazure’s book, Cours d’algèbre [3].

6.1. Generalities about Error-Correcting Codes

In order to transmit information, we assume that we are using a finite
alphabet Q, containing q symbols or letters and that we are sending words
of a fixed length n; a word is therefore and element of Qn. We can think
of binary language, i.e., Q := {0, 1}, or of genetic codes, for example Q :=
{A, C, G, U} (the bases found in RNA are A for adenine, C for cytosine,
G for guanine and U for uracil). We will most often take the example of

7This problem P �= NP is one of the seven problems, for the solution of which a
million dollars is offered by the Clay Mathematics Institute.
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Q := Fq, which has the disadvantage of limiting the possible values of q

but the advantage of providing a richer structure.

The set of words Qn can be endowed with a Hamming distance, defined as
follows. If x = (x1, . . . , xn) ∈ Qn and x′ = (x′

1, . . . , x
′
n) ∈ Qn, then

d(x, x′) := card{i ∈ [1, n] | xi 	= x′
i}.

It can easily be checked that is in fact a distance.

A code is a subset C ⊂ Qn containing at least two distinct elements in Qn;
we define the distance of a code as

d (C ) := min
x�=x′∈C

d(x, x′).

Once we have chosen a code C , the principle consists of only sending those
messages which belong to C . If we know that at most d (C )−1 transmission
errors have been committed, then using the error-correcting code will enable
us to establish the existence of one or more errors. Furthermore, if t errors
have been committed during the transition of a word and if 2t+1 � d (C ),
we see that there exists one single word in C located at a distance � t from
the received word. In conclusion, the code allows us to correct t errors and
we say that it is t-correcting. If we denote by d = d (C ) the distance of the
code and t = t (C ) the number of errors that are systematically corrected
by the code, we easily see that relationship between the two is given by

t =
⌊

d− 1
2

⌋
and conversely d = 2t+1 or 2t+2. Except for some examples,

we leave aside the question of decoding, which is essentially the study of
algorithms which allow you to find the word of the code located at a minimal
distance from a given word (it should be noted that you cannot in general
guarantee the uniqueness of this word except under certain conditions).
One of the properties required of a code is obviously that it corrects or
finds the most possible errors (we could also insist that the decoding be
the simplest possible). An intuitively obvious requirement is that it uses
the least amount of space; we could formalize this idea by introducing
the code rate t/n, and the information rate that we define as the ratio
log card (C ) /n log q. Information theory, developed by Shannon (see the
founding article [67]), says that if we are willing to send longer and longer
messages (i.e., to let n be very large), then there exist codes as safe we
want them to be, with an information rate close to 1. Shannon’s theorem
is however an existence theorem, it does not specify how to construct such
codes.

We are actually going to exclusively concentrate on linear codes, where the
alphabet is (in bijection with) Fq, the space of words is (in bijection with)
the vector space (Fq)n and C is a subspace. In the case of q = 2, we are
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talking about binary codes, in the case q = 3, we are talking about ternary
codes, etc.

The most important parameters of a linear code are the cardinality of the
alphabet q = card Q, its length say n, its dimension say k := dim C , its
distance d (C ), its code rate and its information rate k/n.

Remark. Let C ⊂ Fn
q be a linear code. We define the weight of an element

w(x) as the number of non-zero components of x. We can easily see that

d (C ) = min
0 �=x∈C

d(0, x) = min
0 �=x∈C

w(x).

6.1.1. Examples. 1) The most basic example of a code is the use of a
parity bit: in order to transmit a word x = (x1, . . . , xn−1) ∈ (F2)n−1, we
send x̄ = (x1, . . . , xn−1, x1 + · · · + xn−1) ∈ (F2)n. To see if the received
message x′ = (x1, . . . , xn) is correct, we check whether xn = x1+· · ·+xn−1.
This code has length n and dimension n− 1. It allows us to find an error
but not to correct it. Its distance is 2.

2) Hamming code. Take the set of words with seven binary digits, q = 2,
n = 7, and let C be the code with basis

e0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, e1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
1
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, e2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
1
0
1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, e3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The coding principle is simple: in order to transmit a message m =
(m0, m1, m2, m3), we transmit x = m0e0 + m1e1 + m2e2 + m3e3. For
this simple example, we will explain the decoding under the hypothesis that
at most one error was committed. Equations of the vector subspace C are
given by

L(x) = (x0 + x3 + x5 + x6, x1 + x3 + x4 + x6, x2 + x4 + x5 + x6) = 0.

For each vector e of weight 1, we then calculate the triplet L(e). From
this, we obtain the following algorithm of correction and decoding. After
having received the message x = (x0, . . . , x6), we check whether L(x) = 0.
If L(x) = 0, the message is correct, if L(x) = (1, 0, 0), then x0 must be
corrected, if L(x) = (0, 1, 0), then x1 must be corrected and if L(x) =
(1, 0, 1), then x5 must be corrected. Finally, if L(x) = (1, 1, 1), then x6

must be corrected. Thus we have m = (x0, x0 + x1, x5, x6).

We denote by T (x1, . . . , x7) := (x7, x1, . . . , x6) the “shift”, so we have that
T (e0) = e1, T (e1) = e2, T (e2) = e3 and T (e3) = e0 + e1 + e2. Thus
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T (C ) = C (C is then called cyclic). It is easy to see that each non-zero
vector in C has at least three non-zero coordinates, and therefore d (C ) = 3.
Therefore, this code is 1-correcting and allows us to identify two errors but
not to correct them.

An amusing example. The previous code suggests that it is possible to
recover an element of F4

2 (or say an integer between 0 and 15) starting
with an element of F7

2 (or say seven yes/no pieces of information) if at
most one error has been committed (granted at most one of the bits of
information is false). One version of this is the seven following questions
which allow us to determine an integer N between 0 and 15.
1) Is the integer N � 8?
2) Is the integer N in the set {4, 5, 6, 7, 12, 13, 14, 15}?
3) Is the integer N in the set {2, 3, 6, 7, 10, 11, 14, 15}?
4) Is the integer N odd?
5) Is the integer N in the set {1, 2, 4, 7, 9, 10, 12, 15}?
6) Is the integer N in the set {1, 2, 5, 6, 8, 11, 12, 15}?
7) Is the integer N in the set {1, 3, 4, 6, 8, 10, 13, 15}?

We leave as an exercise the justification of the following algorithm. We
denote the answers to the above questions by m = (m1, . . . , m7) (mi = 1
if the ith answer is yes, mi = 0 if not), and we compute a1 = m4 + m5 +
m6 + m7, a2 = m2 + m3 + m6 + m7 and a3 = m1 + m3 + m5 + m7. If
a1 = a2 = a3 = 0, we conclude that there is not an error, if not we change
the rth answer mr into r = a1a2a3 (binary numeral notation), and the
number we are looking for is therefore written

N = m1m2m3m4.

We will now show how to characterize and construct codes and how to
deduce new codes from the given ones by using elementary linear algebra.
We denote by n the length of the codes and by k their dimension, unless
specified otherwise.

6.1.2. Definition. A generator matrix of a code C is a matrix whose
rows form a basis of C . (It is therefore a matrix of rank k having k rows
and n columns.) A parity-check matrix of a code C is a matrix whose rows
form a basis for the linear forms which are zero over C . (It is therefore a
matrix of rank n− k having n− k rows and n columns.)

6.1.3. Remarks. Being given a generator matrix is of course equivalent
to being given a basis of the vector space C , and given a parity-check
matrix is of course equivalent to being given a basis of linear equations
which define C in Fn

q . If A is a generator matrix and B a parity-check



58 2. Applications: Algorithms, Primality and Factorization, Codes

matrix, we easily see that A tB = 0, or also B tA = 0. Moreover, we can
recognize the distance of the code as the smallest number d such that there
exist d dependent column vectors in B.

Assume that we are given a code C with parity-check matrix B and assume
that the code is 1-correcting. We show you how to decode a received
message, x′, which is different in at least one coordinate from the sent
message, x. First of all, if we denote the error committed by ε = x′−x, we
see that B(x′) = B(ε). We will therefore compute B(x′); if this is non-zero,
then no error has been committed, if not, we compute the images of the
vectors ei in the canonical basis fi = B(ei). If only one error has been
committed, we find a unique i such that B(x′) is proportional to fi, say
B(x′) = aifi, and therefore ε = aiei and x = x′ − aiei.

If C is a code of length n over the field F = Fq, we can associate to it the
following codes.

i) Shortened code. Let d(C ) � � � n. We set C (	) :=
{
x ∈ F	

q |
(x; 0, . . . , 0) ∈ C }. It is a code of length �, and we easily see that

d
(
C (	)

)
� d (C ).

ii) Extended code. We can create the analogue of the “parity bit” by con-
structing C̄ := {(x1, . . . , xn+1) ∈ Fn+1

q | (x1, . . . , xn) ∈ C and x1 +
· · ·+xn +xn+1 = 0}. We can easily see that d (C ) � d

(
C̄
)

� d (C )+1.
One variation is the even subcode defined as C ′ = {x ∈ C | x1 + · · · +
xn = 0}. We have d (C ) � d (C ′).

iii) Dual code. We define the scalar product 〈x, y〉 := x1y1 + · · · + xnyn,
and we set C ∗ := {x′ ∈ Fn

q | ∀x ∈ C , 〈x, x′〉 = 0}. We have that
dim C ∗ = n − dim C . An interesting category of binary codes is that
of self-dual codes, i.e., such that C ∗ = C ; such codes have dimension
n/2, and the weight of an element is even since w(x) ≡ 〈x, x〉mod 2.

As an exercise, you could try to figure out how to construct a parity-check
(or generator) matrix of each of these codes, starting with the parity-check
(or generator) matrix of the original code.

6.1.4. Lemma. Let C be a code of dimension k and of length n over Fq.
The following inequalities hold:

i) d(C ) � n + 1− k ;
ii) if C is t-correcting 1+

(
n
1

)
(q−1)+

(
n
2

)
(q−1)2+ · · ·+

(
n
t

)
(q−1)t � qn−k.

Proof. i) The vectors of the form (x1, . . . , xn+1−k, 0, . . . , 0) form a vector
subspace D of (Fq)n. Since dim D+dim C = n+1, we see that D∩C 	= {0},
hence the existence of a non-zero vector of C of weight � n + 1− k. For
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ii), we can observe that for every x ∈ Fn
q and 0 � t � n,

card (B(x, t)) = 1 +
(

n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + · · ·+

(
n

t

)
(q − 1)t.

If the code t-correcting, the balls B(x, t) with center x ∈ C are disjoint and
thus

card (∪x∈C B(x, t)) = qk card (B(0, t)) � qn. �

6.1.5. Definition. A code such that d(C ) = n + 1 − k is called MDS
maximal distance separable. A t-correcting code such that C = ∪x∈C B(x, t)
(forcibly a disjoint union) is called perfect t-correcting.

The Hamming code of length 7 studied in the examples is perfect 1-correcting
since, in this case, we can show that cardB(x, 1) = 1+7 = 8 and 8 card C =
27. We could also notice that this code is not MDS, because d (C ) = 3 <
4 = n− k + 1.

6.2. Linear Cyclic Codes

We will explicitly describe an interesting class of codes which in particu-
lar contains some of the classical codes, such as that of Hamming, Reed-
Solomon and Golay and which will lead us into the study of cyclotomic
polynomials.

6.2.1. Definition. A linear cyclic code is a linear code, C , of length n,
which is stable under the transformation T (a0, a1, . . . , an−1)=(an−1, a0, . . . ,
an−2).

We can give a nice algebraic characterization of cyclic codes by introducing
the natural isomorphism of vector spaces Fn

q
∼= Fq[X]n ∼= Fq[X]/QFq[X],

where Fq[X]n represents the polynomials of degree < n and where Q is
a polynomial of degree n. Since the characteristic (or minimal) polyno-
mial of the endomorphism T is Q = Xn − 1, we therefore choose this
value. Hence we denote by ψ : Fn

q → Fq[X]n ∼= Fq[X]/(Xn − 1) defined
as ψ(a0, a1, . . . , an−1) �→ a0 + a1X + · · · + an−1X

n−1 mod(Xn − 1). We
immediately see that

ψ ◦ T (a0, a1, . . . , an−1) = X(a0 + a1X + · · ·+ an−1X
n−1) mod(Xn − 1).

Thus a vector subspace C ⊂ Fn
q is stable under T if and only if its image

under ψ is stable under multiplication by X. We should point out that an
Fq vector subspace of Fq[X]/(Xn−1) which is stable under multiplication
by X is nothing other than an ideal of Fq[X]/(Xn − 1). Finally, the ideals
of Fq[X]/(Xn − 1) correspond to the ideals of Fq[X] which contain the
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polynomial Xn − 1 and therefore are of the form PFq[X] where P divides
Xn − 1. We summarize this discussion in the following theorem.

6.2.2. Theorem. Let K := Fq and let C be a cyclic code of length n. We
identify Kn with K[X]/(Xn− 1) via (a0, a1, . . . , an−1) �→ a0 + a1X + · · ·+
an1X

n−1. There exist natural bijections between the following objects:

i) a cyclic code of length n;
ii) an ideal K[X]/(Xn − 1);
iii) a monic polynomial which divides Xn − 1 in K[X].

One of the bijections associates P , which divides Xn − 1, to the ideal C of
K[X]/(Xn−1) generated by its class modulo Xn−1, and another associates
an ideal of K[X]/(Xn − 1) to the vector subspace corresponding to C of
Kn. Furthermore, dimC = n− deg(P ).

This leads to the following problem: how to decompose the polynomial
Xn − 1 in Fq[X]?
It is of course better to start with a decomposition in Z[X] (or Q[X]),
which is provided by cyclotomic polynomials. In order to define these, we
denote by μn = {ζ ∈ C | ζn = 1} the group of nth roots of unity and
μ∗

n the subset of nth primitive roots of unity, and hence cardμn = n and
card μ∗

n = φ(n).
We will need Gauss’s lemma.

6.2.3. Lemma. If P = p0 + p1X + · · · + pdX
d ∈ Z[X] is a non-zero

polynomial, we define its content as c(P ) := gcd(p0, . . . , pd). We therefore
have that

c(PQ) = c(P )c(Q).

Proof. By factoring P = c(P )P ∗ and Q = c(Q)Q∗, we see that c(PQ) =
c(P )c(Q)c(P ∗Q∗). So we have reduced the proof to showing that if P and
Q are primitive (i.e., c(P ) = c(Q) = 1), then c(PQ) = 1. If p is a prime
number, we denote by P̄ the image of P in Fp[X]. We have that P̄ 	= 0
and Q̄ 	= 0, thus P̄ · Q̄ = PQ 	= 0 because Fp[X] is integral. So no p divides
c(PQ), which implies that it is invertible. �

6.2.4. Corollary. Let P ∈ Z[X]. Suppose that there exist Q, R ∈ Q[X]
such that P = QR. Then there exists λ ∈ Q∗ such that λQ and λ−1R have
integer coefficients.

Proof. We can write Q = a
b

Q1 (resp. R = c
d

R1), where a, b, c, d are
integers and where Q1 and R1 are primitive polynomials with integer co-
efficients. We can deduce from this that bdP = ac Q1R1 and, since the
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equality is in Z[X], we can deduce, using Gauss’s lemma, that bd c(P ) = ac
and, in particular, that bd divides ac. Thus P = c(P )Q1R1. �

6.2.5. Corollary. If α ∈ C is a root of a monic polynomial with in-
teger coefficients, then the minimal (monic) polynomial of α has integer
coefficients.

Proof. Let P , a priori in Q[X], be the minimal polynomial of α and let
Q be monic with integer coefficients such that Q(α) = 0. Then Q = PR,
where R is in Q[X]. Gauss’s lemma says that there exists λ ∈ Q∗ such
that R0 = λR and P0 = λ−1P have integer coefficients. By observing that
Q = P0R0, it follows that the leading coefficient of P0 is invertible, and
hence P = ±P0 has integer coefficients. �

6.2.6. Definition. The nth cyclotomic polynomial, denoted Φn, is defined
as

Φn(X) :=
∏

ζ∈μ∗
n

(X − ζ).

These polynomials, a priori with complex coefficients, in fact have integer
coefficients and moreover provide a decomposition of Xn−1 into irreducible
factors, as shown in the following theorem.

6.2.7. Theorem. The polynomials Φn have the following properties.

i) Φn ∈ Z[X] and deg Φn = φ(n).
ii) Xn − 1 =

∏
d |n Φn(X).

iii) The polynomials Φn are irreducible in Z[X] and in Q[X].

Proof. With the given definition, Φn ∈ C[X]. Formula ii) is clear, as well as
the fact that deg(Φn) = φ(n); however it is less clear that in fact Φn ∈ Z[X]
and that Φn is irreducible in Q[X] (or Z[X]). We shall start by showing
that the coefficients of Φn are integers. It is clear that Φ1(X) = X − 1 ∈
Z[X], and formula ii) leads us to try induction on n. The polynomial
B :=

∏
d |n, d�=n Φd(X) is monic and, by applying induction, has integer

coefficients. We can therefore carry out the division algorithm in Z[X], and
obtain Xn−1 = BQ+R. Formula ii) then guarantees that B divides R (in
Q[X]), so R = 0 and Q = Φn. We will now show that Φn is irreducible in
Z[X]. Let ζ be a primitive nth root of unity and P its minimal polynomial
over Q. We therefore need to show that P = Φn. First, observe that
P ∈ Z[X]. Then choose a prime number p which does not divide n, so ζp

is still an nth primitive root of unity. Let Q be its minimal polynomial,
which is also in Z[X]. If P and Q were distinct, the product PQ would
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divide Φn. But since Q(ζp) = 0, we see that ζ is a root of Q(Xp) and thus
Q(Xp) = P (X)R(X), for some R ∈ Z[X]. By reducing the coefficients
modulo p, we have

Q̄(Xp) = Q̄(X)p = P̄ (X)R̄(X),

and so P̄ (X) divides Q̄(X)p in (Z/pZ)[X]. Moreover, the factors of Xn−1,
and hence of P̄ (X), are simple in (Z/pZ)[X] (the derivative of Xn − 1 is
nXn−1, and we made a point of choosing p so that it does not divide n): the
polynomial P̄ (X) in fact divides Q̄(X). But then, P̄ (X)2 divides Φ̄n(X)
in (Z/pZ)[X], which contradicts the fact that the factors of Φ̄n(X) are
simple. To summarize, we have established that if p is a prime number
which does not divide n, the minimal polynomial of ζ kills ζp. We easily
deduce from this that if m is relatively prime to n, then P (ζm) = 0. Thus
deg(P ) � φ(n) and since P divides Φn, we have that P = Φn, and it is
therefore irreducible. �

Since Φn has integer coefficients, we can reduce its coefficients modulo p
and consider it as a polynomial in Fp[X] (or in Fq[X] with q = pf ).

6.2.8. Theorem. The decomposition into irreducible factors of the poly-
nomial Φn ∈ Fq[X] (with q = pf ) depends on whether n modulo p is zero
or not.

i) If n = psm where p 	 |m, we have Φn(X) = Φm(X)ps−ps−1
.

ii) If gcd(n, q) = 1 and if r is the order of q mod n in (Z/nZ)∗, then Φn

can be decomposed into the product of φ(n)/r distinct irreducible factors
of degree r.

Proof. Assume first that n = prm. By Fermat’s little theorem and
the formulas from Exercise 2-7.12, it follows that Φm(X)p ≡ Φm(Xp) =
Φmp(X)Φm(X), hence Φmp(X) ≡ Φm(X)p−1, and subsequently that

Φmpr(X) = Φmp

(
Xpr−1

)
≡ Φmp(X)pr−1

≡ Φm(X)pr−1(p−1),

which proves the first assertion. From now on, suppose that p is relatively
prime to n. Let β be an nth primitive root in an extension of Fq. Every
factor of Φn can be written as Q =

∏
i∈I(X − βi), with I ⊂ (Z/nZ)∗. The

polynomial Q has coefficients in Fq if and only if

Q(X)q = Q(Xq). (∗)

In fact,
(∑

j ajX
j
)q

=
∑

j(aj)qXqj and a ∈ Fq if and only if aq = a. Thus
the polynomial Q has coefficients in Fq if and only if

∏

i∈I

(Xq − βiq) =
∏

i∈I

(X − βi)q =
∏

i∈I

(Xq − βi),
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or even if and only if I is stable under multiplication by q (in (Z/nZ)∗).
The smallest stable subset is clearly of the form I := {i, iq, iq2, . . . , iqr−1}.
Also, the irreducible factors of Φn(X) in Fq[X] are of the form

Q =
r−1∏

s=0

(X − βiqs

),

and, in particular, all have degree r. �

6.2.9. Examples. 1) Take n = 11 and q = 3; we see that the order
of 3 mod 11 is equal to 5. Thus X11 − 1 = (X − 1)Φ11(X) in Z[X] and
Φ11 = P1P2 ∈ F3[X], where deg(Pi) = 5. We can check that, in F3[X],

X11 − 1 = (X − 1)(X5 −X3 + X2 −X − 1)(X5 + X4 −X3 + X2 − 1).

2) Take n = 23 and q = 2; we see that the order of 2 mod 23 is equal to 11.
Thus X23 − 1 = (X − 1)Φ23(X) in Z[X] and Φ23 = P1P2 ∈ F2[X], with
deg(Pi) = 11. We can check that, in F2[X],

X23 − 1 = (X − 1)(X11 + X10 + X6 + X5 + X4 + X2 + 1)

× (X11 + X9 + X7 + X6 + X5 + X + 1).

3) Take n = 15 and q = 2; thus X15 − 1 = (X − 1)Φ3(X)Φ5(X)Φ15(X) in
Z[X], with Φ15 = X8−X7 +X5−X4 +X3−X +1. The order of 2 mod 3
is equal to 2, the order of 2 mod 5 is equal to 4 and the order of 2 mod 15 is
equal to 4. The polynomials Φ3 = X2 + X + 1 and Φ5 = X4 + X3 + X2 +
X + 1 are therefore irreducible in F2[X], and Φ15 = P1P2 ∈ F2[X], where
deg(Pi) = 4. We can check that, in F2[X],

X15−1 = (X−1)(X2+X+1)(X4+X3+X2+X+1)(X4+X3+1)(X4+X+1).

4) More generally, if gcd(q, n) = 1, a cyclic code of length n corresponds, by
Theorem 2-6.2.2, to a subset I ⊂ Z/nZ, which is stable under multiplica-
tion by q. More explicitly, the associated code is the ideal of Fq[X]/(Xn−1)
generated by the polynomial Q =

∏
i∈I(X − βi), where β is an nth primi-

tive root of unity. To estimate the distance of such a code, we can use the
following result.

6.2.10. Theorem. Let C by a linear cyclic code of length n over Fq

associated to I ⊂ (Z/nZ). If there exist i and s such that {i + 1, i +
2, . . . , i + s} ⊂ I, then d(C ) � s + 1.

Proof. Let β be an nth primitive root in an extension of Fq and let Q be a
polynomial modulo Xn−1 which belongs to C . We know that Q(βi+j) = 0
for j = 1, . . . , s. Assume that the weight w of Q (viewed as an element of
Fn

q ) is � s, which means that Q = a1X
i1 + · · · + awXiw with 0 � i1 <
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i2 < · · · < iw < n. We need to show that Q is in fact zero. Now, we
have the equations a1β

i1(i+j) + · · · + awβiw(i+j) = 0 for j = 1, . . . , s. Let
a′
1 := a1β

i1i, . . . , a′
w := awβiwi. The equations can be rewritten as

βi1ja′
1 + · · ·+ βiwja′

w = 0, for j = 1, . . . , s.

The matrix of the βirj can be extracted from a Vandermonde matrix with
βir 	= βir′ , because β has order n, and its rank therefore equals w =
min{w, s}. This means that a′

1 = · · · = a′
w = 0, and hence a1 = · · · = aw =

0. �

6.2.11. Remark. The bound given in the theorem is generally not opti-
mal. We can see this below in the example of Golay codes.

6.2.12. Examples. (Linear cyclic codes.)

We will now describe in detail some examples gotten from choosing q, n
and a subset I ⊂ Z/nZ which is stable under multiplication by q. To be
rigorous, we should clarify that the code that we construct also depends on
the nth primitive root β that we choose. However, it is not difficult to see
that the various codes gotten from the choices of β are all isomorphic. We
will therefore omit β.

Hamming codes. One first interesting choice of parameters is n = (qr −
1)/(q − 1), and we can easily check that the order of q mod n is r. We set
I := {1, q, q2, . . . , qr−1}, which defines a code C of dimension n − r (once
β, a primitive nth root of unity, is chosen). We will now directly verify
that d(C ) � 3. A polynomial of weight 2 can be written f = aXi + bXj

with say 0 � i < j � n − 1, and the condition that it is killed by βq�

for 0 � � � r − 1 is therefore written as a + bβ(j−i)q�

= 0. Since β is
of order n, we see that this is impossible except when a = b = 0. Thus
the code C is 1-correcting, and since card B(x, 1) = 1 + n(q − 1) = qr,
we see that C is perfect 1-correcting, and thus d(C ) = 3 or 4 (we show
below that the distance is 3 and that the code is therefore MDS if and only
if r = 2). Binary Hamming codes are obtained by taking q = 2 and by
choosing I := {1, 2, 4, . . . , 2r−1} and hence k = n − r = 2r − r − 1. Since
{1, 2} ⊂ I, we see that d(C ) � 3. For r = 3, q = 2, n = 7, we get the code
studied in the first example (2-6.1.1).

In order to see that the distance of a Hamming code is equal to d(C ) = 3,
we write a parity-check matrix A for the code (a matrix with r rows and n
columns). The columns e1, . . . , en of A are vectors in (Fq)r, and we have
just shown that any pair of them is linearly independent. Now, there are
n = (qr−1)/(q−1) of them, and they therefore represent exactly one vector
from each line in (Fq)r. Since two of the vectors ei are never dependent,
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but of course there exists triples of linearly dependent vectors, we see that
d(C ) = 3.

Reed-Solomon codes. These codes correspond to the choice n = q − 1,
most often with q = 2f . Let α be a generator of F∗

q . Once we have chosen
k, we set

g(X) :=
q−1−k∏

i=1

(
X − αi

)
.

It follows of course that k = dim C and, since I = {1, 2, 3, . . . , q−1−k}, we
have d(C ) � q−k. But we know that for every linear code, d(C ) � n+1−k,
hence d(C ) = q−k, and the code constructed in this way is therefore MDS.
Now suppose that q = 2f . We can consider C as a binary code C ′, with
the parameters n′ = (2f − 1)f , k′ = kf and distance d(C ′) � 2f − k. One
special feature of this code is that it can correct large numbers of errors:
if t satisfies 2t + 1 � d(C ) = q − k, the code can correct t elements of
F2f , hence tf binary errors if these errors are distributed in bunches! This
feature explains why this type of code is used in the technology of compact
discs.

Ternary Golay code. We know that 35 − 1 = 11 · 23. We choose
q = 3, n = 11 and the subset of (Z/11Z)∗ generated by 3, in other words
I := {1, 3, 4, 5, 9}; this code, denoted by G11, is therefore of dimension
6. We point out (but do not use) that I = F∗2

11. By Theorem 2-6.2.10
on the distance of a cyclic code, we see that d (G11) � 4 and, by con-
sidering the factorization of Φ11 in F3[X] (cf. Examples 2-6.2.9), we see
that G11 contains a polynomial of weight 5, hence d (G11) � 5. An exten-
sive calculation (which is postponed to Exercise 2-7.22 below) allows us
to establish that actually d (G11) = 5. Thus G11 is 2-correcting, and since
card B(x, 2) = 1+2

(
11
1

)
+22

(
11
2

)
= 35, it is clear that the code G11 is perfect

2-correcting (but notice that it is not MDS).

Binary Golay code. We know that 211 − 1 = 23 ·89 (it is actually the
smallest number of the form 2p − 1 which is not prime). We therefore
choose q = 2, n = 23 and I as the subset of (Z/23Z)∗ generated by 2,
in other words I := {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}, and we denote by G23

the associated code. Observe also that I = F∗2
23. By Theorem 2-6.2.10 on

the distance of a cyclic code, we see that d (G23) � 5 and, by considering
the factorization of Φ23 in F2[X] (cf. Examples 2-6.2.9), we see that G23

contains a polynomial of weight 7, hence d (G23) � 7. An extensive calcu-
lation (which is postponed to Exercise 2-7.22, suggested below) allows us
to determine that actually d (G23) = 7. Thus G23 is 3-correcting, and since
card B(x, 3) = 1 +

(
23
1

)
+
(
23
2

)
+
(
23
3

)
= 211, it follows that the code G23 is

perfect 3-correcting (but notice that it is not MDS).
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6.2.13. Remark. We can show that if we exclude trivial codes (i.e., of
dimension 1, n− 1 or n), the only perfect t-correcting codes are those that
we have already constructed: the Hamming 1-correcting codes and the two
Golay binary and ternary codes [73].

7. Exercises

7.1. Exercise. (Newton’s method) Recall that Newton’s iterative method
(for approximating the zeros of a function) is applicable to differentiable
functions. Let f be a function with a unique zero at α; the iteration is
given by

xn+1 = xn −
f(xn)
f ′(xn)

.

The rate of convergence of this approximation is quadratic, i.e., |xn+1−α| �
C|xn−α|2. Clarify and prove this assertion for the function f(x) := xm−a,
and deduce a fast calculation algorithm for approximating m

√
a from this.

7.2. Exercise. 1) Give a fast algorithm which checks if a given integer N

is a power am, where m � 2.

2) If we now want to test whether N = pm where p is prime and m � 2,
we take a ∈ [2, N − 1] and we test if gcd(a, N) = 1. If that is the case,
we compute d = gcd(aN−1 − 1, N). Prove in this case that p divides d and
that, with a high probability, d 	= N and also that d = p. Deduce from this
an algorithm to check whether N = pm.

7.3. Exercise. (Multiplication algorithm—see [42]) Suppose that the
integers m and n are written in at most 2t binary digits, n = n12t +n0 and
m = m12t + m0. Observe that

mn = m1n1(22t − 2t) + 2t(m1 + m0)(n1 + n0) + m0n0(1− 2t)

and can therefore be calculated with three multiplications of numbers of
size t and some additions and shifts (multiplication by 2 consists of one
shift of digits). Deduce from this an algorithm, where the cost T (r) of the
multiplication of two numbers with r digits satisfies

T (2r) � 3T (r) + cr,

for some appropriate constant c. Deduce from this that T (r) = O (rα),
where α > log 3/ log 2. (Notice that, asymptotically, this algorithm is better
that the usual algorithm, whose complexity is O(r2).)
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7.4. Exercise. (Multiplication by fast Fourier transform) In this exercise,
we will give a theoretical presentation of the finite Fourier transform, which
will allow us to multiply very large numbers faster than the usual algorithm.
The hints are fairly brief, so you could also use a specialized reference, [42]
Sect. 4.3.3., to help you finish this exercise.

Let N � 2 be an integer and let A be a ring. We identify the set E of
functions from Z/NZ to A with the set of polynomials with coefficients in
A of degree < N , in other words, to polynomials associated to the ring
A[X]/(XN − 1). If a = (ai)0�i�N−1 is a sequence indexed by Z/NZ, we
denote by Pa the corresponding polynomial. We define a “convolution” by
(a ∗ b)i =

∑
j+h=i ajbh, and we can easily check that Pa∗b = PaPb.

If ζ is an N th primitive root of unity in A, we define the “Fourier trans-
form”, F : E → E and its conjugate F̄ : E → E by the formulas

(Fa)j =
∑

i∈Z/NZ

ζijai = Pa(ζj) and (F̄a)j =
∑

i∈Z/NZ

ζ−ijai = Pa(ζ−j).

1) Prove that the following formulas hold: F (a∗b)=F (a)·F (b), F
(
F̄a

)
=

Na and F̄ (Fa) = Na.

2) Whenever N = 2N ′, we set ζ ′ := ζ2 and E′ := A[X]/(XN ′ − 1), and we
define F ′, F̄ ′ : E′ → E′ with the help of ζ ′. For a ∈ E, we define a0, a1 ∈
E′ by setting a0

i = a2i and a1
i = a2i+1. Check that, for 0 � j � N ′ − 1, the

following formulas hold:

(Fa)j =
(
F ′a0

)
j
+ζj

(
F ′a1

)
j

and (Fa)N ′+j =
(
F ′a0

)
j
−ζj

(
F ′a1

)
j
.

3) Now suppose that N = 2r. Use the previous arguments to derive a recur-
sive procedure for calculating a Fourier transform. If we denote by M(r)
the number of multiplications and A(r) the number of additions necessary
to carry out this procedure, show that A(r)+M(r) = O(r2r) = O(N log N).

4) By using the first formula (convolution transformation and ordinary
product) and the preceding results, derive a multiplication algorithm for
polynomials with coefficients in A.

5) The choice of a numeral basis b lets us write integers in the form Pa(b) =
a0 +a1b+ · · ·+adb

d. Using the polynomial multiplication algorithm, derive
an algorithm for multiplying integers.

7.5. Exercise. A Fibonacci sequence of integers is defined by u0 = a,
u1 = b and un = un−1 + un−2 for n � 2, where 1 � a � b are integers (the
classical Fibonacci sequence corresponds to a = b = 1).

1) Prove that log |un| ∼ n log
(

1 +
√

5
2

)
.
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2) Prove that gcd(un+1, un) = gcd(b, a) and that the Euclidean algorithm
gives this result in n steps. Deduce from this that the complexity estimation
given at the beginning of this chapter is generally optimal.

7.6. Exercise. Prove that following algorithm allows us to calculate the
gcd of two integers, and estimate its complexity. If n and m are even,
factor out 2; if n is even and m is odd (or conversely), replace n by n/2;
if m and n are odd, replace n by (n−m)/2.

7.7. Exercise. Let M ∈ Z and let N be an odd positive integer. Prove that
the Euclidean algorithm, together with the quadratic reciprocity law, gives
a fast algorithm (and estimate its complexity) for calculating the Jacobi

symbol
(

M
N

)
.

7.8. Exercise. Let M := 85; we define the sets G0 := (Z/MZ)∗,
G1 := {a ∈ G0 | aM−1 = 1}, G2 := {a ∈ G0 | a(M−1)/2 = ±1},
G3 := {a ∈ G0 | a(M−1)/2 =

(
a
M

)

J
} and finally S := {a ∈ G0 | a21 =

1 or a21 = −1 or a42 = −1}.
3.a) Prove that if a ∈ S, then −a ∈ S, and use this to deduce that the
cardinality of S is even.

3.b) Calculate the cardinality of G0, G1, G2 and S.

3.c) Use this to find the cardinality of G3.

3.d) Is the set S a subgroup of G0?

7.9. Exercise. For n � 2, we denote by Φn the nth cyclotomic polynomial.

1) Recall how to decompose Φn in Fp[X].

2) Let a ∈ Z and let p be a prime number which does not divide n but which
divides Φn(a). Prove that p ≡ 1 mod n (you could start by observing that
the class of a modulo p is a root of Φn).

3) Prove that Φn(0) = 1 and deduce from this that for all m � 2, Φn(m) is
relatively prime to m. Also prove that there are only finitely many a ∈ Z
such that Φn(a) = ±1.

4) Deduce from this (without using Dirichlet’s theorem on arithmetic pro-
gressions) that there exist infinitely many prime numbers, p such that p ≡
1 mod n (resp. infinitely many prime numbers p such that p 	≡ 1 mod n).

7.10. Exercise. Let G be a finite abelian group.
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1) Prove that there exists an integer N such that G is isomorphic to a
subgroup (resp. a quotient) of (Z/NZ)∗.

Hint.– We can reduce to the case where G = Z/n1Z×· · ·×Z/nsZ. By using
the result proven in the previous exercise, we can choose prime numbers
pi ≡ 1 mod ni, and show that N := p1 · · · ps works.

2) (This question requires some knowledge of Galois theory, see for example
Appendix C, in particular Examples C-1.1.) Prove that there exists a finite
Galois extension, K/Q, such that Gal(K/Q) ∼= G.

7.11. Exercise. Let P = X4 + 1. We will study its factorization over
various fields.

1) Prove that P is irreducible in Q[X] and calculate its factorization over
the fields Q(i), Q(

√
2) and Q(i

√
2).

2) Show that for every prime number p, P is not irreducible over Fp.

Hint.– Construct a factorization by using the fact that −1, 2 or −2 is a
square. Variation: observe that P = Φ8 and invoke Theorem 2-6.2.8.

7.12. Exercise. 1) Prove that the following relations hold (you could
compare the degrees and the roots of both sides):

Φn(Xp) =

{
Φnp(X) if p divides n,

Φnp(X)Φn(X) if p does not divide n.

2) Prove that Φpr = Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1
+1 (for r � 1).

7.13. Exercise. For n � 3, we denote by Φ+
n (X) the monic polynomial

with the property that (Φ+
n (X))2 =

∏
ζ∈μ∗

n

(
X − ζ − ζ−1

)
.

1) Compute Φ+
3 , Φ+

5 and Φ+
7 .

2) Prove that deg Φ+
n = φ(n)/2 and Φn(X) = Xφ(n)/2Φ+

n (X + X−1). De-
duce from this that Φ+

p (2) = Φp(1) = p.

3) Prove that Φ+
n is in Z[X] and is irreducible (in particular, it is the

minimal polynomial of 2 cos(2π/n)).

7.14. Exercise. Let P =
∏r

i=1(X − αi) and Q =
∏s

j=1(X − βj) be two
polynomials in K[X]. We define their resultant by the formula

res(P, Q) :=
r∏

i=1

Q(αi) =
r∏

i=1

s∏

j=1

(αi − βj).

We refer you to a classical algebra text (cf. for example [43]) to see how
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res(P, Q) can be expressed as a determinant in the coefficients of P and Q,
which shows in particular that res(P, Q) ∈ K and, more generally, that if
P, Q ∈ A[X], then res(P, Q) ∈ A.

1) Prove that res(Q, P ) = (−1)rs res(P, Q).

2) We will assume from now on that P, Q ∈ Z[X], and we choose q to be an
odd prime. We denote by P̃ (resp. Q̃) the reduction modulo q of P (resp.
of Q). Prove that the class of res(P, Q) modulo q is equal to res(P̃ , Q̃).

3) Prove that Φ̃+
q = (X − 2)(q−1)/2 in Fq[X] (Φ+

n is defined in Exercise
2-7.13).

4) Use the previous questions and question 2) of Exercise 2-7.13 to show
that if p and q are distinct odd primes, then

res(Φ̃+
q , Φ̃+

p ) ≡ p(q−1)/2 ≡
( p

q

)
mod q.

5) Prove that res(Φ+
q , Φ+

p ) =
∏

η∈μ∗
q
η−(p−1)/2Φp(η) and deduce from this

that res(Φ+
q , Φ+

p ) ∈ {+1,−1}.
6) Prove that the following formula holds,

res(Φ+
q , Φ+

p ) =
( p

q

)
,

and use this to give a proof of the quadratic reciprocity law.

7.15. Exercise. Let N be an odd integer.

1) If its factorization can be written as N = pm1
1 · · · pmk

k , where pi − 1 =
2siLi and Li are odd, prove that

card{a ∈ (Z/NZ)∗ | ord(a mod N) is odd}
card{a ∈ (Z/NZ)∗}

= 2−s1···−sk .

2) Deduce from this that if we had a fast algorithm, P, which calculates the
period (the order of a mod N), then we have a fast probabilistic factorization
algorithm.

Hint.– Randomly choose a, test to see whether gcd(a, N) = 1, then whether
the period P(a) is even; in this case compute gcd(aP(a)/2 ± 1, N).

7.16. Exercise. Prove that 2m + 1 can only be prime if m = 2n. Set
Fn := 22n

+ 1 (known as a Fermat number). Prove that Fn is prime if and

only if Fn divides 3
Fn−1

2 + 1. Check that F0, F1, F2, F3 and F4 are prime,
but not F5 (which is divisible by 641).
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7.17. Exercise. (Lucas test and Mersenne numbers) Start by proving
that Mn := 2n − 1 can only be prime if n is itself prime. Check that
M2, M3, M5, M7 are prime, but that M11 is not prime. The numbers Mp =
2p − 1 are called Mersenne numbers. In this exercise, we ask you to prove
the Lucas primality test for these numbers.

a) We define a sequence with values in a ring A by V0 = 2, V1 = a and
Vn+1−aVn+Vn−1 = 0. Verify the following formulas: V2n−1 = VnVn−1−a,
V2n = V 2

n − 2, and also VnVm = Vn+m − Vn−m.

b) Let M be odd, a an integer such that gcd(a2 − 4, M) = 1 and Vn the
sequence defined above. If VM+1 ≡ 2 mod M and if for every prime number
q which divides M + 1 we have gcd(V M+1

q

− 2, M) = 1, prove that M is

prime.

c) We define the following sequence by L1 := 4 and Li+1 := L2
i − 2. Prove

that the Mersenne number Mp is prime if and only if Lp−1 ≡ 0 mod Mp.

7.18. Exercise. (Perfect numbers) This nice problem has been handed
down to us from Euclid: we say that an integer is perfect if it is equal to
the sum of its proper divisors, symbolically:

n =
∑

d |n
d 	= n

d or 2n = σ(n) :=
∑

d |n
d.

a) Show that if Mp = 2p − 1 is a prime Mersenne number (cf. previous
exercise), then Pp := 2p−1Mp is a perfect number (this fact as well as the
examples P2 = 6, P3 = 28, P5 = 496 were known to Euclid).

b) Prove the following result due to Euler: an even perfect number n is of
the form Pp.

Hint.– Write n = 2mM with M odd and m � 1; prove that 2n = σ(2m)σ(M)
and deduce from this that M must be prime, then finish the exercise.

Remark. Nobody knows whether there exists an odd perfect number; it
is generally conjectured that there do not exist any and that the perfect
numbers are in bijection with the prime Mersenne numbers.

7.19. Exercise. (Pocklington-Lehmer test or certificate) Let N � 2.
Suppose that N − 1 is (partially) factored as N − 1 = pe1

1 · · · p
ek

k M , with
M <

√
N , and moreover that for each pi, we have an ai such that

⎧
⎪⎨

⎪⎩

aN−1
i ≡ 1 mod N,

gcd

(
a

N−1
pi

i − 1, N

)
= 1.



72 2. Applications: Algorithms, Primality and Factorization, Codes

Use this to show that if q divides N , then q ≡ 1 mod pei
i , and also that N

is prime.

7.20. Exercise. Let β be a 17th primitive root of unity in an extension
of F2. We let I := F∗2

17 and set

f(X) =
∏

i∈I

(
X − βi

)
.

Prove that the polynomial f(X) defines a cyclic code C of length 17, and
calculate its dimension and bounds on its distance d(C ), for example 3 �
d(C ) � 6. Then give the exact value of d(C ).

7.21. Exercise. 1.a) Describe the degrees of the decomposition into irre-
ducible factors of X85 − 1 in Q[X].

1.b) Give the number of irreducible factors, as well as their degrees, of the
decomposition of X85 − 1 in F2[X].

1.c) Explain how to construct a binary cyclic code of length 85 and dimen-
sion 64. It is possible to construct such a code with dimension 63?

7.22. Exercise. (Where we show that d (G11) = 5 and d (G23) = 7 and
use the notion of a self-dual code.)

A) Let C be a cyclic code of length n generated by the polynomial g = g(X)
of degree d. Let C ′ be its even subcode C ∗ its dual code.

1) Prove that C ′ = C if and only if g(1) = 0. If g(1) 	= 0, check that C ′ is
cyclic and generated by the polynomial (X − 1)g(X).

2) Prove that C ∗ is cyclic and generated by the polynomial h∗(X) = Xn−d

h(1/X) where g(X)h(X) = Xn − 1.

Hint.– You can show that if deg(f) � n − d − 1 and deg(e) � d − 1, then
〈fg, eh∗〉 is equal to the coefficient of Xn−1 in the product f(X)g(X)e∗(X)
h(X) = f(X)e∗(X)(Xn − 1), and is therefore zero.

B) Suppose that C ⊂ C ∗ (i.e., for all x, y ∈ C , we have 〈x, y〉 = 0).

1) If q = 2, prove that for all x, y ∈ C , we have w(x + y) ≡ w(x) +
w(y)mod 4.

2) If q = 3, prove that for all x, y ∈ C , we have w(x + y) ≡ w(x) +
w(y)mod 3.

C) We introduce the subcode D of G11, composed of vectors whose sum of
the coordinates equals zero (the “even” subcode).

1) Prove that if g(X) is the generating polynomial of G11, the code D is
cyclic and its generator is (X − 1)g(X).
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2) Prove that D ⊂ D∗ (i.e., for every x, y ∈ D we have 〈x, y〉 = 0). Deduce
from this that for every x ∈ D , we have w(x) ≡ 0 mod 3.

3) We denote by D̄ and Ḡ11 the extended codes. Set e11 = (1, . . . , 1) ∈ F11
3

and e12 = (1, . . . , 1) ∈ F12
3 . Prove that e11 ∈ G11, e12 ∈ Ḡ11 and hence

Ḡ11 = D̄ ⊕ F3e12.

4) Prove that Ḡ11 is self-dual. Deduce from this that for every x, y ∈ Ḡ11,
we have w(x + y) ≡ w(x) + w(y)mod 3, and hence that d(Ḡ11) ≡ 0 mod 3.

5) Knowing that 4 � d (G11) � 5 and d(C) � d(C̄) � d(C) + 1, conclude
that d (G11) = 5 and d

(
Ḡ11

)
= 6.

D) Let p be an odd prime such that
(

2
p

)
= 1, S := F∗2

p and C a binary
code of length p which corresponds to the set S (which, by hypothesis, is
stable under multiplication by 2). We denote by C̄ the extended code of
length p + 1.

1) If g = g(X) is a generator of C and if g∗(X) = X(p−1)/2g(1/X) is its
reciprocal polynomial, show that g(X) = g∗(X) if p ≡ 1 mod 8, and that
Φp(X) = g(X)g∗(X) if p ≡ −1 mod 8.

2) We suppose from now on that p ≡ −1 mod 8. Prove that C̄ is self-dual
(i.e., C̄ = C̄ ∗, or for all x̄, ȳ ∈ C̄ , we have 〈x̄, ȳ〉 = 0).

3) Let x =
∑

i∈I Xi and y =
∑

i∈J Xi. Show that 〈x, y〉 = |I ∩ J |mod 2
and that w(x+y) = |I|+|J |−2|I∩J |. Conclude from this that if 〈x, y〉 = 0,
then w(x + y) ≡ w(x) + w(y)mod 4.

4) Use the previous question to show that if D is a self-dual code generated
by the elements whose weight is a multiple of 4, then every element of D
has weight which is a multiple of 4, and in particular, d (D) ≡ 0 mod 4.

5) Apply the preceding questions to the case p = 23. Observe that if g is the
generator of C = G23, we have w(g) = 7, so w(ḡ) = 8. Conclude from this
that d(C̄) ≡ 0 mod 4. Knowing that 5 � d (G23) � 7 and d(C) � d(C̄) �
d(C) + 1, deduce that d (G23) = 7 and d

(
Ḡ23

)
= 8.



Chapter 3

Algebra and Diophantine
Equations

“. . . it is a thing of beauty and of joy for ever. . . ”

James Joyce

In this chapter, we address some classical problems in number theory, such
as finding integer solutions to polynomial equations. The examples that we
will look at cover three large topics.

1) The decomposition of an integer n into the sum of two, three or four
squares, in other words, the search for solutions of the equation n = x2

1 +
x2

2 + · · ·+ x2
k.

2) “Fermat’s last theorem” (proven by Andrew Wiles in 1995): the only
solutions to the equation xn + yn = zn for n � 3 are the trivial ones (i.e.,
xyz = 0).

3) Solutions to the Pell’s equation x2 − dy2 = 1 (or more generally x2 −
dy2 = n). The study of congruences—the theme of Chap. 1—gives us
necessary conditions for the existence of solutions to such an equation. The
methods introduced in this chapter are the use of rings more general than
Z and also results about rational approximations.

To be more precise, we will study rings such as Z[i], Z[exp(2πi/n)], Z[
√

d]
and even the noncommutative ring of Hurwitz quaternions, a subring of the
division ring of quaternions defined by Hamilton. On the other hand, we
will have a look at how fast a sequence of rational numbers can converge to
a real number.

We will finish with an outline of the main properties of these rings by in-
troducing some supplementary notions from algebra: algebraic integers and
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Dedekind rings and from the geometry of numbers: lattices and Minkowski’s
theorem.

1. Sums of Squares
We want to find out under which conditions an integer n ∈ N can be
written as the sum of squares. Let us first have a look at some constraints
that we can write in terms of congruences.

We know that x2 ≡ 0 or 1 modulo 4, thus a number n = 4n′ + 3 cannot be
the sum of two squares. To be more precise, notice that if p ≡ 3 mod 4 and
p divides n = x2 +y2, then p must divide y. This is true because otherwise,
we could write (xy−1)2 ≡ −1 mod p and then deduce that −1 is a square
modulo p, which cannot be true. Since p divides y, it also divides x, and we
can conclude that x = px′, y = py′ and n = p2n′. By repeatedly applying
this argument, we see that if p ≡ 3 mod 4 and if n = p2a+1m, where m and
p are relatively prime, then n is not the sum of two squares.

Notice that if x is even, then x2 ≡ 0 or 4 modulo 8, whereas if x is odd,
then x2 ≡ 1 modulo 8. We then see that x2 + y2 + z2 is never congruent
to 7 modulo 8. We can slightly refine this argument: if n = 4n′ and if
n = x2 + y2 + z2, then we see that x, y and z must be even, hence x = 2x′,
y = 2y′ and z = 2z′, with n′ = x

′2 + y
′2 + z

′2. By repeatedly applying this
reasoning, we see that if n is of the form n = 4a(8m+7), then n is not the
sum of three squares.

It is a remarkable fact that the obstructions given by these congruences
are, in the case of the sums of squares, the only ones.

1.1. Theorem. (Two-square theorem) An integer n ∈ N is the sum of
two squares if and only if every prime number p congruent to 3 modulo 4
appears with an even exponent in the decomposition of n into prime factors.

1.2. Theorem. (Three-square theorem) An integer n ∈ N is the sum of
three squares of integers if and only if it is not of the form n = 4a(8m+7).

1.3. Theorem. (Four-square theorem) Let n ∈ N, then there exist inte-
gers, x, y, z, t such that n = x2 + y2 + z2 + t2.

We are going to postpone the proof the second theorem until later (see,
for example, Serre’s book [8] or Exercise 3-6.8 together with the Hasse-
Minkowski theorem 6-3.18 and its Corollary 6-3.19, or also Exercises 3-6.9
and 3-6.10). To prove the first theorem, we introduce the ring Z[i], and to
prove the third, we introduce the ring of Hurwitz quaternions.
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We can immediately see from the statements of these theorems that the set
of sums of two squares (resp. of four squares) is stable under multiplication,
but not the set of sums of three squares. For example, 18 = 2 · 32 =
42 + 12 + 12 and 14 = 2 · 7 = 32 + 22 + 12, but 18 · 14 = 4 · 9 · 7 is not the
sum of three squares. The multiplicativity of the set of sums of two (resp.
four) squares can be explained by the following formulas:

(x2 + y2)(a2 + b2) = (ax− by)2 + (ay + bx)2

and (x2 + y2 + z2 + t2)(a2 + b2 + c2 + d2) =

(ax−by−cz−dt)2+(ay+bx−ct+dz)2+(az+bt+cx−dy)2+(at−bz+cy+dx)2.

The origin of these formulas will be clear once we give an interpretation of
them in Z[i] or in the quaternions.

If we set C2 := {n ∈ N | ∃x, y ∈ N, n = x2 + y2} and

C4 := {n ∈ N | ∃x, y, z, t ∈ N, n = x2 + y2 + z2 + t2},
we see that it is enough to show that every prime number which is congruent
to 1 modulo 4 is in C2 and that every prime number is in C4.

We are going to construct the classical example of a noncommutative divi-
sion ring, the ring of quaternions discovered by Hamilton, and elaborate on
its arithmetical properties to establish a proof of the four-square theorem.

The most concrete of the constructions of the ring of quaternions undoubt-
edly consists of endowing the 4 dimensional real vector space with basis
1, I, J, K and defining a bilinear multiplication on it, where 1 is the multi-
plicative inverse and which satisfies

I2 = J2 = K2 = −1, IJ = −JI = K, JK = −KJ = I
(3.1)

and KI = −IK = J

We should verify associativity “by hand”: for example, (IJ)K = K2 = −1
and I(JK) = I2 = −1. To spare the 24 necessary verifications, we could
also define H as the subalgebra of 2 × 2 complex matrices or 4 × 4 real
matrices (associativity is immediate in this case, but one needs to check
that these matrices satisfy formulas (3.1)). We could also define

H =
{(

α −β
β̄ ᾱ

)∣∣∣∣ α, β ∈ C
}

with

1 =
(

1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
and K =

(
0 i
i 0

)
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or also

H =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

a −b c −d
b a −d −c
−c −d a b
−d c −b a

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
a, b, c, d ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

with

1=

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ , I =

⎛

⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎟⎠ ,

J =

⎛

⎜⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞

⎟⎟⎠ , K =

⎛

⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ .

1.4. Remark. The construction of H endows it with the structure of an R
algebra generated by two elements i and j, with the relations i2 = j2 = −1
and ij = −ji. To see this, we let k := ij and deduce the rest from the
multiplication table since k2 = ijij = −iijj = −1 and ik = iij = −j =
(ii)j = −iji = −ki, etc. The fact that H is noncommutative is already
given in the multiplication table.

The conjugate of a quaternion z = a1 + bI + cJ + dK is defined by z̄ =
a1− bI − cJ − dK, its reduced trace by Tr(z) = z + z̄ and its reduced norm
by N(z) = zz̄ (from now on simply referred to as the trace and the norm).

1.5. Lemma. If z, w ∈ H, then z + w = z̄ + w̄ and zw = w̄ · z̄, and
if z = a1 + bI + cJ + dK, then N(z) = zz̄ = z̄z = (a2 + b2 + c2 + d2)1
and Tr(z) = 2a1. Furthermore, Tr(z + z′) = Tr(z) + Tr(z′), N(zz′) =
N(z)N(z′), and z is a root of the polynomial X2 −Tr(z)X + N(z) ∈ R[X].

Proof. These formulas can be checked by direct calculation (left to the
reader). Take note that the conjugation is an anti-isomorphism of rings,
i.e., it reverses the order of multiplication. �

It follows that H is a division ring, since if z = a1 + bI + cJ + dK is a
non-zero quaternion, then N(z) := a2 +b2 +c2 +d2 ∈ R∗ and zz̄/ N(z) = 1,
hence z−1 = z̄/ N(z).
We will now introduce the ring Z[i] (of Gaussian integers) and the two rings

A0 = Z1 + ZI + ZJ + ZK and A = A0 + Z
( 1 + I + J + K

2

)
.

The set A is a subring of H, because if we let δ := (1 + I + J + K)/2, we
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have δ2 = δ − 1 and Iδ = δ − 1 − I, etc. The elements of the ring A are
called Hurwitz quaternions.

It is clear that C2 = {N(z) | z ∈ Z[i]} and C4 = {N(z) | z ∈ A0}. In fact, we
also have C4 = {N(z) | z ∈ A}, since if we assume the following elementary
lemma, then we know that N(x1+yI +zJ + tK) ∈ N if x, y, z, t ∈ Z+1/2.

1.6. Lemma. Let α =
x1 + yI + zJ + tK

2
∈ A, where x, y, z and t are

odd integers. Then there exists ε = ±1± I ± J ±K
2

such that εα is in A0

and N(α) = N(εα).

Proof. We write x = 4x′ + ε1, y = 4y′ + ε2, z = 4z′ + ε3, t = 4t′ + ε4,

with εi = ±1. If we set ε := ε11− ε2I − ε3J − ε4K
2

, then N(ε) = 1, hence

N(αε) = N(α), and therefore

αε = 4
(

x′1 + y′I + z′J + t′K

2

)
ε + N(ε)

= (x′1 + y′I + z′J + t′K) (2ε) + 1 ∈ A0. �

The following lemma will also be useful.

1.7. Lemma. In the rings Z[i], A0 and A, an element is invertible if and
only if its norm is 1.

Proof. If α is invertible, then 1 = N(αα−1) = N(α)N(α−1), hence N(α) =
1. Conversely, if N(α) = 1, then αᾱ = 1. Since the rings that we are
looking at are stable under conjugation, then ᾱ is an element of the ring,
and α is therefore invertible. �

Finally, since the norm is multiplicative, it is enough to show that every
prime number p (resp. every prime number ≡ 1 mod 4) is the norm of a
Hurwitz quaternion (resp. the norm of a Gaussian integer). Since 2 =
12 + 12, it moreover suffices to show this for odd primes p. To do this,
we will first prove that Z[i] is a principal ring and that A is left (or right)
principal.

1.8. Proposition. The ring Z[i] is Euclidean, hence principal. The ring
A is left Euclidean, hence left principal (and also right Euclidean and right
principal).

Proof. We will use the symbol B for both of the rings A and Z[i]. The
statement means that for α ∈ B and β ∈ B \ {0}, there exist q, r ∈ B such
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that α = qβ + r with N(r) < N(β) (when the ring is A, pay attention to
the order of multiplication). Once this has been proven, we immediately
have that Z[i] is principal. Actually, the “same” proof shows that A is
(left) principal. Now let I be a non-zero left ideal of A (i.e., A · I ⊂ I),
so it contains an element β 	= 0 of minimal norm, and clearly Aβ ⊂ I.
Conversely, let α ∈ I, and write α = qβ + r with N(r) < N(β). We
therefore have r = α − qβ ∈ I, hence r is zero and I = Aβ. Let us now
prove that A and Z[i] are Euclidean. The proof is based on the following
elementary lemma, whose proof is left to the reader.

1.9. Lemma. Let x ∈ R. Then there exists m ∈ Z such that |x−m| � 1/2,
and there exists n ∈ Z such that |x− n/2| � 1/4.

• Now let α ∈ Z[i] and β ∈ Z[i] \ {0}, hence α/β = x + iy ∈ Q[i], and
there exist m, n ∈ Z such that |x−m| � 1/2 and |y − n| � 1/2. Therefore

N((x + iy)− (m + in)) = (x−m)2 + (y − n)2 � 1
4

+ 1
4

= 1
2
·

The Gaussian integer q := m + ni is the quotient obtained from the (obvi-
ously possible) division of α by β since

N(α− qβ) � N(β)
2

< N(β).

• If α ∈ A and β ∈ A \ {0}, then αβ−1 = x + yI + zJ + tK ∈ H
and there exists m ∈ Z such that |x −m/2| � 1/4. We therefore choose
q = (m + nI + hJ + �K)/2, where m, n, h and � are integers with the same
parity (and so that q ∈ A) and such that |y − n/2|, |z − h/2| and |t− �/2|
are � 1/2. We therefore obtain

N(αβ−1 − q) =
(
x− m

2

)2

+
(
y − n

2

)2

+
(
z − h

2

)2

+
(
t− �

2

)2

� 1
16

+ 1
4

+ 1
4

+ 1
4

< 1

and hence the desired inequality,

N(α− qβ) < N(β). �

We can now complete the proof of the two theorems.

Proof. (Sum of two squares.) The ring Z[i] is principal, hence factorial
(a factorial ring is also called a unique factorization domain or UFD). It
is also clear that Z[i]∗ = {±1,±i}. Now let p ≡ 1 mod 4. We know that
there exists a ∈ Z such that a2 ≡ −1 mod p. Thus we have an equality
of the form (a + i)(a − i) = pm. We can see that the Gaussian integer p
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clearly divides neither (a + i) nor (a− i). It is therefore neither prime, nor
irreducible since Z[i] is principal. We thus have the decomposition p = αβ
where α and β are non-invertible. Therefore, N(αβ) = N(p) = p2 and
N(α) = N(β) = p, which proves the two-square theorem.

(Sum of four squares.) It is enough to show that if p is an odd prime
number, then it is the norm of an element of A. The number of squares in
Z/pZ is (p+1)/2, and therefore the polynomial −1−X2 equals a square for
at least one X; in other words, there exist a, b ∈ Z such that a2+b2+1 ∈ pZ.
We see from this that (1+aI+bJ)(1−aI−bJ) ∈ pA. We therefore consider
the (left) ideal I generated by p and 1 + aI + bJ . On the one hand, we
know I = Aβ because A is (left) principal, and on the other hand, we
have the inclusions pA = Ap ⊂ I ⊂ A. Thus p = αβ. Now we will
check that β and α are not invertible and also that the above inclusions
of rings are strict. If α were invertible, then p would divide 1 + aI + bJ ,
and furthermore (1 + aI + bJ) = p(x + yI + zJ + tK)/2, so that px = 2,
which is impossible (p is an odd prime). If β were invertible, we would have
I = A, hence 1 = q(1 + aI + bJ) + q′p, and by multiplying (on the right)
by (1−aI−bJ), we would get (1−aI−bJ) = q′′p, which is equally absurd.
We can therefore conclude that N(p) = N(α)N(β) = p2, where N(α) and
N(β) are different from 1, hence equal to p. �

Further down, we will give another proof of the two-square (resp. four-
square) theorem, which uses the geometry of numbers.

2. Fermat’s Equation (n = 3 and 4)
One of the most famous mathematical problems (called “Fermat’s last the-
orem”) was solved by Andrew Wiles [80], with the help of Taylor, in 1995:

2.1. Theorem. Let n � 3, and let x, y and z be integers such that
xn + yn = zn. Then xyz = 0.

Of course it is “enough” to prove the theorem for n = 4 and n = p, an odd
prime. We will settle for proving it for n = 3 and 4, by using Fermat’s prin-
ciple of infinite descent. The proof proposed for n = 4 stays in Z, but the
one that we give for n = 3 takes place in Z[j] (with j = exp(2πi/3)). The
classical approach, due to Kummer, is based on the following factorization.
Let ζ = exp(2πi/p), so in the ring Z[ζ] we have:

xp + yp = (x + y)(x + ζy) · · · (x + ζp−1y) = zp.

We will do some calculations in the ring Z[ζ], setting λ = 1− ζ.
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2.2. Lemma. The element λ is prime and Z[ζ]/λZ[ζ] ∼= Fp. Furthermore,
we have the decomposition

p =
p−1∏

k=1

(1− ζk) = ελp−1, where ε ∈ Z[ζ]∗.

The elements ηk := sin(kπ/p)/ sin(π/p) and εk := (1−ζk)/(1−ζ) are units
in Z[ζ] for 1 � k � p− 1, and ηk/εk is a root of unity.

Proof. We will begin by factoring the pth cyclotomic polynomial (over
C), Φp(X) = Xp−1 + Xp−2 + · · · + X + 1 =

∏p−1
k=1(X − ζk). From this,

we get the formula p = Φp(1) =
∏p−1

k=1(1 − ζk). Thus λ divides p and
p ∈ λZ[ζ]. Moreover, since ζ ≡ 1 mod λ, every element of Z[ζ] is congruent
modulo λ to an integer between 0 and p− 1 (inclusive), which proves that
Z[ζ]/λZ[ζ] ∼= Fp. Since 1− ζk = (1− ζ)(1 + · · ·+ ζk−1), we see that εk is
in Z[ζ]. By the same reasoning and by using the inverse h of k modulo p

and the equality 1− ζ = (1− ζk)(1 + · · ·+ ζk(h−1)), we see that ε−1
k is also

an integer and therefore that εk ∈ Z[ζ]∗. Furthermore, if k is odd, then

εk =
1− ζk

1− ζ
= eπi(k−1)/p eπik/p − e−πik/p

eπi/p − e−πi/p

= ζ
k−1

2
sin(πk/p)
sin(π/p)

= ζ
k−1

2 ηk,

whereas if k is even, then εk = −ζkεp−k. Finally, if 1 − ζk = εkλ, then
p = ελp−1 where ε = ε1 · · · εp−1 ∈ Z[ζ]∗. �

Remark. We could of course write other formulas which produce units such
as:

2 cos
(

2π
p

)
= ζ + ζ−1 = ζ−1(1 + ζ2) = ζ−1 1− ζ4

1− ζ2
= ζ−1ε4ε

−1
2 .

We will now return to Kummer’s method for Fermat’s equation in its fac-
tored form (where x, y, z are relatively prime in Z):

(x + y)(x + ζy) . . . (x + ζp−1y) = zp.

Let δ ∈ Z[ζ] be a number which divides two factors of the above equation,
for example x + ζiy and x + ζjy; then it divides (ζi − ζj)y and (ζi − ζj)x,
hence (ζi− ζj), and therefore δ divides λ, so δ = 1 or λ (up to a unit). If z

is not divisible by p, then the factors are relatively prime, and if we show
that Z[ζ] is factorial, we can deduce that:

for i = 0, . . . , p− 1, x + ζiy = uiα
p
i , where ui is a unit and αi ∈ Z[ζ].
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If z is divisible by p, we also have, still assuming that Z[ζ] is factorial,
some similar identities with extra powers of λ. However, this approach is
hindered by the fact that actually the ring Z[ζ] is not factorial in general.
In fact, if n = p is prime, it is not factorial whenever p � 23. We should
therefore try to find a substitute for the following lemma (where the proof
is left as an exercise).

2.3. Lemma. Let A be a factorial ring. If the elements a1, . . . , am ∈ A
are pairwise relatively prime and a1 . . . am = ap, then, up to a unit, the ai

are pth powers.

We will start by describing the solutions of Fermat’s equation for n = 2.

2.4. Proposition. Let x, y, z be (relatively prime) integers such that
x2 + y2 = z2, then (up to switching x and y) there exist (relatively prime)
integers u and v such that

x = u2 − v2, y = 2uv and z = u2 + v2. (3.2)

Proof. After having simplified by their gcd, we can assume that x, y, z are
pairwise relatively prime. Notice that (u2 − v2)2 + (2uv)2 = (u2 + v2)2.
By considering congruences modulo 4, we know that z is odd and that x
and y have different parity; we will therefore assume that x is odd and y
is even. We write y2 = z2 − x2 = (z − x)(z + x). Now notice that if d
divides z−x and z+x, then it divides 2x and 2z and therefore also 2 (since
x and z are relatively prime). Thus gcd(z − x, z + x) = 2. The integers
(z − x)/2 and (z + x)/2 being relatively prime and there product being a
square, are themselves squares which gives us: z − x = 2v2, z + x = 2u2

and y = 2uv, and hence x = u2 − v2 and z = u2 + v2, as in the statement
of the proposition. �

2.5. Theorem. The equation x4 + y4 = z2 does not have any integer
solutions, except for xyz = 0. Consequently Fermat’s equation for n = 4
does not have any nontrivial solutions.

Proof. The main idea of the proof is Fermat’s “infinite descent”, which
consists of proving that if the equation has a solution (x, y, z) where xyz 	=
0, then it has another solution (x1, y1, z1) where x1y1z1 	= 0 and |z1| < |z|.
This will lead to a contradiction, because a decreasing sequence of positive
integers is necessarily constant after a certain point.

So let (x, y, z) be a solution. We can assume that x, y and z are relatively
prime. By the previous proposition, we know that x2 = u2 − v2, y2 = 2uv
and z = u2 + v2, where u and v are relatively prime. We see that u and v



84 3. Algebra and Diophantine Equations

have different parity, and hence u is odd, so v = 2w (if not we would have
x2 ≡ −1 mod 4). By considering y2 = 4uw, we see that u and w, which are
relatively prime, need to be squares, u = z2

1 and w = a2. Furthermore, by
again applying the previous proposition to x2+v2 = u2, we have x = b2−c2,
v = 2bc and u = b2 + c2 where b and c are relatively prime. However, recall
that v = 2w = 2a2, so we can see, as before, that b and c are squares,
b = x2

1 and c = y2
1 . It therefore follows that

z2
1 = u = b2 + c2 = x4

1 + y4
1 ,

and we can check that |z1| < |z| by observing, for example, that z =
u2 + v2 = z4

1 + 4a4 > z1. �

2.6. Theorem. The equation x3 + y3 = z3 does not have any solutions,
except for xyz = 0. More generally, there do not exist any algebraic integers
x, y, z ∈ Z[j] such that x3 + y3 = z3 and xyz 	= 0.

Proof. It will be convenient to distinguish between the two cases, the easy
one being when xyz does not have a factor of 3 and the more difficult one
when, for example, z has a factor of 3. The idea of the proof in the second
case is to show that if the equation has a solution, then it would have
another “smaller one” (the principle of “infinite descent”).

We can show, as in Proposition 3-1.8 for Z[i], that the ring A := Z[j] is prin-
cipal, hence factorial and that the group of units is formed of ±1,±j,±j2.
In particular, we check directly1 that if u ∈ A∗ and u ≡ ±1 mod λ2, then
u = ±1 (also recall that λ designates the prime element 1 − j and that
ordλ(u) designates the largest exponent such that λordλ(u) divides u).

2.7. Lemma. If x ∈ Z[j] is not divisible by λ, then x3 ≡ ±1 mod λ4.

Proof. We can assume x ≡ 1 mod λ or moreover that x = 1 + λα. Then,
x3−1 = (x−1)(x− j)(x− j2) = λ3α(α+1)(α+1+ j) ≡ 0 mod λ4, because
the elements 0, 1, 1 + j are distinct modulo λ and therefore constitute all
of the elements of Z[j]/λZ[j]. �

We will now return to the proof of the theorem.

First case: λ does not divide xyz. By the preceding lemma, we have
x3 ≡ ±1 mod λ4 (and the same holds for y and z), and therefore a solution
to Fermat’s equation implies that ±1±1±1 ≡ 0 mod λ4; such a congruence
is obviously impossible (3 is only divisible by λ2).

1This remark is a very special case of the famous “Kummer lemma”, which says that
a unit which is congruent modulo λp to a pth power is in fact the pth power of a unit
in Z[exp(2πi/p)], given that p is “regular” in the sense of Remark 3-4.25 (in particular,
when the ring Z[exp(2πi/p)] is factorial, which is the case for p = 3).
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Second case: λ divides xyz. We can assume that λ divides z and not
xy. We will show a slightly more general version, namely that the equation

x3 + y3 = uz3, (3.3)

where u is a unit (i.e., u ∈ Z[j]∗) and m := ordλ z > 0, does not have a
solution in Z[j]. Observe that λ2 must divide z since ±1±1 ≡ uz3 mod λ4,
hence z3 ≡ 0 mod λ4, and therefore ordλ(z) � 4/3. We will therefore prove
the descent statement:

if x3 + y3 = uz3 where x, y, z ∈ A, u ∈ A∗ and ordλ(z) = m � 2,
then there exist x1, y1, z1 ∈ A and u′ ∈ A∗ where ordλ(z1) = m− 1 and

x3
1 + y3

1 = u′z3
1 .

We will of course begin by factoring:

(x + y)(x + jy)(x + j2y) = uz3.

We can see that λ2 must divide one of the factors on the left (because
ordλ(z3) = 3m � 6), say x+y, and therefore ordλ(x+jy) = ordλ(x+j2y) =
1; for example x + jy = x + y − λy and λ does not divide y. Thus the gcd
of two of the factors is exactly λ. Since A is factorial, we see that
⎧
⎨

⎩

x + y = u1X
3λ3m−2

x + jy = u2Y
3λ where gcd(X, Y, Z) = 1 and u1, u2, u3 are units.

x + j2y = u3Z
3λ

By multiplying the equations respectively by 1, j and j2 and adding them,
we obtain 0 = u1X

3λ3m−2 + u2jY
3λ + u3j

2Z3λ. By simplifying by λ and
letting u4 := ju3/u2 and u5 := −j2u1/u2, we obtain

Y 3 + u4Z
3 = u5

(
λm−1X

)3
.

We finish by pointing out that ±1±u4 ≡ 0 mod λ2, and therefore u4 = ±1.
We then let x1 = Y , y1 = u4Z, z1 = λm−1X and u′ = u5 so that we have
x3

1 + y3
1 = u′z3

1 and ordλ(z1) = m− 1.

3. Pell’s Equation x2 − dy2 = 1

In this section, we will always assume that d > 0, and we will discuss the
solutions of the above equation by explaining how it is related to the units
of the ring Z[

√
d] and “good” rational approximations of

√
d.

Let us point out that the equation always has as solutions (x, y) = (±1, 0);
we will refer to these as trivial. We also point out that if d is a square,
d = a2, then (x− ay)(x + ay) = 1 implies x + ay = x− ay = 1 (or = −1),
hence 2ay = 0, and therefore there are no nontrivial solutions. The only
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interesting case is when d is not the square of an integer (hence
√

d /∈ Q).
The main theorem can be stated as follows.

3.1. Theorem. Let d be a positive integer which is not a square. Then
there exists a nontrivial solution (x1, y1) ∈ N∗×N∗ (called the fundamental
solution) of the equation x2−dy2 = 1 such that all positive integer solutions
are given by (xn, yn) where xn + yn

√
d := (x1 + y1

√
d)n and the general

solutions are given by (±xn,±yn).

We can of course find solutions (xn, yn) by induction starting with (x1, y1)
and observing that

(xn+1, yn+1) = (x1xn + dy1yn, y1xn + x1yn).

The connection to rational approximations of
√

d is the following. Suppose
that (x, y) is a nontrivial solution of the equation (where say x, y > 0),
then

0 < x
y −

√
d = 1

y2
(

x
y +

√
d
) < 1

2
√

dy2
·

Conversely, if x/y ∈ Q is an approximation which satisfies the previous
inequality, then

0 < x2 − dy2 = y2
(

x
y −

√
d
)(

x
y +

√
d
)

< 1
2
√

d

(
2
√

d + 1
2
√

dy2

)
< 2,

hence x2 − dy2 = 1 (because it is an integer). Thus a positive solution
(x, y) of Pell’s equation corresponds to a rational approximation x/y of

√
d

which satisfies 0 < x
y −

√
d < 1

2
√

dy2
.

To the ring Z[
√

d], we introduce the homomorphism σ(a+ b
√

d) = a− b
√

d
(why is it a homomorphism?), as well as the norm

N(α) = ασ(α) = a2 − db2, if α = a + b
√

d.

The norm is multiplicative, and we have, as in Z[i], the following lemma,
whose very similar proof is omitted.

3.2. Lemma. In the ring Z[
√

d], an element is invertible if and only if its
norm is ±1.

If we denote by A∗ = Z[
√

d]∗ and U1 = {α | N(α) = 1}, we see that the
index (A∗ : U1) is either 2 or 1, depending on whether there exists a unit
with norm −1. Of course, the solutions (x, y) of Pell’s equation correspond
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to the units x + y
√

d ∈ U1, and Theorem 3-3.1 can be translated into the
following statement.

3.3. Theorem. There exists a unit ε1 ∈ Z[
√

d]∗, called the fundamental
unit, such that

Z[
√

d]∗ = {±εn
1 | n ∈ Z} ∼= {±1} × Z.

If N(ε1) = +1, then U1 = Z[
√

d]∗ and if N(ε1) = −1, then we have

U1 =
{
±ε2n

1 | n ∈ Z
} ∼= {±1} × Z.

In order to prove this theorem, we introduce the “logarithm” map, L :
Z[
√

d]∗ → R2 given by the formula L(α) = (log |α|, log |σ(α)|).

3.4. Proposition. The map L : Z[
√

d]∗ → R2 has the following proper-
ties.

i) The map L is a homomorphism, i.e., L(αβ) = L(α) + L(β).
ii) Its kernel is ±1.
iii) Its image is a discrete subgroup.
iv) Its image contains the line x + y = 0.

Proof. Property i) is immediate. Property iv) comes from the fact that
log |α| + log |σ(α)| = log |N(α)| = 0. To prove ii) and iii), we will show
that the preimage under L of a ball in R2 is finite, from which can we
deduce, on the one hand, that the image is discrete and, on the other hand,
that the kernel of L is finite, and therefore composed of roots of unity
hence of ±1 since Z[

√
d] ⊂ R. Now, an element α ∈ Z[

√
d]∗ is a root of

P := X2 − t(α)X + N(α) ∈ Z[X], with t(α) = α + σ(α) (the “trace”) and
N(α) = ±1. If L(α) is in a ball of radius C, we have |α| = exp(log |α|) �
exp(C) and the same for |σ(α)|. It follows that |t(α)| � 2 exp(C). Therefore
there are only a finite number of possible polynomials, and hence a finite
number of α. �

We will now state a classical lemma.

3.5. Lemma. Every discrete subgroup G of R is of the form G = Zω.

Proof. (Sketch) If G = {0}, we can choose ω = 0, and if not, we choose
ω := inf{x ∈ G | x > 0}. Since G is discrete, we have ω > 0 and ω ∈ G
(otherwise, there would be a sequence of elements of G which converge to
ω, which contradicts the fact that G is discrete). Finally, if x ∈ G, we
choose m ∈ Z such that mω � x < (m + 1)ω. Therefore, 0 � x−mω < ω
and x−mω ∈ G, hence x = mω. �
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This lemma can be applied to L(Z[
√

d]∗), and provides a proof of the
theorem under the condition that we prove the existence of a unit 	= ±1 or
of a nontrivial solution to Pell’s equation. These considerations show that
it suffices to prove the following proposition.

3.6. Proposition. Let d be a positive integer which is not a square. Then
there exists a nontrivial solution (x1, y1) (i.e., with y1 	= 0) to the equation
x2 − dy2 = 1.

A good practical method for constructing this solution is the method of
continued fractions, which is succinctly described later in this section. We
are first going to prove the existence of a solution by showing, with an ar-
gument due to Dirichlet (and already used in the proof of Theorem 2-4.4)
called the “pigeonhole principle”, that there exist good rational approxima-
tions of

√
d, without actually explicitly constructing them, then give the

continued fractions algorithm.

3.7. Lemma. Let α ∈ R and N � 1. Then there exists a rational number
p/q ∈ Q such that

∣∣∣α− p
q

∣∣∣ � 1
qN

and 1 � q � N.

Proof. We cut the interval [0, 1] into N intervals of length 1/N . Among the
N + 1 numbers jα−�jα� (for j = 0, . . . , N), there are therefore two in the
same small interval and at a distance of at most 1/N from each other. In
other words, there exist 0�j <��N such that |(jα−�jα�)−(�α−��α�)| �
1/N . It follows that

∣∣∣∣α−
��α� − �jα�

�− j

∣∣∣∣ � 1
(�− j)N

·

The desired result follows by setting p := ��α� − �jα� and q := �− j. �

Let us point out that the approximation provided by the lemma satisfies
|α− p/q| � 1/q2.

3.8. Corollary. (Dirichlet) Let α ∈ R \ Q. Then there exist infinitely
many rational numbers p/q ∈ Q such that

∣∣∣α− p
q

∣∣∣ � 1
q2
·

Proof. Let N1 � 1 and p1/q1 be a rational number provided by the previous
lemma such that

∣∣∣α− p1

q1

∣∣∣ � 1
q1N1

· Since α /∈ Q, the left-hand side of
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the inequality is non-zero. Therefore we can choose N2 such that 1/N2 <∣∣∣α− p1

q1

∣∣∣. Now let p2/q2 be a rational number provided by the previous

lemma such that
∣∣∣α− p2

q2

∣∣∣ � 1
q2N2

. It follows that

∣∣∣α− p2

q2

∣∣∣ � 1
q2N2

� 1
N2

<
∣∣∣α− p1

q1

∣∣∣ ,

therefore p2/q2 	= p1/q1. It is now clear that we can iterate this process
indefinitely. �

3.9. Remarks. 1) If we remove the hypothesis that α /∈ Q in the state-
ment of the corollary, the result would be false. To see this, if α = a/b and
a/b 	= p/q where

∣∣∣α− p
q

∣∣∣ � 1
q2

, then

1
bq

� |aq − bp|
bq

=
∣∣∣α− p

q

∣∣∣ � 1
q2

,

and hence q � b. There would therefore only exist a finite number of p/q.

2) Let us look at the example α =
√

d where d is not a square. We can
prove that the corollary is optimal in the following sense: there exists a
constant C > 0 such that for every p/q ∈ Q, we have

∣∣∣
√

d− p
q

∣∣∣ � C

q2
·

To do this, consider P (X) = X2 − d = (X −
√

d)(X +
√

d). It follows that
|P (p/q)| � 1/q2. Now, if for example |

√
d−p/q| � 1, we have |p/q| �

√
d+1,

then |p/q +
√

d| � 2
√

d + 1, and thus
∣∣∣
√

d− p
q

∣∣∣ =
|P (p/q)|∣∣∣p/q +

√
d
∣∣∣

� 1
(2
√

d + 1)q2
·

3) If α is an algebraic number of degree d � 3, the same proof shows
that

∣∣∣α− p
q

∣∣∣ � C

qd
(Liouville’s inequality). In 1955, Roth proved-but the

proof is much more difficult-that furthermore, for every ε > 0 there exists
a constant C, which depends on α and ε, such that for every p/q ∈ Q (see
Chap. 6): ∣∣∣α− p

q

∣∣∣ � C

q2+ε
·

Proof. (of Proposition 3-3.6) We will apply Corollary 3-3.8 to
√

d /∈ Q.
Thus there are infinitely many integers (x, y) such that |

√
d− x/y| � 1/y2

and hence such that |
√

d+x/y| � 2
√

d+1 and finally |x2−dy2| � 2
√

d+1.
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In particular, there exists an integer c such that there are infinitely many
solutions to the equation x2−dy2 = c. Since there are only a finite number
of classes modulo c, there even exist infinitely many pairwise congruent
solutions modulo c. So we take (x1, y1) and (x2, y2) which are solutions to
x2 − dy2 = c and check that x1 ≡ x2 mod c and y1 ≡ y2 mod c. We set

u + v
√

d :=
x1 + y1

√
d

x2 + y2

√
d

.

We therefore have

u2 − dv2 = N(u + v
√

d) =
N(x1 + y1

√
d)

N(x2 + y2

√
d)

= c
c = 1,

and it suffices to see that u and v are integers. Therefore, we compute

u + v
√

d =
(x1 + y1

√
d)(x2 − y2

√
d)

x2
2 − dy2

2

=
x1x2 − dy1y2

c +
y1x2 − x1y2

c

√
d,

and notice that x1x2 − dy1y2 ≡ x2
1 − dy2

1 ≡ 0 mod c and y1x2 − x1y2 ≡
y1x1 − x1y1 ≡ 0 mod c, which finishes the proof. �

Supplement. The slightly more general equation x2 − dy2 = m does not
always have a solution. For example, if m = −1 and p is a prime number
congruent to 3 modulo 4 which divides d, then a solution would imply that
x2 ≡ −1 mod p, which is impossible. More generally, for every odd p which
divides d but not m, it must be that x2 ≡ m mod p, and hence

(
m
p

)
= 1.

Conversely, if there existed a solution, there would exist infinitely many of
them, since N(uα) = m if N(α) = m and N(u) = 1. We have following
proposition, which could be useful.

3.10. Proposition. Let m ∈ Z \ {0}, and let d be an integer which is not
a square. Then there exist α1, . . . αr ∈ Z[

√
d] such that:

{
α ∈ Z[

√
d] | N(α) = m

}
= α1U1 ∪ · · · ∪ αrU1.

Proof. It is clear that the set of solutions is the union of classes mod-
ulo U1. We will show that there exists a finite union. If N(α) = m, it
follows that α divides m and furthermore that mZ[

√
d] ⊂ αZ[

√
d]. But

the set of ideals which contain mZ[
√

d] is in bijection with the ideals of
the quotient Z[

√
d]/mZ[

√
d] and is consequently a finite set. However,

αZ[
√

d] = α′Z[
√

d] is equivalent to the fact that α and α′ are equal up to
a unit. The set of solutions is thus finite modulo the group of units, hence
equal modulo the subgroup U1. �
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Continued fractions. We will now outline a procedure for calculating
good rational approximations of a real number: the algorithm of continued
fractions.

Notation. Let a0 be a real number and a1, . . . , an be a sequence of real
numbers > 0. We set

[a0, a1, . . . , an] := a0 + 1

a1 +
1

a2 + . . .
+

1
an

3.11. Definition. To a real number x, we can associate a sequence of
integers an and an auxiliary sequence of real numbers xn defined as follows:
a0 := �x�, x0 := x, xn+1 = 1/(xn − an) and an+1 = �xn+1�. We conclude
the sequence when xn is an integer (which only happens when x ∈ Q). We
define the nth convergent as

pn

qn
:= [a0, a1, . . . , an].

3.12. Lemma. The following formulas hold.

i) x = [a0, a1, . . . , an−1, xn].
ii) pn+1 = an+1pn + pn−1 (where p0 = a0 and p1 = a1a0 + 1), while

qn+1 = an+1qn + qn−1 (where q0 = 1 and q1 = a1).
iii) If pn/qn = [a0, . . . , an], then

[a0, . . . , an, y] =
pny + pn−1

qny + qn−1
·

iv) qnpn−1 − pnqn−1 = (−1)n.
v) qnpn−2 − pnqn−2 = (−1)n−1an.

Proof. Let us point out right away that for all real numbers ai, we have
[a0, . . . , an−1, an] = [a0, . . . , an−1 + 1/an]. The first formula can be proven
by induction (the case n = 0 is satisfied by construction). Assume therefore
that x = [a0, . . . , an−1, xn], hence [a0, . . . , an, xn+1] = [a0, . . . , an−1, an +
1/xn+1] = [a0, . . . , an−1, xn] = x. Next,

[a0, . . . , an−1, an, an+1] = [a0, . . . , an−1, an + 1/an+1] =
p′n
q′n

,

where we can assume (by induction) that the p′n, q′n are given by the formu-
las p′m+1 = a′

m+1p
′
m + p′m−1, where a′

m = am for m � n− 1 and a′
n = an +

1/an+1. Thus p′n = (an +1/an+1)p′n−1 +p′n−2 = (an +1/an+1)pn−1 +pn−2
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and q′n = (an + 1/an+1)q′n−1 + q′n−2 = (an + 1/an+1)qn−1 + qn−2, hence

p′n
q′n

=
(an + 1/an+1)pn−1 + pn−2

(an + 1/an+1)qn−1 + qn−2

=
an+1(anpn1 + pn−2) + pn−1

an+1(anqn1 + qn−2) + qn−1

=
an+1pn + pn−1

an+1qn + qn−1
·

Formula iii) can be proven similarly to the previous formulas. Formulas
iv) and (v) can also be proven by induction, for example

pn+1qn − qn+1pn = (an+1pn + pn−1)qn − (an+1qn + qn−1)pn

= − (pnqn−1 − qnpn−1),

and the same for (v). �

3.13. Remark. We can also take as our initial values of the sequences
(pn) and (qn) the values p−2 = 0, p−1 = 1 and q−2 = 1, q−1 = 0. Moreover,
it often helpful to write the formulas in matrix form, for example:

(
pn pn−1

qn qn−1

)
=
(

a0 1
1 0

)
· · ·
(

an 1
1 0

)
.

3.14. Remark. These induction formulas allow us to calculate pn and qn,
starting with the computation of the an; since an � 1, we also see that qn

grows at least as fast as a Fibonacci sequence and that the following lower

bound holds: qn �
(

1 +
√

5
2

)n−1

. Thus an approximation |x − p/q| <

1/2q2, which we will show below must be a convergent of the continued
fraction of x, can be computed in O(log q) steps; this remark is used in
Exercise 3-6.12.

The following theorem can also be deduced from these formulas.

3.15. Theorem. The sequence (pn/qn) converges to x. More precisely, the
sequence of the p2n/q2n is increasing and converges to x and the sequence
p2n+1/q2n+1 is decreasing and converges to x. The following approximation
holds:

1
qn(qn + qn+1)

<
∣∣∣x− pn

qn

∣∣∣ < 1
qnqn+1

·

Furthermore, the convergents give the best approximations of x, in the fol-
lowing sense. If q � qn and p/q 	= pn/qn, then

qn

∣∣∣x− pn

qn

∣∣∣ < q
∣∣∣x− p

q

∣∣∣ .
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Furthermore, if
∣∣∣x− p

q

∣∣∣ < 1/2q2, then there exists n such that p/q =

pn/qn.

Proof. We know that an = �xn� � xn. Now, the function [a0, . . . , an] is
clearly an increasing (resp. decreasing) function of am, for m even (resp.
m odd). Therefore, if n is even, then [a0, . . . , an] � [a0, . . . , xn] = x, and
the converse if n is odd. By the lemma, we know

pn−1

qn−1
− pn

qn
=

(−1)n

qnqn−1
and

pn−2

qn−2
− pn

qn
=

(−1)n−1an

qnqn−2
·

Hence we have the ordering
p2n

q2n
<

p2n+2

q2n+2
< x <

p2n+1

q2n+1
<

p2n−1

q2n−1
,

and therefore |x− pn/qn| � |pn/qn− pn+1/qn+1| = 1/qnqn+1, whereas |x−
pn/qn| � |pn/qn−pn+2/qn+2| = an+2/qnqn+2 = an+2/qn(an+2qn+1+qn) �
1/qn(qn+1 + qn). These approximations clearly show that the sequence
(pn/qn) converges to x. Observe also that 1/qn+2 < |pn − xqn| < 1/qn+1

and that the sequence (|pn − xqn|) is therefore strictly decreasing. Now
let p/q be a fraction with q � qn and p/q 	= pn/qn. We can assume that
qn−1 < q. If we solve the system of linear equations upn + vpn−1 = p and
uqn +vqn−1 = q, then we obtain u = ±(pqn−qpn−1) and v = ±(pqn−qpn).
In particular, u and v are non-zero integers. Since q = uqn+vqn−1 � qn, we
see that u and v have opposite signs and that the two quantities u(pn−qnx)
and v(pn−1− qn−1x) therefore have the same sign. We know that p− qx =
u(pn − qnx) + v(pn−1 − qn−1x), hence

|p− qx| = |u(pn− qnx)|+ |v(pn−1− qn−1x)| � |pn− qnx|+ |pn−1− qn−1x|.

Finally, if |x− p/q| < 1/2q2, we set x− p/q = εθ/q2 where ε = ±1 and 0 <
θ < 1/2. We will expand p/q = [a0, . . . , am] as a finite continued fraction.
By noticing that if am > 1, we see that [a0, . . . , am] = [a0, . . . , am − 1, 1]
and hence that we can choose2 the parity of m. We choose the parity in
such a way that pm−1q− pqm−1 = (−1)m = ε. We now will define y by the
equality x = (ypm + pm−1)/(yqm + qm−1). Solving explicitly for y yields
y = (q − θqm−1)/θq. By using qm−1 < q and θ < 1/2, we see that y > 1,
and we can therefore write y = [am+1, . . . ], where am+1 � 1. By expanding
the obtained continued fraction x = [a0, . . . , am, am+1, . . . ], we have that
p/q = [a0, . . . , am] is a convergent. �

3.16. Remarks. 1) Whenever x ∈ Q, its expansion as a continued
fraction is finite (i.e., there exists n such that an = 0).

2It can also be shown that this is the only possible ambiguity in the expression of a
continued fraction.
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2) When x ∈ R \Q, we therefore have that x = limn→∞[a0, . . . , an], which
by convention is written x = [a0, . . . , an, . . . ] and which is referred to as
the continued fraction expansion of x.

3) A solution to Pell’s equation p2 − dq2 = 1 provides, as we have seen, a
good approximation p/q of

√
d. It should therefore appear as a convergent

of the continued fraction expansion of
√

d. This is precisely how we find it,
and in fact fairly rapidly, considering Remark 3-3.14.

3.17. Examples. The continued fraction expansion of x =
√

2 and of
y =

√
7 are written respectively as
√

2 = [1, 2, 2, 2, . . . ] and
√

7 = [2, 1, 1, 1, 4, 1, 1, 1, 4, . . . ].

It can be verified that these expansions are periodic. In the case of
√

2, the
initial convergent p0/q0 gives p2

0−2q2
0 = −1 and p1/q1 = 3/2 gives p2

1−2q2
1 =

+1. In the case of
√

7, the convergent p3/q3 = 8/3 gives p2
3−7q2

3 = +1. The
fact that the continued fraction expansion is periodic is a very special case
of Lagrange’s theorem which says that the continued fraction expansion of
the real number x is periodic if and only if x is quadratic, i.e., the root of
a quadratic equation with integer coefficients (see, for example, Hardy and
Wright’s book [4]).

Let us give an example which illustrates the quality of the continued frac-
tion algorithm: finding solutions of the equation x2 − 61y2 = 1 (try to
find a solution to this one by guess and check!). The continued fraction
expansion of x =

√
61 is written

√
61 = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, . . . ],

and the expansion becomes periodic starting at a12 = a1 = 1. The first
convergents are

7
1

, 8
1

, 39
5

, 125
16

, 164
21

, 453
58

, 1070
137

, 1523
195

, 5639
722

,

24079
3083

, 29718
3805

, 440131
56353

, 469849
60158

·

The tenth convergent, p10/q10 = 29718/3805, provides the first solution to
x2 − 61y2 = −1. The fundamental solution of x2 − 61y2 = 1 is from then
on given by x1 + y1

√
61 = (p10 + q10

√
61)2, or

(x1, y1) = (1766319049, 226153980).

We will indicate, without proof (see for example the entertaining article
[50] which describes, among other things and in detail, Archimedes’ cattle
problem, whose solution comes from the solution of a Pell equation), the
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following facts, which can be checked in the previous examples. We know
that the expansion of

√
d can be written as

√
d = [a0, . . . , ar, ar+1, . . . ].

i) If r is the first subscript such that ar+1 = 2a0, then the expansion of√
d becomes periodic starting at the latter coefficient (i.e., the sequence

a1, . . . , ar, 2a0 repeats).
ii) If r is odd (which is the case for d = 7), then (pr, qr) provides the

smallest solution to Pell’s equation x2 − dy2 = +1 and there are no
solutions to the equation x2 − dy2 = −1.

iii) If r is even (which is the case for d = 2 or 61), then (pr, qr) provides
the smallest solution to the equation x2 − dy2 = −1 and the smallest
solution to Pell’s equation x2 − dy2 = +1 is given by (p2r+1, q2r+1).

4. Rings of Algebraic Integers
In this part, we will give you an idea of what some the general properties
of ring extensions of Z are. These properties will lead us to the notion of
a Dedekind ring, which in turn generalizes some of the examples that we
have already encountered with Z[

√
d] and Z[exp(2πi/n)]. The main tools

are algebra and some geometry of numbers.

We are familiar with the notion of an algebraic element (here “algebraic” is
always taken to be in the sense “algebraic over the rationals”); this notion
comes from field theory, and the corresponding notion for rings is as follows.

4.1. Definition. An algebraic integer is a complex number, α, which is
a root of a monic polynomial with integer coefficients. More generally, an
element α is called integral or an algebraic integer over a ring A if it is the
root of a monic polynomial with coefficients in A.

Example. A rational number α = a/b is the root of bX − a ∈ Z[X] and, by
making use of the fact that Z is factorial, we see that if α is an algebraic
integer, then α ∈ Z.

4.2. Definition. An integral domain A is integrally closed if the only
elements of K := Frac(A) which are algebraic over A are elements of A.

Examples. We can easily show that a principal or factorial ring is integrally
closed. However, the ring A = Z[

√
5] is not integrally closed, since the

number α := 1 +
√

5
2

, which is in Q(
√

5), is a root X2 −X − 1, which is
integral over A (and even over Z) without being in A.
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4.3. Lemma. An element α is an algebraic integer over A if and only if
A[α] is a finitely generated A-module, and also if and only if the ring A[α]
is contained in a subring containing A and α, which is a finitely generated
A-module.

4.4. Corollary. The sum, difference and product of two algebraic integers
is an algebraic integer. If α is integral over B and every element of B
is integral over A, then α is integral over A. In particular, if K is an
extension of Q, then the set:

OK := {α ∈ K | α is an algebraic integer}

is a ring.

Proof. If α is integral over A, then it satisfies an equation αn = an−1α
n−1+

· · · + a0 with ai ∈ A. The A-module A[α] = A + Aα + · · · + Aαn−1 is
therefore finitely generated. Conversely, if A[α] is contained in a finitely
generated A-module, Au1+· · ·+Aum, we can write αui =

∑m
j=1 ai,juj , with

ai,j ∈ A. We will therefore let M be the m ×m matrix of the coefficients
ai,j . The polynomial P (X) := det (XId−M) is monic with coefficients
in A and P (α) = 0 (think of the Cayley-Hamilton theorem, or redo its
proof), and hence α is integral over A. For the corollary, observe that if α
and β are algebraic integers, then Z[α, β] is a finitely generated Z-module (a
generating set is given by a finite number of αkβl), and hence its elements
are all integral over Z. �

4.5. Definition. A number field is a finite extension K of Q and OK is
the ring of integers of K.

4.6. Remark. We can always assume (by the primitive element theorem)
that there exists an α such that K = Q(α). It should also be noted that if
α is algebraic over Q, then there exists an integer d ∈ Z (a “denominator”)
such that dα is an algebraic integer. In particular, K is the field of fractions
of OK .

4.7. Proposition. The ring OK is integrally closed.

Proof. An element of K which is integral over OK is integral over Z, this is
an immediate consequence of Lemma 3-4.3 above. It is therefore in OK .�

4.8. Definition. Let K be a number field and α ∈ K; we define the norm
N(α) = NK

Q(α) (resp. the trace Tr(α) = TrK
Q(α)) to be the determinant

(resp. the trace) of multiplication by α, viewed as a Q-linear map from K
to K.
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Afterwards, we will give a more concrete expression for the trace and the
norm.

4.9. Lemma. Let α be algebraic over Q and K = Q(α), and let

P (X) = Xd + ad−1X
d−1 + · · ·+ a0 = (X − α1) · · · (X − αd)

be the minimal polynomial of α over Q. Then we have

NK
Q(α) = α1 · · ·αd and TrK

Q(α) = α1 + · · ·+ αd.

More generally, if α ∈ K and m = [K : Q(α)], then NK
Q(α) = (α1 · · ·αd)m

and TrK
Q(α) = m(α1 + · · ·+ αd).

Proof. We are only going to prove the case K = Q(α) and leave the
general case as an exercise. It is sufficient to notice that the characteristic
polynomial of multiplication by α, seen as a Q-linear map from K to K,
is nothing but the minimal polynomial of α. This is easily seen by taking
the elements 1, α, . . . , αd−1 as a basis for K over Q. �

4.10. Remark. We can immediately deduce from the previous lemma
that if α ∈ OK , then TrK

Q(α) and NK
Q(α) are in Z. This follows from the

fact that they are in Q and are algebraic integers.

4.11. Examples.

1. If K = Q(
√

d), where d is square-free, then OK = Z[
√

d] if d ≡ 2 or

3 mod 4, but OK = Z
[

1 +
√

d
2

]
if d ≡ 1 mod 4. This follows from

the fact that if α ∈ OK , we can write α = x + y
√

d, where a priori
x, y ∈ Q. We know that the trace and the norm are in Z and actually,
since α is a root of X2 −Tr(α)X + N(α), this is equivalent to α ∈ OK .
Now, Tr(α) = 2x and N(α) = x2 − dy2, hence x = a/2, y = b/2, where
a, b ∈ Z and a2 − db2 ∈ 4Z. If a is even, then b is also even and vice
versa. If a and b are odd, we obtain d ≡ 1 mod 4, which proves the
result.

2. If K = Q(ζ), where ζ =: exp(2πi/p), then OK = Z[ζ]. We have seen
that λZ[ζ] ∩ Z = pZ (recall that λ := 1 − ζ). If α = a0 + a1ζ +
· · ·+ap−2ζ

p−2 is an algebraic integer, where the ai are a priori rational
numbers, we can check that Tr(λα) = pa0. Now, Tr(λα) is in the ideal
generated by λ, but also in Z, so it is therefore an integer multiple of p.
We can deduce from this that a0 ∈ Z. Then we start over again with
α′ := ζ−1(α− a0), and we then can conclude that a1 ∈ Z, and so on.
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4.12. Proposition. If [K : Q] = n, then there exist e1, . . . , en ∈ OK such
that OK = Ze1 ⊕ · · · ⊕ Zen (as an abelian group or Z-module).
More generally, if I is a non-zero ideal of OK , then there exist e′1, . . . , e

′
n ∈

OK such that I = Ze′1 ⊕ · · · ⊕ Ze′n.

Let us point out that it is not always true that there exists an algebraic
integer α such that OK = Z[α].

Proof. The Q-bilinear form (x, y) := Tr(xy) from K ×K to Q is nonde-
generate (because if x 	= 0, then Tr(xx−1) = [K : Q] 	= 0, or see Exercise
3-6.15). If f1, . . . , fn are vectors in a basis of K over Q, we can assume,
up to multiplication by a common denominator d0 ∈ Z, that they are
in OK . Let f∗

1 , . . . , f∗
n be a dual basis (i.e., such that Tr(fif

∗
j ) = δij)

and let d be a common denominator of the f∗
j . For x ∈ OK , we can

therefore write x = x1f1 + · · · + xnfn where xi ∈ Q. We know that
Tr (x(df∗

i )) = d Tr(xf∗
i ) = dxi is in Z, and therefore

Zf1 ⊕ · · · ⊕ Zfn ⊂ OK ⊂ 1
d

(Zf1 ⊕ · · · ⊕ Zfn) ,

which proves the first assertion.
If I = αOK , then we can choose e′i = αei. If the ideal is not principal
anymore, then we can nevertheless choose α ∈ I \ {0} such that, for a
certain d � 1, we have

Zαe1 ⊕ · · · ⊕ Zαen = αOK ⊂ I ⊂ 1
d

αOK ⊂ 1
d

(Zαe1 ⊕ · · · ⊕ Zαen) .

The second assertion follows from this. �

4.13. Definition. Let I be a non-zero ideal of OK . The norm of the ideal
is defined as

N(I) := card (OK/I) .

4.14. Proposition. If α ∈ OK , then

N(αOK) =
∣∣NK

Q(α)
∣∣ .

Furthermore, the norm is multiplicative on ideals: N(IJ) = N(I)N(J).

Proof. If M is a Z-linear map from Zn to Zn with non-zero determinant, we
have card(Zn/MZn) = |det(M)|. If we denote by M(α) the multiplication
by α from OK to OK , we obtain

N(αOK) = card (OK/αOK) = |det(M(α))| =
∣∣NK

Q(α)
∣∣ .

For the moment, we will settle for proving the second property in two
special cases: the case where I and J are comaximal, i.e., I +J = OK , and
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the case where one of the two ideals is principal. The general case is more
subtle and will be proven after the proof of Theorem 3-4.18 (we leave it to
the reader to verify that no vicious circle is going on).

If I +J = OK , then there exist i0 ∈ I and j0 ∈ J such that i0 + j0 = 1. We
can deduce from this firstly that I∩J = IJ because x ∈ I∩J can be written
x = xi0 + xj0 and secondly that the ring homomorphism OK → OK/I ×
OK/J , whose kernel is I ∩ J , is surjective because bi0 + aj0 ≡ a mod I and
bi0 +aj0 ≡ b mod J . This homomorphism thus induces a ring isomorphism
OK/IJ ∼= OK/I ×OK/J (by the generalized Chinese remainder theorem).
Thus we have N(IJ) = N(I)N(J).

Now assume that J = αOK . It follows from the exact sequence (of OK-
modules or simply of abelian groups),

0 → J/IJ → OK/IJ → OK/J → 0,

that N(IJ) = N(J) card(J/IJ). The morphism φ : OK → J/IJ given by
φ(x) := αxmod IJ is surjective, and its kernel is equal to {x ∈ OK | αx ∈
αI} = I. The desired equality N(I) = card(OK/I) = card(J/IJ) follows
from this. �

Example of a non-principal ring. The ring Z[i
√

3] is neither principal nor
factorial, because it is not integrally closed: Z[i

√
3] is strictly contained in

Z[(1 + i
√

3)/2], which is principal, and has the same fraction field, namely
Q(i

√
3). More fundamentally, the rings Z[

√
10] and Z[i

√
5] are neither

principal nor factorial. To see this, notice that

9 = 32 = (
√

10 + 1)(
√

10− 1) and 6 = 2·3 = (1 + i
√

5)(1− i
√

5)

give two essentially different decompositions into products of irreducible
elements. In fact, we can show directly that the ideal generated by 3 and√

10 + 1 in Z[
√

10] (resp. the ideal generated by 2 and i
√

5 + 1 in Z[i
√

5])
is not principal, because the quotient by the ideal is Z/3Z (resp. Z/2Z)
and there is no element of norm 3 in Z[

√
10] (resp. of norm 2 in Z[i

√
5]).

In order to measure how non-principal a ring is, we can introduce the
following equivalence relation on ideals.

4.15. Definition. Two non-zero ideals I and J are equivalent, denoted
I ∼ J , if there exist two non-zero elements α, β ∈ OK such that αI = βJ .

The ring OK is principal if and only if there is only one equivalence class.
We will see that the set of classes is finite (Theorem 3-4.23, below) and
forms a group, i.e., every ideal is invertible: for every non-zero ideal I,
there exist a non-zero α ∈ OK and an ideal J such that IJ = αOK .
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4.16. Definition. A ring A is a Dedekind ring if it is Noetherian, integrally
closed and if every non-zero prime ideal is maximal.

4.17. Examples. The fundamental example of a Dedekind ring is the
ring of integers, OK , of a number field. To see this, it is integrally closed
(cf. Proposition 3-4.7) and, since the quotient by a non-zero ideal is finite,
the two other conditions can be easily checked. The set of ideals which
contain a given non-zero ideal is finite, and a finite ring is integral if and
only if it is a field.
If k is a field, the ring k[T ] is a Dedekind ring since it is principal. More gen-
erally, rings of the form A = k[X, Y ]/(f) = k[x, y] are Dedekind provided
that they are integrally closed. (be careful: for example, if f = Y 2 −X3,
the element α = y/x is integral over A without being in A).

The fundamental property of Dedekind rings—that which in some sense
replaces the notion of factoriality—is formulated in the following theorem.

4.18. Theorem. Every non-zero ideal of OK can be decomposed as a
product of prime ideals; furthermore, this decomposition is unique (up to
the order).

Proof. We will start by stating some purely algebraic remarks. If β ∈ K
and I is an ideal in OK which has the property that βI ⊂ I, then Lemma
3-4.3 shows that β is an algebraic integer. If I and J are two ideals such
that I = IJ , then J = OK . To see this, if α1, . . . , αn is basis of I over Z,
then there exist bij ∈ J such that αi =

∑
j bijαj , hence det(bij − δij) = 0,

and so 1 ∈ J . From this, we can deduce the following assertion:

if αI = JI, then J = αOK .

To see why this is true, for every β ∈ J we have βI ⊂ JI = αI, hence
(βα−1)I ⊂ I, and therefore βα−1 is an algebraic integer, and moreover
β ∈ αOK . Thus α−1J is an ideal in OK and α−1JI = I, therefore α−1J =
OK and J = αOK . In the following section, we will use results from the
geometry of numbers to show that there are a finite number of equivalence
classes of ideals modulo principal ideals. If I is an ideal in OK , then there
exist m < n such that Im and In are in the same class and, moreover,
αIm = βIn. We can deduce from this that αOK = βIn−m, and hence

for every ideal I of OK , there exist h�1 and γ ∈ OK such that Ih =γOK .

This allows us to prove the “cancellation” property of ideals:

if IJ = IJ ′, then J = J ′.

To see why this is true, by multiplying by Ih−1, we obtain γJ = γJ ′,
hence J = J ′. We can also show that inclusion of ideals is equivalent to
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divisibility:

if I ⊂ J , then there exists an ideal J ′ such that I = JJ ′.

This can be explained by noticing that if Jh = βOK , we obtain Jh−1I ⊂
βOK , thus J ′ := β−1Jh−1I is an ideal in OK , and JJ ′ = β−1JhI = I.

We will now prove the existence of the decomposition of an ideal. Let
I 	= OK . If p1 is a maximal ideal which contains I, I ⊂ p1, then I = p1I1;
if I1 	= OK , we can still write I = p1p2I2. In this way, we iteratively
construct a sequence of prime ideals such that I = p1 · · · psIs, and since
OK is Noetherian, the process must eventually stop, i.e., there exists an n
such that In = OK , and hence I = p1 · · · pn.

We are now going to prove the uniqueness of the decomposition of an ideal.
In order to do this, we will first point out that the previous results show
that pm+1 is included in pm and distinct from pm. Hence we can define

ordp(I) := max {m � 0 | I ⊂ p
m} .

We can easily check that ordp(I) is zero for almost every p and that

I =
∏

p

p
ordp(I).

This, together with the cancellation property, finishes the proof. �

Now we can move on to the general case of the formula N(IJ) = N(I)N(J).

Proof. (End of the proof of Proposition 3-4.14) It is enough, by the theorem
on the decomposition of ideals stated above (Theorem 3-4.18), to show that
the formula N(IJ) = N(I)N(J) holds when J is a non-zero prime ideal, in
other words, for J maximal. Since IJ ⊂ I, we know that

card (OK/IJ) = card (OK/I) card (I/IJ) .

Since J is maximal, k := OK/J is a (finite) field. Since I/IJ is also
an OK-module killed by J , we can consider it as a k-module or k-vector
space. If we show that it has dimension 1, then we have proven that
card(I/IJ) = card (OK/J) which completes the proof. Now, a k-vector
subspace {0} ⊂ L ⊂ I/IJ is also an A-module, and therefore corresponds
to an ideal I ′ such that L = I ′/IJ where IJ ⊂ I ′ ⊂ I. This gives us
I ′ = IJ ′ where J ⊂ J ′ ⊂ OK ; since J is maximal, we must have that
J ′ = J or OK , and hence I ′ = IJ or I ′ = I. Thus we can conclude that
L = {0} or I/IJ . �

4.19. Remark. The statement of the theorem (but not the proof) is also
true for a general Dedekind ring—see for example P. Samuel’s book Théorie
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algébrique des nombres [7] (Chap. 3). Another important property, which
also serves as a definition for a Dedekind ring, is that fractional ideals are
invertible. In fact, the key idea in the proof given in [7] is to show that
if I is a maximal ideal in OK and if we set I∗ := {x ∈ K | xI ⊂ OK},
then II∗ = OK . In particular, if we quotient the unitary monoid of ideals
by the submonoid of prime ideals, we obtain a group, explicitly described
below on page 104 (a fractional ideal I is a OK-submodule of K such that
dI ⊂ OK for some d ∈ OK and which is invertible if there exists I ′ such
that II ′ = OK).

We are now going to give a more thorough description of prime ideals. Let
us first point out that if p is a non-zero prime ideal in OK , then p ∩ Z is
a non-zero prime ideal in Z, hence of the form pZ for some prime number
p. Thus every prime ideal p can be associated to a p, which is also the
characteristic of the residue field OK/p. Conversely, if p is a prime number,
then there is no reason that the ideal that it generates in OK should still
be prime and is therefore written, in light of the theorem above,

pOK = p
e1
1 · · · pes

s where pi are distinct prime ideals and ei � 1.

Let fi := [OK/pi : Fp], so that N pi = pfi . By taking the norms, we obtain

N(pOK) = pn = N p
e1
1 · · ·N p

es
s = pe1f1+···+esfs ,

from which we have the relation
s∑

i=1

eifi = n. (3.4)

By using the Chinese remainder theorem, we also have that

OK/pOK
∼= (OK/p

e1
1 )× · · · × (OK/p

es
s ) .

Describing the prime ideals in K thus boils down to describing the decom-
position in OK of primes in Z.

4.20. Example. (Decomposition of primes in a quadratic field.) In the
case where K = Q(

√
d) and [K : Q] = 2 (we can assume that d is square-

free), we have three possibilities for its decomposition.

i) We can have pOK = p1p2 where N pi = p; we say then that p is split in
K.

ii) We can have that pOK = p1 where N p1 = p2; we say then that p is
inert in K.

iii) We can have pOK = p2
1 where N p1 = p; we say then that p is ramified

in K.
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These cases correspond respectively to s = 2, e1 = e2 = 1 and f1 = f2 = 1;
s = 1, e1 = 1 and f1 = 2; and s = 1, e1 = 2 and f1 = 1. We can also
characterize them using the Legendre symbol.

4.21. Theorem. Let K = Q(
√

d) be a quadratic field, where d is square-
free. If p is an odd prime number, then

i) p is split in K if and only if
(

d
p

)
= +1;

ii) p is inert in K if and only if
(

d
p

)
= −1;

iii) p is ramified K if and only if
(

d
p

)
= 0, in other words if p divides d.

For the prime 2 the decomposition law is given by

i) 2 is split in K if and only if d ≡ 1 mod 8;
ii) 2 is inert K if and only if d ≡ 5 mod 8;
iii) 2 is ramified in K if and only if d ≡ 2 or 3 mod 4.

Proof. If p is an odd prime, we have

OK/pOK
∼= Z[

√
d]/pZ[

√
d].

This is a trivial remark if d ≡ 2 or 3 mod 4, and for the case d ≡ 1 mod 4,
it suffices to notice that if b is an odd integer,

a + b

(
1 +

√
d

2

)
= a +

(
b− p

2

)
(1 +

√
d) + p

(
1 +

√
d

2

)
,

hence OK = Z[
√

d] + pOK . Next, we have the isomorphisms

A := OK/pOK
∼= Z[

√
d]/pZ[

√
d] ∼= Z[X]/(p, X2 − d)Z[X]

∼= Fp[X]/(X2 − d)Fp[X].

Therefore, we have the following three cases. Either X2−d can be factored
in Fp[X] into two distinct factors, which corresponds to

(
d
p

)
= +1, hence

A ∼= Fp × Fp, and p is split; or X2 − d is irreducible in Fp[X], which

corresponds to
(

d
p

)
= −1, hence A ∼= Fp2 , and p is inert; or finally

X2 − d has a double root in Fp[X], which corresponds to d = 0 in Fp and(
d
p

)
= 0, hence A ∼= Fp[X]/X2Fp[X], and p is ramified.

If p = 2 and d ≡ 2 or 3 mod 4, then we have

OK/2OK
∼= Z[

√
d]/2Z[

√
d] ∼= Z[X]/(2, X2 − d)Z[X]

∼= F2[X]/(X2 − d)F2[X] ∼= F2[X]/(X − d)2F2[X],

and hence 2 is ramified. Now, if d ≡ 1 mod 4, since the minimal polynomial
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of 1 +
√

d
2

is X2 −X − d− 1
4

, then we have

OK/2OK
∼= Z

[
1 +

√
d

2

]
/2Z

[
1 +

√
d

2

]

∼= Z[X]/(2, X2 −X − d− 1
4

)Z[X]

∼= F2[X]/(X2 −X − d− 1
4

)F2[X].

Thus if d− 1
4

≡ 0 mod 2, in other words d ≡ 1 mod 8, then X2 − X −
d− 1

4
= X(X−1) in F2[X], hence OK/2OK

∼= F2×F2, and 2 is split. But

if d− 1
4

≡ 1 mod 2, in other words d ≡ 5 mod 8, since X2 −X − d− 1
4

=

X2 + X + 1 is irreducible in F2[X], then OK/2OK
∼= F4, and 2 is inert. �

4.22. Remark. We will now consider an odd prime number p and K =
Q(
√

d). We can see that there exists a prime ideal p in OK such that N p = p

if and only if p is ramified or split, in other words if and only if the Legendre
symbol

(
d
p

)
equals 0 or 1. Thus we recover the congruence conditions for

the solvability of the equation x2 − dy2 = p established in Example 1-3.6.

We then know that this equation or the equation NK
Q(x + y

1 +
√

d
2

) =

x2 +xy− d− 1
4

y2 = p, where d ≡ 1 mod 4, has a solution if and only if the
congruence conditions are satisfied and the associated ideal p is principal.
From this, we can deduce another proof of the two-square theorem.

We have shown that every ideal is invertible modulo the equivalence relation
given in 3-4.15 and can therefore talk about the ideal class group, denoted
C�K or Pic(OK). Thus the ring OK is principal if and only if the group
C�K is reduced to one element. We have seen that the rings OK are in
general not principal, but we can nevertheless say that they are “almost
principal” by the finiteness theorem, which we will now state.

4.23. Theorem. The class group of ideals C�K of a number field K is
finite.

4.24. Corollary. Let hK := card(C�K), which is called the class number
of K. For every non-zero ideal I in the ring OK , the ideal IhK is principal.
Conversely, if gcd(hK , m) = 1 and Im is principal, then I is principal.
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4.25. Remark. The corollary above is essentially due to Kummer, who
used the following variation of it: if K = Q(exp(2iπ/p)) has the property
that p does not divide the number of classes hK (we say then that p is
regular), then an ideal whose pth power is principal is itself principal. This
property, in addition to another one related to units in the always regular
case, allowed Kummer to prove “Fermat’s last theorem” for all regular prime
exponents. The smallest non-regular prime exponent is 37. Kummer’s
proof follows the outline of the proof of Theorem 3-2.6; the first case is
handled with the aid of congruences modulo λp and the second case with the
aid of a descent where Kummer’s lemma on the units of a cyclotomic field
plays a crucial role (for the details, see the book by Borevich-Shafarevich
[2], or also [58] or [77]).

In the following section, we will go over the main points of the proof of
Theorem 3-4.23, as well as the structure of the group of units of OK . These
last two properties (finiteness of the class group and finite generation of
the group of units) are not purely algebraic (they are moreover false for
Dedekind rings in general), and the proof of these properties will rely on
the geometry of numbers.

5. Geometry of Numbers
We will start with the following statement from topology, which generalizes
Lemma 3-3.5.

5.1. Proposition. A discrete subgroup G in Rn has a basis over Z formed
of r linearly independent vectors over R (where r � n); in particular,
G ∼= Zr.

Proof. Let e1, . . . , er be a maximal system of vectors of G which are linearly
independent over R; it suffices to prove that Ze1 + · · ·+ Zer is a subgroup
of finite index in G. The intersection of G and the compact set K0 :=
{x1e1 + · · · + xrer | xi ∈ [0, 1]} is a finite set. Now let x ∈ G. It can be
naturally written as x = x1e1 + · · ·+ xrer, where xi are a priori in R. The
vectors y(m) := (mx1−�mx1�)e1+· · ·+(mxr−�mxr�)xrer are all in G∩K0.
If we let m vary from 0 to M := card(G∩K0), two of them will of course be
equal, say y(m1) = y(m2). This gives us xi = (�m1xi�−�m2xi�)/(m1−m2),
and hence, by letting d := M !, we have

Ze1 + · · ·+ Zer ⊂ G ⊂ 1
d

(Ze1 + · · ·+ Zer) ,

which finishes the proof. �
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5.2. Definition. Whenever r = n, we say that G is a lattice in Rn; this
boils down to requiring that G be discrete and that Rn/G be compact. We
therefore define the volume or determinant of a lattice G to be the absolute
value of the determinant of a basis of G (with respect to the canonical basis
of Rn).

5.3. Theorem. (Minkowski) Let K ⊂ Rn be a compact, convex, and
symmetric (i.e., x ∈ K implies that −x ∈ K) set. Assume that vol(K) �
2n. Then there exists a non-zero x in K ∩ Zn.

More generally, if Λ is a lattice and vol(K) � 2n det(Λ), then there exists
a non-zero x in K ∩ L.

Remark. The statement is optimal because, for example, the open cube
defined by maxi |xi| < 1 is convex and symmetric and has volume equal
to 2n, while the compact cube defined by maxi |xi| � 1 − ε is convex and
symmetric and has volume equal to 2n(1− ε)n.

Proof. The second statement follows from the first by making a linear
variable change which takes the lattice Λ to Zn.

We set C := [0, 1[n. Let T ⊂ Rn, and suppose that (T + λ) ∩ (T + μ) = ∅
for λ 	= μ ∈ Zn. This gives us T = ∪λ∈Zn (T ∩ (C + λ)), hence

vol(T ) =
∑

λ∈Zn

vol (T ∩ (C + λ)) =
∑

λ∈Zn

vol ((T − λ) ∩ C)

= vol ((∪λ∈Zn(T − λ)) ∩ C) � vol(C) = 1.

Conversely, if vol(T ) > 1, then there exists x ∈ T∩(T +λ) with 0 	= λ ∈ Zn,
and also there exists such a λ in T − T . We now return to the proof
by letting T := 1

2
K =

{
x
2
| x ∈ K

}
. Then we have K = T − T and

vol(T ) = 2−nvol(K). If vol(K) > 2n, then K ∩ (Zn \ {0}) is nonempty.

If vol(K) = 2n and K is compact, we get the same result. For every m > 0,
the set Km = (1 + 1/m)K contains a non-zero element xm in the lattice
Zn. The sequence (xm), with values in the intersection of the compact set
K1 and the lattice Zn, contains an eventually constant subsequence, whose
limit is x ∈ Zn \ {0}. Furthermore, the point x is in ∩m>0Km, which
coincides with the compact set K. �

Applications. We can use Minkowski’s theorem above to give other proofs
of the two-square and four-square theorems.

A prime number p ≡ 1 mod 4 is the sum of two squares.
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Proof. Let a ∈ Z such that a2 + 1 ≡ 0 mod p, and we define the lattice

Λ := {(x, y) ∈ Z2 | y ≡ ax mod p}.

Then det(Λ) = p and vol(B(0, r)) = πr2, hence whenever πr2 � 4p, there
exists a non-zero vector in B(0, r) ∩ Λ. We can choose r :=

√
4p/π. Then

there exists a non-zero (x, y) ∈ Λ such that

0 < x2 + y2 � r2 = 4p/π < 2p.

So we have that x2 + y2 ≡ (1 + a2)x2 ≡ 0 mod p, and hence x2 + y2 = p.�

Every positive integer is the sum of four squares.

Proof. Let n = p1 · · · pr be square-free; it suffices to show that n is the sum
of four squares. As in the first proof of Lagrange’s theorem, choose ai and
bi such that

a2
i + b2

i + 1 ≡ 0 mod pi.

Consider the lattice given by

Λ := {x ∈ Z4 | x3 ≡ aix1 + bix2 mod pi and

x4 ≡ bix1 − aix2 mod pi, 1 � i � r} .

The volume of Λ is � (p1 · · · pr)2 = n2. We can choose ρ such that

vol(B(0, ρ)) = 1
2

π2ρ4 = 24 det(Λ), and then by Minkowski’s theorem,

we have 0 	= x ∈ Λ such that 0 < x2
1 + x2

2 + x2
3 + x4

4 � ρ2 < 2n. However,

x2
1 + x2

2 + x2
3 + x4

4 ≡ x2
1 + x2

3 + (aix1 + bix2)2 + (bix1 − aix2)2 ≡ 0 mod pi.

Thus n divides x2
1 + x2

2 + x2
3 + x4

4 and hence x2
1 + x2

2 + x2
3 + x4

4 = n. �

5.4. Remark. We could also prove the four-square theorem by proving
Jacobi’s formula (see Exercise 3-6.11).

If we denote by r4(n) := card{(x, y, z, t) ∈ Z4 | x2 + y2 + z2 + t2 = n}, then

r4(n) = 8
∑

d|n
4	 | d

d =
{ 8

∑
d|n d if n is odd,

24
∑

d|n,2 � | d d if n is even, (3.5)

where n > 0. To see why this is true, the right hand side of the equality is
clearly positive. This formula can be written in terms of generating func-
tions, where we denote by rk(n) the number of ways to write n as the sum
of k squares, i.e., rk(n) := card

{
(x1, . . . , xk) ∈ Zk | x2

1 + · · ·+ x2
k = n

}
.
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We will define the following series (formal or convergent if |q| < 1):

Θ(q) =
∑

n∈Z

qn2
,

so that

Θ(q)k =

(
∑

n∈Z

qn2

)k

=
∑

n∈N

rk(n)qn,

and likewise

Z(q) =
∞∑

n=1

nqn

1− qn =
∑

n∈N∗

σ(n)qn, where σ(n) =
∑

d|n
d.

Then Jacobi’s formula can be written as

Θ(q)4 = 1 + 8
(
Z(q)− 4Z(q4)

)
.

The following theorem of Hermite can also be proven using Minkowski’s
theorem (although Hermite’s method provides a better constant γn).

5.5. Theorem. There exists a constant γn such that if Q : Rn → R is a
positive-definite quadratic form, then

m(Q) := min
x∈Zn\{0}

Q(x) � γn (det Q)1/n
.

Proof. Consider the ellipsoid BQ(r) := {x ∈ Rn | Q(x) � r2}; its volume
is vnrn/

√
det(Q), where vn is the volume of the unit ball for the usual

Euclidean norm. We can choose r in such a way that this volume is equal
to 2n. Therefore, there exists x ∈ Zn \ {0} in BQ(r) which satisfies

Q(x) � r2 = 4
v2/n

n

(det Q)1/n
. �

Let us now proceed to some applications to general number field theory.

If K = Q(α) and P is the minimal polynomial of α, then n = [K : Q] =
deg(P ), and P has r1 real roots α1, . . . , αr1 and r2 pairs of complex roots
αr1+1, ᾱr1+1, . . . , αr1+r2 , ᾱr1+r2 (so n = r1 + 2r2). The embeddings from
K into R are therefore given by σi(α) = αi (for 1 � i � r1) and the
complex (nonreal) embeddings by σr1+i(α) = αr1+i, σ̄r1+i(α) = ᾱr1+i (for
1 � i � r2).

5.6. Theorem. (Dirichlet’s unit theorem) Let K be a number field with r1

real embeddings and r2 pairs of complex conjugate embeddings. The group
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of units O∗
K is a finitely generated abelian group, which is isomorphic to the

direct product of the finite group of roots of unity of K and the free group
Zr, where r := r1 + r2 − 1.

Proof. We are going to prove this theorem for an integer r, where r �
r1 + r2 − 1 (see the remarks below and Exercise 3-6.23 for the complete
proof). We will proceed as we did when we looked at the units of Q(

√
d).

To do this, we introduce the homomorphism L : O∗
K → Rr1+r2 defined by

L(α) := (log |σ1(α)|, . . . , log |σr1(α)|, 2 log |σr1+1(α)|, . . . , 2 log |σr1+r2(α)|) ,

and we will show that there are only a finite number of elements α ∈ O∗
K

such that L(α) is contained in a given ball in Rr1+r2 , so that the kernel
turns out to be finite, consisting of roots of unity contained in K, and the
image L(O∗

K) turns out to be discrete. We can observe that the image is
contained in the hyperplane x1 + · · ·+xr1+r2 = 0 because log |NK

Q(α)| = 0.
Finally, since a discrete subgroup of Rm is isomorphic to Zr, where r � m,
we have the statement of the theorem when r � r1 + r2 − 1. �

5.7. Examples. An imaginary quadratic field satisfies r1 = 0 and r2 = 1,
hence r = 0, i.e., O∗

K is finite. A real quadratic field satisfies r1 = 2 and
r2 = 0, hence r � 1; actually r = 1 and O∗

K
∼= {±1} × Z as we have seen

in Theorem 3-3.3. In the case K = Q( 3
√

2), we have r1 = r2 = 1 hence
r � 1, and so by setting α := 3

√
2 to lighten the notation, we see that

(1 + α + α2)(α− 1) = 1, hence 1 + α + α2 is a unit and r = 1. In the case
of K = Q(ζ) where ζ := exp(2πi/p), we see that r1 = 0, r2 = (p − 1)/2,
hence r � (p − 3)/2. It can be shown directly that r = (p − 3)/2 by
checking that the units ηk := sin(kπ/p)/ sin(π/p), for k = 2, . . . , (p− 1)/2,
are independent and therefore generate a subgroup of rank (p− 3)/2 hence
of finite index in O∗

K .

To prove the finiteness of the class group, we use the embedding of K into
E := Rr1 ×Cr2 ∼= R[K:Q] given by

Φ(α) := (σ1(α), . . . , σr1(α), σr1+1(α), . . . , σr1+r2(α)) .

We can show, as we did previously, that the image of OK is discrete. Since
OK

∼= Zn, the image is therefore a lattice with volume V = VK .

Now, we will prove that if r1+r2−1 � 1, then the group of units is infinite.
We consider the convex set in Rn = Rr1 ×Cr2 given by

B(t1, . . . , tr1+r2) := {x ∈ Rr1 ×Cr2 | |xi| � ti} ,

whose volume is 2r1πr2t1 · · · tr1(tr1+1 · · · tr1+r2)
2. We can choose ti with

volume equal to 2nVK . Thus t1 · · · tr1(tr1+1 · · · tr1+r2)
2 equals a fixed con-

stant, say AK . Minkowski’s theorem therefore guarantees the existence of



110 3. Algebra and Diophantine Equations

a non-zero algebraic integer α such that Φ(α) ∈ B(t1, . . . , tr1+r2) and hence
such that |N(α)| � AK . By choosing, for example, t1 smaller and smaller
(and of course letting one of the ti get bigger and bigger), we can even
obtain infinitely many elements of norm smaller than AK . Since there are
only a finite number of ideals of norm � AK , we obtain infinitely many
elements which generate the same ideal and whose quotients are therefore
units. This argument is refined in Exercise 3-6.23 to provide a complete
proof of the theorem with r1 + r2 − 1 independent units.

Minkowski’s theorem also allows us to prove the following lemma.

5.8. Lemma. There exists c1 > 0 (which depends on K) such that if I
is a non-zero ideal in OK , then there exists a non-zero element α ∈ I such
that

∣∣NK
Q(α)

∣∣ � c1 N(I).

Proof. Let Kt be the compact, convex, symmetric set in E defined by |xi| �
t. Its volume is proportional to tn (where n = [K : Q]), more precisely
vol(Kt) = 2r1πr2tn. The lattice Φ(I) has volume VK N(I). Therefore, if
2r1πr2tn = 2nVK N(I), we would have Φ(I) ∩ Kt 	= {0}. It follows that
there exists a non-zero α ∈ I such that Φ(α) ∈ Kt, and hence

∣∣NK
Q(α)

∣∣ �
tn � c1 N(I) where c1 := (4/π)r2VK . �

The constant “c1” (or sometimes optimal value of this constant) is often
called “Minkowski’s constant”.

5.9. Corollary. The set of ideal classes of OK is finite.

Proof. Let c1 be the constant given in the preceding lemma and set m :=
�c1�!. For a non-zero ideal I in OK , choose α to be a non-zero element in
I with |N(α)| � c1 N(I). It follows that (I : αOK) � c1, and consequently
mI ⊂ αOK . Then we set J := m

α I, which is an ideal in OK in the same
equivalence class as I since αJ = mI. Furthermore, since α ∈ I, we have
mα ∈ αJ , and hence m ∈ J . We already know that there exist a finite
number of ideals in OK which contain m (they are in bijection with the
ideals in OK/mOK). �

By using the fact that every ideal (or every class of ideals) is invertible, as
well as the multiplicativity of the norm of ideals, we can control the finite
set of classes. We will use the constant c1 from the previous lemma (3-5.8)
to do this.

5.10. Corollary. Every ideal class in OK contains an ideal with norm
smaller than c1.
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Proof. Let C be an ideal class and I an integral ideal in the inverse class. By
the lemma, there exists α ∈ I such that

∣∣NK
Q(α)

∣∣ � c1 N(I). We therefore
have αOK ⊂ I, and hence there exists an ideal J such that αOK = IJ .
The ideal J is an integral ideal which belongs to the class C , and we have
N(J) =

∣∣NK
Q(α)

∣∣N(I)−1 � c1. �

5.11. Remarks. We could give a more explicit expression for the con-
stant c1 which appears in Corollary 3-5.10. We need to first define the
discriminant, denoted ΔK , of a number field K. To do this, we introduce
a basis α1, . . . , αn over Z of OK as well as the set σ1, . . . , σn of embeddings
of K into R or C. Then,

ΔK := (det(σi(αj))
2 ∈ Z. (3.6)

An R-linear variable change (z, z̄) �→ (Re(z), Im(z)) over the complex co-
ordinates shows that

VK = 2−r2
√
|ΔK |. (3.7)

We can often compute the absolute value of this discriminant in the follow-
ing manner (see Exercise 3-6.13): if α is an algebraic integer of K, whose
minimal polynomial is f(X) ∈ Z[X], and if the index u := (OK : Z[α]) is
finite, then

u2|ΔK | =
∣∣NK

Q(f ′(α))
∣∣ . (3.8)

This gives us that every ideal class of OK contains an ideal of norm �
(2/π)r2

√
|ΔK |. By looking at the decomposition of small prime numbers,

we can, at least if the discriminant is not too large, deduce what the struc-
ture of the class group C�K is. We can of course improve the bounds—see
Samuel [7], for example—and obtain the following value for “Minkowski’s
constant”:

c1 =
(

4
π

)r2 n!
nn

√
ΔK . (3.9)

This improvement allows us to establish Hermite’s inequality:

[K : Q] � c2 log |ΔK |, for K 	= Q, (3.10)

The bound that we have obtained lets us determine what the class group
is in the following examples and in Exercises 3-6.16, 3-6.17 and 3-6.18.

5.12. Examples.

1. Take K = Q(i
√

19), then |ΔK | = 19, and every ideal class contains an
ideal with norm � 2

√
19/π < 3; however, we can check that 2 is prime
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in OK = Z[ 1 + i
√

19
2

] (cf. Theorem 3-4.21). The only ideal with norm

< 3 is the unit ideal and Z[ 1 + i
√

19
2

] is thus principal.

2. Take K = Q(i
√

23), then |ΔK | = 23, and every ideal class contains
an ideal with norm � 2

√
23/π < 4. We can check that 2 and 3 are

split in OK = Z[ 1 + i
√

23
2

], but no element has 2 or 3 as a norm.

However, N( 1 + i
√

23
2

) = 6. Thus 2OK = p1p2, 3OK = p′1p
′
2 and

( 1 + i
√

23
2

)OK = p1p
′
1. The classes of p1 and p2 are distinct since the

only elements of norm 4 are ±2. It follows that C�K = {1, [p1], [p2]} ∼=

Z/3Z. In particular, Z[ 1 + i
√

23
2

] is not principal.

3. Take K = Q(
√

13), then |ΔK | = 13 and every ideal class contains an
ideal with norm �

√
13 < 4; however, we can check that 2 is prime

in OK = Z[ 1 +
√

13
2

] (cf. Theorem 3-4.21) and next we check that

N( 1 +
√

13
2

) = −3 hence 3OK = p1p2 with p1, p2 principal ideals

generated by 1±
√

13
2

. The ring Z[ 1 +
√

13
2

] is thus principal.

4. Take K = Q(
√

10), then |ΔK | = 40 and every ideal class contains an
ideal with norm �

√
40 < 7; the primes 2 and 5 are ramified and 3

is split in OK = Z[
√

10] (cf. Theorem 3-4.21) thus 2OK = p2, 5OK =
q2 and 3OK = p1, p2 and the class group is generated by these four
prime ideals. We can check that no element has norm ±2 or ±3 (the
equations x2 ± 2 = 10y2 or x2 ± 3 = 10y2 have no solution modulo
10) hence p, p1, p2 are not principal. Notice that

√
10OK = pq hence

we may omit q; next N(2 +
√

10) = −6 thus (2 +
√

10)OK = ppi thus
the class group is generated by p which is of order 2. It follows that
C�K = {1, [p]} ∼= Z/2Z and the ring Z[

√
10] is not principal.

We will end this chapter by pointing out an often useful generalization
about the ring of algebraic integers, OK . For this, we make use of a finite
set S of prime ideals in OK .

5.13. Definition. Let K be a number field and S a finite set of prime
ideals in OK . An element α ∈ K is called an S-algebraic integer if for every
prime ideal p /∈ S, ordp(α) � 0. We denote by OK,S the ring of S-integers
and O∗

K,S the set of S-units.
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5.14. Remark. We can prove, with a variation on the proof of Theorem
3-5.6, that the group O∗

K,S has rank � r1 + r2 − 1 + |S| (and actually this
is always an equality). Moreover, by using Theorem 3-4.23, we see that we
can always choose S such that OK,S is principal. In fact, it suffices that
the ideals whose classes are generators of C�K can be written as a product
of ideals in S.

6. Exercises

6.1. Exercise. In this and the following two exercises, we denote by A
and A0 the rings of quaternions defined on page 78. Prove that

Z[i]∗ = {±1,±i}, A∗
0 = {±1,±I,±J,±K} and

A∗ = A∗
0 ∪

{ ±1± I ± J ±K
2

}

(The group A∗
0 is the quaternion group of order 8. The group A∗, whose or-

der is 24, is isomorphic to the group SL(2,F3)—see Exercise 3-6.3 below).
Prove that A0 is not (left) principal. Prove also that an element with norm
equal to a prime number is irreducible.

6.2. Exercise. If B is a commutative ring, we define the ring HB as the
additive group

HB := {x1 + yI + zJ + tK | x, y, z, t ∈ B}

endowed with the B-bilinear multiplication which has the same multiplica-
tion table as H. Notice that A0 = HZ and A ⊂ H

Z

»

1

2

–. (We could also

consider HB to be the “tensor product” HB = A0 ⊗Z B.)

1) Let F be a field of characteristic 	= 2 which contains two elements a and
b such that a2 + b2 + 1 = 0. Prove that the map from HF to the algebra of
2× 2 matrices with coefficients in F given by

1 �→
(

1 0
0 1

)
, I �→

(
a b
b −a

)
, J �→

(
0 1
−1 0

)
and K �→

(
−b a
a −b

)
,

is an isomorphism of F -algebras.

2) If p is an odd prime, deduce from the previous question that HFp is
isomorphic to the algebra of 2× 2 matrices with coefficients in Fp.

6.3. Exercise. We will use the same notation as in the previous exercise.
Our goal is to show that the group A∗, formed of the invertible elements of
the Hurwitz quaternion algebra, is isomorphic to SL(2,F3).
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1) The homomorphism of reduction modulo 3 from Z
[

1
2

]
to F3 induces

a ring homomorphism from H
Z

»

1

2

– to HF3 . Deduce from this a group

homomorphism φ : A∗ → H∗
F3
∼= GL(2,F3).

2) Let m ∈ A∗ such that m2 = 1 (resp. m3 = 1). Prove that if m ≡
1mod 3, then m = 1. Conclude that Ker(φ) = {1}.
Hint.– We can assume m 	= 1. Write m as m = 1 + 3hx where x ∈ A,
h � 1 and x 	≡ 0 mod 3, which leads to a contradiction.

3) Conclude from this that A∗ is isomorphic to a subgroup of index 2 of
GL(2,F3), so it must be equal to SL(2,F3).

6.4. Exercise. Let α, β ∈ k∗, and let
√

α be a root (in an extension of k)
of X2 − α = 0. We set:

H = Hα,β :=
{(

a + b
√

α β(c + d
√

α)
c− d

√
α a− b

√
α

)∣∣∣∣ a, b, c, d ∈ k

}
.

i) Prove that H is a subalgebra of Mat(2 × 2, k(
√

α)) and that a basis is
given by the identity 1 = I2 and the three matrices

I :=
√

α

(
1 0
0 −1

)
, J :=

(
0 β
1 0

)
, K :=

√
α

(
0 β
−1 0

)
.

Then check that the following multiplication identities hold: I2 = α, J2 =
β, K2 = −αβ and

IJ = −JI = K, JK = −KJ = −βI, KI = −IK = −αJ.

ii) Prove that an element q =
(

a + b
√

α β(c + d
√

α)
c− d

√
α a− b

√
α

)
of H \ {0} is

invertible if and only if

det(q) = N(a + b
√

α)− βN(c + d
√

α) = a2 − αb2 − βc2 + αβd2 	= 0.

(If [k(
√

α) : k] = 2, the quantity N(a + b
√

α) := a2 − αb2 is the norm of
a+ b

√
α for the extension k(

√
α)/k.) Deduce from this that H is a division

ring if and only if [k(
√

α) : k] = 2 and β is not a norm of k(
√

α)/k.

6.5. Exercise. Modify the proof of Minkowski’s theorem (Theorem 3-5.3)
in order to obtain card (K ∩ Λ) � 2nvol(K)/ det(Λ).

6.6. Exercise. Prove that there exist constants Cn (and explain what they
are) such that if L is a lattice in Rn endowed with the Euclidean norm, then
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there exists a basis, e1, . . . , en, of L which satisfies

det(L) � ||e1|| · · · ||en|| � Cn det(L).

Hint.– The first inequality is true for every basis. For the second, look for
a basis which is as close as possible to an orthogonal basis.

6.7. Exercise. Let vn be the volume of the unit ball in Rn. For s > 0,
we define the function Γ(s) :=

∫∞
0

e−tts−1dt.

1) Prove that Γ(1) = 1 and Γ(1/2) =
√

π. Prove that the values of the Γ
function at positive integers (resp. half-integers) can be computed with the
formula Γ(s + 1) = sΓ(s).

2) By computing the integral
∫
Rn exp[−(x2

1 + · · · + x2
n)]dx1 · · · dxn in two

different ways, prove that

vn = πn/2

Γ
(

n
2

+ 1
) ·

and in particular that v2m = πm/m! and v2m+1 = πmα where α ∈ Q∗ (also
specify α).

6.8. Exercise. Let q be a positive-definite quadratic form with integer
coefficients and such that for all x ∈ Qn there exists y ∈ Zn such that
q(x−y) < 1. Let m ∈ N; prove that there exists y ∈ Zn such that q(x) = m
if and only if there exists z ∈ Qn such that q(z) = m.

Hint.– If x ∈ Zn such that q(x) = �2m and � � 2, choose y ∈ Zn such
that q( x

�
− y) < 1, and then x′ := ax + by where a = q(y) −m and b =

2(m�−B(x, y)). Then check that q(x′) = �′2m, where �′ = �q( x
�
− y) < �.

By using this property for q(x1, x2, x3) = x2
1 + x2

2 + x2
3 and the Hasse-

Minkowski theorem (Theorem 6-3.18 and Corollary 6-3.19), reprove the
three-square theorem (Theorem 3-1.2).

Deduce from this the following theorem due to Gauss: Every number m ∈ N
can be written as the sum of three triangular numbers (i.e., of the form
x(x− 1)/2).

Hint.– Write 8m + 3 as the sum of three squares x2
1 + x2

2 + x2
3 and observe

that the xi must be odd.

6.9. Exercise. We write the vectors of Rn as column vectors. The group
of n× n square matrices with coefficients in the ring A whose determinant
det(A) ∈ A∗ is denoted by GLn(A) (in other words, the set of invertible
matrices in the ring Mat(n× n, A)). If A is a subring of R, we denote by
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Sn(A) the set of symmetric, positive-definite matrices with coefficients in
A. If moreover Q[x] = txQx is a quadratic form with integer coefficients,
we say that it represents an integer m if there exists x ∈ Zn such that
Q[x] = m. Finally, recall that two quadratic forms Q and Q′ with integer
coefficients are called equivalent if there exists U ∈ GLn(Z) such that Q′ =
Q[U ] :=tUQU .

a) Prove that two equivalent forms represent the same set of integers.

b) Let x ∈ Zn such that gcd(x1, . . . , xn) = 1. Prove that there exists a
matrix U ∈ GLn(Z) whose first column is x.

c) Let Q be a matrix in Sn(R), and let

m(Q) := min
x∈Zn\{0}

Q[x].

Let x ∈ Zn \ {0} be the minimal vector in the definition of m(Q). Prove
that a matrix U ∈ GLn(Z) can be constructed so that Q′ = Q[U ] satisfies

Q′ [e1] = m(Q′) = m(Q).

d) Let Q be a matrix in Sn(R) such that Q′ [e1] = m(Q′). Prove that a

matrix U ∈ GLn(Z) of the form U =

⎛

⎜⎜⎝

1 tb
0
...
0

V

⎞

⎟⎟⎠ (where b ∈ Zn−1 and V

is an (n− 1)× (n− 1) square matrix) can be constructed so that the matrix
Q′′ = Q′[U ] satisfies

Q′′ [e1] = m(Q′′) = m(Q′) and Q′′[e2] = min
x ∈ Zn

gcd(x2, . . . , xn) = 1

Q′′[x].

e) A matrix Q ∈ Sn(R) is called reduced if it satisfies the following prop-
erty:

∀k ∈ [1, n], Q[ek] = min
x ∈ Zn

gcd(xk, . . . , xn) = 1

Q[x].

By iterating the procedure from the previous questions, prove that every
matrix in Sn(R) is equivalent to a reduced matrix.

f) Let Q ∈ Sn(R) be a reduced matrix with coefficients qi,j. Prove that
0 < q1,1 � q2,2 � . . . � qn,n and that 2|qi,j | � qi,i.

g) Let Q ∈ Sn(R). Prove that there exist D = diag(d1, . . . , dn) and T ,
an upper triangular matrix whose coefficients on the diagonal are all equal
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to 1, such that Q = D[T ]. Deduce from this Hadamard’s inequality:

det(Q) � q1,1q2,2 · · · qn,n.

h) Let Q ∈ Sn(R) be a reduced matrix. Prove the existence of a constant
Cn such that

det(Q) � q1,1q2,2 · · · qn,n � Cn det(Q).

(We can afterwards take C2 = 4/3 and C3 = 2 to be the first admissible
initial values.)

Hint.– If qn,n � q1,1, then the proof is fairly easy; if not, there exists
k � n− 1 such that qn,n � qk+1,k+1 but Mkqk,k � qk+1,k+1. We then have

the decomposition Q =
(

Q1 0
0 Q2

)[
I U
0 I

]
, where Q1 is a k × k matrix

extracted from Q which will give us an inequality of the form qk+1,k+1 �
k2

4
qk,k + m(Q2). Finish the proof by applying Hermite’s theorem (3-5.5)

to Q2 and an induction hypothesis to Q1.

i) We denote by Hn(D) the set of equivalence classes of matrices of Sn(Z)
whose determinant equals D. Prove that hn(D) := cardHn(D) is finite.

j) Prove that h2(1) = h3(1) = 1.

Hint.– It can be shown that any 2 × 2 or 3 × 3 reduced matrix which has
determinant 1 is the identity matrix.

k) Prove that a form Q = ((qi,j))1�i,j�n is positive-definite if and only if

∀k ∈ [1, n], det((qi,j))1�i,j�k) > 0.

l) Application. Let n be a positive integer. Suppose that you know a positive
integer d such that −d is a square modulo r := dn − 1. Deduce from this
that n is the sum of three squares. First show that if −d = m2 − �r (where
� has to be � 1), then the matrix

Q :=

⎛

⎝
� m 1
m r 0
1 0 n

⎞

⎠

is positive-definite and has determinant 1. Then show that n is simply
Q(0, 0, 1).

6.10. Exercise. Use the following hints and the previous exercise (3-6.9)
to prove the three-square theorem (Theorem 3-1.2); we will also need Dirich-
let’s theorem: “If a and b are relatively prime, then there exists a prime
number p ≡ a mod b.”
a) If n = 2(2m + 1) ≡ 2 mod 4, prove that we can find a prime number p

of the form p = (4u + 1)n− 1. Let d = 4u + 1, and conclude that n is
the sum of three squares.
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b) If n ≡ 1 mod 8 (resp. ≡ 3 mod 8, resp. ≡ 5 mod 8), we set c = 3 (resp.
c = 1, resp. c = 3). Prove that we can find a prime number p of the

form p = 4un + cn− 1
2

. Let d = 8u + c (so that 2p = nd − 1), and
conclude that n is the sum of three squares.

Finally, prove that the three-square theorem follows from these statements.

6.11. Exercise. (Jacobi’s four-square formula, see [79] and the book by
Ireland-Rosen [5]) We would like to compute rk(m) := card{(x1, . . . , xk) ∈
Zk | x2

1 + · · ·+ x2
k = m} for k = 2 and 4. To help us do this, we introduce

the quantity

Nk(m) := card{(x1, . . . , xk) ∈ Nk | xi odd and x2
1 + · · ·+ x2

k = m}.

a) Let χ be the character modulo 4 which equals +1 (resp. −1, resp. 0) if
x ≡ 1 mod 4 (resp. if x ≡ −1 mod 4, resp. if x is even). Prove that

N2(m) =
∑

d |m
χ(d),

and deduce that
r2(m) = 4

∑

d |m
χ(d).

b) Prove that the following equalities hold for m ≡ 4 mod 8:

N4(m) =
∑

R

N2(m1)N2(m2) =
∑

S

(−1)
a−c

2 ,

where R is the set of pairs of natural numbers (m1, m2) such that m1+m2 =
m and m1 ≡ m2 ≡ 2 mod 4, and S is the set of quadruples of odd natural
numbers (a, b, c, d) such that 2ab + 2cd = m.

c) By setting a = x + y, b = z − t, c = x− y and d = z + t, prove that

N4(m) =
∑

S′

(−1)y,

where S′ is now the set of quadruples (x, y, z, t) ∈ Z4 such that |y| < x,
|t| < z, m = 4(xz − yt) and x and y (resp. z and t) have different parity.
We denote by N0 (resp. N1, resp. N2) the sum restricted to y = 0 (resp.
y > 0, resp. y < 0), so that N4(m) = N0 + N1 + N2.

d) Prove that N0 =
∑

d |m d (where the sum is restricted to being over
odd divisors) and that N1 = N2. Then show that N1 = 0 by using the
variable change (and checking that it indeed defines a bijection from S′ to
S′) x′ = 2uz − t, y′ = z, z′ = y and t′ = 2uy − x where u is chosen as the
unique integer such that 2u− 1 < x/y < 2u + 1.
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e) Prove Jacobi’s formula (3.5) by successively showing that the following
identities hold. For every m, we have r4(4m) = r4(2m); if m is odd, then
r4(4m) = 16N4(4m) + r4(m); if m is even, then r4(2m) = 3r4(m). You
can use the following “obvious” identity:

(x1 + x2)2 + (x1 − x2)2 + (x3 + x4)2 + (x3 − x4)2 = 2x2
1 + 2x2

2 + 2x2
3 + 2x2

4.

6.12. Exercise. Let N = pq be an RSA number gotten from two very
large prime numbers. Let d be the public exponent and e the secret one, so
that de ≡ 1 mod φ(N).

a) Observe that φ(N) ∼ N (size-wise), and show that there exists an integer
k ∼ ed/φ(N) such that

d
N
− k

e = 1
eN

− k
e

(
φ(N)

N
− 1

)
.

b) Use Theorem 3-3.15 to prove that if the absolute value of the right hand
side is smaller than 1/2e2, then the continued fraction expansion algorithm
of d/N gives a fast computation of k/e and hence of e.

c) Prove that if e � 1
3

N1/4, the previous condition holds.

6.13. Exercise. Let K be a number field of degree n = [K : Q] and
σ1, . . . , σn its real or complex embeddings. For every lattice L = Zα1 ⊕
· · · ⊕ Zαn, we set

ΔL := (det(σj(αi)))
2
.

1) Prove that if L ⊂ OK , then ΔL ∈ Z and that if L′ is a sublattice of
index u in L, then ΔL′ = u2ΔL.

2) Let α be an algebraic integer such that K = Q(α), and let f(X) be its
minimal polynomial. We set L = Z[α]. Prove that

ΔL = (−1)
n(n−1)

2 NK
Q(f ′(α)).

6.14. Exercise. Let K be a number field such that OK = Z[α] for some α.
We denote by f(X) the minimal polynomial of α. Prove that p is ramified
in K/Q if and only if f(X) has a double root in F̄p. Deduce from this that
p is ramified in K/Q if and only if p divides ΔK .

Remark. It can be shown (but this is more difficult) that this last conclusion
is still true even if we do not assume the existence of α such that OK = Z[α].

6.15. Exercise. (“Computational” proof of the nondegeneracy of the
bilinear form (x, y) �→ Tr(xy) = TrK

k (xy).) Let K be a number field of
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degree n := [K : Q]. We set, for x1, . . . , xn ∈ K,

D(x1, . . . , xn) = det (Tr(xixj)) .

a) Let σ1, . . . , σn be the real and complex embeddings of K. Check that

D(x1, . . . , xn) = det (σi(xj))
2
.

b) Suppose that the elements yi are gotten from the xi by a Q-linear trans-
formation, A. Verify that therefore

D(y1, . . . , yn) = (det A)2D(x1, . . . , xn).

c) Let α be a primitive element of K (i.e., such that K = Q(α)) and F (X)
its minimal polynomial. Prove that

D(1, α, . . . , αn−1) = (−1)
n(n−1)

2 NK
Q(F ′(α)) 	= 0.

Deduce from this that D(x1, . . . , xn) 	= 0 if and only if x1, . . . , xn form a
basis (over Q) of K and that the bilinear form given by the trace is non-
degenerate. (This result is in fact valid for every finite separable extension
L/K.)

6.16. Exercise. In this exercise, you are asked to show that the ring of
integers of K = Q(i

√
d), for d = 1, 2, 3, 7, 11, 19, 43, 67, 163, is principal.

i) For the first five values of d, the ring is Euclidean for the norm.

ii) For d = 19, 43, 67, 163, the integer n = N( 1 + i
√

d
2

) is prime and the
prime numbers � n are inert in K.

iii) Check that every ideal of norm < 2
√

d/π is principal and finish the
proof by using Corollary 3-5.10 and the remarks that follow it.

(Note: it is more difficult to prove—but true—that these are the only rings
of quadratic imaginary integers that are principal.)

6.17. Exercise. Let ζ := exp(2πi/5) and K = Q(ζ), hence OK = Z[ζ].
Prove that ΔK = 125 by using Exercise 3-6.13. Check that 2 and 3 stay
prime in OK and that 5OK = ((1 − ζ)OK)4. Deduce from this that every
ideal of norm < 6 is principal, and conclude that OK is principal by using
Corollary 3-5.10 and the remarks that follow it.

6.18. Exercise. Let ω := 3
√

2 and K = Q(ω). Prove that the discriminant
(in the sense of Exercise 3-6.13) of Z[ω] equals ±3322, and deduce that
OK = Z[ω] or (OK : Z[ω]) = 3. By considering the norm, trace, etc. of
a + bω + cω2, conclude that OK = Z[ω].
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Check that 2 = ω3, 3 = (1 + ω)3(ω − 1) and 5 = (1 + ω2)(1 + 2ω − ω2).
Prove that the elements ω, 1 + ω, 1 + ω2 and 1 + 2ω − ω2 are prime and
that ω − 1 is invertible.

Conclude that Z[ 3
√

2] is principal by using Corollary 3-5.10 and the remarks
that follow it.

6.19. Exercise. In this exercise, you are asked to study the integer valued
solutions of the equation

F (x, y, z) = x3 + 2y3 + 4z3 − 6xyz = m, (∗)

where m is a non-zero integer.

We set ω := 3
√

2 and K = Q(ω). We will assume (see Exercise 3-6.18) that
the ring of integers of K is equal to OK = Z[ω] and that it is principal.

1) Prove that 1, ω, ω2 form a basis for K over Q, and compute
NK

Q

(
x + yω + zω2

)
.

2) Let p be a prime number. Prove that either p stays prime in OK or there
exists an ideal p in OK with norm p.

Hint.– Find the decomposition of pOK into products of prime ideals and
enumerate the possibilities.

3) Find α ∈ OK (resp. β ∈ OK) such that NK
Q(α) = 2 (resp. NK

Q(β) = 3).

4) Let p 	= 2, 3. Suppose that there exists an ideal p in OK of norm p; prove
that there exists a ∈ F∗

p such that a3 = 2.

5) Let p 	= 2, 3. Suppose that there exists a ∈ Z such that a3 ≡ 2 mod p;
prove that there exists an ideal p in OK of norm p.

Hint.– You can look at the factorization a3−2 = (a−ω)(a2 +aω +ω2) and
deduce that p is not prime in OK .

6) Check that if p stays prime in OK , then p ≡ 1 mod 3. Prove by coun-
terexample that the converse is false. (Check the case p = 31.)

7) We can write m = ±
∏

p pmp . Prove that equation (∗) has an integer
solution (x, y, z) if and only if for every prime number p 	= 2, 3 such that
the congruence a3 ≡ 2 mod p does not have a solution, the integer mp is
divisible by 3.

8) Prove that if equation (∗) has an integer solution (x, y, z), then it has
infinitely many.

6.20. Exercise. 1) Let α be an algebraic integer with minimal polynomial
P = Xd + pd−1X

d−1 + · · · + p0 ∈ Z[X] which generates the number field
K = Q(α). Let p be an odd prime number. Suppose now that OK = Z[α]
(or more generally that p does not divide (OK : Z[α])). Prove that if the
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reduction modulo p of the polynomial P can be factored in Fp[X] into

P̄ = P e1
1 · · ·P er

r , where the Pi are irreducible and distinct in Fp[X],

then OK/pOK
∼= Fp[X]/(P e1

1 )× · · · × Fp[X]/(P er
r ) and pOK = p

e1
1 · · · per

r ,
where the pi are prime ideals of norm N(pi) = pdeg(Pi). (Recall that p is
said to be ramified in the extension K/Q if one of the ei is � 2.)

2) Let Φm ∈ Z[X] be the mth cyclotomic polynomial. Recall how to factor
Φ̄m in Fp[X]. (Treat the case where p divides m separately.)

3) Let ζ be a primitive mth root of unity and K = Q(ζ). Since Q(ζ) =
Q(−ζ), we can assume that either m is odd or 4 divides m; we will also
assume that OK = Z[ζ]. Prove that p is ramified in the extension K/Q if
and only if p divides m. Assuming that p is relatively prime to m, we let r
be the order of p modulo m. Prove that

pOK = p1 · · · pφ(m)/r , where Npi = pr.

We will now assume that m = 5, ζ := exp(2πi/5) and K = Q(ζ).

4) Give a necessary and sufficient condition for an integer n ∈ N∗ to be
the norm of an ideal in OK .

Hint.– Look for a condition in terms of the factorization of n.

5) We will consider the Gauss sum

τ :=
∑

x∈F5

exp
(

2πix2

5

)
.

Find, up to sign, the value of τ , and deduce from this that K contains the
real quadratic field Q(

√
5).

6) Prove that ε := 1 +
√

5
2

generates a subgroup of finite index of the group
of units O∗

K .

7) Supposing that OK is principal (see Exercise 3-6.17), describe the set of
solutions (x, y, z, t) ∈ Z4 of the equation

NK
Q

(
x + yζ + zζ2 + tζ3

)
= m

for m = 2, m = 5, m = 24 · 11 = 176. In particular, specify whether the set
of solutions is empty, finite or infinite.

6.21. Exercise. In this exercise, you are asked to determine which natural
numbers can be written in the form x2 + 3y2 or (equivalently) in the form
x2 − xy + y2.

1) We let j := −1 + i
√

3
2

· Consider the rings A0 = Z[i
√

3] and A = Z [j]
Prove that A is principal and factorial, but that A0 is not even factorial.
Specify the group of units of A∗

0 and A∗.
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2) Let the norm be defined by N : Q(i
√

3) → Q. Check that N(a+bi
√

3) =
a2 +3b2, N(x+yj) = x2−xy+y2, and prove that an integer n is the norm
of an element of A0 if and only if it is the norm of an element in A.

Hint.– You could show that if α is in A but not in A0, then jα or j2α is
in A0.

3) Let p be a prime number not equal to 2 or 3. Prove that if p is the norm
of an element of A0 (or A), then −3 is a square modulo p and deduce from
this that p ≡ 1 mod 3.

4) Let p be a prime other than 2. Prove that if p ≡ 2 mod 3 and n = mp
is the norm of an element of A0 (or of A), then m = n′p and n′ is also a
norm.

5) Prove that 2 is an irreducible element in A. Deduce from this that if
n = 2m is the norm of an element of A0 (or of A), then m = 2n′ and n′

is also a norm.

6) Now assume that p ≡ 1 mod 3. Prove that −3 is a square modulo p and
deduce from this that p is not irreducible in A and, consequently, that it is
a norm.

7) By using the previous questions, prove the following result.

An integer n � 1 can be written as x2 +3y2 or, equivalently, as x2−xy+y2

where x, y ∈ Z if and only if for every prime p ≡ 2 mod 3, ordp(n) is even.

8) State and prove a similar result with the norm associated to a quadratic
field whose ring of integers is principal.

6.22. Exercise. Prove that the only integer solutions of the equation

y2 = x3 − 2

are (x, y) = (3,±5).

Hint.– First show that x, y must be odd. By working in A := Z[i
√

2], prove
that y + i

√
2 must be a cube in A and conclude by identifying the real and

imaginary parts.

6.23. Exercise. In this exercise, you are asked to finish the proof of
the unit theorem, by constructing r1 + r2 − 1 independent units. (You can
assume that r1 + r2 − 1 � 1.)

a) Let A = (ai,j) be an r × r matrix such that ∀i, |ai,i| >
∑

j �=i ai,j. Prove
that A is invertible.

Let r = r1 + r2− 1 and Φ : OK ↪→ Rr1 ×Cr2 =: E be the usual embedding.
We denote by |x|i := |σi(x)|, for i = 1, . . . , r1 + r2, the absolute values as-
sociated to the different embeddings (resp. pairs of conjugate embeddings).
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b) Let C > 1. By repeating the proof of the existence of infinitely many
units, prove that a unit εj can be constructed for every absolute value such
that

|εj |j > C, and |εj |i � 1/4, for i 	= j.

Hint.– Construct, using Minkowski’s theorem, algebraic integers such that
|α|i � 1/4 for i 	= j and |NK

Q(α)| � C, and use this to find a subset which
generates the same ideal.

c) Prove that ε1, . . . , εr are independent.

6.24. Exercise. Let α = 3
√

2 and K = Q(α). In this exercise, you are
asked to prove that the equation

NK
Q

(
x + 4y + zα + wα2

)
− 6(x + y)(x2 + xy + 7y2) = 0, (3.11)

which has nontrivial solutions modulo N for every N � 2 (cf. Exercise
1-6.26 by taking w = 0), does not have any nontrivial integer solutions.

1) Let (x, y, z, w) ∈ Z4 be a primitive solution. We let d = gcd(x, y). Prove
that gcd(6, d) = 1 and that 3 does not divide f(x, y) := x2+xy+7y2. Check
that, in particular, x 	≡ y mod 3.

2) i) Assume that p does not divide d. Prove that if p ≡ 2 mod 3, then p
does not divide f(x, y) and that if p ≡ 1 mod 3 and 2 is not a cube modulo
p, then p does not divide f(x, y).

Hint.– If not, p would divide x + 4y and this would force p to be equal to
19.

ii) Finally show that if p ≡ 1 mod 3 and 2 is a cube modulo p, then there
exist integers a and b such that p = a2 + 27b2 = (a + 3bi

√
3)(a− 3bi

√
3).

Hint.– We know (a + bj)3 = A + 3Bj. A norm of K(i
√

3)/Q(i
√

3) can
therefore be written as A + 3Bj.

3) Let ρ := 1 + i
√

3
2

, so we have the factorization

f(x, y) = (x + y(3ρ− 1))(x + y(2− 3ρ)).

Deduce from the previous arguments that there exist integers a, b and m
such that

x + y(3ρ− 1) = ρm = a + 3bi
√

3.

4) By reducing modulo 3, prove that ρm = ±1, then that y is even and x is
odd. Conclude by referring back to the equation.

Note: this example is due to Birch and Swinnerton-Dyer and was taken
from [13].



Chapter 4

Analytic Number Theory

“– Eh! qu’aimes-tu donc, extraordinaire étranger?
– J’aime les nuages. . . les nuages qui passent. . . là-bas. . . là-bas. . .

les merveilleux nuages!”

Charles Baudelaire

The theme of this chapter is the distribution of prime numbers. We will
begin by giving some statements and relatively elementary proofs, before
introducing the key tool: the classical theory of functions of a complex vari-
able, of which we will give a brief overview. The two following sections
contain proofs of Dirichlet’s “theorem on arithmetic progressions” and the
“prime number theorem”. Dirichlet series and in particular the Riemann
zeta function play a fundamental role. We will illustrate this by additionally
proving the functional equation of the zeta function and by formulating the
famous Riemann hypothesis.

1. Elementary Statements and Estimates
The (written) history of prime numbers generally begins with the following
theorem.

1.1. Theorem. (Euclid) The set of prime numbers is infinite.1

Given a finite list of prime numbers, p1, . . . , pr, Euclid’s argument consists
of constructing a new prime number by considering possible prime factors
of N := p1 · · · pr + 1.

1Euclid’s statement of course does not mention infinity; it says that given a finite
collection of prime numbers, one can deduce another one from it.
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There are many ways to expand on Euclid’s proposition.

1.2. Proposition. The series with terms log(p)p−1 and p−1 are divergent.
To be more precise,
∑

p�x

log(p)
p = log x + O(1) and

∑

p�x

1
p = log log x + C + O

(
1

log x

)
.

(4.1)

These statements can be refined as follows.

1.3. Theorem. (Prime number theorem) As x tends to infinity, we have
the following asymptotic behavior:

π(x) := card{p prime , p � x} ∼ x
log x

· (4.2)

We could state various equivalent forms of this theorem, for example,

θ(x) ∼ x; ψ(x) ∼ x or also pn ∼ n log n,

where we let (following Tchebychev)

θ(x) =:
∑

p�x

log p , ψ(x) =
∑

pm�x

log p (4.3)

and where pn denotes the nth prime number. We will also prove the fol-
lowing theorem.

1.4. Theorem. (Dirichlet’s theorem on arithmetic progressions) Let a, b �
1 be two relatively prime integers. Then there exist infinitely many primes
p of the form a + bn.

We could make this statement more precise by showing that prime numbers
are distributed more or less uniformly over the congruence classes modulo b.

1.5. Theorem. With the same hypotheses as before, we have
∑

p � x
p ≡ a mod b

1
p =

log log x

φ(b)
+ Ca,b + O

(
1

log x

)
·

We will now give a more refined statement but will not however prove it.
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1.6. Theorem. As x tends to infinity, we have the following asymptotic
behavior:

π(x; a, b) := card{p prime , p � x, p ≡ a mod b} ∼ x
φ(b) log x

· (4.4)

In this section, we will expand on some so-called “elementary” methods
(which in this context means that they do not involve complex variables)
which can be used to prove the previous assertions, except for Dirichlet’s
theorem on arithmetic progressions and the prime number theorem. They
will however allow us to prove a partial version: there exist two constants,
c1, c2 > 0, such that c1x/ log x � π(x) � c2x/ log x.

1.7. Lemma. The following estimate holds: n log 2 � log
(
2n
n

)
� n log 4.

Proof. From the binomial theorem, we know that
(
2n
n

)
�
∑2n

k=0

(
2n
k

)
=

(1+1)2n = 4n. Next, we have the following lower bound:
(

2n

n

)
=

(2n)!

(n!)2
=

2n(2n− 1) · · · (n + 1)
n(n− 1) · · · 1

� 2n. �

1.8. Lemma. The following formula holds: ordp(n!) =
∑

m�1

⌊
n
pm

⌋
;

furthermore, the sum can be restricted to m � log n/ log p.

Proof. Write n! =1 ·2 ·3 · · ·n =
∏n

k=1 k. The number of integers � n which
are divisible by p is �n/p�, and the number of integers � n divisible by p2

is �n/p2�, etc. Thus ordp(n!) is the sum of the �n/pm�. Finally, pm � n is
equivalent to m � log n/ log p, hence the first statement is proved. �

We can therefore write

log
(

2n

n

)
=
∑

p�2n

ordp

(
2n

n

)
log p =

∑

p�2n

⎛

⎝
∑

m�1

⌊
2n
pm

⌋
− 2

⌊
n
pm

⌋⎞

⎠ log p.

(4.5)
To find a lower bound, we only keep the terms that satisfy n < p � 2n. In
fact, such a p clearly divides

(
2n
n

)
= (2n)!/(n!)2, and thus we obtain

n log 4 � log
(

2n

n

)
�

∑

n<p�2n

log p = θ(2n)− θ(n).

From this, we obtain an upper bound of the form θ(x) � Cx. This is true
because
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θ(2m) =
m−1∑

k=0

θ(2k+1)− θ(2k) �
m−1∑

k=0

2k log 4 = (2m − 1) log 4.

Therefore, if 2m � x < 2m+1, then

θ(x) � θ(2m+1) � 2m+1 log 4 � (2 log 4)x. (4.6)

To obtain an upper bound, we could notice that �2u�− 2�u� always equals
0 or 1 and equals 0 whenever u < 1/2. Thus

n log 2 � log
(

2n

n

)
=
∑

p�2n

⎛

⎝
∑

m�1

⌊
2n
pm

⌋
− 2

⌊
n
pm

⌋⎞

⎠ log p

�
∑

p�2n

(
log(2n)
log p

)
log p = log(2n)π(2n).

From this, we have a lower bound of the form π(x) � Cx/ log x. This is
true because if 2n � x < 2(n + 1), then

π(x) � π(2n) � n log 2
log(2n)

�
(

x
2
− 1
) log 2

log x
· (4.7)

Furthermore, we can easily see that

θ(x) =
∑

p�x

log p � log x
∑

p�x

1 = π(x) log x. (4.8)

Next, notice that for 2 � y < x,

π(x)− π(y) =
∑

y<p�x

1 � 1
log y

∑

y<p�x

log p = 1
log y

(θ(x)− θ(y)) .

It follows that

π(x) � θ(x)
log y

+ π(y) � θ(x)
log y

+ y.

By choosing y = x/(log x)2 and by recalling the previous inequality (4.8),
we have

θ(x)
log x

� π(x) � θ(x)
log x + 2 log log x

+ x

(log x)2
· (4.9)

To summarize, it is easy to see from inequalities (4.6), (4.7), (4.8) and (4.9)
that (θ(x) ∼ x) is equivalent to (π(x) ∼ x/ log x) and that

C1x � θ(x) � C2x and C3x/ log x � π(x) � C4/ log x. (4.10)

Furthermore, the following comparison of the function θ(x) to the function
ψ(x) is not difficult to see:
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θ(x) � ψ(x) :=
∑

pm�x

log p = θ(x) + θ(
√

x) + θ( 3
√

x) + . . .

� θ(x) +
log(x)
log 2

θ(
√

x) � θ(x) + C log x
√

x.

Finally, if we denote by pn the nth prime number, we have π(pn) = n by def-
inition. The prime number theorem therefore implies that n ∼ pn/ log(pn)
and that pn ∼ n log n. We can check that the latter statement is in fact
equivalent to the prime number theorem.

1.9. Lemma. (Abel’s formula) Let A(x) :=
∑

n�x an and f be a function
of class C 1. Then,

∑

y<n�x

anf(n) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t)dt. (4.11)

Proof. We first point out that
∫ n+1

n
A(t)f ′(t)dt = A(n)

∫ n+1

n
f ′(t)dt =

A(n) (f(n + 1)− f(n)). Therefore, setting N = �x� and M = �y� yields

∫ N

M

A(t)f ′(t)dt =
N−1∑

n=M

∫ n+1

n

A(t)f ′(t)dt =
N−1∑

n=M

A(n + 1) (f(n)− f(n))

=
N∑

n=M+1

f(n)(A(n− 1)−A(n)) + f(N)A(N)−A(M)f(M)

= −
N∑

n=M+1

f(n)an + f(N)A(N)−A(M)f(M).

This proves the formula when x and y are integers. For the general formula,
observe that
∫ x


x�
A(t)f ′(t)dt = A(�x�) (f(x)− f(�x�)) = A(x)f(x)−A(�x�)f(�x�).�

Applications. 1) The formula gives a fairly precise comparison between
the “sum” and the “integral” (see Exercise 4-6.10 for some refinements). To
be more precise, if we take an = 1 and integrate by parts, we have:

N∑

n=M+1

f(n) =
∫ N

M

f(t)dt +
∫ N

M

(t− �t�)f ′(t)dt. (4.12)

If we choose f(t) = 1/t, we obtain
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N∑

n=1

1
n = 1 +

∫ N

1

dt
t
−
∫ N

1

(t− �t�) dt

t2

= log N +
(

1−
∫ ∞

1

(t− �t�) dt

t2

)
+
∫ ∞

N

(t− �t�) dt

t2

= log N + γ + O
(

1
N

)
,

where γ := 1−
∫∞
1

(t− �t�) dt

t2
is Euler’s constant.

2) Take an = 1, so A(t) = �t�, y = 1 and f(t) = log t. We therefore have

log (�x�!) = �x� log(x)−
∫ x

1

�t�dt

t

= x log x−
∫ x

1

dt + (�x� − x) log x−
∫ x

1

�t� − t

t
dt

= x log x− x + O(log x).

We should point out that Stirling’s formula gives a slightly more precise
statement, namely n! ∼ nne−n

√
2πn, and hence log(n!) = n log n − n +

1
2

log n + 1
2

log(2π) + ε(n) where limn→∞ ε(n) = 0.

Furthermore, we see that

log (�x�!) =
∑

p�x

ordp (�x�!) log p

=
∑

p�x

∑

m�1

⌊
x

pm

⌋
log p

= x
∑

p�x

log p
p +

∑

p�x

log p
(⌊

x
p

⌋
− x

p

)
+
∑

p�x

∑

m�2

⌊
x

pm

⌋
log p

= x
∑

p�x

log p
p + O(x),

where the last estimate comes from the upper bound θ(x) =
∑

p�x log p =
O(x), from (4.6) and the estimate

∑

p�x

∑

m�2

⌊
x

pm

⌋
log p � x

∑

p�x

∑

m�2

log p

pm = x
∑

p�x

log p

p(p− 1)
= O(x).

From this, we can deduce the first formula in Proposition 4-1.2,
∑

p�x

log p
p = log x + O(1). (4.13)
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To get the second, we apply Abel’s formula (Lemma 4-1.9) letting f(t) =
1/ log t and an = log p/p if n = p is prime and an = 0 otherwise. By setting

A(x) =
∑

p�x

log p
p , we have that

∑

p�x

1
p =

∑

n�x

anf(n)

=
A(x)
log x

+
∫ x

2

A(t)dt

t(log t)2

= 1 + O(1/ log x) +
∫ x

2

dt
t log t

+
∫ x

2

(A(t)− log t)

t(log t)2
dt

= log log x− log log 2 + 1 +
∫ ∞

2

(A(t)− log t)

t(log t)2
dt + O(1/ log x).

2. Holomorphic Functions
(Summary/Reminders)

This section, without proofs, is a summary of some of the fundamental
properties of functions of a complex variable that we will be using. It could
be helpful to use [74] as a reference.

Concerning series, we will use the product rule for calculating the product
of two absolutely convergent series:

( ∞∑

n=0

an

)( ∞∑

n=0

bn

)
=

∞∑

n=0

(
n∑

k=0

akbn−k

)
,

as well as rearrangement of the order of summation in a series with positive
terms am,n:

∞∑

n=0

( ∞∑

m=0

am,n

)
=

∞∑

m=0

( ∞∑

n=0

am,n

)
.

A power series S(z) =
∑∞

n=0 anzn is said to have a radius of convergence
R � 0 (possibly R = 0 or R = +∞) if the series converges for all |z| < R
and diverges for all |z| > R; furthermore, the convergence is absolute in
the interior of the disc of convergence and the function is of class C∞ with
S(k)(z) =

∑∞
n=k n(n− 1) · · · (n− k + 1)anzn−k. In fact, the function S can

be expanded as a power series around every point z0 ∈ D(0, R), in other
words, for every z ∈ D(z0, r) ⊂ D(0, R), we have S(z) =

∑∞
n=0 bn(z − z0)n

(with bn = S(n)(z0)/n!). Such a function only has a finite number of
zeros in every closed disc (or compact set) which is contained in D(0, R).
We define the multiplicity of a zero, z0, as the integer k such that S(z) =
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(z−z0)k
∑∞

n=0 bn(z−z0)n where b0 	= 0. A function which can be expressed
a power series in a neighborhood of every point is called analytic.

2.1. Definition. A holomorphic function f : U → C on an open set U is
a function which is (complex) differentiable at every point in U , i.e.,

lim
z→z0

f(z)− f(z0)
z − z0

= f ′(z0) ∈ C exists.

If F is a closed set in the complex plane, f is said to be holomorphic over
F if it is holomorphic over an open set U which contains F .

Of course the notions of “differentiable” and “analytic” are very different in
a real variable; in a complex variable, however, they are equivalent.

2.2. Proposition. Let f : U → C be a holomorphic function and as-
sume that D(z0, r) ⊂ U . Then for every z ∈ D(z0, r), we have f(z) =∑∞

n=0 an(z − z0)n, where an = f (n)(z0)/n!.

2.3. Proposition. Let f : U → C be a holomorphic function and assume
that U is connected and f is not identically zero. Then the set of zeros of
f is discrete in U .

2.4. Corollary. Let f, g : U → C be two holomorphic functions and
assume that U is connected. If the set {z ∈ U | f(z) = g(z)} is not
discrete in U , then f = g. In particular, a holomorphic function on a disc
D(z0, r) ⊂ U admits at most one analytic continuation to all of U .

Next, we will define meromorphic functions as functions which are holomor-
phic on an open set U except for at the poles. At a pole z0, a meromorphic
function has the following behavior: there exists an integer m, called the
order of the pole, such that the function (z − z0)mf(z) has a holomorphic
continuation in a neighborhood of z0 and is not equal to zero at z0. This
is the same as saying that f(z) can be written, in a neighborhood of z0, as

f(z) = am

(z − z0)m +
am−1

(z − z0)m−1
+· · ·+ a1

z − z0
+

a holomorphic function
atz0.

The coefficient a1 is called the residue of f at z0 and is denoted by Res(f ; z0).
Its importance comes from its usefulness in calculating integrals.

We define the integral along a path as follows: for γ : [a, b] → C of class
C 1, we set ∫

γ

f(z)dz :=
∫ b

a

f(γ(t))γ′(t)dt.
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The variable change formula shows that the value of the integral does not
depend on the parametrization of the path but does, however, depend on
the direction in which you integrate along it. For convenience sake, we will
call a simple contour a path γ : [a, b] → C such that γ(a) = γ(b), but γ is
injective on [a, b[ and travels in the counterclockwise direction. A theorem
due to Camille Jordan shows that any such a contour partitions the plane
into two connected parts, the interior and the exterior.

2.5. Theorem. (Residue theorem) Let f be a meromorphic function on
U . Let γ be a simple contour which does contain any poles of f and S the
set of poles of f in the interior of γ. Then,

∫

γ

f(z)dz = 2πi
∑

a∈S

Res(f ; a).

If U is simply connected, i.e., “without holes”, then if f is holomorphic on U
and γ1, γ2 are two paths in U , both of which join a and b, then

∫
γ1

f(z)dz =∫
γ2

f(z)dz. Thus we can define an antiderivative of a holomorphic function
f(z) on such an open set by the formula F (b) =

∫
γ

f(z)dz, where γ is a
path in U which joins a and b.

2.6. Proposition. Let fn(z) be a sequence of holomorphic functions from
U to C. If the sequence converges uniformly on all compact sets in U to
a function f , then f is holomorphic, and the kth derivatives f

(k)
n converge

uniformly on every compact set in U to the function f (k).

We will expand on this point with the example of series of functions. Let
(un(z)) be a sequence of holomorphic functions such that the series S(z) :=∑∞

n=0 un(z) converges; suppose moreover that it converges uniformly on

every compact set, in other words,
∣∣∣
∣∣∣
∑N

n=M un(z)
∣∣∣
∣∣∣
K,∞

→ 0 when M and

N tend to infinity, and K ⊂ U is any compact subset. Then the function
S(z) is holomorphic, and

S(k)(z) =
∞∑

n=0

u(k)
n (z).

2.7. Example. (The complex logarithm). The function exp(z) = ez =∑∞
n=0 zn/n! is holomorphic on U = C, and the series converges uniformly

on every disk centered at 0 with radius R. We define

F (z) =
∞∑

n=1

(−1)n+1 (z − 1)n

n = −
∞∑

n=1

(1− z)n

n ·
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The series converges normally at every point in the open disk D(1, 1) =
{z ∈ C | |1 − z| < 1}, and the convergence is uniform (and also normal)
on every closed disk with center 1 and radius r < 1. Therefore, F (z) is
holomorphic on D(1, 1). If z is a real number in the interval ]0, 2[, we can
see that F (z) = log z (ordinary logarithm), and in particular,

exp (F (z)) = z.

The previous formula indicates that the two functions, the identity and
exp ◦F , which are analytic on the disk D(1, 1), coincide on the segment
]0, 2[ and hence on the whole disk. Thus F defines a complex logarithm on
the disk |z − 1| < 1.

2.8. Definition. Let f(z) be a holomorphic function on U . We say
that F (z) is a branch of the logarithm of f on U (and we write, with a
slight abuse of notation, F (z) = log f(z)) if F (z) is holomorphic and if
exp (F (z)) = f(z).

2.9. Remark. If F (z) is a branch of the logarithm of f , then f is never
0 on U , we have |exp (F (z))| = exp (Re F (z)) = |f(z)|, and hence

Re log f(z) = log |f(z)|.

Likewise, f ′(z)/f(z) = F ′(z) exp (F (z)) / exp (F (z)) = F ′(z), and also

d
dz

log f(z) =
f ′(z)
f(z)

·

Finally, if F1 and F2 are two logarithms, then F2(z) = F1(z)+2kπi on any
connected set U .

This remark suggests that we should construct the logarithm of f(z) as an
antiderivative f ′(z)/f(z), with the condition that f is not zero. We have
seen that this is possible if U is simply connected.

2.10. Proposition. Let U be a simply connected open subset of the
complex plane and f(s) a holomorphic function without any zeros in U .
Then there exists a holomorphic branch F (s) = log f(s) on U . Two such
branches differ by an integer multiple of 2πi.

We will finish this summary by explaining the notion of an infinite prod-
uct. The first idea consists of saying that a product is convergent if
limN

∏N
n=0 pn exists. This could be confusing because it is not true that

such a product is zero if and only if one of the factors is zero. For example,
it can be easily checked that
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lim
N→∞

N∏

n=1

(
1− 1

n + 1

)
= 0.

We can overcome this inconvenience by defining infinite products a little
differently. Observe first that a necessary condition for the convergence
of a non-zero product

∏
n pn is to have limn pn = 1; it therefore does not

hurt to assume that pn = 1 + un where un tends to zero. In particular,
log(1 + un) =

∑∞
k=1(−1)kuk

n/k is well-defined when |un| < 1 and hence
when n � n0, which justifies the following definition.

2.11. Definition. A product
∏∞

n=0(1+un) is convergent (resp. absolutely
convergent) if there exists n0 such that |un| < 1 for all n � n0 and the
series

∑∞
n=n0

log(1 + un) is convergent (resp. absolutely convergent). A
product of functions

∏∞
n=0(1+un(z)) is uniformly convergent on K if there

exists n0 such that |un(z)| < 1 for all n � n0 and z ∈ K and the series∑∞
n=n0

log(1 + un(z)) is uniformly convergent (on K).

2.12. Lemma. A product P :=
∏∞

n=0(1 + un) is absolutely convergent
if and only if the series

∑∞
n=0 |un| is convergent. If P is convergent, it is

zero if and only if one of the factors 1 + un is zero.

2.13. Proposition. Let (un(z)) be a sequence of holomorphic functions
on an open set U such that the series

∑
n log(1+un(z)) converges uniformly

on every compact subset of U .

i) Then the function defined by the infinite product

P (z) :=
∞∏

n=0

(1 + un(z))

is holomorphic on U .
ii) For every z0 ∈ U , only a finite number of pn(z) := 1 + un(z) are zero

at z0, and hence

ordz0 P (z) =
∞∑

n=0

ordz0 pn(z).

3. Dirichlet Series and the Function ζ(s)

We call a Dirichlet series a series of the form F (s) =
∑∞

n=1

an

ns · We will
now state its first important property.
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3.1. Proposition. Let F (s) =
∑∞

n=1

an

ns be a Dirichlet series that we
will assume to be convergent at s0. Then it converges uniformly on the sets
EC,s0 = {s ∈ C | Re(s− s0) � 0, |s− s0| � C Re(s− s0)}.

Proof. For M � 1, set AM (x) :=
∑

M<n�x ann−s0 . By the hypothesis,
we then have |AM (x)| � ε(M) where ε(M) tends to zero as M tends to
infinity. Abel’s formula gives

∑

M<n�N

ann−s =
∑

M<n�N

ann−s0n−(s−s0)

= AM (N)N−(s−s0) + (s− s0)
∫ N

M

AM (t)t−(s−s0+1)dt.

We can find an upper bound for the integral as follows:
∣∣∣∣∣

∫ N

M

AM (t)t−(s−s0+1)dt

∣∣∣∣∣ � ε(M)
∫ N

M

t−(σ−σ0+1)dt

= ε(M) M−(σ−σ0) −N−(σ−σ0)

(σ − σ0)
·

By restricting to an angular sector EC,s0 bounded by σ − σ0 = Re(s) −
Re(s0) � 0 and |s− s0| = C(σ − σ0), we obtain

∣∣∣∣∣∣

∑

M<n�N

ann−s

∣∣∣∣∣∣
� ε(M)(1 + C),

which suffices to show the uniform convergence on this sector (cf. the figure
below). �

the domain |s− s0| �
σ − σ0

cos θ

The following corollary is a result of the general theorems recalled in the
previous section (in particular, Proposition 4-2.6).

3.2. Corollary. Every Dirichlet series F (s) =
∑∞

n=1

an

ns has an abscissa
of convergence, say σ0, such that the series converges for Re(s) > σ0 and
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diverges for Re(s) < σ0. Furthermore, the function F defined by the se-
ries is holomorphic in the half-plane of convergence Re(s) > σ0, and its
derivatives are given by F (k)(s) =

∑∞
n=1 an(− log n)kn−s.

Proof. It suffices to let σ0 = inf{σ ∈ R | the series converges at σ}, then
to observe that every compact set in the (open) half-plane of convergence
is contained in a sector, as above, where the convergence is uniform. �

3.3. Remarks. 1) If a Dirichlet series converges at s0 = σ0 + it0 to
the number S, then the proof of Proposition 4-3.1 (above) shows that
S = limε→0+ F (σ0 + ε + it0).
2) Set A(t) :=

∑
n�t an. The previous proof allows us to establish the

formula
∞∑

n=1

ann−s = s

∫ ∞

1

⎛

⎝
∑

n�t

an

⎞

⎠ t−s−1dt = s

∫ ∞

1

A(t)t−s−1dt. (4.14)

In particular, if A(t) =
∑

n�t an is bounded, then the series converges
whenever Re(s) > 0.

The most famous Dirichlet series is the Riemann zeta function, defined
by the series

∑∞
n=1 n−s. It is well-known, at least for real values and the

general case follows from the real case, that the abscissa of convergence is
+1.

3.4. Theorem. (Euler Product) If Re(s) > 1, then the following formula
holds

ζ(s) =
∞∑

n=1

1
ns =

∏

p

(
1− 1

ps

)−1

. (4.15)

Proof. Notice that
∑

p |p−s| =
∑

p p−σ �
∑

n n−σ, hence the product is
absolutely convergent. If Re(s) > 0, the convergence of geometric series
allows us to write (1− p−s)−1 =

∑∞
m=0 p−ms. By taking the product over

the prime numbers p1, . . . , pr which are � T , we obtain

∏

p�T

(1− p−s)−1 =
∏

p�T

( ∞∑

m=0

p−ms

)

=
∑

m1, . . . , mr � 1
p1, . . . , pr � T

(pm1
1 · · · pmr

r )−s

=
∑

n∈N (T )

n−s,
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where we denote by N (T ) the set of integers all of whose prime factors are
� T . Thus whenever Re(s) > 1, we have
∣∣∣∣∣∣

∞∑

n=1

1
ns −

∏

p�T

(
1− 1

ps

)−1
∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

n/∈N (T )

1
ns

∣∣∣∣∣∣
�
∑

n>T

∣∣∣ 1
ns

∣∣∣ =
∑

n>T

1
nσ ·

The last sum is the tail-end of a real convergent series (when σ := Re(s) >
1) and thus tends to zero, which proves both the convergence of the product
and Euler’s formula. �

3.5. Corollary. The function ζ(s) does not have any zeros in the open
half-plane Re(s) > 1. A holomorphic branch of log ζ(s) for Re(s) > 1 can
be constructed by setting

log ζ(s) =
∑

p

∑

m�1

p−ms

m · (4.16)

Furthermore, if we define the von Mangoldt function by

Λ(n) =

{
log p if n = pm,
0 if not,

then

− ζ ′(s)
ζ(s)

=
∑

p

∑

m�1

log p

pms =
∞∑

n=1

Λ(n)
ns · (4.17)

Proof. We know 1− p−s 	= 0 and that the product is convergent. The first
assertion is therefore obvious. The second formula can be deduced from
Euler’s formula by taking the series expansion of the logarithm (valid for
|x| < 1) and summing:

log
(
(1− x)−1

)
=

∞∑

m=1

xm

m ·

The second formula is therefore gotten by differentiating the first. �

Interlude (I). These formulas can be generalized by replacing Z and Q by
OK and K, and the uniqueness of the decomposition into prime factors by
the uniqueness of the decomposition into prime ideals (Theorem 3-4.18).
We denote by IK the set of non-zero ideals and PK the set of non-zero
(maximal) prime ideals in OK . Now we can introduce the Dedekind zeta
function and prove that

ζK(s) :=
∑

I∈IK

N(I)−s =
∏

p∈PK

(
1−N(p)−s

)−1 for Re(s) > 1.
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3.6. Proposition. The function ζ(s) can be analytically continued to a
meromorphic function to the half-plane Re(s) > 0, with a unique pole at
s = 1 with residue equal to +1.

Proof. The statement says that ζ(s) − 1/(s − 1), originally defined for
Re(s) > 1, has a holomorphic continuation to the half-plane Re(s) > 0. To
prove this, we can write ζ(s), using the expression �t� =

∑
n�t 1, as

ζ(s) =
∞∑

n=1

1
ns = s

∫ ∞

1

�t�t−s−1dt

= s

∫ ∞

1

t−sdt + s

∫ ∞

1

(�t� − t) t−s−1dt

= 1
s− 1

+ 1 + s

∫ ∞

1

(�t� − t) t−s−1dt.

We know that |�t� − t| � 1. The last integral is hence convergent and
defines a holomorphic function for Re(s) > 0. �

3.7. Remark. Actually, the function ζ(s)− 1/(s− 1) can be extended to
the whole complex plane, and moreover, ζ(s) satisfies a functional equation
(see Theorem 4-5.6 further down).

4. Characters and Dirichlet’s Theorem

4.1. Definition. If G is a finite abelian group, a homomorphism from
G to C∗ is called a character. The set of characters of G forms a group
denoted by Ĝ.

4.2. Proposition. The group Ĝ is isomorphic to the group G (but not
canonically).

Proof. If G = Z/nZ, a character satisfies χ(1) ∈ μn (where μn denotes as
usual the group of nth roots of unity), and the map χ �→ χ(1) provides
an isomorphism between Ĝ and μn. The latter is isomorphic to Z/nZ
and hence to G. We will now show that ̂G1 ×G2

∼= Ĝ1 × Ĝ2; to see
why this is true, a character χ of G1 × G2 can be written as χ(g1, g2) =
χ(g1, e2)χ(e1, g2), and, by setting χ1 = χ(· , e2) and χ2 = χ(e1, ·), we obtain
an isomorphism χ �→ (χ1, χ2) from ̂G1 ×G2 to Ĝ1 × Ĝ2. The general case
is now easy: we have G ∼= Z/n1Z× · · · × Z/nrZ, hence

Ĝ ∼= (Z/n1Z× · · · × Z/nrZ)b

∼= ̂Z/n1Z× · · · × ̂Z/nrZ ∼= Z/n1Z× · · · × Z/nrZ ∼= G. �
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4.3. Lemma. If x is an element of order r in G, then for every ξ, an
rth root of unity, there exist |G|/r characters χ such that χ(x) = ξ. In
particular, in the ring of polynomials C[T ], the following formula holds:

∏

χ∈Ĝ

(1− χ(x)T ) = (1− T r)|G|/r.

Proof. We can immediately see that χ(x) ∈ μr since χ(x)r = χ(xr) =
χ(eG) = 1. Consider the map χ �→ χ(x) from Ĝ to μr, which is a ho-
momorphism whose kernel we will now identify. Let H be the subgroup
generated by x (so that H ∼= Z/rZ). The kernel of the previous homomor-
phism consists of characters which satisfy χ(x) = 1 and also of characters
which are trivial on H. The latter are in bijection with the characters of
G/H, and their cardinality is therefore card(G/H) = |G|/r. We see that
the image has cardinality r, thus the homomorphism is surjective, which
completes the proof of the first part of the lemma. For the last formula, it
suffices to notice that

∏

χ∈Ĝ

(1− χ(x)T ) =

⎛

⎝
∏

ξ∈μr

(1− ξT )

⎞

⎠
|G|/r

= (1− T r)|G|/r. �

We will essentially use this lemma in the form of the following corollary.

4.4. Corollary. Let p be a prime number which does not divide n and r
the order of p modulo n. Consider the set of Dirichlet characters modulo
n (see below). Then the following formula holds:

∏

χ mod n

(
1− χ(p)

ps

)−1

=
(

1− 1
prs

)−φ(n)/r

. (4.18)

4.5. Proposition. If G is a finite commutative group, we have the fol-
lowing relations:

∀g ∈ G \ {e},
∑

χ∈Ĝ

χ(g) = 0 and ∀χ ∈ G \ {1},
∑

g∈G

χ(g) = 0.

Proof. If g = e, we clearly have
∑

χ∈Ĝ χ(g) = |G|. If g 	= e, there exists,
by the previous lemma, a character χ1 such that χ1(g) 	= 1, and hence

∑

χ∈Ĝ

χ(g) =
∑

χ∈Ĝ

(χχ1)(g) = χ1(g)
∑

χ∈Ĝ

χ(g),

which gives us the first equality. We will handle the other sum similarly by
observing that if χ = 1, then

∑
g∈G χ(g) = |G|, and if χ 	= 1, then there
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exists g1 such that χ(g1) 	= 1, hence
∑

g∈G

χ(g) =
∑

g∈G

χ(gg1) = χ(g1)
∑

g∈G

χ(g),

which gives us the second formula. �

4.6. Lemma. Let a ∈ G. Then,

1
|G|

∑

χ∈Ĝ

χ(a)χ(x) =

{
1 if x = a,
0 if not.

Proof. This statement follows from the previous formulas since χ(a) is a
root of unity, so χ(a) = χ(a)−1 = χ(a−1), and therefore

∑
χ∈Ĝ χ(a)χ(x) =

∑
χ∈Ĝ χ(a−1x) equals |G| if x = a and 0 if not. �

4.7. Definition. Let χ : Z/mZ∗ → C∗ be a character of Z/mZ∗. The
Dirichlet character modulo m (also denoted by χ) is the map from Z to C
defined by

χ(n) =

{
χ(nmod m) if gcd(m, n) = 1,
0 if gcd(m, n) > 1.

Remark. We have the multiplicativity property: ∀n, n′ ∈ Z, χ(nn′) =
χ(n)χ(n′), in other words, the function χ is completely multiplicative.

We will use these characters in the following way: we have the equality (at
least formally)

∑

p≡a mod m

f(p) = 1
φ(m)

∑

χ

∑

p

χ(a)χ(p)f(p)

= 1
φ(m)

∑

p� |m
f(p) + 1

φ(m)

∑

χ �=1

χ(a)

(
∑

p

χ(p)f(p)

)
.

We have already looked at sums like the first term
∑

p f(p); to be able to
deal with sums of the type

∑
p χ(p)f(p), we introduce the following series.

4.8. Definition. Let χ be a Dirichlet character modulo m. We define the
Dirichlet “L”-series by the following series:

L(χ, s) :=
∞∑

n=1

χ(n)n−s.
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Remark. If χ0 is the unitary character or principal character modulo m,
we have χ0(n) = 1 or 0 depending on whether n is relatively prime to m
or not. We can easily deduce from this that L(χ0, s) is almost equal to the
function ζ(s); to be more precise,

L(χ0, s) =
∑

gcd(n,m)=1

n−s =
∏

p� |m
(1− p−s)−1 =

∏

p|m
(1− p−s)ζ(s).

4.9. Proposition. The abscissa of convergence of the series L(χ, s) is
σ = 0, except when χ is the unitary character, in which case σ = 1.

Proof. We have seen from the previous remark that the series L(χ0, s)
where χ0 is the unitary character has the same abscissa of convergence as
the series which defines the zeta function, in other words 1. The terms in
the series do not tend to 0 if Re(s) � 0, hence the series cannot converge.
If χ is a character modulo m which is not the unitary character, then∑r+m

n=r+1 χ(n) = 0, and hence
∣∣∣∣∣∣

∑

n�x

χ(n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∑

m
j x

m

k

<n�x

χ(n)

∣∣∣∣∣∣∣
� m.

Furthermore, we have seen (cf. Remark 4-3.3) that the Dirichlet series
therefore converges when Re(s) > 0. �

4.10. Remark. The abscissa of absolute convergence is 1 and is strictly
larger than the abscissa of convergence, which is 0 in this case. For any
Dirichlet series, if we denote by σc its abscissa of convergence and σa its
abscissa of absolute convergence, we can show that we always have the
following inequality: σc � σa � σc + 1.

4.11. Theorem. The generalized Euler formula holds:

L(χ, s) =
∞∑

n=1

χ(n)
ns =

∏

p

(
1− χ(p)

ps

)−1

when Re(s) > 1. (4.19)

Proof. When Re(s) > 0, we can consider the following convergent geometric
series: (1 − χ(p)p−s)−1 =

∑∞
m=0 χ(p)mp−ms, and by taking the product

over the prime numbers p1, . . . , pr which are � T , we therefore obtain

∏

p�T

(1− χ(p)p−s)−1 =
∏

p�T

( ∞∑

m=0

χ(p)mp−ms

)

=
∑

χ(p1)m1 · · ·χ(pr)mr(pm1
1 · · · pmr

r )−s
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=
∑

n∈N (T )

χ(n)n−s,

where N (T ) denotes the integers all of whose prime factors are � T . Thus
whenever Re(s) > 1, we have

∣∣∣∣∣∣

∞∑

n=1

χ(n)
ns −

∏

p�T

(
1− χ(p)

ps

)−1
∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

n/∈N (T )

χ(n)
ns

∣∣∣∣∣∣

�
∑

n>T

∣∣∣∣
χ(n)
ns

∣∣∣∣ �
∑

n>T

1
nσ ·

The last sum is the tail-end of a real convergent series (when σ := Re(s) >
1). It therefore tends to zero as T tends to infinity, which proves both the
convergence of the product and the generalized Euler formula. �

4.12. Corollary. When Re(s) > 1, we have L(χ, s) 	= 0.

Proof. This is obvious since the Euler product is convergent and 1 −
χ(p)p−s 	= 0. �

4.13. Corollary. We also have the following formulas.

i)

log L(χ, s) =
∑

p

∑

m�1

χ(p)m

m p−ms. (4.20)

ii)

− L′(χ, s)
L(χ, s)

=
∑

p

∑

m�1

χ(p)m log p

pms =
∑

n

χ(n)
Λ(n)
ns · (4.21)

Proof. We can use an argument similar to the one we used for the function
ζ(s). �

Interlude (II). Let K = Q(
√

d) where d is square-free and 	= 1. The de-
composition law in OK of primes of Z allows us to describe the contribution
of p to the Dedekind function ζK(s):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1− p−s)−2 = (1− p−s)−1(1−
(

d
p

)
p−s)−1 if p is split in K,

(1− p−2s)−1 = (1− p−s)−1(1−
(

d
p

)
p−s)−1 if p is inert in K,

(1− p−s)−1 = (1− p−s)−1(1−
(

d
p

)
p−s)−1 if p is ramified in K,

for odd p (there is a similar statement for p = 2). We therefore have that

ζK(s) = ζ(s)L(χd, s),
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where χ is the character defined by χd(p) =
(

d
p

)
for odd p and χd(2) = 1

(resp. χd(2) = −1, χd(2) = 0) if d ≡ 1 mod 8 (resp. d ≡ 5 mod 8, d ≡ 2 or
3 mod 4). It can be shown as an exercise that if D := |d| for d ≡ 1 mod 4
(resp. D := 4|d| for d ≡ 2 or 3 mod 4), then χd is a character modulo D.
We will prove below that L(χd, 1) 	= 0, and therefore the function ζK(s)
has, just like ζ(s), a pole of order 1 at s = 1, at which the residue equals
L(χd, 1). One of the nicest results in analysis, the class number formula for
a quadratic field, is given by:

Res(ζK , 1) =

⎧
⎪⎪⎨

⎪⎪⎩

2πhK

w
√

D
if K is imaginary,

2hK log ε
√

D
if K is real,

where hK is the class number, w the number of roots of unity (equal to 2 if
d < −4, and equal to 4 or 6 if d = −1 or d = −3) and ε is the fundamental
unit > 1 (the generator of OK modulo ±1). This formula, together with the
explicit computation of L(χ, 1) (see Exercise 4-6.6) is very useful, namely
for studying hK .

For the proof of the theorem on arithmetic progressions, we will need the
following key result.

4.14. Theorem. Let χ be a Dirichlet character different from the unitary
character. Then,

L(χ, 1) 	= 0.

4.15. Remark. If we knew that the Euler product converged at s = 1, we
would immediately have this result since 1− χ(p)p−1 	= 0. Luckily we can
show, by using the fact that L(χ, 1) is non-zero, that the Euler product at
1 converges (see Exercise 4-6.7).

Before proving the theorem, we will see how to deduce Dirichlet’s theorem
(4-1.4) from it.

Proof. For Re(s) > 1, we write the formula as

∑

p≡a mod m

p−s = 1
φ(m)

∑

p� |m
p−s + 1

φ(m)

∑

χ �=1

χ(a)

(
∑

p

χ(p)p−s

)
.

The generalized Euler formula then yields for Re(s) > 1/2,
∑

p

χ(p)p−s = log L(χ, s) + a holomorphic function.
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The expression
∣∣∣∣
∑

p,m�2

χ(pm)
m p−ms

∣∣∣∣is bounded above by
∑

p,m�2 p−mσ/m,

which converges when σ > 1/2. Consequently, when χ is not the unitary
character and knowing that L(χ, 1) 	= 0, we can deduce that

∑
p χ(p)p−s =

O(1) in a neighborhood of s = 1. However,
∑

p p−s = − log(s− 1) + O(1).
We can therefore conclude that

∑

p≡a mod m

p−s = − log(s− 1)
φ(m)

+ O(1),

which indeed proves the theorem on arithmetic progressions. �

4.16. Remark. If Q designates a subset of the set P of prime numbers,
we can define various notions of density. The preceding proof suggests that
we should introduce the notion of analytic density:

dan(Q) := lim
s→1

∑

p∈Q

p−s

∑

p∈P

p−s
·

Thus we have just shown that the analytic density of prime numbers con-
gruent to a modulo m is 1/φ(m). We could also define the “natural” density
as

d(Q) := lim
x→∞

card{p ∈ Q | p � x}
card{p ∈ P | p � x}

·

It can be shown, but we will not do it, that the natural density of prime
numbers congruent to a modulo m is 1/φ(m).

To prove that L(χ, 1) 	= 0, we use the following lemma about Dirichlet
series with positive real coefficients.

4.17. Lemma. Let (an) be a sequence of positive real numbers. Suppose
that the series F (s) =

∑∞
n=1 ann−s converges for Re(s) > σ0 and that the

function can be analytically continued in a neighborhood of σ0. Then the
abscissa of convergence of the series which defines F (s) is strictly less than
σ0.

Proof. Choose r > 0 and σ < σ0 < σ1 so that σ ∈ D(σ1, r), where this disk
is contained in the domain of holomorphy of F (s). The point σ1 is in the
half-plane of convergence, hence
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F (k)(σ1) =
∞∑

n=1

an(− log n)kn−σ1 .

By writing the expansion of F as a power series in the disk D(σ1, r) at the
point σ, we obtain:

F (σ) =
∞∑

k=0

F (k)(σ1)
k!

(σ − σ1)k

=
∞∑

k=0

1
k!

∞∑

n=1

an(− log n)kn−σ1(σ − σ1)k

=
∞∑

k=0

1
k!

∞∑

n=1

an(log n)kn−σ1(σ1 − σ)k

=
∞∑

n=1

ann−σ1

∞∑

k=0

1
k!

(log n)k(σ1 − σ)k

=
∞∑

n=1

ann−σ1 exp (log n(σ1 − σ))

=
∞∑

n=1

ann−σ1nσ1−σ

=
∞∑

n=1

ann−σ,

where the rearrangement of the order of summation is justified by the fact
that the terms are positive. This shows that the series converges at σ. �

4.18. Lemma. Let Ĝ be the set of characters modulo m and p a prime
number which does not divide m. We denote by fp the order of pmod m
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and gp := φ(m)/fp. Then we have the identity:
∏

χ∈Ĝ

(1− χ(p)T ) =
(
1− T fp

)gp
.

Proof. This follows from Lemma 4-4.3 on the values of characters at a
point. �

4.19. Corollary. The function F (s) :=
∏

χ∈Ĝ L(χ, s) is a Dirichlet series
with positive coefficients in the half-plane Re(s) > 1 and has a simple pole
at s = 1.

Proof. To prove the first statement, we compute
∏

χ

L(χ, s) =
∏

p� |m

∏

χ

(
1− χ(p)

ps

)

=
∏

p� |m

(
1− 1

psfp

)−gp

=
∏

p� |m

( ∞∑

r=0

p−rfps

)gp

,

which is clearly a Dirichlet series with positive coefficients. By furthermore
noticing that gp � 1 and fp � φ(m), we have, for σ ∈ R,

∏

χ

L(χ, σ) =
∏

p� |m

( ∞∑

r=0

p−rfpσ

)gp

�
∏

p� |m

(
1 + p−σφ(m)

)
.

Thus the series and the product diverge for σ = 1/φ(m).

Furthermore, the function L(χ0, s), like ζ(s), is meromorphic on Re(s) > 0,
with a unique simple pole at s = 1. The other L(χ, s) are holomorphic
on Re(s) > 0, hence the product of these functions is meromorphic on
Re(s) > 0, with a simple pole at s = 1 if

∏
χ �=χ0

L(χ, 1) 	= 0 and no poles
if one of the L(χ, 1) is zero. We will now show that the latter case cannot
happen. To see why this is true, if the product function were holomorphic
up to Re(s) > 0, the abscissa of convergence would therefore be � 0 in
light of the lemma about Dirichlet series with positive coefficients (Lemma
4-4.17), which is a contradiction. �

We can deduce from the previous argument that L(χ, 1) is non-zero for
every χ different from the unitary character, and therefore we have indeed
finished the proof of Dirichlet’s theorem on arithmetic progressions.

4.20. Remark. We can show (up to factors corresponding to prime
numbers p which divide m) that the product

∏
χ L(χ, σ) is equal to the
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Dedekind zeta function of the field Q(exp(2πi/m)), which explains in a
more conceptual manner why the coefficients are positive.

5. The Prime Number Theorem
We will prove the following form of the prime number theorem.

5.1. Theorem. The integral
∫∞
1

(θ(t)− t)t−2dt is convergent.

We will show that the convergence of this integral implies θ(x) ∼ x, and
hence π(x) ∼ x/ log x. To see this, suppose that lim sup θ(x)x−1 > 1, then
there exists ε > 0 and xn tending to infinity such that θ(xn)x−1

n � 1 + ε.
For t ∈ [xn, (1 + ε/2)xn], we therefore have

θ(t)− t

t2
� θ(xn)− (1 + ε/2)xn

t2
� εxn/2

t2
� εxn

2(1 + ε/2)2x2
n

,

and consequently
∫ (1+ε/2)xn

xn

θ(t)− t

t2
dt � ε2

4(1 + ε/2)2
,

which contradicts the convergence of the integral. We can therefore con-
clude that lim sup θ(x)x−1 � 1. A symmetric argument shows that
lim inf θ(x)x−1 � 1. It follows that lim θ(x)x−1 = 1.

To prove the theorem, we will use the following result from complex analysis
(due to Newman, see [55, 81]) concerning the Laplace transform.

5.2. Theorem. (“The analytic theorem”) Let h(t) be a bounded, piecewise
continuous function. Then the integral

F (s) =
∫ +∞

0

h(u)e−sudu

is convergent and defines a holomorphic function on the half-plane Re(s) >

0. Suppose that this function can be analytically continued to a holomorphic
function on the closed half-plane Re(s) � 0. Then the integral converges
for s = 0 and

F (0) =
∫ +∞

0

h(u)du.

Let us provisionally admit that this result is true and see how to apply it



§5. The Prime Number Theorem 149

to the function

F (s) =
∫ +∞

1

θ(t)− t

ts+2
dt

=
∫ +∞

0

θ(eu)− eu

eu(s+2)
eudu =

∫ +∞

0

[
θ(eu)e−u − 1

]
e−usdu.

The function h(u) := θ(eu)e−u − 1 is indeed bounded and piecewise con-
tinuous. If the analytic continuation hypothesis is satisfied, then we know

that F (0) =
∫ +∞
0

(θ(eu)e−u−1)du =
∫ +∞
1

θ(t)− t

t2
dt is indeed convergent.

We could transform the integral which defines F (s) (for Re(s) > 0) as
follows:

F (s) =
∫ +∞

1

θ(t)− t

ts+2
dt

=
∞∑

n=1

∫ n+1

n

θ(t)t−s−2dt−
∫ +∞

1

t−s−1dt

=
∞∑

n=1

θ(n)
n−s−1 − (n + 1)−s−1

s + 1
− 1

s

= 1
s + 1

∞∑

n=1

n−s−1 (θ(n)− θ(n− 1))− 1
s

= 1
s + 1

∑

p

p−s−1 log(p)− 1
s ·

We have also seen that

− ζ ′(s)
ζ(s)

=
∑

p,m�1

log(p)p−ms =
∑

p

log(p)p−s +
∑

p,m�2

log(p)p−ms.

The second term in the last expression is a convergent series and hence holo-
morphic for Re(s) > 1/2. From this, we can deduce that

∑
p log(p)p−s =

− ζ ′(s)
ζ(s)

+ a holomorphic function on Re(s) > 1/2 and finally that

F (s) = − ζ ′(s + 1)
(s + 1)ζ(s + 1)

− 1
s + a holomorphic function on Re(s) > −1/2.

The key point in the proof is therefore the following result.

5.3. Theorem. (Hadamard, de la Vallée-Poussin) The function ζ(s) does
not have any zeros on the line Re(s) = 1.
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Proof. We start with the formula

4 cos(x) + cos(2x) + 3 = 2(1 + cos(x))2 � 0.

Recall that

log ζ(σ + it) =
∑

p,m

p−mσ−mit

m , and

log |ζ(σ + it)| =
∑

p,m

p−mσ

m cos(mt log p).

This implies that

log
(
|ζ(σ + it)|4|ζ(σ + 2it)|ζ(σ)3

)

=
∑

p,m�1

p−mσ

m (4 cos(mt log p) + cos(2mt log p) + 3) � 0.

We can conclude from this, assuming σ > 1, that

|ζ(σ + it)|4|ζ(σ + 2it)|ζ(σ)3 � 1. (4.22)

Now, if ζ(s) had a zero of order k at 1 + it and with order � at 1 + 2it,
then |ζ(σ + it)| ∼ a(σ − 1)k, |ζ(σ + 2it)| ∼ b(σ − 1)	 and ζ(σ) ∼ (σ − 1)−1

(where σ tends to 1 from above). The left-hand side of inequality (4.22) is
therefore (asymptotically) equivalent to c(σ− 1)4k+	−3, which implies that
4k + �− 3 � 0, and hence k = 0. �

5.4. Corollary. The function defined on Re(s) > 1 by

G(s) := − ζ ′(s)
sζ(s)

− 1
s− 1

extends to a holomorphic function on Re(s) � 1.

Proof. The previous theorem shows that the function ζ ′(s)/ζ(s) is holo-
morphic on the line Re(s) = 1, except for s = 1. Consequently, the
function G(s) also is. To study G(s) in a neighborhood of s = 1, we
use the fact that ζ(s) has a simple pole at s = 1, and consequently
ζ ′(s)/ζ(s) = −1/(s − 1) + g(s), where g(s) is holomorphic in a neigh-
borhood of 1. Thus G(s) is indeed holomorphic in a neighborhood of 1 and
hence on the line Re(s) = 1. �

Appendix. Proof of the “analytic theorem”

Recall the statement of the analytic result used in the proof of the prime
number theorem.
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5.5. Theorem. If h(t) is a bounded piecewise continuous function, then
the integral (the Laplace transform of h)

F (s) =
∫ +∞

0

h(u)e−sudu

is convergent and defines a function which is holomorphic on the half-plane
Re(s) > 0. Suppose that this function can be analytically continued to a
holomorphic function on the closed half-plane Re(s) � 0. Then the integral
for s = 0 converges and

F (0) =
∫ +∞

0

h(u)du.

Proof. The first part is analogous to the theorem of convergence for Dirich-
let series (see Exercise 4-6.2). We will therefore prove the second state-
ment. For a (large) real number T , let FT (s) :=

∫ T

0
h(t)e−stdt; these

are functions which are holomorphic for all s ∈ C. We now need to
show that limT→∞ FT (0) exists and equals F (0). To do this, we con-
sider for some large R the contour γ = γ(R, δ) which bounds the region
S := {s ∈ C | Re(z) � −δ and |s| � R}. Once we have fixed R, we can
choose δ > 0 sufficiently small so that F (s) is analytic on this region.

The trick lies in introducing the function

GT (s) := (F (s)− FT (s)) esT

(
1 + s2

R2

)
,

so that GT (0) = F (0)−FT (0). Therefore, everything comes back to proving
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that limT→∞ GT (0) = 0. To do this, we will use the residue theorem a first
time, noticing that

GT (0) = F (0)− FT (0) = 1
2πi

∫

γ

(F (s)− FT (s)) esT

(
1 + s2

R2

)
ds
s ·

To find an upper bound on this integral, we cut the contour into two pieces:
γ1, which is the piece of γ which lives in the half-plane Re(s) > 0, and γ2,
which lives in the half-plane Re(s) < 0. We then carry out the following
computation.

Let s be a number such that |s| = R or s = Reiθ. Then we have
∣∣∣∣e

sT

(
1 + s2

R2

)
1
s

∣∣∣∣ = eRe(s)T
∣∣e−iθ + eiθ

∣∣ 1
R

= eRe(s)T 2 Re(s)

R2
·

We also have the upper bound

|F (s)− FT (s)| =
∣∣∣∣
∫ ∞

T

h(t)e−stdt

∣∣∣∣ � M

∫ ∞

T

∣∣e−st
∣∣ dt = Me−Re(s)T

Re(s)
·

This gives us
∣∣∣∣

1
2πi

∫

γ1

(F (s)− FT (s)) esT

(
1 + s2

R2

)
ds
s

∣∣∣∣ � M
R
·

Thus assuming that R is very large, this part of the integral will be ar-
bitrarily small. Now, cut the integral over γ2 into two pieces, I1 and I2,
where

I1 := 1
2πi

∫

γ2

F (s)esT

(
1 + s2

R2

)
ds
s ,

I2 := 1
2πi

∫

γ2

FT (s)esT

(
1 + s2

R2

)
ds
s ·

To find an upper bound on I2, observe first that FT (s) is entire. The
residue theorem (or actually the Cauchy formula in this case) allows us
to then replace the contour γ2 by the arc of a circle of radius R which
lives in the half-plane Re(s) < 0 and, by using the same upper bounds, to
conclude that |I2| � M/R. To find an upper bound of I1, simply notice

that the function F (s)esT

(
1 + s2

R2

)
1
s converges to 0 when T tends to

+∞ and converges uniformly on every compact set contained in Re(s) < 0.
Consequently,

lim
T→∞

1
2πi

∫

γ2

F (s)esT

(
1 + s2

R2

)
ds
s = 0.
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By putting the three upper bounds together, we see that

|FT (0)− F (0)| � 2M
R

+ ε(T )

where ε(T ) tends to zero (in a way dependent on R). We needed to show
that limFT (0) = F (0), which is now accomplished. �

Supplement. Analytic continuation and the functional equation
We will now outline the main steps of the proof of the following theorem
due to Riemann.

5.6. Theorem. (The functional equation of the Riemann zeta function)
The function ζ(s)−1/(s−1) can be analytically continued to the whole com-
plex plane. Furthermore, the function ζ(s) satisfies the functional equation
given by

ξ(s) = ξ(1− s), (4.23)

where ξ(s) := π−s/2Γ(s/2)ζ(s).

As a preliminary, we will recall the construction of the function Γ(s) and
the Poisson formula which gives the functional equation for the theta series.

5.7. Lemma. The integral Γ(s) :=
∫∞
0

e−tts−1dt defines a holomorphic
function for Re(s) > 0, which satisfies the functional equation Γ(s + 1) =
sΓ(s). It can be continued to all of C as a meromorphic function with
simple poles at 0,−1,−2,−3, . . . .

Proof. Showing that the integral is convergent does not pose any problems.
The functional equation can be obtained by integrating by parts. The
functional equation also allows us to analytically continue by induction from
Re(s) > −n to Re(s) > −n− 1 by using the fact that Γ(s) = s−1Γ(s + 1).
Finally, the expression

Γ(s) = 1
s(s + 1) · · · (s + n)

Γ(s + n + 1)

makes it clear where the poles are. �

We can also prove that for all s, Γ(s) 	= 0 (see Exercise 4-6.19).

5.8. Lemma. (Poisson formula) Let f(x) be an integrable function over
R (i.e., in L1(R)). We define its Fourier transform by

f̂(y) :=
∫ +∞

−∞
f(x) exp(2πixy)dx
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and assume that the function
∑

n∈Z f(x + n) is of bounded variation on
[0, 1] and continuous. Then the following formula holds:

∑

n∈Z

f(n) =
∑

m∈Z

f̂(m). (4.24)

Proof. We introduce the function G(x) :=
∑

n∈Z f(x + n) (the hypotheses
guarantee the existence and continuity of such a function), which is clearly
a periodic function. Dirichlet’s theorem on Fourier series allows us to write
its Fourier expansion as

G(x) =
∑

m∈Z

Ĝ(m) exp(2πimx),

where the Fourier coefficients can be calculated as follows:

Ĝ(m) :=
∫ 1

0

G(t) exp(−2πimt)dt =
∑

n∈Z

∫ 1

0

f(t + n) exp(−2πimt)dt

=
∫ +∞

−∞
f(x) exp(−2πixm)dx = f̂(−m).

This gives ∑

n∈Z

f(x + n) =
∑

m∈Z

f̂(m) exp(−2πimx).

The Poisson formula follows from that by taking x = 0. �

This formula is most often applied to a function f which is continuously
differentiable and fast decreasing (i.e., f(x) = O(|x|−M ) for all M), and
therefore the function G is itself continuously differentiable. This is the
case when applying the formula to the following “theta” function.

5.9. Corollary. The function2 θ(u) :=
∑

n∈Z exp
(
−πun2

)
satisfies the

functional equation for all u ∈ R∗
+ given by:

θ(1/u) =
√

u θ(u). (4.25)

Proof. It suffices to apply the Poisson formula to the function f(x) =
exp(−πux2) and to verify that f̂(y) = exp(−πy2/u)/

√
u. �

Proof. (of Theorem 4-5.6) We start with the following computation (where

2We hope that the context will allow the reader to distinguish this function from the
Tchebychev function θ(x) =

P

p�x log p.
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we introduce t = πn2u) which is valid for Re(s) > 1.

ξ(s) = π−s/2Γ(s/2)ζ(s) =
∑

n�1

∫ ∞

0

e−tts/2π−s/2n−s dt
t

=
∫ ∞

0

⎧
⎨

⎩
∑

n�1

exp(−πun2)

⎫
⎬

⎭us/2 du
u

=
∫ ∞

0

θ̃(u) us/2du
u

where

θ̃(u) :=
∑

n�1

exp
(
−πun2

)
=

θ(u)− 1
2

·

Let us point out that θ̃(u) = O(exp(−πu)) when u tends to infinity and
that the functional equation of the function θ can be translated into

θ̃
(

1
u

)
=
√

u θ̃(u) + 1
2
(√

u− 1
)
. (4.26)

By using the simple computation
∫∞
1

t−s = 1/(s − 1) and the functional
equation of the theta function (4.25), we obtain

ξ(s) =
∫ 1

0

θ̃(u) us/2du
u +

∫ ∞

1

θ̃(u) us/2du
u

=
∫ ∞

1

θ̃(1/u) u−s/2du
u +

∫ ∞

1

θ̃(u) us/2du
u

=
∫ ∞

1

{√
uθ̃(u) + 1

2
(√

u− 1
)} u−s/2du

u +
∫ ∞

1

θ̃(u) us/2du
u

=
∫ ∞

1

θ̃(u)
{

u
s

2 + u
1−s

2

}
du
u + 1

s− 1
− 1

s ·

We have a priori obtained the desired expression only for Re(s) > 1,
but we can easily see that the integral defines an entire function since
θ̃(u) = O(exp(−πu)) and since it is symmetric under the transformation
s �→ 1− s. �

Supplement without proofs

1) To establish the prime number theorem, we could, in the place of the “an-
alytic theorem”, use Ikehara’s theorem [40] (sometimes called the Ikehara-
Wiener theorem), which is more powerful but also more tricky to prove. We
will settle with stating the theorem. Its extension to the case of a multiple
pole was proven by Delange [25].
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5.10. Theorem. (Ikehara) Let A(t) be an increasing function such that
the integral F (s) =

∫ +∞
1

A(t)t−s−1dt is convergent whenever Re(s) > 1 and
can be analytically continued to the line Re(s) = 1 except for a simple pole
at s = 1 with residue λ (in other words, the function F (s)− λ/(s− 1) can
be analytically continued to Re(s) � 1). Then,

A(x) = λx + o(x).

If λ = 0 (in other words, if there is not a pole at s = 1), then A(x) = o(x),
if not A(x) ∼ λx. More generally (Delange), if F (s) can be analytically
continued to the line Re(s) = 1 with a pole of order t at s = 1 and principal
term equal to λ/(s− 1)t, then A(x) ∼ λ

(t− 1)!
x(log x)t−1.

The prime number theorem follows from this theorem by using the fact
that the hypotheses are satisfied when A(x) = ψ(x), since

− ζ ′(s)
ζ(s)

= s

∫ +∞

1

ψ(t)t−s−1dt.

There are other paths or variations to arrive at the prime number theorem:
see, for example, the proofs found in [18], [41] and [72]. Besides these, we
would like to bring to your attention the proofs found in [4], [23], [51] and
[53], which rely on “elementary” methods (not using a complex variable).
The first elementary proof (1949) is due to Erdös and Selberg.
2) The result on the non-vanishing of the ζ function on the line Re(s) = 1
could be considerably stronger, at least conjecturally. First of all, knowing
that ζ(s) does not vanish in Re(s) � 1, we can deduce from the functional
equation that, in the closed half-plane Re(s) � 0, the function ζ(s) vanishes
uniquely at the points s = −2,−4,−6, . . . , with order equal to one. To see
why this is true, the function ξ(s) = π−s/2Γ(s/2)ζ(s) does not vanish for
Re(s) � 1 (and has a simple pole at s = 1) hence, by the functional
equation, it does not vanish for Re(s) � 0 (and has a simple pole at s = 0).
Furthermore, the function Γ(s/2) never vanishes (see Exercise 4-6.19) and
has a simple pole at s = −2n, for n ∈ N (see Lemma 4-5.7), hence ζ(s)
should vanish at s = −2n, for n � 1. The question of describing the zeros
in the critical strip, in other words in the strip 0 < Re(s) < 1, is much
more delicate. The functional equation implies that the zeros are situated
symmetrically with respect to the line Re(s) = 1

2
·

Riemann, in his extraordinary essay [60], suggested that the zeros are all
situated on the line of symmetry.
“Man Findet nun der That etwa so viel reelle Wurzeln innerhalb dieser
Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hi-
ervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess
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die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen
vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Unter-
suchung entbehrlich schien.”3

Keeping the previous notation, this can be formulated as follows.

5.11. Conjecture. “Riemann hypothesis”4 Let s ∈ C where Re(s) > 1/2,
then ζ(s) 	= 0. In other words, if 0 � Re(s) � 1 and ζ(s) = 0, then
Re(s) = 1

2
·

If this result proves to be true, it would follow that for every α > 1/2,
ψ(x) = x+O(xα) and θ(x) = x+O(xα). By using the formula gotten above
via Abel’s formula, we can also deduce a much more precise equivalence for
π(x):

π(x) =
θ(x)

log(x)
+
∫ x

2

θ(t)dt

t(logt)2
·

This formula can be transformed into

π(x) =
∫ x

2

dt
log t

+ 2 log 2 +
θ(x)− x

log(x)
+
∫ x

2

θ(t)− t

t(logt)2
dt.

By introducing the “ logarithmic integral function”:

Li(x) :=
∫ x

2

dt
log t

,

we can see that the Riemann hypothesis implies that π(x) = Li(x)+O(xα)
for every α > 1/2. By observing that

Li(x) = x
log x

+ 1
2

x

(log x)2
+ O

(
x

(log x)3

)
,

we can see that Li(x) constitutes an estimate which is much more precise
than x/ log(x). Alas, the best proven result is far from our hopes, but we
nonetheless know how to prove statements such as

π(x) = Li(x) + O
(
x exp

(
−c
√

log x
))

.

Because the zeta function is intimately linked to prime numbers, we can
3“One finds, indeed, approximately so many real roots between these limits, and it

is very likely that all of the roots are real. Certainly, a strict proof thereof needs to
be done; I have however left aside the exploration of this question after some fleeting
attempts in vain, since it seemed to be not essential for my current research objectives.”

4The Riemann hypothesis is one of the major open problems in mathematics; the
Clay Mathematics Institute also offers a million dollars for its solution.
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reinterpret the functional equation and the Riemann hypothesis to be the
expression of a higher order symmetry which brings a mysterious balance
to the apparent chaos of the distribution of prime numbers. It provides
in some sense an answer to Euler’s thought with which we will close this
chapter.5

“Les mathématiciens ont tâché jusqu’ici en vain à découvrir un ordre quel-
conque dans la progression des nombres premiers, et on a lieu de croire
que c’est un mystère auquel l’esprit humain ne saurait jamais pénétrer.
Pour s’en convaincre, on n’a qu’à jeter les yeux sur les tables des nombres
premiers, que quelques personnes se sont donné la peine de continuer au-
delà de cent-mille: et on s’apercevra d’abord qu’il n’y règne aucun ordre ni
règle.”6

6. Exercises

6.1. Exercise. Prove that Euclid’s argument showing that the set of
prime numbers is not finite implies that pk � 22k

. Deduce from this the
lower bound π(x) � log log x for x � 2.

6.2. Exercise. Let h : [0, +∞) → C be a piecewise continuous func-
tion (or locally integrable). Prove that the Laplace transform F (s) :=∫ +∞
0

h(u)e−usdu is convergent in the half-plane Re(s) > σ0 and defines
a holomorphic function there.

Hint.– You could use a procedure analogous to Proposition 4-3.1; more
generally, you could extend the statement to functions of the type F (s) =∫
R+

e−usdμ(u).

6.3. Exercise. Recall that (f ∗g)(n) =
∑

d|n f(d)g(n/d). Prove that if the
two Dirichlet series F (s) =

∑∞
n=1 f(n)n−s and G(s) =

∑∞
n=1 g(n)n−s con-

verge absolutely for Re(s) > σ0, then in the same half-plane, the following
5Leonhard Euler: citation taken from his article Découverte d’une loi tout extraor-

dinaire des nombres par rapport à la somme de leurs diviseurs, Bibliothèque impar-
tiale 3, 1751, 10–31. The citation reproduced here can also be found in the reissue
of the article from Opera Posthuma 1, 1862, 76–84 and is available on the website:
http://math.dartmouth.edu/˜euler.

6“Mathematicians have tried, so far in vain, to discover some order in the progression
of prime numbers, and we are led to believe that it is a mystery which the human mind
will never know how to penetrate. To be convinced of this, we only have to have a look
at the tables of prime numbers, which some people have taken the pain to continue to
more than one-hundred thousand: and we realize right away that neither order nor rule
prevails there.”
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equations hold:

F (s)G(s) =

( ∞∑

n=1

f(n)n−s

)( ∞∑

n=1

g(n)n−s

)
=

∞∑

n=1

(f ∗ g)(n)n−s.

In particular, prove that for Re(s) > 1, we have

ζ(s)−1 =
∞∑

n=1

μ(n)n−s,

where μ is the arithmetic Möbius function (i.e., μ(1) = 1, μ(p1 · · · pk) =
(−1)k and μ(n) = 0 if n has a square factor).

6.4. Exercise. (Möbius inversion formula) From among the arithmetic
functions from N \ {0} to C, we define the function δ by δ(n) = 0, except
δ(1) = 1 and the function 1 by 1(n) = 1, for all n. Prove that δ is the
identity element for the product ∗ and that μ ∗ 1 = δ. Deduce from this the
Möbius inversion formula:

g(n) =
∑

d |n
f(d) ⇔ f(n) =

∑

d |n
μ(d)g(n/d).

6.5. Exercise. (Second Möbius inversion formula) Let F and G be two
functions of a positive real variable. Prove that if G(x) =

∑
n�x F

( x
n
)
,

then F (x) =
∑

n�x μ(n)G
( x

n
)
.

6.6. Exercise. Let χ be a nontrivial Dirichlet character modulo N . In
this exercise, you are asked to give a finite explicit formula for L(χ, 1).

a) Let L(θ) :=
∑

n�1 exp(inθ)n−1. By using the complex logarithm, prove
that if θ ∈]0, 2π[, then

L(θ) = − log(2 sin(θ/2)) + i
(

π
2
− θ

2

)
.

b) Prove that

χ(a) = G(χ)−1
∑

x mod N

χ̄(x) exp
(

2πiax
N

)
.

c) Deduce from this that if χ is even (i.e., χ(−1) = 1), then

L(χ, 1) = −G(χ)−1
N−1∑

u=1

χ̄(u) log sin
(

πu
N

)

and if χ is odd (i.e., χ(−1) = −1), then
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L(χ, 1) = iπ
NG(χ)

N−1∑

u=1

χ̄(u)u.

d) Let χ be a character modulo 4 such that χ(−1) = −1. Verify that
L(χ, 1) = π/2

√
2. Let χ′ be a character modulo 5 such that χ(−1) = 1,

χ(2) = χ(3) = −1. Verify that L(χ′, 1) = log η/
√

5 where

η =
sin(2π/5) sin(3π/5)
sin(π/5) sin(4π/5)

= 1 +
√

5
2

·

We point out that η is the fundamental unit of the field Q(
√

5) and that
this formula is a particular case of the class number formula.

6.7. Exercise. Let χ be a nontrivial Dirichlet modulo N .

a) Prove that
∑

m�Y χ(m)m−1 = L(χ, 1) + O(Y −1).

b) By using the formula log n =
∑

m |n Λ(m) (which you should first verify),
prove that

∑

n�x

χ(n) log n
n = L(χ, 1)

∑

m�x

χ(m)Λ(m)
m + O(1).

c) By using the fact that L(χ, 1) 	= 0, prove that
∑

m�x

χ(m)Λ(m)
m is

bounded when x tends to infinity, and deduce the convergence of the series
∑

p

χ(p)
p from this.

d) Finally, deduce that the Euler product
∏

p(1−χ(p)p−1)−1 is convergent
and equals L(χ, 1).

6.8. Exercise. We denote by p1, p2, p3, . . . the increasing sequence of
prime numbers.

a) Prove that
N∑

n=1

pn ∼ N2

2
log N.

b) Deduce from this a function equivalent to the sum
∑

p�X p, when X

tends to infinity.

6.9. Exercise. Let d be an odd integer. We define

Ld(s) :=
∞∑

n=1

(
n
d

)
n−s.
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a) Determine the abscissa of convergence of the series, and prove that the
following equation holds:

Ld(s) =
∏

p

(
1−

( p

d

)
p−s

)−1

.

b) Prove that the function ζ(s)Ld(s) can be written as a Dirichlet series∑∞
n=1 ann−s where an � 0.

6.10. Exercise. Prove the Euler-Maclaurin formula, which generalizes
Abel’s formula (Lemma 4-1.9):

∑

a<n�b

f(n) =
∫ b

a

f(t)dt +
r∑

k=0

(−1)k+1bk+1

(k + 1)!

(
f (k)(b)− f (k)(a)

)

+
(−1)r

(r + 1)!

∫ b

a

Br+1(t)f (r+1)(t)dt,

where bk = Bk(0) and the functions Bk are defined on t ∈ [0, 1[ by B0(t) =
1, B′

k(t) = kBk−1(t) and
∫ 1

0
Bk(t)dt = 0, and then extended by periodicity.

Hint.– The case k = 0 is Abel’s formula, and for k > 0, proceed by integra-
tion by parts and induction.

6.11. Exercise. Let γ = limn→∞(1 + 1
2

+ · · · + 1
n − log n) be Euler’s

constant. Prove that

lim
s→1

{
ζ(s)− 1

s− 1

}
= γ.

Hint.– You could attempt a direct computation or compare the formula from
Proposition 4-3.6, which gives a continuation of the ζ(s) function, to the
expression for γ from application 1) of Lemma 4-1.9.

6.12. Exercise. Let f(n) := lcm (1, 2, 3, . . . , n). Prove that the prime
number theorem implies log f(n) = n + o(n).

6.13. Exercise. We define the following arithmetic function:

γ(n) := max
m1+···+mr=n

lcm (m1, . . . , mr) ,

where the mi are integers � 1. The integer γ(n) represents the maximal
order of an element in the permutation group on n letters. This is mainly
why we are interested in the function n �→ γ(n). In this exercise you are
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asked to prove that

lim
n→∞

log γ(n)
√

n log n
= 1.

a) Show that you can write

γ(n) := max
p

α1
1 +···+pαs

s �n
(pα1

1 · · · pαs
s ) ,

where the pi are distinct primes.

b) By using the inequality of arithmetic and geometric means:

m
√

y1 · · · ym � y1 + · · ·+ ym

m ,

prove that if pα1
1 + · · ·+ pαr

r � n, then pα1
1 · · · pαr

r � (n/r)r.

c) By using the prime number theorem, prove that the sum of the r first

prime numbers is asymptotically equivalent to r2

2
log r. Deduce from this,

referring back to the previous question, that n � r2

2
log r(1 + o(1)), and

hence r � 2
√

n/ log n(1 + o(1)).

d) By observing that the function f(x) = (n/x)x is increasing on the inter-
val [1, n/e], conclude that

log γ(n) �
√

n log n(1 + o(1)).

e) For a given (large) n, we can choose r = r(n) to be the largest integer
such that p1 + · · · + pr � n, where (pi) denotes the sequence of prime
numbers ordered increasingly. Prove that r is asymptotically equivalent to
2
√

n/ log n. Prove that log γ(n) � θ(pr), and finish the exercise by again
using the prime number theorem.

6.14. Exercise. Recall that an arithmetic function is multiplicative (resp.
completely multiplicative) if f(mn) = f(m)f(n) whenever gcd(m, n) = 1
(resp. for all m, n).

a) If f is a multiplicative arithmetic function, prove that

∑

n�1

f(n)
ns =

∏

p

∞∑

m=0

f(pm)
pms ·

b) If f is a completely multiplicative arithmetic function, prove that

∑

n�1

f(n)
ns =

∏

p

(
1− f(p)

ps

)−1

.
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6.15. Exercise. For n ∈ N∗, we define the arithmetic function “number
of integer divisors”:

τ(n) :=
∑

d |n
1 = card{(d, e) ∈ N2 | de = n},

and you are asked in this exercise to study some of its properties.

a) Prove the identity
∞∑

n=1

τ(n)
ns = ζ(s)2.

b) Prove that if n = pa1
1 · · · pak

k , then τ(n) = (a1+1) · · · (ak +1), and deduce
from this that lim inf τ(n) = 2.

c) Prove that, on average, τ(n) equals log n in the following sense:
∑

n�X

τ(n) =
∑

d�X

⌊
X
d

⌋
∼ X log X.

d) We set P (x) :=
∏

p�x p. By using the prime number theorem, prove
that:

lim
x→∞

log τ (P (x)) log log P (x)
log P (x)

= log 2.

You are now asked to show that

α := lim sup
n→∞

log τ (n) log log n

log n
= log 2. (∗)

To do this, if n = pa1
1 . . . pak

k ∈ N∗, then we divide τ(n) = D1D2 into two
pieces in the following manner. We choose a real number M � 2 which
depends on n, and we set I1 := {1 � i � r | pi � M}, I2 := {1 � i �
r | pi > M}, D1 :=

∏
i∈I1

(ai + 1) and D2 :=
∏

i∈I2
(ai + 1). (Let us point

out that if Ii = ∅, then Di = 1.)

e) Prove that D2 � 2
P

i∈I2
ai � 2log n/ log M .

f) Prove that there exists c > 0 (independent of n and M) such that D1 �
exp (cM log log n/ log M).

Hint.– You could prove and use that ai � log n/ log 2 and card(I1) � π(M).

g) By choosing M := log n/(log log n)2 in the preceding questions, find an
upper bound of τ(n), and then conclude that equation (∗) holds.

6.16. Exercise. Let k � 1 be an integer. We keep the notation τ(n) for
the function defined in the previous exercise.
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a) Prove the identity
∞∑

m=0

τ(pm)kTm =
∞∑

m=0

(m + 1)kTm =
Pk(T )

(1− T )k+1
,

where Pk is a polynomial of degree k−1 defined by P1(T ) = 1 and Pk+1(T ) =
Pk(T )(1 + kT ) + P ′

k(T )T (1− T ).

b) Prove that the polynomial Pk can be written as Pk(T ) = 1 + (2k − k −
1)T + · · ·+ T k−1; deduce from this that the Euler product

Gk(s) :=
∏

p

(
1− p−s

)2k−k−1
Pk(p−s)

defines a holomorphic function in the half-plane Re(s) > 1/2, and verify
that the following identity is true:

∞∑

n=1

τ(n)kn−s = ζ(s)2
k

Gk(s).

c) By using Ikehara’s theorem (Theorem 4-5.10), deduce from the previous
question that the following estimate holds:

∑

n�x

τ(n)k ∼ λkx(log x)2
k−1,

where λk := Gk(1)/(2k − 1)!.

6.17. Exercise. We introduce the following arithmetic function:

τk(n) := card
{
(n1, . . . , nk) ∈ Nk | n = n1 · · ·nk

}
.

1) Prove that τk is multiplicative and that

τk(pm) =
(m + k − 1) · · · (m + 1)

(k − 1)!
=
(

m + k − 1
k − 1

)
.

2) Prove that τk+1(n) =
∑

d |n τk(d), and deduce from this the equality

∞∑

n=1

τk(n)
ns = ζ(s)k.

3) By using the generalized (by Delange) theorem of Ikehara, prove that
∑

n�x

τk(n) ∼ x
(k − 1)!

(log x)k−1.

4) Observe that τk(p) = k, and, by imitating the steps in Exercise 4-6.15,
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prove that

lim sup
n→∞

log τk (n) log log n

log n
= log k. (∗∗)

Hint.– You could proceed in a similar manner and replace the inequality

m + 1 � 2m by
(m + k − 1) · · · (m + 1)

(k − 1)!
� km then find a combinatorial

interpretation of the inequality.

6.18. Exercise. Recall that φ(n) = card(Z/nZ)∗ denotes the Euler totient

and that φ(n) = n
∏

p|n

(
1− 1

p

)
.

1) For every n � 2, check that φ(n) � n− 1.

2) Let P (x) :=
∏

p�x

(
1− 1

p

)
; by comparing log P (x) to

∑
p�x p−1, prove

that there exists a constant C0 > 0 such that

P (x) ∼ C0

log x
·

3) Let N :=
∏

p�x p. By using the prime number theorem and the previous
question, prove that:

φ(N) ∼ C0N

log log N
·

4) Let p1 < p2 < p3 < . . . be the increasing sequence of prime numbers. For
n � 2, we denote by ω(n) the arithmetic function which denotes the number
of distinct prime numbers which divide n. Prove that p1 · · · pω(n) � n, and
deduce that there exists a constant c > 0 such that

ω(n) � c log n

log log n
·

5) Now let n � 2. Prove that

ω(n)∏

k=1

(
1− 1

pk

)
� φ(n)

n ,

and deduce from this an estimate of the form

∀n � 2,
C0n

log log n
(1 + ε(n)) � φ(n),

where lim ε(n) = 0.7

7One could show that in fact C0 = e−γ where γ is Euler’s constant.
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6.19. Exercise. 1) Prove that the sequence

gn(z) :=
z(z + 1) · · · (z + n)n−z

n!
converges uniformly on every compact

set in the complex plane and therefore defines an entire function G(z) :=
limn gn(z), which only has simple zeros at z = 0,−1,−2, . . . ,−n, etc.

2) Verify that G satisfies the formulas G(z + 1) = G(z)/z and

G(z)G(1− z) = z

∞∏

n=1

(
1− z2

n2

)
=

sin(πz)
π ·

Hint.– The second equality is well-known and can be shown by comparing
the zeros of the two functions.

3) Deduce from this that U(z) := Γ(z)G(z) is periodic with period 1 and
satisfies U(z)U(z − 1) = 1.

Hint.– You could use the “reflection formula” given by

Γ(z)Γ(1− z) = π
sin(πz)

,

which is usually proven using the formula

Γ(x)Γ(y) = Γ(x + y)
∫ 1

0

(1− t)x−1ty−1dt.

You could either prove this formula or consult a real and complex variable
analysis text.

4) Deduce from this that U(z), and consequently Γ(z), does not vanish
anywhere in the complex plane.

Let us point out that we could compute even further and prove that U ≡ 1
and G(z) = Γ(z)−1, which proves that

Γ(z) = lim
n→∞

n!
z(z + 1) · · · (z + n)

nz.

6.20. Exercise. Recall that the Möbius function μ(n) can be defined by
the formula

ζ(s)−1 =
∞∑

n=1

μ(n)
ns for Re(s) > 1,

and let M(x) :=
∑

n�x μ(n). Observe that |M(x)| � x for x > 0.

a) Verify that the function defined on the open half-plane Re(s) > 1 by the

Dirichlet series
∑∞

n=1

μ(n)
ns can be analytically continued to an open set

which contains the closed half-plane Re(s) � 1. Prove that this function
vanishes at s = 1.



§6. Exercises 167

b) Prove that the following formula is valid for all s ∈ C:

N∑

n=1

μ(n)
ns = s

∫ N

1

M(t)t−1−sdt + M(N)N−s.

c) Deduce from this that if Re(s) > 1, then

ζ(s)−1 = s

∫ ∞

1

M(t)t−1−sdt,

and conclude that the integral
∫∞
1

M(t)dt

t2
is convergent and zero.

Hint.– You could use a), the fact that M(t)t−1 is bounded and Newman’s
“analytic theorem” to prove that the integral is equal to value of ζ(s)−1 at
s = 1.

d) Prove that

lim
x→∞

⎧
⎨

⎩
∑

n�x

μ(n)
n − M(x)

x

⎫
⎬

⎭ = 0.

e) We would like to show that the prime number theorem implies that
M(x) :=

∑
n�x μ(x) = o(x). Let H(x) :=

∑
n�x μ(n) log n. Prove that

H(x) = M(x) log x−
∫ x

0

M(t)
t

dt

then that H(x) =
∑

n�x μ(n)ψ(x/n), and conclude, by using the prime
number theorem (i.e., ψ(x) ∼ x), that

M(x) :=
∑

n�x

μ(x) = o(x).

f) Deduce from this the value of the sum
∞∑

n=1

μ(n)
n ·

6.21. Exercise. In this exercise, we denote by π(X) the number of prime
numbers smaller than X. We will use the following form of the prime
number theorem:

π(X) = X
log X

+ O

(
X

(log X)2

)
.

a) Prove that the following two estimates hold whenever α > −1):
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∫ X

2

tα

(log t)2
dt = O

(
Xα+1

(log X)2

)
,

∫ X

2

tα

log t
dt = Xα+1

(α + 1) log X
+ O

(
Xα+1

(log X)2

)
.

b) By using Abel’s summation formula, prove that if f is a continuously
differentiable function, then

∑

p�X

f(p) = π(X)f(X)−
∫ X

2

π(t)f ′(t)dt.

c) Prove, still assuming that α > −1, the following generalization of the
prime number theorem:

∑

p�X

pα = Xα+1

(α + 1) log X
+ O

(
Xα+1

(log X)2

)
.



Chapter 5

Elliptic Curves

“Mais où sont les neiges d’antan?”

François Villon

An elliptic curve can be defined as a smooth projective curve of degree 3
in the projective plane with a distinguished point chosen on it. The set
of points on the curve can thus be endowed with a natural additive group
structure. The most concrete description of an elliptic curve comes from
its affine equation, written as

y2 = x3 + ax + b, with 4a3 + 27b2 	= 0.

The theory of elliptic curves is a marvelous mixture of elementary math-
ematics and profound, advanced mathematics, a mixture which moreover
lies on the crossroads of multiple theories: arithmetic, algebraic geometry,
group representations, complex analysis, etc. Here, we will provide an in-
troduction to the subject and prove the main Diophantine theorems: the
group of rational points is finitely generated (the Mordell-Weil theorem)
and the set of integral points is finite (Siegel’s theorem). Finally, we will
evoke the famous theorem of Wiles—whose proof resulted in the proof of
Fermat’s last theorem—and the Birch & Swinnerton-Dyer conjecture.

1. Group Law on a Cubic
Here, the word “cubic” designates an algebraic curve C in the projec-
tive plane P2 defined by a homogeneous equation, F (X, Y, Z) = 0, of
degree 3. The curve is smooth if it has a tangent line at each point,
i.e., if

(
∂F
∂X

, ∂F
∂Y

, ∂F
∂Z

)
	= (0, 0, 0) (see Appendix B for an introduc-

tion to projective geometry). If F ∈ K[X, Y, Z], recall that we denote by
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C(K) the set of rational points on K, in other words, the set {(x, y, z) ∈
P2(K) | F (x, y, z) = 0}.

1.1. Definition. Let C be a smooth cubic. If P and Q are distinct points
on C, the line joining P and Q cuts the cubic at three points, P , Q and
a third point R (possibly equal to P or Q) that is denoted by R = P ◦Q.
If P = Q, we do the same operation with the line tangent to the curve C
at P . We define the law + by choosing a distinguished point called the
“origin” O ∈ C and setting O′ = O ◦O, then

P + Q := O ◦ (P ◦Q) and − P := O′ ◦ P.

The procedure which defines this addition law is called the “chord-tangent”
method.

1.2. Theorem. The law defined by the chord-tangent method on a smooth
cubic is a commutative group law, where the identity element is given by
the distinguished point O. If O ∈ C(K), then C(K) is an abelian group.

Since P ◦Q = Q◦P , the law + is obviously commutative. Indeed, we know
that O + P = P , since O, P and O ◦ P are colinear. If Q = −P , then Q,
O′ and P are colinear, hence O′ = Q ◦ P and O ◦ O′ = O, and therefore
O = Q + P . The only tricky point is the associativity. We will use the
following two classical lemmas to prove this.

1.3. Lemma. Let P1, . . . , P8 be eight distinct points in P2. Assume that
no subset of four of them is ever colinear and no subset of seven of them
ever appears on the same conic. Then the vector space of homogeneous
polynomials of degree 3 which vanish at P1, . . . , P8 is of dimension 2.

Proof. Let n be the dimension that we are looking for. No matter how
the eight points Pi are positioned, we know that n � 10− 8 = 2. Without
loss of generality, if P1, P2, P3 are colinear, then we can choose P9 on the
same line, whose equation is given by L = 0. Every cubic F which vanishes
at P1, . . . , P9 is therefore of the form LQ, where Q vanishes at P4, . . . , P8.
But by Lemma B-1.18, given five points such that any four of which are
not colinear, there is only one conic which contains all five, say Q0 = 0,
and F is a multiple of LQ0. The dimension n0 of the space of these cubics
is therefore equal to 1. Thus n � n0 + 1 = 2. Now suppose that P1, . . . , P6

lie on a conic Q = 0 and choose P9 on this conic. Every cubic F vanishing
at P1, . . . , P9 is therefore of the form LQ, where L = 0 is the equation of
the line (P7, P8). The dimension n0 of the space of these cubics is therefore
equal to 1. Thus, n � n0 + 1 = 2. In the general case (no three-tuple
of points lie on the same line and no six-tuple of points lie on the same
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conic), we introduce P9 and P10 which lie on the line (P1, P2) with equation
L = 0. If n � 3, there would exist a nontrivial cubic F = 0 passing through
P1, . . . , P10, but then F = LQ and the conic with equation Q = 0 would
pass through P3, . . . , P8. �

1.4. Lemma. Let P1, . . . , P9 be the intersection points of two cubics C1

and C2, one of which is irreducible. Suppose that P1, . . . , P8 are distinct.
If a cubic C passes through P1, . . . , P8, then it also passes through P9.

Proof. If, for example, C1 is irreducible, then it contains neither four co-
linear points, nor 7 points on the same conic. By the previous lemma,
the vector space of cubics vanishing at P1, . . . , P8 has dimension 2 and is
therefore generated by the equations of C1 and C2. �

Proof. (of Theorem 5-1.2) Let P , Q and R be three distinct points on
the cubic C. The line L1 = (P, Q) intersects C at P , Q and T ; the line
L2 = (T, O) intersects C at T , O and T ′; the line L3 = (R, T ′) intersects C
at R, T ′ and U ; and finally, the line L4 = (U, O) intersects C at U , O and
U ′, so that (P +Q)+R = U ′. Moreover, the line M1 = (Q, R) intersects C
at Q, R and S; the line M2 = (S, O) intersects C at S, O and S′; the line
M3 = (P, S′) intersects C at P , S′ and V ; and finally, the line M4 = (V, O)
intersects C at V , O and V ′, so that (Q + R) + P = V ′. We want to show
that U ′ = V ′, which is equivalent to U = V . To do this, consider the cubic
C1 = L1 + M2 + L3 and C2 = M1 + L2 + M3. Then,

C ∩ C1 = {P, Q, R, O, T, T ′, S, S′, U} and

C ∩ C2 = {P, Q, R, O, T, T ′, S, S′, V }.
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If the points P, Q, R, O, T, T ′, S, S′ are distinct, we can conclude, by Lemma
5-1.4 applied to C and C1, that U = V . This is the case in general, and
we can conclude that the equality (P + Q) + R = (Q + R) + P is always
true by invoking a continuity argument (either for the usual topology if we
are working over R or C or the Zariski topology in the general case—see
Appendix B, Lemma B-1.9). �

We would like to point out that this construction only uses the simplest
two cases of Bézout’s theorem on the intersection with a line or a conic (see
Lemmas B-1.13 and B-1.14). Finally, we have the following operations over
a curve: “translation by Q”, defined by P �→ P + Q, and “multiplication by
N ”, defined by P �→ P + · · ·+ P (N times) and denoted by [N ].
We will now explain this group law with a simpler model, known as the
“Weierstrass” model.

1.5. Definition. A Weierstrass cubic is a curve given by a plane cubic
equation of the form

Y 2Z = X3 + aXZ2 + bZ3, (5.1)

where Δ := 4a3 + 27b2 	= 0.

1.6. Remarks. The condition Δ 	= 0 precisely means that the curve
does not have a singular point. The curve defined by (5.1) has an obvious
point, O := (0, 1, 0), that we will take to be the origin and which is an
inflection point, i.e., the tangent Z = 0 intersects the curve only at this
point with multiplicity 3. It can be shown that every smooth cubic which
has a rational point over K is isomorphic to a Weierstrass cubic, at least
whenever K does not have characteristic 2 or 3. If we wish to include the
case of characteristic 2 and 3 (for example, to study elliptic curves over F2f

or F3f ), we must use an equation which is more general than (5.1), namely
an equation of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3. (5.2)

In fact, the latter is the general equation of a cubic having an inflection
point at (0, 1, 0), with tangent Z = 0 and that is normalized by the dilation
(scaling) (X, Y, Z) �→ (αX, βY, γZ) so that the coefficients of the monomials
Y 2Z and X3 become equal to 1. Take note that if the characteristic of the
field is not 2 or 3, we can easily reduce (5.2) to the form (5.1). To see
why this is true, by letting Y ′ := Y + (a1X + a3)/2, we can transform the

equation into Y ′2Z = X3 +
4a2 + a2

1

4
X2Z + . . . ; by then setting X ′ :=

X +
4a2 + a2

1

12
Z, we obtain a Weierstrass equation of the form (5.1).
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Coming back to the Weierstrass model, (5.1), we will often work in the affine
coordinates x := X/Z and y := Y/Z by considering the point O as “the
point at infinity”. The affine equation is therefore of the type announced
in the introduction:

y2 = x3 + ax + b. (5.3)

A possible singular point would satisfy 2y = 3x2 + a = 0, hence y = 0 and
x is a double root of the equation x3 + ax + b = 0, whose discriminant is
precisely 4a3 + 27b2. Moreover, if α is a root of x3 + ax + b, then the point
P := (α, 0) is a point of order 2; thus there are three points of order 2.

1.7. Proposition. (Explicit group law) If P1 = (x1, y1) and P2 = (x2, y2)
are points on the curve whose equation is given by (5.3), then

[−1](P1) = (x1,−y1). (5.4)

If P2 = [−1](P1) (i.e., if x1 = x2 and y2 = −y1), then P1 + P2 = O. If

P2 = P1, we set λ =
3x2

1 + a

2y1
and μ = y1 − λx1, and if P2 	= ±P1 (i.e., if

x2 	= x1), we set λ =
y1 − y2

x1 − x2
and μ = y1 − λx1. Then,

P1 + P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− μ). (5.5)

Proof. Let y = λx + μ be the equation of the line (P1, P2) (resp. of the
tangent to the curve at P1) if P1 	= P2 (resp. if P1 = P2). Then λ and μ are
given as in the statement. If P3 = (x3, y3) is the third point of intersection,
then P1 + P2 = (x3,−y3). To compute the intersection points of the line
and the curve, we make a substitution for y to obtain the equation

x3 + ax + b− (λx + μ)2 = x3 − λ2x2 + (a− 2λμ)x + (b− μ2) = 0,

of which we know two roots: x1 and x2. From this, we obtain x1+x2+x3 =
λ2 and y3 = λx3 + μ as in the statement of the proposition. �

To verify continuity of the addition law in the Zariski topological sense
(Definition B-1.7), observe that

y1 − y2

x1 − x2
=

x2
1 + x1x2 + x2

2 + a

y1 + y2
· (5.6)

For future use, we also have the following formulas (that can be checked
by direct computation):

x(P + Q) + x(P −Q) =
2(x(P ) + x(Q))(a + x(P )x(Q)) + 4b

(x(P )− x(Q))2
, (5.7)
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x(P + Q)x(P −Q) =
(x(P )x(Q)− a)2 − 4b(x(P ) + x(Q))

(x(P )− x(Q))2
, (5.8)

x(2P ) =
x(P )4 − 2ax(P )2 − 8bx(P ) + a2

4
(
x(P )3 + ax(P ) + b

) · (5.9)

2. Heights
We will introduce a precise notion of “size” or “arithmetic complexity” for
the algebraic points in a projective space, which will be christened “height”.
The first version is sometimes called the Weil height and the refined ver-
sion, over elliptic curves, the Néron-Tate height, which we will prove has
a quadratic nature.

2.1. Weil Heights

We will start by defining the height of a point in a projective space first
with rational coordinates, then with algebraic coordinates. From this, we
will deduce the notion of the height of an algebraic number.

2.1.1. Definition. If P is a point in Pn(Q), we can choose projective
coordinates for it, (x0, . . . , xn), where xi ∈ Z and gcd(x0, . . . , xn) = 1. We
thus define the height (resp. the logarithmic height) of P by

H(P ) := max (|x0|, . . . , |xn|) (resp. h(P ) := log max (|x0|, . . . , |xn|)).

This very simple and natural definition does not translate very easily into
algebraic coordinates, and it is technically more convenient to reinterpret
height in terms of the set of absolute values of a field.

2.1.2. Definition. An absolute value v over a field K is a map x �→ |x|v
from K to R+ such that for every x, y ∈ K,

i) |x|v = 0 if and only if x = 0;
ii) |xy|v = |x|v|y|v;
iii) there exists a constant Cv > 0 such that |x + y|v � Cv max{|x|v, |y|v}.

If v satisfies the more precise inequality |x + y|v � max(|x|v, |y|v) (i.e., we
can take Cv to be 1), v is said to be ultrametric.

2.1.3. Example. The standard absolute values over the field K = Q
are the usual absolute value (denoted |x| or |x|∞) and the p-adic absolute
values (denoted |x|p). For every prime number p, the p-adic absolute value
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is defined for x = ±pe1
1 · · · per

r , where ei = ordpi(x) ∈ Z, by

|x|p := p− ordp(x).

The p-adic absolute values are ultrametric. We denote by MQ the set of
absolute values, which we will also call places of the field Q.

2.1.4. Remark. If | · | is an absolute value, then | · |α is another one (for
every α > 0). If a map | · |v satisfies i) and ii) and the triangle inequality
iii)′ given by |x + y|v � |x|+ |y|v, then it satisfies iii) with Cv = 2 and is
hence an absolute value. Conversely, we will leave it as an exercise to prove
that an absolute value for which we can take the constant in inequality iii)
to be 2 satisfies the triangle inequality. The reason that we take iii) in the
definition is that the condition is stable when we replace | · | by | · |α, which
is not the case for the triangle inequality.

2.1.5. Theorem. (Product formula for Q) Let x ∈ Q∗. Then,
∏

v∈MQ

|x|v = 1. (5.10)

Proof. We write x = ±pe1
1 · · · per

r , where ei = ordpi(x) ∈ Z. For 1 � i � r,
we have |x|pi = p−ei

i . If p does not appear in x, then |x|p = 1 and the usual
absolute value equals |x|∞ = pe1

1 · · · per
r . The formula follows from this. �

2.1.6. Corollary. Let P ∈ Pn(Q) and (x0, . . . , xn) be (any) projective
coordinates of P . Then,

H(P ) =
∏

v∈MQ

max (|x0|v, . . . , |xn|v) . (5.11)

Proof. By the product formula, we know that the right-hand side is inde-
pendent of the projective coordinates. Therefore, if we choose xi ∈ Z to be
relatively prime, we have, for each prime number p, max (|x0|p, . . . , |xn|p) =
1, and the right-hand side will indeed be equal to max (|x0|∞, . . . , |xn|∞),
in other words to H(P ). �

In order to generalize heights to algebraic coordinates, we will define stan-
dard absolute values over a number field K.

2.1.7. Example. Let K be a number field with r1 real embeddings and
r2 pairs of complex embeddings, so that n := [K : Q] = r2 + 2r2. Every
embedding σ : K ↪→ R or C produces, by composition with the modulus,
an absolute value. If the embedding is complex, then σ and its conjugate
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produce the same absolute value. This then gives us r1+r2 absolute values:

|x|σ :=

{
|σ(x)| if σ is real,
|σ(x)|2 if σ is complex.

Now if p is a prime number which factors into pOK = p
e1
1 · · · p

eg
g , with

N pi = pfi and
∑g

i=1 eifi = n, then for every prime ideal p, we can define
the absolute value

|x|p := N p
− ordp(x).

We denote by MK the set of these absolute values and by MK,∞ the subset
of Archimedean absolute values.

It follows from these choices that for x ∈ K, we have
∏

p | p
|x|p =

∣∣NK
Q(x)

∣∣
p

and
∏

v∈MK,∞

|x|v =
∣∣NK

Q(x)
∣∣
∞ . (5.12)

To understand this statement, if xOK =
∏

p
pordp(x), then we can write

NK
Q(x) = ±N (xOK) = ±

∏

p

N p
ordp(x) = ±

∏

p

p
P

p | p fp ordp(x).

Hence we have
∣∣NK

Q(x)
∣∣
p

= p−
P

p | p fp ordp(x) =
∏

p | p
N p

− ordp(x) =
∏

p | p
|x|p.

For the Archimedean places, we have

∣∣NK
Q(x)

∣∣ =

∣∣∣∣∣
∏

σ:K↪→C

σ(x)

∣∣∣∣∣ =
r1∏

i=1

|σi(x)|
r1+r2∏

j=r1+1

∣∣∣σj(x)σj(x)
∣∣∣ =

∏

v∈MK,∞

|x|v .

This gives us the following formula, which is analogous to Theorem 5-2.1.5.

2.1.8. Theorem. (Product formula for K) Let x ∈ K∗. Then,
∏

v∈MK

|x|v = 1. (5.13)

Proof. We can regroup the places of K into packets over a certain place of
Q, and we can use the previous formula:

∏

w∈MK

|x|w =
∏

v∈MQ

∏

w | v

|x|w =
∏

v∈MQ

∣∣NK
Q x

∣∣
v

= 1. �

2.1.9. Definition. Let P ∈ Pn(K), and let (x0, . . . , xn) be (any) projec-
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tive coordinates of P . The height relative to the K is the number

HK(P ) =
∏

v∈MK

max (|x0|v, . . . , |xn|v) . (5.14)

The height of a point considered in different algebraic extensions varies in
a simple way.

2.1.10. Lemma. If K ′ is a finite extension of K and P ∈ Pn(K), then

HK′(P ) = HK(P )[K
′:K]. (5.15)

Proof. Let (x0, . . . , xn) be projective coordinates in P . We can assume
that xi ∈ K. If v is a place of K and w ranges over the places of K ′ over
K, we clearly have

∏

w | v
max

i
|xi|w =

∏

w | v
max

i
|xi|ewfw

v = max
i
|xi|[K

′:K]
v .

We thus have

HK′(P ) =
∏

w∈MK′

max
i
|xi|w =

∏

v∈MK

∏

w | v
max

i
|xi|w

=
∏

v∈MK

max
i
|xi|[K

′:K]
v = HK(P )[K

′:K]. �

This lemma allows us to define the absolute height, which is defined on the
set of points with coordinates in Q̄, the algebraic closure of Q.

2.1.11. Definition. We define H : Pn(Q̄) → R as follows: if P ∈ Pn(K),
we let

H(P ) := HK(P )1/[K:Q].

If α ∈ K, we define the height of α (relative to the field K) as the height
of the point (1, α) ∈ P1(K).

To establish a connection between the height of an algebraic number and its
minimal polynomial, we will use the following classical lemma (see Lemma
2-6.2.3), which is valid for Z[X]).

2.1.12. Lemma. (Gauss’s lemma) Let P, Q ∈ K[X], where K is a number
field. We denote by ||P ||v the sup-norm of the coefficients of P for an
ultrametric absolute value v. Then,

||PQ||v = ||P ||v ||Q||v. (5.16)

Proof. By localizing (i.e., replacing OK by O := {x ∈ K| ordv x � 0}),
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we can reduce to the case of showing that if ||P ||v = ||Q||v = 1, then
||PQ||v = 1. Thus if π is a generator of the maximal ideal in O associated
to the absolute value, then we can write P = πmP ∗ and Q = πnQ∗, where
||P ∗||v = ||Q∗||v = 1. Now, ||P ||v = 1 means that P ∈ O[X] and is non-
zero in O/πO[X]. Since the latter ring is integral, the product PQ stays
non-zero in O/πO[X], and thus ||PQ||v = 1. �

2.1.13. Lemma. Let α be an algebraic number and K = Q(α). Let the
minimal polynomial of α in Z[X] be written in the form

P (X) = a0(X − α1) · · · (X − αd) = a0X
d + . . .

Then,

HK(α) = |a0|
d∏

i=1

max {1, |αi|} . (5.17)

Proof. Consider the field L := Q(α1, . . . , αd). Then

HL(α) = HK(α)[L:K] =
∏

q∈ML

max(1, |α|q)
∏

w∈ML,∞

max(1, |α|w).

First of all, we have

∏

w∈ML,∞

max(1, |α|w) =
∏

v∈MK,∞

max(1, |α|v)[L:K] =

(
d∏

i=1

max {1, |αi|}
)[L:K]

.

Gauss’s lemma applied to P and its factorization shows that, for q ∈ ML,
we have

1 = ||P ||q = |a0|q
d∏

i=1

max(1, |αi|q).

By taking the product over q and invoking the product formula for L (ap-
plied to a0), we obtain

1 =
∏

q∈ML

|a0|q
d∏

i=1

∏

q∈ML

max(1, |αi|q) = |a0|−[L:Q]

⎛

⎝
∏

q∈ML

max(1, |α|q)

⎞

⎠
d

.

Combining these results gives

HK(α)[L:K] = |a0|[L:Q]/d
d∏

i=1

max(1, |αi|)[L:K],

which yields the desired equality by taking the [L : K]th roots. �
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The main merit of the height function introduced in this section is the
following finiteness theorem, whose first part is due to Northcott and the
second to Kronecker.

2.1.14. Theorem. (Northcott, Kronecker) Let d � 1 and X > 0. Then
the set S(n, d, X) = {P ∈ Pn(Q̄) | [Q(P ) : Q] � d, H(P ) � X} is
finite. Furthermore, we have H(P ) > 1, except if the point P has projective
coordinates all equal to zero or a root of unity.

Proof. Let P = (x0, . . . , xn) ∈ Pn(Q̄). Up to permuting the coordinates,
we can assume that x0 	= 0. Then we can write P = (1, α1, . . . , αn),
where the αi are algebraic. It is trivially true that H(αi) � H(P ) and
[Q(αi) : Q] � [Q(P ) : Q]. It therefore suffices to prove that the set of
algebraic numbers {α ∈ Q̄ | [Q(α) : Q] � d, H(α) � X} is finite. A bound
on the degree and the height gives, by Lemma 5-2.1.13, a bound on the
coefficients of the minimal polynomial of α, which proves the finiteness. For
the second assertion, we can again only consider points P = (1, α1, . . . , αn)
where the αi are algebraic. If H(P ) = 1, then |αi|v � 1 (for all i all v),
hence this stays true for αm. Thus the set of points (1, αm

1 , . . . , αm
n ) is

finite, which implies that every αi is zero or a root of unity. �

2.1.15. Lemma. If α and β are two algebraic numbers, then

1
2

H(α)H(β) � H(1, α + β, αβ) � 2H(α)H(β). (5.18)

Proof. We can reason according to the cases |α|v � |β|v � 1, |α|v � 1 � |β|v
and 1 � |α|v � |β|v. Whenever v is an ultrametric absolute value, the
following equality can be checked directly:

max (1, |α + β|v, |αβ|v) = max (1, |α|v) max (1, |β|v) .

For an Archimedean absolute value satisfying the triangle inequality, we
obtain the bounds

1
2

max (1, |α|v) max (1, |β|v) � max (1, |α + β|v|, |αβ|v)

� 2 max (1, |α|v) max (1, |β|v) .

The proof of the lemma follows from taking the product of these inequali-
ties. �

2.1.16. Theorem. Let P0, . . . , Pm be a family of homogeneous poly-
nomials of degree d in x = (x0, . . . , xn). Let Z be the location of the
common zeros of the Pi and Φ : Pn \ Z → Pm the map defined by
Φ(x) = (P0(x), . . . , Pm(x)).
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i) There exists a constant C1 = C1(Φ) such that for x ∈ (Pn \ Z)(Q̄) we
have

H(Φ(x)) � C1H(x)d. (5.19)
ii) Let V be a closed subvariety of Pn such that V ∩Z = ∅. Then there exist

two constants C1 = C1(Φ) and C2 = C2(Φ) such that for x ∈ V (Q̄),

C2H(x)d � H(Φ(x)) � C1H(x)d. (5.20)

Proof. The first inequality can be deduced by repeatedly applying the
triangle inequality (usual and ultrametric). Let x = (x0, . . . , xn) and xi :=
xi0

0 · · ·xin
n and we call K a field of rationality of x. We write Pi =

∑
j a

(i)
j xj

and denote by N =
(
n+d

d

)
the number of monomials of degree d. Finally,

let Nv be a constant such that for all x1, . . . , xN ∈ K we have:

|x1 + · · ·+ xN |v � Nv max(|x1|v, . . . , |xN |v).

Observe that we can take Nv = 1 for the ultrametric places and Nv = N
for the Archimedean places. We can therefore write, for every place v of
K,

|Pi(x)|v � Nv max
j

∣∣∣a(i)
j

∣∣∣
v
max

i
|xi|dv .

By setting Av = maxi,j

∣∣∣a(i)
j

∣∣∣
v
, we see that Av = 1, except for a finite

number of places. This gives us

HK(Φ(x)) =
∏

v

max
i
|Pi(x)|v �

∏

v

NvAv max
i
|xi|dv =

(
∏

v

NvAv

)
HK(x)d,

and, by taking the [K : Q]th roots, we obtain the first inequality with
C := (

∏
v NvAv)1/[K:Q]. For the second inequality, we rely on the Hilbert’s

Nullstellensatz (see Theorem B-2.1), which says, in light of the given hy-
potheses, that if Q1 = · · · = Qr = 0 is a system of equations of V , there
exist polynomials A

(j)
i and B

(j)
i and an integer M � 1 such that

XM
j =

m∑

i=0

A
(j)
i Pi +

r∑

i=1

B
(j)
i Qi.

Observe also that we can assume that the A
(j)
i are homogeneous of degree

M − d and with coefficients in K. If we apply this to a point x ∈ V , we
obtain

xM
j =

m∑

i=0

A
(j)
i (x)Pi(x).

By applying the triangle inequality as before, we obtain

|xj |Mv �(m+1)v max
i

∣∣∣A(j)
i (x)

∣∣∣
v
max

i
|Pi(x)|v �A′

v max
i
|xi|M−d

v max
i
|Pi(x)|v,
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with A′
v = 1, except for a finite number of places. This gives us

max
j
|xj |dv � A′

v max
i
|Pi(x)|v .

By taking the product over the places v and the [K : Q]th root, we obtain
the desired result. �

Notation. We set hK = log HK and h = log H, and we call it the loga-
rithmic height. With this convention, the conclusion of the inequalities in
part ii) from the previous theorem can be rewritten as

h(Φ(x)) = dh(x) + O(1).

We will now return to the study of elliptic curves and define a Weil height.

2.1.17. Definition. Let E ⊂ P2 be an elliptic curve given by a Weier-
strass equation Y 2Z = X3 + aXZ2 + bZ3. For P ∈ E(Q̄), we define the
height1 of P by

h(P ) =

{
h(x(P )) if P 	= 0E ,

0 if P = 0E .

2.1.18. Theorem. There exists a constant (dependent on E) such that
the height over E satisfies

− C1 � h([2](P ))− 4h(P ) � C1. (5.21)

Proof. We can ignore the case where P = 0 or is 2-torsion. By invoking
the duplication formula (5.9), we see that if we set

Φ(T, X) := (4T (X3 + aXT 2 + bT 3, X4 − 2aX2T 2 − 8bXT 3 + a2T 4),

then Φ(1, x(P )) = (1, x(2P )). On the other hand, the polynomials x3 +
ax+b and x4−2ax2−8bx+a2 are relatively prime under the condition that
Δ0 = 4a3 + 27b2 is non-zero. To see why this is true, a direct computation
or applying the Euclidean algorithm yields the identity

(3x2+4a)(x4−2ax2−8bx+a2)−(3x3−5ax−27b)(x3+ax+b) = 4a3+27b2.

(5.22)
By applying Theorem 5-2.1.16 to Φ : P1 → P1 with d = 4, we have

h([2](P )) = h(1, x(2P )) = h(Φ(1, x(P )))

= 4h(1, x(P )) + O(1) = 4h(P ) + O(1). �
1We are talking about a logarithmic height; furthermore, for reasons which are unim-

portant in this context, this height is equal to 2 times the height commonly used.
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2.1.19. Theorem. The height over E is symmetric (i.e., h(−P ) = h(P ))
and almost satisfies the parallelogram law, in other words:

h(P + Q) + h(P −Q) = 2h(P ) + 2h(Q) + O(1). (5.23)

Proof. The formula is trivially true when P or Q is zero; it is also true if
Q = ±P by the previous theorem. We can therefore assume that P, Q ∈
E \ {0E} and Q 	= ±P . Let x1 = x(P ), x2 = x(Q), x3 = x(P + Q) and
x4 = x(P − Q), and also x1 + x2 = u, x1x2 = v. The formulas (5.7) and
(5.8) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

x3 + x4 =
2u(a + v) + 4b

u2 − 4v
,

x3x4 =
(v − a)2 − 4bu

u2 − 4v
·

Thus if we introduce the map from P2 to P2 given by

Φ(T, U, V ) := (U2 − 4TV, 2U(aT + V ) + 4bT 2, (aT − V )2 − 4bTU),

then the three polynomials do not have any common zeros in P2 (the
verification of this below uses the condition that 4a3 + 27b2 	= 0). By the
second part of Theorem 5-2.1.16, we thus obtain

h(Φ(T, U, V )) = 2h(T, U, V ) + O(1).

Furthermore, if we let ψ : (E \ {0E})2 → P2 be defined by ψ(P, Q) =
(1, x(P ) + x(Q), x(P )x(Q)) and μ(P, Q) = (P + Q, P −Q), we see that

h(ψ(P, Q)) = h(x(P )) + h(x(Q)) + O(1)

by Lemma 5-2.1.15 and also, by using formulas (5.7) and (5.8), that

ψ ◦ μ = Φ ◦ ψ.

This implies that

h(P + Q) + h(P −Q) = h(x(P + Q)) + h(x(P −Q))

= h(1, x(P + Q)

+ x(P −Q), x(P + Q)x(P −Q)) + O(1)

= h(ψ ◦ μ(P, Q)) + O(1)

= h(Φ(ψ(P, Q))) + O(1)

= 2h(ψ(P, Q)) + O(1)

= 2h(P ) + 2h(Q) + O(1).

To complete the proof, we will check that if Φ(T, U, V ) = (0, 0, 0), then
T = U = V = 0. This is immediate if T = 0. If T 	= 0, we set x = U/2T and
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w = V/T ; we thus obtain x2−w = 2x(a+w)+4b = 0 and (w−a)2−8bx = 0.
By eliminating w, we find x4 − 2ax2 − 8bx + a2 = x3 + ax + b = 0, which
is impossible according to the identity (5.22). �

2.2. Néron-Tate Heights

If C is a curve embedded in the projective space Pn, we can define the
height of a point on C as the height of the point in the projective space
that contains it. The inconvenience of this definition is its nonintrinsic
character. We will now offer a modification of this height which will get rid
of this inconvenience.

2.2.1. Lemma. Let S be a set and d > 1. If h : S → R and f : S → S

satisfy |h◦f−dh| � C, then for all x ∈ S, the sequence (d−nh(fn(x))) is a
convergent sequence, which we will denote by the limit ĥf (x). Furthermore,
for every x ∈ S,

∣∣∣h(x)− ĥf (x)
∣∣∣ � C

d− 1
, (5.24)

ĥf (f(x)) = dĥf (x). (5.25)

Proof. By writing the inequality in the statement of the lemma at the point
fk−1(x) and dividing by dk, we obtain

− C

dk
� d−kh(fk(x))− d−k+1h(fk−1(x)) � C

dk
·

By summing these inequalities from n + 1 to m (with n < m), we can
conclude that

− C
dn(d− 1)

� d−mh(fm(x))− d−nh(fn(x)) � C
dn(d− 1)

·

Thus d−nh(fn(x)) is the general term in a Cauchy sequence, which we will
denote by the limit ĥf (x). By letting m tend to infinity, we thus obtain

− C
dn(d− 1)

� ĥf (x)− d−nh(fn(x)) � C
dn(d− 1)

·

In particular, C
d− 1

� ĥf (x)− h(x) � C
d− 1

. Finally,

ĥf (f(x)) = lim
n→∞

d−nh(fn+1(x)) = d lim
n→∞

d−n−1h(fn+1(x)) = dĥf (x). �

By applying this lemma to the Weil height of an elliptic curve and to the
morphism [2] : E → E (with d = 4), we obtain the following theorem.
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2.2.2. Theorem. (Néron-Tate) Let E be an elliptic curve defined over a
number field K. We define a height, called the “canonical” or “Néron-Tate”
height, by the formula

ĥ(P ) = lim
n→∞

h(x(2nP ))
4n · (5.26)

This height over E satisfies ĥ(P ) = h(P )+O(1) and also the parallelogram
law:

ĥ(P + Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q). (5.27)

It is therefore quadratic. In particular, ĥ(mP ) = m2ĥ(P ). Finally, ĥ(P ) =
0 if and only if P is a torsion point.

Proof. We can apply Lemma 5-2.2.1 to the height h(P ) = h(x(P )) and
to the map P �→ [2](P ) with d = 4. The inequality in Theorem 5-2.1.19
applied to the points P ′ = [2n](P ) and Q′ = [2n](Q) gives

−C � h([2n](P + Q)) + h([2n](P −Q))− 2h([2n](P ])− 2h([2n](Q) � C.

By dividing by 4n and letting n tend to infinity, we obtain the desired
formula. Thus ĥ is quadratic and in particular satisfies ĥ(mP ) = m2ĥ(P ).
If mP = 0, we can immediately deduce that ĥ(P ) = 0. Conversely, if
ĥ(P ) = 0, then for all m ∈ Z, we have ĥ(mP ) = 0. Therefore, the set
{mP | m ∈ Z} is of bounded height and is hence finite, which implies that
P is torsion. �

2.2.3. Corollary. If an elliptic curve E is defined over a number field K,
the torsion subgroup E(K)tor is finite and the group E(K)/E(K)tor is free
abelian.

By skipping ahead to a theorem which we will prove in the following section
(the group E(K) is finitely generated), we can try to specify the size of the
generators of E(K) in the following manner. Theorem 5-2.2.2 can be inter-
preted as saying that the quadratic form on the lattice E(K)/E(K)torsion
is nondegenerate. We can be even more precise and prove the following
theorem.

2.2.4. Theorem. The real quadratic form E(K) ⊗R → R induced by ĥ

is positive-definite.

We should point out that the fact that a quadratic form Q(x) satisfies
Q(x) > 0 for all x ∈ Qn \ {0} does not imply that it is positive-definite
(consider Q(x1, x2) = (x1 + x2

√
2)2).
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Proof. Let Q be the quadratic form on Rr gotten from ĥ by tensoring with
R. It is clearly positive. If it were degenerate, it could then be written,
after a base change, as Q(x1, . . . , xr) = x2

1 + · · · + x2
s where s < r. The

sets {x ∈ Rr ; Q(x) � ε} would be, for every ε > 0, cylinders with infinite
volume and would therefore contain, by Minkowski’s theorem (3-5.3), a
non-zero point in every lattice. This would contradict the fact that the
set {P ∈ E(K) | ĥ(P ) � ε} is reduced, for small enough ε, to the torsion
subgroup. �

There is also a scalar product on E(K)⊗R defined by

〈P, Q〉 := 1
2

(
ĥ(P + Q)− ĥ(P )− ĥ(Q)

)
.

2.2.5. Definition. Let P1, . . . , Pr be a basis for E(K) modulo the finite
torsion subgroup F . We define the regulator of E by

Reg(E/K) := det (〈Pi, Pj〉)1�i,j�r ,

and we define the minimal height of a point of infinite order by

ĥmin(E/K) := min
P∈E(K)\F

ĥ(P ).

These two quantities are exactly the necessary quantities needed to bound
the height of possible generators of the Mordell-Weil group E(K), in light
of the following result coming from the geometry of numbers and due to
Hermite (see Exercise 3-6.6).

2.2.6. Proposition. There exist constants Cr such that for every lattice
L in Rr, equipped with the Euclidean norm, there exists a basis for L,
e1, . . . , er, such that

det(L) � ||e1|| · · · ||er|| � Cr det(L).

3. The Mordell-Weil Theorem
The goal of this section is to prove the following theorem.

3.1. Theorem. (Mordell-Weil) Let E be an elliptic curve defined over
a number field K (for example K = Q). Then the group E(K) is finitely
generated.

We could of course reinterpret this theorem by saying that all of the rational
points on the curve can be found starting with a finite set of points and
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applying the chord-tangent method to these. An important intermediate
step is the following result.

3.2. Theorem. (“Weak” Mordell-Weil) Let E be an elliptic curve defined
over a number field K (for example K = Q). Then the group E(K)/2E(K)
is finite.

Actually, the “weak” Mordell-Weil theorem, together with the theory of
heights from the previous section implies Theorem 5-3.1, thanks to the
following descent lemma.

3.3. Lemma. Let G be an abelian group endowed with a quadratic form
q : G → R. Suppose that the sets {x ∈ G | q(x) � X} are finite for all
X ∈ R and that the quotient G/2G is finite. Then the group G is finitely
generated. More precisely, if S is a set of representations modulo 2G and
if C := maxx∈S q(x), then {x ∈ G | q(x) � C} generates G.

Proof. Let us first point out that the hypotheses imply that q(x) � 0: if
there existed x0 where q(x0) < 0, we would have, by homogeneity, infinitely
many elements where q(x) < 0. Let |x| :=

√
q(x), so that |mx| = m|x| and

|x + y| � |x| + |y| (for x, y ∈ G and m ∈ N). Let x ∈ G where q(x) > C.
We can define a sequence (xn) of points in G as follows: start with x0 = x,
then write x0 = y1 + 2x1 where y1 ∈ S and x1 ∈ G, then x1 = y2 + 2y2,
etc. Observe that

|x1| =
|x0 − y1|

2
� |x0|+ |y1|

2
� |x0|+

√
C

2
< |x0|.

We can iterate this procedure and obtain a sequence which satisfies

|xn| < |xn−1| < · · · < |x1| < |x0|,

as long as |xn| >
√

C. The finiteness hypothesis implies that, after a finite
number steps, we will have |xn| �

√
C. The point x = x0 can be expressed

as a linear combination of the yi and the xn, which are all in the finite set
{y ∈ G | q(y) � C}, so this set indeed generates G. �

We will now lay out a plan for the proof of Theorem 5-3.2. To make things
simpler, we will assume that the equation of the curve is given by:

y2 = f(x) = x3 + ax + b = (x− α1)(x− α2)(x− α3),

in other words, we will assume that the roots of f are rational over K. In
particular, the 2-torsion points, Pi = (αi, 0), are in E(K). This does not
interfere with the generality of the proof of the Mordell-Weil theorem since
we can always replace K by the extension K(α1, α2, α3). However, from
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an algorithmic point of view, it is better to work in K. At the end of the
section, we will indicate how the proof should be modified to this effect.

3.4. Definition. We define the map ψ = (ψ1, ψ2, ψ3) from E(K) to(
K∗/K∗2)3 by the following formulas:

ψi(P ) =

⎧
⎪⎨

⎪⎩

x(P )− αi if P 	= Pi, 0E ,

(αi − αj)(αi − αk) if P = Pi,

1 if P = 0E .

3.5. Remark. In the definition of the homomorphism ψ, the formula
for P = Pi = (αi, 0) is natural since (x − αi)K∗2 = (x − αj)(x − αj)K∗2.
Another possible definition would be to take ψi(Pi) = f ′(αi)mod K∗2.

By proving the following three lemmas, we will have finished the proof
of Theorem 5-3.2 since we can deduce from them that E(K)/2E(K) ∼=
ψ(E(K)).

3.6. Lemma. The map ψ : E(K)→
(
K∗/K∗2)3 is a homomorphism.

3.7. Lemma. The kernel of the map ψ is equal to 2E(K).

3.8. Lemma. The image ψ(E(K)) in
(
K∗/K∗2)3 is finite.

Proof. (of Lemma 5-3.6) If P , Q and R are three points on the curve E, the
equality P +Q+R = 0E is equivalent to saying that P, Q and R are colinear.
Therefore, let y = λx + μ be the equation of the line D which intersects
E at P, Q and R. First assume that {P, Q, R} ∩ {0E , P1, P2, P3} = ∅. The
equation f(x)− (λx+μ)2 = 0 therefore has x(P ), x(Q) and x(R) as roots.
If we set x′ = x− αi, then

f(x′ + αi)− (λx′ + λαi + μ)2 = 0

has x(P )− αi, x(Q)− αi and x(R)− αi as solutions, and since f(αi) = 0,
the constant term is −(λαi + μ)2. This yields

(x(P )− αi)(x(Q)− αi)(x(R)− αi) = (λαi + μ)2,

and thus ψi(P )ψi(Q)ψi(R) = 1. The equality R = P + Q implies that
P, Q and −R are colinear, in other words ψi(P )ψi(Q)ψi(−R) = 1; since
ψi(−R) = ψi(R) = ψi(R)−1, we indeed obtain ψi(R) = ψi(P )ψi(Q). This
finishes the proof if {P, Q, R}∩{0E , P1, P2, P3} = ∅. If R = 0E , the relation
becomes obvious. If not, observe that (x(P )−α1)(x(P )−α2)(x(P )−α3) =
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y(P )2; we can check case by case that the relation ψi(P +Q) = ψi(P )ψi(Q)
is always true. �
Proof. (of Lemma 5-3.7) It is clear that 2E(K) ⊂ Ker ψ, since the exponent
of K∗/K∗2 is 2. We need to show that ∩i Ker ψi ⊂ 2E(K). Assume then
that

for i = 1, 2, 3, ∃zi ∈ K∗ such that x(P )− αi = z2
i . (5.28)

We will solve the Vandermonde linear system of equations u+vαi +wα2
i =

zi. From the equations (u + vαi + wα2
i )

2 = x− αi, we obtain the system
⎧
⎪⎨

⎪⎩

u2 − 2vwb− x = 0,

2uv − 2vwa− bw2 + 1 = 0,

v2 + 2uw − aw2 = 0,

(5.29)

which in particular yields v3+vw2a+bw3−w = 0 and also (by noticing that
w must be non-zero because if not, then v = 0 and 1 = 0!) the following
equation:

( v
w
)3

+ a
( v

w
)

+ b =
(

1
w

)2

·

Therefore, Q :=
(

v
w , 1

w

)
∈ E(K). A direct computation using the du-

plication formula (5.9) and the relations (5.29) therefore gives us P = 2Q.
This is because

x(2Q) =

( v
w
)4 − 2a

( v
w
)2 − 8b

( v
w
)

+ a2

4
(( v

w
)3

+ a
( v

w
)

+ b
)

= v4 − 2av2w2 − 8bvw3 + a2w4

4w2

=
(aw2 − 2uw)2

4w2
+ 1

4
(−2av2 − 8bvw + aw2)

= u2 − 2vwb− a
2

(v2 − aw2 + 2uw)

= x. �
Proof. (of Lemma 5-3.8) Choose a finite set S of places of the field K such
that

i) the element 2ΔE = 2(4a3 + 27b2) is an S-unit,
ii) the ring OK,S is principal.

This is possible because of Remark 3-5.14. Condition i) implies that
αi − αj ∈ O∗

K,S since Δ = ((α1 − α2)(α1 − α3)(α2 − α3))
2. We can now

write x = A/B and y = C/D where A, B, C, D ∈ OK,S and gcd(A, B) =
gcd(C, D) = 1 (in the ring OK,S). The equation y2 = (x−α1)(x−α2)(x−
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α3) can be transformed into C2B3 = D2(A − α1B)(A − α2B)(A − α3B).
Since D is relatively prime to C, we know that D2 divides B3, and since
B is relatively prime to A, we know that B3 divides D2. Hence up to
modifying B and D by a unit, we can assume that B3 = D2, B = E2 and
D = E3, which yields

(x, y) =
(

A

E2
, C

E3

)
and C2 = (A−α1E

2)(A−α2E
2)(A−α3E

2).

If p (a prime in OK,S) divides (A − α1E
2) and (A − α2E

2), then it also
divides (α1 − α2)E2 and (α1 − α2)A, hence (α1 − α2), which is invertible.
The factors are relatively prime and are therefore squares, up to a unit.
Thus we obtain

x(P )− αi = A− αiE
2

E2
= εit

2
i ,

where εi ∈ O∗
K,S . As a corollary to the generalized unit theorem, we have

that O∗
K,S/O∗2

K,S is finite, and we can therefore choose the εi from a finite
set. Thus, ψ(P ) = (ε1, ε2, ε3) takes a finite number of possible values in(
K∗/K∗2)3. �

3.9. Remark. To make the proof of the Mordell-Weil theorem effective
computationally, it suffices to find representatives of E(K)/2E(K). The
proof indicates that it thus suffices to decide, for (ε1, ε2, ε3)∈

(
O∗

K,S/O∗2
K,S

)3,
if the curve defined by the equations A−αiE

2 = εiZ
2
i has a rational point

and then compute it. Unfortunately, no such algorithm is currently known.

We will finish this section by briefly indicating the modifications necessary
for working with a curve y2 = f(x) without leaving the field K of coef-
ficients of the polynomial f . We introduce the ring A := K[X]/(f(X)).
By letting α be the image of X, we set ψ(P ) = x(P ) − α with values in
G := A∗/A∗2 if x(P ) is not a root of f(X). For the particular case of
2-torsion points, we proceed as in Definition 5-3.4.

4. Siegel’s Theorem
We are now interested in integer solutions. The main result is the following.

4.1. Theorem. (Siegel) Let C be an affine curve given by the equation

y2 = f(x) = x3 + ax + b,

where a, b ∈ OK and Δ := 4a3+27b2 	= 0. Then the set of points P = (x, y)
on the curve, where x, y ∈ OK , is finite.
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4.2. Remark. The smoothness condition is necessary because, for exam-
ple, the curve y2 = x3 has every pair (t2, t3) as a solution (where t ∈ OK),
while the curve y2 = x3 − x2 has every pair (t2 + 1, t3 + t) as a solution
(where t ∈ OK). We could deduce from the previous theorem (but will not
prove it) an apparently more general theorem, namely the following.

4.3. Theorem. (Siegel) Let C be an affine curve given by the equation

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0

such that the corresponding projective curve is smooth. Then the set of
points P = (x, y) on the curve, with x, y ∈ OK,S, is finite.

We will now deduce Siegel’s theorem (Theorem 5-4.1) from the following
result, also due to Siegel.

4.4. Theorem. (The S-unit equation) Let K be a number field and S

a finite set of places. The set of pairs of S-units (x, y) ∈ (O∗
K,S)2 which

satisfy
x + y = 1 (5.30)

is finite.

Proof. (Theorem 5-4.4 implies Theorem 5-4.1) We can, if we want to,
expand the set S and the field K. We will therefore assume that OK,S

is principal, Δ ∈ O∗
K,S and f(x) = (x − α1)(x − α2)(x − α3). Then let

(x, y) ∈ (OK,S)2 be an integer solution. As in the proof of the Mordell-
Weil theorem, we deduce from this the factorization:

x− αi = biz
2
i ,

where bi are representatives of O∗
K,S/O∗2

K,S . We will introduce the algebraic
numbers βi =

√
bi, which are in a finite extension K ′ of K. From x−αi =

(βizi)2, we can deduce the relations

αi − αj = (βizi − βjzj)(βizi + βjzj) ∈ O∗
K,S .

We will now make use of the “Siegel identities”:

βizi ± βjzj

βizi − βkzk
∓

βjzj ± βkzk

βizi − βkzk
= 1. (5.31)

We know from Theorem 5-4.4 that the set of values taken by ε :=
βizi ± βjzj

βizi − βkzk
is finite. It easily follows that there are only a finite num-

ber of values βizi and likewise of values for x and hence for y. �
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4.5. Remark. Observe that the reduction of Theorem 5-4.1 to Theorem
5-4.4 is computationally effective in the following sense: if we had an algo-
rithm for calculating solutions of the equation of S-units, we would have
an algorithm for calculating the set of integer solutions to y2 = f(x).

We essentially know two proofs of Theorem 5-4.4: one due to Siegel, based
on a rational approximation theorem, and one due to Baker, based on his
theorem of linear forms of logarithms. The disadvantage of Siegel’s proof
is that it does not explicitly determine the finite set of solutions. This is
nevertheless the one that we will present. For a sketch of Baker’s proof,
see the Chap. 6, Sect. 6-4.

Reduction of Theorem 5-4.1 to Theorem 5-4.4. Let m � 2. We know
from the generalized unit theorem that the group O∗

K,S/O∗m
K,S is finite. In

other words, there exists a finite set of S-units εi such that all S-units
can be written as x = εiz

m with z ∈ O∗
K,S . Solutions (x, y) of the S-unit

equation thus provide (a finite number of) solutions to one of the following
equations:

ε1z
m
1 + ε2z

m
2 = 1, (5.32)

and it suffices to prove that the latter only have a finite number of solutions
(z1, z2) ∈ (O∗

K,S)2 or likewise in (OK,S)2.

4.6. Proposition. Let a, b ∈ OK,S and m � 3. The set of S-integral
solutions of the equation

axm + bym = 1

is finite.

Proof. We will give the proof for the case which has the simplest notation,

the case OK,S = Z. Let α = m

√
− b

a , and let [Q(α) : Q] = d � m. We
factor aXm + b = (X − α)F (X) and thus obtain

(
x
y

)m

+ b
a =

(
x
y − α

)
a−1F

(
x
y

)
= 1

aym ·

Observe that the ratio x/y must be close to one of the roots, for example
to α. Since it must lie at a distance which is bounded below from the other
roots (those of F ), we get an inequality of the form:

∣∣∣ x
y − α

∣∣∣ � C1

|y|m
, (5.33)

where the constant C1 only depends on α. To finish the proof, it suffices
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to have a Diophantine approximation statement of the type

∀ x
y ∈ Q,

C2

|y|δ
�
∣∣∣ x

y − α
∣∣∣ , (5.34)

where C2 is dependent on α and δ, and of course δ < m. In fact, by
combining inequalities (5.33) and (5.34), we obtain

|y| �
(

C1

C2

) 1

m−δ
.

A statement of the same type as inequality (5.34) is provided by Roth’s
theorem, which allows us to choose any δ > 2 and hence a δ < 3 � m. An

older result of Thue allows us to choose every δ > 1 +
[Q(α) : Q]

2
, which

finishes the proof (observe that if m > 2, then 1 + m
2

< m). The proof of
Thue’s theorem is given in the following chapter. Let us nonetheless point
out that the proof of Roth’s theorem, like that of Thue’s theorem, is not
constructive in the sense that it does not allow us to calculate the constant
C2 = C2(α, δ). A more constructive method was developed in the 1960’s
by Baker and will be briefly discussed in the next chapter. �

5. Elliptic Curves over the Complex Numbers
In this section, we will describe the connection to the classical theory of el-
liptic functions, thus justifying the name “elliptic curves”, elliptic functions
taking their name from the fact that they intervene in the calculation of the
length of an arc of an ellipse.

We will need to following classical result on complex variables.

5.1. Theorem. (Liouville) If a function is entire (i.e., holomorphic on
all of C) and bounded, then it is constant.

We will now consider Ω := Zω1 ⊕ Zω2, a lattice in C and study the Ω-
periodic functions, i.e., such that f(z + ω) = f(z) for ω ∈ Ω. Liouville’s
theorem indicates right away that the only entire functions which are Ω-
periodic are constant functions, a fact which justifies the following defini-
tion.

5.2. Definition. An elliptic function is a meromorphic function on C
which is Ω-periodic for some lattice Ω.
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Let us point out that the set of Ω-elliptic functions forms a field, which
is denoted by M (Ω). This field contains the constants, i.e., the field C,
and is stable under derivation. We can see right away that this field is not
reduced to only constants.

5.3. Definition. Let Ω := Zω1 ⊕ Zω2 be a lattice in C. We define the
Weierstrass function associated to Ω by the formula

℘(z) = ℘(z; Ω) = 1
z2

+
∑

ω∈Ω

′
(

1
(z − ω)2

− 1
ω2

)
, (5.35)

where
∑′ signifies that we leave out ω = 0 in the sum.

The Weierstrass function allows us to give a complete description of elliptic
functions and to establish a connection to elliptic curves.

5.4. Theorem. The Weierstrass function ℘ is an elliptic function. The
field of Ω-elliptic functions is generated by ℘ and its derivative ℘′, i.e.,
M (Ω) = C(℘, ℘′). Furthermore, these two elliptic functions satisfy the
following algebraic relation:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3, (5.36)

where the constants g2 and g3 are defined by

g2 = g2(Ω) = 60
∑

ω∈Ω

′ 1
ω4

and g3 = g3(Ω) = 140
∑

ω∈Ω

′ 1
ω6
·

Finally, we have g3
2 − 27g2

3 	= 0.

Proof. (Sketch) The defining series of the derivative,

℘′(z) = −2
∑

ω∈Ω

1
(z − ω)3

,

is absolutely convergent and uniformly convergent on every compact set
which avoids Ω: it therefore defines a holomorphic function on C \ Ω,
which is clearly Ω-periodic and odd. Furthermore, ℘′ has a pole of order
3 at every point of Ω, and thus ℘′ ∈ M (Ω). The defining series of ℘
shows that it is even and meromorphic with a double pole at every ω ∈ Ω.
The periodicity of ℘′ implies that ℘(z + ω) = ℘(z) + Cω. Let ω be one
of the generators of Ω such that ω/2 /∈ Ω. By taking z := −ω/2, we
obtain ℘(−ω/2) = ℘(ω/2) = ℘(−ω/2) + Cω, hence Cω = 0. Thus we
also know that ℘ ∈ M (Ω). In order to prove that M (Ω) = C(℘, ℘′),
we can decompose a function in M (Ω) into an even + an odd function
and have thus reduced to showing that a function f which is Ω-elliptic
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and even is in C(℘). To do this, we prove that its poles and zeros are
symmetric under the map z �→ −z and of even order in the periods and
half-periods. Thus a function f has the same zeros and poles as a function of
the type

∏
i(℘(z)− ℘(ui))mi : the two functions coincide up to a constant.

In order to prove the relation of algebraic dependence, we compute the
Taylor expansion of ℘(z) (or rather of ℘(z)− z−2) at z = 0:

℘(z) = 1
z2

+
∞∑

n=1

anzn , where an = (n + 1)
∑

ω∈Ω

′ 1
ωn+2

· (5.37)

The calculation of the Taylor expansion (only the polar part and the con-
stant term) of the function ψ(z) = ℘′(z)2−4℘(z)3 +g2℘(z)+g3 shows that
it is holomorphic and zero at 0. Liouville’s theorem thus implies that the
function ψ(z) is identically zero.

Finally, the equality g3
2 − 27g2

3 = 0 is equivalent to the fact that 4x3 −
g2x− g3 = 0 has a double root, say h. If that were the case, then we would

have an equation of the form
(

℘′(z)
2(℘(z)− h)

)2

= ℘(z) + 2h, which is a

contradiction considering the zeros. �

5.5. Corollary. Let Ω be a lattice in C. The map z �→ (℘(z), ℘′(z), 1)
extended by ω �→ (0, 1, 0) defines a biholomorphic map from C/Ω to the
projective cubic with points (X, Y, T ) (in P2) given by the equation

TY 2 = 4X3 − g2XT 2 − g3T
3.

Furthermore, the map is an isomorphism of groups.

Proof. The first assertion follows essentially from the previous theorem.
The second assertion can be proven by comparing the algebraic addition
law to the following addition formula on the Weierstrass function:

℘(u + v) = −℘(u)− ℘(v) + 1
4

(
℘′(u)− ℘′(v)
℘(u)− ℘(v)

)2

. (5.38)

For a fixed v, the poles of the left-hand side are double poles at every
u ∈ −v + Ω. The right hand side actually has the same poles because
℘′(u)− ℘′(v)
℘(u)− ℘(v)

has a simple pole for u ∈ Ω, which is compensated by the

term −℘(u) and since ℘(u) − ℘(v) = 0 if and only if u ± v ∈ Ω, but
℘′(u)− ℘′(v) vanishes for u ∈ v + Ω. Once we have checked the equality of
terms corresponding to the poles, formula (5.38) follows. �

Conversely, we can show, given g2, g3 ∈ C which satisfy Δ := g3
2−27g2

3 	= 0,
that there exists a lattice Ω such that g2 = g2(Ω) and g3 = g3(Ω). Thus,
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over the field of complex numbers, we can consider an elliptic curve as
a complex torus, i.e., a quotient C/Ω. This point of view clearly shows
various properties of elliptic curves or of families of elliptic curves. The
following two propositions illustrate this principle.

5.6. Proposition. Let E = C/Ω be an elliptic curve. Then

Ker[N ]E = 1
N

Ω/Ω ∼= (Z/NZ)2 . (5.39)

Proof. To prove this, the map [N ]E : C/Ω → C/Ω is induced by the
multiplication by N in C, hence Ker[N ]E = {z ∈ C | Nz ∈ Ω}/Ω. Since
Ω ∼= Z2, the proposition is clearly true. �

5.7. Remark. We can observe that the torsion points allow us to partially
reconstruct the lattice Ω. To be more precise, we easily see that for every
prime number �, we have2

lim
←
n

Ker[�n] = lim
←
n

Ω/�nΩ ∼=
(

lim
←
n

Z/�nZ
)2

.

We thus introduce the ring Z	 := lim
←
n

Z/�nZ, and we see that

lim
←
n

Ker[�n] = Ω⊗ Z	.

This remark might appear to be pedantic when we are working with elliptic
curves over C, but it becomes fundamental when we want to work over other
fields (for example a finite field) since the left-hand side is still meaningful,
whereas the right-hand side (say Ω) does not exist anymore. The following
definition will clarify things.

5.8. Definition. Let E be an elliptic curve defined over a field K and � a
prime number other than the characteristic of K. The �-adic Tate module
of an elliptic curve is defined to be

T	(E) := lim
←
n

E[�n].

(Here, E[�n] is the subgroup of points with coordinates in the algebraic
closure, K̄, which are killed by �n.)

5.9. Remark. We point out that if u ∈ C∗, then C/Ω is isomorphic to
2Recall that if (φn : Gn+1 → Gn) is a sequence of homomorphisms, the projective

limit, lim
←
n

Gn, is defined to be the set of sequences (xn)n�1, where xn ∈ Gn, which

satisfy φn(xn+1) = xn. It is obviously a group.
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C/uΩ (by multiplication by u). Moreover, we can easily check that

u2℘(uz, uΩ) = ℘(z, Ω) and u3℘′(uz, uΩ) = ℘′(z, Ω).

Thus we can always, up to isomorphism, replace the lattice Zω1 ⊕ Zω2 by
the similar lattice Z ⊕ Zτ , where we set τ := ω2

ω1
· Up to exchanging ω1

and ω2, we can also assume that Im(τ) > 0. Every elliptic curve (over
C) is thus isomorphic to a torus C/(Z ⊕ Zτ), where τ is in the Poincaré
half-plane,

H := {τ ∈ C | Im(τ) > 0} .

The following result specifies when two such curves are isomorphic.

5.10. Proposition. Two tori Eτ = C/(Z⊕ Zτ) and Eτ ′ = C/(Z⊕ Zτ ′)

are isomorphic if and only if there exists
(

a b
c d

)
∈ SL(2,Z) such that

τ ′ = aτ + b
cτ + d

·

In particular, we can identify the space of isomorphism classes of complex
elliptic curves with the space SL(2,Z)\H .

Proof. A homomorphism φ : C/(Z ⊕ Zτ ′) → C/(Z ⊕ Zτ) comes from a
homomorphism from C to C, i.e., by multiplication by α ∈ C such that
α(Z ⊕ Zτ ′) ⊂ Z ⊕ Zτ . In particular, α = cτ + d (where c, d ∈ Z) and
ατ ′ = aτ + b (where a, b ∈ Z). Therefore, τ ′ = (aτ + b)/(cτ + d). The fact

that φ is an isomorphism translates into
(

a b
c d

)
∈ GL(2,Z), and since

Im(τ ′) = det
(

a b
c d

)
Im(τ)/|cτ + d|2, we see that the matrix is indeed in

SL(2,Z). �

5.11. Proposition. Let E = C/Ω be an elliptic curve, where Ω = Z+Zτ .
Then

End(E) = {α ∈ C | αΩ ⊂ Ω} =

{
Z if [Q(τ) : Q] > 2,

Z + ZAτ if [Q(τ) : Q] = 2,
(5.40)

where, in the second case, the integer A is the leading coefficient of the
minimal equation Aτ2 + Bτ + C = 0.

In the case where End(E) is a subring of finite index of the ring of integers
of an imaginary quadratic field, we say that E has “complex multiplication”,
or (in algebra) is of “CM-type”.
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Proof. In light of the previous discussion, an endomorphism is given by

multiplication by α = cτ + d and corresponds to a matrix
(

a b
c d

)
with

integer coefficients such that τ = (aτ +b)/(cτ +d), in other words cτ2+(d−
a)τ − b = 0. If [Q(τ) : Q] > 2, the only possibility is to have c = b = 0 and
a = d, in other words, multiplication by d; if τ is quadratic and satisfies
the minimal equation Aτ2 + Bτ + C = 0, we can conclude that c = mA,
d− a = mB and −b = mC, hence α = mAτ + d ∈ Z + ZAτ . �

5.12. Remark. If we consider End(E) as a subring of C, we can easily
verify the following formula:

deg(α) := cardKer(α) = N(α) = αᾱ. (5.41)

In particular, the map deg : End(E) :→ Z is quadratic. Furthermore, the
ring End(E) acts naturally on the Tate module

T	(E) := lim
←

E[�n].

6. Elliptic Curves over a Finite Field
In this section, we will translate some of results from the previous section
into results on fields of characteristic p, notably to finite fields. See Silver-
man’s book [70] for the complete proofs. Elliptic curves over finite fields
are especially useful in cryptography—see for example the text [15].

Let E be a projective plane curve, as in (5.2), given by the equation

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

where ai ∈ Fq. The group of rational points E(Fq) is obviously finite, and
in particular, all of the points are torsion. Any such curve also has the
maps given by “multiplication by an integer n”, but it has a remarkable
endomorphism, specific to the characteristic p, as well.

6.1. Definition. The “Frobenius” endomorphism on E/Fq is defined by
the formula

Φq(x, y) = (xq, yq).

Let us point out that if f(x, y) = 0 (where f(X, Y ) ∈ Fq[X, Y ]), then
f(xq, yq) = (f(x, y))q = 0, and hence Φq is indeed an endomorphism (it is
clear that it will also respect the addition law).

We will admit the following proposition (see for example [70]), which is
analogous to Proposition 5-5.6.
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6.2. Proposition. Let E be an elliptic curve defined over a finite field Fq

and N an integer � 2. We denote by Ker[N ]E = {P ∈ E(F̄q) | NP = 0E}.
If N is not divisible by the characteristic of the field, then

Ker[N ]E ∼= (Z/NZ)2 . (5.42)

6.3. Remarks. In particular, for a prime number � different from the
characteristic of Fq, we can define the Tate module as we did over the field
of complex numbers:

T	(E) := lim
←
n

Ker[�n]E .

We again have that T	(E) ∼= (Z	)2 (as a Z	-module). Note however that
we do not have a natural lattice Ω ∼= Z2 such that T	(E) ∼= Ω⊗ Z	.

The statement of the proposition does not stay true for N = pm, where p is
the characteristic of Fq. It can be shown that in this case either Ker[pm]E ∼=
Z/pmZ (the “ordinary” case) or Ker[pm]E = {0E} (the “supersingular”
case).

The key result concerning the number of rational points over Fq is the
following.

6.4. Theorem. (Hasse) Let E be an elliptic curve defined over Fq. Then,

|cardE(Fq)− q − 1| � 2
√

q. (5.43)

More precisely, there exists an imaginary quadratic integer α which satisfies
αᾱ = q such that

card E(Fqm) = qm + 1− αm − ᾱm. (5.44)

Proof. (Partial) The set of rational points is also the set of fixed points of
the Frobenius endomorphism Φq. We will assume that the degree of the
endomorphism is given, as with complex numbers, by a quadratic function
and thus, in particular, that

deg(nΦq + m) = P (n, m) = an2 + 2bmn + cm2.

Then we have, on the one hand, card E(Fq) = P (1,−1) = a + c− 2b and,
on the other hand, c = P (0, 1) = 1 and a = P (1, 0) = q. Finally, since
the polynomial P (n, m) is positive-valued, we have that b2 − ac � 0 and
therefore |b| � √

q, which proves the inequality given in the statement.

For the formula which comes next, we use an analogy to the complex case,
where the endomorphisms satisfy a quadratic relation. The Frobenius Φq

can also be seen as an endomorphism of Tate modules, whose eigenvalues
α, ᾱ satisfy αᾱ = q. The eigenvalues of Φm

q are therefore αm and ᾱm.
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Since cardE(Fqm) = deg
(
Φm

q − 1
)
, the relation that we want to prove can

be written as Φ2
q − (α + ᾱ)Φq + q = 0. �

7. The L-function of an Elliptic Curve
This section, which does not contain any proofs, is a stroll in the direc-
tion of the work of Wiles [80]—elliptic curves, modular forms and the great
Fermat’s last theorem—and the famous Birch & Swinnerton-Dyer conjec-
ture. The stroll continues at the end of the following chapter. Two good
references to continue along this path are [27] and [37].

Let E be an elliptic curve over Q. Suppose, as above, that it is a projective
plane curve given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

this time with ai ∈ Z (cf. formula (5.2)). We can see fairly easily that the
only coordinate changes that preserve the form of the generalized Weier-
strass equation are of the type:

x = u2x′ + r, y = u3y′ + u2sx′ + t.

We can define the discriminant of the model in the following ad hoc manner.
If the model can be written y2 = x3 + Ax + B, we set Δ := −16Δ(A, B) =
−16(4A3 + 27B2); in general, we can always transform the equation into a
simpler model (A, B), and we will set Δ′ = u−12Δ. A Weierstrass equation
is said to be minimal and ΔE is its discriminant if the discriminant of every
other equation with integer coefficients is of the form Δ = u12ΔE where
u ∈ Z.

To simplify things, we will continue the discussion by staying in the field
of rationals. Reduction modulo p has at most one singular point of cusp
type, y2 = x3, or node type, y2 + axy + bx2 = x3, where the polynomial
y2 + axy + bx2 = (y − αx)(y − α′x) is either irreducible (if α ∈ Fp2 \ Fp)
or not (if α ∈ Fp) over Fp. Geometrically, in the second case, the cone
tangent to the singular point is composed of two lines y = αx and y = α′x,
which could be either rational over Fp or defined over Fp2 and conjugate.

7.1. Definition. Let p be a prime number and E/Q have a minimal
model

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The curve E is said to have good reduction at p if this model stays smooth
modulo p (i.e., if p does not divide ΔE). A curve E is said to have additive
reduction at p if this model is singular modulo p and if the singularity has a
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unique tangent. The curve is said to have multiplicative reduction or semi-
stable reduction at p if this model is singular modulo p with two distinct
tangents; if the two tangents are defined over Fp (resp. are not defined
over Fp), we say that the reduction is split (resp. non-split) multiplicative.
A fairly simple-to-calculate criterion is the following. If we write a minimal
Weierstrass model, except maybe for 2 and 3, in the following way: y2 =
x3 − 27c4x− 54c6, then we have additive reduction if p divides c4 and ΔE ,
and we have multiplicative reduction if p divides ΔE but does not divide
c4. The model is minimal (except maybe for 2 and 3) under the condition
that for every prime number p, p4 	 | c4 or p6 	 | c6. Finally, we define the
invariant j of the elliptic curve E by

j := c3
4/Δ. (5.45)

7.2. Remark. The adjectives “additive” and “multiplicative ” come from
the following observation, whose verification is left to the reader. If a Weier-
strass cubic E is singular (necessarily at a unique point P0), then the chord-
tangent method defines a group law on E \ {P0}. This group is isomorphic
to the additive group if the singular point is a cusp point and isomorphic
to the multiplicative group if the tangents are distinct. To be more precise,
E(K)\{P0} is isomorphic to (K, +) if the reduction is additive, to (K∗,×)
if the reduction is split multiplicative, and finally to (K1,×) if the reduc-
tion is non-split multiplicative, where K1 = Ker

{
NK′

K : K ′∗ → K∗
}

and
K ′ is a quadratic extension. Observe that j = jE is indeed independent
of the model, since, by a change in coordinates, we have c4 = u4c′4 and
Δ = u12Δ′. Finally, we can easily verify the following formula:

c3
4 − c2

6 = 1728Δ. (5.46)

Now we can resume the practical calculation on the generalized Weierstrass
model (5.2) by the following list of formulas (due to Tate):

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

Δ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

7.3. Definition. The conductor of E/Q is defined by NE :=
∏

p pn(E,p),
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where

n(E, p) =

⎧
⎪⎨

⎪⎩

0 if E has good reduction at p,

1 if E has multiplicative reduction at p,

2 + δE,p if E has additive reduction at p,

where δE,p = 0 if p � 5 and δE,2 � 8, δE,3 � 5. (The precise values of δE,2

and δE,3 are described in Appendix C.)

7.4. Definition. Let E be an elliptic curve defined over Q. If E has good
reduction at p, we set

ap := p + 1− cardE(Fp).

We then define the function L(E, s) and its local factors by:

Lp(E, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1− app

−s + p1−2s
)−1 if p does not divide ΔE ,

(1− p−s)−1 if E has split multiplicative
reduction,

(1 + p−s)−1 if E has non-split multiplicative
reduction,

1 if E has additive reduction,

(5.47)

L(E, s) =
∞∑

n=1

ann−s =
∏

p

Lp(E, s). (5.48)

7.5. Proposition. The Dirichlet series and the Euler product defining
the function L(E, s) are absolutely convergent for Re(s) > 3/2.

Proof. This immediately follows from Hasse’s theorem (Theorem 5-6.4).�

7.6. Theorem. (Wiles [80]) The function L(E, s) can be analytically con-
tinued to an entire function which satisfies the following functional equa-
tion, where we let Λ(E, s) := N

s/2
E (2π)−sΓ(s)L(E, s),

Λ(E, s) = ±Λ(E, 2− s). (5.49)

Observe the obvious analogy to functional equation of Riemann zeta func-
tion. The theorem of Wiles is actually more precise and “explains” the
functional equation of the Dirichlet series L(E, s) =

∑∞
n=1 ann−s by the

fact that associated function (for z in the Poincaré half-plane), fE(z) =∑∞
n=1 an exp(2πinz), is modular with level NE and weight 2 and satisfies
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the functional equation

fE

(
− 1

NEz

)
= ±NEz2fE(z). (5.50)

A formal computation, analogous to the one done to prove the functional
equation of the ζ(s) function, shows that the (5.50) for fE implies the func-
tional equation for L(E, s) (see Chap. 6, the last section for more details).

The connection between Wiles’s theorem and Fermat’s last “theorem” is
the following. Starting with a hypothetical solution to Fermat’s equation

a	 + b	 + c	 = 0,

we construct an elliptic curve, called the Frey or Hellegouarch curve:

y2 = x(x− a	)(x + b	).

By examining this hypothetical curve, we notice that it has (or would
have) some remarkable properties. For example, ΔE = 2−8(abc)2	 and
NE =

∏
p | abc p; this implies that the associated Galois representation (see

Appendix C) has very little ramification. The associated modular form
(from Wiles’s theorem) would have even more extraordinary properties:
by appealing to a theorem due to Ribet [59], we could lower its level NE

down to 2. However, there does not exist such a non-zero form with level
2, which finishes the proof of Fermat’s last theorem! We will add a couple
more elements to this subject in Chap. 6. You could also consult the texts
of Hellegouarch [37] and Diamond and Shurman [27].

To state the following conjecture, we remind you of the existence of a
bilinear form 〈· , ·〉 coming from the Néron-Tate height. We will also need
to define the real period of E:

ΩE :=
∫

E(R)

dx
2y + a1x + a3

· (5.51)

7.7. Conjecture. (Birch & Swinnerton-Dyer [14])

I ) The order of vanishing of the function L(E, s) at s = 1 is equal to the
rank r = rankE(Q) of the Mordell-Weil group.

II ) Let P1, . . . , Pr be a basis for E(Q) modulo torsion and ΩE the period
of E. Then the leading coefficient of L(E, s) at s = 1 is given by

lim
s→1

L(E, s)
(s− 1)r = uΩE det (〈Pi, Pj〉) (5.52)

where u ∈ Q∗.
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7.8. Remarks. In the complete formulation3, the number u is explicitly
defined. In fact,

u = M
∏

p |ΔE

cp |E(Q)tor|−2
,

where cp � 1 is an integer which depends on the bad reduction at p and M
is the cardinality of the “Tate-Shafarevich group”. This cardinality should
be finite (it has only been shown in certain cases) and should be a perfect
square (which is true if the group in question is finite).

We point out that the conjectural formula is strongly analogous to the
formula which gives the residue at s = 1 of the Dedekind zeta function
in a number field K (see formula (6.34)). The Tate-Shafarevich group
corresponds to the class group of ideals in K, the torsion group corresponds
to the group of roots of unity, the Néron-Tate regulator corresponds to the
regulator RK of the units of K, etc.

The first observation made by Birch & Swinnerton-Dyer is that, at least
formally, L(1) =

∏
p

p

Np
where Np := cardE(Fp) (more precisely, the

number of nonsingular points in the reduction modulo p of E). Now, Np

is approximately equal to p with a variation of at most 2
√

p. We denote
this by Np = p + δ(p)

√
p, and thus we have (still formally) L(1) =

∏
p(1 +

δ(p)p−1/2)−1. If E(Q) is finite, we can imagine that Np oscillates regularly
and hence that δ(p) has the tendency to be well-distributed in the interval
[−2, 2], which would make the product converge. If now E(Q) is infinite,
we might think that we would find more points modulo p and thus that δ(p)
would have the tendency to be positive, which would imply the divergence
of the product, more precisely, would force L(1) to be zero.

We can think of the conjecture as a sophisticated version of the local/global
principle. To see this, the function L(E, s) is constructed using fairly simple
information of a local type, essentially the number of points modulo p, and
it allows us, thanks to analytic continuation, to recover the rank of the
group E(Q).

Finally, the sign of the functional equation of L(E, s) determines the parity
of the order of the zero of L(E, s) at s = 1. Thus, conjecturally, the sign
of the functional equation determines the parity of the rank of the group
E(Q). This weakened version is called the parity conjecture.

3The Birch & Swinnerton-Dyer conjecture is one of the Millennium Prize Problems;
the Clay Mathematics Institute offers a million dollars for its solution.



Chapter 6

Developments and Open
Problems

“Une pierre
deux maisons

trois ruines
quatre fossoyeurs

un jardin
des fleurs

un raton laveur”

Jacques Prévert

The tone and the level of the prerequisites of this final chapter differ from
the previous chapters. Here we will present a panorama—necessarily par-
tial and one-sided—of some important research areas in number theory.
In particular, every section contains at least one open problem. This last
chapter also includes many statements whose proofs surpass the level of this
book but which also provide an opportunity to combine and expand on the
mathematics introduced in the preceding chapters. The chosen themes—
the number of solutions of equations over a finite field, algebraic geometry,
p-adic numbers, Diophantine approximation, the a, b, c conjecture and gen-
eralizations of zeta and L-series—have all been introduced, either implicitly
or explicitly, in the previous chapters. We will freely use themes from al-
gebraic geometry and Galois theory, described respectively in Appendices B
and C.
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1. The Number of Solutions of Equations over
Finite Fields

In order to deepen your understanding of this section, you could first consult
Weil’s original article [78] and Appendix C of [35].

The successes brought about by the introduction of the Riemann ζ func-
tion, then the Dedekind ζK function, naturally lead to the study of following
generalization. We consider a finitely generated ring A over Z or Fp, in
other words A := Z[t1, . . . , tn] = Z[X1, . . . , Xn]/I or A := Fp[t1, . . . , tn] =
Fp[X1, . . . , Xn]/I. It is easy to see that if p is a maximal ideal in A, then
A/p is a finite field. We denote by N p = card(A/p). Letting MA be the
set of maximal ideals in A, we can therefore set

ζA(s) :=
∏

p∈MA

(
1−N p

−s
)−1

.

If A = Z, we recover the Riemann ζ function, and if A = OK (for a number
field K), we recover the Dedekind ζK function. Furthermore, in the case
where Z ⊂ A, every maximal ideal p contains exactly one prime number
since p ∩ Z is a non-zero prime ideal. If we denote by MA,p the maximal
ideals which contain p (this set is in bijection with the maximal ideals of
A/pA), then MA = ∪pMA,p, and we can write:

ζA(s) =
∏

p

∏

p∈MA,p

(
1−N p

−s
)−1 =

∏

p

ζA/pA(s).

We can therefore, at least momentarily, concentrate on the case A =
Fp[t1, . . . , tn] = Fp[X1, . . . , Xn]/I (we will come back to the case of va-
rieties defined over Q or Z in the last section of this chapter). Let V
denote the affine variety defined by the ideal I in An. The maximal ideals
of F̄p[t1, . . . , tn] correspond to points of V (F̄p), and the maximal ideals of
A = Fp[X1, . . . , Xn]/I correspond to conjugacy classes under Gal(F̄p/Fp)
in V (F̄p). We denote by |V | the set of these classes1. If x ∈ V (F̄p) and
if p is the corresponding maximal ideal in A, then N p = pdeg(x) where
deg(x) := [Fp(x) : Fp]. Since a point in V (Fpm) has a field of definition
equal to Fpd where d divides m, we see that

cardV (Fpm) =
∑

x ∈ |V |
deg(x) |m

deg(x).

We thus obtain a second expression for ζA(s):
1In the language of Grothendieck schemes, we are talking about closed points of the

scheme V = spec(A).
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ζA(s) =
∏

x∈|V |

(
1− p− deg(x)s

)−1

= exp

( ∞∑

m=1

card V (Fpm)
p−ms

m

)
. (6.1)

By setting T = p−s, this leads to the following definition (where now V is
not necessarily affine).

1.1. Definition. Let V be an algebraic variety defined over Fq. Its zeta
function is given by the formal series with integer coefficients:

Z(V/Fq; T ) =
∏

x∈|V |

(
1− T deg(x)

)−1

= exp

( ∞∑

m=1

cardV (Fqm) Tm

m

)
.

(6.2)

In fact, if we write Z(V/Fq; T ) =
∑

m�0 amTm, we can see that am is the
number of formal linear combinations2 m1x1 + · · ·+ mrxr, where mi ∈ N
and

∑r
i=1 mi deg(xi) = m.

1.2. Examples. Let us compute this series for some varieties.

• The calculation for the affine space An of dimension n is simple:

Z(An/Fq, T ) = exp

( ∞∑

m=1

qmn Tm

m

)
= (1− qnT )−1. (6.3)

Since Pn = An �An−1 � · · · �A1 �A0, we have

Z(Pn/Fq, T ) =
n∏

j=0

(
1− qjT

)−1
. (6.4)

• If V = G(n, k) is the Grassmannian which parametrizes the vector
subspaces of dimension k in An, we find positive integers B2i such that

cardG(n, k)(Fq) =
k−1∏

j=0

qn−j − 1
qj+1 − 1

=
k(n−k)∑

i=0

B2iq
i (6.5)

Z(G(n, k)/Fq, T ) =
k(n−k)∏

j=0

(
1− qjT

)−B2j
. (6.6)

For example, for V = G(4, 2) (the space of lines in P3), we find

2In more scholarly terms, we are referring to effective cycles of dimension zero and
degree m.
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card V (Fq) = q4 + q3 + 2q2 + q + 1, and hence

Z(V/Fq, T ) = 1
(1− T )(1− qT )(1− q2T )2(1− q3T )(1− q4T )

·

• If E is an elliptic curve over Fq, we can deduce from Hasse’s theorem
(Theorem 5-6.4) that there exists α ∈ C with |α| = √

q such that

Z(E/Fq, T ) = exp

( ∞∑

m=1

(qm + 1− αm − ᾱm) Tm

m

)

=
(1− αT )(1− ᾱT )
(1− T )(1− qT )

· (6.7)

We therefore realize that Z(E/Fq, T ) = (1 − aT + qT 2)(1 − T )−1(1 −
qT )−1 where a = q +1− |E(Fq)|. Hence, in this case, knowing |E(Fq)|
is equivalent to knowing Z(E/Fq, T ).

• Let V be a nondegenerate quadric in Pn. Theorem 1-5.5, together with
the Davenport-Hasse relation (see Theorem 1-5.15 and Exercise 1-6.25),
gives

Z(V/Fq, T ) =

⎧
⎨

⎩
Z(Pn−1/Fq, T ) if n is even,

Z(Pn−1/Fq, T )(1− εq
n−1

2 T )−1 if n is odd,

where ε =
( −1

p

) n−1

2
(

D
p

)
and D is the discriminant of the quadratic

form.

• Let V be the smooth intersection of two quadrics Q1 = a0x
2
0 + · · · +

anx2
n = 0 and Q2 = b0x

2
0 + · · ·+ bnx2

n = 0 in Pn where n is even. The
computations done in Exercise 1-6.24, together with the Davenport-
Hasse relation, yield

Z(V/Fp, T ) = Z(Pn−2/Fp, T )
n∏

i=0

(
1− ηip

n/2T
)−1

,

where ηi =
( −1

p

) n

2

(
Di
p

)
and Di :=

∏
j �=i(biaj − aibj).

• Let V be a Fermat hypersurface given by the equation a0x
d
0+· · ·+anxd

n.
Theorem 1-5.13, together with the Davenport-Hasse relation, yields

Z(V/Fq, T ) = Z(Pn−1/Fq, T )P (T )(−1)n

where
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P (T ) :=
∏

(χ0,...,χn)∈S

(
1−(−1)n−1q−1χ̄0(a0) · · · χ̄n(an)G(χ0) · · ·G(χn)T

)
.

Here, S designates the set of (n + 1)-tuples of characters different from
the unitary character and such that the χd

j , as well as χ0 · · ·χn, are
equal to the unitary character. In particular, we have Bn−1(d) :=
deg(P (T )) = ((d− 1)n+1 + (−1)n+1(d− 1))d−1 and the equality

∣∣q−1χ̄0(a0) · · · χ̄n(an)G(χ0) · · ·G(χn)
∣∣ = q

n−1

2 .

This thus yields the estimate

∣∣cardV (Fq)− cardPn−1(Fq)
∣∣ � Bn−1(d)q

n−1

2 . (6.8)

The following theorem (conjectured by André Weil [78]) lets us extend
the previous inequality (6.8) to every smooth hypersurface of degree d in
Pn. We can verify its truthfulness in each of the previous examples, and its
proof, which largely surpasses the level of this text, motivated specialists in
algebraic geometry for twenty years. His work on developing the theory of
algebraic geometry earned Grothendieck the Fields Medal in 1966. Deligne
earned the same distinction in 1978 for completing this theory.

1.3. Theorem. (Weil conjectures, Grothendieck’s and Deligne’s theo-
rems) Let V be a smooth projective variety of dimension r.
1 ) (Rationality) The function Z(V/Fq; T ) is a rational function in the

indeterminate T .
2 ) (Functional equation) There exists an integer χ(V ) and a sign ε = ±1

such that

Z

(
V/Fq; 1

qrT

)
= εq

rχ(V )

2 Tχ(V )Z (V/Fq; T ) . (6.9)

3 ) (Riemann hypothesis) There exist polynomials Pi(T ) ∈ Z[T ] such that

Z (V/Fq; T ) =
P1(T ) · · ·P2r−1(T )
P0(T ) · · ·P2r(T )

=
2r∏

i=0

Pi(T )(−1)i+1
,

and Pi(T ) =
∏Bi

j=1 (1− αi,jT ) with |αi,j | = qi/2.
4 ) Suppose that V is the reduction modulo a prime ideal of a variety V

defined over a number field. Then the numbers Bi are the topological
Betti numbers of the variety V .

1.4. Remarks. In particular, by 3) we have
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|V (Fqm)| = qmr +
2r−1∑

i=0

(−1)i
Bi∑

j=1

αm
i,j .

The meaning of the last statement is the following. Let V be a smooth
projective variety defined over a number field K and having good reduction
at a prime ideal p of OK such that OK/p ∼= Fq (see Appendix B). We can
therefore consider the complex variety V (C), to which we can associate
the Betti numbers Bi := dim Hi(V (C),Q). We can also consider the
reduced variety modulo p denoted V/Fq. Statement 4) therefore says that
the numbers Bi = deg(Pi(T )), given by the first part of the theorem, are
exactly the Betti numbers of V (C).

With this interpretation, we can see that χ =
∑2n

i=0(−1)iBi, and it is there-
fore legitimate to call the latter (∈ Z) the Euler-Poincaré characteristic of
the variety V .

The reason why Statement 3) of Theorem 6-1.3 is called the Riemann
hypothesis is an analogy. To be more specific, if we go back to the function
initially associated to V/Fq, it can be written

ζV (s) = Z(V/Fq, q
−s) =

2r∏

i=0

Pi(q−s)(−1)i+1
,

and the Riemann hypothesis—Statement 3) of the theorem—can be trans-
lated into the assertion that the zeros (for odd i) or poles (for even i) are
situated on the lines Re(s) = i

2
·

1.5. Remark. One of the most modern applications of Theorem 6-1.3 is
the upper bound on the sum of exponentials, of which we studied a typical
example given by Gauss sums. We could, for example, prove using these
techniques the following estimate due to Deligne, where we assume that
F (x) = Fd(x)+Fd−1(x)+ · · ·+F1(x) with Fi homogeneous of degree i and
Fd smooth, i.e., the hypersurface that it defines in Pn−1 is smooth, and
also that p does not divide d:

∣∣∣∣∣∣

∑

x∈(Fp)n

exp
(

2πiF (x)
p

)∣∣∣∣∣∣
� Bn,d pn/2. (6.10)

Before that, Weil proved these assertions over curves and deduced from
them an upper bound for Kloosterman sums over integers modulo a prime p
(see Exercise 1-6.18 for sums modulo any integers) which does not divide ab:

∣∣∣∣∣∣

∑

x∈F∗
p

exp
(

2πi(ax + bx−1)
p

)∣∣∣∣∣∣
� 2

√
p. (6.11)
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The smoothness constraints are essential if we want the estimates to be fine.

For example, the sum
∑

x,y,z∈Fp
exp

(
2πixyz

p

)
equals 2p2 − p, which is

much larger than p3/2. Nonetheless, Theorem 6-1.3 does not outweigh the
following more robust (and older) result:

1.6. Theorem. (Lang-Weil [47]) There exists a constant C = C(n, r, d)
such that for every closed (irreducible) subvariety V of Pn of dimension r

and degree d, we have the following estimate:

|cardV (Fq)− cardPr(Fq)| � (d−1)(d−2)qr−1/2 +C(n, r, d)qr−1. (6.12)

1.7. Remarks. 1) Let Pi(T ) = Pi(V/Fq, T ) =
∏Bi

j=1(1 − αi,jT ) be one
of the polynomials associated to V by Theorem 6-1.3. Let mi = mi(V ) be
the multiplicity with which αi,j = qi/2. Since ᾱi,j = qi/αi,j , we have

Pi(T ) =
Bi∏

j=1

(
1− qi

αi,j
T

)
=

⎛

⎝
Bi∏

j=1

(−αi,j)

⎞

⎠TBiPi

(
1

qiT

)
·

Furthermore, we can easily see that
∏Bi

j=1(−αi,j) = (−1)miqiBi/2, which
gives us a functional equation for Pi(T ) of the form:

Pi(T ) = (−1)miq
iBi

2 TBiPi

(
1

qiT

)
· (6.13)

2) Moreover, by identifying the factors according to the absolute value of
their roots in the functional equation, we obtain

P2r−i(T ) = Pi(qr−iT ), (6.14)

from which we can immediately deduce that m2r−i = mi and B2r−i = Bi.
This yields the equality χ′ :=

∑2r
i=0(−1)iiBi = r

∑2r
i=0(−1)iBi = rχ.

3) By referring to formulas (6.13) and (6.14), we recover the functional
equation of the function Z(V, T ) using the supplementary information that
ε = (−1)mr .

4) By using the fact that a symplectic isometry has determinant 1, we can
prove that if r := dim(V ) is odd, for example for an algebraic curve, then
the sign of the functional equation of Z(V/Fq, T ) is +1. Whenever r is even,
the sign can be positive or negative and remains more or less mysterious.
To conjecturally describe its behavior, Tate suggested to compare it to the
rank of the group Numi(V ) of cycles of codimension i modulo numerical
equivalence (see Appendix B, Definition B-2.9).
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1.8. Conjecture. (Tate) The multiplicity m2i(V ) is equal to the dimen-
sion of the subspace generated by the algebraic subvarieties of codimension
i modulo the numerical equivalence relation.

In particular, the conjecture indicates that the sign of the functional equa-
tion should be ε = (−1)rank Numi(V ). Tate proved that it is always the case
that rankNumi(V ) � m2i(V ), but we only know how to prove equality in
certain cases, among which are the examples outlined previously in this
section.

2. Diophantine Equations and Algebraic
Geometry

In this section, we will consider the question—raised essentially by Serge
Lang, [45] and [46]—of establishing a correspondence or dictionary between
arithmetic and geometric properties of algebraic varieties. More concretely,
if we are given a system of equations with integer coefficients

V : f1(X1, . . . , Xn) = · · · = fr(X1, . . . , Xn) = 0,

we want to find connections between the qualitative properties (finiteness,
density, etc.) of the rational solutions V (Q) and the properties of the an-
alytic or algebraic variety of the complex solutions V (C). The existence
of such a dictionary between algebraic, analytic geometry and arithmetic
is very largely conjectural, but we nevertheless have some (deep) theorems
and precise questions. You can consult [38] to acquire a deeper insight into
this subject.

We will start by describing the predicted geometric properties.

To simplify things, we will assume in this section that the varieties are
smooth and projective. By imitating differential geometry, we can give an
algebraic definition of regular differential forms on an algebraic variety V
as linear forms on the tangent space which are defined everywhere locally
(i.e., for every point P on an open set containing the point P ) by the form

ω =
∑

i

fidgi,

where the fi, gi are algebraic functions on V without poles at P . We
likewise define the space of regular differential k-forms as those which can
be expressed locally as

ω =
∑

(i1,...,ik)

fi1,...,ik
dgi1 ∧ · · · ∧ dgik

.
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2.1. Example. We will give a nontrivial example where the necessity of
describing the differential form in various charts intervenes. Let E be an
elliptic curve in P2 given by the equation ZY 2 = X3 + aXZ2 + bZ3. Let
x = X/Z and y = Y/Z so that we can define

ω = dx
y =

2dy

3x2 + a
·

Since y and 3x2 + a do not simultaneously vanish (the curve is assumed
to be smooth), the form ω does not have a pole outside of the point at
infinity. We can also see that it is regular around the point at infinity.
By setting u := 1/x and v := y/x2, the equation of the curve becomes
v2 = u + au3 + bu4, and we obtain

dx
y = − du

v = − 2dv

1 + 3au2 + 4bu3

which is clearly regular at the point (u, v) = (0, 0).

The set of regular differential k-forms forms a vector space denoted Ωk[V ].
Whenever V is projective, this space has finite dimension denoted by gk(V ).
The following invariant is particularly important.

2.2. Definition. The genus of a smooth, projective algebraic variety of
dimension r is the dimension of the space of regular differential r-forms:

g(V ) := dim Ωr[V ].

Observe that any two differential r-forms, ω and ω′, on V are “proportional”
in the sense that there exists a function, f , such that ω′ = fω. By choosing
a basis, ω1, . . . , ωg(V ), for Ωr[V ], this allows us to define the canonical map
ΦV : V · · · → Pg(V )−1 given by x �→ (ω1(x), . . . , ωg(V )(x)). This map is
rational (cf. definition and notation in Appendix B, page 274): it is only
defined on the open set V \Z, where Z is the locus of the common zeros of
the ωi. More explicitly, this map can be described as follows (at least on an
open set): there exist rational functions fi such that ωi = fiω1, and there-
fore, the function ΦV can be written as ΦV (P ) = (1, f2(P ), . . . , fg(V )(P ))
for P which are not poles of the fi. By considering the tensor powers of
differential forms, i.e., expressions of the form ω1⊗· · ·⊗ωm, we obtain the
space of differential k-forms of weight m, the plurigenera g(m, V ) which
are the dimensions of the space of differential r-forms of weight m, and the
pluricanonical maps Φm,V : V · · · → Pg(m,V )−1.

2.3. Definition. 1) The Kodaira dimension of a variety is−∞ if g(m, V ) =
0 for every m and if not is given by
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κ(V ) := max
m

dim Φm,V (V ).

2) A projective variety is pseudo-canonical (or “of general type”) if κ(V ) =
dim V .

If V is a variety defined over a number field K, we can embed K into C
and consider the complex points V (C); we thus obtain an analytic variety,
i.e., a variety defined by holomorphic functions.

2.4. Definition. A Riemann surface is a complex analytic variety of
dimension 1. It is called algebraic if we can represent it as the set of
complex points on an algebraic curve.3

It is fairly easy to show that if V is a projective curve, then V (C) is
compact. The converse is a deep theorem of Riemann: every compact
Riemann surface is algebraic (and projective).

2.5. Examples. 1) The genus of a smooth projective curve can be any
natural number. We have g = 0 if V = P1 (since Ω1[P1] = 0) and g = 1 if
V is an elliptic curve (a basis for Ω1[V ] is given by ω := dx/y); a smooth
projective plane curve of degree d has genus g = (d − 1)(d − 2)/2. If V
is defined over C, then V (C) is a compact Riemann surface, and g(V )
coincides with the number of handles or holes in the surface.

3We would like to point out the classical naming conflict of calling the same object a
“curve” and a “surface”.
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For a smooth plane curve V of degree d, we find that V is isomorphic to
P1 if d = 1 or 2; that g = 1 if d = 3, and therefore, V (C) ∼= C/Λ (i.e., V

is an elliptic curve, see Chap. 5); and finally, that g � 3 if d � 4.

2) If now V is a smooth projective hypersurface in Pn of degree d, then
the dimension is given by

κ(V ) =

⎧
⎪⎨

⎪⎩

−∞ if d � n,
0 if d = n + 1,
dim(V ) if d � n + 2.

One of the deepest results linking the geometry of curves to their arithmetic
properties was proven by Faltings in 1983 (see [16], [30], [38]). Faltings
received the Fields Medal in 1986 for this work.

2.6. Theorem. (Mordell conjecture, Faltings’s theorem) Let C be a curve
of genus g � 2 defined over a number field K. Then C(K) is finite.

This theorem completes the prior results of Siegel dating back to 1929 (see
Theorem 5-4.1). In order to give a geometric statement of this theorem, it
will be convenient to use the following notation.

2.7. Definition. Let C be a smooth projective curve of genus g and T

a finite set of points. We denote by U = C \ T the corresponding curve
(which is affine if T 	= ∅). The Euler-Poincaré characteristic of U is defined
by χ(U) := 2− 2g − |T |.

2.8. Theorem. (Siegel’s theorem) Let C be a smooth projective curve of
genus g defined over a number field K and T a finite set of points. We
denote by U = C \ T the corresponding affine curve. If χ(U) < 0, then the
set of integral points U(OK) is finite.

Siegel’s theorem was generalized to S-integral points by Mahler. If g �
2, Siegel’s theorem is surpassed by Faltings’s theorem, and if g = 1, we
essentially obtain Theorem 5-4.1. If g = 0 and |T | � 3, the statement is
equivalent to the unit theorem (Theorem 5-4.4), which affirms, for example,
that the curve given by the equation xy(y−1) = 1 only has a finite number
of S-integral points.

For the proof, see for example [38]. To illustrate the importance of Theo-
rem 6-2.6, we will restate it as part iii) of the following theorem. If V is a
projective subvariety of Pn, we set:
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N(V (Q), H, B) := card{x ∈ V (Q) | H(x) � B}.

2.9. Theorem. Let V be a projective variety defined over Q. Then we
have the following asymptotic estimates as B tends to infinity.

i) If V = Pn, then

N(Pn(Q), H, B) ∼ 2n

ζ(n + 1)
Bn+1.

ii) If V = E is an elliptic curve of rank r = rank E(Q), then

N(E(Q), H, B) ∼ cE(log B)r/2.

iii) If V is a curve of genus � 2, then N(V (Q), H, B) becomes constant for
large enough B.

2.10. Remark. We underline the fact that from an arithmetical point of
view, we have the following trichotomy of curves, V :
1) genus 0 curves with many rational points and κ(V ) = −∞;
2) genus 1 curves with few rational points and κ(V ) = 0;
3) genus � 2 curves with a finite number of rational points and κ(V )

maximal.

It is this trichotomy that the Lang conjectures are trying to generalize.

Proof. Point iii) is a reformulation of Theorem 6-2.6. To prove i), we
introduce the functions F (B) := card{x ∈ Zn+1 | 0 < max |xi| � B} and
G(B) := card{x ∈ Zn+1 | 0 < max |xi| � B, gcd(x0, . . . , xn) = 1}. We can
see that F (B) = (2�B� + 1)n+1 − 1 = (2B)n+1 + O(Bn). By regrouping
the elements of Zn+1 according to the gcd of their coordinates, we see that

F (B) =
∑

d�B

G(B/d).

By using the Möbius formula (see Exercise 4-6.5), we obtain

G(B) =
∑

d�B

μ(d)F (B/d)

= (2B)n+1
∑

d�B

μ(d)

dn+1
+ O

⎛

⎝Bn
∑

d�B

1
dn

⎞

⎠

= (2B)n+1
∞∑

d=1

μ(d)

dn+1
+ O(Bn log B)

= 2n+1

ζ(n + 1)
Bn+1 + O(Bn log B),

where the term log B can be omitted if n � 2.
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To prove ii), we use the quadraticity (see Theorem 5-2.2.2) of the (logarith-
mic) height on an elliptic curve. If ||.|| is a Euclidean norm on Rr, we will
prove that card{x ∈ Zn | ||x|| � X} ∼ cXr using the following argument.
Let γ = maxx∈[0,1]r ||x||. Then we have the inclusions

{x ∈ Rr ; ||x|| � X−γ} ⊂
⋃

x ∈ Zr

||x|| � X

x+[0, 1]r ⊂ {x ∈ Rr ; ||x|| � X +γ}.

By considering the volumes (where the volume of the ball || · || � 1 is
denoted by vr), this yields:

vr(X − γ)r � card{x ∈ Zn ; ||x|| � X} � vr(X + γ)r,

and hence card{x ∈ Zr ; ||x|| � X} ∼ vrX
r. By applying this to the

Néron-Tate height ĥ : E(Q) → R and its associated real quadratic form
ĥR : E(Q)⊗R→ R (see Chap. 5), we obtain

card{P ∈ E(Q) | ĥ(P ) � X}

= |E(Q)tor|
∣∣∣{x ∈ E(Q)⊗R | ĥR(x) � X}

∣∣∣ ∼ cXr/2.

By choosing Ĥ := exp ĥ, we thus have

N(E(Q), Ĥ, B) ∼ cE(log B)r/2,

and we can easily see that the estimate still holds if we replace H by Ĥ

since for every P , C−1H(P ) � Ĥ(P ) � CH(P ). �

We will now consider an algebraic curve over the field of complex num-
bers. As we have seen, its complex points form a Riemann surface. Sim-
ply connected Riemann surfaces were classified by Riemann. There are
three of them: the sphere or projective line P1(C), the affine plane or
line C = P1(C) \ {∞} and the unit disk U := {z ∈ C | |z| < 1}. The
universal covering of a projective curve of genus 0 (resp. genus 1, resp.
genus � 2) is the projective line (resp. plane, resp. disk). Therefore, the
corresponding analytic variety is either P1(C), C/Ω (where Ω is a lattice
in C) or U/Γ (where Γ is a discrete subgroup of Aut(U)). The parallel
notion in complex geometry can be underlined using the following observa-
tion based on Picard’s theorem, which states that an entire, non-constant
function f : C→ C takes all complex values except for at most one (think
about the exponential function). We will also use the following topological
property of the universal covering: if π : S̃ → S is the universal cover-
ing of S, every holomorphic map f : C → S can be factored through



218 6. Developments and Open Problems

π, in other words, there exists a holomorphic map f̃ : C → S̃ such that
f = π ◦ f̃ .

2.11. Proposition. Let S be an algebraic Riemann surface, in other
words, an algebraic curve of genus g minus s points, and let χ(S) := 2 −
2g − s be its Euler-Poincaré characteristic. There exists a non-constant,
holomorphic map f : C→ S if and only if χ(S) � 0.

Proof. If g = 0, then S = P1(C) \ {P1, . . . , Ps}, and by Picard’s theorem,
a non-constant, holomorphic map can only exist if s = 0, 1 or 2, i.e., if
S = P1(C) or S = P1(C) \ {P1} = C or S = P1(C) \ {P1, P2} = C \ {0}.
If g = 1, then S = E(C) \ {P1, . . . , Ps} where E(C) = C/Ω. If s = 0, we
have a holomorphic map from C → C/Ω, but if s > 0, we would obtain,
by lifting the map to the universal covering C, an entire function which
does not take infinitely many values and is therefore necessarily constant.
Finally, if g � 2, every holomorphic map f : C→ S can be factored through
the universal covering, which is the disk, and hence f is constant. �

This suggests the following definition, due to Brody.

2.12. Definition. A complex analytic variety X is hyperbolic (in Brody’s
meaning) if every holomorphic map C→ X(C) is constant.

With this definition, we can see that projective curves which are hyperbolic
are exactly those of genus � 2, in other words, those for which the finiteness
of the number of rational points was proven by Faltings. Affine curves which
are hyperbolic are those of genus � 1 or of genus 0 with at least three points
at infinity, in other words, those for which the finiteness of the number of
integral points was proven by Siegel.

In order to take into account the case where the images of holomorphic maps
are contained in a subvariety, Lang introduced the following definitions.

2.13. Definition. 1) Let X be an algebraic variety defined over C. The
analytic special set is the closure (for the usual topology) of the union of
the images of non-constant holomorphic maps f : C→ X(C).

2) Let V be an algebraic variety. The algebraic special set is the closure
(for the Zariski topology) of the union of the images of non-constant maps
from an algebraic group to V .

Let us point out that since P1 is the image of, for example, an elliptic
curve, the special set contains all of the rational curves.
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The idea of the conjecture, due to Serge Lang, is to attempt to generalize
the good dictionary between arithmetic, algebraic and geometric properties
to varieties of higher dimension.

2.14. Conjecture. (Lang [45]) Let V be a projective algebraic variety
defined over a number field.
1 ) The following three properties are equivalent.

i) The variety V has a finite number of rational points over every
number field.

ii) Every subvariety of V (including itself) is pseudo-canonical.
iii) The analytic variety V (C) is hyperbolic.

2 ) The complement of the algebraic special set of V has a finite number
of rational points over every number field.

This conjecture is therefore a theorem if dim(V ) = 1, thanks essentially to
the result of Faltings. Here is a very concrete open problem: is it true that
the set of rational points over Q of the surface V , defined in P3 by

X5
0 + X5

1 + X5
2 + X5

3 = 0,

lie on a finite set of curves? For example, the lines Xi +Xj = Xk +X	 = 0
lie on V ; are there other curves having infinitely many rational points?

We could state a variation, started by Lang and completed by Vojta [75],
of this conjecture concerning the integral points on affine varieties. To do
this, it will be convenient to use the following definitions and conventions.
We will always be considering an affine variety U ⊂ An as a projective va-
riety V ⊂ Pn minus a hyperplane section D := V ∩H where H := Pn \An

is the hyperplane “at infinity”. We will assume that D has “normal cross-
ing”, which means that D is the union of r irreducible smooth components
D1, D2, . . . , Dr and the Di intersect transversely. In particular,

dimDi1 ∩ . . . Dis � dim V − s,

and the tangent spaces intersect with the same dimensions. Hironaka’s
desingularization theorem tells us that an affine variety can always be rep-
resented as such.

If r = dimU = dimV , we will now look at the differential r-forms on V

which are regular on U and which have at most a simple pole along D.
We denote by Ω(V )[D] the vector space of these forms, by g(m, V, D) its
dimension and by Φm,V,D : U · · · → Pg(m,V,D)−1 the induced map. The
logarithmic Kodaira dimension is therefore defined as

κ(V, D) := max
m

dim Φm,V,D(U).
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In fact, with the given conventions, this integer only depends on U . The
space U is said to be log canonical if κ(V, D) = dim U .

2.15. Conjecture. (Lang-Vojta) Let V be a smooth projective algebraic
variety defined over a number field, D a hyperplane section with normal
crossing and U := V \D the corresponding affine variety.
1 ) The following three properties are equivalent.

i) The variety U possesses a finite number of S-integral points for
every number field and finite set of places S.

ii) Every subvariety of U (including itself) is log canonical.
iii) The analytic variety U(C) is hyperbolic.

2 ) The complement of the special set of U possesses a finite number of
S-integral points for every number field and finite set of places S.

This conjecture is equivalent to Siegel’s theorem in the case of curves.
Very few cases are known in dimension � 2. For example, according to the
conjecture, the surface given by the equation

−1− x4 + y4 + z4 = 0

should have a finite number of integral points outside of a finite number of
curves, such as the line x− y = z − 1 = 0 for example.

We will finish with an example due to Vojta which illustrates the necessity
of the “normal crossing” hypothesis. Consider, in the projective plane with
coordinates (x, y, z), the hyperplane section D composed of two lines D1

and D2 whose equations are given by x = 0 and y = 0 and the conic
D3 given by z(x − y) − (x + y)2 = 0. We point out that the divisor
D = D1 + D2 + D3 does not have normal crossing, since D1 ∩D2 ∩D3 =
{(0, 0, 1)}. If it did have normal crossing, the Lang-Vojta conjecture would
predict that the S-integral points are not Zariski dense. For U := P2 \D,
the algebra of coordinates of U is generated by the functions f1 = x

y ,

f2 = z
y , f3 =

y
x , f4 = z

x and f5 =
4y2

z(x− y)− (x + y)2
· The S-integral

points are therefore the points where the functions take S-integral values.
If k ∈ Z and ε ∈ O∗

K,S , we define the point

Pk,ε :=

(
ε, 1, ε + 3− 4(εk − 1)

ε− 1

)
.

We can check that f5(Pk,ε) = −ε−k, and the points Pk,ε are thus all S-
integral. If O∗

K,S is infinite, it is clear that the points form a dense set in
the plane for the Zariski topology.
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3. p-adic Numbers

The technique of going from discrete to continuous—by embedding Z or Q
into R—is classical. There exist completions other than R. In fact, there
exists exactly one, up to isomorphism, for each prime number p. These
completions, far from being exotic, are actually more rich in arithmetic and
topological content. We will briefly describe them here, and we recommend
the following texts for further study: [2] and [8].

3.1. Definition. A p-adic integer is an equivalence class4 of sequences
x := {x0, x1, . . . , xn, . . . } of integers such that ∀n, xn ≡ xn+1 mod pn. Two
sequences are equivalent if xn ≡ x′

n mod pn.

We can also write the sequence of integers in the form {a0, a0 + a1p, a0 +
a1p + a2p

2, . . . } and, if we want to, bound it by taking the integers ai to
be in [0, p − 1]. This suggests the following notation for a p-adic integer,
“x =

∑∞
i=0 aip

i”, to which we will soon give a more precise meaning.

We can naturally define the operations of sum and product, which endow
the p-adic integers with a ring structure, denoted Zp. Divisibility is partic-
ularly simple.

3.2. Lemma. The ring Zp is integral. Furthermore, it satisfies the fol-
lowing properties.

i) Z∗
p = {x = {xn}n�0 | x0 	≡ 0 mod p}.

ii) Every non-zero element can be written uniquely x = pmu, where m ∈ N
and u ∈ Z∗

p.

Proof. Let x = {xn}n ∈ Z∗
p. Since xn ≡ x0 	≡ 0 mod p, the integers xn are

relatively prime to p, and we can choose integers x′
n such that x′

n is the
inverse of xn modulo pn. Therefore, x′

n ≡ x′
n+1 mod pn, and x′ := {x′

n}n

thus defines a p-adic integer such that xx′ = 1. If x = {xn}n ∈ Zp, we
set m := max{n | xn ≡ 0 mod pn}. Then xm+k = pmuk, where p does not
divide uk. The factorization given in the statement follows from this. �

We denote by m = ordp(x) the maximal power of p which divides x.

3.3. Definition. We denote by Qp the field of fractions of Zp; it is called
the field of p-adic numbers.

4In more scholarly terms, we could define the p-adic integers as Zp = lim
←
n

Z/pnZ.
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We point out that every p-adic integer is congruent mod pn to a natural
number, i.e., Zp/pnZp

∼= Z/pnZ. We will now introduce a topology which
will make it clear that Zp is a completion of Z.

3.4. Definition. We define the p-adic absolute value by |x|p = p− ordp(x)

(and |0|p = 0). We say that the sequence (un) tends to � if limn |un−�|p = 0.

3.5. Lemma. For the p-adic topology, the following properties hold.

i) The closure of Z is Zp, which is compact. The field Qp is locally com-
pact.

ii) A sequence (un) ∈ Zp converges if and only if limn(un+1 − un) = 0.
Likewise, a series

∑
n un converges if and only if limn un = 0.

Proof. Let x = {xn}n ∈ Zp. Then |x − xn| � p−n, and the sequence of
integers therefore converges to x. Next, Qp = ∪m�0p

−mZp. The map x �→
(xmod pn)n�1 from Zp to

∏
n�1 Z/pnZ is injective and continuous, and its

image is closed. The compactness of Zp follows from the compactness of
the product

∏
n�1 Z/pnZ. The second assertion comes from the ultrametric

inequality |uM + · · ·+ uN |p � maxM�n�N{|un|p}. �

3.6. Examples. If an ∈ Z, then the series
∑

n antn converges for |t|p < 1,
in other words, for t ∈ pZp. Thus, the series

∑
n anpn indeed defines

a p-adic number (it is the analogue of the decimal expansion of a real
number). The “logarithm” series,

∑
n�1

tn
n , also converges for |t|p < 1,

because ordp(tn/n) = n ordp(t) − ordp(n) � n ordp(t) − log n/ log p. The

“exponential” series,
∑

n
tn

n!
, converges if ordp(t) > 1/(p − 1) or |t|p <

p
− 1

p−1 . In fact,

ordp(n!) =
⌊

n
p

⌋
+· · ·+

⌊
n
pm

⌋
+. . . � n

(
1
p + · · ·+ 1

pm + . . .

)
= n

p− 1
·

3.7. Theorem. Let F ∈ Z[X1, . . . , Xn]. The following statements are
equivalent.

i) ∀m,∃x ∈ Zn such that F (x) ≡ 0 mod pm.
ii) ∃x ∈ (Zp)n such that F (x) = 0 (in Zp).

Proof. If x ∈ (Zp)n satisfies F (x) = 0, then x is congruent modulo pm

to an n-tuple of integers. Conversely, if we had x(m) ∈ Zn such that
F (x(m)) ≡ 0 mod pm, then we could extract a sequence such that x(m+1) ≡
x(m) mod pm. We could therefore define, in the p-adics, x = limm x(m)
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and would then have F (x) ≡ F (x(m)) ≡ 0 mod pm for every m, and hence
F (x) = 0. �

We denote by ∇F (x) :=
(

∂F
∂X1

(x), . . . , ∂F
∂Xn

(x)
)

the gradient of F . We

will now introduce the p-adic analogue of Newton’s method for finding the
zeros of functions or polynomials.

3.8. Theorem. (Hensel’s lemma) Let F ∈ Zp[X1, . . . , Xn], δ � 0 and
x0 ∈ (Zp)n such that:

i) F (x0) ≡ 0 mod p2δ+1,
ii) ∇F (x0) ≡ 0 mod pδ, but ∇F (x0) 	≡ 0 mod pδ+1.

Then there exists x ∈ (Zp)n such that x ≡ x0 mod pδ+1 and F (x) = 0. In
particular, a smooth point on the hypersurface F = 0 modulo p lifts to Zp.

Proof. With the notation given in the statement, we can write F (x0) =
p2δ+1a where a ∈ Zp, ∇F (x0) = pδb, b ∈ (Zp)n and b 	≡ 0 mod p. Then we
have

F (x0 + pδ+1u) ≡ F (x0) + pδ+1∇F (x0) · u ≡ p2δ+1 (a + b · u) mod p2δ+2.

This yields a solution x1 = x0 + pδ+1u such that F (x1) ≡ 0 mod p2δ+2

as soon as a + b · u ≡ 0 mod p, which is possible because b 	≡ 0 mod p.
By iterating this procedure, we obtain a sequence (xm) where xm+1 ≡
xm mod pδ+m+1 and F (xm) ≡ 0 mod p2δ+m+1. The sequence therefore con-
verges in Zp to x, and since F (x) ≡ 0 mod pm for all m, we have indeed
found x such that F (x) = 0. �

3.9. Example. The simplest application of this lemma is to a polynomial
P ∈ Z[X] such that P (a0) ≡ 0 mod p but P ′(a0) 	≡ 0 mod p. Hensel’s
lemma gives us a way to construct a root a ∈ Zp of the polynomial P such
that a ≡ a0 mod p.

3.10. Remark. This theorem, together with the result of Lang-Weil
(Theorem 6-1.6), allows us to find an algorithm for deciding if an equa-
tion is solvable mod N for every integer N or, in the same fashion, if it is
solvable in Zp or Qp for all p. To see this, take the case of a polynomial
F ∈ Z[X1, . . . , Xn], which we will assume to be irreducible. The Lang-Weil
estimates show that the equation modulo p possesses roughly pn−1 solu-
tions, while the number of singular solutions is O(pn−2). For large enough
p, there will be a nonsingular solution modulo p and hence, by Hensel’s
lemma, a lifting to Zp of this solution. For a given p, the previous theo-
rem essentially provides an algorithm which tells us that either there exists
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a solution in Zp or there exists δ such that the equation is not solvable
modulo pδ.

3.11. Remark. Hensel’s lemma allows us to specify the structure of the
group of p-adic units U := Z∗

p. For this, we will introduce the subgroups
Um := {x ∈ U | x ≡ 1 mod pm}.

3.12. Lemma. Let p be odd. There exists a unique subgroup μp−1 ⊂ Z∗
p

isomorphic to U/U1
∼= F∗

p. If m � 1, there is an isomorphism Um/Um+1
∼=

Z/pZ. In particular, as topological groups,

Z∗
p
∼= Z/(p− 1)Z× Zp.

If p = 2, then Z∗
2
∼= {±1} × U2

∼= Z/2Z× Z2.

Proof. The proof immediately follows from Hensel’s lemma: the solutions
of xp−1 ≡ 1 mod p can be lifted to Zp, and the map x → 1 + px induces a
bijection from Zp to U1, then an isomorphism from U1/U2 to Z/pZ, which
proves the second part of the statement when p 	= 2. The case p = 2
can be treated similarly. We could also notice that the “logarithm” map
U1 → pZp, given by 1 + px �→

∑
n(−1)n+1pnxn/n, and the “exponential”

map pZp → U1 provide the desired isomorphism. �

Using Hensel’s lemma, we can also completely study the p-adic squares.

3.13. Lemma. The squares in Q∗
p can be described as follows.

i) If p is odd, any unit u ∈ Z∗
p where u ≡ 1 mod p is a square. Further-

more, (Q∗
p : Q∗2

p ) = 4, and representatives of the classes are given by

1, ε, p, εp where ε is not a square modulo p, i.e.,
(

ε
p

)
= −1.

ii) If p = 2, a unit u ∈ Z∗
2 with u ≡ 1 mod 8 is a square. Also, (Q∗

2 :
Q∗2

2 ) = 8, and the representatives are {±1,±2,±3,±6}.

Proof. Consider the equation F (x) = x2 − u = 0. For p odd, if u ≡
1 mod p, then F (1) ≡ 0 mod p and F ′(1) = 2 	≡ 0 mod p. More generally,
if u ≡ v2 mod p, then F (v) ≡ 0 mod p and F ′(v) = 2v 	≡ 0 mod p. Hensel’s
lemma therefore gives an x ∈ Zp such that x2 = u. We can thus see that
a p-adic number y = pmu (where m ∈ Z and u ∈ Z∗

p) is a square if and
only if m is even and u is a square modulo p. If now p = 2, as soon as we
have x0 	≡ 0 mod 2, where F (x0) ≡ 0 mod 23, we can apply Hensel’s lemma
(with “δ” equal to 1) and deduce that u is a square. The only remaining
point to check is the congruence x2 ≡ u mod 8 for odd u. �
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In order to study quadratic forms over Qp, we can, as with a field of
characteristic 	= 2, reduce to the case of diagonal forms, a1x

2
1 + · · ·+ anx2

n

with ai ∈ Zp, and then, by factoring p2x2 = (px)2, reduce to the case where
ordp(ai) = 0 or 1. To summarize, it suffices to study forms of the type

Q(x1, . . . , xn) = Q1(x1, . . . , xs) + pQ2(xs+1, . . . , xn)

= a1x
2
1 + · · ·+ asx

2
s + p(as+1x

2
s+1 + · · ·+ anx2

n)

where ai ∈ Z∗
p. We can easily see that there exists x 	= 0 such that Q(x) = 0

if and only if there exists a nontrivial zero of Q1 or Q2. Hensel’s lemma
yields the following result.

3.14. Lemma. Let p be an odd prime. The equation a1x
2
1 +a2x

2 +a3x
2
3 =

0, where ai ∈ Z∗
p, has a nontrivial zero in Qp.

Proof. If p 	= 2, we can find a nonsingular point mod p on the conic, which
lifts to a p-adic point. �

3.15. Corollary. Any quadratic form in n � 5 variables has a nontrivial
zero in Qp.

Proof. If p is odd, we can write Q(x) = a1x1 + · · ·+ asx
2
s + p(as+1x

2
s+1 +

· · ·+ anx2
n) where ai 	≡ 0 mod p. Since either s � 3 or n− s � 3, the result

follows from the previous lemma. If p = 2, the proof can be deduced from
the lemmas and remarks below. �

3.16. Remark. Quadratic forms are thus a little bit more complicated
over Q2 as shown in the following example—essentially treated in the study
of sums of squares in Chap. 3. The quadratic form Q(x, y, z, t) := x2 +y2 +
z2 − 7t2 does not have any nontrivial zero in (Q2)4. We can nevertheless
prove, for example, the following lemma, whose proof is also based on
Hensel’s lemma and left to the reader.

3.17. Lemma. a) Let Q(x) = a1x
2
1 + · · ·+asx

2
s with ai ∈ Z∗

2. A primitive
solution to Q(x) ≡ 0 mod 8 can be lifted to Zs

2.

b) Let Q(x) = a1x
2
1 + · · · + asx

2
s + 2as+1x

2
s+1 + · · · + 2anx2

n with ai ∈ Z∗
2.

A primitive solution to Q(x) ≡ 0 mod 16 can be lifted to Zn
2 .

The following theorem is an archetypal local-global arithmetic theorem.

3.18. Theorem. (Hasse-Minkowski) If Q(x) =
∑

i,j ai,jxixj is a quadratic
form with rational coefficients, then it has a nontrivial rational zero if and
only if it has a nontrivial zero in R and in every Qp.



226 6. Developments and Open Problems

For the proof, see [2] or [8]. In reference to this theorem, a class of varieties
defined over Q is said to “satisfy the Hasse principle” if the existence of a
real point and a p-adic point for every p implies the existence of a rational
point. We can also reformulate the Hasse-Minkowski theorem as saying
that the quadrics or hypersurfaces of degree 2 satisfy the Hasse principle.

3.19. Corollary. The quadratic form Q(x, y, z, t) = x2 + y2 + z2 −mt2

has a nontrivial rational zero if and only if m is not of the form 4a(8b+7).

Proof. We apply the preceding theorem by observing that the quadratic
form Q(x, y, z, t) always has, by Hensel’s lemma, a nontrivial zero in Qp

for odd p. It also has a nontrivial real zero by assumption. Finally, it has a
nontrivial zero in Q2 if and only if the condition from the corollary below
is satisfied. �

3.20. Corollary. A quadratic form in five variables Q(x, y, z, t, u) has
a nontrivial rational zero if and only if it is neither positive-definite nor
negative-definite.

The Hasse-Minkowski theorem cannot be generalized to hypersurfaces or
varieties of higher degree. Exercises 1-6.23 and 3-6.24 give examples of
equations having (nontrivial) solutions in R and in each Qp but none in
Q. If we examine the case of cubic hypersurfaces, for which there is always
a real zero, we know however how to prove the following result.

3.21. Proposition. (Lewis [52]) A cubic hypersurface F (x1, . . . , xn) = 0
has a nontrivial zero in Qp whenever n � 10. There exist cubic hypersur-
faces with no nontrivial zeros in Qp when n = 9.

3.22. Theorem. Let F (x1, . . . , xn) = 0 be a smooth cubic form with
coefficients in Z.
1 ) (Heath-Brown [36]) If n � 10, the form F has a nontrivial rational

zero.
2 ) (Hooley [39]) If n = 9 and if the form F has a nontrivial p-adic zero

for every p, then it has a nontrivial rational zero.

It is actually fairly easy to construct cubic forms in 9 variables without any
nontrivial zeros in Qp. We will start off with a cubic form in three variables
over Fp having only the trivial zero in Fp. It suffices to take, for example,
G0(x, y, z) = N(x + yω + zω2) where 1, ω, ω2 is a basis for Fp3 over Fp and

N = N
Fp3

Fp
. We then take a form G(x, y, z) with coefficients in Zp such that
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Gmod p coincides with G0, and we set

F (x1, . . . , x9) := G(x1, x2, x3) + pG(x4, x5, x6) + p2G(x7, x8, x9).

If F had a nontrivial zero x ∈ (Zp)9, there would exist one such that x 	≡
0 mod p. But by reducing modulo p, we would have G(x1, x2, x3) ≡ 0 mod p,
hence p would divide x1, x2 and x3. By reducing modulo p2, we can infer
that pG(x4, x5, x6) ≡ 0 mod p2, hence p would divide x4, x5 and x6. Finally,
by reducing modulo p3, we would have p2G(x7, x8, x9) ≡ 0 mod p3, hence p
would divide x7, x8 and x9, which yields a contradiction.

The following statement is part of the folklore.

3.23. Conjecture.
1 ) A cubic form in 10 or more variables represents zero over Q.
2 ) A cubic form in 9 or more variables represents zero over Q if and only

if it represents zeros over every Qp.

We know, by Davenport, that a cubic form in 16 or more variables rep-
resents zero over Q. An optimistic version of the conjecture would be to
replace 9 by 5 in 2). However, there do exist forms in 4 variables which
contradict the Hasse principle. One of the first counterexamples is due to
Cassels and Guy:

5x3 + 12y3 + 9z3 + 10t3 = 0.

Here is an even simpler one, due to Birch and Swinnerton-Dyer (see [13]):

−5x3 + 22y3 + 2z3 + 4w3 − 6zw(x + 4y) = 0.

The proof of the nonexistence of (nontrivial) rational solutions is given in
Exercise 3-6.24, where this equation is written (with α := 3

√
2) in the form:

NK
Q

(
x + 4y + zα + wα2

)
− 6(x + y)(x2 + xy + 7y2) = 0.

3.24. Remark. No difficulties arise when generalizing what we have pre-
sented to p-adic completions of Q in the case of a number field K equipped
with a non-zero prime ideal p. We define the p-adic absolute value by
|x|p := N p− ordp(x) and the ring of p-adic integers (resp. the field of p-adic
numbers) by:

Op := lim
←
n

(OK/p
n) , (resp. Kp = Frac(Op)).

3.25. Remarks. Adeles and ideles. We can regroup the p-adic comple-
tions into a global object which proves to be very interesting. We denote
by MK , as in Chap. 5, the set of places of K, i.e., the union of the set M∞

K

of Archimedean places (real embeddings and pairs of complex embedding)
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and the set of (non-zero) prime ideals of OK . For every finite set S of places
of K which contains the Archimedean places, we set

AS
K :=

∏

v∈S

Kv ×
∏

v/∈S

OKv .

These sets are endowed with the product topology, and their union therefore
also inherits a topology.

3.26. Definition. The ring of adeles of K is the ring

AK :=
⋃

S

AS
K .

We can also define the adeles as the set of sequences x = (xv)v∈MK
such

that xv ∈ Kv and for every v ∈ MK , except for a finite number of them
(dependent on x), we have xv ∈ Ov. The field K is embedded diagonally
in the adeles, and one important property is that A/K is compact. Every
local field Kv is also embedded in the adeles by xv �→ (0, . . . , 0, xv, 0, . . . ).

3.27. Definition. The group of ideles of K is the group

JK :=
⋃

S

JS
K =

⋃

S

(
AS

K

)∗
= A∗

K .

Ideles are naturally endowed with the topology inherited from the product
topology on JS

K =
∏

v∈S K∗
v×
∏

v/∈S O∗
Kv

. We should however point out that
this topology is different from the topology induced by the inclusion JK ⊂
AK . We can also define the ideles as the set of sequences x = (xv)v∈MK

such that xv ∈ K∗
v and for every v ∈ MK , except for a finite number of

them (dependent on x), we have xv ∈ O∗
v . Every finite extension, L/K,

has a natural “norm” map:

NL
K : JL → JK .

The multiplicative group of the field K∗ is embedded diagonally in the
ideles. Every multiplicative group K∗

v is also embedded in the ideles by
xv �→ (1, . . . , 1, xv, 1, . . . ). We have a numerical norm on the ideles defined
for x = (xv)v∈MK

by
||x|| :=

∏

v∈MK

|xv|v.

The kernel of the norm contains K∗ (cf. Theorem 5-2.1.5) and is denoted
J0

K . An important property of J0
K/K∗ is that it is compact.

By considering the map from JK to the fractional ideals of K which asso-
ciates to (xv)v∈MK

the ideal
∏

p
pordp xp , it can be shown that we have an
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isomorphism:
JK/JS∞

K K∗ ∼= C�K . (6.15)

In fact, the compactness of J0
K/K∗ is equivalent to the combination of the

finiteness of the class group and Dirichlet’s unit theorem.

4. Transcendental Numbers and Diophantine
Approximation

A proof that a number, such as π or e, is transcendental resembles, at
least formally, a proof in Diophantine approximation. This classic theme
is expanded on in Baker’s book [1] and in [12]. We offer you here a first
taste of this theory.

It can be said that the theory of Diophantine approximation and tran-
scendental numbers starts with Liouville’s result, which says that if α is an
algebraic number of degree d := [Q(α) : Q] > 1, then there exists a constant

C = C(α) such that for every rational number, we have
∣∣∣α− p

q

∣∣∣ � C

qd
·

We have seen in the proof of Siegel’s theorem (Theorem 5-4.1) that it was
essential to improve on the exponent d. The first result in this direction is
due to Thue (1909).

4.1. Theorem. (Thue) Let α be an algebraic number of degree d = [Q(α) :
Q] > 1 and ε > 0. There exists a constant C = C(α, ε) such that for every
rational number p/q, we have

∣∣∣α− p
q

∣∣∣ � C

q
d

2
+1+ε

· (6.16)

The proof is sketched further down. Successive improvements are due to
Siegel (1921), who showed that the exponent d

2
+ 1 + ε can be replaced

by 2
√

d + ε (which is an improvement on Thue’s theorem when d � 12);
Gel’fond and Dyson (1947), who proved that the exponent can be replaced
by
√

2d + ε; and finally Roth (1954), who proved a result which is essen-
tially optimal considering Dirichlet’s theorem (Corollary 3-3.8). The Fields
Medal was awarded to Roth in 1958 for this proof.

4.2. Theorem. (Roth) Let α /∈ Q be an algebraic number and ε > 0.
There exists a constant C = C(α, ε) > 0 such that for every rational number
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p/q we have ∣∣∣α− p
q

∣∣∣ � C

q2+ε
· (6.17)

One of the most important theorems which is purely about transcendence
is due to Baker (1966). It concerns linear forms of logarithms. The Fields
Medal was awarded to Baker in 1970 for this result and its numerous ap-
plications. We denote by log α a complex number β such that exp(β) = α;
for example, we can write 2iπ = log 1.

4.3. Theorem. (Baker) Let α1, . . . , αn be non-zero algebraic numbers. If
log α1, . . . , log αn are Q-linearly independent, then the numbers 1, log α1, . . . ,
log αn are Q̄-linearly independent.

4.4. Remark. We can recover as a corollary to this theorem a certain
number of classical results on transcendence.

i) The number e is transcendental (Hermite, 1873); this is true because if
it were algebraic then the number 1 = log e would be transcendental.

ii) The number π is transcendental (Lindemann, 1882). This is true be-
cause the number 2πi = log 1 is transcendental.

iii) If α ∈ Q̄ \ {0, 1} and β ∈ Q̄ \Q, the number γ := αβ is transcendental
(Gel’fond and Schneider, 1934). This is because if it were algebraic,
since log γ − β log α = 0, we could deduce that β ∈ Q.

Further down, we will give (Theorem 6-4.15) a quantitative version of
Baker’s assertion, which has become a fundamental tool in the study of
Diophantine equations.

Schematically, the proofs of all of these theorems follow the same pattern
as the proof of Liouville’s result (see [12] for a more complete picture).

• 1st step. We start by constructing a polynomial with integer coefficients
which vanishes at designated points α or at least takes a very small value
at them. In Liouville’s proof, a minimal polynomial of the algebraic
number α is chosen, and in the general case, an elementary lemma
formalized by Siegel is used (see Lemmas 6-4.5 and 6-4.6).

• 2nd step. We use the fact that we can control the size of the coefficients
of the polynomial F to conclude that F is still very small at an algebraic
point β close to α. To do this, we make use of a lemma by Schwarz
(Lemma 6-4.10) or also Taylor’s formula (Lemma 6-4.7).

• 3rd step. We prove that the polynomial F must vanish at β or that
the height of β must be large. To do this, we use Liouville’s inequality,
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which says, in its most rudimentary form, that a non-zero integer has
absolute value � 1 (see Corollary 6-4.12).

• 4th step. We prove a “zeros estimate” adapted to the situation, which
allows us to control the location of the zeros of F . If F ∈ Z[X], we can
in general settle for counting the zeros of F , but if F ∈ Z[X1, . . . , Xn],
where n � 2, this step could prove to be very difficult.

We will now present some lemmas which are useful for putting this method
into action.

4.5. Lemma. (Siegel’s Lemma I) Let N > M , and let the following be a
system of linear equations with integer coefficients aij not all equal to zero:

⎧
⎪⎪⎨

⎪⎪⎩

a11x1 + · · ·+ a1NxN = 0
...

...
...

aM1x1 + · · ·+ aMNxN = 0.

Then there exists a nontrivial solution (x1, . . . , xN ) ∈ ZN which satisfies

max |xi| �
(

N max
i,j
|aij |

) M

N−M
.

Proof. The proof is another application of the pigeonhole principle. Set
a+

ij = max(0, aij), a−
ij = max(0− aij) and Li :=

∑
j |aij |, and observe that

we can assume that Li � 1 (if not, the corresponding equation is trivial

and can be omitted). Choose X :=
⌊
(L1 · · ·LM )

1

N−M

⌋
, and consider the

map from [0, X]N to ZM given by

L(x1, . . . , xN ) = (a11x1 + · · ·+ a1NxN , . . . , aM1x1 + · · ·+ aMNxN ).

We clearly have:

−X
∑

j

a−
ij � ai1x1 + · · ·+ aiNxN � X

∑

j

a+
ij .

The number of values taken by L(x) is thus at most

M∏

i=1

(X
∑

j

a−
ij + X

∑

j

a+
ij + 1) =

M∏

i=1

(XLi + 1).

By the initial choice of X, we have the inequality (X+1)N−M > L1 · · ·LM ,
and hence

(X + 1)N >
M∏

i=1

(XLi + Li) �
M∏

i=1

(XLi + 1).
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Consequently, there exist two distinct elements x′, x′′ ∈ [0, X] ∩ ZN such
that L(x′) = L(x′′). The element x := x′ − x′′ is thus in ZN \ {0} and
satisfies L(x) = 0 and

0 < max
i
|xi| � (L1 · · ·LM )

1

N−M �
(

N max
i,j
|aij |

) M

N−M
. �

By observing that log max |xi| is the (logarithmic) height of a solution, we
can remember the upper bound (neglecting a term in log N) as:

height of a solution � (height of the equations)

× number of equations
dimension of the solutions

·

We will state, without proof (see for example [38]), the version where the
coefficients aij are in a number field. The idea is the same: an equation
with coefficients in K provides d := [K : Q] equations with coefficients
in Q.

4.6. Lemma. (Siegel’s Lemma II) Let K be a number field of degree
d := [K : Q] and aij ∈ K not all zero. Suppose that dM < N , and let
A := H(. . . , aij , . . . ). Then the linear system

⎧
⎪⎪⎨

⎪⎪⎩

a11x1 + · · ·+ a1NxN = 0
...

...
...

aM1x1 + · · ·+ aMNxN = 0

has a nontrivial solution (x1, . . . , xN ) ∈ ZN such that

max |xi| � (NA)
dM

N−dM .

The following lemma is a version of the following principle: if a polynomial
vanishes with a large order at a point, then the polynomial takes small
values in a neighborhood of this point if the coefficients of the polynomial
are not too large.

4.7. Lemma. (Application of Taylor’s formula) Let P ∈ C[X1, . . . , Xm]
be a polynomial of degree � D such that the absolute value of the coefficients
is � ||P ||. Suppose that P vanishes with order T at α = (α1, . . . , αm). If
β = (β1, . . . , βm) satisfies |αi − βi| � ε, then for |i| = i1 + · · ·+ im < T ,

∣∣∣∣∣
1

i1! · · · im!
∂|i|P

∂Xi1
1 · · · ∂Xim

m

(β)

∣∣∣∣∣ � (3mA)DεT−|i|||P ||
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where A := max{1, |α1|, . . . , |αm|}.

Proof. We write Taylor’s formula at α for Q := ∂|i|P

∂Xi1
1 · · · ∂Xim

m

as:

Q(β) =
∑

|j|�T−|i|

1
j1! · · · jm!

∂|j|Q

∂Xj1
1 · · · ∂Xjm

m

(α)(β1−α1)j1 · · · (βm−αm)jm .

The product of the (αi − βi) has absolute value � εT−|i|. By expanding
the sum as factors, we have an upper bound given by a sum of the type

∑

j

∑

h

h!
i!j!(h− i− j)!

||P ||Ah−i−j � 3mDAD||P ||,

as in the statement of the lemma. �

4.8. Definition. Let α ∈ D(0, 1). The Blaschke factor associated to α is
the function

Bα(z) := z − α
1− ᾱz

· (6.18)

Some very simple properties of this factor are summarized in the following
lemma, whose proof is left to the reader.

4.9. Lemma. The Blaschke factor has the following properties.

i) The function Bα(z) is holomorphic on the closed disk D̄(0, 1) and has
a unique simple zero at z = α.

ii) If |z| = 1, then |Bα(z)| = 1. In particular, ||Bα||1 : sup|z|�r |Bα(z)| =
1.

iii) For z ∈ D(0, 1), we have the upper bound

|Bα(z)| � |z|+ |α|
1− |α||z|

·

A classical lemma of Schwarz (see for example [74]) says that a holomorphic
function g(z) on D(0, 1) such that g(0) = 0 and |g(z)| � 1 satisfies |g(z)| �
|z| and ||g||r � r. The lemma stated below is a refinement of this.

4.10. Lemma. (Schwarz lemma) Let f(z) be a function which is holo-
morphic on the closed disk D(0, R). Suppose that f vanishes with order T
at z = 0, and we denote by ||f ||r = sup|z|=r |f(z)| = sup|z|�r |f(z)|. Then

||f ||r �
(

r
R

)T

||f ||R.

Slightly more generally, if f has zeros of order Ti at zi ∈ D(0, r0), with
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∑
i Ti = T , then we have

||f ||r �
∏

i

(
R(r + |zi|)
R2 − r|zi|

)Ti

||f ||R �
(

R(r + r0)

R2 − rr0

)T

||f ||R. (6.19)

Proof. We will prove the second inequality, which is more general. We
introduce the function g(z) := f(Rz), which is holomorphic on the closed
disk D̄(0, 1) and has zeros of order Ti at αi := zi/R. Next, we set

g∗(z) :=
g(z)

∏

i

Bαi(z)Ti

·

The function g∗(z) is holomorphic on the closed disk, and on the circle
|z| = 1, we have |g∗(z)| = |g(z)| (by property ii) of Lemma 6-4.9). In
particular, ||g∗||1 = ||g||1 = ||f ||R. This implies the inequalities:

|g(z)| =
∣∣∣∣∣g

∗(z)
∏

i

Bαi(z)Ti

∣∣∣∣∣ �
∏

i

( |z|+ |αi|
1− |z||αi|

)Ti

||g∗||1,

from which we can deduce that

||f ||r = ||g|| r

R
�
∏

i

⎛

⎜⎜⎝

r
R

+
|zi|
R

1− r|zi|
R2

⎞

⎟⎟⎠

Ti

||f ||R �
(

R(r + r0)

R2 − rr0

)T

||f ||R.

�

4.11. Lemma. (Liouville’s Inequality) Let K be a number field of degree
d and v a normalized absolute value. If α ∈ K∗, then

|α|v � H(α)−d � HK(α)−1.

Proof. This follows easily from the construction of the Weil height and
from the observation that H(α) = H(α−1). In fact,

HK(α) = HK(α−1) =
∏

v∈MK

max
{
1,
∣∣α−1

∣∣
v

}
� |α|−1

v ,

and the desired inequality follows from this. �

This lemma is most often used to prove that an algebraic number with a
controlled height is zero whenever its absolute value is sufficiently small, or
that “an arithmetic quantity cannot be too small without being zero”. We
will state an explicit corollary of this type.

4.12. Corollary. Let α be an algebraic number in a number field K and
let v be a place of K. If |α|v < HK(α)−1, then α = 0.
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As a zeros estimate, we will start with an (easy) example in many variables
and prove an elementary lemma which will help us in the proof of Thue’s
theorem.

4.13. Lemma. Let P ∈ C[X1, . . . , Xn] be a non-zero polynomial and S a
finite set of complex numbers. If d := deg P < |S|, then there exists x ∈ Sn

such that P (x) 	= 0.

Proof. If n = 1, then the number of roots is � d. We will reason
by induction on n and write P =

∑d
j=0 Pj(X1, . . . , Xn−1)Xj

n. Let T be
the set of elements (x1, . . . , xn−1) ∈ Sn−1 such that there exists j where
Pj(x1, . . . , xn−1) 	= 0. By induction, we know that |T | � 1. The number of
zeros in Sn is therefore � (|Sn−1| − |T |)|S|+ d|T | = |S|n − |T |(|S| − d) <

|S|n. �

4.14. Lemma. Let P ∈ Z[X] be a non-zero polynomial and β := p/q ∈ Q.
Then the order of vanishing, ordβ(P ), satisfies

ordβ P � m(P )
log max(|p|, |q|)

� h(P ) + log deg P

h(β)

where m(P ) :=
∫ 1

0
log |P (exp(2πit)| dt � h(P ) + log deg P .

Proof. We denote by r := ordβ(P ). By the hypotheses, we know that
there exists Q ∈ Z[X] such that P = (qX − p)rQ. Since m(P1P2) =
m(P1) + m(P2), we can deduce that

r log max(|p|, |q|) � rm(pX − q) + m(Q) = m(P ).

The elementary inequality linking m(P ) and h(P ) is proven in Appendix A

in the form m(P ) � log ||P ||2 � h(P ) + 1
2

log(deg P + 1). �

Proof. (of Thue’s theorem (6-4.1)) We are considering an algebraic number
α, which we can assume is an algebraic integer, and we let d := [Q(α) : Q].
We want to know whether there exist rational approximations which satisfy

∣∣∣α− p
q

∣∣∣ � q−δ. (6.20)

If the set of solutions of this inequality is infinite, we can assume that
there exists a first solution, β1 := p1/q1, where q1 is very large, and a
second solution β2 := p2/q2, where log q2/ log q1 is very large. We also fix
an ε such that 0 < ε < 1/4. The first step is to construct an auxiliary
polynomial by choosing the following parameters (the proof will justify
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this choice):

T :=
⌊

log q2

log q1

⌋
, D :=

⌊
dT (1 + ε)

2

⌋
.

Throughout the different steps in the proof, we will denote by C, C1, C2,
etc., constants which only depend on d and α.

1st step. (Construction of an auxiliary polynomial) There exists a poly-
nomial F (X, Y ) = P (X) − Y Q(X) ∈ Z[X, Y ] such that deg P, deg Q � D

and
1
h!

∂hF

∂Xh
(α, α) = 0 for 0 � h � T − 1,

and whose coefficients have absolute value � C
T
ε

1 .

The proof of this is a direct application of Siegel’s lemma (Lemmas 6-4.5
and 6-4.6), where the number of free coefficients is 2(D+1), the number of
equations (over Z) is dT and the height of the equations involves binomial
coefficients.

2nd step (Application of Taylor’s formula) Let j � T/2. Then we have
the inequality:

∣∣∣∣
1
j!

∂jF

∂Xj
(β1, β2)

∣∣∣∣ � max
{

q
−δ(T−j)
1 , q−δ

2

}
C

D+
T
ε

2 .

Using Taylor’s formula in one variable (cf. Lemma 6-4.7) and the hypothe-
ses, we have

∂F

∂Xj
(β) = P (j)(β1)− β2Q

(j)(β1)

=
∑

h�0

P (j+h)(α)
h!

(β1 − α)h − β2

∑

h�0

Q(j+h)(α)
h!

(β1 − α)h

=
∑

h�T−j

1
h!

∂j+hF

∂Xj+h
(α, α)(β1 − α)h

− (β2 − α)
∑

h�0

Q(j+h)(α)
h!

(β1 − α)h.

The first sum, divided by j!, is bounded above by CDq
−δ(T−j)
1 ||F ||, while

the second is bounded above by CDq−δ
2 ||Q||. By using the estimate ob-

tained in the 1st step: ||F || = max(||P ||, ||Q||) � C
T
ε

1 , we obtain the
desired upper bound.
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3rd step. (Extrapolation by Liouville’s inequality) We have ∂jF

∂Xj
(β1, β2) =

0 for 0 � j � T×
δ − d

2
− 1− dε

2
− C3

ε log q1

(δ + 1)
·

Let j be such that 1
j!

∂jF

∂Xj
(β1, β2) 	= 0. Then since it is a rational number

with denominator qD−j
1 q2, its absolute value is larger than q−D+j

1 q−1
2 (cf.

Lemma 6-4.11). By combining this with the previous step, we obtain

q−D+j
1 q−1

2 � max
{

q
−δ(T−j)
1 , q−δ

2

}
C

D+
T
ε

2 .

By our choice of T , we have qT+1
1 � q2 � qT

1 . We can then deduce from

this that −D + j − T − 1 � −δ(T − j) + (D + T/ε)
log C2

log q1
· By our choice

of D, we have D � dT (1 + ε)
2

� D + 1, hence the inequality

T

(
δ − d

2
− 1− dε

2
− C3

ε log q1

)
� j(δ + 1).

4th step. (Zeros estimate) There exists j � C4T/ε log q1 such that

γj := 1
j!

∂jF

∂Xj
	= 0.

We introduce the Wronskian W (X) := P ′(X)Q(X)−P (X)Q′(X). Observe
that W is not identically zero, for if so, P and Q would be proportional
and hence divisible by (X − α)T and likewise by Pα(X)T (where Pα is
the minimal polynomial of α). We know dT > D, and therefore, P = 0.
Lemma 6-4.14 then allows us to prove that

ordβ1 W � C4
T

ε log q1
·

The conclusion is now clear: we obtain a contradiction if q1 is too large
and δ > d

2
+ 1 + 2ε, which finishes the proof of Thue’s theorem. �

While technically more elaborate, the proof of Roth’s theorem relies essen-
tially on the same ingredients: we construct a polynomial, P ∈Z[X1, . . . , Xm]
which vanishes with large order at (α, . . . , α), and the zeros estimate (the
most difficult part) also relies on the use of Wronskians. The result ob-
tained is by its nature not computationally effective in the two cases since
the bounds obtained depend on the size of solutions of inequalities whose
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existence is not known and whose nonexistence is practically denied by the
conclusion of the theorem.

The following statement is the promised computationally effective version
of Baker’s theorem on linear forms of logarithms (Theorem 6-4.3).

4.15. Theorem. (Baker [1]) Let α1, . . . , αn be non-zero algebraic num-
bers. There exists C > 0, which can be computed and only depends on d, n
and the αi, such that for every β0, . . . , βn which are algebraic and of degree
at most d and height at most B, we have

|β0 + β1 log α1 + · · ·+ βn log αn| � B−C , (6.21)

whenever the quantity is non-zero.

The most widely used version of this theorem is the following (see also [1]
for the proof).

4.16. Corollary. Let α1, . . . , αn be non-zero algebraic numbers. Then
there exists C > 0, which can be computed and only depends on n and the
αi, such that for all b1, . . . , bn, integers with absolute value at most B, we
have ∣∣∣αb1

1 · · ·αbn
n − 1

∣∣∣ � B−C , (6.22)

whenever the quantity is non-zero.

The corollary can be deduced, of course, from an inequality of the type
| exp(z)− 1| � C|z|. The assertion is given with the Archimedean absolute
value, but it remains valid for a p-adic absolute value and is moreover
proved in a similar manner (by conveniently defining p-adic logarithms).
By assuming that the constant C = C(n, d, α1, . . . , αn) exists and can be
computed, we can see how this theorem allows us to explicitly find a solution
to the S-unit equation.

Proof. (that Corollary 6-4.16 implies Theorem 5-4.4) For convenience sake,
we let S be the set of Archimedean places of the field K, plus a finite set of
finite places and r := |S|−1. Consider the embedding L : O∗

K,S/μK ↪→ R|S|

given by L(α) := (log |α|v)v∈S . Let ε1, . . . , εr be a basis for the S-units
modulo roots of unity, in other words, every element u ∈ O∗

K,S can be
written uniquely as

u = ζεm1
1 · · · εmr

r where ζ ∈ μK and mi ∈ Z.

We can define two norms on the lattice L(O∗
K,S): the norm induced by the

sup-norm on R|S| and the norm M(u) = maxi |mi|. Since these two norms
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are comparable, we obtain a constant c1 such that for every u ∈ O∗
K,S , we

have
c−1
1 M(u) � max

v∈S
|log |u|v| � c1M(u).

Since we know that
∑

v∈S log |u|v = 0 (for u ∈ O∗
K,S), we can see that

maxv∈S log |u|v � maxv∈S |log |u|v| � (|S| − 1)maxv∈S log |u|v, and we can
therefore conclude that there exists c2 such that

c−1
2 M(u) � max

v∈S
log |u|v � c2M(u). (6.23)

We will now arrive at a solution u, v ∈ O∗
K,S to the equation u + v = 1,

where v = ζ ′ε
m′

1
1 · · · εm′

r
r . On the one hand, by the previous considerations,

we obtain:

min
v∈S

∣∣− v
u − 1

∣∣
v

= min
v∈S

∣∣∣ 1
u

∣∣∣
v

= exp
(
− log max

v
|u|v

)
� exp

(
− M(u)

c2

)
.

(6.24)
On the other hand, a direct application of the corollary to Baker’s theorem
(6-4.16) provides the existence of a constant c dependent on the field K,
on the set S and on the fundamental units ε1, . . . , εr such that we have the
inequality

max{M(u), M(v)}−c � min
v∈S

∣∣∣ζ ′ζ−1ε
m′

1−m1
1 · · · εm′

r−mr
r − 1

∣∣∣
v
. (6.25)

Up to reversing the roles of u and v, we can suppose that M(v) � M(u)

and deduce from (6.24) and (6.25) that M(u)−c � exp
(
− M(u)

c2

)
, which

clearly bounds M(u) and therefore leaves only a finite number of possibil-
ities for u and hence also for v. �

4.17. Remark. We point out that to prove the finiteness of the set of
solutions of the S-unit equation, it suffices to have a weaker version of
Baker’s theorem of the form:

|m1 log α1 + · · ·+ mn log αn| � exp (−ψ(M)) with ψ(M) = o(M),

where M := max |mi|. In particular, Liouville’s inequality would only give
|m1 log α1 + · · ·+ mn log αn| � exp (−cM) and is therefore simply insuffi-
cient! Finally, it is clear that Baker’s argument is computationally effective,
under the condition that the function ψ(M) is given explicitly, even if it
often leads to very large bounds.

We will finish this chapter, a good part of it dedicated to problems of effec-
tiveness (in a computational sense), by pointing out that it is unrealistic to
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expect to find computationally effective solutions to all of the Diophantine
problems. The famous proof concerning Hilbert’s 10 problem by Matija-
sevic (see [24]) proves that we will never find a universal algorithm which
decides whether a Diophantine equation has an integer solution. Neverthe-
less, we can hope that the problem of determining the finite set of integer
points on a curve (Siegel’s theorem) or even the finite set of rational points
on a curve (Faltings’s theorem) has a computationally effective solution.
For integral (or S-integral) points, the problem is solved for curves of genus
0 and 1 by Baker. Baker’s method can also be applied to curves of genus 2
which can written as y2 = P (x) (where deg P = 5 or 6), but not in general
to curves of genus 2 of the following type:

y4 + f3(x, y) + f2(x, y) = 0 (6.26)

where the fi are homogeneous of degree i.

5. The a, b, c Conjecture
This section is a little peculiar, since it discusses the consequences of a con-
jecture, which has not yet been proven and whose formulation was presented
in the 1980’s by Masser and Oesterlé. Moreover, all of the assertions in this
section are conditional upon it. Nevertheless, the elementary character of
the a, b, c conjecture and the depth of its implications make it a very active
subject of investigation and experimentation. A surprise is provided by the
“dictionary” between such elementary statements and the theory of elliptic
curves. To deepen your understanding of the subject and its connections,
we recommend the presentation of Oesterlé in séminaire Bourbaki [56].

We will begin by proving the following easy theorem.

5.1. Theorem. Let A, B, C be non-constant polynomials which are rela-
tively prime to each other and such that A + B + C = 0. Then

max{deg(A), deg(B), deg(C)} � r0(ABC)− 1, (6.27)

where r0(P ) denotes the number of distinct zeros of P .

Proof. We first write the factorizations of A, B, C:

A = a

r∏

i=1

(T − αi)	i , B = b

s∏

i=1

(T − βi)mi , C = c

t∏

i=1

(T − γi)ni .

We then introduce the determinant given by Δ = det
(

A B
A′ B′

)
. We

can easily see that Δ = −det
(

A C
A′ C ′

)
= det

(
B C
B′ C ′

)
and thus that
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∏r
i=1(T −αi)	i−1 divides Δ and likewise

∏s
i=1(T − βi)mi−1 and

∏t
i=1(T −

γi)ni−1. Suppose, for example, that deg(C) is the largest of the degrees.
Then we have:

(deg(A)−r)+(deg(B)−s)+(deg(C)−t) � deg(Δ) � deg(A)+deg(B)−1,

hence deg(C) � r + s + t− 1, which is what we wanted to prove. �

The following conjecture is suggested by analogy.

5.2. Conjecture. (Masser-Oesterlé) Let ε > 0. There exists a constant
Cε such that if a, b, c are relatively prime integers which satisfy the equation
a + b + c = 0, then

max {|a|, |b|, |c|} � Cε

⎛

⎝
∏

p | abc

p

⎞

⎠
1+ε

. (6.28)

If we introduce the notation Rad(n) :=
∏

p |n p (resp. rad(n) = log Rad(n)),
we can rewrite the previous inequality in the form

h(a, b, c) � (1 + ε) rad(abc) + Cε.

We are going to see that this apparently innocent assertion—christened “the
a, b, c conjecture”—has surprisingly deep consequences. A stronger form—
christened “the effective a, b, c conjecture”—requires that the constant Cε

be computable (in terms of ε).

5.3. Remark. Let S be a finite set of prime numbers, and let u, v ∈ ZS be
S-unit solutions to the equation u + v = 1. If we reduce the expressions to
relatively prime integers, u = a/c, v = b/c, and apply the a, b, c conjecture
to the equation a + b = c, we obtain

max {h(u), h(v)} � (1 + ε)
∑

p∈S

log p + Cε.

By reversing the argument, we see that we can reformulate the a, b, c con-
jecture as a uniform version of the bound on the heights of solutions of the
S-unit equation.

5.4. Proposition. Assume that Conjecture 6-5.2 is true. Let �, m, n � 2
be integers such that �−1+m−1+n−1 < 1. Furthermore, let S be a finite set
of prime numbers, and let u, v and w be S-unit integers. Then the number
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of solutions to
uX	 + vY m + wZn = 0, (6.29)

where X, Y, Z are relatively prime, is finite and bounded uniquely in terms
of S.

Proof. By applying the a, b, c conjecture to (6.29), we obtain

max
(
|X|	, |Y |m, |Z|n

)
� Cε Rad(uvwX	Y mZn)1+ε � Cε,S |XY Z|1+ε

,

from which we can easily deduce

|XY Z| � C ′
ε,S |XY Z|(	−1+m−1+n−1)(1+ε)

.

The last inequality is clearly a bound on the integer |XY Z| whenever �−1+
m−1 + n−1 < 1. �

5.5. Remarks. In the remaining cases, i.e., up to permutation (�, m, n) =
(2, 2, m), (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 3, 6), (2, 4, 4) or (3, 3, 3), it can be
shown that there are, at least for certain u, v and w, infinitely many integer
solutions. This statement gives a proof—modulo the a, b, c conjecture—of
Faltings’s theorem (Theorem 6-2.6) for Fermat curves given by the homo-
geneous equation (for m � 4):

uXm + vY m + wZm = 0.

We can considerably strengthen these statements, still modulo the a, b, c

conjecture. First observe that we can reformulate the a, b, c conjecture by
expressing it in terms of relatively prime a and b, thus forgetting c, in the
form

max{|a|, |b|}1−ε � Cε Rad(ab(a + b)).

The generalization that we have in mind is the following.

5.6. Proposition. Suppose that the a, b, c conjecture is true.

i) Let F ∈ Z[X, Y ] be homogeneous of degree d with no multiple factors
and ε > 0. Then there exists a constant CF,ε > 0 such that for all
relatively prime integers a and b, we have:

max{|a|, |b|}d−2−ε � CF,ε Rad(F (a, b)).

ii) Let f ∈ Z[X] be of degree d with no multiple factors and ε > 0. Then
there exists a constant Cf,ε > 0 such that for every integer a, we have:

|a|d−1−ε � Cf,ε Rad(f(a)).



§5. The a, b, c Conjecture 243

To prove the proposition, we can rely on (a particular case of) a the-
orem of Belyi and the Riemann-Hurwitz formula, which are stated be-
low. A morphism φ of degree d from P1 to P1 is given by two homoge-
neous polynomials, A and B, of degree d and which are relatively prime:
(x0, x1) → (A(x0, x1), B(x0, x1)). For almost all points x = (x0, x1) ∈ P1,
the cardinality of φ−1{x} is constant, equal to d. The morphism φ is ram-
ified above x precisely when |φ−1{x}| < d. For the proof of Formula 6-5.8,
we refer you to [35] or [38].

5.7. Proposition. (Belyi) Let S be a finite subset of P1(Q̄). There exists
a finite morphism φ : P1 → P1 such that

i) φ is unramified over P1 \ {0, 1,∞},
ii) φ(S) ⊂ {0, 1,∞}.

5.8. Proposition. (Riemann-Hurwitz formula for P1) Let φ : P1 → P1

be of degree d. Then |φ−1{x}| = d for almost all points x of P1, and

2d− 2 =
∑

x∈P1

(
d−

∣∣φ−1{x}
∣∣) .

Proof. (of Proposition 6-5.7) Let d be the degree of the field generated by an
irrational point of S. By applying the minimal polynomial which vanishes
at this point, we send it to 0 ∈ P1, and the new ramification points are
now defined over a field of degree < d. By iterating this procedure, we can
reduce to assuming that S ⊂ P1(Q). We finish the proof by repeatedly
using morphisms of the type:

φ(x) := bb

aa(b− a)b−a
xa(1− x)b−a.

Any such morphism is unramified over P1\{0, 1,∞} and sends {0, 1,∞, a
b
}

to {0, 1,∞}. �

Proof. (of Proposition 6-5.6) First observe that statement ii) can be de-
duced from statement i) applied to the polynomial F (X, Y ) = Y d+1f(X/Y ).
To prove statement i), we take S ⊂ P1(Q̄), the set of zeros of F (X, Y ),
and we find a Belyi map (by Proposition 6-5.7), φ : P1 → P1, given by
two polynomials, A(X, Y ) and B(X, Y ), of degree δ. We set C(X, Y ) =
A(X, Y )−B(X, Y ). The Riemann-Hurwitz formula can therefore be writ-
ten

δ + 2 =
∣∣φ−1{0, 1,∞}

∣∣ .

We point out that, for x ∈ P1, we have
1) A(x) = 0 if and only if φ(x) =∞,
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2) B(x) = 0 if and only if φ(x) = 0,
3) C(x) = (A−B)(x) = 0 if and only if φ(x) = 1.

Thus, if we set D(X, Y ) = ABC(X, Y ) and D0(X, Y ) = Rad D(X, Y ), we
have the inclusion S ⊂ {zeros of D} = {zeros of D0}, and thus, since F is
square-free, D0 = FG. Likewise, we have deg(D0) = |φ−1{0, 1,∞}| = δ+2,
hence deg(G) = δ + 2 − d. Moreover, A(X, Y ) and B(X, Y ) are rel-
atively prime. Then there exists an integer R (essentially a resultant)
and polynomials with integer coefficients such that A(X, Y )U(X, Y ) +
B(X, Y )V (X, Y ) = RXm and A(X, Y )U ′(X, Y ) + B(X, Y )V ′(X, Y ) =
RY m′

. If now a and b are relatively prime integers, we can deduce that
e := gcd(A(a, b), B(a, b)) divides R and hence is bounded independently of
a and b. We therefore apply the statement of the a, b, c conjecture to the

triple
A(a, b)

e − B(a, b)
e =

C(a, b)
e · We then obtain

max
{∣∣∣∣

A(a, b)
e

∣∣∣∣ ,
∣∣∣∣

B(a, b)
e

∣∣∣∣ ,
∣∣∣∣

C(a, b)
e

∣∣∣∣

}
� Cε Rad(D(a, b))1+ε.

We can easily see that max(|A(a, b)|, |B(a, b)|) � C max(|a|, |b|)δ and, on
the other hand, that Rad(D(a, b)) = Rad(D0(a, b)) and

Rad(D0(a, b)) � Rad(F (a, b))|G(a, b)| � C Rad(F (a, b))max(|a|, |b|)δ+2−d.

By combining the obtained inequalities and by simplifying by max(|a|, |b|)δ,
we get exactly the desired assertion. �

5.9. Remark. Proposition 6-5.6 allows us to show that if we assume the
a, b, c conjecture, then the set of rational points on the projective curve
given by the homogeneous equation

F (X, Y ) = mZd

has a finite number of rational points whenever d := deg(F ) � 4, which

corresponds to g =
(d− 1)(d− 2)

2
� 2. Elkies [29] extended this argu-

ment by using Belyi’s results and proved that the a, b, c conjecture allows
us to recover Faltings’s theorem for every curve. Thus, in particular, a
computationally effective solution to the a, b, c conjecture would allow us
to effectively compute the rational points on curves of genus � 2.

We will now prove that the a, b, c conjecture can be formulated in terms of
elliptic curves (see Chap. 5 for notations and notions).

5.10. Conjecture. (Szpiro) Let ε > 0. There exists a constant Cε

such that for every elliptic curve E/Q with minimal discriminant ΔE and
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conductor NE, we have
|ΔE | � CεN

6+ε
E . (6.30)

We can formulate a slightly stronger variation.

5.11. Conjecture. (Frey-Szpiro) Let ε > 0. There exists a constant Cε

such that for every elliptic curve E/Q with minimal discriminant ΔE and
conductor NE, we have

max {H(jE), |ΔE |} � CεN
6+ε
E , (6.31)

where H(jE) designates the height of the invariant jE.

Since jE = c3
4/ΔE and 1728ΔE = c3

4 − c2
6, we can replace the left-hand

side of the inequality by max(|c4|3, |ΔE |) or max(|c4|3, |c6|2, |ΔE |), up to
modifying the constant Cε.

5.12. Proposition. The a, b, c conjecture is equivalent to the following
assertion: for every positive ε > 0, there exists a constant Cε > 0 such that
for every elliptic curve E defined over Q, we have

max
(
|ΔE |, |c3

4|, |c2
6|
)

� Cε (NE)6+ε
. (6.32)

Thus, the a, b, c conjecture and the Frey-Szpiro conjecture are equivalent.

Proof. We will first show that the a, b, c conjecture implies the Frey-
Szpiro conjecture. We assume the inequality c3

4 − c2
6 = 1728Δ, and we

set d = gcd(c3
4, c

2
6) and R = Rad(c3

4c
2
61728Δ/d3). We also denote by �x�

the smallest integer which is an upper bound for the real number x. If we
factor d =

∏s
i=1 pri

i , then p
3�ri/3�
i divides c3

4 (resp. p
2�ri/2�
i divides c2

6), and
we can write:

R = Rad

⎧
⎪⎨

⎪⎩

⎛

⎝ c4∏
p
�ri/3�
i

⎞

⎠
3⎛

⎝ c6∏
p
�ri/2�
i

⎞

⎠
2⎛

⎝ 1728Δ∏
pri

i

⎞

⎠
∏

p
3�ri/3�+2�ri�−2ri

i

⎫
⎪⎬

⎪⎭

� Rad

⎧
⎨

⎩6

⎛

⎝ c4∏
p
�ri/3�
i

⎞

⎠

⎛

⎝ c6∏
p
�ri/2�
i

⎞

⎠ N∏
pi

⎫
⎬

⎭

� 6|c4c6N |∏
p
�ri/3�+�ri/2�+1
i

·

The second to last inequality is true since, on the one hand, Rad(Δ) =
Rad(N) and, on the other hand, if � 	= 2, 3 divides d, then there is additive
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reduction and �2 divides N , thus � indeed appears in N/
∏

i pi. Therefore,
we use the a, b, c conjecture with a = c3

4/d, b = c2
6/d and c = 1728Δ/d, and

we obtain

max
(
|c3

4|, |c2
6|, |Δ|

)
� Cε

{
|c4c6N |

∏
p

α(ri)
i

}1+ε

,

where we let α(r) := r−�r/3�−�r/2�−1. Observe that α(r) � 0 for r � 10
(whereas α(12) = 1), and we use the following elementary computation: if
� divides d, then the order of d at � is at most 10. In fact, if �4 divided c4

and �6 divided c6, the model that we started with would not be minimal,
contrary to the hypotheses. Thus either ord	(c4) � 3 or ord	(c6) � 5. We
can therefore conclude that

max
(
|c3

4|, |c2
6|, |Δ|

)
� Cε|c4c6N |1+ε.

We will allow ourselves from now on to denote by ε and Cε the succes-
sive constants (a priori different). We first obtain the inequalities |c2

4| �
Cε|c6N |1+ε and |c6| � Cε|c4N |1+ε, which imply the inequalities |c4| �
CεN

2+ε and |c6| � CεN
3+ε, which yields the first implication of the propo-

sition.

For the converse, let a, b, c satisfy a + b + c = 0 and gcd(a, b, c) = 1. We
consider the associated Frey-Hellegouarch curve: y2 = x(x− a)(x+ b), and
we can easily compute that

j = 28 (a2 + ab + b2)3

(abc)2
and Δ = 24(abc)2.

The Frey-Szpiro conjecture applied to this curve can therefore be written
as

log max
(
|a2 + ab + b2|3, |abc|2

)
� (6 + ε) log(Rad(abc)) + Cε,

which of course implies that log max (|a|, |b|, |c|) � (1 + ε) log(Rad(abc)) +
Cε. �

5.13. Remark. We can also prove that Szpiro’s conjecture implies the
a, b, c conjecture with exponent 6/5. To see this, let a + b = c where a, b
and c � 0 and a � b. Consider the elliptic curve E : y2 = x3 − 2(a −
b)x2 + (a + b)2x. It is a curve isogenous to the Frey-Hellegouarch curve
y2 = x(x + a)(x − b) (in other words, there exists an isogeny, which is a
surjective, algebraic homomorphism with a finite kernel between the two
curves). The isogeny with kernel equal to the group of order 2 generated
by P = (0, 0) is given by the formulas: (x, y) �→ (y2/x2,−y(ab + x2)/x2).
We can check that the model of E is minimal and even semi-stable, except
perhaps in 2 (the curve is semi-stable in 2 if and only if 24 divides abc) and
that the discriminant of the model equals D = −28abc4. Szpiro’s conjecture
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therefore implies that

a5 � abc4 � CεR(abc)6+ε,

which gives the desired inequality.

5.14. Remark. Diverse approaches have been proposed to prove the
a, b, c conjecture. Philippon proposed an approach based on very strong
lower bounds of linear forms of logarithms. Today, because of Wiles’s
theorem [80] (see Theorem 6-6.14, for the statement and this same section
for the definition of X0(N)) which guarantees the existence of a modular
parametrization

φE : X0(NE) → E,

the most exciting approach is to try to bound the degree of the parametriza-
tion φE . In particular, the following conjecture implies the a, b, c conjecture
(see [38] and [54]).

5.15. Conjecture. (Degree conjecture) For every ε > 0, there exists a
constant Cε such that for every elliptic curve E defined over Q, there exists
a modular parametrization φE : X0(NE) → E which satisfies

deg(φE) � CεN
2+ε
E .

6. Some Remarkable Dirichlet Series
We have already encountered many Dirichlet series. In this section, we
will introduce various generalizations of them. We will succinctly describe
the connections—proven and conjectural—between some of these “ζ” or “L”
functions: the series associated to modular forms and their generalizations,
the series associated to (families of) Galois representations and finally the
Hasse-Weil series associated to algebraic varieties. This leads us to the
border of the “automorphic world”. To go further, we recommend consulting
[27], [32], [68], as well as [20], [26], [66] and [65].
We will start by stating a generalization from the Riemann zeta function to
the Dedekind zeta function of the analytic continuation with a functional
equation (Theorem 4-5.6).
To do this, it will be convenient to introduce some small modifications to
the Gamma function.
Notation. We denote the modifications to the Gamma function as follows:

ΓR(s) := π−s/2Γ
(

s
2

)
and ΓC(s) := (2π)−sΓ (s) . (6.33)

6.1. Definition. Let K be a number field, r1 (resp. r2) the number of
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real (resp. complex) embeddings. Let r = r1 + r2−1, and choose ε1, . . . , εr

to be a basis for O∗
K/μK . The regulator of units of a number field is defined

as the absolute value of any r × r determinant taken from the r × (r + 1)
matrix of coefficients log |εi|v for 1 � i � r, where v is an Archimedean
place.

6.2. Theorem. (Hecke) Let K be a number field containing wK roots
of unity and with r1 real embeddings, r2 pairs of complex embeddings, dis-
criminant ΔK , class number hK and regulator of units RK . The function
ζK(s), initially defined for Re(s) > 1, can be analytically continued to the
whole complex plane, except for a simple pole at s = 1 with residue:

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2RKhK

wK

√
|ΔK |

· (6.34)

Furthermore, if we let

ξK(s) := |ΔK |s/2ΓR(s)r1ΓC(s)r2ζK(s),

then we can write the functional equation of ζK(s) in the form

ξK(s) = ξK(1− s). (6.35)

Finally, ξK(s) is bounded in every vertical strip (outside of a neighborhood
of 0 and 1).

We should also point out that ζK(s) 	= 0 for Re(s) > 1 (look at the Euler
product), and hence ξK(s) 	= 0 as well. Because of the functional equation,
we also have that ξK(s) 	= 0 for Re(s) < 0. By observing that Γ(s) has a
simple pole at the negative integers, we can deduce that, in the half-plane
Re(s) < 0, the function ζK(s) only vanishes at negative integers, with order
r2 at odd negative integers and order r1 + r2 at even negative integers, the
order at zero being r1 + r2 − 1.

Let χ be a primitive Dirichlet character modulo N � 2 (see Exercise
1-6.12). We set ε = 0 (resp. ε = +1) if χ(−1) = 1 (resp. if χ(−1) = −1),
and

Λ(χ, s) := Ns/2ΓR(s + ε)L(χ, s).

The function L(χ, s) can therefore be continued to an entire function and
satisfies the functional equation (where wχ is a complex number of absolute
value 1):

Λ(χ, s) = wχΛ(χ̄, 1− s). (6.36)

Furthermore, Λ(χ, s) is bounded in every vertical strip.
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We have seen in Chap. 4 that if K = Q(
√

d), then there exists a character
χd modulo ΔK such that ζK(s) = ζ(s)L(χd, s). From this, we can deduce
the following formulas.

i) If K is real quadratic and ε > 1 is its fundamental unit, then

L(χd, 1) =
2hK log ε
√
|ΔK |

·

ii) If K is imaginary quadratic (other than Q(i) and Q(j), for which wK =
4 and 6, respectively), then

L(χd, 1) = πhK√
|ΔK |

·

By adding these formulas to those proven for L(χ, 1) in Exercise 4-6.6, we
can infer some interesting properties concerning hK and log ε from them.
In the case where we take K = Q(exp(2πi/�) (for an odd prime �), we have
essentially proven, during the proof of Lemma 4-4.18, the formula

ζK(s) = ζ(s)
∏

χ

L(χ, s),

where the product is taken over the nontrivial Dirichlet characters modulo
�. We can, of course, also deduce the formula:

(2π)(	−1)/2RKhK

2�(	+1)/2
=

	−1∏

j=1

L(χj , 1).

The Artin L-functions associated to a representation ρ, which are defined in
Appendix C, provide another example. They satisfy a functional equation
of the same type, but we do not in general know whether the meromorphic
continuation is in fact holomorphic.

Modular forms. We now define some other Dirichlet series coming from a
world apparently far away from the previous ones, namely the automorphic
world. It gives us an opportunity to briefly introduce modular functions and
curves to which we have already alluded.

6.3. Definition. The Poincaré half-plane is H := {z ∈ C | Im(z) > 0},
and the extended Poincaré half-plane is H ∗ := H ∪P1(Q).

The group GL+
2 (R) of 2× 2 matrices with positive determinant, as well as

the group SL2(R) of matrices with determinant 1, acts on H by the action
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((
a b
c d

)
, z

)
�→ (az + b)/(cz + d). The groups GL+

2 (Q) and SL(2,Z) act

on H ∗. The action of the latter group is discrete and we can therefore form
the quotients Y := SL(2,Z)\H and X := SL(2,Z)\H ∗ and endow them
with the structure of a Riemann surface (see [68]). In fact, Y ∼= A1(C) and
X ∼= P1(C).

The group SL(2,Z) and its finite index subgroups play an important role
in arithmetical questions. In what follows, we will introduce a whole family
of such subgroups.

6.4. Definition. A subgroup Γ ⊂ SL(2,Z) is a congruence subgroup if it
contains Γ(N) for a certain N where

Γ(N) :=
{

A =
(

a b
c d

)
∈ SL(2,Z) | A ≡ I mod N

}
.

We denote by Y (N) := Γ(N)\H and X(N) := Γ(N)\H ∗.

Besides Γ(N) itself, two other congruence subgroups deserve to be men-
tioned.

i) The congruence group

Γ1(N) :=
{

A =
(

a b
c d

)
∈ SL(2,Z) | A ≡

(
1 ∗
0 1

)
mod N

}

where Y1(N) := Γ1(N)\H and X1(N) := Γ1(N)\H ∗;
ii) The congruence group

Γ0(N) :=
{

A =
(

a b
c d

)
∈ SL(2,Z) | c ≡ 0 mod N

}

where Y0(N) := Γ0(N)\H and X0(N) := Γ0(N)\H ∗.

We can easily see that Γ1(N) is normal in Γ0(N) and that Γ0(N)/Γ1(N) ∼=

(Z/NZ)∗ by the map
(

a b
c d

)
�→ d mod N .

In can be shown (see [27] or [68]) that Y0(N) (resp. Y1(N), Y (N)) are
affine algebraic curves, whereas X0(N) (resp. X1(N), X(N)) are projective
algebraic curves. Furthermore, X0(N) and X1(N) are defined over Q,
whereas X(N) is defined over Q(exp(2πi/N)).

6.5. Definition. Let Γ be a congruence subgroup. A modular form of
weight k with respect to Γ is a holomorphic function f : H → C such that
the following properties hold.
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i) For
(

a b
c d

)
∈ Γ and z ∈ H , we have

f

(
az + b
cz + d

)
= (cz + d)kf(z). (6.37)

ii) The function f is holomorphic on H ∗, in other words, for every(
a b
c d

)
∈ SL(2,Z), the limit of f

(
az + b
cz + d

)
(cz + d)−k as Im z tends

to infinity exists. If this limit is always zero, f is said to be a cusp form
or parabolic.

We denote by Mk(Γ) the vector space of these modular forms and Sk(Γ)
the subspace of cusp forms. We are talking essentially about modular forms
for Γ0(N), but we can introduce a variation of them, with the help of a
Dirichlet character, χ, modulo N . A function f is called a modular form
for Γ0(N) twisted by χ if it is modular when the (6.37) is replaced by

∀
(

a b
c d

)
∈ Γ0(N), f

(
az + b
cz + d

)
= χ(d)(cz + d)kf(z). (6.38)

We denote by Mk(N, χ) (resp. Sk(N, χ)) the space of these forms (resp.
cusp forms). It can be shown that Sk(Γ1(N)) = ⊕χSk(N, χ).

6.6. Remarks. 1) Observe that, since −Id ∈ Γ0(N), an element f of
Mk(N, χ) must satisfy f(z) = χ(−1)(−1)kf(z). Thus Mk(N, χ) = {0},
except maybe if χ(−1) = (−1)k.

2) Every congruence subgroup Γ contains an element Th :=
(

1 h
0 1

)
with

h non-zero and minimal: for example, T1 ∈ Γ1(N). Therefore, every f ∈
Mk(Γ) satisfies f(z + h) = f(z), which allows us to write its Fourier series
expansion as:

f(z) =
∑

n∈Z

anqn
h , where qh := exp

(
2πiz

h

)
. (6.39)

Moreover, the condition of being holomorphic on H ∗ imposes that an = 0
for n < 0, whereas its vanishing at ∞ is written an = 0 for n � 0 (n.b.
this is a necessary condition, but for f to be a form, holomorphy must be
tested at all points in P1(Q) = H ∗ \H ).

3) If γ =
(

a b
c d

)
∈ GL2(R)+, therefore δ := ad − bc > 0, and if we let

γ′ = δ−1/2γ, then γ′ ∈ SL2(R) and γ′ · z = γ · z. Therefore, if f is modular
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of weight k for γ′, then

f

(
az + b
cz + d

)
= δk/2(cz + d)kf(z). (6.40)

6.7. Definition. Let f ∈Sk(Γ0(N)), and let f(z)=
∑∞

n=1 an exp(2πinz) =∑∞
n=1 anqn be its Fourier expansion. The Dirichlet series associated to f

is defined by:

L(s, f) :=
∞∑

n=1

ann−s. (6.41)

We point out that we have the relation (called the “Mellin transform”):

ΓC(s)L(f, s) = (2π)−sΓ(s)L(f, s) =
∫ ∞

0

f(it)ts−1dt.

6.8. Definition. Let f =
∑

n an(f)qn ∈ Mk(Γ0(N)). Hecke operators are
defined as follows.
1) If p does not divide N , we define the operator f �→ Tpf by:

an(Tpf) := anp(f) + pk−1an/p(f)

where, by convention, an/p = 0 if p does not divide n.
2) If p divides N , we define the operator f �→ Upf by:

an(Upf) := anp(f).

A small generalization which is often useful consists of defining the Tp on
all of Mk(Γ1(N)). This can be done by setting, for f ∈ Mk(N, χ):

an(Tpf) := anp(f) + χ(p)pk−1an/p(f).

Note that, since χ(p) = 0 when p divides N , we can consider the previous
formula to also define Up when p divides N .

6.9. Theorem. (Hecke, see [68]) Hecke operators commute with each
other. If f =

∑
n an(f)qn ∈ Sk(Γ0(N)) is an eigenvalue for each of the

Hecke operators, i.e., Tpf = λpf and Upf = λpf , then ap(f) = λpa1(f),
and if we normalize f by the condition a1(f) = 1, the function L(s, f) can
be factored as an Euler product in the form:

L(s, f) =
∞∑

n=1

an(f)n−s

=
∏

p | N

(1− ap(f)p−s)−1
∏

p |� N

(1− ap(f)p−s + pk−1−2s)−1. (6.42)
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Therefore, we see the appearance of the Euler product, which, for k = 2,
much resembles the L-function associated to an elliptic curve. To underline
this resemblance, we will see how, under certain conditions, L(s, f) satisfies
a functional equation.

Observe that the matrix WN :=
(

0 1
−N 0

)
, which is not in SL(2,Z) but

in GL+
2 (Q), nevertheless normalizes the subgroup Γ0(N) because

WN

(
a b
c d

)
W−1

N =
(

d −c/N
−bN a

)
.

We can deduce from this that WN acts on Mk(Γ0(N)) (resp. Sk(Γ0(N))),
and since W 2

N = −NId, we see that the spaces M2(Γ0(N)) (resp. S2(Γ0(N)))
can be decomposed into the sum of two eigenspaces in which:

f
(
− 1

Nz

)
= f(WN · z) = ±Nk/2zkf(z) (6.43)

This remark can be used as a motivation for the following assertion.

6.10. Theorem. (Hecke) Let ε = ±1, and let f(τ) =
∑

n�1 an exp(2πinτ)
be a modular cusp form for Γ0(N) of weight k such that

f
(
− 1

Nτ

)
= εNk/2τkf(τ). (6.44)

Let Λ(s, f) := Ns/2(2π)−sL(s, f), where L(s, f) :=
∑∞

n=1 ann−s. Then
the function Λ(s, f) can be analytically continued to the complex plane and
satisfies the functional equation

Λ(s, f) = ikεΛ(k − s, f). (6.45)

Furthermore, Λ(s, f) is bounded in every vertical strip.

Proof. We first note that for τ = it (where t ∈ R+), (6.44) is written

f
(

i
Nt

)
= (i)kεNk/2tkf(it).

We can therefore perform the following computation by using the variable
change t �→ 1/Nt:

Λ(s, f) = Ns/2

∫ ∞

0

f(it)ts−1dt

= Ns/2

∫ 1
√

N

0

f(it)ts−1dt + Ns/2

∫ ∞

1
√

N

f(it)ts−1dt

= ikεN
1

2
(k−s)

∫ ∞

1
√

N

f(it)tk−1−sdt + Ns/2

∫ ∞

1
√

N

f(it)ts−1dt.
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We can easily see that the latter expression defines an entire function,
because by showing first that |an| = O(nc), we can see that |f(it)| =
O(exp(−2πt)) as t tends to infinity. Furthermore, the expression is clearly
(ikε)-symmetric when we change s to k − s. The last assertion of the
theorem is clear by the expression for Λ(s, f) as an integral. �

We will end this introduction to modular forms by indicating several con-
nections between modular forms and Galois representations.

First of all, we know how to associate, thanks to Deligne and Deligne-Serre
(see [26]), Galois representations to modular forms.

6.11. Theorem. (Deligne) Let � be a prime number and f =
∑

n anqn ∈
Mk(N, χ) a modular Hecke eigenform which is normalized (i.e., a1 = 1).
We know that the field K generated by the values of χ and the an is a
number field. Then there exists an �-adic representation (with coefficients
in a completion Kv, an extension of Q	),

ρ : GQ −→ GL2(Kv),

which satisfies the following properties.

i) ρ is unramified outside of N�.
ii) For p not dividing N�, we have the formulas

Tr ρ (Frobp) = ap and det ρ (Frobp) = χ(p)pk−1. (6.46)

Moreover, if f ∈ Sk(N, χ), then the representation is irreducible.

We can, of course, deduce some representations ρ̄ modulo � from this by
composing with Ov → F	s . In the fairly special case of forms of weight 1
(i.e. k = 1), Deligne and Serre proved that we can lift these representations
to characteristic zero and thus obtain Artin representations. Recall also
that if f 	= 0 is in M1(N, χ), then χ(−1) = −1.

6.12. Theorem. (Deligne-Serre) Let f =
∑

n anqn ∈ S1(N, χ) be a
modular Hecke eigenform which is normalized (i.e., a1 = 1). Then there
exists an Artin representation,

ρf : GQ −→ GL2(C),

which satisfies the following properties.

i) ρf is unramified outside of N�.
ii) For p not dividing N�, we have the formulas

Tr ρf (Frobp) = ap and det ρf (Frobp) = χ(p). (6.47)
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Furthermore, the representation ρf is irreducible and odd (i.e., if c denotes
complex conjugation, then det ρf (c) = −1).

Let us point out that the representation ρf is continuous; this would not,
of course, be the case if we had simply embedded Kv into C and thus
obtained a representation GQ → GL2(Kv) → GL2(C).

6.13. Conjecture. Every Artin representation of dimension 2 which is
irreducible and odd is associated to a modular form of weight 1.

L-functions associated to algebraic varieties.

We will now return to the Hasse-Weil zeta function associated to an al-
gebraic variety V of dimension r, which we will assume, for the sake of
simplicity, to be smooth, projective and defined over Q. We know (see
Proposition B-1.22) that for p outside of a finite set S, the reduction mod-
ulo p of V remains smooth; we will denote it by Ṽp, and it is a projective
variety defined over Fp. We then have a natural definition (see the first
section of this chapter) for the zeta function of V/Q by omitting the Euler
factors for p ∈ S5:

ζS(V/Q, s) :=
∏

p/∈S

Z(Ṽp/Fp, p
−s) =

2r∏

j=0

∏

p/∈S

Pj(Ṽp/Fp, p
−s)(−1)i+1

. (6.48)

This suggests that we let

Lj,S(V/Q, s) :=
∏

p/∈S

Pj(Ṽp/Fp, p
−s)−1 =

∏

p/∈S

Bj∏

i=1

(
1− αp,ip

−s
)−1

. (6.49)

Then we have ζ(V/Q, s) =
∏2r

i=0 Lj(V/Q, s)(−1)i

. Since |αp,i| = pj/2, the
Euler product is convergent for Re(s) > 1 + j/2.

It is always true that L0(V, s) = ζ(s) and L2r(V, s) = ζ(s − r), since
P0(Ṽp, T ) = 1− T and P2r(Ṽp, T ) = 1− prT . By using relation (6.14), we
see that

L2r−i(V/Q, s) = Li(V/Q, s− r + i).

The zeta function of a curve C/Q is written

ζ(C/Q, s) =
ζ(s)ζ(s− 1)
L1(C/Q, s)

· (6.50)

5There exists a more sophisticated procedure than the theory introduced here for
defining the local factors for all p—see for example [65].
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Therefore, we see that what we called the “L-function” of an elliptic curve
E/Q in Chap. 5 is denoted here by L1(E/Q, s).
We will reformulate Wiles’s theorem (Theorem 5-7.6, the Shimura-Taniyama-
Weil conjecture) in two (nontrivially) equivalent forms.

6.14. Theorem. Let E/Q be an elliptic curve with conductor N = NE.
1 ) There exists a modular cusp form f ∈ S2(Γ0(N)) such that

L(E, s) = L(f, s). (6.51)

2 ) There exists a non-constant morphism φE : X0(N) → E.

Commentary. Wiles actually proved this result with some supplemen-
tary hypotheses, which were subsequently shown to be unnecessary. Some
extraordinary features of this result deserve to be pointed out. The func-
tion L(E, s) is constructed starting with local information—actually it only
suffices to know cardE(Fp)—and the theorem indicates that the obtained
L-function comes from a global object—a modular form—which determines
its characteristics. The link between these two objects, the elliptic curve
defined over Q and the modular form for Γ0(N), is achieved through the
Galois representations associated to each of these objects (see Appendix C).
The existence of such a link is actually suggested by the L-series associated
to their functional equations (proved or conjectured). This program has
been vastly generalized and is today called the Langlands program. With-
out being able to explain the details (see for example [20] and [32] for an
introduction and references), we will only say that Langlands theory as-
sociates to each irreducible automorphic representation a function L(π, s)
defined by an Euler product and which has a functional equation (relating
L(π, s) and L(π̌, 1 − s)). These representations are obtained as factors of
the space L2(ZAQ GLn(Q)\GLn(AQ)) (here, AQ denotes the ring of ade-
les, Z the center of GLn and ZAQ the points of the center with values in
the adeles) and have infinite dimension (see for example [20] or [32]). Lang-
lands conjectures, for example, that every Artin L-function associated to
a representation of dimension n coincides with the L(π, s) function associ-
ated to a representation of GLn(AQ). In this context, modular forms are
associated to representations of dimension 2 (the group GL2).
This suggests that we thus describe what we should expect from a “nice”
zeta function.
Expected properties of zeta or L functions.

i) They are defined by a Dirichlet series in a half-plane Re(s) > a:

L(M, s) =
∞∑

n=1

ann−s.
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ii) They are written, in a half-plane Re(s) > b, as an Euler product:

L(M, s) =
∏

p

Lp(M, s) =
∏

p

(
1 + ap,1p

−s + · · ·+ ap,dp
−ds
)−1

.

We call d the degree of the Euler product. Moreover, we require in
general that 1 + ap,1T + · · · + ap,dT

d =
∏d

j=1(1 − αp,jT ) where, for
almost every p, we have the equality |αp,j | = pw/2 and, in particular,
ap,d 	= 0. The integer w is called the weight of M .

iii) The function L(M, s) can be analytically continued to the complex
plane, except for at a finite number of poles. It satisfies a functional
equation of the type Λ(M, s) = wMΛ(M̌, 1−s), where wM is a complex
number with absolute value 1,

Λ(M, s) = As/2
t∏

j=1

ΓR(s + tj)hj ΓC(s + t′j)
h′

j L(M, s),

L(M̌, s) is a function of the same type and A, tj , t
′
j , hj , h

′
j are some

constants.
iv) Outside of a neighborhood of its possible poles, the function Λ(M, s) is

bounded in every vertical strip σ1 � Re(s) � σ2.

6.15. Remark. With some optimism, we could add as a property the
analogue of the Riemann hypothesis (abbreviated GRH):

“The zeros of Λ(M, s) are situated on the line Re(s) = (w + 1)/2.” (GRH)

We should point out that the given hypotheses imply that the Euler product
which defines L(M, s) is absolutely convergent for Re(s) > 1 + w/2 and
non-zero in this half-plane. Therefore, Λ(M, s) does not vanish for Re(s) >

1+w/2 and, because of the functional equation, for Re(s) < w/2. Just like
the function ζ(s), the function L(M, s) has “trivial” zeros in the half-plane
Re(s) < w/2, these being governed by the Gamma factors in the functional
equation. Thus, the generalized Riemann hypothesis describes the location
of the zeros in the “critical strip” w/2 � Re(s) � 1 + w/2.

6.16. Conjecture. (Hasse-Weil, see [65]) Let V/Q be a smooth projective
variety. To every 0 � j � 2 dim V we can associate an integer Aj, local
factors Lp,j(V, s) at places p ∈ S of bad reduction and a Gamma factor
L∞,j(V, s) such that the product

Λj(V, s) := As/2L∞,j(V, s)

⎛

⎝
∏

p∈S

Lp,j(V, s)

⎞

⎠ LS,j(V/Q, s)
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satisfies the previous properties and, in particular, the functional equation

Λj(V/Q, s) = ±Λj(V/Q, j + 1− s). (6.52)

This conjecture has only been proven in a few cases.



Appendix A

Factorization

“ ‘Four thousand two hundred and seven, that’s the exact number,’ the King said,
referring to his book.”

Lewis Carroll (Through the Looking Glass)

In this chapter we take another look at the factorization problem that we
started in Chap. 2 by explicitly describing a method for factoring polynomi-
als and by sketching two of the most powerful algorithms developed during
the last two decades for factoring integers: an algorithm due to Lenstra
which uses elliptic curves [49] and the number field sieve algorithm origi-
nally due to Pollard (see [19]). For those who are put off by probabilistic
or heuristic estimation methods, keep in mind that once a factorization is
found, it is very quick and easy to check it. It would be appropriate to com-
plete this introduction by citing [22], the reference for algorithmic number
theory. Furthermore, most of these algorithms are already implemented and
available, for example with the PARI/GP package.

1. Polynomial Factorization
We begin with the observation that it is fairly easy to find polynomial roots
whose multiplicity is greater than 1: we just need to compute D(X) :=
gcd(P (X), P ′(X)). We can therefore essentially concentrate on factoring
polynomials without any multiple roots.

There are many factorization algorithms in Fp[X] (or even Fq[X]). We
present one of them, due to Berlekamp, which is very efficient as long as p

is not too large. It is based on the following two lemmas.

1.1. Lemma. Let f(X) ∈ Fq[X] be a square-free polynomial of degree n.

M. Hindry, Arithmetics, Universitext,
DOI 10.1007/978-1-4471-2131-2,
© Springer-Verlag London Limited 2011
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We define the n× n matrix, B = ((bi,j))0�i,j�n−1, by the polynomials:

b0,j + b1,jX + · · ·+ bn−1,jX
n−1 ≡ Xjq mod f(X).

Then for any polynomial h(X) = h0 +h1X + · · ·+hn−1X
n−1, the following

are equivalent:

h(X)q − h(X) ≡ 0 mod f(X) ⇔ (B − I)

⎛

⎜⎝
h0

...
hn−1

⎞

⎟⎠ = 0.

Furthermore, the dimension of Ker(B − I) is the number of irreducible
factors of f .

Proof. The map from Fq[X]/(f(X)) onto itself given by P �→ P q is linear
and B is by definition the matrix of this linear transformation in the basis
1, . . . , Xn−1. The first statement follows directly from this observation. For
the second, write f as the product f = f1 · · · fr. Then

Fq[X]/(f(X)) ∼= Fq[X]/(f1(X))× · · · × Fq[X]/(fr(X)).

The equation h(X)q − h(X) ≡ 0 mod f(X) translates to h(X)q − h(X) ≡
0 mod fi(X), for i = 1, . . . , r. Since Fq[X]/(fi(X)) is a finite extension of
Fq, this is therefore equivalent to h(X) ≡ λi mod fi(X) with λi ∈ Fq. We
therefore have a total of qr solutions, which proves that the vector space of
solutions has dimension r. �

1.2. Lemma. Let f(X) ∈ Fq[X] be a polynomial of degree n and let h(X)
be a polynomial of degree � n − 1 such that h(X)q − h(X) ≡ 0 mod f(X).
Then we have the following factorization:

f(X) =
∏

c∈Fq

gcd(f(X), h(X)− c).

Proof. The product on the right hand side clearly divides f(X). Conversely,
since

∏
c∈Fq

(X − c) = Xq −X, we see that f(X) divides h(X)q − h(X) =∏
c∈Fq

(h(X)− c). �

Let us now summarize the steps of a factorization algorithm for polynomials
in Fq[X]. By calculating gcd(f(X), f ′(X)) and factoring it out, we are back
to the case where f is square-free. By applying the division algorithm to
Xjq divided by f(X), we construct the matrix B from Lemma A-1.1, and
we calculate a solution to the linear system which gives a polynomial h(x).
Finally, we successively calculate gcd(f(X), h(X) − c) for c ∈ Fq until we
find a nontrivial factor.
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Even though we now see that there exists an algorithm for factoring poly-
nomials in Fp[X], it is less easy to see in Z[X]. It is nevertheless a priori
possible to bound the size of a factor of a given polynomial. One such
bound is given by the Gel’fond inequality or by the following lemma.

1.3. Lemma. Let P (X) = p0 +p1X + · · ·+pdX
d and Q(X) = q0 + q1X +

· · ·+qeX
e be two polynomials with integer coefficients. If Q divides P , then

e∑

j=0

|qj | � 2d

(
d∑

i=0

|pi|2
)1/2

. (A.1)

Proof. We define the Mahler measure of a polynomial P =a0(X−α1) · · · (X−
αd) to be

M(P ) := exp
∫ 1

0

log
∣∣P (e2πit)

∣∣ dt = |a0|
d∏

i=1

max(1, |αi|),

where the second equality is equivalent to the formula
∫ 1

0
log
∣∣e2πit − α

∣∣ dt =
log max(1, |α|), which is well-known and is a particular case of Jensen’s for-
mula. We clearly have M(PQ) = M(P )M(Q), and for all polynomials with
integer coefficients, M(P ) � 1. By using the relation between coefficients
and roots, we can show that

|pk| � |a0|

∣∣∣∣∣∣

∑

j1<···<jk

αj1 · · ·αjk

∣∣∣∣∣∣
�
(

d

k

)
M(P ).

Jensen’s convexity inequality gives

M(P ) := exp 1
2

∫ 1

0

log
∣∣P (e2πit)

∣∣2 dt (A.2)

�
(∫ 1

0

∣∣P (e2πit)
∣∣2 dt

)1/2

=

(
d∑

i=0

|pi|2
)1/2

. (A.3)

We can therefore suppose that we have a factorization P = QR. Then we
have

M(Q) � M(Q)M(R) = M(P )

and can therefore conclude that

e∑

j=0

|qj | � 2eM(Q) � 2dM(P ) � 2d

(
d∑

i=0

|pi|2
)1/2

.

�
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To make things simpler, we will assume that f(X) ∈ Z[X] is monic. From
a theoretical point of view, we may make this assumption without loss
of generality because if f(X) = aXd + · · · ∈ Z[X], then the polynomial
f̃(X) := ad−1f(X/a) = Xd + . . . will be monic with integer coefficients,
and a factorization of f̃ will give a factorization of f . In order to find a
factorization f(X) = f1(X)f2(X), let us start with the trivial remark that
one such factorization stays the same modulo N . We can therefore start
by factoring f̄(X) in Fp[X] for some primes p and compare the degrees of
the factors. If by any chance we find that some degrees are incompatible,
we can use this to prove that f(X) is irreducible. In general, we proceed
by making use of the following variation of Hensel’s lemma.

1.4. Lemma. Let f(X) ∈ Z[X] be monic and p prime. Assume that
f(X) ≡ f1(X)g1(X)mod p, with gcd(f̄1, ḡ1) = 1 in Fp[X]. Then for all
m � 1, there exist two monic polynomials fm, gm ∈ Z[X] such that fm ≡
f1 mod p, gm ≡ g1 mod p and

f(X) ≡ fm(X)gm(X)mod pm.

Proof. The hypothesis that the reductions modulo p of f1 and g1 are
relatively prime is essential and is used in the assertion that there exist
U, V ∈ Z[X] such that Uf1 + V g1 ≡ 1 mod p. Let us suppose that we
have constructed the polynomials fm and gm so that f = fmgm + pmC.
In looking for polynomials in step m + 1 of the form fm+1 = fm + pmA,
gm+1 = gm + pmB, we find that f − fm+1gm+1 = pm(C −Bfm − gmA) +
p2mAB ≡ pm(C −Bf1−Ag1)mod pm+1. It follows from the initial remark
that there exist A, B ∈ Z[X] such that Bf1 + Ag1 ≡ C mod p. �

The factorization algorithm can be described as follows: a bound B for
the size of the coefficients of a possible factor is computed according to
Lemma A-1.3. Then f is reduced modulo a prime p, and the result is
factored using the preceding algorithm (if a multiple root is found, then
reduce modulo another prime). The factorization modulo p is lifted to a
factorization modulo pm where m is chosen so that pm > B. After that,
we check to see if that factorization comes from a factorization over Z.
You can refer to Cohen’s book [22] for a more detailed discussion of this
algorithm and its variations.

2. Factorization and Elliptic Curves
Let us start by presenting a relatively inefficient algorithm (in certain
cases), but which lends itself well to being generalized: Pollard’s “p − 1”
method.
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2.1. Definition. Let Y be an integer. A number is said to be Y -smooth
if all of its prime divisors are smaller than Y . A number is said to be
Y -powersmooth if every prime power which divides it is smaller than Y .

Let N be a number which we would like to factor and p a prime divisor
of N . Suppose that p − 1 is Y -powersmooth for some Y which is not too
large. Then p−1 divides m(Y ) := lcm(2, 3, . . . , Y ). If a is an integer which
is relatively prime to N , we would have am(Y )−1 ≡ 0 mod p, and therefore

gcd
(
am(Y ) − 1, N

)
	= 1,

which would very likely produce a non-trivial factor of N .

The method would therefore be efficient if N had a prime factor p such that
p− 1 is Y -smooth (or Y -powersmooth) for some Y which is not too large.
The problem with this method is that large prime numbers p where p− 1
is Y -smooth are fairly rare (see Proposition A-2.3 for an estimate of how
rare). Likewise, one could hope to find an a which has a period significantly
smaller than p− 1. It is not difficult to see that this case is likewise fairly
rare. The key idea of Lenstra’s algorithm is to observe that we are actually
working in F∗

p, which is cyclic of cardinality p − 1. If we can then apply
the same type of reasoning to other groups of varying cardinality, we would
have a better chance of factoring N . This is precisely what elliptic curve
theory gives us.

If E is a curve over Fp and P ∈ E(Fp), its order nP divides cardE(Fp) ∈
�p+1−2

√
p, p+1+2

√
p�. If cardE(Fp) is Y -powersmooth, we analogously

have
[m(Y )](P ) = OE .

Now we have the advantage of being able to try multiple elliptic curves.
We only need to find sufficiently many curves such that the orders of their
groups of rational points are Y -smooth. Let us see how this procedure,
once properly formulated, gives a factorization algorithm.

We first need to discuss points in the projective plane or on an elliptic curve
over Z/NZ. Let us point out that we do not lose anything by assuming
that the integer N that we would like to factor is not divisible by 2 or
by 3. It is not difficult to generalize the notions considered over a field. We
do it in an ad hoc manner.

2.2. Definition. The projective plane over Z/NZ is defined as the quo-
tient A := {(x0, x1, x2) ∈ (Z/NZ)3 | gcd(x0, x1, x2, N) = 1} by the rela-
tion (x0, x1, x2) ∼ (ux0, ux1, ux2) for u ∈ (Z/NZ)∗.
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If we assume that gcd(N, 6) = 1, an elliptic curve over Z/NZ is given by
the Weierstrass equation,

zy2 = x3 + axz2 + bz3 with a, b ∈ Z/NZ and 4a3 + 27b2 ∈ (Z/NZ)∗.

We will now carry out the calculations on the points of this elliptic curve,
using the addition formulas 5-1.7. It seems like this might be problematic,
because (for example) in order to add P1 = (x1, y1) and P2 = (x2, y2) one
should invert (x1−x2), but if we keep in mind that we are trying to factor
N , it is enough to calculate gcd(x1 − x2, N) and to observe that if this is
nontrivial, we have found a factorization. Another possibility would be to
use the projective coordinate formulas, and in this case, we would verify
that E(Z/NZ) is a group. It turns out that from an algorithmic point of
view, it is more economical to do the calculations in affine coordinates.

It is important to notice that the computation of [m](P ) does not require
m addition steps (which would be restrictive), but by quick exponentiation
only needs O(log m) addition steps (or duplication). Here, log m(Y ) =
ψ(Y ) ∼ Y .

In order to effectively construct an elliptic curve and a point modulo N “at
random”, we could use many methods. One of the simplest ones consists of
randomly choosing three integers modulo N , say x0, y0 and a, and setting
b := y2

0 − x3
0 − ax0. One needs to check that Δ := 4a3 + 27b2 is invertible

modulo N (if it is not, we have almost surely found a factorization of N),
and we have a point P = (x0, y0) on the elliptic curve y2 = x3 + ax + b.
We therefore try to calculate [m(Y )]P ; if the calculation does not produce
a factor of N , we choose a new elliptic curve and start over. Notice that
we can carry out the calculations on many elliptic curves simultaneously.

To analyze the performance of these algorithms, we need to estimate the
number of Y -smooth integers. The following useful proposition is due to
Canfield, Erdös and Pomerance [21].

2.3. Proposition. If 2 � y � x, we define:

ψ(x, y) := card {n � x | n is y-smooth} ,

and let u := log x/ log y. Then we have the formula

ψ(x, y) = xu−u(1+o(1)),

where the term o(1) tends uniformly to 0 as x tends to infinity, and for a
given ε > 0, y satisfies: (log x)ε < log y < (log x)1−ε.

In particular, if y := exp
[
C(log x)b(log log x)c

]
, we have:

ψ(x, y) = x exp
[
− 1− b

C
(log x)1−b(log log x)1−c(1 + o(1))

]
.
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The statement given here corresponds to the domain u∈ [(log x)ε, (log x)1−ε].
We find a precise description of the asymptotic behavior of the function
ψ(x, y) in Tenenbaum’s book [72].

Actually, we would need to know how many Y -smooth numbers an interval
of type [p−2

√
p, p+2

√
p] contains; in other words, we need a lower estimate

of the value ψ(p+2
√

p, Y )−ψ(p− 2
√

p, Y ). We do not know how to prove
the estimate given below, in the same way that we do not know how to
prove the existence of prime numbers in very small intervals, but it has
been confirmed experimentally.

Set L(x) := exp
√

log x log log x. Proposition A-2.3 says that the proba-

bility that a random number � x is L(x)a-smooth is L(x)−
1

2a
+o(1). It is

therefore natural to conjecture that this statement is still true on a suffi-
ciently large interval.

2.4. Conjecture. The ratio of L(x)a-smooth numbers in the interval

[x−
√

x, x +
√

x] is � L(x)−
1

2a
+o(1).

If the conjecture is true, in order to find an elliptic curve where the number

of points over Fp is L(p)a-smooth, we have to try L(p)
1

2a
+o(1) of them.

We should perform L(p)a operations on each curve, hence a complexity on
the order of L(p)a+1/2a. By choosing a = 1/

√
2 (in other words Y on the

order of L(p)1/
√

2), we therefore obtain a complexity on the order of

L(p)
√

2 = exp
√

2 log p log log p.

The complexity of the algorithm depends on the size of the smallest factor
of N . This property is not very useful for factoring RSA type numbers but
is a major advantage for most other integers.

Another property of the algorithm is that it does not require too much
memory: in fact, we only have to save data which are polynomial in log N .

3. Factorization and Number Fields
We will sketch the number field sieve algorithm originally suggested by
Pollard and developed by Buhler, Lenstra and Pomerance (cf. [19]).

We are looking for an irreducible, monic polynomial f(X) ∈ Z[X] and an
integer m such that f(m) ≡ 0 mod N . One handy and efficient method is
to choose an integer d (usually 2 � d � 5), then to look at m :=

⌊
N1/d

⌋
,

to write N in base m (in other words calculate ai ∈ [0, m − 1] such that
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N = a0 + a1m + · · ·+ ad−1m
d−1 + md) and to choose

f(X) := a0 + a1X + · · ·+ ad−1X
d−1 + Xd.

Let us point out that the fact that the m expansion starts with md is equiv-
alent to md � N � 2md − 1. The first inequality is true by construction
and the second will be true if, for example, N > 2d(d+1). Finally, there is
no saying a priori that f(X) will be irreducible, but if that is not the case a
factorization f(X) = f1(X)f2(X) will give N = f1(m)f2(m), which would
be of course exactly what we want.

We will now construct a ring A := Z[X]/(f(X)) = Z[α] (where α is a root
of f) and its field of fractions K = Q(α). The idea of the algorithm is to
look for a set S of pairs of integers (a, b) such that

i)
∏

(a,b)∈S(a + bm) is a square (in Z),
ii)
∏

(a,b)∈S(a + bα) is a square (in Z[α]).

If we have succeeded in doing that, we can consider the ring homomorphism
φ : A → Z/NZ given by φ(α) = m. We then find β ∈ Z[α] such that β2 =∏

(a,b)∈S(a + bα), then φ(β) and u ∈ Z such that u2 =
∏

(a,b)∈S(a + bm).
By construction, φ(β)2 = u2 in Z/NZ. We then compute gcd(φ(β)+u, N)
and gcd(φ(β)− u, N), which will very likely give us a factorization.

The main difficulties are, on the one hand, to construct a set of pairs (a, b)
which satisfy the conditions i) and ii) and, on the other hand, to compute
the square root of γ :=

∏
(a,b)∈S(a + bα) in Z[α].

To find a “simultaneous root”, the idea is to choose a parameter Y , then to
choose (by way of a number field sieve) integer pairs (a, b) such that a+bm
and a + αb are Y -smooth. We define an algebraic integer γ ∈ Z[α] to be
Y -smooth if NK

Q(γ) is itself Y -smooth. Having constructed a large enough
set, say T , of pairs (a, b) (we need card(T ) to be greater than π(Y )), we
perform Gaussian elimination over F2 in order to find an adequate subset
S. Initially, we will get an S such that

∏

(a,b)∈S

(a + bm) and NK
Q

⎛

⎝
∏

(a,b)∈S

(a + bα)

⎞

⎠ are squares (in Z).

This of course is not enough to guarantee that γ :=
∏

(a,b)∈S(a + bα) is a
square. Now we see how to refine the number field sieve so that at least
the ideal generated by γ is a square. In general, the fact that the norm of
an ideal is a square does not at all imply that the ideal is a square. We
can however take advantage of the particular form of the algebraic numbers
that we have produced.
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3.1. Lemma. Let p be a prime number which does not divide (OK : Z[α]).
An ideal p above p and which divides a + bα is an ideal which has norm p

(i.e., of degree 1) and corresponds to the root r mod p of f(X)mod p such
that a + br ≡ 0 mod p.

Proof. In fact, according to the hypothesis, if the factorization in Fp[X] is
written as f(X) = f1(X)e1 · · · fg(X)eg ∈ Fp[X], this corresponds to a de-
composition pOK = p

e1
1 · · · p

eg
g with N(pi) = pdeg(fi) (see Exercise 3-6.20).�

We therefore refine the decomposition of a + αb by introducing

R(p) := {r ∈ Z/pZ | f(r) ≡ 0 mod p}

and the exponent corresponding to each r ∈ R(p):

ep,r(a + bα) =

{
ordp N(a + bα) if a + br ≡ 0 mod p,
0 if not.

Therefore, we have (a+bα)OK =
∏

p

∏
r∈R(p) p

ep,r(a+bα)
r (ignoring the factors

where p divides (OK : Z[α])). Hence N(a + bα)=±
∏

p

∏
r∈R(p) pep,r(a+bα).

Most importantly, the ideal generated by γ :=
∏

(a,b)∈S(a + bα) will be a
square if and only if

∑

(a,b)∈S

ep,r(a + bα) ≡ 0 mod 2 (for every p and r ∈ R(p)).

The fact that γOK is a square (of ideals) does not always imply that γ is
a square, but we have gotten closer. In order to measure how close, we
introduce the group

C :=
{
γ ∈ K∗ | there exists a fractional ideal A such that (γ) = A 2

}
.

If we denote by C�K the ideal class group and C�K [2] the subgroup of
elements killed by 2, we have the following exact sequence:

0 −→ O∗
K/O∗2

K −→ C /K∗2 −→ C�K [2] −→ 0

(γ ∈ C maps to the class A such that A 2 = γOK). In particular according
to the unit theorem (Theorem 3-5.6), we have

rankC /K∗2 = r1 + r2 + rankC�K [2].

The computation C�K [2] is simply too large to carry out. However, in order
to increase the chances that γ is a square, we could calculate a small number
of generalized Legendre symbols: we choose some prime ideals p1, . . . , ps
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and compute

( γ
p

)
:=

{
+1 if γ is a non-zero square modulo p,
−1 if γ is not a square modulo p.

In this way, we can refine the sieve that produces candidates for squares by
insisting that

∏
(a,b)∈S(a + bm) is a square in Z and that

∏
(a,b)∈S(a + bα)

generates a square ideal in OK and
( γ

pi

)
= +1 for i = 1, . . . , s.

We need to observe that the “sieve” part will use a lot of memory: we
should in fact calculate and save the prime numbers smaller than Y , then
arrange the pairs of numbers a + bm for a and b in a chosen interval, test
their divisibility by primes smaller than Y keeping only those which reduce
to ±1, and then start over again to sieve the NK

Q (a + bα).

In order to compute the square root of an algebraic integer γ ∈ Z[α], let
us suppose (to make things simpler) that we know its minimal polynomial
F (X) ∈ Z[X]. Observe that if G(X) is the minimal polynomial of √γ,
then G(X) and G(−X) divide F (X2). This suggests that we should use
the following procedure.

– We factor the polynomial F (X2) = G(X)G(−X) (in Z[X]);

– We perform division algorithm G(X) = (X2 − γ)Q(X) + R(X) in
Z[α][X].

– If R(X) = aX + b, set β = −b/a.

Then β2 = γ.
Let us point out that the polynomial F (X2) is necessarily factored accord-
ing to its given form and that if the remainder R(X) is constant, then
the number γ is not a square! That is to say that we have made a false
assumption (for example, we might have neglected the index (OK : Z[α])
or might have not compensated enough for C /K∗2). We therefore need to
start all over again with another set S.
Let us also point out that in general Z[α] is not integrally closed and √γ
might not be an element of Z[α]. Nevertheless, it is easy to overcome this
obstacle: in fact, if f is the minimal polynomial of α, then f ′(α)2OK ⊂
Z[α], and we can safely replace γ by f ′(α)2γ.
We refer you to the original article [19] or to [22] for an analysis of the
complexity, which, modulo a “reasonable” conjecture, is on the order of

O
(
exp(C(log N)1/3(log log N)2/3)

)
.

For very large numbers which do not have any medium-sized factors, this
algorithm is therefore more powerful than the elliptic curve algorithm.
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3.2. Remark. (Factorization and quantum computers) We have seen in
Exercise 2-7.15 that a quick calculation of the period (or order) of a mod N
will provide a fast factorization algorithm. In 1997 Shor [69] proved that
if one had access to a “quantum computer”, one could calculate this period
in polynomial time. It is not known whether such a computer (with the
required properties) could be built, but this discovery stimulated a field of
research which is still very active.



Appendix B

Elementary Projective
Geometry

“La línea consta de un número infinito de puntos; el plano, de un número infinito de
líneas; el volumen, de un número infinito de planos; el hipervolumen, de un número

infinito de volúmenes. . .
No, decididamente no es éste, more geométrico, el mejor modo de iniciar mi relato.”

Jorge Luis Borges (El libro de arena)

We will give an introduction to projective algebraic geometry: lines, conics,
quadrics, cubics and Bézout’s theorem on the number of points of intersec-
tion of two plane curves. We will clarify the notion of smoothness from a
purely algebraic point of view. The projective context allows us to intro-
duce the notion of “reduction modulo p” of a rational point on an algebraic
variety. We will finish with some allusions to intersection theory.

1. Projective Space

1.1. Definition. Let K be a field. The affine space over K of dimension
n, denoted An or An(K), is the set Kn. The projective space over K

of dimension n, denoted Pn or Pn(K), is the set of lines through the
origin in the vector space E = Kn+1 or the quotient of Kn+1 \ {0} by
the equivalence relations (x0, . . . , xn) ∼ (y0, . . . , yn) if there exists u ∈ K∗

such that (x0, . . . , xn) = (uy0, . . . , uyn). If P is the equivalence class of
(x0, . . . , xn), we say that (x0, . . . , xn) are projective coordinates of P , and
we simply write P = (x0, . . . , xn).

M. Hindry, Arithmetics, Universitext,
DOI 10.1007/978-1-4471-2131-2,
© Springer-Verlag London Limited 2011
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1.2. Remark. The value of a polynomial at P = (x0, . . . , xn) ∈ Pn does
not have any meaning, but if the polynomial F (x0, . . . , xn) is homogeneous
the fact that F (x0, . . . , xn) = 0 or F (x0, . . . , xn) 	= 0 is independent of the
projective coordinates. This allows us to make the following definition.

1.3. Definition. An algebraic subset of An (resp. of Pn) is the set of
common zeros of a family of polynomials (resp. homogeneous polynomials).
A linear subvariety or linear subspace is the set of zeros of a family of
homogeneous linear polynomials. The dimension of a linear subvariety of
Pn is the dimension of the corresponding vector space minus one. A conic
(resp. cubic) in P2 is the set of zeros of a homogeneous polynomial in
(x0, x1, x2) of degree 2 (resp. of degree 3).

1.4. Remark. More generally, we can define the dimension of an algebraic
subset V ⊂ Pn as follows: let s be the maximal dimension of a linear
subvariety L such that V ∩ L = ∅, then dim V := n − s − 1. We will
freely use the natural vocabulary of calling a curve an algebraic subset of
dimension 1 and a surface an algebraic subset of dimension 2.

1.5. Proposition. Let L1 and L2 be two linear subspaces of dimension
n1 and n2 such that n1 + n2 � n. Then L1 ∩ L2 is non-empty. More-
over, this intersection is a linear subspace of dimension � n1 + n2 − n.
If the dimension is equal to n1 + n2 − n, we say that L1 and L2 intersect
transversally.

Proof. Consider the map π : Kn+1 \ {0} → Pn(K). The linear subspaces
Li are images of vector subspaces (minus the origin) Ei of dimension ni +1.
From linear algebra, we know that dim(E1∩E2) � (n1+1)+(n2+1)−(n+1);
thus F := E1 ∩ E2 is a vector subspace of dimension � n1 + n2 − n + 1,
and consequently the image L1 ∩ L2 = π(F \ {0}) is non-empty and of
dimension � n1 + n2 − n. �

Remark. This statement contains the classical fact that two lines in the
projective plane always either meet at one point or are coincident.

The following procedure, called a Segre embedding, allows us to consider the
product of projective spaces or projective varieties as a projective variety.

1.6. Proposition. (Segre embedding) The map S : Pn×Pm → Pmn+m+n

given by ((x0, . . . , xn), (y0, . . . , ym)) �→ (xiyj)0�i�n,0�j�m is a bijection be-
tween Pn ×Pm and an algebraic subset of Pnm+m+n.

Proof. Let zi,j be coordinates of Pmn+m+n. We can immediately see that
the image of S is contained in the variety defined by zi,jzk,	 − zi,	zk,j = 0.
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Conversely, let a point R with coordinates zi,j satisfy these equations. If, for
example, z0,0 	= 0, then we can assume that z0,0 = 1, hence, zk,	 = zk,0z0,	,
and therefore R = S((1, z1,0, . . . , zn,0)(1, z0,1, . . . , z0,m)). �

The affine space An can be seen as a subspace of Pn by considering
(x1, . . . , xn) �→ (1, x1, . . . , xn). The image is the subset

U0 := {(x0, x1, . . . , xn) ∈ Pn | x0 	= 0}.

The complement is the hyperplane x0 = 0, which can be viewed as Pn−1

and which is often called “the hyperplane at infinity”. We can therefore
write:

Pn = An �Pn−1 = An �An−1 � · · · �A1 �A0.

We can actually cover the projective space by open affine sets by setting
Ui := {P ∈ Pn | xi(P ) 	= 0}. We see that Pn = U0 ∪ · · · ∪ Un and that, on
the one hand, the map from An to Ui given by the formula (x1, . . . , xn) �→
(x1, . . . , xi, 1, xi+1, . . . , xn) and, on the other hand, the map from Ui to
An given by (x0, . . . , xn) �→ (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi) are
reciprocal bijections.

1.7. Definition. The Zariski topology on An (resp. on Pn) is the topology
whose closed sets are algebraic subsets, i.e., common zeros of a family of
polynomials (resp. homogeneous polynomials).

We can immediately verify that it is indeed a topology: if Vi is the set of
zeros of a homogeneous ideal Ii (generated by homogeneous polynomials),
then V1 ∪ V2 is the set of zeros of the ideal I1I2, and ∩i∈SVi is the set of
zeros of the ideal

∑
i Ii. Notice that the sets Ui ⊂ Pn are open and dense.

1.8. Definition. An affine (or projective) algebraic subset V is irreducible
if it is not possible to write it as the union of two closed proper subsets,
i.e., if V = V1 ∪ V2, with Vi closed, then either V = V1 or V = V2. An
irreducible algebraic subset is called an algebraic variety.

We can easily show that every algebraic set can be written as a finite
union of irreducible algebraic subsets. If we eliminate redundancies, this
decomposition is unique, and the maximal irreducible subsets are called
irreducible components. The following lemmas allows us to clarify this
phrase which is often seen and used in geometry, “It suffices to verify this
in the general case.”

1.9. Lemma. Let V be an affine (resp. projective) variety and Z a proper
algebraic subset (i.e., Z 	= V ). Let F be a polynomial (resp. homogeneous
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polynomial), and suppose that F vanishes on V \ Z. Then it vanishes
on V .

Proof. The ring of polynomial functions on V is integral since V is irre-
ducible; this is true because if fg is zero on V and if we had f 	≡ 0 and
g 	≡ 0 on V , then we could deduce that we had a nontrivial decomposition
V = (V ∩ {f = 0}) ∪ (V ∩ {g = 0}). So let G = 0 be a nontrivial equation
of Z, hence FG = 0 on V . Since G 	≡ 0 on V , we can indeed deduce that
F ≡ 0 on V . �

We can define in an intuitive manner the morphisms or algebraic maps
between two varieties as “maps defined by polynomials”. A more precise
definition is as follows.

1.10. Definition. Let V ⊂ Am and W ⊂ An be two affine varieties
defined over a field K. A morphism or algebraic map f : V → W defined
over K is given by n polynomials f1, . . . , fn ∈ K[X1, . . . , Xm] such that for
every x ∈ V , the point f(x) = (f1(x), . . . , fn(x)) is in W . We say that f

is an isomorphism if there exists another morphism g : W → V such that
f ◦ g = idW and g ◦ f = idV .

A rational map from V to W defined over K is given by n rational functions
f1, . . . , fn ∈ K(X1, . . . , Xm) (where V is not contained in the subset of
poles of the fi) such that for every x in V , outside of the poles, the point
f(x) = (f1(x), . . . , fn(x)) is in W . Such a map is denoted

f : V · · · →W,

to indicate that it is not necessarily defined everywhere. The map f is
called a birational map if there exists another rational map g : W · · · → V

such that f ◦ g = idW and g ◦ f = idV (wherever they are defined).

Let V ⊂ Pm and W ⊂ Pn be two projective varieties defined over a field
K. A morphism or algebraic map f : V → W defined over K is a map
f : V → W such that for every point x ∈ V , there exists an affine open
set U in V which contains x and an affine open set U ′ in W such that
f|U : U → U ′ is a morphism of affine varieties.

Note that it is possible to globally define a morphism of affine varieties or
even from Pn to Pn by polynomials, but in general, we need many charts
to define a morphism of projective varieties. We will now give you some
examples of isomorphisms.

After linear subspaces, the most elementary algebraic varieties are the
quadrics, i.e., the hypersurfaces defined by a homogeneous polynomial of
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degree 2 which has the form

Q(x0, . . . , xn) =
∑

0�,i,j�n

qi,jxixj .

If the characteristic of the base field is different from 2, we can assume
that qi,j = qj,i. The quadric is therefore nondegenerate if and only if
det(Q) = det(qi,j) 	= 0. After a linear transformation, we can also assume
that Q(x0, . . . , xn) = a0x

2
0+· · ·+anx2

n. Note also that Q is either irreducible
or a product of two linear forms. A reducible quadric is degenerate, but the
converse is only true for conics in P2. We will now classify the quadrics (up
to linear transformation) of P2 and P3 over an algebraically closed field.

1.11. Theorem. Let K be an algebraically closed field (of characteristic
	= 2). All of the nondegenerate projective conics over K are equivalent and,
in particular, isomorphic to the conic given by the equation y0y1 − y2

2 =
0. The latter is isomorphic to the projective line by the map (x0, x1) �→
(x2

0, x
2
1, x0x1).

If K is not algebraically closed and C is a conic, then C(K) = ∅ or C is
isomorphic over K to P1.

Thus the usual classification of conics into ellipses, hyperbolas, and parabo-
las is valid in real affine geometry, whereas in the projective plane over an
algebraically closed field, there is only one conic.

Proof. We will start by constructing a hyperbolic plane, i.e., a plane en-
dowed with a basis in which the quadratic form is written Q(x, y) = xy.
To do this, we choose an isotropic vector e0, then another isotropic vector
e1 not orthogonal to e0, and by adjusting by a scalar, we obtain an ap-
propriate basis. We then choose a vector e2 orthogonal to the hyperbolic
plane and such that Q(e2) = −1. After a linear transformation, we indeed
have in the new basis Q(x0, x1, x2) = x0x1−x2

2. For the second statement,
let P ∈ C(K), and consider the set of lines passing through P . This set
is parametrized by P1. We can easily verify (see the more general proof
given below) that every line D passing through P intersects the conic in a
second point PD: the map D �→ PD provides the needed isomorphism. �

1.12. Theorem. Let K be an algebraically closed field. All nondegenerate
projective quadrics from P3 to K are equivalent and isomorphic to P1×P1

by the Segre map

((x0, x1)(y0, y1)) �→ (x0y0, x1y0, x0y1, x1y1),

whose image is the quadric given by the equation z0,0z1,1 − z0,1z1,0 = 0. In
particular, the surface is ruled in two ways.
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Proof. After a linear transformation (over K which is algebraically closed),
we can effectively assume that Q(x0, x1, x2, x3) = x0x1−x2x3 (this amounts
to writing the space as a direct sum of two hyperbolic planes). The isomor-
phism of the quadric to P1 × P1 is thus a particular case of Proposition
B-1.6. �

The following two lemmas are special cases of Bézout’s theorem, proven
further down (Theorem B-2.4).

1.13. Lemma. Let C be a curve of degree d (i.e., defined by a homo-
geneous polynomial of degree d) in the projective plane and not containing
the line D of P2. Then C ∩D is composed of d points (counted with mul-
tiplicity).

Proof. Let F (x0, x1, x2) = 0 be the equation of degree d of C and a0x0 +
a1x1 + a2x2 = 0 that of D. One of the ai is non-zero, so we can take it
to be a0. The equation of points of intersection of C and D is therefore
written x0 = − a1

a0
x1 −

a2
a0

x2 and

F
(
− a1

a0
x1 −

a2
a0

x2, x1, x2

)
= 0,

which factors as a
∏

i(αix1 − βix2)mi with
∑

i mi = d. �

1.14. Lemma. If C is a curve of degree d in the projective plane with no
components in common with the conic D of P2, then C ∩D is composed of
2d points (counted with multiplicity).

Proof. If the conic is composed of two lines, this lemma can be deduced from
the previous lemma. We can thus assume that the conic is irreducible. Up
to a linear change of coordinates, we can assume that the conic is written
as x1x0− x2

2 = 0 and hence that it is parametrized by the map from P1 to
P2 given by (y0, y1) �→ (y2

0 , y2
1 , y0y1). Let F (x0, x1, x2) = 0 be the equation

of C. The equation of the points of intersection of C and D is thus written
P = (y2

0 , y2
1 , y0y1) and

F
(
y2
0 , y2

1 , y0y1

)
= 0,

which factors into a
∏

i(αiy1 − βiy0)mi with
∑

i mi = 2d. �

Notation. We denote by Sn,d the vector space of homogeneous polynomi-
als of degree d in x0, . . . , xn, and if P1, . . . , Pr are points of Pn, we denote
by Sn,d(P1, . . . , Pr) the subspace of Sn,d formed of polynomials which van-
ish at each Pi.

1.15. Definition. A linear system of hypersurfaces S of degree d in Pn

is a vector subspace S of Sn,d.
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The set of hypersurfaces corresponding to the polynomials of S can be
seen as a linear subvariety of dimension dim(S)− 1 in the projective space
corresponding to Sn,d.

1.16. Lemma. We have the following formulas:

dimSn,d =
(

n + d

d

)
and dim Sn,d(P1, . . . , Pr) � dim Sn,d − r.

The lemma is obvious by noticing that vanishing at point P is a linear
condition on the coefficients of a polynomial. The computation of the
exact dimension of Sn,d(P1, . . . , Pr) can however be tricky.

1.17. Examples. We have

dim S2,d =
(d + 2)(d + 1)

2
and dimS2,d(P1, . . . , Pr) � (d + 2)(d + 1)

2
− r

and, in particular, dim S2,2 = 6 and dimS2,2(P1, . . . , Pr) � 6 − r. Thus
there always passes at least one conic through any five given points. We
can specify under which conditions such a conic is unique.

1.18. Lemma. Through any five points P1, . . . , P5 in the projective plane,
there always passes a conic. Furthermore, if no four of the points are
colinear, the conic is unique, i.e., dim S2,2(P1, . . . , P5) = 1.

Proof. We will first treat the case where three of the points, P1, P2, P3,
are colinear. The conic must contain the line L = 0 defined by the three
points. Hence, we have S2,2(P1, . . . , P5) = LS2,1(P4, P5) since P4 and P5

are not on the line L = 0. There is only one line which passes through
P4 and P5, hence dim S2,1(P4, P5) = 1 and dim S2,2(P1, . . . , P5) = 1. We
will now treat the case where no three of the Pi are colinear. Suppose
dim S2,2(P1, . . . , P5) > 1, and let P6 be a point distinct from P4 and P5

on the line L = 0 defined by these two points. We would then have
dim S2,2(P1, . . . , P6) � 1, and a corresponding conic containing P4, P5, P6

must contain the whole line hence be composed of two lines, and then
P1, P2, P3 would be colinear. �

The dimension of S2,3 is 10. Therefore, there is always a cubic passing
through any nine points in the projective plane plane. If 4 of these points
are colinear, the cubic must contain the corresponding line, and if 7 of these
points are on the same conic, the cubic must contain the corresponding
conic.

1.19. Definition. A point P = (x0, . . . , xn) on a hypersurface V = {P ∈
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Pn | F (P ) = 0} is singular if ∂F
∂xi

(P ) = 0 for 0 � i � n. The hypersurface

V is singular if such a point exists and smooth if not.

1.20. Remark. We can define the notion of smoothness for subvarieties
of any dimension. To do this, let V ⊂ Pn be a subvariety of dimension m
and codimension r := n−m. If I is the ideal of polynomials vanishing on
V and GI a finite generating set of I, a point P in V is smooth if the rank
of the matrix (

∂F
∂xi

(P )
)

0�i�n, F∈GI

is equal to r (it is always � r). The projective tangent space (at a point P

on a hypersurface with equation F = 0) is
∑n

i=0
∂F
∂xi

(P )xi = 0. The map

which associates to a nonsingular point its tangent hyperplane is classically
known as the Gauss map.

1.21. Definition. The map “reduction modulo p” is defined from Pn(Q) to
Pn(Fp) as follows. If P ∈ Pn(Q), we choose coordinates xi ∈ Z such that
gcd(p, x0, . . . , xn) = 1, and we set rp(P ) = (x̃0, . . . , x̃n) where x̃ designates
the class of x in Fp = Z/pZ. If V is a projective subvariety of Pn defined
over Q, we define Ṽ to be the “reduction modulo p” of V as follows. Let
IV be the ideal in Q[x0, . . . , xn] of polynomials which vanish on V , IV,Z :=
IV ∩ Z[x0, . . . , xn] and ĨV the image of IV,Z in Fp[x0, . . . , xn]. Then Ṽ is
the subvariety of Pn defined by ĨV .

We should point out that if P ∈ V (Q), then P̃ ∈ Ṽ (Fp), and this property
is specific to closed (projective) varieties. For example, if V is a curve in P2

with equation F (X, Y, Z) = 0 and U is the affine curve F (x, y, 1) = 0 (seen
as an open set in V ), a point P which is in U(Q) has reduction modulo
p, denoted P̃ , and there is no reason that this should be in Ũ , the affine
curve with equation F̃ (x, y, 1) = 0. In fact, P̃ ∈ Ũ if and only if x and y
are p-integers, i.e., if P is a p-integral point of U .

1.22. Proposition. Let V be a smooth subvariety of Pn(Q). For all
p, except for a finite number, the subvariety Ṽ is a smooth subvariety of
Pn(Fp).

Proof. If V is a hypersurface given by F (x0, . . . , xn) = 0, the hypothesis
that the hypersurface F (x) = 0 is smooth means that the resultant, R, of
the partial derivatives of F is non-zero; the latter R can be expressed as
a polynomial in the coefficients of F . Therefore, the hypersurface remains
smooth modulo p for all the primes numbers not dividing R. �
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2. Intersection
The theorem below is fundamental to classical algebraic geometry. It
shows, in particular, that there is a bijection between algebraic subsets
and reduced ideals (i.e., such that if a power of an element is in the ideal,
then the element itself is in the ideal).

2.1. Theorem. (Hilbert’s Nullstellensatz) Let P1, . . . , Pm be polynomials
in K[X1, . . . , Xn] where K is algebraically closed. If Q is a polynomial
which vanishes at the set of common zeros of the Pi, then a power of Q
is in the ideal generated by the Pi. In other words, there exist r � 1 and
Ai ∈ K[X1, . . . , Xn] such that

Qr = A1P1 + · · ·+ AmPm.

Proof. (Sketch) The key algebraic lemma is the fact that a finitely gen-
erated K-algebra which is a field must be algebraic over K, hence equal
to K if K is algebraically closed (see for example [43]). We thus consider
the polynomials P1, . . . , Pm, 1−TQ ∈ K[X1, . . . , Xm, T ]. According to the
hypotheses these polynomials do not have any common zeros in Km+1.
We now prove that this implies that they generate (as an ideal) the ring
K[X1, . . . , Xm, T ]. If this were not the case, they would be contained in a
maximal ideal M, and the quotient K[X1, . . . , Xm, T ]/M would be an alge-
braic extension of K and would thus, by the lemma recalled above, be iso-
morphic to K. If we let xi := Xi mod M ∈ K, we have constructed a com-
mon zero (x1, . . . , xm, t) ∈ Km+1 to all of the polynomials of M. We can
deduce from this the existence of polynomials Ui(X, T ) ∈ K[X1, . . . , Xm, T ]
such that

1 = U1(X, T )P1(X)+ · · ·+Um(X, T )Pm(X, T )+Um+1(X, T )(1−TQ(X)).

By interpreting this identity in K(X)[T ], substituting T = 1/Q(X) and
multiplying by Q(X)r where r = maxdegT Ui(X, T ), we obtain

Qr(X) = A1(X)P1(X) + · · ·+ Am(X)Pm(X)

where Ai(X) := Q(X)rUi(X, 1
Q(X)

). �

2.2. Remarks. 1) In the course of the proof, we proved that a maximal
ideal of K[X1, . . . , Xm] is of the form (X1 − a1, . . . , Xm − am).
2) If k ⊂ K and if Q, P1, . . . , Pm have coefficients in k, we can easily see that
we can choose the Ai to have coefficients in k. Likewise, if Q, P1, . . . , Pm

are homogeneous, we can choose the Ai to be homogeneous.

In the case where the polynomials define a finite set, we can estimate its
cardinality by the following theorem (see [35] or [31]).
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2.3. Theorem. Let Z1, . . . , Zn be hypersurfaces with degrees d1, . . . , dn in
Pn. The intersection Z1 ∩ · · · ∩Zn is non-empty, and if the intersection is
finite, then the cardinality of this set satisfies

card (Z1 ∩ · · · ∩ Zn) � d1 · · · dn.

We can actually define multiplicities so as to obtain an equality in the
previous assertion. We will do this for the case of two plane curve C1, C2 ⊂
P2 without any common components. To define the multiplicity at a point
P , we can work in the affine plane and consider fi(x, y) = 0 the affine
equations of the Ci. We define the local ring OP at P = (a, b) as:

OP := {F ∈ K(x, y) | ordP (F ) � 0} = S−1K[x, y] (B.1)

where S is the multiplicative set of polynomials which do not vanish at P
(or which do not appear in the ideal (x− a, y − b)). We then set

mult(P ; C1, C2) = dimOP /(f1, f2)P (B.2)

where (f1, f2)P is the ideal generated by f1 and f2 in OP . The dimen-
sion is well-defined whenever C1 and C2 do not have any common com-
ponents containing P . The main properties of this notion of multiplicity
are that it is positive, biadditive (meaning that if C1 = C + C ′, then
mult(P ; C1, C2) = mult(P ; C, C2) + mult(P ; C ′, C2)) and equal to 1 when-
ever C1 and C2 intersect transversally at P (meaning that the tangents
intersect transversally). In particular, we have

mult(P ; C1, C2) � 1⇔ P ∈ C1 ∩ C2.

2.4. Theorem. (Bézout) Let C1 and C2 be two plane curves of degree d1

and d2 in P2 without any common components. Then
∑

P∈C1∩C2

mult(P ; C1, C2) = d1d2.

Proof. We point out that the finiteness of C1 ∩ C2 follows easily from the
existence of non-zero polynomials such that a(x)f1(x, y) + b(x)f2(x, y) =
c(x) and a′(y)f1(x, y) + b′(y)f2(x, y) = c′(y). Up to changing projective
coordinates, we can thus assume that the line at infinity does not intersect
C1 ∩C2. This condition translates to the fact that the homogeneous parts
of largest degree, f

(d1)
1 and f

(d2)
2 , are relatively prime. We will now prove,

using this hypothesis, that

dim k[x, y]/(f1, f2) = d1d2. (B.3)

Let Ad be the set of polynomials of k[x, y] of degree � d. It is a vector
space of dimension s(d) =

(
d+2
2

)
= (d + 1)(d + 2)/2. The map Ad →
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k[x, y]/(f1, f2) is surjective for large enough d; the kernel Bd := Ad∩(f1, f2)
contains Id := Ad−d1f1 + Ad−2f2. We will prove that Id = Bd whenever
d � d1 + d2. Let f = g1f1 + g2f2 ∈ Bd. We can assume that g1 and g2

have minimal degrees e1 and e2, and we want to show that e1 � d−d1 and
e2 � d− d2. If we have, for example, e1 > d− d1, then we see, considering
the homogeneous parts of largest degree, that e1 + d1 = e2 + d2 and that
g
(e1)
1 f

(d1)
1 + g

(e2)
2 f

(d2)
2 = 0. Since f

(d1)
1 and f

(d2)
2 are relatively prime, we

can deduce from this that g
(e2)
2 = −f

(d1)
1 h and g

(e1)
1 = f

(d2)
2 h, but then f =

f1(g1− f2h)+ f2(g2 + f1h) allows us to write f with polynomials of degree
< e1 and e2. Thus, for large enough d we have Ad/Id

∼= k[x, y]/(f1, f2). We
know that Ad−d1f1 ∩Ad−d2f2 = Ad−d1−d2f1f2, hence dim (k[x, y]/(f1, f2))
equals:

dim Ad/Id = dim Ad − dim Ad−d1f1 − dim Ad−d2f2 + dim Ad−d1−d2f1f2

= s(d)− s(d− d1)− s(d− d2) + s(d− d1 − d2)

= d1d2.

The proof of the following equality finishes the proof of the theorem.

dim k[x, y]/(f1, f2) =
∑

P∈C1∩C2

mult(P ; C1, C2). (B.4)

This equality is a special case of the decomposition of a module with finite
length. Recall that an A-module has finite length if there exists a sequence
of submodules M = M0 ⊃ M1 ⊃ · · · ⊃ M	 = 0 such that each Mi/Mi+1 is
a simple A-module (i.e., a module of the type A/M, where M is a maximal
ideal). We therefore have the decomposition

M ∼= ⊕pMp

where the (finite) sum is taken over the maximal ideals of A, and Mp

designates the localization of the module with respect to p. The proof of
this last assertion can be done by induction on the length �. If � = 1, then
M ∼= A/M and Mp = 0 if p 	= M whereas (A/M)M = A/M. Then, if we
know the result for M1 (which has length � � − 1) and M/M1 (which is
simple), we can deduce the result for M using this. �

2.5. Remark. We have seen that we can describe the points of Pn as
lines through the origin of a vector space E of dimension n + 1 or as the
hyperplanes of E∗. We can generalize this by introducing the set G(E, k)
of vector subspaces of E with a given dimension k and by endowing this set
with the structure of a projective variety which is called the Grassmannian.
To do this, we can proceed as follows: for a subspace L of dimension k in
a vector space E of dimension n + 1, we choose e1, . . . , ek to be a basis
for L, and we denote by φ(e1, . . . , ek) = e1 ∧ · · · ∧ ek ∈ Λk(E) (if we
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write the coordinates of the ei in a fixed basis of E in a matrix, then
the coordinates of e1 ∧ · · · ∧ ek are the k × k minors of this matrix). We
can check that two bases of L generate the same line in Λk(E). Hence,
we can set Φ(L) := [φ(e1, . . . , ek)] ∈ PΛk(E). We then show that the map
Φ : G(E, k) → PΛk(E) is injective, and its image is a projective subvariety.

2.6. Remark. More generally, we can define the intersection number of
two subvarieties W1 and W2 of V of complementary dimensions, i.e., such
that dimW1 + dim W2 = dimV . The construction of these intersection
numbers is out of the scope of this text (see [35] and most of all [31]), but
we can easily state some of its properties.

2.7. Definition. An algebraic cycle of codimension i on V is a linear
combination with integer coefficients of subvarieties of codimension i. The
group of cycles of codimension i is denoted

Z i(V ) := ⊕codim(W )=iZ[W ],

where W ranges over the subvarieties of codimension i.

2.8. Proposition. Let V be a smooth projective variety of dimension r.
There exists a Z-bilinear mapping, invariant under algebraic deformation,

Z i(V )×Z r−i(V ) → Z
(W, W ′) �→ W ·W ′

such that if W and W ′ intersect transversally at a finite number of points,
then W ·W ′ = card(W ∩W ′). If we further impose functoriality: for every
finite morphism φ : V ′ → V we have φ−1(W ) · φ−1(W ′) = deg(φ)W ·W ′,
then the mapping is unique.

The notion of an algebraic deformation of cycles of V can be briefly de-
scribed as follows. Let T be a variety and Z ⊂ V ×T a subvariety such that
for every point t ∈ T , we can define a cycle Zt := Z ∩ V × {t} on V . If t1
and t2 are in T , we say that Zt1 can be deformed into Zt2 . The invariance
property of the proposition can be translated into the fact that for every
cycle W of dimension complementary to Zt, we have Zt1 ·W = Zt2 ·W .

2.9. Definition. Two cycles W, W ′ ∈ Z i(V ) are numerically equivalent if
for every Y ∈ Z r−i(V ), we have W · Y = W ′ · Y . The quotient of Z i(V )
by this equivalence relation is denoted Numi(V ).

The numerical equivalence relation is of great importance in algebraic ge-
ometry: it is at the heart of the theory of Grothendieck motives. We know
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that rankZ Numi(V ) is finite. The formal properties of the numerical equiv-
alence relation resemble those of the homological equivalence relation and
Grothendieck also conjectures that they coincide. We have, for example,
Numi(Pn) = Z.



Appendix C

Galois Theory

“I’m Nobody! Who are you?
Are you nobody, too?

Then there’s a pair of us! ? don’t tell!
They’d banish us, you know!”

Emily Dickinson

By relying on some results from Galois theory (see, for example, [43]),
we will more explicitly describe the decomposition law of prime ideals of
rings in a number field in the case where the extension is Galois (see [7]
for more details) before stating Chebotarev’s theorem which connects this
algebraic theory to analytic theory and provides an elegant generalization
of the Dirichlet’s theorem on arithmetic progressions. The last two sec-
tions present the beginnings of the theory of Galois representations, i.e.,
the study of the absolute Galois group GQ := Gal(Q̄/Q). First, class field
theory (see [44]) provides a description of abelian extensions and also rep-
resentations of dimension 1 (which allows us to state a vast generalization
of the quadratic reciprocity law). Then, we give some examples and basic
properties of representations of dimension > 1 (see [27], [63] and [64]).

1. Galois Theory and Number Fields
Let us briefly recall the fundamentals of Galois theory.
Notation. We denote by Aut(F ) the group of automorphisms of a field. If
K is a subfield of F , then we denote by Aut(F/K) the subgroup of Aut(F )
which acts trivially on K. If G is a subgroup of Aut(F ), we denote by
FG := {x ∈ F ∀g ∈ G, g(x) = x} the subfield fixed by G.
An extension F/K is Galois if it is normal and separable. In this case,
we call the group Aut(F/K) the Galois group of the extension, denoted by
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Gal(F/K). If F/K is finite of degree n= [F : K], this amounts to saying
that cardAut(F/K)= n. To every subgroup H of Gal(F/K), we can asso-
ciate the extension FH , and to every extension L, we can associate the sub-
group Aut(F/L)= Gal(F/L). The fundamental theorem of Galois theory
(for finite extensions) says that we have thus established a bijection be-
tween intermediate extensions K ⊂L⊂F and subgroups of Gal(F/K).
The same theorem further states that the extension FH is Galois over
K if and only if H is normal in Gal(F/K), and if that is the case, then
Gal(FH/K) ∼= Gal(F/K)/H. More generally, if σ ∈ Gal(F/K) and K ⊂
L ⊂ F , we have Gal(F/σL) = σ Gal(F/L)σ−1, and if H ⊂ Gal(F/K), we
have σ

(
FH

)
= F σHσ−1

.
To generalize this to possibly infinite extensions, we introduce the Krull
topology on G := Gal(F/K), where a basis of neighborhoods of the iden-
tity is given by finite index subgroups of G. The Galois correspondence is
therefore a bijection between subextensions K ⊂ L ⊂ F and closed sub-
groups of G, which are finite extensions of K corresponding to subgroups
of G which are both closed and open (clopen).

1.1. Examples. 1) (Finite fields) The Galois group Gal(Fqm/Fq) is
canonically isomorphic to Z/mZ, the canonical generator being the “Frobe-
nius” Φ(x) = xq. We can deduce from this a description of the absolute
Galois group:

Gal(F̄q/Fq) = lim
←
m

Z/mZ =
∏

	

Z	

where the product is over prime numbers � and Z	 designates the �-adic
integers.
2) (Cyclotomic extensions) Let ζ be a primitive nth root of unity (for exam-
ple ζ = exp(2πi/n)). The Galois group Gal(Q(ζ)/Q) is canonically isomor-
phic to (Z/nZ)∗, and the isomorphism σ �→ m(σ) is given by σ(ζ) = ζm(σ)

(we are using the irreducibility of cyclotomic polynomials here, Theorem
2-6.2.7). From this, we can deduce a description of the Galois group of the
extension Q(μ	∞) generated by all of the �nth roots of unity:

Gal(Q(μ	∞)/Q) = lim
←
n

(Z/�nZ)∗ = Z∗
	 .

3) (Kummer extensions) Let K be a field containing the mth roots of
unity, i.e., μm ⊂ K∗, and let α ∈ K∗ and β ∈ K̄ such that βm = α, which
will be (slightly abusively) denoted by β = m

√
α. The extension K(β)/K

is therefore Galois, and its Galois group is isomorphic to a subgroup of
μm, the injective homomorphism ζ : Gal(K(β)/K) → μm being given by
σ(β) = ζ(σ)β.
4) (Extensions generated by torsion points of an elliptic curve) Let E be an
elliptic curve defined over K. We denote by K(E[N ]) the field generated
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by the coordinates (in K̄) of the torsion points killed by N . The extension
K(E[N ]) is Galois, and by remembering (cf. Theorem 5-5.6) that E[N ] :=
Ker[N ] ∼= (Z/NZ)2, we see that Gal(K(E[N ])/K) can be identified with a
subgroup of Aut(Z/NZ× Z/NZ) = GL2(Z/NZ).

We will now move on to describing the decomposition into prime ideals in
Galois extensions (see, for example, [7] for the proofs).
Let K/Q be a Galois extension with Galois group G := Gal(K/Q). Let p
be a prime number and p a prime ideal of OK over p. The decomposition
group of p is

D(p/p) := {σ ∈ G | σ(p) = p} .

If σ ∈ D(p/p), we can define σ̃ : OK/p→ OK/p by the diagram

OK
σ−→ OK

↓ ↓
OK/p

σ̃−→ OK/p.

We set Fp = OK/p. The map σ �→ σ̃ defines a homomorphism rp :
D(p/p) → Gal(Fp/Fp). By definition, the kernel is called the inertia group
of p, in other words

I(p/p) := {σ ∈ D(p/p) | ∀x ∈ OK , σ(x) ≡ xmod p} .

1.2. Lemma. The Galois group G = Gal(K/Q) acts transitively on the
set of prime ideals of OK over p. The homomorphism rp : D(p/p) →
Gal(Fp/Fp) is surjective.

We will now do some calculations which allow us to see how the inertia
groups and decomposition groups vary when we change the ideal p.

1.3. Lemma. Let p and p′ be prime ideals of OK over p, and let σ ∈ G
such that σ(p) = p′. Then

D(p′/p) = σD(p/p)σ−1 and I(p′/p) = σI(p/p)σ−1.

As we recalled, Gal(Fp/Fp) is a cyclic group whose canonical generator is
given by the Frobenius homomorphism Φ(x) = xp.

1.4. Definition. A Frobenius of p is an element σ ∈ D(p/p) such that
rp(σ) = Φ. That is to say, σ satisfies

∀x ∈ OK , σ(x) ≡ xp mod p.

We denote by Frobp such an element (if we need to specify the field, we
write Frobp,K/Q).
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1.5. Remarks. 1) If we replace p by p′ := σ(p), we can easily see that

Frobp′ = σ Frobp σ−1.

In particular, if the extension is abelian, the element only depends on p, and
we can denote it by Frobp. Keep in mind, however, that the notation Frobp

in general only designates a “conjugacy class modulo the inertia group”.

2) We will again look at the example K = Q(μn). Then if p does not divide
n, the element σp = Frobp is well-defined and equals σp(ζ) = ζp. However,
if, for example, n = pm, then the extension Q(μpm)/Q is totally ramified
at p, and every element of the Galois group is a Frobenius at p.

3) In the example K = Q(
√

d), we can identify Gal(K/Q) with the group
{+1,−1}, the nontrivial automorphism being given by σ(a + b

√
d) = a −

b
√

d. Let p be an odd prime which does not divide d. Then we have
(√

d
)p

= d
p−1

2
√

d ≡
(

d
p

)√
d mod p,

therefore Frobp is nothing other than the Legendre symbol of d with respect
to p (i.e., +1 if d is a square modulo p and −1 if not).

4) We can generalize these notions to Galois extensions of a number field
L/K. For example, if q is an ideal of L over p, an ideal of K, we denote by
Frobq an element of Gal(L/K) such that Frobq(x) ≡ xN p mod q.

5) We have defined the decomposition group, the inertia group and the
Frobenius element for finite Galois extensions. No real difficulties arise
when extending these definitions to infinite extensions. For example, if
we consider GQ := Gal(Q̄/Q) and p prime, we denote by Z̄ the ring of
algebraic integers and p a maximal ideal of Z̄ over p. We set D(p/p) = {σ ∈
GQ | σ(p) = p}, then define the reduction homomorphism rp : D(p/p) →
Gal(F̄p/Fp) and let I(p/p) := Ker(rp), and finally let Frobp be an element
of D(p/p) whose image under rp is the Frobenius in characteristic p.

By the previous lemma, such a Frobenius element associated to a prime
ideal of K always exists and is unique modulo the inertia subgroup. Let us
see when the inertia subgroup is trivial.

1.6. Proposition. Let K/Q be a finite Galois extension with Galois group
G := Gal(K/Q), and let p be a prime number. The decomposition of p in
OK is written

pOK = (p1 · · · pg)
e

where e = card I(pi/p), N pi = pf , ef = cardD(pi/p) and g = (Gal(K/Q) :
D(pi/p)). Then we have efg = [K : Q].
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1.7. Corollary. With the same hypotheses and notations, we have:

e = 1⇐⇒ p is unramified⇐⇒ p does not divide ΔK .

We can introduce an often useful filtration of the inertia group by defining
the higher ramification groups:

Gi,p :=
{
σ ∈ D(p/p) | ∀x ∈ OK , σ(x) ≡ xmod p

i+1
}

.

Thus G0 is the inertia group. We can see that the Gi are p-groups for i � 1.
In fact, G1 is the Sylow p-subgroup of G0, and, in particular, the Gi are
trivial whenever p does not divide card(G) and i � 1.

We could ask ourselves how Frobp varies when we vary the prime ideal.
The response is given by the following theorem.

1.8. Theorem. (Chebotarev) If C is a conjugacy class of G = Gal(K/Q),
then there exist infinitely many prime numbers p such that Frobp is in C.
To be more precise, the density of such p is exactly |C|/|G|.

The previous theorem is a vast generalization of the theorem on arithmetic
progressions (see [44] for the proof). To see why, if we choose K = Q(ζ)
where ζ = exp(2πi/n) and an element a ∈ (Z/nZ)∗ = Gal(K/Q), then the
equality Frobp = a means p ≡ a mod n.

2. Abelian Extensions
If G is a group, we denote by Gab the quotient of G by its commutator
group (i.e., the largest abelian quotient of G). We will describe—briefly and
without proof—the group Gal(K̄/K)ab for a number field and indicate why
this theory can be considered to have sprouted from the quadratic reciprocity
law.

Let L/K be a number field extension with an abelian Galois group. If p is
a ideal in OK which is unramified in L/K, we have seen that the element
Frobp ∈ Gal(L/K) is well-defined. If we call S the set of prime ideals of K

ramified in L/K and IS
K the group of fractional ideals relatively prime to

S, then we can define the homomorphism

ψL/K : IS
K −→ Gal(L/K)∏

p/∈S pmp �−→
∏

p/∈S Frobmp

p ,

which we know to be surjective by Chebotarev’s theorem (Theorem C-1.8).

The first step in analyzing the kernel is to see that norms of ideals in L are
in Ker ψL/K .
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2.1. Lemma. Let L/K be an abelian extension and F/K an extension.
If q is an ideal relatively prime to F over an ideal p of K, we denote by
f := [OF /q : O/p]. Then

Frobq,LF/F = (Frobp,L/K)f .

More generally, we have the following formula for an ideal A of F ,

ψLF/F (A) = ψL/K

(
NF

K A
)
. (C.1)

In particular, the norm of an ideal in L is in the kernel of ψL/K .

Proof. The statement of the lemma implies a natural identification of
Gal(LF/F ) with a subgroup of Gal(L/K). If τ := Frobq,LF/F , then we
have τ(x) ≡ xN q mod q′ (for q′ relatively prime to LF over q and x ∈ OLF ).
If we restrict to x ∈ OL, we can thus write τ(x) ≡ xN p

f

mod q′ ∩ OL. We
know that q′ ∩ OL is a prime ideal of L over p, which indeed shows that
the restriction of τ to L is equal to Frobf

p . The formula for the norms can
be deduced by multiplicativity, and the last statement follows immediately
from taking F = L. �

The second step in the analysis of the kernel of ψL/K is much deeper and
forms the core of class field theory. For the proof, you can refer, for exam-
ple, to [44], but we should first introduce some vocabulary.

2.2. Definition. Let K be a number field. A cycle M is given by an ideal
OK and a sign for every real place of K. Alternatively, we can write

M :=
∑

p

mp [p] +
∑

v |∞
nv[v],

where mp ∈ N are almost all zero and nv = 0 or 1 if v is Archimedean.
For α ∈ OK , we write α ≡ 1 [M] if α ≡ 1 mod pmp and σv(α) > 0 if v is
real and nv = 1, and we set:

PM := {A = αOK | α ≡ 1 [M]} .

2.3. Theorem. (Artin reciprocity law) Let L/K be an abelian extension
which is unramified outside of a set S of places of K. There exists a cycle
M with support in S such that PM ⊂ Ker ψL/K (such a cycle is called
“admissible”). Moreover, we have the equality

Ker ψL/K = PM N
(
IM
L

)
(C.2)

and consequently the following isomorphism

ψL/K : IM
K /PM N

(
IM
L

) ∼= Gal(L/K). (C.3)
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2.4. Remark. (Hilbert class field) We consider the case of an unramified
(including at Archimedean places) abelian extension L/K. We then obtain
a reciprocity homomorphism:

ψL/K : C�K := IK/P → Gal(L/K).

Note that the condition of being unramified at Archimedean places signifies
that the real places of K are uniquely extended to real places of L, and
that if a homomorphism σ : L → C satisfies σ(K) ⊂ R, then σ(L) ⊂ R.
Since the composition of two unramified abelian extensions is unramified
abelian, we see that there exists a maximal unramified abelian extension,
called the Hilbert class field of K. In this case, we can specify the kernel of
ψL/K .

2.5. Proposition. Let H/K be the Hilbert class field of K (i.e., the
maximal unramified abelian extension). Then

ψH/K : C�K −→ Gal(H/K)

is an isomorphism. Furthermore, every ideal A of K becomes principal in
H (i.e., AOH is a principal ideal).

Class field theory also allows us to “classify” abelian extensions, but for
this, a more elegant method comes from Chevalley, namely to introduce
JK , the idele group of K (see the last part of the section on p-adic numbers
in Chap. 6). To do this, we can reformulate the Artin reciprocity law using
the following lemma.

2.6. Lemma. Let L/K be an abelian extension of a number field and let
M be an admissible cycle (i.e., such that PM ⊂ Ker ψL/K). We then have
the following natural isomorphism:

JK/K∗ N(JL) −→ IM
K /PM N

(
IM
L

)
. (C.4)

The isomorphism is obtained by associating to an idele a = (av)v∈MK
,

whose coordinates are units at every finite v appearing in M (resp. av > 0
if v is real Archimedean and nv = 1), the ideal

∏
p
pordp(ap).

2.7. Corollary. If L/K is a abelian extension, we have a surjective
homomorphism:

JK −→ Gal(L/K),

whose kernel is K∗ N(JL).
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2.8. Theorem. (Class field theory) The correspondence defined by

L �−→ K∗ N(JL)

establishes a bijection between abelian extensions of K and closed subgroups
of JK containing K∗ (i.e., closed subgroups of CK := JK/K∗). Finite
extensions therefore correspond to subgroups which are both open and closed.

If H (resp H ′) is the subgroup associated to L/K (resp. to L′/K), then
L ⊂ L′ if and only if H ′ ⊂ H. The subgroup associated to LL′/K is
H ∩H ′, and the subgroup associated to L ∩L′/K is HH ′. In other words,
if H = K∗ N(JL), then (L : K) = (JK : H) and Gal(L/K) = JK/H.
Furthermore, if v is a place of K, the decomposition group (resp. the inertia
group) is the image of K∗

v → JK → JK/H (resp. the image of O∗
v ). In

particular, L/K is unramified at v if and only if O∗
v ⊂ H.

2.9. Examples. Let M =
∑

p
mp [p] +

∑
v |∞ nv[v] be a cycle of K. We

denote by

JM
K :={(av)v∈MK

∈JK | ap≡1 mod p
mp and σv(α)>0 if v is real and nv =1}.

The abelian extension KM of K associated to the group K∗JM
K is called

the ray class field modulo M. If we restrict ourselves to the case K = Q
and M = m(∞) =

∑
p ordp(m)[p] + [∞], we can prove that Qm(∞) =

Q(exp(2πi/m)). In particular, we thus obtain the following classical result.

2.10. Theorem. (Kronecker-Weber) Every abelian extension of Q is
contained in a cyclotomic extension (generated by the roots of unity). In
particular,

Gal(Q̄/Q)ab = Gal(Q(μ∞/Q) ∼=
∏

	

Z∗
	 . (C.5)

2.11. Remark. Let p and q be two distinct odd primes. Consider the

field K = Q(
√

q′) (where q′ = (−1)
q−1

2 q, so that K/Q is only ramified
at q and, if q ≡ 3 mod 4, at ∞), and identify Gal(K/Q) with {+1,−1}.

We have seen (Remark C-1.5, part 3) that Frobp =
(

q′

p

)
. The Artin

reciprocity law (Theorem C-2.3) tells us that this element only depends on
the congruence class of p modulo M = q, and it can be proven that it is
equal to the identity, +1, if and only if p is a square modulo q. We thus
obtain the quadratic reciprocity law in the form

(
q′

p

)
=
( p

q

)
.
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3. Galois Representations
The study of the group GQ =Gal(Q̄/Q), or more generally GL :=Gal(Q̄/L)
for a number field L, is clearly a fundamental problem. One way to attack
it is to study the representations of this group, i.e. the homomorphisms
ρ : GQ → GL(V ) ∼= GLn(K) where V is a vector space over K of dimension
n. The three most interesting cases are K = Fq (a finite field), K = Q	 (a
p-adic field) and K = C.

The previous section essentially corresponds to one-dimensional represen-
tations, since a representation GL → GL1(K) = K∗ has an abelian image
and can therefore be factored through Gab

L .

3.1. Definition. An Artin representation of K is a continuous finite
dimensional representation ρ : Gal(K̄/K) → GL(V ) ∼= GLn(C).

Since GK is compact and discontinuous, the image of ρ is necessarily finite
and L := K̄Ker(ρ) is thus a finite extension of K. The representation is
therefore factored though the representation of a finite group Gal(L/K) →
GLn(C). We say that ρ is unramified at p if I(p/p) ⊂ Ker(ρ). It is clear
that ρ is unramified outside of a finite set of prime numbers.

3.2. Definition. The Artin conductor of ρ : G → GL(V ) is defined as:

Nρ :=
∏

p

pn(p,ρ)

where

n(p, ρ) :=
∞∑

i=0

dim V/V Gi,p

(G0,p : Gi,p)
·

Here p designates an ideal of K over p. It can be shown that this formula
does not depend on the choice of p. It is clear that n(p, ρ) = 0 if ρ is
not ramified over p. Next, if G1,p = {1} (no “wild” ramification), we have
n(p, ρ) = dimV − dim V I(p/p). In the general case it is still true, but more
tricky to prove, that n(p, ρ) is an integer.

We can essentially identify one-dimensional Artin representations over Q
with Dirichlet characters in the following sense. Given a Dirichlet character
χ : (Z/nZ)∗ → C∗, we associate an Artin representation to it by the
following diagram:

Gal(Q̄/Q) → Gal(Q(μn)/Q) ∼= (Z/nZ)∗
χ→ C∗ = GL1(C).

Furthermore, Weber’s theorem tells us that we obtain all the one-dimension-
al Artin representations of GQ this way.
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Let ρ : GQ → GL(V ) be an Artin representation. We define the character-
istic polynomial at p of ρ as follows: we choose p to be a prime ideal over
p and set

Pp(ρ; T ) := det
(
1− ρ(Frobp)T | V I(p/p)

)
. (C.6)

Frobp is only defined modulo I(p/p), and the action on V I(p/p) only depends
on the chosen representative. Finally, the determinant does not depend on
the conjugacy class of Frobp, thus only depends on p. We know that (see,
for example, [43] or [63]) a representation of a finite group is determined by
its character, in other words, by the trace function χρ = Tr ◦ρ. By using
the elementary formula

det (I − TA)−1 = exp

{ ∞∑

m=1

Tr(Am)
m Tm

}

where A is a square matrix, we can write the previous definition as

Pp(ρ, T )−1 = exp

{ ∞∑

m=1

χρ(Frobm
p )

m Tm

}
, (C.7)

where, in the ramified case, we restrict the representation to V I(p/p).

3.3. Definition. Let ρ : GQ → GL(V ) be an Artin representation. Its
L-function is defined as

L(ρ, s) :=
∏

p

Pp(ρ; p−s)−1 =
∏

p

det
(
1− ρ(Frobp)p−s | V I(p/p)

)−1

.

Since the eigenvalues have absolute value 1, we can easily see that the Euler
product converges absolutely for Re(s) > 1. This construction generalizes
Dirichlet L-series, which we recover whenever the representation is one-
dimensional. In fact, a famous theorem of Brauer on representations of
finite groups (see, for example, [63]) shows that Artin L(ρ, s) functions can
be written in the form of a product

∏
L(χi, s)mi , where mi ∈ Z (and where

the χi are abelian characters which generalize Dirichlet characters). Since
we know the analytic continuation of the series L(χ, s) and their functional
equation, we can deduce from this a meromorphic continuation of L(ρ, s)
to the complex plane with a functional equation. Artin conjectured that in
fact L(ρ, s) is everywhere holomorphic, except for a possible pole at s = 1
with order equal to the multiplicity of the trivial representation in ρ.

To write the functional equation, we introduce the dimension n = dimV
of the representation and the element c ∈ Gal(Q̄/Q) defined by complex
conjugation, and we denote by n+ = dimV + and n− = dimV −, where V +
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(resp. V −) is the subspace with eigenvalue +1 (resp. −1) for ρ(c). We
then let ΓR(s) := π−s/2Γ(s/2) and

Λ(ρ, s) := Ns/2
ρ ΓR(s)n+

ΓR(s + 1)n−
L(ρ, s).

The functional equation is therefore written as

Λ(ρ, s) = wρΛ(ρ̌, 1− s), (C.8)

where |wρ| = 1 and ρ̌ is the dual representation.1

3.4. Remark. We have introduced Artin representations over Q, but
no difficulties arise when generalizing to continuous representations ρ :
Gal(Q̄/K)→ GL(V ).

3.5. Definition. An �-adic representation is a continuous representation
ρ : Gal(K̄/K) → GLn(Q	).

We often assume the following added condition: the representation is un-
ramified outside of a finite set of primes p of OK . This condition is auto-
matically satisfied in the case of Artin representations, but not in the case
of �-adic representations.

3.6. Examples. 1) Let K	∞ be the field generated by the �nth roots of
unity (for an arbitrary n). We can associate to it the following representa-
tion (christened “the cyclotomic character”):

Gal(Q̄/Q) → Gal(K	∞/Q) ∼= (Z	)∗ = GL1(Z	) ↪→ GL1(Q	).

2) Let E/Q be an elliptic curve defined over Q, and let

E[�n] := Ker
{
[�n] : E(Q̄) → E(Q̄)

}
.

Recall the definition of a Tate module, T	(E) := limn E[�n]. Since T	(E) ∼=
(Z	)2 (5-5.8), and since the Galois group acts Z-linearly on E[�n], it acts
Z	-linearly on T	(E), and we thus obtain a representation

ρE,	 : Gal(Q̄/Q)→ GL(T	(E)) ∼= GL2(Z	) ↪→ GL2(Q	).

This representations happens to be unramified outside of � and the places
of bad reduction of the elliptic curve (see [70]). Moreover, by composing
with the determinant, we obtain a representation det ◦ρE,	 : Gal(Q̄/Q) →
GL1(Z	) = Z∗

	 , which coincides with the cyclotomic character (cf. for
example [70]). The conductor of the representation is defined as in C-3.2.

1If ρ : G → GL(V ) and if V ∗ is the vector space dual to V , the dual representation
ρ̌ : G → GL(V ∗) is given by 〈ρ(g)(v), v∗〉 = 〈v, ρ̌(g−1)(v∗)〉.
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In fact, it can be shown that the exponent n(ρ, p) is, for p 	= �, independent
of �. This allows us to define, in an abstract manner, the conductor of E.

In general, by making use of the compactness of G = Gal(K̄/K), we see
that there exists in V ∼= Qn

	 a lattice Λ ∼= Zn
	 which is stable under ρ(G).

To do this, we choose a basis v1, . . . , vn of the Q	-vector space, we set
Λ0 = Z	v1 + · · · + Z	vn and Λ := G ·Λ0, and we prove that (Λ : Λ0) is
finite. Thus, up to a change of basis in V , we can always assume that ρ has
values in GLn(Z	). We can see however that the image ρ(G) is not finite
in general. The �-adic representations are in this sense richer than complex
representations.

3.7. Definition. A representation mod � is a continuous representation
ρ : Gal(K̄/K) → GLn(F	) (or more generally GLn(F	m)).

Such a representation obviously has a finite image. It therefore factors
through the representation of a finite Galois group. One way to obtain such
representations is to reduce an �-adic representation modulo �. In other
words, starting with an �-adic representation ρ : Gal(K̄/K) → GLn(Q	)
which is normalized so that it has values in GLn(Z	), we can compose with
the reduction homomorphism r	 : GLn(Z	) → GLn(F	) and thus obtain a
representation:

ρ̄ := r	 ◦ ρ : Gal(K̄/K)→ GLn(Z	) → GLn(F	).

More generally, if A is a ring and r : A → Fq a homomorphism, we say that
a representation ρ̄ : Gal(K̄/K) → GLn(Fq) can be lifted to A if there exists
ρ : Gal(K̄/K) → GLn(A) such that ρ̄ = r ◦ ρ. This can be represented by
the diagram

GLn(A)

Gal(K̄/K) GLn(Fq)
�
r

�

�

�

�

�

�

�

�

�

�

�

�

�

��ρ

�
ρ̄

In the case K = Q, n = 2 and ρ̄ is irreducible and odd (i.e., the image of
the complex conjugation is of determinant −1), a conjecture of Serre, for
the statement of which we refer you to [66], describes these representations
as coming from “modular” representations. This conjecture has just been
proven by Khare and Wintenberger.
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ĥ(P ) Néron-Tate height 184
E(K) group of rational points over K 184
Reg(E/K) regulator of an elliptic curve over a field K 185
Ker[N ]E kernel of multiplication by N on E 195
T�(E) Tate module 195
SL(2,Z) matrices with integer coefficients and determinant 1 196
L(E, s) L-function of an elliptic curve 201
E(Q)tor group of torsion points 203
RK regulator of the units of a field K 203
ζA(s) zeta function of a ring A 206
Z(V/Fq; T ) zeta function of an algebraic variety 207
Numi(V ) group of numerical equivalence classes of cycles 211
Ωk[V ] space of regular differential k-forms 213
g(V ) genus of a variety 213
κ(V ) Kodaira dimension 214
χ(U) Euler-Poincaré characteristic 215
N(V (Q), H, B) number of rational points with height � B 216
Zp ring of p-adic integers 221
Z∗

p group of invertible p-adic integers 221
ordp order of divisibility by p 221
Qp field of p-adic numbers 221
∇F (x) gradient of F 223
AK adele ring of K 228
JK idele group of K 228
Bα(z) Blaschke factor 233
Rad(n) radical of an integer 241
rad(n) logarithm of the radical of an integer 241



306 List of Notations

ΔE minimal discriminant of an elliptic curve 244
NE conductor of an elliptic curve 245
�x	 smallest integer greater than or equal to x 245
ΓR(s), ΓC(s) modified Gamma functions 247
H Poincaré half-plane 249
H ∗ extended Poincaré half-plane 249
GL+

2 (R) group of 2 × 2 matrices with positive determinant 249
SL2(R) group of 2 × 2 matrices with determinant 1 249
Γ(N), Γ1(N), Γ0(N) congruence subgroups of level N 250
Y0(N) affine modular curve 250
X0(N) projective modular curve 250
Mk(Γ) space of weight k modular forms for Γ 251
Sk(Γ) subspace of cusp forms 251
Mk(N, χ) subspace of modular forms associated to χ 251
L(f, s) L-function associated to a modular form 252
Tp, Up Hecke operators 252
GQ absolute Galois group 254
ζS(V/Q, s) zeta function of V where the Euler factors are omitted 255
Lj,S(V/Q, s) jth L-function of V where the Euler factors are

omitted 255
M(P ) Mahler measure of the polynomial P 261
ψ(x, y) number of integers � x with prime factors � y 264
An affine space of dimension n 271
Pn projective space of dimension n 271
V · · · → W rational map 274
Sn,d space of forms of degree d over Pn 276
Sn,d(P1, . . . , Pr) subspace of forms of degree d vanishing at P1, . . . , Pr 276
mult(P ; C1, C2) intersection multiplicity of C1 and C2 at P 280
Gal(F/K) Galois group of the extension F/K 286
D(p/p) decomposition group 287
I(p/p) inertia group 287
Frobp Frobenius associated to the ideal p 287
Gab maximal abelian quotient of a group G 289
IS

K group of ideals in K relatively prime to S 289
ψL/K Artin’s reciprocity homomorphism 289
PM group of principal ideals congruent to 1 modulo M 290
L(ρ, s) Artin L-function 294



Index

a, b, c conjecture, 240–242, 244–246
Abel, 129, 131, 136, 157

-’s formula, 129, 131, 136, 157
abelian extension, 285, 288, 290, 291
abscissa of convergence, 136, 137, 142,

145, 147, 161
absolute value, 106, 123, 231, 234, 236,

248
Archimedean, 179, 238
of a field, 174
p-adic, 174, 222, 238
standard, 174, 175
ultrametric, 175, 179
usual, 174, 175

adele, 228, 256
admissible cycle, 290, 291
affine

coordinates, 173, 264
curve, 189, 278
equation, 169
hyperplane, 19
line, 217
open set, 273
plane, 280
space, 271, 273
variety, 273

Agrawal-Kayal-Saxena, 46, 47, 54
algorithm, 46

algebraic
closure, 195
curve, 169, 211, 217
cycle, 282

extension, 4, 9, 62, 63, 96, 177,
228, 254, 279, 285

geometry, 169, 205, 212, 271, 279
integer, 75, 84, 95, 96, 98, 100,

110, 111, 119, 121, 266, 268,
288

number, 89, 177, 179, 229, 230,
234, 238, 266

point, 174
set, 272, 273
variety, 207, 212, 219, 220, 247,

255, 271, 273
algorithm, 10, 35, 36, 40, 48, 53, 70,

88, 91, 94, 119, 191, 223,
240, 264, 266

addition, 36
Berlekamp’s, 259, 260
decoding, 55, 57
division, 5, 36–38, 61, 260, 268
elliptic curve, 262, 264, 268
Euclidean, 36, 37, 68, 181
exponential, 36, 51
exponentiation, 37
factorization, 51, 53, 259, 260,

262, 263
gcd, 68
Lenstra’s, 51, 263, 265, 268
multiplication, 36, 66, 67
Newton’s, 66
number field sieve, 52, 259, 265,

268
of continued fractions, 88, 91
Pollard’s ρ, 52

M. Hindry, Arithmetics, Universitext,
DOI 10.1007/978-1-4471-2131-2,
© Springer-Verlag London Limited 2011

307

http://dx.doi.org/10.1007/978-1-4471-2131-2


308 Index

Pollard’s p − 1, 262
polynomial, 48, 54
primality, 40
Rabin-Miller, 42
Shor’s, 269
Solovay-Strassen, 42
subexponential, 52

analysis (complex), 169
analytic

continuation, 132, 139, 145, 148,
151, 153, 166, 201, 247, 248,
253, 257, 294

density, 145
function, 132, 134, 151
geometry, 212
variety, 212, 217, 218

anti-isomorphism, 78
approximation

Diophantine, 192, 205, 229
rational, 75, 85, 88, 91, 191

Archimedean
absolute value, 179, 238
place, 176, 180, 227, 238, 248,

290, 291
Archimedes, 94
Artin

conductor, 293
conjecture, 294
L-function, 249, 256, 294
reciprocity law, 290–292
representation, 254, 255, 293–295

automorphic representation, 256

Baker, 191, 192, 229, 230, 238–240
-’s theorem, 191, 192, 230,

238–240
Belyi’s theorem, 243, 244
Berlekamp’s algorithm, 259, 260
Betti, 209, 210
Bézout, 1, 2, 36, 172, 271, 276, 280

-’s lemma, 1, 36
-’s theorem, 172, 276, 280

bilinear
form, 17, 19, 98, 119, 202
mapping, 282
multiplication, 77

birational map, 274
Birch, Swinnerton-Dyer, 124, 199, 202,

203, 227
conjecture, 169, 199, 202

Blaschke factor, 233
Borevich-Shafarevich, 105
Bourbaki, 240
Brauer, 294
Brody, 218
Buhler, 265

Canfield-Erdös-Pomerance, 264
Carmichael

function, 41
number, 24, 41

Cassels, 227
Cauchy, 152, 183
Cayley-Hamilton, 96
character, 13, 20–23, 34, 42, 118,

139–142, 144–146, 209
additive, 20
cyclotomic, 295
Dirichlet, 141, 144, 159, 160, 248,

251, 293
modulo n, 25, 142
of a representation, 294
primitive, 25, 248
principal, 13, 25, 142
unitary, 13, 20, 142, 144, 145,

147, 209
characteristic

Euler-Poincaré, 210, 215, 218
finite, 3, 13
of a field, 14, 16, 102, 172, 195,

198, 225, 275
p, 4, 16, 197, 288
polynomial, 59, 97, 294
zero, 254

Chebotarev, 285, 289
Chevalley, 15, 16, 18, 27, 291
chord-tangent method, 170, 186, 200
class

conjugacy, 206, 288, 289, 294
group, 104, 203, 267
number, 104, 105
number formula, 144
of ideals, 100, 104, 105, 109, 110,

113



Index 309

Clay Mathematics Institute, 54, 157,
203

closure
algebraic, 195
Zariski, 218

code, 35, 39, 55, 56, 58–60, 63, 64
binary, 56, 58
cyclic, 59, 60, 63, 64
error-correcting, 54
even sub-, 58
Golay, 59, 64–66, 72
Hamming, 56, 59, 64, 66
linear, 55
maximal distance separable, 59
Reed-Solomon, 59, 65
secret, 38
self-dual, 58
shortened, 58
ternary, 56

coefficient (complex), 61
Cohen, 262
comaximal ideal, 98
completion

p-adic, 222, 227
real, 221

complex
analysis, 169
coefficient, 61
conjugation, 255, 294, 296
coordinates, 111
derivative, 132
differentiable, 132
embedding, 108, 119, 175, 227
field, 195, 198
logarithm, 133, 159
multiplication, 196
number, 95, 235
plane, 134, 139, 153, 248, 253,

257, 294
representation, 296
root, 108
torus, 195
variable, 125, 127, 131, 192
variety, 210

complexity, 36, 48, 51, 52, 54, 66, 68,
265, 268

conductor
of an elliptic curve, 200, 256

congruence
subgroup, 250

conic, 170, 172, 225, 271, 272, 275–277
projective, 275

conjecture
a, b, c, 240–242, 244–246
Artin, 294
Birch and Swinnerton-Dyer, 169,

199, 202
degree, 247
Frey-Szpiro, 245, 246
Lang, 219
Lang-Vojta, 220
Masser-Oesterlé, 240, 241
Mordell, 215
parity, 203
Serre, 296
Szpiro’s, 244
Tate, 211
Weil, 209

conjugacy class, 206, 288, 289, 294
conjugate

of a quaternion, 78
of an algebraic element, 199
of an algebraic number, 108
of an embedding, 175

conjugation, 79
complex, 255, 294, 296
of quaternions, 78

constant
Euler’s, 130, 161, 165
Minkowski’s, 110, 111

content of a polynomial, 60
continuation (analytic), 132, 139, 145,

148, 151, 153, 166, 201, 247,
248, 253, 257, 294

continued fraction, 88, 92–94, 119
algorithm, 88, 91

convergence, 151, 160, 193, 201, 255
abscissa of, 136, 137, 142, 145,

147, 161
absolute, 131, 257
half-plane of, 137, 145
of a product, 138



310 Index

of a sequence, 183, 222
quadratic, 66
radius of, 131
uniform, 133

convergent of a continued fraction,
91–94

coordinates
affine, 173, 264
complex, 111
projective, 175, 264, 271, 272,

278, 280
covering

ramified, 243
universal, 217, 218

critical strip, 156, 257
cryptography, 35, 38

public key, 38
cubic, 22, 169–172, 200, 271, 277

form, 226, 227
hypersurface, 226
projective, 169, 194, 272
singular, 200
smooth, 226
Weierstrass, 172, 200

curve, 240, 278
affine, 189, 215, 278
algebraic, 169, 172, 211, 217
Fermat, 242
Frey-Hellegouarch, 202, 246
genus of, 214, 215, 244
modular, 249
plane, 271, 280
projective, 169, 190, 197, 217,

276
rational, 218
smooth, 169, 190, 214, 215
zeta function of, 255

curve (elliptic), 51, 52, 169, 172, 174,
181, 183, 185, 192, 193,
195–200, 202, 208, 213–218,
240, 244–247, 253, 256, 259,
262–265, 268, 286, 295

ordinary, 198
rank of, 216
supersingular, 198

cusp form, 251, 253, 256

cycle, 290, 292
admissible, 290, 291
algebraic, 207, 211, 282

cyclic, 1
cyclotomic

extension, 286, 292
polynomial, 59–63, 68, 69, 82,

122

Davenport, 227
Davenport-Hasse, 23, 28, 34, 208
de la Vallée Poussin, 149
decomposition

group, 287, 288, 292
into irreducible components, 273
into prime factors, 76, 138
into prime ideals, 100–102, 111,

138, 143, 267, 285, 287
of a module, 281
polynomial, 60–62

Dedekind
ring, 76, 95, 100, 101, 105
zeta function, 138, 143, 148, 203,

206, 247
Delange, 155, 164
Deligne, 209, 210, 254
Deligne-Serre, 254
Demazure, 54
density

analytic, 145
natural, 145

derivative (complex), 132
diagonal form, 16, 17, 19
Diamond-Shurman, 202
differentiable (complex), 132
differential form, 212, 213, 219
Diffie-Hellman, 39
dimension, 272
Diophantine

approximation, 192, 205, 229
equation, 75, 212, 230, 240
problem, 240
theorem, 169

Dirichlet, 68, 88, 117, 125–127, 139,
144, 147, 154, 229, 285, 289

character, 141, 144, 159, 160,
248, 251, 293

L-function, 42, 141, 201, 247, 294



Index 311

series, 125, 135–137, 141, 142,
145, 147, 151, 158, 161, 166,
201, 247, 249, 252, 256

-’s theorem, 117, 229
-’s unit theorem, 108, 229

discriminant, 111, 120, 173, 199, 208,
244–246, 248

of a number field, 111, 120, 248
of a quadratic form, 208
of an elliptic curve, 173, 199,

244–246
distance

Hamming, 55
of a code, 55

division algorithm, 5, 36–38, 61, 260,
268

division ring
of quaternions, 7, 75, 114

dual basis, 98
Dyson, 229

Elkies, 244
elliptic

curve, 51, 52, 169, 172, 174,
181, 183, 185, 192, 193,
195–200, 202, 208, 213–218,
240, 244–247, 253, 256, 259,
262–265, 268, 286, 295

curve (ordinary), 198
function, 192, 193

embedding
complex, 108, 119, 175, 227
conjugate of, 175
real, 108, 119, 175, 248
Segre, 272, 275

equation
affine, 169
Diophantine, 75, 212, 230, 240
Fermat’s, 81–83
Pell’s, 75, 85, 86, 94
quadratic, 11
S-unit, 190, 238, 239, 241

equivalence (numerical), 211, 282
Erdös, 156
Estermann, 30
estimate (zeros), 231, 235, 237

Euclid, 71, 125, 158
Euclidean

algorithm, 36, 37, 68, 181
norm, 108, 115, 185, 217
ring, 79, 120

Euler, 2, 41, 42, 71, 130, 137, 138,
142–144, 158, 161, 165, 201,
210, 215, 218, 252, 253, 256,
257

-’s constant, 130, 161, 165
product, 137, 143, 144, 294
totient, 2, 165

Euler-Poincaré, 210, 215, 218
exponent of a group, 24
exponentiation algorithm, 37
extension, 289

abelian, 285, 288, 290, 291
algebraic, 4, 9, 62, 63, 96, 177,

228, 254, 279
finite, 286
Galois, 69, 285, 287, 288
Kummer, 286
normal, 285
quadratic, 200
ramified, 288, 290–292
ring, 95
separable, 120, 285

factorial ring, 80, 82–85, 95, 99, 122
factorization, 35, 39, 40, 51–54, 65, 70,

259–269
Faltings, 215, 218, 219, 240, 242, 244
Fermat, 41, 62, 70, 75, 81–84, 105,

199, 202
curve, 242
hypersurface, 208
infinite descent, 81
-’s last theorem, 75, 81, 105
number, 70
primality test, 41

Fibonacci sequence, 37, 67, 92
field, 5, 16, 172, 174, 263, 271, 275,

279, 286, 287, 292
p-adic, 221
algebraically closed, 275
characteristic of, 14, 16, 102, 172,

195, 198, 225, 275



312 Index

class, 290–292
complex, 217
cyclotomic, 148, 295
finite, 1, 3, 4, 15, 23, 38, 48, 55,

58, 101, 197, 198, 205, 293
function, 193
Hilbert class, 291
	-adic, 293
local, 228
number, 96, 100, 104, 108, 111,

112, 119, 175, 184, 190, 203,
206, 210, 215, 219, 227, 232,
248, 265, 285, 288–291, 293

of complex numbers, 195, 198
of definition, 206
of fractions, 221, 266
of rationality, 180
of rationals, 95, 199
place of, 175, 188, 227, 234
quadratic, 102, 103, 109, 122,

123, 144, 196, 249
ray class, 292
residue, 102

Fields Medal, 209, 215, 229, 230
form

bilinear, 17, 19, 98, 119, 202, 282
cubic, 226, 227
cusp, 251, 253, 256
diagonal, 16, 17, 19
differential, 212, 213, 219
linear of logarithms, 191, 211,

230, 238, 247
modular, 199, 202, 247, 249–251,

253–256
parabolic, 251
quadratic, 16–18, 27, 33, 108,

115, 116, 184, 186, 208, 225,
226, 275

formula
Abel’s, 129, 131, 136, 157
Cauchy, 152
class number, 144
Euler-Maclaurin, 161
Jacobi’s, 107, 108, 118
Jensen’s, 261
Möbius, 159, 216

Poisson, 153, 154
product, 175, 176, 228
Riemann-Hurwitz, 243
Stirling’s, 130
Taylor’s, 230, 232, 236

four-square theorem, 76, 81, 107, 118
Fourier, 26, 36, 67, 153, 154, 251

coefficient, 26, 154
fast transform, 36, 67
series, 154, 251, 252
transform, 67, 153

fractional ideal, 102, 289
Frey, 202, 245, 246
Frobenius, 4, 197, 198, 286–288

element, 288
endomorphism, 197, 198
generator, 286
homomorphism, 4, 287

function
analytic, 132, 134, 151
arithmetic, 3, 159, 163–165
Carmichael, 41
completely multiplicative, 3, 141,

162
Dedekind zeta, 138, 206
elliptic, 192, 193
entire, 192, 201, 217, 218, 248,

254
Gamma, 115, 153, 154, 166, 201,

247, 248, 252, 257, 295
holomorphic, 164, 192–194, 218,

233, 250
meromorphic, 132, 133, 139, 147,

153, 192, 193, 249, 294
Möbius, 159, 166
modular, 201
multiplicative, 3, 162, 164
periodic, 154, 192
quadratic, 198
rational, 209
Riemann zeta, 137, 142, 206
theta, 154
von Mangoldt, 138
Weierstrass, 193, 194
zeta, 157, 247, 255, 256

functional equation



Index 313

of the Dedekind zeta function,
248

of the function L(f, s), 253
of the Riemann zeta function,

153, 201, 247
of the theta function, 154

fundamental unit, 87, 144, 249

Galois, 4, 69, 205, 285–289, 295, 296
extension, 69, 285, 287, 288
fundamental theorem, 286
group, 69, 285–289, 295, 296
representation, 247, 249, 254,

256, 285, 293
Gamma function, 153, 154, 166, 201,

247, 248, 252, 257, 295
Gauss, 60, 115, 266, 278

-’s lemma, 60, 177
map, 278
sum, 1, 11, 14, 15, 20, 23, 25, 33,

122, 210
Gel’fond, 229

inequality, 261
Gel’fond-Schneider, 230
genus, 213–218, 240, 244

of a curve, 214–218, 240, 244
of a variety, 213

geometry
algebraic, 169, 205, 212, 271, 279
analytic, 212
projective, 271

GLn(A), 116
Golay code, 59, 64–66, 72
gradient, 223
Grassmannian, 207, 281
Grothendieck, 209, 282
group

additive, 200
algebraic, 218
automorphism, 285
class, 104, 105, 109, 110, 203, 267
congruence, 250
cyclic, 287
decomposition, 287, 288, 292
exponent of, 24
Galois, 69, 285–289, 296

idele, 228, 291
inertia, 287–289, 292
Mordell-Weil, 185, 202
multiplicative, 200
of characters, 139
of cycles, 282
of invertible elements, 1
of rational points, 169, 197, 263
of units, 84, 105, 109, 122, 224
order of, 41, 113
permutation, 161
ramification, 289
rank of, 109, 113, 202, 203, 211,

216, 267, 283
Sylow, 289
Tate-Shafarevich, 203
torsion, 185, 203

Guy, 227

Hadamard, 117, 149
-’s inequality, 117

half-plane
of convergence, 137, 145
Poincaré, 196, 201, 249

Hamilton, 75, 77
Hamming

code, 56, 59, 64, 66
distance, 55

Hardy, Wright, 94
Hasse, 76, 115, 198, 201, 208, 225–227,

255, 257
Hasse-Minkowski, 225
Hasse-Weil, 247
Heath-Brown, 226
Hecke, 248, 252–254

operator, 252, 254
height, 174, 175, 177, 184, 185, 217,

230, 234, 238, 241, 245
absolute, 177
logarithmic, 174
minimal, 185
Néron-Tate, 174, 184, 202, 203,

217
over an elliptic curve, 181
Weil, 174, 181, 234

Hellegouarch, 202, 246



314 Index

Hensel, 19, 223–226, 262
-’s lemma, 19, 223–226, 262

Hermite, 230
-’s inequality, 111
-’s theorem, 108, 117

Hilbert, 240, 291
-’s Nullstellensatz, 180, 279

Hironaka, 219
holomorphic function, 164, 192–194,

218, 233, 250
homogeneous polynomial, 170, 243,

272–274, 276
Hooley, 226
Hurwitz, 75, 76, 79

quaternion, 75, 76, 79
hyperbolic variety, 218
hyperplane

affine, 19
at infinity, 219, 273

hypersurface
cubic, 226
Fermat, 208
intersection of, 280
linear system of, 276
p-adic, 223
projective, 274
singular, 277
smooth, 209, 210, 215, 278

hypothesis (Riemann), 42, 43, 125,
156, 157, 209, 210, 257

ideal, 1, 46, 59, 80, 100, 101
comaximal, 98
decomposition of, 100
fractional, 102, 267, 289
maximal, 100, 101, 206, 279, 281,

288
norm of, 98
prime, 100, 113, 176, 210,

287–290, 294
principal, 104, 291
ramified, 289
reduced, 279
zeros of, 273

idele, 227, 228, 291
Ikehara-Wiener, 156, 164

imaginary
part, 123
quadratic field, 109, 196, 249

inequality
Hadamard’s, 117
Hermite’s, 111
Liouville’s, 89, 237
ultrametric, 174, 180, 222

inert
prime, 103

inertia group, 287–289, 292
infinite descent

Fermat’s, 81, 83, 84
on an elliptic curve, 186

integer
algebraic, 75, 84, 95, 96, 98, 100,

110, 111, 119, 121, 266, 268,
288

	-adic, 286
p-adic, 221
quadratic, 120
S, 113, 191

integral (logarithmic), 157
integrally closed ring, 95, 99, 100, 268
intersection

multiplicity, 172, 276, 280
of hypersurfaces, 280

invertible
element, 1, 2, 25, 29, 37, 61, 79,

81, 86, 114, 121, 189, 264
ideal, 102, 104, 110
matrix, 123

Ireland-Rosen, 118
isogeny, 246

Jacobi, 1, 7, 9, 10, 107, 108, 118
-’s formula, 107, 108, 118
-’s reciprocity law, 10
sum, 25
symbol, 1, 7, 9, 41

Jensen’s formula, 261
Jordan, 133

Khare-Wintenberger, 296
Kloosterman sum, 28, 210
Kodaira dimension, 213, 215, 219
Kronecker, 179
Kronecker-Weber theorem, 292
Krull topology, 286



Index 315

Kummer, 81, 82, 105, 286
extension, 286
-’s lemma, 84

	-adic
field, 293
integer, 286
representation, 254, 295, 296

L-function
Artin, 249, 256, 294
Dirichlet, 42, 141–144, 248, 294
of a modular form, 252, 253, 256
of an algebraic variety, 256, 257
of an elliptic curve, 199, 201–203,

256
Lagrange, 41, 76, 94, 107
Lang, 212, 216, 218, 219
Lang-Vojta, 220
Lang-Weil, 211, 223
Langlands, 256
Laplace, 148, 151
lattice, 76, 106, 107, 109, 110, 115,

119, 184, 185, 192, 194–196,
238

law of Artin reciprocity, 290–292
law of quadratic reciprocity, 8–11, 13,

15, 27, 41, 68, 70, 285, 289,
292

Legendre, 1, 8, 33
symbol, 1, 8, 33, 41, 103, 267, 288

lemma
Gauss’s, 177
Hensel’s, 19, 223–226, 262
Kummer’s, 84
Schwarz, 230, 233
Siegel’s, 230–232, 236

Lenstra, 265
-’s algorithm, 263

Lewis, 226
limit (projective), 195
Lindemann, 230
line, 271

affine, 217
at infinity, 280
projective, 170, 171, 187, 207,

217, 219, 272, 275–277, 280,
282

through the origin, 271
linear

code, 59, 64, 65
subvariety, 272
system, 276

Liouville, 89, 192, 194, 230
-’s inequality, 89, 237

local
-ized field, 228
-ized module, 281
ring, 280, 281

local-global principle, 203, 225
logarithm

branch of, 134
complex, 133, 159
integral function, 157
linear form of, 191, 230, 238, 247
ordinary, 134
p-adic, 224, 238

Lucas, 71

Maclaurin, 161
Mahler (measure), 261
Masser-Oesterlé conjecture, 240, 241
Matijasevic, 240
Mellin transform, 252
meromorphic function, 132, 133, 139,

147, 153, 192, 193, 249, 294
Mersenne, 71
Minkowski, 76, 115, 225, 226

-’s constant, 110, 111
Möbius, 159, 166, 216

formula, 159, 216
function, 159, 166

model
minimal, 199
semi-stable, 200
singular, 199
Weierstrass, 172, 173, 199

modular
curve, 249
form, 199, 202, 247, 249–251,

253–256
function, 201
parametrization, 247

module, 101
finitely generated, 96
localized, 281



316 Index

of finite length, 281
Tate, 195, 197, 198, 295

monic
polynomial, 4, 34, 60, 96

Mordell, 215
Mordell-Weil, 169, 185, 186, 190, 202
morphism, 243, 256, 274

ramified, 243
motive, 282
multiplication (complex), 196
multiplicity

intersection, 172, 276, 280
of a representation, 294
of a zero, 131, 211, 212

Néron-Tate height, 174, 184, 202, 203,
217

Newman, 148, 167
Newton, 66, 223
Noetherian ring, 100, 101
norm, 23, 34, 123

Euclidean, 108, 115, 185, 217
of a quaternion, 78
of an element, 81, 96, 110, 113
of an ideal, 98, 110, 111, 120–122,

266, 289
normal crossing, 219, 220
normal extension, 285
Northcott, 179
Nullstellensatz, 180, 279
number

algebraic, 89, 177, 179, 229, 230,
234, 238, 266

Betti, 209, 210
Carmichael, 24, 41
class, 104, 105, 144, 248
complex, 95, 235
p-adic, 205, 221, 222, 224, 291
perfect, 71
quadratic, 94
rational, 75, 88, 95, 229, 237
real, 23, 75, 91, 94, 134
smooth, 263–266
transcendental, 229, 230

number field sieve algorithm, 52, 259,
265

Oesterlé, 240, 241
open affine set, 273
operator (Hecke), 252, 254
order

of a group, 3, 41, 113, 246
of a pole, 132, 144, 156, 193, 294
of a zero, 150, 203, 232, 233
of an element, 2, 3, 5, 6, 22, 23,

42, 46, 62–64, 70, 122, 140,
146, 161, 173, 185, 263, 269

of vanishing, 202, 235
ordinary elliptic curve, 198

p-adic
absolute value, 174, 222, 238
completion, 227
field, 221
integer, 221
number, 205, 221, 222, 224, 291
point, 225
topology, 222
unit, 224
zero, 226

parabolic form, 251
parallelogram law, 182, 184
parametrization (modular), 247
parity conjecture, 203
part

imaginary, 123
real, 123

Pell, 75, 85, 86, 88, 94
-’s equation, 75, 85, 86, 88, 94

perfect number, 71
period, 70, 263, 269

real, 202
periodic

expansion, 94
function, 154, 192
ultimately, 23

Philippon, 247
Picard, 217
pigeonhole principle, 50, 88, 231
place

Archimedean, 176, 180, 227, 238,
248, 290, 291

of a field, 175, 188, 227, 234
real, 290, 292
ultrametric, 180



Index 317

plane
affine, 280
complex, 134, 139, 153, 248, 253,

257, 294
projective, 220, 263, 272, 275,

277
Pocklington-Lehmer, 71
Poincaré, 196, 201, 249
point

algebraic, 174
at infinity, 173, 213, 218
of infinite order, 185
p-adic, 225
ramification, 243
rational, 169, 197, 240, 244, 263,

271
S-integral, 215, 220, 240
singular, 172, 173, 199, 200, 277
smooth, 223, 278
torsion, 184, 186, 189, 195, 197,

287
Poisson formula, 153, 154
pole, 132, 133, 139, 147, 150, 153, 155,

193, 194, 210, 248, 257, 294
Pollard, 52, 259, 262, 265
polynomial

algorithm, 36
auxiliary, 235
characteristic, 59, 97, 294
constant, 16
content of, 60
cyclotomic, 59–63, 68, 69, 82, 122
factorization, 259, 260, 262
homogeneous, 170, 243, 272–274,

276
irreducible, 34, 38, 265
minimal, 61, 62, 69, 108, 268
monic, 4, 34, 60, 96
primitive, 60
reciprocal, 73
root of, 78
weight of, 64, 65
zero of, 279

Pomerance, 265
positive real, 145
Poussin (de la Vallée), 149

primality, 35, 40, 42, 46, 51, 71
primality certificate, 42
prime

inert, 102, 103, 120, 143
ramified, 102, 103, 119, 122, 143,

289
split, 102, 103, 112, 143

prime number
inert, 102, 103, 120
Mersenne, 71
ramified, 102, 103, 119, 122
regular, 84, 105
split, 102, 103
theorem, 125, 126, 148, 150, 155,

156, 163, 165, 167, 168
primitive

character, 25, 248
polynomial, 60

principal
character, 13, 25, 142
ring, 79–81, 84, 95, 99, 112, 113,

120–123
principle

Hasse, 226, 227
local-global, 203, 225
pigeonhole, 50, 88, 231

problem
Diophantine, 240
Hilbert, 240

product
formula, 175, 176, 228
scalar, 185

product (Euler), 143, 144, 201, 252,
253, 256, 257, 294

projective
conic, 275
coordinates, 175, 264, 271, 272,

278, 280
cubic, 169, 194, 272
curve, 169, 190, 197, 276
geometry, 271
hypersurface, 274
limit, 195
line, 170, 171, 187, 207, 217, 219,

272, 275–277, 280, 282
plane, 220, 263, 272, 275, 277



318 Index

quadric, 275
space, 174, 271, 273, 277
variety, 212, 272, 273, 281

quadratic
convergence, 66
equation, 11
extension, 200
field, 102, 103, 109, 122, 123, 144,

249
form, 16–18, 27, 33, 108, 115,

116, 184, 186, 208, 225, 226,
275

function, 198
integer, 120
number, 94
reciprocity law, 8–11, 13, 15, 27,

41, 68, 70, 285, 289, 292
residue, 8, 11

quadric, 19, 208, 271, 274
projective, 275
surface, 275

quantum computer, 269
quaternion, 77

conjugate of, 78
division ring, 7, 75, 77, 114
Hurwitz, 75, 76, 79

Rabin-Miller, 43, 45
algorithm, 42
test, 42, 45

radius of convergence, 131
ramification

group, 289
point, 243
wild, 293

ramified
covering, 243
extension, 288, 290–292
ideal, 289
morphism, 243
prime, 102, 103, 119, 122, 143,

289
representation, 202, 254, 293, 295

rank
of a group, 109, 113, 202, 203,

211, 216, 267, 283

of a matrix, 57, 64, 278
of an elliptic curve, 216

rational
approximation, 75, 85, 88, 91,

191
curve, 218
function, 209
map, 274
number, 75, 88, 95, 229, 237
point, 169, 197, 240, 244, 263,

271
real

embedding, 108, 119, 175, 248
number, 23, 75, 91, 94, 134
part, 123
period, 202
place, 290, 292
positive, 145
quadratic field, 109, 249
root, 108
variable, 132, 159

reduced matrix, 116, 117
reduction

additive, 199, 246
bad, 203, 257, 295
good, 199, 201, 210
homomorphism, 288
modulo p, 70, 122, 199, 255, 271,

278
multiplicative, 200
semi-stable, 200, 246
split, 200

Reed-Solomon code, 59, 65
regular prime number, 84, 105
regulator

of an elliptic curve, 185, 203
of units, 203, 248

representation, 255, 294–296
automorphic, 256
complex, 296
dual, 295
Galois, 247, 249, 254, 256, 285,

293
	-adic, 254, 295, 296
multiplicity, 294
of a finite group, 294
ramified, 202, 254, 293, 295



Index 319

residue, 132, 133, 139, 144, 152, 156,
203, 248

quadratic, 8, 11
theorem, 133, 152

resultant, 69, 244, 278
Ribet, 202
Riemann, 42, 43, 125, 137, 153, 156,

157, 201, 206, 209, 210, 214,
217, 247, 250, 257

hypothesis, 42, 43, 125, 156, 157,
209, 210, 257

surface, 214, 217, 250
zeta function, 125, 137, 142, 153,

158, 201
Riemann-Hurwitz, 243
ring

adele, 228, 256
Dedekind, 76, 95, 100, 101, 105
Euclidean, 79
factorial, 80, 82–85, 95, 99, 122
integrally closed, 95, 99, 100, 268
local, 280, 281
Noetherian, 100, 101
of integers, 75
principal, 79–81, 84, 95, 99, 112,

113, 120–123
quaternion, 77

Rivest, Shamir, Adleman, 38
root

complex, 108
of a polynomial, 78
real, 108

root of unity, 8, 14, 48, 60, 61, 64, 67,
87, 109, 122, 139–141, 144,
179, 203, 238, 248, 286, 292,
295

Roth, 192
RSA system, 35, 38–40, 52–54, 119

S-integral, 113, 191
point, 215, 220, 240

S-unit, 113, 188, 190, 191, 238, 241
equation, 239, 241

Samuel, 101
scalar product, 185
Schwarz lemma, 230, 233

Segre, 272, 275
embedding, 272, 275

Selberg, 156
semi-stable

model, 200, 246
reduction, 200

separable extension, 120, 285
sequence

Cauchy, 183
Fibonacci, 37, 67, 92

series
absolutely convergent, 131
convergent, 138
Dirichlet, 125, 135–137, 141, 142,

145, 147, 151, 158, 161, 166,
201, 247, 249, 252, 256

Dirichlet L, 141, 201, 247, 252,
256, 294

exponential, 222
formal, 207
Fourier, 154, 251, 252
geometric, 137, 142
Hasse-Weil, 247
logarithm, 222
of functions, 133, 193
p-adic, 222
power, 131, 146
Taylor, 194
theta, 108, 153, 154
zeta, 205

Serre, 76, 296
conjecture, 296

set (algebraic), 272, 273
Shafarevich, 203
Shannon, 55
Shimura, 256
Shor’s algorithm, 269
Siegel, 169, 189–191, 215, 218, 220,

229–232, 236, 240
identities, 190
-’s lemma, 230–232, 236
-’s theorem, 169, 189–191, 215,

218, 220, 229, 240
Silverman, 197
singular

cubic, 200



320 Index

hypersurface, 278
model, 199
modulo p, 223
point, 172, 173, 199, 200, 277
solution, 19, 223

smooth, 30, 172, 208
cubic, 226
curve, 169, 190, 214, 215
hypersurface, 209, 210, 215, 278
point, 223, 278
variety, 209, 212, 255, 257, 278,

282
smooth number, 263–266
Solovay-Strassen, 41, 43

algorithm, 42
test, 41

space
affine, 271, 273
projective, 174, 271, 273, 277

special set, 218–220
algebraic, 218, 219
analytic, 218

Stirling’s formula, 130
sum

Gauss, 1, 11, 14, 15, 20, 23, 25,
33, 122, 210

Jacobi, 25
Kloosterman, 28, 210

supersingular elliptic curve, 198
surface

quadric, 275
quintic, 219
Riemann, 214, 217, 250

Sylow, 289
symbol

Jacobi, 1, 7, 9, 10, 41, 68
Legendre, 1, 8, 33, 41, 103, 267,

288
system (linear), 276
Szpiro, 244–246

-’s conjecture, 244

Taniyama, 256
Tate, 195, 197, 198, 200, 211
Tate-Shafarevich group, 203
Taylor, 194, 230, 232, 236

Taylor-Wiles, 81
Tchebychev, 126
Tenenbaum, 265
test

Fermat’s primality, 41
Lucas, 71
primality, 35, 40, 46, 51, 71
Rabin-Miller, 42, 45
Solovay-Strassen, 41

theorem
Baker’s, 191, 192, 230, 238–240
Belyi’s, 243, 244
binomial, 127
Chebotarev’s, 285, 289
Chinese remainder, 2, 7, 11, 18,

19, 33, 99
Diophantine, 169
Dirichlet’s, 117
Dirichlet’s unit, 108, 229
Euclid’s, 125
Faltings, 215, 218, 219, 240, 242,

244
four-square, 76, 81, 107, 118
Hermite’s, 108, 117
Hilbert’s zeros, 180, 279
Ikehara-Wiener, 156, 164
Kronecker-Weber, 292
Lagrange’s, 41, 76, 94, 107
Liouville’s, 192, 194
Mordell-Weil, 169, 185, 186, 190
Newman’s, 148, 167
on arithmetic progressions, 68,

125–127, 144, 147, 285, 289
prime number, 125, 126, 148, 150,

155, 156, 163, 165, 167, 168
residue, 133, 152
Roth’s, 192, 229, 237
Siegel’s, 169, 189–191, 215, 218,

220, 229, 240
three-square, 76, 115, 117
two-square, 76, 80, 106
unit, 123, 189, 191
Wiles, 256

theta function, 154
three-square theorem, 76, 115, 117
Thue, 192, 229, 235, 237



Index 321

-’s theorem, 192, 229, 235, 237
topology

Krull, 286
p-adic, 222
Zariski, 220

torsion
group, 185, 203
point, 184, 186, 189, 195, 197,

287
torus (complex), 195
totient (Euler), 2, 165
trace, 23, 34, 120

of a quaternion, 78
of a representation, 294
of an element, 96

transcendental number, 229, 230
two-square theorem, 76, 80, 106

UFD, 80
ultrametric

absolute value, 175, 179
inequality, 174, 180, 222
place, 180

unique factorization domain, 80
unit, 82, 83, 85, 86, 88, 90, 109, 113,

188, 189, 215, 291
fundamental, 87, 144, 239, 249
group of, 84, 105, 109, 122, 224
p-adic, 224
regulator, 248
theorem, 123, 189, 191, 267

unitary
character, 13, 20, 142, 144, 145,

147, 209
unity (root of), 8, 14, 48, 60, 61, 64,

67, 87, 109, 122, 139–141,
144, 179, 203, 238, 248, 286,
292, 295

variable
complex, 125, 127, 131, 192
real, 132, 159

variety, 180, 206
affine, 206, 219, 273
algebraic, 207, 212, 219, 220, 247,

255, 271, 273, 274

analytic, 212, 217, 218
complex, 210
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