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Foreword

Over the last 10 years, there has hardly been a topic that has occupied the credit

sector more than the appropriate determination of the capital backing of credit

risk positions. Even after the adoption of the capital requirements by the Basel

Committee on Banking Supervision “Basel II” in June 2004, the great relevance of

this topic is still present because many types of banking risk are not taken into

account. The importance of such risk types is also recognized within the framework

of Basel II. According to Pillar 2, “there are three main areas that might be

particularly suited to treatment: risks considered under Pillar 1 that are not fully

captured by the Pillar 1 process (e.g. credit concentration risk); those factors not

taken into account by the Pillar 1 process (e.g. interest rate risk in the banking book,

business and strategic risk); and factors external to the bank (e.g. business cycle

effects)”. In this context especially the consideration of concentration risks is a

very important task since concentration risks in mortgage banks can be seen as one

relevant cause of the financial crisis.

Against this background, Martin Hibbeln has set himself the targets of analyzing

concentration risks in detail and of consistently integrating concentration risks into

the Basel II model. First, the author deals with regulatory principles of the European

Banking Supervision, which have to be considered in the framework of concen-

tration risk measurement. In addition, he focuses on the question whether or not

credit concentrations stemming from bank specialization have a risk increasing

effect. The subsequent theoretical analysis takes the Asymptotic Single Risk Factor

(ASRF) framework of Gordy as a starting point since this environment underlies the

Internal Ratings-Based (IRB) Approach of Basel II. For the purpose of extending

this model, Martin Hibbeln addresses two types of concentration risk: name con-

centrations and sector concentrations. With regard to name concentrations, he

determines credit portfolio sizes for different portfolio structures that lead to a

violation of the assumptions of the ASRF model. The results are of great practical

relevance since on this basis a bank is able to identify concentration risks in their

credit portfolios. He also analyzes available granularity adjustments concerning

their suitability for the measurement of name concentrations. With respect to sector
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concentrations, Martin Hibbeln modifies existing approaches to measuring concen-

tration risks in order to consistently extend the Basel II framework. He shows

how to implement the approaches for practical application and gives a detailed

analysis with regard to measurement accuracy and runtime of the procedures.

Again, the results are of practical importance since the analysis shows in detail

which procedure shall be implemented. Furthermore, he analyzes the adequacy of

the non-coherent risk measure Value-at-Risk (VaR), which is often criticized in the

literature. For this purpose, all studies in question are undertaken by the use of the

coherent measure Expected Shortfall (ES), as well. Surprisingly, the respective

results do not show significant differences and consequently, the use of the VaR

seems to be unproblematic when determining risk concentrations.

All in all, this book deals with a relevant topic within the framework of credit

risk management. In this context the author succeeds impressively in connecting

theoretical results and practical applications, which in turn implies the book to be

suitable for academics as well as practitioners. Against this background, I wish this

innovative and inventive work the high degree of attention it undoubtedly deserves

due to its quality.

Braunschweig, Germany Marc Gürtler

April 2010
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Chapter 1

Introduction

1.1 Problem Definition and Objectives of This Work

“Risk concentrations are arguably the single most important cause of major pro-

blems in banks”.1 On the one hand, dealing with concentration risk is important for

the survival of individual banks; therefore, banks should be interested in a proper

management of risk concentrations on their own. On the other hand, the Basel

Committee on Banking Supervision (BCBS) has found that nine out of the thirteen

analyzed banking crises were affected by risk concentrations,2 which shows that

this issue is important for the stability of the whole banking system. Consequently,

risk concentrations are also crucial from a regulatory perspective and should

therefore be considered when establishing regulatory capital standards.

Recently, the “International Convergence of Capital Measurement and Capital

Standards – A Revised Framework”,3 better known as “Basel II”, has replaced the

former capital accord “Basel I”. The objective of the new framework is to strengthen

the soundness and stability of the international banking system, which shall mainly

be achieved by capital requirements that are aligned more closely to the underlying

risk. Although Basel II has sometimes been subject to criticism,4 there is widely

consensus that Basel II promotes the adoption of stronger risk management prac-

tices by the banking industry and leads to more transparency. TheMinimum Capital

Requirements are formulated in the so-called Pillar 1 of Basel II. The first pillar is

accompanied by the Supervisory Review Process (Pillar 2), which refers to a proper

assessment of capital adequacy by banks and a review of this assessment by

1BCBS (2005a), } 770.
2Cf. BCBS (2004b), p. 66 f.
3Cf. BCBS (2004c, 2005a).
4One occasionally expressed criticism is the procyclicality of Basel II. This means that in recession

the default risk of firms increase and at the same time, due to higher capital requirements for risky

credits, the banks have to reduce their investment activities; thus, recessions could be amplified.

For a discussion of this aspect, cf. Gordy and Howells (2006).

M. Hibbeln, Risk Management in Credit Portfolios, Contributions to Economics,

DOI 10.1007/978-3-7908-2607-4_1, # Springer-Verlag Berlin Heidelberg 2010

1



supervisors. The market discipline (Pillar 3) is a set of disclosure requirements,

which allows market participants to assess information on the capital adequacy.

Until now, most of the literature on Basel II has focused on parameter estimation

and the theoretical framework of Pillar 1. Consequently, these concepts are widely

known in academics and practice by now. But it is important to notice that some

crucial types of risk, like concentration risk, interest rate risk, or liquidity risk,

are not considered in the quantitative capital requirements of Pillar 1. Instead,

concerning these types of risks, the requirements are only qualitatively formulated

under Pillar 2. Fitch Ratings expressed this shortcoming as follows: “While all three

Pillars are integral to the effectiveness of Basel II as a regulatory capital framework,

it is often Pillar 1 that receives the bulk of public attention, given its direct and

explicit impact on bank capital ratios. It is important that financial institutions and

market participants also focus on the Pillar 2 objective of managing enterprise risk,

including concentration risk, rigorously and comprehensively”.5

The existing literature regarding concentration risk in credit portfolios mainly

consists of some documents from banking supervisors, empirical studies on the

effect of concentration risk on bank performance, and of some proposed models on

the measurement of concentration risk, which range from rather simple and heuris-

tic to sophisticated model-based approaches. However, there is hardly any literature

which analyzes the impact of credit concentrations on portfolio risk for different

portfolio types or answers the practically relevant question, in which cases the

influence of concentration risk is rather small so that it should be unproblematic if

a bank does not explicitly measure its concentration risk. Furthermore, it would be

valuable to know how good the proposed approaches for the measurement of

concentration risk do perform in comparison. Moreover, banks are requested by

supervisors “to identify, measure, monitor, and control their credit risk concentra-

tions”,6 but it is not clear how the models on concentration risk can be implemented

in a way that they are consistent with the Basel framework. The main objective

of this work is to answer these questions. Beyond that, this work tries to integrate

economical and regulatory aspects of concentration risk and seeks to provide a

systematic way to get familiar with the topic of concentration risk from the basics of

credit risk modeling to present research in the measurement and management of

credit risk concentrations.

1.2 Course of Investigation

The fundamentals of credit risk measurement and the quantitative framework

of Basel II are presented in Chap. 2. At first, the need of banking regulation in

general, the development of banking supervision, as well as the concept of Basel II

5Hansen et al. (2009).
6See BCBS (2005a), } 773.
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is presented briefly. In Sect. 2.2, relevant measures of risk in credit portfolios, like

the expected loss (EL), the Value at Risk (VaR), and the Expected Shortfall (ES) are

introduced. Then, the asset value model of Merton (1974) is described in Sect. 2.3,

which builds the basis of the conditional probability of default within the one-factor

model of Vasicek (1987) that is derived in Sect. 2.4. Applying this conditional

probability, the binomial model of Vasicek (1987) allows determining the loss

distribution for homogeneous credit portfolios, which is demonstrated in Sect. 2.5.

Next, the Asymptotic Single Risk Factor (ASRF) model of Gordy (2003) is

presented in Sect. 2.6. This model allows an easy calculation of the VaR or the

ES for heterogeneous portfolios if there is no concentration risk in the portfolio. As

a last step, in Sect. 2.7 the conditional probability of default is integrated into the

ASRF model, which leads to the core element of the regulatory capital requirement

under Pillar 1.

In Chap. 3, risk concentrations in credit portfolios are discussed. Firstly, differ-

ent types of concentration risk are described. In Sect. 3.2, it is argued that banks

often consciously accept concentrations in their portfolios in order to gain higher

returns from specialization, but they should have an additional capital buffer to

survive economic downturns. The measurement and management of concentration

risk, including relevant regulatory requirements and industry best practices, is

presented in Sect. 3.3. Then, some simple, heuristic approaches for the measure-

ment of concentration risk are demonstrated and assessed in Sect. 3.4. After that, a

review of the literature on model-based approaches for the measurement of con-

centration risk is presented in Sect. 3.5.

Chap. 4 deals with the measurement of name concentrations. This type of

concentration risk occurs if the weight of single credits in the portfolio does not

converge to zero; thus, the individual risk component cannot be completely diver-

sified. The main research questions on name concentrations that are considered in

this chapter are:

l In which cases are the assumptions of the ASRF framework critical concerning

the credit portfolio size?
l In which cases are currently discussed adjustments for the VaR-measurement

able to overcome the shortcomings of the ASRF model?

Concerning the first question, it is analyzed how many credits are at least

necessary implying the neglect of undiversified individual risk not to be problem-

atic. Since there exist analytical formulas – the so-called granularity adjustment –

which approximate these risks, it is further determined in which cases these

formulas are able to lead to desired results. Against this background, in Sect. 4.2

the granularity adjustment is presented and in a next step an expansion of the

existing formula is derived. Then, the minimum size of a credit portfolio is deter-

mined for several parameter combinations, for the case that only the ASRF formula

is used and for the case that the granularity adjustment (and its expansion) is

applied. The same analyses, which were performed using the risk measure VaR,

are carried out for the risk measure ES in Sect. 4.3. The main results of this chapter

are subsumed in Sect. 4.4.
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After dealing with name concentrations, the focus of Chap. 5 is on sector

concentrations. This type of concentration risk can occur if there is more than one

systematic risk factor that influences credit defaults. For example, sector concen-

trations can arise if a relatively high share of a bank’s credit exposure is concen-

trated in a specific industry sector or geographical location. Concerning sector

concentrations, the main research questions that are analyzed in this chapter are:

l How can existing approaches for measuring sector concentration risk be modi-

fied and adjusted to be consistent with the Basel framework? Is the risk measure

Value at Risk problematic when dealing with sector concentration risk?
l Which methods are capable of measuring concentration risk and how good do

they perform in comparison? What are the advantages and disadvantages of

these methods?

In order to deal with these questions, in Sect. 5.2 it is initially determined how a

multi-factor model can be parameterized to obtain a capital requirement, which is

consistent with Basel II. Then, the models of Pykhtin (2004), Cespedes et al.

(2006), and D€ullmann (2006) are presented and modified, which have been devel-

oped to approximate the risk in the presence of sector concentrations. In Sect. 5.3,

the accuracy of these models concerning their ability to measure sector concentra-

tion risk is compared. In addition to the accuracy of the results, the emphasis is also

put on the runtime of the models, since even with up-to-date computer hardware the

computation can still take a very long time. Moreover, the simulation study chosen

for the comparison is well-suited to analyze in a quite realistic setting whether there

are relevant differences if either the risk measure VaR or ES is used. This question

is of high practical relevance, since the VaR is often criticized concerning some

theoretical shortcomings that are often illustrated in contrived portfolio examples.

These shortcomings could be very problematic in the presence of concentration

risk, but nevertheless, the VaR is very often applied in practice and in the literature.

The results of these analyses are subsumed in Sect. 5.4.
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Chapter 2

Credit Risk Measurement in the Context

of Basel II

2.1 Banking Supervision and Basel II

During the last decades, there has been a lot of effort spent on improving and

extending the regulation of financial institutions. There are several reasons for a

regulation of these institutions, which are mostly different from the regulation of

other economic sectors. Even if there are some discussions about tendencies of the

banking sector to constitute a monopoly as a result of economies of scale and

economies of scope, the empirical evidence is rather scarce.7 A widely accepted

argument is that the (unregulated) banking system is unstable. If a bank is threatened

by default or the depositors expect a high default risk, this can lead to a bank run,

meaning that many depositors could abruptly withdraw their deposits.8 This behav-

ior is a consequence of the “sequential service constraint”, meaning that whether a

depositor gets his deposits depends on the position in the waiting queue.9 The

problem is that, as most banks invest the short term deposits in long term projects

(term transformation), there is a high risk of illiquidity of the bank, regardless of

whether the bank is overindebted or not. Due to incomplete information, depositors

of different institutions could also withdraw their deposits, and this domino effect

could finally lead to a collapse of the complete banking system. This type of risk is

called “systemic risk”.10 Because of the enormous relevance of banks for the

complete economy, the state will usually act as a “lender of last resort”, especially

in the case of big financial institutions (“too big to fail”-phenomenon) instead of

accepting a bank’s default, which is due to the presence of systemic risk.11 Against

7Cf. Berger et al. (1993, 1999).
8Cf. Diamond and Dybvig (1983).
9Cf. Greenbaum and Thakor (1995). This is an important difference to securities where the holder

is exposed to a price decline instead.
10Cf. Saunders (1987) and Hellwig (1995).
11The relevance of this phenomenon has been remarkably shown in the ongoing financial crisis. In

2007 and 2008, there have been many examples of bailouts of financial institutions, such as Bear
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this background, the state is interested in a regulation of the financial system in order

to reduce the probability of bank runs and the systemic risk.12

The first German banking supervision was established in 1931 after the default

of the Danatbank during the Great Depression. This event came along with a

massive withdrawal of deposits and bank runs. As a consequence of the default of

the Herstatt Bank in 1974, about 52,000 private customers lost their money.

Furthermore, many US American banks, which had currency contracts with the

Herstatt Bank, did not get back their receivables. This event led to several addi-

tional regulations, including the extension of deposit guarantees and the large

exposure rules. Moreover, as a result of this default, the central-bank Governors

of the Group of Ten (G10) countries founded the Basel Committee on Banking

Supervision in the end of 1974, which had the objective to close gaps in interna-

tional supervisory coverage. In 1988 the Committee introduced the Basel Capital

Accord (Basel I), which led to a major harmonization of international banking

regulation and minimum capital requirements for banks.13 According to Basel I, it

is required that banks hold equity equal to 8% of their risk weighted assets, which

are calculated as a percentage between 0% (e.g. for OECD banks) and 100% (e.g.

for corporates) of the credit exposure. The basic principle behind this requirement is

that the minimum capital requirement, which also implies a maximum leverage,

leads to an acceptable maximum probability of default for every single bank. Thus,

this restriction of risk should lead to a stabilization of the banking system. The

problem is that these capital rules are hardly risk-sensitive – for example, an invest-

ment grade and a speculative grade corporate bond require the identical capital. As

a consequence, banks have an incentive to deal with risky credits, especially if the

regulatory capital constraint is binding. This incentive stems from the risk-shifting

problem, which is relevant for every indebted institution, but increases with lever-

age. This problem is already present for projects with identical expected pay-offs

but as risky investments usually offer higher expected profits, the incentive of risk-

shifting is even higher. In addition, the Basel Capital Accord offered the possibility

of “regulatory capital arbitrage”, which is a result of the missing risk-sensitivity,

too. A bank with a small capital buffer could bundle its low-risk assets in asset

backed securities and sell them to investors. After this transaction, the bank still has

Stearns, Fannie Mae, Freddie Mac, and AIG in the United States or IKB and Hypo Real Estate in

Germany. But an even stronger argument for the “too big to fail”-phenomenon is the default of

Lehman Brothers in September 2008. Probably due to the global diversification of their creditors,

the bank’s default was apparently assessed as no systemic risk. But the subsequent financial

turmoil including the almost complete dry up of the interbank lending market shows that this

was a material misjudgment of the U.S. government; cf. the German Council of Economic Experts

(2008), p. 122. This default clearly demonstrates the relevance of the “too big to fail”-phenomenon

and the negative consequences if a big financial institution still fails, especially in an unstable

market environment.
12For a more detailed discussion of banking regulation see Gup (2000) or Hartmann-Wendels et al.

(2007), p. 355 ff.
13Cf. Phillips and Johnson (2000), p. 5 ff., Hartmann-Wendels et al. (2007), p. 391 ff., Henking

et al. (2006), p. 2 ff., and BCBS (2009a).
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almost the same degree of risk but free capital, which could be used to invest in

new, risky projects. Thus, it is obvious to see that the minimum capital requirements

of Basel I do not effectively reduce the risk-taking behavior of banks.

Against this background, in 1999 the Basel Committee on Banking Supervision

(BCBS) published the First Consultative Package on a New Basel Capital Accord

(Basel II) with a more risk-sensitive framework. Finally, in 2004/05 the Committee

presented the outcome of its work under the title “Basel II: International Conver-

gence of Capital Measurement and Capital Standards – A Revised Framework”

(BCBS 2004c, 2005a). In this context, it is interesting to notice that it was intended

to maintain the overall level of regulatory capital.14 Thus, the purpose of the new

capital rules is indeed to achieve better risk-sensitivity. Basel II is based on “three

mutually reinforcing pillars, which together should contribute to safety and sound-

ness in the financial system”.15 Pillar 1 contains the Minimum Capital Require-

ments, which mainly refer to an adequate capital basis for credit risk, but

operational risk and market risk are considered, too. Pillar 2 is about the Supervi-

sory Review Process. In contrast to Pillar 1, which contains quantitative and

qualitative elements, Pillar 2 contains qualitative requirements only. These refer

to a proper assessment of individual risks – beyond the demands of Pillar 1 – and

sound internal processes in risk management. Important risk types that are not

captured by Pillar 1 are concentration risks, which are the object of investigation

during this study, interest rate risks, and liquidity risks. Pillar 3 shall improve the

market discipline through an enhanced disclosure by banks, e.g. about the calcula-

tion of capital adequacy and risk assessment. The New Basel Capital Accord has

been implemented in the European Union in 2006 via the Capital Requirement

Directive (CRD). Subsequently, the member states of the European Union trans-

posed the directive into national law. In Germany, the corresponding regulations

are basically the “Solvabilit€atsverordnung” (SolvV), which refers to the first

and third Pillar of Basel II, some changes in the “Kreditwesengesetz” (KWG) and

the “Großkredit- und Millionenkreditverordnung” (GroMiKV), as well as the

“Mindestanforderungen an das Risikomanagement” (MaRisk), implementing the

demands of the Pillar 2. These regulations came into effect on 01-01-2007.

As this study deals with credit risk management, only this type of risk will be

considered in the following. In contrast to Basel I, the minimum capital require-

ments of Basel II take the probabilities of default of the individual credits into

consideration. The concrete quantitative requirements are based on a framework

that measures the 99.9%-Value at Risk of a portfolio, which is the loss that will not

be exceeded with a probability of at least 99.9%. The banks are free to choose

the Standardized Approach or the Internal Ratings-Based (IRB) Approach, which

mainly differ concerning the use of external ratings vs. internal estimates of the

obligors’ creditworthiness. Furthermore, for non-retail obligors the IRB Approach

is subdivided into the Foundation IRB Approach and the Advanced IRB Approach.

14BCBS (2001b).
15BCBS (2001b), p. 2.
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While within the Foundation IRB Approach only the probability of default has to be

estimated, banks using the Advanced IRB Approach have to estimate additional

parameters, such as the Loss Given Default and the Exposure at Default, which are

described in the subsequent Sect. 2.2.1.16 In this context, it should be noticed that

the IRB Approach is not only a regulatory set of rules but the underlying framework

often serves as a common fundament in banking practice and for ongoing research

in credit risk modeling with several improvements and applications.17 Against this

background, it is useful to have a deeper understanding of the concrete credit risk

measurement and credit portfolio modeling as a basis of improving the manage-

ment of credit risk. Thus, in the following there will be a short introduction on

individual risk parameters and risk measures in a credit portfolio context, and a

detailed explanation of the framework underlying the IRB Approach.

2.2 Measures of Risk in Credit Portfolios

2.2.1 Risk Parameters and Expected Loss

Before the parameters for the quantification of credit risk are explained, we start

with some short comments about the general notation. In the following, stochastic

variables are marked with a tilde “�”, e.g. ~x denotes that x is a random variable.

Furthermore, “Eð~xÞ” stands for the expectation value and “Vð~xÞ” for the variance of
the random variable ~x. Similarly, “Pð~x ¼ aÞ” denotes the probability that ~x takes the
value a. The random variable 1 ~x> af g, which is also called an indicator variable, is

defined as

1 ~x> af g ¼ 1 if ~x> a;
0 if ~x � a:

�

(2.1)

Thus, the indicator variable takes the value one if the event specified in brackets

occurs, and zero otherwise. Using this notation, the parameters for the quantifica-

tion of credit risk can be introduced. The potential loss of a credit is usually

expressed as a product of three components: The default indicator variable, the

loss given default, and the exposure at default.

16Details concerning the concrete regulatory requirements and a comparison of these approaches

can be found in Heithecker (2007), especially in Sect. 3.
17E.g. the underlying one-factor Gaussian copula model with its implied correlation is market

standard for pricing CDOs, cf. Burtschell et al. (2007), p. 2, similar to the model of Black and

Scholes for options with its implied volatility. Examples for extensions of the standard Gaussian

copula model are Andersen and Sidenius (2005a, b) or Laurent and Gregory (2005). Furthermore,

several smaller banks use the regulatory capital formulas for their internal capital adequacy

assessment process; cf. BCBS (2009b), p. 14.
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Firstly, the default event of an obligor is indicated by the default indicator

variable 1 ~Df g that takes the value one if the (uncertain) default event ~D occurs

and zero otherwise.18 The probability of default (PD) of an obligor is defined by

P 1 ~Df g ¼ 1
� �

¼: PD. In context of the Basel Framework, the PD is the probability

that an obligor defaults within 1 year.19 The Basel Committee on Banking Supervi-

sion defines a default as follows: “A default is considered to have occurred with

regard to a particular obligor when either or both of the two following events have

taken place:

l The bank considers that the obligor is unlikely to pay its credit obligations to the

banking group in full, without recourse by the bank to actions such as realizing

security (if held).
l The obligor is past due more than 90 days on any material credit obligation to the

banking group. Overdrafts will be considered as being past due once the cus-

tomer has breached an advised limit or been advised of a limit smaller than

current outstandings”.20

It is important to notice that beside this definition there exist several other

definitions of default21 so that a credit that is defaulted in Bank A could be treated

as non-defaulted in Bank B. But as the definition above has to be implemented at

least for regulatory purposes, it can be seen as the conjoint definition of default.

Secondly, the loss given default (LGD) gives the fraction of a loan’s exposure

that cannot be recovered by the bank in the event of default. Besides obligor-

specific characteristics the LGD can highly depend on contract-specific character-

istics such as the value of collateral and the seniority of the credit obligation. The

uncertain LGD is denoted by the random variable gLGD, whereas the expected LGD
is denoted by EðgLGDÞ ¼: ELGD. There also exists a direct link between the loss

given default and the so-called recovery rate (RR): fRR ¼ 1� gLGD. Both variables

usually take values between 0% and 100% but the LGD can also be higher than

100% as workout costs occur when the bank tries to recover (parts of) the outstand-

ing exposure. If the bank fails to recover the loan, the total loss amount can be

higher than the defaulted exposure leading to an effective LGD of more than 100%

and to a RR of less than 0%, respectively.

18In this study, it is not explicitly differentiated between a default of a single loan or of a firm. In

this context, it should be noted that for corporates a defaulting loan is usually associated with a

default of the firm; consequently, all other loans of the firm are considered as defaulted, too.

Contrary, in retail portfolios the loans are often handled separately; thus, a default of one loan does

not imply a default of all other loans of this obligor.
19See BCBS (2005a), }} 285, 331.
20BCBS (2005a), } 452. For further details on the definition of default, including a specification of
“unlikeliness to pay” see BCBS (2005a), }} 453–457.
21A survey of different definitions of default and their impact on the computed recovery rates can

be found in Grunert and Volk (2008).
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Thirdly, the exposure at default (EAD) consists of the current outstandings

(OUT), which are already drawn by the obligor. Furthermore, the obligor could

draw a part of the commitments (COMM) leading to an increased EAD. This part

is called the credit conversion factor (CCF). Thus, the (uncertain) EAD can be

defined as22

gEAD :¼ OUT þ gCCF � COMM (2.2)

with 0 � gCCF � 1. Despite the fact that the exposure at default is a random

variable, it is often associated with “the expected gross exposure of the facility

upon default of the obligor”,23 that means

EAD :¼ OUT þ E gCCF
� �

� COMM: (2.3)

In this study, the exposure at default is mostly assumed to be deterministic,

which leads to identity of the random variable gEAD and the expected value EAD.
Using these three components, we can quantify the loss of a single credit or of a

credit portfolio (PF) that consists of n different loans. The loss in absolute values of
a single credit i 2 f1; :::; ng is denoted by ~Labs;i:

~Labs;i ¼ gEADi � gLGDi � 1 ~Dif g: (2.4)

Thus, a default of loan i leads to an uncertain loss amount of gEADi � gLGDi, which

is the fraction LGD of the exposure at default. Similarly, we name the absolute loss

of the whole portfolio ~Labs;PF, which can be calculated as the sum of all individual

losses:

~Labs;PF ¼
X

n

i¼1

~Labs;i ¼
X

n

i¼1

gEADi � gLGDi � 1 ~Dif g: (2.5)

The expected loss ELabs;i of loan i is given by

ELabs;i ¼ E ~Labs;i
� � ¼ E gEADi � gLGDi � 1 ~Dif g

� �

¼ EADi � ELGDi � PDi; (2.6)

assuming the random variables to be stochastically independent. The expected loss

(EL) is also called “standard risk-costs” and the risk premium contained in the

22See Bluhm et al. (2003), p. 24 ff.
23BCBS (2005a), } 474.
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contractual interest rate should at least include this amount.24 The expected loss of

the whole portfolio ELabs;PF can be calculated as

ELabs;PF ¼
X

n

i¼1

ELabs;i ¼
X

n

i¼1

EADi � ELGDi � PDi: (2.7)

Moreover, we differentiate between the absolute and the relative portfolio loss

since it is often useful to write the loss in relative terms in analytical credit risk

modeling. The relative portfolio loss results when the absolute loss is divided by

the total exposure, and will simply be denoted by ~L in the following:

~L ¼
~Labs;PF
P

n

j¼1

gEADj

¼
X

n

i¼1

gEADi

P

n

j¼1

gEADj

� gLGDi � 1 ~Dif g ¼
X

n

i¼1

~wi � gLGDi � 1 ~Dif g; (2.8)

where ~wi :¼ gEADi

�

P

n

j¼1

gEADj is the exposure weight of credit i in the portfolio.

Using this notation and assuming deterministic exposure weights

wi ¼ EADi

�

P

n

j¼1

EADj, the expected relative portfolio loss can be written as

EL ¼
X

n

i¼1

wi � ELGDi � PDi: (2.9)

2.2.2 Value at Risk, Tail Conditional Expectation,
and Expected Shortfall

For an individual loan, the expected loss is the most important risk measure as it

significantly influences the contractual interest rate. However, on aggregate portfo-

lio level the quantification of additional risk measures is worthwhile. For instance, it

is useful for a bank to get knowledge of the possible portfolio loss in some kind of

worst case scenario, which is usually defined with respect to a given confidence

level a. Based on this, a bank can determine how much capital is needed to survive

such scenarios. There exist several approaches to quantify these capital require-

ments. Firstly, there are different measures for risk quantification, e.g. the Value at

Risk, the Tail Conditional Expectation, and the Expected Shortfall, which will be

defined and explained below. Secondly, the capital requirements differ depending

on their objective. In Basel II the regulatory capital requirement is based on the

unexpected loss, which is the difference between the Value at Risk with confidence

24Cf. Schroeck (2002), p. 171 f.
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level a ¼ 99:9% and the EL,25 within a 1-year horizon. Furthermore, banks often

internally measure their economic capital requirement, which can be defined as the

capital level that bank shareholders would choose in absence of capital regulation.26

The economic capital is usually used for the bank’s risk management, the pricing

system, the internally defined minimum capital requirement, etc.27 The internal

specification of economic capital can differ from the regulatory capital formula, for

instance, regarding the used risk measure, the engine for generating the loss

distribution, or the time horizon.28

For a definition of the risk measures, a mathematical formulation of quantiles, or
precisely of the upper quantile qa and the lower quantile qa, corresponding to a

confidence level a is needed. Given the distribution of a random variable ~X, these
quantiles are defined as29

qa ~X
� �

:¼ inf x 2 RjP ~X � x
� 	 � a


 �

; (2.10)

qa ~X
� �

:¼ inf x 2 RjP ~X � x
� 	

> a

 �

; (2.11)

where R denotes the set of real numbers. If these definitions are applied to

continuous distributions, they lead to the same result. Applied to discrete distribu-

tions, the upper quantile can exceed the lower quantile.

The Value at Risk (VaR) can be described as “the worst expected loss over a

given horizon under normal market conditions at a given confidence level”.30 For

an exact formulation, the lower Value at Risk VaRað~LÞ and the upper Value at Risk
VaRað~LÞ at confidence level a have to be distinguished, which are the quantiles of

the loss distribution:31

VaRa ~L
� �

:¼ qa ~L
� � ¼ inf l 2 RjP ~L � l

� 	 � a

 �

; (2.12)

VaRa ~L
� �

:¼ qa ~L
� � ¼ inf l 2 RjP ~L � l

� 	

> a

 �

: (2.13)

25Sometimes the unexpected loss is defined as UL ¼
ffiffiffiffiffiffiffiffiffiffiffi

V ~L
� �

q

instead; see e.g. Bluhm et al. (2003),

p. 28.
26See Elizalde and Repullo (2007).
27Cf. Jorion (2001), p. 383 ff.
28An extensive overview of current practices in economic capital definition and modeling can be

found in BCBS (2009b).
29Acerbi and Tasche (2002b), p. 1489.
30Jorion (2001), p. xxii. The first known use of the Value at Risk is in the late 1980s by the global

research at J.P. Morgan but the first widely publicized appearance of the term was 1993 in the

report of the Group of Thirty (G-30), which discussed best risk management practices; cf. Jorion

(2001), p. 22.
31Cf. Acerbi (2004), p. 155. The slightly different notation results from the definition of l as a loss
instead of a profit variable.

12 2 Credit Risk Measurement in the Context of Basel II



For continuous distributions, the definitions are identical and with the definition

of a distribution function FLðlÞ ¼ P ~L � l
� �

the VaR can also be written in terms of

the inverse distribution function:

VaRa ~L
� �¼ inf l 2 RjP ~L � l

� 	 � a

 �

¼ l with P ~L � l
� 	 ¼ a

¼ l with FLðlÞ ¼ a

¼ F�1
L að Þ: (2.14)

For discrete distributions, the term “Value at Risk” will be referred to the lower

Value at Risk VaRað~LÞ in the following, according to Gordy (2003) and Bluhm et al.

(2003), if not indicated differently. Using P½ ~L � l� ¼ 1� P½ ~L> l�, it follows from
(2.12) that

VaRa ~L
� � ¼ inf l 2 Rj1� P ~L> l

� 	 � a

 �

¼ inf l 2 RjP ~L> l
� 	 � 1� a


 �

: (2.15)

From this definition the description of the VaR as the minimal loss in the worst

100 � ð1� aÞ% scenarios can best be seen.32 Obviously, this risk measure refers to a

concrete quantile of a distribution but neglects the possible losses that can occur in

the worst 100 � ð1� aÞ% scenarios.

A risk measure that incorporates these low-probable extreme losses, the so-

called tail of the distribution, is the Tail Conditional Expectation (TCE). Similar to

(2.12) and (2.13) the lower Tail Conditional Expectation TCEað~LÞ and the upper

Tail Conditional Expectation TCEað~LÞ at confidence level a are defined as the

conditional expectations above the corresponding a-quantiles:33

TCEa ~L
� �

:¼ E ~Lj ~L � qa
� � ¼

E ~L � 1 ~L� qaf g
� �

P ~L � qa
� � ; (2.16)

TCEa ~L
� �

:¼ E ~Lj~L � qa
� � ¼

E ~L � 1 ~L� qaf g
� �

P ~L � qa
� � : (2.17)

Consequently, the TCE is always higher than the corresponding VaR at a given

confidence level and can differ for discrete distributions according to the definition

32Cf. Acerbi (2004), p. 153.
33Acerbi and Tasche (2002b), p. 1490. The loss quantiles qað~LÞ and qað~LÞ are abbreviated with qa
and qa, respectively, to achieve a shorter notation.
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of the quantile. For continuous distributions, the upper and lower quantiles are

identical and therefore both definitions of TCE equal:

TCEa
cont

~L
� � ¼ TCEa;cont ~L

� � ¼ E ~Lj~L � qa
� � ¼

E ~L � 1 ~L� qaf g
� �

P ~L � qa
� �

¼ 1

1� a
E ~L � 1 ~L� qaf g
� �

: (2.18)

Acerbi and Tasche (2002b) introduced a similar risk measure, the Expected
Shortfall (ES):34

ESa ~L
� �

:¼ 1

1� a
� E ~L � 1 ~L� qaf g

� �

� qa � P ~L � qa
� �� ð1� aÞ� �

� �

: (2.19)

In contrast to the VaR and the TCE, the ES only depends on the distribution and

the confidence level a but not on the definition of the quantile. Looking at the

second term, if the probability that ~L � qa is higher than ð1� aÞ, this fraction has to
be subtracted from the conditional expectation. If the probability equals ð1� aÞ, as
for every continuous distribution, the second term vanishes. In this case, the ES is

identical to the TCE. An alternative representation of (2.19) is:35

ESa ~L
� � ¼ 1

1� a

ð

1

a

qudu: (2.20)

The intuition behind the ES and the difference between TCE and ES can be

demonstrated with the exemplary probability mass function of a discrete random

variable shown in Table 2.1 and the corresponding Fig. 2.1.

In this example, the upper as well as the lower VaR at confidence level a ¼ 0:95
is 7%. The corresponding TCE is the expectation conditional on a loss of greater or

equal to 7%, which is 7:�4% in the example. As can be seen in the figure, the

probability of the considered events is not equal to 5% but 9%. In contrast to

the TCE, for the calculation of the ES, the light grey area is subtracted, which is the

Table 2.1 Loss distribution

for an exemplary portfolio
Relative Loss l (in %) 2 4 5 7 8

P ~L ¼ l
� �

80% 10% 1% 5% 4%

P ~L � l
� �

80% 90% 91% 96% 100%

P ~L � l
� �

100% 20% 10% 9% 4%

34Acerbi and Tasche (2002b), p. 1491.
35Acerbi and Tasche (2002b), p. 1492.
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second term of (2.19), and only the dark grey area with a probability of 5% is

considered. Thus, the ES is usually higher than the TCE and here we have an ES of

7.8%. Moreover, we can see that the VaR as well as the TCE make a jump if the

confidence level is increased from slightly below to slightly above 96%, whereas

the ES remains stable because the weight of 7% losses only changes from almost

zero to exactly zero.

Subsequently, the calculation of the different risk measures will be demonstrated

for the discrete loss distribution of Table 2.1. For this purpose, the confidence levels

a ¼ 0:9 and a ¼ 0:95 are chosen. The upper and lower VaR at these confidence

levels are given as

VaR0:9
~L
� � ¼ q0:9 ~L

� � ¼ inf l 2 RjP ~L � l
� 	 � 0:9


 � ¼ 4%;

VaR0:9 ~L
� � ¼ q0:9 ~L

� � ¼ inf l 2 RjP ~L � l
� 	

> 0:9

 � ¼ 5%;

VaR0:95
~L
� � ¼ q0:95 ~L

� � ¼ 7%;

VaR0:95 ~L
� � ¼ q0:95 ~L

� � ¼ 7%:

It can be seen that the upper and lower VaR are different if there exists a loss

outcome l with PðlÞ> 0 so that P ~L � l
� 	 ¼ a. The same is true for the

corresponding TCEs:
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Fig. 2.1 Probability mass function of portfolio losses for an exemplary portfolio
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TCE0:9
~L
� �¼

E ~L � 1 ~L�q0:9f g
� �

P ~L� q0:9
� � ¼ 1

0:2
0:1 � 4þ 0:01 � 5þ 0:05 � 7þ 0:04 � 8ð Þ ¼ 5:6%;

TCE0:9 ~L
� �¼

E ~L � 1 ~L�q0:9f g
� �

P ~L� q0:9
� � ¼ 1

0:1
0:01 � 5þ 0:05 � 7þ 0:04 � 8ð Þ ¼ 7:2%;

TCE0:95
~L
� � ¼ 1

0:09
0:05 � 7þ 0:04 � 8ð Þ ¼ 7:�4%;

TCE0:95 ~L
� � ¼ 1

0:09
0:05 � 7þ 0:04 � 8ð Þ ¼ 7:�4%:

According to (2.19), there is only one definition of ES, which results in

ES0:9 ~L
� �¼ 1

1�0:9
E ~L �1 ~L�q0:9f g
h i

�q0:9 P ~L� q0:9
� 	�ð1�0:9Þ� 	

� �

¼ 1

1�0:9
0:1 �4þ0:01 �5þ0:05 �7þ0:04 �8½ ��4 � 0:2�0:1½ �ð Þ¼ 7:2%;

ES0:95 ~L
� �¼ 1

1�0:95
0:05 �7þ0:04 �8½ ��7 � 0:09�0:05½ �ð Þ¼ 7:8%:

For demonstration purposes, an ES-definition based on the upper instead of the

lower quantile is calculated, too:

ES0:9 ~L
� � ¼ 1

1� 0:9
E ~L � 1 ~L� q0:9f g
h i

� q0:9 P ~L � q0:9
� 	� ð1� 0:9Þ� 	

� �

¼ 1

1� 0:9
0:01 � 5þ 0:05 � 7þ 0:04 � 8½ � � 5 � 0:1� 0:1½ �ð Þ ¼ 7:2%;

ES0:95 ~L
� � ¼ 1

1� 0:95
0:05 � 7þ 0:04 � 8½ � � 7 � 0:09� 0:05½ �ð Þ ¼ 7:8%:

It can be seen that the definitions based on the upper as well as on the lower

quantile lead to the same result, even if the calculation itself differs for a ¼ 0:9.

2.2.3 Coherency of Risk Measures

As demonstrated in Sect. 2.2.2, there exist several measures that could be used for

quantifying credit portfolio risk. To identify suitable risk measures, it is reasonable

to analyze which mathematical properties should be satisfied by a risk measure to

correspond with rational decision making. Based on this, it is possible to evaluate

different measures concerning their ability to measure risk in the desired way.

Against this background, Artzner et al. (1997, 1999) define a set of four axioms and

call the risk measures which satisfy these axioms “coherent”. Some authors even
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mention that these axioms are the minimum requirements which must be fulfilled

by a risk measure and therefore do not distinguish between coherent and non-

coherent risk measures but denominate only measures that satisfy these axioms

“risk measures”.36

For a mathematical description of these properties, it is assumed that G is as set

of real-valued random variables (for instance the losses of a set of credits). A

function r : G ! R is called a coherent risk measure if the following axioms are

satisfied:37

(A) Monotonicity: 8~L1; ~L2 2 G with ~L1 � ~L2 ) rð~L1Þ � rð~L2Þ.
This means that if the losses of portfolio 1 are smaller than the losses of portfolio

2, then the risk of portfolio 1 is smaller than the risk of portfolio 2.

(B) Subadditivity: 8~L1; ~L2 2 G ) rð~L1 þ ~L2Þ � rð~L1Þ þ rð~L2Þ.
This axiom reflects the positive effect of diversification. If two portfolios are

aggregated, the combined risk should not be higher than the sum of the

individual risks. This also means that a merger does not create extra risk. If

this axiom is not fulfilled, there is an incentive to reduce the measured risk by

asset stripping. Another positive effect is the enabling of a decentralized risk

management. If the risk measure r is interpreted as the amount of economic

capital that is required as a cushion against the portfolio loss, each division of

an institution could measure its own risk and could have access to a specified

amount of economic capital because the sum of the measured risk or required

capital is an upper barrier of the aggregated risk or required capital.

(C) Positive homogeneity: 8~L 2 G; 8h 2 R
þ ) rðh � ~LÞ ¼ h � rð~LÞ.38

If a multiple h of an amount is invested into a position, the resulting loss and the

required economic capital will be a multiple h of the original loss, too. It is

important to notice that this axiom is not necessarily valid for liquidity risk.39

36See e.g. Szegö (2002), p. 1260, and Acerbi and Tasche (2002a), p. 380 f.
37Cf. Artzner et al. (1999), p. 209 ff. The definition of the axioms is slightly different from the

original set because here the variables ~L1, ~L2 correspond to a portfolio loss instead of a future net

worth of a position; see also Bluhm et al. (2003), p. 166. Moreover, it has to be noted that within

the axioms of coherency the loss variables ~L; ~Li refer to absolute instead of relative losses.
38
R

þ denotes all real numbers greater than zero.
39The liquidity risk argument is: “If I double an illiquid portfolio, the risk becomes more than

double as much!”; see Acerbi and Scandolo (2008), p. 3. Therefore, axiom (B) and (C) are

sometimes replaced by a single weaker requirement of convexity: 8~L1; ~L2 2 G;8h 2 ½0; 1� )
r h � ~L1 þ 1� hð Þ � ~L2
� � � h � r ~L1

� �þ 1� hð Þ � r ~L2
� �

; cf. Carr et al. (2001), Frittelli and Rosazza

Gianin (2002) or Föllmer and Schied (2002). Acerbi and Scandolo (2008) agree with the statement

above but they deny that the coherency axioms are contradicted by this. They argue that the axiom

has to be interpreted in terms of portfolio values and not of portfolios. In liquid markets the

relationship between a portfolio and the value is linear (“if I double the portfolio I double the

value”), and therefore there is no difference whether thinking about portfolios or portfolio values.

However, in illiquid markets the value function is usually non-linear. Based on a proposal of a
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(D) Translation invariance: 8~L 2 G; 8m 2 R ) rð~Lþ mÞ ¼ rð~LÞ þ m:

If there is an amountm in the portfolio that is lost at the considered horizon with

certainty, then the risk is exactly this amount higher than without this position.

In the following, it will be shown that the VaR is not a coherent risk measure

as it lacks of subadditivity. The same is true for the TCE if the distribution is

discrete.40 However, the ES satisfies all four axioms and therefore is a (coherent)

risk measure.

The monotonicity of the VaR directly follows from its definition. If a stochastic

variable ~e � 0 is introduced so that ~L1 þ ~e ¼ ~L2, it follows that

VaRa ~L1
� � ¼ inf l 2 RjP ~L1 � l

� 	 � a

 �

� inf l 2 RjP ~L1 � l� ~e
� 	 � a


 �

¼ inf l 2 RjP ~L2 � l
� 	 � a


 �

¼ VaRa ~L2
� �

:

(2.21)

To show the positive homogeneity, a variable l ¼ h � x is introduced so that it

follows 8~L 2 G and 8h 2 R
þ:

VaRa h � ~L� � ¼ inf l 2 RjP h � ~L � l
� 	 � a


 �

¼ h � inf x 2 RjP h � ~L � h � x� 	 � a

 �

¼ h � VaRa ~L
� �

:

(2.22)

Furthermore, the VaR is translation invariant since 8~L 2 G and with l ¼ xþ m
we obtain:

VaRa ~Lþ m
� � ¼ inf l 2 RjP ~Lþ m � l

� 	 � a

 �

¼ inf x 2 RjP ~Lþ m � xþ m
� 	 � a


 �þ m

¼ VaRa ~L
� �þ m:

(2.23)

The lack of subadditivity of the VaR is sufficient to be shown by an example. It is

assumed that a loan A and a loan B both have a PD of 6%, an LGD of 100%, and an

EAD of 0.5. The VaR at confidence level 90% of each loan is

VaR0:9
~LA
� � ¼ VaR0:9

~LB
� � ¼ 0: (2.24)

formalism for liquidity risk and a proposed non-linear value function, the authors show that

liquidity risk is compatible with the axioms of coherency. Further they show that convexity is

not a new axiom but a result of the other axioms under their formalism.
40Cf. Acerbi and Tasche (2002b), p. 1499, for an example. As the rest of the study focuses on the

VaR and the ES, only these risk measures will be analyzed regarding coherency.
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If both loans are aggregated into a portfolio, the risk should be smaller or equal

to the sum of the individual risks. Assuming that the default events are independent

of each other, the probability distribution is given as

P ~LA þ ~LB ¼ 0
� � ¼ 1� 0:06ð Þ2 ¼ 88:36%;

P ~LA þ ~LB ¼ 0:5
� � ¼ 0:06 � 1� 0:06ð Þ þ 1� 0:06ð Þ � 0:06 ¼ 11:28%;

P ~LA þ ~LB ¼ 1
� � ¼ 0:062 ¼ 0:36%:

(2.25)

Thus, the VaR at confidence level 90% of the portfolio is

VaR0:9
~LA þ ~LB
� � ¼ 0:5 (2.26)

leading to

VaR0:9
~LA þ ~LB
� �

>VaR0:9
~LA
� �þ VaR0:9

~LB
� �

: (2.27)

This shows that the VaR can be superadditive and thus it is not a coherent risk

measure. An important exception is the class of elliptical distributions, e.g. the

multivariate normal distribution and the multivariate student’s t-distribution, for

which the VaR is indeed coherent.41 As credit risk usually cannot be sufficiently

described by elliptical distributions, the lack of coherency can be very critical.

To demonstrate the coherency of ES, it is helpful to use a further representation

of (2.19). The purpose is to integrate the second term of (2.19) into the expectation

of the first term. Defining a variable 1a ~L�qaf g that is

1a ~L�qaf g :¼
1 ~L�qaf g if P ~L ¼ qa

� 	 ¼ 0;

1 ~L�qaf g � P ~L�qa½ �� 1�að Þ
P ~L¼qa½ � � 1 ~L¼qaf g if P ~L ¼ qa

� 	

> 0;

8

<

:

(2.28)

the ES can be written as42

ESa ~L
� � ¼ 1

1� a
� E ~L � 1a ~L�qaf g
 �

: (2.29)

For the proof of coherency the following properties will be used:43

E 1a ~L�qaf g
 �

¼ 1� a; (2.30)

41Cf. Embrechts et al. (2002). An interesting result is that under the standard assumption of

normally distributed returns, Markowitz m–s-efficient portfolios are also m–VaR-efficient.
42Cf. Acerbi et al. (2001), p. 8, and Acerbi and Tasche (2002b), p. 1493. For a formal proof see

Appendix 2.8.1.
43These properties are derived in Appendix 2.8.1, too. See also Acerbi et al. (2001) for a proof

based on the ES-definition using upper instead of lower quantiles.
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1a ~L�qaf g 2 0; 1½ �: (2.31)

From definition (2.28) and property (2.31) it can be seen that the variable

1a ~L�qaf g is not the “normal” indicator function but can also take values between

zero and one. Subsequently, the coherency of ES will be shown.44 Themonotonicity
of the ES can easiest be shown with the integral representation (2.20). It has already

been shown that qað~L1Þ � qað~L2Þ for ~L1 � ~L2 and it can be seen from (2.21) that the

same is true for qað~L1Þ � qað~L2Þ. Therefore, it follows

ESa ~L1
� � ¼ 1

1� a

ð

1

a

qu ~L1
� �

du

� 1

1� a

ð

1

a

qu ~L2
� �

du ¼ ESa ~L2
� �

:

(2.32)

Using the positive homogeneity of the quantile from (2.22), the ES can shown to

be positive homogeneous as well:

ESa h � ~L� � ¼ 1

1� a
� E h � ~L � 1a

h�~L�qa h� ~Lð Þf g
 �

¼ 1

1� a
� E h � ~L � 1a ~L�qa ~Lð Þf g
 �

¼ h � ESa ~L
� �

:

(2.33)

The translation invariance can be obtained using E 1a ~L�qaf g
 �

¼ 1� a (see

(2.30)):

ESa ~Lþ m
� � ¼ 1

1� a
� E ~Lþ m

� � � 1a ~Lþmð Þ�qa ~Lþmð Þf g
 �

¼ 1

1� a
� E ~Lþ m

� � � 1a ~L�qa ~Lð Þf g
 �

¼ 1

1� a
� E ~L � 1a ~L�qa ~Lð Þf g
 �

þ m

1� a
� E 1a ~L�qa ~Lð Þf g
 �

¼ ESa ~L
� �þ m:

(2.34)

44See also Acerbi and Tasche (2002b).
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It remains to show the subadditivity of the ES. Introducing the random variables
~L1, ~L2 and ~L3 ¼ ~L1 þ ~L2, the following statement has to be true:

ESa ~L1
� �þ ESa ~L2

� �� ESa ~L3
� � � 0: (2.35)

Using representation (2.29) and multiplying by ð1� aÞ leads to

E ~L1 � 1a ~L1�qa ~L1ð Þf g þ ~L2 � 1a ~L2�qa ~L2ð Þf g � ~L3 � 1a ~L3�qa ~L3ð Þf g
 �

¼ E ~L1 � 1a ~L1�qa ~L1ð Þf g � 1a ~L3�qa ~L3ð Þf g
� �

þ ~L2 � 1a ~L2�qa ~L2ð Þf g � 1a ~L3�qa ~L3ð Þf g
� � �

:

(2.36)

If the terms in brackets are analyzed, we find that

1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g ¼
1� 1a ~L3�qa ~L3ð Þf g � 0 if ~Li > qa ~Li

� �

;

0� 1a ~L3�qa ~L3ð Þf g � 0 if ~Li < qa ~Li
� �

;

8

<

:

(2.37)

with i 2 ½1; 2�, due to the fact that 1a ~L�qaf g 2 0; 1½ �. Consequently, we have

~Li � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g
� �

� qa ~Li
� � � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g

� �

if ~Li>qa ~Li
� �

;

~Li � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g
� �

� qa ~Li
� � � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g

� �

if ~Li<qa ~Li
� �

;

~Li � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g
� �

¼ qa ~Li
� � � 1a ~Li�qa ~Lið Þf g � 1a ~L3�qa ~L3ð Þf g

� �

if ~Li ¼ qa ~Li
� �

;

(2.38)

and therefore

~Li � 1a ~Li � qa ~Lið Þf g � 1a ~L3 � qa ~L3ð Þf g
� �

� qa ~Li
� � � 1a ~Li � qa ~Lið Þf g � 1a ~L3 � qa ~L3ð Þf g

� �

:

(2.39)
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Using this inequality and again E 1a ~L� qaf g
 �

¼ 1� a according to (2.30), we

find that

E ~L1 � 1a ~L1�qa ~L1ð Þf g � 1a ~L3�qa ~L3ð Þf g
� �

þ ~L2 � 1a ~L2�qa ~L2ð Þf g � 1a ~L3�qa ~L3ð Þf g
� � �

� qa ~L1
� � � E 1a ~L1�qa ~L1ð Þf g

 �

� E 1a ~L3�qa ~L3ð Þf g
 �� �

þ qa ~L2
� � � E 1a ~L2�qa ~L2ð Þf g

 �

� E 1a ~L3�qa ~L3ð Þf g
 �� �

¼ qa ~L1
� � � 1� að Þ � 1� að Þð Þ þ qa ~L2

� � � 1� að Þ � 1� að Þð Þ
¼ 0:

(2.40)

Thus, in contrast to the VaR, the ES is subadditive. Since all four axioms are

fulfilled, the ES is indeed a coherent risk measure. In addition to the ES, there exist

several other coherent risk measures. A class of coherent risk measures is given by

the so-called spectral measures of risk with the ES as a special case. This class

allows defining a risk-aversion function which leads to different coherent risk

measures provided that the risk-aversion function satisfies some conditions pre-

sented by Acerbi (2002).45 However, for the rest of this study the focus will be on

the (non-coherent) VaR and the (coherent) ES.

2.2.4 Estimation and Statistical Errors of VaR and ES

Only in minor cases the VaR and the ES will directly be calculated by (2.15) and

(2.19), respectively. In real-world applications, the risk measures will mostly be

computed via historical simulation or Monte Carlo simulation. In a historical
simulation, the probability distribution of the loss variable or of several risk factors
is assumed to be identical to the empirical distribution of a defined period. More-

over, it is assumed that the realizations are independent of each other. For example,

future scenarios will be generated by drawing from J ¼ 52 historically observed

weekly returns with identical probability. In aMonte Carlo simulation, there exists
an analytic description of the risk drivers and the dependency between risk drivers

and portfolio loss but there is no well-known closed form solution of the probability

distribution of the portfolio loss. Thus, a large number J of scenarios can be

generated by drawing J independent outcomes of the risk drivers. Using the

known dependence structure, J outcomes of the portfolio loss can be computed,

which build the simulation-based probability distribution of the portfolio loss.

45See also Acerbi (2004), p. 168 ff.
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This simulation-based distribution converges towards the exact portfolio distribu-

tion as J ! 1.

For a historical simulation as well as for a Monte Carlo simulation, the result is

given as a sequence Lj

 �

j¼1;:::;J
, where each Lj is a realization of the portfolio loss

variable ~L. Based on this, the empirical distribution is defined as46

FðJÞðlÞ ¼ P ~L � l
� 	 ¼ 1

J
�
X

J

j¼1

1 Lj�lf g: (2.41)

For computation of the corresponding VaR and ES, it is useful to introduce the

so-called order statistics Lj:J

 �

j¼1;:::;J
. Therefore, the sample is sorted into an

increasing order such that

L1:J � L2:J � ::: � LJ:J: (2.42)

Now, let xb c and xd e denote the floor function and the ceiling function of a real

number x 2 R:

xb c ¼ max n 2 Zjn � xf g; (2.43)

xd e ¼ min n 2 Zjn � xf g; (2.44)

where Z denotes the set of all integers. Then, using the definition of the lower VaR

(2.12) and the upper VaR (2.13), the empirical estimator of VaR is given as47

VaR
ðJÞ
a ~L
� � ¼ VaRaðJÞ ~L

� � ¼ L J�ad e:J if J � a =2Z;

VaR
ðJÞ
a ~L
� � ¼ LJ�a:J

VaRaðJÞ ~L
� � ¼ LJ�aþ1:J

)

if J � a 2 Z:
(2.45)

This means that except for special cases the VaR is simply given by the J � a-th
element (rounded up) of the ordered loss sequence. An important characteristic of

the empirical estimator is its consistency for large J if the lower VaR equals the

upper VaR:

lim
J!1

VaRðJÞ
a

~L
� � ¼ VaRa ~L

� � ¼ VaRa ~L
� �

: (2.46)

Otherwise the empirical estimators of VaR “flip between the possible values

VaRað~LÞ and VaRað~LÞ”.48

46Cf. Acerbi (2004), p. 166.
47Cf. also Acerbi (2004), p. 167.
48Acerbi (2004), p. 168. This can be illustrated by the “head-or-tail”-example of Acerbi (2004).

Let both equiprobable events be related to the loss of {–1, 0}. The VaRs are given as VaR0:5 ¼ �1

and VaR0:5 ¼ 0 but even for large J the 50%-quantile neither converges to –1 nor to 0 but flips

between these values.
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The empirical estimator of ES can be determined with49

ESðJÞa
~L
� � ¼ 1

J � ð1� aÞ �
X

J

j¼ J�ad e
Lj:J � J � a� J � ab cð Þ � L J�ad e:J

0

@

1

A: (2.47)

In the example of J ¼ 52 weekly returns, the 90%-ES can be computed as

ESð52Þa
~L
� � ¼ 1

5:2
�
X

52

j¼47

Lj:52 � 46:8� 46ð Þ � L47:52
 !

: (2.48)

This shows that the ES can be interpreted as the average loss in the worst 5.2

scenarios. As can be seen from (2.47), the last term is negligible if J is large. Thus,
for historical simulation with a relatively small number of scenarios it is important

to consider this term whereas it could be neglected in Monte Carlo simulations

since there is typically a very large number of generated scenarios. When J � a 2 Z,

the empirical estimator simplifies to

ESðJÞa
~L
� � ¼ 1

J � ð1� aÞ �
X

J

j¼J�aþ1

Lj:J: (2.49)

Acerbi and Tasche (2002b) showed that the estimator for the ES is consistent for

large J:

lim
J!1

ESðJÞa
~L
� � ¼ ESa ~L

� �

: (2.50)

As shown in the previous sections, the ES has some significant theoretical

advantages in comparison with the VaR. But from a practical perspective, the ES

is often criticized to be much less robust than the VaR. Consequently, the theoreti-

cal advantages of ES could be useless if the number of observations was limited,

and thus the VaR would be a much more reliable risk measure than the ES. The

standard argument is reproduced by Acerbi (2004) as follows: “VaR does not even

try to estimate the leftmost tail events, it simply neglects them altogether, and

therefore it is not affected by the statistical uncertainty of rare events. ES on the

contrary, being a function of rare events also, has a much larger statistical error”.

Against this background, Acerbi (2004) analyzes the statistical errors of VaR

49Cf. Acerbi (2004), p. 166 f.
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and ES. For continuous distributions of a random variable ~X, the variances of the
estimators for large J are given as50

V VaRðJÞ
a

~X
� �

� �

¼J�1 1

J
� a � 1� að Þ
f F�1 að Þð Þ2 ; (2.51)

V ESðJÞa
~X
� �

� �

¼J�1 1

J � ð1� aÞ2 �
ð

F�1ðaÞ

y¼0

ð

F�1ðaÞ

z¼0

min FðyÞ;FðzÞ � FðyÞ � FðzÞð Þdz dy;

(2.52)

where F denotes the cumulative distribution function (CDF) of ~X, F�1 is the inverse

CDF, and f ¼ dF=dx stands for the probability density function (PDF). From (2.51)

and (2.52), it can be seen that the estimator of VaR as well as the estimator of ES

have the same dependence on the number of trials J. For both estimators, the

precision in terms of standard deviation of the demanded statistics can be improved

by factor m if the number of trials is increased by factor m2. However, even if

the standard deviations of the estimators are in both cases of order Oð1 ffiffiffi

J
p� Þ,51 the

constant factors could be very different. Therefore, Acerbi (2004) compares the

relative error of VaR and of ES for several heavy-tailed probability distributions

and confidence levels.52 He finds that in most cases the relative errors of VaR and

ES are very similar. Only in some cases the relative error of ES is at most twice as

much as the error of VaR at very high confidence levels. Even if the results of this

analysis need not to be true in general, VaR and ES seem to have similar statistical

errors and therefore there is no practical burden in implementing the ES instead of

the VaR.

2.3 The Unconditional Probability of Default Within

the Asset Value Model of Merton

In order to measure the risk of a credit portfolio according to (2.8), it is necessary

to specify the stochastic dependence of loan defaults. A widely-used model is the

Vasicek model,53 which is based on the asset value model of Merton (1974). In

this type of model it is assumed that a firm does not default as a consequence of

insufficient liquidity at the moment of repaying a credit because the firm could sell a

50Cf. Acerbi (2004), p. 200 f.
51The Landau symbol Oð�Þ is defined as in Billingsley (1995), p. 540, A18.
52The analyses are performed for lognormal distributions with different volatility parameters and

for power law distributions with different shape parameters.
53See e.g. Vasicek (1987, 1991, 2002) and Finger (1999, 2001).
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part of its assets or it could issue stocks or bonds in order to repay the credit. This

can be done as long as the value of liabilities is higher than the value of assets

because thenceforward the market participants will not be willing to pay for a

security of the firm. Thus, it is assumed that a firm defaults if the asset value ~AT is

lower than the value of liabilities B payable at time T: ~AT <B.54 Consequently, the
probability of default is given by

PD ¼ P ~AT <B
� �

: (2.53)

The asset value A is modeled as a geometric Brownian motion:55

dAt ¼ mAt dtþ sAt dWt with dWt ¼ ~e
ffiffiffiffi

dt
p

; ~e � Nð0; 1Þ; (2.54)

using the drift rate m, the volatility s and the standard Wiener process dWt.
56

In order to get a closed form solution of the distribution of the asset value at time

T, Itô’s Lemma is applied to (2.54) leading to57

dYt ¼ d lnAt ¼ m� 1

2
s2

� �

dtþ s dWt: (2.55)

This shows that the logarithm of the asset value follows a generalized Wiener

process with drift rate m� 1 2= s2 and variance rate s2. As the logarithm of the asset

value is normally distributed, the asset value is lognormally distributed. The

distribution of the asset value at time T results by integration of (2.55) from t ¼ 0

to t ¼ T:

ln
~AT

A0

� �

¼ ln ~AT � lnA0 ¼
ð

T

t¼0

d lnAt

¼
ð

T

t¼0

m� 1

2
s2

� �

dtþ
ð

T

t¼0

sdWt

¼ m� 1

2
s2

� �

T þ s ~WT �W0

� �

, ~AT ¼ A0 � exp m� 1

2
s2

� �

T þ s ~WT

 �

;

(2.56)

54As can be seen by this expression, the liabilities are assumed to have the structure of a zero

coupon bond that has to be paid completely at time T.
55A normal distribution with expectation m and variance s2 is indicated by Nðm; s2Þ. Thus, the
expression ~e � Nð0; 1Þ denotes that ~e follows a standard normal distribution.
56For details to the Wiener process see Hull (2006), p. 328 ff.
57See Appendix 2.8.2.

26 2 Credit Risk Measurement in the Context of Basel II



using the characteristic of a Wiener process W0 ¼ 0. Using this distribution of the

assets at time T from (2.56) and the definition of the Wiener process, the probability

of default (2.53) can be calculated:58

PD ¼ P ~AT <B
� �

¼ P ln
~AT

A0

� �

< ln
B

A0

� �� �

¼ P m� 1

2
s2

� �

T þ s ~WT < ln
B

A0

� �� �

¼ P ~e �
ffiffiffi

T
p

<
ln B

A0

� �

� m� 1
2
s2

� �

T

s

0

@

1

A

¼ P ~e< � ln A0

B

� �þ m� 1
2
s2

� �

T

s � ffiffiffi

T
p

 !

¼ F � ln A0

B

� �þ m� 1
2
s2

� �

T

s � ffiffiffi

T
p

 !

¼: F �dð Þ:

(2.57)

This expression is also known from the Black–Scholes formula of option

pricing.59 The variable d is called “distance to default”, as a high value of d
indicates a high equity buffer before a default event can happen. As can be seen

in (2.57), the distance to default is higher if the relation of asset to liability value and

the drift rate are high and the volatility is low. The problem of asset value models is

that the asset value process is not observable and therefore the model cannot easily

be calibrated. For firms listed on the stock exchange, the equity values can be

observed instead. Therefore, several approaches have been developed for a trans-

formation of equity into asset values.60

There also exist several extensions of the asset value model of Merton (1974).

Black and Cox (1976) have introduced a first passage model, which means that the

firm defaults when the asset value is lower than a default barrier for the first time

and not only at the time of maturity T. In the first passage model of Longstaff and

Schwartz (1995) it is assumed that the short-term risk-free interest rate is stochastic,

modeled with a Vasicek process, and the risk-free interest rate is correlated with the

asset value. Zhou (2001) models the asset return with a jump-diffusion process and

thus introduces an additional source of uncertainty leading to empirically more

59See Black and Scholes (1973) and Merton (1973).
60See for example Bluhm et al. (2003), p. 141 ff. In the documentation of the KMV model (see

Crosbie and Bohn 1999) the classical Merton approach is described for solving this problem but

according to Bluhm et al. (2003), KMV uses an undisclosed, more complicated algorithm for this

task.
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plausible results for short-term loans. In addition to the class of asset value models,

the probability of default is often determined with reduced-form models. In this

class, a default is not determined endogenously but it is an exogenous event, and the

default time is modeled as the first jump in a jump process. One of the first reduced-

form models has been developed by Jarrow and Turnbull (1995).61 Although the

extensions of Merton’s asset value model as well as the intensity models usually

show a better empirical performance for modeling the PD, it is not necessarily

problematic for the validity of the subsequently presented Vasicek model. Even if

this model is based on the Merton model, the PD can be determined exogenously

with any estimation method as can be seen in the subsequent section.

2.4 The Conditional Probability of Default Within

the One-Factor Model of Vasicek

In contrast to the Merton model, the Vasicek model does not focus on the probabil-

ity of default of a single obligor but quantifies the probability distribution of losses

in a loan portfolio. Since the asset value processes and as a consequence the default

events cannot be assumed to be independent of each other, a systematic factor is

introduced into the model that influences all asset values in a portfolio.62 As the

stochastic interdependence between the firms is modeled by one systematic factor,

the model is also called the Vasicek one-factor model. The systematic factor is

introduced into the model by decomposing the stochastic component of the asset

value process from (2.54) or (2.56) into two components that realize at a future

point in time T: a systematic part ~x that influences all firms within the portfolio and a

firm-specific (idiosyncratic) part ~ei. Thus, the stochastic component ~Wi;T of each

obligor i in t ¼ T can be represented as

~Wi;T ¼ bi � ~xT þ ci � ~ei;T ; (2.58)

in which ~xT � Nð0; TÞ and ~ei;T � Nð0; TÞ are independently and identically nor-

mally distributed with mean zero and standard deviation
ffiffiffi

T
p

for all i 2 1; :::; nf g.
The degree of the stochastic dependence to the systematic and the idiosyncratic

factors is represented by the factor loadings bi and ci. In the context of such factor

models, the stochastic component ~Wi, mathematically the realization of a standard

Wiener process, is usually called the “standardized log-return” of a firm, since this

variable results from the logarithm of the asset returns lnð ~AT=A0Þ after standardiza-
tion, see (2.57). For the sake of clarity, the standardized log-returns of the assets

61A review of the literature regarding structural and reduced-form models can be found in Duffie

and Singleton (2003) and Grundke (2003), p. 15 ff.
62Cf. Vasicek (1987).
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will be denoted by ~ai instead of ~Wi in the following. Using this notation and

choosing a time period of T ¼ 1 (e.g. 1 year), (2.58) can be written as

~ai ¼ bi � ~xþ ci � ~ei (2.59)

with ~x � Nð0; 1Þ and ~ei � Nð0; 1Þ. The factor loadings can be written as bi ¼ ffiffiffiffi

ri
p

and ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

, where ri is some constant, as this assures an expectation value of

zero and a standard deviation of one of the standardized log-returns ~ai:

E ~aið Þ ¼ E
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei

� �

¼ ffiffiffiffi

ri
p � E ~xð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � E ~eið Þ ¼ 0; (2.60)

V ~aið Þ ¼ V
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei

� �

¼ ri � V ~xð Þ þ 1� rið Þ � V ~eið Þ
¼ ri þ 1� rið Þ ¼ 1: (2.61)

In this model, the correlation structure of each firm i is represented by the firm-

specific correlation
ffiffiffiffi

ri
p

to the common factor.63 The correlation between the

logarithmic asset returns of two firms i, j, which is also called the asset correlation,
can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiri � rjp
or simply as r for the case of a homogeneous

correlation structure:

r ¼ Corr ln
~Ai;T

Ai;0

� �

; ln
~Aj;T

Aj;0

� �� �

¼ Corr ~ai; ~aj
� �

¼ Cov ~ai; ~aj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~aið Þ � V ~aj
� �

q ¼ Cov ~ai; ~aj
� �

¼ Cov
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei; ffiffiffiffi

rj
p � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rj
q

� ~ej
� �

¼ Cov
ffiffiffiffi

ri
p � ~x; ffiffiffiffi

rj
p � ~x

� �

¼ ffiffiffiffi

ri
p � ffiffiffiffi

rj
p � V ~xð Þ

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ri � rj
p

:

(2.62)

As already mentioned, within the Vasicek model the probability of default does

not have to be computed by the Merton model above but can be used as an

exogenously given parameter PDi.
64 Corresponding to (2.57), an obligor i defaults

at t ¼ T when the latent variable ~ai falls below a default threshold di, which can be

characterized by

~ai < di , ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei < di: (2.63)

63The factors used in the model are not observable. Therefore, they are also called latent variables.
64The probability of default could either be determined by the institution itself or by a rating

agency.
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Against this background, the threshold di can be determined by the exogenous

specification of PDi:
65,66

PDi ¼ P 1 ~Dif g ¼ 1
� �

¼ P ~ai < dið Þ ¼ FðdiÞ , di ¼ F�1ðPDiÞ: (2.64)

Thus, a default event ~Di of the firm i can be described by

~Di : ~ai ¼ ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei <F�1 PDið Þ: (2.65)

If the loss distribution of a credit portfolio shall be computed by a Monte Carlo

simulation, (2.65) can directly be implemented. In each simulation run the system-

atic factor as well as the idiosyncratic factors of each obligor are randomly gen-

erated. Herewith, the asset return is calculated according to (2.65). If the realization

of ~ai is less than the threshold given by F�1ðPDiÞ, obligor i defaults. Assuming

deterministic LGDs and exposures, the portfolio loss can be determined with

formula (2.8) by summing up the exposure weights wi multiplied by the loss

given default LGDi of each defaulted credit. After repeating this procedure a several

thousand times and sorting the losses of the simulation runs, we obtain the portfolio

loss distribution. At this point it can be seen that the model of Vasicek does not

imply that the PDs are determined on the basis of Merton’s asset value model of the

previous section. Instead, every estimation method can be used for this purpose and

only the dependence structure is specified by the model of Vasicek.

If the loss distribution or some characteristics of the distribution like the VaR

or the ES shall be determined analytically, it is helpful to make use of the condi-

tionally independence property of the asset returns. This means that for a given

realization of the systematic factor, the asset returns are stochastically independent.

Conditional on a realization of the systematic factor ~x ¼ x, the probability of default
of each obligor is

P 1 ~Dif g ¼ 1j~x ¼ x
� �

¼ P ~ai < dij~x ¼ xð Þ

¼ P
ffiffiffiffi

ri
p � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ~ei <F�1 PDið Þj~x ¼ x

� �

¼ P ~ei <
F�1 PDið Þ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

¼: piðxÞ:

(2.66)

65The function F�1ð�Þ stands for the inverse standard normal CDF.
66If the probability of default is determined by the asset value model, the default threshold di
equals the negative distance to default � d, see (2.57).
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This conditional probability of default piðxÞ is the PD that would be assigned if

the realization of the systematic factor at the horizon was known. By contrast, the

unconditional probability of default reflects all information that is currently avail-

able, which means that the systematic factor is a random variable and therefore

unknown. The unconditional PD equals the average value of the conditional PD

across all possible realizations of the systematic factor.67 This can be shown using

the law of iterated expectations:68

E pið~xÞð Þ ¼ E P 1 ~Dif g ¼ 1j~x
� �� �

¼ E E 1 ~Dif gj~x
� �� �

¼ E 1 ~Dif g
� �

¼ P 1 ~Dif g ¼ 1
� �

¼ PDi:
(2.67)

Formula (2.66) for the conditional probability of default is sometimes called the

Vasicek formula and is also used within the Basel framework. Details will be

described in Sect. 2.7.

2.5 Measuring Credit Risk in Homogeneous Portfolios

with the Vasicek Model

In order to achieve an analytical solution of the loss distribution, it is helpful

to assume that the credit portfolio is homogeneous. In a homogeneous portfolio,

all credits have the same PD, an identical (deterministic) LGD, the same EAD, and

an identical asset correlation:69

PDi ¼ PD; LGDi ¼ LGD; EADi ¼ EAD; and ri ¼ r 8i¼ 1; :::;n: (2.68)

In (sub-)portfolios where the credits have similar exposures and similar risk

characteristics the assumption of homogeneity should not be critical and lead to a

good approximation of the loss distribution. Candidates for application of such a

simplification are retail portfolios and in some cases portfolios of smaller banks.70

In a homogeneous portfolio, a default of k credits leads to a relative loss of

l ¼ k � EAD � LGD
n � EAD ¼ k

n
� LGD: (2.69)

67Cf. Gordy (2003), p. 203.
68Cf. Franke et al. (2004), p. 41.
69This section is based on Vasicek (1987).
70Cf. Bluhm et al. (2003), p. 60.

2.5 Measuring Credit Risk in Homogeneous Portfolios with the Vasicek Model 31



As the defaults are exchangeable, this loss results for any k defaults. The

probability of this event is

P

X

n

i¼1

1 ~Dif g¼ k

 !

¼ n
k

� �

|ffl{zffl}

	

�P ~A1;T<B1; . . . ; ~Ak;T<Bk
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

		

; ~Akþ1;T �Bkþ1; . . . ; ~An;T �Bn
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

			

0

@

1

A:

(2.70)

The expression ~Ai;T <Bi indicates a default of firm i.71 Therefore, the term (**)

refers to a default of the first k credits, whereas the other n–k credits (***) do not

default. The binomial coefficient (*) represents the number of possible combina-

tions of k defaults out of n credits. Using the conditional independence property of

Sect. 2.4, the probability of having k defaults can easily be computed within the

one-factor model:72

Pk ¼P

X

n

i¼1

1 ~Dif g ¼ k

 !

¼ n

k

� �

�P ~A1;T<B1; :::; ~Ak;T<Bk; ~Akþ1;T �Bkþ1; :::; ~An;T �Bn

� �

¼ n

k

� �

�
ð

1

x¼�1
P ~A1;T<B1; :::; ~Ak;T<Bk; ~Akþ1;T �Bkþ1; :::; ~An;T �Bnj~x¼ x
� �

dFðxÞ

¼ n

k

� �

�
ð

1

x¼�1
P ~e1<

F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p ; :::;~ek<

F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p ;

�

~ekþ1 �
F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p ; :::;~en �

F�1 PDð Þ� ffiffiffi

r
p �x

ffiffiffiffiffiffiffiffiffiffiffi

1�r
p

�

dFðxÞ

¼
ð

1

x¼�1

n

k

� �

� pðxÞð Þk � 1�pðxÞð Þn�kdFðxÞ:

(2.71)

This is also known as the Vasicek binomial model since the number of defaults

(and the gross loss rate) of the portfolio is binomially distributed with probability

pðxÞ for a realization of the systematic factor ~x ¼ x:73

71Cf. Sect. 2.3
72The second step is performed by using the Bayes’ theorem for continuous distributions, cf.

Appendix 2.8.3, and the standard normal distribution of the systematic factor.
73The notation Bðn; pÞ indicates a binomial distribution with parameters n and p.
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X

n

i¼1

1 ~Dif gjx
 !

� B n; pðxÞð Þ: (2.72)

Hence, the conditional probability of k defaults equals

P

X

n

i¼1

1 ~Dif g ¼ kj~x ¼ x

 !

¼ n
k

� �

� pðxÞð Þk � 1� pðxÞð Þn�k; (2.73)

which is the integrand of (2.71).74

Due to the homogeneity of exposures, the corresponding loss distribution func-

tion is given as75

FðnÞðlÞ ¼ P ~L � l
� � ¼ P

1

n
� LGD �

X

n

i¼1

1 ~Dif g � l

 !

¼ P

X

n

i¼1

1 ~Dif g � l � n
LGD

 !

¼
X

l�n=LGDb c

k¼0

Pk: (2.74)

With (2.71) and (2.74), the distribution can be computed via numerical integra-

tion; thus, in the case of homogeneous portfolios, there is no need for a Monte Carlo

simulation. Furthermore, applying definition (2.15) and (2.19), the risk measures

VaR and ES within the Vasicek binomial model can be computed, which will be

named VaRðnÞðlÞ and ESðnÞðlÞ, respectively, leading to

VaRðnÞ
a

~L
� � ¼ inf l 2 RjP ~L � l

� 	 ¼
X

l�n=LGDb c

k¼0

Pk � a

( )

; (2.75)

ESðnÞa
~L
� � ¼ 1

1� a
E ~L � 1 ~L�VaR

ðnÞ
af g

 �

� VaRðnÞ
a P ~L � VaRðnÞ

a

h i

� ð1� aÞ
h i

� �

:

(2.76)

If it is assumed that the portfolio consists of an infinite number of obligors,76 an

easy-to-handle closed form solution of the loss distribution and the probability

74See also Gordy and Heitfield (2000).
75The symbolism xb c is defined as in (2.43).
76In this case, the homogeneous portfolio is called “infinitely fine grained”. See also Sect. 2.6 for

further details.
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density function can be achieved. According to Vasicek (1991), the resulting limit
distribution is77

Fð1ÞðlÞ ¼ lim
n!1FðnÞðlÞ

¼ F
1
ffiffiffi

r
p �

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 l

LGD

� �

� F�1 PDð Þ
� �� �

(2.77)

and the corresponding probability density function equals

f ð1ÞðlÞ¼
ffiffiffiffiffiffiffiffiffiffi

1�r
r

s

�exp � 1

2r
�

ffiffiffiffiffiffiffiffiffiffi

1�r
p

�F�1 l

LGD

� �

�F�1 PDð Þ
 �2

þ1

2
F�1 l

LGD

� � �2
 !

:

(2.78)

Both functions are visualized in Fig. 2.2 for the parameter setting PD ¼ 5%,

r ¼ 20%, and LGD ¼ 100%. Obviously, the probability density function is
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Fig. 2.2 Limiting loss distribution of Vasicek (1991)

77See Appendix 2.8.4.
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right-skewed and the function has so-called “fat tails”. Thus, the kurtosis of loss

distributions is typically much higher than the kurtosis of a standard normal

distribution. These characteristics reflect the relatively high probability of suffering

losses that are several times higher than the expected loss.

With this resulting limit distribution, it is possible to quickly approximate the loss

distribution of large subportfolios with similar risk characteristics with high accu-

racy. This could especially be done for subsegments of a bank’s retail portfolio.

Furthermore, as the distribution only depends on the PD, the LGD, and the correla-

tion parameter, the complexity of model calibration is relatively low. Based on the

loss distribution (2.77) the VaR and the ES can be computed in closed form, too:78

VaRð1Þ
a

~L
� � ¼ F

F�1ðPDÞ þ ffiffiffi

r
p � F�1 að Þ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� LGD; (2.79)

ESð1Þ
a

~L
� � ¼ 1

1� a
� F2 F�1ðPDÞ;�F�1 að Þ; ffiffiffi

r
p� � � LGD; (2.80)

where F2ð�Þ stands for the bivariate cumulative normal distribution function. This

function is defined as

F2 x; y; R2
� �

:¼ P ~X � x; ~Y � y
� � ¼

ð

x

u¼�1

ð

y

v¼�1
’2 u; vð Þdv du; (2.81)

where ~X; ~Y are standard normal distributed random variables, which have a corre-

lation of R. The joint density function ’2 of the bivariate standard normal distribu-

tion is defined as79

’2 u; vð Þ :¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
p � exp � 1

2

u2 � 2Ruvþ v2

1� R2

� �

: (2.82)

2.6 Measuring Credit Risk in Heterogeneous Portfolios

with the ASRF Model of Gordy

In order to achieve analytical tractability of a model that can be used for risk

quantification in heterogeneous portfolios, the so-called Asymptotic Single Risk
Factor (ASRF) framework has been developed by Gordy (2003).80 In this frame-

work it is assumed that

78See Appendix 2.8.5.
79Cf. Bronshtein et al. (2007), p. 779 f., especially (16.156).
80See also Bank and Lawrenz (2003).
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(A) The portfolio is infinitely fine-grained and

(B) Only a single systematic risk factor influences the credit risk of all loans in the

portfolio

Assumption (A) refers to the granularity of a portfolio that describes the impact

of a single credit to the overall portfolio. In a portfolio that consists of a small

number of borrowers – a coarse-grained portfolio – there is a relatively high impact

of the firm-specific, idiosyncratic risk component. A portfolio with a high degree of

name concentration is also called a “lumpy” credit portfolio. In contrast, the

idiosyncratic risk vanishes in the limiting case of infinite granularity and the risk

is solely a result of the uncertainty about the systematic risk factor,81 as will be

shown in the following. A portfolio is “infinitely granular” or “asymptotic” if it

consists of a nearly infinite number of credits ðn ! 1Þ with each credit having a

deterministic exposure weight of negligible size. Concretely, the following condi-

tions have to be fulfilled:82

lim
n!1

X

n

i¼1

EADi ¼ 1; (2.83)

X

1

n¼1

EADn

P

n

j¼1

EADj

0

B

B

B

@

1

C

C

C

A

2

<1: (2.84)

Furthermore, it is assumed that all dependencies across credit events can be

expressed by a set of systematic risk factors ~x so that the credit events are mutually

independent conditional on ~x.83 This not only refers to the assumption of condition-

ally independent defaults but also to conditional independence of LGDs and

especially of the products ðgLGDi � 1f ~DigÞ. These conditions are necessary for the

applicability of the strong law of large numbers. As shown in Appendix 2.8.7, these

conditions assure that the portfolio loss (almost surely) equals its conditional

expectation:

P lim
n!1

~L� E ~Lj~x� �� 	 ¼ 0
� �

¼ 1; (2.85)

81Cf. BCBS (2001a), p. 89, } 422. This effect could also be found for the limiting distribution of the

Vasicek binomial model, see Sect. 2.5.
82Cf. Bluhm et al. (2003), p. 87 ff.
83Assumption (B), the existence of only a single systematic risk factor, is not needed at this stage.
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which is usually much easier to calculate than the unconditional loss distribution.84

As demonstrated in Appendix 2.8.8, (2.83) and (2.84) also assure that85

lim
n!1

X

n

i¼1

wi
2 ¼ 0: (2.86)

Thus, the weight of each exposure must be negligible. This formulation is

directly related to the Herfindahl–Hirschmann Index (HHI), a common measure

for indicating the degree of concentration:86

HHI ¼
X

n

i¼1

wi
2 ¼ 1

n	
: (2.87)

In contrast to the actual number of credits n, the variable n* is the so-called

“effective number” of credits. In a homogeneous portfolio, which has the least

possible exposure concentration for a given number of credits, n and n* are

identical. Hence, n* can be interpreted as the number of credits in a homogeneous

portfolio with the equivalent degree of name concentration risk. (2.86) can there-

with be formulated as

lim
n!1

X

n

i¼1

wi
2 ¼ lim

n!1
1

n	
¼ 0; (2.88)

which shows that it is not enough that the actual number of credits goes to infinity

but the effective number of credits must go to infinity.

Using property (2.85) the VaR can be written as87

lim
n!1VaRa ~L

� � ¼ VaRa E ~Lj~x� 	� �

: (2.89)

Additionally, Gordy (2003) has introduced assumption (B), which states that

there is only a single risk factor that influences the credit risk of all loans. Thus, it is

assumed that there exist no sector-specific risk factors such as industry-specific or

84For ease of notation, the convergence of a sequence Xn towards X with probability one is

indicated by lim
n!1Xn ¼ X instead of P lim

n!1Xn ¼ X
� �

¼ 1 in the following.
85This is the result of Kronecker’s Lemma, see Appendix 2.8.8, which is also needed to proof the

strong law of large numbers presented in Appendix 2.8.7. This condition has also been formulated

by Vasicek (2002), p. 160.
86See BCBS (2001a), p. 97, } 459 and Gordy (2003). The HHI was used in this earlier version of

the Basel framework for mapping a heterogeneous portfolio into a comparable homogeneous

portfolio.
87See Gordy (2003), p. 206 ff.
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geographical risk factors and consequently no concentrations in specific sectors. If

assumptions (A) and (B) are fulfilled, the following identity holds:88

VaRa E ~Lj~x� 	� � ¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

: (2.90)

This leads to the important proposition

VaRðASRFÞ
a ¼ lim

n!1VaRa ~L
� � ¼ VaRa E ~Lj~x� 	� � ¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

: (2.91)

As a result of the conditional independence of all credit events, this proposition

can be written as

VaRðASRFÞ
a ¼ E

X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x ¼ VaR1�a ~xð Þ
 !

¼
X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x ¼ VaR1�a ~xð Þ
� �

:

(2.92)

It is obvious that the risk contribution of a single credit is equal to its conditional

expected loss and is therefore constant, regardless of the concrete portfolio to which

the credit is added. This characteristic is also called portfolio-invariance. This can
be explained by the fact that each individual claim does not cause any (further)

diversification effect, since the portfolio has already reached the highest possible

degree of diversification. A further important implication is that the VaR of a

portfolio is exactly additive because the expected value is exactly additive as well.

Consequently, the axiom of subadditivity holds and the VaR is a coherent risk

measure under the assumptions described above.89

The corresponding expression for the risk measure ES is90

lim
n!1ESa ~L

� � ¼ ESa E ~Lj~x� �� �

(2.93)

leading to

ESðASRFÞa
~L
� � ¼ ESa

X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x
� �

 !

: (2.94)

88See Appendix 2.8.9. The slightly different result concerning the confidence level results from a

different definition of the systematic factor. Gordy (2003) assumes that the expected loss is

monotonously increasing in x, whereas here it is assumed that the expected loss is monotonously

decreasing in x. In other words, large values of x indicate a good economic condition in this

setting.
89Cf. Sect. 2.2.2.
90See Appendix 2.8.10.
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Although the equivalent to (2.91) cannot be formulated for the ES in gen-

eral form, many specified single-factor models still allow to determine the ES

analytically.91

2.7 Measuring Credit RiskWithin the IRB Approach of Basel II

The IRB Approach of Basel II is based on both the ASRF framework of Gordy

(2003) and the conditional probability of default resulting from Vasicek (1987).

Under the assumptions of the ASRF framework, it has been shown that the VaR is

given as

VaRðASRFÞ
a

~L
� � ¼

X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x ¼ VaR1�a ~xð Þ
� �

: (2.95)

The confidence level is chosen as a ¼ 0:999 in the Basel framework.92 Further-

more, the conditional probability of default is specified to

P 1 ~Dif g ¼ 1j~x ¼ x
� �

¼ E 1 ~Dif gj~x ¼ x
� �

¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

; (2.96)

which is a result of the Vasicek one-factor model. Recalling the standard normal

distribution of the systematic factor, the VaR can be written as

VaR
Baselð Þ
0:999

~L
� � ¼

X

n

i¼1

E wi � gLGDi � 1 ~Dif gj~x ¼ VaR0:001 ~xð Þ
� �

¼
X

n

i¼1

wi � E gLGDij~x ¼ F�1 0:001ð Þ
� �

� E 1 ~Dif gj~x ¼ F�1 0:001ð Þ
� �

¼
X

n

i¼1

wi � E gLGDij~x ¼ �F�1 0:999ð Þ
� �

� F F�1ðPDiÞ þ ffiffiffiffi

ri
p � F�1 0:999ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

:

(2.97)

This is the core element of the Basel II framework, even if there are some minor

differences between the formula above and the concrete capital requirements.

These differences are:

91Cf. Gordy (2003), p. 219.
92From the second to the third consultative document of the Basel framework, the confidence level

was changed from a ¼ 0:995 to a ¼ 0:999; cf. BCBS (2001a, 2003a).
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l The capital requirements are only applied to the Unexpected Loss (UL), which is
the difference of VaR and EL. This is due to the fact that the expected loss is

already accounted for in the provisions. As the loan loss provisioning reduces the

equity, a capital requirement which includes the expected loss would require this

capital amount twice.93

l The LGD-specific term of (2.97) shows that the expected LGD under the

specified conditions of a VaR scenario is needed. The regulatory formula simply

uses the notation “LGD” in the VaR term as well as in the expected loss term.

However, this does not mean that the expected LGD has to be inserted. If an

institution uses own LGD estimates, these have to “reflect economic downturn

conditions where necessary to capture the relevant risks”.94 This LGD is also

called “Downturn LGD” (DLGD). A background note on LGD quantification

clarifies that the downturn LGD is at least in principle meant in terms of the

conditional LGD of (2.97). But as a concrete quantification and validation of

downturn LGDs in the sense above is found to be “not operationally feasible

given the current state of practice in this area”, there is no regulatory function

that transforms the unconditional into a conditional LGD and also no explicit

demand for LGD quantification in a 99.9% scenario.95

l The PD in the formula above refers to the 1-year probability of default. In

practice, many loans have an effective maturity Mi that can substantially differ

from 1 year, especially towards longer maturities. As a long-term loan is usually

considered as more risky than a short-term loan, this shall also be reflected in the

capital requirement. Therefore a so-called Maturity Adjustment is implemented

as a factor in the Basel II capital rules.96

l The overall level of minimum capital requirements of the model above is

calibrated to a regulatory desired magnitude by introducing a Scaling Factor
(SF), which has to be multiplied to the result of the model itself. This factor is set

93Because of this argument, the former version of the capital rules, which had the VaR and not the

UL as capital requirement, were changed; cf. BCBS (2001a). The problem is that the regulatory

rules and the different accounting standards are not fully consistent. Therefore, a bank has to

compare the amount of total eligible provisions with the total expected losses amount. If the EL

exceeds the provisions, the difference has to be deducted such that it is guaranteed that the total

capital amount captures both the UL and the EL; cf. BCBS (2005a), } 43.
94BCBS (2005a), } 468.
95Cf. BCBS (2004a). Interestingly, the supervisors in the United States proposed a concrete

function for mapping the ELGD into the DLGD: DLGD ¼ 0:08þ 0:92 � ELGD. Thus, the down-
turn LGD was a linear mapping from [0%, 100%] to [8%, 100%]. However, in the final rule this

supervisory mapping function is not included because of several points of criticism. Nevertheless,

the agencies still believe that the formula is an appropriate way to deal with problems in estimating

downturn LGDs; cf. FDIC (2007), Sect. III.B.3, p. 69310. However, there is no direct link between

this mapping function and the conditional LGD as presented in (2.97).
96Cf. Heithecker (2007), p. 31 f., p. 57 ff., and p. 235 ff., for details regarding the maturity

adjustment including an outline of the corresponding literature.
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to SF ¼ 1:06, which is based on the data of the Quantitative Impact Study 3

(QIS 3).97

Taking all these points together, the capital requirement for each credit under
Basel II (in absolute terms) can be expressed as98

UL
Baselð Þ
abs;i ¼ VaR

Baselð Þ
abs;i � EL

Baselð Þ
abs;i

¼ EADi � DLGDi � F
F�1ðPDiÞ þ ffiffiffiffi

ri
p � F�1 0:999ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

� ELGDi � PDi

" #

� 1þ Mi � 2:5ð Þ � b
1� 1:5 � b � 1:06

(2.98)

with b ¼ ½0:11852� 0:05478 � lnðPDiÞ�2. Furthermore, the correlation parameter
is specified by the regulatory framework. Dependent on the asset class (and

for some asset classes dependent on the PD and revenue, too), the correlation

parameter is between 3% and 24%.99 For corporate, sovereign, and bank expo-

sures (C,S,B), ri is between 12% (if the PD is very high) and 24% (if the PD is

very low):100

r C;S;Bð Þ
i

¼ 0:12 � 1� exp �50 � PDið Þ
1� exp �50ð Þ þ 0:24 � 1� 1� exp �50 � PDið Þ

1� exp �50ð Þ
� �

: (2.99)

For small- and medium-sized entities (SMEs), a firm-size adjustment is made.

Depending on the total annual sales Si (in millions of Euros), the correlation

parameter will be reduced linearly between 4% (for Si � 5) and 0% (for

Si ¼ 50):101

r SMEð Þ
i

¼ r C;S;Bð Þ
i

� 0:04 � 1�max S; 5ð Þ � 5

45

� �

; (2.100)

97In total, 365 banks participated in the study, which focused on the impact of the Basel II

proposals on the minimum capital requirements compared to Basel I; cf. BCBS (2003b).
98Cf. BCBS (2005a), } 272, } 273, } 328, } 329, and } 330. The maturity adjustment is only applied

to corporate, sovereign, and bank exposures, including small- and medium-sized entities (SMEs).

This can also be interpreted as a fixed maturity of Mi ¼ 1 year for retail exposures.
99For internal purposes a bank could measure r from default series or from equity values; cf.

Gordy and Heitfield (2002), D€ullmann and Trapp (2005), or Lopez (2004). The results for

estimating r from portfolio data may differ from the correlations given in Basel II, see e.g.

D€ullmann and Scheule (2003) or Dietsch and Petey (2002), but overall the parameters given in

Basel II are reasonable, see especially Lopez (2004).
100Cf. BCBS (2005a), } 272. The concrete definition of corporate exposures can be found in BCBS
(2005a), } 218 ff.; sovereign and bank exposures are defined in } 229 and } 230.
101Cf. BCBS (2005a), } 273.
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which leads to a reduction of capital requirements for SMEs. For residential

mortgage exposures the correlation is fixed to 15%,102 for qualifying revolving

retail exposures to 4%,103 and for other retail exposures the correlation parameter is

between 3% and 16%:104

r Retailð Þ
i

¼ 0:03 � 1� exp �35 � PDið Þ
1� exp �35ð Þ þ 0:16 � 1� 1� exp �35 � PDið Þ

1� exp �35ð Þ
� �

:

(2.101)

Taking (2.98) into consideration, the parameters EAD, PD, LGD, and M have

to be determined. As the complexity of these estimations and the data require-

ment would be too high for many banks, there exist two versions of the IRB

Approach for corporate, sovereign, and bank exposures, as mentioned in

Sect. 2.1. In the Advanced IRB Approach, all of these parameters have to be

estimated by the bank. In the Foundation IRB Approach, the LGD and maturity

are given by the regulatory rules. Furthermore, only the current outstandings and

the commitments have to be determined by the bank, the credit conversion factor

and therefore the EAD does not have to be estimated. Thus, under the Founda-

tion Approach, the only parameter that has to be estimated by the bank is the

PD.105 However, for retail exposures, there is no distinction between a Founda-

tion and Advanced IRB Approach. In the IRB-Retail-Approach, the parameters

EAD, PD, and LGD have to be estimated by the bank.106 However, in contrast to

the IRB Approaches of the other asset classes, in the IRB-Retail-Approach it is

allowed to pool credits with similar characteristics such as risk characteristics,

collaterals and exposures.107 As the parameter estimates for the retail portfolio

can be based on these risk pools instead of individual borrower grades,108 the

minimum complexity of the IRB-Retail-Approach is significantly lower than of

the Advanced IRB Approach.

102Cf. BCBS (2005a), } 328.
103Cf. BCBS (2005a), } 329.
104Cf. BCBS (2005a), } 330.
105Cf. BCBS (2005a), } 246 f.
106Cf. BCBS (2005a), } 252. The definition of retail exposures can be found in BCBS (2005a), }
231 ff.
107Cf. BCBS (2005a), } 401 f.
108Cf. BCBS (2005a), } 446.
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2.8 Appendix

2.8.1 Alternative Representation of the ES as an Indicator
Function

Proposition. The definition of the ES (2.19) is equal to (2.29):109

1

1� a
E ~L � 1 ~L�qaf g
h i

� qa P ~L � qa
� 	� ð1� aÞ� 	

� �

¼ 1

1� a
E ~L � 1a ~L�qaf g
 �� �

(2.102)

with

1a ~L�qaf g ¼
1 ~L�qaf g if P ~L ¼ qa

� 	 ¼ 0;

1 ~L�qaf g � P ~L�qa½ �� 1�að Þ
P ~L¼qa½ � � 1 ~L¼qaf g if P ~L ¼ qa

� 	

> 0:

8

<

:

(2.103)

Proof. For the case P ~L ¼ qa
� 	 ¼ 0, the left-hand side immediately equals the right-

hand side of (2.102). Therefore, only the case P ~L ¼ qa
� 	

> 0 is analyzed:

ESa ~L
� � ¼ 1

1� a
E ~L � 1 ~L�qaf g
h i

� qa P ~L � qa
� 	� ð1� aÞ� 	

� �

¼ 1

1� a
E ~L � 1 ~L�qaf g
h i

� ~L � 1 ~L¼qaf g � P ~L � qa
� 	� ð1� aÞ� �

� �

¼ 1

1� a
E ~L � 1 ~L�qaf g �

~L � 1 ~L¼qaf g � P ~L � qa
� 	� ð1� aÞ� �

P ~L ¼ qa
� 	

" # !

¼ 1

1� a
E ~L � 1 ~L�qaf g � P ~L � qa

� 	� ð1� aÞ
P ~L ¼ qa
� 	 1 ~L¼qaf g

 !" # !

¼ 1

1� a
E ~L � 1a ~L�qaf g
 �� �

;

(2.104)

which is the proposed right-hand side of (2.102).

Additionally, we want to show some properties of the function 1a ~L�qaf g, which
are useful for analyzing the axioms of coherency. The expected value of this

variable is

109Cf. Acerbi et al. (2001), p. 8 f.
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E 1a ~L�qaf g
 �

¼ E 1 ~L�qaf g � P ~L � qa
� 	� 1� að Þ

P ~L ¼ qa
� 	 � 1 ~L¼qaf g

" #

¼ E 1 ~L�qaf g
h i

� E
P ~L � qa
� 	� 1� að Þ

P ~L ¼ qa
� 	 � 1 ~L¼qaf g

" #

¼ P ~L � qa
� 	� P ~L � qa

� 	� 1� að Þ� �

¼ 1� a:

(2.105)

Moreover, we want to show that 1a ~L�qaf g 2 ½0; 1�. For ~L 6¼ qað~LÞ this is obvi-
ous by the definition of the indicator function. However, for ~L ¼ qað~LÞ, the variable
is given as

1a ~L�qaf g
�

�

�

�

~L¼qa

¼ 1� P ~L � qa
� 	� 1� að Þ

P ~L ¼ qa
� 	

¼ 1� P ~L> qa
� 	þ P ~L ¼ qa

� 	� 1� að Þ
P ~L ¼ qa
� 	

¼ �P ~L> qa
� 	þ 1� að Þ

P ~L � qa
� 	� P ~L< qa

� 	

¼ P ~L � qa
� 	� a

P ~L � qa
� 	� P ~L< qa

� 	 2 0; 1½ �;

(2.106)

because of P ~L< qa
� 	 � a � P ~L � qa

� 	

.

2.8.2 Application of Itô’s Lemma

An Itô-process is given as

dAt ¼ a At; tð Þdtþ b At; tð ÞdWt: (2.107)

With aðAt; tÞ ¼ m � At and bðAt; tÞ ¼ s � At, we get the stochastic process of the

asset value (see (2.54))

dAt ¼ m � At dtþ s � At dWt: (2.108)

Therefore, the asset value follows an Itô-process and Itô’s Lemma can be applied

in order to determine dYt ¼ d lnAt. When Yt is a function of At and t, so we write

Yt ¼ gðAt; tÞ, Itô’s Lemma shows that110

110Cf. Hull (2006), p. 273 f.
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dYt ¼ dg At; tð Þ

¼ dg

dAt
� a At; tð Þ þ dg

dt
þ 1

2

d2g

dAt
2
� b2 At; tð Þ

� �

dtþ dg

dAt
� b At; tð Þ dWt:

(2.109)

With dYt ¼ d lnAt, aðAt; tÞ ¼ m � At, and bðAt; tÞ ¼ s � At, this leads to

dYt ¼ d lnAt

¼ 1

At
� m � At þ 0þ 1

2
� 1

At
2

� �

s � Atð Þ2
� �

dtþ 1

At
s � Atð ÞdWt

¼ m� 1

2
s2

� �

dtþ s dWt:

(2.110)

2.8.3 Application of Bayes’ Theorem for Continuous
Distributions

The definition of probability density functions and Bayes’ theorem for continuous

distributions lead to111

P ~y< uð Þ ¼
ð

u

y¼�1
fYðyÞ dy

¼
ð

1

x¼�1

ð

u

y¼�1
fX;Yðx; yÞ dydx

¼
ð

1

x¼�1

ð

u

y¼�1
fYðyjxÞ dy fXðxÞdx

¼
ð

1

x¼�1
P ~y< ujxð ÞfXðxÞ dx: (2.111)

Thus, using
dFXðxÞ
dx ¼ fXðxÞ we get

P ~y< uð Þ ¼
ð

1

x¼�1
P ~y< ujxð Þ dFXðxÞ: (2.112)

111Cf. Tarantola (2005), p. 20.
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2.8.4 Limit Distribution and Probability Density Function
in the Vasicek Model

In the following, the integral of the distribution (2.74) of the binomial model shall

be solved for the limit n ! 1:112

Fð1ÞðlÞ ¼ lim
n!1FðnÞðlÞ

¼ lim
n!1

X

l�n=LGDb c

k¼0

ð

1

x¼�1

n
k

� �

� pðxÞð Þk � 1� pðxÞð Þn�kdFðxÞ (2.113)

with

pðxÞ ¼ F
F�1 PDð Þ � ffiffiffi

r
p � x

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

: (2.114)

Using pðxÞ ¼: s and the identity F �yð Þ ¼ 1� FðyÞ, it follows

s ¼ F
F�1 PDð Þ � ffiffiffi

r
p � x

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

,
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1ðsÞ ¼ F�1 PDð Þ � ffiffiffi

r
p � x

, x ¼ � 1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1ðsÞ � F�1 PDð Þ
� �

, FðxÞ ¼ 1� F
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1ðsÞ � F�1 PDð Þ
� �

� �

¼: 1�WðsÞ:

(2.115)

Using dFðxÞ ¼ d 1�WðsÞð Þ ¼ �dWðsÞ and lim
x!�1 s ¼ lim

x!�1 pðxÞ ¼ 1 as well

as lim
x!1 s ¼ lim

x!1 pðxÞ ¼ 0, the integral (2.113) can be written as

Fð1ÞðlÞ ¼ lim
n!1

ð

0

s¼1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�k � �1ð ÞdWðsÞ

¼
ð

1

s¼0

lim
n!1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�kdWðsÞ:
(2.116)

112The derivation is based on Vasicek (1991). In contrast to the original paper the derivation is not

restrained to the gross loss but includes deterministic LGD 6¼ 1.
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The integrand of (2.116) is binomially distributed. According to the central

limit theorem of Lindberg-Lévy or the special case for binomial distributions of

Moivre–Laplace, this distribution converges to a normal distribution for

n ! 1:113

lim
n!1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�k ¼ lim
n!1F

n � l LGD= � n � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � s � 1� sð Þp

 !

¼ lim
n!1F

ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s � 1� sð Þp

l

LGD
� s

� �

 !

¼
F 1ð Þ ¼ 1 if l LGD= > s;

Fð0Þ ¼ 1 2= if l LGD= ¼ s;

F �1ð Þ ¼ 0 if l LGD= < s:

8

>

<

>

:

(2.117)

Therefore, using Wð0Þ ¼ F �1ð Þ ¼ 0,114 the distribution (2.116) is equal to

Fð1ÞðlÞ ¼
ð

1

s¼0

lim
n!1

X

l�n=LGDb c

k¼0

n

k

� �

� sk � 1� sð Þn�kdWðsÞ

¼
ð

l=LGD

s¼0

1 dWðsÞ

¼ WðsÞjl=LGDs¼0

¼ W
l

LGD

� �

¼ F
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 l

LGD

� �

� F�1 PDð Þ
� �� �

:

(2.118)

The corresponding probability density function f ð1ÞðlÞ is the first derivative

of Fð1ÞðlÞ. With dFðyÞ dy= ¼ ’ðyÞ, dF�1ðyÞ dy= ¼ 1 ’ F�1ðyÞ� ��

, and ’ðyÞ ¼
1

ffiffiffiffiffiffi

2p
p
�� � � exp �y2 2=ð Þ this leads to

113See Billingsley (1995), p. 357 f.
114Cf. (2.115).
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f ð1ÞðlÞ ¼ dFð1ÞðlÞ
dl

¼ ’
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

�F�1 l

LGD

� �

�F�1 PDð Þ
� �� �

�
ffiffiffiffiffiffiffiffiffiffiffi

1� r
r

s

� 1

’ F�1 l
LGD

� �� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

1� r
r

s

exp � 1

2r
�

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

�F�1 l

LGD

� �

�F�1 PDð Þ
 �2

 

þ1

2
F�1 l

LGD

� � �2
!

: ð2:119Þ

2.8.5 VaR and ES of the Limit Distribution in the Vasicek Model

According to (2.14), the VaR for continuous distributions can be expressed as

VaRa ~L
� � ¼ F�1

L að Þ: (2.120)

Thus, corresponding to distribution (2.77), the VaR can be computed as follows:

Fð1Þ VaRð1Þ
a

~L
� �

� �

¼ F
1
ffiffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 VaR
ð1Þ
a ~L
� �

LGD

 !

� F�1 PDð Þ
 ! !

¼! a

,
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� F�1 VaR
ð1Þ
a ~L
� �

LGD

 !

¼ F�1 PDð Þ þ ffiffiffi

r
p � F�1 að Þ

, VaRð1Þ
a

~L
� � ¼ F

F�1 PDð Þ þ ffiffiffi

r
p � F�1 að Þ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� LGD:
(2.121)

In order to determine the ES, the representation of (2.20) is used:

ESa ~L
� � ¼ 1

1� a

ð

1

u¼a

qudu: (2.122)

With (2.121) and using the substitution y :¼ �F�1ðuÞ so that du dy= ¼ �’ðyÞ,
y u ¼ að Þ ¼ �F�1 að Þ and y u ¼ 1ð Þ ¼ �F�1ð1Þ ¼ �1, this leads to

ESð1Þ
a

~L
� � ¼ 1

1� a

ð

1

u¼a

LGD � F F�1 PDð Þ þ ffiffiffi

r
p � F�1ðuÞ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

du
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¼ 1

1� a
� LGD �

ð

�1

y¼�F�1 að Þ

F
F�1 PDð Þ � ffiffiffi

r
p � y

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� �1ð Þ � ’ðyÞdy

¼ 1

1� a
� LGD �

ð

�F�1 að Þ

y¼�1
F

F�1 PDð Þ � ffiffiffi

r
p � y

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

� �

� ’ðyÞdy:

(2.123)

With the identity115

ð

z

y¼�1
F

x� a � y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �

� ’ðyÞdy ¼ F2 x; z; að Þ; (2.124)

where F2ð�Þ is the bivariate cumulative normal distribution as defined in (2.81),

(2.123) can be expressed as116

ESð1Þ
a

~L
� � ¼ 1

1� a
� LGD � F2 F�1 PDð Þ;�F�1 að Þ; ffiffiffi

r
p� �

: (2.125)

2.8.6 Alternative Representation of the Bivariate Normal
Distribution

Proposition. The bivariate normal distribution can be represented as

ð

z

y¼�1
F

x� a � y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �

� ’ðyÞdy ¼ F2 x; z; að Þ: (2.126)

Proof. From

ð

z

y¼�1
F

x� a � y
ffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �

�’ðyÞdy¼ 1

2p

ð

z

y¼�1

ð

x�a�y
ffiffiffiffiffiffi

1�a2
p

u¼�1
exp �1

2
y2

� �

� exp �1

2
u2

� �

dudy

(2.127)

and using the substitution u :¼ w�a�y
ffiffiffiffiffiffiffiffi

1�a2
p so that du

dw ¼ 1
ffiffiffiffiffiffiffiffi

1�a2
p , w u ¼ �1ð Þ ¼ �1 and

w u ¼ x�a�y
ffiffiffiffiffiffiffiffi

1�a2
p

� �

¼ x, we obtain117

115See Appendix 2.8.6.
116See also Pykhtin (2004).
117The definition of the bivariate standard normal CDF used in the last step is given in (2.81).
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1

2p

ð

z

y¼�1

ð

x�a�y
ffiffiffiffiffiffi

1�a2
p

u¼�1
exp � 1

2
y2

� �

� exp � 1

2
u2

� �

du dy

¼ 1

2p

ð

z

y¼�1

ð

x

w¼�1
exp � 1

2
y2

� �

� exp � 1

2

w� a � y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
� �2

 !

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p dw dy

¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

ð

z

y¼�1

ð

x

w¼�1
exp � 1

2
y2 þ w2 � 2aywþ a2y2

1� a2

� �� �

dw dy

¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

ð

z

y¼�1

ð

x

w¼�1
exp � 1

2 1� a2ð Þ y2 � 2aywþ w2
� �

� �

dw dy

¼: F2 x; z; að Þ:
(2.128)

2.8.7 Application of the Strong Law of Large Numbers

Proposition. The portfolio loss is almost surely equal to the conditional expected
loss

P lim
n!1

~L� E ~Lj~x� �� 	 ¼ 0
� �

¼ 1 (2.129)

under the conditions of infinite granularity (2.83) and (2.84).118

Proof. The proof is based upon a version of the strong law of large numbers. For

an independent random sequence ~Zi the following almost sure convergence

holds119

P lim
n!1

1

an

X

n

i¼1

~Zi

" #

¼ 0

 !

¼ 1 8x 2 R (2.130)

if

lim
n!1 an ¼ 1 (2.131)

118The following proof is similar to Gordy (2003), p. 223 f. and Bluhm et al. (2003), p. 88 f.
119See Petrov (1996), p. 209, Theorem 6.6.
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and

X

1

n¼1

V ~Zn

� �

an2

 !

<1: (2.132)

The random sequence ~Zi can be defined as ~Zi :¼ EADi � gLGDi � 1 ~Dif g�
�

E gLGDi � 1 ~Dif gj~x
h i

Þ. As it is required that the ~Zis are independent, the strong law

of large numbers is applied conditional on the realization of the systematic factor

~x ¼ x. Under this condition, the products gLGDi � 1 Dif g
� �

are independent by assump-

tion and therefore the ~Zi’s are independent as well. Defining an :¼
Pn

j¼1 EADj, the

condition (2.131) directly follows from the first granularity assumption (2.83).

In order to check the second condition, the boundedness of ~Zn is analyzed.

The loss variable 1 ~Dnf g only takes the values one and zero. The LGD is assumed

to be in the interval �1; 1½ �.120 As a consequence, the product gLGDn � 1 Dnf g
� �

is

bounded to �1; 1½ � and gLGDi � 1 ~Dif g � E gLGDi � 1 ~Dif gj~x
h i� �

is restricted to

½�2; 2�, leading to V ~Zn

� � � 4 � EADn
2. Therefore, the second condition (2.132)

can be written as

X

1

n¼1

V ~Zn

� �

an2

 !

�
X

1

n¼1

4 � EADn

P

n

j¼1

EADj

0

B

B

B

@

1

C

C

C

A

2

<1: (2.133)

The last expression is valid due to the second granularity condition (2.84). Thus,

the strong law of large numbers (2.130) can be applied. With

1

an

X

n

i¼1

~Zi ¼ 1

P

n

j¼1

EADj

X

n

i¼1

EADi � gLGDi � 1 ~Dif g � E gLGDi � 1 ~Dif gj~x
h i� �� �

¼
X

n

i¼1

wi � gLGDi � 1 ~Dif g � E wi � gLGDi � 1 ~Dif gj~x
h i� �

¼
X

n

i¼1

~Li � E ~Lij~x
� 	� �

¼ ~L� E ~Lj~x� 	 ð2:134Þ

120Negative LGDs are permitted to allow short positions.
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this leads to

P lim
n!1

~L� E ~Lj~x� 	� � ¼ 0j~x ¼ x
� �

¼ 1 8x 2 R: (2.135)

Using (2.135) it can be shown that the almost sure convergence is also true in

the unconditional case:

P lim
n!1

~L� E ~Lj~x� 	� � ¼ 0
� �

¼
ð

P lim
n!1

~L� E ~Lj~x� 	� � ¼ 0j~x ¼ x
� �

dPðxÞ

¼
ð

dPðxÞ ¼ 1:

(2.136)

This completes the proof of (2.129).

2.8.8 Application of Kronecker’s Lemma

Proposition. Assumption (2.83) and (2.84) lead to

lim
n!1

X

n

i¼1

wi
2 ¼ 0: (2.137)

Proof. The following proof is based upon Kronecker’s Lemma.121 Let tn be a

sequence satisfying

0< t1 � t2 � and lim
n!1 tn ¼ 1: (2.138)

If

X

1

n¼1

zn <1; (2.139)

then

lim
n!1

1

tn

X

n

i¼1

ti � zi ¼ 0: (2.140)

121See Petrov (1996), p. 209, Lemma 6.11.
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With tn :¼
Pn

j¼1 EADj

� �2

the conditions (2.138) for tn are fulfilled due to the

first granularity assumption (2.83). Using zn :¼ EADn
Pn

j¼1
EADj

� �2

; (2.139) is valid due

to the second granularity assumption (2.84). Therefore, Kronecker’s Lemma can

be applied, which leads to
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 !

¼ 0; ð2:141Þ

which is (2.137).

2.8.9 Identity of the VaR in the ASRF Model

Proposition. The following equality is true:

VaRa E ~Lj~x� 	� � ¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

: (2.142)

Proof. Using the notation Eð~Lj~xÞ ¼: g 
 ~x,122 with gð~xÞ ¼ Eð~Lj~xÞ, and assuming

that the conditional expectation is continuously and strictly monotonously decreas-

ing in x, then there exists a unique inverse g�1, which allows the following

transformations:123

122The notation g 
 ~x means that some function g is composed with ~x.
123See Gordy (2003), p. 207 f., for a similar proof.
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g 
 ~x � g 
 x
, g�1 
 g 
 ~x � g�1 
 g 
 x
, ~x � x

(2.143)

and

inf g 
 xf g ¼ g 
 sup xf g: (2.144)

Using the definition of the VaR (2.15) this leads to the proposition:

VaRa E ~Lj~x� 	� � ¼ VaRa g 
 ~xð Þ
¼ inf ljP g 
 ~x> l½ � � 1� af g
¼ inf g 
 xjP g 
 ~x> g 
 x½ � � 1� af g
¼ inf g 
 xjP ~x< x½ � � 1� af g
¼ g 
 sup xjP ~x< x½ � � 1� af g
¼ g 
 inf xjP ~x> x½ � � 1� af g
¼ g 
 VaR1�a ~xð Þ
¼ E ~Lj~x ¼ VaR1�a ~xð Þ� �

:

(2.145)

2.8.10 Identity of the ES in the ASRF Model

Proposition. For n ! 1, the ES of the portfolio loss converges to the ES of the
conditional expected loss:

lim
n!1ESa ~L

� � ¼ ESa E ~Lj~x� �� �

: (2.146)

Proof. If it is assumed that the loss distribution is continuous, the second term of

ES definition (2.19) vanishes.124 Therefore it only has to be shown that

lim
n!1E ~L � 1 ~L�qa ~Lð Þf g

h i

� E E ~Lj~x� � � 1
E ~Lj~xð Þ�qa E ~Lj~xð Þð Þ

h i

¼ 0: (2.147)

With ~X :¼ ~L� qa ~L
� �

the first term can be written as

124Gordy (2003) shows that it is no necessary condition that the loss distribution has to be

continuous. If some additional properties, especially regarding the continuity of the conditional

expected loss and of the distribution of the systematic factor, are fulfilled in an interval of x

that contains VaRa ~xð Þ, it follows that lim
n!1P ~L � qa

� � ¼ 1� a so that the second term of the ES

definition still vanishes. See Gordy (2003), p. 228 f.
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E ~L � 1 ~L�qa ~Lð Þf g
h i

¼ E ~L� qa ~L
� �� � � 1 ~L�qa ~Lð Þf g

h i

þ qa ~L
� � � E 1 ~L�qa ~Lð Þf g

h i

¼ E max ~X; 0
� �� 	þ qa ~L

� � � P ~L � VaRa ~L
� �� 	

:

(2.148)

Using the shorter notation mð~xÞ :¼ Eð~Lj~xÞ and with ~Y :¼ mð~xÞ � m q1�að~xÞð Þ as well
as m q1�að~xÞð Þ ¼ qa mð~xÞð Þ from (2.90), the second term of (2.147) equals

E E ~Lj~x� � � 1
E ~Lj~xð Þ�qa E ~Lj~xð Þð Þf g

h i

¼ E m ~xð Þ � 1 m ~xð Þ�qa m ~xð Þð Þf g
� 	

¼ E m ~xð Þ � m q1�a ~xð Þð Þð Þ � 1 m ~xð Þ�m q1�a ~xð Þð Þf g
� 	þ m q1�a ~xð Þð Þ � E 1 m ~xð Þ�m q1�a ~xð Þð Þf g

� 	

¼ E max ~Y; 0
� �� 	þ m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ �:

(2.149)

Thus, (2.147) can be written as

lim
n!1E ~L � 1 ~L�qa ~Lð Þf g

h i

� E E ~Lj~x� � � 1
E ~Lj~xð Þ�qa E ~Lj~xð Þð Þ

h i

¼ lim
n!1 E max ~X; 0

� �� 	þ qa ~L
� � � P ~L � VaRa ~L

� �� 	� �

� E max ~Y; 0
� �� 	þ m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ �� �

¼ lim
n!1 E max ~X; 0

� ��max ~Y; 0
� �� 	�

þ qa ~L
� � � P ~L � VaRa ~L

� �� 	� m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ ��:

(2.150)

Using

lim
n!1 qa ~L

� � ¼ m q1�a ~xð Þð Þ (2.151)

from (2.91) and125

lim
n!1P ~L � qa ~L

� �� 	 ¼ P m ~L
� � � m qa ~L

� �� �� 	 ¼ 1� a; (2.152)

the last two terms of (2.150) vanish:

125Cf. footnote 118.
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lim
n!1 qa ~L

� � � P ~L � VaRa ~L
� �� 	� m q1�a ~xð Þð Þ � P m ~xð Þ � m q1�a ~xð Þð Þ½ �� �

¼ lim
n!1 qa ~L

� �� m q1�a ~xð Þð Þ� 	 � 1� að Þ
¼ 0: (2.153)

Additionally, the inequality � x� yj j � maxðx; 0Þ �maxðy; 0Þ � x� yj j holds
8x; y 2 R. Using this inequality and (2.151), the remaining first term of (2.150) can

be evaluated:

lim
n!1E max ~X; 0

� ��max ~Y; 0
� �� 	 � lim

n!1 E ~X � ~Y
� 	

�

�

�

�

¼ lim
n!1 E ~L� qa ~L

� �� m ~xð Þ � m q1�a ~xð Þð Þ½ �� 	
�

�

�

�

¼ lim
n!1 E ~L� m ~xð Þ� 	� qa ~L

� �� m q1�a ~xð Þð Þ� 	
�

�

�

�

¼ lim
n!1 E ~L

� �� E E ~Lj~x� �� �� 0
�

�

�

�

¼ 0 ð2:154Þ

and

lim
n!1E max ~X; 0

� ��max ~Y; 0
� �� 	 � � lim

n!1 E ~X � ~Y
� 	

�

�

�

� ¼ 0: (2.155)

Thus, the first term vanishes, too, which completes the proof of (2.146).
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Chapter 3

Concentration Risk in Credit Portfolios

and Its Treatment Under Basel II

3.1 Types of Concentration Risk

Concentration risk can be defined as “any single exposure or group of exposures

with the potential to produce losses large enough (relative to a bank’s capital, total

assets, or overall risk level) to threaten a bank’s health or ability to maintain its core

operations”.126 There are several types of concentration that can incorporate signif-

icant risks (see Fig. 3.1).

In a bank’s assets there can be concentration risk arising from obligors and from

counterparties of trading transactions. Furthermore, there can be concentrations in

collateral instruments or protection sellers. Market risk can also contain concentra-

tions, e.g. if there are high exposures in a specific currency. Concentration in a

bank’s liabilities can arise in refinancing instruments or refinancing counterparties

and depositors. These concentrations can lead to an increased liquidity risk. More-

over, there can be risk concentration in the execution or processing of transactions,

e.g. if there is a high degree of dependence on a specific IT-system. This is referred

to as operational concentration risk.127 As lending is usually the main activity of a

bank, the most important type of risk concentration is credit risk concentration.128

Against this background, this type of concentration risk will be analyzed in-depth

in the following. In the literature, it is often distinguished between three types of

credit concentration risk:

l Name concentration
l Sector concentration
l Credit contagion

126BCBS (2005a), } 770.
127Cf. Deutsche Bundesbank (2006), p. 36 f.
128Cf. BCBS (2005a), } 771.

M. Hibbeln, Risk Management in Credit Portfolios, Contributions to Economics,

DOI 10.1007/978-3-7908-2607-4_3, # Springer-Verlag Berlin Heidelberg 2010
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The BCBS distinguishes between two sorts of name concentration.129 One type
of concentration risk pertains to an exposure to one firm or to a conglomerate of

economically highly dependent firms130 that is extremely large compared to the rest

of the exposures of the portfolio. In such a situation the default risk of the portfolio

is significantly driven by the idiosyncratic risk of this individual debtor. This type

of concentration will be called “individual name concentration”. The second type of

name concentration occurs if the bank holds a portfolio containing a relatively

small number of firms, each of them with large exposures. Such a portfolio is hardly

diversified because of the quite small number of debtors. Thus, a bank faces high

losses if several defaults appear, even if they occur accidentally and are not driven

by default correlation of the firms. This type of concentration can be denoted as

“portfolio name concentration”.

The term sector concentration refers to significant exposures to groups of

counterparts whose likelihood of default is driven by common underlying factors,

such as industry sectors or geographical locations.131 Even if the modeling of these

types of sectors is usually similar, the concentrations themselves have some dif-

ferent characteristics. Industry concentrations are mainly related to corporate loans,

which have a higher PD if the industry sector is in an economic downturn.

Concentration risk

Credit risk

Name
concentration

Dependence
from IT-
systems

Sector
concentration

Credit
contagion

Market risk

Concentration
in currencies

Concentration
in refinancing
counterparties

Liquidity risk Operational
risk

Fig. 3.1 Types of concentration risk. Cf. Deutsche Bundesbank (2006), p. 37

129See BCBS (2005b, c).
130Under Basel II such a conglomerate is called “connected group”; see BCBS (2005a), } 423.
131In a document about technical aspects of the management of concentration risk of the CEBS,

examples of common risk factors that possibly lead to sector concentrations also include curren-

cies and credit risk mitigation measures; cf. CEBS (2006), } 25.
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In principle, the same is true for geographical concentrations but this type of

concentration is also relevant for retail loans and sovereigns. Furthermore, geo-

graphical concentration risk includes not only regional but also country risk, which

covers different risk categories such as political and transfer risk.132

The third type of concentration risk is credit contagion. In many cases, two or

more companies have a business connection that increases the joint probability of

default. This connection is often asymmetric so that a default of firm 1 leads to an

increased PD of firm 2 whereas a default of firm 2 shows only minor effects on

the PD of firm 1. If the connection is very strong, the firms have to be merged to

one connected group. In all other cases only the weaker connection to the overall

sector is accounted for, which leads to an underestimation of the true risk.133

Therefore, credit contagion is in a way between name and sector concentration

risk. A typical “micro-structural channel” for this type of concentration risk is the

interbank lending market, where a default of one bank could trigger a default of

other banks, especially if the loans are uncollateralized and uninsured. Furthermore,

suppliers and buyers of goods are often linked via trade credits.134

3.2 Incurrence and Relevance of Concentration Risk

Although the expression “concentration risk” expresses the negative aspect of

concentration, this does not necessarily mean that it is worthwhile to implement a

diversification strategy. As concentration usually stems from specialization, a bank
can have significant informational advantages in its area of specialization. For

example, a bank with a portfolio consisting only of a small number of obligors

contains high name concentration but typically knows its obligors very well and can

therefore evaluate the firm-specific situation better than others. A bank which is

specialized on several industry sectors or geographical locations can have specific

knowledge of the relevant markets and the economic environment. As a conse-

quence, in principle a specialized bank could use its informational advantage to

generate higher returns and/or lower risk.

In the literature, there exist contradictory statements whether diversification

of an intermediary is risk decreasing or increasing and whether diversification

increases or decreases the firm value. In neoclassical economics, diversification is

clearly risk reducing given a constant expected return if the asset returns are

132Cf. Deutsche Bundesbank (2006), p. 43.
133If the connected companies have symmetric dependencies, it would also be possible to build a

new sector with a high correlation inside of the sector. However, in practical implementations the

sectors are often constructed with respect to geographical regions or industry branches so that the

sector factors can be interpreted as macro-economic factors. Hence, the risk stemming from a

connection of firms is usually not covered, regardless of whether the connection is symmetric or

asymmetric.
134Cf. Giesecke and Weber (2006), p. 742.
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non-perfectly correlated, which was shown by Markowitz (1952, 1959). Neverthe-

less, if there do not exist any market imperfections, there is no advantage of a

bank’s diversification because the diversification could also be done by private

investors. Moreover, financial intermediaries would not even exist in the context of

the assumed perfect market. An approach which is more suitable for explanation of

this strategic decision is the principal agent theory. For instance, according to the

fundamental work of Diamond (1984), the main task of financial intermediaries is

“delegated monitoring” of the obligors, which leads to a reduction of monitoring

costs compared to direct investments without an intermediary. Furthermore, the

monitoring costs decrease with higher diversification, which directly leads to the

result that diversification is advantageous.135 By contrast, it is often argued that any

firm – financial institution or other – should be specialized on a single business line

in order to benefit from the management’s expertise, whereas diversification should

be done by the investors (see Berger and Ofek 1996; Servaes 1996; Denis et al.

1997). In the theoretical model of Winton (1999), several aspects of diversification

are addressed: It is assumed that a bank that diversifies into new sectors faces the

problem of adverse selection if established banks are already active in the new

sectors; this leads to negative consequences on risk and return. Furthermore,

monitoring incentives are usually lower when a bank is diversified, leading to a

risk-shifting problem. Altogether, even if diversification leads to a smaller impact

of downturns in single sectors, it is mostly risk increasing.136 Empirical studies

largely indicate that diversified banks incorporate higher risk and often at the same

time lower returns (see Demsetz and Strahan 1997; Acharya et al. 2006; Deng et al.

2007). Furthermore, according to DeLong (2001) only bank mergers which are

focused with respect to the dimensions of activity and geography create value.

These results are widely in line with the model of Winton (1999).

Relying on the advantages of specialization, the business models of several

financial institutions imply a high degree of concentration, like savings banks and

credit cooperatives, which are usually regionally focused, and building societies or

automotive financial services providers, which are specialized on specific products.

Also a combination of both regional and industry expertise is observable, e.g. the

HSH Nordbank is the world’s largest ship financier but also regionally focused

on Germany’s North Sea and Baltic Sea coasts and the Stadtsparkasse Köln is a

regional savings bank that is specialized on the German media industry.137

135The monitoring costs are independent of investment size, thus if the monitoring is delegated to

an intermediary by many investors, these costs can be reduced. Of course, now the intermediary

itself has to be monitored. As state verification is only necessary in case of (imminent) default and

the PD of the bank is lower than of the single investments – this is due to diversification of the

bank – the monitoring costs of the bank are relatively low leading to the mentioned results.
136The model results in a negative effect of diversification on the risk of a bank if the loans in a

bank’s home sector have high or low PDs. Only in the case of medium default probabilities of the

loans in the home sector, diversification can lead to a risk reduction.
137Cf. Kamp et al. (2005), p. 1.
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The mentioned advantages of specialization are sometimes cited as evidence that

there is no additional risk stemming from concentration and therefore there is no

additional need for economic capital. Even if some aspects of this argument are

comprehensible, it does not hold in general. To begin with, a concentrated bank

does not necessarily have informational advantages over other banks. Firstly, it is a

necessary condition that the concentration is a result of expertise in the sector. If

this is not fulfilled, the concentration is risk increasing only. As mentioned before,

in some sectors there might be a multitude of banks with expertise so that the degree

of competition highly influences the risk and return. Therefore, a bank must be

better in the generation and procession of information than competitors to earn a

specialization premium and not to be faced with adverse selection. This point is

especially challenging for globally relevant industries as the bank must compete

with other financiers worldwide. If a bank has the ability to benefit from speciali-

zation, this advantage has to be used not only to increase the return but also to

reduce the risk. For example, many venture capital firms or hedge funds have

significant industry expertise but do not have a reputation for their risk-averse

investments. Moreover, in empirical studies indicating the benefit of specialization,

the risk is often measured in terms of volatility.138 However, as a consequence of

non-normality of the portfolio loss distribution, this does not assure that the risk

measures which are relevant for economic capital calculations, e.g. the VaR and the

ES, are reduced as well. This can be illustrated very intuitively: A bank which is the

global market leader in financing of airplanes and of machine tools might be

capable of differentiating between risky and less risky lending activities in these

areas and uses this knowledge to hold a portfolio with high quality and low

volatility. Now assume that one or both of these sectors are faced with a material

drop in demand, so there is a sector-specific downturn. Even if the bank perceived

some early-warning indicators and was able to reduce the investment in these

sectors, there is a high probability that the institution will suffer substantial losses.

Thus, in a worst-case scenario, which is relevant for the determination of the

economic capital requirement, it is reasonable to assume that many concentrated

portfolios are more vulnerable than non-concentrated portfolios. To sum up, there

are good arguments that a bank can benefit from specialization in terms of an

increased risk/return ratio. But if it has to be assured that the bank survives eco-

nomic downturn scenarios (with high probability), it should hold an additional

capital buffer.

The practical relevance of this issue can be seen from many bank failures or even

banking crises that resulted from or at least in combination with concentration risk.

During the 1980s and 1990s, more than 1,000 savings and loan associations

defaulted in the United States in the savings and loan crisis. Although the problem

cannot be reduced to sectoral concentrations, “the banking problems of the 1980s

and 1990s came primarily [. . .] from unsound real estate lending”139 with a

138Cf. Acharya et al. (2006) and Behr et al. (2007).
139Seidman et al. (1997), p. 57.
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significant increased share of this type of lending.140 In Scandinavia, the real estate

crisis of the early 1990s also led to many bank defaults.141 The high concentrations

in structurally lagging regions led to a high degree of non-performing loans and

finally to the divestiture of the Schmidt-Bank in 2001. Also the ongoing financial

crisis has its seeds in lax real estate lending, in this case mainly to creditors with

low creditworthiness and without down-payment in the United States (subprime

lending). A huge amount of the exposure was transferred worldwide to institutional

investors via structured financial products, mainly residential mortgage backed

securities. These products showed a material price drop, which was due to an

underestimation of the correlation between default rates and especially between

the residential mortgages. Thus, the concentration risk in the collateral pool was

underestimated.142 In BCBS (2004a) several additional examples of banking crises

are studied and a high proportion is found to be affected by risk concentrations.143

3.3 Measurement and Management of Concentration Risk

As mentioned in the introductory statement, the Basel Committee on Banking

Supervision already recognized the high importance of credit risk concentrations

in the Basel framework: “Risk concentrations are arguably the single most impor-
tant cause of major problems in banks”.144 Against this background, it seems

necessary to account for concentration risk in the banks’ minimum capital require-

ments.145 However, the quantitative framework in Pillar 1 of Basel II does not

account for concentration risk at all, since it is based on the ASRF framework,

which assumes that (A) the portfolio is infinitely fine-grained and (B) only a single

systematic risk factor influences the credit risk of all loans in the portfolio. Thus,

the first assumption implies that there is no name concentration in the portfolio,

which means that all idiosyncratic risk is diversified completely. The second

assumption implicates that there exists no sector concentration such as industry-

specific or geographical risk concentrations and also no credit contagion. These are

140Prior to the 1980s, less than 10% of U.S. bank portfolios were invested in real estate portfolios,

whereas by the mid-1980s some banks increased this share to 50 or 60%; cf. Seidman et al. (1997),

p. 58.
141Cf. Deutsche Bundesbank (2006), p. 38.
142“Structured Finance CDO enhancement levels were not commensurate with the higher observed

correlations in the performance of collateral assets during stressed market conditions, particularly

for portfolios with elevated risk concentrations or exposure to a narrow, common set of risk

factors”; see Hansen et al. (2009), p. 4.
143Credit concentration risk, mostly in real estate, is cited to be a relevant cause of bank failures in

nine out of the thirteen episodes; cf. BCBS (2004b), p. 66 f.
144See BCBS (2005a), } 770.
145The term concentration risk will be referred to concentrations in lending if not indicated

elsewise.
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idealizations that can be problematic for real-world portfolios. But since it is

difficult to incorporate credit risk concentrations in analytic approaches and since

there is not yet an approach which is widely accepted as the industries “best

practice”, in Basel II there is no quantitative approach mentioned how to deal

with risk concentrations.146 Instead, it is only qualitatively demanded in Pillar 2 of

Basel II that “Banks should have in place effective internal policies, systems and
controls to identify, measure, monitor, and control their credit risk concentra-
tions”.147 Thus, it is each bank’s task to decide how to meet these requirements

concretely. However, since this topic is very important for the stability of the

banking system, several supervisory documents regarding this issue have been

published that analyze the state of the art and give guidance for institutions and

supervisors. The Basel Committee launched the “Research Task Force Concentra-

tion Risk”, which has presented its final report in BCBS (2006). The report contains

information about the state of the art in current practice and academic literature, an

analysis of the impact of departures from the ASRF model and a review of some

methodologies to measure name and sector concentrations. An additional work-

stream has focused on stress testing against the background of risk concentrations.

In 1999 the Joint Forum148 published “Risk Concentrations Principles” to ensure

the prudent management and control of risk concentrations in financial conglom-

erates through the regulatory and supervisory process. Joint Forum (2008) analyzes

the progress of financial conglomerates in identifying, measuring, and managing

risk concentrations on a firm-wide basis and across the major risks to which the firm

is exposed. Furthermore, the document surveys the current regulatory requirements

(quantitative and qualitative) in the European Union, the United States, Japan, and

Canada.149 In CEBS (2006), the Committee of European Banking Supervisors

published a survey on current market practices for the identification and measure-

ment of concentration risk. Moreover, five principles for institutions and six

principles for supervisors are given as guidance for the treatment of concentration

risk under Pillar 2, which specifies the Capital Requirements Directive (CRD) of

the European Union regarding concentration risk (see Table 3.1).

146Until the second consultative document a version of the so-called granularity adjustment was

part of Basel II for measuring name concentrations, but because of some theoretical shortcomings

and as it appeared to be too complex for many banks it was cancelled in the final Basel capital

rules. The effectiveness and the eligibility of the (cancellation of the) granularity add-on from the

second to the third consultative document of Basel II is only discussed vaguely in the literature; see

e.g. Bank and Lawrenz (2003), p. 543.
147See BCBS (2005a) } 773.
148The Joint Forum was established in 1996 under the aegis of the Basel Committee on Banking

Supervision (BCBS), the International Organization of Securities Commissions (IOSCO) and

the International Association of Insurance Supervisors (IAIS) to deal with issues common to the

banking, securities and insurance sectors, including the regulation of financial conglomerates. The

Joint Forum is comprised of an equal number of senior bank, insurance and securities supervisors

representing each supervisory constituency. See Joint Forum (2009).
149Cf. Joint Forum (2008), p. 35 ff.
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As can be seen from these principles, there is a variety of actions that should be

taken to handle concentration risk. Due to Principle 1, the management body of a

credit institution shall define clear policies and procedures regarding concentration

risk, which may depend on the business strategy and the risk appetite of the bank.

Furthermore, banks should identify and measure concentration risk, which is a

necessary condition for managing and monitoring these risks (Principle 2). The

identification and measurement of concentration risk can be based on rather heuris-

tic or analytical approaches. For example, a bank could measure the size of the top

“x” largest exposures or connected exposures relative to the relevant numeraire

(e.g. the balance sheet amount). This quantification could also be applied to

industry sectors, geographical regions, or product lines.

Moreover, the concentration could be quantified with Gini coefficients or the

Herfindahl–Hirschmann Index, which will be described in Sect. 3.4. A review of the

literature regarding model-based approaches for the measurement of concentration

Table 3.1 Guidance for institutions and supervisors considering concentration risk. See CEBS

(2006), p. 11 ff

Guidance for Institutions

Concentration 1 All institutions should have clear policies and key procedures ultimately

approved by the management body in relation to exposure to concentration

risk

Concentration 2 In application of Article 22 of the Capital Requirements Directive, institutions

should have appropriate internal processes to identify, manage, monitor,

and report concentration risk which are suitable to the nature, scale and

complexity of their businessa

Concentration 3 Institutions should use internal limits, thresholds or similar concepts, as

appropriate, having regard to their overall risk management and

measurement

Concentration 4 Institutions should have adequate arrangements in place for actively

monitoring, managing, and mitigating concentration risk against agreed

policies and limits, thresholds, or similar concepts

Concentration 5 Institutions should assess the amount of internal capital which they consider to

be adequate to hold against the level of concentration risk in their portfolio

Guidance to Supervisors

Concentration 6 Supervisors will collect sufficient information from institutions on which to

base their assessment

Concentration 7 The scope of application of the supervisors’ assessment of concentration risk

is that used for the Supervisory Review Process (SRP)

Concentration 8 Supervisors will use quantitative indicators, where appropriate, within their

Risk Assessment Systems to assess degrees of concentration risk

Concentration 9 The supervisory review should encompass not only quantitative aspects but

also the qualitative and organizational aspects of concentration risk

management

Concentration 10 Supervisors can draw on stress tests performed by institutions to assess the

impact of specific economic scenarios on concentrated portfolios

Concentration 11 Supervisors will pay particular attention to those institutions which are highly

concentrated by customer type or specialized nature of product
aThe Article 22 of the CRD says that every credit institution requires “effective processes to

identify, manage, monitor, and report the risks it is or might be exposed to”
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risk will be given in Sect. 3.5.150 Principles 3–5 can be seen as further requirements

regarding the monitoring and management of concentration risk, which is already

demanded in Principle 2. One rather simple but effective action for this purpose

is to establish an internal limit system, which shall prevent from undesirable high

concentrations in large individual or connected exposures, industry sectors, geo-

graphical regions, or product lines (Principle 3). A starting point for the limit on

large individual exposures can be the directive of the European Union, which

demands that a large individual exposure may not exceed 25% of a credit institu-

tions own funds.151 However, the internal limit system should set additional limits,

which are in line with the degree of risk taking that is accepted by the management

body. These limits can be based on the aforementioned measurement techniques.

Of course, a bank should also have arrangements in place, which actions shall be

taken if risk concentrations are detected that are problematic concerning the risk

policy or limit system (Principle 4). These actions will usually start with a more

detailed review of the concerned exposure. Furthermore, stress tests and scenario

analyses can be applied. Depending on the results of the analyses, several mitigat-

ing actions can be applied, which range from rather passive to active actions.

Possible consequences are the modification of concentration limits, the allocation

of additional internal capital, a transfer of credit risk to third parties, e.g. using

credit derivatives,152 collateral, or guarantees, and an adjustment of new business

acquisitions in order to revert to a lower concentration level. Regardless of whether

risk concentrations were originally intended by the bank or not (as it may be the

case mentioned in Principle 4), the bank should assess an adequate amount of inter-

nal capital against their risk concentrations, which depends on the degree of con-

centration risk (Principle 5). In this context, the onus to demonstrate the adequacy

of internal capital will usually be greater for institutions with more concentrated

credit portfolios (see also Principle 11). Principles 6–11 describe a general guide-

line for supervisors and advise which actions should be taken during the Super-

visory Review Process under Pillar 2 regarding concentration risks.153 Especially,

institutions will be required by supervisors “to show that their internal capital,

where considered necessary, is commensurate with the level of concentration

risk.”154 This requirement illustrates that from a regulatory perspective the most

important issue is the adequate assessment of capital required in Principle 5.

150Some additional suggestions are given in CEBS (2006).
151Cf. EU (2006), Title 5, Chap. 2, Sect. 5, Article 111.1 [Directive 2006/48/EC].
152Large exposures will typically be transferred with credit default swaps (CDS), whereas con-

centrations in sectors or product lines will often be reduced with collateralized debt obligations

(CDO). For a short introduction to CDS, especially regarding modeling purposes, see Bluhm et al.

(2003). A description of CDOs and analyses of CDOs against the background of asymmetric

information between protection seller and protection buyer are given in G€urtler et al. (2008b),
whereas Bluhm et al. (2003) as well as Bluhm and Overbeck (2007) present a good overview for

modeling CDOs.
153Cf. CEBS (2006).
154CEBS (2006), p. 2.

3.3 Measurement and Management of Concentration Risk 65



The basis for a meaningful monitoring and management of concentration risk is

the proper measurement of these risks (for establishing a limit system, for deciding

on the quantity of credit derivative instruments, for allocation of internal capital

and so on). Against this background, the focus of this work will be the measurement

of concentration risk as well as the resulting assessment of the required capital

amount. When measuring concentration risk, it is important to notice the popular

different interpretations of concentration risk by banks and supervisors. While this

is generally unproblematic for internal policies, it is essential for the allocation of

additional capital against concentration risk. Banks often only look at one side of

concentration risk – the diversification effect. They argue that the Pillar 1 capital

requirement does not measure benefits from diversification. Therefore it is argued

that this framework is the non-diversified benchmark and thus the upper barrier for

the true capital requirement. On the contrary, supervisors interpret concentration

risk as “a positive or negative deviation from Pillar 1 minimum capital require-

ments derived by a framework that does not account explicitly for concentration

risk”.155 The latter perception is justified by the fact that the Pillar 1 capital rules

were calibrated on well-diversified portfolios with low name and low sector con-

centration risk.156 Thus, if a portfolio is lowly diversified, the risk will be under-

estimated when using the Basel formula. Therefore additional capital is required to

high
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low diversified portfolio

very high diversified portfolio

low

low

Good Approximation
of Risk

Underestimation
of Risk

Overestimation
of Risk

Name
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Sector
concentration

Fig. 3.2 Accuracy of the Pillar 1 capital requirements considering risk concentrations

155See BCBS (2006), p. 7.
156Cf. BCBS (2006), p.14, and CEBS (2006), } 18.
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capture these types of concentration risk. However, if the portfolio is very highly

diversified, the Basel formula can overestimate the “true” risk. For well-diversified

portfolios, the Basel formula is a good approximation of the “true” risk. This

relation is highlighted in Fig. 3.2.

As noticed above, for a quantification of concentration risk there exist some

heuristic and some analytical approaches in the literature. Both will be presented in

the following sections.

3.4 Heuristic Approaches for the Measurement

of Concentration Risk

The most common heuristic approaches quantify concentration risk with the Gini

coefficient or the Herfindahl–Hirschmann Index.157 In principle, both measures can

be applied to name concentrations and sector concentrations as well. For a descrip-

tion of the Gini coefficient it is helpful to introduce the Lorenz curve first. The

Lorenz curve is a graphical representation of the distribution of a variable z and
the degree of inequality of this variable. For discrete variables, the Lorenz curve is

the piecewise linear function connecting the points ðxi; yiÞ with

xi ¼ i

n
and yi ¼

P

i

j¼1

zj:n

P

n

j¼1

zj

; (3.1)

where zj:n is the order statistics of z, so that elements of z are sorted into an

increasing order.158 Thus, yi is the relative amount of the i smallest elements of

zi, and xi is the relative amount of included elements. For example one point on the

Lorenz curve could show that the smallest 20% elements of a variable account for

5% of the total amount.159 If the elements are of equal size, the function is simply

y ¼ x, which is called the “line of perfect equality”. The opposite, the “line of

perfect inequality” is a situation, where one element accounts for the total amount

of the variable so that y ¼ 0 for all x < 1 and y ¼ 1 if x ¼ 1. Against the back-

ground of name concentrations, the variable z could be identified with credit

exposures. Thus, the Lorenz curve shows the cumulative share of exposures for

157Cf. Deutsche Bundesbank (2006), p. 40 ff., and BCBS (2006), p. 8 ff.
158Cf. Sect. 2.2.4.
159A common example for the usage of the Lorenz curve is the concentration analysis of income

distributions.
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each cumulative share of credits.160 As the relative share of an exposure is defined

by the weight wi, the expression (3.1) simplifies to

xi ¼ i

n
and yi ¼

X

i

j¼1

wj:n: (3.2)

Fig. 3.3 exemplarily shows the Lorenz curve for credit exposures. The closer the

curve is to the diagonal line, the smaller are inequality and concentration of the

exposures.

The Lorenz curve is directly related to the Gini coefficient, which expresses the

degree of inequality in a single number between 0 (perfect equality) and 1 (perfect

inequality). As area A between the diagonal line and the Lorenz curve reflects the

degree of inequality, the Gini coefficient G is defined as twice this area so that the

area is transformed from A 2 ½0; 0:5� to G 2 ½0; 1�. The area under the Lorenz

curve can be calculated as a sum of trapezoids, leading to a Gini coefficient of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
u

m
u

la
ti

ve
 S

h
ar

e 
o

f 
E

xp
o

su
re

s 

Cumulative Share of Credits

Line of Perfect Equality Lorenz Curve

A

Fig. 3.3 Lorenz curve for credit exposures

160In many cases it makes sense to aggregate all credit exposures of one obligor to one exposure

before. E.g. in corporate portfolios a default is usually referred to the obligor such that all credits

are in default if the obligor is past due more than 90 days on any (material) credit obligation. On

the contrary, in retail portfolios the defaults can be handled on contract instead of obligor level. In

this case the credits can be handled separately.
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G ¼ 2 � A ¼ 2 � 1

2
�
X

n

i¼1

Trapezoidi

 !

¼ 2 � 1

2
�
X

n

i¼1

1

2
� xi � xi�1ð Þ � yi þ yi�1ð Þ

 !

¼ 1�
X

n

i¼1

xi � xi�1ð Þ � yi þ yi�1ð Þ:

(3.3)

The advantage of the Lorenz curve and the Gini coefficient is that they can easily

be implemented and interpreted. However, there are several disadvantages that

delimit the benefit. One problem is that the results do not account for the number of

credits and therefore for no portfolio name concentration. For example, a poorly

diversified portfolio consisting of two credits with exposure weights w1 ¼ 0:3 and

w2 ¼ 0:7 has a Gini coefficient of G ¼ 1� ð0:5 � 0:3þ 0:5 � 0:7Þ ¼ 0:5 and the

corresponding Lorenz curve is defined by xi and yi from (3.2). A portfolio with

significantly lower name concentration could be constructed by dividing each of the

credits in 100 credits with equal weight, but this portfolio still has the identical

Lorenz curve and a Gini coefficient of G ¼ 0:5 since the degree of inequality

remains identically. Thus, only individual name concentration can be expressed

by this method but no portfolio name concentration. Another problem is that no

correlation effects and no different portfolio qualities can be accounted for. Two

portfolios with identical exposure distributions but different correlation or PD

structures have the same Lorenz curve but different name concentrations.

The Lorenz curve and the Gini coefficient can also be applied to sector concen-

trations. For this purpose, the exposures of each industry sector or each geographi-

cal region could be aggregated so that the concentration regarding the exposure size

of sectors is measured. The problem that the number of sectors is not accounted for

is less problematic because the number of sectors is usually fixed for a single bank.

Even if the Lorenz curve is not comparable between different banks due to a

different sector definition, the variation of the Lorenz curve in time can be observed

for a single bank. However, the problem regarding correlation effects is very critical

for sector concentrations, as there is no chance to distinguish between a “diversifi-

cation” across highly dependent or marginally related sectors.

The Herfindahl–Hirschmann Index (HHI) is another measure, which is often

used for a quantification of concentrations. As already mentioned in Sect. 2.6, the

HHI is defined as the sum of squared weights of elements (exposures) and the

reciprocal is the effective number of elements (exposures):

HHI ¼
X

n

i¼1

wi
2 ¼ 1

n�
: (3.4)

In comparison to the Gini coefficient, the advantage of the HHI is that the

index accounts for the number of credits, which is relevant for portfolio name
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concentration. In the example above, the HHI is 0.58 for the two-credit-case and

0.0058 for the case of dividing each of these credits into 100 equal sized credits.

Moreover, there is a weak theoretical link between the HHI and name concentration

risk as a HHI of zero is a necessary condition for infinite granularity.161 Hence, the

HHI seems to be a better measure of name concentration than the Gini coefficient.

As an ad-hoc measure of sector concentration the HHI faces the problems of

neglecting the correlation and PD structure, too. Thus, this index can only provide

a superficial estimate of sectoral concentrations.

Against this background, the mentioned heuristic approaches should only be

used for a rough impression of the degree of concentration in the portfolio and of

the variation of concentration in time. Since none of the methods is capable of

including correlation effects, which are a core element of concentration risk, and no

information about the capital requirement can be achieved, it appears necessary to

additionally measure concentration risk with more sophisticated, model-based

approaches.

3.5 Review of the Literature on Model-Based Approaches

of Concentration Risk Measurement

As noticed in Sect. 3.2, name concentrations can be divided into individual name

concentrations and portfolio name concentrations. The latter type of name con-

centrations can be analytically approximated with the so-called granularity

adjustment. The idea of the adjustment is based on Gordy (2001), who finds that

the add-on for undiversified risk is almost linear in terms of the reciprocal of the

number of credits 1/n and estimates the slope of the term by simulation based on

the CreditRisk+ model. Wilde (2001) derives the granularity adjustment formula

analytically by linear approximations around the VaR resulting from the ASRF

model. He shows that the formula implemented in the second consultative paper

(CP2) of Basel II only leads to convincing results in a CreditRisk+ model but

differs from the theoretically derived results when the adjustment formula is

calibrated consistent with the Vasicek model. The adjustment formula has been

improved by Pykhtin and Dev (2002) so that it is valid for a broader range of PDs.

Gordy (2003) generalizes the adjustment formula and numerically analyzes the

accuracy of the granularity adjustment when applied to the CreditRisk+ model

for several portfolios. Martin and Wilde (2002), Rau-Bredow (2002) and Gordy

(2004) obtain the granularity adjustment using a more straightforward approach

on the basis of a Taylor series expansion, applying the results of Gouriéroux et al.

(2000) for the first two derivatives of the VaR. Using higher derivatives of VaR

derived by Wilde (2003), G€urtler et al. (2008a) extend the adjustment to terms of

161Cf. (2.86).
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higher order to improve the accuracy. Furthermore, they numerically analyze the

impact of unsystematic credit risk and the accuracy of the granularity adjustment

when applied to the Vasicek model in detail. While these articles use the VaR as

the risk measure, Pykhtin (2004) and Rau-Bredow (2005) derive the granularity

adjustment for the case of ES being the relevant risk measure. An approach

related to Wilde (2001) is the granularity adjustment from Gordy and

L€utkebohmert (2007). Their formulas need less data than the original granularity

adjustment but are based on the CreditRisk+ model and not on the Vasicek model,

which the IRB Approach is based on. In contrast to these approaches, Emmer and

Tasche (2005) refer to individual name concentrations. They assume that one

single obligor accounts for a significant share of the overall portfolio, while

the rest of the portfolio remains infinitely granular. That is why it is called a

semi-asymptotic approach.

There also exist a few analytic and semi-analytic approaches that account for

sector concentrations. One rigorous analytical approach is Pykhtin (2004), which is
based on a similar principle as in Martin and Wilde (2002), expanding the Taylor

series expansion to a multi-factor context. This multi-factor adjustment is applied to

both the VaR and the ES. An alternative is the semi-analytic model from Cespedes

et al. (2006). The authors determine a formula that transforms the VaR of the IRB

Approach into a multi-factor approximation of the VaR through a complex numeri-

cal mapping procedure. D€ullmann (2006) extends the binomial extension technique

(BET) model from Moody’s by incorporating the “infection probability” of Davis

and Lo (2001). This additional parameter has been calibrated in a way that the VaR

of a multi-factor model is approximated. Based on the principles of Emmer and

Tasche (2005), Tasche (2006b) suggests an extension of the ASRF framework

towards an asymptotic multi-risk-factor setting. Some numerical work on the per-

formance of the Pykhtin model has been done by D€ullmann and Masschelein

(2007). Furthermore, D€ullmann (2007) presents a first comparison of different

approaches on sector concentration risk. G€urtler et al. (2010) adjust the models of

Pykhtin (2004) and Cespedes et al. (2006) to be consistent with the IRB Approach.

Furthermore, they compare the performance of the models on the basis of a

simulation study.

One of the first contributions to the literature that models credit contagion is

Davis and Lo (2001). In their model, the authors distinguish between direct defaults

and indirect defaults, which occur through an infection from directly defaulting

firms. Hammarlid (2004) shows how independent sectors can be aggregated within

the model of Davis and Lo (2001). Giesecke and Weber (2006) model the proba-

bility of financial distress depending on the number of financially distressed busi-

ness partners in a reduced-form model. However, these contributions assume

homogeneous credits – for Hammarlid (2004) at least inside the independent

sectors – and a symmetric dependence structure. Neu and K€uhn (2004) and Egloff

et al. (2007) allow for more realistic credit portfolios consisting of credits with

heterogeneous characteristics and asymmetric dependence structures but the com-

putation of loss distributions needs Monte Carlo simulations. Neu and K€uhn (2004)
is based on a multi-factor default-mode model. The authors add a term to the
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individual asset return that leads to an increased PD if connected firms are in

financial distress and to a decreased PD if competitors default. Egloff et al.

(2007) extend a multi-factor model, which allows for rating migrations, with

asymmetric microstructural dependencies. In contrast to Neu and K€uhn (2004),

there is no additional term in the asset return but the idiosyncratic component is

divided into a “true” unsystematic fraction and a fraction that is influenced by

defaults of related firms.
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Chapter 4

Model-Based Measurement of Name

Concentration Risk in Credit Portfolios

4.1 Fundamentals and Research Questions on Name

Concentration Risk

As described in Sect. 2.6, name concentration risk arises if the idiosyncratic risk

cannot be diversified away, which concurrently means that assumption (A) of the

ASRF model, the infinite granularity, does not hold. However, a violation of (A)

does not have to lead to the fact that the ASRF framework cannot be used at all for

credit risk quantification. Nonetheless, the consequences of the violation have to be

considered, i.e. the existence of name concentration risk. This issue is not only a

problem that should be accounted for in credit risk management when dealing with

analytical models, but it is also critical for supervisory capital measurement in

banks.162 This raises the following question: Does assumption (A) of the IRB-

model under Pillar 1 generally hold for our portfolio or do we have to quantify name

concentration risk for Pillar 2?

Emmer and Tasche (2005) show that the underestimation of individual name
concentrations can have a significant impact, especially if the exposure weight of

a single credit is higher than 2%. Due to the limits on large exposures in the European

Union, the exposure to a client may not exceed 25% of a credit institution’s own

funds.163 Consequently, a weight of 2% (of total funds) can only be exceeded if (1)

more than 8% of a credit institution’s capital are own funds and (2) the large exposure

limit is reached. This shows that idiosyncratic name concentrations usually should

not be problematic if the large exposure rules are effective. Similarly it could be

quantified whether portfolio name concentration has a significant impact on the risk

of the portfolio. In this context, it would be interesting to know which characteristics

a real-world bank portfolio should fulfill in order to get a sufficient approximation

162Another solution to the problem of the violation of assumption (A) or (B) might be to cancel risk

quantification under the IRB Approach and use internal models. However, this solution is not

designated in Basel II.
163Cf. Sect. 3.2.

M. Hibbeln, Risk Management in Credit Portfolios, Contributions to Economics,
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of the “true” risk even if name concentrations are not explicitly measured. These

characteristics should be determined in a way that the accuracy of the ASRF

framework can be easily assessed for a broad range of credit portfolios. If the desired

accuracy cannot be achieved using the ASRF model, the VaR of the portfolio could

be approximated using the granularity adjustment formula. However, since this

formula does not provide an exact solution but an approximation of the risk stemming

from portfolio name concentration, it is important to know for which types of credit

portfolios the adjustment formula shows an adequate performance. Unfortunately, the

existing literature concerning name concentration risk does not answer these ques-

tions sufficiently.164 Against this background, the following important tasks regard-

ing name concentrations will be analyzed in this chapter:

l In which cases are the assumptions of the ASRF framework model critical

concerning the credit portfolio size?
l In which cases are currently discussed adjustments for the VaR-measurement

able to overcome the shortcomings of the ASRF model?

The answers to both questions would be available if the minimum number of

loans, which is necessary to fulfill the granularity assumption (A) with a required

accuracy, were known. For this purpose, it could be demanded that the analytically

determined VaR and the true VaR using the binomial model of Vasicek shall differ at

maximum 5%.165 Against this background, firstly, the formulas for the (first-order)

granularity adjustment will be derived.166 As the granularity adjustment itself is an

asymptotic result, it can be seen as an approximation for medium grained portfolios.

Thus, the existent framework will be extended in form of a second-order granularity

adjustment in order to account for small sized portfolios.167 The possibility of such

an extension was already mentioned by Gordy (2004) but neither derived nor tested

164Gordy (2003) comes to the conclusion that the granularity adjustment works fine for risk

buckets of more than 200 loans considering low credit quality buckets and for more than 1,000

loans for high credit quality buckets. However, he uses the CreditRisk+ framework from Credit

Suisse Financial Products (1997) and not the Vasicek model that builds the basis of Basel II, and he

does not analyze the effect of different correlation factors as they are assumed in Basel II.
165This question is also interesting when analyzing the Basel II formula because the designated

add-on factor for the potential violation of assumption (A) was cancelled from the second

consultative document to the third consultative document; see BCBS (2001a, 2003a). Thus, we

only prove under which conditions the assumption (A) of the Vasicek model is fulfilled. Of course,

this model may suffer from other assumptions like the distributional assumption of standardized

returns. However, since we would only like to address the topic of concentration risk, our focus

should be reasonable. Additionally, the distributional assumptions seem not to have a deep impact

on the measured VaR; see Koyluoglu and Hickman (1998a, b), Gordy (2000) or Hamerle and

Rösch (2005a, b, 2006).
166Wilde (2001) calls this “the granularity adjustment to first order in the unsystematic variance”.
167This procedure can be motivated by the fact that for market risk quantification of nonlinear

exposures two factors of the Taylor series (fist and second order) are common to achieve a higher

accuracy; see e.g. Crouhy et al. (2001) or Jorion (2001). This might be appropriate for credit risk as

well. Furthermore, the higher order derivatives of VaR given by Wilde (2003) make it possible to

systematically derive such a formula.

74 4 Model-Based Measurement of Name Concentration Risk in Credit Portfolios



so far. Secondly, the minimum number of loans in a portfolio will be inferred

numerically using two definitions of accuracy in order to enhance the theoretical

background with concrete facts on critical portfolio sizes.168 This could give an

advice which sub-portfolios have significant risk concentrations and thus should be

controlled on credit portfolio and not on individual credit level. In the first analyses it

will be focused on homogeneous credit portfolios, i.e. each borrower has an identical

PD as well as an identical EAD and LGD. Furthermore, the granularity adjustment

of an inhomogeneous portfolio will be examined on the basis of Monte Carlo

simulations as well. These analyses contribute to the explanation of differences

between simulated and analytically determined solutions to credit portfolio risk as

well as between Basel II capital requirements for Pillar 2 with respect to Pillar 1.169

Although it could be shown that the non-coherency of the VaR is not relevant for

the ASRF model, this result does not hold anymore if the assumption of infinite

granularity is not fulfilled. Thus, in Sect. 4.3 the derivation of the granularity

adjustment and the aforementioned numerical analyses will be performed for the

ES as well. In addition, the performance of the ES-based granularity adjustment

will be tested for portfolios with stochastic LGDs. Beside the theoretical advantages

of the ES, the results of the numerical study demonstrate that the granularity

adjustment generates better approximations for the ES than for the VaR. Moreover,

even if stochastic LGDs are included as an additional source of uncertainty, the

accuracy of the adjustment formula is very high.

4.2 Measurement of Name Concentration Using the Risk

Measure Value at Risk170

4.2.1 Considering Name Concentration with the Granularity
Adjustment

4.2.1.1 First-Order Granularity Adjustment for One-Factor Models

The principle of incorporating the effect of the portfolio size in a one-factor model

is very simple. As a first step, it is assumed that the portfolio is infinitely fine

168The Basel Committee on Banking Supervision already stated that in principle the effect of

portfolio size on credit risk is well understood but lacks practical analyses; see BCBS (2005b).
169Additionally, this study makes contribution to the ongoing research on analyzing differences

between Basel II capital requirements and banks internal “true” risk capital measurement

approaches. Since the harmonization of the regulatory capital requirements and the perceived

risk capital of banks internal estimates for portfolio credit risk is often stated as the major benefit of

Basel II, see e.g. Hahn (2005), p. 127, but often not observed in practice, this task might be of

relevance in the future.
170The main results of this section comply with G€urtler et al. (2008a).
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grained and the VaR can be determined under the ASRF framework. However, an

add-on factor is constructed, which accounts for the finite size of the portfolio and

converges to zero if assumption (A) of infinite granularity is (nearly) met. This

factor can be determined in form of the first element different from zero that results

from a Taylor series expansion of the VaR around the ASRF solution. An alterna-

tive approach is to evaluate the unintentional shift of the confidence level due to the

negligence of granularity and to transform the result into a shift of the loss quantile.

The approximation is based on some linearizations around the systematic loss.

Hence, both approaches rely on the proximity of the true VaR and the VaR under

the ASRF framework. As the implementation of the Taylor series expansion is more

straightforward, the following explanations are referred to this approach. The

pioneer work on the granularity adjustment of Wilde (2001), which relies on the

other approach mentioned, is presented in Appendix 4.5.1.

In order to perform the Taylor series expansion, the portfolio loss will be

subdivided into a systematic and an unsystematic part, i.e.

~L ¼ E ~L j ~x� �þ ~L� E ~L j ~x� �� � ¼: ~Y þ l ~Z: (4.1)

Thus, the first term Eð~L j ~xÞ ¼: ~Y describes the systematic part of the portfolio

loss that can be expressed as the expected loss conditional on ~x (see also (2.85)).

The second term ~L� Eð~L j ~xÞ ¼: l ~Z of (4.1) stands for the unsystematic part of the

portfolio loss, which results from the idiosyncratic risk. Therefore, ~Z describes the

general idiosyncratic component and l decides on the fraction of the idiosyncratic

risk that stays in the portfolio. Obviously, l tends to zero if the number of obligors n
converges to infinity, since this fraction (of the idiosyncratic risk) vanishes if

granularity assumption (A) from Sect. 2.6 holds. However, for a granularity adjust-

ment we claim that the portfolio is only “nearly” infinitely granular and thus l is just
close to but exceeds zero. In order to incorporate the idiosyncratic part of the

portfolio loss into the VaR-formula, we perform a Taylor series expansion around
the systematic loss at l ¼ 0. We get

VaRa ~L
� � ¼ VaRa ~Y þ l ~Z

� �

¼ VaRa ~Y
� �þ l

dVaRa ~Y þ l ~Z
� �

dl

" #

l¼0

þ l2

2!

d2VaRa ~Y þ l ~Z
� �

dl2

" #

l¼0

þ � � � þ lm

m!

dmVaRa ~Y þ l ~Z
� �

dlm

" #

l¼0

þ � � � : ð4:2Þ

Thus, the first term describes the systematic part of the VaR and all other terms

add an additional fraction to the VaR due to the undiversified idiosyncratic compo-

nent. If the Taylor series expansion is formed up to the quadratic term, the first two
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derivatives of VaR are needed. According to Gouriéroux et al. (2000), the first
and second derivative of VaR are given as171

dVaRa ~Y þ l ~Z
� �

dl

�

�

�

�

�

l¼0

¼ E ~Zj ~Y ¼ qa ~Y
� �� �

; (4.3)

d2VaRa ~Y þ l ~Z
� �

d2l

�

�

�

�

�

l¼0

¼ � 1

fYðyÞ
d

dy
fYðyÞV ~Z j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ
; (4.4)

with fYðyÞ being the probability density function of ~Y. Concurrently, the first

derivative of VaR equals zero172:

E ~Z j ~Y� � ¼ 1

l
� E ~L� E ~L j ~x� � j ~Y� � ¼ 1

l
� E ~L j ~Y� �� 1

l
� E ~L j ~Y� � ¼ 0; (4.5)

so that the second derivative is the first relevant element underlying the granu-

larity adjustment. With

l2 � V ~Z j ~Y� � ¼ V l ~Z j ~Y� � ¼ V ~L� ~Y j ~Y� � ¼ V ~L j ~Y� �

; (4.6)

the quadratic term of the Taylor series expansion (4.2) results in

Dl1 ¼ l2

2
� 1

fYðyÞ
d

dy
fYðyÞV ~Z j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ

 !

¼ � 1

fYðyÞ
d

dy
fYðyÞV ~L j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ
: (4.7)

As the conditional expectation ~Y ¼ Eð~L j ~xÞ is continuous and strictly mono-

tonously decreasing in x, the probability density function fYðyÞ can be transformed

into173

fYðyÞ ¼ fxðxÞ
dy dx=j j ¼ � fxðxÞ

dy dx=
¼ � fxðxÞ

d
dxE

~L j ~x ¼ x
� � : (4.8)

171See Appendix 4.5.2.
172This is valid because the added risk of the portfolio is unsystematic; see Martin and Wilde

(2002) for further explanations.
173See Appendix 4.5.3.
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Furthermore, using (4.8) and174

~Y ¼ qa ~Y
� �

, E ~L j ~x� � ¼ qa E ~L j ~x� �� �

, E ~L j ~x� � ¼ E ~L j q1�a ~xð Þ� �

, ~x ¼ q1�a ~xð Þ; (4.9)

the true quantile of a granular portfolio VaR
ðnÞ
a can be approximated by the Taylor

series expansion up to the quadratic term, which leads to the following formula for

the VaR including the granularity adjustment Dl1:

VaRðnÞ
a � VaRðASRFÞ

a þ Dl1 ¼: VaRð1st Order Adj:Þ
a

with Dl1 ¼ � 1

2fxðxÞ
d

dx

fxðxÞV ~L j ~x ¼ x
� �

d
dxE

~L j ~x ¼ x
� �

 !
�

�

�

�

�

x¼q1�a ~xð Þ
: (4.10)

This corresponds to the result of Wilde (2001) and Rau-Bredow (2002). Thus,

the VaR figure of the infinitely fine grained portfolio is adjusted by an additional

term, that is the first term different from zero of the Taylor series expansion (4.2). In

contrast to the ASRF solution, which relies on the conditional expectation only, the

granularity adjustment takes the conditional variance of the portfolio loss into

account. In the following, the expression above will be called the ASRF solution

with first-order (granularity) adjustment.

A more detailed analysis of (4.10) will show that the granularity adjustment is

a term of order O(1/n*), or for homogeneous portfolios simply O(1/n).175 For this
purpose, the conditional expectation and variance will be looked at. Due to the

conditional independence of the credit events and due to the restriction of the

individual loss rate ðgLGDi � 1 ~Dif gÞ to ½�1; 1� for all i 2 1; :::; nf g, there exists a

finite number V�ðxÞ � 1 such that

V ~L j ~x¼ x
� �¼ V

X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x¼ x

 !

¼
X

n

i¼1

wi
2 �V gLGDi � 1 ~Dif gj~x¼ x

� �

¼
X

n

i¼1

wi
2 �V�ðxÞ ¼ V�ðxÞ �

X

n

i¼1

wi
2 ¼ V�ðxÞ � 1

n�
: (4.11)

174Cf. the identity 2.90.
175The notation n* refers to the effective number of credits as introduced in (2.87).
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Under the same conditions there also exists a finite number E�ðxÞ � 1 such that

E ~L j ~x ¼ x
� � ¼ E

X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x ¼ x

 !

¼
X

n

i¼1

wi � E gLGDi � 1 ~Dif gj~x ¼ x
� �

¼ E�ðxÞ �
X

n

i¼1

wi ¼ E�ðxÞ: (4.12)

Using these expressions, the granularity add-on Dl1 from (4.10) can be written as

Dl1 ¼ � 1

n�
1

2fxðxÞ
d

dx

fxðxÞV�ðxÞ
d
dx E

�ðxÞ

 !
�

�

�

�

�

x¼q1�a ~xð Þ
¼ O

1

n�

	 


: (4.13)

This shows that the granularity adjustment is linear in terms of 1/n*, so that in a

homogeneous portfolio the add-on for undiversified idiosyncratic risk is halved if

the number of credits is doubled. This corresponds to the heuristic approach of

Gordy (2001), who presumed that the add-on is constant in terms of 1/n and

estimated the slope of this term by simulation. At the same time it has to be stated

that neglecting the additional terms of the Taylor series expansion, which are at

least of order O(1/n2) in the homogeneous case,176 implies that all higher moments

like the conditional skewness and kurtosis are ignored. This can be made clear by

expressing the higher conditional moments about the mean �m similar to (4.11) and

(4.12) as177

�m ~L j ~x ¼ x
� � ¼

X

n

i¼1

wi
m � �m gLGDi � 1 ~Dif gj~x ¼ x

� �

¼ �m
�ðxÞ �

X

n

i¼1

wi
m

� �m
�ðxÞ �

X

n

i¼1

b

n � a
	 
m

¼ �m
�ðxÞ � b

a

	 
m

� 1

nm�1

¼ O
1

nm�1

	 


; (4.14)

with some finite numbers �m
�ðxÞ � 1 and 0< a � EADi � b for all i. If higher

moments like the conditional skewness shall be considered for the granularity

adjustment, too, it would be necessary to include additional elements of the Taylor

series expansion. This will be done in the subsequent Sect. 4.2.1.3, but beforehand,

the first-order granularity adjustment will be applied to the Vasicek model.

176The equivalent term for heterogeneous portfolios is O
P

n

i¼1

w3

	 


.

177The mth moment of a random variable ~X about the mean �mð ~XÞ is defined as

�mð ~XÞ :¼ Eð½ ~X � Eð ~XÞ�mÞ; cf. Abramowitz and Stegun (1972), 26.1.6.
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4.2.1.2 First-Order Granularity Adjustment for the Vasicek Model

Formula (4.10) is the general result of the granularity adjustment for one-factor

models, which could be applied to different models. The application to the one-

factor version of CreditRisk+ is demonstrated in Wilde (2001). In the following, the

granularity add-on will be specified for the Vasicek model. Thus, the conditional

probability of default is assumed to be given by

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.15)

and the systematic factor fxðxÞ ¼ ’ is standard normally distributed. For ease of

notation, the mth moment of some random variable ~X about the origin will be

denoted by mmð ~XÞ :¼ Eð ~XmÞ, and the mth conditional moment of the portfolio loss

about the origin will be indicated by

mm;c :¼ mm ~L j ~x ¼ x
� �

: (4.16)

As noticed before, the mth moment of a random variable ~X about the mean is

represented by �mð ~XÞ :¼ Eð½ ~X � Eð ~XÞ�mÞ, and the mth conditional moment of the

portfolio loss about the mean will be denoted by

�m;c :¼ �m ~L j ~x ¼ x
� �

: (4.17)

Using this notation, the conditional expectation and the conditional variance

are indicated by m1;c and �2;c, respectively, and the granularity adjustment (4.10)

can be expressed as178

Dl1 ¼ � 1

2’

d

dx

’�2;c
dm1;c dx=

 !
�

�

�

�

�

x¼F�1 1�að Þ

¼ 1

2

x � �2;c
dm1;c dx=

� d�2;c dx=

dm1;c dx=
þ �2;c � d2m1;c dx2

�

dm1;c dx=
� �2

" #
�

�

�

�

�

x¼F�1 1�að Þ
: (4.18)

Thus, the first and second derivatives of the conditional expectation as well

as the first derivative of the conditional variance have to be determined. For this

purpose, it will be assumed that the LGDs are stochastically independent of each

178Cf. Appendix 4.5.4.
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other.179 Furthermore, the expectation and variance of LGD will be denoted by

ELGD and VLGD, respectively. The required moments are given as180

m1;c ¼
X

n

i¼1

wi � ELGDi � piðxÞ; (4.19)

�2;c ¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � piðxÞ � ELGD2
i � p2i ðxÞ

� �

: (4.20)

Thus, the needed derivatives are given as

dm1;c
dx

¼
X

n

i¼1

wi � ELGDi � d piðxÞð Þ
dx

; (4.21)

d2m1;c
dx2

¼
X

n

i¼1

wi � ELGDi � d
2 piðxÞð Þ
dx2

; (4.22)

d�2;c
dx

¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � d piðxÞð Þ
dx

� ELGD2
i �

d p2i ðxÞ
� �

dx

 �

: (4.23)

According to this, the first two derivatives of piðxÞ as well as the first derivative
of pi

2ðxÞ have to be determined. Using the notation

piðxÞ ¼ F zið Þ; with zi ¼
F�1 PDið Þ � ffiffiffiffi

ri
p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p ; (4.24)

we obtain

d piðxÞð Þ
dx

¼ d

dx
F zið Þ ¼ �

ffiffiffiffi

ri
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ’ zið Þ; (4.25)

d2 piðxÞð Þ
dx2

¼ �
ffiffiffiffi

ri
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � d

dx
’ zið Þ ¼ � ri

1� ri
� zi � ’ zið Þ; (4.26)

179This assumption can be critical for real-world portfolios. Especially, it is often assumed in

ongoing research on credit portfolio modeling that the LGD is dependent on the systematic factor.

However, the granularity adjustment formula would complicate significantly as neither the ELGD

nor the VLGD could be treated as constant for the derivatives. Against this background, this

assumption will be retained for the derivation.
180Cf. Appendix 4.5.4. Pykhtin and Dev (2002) corrected the formulas of Wilde (2001), who

neglected the last term of the following conditional variance.
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d p2i ðxÞ
� �

dx
¼ d

dx
F zið Þð Þ2 ¼ �2 �

ffiffiffiffi

ri
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � Fi zið Þ � ’ zið Þ: (4.27)

Formulas (4.21)–(4.27) have to be inserted into (4.18) to get the granularity

adjustment. This leads to the following expression for the first-order granularity

adjustment for heterogeneous portfolios in the Vasicek model:

Dl1 ¼ 1

2
F�1 að Þ

P

n

i¼1

w2
i ELGD2

i þ VLGDi

� �

F zið Þ � ELGD2
iF

2 zið Þ� �

P

n

i¼1

wiELGDi

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p � ’ zið Þ

2

6

6

4

�
P

n

i¼1

w2
i ELGD2

i þ VLGDi

� �

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p ’ zið Þ � 2ELGD2

i

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p Fi zið Þ’ zið Þ

 �

P

n

i¼1

wiELGDi

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p ’ zið Þ

�
X

n

i¼1

w2
i ELGD2

i þ VLGDi

� �

F zið Þ � ELGD2
iF

2 zið Þ� �

�
P

n

i¼1

wiELGDi
ri

1�ri
zi’ zið Þ

P

n

i¼1

wiELGDi

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p ’ zið Þ

	 
2

3

7

7

7

5

zi¼F�1 PDið Þþ ffiffiffirip
F�1 að Þ

ffiffiffiffiffiffi

1�ri
p

: (4.28)

For homogeneous portfolios, this formula can be simplified to181

Dl1 ¼ 1

2n

ELGD2 þ VLGD

ELGD

FðzÞ
’ðzÞ

F�1 að Þ 1� 2rð Þ þ F�1 PDð Þ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 1

 �	

�ELGD � FðzÞ ðzÞF
�1 að Þ 1� 2rð Þ þ F�1 PDð Þ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 2

 �


z¼F�1 PDð Þþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

;

(4.29)

which is the formula presented by Pykhtin and Dev (2002).

4.2.1.3 Second-Order Granularity Adjustment for One-Factor Models

Recalling the discussion of the first-order granularity adjustment, the ASRF solu-

tion might only lead to good approximations if term (4.28) of order O(1/n) is close

181Cf. Appendix 4.5.5.
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to zero, whereas the ASRF solution including the first-order granularity adjustment

might only be sufficient if the terms of order O(1/n2) vanish. For medium sized risk

buckets this might be true, but if the number of credits in the portfolio is getting

considerably small, an additional factor might be appropriate. Particularly, the

mentioned granularity adjustment is linear in 1/n and this might not hold for

small portfolios. Indeed, Gordy (2003) shows by simulation that the portfolio

loss seems to follow a concave function and therefore adjustment (4.28) would

slightly overshoot the theoretically optimal add-on for smaller portfolios.182 An

explanation of the described behavior is that the first-order adjustment only takes

the conditional variance into account whereas higher conditional moments, which

result from higher order terms, are ignored. As noticed in Sect. 4.1, additional

elements of the Taylor series expansion (4.2) will be calculated in the following

with the intention to improve the adjustment for small portfolio sizes. Hence, all

elements of order O(1/n2) will be taken into account, and thus the error will be

reduced to O(1/n3).183 This newly derived formula will be called the second-order
granularity adjustment. The resulting ASRF solution including the first and the

second-order granularity adjustment Dl2 is

VaRð1st þ 2nd Order Adj:Þ
a ¼ VaRðASRFÞ

a þ Dl1 þ Dl2; (4.30)

where Dl2 represents the O(1/n
2) elements of (4.2).

In order to calculate these elements, higher derivatives of VaR are required.

Referring to Wilde (2003), a formula for all derivatives of VaR is derived in

Appendix 4.5.6. Having a closer look at the derivatives of VaR, the fourth and a part

of the fifth element of the Taylor series are identified to be relevant for the O(1/n2)
terms.184 Thus, the third and the fourth derivative of VaR are required. As shown in

Appendix 4.5.7, the rather complex result for all derivatives can be simplified for

the first five derivatives (m ¼ 1; 2; :::; 5) of VaR to

@mVaRa ~Yþ l ~Z
� �

@lm

�

�

�

�

�

l¼0

¼ �1ð Þm � 1

fYðyÞ
	 


dm�1 mm ~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�1

"

�kðmÞ � d
dy

1

fYðyÞ �
d m2 ~Z j ~Y ¼ y

� �

fYðyÞ
� �

dy

dm�3 mm�2
~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�3

 !#

y¼qa ~Yð Þ
;

(4.31)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10.

182Gordy (2003) observes the concavity of the granularity add-on for a high-quality portfolio

(A-rated) up to a portfolio size of 1,000 debtors.
183See Gordy (2004), p. 112, footnote 5, for a similar suggestion.
184See Appendix 4.5.8 for details regarding the order of these elements.
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Using the third and the fourth derivative of VaR and due to185

lm � mm ~Z j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼ �m ~L j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼: �mðyÞjy¼qa ~Yð Þ (4.32)

as well as �1ðyÞ ¼ 0, the elements of order O(1/n2) of the Taylor series expansion
(4.2) are given as

Dl2 ¼ �1ð Þ3
3!

� 1

fYðyÞ
	 


d2 �3ðyÞfYðyÞð Þ
dy2



� d

dy

1

fYðyÞ
d �2ðyÞfYðyÞð Þ

dy
�1ðyÞfYðyÞð Þ

	 
�

þ �1ð Þ4
4!

� 1

fYðyÞ
	 


�3
d

dy

1

fYðyÞ
d �2ðyÞfYðyÞð Þ

dy

d �2ðyÞfYðyÞð Þ
dy

	 
 �
�

�

�

�

y¼qa ~Yð Þ

¼ 1

6

1

fYðyÞ
d2

dy2
�3ðyÞfYðyÞ½ � þ 1

24

3

fYðyÞ
d

dy

1

fYðyÞ
d

dy
�2ðyÞfYðyÞ½ �

	 
2
" #

�

�

�

�

�

y¼qa ~Yð Þ
:

(4.33)

Recalling that mm;c ¼ mmð~L j ~x ¼ xÞ, fYðyÞ ¼ � fxðxÞ
dy=dx (see (4.8)), and

�mðyÞjy¼qað ~YÞ :¼ �mð~L j ~Y ¼ qað ~YÞÞ ¼ �mð~L j ~x ¼ q1�að~xÞÞ ¼: �m;c
�

�

x¼q1�að~xÞ (cf. (4.9)

and (4.32)), Dl2 can be written as

Dl2 ¼ 1

6fx

d

dx

d

dy

�3;c fx

dy=dx

 �	 


þ 1

8fx

d

dx

1

fx

dy

dx

d

dy

�2;c fx

dy=dx

 �	 
2
" #

�

�

�

�

�

x¼q1�a ~xð Þ

¼ 1

6fx

d

dx

1

dm1;c dx=

d

dx

�3;cfx

dm1;c dx=

" # !

þ 1

8fx

d

dx

1

fx

1

dm1;c dx=

d

dx

�2;c fx

dm1;c dx=

" # !2
2

4

3

5

�

�

�

�

�

�

x¼q1�a ~xð Þ

; (4.34)

which is our general result for the second-order granularity adjustment. Having a

closer look at (4.34), it can be seen that the second-order adjustment takes a squared

term of the conditional variance as well as the conditional skewness into account,186

which are both of order O(1/n2).187

185Cf. (4.236) of Appendix 4.5.8.
186Precisely, the element �3;c is the third conditional moment centered about the mean whereas the

conditional skewness is the “normalized” third moment, defined as the third conditional moment

about the mean divided by the conditional standard deviation to the power of three.
187Cf. (4.14).
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4.2.1.4 Second-Order Granularity Adjustment for the Vasicek Model

Similar to Sect. 4.2.1.2, we specify our general result of the second-order granular-

ity adjustment for the Vasicek model with

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.35)

and a standard normally distributed systematic factor, leading to fx ¼ ’ and

q1�að~xÞ ¼ F�1ð1� aÞ. As derived in Appendix 4.5.9 under the assumption of

a standard normally distributed systematic factor, the second-order granularity

adjustment is equivalent to

Dl2 ¼ 1

6 dm1;c dx=
� �2

�3;c x2�1�d3m1;c dx=
3

dm1;c dx=
þ3x d2m1;c dx2

�� �

dm1;c dx=
þ3 d2m1;c dx2

�� �2

dm1;c dx=
� �2

 !"

þd�3;c
dx

�2x�3 d2m1;c dx2
�� �

dm1;c dx=

 !

þd2�3;c
dx2

#

þ 1

8 dm1;c dx=
� �3

�x�3
d2m1;c dx2

�

dm1;c dx=

 !

�2;c �x�d2m1;c dx2
�

dm1;c dx=

" #

þd�2;c
dx

 !" 2

þ2 �2;c xþd2m1;c dx2
�

dm1;c dx=

" #

�d�2;c
dx

 !

�2;c 1þd3m1;c dx3
�

dm1;c dx=
� d2m1;c dx2

�� �2

dm1;c dx=
� �2

" # 

þd�2;c
dx

xþd2m1;c dx2
�

dm1;c dx=

" #

�d2�2;c
dx2

!#
�

�

�

�

�

x¼F�1 1�að Þ
:

(4.36)

As can be seen from (4.36), Dl2 is a function of m1;c, �2;c, and �3;c. According to

(4.19), (4.20), and (4.264),188 these moments are given as

m1;c ¼
X

n

i¼1

wi � ELGDi � piðxÞ; (4.37)

�2;c ¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � piðxÞ � ELGD2
i � p2i ðxÞ

� �

; (4.38)

188See Appendix 4.5.10.
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�3;c ¼
X

n

i¼1

w3
i ELGD3

i þ 3 � ELGDi � VLGDi þ SLGDi

� � � piðxÞ
�

�3 � ELGD3
i þ ELGDi � VLGDi

� � � p2i ðxÞ þ 2 � ELGD3
i � p3i ðxÞ

�

; (4.39)

with SLGD :¼ �3ðgLGDÞ. The conditional PD from (4.35) can be written as

piðxÞ ¼ FðziÞ; with zi ¼ F�1 PDið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � si � x and si ¼

ffiffiffi

r
p

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p : (4.40)

Using this notation and having a closer look at (4.36) and the conditional

moments, we find that the following derivatives are needed

d piðxÞð Þ
dx

¼ �si � ’ zið Þ; (4.41)

d2 piðxÞð Þ
dx2

¼ �s2i � zi � ’ zið Þ; (4.42)

d3 piðxÞð Þ
dx3

¼ �s3i � ’ zið Þ � z2i � 1
� �

; (4.43)

d p2i ðxÞ
� �

dx
¼ �2 � si � F zið Þ � ’ zið Þ; (4.44)

d2 p2i ðxÞ
� �

dx2
¼ 2 � s2i � ’ zið Þ � ’ zið Þ � F zið Þ � zi½ �; (4.45)

d p3i ðxÞ
� �

dx
¼ �3 � si � F2 zið Þ � ’ zið Þ; (4.46)

d2 p3i ðxÞ
� �

dx2
¼ 3 � s2i � F zið Þ � ’ zið Þ � 2 � ’ zið Þ � F zið Þ � zi½ �: (4.47)

Finally, we just have to use (4.37)–(4.47) in order to determine the second-order

adjustment formula (4.36). The resulting expression can easily be calculated

with standard computer applications without the need to aggregate the terms to a

single formula. Thus, we have achived our aim to derive a formula that takes the

conditional skewness into account and reduces the error to OðP
n

i¼1

w4Þ or to O(1/n3)

for homogeneous portfolios. This can best be seen for homogeneous portfolios for

the special case that the gross loss rates are modeled:

Dl2 ¼ 1

6n2s2’2
x2 � 1þ s2 þ 3xszþ 2s2z2
� ��

F� 3F2 þ 2F3
� �

þ s’ 2xþ 3szð Þ 1� 6Fþ 6F2
� ��s2’ z� 6 Fz� ’½ � þ 6F Fz� 2’½ �ð Þ�
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� 1

8n2s3’3
�x� 3szð Þ F� F2

� � �x� sz½ � � s’ 1� 2F½ �� �� 2

þ 2 F� F2
� �

xþ sz½ � þ s’ 1� 2F½ �� �

� F� F2
� �

1� s2
� �� � s’ 1� 2F½ � xþ sz½ � þ s2’ zþ 2 ’� Fzð Þ½ ���; (4.48)

with F ¼ FðzÞ, ’ ¼ ’ðzÞ, z ¼ F�1 PDð Þ� ffiffi

r
p �x

ffiffiffiffiffiffiffi

1�r
p , s ¼

ffiffi

r
p
ffiffiffiffiffiffiffi

1�r
p , and x ¼ F�1ð1� aÞ.

Even if the formulas appear quite complex, both adjustments are easy to

implement, fast to compute and we do not have to run Monte Carlo simulations

and thereby avoid simulation noise.

4.2.2 Numerical Analysis of the VaR-Based Granularity
Adjustment

4.2.2.1 Impact on the Portfolio-Quantile

As mentioned in Sect. 4.1, there is no concrete analysis in the literature for which

type of credit portfolios the impact of portfolio name concentrations is negligible.

Instead, we only essentially know that a (homogeneous) portfolio consisting of a

higher number of credits incorporates less name concentration risk or that name

concentrations can account for round about 13–21% additional risk if the portfolio

is highly concentrated.189 Moreover, we do not know how good the first-order or the

second-order granularity adjustment formulas work for different portfolio types.

Against this background, subsequently the accuracy of the ASRF formula, the first-

order, and the second-order granularity adjustment will be analyzed.

At first, we discuss the general behavior of the four procedures for risk quanti-

fication of homogeneous portfolios presented in Sects. 2.5, 2.6, 2.7, 4.2.1.2, and

4.2.1.4, which are

(a) The numerically “exact” coarse grained solution (see (2.75))

(b) The fine grained ASRF solution (see (2.97))

(c) The ASRF solution with first-order adjustment (see (4.10) and (4.29))

(d) The ASRF solution with first- and second-order adjustments (see (4.30)

and (4.48))

each applying the conditional probability of default (2.66) of the Vasicek model.

For the comparison, we evaluate the portfolio loss distribution of a simple portfolio

189Cf. BCBS (2006), p. 10.
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that consists of 40 credits, each with a probability of default of PD ¼ 1% and a

loss given default of LGD ¼ 1. The correlation parameter is set to r ¼ 20%.190

Using these parameters, we calculate the loss distribution using the “exact” solution

(a) as well as the approximations (b) to (d). The results are shown in Fig. 4.1 for

portfolio losses up to 30 % (12 credits) and the corresponding quantiles (of the

loss distribution) starting at a ¼ 0:7. See Fig. 4.2 for the region of high quantiles

a � 0:994, which are of special interest in a VaR-framework for credit risk with

high confidence levels.

It is obvious to see that the coarse grained solution (a) is not continuous since the

distribution of defaults is a discrete binomial mixture whereas all other solutions (b)

to (d) are “smooth” functions. This is caused by the fact that these approximations

for the loss distribution assume an infinitely granular portfolio, i.e. the loss distri-

bution is monotonous increasing and differentiable (solution (b)), or at least are

derived from such an idealized portfolio ((c) and (d)).

Now, we examine the result for the VaR-figures at confidence levels 0.995 and

0.999. Using the exact, discrete solution (a), the VaR is 12.5% (or 5 credits) for the
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190The chosen portfolio exhibits high unsystematic risk and therefore serves as a good example in

order to explain the differences of the four solutions. However, we evaluated several portfolios and

basically, the results do not differ. Additionally, we claim that the general statements can also be

applied to heterogeneous portfolios.
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0.995 quantile and 17.5% (or 7 credits) for the 0.999 quantile. Compared to this, the

ASRF solution (b) exhibits significant lower losses at these confidence levels,

which are 9.46% for the 0.995 quantile and 14.55% for the 0.999 quantile. Obvi-

ously, the ASRF solution underestimates the portfolio loss, since it does not take

(additional) concentration risks into account. If we add the first order adjustment

(c), the VaR figures increase compared to the ASRF solution (b) with values

12.55% for the 0.995 quantile and 18.59% for the 0.999 quantile. Both values are

good proxies for the “true” solution (a). Especially the VaR at 0.995 confidence

level is nearly exact (12.55% compared to 12.5%). However, (c) seems to be a

conservative measure, since the VaR is positively biased.

Using the additional second-order adjustment (d), the VaR is lowered to

12.12% for the 0.995 quantile and 17.48% for the 0.999 quantile. In this case,

the VaR at 0.999 confidence level is nearly exact (17.48% compared to 17.5%).

Nonetheless, (d) is likely to be a progressive approximation for the “exact”

solution (a), since the VaR is negatively biased. Summing up these first results

(see also Figs. 4.1 and 4.2), using the ASRF solution (b), the portfolio distribu-

tions shift to lower losses for the VaR compared to the “exact” solution (a), since

an infinitely high number of credits is presumed. Precisely, the idiosyncratic risk

is diversified completely, resulting in a lower portfolio loss at high confidence

levels. If the first order granularity adjustment (c) is incorporated, this effect is

weakened and especially for the relevant high confidence levels the portfolio loss

increases compared to the ASRF solution (b). This means that the first-order
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granularity adjustment is usually positive.191 However, if the second-order gran-

ularity adjustment (d) is added, the portfolio loss distribution shifts backwards

again (for high confidence levels). This can be addressed to the alternating sign of

the Taylor series, as can be seen in (4.31). Since the first-order granularity

adjustment is positive, the second-order adjustment tends to be negative. Thus,

with incorporation of the second-order adjustment (d), the approximation of

the discrete distribution of the coarse grained portfolio (a) is (in general) less

conservative compared to the (only) use of the first order adjustment. However, a

clear conclusion that the application of the second-order adjustment (d) in order to

approximate the discrete numerical derived distribution (a) for high confidence

levels outperforms the only use of the first-order adjustment (c) cannot be

stated.192

To conclude, if we appraise the approximations for the coarse grained portfolio,

we find both adjustments (c) and (d) to be a much better fit of the numerical solution

in the (VaR relevant) tail region of the loss distribution than the ASRF solution,

whereas the first-order adjustment is more conservative and seems to give the better

overall approximation in general.

4.2.2.2 Size of Fine Grained Risk Buckets

Reconsidering the assumptions of the ASRF framework (see Sect. 2.6), we found

assumption (A) – the infinite granularity assumption – to be critical in a one factor

model. Thus, we investigate in detail the critical numbers of credits in homo-

geneous portfolios that fulfill this condition. Therefore, we have to define a critical

value for the deviation of the “idealized” VaR of the ASRF solution (b) from the

“true” VaR figure from solution (a) to discriminate an infinite granular portfolio

from a finite granular portfolio. We do that in two ways:

Firstly, it could be argued that the fine grained approximation (2.97) in order to

calculate the VaR is only adequate if its value does not exceed the “true” VaR from

(2.75) of the coarse grained bucket minus a target tolerance b, both using a

confidence level of 0.999. Precisely, we define a critical number I
ðASRFÞ
c;per of credits

in the bucket, so that each portfolio with a higher number of credits than I
ðASRFÞ
c;per

meets this specification. We use the expression193

191See Rau-Bredow (2005) for a counter-example for very unusual parameter values. This problem

can be addressed to the use of VaR as a measure of risk which does not guarantee sub-additivity;

cf. Sect. 2.2.3.
192By contrast, we expected a significant enhancement by using the second order adjustment like

mentioned in Gordy (2004), p. 112, footnote 5.
193To address to the minimum number after which the target tolerance will permanently hold, we

have to add the notation “for all N � n” because the function of the coarse grained VaR exhibits

jumps dependent on the number of credits.
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IðASRFÞc;per ¼ inf n :
VaR

ðASRFÞ
0:999

~L
� �

VaR
ðNÞ
0:999

~L ¼ 1
N

P

N

i¼1

1 ~Dif g
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A

: (4.49)

Here, we set the target tolerance b to 5%, meaning that the “true” VaR specified

by coarse grained risk buckets does not differ from the analytic VaR using the fine

grained solution (2.97) by more than 5% if the number of credits in the bucket

reaches at least I
ðASRFÞ
c;per .

Secondly, the fine grained approximation (b) of the VaR (“idealized” VaR) may

be sufficient as long as its result using a confidence level of 0.999 does not exceed

the “true” VaR as defined by solution (a) of the coarse grained bucket using a

confidence level of 0.995, i.e.

I
ðASRFÞ
c;abs ¼ sup n : VaR

ðASRFÞ
0:999

~L
� �

<VaR
ðnÞ
0:995

~L
� �

� �

: (4.50)

This definition of a critical number can be justified due to the development of

the IRB-capital formula in Basel II: When the granularity adjustment (of Basel II)

was cancelled, simultaneously the confidence level was increased from 0.995 to

0.999.194 Thus, the reduction of the capital requirement by neglecting granularity

was roughly compensated by an increase of the target confidence level. The risk of

portfolios with a high number of credits will therefore be overestimated if we

assume that the actual target confidence level is 0.995, whereas the risk for a

low number of credits will be underestimated. Thus, a critical number I
ðASRFÞ
c;abs of

credits in the bucket exists, so that in each portfolio with a higher number of credits

than I
ðASRFÞ
c;abs , the VaR can be stated to be overestimated.

The critical numbers I
ðASRFÞ
c;per and I

ðASRFÞ
c;abs for homogeneous portfolios with differ-

ent parameters r and PD are reported in Tables 4.1 and 4.2. We do not only report

the critical numbers for Basel II conditions, but also a for wide range of parameter

settings that might be relevant if banks internal data are used for estimating r.
Due to the supervisory formula, this parameter is a function of PD for corporates,

sovereigns, and banks as well as for Small and Medium Enterprises (SMEs) and

(other) retail exposures and remains fixed for residential mortgage exposures and

revolving retail exposures.195

With definition (4.49), the critical numbers I
ðASRFÞ
c;per vary from 23 to 35,986 credits

(see Table 4.1), dependent on the probability of default PD and the correlation

194Beside some adjustments on the correlation parameter, these were the major changes of the

IRB-formula from the second to the third consultative document; see BCBS (2001a, 2003a).
195See Sect. 2.7 for details. In both tables, (rounded) parameters r due to Basel II are marked.
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Table 4.1 Critical number of credits from that ASRF solution can be stated to be sufficient for

measuring the true VaR (see (4.49))

AAA

up to

AA�

A� up

to A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 35,986 23,985 5,389 5,184 4,105 3,176 2,057 1,390 988 478 370 205

3.5% 30,501 20,122 4,627 4,457 3,544 2,755 1,801 1,214 861 421 322 175

4.0% 26,051 17,272 4,054 3,851 3,076 2,402 1,563 1,077 760 375 295 161

4.5% 22,372 14,906 3,569 3,392 2,719 2,132 1,398 958 690 350 271 145

5.0% 19,669 13,160 3,153 3,047 2,412 1,928 1,273 866 628 320 255 128

5.5% 17,723 11,667 2,840 2,701 2,180 1,722 1,145 784 564 289 229 125

6.0% 15,715 10,590 2,611 2,442 1,977 1,566 1,032 711 515 264 205 116

6.5% 14,276 9,452 2,366 2,252 1,828 1,428 946 655 477 251 201 106

7.0% 12,730 8,637 2,148 2,045 1,665 1,327 869 615 457 226 185 101

7.5% 11,633 7,915 1,990 1,896 1,547 1,214 827 578 412 209 167 90

8.0% 10,657 7,272 1,813 1,761 1,414 1,133 762 527 389 206 160 87

8.5% 9,785 6,695 1,720 1,607 1,318 1,040 703 505 357 200 156 87

9.0% 9,222 6,176 1,571 1,498 1,231 992 660 460 338 183 143 80

9.5% 8,504 5,707 1,466 1,427 1,152 930 610 443 326 164 135 76

10.0% 7,853 5,281 1,399 1,334 1,079 873 597 419 304 157 132 68

10.5% 7,262 5,015 1,309 1,249 1,011 804 552 382 289 153 118 70

11.0% 6,900 4,655 1,226 1,170 949 756 532 376 285 144 120 65

11.5% 6,398 4,324 1,149 1,097 911 726 493 357 257 138 109 64

12.0% 6,099 4,127 1,103 1,053 838 684 466 332 254 135 107 58

12.5% 5,669 3,843 1,036 989 806 645 450 315 242 127 103 60

13.0% 5,419 3,677 974 952 759 622 435 299 226 117 94 53

13.5% 5,046 3,430 915 896 732 587 395 284 211 117 98 55

14.0% 4,701 3,290 882 843 706 555 391 288 201 110 87 52

14.5% 4,510 3,073 851 794 666 536 362 263 200 101 91 50

15.0% 4,331 2,954 822 767 629 519 344 250 195 108 84 51

15.5% 4,044 2,763 775 741 594 491 349 254 178 95 81 52

16.0% 3,892 2,661 731 717 589 476 324 226 186 100 78 44

16.5% 3,748 2,564 690 677 557 451 315 220 174 96 75 51

17.0% 3,507 2,403 668 639 540 427 299 225 159 86 67 42

17.5% 3,383 2,320 647 619 511 404 291 205 159 95 66 38

18.0% 3,167 2,241 611 585 496 403 277 200 152 80 70 33

18.5% 3,060 2,103 593 583 469 382 263 195 145 90 61 34

19.0% 2,959 2,034 576 551 456 362 250 186 142 85 65 35

19.5% 2,863 1,969 544 521 432 352 250 186 129 80 61 30

20.0% 2,685 1,850 529 507 420 343 244 173 133 77 57 31

20.5% 2,601 1,793 500 493 409 317 232 165 127 74 58 32

21.0% 2,522 1,739 487 466 377 326 227 170 131 73 51 26

21.5% 2,446 1,635 474 454 367 301 216 158 119 63 52 27

22.0% 2,297 1,587 448 442 368 302 211 163 123 64 53 28

22.5% 2,230 1,541 437 418 349 279 206 152 118 63 55 29

23.0% 2,167 1,498 413 408 350 280 191 145 113 57 53 30

23.5% 2,036 1,457 415 398 332 266 192 142 111 58 51 22

24.0% 1,980 1,371 393 388 324 252 193 132 98 54 49 23

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales <$ 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.2 Critical number of credits from that the exact solution at confidence level 0.995

exceeds the infinite fine granularity at confidence level 0.999 (see (4.50))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 5,499 3,885 997 1,019 786 678 464 329 255 165 143 123

3.5% 4,354 3,126 836 793 665 542 380 274 217 138 122 110

4.0% 3,428 2,508 701 666 564 428 308 227 184 118 103 94

4.5% 3,111 1,998 588 558 434 364 266 200 155 100 93 79

5.0% 2,436 1,830 490 466 404 308 230 175 138 92 83 70

5.5% 2,239 1,445 406 386 339 288 198 154 123 77 71 65

6.0% 1,724 1,338 380 361 283 244 170 135 109 74 69 57

6.5% 1,599 1,037 312 297 266 204 161 117 97 68 58 56

7.0% 1,489 968 294 280 220 193 138 112 85 62 57 50

7.5% 1,114 906 238 264 208 183 131 97 82 57 50 46

8.0% 1,044 681 225 214 197 152 111 93 72 52 46 42

8.5% 982 641 214 204 161 145 106 80 63 47 45 43

9.0% 925 605 203 194 153 119 102 77 61 46 39 41

9.5% 874 573 161 185 146 113 85 66 59 42 38 39

10.0% 621 543 154 147 140 109 82 64 51 38 37 38

10.5% 589 516 147 140 111 104 79 61 49 37 34 35

11.0% 559 368 141 134 107 100 76 52 48 36 31 30

11.5% 532 351 135 129 103 80 63 50 41 32 28 31

12.0% 507 335 130 124 99 77 61 49 40 32 30 28

12.5% 484 320 100 95 95 74 59 47 39 31 27 29

13.0% 463 306 96 92 91 72 57 46 38 28 29 26

13.5% 443 293 92 88 71 69 55 38 37 30 24 27

14.0% 425 281 89 85 68 67 44 37 31 27 26 24

14.5% 407 270 86 82 66 65 43 36 31 24 22 28

15.0% 261 260 83 79 64 50 42 35 30 21 23 21

15.5% 251 250 80 77 62 49 40 34 29 23 25 25

16.0% 242 241 77 74 60 47 39 33 24 23 21 22

16.5% 233 155 75 72 58 46 38 27 28 20 18 23

17.0% 224 149 55 70 56 44 37 26 23 22 22 19

17.5% 216 144 53 51 54 43 36 31 27 17 20 24

18.0% 209 139 51 49 53 42 28 25 22 19 18 20

18.5% 202 135 50 48 39 41 28 24 22 19 16 20

19.0% 195 130 48 46 37 40 27 24 18 16 16 21

19.5% 189 126 47 45 36 39 26 23 21 16 19 21

20.0% 183 122 46 44 35 38 26 23 21 18 17 17

20.5% 177 118 44 43 35 37 25 22 17 18 17 17

21.0% 172 115 43 41 34 27 24 22 20 14 15 18

21.5% 167 112 42 40 33 26 24 17 16 13 15 18

22.0% 162 108 41 39 32 26 23 21 16 15 13 19

22.5% 157 105 40 38 31 25 23 21 16 15 13 19

23.0% 153 102 39 37 30 24 22 16 15 15 13 14

23.5% 148 99 38 36 30 24 22 16 15 15 16 14

24.0% 144 97 37 36 29 23 16 16 15 13 11 15

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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factor r. In buckets with small probabilities of default as well as low correlation

factors, the idiosyncratic risk is relatively high, so that the portfolio must be

substantially bigger to meet the target. This means that in the worst case, a portfolio

must consist of at least 35,986 creditors to meet the assumptions of the ASRF

framework at an accuracy of 5%. The same tendency can also be found for the

target tolerance specification (4.50). We get critical numbers I
ðASRFÞ
c;abs ranging from

11 to 5,499 creditors (see Table 4.2), that are substantially lower compared to the

critical numbers of the target tolerance. Thus, the critical number I
ðfgÞ
c;abs is less

conservative. This is caused by the effect that an increase of the confidence level

for VaR calculations has a high impact, especially on risk buckets with low default

rates. However, since for all those obligors the ASRF assumptions (see Sect. 2.6)

still have to be valid, such big risk buckets may mainly be relevant for retail

exposures in practice. Furthermore, it should be mentioned that these portfolio

sizes are only valid for homogeneous portfolios. For heterogeneous portfolios,

these numbers can be considerably higher, especially because the exposure weights

differ between the obligors and thus concentration risk will occur.196 In order to get

an impression of real-world portfolio sizes, we refer to the data of the German

credit register used in D€ullmann and Erdelmeier (2009). The credit register con-

tains all bank loans exceeding €1.5 million. In September 2006, out of 1,360

reporting financial enterprises,197 there were in total 28 german banks which had at

least 1,000 registered bank loans. Even if there are also smaller loans that are not

included in the data, loans for corporate, sovereigns, and banks should mostly

exceed the critical size. Hence, having a look at the required number of credits in

Table 4.1, most bank portfolios cannot be treated as infinitely granular. Therefore,

an improvement of measuring the portfolio-VaR is indeed advisable. However,

it has to be mentioned that for portfolios with debtors incorporating low credit-

worthiness the ASRF solution is already sufficient for some hundred credits (or

even less).

4.2.2.3 Probing First-Order Granularity Adjustment

After auditing the adequacy of the ASRF solution (b) compared to the discrete,

“true” solution (a) in context of a homogeneous risk bucket, we now investigate

the accuracy of the first order granularity adjustment (solution (c)). Similar to

Sect. 4.2.2.2, we compare its accuracy with the discrete solution (a) but we

additionally relate its result to the ASRF solution (b).

For the first (conservative) number I
ð1st Order Adj:Þ
c;per , we compare the analytically

derived VaR including first order approximation (solution (c)) with the “true” VaR

196The case of heterogeneous portfolios will be analyzed in Sect. 4.2.2.5.
197Cf. Deutsche Bundesbank (2009).
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of the discrete, binomial solution (a), both on a 0.999 confidence level. Again,

we aim to meet a target tolerance of b and we get

I
ð1st Order Adj:Þ
c;per ¼ inf n :

VaR
ð1st Order Adj:Þ
0:999

~L
� �

VaR
ðNÞ
0:999

~L¼ 1
N

P

N

i¼1

1 ~Dif g
 !� 1

�

�

�

�

�

�
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<b 8N 2 N
�n
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B
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@

1

C

C

C

C

A

; with b¼ 0:05:

(4.51)

Thus, any analytically derived VaR of a risk bucket which includes more credits

than I
ð1st Order Adj:Þ
c;per does not differ from the “true” numerically derived VaR by more

than 5%.

The results for I
ð1st Order Adj:Þ
c;per for homogeneous risk buckets with a specific PD/r-

combination are reported in Table 4.3. Obviously, the critical number varies from

7 to 6,100 credits. Compared to the ASRF solution (see Table 4.1 in Sect. 4.2.2.2),

the critical values drop by 83.04% at a stretch. Precisely, we find that the number

of credits that is necessary to ensure a good approximation of the “true” VaR is

significantly lower with adjustment (c) than without adjustment (b). For example, a

high quality retail portfolio (AAA) must consist of 5,027 compared to 26,051

credits if we neglect the first order adjustment. A medium quality corporate

portfolio (BBB) must contain 106 compared to 442 credits. Thus, the minimum

portfolio size should be small enough to hold for many real-world portfolios and we

come to the conclusion that the first order adjustment works fine even with our

conservative definition of a critical value.

Next, we relate the first order granularity adjustment (c) to the ASRF formula

(b). We do that by defining a critical value I
ð1st Order Adj:Þ
c;abs of credits similar to

definition (4.50), but this time we proclaim that the VaR of the ASRF solution

without first order granularity adjustment (b) at a confidence level of 0.999 should

not exceed the VaR with first order granularity adjustment (c) at a confidence level

of 0.995:

I
ð1st Order Adj:Þ
c;abs ¼ sup n : VaR

ðASRFÞ
0:999

~L
� �

<VaR
ð1st Order Adj:Þ
0:995

~L
� �

� �

: (4.52)

The confidence level of the ASRF solution is increased by a buffer of 4 basis

points, which should incorporate the idiosyncratic risk of relatively fine-grained

portfolios. If we use the first order granularity adjustment for approximating

the true risk, the idiosyncratic risk of a portfolio with at I
ð1st Order Adj:Þ
c;abs credits should

already be included in the confidence level buffer.

The critical numbers of credits I
ð1st Order Adj:Þ
c;abs are shown in Table 4.4. They

contain a range from 14 to 5,170. It is interesting to note that these critical values

do not differ widely from the numbers I
ðfgÞ
c;abs, where we compared the VaR of the

ASRF solution (b) with the “true” VaR using the numerical, time-consuming

discrete formula. Precisely, the average percentage difference between the critical
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Table 4.3 Critical number of credits from that the first order adjustment can be stated to be

sufficient for measuring the true VaR (see (4.51))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 6,100 4,227 879 833 693 519 337 228 152 89 63 42

3.5% 5,517 3,491 810 768 590 443 291 199 133 67 54 32

4.0% 5,027 3,192 688 653 503 413 251 174 127 60 49 28

4.5% 4,169 2,936 641 609 470 355 237 165 112 54 38 24

5.0% 3,846 2,456 546 519 401 334 205 132 107 45 37 22

5.5% 3,564 2,283 513 488 378 287 195 138 94 51 35 20

6.0% 3,317 2,129 484 460 358 272 169 121 83 46 33 20

6.5% 3,098 1,993 413 435 339 258 177 105 80 34 28 18

7.0% 2,902 1,872 392 373 322 246 154 111 77 40 29 18

7.5% 2,450 1,762 373 354 277 235 133 97 61 29 27 13

8.0% 2,309 1,494 355 338 264 203 128 84 59 35 25 16

8.5% 2,181 1,414 338 322 253 215 136 81 57 31 21 16

9.0% 2,065 1,341 323 308 242 186 118 79 55 23 23 16

9.5% 1,958 1,274 309 295 232 179 114 76 54 30 19 14

10.0% 1,861 1,212 266 253 199 172 110 74 58 22 20 14

10.5% 1,771 1,156 255 271 214 148 106 64 51 19 15 11

11.0% 1,689 1,103 245 234 206 143 92 62 44 23 15 11

11.5% 1,612 1,055 263 225 178 154 89 60 43 21 17 11

12.0% 1,541 1,010 227 217 171 133 86 52 51 18 19 11

12.5% 1,476 968 219 209 166 129 74 57 46 19 23 11

13.0% 1,414 928 211 202 160 125 81 49 40 15 12 12

13.5% 1,357 892 204 195 155 121 88 54 30 16 10 8

14.0% 1,303 858 197 188 167 117 68 41 34 17 8 8

14.5% 1,253 825 191 182 145 101 66 45 33 12 8 8

15.0% 1,206 795 185 176 141 110 64 56 28 14 15 8

15.5% 1,162 767 179 171 121 107 62 49 36 14 13 12

16.0% 1,120 740 154 166 118 104 69 37 31 16 13 9

16.5% 1,081 714 168 161 114 101 67 51 23 16 11 9

17.0% 1,044 690 145 156 125 87 58 35 30 9 11 9

17.5% 1,009 668 159 152 108 96 49 30 22 7 11 9

18.0% 976 646 154 131 105 83 55 39 18 7 9 9

18.5% 944 626 150 128 115 91 61 43 25 7 9 9

19.0% 914 606 146 124 112 79 53 28 21 13 9 9

19.5% 886 588 142 136 97 77 45 32 17 18 9 9

20.0% 859 570 123 118 95 75 44 36 20 14 9 9

20.5% 834 554 120 129 104 73 43 35 13 12 7 9

21.0% 809 538 117 112 90 63 42 30 16 10 7 9

21.5% 786 523 128 109 99 70 41 25 19 10 7 9

22.0% 764 508 111 106 86 77 51 29 22 8 7 9

22.5% 743 494 108 104 84 67 40 20 14 8 7 9

23.0% 722 481 119 114 92 57 39 36 11 8 7 9

23.5% 703 468 116 99 90 72 38 24 27 8 7 9

24.0% 684 456 101 97 88 55 32 16 18 8 7 9

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.4 Critical number of credits from that the first order adjustment at confidence level 0.995

exceeds the infinite fine granularity at confidence level 0.999 (see (4.52))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 5,170 3,544 973 935 769 626 441 327 255 164 146 128

3.5% 4,029 2,773 774 744 615 501 356 265 209 136 122 109

4.0% 3,231 2,232 633 609 504 413 295 221 175 116 105 95

4.5% 2,650 1,836 528 508 422 347 249 188 150 101 91 85

5.0% 2,213 1,538 448 431 359 296 214 162 130 89 81 76

5.5% 1,875 1,307 385 371 310 256 186 142 114 79 72 69

6.0% 1,609 1,124 335 323 270 224 163 125 101 71 65 63

6.5% 1,395 977 295 284 238 198 145 112 91 64 60 59

7.0% 1,220 856 261 252 211 176 130 100 82 59 55 55

7.5% 1,075 757 233 225 189 158 117 91 74 54 50 51

8.0% 955 673 209 202 170 142 106 83 68 50 47 48

8.5% 853 602 189 182 154 129 96 75 62 46 44 45

9.0% 766 542 171 165 140 117 88 69 58 43 41 43

9.5% 691 490 156 151 128 108 81 64 53 40 38 41

10.0% 626 445 143 138 117 99 75 59 50 38 36 39

10.5% 570 405 131 127 108 91 69 55 46 36 34 37

11.0% 521 371 121 117 100 84 64 51 43 34 32 36

11.5% 477 340 112 108 92 78 60 48 40 32 31 34

12.0% 439 313 104 100 86 73 56 45 38 30 29 33

12.5% 404 289 96 93 80 68 52 42 36 29 28 32

13.0% 374 268 90 87 74 63 49 40 34 27 27 31

13.5% 346 248 84 81 70 59 46 37 32 26 26 30

14.0% 322 231 78 76 65 56 43 35 30 25 24 29

14.5% 299 215 74 71 61 52 41 33 29 24 24 28

15.0% 279 201 69 67 58 49 39 32 27 23 23 28

15.5% 261 188 65 63 54 47 36 30 26 22 22 27

16.0% 244 176 61 59 51 44 35 29 25 21 21 26

16.5% 229 165 58 56 48 42 33 27 24 20 20 26

17.0% 215 155 55 53 46 40 31 26 23 20 20 25

17.5% 202 146 52 50 43 38 30 25 22 19 19 25

18.0% 190 138 49 48 41 36 28 24 21 18 18 24

18.5% 180 130 46 45 39 34 27 23 20 18 18 24

19.0% 170 123 44 43 37 32 26 22 19 17 17 23

19.5% 160 116 42 41 36 31 25 21 19 17 17 23

20.0% 152 110 40 39 34 29 24 20 18 16 16 22

20.5% 144 105 38 37 32 28 23 19 17 16 16 22

21.0% 136 99 36 35 31 27 22 18 17 15 16 22

21.5% 129 94 35 34 29 26 21 18 16 15 15 22

22.0% 123 90 33 32 28 25 20 17 15 14 15 21

22.5% 117 85 32 31 27 24 19 17 15 14 15 21

23.0% 111 81 30 29 26 23 18 16 14 14 14 21

23.5% 106 78 29 28 25 22 18 15 14 13 14 21

24.0% 101 74 28 27 24 21 17 15 14 13 14 20

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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numbers of Tables 4.2 and 4.4 is less than 10%. That means that the diversification

behavior of the coarse grained solution and the first order approximation is very

similar, i.e. the first order adjustment is a good approximation of the idiosyncratic

risk of coarse grained portfolios.

4.2.2.4 Probing Second-Order Granularity Adjustment

Finally, we want to test the approximation if the (first- and) second-order adjust-

ment is added to the ASRF formula, leading to solution (d). Similar to Sects. 4.2.2.2

and 4.2.2.3, we firstly examine the VaR according to this new formula (d) in

comparison to the “exact” VaR from the coarse grained solution (a). Additionally,

we analyze its performance with respect to the ASRF solution.

Again, we calculate a critical number I
ð1st þ 2nd Order Adj:Þ
c;per of credits to test the

approximation accuracy with reference to the coarse grained formula (a) according

to the “percentaged” accuracy with a target tolerance of 5% by

Ið1stþ 2ndOrder Adj:Þ
c;per ¼ inf n :

VaR
ð1stþ 2ndOrder Adj:Þ
0:999

~L
� �

VaR
ðNÞ
0:999

~L ¼ 1
N
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;

with b ¼ 0:05; (4.53)

using the (first- and) second-order adjustment as an approximation of the coarse-

grained portfolio.

The results are presented in Table 4.5. Now, the critical number of credits ranges

from 17 to 10,993. Compared to the ASRF solution (a), see Table 4.1 in Sect. 4.3.4.2,

the necessary number of credits to meet the requirements can be reduced by 66.5% on

average. Thus, the second-order adjustment is capable to detect idiosyncratic risk

caused by a finite number of debtors to a certain extent. However, if we compare the

results with the ones where only the first-order adjustment is used (see Table 4.3 in

Sect. 4.3.4.3), the second-order adjustment performs worse.

We are able to verify this result by analyzing the second-order adjustment (d) in

comparison to the exact ASRF solution (a). Therefore we introduce a critical number

I
ð1:þ2:OrderAdj: Þ
c;abs of credits, similar to the definition (4.52) in Sect. 4.3.4.3. We get

I
ð1st þ2nd Order Adj:Þ
c;abs ¼ sup n : VaR

ðASRFÞ
0:999

~L
� �

<VaR
ð1st þ2nd Order Adj:Þ
0:995

~L
� �

� �

: (4.54)

Thus, for each risk bucket with at least I
ð1st þ2nd Order Adj:Þ
c;abs credits the idiosyncratic

risk, measured by the second-order adjustment on a confidence level 0.995, is

included in the confidence level premium of 4 basis points of the ASRF solution

(on a confidence level 0.999).
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Table 4.5 Critical number of credits from that the first plus second order adjustment can be stated

to be sufficient for measuring the true VaR (see (4.53))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 10,993 7,338 1,796 1,770 1,417 1,107 746 522 392 222 185 130

3.5% 9,309 6,251 1,503 1,427 1,150 941 620 440 327 193 163 115

4.0% 7,494 5,077 1,260 1,252 1,014 802 534 384 280 167 140 103

4.5% 6,405 4,367 1,109 1,054 858 683 460 323 255 148 120 90

5.0% 5,864 3,768 979 930 761 609 414 293 225 127 115 83

5.5% 5,056 3,256 866 824 677 544 373 266 199 118 103 78

6.0% 4,362 3,021 767 730 603 486 321 242 182 107 94 70

6.5% 4,055 2,622 680 647 537 435 304 210 167 100 86 64

7.0% 3,509 2,452 641 610 478 390 260 191 147 90 76 63

7.5% 3,286 2,132 570 542 453 349 248 183 141 84 74 60

8.0% 2,844 2,006 505 481 404 332 237 158 123 79 67 55

8.5% 2,679 1,892 480 457 385 297 214 160 119 71 63 51

9.0% 2,529 1,649 457 406 343 284 193 146 109 69 57 49

9.5% 2,394 1,563 406 387 328 254 174 133 105 67 58 51

10.0% 2,077 1,484 388 370 292 243 168 128 91 60 50 42

10.5% 1,974 1,412 344 354 280 234 161 116 88 56 49 43

11.0% 1,879 1,231 330 314 269 209 145 106 81 52 48 41

11.5% 1,791 1,175 316 302 239 201 140 109 88 51 45 38

12.0% 1,710 1,123 304 290 230 194 126 99 76 52 41 39

12.5% 1,484 1,075 269 257 222 173 131 96 74 51 42 37

13.0% 1,421 1,030 259 248 214 167 127 87 63 43 43 34

13.5% 1,362 897 250 239 190 149 106 79 70 42 37 34

14.0% 1,307 861 241 230 184 144 111 76 64 39 38 31

14.5% 1,256 828 233 203 177 139 92 80 54 38 34 32

15.0% 1,208 797 206 197 172 135 97 67 61 33 35 28

15.5% 1,163 768 199 190 152 131 94 65 52 39 31 29

16.0% 1,120 741 193 184 147 127 84 74 51 34 34 30

16.5% 1,081 715 187 178 143 113 89 67 46 38 30 26

17.0% 938 690 181 173 152 120 73 56 45 33 28 26

17.5% 906 600 176 168 135 106 71 64 51 31 26 27

18.0% 876 646 155 163 131 103 69 58 43 32 24 28

18.5% 847 562 150 144 115 101 74 52 42 30 27 23

19.0% 820 544 146 140 124 98 72 51 41 26 25 23

19.5% 795 527 142 150 109 86 64 45 37 29 23 24

20.0% 770 511 138 132 106 93 57 44 33 27 26 25

20.5% 747 496 134 115 93 91 67 43 42 23 21 26

21.0% 725 482 131 125 101 80 60 39 38 21 24 26

21.5% 704 468 114 122 88 78 53 42 31 24 22 20

22.0% 684 455 124 119 96 68 57 41 34 22 22 20

22.5% 665 442 121 116 94 67 56 44 39 22 20 21

23.0% 647 430 106 101 82 73 44 32 30 20 17 22

23.5% 629 419 103 99 80 64 43 35 24 18 21 22

24.0% 613 408 101 108 78 62 43 38 29 21 18 23

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.6 Critical number of credits from that the first plus second order adjustment at confidence

level 0.995 exceeds the infinite fine granularity at confidence level 0.999 (see (4.54))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 4,285 2,942 810 778 640 521 367 272 214 140 125 114

3.5% 3,266 2,254 633 609 503 411 292 218 173 115 104 97

4.0% 2,560 1,776 508 489 406 333 238 180 143 97 89 84

4.5% 2,050 1,429 417 401 334 275 198 151 121 83 77 75

5.0% 1,671 1,170 347 335 279 231 168 128 103 73 68 67

5.5% 1,380 971 294 283 237 196 144 111 90 64 60 61

6.0% 1,153 815 251 242 203 169 124 96 79 57 54 56

6.5% 973 691 216 209 176 147 109 85 70 52 49 51

7.0% 827 590 188 182 153 128 96 75 62 47 44 48

7.5% 708 507 164 159 135 113 85 67 56 43 41 44

8.0% 610 439 145 140 119 100 76 60 50 39 38 42

8.5% 527 382 128 124 106 89 68 54 46 36 35 39

9.0% 458 333 114 110 94 80 61 49 42 33 32 37

9.5% 399 292 102 98 84 72 55 45 38 31 30 35

10.0% 349 257 91 88 76 65 50 41 35 29 28 33

10.5% 306 226 82 79 68 59 46 37 32 27 27 32

11.0% 268 200 74 72 62 53 42 34 30 25 25 31

11.5% 264 177 67 65 56 48 38 32 28 24 24 29

12.0% 271 156 60 59 51 44 35 29 26 22 22 28

12.5% 266 173 55 53 46 40 32 27 24 21 21 27

13.0% 257 172 50 48 42 37 30 25 22 20 20 26

13.5% 248 167 45 44 39 34 27 23 21 19 19 25

14.0% 238 162 41 40 36 31 25 22 20 18 18 24

14.5% 229 156 38 37 33 29 24 20 18 17 18 24

15.0% 219 150 34 34 30 26 22 19 17 16 17 23

15.5% 210 144 38 36 27 24 20 18 16 15 16 22

16.0% 201 139 38 36 28 23 19 17 15 15 15 22

16.5% 193 133 37 36 29 21 18 16 14 14 15 21

17.0% 185 128 37 35 29 22 16 15 14 13 14 21

17.5% 177 123 36 34 28 23 15 14 13 13 14 20

18.0% 170 118 35 33 28 23 14 13 12 12 13 20

18.5% 163 113 34 33 27 22 13 12 12 12 13 19

19.0% 156 109 33 32 26 22 15 11 11 11 12 19

19.5% 150 105 32 31 26 21 15 11 10 11 12 19

20.0% 145 101 31 30 25 21 15 10 10 11 12 18

20.5% 139 97 30 29 24 20 15 10 9 10 11 18

21.0% 134 94 29 28 24 20 14 9 9 10 11 18

21.5% 129 90 28 27 23 19 14 10 8 10 11 17

22.0% 124 87 27 26 22 19 14 10 8 9 10 17

22.5% 120 84 26 26 22 18 14 10 8 9 10 17

23.0% 115 81 26 25 21 18 13 10 7 9 10 16

23.5% 111 78 25 24 20 17 13 10 7 8 9 16

24.0% 108 75 24 23 20 17 13 10 7 8 9 16

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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The critical numbers presented in Table 4.6 range from 7 to 4,285. Obviously,

these results are considerably higher than those of Table 4.4 and therefore

the predefined target value of accuracy is reached with lower numbers of credits.

Thus, the idiosyncratic risk is underestimated with the second order adjustment

compared to the numerical “true” solution (a) (see the results in Sect. 4.2.2.2)

and is not measured with such a high accuracy as the first order adjustment

does (see Sect. 4.2.2.3). Concretely, this value is reduced by averaged 32.7%

credits.

To conclude, the second-order adjustment (d) converges faster to the asymptotic

value of the ASRF solution (b), which confirms the findings of Sect. 4.2.2.1. A

possible reason is that the VaR measure using the first order approximation may be

“corrected” into the direction of the ASRF solution by incorporating the second

order adjustment. The possibility of this behavior is given due to the alternating sign

in the derivatives of VaR; see (4.31).198 Thus, taking more derivatives into account

could solve the problem but would lead to even more uncomfortable equations.199

Despite these theoretical questions, it can be stated that in homogeneous portfolios,

an excellent approximation of the true VaR can be achieved with the granularity

adjustment.

4.2.2.5 Probing Granularity for Inhomogeneous Portfolios

The previous analyses showed that the granularity adjustment works fine for

homogeneous portfolios. In this section, we test if the approximation accuracy of

the presented general formulas will hold for portfolios consisting of loans with

different exposures and credit qualities. This means that the credits in the portfolio

vary in exposure weight and in probability of default, and we analyze if the

portfolio loss for coarse grained portfolios could still be quantified satisfactorily

by the granularity adjustment.

Concretely, we examine high quality portfolios with probabilities of default

ranging from 0.02 to 0.79% and lower quality portfolios with probabilities of

default ranging from 0.2 to 7.9%. Additionally, we define a basic risk bucket

consisting of 20 loans with exposures between €35 and 200 million.200 In order

to measure the portfolio size with respect to concentration risk, we use the effective

number of loans n* (see (2.87)), rather than the number of loans n. Consequently,
this effective number is more than 25% below the true number of credits.

198This is true not only for the first five derivatives but also for all following derivatives; see the

general formula for all derivatives of VaR in (4.213).
199However, we also have to take into consideration that the Taylor series is potentially not

convergent at all or does not converge to the correct value. For a further discussion see Martin

and Wilde (2002) and Wilde (2003).
200The used portfolio is based on Overbeck (2000), see also Overbeck and Stahl (2003), but

reduced to 20 loans to achieve more test portfolios with a small number of credits.
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A variation of portfolio size is reached by reproducing the loans of the basic risk

bucket so that portfolios with 40, 60, . . ., 400, 800, 1,600 and 4,000 loans result.

Using an asset correlation r ¼ 20% and a confidence level of 0.999, we compute

the granularity add-on with the presented first-order and second-order adjustment.

Because the exact value cannot be determined analytically for heterogeneous

portfolios, we compute the “true” VaR with Monte Carlo simulations using three

million trials.201 Finally, we compare this “true” VaR with the ASRF solution, so

that we receive the granularity add-on.

The simulated results for the granularity add-on for high and low quality

portfolios are presented in Fig. 4.3 (see the circles and dots). Therefore, the add-

on for the minimum size of 40 loans with 1=n� � 0:035 is 5.0% (6.2%) for the high

(low) quality portfolio. This is equal to a relative correction of +112.5% (+30.5%)

compared to a hypothetical infinitely fine grained portfolio. This shows again the

relatively high impact of idiosyncratic risk in small high quality portfolios. With

shifting to bigger sized portfolios, the effective number of credits shifts to zero and

High Quality, Monte Carlo

High Quality, 1st Order Adj.
High Quality, 1st + 2nd Order Adj.
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Fig. 4.3 Granularity add-on for heterogeneous portfolios calculated analytically with first-order

(solid lines) and second-order (dotted lines) adjustments as well as with Monte Carlo simulations

(þ and o) using three million trials

201Due to the high number of trials, which corresponds to 3,000 hits in the tail for a confidence

level of 0.999, the simulation noise should be negligible.
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the granularity add-on decreases almost exactly linear in terms of 1/n* – even for

high quality portfolios. This result is contrary to Gordy (2003), who exhibits

a concave characteristic of the granularity add-on. This might be due to the fact

that Gordy (2003) uses a CreditRisk+ framework, whereas we analyze the effect of

the granularity with the CreditMetrics one-factor model that is consistent with

the Basel II assumptions. Summing up, the granularity add-on in Fig. 4.3 can be

approximated with a linear function. Indeed, the (linear) first order adjustment is

a very good approximation for heterogeneous portfolios of high as well as low

quality. Just like in the previous sections, the second-order adjustment leads to a

reduction of the granularity add-on. Thus, it can be characterized as less conserva-

tive, but comparing the results we strongly recommend the first-order adjustment.

4.3 Measurement of Name Concentration Using the Risk

Measure Expected Shortfall

4.3.1 Adjusting for Coherency by Parameterization
of the Confidence Level

As shown in Sect. 2.2.3, the commonly used VaR is not coherent because it is not

necessarily subadditive. As long as we stay in the ASRF framework, this charac-

teristic is not problematic because in this context, the VaR is exactly additive.202

However, if we leave the ASRF framework, this behavior is not guaranteed

anymore.203 Nevertheless, many contributions that deal with concentration risk in

the context of Basel II use the VaR to quantify credit risk without questioning the

risk measure (possibly to be consistent with the ASRF framework), even if the

subadditivity could get problematic if concentration risk is considered.204 Thus, it

could be beneficial to change the measure of risk, e.g. to use the coherent Expected

Shortfall (ES). However, we cannot simply replace the VaR with the ES since the

resulting difference in the capital requirements would not only stem from a more

convenient measurement of concentration risk but also from the fact that the ES

exceeds the VaR by definition. Against this background, we propose a procedure

how the ES can be used instead of the VaR for the measurement of credit risk by

accurately choosing a different confidence level. Based on this result, we analyze

the performance of the ASRF formula, the first-order, and the second-order granu-

larity adjustment when the ES is used instead of the VaR in Sect. 4.3.4 after

deriving both adjustment formulas in Sect. 4.3.2.

202Cf. Sect. 2.6.
203This is true for a violation of both the granularity and the single risk factor assumption.
204See e.g. Heitfield et al. (2006), Cespedes et al. (2006), D€ullmann (2006), as well as D€ullmann

and Masschelein (2007).
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Before we change the risk measure, we will study the characteristics of the VaR

for credit portfolios and analyze the need for using the ES. For our analyses, we

continue to omit the first assumption of the ASRF framework leading to a finite

granularity and calculate the VaR as well as the ES within the binomial model of

Vasicek and the ASRF framework.

We start with computing the VaR at a confidence level a ¼ 0:999 for non-

asymptotic portfolios with PD ¼ 0.5% and r ¼ 20%. In Fig. 4.4, the VaR for

the ASRF framework and for the Vasicek binomial model is plotted in the cases of

n¼ 1 to n¼ 300 homogeneous credits. The VaR for an infinite number of credits is

9.1%. For a finite number of credits, the risk is higher because the unsystematic risk

cannot be diversified. The problem is that the risk should be monotonously decreas-

ing with a higher number of credits (“monotonicity of specific risk-property”205)

but this behavior is not reflected by the VaR as a risk measure. Instead, we find that

the VaR follows a downward sloping “saw-toothed” pattern. Although the sub-

additivity axiom is not violated in the example, it is obvious that the measured risk

should not increase with a higher number of credits and thus a better diversification.

It is also possible to construct superadditive examples with a different parameter

setting but this example gives a clear demonstration that it is problematic to use the

VaR if there is concentration risk such as name concentration.

The saw-toothed pattern can also be explained intuitively: In the 99.9% worst-

case scenario one credit out of 1, 2, 3, 4, or 5 credits defaults, which leads to a VaR

of 1, 1/2, 1/3, 1/4, or 1/5. If the size of the portfolio is increased further, one

additional credit defaults in the 99.9% scenario. Thus, the VaR increases from

1=5 ¼ 20% to 2=6 ¼ 33:�3%. If additional credits are added to the portfolio, the
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Fig. 4.4 Value at Risk in the ASRF and the Vasicek model

205See Albanese and Lawi (2004), p. 215, for this property of a reasonable risk measure.
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VaR will increase until a third credit defaults in the considered 99.9% scenario, and

so on. From a probabilistic perspective, the demonstrated problems are mainly a

result of the deviation for discrete distributions P½~L � VaRað~LÞ� � a> 0, which is

mostly decreasing with additional credits but jumps to a higher value when the

difference would (theoretically) go below zero.206 Against this background, it could

be tried to define the VaR differently from the common definition of the (lower)

VaR (2.12). Also the upper VaR definition (2.13) does not solve the problem.

However, if the VaR was defined as the maximal loss in the best 100 � a% scenarios

VaRð�Þ
a

~L
� � ¼ sup l 2 R jP ~L � l

� �

< a
� �

(4.55)

instead of the minimal loss in the worst 100 � ð1� aÞ%, we have the contrary case

of a negative deviation P ~L � VaR
ð�Þ
a

h i

� a< 0. If we rewrite the common VaR

definition as

VaRðþÞ
a

~L
� � ¼ inf l 2 R jP ~L � l

� � � a
� � ¼ sup l 2 R jP ~L< l

� �

< a
� �

; (4.56)

it is obvious to see that the VaR from definition (4.55) is always below the VaR

from definition (4.56). In the considered case of n homogeneous credits the differ-

ence between both definitions always equals207

VaRðþÞ
a � VaRð�Þ

a ¼ 1

n
: (4.57)

As the positive deviation pðþÞ :¼ P ~L � VaR
ðþÞ
a

h i

� a> 0 is high when the

negative deviation pð�Þ :¼ P ~L � VaR
ð�Þ
a

h i

� a< 0 is small, we could define an

interpolated Value at Risk VaRðintÞ as follows:

VaRðintÞ
a ¼

P ~L � VaR
ðþÞ
a

h i

� a

P ~L � VaR
ðþÞ
a

h i

� P ~L � VaR
ð�Þ
a

h iVaRð�Þ
a

þ
a� P ~L � VaR

ðþÞ
a

h i

P ~L � VaR
ðþÞ
a

h i

� P ~L � VaR
ð�Þ
a

h iVaRðþÞ
a

¼ pðþÞ

pðþÞ � pð�Þ VaR
ð�Þ
a � pð�Þ

pðþÞ � pð�Þ VaR
ðþÞ
a : (4.58)

206Of course the definition of the VaR does not allow a negative deviation and the VaR jumps to a

higher value instead.
207See Appendix 4.5.11.
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In Fig. 4.5, this interpolated VaR as well as VaR
ðþÞ
a , VaR

ð�Þ
a and the ASRF

solution are plotted. We find that the saw-toothed pattern, which is contradictory to

the “monotonicity of specific risk-property”, almost vanishes for the interpolated

VaR, especially if we do not consider a very small number of credits. Thus, against

the background of name concentration risk, definition (4.58) seems to be much less

problematic than the common VaR definition (4.56).

For comparison, we also compute the ES for the identical portfolio setting. For

calculation of the ES within the Vasicek model, we have to apply (2.76). The ES in

the Basel II framework can be calculated with208

ESðBaselÞa
~L
� � ¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 �F�1ðaÞ;F�1ðPDiÞ; ffiffiffiffi

ri
p� �

; (4.59)

which is based on the identity (2.93) of the ES within the ASRF framework and the

conditional PD of the Vasicek model. Thus, (4.59) relies on the same assumptions

as the Basel II formula (2.97) but uses the ES instead of the VaR for measuring

the risk. As illustrated in Fig. 4.6, the ES satisfies the “monotonicity of specific

22

20

18

16

14

12

10

8

6
0 50 100 150 200 250

Upper VaR
Lower VaR
Interpolated VaR
ASRF-VaR

300

V
al

u
e 

at
 R

is
k 

(i
n

 %
)

Number of Credits

Fig. 4.5 Different Value at Risk measures in the Vasicek model

208See Appendix 4.5.12.
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risk-property”. This is one relevant advantage compared to the VaR, even if the

VaR definition (4.58) is applied. Although this new VaR definition is already

an improvement compared to the common definition, there are still some (minor)

violations of the “monotonicity of specific risk-property”, and the lack of subaddi-

tivity is still existent. Against this background, it could be beneficial to change

the risk measure from VaR to ES if the portfolio contains concentration risk.209

However, the measured economic capital would be significantly higher if it is

determined on the basis of the ES instead of the VaR (by the use of the same

confidence level), what is not the intended consequence of the change of the risk

measure. In our example even the ASRF solution rises from 9.1% to 11.81%.

Instead, we would only like to use the appreciated properties for concentration

risk without being bound to increase the amount of economic capital. Therefore, the

confidence level will be adjusted as described subsequently.

If we change the risk measure, we have to ensure that the new risk measure (the

ES), on the one hand, is consistent with the framework presented in Pillar 2 of Basel

II to get meaningful results for additional capital requirements stemming from

concentration risk. On the other hand, the new risk measure should still match the

capital requirements of Pillar 1 if the portfolio under consideration fulfills the

assumptions of the ASRF framework; i.e. in the context of the ASRF framework,

the capital requirements should not differ, regardless of whether the risk is mea-

sured by the VaR or by the ES. Therefore, we examine the VaR at the given
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209As mentioned in Sect. 2.6, the VaR is exactly additive and therefore unproblematic in the

context of the ASRF framework.
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confidence level 0.999 for several (infinitely granular) bank portfolios of different

quality. As a next step, we determine the confidence level of the ES that is necessary

to match the results for both risk measures. We define this ES-confidence level

a ð¼ aðESÞÞ implicitly as

ESðBaselÞa
~L
� � ¼ VaR

ðBaselÞ
0:999

~L
� �

; (4.60)

with VaR
ðBaselÞ
0:999 given by (2.97) and ES

ðBaselÞ
a presented in (4.59).

Firstly, we investigate the extreme cases that all creditors of a bank have a rating

of (I) AAA or (VII) CCC.210 As can be seen in Table 4.7, the ES-confidence level

must be in a range between 99.67% and 99.74%. Using these confidence levels, the

economic capital is almost identical, regardless of whether the VaR or the ES is used.

Additionally, we use five portfolios with different credit quality distributions

(very high, high, average, low, and very low) that are visualized in Fig. 4.7.211 All

resulting confidence levels are between 99.71% and 99.73% with mean 99.72%.

Even if there is some interconnection between the confidence level and the portfolio

quality, an ES-confidence level of a ¼ 99:72% seems to be accurate for most real-

world portfolios.

4.3.2 Considering Name Concentration with the Granularity
Adjustment

4.3.2.1 First-Order Granularity Adjustment for One-Factor Models

As argued in Sect. 4.3.1, the VaR can be a problematic risk measure if the assump-

tions of the ASRF framework, which includes the infinite granularity assumption (A)

Table 4.7 Confidence level

for the ES so that the ES is

matched with the VaR with

confidence level 0.999 for

portfolios of different quality

Portfolio type/quality VaR0.999 and

ESa (%)

Confidence level

a (ES) (%)

(I) AAA only 0.57 99.672

(II) Very high 6.12 99.709

(III) High 7.59 99.711

(IV) Average 12.94 99.719

(V) Low 20.89 99.726

(VI) Very low 23.30 99.727

(VII) CCC only 57.00 99.741

210We use the idealized default rates from Standard and Poors, see Brand and Bahar (2001),

ranging from 0.01% to 18.27%, but the results do not differ widely for different values.
211The portfolios with high, average, low, and very low quality are taken from Gordy (2000). We

added a portfolio with very high quality.
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of Sect. 2.6, are not fulfilled anymore. Based on the methodology of Sect. 4.3.1, we

know which confidence level is adequate if credit risk and especially concentration

risk is measured on the basis of the more convenient ES instead of the VaR.

However, the approximation formulas of Sect. 4.2.1 are only valid for the VaR.

Thus, the ES-based granularity adjustment formulas will be derived subsequently.

While the first-order granularity adjustment is already known in the literature, the

second-order adjustment is a new result. The principle behind the granularity

adjustment remains unchanged, regardless of whether the VaR or the ES is used

as the risk measure. Thus, using the abbreviation

~L ¼ E ~L j ~x� �þ ~L� E ~L j ~x� �� � ¼: ~Y þ l ~Z; (4.61)

we perform a Taylor-series expansion around the systematic loss at l ¼ 0,

leading to

ESa ~L
� � ¼ ESa ~Y þ l ~Z

� �

¼ ESa ~Y
� �þ l

dESa ~Y þ l ~Z
� �

dl

" #

l¼0

þ l2

2!

d2ESa ~Y þ l ~Z
� �

dl2

" #

l¼0

þ � � � þ lm

m!

dmESa ~Y þ l ~Z
� �

dlm

" #

l¼0

þ � � � : (4.62)
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According to Sect. 4.2.1.1, the first-order adjustment can be calculated as

the Taylor series expansion up to the quadratic term. With respect to Wilde

(2003) and Rau-Bredow (2004), the needed first and second derivative of ES

are given as212

dESa ~Y þ l ~Z
� �

dl

�

�

�

�

�

l¼0

¼ E ~Z j ~Y> qa ~Y
� �� �

; (4.63)

d2ESa ~Y þ l ~Z
� �

d2l

�

�

�

�

�

l¼0

¼ fY qa ~Y
� �� �

V ~Z j ~Y ¼ qa ~Y
� �� �

1� a
: (4.64)

Similar to the VaR, the first derivative is zero:

E ~Z j ~Y> qa ~Y
� �� � ¼ 1

l
� E ~L� E ~L j ~x� �j ~Y> qa ~Y

� �� �

¼ 1

l
� E ~L j ~Y> qa ~Y

� �� �� 1

l
� E ~L j ~Y> qa ~Y

� �� � ¼ 0: (4.65)

With

~Y ¼ qa ~Y
� �

, ~x ¼ q1�a ~xð Þ (4.66)

and

l2 � V ~Z j ~Y� � ¼ V l ~Z j ~Y� � ¼ V ~L� ~Y j ~Y� � ¼ V ~L j ~Y� �

; (4.67)

the quadratic term of the Taylor series expansion (4.62) is equivalent to

Dl1 ¼ l2

2

fY qa ~Y
� �� �

V ~Z j ~Y ¼ qa ~Y
� �� �

1� a

 !

¼ � 1

2

fY qa ~Y
� �� �

V ~L j ~x ¼ q1�a ~xð Þ� �

1� a
: (4.68)

Using213

fYðyÞ ¼ �fxðxÞ 1

dy dx=
; (4.69)

212The derivatives of ES are derived in Appendix 4.5.13 and 4.5.14.
213Cf. (4.8).
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the first-order granularity adjustment results in

ESðnÞa � ESðASRFÞa þ Dl1 ¼: ESð1st Order Adj:Þa

with Dl1 ¼ � 1

2 1� að Þ
fxðxÞV ~L j ~x ¼ q1�a ~xð Þ� �

d
dxE

~L j ~x ¼ x
� �

�

�

x¼q1�a ~xð Þ
: (4.70)

Analogous to the VaR-based first-order adjustment, the ES-based term Dl1 is

linear in terms of 1/n, which means that the measured idiosyncratic risk component

is halved if the number of credits is doubled. Furthermore, the adjustment formula

takes the conditional variance into consideration but neglects all higher conditional

moments. Thus, incorporating the add-on formula (4.70) leads to a reduction of the

error from O(1/n) to O(1/n2).

4.3.2.2 First-Order Granularity Adjustment for the Vasicek Model

It is straightforward to calculate the ES-based granularity adjustment for the

Vasicek model. This means that the conditional PD is assumed to be given by

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.71)

and the systematic factor is standard normally distributed, which is analogous to

Sect. 4.2.1.2. If we want to calculate the granularity adjustment (4.70), we can use

the expression for the conditional variance and the derivative of the conditional

expectation dm1;c dx= from Sect. 4.2.1.2. This directly leads to the formula for the

ES-based granularity adjustment within the Vasicek model:

Dl1 ¼ � 1

2 1� að Þ
’�2;c

dm1;c dx=

�

�

�

�

x¼F�1 1�að Þ

¼ ’ F�1 1� að Þ� �

2 1� að Þ

P

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � F zið Þ � ELGD2
i � F2 zið Þ� �

P

n

i¼1

wi � ELGDi �
ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p � ’ zið Þ

;

(4.72)

with zi ¼ F�1 PDið Þþ ffiffiffi

ri
p

F�1 að Þ
ffiffiffiffiffiffiffiffi

1�ri
p , which can be simplified for homogeneous portfolios to

Dl1 ¼ 1

2n

’ F�1 1� að Þ� �

1� að Þ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

ffiffiffi

r
p FðzÞ

’ðzÞ
ELGD2 þ VLGD

ELGD
� ELGD � FðzÞ

	 


;

(4.73)

with z ¼ F�1 PDð Þþ ffiffi

r
p

F�1 að Þ
ffiffiffiffiffiffiffi

1�r
p .
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4.3.2.3 Second-Order Granularity Adjustment for One-Factor Models

In order to reduce the approximation error for portfolios consisting of a small

number of credits, additional elements of the Taylor-series expansion (4.62)

will be calculated and analyzed subsequently. Thus, we derive all terms of order

O(1/n2), which is analogous to Sect. 4.3.2.3 for the VaR-based granularity adjust-

ment. As a consequence, not only the conditional variance but also the conditional

skewness is taken into account. The resulting expression for the ASRF solution

including the second-order granularity adjustment Dl2 is

VaRð1st þ 2nd Order Adj:Þ
a ¼ VaRðASRFÞ

a þ Dl1 þ Dl2; (4.74)

where Dl2 represents the O(1/n2) elements of (4.62). We already know from

Appendix 4.5.8 that the third and a part of the fourth element of the Taylor series

are the relevant terms for the second-order adjustment.214 As can immediately be

seen from the Taylor series expansion (4.62), the third and the fourth derivatives

of ES are required for the calculation of the additional terms. Based on the

formula for all derivatives of VaR, it is possible to determine a formula for

arbitrary derivatives of ES. This general formula is derived in Appendix 4.5.13,215

but for our purposes it is sufficient to use a formula for the first five derivatives

of ES:216

dmESa ~Y þ l ~Z
� �

dlm

�

�

�

�

�

l¼0

¼ �1ð Þm � 1

1� a
� dm�2 mm ~Z j ~Y ¼ y

� �

fYðyÞ
� �

dym�2

 

� kðmÞ � 1

fYðyÞ


� d m2 ~Z j ~Y ¼ y
� �

fYðyÞ
� �

dy
� d

m�3 mm�2
~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�3

#!
�

�

�

�

�

y¼qa ~Yð Þ
;

(4.75)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10.

With these derivatives and due to

lm � mm ~Z j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼ �m ~L j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼: �mðyÞjy¼qa ~Yð Þ; (4.76)

214The explanations regarding the order of the derivatives of VaR in Appendix 4.5.8 are valid for

the derivatives of ES, too.
215See also Wilde (2003).
216See Appendix 4.5.14.
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the second-order adjustment for one-factor models is given as

Dl2 ¼ �1ð Þ3
3!

1

1� a
d �3ðyÞfYðyÞð Þ

dy

 �

þ �1ð Þ4
4!

1

1� a
�3

1

fYðyÞ �
d �2ðyÞfYðyÞð Þ

dy
� d �2ðyÞfYðyÞð Þ

dy

	 
 �
�

�

�

�

y¼qa ~Yð Þ

¼ � 1

6 1� að Þ
d

dy
�3ðyÞfYðyÞð Þ

 �

� 1

8 1� að Þ
1

fYðyÞ
d

dy
�2ðyÞfYðyÞð Þ

 �2
�

�

�

�

�

y¼qa ~Yð Þ
:

(4.77)

Using fY ¼ � fx
dy dx= and recalling that �mðyÞjy¼qað ~YÞ ¼ �mð~L j ~x ¼ xÞ��

x¼q1�að~xÞ¼: �m;c
�

�

x¼q1�að~xÞ (cf. (4.9)), this leads to

Dl2 ¼ 1

6 1� að Þ
1

dy dx=

d

dx

�3;c fx

dy dx=

	 


þ 1

8 1� að Þ
dy dx=

fx

1

dy dx=

d

dx

�2;c fx

dy dx=

	 
 �2
�

�

�

�

�

x¼q1�a ~xð Þ

¼ 1

6 1� að Þ
1

dm1;c dx=

d

dx

�3;c fx

dm1;c dx=

 !

þ 1

8 1� að Þ
1

fx

1

dm1;c dx=

d

dx

�2;c fx

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼q1�a ~xð Þ

; (4.78)

which is our result for the ES-based second-order granularity adjustment in general

form. As mentioned before, this adjustment formula is of order O(1/n2) because
both the conditional skewness and the squared conditional variance are of this

order.

4.3.2.4 Second-Order Granularity Adjustment for the Vasicek Model

As in Sect. 4.3.2.2 for the first-order adjustment, we now specify the second-order

adjustment for the Vasicek model. Thus, we use the conditional PD of the Vasicek

model

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.79)

4.3 Measurement of Name Concentration Using the Risk Measure Expected Shortfall 113



and assume that the systematic factor is normally distributed. Due to the latter

assumption, the second-order granularity adjustment (4.78) can be expressed as

Dl2 ¼ 1

6 1� að Þ
1

dm1;c dx=

d

dx

�3;c’

dm1;c dx=

 !

þ 1

8 1� að Þ
1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼F�1ð1�aÞ
¼: Dl2;1 þ Dl2;2

�

�

x¼F�1ð1�aÞ: (4.80)

As presented in Appendix 4.5.15, this leads to a second-order adjustment of

Dl2 ¼ 1

6 1� að Þ
’

dm1;c dx=
� �2

d�3;c
dx

� �3;c x� d2m1;c dx2
�

dm1;c dx=

 !" #

þ 1

8 1� að Þ
’

dm1;c dx=
� �3

d�2;c
dx

� �2;c x� d2m1;c dx2
�

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼F�1ð1�aÞ

:

(4.81)

The required expressions for the conditional moments and the corresponding

derivatives have already been determined in Sect. 4.2.1.4. Thus, we only have to

insert the terms (4.37)–(4.47) into (4.81), which can easily be calculated with

standard computer applications.

4.3.3 Moment Matching Procedure for Stochastic LGDs

Subsequently, we will study the accuracy of the ASRF formula and of the granu-

larity adjustment for the risk measure ES in order to compare the capability of

measuring name concentrations in comparison with the VaR (cf. Sect. 4.2.2).

However, before we perform the corresponding numerical analyses, we deal with

the modeling of stochastic LGDs. Based on this, we can perform our numerical

analyses of the ES-based formulas not only for constant LGDs217 but also for

stochastic LGDs. This will show to which degree the accuracy of the ASRF

framework and of the granularity adjustments are affected by this additional source

of uncertainty. In order to incorporate a realistic degree of uncertainty, the proba-

bility distribution of LGDs will not be chosen on an ad-hoc basis, but different

density functions will be parameterized in a way that mean and standard deviation

217Even if the calculations were based on the portfolio gross loss and thus on an LGD of 100%, the

results remain identically for every constant LGD as the numerator and the denominator of the

analyzed expressions are affected to the same degree.
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will agree with empirical data reported by Schuermann (2005). These density

functions, which are typically mentioned in the literature for modeling LGDs, are

a normal distribution, a log-normal distribution, a logit-distribution, and a beta-

distribution. This moment-matching procedure will be performed for senior

secured, senior unsecured, senior subordinated, subordinated, as well as junior

subordinated loans. As a next step, the 25%-, 50%-, and 75%-quantiles will be

calculated for each of the parameterized distributions. Finally, the distribution with

the smallest averaged difference between the calculated and the empirical quantiles

will be chosen for the numerical analyses using the parameter setting for senior

unsecured loans.

A typical shape of a recovery-rate-distribution, which is the distribution of

1�LGD, can be seen in Fig. 4.8. The presented recovery rates correspond to

2,023 defaulted corporate bonds and loans from Moody’s Default Risk Service

Database. Approximately 88% of these instruments were issued by corporations

domiciled in the United States.218 In the presented case, the distribution is right-

skewed, which means that there are many defaults with rather low recovery rates

and few defaults with high recovery rates. While in most cases the recovery rate is

between 0 and 100%, it is not necessarily bounded between these values. The

demonstrated recovery rates of more than 100% appear if the interest rate at the

time of recovery is lower than the coupon rate.219 As mentioned in Sect. 2.2.1,
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Fig. 4.8 Probability distribution of recovery rates for corporate bonds and loans, 1970–2003. See

Schuermann (2005), p. 14

218Cf. Schuermann (2005), p. 22, footnote 8.
219Cf. Schuermann (2005), p. 22, footnote 11.
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the case of recovery rates below 0% can occur due to workout costs. Since the attempt

to recover a (part of a) loan is costly, the recovery rate is lower than 0% if the recovery

cash flows are smaller than the workout costs. Even if this case is not presented in

Fig. 4.8, it is practically more relevant than recovery rates of more than 100% as

workout costs always occur whereas the other effect is if at all unsystematic.220

Nonetheless, the mass of the distribution is between 0 and 100%, so that it can be

beneficial to choose a probability distribution which is bounded between these values.

In the literature, there are different proposals for the choice of an LGD distribu-

tion. In the context of modeling LGDs that depend on a systematic factor,221 Frye

(2000) used the normal distribution. One point of criticism is that this distribution is

symmetric and cannot describe the typically skewed LGDs. Against this back-

ground, Pykhtin (2003) chose the lognormal distribution. Schönbucher (2003)

applied the logit-normal distribution, which is bounded between 0 and 1. As

mentioned above, LGDs do not necessarily fulfill this characteristic but the distri-

bution can almost be seen as bounded in this interval. A further common LGD

distribution that is bounded in this interval is the beta distribution,222 which is for

example used in CreditMetricsTM.223 All of these distributions depend on two

parameters. Thus, we can parameterize all of these distributions by matching the

first two moments with the empirical distribution.

The probability density function of a normally distributed random variable ~X is

given by

fXðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp � x� mð Þ2

2s2

 !

; (4.82)

with mean m and standard deviation s, that is ~X 	 Nðm; s2Þ. The quantiles qa of a
normal distribution with parameters m and s can be calculated as

P ~X � qa
� � ¼ F

qa � m
s

� �

¼ a

, qa � m
s

¼ F�1 að Þ
, qa ¼ mþ s � F�1 að Þ: (4.83)

220Probably, the data used to generate the figure did not include workout costs and therefore

underestimate the true economic loss. Furthermore, the choice of the discount rate influences the

effect of negative LGDs: If the recovery cash flows are discounted by the contractual rate, as

required by IFRS and as proposed by the Basel II framework, a complete recovery without

workout costs leads to a recovery rate of 100%, which shows that negative LGDs are not relevant

at all.
221The issue of interconnections between LGDs and PDs via a systematic factor is not in the scope

of this analysis.
222Cf. Altman et al. (2005), p. 46.
223Cf. Gupton et al. (1997), p. 80.
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If a random variable ~X is normally distributed with ~X 	 NðmX; s2XÞ, the trans-

formation ~Y ¼ e
~X leads to a lognormally distributed variable ~Y.224 The density

function is

fYðyÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2X
p

y
exp � ln y� mXð Þ2

2s2X

 !

: (4.84)

In order to parameterize the distribution, the parameters mX and sX have to be

expressed as a function of the known mean m and standard deviation s. Using the

well-known moments of a lognormal distribution225

m ¼ exp mX þ 1

2
s2X

	 


and s2 ¼ ðexpðs2XÞ � 1Þ � expð2mX þ s2XÞ; (4.85)

we obtain

s2 ¼ exp s2X
� �� 1

� � � exp 2mX þ s2X
� �

, s2 ¼ exp s2X
� �� 1

� � � exp mX þ 1

2
s2X

	 
2

, s2 ¼ exp s2X
� �� 1

� � � m2

, s2X ¼ ln
s2

m2
þ 1

	 


(4.86)

and

m ¼ exp mX þ 1

2
s2X

	 


, mX ¼ ln m� 1

2
s2X

, mX ¼ ln m� 1

2
ln

s2

m2
þ 1

	 


: (4.87)

As the logarithm of a lognormally distributed variable is normally distributed

with mean mX and standard deviation sX, the cumulative distribution function F(y)
can be expressed in terms of the standard normal distribution:

FYðyÞ ¼ F
ln y� mX

sX

	 


: (4.88)

224See also Sect. 2.3.
225Cf. Bronshtein et al. (2007), p. 760, (16.80).
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Similar to (4.83), this leads to

F
ln qa � mX

sX

	 


¼ a

,qa ¼ exp mX þ sX � F�1 að Þ� �

: (4.89)

A logit-normal distribution results from a normally distributed variable ~X with

~X 	 NðmX; s2XÞ, which is transformed by the logit function ~Y ¼ e
~X
�ð1þ e

~XÞ: The
transformation assures that the transformed variable is bounded to [0, 1]. As shown

in Appendix 4.5.16, the probability density function is given as

fYðyÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2X
p exp � ln 1 y= � 1ð Þ þ mXð Þ2

2s2X

 !

1

y 1� yð Þ : (4.90)

Since an analytical determination of mean and standard deviation is not obvious,

the parameterization will be done numerically. For this purpose, the moments will

be computed for different mX/sX-combinations until the deviation of both para-

meters from the empirical data is less than 10–4. The corresponding quantiles will

be determined via numerical integration of (4.90).

The density of a beta distribution with shape parameters a; b> 0 can be

defined as

fXðxÞ ¼ 1

B a; bð Þ x
a�1 1� xð Þb�1; (4.91)

where the beta function Bða; bÞ is defined as

Bða; bÞ ¼
ð

1

0

ta�1 1� tð Þb�1dt (4.92)

or as

Bða; bÞ ¼ G að ÞG bð Þ
G aþ bð Þ (4.93)

using the gamma function Gð�Þ.226 With mean and variance

m ¼ a
aþ b

and s2 ¼ ab

ðaþ bÞ2ð1þ aþ bÞ; (4.94)

226Cf. Schönbucher (2003), p. 147 f.
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the beta distribution can be parameterized using the following shape parameters

m ¼ a
aþ b

;

,b ¼ a
m
� a; (4.95)

and

s2 ¼ ab

aþ bð Þ2 1þ aþ bð Þ

,s2 ¼ a2 1 m= � 1ð Þ
a m=ð Þ2 1þ a m=ð Þ

,s2 ¼ m2 1� mð Þ
mþ að Þ

,a ¼ m2 1� mð Þ
s2

� m: (4.96)

Similar to the logit-normal distribution, the quantiles of the beta distribution will

be determined via numerical integration of (4.91).

As mentioned above, the different distribution functions will be parameterized

using the data for corporate bonds and loans reported by Schuermann (2005). These

data contain information about the empirical mean and standard deviation as well as

the 25%-, 50%-, 75%-quantiles, and the number of observations N of recovery rates

for different seniorities (see Table 4.8).227 As expected, the average recovery rate as

well as the quantiles of the recovery rate distribution are mostly the higher, the more

senior the debt instrument.

In Tables 4.9–4.12, the determined parameters, which lead to a matching of

moments, of the four considered distributions are reported for each of the senio-

rities. Furthermore, the corresponding quantiles q̂ that result for these distributions

are reported in the respective tables. The root mean squared errors (RMSE) are

Table 4.8 Recovery rates by seniority, 1970–2003a

Seniority Mean m Std. dev. s q0.25 (%) q0.5 (%) q0.75 (%) N

Senior secured 0.543 0.258 33.00 53.50 75.00 433

Senior unsecured 0.387 0.278 14.50 30.75 63.00 971

Senior subordinated 0.285 0.234 10.00 23.00 42.25 260

Subordinated 0.347 0.222 19.50 30.29 45.25 347

Junior subordinated 0.144 0.090 9.13 13.00 19.13 12
aSee Schuermann (2005), p. 16

227The aggregated data correspond to Fig. 4.8.
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reported as a quality criterion of the accuracy of the estimated quantiles in compar-

ison with the empirical quantiles:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
q̂0:25 � q0:25ð Þ2 þ q̂0:5 � q0:5ð Þ2 þ q̂0:75 � q0:75ð Þ2

h i

r

: (4.97)

Finally, the averaged RMSE is reported for every distribution in order to

determine the most appropriate description of an LGD distribution.

Table 4.9 Results of the normal distribution

Seniority m s q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured 0.543 0.258 36.84 54.26 71.68 2.97

Senior unsecured 0.387 0.278 19.96 38.71 57.46 6.43

Senior subordinated 0.285 0.234 12.72 28.51 44.30 3.74

Subordinated 0.347 0.222 19.66 34.65 49.64 3.57

Junior subordinated 0.144 0.090 8.33 14.39 20.45 1.20

Ø 3.58

Table 4.10 Results of the lognormal distribution

Seniority mX sX q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured �0.713 0.452 36.13 49.00 66.45 5.86

Senior unsecured �1.157 0.645 20.35 31.44 48.58 9.00

Senior subordinated �1.513 0.718 13.58 22.03 35.76 4.32

Subordinated �1.232 0.587 19.63 29.16 43.33 1.28

Junior subordinated �2.103 0.574 8.29 12.20 17.97 0.95

Ø 4.28

Table 4.11 Results of the logit-normal distribution

Seniority mX sX q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured 0.234 1.396 33.02 55.82 76.41 1.57

Senior unsecured �0.686 1.679 13.98 33.51 60.99 1.99

Senior subordinated �1.284 1.493 9.20 21.70 43.13 1.02

Subordinated �0.819 1.224 16.20 30.61 50.17 3.43

Junior subordinated �1.967 0.741 7.83 12.28 18.75 0.89

Ø 1.78

Table 4.12 Results of the beta distribution

Seniority a b q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured 1.477 1.245 33.59 55.43 75.84 1.26

Senior unsecured 0.801 1.269 14.04 34.58 60.63 2.61

Senior subordinated 0.775 1.944 8.61 22.85 44.01 1.30

Subordinated 1.241 2.341 16.27 31.55 50.37 3.57

Junior Subordinated 2.050 12.193 7.55 12.72 19.50 0.95

Ø 1.94
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As can be seen from the tables, the normal and the lognormal distribution cannot

fit the empirical data very well. By contrast, both the parameterized logit-normal

and the beta distribution lead to a good accuracy with respect to the considered

quantiles. As the logit-normal distribution leads to the smallest averaged RMSE,

this distribution will be used to analyze the accuracy of the ASRF solution and

the granularity adjustments for stochastic LGDs. For this purpose, the moments

and the determined parameter values for senior unsecured bonds and loans will be

implemented.

4.3.4 Numerical Analysis of the ES-Based Granularity
Adjustment

4.3.4.1 Impact on the Portfolio-Quantile

In Sect. 4.2.2, we have studied the accuracy of the ASRF formula and the granular-

ity adjustment for the risk measure VaR. However, we do not know how good the

ES-based measurement of portfolio name concentration risk performs in compari-

son to the VaR-based measurement. Thus, our preceding analyses will be per-

formed for the coherent ES subsequently. Moreover, we test the impact of

stochastic LGDs on the accuracy of our approximation formulas. We start with

an analysis of:

(a) The numerically “exact” coarse grained solution (see (2.76))

(b) The fine grained ASRF solution (see (4.59))

(c) The ASRF solution with first-order adjustment (see (4.70) and (4.73))

(d) The ASRF solution with first- and second-order adjustments (see (4.78)

and (4.81))

for a homogeneous portfolio consisting of 40 credits with PD ¼ 1%, LGD ¼ 100%,

and r ¼ 20%. The resulting ES using the formulas for the “exact” solution (a) as

well as approximations (b) to (d) is presented in Fig. 4.9 for confidence levels

starting at 0.7. In Fig. 4.10, the results for high confidence levels from 0.994 on are

shown.

As can be seen in the figures, the ASRF solution underestimates the risk because

the idiosyncratic component is neglected. Especially for high confidence levels, the

impact of this underestimation is very high. The first-order granularity adjustment

seems to be a very good approximation for a broad range of confidence levels. If the

figures corresponding to the ES are compared to those of the VaR (see Figs. 4.1 and

4.2), the adjustment formula using the ES seems to work even better than the

formula using the VaR. Unfortunately, it seems that the second-order adjustment

cannot improve the result. Even if the approximation for high confidence levels is

very good, the accuracy for lower confidence levels is significantly lower than

without this additional adjustment.
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In order to get a better insight in the accuracy of the different approximations,

subsequently several numerical analyses will be performed similar to

Sects. 4.2.2.2–4.2.2.4. In these sections, we have defined two kinds of critical

numbers. The first measured the minimum number of credits a portfolio must

consist of to have a good approximation of the “true” VaR at confidence level

0.999. The second number measured the critical number of credits for which the

ASRF approximation of the 99.9%-VaR does not exceed the VaR at confidence

level 0.995. Assuming that the increase of the confidence level from 0.995 to

0.999 happened to compensate the neglect of the granularity adjustment, it can be

argued that the idiosyncratic risk component is already accounted for if the

resulting critical number of credits is exceeded, whereas for a lower number of

credits the risk is underestimated (for an actually intended confidence level of

0.995). The first type of analysis directly tests the performance of the different

approaches. On the contrary, the second type of analysis does not focus on the

accuracy of the approximation formulas but analyzes the need of additional

economic capital against the specific regulatory setting. Thus, in order to test

the performance of the different approximation formulas when using a different

risk measure, only the first type of analyses will be performed in the following.228

Due to the changed risk measure, the true risk will be given by the 99.72%-ES

within the Vasicek model instead of the 99.9%-VaR.229

4.3.4.2 Size of Fine Grained Risk Buckets

Similar to Sect. 4.2.2.2, it will be determined for which portfolios the ES-based

ASRF solution is a good approximation of the “true” ES. This will be done with a

target tolerance of b ¼ 5%:230

I
ðASRFÞ
c;ES;det: ¼ inf n :

ES
ðASRFÞ
0:9972

~L
� �

ES
ðnÞ
0:9972

~L ¼ 1
n

P

n

i¼1

1 ~Dif g
	 
� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

< b

0

B

B

@

1

C

C

A

with b ¼ 0:05: (4.98)

228The critical number of credits in a portfolio which leads to equality of the different parameter

settings of the Basel consultative documents is not of interest in the subsequent analyses regarding

the ES as both rely on the VaR.
229See Sect. 4.3.1.
230As the ASRF solution is constant and the coarse grained solution is monotonously decreasing in

n for the ES (this is a result of the monotonicity of specific risk-property, cf. Sect. 4.3.1), the

inequality also holds for every number above the first number that satisfies the inequality. Thus, the

expression “for all N � n”, which had to be included in the corresponding analysis for the VaR,

can be neglected.
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Table 4.13 Critical number of credits from that ASRF solution can be stated to be sufficient for

measuring the true ES if LGDs are deterministic (see (4.98))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 30,405 20,112 4,711 4,516 3,593 2,803 1,828 1,246 893 443 346 191

3.5% 25,215 16,766 3,996 3,815 3,048 2,399 1,571 1,077 775 389 306 171

4.0% 21,425 14,273 3,460 3,297 2,644 2,079 1,375 946 686 348 275 155

4.5% 18,300 12,267 3,022 2,883 2,319 1,829 1,213 844 612 315 249 142

5.0% 15,920 10,714 2,663 2,561 2,054 1,628 1,090 758 553 286 228 132

5.5% 14,044 9,432 2,377 2,290 1,838 1,459 979 685 502 263 210 122

6.0% 12,434 8,443 2,140 2,058 1,658 1,319 889 625 461 243 195 113

6.5% 11,167 7,513 1,944 1,858 1,512 1,208 812 574 425 226 181 106

7.0% 9,985 6,786 1,765 1,701 1,374 1,100 750 529 393 211 170 101

7.5% 9,020 6,163 1,618 1,550 1,265 1,016 689 492 364 198 159 95

8.0% 8,201 5,617 1,490 1,426 1,169 933 641 456 342 186 150 90

8.5% 7,508 5,135 1,378 1,318 1,083 865 598 426 318 175 142 85

9.0% 6,922 4,709 1,277 1,222 1,007 805 555 400 299 166 135 81

9.5% 6,342 4,336 1,186 1,136 937 751 519 376 283 156 128 77

10.0% 5,833 4,054 1,104 1,059 874 702 487 354 267 149 122 74

10.5% 5,455 3,738 1,031 999 816 660 462 334 253 142 116 72

11.0% 5,035 3,462 974 933 764 623 434 315 240 136 111 68

11.5% 4,669 3,259 911 873 719 585 409 298 227 129 106 66

12.0% 4,386 3,021 854 824 681 551 386 283 216 123 102 64

12.5% 4,075 2,860 812 778 640 525 367 268 205 119 98 60

13.0% 3,845 2,657 762 732 611 495 349 257 196 114 94 58

13.5% 3,587 2,524 725 697 575 469 331 244 188 109 90 56

14.0% 3,389 2,351 684 657 545 447 318 233 179 105 87 54

14.5% 3,201 2,237 652 628 519 424 301 224 171 100 83 53

15.0% 3,002 2,095 617 593 493 405 290 213 166 97 80 51

15.5% 2,861 1,991 591 567 470 385 275 205 158 94 78 49

16.0% 2,684 1,905 558 538 452 369 265 196 152 90 75 47

16.5% 2,548 1,782 536 514 428 353 252 189 146 87 72 47

17.0% 2,438 1,703 508 495 411 337 244 181 141 85 71 45

17.5% 2,292 1,634 487 468 391 325 232 175 136 81 68 44

18.0% 2,181 1,532 469 450 375 309 224 167 131 79 66 42

18.5% 2,092 1,467 445 432 362 298 214 162 126 76 64 42

19.0% 1,998 1,411 428 411 344 288 207 155 123 74 62 40

19.5% 1,884 1,330 413 397 332 274 200 150 118 72 60 39

20.0% 1,806 1,273 393 384 321 265 191 146 115 69 59 37

20.5% 1,739 1,225 378 364 306 257 185 140 110 68 57 37

21.0% 1,653 1,182 366 351 295 244 180 136 107 65 56 37

21.5% 1,572 1,114 350 340 286 236 172 132 104 64 54 34

22.0% 1,512 1,070 336 324 273 229 167 126 100 62 53 34

22.5% 1,459 1,032 325 313 263 219 162 123 98 60 51 34

23.0% 1,411 999 315 303 255 212 155 120 94 59 50 32

23.5% 1,329 946 301 294 248 206 151 115 91 57 48 31

24.0% 1,277 908 290 280 237 200 146 112 89 56 47 31

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail

124 4 Model-Based Measurement of Name Concentration Risk in Credit Portfolios



Table 4.14 Critical number of credits from that ASRF solution can be stated to be sufficient for

measuring the true ES if LGDs are stochastic (see (4.99))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 44,234 22,604 5,767 5,416 4,464 3,201 2,291 1,517 1,097 585 455 270

3.5% 28,168 20,206 4,362 4,764 3,597 2,615 1,785 1,312 1,022 476 397 245

4.0% 23,449 16,611 4,007 3,838 2,743 2,378 1,665 1,196 806 478 358 220

4.5% 21,337 16,066 3,438 3,592 2,877 2,393 1,423 1,039 855 403 316 207

5.0% 22,141 15,503 3,048 2,993 2,361 1,907 1,313 970 655 375 277 202

5.5% 20,044 11,914 2,600 3,112 2,197 1,497 1,157 794 623 351 265 172

6.0% 14,358 12,750 2,264 2,226 1,820 1,550 1,119 890 598 304 247 172

6.5% 17,261 10,528 2,174 2,283 1,852 1,461 909 637 550 325 248 159

7.0% 11,413 8,966 2,068 1,968 1,649 1,235 864 623 506 261 234 152

7.5% 10,555 10,372 1,718 1,728 1,481 1,379 851 627 506 237 210 149

8.0% 11,789 6,450 1,665 1,554 1,380 1,395 701 624 449 243 206 137

8.5% 11,395 6,049 1,605 1,672 1,307 1,086 651 463 391 227 206 129

9.0% 10,290 5,363 1,689 1,463 1,264 1,201 682 459 372 217 202 130

9.5% 6,833 6,043 1,588 1,432 1,028 853 737 474 373 203 171 121

10.0% 5,945 4,474 1,148 1,404 1,013 1,051 590 443 386 191 157 117

10.5% 8,491 3,458 1,197 1,283 1,012 818 594 462 346 180 157 113

11.0% 8,144 3,707 1,218 999 973 623 593 424 322 178 128 116

11.5% 4,860 3,684 1,066 1,103 752 864 405 376 282 180 145 106

12.0% 5,745 4,733 1,016 1,026 795 918 497 379 252 150 160 108

12.5% 5,918 3,352 1,032 903 756 677 502 315 253 156 133 107

13.0% 3,832 3,041 831 860 734 586 394 342 262 145 116 98

13.5% 4,284 2,810 1,005 884 805 558 397 310 292 149 127 95

14.0% 3,910 2,088 690 884 743 450 327 265 232 134 119 93

14.5% 4,854 3,034 876 683 741 495 428 245 215 132 119 91

15.0% 3,233 2,371 661 684 737 454 446 243 209 130 115 91

15.5% 3,357 3,308 858 551 583 529 323 314 163 126 97 90

16.0% 2,923 2,531 1,039 824 695 449 302 238 186 119 103 86

16.5% 4,623 1,675 630 609 643 416 433 214 182 117 106 84

17.0% 2,413 2,016 759 573 527 493 333 231 214 115 100 84

17.5% 2,406 2,145 517 468 430 384 280 235 190 122 92 82

18.0% 2,465 1,660 588 483 496 356 286 223 167 103 91 86

18.5% 3,963 2,814 600 476 543 436 222 197 144 99 89 80

19.0% 2,040 2,018 462 458 479 348 221 206 156 105 94 79

19.5% 2,533 1,331 421 500 488 320 246 216 154 97 88 76

20.0% 2,763 1,587 419 528 341 323 239 173 142 94 85 78

20.5% 2,408 1,490 535 505 476 354 230 205 163 98 80 77

21.0% 2,819 1,144 354 406 383 271 221 173 158 81 81 78

21.5% 2,106 1,105 380 503 372 227 202 172 125 114 87 75

22.0% 2,748 1,317 401 332 294 281 225 181 140 72 77 74

22.5% 2,709 1,185 450 311 370 249 169 149 127 81 76 71

23.0% 1,579 1,055 452 350 284 263 179 173 103 81 77 71

23.5% 1,785 2,476 384 430 269 258 181 132 148 80 72 71

24.0% 2,399 957 410 330 244 210 167 156 121 85 70 70

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Moreover, we measure the accuracy of the ASRF solution if LGDs are stochastic

and following a logit-normal distribution with

I
ðASRFÞ
c;ES;stoch: ¼ inf n :

ES
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with b ¼ 0:05:

(4.99)

In contrast to the analyses of Sect. 4.2.2 and the preceding definition of a critical

number for deterministic LGDs (4.98), the denominator, which is the benchmark

for the ASRF solution, cannot be determined with the Vasicek model because it

does not account for stochastic LGDs. Against this background, we perform Monte

Carlo simulations with one million trials for each PD/r-combination and for every

number of credits until the target accuracy is reached.

The resulting critical numbers for the case of deterministic LGDs I
ðASRFÞ
c;ES;det: are

reported in Table 4.13 for a broad range of correlations and PDs. Similar to the

corresponding VaR-analysis, the values I
ðASRFÞ
c;ES;det: vary from 31 for a high PD/

r-combination to 30,405 for a low PD/r-combination. This shows that at least for

non-retail portfolios the assumption of infinite granularity is critical for real-world

portfolios and the chosen risk measure does not influence the accuracy of the ASRF

solution to a great extent.

The corresponding critical numbers for stochastic LGDs I
ðASRFÞ
c;ES;stoch: are reported in

Table 4.14. As expected, the accuracy of the ASRF solution is lower for stochastic

than for deterministic LGDs because there is an additional source of unsystematic

uncertainty. In comparison with the case of deterministic LGDs, the minimum

number of credits increased from a range between 31 and 31,405 to a range between

70 and 44,234 credits. On average, the required portfolio size is 31.55% higher due

to stochastic LGDs if the identical accuracy shall be achieved.

4.3.4.3 Probing First-Order Granularity Adjustment

In order to test the accuracy of the ES-based first-order granularity adjustment, we

determine the critical number I
ð1st Order Adj:Þ
c;ES;det: , which is the minimum number of

credits to deliver a good approximation of the “true” ES on a 99.72% confidence

level, for different PD/r-combinations. These critical values

I
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;with b ¼ 0:05;

(4.100)

are presented in Table 4.15. As the ES-based first-order granularity adjustment does

not only take the conditional variance of the default indicator into account but also
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the second moment of LGDs, it is interesting to find out how good the granularity

adjustment performs in the presence of stochastic LGDs. For this purpose, we also

determine the critical values

I
ð1:Order Adj:Þ
c;ES;stoch: ¼ inf n :

ES
ð1:Order Adj:Þ
0:9972
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with b ¼ 0:05, which are shown in Table 4.16.

For deterministic LGDs, the minimum number of credits varies between 7 and

2,468, which is a reduction of averaged 91.64% compared to the ASRF solution

(see Table 4.13 in Sect. 4.3.4.2). Thus, we have a significant improvement of the

accuracy if the first-order adjustment is taken into account. A very interesting

finding results if the accuracy of the granularity adjustment is compared for the

VaR and the ES. Even for a portfolio that consists of averaged 49.05% less credits

and thus contains significantly more idiosyncratic risk, we are able to achieve the

identical accuracy if name concentrations are measured on the basis of the Expected

Shortfall instead of the Value at Risk. For the most relevant cases, where the

minimum portfolio size is relatively high, this effect is even stronger.

If the improvement is analyzed only for cases where the minimum portfolio

size is higher than 100 credits (determined for the VaR-based granularity adjust-

ment), we find that the target accuracy can still be achieved if the portfolio

consists of 68.91% less portfolios compared to a VaR-based measurement. For

example, a high quality retail portfolio (AAA) must consist of at least 1,588

credits instead of 5,027 credits if name concentration is measured with the ES.

Similarly, a medium quality corporate portfolio (BBB) must contain 25 compared

to 106 credits. This shows that the already good performance of the VaR-based

granularity adjustment can be improved significantly if name concentrations are

measured with the ES.

The results for stochastic LGDs, which are presented in Table 4.16, are very

promising. In most cases, the accuracy is slightly higher than in the case of

deterministic LGDs. On average, the required portfolio size is reduced by

3.64%. Concretely, the accuracy is higher/identical/lower for 272/35/209 ele-

ments of the matrix. Of course, the results are influenced by a small degree of

simulation noise but the accuracy seems to be at least identically in the presence

of stochastic LGDs. If the accuracy of the granularity adjustment is compared

with the ASRF solution of Table 4.14, the minimum number of credits is about

92.19% lower,231 which is an excellent result. As a further robustness check, the

corresponding values are determined for beta-distributed LGDs. In this case, the

231The corresponding value for deterministic LGDs is 91.64%.
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Table 4.15 Critical number of credits from that the first order adjustment can be stated to be

sufficient for measuring the true ES if LGDs are deterministic (see (4.100))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 2,468 1,870 439 466 367 279 192 148 111 62 53 38

3.5% 2,198 1,410 396 377 294 223 157 125 94 55 45 34

4.0% 1,588 1,010 313 298 266 205 145 106 81 48 40 29

4.5% 1,453 930 287 274 214 186 119 89 69 42 36 27

5.0% 976 858 224 213 198 152 111 83 64 37 34 25

5.5% 911 792 209 199 155 142 90 69 55 33 30 24

6.0% 853 726 195 186 146 112 85 65 52 31 27 22

6.5% 800 514 147 173 138 106 80 61 44 30 26 20

7.0% 752 485 139 133 129 100 64 51 42 27 23 20

7.5% 707 458 132 126 99 95 61 49 40 26 23 18

8.0% 665 433 126 120 94 89 58 47 33 25 22 18

8.5% 625 410 120 114 90 70 56 44 32 22 19 17

9.0% 585 250 113 108 86 67 53 36 31 21 19 16

9.5% 540 240 107 103 82 64 51 35 30 20 18 16

10.0% 358 231 101 74 79 62 40 34 29 20 16 13

10.5% 343 222 75 72 75 59 38 33 28 17 16 13

11.0% 330 213 72 69 71 57 37 25 23 17 16 13

11.5% 317 206 70 67 53 54 36 24 22 16 13 13

12.0% 305 198 67 64 51 52 35 24 22 16 13 13

12.5% 294 191 65 62 49 50 34 23 21 16 13 13

13.0% 283 185 63 60 48 37 33 23 20 13 13 11

13.5% 273 178 61 58 46 36 32 22 20 13 13 11

14.0% 264 172 59 56 45 35 31 21 19 13 12 11

14.5% 120 167 57 54 44 34 30 21 19 13 12 11

15.0% 117 161 55 53 42 33 29 20 18 12 12 11

15.5% 114 156 53 51 41 32 28 20 18 12 12 11

16.0% 111 151 51 33 40 31 26 19 14 12 12 11

16.5% 109 147 33 32 39 31 20 19 14 12 10 11

17.0% 106 142 33 31 37 30 20 18 14 12 10 11

17.5% 104 138 32 30 36 29 19 18 14 11 10 11

18.0% 101 134 31 30 35 28 19 18 13 11 10 11

18.5% 99 130 30 29 34 27 19 13 13 9 10 8

19.0% 97 63 30 28 23 27 18 13 13 9 9 9

19.5% 95 61 29 28 22 17 18 13 9 9 9 9

20.0% 93 60 28 27 22 17 17 12 9 9 9 9

20.5% 91 59 28 27 21 17 17 12 9 9 9 9

21.0% 89 58 27 26 21 16 17 12 9 9 9 9

21.5% 88 57 27 25 20 16 16 12 9 9 9 9

22.0% 86 56 26 25 20 16 16 11 9 9 7 9

22.5% 84 55 26 24 20 16 16 11 11 9 7 9

23.0% 83 54 25 24 19 15 15 11 11 8 7 9

23.5% 81 53 25 23 19 15 15 11 11 8 7 9

24.0% 80 52 24 23 19 15 15 11 11 8 7 9

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.16 Critical number of credits from that the first order adjustment can be stated to be

sufficient for measuring the true ES if LGDs are stochastic (see (4.101))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 2,338 1,682 531 470 403 308 243 158 126 74 66 50

3.5% 1,745 1,371 367 360 308 226 190 130 103 63 54 42

4.0% 1,663 1,104 315 308 241 214 151 117 89 54 49 39

4.5% 1,272 906 259 248 204 171 132 92 74 49 43 36

5.0% 1,055 779 225 224 175 164 112 89 64 41 37 33

5.5% 841 575 179 207 151 123 91 68 55 38 36 31

6.0% 758 506 165 158 140 107 85 70 53 35 33 29

6.5% 620 436 145 142 124 106 81 64 50 33 30 26

7.0% 595 416 126 122 129 94 63 63 46 30 27 26

7.5% 515 346 111 119 96 79 64 48 41 27 25 24

8.0% 473 335 101 107 89 72 61 42 36 25 25 23

8.5% 415 327 89 89 77 71 52 37 32 23 23 23

9.0% 272 290 79 86 75 66 48 38 32 23 22 21

9.5% 269 163 72 75 62 57 47 38 30 22 20 21

10.0% 233 170 74 69 64 56 36 32 27 20 19 19

10.5% 221 146 67 61 60 52 38 28 27 21 19 19

11.0% 189 146 64 60 58 50 34 35 25 20 18 19

11.5% 191 127 56 58 46 49 35 26 24 17 17 18

12.0% 174 119 56 54 45 35 35 23 23 18 16 17

12.5% 180 113 54 51 41 34 29 23 22 16 16 17

13.0% 169 111 51 48 37 31 30 22 22 15 14 16

13.5% 163 106 54 41 41 33 25 21 20 15 14 17

14.0% 142 102 42 41 35 33 23 22 19 15 14 15

14.5% 151 98 42 46 33 30 20 18 17 13 14 16

15.0% 139 92 42 44 30 28 25 18 16 12 13 16

15.5% 137 89 31 37 32 27 18 16 15 13 13 16

16.0% 133 89 45 36 31 27 19 16 15 12 13 15

16.5% 125 87 26 29 30 24 18 16 14 13 12 14

17.0% 131 79 36 24 20 23 17 16 13 11 12 14

17.5% 119 81 21 31 26 24 18 13 14 11 12 15

18.0% 105 81 21 23 25 22 15 12 13 11 11 15

18.5% 122 80 20 22 19 21 15 12 13 10 11 15

19.0% 109 77 21 19 16 17 15 11 12 11 10 14

19.5% 115 80 20 19 17 17 15 12 11 10 10 15

20.0% 112 69 18 18 15 17 15 11 11 10 10 14

20.5% 105 71 18 17 25 19 15 10 10 9 10 14

21.0% 102 69 17 15 14 16 14 10 10 10 9 14

21.5% 101 62 17 16 14 14 12 13 9 9 9 14

22.0% 92 62 17 15 13 14 14 10 8 8 9 13

22.5% 88 63 16 14 13 10 12 10 10 9 10 14

23.0% 86 67 15 14 12 14 11 10 9 9 9 14

23.5% 83 59 15 15 13 11 10 9 9 8 8 14

24.0% 97 58 14 15 12 10 12 9 9 8 8 14

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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target accuracy is already reached for 4.89% less credits, compared to the case of

deterministic LGDs. In comparison to the ASRF solution, the critical number is

92.27% lower.

4.3.4.4 Probing Second-Order Granularity Adjustment

As a next step, we analyze the accuracy of the ES-based second-order adjustment in

comparison to the “exact” ES for deterministic LGDs:

I
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with b ¼ 0:05. Moreover, the second order granularity adjustment is tested for

stochastic LGDs using the formula
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with b ¼ 0:05. Due to the second-order adjustment, not only the variance but also

the skewness of LGDs is accounted for in the approximation formula.

The results for deterministic LGDs, which are reported in Table 4.17, confirm

the findings of Fig. 4.9 and also of the corresponding VaR-based analysis of

Sect. 4.2.2.4. If concentration risk is measured with the second-order adjustment,

the required portfolio size is 89.79% smaller than without the adjustment formula

and it performs still better than the VaR-based adjustment formulas but there is no

improvement compared to the ES-based first-order adjustment. Thus, it has to be

stated that the second-order adjustment formula stemming from additional elements

of the Taylor series expansion is performing worse than the first-order adjustment.

As discussed in Sect. 4.2.2.4, it remains unclear if this unexpected result is e.g. a

consequence of a non-converging Taylor series or if the consideration of more

elements of the Taylor series could improve the approximation. But for all that, we

found that the ES-based first-order adjustment is an excellent method for measuring

name concentrations.

The corresponding results for stochastic LGDs are reported in Table 4.18.

Interestingly, the results for low PDs and high correlation parameters are very

good, whereas for high PDs and low correlation parameters the results are worse
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Table 4.17 Critical number of credits from that the first plus second order adjustment can be

stated to be sufficient for measuring the true ES if LGDs are deterministic (see (4.102))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 3,381 2,533 880 841 707 585 433 338 271 178 159 131

3.5% 2,036 1,627 663 634 542 454 347 270 222 151 135 114

4.0% 1,302 1,127 491 473 413 355 279 223 183 130 118 103

4.5% 760 741 389 374 333 289 226 185 156 115 105 94

5.0% 594 443 306 295 269 237 189 159 136 102 94 86

5.5% 256 238 237 229 215 194 160 138 120 91 85 80

6.0% 466 161 180 176 169 157 135 120 107 84 78 74

6.5% 473 273 159 153 152 129 123 105 95 75 72 70

7.0% 746 453 113 110 116 113 103 91 84 69 67 66

7.5% 722 447 101 98 87 89 86 80 75 64 63 63

8.0% 695 435 66 65 76 80 80 73 67 60 59 59

8.5% 668 421 58 56 69 61 65 64 63 56 55 57

9.0% 641 407 33 50 46 54 61 59 56 52 52 55

9.5% 614 392 27 27 41 50 50 56 53 50 50 53

10.0% 588 378 23 23 37 35 45 48 50 47 47 51

10.5% 563 363 39 36 34 31 42 45 44 45 45 49

11.0% 539 350 40 38 18 28 40 43 42 42 43 48

11.5% 515 336 41 38 16 26 31 36 38 41 42 47

12.0% 492 323 64 60 14 15 29 34 36 38 39 45

12.5% 469 310 63 59 27 13 27 33 34 37 38 44

13.0% 445 298 62 59 27 12 26 28 33 36 37 43

13.5% 420 286 61 58 27 11 18 26 29 34 35 42

14.0% 292 274 60 56 42 19 17 25 28 33 35 42

14.5% 282 262 58 55 42 19 16 24 27 32 34 40

15.0% 272 178 57 54 41 19 15 23 26 31 32 40

15.5% 263 173 56 53 41 19 14 22 25 30 31 39

16.0% 254 168 54 52 40 29 9 18 25 29 31 38

16.5% 245 162 53 33 39 29 8 17 21 28 30 38

17.0% 237 158 52 33 38 28 8 16 21 27 30 37

17.5% 229 153 51 48 38 28 7 16 20 27 28 37

18.0% 221 148 33 47 37 28 7 15 19 26 28 37

18.5% 213 144 48 46 36 27 7 15 19 26 27 36

19.0% 206 139 47 45 36 27 6 14 18 25 27 35

19.5% 198 135 46 44 35 26 6 14 18 25 26 35

20.0% 191 131 45 43 34 17 6 14 18 23 26 35

20.5% 183 127 44 42 33 17 3 10 17 23 26 34

21.0% 176 123 43 41 33 17 3 10 15 23 25 34

21.5% 91 62 42 40 32 17 3 9 15 22 25 34

22.0% 88 60 41 39 31 16 4 9 14 22 25 34

22.5% 86 58 40 39 31 16 4 9 14 22 25 34

23.0% 83 57 39 38 30 23 4 9 14 21 23 33

23.5% 81 56 38 37 30 23 4 8 13 21 23 33

24.0% 78 54 37 36 29 23 4 8 13 21 23 33

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.18 Critical number of credits from that the first plus second order adjustment can be

stated to be sufficient for measuring the true ES if LGDs are stochastic (see (4.103))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 4,175 3,045 1,045 980 818 699 499 393 327 227 201 181

3.5% 2,745 2,102 835 761 674 546 435 323 272 190 167 154

4.0% 1,699 1,410 618 579 548 424 331 275 218 165 148 144

4.5% 1,090 951 477 462 419 361 282 230 194 140 135 131

5.0% 541 632 398 396 347 272 252 184 163 128 119 120

5.5% 264 347 311 287 277 256 197 170 144 113 110 110

6.0% 288 210 254 258 210 198 162 136 130 105 96 104

6.5% 600 136 203 193 178 164 142 124 113 96 89 98

7.0% 652 388 158 159 137 139 131 105 101 84 82 92

7.5% 670 358 126 115 126 116 112 102 89 81 81 87

8.0% 670 376 95 93 103 108 91 86 90 75 72 85

8.5% 613 408 73 75 81 84 89 85 81 70 69 80

9.0% 555 368 47 46 64 70 77 73 72 67 65 80

9.5% 575 316 37 36 55 59 63 65 63 62 62 76

10.0% 531 364 24 29 38 48 62 63 61 60 61 75

10.5% 550 321 11 12 31 41 55 60 53 54 57 71

11.0% 495 323 35 18 23 30 46 45 51 53 55 70

11.5% 431 276 47 46 11 24 40 46 45 52 53 69

12.0% 366 278 54 49 8 22 34 44 44 49 51 69

12.5% 428 295 55 51 15 18 32 41 41 46 49 65

13.0% 424 271 55 50 18 16 27 37 36 45 47 65

13.5% 367 264 63 46 37 7 26 37 38 42 47 63

14.0% 225 233 52 49 34 6 24 31 34 41 46 65

14.5% 333 227 53 61 35 10 22 29 31 44 42 62

15.0% 215 220 54 53 35 24 16 27 31 40 42 63

15.5% 204 193 56 49 36 21 17 26 30 37 41 60

16.0% 191 189 54 46 36 25 13 24 28 37 40 60

16.5% 185 153 49 47 37 23 12 22 27 35 40 61

17.0% 169 128 50 46 34 23 11 21 25 34 37 60

17.5% 153 140 45 45 35 25 10 20 24 35 37 59

18.0% 138 145 44 44 33 24 9 19 25 33 35 59

18.5% 152 120 42 45 35 24 8 19 23 33 35 57

19.0% 130 113 52 42 31 22 4 17 22 33 36 58

19.5% 132 108 43 39 32 24 4 15 22 30 35 58

20.0% 133 90 40 46 31 23 3 16 21 30 34 58

20.5% 120 86 35 37 35 24 5 15 20 29 33 59

21.0% 113 85 38 40 29 22 5 13 21 29 33 59

21.5% 110 76 43 36 27 22 5 12 19 29 33 58

22.0% 102 73 36 36 28 23 6 12 19 28 34 59

22.5% 93 74 36 31 27 20 5 12 17 28 33 58

23.0% 86 77 34 33 26 22 6 11 18 27 32 59

23.5% 13 67 32 30 28 22 6 11 18 28 32 58

24.0% 24 67 31 34 24 22 6 11 16 28 31 59

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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than for the case of deterministic LGDs. Even if the required portfolio size is still

significantly smaller than with the ASRF solution (–81.50%), the accuracy is worse

than for deterministic LGDs (+16.25%). This confirms the findings from before that

the first-order adjustment is strictly preferable. The corresponding values for beta-

distributed LGDs are almost identical (–81.50% and +16.38%).

4.3.4.5 Probing Granularity for Inhomogeneous Portfolios

Subsequently, the accuracy of the ES-based granularity adjustment will be tested

for inhomogeneous portfolios, which consist of credits with different exposure

weights and default probabilities. The high quality and low quality test portfolios

are identical to those of Sect. 4.2.2.5. The analyzed portfolios consist of 40, 60, . . .,
400, 800, 1,600, and 4,000 loans and the Expected Shortfall is computed at a

confidence level of 99.72% for a correlation parameter of r ¼ 20%. The resulting

first- and second-order granularity add-on and the corresponding ES of a Monte

Carlo simulation with three million trials are presented in Fig. 4.11.

The size and shape of the true and the approximated granularity add-ons are

similar to those calculated for the VaR. Thus, we find that for the portfolio
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Fig. 4.11 ES-based granularity add-on for heterogeneous portfolios calculated analytically with

first-order (solid lines) and second-order (dotted lines) adjustments as well as with Monte Carlo

simulations (þ and o) using three million trials
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consisting of 40 loans we have a granularity add-on of about 6%. In contrast to the

VaR-based analysis, the add-on of the low-quality portfolio does not exceed the

add-on of the high-quality portfolio. But most importantly, the granularity add-on is

almost linear in terms of 1/n* and the first-order adjustment is capable to capture the

deviations from the ASRF solution with high accuracy, whereas the second-order

adjustment leads to an underestimation of idiosyncratic risks.

4.4 Interim Result

Presently discussed analytical solutions for risk quantification of credit portfolio

models especially rely on the assumptions of an infinite number of credits and of

only one systematic factor. Thus, those analytical frameworks do not account for

single name and sector concentration risk. This problem is discussed intensively by

the financial authorities and it is especially considered in Pillar 2 of Basel II. To

cope with the problem of name concentration, an add-on factor has been developed

that adjusts the analytical solution for portfolios of finite size and therefore might

serve as a simple solution for quantifying name concentration risk under Pillar 2. In

this chapter, the general framework of this (first-order) granularity adjustment for

medium sized risk buckets has been reviewed. Furthermore, we have derived an

additional (second-order) adjustment for small risk buckets, which reduces the error

term from O(1/n2) to O(1/n3). Even if it has already been mentioned by Gordy

(2004) that it may be worthwhile to calculate these additional terms, the adjustment

formula has not been determined before. After the derivation of the second-order-

adjustment in general form, we have specified the formula for the Vasicek model.

As a next step, we have carried out a detailed numerical study. In this study, we

have reviewed the accuracy of the infinite granularity assumption for credit portfo-

lios with a finite number of credits, as well as the improvement of accuracy with

so-called first and second order granularity adjustments. Due to this study, banks

are able to easily assess whether the assumption of infinite granularity is critical

for their portfolio. Furthermore, the outcomes of the study show in which situa-

tions the granularity adjustment formulas are able to accurately measure portfolio

name concentrations. These results are presented in terms of critical values for

the minimum number of credits in a portfolio. We come to the conclusion that the

critical number of credits for approving the assumption of infinite granularity is

influenced by the probability of default, the asset correlation and of course the

required accuracy of the analytical formula to great extent. We specify the mini-

mum accuracy to 5%, i.e. if the credit portfolio is larger than our calculated critical

values, the “true” risk and the approximation differ by less than 5%. This critical

number of credits varies enormously, e.g. from 1,371 to 23,989 for a high-quality

portfolio (A-rated) and from 23 to 205 for an extremely low-quality portfolio

(CCC-rated) under the risk measure VaR. With the use of the first order granularity

adjustment we can reduce these ranges drastically. The critical number of credits is

in the bandwidth 456 to 4,227 (A-rated) and 9 to 42 (CCC-rated) and thus, the
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postulated accuracy should be obtained in many real-world portfolios. Additionally,

the second order adjustment does not seem to work for the VaR since it reduces the

add-on factor and the accuracy.

We have demonstrated that the VaR, which is coherent in the context of the

ASRF framework, has some theoretical shortcomings if we leave the ASRF frame-

work, which is necessary to account for name concentrations. For this reason, we

have proposed a methodology how a more convenient risk measure can be used for

the measurement of name concentrations. For this purpose, we have adjusted the

confidence level of the ES in a way that the Pillar 1 formulas still lead to an almost

identical capital requirement, leading to an ES-confidence level of a ¼ 99.72%.

Using this confidence level, we are able to measure name concentrations without

being exposed to the theoretical shortcomings of the VaR, but the results are still

consistent with the Pillar 1 formulas. Based on these preliminary considerations, we

have theoretically derived the ES-based first- and second-order granularity adjust-

ment in a general one-factor framework and for the Vasicek model. Similar to the

corresponding formulas for the VaR, the second-order granularity adjustment,

which is intended to improve the accuracy for small portfolios, has not been derived

before in the literature. The subsequent numerical analyses confirm that the first-

order granularity adjustment leads to a very good approximation of the unsystem-

atic risk component whereas the second-order adjustment cannot improve the

accuracy. Interestingly, the required portfolio size is not only 91.64% lower com-

pared to the ASRF solution but also 49.05% lower compared to the VaR-based

granularity adjustment. This shows that it is indeed advisable to measure name

concentration risk on the basis of the coherent ES instead of relying on the non-

coherent VaR.

These findings have been emphasized by a robustness check using stochastic

LGDs. For this additional analysis, we have firstly calibrated several probabi-

lity distributions with empirical data of recovery rates for different seniorities

using a moment matching approach. Namely, we have used the normal distribu-

tion, the lognormal distribution, the logit-normal distribution, and the beta

distribution. As the logit-normal distribution has performed best with respect

to the empirical observed quantiles, we generated recovery rates which are logit-

normal distributed with parameters stemming from the empirical data of senior

unsecured loans. Using these data, we have repeated the test of the ASRF

solution and the ES-based granularity adjustments. As expected, we find that

the accuracy of the ASRF solution is lower due to the additional source of

uncertainty. If the LGDs are stochastic, the minimum number of credits has to

be 31.55% higher than for deterministic LGDs. Interestingly, the ES-based first-

order adjustment performs slightly better in comparison with deterministic LGDs

(4.89% less credits). Compared to the ASRF solution, the required portfolio size

is 92.27% lower when using the first-order adjustment, which confirms our

findings. Thus, apparently the accuracy of the measured risk is generally very

high even for relatively small portfolios if the first-order granularity adjustment

is incorporated.
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4.5 Appendix

4.5.1 Alternative Derivation of the First-Order Granularity
Adjustment

With reference to Wilde (2001), the granularity adjustment will be derived as an

approximation of the difference Dq between the true VaR of a granular portfolio

qðnÞ and the approximation qð1Þ that results if infinite granularity is assumed to

hold:

Dq ¼ qðnÞa � qð1Þ
a : (4.104)

Instead of determining the add-on Dq directly, it will be analyzed how much the

confidence level a will be overestimated or the probability p :¼ 1� a of exceeding
the VaR will be underestimated if the portfolio is assumed to be infinitely granular.

Thus, the probability

Dp ¼ pð1Þ � p ¼ a� að1Þ (4.105)

refers to the overestimation of the confidence level if only the systematic loss is

considered. Here, a is the specified “target” confidence level, and by definition also
the probability that the systematic loss will not exceed q

ð1Þ
a :

1� p ¼ a :¼ P ~L � qðnÞa

� �

¼ P E ~L j ~x� � � qð1Þ
a

� �

: (4.106)

By contrast, að1Þ is the actual confidence level if the VaR is approximated by the

ASRF model:

1� pð1Þ ¼ að1Þ :¼ P ~L � qð1Þ
a

� �

: (4.107)

Subsequent to the derivation of Dp, the result will be transformed into a shift of

the loss quantile Dq.
Analogous to Appendix 2.8.3, the unconditional probability pð1Þ can be

expressed in terms of the conditional probability. Then, the substitution

y :¼ q
ð1Þ
a þ t is performed to center the integration at q

ð1Þ
a :

pþ Dp ¼ P ~L � qð1Þ
a

� �

¼
ð

1

y¼�1
P ~L � qð1Þ

a j ~Y ¼ y
� �

fYðyÞdy

¼
ð

1

t¼�1
P ~L � qð1Þ

a j ~Y ¼ qð1Þ
a þ t

� �

fY qð1Þ
a þ t

� �

dt; (4.108)
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with the shorter notation ~Y :¼ E ~L j ~x� �

for the conditional expectation. According

to (4.106), the probability p can be written as

p ¼ P ~Y � qð1Þ
a

� �

¼
ð

1

y¼q
ð1Þ
a

fYðyÞ dy ¼
ð

1

t¼0

fY qð1Þ
a þ t

� �

dt (4.109)

using the substitution y :¼ q
ð1Þ
a þ t again, so that tðy ¼ q

ð1Þ
a Þ ¼ 0 and tðy ¼ 1Þ ¼

1. Hence, (4.108) can be expressed as

Dp ¼
ð

1

t¼�1
P ~L � qð1Þ

a j ~Y ¼ qð1Þ
a þ t

� �

fY qð1Þ
a þ t

� �

dt�
ð

1

t¼0

fY qð1Þ
a þ t

� �

dt

¼
ð

0

t¼�1
P ~L � qð1Þ

a j ~Y ¼ qð1Þ
a þ t

� �

fY qð1Þ
a þ t

� �

dt

þ
ð

1

t¼0

P ~L � qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

� 1
h i

fY qð1Þ
a þ t

� �

dt:

(4.110)

The following transformations are performed for simplification of the integrand

in order to solve the integral. A realization of the systematic loss implies a realiza-

tion of the systematic factor. As the credit loss events are assumed to be indepen-

dent for a realization of the systematic factor, the conditional credit losses follow a

binomial distribution, which can be approximated by a normal distribution for a

sufficient number of credits. This leads to

P ~L � qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

¼ 1� P ~L< qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

� 1� F
q
ð1Þ
a � E ~L j ~Y ¼ q

ð1Þ
a þ t

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~L j ~Y ¼ q
ð1Þ
a þ t

� �

r

0

B

B

@

1

C

C

A

: (4.111)

As Eð~LÞ ¼ EðEð~L j ~xÞÞ ¼ Eð ~YÞ, which is due to the law of iterated expectation,

the conditional expectation of (4.111) equals

E ~L j ~Y ¼ qð1Þ
a þ t

� �

¼ E ~Y j ~Y ¼ qð1Þ
a þ t

� �

¼ qð1Þ
a þ t: (4.112)

With the symmetry 1� Fð�xÞ ¼ FðxÞ and defining s2ðyÞ :¼ Vð~L j ~Y ¼ yÞ,
(4.111) results in
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P ~L � qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

� 1� F
q
ð1Þ
a � q

ð1Þ
a � t

s q
ð1Þ
a þ t

� �

0

@

1

A

¼ F
t

s q
ð1Þ
a þ t

� �

0

@

1

A; (4.113)

so that (4.110) can be written as

Dp ¼
ð

0

t¼�1
F

t

s q
ð1Þ
a þ t

� �

0

@

1

A fY qð1Þ
a þ t

� �

dt

þ
ð

1

t¼0

F
t

s q
ð1Þ
a þ t

� �

0

@

1

A� 1

2

4

3

5fY qð1Þ
a þ t

� �

dt: (4.114)

Subsequently, several linear approximations will be performed relying on the

assumption that the loss quantile of the granular portfolio is close to the systematic

loss quantile and the linearizations lead to minor errors. Linearizing the density

function at q
ð1Þ
a leads to

fY qð1Þ
a þ t

� �

� fY qð1Þ
a

� �

þ t � dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

: (4.115)

The argument of the normal distribution can be approximated as

t � 1

s q
ð1Þ
a þ t

� �

0

@

1

A � t � 1

s q
ð1Þ
a

� �þ t � d

dt

1

s q
ð1Þ
a þ t

� �

2

4

3

5

t¼0

0

B

@

1

C

A

¼ t � 1

s q
ð1Þ
a

� �þ t � � 1

s2 q
ð1Þ
a þ t

� �

d

dt
s qð1Þ

a þ t
� �

2

4

3

5

t¼0

0

B

@

1

C

A

¼ t

s q
ð1Þ
a

� �� t2

s2 q
ð1Þ
a

� �

d

dt
s qð1Þ

a þ t
� �

 �

t¼0

0

@

1

A:

(4.116)

With the substitution y :¼ q
ð1Þ
a þ t, so dy=dt ¼ 1 and yðt ¼ 0Þ ¼ q

ð1Þ
a , the

derivative of the conditional standard deviation can be rewritten as

d

dt
s qð1Þ

a þ t
� �

�

�

�

t¼0
¼ d

dy
sðyÞj

y¼q
ð1Þ
a
: (4.117)
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Inserting (4.115)–(4.117) in (4.114) leads to

Dp ¼
ð

0

t¼�1
F

t

s q
ð1Þ
a

� �� t2

s2 q
ð1Þ
a

� �

dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

0

@

1

A

0

@

� fY qð1Þ
a

� �

þ t � dfYðyÞ
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�

�

�

�

y¼q
ð1Þ
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" #

dt

!

� �
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F
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s q
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ð1Þ
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" #

dt

!

¼: Dp1 � Dp2: (4.118)

When the substitution t :¼ �t for the term Dp2 is performed and the symmetry of

the normal distribution Fð�xÞ � 1 ¼ �FðxÞ is used, both terms Dp1 and Dp2 are

identical except for the algebraic signs:

Dp2 ¼ �
ð

�1

t¼0

F � t

s q
ð1Þ
a

� �þ t2

s2 q
ð1Þ
a

� �

dsðyÞ
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�
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y¼q
ð1Þ
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� �1ð Þdt

¼
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s q
ð1Þ
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� �þ t2

s2 q
ð1Þ
a

� �

dsðyÞ
dy

�

�
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ð1Þ
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 !

dt: (4.119)

A linearization of the normal distributions in Dp1 and Dp2 results in

F
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s q
ð1Þ
a

� �
 t2
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ð1Þ
a

dFðyÞ
dy

�

�

�

�

y¼ t

s q
ð1Þ
að Þ

¼ F
t

s q
ð1Þ
a

� �

0

@

1

A
 t2

s2 q
ð1Þ
a

� �

dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

’
t

s q
ð1Þ
a

� �

0

@

1

A: (4.120)
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Using this approximation, the terms Dp1 and Dp2 from (4.118) can be written as

Dp1;2 �
ð

0

t¼�1
F

t

s q
ð1Þ
a

� �

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼:b0

� fY qð1Þ
a

� �
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� t
dfYðyÞ
dy

�

�
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a
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� �

|fflfflfflfflffl{zfflfflfflfflffl}
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dfYðyÞ
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(4.121)

The summands b0; g0 are the points around which the linearizations have been

performed. The summands b1; g1 have resulted from the first-order approxima-

tions. Using this notation, the shift in probability Dp of (4.118) can notably be

simplified to

Dp � Dp1 � Dp2

�
ð

0

t¼�1
b0 g0 þ g1ð Þ � b1 g0 þ g1ð Þdt�

ð

0

t¼�1
b0 g0 � g1ð Þ þ b1 g0 � g1ð Þdt

¼
ð

0

t¼�1
2b0g1 � 2b1g0dt:

(4.122)

Fortunately, both integrands are already first-order terms whereas the cross-

terms b1 � g1 vanish.232 Thus, there is no need for a further linearization. The

remaining expression is

Dp � 2
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

ð
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t¼�1
t � F t

s q
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� �
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Adt

� 2
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ð1Þ
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ð1Þ
a

� �
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t¼�1
t2 � ’ t

s q
ð1Þ
a

� �

0

@

1

Adt: (4.123)

232The omission of the zeroth-order terms could be foreseen as only the deviation from the

systematic loss quantile is analyzed.
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In order to solve the integrals, the substitution y :¼ t=sðqð1Þ
a Þ is performed, with

dy=dt ¼ 1=sðqð1Þ
a Þ, yðt ¼ �1Þ ¼ �1 and yðt ¼ 0Þ ¼ 0:

Dp � 2
dfYðyÞ
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�
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�
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y¼q
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��

:

(4.124)

For the second integral (**), it is used that the integrand is axially symmetric to

the y-axis. Furthermore, the definition of the variance is utilized, considering that

the standard normal distribution has mean mY ¼ 0 and variance s2Y ¼ 1:

ð

0

y¼�1
y2 � ’ðyÞdy ¼ 1

2

ð

1

y¼�1
y2 � ’ðyÞdy ¼ 1

2

ð

1

y¼�1
y� mYð Þ2 � ’ðyÞdy:

¼ 1

2
sY2 ¼ 1

2
: (4.125)

The first integral (*) can be calculated with integration by parts:

ð

0

y¼�1
y � FðyÞdy ¼ 1

2
y2 � FðyÞ

 �0

y¼�1
�

ð

0

y¼�1

1

2
y2 � ’ðyÞ dy: (4.126)

For y ¼ 0, the first term is zero but for y ¼ �1, the result is not obvious. Using

l’Hôpital’s rule several times leads to233

233For functions f, g with lim
x!x0

f ðxÞ ¼ lim
x!x0

gðxÞ ¼ 0 or lim
x!x0

f ðxÞ ¼ lim
x!x0

gðxÞ ¼ 1 it is true

that lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g0ðxÞ if lim

x!x0

f ðxÞ
gðxÞ exists; cf. Bronshtein et al. (2007), p. 54, (2.26).

4.5 Appendix 141



lim
y!�1

1

2
y2 � FðyÞ ¼ lim
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¼l0Hôpital

lim
y!1

1

4

3y2

y � ey2 2=

¼ lim
y!1

3

4

y

ey2 2=
¼l0Hôpital
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¼ 0; (4.127)

so that the first term of (4.126) vanishes. Using the result of the previous integration,

(4.126) equals � 1=4. Hence, Dp from (4.124) is given as

Dp � � 1

2

dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

s2 qð1Þ
a

� �

� dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

fY qð1Þ
a

� �

� s qð1Þ
a

� �

: (4.128)

Because of s ds
dy ¼ 1

2
ds2
ds

ds
dy ¼ 1

2
ds2
dy , (4.128) is equivalent to

Dp � � 1

2

dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

s2 qð1Þ
a

� �

þ 1

2

ds2ðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

fY qð1Þ
a

� �

" #

¼ � 1

2

dfYðyÞ
dy

s2ðyÞ þ ds2ðyÞ
dy

fYðyÞ
 �

y¼q
ð1Þ
a

¼ � 1

2

d

dy
fYðyÞ � s2ðyÞ
� �

�

�

y¼q
ð1Þ
a
: (4.129)

This expression is the linearized deviation of the specified probability p ¼ 1� a
if only the systematic loss is considered for calculation of the loss quantile.

As initially noticed, the determined shift of the probability has to be transformed

into a shift of the loss quantile (cf. Fig. 4.12). If the probability density function of

the portfolio loss is assumed to be almost linear in a region around the quantile, the

required transformation is

Dp � 1

2
fY qð1Þ

a

� �

þ fY qð1Þ
a þ Dq

� �h i

Dq: (4.130)

Two last first-order approximations lead to

Dp � 1

2
fY qð1Þ

a

� �

þ fY qð1Þ
a

� �

þ Dq
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

 !" #

Dq

¼ fY qð1Þ
a

� �

� Dqþ 1

2

dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

Dqð Þ2

� fY qð1Þ
a

� �

� Dq: (4.131)
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Inserting (4.129) into (4.131) finally leads to

Dq � Dp

fY q
ð1Þ
a

� � � � 1

2

1

fYðyÞ
d

dy
fYðyÞ � s2ðyÞ
� �

�

�

y¼q
ð1Þ
a

¼ � 1

2

1

fYðyÞ
d

dy
fYðyÞ � V ~L j ~Y ¼ y

� �� �
�

�

y¼q
ð1Þ
a
: (4.132)

Using (4.8), this can be written as

Dq � � 1

2fxðxÞ
d

dx

fxðxÞV ~L j ~x ¼ x
� �

d
dxE

~L j ~x ¼ x
� �

 !
�

�

�

�

�

x¼q1�a ~xð Þ
; (4.133)

which is identical to the first-order granularity adjustment of Sect. 4.2.1.1.234

4.5.2 First and Second Derivative of VaR

The derivatives of VaR will be determined on the basis of Rau-Bredow (2002,

2004) in the following. Consider two continuous random variables ~Y and ~Z with

fY

Dp

qa
(¥) qa

(¥) + Dq

P
ro

b
ab

ili
ty

 d
en

si
ty

Losses

Fig. 4.12 Relation between the shift of the probability and the loss quantile

234Cf. Wilde (2001).
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joint probability density function f ðy; zÞ and a variable l 2 R. The VaR (the

quantile) q :¼ qa ~L
� �

of ~L ¼ ~Y þ l ~Z can implicitly be defined as235

P ~L � q
� � ¼ a: (4.134)

Furthermore, the formula of the conditional density function will be used:236

fZ j Y¼yðzÞ ¼ fY; Zðy; zÞ
fYðyÞ ; (4.135)

leading to237

fZ j YþlZ¼qðzÞ ¼ fYþlZ;Z q; zð Þ
fYþlZðqÞ ¼ fY; Z q� lz; zð Þ

fYþlZðqÞ : (4.136)

4.5.2.1 First Derivative

As the derivative of the constant a is zero, the derivative of (4.134) is

0 ¼ @

@l
P ~Y þ l ~Z � q
� �

¼ @

@l

ð

1

z¼�1

ð

q�lz

y¼�1
fY; Zðy; zÞ dy dz

¼
ð

1

z¼�1

@

@l

ð

q�lz

y¼�1
fY; Zðy; zÞ dy dz: (4.137)

Performing the inner integration and the differentiation leads to

0 ¼
ð

1

z¼�1

dq

dl
� z

	 


fY; Z q� lz; zð Þ dz: (4.138)

235Cf. (2.14). The slightly different expressions compared to Rau-Bredow (2002) result from a
instead of (1–a) representing the confidence level.
236Cf. Pitman (1999), p. 416.
237Cf. Rau-Bredow (2004), p. 66.
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Using the formula for the conditional density function (4.135) and the integral

representation of the conditional expectation, we get

0 ¼
ð

1

z¼�1

dq

dl
� z

	 


fYþlZðqÞ fZ j YþlZ¼qðzÞ dz

¼ fYþlZðqÞ dq

dl

ð

1

z¼�1
fZ jYþlZ¼qðzÞ dz�

ð

1

z¼�1
z fZ j YþlZ¼qðzÞ dz

0

@

1

A

¼ fYþlZðqÞ dq

dl
� 1� E ~Z j ~Y þ l ~Z ¼ q

� �

	 


: (4.139)

This leads to the first derivative of VaR:

dVaRa ~Y þ l ~Z
� �

dl
¼ E ~Z j ~Y þ l ~Z ¼ qa ~Y þ l ~Z

� �� �

: (4.140)

The first derivative at l ¼ 0 is

dVaRa ~Y þ l ~Z
� �

dl

�

�

�

�

�

l¼0

¼ E ~Z j ~Y ¼ qa ~Y
� �� �

: (4.141)

4.5.2.2 Second Derivative

Similar to (4.137), the second derivative of (4.134) is

0 ¼ @2

@l2
P ~Y þ l ~Z � q
� � ¼ @2

@l2

ð

1

z¼�1

ð

q�lz

y¼�1
fY; Zðy; zÞ dy dz: (4.142)

With the first derivative of (4.138) and applying the product rule, this leads to

0 ¼ @

@l

ð

1

z¼�1

dq

dl
� z

	 


fY; Z q� lz; zð Þ dz

¼
ð

1

z¼�1

d2q

d2l

	 


fY; Z q� lz; zð Þ þ dq

dl
� z

	 


@fY; Z q� lz; zð Þ
@l

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�

dz: (4.143)
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The derivative (*) can be determined with the chain rule:

@fY; Z q� lz; zð Þ
@l

¼ @ q� lzð Þ
@l

@fY; Z q� lz; zð Þ
@ q� lzð Þ

@q

@q

¼ dq

dl
� z

	 


@fY; Z q� lz; zð Þ
@q

1

@ q� lzð Þ @q=

¼ dq

dl
� z

	 


@fY; Zðq� lz; zÞ
@q

: (4.144)

Inserting (4.144) and the conditional density (4.136) into (4.143) results in

0 ¼
ð

1

z¼�1

d2q

d2l

	 


fY; Z q� lz; zð Þ þ dq

dl
� z

	 
2
@fY; Z q� lz; zð Þ

@q
dz

¼ d2q

d2l

	 


ð

1

z¼�1
fYþlZðqÞ fZ j YþlZ¼qðzÞdz

þ
ð

1

z¼�1

dq

dl
� z

	 
2 @ fYþlZðqÞ fZ j YþlZ¼qðzÞ
� �

@q
dz: (4.145)

The first summand of (4.145) equals

d2q

d2l

	 


fYþlZðqÞ
ð

1

z¼�1
fZ j YþlZ¼qðzÞdz ¼ d2q

d2l

	 


fYþlZðqÞ: (4.146)

In order to calculate the second summand of (4.145), the first derivative from

(4.140) as well as the integral representation of the conditional variance is used:

ð

1

z¼�1

dq

dl
� z

	 
2 @ fYþlZðqÞ fZ jYþlZ¼qðzÞ
� �

@q
dz

¼
ð

1

z¼�1
z� E ~Z j ~Y þ l ~Z ¼ q

� �� �2 @ fYþlZðqÞfZ j YþlZ¼qðzÞ
� �

@q
dz

¼ d

dy
fYþlZðyÞ

ð

1

z¼�1
z� E ~Z j ~Y þ l ~Z ¼ q

� �� �2
fZ j YþlZ¼yðzÞdz

0

@

1

A

�

�

�

�

�

�

y¼q

¼ d

dy
fYþlZðyÞV ~Z j ~Y þ l ~Z ¼ y

� �� �

�

�

�

�

y¼q

: (4.147)
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With these summands, (4.145) can be written as

0 ¼ d2q

d2l

	 


fYþlZðyÞ þ d

dy
fYþlZðyÞV ~Z j ~Y þ l ~Z ¼ y

� �� �

�

�

�

�

y¼q

: (4.148)

Thus, the second derivative of VaR is equal to

d2VaRa ~Y þ l ~Z
� �

d2l
¼ � 1

fYþlZðyÞ �
d

dy
fYþlZðyÞV ~Z j ~Y þ l ~Z ¼ y

� �� �

�

�

�

�

y¼qa ~Yþl ~Zð Þ
:

(4.149)

The second derivative at l ¼ 0 is

d2VaRa ~Y þ l ~Z
� �

d2l

�

�

�

�

�

l¼0

¼ � 1

fYðyÞ
d

dy
fYðyÞV ~Z j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ
: (4.150)

4.5.3 Probability Density Function of Transformed Random
Variables

Let ~X be a random variable with density fXðxÞ and let ~Y be a random variable with
~Y ¼ gð ~XÞ. If g is strictly monotonous and differentiable, the probability density

function (PDF) of ~Y can be transformed using the inverse function theorem238:

fYðyÞ ¼ fX g�1ðyÞ� � � dg�1ðyÞ
dy

�

�

�

�

�

�

�

�

: (4.151)

With g�1ðyÞ ¼ x, we obtain

dg�1ðyÞ
dy

�

�

�

�

�

�

�

�

¼ dx

dy

�

�

�

�

�

�

�

�

¼ 1

dy dx=

�

�

�

�

�

�

�

�

; (4.152)

which leads to

fYðyÞ ¼ fXðxÞ
dy dx=j j : (4.153)

238Cf. Roussas (2007), p. 236.
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4.5.4 VaR-Based First-Order Granularity Adjustment for a
Normally Distributed Systematic Factor

The granularity adjustment (4.10) can be expressed as

Dl1 ¼ � 1

2’

d

dx

’�2;c
dm1;c dx=

 !
�

�

�

�

�

x¼F�1 1�að Þ

¼ � 1

2’

d

dx
’�2;c
� � 1

dm1;c dx=
þ ’�2;c

d

dx

1

dm1;c dx=

 !" #
�

�

�

�

�

x¼F�1 1�að Þ

¼ � 1

2

1

’

d

dx
’�2;c
� � 1

dm1;c dx=
þ �2;c

d

dx

1

dm1;c dx=

 !" #
�

�

�

�

�

x¼F�1 1�að Þ

¼ � 1

2

�2;c
’

d’

dx
þ d�2;c

dx

	 


1

dm1;c dx=
� �2;c

d2m1;c dx2
�

dm1;c dx=
� �2

" #
�

�

�

�

�

x¼F�1 1�að Þ
: (4.154)

Because of

1

’

d’

dx
¼ dðln’Þ

dx
¼ d

dx
ln

1
ffiffiffiffiffiffi

2p
p exp � x2

2

	 
 �	 


¼ d

dx
ln

1
ffiffiffiffiffiffi

2p
p � x2

2

	 


¼ �x;

(4.155)

the granularity adjustment (4.154) can be written as

Dl1 ¼ 1

2

x � �2;c
dm1;c dx=

� d�2;c dx=

dm1;c dx=
þ �2;c � d2m1;c dx2

�

dm1;c dx=
� �2

" #
�

�

�

�

�

x¼F�1 1�að Þ
: (4.156)

For the calculation of (4.156), the conditional expectation and variance have to

be determined. Assuming stochastically independent LGDs and with ELGD and

VLGD for the expectation and the variance of the LGD, respectively, the required

moments are given as239

m1;c ¼ E

X

n

i¼1

wi � gLGDi � 1 ~Dif g j ~x ¼ x

 !

¼
X

n

i¼1

wi � ELGDi � E 1 ~Dif g j ~x ¼ x
� �

¼
X

n

i¼1

wi � ELGDi � piðxÞ; (4.157)

239Pykhtin and Dev (2002) corrected the formulas of Wilde (2001), who neglected the last term of

the following conditional variance.
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�2;c ¼ V

X

n

i¼1

wi � gLGDi � 1 ~Dif g j ~x ¼ x

 !

¼
X

n

i¼1

w2
i � V gLGDi � 1 ~Dif g j ~x ¼ x

� �

¼
X

n

i¼1

w2
i � E gLGDi � 1 ~Dif g j ~x ¼ x

h i2
	 


� E
2
gLGDi � 1 ~Dif g j ~x ¼ x

� �

 �

¼
X

n

i¼1

w2
i � E gLGDi

2
� �

� E 1 ~Dif g j ~x ¼ x
h i2
	 


� ELGDi � piðxÞð Þ2
 �

¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � piðxÞ � ELGD2
i � p2i ðxÞ

� �

:

(4.158)

4.5.5 VaR-Based First-Order Granularity Adjustment for
Homogeneous Portfolios

For homogeneous portfolios, the granularity adjustment formula (4.28) can be

simplified to

Dl1 ¼ 1

2n
F�1 að Þ ELGD2 þ VLGDð ÞFðzÞ � ELGD2 F2ðzÞ

ELGD
ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

=
� �

’ðzÞ

"

� ELGD2 þ VLGDð Þ � 2ELGD2 FðzÞ
ELGD

� ELGD2 þ VLGDð ÞFðzÞz� ELGD2 F2ðzÞz
ELGD � ’ðzÞ

�

z¼F�1ðPDÞþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

¼ 1

2n

ELGD2 þ VLGD

ELGD

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

F�1 að ÞFðzÞ
ffiffiffi

r
p

’ðzÞ


� 1� FðzÞz
’ðzÞ

�	

�ELGDFðzÞ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

F�1 að ÞFðzÞ
ffiffiffi

r
p

’ðzÞ


� 2� FðzÞz
’ðzÞ

�


z¼F�1ðPDÞþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

¼ 1

2n

ELGD2 þ VLGD

ELGD

FðzÞ
’ðzÞ

F�1 að Þ 1� 2rð Þ þ F�1ðPDÞ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 1

 �	

�ELGD � FðzÞ FðzÞ
’ðzÞ

F�1 að Þ 1� 2rð Þ þ F�1ðPDÞ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 2

 �


z¼F�1ðPDÞþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

:

(4.159)
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4.5.6 Arbitrary Derivatives of VaR

The following determination of all derivatives of VaR is based on Wilde (2003).

The quantile qa of ~L ¼ ~Y þ l ~Z can be written as qðlÞ to denote that the quantile

depends on the parameter l. Using this notation, the quantile can be defined

implicitly as an argument of the distribution function F by FðqðlÞ; lÞ :¼
P ~Y þ l ~Z � qað ~Y þ l ~ZÞ� � ¼ a. In order to calculate the derivatives of qa, at first

all derivatives of F are determined in Sect. 4.5.6.2.1. As the quantile is defined

implicitly, the implicit derivatives of FðqðlÞ; lÞ � a ¼ 0 have to be determined.

This is done by application of the residue theorem in Sect. 4.5.6.2.2. As a next step,

the result will be expressed in combinatorial form in Sect. 4.5.6.2.3. Using the

results of the derivatives of the distribution function and the implicit derivatives, it

is possible to determine all derivatives of VaR. This is performed in Sect. 4.5.6.2.4.

As the resulting formula is quite complex, an expression for the first five derivatives

of VaR is determined in Sect. 4.5.7. The mathematical basics to the Laplace trans-

form, complex residues, and partitions, which are needed within the derivation, are

presented in the following Sect. 4.5.6.1.

4.5.6.1 Mathematical Basics

4.5.6.1.1 Laplace Transform and Dirac’s Delta Function

The Laplace transform L of a function f ðtÞ with t 2 R
þ is given as240

L f ðtÞf g½ �ðsÞ :¼
ð

1

t¼�0

f ðtÞe�stdt ¼: YðsÞ (4.160)

with s ¼ cþ io 2 C, where C denotes the set of all complex numbers. The

inverse Laplace transform L�1 can be represented as241

L�1 YðsÞf g� �ðtÞ :¼ 1

2pi

ð

cþi1

s¼c�i1
YðsÞestds ¼ L�1 L f ðtÞf gf g ¼ f ðtÞ: (4.161)

Dirac’s delta function dðxÞ can be defined as242

ð

1

�1
dðxÞ f x� x0ð Þdx ¼ f x0ð Þ: (4.162)

240Cf. Bronshtein et al. (2007), p. 710, (15.5).
241Cf. Bronshtein et al. (2007), p. 710, (15.8).
242Weisstein (2009a).

150 4 Model-Based Measurement of Name Concentration Risk in Credit Portfolios



A more illustrative, heuristic definition of dðxÞ is given by

dðxÞ ¼ 0 if x 6¼ 0;
1 if x ¼ 0;

�

and

ð

1

�1
dðxÞdx ¼ 1: (4.163)

Using the definition of the Laplace transform and the inverse Laplace transform,

Dirac’s delta function can be written as

dðtÞ ¼ L�1 L dðtÞf gf g ¼ L�1

ð

1

t¼�0

dðtÞe�stdt

8

<

:

9

=

;

¼ L�1 e�s�0� � ¼ L�1 1f g ¼ 1

2pi

ð

cþi1

s¼c�i1
1 � estds: (4.164)

4.5.6.1.2 Laurent Series, Singularities, and Complex Residues

If f ðzÞ is differentiable in all points of an open subset of the complex plane

H � C, then we call f ðzÞ holomorphic on H.243 For a function f ðzÞ, which is

holomorphic in a simply connected region H, according to the Cauchy integral
theorem we have244

þ

C

f ðzÞdz ¼ 0; (4.165)

with C being a closed path in H. If a function f ðzÞ is holomorphic in z0 and in a

circular region around z0, we can perform a Taylor series expansion, which is

analogous to the real plane:245

f ðzÞ ¼
X

1

n¼0

f ðnÞðz0Þ
n!

ðz� z0Þn: (4.166)

However, if a function f ðzÞ is only holomorphic inside the annulus between two

concentric circles with center z0 and radii r1 and r2, which is the region

243Cf. Bronshtein et al. (2007), p. 672, Sect. 14.1.2.1.
244Cf. Bronshtein et al. (2007), p. 688, (14.41).
245Cf. Bronshtein et al. (2007), p. 691, (14.49).
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H ¼ z j 0 � r1 < z� z0j j< r2f g, the function f ðzÞ can be expressed as a generalized
power series, the so-called Laurent series:246

f ðzÞ ¼
X

1

n¼�1
anðz� z0Þn ¼

X

�1

n¼�1
anðz� z0Þn

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

principal part

þ
X

1

n¼0

anðz� z0Þn
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

analytic part

: (4.167)

Thus, the function has to be holomorphic only inside the annulus and not inside

the inner circle or outside the outer circle.

If a function f ðzÞ is holomorphic in a neighborhood of z0 but not in the point z0,
then z0 is called an isolated singularity of the function f ðzÞ. The concrete type of a
singularity can be classified according to the analytic part of the Laurent series:247

l The point z0 is a removable singularity if an ¼ 0 8n< 0. In this case, the Laurent

series is identical to the Taylor series above.
l The point z0 is a pole of order m if the principal part consists of a finite number of

terms with am 6¼ 0 and an ¼ 0 for n<m< 0.
l The point z0 is an essential singularity if the principal part consists of an infinite

number of terms.

The coefficient a�1 of the Laurent series (4.167) around an isolated singularity z0
is the residue of f ðzÞ in z0. This will subsequently be denoted by Resz0ð f Þ. The
residue can also be defined as

a�1 ¼ Resz0ð f Þ ¼
1

2pi
�
þ

C

f ðzÞ dz; (4.168)

where C is a contour with winding number 1 in a holomorphic region H around an

isolated singularity in z0. If the contour C encloses a finite number of isolated

singularities z1; z2; :::; zm with corresponding residues a�1ðzmÞ ðm ¼ 1; :::;mÞ, we
have

þ

C

f ðzÞdz ¼ 2pi
X

m

m¼1

a�1ðzmÞ; (4.169)

which is the residue theorem.248

The residue Resz0ð f Þ with z0 being a pole of order m can be calculated as249

Resz0ð f Þ ¼ lim
z!z0

1

ðm� 1Þ!
dm�1

dzm�1
z� z0ð Þm � f ðzÞ½ �: (4.170)

246Cf. Bronshtein et al. (2007), p. 692, (14.51), and Spiegel (1999), p. 144.
247Cf. Bronshtein et al. (2007), p. 692 f., Sect. 14.3.5.1.
248Cf. Bronshtein et al. (2007), p. 694, (14.56).
249Cf. Rowland and Weisstein (2009).
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For a function f ¼ gðzÞ hðzÞ= , where h has a simple zero in z0, the residue can be
determined with

Resz0ð f Þ ¼
gðz0Þ
h0ðz0Þ : (4.171)

4.5.6.1.3 Partitions

A partition p of a positive integer m is a way to express m as a sum of positive

integers in non-decreasing order. A partition p of m will be denoted by p  m. A
partition p can be indicated by p ¼ 1e1 ; 2e2 ; :::;mem , where ei is the frequency of the
number i in the partition. The number of summands of p is expresses by pj j, which
is the sum pj j ¼ e1 þ e2 þ :::þ em. The notation p̂ indicates the partition which

results if each summand of a partition p is increased by 1. This means that for p  m
the partition p̂ refers to a specific partition of mþ pj j.250

Example

l For m ¼ 5, there exist seven partitions p  m: p  m ¼ 1þ 1þ 1þ 1þ 1;f
1þ 1þ 1þ 2; 1þ 2þ 2; 1þ 1þ 3; 2þ 3; 1þ 4; 5g: Thus, a concrete parti-
tion for m ¼ 5 is p ¼ 3þ 1þ 1.

l This partition can also be denoted by p ¼ 1e1 2e2 :::mem ¼ 1231, leading to

e1 ¼ 2; e2 ¼ 0; e3 ¼ 1; e4 ¼ 0, and e5 ¼ 0. Thus, the number m results from:

m ¼ 1 � e1 þ 2 � e2 þ :::þ m � em ¼ 1 � 2þ 3 � 1 ¼ 5.
l The number of summands of this partition is p ¼ 1231

�

�

�

� ¼
e1 þ e2 þ :::þ em ¼ 2þ 1 ¼ 3.

l The partition p̂ appendant to the partition p ¼ 3þ 1þ 1 is p̂ ¼ 4þ 2þ 2, which

is a specific partition of mþ pj j ¼ 5þ 3 ¼ 8.

4.5.6.2 Determination of the Derivatives

4.5.6.2.1 Derivatives of the Distribution Function

Proposition. The derivatives of the distribution function of losses

FYþlZðyÞ ¼ Pð ~Y þ l ~Z � yÞ at l ¼ 0 are given as251

@m

@lm
FYþlZðyÞ

�

�

�

�

l¼0

¼ ð�1Þm dm�1

dym�1
E ~Z

m j ~Y ¼ y
� �

fYðyÞ
� �

: (4.172)

250Cf. Wilde (2003), p. 3 f.
251See Martin and Wilde (2002), p. 124 f., and Wilde (2003), p. 2 f.
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Proof. Using the definition of the Laplace transform (4.160) and recognizing that

the loss ~L ¼ ~Y þ l ~Z cannot go below zero so that the probability density function is

fYþlZðyÞ ¼ 0 for all y< 0, we get for the Laplace transform of fYþlZðyÞ

L fYþlZðyÞf g ¼
ð

1

y¼�0

e�syfYþlZðyÞdy ¼
ð

1

y¼�1
e�syfYþlZðyÞdy: (4.173)

With the definition of the expectation operator

E g ~X
� �� � ¼

ð

1

x¼�1
gðxÞfXðxÞdx; (4.174)

(4.173) is equivalent to

L fYþlZðyÞf g ¼
ð

1

y¼�1
e�syfYþlZðyÞdy ¼ E e�s ~Yþl ~Zð Þ� �

: (4.175)

Applying the definition of the inverse Laplace transform (4.161) and using the

moment generating function M of ~Y þ l ~Z, which is defined as252

MYþlZðsÞ ¼ E es
~Yþl ~Zð Þ� �

; (4.176)

the probability density function equals253

fYþlZðyÞ ¼ L�1 L fYþlZðyÞf gf g ¼ L�1 MYþlZ �sð Þf g

¼ 1

2pi

ð

cþi1

s¼c�i1
MYþlZðsÞe�syds: (4.177)

Thus, the derivatives of the probability density function at l ¼ 0 can be deter-

mined using the approach

@m

@lm
fYþlZðyÞ

�

�

�

�

l¼0

¼ 1

2pi

ð

cþi1

s¼c�i1

@m

@lm
MYþlZðsÞe�syds

�

�

�

�

�

�

l¼0

: (4.178)

252Cf. Billingsley (1995), p. 146 ff., for details about moment generating functions.
253Cf. Miller and Childers (2004), p. 118.
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Applying definition (4.176), we obtain for the derivatives of M

@mMYþlZðsÞ
@lm

�

�

�

�

l¼0

¼ @m

@lm
E es

~Yþl ~Zð Þ� �

�

�

�

�

l¼0

¼ E
@m

@lm
es

~Yþl ~Zð Þ
	 


�

�

�

�

l¼0

¼ E sm ~Z
m
es

~Yþl ~Zð Þ� �
�

�

�

l¼0

¼ E sm ~Z
m
es

~Y
� �

: (4.179)

With (4.179) and smes
~Y�yð Þ ¼ ð�1Þm @m

@ym e
s ~Y�yð Þ, (4.178) is equivalent to

@m

@lm
fYþlZðyÞ

�

�

�

�

l¼0

¼ 1

2pi

ð

cþi1

s¼c�i1
E sm ~Z

m
es

~Y
� �

e�syds

¼ E
1

2pi
~Z
m

ð

cþi1

s¼c�i1
smes

~Y�yð Þds
0

@

1

A

¼ ð�1Þm dm

dym
E ~Z

m 1

2pi

ð

cþi1

s¼c�i1
es

~Y�yð Þds
0

@

1

A: (4.180)

According to (4.164), Dirac’s delta function can be written as

dðtÞ ¼ 1

2pi

ð

cþi1

s¼c�i1
1 � estds; (4.181)

which leads to

d ~Y � y
� � ¼ 1

2pi

ð

cþi1

s¼c�i1
1 � es ~Y�yð Þds (4.182)

for t ¼ ~Y � y. Hence, (4.180) is equivalent to

@m

@lm
fYþlZðyÞ

�

�

�

�

l¼0

¼ ð�1Þm dm

dym
E ~Z

m
d ~Y � y
� �� �

: (4.183)
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With E½ ~Zmdð ~Y � yÞ� ¼ E½ ~Zm j ~Y ¼ y� � fYðyÞ, the derivatives of the distribution

function result after integration of (4.183):

@m

@lm
FYþlZðyÞ

�

�

�

�

l¼0

¼ ð�1Þm dm�1

dym�1
E ~Z

m j ~Y ¼ y
� �

fYðyÞ
� �

; (4.184)

which is proposition (4.172). In order to determine the derivatives of the quantile

dmq dlm= , the implicit derivatives of FðqðlÞ; lÞ � a ¼ 0 with FðqðlÞ; lÞ :¼
F ~Yþl ~Zðqað ~Y þ l ~ZÞÞ ¼ P ~Y þ l ~Z � qað ~Y þ l ~ZÞ� �

will be calculated in the following.

4.5.6.2.2 Implicit Derivatives: Complex Residue Form

Consider a function Gðz;wÞ of two variables z;w 2 C. Suppose there exists

an analytic function w ¼ wðzÞ in a region around a pole z ¼ z0, such that

Gðz;wðzÞÞ ¼ 0. The first derivative dw dz= can be determined as follows:254

0 ¼ @G

@z
þ @G

@w
� dw
dz

, dw

dz
¼ � @G=@z

@G=@w
¼: � Gz

Gw
: (4.185)

Proposition. For Gwðz0;w0Þ 6¼ 0, the derivatives dmw dzm= are given as

dmw

dzm
¼ �Resw0

@m�1

@zm�1

Gzðz;wÞ
Gðz;wÞ

	 

�

�

�

�

z¼z0

" #

: (4.186)

Proof. According to (4.186), the first derivative is

dw

dz
¼ �Resw0

Gzðz;wÞ
Gðz;wÞ

	 

�

�

�

�

z¼z0

" #

¼ �Resw0

Gzðz0;wÞ
Gðz0;wÞ
 �

: (4.187)

As z0 is a pole of G and Gðz0;wÞ ¼ 0, an application of (4.171) leads to

dw

dz
¼ �Resw0

Gzðz0;wÞ
Gðz0;wÞ
 �

¼ � Gz

Gw
; (4.188)

254For ease of notation, the derivatives @G @z= and @G @w= will be abbreviated to Gz and Gw,

respectively. The function G is not associated with a random variable, so confusion should not

arise with respect to the similar notation FYþlZðyÞ, where the subscript of the distribution function
F denotes the corresponding random variable.
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which is equal to (4.185). This shows that the formula is correct for m ¼ 1.

Applying the residue theorem (4.169)

X

m

m¼1

a�1ðzmÞ ¼ 1

2pi

þ

C

f ðzÞdz (4.189)

and recognizing that there is only a singularity at z ¼ z0 leads to

dw

dz
¼ �Resw0

Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

" #

¼ � 1

2pi

þ

C

Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

dw: (4.190)

Differentiating and applying the residue theorem again results in

dmw

dzm
¼ @m�1

@zm�1
� 1

2pi

þ

C

Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

dw

0

@

1

A

¼ � 1

2pi

þ

C

@m�1

@zm
Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

dw

¼ �Resw0

@m�1

@zm
Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

" #

; (4.191)

which is the proposition presented in (4.186). This result is a generalization of

the Lagrange inversion theorem.255

4.5.6.2.3 Implicit Derivatives: Combinatorial Form

In order to express the implicit derivatives (4.191) in combinatorial form, Faà di
Bruno’s formula will be used. According to this formula, the following equation

holds for a function g ¼ gðyÞ with y ¼ yðxÞ:256

dmg

dxm
¼
X

pm

ap
d pj jg
dy pj j

dpy

dxp
; (4.192)

255Cf. Wilde (2003), p. 7.
256See Abramowitz and Stegun (1972), Sect. 24.1.2(C). The notation p  m indicates that p is a

partition of m, cf. Sect. 4.5.6.1.3.

4.5 Appendix 157



with ap ¼ m!
ð1!Þe1 �e1! �:::�ðm!Þem �em! ,

d pj jg
dy pj j as ordinary pj jth derivative, and

dpy

dxp
:¼ dy

dx

	 
ep1

� d2y

dx2

	 
ep2

� ::: � dmy

dxm

	 
epm

¼
Y

m

i¼1

diy

dxi

	 
epi

: (4.193)

Proposition. Equation (4.191) is equivalent to

dmw

dzm
¼

X

pm;us�jpj�1

apaû
ð�1Þ pj jþ uj j pj jþ uj j�1ð Þ!

sþ uj jð Þ! pj j�1� sð Þ! Gw
� pj j� uj j@

ûG

@wû

@ pj j�1�s

@w pj j�1�s

@pG

@zp

�

�

�

�

z;w¼0

:

(4.194)

Proof. For ease of notation, it will be assumed that z0 ¼ w0 ¼ 0, so that

Gð0; 0Þ ¼ 0. With @ lnG @z= ¼ Gz G= , (4.191) is equivalent to

dmw

dzm
¼ �Resw0

@m�1

@zm�1

Gz

G

	 

�

�

�

�

z¼0

 �

¼ �Resw0

@m

@zm
lnG

�

�

�

�

z¼0

 �

: (4.195)

The mth derivative of lnG can be calculated using Faà di Bruno’s formula:

@m

@zm
lnG ¼

X

pm

ap
d pj j lnG
dG pj j

@pG

@zp
¼
X

pm

ap
d pj j�1

dG pj j�1

1

G

	 


@pG

@zp

¼
X

pm

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! � G� pj j � Gz;p; (4.196)

with @ pG @zp= ¼: Gz;p. This leads to

dmw

dzm
¼ �Resw0

@m

@zm
lnG

�

�

�

�

z¼0

 �

¼ �Resw0

X

pm

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! � G� pj j � Gz;p

�

�

�

�

�

z¼0

" #

: (4.197)

According to (4.170), the residue of a function h(w) in w0, with w0 being a pole

of order r, can be calculated as

Resw0
hðwÞ½ � ¼ lim

w!w0

1

r � 1ð Þ!
dr�1

dwr�1
w� w0ð Þr � hðwÞð Þ: (4.198)
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With r ¼ pj j, we obtain for the derivative (4.197)

dmw

dzm
¼�Resw0

X

pm

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! �G� pj j �Gz;p

�

�

�

�

�

z¼0

" #

¼� 1

pj j � 1ð Þ!
@ pj j�1

@w pj j�1
w pj j �

X

pm

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! �G� pj j �Gz;p

�

�

�

�

�

z¼0

" #
�

�

�

�

�

w¼0

¼�
X

pm

ap � ð�1Þ pj j�1 � @ pj j�1

@w pj j�1

G

w

	 
� pj j
�Gz;p

�

�

�

�

�

z¼0

 !
�

�

�

�

�

w¼0

: ð4:199Þ

Using the Leibniz identity for arbitrary-order derivatives of products of func-

tions, we get:257

dmw

dzm
¼ �

X

pm

ap � ð�1Þ pj j�1 � @ pj j�1

@w pj j�1

G

w

	 
� pj j
� Gz;p

�

�

�

�

�

z¼0

 !
�

�

�

�

�

w¼0

¼ �
X

pm

ap � ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j � 1

s

	 


� @s

@ws

Gð0;wÞ
w

	 
� pj j
� @ pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �jw¼0: (4.200)

As a next step, the derivative @s

@ws

Gð0;wÞ
w

� �� pj j
contained in (4.200) will be

calculated. Performing a Taylor series expansion of Gð0;wÞ at w ¼ 0, we have

Gð0;wÞ ¼ Gð0; 0Þ þ w

1!
� @

@w
Gð0; 0Þ þ w2

2!
� @2

@w2
Gð0; 0Þ þ w3

3!
� @3

@w3
Gð0; 0Þ þ :::

¼ 0þ w � Gwð0; 0Þ þ
X

r�2

wr

r!
� @r

@wr
Gð0; 0Þ

¼ w � Gwð0; 0Þ þ
X

r�1

wrþ1

ðr þ 1Þ! �
@rþ1

@wrþ1
Gð0; 0Þ

¼ w � Gwð0; 0Þ þ w � Gwð0; 0Þ �
X

r�1

wr

ðr þ 1Þ! �
@rþ1

@wrþ1
Gð0; 0Þ � 1

Gwð0; 0Þ

¼ w � Gwð0; 0Þ � 1þ
X

r�1

wr

r!
� 1

r þ 1
�

@rþ1

@wrþ1 Gð0; 0Þ
@
@wGð0; 0Þ

 !

: ð4:201Þ

257See Weisstein (2009b).
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Thus, for Gð0;wÞ w= , we obtain

Gð0;wÞ
w

¼ Gwð0; 0Þ � 1þ
X

r�1

wr

r!
� 1

r þ 1
�

@rþ1

@wrþ1 Gð0; 0Þ
@
@wGð0; 0Þ

 !

¼ Gwð0; 0Þ � 1þ
X

r�1

wr

r!
� ’r

 !

; (4.202)

with ’r ¼ 1
rþ1

� @
rþ1 @wrþ1Gð0;0Þ=
@ @w= Gð0;0Þ : Another application of Faà di Bruno’s formula

results in:258

@s

@ws

Gð0;wÞ
w

	 
� pj j
¼ G� pj j

w ð0; 0Þ � @s

@ws
1þ

X

r�1

’r �
wr

r!

 !� pj j

¼ G� pj j
w ð0; 0Þ �

X

us

au � ’u � ð�1Þ uj j � pj j þ uj j � 1ð Þ!
pj j � 1ð Þ! ; (4.203)

with259

au � ’u ¼
s!

sþ uj jð Þ! � aû �
@ û

@wû
G 0; 0ð Þ � Gw

� uj j 0; 0ð Þ: (4.204)

Applying (4.203) and (4.204) to (4.200) leads to

dmw

dzm
¼�

X

pm

ap �ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j�1

s

 !

@s

@ws

Gð0;wÞ
w

	 
� pj j
� @

pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

�

w¼0

¼�
X

pm

ap �ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j�1

s

 !

�G� pj j
w ð0;0Þ�

X

us

s!

sþ uj jð Þ!�aû �
@û

@wû
G 0;0ð Þ

�Gw
� uj j 0;0ð Þ�ð�1Þ uj j � pj jþ uj j�1ð Þ!

pj j�1ð Þ! � @
pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

w¼0

¼�
X

pm

ap �ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j�1

s

 !

�
X

us

aû �ð�1Þ uj j �G� pj j� uj j
w ð0;0Þ

� s! � pj jþ uj j�1ð Þ!
sþ uj jð Þ! � pj j�1ð Þ!�

@û

@wû
G 0;0ð Þ� @

pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

w¼0

: ð4:205Þ

258Cf. Wilde (2003), p. 8.
259The relation between a partition u and û is explained in Sect. 4.5.6.1.3.
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Summarizing the sums, using ð�1Þ � ð�1Þ pj j�1 � ð�1Þ uj j ¼ ð�1Þ pj jþ uj j
, and

pj j � 1

s

	 


� s!

pj j � 1ð Þ! �
pj j þ uj j � 1ð Þ!
sþ uj jð Þ!

¼ pj j � 1ð Þ!
s! � pj j � 1� sð Þ! �

s!

pj j � 1ð Þ! �
pj j þ uj j � 1ð Þ!
sþ uj jð Þ!

¼ pj j þ uj j � 1ð Þ!
pj j � 1� sð Þ! � sþ uj jð Þ! ; (4.206)

(4.205) can be simplified to

dmw

dzm
¼

X

pm;us�jpj�1

ap � aû � ð�1Þ pj jþ uj j � pj j þ uj j � 1ð Þ!
pj j � 1� sÞ! � ðsþ uj jð Þ!

� G� pj j� uj j
w ð0; 0Þ � @û

@wû
G 0; 0ð Þ

� @ pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

w¼0

; (4.207)

which concludes the proof.

4.5.6.2.4 Completion of the Derivation

Application of (4.207) can be used to determine the derivatives of a quantile, which

will be calculated subsequently. With FðqðlÞ; lÞ � a ¼ 0 ¼ GðwðzÞ; zÞ, the deriva-
tives are given as

dmq

dlm

�

�

�

�

l¼0

¼ dmw

dzm

�

�

�

�

z¼0

; (4.208)

where the right-hand side can be determined with (4.207). The derivatives of G
contained in (4.207) can be calculated with (4.172):

@rþsG

@wr@zs

�

�

�

�

z¼0

¼ @rþsF

@yr@ls

�

�

�

�

l¼0

¼ @r

@yr
@sF

@ls

	 

�

�

�

�

l¼0

¼ dr

dyr
ð�1Þs d

s�1

dys�1
E ~Z

s j ~Y ¼ y
� �

fYðyÞ
� �

	 


¼ ð�1Þs d
rþs�1

dyrþs�1
E ~Z

s j ~Y ¼ y
� �

fYðyÞ
� �

¼ ð�1Þs d
rþs�1

dyrþs�1
ms;c f
� �

; (4.209)
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where we define ms;c :¼ Eð ~Zs j ~Y ¼ yÞ and f :¼ fYðyÞ for convenience. Using defi-

nition (4.193) for the pth derivative with p  m, this leads to

@pG

@zp

�

�

�

�

z¼0

¼
Y

m

i¼1

@iG

@zi

	 
epi
�

�

�

�

�

z¼0

¼
Y

m

i¼1

ð�1Þi d
i�1ðmi;cf Þ
dyi�1

	 
epi

¼ð�1Þm
Y

m

i¼1

di�1ðmi;cf Þ
dyi�1

	 
epi

:

(4.210)

Similarly the ûth derivative can be determined with u  s. It has to be considered
that for each partition u the elements of the corresponding partition û are increased

by 1. Thus, the smallest number is 2 and the largest is sþ 1. Hence, we obtain

@ûG

@wû
¼
Y

sþ1

i¼2

@iG

@wi

	 
eûi

¼
Y

sþ1

i¼2

@iG

@wi

	 
euði�1Þ

¼
Y

s

i¼1

@iþ1G

@wiþ1

	 
eui

¼
Y

s

i¼1

@iþ1F

@yiþ1

	 
eui

¼
Y

s

i¼1

dif

dyi

	 
eui

: (4.211)

Furthermore, we have Gw ¼ dF dy= ¼ f and ð�1Þ pj jþ uj j � f pj jþ uj j ¼ ð�f Þ pj jþ uj j
.

Using these formulas, we finally get for (4.207) or (4.208):

dmq

dlm

�

�

�

�

l¼0

¼ð�1Þm
X

pm;us�jpj�1

apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ! � �fð Þ� pj j� uj j

2

4 �
Y

s

i¼1

dif

dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !#

y¼qa ~Yð Þ
; ð4:212Þ

which is the formula for arbitrary derivatives of VaR. Written without abbreviations

this is

dmVaRa ~Yþl ~Z
� �

dlm

�

�

�

�

�

l¼0

¼ð�1Þm
X

pm;us�jpj�1

apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ! � �fYðyÞð Þ� pj j� uj j

2

4

�
Y

s

i¼1

difYðyÞ
dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

�
Y

m

i¼1

di�1
E ~Z

m j ~Y¼ y
� �

fYðyÞ
� �

dyi�1

" #epi !#

y¼qa ~Yð Þ
; ð4:213Þ

with ap ¼ m!
ð1!Þep1 ep ;1! �:::�ðm!Þep;m ep;m! .
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4.5.7 Determination of the First Five Derivatives of VaR

The general form of the mth derivative of VaR is given by (4.213). Subsequently,

the first five derivatives will be determined with this formula. For each derivative,

we have summands for all partitions p  m and u  s � pj j � 1. For the considered

cases 1 � m � 5, the following partitions p  m exist:

p  1 ¼ 11
� �

;

p  2 ¼ 12; 21
� �

;

p  3 ¼ 13; 1121; 31
� �

;

p  4 ¼ 14; 1221; 22; 1131; 41
� �

;

p  5 ¼ 15; 1321; 1122; 1231; 2131; 1141; 51
� �

: (4.214)

By construction, the expectation of the unsystematic loss is zero:

m1;cðyÞ ¼ E ~Z
1 j ~Y ¼ y

� �

¼ 0; (4.215)

which is called the “granularity adjustment condition”. Consequently, for all parti-

tions with ep1 6¼ 0, the summands of (4.213) are zero, too:

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi

¼ 0ep1 �
Y

m

i¼2

di�1 mi;c f
� �

dyi�1

 �epi

¼
Q

m

i¼2

di�1 mi;c f
� �

dyi�1

 �epi

if ep1 ¼ 0;

0 if ep1 6¼ 0:

8

<

:

(4.216)

Hence, the only relevant partitions p  m of (4.214) with non-zero terms and the

corresponding numbers pj j are given as260

p  1 ¼ 11
� �

with p ¼ 11
�

�

�

� ¼ 1;

p  2 ¼ 21
� �

with p ¼ 21
�

�

�

� ¼ 1;

p  3 ¼ 31
� �

with p ¼ 31
�

�

�

� ¼ 1;

p  4 ¼ 41; 22
� �

with p ¼ 41
�

�

�

� ¼ 1; p ¼ 22
�

�

�

� ¼ 2;

p  5 ¼ 51; 2131
� �

with p ¼ 51
�

�

�

� ¼ 1; p ¼ 2131
�

�

�

� ¼ 2: (4.217)

For the associated terms

260In order to demonstrate that the resulting formula is also valid for m ¼ 1, the summand for

partition f11g, which equals zero due to argument (4.216), is still considered.

4.5 Appendix 163



ap ¼ m!

ð1!Þep1ep;1! � ::: � ðm!Þep;mep;m!
; (4.218)

we obtain

a11 ¼
1!

ð1!Þ1 � 1! ¼ 1;

a21 ¼
2!

ð2!Þ1 � 1! ¼ 1;

a31 ¼
3!

ð3!Þ1 � 1! ¼ 1;

a41 ¼
4!

ð4!Þ1 � 1! ¼ 1; a22 ¼
4!

ð2!Þ2 � 2! ¼
24

8
¼ 3;

a51 ¼
5!

ð5!Þ1 � 1! ¼ 1; a2131 ¼
5!

ð2!Þ1 � 1! � ð3!Þ1 � 1! ¼
120

12
¼ 10: (4.219)

According to (4.217), we only have pj j ¼ 1 and pj j ¼ 2, leading to the following

partitions u  s � pj j � 1:

pj j ¼ 1 : u  s ¼ 0ð Þ ¼ 0f g;
pj j ¼ 2 : u  s ¼ 0; s ¼ 1f g ¼ 0; 11

� �

: (4.220)

As we have one summand for each p  m and u  s � ðjpj � 1Þ, we obtain one

summand for m ¼ 1; 2; 3 and three summands for m ¼ 4; 5:

dmq

dlm

�

�

�

�

l¼0

¼ ðIÞ;
ðIÞ þ ðIIÞ þ ðIIIÞ;

�

if m ¼ 1; 2; 3;
if m ¼ 4; 5;

(4.221)

where the summands are determined with the following variables:

ðIÞ m ¼ 1; :::; 5 : p ¼ m1; pj j ¼ 1; u  s ¼ 0ð Þ ¼ 0f g;

ðIIÞ m ¼ 4 :

m ¼ 5 :

p ¼ 22;

p ¼ 2131;

�

pj j ¼ 2; u  s ¼ 0ð Þ ¼ 0f g;

ðIIIÞ m ¼ 4 :

m ¼ 5 :

p ¼ 22;

p ¼ 2131;

�

pj j ¼ 2; u  s ¼ 1ð Þ ¼ 11
� �

: (4.222)

The first summand (I), with p ¼ m1; pj j ¼ 1; s ¼ 0; u ¼ 0; uj j ¼ 0; û ¼ 11,

epm ¼ 1, and epi ¼ 0 for all i 6¼ m, equals:261

261For ease of notation, the arguments l ¼ 0 of the left-hand as well as y ¼ qað ~YÞ at the right-hand
side are omitted.
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ðIÞ ¼ apaû pj j þ uj j � 1ð Þ!
sþ uj jð Þ! pj j � 1� sð Þ! �fð Þ� pj j� uj j

�
Y

s

i¼1

dif

dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼ 1 � 1 � 1þ 0� 1ð Þ!
0þ 0ð Þ! 1� 1� 0ð Þ! �fð Þ�1�0

Y

0

i¼1

dif

dyi

 �eui
 !

� d
1�1�0

dy1�1�0

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼�1

f
� d

m�1 mm;c f
� �

dym�1
: ð4:223Þ

For m ¼ 4, the second summand (II.[4]), with values p ¼ 22; pj j ¼ 2; s ¼ 0;

u ¼ 0; uj j ¼ 0; û ¼ 11, ep2 ¼ 2, and epi ¼ 0 for all i 6¼ 2, is equivalent to

II:½4�¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1�sð Þ! �fð Þ� pj j� uj j

�
Y

s

i¼1

dif

dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼ 3 �1 � 2þ0�1ð Þ!
0þ0ð Þ! 2�1�0ð Þ! �fð Þ�2�0

Y

0

i¼1

dif

dyi

 �eui
 !

� d
2�1�0

dy2�1�0

Y

4

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼3 � 1
f 2
� d
dy

d m2;c f
� �

dy

 �2

: ð4:224Þ

For m ¼ 5, we have p ¼ 2131; pj j ¼ 2; s ¼ 0; u ¼ 0; uj j ¼ 0; û ¼ 11;
ep2 ¼ 1; ep3 ¼ 1; and epi ¼ 0 for all i 6¼ 2; 3, leading to

II:½5�¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1�sð Þ! �fð Þ� pj j� uj j Y

s

i¼1

dif

dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼ 10 �1 � 2þ0�1ð Þ!
0þ0ð Þ! 2�1�0ð Þ! �fð Þ�2�0

Y

0

i¼1

dif

dyi

 �euj
 !

� d
2�1�0

dy2�1�0

Y

5

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼10 � 1
f 2
� d
dy

d m2;c f
� �

dy

 �

d2 m3;c f
� �

dy2

 �	 


: ð4:225Þ
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The third summand for m ¼ 4 (III.[4]), with p ¼ 22; pj j ¼ 2; s ¼ 1; u ¼ 11;

uj j ¼ 1; û ¼ 21; ep2 ¼ 2; epi ¼ 0 for all i 6¼ 2, and eu1 ¼ 1 equals

III:½4�¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1�sð Þ! �fð Þ� pj j� uj j

�
Y

s

i¼1

dif

dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼ 3 �1 � 2þ1�1ð Þ!
1þ1ð Þ! 2�1�1ð Þ! �fð Þ�2�1

Y

1

i¼1

dif

dyi

 �1
 !

� d
2�1�1

dy2�1�1

Y

4

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼�3 � 1
f 3
�df
dy

� d m2;c f
� �

dy

 �2

: ð4:226Þ

Form ¼ 5,wehave p ¼ 2131; pj j ¼ 2; s ¼ 1; u ¼ 11; uj j ¼ 1; û ¼ 21; ep2 ¼ 1;
ep3 ¼ 1; epi ¼ 0 for all i 6¼ 2; 3, and eu1 ¼ 1. Hence, we get

III:½5� ¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ! �fð Þ� pj j� uj j

�
Y

s

i¼1

dif

dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼ 10 �1 � 2þ1�1ð Þ!
1þ1ð Þ! 2�1�1ð Þ! �fð Þ�2�1

Y

1

i¼1

dif

dyi

 �1
 !

� d
2�1�1

dy2�1�1

Y

5

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !

¼�10 � 1
f 3
�df
dy

� d m2;c f
� �

dy

 �

� d2 m3;c f
� �

dy2

 �

: ð4:227Þ

Summing up the relevant elements from (4.223) to (4.227) and multiplying

by ð�1Þm leads to

dq

dl

�

�

�

�

l¼0

¼ ð�1Þ1 � � 1

f

	 


� d
1�1 m1;c f
� �

dy1�1
¼ m1;c ¼ 0; (4.228)

d2q

dl2

�

�

�

�

l¼0

¼ ð�1Þ2 � � 1

f

	 


� d
2�1 m2;c f
� �

dy2�1
¼ � 1

f
� d m2;c f
� �

dy
; (4.229)

d3q

dl3

�

�

�

�

l¼0

¼ �1ð Þ3 � � 1

f

	 


� d
3�1 m3;c f
� �

dy3�1
¼ 1

f
� d

2 m3;c f
� �

dy2
; (4.230)
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d4q

dl4

�

�

�

�

l¼0

¼ �1ð Þ4 � � 1

f

	 


� d
4�1 m4;c f
� �

dy4�1
þ 3 � 1

f 2
� d
dy
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� �

dy

	 
2
"

�3 � 1
f 3

� df
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� �
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2
#

¼ � 1
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� d3 m4;c f
� �

dy3
� 3 � d

dy

1

f

d m2;c f
� �

dy

	 
2
" # !

; (4.231)

and

d5q

dl5

�

�

�

�

l¼0

¼ �1ð Þ5 � � 1

f

	 


� d
5�1 m5;c f
� �

dy5�1
þ 10 � 1

f 2
� d
dy

d m2;c f
� �

dy

 �

d2 m3;c f
� �

dy2

 �	 


�10 � 1
f 3

� df
dy

� d m2;c f
� �

dy

 �

� d2 m3;c f
� �

dy2

 ��

¼ 1

f
� d4 m5;c f

� �

dy4
� 10 � d

dy

1

f
� d m2;c f
� �

dy

d2 m3;c f
� �

dy2

	 
 �

: ð4:232Þ

Comparing these terms, we find that the derivatives for m ¼ 1; :::; 5 can be

written as

dmq

dlm

�

�

�

�

l¼0

¼ �1ð Þm � 1

f

	 


dm�1 mm;c f
� �

dym�1



� kðmÞ

� d
dy

1

f
� d m2;c f
� �

dy

dm�3 mm�2;c f
� �

dym�3

	 
�

(4.233)

or without abbreviations as

dmVaRa ~Y þ l ~Z
� �

dlm

�

�

�

�

�

l¼0

¼ �1ð Þm � 1

fYðyÞ
	 


dm�1 mm ~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�1

"

� kðmÞ � d
dy

1

fYðyÞ �
d m2 ~Z j ~Y ¼ y

� �

fYðyÞ
� �

dy

 

� d
m�3 mm�2

~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�3


�

y¼qa ~Yð Þ;
(4.234)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10, which is the result of

Wilde (2003).
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4.5.8 Order of the Derivatives of VaR

For any m 2 N, the (mþ1)th element of the Taylor series can be written as262

lm

m!

@mVaRað ~Y þ l ~ZÞ
@lm

 �

l¼0

¼ g � lm

m!

X

pm

Y

m

i¼1

mi ~Z j ~Y ¼ y
� �� �epi

 !
�

�

�

�

�

y¼qað ~YÞ
; (4.235)

with g being a function that is independent of the number of credits n. With mi as the
ith moment about the origin and �i as the ith moment about the mean, it is possible

to write263

lm
X

pm

Y

m

i¼1

mi ~Z j ~Y¼ y
� �� �epi �

�

y¼qa ~Yð Þ ¼
X

pm

Y

m

i¼1

mi l ~Z j ~Y¼ y
� �� �epi �

�

y¼qa ~Yð Þ

¼
X

pm

Y

m

i¼1

mi ~L�E ~L j~x� � j~x¼ x
� �� �epi �

�

x¼q1�a ~xð Þ

¼
X

pm

Y

m

i¼1

mi ~Lj~x¼ x
� ��E ~Lj~x¼ x

� �� �� �epi �
�

x¼q1�a ~xð Þ

¼
X

pm

Y

m

i¼1

�i ~L j~x¼ x
� �� �epi �

�

x¼q1�a ~xð Þ

¼
X

pm

Y

m

i¼1

�i ~L j ~Y¼ y
� �� �epi �

�

y¼qa ~Yð Þ ð4:236Þ

for each m. Thus, the derivatives are given as

lm

m!

@mVaRað ~Y þ l ~ZÞ
@lm

 �

l¼0

¼ g � 1

m!

X

pm

Y

m

i¼1

�i ~L j ~Y ¼ y
� �� �epi

 !
�

�

�

�

�

y¼qað ~YÞ
: (4.237)

262Cf. (4.213). The notation g � y means that a function g is composed with y.
263To illustrate that the first identity holds, an example will be demonstrated for m ¼ 5:

l �
X

p5

Y

5

i¼1

mi ~Z
� �� �epi ¼ l � m5 ~Z

� �þ m4 ~Z
� � � m1 ~Z

� �þ m3 ~Z
� � � m1 ~Z

� �� �2
�

þm3 ~Z
� � � m2 ~Z

� �þ m2 ~Z
� � � m1 ~Z

� �� �3 þ m2 ~Z
� �2 � m1 ~Z

� �þ m1 ~Z
� �� �5

�

¼ m5 l ~Z
� �þ m4 l ~Z

� � � m1 l ~Z
� �þ m3 l ~Z

� � � m1 l ~Z
� �� �2

þm3 l ~Z
� � � m2 l ~Z

� �þ m2 l ~Z
� � � m1 l ~Z

� �� �3 þ m2 l ~Z
� �2 � m1 l ~Z

� �

þ m1 l ~Z
� �� �5

:

Furthermore, see (4.9) for the switch between the systematic loss y and the systematic factor x.
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Due to264

�i ~L j ~x ¼ x
� � ¼ �i

�ðxÞ �
X

n

j¼1

wj
i � �i

�ðxÞ � b

a

	 
i

� 1

ni�1
¼ O

1

ni�1

	 


;

with 0< a � EADi � b for all i, and revisiting (4.235) and (4.236), it is straightfor-
ward to see that only for m ¼ 3 and m ¼ 4 there exist terms which are at maximum

of order O(1/n2):

X

p3

Y

3

i¼1

�i ~L j ~Y ¼ y
� �� �epi ¼ �3 ~L j ~Y ¼ y

� � ¼ O
1

n2

	 


;

X

p4

Y

4

i¼1

�i ~L j ~Y ¼ y
� �� �epi ¼ �4 ~L j ~Y ¼ y

� �þ �2 ~L j ~Y ¼ y
� �� �2 ¼ O

1

n3

	 


þ O
1

n2

	 


:

(4.238)

All terms with higher derivatives of VaR are at least of Order O(1/n3).

4.5.9 VaR-Based Second-Order Granularity Adjustment for a
Normally Distributed Systematic Factor

For convenience, the summands of the second-order granularity add-on Dl2 will be
calculated separately:

Dl2 ¼ 1

6’

d

dx

1

dm1;c dx=

d

dx

�3;c’

dm1;c dx=

" # !

þ 1

8’

d

dx

1

’

1

dm1;c dx=

d
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�2;c’

dm1;c dx=

" # !2
2

4

3

5

�

�

�

�

�

�

x¼F�1ð1�aÞ
¼: Dl2;1 þ Dl2;2

�

�

x¼F�1ð1�aÞ: (4.239)

264See (4.14).
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The term Dl2;1 equals

Dl2;1 ¼ 1

6

d

dx

1
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d
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� �
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þ �3;c’
d

dx

1
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¼:C

2

6

6

6

4

3

7

7

7

5

:

(4.240)

For the calculation, we need the first and second derivative of the density

function ’. As the systematic factor is assumed to be normally distributed, we

have

’ ¼ 1
ffiffiffiffiffiffi

2p
p e�

x2

2 ; (4.241)

d’

dx
¼ �xð Þ 1

ffiffiffiffiffiffi

2p
p e�

x2

2 ¼ �x’; (4.242)

d2’

dx2
¼ �1ð Þ 1

ffiffiffiffiffiffi

2p
p e�

x2

2 � x �xð Þ 1
ffiffiffiffiffiffi

2p
p e�

x2

2 ¼ ðx2 � 1Þ’: (4.243)

Furthermore, we need the derivative

d

dx

1

dm1;c dx=

 !

¼ � d2m1;c dx2
�

dm1;c dx=
� �2

: (4.244)

Herewith, the term A form (4.240) can easily be calculated:

A ¼ 1

’

d

dx
�3;c’
� � ¼ d�3;c

dx
þ �3;c

’

d’

dx
¼ d�3;c

dx
� �3;cx: (4.245)
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Furthermore, dB dx= is equal to

dB

dx
¼ d

dx

d

dx
�3;c’
� � 1

dm1;c dx=

 !

¼ d2

dx2
�3;c’
� � 1

dm1;c dx=
þ d

dx
�3;c’
� � d

dx

1

dm1;c dx=

 !

¼ d

dx

d�3;c
dx

’þ �3;c
d’

dx

	 


1

dm1;c dx=
þ d�3;c

dx
’þ �3;c

d’

dx

	 


� d2m1;c dx2
�

dm1;c dx=
� �2

 !

¼ d2�3;c
dx2

’þ 2
d�3;c
dx

d’

dx
þ �3;c

d2’

dx2

	 


1

dm1;c dx=

� d�3;c
dx

’þ �3;c
d’

dx

	 


d2m1;c dx2
�

dm1;c dx=
� �2

: ð4:246Þ

Similarly, dC dx= is equivalent to

dC

dx
¼ d

dx
�3;c’ � d2m1;c dx2

�

dm1;c dx=
� �2

 ! !

¼ � d

dx
�3;c’
� � d2m1;c dx2

�

dm1;c dx=
� �2

� �3;c’
d

dx

d2m1;c dx2
�

dm1;c dx=
� �2

 !

¼ � d�3;c
dx

’� �3;c
d’

dx

	 


d2m1;c dx2
�

dm1;c dx=
� �2

� �3;c’
dm1;c dx=
� �2

d3m1;c dx3
�� �� 2 dm1;c dx=

� �

d2m1;c dx2
�� �2

dm1;c dx=
� �4

 !

: (4.247)

Using these terms, Dl2;1 results in

Dl2;1 ¼ 1

6
� d2m1;c dx2

�

dm1;c dx=
� �2

d�3;c dx=

dm1;c dx=
� �3;cx

dm1;c dx=
� �3;c

d2m1;c dx2
�

dm1;c dx=
� �2

 !"

þ 1

dm1;c dx=

1

’

d2�3;c
dx2

’þ 2
d�3;c
dx

d’

dx
þ �3;c

d2’

dx2

	 


1

dm1;c dx=

"

� 2
d�3;c
dx

’þ �3;c
d’

dx

	 


d2m1;c dx2
�

dm1;c dx=
� �2

��3;c’
dm1;c dx=
� �2

d3m1;c dx3
�� �� 2 dm1;c dx=

� �

d2m1;c dx2
�� �2

dm1;c dx=
� �4

 !#

:

(4.248)
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Applying the derivatives of ’ from (4.242) and (4.243) leads to

Dl2;1 ¼ 1

6
�3

d�3;c dx=
� �

d2m1;c dx2
�� �

dm1;c dx=
� �3

þ3
�3;cx d2m1;c dx2

�� �

dm1;c dx=
� �3

þ3�3;c
d2m1;c dx2

�� �2

dm1;c dx=
� �4

"

þ d2�3;c dx2
�

dm1;c dx=
� �2

�2x
d�3;c dx=

dm1;c dx=
� �2

þ �3;c x2�1ð Þ
dm1;c dx=
� �2

��3;c
d3m1;c dx3

�

dm1;c dx=
� �3

#

¼ 1

6 dm1;c dx=
� �2

�3;c x2�1�d3m1;c dx=
3

dm1;c dx=
þ3x d2m1;c dx2

�� �

dm1;c dx=
þ3 d2m1;c dx2

�� �2

dm1;c dx=
� �2

 !"

þd�3;c
dx

�2x�3 d2m1;c dx2
�� �

dm1;c dx=

 !

þd2�3;c
dx2

#

: ð4:249Þ

Henceforward, the summand Dl2;2 will be simplified:

Dl2;2 ¼ 1

8’

d

dx

1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

" # !2
2

4

3

5

¼ 1

8’

d

dx

’

dm1;c dx=

1

’

d

dx

�2;c’

dm1;c dx=

" # !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�

2

0

B

B

B

@

1

C

C

C

A

: (4.250)

The term (*) is the negative twice of the first-order granularity adjustment, so

that we can use the resulting equation (4.18). This leads to

Dl2;2 ¼ 1

8’

d

dx

’

dm1;c dx=
� x �2;c
dm1;c dx=

þ d�2;c dx=

dm1;c dx=
� �2;cd

2m1;c dx2
�

dm1;c dx=
� �2

" #2
0

@

1

A

¼ 1

8

1

’

d

dx

’

dm1;c dx=
� �3

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:ðIÞ

�x �2;c þ
d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

 !2

2

6

6

6

6

4

þ 1

dm1;c dx=
� �3

d

dx
�x �2;c þ

d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

" #2
0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:ðIIÞ

3

7

7

7

5

: (4.251)

Using the derivative of a normal distribution d’=dx ¼ �x’, the term (I) is

equivalent to
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ðIÞ ¼ 1

’

d

dx

’

dm1;c dx=
� �3

 !

¼ 1

’

d’

dx

1

dm1;c dx=
� �3

þ d

dx

1

dm1;c dx=
� �3

 !

¼ �x

dm1;c dx=
� �3

� 3
d2m1;c dx2

�� �

dm1;c dx=
� �4

: (4.252)

Term (II) can be written as

ðIIÞ ¼ d

dx
�x �2;c þ

d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

" #2
0

@

1

A

¼ 2 �x �2;c þ
d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

 !

��2;c � x
d�2;c
dx

þ d2�2;c
dx2

	

� d

dx
�2;c

d2m1;c
dx2

	 


1

dm1;c dx=
� �2;c

d2m1;c
dx2

d

dx

1

dm1;c dx=

 !!

¼ 2 �x�2;c þ
d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

 !

��2;c � x
d�2;c
dx

þ d2�2;c
dx2

	

� d�2;c
dx

d2m1;c dx2
�

dm1;c dx=
� �2;c

d3m1;c dx3
�

dm1;c dx=
þ �2;c

d2m1;c
dx2

d2m1;c dx2
�

dm1;c dx=
� �2

!

: (4.253)

Using these expressions, Dl2;2 from (4.251) is equal to

Dl2;2 ¼ 1

8

�x

dm1;c dx=
� �3

� 3
d2m1;c dx2

�� �

dm1;c dx=
� �4

 !

�x�2;c þ
d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

 !2
2

4

þ 2

dm1;c dx=
� �3

�x�2;c þ
d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

 !

��2;c � x
d�2;c
dx

þ d2�2;c
dx2

	

�d�2;c
dx

d2m1;c dx2
�

dm1;c dx=
� �2;c

d3m1;c dx3
�

dm1;c dx=
þ �2;c

d2m1;c
dx2

d2m1;c dx2
�

dm1;c dx=
� �2

!#

; ð4:254Þ

which leads to
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Dl2;2 ¼ 1

8 dm1;c dx=
� �3

�x� 3
d2m1;c dx2

�

dm1;c dx=

 !

�2;c �x� d2m1;c dx2
�

dm1;c dx=

" #

þ d�2;c
dx

 !" 2

þ 2 �2;c xþ d2m1;c dx2
�

dm1;c dx=

" #

� d�2;c
dx

 !

�2;c 1þ d3m1;c dx3
�

dm1;c dx=
� d2m1;c dx2

�� �2

dm1;c dx=
� �2

" # 

þd�2;c
dx

xþ d2m1;c dx2
�

dm1;c dx=

" #

� d2�2;c
dx2

!#

: ð4:255Þ

Adding the terms Dl2;1 and Dl2;2 together results in

Dl2 ¼ 1

6 dm1;c dx=
� �2

�3;c x2�1�d3m1;c dx=
3

dm1;c dx=
þ3x d2m1;c dx2

�� �

dm1;c dx=
þ3 d2m1;c dx2

�� �2

dm1;c dx=
� �2

 !"

þd�3;c
dx

�2x�3 d2m1;c dx2
�� �

dm1;c dx=

 !

þd2�3;c
dx2

#

þ 1

8 dm1;c dx=
� �3

�x�3
d2m1;c dx2

�

dm1;c dx=

 !

�2;c �x�d2m1;c dx2
�

dm1;c dx=

" #

þd�2;c
dx

 !" 2

þ2 �2;c xþd2m1;c dx2
�

dm1;c dx=

" #

�d�2;c
dx

 !

�2;c 1þd3m1;c dx3
�

dm1;c dx=
� d2m1;c dx2

�� �2

dm1;c dx=
� �2

" # 

þd�2;c
dx

xþd2m1;c dx2
�

dm1;c dx=

" #

�d2�2;c
dx2

!#
�

�

�

�

�

x¼F�1 1�að Þ
: ð4:256Þ

4.5.10 Third Conditional Moment of Losses

Subsequently, the third conditional moment of the portfolios loss about the mean,

�3;c ¼ �3ð~L j ~x ¼ xÞ, shall be expressed in terms of the moments of separated factors

gLGDi and 1 ~Dif g. With

�3;c ¼ �3 ~L j ~x ¼ x
� �

¼ �3
X

n

i¼1

wi � gLGDi � 1 ~Dif g j ~x ¼ x

 !

¼
X

n

i¼1

wi
3 � �3 gLGDi � 1 ~Dif g j ~x ¼ x

� �

; (4.257)
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which is due to the conditional independence property, we need to determine

�3ð gLGDi � 1 ~Dif g j ~xÞ. In general, the third moment about the mean is equal to

�3 ~X
� � ¼ E ~X � E ~X

� �� �3
� �

¼ E ~X
3 � 3 ~X

2
E ~X
� �þ 3 ~XE2 ~X

� �� E
3 ~X
� �

h i

¼ E ~X
3

� �

� 3E ~X
2

� �

E ~X
� �þ 3E ~X

� �

E
2 ~X
� �� E

3 ~X
� �

¼ E ~X
3

� �

� 3E ~X
2

� �

E ~X
� �þ 2E3 ~X

� �

: (4.258)

Thus, the conditional moment �3ð gLGDi � 1 ~Dif g j ~xÞ can be written as

�3 gLGDi � 1 ~Dif g j ~x
� �

¼ E gLGD � 1 ~Dif g j ~x
h i3
	 


� 3E gLGD � 1 ~Dif g j ~x
h i2
	 


� E gLGDi � 1 ~Dif g j ~x
� �

þ 2E3
gLGDi � 1 ~Dif g j ~x

� �

: ð4:259Þ

Using the conditional independence property again, considering that the

LGDs are assumed to be stochastically independent of each other, and with

E½ð1 ~Dif g j ~xÞ
i� ¼ E½ð1 ~Dif g j ~xÞ� ¼ pð~xÞ, we have

�3 gLGDi � 1 ~Dif g j ~x
� �

¼ E gLGD j ~x
h i3
	 


p ~xð Þ � 3E gLGD j ~x
h i2
	 


E gLGD j ~x
� �

p2 ~xð Þ

þ 2E3
gLGD j ~x

� �

p3 ~xð Þ

¼ E gLGD
3

� �

p ~xð Þ � 3E gLGD
2

� �

E gLGD
� �

p2 ~xð Þ

þ 2E3
gLGD

� �

p3 ~xð Þ: ð4:260Þ

With the abbreviations ELGD ¼ EðgLGDÞ, VLGD ¼ VðgLGDÞ as well as

SLGD ¼ �3ðgLGDÞ and using (4.258) again, we obtain

E gLGD
2

� �

¼ ELGD2 þ VLGD; (4.261)

E gLGD
3

� �

¼ SLGDþ 3ðELGD2 þ VLGDÞELGD� 2ELGD3

¼ ELGD3 þ 3ELGD � VLGD þ SLGD: (4.262)

Consequently, (4.260) is equivalent to
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�3 gLGDi � 1 ~Dif g j ~x
� �

¼ ELGD3 þ 3ELGD � VLGD þ SLGD
� �

p ~xð Þ
� 3 ELGD3 þ ELGD � VLGD� �

p2 ~xð Þ þ 2ELGD3p3 ~xð Þ:
(4.263)

Thus, the conditional moment of the portfolio loss (4.257) can finally be

written as

�3;c ¼
X

n

i¼1

wi
3 � �3 gLGDi � 1 ~Dif g j ex ¼ x

� �

¼
X

n

i¼1

wi
3 ELGDi

3 þ 3 � ELGDi � VLGDi þ SLGDi

� � � piðxÞ
�

�3 � ELGDi
3 þ ELGDi � VLGDi

� � � pi2ðxÞ þ 2 � ELGDi
3 � pi3ðxÞ

�

: (4.264)

4.5.11 Difference Between the VaR Definitions

For the case of homogeneous credits and with LGD ¼ 1, the possible realizations

of losses are

l 2 0;
1

n
;
2

n
; :::;

n� 1

n
; 1

� �

; (4.265)

which implies

P ~L � l
� � ¼ P ~L< lþ 1 n=ð Þ� �

: (4.266)

If we define l2 :¼ l1 þ 1 n= , we get

VaRð�Þ
a

~L
� � ¼ sup l1 2 R jP ~L � l1

� �

< a
� �

¼ sup l1 2 R jP ~L< l1 þ 1

n

	 
 �

< a
� �

¼ sup l2 � 1

n

	 


2 R jP ~L< l2
� �

< a
� �

¼ sup l2 2 R jP ~L< l2
� �

< a
� �� 1

n

¼ VaRðþÞ
a

~L
� �� 1

n
: (4.267)
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4.5.12 Identity of ES Within the Basel Framework

Using the result of the ASRF framework (2.93), the definition of the ES (2.19),

the integral representation of the conditional expectation, and the identity of the

condition as in (4.9), the ES of the portfolio loss equals

ESðBaselÞa
~L
� � ¼ ESa E ~L j ~x� �� �

¼ ESa m1;c ~xð Þ� �

¼ 1

1� a
E m1;c ~xð Þ j m1;c ~xð Þ � qa m1;c ~xð Þ� �� �� �

¼ 1

1� a
E m1;c ~xð Þ j ~x � F�1 1� að Þ� �� �

¼ 1

1� a

ð

F�1 1�að Þ

�1
m1;cðxÞ’ðxÞdx: (4.268)

With the conditional independence property as in (2.92), the conditional PD of

the Vasicek model (2.66), the integral representation (2.126), and the symmetry

of the normal distribution, the ES can be written as

ESðBaselÞa
~L
� � ¼ 1

1� a

ð

F�1 1�að Þ

�1

X

n

i¼1

E wi � gLGDi � 1 Dif g j x
� �

’ðxÞdx

¼ 1

1� a

X

n

i¼1

wi � ELGDi �
ð

F�1 1�að Þ

�1
piðxÞ’ðxÞdx

¼ 1

1� a

X

n

i¼1

wi � ELGDi �
ð

F�1 1�að Þ

�1
F

F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

’ðxÞdx

¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 F�1ð1� aÞ;F�1ðPDiÞ; ffiffiffiffi

ri
p� �

¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 �F�1ðaÞ;F�1ðPDiÞ; ffiffiffiffi

ri
p� �

:

(4.269)
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4.5.13 Arbitrary Derivatives of ES

According to (2.20), the ES can be written as

ESa ~L
� � ¼ 1

1� a

ð

1

a

qu ~L
� �

du: (4.270)

Thus, for continuous distributions, all derivatives of ES can be expressed as

dmESa
dlm

¼ dm

dlm
1

1� a

ð

1

a

qudu

0

@

1

A ¼ 1

1� a

ð

1

a

dmqu
dlm

du: (4.271)

The derivative of VaR is a function of fYðyÞ and mi;cðyÞ evaluated at quð ~YÞ. The
substitution u ¼ FYðyÞ, so that du dy= ¼ fYðyÞ, yðu ¼ aÞ ¼ F�1

Y ðaÞ ¼ qað ~YÞ, and
yðu ¼ 1Þ ¼ F�1

Y ð1Þ ¼ 1, leads to:265

dmESa
dlm

�

�

�

�

l¼0

¼ 1

1� a

ð

1

u¼a

dmqu
dlm

�

�

�

�

l¼0

du ¼ 1

1� a

ð

1

y¼qa ~Yð Þ

dmqu
dlm

�

�

�

�

l¼0

fYdy; (4.272)

where the expression resulting from the derivative of VaR simply has to be

evaluated at y since quð ~YÞ ¼ y. Using the derivatives of VaR from (4.212), this

leads to

dmESa
dlm

�

�

�

�

l¼0

¼ 1

1�a

ð

1

y¼qa ~Yð Þ
ð�1Þm

X

pm;us�jpj�1

apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ!

2

4

� �fð Þ� pj j� uj j �
Y

s

i¼1

dif

dyi

 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1

 �epi
 !#

f dy;

(4.273)

with ap ¼ m!

ð1!Þep1ep;1! � ::: � ðm!Þep;mep;m!
.

265Cf. Wilde (2003), p. 11.
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4.5.14 Determination of the First Five Derivatives of ES

Instead of solving the integral (4.272) for each of the derivatives of VaR

(4.228)–(4.232), we will directly evaluate the integral for the first five deri-

vatives. Using the expression for the first five derivatives of VaR (4.233), we

obtain

dmES

dlm

�

�

�

�

l¼0

¼ 1

1� a

ð

1

y¼qa ~Yð Þ

dmq

dlm
fYdy

¼ 1

1� a

ð

1

y¼qa ~Yð Þ
�1ð Þm � 1

f

	 


dm�1 mm;c f
� �

dym�1



� kðmÞ � d
dy

1

f
� d m2;c f
� �

dy

dm�3 mm�2;c f
� �

dym�3

	 
�

f dy: (4.274)

This term is equal to
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or written without abbreviations as

dmESa ~Y þ l ~Z
� �

dlm

�

�

�

�

�

l¼0
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�

�

�

�

�

y¼qa ~Yð Þ
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(4.276)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10. This is the result of

Wilde (2003), except that the algebraic signs of Wilde (2003) seem to be

wrong.

4.5.15 ES-Based Second-Order Granularity Adjustment for a
Normally Distributed Systematic Factor

The summands of the second-order granularity add-on Dl2 can be expressed as

Dl2 ¼ 1

6 1� að Þ
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þ 1

8 1� að Þ
1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

 !" #2
�

�

�

�

�

�
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x¼F�1ð1�aÞ: (4.277)

Using the derivative of the normal distribution (4.242), the summand Dl2;1
equals

Dl2;1 ¼ 1
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Using the same transformations, the summand Dl2;2 is equivalent to

Dl2;2 ¼ 1
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leading to a second-order adjustment of

Dl2 ¼ 1
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(4.280)

4.5.16 Probability Density Function of the Logit-Normal
Distribution

The derivation of the density function is based on the inverse function theorem266

fYðyÞ ¼ fX g�1ðyÞ� � � dg�1ðyÞ
dy

�

�

�

�

�

�

�

�

: (4.281)

For the logit function ~Y ¼ e
~X ð1þ e

~XÞ
.

, we have

gðxÞ ¼ y ¼ ex

1þ ex
¼ 1

e�x þ 1

, e�x ¼ 1

y
� 1

, g�1ðyÞ ¼ x ¼ � ln
1

y
� 1

	 


(4.282)

266Cf. Appendix 4.5.3.
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and
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Using the density of a normal distribution (4.82) for fX and recognizing that y is
bounded in the interval [0, 1], we get
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Chapter 5

Model-Based Measurement of Sector

Concentration Risk in Credit Portfolios*

5.1 Fundamentals and Research Questions

on Sector Concentration Risk

As demonstrated in Chap. 2, within the ASRF model it is assumed that there exists

only one single risk factor that influences the defaults of all loans in the portfolio

(assumption B). Thus, industry-specific or geographical effects are neglected,

which can lead to an inappropriate capital requirement for real-world portfolios if

this is measured on the basis of a single-factor model like the IRB Approach of

Pillar 1. Against this background, banks are demanded to measure concentration

risks and “explicitly consider the extent of their credit risk concentrations in their

assessment of capital adequacy under Pillar 2”267 of Basel II, but it is not specified

how this should be done. Although there exist some models that explicitly deal with

the measurement of sector concentration risk, these are mostly not consistent with

Pillar 1 of Basel II – sometimes within the derivation and sometimes within the

implementation. Consequently, it remains unclear if or how much additional

regulatory capital is needed regarding risk concentrations. However, this issue is

not only relevant from a regulatory perspective. Generally, it is not worthwhile to

have a major gap between the regulatory and the “true” economic capital.

A homogenization of these values is one goal of the new Capital Accord and

would simplify the management of the credit portfolio.

In order to measure sector concentration risk consistent with the Basel II frame-

work, it has to be reconsidered that the IRB Approach was calibrated on well-

diversified bank portfolios.268 Thus, the additional capital requirement concerning

*The main results of this section comply with G€urtler et al. (2010).
267BCBS (2005a), } 773.
268Cf. Sect. 3.3.

M. Hibbeln, Risk Management in Credit Portfolios, Contributions to Economics,

DOI 10.1007/978-3-7908-2607-4_5, # Springer-Verlag Berlin Heidelberg 2010
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sector concentrations has to take this specific calibration of the model used for

calculating the Pillar 1 capital requirement into consideration. Consequently, only

banks with a lower diversification across sectors than these well-diversified banks

should assess additional capital under Pillar 2. As data on the characteristics of these

well-diversified portfolios is not publicly available, it is not obvious how we can

use them as a reference portfolio in order to modify and adjust the existing models

on sector concentration risk to achieve consistency to the Basel framework.

Furthermore, comparative analyses on models which are able to measure sector

concentration risk are scarce. Against this background, we address the following

questions:

l How can the existing approaches be modified and adjusted to be consistent with

the Basel framework? Is the risk measure Value at Risk problematic when

dealing with sector concentration risk?
l Which methods are capable of measuring concentration risk and how good do

they perform in comparison? What are the advantages and disadvantages of

these methods?

Subsequently, we propose a methodology how multi-factor models can be

used in a way that is consistent with the Basel II framework. This can be seen as

expanding the validity of the Basel formula from the inner region of Fig. 3.2 to

the whole region. To our best knowledge, this is the first work that deals with this

problem.269 Furthermore, we analyze the models of Pykhtin (2004), Cespedes

et al. (2006), and D€ullmann (2006), which are designed to measure sector

concentration risk. We implement our multi-factor setting for these models and

use the risk measure ES instead of the VaR, which leads to some new approxi-

mation formulas. Based on this, we compare the accuracy and runtime of the

different models within a simulation study. Except the rather brief analysis of

D€ullmann (2007), this is the first comparison of different approaches concerning

sector concentration risk. In this context, we also use our framework to test

whether the lack of coherency of the widespread used VaR is relevant in

connection with the measurement of concentration risk.270 Since the non-

coherency of the VaR is typically only illustrated in contrived portfolio exam-

ples, we analyze the relevance of this issue in more realistic settings within our

simulation study.

269The multi-factor model of Cespedes et al. (2006) is also specified against the background of the

regulatory capital formula. However, within the deriviation of their formulas, the authors assume

the regulatory capital requirement to be the upper barrier of risk, which is not consistent with the

view of supervisors that we presented in Sect. 3.3 and especially in Fig. 3.2. Cf. Sect. 5.2.3 for

details regarding this issue.
270Cf. Sect. 2.2.3.

184 5 Model-Based Measurement of Sector Concentration Risk in Credit Portfolios



5.2 Incorporation of Sector Concentrations Using

Multi-Factor Models

5.2.1 Structure of Multi-Factor Models and Basel II-Consistent
Parameterization Through a Correlation Matching
Procedure

To obtain a more realistic modeling of correlated defaults in a credit portfolio, we

will introduce a typical multi-factor model. In such a model, the dependence

structure between obligors is not driven by one global systematic risk factor but

by sector specific risk factors. Additionally, the group of obligors is divided into S
sectors. Hereby, a suitable sector assignment is important,271 i.e. asset correlations

shall be high within a sector and low between different sectors. In contrast to the

single-factor model, in which the correlation structure of each firm is completely

described by r, in a multi-factor model we distinguish between an inter-sector
correlation rInter and an intra-sector correlation rIntra. The inter-sector correlation
describes the correlation between the sector factors and the intra-sector correlation

characterizes the sensitivity of the asset return to the corresponding sector factor.

Thus, the asset return of obligor i in sector s can be represented by272

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi; (5.1)

where ~xs is the sector risk factor (with s ¼ 1, . . ., S), and ~xi stands for the

idiosyncratic factor. The variables ~xs and ~xi are normally distributed variables

with mean zero and standard deviation one that are independent among each

other. Since the sector risk factors ~xs are potentially dependent random variables

that are difficult to deal with,273 we make use of the possibility to present the sector

risk factors as a combination of independently and standard normally distributed

factors ~zk (k ¼ 1, . . ., K)

~xs ¼
X

K

k¼1

as;k � ~zk with
X

K

k¼1

a2s;k ¼ 1; (5.2)

271As shown by Morinaga and Shiina (2005), an assignment of borrowers to the wrong sectors

usually leads to a higher estimation error than a non-optimal sector definition.
272In order to allow for negative intra-sector correlations, the factor loading could also be written

as ri instead of
ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p
. However, it is economically reasonable to assume that there is a positive

relationship between the asset return of an obligor and the corresponding industry-sector. Thus, the

chosen notation should be no practical limitation.
273Concretely, the independence of the risk factors is essential for the derivation of the Pykhtin-

model in Sect. 5.2.2.
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in which the factor weights as;k are calculated via a Cholesky decomposition of the

inter-sector correlation matrix.274 Hence, the inter-sector correlation is given as

rInters;t :¼ Corr ~xs; ~xtð Þ ¼
X

K

k¼1

as;k � at;k: (5.3)

From (5.1) and (5.2), the asset correlation between obligors i in sector s and

obligor j in sector t is given by

Corr ~as;i; ~at;j
� � ¼

1 if s ¼ t and i ¼ j;
ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p

if s ¼ t and i 6¼ j;

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j

p �P
K

k¼1

as;k � at;k if s 6¼ t:

8

>

>

>

<

>

>

>

:

(5.4)

Obligors in the same sector are highly correlated with one another when their

intra-sector correlation is high. The correlation of obligors in different sectors also

depends on the factor weights, which are derived from the inter-sector correlation.

Hence, the dependence structure in the multi-factor model is completely described

by the intra- and inter-sector correlations.

Taking (2.8) into account, the portfolio loss distribution can be written as

~L ¼
X

S

s¼1

X

ns

i¼1

ws;i � LGDs;i � 1f~as;i<F�1ðPDs;iÞg; (5.5)

where ns is the number of obligors in sector s. The portfolio loss distribution can be
determined numerically with Monte Carlo simulations. The procedure is in princi-

ple the same as described in Sect. 2.4 in context of the Vasicek one-factor model. In

each simulation run, the sector factors as well as the idiosyncratic factor of each

obligor are randomly generated. Herewith, the asset return is calculated according

to (5.1). If ~as;i is less than a threshold given by F�1ðPDiÞ, obligor i defaults. The
portfolio loss is determined with (5.5) by summing up the exposure weights wi

multiplied by LGDi of each defaulted credit. To get a good approximation of the

“true” loss distribution, we choose 500,000 runs for our subsequent Monte Carlo

simulations. After running the simulation and sorting the loss outcomes, we get the

portfolio loss distribution. The ES at a given confidence level a can be calculated

with (2.47).

To calibrate the multi-factor model, most variables can be chosen identically

to the single-factor model. The only difference is the correlation structure that

274This approach is a common mathematical method to generate correlated random variables and

leads to the identical number of independent risk factors ~zk and dependent sector factors ~xs, that is
K equals S. Another common method to determine independent risk factors is the principal

component analysis, which leads to a reduced number of risk factors.
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generally consists of inter- and intra-sector correlations as described above. The

matrix of inter-sector correlations is usually derived from historical default rates or

from equity correlations between industry sectors. The intra-sector correlations can

be derived from historical default rates, too. The problem of a derivation based on

historical default rates is that there are not always enough observations to get stable

results. This is even more problematic if it is assumed (like in Basel II) that the

correlation and the PD are interdependent. Furthermore, the results from the multi-

factor model would normally not be consistent with Basel II because the correlation

structure is completely different. Thus, it would not be possible to identify (consis-

tent with Pillar 1 of Basel II) whether there is need for additional regulatory capital

under Pillar 2.

For both reasons, the intra-sector correlations could be chosen analogously to the

Basel II formula

rBasel ¼ 0:12 � 1� e�50�PD

1� e�50
þ 0:24 � 1� 1� e�50 �PD

1� e�50

� �

(5.6)

for corporates. This is what Cespedes et al. (2006) did in their analyses. But this

assumption is critical for the following reason: The validity of this formula for the

intra-sector correlations is equivalent to the statement that the regulatory capital

calculated via the formula of Pillar 1 is an upper barrier of the true risk. This

property in turn is only fulfilled if either only one sector exists or if all sectors are

perfectly correlated. In all other cases there is an effect of sector diversification,

which leads to a lower capital requirement compared to the Basel framework.

Beyond, the Basel Committee does not intend the Basel II correlation formula to

exclusively reflect the intra-sector correlation. Instead, the framework is calibrated

on well-diversified portfolios, as demonstrated in Fig. 3.2, implying that the corre-

lation formula is chosen in a way that the single-factor model leads to a good

approximation of the “true” risk based on the full correlation structure in a multi-

factor model. Cespedes et al. (2006) have already recognized this criticism and

have mentioned that it should be possible to use some scaling up for the intra-sector

correlations and the resulting capital. However, their calculations are based on the

formula above.

Alternatively, the intra-sector correlation could be chosen in a way that the

regulatory capital RC can be matched with the economic capital ECmf, which is

simulated for a well-diversified portfolio within a multi-factor model. Therefore,

we define the “implicit intra-sector correlation” rðImpliedÞ
Intra by

ECmf rInter; r
ðImpliedÞ
Intra

� �

¼ RC rBaselð Þ: (5.7)

Unfortunately, the portfolios for which the calibration was done by the Basel

Committee including the assumed inter-sector correlation structure are not publicly

available. Thus, at first we have to choose a concrete inter-sector correlation and

determine the implicit intra-sector correlation for some hypothetical, well-diversified
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portfolios via Monte Carlo simulations with several parameter trials. This approach is

related to Lopez (2004), who empirically determines the single correlation parameter

for the ASRF model that leads to the same 99.9%-quantile as KMV’s multi-factor

model for several portfolio types (geographical region, PD, and asset size categories)

using a grid search procedure. Thus, in the approach of Lopez (2004), the left-hand

side of (5.7) is given and the single correlation parameter of the right-hand side is

determined, whereas we are searching for the intra-sector correlation on the left-hand

side that leads to a match of both models when the other parameters, especially the

single correlation parameter of Basel II, are exogenously given.

As mentioned above, the required inter-sector correlation matrix could be

estimated from historical default rates or from time series of stock returns.275

D€ullmann et al. (2008) demonstrate on the basis of an extensive simulation study

that it is recommendable to use stock prices instead of historical default rates since

this involves smaller statistical errors. Against this background, we rely on equity

correlations, too, and use the correlation matrix of the MSCI EMU industry indices

computed by D€ullmann and Masschelein (2007) for the inter-sector correlation

structure (see Table 5.1).276

Our definition of a well-diversified portfolio is based on the overall sector

concentration of the German banking system, which can be found in Table 5.2.277

Even if it is theoretically possible to achieve lower capital requirements through

a different sector decomposition, this can only be done by a restricted number of

banks, since a deviation from the market structure of all banks immediately leads to

a disequilibrium. In addition, the total number of credits is assumed to be n¼ 5,000

to guarantee low granularity.

Table 5.1 Inter-sector correlation structure based on MSCI industry indices (in %)a

Sector A B C1 C2 C3 D E F H I J

A: Energy 100 50 42 34 45 46 57 34 10 31 69

B: Materials 100 87 61 75 84 62 30 56 73 66

C1: Capital goods 100 67 83 92 65 32 69 82 66

C2: Comm. svs. and supplies 100 58 68 40 8 50 60 37

C3: Transportation 100 83 68 27 58 77 67

D: Consumer discretionary 100 76 21 69 81 66

E: Consumer staples 100 33 46 56 66

F: Health care 100 15 24 46

H: Information technology 100 75 42

I: Telecommunication services 100 62

J: Utilities 100
aSee D€ullmann and Masschelein (2007), p. 64

275An overview of the literature regarding the measurement of asset correlation parameters can be

found in D€ullmann et al. (2008) and Grundke (2008).
276The correlation structure based on the MSCI US is similar, see D€ullmann and Masschelein

(2007).
277D€ullmann and Masschelein (2007) notice that the concentration is very similar to other

countries like France, Belgium, and Spain.
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If we assume a constant intra-sector correlation, the best match is achieved by

(approximately) rðImpliedÞ
Intra ¼ 25%.278 The concrete results, however, vary with the

portfolio quality (see Table 5.3).279 Thus, using a constant intra-sector correlation

can lead to a significant underestimation of economic capital for high-quality

portfolios and to an overestimation for low-quality portfolios.

To reduce the deviation, the intra-sector correlation should be decreasing in PD.

We found that the following intra-sector correlation function leads to a good match

for portfolios with different quality distributions:

rðImpliedÞ
Intra ¼ 0:185 � 1� e�50�PD

1� e�50
þ 0:34 � 1� 1� e�50�PD

1� e�50

� �

: (5.8)

Thus, we use the correlation function type from Basel II but the correlation range

is from 18.5 to 34% instead of 12 to 24%.280 It has to be noted that this formula is

Table 5.3 Implicit intra-

sector correlations for

different portfolio qualities

Portfolio type/quality Implicit intra-sector

correlation (%)

(I) Very high 30

(II) High 28

(III) Average 25

(IV) Low 23

(V) Very low 21

Table 5.2 Overall sector

composition of the German

banking systema

Sector Exposure weight (%)

A: Energy 0.18

B: Materials 6.01

C1: Capital goods 11.53

C2: Comm. svs. and supplies 33.69

C3: Transportation 7.14

D: Consumer discretionary 14.97

E: Consumer staples 6.48

F: Health care 9.09

H: Information technology 3.20

I: Telecommunication services 1.04

J: Utilities 6.67
aCf. D€ullmann and Masschelein (2007), p. 63

278This value results on the basis of both measures (VaR and ES) at the respective confidence level

as described in Sect. 4.3.1. The result is consistent with D€ullmann and Masschelein (2007), who

use a constant intra-sector correlation of 25% in their analysis.
279See Fig. 4.7 for the portfolio characteristics.
280We tried several different functional forms but the formula above performed best. The multi-

pliers 18.5% and 34% in function (5.8) were determined with a grid search using a reasonable

parameter range, which is similar to the procedure of Lopez (2004) used for the single correlation

parameter.
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still a substantial simplification, as we assume that the intra-sector correlation is

PD-dependent only. By contrast, empirically there are also inter-sectoral diffe-

rences of this parameter.281 In principle it would be possible to capture both effects,

e.g. by multiplying a sector-specific factor to (5.8), which covers the relation of the

empirically observed correlations.282 Of course, the absolute level of the resulting

correlations would usually be different from the empirical observations to keep

Basel II consistent results. But for convenience, we rely on the PD-dependent

formula (5.8) in our following analyses.

Hence, all additional input data needed for typical multi-factor models, e.g.

using Monte Carlo simulations, are given with Table 5.1 and (5.8). Using these

values, the multi-factor models should be consistent with the Basel framework.

Thus, the measured economic capital is only lower than the regulatory capital if

the portfolio is less concentrated than a typical, well-diversified portfolio, and the

needed economic capital is above the capital requirement of the regulatory frame-

work if there is more concentration risk in the credit portfolio. In order to avoid

time-consuming Monte Carlo simulations, there exist some multi-factor models for

an approximation of the portfolio risk. These will be presented subsequently.

5.2.2 Accounting for Sector Concentrations with the Model
of Pykhtin

5.2.2.1 Derivation of the VaR-Based Multi-Factor Adjustment

In this section, the multi-factor adjustment of Pykhtin (2004) is examined. After

explanation of the approach and derivation of the multi-factor adjustment formula

for the VaR, the ES-based formula is calculated. Since the main shortcoming of the

model is the time-consuming calculation for large portfolios, we focus on this issue

thereafter and demonstrate how the approach can be implemented in a way that

calculation time is reduced significantly.283

The multi-factor adjustment is an extension of the granularity adjustment pre-

sented in Chap. 4, which was introduced by Gordy (2003), Wilde (2001), and

Martin and Wilde (2002), for multi-factor models and provides an analytical

method for calculating the VaR and ES of a credit portfolio. The basic idea of

Pykhtin is to approximate the portfolio loss ~L in the multi-factor model with the

respective portfolio loss ~L in an accurately adjusted ASRF model. This is done by

281E.g. Heitfield et al. (2006) determine the sector loadings, which equal
ffiffiffiffiffiffiffiffiffiffi

rIntra
p

, for 50 industry

sectors using KMV data on asset values. The resulting intra-sector correlation is on average 18.8%

and the standard deviation is 8.3%. These inter-sectoral differences are not captured by the formula

above.
282A correlation structure with one degree of freedom for every PD/sector-combination is practi-

cally unfeasible due to high data requirements.
283In our setting, the computation time could be reduced by more than 99.8%.
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mapping the correlation structure of all credits in the multi-factor model into a

single correlation factor. This factor is determined by maximizing the correlation

between the new single risk factor ~x and the original sector factors {~xs}. Based on

this, a Taylor series expansion is performed around the constructed single-factor

model.

Concretely, the distribution of ~L, which is the loss of the accurately adjusted

single-factor model, can be calculated with the known formula of the ASRF

model:284

~L ¼ m1;c ~x
� � ¼

X

n

i¼1

wi � LGDi � F F�1ðPDiÞ � ci � ~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

" #

; (5.9)

where ci is the correlation between the asset returns of two obligors, which is due to
the conjoint dependence to the systematic risk factor ~x. Instead of using r as an

input parameter as it is done in the ASRF model, the new correlation parameter ci is
calculated in a way that the correlation between the introduced single risk factor ~x
and the original sector factors {~xs} is maximized. Thus, most of the correlation

structure in the multi-factor model should be matched by this single factor.

As a next step, a Taylor series expansion around the comparable one-factor

model (5.9) is performed in order to reduce the approximation error. Via this

approach, it is possible to approximate the a-quantile qa ~L
� �

of the portfolio loss by

qa ~L
� � � qa

~L
� �

þ l �
dqa

~Lþ l ~Z
� �

dl

2

4

3

5

l¼0

þ l2

2
�

d2qa
~Lþ l ~Z
� �

dl2

2

4

3

5

l¼0

; (5.10)

where l is the scale of perturbation and l ~Z describes the approximation error

between “true” loss ~L and the loss in the comparable one-factor model ~L, i.e.

~L� ~L ¼: l ~Z. The first summand on the right-hand side of (5.10) is the a-quantile
of the loss ~L within the reasonably adjusted ASRF model, which is

m1;cðF�1ð1� aÞÞ.285 The required correlation factor ci is derived in Appen-

dix 5.5.1.286 In addition to maximizing the correlation between the single factor

and the sector factors, the concrete choice of ci guarantees that the first derivative in
(5.10) is equal to zero, see also Appendix 5.5.1. Hence, the so-called multi-factor

adjustment Dqa is completely described by the second derivative in (5.10). Accor-

ding to Pykhtin (2004), the multi-factor adjustment Dqa can be written as287

284The conditional PD stems from the Vasicek model, cf. Sect. 2.4 or 2.7.
285Cf. (5.9).
286For the determination of ci, we need both the intra- and inter-sector correlations, which can be

taken from Sect. 5.2.1.
287This formula has already been derived for the granularity adjustment formula, cf. (4.18).
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Dqa ¼ qa ~L
� �� qa

~L
� �

� � 1

2 � dm1;cðxÞ
	

d x
� d�2;cðxÞ

dx
� �2;cðxÞ �

d2m1;cðxÞ
	

d x2

dm1;cðxÞ
	

d x
þ x

 !" #















x¼F�1ð1�aÞ
;

(5.11)

where �m;cðxÞ :¼ �mð~Lj~x ¼ xÞ is the mth conditional moment of the portfolio loss

about the mean.

The conditional expectation m1;cðxÞ and the required derivatives are already

known from the granularity adjustment:288

m1;c xð Þ ¼
X

n

i¼1

wi � ELGDi � piðxÞ; (5.12)

dm1;c xð Þ
dx

¼
X

n

i¼1

wi � ELGDi � d piðxÞð Þ
dx

; (5.13)

d2m1;c xð Þ
dx2

¼
X

n

i¼1

wi � ELGDi � d
2 piðxÞð Þ
dx2

; (5.14)

with

pi xð Þ ¼ F
F�1 PDið Þ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

; (5.15)

d pi xð Þð Þ
dx

¼ � ci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p � ’ F�1 PDið Þ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

; (5.16)

and

d2 pi xð Þð Þ
dx2

¼ � ci
2

1� ci2
� F

�1 PDið Þ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p � ’ F�1 PDið Þ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

: ((5.17))

The conditional variance �2;c is

�2;c ¼ V
X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x ¼ x

 !

(5.18)

288Cf. Sect. 4.2.1.2.

192 5 Model-Based Measurement of Sector Concentration Risk in Credit Portfolios



but in contrast to the single risk-factor framework, the defaults are not independent

conditional on x. Thus, it is not possible to use the formula of the granularity

adjustment. The dependence structure of the conditional default events becomes

apparent if we rewrite the formula of the asset return (5.1) using (5.2) and (5.73):

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

as;k � ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ci � ~x� ci � ~xþ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

as;k � ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ci � ~x� ci �
X

K

k¼1

bk � ~zk þ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

as;k � ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ci � ~xþ
X

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � as;k � ci � bk
� �

� ~zk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi:

(5.19)

Even if the systematic factor ~x is fixed, the asset returns are not independent of
each other but depend on the constructed sector variables ~zk.

289 The correlation

between obligor i and j conditional on ~x can be calculated as:290

rxij ¼ Corr ~as;i; ~at;jj~x
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirIntra;i � rIntra;jp �P

K

k¼1

as;k � at;k � ci � cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2ð Þ � 1� cj2
� �

q :
(5.20)

Although the asset returns are not independent conditional on ~x, they are

independent conditional on the sector factors ~zk. We can use this property by

decomposing the conditional variance of the portfolio loss �2;cðxÞ into two terms,

�12;cðxÞ and �GA2;c ðxÞ:291

�2;cðxÞ ¼ V ~Lj~x ¼ x
� � ¼ V E ~Lj ~zkf g� �j~x ¼ x

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1
2;c
ðxÞ

þE V ~Lj ~zkf g� �j~x ¼ x
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�GA
2;c

ðxÞ

: (5.21)

The term �12;cðxÞ describes the systematic risk adjustment, which is given by the

difference between the multi-factor and single-factor loss distribution in infinitely

289Cf. (5.2).
290See Appendix 5.5.2.
291The derivation of the variance decomposition can be found in Weiss (2005), p. 385 f.
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fine-grained portfolios. The other term �GA2;c ðxÞ is relevant for the granularity adjust-
ment, which measures the influence of portfolio name concentration. The calcula-

tion of the terms �12;cðxÞ and �GA2;c ðxÞ can be found in Appendix 5.5.3 and utilizes the
conditional independence property of the decomposed terms. This leads to

�12;cðxÞ¼
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj F2 F�1 piðxÞð Þ;F�1 pjðxÞ
� �

;rxij
� �

�piðxÞpjðxÞ
h i

;

(5.22)

�GA2;c ðxÞ¼
X

n

i¼1

wi
2 ELGDi

2 piðxÞ�F2 F�1 piðxÞð Þ;F�1 piðxÞð Þ;rxii
� �� �� þVLGDipiðxÞ

�

:

(5.23)

According to (5.11), we also need the derivative d�2;cðxÞ=dx. Thus, the deriva-
tives of the decomposed variance terms are calculated in Appendix 5.5.4, leading to

d�12;cðxÞ
dx

¼ 2 �
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj
dpiðxÞ
dx

� F
F�1 pjðxÞ

� �� rxijF
�1 piðxÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

� pjðxÞ

0

B

B

@

1

C

C

A

;

(5.24)

d�GA2;c xð Þ
dx

¼
X

n

i¼1

w2
i

dpi xð Þ
dx

� ELGD2
i 1� 2F

F�1 pi xð Þ½ � � rxiiF
�1 pi xð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxii
� �2

q

0

B

@

1

C

A

2

6

4

3

7

5

0

B

@

þVLGDiÞ:
(5.25)

Using the terms (5.13)–(5.17), (5.20), and (5.22)–(5.25), the multi-factor adjust-

ment (5.11) can be calculated. Since the multi-factor adjustment is linear in the

conditional variance and its derivatives, we can also write the multi-factor adjust-

ment as

Dqa ¼ Dq1a þ DqGAa ; (5.26)

i.e. the multi-factor adjustment can be split into a systematic risk adjustment

component and a granularity adjustment component. To sum up, the approximation

of a loss quantile qað~LÞ in (5.10) is given by (5.9) and by the multi-factor adjustment

qa ~L
� � � qa

~L
� �

þ Dqa ¼ qa
~L
� �

þ Dq1a þ DqGAa : (5.27)
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5.2.2.2 Derivation and Implementation of the ES-Based

Multi-Factor Adjustment

After dealing with the VaR, now the ES-based multi-factor adjustment is presented.

Using the integral representation of the ES (2.20) and substituting the quantile

qað~LÞ by approximation (5.27), the ES can be written as

ESa ~L
� � ¼ 1

1� a
�
ð

1

a

qsð~LÞds

� 1

1� a
�
ð

1

a

qs
~L
� �

þ Dqs
� �

ds

¼ ESa
~L
� �

þ 1

1� a
�
ð

1

a

Dqsds ¼: ESa
~L
� �

þ DESa:

(5.28)

The first summand of the right-hand side describes the ES for the comparable

single-factor model and the second summand is the multi-factor adjustment.

The ES in the ASRF model is already known from (4.59), leading to

ESa
~L
� �

¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 �F�1ðaÞ;F�1ðPDiÞ; ci
� �

: (5.29)

In order to calculate the multi-factor adjustment in (5.28), we use the formula-

tion of Dqs from (4.18):

DESa ~L
� � ¼ � 1

2ð1� aÞ
ð

1

a

1

’ðxÞ
d

dx

’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx

 !















x¼F�1ð1�sÞ
ds: (5.30)

Substituting x :¼ F�1ð1� sÞ and thus ds ¼ �’ðxÞdx, xðs ¼ aÞ ¼ F�1ð1� aÞ,
and xðs ¼ 1Þ ¼ �1 results in

DESa ~L
� � ¼ � 1

2ð1� aÞ
ð

F�1ð1�aÞ

�1

1

’ðxÞ
d

dx

’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx

 !






















x¼x

’ðxÞdx

¼ � 1

2ð1� aÞ
’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx

 !" #F�1ð1�aÞ

�1
:

(5.31)
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The derivative of m1;c can be written as dm1;cðxÞ=dx ¼ g � ’ðxÞ, with g being a

constant value. As �2;cð�1Þ ¼ 0, the right-hand side of (5.31) vanishes at

x ¼ �1, leading to

DESa ~L
� � ¼ � 1

2ð1� aÞ
’ðxÞ �2;cðxÞ
dm1;cðxÞ

	

dx
















x¼F�1ð1�aÞ
: (5.32)

This equation can easily be computed using the conditional variance and the

derivative of the conditional expectation of Sect. 5.2.2.1. Again, the multi-factor

adjustment can be decomposed into a systematic and an idiosyncratic part by

decomposing the conditional variance. Hence, the ES for a portfolio in a multi-

factor model is given by

ESa ~L
� � ¼ ESa

~L
� �

þ DES1a þ DESGAa : (5.33)

It is worth noticing that the resulting expression (5.32) is much simpler than the

corresponding formula for the VaR. The same phenomenon could already be

observed for the granularity adjustment formula in Chap. 4.

In principle, it is straightforward to implement the Pykhtin model. For calculat-

ing the ES we have to compute (5.32). The problem is that the computation can be

extremely time-consuming if the formula is applied to large portfolios. The reason

is that the calculation procedure inter alia requires n2-times the computation of the

conditional asset correlation,292 with n being the number of credits. An alternative

performed by D€ullmann and Masschelein (2007) is to neglect the multi-factor

adjustment and to use (5.9) only to aggregate all credits for each sector and thus

using the formulas on sector and not on borrower level. Of course, it may be

expected that this simplification is at the cost of lower approximation accuracy.

To consider the multi-factor adjustment, we propose to build PD-classes for each of

the sectors and aggregate the credits to these buckets for the calculation of the

multi-factor adjustment, so that the computation time is predominated by

Loops ¼ ðNPD � SÞ2; (5.34)

where NPD and S denote the number of PD-classes and sectors, respectively.293 If

the number of PD-classes is sufficient, the approximation error resulting from

aggregating individual PDs to PD-classes is negligible. As the number of loops

does not grow with bigger portfolios, it is possible to perform the adjustment on

292The quadratic computation effort is due to the determination of a double sum (see (5.22) and

(5.24)).
293The results of the multi-factor adjustment do not differ whether different exposures with the

same PD are aggregated or handled separately on borrower level. For details see Sect. 5.2.2.1 and

Appendix 5.5.1.
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bucket level within reasonable time. Only the granularity adjustment should be

calculated on borrower level but this is no computational burden.294

5.2.3 Accounting for Sector Concentrations with the Model
of Cespedes, Herrero, Kreinin and Rosen

5.2.3.1 Design of the Diversification Factor

Cespedes et al. (2006) present a method to relate the economic capital in the multi-

factor model to the regulatory capital formula.295 These models are linked via a

diversification factor DFð�Þ, which depends on two parameters:

l The average sector concentration HHI and
l The average weighted inter-sector correlation b

Herewith, the economic capital of a portfolio can be approximated as:

ECmf � DF HHI; b
� � � RC: (5.35)

Thus, the economic capital in the multi-factor model ECmf can be approximated

by a well-defined diversification factor DF multiplied with the regulatory capital

requirement of the ASRF model RC. As mentioned before, Cespedes et al. (2006)

assume in their calculations the regulatory capital of Pillar 1 to be an upper barrier

of the true risk because no diversification effects between the sectors are con-

sidered, which in turn implies the parameter DF to be always less than or equal to

one. In contrast, if we use our definition of the intra-sector correlation rIntra from
Sect. 5.2.1, it is possible to obtain ECmf>RC as well as ECmf<RC depending on the

degree of diversification in comparison to the well-diversified portfolio defined in

Sect. 5.2.1. Hence, our later on calculated DF-function can be greater than one,

i.e. the DF-function measures not only the benefit from sector diversification but

also the risk resulting from high sector concentration. As the regulatory capital is

additive in the ASRF model, (5.35) can be substituted by

ECmf � DF �
X

S

s¼1

RCs; (5.36)

in which ECmf is the economic capital in the multi-factor model and RCs is the

regulatory capital for sector s. In principle, the approach can be characterized as

294The computation time when calculating the multi-factor adjustment on bucket- instead on

borrower-level can be reduced from 67 min to 5 s for a portfolio with 11 sectors, 7 PD-classes,

and 5,000 creditors.
295In the strict sense, Cespedes et al. (2006) relate the multi-factor model to the economic capital in
a single-factor model. But since they apply the regulatory capital formula and we require a relation

to this formula, too, we use the term regulatory capital instead.
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follows: Firstly, ECmf is calculated for a multitude of portfolios via Monte Carlo

simulations. For each simulated portfolio, the diversification factor can be calcu-

lated according to (5.36). Finally, a regression is performed to get an approximation

for DF as a function of the two parameters HHI and b. If DF can capture the

industry diversification effects, we are able to approximate ECmf with (5.36)

without additional Monte Carlo simulations.

To derive the parameters which explain the effect of diversification and concen-

tration in a multi-factor model, Cespedes et al. (2006) suggest to use the average

inter-sector correlation b. This can be interpreted as a scale of the dependence

between the sectors. The formula for b is given as

b ¼

P

S

s¼1

P

t6¼s

rInters;t � RCs � RCt

P

S

s¼1

P

t 6¼s

RCs � RCt

; (5.37)

The correlation is weighted by the regulatory capital in order to account for the

contribution of each sector. As a consequence, the correlation between sectors with

a high capital requirement account for a high degree of the average correlation.296

The second suggested parameter is a parameter for the degree of capital diversi-

fication, measured by the Herfindahl–Hirschmann Index HHI.297 It describes the

sector concentration measured by the relative weight of each sectors regulatory

capital RCs:298

HHI ¼
P

S

s¼1

RCsð Þ2

P

S

s¼1

RCs

� �2
: (5.38)

As mentioned in Sect. 3.4, the parameter HHI lies between two extreme values:

l HHI ¼ 1=S, i.e. perfect sector diversification,
l HHI ¼ 1, i.e. perfect sector concentration.

To avoid a too complex model, Cespedes et al. (2006) neglect further potential

input parameters to determine the DF-function. To approximate the multi-factor

model, (5.36) can be rewritten as

ECmf � DF HHI; b
� � �

X

S

s¼1

RCs: (5.39)

296The idea is related to Pykhtin (2004), who uses the VaR from the ASRF model as a weight when

maximizing the correlation between the single factor of the comparable one-factor model and the

sector factors; cf. (5.82)–(5.85).
297Cespedes et al. (2006) call this parameter the capital diversification index (CDI).
298This concentration measure corresponds to (2.87).

198 5 Model-Based Measurement of Sector Concentration Risk in Credit Portfolios



5.2.3.2 Computation of the Diversification Factor by Simulation

In the following, our procedure to estimate the DF-function is presented. In order to
get a universally valid DF-factor, as many portfolios as possible have to be

generated and simulated. To reduce the necessary number of trials, the portfolios

should be restricted to those with reasonable characteristics. Our portfolios are

randomly generated using the following parameter setting. When we state several

parameter values or a parameter range, the parameter is randomly drawn from

this set.

For the intra-sector correlations, we use the functional form of (5.8). The inter-

sector correlation structure is taken from Table 5.1, so that all simulated portfolios

are stemming from this sector definition. Each portfolio consists of {2, . . ., 11}
sectors that are randomly drawn from the different industries. The sector weights

are in [0, 1] and sum up to one. The total number of credits is 5,000, equally divided

for each sector. Each sector in turn consists of credits from the PD classes {AAA,

AA, A, BBB, BB, B, CCC}. Instead of using equally distributed PD classes, we

draw the quality distribution from our predefined credit portfolio qualities {very

high, high, average, low, very low} for every sector from Fig. 4.7.299 We draw

25,000 or 50,000 portfolios and compute the economic capital in the multi-factor

model for each portfolio.

To determine the economic capital, we have tried both Monte Carlo simulations

with 100,000 trials300 for every portfolio and the Pykhtin formula from Sect. 5.2.2.

Because the computation time for Monte Carlo simulations is materially longer, the

corresponding results are based on 25,000 random portfolios, whereas we computed

the economic capital for 50,000 portfolios when using the Pykhtin formula instead.

Furthermore, since Cespedes et al. (2006) use the VaR as the relevant risk measure

and thus define the economic capital as ECmf :¼ VaRmf
0:999 � EL, we have to redefine

the economic capital of the multi-factor model with respect to ES as argued in

Sect. 4.3.1: ECmf :¼ ESmf
0:9972 � EL.301 In contrast, for the regulatory capital we use

RC ¼ VaRðBaselÞ � EL. The result could also be related to the Expected Shortfall in

the ASRF model but we have detected that the results differ only marginally and the

VaR is easier to implement in typical spreadsheet applications.302 The results for the

diversification factor DF are very similar regardless of whether they are based on

299The setting is similar to Cespedes et al. (2006). Until this point, the main difference is the

definition of the intra- and inter-sector correlations.
300For the determination of the economic capital for one specific portfolio, the number of trials is

slightly low but as we perform 25,000 simulations and the simulation noise of each simulation is

unsystematic, the error terms should cancel out each other to a large extent.
301We have also tested the results when using the ES instead of the unexpected loss but the

coefficient of determination is higher when subtracting the EL in the corresponding formulas when

performing the simulations.
302To determine the Expected Shortfall with (4.59), a bivariate cumulative normal distribution has

to be computed whereas the Value at Risk only makes use of univariate distributions.
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Monte Carlo simulations or on the Pykhtin formula. Fig. 5.1 presents characteristics

of the diversification factor when using the Pykhtin formula.

For a determination of the functional form of DF, we use a regression of the

type303

DF ¼ a0 þ a1 � 1� HHIð Þ � 1� b
� �

þ a2 � 1� HHIð Þ2 � 1� b
� �þ a3 � 1� HHIð Þ � 1� b

� �2 (5.40)

in both cases, using the ordinary least squares (OLS) technique. The resulting

function when using Monte Carlo simulations is

DFMC ¼ 1:4626� 1:4475 � 1� HHIð Þ � 1� b
� �

� 0:0382 � 1� HHIð Þ2 � 1� b
� �þ 0:3289 � 1� HHIð Þ � 1� b

� �2

(5.41)
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Fig. 5.1 Diversification Factor realizations on the basis of 50,000 simulations

303We have tried several different regressions but similar to Cespedes et al. (2006), this function

worked best. In contrast to Cespedes et al. (2006) we do not set the first parameter a0 to one

because our DF-factor is not bounded by the single-factor model.
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with R2 ¼ 95.5%. Analogously, we determined the DF-function when using the

Pykhtin formula

DFPykhtin ¼ 1:4598� 1:4168 � 1� HHIð Þ � 1� b
� �

� 0:0213 � 1� HHIð Þ2 � 1� b
� �þ 0:2421 � 1� HHIð Þ � 1� b

� �2

(5.42)

with a coefficient of determination of R2 ¼ 97.9%. The latter function is plotted in

Fig. 5.2.304 To finally get the approximation for the multi-factor model, (5.39) has

to be computed using either function (5.41) or (5.42).

It can be seen that the maximum diversification factor is about 1.46. Thus, in the

case of (almost) no diversification effects, the measured capital requirement is 46%

above the regulatory capital under Pillar 1. This will appear in the case of being

concentrated to a single sector, leading toHHI ¼ 1, as well as in the theoretical case
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Fig. 5.2 Surface plot of the DF-function

304The shape of the function is similar to Cespedes et al. (2006) but their range is from 0.1 to 1.0

whereas our function ranges from 0.2 to 1.5. In addition, they received a little higher R2 (99.4%

instead of 95.5% or 97.9%) but this is mainly due to the different simulation setting. Cespedes

et al. (2006) directly draw the parameter b as an input parameter for each simulation, implying b to

fully define their correlation structure. We use a heterogeneous correlation structure instead and

compute b for the portfolios. Thus, in our setting b does not reflect the complete correlation

structure, which results in a lower R2 but does not imply a worse approximation.
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of perfect correlations between the relevant sectors, leading to b ¼ 1. Furthermore,

the diversification factor is strongly increasing in HHI and in b, which is consistent
with the intuition.

5.2.4 Accounting for Sector Concentrations with the Model
of D€ullmann

5.2.4.1 The Binomial Expansion Technique

The model of D€ullmann (2006) is a combination of the Binomial Expansion

Technique (BET)-model and the Infection Model of Davis and Lo (2001). For

this reason, at first, the BET-model and the infection model will be explained,

before the model of D€ullmann will be presented and applied to our multi-factor

setting. During the application, we will deviate from the original procedure in order

to apply the ES instead of the VaR and to accelerate the computation time signifi-

cantly for large portfolios.305

The Binomial Expansion Technique (BET) was developed by Moody’s for the

rating of CDOs but it can also be applied to standard credit portfolios without

tranches. The BET-model approximates the loss distribution of the portfolio but is

much less computationally intensive than Monte Carlo simulations.306 The main

idea is to perform a mapping of the original portfolio into a hypothetical homo-

geneous portfolio with stochastically independent, Bernoulli distributed loss events

leading to a binomial distributed number of losses. The hypothetical portfolio can

be described by the average probability of default p, the number of credits D, which
is called the modified Diversity Score, and the (constant) Loss Given Default LGD.
The parameters D and p are calibrated in a way that the first two moments of the

original and the hypothetical portfolio loss distribution are identical. This shall lead

to a similar overall loss distribution of both portfolios.

With ns for the number of credits in sector s, the loss of the original portfolio

equals

~Lorig ¼
X

S

s¼1

X

ns

i¼1

ws;i � LGD � 1 ~Ds;if g; (5.43)

whereas the loss of the hypothetical portfolio is

~Lhyp ¼
X

D

i¼1

w � LGD � 1 ~Dif g ¼
X

D

i¼1

1

D
� LGD � 1 ~Dif g: (5.44)

305In comparison to the original procedure, the computation time could be reduced by almost

99.9% in our calculations.
306Cf. Cifuentes et al. (1996), Cifuentes and O’Connor (1996), and Cifuentes and Wilcox (1998).
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Matching the expectation for both portfolios leads to307

p :¼ E 1 ~Dif g
� �

¼
X

S

s¼1

X

ns

i¼1

ws;i � PDs;i (5.45)

and matching the variance results in308

D¼ p � 1�pð Þ
P

S

s¼1

P

S

t¼1

P

ns

i¼1

P

nt

j¼1

ws;i �wt;j �Corr 1 ~Ds;if g;1 ~Dt;jf g
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1�PDs;i

� �

PDt;j 1�PDt;j

� �

q

:

(5.46)

The pairwise default correlation and the asset correlation between borrower i in
sector s and borrower j in sector t can be transformed into each other with309

Corr 1 ~Ds;if g; 1 ~Dt; jf g
� �

¼ F2 F�1 PDið Þ;F�1 PDj

� �

;Corr ~as;i; ~at; j
� �� �� PDi � PDj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1� PDs;i

� �

PDt; j 1� PDt; j

� �

q :

(5.47)

In the original model, it is assumed that the correlation between every two

borrowers, which are in the same sector, is identical. Furthermore, it is assumed

that the correlation between two borrowers in distinct sectors is always identical

and the PDs inside a sector are homogeneous. These assumptions would lead to

some simplifications in (5.45)–(5.47), but they are not necessary for the calculation

of the loss distribution. Thus, we can also use the correlation structure from (5.4)

and use (5.45)–(5.47). Having determined the parameters p and D, we can calculate
the loss distribution for the hypothetical portfolio. Since the (uncertain) number of

defaults ~k in the hypothetical portfolio is binomially distributed

~k ¼
X

D

i¼1

1 ~Dif g � B D; pð Þ; (5.48)

the probability of having k defaults is

Pk ¼ P ~k ¼ k
� � ¼ P

X

D

i¼1

1 ~Dif g ¼ k

 !

¼ D
k

� �

� pð Þk � 1� pð ÞD�k: (5.49)

307See Appendix 5.5.5.
308See Appendix 5.5.5.
309See Appendix 5.5.6.
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The corresponding cumulative distribution function for the number of defaults is

FkðxÞ ¼ P ~k � x
� � ¼ P

X

D

i¼1

1 ~Dif g � x

 !

¼
X

x

k¼0

Pk: (5.50)

Thus, the loss distribution of the original portfolio can be approximated with

F
ðnÞ
origðlÞ � F

ðDÞ
hypðlÞ ¼ P

X

D

i¼1

1

D
� LGD � 1 ~Dif g � l

 !

¼ P
X

n

i¼1

1 ~Dif g � l � D
LGD

 !

¼
X

l�D=LGDb c

k¼0

Pk;

(5.51)

leading to a VaR of

VaRa ~L
orig

� �

� VaRa ~L
hyp

� �

¼ 1

D
� LGD � F�1

k að Þ; (5.52)

where F�1
k að Þ is the inverse CDF of the binomial distribution with parametersD and

p from (5.48). The ES can be computed using the definition of the ES (2.19). From

(5.48) and (5.52) it can best be seen that the interaction between the credits is

incorporated by reducing the real number of credits to the hypothetical number, the

Diversity Score, with higher exposure weights. E.g., for D ¼ n=2, each (stochasti-

cally independent) default in the hypothetical portfolio is equivalent to two defaults

in the original portfolio, which leads to some kind of default interaction in the

original portfolio.

5.2.4.2 The Infectious Defaults Model

Davis and Lo (2001) present an alternative to the BET-model for the determination

of the loss distribution of a credit portfolio which is assumed to be homogeneous.310

In the model, credits can default not only directly but they can also be “infected” by
other credits leading to an indirect default. Similar to the BET-model, the direct

defaults are assumed to be stochastically independent, leading to a binomial

distribution of direct defaults. Thus, the task is how the indirect defaults can be

incorporated into the loss distribution. To begin with, several indicator variables

are introduced, which indicate the type of default and the interaction. Whether a

credit defaults or not is expressed by the indicator variable ~Zi, which equals one in

the event of default and zero otherwise. Thus, the total number of defaults in the

portfolios is

~k ¼ ~Z1 þ ~Z2 þ � � � þ ~Zn: (5.53)

310Similar to the BET-model, the authors developed their model for CDOs but it can also be

applied to standard credit portfolios.
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If credit i defaults directly, the indicator variable ~Xi takes the value one.

Furthermore, the indicator variable ~Yj;i indicates whether credit j could potentially
infect credit i. The condition for this infection is that both the infection variable ~Yj;i
and the direct default indicator ~Xj of credit j take the value one. This leads to the

following function for the default indicator ~Zi:

~Zi ¼ ~Xi þ 1� ~Xi

� � � 1�
Y

j6¼i

1� ~Xj � ~Yj;i

� �

 !

;with i ¼ 1; :::; n and j ¼ 1; :::; n:

(5.54)

In (5.54), the second term is only relevant if credit i does not default directly. In
this case, an infection through any one or several credits leads to a product of zero

so that the second term equals one. The equation will be demonstrated further with

the following examples for a portfolio consisting of four credits:

l Credit 1 defaults directly:

Z1 ¼ X1 þ 1� X1ð Þ � 1�
Y

j 6¼i

1� Xj � Yj;i
� �

 !

¼ 1þ 1� 1ð Þ � 1�
Y

j6¼i

1� Xj � Yj;i
� �

 !

¼ 1:

As the term ð1� X1Þ equals zero, the last expression vanishes and Credit 1

defaults directly without an effect of defaults of the other credits.

l Credit 2 defaults as a consequence of infection from the defaulted credit 1:

Z2 ¼ X2 þ 1� X2ð Þ � 1� 1� X1 � Y1;2
� � � 1� X3 � Y3;2

� � � 1� X4 � Y4;2
� �� �

¼ 0þ 1� 0ð Þ � 1� 1� 1 � 1ð Þ � 1� 0 � 1ð Þ � 1� 1 � 0ð Þð Þ ¼ 1:

The non-defaulting Credit 3 would also have the potential to infect Credit 2 in

the case of a default. Credit 4 defaults but does not infect credit 2.

l Credit 3 does not default:

Z3 ¼ X3 þ 1� X3ð Þ � 1� 1� X1 � Y1;3
� � � 1� X2 � Y2;3

� � � 1� X4 � Y4;3
� �� �

¼ 0þ 1� 0ð Þ � 1� 1� 1 � 0ð Þ � 1� 0 � 0ð Þ � 1� 1 � 0ð Þð Þ ¼ 1:

The third credit does neither default directly nor indirectly.

In a probabilistic setting, a direct default is assumed to happen with probability p:

P ~Xi ¼ 1
� � ¼ p 8i: (5.55)

Similar, the infection indicator ~Yj;i takes the value one with probability q:

P ~Yj; i ¼ 1
� � ¼ q 8i; j: (5.56)
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Thus, the dependence structure is assumed to be perfectly homogeneous. Let i be
the number of direct defaults, k–i the number of indirect defaults, so that we have in

total k defaults, and the other n–k credits do not default. The probability of

observing k defaults out of n credits is

Pk ¼
n

k

� �

�
X

k

i¼1

k

i

� �

� pi
|{z}

i direct defaults

� 1� pð Þ � 1� 1� qð Þi
� �h ik�i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�i indirect defaults

� 1� pð Þ � 1� qð Þi
h in�k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n�k survivors

:

(5.57)

The probability Pk can be split into four parts:

(a) If we ignore the perturbations, the probability of i direct defaults is pi.
(b) A number of k–i indirect defaults occurs if these credits do not default directly,

which has the probability ð1� pÞk�i
, but these are infected by any of the i

directly defaulted credits with probability ð1� ð1� qÞiÞk�i
.

(c) For a survival of n–k credits, these credits default neither directly, which has a

probability of ð1� pÞn�k
, nor any of the i directly defaulted credits leads to an

indirect default, which can be expressed as ðð1� qÞiÞn�k
.

(d) There are several possible perturbations of defaulted credits. Firstly, there are

n
k

� �

perturbations for k out of n defaults. Furthermore, there are several

combinations of direct and indirect defaults. A number of k defaults can consist
of ð1; k � 1Þ; ð2; k � 2Þ; :::; ðk; 0Þ direct and indirect defaults. For each of

these combinations, there exist
k
i

� �

perturbations. All of the corresponding

probabilities have to be summed up to cover all combinations for k defaults.

Expression (5.57) could also be written as

Pk ¼
n

k

� �

�
X

k

i¼1

k

i

� �

� pi � 1� pð Þn�i � 1� 1� qð Þi
� �k�i

� 1� qð Þi n�kð Þ

¼ n

k

� �

�
X

k�1

i¼1

k

i

� �

� pi � 1� pð Þn�i � 1� 1� qð Þi
� �k�i

� 1� qð Þi n�kð Þ

þ n

k

� �

� k

k

� �

� pk � 1� pð Þn�k � 1� 1� qð Þk
� �0

� 1� qð Þk n�kð Þ

¼ n

k

� �

� pk � 1� pð Þn�k � 1� qð Þk n�kð Þ
h

þ
X

k�1

i¼1

k

i

� �

� pi � 1� pð Þn�i � 1� 1� qð Þi
� �k�i

� 1� qð Þi n�kð Þ
#

;

(5.58)

206 5 Model-Based Measurement of Sector Concentration Risk in Credit Portfolios



which corresponds to the original formula of Davis and Lo (2001). Thus, with the

Infectious Defaults Model (IDM), we obtain the following distribution of defaults:

FIDMðxÞ ¼
X

x

k¼0

Pk; (5.59)

or, in analogy to (5.51), we obtain the loss distribution

FIDMðlÞ ¼
X

l�n=LGDb c

k¼0

Pk: (5.60)

The VaR can be calculated as

VaRIDM
a

~L
� � ¼ FIDM

a

� ��1ðlÞ ¼ 1

n
� LGD � FIDM

a

� ��1ðxÞ; (5.61)

and the ES can be computed using the definition of the ES (2.19).

The main problem for an application of (5.60) is to determine the probability of a

direct default p and the infection probability q. Usually, statistical models only

provide the (combined) probability of default PD without separating these types of

defaults. Thus, if the infection probability q could be determined exogenously, it is

plausible to demand that the probability p shall be consistent with the estimation of

PD with respect to the expected number of defaults:311

E
X

n

i¼1

1 ~Dif g
 !

¼ n � 1� 1� pð Þ � 1� p � qð Þn�1
� �

¼! n � PD: (5.62)

Consequently, the remaining task is to find a method to estimate q from histori-

cal or market data. Unfortunately, this problem could not be solved by Davis and Lo

(2001). Thus, for the time being it seems necessary to rely on the opinion of experts

which infection probabilities seem to be reasonable for a specific portfolio or sector.

5.2.4.3 Integrating Infectious Defaults into the BET-Model

Setup of the Model

As demonstrated by D€ullmann (2006), the BET-model can significantly under-

estimate the VaR if the asset returns of the credits are positively correlated. Thus,

the BET-model seems not suitable for measuring concentration risk, which

is usually characterized by a high degree of default interaction. Against this

background, D€ullmann (2006) combines the infection model of Davis and Lo

311The expected number of defaults in the infectious defaults model is determined in

Appendix 5.5.7.
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(2001), which explicitly considers default interaction, with the BET-model. For this

purpose, at first a heterogeneous portfolio is mapped into a comparable homoge-

neous portfolio as in the BET-model. Thus, the average probability of default p as

well as the Diversity Score D are calculated according to (5.45) and (5.46). Using

this hypothetical portfolio consisting of D credits, the default distribution is calcu-

lated on the basis of the infectious defaults model, leading to the following

expression for the VaR in the infection model (IM) of D€ullmann:312

VaRIM
a

~L
� � ¼ 1

D
� LGD � FIDM

a

� ��1ðxÞ; (5.63)

with the distribution function FIDM
a of the infectious defaults model from (5.59). At

this point, the probabilities of a direct default p and indirect default q are still

required as additional input parameters. Similar to the suggestion of Davis and Lo

(2001) to choose the parameter p for a given parameter q in a way that the expected
loss is correct, D€ullmann (2006) proposes to choose the parameters in a way that the

VaR is identical to the “true” VaR of a multi-factor model. For this purpose, he

determines the VaR at confidence level 0.999 with Monte Carlo simulations and

chooses the parameter q for a given parameter p that solves the following equation:

VaRIM
0:999

~L
� �¼! VaRMC

0:999
~L
� �

: (5.64)

In principle, it is possible not only to match the VaR but also to match the EL. In

this case, both parameters p and qwould be a result of these two conditions. Instead,
D€ullmann (2006) uses only condition (5.64) and uses the value of the averaged PD

for the parameter p. Since the direct defaults should actually be only a part of the

total number of defaults, the expectation of the loss distribution is too high when

using this approach. However, if only the VaR is of interest, this procedure should

be sufficient.313

The next steps are very similar to the procedure of Cespedes et al. (2006). At

first, the VaR is computed for a multitude of portfolios and the corresponding

infection probabilities q are determined. Then, the infection probability is explained

by several portfolio variables with a linear regression. For this purpose, D€ullmann

(2006) chooses the following regression model:

lnðqÞ¼ a0þa1 � ln HHIð Þþa2 � ln pð Þþa3 � ln rIntrað Þþa4 � ln rInterð Þþ e; (5.65)

where the explanatory variables shall explain most of the dependence structure. The

Herfindahl–Hirschmann index HHI is calculated as the sum of squared relative

exposure shares of the sectors in the portfolio, which is similar to the definition used

by Cespedes et al., who rely on the share of regulatory Pillar 1 capital instead of the

312Cf. (5.61) for the corresponding expression without using the parameters of the BET-model.
313D€ullmann (2006) mentions that the simultaneous computation of both parameters leads to

numerical problems. For this reason, the discrepancy in the EL is accepted. Cf. D€ullmann

(2006), p. 10.
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share of exposure. The average probability of default p is calculated with (5.45).

The variables rIntra and rInter are the average intra- and inter-sector correlations,

which are weighted by the total exposure amounts of the corresponding sectors.

Thus, the calculation is similar to the average weighted inter-sector correlation b
from (5.37), except for the weighting with the total exposure instead of the

regulatory capital under Pillar 1. In this context, it is important to notice that

D€ullmann (2006) uses a definition of the sector correlations that is slightly different

from the definition used in the preceding sections. While we use the term inter-

sector correlation for the correlation between the sector factors, D€ullmann (2006)

uses this expression for the correlation between the asset returns of two borrowers,

which belong to different sectors, leading to

Corr ~as;i; ~at;j
� � ¼

1 if s ¼ t and i ¼ j;

rIntra if s ¼ t and i 6¼ j;

rInter if s 6¼ t;

8

>

<

>

:

(5.66)

which already takes into account that the correlation parameters are assumed to be

homogeneous. Thus, the relation between “our” intra- and inter-sector correlation

rIntra and rInter and “D€ullmann’s” correlation parameters rIntra and rInter is

rIntra ¼ rIntra and rInter ¼ rIntra � rInter (5.67)

in a homogeneous setting.314 The coefficients a0; :::; a4 of regression model (5.65)

are estimated using the ordinary least squares (OLS) technique. Finally, after

application of the resulting regression function, the VaR can be approximated for

any credit portfolio by computation of (5.63).

Calibration and Implementation of the Model

For the calibration of the model, several portfolios are constructed which differ in

the degree of concentration, the PDs, and the correlation coefficients.315 It is

assumed that the portfolio consists of 2,000 credits with identical exposure size.

In the first of four portfolio types there are only three different sectors with a

sectoral exposure weight of 50%, 30%, and 20%. This leads to a HHI of 38%. The

second portfolio is constructed from the first one by splitting each sector into two

new sectors, where the first one has a share of 2/3 and the second one of 1/3. The

same procedure is repeated for the third and the fourth portfolio type, so that the last

portfolio consists of 3 � 23 ¼ 24 sectors and contains the smallest sector concentra-

tion with a HHI of 6.5%. In addition to this variation, the probability of default is

314See also definition (5.4) of Sect. 5.2.1.
315The portfolios used for calibration correspond to the setting of D€ullmann (2006).
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varied between 0.03% and 5%, the correlation parameter rIntra between 5% and

40%, and the correlation parameter rInter between 2.5% and 15%.316 These para-

meters are identical for every credit of a specific portfolio. Thus, for each of the four

mentioned portfolio types the parameter combinations shown in Table 5.4 are

applied, leading to 360 portfolios in total.

Consistent with the preceding sections, we implement the ES instead of the VaR.

Thus, for each of these portfolios, the ES is computed on the basis of a standard

Monte Carlo simulation. Within the calculation of ES in the infection model, the

value of the averaged PD is used for the parameter p as noticed before. Then, the

infection probability q is determined, which leads to a match between the ES of

the infection model and the Monte Carlo simulation:

ESIM0:999
~L
� �¼! ESMC

0:999
~L
� �

: (5.68)

When determining the ES in the infection model, we have to calculate the

inverse CDF ðFIDM
a Þ�1

with (5.59) and the Diversity Score D with (5.46), which

requires the default correlation of (5.47). The computation of D can be quite time-

consuming but the calculation can be accelerated significantly. Looking at the

Diversity Score

D¼ p � 1�pð Þ
P

S

s¼1

P

S

t¼1

P

ns

i¼1

P

nt

j¼1

ws;i �wt;j �Corr 1 ~Ds;if g;1 ~Dt;jf g
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDs;i 1�PDs;i

� �

PDt;j 1�PDt;j

� �

q

;

(5.69)

we find that the calculation requires n2-times the calculation of the denominator,

with
PS

s¼1 ns ¼ n for the total number of credits, and especially n2-times the

calculation of the default correlation.317 Similar to the computation of the multi-

factor adjustment from Sect. 5.2.2.2, building PD-classes for each sector can reduce

the calculation time notably. With NPD for the number of PD-classes, we can build

S � NPD ¼: B different buckets with a number of nu credits in each bucket u

Table 5.4 Parameter

combinations for the

calibration of the model

PD (%) �rIntra(%) �rInter(%)

0.03 5.0 2.5

0.20 10.0 2.5 5.0

0.50 15.0 2.5 5.0 7.5

1.00 20.0 5.0 7.5 10.0

2.00 30.0 5.0 10.0 15.0

5.00 40.0 5.0 10.0 15.0

316Due to the characteristic of the correlation parameter (5.67), the parameter rInter is always

smaller than the parameter rIntra.
317See (5.47).
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ðPB
u¼1 nu ¼ nÞ. Thus, a bucket u corresponds to all credits in a specific com-

bination of a sector and a PD-class. Using this notation, the denominator of D can

be written as

p � 1� pð Þ
D

¼
X

S

s¼1

X

S

t¼1

X

ns

i¼1

X

nt

j¼1

ws;i �wt;j �Corr 1 ~Ds;if g;1 ~Dt;jf g
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(5.70)

The first term of the resulting expression utilizes that the default correlation

between creditors and the PDs are identical within each bucket. Therefore, we can

sum up the corresponding terms. However, this term neglects that the asset correla-

tion Corr(~as;i; ~as;iÞ of a credit with itself equals one. Instead, these elements are

treated as if the correlation was Corr(~as;i; ~as;iÞ � rIntra, which is only true for i 6¼ j.
Thus, we have to exchange the corresponding default correlations and set the

correlation to one. This is done in the second fraction. Obviously, the computation

time of (5.70) is now predominated by:318

Loops ¼ B2 ¼ NPD � Sð Þ2: (5.71)

Corresponding to the finding for the Pykhtin model, the number of loops does

not grow with bigger portfolios. Thus, it is possible to compute the formula on

bucket level within reasonable time.319

Using these terms, we determine the required infection probability q. As a next
step, for all 360 portfolios the explanatory variables of the regression model (5.65)

are calculated and the OLS-regression is performed. This leads to the following

estimation function for q:

lnðqÞ ¼ 0:8467þ 0:5017 � ln HHIð Þ þ 0:4726 � ln pð Þ
þ1:0849 � ln rIntrað Þ þ 0:6782 � ln rInterð Þ; (5.72)

318For the second fraction, a number of n elements has to be computed. Depending on the number

of buckets or credits, the computation time can be longer than for the first term, but due to the

linearity this term is virtually unproblematic.
319The computation time when calculating the infection model on bucket- instead on borrower-

level can be reduced from 12 min to less than 1 s for a portfolio with 11 sectors, 7 PD-classes, and

5,000 creditors.
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with a coefficient of determination of R2¼ 96.7%. Using this formula, the infection

probability and herewith the ES of every credit portfolio can be approximated very

fast. If the portfolio is heterogeneous, the input parameters p, rIntra, and rInter are the
weighted averages instead of the individual parameters as described in the previous

section. The performance of this model as well as the performance of the models

presented in Sects. 5.2.2 and 5.2.3 will be analyzed subsequently.

5.3 Performance of Multi-Factor Models

5.3.1 Analysis for Deterministic Portfolios

To determine the quality of the presented models, we start our analysis with

calculating the risk for five deterministic portfolios of different quality.320 We

generate well-diversified portfolios consisting of 5,000 credits. Consequently, we

have neither high name nor high sector concentration risk. For this, we choose the

sectors and their weights as given in Table 5.2. The inter-sector correlation is given

in Table 5.1 whereas the intra-sector correlation is calculated on the basis of (5.8).

The five portfolios differ in their PD distribution which is presented in Fig. 4.7.

Portfolio 1 is the portfolio with the highest and Portfolio 5 is the one with the lowest

credit quality distribution.

In Table 5.5, we compare the results from the Monte Carlo simulations

(MC-Sim.), the Basel II formula (Basel II), the multi-factor adjustment of Pykhtin

(Pykhtin), the formula that is based on Cespedes et al. (2006) if Monte Carlo

simulations are used for calibration (CHKR I) or if the Pykhtin formula is used

for the calibration (CHKR II), and the infection model of D€ullmann (D€ullmann).

The results from the Monte Carlo simulations using the risk measure ES serve as the

benchmark for the other models.

As can be seen in the table, the benchmark portfolio is constructed in a way

that the Basel II formula represents a very good approximation321 of the “real” ES

in a multi-factor model given by Monte Carlo simulations.322 Besides, the

simulated VaRmf matches the simulated ESmf, our benchmark, almost exactly.

The calculated values of the Pykhtin model are very good approximations of the

ES in almost all cases, too. The outcomes of the CHKR model are somewhat more

imprecise in both cases. With better credit quality, the estimation error is

320The results refer to the total gross loss of a portfolio in terms of ES or VaR. To relate this to the

unexpected net loss, the results have to be multiplied by the LGD and the EL has to be subtracted.
321The small mismatch is mainly due to keeping the ES-confidence level constant and not a result

of the chosen intra-sector correlation function. If we directly compare the results from Monte

Carlo simulations with the ES in the ASRF framework, the relative root mean squared error is

reduced from 0.97% to 0.28%.
322In our analyses, the number of simulation runs is 500,000.
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increasing, which leads to an underestimation of risk in high quality portfolios.

However, the infection model of D€ullmann shows a rather poor performance for all

benchmark portfolios and overestimates the true ES significantly.

As a next step, we change the portfolio structure towards high sector concentra-

tion. For this purpose, we increase the sector weights of two sectors. We assume

that 45% of the creditors – in terms of their exposure – belong to the Information

Technology sector and an equal amount belongs to the Telecommunication

Services sector. The remaining 10% of exposure are equally assigned to the

miscellaneous sectors. As shown in Table 5.6, the risk materially increases for

all types of portfolio quality. Again, the simulated values for ESmf and VaRmf are

very close to each other. However, the Basel formula underestimates the risk by

14–20%, depending on the portfolio quality. This is the (relative) amount that

should be considered in the assessment of capital adequacy under Pillar 2. The

approximation formula of Pykhtin can capture this concentration risk with a

negligible error in all cases. CHKR I leads to an underestimation of risk in high

quality portfolios and to an overestimation of risk in low quality portfolios with a

maximum deviation of nearly 4%. By contrast, in most cases the model CHKR II

underestimates the risk with at maximum 6%. Thus, the sector concentration risk is

not fully captured for high quality portfolios. The model of D€ullmann fails to

approximate the true risk and leads to a material overestimation of risk.

Furthermore, we built credit portfolios with low sector concentration. For this

purpose, we use the concept of naı̈ve diversification, implying each sector to have

an equal weight of 1/11. As can be seen in Table 5.7, the economic capital is

significantly lower than the regulatory capital. Moreover, this shows that it is easy

Table 5.5 Comparison of the models for the five benchmark portfolios with absolute error in

basis points (bp) and relative error in percent (%)

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

MC-Sim. ES (%) 6.23 7.68 12.95 20.88 23.15

VaR (%) 6.18 7.62 12.94 20.93 23.30

Absolute error (bp) �5 �6 �1 5 15

Relative error (%) �0.80 �0.78 0.08 0.24 0.65

Basel II VaR (%) 6.12 7.59 12.95 20.89 23.26

Absolute error (bp) �11 �9 0 1 11

Relative error (%) �1.77 �1.17 0.00 0.05 0.48

Pykhtin ES (%) 6.21 7.66 12.91 20.80 23.20

Absolute error (bp) �2 �2 �4 �8 5

Relative error (%) �0.32 �0.26 �0.31 �0.38 0.22

CHKR I ES (%) 6.07 7.51 12.70 20.43 22.79

Absolute error (bp) �16 �17 �25 �45 �36

Relative error (%) �2.57 �2.21 �1.93 �2.16 �1.56

CHKR II ES (%) 6.00 7.45 12.68 20.48 22.87

Absolute error (bp) �23 �23 �27 �40 �28

Relative error (%) �3.69 �2.99 �2.08 �1.92 �1.21

D€ullmann ES (%) 6.86 8.87 15.42 23.29 25.95

Absolute error (bp) 63 119 247 241 280

Relative error (%) 10.19 15.49 19.06 11.54 12.07
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Table 5.7 Comparison of the models for five low concentrated portfolios with absolute error in

basis points (bp) and relative error in percent (%)

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

MC-Sim. ES (%) 5.66 6.98 12.16 19.78 22.06

VaR (%) 5.64 6.94 12.17 19.81 22.10

Absolute error (bp) �2 –4 1 3 4

Relative error (%) –0.35 –0.57 0.08 0.15 0.18

Basel II VaR (%) 6.12 7.59 12.95 20.89 23.26

Absolute error (bp) 46 61 79 111 120

Relative error (%) 8.13 8.74 6.50 5.61 5.44

Pykhtin ES (%) 5.67 6.98 12.14 19.74 22.08

Absolute error (bp) 1 0 –2 –4 2

Relative error (%) 0.26 –0.07 –0.16 –0.21 0.09

CHKR I ES (%) 5.66 6.94 11.92 19.17 21.38

Absolute error (bp) 0 –4 –24 –61 –68

Relative error (%) 0.0 –0.57 –1.97 –3.08 –3.08

CHKR II ES (%) 5.64 6.94 12.06 19.52 21.81

Absolute error (bp) –2 –4 –10 –26 –25

Relative error (%) –0.35 –0.57 –0.82 –1.31 –1.13

D€ullmann ES (%) 5.93 7.46 13.52 21.07 23.58

Absolute error (bp) 27 48 136 129 152

Relative error (%) 4.71 6.95 11.19 6.51 6.90

Table 5.6 Comparison of the models for five high concentrated portfolios with absolute error in

basis points (bp) and relative error in percent (%)

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

MC-Sim. ES (%) 7.69 9.22 15.41 24.41 27.10

VaR (%) 7.48 9.17 15.36 24.51 27.06

Absolute error (bp) –21 –5 –5 10 –6

Relative error (%) –2.73 –0.54 –0.32 0.41 0.15

Basel II VaR (%) 6.12 7.59 12.95 20.89 23.26

Absolute error (bp) –157 –163 –246 –352 –384

Relative error (%) –20.42 –17.68 –15.96 –14.42 –14.17

Pykhtin ES (%) 7.66 9.29 15.46 24.39 27.03

Absolute error (bp) –3 7 5 –2 –7

Relative error (%) –0.35 0.76 0.31 –0.08 –0.24

CHKR I ES (%) 7.40 9.08 15.59 25.07 27.95

Absolute error (bp) –29 –14 18 66 85

Relative error (%) –3.77 1.52 1.17 2.70 3.14

CHKR II ES (%) 7.22 8.86 15.19 24.38 27.14

Absolute error (bp) –47 –36 –22 –3 4

Relative error (%) –6.11 –3.90 –1.43 –0.12 0.15

D€ullmann ES (%) 8.97 11.30 19.77 28.26 31.21

Absolute error (bp) 128 208 436 385 411

Relative error (%) 16.60 22.52 28.27 15.77 15.17
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to construct portfolios that are better diversified than the overall credit market.323

Apart from insignificant deviations, both simulated risk measures lead to the same

solutions. Again, the Pykhtin model approximates the “real” risk very good for all

types of credit quality. The CHKR model I underestimates the risk for high quality

portfolios with up to 3%. The CHKR model II underestimates the risk, too, but the

approximation error is negligible. Again, the model of D€ullmann overestimates the

true risk and leads to a similar performance as the Basel II model.

5.3.2 Simulation Study for Homogeneous and Heterogeneous
Portfolios

To achieve more general results, we test the models for different, randomly

generated portfolios. For this reason, we implement four simulation studies. In

these studies, we analyze the accuracy for homogeneous as well as for heteroge-

neous portfolios with respect to PD and EAD. In each simulation run, we generate a

portfolio and determine its ES by the different models. After 100 runs, we calculate

the root mean squared error for the outcomes of the Pykhtin model, the CHKR

models I and II,324 and the model of D€ullmann in absolute and relative terms to

quantify the performance of the models in comparison to Monte Carlo simulations

using 500,000 trials. Furthermore, we calculate the VaR with the Basel II formula

and with a Monte Carlo simulation to measure its accuracy compared to ESmf. In the

following, we describe the four simulation settings.

Simulation I. In this scenario, we generate portfolios with homogenous exposure

sizes and homogenous PDs, that is, wi ¼ 1=5000 and PDi ¼ PD ¼ const for each

credit. To test the accuracy for different portfolio qualities, a PD is drawn from a

uniformly distribution between 0 and 10% before each new run. The sector struc-

ture and correlation is the same as in Sect. 5.2.1.

Simulation II. We generate portfolios with homogenous exposure sizes but

heterogeneous PDs. For each sector, we randomly determine one of the quality

distributions from Fig. 4.7. After that, we draw the PD for each credit of the sector

according to this quality distribution. The exposure size remains as in Simulation I.

Again, the sector structure and correlation is taken from Sect. 5.2.1.

Simulation III. We generate portfolios with homogenous PDs as in Simulation I

but with heterogeneous exposure sizes. Firstly, we randomly choose the number of

sectors between 2 and 11. Then, we apply a uniform distribution between 0 and 1

for the weight of every sector and scale this such that the weights sum up to one.

The weights for the credits in each sector are determined in the same manner. The

correlations remain unchanged.

323If we consider all 25,000 simulated portfolios from Sect. 5.2.3, the lowest measured economic

capital requirement was even 26% lower than the regulatory capital. This underlines the prospects

of actively managing credit portfolios, e.g. with credit derivatives, but this is not in the scope of

this thesis.
324CHKR I still corresponds to the DF-function based on Monte Carlo simulation and CHKR II on

the Pykhtin formula.
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Simulation IV. In this setting, the PDs as well as the exposure sizes of the

generated portfolios are heterogeneous. The PDs are determined as in Simulation

II and the exposure sizes as in Simulation III.

In each simulation, we calculate the intra-sector correlations with (5.8) and

choose 5,000 credits. These portfolios contain a relatively low amount of name

concentration. Instead, we focus on sector concentration. The reason is that the

identical methodology for measuring name concentrations, the granularity adjust-

ment, can be used within all implemented approaches. Thus, we prefer to avoid

name concentrations to be able to separately analyze the effect of sector concentra-

tions. The degree of sector concentration differs between the simulations. In Simu-

lation I and II, the portfolios consist of homogenous exposures, so their HHI is in

each case 1=11 ¼ 9:1%. This equals the value for a naı̈ve diversified portfolio. On

the contrary, in Simulation III and IV exposures are chosen randomly and the HHI of

the generated portfolios can take values between 9.1% (naı̈ve diversification) and 1

(perfect concentration). The mean of these HHIs is around 30% in each simulation,

which is only slightly higher than the HHIs of the bank portfolios analyzed by

Acharya et al. (2006), which shows that the setting leads to a realistic degree of

diversification.325 The results of our simulation study can be found in Table 5.8.

Again, the outcomes of the Pykhtin model are good approximations of the “true”

ES calculated with Monte Carlo simulations. Especially, if EADs are heterogeneous

(simulation setting III and IV), the results are very good. Both types of the CHKR

Table 5.8 Accuracy of different models in comparison with the “true” ES calculated with Monte

Carlo simulations for the specified simulation studies

Simulation

Setting I

Simulation

Setting II

Simulation

Setting III

Simulation

Setting IV

MC-Sim. VaR Ø Absolute error (bp) 18 6 22 8

Ø Relative error (%) 0.67 0.43 0.77 0.60

Basel II Ø Absolute error (bp) 259 186 264 379

Ø Relative error (%) 11.66 13.70 8.81 25.76

Pykhtin Ø Absolute error (bp) 14 11 54 18

Ø Relative error (%) 0.64 0.81 3.40 1.26

CHKR I Ø Absolute error (bp) 54 11 47 20

Ø Relative error (%) 1.73 0.79 1.65 1.53

CHKR II Ø Absolute error (bp) 54 12 46 21

Ø Relative error (%) 1.72 0.84 1.56 1.59

D€ullmann Ø Absolute error (bp) 103 185 139 224

Ø Relative error (%) 5.84 8.58 5.84 11.28

325Acharya et al. (2006) examined credit portfolios of 105 Italian banks during the period

1993–1999. In this study, most bank portfolios had a HHI between 20% and 30%. However, it

has to be considered that the number of different industry sectors was 23 whereas we use 11

different sectors. Thus, for a comparable degree of diversification their calculated HHI have to be

slightly smaller than our HHIs.
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model lead to very stable results in all simulation settings. Interestingly, the CHKR

model performs even better if PDs are heterogeneous, probably because the

portfolios used for calculation of the functional form have heterogeneous PDs,

too, and thus the resulting portfolios are more similar. It is somewhat surprising

that in Simulation III the CHKRmodel shows a better performance than the Pykhtin

model, even if the Pykhtin formula is used for determination of the diversification

factor. Probably, the approximation errors of the Pykhtin model are partially

smoothed by the regression from (5.40). The results of the D€ullmann model are

not convincing. The model can generate better outcomes than the Basel II model but

performs materially worse than the other presented models. A reason could be that

the portfolios which were used for the calibration of the model are too different from

the portfolios of the simulation study. Against this background, it could be interest-

ing to repeat the calibration procedure which has been applied to the CHKR model

instead of the procedure presented in Sect. 5.2.4.3 because these calibration portfo-

lios are very similar to those used in the simulation study. Of course, this calibration

would be much more time-consuming than the applied calibration if we use all

25,000 randomly generated portfolios of the CHKR calibration instead of the 360

deterministic portfolios suggested by D€ullmann (2006).

The comparison of the risk measures with different confidence levels shows an

almost perfect match between ESmf and VaRmf. The relative error is smaller than

1% in each case, so our simulation study clarifies that the above-mentioned

theoretical problems of the VaR are not practically relevant for a very broad

range of credit portfolios. Hence, there is nothing to be said against the use of the

VaR for determining the credit risk from a practical point of view even if the

portfolio incorporates sector concentration risk. The Basel formula, however,

shows the largest inaccuracy of all tested models for any simulation. Since in

simulation setting I and II a naı̈ve diversified portfolio is taken as a basis, the

Basel formula overestimates the risk in every case due to the diversification effect.

A plot of the relative errors of the Basel formula and of VaRmf in simulation

setting III, sorted in ascending order, can be found in Fig. 5.3. Apart from slightly

higher deviations, a plot with a similar characteristics results for simulation setting

IV. It can be seen that for more than 50% of the simulated portfolios the Basel VaR

is too low. That means the risk measured under Pillar 1 is underestimated compared

to the “real” risk. In general, this happens when the sector concentration of the

generated portfolio increases, as already demonstrated for deterministic portfolios.

Thus, the simulation study accentuates the need for considering sector concentra-

tion when calculating the risk of a credit portfolio. Otherwise, the risk can be

massively underestimated. This conclusion coincides with that of BCBS (2006),

which points out that sector concentration can increase the capital requirement up to

40%. The maximal deviation of VaRmf is around 3%. Actually, for most of the

generated portfolios the error is almost zero. Thus, the deviation is negligible for

practical implementation. Nevertheless, in order to verify whether there is a sys-

tematic pattern, which may help to explain the occurrence of these deviations in the

multi-factor setting, we have tried to find portfolio variables such as HHI, average
correlation, or average PD that can explain these deviations. Since our analyses
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did not show a link between the deviations and any of the mentioned variables, it

seems that the occurrence is unsystematic.

As the purpose of deriving (semi-)analytical approximation formulas for the

VaR or the ES is an acceleration of the computation time, we compare the runtime

of the demonstrated methods in Table 5.9.326

The main advantage of the Pykhtin model is that it can be applied without an

excessive calibration procedure and that it is considerably faster than Monte Carlo

simulations without leading to major approximation errors. The advantage of the

D€ullmann model is that its application is much faster but this comes at the cost of a

higher approximation error. When comparing both alternative implementations of

the CHKR model, we strongly propose to use the Pykhtin model for calibration

(CHKR II) instead of Monte Carlo simulations (CHKR I), as the approximation
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Fig. 5.3 Deviations of VaRBasel and VaRmf from ESmf

Table 5.9 Comparison of the

runtime
Runtime: Calibration Runtime: Application

MC-Simulation 20 min

Pykhtin �5 s–2 min

CHKR I 30 days 0.01 s

CHKR II 150 min 0.01 s

D€ullmann 240 min �1–10 s

326The runtimes refer to a quad-core PC with 2.66 GHz CPUs (calculated on one core).
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accuracy is almost identical but the computation time for determination of the DF-
function is significantly lower. As this calibration procedure has to be computed

only once for a specified correlation structure and the application of the formula is

very fast, in most situations the CHKR type model should be a very good choice.

5.4 Interim Result

In this chapter, we have proposed a methodology to perform multi-factor models

that are able to measure concentration risk in credit portfolios in terms of economic

capital. In contrast to the existing literature regarding concentration risk, this

procedure delivers results that are consistent with Basel II and has the advantage

of quite low data requirements since the intra-sector correlation does not have to be

estimated from historical bank data. Furthermore, we have applied this

methodology to different multi-factor approaches. Since the calibration or applica-

tion of these approaches is quite time-consuming for large portfolios in the original

settings, which is one of the main problems of these approaches, we have demon-

strated how these calculations can be accelerated significantly. As a next step, we

have compared the performance of these approaches within a simulation study as

the capability of different models to measure sector concentration risk has only

been tested in a rather brief analysis of D€ullmann (2007) before. It could be shown

that it is possible to achieve good approximations in reasonable time if the

approaches are adjusted in the proposed way. We have also analyzed whether the

theoretical shortcomings of the Value at Risk, which can arise when leaving

the ASRF framework, lead to undesirable results. Although it is indisputable that

the ES has theoretical advantages over the VaR, which has already been demon-

strated in several contrived portfolio examples, our framework seems well suited to

explore this question for a variety of more realistic credit portfolios. We find that

the accuracy of the VaR turns out to be almost perfect compared to the ES for a

multitude of generated portfolios. Therefore, in our opinion, it is unproblematic to

use the VaR for measuring sector concentration risk in credit portfolios.

During the specification of the multi-factor setting, we have determined input

parameters, especially the inter- and intra-sector correlations, in a way that the

results are comparable with the regulatory Pillar 1 capital. Thus, we do not follow

some approaches that assume a pure diversification effect compared with the Basel

II formula. Instead, we relate the results to a well-diversified portfolio as assumed

when calibrating the Basel II formula and determine a function for the implied

intra-sector correlation. Hence, it is possible to directly consider the extent of credit

risk concentrations in the assessment of capital adequacy under Pillar 2. Using these

modifications, we have performed an extensive numerical study similar to Cespedes

et al. (2006) to get a closed form approximation formula and show how the

calibration can be accelerated significantly without worsening the accuracy. In

addition, we suggest computing the multi-factor adjustment and the infection

model on a bucket instead of a borrower level. This allows computing the formulas
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of Pykhtin (2004) as well as the formulas of D€ullmann (2006) much faster than

Monte Carlo simulations even for a high number of credits. Moreover, due to the

theoretical advantages of ES, we have determined the approximation formulas for

our modified variants of Cespedes et al. (2006) and D€ullmann (2006) using the risk

measure ES instead of the VaR.

Having assured Basel II consistent capital requirements, we have analyzed the

impact of credit concentration risk and have carried out a simulation study to compare

the performance of the (modified) models from Pykhtin (2004), Cespedes et al.

(2006), and D€ullmann (2006). We find that the Pykhtin model leads to very good

results for homogeneous as well as heterogeneous PDs if EADs are homogeneous.

The performance is slightly lower for heterogeneous EADs. The results of the

Cespedes-type model have a throughout high accuracy. Interestingly, the approach

works better for heterogeneous portfolios. In comparison, the model of D€ullmann

(2006) performs rather poorly. In general, the models of Pykhtin (2004) as well as the

Cespedes-type model are both well-suited for approximating the economic capital in

a multi-factor setting when adjusted in the proposed way. The main advantage of the

Pykhtin model is that it can directly be applied to an arbitrary portfolio type, whereas

the Cespedes-type approach should not be used without initially performing the

demonstrated extensive numerical work if the portfolio structure is very different.

On the contrary, the results of the Cespedes-type model are slightly better for

heterogeneous portfolios and it allows for ad-hoc analyses including sensitivity

analyses when the non-recurring extensive numerical work is progressed.

5.5 Appendix

5.5.1 Optimal Choice of the Single Correlation Factor

To relate ~L to ~L, it is assumed that the new systematic factor ~x has a linear

dependence to the original sector factors:327

~x ¼
X

K

k¼1

bk � ~zk; (5.73)

with
X

K

k¼1

b2k ¼ 1: (5.74)

Condition (5.74) satisfies that the new systematic factor still has a variance

of 1. In order to specify the correlation factors ci and the coefficients bk, it will be
required that the loss ~L equals the conditional expectation of the “true” loss Eð~Lj~xÞ.

327In contrast to this representation, Pykhtin (2004) applies these and the following formulas to n
sector factors whereas we use K sector factors with Kbn. This can lead to a significant reduction of
the computation time as will be shown later on.
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This assures that the first element of the subsequently performed Taylor series

expansion vanishes.328 To determine Eð~Lj~xÞ, we first recall that the asset return of

obligor i in sector s can be written as

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi: (5.75)

Now, each original sector factor ~xs is decomposed into a part that is related to the

single-factor ~x and a part that is independent of this factor:

~xs ¼ rs � ~xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rs
2

q

� ~�s; (5.76)

with ~�s � Nð0; 1Þ. Using (5.2), (5.73), and the independence of ~zi; ~zj if i 6¼ j, the
correlation parameter rs can be expressed as

rs ¼ Corr ~xs;~x
� � ¼ Corr

X

K

k¼1

as;k � ~zk;
X

K

k¼1

bk � ~zk
 !

¼
X

K

k¼1

as;k � bk � V ~zkð Þ ¼
X

K

k¼1

as;k � bk:
(5.77)

Using this notation, the asset return (5.75) can now be written as

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ~xs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � rs � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rs
2

q

� ~�s
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � rs � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i � rIntra;i � rs2
q

� ~�s þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
q

� ~xi:

(5.78)

The independent standard normally distributed random variables ~�s and ~xi
can be combined into a new standard normally distributed random variable ~zi,
leading to

~as;i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ri � ~xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ri
� �2

r

� ~zi; (5.79)

with ri ¼ rs for each obligor i in sector s. Since the variable ~zi is independent of ~x,
we can use the known formula of the single-factor model for the conditional

expectation

E ~Lj~x� � ¼
X

n

i¼1

wi � LGDi � F
F�1ðPDiÞ � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � ri � F�1ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � ri
� �2

r

2

6

6

4

3

7

7

5

: (5.80)

328This simplification of the Taylor series could already be used for the granularity adjustment in

Sect. 4.2.1.1.
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The mentioned condition ~L ¼ E ~Lj~x� �

leads to

~L ¼ E ~Lj~x� �

, F
F�1ðPDiÞ � ci � ~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

" #

¼ F
F�1ðPDiÞ � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � ri � F�1ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � ri
� �2

r

2

6

6

4

3

7

7

5

, ci ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p �

X

K

k¼1

ai;k � bk;

(5.81)

using (5.9), (5.80), (5.77), and ai;k ¼ as;k for each obligor i in sector s. While rIntra;i
and ai;k are known, the coefficients bk are unknown.

While (5.81) already satisfies that the first-order term of the Taylor series

vanishes, the concrete choice of the parameter set {bk} is critical concerning the

distance between the zeroth-order term qað~LÞ and the unknown quantile qað~LÞ.
Unfortunately, it is not obvious how this distance can be minimized. Thus, Pykhtin

(2004) relies on the intuition that coefficients which maximize the (weighted)

correlation between the single factor ~x and the sector factors {~xs} should lead to

good results. This leads to the following maximization problem:

max
bkf g

X

n

i¼1

di � ri
 !

¼ max
bkf g

X

n

i¼1

di �
X

K

k¼1

ai;k � bk
 !

; (5.82)

subject to

X

K

k¼1

b2k ¼ 1: (5.83)

The solution of this optimization problem is329

bk ¼
X

n

i¼1

di � aik
2t

; (5.84)

where the positive constant Lagrange multiplier t is chosen in a way that {bk}
satisfies the constraint. As a final step, the weighting factor di has to be chosen.

After trying several specifications, Pykhtin (2004) uses

di ¼ wi � LGDi � F
F�1ðPDiÞ þ ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � F�1ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rIntra;i
p

" #

; (5.85)

329Cf. Pykhtin (2004).
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which is the VaR formula in a single-factor model. The intuition behind this choice

is that obligors with a high exposure in terms of VaR should have a large weight in

the maximization problem whereas obligors with a small VaR should have a minor

impact. Summing up, the correlation parameter ci results from (5.81), where the

coefficients bk are determined by (5.83)–(5.85).

5.5.2 Conditional Correlation

The correlation conditional on ~x between the asset returns from (5.19) can be

written as

rxij ¼ Corr ~as;i; ~at;jj~x
� �

¼
Cov

P

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � as;k � ci � bk
� �

� ~zk;
P

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p � at;k � cj � bk
� �

� ~zk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~as;ij~x
� �

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~at;jj~x
� �

q

¼
P

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p � as;k � ci � bk
� �

� ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p � at;k � cj � bk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p

;

(5.86)

using the independence of the factors ~zk. The numerator can be simplified using

P

K

k¼1

as;k � bk ¼ ci

.

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p

from (5.81) and
P

K

k¼1

b2k ¼ 1 from (5.74):

X

K

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � as;k � ci � bk
� �

� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p � at;k � cj � bk
� �

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p �

X

K

k¼1

as;k � at;k � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � cj �

X

K

k¼1

as;k � bk

� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p � ci �

X

K

k¼1

at;k � bk þ ci � cj �
X

K

k¼1

bk
2

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p �

X

K

k¼1

as;k � at;k � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � cj � ci

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i
p

� ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p � ci � cj

ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p þ ci � cj

¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;i
p � ffiffiffiffiffiffiffiffiffiffiffiffi

rIntra;j
p �

X

K

k¼1

as;k � at;k � cj � ci:

(5.87)
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This leads to

rxij ¼
ffiffiffiffiffiffiffiffiffiffiffiffirIntra;i

p � ffiffiffiffiffiffiffiffiffiffiffiffirIntra;j
p �P

K

k¼1

as;k � at;k � ci � cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p

: (5.88)

5.5.3 Calculation of the Decomposed Variance

In order to determine the conditional variance, it is decomposed into the following

terms:330

V ~Lj~x ¼ x
� � ¼ V E ~Lj ~zkf g� �j~x ¼ x

� �þ E V ~Lj ~zkf g� �j~x ¼ x
� �

: (5.89)

For calculation of these terms, first the expressions (a) Eð~Ljf~zkgÞ, (b)

Eð~L2jf~zkgÞ, and (c) Vð~Ljf~zkgÞ will be calculated. The conditional loss is given as

~Ljf~zkg ¼
X

i

wi � gLGDijf~zkg
� �

� 1 ~Dif gjf~zkg
� �

; (5.90)

and for stochastically independent LGDs this leads to

~Ljf~zkg ¼
X

i

wi � gLGDi � 1 ~Dif gjf~zkg
� �

: (5.91)

(a) With E gLGDi

� �

¼: ELGDi and E 1 ~Dif gjf~zkg
� �

¼: pi f~zkgð Þ we obtain:

E ~Ljf~zkg
� � ¼

X

i

wi � ELGDi � pi f~zkgð Þ: (5.92)

(b) Consider that 12 ~Dif g ¼ 1 ~Dif g, E gLGD
2

� �

¼ E2
gLGD

� �

þ V gLGD
� �

¼:

ELGD2 þ VLGD, and

E LGDiLGDj

� � ¼ Cov LGDi; LGDj

� �þ E LGDið ÞE LGDj

� �

¼ E LGDið ÞE LGDj

� �

¼: ELGDiELGDj;

(5.93)

330The following calculations are based on Tasche (2006a), p. 41 ff.
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as well as

E 1 ~Dif g1 ~Djf gjf~zkg
� �

¼ Cov 1 ~Dif g; 1 ~Djf gjf~zkg
� �

þ E 1 ~Dif gjf~zkg
� �

E 1 ~Djf gjf~zkg
� �

¼ E 1 ~Dif gjf~zkg
� �

E 1 ~Djf gjf~zkg
� �

¼ pi f~zkgð Þpj f~zkgð Þ:
(5.94)

Moreover, we have

X

i

xi

 !2

¼
X

i

X

j

xixj ¼
X

i

xi
2 þ

X

i

X

j6¼i

xixj; (5.95)

X

j6¼i

xixj ¼
X

j

xixj � xi
2: (5.96)

Thus, we obtain:

E ~L
2jf~zkg

� �

¼ E
X

i

wi
gLGDi1 ~Dif g

� �2

jf~zkg
" #

¼ E
X

i

wi
2
gLGDi

2
12 ~Dif gjf~zkg

" #

þ E
X

i

X

j 6¼i

wiwj
gLGDi

gLGDj1 ~Dif g1 ~Djf gjf~zkg
" #

¼
X

i

wi
2E LGDi

2
� �

pi f~zkgð Þ

þ
X

i

X

j 6¼i

wiwjE LGDiLGDj

� �

E 1 ~Dif g1 ~Djf g
� �

¼
X

i

wi
2 ELGDi

2 þ VLGDi

� �

pi f~zkgð Þ

þ
X

i

X

j 6¼i

wiwjELGDiELGDjpi f~zkgð Þpj f~zkgð Þ

¼
X

i

wi
2 ELGDi

2 þ VLGDi

� �

pi f~zkgð Þ �
X

i

wi
2ELGDi

2pi
2 f~zkgð Þ

þ
X

i

X

j

wiwjELGDiELGDjpi f~zkgð Þpj f~zkgð Þ

¼
X

i

wi
2 ELGDi

2 pi f~zkgð Þ � pi
2 f~zkgð Þ� �þ VLGDipi f~zkgð Þ� �

þ E2 ~Ljf~zkg
� �

:

(5.97)
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(c) The conditional variance Vð~Ljf~zkgÞ is equal to

V ~Ljf~zkg
� � ¼ E ~L

2jf~zkg
� �

� E2 ~Ljf~zkg
� �

¼
X

i

wi
2 ELGDi

2 pi f~zkgð Þ � pi
2 f~zkgð Þ� �þ VLGDipi f~zkgð Þ� �

:
(5.98)

(d) Using the law of iterated expectation, we have

piðxÞ ¼ E 1 ~Dif gj~x ¼ x
� �

¼ E E 1 ~Dif gjf~zkg
� �

jx
h i

¼ E pi f~zkgð Þjx½ �: (5.99)

Thus, with (5.98) the expectation of the conditional variance can be written as

E V ~Ljf~zkg
� �j~x¼ x

� �¼
X

i

wi
2 ELGDi

2 E pi f~zkgð Þjx½ ��E pi
2 f~zkgð Þjx� �� ��

þVLGDiE pi f~zkgð Þjx½ �Þ

¼
X

i

wi
2 ELGDi

2 piðxÞ�P 1 ~Dif g¼1
� �

^ 1 ~Di
0f g ¼1

� �

jx
h i� ��

þVLGDipiðxÞÞ:
(5.100)

For independent idiosyncratic factors ~zi;~zi
0 � N ð0; 1Þ and with

piðxÞ :¼ F
F�1ðPDiÞ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

 !

, F�1ðPDÞ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p ¼ F�1 piðxÞð Þ; (5.101)

we get

P 1 ~Dif g ¼ 1
� �

^ 1 ~Di
0f g ¼ 1

� �

jx
h i

¼ P ci � ~xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ~zi � F�1ðPDiÞ; ci � ~xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

� ~zi
0 � F�1ðPDiÞjx

h i

¼ P ~zi �
F�1ðPDiÞ � ci � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p ;~zi

0 � F�1ðPDiÞ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p

" #

¼ F2 F�1 piðxÞð Þ;F�1 piðxÞð Þ; rxii
� �

;

(5.102)
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with the correlation conditional on x of (5.20). Hence, (5.100) results in

E V ~Ljf~zkg
� �j~x ¼ x

� � ¼
X

i

wi
2 ELGDi

2 piðxÞ � F2 F�1 piðxÞð Þ;F�1 piðxÞð Þ; rxii
� �� ��

þVLGDipiðxÞÞ:
(5.103)

(e) Using (5.92), the variance of the conditional expectation can be expressed as

V E ~Ljf~zkg
� �j~x ¼ x

� �

¼ E E2 ~Ljf~zkg
� �jx� �� E2 E ~Ljf~zkg

� �jx� �

¼ E E2
X

i

wi
gLGDi1 ~Dif gjf~zkg

" #

jx
 !

� E2
X

i

wiELGDipi f~zkgð Þjx
 !

¼ E
X

i

wiELGDipi f~zkgð Þ
 !2

jx
2

4

3

5�
X

i

wiELGDipiðxÞ
 !2

;

(5.104)

leading to

V E ~Ljf~zkg
� �j~x ¼ x

� �

¼ E
X

i

X

j

wiwjELGDiELGDjpi f~zkgð Þ � pj f~zkgð Þjx
" #

�
X

i

X

j

wiwjELGDiELGDjpiðxÞpjðxÞ

¼
X

i

X

j

wiwjELGDiELGDjE pi f~zkgð Þ � pj f~zkgð Þjx� �

�
X

i

X

j

wiwjELGDiELGDjpiðxÞpjðxÞ

¼
X

i

X

j

wiwjELGDiELGDj P 1 ~Dif g ¼ 1
� �

^ 1 ~Djf g ¼ 1
� �

jx
h i

� piðxÞpjðxÞ
h i

:

(5.105)

Analogous to (5.102) and using the conditional correlation (5.20), this can be

expressed as:

V E ~Ljf~zkg
� �j~x ¼ x

� � ¼
X

i

X

j

wiwjELGDiELGDj

� F2 F�1 piðxÞð Þ;F�1 pjðxÞ
� �

; rxij
� �

� piðxÞpjðxÞ
h i

:

(5.106)
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5.5.4 Derivatives of the Decomposed Variance Terms

As both conditional variance terms are linear in the bivariate normal distribution,

the derivative of the bivariate normal distribution will be calculated subsequently.

Then, the derivatives of �12;cðxÞ and �GA2;c ðxÞ will be computed.

Proposition. The derivative of the bivariate normal distribution can be written as:

d

dx
F2 F�1 pi xð Þð Þ;F�1 pj xð Þ� �

; rxij
� �

¼ dpi xð Þ
dx

F
F�1 pj xð Þ� �� rxij � F�1 pi xð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

þ dpj xð Þ
dx

F
F�1 pi xð Þð Þ � rxij � F�1 pj xð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

:

(5.107)

Proof. Using the notation

yiðxÞ ¼ F�1ðPDiÞ � ci � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p ; yjðxÞ ¼ F�1ðPDjÞ � cj � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p ; (5.108)

and the chain rule, we get

d

dx
F2 F�1 pi xð Þð Þ;F�1 pj xð Þ� �

; rxij
� �

¼ d

dx
F2 yi xð Þ; yj xð Þ; rxij
� �

¼ dyi
dx
|{z}

ðIÞ

@

@yi
F2 yi; yj; rxij
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

þ dyj
dx
|{z}

ðIIIÞ

@

@yj
F2 yi; yj; rxij
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIVÞ

:

(5.109)

For calculation of term (II) and (IV), we rewrite the bivariate normal distribution

according to Appendix 2.8.6 as

F2 yi; yj; rxij
� �

¼
Z

yj

z¼�1
’ðzÞF yi � rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz: (5.110)
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Thus, we have

@

@yi
F2 yi;yj;rxij
� �

¼ @

@yi

Z

yj

z¼�1
’ðzÞF yi�rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

Z

yj

z¼�1
’ðzÞ’ yi�rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

Z

yj

z¼�1

1

2p
exp �1

2
z2þ yi�rxij � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

2
2

6

6

6

4

3

7

7

7

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð	Þ

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

dz:

(5.111)

The term (*) is equivalent to

z2 þ yi � rxij � z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

2

¼
1� rxij

� �2
� �

z2 þ yi
2 � 2yirxijzþ rxij

� �

z2

1� rxij
� �2

¼ z2 � 2yirxijzþ yi
2

1� rxij
� �2

¼
z2 � 2yirxijzþ yi

2 þ yi
2 rxij
� �2

� yi
2 rxij
� �2

1� rxij
� �2

¼ z� rxijyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

2

þ yi
2:

(5.112)
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Hence, (5.111) can be written as
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@yi
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� �2

r ’
z�rxijyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rxij
� �2

r

0

B

B

@

1

C

C

A

dz:

(5.113)

For solving the integral, we substitute t :¼ z�rxijyi
ffiffiffiffiffiffiffiffiffiffiffiffi

1�ðrx
ij
Þ2

q , and thus dz
dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðrxijÞ2
q

.

This leads to
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@yi
F2 yi; yj; rxij
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Analogously, the term (IV) of (5.109) is equivalent to

@

@yj
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� �
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The derivatives (I) and (III) of (5.109) are given as

dyi xð Þ
dx

¼ � ci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
p and

dyj xð Þ
dx

¼ � cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cj2
p : (5.116)
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Thus, inserting (5.114), (5.115), and (5.116) into (5.109), the derivative of the

bivariate normal distribution finally results in

d

dx
F2 yi xð Þ; yj xð Þ; rxij
� �

¼ � ci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ci2
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(5.117)

where the derivatives
dpi xð Þ
dx and

dpj xð Þ
dx are given by (5.16), which is equal to

proposition (5.107).

As a next step, the derivatives of �12;cðxÞ and �GA2;c ðxÞ will be calculated. With

�12;c xð Þ ¼
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj

� F2 F�1 pi xð Þð Þ;F�1 pj xð Þ� �

; rxij
� �

� pi xð Þpj xð Þ
h i

; ð5:118Þ

we get
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dx
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X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj
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:

(5.119)
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Using the derivative of the bivariate normal distribution from (5.117) yields
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(5.120)

Comparing the terms on the right-hand side, it can be found that the first and

second summand as well as the third and fourth summand only differ concerning

the indices i and j. Due to the double sum, each combination of i and j occurs twice.
Thus, (5.120) can be simplified to:331

d�12;c xð Þ
dx

¼ 2 �
X

n

i¼1

X

n

j¼1

wiwjELGDiELGDj
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(5.121)

Similarly, the derivative of

�GA2;c xð Þ ¼
X

n

i¼1

wi
2 ELGDi

2 pi xð Þ � F2 F�1 pi xð Þð Þ;F�1 pi xð Þð Þ; rxii
� �� ��

þVLGDipi xð ÞÞ ð5:122Þ

331It has to be noticed that the conditional correlation matrix is symmetric, so we have rxij ¼ rxji
for all i, j.
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is given as

d�GA2;c xð Þ
dx

¼
X

n

i¼1

w2
i ELGD2

i

dpi xð Þ
dx

� d

dx
F2 yi xð Þ; yi xð Þ; rxii
� �

� �
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(5.123)

Inserting the derivative of the bivariate normal distribution (5.117) finally leads to

d�GA2;c xð Þ
dx

¼
X

n

i¼1
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þ VLGDi
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(5.124)

5.5.5 Moment Matching in the BET-Model

5.5.5.1 Matching the First Moment

The expected loss of the original portfolio can be calculated as

E ~L
orig

� �

¼
X

S

s¼1

X

ns

i¼1

ws;i � LGD � E 1 ~Ds;if g
� �

¼
X

S

s¼1

X

ns

i¼1

ws;i � LGD � PDs;i; (5.125)

and the expected loss of the hypothetical portfolio as

E ~L
hyp

� �

¼
X

D

i¼1

1

D
� LGD � E 1 ~Dif g

� �

¼ 1

D
� LGD �

X

D

i¼1

p

¼ 1

D
� LGD � D � p ¼ LGD � p;

(5.126)

with E 1 ~Dif g
� �

¼ p for all i. Thus, matching the expectation for both portfolios

leads to

E ~L
orig

� �

¼! E ~L
hyp

� �

,
X

S

s¼1

X

ns

i¼1

ws;i � LGD � PDs;i ¼ LGD � p

, p ¼
X

S

s¼1

X

ns

i¼1

ws;i � PDs;i:

(5.127)
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5.5.5.2 Matching the Second Moment

For the original portfolio, the variance can be calculated as

V ~L
orig

� �

¼ V
X

S
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X
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 !
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X
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X
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� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r
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(5.128)

As the default variable is Bernoulli distributed, the variance terms equal

V 1 ~Ds;if g
� �

¼ PDs;i � 1� PDs;i

� �

and V 1 ~Dt;jf g
� �

¼ PDt;j � 1� PDt;j

� �

(5.129)

and we obtain
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PDt;j 1� PDt;j

� �

q
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(5.130)

Due to the independence of the default events in the hypothetical portfolio, the

variance of this portfolio is

V ~L
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� �

¼ V
X

D

i¼1

1

D
� LGD � 1 ~Dif g

 !

¼ 1

D2
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D
� LGD2 � p � 1� pð Þ:

(5.131)
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Matching the variance terms (5.130) and (5.131) leads to

V ~L
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� �

¼! V ~L
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� �

,D¼ p� 1�pð Þ
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q
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(5.132)

5.5.6 Interrelation of the Pairwise Default Correlation
and the Asset Correlation

Using the standard calculus for the correlation and covariance as well as the

variance of a Bernoulli distributed variable, the pairwise default correlation

between borrower i in sector s and borrower j in sector t can be expressed as

Corr 1 ~Ds;if g; 1 ~Dt;jf g
� �

¼
Cov 1 ~Ds;if g; 1 ~Dt;jf g

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 1 ~Ds;if g
� �

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �

r
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� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� � � PDt;j � 1� PDt;j

� �

q
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� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� � � PDt;j � 1� PDt;j

� �

q :

(5.133)

The expectation values of the individual default events equal PDs;i and PDt;j.

Similar to (5.102), assuming a normally distributed asset return, the expectation

value of a simultaneous default can be written as

E 1 ~Ds;if g � 1 ~Dt;jf g
� �

¼ P 1 ~Ds;if g ¼ 1
� �

^ 1 ~Dt;jf g ¼ 1
� �h i

¼ P ~as;i � F�1ðPDs;iÞ; ~at;j � F�1ðPDt;jÞ
� �

¼ F2 F�1 PDs;i

� �

;F�1 PDt;j

� �

;Corr ~as;i; ~at;j
� �� �

:

(5.134)

Thus, we get

Corr 1 ~Ds;if g; 1 ~Dt;jf g
� �

¼ F2 F�1 PDs;i

� �
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� �

q :

(5.135)
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5.5.7 Expected Number of Defaults in the Infectious Defaults
Model

Due to the homogeneity of the portfolio and the stochastic independence of all

indicator variables, the expected number of defaults is

E
X

n

i¼1

1 ~Dif g
 !

¼ n � E 1 ~Dif g
� �

¼ n � E ~Zi

� �

¼ n � E ~Xi þ 1� ~Xi

� � � 1�
Y

j 6¼i

1� ~Xj � ~Yj;i

� �

" # !

¼ n � E ~Xi þ 1� ~Xi

� � � 1� 1� ~Xj � ~Yj;i

� �n�1
h i� �

¼ n � E ~Xi

� �þ 1� E ~Xi

� �� � � 1� 1� E ~Xj

� � � E ~Yj;i

� �� �n�1
h i� �

¼ n � pþ 1� pð Þ � 1� 1� p � qð Þn�1
h i� �

¼ n � 1� 1� pð Þ � 1� p � qð Þn�1
� �

:

(5.136)
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Chapter 6

Conclusion

In the beginning of this work, it has been asserted that, despite the material

relevance of concentration risk concerning the survival of banks and the stability

of the whole banking system, the variety of literature and the public attention on this

topic have been rather scarce. Against this background, within this work economi-

cal as well as regulatory aspects of concentration risk have been presented and some

models for measuring concentration risk in credit portfolios have been explained,

modified, and compared in detail. Moreover, several research questions regarding

name and sector concentration risk, which have been discussed during this work,

have been raised in the introduction.

In Chap. 2, the risk measures VaR and ES have been introduced, which are the

most common characteristic numbers for measuring risk in credit portfolios. In this

context, the emphasis has been put on the (non-)coherency and estimation issues.

Then, the asset value model of Merton (1974), the one-factor model of Vasicek

(1987), and the ASRF model of Gordy (2003) have been presented. These models

build the fundament of the IRB Approach of Basel II, which has been explained

subsequently.

In the literature and in various discussions it could be found that there are very

different interpretations and characteristics of concentration risk. First of all, banks

often only look at one side of concentration risk – the diversification effect. Thus, it

is often argued that the requirements of Pillar 1 are the non-diversified benchmark

and therefore an upper barrier for the true capital requirement. But as the Basel II

formulas have been calibrated on well-diversified portfolios with low name and low

sector concentrations, it is indeed possible that banks should have an additional

capital buffer to capture concentration risk. Furthermore, some theoretical models

as well as empirical studies have demonstrated that concentrated banks can be less

risky than diversified banks, which is mainly due to better monitoring abilities of

specialized financial institutions. However, even if it can be economically reason-

able to be focused on particular industry sectors or geographical regions, the capital

requirements should still be higher than for diversified banks. The main argument is

that although a specialized bank could benefit from the ability to invest in firms with

higher quality (of course it is not even clear that a higher risk-return premium is

M. Hibbeln, Risk Management in Credit Portfolios, Contributions to Economics,
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earned through lower risk), the bank would still be very vulnerable if the specific

sector is in an economic downturn scenario. But exactly such a downturn scenario,

often quantified with the VaR, plays the decisive role for the capital requirements.

This point as well as regulatory requirements and industry best practices concerning

the management of concentration risk have been highlighted in Chap. 3.

In Chap. 4, we have focused on the measurement of name concentrations.

After presenting the first-order granularity adjustment, a second-order granularity

adjustment has been derived, which results from a Taylor series expansion taking

elements of higher order into account. Although during this work and in the

literature it was expected that the resulting formula could improve accuracy, it

has to be stated that the standard first-order granularity adjustment leads to more

convincing results. As it is not analyzed sufficiently in the literature in which cases

the ASRF formula leads to a convincing approximation of the true risk, we have

analyzed this issue with a detailed numerical study. For this purpose, it has been

determined how many credits a portfolio should at least contain if a bank intends to

ignore name concentrations; this would be the case if only the ASRF formula was

applied. It has been shown that the result is highly dependent on the probability of

default and the asset correlation. For a high-quality portfolio, the minimum number

of credits varies between 1,371 and 23,989 (A-rated), whereas the critical number

of credits for a low-quality portfolio is in the bandwidth 23–205 (CCC-rated). These

numbers correspond to an accepted error of 5%. The difference between high- and

low-quality portfolios can be explained with a higher anticipation of unsystematic

defaults for low-quality portfolios. Furthermore, we have raised the question

whether the granularity adjustment is able to overcome the shortcomings of the

ASRF model, which has only been analyzed rudimentarily before. The results of

our study demonstrate that the granularity adjustment provides a very good approx-

imation of the risk stemming from name concentrations. We find that a consider-

ation of the granularity adjustment can reduce the required minimum portfolio size

by on average 83.04% compared to the ASRF model.

Because of the theoretical shortcomings of the VaR and since, differently from

the ASRF framework, these can be problematic if there is concentration risk, the ES

has been considered, too. At a first glance, it is problematic that the ES is by

definition higher than the VaR, which leads to higher capital requirements. As the

change of the risk measure should solve the problem of superadditivity but should

not inevitably lead to higher capital requirements, we have adjusted the confidence

level of the ES in a way that the Pillar 1 formulas still lead to an almost identical

level of measured risk. We find that a confidence level of a ¼ 99:72% for the

ES leads to a very good concurrence between the ES and the 99.9%-VaR for all

relevant credit qualities and correlations. By application of the same analyses as

before for the VaR-based granularity adjustment, we find that this approach works

very well. The ES-based granularity adjustment does not only reduce the required

number of credits by 91.64% compared to the ASRF solution, but the minimum

number of credits is also 49.05% lower compared to the VaR-based granularity

adjustment. These results show that for portfolios with a significant amount

of name concentrations, the ES-based granularity adjustment is really well-suited.
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An additional robustness check using stochastic LGDs has confirmed these find-

ings. However, the postulated accuracy should also be obtained in many real-world

portfolios if the VaR-based granularity adjustment is applied.

In Chap. 5, we have analyzed risks stemming from sector concentrations. For

this purpose, the design of multi-factor models has been explained. Since additional

input parameters are needed when applying a multi- instead of a single-factor

model, a methodology has been developed to parameterize intra- and inter-sector

correlations consistent with the one-factor model of Pillar 1. Given the inter-sector

correlation structure of the MSCI EMU industry indices, a formula for the implied

intra-sector correlation has been determined. With these parameters, the results of

the multi-factor model and of the Basel II formula are almost identical if the

portfolio is well-diversified as it had originally been assumed when calibrating

the Basel II formula. However, if the degree of concentration is higher, the capital

requirement can increase significantly. Using these parameters, an extensive

numerical study has been performed, which is similar to Cespedes et al. (2006).

The result of our numerical study is a closed form approximation formula in a

multi-factor setting, which is consistent with the Basel framework. In contrast to the

resulting formula of Cespedes et al. (2006), our formula is able to measure not

only the benefit from sectoral diversification but also the additional risk from

sectoral concentrations if these are higher than assumed in Basel II for a typical

well-diversified portfolio of large internationally active banks. Moreover, we have

used the theoretically more convenient ES instead of the VaR. In addition, we

have demonstrated how the extensive numerical calibration of the model can be

accelerated significantly without leading to worse approximations. Using the risk

measure ES, we have also performed the calibration procedure of D€ullmann (2006).

Furthermore, we have demonstrated how these models can be applied on bucket

instead of borrower level, which accelerates the computation of the corresponding

formulas considerably.

Based on the preceding findings, we have implemented our multi-factor setting

and compared different models by means of a simulation study. We find that the

accuracy of the models of Pykhtin (2004) and the developed formula, which is

based on Cespedes et al. (2006), lead to quite good results, whereas the model of

D€ullmann (2006) performs rather poorly. Especially in the case of heterogeneous

exposures, the model in the style of Cespedes et al. (2006) shows the best accuracy.

Since the extensive numerical calibration of this model only has to be done once

for a given correlation structure, and then, it is possible to perform ad-hoc analyses,

this model seems to be well-suited for many real-world applications if sector

concentrations shall be considered. A last very interesting result could be obtained

when the VaR and the ES have been compared within the simulation study.332 In

almost all simulation runs, the relative error of the VaR compared with the ES was

lower than 1%. Thus, in contrast to some contrived portfolio examples, the usage of

VaR seems to be unproblematic within this more realistic setting from a practical

332The confidence level of the ES has been reduced to 99.72% as argued in Chap. 4.
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point of view, even if there is a high degree of sector concentration risk in the

portfolio.

In this work, several aspects of concentration risk have been highlighted.

However, there is a variety of open issues in the context of concentration risk that

could not be addressed in this work. One important topic is the consideration

of concentration risk in the pricing of individual credits and credit derivatives,

especially of credit portfolio derivatives like CDOs. In particular, the sensitivity of

the price depending on existing risk concentrations has hardly been analyzed.

Beyond that, it would be interesting to take into consideration whether a bank is

exposed to the risk of a security until maturity or whether instruments of active

portfolio management are employed to reduce risk concentrations. Secondly, dur-

ing most of the work, it has been assumed that LGDs are deterministic or at least

stochastically independent. An open issue is how portfolio risk is affected by

risk concentrations stemming from collateral. In this context, concentrations in

individual positions and in sectors could both have relevant effects. For example, in

the financing of objects like ships or airplanes, there are usually several financiers

investing in one object; hence, the impact of the individual risk component of the

collateral can be even higher than that of the obligors. Similarly, in retail financing

there usually is a low degree of concentration risk of the obligors but if most of a

bank’s loans are secured by mortgages or by cars, there can be a relevant impact

of sector concentrations in collateral. Thirdly, credit contagion through micro-

structural channels could only be touched upon. One challenging aspect in this

area is the estimation of business relations, since micro-structural dependencies

cannot be restricted to the most important firms of a bank’s actual portfolio but

firms that are not financed by the bank can affect the credit portfolio through their

business relationships as well. Thus, additional research should address how these

effects of micro-structural dependencies can be implemented in practice despite the

substantial data requirements.
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