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Foreword

It is a great pleasure to learn that the Centre for Interdisciplinary Mathematical
Sciences and the Department of Mathematics, Banaras Hindu University organized
an Advanced Training Programme on Nonconvex Optimization and Its Applica-
tions. This programme was organized to introduce the subject to young researchers
and college teachers working in the area of nonconvex optimization.

During the five-day period several eminent professors from all over the country
working in the area of optimization gave expository to advanced level lectures
covering the following topics.

(1) Quasi-convex optimization
(i) Vector optimization
(ii1) Penalty function methods in nonlinear programming
(iv) Support vector machines and their applications
(v) Portfolio optimization
(vi) Nonsmooth analysis
(vii) Generalized convex optimization

Participants were given copies of the lectures. [ understand from Dr. S. K. Mishra,
the main organizer of the programme, that the participants thoroughly enjoyed the
lectures related to nonconvex programming. I am sure the students will benefit
greatly from this kind of training programme and I am confident that Dr. Mishra will
conduct a more advanced programme of this kind soon. I also appreciate the efforts
taken by him to get these lectures published by Springer. I am sure this volume will
serve as excellent lecture notes in optimization for students and researchers working
in this area.

Chennai, April 2010 Thiruvenkatachari Parthasarathy
INSA Senior Scientist
Indian Statistical Institute, Chennai, India
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Preface

Optimization is a multidisciplinary research field that deals with the characteriza-
tion and computation of minima and/or maxima (local/global) of nonlinear,
nonconvex, nonsmooth, discrete, and continuous functions. Optimization prob-
lems are frequently encountered in modelling of complex real-world systems for
a very broad range of applications including industrial and systems engineer-
ing, management science, operational research, mathematical economics, seismic
optimization, production planning and scheduling, transportation and logistics, and
many other applied areas of science and engineering. In recent years there has been
growing interest in optimization theory.

The present volume contains 16 full-length papers that reflect current theo-
retical studies of generalized convexity and its applications in optimization theory,
set-valued optimization, variational inequalities, complementarity problems,
cooperative games, and the like. All these papers were refereed and carefully
selected from those delivered at the Advanced Training Programme on Nonconvex
Optimization and Its Applications held at the DST-Centre for Interdisciplinary
Mathematical Sciences, Department of Mathematics, Banaras Hindu University,
Varanasi, India, March 22-26, 2010.

I would like to take this opportunity, to thank all the authors whose contribu-
tions make up this volume, all the referees whose cooperation helped in ensuring
the scientific quality of the papers, and all the people from the DST-CIMS and
Department of Mathematics, Banaras Hindu University, whose assistance was
indispensable in running the training programme. I would also like to thank to all
the participants of the advanced training programme, especially those who travelled
a long distance within India in order to participate. Finally, we express our appreci-
ation to Springer for including this volume in their series. We hope that the volume
will be useful for students, researchers, and those who are interested in this emerging
field of applied mathematics.

Varanasi, April, 2010 Shashi Kant Mishra
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Chapter 1

Some Equivalences Among Nonlinear
Complementarity Problems, Least-Element
Problems, and Variational Inequality Problems
in Ordered Spaces

Qamrul Hasan Ansari and Jen-Chih Yao

Abstract In this survey chapter we introduce several Z-type single-valued maps as
well as set-valued maps. We present several equivalences among different types of
nonlinear programs, different types of least-element problems, and different types
of variational inequality problems under certain regularity and growth conditions.

1.1 Introduction

It is well known that the theory of complementarity problems has been become
a very effective and powerful tool in the study of a wide class of linear and
nonlinear problems in optimization, economics, game theory, mechanics, engi-
neering, and so on, see, for example [9, 15-17], and the references therein. For
a long time, a great deal of effort has gone into the study of the equivalence of
complementarity problems and other problems. In 1980, Cryer and Dempster [10]
studied the equivalence of linear complementarity problems, linear programs, least-
element problems, variational inequality problems, and minimization problems in
vector lattice Hilbert spaces. In 1981, Riddle [28] established the equivalence of
complementarity and least-element problems as well as several related problems.
In 1995, Schaible and Yao [30] proved the equivalence of these problems by intro-
ducing strictly pseudomonotone Z-maps operating on Banach lattices. In 1999,
Ansari et al. [1] extended the results of Schaible and Yao [30] for point-to-set
maps and established equivalence among generalized complementarity problems,
generalized least-element problems, generalized variational inequality problems,

Qamrul Hasan Ansari
Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India,
e-mail: ghansari @gmail.com

Jen-Chih Yao
Center for General Education, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,
e-mail: yaojc@kmu.edu.tw

S. K. Mishra, Topics in Nonconvex Optimization, Springer Optimization and Its Applications 50,
DOI 10.1007/978-1-4419-9640-4 1, © Springer Science+Business Media, LLC 2011



2 Qamrul Hasan Ansari and Jen-Chih Yao

and minimization problems. In [34] Yin, Xu, and Zhan established the equiva-
lence of F-complementarity, variational inequality, and least-element problems in
the Banach space setting. Very recently, Huang and Fang [14] introduced several
classes of strong vector F'-complementarity problems and gave their relationships
with the least element problems of feasible sets. Furthermore, in [36], Zeng and Yao
first gave an equivalence result for variational-like inequality problems and least
element problems.

In this survey chapter we introduce several Z-type single-valued maps as well
as multivalued maps. We present several equivalences among different types of
nonlinear programs, least-element problems, complementarity problems, and varia-
tional inequality problems under certain regularity and growth conditions.

1.2 Preliminaries

In this section, we introduce some notations and definitions that are used in the
sequel.

Let B be a real Banach space with its dual B*, and let K C B be a closed convex
cone. Let K* be the dual cone of K; that is,

K*={ueB":(ux)>0forallxeK},

where (u,x) denotes the pairing between u € B* and x € B.
The vector ordering induced by K on B and induced by K* on B* is denoted
by <:

x<y ifandonlyify—x€ K, forallx,y€ B,
u<v ifandonlyifv—ue K", forallu,ve B".
Nonzero elements of K* are said to be positive, and u € K* is said to be strictly

positive if
(u,x) >0, forallxeK, x#0.

The space B is a vector lattice with respect to < if each pair x,y € B has a unique
infimum x Ay characterized by the properties

XNy <x, xAy<y z<x,z<y ifandonlyifz <xAy.

If B is a vector lattice, so is B* with respect to the ordering < induced by K*; see,
for example, [22].

Proposition 1.1 ([2, pp. 533]). Let K be a nonempty convex subset of B and let
f: K — R be a lower semicontinuous and convex functional. Then, f is weakly
lower semicontinuous.



1 Nonlinear Complementarity Problems, and Variational Inequality Problems 3

Remark 1.1. From Proposition 1.1, we can see that, if f: K — R is upper semi-
continuous and concave, then f is weakly upper semicontinuous.

Definition 1.1. Let Q2 be an open subset of a real Banach space B. A function f :
Q — Ris said to be Gateaux differentiable at x € Q if there exists Vf(x) € B* such

that
o S ) = ()

t—0t t

= (Vf(x),h), VheB.

Vf(x) is called the Gdteaux derivative of f at the point x. The function f is Giteaux
differentiable in € if it is Gateaux differentiable at each point of (2.

Let K be a closed subset of B and f : K — R. By saying f is Géateaux differen-
tiable in K we mean that f is Géateaux differentiable in an open set neighborhood
of K.

Definition 1.2 ([3]). Let £2 be an open subset of a real Banach space Band f: Q —
R be Gateaux differentiable. The function f is said to be

(1) Pseudoconvex on £ if for every pair of points x,y € 2, we have
(Vf(x),y=x) > 0= f(y) > f(x)

(ii) Strictly pseudoconvex on 2 if for every pair of distinct points x,y € £2, we have

(Vf(x),y—x)>0=f(y) > f(x)

The relation of (strict) pseudoconvexity and (strict) pseudomonotonicity is the
following.

Theorem 1.1 ([19, 20]). Let 2 be an open convex subset of a real Banach space B
and f: Q — R be Gdteaux differentiable. Then f is (strictly) pseudoconvex on Q2 if
and only if Vf : Q — B* is (strictly) pseudomonotone.

We note that if f: 2 — R is strictly pseudoconvex, then the solution of min,c o
f(x) is unique provided a solution exists [3].

Definition 1.3. Let f : B — R be a functional. Then an element u € B* is called a
subgradient of f at the point x € B if f(x) is finite and

(y—x) < f(y)—f(x), VyeB.

The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by d f(x). That is,

If(x) ={ucB :(uy—x) < f(y)=f(x)},  VyeB,

and therefore the subdifferential of f is the point-to-set map df : x — d f(x) from B
to B*.
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Lemma 1.1 ([52]). Let (X, || - ||) be a normed vector space and F be a Hausdorff
metric on the collection CB(X) of all nonempty, closed, and bounded subsets of X,
which is defined as

H(U,V)= max{sup inf ||u — v||,sup inf ||u—v||}7
ucU VeV ey uet

forU andV in CB(X), where the metric d is induced by d(u,v) = ||u—v||. IfU and
V are compact sets in X, then for each u € U, there exists v € V such that

lu—vl| <2 (U,V).

Let D be a nonempty subset of a topological vector space X. A point-to-set map
G : D — 2% is called a KKM map if for each finite subset {x{,...,x,} C D,

co{xy,...,xn} C U G(x;),
i=1

where co{xy,...,x} denotes the convex hull of {x;,...,x,}.

Lemma 1.2 ([11]). Let D be an arbitrary nonempty subset of a Hausdorff topo-
logical vector space X. Let the point-to-set map G : D — 2X be a KKM map such
that G(x) is closed for all x € D and is compact for at least one x € D. Then
NeenG(x) # 0.

1.3 Equivalence of Nonlinear Complementarity Problems and
Least-Element Problems

Given are a closed convex cone K C B, T : K — B* and f : K — R whose special
properties do not concern us for the moment. We denote by . the feasible set of T
with respect to K; that is,

F={xeB:xeKandT(x) € K*}.
In this section, we consider the following problems.
(I) Nonlinear program : For a given u € B*, find x € .# such that
(u,x) = ;gg<u,y>-
(Il) Least-element problem : Find x € .% such that

x <y, Vy e ZF.
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(II1) Complementarity problem : Find x € .% such that
(u,x) =0.
(IV) Variational inequality problem : Find x € K such that
(T(x),y—x) >0, Vy€eK.
(V) Unilateral minimization problem : Find x € K such that

f(x) = min f(y).

yeK

The equivalence of (I) and (IT) on the one hand, and among (IIT), (IV), and (V) is
well known; see, for example [18, 28]. The purpose of this section is to investigate
suitable conditions under which these five problems are equivalent.

Definition 1.4 ([28]). Let B be a Banach space that is also a vector lattice with
positive cone K; let T : K — B* be a mapping. Then T is called a Z-map relative to
K if for any x,y,z € K,

(T(x)—T(y),z) <0, whenever (x—y)Az=0.

In the case where T is linear, Definition 1.4 reduces to the definition of condition
Z in [10]. In the case where B = R” and K is the nonnegative orthant, 7' is a Z-map
relative to K if and only if it is off-diagonally antitone in the sense of [27].

Definition 1.5 ([18, 20, 28]). Let B be a Banach space, K a nonempty convex subset
of B,and T : K — B* a mapping. Then T is called

(1) Pseudomonotone if for any x,y € K,
(T(y),x—y)>0 implies (T(x),x—y)>0
(ii) Strictly pseudomonotone if for any distinct points x,y € K
(T(y),x—y)>0 implies (T(x),x—y)>0

(iii) Hemicontinuous if it is continuous on the line segments in K with respect to
weak™ topology in B*; that is, for any fixed x,y,z € K, the function

1= (T(x+1y),z), 0<r<1

is continuous
(iv) Positive at infinity if for any x € K, there exists a positive real number p(x)
such that (T'(y),y — x) > 0 for every y € K such that ||y|| > p(x).
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Lemma 1.3 ([30]). Let K be a convex cone in a Banach space B and T : K — B*
be (strictly) pseudomonotone. Then for each fixed z € K, the operator T, : K — 2B
defined by

T.(x) =T (x+72), Vxe K

is also (strictly) pseudomonotone.

Proof. For any x,y € K, suppose that (T.(y),x —y) > 0. Then (T(y +z),x — y)
> 0, from which it follows that (T'(y+z),(x+2z) — (y +z)) > 0. Because T is
pseudomonotone, we have

(T(x+2),(x+2)=(y+2) =0

and hence
<TZ(X),)C7y> 2 0.

Therefore, T is also pseudomonotone. The case where T is strictly pseudomonotone
can be dealt with by a similar argument.

We need the following result to derive the equivalence of problems (I)-(V) under
suitable conditions.

Theorem 1.2. Let K be a nonempty, closed, bounded convex subset of a reflexive
Banach space Band let T : K — B* be weakly pseudomonotone and hemicontinuous.
Then there exist x € K such that

(T(x),y—x)>0, Vyek.
Furthermore, if in addition T is strictly pseudomonotone, the solution is unique.

Theorem 1.2 is an extension of classical existence results for variational inequali-
ties due to [4, 13]. By employing Theorem 1.2, we obtain the following result for
perturbed variational inequalities.

Proposition 1.2 ([30]). Let K be a nonempty, closed, convex cone in a reflexive
Banach space B, and T : K — B* be pseudomonotone, hemicontinuous, and positive
at infinity. Then for each fixed z € K, there exist x € K such that

(T(x+2z),y—x) >0, VyeK. (1.1)

If, in addition, T is strictly pseudomonotone, then for each z € K, (1.1) has a unique
solution.

Proof. For each z € K, we define T, : K — B* by
T.(x) =T(x+2), Vx eK.

Then obviously, T is hemicontinuous.
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By Lemma 1.2, T, is also pseudomonotone. Let p = ||z|| 4+ p(z), where p(z) is
defined as in the definition of positive at infinity. Let

D={y+z:yeK, |yl <p},

which is a closed, bounded, convex subset of a reflexive Banach space B. Then by
Theorem 1.2, there exist x € K with ||x|| < p such that

(T.(x),y —x) >0, VyekK with [ly|| < p. (1.2)
We note that ||x|| < p. Suppose that ||x|| = p; then
x4zl = [lxll = llzll = p(2)-
T is positive at infinity, thus we have
(T(x+2z),x) >0,
or

(T,(x),%) > 0, (13)
On the other hand, letting y = 0 in (1.2), we have

(T:(x),x) <0,

which is a contradiction of (1.3). Therefore, ||x|| < p and by standard technique it
can be shown that x is indeed a solution of (1.1).

If, in addition, T is strictly pseudomonotone, then by Lemma 1.3, 7 is also
strictly pseudomonotone. Consequently, the solution is unique.

In the remaining part of this section, we assume that B is a real Banach space
and K is a closed convex cone of B, and, whenever the ordering induced by K is
mentioned, (B, <) is a vector lattice.

Now we establish the equivalence of problems (I)-(V) under suitable conditions.

Proposition 1.3 ([30]). Let T : K — B* be the Gdteaux derivative of f : K — R. Then
any solution of (V) is also a solution of (IV). If in addition, T is pseudomonotone,
then, conversely, any solution of (IV) is also a solution of (V).

Proposition 1.4 ([18, Lemma 3.1]). Let T : K — B*. Then x is a solution of (II) if
and only if it is a solution of (IV).

Proposition 1.5 ([30]). Suppose that T : K — B* is strictly pseudomonotone and a
Z-map relative to Z. Then any solution of (IV) is also a solution of (11).

Proposition 1.6 ([18, Lemma 3.1]). Let T : K — B* and u € K*. Then any solution
of (I) is a solution of (I).

Proposition 1.7 ([30]). Let B be a reflexive Banach space. Assume that T : K — B*
is a Z-map relative to K, strictly pseudomonotone, hemicontinuous, and positive at
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infinity. Then the feasible set # = {x € B:x € K and T (x) € K*} is a A-sublattice;
thatis, x € F andy € F imply x\y € F.

Proposition 1.8 ([30]). Let B be a reflexive Banach space. Assume that T : K — B*
is a Z-map relative to K, strictly pseudomonotone, hemicontinuous, and positive at
infinity. Let u € K* be strictly positive. Then Problem (1) corresponding to u has at
most one solution, and any solution of (1) is also a solution of (11).

By combining Propositions 1.3 and 1.5-1.7, we have the following main result
of this section.

Theorem 1.3. Let K be a closed convex cone in a reflexive Banach space B such
that B is a vector lattice with respect to the order < induced by K. Let T : K — B*
be a Z-map relative to K, strictly pseudomonotone, hemicontinuous, and positive at
infinity. If u € K* is a strictly positive element, then there exists x € F which is a
solution of problems (1)-(IV). Moreover; the solution x is unique. If T is the Gdteaux
derivative of f : K — R, then x is also a unique solution of problem (V).

Corollary 1.1. Let K be a closed convex cone in a reflexive Banach space B such
that B is a vector lattice with respect to the order < induced by K. Let T : K — B*
be a Z-map relative to K, strongly pseudomonotone and hemicontinuous. If u € K*
is a strictly positive element, then there exists x € F which is a solution of problems
(D—AV). Moreover; the solution x is unique. If T is the Gdteaux derivative of f :
K — R, then x is also a unique solution of problem (V).

The following example illustrates that the extension of Riddell’s result is not
empty.

Example 1.1. Let B = R"” with the Euclidean norm. Then B* = R”". The pairing
between x = (xy,...,x,) € Band u = (uy,...,u,) € B* is given by

n
(,x) =Y uix;.
i=1

Let K be the nonnegative orthant. Then K* = K and the reduced ordering makes B
a vector lattice with

X/\y:(zla"'aZn)v Zi:min<yi;xi>-

Let T : [0,00) — R be defined as T'(x) =2+ (1/10)x+ sinx for x > 0. Then it can be
checked that T is strictly pseudomonotone and a Z-map relative to [0.c0). T is also
positive at infinity. Note that 7' is not monotone because (T (x) — T'(y),x —y) < 0 for
x=(3/2)randy=0.
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1.4 Equivalence Between Variational-Like Inequality Problem
and Least-Element Problem

Let B be a real Banach space with norm || - || and dual B*. Let K C B be a non-
empty convex subset, f : K — B* be a single-valued mapping, and ¢ : K — R be a
convex functional. For a given mapping 1 : K x K — B, we consider the following
variational-like inequality problem of finding x* € K such that

(F(x*),n(x,x")) > F(x*)— F(x), forallx€K. (1.4)

If B=H is areal Hilbert space, K = H, n(x,y) =x—yforallx,ye H, f: H — H
is a single-valued mapping, and F' : H — R is a linear continuous functional, then the
problem (1.4) reduces to the following variational inequality problem. Find x* € K
such that

(f(x"),x—x") > F(x*)— F(x), forallxeK. (1.5)

If F =0, then the problem (1.4) reduces to the following variation-like inequality
problem: Find x* € K such that

(f(x*),m(x,x")) >0, forallxeK. (1.6)

The problem (1.6) is studied in the setting of finite-dimensional Eucludian space in
[26] and infinite-dimensional spaces in [31].

If K C B is a closed convex cone, and 1(x,y) = x —y for all x,y € K, then the
problem (1.4) reduces to the variational inequality problem: find x* € K such that

(f(x"),x—x") > F(x*) = F(x), forallxeK. (1.7)

In order to study the F-complementarity problem, Yin, Xu, and Zhang [34] intro-
duced and considered the problem (1.7), and established the equivalence between
problem (1.7) and the F-complementarity problem in the case when F : K — R is
positively homogeneous. More precisely, let B be a real Banach space and B* the
dual space. Let K be a closed convex cone in B, f : K — B* and F : K — R. The
F-complementarity problem is to find x* € K such that

KN +F(E*)=0 and (x,f(x"))+F(x) >0, forallxeK.

Furthermore, by virtue of the existence of solutions of problem (1.7), they studied
the equivalence between the F-complementarity problem and the least element
problem.

In this section, we establish the existence results for solutions of variational-like
inequality problems in the case when K C B is a nonempty closed convex subset
containing zero. Furthermore, we prove that the feasible sets of problem (1.4) are
A-sublattices in the vector lattice. Moreover, we investigate the equivalence between
problem (1.4) and the least element problems. The results of this section improve
and generalize the results of Yin et al. [34] by extending the variational inequality
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problem (1.7) in [34] to the variational-like inequality problem (1.4). In addition,
these results also generalize and extend the corresponding results in [26, 28, 30].
We give some notations and definitions that are used in the rest of this section.

Definition 1.6. Let f: K — B* and 1 : K x K — B. f is said to be 1n-hemicontinuous
on K if for every fixed x,y € K, the function

L <f(x+t(y_x))an(yvx)>

is continuous at 0. In particular, if 17(x,y) = x —y for all x,y € K, then f is said to
be hemicontinuous on K.

Definition 1.7. Let f: K — B*andn : K x K — B.Let & : Ry — R be a nonnega-
tive function and F : K — R be a convex functional.

(1) f is said to be strictly N — ot-monotone on K if for each x,y € K and x # y,

(f&x) = f).n(xy) > o(llx—yl)).

In the case where o/(¢) = 0, f is said to be strictly n-monotone on K. In parti-
cular, if n(x,y) =x—yforall x,y € K, then f is said to be strictly -monotone
on K.

(ii) f is said to be n — F-pseudomonotone on K if for each x,y € K and x # y,

(FO):mxy)) = Fy) = F(x) = (f(x),n(x,y)) = F(y) = F(x).

In particular, if 1) (x,y) = x—y for all x,y € K, then f is said to be F-pseudo-
monotone on K.
(>iii) f is said to be strictly n — F-pseudomonotone on K if for each x,y € K,

(fO):mxy) = F(y) = F(x) = (f(x),n(x,y)) > F(y) = F(x).

In particular, if n(x,y) = x —y for all x,y € K, then f is said to be strictly
F-pseudomonotone on K.

(iv) f is said to satisfy the n-coercive condition with respect to F if for any given
y € K, there exists a positive number p (y) such that

(f(r+y),1(x,0)) + F(x) > F(0)

for all x € K with ||x|| = p(y). In particular, if n(x,y) =x—y forallx,y € K,
then f is said to satisfy the coercive condition with respect to F.

It is clear that strictly 11 — a--monotone => strictly 1-monotone =- strictly 1 —
F-pseudomonotone = 1 — F-pseudomonotone.

Remark 1.2. If n(x,y) = x—y for all x,y € K, then Definitions 1.6 and 1.7 reduce to
Definitions 2.1 and 2.2 in Yin, Xu, and Zhang [34], respectively. Definition 1.6 with
N (x,y) = x —y was previously introduced by Riddell [28].
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Definition 1.8 ([34]). Let @ : R+ — R be a nonnegative functionand F : K — R a
functional, where K + K C K. F is said to be a-bounded on K if for each x,y € K,

F(x)+F(y) = Fx+y) < minfe(|lxl]), oe([[])}-

Throughout this section, unless otherwise specified, we assume that B is a real
Banach space and that K C B is a nonempty, closed, convex subset containing zero.

Theorem 1.4 ([36]). Let B be a reflexive Banach space, and F : K — R a lower
semicontinuous and convex functional. Let f : K — B* be an n-hemicontinuous and
n — F-pseudomonotone mapping, where 1 : K x K — B has the properties:

(i) n(x,y) +n(yx) =0forall x,y € K.
(ii) n(-,) is affine in the first variable.
(iii) For each fixed y € K, x — 1 (y,x) is sequentially continuous from the strong
topology to the weak topology.

Assume that there exists a positive number r > 0 such that
(f(x),n(x,0)) + F(x) > F(0), forallxeK with ||x|| =r. (1.8)

Then the variational-like inequality problem (1.4) has a solution in K. In particular,
if f is strictly n — F-pseudomonotone, then the solution is unique.

As consequences of Theorem 1.4, we immediately obtain the following
corollaries.

Corollary 1.2 ([34, Theorem 3.1]). Let B be a reflexive Banach space, and
F : K — R a lower semicontinuous and convex functional. Let f : K — B* be a
hemicontinuous and F-pseudomonotone mapping. If there exists a positive number
r > 0 such that

(f(x),x)+ F(x) > F(0), forallxe€ K with ||x| =r,

then the variational inequality problem (1.7) has a solution in K. In particular, if f
is strictly F-pseudomonotone on K, then the solution is unique.

Corollary 1.3 ([34, Corollary 3.2]). Let B be a reflexive Banach space, and
F : K — R a lower semicontinuous and convex functional. Let f : K — B* be a
hemicontinuous and strictly monotone mapping. If f satisfies the coercive condition
with respect to F, then for any given 7 € K, there exists a unique element x* € K
such that

x—=x*f(x"4+2)) > F(x")—F(x), forallxcK.

Following the idea of Yin, Xu, and Zhang [34], we define the feasible set of the
variational-like inequality problem (1.4) as follows,

P ={weK:{(f(w),n(u,urw))y+F(u—urw)>0foralluecK}.
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In particular, if 11 (x,y) =x —y for all x,y € K, then the feasible set of the variational-
like inequality problem (1.4) reduces to that of the variational inequality problem
(1.7); that is,

P ={xeK:{(f(x),y—yAx)+F(y—yAx)>O0forallu € K}.

Definition 1.9. Let (B, <) be a vector lattice. A function f : K — B* is said to be an
N — Z-mapping on K if for each u,v,w € K,

vA(w—u)=0= (f(w) — f(u),n(u+v,u)) <O0.

In particular, if 11(x,y) = x —y for all x,y € K, then f is said to be a Z-mapping
onK.

Theorem 1.5 ([36]). Let B be a reflexive Banach space, and (B,<) a vector
lattice. Let F : K — R be a functional and f : K — B* an 1 — Z-mapping, where
N : K X K — B is a mapping such that n(x,y) + 1 (y,x) = 0 for all x,y € K. Assume
that the following conditions are satisfied.

(i) There exists a nonnegative function o, : Ry — R such that

(a) f is strictly N — a-monotone on K.
(b) F is a-bounded on K.

(ii) For any given z € K, there exists x* € K such that
(fx*+2),n(u,unz+x")) > F(x*)—Fu—uNz) forallucKk.

If the feasible set 9 of the variational-like inequality problem (1.4) is nonempty,
then 2 is a N-sublattice of B.

Corollary 1.4 ([36]). Let B be a reflexive Banach space, and (B, <) a vector lattice.
Let F : K — R be a lower semicontinuous and convex functional, f : K — B* a
hemicontinuous Z-mapping, and f satisfies the coercive condition with respect to
F. Assume that there exists a nonnegative function o : Ry — Ry such that

(i) f is strictly a-monotone on K.
(ii) F is a-bounded on K.

If the feasible set 9 of the variational inequality problem (1.7) is nonempty, then &
is a N\-sublattice of B.

Theorem 1.6 ([36]). Let B be a reflexive Banach space and (B,<) be a vector
lattice. Let F : K — R be a functional and f : K — B* an 1 — Z-mapping, where
N : K x K — B is a mapping such that (x,y) + 1(y,x) = 0 for all x,y € K. Assume
that there exists a nonnegative function o : Ry — Ry such that the condition (i)
in Theorem 10.20 is satisfied. If the variational-like inequality problem (1.4) has a
solution x* in the feasible set 9, then x* is the least element of 9.
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Corollary 1.5 ([36]). Ler (B, <) be a vector lattice. Let F : K — R be a positively
homogeneous and convex functional, and f : K — B* a Z-mapping. Assume that
there exists a nonnegative function o, : Ry — Ry such that the conditions (i) and
(i) in Corollary 10.5 are satisfied. If the variational inequality problem (1.7) has a
solution x* in K, then x* is the least element of 9.

Now, from Theorems 1.4—1.6 we immediately obtain the following result.

Theorem 1.7 ([36]). Let B be a reflexive Banach space, and (B, <) a vector lattice.
Assume that the following conditions are satisfied.

(i) F : K — R is a lower semicontinuous and convex functional.
(ii) f: K — B* is an n-semicontinuous 1 — Z-mapping, where 1 : K x K — B has
the following properties.
(a) N(x,y)+n(y,x) =0forall x,y € K.
(b) N(-,-) is affine in the first variable.
(c) For each fixedy € K, x — 1(y,x) is sequentially continuous from the strong
topology to the weak topology.

(iii) There exists a positive number r > 0 such that
(N(x,0), f(x)) +F(x) > F(0), forallxecK with |x||=r.

(iv) There exists a nonnegative function o, : R, — R such that

(a) f is strictly N — a-monotone on K.
(b) F is a-bounded on K.

(v) For any given z € K, there exists x* € K satisfying the following inequality.
(f(x*+2),n(u,unz+x*)) >F(x*")—F(u—uNz), foralluck.

Then the variational-like inequality problem (1.4) has a unique solution x* in K.
In particular, if this solution x* lies in 9, then 9 is a N\-sublattice of B, and x* is the
least element of 9.

Finally, from Corollaries 1.3, 1.4, and 1.5 we immediately have the following
corollary.

Corollary 1.6 ([36]). Let B be a reflexive Banach space, and (B, <) a vector lattice.
Assume that the following conditions are satisfied.

(i) F : K — R is a lower semicontinuous, positively homogeneous and convex
functional.
(ii) f : K — B* is a semicontinuous Z-mapping.
(iii) f satisfies the coercive condition with respect to F.
(iv) There exists a nonnegative function o, : R, — R such that

(a) f is strictly o.-monotone on K.
(b) F is a-bounded on K.
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Then the variational inequality problem (1.7) has a unique solution x* in the feasible
set 9 of itself, 9 is a N-sublattice of B, and x* is the least element of 9.

1.5 Equivalence Between Extended Generalized
Complementarity Problems and Generalized Least-Element
Problem

In this section, we extend the formulations and results of Section 1.3 for set-valued
maps.

Given is a closed convex cone K CBand T : K — 23*, where 28 is the family of
all nonempty subsets of B. We denote by .#, the feasible set of T with respect to K
that is,

F={xeB:xeKandT(x)NK" # 0}.

We consider the following problems.

(1) Generalized nonlinear program: For a given u € B*, find x € .% such that

(u,x) = ;Elﬂn@hy)

(II) Generalized least-element problem: Find x € .Z such that
x<y, VyeZ.

(IIT) Extended generalized complementarity problem: Findx € K and u € T (x) N K*
such that
(u,x) =0.

(IV) Generalized variational inequality problem: Find x € K and u € T (x) such that
(u,y—x) >0, Vy€eK.

The equivalence of (III) and (IV) has been studied by Saigal [29]. The main
object of this section is to investigate suitable conditions under which these four
problems are equivalent.

Definition 1.10. Let B be a Banach space that is also a vector lattice with positive
cone K; let T : K — 25" be a point-to-set map. Then 7 is called

(1) Z-map relative to K if for any x,y,z € K,
(u—v,z) <0, YueT(x) and veT(y), whenever(x—y)Az=0
(i) Monotone if for any x,y € K,

(u—v,x—y) >0, YueT(x) and veT(y)
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(iil) Weakly pseudomonotone if for any x,y € K and for every v € T(y), we have
(v,x—y) > 0 implies (u,x —y) > 0, for some u € T (x)

(iv) Weakly strictly pseudomonotone if for any x,y € K, and for every v € T (y) we
have (v,x —y) > 0 implies (u,x —y) > 0, for some u € T'(x)

(v) v-hemicontinuous if for any x,y € K, and o € [0, 1], the point-to-set map
o — (T (x+ a(y—x)),y —x), is upper semicontinuous at 0", where (T (x +
a(y—x)),y—x)={(wy—x):ueT(x+aly—x)}

(vi) Positive at infinity if for any x € K, there exists a positive real number p (x)
such that for all v € T(y), (v,y —x) > 0, Vy € K such that ||y|| > p(x)

If T is a point-to-point map then the above definition (i) reduces to the definition
of the Z-map relative to K in [23].

Lemma 1.4 ([1]). Let K be a convex cone in a Banach space B and let T : K — 28
be a weakly (strictly) pseudomonotone point-to-set map. Then for each fixed z € K,
the point-to-set map T, : K — 28" defined by

T.(x) =T(x+2z), VxeK
is also weakly (strictly) pseudomonotone.

Now we consider the problem (IV) for a particular set-valued map and some
other problems.
GivenKCB,f:K—Rand¢:B— R.

(IV) Generalized variational inequality problem: Find x € K and u € d f(x) such
that

<u7y7x>205 vyEI{

(V) Unilateral minimization problem: Find x € K such that

fx) = min f(y).
The set of solutions for (V) is denoted by E.
(VI) Optimization over an efficient set: Find x € K such that

9 (x) =ming(y).
The equivalences of these problems have been investigated by Chen and
Graven [5].
We need the following result to derive the equivalence of problems (I)—(IV) under
suitable conditions. The proof of the following theorem follows from [23, Corol-
lary 4.1] and [33, Lemma 3.1].
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Theorem 1.8 ([1]). Let K be a nonempty, closed, bounded convex subset of a
reflexive Banach space BandletT : K — 28" be weakly pseudomonotone, compact-
valued, and v-hemicontinuous. Then there exist x € K and u € T (x) such that

(u,y—x) >0, VyeKk.

Furthermore, if in addition T is weakly strictly pseudomonotone, the solution is
unique.

We use Theorem 1.8 to prove the existence result for perturbed generalized vari-
ational inequalities.

Proposition 1.9 ([1]). Let K be a nonempty, closed convex cone in a reflexive
Banach space B, and T : K — 2B be weakly pseudomonotone, compact-valued,
v-hemicontinuous, and positive at infinity. Then for each fixed z € K, there exist
x€ K andu € T(x+ z) such that

(u,y—x) >0, VyeK. (1.9

In the remaining part of this section, B is a real Banach space and K is a closed
convex cone of B, and, whenever the ordering induced by K is mentioned, (B, <) is
a vector lattice.

We establish equivalence of problems (I)—(IV) under suitable conditions.

Proposition 1.10 ([11). Let T : K — 25" be a set-valued map. Then any solution of
(ID) is a solution of (1).

Proof. Let x be a solution of (I). Then x € .# such that x <y, Vy € .%. Because
x€ F,wehavex€ Kand T(x) N K* #0. Letu € T(x) N K*. Then y—x € K and
u € K* imply that

Uy —x) =0 or (u,y) > (u,x);

that is, (u,x) = minye z (u,y).

Proposition 1.11 ([1]). Let B be a reflexive Banach space. Assume that
T:K—28 isa Z-map relative to K, weakly strictly pseudomonotone, compact
valued, v-hemicontinuous, and positive at infinity. Then the feasible set
F={xeB:xe€Kand T(x) N K* # 0} is a N-sublattice; that is, x € F and
yEZF implyxN\y € F.

Proof. Suppose that x,y € % and let z = xAy. Because x,y € .%, we have x,y € K,
T(x)NK*#0,and T (y) N K* #0. Letu; € T(x) N K* and up € T(y) N K*. Because
x,y € K, we have x > 0, y > 0 imply z > 0 and hence z € K.

It remains to show that 7'(z) N K* # 0.

By Proposition 1.9, there exist x* € K and u* € T (x* + z) such that

(u*,w—x%) >0, Yw e K. (1.10)
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Forany y € K, y+x* € K, Thus
W, y+x*—x*) >0, Vy e K;

thatis, (u*,y) > 0,Vy € K and hence u* € K*.

Now, we prove that z = x* +z. For that, let zo = x A (x* +z). Inasmuch as x* +z > z
and x > z, we have zg > z and so zg —z > 0 and thus zy — z € K. Now from (1.10),
we get

x*€K and u*e€T(x"+z) suchthat(u*,(z0—z)—x")>0. (1.11)

Suppose that x* + z # zg. Then by the weakly strict pseudomonotonicity of 7 and
(1.11), we have

(V20— (x"+2)) >0 for somev* € T(zp). (1.12)

(x—zo)AN(x*+z—20) = kA (x*+2)) —20 =0, and T is a Z-map relative to K,
therefore we have

(up —v*, (x* +2) — z9) <0, Vuy € T(x) and v* € T(z0). (1.13)

Because u; € T(x) N K*, we have u; € K*. Also because (x* +2z) — 70 € K, we have

i )

(u1,(x*+2)—2z0) >0

or
(—ur,—z0+ (x" +2)) <0. (1.14)

Adding (1.13) and (1.14), we have
<V*7Z0 - (X* +Z)> < Oa

which is a contradiction of (1.12). Hence z9 = x* + z and by the definition of z, we
conclude that x* +z < x.

Replacing the above argument with y in place of x, we can show x* +y < y. Thus
x*+y <xAy=z Buton the other hand, x* +z > z so x* + z = z and the proof is
completed.

Proposition 1.12 ([1]). Let B be a reflexive Banach space. Assume that T : K — 2B
is a Z-map relative to K, weakly strictly pseudomonotone, compact-valued,
v-hemicontinuous, and positive at infinity. Let u € K* be strictly positive. Then
Problem (1) corresponding to u has at most one solution, and any solution of (I)
is also a solution of (II).

Proof. Suppose thatx,y € .7 are solutions of problem (I). Then by Proposition 1.11,
XAy € Z and hence
(u,x Ny) > (u,x)
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with strict inequality of x Ay # x, because u is strictly positive. But x is an optimal
solution, therefore the strict inequality is impossible. Hence x Ay = x. Similarly
x Ay =y and thus x = y by the uniqueness of x A y.

Suppose that x is a solution of (I) corresponding to u and let z € .#. Then by
Proposition 1.11, zAx € .%. By the optimality of x and the positivity of u, we have

(u,x) < (u,z A x) < (u,x) :i}eliyn<u,y>

Consequently, z A x solves (I). By the uniqueness, zAx = x and so x < z, Vz € .Z.
Hence x is a solution of (II).

Proposition 1.13 ([33]). (x,u) is a solution of () if and only if it is a solution
of (IV).

Proposition 1.14 ([1]). Let T : K — 28" be weakly strictly pseudomonotone and a
Z-map relative to K. Then any solution of (IV) is a solution of (I1).

By combining Propositions 1.9 and 1.11-1.13, we have the main result of this
section as follows.

Theorem 1.9 ([1]). Let K be closed convex cone of a reflexive Banach space B
such that B is a vector lattice with respect to the order < induced by K. Let
T:K—28 bea Z-map relative to K, weakly strictly pseudomonotone, compact-
valued, v-hemicontinuous, and positive at infinity. If u € K* is a strictly positive
element, then there exists x € % which is a solution of problems (1)—(IV). Moreover,
the solution x is unique.

We observe that Theorem 1.9 is an extension of Theorem 1.3.

Definition 1.11. A point-to-set map 7 : K — 28" is called weakly strongly
pseudomonotone if there exists B > 0 and for any x,y € K, x #y, v € T(y) such
that (v,x —y) > 0 imply that

(u,x—y) > Bllx—y|? forsomeu € T(x).

We also see that, by the same arguments as in [23], a weakly strongly
pseudomonotone operator with nonempty compact values is positive at infinity and
hence the following result is a consequence of Theorem 1.9.

Corollary 1.7 ([1]). Let K be a closed cone of a reflexive Banach space B such
that B is a vector lattice with respect to the order < induced by K. Let T : K —
28" be a Z-map relative to K, weakly strongly pseudomonotone, compact-valued,
v-hemicontinuous, and positive at infinity. If u € K* is a strictly positive element,
then there exists x € % which is a solution of problems (1)-(IV). Moreover; the
solution x is unique.
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1.6 Equivalence Between Generalized Mixed Complementarity
Problems and Generalized Mixed Least-Element Problem

Given are a closed convex cone K CB,A:B* —-B*, f:K—R,and T : K — 28",
We denote by S the feasible set of 7" with respect to K, A, and f; that is,

S:={x€K:{Au,y)+ f(y) — f(0) > 0 forsome u € T(x) andall y € K}.

We consider the following problems.

(I) Generalized mixed nonlinear program: For given u € B*, find x € S such that

(Au,x) = min{Au,y).
yeS

(IT) Generalized mixed least-element problem: Find x € S such that
x<y, forallyeS.

(1) Generalized mixed complementarity problem: Find x € K and u € T (x) such
that

(Au,x) + f(x) =0 and (Au,y)+ f(y) >0, forallyeK.

(IV) Generalized mixed variational inequality problem: Find x € K and u € T (x)
such that
(Au,y—x)+ f(y) — f(x) >0, forallyeK.

We remark that if A = [ the identity operator on B*, and f(x) = 0, then S reduces
to the feasible set considered in the previous section. In this case, the above problems
(D—(IV) reduce, respectively, to the problems considered in Section 1.5. We further
remark that, for A = I the identity operator on B*, and f(x) = 0, the equivalence of
(III) and (IV) has been studied by Saigal [29]. Moreover, whenever K is a nonempty,
closed, bounded, convex subset of a reflexive Banach space B, problem (IV) has
been considered in [23, 33]. In this case, the equivalence of these problems was
established in the previous section.

The main objective of this section is to investigate suitable conditions under
which the above problems (I)-(IV) are equivalent.

Definition 1.12. Let B be a Banach space that is also a vector lattice with positive
cone K and let T : K — 25" be a point-to-set map. Let A : B* — B* be a mapping,
and f : K — R be a functional. Then, T is called

(1) A Z-type map relative to K and A if, for any x,y,z € K,
(Au—Av,z) <0, forallueT(x)andve T(y),

whenever (x —y) Az=0.



20 Qamrul Hasan Ansari and Jen-Chih Yao

(i1) Strictly a-monotone with respect to A if there exists a functiona : Ry — R
where R = [0, ), such that for any x # y € K,

(Au—Av,x—y) >a(||lx—y|), forallue T(x)andve T(y);

in particular, if a(t) = 0, then T is said to be strictly monotone with respect
toA.

(iii) Pseudomonotone-type with respect to A and f if for any x,y € K, the existence
of u € T(x) such that

(Au,y—x)+ f(y) = f(x) =0
implies
(Av,y —x) + f(y) = f(x) 2 0, forallveT(y).

(iv) Strictly pseudomonotone-type with respect to A and f if for any x,y € K, the
existence of u € T (x) such that

(Au,y =)+ f(y) = f(x) 2 0
implies
(Av,y —x) + f(y) — f(x) >0, forallveT(y).

(V) v-hemicontinuous if for any x,y € K and « € [0, 1], the point-to-set map o —
(T (x+ a(y—x)),y —x) is upper semicontinuous at 0", where

(TGt a(y—x))y—2) = Ly —x) 1w € T(r+ aly )}
(vi) S€-hemicontinuous if, for any x,y € K and « € (0, 1), there holds
H(T(x+o(y—x)),T(x)) =0, asa— 0",

where . is the Hausdorff metric defined on CB(B*).
(vii) Quasi-positive at infinity with respect to A and f if for any x € K, there exists
a positive real number p (x) such that

(Aw,y) + f(y) = f(0) >0
forally € K and w € T (x+y) with ||y|]| = p(x).

Remark 1.3.

(a) If A =1 the identity operator on B*, then Definition 1.12 (i) reduces to the
concept of a Z-map relative to K; See Section 1.3.

(b) If A =1 the identity operator on B*, and T is a single-valued map of K into
B*, then Definition 1.12(ii)—(iv) and (viii) reduce to the concepts of strict
a-monotonicity, pseudomonotonicity, strict pseudomonotonicity, and coercivity
in [34], respectively.
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Definition 1.13 ([34]). Let a : Ry — R, be a function and f : K — R be a func-
tional. Then f is said to be a-bounded if

F)+7 () = fx+y) < minfa(|lx]]),a(ly[)}, forallx,y € K.

We need the following results to derive the equivalence of problems (I)—(IV)
under suitable conditions.

Theorem 1.10 ([35, Theorem 3.1]). If (£, ) is a solution of (1) then it is a solution
of (IV). Conversely, if (£,1) is a solution of AV) and f : K — R is a functional such
that f(Ax) = Af(x) for all x € K and A > 0, then it is a solution of (I1I).

In the rest of the section, unless otherwise specified, we assume that B is reflexive
Banach space.

Theorem 1.11 ([35, Theorem 3.2]). Let A : B* — B* be a continuous map, f : K —
R be a lower semicontinuous and convex functional, and T : K — 28" be a nonempty
compact-valued multifunction that is ¢ -hemicontinuous and pseudomonotone-
type with respect to A and f. If there exists r > 0 such that

(Av,y)+ f(y) — f(0) >0, forallye KandveT(y)with|y|=r, (1.15)

then there exists a solution (£,1) of (IV). Suppose additionally that T is strictly
pseudomonotone-type with respect to A and f; then % is unique.

Corollary 1.8 ([35, Corollary 3.1]). Let A : B* — B* be a continuous map, f : K —
R be a lower semicontinuous and convex functional such that f(Ax) = A f(x) for all
xeKand ) >0,and T : K — 28" be a nonempty compact-valued multifunction that
is J-hemicontinuous and pseudomonotone-type with respect to A and f. If there
exists r > 0 such that

(Av,y) + f(y) — f(0) >0, forallye K andv e T(y) with ||y|| =r,

then there exists a solution (£,1) of (II1). Suppose additionally that T is strictly
pseudomonotone-type with respect to A and f; then X is unique.

Corollary 1.9 ([35, Corollary 3.2]). Let A : B* — B* be a continuous map,
f: K — R be a lower semicontinuous and convex functional, and T : K — 25" be
a nonempty compact-valued multifunction that is F¢-hemicontinuous and strictly
monotone with respect to A. If T is quasi-positive at infinity with respect to A and f,
then for any given z € K, there exist X, € K and i, € T (£, + z) such that

(A, y—2%)+ f(y)— f(%;) >0, forallyeK. (1.16)
Moreover, X, is unique for each given z € K.

We provide the sufficient condition under which the feasible set S is a
A-sublattice of B and consider the existence of a least element of S.
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Theorem 1.12 ([35, Theorem 4.1]). Let (B, <) be a vector lattice. Let A : B* — B*
be a continuous map, f : K — R be a lower semicontinuous and convex functional
such that f(0) =0, and T : K — 28" be a nonempty compact-valued multifunction
that is a € -hemicontinuous and Z-type map relative to K and A, and quasi-positive
at infinity with respect to A and f. Assume that there exists a functiona: Ry — R,
such that

(i) T is strictly a-monotone with respect to A.
(ii) f is a-bounded.

If the feasible set S is nonempty, then S is a A-sublattice of B, that is, x € S and
y€ESimplyxAy€S.

Definition 1.14. Let (B, <) be a vector lattice. If there exists an element £ € S such
that £ < x for all x € S, where S is the feasible set of T with respect to K, A, and f,
then £ is called a least element of S.

As pointed out in the following theorem, under suitable conditions the solvability
of (III) can imply the existence of a least element of S.

Theorem 1.13 ([35, Theorem 4.2]). Suppose that all conditions in Theorem 1.12
are satisfied. If f(0) = 0, then the solvability of (II1) implies the existence of a least
element of S.

The following main result in this section follows immediately from Theorems 1.12
and 1.13 and Corollary 1.8.

Theorem 1.14 ([35, Theorem 4.3]). Let (B, <) be a vector lattice. Assume that the
following conditions are satisfied.

(i) A : B* — B* is a continuous map.
(ii) f : K — R is a lower semicontinuous and convex functional such that f(Ax) =
Af(x) forallx € K and A > 0.
(i) T : K — 28 is a nonempty compact-valued multifunction that is an -
hemicontinuous and Z-type map relative to K and A.
(iv) T is quasi-positive at infinity with respect to A and f.
(v) There exists a function a : R, — Ry such that T is strictly a-monotone with
respect to A, and such that f is a-bounded.

Then the following statements hold.

(a) There exists a solution (£,1) of (1), and % is unique.
(b) S is a N-sublattice of B and there exists a least element of S, where S is the
feasible set of T with respect to K, A, and f.

In the remaining part of this section, B is a real Banach space and K is a closed
convex cone of B; whenever the ordering induced by K is mentioned, (B, <) is a
vector lattice.

We derive the equivalence of problems (I)-(IV) under suitable conditions.
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Proposition 1.15 ([35, Proposition 5.1]). Let A : K* — B* be an operator. Then any
solution of (1) is a solution of (1) for every u € B*.

Proposition 1.16 ([35, Proposition 5.2]). Let A : K* — B* be an operator. Assume
that all conditions in Theorem 1.14 are satisfied. If for u € B*, Au € K* is strictly
positive, then problem (1) corresponding to u has at most one solution and any
solution of (1) is also a solution of (I).

By combining Propositions 1.15 and 1.16 and Theorem 1.14, we have the
following result.

Theorem 1.15 ([35, Theorem 5.1]). Let K be a closed convex cone of a reflexive
Banach space B with its dual B* such that B is a vector lattice with respect to the
order < induced by K. Assume that the following conditions are satisfied.

(i) A: B* — K* is a continuous map.
(ii) f : K — R is a lower semicontinuous and convex functional such that f(Ax) =
Af(x) forallx € K and A > 0.
(i) T : K — 28 is a nonempty compact-valued multifunction that is an ¢ -
hemicontinuous and Z-type map relative to K and A.
(iv) T is quasi-positive at infinity with respect to A and f.
(v) There exists a function a : Ry — Ry such that T is strictly a-monotone with
respect to A, and such that f is a-bounded.

If Au € K* is strictly positive for some u € B, then there exist £ € S and i € T (%)
such that % is a solution of problems (1) and (1), and such that (£,#) is a solution of
problems (1) and (IV). Moreover; X is unique.

Remark 1.4. We observe that Theorem 1.15 is an improvement and extension of
Theorem 1.3 and Theorem 1.9.
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Chapter 2

Generalized Monotone Maps and
Complementarity Problems

S. K. Neogy and A. K. Das

Abstract In this chapter, we present some classes of generalized monotone maps
and their relationship with the corresponding concepts of generalized convexity.
We present results of generalized monotone maps that are used in the analysis
and solution of variational inequality and complementarity problems. In addi-
tion, we obtain various characterizations and establish a connection between affine
pseudomonotone mapping, affine quasimonotone mapping, positive-subdefinite
matrices, generalized positive-subdefinite matrices, and the linear complementarity
problem. These characterizations are useful for extending the applicability of
Lemke’s algorithm for solving the linear complementarity problem.

2.1 Introduction

Generalized monotonicity plays an important role in solving mathematical
programming, complementarity problems, and variational inequalities. Generalized
monotone maps are of fundamental importance and arise in economic applications.
Different types of generalized monotonicity are related to various kinds of gene-
ralized convexity of the underlying function. It is well known [25] that a differ-
entiable function is convex if and only if its gradient is a monotone map; see
also [16]. In [27], the notion of a monotone map is generalized to that of a
pseudomonotone map and a differentiable pseudoconvex function is characterized
by the pseudomonotonicity of the gradient. A similar relationship exists between
strictly pseudoconvex and quasiconvex functions as well as strongly convex and
strongly pseudoconvex and the corresponding monotonicity property [29] of their
gradient. Generalized monotone maps provide first-order characterizations of
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generalized convex functions. During the last few decades extensive research has
been devoted to generalized convexity in view of finding solutions of nonconvex
optimization problems. A large number of articles have appeared on this subject
where several existence results and algorithmic implications are studied. The
importance of various kinds of generalized monotonicity concepts both for theory
and for solution methods of variational inequalities and complementarity problems
are well known. John [23, 24] presents uses of generalized concavity and gene-
ralized monotonicity in consumer theory and general equilibrium theory. In [3],
application of pseudomonotone maps to economics is discussed and it is shown that
the concept of pseudomonotonicity is strongly related to a notion of rationality of
consumer behaviour. In this chapter, we discuss various characterizations and the
role of generalized monotone maps that are used in the analysis and solution of
complementarity problems.

Given a nonempty subset K of R” and a mapping .# : R" — R", the variational
inequality problem VI(K,.%#) is to find a vector x* € K such that

(x—xZF(x)>0 Vxek. 2.1

One typically assumes that the set K is closed and convex. The set K is polyhedral in
many applications. When K = R" , the nonnegative orthant of R", the above problem
reduces to the nonlinear complementarity problem NCP(.%#) which is stated as
follows.

Find a vector x* such that

x*eRY,  FE)eER., xMFH)=0. (2.2)

For a given matrix A € R"*" and a vector ¢ € R" when .% (x) is an affine func-
tion (i.e., % (x) = Ax+ g) then the problem NCP(.%) reduces to the linear comple-
mentarity problem LCP(g,A). Complementarity problems are treated as a part
of mathematical programming and equilibrium problems. The complementarity
problem has gained importance because it is a unified study of several optimiza-
tion problems and game problems. This subject has a wide range of applications
encompassing fields such as economics, control theory, engineering, game theory,
and optimization. For a comprehensive survey of theory, algorithms, and applica-
tions on finite-dimensional variational inequalities and nonlinear complementarity
problems, we refer the reader to the article by Harker and Pang [22].

Given a convex cone K in R" and a mapping .% : R" — R", the generalized
complementarity problem GCP(K,.%) is to find a vector x* € K such that

F(xX)eKk* and xM.Z(x*)=0, (2.3)

where K* is the dual cone of K; that is K* = {y ¢ R" : yx >0, Vx € K}. The
feasible set of GCP(K,.7) is defined as

FEA(K,7)={x€K : #(x)€K"}.

The problem GCP(K,.%) is said to be feasible if FEA(K,.%) is nonempty.



2 Generalized Monotone Maps and Complementarity Problems 29

Geometrically, the problem GCP(K,.%) finds a vector x* € K with the property
that its image under the mapping .% lies in the dual cone of K which is orthogonal
to x*. The nonnegative orthant is self-dual (i.e., (Rﬁ)* = R'}), therefore it is easy
to see that GCP(R",,.#) reduces to NCP(.%) as given by (2.2). Karamardian [26]
obtained a relationship of the solution set between the generalized complementarity
problem and variational inequality and proved that GCP(K,.%) and VI(K,.%) have
the same solution set. See also [7, p. 31] and [22].

Proposition 2.1 ([26]). Let K be a convex cone. Then x* € K solves the problem
VI(K,.7) if and only if x* solves GCP(K, ).

Even though every generalized complementarity problem is a variational inequality
problem, the converse is not true in general. The most basic result on the existence
of a solution to the variational inequality problem VI(K,.%) requires the set K to
be compact and convex and the mapping .% to be continuous. See [22] and the
references cited therein. The basic existence result is presented below.

Theorem 2.1. Let K be a nonempty, compact, and convex subset of R" and let

the map F : K — R" be continuous. Then there exists a solution to the problem
VI(K,.F).

2.2 Preliminaries

We consider matrices and vectors with real entries. Let R, denote the nonnegative
orthant in R" and R™*" denote the set of all n X n real matrices. For any matrix
A € R™", a;; denotes its ith row and jth column entry. For any matrix A € R™*", let
Aj;. denote its ith row and A.; denote its jth column. For any set o« C {1,2,...,n}, &
denotes its complement in {1,2,...,n}. If A is a matrix of order n, o C {1,2,...,n}
and B C {1,2,...,n}, then A, denotes the submatrix of A consisting of only the
rows and columns of A whose indices are in ¢ and 3, respectively. Any vector x € R"
is a column vector unless otherwise specified and x' denotes the row transpose of
x. For any matrix A € R"" A! denotes its transpose. We say that a vector y € R"
is unisigned if either y € R, or —y € R.. Given a symmetric matrix S € R"*", its
inertia is the triple (v4 (S), v_(S), vo(S)) where v (S),v_(S), and vy (S) denote the
number of positive, negative, and zero eigenvalues of S, respectively. Given x € R",
x" andx~ are the vectors of R" defined by x;" := max{x;,0} and x; := max{—x;,0}
Vi. Clearly, x =x" —x . A cone is said to be pointed if KN (—K) = {0}. A cone is
said to be solid if its interior is nonempty. Given £2 C R", we denote the interior of
Q by int(Q).

Let 2 C R" be a convex set and f : £ — R. Different kinds of generalized
convexity were established in the literature by retaining some of the properties
of convex functions and a large number of articles have appeared on this subject.
Each type of generalized monotone map is related to a generalized convex function.
We recall the definitions of generalized convex functions and review some of the
characterizations from the literature [2, 33] which are needed for further discussions.
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Definition 2.1. f is said to be

(i) Convex on Q if for all x,y € Q,and 0 < A < 1, f(Ax+ (1 —1)y) < Af(x)
+(1=2)f(y)
(ii) Strictly convexon Q if forall x,y € Q, x #yand 0 < A < 1, f(Ax+ (1 —1)y)
<Af(x)+(1=2)f(y)
(iil) Quasiconvex on Q if for all x,y € Q and 0 < A <1, f(Ax+(1-2A)y) <
max{f(x), f(y)}

(iv) Strictly quasiconvex on Q if forall x,y € Q and 0 < A < 1, f(x) < f(y) =
JAx+(1=A)y) <f(y)

We assume differentiability of the function f on the open convex set 2 C R" for
providing the definition of following generalized convex functions.

Definition 2.2. f is said to be

(i) A pseudoconvex function if for all x,y € Q, (y —x)'Vf(x) > 0= f(y) > f(x).
(ii) Strictly pseudoconvexifforallx,y € Q,x#y, (y—x)'Vf(x) > 0= f(y) > f(x).

Theorem 2.2 ([2, 3.5.11 Theorem, p. 143]). Let 2 C R" be a nonempty open
convex set and f : £ — R be a differentiable pseudoconvex function. Then f is
both strictly quasiconvex and quasiconvex.

Theorem 2.3 ([33, p. 134, 146], [2, p. 137]). Let 2 C R" be a nonempty open
convex set and f be a differentiable function defined on 2. Then f is quasiconvex if
and only if for all x,y € Q, either one of the following statements holds true.

(=)' Vf(x) > 0= f(y) > f(x). 24
fO) < fx) = (y=x)'Vf(x) <0. (2:5)

2.3 Different Types of Generalized Monotone Maps

Various kinds of generalized monotonicity concepts have been introduced in the
literature. A large number of publications have appeared which deal with the
concepts and characterizations of generalized monotonicity for different subclasses
of maps. In this chapter, we present a brief review of basic generalized monotonicity
concepts which are needed for presentation of the results that deal with variational
inequalities and in particular complementarity problems. We now recall the follow-
ing definitions from [27, 29].

Definition 2.3. Let Q2 C R" and .% : Q — R". % is said to be

(i) Monotoneon Q if x,y € Q = (y—x)"(#(y) — #(x)) >0
(ii) Strictly monotoneon Q ifx,y € Q. x £y = (y—x)(F(y) — F(x)) >0
(iii) Pseudomonotone on Q if x,y € Q, (y —x)! F(x) > 0= (y—x)'F(y) >0
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(iv) Strictly pseudomonotone on Q if x,y € Q, x £y, (y—x)F(x) >0 =
(y—x)'Z(y)>0
(V) Quasimonotoneon Q if x,y € Q, (y—x)'F(x) >0= (y—x)"F(y) >0

The following statement follows from the above definitions.
Monotonicity = pseudomonotonicity = quasimonotonicity.

For further details on different kinds of generalized monotonicity and their relation-
ship, see [21, 29]. The following lemma is useful.

Lemma 2.1 ([27, Lemma 3.1. p. 449]). Let Q C R" and ¥ : Q — R" be pseudo-
monotone on §2. Then for every x,y € £, we have

(y—x)'.Z(x) >0= (y—x)'Z(y) > 0.

The following theorem establishes the equivalence of convexity of a function and
monotonicity of its gradient.

Theorem 2.4 ([29]). Let 2 C R" and f : 2 — R be a differentiable function on an
open convex set  of R". Then f is convex (strictly convex) if and only if &% =V f
is monotone (strictly monotone) on £2.

The following theorem generalizes a well-known result of a convex mathematical
program (the solution set of a convex mathematical program is convex) to a varia-
tional inequality problem with a pseudomonotone type of map. See [22] and refer-
ences cited therein.

Theorem 2.5. Let K be a nonempty, closed, and convex subset of R" and the map
F . K — R" be continuous and pseudomonotone from K — R". Then x* solves the
problem VI(K,.%) if and only if x* € K and

(y—x)'Z(y) >0VyeK.
In particular, the solution set of VI(K, .F) is convex if it is nonempty.

Even though a variational inequality problem can have more than one solution, if
we assume .% to be strictly monotone on K then VI(K,.#) can have at most one
solution. We now state the following existence theorem for the generalized comple-
mentarity problem GCP(K,.%).

Theorem 2.6. Let K be a solid, pointed, closed, convex cone in R". If F is con-
tinuous and strictly monotone with respect to K and if the GCP(K, %) is feasible,
then the GCP(K,.7 ) has a unique solution.

Karamardian and Schaible [29] studied different generalizations of monotone
maps where different generalizations of monotonicity correspond to some kind
of generalized convexity of the function f. For the gradient map % = Vf, the
following result is observed in [27, 29]. We present the proof for pseudomonotone



32 S. K. Neogy and A. K. Das

maps along the same lines of Karamardian [27]. For quasimonotone maps, the
proof technique is similar and we refer the reader to the article of Karamardian
and Schaible [29].

Theorem 2.7. Let 2 C R" be an open convex set and f : € — R be differentiable
on Q. Then f is pseudoconvex if and only if % =V f is pseudomonotone on Q.

Proof. Suppose that f is pseudoconvex. Let x,y € © such that (y —x)'Vf(x) > 0.
From the definition of pseudoconvexity, it follows that f(y) > f(x). By Theorem 2.2,
pseudoconvexity implies quasiconvexity. Consequently, f(y) > f(x) = (y—x)'V
f(y) > 0. Therefore V f is pseudomonotone on 2.
To prove the converse suppose that V f is pseudomonotone on 2. Let x,y € Q|
x # y such that
(y—x)'Vf(x) >0. (2.6)

To show f is pseudoconvex, we need to show that f(y) > f(x).
Assume to the contrary that

F) < f(x). (2.7)
From the mean value theorem, we have
fO) = fx) = (y—x)'VfQ), (2.8)
where i i
I=Ax+(1-A)y 2.9

for some 0 < A < 1. From (2.7), (2.8), and (2.9), we get
(x—X)'Vf(x) > 0. (2.10)
From (2.10) and Lemma 2.1, we get
(x—x)'Vf(x) > 0.

From (2.9), this implies
(x—)'Vf(x) >0.

However, this contradicts (2.6). This completes the proof.

Theorem 2.8. Let 2 C R" be an open convex set and f : € — R be differentiable
on Q. Then f is quasiconvex if and only if & = V f is quasimonotone on £.

Proof. Suppose that f is quasiconvex. Let x,y € £ such that (y —x)'Vf(x) > 0.
From (2.4), it follows that f(y) > f(x). Now by (2.5), f(x) < f(y) = (x—y)'V
) <0= (y—x)'Vf(y) > 0. Therefore Vf is quasimonotone on €.

For the converse part of theorem, the argument is similar to the earlier one.
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Karamardian, Schaible, and Crouzeix [30] obtained first-order necessary and
sufficient conditions for a map to be pseudomonotone or quasimonotone. Let 2 C R"
be an open convex set and .% : Q — R" be differentiable with Jacobian matrix
J(x) evaluated at x € Q. Let the projection of .% on v be defined by v : I, —
R, v € R" where

V(1) =V . F (x+1v), L,={t]|x+1ve Q}. (2.11)

Theorem 2.9 ([30, Theorem 4.1, p. 404]). Let .% : Q — R" be differentiable on
the open convex set 2 C R". Then

(i) F is quasimonotone on € if and only if

VZ(x)=0=VJgz(x)v>0; (2.12)
VZ(x) =VJz(x)v=0, f<0V Z(x+iv)>0= I7>0, fel,
2.13)

such that V.7 (x +tv) >0V 0 <t <7.
(it) F is pseudomonotone on L if and only if
VZ(x)=0=VJz(x)v>0;
VZ(x)=VIgz(x)v=0= 3F7>0, iel, (2.14)
such that V.7 (x+1v) >0V 0 <t <T.

Karamardian, Schaible, and Crouzeix [30] also obtained somewhat different
sufficient conditions for a map to be pseudomonotone and strictly pseudomonotone.
For the proof we refer the reader to [30].

Theorem 2.10 ([30, Theorem 4.2, p. 406]). Let .% : £ — R" be differentiable on
the open convex set 2 C R". Then

(i) F is pseudomonotone on Q if for every x € £ and v € R", we have
VZ(x) =0=VJz(x)v>0;
VZx)=VJIzg(x)v=0= Fe>0 suchthatV'Jz(x+tv)y>0 (2.15)
Vtel,, 7| < e.
(it) F is strictly pseudomonotone on Q if for every x € Q and v € R"
VZ(x) =0=VJgz(x)v > 0.

For the proof, we refer the reader to [30]. Karamardian, Schaible, and Crouzeix
[30] also presented an example from [1] to show that the sufficient condition (2.15)
in Theorem 2.10 is not a necessary condition.
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2.4 Generalized Monotonicity of Affine Maps

Generalized monotone affine maps have been considered in [9-11, 18, 19, 35, 37,
39]. The special case of the map .# : £ — R" is an affine map

F(x) = Ax+q,
where A € R"™" and g € R". Special cases of Theorem 2.9 for an affine map
F : £ — R" are given below.

Theorem 2.11 ([30, Theorem 5.1, p. 408]). Let 2 C R" be open and convex. Then
for an affine map .7 : Q — R" of the form % (x) = Ax+ q is quasimonotone if and
only if it is pseudomonotone on £2.

Proof. Note that pseudomonotonicity = quasimonotonicity. Therefore we need
to show that quasimonotonicity imples pseudomonotonicity. The Jacobian matrix
J#(x) = A is independent of x. Note that by part (i) of Theorem 2.9 the condition
(2.12)

VZ(x)=0=VJgzx)v>0

holds. This reduces to V' (Ax+¢) = 0 =1V'Av > 0.
The function y : I, — R, v € R", which is a linear function of 7, is given by

v(t) = (VAV)t +V (Ax+q).
It is easy to see that the condition (2.14) is always satisfied because
V(Ax+q) =V Av=0=V[A(x+1v)+¢] =0, V1.

Now by part (ii) of Theorem 2.9, it follows that .% is pseudomonotone.

Theorem 2.11 is not true if Q2 is not open. Karamardian, Schaible, and Crouzeix
[30] provide an example. For a continuous map .# (not necessarily affine), Crouzeix
and Schaible [11] observe the following result which uses the nonemptiness of
int(Q2).

Theorem 2.12. Assume that % : £ — R" is continuous on £ and quasimonotone
on int(Q). Then it is also quasimonotone on £2.

Theorem 2.13 ([30, Theorem 5.2, p. 409]). Let 2 C R" be open and convex. Then
Sor an dffine map F : Q — R" where 7 (x) = Ax+ q is pseudomonotone if and
only if for every x € £ and v € R" we have

Vi(Ax+¢q) =0=VAv > 0.
Proof. It is easy to see that the condition (2.14) is always satisfied inasmuch as
V(Ax+q) =V Av=0=V[A(x+1v)+¢] =0, V1.

From Theorem 2.9, the result follows.
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Karamardian, Schaible, and Crouzeix [30] observe that the sufficiency part of the
above theorem remains valid for an arbitrary convex set £2 (not necessarily open).

2.5 Generalized Monotone Affine Maps on R, and
Positive-Subdefinite Matrices

Generalized monotone affine maps arise in linear complementarity problems. In [9],
Crouzeix et al. obtained new characterizations of generalized monotone affine maps
on R’ using positive subdefinite matrices. A is called a positive-subdefinite matrix
if for all x € R", X' Ax < 0 implies A’x is unisigned. The class of positive-subdefinite
matrices (PSBD) is a generalization of the class of positive-semidefinite (PSD)
matrices. The study of pseudoconvex and quasiconvex quadratic forms leads to
this new class of matrices, and it is useful in the study of quadratic program-
ming problem. The class of symmetric positive-subdefinite matrices was introduced
by Martos [34] in connection with a characterization of a pseudoconvex function.
Martos did an interesting study of these matrices. Cottle and Ferland [5] followed
the path set by Martos in [34] and among other things, obtained converses for
some of Martos’s results. Rao [40] obtained a characterization of merely positive-
subdefinite matrices which enabled the easy recognition of quasiconvex and pseudo-
convex quadratic forms. He also studied this class with respect to generalized inverse
(g-inverse). Martos was considering the Hessians of quadratic functions, therefore
he was concerned only about symmetric matrices. Later Crouzeix et al. [9] and
Mohan, Neogy, and Das [35] studied nonsymmetric PSBD matrices in the con-
text of generalized monotonicity and the linear complementarity problem. In this
section characterizations of generalized monotone affine maps on R'| using positive-
subdefinite matrices, the properties of PSBD matrices, and their applications to
linear complementarity problem are presented. It is not surprising that many proper-
ties of PSD matrices are lost through the generalization. It is useful to review some
matrix classes and their properties which form the basis for further discussions.

The linear complementarity problem is a fundamental problem that arises in
optimization, game theory, economics, and engineering. It can be stated as follows.

Given a matrix A € R"*" and a vector g € R", the linear complementarity problem
is to find a vector x € R" such that

x>0, Ax+g>0, (2.16)
X (Ax+¢q) =0. (2.17)

This problem is denoted as LCP(g,A). The LCP is normally identified as a problem
of mathematical programming and provides a unifying framework for several
optimization problems such as linear programming, linear fractional programming,
convex quadratic programming, and bimatrix game problems. More specifically,
the LCP models the optimality conditions of these problems. The early motiva-
tion for studying the linear complementarity problem was that the KKT optimality
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conditions for linear and quadratic programs reduce to an LCP. The algorithm
presented by Lemke and Howson [32] to compute an equilibrium pair of strate-
gies to a bimatrix game, later extended by Lemke [5] (known as Lemke’s algo-
rithm) to solve an LCP(g,A), contributed significantly to the development of linear
complementarity theory. In fact, the study of the LCP really came into prominence
only when Lemke and Howson [32] and Lemke [5] showed that the problem of
computing a Nash equilibrium point of a bimatrix game can be posed as an LCP
following the publication by Cottle [4]. However, Lemke’s algorithm does not solve
every instance of the linear complementarity problem, and in some instances of the
problem may terminate inconclusively without either computing a solution to it or
showing that no solution to it exists. Extending the applicability of Lemke’s algo-
rithm to more matrix classes has been considered by many researchers including
Eaves [12, 13], Garcia [17], Karamardian [28], and Todd [41]. For recent books on
the linear complementarity problem and its applications, see Cottle, Pang, and Stone
[7], Murty [36], and Facchinei and Pang [15]. Matrix classes play an important role
in studying the theory and algorithms of LCP. The study of special properties of
the data matrix A has historically been an important part of LCP research. A variety
of classes of matrices is introduced in the context of the linear complementarity
problem. Many of the matrix classes encountered in the context of the LCP are
commonly found in several applications. Some of these matrix classes are of interest
because they characterize certain properties of the LCP and they offer certain nice
features from the viewpoint of algorithms. Several algorithms have been designed
for the solution of the linear complementarity problem. Many of these methods
are matrix class dependent. They work only for LCPs with some special classes of
matrices and can give no information otherwise.

It is well known that the positive-semidefiniteness of a matrix A is equivalent to
the monotonicity of the affine mapping .% (x) = Ax+ ¢, where A € R"*" and ¢ € R".
The class of PSD matrices is a subclass of positive-subdefinite matrices. Let A be a
given n X n matrix, not necessarily symmetric.

Definition 2.4. We say that a real square matrix A of order n is positive subdefinite
(PSBD) if for all x € R"

X'Ax < 0 implies either A’x <0 or A’x > 0.

A is said to be merely positive-subdefinite (MPSBD) if A is a PSBD matrix but
not positive-semidefinite (PSD).

Definition 2.5. A is said to be a P (Py)-matrix if all its principal minors are positive
(nonnegative).

A subclass of Py occurs in Markov chain analysis and in the study of global
univalence in economic theory [38].

Definition 2.6. A is called copositive (Cy) (strictly copositive (C)) if ¥Ax >0V x >
0 (FAx>0V0#x>0). A€ R is said to be conegative if ¥ Ax <0V x> 0.
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A is said to be copositive-plus (CO+ ) if A € Cy and the following implication holds.
[FAx=0,x>0]= (A+A")x=0.

We say that A € R"*" is copositive-star (Cy) if A € Cp and the following implication
holds.
[¥Ax=0,Ax>0,x > 0] = A'x < 0.

A is called copositive (strictly copositive, copositive-plus, PSD, PD) of order
k, 0 <k <n, if every principal submatrix of order & is copositive (strictly copositive,
copositive-plus, PSD, PD).

Definition 2.7. A is said to be column sufficient if for all x € R" the following
implication holds.
xi(Ax); <0Vi = xi(Ax),- =0Vi.

A is said to be row sufficient if A’ is column sufficient.

A is sufficient if A and A” are both column sufficient.

A matrix A is sufficient of order k if all its k x k principal submatrices are
sufficient.

For details on sufficient matrices, see [6, 8, 43].

Definition 2.8. A € R"*" is called a Q-matrix (or a matrix satisfying the Q-property)
if for every ¢ € R", LCP(g,A) has a solution.

Given a matrix A € R"*" and a vector ¢ € R" we define the feasible set F(q,A) =
{x>0]Ax+ ¢ > 0} and the solution set of LCP(q,A) by S(¢,A4) = {x € F(q,A) |
X' (Ax+q) = 0}. We say that A is a Qo-matrix if F(q,A) # 0 implies S(q,A) # 0.

A is said to be a completely Q (Qp)-matrix if all its principal submatrices are
0 (Qp)-matrices.

We recall that given a matrix A € R™" and a vector g € R", an affine map % (x) =
Ax+ ¢ is said to be pseudomonotone on R', if

(y—x)(Ax+q)>0, y>0, x>0=(y—x)'(Ay+g)>0.

Given A € R"" and ¢ € R", Crouzeix et al. [9] prove the following necessary and
sufficient condition for an affine map .% (x) = Ax+ ¢ to be pseudomonotone on R"} .

Proposition 2.2 ([9]). An affine map F is pseudomonotone on R’ if and only if

A'x>0andx'q>0 or

XER", YAx< 0=
Alx <0, 8¢ <0 and X' (Ax~ +¢q) < 0.

A necessary and sufficient condition for an affine map .% (x) = Ax + ¢ to be quasi-
monotone on R’} is given below.
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Proposition 2.3 ([9]). An affine map 7 is quasimonotone on R’ if and only if

A'x>0 andx'q>0or

XER", ¥Ax< 0=
A'x<0 andx'q<O0.

The above proposition shows that A is PSBD when .# is quasimonotone (a fortiori,
pseudomonotone) on R .

Theorem 2.14 ([9]). Assume that ¥ is quasimonotone on R", and q # 0. Then F
is pseudomonotone on R’ .

Definition 2.9. We say that a matrix A € R"*" is pseudomonotone if .7 (x) = Ax is
pseudomonotone on the nonnegative orthant.

Theorem 2.15 ([18, Corollary 4]). If A is pseudomonotone, then A is a row suffi-
cient matrix.

A row sufficient matrix belongs to Qg [7, p. 159], therefore LCP(g,A) is solvable
by Lemke’s algorithm where A is a pseudomonotone matrix. Gowda [19] showed
with an example that the transpose of a pseudomonotone matrix need not be in Qg
and hence need not be pseudomonotone. However, if A is pseudomonotone then
under certain conditions only A’ is a Qp-matrix. These conditions are stated below
in the following theorem.

Theorem 2.16 ([19]). Suppose that A € R"™" is pseudomonotone. Then under each
of the following conditions A" satisfies the copositive star property and hence
belongs to Q.

(i) The diagonals of A consist only of zeros.

(ii) The system 0 # d > 0,A'd = 0 has no solution.
(iii) A is invertible.
(iv) A € Ry.

(v) A is normal (i.e., AA' = A'A).

Gowda [18] observes the following results. For the proofs of these results we refer
the reader to the article [18] by Gowda.

Theorem 2.17. Suppose that LCP(q,A) is feasible and the map F (x) = Ax+q is
pseudomonotone. Then A € CoN Fy.

Gowda [18] provides the following example to show that the above result may
not hold if the feasibility condition is dropped. Let

o ) el

Then the map .% (x) = Ax + ¢ is pseudomonotone but A ¢ Cy N Py. For details
see [18].
The following result is a corollary of the above theorem.



2 Generalized Monotone Maps and Complementarity Problems 39

Corollary 2.1 ([18]). Suppose that A is symmetric. Then the pseudomonotone
mapping .F (x) = Ax + q is monotone (i.e., A is positive semidefinite (PSD)) if and
only if A is copositive.

The following theorem in [18] shows that the pseudomonotonicity can be
described in terms of a single variable in R".

Theorem 2.18 ([18, p. 375]). For the pair (q,A), let
(i) o :={x: (A'x); >0 for some i and X' (Ax~ +¢q) < 0}.
(ii) = {x : (A'x); <0 for someiand x'(Ax~ +q) > 0}.
(iii) € = {x : X (Ax~ +q) >0}, Z:={x: X (Ax" +¢q) > 0}.
The mapping & (x) = Ax + q is pseudomonotone if and only if

(a) XAx>0Vxe .o/ URB.
()¢ C 2.

It is easy to see that if A is PSD then for any ¢, mapping .% (x) = Ax+q is
pseudomonotone. Gowda [18] proves that even the converse is true.

Corollary 2.2 ([18, p. 376]). A € R"*" is PSD if and only if for every q, the mapping
F(x) = Ax+ q is pseudomonotone.

Theorem 2.19 ([18]). Suppose that A € R™" has no zero column. If the map
F(x) = Ax+ q is pseudomonotone and LCP(q,A) is feasible, then A is pseudo-
monotone.

Theorem 2.20 ([18]). Suppose that A is pseudomonotone. Then A € Py N Qy and
every feasible LCP(q,A) is solvable (by Lemke’s algorithm).

The following result follows immediately from the above two theorems.

Theorem 2.21 ([18]). Suppose that A € R"*" has no zero column. If LCP(q,A) is
feasible and the map F (x) = Ax+ q is pseudomonotone, then A € PyNQy and every
feasible LCP(q/,A) is solvable (by Lemke’s algorithm).

Theorem 2.22 ([18]). Suppose that the map 7 (x) = Ax+ q is pseudomonotone and
LCP(q,A) is feasible. Then LCP(q,A) is solvable (by Lemke’s algorithm).

By presenting the following example Gowda [18] shows that stronger conclu-
sions in the above theorem are not possible. For other values q/, feasibility of
LCP(g ,A) does not necessarily imply solvability. Let

0 1 1 / -1
a=lool ol e =[]
Then the map .Z (x) = Ax+ ¢ is pseudomonotone. LCP(g,A) and LCP(q ,A) are
feasible but LCP(g ,A) is not solvable. Therefore, A ¢ Qy.

The following theorem relates the concept of pseudomonotonicity of a matrix A
to the class of PSBD matrices.
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Theorem 2.23 ([9, Theorem 3.3]). A € R"*" is pseudomonotone if and only if A is
PSBD and copositive with the additional condition in the case where A = ab' that
b,’ =0= a; = 0.

In fact, the class of pseudomonotone matrices coincides with the class of matrices
which are both PSBD and Cj. For more details on pseudomonotone and Cj matrices
see [20].

In general PSBD matrices need not be Py or Qp. We provide the following
example.

Example 2.1. Suppose
. 0 -3 _*x
A= [5 0} and x= LZ]
We show that A is PSBD by showing that for all x € R,

XAx <0 implies either A’x <0 or A’x > 0.

Then X'Ax = —8x1x; < 0 implies x; and x; are of same sign. Clearly A € PSBD
because
75)(2
fy _
A'x= [3)”}

implies either A’x < 0or A’x > 0 but A & P.

The following example shows that PSBD matrices need not be Qy in general.

|1 0 |
A= {4 O} and x= [XZ}
But x’Ax = x% +4x1xp < 0 implies x; and x; are of different sign. Clearly
A € PSBD because
Ay — [xl —&-4ij|

Example 2.2. Let

0

implies either A’x < 0 or A’x > 0. Taking

we note that LCP(g,A) is feasible but the problem has no complementary solution.
Therefore A is not a Qy matrix.

Theorem 2.24 ([9, Proposition 2.1]). Ler A = ab’ with a,b € R", a,b # 0.
A is PSBD if and only if one of the following conditions holds.

(i) 3 a t > 0 such that b = ta.
(ii) For allt > 0, b # ta and either b > 0 or b < 0.



2 Generalized Monotone Maps and Complementarity Problems 41

Further suppose that A € MPSBD. Then A € Cy if and only if either (a > 0 and
b>0)or(a<0andb<0)and A € Cj if and only if A is copositive and a; = 0
whenever b; = 0.

Gowda [18] conjectured that pseudomonotonicity of a matrix A implies pseudo-
monotonicity of a matrix A’. Obviously, Gowda’s conjecture is true when A is PSD.
Crouzeix et al. [9] show that the conjecture is also true when rank(A) > 2 but it is
not true for matrices of rankl.

Combining [9, Theorem 2.1] and [9, Proposition 2.5], we get the following
theorem on PSBD matrices.

Theorem 2.25 ([35]). Suppose A € R"*" is PSBD and rank(A) > 2. Then A" is PSBD
and at least one of the following conditions holds.

(i) A is PSD.
(ii) (A+A") <0.
(iii) A is C}.

Theorem 2.26 ([9, Proposition 2.2]). Assume that A € R™" is MPSBD and
rank(A) > 2. Then

(@) v (A+A") = 1.
() A+A)x=0 & Ax=A'x=0.

Because a PSBD matrix is a natural generalization of a PSD matrix, it is of
interest to determine which of the properties of a PSD matrix also holds for a PSBD
matrix. In particular, we may ask whether

(i) A is PSBD if and only if (A +A’) is PSBD.
(ii)) Any PPT (Principal Pivot Transform)[42] of a PSBD matrix is a PSBD matrix.

Mohan, Neogy, and Das [35] observe that these properties are not carried over to
PSBD matrices. However PSBD is a complete class in the sense of [7, 3.9.5].

Theorem 2.27 ([35]). Suppose A € R™" is a PSBD matrix. Then Ayq € PSBD
where oo C {1,...,n}.

Theorem 2.28 ([35]). Suppose A € R"*" is a PSBD matrix. Let D € R"*" be a posi-
tive diagonal matrix. Then A € PSBD if and only if DAD' € PSBD.

Theorem 2.29 ([35]). PSBD matrices are invariant under principal rearrangement;
that is if A € R™" is a PSBD matrix and P € R"*" is any permutation matrix, then
PAP' € PSBD.

Lemma 2.2. Suppose A € R"*" is a PSBD matrix with rank(A) > 2 and A+ A" <0.
Then at least one of the following conditions holds.

(i) A is PSD.
(ii) A < 0.
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Theorem 2.30 ([35]). Suppose A € R™" is a PSBD matrix with rank(A) > 2. Then
A is a Qo matrix.

Proof. By Theorem 2.25 and Lemma 2.2, it follows that either A € PSD or A <0 or
A € Cj. Therefore A € Qg (see [7]).

Theorem 2.31 ([35]). Suppose A is a PSBD N Cy matrix with rank(A) > 2. Then
A € R™" is a sufficient matrix.

Proof. Note that by Theorem 2.25, A" is a PSBD N C matrix with rank(A") > 2.
Now by Theorem 2.23, A and A’ are pseudomonotone. Hence A and A’ are row
sufficient by Theorem 2.15. Therefore, A is sufficient.

The following theorem provides a new sufficient condition to solve LCP(g,A) by
Lemke’s algorithm.

Theorem 2.32. Suppose A € R"*" can be written as M + N where M € MPSBD N
Cy , rank(M) > 2, and N € Cy. If the system q+Mx—N'y >0, y > 0 is feasible,
then Lemke’s algorithm for LCP(q,A) with covering vector d > 0 terminates with a
solution.

For the proof of the above result we refer the reader to the article by Mohan,
Neogy, and Das [35]. The proof follows along similar lines to the proof of
Evers [14].

2.6 Generalized Positive-Subdefinite Matrices

The class of generalized positive-subdefinite (GPSBD) matrices is an interesting
matrix class introduced by Crouzeix and Komlési [10]. This class is a generaliza-
tion of the class of symmetric positive-subdefinite (PSBD) matrices introduced by
Martos [34] and nonsymmetric PSBD matrices studied by Crouzeix et al. [9]. The
solution set of a linear complementarity problem (S(g,A)) can be linked with the
set of KKT-stationary points (SN (¢q,A)) of the corresponding quadratic program-
ming problem. The row-sufficient matrices have been characterized by Cottle, Pang,
and Venkateswarn [8] as the class for which the solution set of LCP(g,A) is the
same as the solution set of KKT points of the corresponding quadratic program.
In [37], Neogy and Das showed that the property (S (¢,A) C S(g,A)) holds for
generalized positive-subdefinite matrices under some additional assumptions and
identified a large subclass of GPSBD matrices as row-sufficient matrices. This
has practical relevance to the study of quadratic programming and interior point
algorithms.

Definition 2.10. A matrix A € R"™" is called a generalized positive-subdefinite
matrix (GPSBD) [10] if there exist nonnegative multipliers s;,#; with s; +# = 1,
i=1,2,...,nsuch that
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either —s;x; +1;(A'x); >0 forall i,
Vx€eR", YAx< 0= (2.18)
or —six; +1;(A'x); <0 forall i.

Let S and T be two nonnegative diagonal matrices with diagonal elements s;, t;,
where s;+t = 1 fori =1,...,n. Note that § and T are independent of x. A matrix
A € R™" is said to be GPSBD if there exist two nonnegative diagonal matrices S
and T with S+ 7 = I such that

either —Sx+TAx>0,
VxeR", YAx<0= (2.19)
or —Sx+TA'x<0O.

Note that GPSBD reduces to PSBD if S = 0. A is called nondegenerate GPSBD if
for all x € R", X' Ax < 0 implies —Sx + TA’x # 0 and unisigned; that is, at least one
of the inequalities in (2.18) should hold as a strict inequality. A is said to be a merely
generalized positive-subdefinite (MGPSBD) matrix if A is a GPSBD matrix but not
a PSBD matrix. The following example is a nontrivial example of a GPSBD matrix.

Example 2.3. Let

0 5
A=|-4 0 -1
0 1

Note that v_ (A +A") = 1.

Then for any x = [x; xp x3)", ¥ Ax = x;x, < 0 implies x; and x; are of opposite
sign. Clearly, A’x = [—4xy 5x;+x3 —xp) andforx=[—1 1 7], X¥Ax < 0 does
not imply A’x is unisigned. Therefore, A is not a PSBD matrix. However, with the
choice s; = 0,5, = 1 and s3 = 0, it is easy to check that A is a GPSBD matrix.

Theorem 2.33. Suppose A € MGPSBD NCy with 0 < t; < 1 for all i. Then A is a
row-sufficient matrix.

Proof. Suppose x;(A'x); <0 fori=1,....,n. Let I; = {i : x;, >0} and I, =
{i : x; <0}. We need to consider three cases.

Case I. I, = 0. Then X¥Ax = xX'A’x = ¥;x;(A'x); < 0. Because A € Cy, [xi(A'x);]| =
0, Vi.

Case II. I} = 0. Then (—x)'A'(—x) = x'A’x = Y;x;(A'x); < 0. Because A € Cp,
[xi(A’x),-] = 07 Vi

Case II1. Suppose there exists a vector x such that x;(A’x); <0 fori=1,2,...,n and
X (A'x), <O foratleastone k € {1,2,...,n}.Let]; ZQand L, # 0. ¥ Ax = X' A'x =
Zi[xi(Atx)i] < 0. This implies —s;x; th,-(Atx)i >0, Vior —s;x; +t,’(Atx),' <0, Vi.

Without loss of generality, assume —s;x; +#;(A’x); > 0, V i. Then for all i € I,
—six? + tixi(A'x); > 0. This implies [x;(A’x);] > (s;/t:;)x} > 0, V i € I,. There-
fore, Ye, [xi(A'x);] > 0. Because x;(A’x); < 0 for i = 1,...,n, this leads to a
contradiction.

Therefore, [x;(A’x);] =0, V i. So A is row sufficient.
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Neogy and Das [37] provide an example to show that the assumption in the above
theorem 0 < #; < 1 Vi cannot be relaxed.

The following theorem extends the result of Evers [14] and the result obtained
in Theorem 2.32 in an earlier section for solving LCP(g,A) by Lemke’s algorithm
when A satisfies certain conditions stated in the following theorem.

Theorem 2.34. Suppose A € R"*" can be written as M + N where M € MGPSBD N
C0+, is nondegenerate with 0 < t; < 1, Vi, and N € Cy. If the system g+ Mx— N'y >
0, y > 0 is feasible, then Lemke’s algorithm for LCP(q,A) with covering vector
d > 0 terminates with a solution.

The following example demonstrates that the class MGPSBD N CJ is nonempty.

Example 2.4 ([37]). Consider the copositive-plus matrix

1 0
A=1|2 1
8 0

- O O

Take x =[—1 —1 1]". It is easy to check that A is not MPSBD. However, with
choice s; = } Vi, A is a MGPSBD matrix.

The following result is a consequence of the characterization of row-sufficient
matrices observed by Cottle, Pang, and Venkateswarn [8].

Lemma 2.3. Suppose A € MGPSBD NCy with 0 < t; < 1 for all i. For each
vector g € R", if (x*,u*) is a Karush—-Kuhn-Tucker pair of the quadratic program
QP(q,A) : [minx' (Ax+q); x > 0, Ax+ g > 0], then x* solves LCP(q,A) : [x >0,
Ax+q>0,xX(Ax+4q)=0].

Proof. From Theorem 2.33 and [8, Theorem 4, p. 238], the result follows.

Remark 2.1. From Lemma 2.3, it follows that the solution set of a linear comple-
mentarity problem (S(g,A)) is related to the set of KKT-stationary points " (¢q,A))
of the corresponding quadratic programming problem and the statement s (g,A)
C S(g,A) holds for MGPSBD matrices with some additional assumptions as stated
in Theorem 2.33. For details see Neogy and Das [37].
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Chapter 3

Optimality Conditions Without Continuity in
Multivalued Optimization Using
Approximations as Generalized Derivatives

Phan Quoc Khanh and Nguyen Dinh Tuan

Abstract We propose a notion of approximations as generalized derivatives for
multivalued mappings and establish both necessary and sufficient conditions of
orders 1 and 2 for various kinds of efficiency in multivalued vector optimization
without convexity and even continuity. Compactness assumptions are also relaxed.
Our theorems include several recent existing results in the literature as special cases.

3.1 Introduction and Preliminaries

Differentiability assumptions are often crucial for a classical problem in all areas of
continuous mathematics, because derivatives are local linear approximations for the
involved nonlinear mappings and then supply a much simpler approximated linear
problem, replacing the original nonlinear problem. However, such differentiability
assumptions are too severe and not satisfied in many practical situations. Relaxing
these assumptions has been one of the main ideas in optimization for more than
three decades now and constituted an important field of research called nonsmooth
optimization. Most of contributions in this field are based on using generalized
derivatives, which are local approximations bearing not the whole linearity but
still parts of linearity. Many notions of generalized derivatives have been proposed.
Each of them is suitable for a class of problems. The Clarke derivative [5] was
introduced for locally Lipschitz mappings; the quasidifferentiability of Demyanov
and Rubinov [6] requires directional differentiability to be defined; the approxi-
mate Jacobian proposed in [8] (later renamed the pseudo-Jacobian) exists only for
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continuous mappings, and so on. The approximations, introduced in [11] for order 1
and in [1] for order 2, are defined for general mappings that are even discontinuous.
In this note we extend these definitions to the case of multifunctions.

The major goal proposed for generalized derivatives is establishing optimality
conditions in nonsmooth optimization problems. We see from the very beginning
of classical optimization that derivatives play a fundamental role in the Fermat
theorem, the first necessary optimality condition. We would say that all generalized
derivatives are used in similar ways as the classical derivative in the Fermat theorem.
In the literature we observe only [11, 1, 2, 12-14, 16, 17] which deal with this kind
of approximations as generalized derivatives. This notion was used in [11] to study
metric regularity and in [1] for establishing second-order necessary optimality con-
ditions in the compactness case. Second-order approximations of scalar functions
are used for support functions in [2] to scalarize vector problems so that second-
order optimality conditions can be established, but under strict (first-order) differen-
tiability and compactness assumptions. In [12-14] we used first- and second-order
approximations of single-valued mappings to derive first- and second-order neces-
sary and sufficient conditions for various kinds of efficiency in nonsmooth vector
optimization problems of several types.

In this chapter we develop the results of our talk presented (but unpublished)
at an international conference [16]. Namely, after extending the notion of first- and
second-order approximations of a mapping to the case of a multivalued mapping, we
use this notion to establish both necessary and sufficient conditions of both orders
1 and 2 for weak and firm efficiencies in multivalued vector optimization with set
constraints, without continuity and convexity assumptions. In [17] we develop such
optimality conditions also for proper efficiency and in problems with functional
constraints. The problem under our consideration here is as follows. Throughout
this chapter, unless otherwise specified, let X and Y be normed spaces, Y being
partially ordered by a convex cone C with nonempty interior, S C X be a nonempty
subset, and F : X — 2¥ be a multifunction (i.e., a multivalued mapping). We are
concerned with the problem

minF (x), subjectto x € S. (P)

Here “min” means minimizing: finding efficient solutions in the sense defined by
the end of this section. The layout of the chapter is as follows. In the rest of this
section we recall definitions and preliminaries needed for our later investigation.
Section 3.2 is devoted to defining first- and second-order approximations of a multi-
valued mapping. In Section 3.3 we establish necessary conditions of order 1 for
weak efficiency and sufficient conditions of order 1 for firm efficiency of problem
(P). We develop such conditions for these kinds of efficiency, but of order 2, in the
final Section 3.4.

Our notations are rather standard. N = {1,2,...n,...} and ||.|| stands for the
norm in any normed space (the context makes it clear what space is concerned).
By denotes the open unit ball in X and Bx(x,r) = {z € X | |[x—z|]| <r}; X* is
the topological dual of X with (.,.) being the canonical pairing. L(X,Y) denotes
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the space of all bounded linear mappings from X into ¥ and B(X,X,Y) that of all
bounded bilinear mappings from X x X into Y. For a cone C C X, C* = {x* € X* |
(x*,c) > 0,VYc € C} is the positive polar cone of C. For A C X, intA, clA, and bdA
denote the interior, closure, and boundary of A, respectively. For t > 0 and k € N,
o(t*) stands for a moving point (in a normed space) such that o(t¥) /tK — 0 ast — 07,
We use the following tangent sets of A C X at xy € A.

(a) The contingent (or Bouligand) cone of A at x¢ (see [3]) is
T(A,xo) ={veX|3H, —0",Iv, —v,VneN,xq+1t,v, €A}.

(b) The second-order contingent set of A at (xo,v) (see [3]) is

1
TZ(A,xo,v) = {w €X |3ty — 0", 3w, — w,¥n € N, xg +1,v+ zt,fwn eA}.

(¢) The asymptotic second-order tangent cone of A at (xg,v) (see [4, 18]) is

In

'n

T”(A,xo,v) = {w €X | Ity,rn) — (07,07): " —0,3w, — w.

1
Vn € N,xog+t,v+ 2tn"an S A}.

Lemma 3.1 ([10]). Assume that X is a finite-dimensional space R™ and xo € A C X.
If x, € A\ {xo} tends to xo, then there exists v € T(A,xo) \ {0} and a subsequence,
denoted again by x,, such that, for t, = ||x, — xo

(i) (1/t,)(xn —x0) — v.

(i) Either z € T?*(A,xo,v) N’ exists such that (x, —xo — t,v)/ 312 — 2z or
ze T (Axo,v) NvE\ {0} and r, — OF with (t,/r,) — 0" exist such that
(%0 — X0 — taV)/ StaTn — 2, where vt = {y € R™ | (y,v) = 0}.

>

Recall now notions of efficiency in vector optimization. Consider a subset V of the
objective space Y. A point yg € V is called an efficient point (weak efficient point,
strict efficient point, respectively) of V if

(V—yo)Nn—-CC (-C)NC
((V—=yp)N—intC =0,
(V—yo)N(—=C\{0})=0, respectively).

The set of efficient, weak efficient and strict efficient points are denoted by MincV,
WMin¢V, and StrMincV, respectively. Now apply these notions to problem (P).
A point (xo,yp) with xg € S and yg € F(xp) is said to be a local weak efficient
solution of (P) if there is a neighborhood U of xq such that, Vx € SNU,

(F(x) —yo)N—intC =0 3.1
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and (x,yo) is called a local efficient solution if (3.1) is replaced by
(F(x)—yo)N—C C (-C)NC.

We extend the firm efficiency notion (see [9, 15]) to the case of multivalued optimi-
zation as follows.

Definition 3.1. Let xo € S, yo € F(xo) and m € N. Then (xo,yo) is said to be a local
firm efficient solution of order m if there are a neighborhood U of xy and y > 0 such
that yg € StrtMincF (xo) and, forallx € SNU \ {xo},

(F(x) —y0) N (By (0,7[]x —x0[|") —C) = 0.

In the sequel let LWE(P), LE(P), and LFE(m, P) stand for the sets of the local weakly
efficient solutions, of the local efficient solutions, and of the local firm efficient
solutions of order m, respectively, of problem (P). Then it is clear that, for p,m € N
with p > m,

LFE(m,P) C LFE(p,P) C LE(P) C LWE(P).

Hence, necessary conditions for the rightmost term are valid also for the others and
sufficient conditions for the leftmost term hold true for the others as well.
For a multifunction H : X — 2" the domain of H is

domH ={xe€ X | H(x) #0}.

H is said to be upper semicontinuous (usc) at xo € domH if for all open set
V D H(xp), there is a neighborhood U of xy such that V D H(U). H is termed
lower semicontinuous (Isc) at xy € domH if for all open set V N H (xy) # 0, there is
a neighborhood U of x such that for all x € U, VN H(x) # 0.

3.2 First- and Second-Order Approximations of Multifunctions

Consider a multifunction H : X — 2, xo € domH and yo € F (x).
Definition 3.2.

(i) A subset Ay (xg,y0) of L(X,Y) is said to be a first-order approximation of H at
(xo0,y0) if there exists a neighborhood U of xj such that, for all x € U NdomH,
there are positive r, with r,|[x —xo|| =" — 0% and y € H(x) satisfying

y—Yo € Au(x0,y0)(x — x0) + r:By.

(ii) A subset A%, (xo,y0) of L(X,Y) is called a first-order strong approximation of H
at (xo, yo) if there exists a neighborhood U of x such that, for all x € U NdomH,
there is positive r, with r,|[x —xo| ~! — 0% such that, for all y € H(x),

¥ — Yo € A%y (x0,Y0) (x — xo) + By
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(111) A pair (AH()C(),y()),BH(xO,y())), where AH()C(),y()) - L(X,Y) and BH(X(),y()) -
B(X,X.Y), is called a second-order approximation of H at (xq,yo) if A (x0,¥0)
is a first-order approximation of H at (xo,yo) and there is a neighborhood U of
xo such that, for all x € U NdomH, there are positive r2 with r2|x —xo|| =2 — 0*
and y € H (x) satisfying

¥ =0 € Apr(x0,30) (x — Xo) + B (x0,0) (x — X0, — x0) + 13 By.

(iv) A pair (A% (x0,y0), B3 (x0,Y0)), where A% (x0,y0) € L(X,Y) and BS;(x0,y0) €
B(X,X.Y), is termed a second-order strong approximation of H at (xo,y) if
A%, (x0,y0) is a first-order strong approximation of H at (xo,o) and there is a
neighborhood U of xq such that, for all x € U NdomH, there exists positive rf
with 72{|x — xo|| =2 — 0" such that, for all y € H(x),

¥ = Y0 € Ay (x0,0) (x — %0) + B}y (x0, ¥0) (x — %0,x = x0) + r3By
In this chapter we impose on these approximations the following relaxed compactness.

Definition 3.3.

(i) Let M, and M be in L(X,Y). The sequence M, is said to pointwise converge
to M and is written as M,, 2> M or M = p-limM,, if lim M, (x) = M(x) for all
x € X. A similar definition is adopted for N,,N € B(X,X,Y).

(ii) A subset A C L(X,Y) (B C B(X,X,Y), respectively) is called (sequentially)
asymptotically pointwise compact, or (sequentially) asymptotically p-compact if

(a) Each norm bounded sequence {M,} C A (C B, respectively) has a sub-
sequence {M,, } and M € L(X,Y) (M € B(X,X,Y), respectively) such that
M = p-limM,, .

(b) For each sequence {M,,} C A (C B, respectively) with lim || M,,|| = oo, the
sequence {M,/||M,||} has a subsequence which pointwise converges to
some M € L(X,Y)\ {0} (M € B(X,X,Y)\ {0}, respectively).

(iii) If in (ii), pointwise convergence, (i.e., p-lim) is replaced by convergence
(i.e., lim), a subset A C L(X,Y) (or B C B(X,X,Y)) is called (sequentially)
asymptotically compact.

Because only sequential convergence is considered in this chapter, we omit the word
“sequentially”. ForA C L(X,Y) and B C B(X,X,Y) we adopt the notations:

p—clA={MeLX,Y):IM,) CAM=p—limM,}, (3.2)
p—clB={N€B(X,X,Y):3(N,) C B,N = p—limN,}, (3.3)

Aw={M e LX,Y):3(M,) CA,3t, — 0", M=1limt,M,}, (3.4)
p—Aw={MELX,Y):IM,) CA I, — 0" M=p—lim,M,}, (3.5

p—B.={Ne€B(X,X,Y):3(N,) CB,3t, — 0", N=p—lims,N,}.  (3.6)
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The sets (3.2), (3.3) are pointwise closures; (4) is just the definition of the recession
cone of A. So (3.5), (3.6) are pointwise recession cones.

Remark 3.1.

() If X is finite-dimensional, a convergence occurs if and only if the corresponding
pointwise convergence does, but in general the “if” does not hold; see [[12],
Example 3.1].

@ii) If X and Y are finite-dimensional, every subset is asymptotically p-compact
and asymptotically compact but in general the asymptotical compactness is
stronger, as shown by [[12], Example 3.2].

(iii) Assume that {M,} C L(X,Y) is norm bounded. If x, — x in X and M,, > M in
L(X,Y), then M,.x,, — Mx in Y. Similarly, if x, — x, y, — y in X, N, > N in
B(X,X,Y) and {N,} is norm bounded then N, (x,,y,) — N(x,y) in Y.

Indeed, the conclusion is derived from the following evaluations.
(1Mo — Mox|| < | Moy — Myx|| + (| Mpx — Mox|| < {|M]| [l — ]| + || Myx — Mx]|;
[N (s yn) = N QY <IN (X Yn) = No (s 9) [+ 1N (6, ) = No (6, ) |
+ [[Na(x,9) = N Qe )| < 1N [l [lyn = ¥
+ [Nallll2n = X[ Iyl + INa(x,3) = N(x, ¥)]-

The following example gives a multivalued map F, which is neither usc nor Isc at
Xo, but has even second-order strong approximations.

Example 3.1. Let F : R — 2% be defined by
{yeR|y=vx} if x>0,
Fx)=<{yeR|y<!} ifx<o0,
{0} if x=0.

Let (xp,y0) = (0,0). Then F is neither usc nor Isc at xo but F has the following
approximations, for fixed positive o and 8 > 0.

AF(XO;yO) = (aﬂ+°°)3 A;(X(),y()) = (ﬁ;+°°)a
Br(x0,y0) = B (x0,50) = {0}
In the next example F' is not usc at xp but Ag(xp,yo) is even a singleton.

Example 3.2. Let F : R? — 2F be defined by

3 .
{y eR | % |x| |2 +x% <y< ‘xl‘l‘m} if (xl,xz) # (an)a

F(x1,x) =
(x1,x2) 0 if (x1,x2) = (0,0).
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Then F is not usc at x° = (0,0). But for yy = 0 we have

AF()CO,y()) = {0}7
AF(C,y0) = (R\{0}) x {0} U {0} x (R\ {0}),

B ={ (5 1) 11}
B (,30) = {0},

Note that a similar example for a single-valued mapping does not exist, because a
single-valued mapping has a first-order approximation at x( being a singleton if and
only if it is Fréchet differentiable at xy and hence continuous at this point.

3.3 First-Order Optimality Conditions

Theorem 3.1 (Necessary condition). Consider problem (P). Assume that Ap (xo,yo)
is an asymptotically p-compact first-order approximation of F at (x,y0).
If (x0,y0) € LWE(P) then, for each v € T(S,xo) there is M € p — clAr(x0,y0) U
(p-AFr (x0,Y0)w \ {0}) such that

Mv ¢ —int C.

Proof. Letv e T(S,xp) be arbitrary and fixed. By the definition of a contingent cone,
there is (,,,v,) — (07, v) such that xo +1,v, € S for all n € N. By the weak efficiency
of (x0,y0) one has, for large n and all y € F (x + V),

y—yo ¢ —intC.

On the other hand, as Ar(xo,yo) is a first-order approximation, there are positive r,
with 7,2, 1 — 0% and y, € F(xo +1,v,) such that

Yn—Yo € AF(x()ayO)(thn) +r,By.
Therefore, M,, € A (xo,y0) and 3, € r,By exist such that
My (tavy) +u & —int C. (3.7)

If {M,,} is norm bounded, one can assume that M, Pme p—clArp(x0,y0). Dividing
(3.7) by t, and passing to the limit one gets Mv ¢ —int C. If {M, } is unbounded,
one can assume that ||M,|| — e and

M,
"B Mep—Ap(xo,y0)-\ {0}
(| M|

Dividing (3.7) by ||M, |t one obtains in the limit Mv ¢ —int C.
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If F is single-valued, Theorem 3.1 collapses to Theorem 3.3 of [13], which was
shown there to improve or include many existing results. The following example
shows that, for F' being multivalued, Theorem 3.1 is easily applied.

Example3.3. LetX =Y =R,S =[0,4),C =R, ,xg =yp =0, and

{y€R|y§§}x} if x>0,
Fx)=q{yeR|y>—x} if x<0,
{0} if x=0.
Then T(S,xp) = S and for a fixed o < 0 we have Arp(xp,y0) = (—o°, ),

clAF (x0,y0) = (=0, @], Ar(x0,Y0)e = (—o0,0]. Taking v =1 € T(S,x0) one sees
that, for all M € clAr (xo,y0) U (AF (x0,Y0)e \ {0}) = (—,0),

Mv =M € —int C.
Due to Theorem 3.1, (xg,yp) is not a local (weakly efficient) solution of problem (P).

Theorem 3.2 (Sufficient condition). Consider problem (P) with X being finite-
dimensional. Assume that AISD (x0,y0) is an asymptotically p-compact first-order
strong approximation of F at (xg,yo), X0 € S, and yy € StrMincF (xo). Impose further
that, for all v € T (S,x0) \ {0} and all M € p— clAS(x0,y0) U (p — A% (x0,¥0) \ {0}),
one has

Mv & —cIC.

Then (xo,y0) € LFE(1,P).

Proof. Reasoning ad absurdum, suppose the existence of x, € SN Bx(xq,(1/n))\
{x0} such that, for each n € N, there is y, € F(x,) such that

1
Yn—Y0 € By (07 n ||xn _x0||> —C.

As X is finite-dimensional, we can assume that (x, —xo)/|lx, —Xo|| tends to a
point v in T(S,x0) \ {0}. On the other hand, for large n there is positive r, with
7%, — xo[| ! — OF such that

Yn—Yo € A}g«" (x0,Y0) (xn —X0) + 7By
Hence, there are M,, € A§ (x0,¥0) and ¥, € r,By such that

1
M5y 3045 € By (0. L =] ) .

Arguing similarly as in the final part of the proof of Theorem 3.1, we obtain
M € p—clAS (x0,y0) U (p— A3 (x0,¥0) \ {0}) such that Mv € —cl C, a contradiction.
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Theorem 3.2 includes Theorem 3.4 of [13] as a special case where F is single-
valued. The following example explains how to employ Theorem 3.2.

Example 3.4. LetX =R, Y =R?, §=0,+<),C=R%, x0 =0, (y0,20) = (0,0) €Y,
and
{(y,2) ER? |y > Yx,z=x} if x>0,

F(x)=¢{(0,0)} if x=0,
0 if x<O0.

Then (yo,z0) € SttMin¢F (xo) and for any fixed o > 0 we can take a strong approxi-
mation as follows.

AF(x0,(¥0,20)) = {(n,2) ER* |y > otz =1},
clAS (x0, (v0,20)) = {(32) €R?* |y > o,z =1},
AS (x0,(50,20))ee = {(1,2) ER? |y >0,z =0}.

Itis clear that (Vv € T(S,x) \ {0} = (0, +<)) one has VM € clA3.(xo, (yo,20)), Mv =
(yv,v) ¢ —C. Furthermore, Mv = (yv,0) ¢ —C for all M € A (xo, (b0,20))= \ {0}
By Theorem 3.2, (xo, (yo,20)) € LFE(1,P).

3.4 Second-Order Optimality Conditions

Theorem 3.3 (Necessary condition). For problem (P) assume that (Ar(xp,yo),
Br(x0,y0)) is an asymptotically p-compact second-order approximation of F at
(x0,50) with Ap(x0,y0) being norm bounded. Assume further that (xo,yo) € LWE(P).
Then

(i) For all v € T(S,xp), there exists M € p — clAp(xo,y0) such that Mv & —int C.
(ii) For all v € T (S,x0) with Ap(x0,y0)v C —bdC one has

(a) For each w € T*(S,xo,v), either M € p — clAr(xo,y0) and N € p — clBF
(x0,¥0) exist such that

Mw+2N(v,v) & —int C,
orthereis N € p— Bp(x0,Y0) \ {0} satisfying
N(v,v) & —int C.

(b) For each w € TN(S,xo,v), either M € p — clAp(xg,y0) and N € p—
Br(x0,Y0)e exist such that

M/erNl(v, v) & —int C,
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orone has N € p— Br(x0,y0)w \ {0} with
N/(v,v) ¢ —intC.

Proof.

(i) This assertion follows from Theorem 3.1.
(ii) (a) Let v € T(S,x9) with Ar(xo,y0)(v) € —bdC and w € T*(S,xo,v). Then,
there are x,, € S and t,, — 0 such that

1
Wy i= (X —xo—tnv)/zt,% — W,

By the definition of the second-order approximation, there are M, €
Ar(x0,0), Na € Br(x0,0) and o(|x, — xo[|?) such that, for large n,

My (xn — x0) + Ny (3 — x0,%n — X0) + 0(||Xn fx0||2) € F(xn) — yo-

The weak efficiency of (xo,yo) implies then, for some o(2) € Y,

1 1 1
MMMQM(HdeJ+tm0+ﬂﬁﬂzﬁ¢4mc (3.8)

2
We can assume that M, 2 M for some M € p — clAr(xo,y0). If {N,} is

norm bounded then N, % N for some N € p — clBr(x0,y0). From (3.8) we
get in the limit
Mw+2N(v,v) & —int C.

If {N,} is unbounded, we can assume ||N,|| — oo and (N, /||Na||) 2> N for
some N € p—By(x) \ {0}. Dividing (3.8) by ||N,|| and passing to the
limit gives N(v,v) & —int C.

(b) For any w € T"(S,xo,v), there are x, € S and (1,,r,) — (0*,0") with
(tn/rn) — 0T such that

1
Wy 1= (X fxo—tnv)/zt,,rn — W

Similarly as in (a) we have M;l and N,/, satisfying the following relation,
corresponding to (3.8),

/ 2t, / 1 1 1 .
M,w, + ( ; 1) N, (v—i— 2t,1w,1,v+ 2t,lw,1> +0(t,%)/2t,1rn Z —intC. (3.9)

n
We can assume that M,; LM e p—clAF (x0,y0). There are three possibilities.
(&) (2t,/rs)N, — 0. From (3.9) we get in the limit

Mw¢ —int C.
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(B) If (21,/r) N, || = a > 0, then |N,,|| — oo and we can assume that (N, /||N,||) 2
€ p—Bp(x0,Y0)= \ {0}. Passing (3.9) to the limit yields

Mw+ aNl(v, v) & —int C.
(9) If (2t,/r,)||N,]| — oo, then dividing (3.9) by (2t,/r,)||N, || and passing to the
limit gives
N/(v,v) ¢ —int C

If F is single-valued, Theorem 3.3 collapses to Theorem 4.10 of [13]. The example
below gives an application of Theorem 3.3 to a multivalued case.

Example3.5. Let X =R2%, Y =R, S = {(x,z) € R? | z = |x]>/2}, C =R, (x0,20) =
(0,00 €X,yp=0€Y,and

2 3 2 1 .
F(x,z): {y€R|_3|x|2 +z _Z§y§x2+zz} if (X,Z)#(()’O)
{0} if (x,z) = (0,0).
Then, for a fixed o < 0,
T(Sa(x07Z0)) = {(LZ) S R? | Z:O},7

AF(()C(),ZO)JO) = {(Oa _1)}’7

BF((X()aZO)ayO) =

Taking v = (1,0) € T(S, (x0,20)) one has
Ar((x0,20),y0)v = {0} € —bdC,
T2(S, (x0,20),v) = 0,
T'(S,(x0,20),v) = R x R
Hence, for w = (0,1) € T" (S, (x0,z0),v) one obtains
0,—1)w+N(vv)=—141<0
forall N € Bp((x0,20),Y0)- and

N(vv)=t<0
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for all N € Br((x0,20),Y0)= \ {0}. Taking into account Theorem 3.3, one sees that
((x0,20),y0) is not a local weakly efficient solution of problem (P) in this case.

Theorem 3.4 (Sufficient condition). Consider problem (P) with X being finite-
dimensional. Assume that xo € S and yy € StMincF (xo). Assume further that
(A% (x0,0), B3 (x0,y0)) is an asymptotically p-compact second-order strong
approximation of F at (xo,yo) with A3.(xo,y0) being norm bounded. Then (xo,yo) €
LFE(2,P) if

(i) For all v € T(S,xo) \ {0}, A% (x0,y0)v C cIC.
(ii) For eachv € T(S,x) \ {0} with Mv € —clC for some M € p — clA3.(x0,y0), for
each N € p — B3(x0,¥0)e \ {0}, one has N(v,v) & —cIC and

(a) Yw € T?(S,x0,v) NV, YM € p — clAS(x0,0), VN € p — cIBS:(x0,0),
Mw+2N(v,v) & —clC.

(b)Yw € T" (8,x0,v) v\ {0}, VM € p — clAS (x0,y0), YN € p — B3 (x0,Y0)eo
Mw+N(v,v) & —clC.

Proof. Suppose to the contrary that x, € SN Bx(xo,(1/n))\ {xo} exists such that

(F(xn) _yO) N (BY (Oa ’it;%) _C> 7& @, (310)

where f, = ||x, — xo||. We can assume that (1/2,)(x, —xo) — v € T(S,x9) \ {0}.
By (10) and by the definition of first-order strong approximations, for large n, there
exist M,, € A% (x0,y0) and o(t,) such that

1
M,y (x, — x0) + 0(t) € By (o,nt,%) ~C. (3.11)

The norm boundedness of AISD (x0,y0) allows us to assume that M, LNy V= p—
clAS (x,y0). Dividing (3.11) by #, we get, in the limit, Mv € —cl C. According
to Lemma 3.1, there are only the following two possibilities.

(c0) One has w, := (x, —xo — tyv)/ 52 — w € T*(S,x0,v) Nv>. By the definition
of the second-order strong approximation, (10) implies the existence of M, €
A% (x0,50), Ny € B5(x0,y0) and o(||x, — x0||?) such that, for large n,

1
My (xn — x0) + Nu(x — X0, %0 — X0) + 0(||xn —x0||2) € By (O, nt,%) —C.

This can be rewritten as

1
M,w, + 2N, (v + zanm v+ )

1 1 1 /
tnwn> +o(t,f)/2t,f = dn/zt,f —c,, (3.12)

where d, € By(0,(1/n)i2) and ¢, = (c, +1,Myv)/ 12 € cl C, because ¢, € C
and A3 (x0, y0)v C ¢l C. We can assume that M,, 2 M € p—clAS (xg, o). If {N,,}
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is norm bounded, we can assume further that N, 5Ne pP— clB)Sr (x0,¥0). In the
limit (3.12) gives the contradiction

Mw+2N(v,v) € —cl C.

If {N,} is unbounded, we can assume that ||N,|| — oo and (N,/||N,||) = N €
p— Br(x0,Y0)= \ {0}. We divide (3.12) by ||N,|| and pass it to limit to get
N(v,v) € —cl C, also a contradiction.

(B) Thereis r, — 07 such that (¢,/r,) — 0" and

1 "
Wy = (X fxo—tnv)/zt,,rn —weT (Sx,v)Nvi\ {0}

Similarly as for the case (), there are M, € A% (xo,¥0), Ny € B3 (x0,y0), and
o(t2) such that, for large n,

21, 1 1 1 1 '
Myw, + ( rnn > N, <v+ 2r,,w,,,v+ 2r,,wn) + o(t,%)/zt,,rn = d,,/zt,,r,, —Cps
(3.13)
where d, € By (0,(1/n)t?) and ¢, = (c, +1,M,V)/ étnrn € cl C. We can assume
that M, 2 M € p — clA%(xo,y0). There are three subcases as follows.

e (2t,/ry)N, — 0. Passing (3.13) to limit one gets Mw € —cl C, contradicting
assumption (ii) (b) (with N = 0 € p — B3(x0,0)es)-

o (26,/ry)|INu|| = @ > 0. Then ||N,|| — e and we can assume that (N,/||N, ) 2
N € p—Br(x0,Y0) \ {0}. Dividing (3.13) by (2t,/r,)||N,|| and passing to limit
we obtain the contradiction

Mw+aN(v,v) € —cl C.

o (264/r)||Nu|| — oo. Then ||N,|| — oo and assume that (N,/|N,|) & N € p—
Br(x0,Y0) \ {0}. Dividing (3.13) by (2#,/r,)||Na|| we get in the limit N(v,v) &
—cl C which is absurd.

Theorem 3.4 strictly contains Theorem 4.12 of [13] as a special case. We interpret
the use of Theorem 3.4 by the following example.

Example 3.6. LetX =R, Y =R?, § =[0,4-0), C=R3, xo =0, (y0,20) = (0,0) €Y,
and
{(n2) eR? |y =x2 3 x[*? <z < x*3} if x>0,
F(x) =
0 if x<O.

Then (yo,20) € SttMincF (xg), T (S,x0) = S and, for a fixed o > 0,
A} (x0, (¥0,20)) = {0} x [0, 1] = ¢l A (xo, (v0,20)),

B;(x()a(y()azo» - {(I,Z) | > OC},
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clBj (x0, (v0,20)) = {(1,2) | 2> et}

B} (%0, (70,20))= = {(0,2) | 2> 0}.

It is easy to check that, for all v € T(S,x0) \ {0}, one has

A3 (x0, (y0,20))v = {(0,Bv) | B € [0,1]} C el C,

N(v,v) = (0,2v*) & —cl C,

VN € B3(x0, (30,20)) \ {0}, and

Mw+2N(v,v) = (2v2,2zv2) g —clC,

Yw € T%(S,x0,v) Nt = {0}, VM € clA3 (xo, (0,20)), VN € clB3(x0, (y0,20)), and
T"(S,x0,v) Nv+\ {0} = 0. Now that all assumptions of Theorem 3.4 are satisfied,
(%0, (v0,20)) € LFE(2,P).

Summarizing, it should be noted that each of the necessary and sufficient conditions
presented in this chapter is an extension to the multivalued case of the corresponding
result in [13] for the single-valued case. The results of [13] were shown in [13] to be
sharper than the corresponding theorems in [15] and better in use than many recent
results in the literature, because the assumptions are very relaxed.
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Chapter 4

Variational Inequality and Complementarity
Problem

Sudarsan Nanda

4.1 Introduction

Variational inequality and complementarity have much in common, but there has
been little direct contact between the researchers of these two related fields of mathe-
matical sciences. Several problems arising from fluid mechanics, solid mechanics,
structural engineering, mathematical physics, geometry, mathematical program-
ming, and so on have the formulation of a variational inequality or complementarity
problem. People working in applied mathematics mostly deal with the infinite-
dimensional case and they deal with variational inequality whereas people work-
ing in operations research mostly deal with the finite-dimensional problem and
they use the complementarity problem. Variational inequality is a formulation for
solving the problem where we have to optimize a functional. The theory is derived
by using the techniques of nonlinear functional analysis such as fixed point theory
and the theory of monotone operators, among others.

In this chapter we give a brief review of the subject. The chapter is divided
into four sections. Section 4.2 deals with nonlinear operators, which are required
to describe the results. Sections 4.3 and 4.4, respectively, deal with variational
inequality and the complementarity problem. Section 4.5 describes semi-inner-
product spaces and variational inequality in semi-inner-product spaces.

4.2 Nonlinear Operators

In this section we discuss certain nonlinear operators, which are useful in the study
of variational inequalities and the complementarity problem.

Let X be a real normed linear space and let X* be the dual space of X. Let the
pairing between x € X and x* € X* be denoted by (x*,X). Let T be a mapping of
the subset D(T') of X into X*. T is said to be monotone if
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(7;5_71}7)6_)])207 anyeD(T)a

and strictly monotone if 7' is monotone and the strict inequality holds whenever
x #y. T is called oi-monotone if there is a continuous strictly increasing function
o :[0,1) — [0,1] with &(0) = 0 and a(r) — oo such that

(T = Tyx = y) = e =ylle([lx = yl[)

for all x,y in D(T). T is strongly monotone if ¢(r) = cr for some constant ¢ > 0.
T is coercive on subset K of D(T) if there exists a function ¢ : (0,00) — [0,e0] where
¢(r) — oo as r — oo such that

(Tx,x) = [[xlle(lix]),  VxeK.

Thus T is coercive on K if K is bound, and 7T is coercive on an unbounded K if and
only if
(Tx,x)

— oo as  |lx]| — eo, xeK.
[l

T is hemicontinuous if D(T') is convex and for any x,y in D(T'), the map t — T
(tx+ (1 —1)y) of [0,1] to X* is continuous for the natural topology of [0, 1] and the
weak topology of X*.

Example 4.1.

(a) Let f : R — R be a monotonically increasing function. Then f is a monotone
operator.

(b) Let H be a Hilbert space and T : H — H be a compact self-adjoint linear opera-
tor. Then T is a monotone operator if all the eigenvalues of 7' are nonnegative.

(c) Let H be a Hilbert space. An operator T : H — H is said to be nonexpansive if
[Tx—Ty| < [lx—y| forall x,y € H.
If T is nonexpansive, then / — T is monotone operator.

(d) Let H be a Hilbert space and C a closed convex subset of H. Let Px denote the
point of minimum distance of C from x; that is,

Px = {Z eC:|z—x|| = inf||Y—x||}.
yeC

Then P is monotone operator on H,

(e) Let H be a Hilbert space. Then an operator T : H — H is said to be accretive if
lx—y|| < ||Tx— Tyl forall x,y € H.
Then T : H — H is monotone iff (I + AT) is accretive for every A > 0.

Theorem 4.1. If T : D(T) C X — X* is a-monotone, then it is strictly monotone

(hence monotone) and coercive. In particular every strongly monotone operator is
strictly monotone and coercive.

Definition 4.1. Let X be nls and let X* be its dual. A map 7 : X — X is said to be
a duality map if for any x € X.
() (To,x) = | Tll[|x]| and Gi) | T3l[ = [|x]]-
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A duality map can be constructed in any nls in the following way. By the
Hahn—Banach theorem, for any x € X, there exists at least one bounded linear func-
tional Y, € X* such that ||yx|| = 1 and (yy,x) = ||x||. Taking one such functional y,
and setting T, = [1x]ly. and T (—x) = J¥l[yx, we get | T3] = [lx]| and Tz, x) = | T[]
Theorem 4.2. In general a duality map T : X — X* is multivalued. It is single-
valued if X* is strictly convex.

Theorem 4.3. If T : X — X" is a duality map, then it is monotone and coercive; if
Sfurthermore X is strictly convex, then T is strictly monotone.

Theorem 4.4. Let X be a real Banach space and F : X — X* be a nonlinear
operator. If Gateaux derivative F'(x) exists for every x € X and is positive-semi-
definite, then F is monotone.

Theorem 4.5. Let f be a proper convex function defined on X. If f is differentiable,
the V f is monotone.

Theorem 4.6. Let [ be a proper differentiable function defined on X. If Vf is
monotone, then f is convex.

4.3 Variational Inequalities

In this section we discuss some basic properties of variational inequalities. Before
we state the definition we first discuss some examples where variational inequalities
arise.

Example 4.2. Let I = [a,b] C R. Let f be a real-valued differentiable function
defined on /. Suppose we seek the points x € I for which

f(x) = min f(y).

yel

Then three cases arise in this case:

Ha<x<y= f'(x)=0.
(i) a=x= f(x) >0.
(i) x= b= f'(x) < 0.

All three cases can be put together as a single inequality as follows.

Fy-x>0, WelL

This is an example of variational inequality.

Example 4.3. Let K be a closed convex set in R” and let f : K — R be differentiable.
We characterize the points x € K for which

J(x) = minf(y).

yeK
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If there exists x € K that satisfies the above equation and if F(x) = gradf(x), then x
is a solution of the following inequality

x€K:(Fx,y—x) >0, VyeK.

Conversely, if f is differentiable and convex and if the above inequality is satisfied
by x, then

() = min f(y).
Example 4.4. Let 2 be a bounded open domain in R” with the boundary 7. In some
problems of mechanics we seek a real-valued function x — u(X) which in Q, satis-
fies the classical equation

n aZu
—Au—u= Q = 4.1
u-u=f  fEQ  u=X,. (4.1)
with boundary conditions
w0, %“>0 u%_0 on I 4.2)
dv dv

where d/dv denotes differentiation along the outward normal to I". If we write

J6) = Yo = (f20),
where

u Ju dv
alu,v) —1:21/9 ox; aXidx+/(2uv,dx

(f,v)= / fvdx
Q
and if we introduce the closed convex set K defined by
K={v:v>0onT}
then the problem given by (4.1) and (4.2) is equivalent to finding «# € K such that

J(u) = inf J(v).

vekK

This admits a unique solution u characterized by
uck, a(u,v—u) > (f,v—u) Vv eK.
This is called a variational inequality problem.

We now state the problem in the most general setting.
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Let X be a reflexive real Banach space and let X* be its dual. Let 7 be a monotone
hemicontinuous mapping from X into X* and let K be a nonempty, closed, convex
subset of the domain D(T') of T. Then a variational inequality is stated as follows.

xe€K: (Tx,y—x) >0, Vy€eK. 4.3)

Any x € X that satisfies (4.3) is called a solution of the variational inequality.
We write S(7',K) to denote the set of all solutions of the variational inequality (4.3).
In fact we consider a more general inequality which is stated as follows.

For each given element wy € X*,

x€K: (Tx—wp,y—x)>0, Yy € K. 4.4)

Inequality (4.3) can also be written by replacing the subset K of X by an extended
real-valued function defined on X. For any subset K of X, let &, called the indicator
function of K, be the function defined on X by

0 ifyekK
o if y¢ K.

& (v) = {

Then it is easy to verify that x € K is a solution of (4.3) if and only if
(Tx,y—x) = &(x) = &(y)  VyeKk.

Therefore we consider, as a generalization of inequality (4.3), the inequalities of the
form:
xe€X: (Tx,y—x)> f(x)— f(y) Vy € X, 4.5)

where f is an arbitrary extended real-valued function defined on X.

Observe that if f = 0, then (4.5) reduces to the VI(4.3) and if T = 0, then we
are in the framework of the calculus of variations where we minimize the extended
real-valued f; that is, we have

fE)<f),  VyeX or f(x)=minf(y).

yeX

Theorem 4.7. Let T be a monotone, hemicontinuous mapping of subset D(T) of
X into X* and K a convex subset of D(T). Then for given element wy € X*, any
solution of inequality (4.4) is also a solution of the inequality

(Ty —wp,y—x) >0 Yy e K. (4.6)

Theorem 4.8. Let T be a hemicontinuous map of X into X*. Suppose that for any
pair of vectors xg € K and wy € X*,

(Ty—wo,y—x0) >0  VyeX. (4.7)

Then TX() = Wwy.
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The following result gives uniqueness of solutions when it exists.

Theorem 4.9. If the mapping T from X into X* is strictly monotone, then the
inequality (4.4) can have at most one solution.

Theorem 4.10. If either the mapping T is strictly monotone or the function f is
strictly convex, then the inequality (4.5) can have at most one solution.

We now state the following fundamental theorem for variational inequality that
appears in Hartmann and Stampacchia [20]

Theorem 4.11. Let T be a monotone hemicontinuous map of a closed convex subset
K of a reflexive real Banach space X, with 0 € K, into X* and if K is not bounded,
let T be coercive on K. Then for each given element wy € X* there is an x € K such
that the inequality (4.4) holds:

x€K: (Tx—wy,y—x)> Vy € K.

4.4 Complementarity Problem

Several problems arising in various fields such as mathematical programming, game
theory, economics, mechanics, and geometry have the mathematical formulation of
a complementarity problem.

Definition 4.2. Let X be a reflexive real Banach space and let X* be its dual. Let K
be a closed convex cone in X with O € K. The polar of K is the cone K* defined by
K'={yeX": (yx) >0VxeK}.

Obviously K* # ¢ because 0 € K*. It also easy to see that K* is a closed convex
cone in X*. Let T be a map from K into X*. Then the complementarity problem (CP
in short) is to find an x € X such that

x€K, Txe K", (Tx,x) =0.

The following theorem proves the equivalence between the complementarity problem
and the variational inequality over a closed convex cone. We write

S(T\K)={x:x€K,(Tx,y—x) >0 VyeK}

and C(T,K) ={x:x€ K,Tx € K*,(Tx,x) = 0}. We have the following.
Theorem 4.12. C(T,K) = S(T,K).
Remark 4.1.

(a) It should be noted that the solution of a complementarity problem, if it exists,
is unique if the operator 7 is strictly monotone. C(T,K) = S(T,K) for a closed
convex cone K, therefore the proof is same as that of Theorem 4.9.
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(b) Regarding the existence it must be noted that the solution may not exist only
under the assumption of hemicontinuity and monotonicity (even strict mono-
tonicity) of the operator 7. For example, let X = R,K = {x € R : x > 0}, so that
K = K* and K is a closed convex cone. Let T : K — R be defined by

1

Tx=— .
. 1+x

Then T is hemicontinuous and strictly monotone. (7'x,x) = 0 implies x = 0 but
TO=—1¢K".

We now discuss the existence of solutions of the complementarity problem.
We have the following.

Theorem 4.13. Let T : K — X* be hemicontinuous, monotone, and coercive. Then
the complementarity problem has a solution. In particular if T is hemicontinuous
and a-monotone, then the solution exists and is unique.

Theorem 4.14. Let T : K — X* be hemicontinuous and monotone and let TO € K*.
Then the complementarity problem has a solution.

Theorem 4.15. Let T : C — B* be hemicontinuous and monotone such that there is
an x € C with Tx € int C*. Then there is an xy such that

xp €C, Txo€C*, and (Txp,x9)=0. (4.8)
If, furthermore, T is strictly monotone, then there is a unique x satisfying (4.8).

In order to prove the theorem we need the following result, which is due to
Browder. See Browder [5] and Mosco [33]. This is a special case of Theorem 4.7.

Let T be a monotone hemicontinuous map of a closed, convex, bounded subset
K of B, with 0 € K, into B*. Then there is an xyK such that

(Txp,y—x0) >0 Vy € K.

Now observe that if e € C* but e ¢ int C*, the sets D,(e) need not be bounded.
In this case we cannot conclude y = 0 from the fact that (e,y) = 0. Consider the
case when B=R%?, C=R?, and e = (1,0). Then for each r > 0, D(e) contains the
positive y-axis and hence is unbounded.

We note that this theorem fails to hold if the requirement that there exists x € C
with Tx € int C* is dropped.

Take B = R3, C = {(x,y,z) € R® : x,z > 0,2xz > y*}. Define T by T (x,y,z) =
(x+1,y+1,0). Then T is monotone, hemicontinuous (even bounded); (1,—1,1) €
CandT(1,—1,1)=(2,0,0) e C*. Ifu = (x,y,z € C) with Tu € C*, theny = —1 and
hence x > 0. Hence for any such u, (Tu,u) = x(x+1) > 0.
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Finite-Dimensional Case

Let K be a closed convex cone in R” and f a map from K into R” such that
xeK, flx) e K™, (f(x),x) =0.
In particular, if K = R’}
{x=(x1,%2,...,%4) ER":x; >0,i=1,2,...,n},

then the problem can be stated as follows.
n
x20,  fx) =0,  (f(0).x) =Y xfi(x) =0.
i=1

If, furthermore, f(x) = Mx+ b where M is a given real square matrix of order n
and b is a given column vector in R”, then the above problem is called a linear
complementary problem (LCP in short) and it can be stated as follows.

Finf wy,wo,...,w, and x1,x2,...,X,,

w=Mx+Db, w >0, x>0, wix; =0, i=1,2,...,n.

Otherwise, in general, the problem is known as a nonlinear complementarity
problem (NCP in short).

We now illustrate the LCP by a numerical example.

As a specific example of an LCP in R", let

2 (1) ()

In this case the problem is to solve:

w1 72)(1 — Xy = -5
wy — X1 72)62 =-6

wi, wa, X1, X2 > 0, wix; = wpx = 0.

This can be expressed in the form of a vector equation as

() m(on(Don(D-() e

w1, W2, X1, X2 Z 0, Wi1X1 = WXy = 0. (410)

The solution for the given LCP is (wy,wa,x1,x2) = (0,0,(4/3)(7/3))
As special cases we have the following results for R".
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Theorem 4.16. Let f : K — R" be continuous, monotone, and have a solution.
In particular if f is continuous and strongly monotone, then the solution exists
uniquely.

Theorem 4.17. Let f : K — R" be continuous, monotone, and such that f(0) €
K*(or f(0) =0). Then there exists a solution to the NCP.

Theorem 4.18. Let f : K — R" be continuous, monotone, and such that there exists
anx € K with f(x) € intK*. Then there exists a solution to the NCP. Lemke [27] and
Eaves [13] discussed the existence of stationary points and the nature of the set of
all stationary points of the pair (f,K) in R" where K = R".. Lemke [27] discussed
the linear case by considering affine functions. A basic theorem of Lemke [27] states
the following.

Theorem 4.19 (Lemke). Given an affine map f : R} — R" and d € R', there is a
piecewise affine map x : R, — R’} such that x(t) is a stationary point of (f,D}') with
d.x(t) =t where D} = {x € R} :dx<t}.

Definition 4.3. Let M be a square matrix of order n. M is said to be positive-
definite if

n n
YiMy =YY ymijy;>0  VO#y€ER",
i=1j=1
positive-semidefinite if
YIMy>0,  VyeR",

and copositive matrix if y' My > 0 for all y > 0 and strictly copositive if strictly
inequality holds for all y > 0,

Copositive plus if it is a copositive matrix and if y' (M + M") = 0, whenever
y > 0 satisfies y" My = 0,

P-matrix if all principal subdeterminents of M are positive, Q-matrix if the LCP
has a solution for every g € R", nondegenerate matrix if all its principal subdeter-
minants are nonzero, degenerate matrix if it is not nondegenerate, z-matrix if m; ; for
all i # j, and J-matrix if

Mz 2, Mz >0, z2>20=2z=0.

4.5 Semi-Inner-Product Space and Variational Inequality

In this section we discuss the concept of semi-inner product (sip. for short), which
was introduced by Lumer in the year 1961 and subsequently studied by Giles and
several other mathematicians. We then study variational inequality on sip space.

Let V be a complex vector space. A sip on V is a complex function [,] on V x V
with the following properties: for x,y,z € V and A € C,

() [x+yz]+ [x2+ 2],
[Ax,y] = A[x,].
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(ii) [x,x] >0 forx #0.

(i) (b, ]2 < o, [y,].

V along with a sip defined on it is called a sip space. A sip space V has the homo-
geneity property when the sip satisfies

(iv) [x,Ay] = Afx,y].

With the aim of carrying over Hilbert-space type arguments to the theory of Banach
spaces Lumer [30] introduced the concept of sip. But the generality of the axiom
system defining the sip is a serious limitation of any extensive development of a
theory of sip spaces parallel to the theory of inner-product spaces. Let X be a normed
linear space and let X* be its dual.

The unit ball of X is

U ={xe€X:|x|| <1} and its boundary.
S={xe€ X :||x|]| = 1} is the unit sphere of X.

U*={feX":|f]| <1} is the unit ball and.
S*={f€X:|f]l =1} is the unit sphere of X*.

The conjugate norm is also denoted by ||.||.

Theorem 4.20. A sip space V is a normed linear space with the norm ||x|| = [x,x]"/%.
Every normed linear space can be made into a sip space (in general, in infinitely
many different ways) with the homogeneity property.

Theorem 4.21. A Hilbert space H can be made into a sip space in a unique way.
A sip space is an ip space if and only if the norm it induces satisfies parallelogram
law.

Continuous and Uniform Sip Spaces

A continuous sip space is a sip space V where the sip has the additional property:
(v) Forall (x,y) € Sx S,

Re |y, x+Ay| — Re |y,x] forall A — 0.

The space is a uniform continuous sip space when the above limit is approached
uniformly for all (x,y) € S x S.

A uniform sip space is a uniformly continuous sip space where the induced
normed linear space is uniformly continuous and complete.

Examples (L, space for 1 < p < eo). The real Banach space L,(X,S,u), where
1 < p < oo, can readily be expressed as a uniform sip space with sip defined by

1 _
b= [yl sgn di
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For x,y in any sip space V, x is said to be normal to y and y is transversal to x if
[v,x] = 0. A vector x € V is normal to a subspace N and N is transversal to x if x is
normal to each y € N.

A Banach space X is said to be smooth at a point x € S if and only if there exists
a unique hyperplane of support at x, that is, there exists only one continuous linear
functional 1, € E* with ||1,]] = 1 and 1,(x) = 1. X is said to be a smooth Banach
space if it is smooth at every x € S.

The norm of X is said to be Gateaux differentiable if for all x,y € S and real A,

Ll A e

exists.
A—0 A

The norm is said to be uniformly Fréchet differentiable if this limit is approached
uniformly for (x,y) € § x S. Note that X is smooth at xinS if and only if the norm is
Gateaux differentiable at x. We have the following.

Theorem 4.22. In a continuous sip space x is normal to y if and only if ||x+ Ay| >
||x|| for all complex numbers A.

Theorem 4.23. A sip space is a continuous (uniformly continuous) sip space iff the
norm is Gateaux (uniformly Frechet) differentiable.

Lemma 4.1. In a continuous sip space that is uniformly convex and complete in its
norm, there exists a nonzero vector normal to every proper closed vector subspace.

Lemma 4.2. A sip space is strictly convex if whenever [x,y] = ||x||||y||,x,y # O, then
y = Ax for some real A > 0.

Theorem 4.24 (Generalized Riesz—Fischer Theorem). In a continuous sip space
V that is uniformly convex and complete in its norm, to every continuous linear
Sfunctional f € V*, there exists a unique vectory € V such that

f) =[xy, xeV.

Theorem 4.25. For a uniform sip space M, the dual space M* is a uniform sip space
w. I. t. the sip defined by

foany = LyaxJ .

Theorem 4.26. Every finite-dimensional, strictly convex, continuous sip space is a
uniform sip space.

Theorem 4.27. Let X be a continuous sip space that is uniformly convex and com-
plete in its norm. If A is a bounded linear operator from X into itself, then there is a
unique bounded linear operator A™ such that

[Ax,y] = [x,AT,y].

AT is called the generalized adjoint of A: The proof uses Theorem 4.24 and is similar
to that of the corresponding theorem for Hilbert space operators. Note that if X is a
Hilbert space, then the generalized adjoint is the usual Hilbert space adjoint.
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We now discuss variational inequality and the complementarity problem in
semi-inner-product space under certain contractive type conditions on the operators.

Let K be a closed convex subset of a sip X. If T : K — K, then a variational
inequality (VI for short) is stated as follows.

x€K:|Tx,y—x|>0 VyeK.

If K is a closed convex cone, then the polar or dual of K, denoted by K*, is
defined by
K'={zeX":[z,x] >0, VxeK}.

If K is a closed convex cone, then the complementarity problem (CP for short) is
defined as follows. x € X such that

xX€K, Txe K" and [Tx,x]=0.

Observe that if K is a closed convex cone, then (VI) and (CP) are equivalent.
We have the following.

Theorem 4.28. Let X be uc and ss and K a nonempty, closed, convex subset of X.
Let T : K — K satisfy any one of the following conditions.

(i) |Tx = Tyl| < allx = || +b[| Tx — x|+ || Ty -y,
where —1 <a<a<0, b>0, ¢>0, a+b+c=0,

(ii) [|[Tx = Tyl| < ar[|x = y[| + azllx = Tx|| + as|ly = Tyl| + aa|lx = Ty| + as|ly — Tx
where —1 < a; <0, a»,as,as,as >0, Z?:]ai:O

’

Then there is a unique yo € K such that | Tyy,z— yo| > 0 for all x € K.

Proof. Because K is a nonempty, closed, convex subset of X and X is uc, for every
y € K there is a unique x € K closest to y — Ty; that is,

x—y+Tyl| <llz—y+Ty|

for every z € K (see Edelstein [14]). Let the correspondence y — x be denoted by 6.
Letz€ K andlet0 <A < 1.Because K is convex, (1 —A)x+ Az € K. Define a map

h:[0,1] = R" by
h(R) = |ly =Ty = (1=2A)x— Az
X is uc and ss, thus % is a continuously differentiable function of A and
WA)=2]y—Ty—(1—A)x—Az,x—z].
Because x is the unique element closest to y — Ty we must have 4’ (0) > 0. Therefore

ly—Ty—x,x—2z] >0, Vz e K. 4.11)
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Lety;,y» € Kandy; #y,. Let 0(y;) =x1, 0(y2) = x. It follows from (4.11) that
1 —=Ty1—6y1,—60y2+6y1] >0 (4.12)

and
lv2 = Tyz — 0y2,—0y> — 0y | > 0. (4.13)

From (4.12) and (4.13) we get

1 —=Ty1 —y2+Ty2 — 0y + 0y2,0y; — 0y2] > 0.

Therefore

[8y1 — 0y2||* = | 8y1 — Oy2, 091 — 02
= |y1 —Ty1 —y2+Ty2,0y; — 6y;|
<|lyi = Ty1 —y2+T2||||0y1 — Oy2].

If T satisfies condition (i) Theorem 4.28, then

10y1 — 0y2|| < (1+a)|ly1 — yal| + B Ty1 — yi|| + || Ty2 — y2l,

where0<1+a<1,6>0,¢c>0,a+b+c=1.
If T satisfies condition (ii) then

ITx—Ty|| < (1+a1)||x—y| +azl|x — Tx||
+a3|ly — Tyl + aal|x — Ty|| +as||ly — Tx]|,

where 0 < 1 +a; < 1,a2,a3,a4,a5 > 0,(1 +ay) + 3+ a; = 1.

Therefore (see Reich [48], Gregus [18], and Ghosh [16] for case (i), Hardy and
Rogers [19] for case (ii), and Joshi and Bose [23] and Rhoades [49] for both cases)
0 has a unique fixed point, say yo; hence 8 (yo) = yo. It now follows from (4.11) that
forallz € K,

[ Tyo,z—yo] >0

and this completes the proof.

Theorem 4.29. Let X be a Hilbert space and K a closed convex cone and let the
conditions of the previous theorem be satisfied. Then the CP has a unique solution;
that is, there is a unique yo € X such that

Yo €K, Tyo € K* and (Tyo,y0)=0.

Proof. We have
(Tyo,yo—z) <0 VzeK.

K is a cone and y( € K, thus it follows that 2yy € K and hence (Tyg,yo) > 0. Thus
(Ty07y0) =0.
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Furthermore for all z € K,

(Tyo,Z) Z (Tyo,)’O) =0.

Thus Ty € K* and this completes the proof.

Theorem 4.30. Let X be uc and ss and K a nonempty, closed, convex subset of X.
Let T : K — K be nonexpansive. Then there exists some yo € K such that

| Tyo+y0,¥0] =0.

Proof. Proceeding as in Theorem 4.28 we obtain

|0y1 — 02|l < [lyi = Ty1 —y2+Tys|.

If T is nonexpansive, then

[|6y1 — Oy2|| < ||Tyi — Ty:|
< ly1 = y2l|-

Hence 6 /2 is nonexpansive and thus Theorem 4.2.3, p. 98 of [23], 6/2 has a fixed
point, say yo, that is, 8 (yo)2yo. Hence it follows that

| Tyo +y0,2— 2yo0] >, Vz e K.

Because 0 € K, |Tyo + yo,yo| < 0. Because K is a cone and yy € K, 3yp € K and
thus

| Tyo+y0,¥0] > 0.

Therefore | Tyo + yo,yo] = 0 and this completes the proof.
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Chapter 5
A Derivative for Semipreinvex Functions and Its
Applications in Semipreinvex Programming

Y. X. Zhao, S. Y. Wang, L. Coladas Uria, and S. K. Mishra

Abstract A directional derivative concept is introduced to develop Fritz—John
and Kuhn-Tucker conditions for the optimization of general semipreinvex func-
tions. The relationship between the optimization problem and the corresponding
semiprevariational inequality problem is also shown.

5.1 Introduction

Because of its importance in optimization theory, the concept of convexity has been
generalized in many ways to explore the extent to which results obtained for clas-
sical convex functions can be extended to more general classes of functions [1, 5,
7,6,4,3,9,2, 8,10, 12, 14, 11, 13, 15]. In [11] the concept of semipreinvexity
was introduced,! the local minima of semipreinvex functions were shown to be
global minima, and a theorem of the alternative was proved. In the development of a
Fritz—John type condition for inequality-constrained minimization, Yang and Chen
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employed a concept of differentiability—arcwise directional differentiability—that
cannot usefully be applied to all semipreinvex functions. Here we introduce a con-
cept of differentiability that is in keeping with the spirit of semipreinvexity. Using
this concept, we prove the general Fritz—John type and Kuhn—Tucker type optimality
conditions. In addition, we show the relationship between the minimization problem
for semipreinvex functions and a generalized variational inequality problem.

5.2 Preliminaries

Definition 5.1.

(i) A subset K of R" is said to be semiconnected with respect to a function
T:KxKx[0,1] = R" (hereinafter, t-semiconnected) iff Vx,y € K and
a€0,1], x4+ ot(y,x,a) € X and

limoz(y,x, o) = 0. (5.1
al0

(ii) A real function f defined on a t-semiconnected subset K of R” is said to be
semipreinvex with respect to T (hereinafter, T-semipreinvex) iff V(x,y, o) € K x

K % [0,1],
fr+oat(yx,a)) < (1-a)f(x)+of(y). (5.2)

Remark 5.1. Yang and Chen [11] included condition (5.1) in the definition of
semipreinvexity, not in the definition of semiconnectedness. However, because
this condition makes no mention of the function f, our practice here seems more
rational.

Remark 5.2. Semipreinvex functions constitute a proper subset of convexlike func-
tions and a proper superset of preinvex functions (and of arcwise convex func-
tions). A function f is said to be convex on K if Vx,y € K, the line segment L(x,y)
between x and y belongs to K, and f is convex on L(x,y). Preinvexity requires
only that Vx,y € K, there is some point x + T(y,x) € K such that f is convex on
L(x,x+ 7(y,x)) C K. Convexlikeness requires even less, that Vx,y € K there is a
(not necessarily connected) family IT of points P(x,y;a) € K, a € [0, 1], such that
f is convex on IT with weights a; that is, f(P(x,y;0)) < (1 —a)f(x) + of(y).
Semipreinvexity is like convexlikeness, except that it additionally requires that
P(x,y; ) — x as o — 0 (condition (5.1)).

Example 5.1. Consider K = {z = (x(2),5(z)) € R* | (x)> + (v)> = 1,y > 0,y # 1}.
For z € K, let 8z = cos~ ' x(z), and for 6 € [0,7]\{r/2}, let z(0) = (cos O,sin O).
Consider f : K — R such that

Flo) = {QZ, x(z) > 0;

T—0z, x(z)<0,
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and 7: K x K x [0, 1] — R? such that

2(1—a)0z1+a622)—z1

o , x(z1),x(22) < 0,0 # 0;
<((1-e)0cl +ad2) =21 x(21),x(22) < 0,00 £ 0
(22,21, 0) = § A-FIHAE=62) 2l 1 y(o1) < 0,x(22) > 0,00 # 0
Allmogetrolm=02) el = (1) > 0,x(:2) < 0,00 # 0
zl, o =0.

Then K is T-semiconnected and f is T-semipreinvex on K.

Definition 5.2. Let f be a real function on a T-semiconnected set K C R”, (x,y) €
K x K, and A = {0;} C [0,1], such that lim;_..c; = 0. If

E(f,x3,A,7) = lim o ' [f(x+ 05T(y,x, 04)) — f ()]

exists, then we call it a point sequence derivative of f at x with respect to 7. For
given f, x, and y, the set of all such derivatives (the point sequence derivative set) is
denoted by M(f,x,y,7).

Example 5.2. With the premises of Definition 5.2, let K = [1,3] U [-6,-2],
f(x) =1/x, and

y—x, x,y€[l,3],a€[0,1] rational,

3—x, x,y€ll,3],0€[0,1] irrational,
T(y,x,a)=<y—x, x,y€[-6,-2];

—2—x, x€[-6,-2],ye[l,3];

1—-x, x€[1,3],ye[-6,-2].

Then, it is easy to show that K is T-semiconnected and M(f,2,1,7) { 4, 4}

Semipreinvex functions are convexlike, therefore the following theorem of the
alternative holds (see [6] for a proof for general convexlike functions).

Lemma 5.1. Let f1, f>,...,fp : K — R be t-semipreinvex on K. Then either (i) or
(ii) holds, but not both:

(i) Ix € K such thatVi€ {1,...,p}, fi(x) <
(i) IA € REN\{¥} such that, Vx € K, AT (fi(x ) X)) >0

Lemma 5.2. Iffis T-semipreinvex on K CR" and (x,y) € K x K, then V& (f,x,y,A, T)
EM(f,x.y,7), fy) = f(x) 2&(f,x,5.A,7).
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Proof. Let &(f,x,y,A,T) € M(f,x,y,T), where A = {0;} C [0,1]. Because f is
T-semipreinvex, f(x+ o4T(y,x,04)) < (1 — o) f(x) + o f(y); that is,

f(x+ OﬂjT(y,X, (Xi)) —f(X) )
0

FO) = fx) =

This lemma follows from Definition 5.2 upon taking the limit o; — 0. a

5.3 Fritz—John and Kuhn-Tucker Results

We consider the problem

(P)  minf(x),

xeS

where K C R" is t-semiconnected, f : K — R is 7-semipreinvex on K, and
S={xeK|gx)<0Vie{l,...,m}}, where gi,....,gm : K — R are all
T-semipreinvex on K. In relation to this problem, we define the following condi-
tions that a point X € S may satisfy.

Condition R:  Vx € S, there exist (i) Atx = {o;} C [0,1] such that lim;_.0; =
0 and (ii) & (f,%,x,A%x,T) € M(f,%,x,7), E(g1,%,x,A%x, T) € M(g1,%,x, T),...,
and & (g, X, x,A%x,T) € M(gm,%,x,T).

Condition C: £ satisfies Condition R and there exist real numbers A (%), 1 (%),
+o oy W (%) > 0, not all zero, such that Vx € S,

ADE Ex Arr 1)+ S (R (g1, Fox AR, T) > 0,
=1

14

m

> ui(%)gi(x) = 0.

i=1
Theorem 5.1 (Fritz—John conditions). With K, f, and g; as above, let X be a solu-
tion of problem (P) that satisfies Condition R. Then X satisfies Condition C.

Proof. Because  is a solution for problem (P), there is no x € K such that
f(x)—f(®) <0 and gi(x)<O0Vie{l,...,m}.

By Lemma 5.1, there exist real numbers A, U, ..., W, > 0, not all zero, such that,
Vx €K,

m
A(f(x) = f(%) + X wigi(x) > 0. (5.3)

i=1
Putting x = &, it follows that Y* | w;g;(¥) > 0; but also, > | t;g:(¥) < 0 because
Ui, o, .o iy > 0and g1 (%), 82(X),...,gm(%) <0.Hence, ¥ | ;gi(¥) = 0. Because
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K is T-semiconnected, ¥+ aT(%,x,0) € K V(x,0t) € S x [0, 1]. Hence, by inequality
(5.3),

m

A(f(x+at(x,x o)) — f(x)+ 2 wigi(x+ ot(x,x,)) > 0.

i=1

Therefore, Vo € (0,1],

S JE+ ocr(f,;, a)) — f(%) N iui gi(X+at(x,x, o)) — gi(%) > 0.

i=1 o

If Axx, E(f,%,x,A%x, 1), E(g1,%,x,A%x, T),...,E(gm, X,x,A%x, T) are as guaranteed
by condition R, then letting oc — 0™ on the set A%x leads to the desired result that &
satisfies condition C with A (X) = A, W (%) = ty, lo, ..., (%) = L. O

Theorem 5.2 (Kuhn-Tucker necessary conditions). With K, f, and g; as above,
let  be a solution of problem (P) that satisfies condition R. If 3x' € S such that
gi(X) <0Vie{l,...,m}, then X satisfies condition C with A(x) > 0.

Proof. By Theorem 5.1, there exist real numbers A, y,..., W, > 0, not all zero,
such that Vx € S,

A‘g(faiaxaAixa T)+Z[J[§(gi,i,x,Afx, T) >0, (5.4
i=1

Y uigi(x) =0. (5.5
-1

Suppose A = 0. Then by (5.4), ¥ | w;& (g, %,x',Axx’, T) > 0, where not all y; are
zero. Because g;(x') — gi(x) > &(g;,%,x',Axx’, T) (by Lemma 5.2), it follows that
> i(gi(x') — gi(x)) > 0, which, together with (5.5), shows that

m
D wigi(x') > 0.
i=1
This obviously contradicts the premise that g;(x') <0Vi€ {1,...,m}. Hence, A >0,

which is the desired result. O

Theorem 5.3 (Kuhn-Tucker sufficient conditions). With K, f, and g; as above, if
X € S satisfies condition C with A (%) > 0, then X is a solution of problem (P).

Proof. By Lemma 5.2, Vx € S, f(x) — f(%) > & (f,%,x,A%x, T), and g;(x) — g;i(¥) >
E(gi,%,x,A%x,T) Vi € {1,...,m}, which, together with condition C, lead to

z(x)(f(x)f<x>>+iui<x>gi<x> >0, (5.6)

Y7 Ugigi(x) < O0forallx € S (because Uy, ..., Uen > 0) and A (X) > 0, therefore it
follows from (5.6) that f(x) — f(X) > 0 Vx € S, which is the desired result. O



84 Y. X. Zhao, S. Y. Wang, L. Coladas Uria, and S. K. Mishra

Remark 5.3. Theorem 5.3 can be strengthened by weakening condition C because
it is not necessary for Axx to be the same for all the point sequence derivatives
E(f,x,x,A%x, 1), E(g1,%,x,A%x, T),...,E(gm, X, x,A%x, T), and neither is it necessary
for the coefficients A (X), i (X),..., Wn(%) to be the same for all x € S.

Remark 5.4. If the sequence A in Definition 5.2 is replaced by the interval
A’ = (0,0/] for some o € (0,1], and 7 is such that o : [0,&'] — K, o0 — x+
ot(y,x,0), is a differentiable curve starting at x, then &(f,x,y,A’,T) becomes
an arcwise directional derivative, Theorem 5.1 becomes Theorem 3 of [11], and
Theorem 5.2 becomes the corresponding Kuhn-Tucker type theorem. There may
also be situations in which limg, o0 ™' [f(x+ atT(y,x, &t)) — f(x)] exists even though
o is not a differentiable curve.

Remark 5.5. Consider the multiobjective problem
(MP)  minf(x),
xes

and
(TPy)  minA”f(x),
XE

where 2 € R7\{0}, K and S are as in problem (P), and all the components of
=0, f,....fp) : K — RP are t-semipreinvex on K. By a result obtained in
[16], any solution for TP, is a weakly proper solution for MP. Using this result,
Theorems 5.1-5.3 can easily be generalized to the corresponding conditions on
weakly proper solutions for MP. For brevity we omit the details here.

5.4 The Semiprevariational Inequality Problem for Point
Sequence Derivative

Consider the unconstrained versions of problems (P) and MP where § = K and
denote them by UP and UMP, respectively. The corresponding scalar and vector
semiprevariational inequality problems for point sequence derivatives are defined as
follows.

(SPVI) To find % € K such that Vx € K, 2E (f,%,x,A%x, T) € M(f,%,x,T) such that
E(f,x,x,Axx, T) <O0.
(VSPVI) Assume that V(i,x,y) € {1,...p} x Kx K, M(f;,x,y,7) #0.To find X € K
such that Vx € K; there exists at least one & (f;,%,x,A%x, T) > 0.

Theorem 5.4. If f : K — R is T-semipreinvex and continuous on K, then

(i) If X is a solution for problem UP, then X is also a solution for problem SPVI.
(ii) If 3 x € K such that Vx € K, 3E(f,%,x,Axx,T) > 0, then X is a solution of prob-
lems UP and SPVI, respectively.
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Proof.

(i) If M(f,x,x,7) is empty for all x € K, there is nothing needing proof. Other-
wise, let x be such that M(f, %, x, T) is nonempty, and consider & (f, %, x,Axx, T)
€ M(f,x,x,7). Because ¥ is a solution for problem UP, Vo € [0, 1],

fE+at(x,z o)) > f(X).

Therefore, & (f,X,x,A%x,T) > 0 by Definition 5.2, which leads to part (i).
(ii) The result follows immediately from Lemma 5.2 and part (i). a

Remark 5.6. Theorem 5.4 shows that if f is 7-semipreinvex and Vx € K, M(f,%,x, T)
contains at least one nonnegative member, then all its members are nonnegative.

Remark 5.7. In [17], semiprevariational inequality problems are defined, assuming
stronger differentiability conditions, for functions defined on, and mapping to, more
general ordered spaces.

Theorem 5.5. If all the components of f = (fi,f2,...,fp) : K — R are t-semi-
preinvex on K, then

(i) If X is a weakly proper solution of problem UMP such thatV/(i,x) € {1,...,p} X
K, M(f;,X,x,T) is nonempty, then X solves problem VSPVI.

(ii) If X is a solution of problem VSPVI, then it is a weakly proper solution of
problem UMP.

Proof.

(i) By the assumptions, it is clear that Vx € K, (a) f(x) — f(x) ¢-intR",_and (b) Vi €
{1, ph, BE(fi 53, AR, T) € M(fr 5%, 7). By (), V(x, 0) € K (0, 1],

fE+ Off(x,;, @) — f(%) ¢ —intk.
Letting oc — 0™ on the set Axx leads to part (i).

(ii) By the definition of problem VSPVI, for arbitrarily given x € K, there exist i €
{1,...,p} and &(f;,%,x,A%x, T) € M(f;,%,x,T) such that & (f;,%,x,A%x, ) > 0.
The desired result follows immediately from Lemma 5.2. a
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Chapter 6

Proximal Proper Saddle Points in Set-Valued
Optimization

C. S. Lalitha and R. Arora

Abstract A new notion of saddle point, namely proximal proper saddle point is
introduced in terms of a Lagrangian map associated with a set-valued optimization
problem for which an existence criterion is obtained. It is also observed that this
saddle point is not related to some of the well-known saddle points. A saddle
point type optimality criterion is derived for optimality in terms of proximal proper
minimizers.

6.1 Introduction

The study of set-valued optimization has received a great deal of attention in the
recent past due to its application in various fields such as economics, game theory,
and differential inclusions (see Aubin and Frankowska [2], Klein and Thompson
[8]). Set-valued maps are involved in problems where the existence or uniqueness
of a solution is not guaranteed. These maps are also used at various instances in
nonsmooth analysis, for example, tangents, cones, subgradients, and inverses of
functions are all set-valued maps. The concept of set-valued maps is also used
by Zangwill [14] to discuss the convergence of algorithms to determine optimal
solutions of nonlinear programming problems.

The optimal solution for a set-valued optimization problem is often considered in
terms of efficiency. To avoid some of the undesirable efficient points, attempts have
been made by various researchers to refine the notion of efficiency. The concept
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of proper efficiency was introduced in different forms by Kuhn and Tucker [9],
Geoffrion [6], Borwein [4], and Benson [3] for vector-valued optimization problems.

Later, this study was also extended for set-valued optimization problems (see Li
[12] and Rong and Wu [13]). Lagrangian saddle points and saddle point optima-
lity criteria play a crucial role in the study of optimization problems. Li and Chen
[12] characterized weak efficiency whereas Li [12] characterized Benson proper
efficiency in terms of saddle points of Lagrangian maps associated with a con-
strained set-valued optimization problem.

The notion of proximal proper efficiency has been introduced by Lalitha and
Arora [10] where it has been observed that proximal proper efficiency refines
Borwein proper efficiency and is independent of Benson proper efficiency.
Extending this comparative study, it is seen that proximal proper efficiency is
independent of the notion of superefficiency as well. Motivated by this indepen-
dent nature of proximal proper efficiency, a new notion of proximal proper saddle
point is introduced in this chapter. Finally, a saddle point type optimality criterion
is obtained for a constrained set-valued optimization problem in terms of proximal
proper efficiency.

The chapter is organized into five sections. Section 6.2 presents some definitions
and results used in the chapter. Section 6.3 deals with a comparative study of the
notion of proximal proper efficiency with some of the well-known notions of proper
efficiency. In Section 6.4, necessary and sufficient conditions for the existence of
a proximal proper saddle point are established in terms of the Lagrangian map.
Section 6.5 comprises the characterization of proximal proper efficiency in terms of
the proximal proper saddle point.

6.2 Preliminaries

A set C in R" is said to be a cone if Ac € C foranyce C, L > 0,1 € R. A cone C'is
said to be convex if C+C C C and pointed if CN (—C) = {0}. The dual cone of C,
denoted by C*, is defined as

C*':={deR":{d,c)>0,VceC}
and strict dual cone C* of C is defined as
C0:={deR":(d,c)>0,YceC\{0}}.

A set Bin R" is said to be locally star-shaped at X € B if for any x € B, there exists a
real number a(x, %), 0 < a(x,x) < 1 such that

(1-A)x+AxeB for 0 <A <a(x,x).

B is said to be locally star-shaped if it is locally star-shaped at each of its points.
From the definition, it is obvious that if a(x,x) = 1 for every x, % € B, then the set B
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is a convex set. Thus every convex set is locally star-shaped but the converse may
not necessarily be true. The set B = {(x,y) € R? : x* < [y|} U{(x,y) € R* : y =0} is
locally star-shaped at the origin but is not convex in any neighborhood containing
the origin.

A set B C R" is said to be a C-closed set if B+ C is a closed set. The contingent
cone or the Bouligand tangent cone to B at y € B is defined as

T(B,y):=={d€R":3t;|0,dj — dsuchthat y+1;d; € B}.
For a closed set B in R" and x ¢ B, let  be the projection of x onto B; that is,
—¥|| = min ||x — y||.
[l =31l = min lx—y]|

The vector x — y is a proximal normal direction to B at j and any nonnegative multi-
ple of such a vector is a proximal normal to B at y. The set of all proximal normals to
B at y forms the proximal normal cone to B at ¥ and is denoted by Np(B, ). For more
details, refer to Clarke et al. [5]. The following theorem characterizes a proximal
normal vector in the form of an inequality called proximal normal inequality.

Lemma 6.1 ([5, Proposition 1.5]). A vector & belongs to Np(B,y) if and only if
there exists 0 = 0(&,3) > 0 such that

&y=y <oly-3I> Vyen.
If B is a convex set then the above inequality becomes
(E.y—-5) <0 VyesB

A point § € B is said to be a minimizer of B if (B—37) N (—C) = {0} whereas it is a
maximizer of B if (B—7) N C = {0}. The set of minimizers is denoted by Min[B, C]
and the set of all maximizers is denoted by Max|B, C]. A minimizer y of a closed set
B is called a proximal proper minimizer of B if Np(B+C,7) N (—C*) # ¢, where C
is a closed convex pointed cone in R" and B is a C-closed set. Similarly, a maximizer
¥ of B is a proximal proper maximizer of B if Np(B — C,5) N C*¥ # ¢ where B is a
—C-closed set. We denote the set of proximal proper minimizers by Pr[B,C] and the
set of proximal proper maximizers by Pr’[B, C].

6.3 Proximal Proper Efficiency and Its Relation with Other
Notions of Proper Efficiency

Several notions of proper efficiency have been studied in the literature. In this
section proximal proper efficiency is compared with some well-known notions of
proper efficiency. We first recall the notions of Borwein [4] and Benson [3] proper
efficiency.
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A point § € B is said to be a Borwein proper minimizer of B if T(B+C — )N
(—C) = {0}. The set of Borwein proper minimizers is denoted by Bor[B,C]. The
relationship between the proximal proper minimizer and Borwein proper minimzer
has been established by Lalitha and Arora [10] as

Pr[B,C] C Bor[B,C].

A point § € B is said to be a Benson proper minimizer of B if ¢l cone (B+C — )N
(—C) = {0}. The set of Benson proper minimizers is denoted by Ben[B, C].

Furthermore, we compare proximal proper efficiency with another notion of
proper efficiency, namely superefficiency [1].

A point y € B is said to be a superefficient point of B if there exists M > 0 such
that ¢l cone (B—3) N (U —C) C MU where U is a closed unit ball. The set of all
superefficient points of B is denoted by SE[B,C].

In view of the relationships established among the above-mentioned notions of
proper efficiency in [7], the following conclusion can be made

SE[B,C] C Ben[B,C] C Bor[B,C]. 6.1)

The following two examples illustrate the relation of proximal proper efficiency
with other notions of proper efficiency, stated above. In the first example, a proximal
proper minimizer is shown to be neither Benson proper efficient nor superefficient.

Example 6.1. Let B= {(x,0,0) : x <0} U{(x,0,1 —x) : x > 1},C = {(x,9,2) : x> +
y? <z%,7>0}. It can be seen that 5= (0,0,0) € Pr[B,C] as Np(B+C,5) = {(x,y,2) :
P4y <2, x>0,z< 0} whose intersection with —(C*O) is nonempty. However,
it can be seen that there does not exist any M > 0 such that the intersection of the
clcone (B—7) ={(x,0,z) : —x <z<0,x>0}U{(x,0,0) : x <0} with (U—C) is
contained in MU where U is the closed unit ball. Hence § ¢ SE[B,C]. Also, it can
be seen that y ¢ Ben[B,C] as the cl cone (B+C —3)N(—=C) = {(x,0,—x) : x > 0}.
However, it may be observed here that 7 € Bor[B,C].

The following example provides a point that is a superefficient point and hence a
Benson and Borwein proper minimizer that is not a proximal proper minimizer.

Example 6.2. Let C =R3 and B = {(x,y,2) : x> +y* <422, 2> 0} U{(x,3,2) : y* <
x+2z,z<0}.Because Np(B+C,¥5) = {0} for y = (0,0,0), it follows that § ¢ Pr[B,C].
Because cl cone (B —¥) = B, it may be noted that for a closed unit ball U, cl cone
(B—y)N(U—-C) C MU forany M > 1; thatis, y € SE[B,C]. Also by (6.1), y belongs
to each of the sets, Ben[B,C] and Bor[B, C].
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The comparison made so far can be summarized in Figure 6.1.

Bor[B,(]

=G

Fig. 6.1 Relations among certain notions of proper efficiency.

6.4 Proximal Proper Saddle Points

In the sequel, we assume that X =R, Y =R", Z=RP;C CY,and D C Z are closed
convex pointed cones with nonempty interiors and F : X — 2 and G: X — 2% are
set-valued maps with nonempty values.

We consider the following set-valued optimization problem.

(VP) Min F(x)
subjectto G(x) N (—D) # ¢.
The set of feasible solutions of (VP) is
S={xeX:Gx)N(-D)# ¢}

and the image set of S under F is given by F(S) = U,es F (x).
Let Z(Z,Y) be the space of continuous linear operators from Z to ¥ and
Z1(Z,Y) be defined as

ZL(Z,Y)={T e %(Z,Y):T(D)CC}.

The Lagrangian map associated with the set-valued problem (VP), is the set-valued
map L: X x %, (Z,Y) — 2 given as

L(x,T) = F(x) + T(G(x)).

Based on different notions of proper efficiency, the following notions of proper
saddle points have been defined by various authors.
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Definition 6.1. A pair (¥,7) € X x .Z;(Z,Y) is said to be

(1) A proper saddle point of L in terms of Benson proper efficiency [11] if

L()Z,T)ﬂBen{UL(x,T),C}ﬁBenO[ U L(i,T),C}#q),

xeX TeZL (ZY)

where 7 € Ben’[B, C] if —j € Ben[—B, ] for any set B C R?
(ii) A super saddle point [1] of L if

L(f,T)ﬂSE{UL(x,T),C}ﬁSEO{ U L()E,T),C}#qb,

xeX TeZ, (ZY)
where y € SE°[B,C] if —y € SE[—B, (] for any set B C R?

We now introduce the notion of proximal proper saddle point for the Lagrangian
map L(x,T). We assume throughout that for each fixed T € £, (Z,Y), the set
UrexL(x,T) is aC-closed setin Y and for each fixed x € X, the set Urc o, (7,y)L(x, T)
is —C-closed in Y.

Definition 6.2. A pair (¥,T) € X x.%, (Z,Y) is said to be a proximal proper saddle
point of L if

L()E,T)ﬂPr[UL(x,T),C}ﬂPrO[ U LET).C|#9¢.

xeX TeZL . (ZY)

The relations analogous to those presented in Figure 6.1 also hold for the corres-
ponding proper saddle points. The following example illustrates this fact.

Example 6.3.Let X =R, Y = R’, Z=R, C= Ri, and D = Ry. Define F :
X —2Y by
{(2x,1)} if x<0
F(x) =< {(0,0)} if x=0
{(0,6):0<r<x} if x>0,
and G : X — 2% by G(x) = {x}. The Lagrangian L : X x .Z,(Z,Y) — 2 is given
by L(x,T) = F(x)+ T(G(x)) where T € Z,(Z,Y) is of the form T (x) = (ax, Bx).
As T € £, (Z,Y) therefore o« > 0, > 0. It can be seen that (X,T) is a proximal

proper saddle point for ¥ = 0,7 (x) = (x,0). However, it can be seen that (x,7) is
not a proper saddle point in the sense of Benson proper efficiency as

(0,0) ¢ Ben{ U L(x,T),C}

xeX
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It is also evident that (%, T) is not a super saddle point as

(0,0)§ZSE{UL(x,T),C]

xeX

In order to obtain characterizations for proximal proper saddle points, we require
the following results.

Lemma 6.2. For (¥,T) € Xx. % (Z,Y) if
y+T(2) € Max[ U Lk T),C} (6.2)
TEZLL(ZY)
forsomey € F(%),Z € G(X) then
J+T(Z) € Max[ U S(T),C}
TeZL(ZY)
where S(T) =3+ T(2).

Proof. As S(T)—y—T(2) € F(x)+ T(G(x)) —
therefore on using (6.2), we have

~<I
|
~i
@
I
=
Rall
=
|
~
|
~
~

(U sm-5-10)nc=10)

TeZ (Z)Y)
and hence the result.

The next two propositions are used to obtain necessary conditions for the
existence of proximal proper saddle points.

Proposition 6.1. For (x,T) € X x L, (Z,Y) if

y‘+T(z)ePr°[ U L(x,T),c} (6.3)
TeZL(ZY)

for some § € F(%),Z € G(X) then 7 € —D,T(Z) = 0 and G(x) C —D.

Proof. A proximal proper maximizer is a maximizer, therefore it follows from
Lemma 6.2 that

U 10- T(z)> NC = {0}.
T€Z:(Z,Y)

Using the separation theorem, it can be established that 7 € —D and G(x) C
—D which follows on the lines of Proposition 6.1 of Li [11].
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‘We now claim that T(Z) = (. If this were not true, we would have
(y,-T(@)>0vVyecC?, (6.4)

where —T(Z) =T(—z) €Cas T € £+ (Z,Y). From (6.3), it follows that there exists
& in C*0 such that

EeNp| | LET)-Cy+T()|.
TeZ (Z)Y)

If we define g : £, (Z,Y) — 2¥ as g(T) = —L(%,T), it can be seen that g(uT; +
(I1-w)h)=ug(h)+(1—u)g(h), for 11, T» € L1 (Z,Y) and u € [0, 1]. Thus g is
a C-convexlike set-valued map and therefore Uzc ¢, (7y)§(T) +C is a convex set in
Y which further implies that Urc ¢, (zy) L(¥,T) — C is a convex set in Y. Now from
Lemma 6.1, we have

(Ey-y-T@E)<ovye |J LE&ET)-C
TeZ. (ZY)

As 5 € Ureg, (zy)L(X,T) —C, we get (§,—T(Z)) < 0 which is a contradiction to
(6.4). Hence T (z) = 0.

€ X x Z(Z,Y), if condition (6.3) of Proposition 6.1

Proposition 6.2. For (x,T)
7 € G(%) and F (%) is —C-closed then y € Pr°[F (%), C].

holds for some y € F (%),
Proof. As
F@-nnce( U Len-5+7@)nc= (o)
TeZ.(2Y)
therefore y € Max [F (x),C]. In view of Proposition 6.1, we have T (Z) = 0 therefore
F(%) = C C Ureg, (zy)L(x,T) — C and hence
Np { U L&) -Cy+ T(z)} NC* C Np(F(%) - C,5)NC*.
TeL (ZY)

Because

rer@ere| U wemcl,
TeZ (ZY)

by definition, we have

w| U Len-cs+T@|nc o

TeZ(Z,Y)

Hence Np(F (%) — C,5) NC*0 # ¢; that is, y € Pr’[F (%), C].
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Remark 6.1. In Example 6.2, it can be seen that for the proximal proper saddle point
(x,T) of L where =0 and T (x) = (x,0), there exists y = (0,0) € F(¥),z=0 € G(¥)
such that 7(z) = 0,G(x) C —R, and

ye Pr[ U L(x,T),C} NP[F (%),C).
xeX

From the above two propositions, we have the following theorem which gives
the necessary conditions for the existence of a proximal proper saddle point.

Theorem 6.1. If (x,T) is a proximal proper saddle point of L and F(X) is
—C-closed, then there exist y € F(X), Z € G(X) such that

(i) T(z) =0.
(ii) G(x) C —D.
(iii) § € Pr[U,ex L(x, T),C] NPr°[F (%), C].

In the next theorem, we establish that conditions (i)—(iii) in Theorem 6.1 are
also sufficient for the existence of proximal proper saddle points for the Lagrangian
map.

Theorem 6.2. If conditions (1)—(iii) of Theorem 6.1 hold for some % € X, y € F(X),
7€ G(x),and T € ZL(Z,Y), where F(x) is —C-closed, then (x,T) is a proximal
proper saddle point of L.

Proof. From condition (i), it is obvious that
y=y+T(z) € L(x,T). (6.5)
On using condition (ii), we have

U Len=r®+ |J TGK)CFE-C. (6.6)
TeZL(Z,Y) TEL4(Z,Y)

As y € Max [F(%),C], it follows that
y € Max [ U L@, T),C} .
TeZ (ZY)
Again from (6.2) and Lemma 6.1, it is obvious that
Np(F (%) —C.,5) € Np [ U L&E7)- C,y}
TeZ (ZY)

which implies that

ye Pro{ U L& T),C}

TeZ:(Z,Y)
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as € Pr[F(%),C]. From Theorem 6.1, condition (iii), and the above relation, it
)

follows that (¥,7') is a proximal proper saddle point of L.

6.5 Optimality Criteria in Terms of Proximal Proper Efficient
Saddle Point

We first introduce the concept of proper efficiency in terms of proximal normal cone
for the problem (VP).

Definition 6.3. A point X € S is called a proximal proper minimal solution of (VP),
if F(X) NPr[F(S),C] # ¢ where F(S) is C-closed.

Definition 6.4. A point (¥,y) is said to be a proximal proper minimizer of (VP) if
¥ € F(X) NPr[F(S),C] where F(S) is C-closed.

The next theorem gives the sufficient optimality criteria for proximal proper
efficiency of (VP).

Theorem 6.3. If (x,T) is a proximal proper saddle point of L and F(x) and F(S)
are —C-closed and C-closed sets, respectively, then X is a proximal proper minimal
solution of (VP).

Proof. From Theorem 6.1, we have 7 € G(¥) C —D which implies ¥ is a feasible
solution of (VP). Again from Theorem 6.1, we have 0 € T (G(x)), which implies

F(S)-yCJFX)+T(Gx)—y< |JLxT) -5 (6.7)

xeS xeX

From condition (iii) of Theorem 6.1, it follows that y € Min[U,cx L(x,T'),C] which
along with the above relation yields § € Min[F (S),C]. Again from condition (iii) of
Theorem 6.1, we have

NP[U L(x,T)JrCJ] N(=C) # ¢.

xeX

Now from (6.7) and Lemma 6.1, it follows that & € Np(F(S) + C,y) for some
& € —C*0. Therefore j € Pr[F(S),C] and hence y is a proximal proper minimal
solution of (VP).

Remark 6.2. In Example 6.3, the feasible set is S = —Ry and (0,0) € F(X) N
Pr[F(S),C]. Thus X = 0 is a proximal proper minimal solution of (VP).

We say that (VP) satisfies the generalized Slater’s constraint qualification if there
exists x’ such that G(x') N (—intD) # ¢. We recall that a set-valued map F : A —
2Y A C X, is said to be C-convex on A, if A is a convex set and for all x, u € A,
YEF(x),veF(u),and A € (0,1),
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(1—=A)pv+Aye F(1—A)u+Ax)+C,

where C C Y is a closed convex pointed cone. Also F is said to be C-convexlike on
Aifforallx,u € A,y € F(x),v € F(u),and A € (0,1),

(I=A)w+Aye F(A)+C.

It is obvious that F' is C-convex if and only if epi F is a convex set and that F' is
C-convexlike if and only is F(A) 4 C is a convex set. The following lemma is the
alternative theorem that has been proved in [10] for a more general class of
set-valued maps, namely C-semilocally convexlike set-valued maps. Every
C-semilocally convexlike map is C-convexlike, therefore the following is a particular
case of Theorem 4.1 in [10].

Lemma 6.3. If the map F is a C-convexlike map on X such that F(X) is C-closed,
then exactly one of the following systems is consistent.

(i) 3x € X,F(x) N (—intC) # ¢.
(ii) 3 € C*\ {0}, Vye F(X),(p,y) > 0.

We now have the necessary optimality criteria under the generalized Slater’s
constraint qualification and cone convexlike assumptions.

Theorem 6.4. Let (X,y) be a proximal proper minimizer of (VP) such that F () is
—C-closed and the following conditions hold.

(i) F is C-convexlike on S and (F,G) is (C x D)-convexlike on X.
(ii) (VP) satisfies the generalized Slater’s constraint qualification.
(iii) G(¥) C —D, y € Pr’[F (%), C].

Then there exists T € £, (Z,Y) such that (%,T) is a proximal proper saddle point
of L.

Proof. Because (*,y) is a proximal proper minimizer of (VP) y € F (%) NPr[F (S),C].
Thus there exists & € —C*0 such that & € Np(F(S) + C,7). Because F is
C-convexlike on S, the set F(S) 4 C is convex and hence by Lemma 6.1, we have
&V =3)<0Vy €F(S)+C.

F(S) C F(S) +C, thus it follows that

(£, =3) <0VY €F(S).
Define wv = —&; then v € ¢’ and

(v, =5) 2 0Vy €F(S).
Proceeding on the lines of Theorem 5.1 of Li [11], it can be seen that

(v,y =5) >0Vy e F(x) + T(G(x)) Vx € X. (6.8)
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‘We now claim that
je Min[ U L(x,T),C} .
xeX

Otherwise there exists d # 0 such that

de ( UL T) )7) N(-C);

xeX

that is, there exists y € F(x) + T(G(x)) for some x € X such that d =y — §.
As v € C*°, we have (y,d) < 0 which implies (y,y —¥) < 0, a contradiction to
(6.8). Thus

7 € Min LLEJXL()C,T),C} .

As (F,G) is (Cx D)-convexlike on X, the set-valued map F + T (G) is C-convexlike
onX. Thus F(X)+T(G(X))+Cis aconvex set; that s, | J,cx L(x,T) +Cis a convex
set. As (—y,c) <0 for every ¢ € C, from (6.8), it follows that

(—y.y -9 <ovye|JLxT)+C.
xeX
Therefore by Lemma 6.1, we have

éz—l//ENp[UL(x,T)—&-C,y}

xeX

As & € —C*9, it follows that

je Pr[ U L(x,T),C} .

xeX

Hence by Theorem 6.2, we conclude that (¥,7) is a proximal proper saddle
point of L.

Remark 6.3. The following example illustrates that the condition of cone convex-
likeness made in Theorem 6.4 cannot be relaxed.

Example 6.4. LetX =R,Y =R?>,Z=R,C=R%, D =R,. Define F : X — 2" by

{(x. 1)} if x<0
Fx)={(x,0):—x<tr<x} if 0<x<1
{(-1,0):t >0} if x>1,

and G : X — 2% by G(x) = {x}. For ¥ = 0,5 = (0,0), (%,y) is a proximal proper
minimizer of (VP) as j € Pr[F(S),C]. Clearly, (VP) satisfies generalized Slater’s
constraint qualification, G(X) C —D and 5 € Pr°[F(%),C]. However, F is not
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C-convexlike on S as F(S) 4 C is not a convex set. We now show that there does not
existany T € %, (Z,Y) such that (¥, T) is a proximal proper saddle point of L. Every
linear continuous operator T € ., (Z,Y) is from T (x) = (ax,Bx), (e, B) € R?
and for T € £, (Z,Y),T(D) C C, therefore (o, ) € R%. For T € £, (Z,Y), the
Lagrangian is defined as

{(x4+ox, 14+ Bx)} if x<0
Lx,T) =< {(x+oax,t+Bx): —x<r<x} if 0<x<1
{(=t+ox,Bx): 1 >0} if x> 1.

Here

Pro{ U L(X,T),C}L(X,T){y}.

TeZ(ZY)
Next, we show
y¢ Pr[ U L(x,T),y‘];
xeX
that is,
me| ULy +es] n-c) =
xeX
forany T € £, (Z,Y). If B =0and o > 0 in T'(x) then (—r+2a,0) € L(2,T) C
Urex L(x,T) for any ¢ > 0 which implies that no vector in —c* is in
Np[U,ex L(x,T)+C,3]. If B >0 and o > 0 in T (x) then

(—(1+a)/B,0) e L(-1/B,T) C |J L(x,T)

xeX

which again implies that no vector in —C*® is in Np|[U,ex L(x,T) + C,¥]|. Hence
(x,T) is not a proximal proper saddle point for any T € .2, (Z,Y).

6.6 Conclusions

The concept of proximal proper saddle point is used to obtain an optimality criterion
for a constrained set-valued optimization problem. Various notions of saddle points
have been studied in the literature ([1, 11]). The independence of proximal proper
efficiency and hence proximal saddle points with other saddle points makes its study
significant and worthwhile. The observation is further enhanced by the fact that
proper efficient points that cannot be characterized by other notions of saddle points
([1, 11]), have a characterization in terms of proximal proper saddle point.
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Chapter 7

Metric Regularity and Optimality Conditions in
Nonsmooth Optimization

Anulekha Dhara and Aparna Mehra

Abstract The concept of metric regularity and its role in deriving the optimality
conditions for optimization problems is not new. This chapter presents the notion
of metric regularity and explores the relationship between a modified version of
the well-known basic constraint qualification with that of metric regularity. We also
study its application in obtaining the Karush—-Kuhn—Tucker optimality conditions
for nonsmooth optimization problems with set inclusion and abstract constraints by
converting the constrained problem into an unconstrained problem.

7.1 Introduction

A lot of work has been done in the literature to study optimality conditions, well
known as the Karush—Kuhn-Tucker (KKT) optimality conditions, for nonsmooth
optimization problems. The common approach taken to establish these condi-
tions primarily involves two stages. First deriving the Fritz—John optimality condi-
tions wherein the Lagrange multipliers associated with the subdifferentials of the
objective function and the constraint functions of the problem are not all zeroes.
In turn, it may result in the multiplier being associated with the subdifferential of
the objective function being zero. But in an optimization problem, the objective
function is pivotal and hence the optimality conditions are expected to keep up this
perspective. But the Fritz—John optimality conditions may fail to satisfy this aspect.
In order to ensure that the Lagrange multiplier associated with the subdifferential of
the objective function is nonzero, in the second stage some conditions known as the
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constraint qualification are imposed on the constraints consequently leading to the
KKT optimality conditions.

Although the aforementioned scheme is widely adopted, there is yet another
approach to deriving the KKT optimality condition. The main idea in the latter
is to somehow convert the constrained optimization problem into an appropriate
unconstrained optimization problem and replace the constraint qualification with
the notion of metric regularity. A great deal of work [1, 4, 6-11, 16] has been
reported in the literature with respect to metric regularity and its relationship to
various constraint qualifications and also how it can be used as a tool to derive the
KKT optimality conditions. The metric regularity helps to express the tangential
approximation or the normal cone of the feasible region in terms of the functions
and the sets involved in the constraints. Here, we work along these lines to establish
the KKT optimality conditions for a nonsmooth optimization problem involving set
inclusion and abstract constraints.

This article is organized as follows. Some notations and preliminary results are
quoted in Section 7.2, and Section 7.3 presents certain well-known constraint quali-
fications and studies a relationship between modified basic constraint qualification
and metric regularity. Section 7.4 deals with our primary objective of obtaining the
KKT optimality conditions for a nonsmooth optimization problem via metric regu-
larity. We end this chapter with some concluding remarks in Section 7.5.

7.2 Notations and Preliminaries

Let § € R". We denote the convex hull of S and closure of S by co S and
cl S, respectively. Let Pozn denote the open unit ball in SR and xg + €Bxn be
the open ball of radius & centered at xo € R". For (x1,y1), (x2,y2) € R x R,

((x1,31), (x2,32)) = (x1,%2) + (¥1,)2)-

Let ¢ : R" — R. The domain of ¢ is defined as dom ¢ = {x € R": ¢(x) < +oo}
and its epigraph is given by epi ¢ = {(x,r) € R" x R : ¢(x) < r}. ¢ is said to be
Lipschitz on S C R" with Lipschitz constant K > 0 if

90) o) = Klxi—xf,  Vx,xneSs,

and Lipschitz around xo € R" if there exist Ky, > 0 and a neighborhood .4 (xq) of
Xxo such that

[9(x1) —9(x2)| = Ko llx1 —x2fl,  Vxi,x2 € A (x0).
The distance function, ds : R" — R, to S is defined as
dS(X()) = d()C();S) = inf||x—xo||.
x€eS

ds is a Lipschitz function on R” with Lipschitz constant 1. For a convex set S, ds is a
convex function. Also for a closed set S, xo ¢ S implies dg(xo) > 0, and the infimum
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in the above expression is attained say at x* € S; then x* = P(xo;S), the projection
of xp on S. In particular, for § = {x*},

d(xo;x") = []xo — x|,

the distance between the points xq and x*.
The indicator function, &g : R" — fR, to S is defined as

0, Xo €S
0s(xo) = {Jroo w0 ¢S

Os is a lower semicontinuous function for a closed set S.
Next we present the notion of lower semicontinuity of a multifunction (multi-
valued function) and certain other results which are used in the subsequent sections.
Let G : R" = R™ be a multifunction. The graph of G is defined as

grp G={(x,y) e R"xR":ye€ G(x)}.

G is said to be lower semicontinuous at (xo,yo) € grp G if for any neighborhood
A (o) of yo, there exists a neighborhood .4 (xg) of xy such that

G(x)NA (yo) # 0, Vxe N (x).

Proposition 7.1 (Proposition 1, [8]). G : R" = R" is a lower semicontinuous
multifunction at (xo,y0) € grp G if and only if

lim  d(y;G(x)) =0.
(xy)—(x0.y0)

Proposition_7.2 (Theorem 2.1, [1]). (Ekeland’s Variational Principle) Ler
¢ :R" — R be a lower semicontinuous function with xo € dom ¢ and S C R"
be a closed set. Assume that for € > 0,

o (x0) §i1'61£¢(x)+8.
Then for every A > 0 there exists x; € S such that
d(x33%0) = A,
¢(x2) = ¢(x0),
() S o)+ A 'ed(xxy),  VxeSs.

Proposition 7.3 (Proposition 2.4.3, [2]). Let ¢ : R" — R be Lipschitz on S C R"
with Lipschitz constant K > 0. Assume that ¢ attains a minimum over F C § at
X0 € F. Then, for every K' =2 K, the function ¢ + K'dr attains a minimum over S
at xop.
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Because we aim at working in a nonsmooth scenario, it is natural for us to
talk about the notion of subdifferentiability. In the literature, various types of
subdifferentiability have been discussed. In our present study we use the proximal
and the basic (or limiting) subdifferentials and also a relation of the coderivative
with that of the basic subdifferential. For details on proximal and basic (or limiting)
subdifferentials one may refer to Clarke et al. [3]. The main reason for includ-
ing these subdifferentials in our work is that the concept of metric regularity has
been well studied [9, 10] under generalized subdifferentials and coderivatives such
as approximate subdifferentials, Fréchet subdifferentials, and coderivatives. The
following definitions and results are taken from [3].

Definition 7.1. Let ¢ : " — R and xy € dom ¢. A vector & € R" is called a proxi-
mal subgradient of ¢ at x if and only if there exist ¢ > 0 and & > 0 such that

¢ (x) — ¢ (x0) = (&,x—x0) — O]x — x|, Y x € xg + 6 Bon.

The collection of proximal subgradients of ¢ at xo, called a proximal subdifferential
to ¢ at xo, denoted by dp¢ (xp), is always a convex set. However, it is not necessarily
nonempty and closed/open. Observe that if ¢ is twice differentiable then dp¢ (xo) =
{Vé(x0)}, and if xo ¢ dom ¢ then, dp¢(xy) = 0. Even for xo € dom ¢, dpd(xp)
may turn out to be empty. To move away from such a trivial scenario, we have the
concept of basic or limiting subdifferentials.

Definition 7.2. Let ¢ : 8" — R and xo € dom ¢. The basic or the limiting sub-
differential of ¢ at xg is given by

oLd(xo) = {;}E&ék L& € Ipd(xr), xx —° Xo},

where x; —¢ xo means x; — xo and ¢(x;) — ¢ (xo).

The basic subdifferential is closed but not necessarily convex. From the definition
it is obvious that for a point xo € dom ¢, dpd (xo) C L@ (xo). At points xo ¢ dom ¢,
dLo(xo) = 0. For a locally Lipschitz function, dp¢ (xp) is always nonempty, and for
a convex function it coincides with the convex subdifferential of Rockafellar [14].
Moreover, for a Lipschitz function ¢ on an open convex set S C R" with Lipschitz
constant K > 0, if & € dpd(x) UdL¢(x), then ||&|| < K. In this case, ¢/ co dL(xp)
coincides with de¢ (xp), the Clarke subdifferential [2] of ¢ at x¢. Also, for S C R”
if we take ¢ = J, it leads to the notion of normal cones.

Definition 7.3. A vector & € R" is called proximal normal to S C R" at xy € S if
and only if there exist ¢ > 0 and 6 > 0 such that

(E,x—x0) £ olx — x0||?, Vxe SN (xo+ 0Bmn).

The set of all proximal normals forms a cone called the proximal normal cone to
S at xp and is denoted by Np(xp;S). The proximal normal cone is a convex cone
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that may neither be open nor closed and may sometimes reduce to a trivial scenario
containing only the zero element.

Definition 7.4. The basic or the limiting normal cone to S C R" at xg € S is
given by
Ni(x03S) = {,}im & : & € Np(wsS), 1 —° xo} :

N

where x;, —° xo means the sequence {x;} C S converges to x € S.

The basic normal cone is a closed cone but unlike the proximal normal cone
it may not be convex. Moreover, at any boundary point of the set, the basic
normal cone is always nontrivial. In terms of the indicator function to the set S,
Np(x0;S) = dpds(xo) and N (xp;S) = d.0s(x0). The proximal subdifferential can
also be expressed in terms of the proximal normal cone as

dp9(x0) = {& € M1 (§,—1) € Np((x0,9(x0));epi @)}

Similarly, the basic subdifferential is expressed in terms of the basic normal cone as

dLd(x0) = {G € R": (5, —1) € Ne((x0, ¢ (x0));epi 9)}-

Observe that for o > 0 such that (&, —ot) € Np((xo,¢(x0));epi ¢) implies & /a €
dpd(xp). Below we state a result relating the normal cones to the subdifferentials of
the distance function.

Proposition 7.4. Let S C R" be a closed set. Then for xg € S,
apds()q)) = NP(X();S) N %mn and 8Ld5(x0) = NL()C();S) ﬂ«%g{n,

NP(X();S) = U )yapds()q)) and NL()C();S) = U laLdS(X()),
A=0 A20

and for xo ¢ S, the projection of xo on S, P(xo;S) = {x*} and

dpds(xo) = drds(xo) = { o }

[0 — x|
and apds(xO) C Np(x*;S).

Observe that for xo ¢ S, if & € dpds(xp) U drds(xg) then ||&|| = 1. Because we
desire to obtain the KKT optimality conditions, we require the sum and the chain (or
composition) rules. Here, we state the calculus rules for the basic subdifferentials.
For their detailed proofs one may refer to [3].

Theorem 7.1 (Sum Rule). If ¢; : R" — R, i = 1,2 with one of the functions as
Lipschitz, then
dL(91 + 92)(x0) € ILP1(x0) + ILd2(x0).
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Theorem 7.2 (Chain rule). Let ¢(x) = (hog)(x), where g : R" — R™ is Lipschitz
around xo and h : R"™ — R is Lipschitz around g(xo), then

L9 (x0) < {dL(ug)(xo) : 4 € dLh(g(x0))}-

We end this section with the notion of coderivative and its relation to the basic
subdifferential taken from Rockafellar and Wets [15].

Definition 7.5. Let ¢ : 'R" — R™. The coderivative of ¢ at xy € R" is the multi-
valued function D*@(xg) : R =3 R" defined by

EeD(xo)() <« (§,—u)€NL((x0,9(x0));87P ¢)-

If ¢ is continuous at x, then for any u € R,

D¢ (x0) (1) = dL(119)(x0)-

7.3 Constraint Qualifications and Metric Regularity

The main objective of this work is to establish the KKT optimality conditions for
optimization problem (P),
inf f(x)
subject to g(x) € D
xeC,
where f: R" — PR and g : R" — R are, respectively, Lipschitz and continuous on
R, and D CR™ and C C R”" are closed sets. Let the feasible set be denoted by F' =
{x e R":g(x) € D, x € C} which is closed. As already discussed in the beginning,
to develop the KKT optimality conditions for (P), one has to invoke appropriate

constraint qualification. Some of the well-known constraint qualifications corres-
ponding to F that are studied in the literature are as follows.

(SCQ)  Slater constraint qualification: There exists xo € C such that g(xo) € int D.
(BCQ) Basic constraint qualification at xo € F: If

pENL(g(x0);D),  0€d(ug)(xo) +Ni(x;C) = p =0.

(RCQ) Robinson’s constraint qualification at xo € F: For g is differentiable at x
and continuous on C if

0 € int{Vg(xo)(C —x0) — (D —g(x0))}-

For the next two constraint qualifications, let D = R™, C = R", and g be differ-
entiable. Denote the active index set by I(xg) = {i € {1,...,m} : gi(xo) = 0}.
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(MFCQ) Mangasarian Fromovitz constraint qualification: There exists d € R"
such that Vg;(xo)d <0, i € I(xo).
(ACQ) Abadie constraint qualification: For convex function g;, i = 1,...,m, if

T(xp;F)={d € R": Vgi(x0)d £0, i €(x0)},
where T (xo; F) is the convex tangent cone.

In the differentiable convex scenario, the relation between the above constraint
qualifications [5] is

(SC0)/(RCQ) < (MFCQ) & (BCQ) & (ACQ).

It is well known that the notion of metric regularity is closely related to these
constraint qualifications under particular scenarios. Work has been reported in
[11, 16] relating the above constraint qualifications with metric regularity for
inequality constraints. To know more about it we move on to define the concept
of metric regularity for (P).

Definition 7.6 (Definition 2.1, [9]). Let xo € § C R" and G : R" = R™ be a multi-
valued function with (xo,y) € grp G. G is said to be metrically regular at (xo,yo)
with respect to S if there exist ¥ = 0 and € > 0 such that

d(x:SNG™'(y)) £ yd(y:G(x))

forallx € SN (xo+&PBpn) and y € yg+ €Bym. If S =R", G is said to be metrically
regular at (xp,yo) € grp G.

Metric regularity has been characterized in terms of Lipschitz conditions and
open coverings in [12, 13, 15]. Here we study the relation between the modified
basic constraint qualification and metric regularity by working along the lines of
Jourani and Thibault (Theorem 2.3, [9]) for which we need the following result.
The proof is along the lines of Theorem 3.2 established by Borwein [1].

Lemma 7.1. Let G : R" = R™ be lower semicontinuous at (xo,yo) € grp G. If G
is not metrically regular at (xo,yo) with respect to S, then there exist sequences
X — X0, Y — Yo and oy | O such that

(i) x; € S.
(ii) yi & G(xi).
(iii) d(yi; G(xx)) = d(yi; G(x)) + oyd (x;x¢ ), VX € S.

Proof. Obviously, the hypothesis implies there exist sequences ¢, — xg and y, — Yo
such that ¢; € S and

d(ce:SNG () > kd (v G(ew)-
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Define the function ¢ (x) = d(yx; G(x)) on S. Observe that for every x € S, ¢ (x) =0
and thus
o () S pe(x)+&,  VxeS

for x* = ¢ and & = ¢(x*). Applying Ekeland’s variational principle
(Proposition 7.2), for Ax = min{ke;, /& }, and writing o = A, L., there exists
X € S such that

d(xx™) = g,
O (k) = P (x¥),
O (xk) < Pr(x) + ond (x3x1), VxeSs.

By lower semicontinuity of G at (xg,yo) and Proposition 7.1,

& = Pr(ck) =d(yi:G(ck)) L 0 as k — oo

This implies A; | 0, and hence oy | 0. Therefore, we have constructed sequences
X — X0, Yk — Yo, and og | O such that x; € S and

d(yi;G(w)) = d(yi;G(x)) + oud(x:x),  VxE€ES,
leading to (iii). Furthermore, because d (x;cr) < A, we have
d(xser) < kd (v Gler) < d(eeSNG™H(w))

which implies x; ¢ S N G~ !(y;). But x; € S, consequently y; & G(x;), thus proving
the result. o

Observe that if the multivalued function G : R" = R™ is defined as
G(x) = —g(x) + D, then
G '(y) ={reR":y+g(x) €D},

and hence G~1(0) = g~ (D). We say (P) is metrically regular at xy with respect
to C and D if and only if G is metrically regular at (xo,0) with respect to C. It is
important to note that d(y; G(x)) = d(y + g(x); D).

Theorem 7.3. Let C C R" and D C R™ be closed and g : R" — SR™ be Lipschitz
around xo with Lipschitz constant Ky, > 0. Suppose that the modified basic con-

straint qualification (BCQ), that is,

1 € drdp(g(x0)), 0 € I (ug)(xo) + K'dpdc(xo) = p =0,

where K' 2 Ky, holds at xo. Then (P) is metrically regular at xo with respect to C
and D.

Proof. Suppose (P) is not metrically regular at xy with respect to C and D, which
implies G is not metrically regular at (x,0) with respect to C. Therefore, by
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Lemma 7.1, there exist sequences x; — xo, yx — 0, and o4 | 0 such that (i)—(iii) hold.
Clearly (i) and (iii) imply that x; minimizes the function d(yx; G(x)) + ogd (x;x%)
over C. By Proposition 7.3, x; minimizes the function ¢; over $R”* where

O (x) = d(yis G(x)) + (K’ + 04)d (x;C) + oy (x5 x.)
= d(yx+8(x); D) + (K'+ 04)d (x;C) + 0ogd (x; 1),

where K’ = max{1, Ky, }. Consequently 0 € d7.¢(xx), which in view of the sum rule
(Theorem 7.1) along with the chain rule (Theorem 7.2) implies

(IS U AL (ug)(xk) + (K'+ ou)dpde (xi) + o PBonr,
uedrdp (h(xe,yi))

where /1(x,y) = y+ g(x). Hence, there exist t € dpdp (h(xk,yk)), & € I (eg) (xk)s
&2 € drdc(xy), and by € Bern such that

0=E& + (K'+ o) & + oyeby.

Because g is Lipschitz around x¢, and 4 and (dp o h) are Lipschitz around (xo,0) and
h(xo,y0), respectively, by virtue of boundedness of the limiting subdifferentials for
Lipschitz functions, the sequences above have convergent subsequences. Without
loss of generality, let ty — u € drdp(g(xo)), & — &' € dr(ug)(xo), and & —
&2 € drdc(xo). Therefore, as k — oo, ¢ | 0 and hence

0=¢'+K'E%

i ¢ G(xi), hence h(xg,yi) = yx + g(xx) ¢ D. By Proposition 7.4, for every &,
||t l] = 1, where py € drdp(h(xg,yx)). Therefore, ||| = 1; that is, u # 0, thereby
contradicting the assumption (BCQ). O

The following result is an immediate consequence of the above theorem by taking
g(x) =xin (P).
Corollary 7.1. Let xo € CN D. Suppose that

(*ade(xO)) n 8LdD(x0) = {0}

Then the multivalued function G(x) = —x + D is metrically regular at (xo,0) with
respect to C.

From Theorem 7.3, we found that (l@) acts as a sufficient condition for metric
regularity of (P). We present below a simple example to show that the converse in
general may fail to hold.

Example7.1.Let C =R, D =R_ C R, and g(x) = |x|. Then F = {x € R :
|x| <0} = {0}. Because g is a convex function, dpg(0) = dg(0) = [—1,1]. Observe
that neither (BCQ) nor (BCQ) is satisfied but the condition of metric regularity holds
at (0,0) for y=1and € > 0.
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It is important to note that g is a nonsmooth function in the above example. But
for the case of differentiable function g, we state a result from Rockafellar and Wets
[15] that characterizes a particular form of metric regularity in terms of (BCQ). For
this purpose we may take note of the following.

If we take yo = 0 and y = 0 in the definition of metric regularity, the inequality
becomes

d(x;,CNG1(0)) < yd(0;G(x))

for all x € CN (xg + €%Bgn) which can be rewritten as
d(x;,CNG1(0)) £ ¥(d(0;G(x)) +d(x;C))

for all x € xp + €PBmn. In particular, taking G(x) = —g(x) + D, we have
d(x:CNg~ (D)) £ Yd(g(x);D) +d(x:C))

for all x € xg + €PBsxn.

Theorem 7.4. Let C =R", D CR"™ be closed and g : R* — R™ be differentiable.
Fory 2 0, consider the following metric regularity of (P)

d(x:g” (D)) < yd(g(x); D)

for all x € xy + €PBszn (a particular case of metric regularity with yo =y =0). Then
the necessary and sufficient condition for this metric regularity to hold at x is that

U € Ni(g(x0); D), uVg(xo) =0=u=0.

The latter relation is clearly the (BCQ).

7.4 Optimality Conditions

In this section we establish the optimality condition for problem (P) via metric
regularity. While establishing the optimality conditions, we invoke the calculus
rules of the basic subdifferentials. Recall from Section 7.2 that for the chain rule
to hold we require Lipschitz conditions on both g as well as &. In the theorem to
follow, we make use of metric regularity to derive the chain rule for the basic sub-
differential without imposing any Lipschitz condition on either g or A. The proof
can be worked out along the lines of Theorem 3.1 of [9] and is presented here for
completeness.

Theorem 7.5. Let ¢ (x) = (hog)(x) where g : R" — R™ is continuous around x
and h: R™ — R is lower semicontinuous around g(xq) with xo € dom ¢. Consider
the function G : R" x R" x R — R™ defined as G(x,y,r) = g(x) —y and let
D = R" X epi h. Assume that the multivalued function H(x,y,r) = —(x,y,r) + D is
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metrically regular at (xo,g(xo),h(g(x0)),0) = (x0,Y0,70,0) with respect to G~1(0).

Then
d(hog)(xo) S U du(ug)(xo).
HEILR(y0)

Proof. Define ¢(x) = (hog)(x) = inf{r : G(x,y,r) =0, (x,y,r) € D}. Let & €
dL(xo). By Definition 7.2, there exist sequences x; —? xo and & € dp@(x;) such
that & — &. As & € dp¢(xz), there exist o; > 0 and & > 0,

O(x) — 9 () = (Exox—xp) — ollx—xel|?, V€ xp+ 5B,

which implies x; is a local minimizer of the function ¢ (x) — (&, x) + o |jx — x|
Therefore, (x;,g(xx),h(g(xx))) is a local minimizer of the function

r—{(&x) + ol (v, 7) = (o, g (i) (8 (i) |17

on G~'(0) N D. Observe that this function is Lipschitz with Lipschitz constant
K =1+ &/ + 20y > 0. By Proposition 7.3 (x,g(xx),h(g(xx))) is a local mini-
mizer of the function

r— (&) + 0l (v, 7) = (e, 8 (), (g () ) IP + Kd((x,3,7): G~ (0) N D).

Because & — &, there exists M > 0 such that ||&|| £ M. Also by assumption, H
is metrically regular at (xo,g(x0),4(g(x0)),0) with respect to G~ (0) which implies
there exist some constant y 2 0 such that (x;, g(xx), 2(g(xx))) minimizes the function

r—(&x) + 0| (6,3, 7) — (o, g (i) (g (i) |17
+7(d((x,y,r):D) +d((x,y,r):G~'(0))).

Observe that G~'(0) = grp g x R. Also by hypothesis, D = R x epi h. Thus
(xx,g(xx), h(g(xy))) is a local minimizer of the function

r—{(&x) + ol (v, 7) = (o, g (i) (8 (i) |17
+y(d((y,7);epi h) +d((x,y);8rp 8))-
Therefore,
Y(d((y,r)sepi h) +d((x,y);8rp 8)) = (&, 0, —1), (x,y,7) — (xx, g(xx), (g (xx))))
— okl (x, 3, 7) — (e, 8 () (g () ||

for every (x,y,7) € (xk,8(xx),h(g(xk))) + Ok Bsnwmmxsz. By Definition 7.1,

(&0, —1) € Ip(1(d((g(xe), h(g(xc)))sepi h) +d((xr, 8(xk)):87p 8)))-
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Applying Definition 7.2,
(£,0.—1) €aL(1(d((y0, ro)sepi h) +d((x0,70): 8P 8)))
€ {0} x Ni((v0,70):epi h) + Ni((x0,y0):87p 8) x {0}

This containment implies there exist (iy,71) € Nr.((yo,70);epi h) and (&, 1) €
Ni((x0,0);grp g) such that

(5707_1) = (O,‘I.Ll,’[]) + (52;“270)

thereby leading to (u,—1) € N.((yo,70);epi h) and (§,—) € Ni((x0,¥0):87P &)
which, by relation between the subdifferential and normal cone along with
Definition 7.5, implies

u € deh(g(xo)) and ¢ € D glxo) (1) = IL(ug)(xo)-
Hence proving the requisite result. O

Using this result, we can obtain the optimality conditions for (P) in terms of
the basic subdifferentials and basic normal cone but for that we need the follow-
ing corollary which can be worked out on the lines of Corollary 3.4 in [9] using
Definition 7.5.

Corollary 7.2. Let xo € F = g~'(D) N C. Assume that the multivalued function
G(x) = —g(x) + D is metrically regular at (xo,0) with respect to C. Then

8L5F(X()) - U aL(,LLg)(X()) +NL(X();C).
HENL(g(x0):D)

Next we present the KKT optimality conditions for (P) using the notion of metric
regularity.

Theorem 7.6. Let xy € R" be an optimal solution of (P). Assume that (P) is metri-
cally regular at xy with respect to C and D. Then there exist L € Ni(g(x0); D) such
that

0 € dLf(xo) +dL(1g)(x0) + Ni(x0;C).

Proof. Observe that xq is an optimal solution of the problem

nf (f +Kydr) (%),

where Ky > 0 is the Lipschitz constant of f. Then by the optimality condition

0e aL(f+deF)(xO)
C drf(x0) + Ni(x0;F) = drf (x0) + ILOF (x0),



7 Metric Regularity and Optimality Conditions in Nonsmooth Optimization 113

where the feasible set F = g~!(D) N C. Therefore by Corollary 7.2, there exist
U € drop(g(xg)) = NL(g()C());D) such that

0 € dof(x0) + dL(kg) (x0) + Ni(x0;C)
as desired. ad
We end this section by presenting an example.
Example 7.2. Consider the following optimization problem

minx
subject to x| < 0.

Here the necessary optimality condition holds at the point xo = 0. Observe that the
notion of metric regularity is satisfied at xp as shown in Example 7.1. Now if the
constraint x| < 0 is replaced by x> < 0, xo = 0 remains the optimal point. However,
in this case the necessary optimality condition does not hold inasmuch as metrical
regularity fails at xg.

7.5 Conclusions

In this work we have attempted to present the optimality conditions from a dif-
ferent perspective wherein the concept of metric regularity acts as the main tool.
As seen, under the assumption of metric regularity, one can obtain the KKT
optimality conditions for optimization problems without going into the intricacy of
first establishing the Fritz—John optimality conditions. For this aim, herein problem
(P) is converted into an unconstrained problem using the distance function and
then the resultant unconstrained problem is dealt with directly. We conclude the
chapter with an important observation. As discussed in Section 7.3, there are var-
ious constraint qualifications implying metric regularity under different scenarios.
It has been observed that ACQ is the most general constraint qualification under a
convex differentiability setting, and in the case where the constraints are in the form
of inequalities, ACQ is equivalent to metric regularity [11]. Also RCQ is related to
metric regularity under differentiability. In our study we have concentrated only on
the relationship between the (@) and metric regularity. It would indeed be inter-
esting to look into exploring the relationships of the other constraint qualifications
with metric regularity under a more generalized subdifferentiability setting.

References

1. Borwein, J.M.: Stability and regularity points of inequality systems. J. Optim. Theory Appl.
48, 9-52 (1986).



114

10.
11.
12.
13.
14.

15.
16.

Anulekha Dhara and Aparna Mehra

Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983).
Clake, EH., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth analysis and control
theory. In: Axler, S., Gehring, EW., Ribet, K.A. (eds.) Graduate Texts in Mathematics, 178.
Springer, New York (1998).

Cominetti, R.: Metric regularity, tangent sets and second-order optimality conditions. Appl.
Math. Optim. 21, 265-287 (1990).

Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms (I).
Springer-Verlag, New York (1993).

Jourani, A.: Metric regularity and second-order necessary optimality conditions for minimi-
zation problems under inclusion constraints. J. Optim. Theory Appl. 81, 97-120 (1994).
Jourani, A.: Constraint qualifications and Lagrange multipliers in nondifferentiable program-
ming problems. J. Optim. Theory Appl. 81, 533-548 (1994).

Jourani, A., Thibault, L.: Approximate subdifferential and metric regularity: the finite dimen-
sional case. Math. Program. 47, 203-218 (1990).

Jourani, A., Thibault, L.: Metric regularity and subdifferential calculus in Banach spaces.
Set-Valued Anal. 3, 87-100 (1995).

Jourani, A., Thibault, L.: Metric regularity for strongly compactly Lipschitzian mappings.
Nonlinear Anal. 24, 229-240 (1995).

Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable
convex inequalities. SIAM J. Optim. 7, 966978 (1997).

Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and
Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340, 1-35 (1993).
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory.
Springer-Verlag, Berlin (2006).

Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970).
Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer-Verlag, Berlin (1998).
Zheng, X.Y., Ng, K.F.: Metric regularity and constraint qualifications for convex inequalities
on Banach spaces. SIAM J. Optim. 14, 757-772 (2004).



Chapter 8

An Application of the Modified Subgradient
Method for Solving Fuzzy Linear Fractional
Programming Problem

Pankaj Gupta and Mukesh Kumar Mehlawat

Abstract We present an application of the “modified subgradient method” to solve a
fuzzy linear fractional programming problem. We concentrate on a linear fractional
programming problem in which both the right-hand side and the technological
coefficients are fuzzy numbers. We compare efficiency of the proposed solution
method with the well-known “fuzzy decisive set method” in terms of the number of
iterations taken to reach the optimal solution. A numerical illustration is provided
for the purpose.

8.1 Introduction

Mathematical programming is used extensively in facilitating managerial decisions
in a large number of domains. An important class of mathematical programming
problems is fractional programming which has attracted the attention of many
researchers in the past. For the state of the art in the theory, methods, and applica-
tions in fractional programming, we refer the reader to Stancu-Minasian [12]. The
main reason for interest in fractional programming stems from the fact that mathe-
matical programming models could better fit real-world problems if we consider
optimization of the ratio between the physical and/or economic quantities.

In classical problems of mathematical programming generally, and in linear frac-
tional programming in particular, the coefficients of the problem are assumed to
be exactly known. However, in practice this assumption is seldom satisfied by the
great majority of real-life problems. The modeling of input data inaccuracy can be
made by means of fuzzy set theory. The concept of decision making in a fuzzy
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environment was first proposed by Bellman and Zadeh [1]. Subsequently, Tanaka,
Okuda, and Asai [15] made use of this concept in mathematical programming. The
use of fuzzy set theory concepts in fractional programming has been discussed, for
example, in the works of Chakraborty and Gupta [2], Dutta, Rao, and Tiwari [3],
and Stancu-Minasian and Pop [13].

Li and Chen [5] presented a fuzzy linear fractional programming model with
fuzzy coefficients. Sakawa and Kato [8] formulated multiple objective linear frac-
tional programming problems (MOLFPP) with block angular structure involving
fuzzy numbers and through the introduction of extended Pareto optimality concepts,
an interactive fuzzy satisfying method was presented. In another paper, Sakawa
and Kato [9] presented an interactive satisfying method for structured MOLFPP
with fuzzy numbers in the objective functions and in the constraints. The authors
changed the fuzzy problem into a deterministic one using fuzzy intervals. Sakawa
and Nishizaki [10] presented an interactive method for solving two-level linear
fractional programming problems with fuzzy parameters. Sakawa, Nishizaki, and
Hitaka [11] developed an interactive fuzzy programming method for multilevel 0—1
programming problems with fuzzy parameters through genetic algorithms. Mehra,
Chandra, and Bector [6] proposed the concepts of an (o, 3)-acceptable optimal
solution and (a, f3)-acceptable optimal value of a fuzzy linear fractional program-
ming problem with fuzzy coefficients, and developed a method to compute them.
Recently, Pop and Stancu-Minasian [14] proposed a method of solving the fully
fuzzified linear fractional programming problems, where all the parameters and vari-
ables are triangular fuzzy numbers.

The purpose of this chapter is to provide an efficient solution methodology to
solve a linear fractional programming problem (LFPP) in which both the right-hand
side and the technological coefficients are fuzzy numbers with linear membership
functions. The fuzzy problem is first converted into an equivalent crisp problem
which is a max—min problem of finding a solution that satisfies the constraints and
the goal with the maximum degree. The idea for this approach is due to Bellman and
Zadeh [1]. The crisp problem, obtained in such a manner, can be nonlinear (even
nonconvex), where the nonlinearity arises in constraints. We present an application
of the “modified subgradient method” [4] by proposing a similar solution technique
for the LFPP. We compare the proposed solution methodology with the fuzzy
decisive set method [7]. With the help of a numerical illustration, we show that
the proposed method is more effective from the point of view of the number of
iterations required for obtaining the desired compromise solution.

This chapter is organized as follows. In Section 8.2, we discuss the LFPP in
which both the right-hand side and the technological coefficients are fuzzy numbers.
Application of modified subgradient method to fuzzy linear fractional programming
problem (FLFPP) is presented in Section 8.3. In Section 8.4, the modified subgradi-
ent method and fuzzy decisive set method are used to solve numerical illustrations.
This section also contains a discussion on the effectiveness of the proposed method
over the fuzzy decisive set method. Finally in Section 8.5, we submit our concluding
remarks.
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8.2 LFPP with Fuzzy Technological Coefficients and Fuzzy
Right-Hand Side Numbers

In this section, we consider the LFPP with fuzzy technological coefficients and
fuzzy right-hand side numbers.

n
Z Cjxj+co

(P) max z= J;
Y dij‘-i-d()

j=1

n
subject to Zaijxj < b, 1<i<m,
j=1

szoa 1§]§I’l,

,,,,, n and do,(dj)j=12..n are the coefficients of the linear
fractional objective function.
~ Nj=12,.., >
(@j)isy 5 and (bi)iz12,.m
are the technological coefficients and the right-hand side of the linear constraints,
respectively. (x j) j=1.2,....n are the decision variables and it is required that at least one
x; > 0. Furthermore, it is assumed that the denominator of the objective function in
(P) is strictly positive for any x; in the feasible region.
Let us define fuzzy numbers g;; and b; with the following linear membership
functions.

1 if x < daij,
[,Lal.j(x)z (a,'j+di<fx)/d,'j if aij§x<aij+dij,

0 if x> a;j+dj,
and
1 if x < b;,
u;i(x): (bi+ pi—x)/pi if b; <x<bi+pi,
0 if x> b;+ pi,

wherex € R, d;j >0fori=1,2,....m;j=1,2,...,n,and p; >0fori=1,2,...,m.
For defuzzification of the problem (P), we first fuzzify its objective function. For
this, we first calculate the lower (z;) and upper (z,,) bounds of the optimal objective
values. The optimal values z; and z,, can be defined by solving the following standard
linear fractional programming problems.
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n
'21 CjXj+co

(P1) 7y =max ',

dixj+dy
=1
n
subject to Z (a,-j +d,'j)xj' < b;, 1 <i<m,
j=1
x; >0, 1<j<n,
n
Y, Cj)Cj+C0
=1
(P2) zp =max ",
dixj+dy
=1
n
subject to z ajjx; < bi+ pi, 1<i<m,
=1
x; >0, 1<j<n,
n
Y cjxj+co
(P3) zz=max ',
Y djxj+d0
=1
n
subject to Z(aijerij)xj < b;+ pi, 1<i<m,
j=1
x; >0, 1<j<n,
and
n
> cjxj+co
j=1
(P4) z4 =max ",
Z djx;+dy
j:
n
subject to Z ajjxj < b;, 1 <i<m,
j=1
x; >0, 1<j<n

Let z; = min(zy,22,23,24) and z, = max(z,22,23,24). The objective function of the
problem (P) takes values between z; and z,, whereas technological coefficients take
values between a;; and a;; +d;; and the right-hand side numbers take values between
b; and b; + p;. Here, it is assumed that the linear fractional crisp problems P1, P2,
P3, and P4 have finite optimal values.
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Then, the fuzzy set of optimal values, G, which is a subset of R" is defined as

n
Z Ccjxj+co
Jj=1

B -2z /(ZM_ZZ)
Y dij‘-i-d()
=1

n
Y, CjXj+co
.o J=1
if Jn <z,
Y djxj+d0

=1

n
Y Cjxj+co

=1

if <7,
> dixj+dy

=

< Zu,

n
IZICij+C0
i j=

1 > .

n =
Z djxj + d()
j=1

(8.1)

The fuzzy set of the ith constraint, C;, which is a subset of R, is defined as

0

(

.

n
ainj) / <2 dijxj+Pi>
Jj=1 Jj=1

n
if b; < Z ajjXxj,
Jj=1
_on
it > ajjx; <b;
=
n
< _Zl(aijer,'j)Xj+pi,
J:

n
if b; > ‘Zl(aij er,'j)xj‘ + pi.
j:
(8.2)

Using the definition of the fuzzy decision proposed by Bellman and Zadeh [1], we

have

Hp (x) = min(lg (x), min(Kc, (x)))-

The optimal fuzzy decision is a solution of the problem

max (41p(x)) = maxmin(jig (x),min(c (x)).

Consequently, the problem (P) reduces to the following optimization problem.

(P5) maxA
subjectto A < ug(x),
A<uc(x), 1<i<m,
xj =0, I<j<n,

0<A<L
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Using (8.1) and (8.2), the problem P5 can be written as

(P6) maxA

n n
subjectto  A(z, —z) <Z djxj+d0> - <Z CjXj +C0>

j=1 j=1

n
Z <zdjx]'+d0> <0,

j=1

n
Za,]—&—ldu xj+Api—b; <0, 1<i<m,
j:

It may be noted that in general the problem P6 is not convex. Therefore the solution
of this problem requires the special approach adopted for solving general nonconvex
optimization problems.

8.3 Modified Subgradient Method to Solve the FLFPP

In this section, we present an application of the modified subgradient method [4]
to solve the FLFPP. The modified subgradient method can be applied for solving a
large class of nonconvex and nonsmooth constrained optimization problems. This
method is based on construction of the dual problem by using a sharp Lagrangian
function and has many advantages [4]. Some of them are the following.

e The zero duality gap property is proved for a sufficiently large class of problems.
e The value of the dual function strictly increases at each iteration.

e The method does not use any penalty parameters.

e The presented method has a natural stopping criterion.

For details of the modified subgradient method, we refer the reader to [4].
We use the following notations.

k is the number of iterations.
(uk, ) is a vector of Lagrange multipliers at the kth iteration.
x* is a minimizer of the Lagrange function L(x,u*, c¥).

H is the upper bound for the values of the dual function.

For applying the subgradient method to the problem P6, we first formulate it with
equality constraints by using slack variables Py and P;,i = 1,2,...,m. Then, problem
P6 can be written as
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(P7) maxA = —min(—21)

n n
subject to go(x,A,Po) :l(zule) <2 dej+d()> - <2 Cij+C0>

j=1 Jj=1

n
+ z <Zdej+do> +Py=0,

j=1

n
gi(x,A,P) Za,jJr?Ld,J xj+Api—bi+P =0, 1<i<m,

0 P()apiZO; 1§l§m7
0<A<

For this problem, we define the following set

S= {(x,l,P)|x: (xl,...,xn),P: (P(),Pl,...,Pm),
x; <xj <xj,P,P>0,A€[0,1]}.

DS A A

Here, xjfmln{xj, AT X }andxj:max{x;f,x;‘.* ****} where x7,x7",
sokk | kokokk

X0 are the optimal values of x; for the problems Pl P2, P3, and P4,
respectively. It may be pointed out that the lower and upper bounds on x; are
incorporated in order to achieve a faster convergence rate. Also, we take g(x,A,P) =
(£0,81,---,8m)-

Consider the following equivalent form of the problem P7 as the primal problem:

xR

(P7)-1 Minimize P'= min —2A
(x,A,P)ES

subjectto  g(x,A,P) =0.

For the problem P7-1, we introduce the following augmented Lagrangian
function,
L(X,A,P,M,C) =-2 +C||g(X,A,P)|| - MTg()C,l,P),

where (x,A,P) € S,u € R"! and ¢ > 0.

The above-defined augmented Lagrangian is termed sharp Lagrangian because
of the presence of the augmenting function ||g(x,A,P)]|, - || is the norm
function.

The augmented Lagrangian associated with the problem P7 can be written as

L(x, A, P,u,c)

=—A+c
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)7 172

2
n m n
+Z[<Zdej+d()> +P0> JrZ(Z a,J+Ad,j ijrlp, bi+Pz’>
i=1 =1

=

n n n
— Uy <A(Zu—11) <z dej-i-do) — <2 Cij-i-Co) +z <2 dej-‘v-do) +P0>
= =1 =1

m n
*Zui <Z a1]+a«dlj X]+7LP1 bz+Pt>

i=1
Let the following dual function be considered.

H(u,c) = <xin;)r)lgsL(x A,Pu,c)

foru e R™ and ¢ > 0.
We now consider the following dual problem to the problem P7-1,

(DP7) —1 Maximize P" = max  H(u,c).
(ueRM+1 ¢>0)

It can be shown on similar lines to those in [4] that under the assumptions of
continuity of g(x,A,P) and that S is compact and a feasible solution exists to P7-1,
we have Minimize P’ = Maximize P” and there exists a solution to DP7-1.

Also, assuming that Minimize P’ = Maximize P” and for some i € R™*!,¢ > 0,

min L(x,A,P,i,¢) = —A +¢|g(%A,P)|| —a’ g(%,A,P),
(x,A,P)ES

it can be shown on similar lines to those in [4] that (%, A, P) is a solution to P7-1/P7
and (iZ,¢) is a solution to DP7-1 if and only if

g% A,P)=

The maximization of the dual function H (u,c) by using the subgradient method
gives us the optimal value of the primal problem P7-1/P7.

We now present the following algorithm that solves the dual problem using
approximation of the necessary and sufficient condition g(%, 4, P) = 0.

Initialization Step. Choose a vector (u(l),uil,cl) with ¢! > 0 and go to main step.

Letk=1.
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Main Step.

k

Step 1. Given (uf, u¥,c*), solve the following subproblem.

(AMzu—2) <idjx]'+do> — <icjx]~+co>

=1 j=1

min{—l—l—c

1 1/2

<2dx,+d0 +P0> 2(2 (aij+ Adij)xj+ Api— b~+P,->

j=1 j=1

n n n
—ug (l(ZMZZ) (Zdjxj'+d()> - <2Cij+C0> +z (Zdjxj'+d()> +P0>
= =1 =1

m

2 <2 (aij+Adij)xj+Api— bi+1’)i>}

i=1
subjectto  (x,A,P) €S, u= (ug,u1,...uy) € R™, c>0.

Let (x*, 1%, P¥) be any solution. If || g(x*, A¥, P¥)|| becomes sufficiently small, then
stop. (u’é,uk ck) is a solution to the dual problem and because of the zero gap
property, (x*, A%, P¥) is a solution to the problem P7. Hence, (x*, A¥) is a solution to
the problem P6. Otherwise, go to step 2.

Step 2. Let

uléJrl :ulé_sk <A(Zu—ZZ) <2djx]'+do> — <26‘ij+€0>

Jj=1 Jj=1

n
2y (Z dej+d0> +P0>
=1

n
l/ti,“rl ; <2 (aij+Adij)xj+Api— bi—i-Pi>, 1<i<m

= (g, A5 P

where s* and * are positive scalar stepsizes. Replace k by k+ 1 and repeat step 1.
The following stepsize formulas can be used for generating iterations of the
modified subgradient method.

k (Xk(Hk *H(ukvck))

k k
== 5 & = 5 > 07
Sllg(xt, Ak, PH)| pst. B

where Hj, is an approximation to the optimal dual value, 0 < oy < 2,0 < &k < s*.
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It has been been proved in [4] that the new iterations of the modified subgradient
method with sharp Lagrangian strictly improve the objective function value for all
choices of the stepsizes s and £¥ within permissible limits.

8.4 Numerical Illustrations

We first briefly describe the fuzzy decisive set method. This method is based on the
idea that for a fixed value of A, the problem P6 is a linear programming problem.
Obtaining the optimal solution A* to the problem P6 is equivalent to determining
the maximum value of A so that the feasible set is nonempty. The algorithm of this
method for the problem P6 is presented below.

Algorithm.

Step 1. Set A = 1 and test whether a feasible set satisfying the constraints of the
problem P6 exists using phase one of the two-phase simplex method. If a feasible
set exists, set A = 1. Otherwise, set A“ = 0 and A% = 1 and go to the next step.

Step 2. For the value of A = (AL + A) /2, update the values of A% and A ¥ using the
bisection method as follows.

AL =) if feasible set is nonempty for A.

AR =2 if feasible set is empty for A.

Consequently, for each A, test whether a feasible set of the problem P6 exists and
determine the maximum value A* satisfying the constraints of the problem P6.
Next, we present a numerical illustration.

Example. We consider the following linear fractional programming problem.

S5x1 4 3x;
LFPP
( ) maXZX1+xZ+3

subjectto  2x; +3x, <4
Tx; +2x <3
x1,x >0,
which take fuzzy parameters. We consider

(aij) = E ﬂ o (dy) = E ﬂ = (ay+diy) = E ﬂ
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For solving the above problem, we must solve the following four subproblems.

and

Optimal solutions of these subproblems are given in Table 8.1.

subject to

subject to

subject to

subject to

Table 8.1 Optimal solutions

21
2
3
4

S5x1+3xy
= max 2x1+x2+3
3x1+5x, <4,
2x1 +3x, <3,
x1,x2 >0,
S5x1+3x2
‘2 = max 2x1+x2+3
2x1+3x, <7,
1x;+2x, <5,
X1,x2 >0,
S5x1+3x2
& = max 2x1+x+3
3x1+5x <7,
2x1+3x, <5,
x1,%2 >0,
5x1+3x2
4 = max 2x1+x+3
2x1 4+ 3xp < 4,
1x; +2x, <3,
x1,x3 > 0.

Objective Function Value X1
1.176471 1.33333
1.75 3.5
1.521739 2.33333
1.42857 2

(=N eNeNo]

125

By using these optimal values, the LFPP can be reduced to the following equivalent
nonlinear programming problem.
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max A
S5x1 4 3x2

_ 2x1+x2+3
<
subjectto A< T oo 1641

4—2x1—3x2
T x1+2x+3 ’

—1.176471

37)C| 72)62
T x4 t2]

0<A<I,

x1,x2 > 0;
that is,

(NLP) maxA
subjectto  (2.647058 — 1.147058A4 )x; + (1.823529 — 0.5735294)x,
>3.529413 4+ 1.7205874,
(24 A)x1+(3424)x, <434,
(I4+A)x1+(24+2A)x, <324,
0<A<I,
xi,xp > 0.
We first solve problem NLP by using the fuzzy decisive set method.
For A = 1, the constraints of the problem NLP can be written as
1.5x1 4+ 1.25x, > 5.25,
3x1+5x <1,
2x1+3x <1,
X1, xp > 0.
Using phase-I, we obtain: x; = 0.33333, x, = 0. The above feasible set is empty,
therefore by taking AX = 0 and AR = 1, the new value of A = (0+1)/2=1/2is
used.
For A = 1/2 = 0.5, the constraints of the problem NLP can be written as
2.073529x1 + 1.5367645x, > 4.3897065,
2.5x1 +4x, < 2.5,
1.5x1+2.5x, <2,

x1,x2 > 0.
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Using phase-I, we obtain: x; = 1, x, = 0. The above feasible set is again empty,
therefore by taking A = 0 and A% = 1/2, the new value of A = (0+1/2)/2=1/4
is used.
For A = 1/4 = 0.25, the constraints of the problem NLP can be written as
2.3602935x1 + 1.68014675x, > 3.95955975,
2.25x1 4+ 3.5x2 < 3.25,
1.25x; +2.25x, < 2.5,
x1,x%2 2 0,
Using phase-I, we obtain: x; = 1.44444, x, = 0. The above feasible set is empty,
therefore by taking A = 0 and A% = 1/4, the new value of A = (0+1/4)/2=1/8
is used.
For A = 1/8 = 0.125, the constraints of the problem NLP can be written as
2.50367575x1 4+ 1.751837875x, > 3.744486375,
2.125x; +3.25x < 3.625,
1.125x; +2.125x, < 2.75,
x1,x2 > 0.
Using phase-I, we obtain: x; = 1.705882, x, = 0. The above feasible set is non-
empty, therefore by taking A = 1/8 and A% = 1/4, the new value of A = (1/8 +

1/4)/2=3/161is used.
The values of A obtained in the next 22 iterations are presented in Table 8.2.

Table 8.2 Values of A

Iterations A Iterations A

4 0.18375 15 0.184020996
5 0.15625 16 0.183990478
6 0.171875 17 0.183975219
7 0.1796875 18 0.183982849
8 0.18359375 19 0.183979034
9 0.18359375 20 0.183980941
10 0.185546875 21 0.183981895
11 0.184570312 22 0.18398237
12 0.184082031 23 0.183982133
13 0.18383789 24 0.183982014
14 0.18395996 25 0.183982014

Consequently, we obtain the optimal value of A at the 25th iteration by using the
fuzzy decisive set method and the optimal solution is x] = 1.578792, x5 = 0.

Now, we demonstrate the proposed solution method on the same problem. The
stopping criteria used is taken as ||g(x*, A¥, PX)|| < 107> and €k = 0.95s*.
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We consider the following form of the problem NLP.

maxA = —min(—A1)
1.72058A4 — (2.647058 — 1.147058 4 )x; — (1.823529 — 0.573529A )x;

+3.529413+ Py =0,

subjectto (24 A)x1+(34+24)x+34 —4+P =0,

(14+2A)x1+ 2+ A)x24+21L -3+ P, =0,

0<A<I,
x1,%2, Ry, P, P, > 0,
where Py, P;, and P> are slack variables.

Using the proposed method, the following optimal solution of the NLP is obtained

at the end of second iteration, x] = 1.578792,x; = 0,and A* = 0.183982. A summary
of the computational results is presented in Table 8.3.

Table 8.3 Summary of the Computational Results

k u’(j u’f 1/2‘ ck
0 0 0 0
2 —0.052370468 —0.048341839 —0.026856559 0.148518765
X % H H(u*, ") g, A% PO sk
1.33333 0 0.2 -1 472654023 0.016114
1.578792 0 0.2 —0.1839821 3.7x 1077

For the sake of completeness, we also present the details of the computational
procedure.
The augmented Lagrangian function for the problem NLP is written as

L(x, A, Pu,c) = —A +c[(1.72058 — (2.647058 — 1.1470584 )x
— (1.823529 — 0.573529A )x2 + 3.529413 + Py)?
+ (24 A)x1+ B+20)x2+34 —4+P)?
(14 A)x1 4 24+ A)xy +24 — 3+ Py)?] /2
— up(1.720582 — (2.647058 — 1.1470582.)x,
—(1.823529 — 0.5735292. )x2 + 3.529413 + Py)
—u(24+A)x1+(3+24)x2+34 -4+ P)
—up(1+A)x1 +(2+A)x2+21 =3+ Py).
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Consider the initial vector (u,u{,u},c') = (0,0,0,0) and solve the following
subproblem using LINGO software.

minL(x,A,P,0,0) = —4
subjectto 0 <A <1,
1.33333 <x; < 3.5,
0<x <O.

The optimal solution of the above subproblem is obtained as
x; = 1.33333, x =0, A=1, Py=P=P=0.
At this solution
g AP =3.249998, gr(x', A1 P =2.99999,
g3(x1, AL Pl = 1.66666,
and hence,
llg(x", AT, PY)|| = ((3.249998)2 + (2.99999)% + (1.66666)%) /> = 4.72654023.

Because [|g(x!,A!,P!)|| £ 1073, we calculate new values of the Lagrange multi-
pliers (u3,u?,u3,c?) by using Step 2 of the proposed method.

Let
=15 H@u',c)=-1, H =02
Then
Sle(x", A1 P2 = 5 x22.3401825 = 111.7009127,
L o(H —H@u',c"))  1.502+1)
— = =0.016114.
Se(xt, AL PY|2 T 1117009127
Hence,
uj =0—(0.016114)(3.249998) = —0.052370468,
u? =0—(0.016114)(2.99999) = —0.048341839,
u3 =0—(0.016114)(1.66666) = —0.026856559.
Also,

g' =0.0153083,
¢® =0+ (0.0314223)(4.72654023) = 0.148518765.
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The solution at second iteration is obtained as

x1 =1.578792, x» =0, A*=0.1839821,
Py=P, =0, P,=0.7627742.

At this solution

g1 (2 A2, PY) =2.542575x 1077, ga(w? A%, P) = —2.32377 x 1077,
g3(2, A%, P2) = —1.32377 x 107,
and hence,
le(*, 2%, P
= ((2.542575 x 1077)? 4 (—2.32377 x 107 7)2 + (—1.32377 x 10~ 7)?)/2
=37x107".

Because ||g(x?,A2,P?)|| < 1073, the solution x} = 1.578792, x5 = 0, and A* =
0.1839821 is the optimal solution to the problem NLP. This means that, the vector
(x7,%3) is a solution to the problem LFPP which has the best membership grade 4.

It may be noted that the optimal value of A obtained at the second iteration
of the modified subgradient method is approximately equal to the optimal value
of A calculated at the 25th iteration of the fuzzy decisive set method. Hence, the
proposed solution method that can solve nonconvex optimization problems with
binary restrictions can be considered as an efficient solution procedure for the
problem under consideration.

8.5 Concluding Remarks

We have studied a fuzzy linear fractional programming problem in which both the
right-hand side and the technological coefficients are fuzzy numbers. Bellman and
Zadeh’s approach has been used for converting the fuzzy linear fractional program-
ming problem into an equivalent crisp problem. The constraints in problem P6
are generally not convex, thus the problem may be solved either by the fuzzy
decisive set method, which is presented by Sakawa and Yana [7], or by using
some linearization methods. There are some disadvantages in using these methods.
The fuzzy decisive set method takes a long time to solve the problem. On the
other hand, the linearization methods increase the number of the constraints. Here,
we have presented the modified subgradient method and used it for solving the
defuzzified problem P6. This method is based on the duality theory using the aug-
mented Lagrangian function termed the sharp Lagrangian. An illustrative numerical
example has been solved to demonstrate the proposed method and also to compare
the effectiveness of the proposed method with that of the fuzzy decisive set method
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from the point of view of the number of iterations required for obtaining the desired
optimal solution.

The present solution approach can also be extended to develop applications of

the modified subgradient method for solving fuzzy linear fractional programming
problems with fuzzy coefficients and for solving fully fuzzified linear fractional
programming problems.
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Chapter 9

On Sufficient Optimality Conditions for
Semi-Infinite Discrete Minmax Fractional
Programming Problems Under Generalized
V-Invexity

S. K. Mishra, Kin Keung Lai, Sy-Ming Guu, and Kalpana Shukla

Abstract In this chapter, we establish many global nonparametric sufficient
optimality conditions under various generalized V — p-invexity assumptions for a
minmax fractional programming problem with infinitely many nonlinear inequality
and equality constraints.

9.1 Introduction

Consider the following semi-infinite discrete minmax fractional programming
problem.

Minimize  max filx) P)
1<i<pgi(x
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subject to
Gi(x,1)<0, YteTj, jeg
Hi(x,s)=0, Vse S, ker
xeX,

where p, g and r are positive integers, X is an open convex subset of R”"
(n-dimensional Euclidean space), for each j € ¢ ={1,...,q} and k € r, T and Sj
are compact subset of complete metric spaces, for each i € p, f; and g; are real-
valued functions defined on X, for each j € ¢, z — Gj(z, 1) is a real-valued function
defined on X for all r € T}, for each k € r, z — Hy(z, s) is a real-valued function
defined on X for all s € Sy, for each j € ¢, t — Gj(x, 1) is a continuous real-valued
function defined on 7j, for each k € r, s — Hi(x, s) is a continuous real-valued
function defined on Sy, V x € X, and for each i € p, g;(x) > 0 for all x satisfying the
constraints of (P).

Nonlinear programming problems such as (P) with a finite number of constraints
(i.e., when G; are independent of ¢, and the functions Hj are independent of s) are
well known in the literature of mathematical programming problems as generalized
fractional programming problems or minmax fractional programming problems.
Minmax fractional programming problems are important, as they contain standard
nonlinear programming problems and fractional programming problems as special
cases. They are also important for their modeling capabilities (these problems have
been used in economics, financial planning, multiobjective decision theory, and
facility location problems) where these problems have been the subject for the last
three decades. See, for example, [10].

A mathematical programming problem with a finite number of variables and
infinitely many constraints is called a semi-infinite programming problem. Problems
of this kind have been utilized for the modeling and analysis of many theoretical
and concrete real-world practical problems. Semi-infinite programming problems
have found relevance in engineering design (design of earthquake-resistant struc-
tures, design of control systems, digital filters, and electronic circuits; see [14]),
boundary value problems, defect minimization for operator equations, geometry,
random graphs, graphs related to Newton flows, wavelet analysis, semidefinite pro-
gramming, geometric programming, and optimal control problems, the reader may
see [14]. For details on semi-infinite programming and its applications, optimality
conditions, duality theorems, and numerical algorithms, see [4, 5, 7, 8, 12, 13].

At this point, it is important to note that duality theory and generalized convexity
(see [10, 11]) which have been playing significant roles in optimization theory are
missing in the area of semi-infinite programming. In fact, at present very few papers
are present in the literature dealing with semi-infinite programming problems and
any class of generalized convexity. See, for example, [14].

In this chapter, we discuss a number of global nonparametric sufficient optima-
lity conditions for (P) under a variety of generalized V — p-invexity assump-
tions. In Section 9.2, we present necessary definitions and preliminaries required
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in the chapter. We recall the necessary optimality conditions for (P) due to [14].
In Section 9.3, we give our results on global nonparametric sufficient optimality
conditions for (P) under a variety of generalized V — p-invexity assumptions. This
work extends some earlier works of [14] to V — p-invex functions.

9.2 Preliminaries

Definition 9.1. Let f be a real-valued differentiable function defined on X. Then f
is said to be invex at y if there exists a function 1 : X x X — R" such that for each
xeX,

f(x) _f(y) > <Vf(y)a n(xa y)>7

or- (4.5

where

is the gradient of f aty, and (a, b) denotes the inner product of the vectors a and b;
f is said to be n-invex on X if the above inequality holds for all x, y € X.

This generalization of the concept of convexity was given by [6]; the term
invex (for invariant convex) was coined by [2]. For details on invex functions and
their applications in optimization, see [10].

However, the major difficulty is that the invex problems require the same
kernel function 1 (x, u) for the objective and the constraints. This requirement turns
out to be a severe restriction in applications. Because of this restriction, pseudo-
linear multiobjective problems ([1]) and certain nonlinear multiobjective fractional
programming problems require separate treatment as far as optimality and duality
properties are concerned. In order to avoid this restriction, [9] introduced the notion
of V-invexity for a vector function f = (fi, f2,..., f») and discussed its applications
to a class of constrained multiobjective optimization problems. We now give the
definitions of [9] as follows.

Definition 9.2. A vector function f : X — RP is said to be V-invex if there exist
functions 77 : X x X — R" and ¢; : X X X — R™ — {0} such that for each x,x¥ € X
and fori=1,2,...,p,

fi(x) = fi(®) = (06 (x, ) V£i(%), 1 (x, %))

For p =1 and 7 (x,%) = o;(x,%)n(x,%) the above definition reduces to the usual
definition of invexity given by [6]. For more details about V-invex functions and
vector optimization, the reader is referred to [11].
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Definition 9.3. A vector function f : X — RP is said to be V — p-invex if there exist
functions 1 : X x X — R", o;: X x X — R™ — {0} and p; € R such that for each
x,x€Xandfori=1,2,...,p,

[ix) = fi(®) = (i (e, D VSi(F), 1(x,5)) + pillx — 7.

Definition 9.4. A vector function f : X — R? is said to be V — p-pseudoinvex if there
exist functions 17 : X x X — R", i : X xX — R™ — {0} and p; € R such that for each
x,x€Xandfori=1,2,...,p,

<2sz >+Pz||x XH2>0=>Zﬁz”fz i Bix, ) fi(x

i=1 i=1

Definition 9.5. A vector function f : X — RP is said to be V — p-quasi-invex if there
exist functions  : X x X — R", §;: X x X — R* — {0} and p; € R such that for each
x,x€Xandfori=1,2,...,p,

p

2 0i(x, %) fi(x) <

i=1 i

'M“

8i(x, %) fi (%) <2sz >+Pz||x F* <o.

Definition 9.6. A vector function f : X — R? is said to be V — p-prestrictly quasi-
invex if there exist functions N : X x X — R", §;: X xX — R" — {0} and p; € R
such that for each x,x € X and fori =1,2,...,p,

i 6i(x, %) fi(x <25 x, %) fi(x <2Vf, >+p,||x 7? <o.
i=1

We need the Dinkelbach-type [3] indirect approach with the help of the following
auxiliary parametric problem.

Minimize max {f,( ) —Agi(x)}, (PL)

xeF 1<i<

where A is a parameter. It is easy to see that this problem is equivalent to (P) if A
is chosen to be the optimal value of (P). Note that if A* is the optimal value of (P)
and v(A) the optimal value of PA for any fixed A € R such that PA has an optimal
solution, then the following hold.

1. If x* is an optimal solution of (P) then it is an optimal solution of PA* and
v(A*) =0.

2. If PA has an optimal solution & for some A € R with v(1) =0, then X is an optimal
solution of (P) and A = A*.

We need the following definitions and the Abadie constraint qualification in the
sequel.
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Definition 9.7. The tangent cone to the feasible set F of (P) at ¥ € F is the set

T(F,x)={h€R":h= lim1,(x" — X) such that x" € F,

n—oo

x lim x" = %, andt,,>0,Vn:1,...}.

n—o0

Definition 9.8. Let X € F. The linearizing cone at X for (P) is the set defined by
C(x)={heR": (VGj(x, 1), h) <0, V1€ Tj(x),
j€q, (VH(X, 5), h) =0, Vs € Sp(X), ker},
where Tj(¥) = {t € Tj: G;(%, 1) =0}.

Definition 9.9. The problem (P) satisfies the generalized Abadie constraint qualifi-
cation at a given point X € F if we have C(x) C T(F, X).

Lemma 9.1 (5). Let A and B be compact sets in R" and C an arbitrary set in R".
Suppose that the set cone (B) + span (C) is the conic hull of B (i.e., the smallest
convex cone containing B) and span (C) is the linear hull of C (i.e., the smallest
subspace containing C). Then either the system

(a, z) <0, VacA,
(b, 2) <0, Vb€ B,
(¢, z2) =0, VeeC,

has a solution z € R", or there exist integers |L, vy, and v with 0 <vog <v <n+1,
such that there exist |1 points a' € A, v points b € B, v — v points ¢" € C, | non-
negative numbers u;, with u; > 0 for at least one i € | and v real numbers v,, with
vin > 0 for m € vy, such that

u . Vo \4
zuia’ + z V™ + 2 V" =0
i=1 m=1

m=vy+1

but never both.

Zalmai and Zhang [14] have shown that the optimality of x* € F for (P) implies
the inconsistency of a certain semi-infinite system of linear inequalities and
equalities.

Lemma 9.2. Let x* be an optimal solution for (P) and A* = max <<, fi(x*)/gi(x")
for each i € p, let f; and g; be continuously differentiable at x*, for each j € q,
let the function z — G (z, t) be continuously differentiable at x* for all t € Tj, and
for each k € r, let the function z — Hy/(z, t) be continuously differentiable at x* for
all s € Si. If the generalized Abadie constraint qualification holds at x*, then the
system
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(Vfi(x*) —A*Vgi(x"), z) <0, i€ p(x*),
(VGj(x*, 1), 2) <0, VteTi(x*), jeq,
(VH(x*, 5),2) =0, Vs €S, ke,

has no solution z € R" where p(x*) = {j € p: f;j(x")/g;j(x") = maxi<i<p

Jilx")/i(x")}.

Lemma 9.3 (Necessary optimality conditions). Let x* € F and A" =
max<j<, fi(x*)/gi(x"), for each i € p, let f; and g; be continuously differentiable
at x*, for each j € g, let the function z — Gj(z, t) be continuously differen-
tiable at x* for all t € Tj, and for each k € r, let the function z — Hi(z, )
be continuously differentiable at x* for all s € Sy. If x* is an optimal solution
for (P), if the generalized Abadie constraint qualification holds at x* and if the set
cone{VG;(x*, t): t € T;(x*), j € q} + span{VH(x*, s) : s € Sg, k € r} is closed,
then there exist u* € U = {u ERP:u>0, Zle u; = 1} and integers vjy and v* with
0 <vj <V <n+1, such that there exist v( indices ju, with 1 < j,, < g, together
with v(, points t" € f‘m (x*), m € v, v — v indices ky, with 1 < k,, < r, together
with v — v points s™ € Sy, (x*), m € v*\v§ and v* real numbers vy, with vy, > 0
for m € v with the property that

p )
D V() = A Vei(x)) + Y, v, VG, (X, 1)
i=1

m=1

V*
+ Z v, VH;, (x*, s") =0

m=vj+1
i [filx’) = A7gi(x")] =0,  iep.

The following parameter-free version of the above necessary optimality conditions
is given in [14].

Lemma 9.4 (Parameter-free necessary optimality conditions). Ler x* € F and
let the functions f; and g;,i € p, z— Gj(z, t) and z — Hy(z, s) be continuously
differentiable at x*, for allt € Tj, s € Sy, j € q, and k € r. If x* is an optimal solution
for (P), if the generalized Abadie constraint qualification holds at x*, and if the set
cone

{VG;(x*, t):t € Tj(x"), j € q} +span{VH(x*, 5) : s € Sy, k € r}

is closed, then there exist u* € U ={u € R” :u>0,¥"_  u; = 1} and integers vy
and v with 0 < vy <v <n+ 1, such that there exist vy indices j, with 1 < j,, <gq,
together with vy points t™ € Tj, (x*), m € vy, v —vq indices ky, with 1 < k,, <r,
together with v — vy points s™ € Sy, (x*), m € v\v, and v real numbers v}, with
vy, > 0 for m € vy with the property that
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P

2w M, W)V i) — (", u")Vgilx")]

i=1

Vo

+ Z VrnVGj)71 ( + Z vm VI-Ikm ( ’ n)

m=1 m=vy+1

WM W)V AE) — B, 0)Vei()] =0, i€p

I
o

i u
ma =
1Ziep gi(xt) T, )’

where @(x*, u*) = l Ll fi(x )andl"(x*,u*):Zl L urgi(x*).

[14] is needed in the proofs of the sufficient optimality conditions in the next
section. The proof of the lemma is straightforward and omitted.

Lemma 9.5. For each x € X, '¥'(x) = max;<;<p g’gg

9.3 Sufficient Optimality Conditions

In this section, we present a number of sufficient optimality conditions in which
various generalized V — p-invexity assumptions are imposed.

Theorem 9.1. Let x* € Fand assume that fj(x*) > 0, g;(x*) > 0, i € p, that the
functions f;, gi, i € p, z— Gj(z, t), and z — Hy(z, s) are differentiable at x* for all
teT;, scSy, jEq,andk € r,and that there exist u* € U and integers vy and v with
0 <vg <v < n—+1, such that there exist vy indices jn, with 1 < j, < g, together
with v points t" € ij( ), m € vy, v—vg indices ky, with 1 < ky, <r, together with
v —vg points s™ € Sy, (x*), m € V\v,, and v real numbers v}, with vi, > 0 for m € v,
with the property that

)4
Z (", W)V fi(x') — @(x", u")Vei(x* +ZVVGJm(, m)

m=1

Y, Vi VH, (x*, §") =0 9.1

m=vp+1

Fo) o, w)
2% gi(r) = re,u)” ©-2

Assume furthermore that any one of the following conditions holds.

1. a. Foreachi€ p, f;is V — p;-invex and —g; is V — p;-invex at x*.
b. The function z — G, (z, 1) is V — py-quasi-invex at x* for each m € v,
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c. The function z — v,Hy,, (z, s™) is V — py-quasi-invex at x* for each m €
v\Vg.
d P 30 VP + Y i—vot1 Pm = 0.
2. a. Foreachi€ p, f;is V — p;-invex and —g; is V — p;-invex at x*.
b. The function z — ¥,°_v,Gj, (z, ™) is V — p-quasi-invex at x* for each
mev.
c. The function z — v}, Hy,, (z, s™) is V — py-quasi-invex at x* for each m €
v\Vg.
A p* P+ 301 P > 0.
3. a. Foreachi€ p, f;is V — p;-invex and —g; is V — p;-invex at x*.
b. The function z — G, (z, 1) is V — py-quasi-invex at x* for each m € v,,.
c. The functionz — ¥, 1 v;Hy, (z, s™) is V — p-quasi-invex at x* for each
m € v\y.
d. p*+3°_ viPm+p > 0.
4. a. Foreachie p, fjisV — p;-invex and —g; is V — p;-invex at x*.
b. The function z — ¥,°_ v, G, (z, ™) is V — p-quasi-invex at x* for each
mev.
c. The functionz — %, v, Hy, (z, s"') is V — p-quasi-invex at x* for each
m € v\y.
d. p*+p+p=0;
5. a. Foreachie€ p, fiisV — p;-invex and —g; is V — p;-invex at x*.
b. The function z — 3,9 v;,G, (2, ") + Xy 11 ViHi, (2, ™) is V — p-
quasi-invex at x*.
c. p*+p>0.

Then x* is an optimal solution for (P).

Proof. Let x be an arbitrary feasible solution for (P).
(a) From feasibility, it follows that G, (x, ) <0=G;, (x*, t"), fort" € T}, (x*)
for each m € v;,. Because B, (x, x*) > 0, for each m € v, we get

Bj,.(x, x)Gj, (x, 1) < Bj,. (x, x*)Gj, (x*, ™).

Function z — G, (z, ™) is V — pm-quasi-invex at x* for each m € v, therefore

we have

(VGj, (", 1), m(x, 7)) + punllx =" < 0.

As vy, > 0 for each m € v, the above inequalities yield

Vo Vo
< > v VG, (x*, "), n(x, x*)> + 3 v Pullx—x*|> < 0. (9.3)
m=1

m=1 =
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Similarly, by feasibility and V — p,-quasi-invexity of the function z — v;,
Hy, (z, s™) at x* for each m € v\v,, we have

< 2 v VH, (x*, s™), 1 (x, x*)> + 2 Pmllx —x*|> <0. 9.4)
m=vp+1 m=vy+1

Because u* >0, @(x*, u*) > 0, and I (x*, u*) > 0, we have

2 Ui DG, u) filx) = @(x", u)gi(x)]

= iuif{r(x*, w)[fi(x) = filx")] = @(x", ) [gi(x) — gi(x")]}
(by the definitions of @ and I')

2 zp‘,ui‘{ﬂ"(x w)olx, X)VSi(x") = D(x, u”)(x, x)Vei(x), n(x, x7))

M, w)pi+ @O, u')pil v — |1}

(by (a) of condition (1))

Vo v
— <vanVGjm(x*, ")+ Z v, VH, (x*, s™), n(x, x*)>
i=1

m=vy+1

+2u (X, u)pi+ @(x*, u)p]|x— x> (by (9.1)

> (p + 2 VP + 2 :;m) lx—x*[|> (by (9.3) and (9.4))
m=vy+1
> 0 (by (d) of condition (1)). 9.5)

From (9.2), (9.5), and Lemma 9.1, we have

o) _ S )
F(x*, ”*) 2, 1 lg,(x*) uel zlpl lg,(x*)

Thus, x* is an optimal solution for (P).
(b) From feasibility and the fact that v}, > 0 for each m € v, we have

Vo

Vo
D VB (x, X) G, (x, 1) <Y VB, (x, X) G, (67, 1),

m=1 m=1
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which by V — p-quasi-invexity of the functionz — 3,°_, v G;, (z, ™) at x* for each
m € v, yields

Vo
< 2 VG, (" 1), m (x, x*)> +p[le—x*|* <. 9.6)
m=1

The rest of the proof is similar to part (a): in place of inequality (9.3); in part we
use (9.6) and get (9.5) which leads to the conclusion that x* is an optimal solution
for (P).

The proofs of parts (c)—(e) are similar to the parts (a) and (b).

Let the functions z — O(z, x*, u*) and z — Z(z, x*, u*) defined for fixed x* and
u* on X by

Oz, x", u’) =T(x", u’) fi(z2) = P(", u')gi(z),  i€p,=

p

(z, 2", w) = Y ui [T (", u”) fi(z) — (", u”)gi(2)].

i=1

Theorem 9.2. Let x* € F and assume that f;(x*) > 0, g;(x*) > 0, i € p, that the
functions f;, gi, i € p, z— Gj(z, t) and z — Hy(z, s) are differentiable at x* for all
teT), s€ Sk, j€q,andk € r, and that there exist u* € U and integers vy and v with
0 <vg <v < n+1, such that there exist vy indices jn, with 1 < j, < g, together
with vy points t" € Tj, (x*), m € vy, v — vo indices ky, with 1 < ky, < r, together
with v —vg points s™ € Sy, (x*), m € v\vy and v real numbers v}, with vi, > 0 for
m € vy such that 9.1 and 9.2 hold. Assume furthermore that any one of the following
conditions holds.

6. a.z— E(z, x*, u*) is V — pj-pseudo-invex at x*.
b. The function z — Gj,,(z, t"™) is V — py-quasi-invex at x* for each m € v,
c. The function z — Hy,, (z, s™) is V — pp-quasi-invex at x* for each m € v\v,,.
d p+ 2:,?:1 ViuPm + an:voﬂ Pm = 0.
7. a.z— E(z, x*, u*) is V — p;-pseudo-invex at x*.
b. The function z — ¥,°_,viGj, (z, t™) is V — p-quasi-invex at x* for each
m e v
c. The function z — vi,Hy, (z, s™) is V — Pw-quasi-invex at x* for each m €
v\Vo.
dp+p+2,—yi1Pm=0.
8 a z— E(z, x*, u*) is V — p;-pseudo-invex at x*.
b. The function z — G, (z, t"™) is V — Ppm-quasi-invex at x* for each m € v,
c. The functionz — ¥, .1 Vi,Hy, (2, s") is V — p-quasi-invex at x* for each
m € v\v.
d. P+ VPm+p > 0.

9. a.z— E(z, x*, u*) is V — p;-pseudo-invex at x*.
b. The function z — ¥,°_,viGj, (z, t™) is V — p-quasi-invex at x* for each
me V-
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c. The functionz — ¥, 1 Vi,Hy, (z, s") is V — p-quasi-invex at x* for each
m € v\v.
dp+p+p=>0.
10. a. z— E(z, x*, u*) is V — p;-pseudo-invex at x*.
b. The function z — ¥,°_ vG;, (z, ™) + Yonevot+1 VimH, (z, s") is V — p-
quasi-invex at x*.
c.p+p=>0.

Then x* is an optimal solution for (P).

Proof. (f) Let x be an arbitrary feasible solution for (P). Due to the assumptions (b)
and (c), 9.3 and 9.4 remain valid. Using 9.1, we get

<2u w)V filx )(ﬂWWgwmn@wﬂ>

<2vmpm+ 2 Pm> e =" > —p flx— x|

m=vy+1
= E(x, X" u") > E@ X", u")=0

which leads to the conclusion that x* is an optimal solution for (P).
The proofs of other parts are similar to part (f).

Theorem 9.3. Let x* € F and assume that f;(x*) > 0, g;(x*) > 0, i € p, that the
functions f;, gi, i € p, z— Gj(z, t) and z — Hy(z, s) are differentiable at x* for all

T;, s € Sk, j € q, and k € r, and that there exist u* € U and integers vy and v with
0 <vg <v < n+1, such that there exist vy indices jn, with 1 < j, < g, together
with vy points t" € Tj, (x*), m € vy, v — vo indices ky, with 1 < ky, < r, together
with v —vg points s™ € Sy, (x*), m € v\vy and v real numbers v}, with vi, > 0 for
m € vy such that 9.1 and 9.2 hold. Assume furthermore that any one of the following
conditions is satisfied.

11. a.z— E(z, x*, u*) is V — p;-prestrictly quasi-invex at x*.
b. The function z — Gj,,(z, t"™) is V — py-quasi-invex at x* for each m € v,.
c. The function z — vi,Hy, (z, s™) is V — Pw-quasi-invex at x* for each m €
v\Vo.
d.p JFZ‘;,?:l VinPm + Zrn:voJrl Pm = 0.
12. a.z— E(z, x*, u*) is V — p;-prestrictly quasi-invex at x*.
b. The function z — ¥,°_, v G, (z, t"™) is V — p-quasi-invex at x* for each
m e v
c. The function z — vi,Hy, (z, s™) is V — Pm-quasi-invex at x* for each m €
v\vo.
d. p +[5 +Z;)n:v0+1 [jm >0.
13. a.z— E(z, x*, u*) is V — p;-prestrictly quasi-invex at x*.
b. The function z — Gj,,(z, t"™) is V — py-quasi-invex at x* for each m € v,
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14.

15.

c. The functionz — ¥, 1 Vi,Hy, (z, s") is V — p-quasi-invex at x* for each
m € v\v.

d. P43 ViPm+p > 0.

a. z— E(z, x*, u*) is V — pj-prestrictly quasi-invex at x*.

b. The functlon z—= 30 viGj,(z, ™) is V — p-quasi-invex at x* for each
m e vy.

c. The functionz — ¥, .1 Vi,Hy, (2, s") is V — p-quasi-invex at x* for each
m € v\v.

d p+p+p>0.

a. z— E(z, x*, u*) is V — pj-prestrictly quasi-invex at x*.

b. The function z — ¥,°_ viG;, (z, ") + Sonevo+1 VmHu, (2, s™) is V — p-
quasi-invex at x*.

c.p+p=>0.

Then x* is an optimal solution for (P).

Proof. (k) Let x be an arbitrary feasible solution for (P). Due to the assumptions (b)
and (c), 9.3 and 9.4 remain valid. Using 9.1, we get

T UG, w VAR — B, ) Vel )], n(x, )

i=1

> zvmpm+ > Bl > —plle—x?

m=vy+1

= E(x,x", u") > E(X",x",u") =0, (byassumption (a))

which leads to the conclusion that x* is an optimal solution for (P).

The proofs of other parts are similar to part (k).

References
1. Chew, K.L., Choo, E.U.: Pseudolinearity and efficiency. Math. Program. 28, 226-239 (1984)
2. Craven, B.D.: Invex functions and constrained local minima, Bull. Austral. Math. Soc. 24

357-366 (1981)

Dinkelbach, W.: On nonlinear fractional programming. Manage. Sci. 13 492-498 (1967)
Fiaclco, A.V., Kortanek K.O. (Eds.): Semi-infinite Programming and Applications. Lecture
Notes in Economics and Mathematical Systems, Vol. 215, Springer, Berlin (1983)

Goberna, M.A., Lopez, M.A. (Eds.): Semi-infinite Programming-Recent Advances. Kluwer,
Dordrecht (2001)

Hanson, M.A.: On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80
545-550 (1981)

Hettich, R. (eds.): Semi-Infinite Programming. Lecture Notes in Control and Information Sci-
ences, Vol. 15, Springer, Berlin (1979)

Hettich R., Kortanek, K.O.: Semi-infinite programming: Theory, methods and applications.
SIAM Rev. 35 380429 (1993)



9 Semi-Infinite Fractional Programming and Generalized Convexity 145

9.

10.
11.

12.
13.

14.

Jeyakumar V., Mond, B.: On generalized convex mathematical programming, J. Austral. Math.
Soc. Ser. B 34 43-53 (1992)

Mishra, S.K., Giorgi, G.: Invexity and Optimization. Springer, Berlin (2008)

Mishra, S.K., Wang, S.Y., Lai, K.K.: V-Invex Functions and Vector Optimization. Springer,
New York (2008)

Reemtsen, R., Ruckmann, J.J. (Eds.): Semi-Infinite Programming, Kluwer, Boston (1998)
Weber, G.W.: Generalized semi-infinite optimization: Theory and applications in optimal
control and discrete optimization. J. Stat. Manage. Syst. 5 359-388 (2002)

Zalmai, G.J., Zhang, Q.: Global nonparametric sufficient optimality conditions for semi-
infinite discrete minimax fractional programming problems involving generalized (1,p)-
invex functions. Numer. Funct. Anal. Optim. 28 (1-2) 173-209 (2007)



Chapter 10

Ekeland-Type Variational Principles and
Equilibrium Problems

Qamrul Hasan Ansari and Lai-Jiu Lin

Abstract In this survey chapter we present different forms of Ekeland’s variational
principle involving 7-functions, 7-functions and fitting functions, and Q-functions,
respectively. The equilibrium version of Ekeland-type variational principle is also
presented. We give some equivalences of our variational principles with the Caristi—
Kirk-type fixed point theorem for multivalued maps, Takahashi minimization
theorem, and some other related results. As applications of our results, we derive
the existence results for solutions of equilibrium problems and fixed point theorems
for multivalued maps. The results of this chapter extend and generalize many results
that recently appeared in the literature.

10.1 Introduction

The following variational principle was discovered by Ekeland in 1972 [23] (see
also, [24, 25]), now known as Ekeland’s variational principle (in short, EVP).

Theorem 10.1 (Ekeland’s Variational Principle). Ler X be a complete metric
space, and f : X — RU {4} be a proper, lower semicontinuous, and bounded
below functional. Then for any given € > 0, for any xo € X such that f(xy) >
infyex f(x) and for every A > 0, there exists X € X such that

f()f) < f(x())a
d(x07f) < A’a

F(®) < f(y)+(e/A)d(%,y) forally€X, y#X.
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It provides an approximate minimizer of a bounded below lower semicontinuous
function in a given neighborhood of a point. This localization property is very useful
and explains the importance of this result. EVP is among the most important results
obtained in nonlinear analysis. It has appeared as one of the most useful tools for
solving problems from optimization, optimal control theory, game theory, nonlinear
equations, dynamical systems, and so on. See, for example, [5-7, 22, 26, 35, 54, 55,
67] and the references therein. Since the discovery of EVP, there have also appeared
many extensions or equivalent formulations of EVP. See, for example, [1, 7, 13, 30,
34,38-41, 44, 45, 49-51, 54-56, 59, 61, 64, 68, 70] and the references therein.

In 1981, Sullivan [59] established that the validity of an EVP statement on a
metric space (X,d) is equivalent to the completeness of (X,d). In 1982, McLinden
[51] showed how EVP, or more precisely the augmented form of it provided by
Rockafellar [58], can be adapted to extremum problems of minimax type. Many
famous results, namely, the Krasnosel’skii—Zabrjeko, the Caristi—Kirk fixed point
theorem [16], the Petal theorem, and the Dane§ drop theorem, were discovered
around the same time but independently of each other. It was later found that all
these results were equivalent to EVP. In 1986, Penot [57] proved that EVP is equiva-
lent to some of the most famous results in nonlinear analysis, namely, Caristi’s fixed
point theorem [15] and the petal theorem. In the same paper, some areas of applica-
tions of a geometric result of Danes [20] known as the drop theorem are mentioned.
For further details on the equivalences of these results, we refer to [21, 34, 43, 38,
55, 62] and the references therein.

Aubin and Frankowska [7] established the following form of Ekeland’s varia-
tional principle which is equivalent to Theorem 10.1.

Theorem 10.2 ([7]). Let (X,d) be a complete metric space and f : X — RU {+eo}
be a proper, bounded below, and lower semicontinuous functional. Let £ € Dom(f)
and e > 0 be fixed. Then there exists X € X such that

(a) f(%) = f(£) +ed(£,x) <O.
(b) (%) < f(x)+ed(x,%) forallxeX\{x}.

In 1996, Kada, Suzuki, and Takahashi [45] introduced the concept of a w-distance
defined on a metric space and extended EVP, the minimization theorem, and Kirk—
Caristi fixed point theorem for a w-distance. Suzuki [61] introduced a more general
concept than w-distance, called 7-distance, and established EVP for 7-distance.
He also extended most of the results of [45] for t-distance. For further results
involving t-functions, we refer to [64] and references therein. It seems that the con-
cept of T-distance is a little more complicated, therefore Lin and Du [49] introduced
the concept of a T-function which is an extension of a w-distance but independent
of 7-distance. They established a generalized EVP for lower semicontinuous from
above functions and with a 7-function. They also derived the minimization theorem,
nonconvex equilibrium theorem, common fixed point theorem for a family of multi-
valued maps, and flower petal theorem.

Recently, Lin and Du [50] introduced another kind of function, called the fitting
function, which is also more general than the w-distance. They established a variant



10 Ekeland-Type Variational Principles and Equilibrium Problems 149

of the generalized EVP and maximal element theorem involving 7-functions and
fitting functions. They provided some equivalent formulations of this theorem. They
also gave another type of EVP and maximal element theorem involving a T-function.

In [1], we introduced the concept of a Q-function defined on a quasi-metric
space that generalizes the notion of a 7-function and a w-distance. We established
Ekeland-type variational principles, one in the setting of quasi-metric spaces with
a Q-function but without any lower semicontinuity assumption on the underly-
ing function and the other in the setting of complete quasi-metric spaces with a
Q-function. The equilibrium version of an Ekeland-type variational principle in
the setting of quasi-metric spaces with a Q-function is also presented. We proved
some equivalences of our variational principles with a Caristi—Kirk-type fixed point
theorem for multivalued maps, Takahashi minimization theorem, and some other
related results. As applications of our results, we derived the existence results for
solutions of equilibrium problems and fixed point theorems for multivalued maps.

Moreover, EVP was also considered and studied in a more general setting, for
example, in the setting of . -topological spaces [30]. In the recent past, it was also
studied in the setting of locally convex spaces and uniform spaces; See, for example,
[40-42] and the references therein. Very recently, Hamel [40] and Jing-Hui [44]
proved the equivalence of EVP, Phelp’s lemma, and Dane§ drop theorem in the
setting of locally convex spaces.

Investigations of equilibrium states of a system play a central role in such diverse
fields as economics, mechanics, biology, and the social sciences. Now there are
a number of general mathematical problems suggested for modeling and study-
ing various kinds of equilibria. Many researchers were and are considering these
problems in order to obtain existence and uniqueness results and propose solution
methods. The mathematical equilibrium problem (in short, EP), which is to find an
element X of a set K such that

F(x,y)>0 forallyeKk,

where F : K x K — R is a bifunction such that F(x,x) = 0 for all x € K, seems the
most general problem and includes other equilibrium types such as optimization,
saddle point, fixed point, complementarity, and variational inequality ones. In this
general form, EP was first considered by Nikaido and Isoda [53] as an auxiliary
problem to establish existence results for Nash’s equilibrium points in noncoop-
erative games. This transformation allows one to extend various iterative methods,
which were proposed for saddle point problems, for the case of EP. In EP theory, the
key contribution was made by Ky Fan, whose new existence results contained the
original techniques which became a basis for most further existence theorems in
topological spaces. Within the context of calculus of variations, motivated mainly
by the works of Stampacchia, there arises the work of Brézis, Nirenberg, and
Stampacchia [14] establishing a more general result than that in [29]. The equili-
brium problem is a unified model of several problems, for example, the optimization
problem, saddle point problem, Nash equilibrium problem, variational inequality
problem, nonlinear complementarity problem, fixed point problem, and so on. In the
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last decade, it emerged as a new research direction in nonlinear analysis, optimi-
zation, optimal control, game theory, mathematical economics, among others. Most
of the results on the existence of solutions of equilibrium problems are studied in the
setting of topological vector spaces by using some kind of fixed point (Fan—-Browder
type-fixed point) theorem or KKM-type theorem. But it was after the work of Blum
and Oetteli [12] that many mathematicians started to study the EP again. For further
details on equilibrium problems, we refer to [4, 9-12, 14, 17, 18, 27, 28, 32, 33, 36,
37, 69] and the references therein.

In 1993, Oettli and Théra [54] started the study of the equilibrium version of
Ekeland’s variational principle. By using this kind of variational principle, they
first gave the existence of a solution of an equilibrium problem in the setting of
complete metric spaces. They also showed that their existence result for a solution
of the equilibrium problem is equivalent to the Ekeland-type variational principle
for bifunctions, Caristi—Kirk fixed point theorem for multivalued maps [16], and a
maximal element theorem. It was further studied by Hamel [39] and Park [56] in
a more general setting. They also proved the equivalences of several problems and
equilibrium version of EVP. Recently, Bianchi, Rassay, and Pini [11] established
the following extended form of the equilibrium version of EVP but in the setting of
finite-dimensional spaces.

Theorem 10.3 ([11]). Let K be a nonempty closed subset of R" and F : K x K — R
be a bifunction such that the following conditions hold.

(i) Forallx € K, F(x,x) =0.
(ii) For all x € K, F(x,-) is bounded below and lower semicontinuous.
(iii) For all x,y,z € K, F(x,z) < F(x,y) + F(y,2).

Then, for every € > 0 and for every xy € K, there exists X € K such that

F(x0,%) + &llxo — x[| <0,
F(x,y)+e€lx—y|| forallyeK,y#x.

Motivated by the concept of an g-solution, introduced in [46], of EP and system
of equilibrium problems (in short, SEP), Bianchi et. al. [11] studied the existence of
solutions of EP and SEP without any kind of convexity assumption on either set
or bifunction involved in the formulation of EP or SEP but in the setting of finite-
dimension spaces.

In this survey chapter we present some results from [1, 49, 50]. In particular,
we present different forms of Ekeland’s variational principle involving 7-functions,
T-functions and fitting functions, and Q-functions, respectively. The equilibrium
version of Ekeland-type variational principle is also presented. We give some equi-
valences of our variational principles with the Caristi—Kirk-type fixed point theo-
rem for multivalued maps, Takahashi minimization theorem, and some other related
results. As applications of our results, we derive the existence results for solutions
of equilibrium problems and fixed point theorems for multivalued maps. The results
of this chapter extend and generalize many results that have appeared recently in the
literature.
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10.2 7-Function, Ekeland-Type Variational Principle, and Some
Related Results

Throughout the chapter, unless otherwise specified, we denote by N the set of all
natural numbers, R the set of all real numbers, and Ry = [0, ). The family of all
subsets of X is denoted by 2.

The following concept of w-distance is introduced by Kada, Suzuki, and
Takahashi [45].

Definition 10.1 ([45]). Let (X,d) be a metric space. A function p: X x X — Ry is
said to be a w-distance on X if the following conditions are satisfied.

(wl) For all x,y,z € X, p(x,z) < p(x,y) + p(»,2).

(w2) Forall x € X, p(x,-) : X — R is lower semicontinuous.

(w3) For any € > 0, there exists § > 0 such that p(z,x) < & and p(z,y) < 6 imply
d(x,y) <e.

It can be easily checked that every metric is a w-distance. Several examples and
properties of w-distances are given in [45]. Kada et. al. [45] established the non-
convex minimization theorem, Caristi’s fixed point theorem, Ekeland’s variational
principle, and some fixed point theorems involving a w-distance. The w-distance is
further studied and used in [60, 65].

This section deals with the concepts and results that appeared in [49].

Throughout the section, unless specified otherwise, we assume that (X,d) is a
metric space and ¢ : (—oo,00] — (0,0) is a nondecreasing function.

An extended real-valued function f : X — (—eo, 0] is said to be

(i) Lower semicontinuous from above (in short, Isca) at xo € X [19] if for any
sequence {x,} in X with x,, — xp and f(x1) > f(xp) > -+ > f(x,) > --- imply
that f(xo) < 1imy e f(xn).

(i1) Upper semicontinuous from below (in short, uscb) at xy € X if for any sequence
{xn} in X with x, — x0 and f(x;) < f(x2) < -+ < f(x,) < --- imply that
f(XO) > ]imnH‘x’f(xn)

The function f is said to be Isca (respectively, uscb) on X if f is Isca (respectively,
uscb) at every point of X. The function f is said to be proper if f £ co.

It is obvious that the lower (respectively, upper) semicontinuity implies the
lower (respectively, upper) semicontinuity from above (respectively, below), but the
reverse is not true (see [19, Example 1.3]).

We introduce the following concept of a 7-function which is different from the
definition of a 7-distance studied in [61]. It generalizes the concept of w-distance.

Definition 10.2 ([49]). A function p : X X X — [0,e0) is said to be a T-function if
the following conditions hold.

(tl) Forall x,y,z € X, p(x,2) < p(x,y) + p(»,2).
(12) If x € X and {y,} in X with lim, .y, =y and p(x,y,) < M for some M =
M(x) > 0 then p(x,y) < M.



152 Qamrul Hasan Ansari and Lai-Jiu Lin

(13) For any sequence {x,} in X with limsup,_,..{p(x;,xn) : m >n} =0, and
if there exists a sequence {y,} in X such that lim,_.. p(x,,y,) = O, then
limy, oo d (X, ) = 0.

(14) For x,y,z € X, p(x,y) =0 and p(x,z) =0 imply y = z.

Itis known that if p is a w-distance on X x X, then for every x,y,z € X, p(x,y) =0
and p(x,z) = 0 imply y = z. See, for example, [45, 67].
If p(x,-) is lower semicontinuous for each x € X, then condition (72) holds.

Remark 10.1. Every w-distance is a 7-function.

Indeed, let p be a w-distance on X x X. Clearly, (71) and (74) hold. If x € X and
{yn} in X with lim,—.y, =y such that p(x,y,) < M for some M = M(x) > 0,
then by (w2), p(x,y) < lim,_,,p(x,y,) < M. Therefore (72) holds. Let {x,} be
a sequence in X with limsup,_,..{p(x,,%,) : m > n} =0 and there exists {y,}
in X such that lim,_e p(x,,y,) = 0. For any € > 0, there exists ngp € N such
that p(xy,x,41) < 6/2 and p(xu,ys) < 6/2 whenever n > ng. So p(xn,ynt1) <
P(xn, Xut1) + P(Xut1,Ynt1) < 6 whenever n > ng. Then by (W3), d(x41,Vn+1) < €
whenever n > ng. Hence limy, ... d(x,,y,) = 0 and (73) holds. Therefore, p is a
T-function on X x X.

Lemma 10.1 ([49, Lemma 2.1]). Let p be a T-function on X x X. If a sequence
{x,} in X with limsup,,_, ,{p(xn,Xn) : m >m} =0, then {x,} is a Cauchy sequence
inX.

Lemma 10.2 ([49, Lemma 2.2]). Let f : X — (—oo,o0| be a function and p be a
T-function on X x X. For each x € X, let

Sx)={yeX:y#x plxy) <o(f(x))(f(x) - f()}

If S(x) is nonempty for some x € X, then for eachy € S(x), we have f(y) < f(x) and
S(y) € S(x).

Lemma 10.3 ([50, Lemma 2.2]). Suppose that the function p : X x X — [0, o) satis-
fies the conditions (t1) and (t4) and the function q : X X X — (—oo,00] satisfies
q(x,x) > 0 for all x € X and q(x,z) < q(x,y) + q(y,2) for all x,y,z € X. For each
x €X, let G : X — 2% be defined by

Gx)={yeX:y#xpxy) +q(xy) <0}

If G(x) is nonempty for some x € X, then for each'y € G(x), we have q(x,y) <0 and
G(y) € G(x).

Remark 10.2. For any function f : X — (—co, o], the bifunction g : X x X — (—oo, ]
defined by ¢(x,y) = f(y) — f(x) satisfies the conditions of Lemma 10.3.

We present an intersection result involving a t-function and a function which is
proper Isca and bounded below. This result plays a key role in the proof of the main
result of this section.
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Proposition 10.1 ([49, Proposition 2.1]). Let f : X — (—oo,0] be a proper Isca
and bounded below function and p be a t-function on X X X. For each x € X, let
S(x) be the same as in Lemma 10.2. If {x,} is a sequence in X such that S(x,) is
nonempty and x,+1 € S(x,) for all n € N, then there exists xo € X such that x, — xg
and xo € (V=1 S(Xn).

Moreover, if f(xy+1) < inf gy, f(2) + L for alln €N, then (\;_ S(x,) contains
precisely one point.

By applying Proposition 10.1, we obtain the following generalization of
Ekeland’s variational principle for lower semicontinuous from above functions and
involving a 7-function.

Theorem 10.4 (Generalized Ekeland’s Variational Principle [49, Theorem 2.1]).
Let f: X — (—oo,00| be a proper Isca and bounded below function and p be a
T-function on X x X. Then there exists v € X such that p(v,x) > @(f(v))(f(v) —
f(x)) for all x € X with x # v.

Proof. On the contrary, assume that for each x € X, there exists y € X with y # x
such that p(x,y) < @(f(x))(f(x) — f(y)). For each x € X, let S(x) be the same as in
Lemma 10.2. Then S(x) # 0 for all x € X. Because f is proper, there exists u € X
with f(u) < c. We define inductively a sequence {u,} in X, starting with u; = u.
Then choose uy € S(uy) such that f(uz) <infycg(,,)f(x)+ 1. Suppose that u, €
X is known; then choose u, 11 € S(un) such that f(u,41) < infycg,,) f(x) +1/n.
From Proposition 10.1, there exists xo € X such that (,_; S(u,) = {xo}. By Lemma
10.2, S(x0) € Mp—1 S(un) = {x0} and hence S(xo) = {xo}, which is a contradiction.
Therefore there exists v € X such that p(v,x) > @(f(v))(f(v) — f(x)) for all x € X
with x # v.

As a first application of the generalized Ekeland’s variational principle, we derive
the following generalized Caristi’s (common) fixed point theorem for a family of
multivalued maps.

Theorem 10.5 (Generalized Caristi’s Common Fixed Point Theorem for a
Family of Multivalued Maps [49, Theorem 2.2]). Let p and f be the same as
in Theorem 10.4. Let I be any index set and for each i € I; let T; : X — 2% be
a multivalued map with nonempty values such that for each x € X. There exists
y =y(x,i) € T;(x) with

p(xy) < @(f()(f(x) = f(v))- (10.1)

Then there exists v € X such that v € (ic; T;(v); that is, the family of multivalued
maps {T;}ic; has a common fixed point in X, and p(v,v) = 0.

Proof. From Theorem 10.4, there exists v € X such that p(v,.x) > ¢
(f(v) = f(x)) forall x € X with x # v. We claim that v € N;; T;(v) and p(v,v

By the hypothesis, for each i € I, there exists w(v,i) € T;(v) such that p(v, w(v,i))
<o(f()(f(v) = f(w(v,i))). Then w(v,i) = v for each i € I. Indeed, if w(v,ip) # v
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for some iy € I, then p(v,w(v,ip)) < @(f(v))(f(v) — fF(w(v,io))) < p(v,w(vip)),
which leads to a contradiction. Hence v = w(v,i) € T;(v) for all i € I. Because

p(vv) <@(f(W)(f(v) = f(v)) = 0, we obtain p(v,v) =0.

If for each i € I, T; is a single-valued map, then the following result can be easily
derived from the above theorem.

Corollary 10.1 (Generalized Caristi’s Common Fixed Point Theorem for a
Family of Single-Valued Maps [49, Corollary 2.1]). Let p and f be the same
as in Theorem 10.4. Let I be any index set and for eachi € I, let g; : X — X be a

single-valued map such that p(x,g;(x)) < o(f(x))(f(x) — f(gi(x))) for all x € X.
Then there exists v € X such that g;(v) = v for each i € I and p(v,v) = 0.

Remark 10.3.

(a) Corollary 10.1 implies Theorem 10.5.
Indeed, under the hypothesis of Theorem 10.5, for each x € X, there exists
y(x,i) € T;(x) such that p(x,y(x,i)) < o(f(x))(f(x) — f(y(x,i))). Foreachi €I,
we set g;(x) = y(x,i). Then g; is a single-valued map from X into itself satis-
fying p(x,gi(x)) < o(f(x))(f(x) — f(gi(x))) for all x € X. By Corollary 10.1,
there exists v € X such that v = g;(v) € T;(v) for each i € I and p(v,v) = 0.

(b) Theorem 10.5 implies Theorem 10.4.
Indeed, suppose that for each x € X, there exists y € X with y # x such that
p(x,y) < o(f(x))(f(x) — f(»)). Then for each x € X, we can define a multi-
valued mapping 7 : X — 2%\ {0} by

T(x)={yeX:y#x, p(x,y) < o(f(x)(f(x) = f()}

By Theorem 10.5, T has a fixed point v € X; thatis,v € T(v). Butv ¢ T(v), a
contradiction.

In the rest of the section, unless specified otherwise, we assume that (X,d), p, f,
and ¢ are the same as in Theorem 10.4 and [ is any index set.

As a second application of Theorem 10.4, we present the following nonconvex
maximal element theorem for a family of multivalued maps.

Theorem 10.6 (Nonconvex Maximal Element Theorem for a Family of Multi-
valued Maps [49, Theorem 2.3)). For each i € I, let T; : X — 2% be a multivalued
map. Assume that for each (x,i) € X x I with T;(x) # 0, there exists y = y(x,i) € X
with y # x such that (10.1) holds. Then there exists v € X such that T;(v) = 0 for
eachiecl

Remark 10.4. Theorem 10.6 implies Theorem 10.4.
Indeed, suppose that for each x € X, there exists y € X with y # x such that
p(x,y) < o(f(x))(f(x) — f()). For each x € X, define a multivalued map by

T(x)={yeX:y#x plxy) <o(f(x))(f(x) - f()}

Then T'(x) # 0 for all x € X. But from Theorem 10.6, there exists v € X such that
T(v) =0, a contradiction.
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The following result is the generalization of the nonconvex minimization theorems
studied in [45, 66].

Theorem 10.7 (Generalized Takahashi’s Nonconvex Minimization Theorem
[49, Theorem 3.1]). Suppose that for any x € X with f(x) > inf.cx f(z), there
exists y € X with y # x such that (10.1) holds. Then there exists v € X such that

f(v) =infeex f(2).

Remark 10.5. Theorem 10.7 implies Theorem 10.4.

Indeed, suppose that for each x € X, there exists y € X with y # x such that
p(x,y) < o(f(x))(f(x) — f(y)). Then, by Theorem 10.7, there exists v € X such
that f(v) = infyex f(x). By our supposition, there exists w € X with w # v such
that p(s,w) < @(f(¥)(f(¥) — F(w)) < 0. Hence p(v,w) = 0 and £(v) = f(w) =
infrex f(x). There exists z € X with z # w such that p(w,z) < @(f(w))(f(w) —
f(z)) < 0. So we also have p(w,z) =0 and f(v) = f(w) = f(z) = infyex f(x).
Because p(v,z) < p(v,w)+ p(w,z) = 0, p(v,z) = 0. By condition (74), we have
w = z, which leads to a contradiction.

Remark 10.6. [45, Theorem 1] and [62, Theorem 5] are special cases of
Theorem 10.7.

We derive the following nonconvex minimax theorem from Theorem 10.4.

Theorem 10.8 (Nonconvex Minimax Theorem [49, Theorem 3.2]). Let F : X X
X — (—oo,00| be a function such that it is proper and Isca and bounded in the first
argument. Suppose that for each x € X with

{ueX:F(x,u) >aiI€1)1;F(a,u)}7é(Z),

there exists y = y(x) € X with y # x such that
p(x,y) < @(F(x,w))(F(x,w)—F(y,w)) forallweX. (10.2)

Then infyex supycy F(x,y) = sup,cy infrex F(x,y).

Remark 10.7. The convexity assumptions on the sets or on the bifunctions are
essential in many existing general topological minimax theorems. McLinden [51]
obtained some applications of Ekeland’s variational principles to minimax problems
in the setting of Banach spaces. The results in [51] are patterned after Rockafellar’s
augmented version of Ekeland’s variational principle, in which additional infor-
mation of subgradient type is extracted from the basic Ekeland’s inequality. Note
that the assumption and conclusion of Theorem 10.8 are different from those studied
in [51]. Ansari, Lin, and Su [3] and Lin [48] studied minimax theorems for a
family of multivalued mappings in locally convex topological vector spaces. Certain
convexity assumptions are assumed in [3, 48] and the references therein.

The following result provides the existence of a solution of EP without any kind
of convexity assumption on the underlying set and bifunction.
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Theorem 10.9 (Nonconvex Equilibrium Theorem [49, Theorem 3.3]). Let F and
© be the same as in Theorem 10.8. Suppose that for each x € X with {u € X :
F(x,u) <0} # 0, there exists y = y(x) € X with y # x such that (10.2) holds. Then
there exists v € X such that F (v,y) > 0 forall y € X.

Example 10.1. Let X = [0, 1] and d(x,y) = |x—y|. Then (X,d) is a complete metric
space. Let a and b be positive real numbers with a > b. Let F : X X X — R be defined
by F(x,y) = ax—by. It is easy to see that for each y € X, the function x — F(x,y) is
a proper Isc and bounded below function on X and F(1,y) > 0 for all y € X. In fact,
F(x,y) >0 for all x € [(b/a),1] and all y € X. Note that for each x € [0, (b/a)),
F(x,y) =ax—by <0 for all y € [(a/b)x,1]. Hence {u € X : F(x,u) <0} #0
for all x € [0,(b/a)). For any x >y, x,y € X, we have x —y = (1/a){(ax — bu) —
(ay —bu)} for all u € X. Define a nondecreasing function @ : [0, 4c0) — [0, +e) by
o(t) = (1/a).Hence d(x,y) < @(F (x,u))(F (x,u) — F(y,u)) forall x >y, x,y,u € X.
By Theorem 10.9, there exists v € X such that F(v,y) >0 forall y € X.

Remark 10.8. Oettli and Théra [54] and Park [56] gave some equilibrium formu-
lations of Ekeland’s variational principles. But note that, in [54], the author assumed
that

(a) F(x,2) < F(x,y) + F(y.z) forall x,y,z € X;
(b) Forany x € X, F(x,-) : X — (—oo,0] is lower semicontinuous;
(¢) There exists xp € X such that infycx F (xp,y) > —oo;

and, in [54], the authors assumed that F (x,x) = 0 for any x € X in addition to con-
ditions (a) and (b). So Theorem 10.9 is different from the one obtained in [54].

Theorem 10.10 ([49, Theorem 3.4]). For each i € I, let T; : X — 2% be a multi-
valued map with nonempty values, gi,h; : X x X — R be functions and {a;} and
{bi} be families of real numbers. Assume that the following conditions hold.

(i) For each (x,i) € X X I, there exists y = y(x,i) € T;(x) such that g;(x,y) > a; and
p(x,y) < @(f(x)(f(x) = f())-
(ii) For each (u,i) € X x I, there exists w = w(u,i) € T;(u) such that hi(u,w) < b;
and p(u,w) < @(f(u))(f () — f(w)).
Then there exists xy € T;(xo) such that g;(xo,x0) > a; and hi(xp,x0) < b; forall i €
and p(xp,x0) = 0.

Remark 10.9.

(a) In Theorem 10.10, if g; = h; = F; and a; = b; = ¢;, then there exists xo € T;(xg)
such that F;(xp,xp) = ¢; for all i € I and p(x¢,x0) = 0.

(b) In (a), if T;(x) = X for all x € X, then there exists xo € X such that F;(xg,x0) = ¢;
for all i € I and P;(xo,x0) = 0.

(c) [2, Theorem 3.1] is a special case of Theorem 10.10.

Remark 10.10. Theorem 10.10 implies Theorem 10.4.
Indeed, assume that for each x € X, there exists y € X with y # x such that
p(x,y) < o(f(x))(f(x) — f()). Define a multivalued map T : X — 2%\ {0} by
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T(x) ={y € X :y#x} and a function F : X x X — R by F(x,y) = 17 (),
where y4 is the characteristic function for an arbitrary set A. Note thaty € T (x) <
F(x,y) = 1. Thus for each x € X, there exists y € X such that F(x,y) = 1 and
p(x,y) <o(f(x))(f(x) — f(»)). By Remark 10.9(c) with ¢ = 1, there exists xo € X
such that F(xg,x0) = 1 and p(xg,x0) = 0. Hence we have xy € T(xp). This is a
contradiction.

Definition 10.3. Let (X,d) be a metric space and a,b € X. Let kK : X — (0,00) be
a function and p be a w-distance on X. The (p, x)-flower petal Pg(a,b) (in short,
Pg(a,b, x)) associated with € € (0,0) and a,b € X is the set

Pela,b, k) = {x € X : ep(a,x) < (a) (p(b,a) — p(b,x)}.
Obviously, if the w-distance p with p(a,a) = 0, then P¢(a,b, k) is nonempty.

Lemma 10.4 ([49, Lemma 4.1]). Let € > 0 and p be a w-distance on X. Suppose
that there exists u € X such that f(u) < oo and p(u,u) = 0. Then there exists v € X
such that

(i) ep(u,v) < @(f () (f () = f(v)).
(ii) ep(v,x) > @(f(V))(f(v) — f(x)) forall x € X with x # v.

Finally, as an application of our results mentioned above, we establish a gene-
ralized flower petal theorem.

Theorem 10.11 (Generalized Flower Petal Theorem [49, Theorem 4.1]). Let M
be a proper complete subset of a metric space (X,d) and a € M. Let p be a
w-distance on X with p(a,a) = 0. Suppose that b € X\M, p(b,M) = infycpr p(b,x) >
r and p(b,a) = s > 0 and there exists a function K : X — (0,0) satisfies k(x) =
o(p(b,x)) for some nondecreasing function @ : (—oo,00] — (0,00). Then for each
€ > 0, there exists v € M N Pg(a,b, k) such that Pz(v,b,x); N (M\{v}) = 0. More-
over, p(a,v) < e 'x(a)(s—r).

Remark 10.11. Under the assumptions of Theorem 10.11, we cannot verify v €
P:(v,b, k)1, but if we assume that the w-distance p with p(x,x) =0 forall x € X, then
for each € > 0, there exists v € M N Pe(a,b, k)| such that Pe(v,b,Kx); N M = {v}.

In Theorem 10.11, if k(x) = 1 for all x € X, we can obtain the primitive flower
petal theorem [57].

10.3 Fitting Function, Ekeland-Type Variational Principle, and
Some Equivalent Results

Let X be a nonempty set and “<” be a quasi-order (preorder or pseudo-order, i.e.,
a reflexive and transitive relation) on X. Then (X, <) is called a quasi-ordered set.
Let (X,d) be a metric space with a quasi-order <. A nonempty subset M of X is
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said to be < complete if every nondecreasing Cauchy sequence in M converges.
An element v in X is called a maximal element of X if there is no element x of X,
different from v, such that v < x; that is, v < w for some w € X implies that v = w.
Throughout the section, unless otherwise specified, we assume that (X,d) is a
metric space.
The following concept of a fitting function defined on a topological space is
introduced in [50].

Definition 10.4 ([50]). Let X be a topological space. A bifunction ¢ : X x X —
(—oo, 0] is said to be a fitting function if the following conditions are satisfied.

(i) Forall x,y,z € X, ¢(x,2) < ¢(x,y) +q(»:2)-
(ii) For all x € X, g(x,) is lower semicontinuous.

Obviously, if g| and ¢, are fitting functions and & > 0, then &g and g; + ¢, are
also fitting functions.
Let us give some examples of fitting functions.

Example 10.2. Any w-distance is a fitting function. In particular, a metric is a fitting
function.

Example 10.3. Let X be a topological space and f : X — (—eo,c] be a lower semi-
continuous function. Then the function g : X X X — (—eo, 0| defined by ¢(x,y) =
f(y) — f(x) is a fitting function.

Example 10.4. Let (X,d) be a metric space and T : X — X be a continuous map.
Then it is easy to verify that the functions ¢; : X x X — [0,0), i = 1,2, 3, defined by

q1(x,y) = max{d(x,y),d(x,Ty)},
q2(x,y) = max{d(Tx,y),d(Tx,Ty)}
and
q3(x,y) = max{d(x,y),d(x,Ty),d(Tx,y),d(Tx,Ty)}
are fitting functions.

Example 10.5. Let (X, ]| - ||) be a normed vector space, f : X — [0,0) be any func-
tion, g : X — [0, o) be a lower semicontinuous function, and a > 0. Then the function
q:X xX — [0,) defined by

q(x,y) = allx—y| + f(x) + &)

is a fitting function. In particular, any constant function on X x X and the function
q:X x X — [0,0) defined by g(x,y) = ||x|| + ||y|| are fitting functions.

Example 10.6. Let X = R with the metric d(x,y) = [x—y|, 0 < a < b, and ¢ > 0.
Define the function ¢ : X x X — [0,) by

q(x,y) = max{a(y —x),b(x—y)} +c.

Then ¢ is nonsymmetric. It is easy to see that g is a fitting function.
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Example 10.7. Let X = [0, ) with the metric d(x,y) = |x—y| and M = [a,b] be a
compact subset of X, where a < b. Hence M is complete. Let m > n > 0. Define the
functiong : X x X — R by

q(x,y) = mx —ny.

Then g(x,x) > 0 for all x € X and ¢ is a fitting function. Moreover, infyep g(x,y) >
—oo for each x € M.

The following result is a variant of generalized Ekeland’s variational principle
and maximal element theorem for 7-functions and fitting functions in the setting of
< complete metric spaces.

Theorem 10.12 ([50, Theorem 2.1]). Let p be a t-function such that p(x,-) is lower
semicontinuous for each x € X and q : X X X — (—oo,o0| be a fitting function such
that q(x,x) > 0 for all x € X. Define a binary relation <, ;) on X by

XSpgy © x=y or pxy) +qlxy) <O0.

Suppose that there exists a nonempty subset M of X such that

(i) M is 5 (p.q) complete.
(ii) There exists u € M such that infyepy q(u,y) > —oo.

For each x € M, let Sy : M — 2M be defined by

Su(x)={yeM:x Stra) v}
Then

(a) S(pyg) is a quasi-order induced by p and q.
(b) There exists v € M such that

(1) v is a maximal element of M.
(2) Sm(v) = {v}.
(3) p(v,x) + q(v,x) > 0 for all x € M with x # v.

The following result immediately follows from Theorem 10.12.

Corollary 10.2 ([50, Corollary 2.1]). Let p be a t-function such that p(x,-) is lower
semicontinuous for each x € X and f : X — (—oo,00] be a lower semicontinuous
function. Define a binary relation ,<V(p’f) onX by

xSy & x=yor pxy) < f(x)-f(y).
Suppose that there exists a nonempty subset M of X such that

(iii)1 M is Sy y) complete.
(iv)1 There exists u € M such that f(u) —infyep f(y) < oo.
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For each x € M, let Sy : M — 2M be defined by
Su(x)={yeM: xS, 5 v}

Then

(a) g(mc) is a quasi-order induced by p, and f.
(b) There exists v € M such that

(1) v is a maximal element of M.
(2) Spu(v) ={v}.
(3) p(v,x) > f(v) — f(x) for all x € M with x # v.

Theorem 10.13 ([50, Theorem 2.2]). Let p and q be the same as in Theorem 10.12.
Let € > 0 and A > 0 be given. Define a binary relation Sted,pg) onX by

YSeapgy & x=y or eA7'p(ry)+qlxy) <0.
Suppose that there exists a nonempty subset M of X such that

(iii)y M is S p p.q) cOmplete.
(iv)2 There exists u € M such that p(u,u) = q(u,u) = 0 and infycpr q(u,y) > —e¢.

Foreachx € M, let Sy : M — 2M pe defined by

Su@) ={yeM:x S pq ¥}
Then

(a) S(enp.g) IS a quasi-order induced by &, A, p, and q.
(b) There exists v € M such that

(1) v is a maximal element of M.

(2) Su(v) ={v}

(3) p(u,v) <A.

(4) —e < q(u,v) <0.

(5) eA "' p(u,v) +q(u,v) <O0.

(6) eA"p(v,x) +q(v,x) > 0 for all x € M with x # v.

We now present some equivalent formulations of Theorem 10.12.

Theorem 10.14 ([50, Theorem 3.1]). Under the same assumption of Theorem 10.4,
the following statements are equivalent.

(i) There exists z € M such that Sy (z) = {z}.
(ii) (Maximal Element Theorem). There exists a maximal element in M.
(iii) (Generalized Ekeland’s Variational Principle). There exists v € M such that
p(v,x) +q(v,x) > 0 for all x € M with x # v.
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(iv) (Generalized Caristi’s Common Fixed Point Theorem for a Family of Multi-
valued Maps). Let I be an index set. For each i € I, let T; : M — 2X be a
multivalued map with nonempty values such that for each x € M, there exists
y=y(x,i) € Ti(x) withx S, ¢) ¥- Then {T; }ic1 has a common fixed point in M.

(v) (Generalized Caristi’s Common Fixed Point Theorem for a Family of Single-
Valued Maps). Let I be an index set. For each i €1, let T; : M — X be a
single-valued map such that x S, o) Ti(x) for all x € M. Then {T;}ics has a
common fixed point in M.

(vi) (Common Fixed Point Theorem for a Family of Multivalued Maps). Let [
be an index set. For each i € I, let T, : M — 2% be a multivalued map with
nonempty values such that for each x € M with x ¢ T;(x), there exists y =
y(x,i) € M with y # x such that x S, o) y- Then {Ti}ic; has a common fixed
pointin M.

(vii) (Common Stationary Point Theorem). Let I be an index set. For each i € I, let
T; - M — 2% be a multivalued map with nonempty values such that for each
XEM. x5, 9 yyforally € Ti(x). Then {T;}ic; has a common stationary point
Xo in M; that is, Ty(xo) = {xo} for eachi € I.

(viii) (Nonconvex Maximal Element Theorem for a Family of Multivalued Maps).
Let I be an index set. For each i € I, let Ty : M — 2% be a multivalued map.
Suppose that for each (x,i) € M x I with T;(x) # 0, there exists y = y(x,i) € M
with y # x such that x 5, 4) - Then there exists xo € M such that Ti(xo) = 0
foralliel.

P,q)

We establish another type of Ekeland’s variational principle involving the
T-function and a maximal element theorem that are different from Theorem 10.12
in general.

Theorem 10.15 ([50, Theorem 4.1]). Lez f : X — (—oo, 0| be a Isca function, @ :
(—o0,00] — (0,°0) be a nondecreasing function, and p be a T-function on X. Define
a binary relation 5, ¢,¢) on X by

XSpre)Y x=y or plxy) <e(f(x)(f(x)—f()).
Suppose that there exists a nonempty subset M of X such that

(i) M is < S(p.f.p) complete.
(ii) There exists u € M such that f(u) < .
(iii) f is bounded below on M.

For eachx € M, let Sy : M — 2M be defined by
Su(x) ={yEM:xZ(p1.9) ¥}

Then

(a) S(p.f.e) I8 a quasi-order induced by p, q, and ¢;
(b) There exists v € M such that
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(1) v is a maximal element of M.
(2) Su(v) = {v}.
(3) p(v,x) > @(f(v))(f(v) — f(x)) for all x € M with x 7 v.

Remark 10.12.

(a) Theorem 10.4 is a special case of Theorem 10.15.
(b) Theorem 10.15 is different from Theorem 10.12 in the following ways.

(1) In Theorem 10.12, we assumed that p is a 7-function such that p(x,-) is
lower semicontinuous for all x € X, but in Theorem 3.4, we only assumed
that p is a T-function such that p(x, -) need not be lower semicontinuous for
allx € X.

(2) In Theorem 10.15, we assumed that f : X — (—co, 0] is a Isca function and
@ : (—oo0,00] — (0,e0) is a nondecreasing function. So the function ¢ : X x
X — (—eo,0q] defined by g(x,y) = @o(f(x))(f(y) — f(x)) does not satisfy
conditions (ii) and (iii) of Theorem 10.12 in general.

(3) The quasi-orders in Theorem 10.12 and Theorem 10.15 are different in
general.

(4) The conclusion “p(v,x) > @(f(v))(f(v) — f(x)) for all x € M with x # v”
in Theorem 10.15 is different from the conclusion “p(v,x) + g(v,x) > 0 for
all x € M with x # v” in Theorem 10.12 in general.

Theorem 10.16 ([50, Theorem 4.2]). Ler (X,d) be a complete metric space, f :
X — (—-oo,00| be a proper lower semicontinuous and bounded below function and
@ : (—o0,00] — (0,00) be a nondecreasing function. Let p be a T-function and € > 0.
Suppose that there exists u € X such that p(u,-) is lower semicontinuous, f(u) <
infyex f(x) + € and p(u,u) = 0. Then there exists v € X such that

(@) p(u,v) < @(f(u)).

(b) f(v) <infyex f(x) + €.

(©)0< flu) - f(v) < &

(d) ep(u,v) < @(f () (f(u) = f(v))-

(e) ep(v,x) > o(f(V))(f(v) — f(x)) forall x € X with x # v.

We have the following nonconvex minimax theorem involving a 7-function and
a fitting function in the setting of complete metric spaces.

Theorem 10.17 (Nonconvex Minimax Theorem [50, Theorem 6.1]). Let (X, d) be
a complete metric space, p be a T-function such that p(x,x) =0, and p(x,-) is lower
semicontinuous for all x € X, and q : X x X — (—oo,00| be a fitting function such
that q(x,x) <0 for all x € X and there exists u € X such that infycx q(u,y) > —oo.
Suppose that for each x € X with {u € X : q(x,u) > inf,ex q(a,u)} # 0, there exists
y=y(x) € X with y # x such that p(x,y) +q(x,y) < 0. Then infyex sup,cy q(x,y) =
sup,cx infrex g(x,y).

Finally, we have an existence result for a solution of EP involving the fitting
function and in the setting of complete metric spaces.



10 Ekeland-Type Variational Principles and Equilibrium Problems 163

Theorem 10.18 (Nonconvex Equilibrium Theorem [50, Theorem 6.4]). Let
(X,d), p, and q be the same as in Theorem 10.17. Suppose that for each x € X
with {u € X : q(x,u) < 0} # 0, there exists y = y(x) € X with y # x such that
p(x,y) +q(x,y) <O0. Then there exists xo € X such that q(xy,y) > 0 forall y € X.

10.4 O-Functions, Ekeland-Type Variational Principle, and
Related Results

The concept of a quasi-metric space generalizes the concept of a metric space by
lifting the symmetry condition. For the quasi-metric space (X,d), the concepts of
Cauchy sequences, convergent sequences, and completeness can be defined in the
same manner as in the setting of metric spaces.

Throughout the section, unless otherwise specified, we assume that X is a quasi-
metric space with the quasi-metric d.

We introduce the concept of a Q-function on a quasi-metric space X.

Definition 10.5 ([1]). A function ¢ : X x X — R is called a Q-function on X if the
following conditions are satisfied.

(Q1) Forall x,y,z € X, q(x,2) < q(x,y) +q(»,2).

(Q2) If x € X and {y,},en is a sequence in X such that it converges to a point y
(with respect to the quasi-metric) and g(x,y,) < M for some M = M(x) > 0,
then g(x,y) < M.

(Q3) For any € > 0, there exists § > 0 such that g(x,y) < 0 and g(x,z) < & imply
d(y,z) <e.

Remark 10.13. If (X,d) is a metric space and in addition to (Q1)—(Q3), the follow-
ing condition is also satisfied,

(Q4) For any sequence {xy }nen in X with limy, e sup{q(x,,%y) : m >n} =0, and
if there exists a sequence {y,},cn in X such that lim,_,. g(x,,y,) = 0, then
limnamd(xn,yn) =0,

then the definition of a Q-function reduces to the definition of a T-function. We have
seen in Section 10.2 that every w-distance is a T-function. In fact, if we consider
(X,d) as a metric space and replace (Q2) by the following condition,

(Q5) For any x € X, the function g(x,-): X — R is lower semicontinuous,

then the definition of a Q-function becomes the definition of a w-distance. It is
easy to see that if g(x,-) is lower semicontinuous, then (Q2) holds. Hence, it is
obvious that every w-function is a 7-function and every 7-function is a Q-distance
but converse assertions do not hold.
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Example 10.8.
(a) Let X =R. Suppose d : X x X — R, is defined as

d(x,y) 0 ifx=y
‘x) = .
Y ly|] otherwise

and g : X x X — R, is defined as
g(x,y) =|y| forallx,y€X.

Then it is easy to see that d is a quasi-metric on X and ¢ is a Q-function on X.
But ¢ is neither a 7-function nor a w-distance.
(b) Let X = [0, 1]. Suppose d : X x X — R is defined as

d(x,y) = y—x ify>x
’ 2(x—y) otherwise

and g : X x X — R, is defined as
q(x,y)=|x—y| forallx,ye€X.

Then ¢q is a Q-function on X. However g is neither a 7-function nor a w-distance,
because (X,d) is not a metric space.

Remark 10.14. Let (X ,d) be a quasi-metric space and ¢ be a Q-function on X. If 1) :
R; — Ry is a nondecreasing and subadditive function such that n(0) = 0, then
N oqis a Q-function on X.

We present some properties of a Q-function that are similar to the properties of a
w-distance.

Lemma 10.5 ([1, Lemma 2.1]). Let g : X x X — Ry be a Q-function on X and,
{xn}nen and {yn}nen be sequences in X. Let {04 tneny and {Bn}nen be sequences
in Ry such that they converge to 0, and let x,y,z € X. Then the following conditions
hold.

(i) If q(xn,y) < 0 and q(x,,2) < By for all n € N, then y = z. In particular, if
q(x,y) =0and q(x,z) =0, theny = z.
(ii) If q(xn,yn) < o and q(xn,y) < B, for all n € N, then {y, },en converges to y.
(iii) If q(xp,xm) < 0, for all n,m € N with m > n, then {x,},en is a Cauchy
sequence.
(iv) If ¢(y,x,) < 04 for all n € N, then {x,},en is a Cauchy sequence.

(v) If 41,92, - - - ,qn are Q-functions on X, then q(x,y) = max{qi(x,y), g2(x,y),. ..,
qn(x,y)} is also a Q-function on X.

The proof of this lemma lies on the lines of the proof of Lemma 1 in [45] and
therefore we omit it.
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Definition 10.6. A function f : X — RU{+eo} is said to be lower monotone if for
any sequence {x, },eny C X converging to some point x € X and satisfying f(x,41) <
f(x,) for all n € N, we have f(x) < f(x,) for each n € N.

Remark 10.15. Note that the lower monotonicity is slightly weaker than lower semi-
continuity. In other words, every lower monotone function is lower semicontinuous
but the converse is not true in general.

Remark 10.16. From the definitions of lower monotone and Isca of a function, it is
clear that every lower monotone function is Isca but the converse may not be true in
general. But, if f is bounded below then both concepts are equivalent.

Indeed, let {x, },eny € X be a sequence such that it converges to some point x and
F(xut1) < f(xn) forall n € N. We claim that f(x) < f(x,) forall n € N, if f is Isca
and bounded below.

Because f is bounded below and f(x,41) < f(x,) for all n € N, lim,,—e0 f(x)
exists. Let 7 = limy,_. f(x,) = inf,en f(xn), then f(x,) > r for all n € N. The Isca
of f implies that f(x) < lim,_. f(x,;) = r and thus f(x) <r < f(x,) foralln € N.

Definition 10.7. Let X be an ordered space with an ordering < on X.

(i) The ordering < on X is called a quasi-order on X if it is a reflexive and transi-
tive relation.

(ii) A sequence {x,},en in X is called decreasing (with respect to <) if x, 1 < x,
for all x € N.

(iii) The quasi-order < on X is said to be lower closed if for every x € X, the section
S(x) ={y € X : y g x} is lower closed,; that is, if {x, },eny € S(x) is decreasing
with respect to < and convergent to ¥ € X with respect to the quasi-metric on
X, then ¥ € S(x).

Definition 10.8. Let (X,d) be a quasi-metric with a quasi-order < on X. For any
x € X, the set S(x) = {y € X : y < x} is said to be x-complete if every decreasing
(with respect to <) Cauchy sequence in S(x) converges in it.

We present two generalizations of the Ekeland-type variational principle for a
Q-function, one in the setting of incomplete quasi-metric spaces and the other in the
setting of complete quasi-metric spaces.

Theorem 10.19 ([1, Theorem 3.1]). Let (X,d) be a quasi-metric space (not neces-
sarily complete), q - X x X — Ry a Q-function on X, @ : (—oo,00] — (0,00) a
nondecreasing function and f : X — RU{+oeo} a proper and bounded below func-
tion. Define a quasi-order < on X as

ysx & x=y or qxy) <o(f(x)(f(x)=f(). (10.3)

Suppose that there exists £ € X such that infyex f(x) < f(£) and S(R) ={ye X :
y < £} is <-complete. Then there exists X € X such that

(£) (f (%) = /(%))

(@) g(2.5) < o(f
%) > o(f®)(FF) — f(x) forall x X, x+%

(b) q(%, (
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Remark 10.17. In Theorem 10.19, we did not assume any kind of lower semi-
continuity. Instead, we assumed that the set S(£) is <-complete.

The following result is a simplified form of Theorem 10.19.

Theorem 10.20 ([1, Theorem 3.2]). Let (X,d) be a complete quasi-metric space,
q:X xX — Ry a Q-functionon X, @ : (—eo,00] — (0,00) a nondecreasing function
and f : X — RU{+oeo} a proper, Isca, and bounded below function. Assume that
there exists X € X such that infyex f(x) < f(R), then there exists X € X such that

(a) 4(2.%) < 9(F(£)(F(£) - £(2))
(b) q(%3) > 9(F(D) (F(5) — f(x)) for all x € X, x # &

Remark 10.18.

(a) Theorems 10.19 and 10.20 extend and generalize Theorem 2.1, Theorem 2.1 in
[19], Theorem 1.1 in [24], Theorem 1 in [25], Theorem 3 in [45], and Theorem 3
in [56]; See also the references therein.

(b) In [41], Hamel established an Ekeland-type variational principle (similar to
Theorem 10.20) in the setting of uniform spaces generated by a family of quasi-
metrics. He proved his results for sequentially lower monotone functions and
for a quasi-metric. The above Theorems 10.19 and 10.20 are proved for Isca
functions which are more general than lower monotone functions, and for a
Q-function. As shown in the examples below that the concept of a Q-function
and a quasi-metric are not comparable, the results of this section are different
from those considered in [41].

Example 10.9. Let (X, || - ||) be a normed space. Then a function g : X x X — R
defined as g(x,y) = ||y|| for all x,y € X, is a Q-function. But it is not a quasi-metric
onX.

Example 10.10. Let X = R. Define a functiond : X x X — R, as

0 ifx=y
d(x,y) =
(x.7) { |x| otherwise.

Then d is a quasi-metric on X but it is not a Q-function. We remark that every metric
d is a Q-function.

Corollary 10.3. Let X, q, f, and @ be the same as in Theorem 10.20. Letn : Ry —
R, be a nondecreasing and subadditive function such that 1(0) = 0. Assume that
there exists X € X such that infyex f(x) < f(R); then there exists ¥ € X such that

(@) n(q(£,5)) < @(f(£))(f (%) — f(X))
(b) n(q(%,x)) > (f(%))(f(¥) = f(x)) forallx X, x#x.

Remark 10.19. Very recently, Bosch, Garcia, and Garcia [13] established a result
similar to Corollary 10.3 but for a Minkowski gauge and in the setting of locally
complete spaces. In addition to our assumptions on 1, they also assumed that
it is continuous. Therefore, the main result in [13] and Corollary 10.3 are not
comparable.
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We now present the Caristi-Kirk-type fixed point theorem, Takahashi’s
minimization theorem, and an equilibrium version of the Ekeland-type variational
principle for a Q-function in the setting of complete quasi-metric spaces. We also
establish the equivalences among these results and Theorem 10.20.

Theorem 10.21 ([1, Theorem 4.1]). Let (X,d) be a complete quasi-metric space,
q:X xX — Ry a Q-function on X, @ : (—oo,00] — (0,00) a nondecreasing func-
tion, and f : X — RU {+oo} a proper, Isca, and bounded below function. Then the
following statements are equivalent reformulations of Theorem 10.20.

(i) (Caristi—Kirk-Type Fixed Point Theorem). Let T : X — 2X be a multivalued
map with nonempty values. If the condition

Jorally € T(x) : q(x,y) < (f(x))(f(x) = f())

is satisfied, then T has an invariant point in X; that is, there exists X € X such
that {x} = T(X).
If the condition

there exists y € T (x) : q(x,y) < @ (f(x))(f(x) — f(y))

is satisfied, then T has a fixed point in X, that is, there exists X € X such that
xeT(x).

(ii) (Takahashi’s Minimization Theorem). Assume that for each £ € X with
inf.ex f(2) < f(X), there exists x € X such that

x#x and q(£,x) < Q(f(£))(f(£) = f(x)).

Then there exists X € X such that f(X) = infyex f(y).
(iii) (Equilibrium Version of Ekeland-Type Variational Principle). Let F : X x X —
R U {+eo} be a function satisfying the following conditions.

(E1) For all x,y,z € X, F(x,z) < F(x,y) + F(,2).

(E2) For each fixed x € X, the function F(x,-) : X — RU {+eo} is proper and
Isca.

(E3) There exists £ € X such that infyex F (£,x) > —oo.

Then, there exists x € X such that

(aa) Q(F(D)F(5,5) +4(5,5) <O
(bb) ©(f(X))F (%,x)+q(%,x) >0 forallxeX, x#£%

Remark 10.20.

(a) Hamel [41] proved similar results to Theorem 10.21 for sequentially lower
monotone functions and in the setting of uniform spaces generated by a family
of quasi-metrics. Theorem 10.21 is proved for Isca functions that are more
general than lower monotone functions, and for a Q-function. As we have seen
above that Q functions and quasi-metrics are not comparable, the results of this
paper are different from those considered in [41].
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(b) Theorem 10.21(i) generalizes Theorem 2.2 in [8], Theorem (2.1) in [15], and a
result in [16].

(c) Theorem 10.21 (ii) extends and generalizes Theorem 1 in [45] and [66].

(d) Theorem 10.21 (iii) generalizes Theorem 10.4.

Corollary 10.4 ([1, Corollary 4.1]). Let X, g, f, and ¢ be the same as in
Theorem 10.21. Let 1 : Ry — Ry be a nondecreasing and subadditive function
such that 1(0) = 0 and let T : X — 2X be a multivalued map with nonempty values.
Ifforall x € X, there is a'y € T(x) satisfying

N(g(x,y)) < o(f(0))(f(x) = F (),

then T has a fixed point in X.

Remark 10.21.
(a) Corollary 10.4 generalizes Theorem 4.2 in [31] in the following ways.

(1) X is a complete quasi-metric space in Corollary 10.4 and it is a complete
metric space in Theorem 4.2 in [31].
(ii) f is bounded and Isca in Corollary 10.4 and is bounded below and lower
semicontinuous in Theorem 4.2 in [31].
(iii) In Corollary 10.4, 1 is not necessarily continuous.

(b) Corollary 10.4 also generalizes and extends Theorem 3.17 in [47] in several
ways.

By using the same arguments as in the proof of Theorem 10.5, a common fixed
point theorem can be easily derived for a family of multivalued maps similar to
Theorem 10.5. The proof is straightforward, therefore we do not mention it here.

As a particular case of Theorem 10.21(iii), we derive the following result by
taking @(f(x)) = 1/€ for all x € X and for any given € > 0.

Corollary 10.5 (Equilibrium Version of Ekeland-Type Variational Principle
[1, Corollary 4.2]). Let (X,d) be a complete quasi-metric space and q: X x X — Ry
be a Q-function on X. Let F : X x X — R be a function satisfying the following
conditions.

(E1) Forall x,y,z € X, F(x,z) < F(x,y) + F(y,2).
(E2) For each fixed x € X, the function F(x,-) : X — R is Isca and bounded below.

Then, for any € > 0 and for any X € X, there exists X € X such that
(aa) F(£,%) + eq(%,%) <O0.
(bb) F(%,x)+eq(%,x) >0 forallxeX, x#x

Remark 10.22. Corollary 10.5 can be seem as an extension of Theorem 2.1 of
Bianchi, Rassay, and Pini [11] to the setting of complete quasi-metric spaces and
for a Q-function.
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We present some existence results for a solution of equilibrium problems without
convexity assumptions.

Let K be a nonempty subset of a metric space X and let F : K x K — R be a
real-valued function. Recall the equilibrium problem (in short, EP) of finding ¥ € K
such that

F(x,y)>0 forallyeK.

Definition 10.9. Let K be a nonempty subset of a metric space X, F : K XK —Ra
real-valued function and g a Q-function on X. Let € > 0 be given. A point & is called
an e-solution of EP if

F(x,y)+€q(x,y) >0 forallyeK. (10.4)
It is called a strictly e-solution of EP if the inequality in (10.4) is strict for all x # y.

We note that Corollary 10.5(bb) gives the existence of a strict €-solution of EP
for any € > 0.

We establish the existence of a solution of the equilibrium problem without any
convexity assumption.

Theorem 10.22 ([1, Theorem 5.1]). Let K be a nonempty compact subset of a com-
plete metric space X and q be a Q-functionon X. Let F : K x K — R be a real-valued
function satisfying the following conditions.

(E1) Forall x,y,z € K, F(x,z) < F(x,y) + F(3,2).
(E2) For each fixed x € K, the function F (x,-) : K — R is Isca and bounded below.
(E3) For each fixed y € K, the function F(-,y) : K — R is upper semicontinuous.

Then there exists a solution ¥ € K of EP.

On the lines of Theorem 4.1 in [11] we can easily derive the existence results for
a solution of EP when K is not necessarily compact.

Remark 10.23.
(a) Theorem 10.22 generalizes Proposition 3.2 in [11] in the following ways.

(1) In Theorem 10.22, we did not assume that F'(x,x) = 0 for all x € X.
(ii) In Theorem 10.22, F(x,-) is Isca, whereas it is lower semicontinuous in
[11].

(b) We notice that the product of n complete quasi-metric spaces (X;,d;) is a
complete quasi-metric space (X,d), where X = [T}, Xi,d(x,y) = max;<;<p
{dl(xlayl)a"' adn(xnayn)}’x: (X[,)Cz,...,xn) €Xandy= (yl,y2,~~~,yn) €X.
By Lemma 10.5(v), g¢(x,y) = maxi<i<p{q1(x1,¥1)s---,qn(Xn,yn)} is a
QO-function on X, where g; is a Q-function on X; for all i = 1,2, ..., n. Therefore,
Theorem 2.2 in [11] can be easily extended for complete quasi-metric spaces
and Q-functions as Theorem 10.22.
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Definition 10.10. Let (X,d) be a complete quasi-metric space and g be a Q-function
on X. We say that xo € X satisfies Condition (A) if and only if every sequence
{xn} C X satisfying F (xg,x,) < 1/n for all n € N and F (x,,x) + (1/n)q(x,,x) >0
for all x € X and n € N, has a convergent subsequence.

This definition is introduced and considered by Oettli and Théra [54] in the
setting of a complete metric space.

The following result provides the existence of a solution of EP under condition
(A) but without the compactness assumption.

Theorem 10.23 ([1, Theorem 5.2]). Let (X,d) be a complete quasi-metric space, q
a Q-function on X, and F : X x X — R satisfy conditions (E1)—(E2) of
Corollary 10.4 and be upper semicontinuous in the first argument. If some xo € X
satisfies Condition (A), then there exists a solution X € X of EP.

Remark 10.24.

(a) Theorem 10.16 extends Theorem 6(a) in [54] for a Q-function and in the setting
of complete quasi-metric spaces.

(b) In Theorems 10.22 and 10.23, we have not assumed that F (x,x) = 0 forall x € X.
This assumption, some kind of convexity condition on the underlying function
F', and convexity structure on the underlying set K are required in almost all the
results on the existence of a solution of EP appearing in the literature; see, for
example, [4, 9-12, 14, 17, 18, 27, 28, 32, 33, 37] and the references therein.
But in Theorems 10.19 and 10.20, neither any kind of convexity condition is
required on the function F' nor a convexity structure on the set K. Therefore, the
results of this section are new in the literature.

The following theorem provides the equivalence among the equilibrium version
of the Ekeland-type variational principle, equilibrium problem, Caristi—Kirk-type
fixed point theorem and Oettli and Théra-type theorem.

Theorem 10.24 ([1, Theorem 5.3]). Let (X,d) be a complete quasi-metric space
andq:X xX — Ry bea Q-functionon X. Let F : X x X — R be a function satisfying
the conditions (E1) and (E2) of Corollary 10.5. Then the following statements are
equivalent.

(i) (Equilibrium Form of Ekeland-Type Variational Principle). For every % € X,
there exists X € X such that

feS:={xeX:F(%x)+q(%x) <0, x#%}

and
F(%,x)+q(%x) >0 forallx€X andx # X.

(ii) (Existence of Solutions of EP). Assume that

For every X € S, there exists x € X
Such that x # % and F (%,x) + q(%,x) < 0.

Then there exists % € 8 such that F (%,x) > 0 for all x € X.
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(iii) (Caristi—Kirk-Type Fixed Point Theorem). Let T : X — 2X be a multivalued

mapping such that

For every % € S, there exists x € T (%) satisfying
F(%,x)+q(%x) <0.

Then there exists % € S such that ¥ € T ().

(iv) (Oettli and Théra-Type Theorem). Let D be a subset of X such that

For every X € .SA'\D, there exists x € X
Such that x # % and F (%,x) + q(£,x) <O0.

Then there exists ¥ € SN D.

The proof of this theorem lies on the lines of the proof of Theorem 5 in [54] and

therefore we omit it.

Remark 10.25. A generalization of Nadler’s fixed point theorem [52] to the complete
quasi-metric spaces with a Q-function is established in [1].
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Chapter 11
Decomposition Methods Based on Augmented
Lagrangians: A Survey

Abdelouahed Hamdi and Shashi K. Mishra

Abstract In this chapter, we provide a non-exhaustive account of decomposition
algorithms for solving structured large scale convex and non-convex optimization
problems with major emphasis on several splitting approaches based on the classical
or modified augmented Lagrangian functions. This study covers last 40 years of
research on theoretical properties of augmented Lagrangians.

11.1 Augmented Lagrangian Method

In 1968-1969, Powell [77] and Hestenes [46] introduced independently (under
different forms) a new algorithm to solve nonlinear problems with equality
constraints. Later on, Haarhoff and Buys [36] proposed a similar iterative scheme
based on the same idea. The name “multiplier method” is due to Hestenes. To the
following nonlinear programming problem

min  f(x) (11.1)

hi(x)=0, i=1,p

by combining ideas from primal-dual methods and from penalty methods, Hestenes
added a penalty term to the ordinary Lagrangian to obtain a penalized Lagrangian.
His penalized Lagrangian can be written:

p p
Z(erk) = 1)+ X vi) + 5 S (), (12)
i=1 i=1
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where v = (v1,...,vp) is the Lagrange multiplier vector and k > 0 is an arbitrary
penalty factor (in this formulation, all the constraints are supposed to be equality
constraints). Hestenes proposed to solve a sequence of unconstrained minimization
problems using the penalized Lagrangian. The sth unconstrained minimization is

min.Z (x,v°,k), (11.3)

where v* is the current estimate of the Lagrange multiplier vector. After each
minimization, v* is updated by the following formula,

VTl = v Ky (), i=1,p, (11.4)

where x* solves (11.3). The goal of this iteration is to solve the dual problem.
An important characteristic is that the penalty parameter k& should not increase to
infinity, to avoid ill-conditioning which is usually associated with penalty methods.
The dual iteration tends to converge rapidly, making the algorithm very efficient.
The numerical experiment confirmed the efficiency of the method, but the first three
articles cited above offered a limited theoretical analysis.

The quadratically penalized Lagrangian (11.2) used by Hestenes was in fact
studied earlier by Arrow, Hurwicz, and Uzawa ([2], 1958). They analyzed the pro-
perties of the penalized Lagrangian saddle point and suggested a gradient algorithm
to localize this saddle point directly.

In 1970, a large number of new results on the multiplier method appeared. Some
of them concentrated on analytical properties of the penalized Lagrangians and
others focused on multiplier-type algorithms based on these Lagrangians.

The penalized Lagrangian of Arrow and Solow dealt with equality constraints
only. In 1970, Rockafellar [79] introduced a similar Lagrangian for inequality
constraints, followed in 1972 by a more detailed analysis of the duality aspects
of his Lagrangian [80]. Rockafellar integrated the penalized Lagrangians quad-
ratically without the theory of generalized Lagrangians. In another article in 1972
[78], Rockafellar gave an extension of Hestenes’ method to manipulate inequal-
ity constraints, using the Lagrangian of [79]. He proved the global convergence
of the algorithm in the case of a convex programming problem, and also demon-
strated that the convergence was preserved with an inexact minimization of the
subproblem. However, his stopping test was not applied numerically. Rockafellar
[78] gave conditions under which convex programs are solvable using the quadrati-
cally penalized Lagrangian, which he baptized augmented Lagrangian.

Buys’ thesis in 1972 [14] contains an extensive analysis of the multiplier methods.
Using the generalized Lagrangian introduced in 1970 by Rockafellar, Buys gene-
ralized Hestenes’ algorithm to manipulate inequality constraints directly, with-
out using slack variables (the same algorithm given by Rockafellar at the same
time). Buys proved local convergence in the nonconvex case under second-order
sufficient conditions. He also showed that the unconstrained minimizations need
not be exact. In his book, Luenberger [56] briefly explores the dual aspect of
the multiplier method and also gives an interpretation that the dual iteration is a
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gradient iteration to maximize the dual function. Rockafellar [80], in 1974, gave
an extension to the unique theoretical result of Arrow, Gould, and Howe ([1],
1973), concerning saddle points in nonconvex programming, which states that
under the second-order sufficient optimality conditions and under the strict comple-
mentarity condition, one can show the existence of a saddle point for a certain class
of generalized Lagrangians. Rockafellar, by introducing the notions of quadratic
increase and stability, has shown that, by using an augmented duality (replace the
ordinary Lagrangian by the augmented Lagrangian), the saddle points exist and
the dual problem need not be constrained in the case of problems with inequality
constraints.

A summary of the augmented Lagrangian method with all its variants up to 1976
with 66 references can be found in [8].

In the case of inequality constraints,

min  f(x), (11.5)
gi(x)<0, i=1,p

it is straightforward to build the augmented Lagrangian via some slack variables
to get:

i gi(x) + X[gi(0)]? if kgi(x)+vi >0
Loy (x,v,k) = +Z{Vg el I kgil) 4 (11.6)

o vl otherwise.

In 1975, Pierre and Lowe [71] published the first book entirely dedicated to the
study of mathematical programming approaches via augmented Lagrangians. They
devoted two chapters to the numerical study of the method, comparing its perfor-
mance to that of other methods.

Having presented the multiplier method and the augmented Lagrangian function,
we show, in the next section, the evolution of this primal-dual approach.

11.2 Extensions of Augmented Lagrangian Methods

Since 1970, Miele et al. ([63—65]) have considered modifications of the multi-
plier method where only approximate minimizations were required in the rest of
the unconstrained problems. They also have proposed modifications of the dual
iteration and have given some theoretical results concerning their modifications.
Numerical experiments have been carried out by Miele et al. [63] indicating the
efficiency of their propositions. To solve a program with equality constraints, Miele
and his associates have proposed, in a first paper, two classes of algorithms with
the common characteristic to determine the Lagrange multipliers v*. Their idea
meets that of Fletcher [28] and Martensson [62], to minimize the error on the
optimality condition satisfaction. The first class uses an ordinary gradient method
to solve the unconstrained problem, and itself has two variants. In the first one, the
factor k is selected, and is fixed all along the iterations. On the other hand, the second
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variant is based on the idea to satisfy the constraints, which induces the following
characterization of k,
P(x)

k= :
IVP(x)||?

with P(x) = ||h(x)||%.
The second class also comprises two variants with a common step, that of
determining v* in the following way.

Vh(x)'Vh(x)v* + Vh(x)' [V £(x) + kh(x)Vh(x)'] — h(x) = 0.

The first variant uses a constant penalty factor, chosen a priori, whereas the second
one uses the same update expression for k that is used in the first class of algorithms
cited above.

In general, these two classes of algorithms target the simultaneous reduction
of the objective function, the constraints, and the augmented Lagrangian function.
In 1972, Miele et al. [65] proposed other modifications, emphasizing the possibility
of a single gradient or modified Newton iteration for the unconstrained subproblems.
One can say that the works of Miele et al. from 1970-1972 are the first numerical
results concerning the augmented Lagrangian method and its variants.

In 1972, Kort and Bertsekas [51] introduced a class of penalty functions for
the cases of equalities and inequalities in the convex case. The Hestenes—Powell—-
Rockafellar method was a particular case of the algorithm proposed by Kort and
Bertsekas. These last two have shown the global convergence in the convex case
and have given a geometric interpretation of the method.

Fletcher ([27-29]) and Lill [53] have proposed and analyzed a variant of the
multiplier method using a dual iteration similar to that of Miele. But when Miele
alternates his dual step with one or more cycles of a descent algorithm, Fletcher
replaces the dual variable by another one, dependent on the primal variable x.
This approach has an important theoretical motivation but Fletcher’s correspond-
ing algorithm turned out to be more difficult to implement than the original multi-
plier method. The difficulty is that the dual iteration requires a matrix inversion.
Different from that of the multiplier, Fletcher’s method requires a single uncon-
strained minimization provided a penalty coefficient large enough has been chosen
a priori. This approach was been studied by Martensson in 1973 [62] and then in
1975 by Mukai and Polak [66].

Bertsekas [7], and at the same time Buys in his thesis, have given a first result
concerning the linear convergence of the multiplier method. Bertsekas [7] has also
suggested modifying the dual iteration by using alternate choices of the dual step.
He showed that this modification accelerates the convergence for convex problems.
More generally, the optimal step! (giving the best convergence rate) depends on the
structure of the eigenvalues of the dual function Hessian.

Rupp [83] has also studied some properties of the convergence of the Hestenes—
Powell-Rockafellar algorithm. In [84], he proved local convergence with a modified

Ut is the parameter o in v**! =v* + o h(x* ).
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Newton step, using second-order sufficient optimality conditions. In [82] and [81],
Rupp extended the method to the infinite-dimension case for an optimal control
problem, proving also the local convergence and deducting similar results on the
convergence rate.

Mangasarian [57] introduced a general class of Lagrangians. Following Powell’s
[77] formulation, Mangasarian expresses his Lagrangian in terms of shifted penalty
functions. Mangasarian concentrated his study on local results for non-convex
problems.

Arrow, Gould, and Howe [1] proposed a class of generalized Lagrangians similar
to the class treated by Kort [50]. They concentrated on the theoretical properties
of the Lagrangian, especially the properties of the saddle points, but they did not
propose any algorithm.

Other authors have proposed variants of the basic method. We mention Tripathi
and Narendra [96] who each analyzed and reported some applications of the multi-
plier method.

In 1976, Kort and Bertsekas [51] and Kort [50] showed new results on the
augmented Lagrangian method, based on a large class of generalized Lagrangians.
These results are interesting from the point of view of convergence rate, which
varies according to the penalty functions used. For certain penalty functions, the
augmented Lagrangians

Lo(x,v,z,k Jer, i +ZP1 ),0,k] + Z zihi(x) + Pg[hi(x),0,k],
i=m+1

are twice continuously differentiable, which is not the case for the quadratic
augmented Lagrangian of Rockafellar.
As examples of penalty functions that they proposed, one finds

2,2 :
t=+1P, if t >0,
P[(I,O,A/): >
0, if £ <0,

and

A2, if 10,
Fi(t,0,4) = 0 if 1<0

and for the case of equality constraints

Pe(t,A) = th,
PE(t,l):f;tp, p>1,

and

Pg(t,A) = A(cosh(r) — 1).
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It should be noted that Kort [50] and Kort and Bertsekas [51] have invested mostly in
the convex case. Their method was clearly presented as a combination of a penalty
method and a primal-dual method.

The augmented Lagrangian algorithm has the particularity of being easy to
implement, which has pushed a large number of researchers to design techniques
and modifications to accelerate the convergence of this method. For example, Betts
[12] proposed an algorithm characterized by the estimation of the multipliers, which
is done through the resolution of a quadratic problem, issued from the minimization
of K-K-T conditions, and the unconstrained minimization is accelerated by a
Newton—Raphson-type extrapolation procedure. This approach inconveniently the
needs to identify the active constraints at each iteration.

Still in 1977, Bertsekas [9] proposed the multiplier method with partial elimina-
tion of the constraints. This is equivalent to solving a subproblem with part of the
constraints that are easy to deal with. Bertsekas showed the convergence of his
approach for the case of equality constraints. Also, he applied his method and
the multiplier method to solve problems whose objective functions suffer from
ill-conditioning or nondifferentiability. His application is equivalent to an approxi-
mation procedure based on the use of the augmented Lagrangian method to solve
the intermediary problem in the approximation. For more details, see [9]. In 1979,
Bertsekas [10] again considered the idea of Buys [14] which was to maximize
the dual augmented function by a second-order approach (the case of equality
constraints). He showed the convergence of the second-order multiplier method
based on Newton’s method, but did not require the choice of an initial multi-
plier close enough to the Lagrange multiplier v* provided the penalty coefficient
k was large enough. A similar study was done before Bertsekas by Tapia [91],
in 1977, who gave a deep analysis of the different formulations of the dual iteration
within the multipliers method. Tapia was interested in primal—-dual quasi-Newtonian
approaches to improve Rupp’s [82] 1975 result, who used a Newtonian approach.
Tapia obtained a Q-superlinear convergence by solving the unconstrained mini-
mizations by a quasi-Newtonian approach, and by using different ways to update
the sequence of multipliers. He also obtained a Q-quadratic convergence for his
diagonal approach which, in summary, uses a Newton or quasi-Newton step in the
minimization of the augmented Lagrangian function. Byrd [15] extended Tapia’s
[91] results by using two Newton steps in the multiplier diagonal approach.

In 1978, Glad [32] presented an approach similar to that of Tapia [91], which
updated the dual variables at each iteration of the unconstrained minimization
approach used. Glad used a quasi-Newtonian approach of the BFGS type? for
the minimization of the augmented Lagrangian and he obtained a superlinear
convergence.

Another variant of the quadratic augmented Lagrangian algorithm is due to Betts
[13] who, this time, exploited the primal-dual approach to find a stationary point of
the augmented Lagrangian, and the standard penalty approach which seeks to satisfy
the constraints by augmenting the value of the penalty coefficient. Betts proposed

2 Broyden—Fletcher—Goldfarb—Shanno.
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combining these two approaches as follows. First determine an approximation of a
stationary point of the augmented Lagrangian by a projected-gradient-type method,
and then use this point as an initial point for the minimization of the quadratic
term that was added to the ordinary Lagrangian. This approach also depends on
the resolution of a quadratic program to estimate the multipliers.

In 1980, Boggs and Tolle [6] proposed a variety of augmented Lagrangians
having the particularity of being concave and quadratic in v. They developed duality
results that lie on the estimation of the Lagrange multipliers as a function of x and of
a penalty parameter, the maximum of their modified Lagrangian in v. Their develop-
ment links the theory of modified Lagrangians to the exact penalties.

Also, from the numerical point of view, Coope and Fletcher [20] have studied
and tested a variant of the augmented Lagrangian algorithm which comprises two
main steps: the first one is a quadratic (linear) approximation of the augmented
Lagrangian function (respectively, of the constraints) and the second one is an
inexact minimization of the augmented Lagrangian. If the first step does not satisfy
the corresponding test, then one moves to the second step and alternates between
them until an appropriate stop test is satisfied.

Still in 1980, we cite the work of Polak and Tits [72] who proposed a technique
to limit the increase in the penalty coefficient in the multiplier method. They relied
on the Mukai—Polak [66] idea in the framework of the multiplier algorithm with the
multiplier function.

Di Pillo and Grippo [21, 22] have designed an approach for the case of equality
constraints that they later extended to the inequality case. This approach is based
on consideration of the augmented Lagrangian of Hestenes—Powell to which they
added the first-order necessary optimality condition in terms of penalty. They
showed that, under certain hypotheses, a local solution of the constrained problem
and the associated multiplier can be determined by a single unconstrained mini-
mization of the new Lagrangian in (x,v), for finite values of k and without the need
for matrices inversion, as is the case in the approaches of Fletcher [29], Mukai
and Polak [66], and Martensson [62]. Similarly, Lucidi [55] introduced a twice-
continuously differentiable augmented Lagrangian that is also based on first-order
necessary optimality conditions.

11.3 Nonquadratic Augmented Lagrangians

Following the work of Arrow, Gould, and Howe [1], Kort [50], and Kort and
Bertsekas [51], a certain number of researchers further developed the study of
the nonquadratic proximal approaches. Among them, one may cite Bertsekas [11]
and the references therein, and more recently Polyak [73], Eckstein [23], Teboulle
[95], and Tseng and Bertsekas [97]. These authors were motivated by the fact that
nonquadratic proximal regularization improves the convergence rate (see [3]) and
consequently their performances. Moreover, the augmented Lagrangians are, in the
convex case, the result of a dual proximal regularization, thus these works gave birth
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to a quite rich variety of augmented Lagrangians. Also, one of the contributions of
the notion of nonquadratic proximal regularization is to produce twice-differentiable
augmented Lagrangians® (in the case of inequality constraints), a property that is not
verified in the case of quadratic regularization.

In 1990, Censor and Zenios [16], presented a proximal point algorithm based on
the use of a class of functions, called Bregman functions, in the convex differentiable
case. A Bregman function y (a function that satisfies a certain number of properties
[22]) allows us, to define a kind of “distance” Dy

Dy (x,y) = w(x) —y(y) — (Vy(y),x—y).

Dy (x,y) can be interpreted as the vertical distance between x and the tangent plane
to y at y. (For more details, see [22].) The functional Dy, (x, y) replaces the quadratic
term of the proximal regularization and the corresponding modified Lagrangian for
problem (11.5) is given by:

Lireg (x,v,k) = f(x) + ki v (K 'gi(x) vl (v) — vt (Wi (wi)

where ;" (z) = sup;~o{z t — y;(t)}. In the same spirit of regularization, Teboulle
[94], [95], and Iusem and Teboulle [47] replaced the functional Dy by the
¢-divergence functional dy, in the form*

do(x,y) = Z)’i¢(xi/)7i),

where ¢ is a real variable function, €, strictly convex and verifying other proper-
ties. As examples of these functions, one may cite

o(t) =tlog(t) —t+1, ¢(t) = —log(t) +1—1, o) =t+11-2,
o(t) = (Vi—1)%

The associated augmented Lagrangian is given by

Lan(x.vk) = £ + & 3y (i),
=1

=

where y;*(z) = sup,{z t — y;(r)}. For more details, we refer the reader to [95]
and [94].

Also, we can cite a paper of Auslender, Teboulle, and Ben-Tiba ([3] and [4],
1999), where the authors introduced a new nonquadratic proxlike quasi-distance
d(u,v) =31, v?q)(uj/vj),v u,v >0, where

3 A big advantage inasmuch as one can use Newton-type methods.
4 Note that dy is not a distance.
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) (t)_{‘z’(t—l)z—l—u(t—log(t)—l) if 1>0
vull) =

) (11.7)
otherwise

where their augmented Lagrangian is given by

Liuv) = f(x) +k! ﬁum,y k(pi + 8i(x)) i)

These new proxlike algorithms were applied to solve unconstrained convex
minimization and also variational inequality problems. And the dual application
of such proxlike schemes gave birth to a C* new augmented Lagrangian. This
result is still worthy because it enables the use of efficient Newton-type methods
to solve the subproblems. In parallel, we also cite the work of Roman Polyak on the
nonlinear rescaling principle to solve nonlinear programming problems. Polyak’s
results can initiate a general scheme to generate modified augmented Lagrangians
([74-76]). Many results related to the nonlinear rescaling principle as primal—dual
algorithms, complexity, rate of convergence, numerical efficiency, and numerical
comparisons can be found in ([74-77]).

11.4 Augmented Lagrangian and Decomposition Methods

The resolution of a large nonconvex problem by an augmented Lagrangian-type
method has been done in a certain number (less than ten) of works. But unfor-
tunately, the nonseparable character of the augmented Lagrangian, due to mixed
products in the quadratic term ||, ;(x;)||%, has pushed researchers into trying
to overcome this obstacle which deprives us of the advantages of the augmented
Lagrangian method. Many approaches have been proposed; among them, one may
cite that of Stephanopoulos and Westerberg [89] who considered a model of
problems frequently found in the conception of engineering systems, in the form
of a large system composed of many interconnected subsystems. Their idea is
based on a first-order approximation of the nonseparable quadratic term. Watanabe,
Nishimura, and Matsubara [100] have added variables to the augmented Lagrangian
minimization problem in such a way that the nonseparable term is replaced by the
minimum of a separable function. Their decomposition approach comprises three
levels and it should be noted that the introduction of variables increases the method
complexity. Also, in the context of solving the duality gap problem in nonconvex
programming, Bertsekas [10] proposed in 1979 a convexification procedure differ-
ent from those exposed so far inasmuch as it is not based on the direct utilization
of the augmented Lagrangian. His new procedure, applied to problem (11.1) with
h(x) = (h1(x),...,hp(x)), preserves its separability. It is based on the following local
minimization,

oule) = min {0+ 521},
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where z is an estimate of the solution of (IP) in a neighborhood of x*. Bertsekas
[10] showed that x* is the solution of the following problem,

min @ (z).
zeR"

Thanks to the penalty coefficient k, we have a local convexity that allows us to use
primal-dual methods, in particular that of decomposition by prices.
The method is done in three steps. First, solve

gi(u,z) = min {f(x) + k ||x—z||2+uTh(x)} ,
xeRn 2

then calculate g (z) = max, g, (4,z), and finally minimize g, (z) with respect to z.
The minimization in the first step is separable. Indeed, it can be written

;gg,g},{Zﬁ xi)+ i — 2l (x»}
Even the problem in the third step is decomposable.

In the same spirit of this decomposition, but passing by an augmented Lagrangian,
Tanikawa and Mukai [90] considered the approach given by Bertsekas, which
is quite interesting in its simplicity, but suffers enormously from the fact that it
operates in three steps, which makes it expensive. And following the path of Fletcher
[30], who introduced the notion of the multiplier function to eliminate the multi-
plier update step in the augmented Lagrangian method, Tanikawa and Mukai have
combined this procedure with that of Bertsekas. That is, by choosing an estimate z
of the solution x* of problem (IP), the Lagrangian corresponding to the following
problem,

min {70+ 5 =21}

can be written
Ly v(2),2) = F0) + 5 e 2l () (),
where v(-) denotes the multiplier function defined by
v(x) = argmin{”VxL(x,v)H2 veR"},

and that satisfies v(x*) = v*.

One can see that because v(x) depends on x, then Ly (x,v(x)) is not separable.
From the fact that z approaches x* and v(x) approaches v(x*), one may think that
v(z) approaches v(x*). Immediately, the new Lagrangian
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Li(x,v(2),2) = i {fj(Xi) + ;llxi —zi||? +v(z)’hi(xi)} ;

i=1

is separable. But, following Bertsekas’ idea, Z minimizing Li(x,v(z),z) in x is a
good estimate of x* if and only if we penalize Ly (x,v(z),z). That is, we must add a
quadratic term BA(x)'M(x)h(x), where B > 0 and M (x) is a positive-definite matrix.
This solution deteriorates the separability, which brought Tanikawa and Mukai to
propose a penalization of the form:

P k
Lig(x,v(z),2) = Y, {fi(xi) + ) o — zil| 2 + V(Z)lhi(Xi)} + Bh(z)'M(2)h(x),

i=1

which, this time, conserves the separability of the modified Lagrangian. Indeed,

Lupx(2).2) = 3 {50 + 3 i+ ) + BHGY M) |

i=1

can be written in the form L g(x,v(z),z) = X7 | ;(,ﬁ (xi,v(z),zi) with

L;.c,ﬁ (Xi,V(Z),Zi) = ﬁ(xi) + ]; ||xi - Zi”z + [V(Z)l + ﬁh(z)'M(z)]hi(xi).

In conclusion, the proposed algorithm consists of the minimization of Ly g (x,v(z),z)
in x, and then in z.
The multiplier function v(x) is given by
Oh(x) dn(x)'] " On(x)
=— Vf(x).
V() { dx  dx dx )

We remark that if we take M(x) = él where / is the identity matrix and k = 0, then
we find the expression of the usual augmented Lagrangian. Tanikawa and Mukai
have shown that L; g(x,v(z),z) is locally convex and have given a bound on the
error ||Z—x*|| in terms of the error ||z —x*||, where Z minimizes L; g (x,v(z),z) in x.
This bound decreases considerably if we take

M(x) = PZS‘) %a(j)/]l and B =k

Moreover, the convergence is linear.
We also cite Tatjewski and Engelmann [93] who considered the work of Tanikawa
and Mukai but for the case of inequality constraints. For more details see [92].
Differently from what has been proposed, Cohen [19] proposed replacing the
original problem to solve by a sequence of auxiliary problems built around auxiliary
functionals called “kernels”. Cohen [19] proposed this approach in the general
framework of decomposition.
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Also, for certain problems of the form

min f(x) + h(z)
Mx=2z xeR", (11.8)

the application of the multiplier method by alternating the minimizations with
respect to x and to z gives birth to an algorithm that is favorable to decomposi-
tion, called the multiplier alternating directions algorithm. This approach has been
studied extensively and sufficient conditions for convergence have been obtained
by using the theory of maximal monotone operators (Lions and Mercier [54],
Eckstein and Bertsekas [25]) or the theory of saddle points (Glowinski, Fortin,
and Le Tallec [31], [33]). The link with the proximal point algorithm has been
studied by Rockafellar [78]. It has also been shown [23] that the method is a parti-
cular case of the Douglas—Rachford method for the computation of the zeros of
the sum of maximal monotone operators (see [17, 99, 98]). Many other decompo-
sition schemes, such as the Han and Lou algorithm, the partial inverse method of
Spingarn [88], [87], and the block decomposition method for convex programming
of Golshtein ([34], 1986), are also particular cases of the Douglas—Rachford method
(see the thesis of Eckstein for all the proofs). The multiplier alternating directions
method also known as ADM can be summarized as follows.

kS
Ftle argmxin {f(x) + (V' Mx) + 9 ||Mx—zs||2}

ks
#T! € argmin {h(z) — ('z) + 5 | M ! —Z||2}
z

Vs+1 =+ ks(st+1 *ZS+1)-

We note that this last approach, in the convex case, is in fact the application of
the Douglas—Rachford method to find a zero of a sum of two maximal monotone
operators [31]. Chen and Teboulle [18] proposed a decomposition method of the
same type as the alternating directions, where a quadratic proximal term replaces
the penalty term of the augmented Lagrangian (it can be called predictor—corrector
ADM); that is,

szrl = + kS(stizS)
1
vt cargmin{1(0)+ () + -1}
x 2ks

1
s+1 i — (p*H] — 2|
z eargmzm{h(z) (p ’Z>+2kf||z Z||}
Vs+1 =+ k.Y(MxY+1 7Zs+1)'

In nonconvex programming, we may cite an approach due to Shin ([86] 1992),
which applies a recursive quadratic programming method (RQPM). In other words,
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he applied a descent method whose direction is the solution of the following
quadratic problem.

P
( Q) st 2 h,-(x,-) + Vhi(x,-)’d,- =0,

i=1

{min S0 5diBidi+V fi(xi)'d;

where B is a diagonal positive-definite matrix formed only by the positive terms of
the Hessian of the objective function Ef:] Si(xi).

Shin has used a gradient method to solve the separable dual problem associated
with PQ. His approach has been applied to solve control problems.

We recall that the augmented Lagrangian method with partial constraints elimina-
tion can be seen as a decomposition mean.> This idea has been exploited by Ferris
and Mangasarian ([26], 1991). The latter have treated a convex program with a
strongly convex objective function.

We also cite the work of Mulvey and Ruszczyriski ([68], 1992) and Ruszczynski
([85], 1995) who proposed a decomposition method for linear problems of the form

p
min Y cjx;
i=1
p
st Y Qi =q,
i=1

Aixi=b;, i=1,p

based on the use of a quadratic augmented Lagrangian. The main idea is to linearize
the nonseparable term as was done earlier by Stephanopoulos and Westerberg in
1975 [89]. Still, Mulvey and Ruszczynski ([67], 1995) proposed an approach using
successive separable approximations of the nonseparable quadratic term, which, in
a certain way, meets the idea of Stephanopoulos and Westerberg. This can be inter-
preted by a type IP problem as follows.

Minimize the function

k

L (xi,%,vi,k) = fi(x;) + hi(x;)vi + 5

hi(xi) + X ()
J#i

)

in x; by a nonlinear Jacobi method according to the terminology of Bertsekas and
Tsitsiklis, then update forall i =1, p

iis-H =3+ T()C;Jrl 7)31_3), > 0,
vt = vt S b,

Kiwiel, Rosa, and Ruszczyniski ([48], 1995), proposed a proximal approach
that alternates a linearization of the objective functions of the separable problem

5 That is, we will have to solve problems of lower dimension.
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constituted by the sum of two convex functions. That is, for the unconstrained
minimization of the nonseparable augmented Lagrangian associated with problem
IP, the approach in the case of linear constraints (Zf;l hi(xi) =Ax = ZleA,-xi) can
be summarized as follows.

The problem
P s | P 2
arg min Zf, (xi)+ 2 Vihi(x; 2 2 hi(x;)
€S =1 1:1 N i:lv B
F(x) G(x)

is solved in the following manner. Let wl. € 0G(z%), Gi(-) = G(z%) + (W, —22)

= argmlg{Zﬁ Xi +th xi) + Gr(x 2ﬁ2|x’ s|2} (11.9)

1 i=1

then set: wi = —w§; — B!z —x%), Fy(-) = F(z5) + (W}, - — 2}-), and determine
) s | P 2 1 )
5= argminq i:z‘ihi(x,) + Fy(x) + 2B [lx—x°||* 7, (11.10)
put: wi = —wh — (g5 — ), Gy (+) = G(25) + (w§,- — 255) and repeat the

procedure.

The problem (11.9) is decomposable and (11.10), in this case, is easy to solve
because it is quadratic. Here, we note that this approach is interesting for the case
of monotropic problems, however, for the case of nonlinear constraints, the second
minimization obtained is a difficult problem and, moreover, it is notl decomposable.

Kontogiorgis and Meyer [49] proposed an extension to ADM where the penalty
parameter was replaced by a positive-semidefinite matrix. Their iterative scheme to
solve problem (11.8) can be presented as follows.

¥t e Argmin, f(x)+ (uf,H Mx) +0.5||Mx — zs||f1T
2 € Argming h(z)+ (u',H ' z) +0.5|Mx" T — 27+
wt :MS+(MXY+1—ZS+1).
Kontogiorgis and Meyer [49] obtained, in the convex case, a convergence result

without assuming strict convexity.
In this part, we consider the following optimization problem,

min f(x), (11.11)

XEA

where A is a nonempty closed subspace of R". Studying this class of problems
is motivated by the fact that there are many ways to transform separable convex
models to the above form (11.11), where generally the coupling constraints between
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the different subsystems can be represented by a subspace of the product space of
the copies of the primal and dual variables. Problem (11.11) can be rewritten as

min{f(x) + xa(x)}, (11.12)
xeRn
where y,4 stands for the characteristic function of A.

If we assume further that A N int(dom(f)) # 0, then the necessary optimality
condition for (11.11) is equivalent to the search for a zero of the sum of two
operators df and dya. As we know that d 4 (x) = AL for x € A, we conclude that
solving (11.11) is equivalent to solving a problem of the form (11.13) with® T = af;
that is,

Findxc€AandyeB=A" suchthat ye€ Tx;

that is,’
Find (x,y) € A x BN Gr(T). (11.13)

To this class of problems, Spingarn [87, 88] proposed a general scheme to solve by
applying the proximal point algorithm to a new operator introduced by Spingarn,
called the partial inverse T4 where its graph is defined as

Gr(Ty) ={(xa+y,ya+xp) : yeTx}, withxy=Projs(x).

The obtained algorithm is known as the partial inverse of Spingarn which can be
summed up by these steps.

Partial Inverse Method of Spingarn (PIMS)

Step 1. Initialize:x €A, y* € Band A >0, s=0.
Step 2. Determine: u°, v* such that x’ +y* = v* +1° and

1 1
lsvﬁ\+vf; eT <ui + lsuf3>

Step 3. If (v',w*) € A x B, Stop.
Else: Go to 4.
Step 4. Update: X! =u5, y*! = v}, s «— s+ 1 and go back to 2.

The convergence of this method was studied by Spingarn [87, 88]. However, Step 2
turns to be difficult to implement in practice except for the case where A = 1.
To this problem, Mahey, Oualibouch, and Pham [58] introduced the notion of
scaled proximal decomposition on a graph of a maximal monotone operator, that
induces an implementable algorithm similar to PIMS and where the convergence
was accelerated by the mean of the proximal parameter A.

To this goal, let us define the notion of proximal decomposition on a given graph
of a maximal monotone operator 7 in R".

6 9 f is maximal monotone because f is convex, lower semicontinuous, and proper.
TGr(T) ={(x,y) € R" x R" : y € Tx} denotes the graph of the operator 7.
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Definition 11.1. We call a scaled proximal decomposition of (x,y) € R" x R" on
the graph of T, the unique couple (v,w) € R" x R" satisfying:

x+Ay=v+Aw and (v,w)e€ Gr(T).

If we directly apply the scheme of this proximal decomposition to (11.13) with
T = Jdf, we obtain:

V= (AAf+1) N +AY) = X + Ay € AIF(V) +V°

<=0 Adf(V’)+v — (X + Ay")

<:>Oeaf(v‘)+v _(x;rly)

1
—='e Argmzin {f(z)+ 2 ||Z—Xs—lys||2}

and

WS:xs+lysfvs.
A

Thus, (11.13) can be solved by the (SPDG)?

Scaled Proximal Decomposition on the Graph (SPDG)

Step 1. Initialize:x® €A andy? € AL, A >0, s=0.
Step 2. Proximal decomposition:
determine: V¥, wk such that v* = argmin,cqn { f(z) + (1/22) ||z — x* — Ay*||*}
w = }lL(xs_;'_}/ys_vs)
Step 3. Test: If (v',w*) € A x B, Stop.
Else: Go to 4.
Step 4. Update: x*T! = Vi y = wg, s «— s+ 1 and go back to 2.

Mahey, Oualibouch, and Pham [58] showed that if d f is strongly monotone with
coefficient p and Lipschitzian with constant L, then the SPDG converges linearly
with a rate of convergence given by

24p
T(A) = \/1 T (14ALY)

For further results about the efficiency of SPDG and other related decomposition
schemes see [58-60].

8 (SPDG) scaled proximal decomposition on the graph.
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If the objective is separable, that is,

p
=Y filxi),
i=1

then, the proximal decomposition step in SPDG can be rewritten
' P 12 5
V' = argmin Zf,-(z,-)Jrzl Z|zifxfflyf»| , and
4 =1 i=1

1
wf—l(x +Ayi —vi), Viel,p

which is equivalent to:
s : - _ 2
vi = argmin {f,(z,) 2 |zi —xf — Ayj] } and

wfzi(xf—i—lyf—vf), Viel,p

which shows clearly that SPDG is favorable for the solution of large-scale separable
convex problems. The reader may refer to the thesis of A. Ouorou [69] for many
applications in telecommunication problems.

We presented in this survey PIMS and SPDG which are not based on augmented
Lagrangians to motivate the decomposition approaches developed by Hamdi, Mahey,
and Dussault [38] known as SALA which stands for separable augmented
Lagrangian algorithms. The departure point comes from the application of PIMS
or SPDG to a dual problem of a separable convex model.

min {f(x) = iﬁ(xi) s glx) = igi(xi) =0,x5€8;,i= l,p} (11.14)
i=1 i=1

and let its dual problem:

max h(u):Zhi(u):miniﬁ(x,-)—&—uigi(xi). (11.15)
' i=1 i=1

u

To make problem (11.15) separable, we propose using a copy of each dual variable;
in other words we consider the equivalent model:

<

max 3 h,-(u, 2 ln{fz Xi +ulgl(x1)}

i=1 i=1

ui=u,i=1,p
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Setting A ={u € R? :u; =up =--- =u,}, (11.15) becomes

maxh(u). (11.16)

UEA

The optimality conditions are resumed now to find:
(w*,y°) €A x At such that y* € 9(—h(w")),

and by applying SPDG, we get the following iterative scheme:

w = argmax{h(u)zll ||uws7LyS||2} (11.17)
vszzi(ws—&—lys—us). (11.18)

(11.17) is equivalent to solve forall i = 1, p.

1
max { hi(u;) — . (ui—wi—Ay$)2 . (11.19)
u; 2A

And because in our case the projection can be done explicitly so that (y4); =
[Proja(y)]i = 1/pXF_,yi and according to the fact that R” = A ® AL, we show
easily that (y,1 ); = [Proj,. (y)]i = yi — (1/p) ZL_, vi, and finally the obtained algo-
rithm can be resumed as follows:

= argminges, { fi(xi) + w0gi () + 4 82 (xi) + Ayigi(xi) }
wtl =u + 11, 7 gyt
Vit = —gil) + ) 3 &l ).

One may observe that the subproblem is equivalent to miniming an augmented

. . . o . S+l .
Lagrangian. Indeed, by adding constant terms to the expression giving x; ", that is,

. A
X! i=argmin {ﬁ(Xi) +u'gi(xi) + u'y; + {Igi(xz')l2 +2yigi(x) + y)? }} ;
N -~ 2 ~—~

X €3

which is equivalent to

. A
a1 i= argmin{ £, () + (i) +yDu" + 7 liCx) + 512,
X €5 N -~ _
L (x;,y7 us )
where L (x;,y,u®,A) is the associated augmented Lagrangian to the following
problem
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minimiser fi(x;)
gi(xi)+yi:0a lil,p

and by denoting ! = 37 ¢;(x""), the above algorithm becomes:

= argminges, { () + (gi(x) +y)ud + 4 lgi(x) + 332}

uerl =+ prerl

y = ) L,

The convergence is guaranteed by the obtained results for SPDG in the convex case.
The above algorithm is equivalent to the algorithm SALA developed for solving
convex and nonconvex separable models. SALA was proposed to avoid any linear
approximation making the nonseparable augmented Lagrangian favorable to
decomposition and to parallel computing. To compensate for this drawback, Hamdi,
Mahey, and Dussault [38] proposed an iterative scheme that can be derived from the
resource directive subproblems associated with the coupling constraints. The main
idea of this algorithm is to add an allocation vector to the constraints to apply a clas-
sical augmented Lagrangian algorithm with partial elimination of the constraints
that induces a separable augmented Lagrangian. We present the algorithm SALA
for the large block separable nonlinear constrained optimization problem (11.14).
Define an allocation vector y = (yi,...,y,) with y; € R such that

p
yEA{(yl,...,y,,)€9{’”p|2yi0}
=1

and we get an equivalent problem
min X7 filx)
such that g;(x;))+y; =0, i=1,p

2?:])’1':0
x; €5;, i=1,p

(SEP)

The expression of the augmented Lagrangian function associated with the problem
SEP is written

p
(x,y,v,k) = zﬁ (xi) +2 (vi, gi(xi) +yi) +22”g1 Xi +sz| .
i=1 i=1
By using the multiplier method we get the following steps:
Separable Augmented Lagrangian Algorithm (SALA)

Step 1. Initialize: >0, W eV, B>1,6 >0y : 37 W=0,k >0,
s=0.
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Step 2. Determine:Vi=1,p

: k*
X = argmin () + 07, i(06) 30+ i) + 98P

X;€5;

Step 3. Update:

P = Rt e =T et

vt =gt + Y= 1p

ks+1 — ﬁks,
and go back to 2.

For the convergence analysis of SALA for solving convex and nonconvex
problems, we refer to Hamdi, Mahey, and Dussault [38]. The version of SALA
for an inequality constrained problem is given in [41]. In the case equality con-
straints, another version of SALA was developed by Hamdi and Mahey ([39],
2000), where a diagonal scheme is used. In other terms, the algorithm called
DSALA can be seen as an Arrow—Hurwicz scheme version of SALA, where it
alternates one iteration in the primal space followed by one iteration in the dual
space. DSALA offers a possibility to use second-order updates for the multi-
pliers which increases the efficiency of this primal-dual decomposition
method.’

Diagonal Separable Augmented Lagrangian Algorithm (DSALA)
Step 1. Initialize:x% B>1,€, 6 >0, 3", =0, 2 >0,s=0
Step 2. Determine:

Vi=1p x" = = [H)] VL (o, v] o', As)

Step 3. Compute the residual #**! =Y | g;(xi*)
If: || <& stop.
Else : go to step 4

Step 4. Update:

Wt = s 4 };rerl’

1 1 .
y§+ :ei(x§+ ,yf,l/is,},s), l:17"'7p
Mcr1 = BAs, and return to step 2

with "
P )CY
Qi(xf“,yf,us,ls) :_gi(x;wl)_i_zgl(; )
=1

o Hl-k stands for the Hessian matrix of the augmented Lagrangian.
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One of the drawbacks of the SALA algorithm, when applied to the inequality
constrained problem, is that the corresponding augmented Lagrangian function is
not twice differentiable even if the cost and constraint functions are, and then
we cannot apply the second-order methods, for instance, Newton or Newton-type
methods, to minimize the augmented Lagrangians. This problem of the lack of
smoothness of augmented Lagrangians was studied thoroughly by Zibulevsky and
Ben-Tal ([101], 1997), Polyak ([75, 76]), and by Auslender, Teboulle and Ben-Tiba
([3, 4] 1999). But in the context of decomposition methods, we can cite the seminal
paper of Auslender and Teboulle [5], where the authors used their new proxlike
kernels [3] to develop a decomposition scheme based on a new C* nonquadratic
augmented Lagrangian. Their algorithm called the entropic proximal decomposition
can be presented as follows.

Entropic Proximal Decomposition Algorithm (EPDA)
Step 1. Given ¢ definedin (11.7),

V9,900 eRYX R x R™  for j=1,...,n. (u”,nw°) € RY" and 2 > 0.

Step 2. Compute:

p§+1:y§-+(29)7lls(ws—uj), j=1,...,n

Step 3. Foreachj=1,...,n, find

vj*' =argmin{L} ;(u’,v;) : v; € R4

Step 4. Compute
Wit =i 0" (“AZ Py W), =1,
uf = ufi(07) (As(gii (o) pi ) ), =1,
W= 20) A =), =1,

where their augmented Lagrangian is given by
% 2 1
Ly @ vj) = i) + A7 D )20 (As(pf ! + 8ij(x))) /ul;)
i=1
+ 04! lx; 3]
The above entropic proximal decomposition algorithm can be seen as a proximal
multiplier-type method. Such technique was developed later and studied by Hamdi
in [40] in the case of algorithms of type SALA. In the same period Kyonno and
Fukushima ([52], 2000) extended the method of Chen and Teboulle by replacing the

quadratic proximal terms by Bregman proximal distances.'? Their algorithm called

101t cannot be considered as an augmented Lagrangian-based decomposition approach.
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the nonlinear predictor-corrector proximal multiplier method (NPCPMM) solves
problem (11.8) and can be summed up as follows.

Nonlinear Predictor Corrector Proximal Multiplier Method (NPCPMM)

Step 1. Given aBregman function y and ¢, u >0, v > 0, choose (x°,2°,y°)

and € € (0,¢/2), where

gzmin{év’zl\l/;ll}

and let s = 0.

Step 2. Choose as, b and ¢, such that € < ¢g < ¢ — € and compute:
P =y oMy —2).

Step 3. Find (! 1) and (**!,85*!) such that

PEdL )., P+ Vo) = Vo)) =0,
511 € 9 (H), e, VW) = Vy()} =0,

where f(x) = £(x) + (p** M) and 1°(2) = h(2) — (p**1,2).
Step 4. Lety™! =y 4 c(Mx*! —z71), and go back to Step 1.

Some similar algorithms have been applied to block-structured linear problems
(see [34], [37]) but it is important to emphasize the role of the constraint structure
in applying a decomposition procedure and its influence on the performance of the
resulting algorithm.

In 2005, Hamdi [40] proposed a proximal multiplier version of SALA offering
more numerical stability but still sensitive to the proximal and the penalty para-
meters of the modified algorithm. The proposed regularization was applied first
in the primal space, secondly in the dual space, and finally in both spaces of the
same time. Stable numerical results were obtained. In 2006, using the nonlinear
principle of Polyak, Hamdi [41] proposed a generalization of SALA to overcome
the nonsmoothness of the augmented Lagrangian when applied to solve inequality
constrained separable problems. The algorithm can be seen as a direct application
of SALA with a modified Lagrangian. The modified Lagrangian is the classical
Lagrangian of the rescaled problem. The main iterations can be summarized as
follows.

Separable Augmented Lagrangian Algorithm (¢ SALA)
Step 1. Selectpe @' u €9i'z+ where u;eV,j=1m,

A>0,9" =01, ym) ]:lylj 0, j=1,m and l]o l( (;)".

Step 2. Determine: foranyi=1,p

Kt i=arg mﬁlKI"ll {f, xi) 2 A u;Q glj(xl)+ylj))}

1 @ denotes the class of functions @ satisfying some properties as in [74].
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Step 4. Update and go back to step 2:

it =gt + 8 i=1p, j=1m

w =gl (4585,
A;‘Fl _ A(M;Jrl)fl.

Recently, in 2003 Gueye, Dussault, and Mahey [35] worked on a modifica-
tion of SALA to solve large-scale convex programs with separable structure by
using a multidimensional scaling matrix A instead of the penalty parameter A in
SALA.

Let A = diag{A1,A2,..., A} be a diagonal positive-definite matrix . Then the
constraints can be transformed to the equivalent ones as follows.

p
zAgj(xj) =0,
=

and as it was done in SALA, an allocation vector y = (yi,y2,...,yp) with y; € R"P
is defined and we get an equivalent problem:

min Y7, f;(x;)
(PE) subject to Agj(x;)+y; =0, j=1,p
X €853y =0, J=1p,
and finally, the following algorithm (SALAMYS) is obtained:

Separable Augmented Lagrangian Algorithm with Multidimensional Scaling
(¢ SALAMS)

Step 1. Select:

A =diag{A,A2,..., A}, Ay >0, u’ >0, g >0, Weat,
and s=0

Step 2. Determine:
. . 1 2
Vi=lp xtl= argmin f; () + (A% (x)) +37) + , [14°8,(x) + ¥
Step 3. Calculate the residual

P
P - zgj(xj'ﬂ) .
j=1
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and update:
wtl = u -+ IletrHl
{y§~+' = —Ag() + AT Yj=1p
and return to step 2.

Their convergence analysis was done only for affine constraints.

To finish this survey, we cite some of the latest works on decomposition schemes
based on augmented Lagrangians. A. Ouorou [70] in 2002 proposed a Gauss—Seidel
method to solve

min [F(x) = ¥i_; Fj(x;)]
s.t. (11.20)
Ax>b, x e R",

where each Fj : R —] — e, 4] is a closed proper convex function, A is a p x n
matrix having no zero row, and b € R™. Let A’ and A; denote, respectively, the
column j and the row i of matrix A. By rewriting the dual problem as follows,

max{b'y—F*(z) : Aly=2z yeR", zeR"}, (11.21)

the original problem has been replaced by a game with two players where the criteria
were two different quadratic augmented Lagrangian functions defined for the primal
and the dual problems. A primal—dual algorithm has then been proposed to reach an
equilibrium of this game to solve problem (11.20) with equality constraints and its
dual. In 2008, Hamdi and Al-Saud [42] proposed a generalization of the proposed
scheme in [70] by using generalized augmented Lagrangian functions. The twin
augmented Lagrangian decomposition method is based on the use of an augmented
Lagrangian in the dual and primal spaces as follows.

A
Lp(yzxA) :=b"y—F*(2)+ (x,z—A'y) — 5 lz—ATy|%, (11.22)

where A is a positive penalty parameter, and Lp denotes the augmented Lagrangian
in the dual space. Here, we considered x as a vector of multipliers associated with
the constraints z— ATy = 0.

In the primal space, we rescaled the linear constraints according to Polyak’s
nonlinear rescaling principle to get the following primal augmented Lagrangian.

n 1 m
Lp(x,y,z:A) == Y Fi(x;) —z'x+b'y+ A > VilA(Aix — b)) — w(A(Ax —b;))].
j=1 i=1
(11.23)
and the Gauss—Seidel scheme can be summed as follows.
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Twin Augmented Lagrangian (¢ T)

Step 1. Initialize: x° € R, y° € R” and A > 0. Define ¥ := ATy and set
s=0.

Step 2. Compute foreach j=1,...,n,
+1 &
X “}C},nFj(xj) — (2 xj) + A ziyf[l(f\ix[j] —bi) — (A (A — bi))],
: i-
Step 3. Computeforeach j=1,...,n,

s * K} A
z.“ — max {—FJ (Zj) + <xj+1;Zj> ) (Zj - (ATY)J')Z} :

i E

Step 4. Computeforeachi=1,...,m,

1
yl;+l — max {O7 7L||Ai||2[bi_ (A, xs+l> + A (A, At _AﬁYfi]]}.

Set s = s+ 1 and go back to step 2.

11.5 Conclusion

In this chapter, we propose a nonexhaustive survey about decomposition algorithms
for solving structured large-scale convex or nonconvex optimization problems.
We focus particularly on all splitting approaches based on the classical augmented
Lagrangian functions or on any other modified Lagrangians in general. This study
covers the last 40 years of research in nonlinear programming, where the researchers
studied the nice theoretical properties of augmented Lagrangians and at the same
time were interested in solutions to remedy the main drawbacks related to the
corresponding methods. The first one concerns the fact that augmented Lagrangians
and/or many other modified (or generalized) Lagrangians are no longer separable
even when the original problem is separable, which is not favorable to decom-
position schemes. The second drawback is the fact that these Lagrangians are only
differentiable once even when the problem’s data allow for higher differentiability,
disabling the application of efficient Newton-type methods. In fact such a lack of
continuity in the second derivative can significantly slow down the rate of conver-
gence of these algorithms and thus cause algorithmic failure. The authors would like
to underline the existence of many works regarding some decomposition schemes
based on augmented Lagrangians for variational inequality problems ([61, 43-45])
and references therein.
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Chapter 12

Second-Order Symmetric Duality with
Generalized Invexity

S. K. Padhan and C. Nahak

Abstract A pair of second-order symmetric dual programs such as Wolfe-type
and Mond—-Wier-type are considered and appropriate duality results are established.
Second-order p — (1, 0)-bonvexity and p — (1], 0)-boncavity of the kernel function
are studied. It is also observed that for a particular kernel function, both these pairs
of programs reduce to general nonlinear problem introduced by Mangasarian. Many
examples and counterexamples are illustrated to justify our work.

12.1 Introduction

The study of second-order duality is useful due to the computational advantage
over first-order duality as it gives bounds for the value of the objective function
when approximations are used (see [7], [8], [10]). Symmetric duality in nonlinear
programming in which the dual of dual is primal was introduced by Dorn [5].
Subsequently Dantzig Eisenberg, and Cottle [4] and Mond [11] significantly
developed the notion of symmetric duality. Motivated by the concept of second
and higher duality in nonlinear programming problems introduced by Mangasarian
[8], several researchers [1, 9, 11, 12] have been working in this field. Mond [10]
established Mangasarian’s duality relations assuming rather simple inequalities for
the objective and constant function. Bector and Chandra [3] called the functions
satisfying these inequalities bonvex/boncave. Mond [10] has further studied second-
order symmetric dual programs.

In this chapter we study second-order symmetric duality for Wolfe and
Mond—Weir-type problems under p — (17, 6)-bonvexity and p — (1, 6)-boncavity
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assumptions, respectively. Different duality results (weak, strong, converse) are
established. Many examples and counterexamples are discussed to support the work.

12.2 Notation and Preliminaries

Let R” denote the n-dimensional Euclidean space. Let f(x,y) be a twice-differen-
tiable function in R” x R™ and f,(X,y) denote the gradient of f with respect to x at
(%,7); fy(%,¥) is defined similarly. Also let fi.(%,¥) and fi,(X,¥) denote the n X n
and m x m symmetric Hessian matrices at (£, 7), respectively. The symbol z” stands
for the transpose of a vector z.

Definition 12.1 ([6]). A twice-differentiable function f defined on a set § C R" is
said to be n-convex at X € S if there exists 1(x, %) defined on S x S such that for all
pE R”,

fx) = f(®) = D)) [VFE) + VA (E)p] - ;pTsz(f)p, Vx €.

Definition 12.2 ([6]). A twice-differentiable function f defined on a set § C R” is
said to be n-pseudo-convex at X € § if there exists 1 (x, X) defined on S x S such that
forall p € R”",

(e D] VA + V27 (@] 2 0= 1) > £(5) — )TV (F)p v .

A twice differentiable function is 1n-concave and 7n-pseudo-concave if —f is
n-convex and n-pseudoconvex, respectively.

Definition 12.3. Let f(x,y) be a twice-differentiable function on R” x R™. f is said
to be second-order p — (17, 0)-convex at u € R”, for fixed v, with respect to 17, 0 if
there exist 7, 0 : R" x R" — R", and p € R such that

1
F@ev) = £ u,v) > [100e)]" [fultt,v) + fou(ut,v)r] erfuu(M7V)r+P||9(xvu)||2,
Vx, r e R

It follows that every n-convex function is p — (17, 6)-bonvex but the converse is
not true, which follows from the following counterexample (12.1).

Example 12.1. Let f : [0,27] x [0,27] — R be defined by

flx,y) = —2x* — 2x — 2y — sin’x.

The above function is not 17-convex but p — (1, 8)-bonvex for 1 (x,u) = — é sin®u —

u—x—1, Q(x,u):\/x2+ux+x+u+12,andp:7100.
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Definition 12.4. Let f(x,y) be a twice-differentiable function in R” x R™. f is said
to be second-order p — (17, 0)-pseudo-bonvex at u € R”, for fixed v, with respect to
n, 0 if there exist 7, 6 : R" x R” — R" and p € R such that

(1G] [fu(,v) + fuaa )] 2 0
= F00) = £l) 4 3l = plIOCew) P2 0,5, r € B

It follows that every p — (17, 6)-bonvex function is p — (1, 8)-pseudo-bonvex but
the converse is not true, which follows from counterexample (12.2).

Example 12.2. Let f : [0,27] x [0,27] — R be defined by
f(x,y) = sin® x4 235x 4 3y.

The above function is not p — (1,0)-bonvex but p — (1, 0)-pseudo-bonvex for
N(x,u) =x+u+1,0(x,u) = \/8sin2u+34u, and p = —7.

Definition 12.5. Let f(x,y) be a twice differentiable function in R” x R™. f is said
to be second-order p — (17, 0)-boncave at y € R™, for fixed x, with respect to 17, 0
if there exist 7, 6 : R” x R — R™ and p € R such that

Jev) = fx,y) < M) () + fiy(xy)p] — ;prfw(x,y)p+P||9(v7y)||2,
Vv, p e R™.

It follows that every 1n-concave function is p — (1], 0)-boncave but the converse
is not true, which follows from counterexample (12.3).

Example 12.3. Let f : [0,27] x [0,21] — R be defined by
f(x,y) = 5x+90y + sin®y.

The above function is not 17-concave but p — (17, 8)-boncave for 17(v,y) = —sin®y —
2y — 1, 0(v,y) = /sin?v + 60siny + 30v + 65y + 75, and p = 3.

Definition 12.6. Let f(x,y) be a twice-differentiable function in R” x R™. f is said
to be second-order p — (1, 0)-pseudo-boncave at y € R™, for fixed x, with respect
to 1, O if there exist n, 6 : R x R” — R™ and p € R such that

— )T [f(x9) + fiy(x,9)p] > 0
= flx,y) = flx,v) - ;pryy(x,y)pJrl?||9(v,y)||2 >0, Vv, peR™

It follows that every 1m-boncave function is p — (17, 6)-pseudo-boncave but the
converse is not true, which follows from counterexample (12.4).
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Example 12.4. Let f : [0,27] x [0,27] — R be defined by
f(x,y) = —2x—90y — sin®y.

The above function is not 11-boncave but p — (17, 0)-pseudo-boncave for n(v,y) =
sin?y+2y+ 1, 0(v,y) = \/sin> v+ 60sin® y + 30v + 65y + 75, and p = —3.

12.3 Wolfe-Type Symmetric Duality

In this section, we consider the following pair of second-order Wolfe-type problems
and establish the weak, strong, and converse duality results.

Primal (WP) Minimize M(x,y, p) = f(x,y) =y fy(x,)

|
—y' ()P — ) P’ fin(x,y)p

subject to fy(x,y) + fiy(x,y)p <0, (12.1)
x>0 (12.2)

Dual (WD) Maximize N(u,v,r) = f(u,v) —u’ f,(u,v)

1
2rTfu,,(u, v)r

subject to fy, (u,v) + fuu(u,v)r >0, (12.3)

- quW(u,v)r—

v > 0. (12.4)

Theorem 12.1 (Weak Duality). Let (x,y, p) and (u,v,r) be feasible solutions of WP
and WD respectively. Let

(i) f(x,y) be p1 — (M1, 61)-bonvex in x for fixed v.
(ii) f(x,y) be pa — (M2, 6,)-boncave in v for fixed x.
(i) M (x, 1) + 1 > 0, Ma(v,y) +y = 0 and py|6 (x,u) > = p2| 62(v.y) | = 0.

Then M(x,y,p) > N(u,v,r); that is, inf WP > supWD.

Proof. From (i) and (ii) we have
Fev) = fuv) = (e w) [fu(,v) + fu(u,v)r]
- ;rTfuu(u,v)rm 161 (e, ) |2 (12.5)
Joev) = £xy) < my) [fi(xy) + fiy(x)p)

1
= P Fxy)p+ pal| 2 () II* (12.6)
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Subtracting Equation (12.6) from Equation (12.5) we get
1
Fey) = fu,v) > mi(x, ”)T[fu(”av) + fuu(u,v)r] — erfuu(”’V)r+Pl 16, (x’u)”Z
1
— )" [f(6,y) + fiy (%) P]+ ZPTfyy (%) — p2[[62(vy)|I?

1
= {f (x,9) =" fy(x,9) = " iy (x,9)p — ZPTfyy (x,y)p]

- [f(u,v) - quu(u,v) _quuu(u;V)r_ )

erfW(u,v)r}

> (M 0)" 4+ ) [fu(u,v) + frua(,v)r] = (M2 (v, )" +)
[y (6,9) + fin (6, 3)P] + pi |61 (x, 1) > = pa| 62 (v, )2
>0 (by (iii) and Equations (12.1), (12.3))
= M(x,y,p) > N(u,v,r); thatis, inf WP > supWD.
O

Theorem 12.2 (Strong Duality). Let f(x,y) be a thrice-differentiable function and
(%,¥, p) be a local optimal solution for WP. If

(i) fyy(%,¥) is nonsingular,

(ii) (fyy(%9)P)yp=0 = p=0,
then

(I) (x,y,7 = 0) is feasible for WD, and
(I) M(x,5,p) = N(X,5,7).

Furthermore, if the weak duality theorem (12.1) holds between the primal WP and
the dual WD, then (%,3,p = 0) and (%,7,7 = 0) are global optimal solutions for WP
and WD, respectively.

Proof. Let
1
Ly=oa|f(xy) =y fi(xy) =y fiy(x,y)p— 2pryy(x,y)p

+ﬁT[ y(xay)Jnyy(X,)’)P] 7YTX5

where o € R, B € R", and y € R". Because (,7,p) is a local optimal solution for
(WP), by the Fritz—John optimality conditions [2], there exist & € R, 8 € R™, and
¥ € R” such that
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JdL

o0 = lAED] + finl®9)[B - 0]
+ (fi(%,9)P)x [B —ay— ;aﬁ} —y=0, (12.7)
oL _
8;’ = fi(%,3)[B — &y — ap]
+(ntenp) |B-ar—Jar] =0, 28)
0 _
= hyl& D) ar+p)) =0 (129)
p
BTaL” =BT f(%9) + fry(%,5)P] =0 (12.10)
3[3 - y 7)’ yy )y - ) *
oL, o
ng—yx—Q (12.11)
(a,8,7)>0,  (&.B,7) #0. (12.12)

Using hypothesis (i) in (12.9) we get
B=aG+p). (12.13)
If & =0, from (12.13) B = 0 which contradicts (12.12). Hence
a > 0. (12.14)
Substituting (12.13) and (12.14) in (12.8) we have
(fiy(®,7)P)yp = 0. (12.15)

So
p=0 (by hypothesis (ii)). (12.16)

Using (12.12)—(12.14) and (12.16) in (12.7) we obtain
fe(%,3) > 0. (12.17)
Again from (12.13), (12.14), and (12.16) we get
7> 0. (12.18)
Applying (12.13), (12.14), and (12.16) in (12.10) we have

¥ fy(%5) = 0. (12.19)
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Multiplying ¥ on (12.7), and applying (12.11), (12.13), (12.14), and (12.16) we get
i fo(%,5) = 0. (12.20)
Therefore from (12.17)-(12.20) we see that (%, 7,7 = 0) is feasible for WD and
M(x,y,p=0) :N()E,)'),f: 0)

Also, by Theorem (12.1), (%,y,p = 0) and (x,y,7 = 0) are global optimal solutions
for WP and WD, respectively. (]

Theorem 12.3 (Converse Duality). Ler f(u,v) be a thrice-differentiable function
and (i, v,7) be a local optimal solution for WD. If

(i) fuu(@,V) is nonsingular,
(ii) (fiu(@,7)F) F =0 = F=0,

then

(I) (a,v,p = 0) is feasible for WP, and
(I1) M (&, v, p) = N(@,V,F).

Moreover, if the weak duality theorem (12.1) holds between the primal WP and the
dual WD, then (i,v,p = 0) and (i1, v,F = 0) are global optimal solutions for WP
and WD, respectively.

Proof. The proof is similar to that of Theorem (12.2). g

12.4 Mond—Wier-Type Symmetric Duality

In this section, we consider the following pair of second-order Mond—Wier-type
problems and establish weak, strong, and converse duality theorems.

Primal MWP) Minimize F(x,y,p)= f(x,y)— ;pryy(x,y)p
subject to fy(x,y) + fiy(x,¥)r <0, (12.1)
Y £ y) 3" fiy(y)p 2 0, (12.2)
x> 0. (12.3)

Dual MWD) Maximize G(u,v,r) = f(u,v) — ;rTfW(u,v)r
subject to fy, (u,v) + fuu(u,v)p >0, (12.4)
u” fu(u,v) +u” fr(u,v)r <0, (12.5)

v > 0. (12.6)
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Theorem 12.4 (Weak Duality). Let (x,y,p) and (u,v,r) be feasible solutions of
MW P and MW D, respectively. Let

(i) f(x,y) be p1 — (M1, 61)-bonvex in x for fixed v,
(ii) f(x,y) be pa — (N2, 62)-boncave in v for fixed x, and
(i) M (x,1) + 1 = 0, Ma(v,y) +y = 0 and py|6 (x,u) > = p2| 62(v.y) | = 0.

Then F(x,y,p) > G(u,v,r); that is, inf MWP > supMW D.
Proof. From (12.3) and hypothesis (iii), we have

nIT(x7u)[fu(u7V) "‘fuu(“aV)P] Z —MTfu(M,V) - quW(u,v)r
>0. (by (12.3)) (12.7)

Now hypothesis (i) gives

1
) = f)+ " fuler=pillo a2 >0 (128)
Again from (12.1) and hypothesis (iii), we get

—13 (v ) y) + fiy )] = YT f(x,) +37 fy(x,y)p
>0.  (by(122) (12.9)

Now hypothesis (ii) gives

Fe) = Fee) = o Falen)pt palesv) P20, (1210
From (12.8), (12.10), and hypothesis (iii), we obtain
F(x,y,p) > G(u,v,r); thatis inf MWP > supMWD O
Theorem 12.5 (Strong Duality). Let f(x,y) be a thrice-differentiable function and

(%,9, p) be a local optimal solution for MW P. If

(i) fyy(X,) is nonsingular,
(ii) (fyy(X,5)P)y is positive or negative definite, and
(iii) fy(%,9) + fyy(%,9)p # 0,
then
(I) p=0, (x,y,F = 0) is feasible for MWD, and
(Il) F(x,3,p) = G(%.9,7).
Furthermore, if the weak duality theorem (12.4) holds between the primal MWP and

the dual MWD, then (X,y, p) and (X,7,F) are global optimal solutions for MWP and
MW D, respectively.

Proof. The proof follows from Theorem 5 of [6].
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Theorem 12.6 (Converse Duality). Let f(u,v) be a thrice-differentiable function
and (i1, v,7) be a local optimal solution for MW D. If

(i) fuu(i1, V) is nonsingular,

(ii) (fuu (i, V)7), is positive or negative definite, and
(iii) (ful(@,7) + fuu (i@, 9)F # 0,
then

(I) 7 =0, (i,v,p =0) is feasible for MWP, and
(I) F (a,v,p) = G(i, v, 7).

Moreover, if the weak duality theorem (12.4) holds between the primal MWP and
the dual MWD, then (i1, v, p) and (i1, v, 7) are global optimal solutions for MWP and
MWD, respectively.

Proof. The proof follows from Theorem 6 of [6].

12.5 Conclusion

(a) First-order symmetric duality

If p = r =0, then the above Wolfe-type programs reduce to the first-order symmetric
dual programs of Dantzig, Eisenberg, and Cottle [4]. Similarly, Mond—Wier-type
programs reduce to the first-order symmetric dual programs of Mond and Weir [12].

(b) Second order symmetric duality

If we take f(x,y) = f(x) +y7 g(x), then MW P reduces to the following nonlinear
program.

Minimize f(x)+y! g(x)
subject to g(x) <0, (12.1)
x> 0. (12.2)

Also, the dual MW D becomes

Maximize f(u)+v!g(u) — ;FT [fraa () + (07 g () )]

subjectto £, (u) + (vV (1)) + fuu()r + (V! (1)) ur > 0, (12.3)
quu(u) +u W g(u))y+ u” fr(u)r +u” (ng(u))Wr >0, (12.4)
V> 0. (12.5)

Thus we obtain a pair of nonlinear program problems studied by Mangasarian [8]
and Mond and Weir [12], respectively, in the second- and higher-order dual sense.
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Chapter 13

A Dynamic Solution Concept to Cooperative
Games with Fuzzy Coalitions

Surajit Borkotokey

Abstract The problem of distribution of payoffs through negotiation among the
players in a cooperative game with fuzzy coalitions is considered. It is argued
that this distribution is influenced by satisfaction of the players in regard to better
performance and success within a cooperative endeavour. As a possible alternative
to static solutions where this point is ignored, a framework concerning the players’
satisfactions upon receiving an allocation of the worth is studied. A solution of
the negotiation process is defined and the corresponding convergence theorem is
established.

13.1 Introduction

A cooperative game with side payments can be completely characterized by a
real-valued set function v, called the characteristic function defined over the set
of all possible coalitions. This characteristic function assigns to each coalition a
non-negative real number called its worth. In the literature, worth of a coalition is
interpreted either as the minimum payoff, the members of the coalition assure them-
selves or as the maximum payoff they expect to achieve by forming it. Thus, depend-
ing upon its interpretation, worth can be treated as either an upper or a lower bound
of the actual amount (payoff) achieved after the players form coalitions. A solution
is a rational distribution of the payoffs to the individual players.!

In crisp games, a subset of the players’ set can be viewed as a coalition with
full participation and a coalition structure would represent a partition of the players’
set. However, this idea is not very interesting while dealing with practical situations.
There are numerous instances [1, 5, 4, 22], where players would prefer to participate
partially in the coalitions. We call them fuzzy coalitions. Moreover, it is possible to
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have a player who wants to participate simultaneously in different coalitions with
varied participation rates. In order to model such situations, Aubin [1], Butnariu [5],
Branzei, Dimitrov, and Tijs [4] and Tsurumi, Tanino, and Inuiguchi [22] among
others extended the notion of crisp games into fuzzy games and obtained interesting
results similar to their crisp counterparts.

Two approaches of solution concepts in cooperative games are available in the
literature, namely the static approach and dynamic approach. Solutions such as
core, Shapley value, compromise value, and the like are static in nature. They do
not address the process of coalition formation and the bargaining about how to
split the surplus rationally among the players. In crisp games this problem has
been well studied by many researchers such as Dickemann [7], Ray and Vohra
[18-20], Tohme and Sandholm [21], and so on. Most of these works are inclined to
obtain a final coalition structure along with a payoff vector after executing a chain
of bargaining and negotiation protocols. Agent (Player) negotiation is an iterative
process through which a joint decision is made by two or more agents (players)
to reach a mutually acceptable agreement. It is worth mentioning the observations
made by Carmichael [6] who wrote that, in crisp cooperative game theory, agree-
ments are binding by definition. Wage bargaining between an employer and a labour
union is an example of cooperative bargaining because the outcome of the game is
a legally binding contract if they can agree. It is a threat outcome if they do not,
where a player’s threat outcome or threat utility is the best alternative outcome in
the event of no agreement. In cooperative games, players have an incentive to make
agreements that are worth making and that they won’t regret. As stated by Friedman
[8] it is therefore, “natural to focus attention on what players ought, in some sense,
to agree on.” The restrictions on the bargaining outcome follow from such common-
sense observations.

1. Individual rationality: Players won’t agree to anything less than they could get
by not reaching an agreement.

2. Group rationality: Players should agree on something on which they cannot
jointly improve.

3. Anonymity or symmetry: The solution should not depend on the labelling of the
players.

4. Transformation invariance or invariance to equivalent utility representations: The
solution shouldn’t change if either player’s utility function is altered in a linear
way.

5. Independence of irrelevant alternatives: If the number or range of possible
outcomes is restricted but this doesn’t affect the threat point and the previous
solution is still available, the outcome should not change.

Individual rationality indicates that the players won’t agree to any outcome
that gives them a lower payoff than their payoff if there is no agreement. Group
rationality implies that the negotiated outcome should be Pareto efficient. In geo-
metric terms these restrictions mean that the outcome of bargaining must lie on
the contract curve or payoff possibility frontier (sometimes known as the utility
increments frontier). The third restriction implies that when the players’ utility
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functions and their threat utilities are the same they receive equal shares. That is,
any asymmetries in the final payoff should only be attributable to differences in
their utility functions or their threat outcomes. The outcome should be indepen-
dent of interpersonal comparisons of utilities. Restriction 4 means that the solu-
tion is independent of the units in which utility is measured. For example, if the
bargain is over money and one player’s utility for money doubles, this shouldn’t
change the monetary outcome but whatever the player gets he will simply value it
twice as much. With these restrictions imposed Nash [17] showed that there is a
unique solution to the bargaining problem known as the Nash bargaining solution.
The Nash bargaining solution is the outcome which maximises the product of the
players’ gains from any agreement. This product is known as the Nash product (refer
to [6]).

The situation, however, complicates when we consider cooperative games with
fuzzy coalitions. Lai and Lin [10] have studied agent negotiation in e-business by
deploying fuzzy constraints. Luo et al. [14] developed a fuzzy constraint-based
model for agent negotiation in a trading environment. However, all these approaches
are noncooperative in nature. Agent negotiation in fuzzy coalitional games in terms
of optimum benefit to all the players is indeed a challenging task. Although many
dynamic learning models have been developed for crisp cases in the recent past,
little research has been done in a fuzzy setting. The protocols developed so far for
crisp games cannot be directly extended to their fuzzy counterparts because

1. The crisp system is finite in the sense that the set of possible alternatives for
bargaining is finite, although this assumption in a fuzzy environment would make
it oversimplified.

2. In a fuzzy setting, a partition of the grand coalition is meaningless as the players
can form multiple coalitions simultaneously.

So, in a dynamic crisp system, reaching a certain allocation requires the two a priori
unrelated processes on the part of the players: coalition formation and bargaining
on the distribution of payoffs simultaneously; on the other hand, in a fuzzy system,
we can consider the second process only: bargaining on the distribution of payoffs
after all the players offer their memberships in a particular coalition. However, by
awarding some binding incentives, the players can be encouraged to make further
coalitions.

In the case of static solution concepts such as that of the Shapley values defined
by Tsurumi, Tanino, and Inuiguchi [22] and Li and Zhang [12] for cooperative
games with fuzzy coalitions, the resulting allocations to the players within a coali-
tion are a rational distribution of the worth of that coalition. Such a solution is
entirely dependent on the rate of players’ participation. However, this idea does not
encourage the players to form further coalitions and hence does not influence the
process of forming coalitions. In order to ensure that the players are motivated to
form fuzzy coalitions, they need some binding incentives. There are instances where
satisfaction of individuals of high social position and acceptance is emphasised in
enhancing the worth of the corresponding fuzzy coalition. Organizations influenc-
ing public opinion such as news channels, magazines, and the like usually employ
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individuals having already acquired societal acceptance. It is easily comprehended
that these individuals do not usually contribute much to the production process,
however, their presence is enough for a binding coalition and consequently a better
return. Thus every possible measure is taken to keep those people in the organiza-
tion. In order to do so, we need to revisit the process of distribution of payoffs in
a dynamic environment. Moreover, performance of the current and the next coali-
tion would be enhanced if each player were satisfied with the payoffs he or she gets
(or expects to get) from the current coalition. In the case of a task allocation in a
work group, for example, if we identify worth with the gain achieved as a result of
the success of the project then it would be a function of the following well-known
parameters.

1. Goal achievement

2. Timeliness of the players

3. Quality of the performed task
4. Team collaboration level

5. Individual contribution level

The interested reader may see [9] for an in-depth discussion. Among the above five
parameters, the first four parameters are criteria for better performance of a player
and the fifth parameter emphasizes the participation rate. Performance of an indivi-
dual is influenced by her physiological and psychological states and traits along with
her ability, training, and education [9]. Lim and Zain Mohamed [13] have observed
that doubts often arise about what and who actually determine project success. They
have explored the issues from different perspectives of people looking at the project.
They proposed to classify project success into two categories: the macro and micro
viewpoints and suggested that two criteria are sufficient to determine the macro
viewpoint of project success: completion and satisfaction. Whereas the completion
criterion alone is enough to determine the micro viewpoint of project success, a
successful endeavour would result in enhanced worth so there is a need to explore
the factors affecting project success. These factors will be equally important for a
more general setup addressing other games as well. Thus the problem of finding a
solution to such a game is not restricted to distribution of the payoff according to
the participation rate but also encouraging the players to perform well by focussing
on their satisfaction levels as well. A third observation in this regard is about the
cooperation among the players. The static solutions do not in general reflect the
cooperation among the players explicitly. However, in modelling human behaviour,
likings and dislikings among the players play an important role. For a meaningful
coalition, the members need to be supportive of one another. Therefore, it is natural
to expect all the players to be satisfied at par with a possible solution vector in a
cooperative environment. Thus an aggregated satisfaction value over a particular
payoff to an individual player within the coalition can be derived to address all
the aforementioned aspects. A solution in this paradigm should be such that every
player is almost equally satisfied.

In this chapter, we have considered the problem of distribution of payoffs among
the players in an n-person cooperative game with fuzzy or partial participation.
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The objective of our study is to provide a systematic treatment of satisfaction level
as a basis for negotiation among rational agents, who can participate in various
coalitions with a varied rate of memberships simultaneously. We assume that the
worth of a fuzzy coalition is evolved dynamically, as opposed to its static behaviour
considered in the literature so far.

Initially the players would announce their memberships in a fuzzy coalition and
disclose their demands as well. If the total payoff demanded is achievable from
the worth, no negotiation will be required. If, however, the demands are not met,
they have to revise their requirements and a mediator propose an offer initially
based on their rates of participation. Upon receiving the proposal offered by the
mediator, each of the participating players provides the membership value of his
satitsisfaction. On the basis of this information the mediator will update his belief
and propose the next offer and the process will continue until a stopping condition is
met. Thus the mediator would offer alternative proposals to the players judging their
reactions to the previous offers. We have developed a stopping rule and proposed
the process of updating the belief of the mediator by use of a suitable probability
measure towards the possible reactions of the players upon different offers. Further-
more, a similarity relation is defined to measure the similarity between the satisfac-
tion levels of the individual players over a single proposal. The negotiation strategy
is so designed that the mediator would propose only offers (possible solutions) for
which the similarity value would be maximum at each stage of the negotiation
process. What we have also kept in mind is that, in the negotiation process, each
of the players has a single motive: maximizing the individual payoff, which is well
represented by the monotonic increasing functions characterising the fuzzy sets of
their satisfactions. However, negotiation asks a player to accommodate the desires
and views of all the other players. This suggests that an appropriate negotiation
process should restrain the players from claiming irrational demands and it should
reward those who are more open in forming coalitions. Our model shows that the
negotiation process thus defined speeds up for cooperating players. We provide an
example to show the usefulness of our proposed model.

13.2 Preliminaries

In this section we give the needed definitions and results from [1-23], those used in
this chapter. A fuzzy set is characterized by a membership function from the uni-
versal set to [0, 1]. Thus, without loss of generality, we denote the fuzzy sets here
by their membership functions. We consider the class of fuzzy games defined by
Azrieli and Lehrer [2]. This class seems to be more general than the other exist-
ing classes and includes the class of crisp games as a subclass. Its interpretation,
however, is rather different. A fuzzy subset of a crisp set X is a function from X to
[0, 1], assigning every element of X a membership between 0 and 1. Let N be a finite
set representing the types of agents in a large population. There is a continuum of
agents of each type and Q; > 0 is the size of type i (i = 1,2, ...,n) agents. The entire
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population is, therefore, represented by a nonnegative vector Q = (Qy,...,0,), and
possible coalitions are identifed with the vectors that are (coordinatewise) smaller
than Q. Thus formalizing the notion, we have the following.

For every nonnegative vector Q € R”, let F(Q) be the box given by

F(Q)={ceR":0<c<Q}. (13.1)

The point Q is interpreted as the ‘grand coalition’ in the fuzzy sense, and every
¢ € F(Q) is a possible fuzzy coalition. For every Q > 0: Q € R", a fuzzy game is a
pair (Q,v) such that

(i) geR"and Q > 0.
(i) v: F(Q) — R"UO is bounded and satisfies v(0) = 0

where 0 € F(Q) is the zero vector signifying 0-size of all types of players. Thus
if ¢; represents the amount of agents of type i (i = 1,2,...,n) that participate in a
coalition, then the total worth of ¢ = (¢y,c2,...,¢y,) is given by the real number v(c)
[see [2] for more details].

This model has another interpretation due to Azrieli and Lehrer [2]. Assume that
foreveryi (i=1,2,3,...,n), the amount of resources available for agent i is Q; > 0
(this can be time, money, etc.). Each agent can choose to invest any fraction of her
resources ¢; < Q; in a joint project. Note that a fuzzy coalition in Aubin’s [1] sense
is given by a membership function from N to [0, 1], however, the two approaches
are equivalent in the following sense.

If for every ¢ € F(Q), ¢; (0 < ¢; < Q) is the amount of resources that agent i
invests, then we can uniquely define a function S¢:N— [0,1] as follows.

Ci ifQ;#0andc; #0
52() = { N

(13.2)
0 otherwise.

The function S< can be interpreted as the membership function for a possible fuzzy
coalition in Aubin’s sense pertaining to ¢ in F(Q). Thus under this interpertation,
every ¢ € F(Q) corresponds to a unique fuzzy coalition 52 in membership function
form and vice versa. The support of ¢ denoted by Supp(¢) is the set {i € N | ¢; > 0}.
The following definitions are important.

Definition 13.1 ([1]). A core solution to the game (Q, v) is a vector x € R” such that:

(i) x-Q = v(Q) and
(i) x-¢ = v(c) Ve € F(Q)>.

Definition 13.2. The minimum deal index of a fuzzy game (Q,v) with respect to a
fuzzy coalition c is the vector x(i,c) € R" such that

(13.3)

x(ise) = {V(O|Ci) + ZC’C’ [v(c) —3;v(0|c;)] ifie€ Suppc

otherwise,

2 For two vectors x and yin R", x-y represents the inner product ¥ x; - y;.
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where v(0|c;) = v(0,...,0,¢;,0,...,0),and v(c).c; may be interpreted as the propor-
tion of resources of the ith component in v(c).

Remark 13.1. The minimum deal index is a core solution.

A vector of payoffs x = (x1,x2,...,x,), one for each player, is called an allocation.
An allocation is feasible for coalition ¢ if ¥ x{ < v(c).

The following theorem establishes an independence of the choice of participation
by the players in various fuzzy coalitions.

Theorem 13.1. If Q;(> 0) represents the total resource of player [ in the game
(Q,v), and it is exhausted in forming a finite number of coalitions ¢/, j =1,2,...,
m < oo, (L.e., Zﬁ;l c{ = Q; Vi € N), then the membership distributions of individual
players are linearly independent.

Proof. Letforo; € R,i €N,

el =0 1j=12..m=Y Yo =0

n
Za,»(c},c?,...,c;") =0=
i=1 i=1 j=li=1

n m n

n
= z 0;- Qi =0= o; =0, as Q;s are all positive.

i=1

13.3 Our Model

We now turn to our model. For our game, let us assume that v(c) represents the
payoft that the players achieve after forming the coalition c. The negotiation process
among the players for a suitable allocation of the worth incorporates the satisfaction
values of each player upon the previous offers. Consequently a solution to such a
game is an allocation x° € R”, feasible for ¢ which exhausts v(c). We have adopted
solution axioms for our game similar to those given by Nash [17] for crisp games
and which we mentioned in the introduction. Formally we have the following.

Definition 13.3 (Nash bargaining solution in the fuzzy sense). A Nash bargaining
solution in the fuzzy sense is a feasible allocation x° € R" which exhausts v(c); that
is, for each ¢ we must have Y, x{ = v(c) and satisfy the following axioms.

1. Individual rationality: Players won’t agree to anything less than they could get
by not reaching an agreement.

2. Group rationality: Players should agree on something they cannot jointly improve
on. Here improvement is essentially measured in terms of an aggregated satisfac-
tion value.

3. Transformation invariance: The solution should not change if any player’s
participation is altered in a linear way.
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4. Independent of irrelevant alternatives: If the number of range of possible
outcomes is restricted but the previous solution is still available, the outcome
should not change.

All the players would offer their participation in various fuzzy coalitions among
them. The negotiation takes place for one coalition at a time. A coalition structure
{c/ };-":1 in a fuzzy sense is a set of all m fuzzy coalitions formed by the players
by offering their resources. Thus the players may form the fuzzy coalitions in the
coalition structure all at one time or one after another. In either case, at time t = 0, all
the players announce their respective initial demands (i.e., the share of the payoff)
they initially aspire to get with respect to a fuzzy coalition ¢ say. Realized payoffs
depend on the compatibility of the demands of the players.

13.3.1 The Allocation Process

The allocation at time ¢ = 1 is made as follows. If the demands within the coalition ¢
are feasible, each member of ¢ will receive his or her demand. Otherwise they will be
asked to construct individually the fuzzy sets of their satisfaction over the payoffs.
Consequently the mediator will start offering proposals at each ¢ until a stopping
condition is attained. In general, upon receipt of an offer at time #, the players would
react by announcing their level of satisfaction. The mediator, unaware of the actual
fuzzy sets of satisfaction of the players instead updates her beliefs (fuzzy sets of the
satisfaction of the players as she believes them to be) from the preceding information
of the players. She then proposes the next offer so that the satisfaction degrees of the
players as she believes are closer than the previous ones. When all the players are
almost equally satisfied up to a desired exception, that is, when the similarity among
all the players’ satisfaction is maximum, the negotiation stops and the corresponding
proposal would be the required solution with respect to the coalition.

Definition 13.4 (Similarity function). The similarity function among n fuzzy sets
U; on the negotiated issues, denoted by Sim(u, U, ..., Uy) : R" — [0,1] is defined

as
n

sin(unpo, )@ =1 | X W@-wE@2 (134

ij=1

Let S_P;(-) denote the membership function representing the fuzzy set of satis-
faction the ith player is to define according to his aspirations. However, the players
need not construct well-formulated fuzzy sets of satisfaction. All they require to
announce, rationally, is the degree S_P;(z) of their satisfaction over a particular
offer z at each time period. Let D° = {z | 3",z = v(c);z > 0} be the set of
all feasible allocations and DY = {(z||z) | Y1z =v(c);z > 0} where (z]|z;) =

J7F1
(21,22, +++2i—1,Zi+1,---,2n)- The ith component Pl.’“(z | ') of the conditional
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probality vector P'T'(z | x') of choosing an offer z at time 7+ 1 by the
mediator from D° for player i given that an offer X’ has been offered in time ¢, is
defined as

icj // /SP +u,())jli[1dzj
i

ﬁé
zc, // /s Pixt) + ! (2 ))jli[ldzf o

P (2] ) =

where p! is the belief function of the mediator towards player i updated at time ¢
and defined as follows.

Definition 13.5 (Belief function). Given the previous belief (i.e., at time (z — 1)),
p!=1(-) Vi € N and the previous offers x°,x!,... x'~1, the belief function u(-) at

time ¢, is defined as

)= {Pt(z'x’) RO VH (@) V2 e D0 iz £ k= 0,120, (- 1)
S_Py(xh) ifz=xkk=0,1,2,...,(t—1),
(13.6)

with p?(-) as the initial belief suitably chosen by the mediator.

Definition 13.6 (Set of feasible proposals). Given the beliefs ] +l (+) updated for
each player by the mediator, at time ¢ + 1, the latest offer X' = x' at time ¢ and
the membership values S_P;(x'), the set of feasible proposals for time 7 + 1 is
constructed as

Dl+l :{Z|ZZ1_V Z1>V(Cl|0 Sim(“[Jrlv---a“r[erl)( )

< sim(spl,...,spn)(f)}. (13.7)

Definition 13.7 (Expected allocation proposal). Given D'*!, the set of feasible
proposals for time ¢ + 1 an expected allocation proposal X is defined as

K =arg, ( max Sim(u/ ™. w (2 )) : (13.8)

ZEDH»I

Definition 13.8 (Solution of the negotiation process). Given a sequence x' € D’
of feasible allocations, a solution of the negotiation process is a feasible allocation
x¢ € R™ which satisfies the following,
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n
(a) fo =v(c)
i=1

(b) Sim(S_Py,...,S_P,)(x°) > Sim(S_Py,...,S_P,)(¥) V¥ e D'. (13.9)

Definition 13.9 (Bargaining cost). Amount payable by the ith player to the
mediator because of her efforts towards achieving an agreement among the players
is termed the bargaining cost. Formally, we define the bargaining cost function for
our model as r(i,1) = (x(1 = S_Pi(x")))/(civ(c)) - ¢(¢), where ¢(¢) is the cost due
to the delay in time.

Assumption 13.10. In a negotiation process, each player has to pay the mediator a
bargaining cost which increases with delay in time and irrationality in satisfaction
of the ith player. Furthermore, if the demands made at the begining of the game are
feasible, there will be no bargaining cost.

Note that the purpose of taking Assumption 13.10 is to ensure that the players
announce their demands rationally and sensibly. There may be a case with a very low
satisfaction on a very high payoff with a low level of participation in the coalition
(we call it irrational) by a particular player whereas the others are genuinely dissatis-
fied with their own payoffs as well. Yet, we will get a solution as the similarity
remains at a high among them. Such a solution would never serve our purpose of
inducing satisfaction of the players. So, the bargaining cost function is so designed
that the players are debarred from adopting such irrational expectations.

13.3.2 Protocol

Step 1. Each player i will announce his or her demand for participating in the
coalition c.

1. If all these demands together form a feasible allocation for ¢, GOTO step 5.

2. Else Player i will revise his aspiration and design a fuzzy set of satisfaction
represented by a membership function, denoted as S_P;(+).

3. The mediator offers the initial proposal.

4. The players will announce rates of their satisfaction.

Step 2. Every player’s degree of satisfaction at the rth stage is used by the mediator
to update her belief for the (7 + 1)th stage. She will then choose an expected alloca-
tion proposal from a possible set of alternatives.

Step 3. Player i will announce his degree of satisfaction upon receiving the offer
made by the mediator.

Step 4. A stopping rule is tested:
‘Whether Sim(S_Py,...,S_P,)(xXT!) < sim(S_Pp,...,S_P)(x) ?

1. If the condition is met take t = ¢+ 1 and GOTO step 2.
2. If the condition is not met, continue.
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Step 5. The proposal x' offered in time ¢ is a solution of the allocation process and
the process terminates.

Remark 13.2. Note that here we have not mentioned what the initial offer should
be. This offer can be anything, however, in order to speed up the negotiation process,
the mediator may start with a core solution, or the minimum deal index. Similarly,
the fuzzy sets representing initial beliefs (one for each of the players) can be justifi-
ably considered as monotonic increasing functions having nonzero supports on the
initial offer.

13.3.3 Main Theorem

Before stating and proving the main theorem, we make the following observation.

Observation 13.11. D’, the set of feasible proposals at time ¢ defined by Equa-
tion [13.7] is closed, bounded, and monotonic decreasing with respect to time 7.

Theorem 13.2. There exists a solution of the negotiation process.
Proof. We consider two cases.
Case I. D' = () for some o >t > 0.

Here an expected allocation proposal in stage ¢t — 1 would be trivially a solution of
the negotiation process (given by the stopping rule).

Case Il. D' £ 0, Vi

In this case, D' gets reduced at each stage so that the similarity among the satis-
faction levels of the players as believed by the mediator gets closer to 1. Thus the
negotiation process will converge on an allocation, say x* € N} D’. Formally, x, —
x* ast — oo and

i {uf (") — i (x)}? < 2 {uf () — 5 ()} (13.10)
ij=1 i,j=1
i#] i#]

Continuity of S_F;(-) implies that S_P;(x') — S_P,(x*) and P! (x* | ') — 1 such that
ui(x*) — S_Pi(x*) as t — oo for all i.
(13.10)=

i)~ )P < T i) i)
7 i

< i {S_P( ") —S_Pi(¥ 1} Wi
ij=1
i)
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Taking limits on the left, in particular, we get

n n

Y AS R —S_Pi()P < 3 A{S-A() - S_P()}? v € D'
i,j=1 ij=1
i#] i#J

Thus x* is the required solution of the negotiation process.

Theorem 13.3. A solution of the negotiation process is a Nash bargaining solution
in the fuzzy sense.

Definition 13.12. A coalition c is said to satisfy the maximum cooperation criterion
with respect to an allocation x* if

Sim(S_Py,...,S_B)(x") < Sim(S_Py,...,S_P,)(x)  VxeD' and V.

Corollary 13.1. If a coalition satisfies the maximum cooperation criterion with
respect to the allocation x*, then x* is the unique solution of the negotiation process.

Proof. From the definition of maximum cooperation criterion we have x* € NyD’
so that Ny D’ # 0. The rest follows from the second part of Theorem 13.3.

Theorem 13.4. At each stage of the negotiation process, the set of possible solutions
to the game is getting smaller. This reduces, at each stage, the labour of seeking
alternative solutions. Thus the negotiation process converges rapidly.

Theorem 13.5. When there is a solution, as a result of agreement among the
players, no further improvement of the distribution gives a better solution with
increased satisfaction to all the players including the mediator simultaneously, a
Pareto optimality condition.

13.4 An Example

We consider a practical problem of allocating payoffs among the members of a
design and production engineering project of an organization which hires groups
of experts from different desciplines. Mich, Fedrizzi, and Garigliano [16], in their
paper, presented a general strategy for the management of decision making under
uncertainty in industry, and its application to the specific problem of route genera-
tion in an electric engineering company. They have pointed out that a major problem
in the manufacturing industry is integration of the design and production engineer-
ing process. Motivated by their paper, we have considered the subjectivity inevitably
present in design and production engineering processes of a manufacturing industry.
There is a strong link between these two phases, because the characteristics of a
design determine the manufacturing process needed and, vice versa, features of the
production cycle act as constraints on the acceptable designs. In the system, we have
a scientific engineering team (SET) such that
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SET = {G,Ga,...,G,} where for example,
G = Group of production engineers

G, = Group of designers

G3 = Group of accountants

G4 = Group of personal mangers, and so on

Each expert group has realistically specific competencies and local goals (rates of
participation and demands) that they ask in order to define the design and produc-
tion vectors. Thereafter, every group has given a membership of their participa-
tion (fuzzy coalition) in the project. We assume that the worth of the coalition
is the amount generated for the payment to the members after completion of the
work. This amount is indeed a suitable percentage of the surplus incurred after all
the production expenses including salary to the members of the hiring authority
have been made. A solution to the above problem can be termed as a goal vector,
where each of the groups should attain its own specific goals. In practice, it is evident
that the members of G; account for their participation in the project according to
their requirement in it and the success of the project would depend upon their joint
endeavour. Therefore, special emphasis is given to the satisfaction of the members.
Thus, solving the production—design problem is indeed equivalent to solving the
cooperative game with fuzzy coalitions, where a solution vector means a goal vector
which should contain the specific goal of each expert group (fuzzy coalition). The
mediator here, is a representative appointed by the hiring organization.

In our example, for simplicity, we took only three groups of experts, namely,
G1,G,, and Gj representing three individual players. Let Q = (1,1, 1) represent
total resource vector of the players. For a particular project, the players offered
their participation as ¢ = (0.2,0.4,0.5). Now, with the terminologies used in
Definition [13.2], we have the worth v(c) = 420, v(0|c;) = 20, v(0|x;) = 80,
V(O|X3) =100, and DY = {Z = (Z],Z2,13) eR3 | 21+2+z3= 420}

The players announced their demands as (100, 200, 300). This is not feasible.
So the negotiation took place. The mediator started with the minimum deal index as
the initial offer.

Thus x° = (60, 160,200).

Satisfaction rates were announced by the members at 7 = 0 : (0.85,0.8,0.95).
Based on the satisfaction rates, one can easily infer that a solution should not be far
from the minimum deal index. Thus the mediator constructed the initial beliefs as
follows.

For any z = (z1,22,23) € D°.

0 if z; <50
u(z) = 900 if 50 <z < 420 (13.11)
1 if z1 > 420



228 Surajit Borkotokey

0 if 7 < 150

1 (z) =< 2,00 if 150 < zp < 420 (13.12)
1 if 75 > 420
0 if z3 <210

ui(z) =3 500 if 210 < z3 <420. (13.13)
1 if z3 > 420

Consequently, the bargining cost function r(i,7) is defined as follows.

X(1—S_P{x))

r(i,t) = ev(c)

: (P (t)a

where ¢(7) is defined as: ¢(¢r) =1+ 1.

Second Offer made by the mediator: x' = (70.4039,161.0930, 188.5031).
Satisfaction rates announced by the members at 7 = 1: (0.9,0.85,0.9).

Test condition was checked.

As Sim(S_Py,...,S_P,)(x") = 0.005 < Sim(S_Py,...,S_PB,)(x") = 0.035, the
mediator would continue the negotiation process.

Third Offer made by the mediator: x> = (84.26,163.58,172.16).

Satisfaction rates announced by the members at # = 2: (0.95,0.9,0.85).

As Sim(S_Py,S_P5,S_P;)(x*) = 0.02 > Sim(S_P;,S_P>,S_P;)(x') = 0.005, so
the stopping condition is met and x! is the required solution of the negotiation
process.

The bargaining cost of the game is computed as (0.1678,0.5753,0.4488).

13.5 Conclusion

We have developed a model to solve dynamically a cooperative game with fuzzy
coalitions. The static solutions to such games incorporate only the rates of player
participation, however, we have argued that player satisfaction is an essential
component of determining payoffs to participating players. We have given three
different aspects for incorporating satisfaction in finding a solution acceptable to all
players. Satisfaction can provide binding incentives to the players for participating
in the coalitions. Similarly there are situations where despite low participation in
the coalition, an individual has to be paid a handful of payoff in order to make it
more worthwhile. We have given an example of such a situation in the introduction.
Thirdly, likings and dislikings among the players over different issues in a coalition
influence its worth. Thus it is expected that the solution vector is so designed that
all the players are equally satisfied. We have developed an algorithm for the purpose
and validated it by means of a simple example. A solution of the negotiation process
is proposed and its existence is proved. To speed up the negotiation process and
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also to avoid irrational demands by the players, we have proposed the notion of a
bargaining cost to be paid by the players to the mediator. The success of the model
depends primarily on generating the initial beliefs by the mediator which repre-
sent the basic human characteristics of increased satisfaction over enhanced payoff.
However, in order to model more complex characteristics where enhanced payoff
will result in no further increase in satisfaction, or a slight increase (decrease) of
payoff may boost (fade away) satisfaction of the players, the simple monotonic
increasing function signifying the initial belief will not be appropriate. Thus, at a
later stage, we propose to incorporate those variants in the model to make it more
compatible with real-life situations.
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Chapter 14

Characterizations of the Solution Sets and
Sufficient Optimality Criteria via Higher-Order
Strong Convexity

Pooja Arora, Guneet Bhatia, and Anjana Gupta

Abstract In this chapter we introduce four new generalized classes of strongly
convex functions, namely strongly pseudoconvex type I and type II of order m and
strongly quasiconvex type I and type II of order m. Characterizations of the set of
strict minimizers of order m via strong convexity of order m are derived. Sufficient
optimality conditions for higher-order efficient solutions for a vector optimization
problem are presented. Some mixed duality results are also established.

14.1 Introduction

The theory of vector optimization is a problem of continuing interest in defining
and characterizing its solution. Several solution concepts of vector optimization
problems have emerged in the literature in an urge to obtain more satisfactory repre-
sentation of such points. The concept of local minimizer of higher order in nonlinear
programming originated from the study of iterative numerical methods. Auslender
[1] derived necessary and sufficient optimality conditions for isolated local minima
of orders 1 and 2 for the optimization problem,

minimize{f(x) : x € C},
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where f : R" — R is a locally Lipschitz function and the feasible set C is a closed
subset of R".

Studniarski [5] extended the definition of Auslender [1] for isolated local minima
of orders 1 and 2 to the isolated local minima of order m, a positive integer, under
the assumption that C is any subset of R” which is not necessarily closed. He also
derived the optimality conditions for the above problem by means of lower and
upper Dini directional derivatives of f. Ward [3] renamed the isolated minima of
order m as the strict local minimizer of order m for the scalar optimization problem
and characterized it using tangent cones. Jimenez [2] extended the ideas of Ward
[3] to define the notion of strict local efficient solution of order m for the vector
minimization problem.

It is worthwhile to note that the notions of convexity and generalized convexity
play a crucial role in optimization theory. In this chapter we use strong convexity of
order m to derive a characterization for the set of strict minimizers of order m for
a scalar optimization problem. Furthermore, four new generalizations of strongly
convex functions of order m are employed to develop sufficient optimality condi-
tions and to establish mixed duality results for a vector optimization problem.

The chapter has been organized as follows. In Section 14.2, we consider strong
convexity of higher order for differentiable functions and its characterization in
terms of gradient vector. This characterization leads us to the four new generali-
zations of strong convexity of order m, viz. strongly pseudoconvex type I and type 11
functions of order m and strongly quasiconvex type I and type II functions of order
m. Examples are presented to illustrate the relationship between these new classes
and the existing notions of pseudoconvexity and quasiconvexity. In Section 14.3,
we characterize the set of strict minimizers of order m for a scalar optimization
problem via strong convexity of order m. In Section 14.4, we study the concept of
efficient solution of order m for a vector optimization problem. Optimality condi-
tions are derived. A dual is proposed and mixed duality results are established in
Section 14.5.

14.2 Strongly Convex Function
This section starts with the concepts of a strongly convex function of order m. Let
X be an open convex subset of R" equipped with the Euclidean norm || - ||

Definition 14.1 ([4]). A function f : X — R is said to be a strongly convex function
of order m if there exists a constant ¢ > 0 such that for any x,y € X and ¢ € [0, 1]

flx+(1=1)y) <1f(x)+ (1 =) f(y) —er(1 =) e ="

For m = 2, the function is referred to as strongly convex in the ordinary sense
[7]. Strong convexity of any order implies convexity but the converse is not true, in
general [4].
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Remark 14.1 ([4]).If each f;,i=1,2,..., pis strongly convex of order m on X, then
fort; >0,i=1,2,...,p, Zf’:l tifi and max;<;< f; are also strongly convex of order
monX.

The following theorem gives the characterization of a strongly convex function
in terms of its gradient vector.

Theorem 14.1 ([4]). Suppose f : X — R is continuously differentiable on X. Then,
f is a strongly convex function of order m on X if and only if there exists a constant
¢ > 0 such that

fO) 2 f@)+ V) (y—x)+clly—x|",  VxyeX. (14.1)
The above characterization leads us to the following new classes of functions.

Definition 14.2. A differentiable function f : X — R is said to be strongly pseudo-
convex type I of order m on X if there exists a constant ¢ > 0 such that for any
x,yeX

Vi)' (v=x) =2 0= f(y) = f(x) +clly — x|

Remark 14.2. Every strongly pseudoconvex type I function of order m is pseudo-
convex. However, the converse of the above statement may not be true. For example,

£0) X ifx<0
X)) =
0 ifx>0

is pseudoconvex but is not strongly pseudoconvex type I of any order, as for x = 0,
y > 0 we have V£ (x)'(y —x) = 0, however, f(y) > f(x) + c|ly — x| is not true, for
any ¢ > 0.

Definition 14.3. A differentiable function f : X — R is said to be strongly pseudo-
convex type Il of order m on X if there exists a constant ¢ > 0 such that for any
x,yeX

Vi) —x)+elly—xl" = 0= f(y) = f(x).

Remark 14.3. Every strongly pseudoconvex type II function of order m is pseudo-
convex. However, the converse of the above statement may not be true. For example,
f(x) = —x is pseudoconvex but is not strongly pseudoconvex type II of any order;
as for y =1, x = 0 we have f(y) < f(x) but Vf(x)' (y — x) + c||ly — x[| > 0, for any
c> 1.

Definition 14.4. A differentiable function f : X — R is said to be strongly quasi-
convex type I of order m on X if there exists a constant ¢ > 0 such that for x,y € X,

fO) < f@) = V) (y—x)+elly—x" <0

Remark 14.4. Every strongly quasiconvex type I function of order m is quasiconvex.
The converse of the above statement may not hold. The function f(x) = v/1 — 2,
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x € ]0,1] is quasiconvex but is not strongly quasiconvex type I of any order. As for
y=1/2,x =0, we have f(y) < f(x) but Vf(x)'(y —x) + c|ly — x| < 0 does not
hold for any ¢ > 0.

Definition 14.5. A differentiable function f : X — R is said to be strongly quasi-
convex type Il of order m on X if there exists a constant ¢ > 0 such that for x,y € X

FO) < f)+elly =" = Vf(x)' (y—x) <O0.

Remark 14.5. Every strongly quasiconvex type II function of order m is quasi-
convex.

14.3 Characterization of Solution Sets

In this section, strong convexity of order m is employed to derive a characteri-
zation of the set of strict minimizers of order m for the following scalar optimization
problem,

(P) minimize f(x)

subject to x € S,

where S is a convex subset of R" and f is a real-valued differentiable function
defined on an open subset X of R".
‘We now extend the notion of strict minimizer of order m defined in [3] as follows.

Definition 14.6. Let m > 1 be an integer. A point x° € S is said to be a strict mini-
mizer of order m for (P) if there exists a positive number ¢ > 0 such that

f@) > Y +ofx=x0",  vxes.

We denote the set of all strict minimizers of order m as S. Throughout the section,
we assume the set S to be nonempty.

Definition 14.7 ([4]). A map F : X — R" is strongly monotone of order m on X if
there exists o > 0 such that, for x,y € X,

(F(y) = F(x)' (v —x) > ofly —x||™.
For m = 2, the map is referred to as strongly monotone [7].

Remark 14.6 ([4]). It is evident that if f is differentiable and strongly convex of
order m on X then V£ is strongly monotone of order m on X, where o« = 2c.

Lemma 14.1. If f is differentiable and strongly convex of order m on X and X,y € §,
then

VIE) (-3 = V) (x-y) =0.
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Proof. Because %,y € S, we obtain
VFE)(F—%) >0 and Vf(y) (£—3) >0. (14.2)

As f is strongly convex of order m, then it follows from Remark 14.6 that V f is
strongly monotone of order m. Hence, the inequalities in (14.2) imply, respectively,
that

VFF)(F-% >0 and Vf(x) (x—35) >0. (14.3)

Combining the inequalities in (14.2) and (14.3) yields the required conclusion.
The following theorem gives a characterization of the set of strict minimizers of
order m.

Theorem 14.2. If f is differentiable and strongly convex of order m on X and X € §,
then S =S =S', where

S={xeS:Vfx)(x—x)
S'={xeS:Vf(x) (x—x)

0}, (14.4)
0} (14.5)

Y

Proof. Letx € §; then as ¥ € S, it follows from Lemma 14.1 that V f(x)" (¥ — x) = 0.
Thus, x € S which implies that § C S. Conversely, if x € S then V£ (x)' (¥ —x) = 0.
Because f is strongly convex of order m, we have

J(®) = f(x).
Because ¥ € S and the above inequality holds, we have
f(®) = fx).

Then it follows that § C S and hence, S = S. It is obvious from (14.4) that the
inclusion S C § holds. Assume that x € 8" and Vf(x)' (X —x) > 0. In as much as
f is strongly convex of order m, we have

f(®) = f(0),

% € S and the above inequality holds, therefore we have

Thus, S’ C S and hence § = §'.

Theorem 14.3. If f is differentiable and strongly convex of order m on X and x € S,
then § = S* = §, where

S ={xeS:Vf(x) (x—%)=Vfx)(x—x)}, (14.6)
S={xeS:Vf(F)(x—x) <Vf(x)(F—x)}. (14.7)
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Proof. We first show S C S*. Let x € S; then it follows from Lemma 14.1 that
V() (F—x) = V() (x—3) =0.

Thus, x € $*. The inclusion $* C § follows trivially.
Let x € §; then it follows from (14.7) that

V(xR (x—x) < Vf(x) (x—x). (14.8)
Because ¥ € S we have
V() (7—%) =0
then it follows from (14.8) that
V£ (x) (x—x) > 0.
Because f is strongly convex of order m, we have
fE) = fx).
Because X € S, the above inequality yields that
f(F) = f(x).

Thus, x € S and therefore, § C S.

14.4 Optimality Conditions

In this section, we present the necessary and sufficient conditions for the following
vector optimization problem (VP) to possess an efficient solution of order m

(VP) Minimize f(x) = (fi(x),...,fp(x))
subject to g;(x) <0, j=12,....q,

where fi,g;: X — R, i=1,2,...,p, j = 1,2,...,q are real-valued differentiable
functions.

Let S={xeX:gj(x) <0,j=1,2,...,q} be the set of all feasible solutions
for (VP).

Definition 14.8. A point x” € S is said to be an efficient solution for (VP) if

f) £ f°),  Vxes;
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that is, there exists no x € S, such that

L) SAEO) Vi=12,...,p,i#]
fi(x) < £;(x°) for some j.

Definition 14.9. Let m > 1 be an integer. A point x° € § is said to be an efficient
solution of order m for (VP) if there exists an o € int Rﬁ such that

f(x)ﬁf(xo)—&—aﬂx—xo ", VxeES;
that is, there exists no x € S, such that

i) S L)+ || x=x0|",  Vi=12,...,p, i#],
filx) < fj(xO)Jr(xj I x—x° 1™, for some j.

Remark 14.7. For any integer m > 1, if x is an efficient solution of order m for (VP),
then it is also an efficient solution for (VP). But the converse is not necessarily true
as can be seen by the following example,

minimizef (x) = (f1(x), /> (x))’, XER

A0 —x?sin (1) =2, if x#0,
1(x) =

0 if x=0,
and f>(x) = (f1(x))?. It is easy to verify that x” = 0 is an efficient solution for (VP)
but it is not an efficient solution of order m, as for any integer m, ¢« € int Ri ande >0
we can choose a positive integern,n > 1/4((2/ex)+ 1) andx = (2/(4n — 1)x) such
thatx € (—¢,¢€) and f(x) < a|x|™.

Theorem 14.4 (Karush—Kuhn-Tucker-type necessary optimality conditions).
Suppose x° € S is an efficient solution of order m and the functions f;, i=1,2,...,p
and gj, j=1,2,...,q are differentiable at x0. Let an appropriate constraint qualifi-
cation [6] hold at x°; then there exist 19 € Rﬁ, /.LO S Rﬂ such that

P q
SRV + Y udve (%) =0 (14.9)
i=1 j=1

uigi(x*)=0, j=12,....q (14.10)
2Ye=1, where e=(1,...,1)€RY (14.11)

The following results present sufficient conditions for the existence of a higher-
order efficient solution.

Theorem 14.5. Let the conditions (14.9)—(14.11) be satisfied at x° € S. Suppose f;,
i=1,2,...,p are strongly convex of order m on X and [,Lj()gj, j=12,....q are
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strongly quasiconvex type I of order m on X. Then x° is an efficient solution of order
m for (VP).

Proof. Because f;,i=1,2,...,p are strongly convex of order m therefore there exist
constants ¢; > 0,i=1,2,..., p such that

Jix) = fi(x%) = (x =20 V(o) e | = |
As A; >0,i=1,2,...,p therefore from the above inequality we have
Z/lof, Z?LOf, ) > (x—x0) Z?LOVf, +Z7LOc, [ x—x2 ™ (14.12)
i=1 i=1

Now forx € S, gj(x) <0,V j=1,2,...,q. As /.L;) >0,V j=1,2,...,q, therefore
we have
1Pgj(x) <0 = pfg;(x").

‘LL;) gj»J=1,2,...,q are strongly quasiconvex type I of order m, therefore there exist
constants ¢; > 0, j =1,2,...,q such that

(x—=x")'Vudg; (") +cj [l x =2 "< 0V j=1,2,....q

or

zuj’vg] JrchHx Lm<o. (14.13)
j=

Adding (14.12) and (14.13) and using (14.9), we get

P q
2%% ZA"fz (zxﬁcﬁzq) =20 |
i=1 j=1

which implies that
A (f(0) = () = allx =",
where a = 3/ A’c; +3_, ¢;. This implies that
M) = 16 = x=a"|"] > 0, (14.14)

where ¢ = ae, in as much as A’e = 1. It follows from (14.14) that there exists ¢ € int
R” such that for all x € S,

FE) £ O e x=x",
thereby implying that x° is an efficient solution of order m for (VP).

Theorem 14.6. Let the conditions (14.9)—(14.11) be satisfied at x° € S. Suppose
A £ is strongly quasiconvex type II of order m on X and u®g is strongly pseudo-
convex type II of order m on X. Then x° is an efficient solution of order m.
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Proof. Let us assume on the contrary that x is not an efficient solution of order m
for (VP). Then for every & € int R we have

ORSICORT I EE ke
Because A% e = 1, we therefore have
A ) SAY )+ Ao [ x =0
=AY 4| x=x°|™, wherec=A%a > 0.
As AY £ is strongly quasiconvex type II of order m at x, the above relation implies

that
(x—=x0)'VAY r(x%) <o.

Then it follows from (14.9) that
(x=2")'Vue(x") > 0
or
(x = Vug(x") +c || x—x"|">0, Ve>0.

Because u”g is strongly pseudoconvex type II of order m, the above inequality
yields that
ug(x) > u”g(x") =0

0

which is not possible. Hence x" is an efficient solution of order m.

14.5 Mixed Duality

In this section, we develop the duality relationship between (VP) and its mixed dual
under generalized convexity assumptions.
Let the index set Q = {1,2,...,q} be partitioned into two disjoint subsets K and
J such that Q = K U J. The mixed dual for (VP) is given by
(VD) maximize f(u)+ usgs(u)e
subjectto  A'Vf(u)+u'Vg(u)=0
Migk(u) >0,  kekK
A>0,Ae=1,u>0,e=(1,...,1) €RP.

Let Sp = {(u, A, )| A"V f(u) + 1" Vg(u) =0, wyege(u) 20,k € K, A >0, A'e =1,
U > 0} be the feasible set of (VD).

Theorem 14.7 (Weak Duality). Lez x and (u, A, 1) be feasible for (VP) and (VD),
respectively. Suppose (Zle Aifi+2 ey ujgj) (+) is strongly pseudoconvex type I of
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order m at u and Ycg U8k () is strongly quasiconvex type I of order m at u; then
the following does not hold

filx) < fiw)+ Y, wjgj(u) Vi=1,2,...,p.

JjeJ

Proof. Because (u,A, 1) is feasible for (VD),
Z/lVf, +2ujvg, u) =0 (14.15)

and
:ukgk(u) >0, keK.

Asx € S,g,(x) <0,k € K, and also y; > 0,k € K, therefore

> ugi(x) < Y gl
kek kek

S ek Mkgk(+) is strongly quasiconvex type I of order m; from the above inequality it
thus follows that

(x—u) 2 WVer(x) +cllx—ul|"<0.
kek

Using (14.15) we have

—cllx—ul">0

[ZlVﬁ +2N1ng u)

jeJ
or

—u)f [i iV fi(u)+ Y 1Ve(u)| = 0.

jeJ

(7 Aifi + X jesmjg)) () is strongly pseudoconvex type I of order m at u,
therefore

)4 )4
> Aifi(x) + Y wigi(x) = Y Aifi(u) + X mjgi(u) e || x—u "
i=1 jeJ i=1 jeJ

14 14

S Aifix) + Y wigi(x) = Y Aifi(u) + Y wigi(u)

i=1 jeJ i=1 jeJ

Using g;(x) <0, u; >0, j €J, we have

A(f () = f ) = D ujgj(u)) =0

jer

hence the result follows.
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Theorem 14.8 (Weak Duality). Lez x and (u,A, ) be feasible for (VP) and (VD),
respectively. Suppose (XF_| Aifi+ 3 jes 1jg;)(+) is strongly pseudoconvex type I of
order m at u and Y ycx W8k (+) is strongly quasiconvex type I of order m at u. Then
the following does not hold.

f()<ﬂ +2.U]gj Vl:1,2,7p
jeJ

Proof. (u, A, ) is feasible for (VD), therefore

Z/lVf, +Zujvg,) 0 (14.16)

j=1
and
wgk(u) >0,  keKkK.

Moreover, because x is feasible for (VP), gx(x) <0, k € K. Also u, >0, k € K;
then from the above inequality, it follows that

z Hrgr(x) < z g (ue)
kek kek

or

N ege(x) < Y g () +c [ x—u ||, Ve>0.
kek kek

Because Y g tkgk(+) is strongly quasiconvex type II of order m,

(x—u)" Y wVer(x) <O0.
keK

Using (14.16) we have

)4
XAV + Y wVew) | +cllu—x|">0,  Ve>0.
i=1 jeJ

As (30, Aifi+ X jes1jg)) () is strongly pseudoconvex type II of order m at u, we
have

il,»f,»(x) + Y 1gi(x) > ilifi(u) + ) 1jg(u)

jer i=1 =
Using g;(x) <0, uj >0, j € J, we have
AN(F(x) = flu) = ujgj(u) >0
jer

that is,

f()<ﬂ +2.U]gj Vl:1,2,7p
jeJ

cannot hold.
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Theorem 14.9 (Strong Duality). Suppose x° is an efficient solution of order m for
(VP) and constraint qualification [6] holds at X0, Then there exist A0 € Rﬁ and
ule RY such that (x°, A9, u®) is feasible for (VD). Furthermore, if the conditions
of either Theorem 14.7 or 14.8 hold, then (x°, 1%, u®) is weak efficient for (VD).

Proof. The proof follows from Theorem 14.4 and the weak duality theorem.
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Chapter 15

Variational Inequalities and Optimistic Bilevel
Programming Problem Via Convexifactors

Bhawna Kohli

Abstract In this chapter, we introduce Jd.-pseudo-convex and dJ-quasi-convex
functions on the lines of Dutta and Chandra [13] in terms of convexifactors and
their recession cone and utilize them to establish interrelations between solutions
of the Bilevel programming problem and Stampacchia and Minty-type variational
inequalities defined in terms of convexifactors and their recession cone. We also
establish existence results for these variational inequalities.

15.1 Introduction

The variational inequality problem (VIP) has received extensive attention in recent
years due to its applications in the field of economics, management sciences, and
so on. In fact many equilibrium problems in economics, game theory, mechanics,
traffic analysis, and so on can be transformed into variational inequality problems.
It was first introduced by Hartman and Stampacchia [18] in 1966 in their seminal
paper. Later on it was extended to vector variational inequality problems (VVIP)
by Giannessi [14] in 1980. Since then a great deal of research started in the
area of VVIP as a consequence of a lot of inclination of researchers towards
vector optimization. Many researchers have contributed in this direction includ-
ing Chen [5], Giannessi [17, 16, 15], Yang, and Teo [24], Mishra and Wang [21],
Chinaie et al. [6], Rezaie and Zafarani [23] and so on.

The study of the bilevel programming problem (BLPP) has been motivated
by its importance both in theoretical and practical (real-world) applications. The
bilevel programming problem was introduced to the research community in the
1970s. Since then intensive investigation of these problems began in both theoreti-
cal and practical applications such as economics, engineering, and medicine among
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others. BLPP studies the two combined optimization problems. In this, variables
of the first (or leader’s) problem are the parameters of the second (or follower’s)
problem and the optimal solution of the latter is needed to calculate the objec-
tive function value of the former. Due to its immense importance and interesting
nature it has been studied by many eminent researchers such as Dempe [9, 8], Bard
[3, 2], Outrata [22], Ye and Ye [25], Ye and Zhu [26], and most recently by Dempe,
Dutta, and Mordukhovich [10]. For practical applications and recent developments
on BLPP one can see Bard [3] and Dempe [9].

In this chapter we introduce the Minty-type variational inequality problems
(MTVIP) and Stampacchia-type variational inequality problem (STVIP) in terms of
convexifactors and their recession cone, and study relationships between solutions
of these problems and the bilevel programming problem. Although the bulk of the
literature on variational inequalities is based on the rigid assumption of generali-
zed monotonicity, in this chapter we have made an attempt to move without it. For
that we have introduced dZ%-pseudo-convex and dJ:-quasi-convex functions on the
lines of Dutta and Chandra [13] in terms of convexifactors and their recession cone.
We establish existence results for the two problems using the KKM lemma in terms
of convexifactors. These convexifactors are important tools of nonsmooth analysis
introduced by Demyanov [11] in 1994 and further studied by Jeyakumar and Luc
[19], Dutta and Chandra [13, 12], and Li and Zhang [20] among others. These are
recent generalizations of subdifferentials that are subsets of many well-known sub-
differentials such as those of Clarke and Michel Penot. Hence our results are sharper
than those using other subdifferentials.

The chapter comprises four sections. In Section 15.2, we give some basic defini-
tions and results and also introduce the notion of d.-pseudo-convex and dz%-quasi-
convex functions. The bilevel programming problem is discussed in Section 15.3.
Section 15.4 deals with MTVIP and STVIP and relations between solutions of these
problems and the bilevel programming problem. We also establish existence results
for Minty-type and Stampacchia-type variational inequalities in this section.

15.2 Preliminaries

This chapter focuses on finite-dimensional spaces. We begin by defining upper and
lower Dini derivatives as follows.

Let F : R"™ — RU{+oeo} be an extended real-valued function and let x € R™
where F(x) is finite. Then the upper and lower Dini derivatives of F at x in the
direction v are defined, respectively, by

(F)(Jir (x,v) = limsup F(x+1v)—F(x)

t—0* t

and

(F); (x,v) = 1§Tg?fF(x+tVt) —F(x)
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Dini derivatives may be finite as well as infinite. In particular if F is locally Lipschitz
both the upper and lower Dini derivatives are finite.

For any set A C R, the closure, convex hull, and the closed convex hull of A are
denoted, respectively, by A, CoA, and CoA.

We now give the definitions of convexifactors [12].

Definition 15.1. Let F : R" — RU {=+eo} be an extended real-valued function and
let x € R™ where F(x) is finite.

(i) F is said to admit an upper convexifactor (UCF) d"F (x) at x if d"F (x) C R™
is a closed set and

(F);(x,v) < sup (x",v), forallveR".
HEIF(x)

(ii) F is said to admit a lower convexifactor (LCF) o;F (x) at x if d;F (x) CR™ is a
closed set and
F)r(x,v)> inf (x*,v), forallveR™M.
(F);(x,v) > x*elg,lF(x) (x*,v), forallv

(iii) F is said to admit a convexifactor (CF) 0*F(x) at x if d*F(x) is both a UCF
and LCF of F at x.

It may be noted that convexifactors are not necessarily convex or compact [12,
13, 19]. Because of these relaxations convexifactors can be easily applied to a large
class of nonsmooth functions.

We now state the following mean value theorem given by Jeyakumar and Luc [19].

Theorem 15.1. Let a,b € R, and let F : R" — R be a continuous function.
Assume that, for each x € (a,b), d"F(x) and J;F (x) are, respectively, the upper
and lower convexifactors of F at x. Then there exist ¢ € (a,b) and a sequence
{xx} C co(d"F(c))Uco(d;F(c)) such that

F(b) = Fla) = lim (0, b —a).

Definition 15.2 (Recession Cone of A). Let A C R™ be any nonempty set. The
recession cone of A, denoted by A.. is defined as

Ao = { 1imt,~a,-,ai eA,{ti} lo}
[—00

A is bounded if and only if its recession cone is trivial.

Definition 15.3. A set-valued map I' : R"t — 28" is called a KKM-map if for every
finite subset {u;,uz,...,u,} of R™ its convex hull

n

co({ur,uz,...;un}) C |J T (ui)-

i=1
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We now state the following generalized Fan’s KKM lemma from Rezaie and
Zafarani [23] for the finite-dimensional case.

Lemma 15.1. Let T, T:ACRY = 2R pe two set-valued mappings, where A is a
nonempty subset of R™ such that the following are satisfied.

(i) ['(x) CT(x), for all x € A.

(ii) I' is a KKM-map,
(iii) T (x) is closed for all x € A and is bounded for at least one x € A.

Then Nyeq I'(x) # 6.
We now give the definition of d-pseudo-convex function and d%-quasi-convex

function on the lines of Dutta and Chandra [13].
Let F : R™ — R be a real-valued function and let X € R"!.
We assume that F' admits convexifactor 0" F ().

Definition 15.4. The function F is said to be d:-pseudo-convex at ¥ if
F(x)<F(x)= (&, x—x) <0, forallE € d"F(X)U(d"F (X)) \{0}.

Remark 15.1.

(i) If F is a differentiable function then 0*F (x¥) = { VF (%) } and the above definition
reduces to the definition of pseudo-convex function.
(ii) If 9*F(x) is bounded then the above definition reduces to the definition of
d*-pseudo-convex function introduced by Dutta and Chandra [13].
(iii) If F is a locally Lipschitz function and 0*F (¥) = d°F (X), where d°F (%) is the
Clarke generalized gradient, then the above definition reduces to the definition
of d“-pseudo-convex function defined by Bector, Chandra, and Dutta [4].

Definition 15.5. The function F is said to be d%-quasi-convex at ¥ if
F(x)<FX) = (£,x—x) <0, forall £ €d"F(X)U(d"F(¥))\{0}.

Remark 15.2.

(i) If F is a differentiable function then 0*F (¥) = { VF (%) } and the above definition
reduces to the definition of quasi-convex function.

(ii) If F is a locally Lipschitz function and 0*F (X) = d°F (X) where 0°F (%) is the
Clarke generalized gradient then the above definition reduces to the definition
of d“-quasi-convex function defined by Bector, Chandra, and Dutta [4].

15.3 Bilevel Programming Problem

In this section we study the bilevel programming problem given as follows.
(BLPP) minF(x,y)
xy

subjectto G;(x,y) <0,j€J,y € y(x),
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where for each x € R™, y(x) is the set of optimal solutions to the following optimi-
zation problem

min f(x)
subjectto g;(x,y) <0, i€l

where F, f : R" xR - R, G; : R" xR” — R, jeJ={1,2,...,mp} and g; :
R" xR —R,iel={1,2,...,m}; n; and m;, i = 1,2 are integers with n; > 1
and m; > 0. f(-,-) and g;(-,-), i € I are continuous convex and

y(x) = arg;nin{f (x,y) + g(x,y) <0}

So the idea is that the lower-level decision maker, or the follower minimizes his
objective function based on the leader’s choice x and returns the solution y = y(x)
to the leader who then uses it to minimize her objective function. If the optimal
solution of the lower-level problem is uniquely determined for all x € R"™ then the
problem BLPP is well defined. However, if there are multiple solutions to the lower-
level problem for a given x, then the upper-level objective becomes a set-valued map.
In order to overcome this difficulty, two different solution concepts have been consi-
dered in the literature, namely the optimistic solution and the pessimistic solution.

In this chapter we have focused on the optimistic approach only. According to
this approach the leader assumes the cooperation of the follower in the sense that
the follower will in any case take an optimal solution which is a best one from the
leader’s point of view. This leads to the following optimistic bilevel programming
problem (OBLPP).

(OBLPP) min, @y(x), xe€R™
where @y(x) =min{F (x,y) : Gj(x,y) <0,j€J,y € y(x)}
¥
and y(x) is the set of optimal solutions to the lower level problem
min f(x,y)
¥
subject to g;(x,y) <0, i€l

[10] A point ¥ € R™ is called a local optimistic solution of the bilevel programming
problem if j € y(x),x € R™ F(%,7) = @o(X), and there is a number € > 0 such that
©o(x) > @o(%), forall x e R™ || x—x ||< €.

To obtain the necessary optimality conditions for the optimistic bilevel
programming problem, we follow the value function approach initiated by Outrata
[22] according to which the OBLPP can be converted into a single-level mathe-
matical programming problem with the help of the value function of the lower-level
problem given by

V(x) = miny{f(x,y) : gi(x,y) <0,i eI,y e R"}.
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Then the reformulated optimistic bilevel programming problem (ROBLPP) is
given as

(ROBLPP) min,, F(x,y)
subject to
flry) ~ V) <0,
gi(x,y) <0, i€l,  Gj(xy) <0, jeJ,
(x,y) € R" x R™.

Let X C R™ x R™ denote the feasible set for ROBLPP; that is,
X ={(xy) e R" xR™|f(x,y) =V (x) <0,8(x,y) <0,i € I,Gj(x,y) <0,j € J}.

However, the price to pay in this reformulation is that ROBLPP is nonsmooth even
for smooth initial data.

Remark 15.3 ([11]). Note that ROBLPP is globally equivalent to OBLPP, and local
optimal solutions to OBLPP are always locally optimal to ROBLPP.

15.4 Variational Inequality Problem

In this section we consider the following types of variational inequality problems
and study relationships between the solution of BLPP and associated VIP and their
existence results.

We now consider the following Minty-type variational inequality problem MTVIP
and Stampacchia-type variational inequality problem STVIP in terms of convexi-
factors and their recession cone. These can be regarded as nonsmooth versions of
variational inequalities.

Let C be a nonempty convex subset of X.

(MTVIP) Find (,5) € C such that for all (x,y) € C there exists

E € d"F(x,y) U(F"F(x,y))e \ {0} such that
<57 (x,y) - (f,)_l» = 0.

(STVIP) Find (%,7) € C such that for all (x,y) € C there exists
E € *F(x,7)U(Q*F(%,¥))e \ {0} such that
<57 (x,y) - (f,)_l» = 0.

Theorem 15.2. Let F admit a convexifactor 0*F (x,y) at (x,y). If (x,y) € C is an
optimal solution of BLPP and F is d2-quasi-convex, then (X,¥) is a solution of
MTVIP.
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Proof. Because (%,¥) € C is an optimal solution of BLPP, by Remark 15.1 it is an
optimal solution of ROBLPP.
We have
F(x,y) > F(%,y), forall (x,y)eC.

F is d-quasi-convex, therefore we have

(€,(x,y) = (%,3)) 20, forall§ € d"F(x,y)U(d"F(x,y))-\ {0},

which implies (%,¥) € C is a solution of MTVIP.
We now show that under the assumption of d%-pseudo-convexity on F the
converse of the above theorem holds.

Theorem 15.3. Let F admit a convexifactor d*F (x,y) at (x,y). If (X,7) € C is a
solution of MTVIP and F is d-pseudo-convex, then (X,¥) is an optimal solution of
BLPP.

Proof. Let (%,¥) € C be a solution of MTVIP.
Then for all (x,y) € C, there exists & € 9*F(x,y) U (d*F(x,y))w \ {0} such that

<éa(x7y) - (X7)7)> = 0.

Consider any sequence {a, } | 0 with o, € (0,1].

Because C is convex, (x,,y,) = (X,¥) + 0, ((x,y) — (£,5)) € C.

As (x,7) € C is a solution of MTVIP and (x,,y,) € C, there exists &, €
" F (x,yn) U (9" F (xn,¥n)) \ {0} such that

<§n7(xn7yn)7(ia)_})> ZO (151)

Inasmuch as we have

0= <§n7 ((xn,yn) - (xnayn)»
= 0Oy <§na (x,y) - (xn,yn)> + (1 - an)<§na ()E’)_)) - (xnayn)>

(15.1) gives
(n, (x,3) = (Xn,y0)) >0 (15.2)

Case (i). If 9*F (x,,yn) is bounded we assume that &, — &. Because 0*F is closed,
&y € O*F (xn,yn),En — &, and (xn,y4) — (X,¥) as n — oo we have & € 9*F (X, ).

Case (ii). If 9*F (x,,y,) is unbounded we assume that lim,, . ||€,|| = o and

fim =& € (0 (5)-\ (0)

because as n — oo, (x,,yn) — (%,7).
Therefore for any (x,y) € C, there exist & € d*F(X,5) U (d*F(X,3)) \ {0} such
that <57 (xay) - (27)7» = 0.
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As F is d%-pseudo-convex we have
F(x,y) > F(%,y), forall (x,y) €C.

Hence (%,y) is an optimal solution of BLPP.
In the next theorem we use the mean value theorem to prove that an optimal
solution of BLPP is a solution of MTVIP.

Theorem 15.4. Let F be a continuous function that admits bounded, convex
convexifactor d*F (x,y) at (x,y). If (X,y) € C is an optimal solution of BLPP then
(%,7) is a solution of MTVIP.

Proof. Suppose on the contrary that (¥,¥) € C is not a solution of MTVIP; then for
all § € 9*F(x,y), (x,y) € C, we have

<§,(X,y)*()f,)_1)> <0. (153)
By mean value theorem 15.1 there exist z € ((x,y), (%,7)) and &’ € 9*F (z) such that
F(%5) = F(x.y) = (&, (%) = (x.7)), (15.4)

where 2 = (x,y) + A((%,5) — (x,3)), A € (0,1).
Because (15.3) is true for all (x,y) € C and as C is convex it is true in particular
for z, therefore by (15.4) we have

!/

<§ 7()?;)_}) - (xay)> >0

and hence F (%,7) — F(x,y) > 0 for all (x,y) € C.
Which implies (%, ) is not an optimal solution of BLPP, which is a contradiction.

Theorem 15.5. Let F admit a convexifactor 0*F (%,¥) at (%,¥). If (%,7) € C is an
optimal solution of BLPP and F is 9. -quasi-convexthen (%,y) is a solution of STVIP.

Proof. Because (%,¥) € C is an optimal solution of BLPP, by Remark 15.1 it is an
optimal solution of ROBLPP.
We have
F(x,y) > F(x,y), forall (x,y)€C. (15.5)
—

Let (£(4).5(4)) = (£.5) + A((x.y) ~ (£.5)).4 € [0.1]. Then (£(4).5(4)) € C as €
is convex.
Replacing (x,y) by (¥(1),¥(1)) in (15.5) we get
FE(A),5(2)) > F(%,5), forall (5(1),5(A)) € C.

Because F is d-quasi-convex we have

(&1, (x,y) = (%,9)) 20, forall & € d"F(x(4),5(4)).
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Case (i). If 9*F is locally bounded at (%, ), there exist a neighbourhood of (¥,7) and
a constant ¥’ > 0 such that for each («’,y) in this neighbourhood and £ € 9*F (¥, y")
we have [|€]] < K.

As (¥(1),5(1)) — (x,7) when A — 0, thus for A > 0 small enough ||&; || < X'

Without loss of generality we may assume that £, — &’

Because 0*F is closed, &' € 9*F(x,), therefore for (%,7) € C, there exists &' €
d*F(%,7) such that (£, (x,y) — (%,7)) > 0, for all (x,y) € C.

Case (ii). If 9*F is unbounded we assume that

. . &
lim —=ooand lim
im (1€ )

A
because as A — 07, (¥(1),5(1)) — (%, 7).

=& € (9"F(%,9))-\{0}

Therefore for any (x,y) € C, there exist § € *F (%,7) U (0*F (X,¥)) \ {0} such that

<éa(x7y) - (X7)7)> Z 0.
Hence (&, y) is a solution of STVIP.

Theorem 15.6. Let F admit a convexifactor d*F (X,y) at (%,y). If (X,7) € C is a
solution of STVIP and F is d%-pseudo-convex then (X,) is an optimal solution of
BLPP.

Proof. Suppose on the contrary that (¥,y) € C is not an optimal solution of BLPP;
then there exists (x,y) € C such that

F(x,y) < F(%,7). (15.6)
Because F is d%-pseudo-convex we have
(€, (xy) = (£5)) <0, forall ¢ ed"F(xy)U(d"F(,5))-\ {0}
which is in contradiction to the fact that (%,¥) is a solution of STVIP.

Theorem 15.7. Let F be a continuous function that admits a bounded convex
convexifactor 0*F (%,¥) at (X,¥). Suppose that F is d-pseudo-convex. Then (%,y) €
C is a solution of STVIP if and only if it is a solution of MTVIP.

Proof. Let (%,5) € C be a solution of STVIP.
Then for all (x,y) € C, there exists & € 9*F(x,7) such that

<§,(X,y)*()f,)_1)> ZO (157)
Because F is d-pseudo-convex we have
F(x,y) > F(%,5). (15.8)

Let (x(1),y(4)) = (x,y) + A((£,5) — (x,)),A € [0,1]. Then (x(1),y(4)) € Cas C

is convex.
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Replacing (x,y) by (x(1),y(1)) in (15.8) we get
F(x(4),y(A)) = F(x,9), forall (x(4),y(4))€C. (15.9)

By mean value theorem 15.1, there exist z¢, € ((x(1),y(1)), (%,7)) and Ey € 0*F (z¢)
such that

F(f,y) —F(x(l),y(),)) = <§O€7(Xa)_}) - (x()’)vy(}’)»
:(1_)’)<5%(2a)—7)_(x7)’)>5 (15.10)

where z¢ = (x,y) + o((%,5) — (x,¥)), 0 € [0,1].

Using (15.9) and (15.10), there exist z¢, € ((x(A),¥(A)), (%,¥)), and &y € 0*F (2)
such that (&y, (x,y) — (%,5)) > 0.

Because 0*F is assumed to be bounded and zo, — (x,y) when @ — 0™, for ¢ > 0
small enough ||| < k' for a constant &’ > 0.

Without loss of generality we may assume that £, — &',

0*F is closed, &’ € d*F (x,y), therefore for (,y) € C, there exists &' € 9*F(x,y)
such that (&', (x,y) — (¥,7)) > 0, for all (x,y) € C.

Hence (%,7) is a solution of MTVIP.

Conversely suppose that (&, 7) € C is a solution of MTVIP.

Now proceeding on the similar lines of Theorem 15.3 we get that for any
(x,y) € C, there exists & € d*F(x,y) such that

(5,(x,y) - (ia)_’» Z 0.

Hence (%,y) is a solution of STVIP.
Now we prove existence results for MTVIP and STVIP.

Theorem 15.8. Let C be a nonempty, compact, and convex subset of X. Let F : C —
R admit a convexifactor 0*F (x,y) at (x,y). Then, MTVIP has a solution.

Proof. Let set-valued mapping I = I':C c X — 2€ be such that

Ixy) = { (£,7) € C: 3 € *F(x,y) U(9*F (x,y))w \ {0} : }
’ (&, (x,y) = (£3)) > 0,¥(x,y) €C ‘

We first prove that I" is a KKM map.

Suppose that I" is not a KKM map.

Then there exists a finite set {(x1,y1),(x2,¥2)s---,(xn,yn)} C C, t; > 0,
i=1,2,...n,%" | t; = 1 such that

n n

(x,) = 2 tilxi,yi) & (T (xi, ).

i=1 i=1
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Then there exists & € 0*F(x,y) U(9*F(x,y))- \ {0} such that

!

(& (xi,yi) — (x,¥)) <0, forall i=1,2,...,n

éztz s (%6, 31) = (x,y)) <0

which is equivalent to

0=¢& <iti(xia)’i) - ifi(an)>

i=1

which is a contradiction.

Hence I' = I' is a KKM map.

Next we show I is closed for every (x,y) € C.

Let {(x,,yn)} be a sequence in I"(x,y) such that (x,,y,) — (x0,¥0) € C, to show
(x0,y0) € T".

(%n,¥n) € I'(x,y), therefore there exists &, € d*F (x,y) U(d*F (x,y)) \ {0} such
that

(&, (x,y) — (x,y0)) >0, forall n. (15.11)

Case (i). If 9*F is bounded then we assume that &, — £. Because d*F is closed,
&y € 0" F (xXn,yn),En — &, and (x,,yn) — (x0,¥0) as n — oo we have § € 9*F (xg, o).

Then from (15.11) we get (&, (x,y) — (x0,¥0)) > O which implies (xg,y0) €

I'(x,y).
Case (ii). If 9*F is unbounded we assume that

lim &, = and ~lim Hgnll&oe(a F(x0,30))=\ {0}.

Then proceeding as above we get (xg,y0) € I'(x,y).

Hence I' (x,y) is closed.

Furthermore because C is bounded it follows that I'(x,y) is bounded for each
(x,y) € C. Therefore by Lemma 15.1, we have (), yjcc ' (%) # 9.

Hence any (%,5) € C in this intersection is a solutlon of MTVLL

Corollary 15.1. In Theorem 15.8, if we assume F to be d%-pseudo-convex, then
BLPP has an optimal solution.

Proof. The proof follows by Theorem 15.3.

Theorem 15.9. Let C be a nonempty, compact, and convex subset of X. Let
F : C — R admit a convexifactor 0*F (X,y) at (X,¥). Then STVIP has a solution.

Proof. Let set-valued mapping I = I':C c X — 2€ be such that

(fﬁec'ﬁe8*t'ﬂNWF@wp\my}
(8 (xy) = (£3)) = 0,¥(x,y) € C '

Now proceeding on the lines of Theorem 15.8 we arrive at the desired result.

rww{
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Corollary 15.2. In Theorem 15.9, if we assume F to be d%-pseudo-convex, then
BLPP has an optimal solution.

Proof. The proof follows by Theorem 15.6.
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Chapter 16

On Efficiency in Nondifferentiable
Multiobjective Optimization Involving Pseudo
d-Univex Functions; Duality

J. S. Rautela and Vinay Singh

Abstract In this chapter we introduce the concepts of KT-pseudo d-univex-I,
KT-pseudo d-univex-II, and FJ-pseudo d-univex-II functions. The main objec-
tive of introducing these functions is to establish characterizations for efficient
solutions to nondifferentiable multiobjective programming problems. Moreover,
characterizations for efficient solutions by Fritz—John optimality conditions are also
obtained. Furthermore, the Mond—Weir type dual problem is studied and weak,
strong, and converse duality results are established involving the aforementioned
class of functions.

16.1 Introduction

The search for solutions to mathematical programming problems has been carried
out through the study of optimality conditions and of the properties of the functions
that are involved, as well as through the study of dual problems. In the case of
optimality conditions, it is customary to use critical points of the Kuhn—Tucker or
Fritz—John [13] types. In the case of the kinds of functions employed in mathe-
matical programming problems, to make the results more applicable in practice,
the tendency has been to replace convex functions with more general ones, with
the objective of obtaining a solution through an optimality condition.

With the introduction of the invex function, Hanson [10], Craven [4], and Craven
and Glover [5] established the equivalence between a global minimum of a scalar
function and a stationary point; and this also characterizes the invex functions
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(see [5] and [3]). In 1992, Bector, Suneja, and Gupta [7] introduced a more general
class known as univex functions. Unifying the approach of Antczak [1] and Bector,
Suneja, and Gupta [7], Mishra, Wang, and Lai [15] introduced the concept of
d-univexity.

Consider the following constrained multiobjective programming problem (CMP).

(CMP) Minimize (fi (x), ..., f,(x))
subject to: gj(x) £ 0,
xeSCR",

where fi : SCR'"— R, i=12,...,p, g : SCR'"—=R,j=12,....m are
nondifferentiable functions on the open set S C R".

Definition 16.1. A feasible point, x, is said to be an efficient solution of (CMP) if
there does not exist another feasible point, x, such that f(x) < f(x).

There appears a more general concept, namely weakly efficient solution of (CMP).

Definition 16.2. A feasible point x is said to be a weakly efficient solution of (CMP)
if there does not exist another feasible point x, such that f(x) < f(x).

Following the same lines as scalar problems, the outline is to obtain classes of
functions that make up constrained multiobjective problems, such that any class
of functions characterized by having every critical point as an efficient solution
of (CMP) must be equivalent to these classes of functions. So it is a question of
extending, amongst others, the kind of KT-invex functions introduced by Martin
[12], as well as the results obtained by him. And in order to do that, we use Fritz—
John and Kuhn-Tucker vector critical points as optimality conditions for multi-
objective problems. In Section 16.2, we introduce new kinds of functions based
on generalized invexity for multiobjective programming problems with constraints,
in which joint properties of the objective function and the functions involved in the
constraints of the problem are formed. Along similar lines, Osuna-Gomez, Beato-
Moreno, and Rufian-Lizana [17] studied weakly efficient solutions for (CMP), and
provided a new class of functions which extended the KT-invex functions [12] to
the multiobjective case and proved that they are characterized by all Kuhn—Tucker
vector critical points being weakly efficient solutions. In section 16.2, we intro-
duce the concepts of KT-pseudo d-univex-I, KT-pseudo d-univex-II, and FJ-pseudo
d-univex-II function. In Section 16.3 of this chapter, we extend this study to efficient
points. Finally, in Section 16.4, we conclude by studying the duality of the (CMP)
and the Mond—Weir-type dual problems.

16.2 Optimality Conditions. KT/FJ-Pseudo d-Univexity

Let f: S C R" — RP be a nondifferentiable function on open set S and by : § x § —
Ry, ¢p:R— Rwitha <0= ¢p(a) <0,7m:X xX — R"is a vector-valued function.
First we recall some known results.
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Definition 16.3 ([15]). Let f be a nondifferentiable function on the open set S. Then
the vector function f is said to be d-univex with respect to by, ¢o and n at u € X if
there exist by, ¢y, and 1, such that Vx € X,

bo(x,u)¢o[f (x) = f(w)] Z f'(uwin (x,u)),

where f(u;1(x,u)) denotes the directional derivative of f in the direction 1 (x,u),

: +AN(xu)) — f(u)

/ : =1 f(u ’ )

f(wn(xu)) = lim A

The class of univex functions is defined by Bector, Suneja, and Gupta [7]. For further
studies on the univex function, see Mishra and Giorgi [14]. Next we generalize the

class of pseudo d-univex functions, to introduce d-univex-I, to distinguish it from a
new class which we introduce and designate as pseudo d-univex-II.

Definition 16.4. Let f be a nondifferentiable function on the open set S. Then the
vector function f is said to be pseudo d-univex-I with respect to by, @, and 1 at
u € X if there exist by, @, and 7, such that Vx € X,

bo(x,1)9o[fi(x) = fi(x)] <0 = f(x:n(x,%)) <0.

Definition 16.5. Let f be a nondifferentiable function on the open set S. Then the
vector function f is said to be pseudo d-univex-II with respect to by, ¢y, and 1 at
u € X if there exist by, @, and 7, such that Vx € X,

bo(x,u)¢o[fi(x) = fi(x)] < 0= f; (x:;1(x,x)) <0.

Proposition 16.1. Let f be a nondifferentiable function on the open set S. If the
vector function f is pseudo d-univex-II, then the vector function f is pseudo
d-univex-I.

Definition 16.6. Problem (CMP) is said to be KT-pseudo d-univex-I with respect to
by, ¢y, and N at u € X if there exist by, ¢, and 7, such that Vx;,x, € X,

fi(xasm(x1,x2)) <0
bo(x1,x i(x1) — filx 0
0(x1,%2)90[fi(x1) — fi(x2)] <O = {g}(xz;n(thz)) <0.vj € I(xa),
where I(x;) ={j=1,...,m: gj(x2) =0}.

Definition 16.7. A feasible point x for (CMP) is said to be a Fritz—John vector
critical point FJVCP, if there exist A € RP, i € R™, such that

ATf (en (%) + u" g (s n(x,5) =0 (16.1)
uleg(x)=0 (16.2)
(A, 1) 20, (A,u)#0. (16.3)
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This is equivalent to saying that there exists (4, 17) > 0 such that

AT (en (x,2) + i g (an(x,%) =0, I=1(x) ={j=1,....m: g;(x) = 0}.
(16.4)
The same occurs in the following definition, but in this case with (4, ;) > 0,

A #0.

Definition 16.8. A feasible point x for (CMP) is said to be a Kuhn—Tucker vector
critical point KTVCP, if there exist A € RP u € R™, such that

ATF (en(x) +u" g (xn(x,5) =0 (16.5)
ug(x)=0 (16.6)

w=>0 (16.7)

> (16.8)

The following, Chankong and Haimes [6] and Kanniappan [11] type results are
needed in the sequel.

Theorem 16.1. If x is an efficient solution of (CMP), then x is a FJVCP.

In a similar manner to Kanniappan [11] and Gulati and Talaat [9] type following
the Kuhn—Tucker optimality result also needed for efficient solutions of (CMP), for
which we need to take on a constraint qualification.

Theorem 16.2. If x is an efficient solution of (CMP), and a constraint qualification
is satisfied at x, then x is KTVCP.

The following Osuna, Gomez, Beato-Moreno, and Rufian-Lizana [17] type results
are needed.

Theorem 16.3. Every KTVCP is a weakly efficient solution of (CMP) if and only if
problem (CMP) is KT-pseudo d-univex-1.

For the study of efficient points of (CMP) from the condition of optimality of
Kuhn-Tucker vector critical points, we need a new kind of function, one that is
contained in the KT-pseudo d-univex-I class, and which we present below.

Definition 16.9. Problem (CMP) is said to be KT-pseudo d-univex-II with respect
to bo, o, and N at u € X if there exist by, ¢, and 17, such that Vx;,x, € X,
f(x2im(x1,32)) <0

bo(x1,x x1) = flx2)] <0
o(x1,x2)90[f (x1) = f(x2)] < é{g/j(xz;n(th))go,\fjel(xz),

where I(xz) = {j=1,...,m:g;(x2) = 0}.

In the same way, for the study of efficient points from the Fritz—John optima-
lity condition we need a new kind of function which we designate as FJ-pseudo
d-invex-II.
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Definition 16.10. Problem (CMP) is said to be FJ-pseudo d-univex-II with respect
to bo, o, and N at u € X if there exist by, ¢, and 7, such that Vxj,x; € X,
flin(xi,x2)) <0

bo(x1,x x1)— flx2)] <0
0(x1,x2)90[f (x1) = fx2)] < :{glj(xz;n(xhxz))<0,Vj€1(x2)7

where I(xy) = {j=1,...,m:g;j(x2) = 0}.

16.3 Characterization of Efficient Solutions

The Kuhn-Tucker optimality condition is necessary for a point to be an efficient
solution for (CMP), as we have already seen. Let us also observe that under
KT-pseudo d-univex-II, the Kuhn-Tucker optimality condition is sufficient for a
point to be an efficient solution. But moreover, KT-pseudo d-univex-II is a neces-
sary condition, as we demonstrate below.

Theorem 16.4. Every KTVCP is an efficient solution of (CMP) if and only if (CMP)
is KT-pseudo d-univex-I1.

Proof.

(1) Let x be a KTVCP and (CMP) KT-pseudo d-univex-II. We have to prove that x
is an efficient solution of (CMP), and to do so let us suppose that it is not. Then
there exists a feasible point x such that

Because by > 0, a < 0= ¢p(a) <0, so that above inequality yields

bo(x,x)9o[f (x) = f(x)] < 0.

Because (CMP) is KT-pseudo d-univex-II, there exist by, ¢y, and 1 such that

"(x:m(x,x)) <0
7)) tes)
gr(®m(x,x)) <0, I =1(x).
On the other hand, x is a KTVCP; then 3 (Z,,L'L) >0, 4 2 0 such that
ATF (o 0) + B g en (6 0) =0, 1= 1. (16.10)

1 >0, iy 2 0, therefore from (16.9), it follows that

{in’(x;n(x,x)) <0
Af g)(x:n(x,0)) <0,
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and then B
AT (xan (6,3)) + 1 87 (i (x, %)) <0,

which is a contradiction to (16.10), and therefore, x is an efficient solution of
(CMP).
(ii) Let us suppose that there exist two feasible points x and x such that

fx)—f(® <0,
inasmuch as otherwise (CMP) would be KT-pseudo d-univex-II, and the result
would be proved. This means that x is not an efficient solution, and by using the
initial hypothesis, x is not a KTV CP; that is,
AT (e (x, %)) + A gr(x:m (x,8)) =0
has no solution A >0, W = 0. Therefore, by Motzkin’s theorem, the system

fsn(xx) <0
g(xn(x,x) =0,

has no solution 1(x,x) € R". In consequence, (CMP) is the KT-pseudo
d-univex-II. |

We state the following theorem without proof, as its proof follows similar lines
to those in the proof of Theorem 16.4

Theorem 16.5. Every FJVCP is an efficient solution of (CMP) if and only if (CMP)
is FJ-pseudo d-univex-II.

16.4 Duality

Let us move on to the study of duality. In order to do so, we tackle duality between
the multiobjective problem (CMP), and two associated problems of Mond—Weir
[16] type, defined for the multiobjective case by Egudo and Hanson [8], but with
the difference that the complementarity condition has been restricted and that of the
nonnegativity of (A, 1) has been extended. Note that A > 0 is not necessary. Let us
begin with the first problem DM as the dual of (CMP), and formulated thus:
(DM1)
Maximize f(u)

subject to:

AT (usn (x,u) + u” g (u;n(x,u)) =0 (16.11)
wigiw)=0, j=1,....m (16.12)
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©w=0 (16.13)
23>0 (16.14)
ucSCR".

We need a new class of pseudo d-univex function, which differs slightly from those
already defined and which we present below.

Definition 16.11. The pair of functions (f,g) is said to be KT-pseudo d-univex-II
with respect to by, @y, and N at u € X if there exist by, ¢y, and 1, such that
Vxi,x € X,

f(x2im(x1,x2)) <0

bo(x1,x2)Po[f (x1) — f(x2)] <0 = {g?(xz;n(xbxz» <0

withI =1(x) ={j=1,...,m: g;(x2) = 0}.

Theorem 16.6 (Weak Duality). Let x be a feasible point for (CMP), and (u,A, L)
a feasible point for DM1. If (f,g) is KT-pseudo d-univex-1l on S, then f(x) < f(u)
is not verified.

Proof. Let us suppose that (f,g) is KT-pseudo d-univex-II with respect to a vector
function 7. Let x be a feasible point for (CMP) and (u,A, ) a feasible point for
DM, such that f(x) < f(u); if not, the result would be proved. Then, there exist
A € RP,u € R™ such that

AT F (usn (e u)) + 1" g (usn (x,u)) = 0
uigj(u)=0, j=1,....m

u=0
)’ pa 9
that is,
ATF (s (x,u)) + pf gr(usm (x,u)) =0 (16.15)

with (A,u7) >0, A #0, I=I(u)={j=1,...,m:g;(u) =0}. Because f(x) < f(u)
from the KT-pseudo d-univex-II of (f,g) there exist by, ¢y, and 71 such that

bo(x,u)go[f (x) = f(u)] <0
it follows that
f'(w;n(x,u)) <0
{g}(u;n(x, ) £0, 1 =1(%)
and by multiplying by (A, ;) we have
AT F (usn (v, u)) + pf g7 (s (1)) <0,

which is a contradiction to (16.15), and therefore, f(x) < f(u) is not verified. W
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This weak duality result allows us to prove the strong duality, as follows.

Theorem 16.7 (Strong Duality). Let (f,g) be KT-pseudo d-univex-1L on S. If x is
an efficient solution for (CMP) and a constraint qualification is satisfied at x, then
there exist A, L, such that (x,A, L) is an efficient solution of DM1.

Proof. Let us suppose that x is an efficient solution for (CMP). From Theorem 16.2,
xis KTVCP; that is, 3(A,u) >0, A # 0 such that

AT (an () +ul g (xn(xx) =0
ulgi(x)=0.
Because g(x) < 0, and u”g;(x) = 0, it follows that
uigi(x) =0,  j=1,...,m.

Then, x is a feasible point for DM1, and the weak duality theorem f;(x) < f;(u) is
not verified, where u is a feasible point for DM 1. Therefore, x is an efficient solution
of DM1. [ |

The converse result is also verified, as we demonstrate below.

Theorem 16.8 (Converse Duality). Let (CMP) be KT-pseudo d-univex-11, and x a
feasible point for (CMP). If (x,A, L) is a feasible point for DM 1, then x is an efficient
solution of (CMP).

Proof. Let us suppose that x is a feasible point for (CMP). If (x,A,u) is a feasible
point for DM1, then

AT f (e (x,x) + 1" g (x5 (x,x)) =0
[.ngj(x)zo, j:l,...,m

and therefore x is a KTVCP. Because (CMP) is KT-pseudo d-univex-II, from
Theorem 16.4 it follows that x is an efficient solution of (CMP). [ |

Similarly, we can obtain duality results for (CMP) and the following dual
problem.

(DM2) Maximize f(u)
subject to:
AT F (s () + 1" g (s (o)) = 0 (16.16)
wigj(u)=0,  j=1,...m (16.17)
(A,pu) >0 (16.18)
uecSCR".

For this, we introduce the following definition.
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Definition 16.12. The pair of the functions (f, g) is said to be FJ-pseudo d-univex-11
on S with respect to by, ¢, and N at u € X if there exist by, ¢, and 1, such that
Vxi,x € X,

fx2n(x,x)) <0

bo(x X ) =X
ol m)olf ) < Sl =4 ) <0

withI(x2) ={j=1,...,m:gj(x2) =0}.

The relationship between this class of function and the FJ-pseudo d-univexity-II
of (CMP) is as follows.

Theorem 16.9 (Weak Duality). Let x be a feasible point for (CMP), and (u, A, L)
a feasible point for DM2. If (f,g) is FJ-pseudo d-univex-1L on S then f(x) < f(u)
is not verified.

Theorem 16.10 (Strong Duality). Let (f,g) be FJ-pseudo d-univex-1L on S. If x is
an efficient solution for (CMP), then there exist A, [l such that (x,A, L) is an efficient
solution of DM?2.

Theorem 16.11 (Converse Duality). Let (CMP) be FJ-pseudo d-univex-11, and x a
feasible point for (CMP). If (x, A, L) is a feasible point for DM2 then x is an efficient
solution of (CMP).
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